Open File Envelope No. 4046

EL 747, EL 748 AND EL 749

BUNABIE ROCKHOLE, HUGHES AND NULLARBOR PLAIN

PROGRESS REPORTS AND FINAL REPORT FOR THE PERIOD 20/10/80 TO 19/10/82

Submitted by

The Shell Co. of Australia Ltd 1983

© open file date 19/1/83

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

CONTENTS ENVELOPE 4046

Transparencies in Cylinder 4046/1

TENEMENT: E.L. 747 - Bunabie Rockhole, E.L. 748 - Hughes, E.L. 749 - Nullarbor Plain.

TENEMENT HOLDER: Shell Company Of Australia Ltd.

A/MT 22/209.

Quarterly Report Period Ending 20th Jan. 1981. REPORT: Pgs. 3-9 Coompana Area Geology. Drg. No. A/MT 22/022. Pg. 10 PLANS: Location Map Coompana Area Bunabie Rockhole. Pg. 11 Drg. No. A/MT22/021. Location Map Coompana Area Hughes. Drg. No. Pg. 12 A/MT 22/019. Pg. 13 Location Map Coompana Area Nullarbor Plains. Drg. No. A/MT 22/020. Aeromagnetic Contours. Drg. No. A/MT 22/025. Pg. 14 Coompana Area Magnetic Features. Drg. No. Pg. 15

APPENDICIES: Appendix 1. Reprocessed B.M.R. Aeromagnetic Pg. 16
Data.

PLANS: Coompana, Magnetic Contours 1:100,000. 4046(I)-1

" " Profiles 1:100,000. 4046(I)-2

Merdayerrah Magnetic Contours 1:100,000. 4046(I)-3

" " Profiles 1:100,000. 4046(I)-4

APPENDICIES: Appendix 2. Magnetic Interpretation - Pgs. 17-21

Coompana Area, S.A. Layton

Geophysical International.

PLANS: Interpreted Depth To Basement Map Coompana Area. 4046(I)-5
Structural Interpretation Map Coompana Area. 4046(I)-6
Interpreted Depth To Basement Map Merdayerrah 4046(I)-7
Area S.A.

Structural Interpretation Map Merdayerrah Area. 4046(I)-8

REPORT: Quarterly Report Period Ending 20th April 1981. Fgs. 22-23

PLANS: Coompana Area Location Plan. Drg. No. A/MT/22022. Pg. 24

REPORT: Quarterly Report Period Ending 20th July 1981. Pgs. 25-32

AFFEMDICIES: Appendix 1. Coompana Froject, Ground Mag- Fgs. 34-35 netic Lines.

Appendix 2. Cil Shale Analyses Hughes 1 & Pg. 36

- PLANS: Coompana Area Location Plan. Drg. No. A/MT 22/90. Pg. 33

 Bunburra S.A. Magnetic Contours. Drg. No. 4046(II)-1

 A/FW 08/005.

 Bunburra S.A. Nagnetic Contours. Drg. No. 4046(II)-2
 - Bunburra S.A. Magnetic Contours. Drg. No. 4046(II)-2 A/PW 08/006.
 - Bundulla S.A. Magnetic Contours. Drg. No. 4046(II)-3 A/PW 08/007.
 - Bundulla S.A. Magnetic Profiles. Drg. No. 4046(II)-4 A/FW08/008.
 - Anomaly CM 1 Contours Of Total Magnetic Intensity. Pg. 37 Drg. No. A/Pw 08/03.
 - Anomaly CM 2 Contours Of Total Magnetic Intensity. Pg. 38 Drg. No. A/PW 08/01.
 - Anomaly CM1 Total Magnetic Intensity Lines 3000N, Pg. 39 2500E, 2000E. Drg. No. A/FW 08/04.
 - Anomaly CM2 Total Magnetic Intensity Lines 4000N, Pg. 40 4600E. Drg. No. A/PW 08/02.
 - Anomaly CM4 Contours Of Total Magnetic Intensity. Fg. 41 Drg. No. A/Pw 09/01.
 - Anomaly CM4 Total Magnetic Intensity Line 3500E- Pg. 42 Base Line. Drg. No. A/PW 09/02.
 - Anomaly CM 4. Total Magnetic Intensity Lines Pg. 43 1000N, 2000N. Drg. No. A/PW 09/03.
 - Anomaly CM4 Total Magnetic Intensity Line 30CON. Pg. 44 Drg. No. A/PW 09/04.
 - Anomaly CM4 Total Magnetic Intensity Lines 4000N, Pg. 45 5000N. Drg. No. A/PW 09/05.
 - Anomaly PM2 Contours Of Total Magnetic Intensity. Pg. 46 Drg. No. A/PW 09/06.
 - Anomaly PM2 Total Magnetic Intensity Line OON. Pg. 47 Drg. No. A/Fw 09/07.
 - Anomaly PM2. Total Magnetic Intensity Line 1000N. Pg. 48 Drg. No. A/Fw 09/08.
 - Anomaly FN2 Total Magnetic Intensity Line 2000N. Pg. 49 Drg. No. A/Pw 09/09.
 - Anomaly FM2 Total Magnetic Intensity Line 3000N. Pg. 50 Drg. No. A/PW 09/10.
 - Anomaly PM2 Total Magnetic Intensity Line 4000. Pg. 51 Drg. No. A/PW 09/011.
 - Anomaly FM2 Total Magnetic Intensity Line 5000N. Pg. 52 Drg. No. A/PW 09/12.
 - Anomaly FM2 Total Magnetic Intensity Line 2000E Pg. 53 Base Line. Drg. No. A/PW 09/13.
 - Anomaly PM 3 Contours Of Total Magnetic Intensity Pg. 54 Drg. No. A/PW 09/22.

PLANS: Anomaly PM3 Total Magnetic Intensity Lines 4000N, Pg. 55 5000N. Drg. No. A/PW 09/23. Anomaly PM3 Total Magnetic Intensity Lines 1000N, Pg. 56 1500N. Drg. No. A/PW 09/24. Anomaly PM3 Total Magnetic Intensity Line 2500E - Fg. 57 Base Line. Drg. No. A/PW 09/25. Anomaly PM3 Total Magnetic Intensity Line 2500N. Pg. 59 Drg. No. A/FW 09/26. Anomaly PM3 Total Magnetic Intensity Lines 6000N, Pg. 59 1700E. Drg. No. A/PW 09/27. Anomaly PM4 Contours Of Total Magnetic Intensity. 4046(II)-5 Drg. No. A/PW 09/017. Anomaly PM4 Total Magnetic Intensity Line 2500N - Pg. 60 Baseline. Drg. No. A/PW09/18. Anomaly FM4 Total Magnetic Intensity Lines OOE, Pg. 61 1000E, 2000E. Drg. No. A/PW 09/19. Anomaly PM4 Total Magnetic Intensity Lines 5000E, Pg. 62 6000E. Drg. No. A/PW 09/20. Anomaly PM4 Total Magnetic Intensity Lines 7000E, Fg. 63 8000E. Drg. No. A/PW 09/21. Anomaly PM7 Contours Of Total Magnetic Intensity. Pg. 64 Drg. No. A/PW 09/14. Anomaly PM7 Total Magnetic Intensity Lines 1000N, Fg. 65 2000E. Drg. No. A/PW 09/15. Anomaly PM7 Total Magnetic Intensity Lines 4000N, Pg. 66 3000N, 2000N. Drg. No. A/PW 09/16. REPORT: Quarterly Report Period Ended 20th Oct. 1981. Pgs. 67-72 APPENDICIES: Appendix 1. Gravity Data & Operational Pgs. 79-117 Report - Solo Geophysics. Appendix 2. Summary Of Gravity Modelling Pgs. 118-122 Results. Appendix 3. Progress Report For Coompana Pgs. 123-132 Drilling Programme. Stage 1. Appendix 4. Coompana Diamond Drilling Pgs. 133-142 Programme, Memorandum No.

PLANS: Coompana Area Location Plan. Drg. No. A/MT 22/90. Pg. 73

" Aeromagnetic Contours. Drg. No. Pg. 74

A/MT 22/025.

Coompana Area Magnetic Features. Drg. No. A/MT Pg. 75

22/029.

Anomaly CM4 Contours Of Total Magnetic Intensity. Pg. 76

Drg. No. A/PW 09/35.

250

1213.

PLANS: Anomaly FM3 Contours Of Total Magnetic Intensity. Pg. 77

Drg. No. A/FW 09/34.

Anomaly PM4 Contours Of Total Magnetic Intensity. Pg. 78 Drg. No. A/PW 09/36.

REPORT: Quarterly Report Period Ended 20th Jan. 1982. Pgs. 143-150

PLANS: Coompana Area Location Flan. Drg. No. A/MT 22/90. Pg. 151
Coompana Project Summary Log DDH CD 1. Drg. No. Pgs. 152-153
A/TF 02/01.

Coompana Project Drill Hole Profile DDH CD1. Drg. Pg. 154 No. A/Pw 09/40.

Coompana Project DDH CD1 Cu & Zn Geochemistry For Pg. 155 Core Fillet Samples. Drg. No. A/TF 02/05.

Coompana Project DDH CD1 Magnetic Susceptibility. Pg. 156 Drg. No. A/TF 02/04.

Core Description Summary Log DDH CD2. Drg. No. Pg. 157 A/TF 02/02.

Drill Hole Profile DDH CD2. Drg. No. A/PW 09/41. Pg. 158 Fig. 7.

Core Description Summary Log DDH CD3. Drg. No. Fg. 159 A/TF 02/03.

Core Description Summary Log DDH CD7. Drg. No. Fg. 160 A/TF 01/001.

APPENDICIES: Appendix 1. Sample Record Sheets Of Pre- Fgs. 161-168 collar drilling for CD1 to CD7.

Appendix 2. Sample Record Sheets Of Pgs. 169-178

Diamond Drilling For CD1 to

CD3 & CD7.

Appendix 3. Pontifex & Associates Pty. Pgs. 179-188
Ltd. Mineralogical Report
No. 3549.

Appendix 4. Computer Logs Of Density, Pg. 189 & Gamma, Neutron, Self Potential & Resistance for CD1, CD3, 4046(III)-1 to CD6 & CD7. 4046(III)-4

PLANS: Gravity Modelling Anomaly PM3 Line 600QN. Drg. Pg. 190 No. A/PW 09/42.

REPORT: Quarterly Report Period Ending 20th April 1982. Pgs. 191-195

PLANS: Coompana Area Location Plan. Drg. No. A/MT 22/90. Fg. 196 Gravity Modelling Anomaly PM4 Line 6000E. Drg. Pg. 197 No. A/FW 09/3. <u>APPENDICIES</u>: Appendix 1. BHF Co. Ltd. Exploration Fgs. 198-206

Department Report E1/15.

Appendix 2. Amdel Report ND4078/82 "Testing Pgs. 207-210 Of Cores".

PLANS: Gravity Modelling Anomaly PM3 Line 6000N. Drg. Pg. 211
No. A/PW 09/42.

REFORT: Quarterly Report Period Ended 20th July 1982. Pgs. 212-218

PLANS: Coompana Area Location Plan. Drg. No. A/MT 22/90. Pg. 219

Magnetic Susceptibility DDH CD1. Drg. No. Pg. 220

A/TF 02/04.

Gravity Modelling Anomaly FM3. Line 60CON. Drg. Pg. 221 No. A/PW 09/42.

APPENDICIES: Appendix 1. Diamond Drill Hole Logs For Fgs. 222-241

DDH CD1 & CD2.

REFORT: Quarterly Report Period Ended 20th Oct. 1982. Pgs. 242-250

PLANS: Transparencies Held In Cylinder 4046/1. Fg. 251
Grid & Drillhole Location Map. Drg. No. 4046(III)-5
A/MT 22/092.

THE SHELL COMPANY OF AUSTRALIA LIMITED

Report on E.L. 747, Bunabie Rockhole, S.A.

E.L. 748, Hughes, S.A.

E.L. 749, Nullarbor Plain, S.A.

For the Quarter Ending January 20th, 1981.

Distribution:

Copy 1 Department of Mines and Energy, S.A. 2 Shell, Melbourne 3/4/5 Shell, Adelaide

CONTENTS

1.	Introduction

- 2. Regional Geology
- 3. Exploration Targets
- 4. Work Completed
- 5. Expenditure

Figures

- 1. Coompana Area Geology
- 2. Location Map Bunabie Rockhole E.L. 747
- 3. " " Hughes E.L. 748
- 4. " "Nullarbor Plain E.L. 749
- 5. Coompana Area Aeromagnetic Controus
- 6. Coompana Area Magnetic Features

Appendices

- 1. Reprocessed B.M.R. Aeromagnetic Data
 Coompana, Magnetic Contours 1:100,000
 Coompana, Magnetic Profiles 1:100,000
 Merdayerrah, Magnetic Contours 1:100,000
 Merdayerrah, Magnetic Profiles 1:100,000
- 2. Magnetic Interpretation Coompana Area S.A.
 Layton Geophysical International.

1. INTRODUCTION

Exploration Licences 747, 748 and 749 were applied for on 6th May, 1980 and granted on 20th October, 1980 for a period of one year. The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250,000 sheet areas, South Australia adjacent to the border with Western Australia. (Figure 1).

The licences are referred to as Bunabie Rockhole (E.L. 747), Hughes (E.L. 748) and Nullarbor Plain (EL. 749) and cover areas of 2104,3051 and 2345 square kilometres respectively. (Figures 2,3 and 4).

2. REGIONAL GEOLOGY

The Eucla Basin evolved by subsidence of the Precambrian basement during the Mesozoic. It is a broad structure representing a gentle epeirogenic downwarp of the southern continental margin of Australia and is an area of Cretaceous and Tertiary deposition. The basin is bounded by the Gawler Block to the east, the Albany-Fraser Province to the west, the Officer Basin to the north and extends to the edge of the continental shelf of the Great Australian Bight. Before and possibly during the Proterozoic, the basement was tectonically deformed, enabling the accumulation of Proterozoic sediments and volcanics in deep basement troughs e.g. the Mallabie Depression to the east. A number of large deep-seated faults have been interpreted in or along the margins of the Eucla Basin.

Recent regional aeromagnetic surveying on the COOK and COOMPANA 1:250,000 sheet area has revealed an intense, broad, reversely magnetised magnetic anomaly derived from a deep, intrabasement source. A number of shallow (some less than 200m) negative anomalies and trends are distributed around this feature. (Figures 5 and 6). Many of the discrete anomalies are located along northeast or northwest striking faults indicated on the aeromagnetic data.

3. EXPLORATION TARGETS

The prime targets are:-

Base metals associated with regional magnetic and gravity anomalies of unknown origin in the basement. The linear and discrete magnetic anomalies may indicate mafic/ultramafic bodies with potential for nickel, chromium, platinum, vanadium etc.

Oil shales associated with the Lower Cretaceous Madura Formation.

Uranium associcated with Tertiary lignites and sandstones.

4. WORK COMPLETED

During the quarter an assessment of available data was initiated.

Regional aeromagnetic data from surveys completed by the Bureau of Mineral Resources were obtained and reprocessed. Aeromagnetic contour plans and stacked profile plans for the Merdeyerrah and Coompana 1:100,000 sheets were produced (Appendix 1) and preliminary plans for the Bunburra and Bundulla 1:100,000 sheets completed.

A magnetic interpretation of the Merdeyerrah and Coompana sheets was completed by Layton Geophysical International on behalf of Shell and Depth to Magnetic Basement and Structural Interpretation plans produced (Appendix 2).

A review of magnetic features warranting investigation and further analysis of existing magnetic data were commenced.

An examination of Lower Cretaceous sequences intersected in drilling in the region was made to assist in the assessment of the oil shale potential of the area. A limited number of samples were selected for analysis. Results are not yet available.

5. EXPENDITURE

See details below.

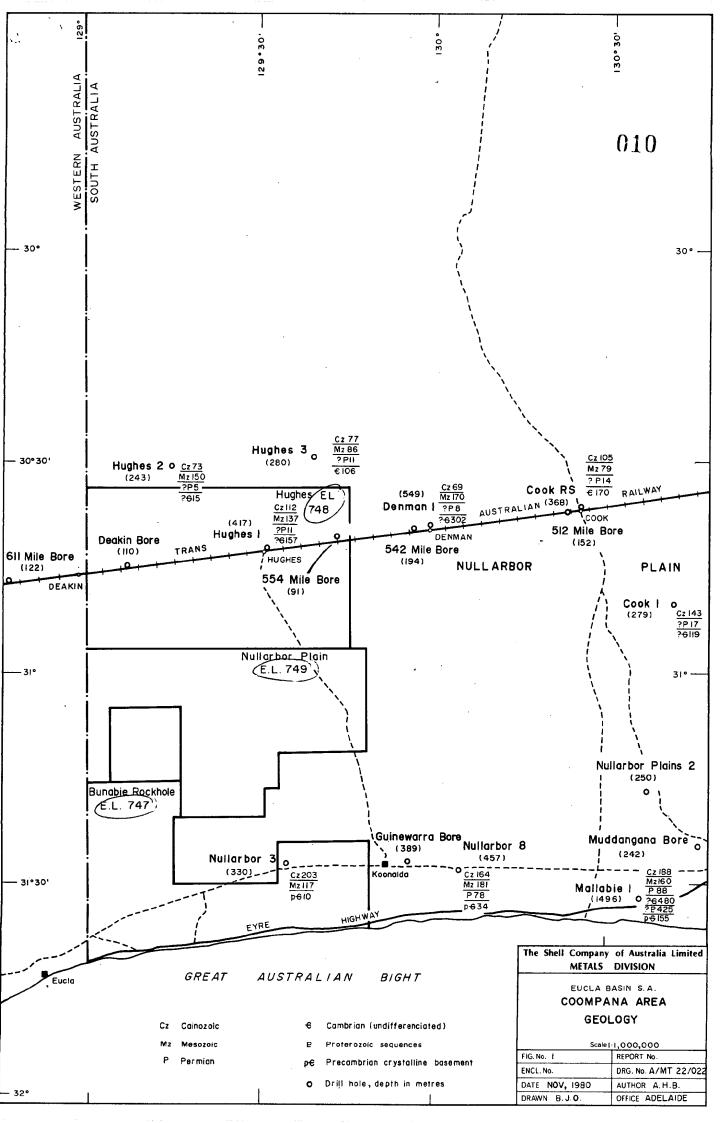
THE SHELL COMPANY OF AUSTRALIA LIMITED - METALS DIVISION

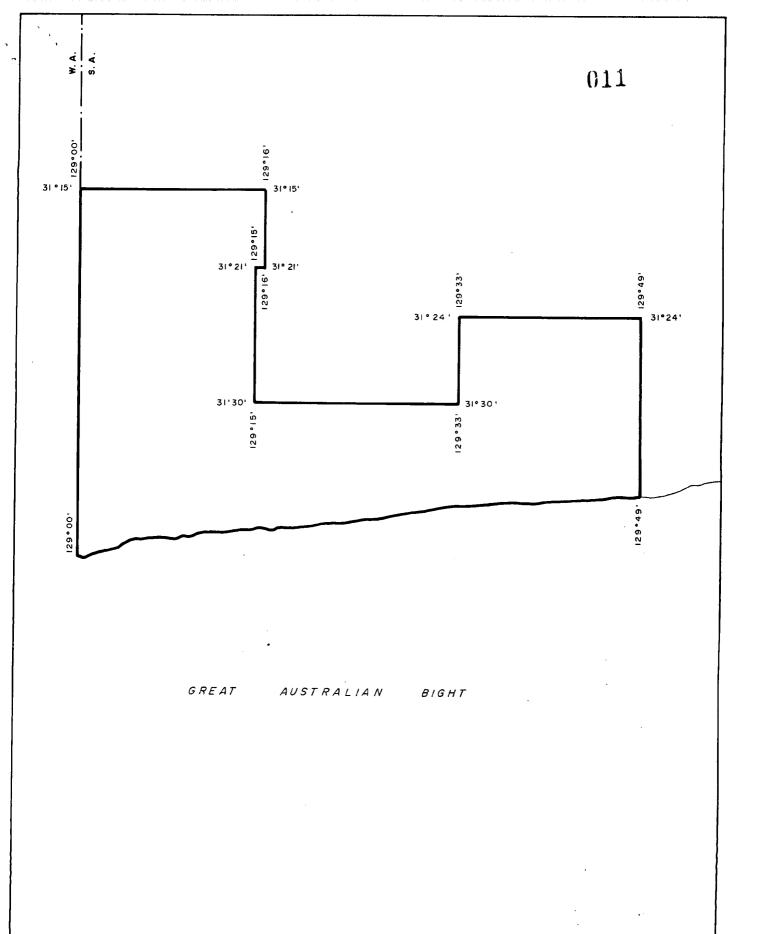
QUARTERLY PROJECT COSTS - BUNABIE ROCKHOLE E.L. 747 PERIOD OCTOBER 1 - DECEMBER 31, 1980.

<u>Item</u>	Cost
Staffing	\$ 148
Regional office expenses	\$ 30
Vehicles - Rental	\$ 27
Payment to Governments	\$ 24
Airborne Geophysics	\$ 1,000
Total Direct Costs	\$ 1,229
Overheads	\$ 97
Gross Costs	\$ 1,326

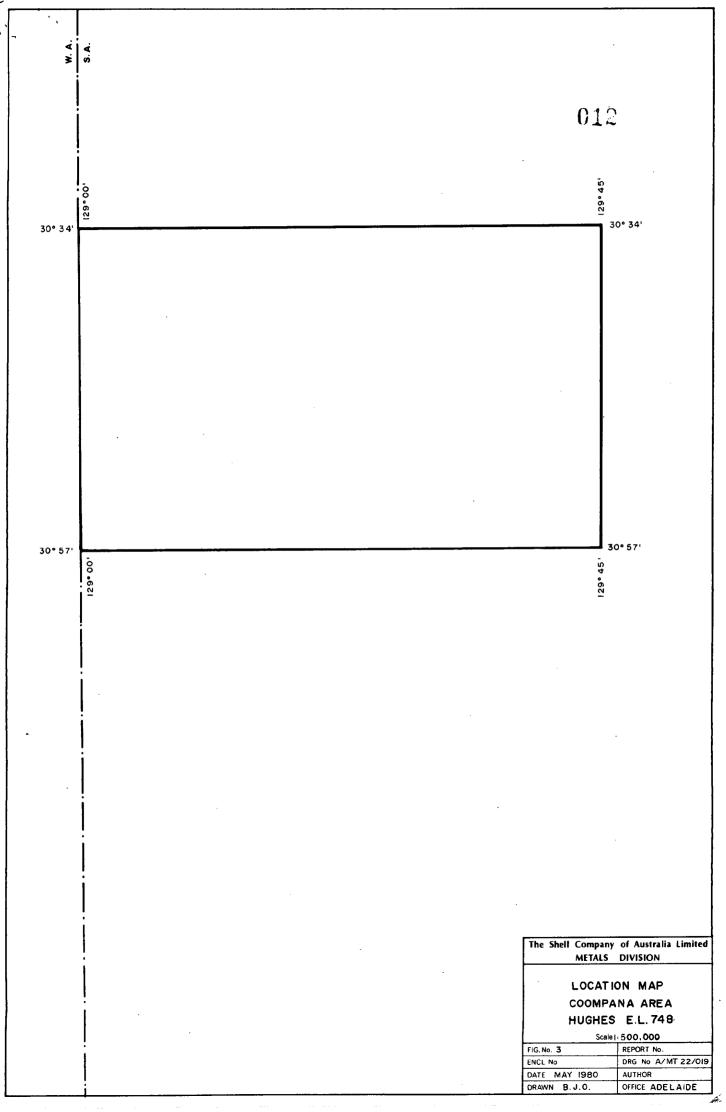
THE SHELL COMPANY OF AUSTRALIA LIMITED - METALS DIVISION

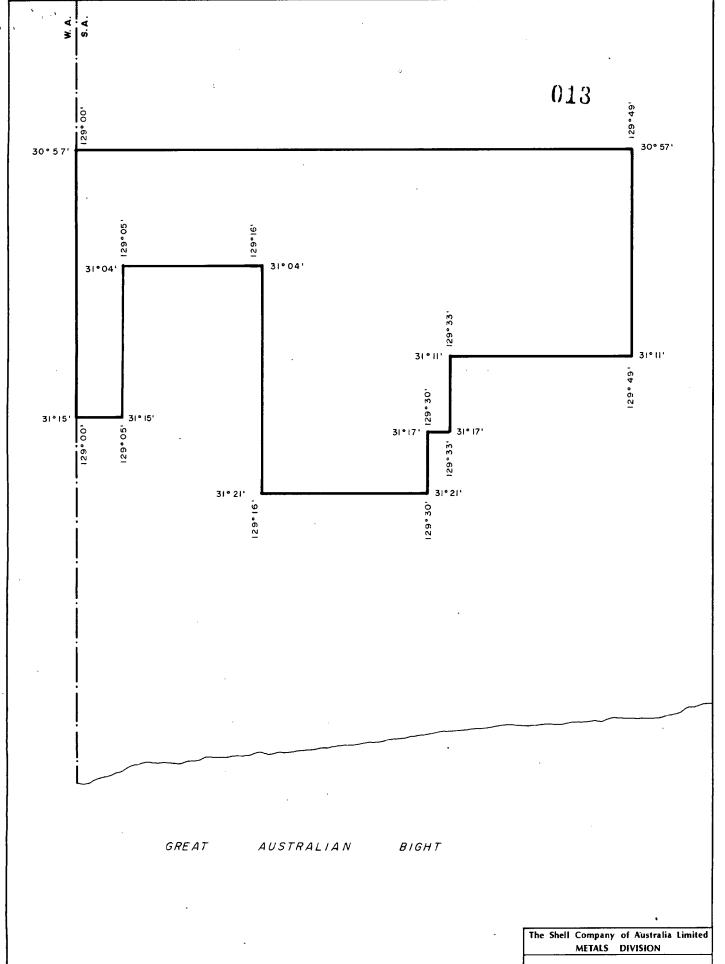
QUARTERLY PROJECT COSTS - HUGHES E.L. 748 PERIOD OCTOBER 1 - DECEMBER 31, 1980.

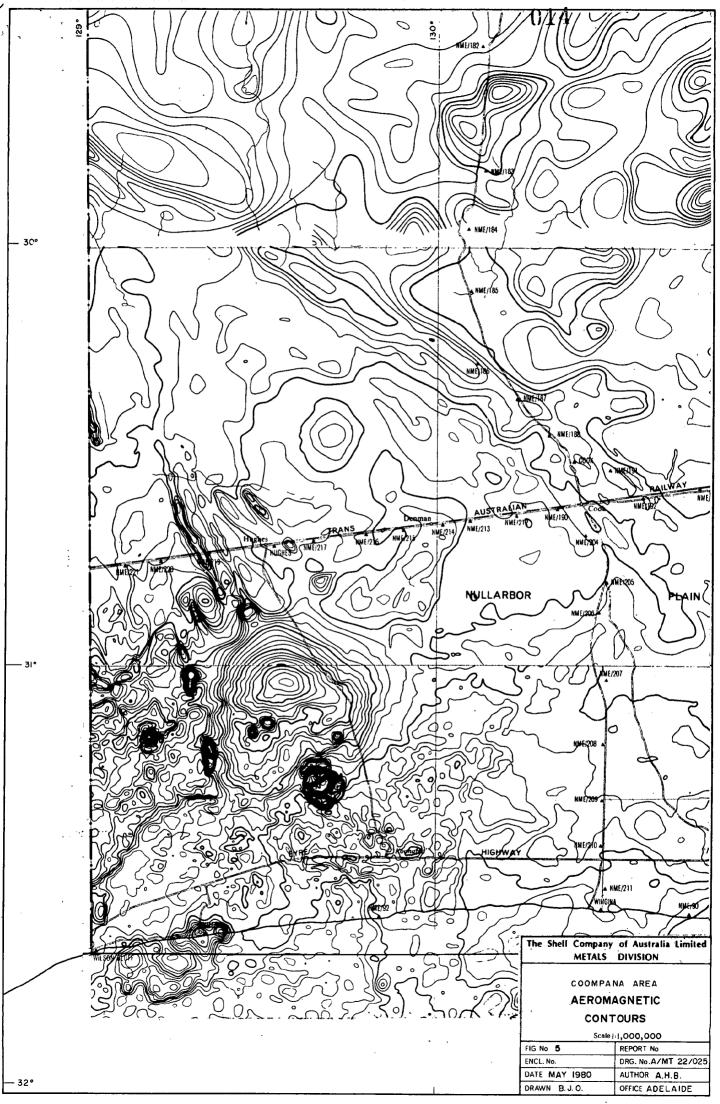

<u>Item</u>	Cost	
Books, Maps and Publications	\$ 8	
Payments to Governments	\$ 24	
Airborne Geophysics	\$ 1,000	
Total Direct Costs	\$ 1,032	
Overheads	\$ 0	
Gross Costs	\$ 1.032	

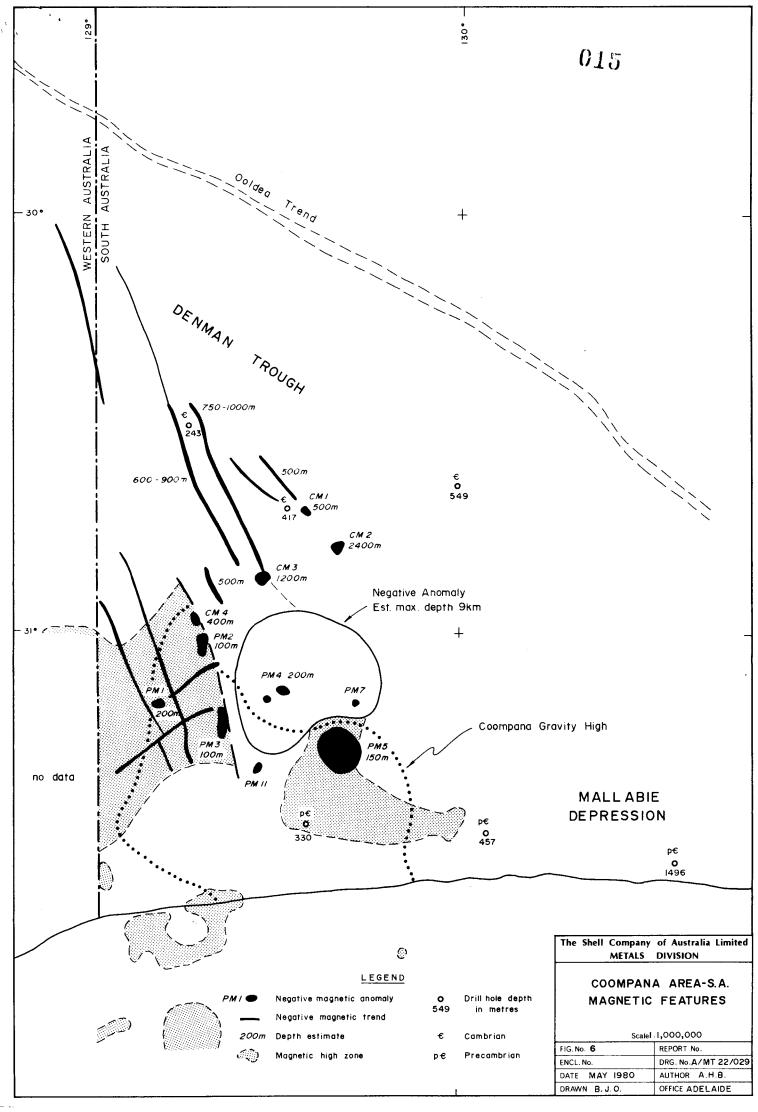

THE SHELL COMPANY OF AUSTRALIA LIMITED - METALS DIVISION

009


QUARTERLY PROJECT COSTS - NULLARBOR PLAIN E.L. 749 PERIOD OCTOBER 1 - DECEMBER 31, 1980.


<u>Item</u>	Cost
Staffing costs .	\$ 313
Professional Fees/Services	\$ 5,750
Regional office expenses	. \$ 59
Vehicles - Rental	\$ 54
Payment to Governments	\$ 24
Airborne Geophysics	\$ 1,000
Total Direct Costs	\$ 7,200
Overheads	\$ 193
Gross Costs	\$ 7,393




The Shell Company of Australia Limited				
METALS DIVISION				
LOCATI	01 110			
LOCATI	ON MAP			
COOMPA	COOMPANA AREA			
BUNABIE ROCK	HOLE E.L. 747			
Scale	500,000			
FIG. No. 2 REPORT No.				
ENCL. No.	DRG. No. A/MT 22/021			
DATE MAY 1980	O AUTHOR			
DRAWN B. J. O.	OFFICE ADELAIDE			

NULLARBOR PL	IA AREA Ains E.L.749			
Scale I:	Scale I: 500,000			
FIG. No. 4	REPORT No.			
ENCL No	DRG No.A/MT 22/020			
DATE MAY 1980 AUTHOR				
DRAWN B.J.O. OFFICE ADELAIDE				

APPENDIX 1

REPROCESSED B.M.R. AEROMAGNETIC DATA

Coompana, Magnetic Contours	1:100,000
Coompana, Magnetic Profiles	1:100,000
Merdayerrah, Magnetic Contours	1:100,000
Merdayerrah, Magnetic Profiles	1:100,000

APPENDIX 2

MAGNETIC INTERPRETATION - COOMPANA AREA, S.A.

LAYTON GEOPHYSICAL INTERNATIONAL

THE SHELL COMPANY OF AUSTRALIA LIMITED

MAGNETIC INTERPRETATION
COOMPANA AREA, SOUTH AUSTRALIA

DECEMBER, 1980

LAYTON GEOPHYSICAL INTERNATIONAL

P.O. Box 77 Campbell A.C.T. 2601 AUSTRALIA Telephone (062) 47 0753 Telex: AA 61601 AUSTAS

CONTENTS

INTRODUCTION

INTERPRETATION PROCEDURES

INTERPRETATION

- FIGURE 1
- FIGURE 2
- FIGURE 3
- FIGURE 4

INTRODUCTION

Layton Geophysical International was asked by The Shell Company of Australia Limited (under contract No. 48154/PW09) to undertake Magnetic Interpretation on two 1:100,000 map sheets, namely the Coompana and Merdeyerrah sheets.

The objectives of the interpretation were to produce a detailed depth to magnetic basement map of the area and to outline minor and major basement structures (sub-basins, faults etc.)

The interpretation was undertaken by Mr. Ian Campbell (B.Sc.), a Senior Geophysicist who consults for Layton Geophysical International.

It should be noted that the B.M.R. report on this area indicates that the magnetic detector in the aircraft was 150 metres above ground surface, and not 90 metres as indicated on the maps supplied by Shell Company. Depths on the maps produced are based on the detector being 150 metres above ground surface and not 90 metres.

INTERPRETATION PROCEDURES

Depths to magnetic basement were determined using the 'straight' slope method on anomalies considered suitable for depth estimates. The horizontal extent of the 'straight' portion of the slope at the inflection point of an anomaly is related to the depth of the source by the relation: Depth = 1.1 x horizontal extent of 'straight' slope. A correction was also made where the strike of the anomaly was not perpendicular to the flight line.

Much of the Merdeyerrah and Coompana 1:100000 areas show high levels of magnetic disturbance with the result that most anomalies are distorted by the interference from magnetic sources adjacent to the primary source. As a result of this interference, many anomalies were not considered suitable for depth estimation. Because of this and the lack of anomalies in the northern parts the number of depth estimates is less than would permit the production of an accurate and detailed depth to basement map.

INTERPRETATION

Maximum depths to basement over most of the region are shallow with most of the basement within the range 300 to 600m below ground level. The smoother contours suggest a deepening to the northeast of Merdeyerrah and to the north of Coompana. Alternatively, this may be due to basement of more uniform composition.

Strong gradients indicate a major basement division between the western and eastern side of Merdeyerrah. Positive and negative magnetic anomaly trends are also indicated on the map. They probably indicate the location of lineaments and faults within the basement. The position of other faults have been interpreted from the character of the anomaly pattern.

Respectfully submitted,

Sultan

T.D.J. Pippett, Managing Geophysicist.

THE SHELL COMPANY OF AUSTRALIA LIMITED METALS DIVISION

REPORT ON E.L. 747, BUNABIE ROCKHOLE, S.A.

E.L. 748, HUGHES, S.A.

E.L. 749, NULLARBOR PLAIN, S.A.

FOR THE QUARTER ENDING APRIL 20TH, 1981

AUTHOR: A.H. BRASH

REPORT NO.: 08/870

DATE: MAY, 1981

COPY NO.; 1

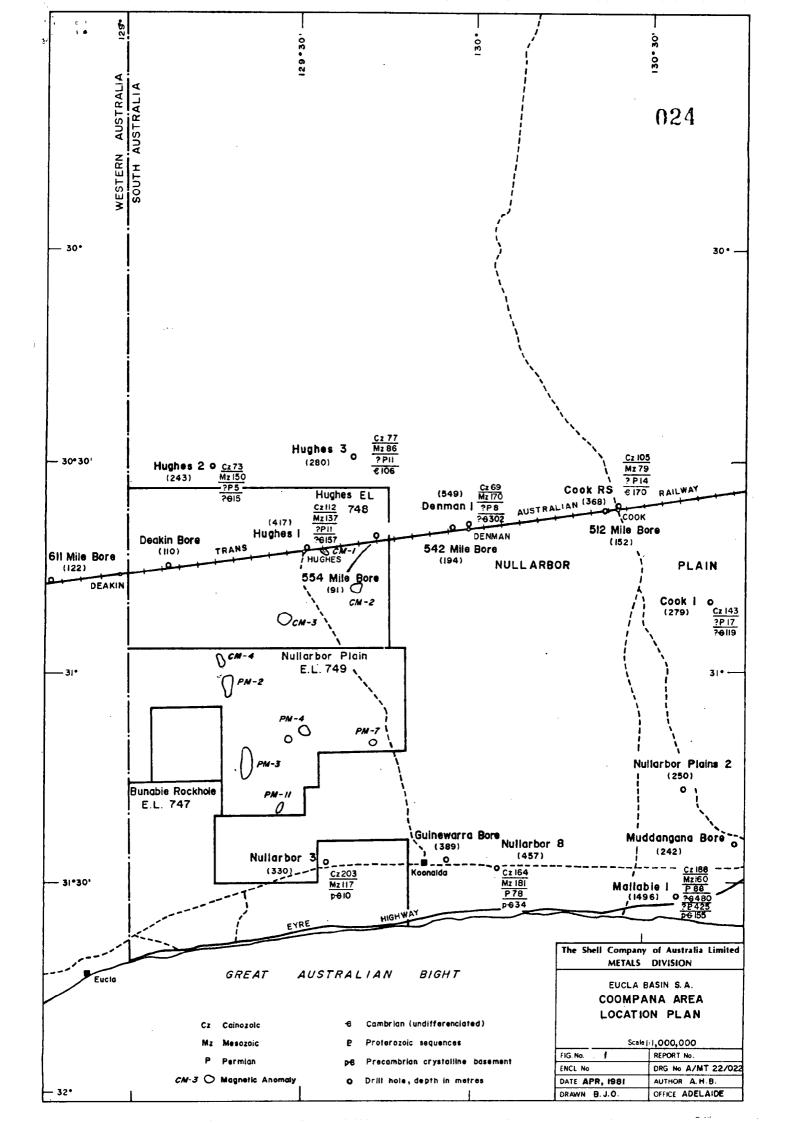
Distribution: Copy 1 Department of Mines & Energy, S.A.

2 & 3 Shell, Melbourne 4 & 5 Shell, Adelaide

6 B.H.P.

RECEIVED
14 MAY 1981 E2
DEPT. OF CURIES
AND ENERGY
SECURITY

No field work was carried out during the reporting period.


Preparations were made for a gridding and ground magnetic surveying over selected aeromagnetic anomalies (Fig. 1) in the Hughes and Nullarbor Plain E.L.'s scheduled to commence in May, 1981.

A contract was awarded to Solo Geophysics for gravity surveying over the gridded areas.

A contract was awarded to Peter Nitschke Drilling for percussion and diamond drilling scheduled to commence in August 1981.

Expenditures are summarised below:-

(in EL doduke)

THE SHELL COMPANY OF AUSTRALIA LIMITED METALS DIVISION

REPORT ON E.L. 747, BUNABIE ROCKHOLE, S.A.

E.L. 748, HUGHES, S.A.

E.L. 749, NULLARBOR PLAIN, S.A.

FOR THE QUARTER ENDING JULY 20th, 1981.

AUTHOR: A.H. BRASH

REPORT NO.: 08/958

DATE: July, 1981

COPY NO.: 1

DISTRIBUTION: Copy 1 Department of Mines and Energy,
Adelaide

2 & 3 The Shell Company of Australia Limited,
Metals Division, Melbourne

4 The Shell Company of Australia Limited,
Metals Division, Adelaide
5 B.H.P., Adelaide
6 B.H.P., Melbourne

CONTENTS

			Page No.	
1.	INTRO	DDUCTION	1	
2.	WORK	COMPLETED		
	2.2 2.3 2.4	Aeromagnetic Date Ground Magnetic Surveying Gravity Surveying Drilling Analyses	1 1 2 2	
3.	EXPEN	NDITURE	2	
		TABLES		
Table 1		Coompana, Summary of Ground Ma	agnetic Anomali	es
		FIGURES		
Figure	No.	Title	Scale	Drawing No
1		Coompana Area, Location Plan	1:1,000,000	A/MT 22/022
		APPENDICES		
Appendi	x No.	1 Ground Magnetic Lines 2 Oil shale analyses Hughe	es 1 and 2	

LIST OF ENCLOSURES

Enclosure No.	Title	Scale	Drawing No.
Hughes E.L. 748			
1	Bunburra, Magnetic Contours	1:100,000	A/PW08/005
2	Bunburra, Magnetic Profiles	1:100,000	A/PW08/006
3	Bundulla, Magnetic Contours	1:100,000	A/PW08/007
4	Bundurra, Magnetic Profiles	1:100,000	A/PW08/008
5	Anomaly CM1 Contours of Total Magnetic Intensity	1:25,000	A/PW08/03
6	Anomaly CM1 Total Magnetic Intensity Lines 3000N, 2500E, 2000E	1:25,000	A/PW08/04
7	Anomaly CM2 Contours of Total Magnetic Intensity	1:50,000	A/PW08/001
8	Anomaly CM2 Total Magnetic Intensity Lines 4000N, 4600E	1:25,000	A/PW08/002
Nullarbor Plains	E.L. 749		
9	Anomaly CM4 Contours of Total Magnetic Intensity	1:25,000	A/PW09/001
10	Anomaly CM4 Total Magnetic Intensity Line 3500E - Baseline	1:25,000	A/PW09/002
11	Anomaly CM4 Total Magnetic Intensity Lines 1000N, 2000N	1:25,000	A/PW09/003
12	Anomaly CM4 Total Magnetic Intensity Line 3000N	1:25,000	A/PW09/04
13	Anomaly CM4 Total Magnetic Intensity Lines 4000N, 5000N	1:25,000	A/PW09/05
14	Anomaly PM2 Contours of Total Magnetic Intensity	1:25,000	A/PW09/06

LIST OF ENCLOSURES (Cont.)

Enclosure No.	<u>Title</u>	Scale	Drawing No.				
Nullarbor Plains E.L. 749 (Cont.)							
15	Anomaly PM2 Total Magnetic Intensity Line OON	1:25,000	A/PW09/07				
16	Anomaly PM2 Total Magnetic Intensity Line 1000N	1:25,000	A/PW09/08				
17	Anomaly PM2 Total Magnetic Intensity Line 2000N	1:25,000	A/PW09/09				
18	Anomaly PM2 Total Magnetic Intensity	1:25,000	A/PW09/010				
19	Anomaly PM2 Total Magnetic Intensity Line 4000N	1;25,000	A/PW09/011				
20	Anomaly PM2 Total Magnetic Intensity Line 5000N	1:25,000	A/PW09/012				
21	Anomaly PM2 Total Magnetic Intensity Line 2000E – Baseline	1:25,000	A/PW09/013				
22	Anomaly PM3 Contours of Total Magnetic Intensity	1:25,000	A/PW09/022				
23	Anomaly PM3 Total Magnetic Intensity Lines 4000N, 5000N	1:25,000	A/PW09/023				
24	Anomaly PM3 Total Magnetic Intensity Line 1000N, 1500N	1:25,000	A/PW09/024				
25	Anomaly PM3 Total Magnetic Intensity Line 2500E - Baseline	1:25,000	A/PW09/025				
26	Anomaly PM3 Total Magnetic Intensity Line 2500N	1:25,000	A/PW09/026				
27	Anomaly PM3 Total Magnetic Intensity Lines 6000N, 1700E	1:25,000	A/PW09/027				

LIST OF ENCLOSURES (Cont.)

Enclosure No.	<u>Title</u>	Scale	Drawing No.	
Nullarbor Plains	E.L. 749 (Cont.)			
28	Anomaly PM4 Contours of Total Magnetic Intensity	1:25,000	A/PW09/017	
29	Anomaly PM4 Total Magnetic Intensity Line 2500N - Baseline	1:25,000	A/PW09/018	
30	Anomaly PM4 Total Magnetic Intensity Lines OOE, 1000E, 2000E	1:25,000	A/PW09/019	
31	Anomaly PM4 Total Magnetic Intensity Lines 5000E, 6000E	1:25,000	A/PW09/020	
32	Anomaly PM4 Total Magnetic Intensity Lines 7000E, 8000E	1:25,000	A/PW09/021	
33	Anomaly PM7 Contours of Total Magnetic Intensity	1:25,000	A/PW09/014	
34	Anomaly PM7 Total Magnetic Intensity Lines 1000N, 00N, 2000E	1:25,000	A/PW09/015	
35	Anomaly PM7 Total Magnetic Intensity Lines 4000N, 3000N, 2000N	1:25,000	A/PW09/016	

1. INTRODUCTION

Exploration Licences 747, 748 and 749 were applied for on 6th May, 1980 and granted on 20th October, 1980 for a period of one year. The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250,000 sheet areas, South Australia adjacent to the border with Western Australia.

The licences are referred to as Bunabie Rockhole (E.L. 747), Hughes (E.L. 748) and Nullarbor Plain (E.L. 749) and cover a total area of 7,500 square kilometres.

The licences are the subject of a joint venture agreement with Dampier Mining Company Ltd.

2. WORK COMPLETED

2.1 Aeromagnetic Data

Final reprocessed aeromagnetic contour and stacked profile plans were produced for the Bunburra and Bundulla 1:100,000 sheets (Enclosures 1-4).

2.2 Ground Magnetic Surveying

214 line km of ground magnetic surveying was completed over magnetic anomalies CM-1, CM-2, CM-4, PMM-2, PM-3, PM-4 and PM-7 (Fig 1). A Geometrics G-816 was used for the survey. Station spacing was generally 50m. A summary of lines surveyed is presented in Appendix 1.

PM-2

Detailed analysis of the data is in progress. A summary of preliminary analysis is presented in Table 1. Maximum intensities lie in the range -500 to -2000 nT. The majority of sources are at depths of 250m to 500m with the exception of CM-1 and CM-2 which have interpreted depths exceeding 600m.

Profiles and contours of total magnetic intensity are presented in Enclosures 5 to 35.

2.3 Gravity Surveying

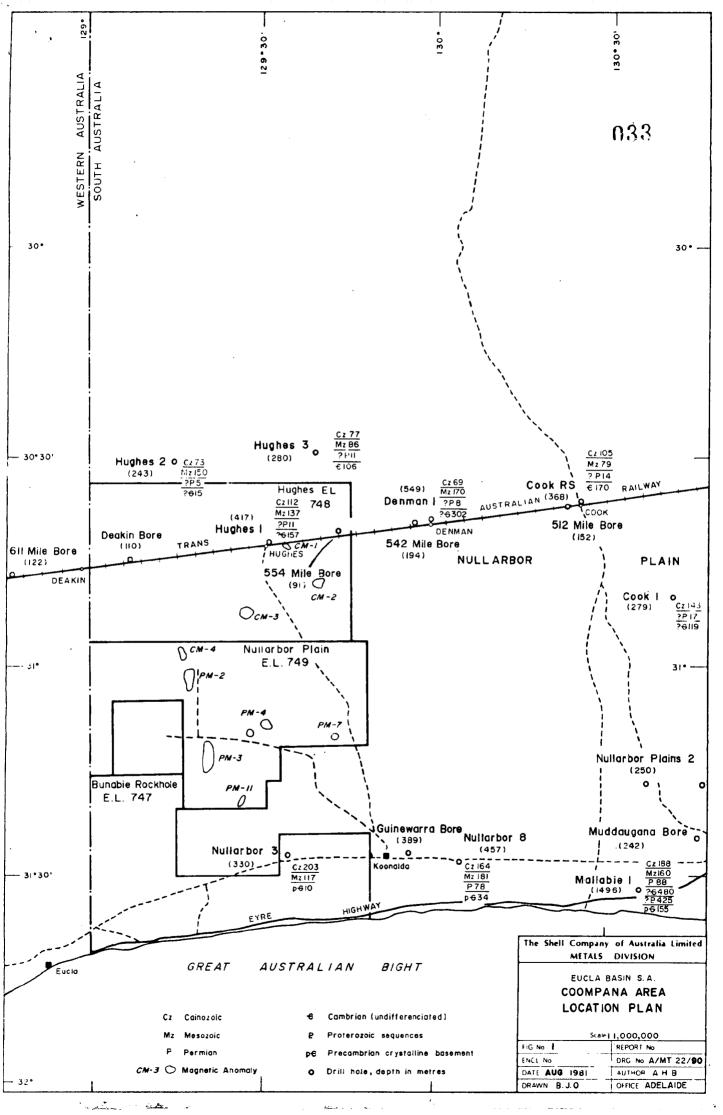
A programme of gravity surveying over anomalies CM-1, CM-4, PM-2, PM-3, PM-4 and PM-7 is in progress.

SHEET	E.L.	ANOMALY	MAX. INTENSITY nT	SIZE <u>km</u>	MEAN DEPTH EST. m	DEPTH RANGE m	COMMENTS
COOMPANA	472	PM-1	-6000	2.5 x 2.5	-		Held by CEC
	749	PM-2	-2000	2.5 x +4	480	440 - 560	
	749	PM-3 *	-1750	1.5 x 1.5	260 (N anomaly)	250 - 400	Multiple anomaly
	·		-2000		320 (S anomaly)	280 - 400	
	749	PM-4 *	-1400	1 x 2	440 (₩ anomaly)	360 - 520	
			-1300	2.5 x 2	500 (E anomaly)	480 - 520	
	503	PM-5			-		Held by CEC
	749	PM-7	-1000	2.5 x 1.4	470	380 - 560	Including A.O. data
		·			400		3D modelling
соок	748	CM-1	- 550	2 x 1.5	620	450 - 680	
	748	CM-2	- 900	2.5 x 2	770	760 - 800	
·	749	CM4	1900	2.5 x 1.7	450	400 - 500	

^{*} Priority basement target

2.4 Drilling

Diamond and percussion drilling of basement and oil shale targets within the Cretaceous Madura Formation is scheduled to commence in August. A contract has been let to Peter Nitschke Drilling Ltd.


2.5 Analyses

Oil shale analyses for drill holes Hughes 1 and 2 were received and are presented in Appendix 2.

3. EXPENDITURE

A summary of expenditures for the quarter ending June 30, 1981 and total project figures are presented below.

E.L.	Quarter	Project Total to Date
	Apr/Jun	, to Date
Bunabie Rockhole E.L. 747		
Personnel/Personnel Burden	0	340
Support Costs	148	1,285
Payments to Governments	0	24
Airborne Geophysics	833	1,333
Aerial Photography	100	100
Overheads	111-	97
<u>Total</u>	970	3,179
Hughes E.L. 748		
Personnel/Personnel Burden	520	520
Support Costs	5,078	5,122
Payments to Governments	0	24
Ground Geophysics	3,330	3,330
Airborne Geophysics	833	1,333
Aerial Photography	85	85
Overheads	236	236
<u>Total</u>	10,082	10,650
Nullarbor Plain E.L. 749		
Personnel/Personnel Burden	4 604	5.500
Support Costs	4,681	5,762
Payments to Governments	1,230	5,625 24
Airborne Geophysics	834	1,334
Topographical Surveying	3,635	3,635
Aerial Photography	85	85
Geological, Drawing & Computer	502	502
Overheads	189	828
<u>Total</u>	11,156	17,795

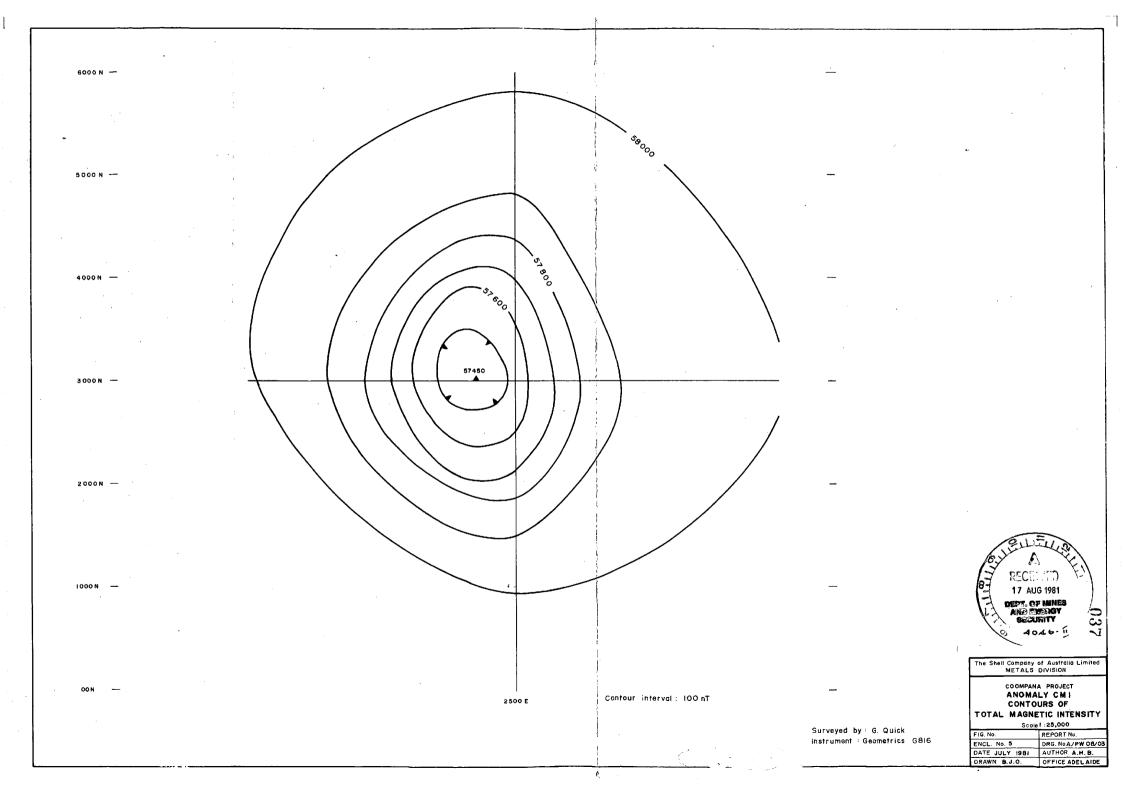
034

COOMPANA PROJECT, GROUND MAGNETIC LINES

ANOMALY	LINE	FROM	TO	TOTAL (KM)
PM7	2000E	OON	5000N	5
	1000N	OOE	4000E	4
	2000N	OOE	4000E	4
	3000N	OOE	4000E	4
	4000N	OOE	4000E	4
				21
PM4	2500N	00E	9000E	9
	OOE	OON	5000N	5
	1000E	OON	5000N	5
	2000E	OON	5000N	5
	5000E	OON	5000N	. 5
	6000E	OON	5000N	5
	7000E	OON	5000N	5
	8000E	OON	5000N	5
				44
PM 3	1700E	6000N	7000N	1
	2500E	OON	8000N	8
	1000N	500N	4500N	4
	1500N	1000N	4000N	3
	2500N	500N	4500N	4
	4000N	500N	5000N	4.5
	5000N	1000N	4500N	3.5
	6000N	OON	4500N	4.5
				31.5
PM2	2000E	OON	5000N	5
	OON	OOE	7000E	7
	1000N	OOE	7000E	7
	2000N	OOE	7000E	7
	3000N	OOE	7000E	7
	4000N	00	7000E	7
	5000N	00	7000E	7
				47
CM2	4600E	OON	8000N	8
	4000N	OOE	9000E	9
				17
CM1	2000E	2000N	4000N	2
	2500E	OON	6000N	6
	3000N	OOE	5000E	5
				13

COOMPANA PROJECT, GROUND MAGNETIC LINES

035

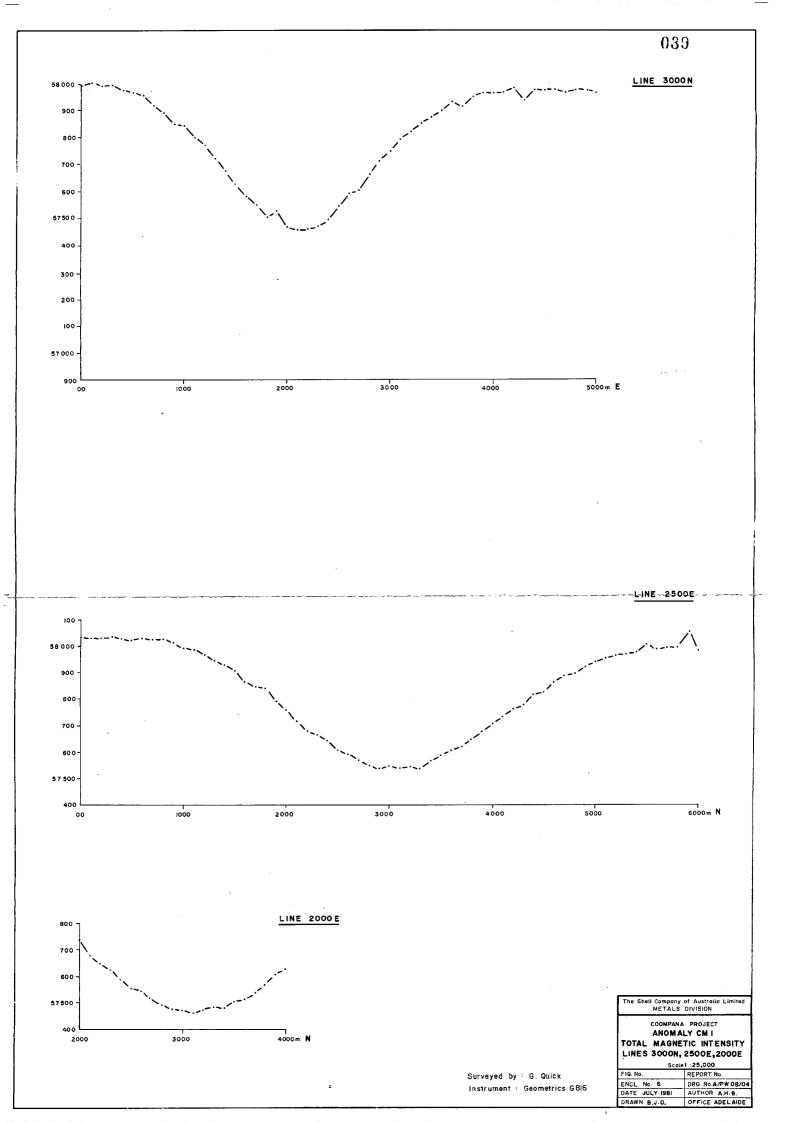

ANOMALY	LINE	FROM	<u>TO</u>	TOTAL (KM)
CM4	3500E	OON	5000N	5
	1000N	OOE	7000E	7
	200 0 N	OOE	7000E	7
	3000N	OOE	7000E	7
	4000N	OOE	7000E	7
	5000N	00E	7000E	7
				40
				213.5

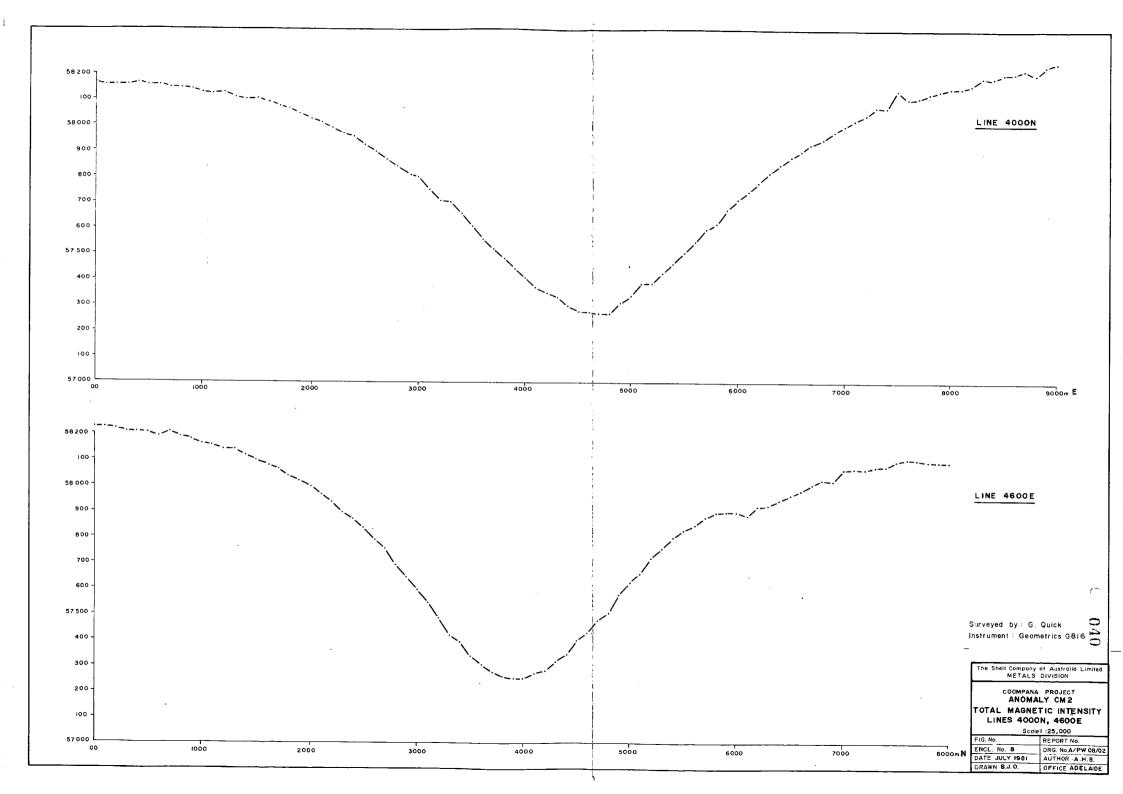
APPENDIX 2

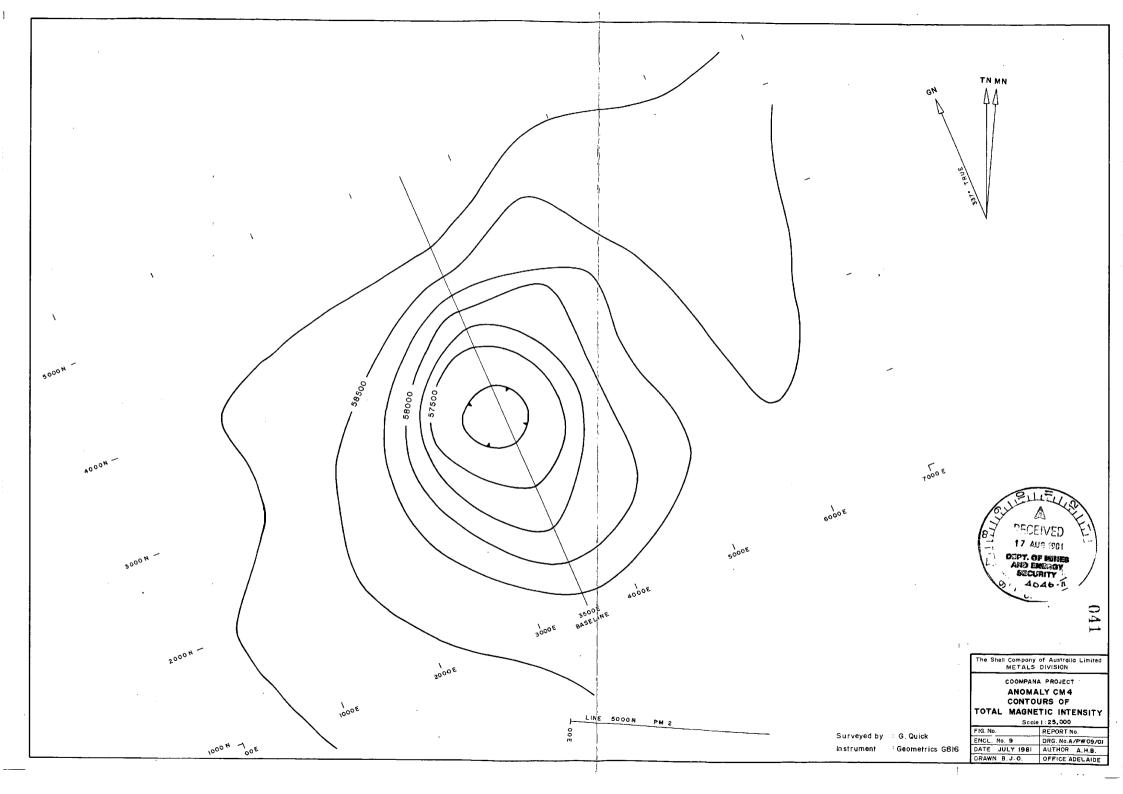
OIL SHALE ANALYSES HUGHES 1 AND 2

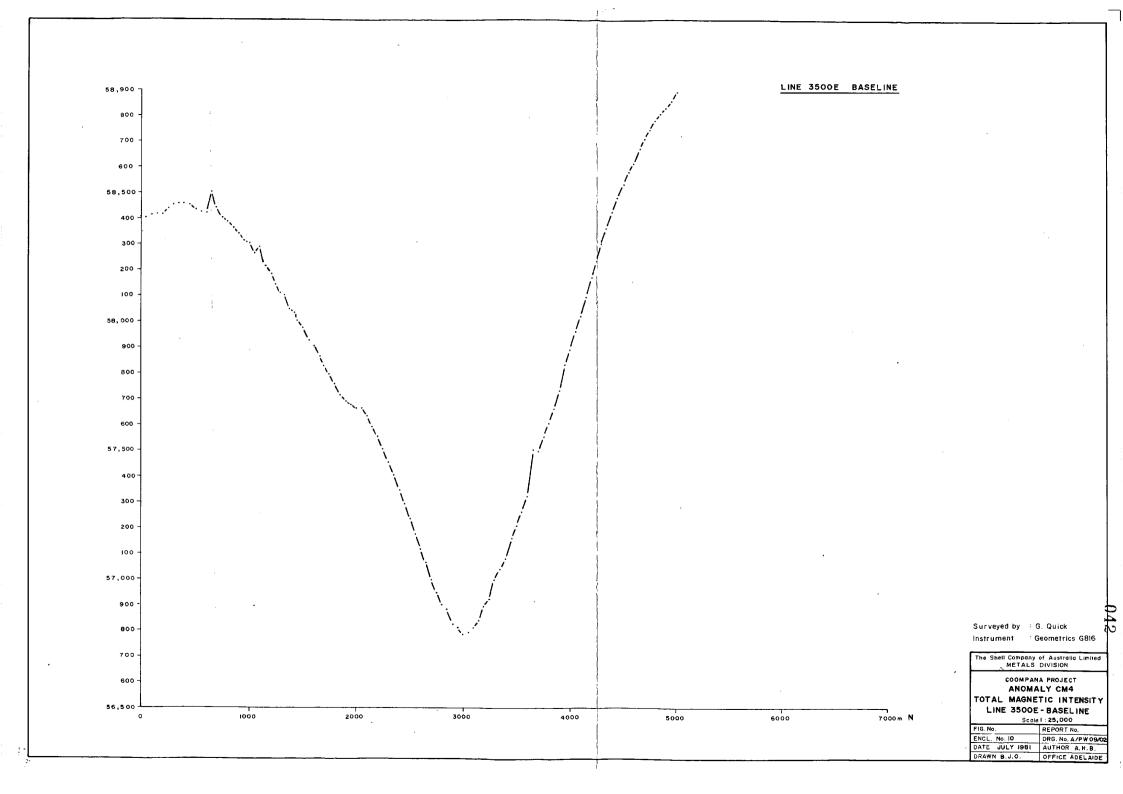
SAMPLE MARK	OIL YIELD	HOLE NUMBER	INTERVAL (M)
618	0.5 - 1.5	Hughes 1	410 - 420
619	0.5 - 1.5	11 11	490 - 500
620	0.5 - 1.5	\$1	587 - 588
621	0.5 - 1.5	Hughes 2	300 - 310
622	1.5 - 5	11 11	428 - 430
623	0.5 - 1.5	11 11	520 - 530
624	1.5 - 5	11 11	720 - 730

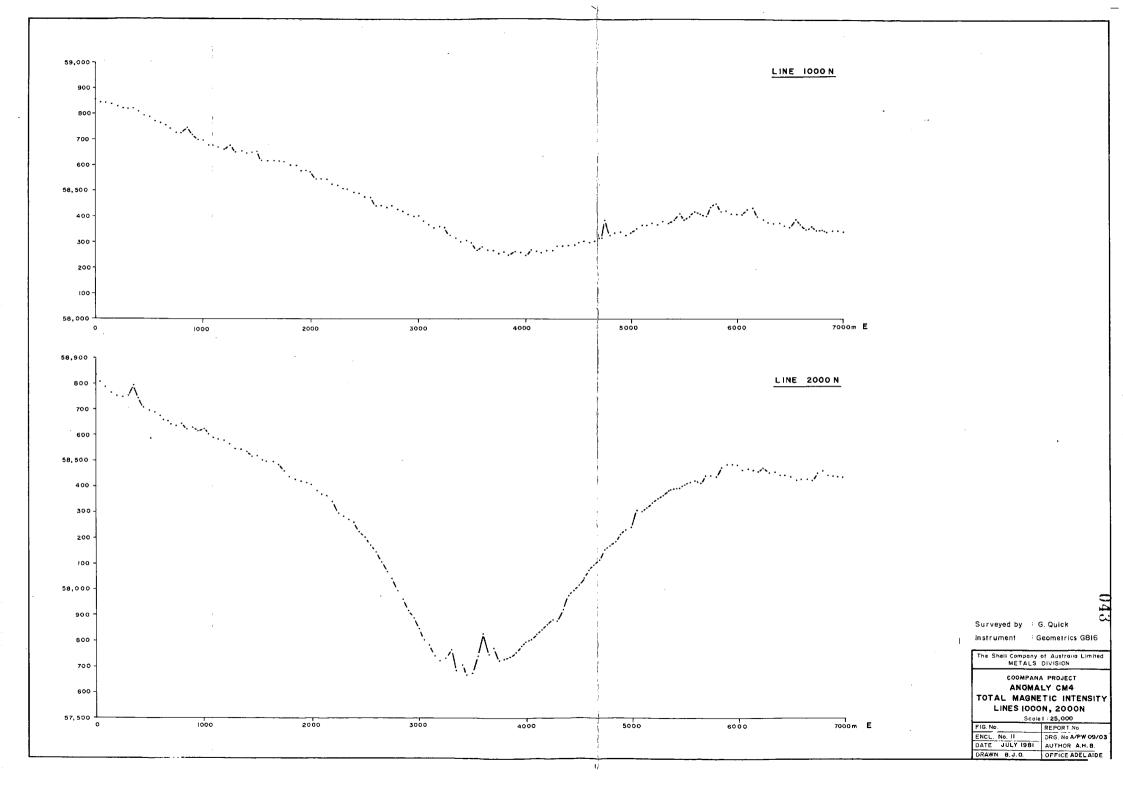
Method: Oil Yield Estimate

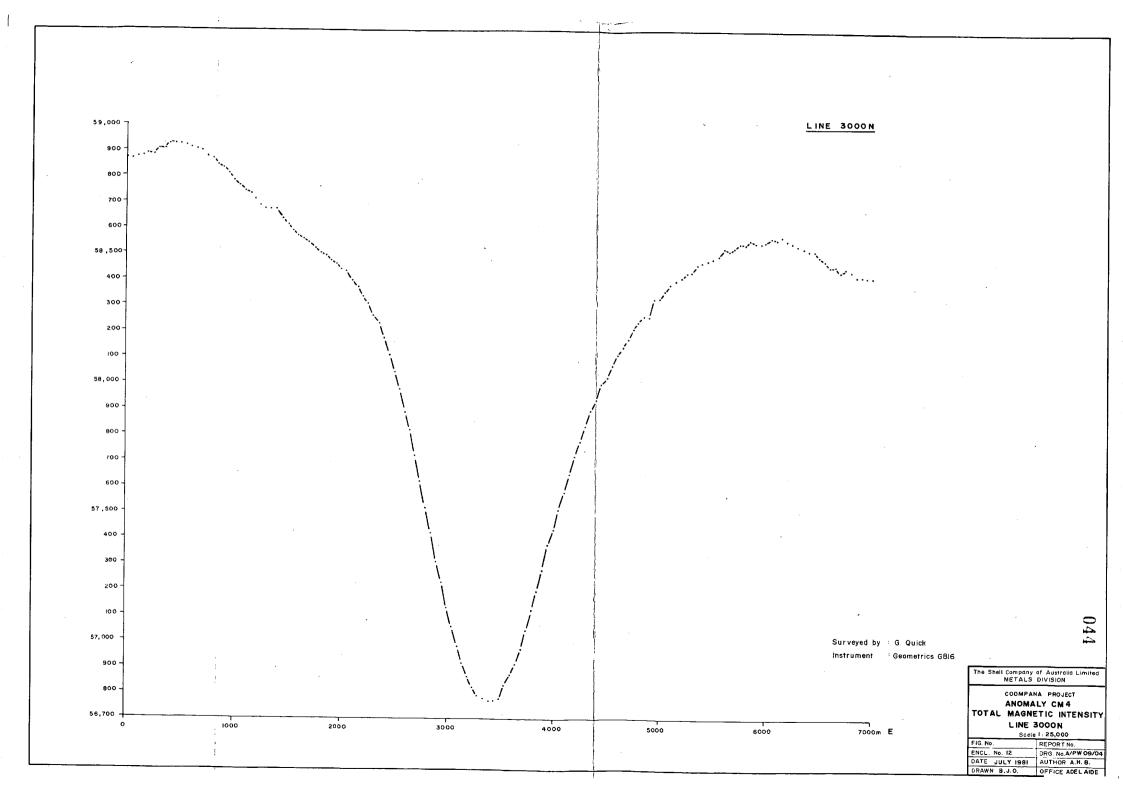

Contour interval 200nT

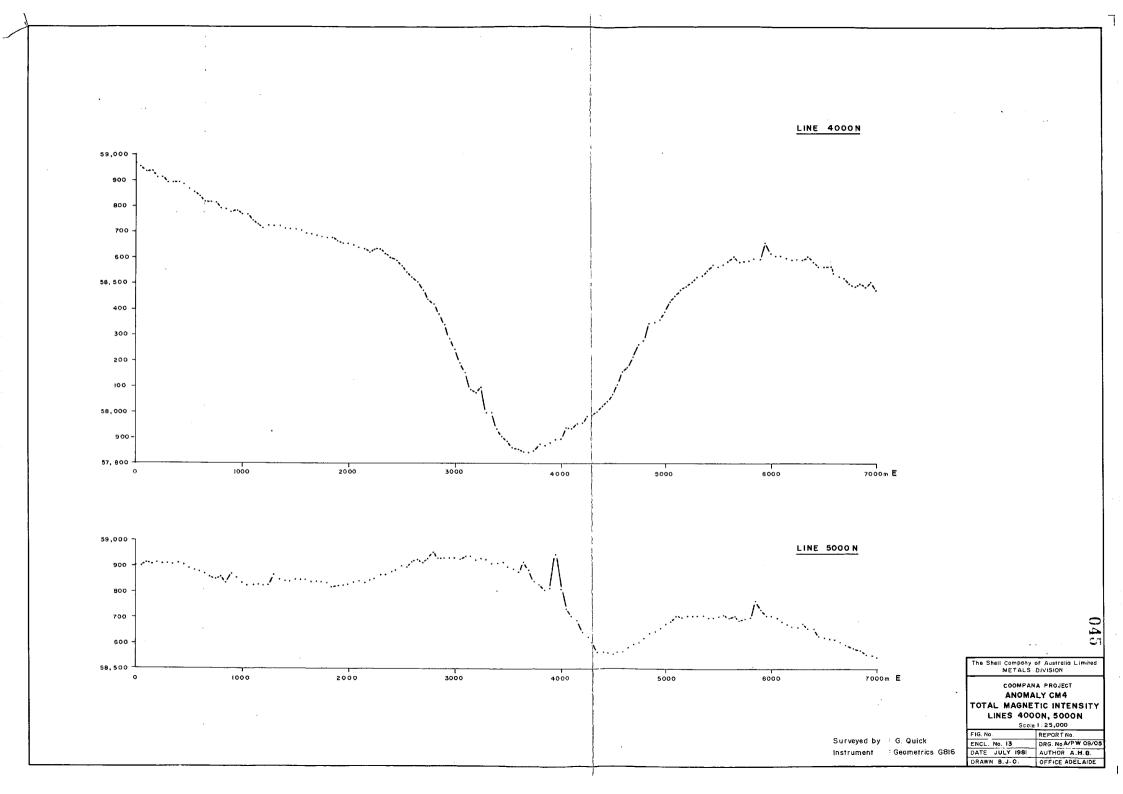

87 17 AUG '004
17 AUG '004
COPT. OF MINES
AND ENERGY
SECURITY
4046-1

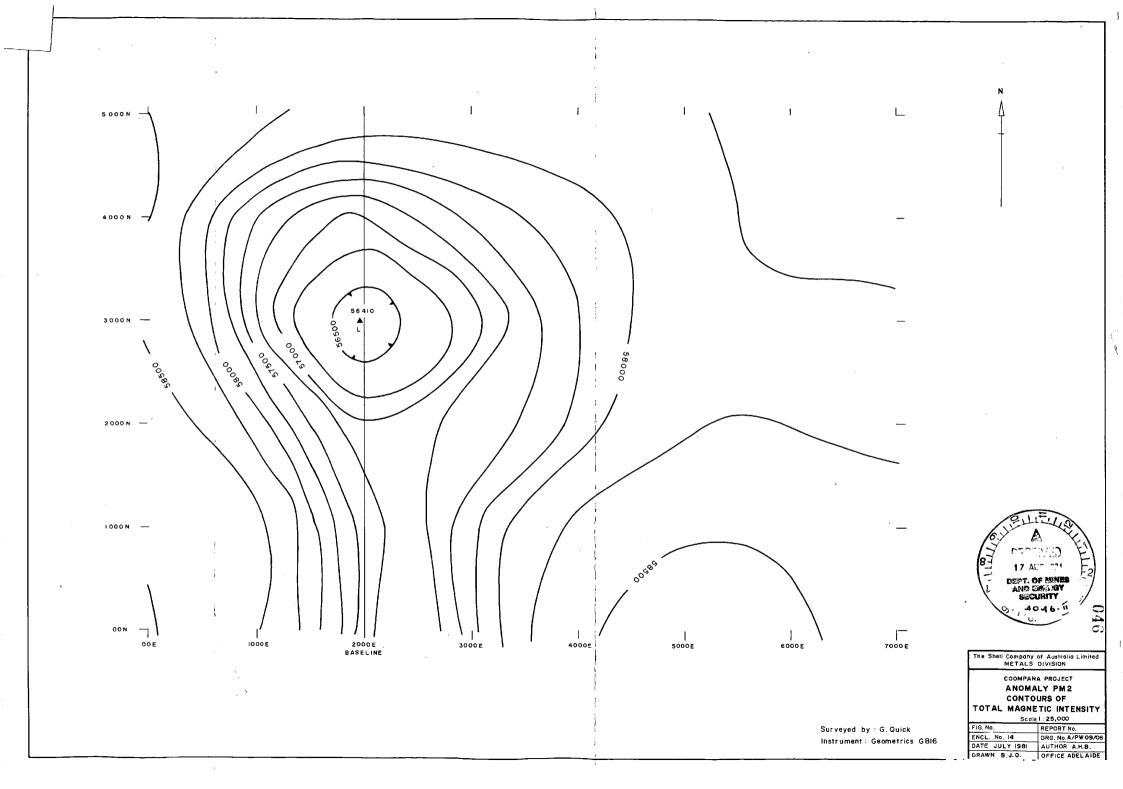

The Shell Company of Australia Limited
METALS DIVISION

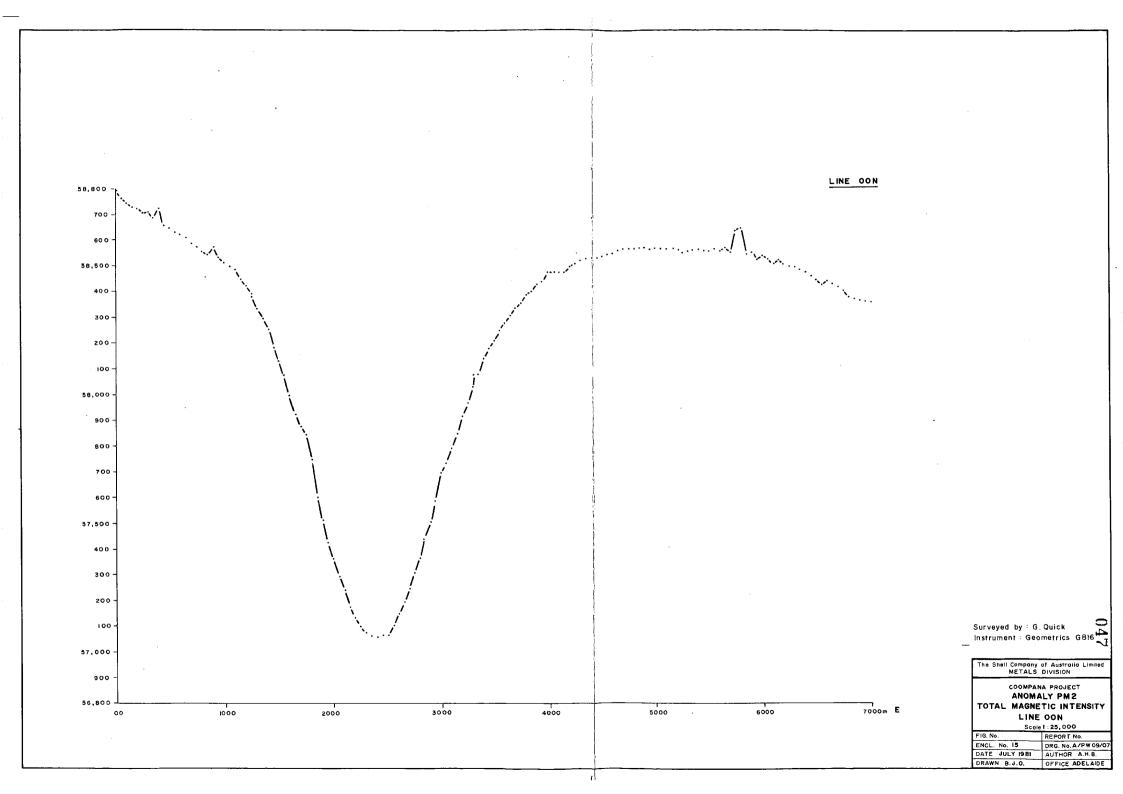

COOMPANA PROJECT
ANOMALY CM 2
CONTOURS OF
TOTAL MAGNETIC INTENSITY

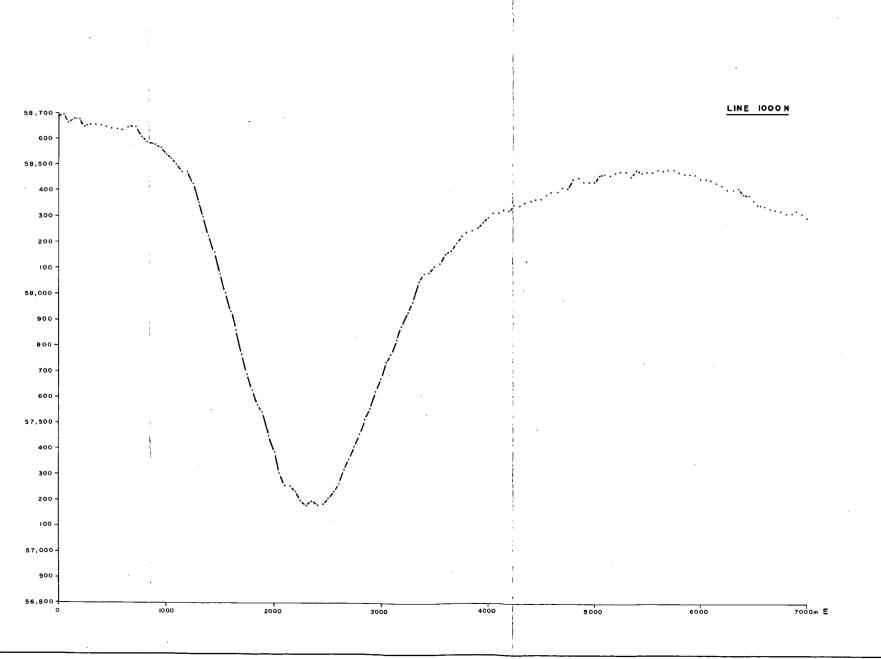

Surveyed by : G. Quick Instrument : Geometrics GBI6

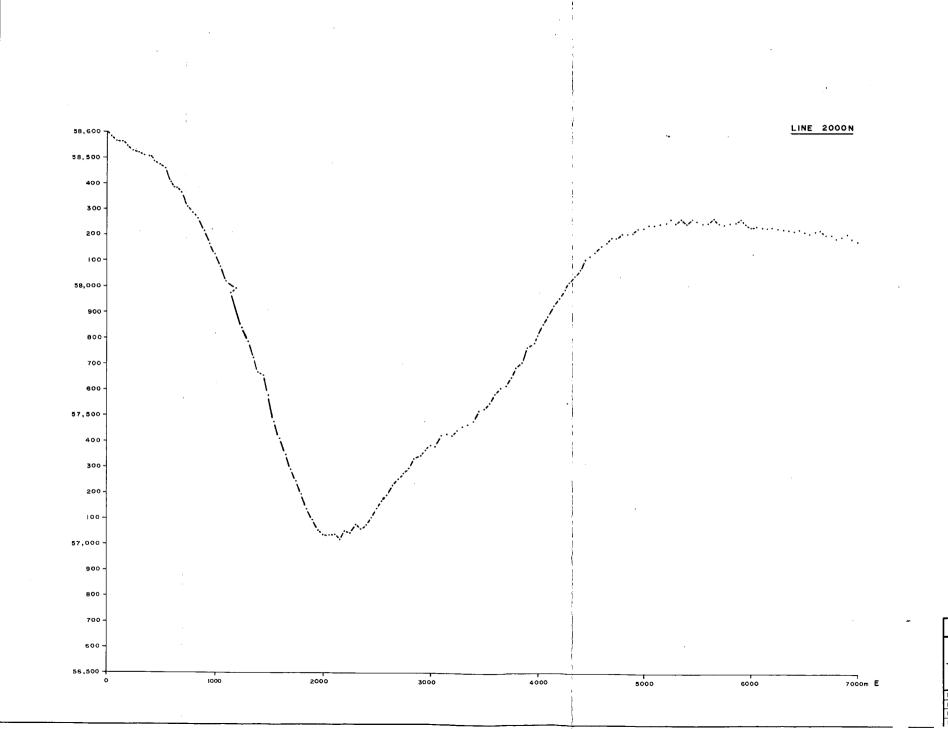










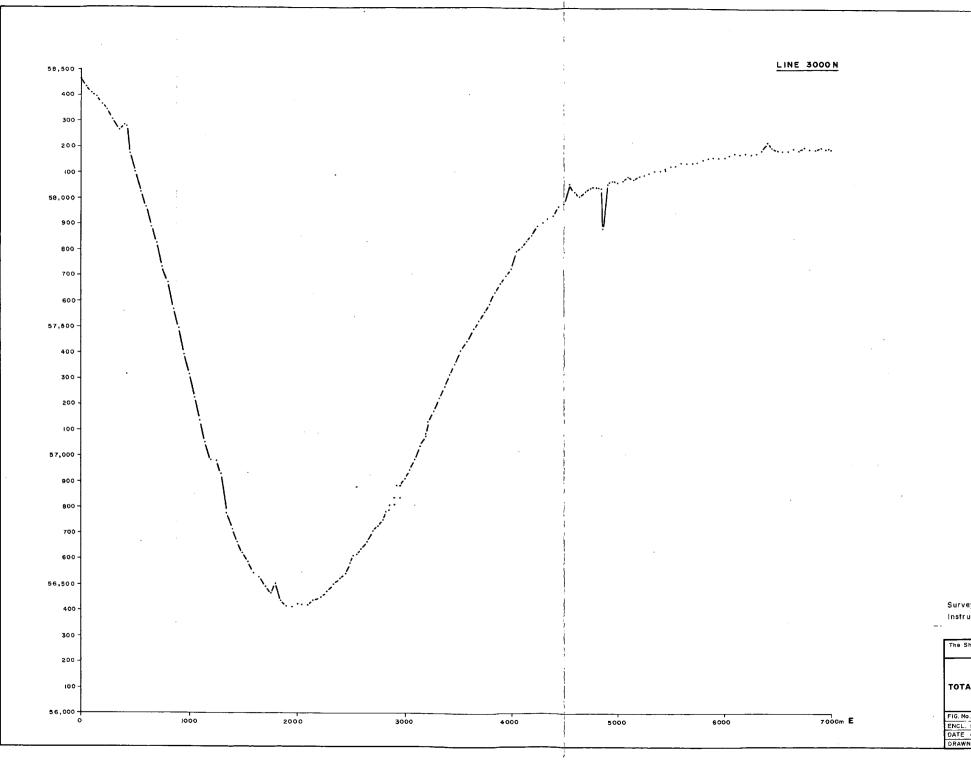

Surveyed by : G. Quick Instrument : Geometrics G816

The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
ANOMALY PM2
TOTAL MAGNETIC INTENSITY

LINE 1000N Scale 1 : 25,000

FIG. No.	REPORT No.
ENCL. No. 16	DRG. No. A/PW 09/08
DATE JULY 1981	AUTHOR A.H.B.
DRAWN B. J.O.	OFFICE ADELAIDE

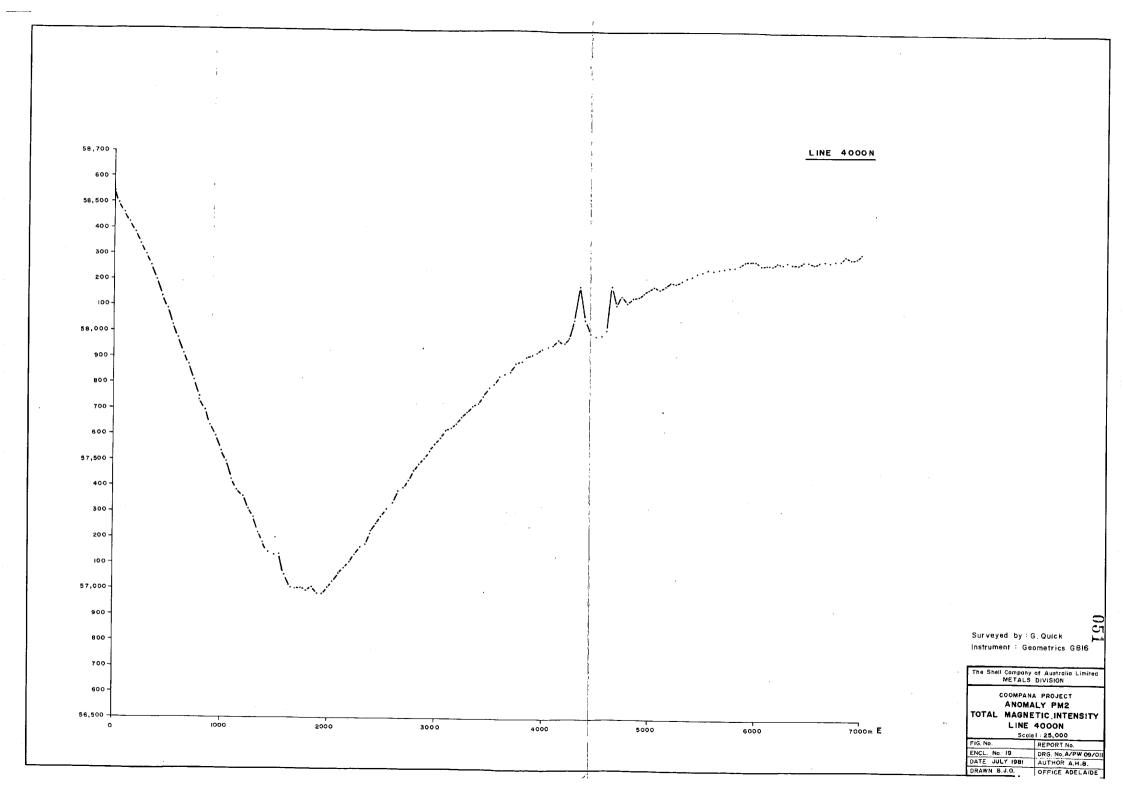

Surveyed by : G. Quick Instrument : Geometrics G816 🕰

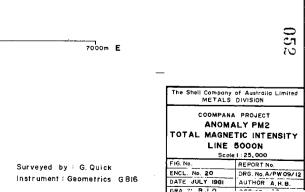
The Shell Company of Australia Limited METALS DIVISION

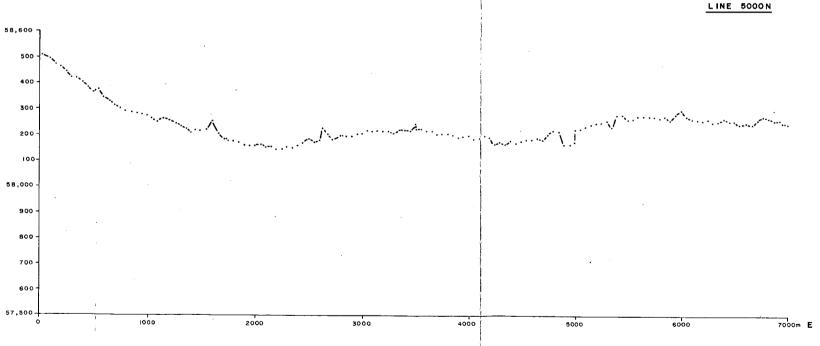
COOMPANA PROJECT

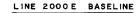
ANOMALY PM2 TOTAL MAGNETIC INTENSITY LINE 2000N

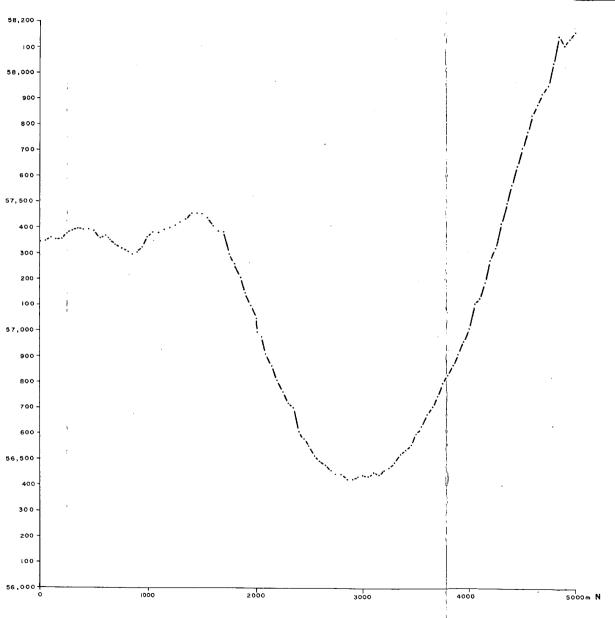
Scale 1 : 25,000 REPORT No. ENCL. No. 17 DRG. No.A/PW 09/09 DATE JULY 1981 AUTHOR A.H.B. DRAWN B.J.O. OFFICE ADELAIDE


Surveyed by: G. Quick
Instrument: Geometrics G816

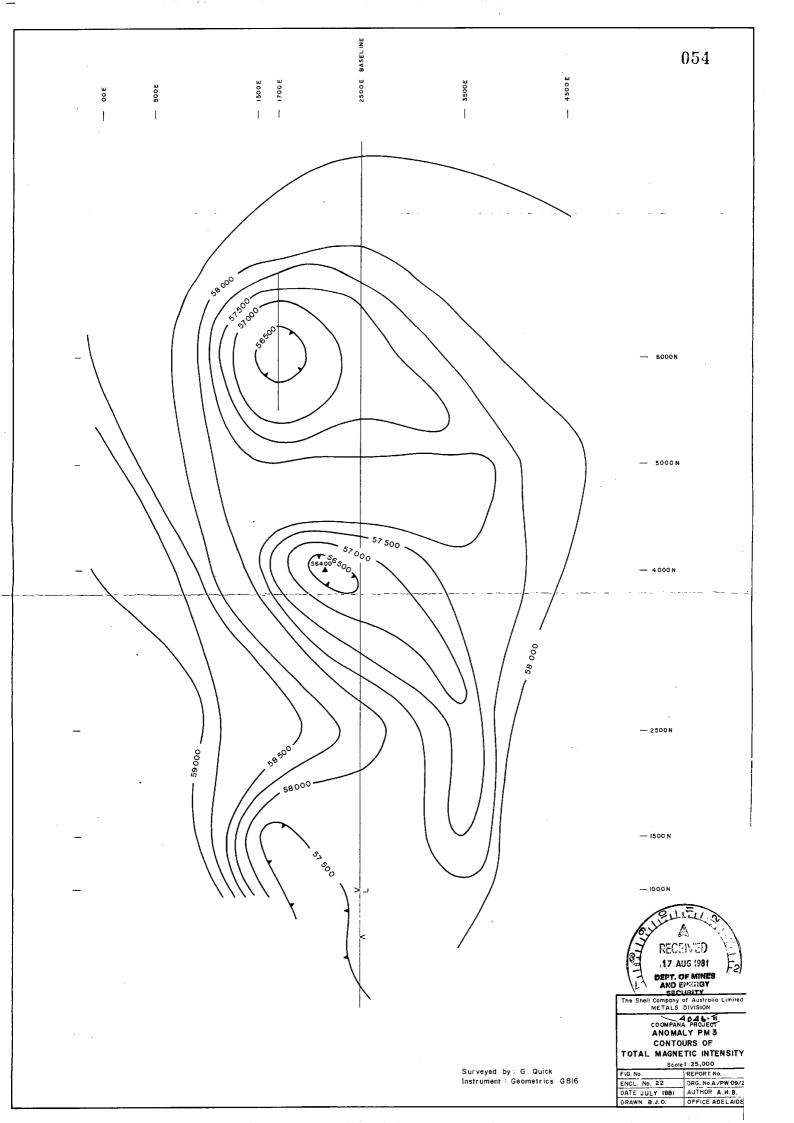

The Shell Company of Australia Limited METALS DIVISION

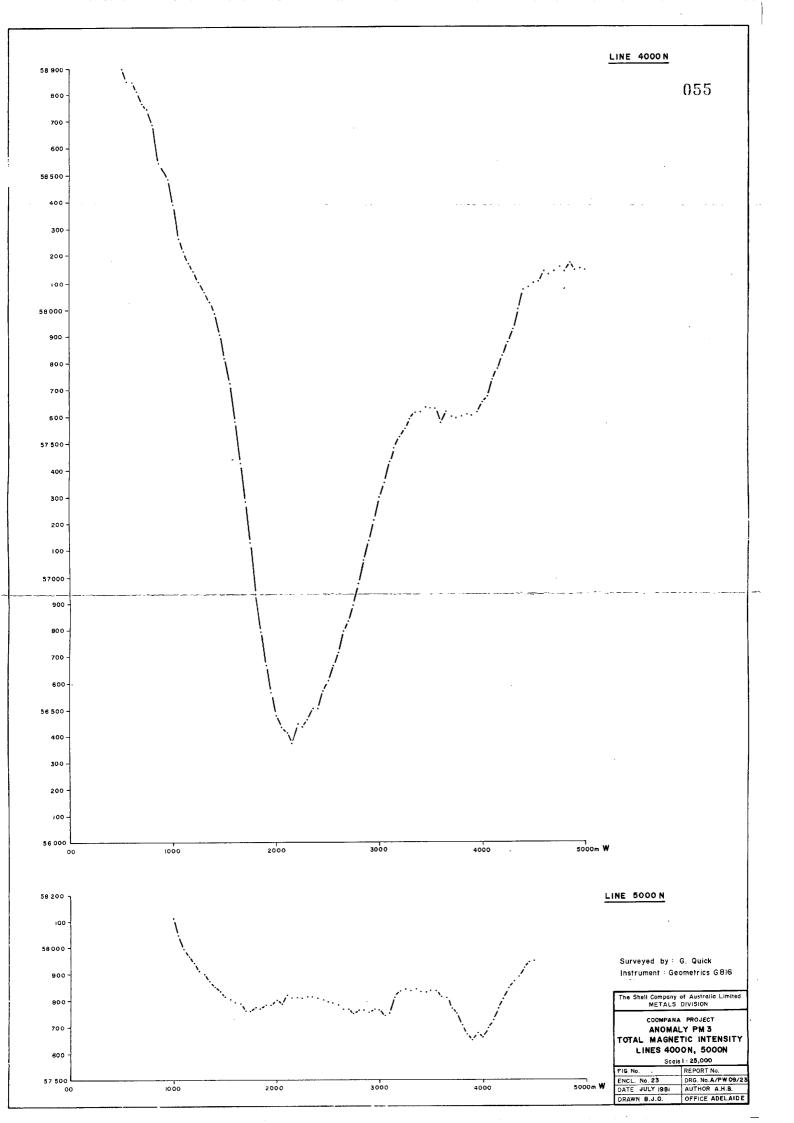

COOMPANA PROJECT
ANOMALY PM2
TOTAL MAGNETIC INTENSITY
LINE 3000N


Scale 1 : 25,000


1 10. 110.	INCLOSE INC.
ENCL. No. 18	DRG. No.A/PW 09/10
DATE JULY 1981	AUTHOR A.H.B.
DRAWN B.J.O.	OFFICE ADELAIDE

Surveyed by: G. Quick Instrument: Geometrics G816


053


The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
ANOMALY PM2
TOTAL MAGNETIC INTENSITY
LINE 2000E-BASELINE

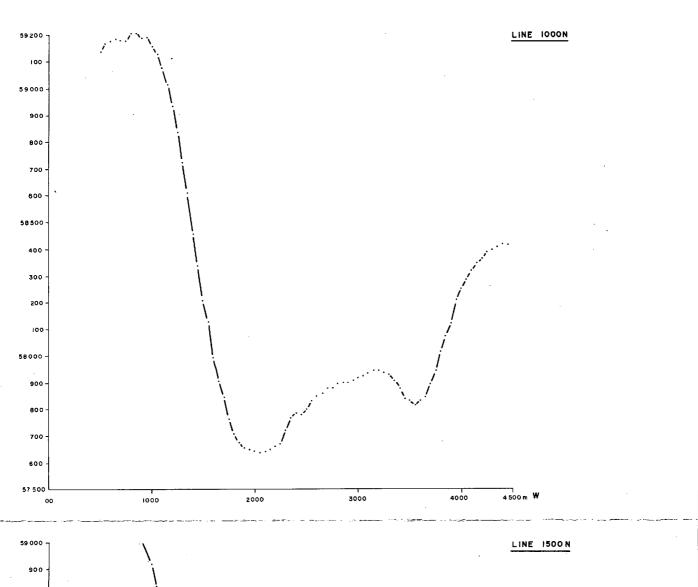
Scale 1 : 25,000

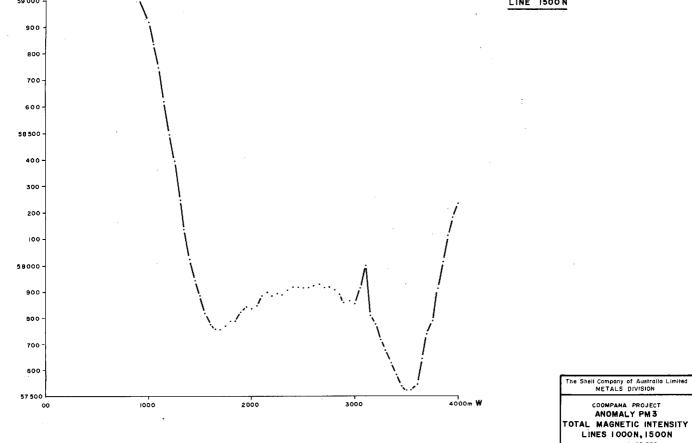
1 10.110.	REPORT NO.	
ENCL. No. 21	DRG. No. A/PW 09/13	
DATE JULY 1981	AUTHOR A.H.B.	
DRAWN B.J.O.	OFFICE AREI AIRE	

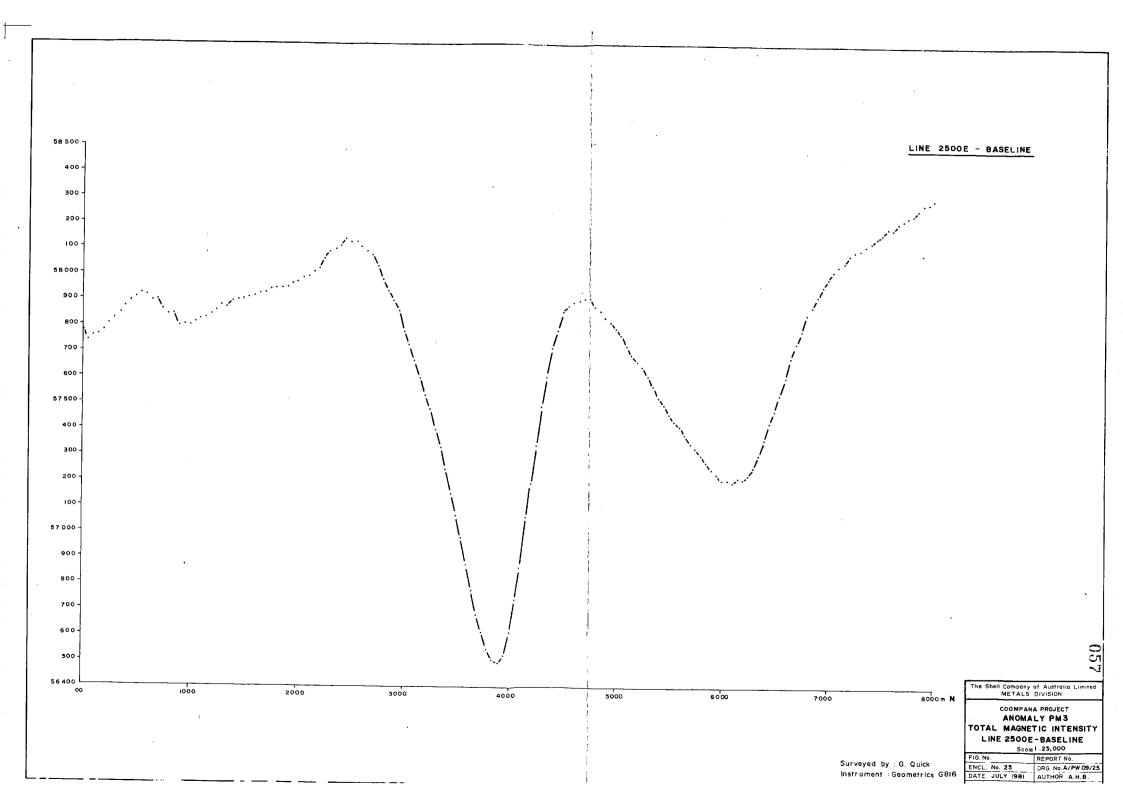
Scole I: 25,000

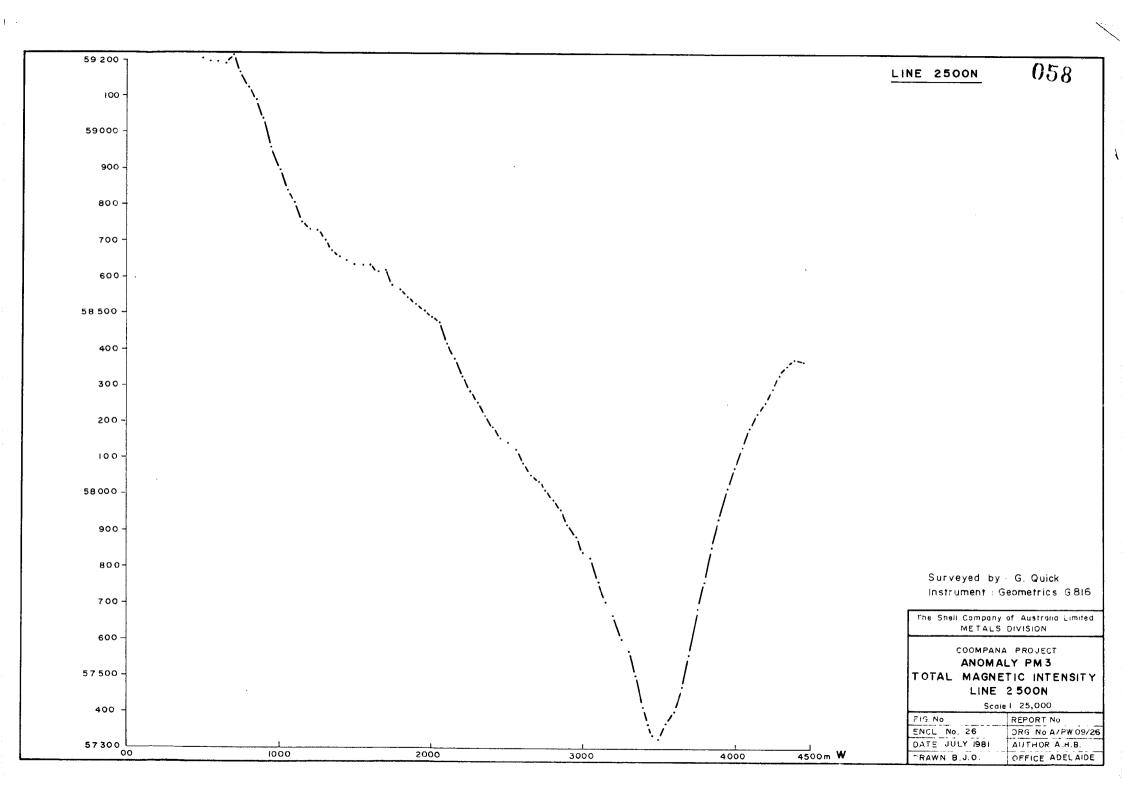
REPORT No.

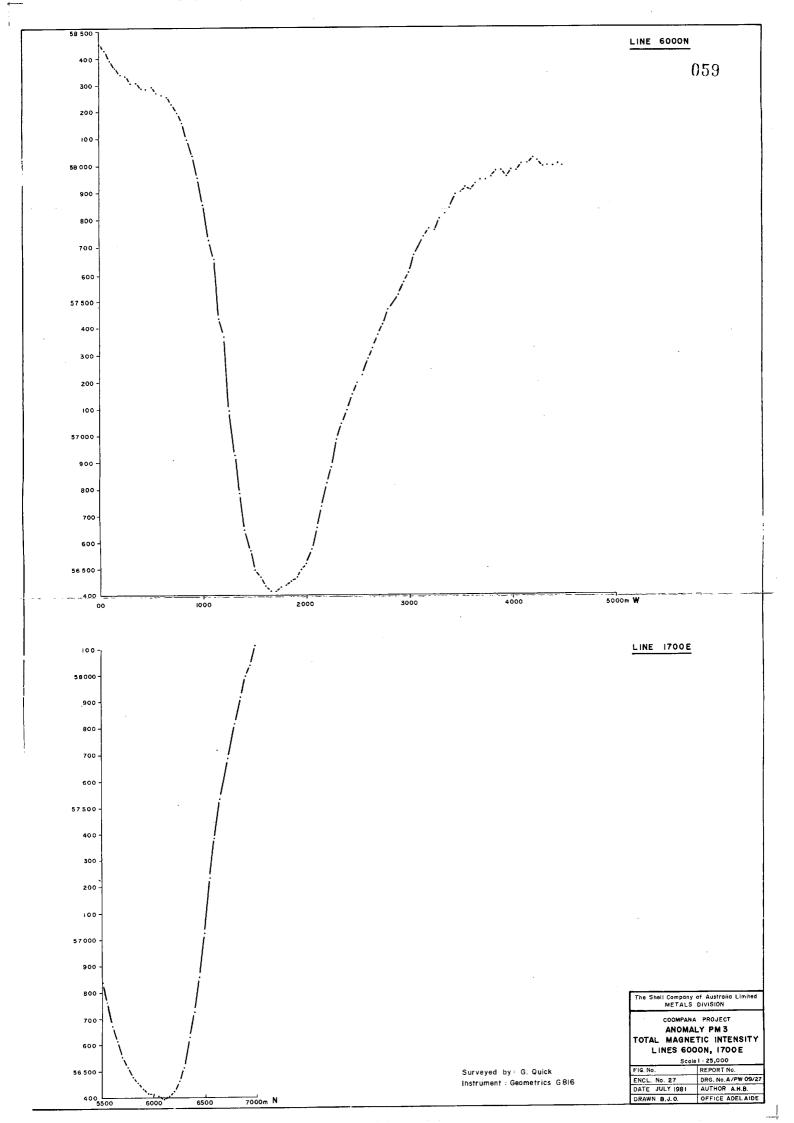
DRG. No.A/FW09/24

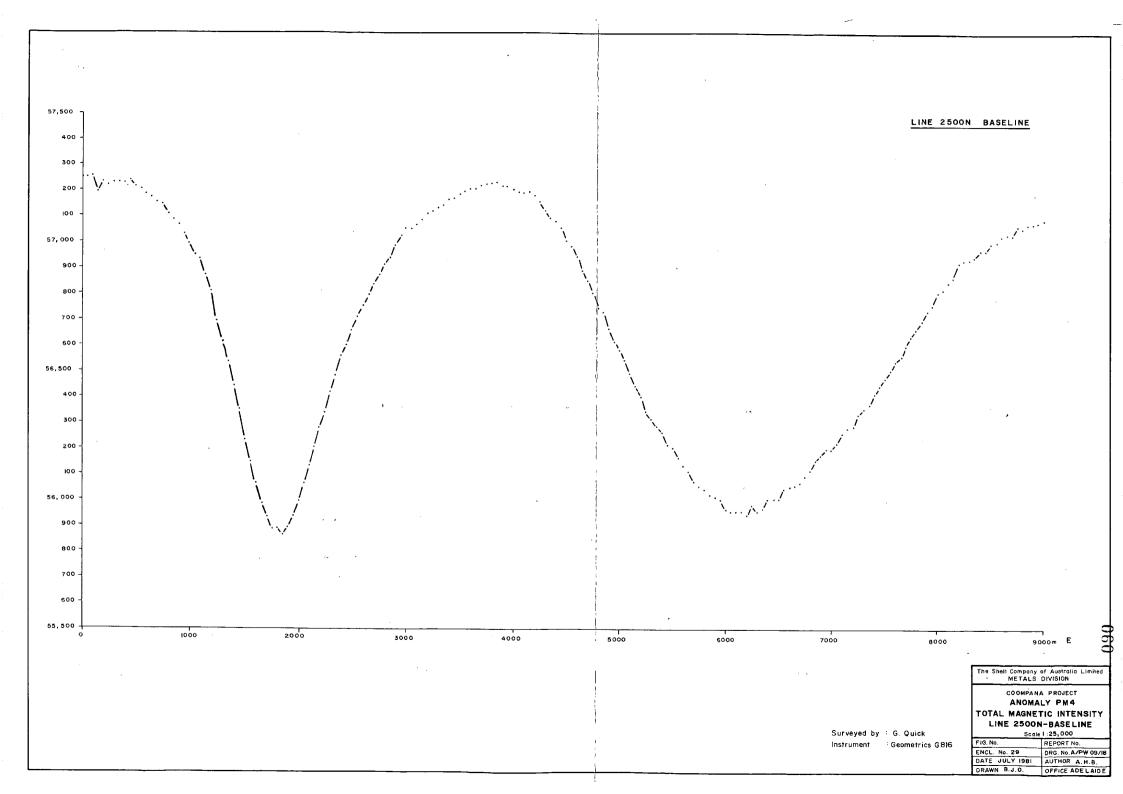

BI AUTHOR A.H.B.

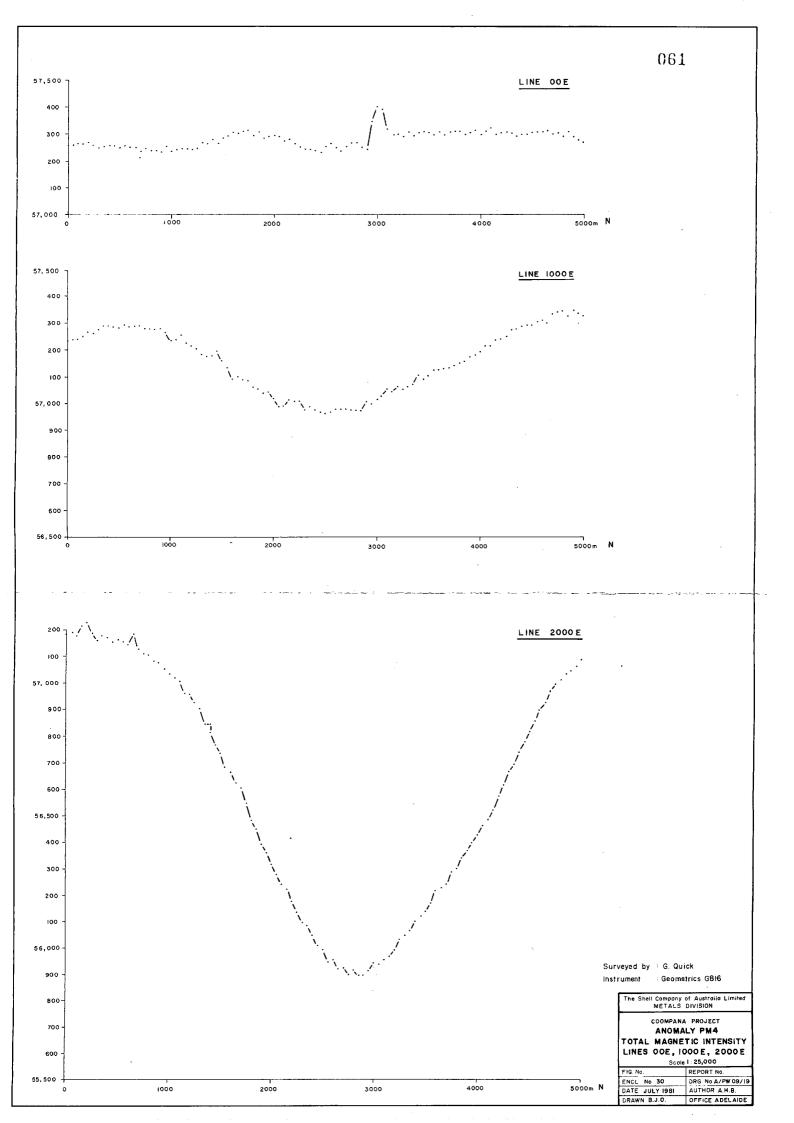

OFFICE ADELAIDE

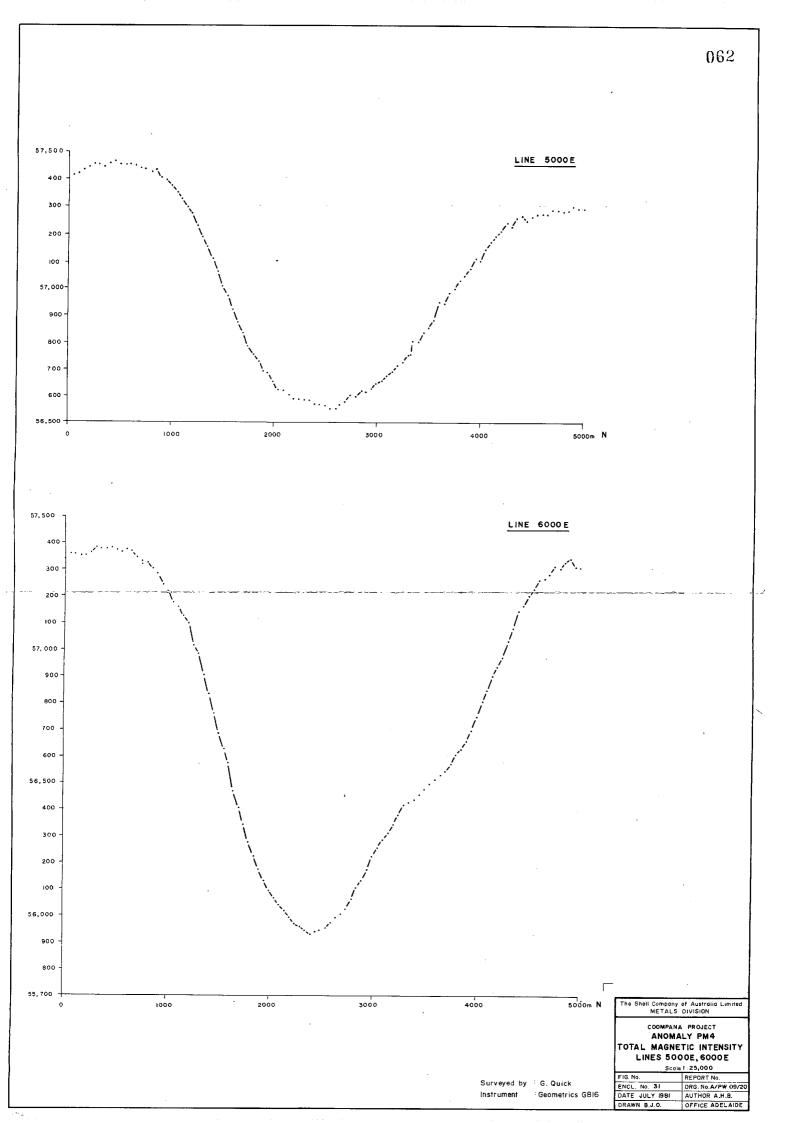

FIG. No.

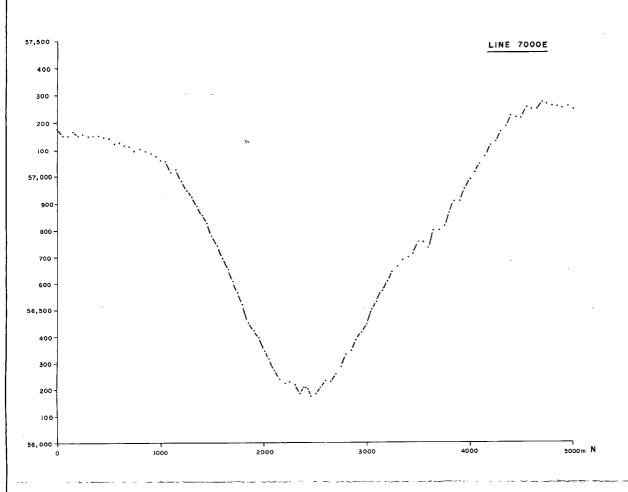

ENCL. No. 24 DATE JULY 1981

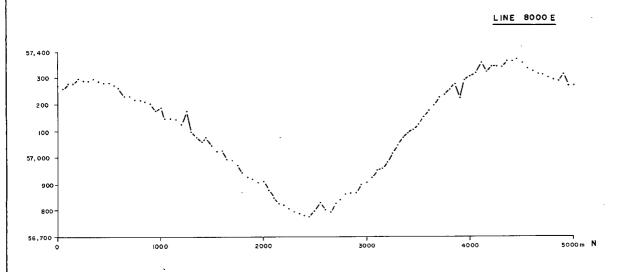

Surveyed by: G. Quick Instrument: Geometrics G816





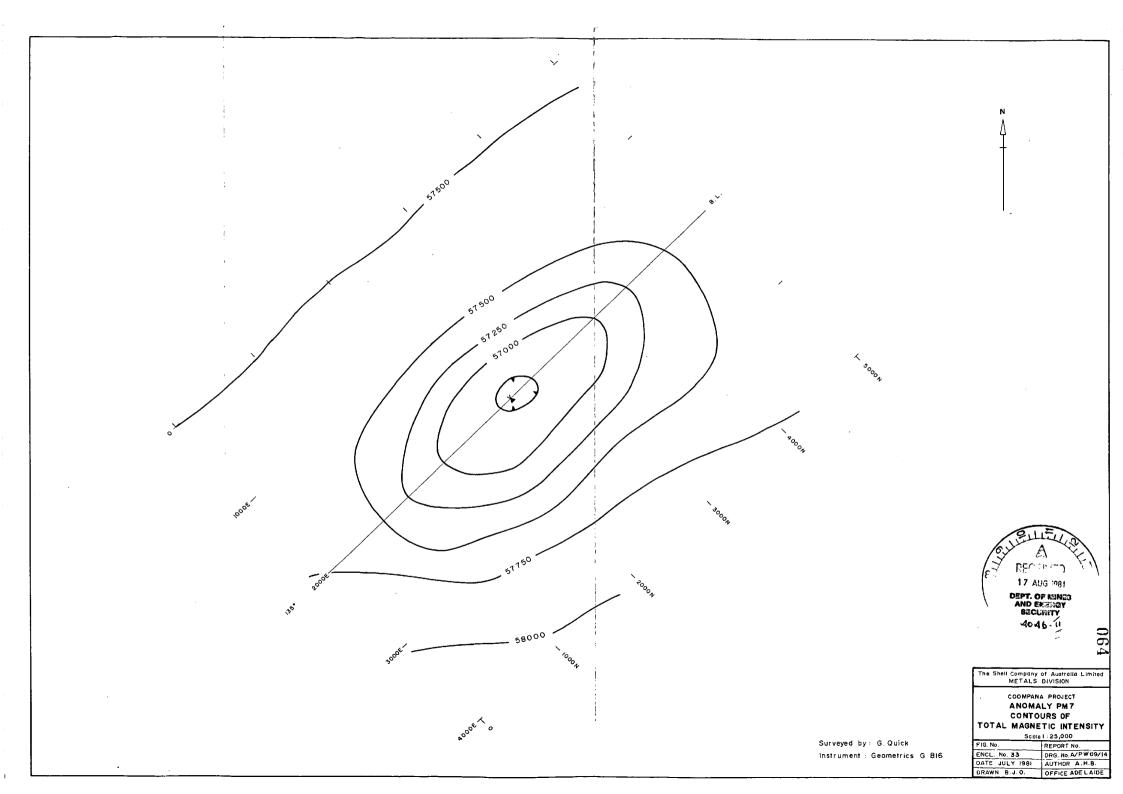




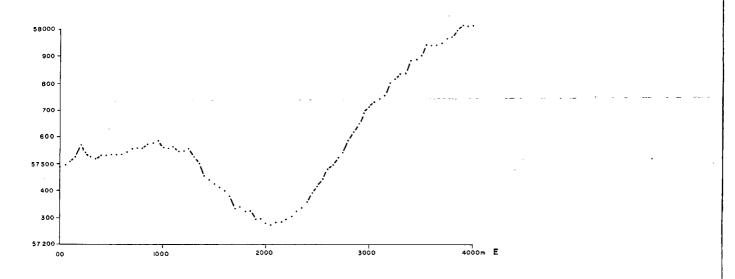


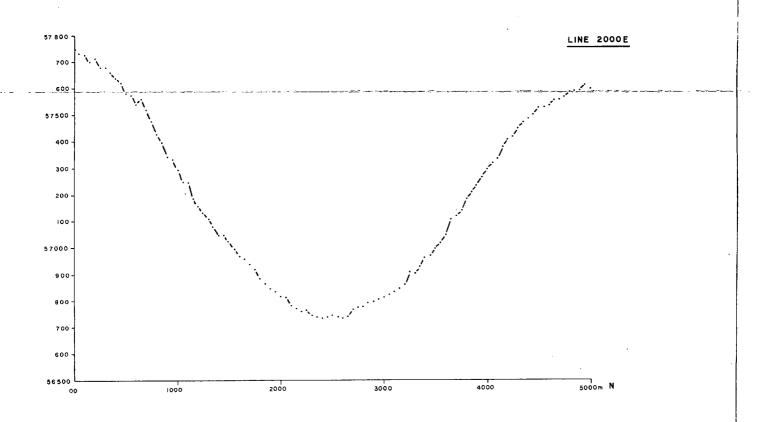
The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
ANOMALY PM4
TOTAL MAGNETIC INTENSITY
LINES 7000E, 8000E


FIG. No. REPORT No.

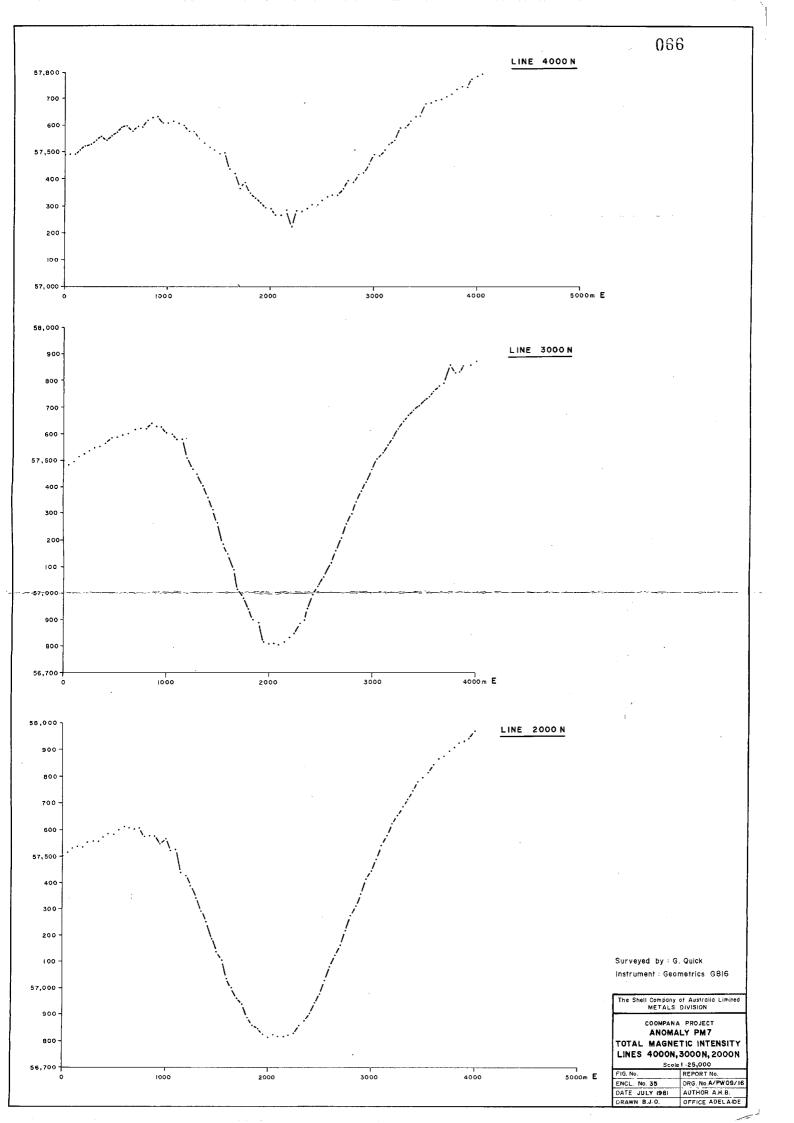
ENCL. No. 32 DRG. No.APW 09/21


DATE JULY 1981 AUTHOR A.H.B.


DRAWN B.J.O. OFFICE ADELAIDE

Surveyed by : G. Quick Instrument : Geometrics G8

The Shell Company of Australia Limited METALS DIVISION


COOMPANA PROJECT
ANOMALY PM7
TOTAL MAGNETIC INTENSITY
LINES 1000N, 2000E

Scole 1 -25,000

Surveyed by : G. Quick

Instrument : Geometrics G816

ENCL No 34 DRG No A/PW09/15
DATE JULY 1981 AUTHOR A.H.B.
DRAWN B.J.O. OFFICE ADELAIDE

THE SHELL COMPANY OF AUSTRALIA LIMITED. METALS DIVISION

REPORT ON E.L. 747, BUNABIE ROCKHOLE, S.A.

E.L. 748, HUGHES, S.A.

E.L. 749, NULLARBOR PLAIN, S.A.

FOR THE QUARTER ENDING OCTOBER 20th, 1981.

AUTHOR: A.H. BRASH

REPORT NO.: 08.1005

DATE:

OCTOBER, 1981

COPY NO.: 1

DISTRIBUTION: Copy 1 Department of Mines and Energy,
Adelaide

2 & 3 The Shell Company of Australia Limited,

Metals Division, Melbourne

The Shell Company of Australia Limited,

The Shell Company of Australia Limited,
Metals Division , Adelaide

5 B.H.P., Adelaide

6 B.H.P., Melbourne

CONTENTS

		Page No.
1.	INTRODUCTION	1
2.	WORK COMPLETED .	
	2.1 Ground Magnetic Surveying2.2 Gravity Surveying2.3 Drilling	1 1 2
3.	EXPENDITURE	3

TABLES

Table 1 Summary of Drilling Progress

LIST OF FIGURES

Fig. No.	<u>Title</u>	Scale	Drawing No.
1	Coompana Area, Location Plan	1:1,000,000	A/MT 22/ 90
2	Coompana Area, Aeromagnetic Contours	1:1,000,000	A/MT 22/025
3	Coompana Area, Magnetic Features	1:1,000,000	A/MT 22/029
4	Anomaly CM4, Location DDH CD 3	1:50,000	A/PW 09/35
5	Anomaly PM3, Location DDH CD 1	1:50,000	A/PW 09/34
6	Anomaly PM4, Location DDH CD 2	1:50,000	A/PW 09/36

LIST OF APPENDICES

- 1 Gravity Data and Operational Report Solo Geophysics
- 2 Summary of Gravity Modelling Results
- 3 Progress Report for Coompana Drilling Programme, Stage I
- Coompana Diamond Drilling Programme, Memorandum No. 1213

1. INTRODUCTION

Exploration Licences 747,748 and 749 were granted on the 20th October, 1980 for a period of one year. The term was extended for a further year on the 8th September, 1981.

The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250,000 sheet areas, South Australia adjacent to the border with Western Australia.

The licences are referred to as Bunabie Rockhole (E.L. 747) Hughes (E.L. 748) and Nullarbor Plain (E.L. 749) and collectively form the Coompana Project.

The licences are the subject of a joint venture with Dampier Mining Company Ltd.

Main exploration targets are oil shale within the Cretaceous Madura Formation and base metals associated with geophysical anomalies derived from sources in the Pre-cambriam basement.

2. WORK COMPLETED

2.1 Ground Magnetic Interpretation

Further analysis of the ground magnetic data reported in the last quarterly report has confirmed the depth estimates reported previously. Anomalies within E.L. 749 have depth estimates in the range 250 m to 500 m.

The presence of strong remanent magnetisation of un-certain orientation has precluded a detailed analysis of the geometry of the magnetic bodies. However, in general the source of the anomalies investigated appears to be depth limited implying sill-like sources.

2.2 Gravity Surveying

A total of 44 line km of gravity surveying was completed over magnetic anomalies PM-2, PM-3, PM-4, PM-7 and CM-4.

Preliminary modelling of the data has been carried out using the gravity model-fitting program GRAMOD. This program is supplied with a starting value of parameters to be fitted and adjusts these values in an iterative manner until it has satisfied a criterion for 'best fit'. The 'best fit' criterion is that the parameters must be such that the weighted sum of squared deviations between the observed and calculated gravity anomaly is reduced to a minimum.

A summary of the modelling is presented in Appendix 2.

No significant gravity responses were recorded over anomalies PM-7 and PM-4 (Southwest magnetic anomaly). Over anomalies PM-2, PM-3, PM-4 (Northeast anomaly) and CM-4 gravity responses were measured which are coincident with negative magnetic anomalies. A common source is thus inferred. Maximum residual gravity peaks lie between 2.5 and 4.5 milligal. Depths estimated from the gravity data are consistent with those estimated from magnetic data for anomalies PM-3, PM-4

(Northeast anomaly) and CM-4. For anomaly PM-2 the gravity $70\,\%$ source is inferred to be much deeper.

2.3 Drilling

The original proposal was to drill six holes within E.L. 748 and E.L. 749 to test the oil shale potential of the Cretaceous Madura Formation and/or the base metal potential of the underlying crystalline basement. Two proposed oil shale holes (CD 5 and CD 6) were located adjacent to and south of the Trans Australian Railway west of Hughes. Four holes (CD 1, CD 2, CD 3, and CD 4) were sited on magnetic/gravity anomalies PM-3, PM-4, PM-7 and CM-4.

The first phase of the programme involved pre-collaring through the Tertiary limestones and was supervised by R. Kelly of Robertson Research. A total of seven sites were pre-collared (Figure 1, Appendix 3).

Diamond drilling commenced on September 18, 1981 and holes DDH CD 7 and DDH CD 3 were completed. After a break from October 10-18, drilling recommenced in DDH CD1 on October 19.

The first phase of the diamond drilling was supervised by C. Coxhead of Robertson Research. (Appendix 4).

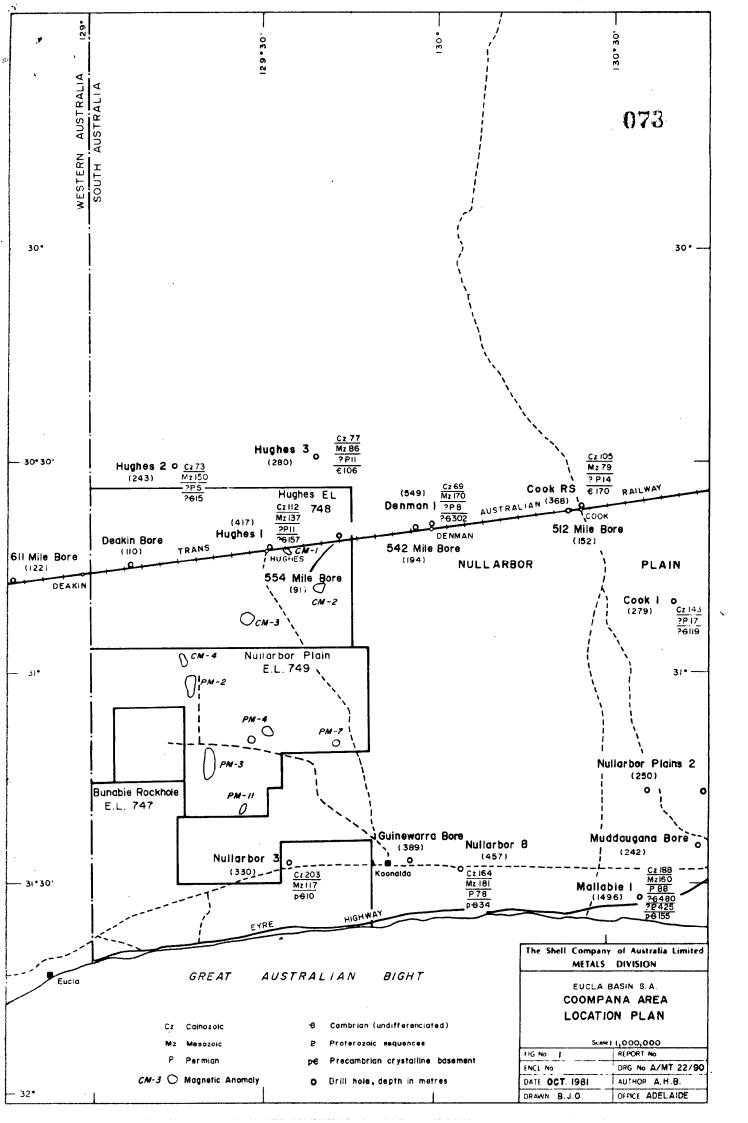
Both pre-collar percussion and diamond drilling was carried out by Peter Nitshke Drilling Pty. Ltd.

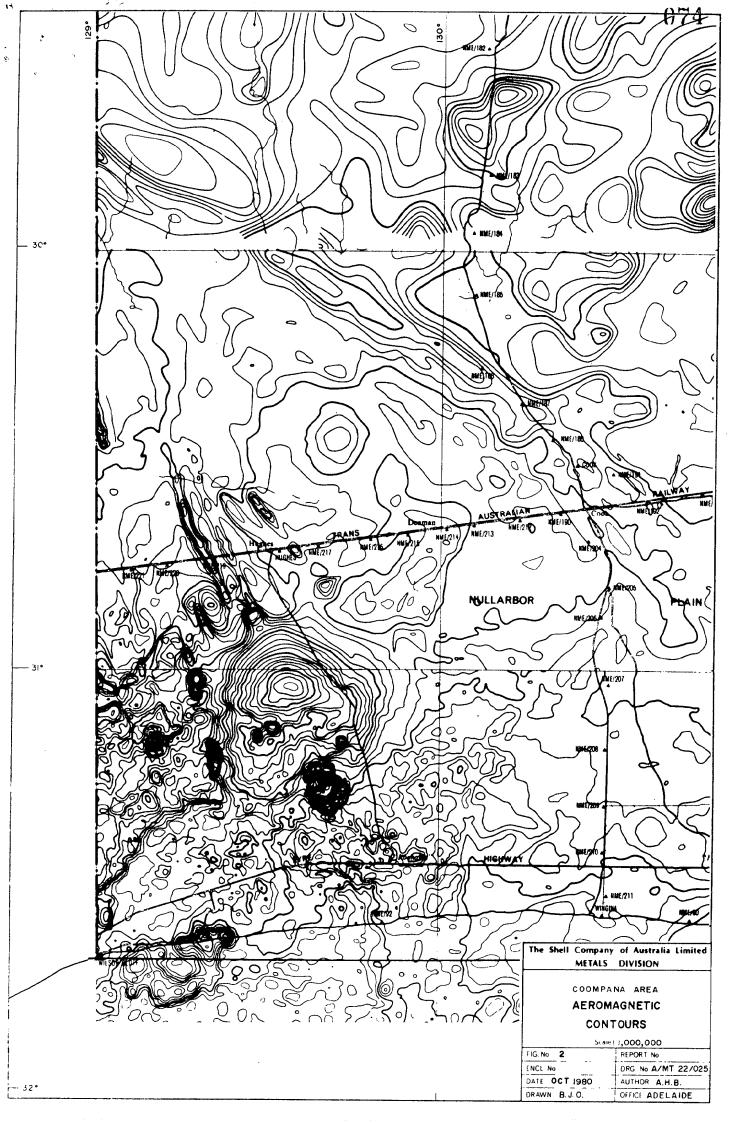
Drill core from the first two holes has been filleted and submitted for assaying. No assays are yet available.

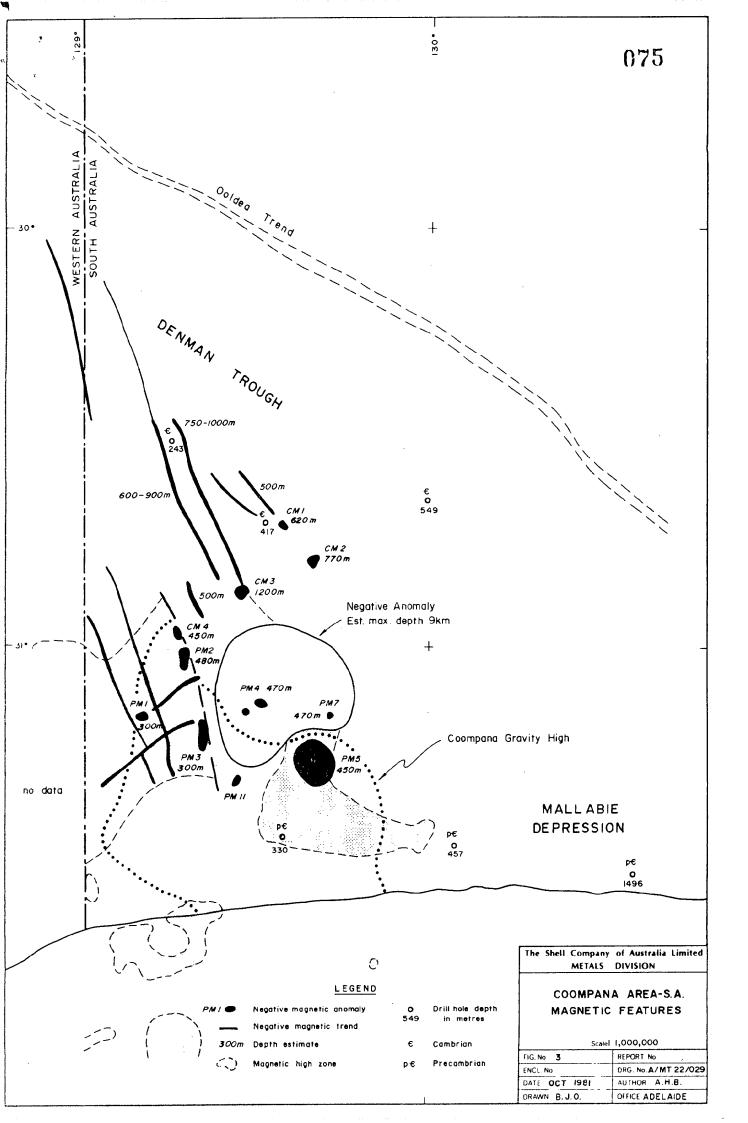
Preliminary logs for DDH CD 7 and DDH CD 3 are presented in Appendix 4.

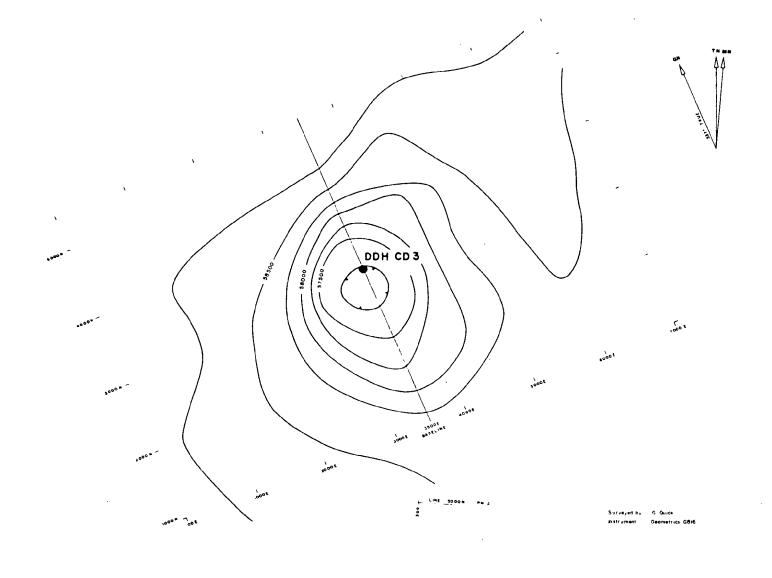
A summary of drilling progress is presented in Table 1.

COOMPANA PROJECT DRILLING PROGRESS


HOLE NO.	GRID ANOMALY	LOCATION	PRE-COLLAR DEPTH (m)	FINAL DEPTH (m)
CD 1	PM3	6250N, 1700E	161	In progress
CD 2	PM-4	3000N, 2000E	128	To be drilled
CD 3	CM-4	3250N, 3500E	121	206.15
CD 4	PM 7	2500N, 2000E	141	To be drilled .
CD 5**	Trans Aust. Railway	15 km W of Hughes	64	Abandoned -
CD 6**	Trans Aust. Railway	30 km W of Hughes	176	176.0
CD 7	Trans Aust. Railway	22.5 km W of Hughes	105	159.45 ,


EXPENDITURE


A summary of expenditures for the quarter ending September 30, 1981.


BUNABIE ROCKHOLE E.L. 747

Books, Maps and Publications	\$ 83	
Regional office expenses	\$ 161	
Total Direct Costs	\$ 244	
Overheads	\$ 40	
Gross Costs	\$ 284	
HUGHES E.L. 748		
Staffing	\$ 319	
Support	\$ 529	
Payments to Government	\$ 2292	
Total Direct Costs	\$ 3140	
Overheads	\$ - 116	
Gross Costs	\$ 3024	
NULLARBOR E.L. 749		
Staffing	\$ 5850	
Support	\$ 12199	
Payments to Government	\$ 1763	
Geophysical Surveys	\$ 8075	
Analysis/Assays	\$ 79	
Diamond Drilling	\$ 49219	
Total Direct Costs	\$ 77185	
Overheads	\$ 238	
Gross Costs	\$ 77423	

PROPOSED DRILLHOLE

The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
ANOMALY CM4
CONTOURS OF
TOTAL MAGNETIC INTENSITY

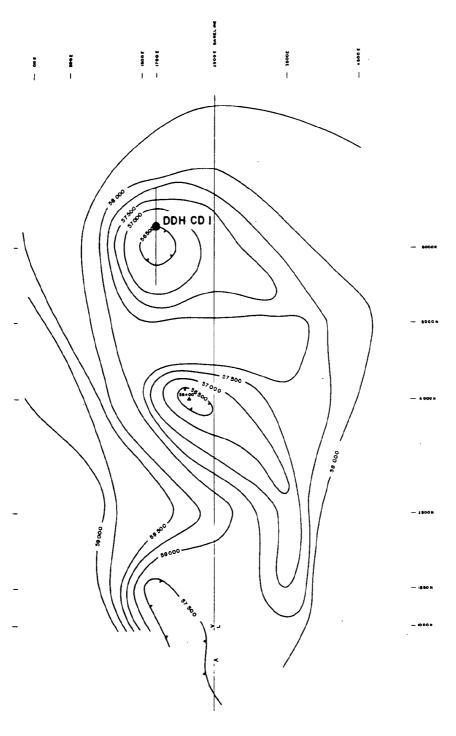
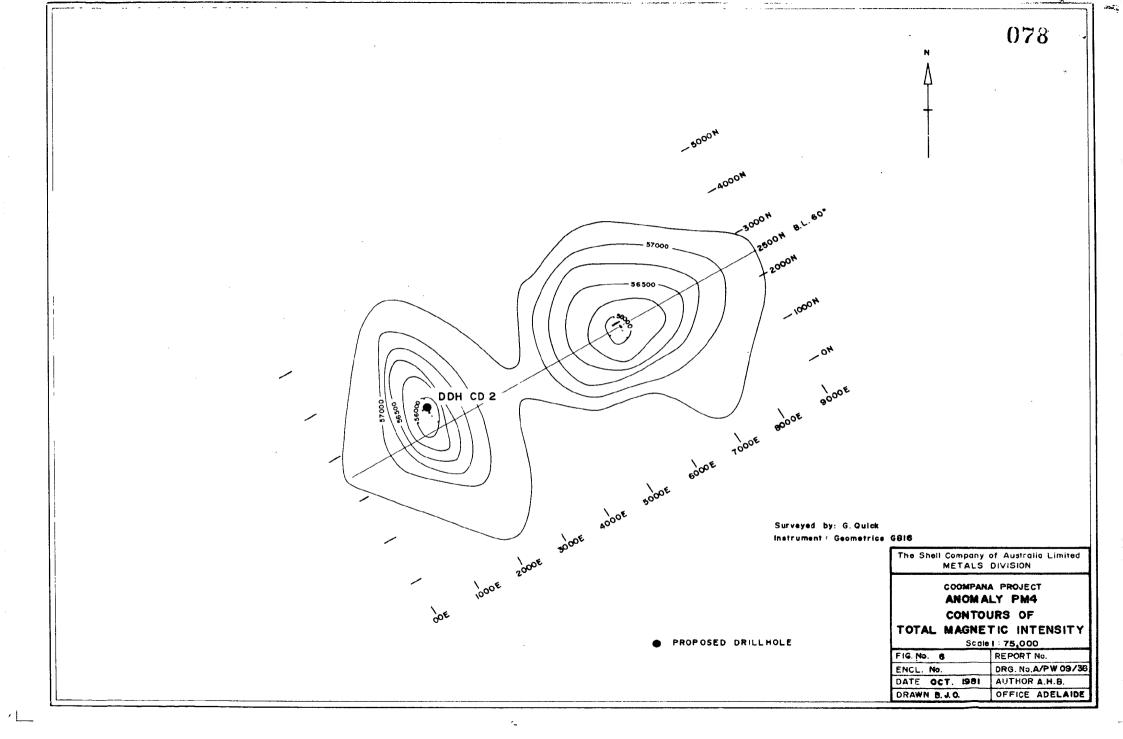

____Scale | 50,000

FIG No. 4

ENCL No. DRG No.A/PW 09/35

DATE OCT. 1981

RAWN B.J.O. OFFICE ADELAIDE


Surveyed by: G. Quick Instrument: Geometrics G816

The Shell Company of Australia Limited
METALS DIVISION

COOMPANA PROJECT
ANOMALY PM3
CONTOURS OF
TOTAL MAGNETIC INTENSITY

PROPOSED DRILLHOLE

St. GRE	50,000
FIG No 8	REPORT No
ENCL No	DRG No A/PW 09/34
DATE OCT. 1981	AUTHOR A.H.B.
DRAWN B.J.O.	OFFICE ADELAIDE

APPENDIX 1

Gravity Data and Operational Report - Solo Geophysics

COOMPANA PROJECT, NULLARBOR PLAIN, S.A.

GRAVITY AND LEVELLING PROGRAMME.

Anomaly	Line	From	То	Length (km)
CM-4	3000N	00	7000E	7
PM-2	3000N	00	7000E	. 7
PM-4	2000E	00	5000N	5
	6000E	00	5000N	5
' ,	250 0N	2000E	8000E	4
PM-7	3000N	00	4000E .	4
PM3	6000N	00	5000E	5
	4000N	00	5000E	5
	2500E	4000N	6000N	2
				44km

Station spacing: 100.
CM prefix denotes COOK sheet
PM prefix denotes COOMPANA sheet

Note: Co-ordinates in the accompanying listing and profile plots are prefixed by 1.

3447 33

. ___2023.23.___1A.16__

____BAGE_#_02

_	1-01-0-1-1 (111		NULLARDO	K -CM4								084	}
_	COVERACE	LINE-1	30000		FROM_1350	0E_TO_1200							
_	Loop Tike				ift Rate: ne_Zone:	9 500	Cravine	tion Lactor:	1 048	Uperator <u>.</u> K. Date:	LECCII 01/00/0		
_	CRID	CRID EAST	MERCATCR	EASTING	METER	TIME	ELLVALION	Children or a set to	THEORETICA GRAVITY	* \$1.4. (\$1.5.) 1 4 5 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	UCR CRAVI	CTY_Cons	<u>ردد) .</u>
_	KO:	S0 & 0								there may be many than that have the bell of a transport of the control of the co			
_						14.13_		3002.53					
_	13000 13000	<u> 13500</u> <u> 13400</u>	0	<u>v</u>	2073.76	. 14.43	100, cc	3009.53	979416.95	35.65	74 70	77 (14	34: 5
_	13000	13300		0	2973 <u>2</u> 0 287306	14. 17		3999.46	279416.72	35.62	34 41	_ <u>33,26</u> _33,28	32.7 32.7
_	13000	13200	00	0	2073.75	14.50	100_61 100.72	3009.63	979416.89	35 94	34 67	33.54	32 6
-	13000	<u> 13100</u>			2073.29	14.56	100.57	3009,51	Y/Y416.U6	35 32	34 64	3 5 . 47	32 9
-	13000 13000	13000 12900	<u>0</u>	<u>_</u>	2873_95	14.52	104.53	3007.73	929416.83	35, <u>%1</u> 36,10_	34.64	<u> 33 51 </u>	32.9
	13000	12800	0	0	<u> 2023.69</u>	<u> 15.02</u>	100.49	3009.65	979416.78	36_£5	<u>34.84</u> 34.70	<u>33.70</u> 33.65	<u>. 33_1</u> 1
	13000	12200	n	U(1	2823_45 2823_45	15_35_	100_112	3002.40	229416,75	35.83	34.57	3.3.43	33.10 32.81
	13000	12500	0	0	2073_45 2073_12_	15.08	<u> 100 53 </u>	3009.19	279416,72	35 65	34.30	33.25	32.70
_	13000	12500	0	0	2873.00	15.13_	100 48 100 74	3000.91	229416,62	35 13	34.17	3.3.03	32.48
	13000	<u> 12400 </u>	0	0	2372,72	15.16	100.62	3000.71 3008.63	979416,67 979416,61	35.20		_32 <u>_87</u>	. 32.32
	13000 13000	12300 12200	Q	<u>Q</u>	2072.01	15.15	100.70	3000.51	979416.61	<u>35.21</u>	<u> 33.94</u> 33.87	32.30 32.23	32 25
	13000	12100	0	<u>0</u>	2872 <u>.72</u> 2872_49	<u> 15.21</u>	100.87	3000.49	779416.58	35.16	33.65	32.75	32.10 32.10
	13000	12000	0	0	2872.12	15,2 <u>4</u> 15,28	<u>100, (r2</u> 100, 53	3008.16	277416.55	34.65	_33.50_	31.44	31.70
_	13000	11500	0	00	2072.05	15.31	100.20	3008.10 3008.12	277416.53	34.75	33.47	32 . 35	31.00
_	13000 13000	11800	0	0	2372.32	15.15	92.23	3000.20	979416.50 222416.42	34.74	33.40	32.34	31 80
_	13000	11700 11600	Q	0	2872.49	15.37	75.78	3008.16	977416.44	34.74	33.52 33.40	32.39 32.35	31 81
_	13000	11500	0		2872 <u>_44</u> 2872_52	<u> </u>	99.60	3000.11	277416 41	34.67		32.29	31 V
	13000	11400	0	9	2072.62	15.43 15.47	<u>99.49</u> 92.37	3000 19	279416.39	34.76	33.51	32 38	31 04
	_13000	_11300	0	0	2872_52_	15.51	<u> </u>	3000,22 ° 3008,24	979416.35	34.06	33.61	32 49	31 74
_	13000 13000		0	<u>0</u>	2872_au	2:2	29.62	3000.24	979416.33_ 979416.39_	33.11	33.40	32 47	31 93
	_13000	11100			2072.46	15.52	92.57	3000.14	579416.27	34.02 34.03	_33 <u>.57</u> 33.50	32.44 32.46	<u> 31.70</u>
_	13000	10500			2872_ <u>87</u>	<u> 14 00</u>	22.39	30,00.36	272416.25	35.02	-33.50	_32.46 32.65	$\frac{31.91}{32.11}$
_	17000	10888	Q Q	Ü	2872 <u>87</u>	16.04 16.02	<u>28_82</u>	<u> </u>	979416, 22	35.14		32.70	32.24
_	13000	10700	0	e	2072 . 09	16.10	27.00 57.16	3000.56	777416.17	35,28	34.03	32.91	32.37
_	13000	19600	0		2072_23	16.13	27.19	3008.56 3008.60	979416.16 979416.15	35.28	34.03	32.91	32.37
_	13000	_10500 _12000		<u>!</u>	2872 . 95	16.15	99.53	30.00.95	<u>777416.13</u> <u>979416.11</u>	35.40 35.47	34.15	33.02	32.49 32.55
_				0	2072_44	16.22	100.53	3000.00	777416.53	34.74	34.22° 33.42	33.10	32.55 31.77
-	BASE	\$ 02			2073_03_	16.30		2009.53					

Stand to position that ignition of the control of t

	F_RAU_FIELD_DATA_X******	08
LUDE# 1 LINE 13000N	ERUM_13500E_TO_17000E	
LUURA 2 LINE 13999N	FROM 1.3500E TO 12000E	
<u>~***************</u>	*************	
Data Computed on 35/10/81		

أرا للربيق المنافية المنافية

i	QUANTIE SHELL COMPANY OF AUSTRALIA		
	LUCATION NULLARISOR CM4		
	Time Zone is 9.5		
	Unid Hotation Dearing is 23 degrees EAST	and a substitution of the contract of the cont	
	The Known Point of 31 degrees Latitude is located	707	
<u>-</u>	The Base Station Observed Gravity-Values are		
	UASE # OBSERVED GRAVITY (Mgals)		
	13009.53		
	2 3009.53		
	^大 子生来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来	(**	
	Data Cooputed on 36/10/81		
		The second residual residual and applicable for the formation of the second residual and a second residual and	
	· · · · · · · · · · · · · · · · · · ·		
			. :
			*

on formation of the second state.

Comparer Hearings Compared

<u> </u>	<u> </u>	GEOF	HYSIC	S & CO						**************************************	MISER 3
รบผง	JEIYE D-I	-0R	S II-A Bee Base Service (COMPA	4YOF	AUSTRA	ALIA				
LOC/	+1 <u>-10</u> 4-		YULLARBOI	: PM2							
										085	
· COVE	RAGE	LINE 1	3000N		FROM_1350	0E_TO_14000	£				
						·					
		1 93		<u> </u>	ift Rato	02	Cravine	ter_#G_037	Ope	rator K LEECH	
Loop					me-Zone		Calibra	tion_Lactor:	1.048 Dat	e:29/07	/01
CR.	D		-MERCATOR-	-MERCATOR	METUR	TIME	_FLEUATION	OUSLAVED	THEORETTCAL	BOUGUER CR	OVITY (oms/cc
		LAST_		EAS LING	REUDING		(Metr.es.)	ERAULIY.	GRAVILLY	2,1 119	2.62R
											
	BASE				2822, 52	13.58		3013.43			
	000	13500	0		2927.59	13.58	99_88	3013.43	977430,02	39.94 _ 38 6	9 37,56 3
	.000	13600	<u>n</u>		<u> 2872 10</u>	14 02	22.56.	3913.23	929430.02	32.62 38.4	2 32 20 2
		13200 13800	0 	<u>0</u>	2872, 38	14.05	99.02	3013.21	979430.07	30.54 30.3	
	0000	13200	0	и	<u> 2877_45</u> 2877_25_	11_UB	<u>99.65 </u>	3013. <u>20</u>	929430.02	3%_5239.2	
	1000	11000	0	0	2877_44	10.11	20.64 20.62	3013.07 3012.85	277430.07 277430.07	39.31 39.0 32.03 32.0	
1	0.00	14100	0	0	2876 99	14.14	28.44	3012.72		38.76 37.2	
	1000	14200	0	0	2824.24	14 12	911.43	3012.53	227430.07	39.77 37 S	34 41 5
	14 v û	_14300	0	0	2824_58_	14.22	90.75	2012.36	41 - 400 47 - 4 - No. 4	38.63 37.3	U 35 27 3
	70.00		0	0	287 <u>6_56</u> _	19 25	20.65	5012.34	222430.02	38,58 32,3	36 23
	000	_14500_	0 :		292550_	14.27	2465	3012.28	229430.02	30 5237 2	0. 26 15 1
	000	14600 _14200	0	<u>0</u>	<u> </u>	11.30	<u> </u>	3012.30	277430.07	3u_5337_2	<u>v 34 18 3</u>
	1000	14300		U	2076.12_ 2875.06	14.33	<u> </u>	3011,98	979430.07	<u> 38 13 36 U</u>	<u> </u>
	000	1.4200	0		2075_69 2075_69	14.36 14.39	<u>98.94</u> 99.26	3011.60 3011.42	979430 <u>.07</u> 979430.07	<u> 37 ''1 36 6</u>	
	.0.00	15000	0	0	2075.53	14.41	77.21	3011.31	927430.02 927430.02	37.81 34.5 37.67 36.4	
1 3	000	_15100	0	Û	2875.64	14.45	Yu. 79.	3011,37	922430 .02	37.62 36.3	
13	.0.00	15200	0	0	2875.42	14.42	90.52	3011.35	27/2430.07	37.56 36.3	
	.000	<u>15300</u>	0	0	2875.52_	14.49	7.67.70	3011.30	979430.07	37.52 36 2	
	1000	15400	0	0	2875 34	14.52	<u> </u>	3011.05	727430,02	37,29 36.0	
	. 0 0 0	15500			207510	14.55	26_66	3010.88	<u> </u>	37,17, 35, 9	
		156 <u>00</u>	0	0	2025_12_	<u>14.52_</u>	<u> </u>	<u>3010.82</u>	<u> </u>	<u> </u>	
		- 15000			2875.32_ 2875.36_	15.03	98.28 92.78	3011.03	979430.07		134_92(
		15200			2875.33	15_US	92.58				
		16000	0	0	2075.45	15.0a	97.30	3011.04	979430.07 <u></u> 779430.07	37.1435_8; 37.1235_8	
		14100	0		2075.40	15.15	92.23	3011.11	279430.07	37.12 <u>35.8</u> 37.0435.0	
13	0.00	16200	0		2825.40	15.18	27.11	3011.11	929430.02	37.01 35.7	
	000	16300	0	0	2975 .46	15.20	96.95	3011.17	979430.07	37.04 35.6	2 34 72 3
	000	<u> 15400 </u>	0	Q	2875.32	15,24	96,20	3011.09	<u> </u>	36,9535.7.	5 54.63 34
	000	_14500_	0	0	287529	15.26	96.77	3010,98	979430.07	36,65 35.6	
	0.00	_16600	U	0	207531	15.22	96.90	3011 01	922430.02	36 86 35 6	5 34.55 34
	0.00	46×00		· Ö ·	2875.17	15.31		3010.86 .	979430.07	36.73. 35.5	1 34 41 3
	000			0	2875 . 17 _	1551	26.22	3010.88	977430.07	36.7435_5	2 34 43 30
		16200 12000	U		2875.02	15.34		3010.70	979430.07	36,5635.35	
1 ?	.0.0.0			U	2875.05 2875.14	1510	76_86	3010.73	272430.07		
	· • • • • • • • • • • • • • • • • • • •	تا ښان شا	······································	······································	40/5.14	1515			979430.07	37,13, 35,0	31 77 39

	**************************************	•
		
	CLIENT SHELL COMPANY OF AUSTRALIA	
	LOCALION-NULLARBOR PMS 087	
	Time Zone is 9.5	
	- Crid Rotation Dearing is 0 dogrees EAS)	
	The Known Point of 31 17 degrees Latitude is located \$15. at Line Number 13000 and Station Number 12000	
	The Base Station Observed Cravity Values are:	
	PASE # ODSERVED CRAVITY (mgals)	
·	1 3013.44	
	2 3013.43	
	*************************************	· ·
	Data Computed on 06/10/81	
		•

Ĺ

١.

Į

******** CATALUG OF	RAW FIELD DATA *******	088	
		700	
LOUP# 1 LINE 13000N	EROM 13500E TO 16000E		
LOUP# 2 LINE 13000N	FROM 13500E TO 11000E		
**************************************	**************************************	20	
		1.1 T	
Data Computed on 86/10/81		, , , , , , , , , , , , , , , , , , , ,	
· ·			
•			

15.E 44 .

The Contractor

	AEAED E					UFA(JSIRAL	IA			
	ATTUM -		NULLARBU	k- PM3						089	
	ERAGL	LINE 1	C000N		_FROM_1250	OE_TO_10100	IE.				
·											
	p. 1140		Hours		ift Rate:	02	Gravine	ter #6 037	- See	erator E LEFCH	· · · · · · · · · · · · · · · · · · ·
Loc	p Drift	042	Mgals	li	ne Zone:		Calibra	tion Lactor:	Upc 1.048 Dat	25/07/	<u>'U1</u>
C	1D		MERCATOR.		MUTER	IIML	ELEVATION	Ofea RUED	OGRETICAL.	TROUGHI O COA	WITY (gue (ge)
	CTH.	EAST_	NOKIIING_		RCADING_		(serten)	GRAVITY	GRAVITY	2.1 2.1	2.67 2.6

	<u> </u>	9 02		··	2701,50	10,15		3030.60		-	
	4000	12500	0	0	2901.50	10_45	100,00	3938,60	979435.02	86.5065.32	2 64.19 63
	<u> </u>	12400	<u>_</u>	0	2901.02	10_5 <u>0</u>	92.81	3048.93	979435.02	66.02 65.62	64.49 63
	<u> </u>	_12300_	0	0	2901_94_	<u> </u>	<u> </u>	3039,08	979435.02	67,03 65,75	64.62 64
	7000 7000	<u> 12200 </u>		<u>u</u>	<u> 2901.95</u>	10.57	<u> </u>	3039.07	977435 02	67.00 65.70	
	A000		··· ······· · · · · · · · · · · · ·		2902.08 2901.25	11.00	<u> </u>			67.14 65.80	
	4000	11900	n	0	2201.20	11 11 11 11 11 11 11 11 11 11 11 11 11	100 32 101.43	<u> </u>	979435_02 959435_02	67 13 65 06	64.73 .64
		11300	0	1)	2201.55	11.02	102.33	<u> </u>		67.10 65 50	64 76 64
1	£000	11700	0	C	2201_45	11.14	102.87	3030.03 <u></u>	<u>9</u> 279435_02 979435_02	67,15 65,86 67,15 65,86	
1	6000	11600	O	0	2701.32	11.13	102,78		779435 02	62 09 65.79	
1	6000	11500	0	0	2901.42	11.21	103.01	3030.50	979435,02	62.15 - 25 65	
·1	60 <u>00</u>	_11400_	0	0	2901 33	11.29	103.02	3030.46	777435 02	67 10 - 65 G1	**
1	4.000	11300	0	<u> </u>	2701.40	11.27	102.85	30 50 40	979435 02	67 09 65 79	
	6000	11200	00	00	2901,27	11 30	102.70	3030.34	222435 02	66.72 65.62	
	<u> 6000</u>	11100	0	. 0	2901,10	11 34	102.65	30.38 16	977435 02	66.73 65.43	
		11000	0	0	2700.00	11.37	102.58	3037 93	977435.02	66.13 65.17	
	<u> </u>	1 0200_	U	0	2900 71	11 /1	102.78	3037.75	979435 02	66.34 65.05	63.00 63.
	<u> </u>	10000	<u>0</u>	0	2700.60	11.15	102.51	30 37 63	979435 02	66.17 64.83	
	£000	10700	Q		<u> 2200.58</u>	<u> </u>	102.04	3037.61	979435.02	66.04 64.76	
	<u> </u>	_10500_	<u>0</u>	<u> </u>	220 <u>U_52</u> _	11.51	102,00	<u> 3037 62</u>	979435_02	65 U1 61.75	
	6000	_1U5UU_ _1U4UU		<u>0</u>	2900. <u>58</u> _	<u>11.51</u>	102.02	3037.61	979435 02	66 U3 64.75	
	6000	10300		n .	2900,40 2900,29	12.01	102.05	3037,50	979435.02	65_9364.65	
	5000	10200		t)	289 <u>2_93</u>	12 04	102.08	3032.30_	979435,02	65.74 64.46	
-	۵000	10100		. 0	2829, 60	12_04 12_10	102.12 102.66	<u>3036.92</u>	977435.02	<u> </u>	
	6000	10000	0	0	2822 25	12.15	102.50	3036,78 _ 3036,73	979435_02 929435_02	65.3564.06 65.26 63.97	** ********* * ** ** ** **** *****
	4000	12500_		0	2201.50	10.45		3030.60	279435,02 279435,02		
	6000	11500	0	0	2201.44	12.21	103.01	<u> </u>	277435.02	66 58 65.32 67.14 65.85	64.48 63 64.68 64.
	BASE	1 02			2901 54	12.24		3030,60			
***	********	*****	***************	******	to the table that the table the table the	***	****	*********		the decidence of the state of t	
					n an 14 16 An 15 An 15 An 15 An 15	<u> </u>	<u> </u>	<u>ኮ.ፕ.ტ.ტ.მ.მ.ტ.ტ.ტ.ტ.</u>	<u></u>	**********	*********

12

13 14

17 18

19

20 21 . 2.₹

24 ._

33

33 36 37

68

25 26

`	SUNVEYED F	· · · · · · · · · · · · · · · · · · ·		K-PM4		-UF-A	JEIKAL	IA		-093	
				The second secon	1/00						
	COVERAGE	LINE 1	2000E	· · · · · · · · · · · · · · · · · · ·	FROM 12500N TO 10100N						
	Loop Tange Loop Drift		Mgəls	Tio	ft Rate:	2.500	Calibra		_1.048Dat	erator K_LEUCH	
	CRID COUTH	GRI-D- LASI	MERCATOR— MURTHING	MERCATOR	METER READING	TIME	ELEVATION (Metres)	OUGLEVED CHAVITY	THEORETICAL	BUUCUER GRANITY 2.1 2.	(gas/cc) 67 2 0
	PASS	\$ 02			2666 67	2.53		3925.34			
	12500 12400	12000	0	0	2887.48 2887.87	10.02 10.03	1.00 0u 22 62	3026.17 3026.36	979425.85		. 2291_2
	12300	_12000 _12000	00		2890.09 2890-13	10.11	99 45 99 22	3024.59	979425.17 279425.23	54.32 53.02 51	11 4 4 4 4 A
	12100	12000 12000	0	0	2090 <u>15</u>	10 18	22.24 22.91	3026.66 3026.73	979425,29 929425,36	54.2252.9751	99 51 3 94 91 3 91 91
-	11200 11800 11700	12000 12000 12000	0	0	2890 <u>38</u> 2820 <u>63</u>	10_25 10_22	9ዘ_ 46 9ዘ_ 12	3026 90 3027 16	978425.42 978425.48	54.2052.9651 54.35	GF: 1.1 3
	11600 11600	12000	0	00	2890 <u>22</u> 2890 63 2890 63	10.35	98 29 94 11	3027.30 3027.15	979425.54 979425.69		. PU
	11300 11300	12000	0 0	0	2890_65 2890_26	10.45 10.50	98.59 98.12 97.93	3026.94 3027.17	979425.67 979425.23	53.99 <u>52.75, 51</u> 53.96 52.8 <u>3 51</u>	72 51.11
	11200	12000 12000	0 0	0	2990.94 2990.92	10.57	27.70 27.70	3027,29 4027,37 3027,25	979425.79 979425.85 979425.92	54,98 52 85 51	
	11000 10200	12000° 12000	<u></u>	0 U	2999 <u>.46</u> 2990 <u>.62</u>	10.57 11.03	99.94 	3127.18 3027.18	927425 20 ·	53.69 52.66 51 53.79 52.56 51 53.76 52.52 51	.45 50 92
	18809 18200 18699	$\frac{12900}{12000}$	<u>U</u>	0	2890 65 2890 61	11 06 11 02	98.31 27.75	3022.12	277426.10 277426.16	53.72 52.40 51 53.70 52.47 51	32 50 10
	10500	12000 12000	0	0	2891 14 2891 24	11.13 11.18 11.20	97.23 	3927.52 3027.60	979426,23 979426,29	53,70 <u>52,5051</u> 53,70 <u>52,5451</u>	<u>39 50 89</u>
	<u> 10300 </u>	-12000 -12000	0	00	2891-30 2891-30		96,58 96,65 96,61	39\$7.79 2022.85 3928_15		53.70 52.47 51 53.72 52.50 51	41 10 11
	10100	42000 42000	U	0	2891_U6 2891_U4	11.30	96.61 96.61	3028_18 3028_12 3028_10	977426.42 979426.54 272426.60	53.75 52.73 11 53.06 52.64 51 53.73 52.56 51	.55 Sa.03
	12500	12000 12000	0	0	2889.71 _2882.21	11.48	100.08 100.03	2026.10 3026.10	979425.65 227425.05	54.17 52.92 51 54.17 52.92 51	.7 <u>8 - 51 2</u> 4
	Base	\$ 02			2088 91	12 01		3025.34			

i

3 60

		HYSIC							LOU	************* }-	Lik K.
— 1.0004.1.1 —1.0004.1.1 (и	·	HULLARBU		IMPONY	- CF_A	USTRAL	10				7
COVERACE	LINE 1	#700N		FROM 1500	0 10 16000						
								5.5			
•	0+ -52 Ct: =-042	-Mgals	Li.	ift Rato:	- 08 - 9 - 500	Calibra	ter #1 037 tion Factor:	1 U48 U	perator_K ate:	02706761	
CRID NORTH	GRID	_OMINIROM_	MERCATOREASTING	- METER-	IIME	ELEVATION (Metros)	DHSLEVED	IMEDRETICAL	1000 2,1		Y (gms/cc) 2 37 2 8
<u>l'</u> n	SE # 02			2800.02	11.00		3029,34				
12500	15000.		u	2880.67	11.40_	100 00	3025.34	979426.12	52.24	S0.98 4	49.85 47.
12500	15200		0	2889.03	11.11	92.97	3225,54	279425.12			47.95 49.
12500	15400		0	2889 26	71 78	99.72	3025.74	978426.26	52,43.	<u> </u>	50.05 49
12500	15600	0	0	2889 52	11 52	22.25	3029.70	279426.34	54.33	51.0 <u>u</u> 4	47.95 as.
12500	15800	0	<u> </u>	2889,32	11 55	22.05	3029,81	972426.41	52.30	51.05 4	49 92 49
12509	16000	0	U	2889, 29	12.01	92.15	3025.72	277426.48	52.14	אַ <u>הֿאַ אַ אַ אַ אַ אַ אַ אַ</u>	77 27 49.
12500	16000	<u> </u>	<u>u</u>	2892.22	12.01	99.15	3025.79	97?426.48			49 77 49.
12500	15200	O	<u>U</u>	2092.05	12.27	92.07	3925.54	277426.12	52,34	51.09 3	19 96 49.4
Uni	SE # 02			2888.05	12.11		3025.34				
	******	- A Mark of the Arms of the Arms	***********	**************************************	******	*******	*****	******	******	********	******
Data cu	iputed on	06/10/81									
				1							
								*	* * * * * * * * * * * * * * * * * * * *		
			*********				manuscript demography with a second significant				
	*******	the state of the state of the second state of									
								materials of the control of the cont			

A. Sanda

$oldsymbol{\cdot}$		٠,٠
李章李孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝孝 DOTO-REDUCTIUNLPARAMITERS 宋京忠忠忠忠忠忠忠忠忠忠忠忠忠忠忠宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗宗		· ·
CLERT THE SHELL COMPANY OF AUSTRALIA		
LUCATION NULLAR BUK PM2		
Fino Zono is 9.5	098	
Grid Motation Dearing is 45 degrees EAST		
The Known Point of 31.125 degrees Latitude is located at Line Number 13000 and Station Number 10000		
The Base Station Observed Gravity Values are:		
NASE # > OBSCRVLD_GRAVITY_(mgals)		
1 3024.87 2 3024.87		

Data Computed on 96/10/81		
	tions or debuggered as a 100 had because to the his sea bigging as the supply of the sea	
		,
		,
	* 17 75 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	* * * * * * * * * * * * * * * * * * * *	
		·

9 (-11

12 🦳

19

20

22

45 46

47 . 4B

56 · 67_

21 (

9(

11

712€

13 14

16

17 _18€ 19

20

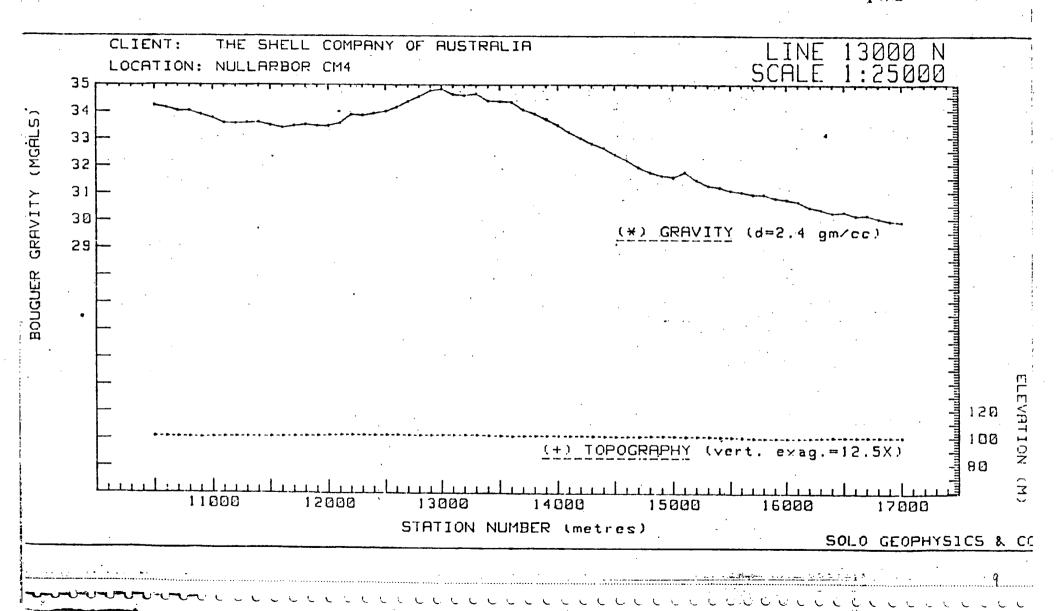
4F 40

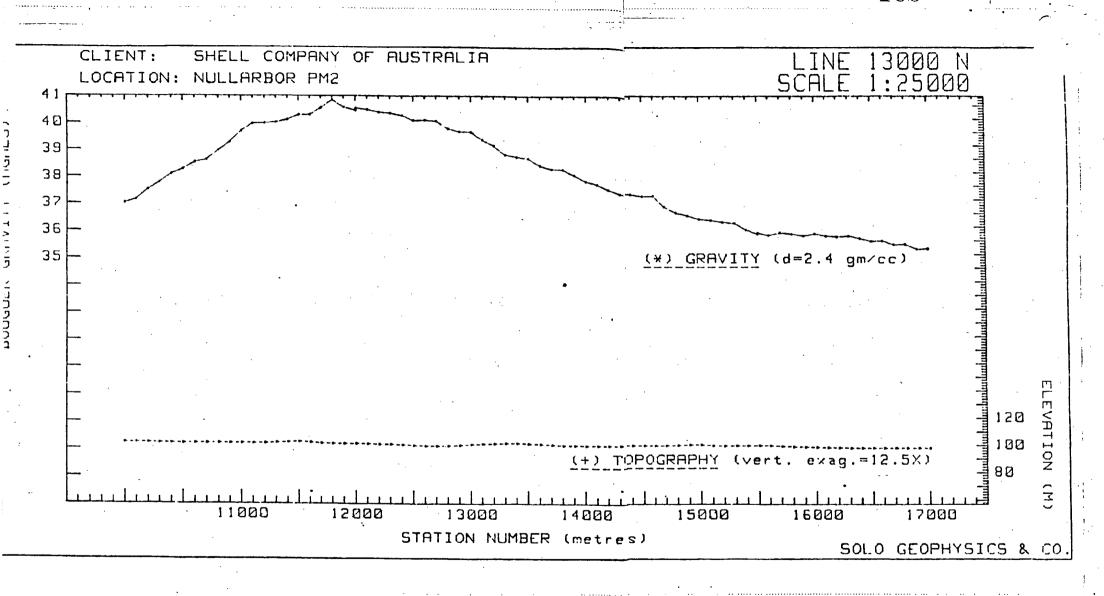
61

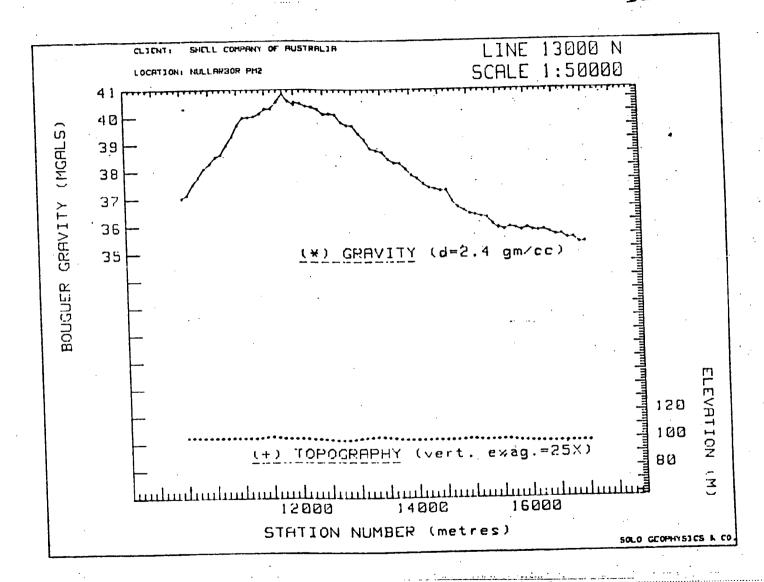
52

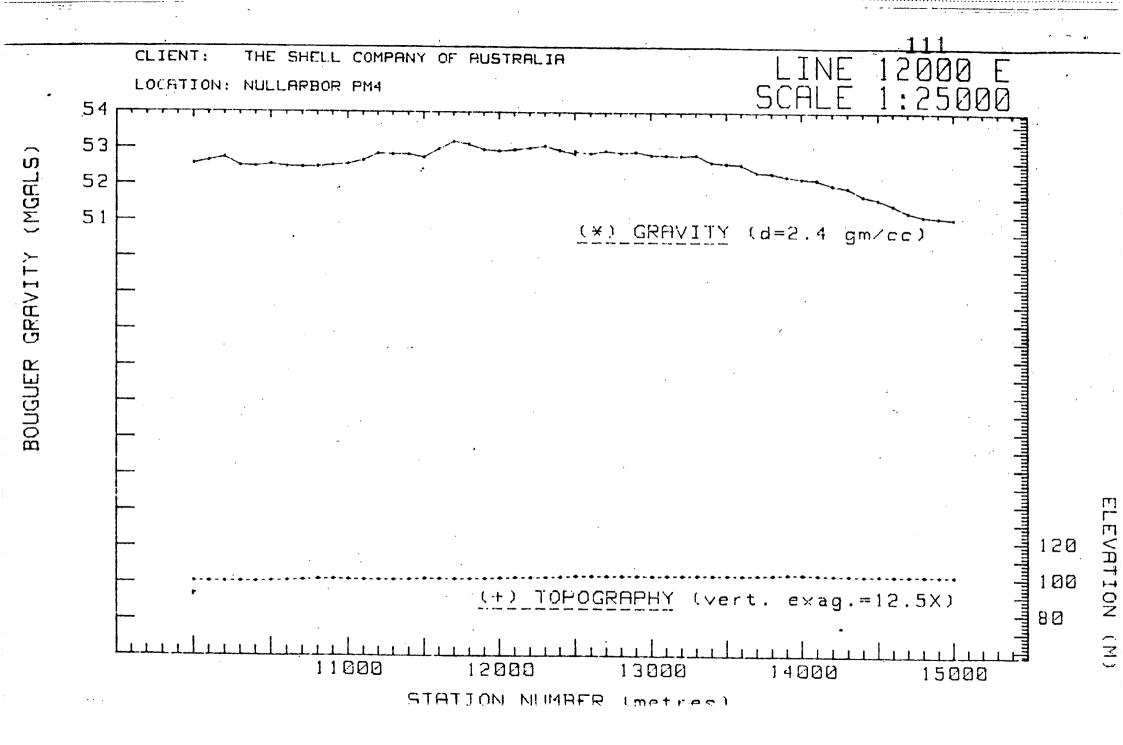
63

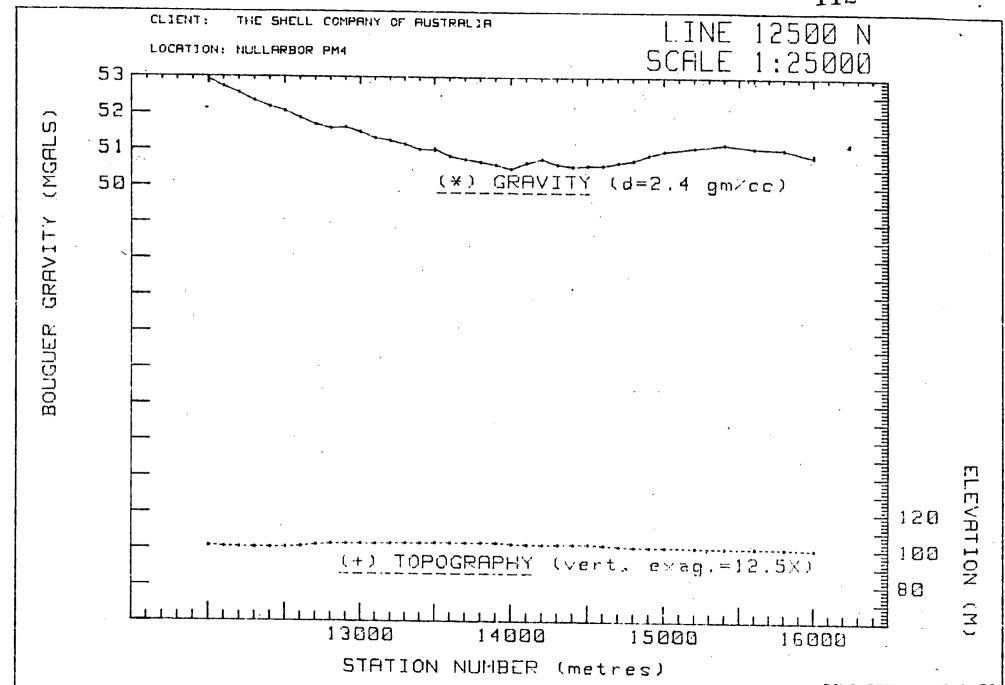
K.A.

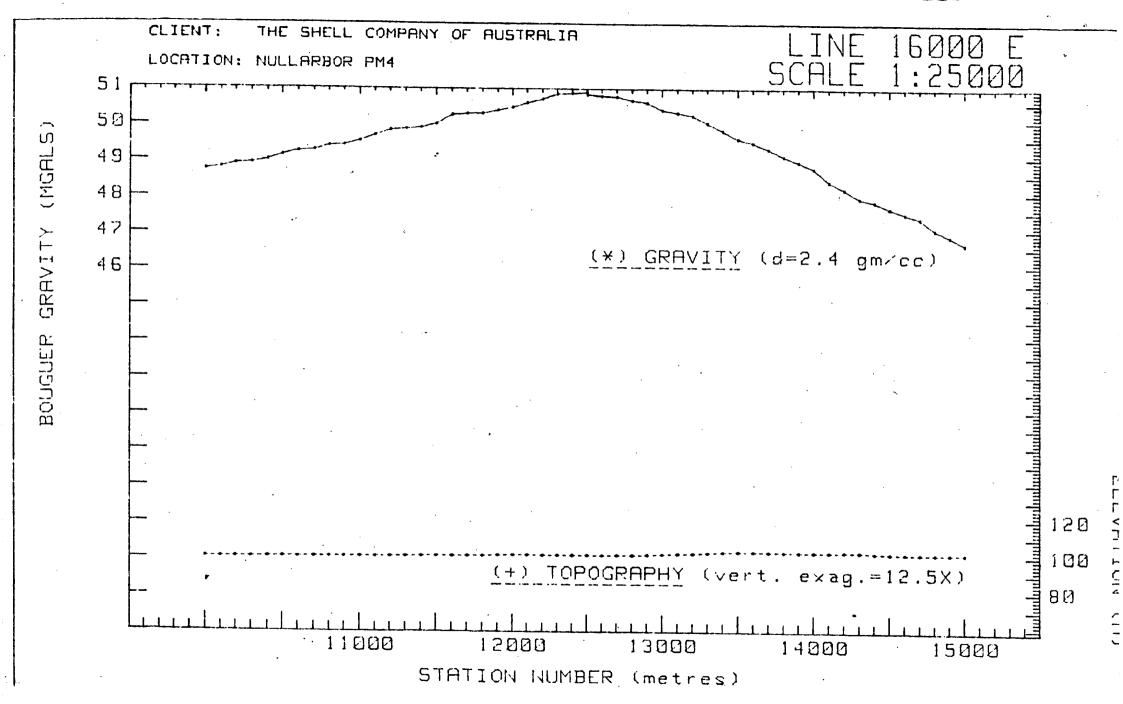

59

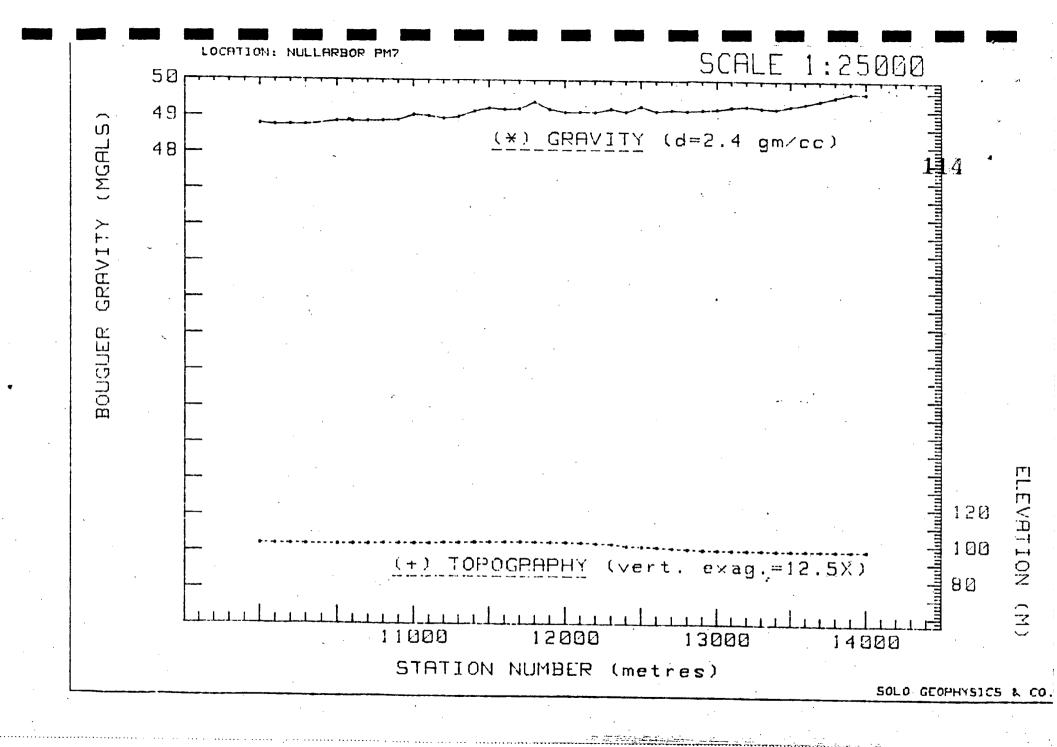

21 C

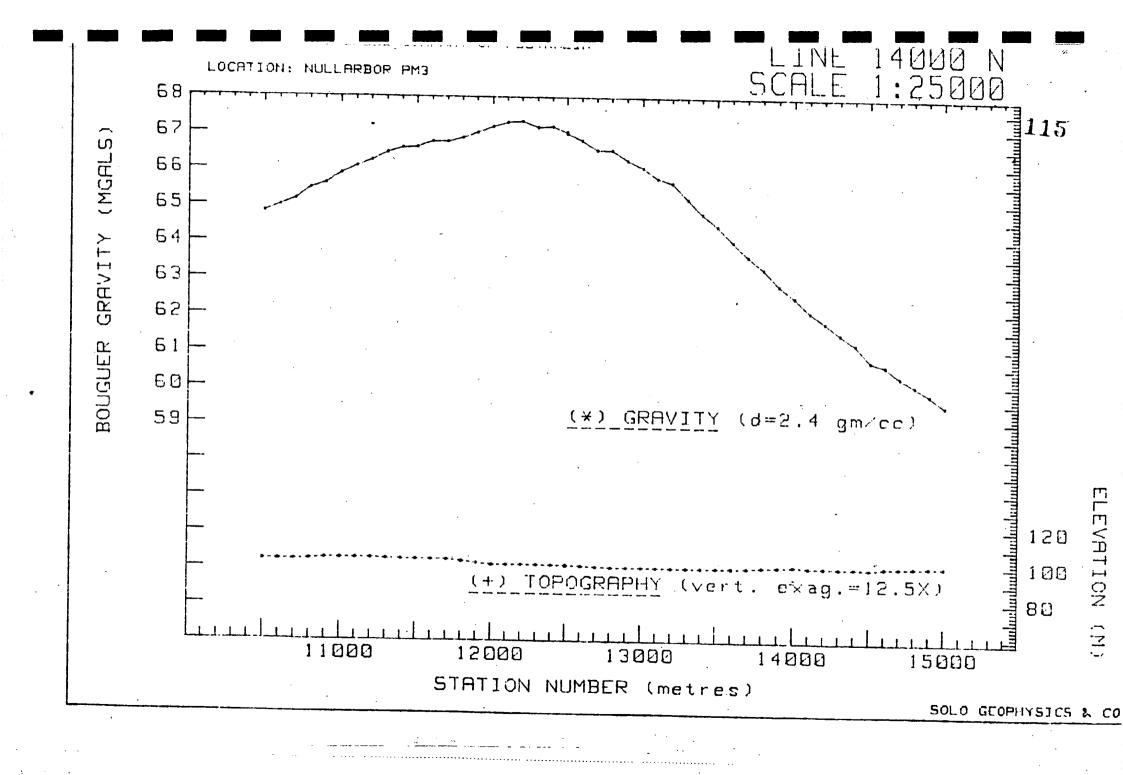

LUOP NUMBER 0 SOLU GEOPHYSICS & CO ******************************* THE SHILL CHMPANY OF AUSTRALIA SHRULYED FOR I DUATION -NULLARBUR PM3.... .0 FROM 12000E TO 15000E COVERACE -- LINE 44000N-90 10 120 Ucift Rate: 02 Luco Tino. 1.90 Hours Crauimeter #G 037 13 lime Zone: 9.500 Loop Draft: -- 042 Mgals Calibration Lactor: 1.048 Date: 26/02/81 .. 15 15 TIME FLEVATION ORSERVED THEORETICAL BOUGUER CHAVITY (GM5/CE) 16 CRID COLD MERCATON MERCATON METIE 1 27 1 17 MEIDTH EAST NORTHING EASTING READING (AGENCES) GRAVITY CRAVITY 2.1 2.4 2.67 2.8 18 19 20 **4** 21 210 BASE # 82. 2901 46 9 30 303B.60 . 22 22 23 68.27 67.03 65.91 2704.68 9.37 3041.27 979436 46 65.37 23 14000 12500 98.93 24 12600 977436.46 69.06 66.82 45.70 65 17 14000 2204 56 2.15 20.53 3071.84 979436,46 67.79 66.55 65.44 64 "1 25 14000 12200 2904.39 2.47 98.11 3041.66 . 26 12300 777436.45 57.78 66.55 65 44 64 91 26 14000 2204 44 2.51 22.36 3041.71 **2**/ 14000 12200 n 2904.17 2.54 97.91 3041.43 979436,46 67 51 66 20 65 17 61 64 27 0 14000 1.3000 . 0 2903.78 2.52 22.24 3011.23 222436,46 62 31 66 00 64.97 . 64 14. 23 29 1 61 15 29 14000 13100 n 2903.72 92.03 64.68 10.00 3040.20 272436.46 62 UC __ 65 ZX 30 64 02 30 1.40.00 13200 n 2203 61 10.03 92.28 3040.04 977436.46 66, 67 65,66 64.55 31 97.72 <u>63 59 31</u> 14000 _1.3300 n 2203.19. 10.06 3040.40 979436.46 46,45 65.22 64.11 32 (13 1.7 32 222436.46 6.5.70 Ω 2202.30 65.04 64.41 14000 1.3400 10.02 27.77 3037.97 **33** 62 33 33 10000 13500 O. 2202.42 10.15 92.84 3032.64 979436 46 65 70 64 47 63 37 14000 1.3600 0 -2902.02 92.81 69,20 64,05 62.94 62 41 34 10.13 3039.22 977436.36 35 13200 2901.66 27.26 64 Ut 63.65 62 54 62 11 35 14.000 979436.46 10.22 3030.79 **3**6 61 66 36 C 62.19 14000 13800 3030.37 777436 16 64.51 65.30 2701 26 10.25 90.33 _37 14000 13200 2200.78 28.57 3037.87 979436 46 £.4 11" 62 85 61.73 61 20 10,22. 38 63.77 61.41 60.37 38 14000 14000 2700.40 3037.47 979436 46 62.53 10.33 90.24 **3**9 60 47 39 2200..13. 3037.18 979436.46 63,36 62,12 14000 14100 Û 10.36 98.36 61.01 277436,46 63,00 61.84 14000 14200 Û. 2822.85 10.41 9U. 11 3036.09 80 72 60 12.40 14000 14300 n 2099.52 979436.46 62.76 61.52 60.41 50 88 41 10.46 20.32 3036.59 **₽** 42 59 68 420 14000 977436 46 62,42 61 25 6U.14 14400 O 2892.22 10.48 20.31 3036.30 52 14 979436,36 62,02 60 79 14000 _1.4500. a 2898.93 59.68 10.52 20.00 3035,22 59 00 44 14000 14600 O 2820.63 10.55 90.21 34.45.60 979436.46 61.70 60.66 57.54 45 57.69 14000 14700 __ 2898, 31_ __10_58__ 99 69 _3035,27____979436.46___61.60__60.35__52.23 _____ 4 annu. 58.46 44000 <u> -2070 -05-----11 -02</u> 99 26. 3034.29 227436.46 61.37 60.42 47 14000 14200 2892.28____11.05_ 3034.71 979436.46 61,13 59 68 58 75 50.21 29.44... 45000 3034.40 977436.46 60.02 57.57 50.44 57.70 14000 2822 42 44 92 99 44 44000 42500 2204 .74 11. 17. .22.22. 1.4000 12500 2904.23 3011.49 977436.46 68.27 67.05 55.93 _11_17 20.23 **6** 51 ن51 1:- 52 20 # 32AS 11 24 2901.50 ..3039.60 43 1 63 **6** 54 56 56 **6** 57-676 2 60 6(😥

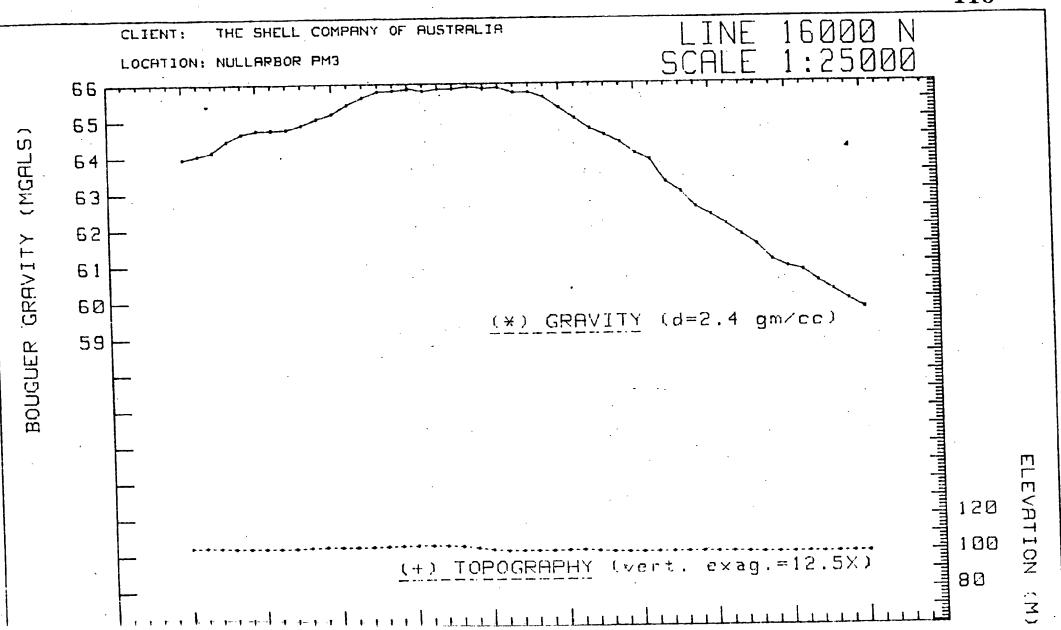

SOLU GEOPHYSICS & CO


		107	
1.00P+ 1 LINE-16000N	FROM-12500E TO 10100E		
LOOPS C LINE 16040N	FROM 12500E_TQ_14500E		
LOOP# - LING 14000N	FROM 12508E TO 10500E	54.	
LOUP # 3 LINE 14000N	EROH 1250UE TU 1500UE		
LOOP# 5 - LINE 12500E	FROM-16000N-TU-14000N-		
-*************************************	******************************	****	
Data Computed on US/10/81			
1			
	and the district of the second	and an angular to the second of the second o	









FIELD REPORT COMPILED BY: GRAHAM L. RAU, DIRECTOR - SOLO GEOPHYSICS & CO. FROM INFORMATION SUPPLIED BY: K. LEECH - GEOPHYSICAL ASSISTANT IN THE FIELD.

A combined optical levelling and gravity survey was carried out on the PM and CM series grids during July and August. 1981 by two surveyors.

The survey was completed in one Phase. CM-1 traverse was abandoned.

The survey areas were located from 26 to approximately 80 kms. along an access track running north west from Coonalda Cave on Koonalda Station. Koonalda stations is located on the Eyre Highway. All PM traverses are located on the Coompana 1:250,000 sheet. CM traverses are located on the 1:250,000 Cook sheet. See location maps. The survey area was mainly flat limestone country.

Gravity stations were read at 100 metre intervals along each traverse. No gravity ties were possible to the National Network so each traverse was made relative to a main base station indicated by a star picket and metal tags. Dumpy pegs were left at regular intervals for future recovery if necessary.

Each traverse was established by an independent surveyor contracting to the SHELL Company of Australia Pty. Ltd., Metals Division.

All gravity loops were less than two hours duration.

GRAVITY BASE STATIONS.	LOCATION.	ASSUMED ELEVATION.
PM-2	13000N/13500E	100 metres
PM-3	16000N/12500E	100 metres
PM-4	12500N/15000E	100 metres
PM-7	13000N/12000E	100 metres
CM-4	13000N/13500E	100 metres

The surveyors used a caravan as a main base camp for the duration of the survey.

All instrumentation, unless otherwise specified, is either owned or maintained by SOLO GEOPHYSICS.

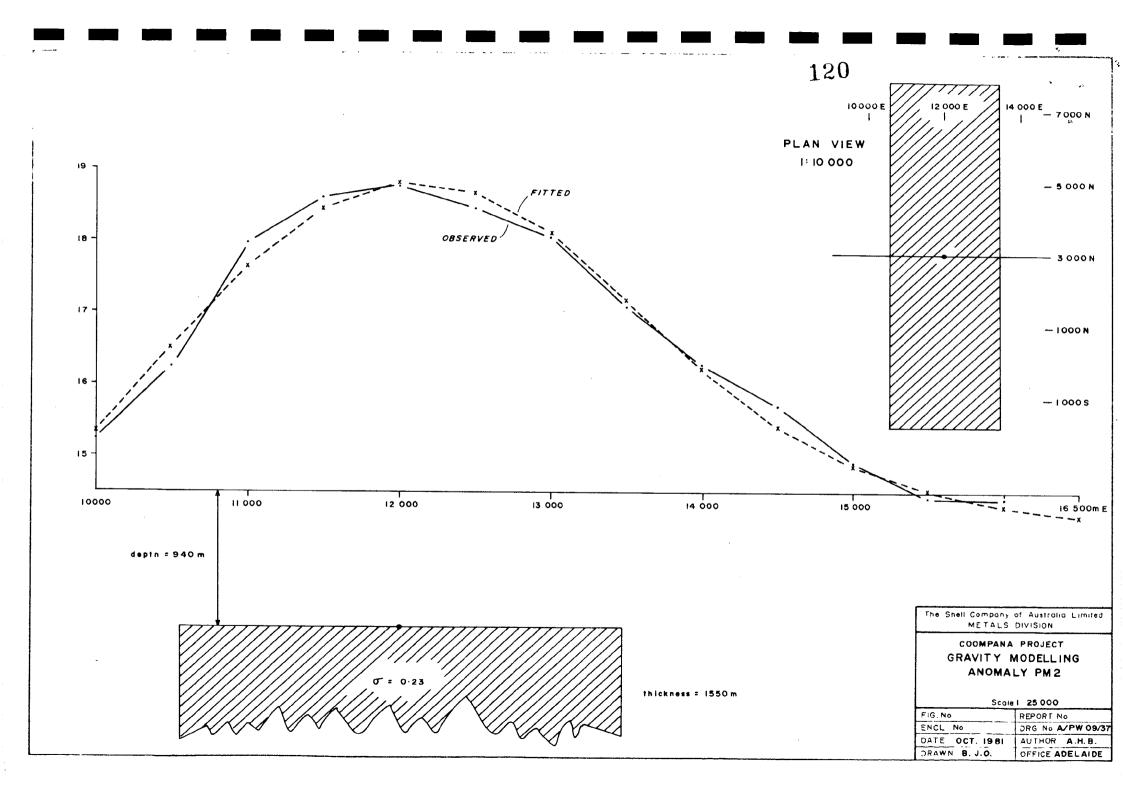
INSTRUMENTATION AND EQUIPMENT PROVIDED FOR THE SURVEY:

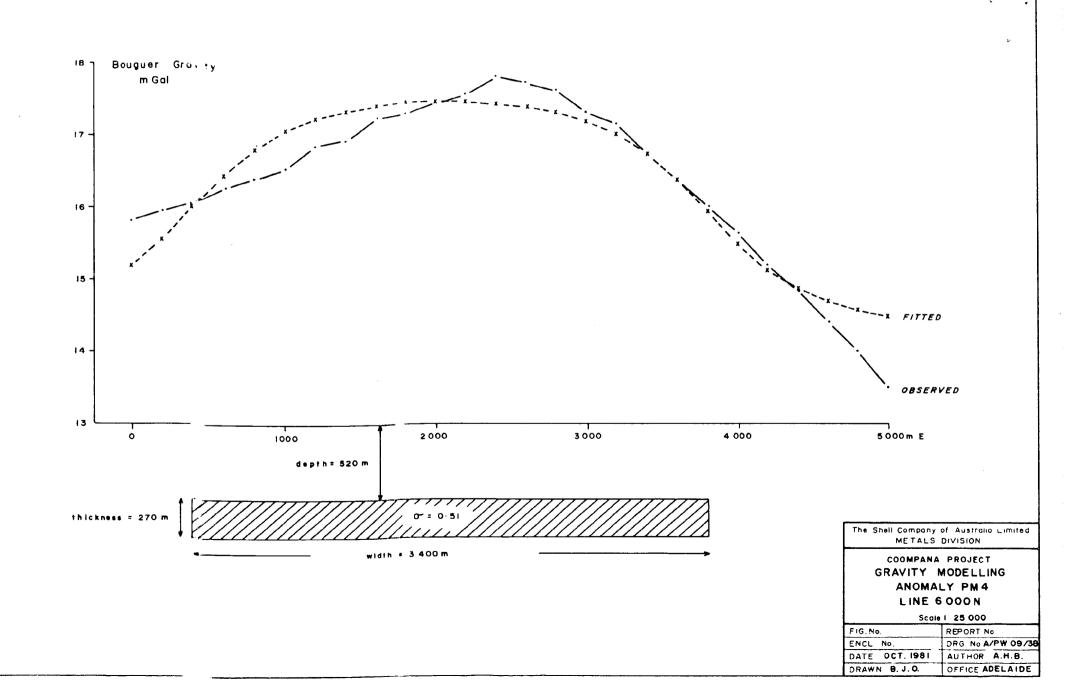
One LaCoste and Romberg Gravity meter, serial No.037

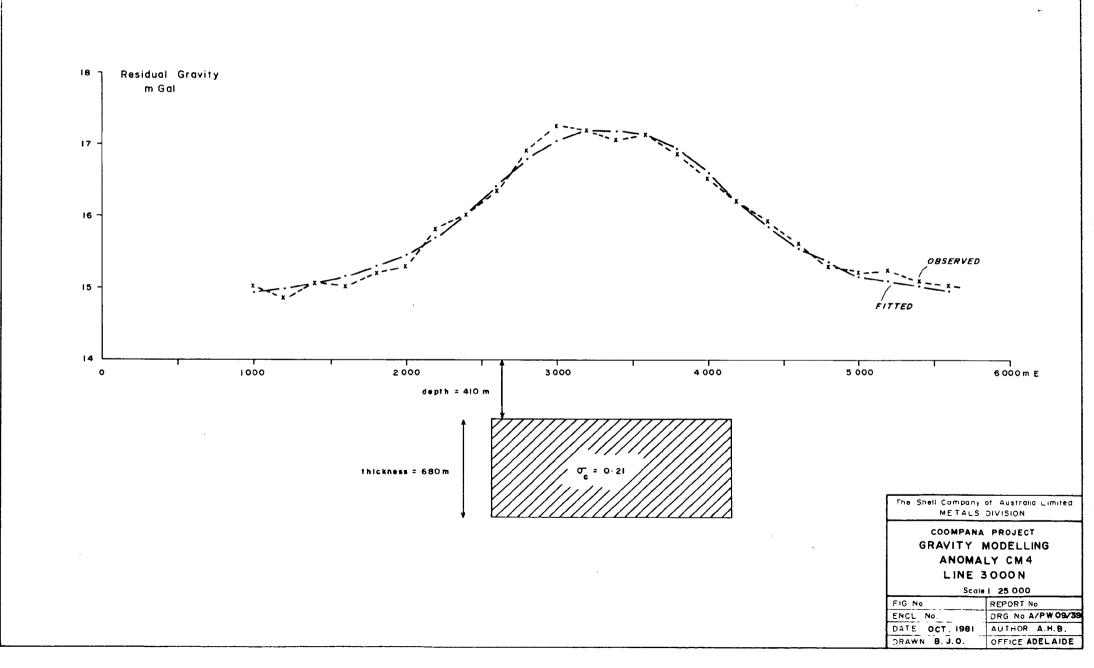
One Sokisha engineers level and 5 metre staff.

One Toyota traytop four wheel drive vehicle fitted with winch.

One hire caravan.


INSTRUMENT DAMAGE: Nil.


EQUIPMENT DAMAGE:


Toyota F.W.D.: One tailshaft and transfer case destroyed on hitting large boulder. Crew stayed at Coonalda Station for several days until replacement parts and repairs effected by SOLO maintainance personnel.

Summary of Gravity Modelling Results

Magnetic Anomaly	Line	Mag. Peak	Mag. depth est.	Location of Gravity Peak	Max. Residual Gravity m Gal	Depth Est. m	Density Contrast	Thickness	Width ~ m
PM-2	3000N	2000E	440–560	1800E	4.5	940	0.23	1550	2900
PM - 3	4000N	2100E		2200E	4.0	Not m	 odelled		
*	6000N	1700E		1800E	4.0				
PM-4*	2000E	2800N	360-520	No signif:	icant anomal	У			
	6000E	2400N	480-520	2500N	3.0	520	0.51	270	1960
PM-7	3000N		380-560	No signif:	icant anomal	ј У			
CM-4	3000N	3400E	400-500	3200E	2.5	410	0.21	、680	1570

Progress Report for Coompana Drilling Programme, Stage 1

ROBERTSON RESEARCH (AUSTRALIA) PTY LIMITED

PROJECT NO. 1712

124

REPORT NO. 828

PROGRESS REPORT FOR COOMPANA

DRILLING PROGRAMME

STAGE 1

By: R.W. Kelly, B.Sc., M.Aus.I.M.M.

Prepared for:

Shell (Aust.) Pty. Ltd., Metals Division, 222 East Terrace, Adelaide, South Australia, 5000

		PAGE NO.
1.	INTRODUCTION	1.
2.	DESCRIPTION OF FIELD OPERATIONS	1.
2.1	EXPLORATION LICENCE 748	1.
	2.1.1 HOLE CD5	1.
	2.1.2 HOLE CD6	2.
	2.1.3 HOLE CD7	3.
2.2	EXPLORATION LICENCE 749	3.
	2.2.1 HOLE CD4	3.
	2.2.2 HOLE CD3	4.
	2.2.3 HOLE CD2	4.
	2.2.4 HOLE CD1	4.
3.	CONCLUSIONS	5.
4.	LOCATION MAP	
_. 5.	APPENDIX 1	

LOGS OF PRE-COLLARED SECTIONS OF

BOREHOLES CD1 TO CD7

Robertson Research (Australia) Pty. Limited was engaged by Shell Australia Pty. Ltd. (Minerals Division, S.A.) to supervise a combined oil shale/base metal exploration programme within E.L. 748 and the adjacent E.L. 749 in the Eucla Basin, South Australia.

The initial proposed programme was for two drilling rigs to move into the area at the same time with a percussion rig pre-collaring the Tertiary Nullarbor and Wilson's Bluff limestones. The second rig was to follow and core underlying strata.

However, problems with the timing and availability of the drilling rigs meant that the programme had to be split into two stages.

This report is a brief summary of the initial percussion pre-collaring at the two limestone formations.

2. DESCRIPTION OF FIELD OPERATIONS

2.1 E.L. 748

This Exploration Licence (E.L.) is the northernmost of the two held by Shell Australia and has the Trans Australian Railway line bisecting it from east to west. Two oil shale holes (CD5 and 6) were proposed for this E.L., both of which were located adjacent and to the south of the railroad (see location map).

2.1.1 HOLE CD5

CD5 was the first hole drilled and progress was good to a depth of 64m. At this depth the drill rods became jammed. Whilst attempting to free the rods, the rig suffered a number of

mechanical breakdowns with the result that it took approximately three days to retrieve the drill stems.

At this point it was decided to attempt to ream the hole to 8". It was felt that the greater clearance between the walls of the hole and the drill stem would permit more efficient clearing of chips from the hammer and limit the chances of jamming the rods. However, during the reaming operation the rods became stuck again at a depth of 56m and another 2½ days were spent retrieving the drill rods from the hole.

In view of these problems it was decided to shift the rig onto a new site some 15km to the west (hole CD6).

2.1.2 HOLE CD6

A log of CD6 is contained in Appendix 1 along with those of the other holes drilled.

As it will be noted from the logs, a consistent feature of all holes was that circulation was lost within 12m of the surface. Consequently, information gained from chip samples was very poor.

CD6 was the second hole drilled in this E.L. and was drilled to a depth of 112m in the first day. Sample returns stopped at approximately 12m. Water injection was used to minimise the danger of jamming the rods, and no delays were experienced.

At this depth (112m) it was felt that the pre-collaring at the hole was completed. However, the author's previous experience (gained whilst working on a recent project in the Eucla Basin) had shown that the hammer bit was unable to penetrate the oil shale horizon due to its soft nature. Therefore it was decided to continue drilling to confirm the stratigraphic positioning of the base of the hole. As the hole progressed no soft material was encountered and the only impediment to the progress of the hammer was sections of very hard material. At 176m the drilling was halted and with

3.

reference to the information available from holes previously drilled in the area it was decided that, despite the anomalous characteristics of the material encountered, the oil shale interval could well have been intersected, higher in the hole.

During discussions with Mr. Alan Brash it was decided that, rather than redrill CD6 and attempt to complete CD5, a third hole should be drilled between the first two.

2.1.3 HOLE CD7

This hole was drilled 22.5km west of Hughes Railway Siding. Sample return stopped at 10m and the hole was drilled to a depth of 104m without any problems. The hole was cased to a depth of 105.5m, the driller being able to push the casing down the extra 1.5m. This tends to suggest that the casing is set in either the Padinga Formation or the top of the Madura Formation, both of which are soft.

2.2 E.L. 749

The pre-collaring of the four holes in this E.L. (CD1, 2, 3 and 4) presented no problems and aside from a minor mechanical breakdown on the rig, progress was almost uninterrupted.

Water injection was used with air and as a result the holes remained clean and open allowing easy pulling of the drill stem and running of casing.

2.2.1 HOLE CD4

This hole was drilled and cased to a depth of 14lm and it is expected that approximately 15m of limestone remains to be drilled before the underlying Padinga Formation is encountered.

Sample return was lost at 8m and a log for the hole is presented in the Appendix.

2.2.2 HOLE CD3

This hole was drilled and cased to a depth of 12lm, with sample returns stopping at approximately 12m. It is anticipated that approximately 10m of limestone remains before the Padinga Formation is intersected.

2.2.3 HOLE CD2

This hole was drilled and cased to a depth of 128m, at which depth the hammer on the percussion rig 'blocked off' (blocking of air ducts with soft material) thus rendering the hammer inoperative.

It is felt that the soft material which blocked the hammer is probably some mud collected at the bottom of a limestone cavity. Conversely, it is also possible that this soft material may originate from the Madura Formation as the base of the hole was, at that stage, only some 20-25m above the inferred base of the limestone formations.

This hypothesis led to the decision to terminate the hole at this point.

2.2.4 HOLE CD1

This hole was drilled and cased to a depth of 160m without any difficulties in retrieving rods or running casing. It is felt that approximately 10m of limestone remains to be drilled before the top of the Padinga Formation is intersected.

Sample return stopped at 8m and a log of this hole is presented in the Appendix.

conclusions

With the exception of Holes CD5 and CD6, this drilling programme progressed in the most satisfactory manner and the drilling

contractor (Peter Nitschke Drilling Pty. Ltd.) carried out his work according to the highest technical standards.

It is anticipated that the second stage of the programme (diamond coring) will progress without any undue delays or problems, despite the coring of some limestone being necessary.

SUMMARY OF DRILLING COMPLETED, COOMPANA PROJECT

TABLE 1

<u>Drill Hole</u>	Anomaly/Location	Precollar Depth	Casing	Diamond Drilling	End of Hole	Finish Date of Hole
*DDH CD1	PM3 6250N/1700E	161	160	200.5	361.5	25/10/81
*DDH CD2	PM4 3000N/2000E	128	128	66.8	194.8	31/10/81
DDH CD3 ⁺	CM4 3250N/3500E	121	121	85.15	206.15	3/10/81
PDH CD4 ⁺	PM7 2500N/2000E	141	141	-	141	27/ 8/81
PDH CD5 ⁺	15 kmW of Hughes	64	-	-	64	17/ 8/81
PDH CD6 ⁺	30kmW of Hughes	176	_	-	176	24/ 8/81
DDH CD7 ⁺	22.5 kmW of Hughes	105	105	54.45	159.45	25/ 9/81
TOTALS	2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	896		406.9	1302.9	

^{*} Drilled during the quarter ending 20th January, 1982

⁺ Oil shale targets

HOLE NO.	DEPTH	LITHOLOGY	8	DESCRIPTION
<u>CD1</u>	0 - 2m	Limestone Clay	60% 40%	Off-white to light grey, crystalline, hard. Reddish brown, soft
	2 - 6m	Limestone	100%	Off-white to light grey, crystalline, hard.
	6 - 8m	Limestone	100%	Off-white and reddish brown, crystalline, hard (minor iron staining)
	8 - 160m	No sample ro Cased to th		•
CD2	0 - 2m	Limestone Clay	60% 40%	Off-white to light grey, hard, crystalline Reddish brown
	2 - 8m	Limestone Clay	95% 5%	Off-white to light grey, hard, crystalline Reddish brown
	8 - 128m	No sample re Cased to thi	turn	redutsir brown
CD3	0 - 2m	Clay Limestone	70% 30%	Reddish brown, soft Hard, crystalline, off-white
	2 - 6m	Limestone	100%	Hard, Crystalline, off-white, minor iron staining
	6 - 12m	Limestone	100%	Off-white to light grey, crystalline, hard
	12 - 121m	No sample re Cased to this		3
<u>CD4</u>	0 - 8m	Limestone	100%	Off-white to light grey, hard, crystalline, minor reddish brown clay in top 2m
	8 - 141m	No Sample ret Cased to this		

HOLE NO.	DEPTH	LITHOLOGY	<u>0</u>	DESCRIPTION
<u>CDS</u>	0 - 10m	Limestone	100%	Off-white to light grey, hard, crystalline, minor reddish brown clay at top
	10- 64m	No Sample ret Hole stoped a difficult of Hole not case	at the d drilling	epth due to conditions
<u>CD6</u>	0 - 12m	Limestone	100%	Off-white to light grey, hard, crystalline, minor reddish brown clay at top
	12- 176m	No sample ret Hole not case		
<u>CD7</u>	0 - 10m	Limestone	100%	Off-white to light grey, hard, crystalline, minor reddish brown clay in top two metres
	10- 104m	No sample ret Casing set to		

Coompana Diamond Drilling Programme, Memorandum No. 1213

MEMORANDUM NO. 1213 PROJECT NO. 1712

COOMPANA DIAMOND DRILLING PROGRAMME

FOR

SHELL COMPANY OF AUSTRALIA LIMITED, METALS DIVISION, 222 EAST TERRACE, ADELAIDE, S.AUST.

The Coompana Prospect is located on the Nullarbor Plain, approximately 1,000 km northwest of Adelaide, South Australia.

Shell Metals are currently engaged in a drilling programme designed to investigate both the oil shale potential of the area and a number of geophysical anomalies possibly related to basement mineralisation.

The first phase of the programme involved pre-collaring through the Tertiary limestones, and was supervised by R. Kelly of Robertson Research (refer to RRA Report No. 828).

A total of seven sites were pre-collared. Robertson Research Australia were also engaged to supervise the second phase of diamond drilling. It was originally planned to extend three of the boreholes 50 metres into the Madura Formation (underlying the Tertiary limestones), a potential oil shale horizon. A further two holes were to penetrate the entire Eucla Basin sedimentary sequence in order to obtain samples of the basement rocks.

The author was on site from September 14 to October 6, 1981, during the initial stages of the diamond drilling programme.

Both pre-collaring and coring of the boreholes was contracted to Nitschke Drilling of Hahndorf, S.A. A Longyear 44 was supplied for the diamond drilling programme, and it was planned to work two shifts per day.

A brief summary of events is provided below:

SEPTEMBER	
14th	Drill and crew arrived at Hughes.
15th	Move to Borehole CD7. Commence rigging up.
16th	Continue rigging up. Water truck despatched to Koonalda Caves (120km one-way trip).
17th	Continue rigging up. Water truck returned.
18th	Commence drilling.
19th	Drilled from 105.00 to 125.00m. Out of water.
20th	Drillers 'resigned' and departed for Adelaide.
21st	No work.
22nd	No work.
23rd	One load of water from Koonalda Caves. Peter Nitschke arrived on site.
24th	Continued drilling to 151.65m.
25th	CD7 completed at 159.45m. Rig dismantled. Moved to site CD3.
26th	Rig up. Submersible pump installed in Carpentaria borehole. Water truck left overnight to fill.
27th	One load of water on site from borehole (60km one-way trip). Commenced drilling from 120.00 to 161.20m.
28th	Continued drilling to 168.80m. Await water.
29th	One load water from Koonalda (one-way trip 90km). Continued drilling to 194.00m.
30th	Water truck broke down - no spare parts. No drilling.
<u>OCTOBER</u>	
lst	No work
2nd	Truck repaired. One load of water from Koonalda.
3rd	Continued drilling. CD3 completed at 206.15m.
4th	Most of crew not on site during morning. Half shift only spent packing up. A.H. Brash (Shell Metals) arrived on site.
5th	Finished packing up, moved to site CD1, commenced rigging up.
6th	Difficulty experienced in setting up over borehole CD1. Apparently the top of the casing had been warped when set on completion of pre-collaring. Author and A.H. Brash left site.

Although it was hoped that the anticipated total of 700m of diamond drilling would be completed with three to four weeks, in fact only 140 metres was drilled during the period to October 6, 1981.

Four days were lost early in the programme when two drillers 'resigned' and returned to Adelaide.

Drilling resumed when Peter Nitschke arrived on site, but further delays were experienced throughout the programme as a result of difficulties in keeping the rig supplied with water.

It was originally planned that the bulk of the water required for drilling purposes would be supplied from pre-existing boreholes in the area. However, although despatched in good time from Adelaide, the polythene piping required for the pumping operations was not delivered (by Australian National Railways) until two weeks into the drilling programme (September 27).

Borehole CD7 was drilled with water carted from Koonalda Caves, approximately 120 km from the drill site, via poor roads.

Water for the remaining boreholes was to have been supplied from boreholes previously drilled by Carpentaria Exploration. Additional polythene pipe was brought on site by Mr. Peter Nitschke and a submersible pump installed in the most prospective of these holes. However, the hole was not cased and only one load was obtained before it sludged up and the pump had to be retrieved.

The other Carpentaria boreholes had either recorded minimal water yields, or had an excessively deep water table (in excess of 120m), and no other attempts to pump underground water were made.

The remaining water requirement for Borehole CD3 was also carted from Koonalda Caves, a distance of approximately 90km (one way), over poor roads.

Repeated breakdowns meant that it was seldom possible to drill even a single shift. This problem culminated in complete breakdown of the water truck and a further three days were lost with no drilling. Part of this

delay (perhaps half a shift) was attributable to the negligence of the haulage company engaged to bring up spare parts from Adelaide.

Further problems were being experienced at Borehole CDl when the author left the site. The casing had apparently been 'kinked' when set, and the diamond drilling string could not be introduced into the hole.

The drill crew will remain on site until October 11, and drilling will resume after the break, on October 20. In order to avoid the major problem of the first month, water cartage, the proprietors of Koonalda Station have been engaged to deliver water to drillsites, thus supplementing the water hauled by Nitschke. Unfortunately, shearing was in progress at Koonalda during the first month and they were therefore unable to assist at that time.

The logs of the two boreholes completed during the first month of the programme are attached. It should be noted that the depths and thicknesses may have to be adjusted slightly when the boreholes are geophysically logged.

Colin Coxhead, Coal Geologist

(. Coxhad.

October 8, 1981

BOREHOLE NO. CD7 (core log only)

TOTAL DEPTH: 159.45m

LOCATION:

22 km west of Hughes, on Transcontinental Railway, Nullarbor Plain, South Australia.

DATE STARTED: 18.9.81

. CORE SIZE:

HQ

DATE FINISHED: 25.9.81

DRILLER:

NITSCHKE

SAMPLES NOS:

Precollared to 105.00m (driller)

FROM	<u>TO</u>	THICKNESS	DESCRIPTION
(m)	(m)	(m)	
105.00	108.00	3.00	MUDSTONE. Dark grey, carbonaceous, silty and micaceous. Core badly broken - poor recovery.
108.00	110.80	2.80	MUDSTONE. Dark grey, carbonaceous, slightly micaceous. Silty, with thin fine-grained sandstone bands and lenses showing slump and flow structures, pyritic, possibly sideritic.
110.81	110.95	0.14	SILTSTONE. Red-brown. Ironstained/cemented.
110.95	129.90	18.95	MUDSTONE. As previous mudstone unit. Slickensided at top, worm-burrowed in parts.
129.90	130.95	1.05	MUDSTONE. Dark grey, carbonaceous. Some silty lenses. Soft, greasy feel.
130.95	148.65	17.70	MUDSTONE. Dark grey, carbonaceous, slightly micaceous. Silty with thin fine-grained sandstone bands and lenses, showing slump and flow structures. Finely pyritic, possibly sideritic. Some bioturbation. Patchy zones of dark green ?glauconite grains from 136.19 to 136.95m and 139.70 to 141.28m. Slickersided at 148.45m.

FROM (m)	<u>TO</u> (m)	THICKNESS (m)	DESCRIPTION
148.65	159.45	10.80	MUDSTONE. Black to dark grey, carbonaceous, slightly micaceous. Slightly silty, with some fine sandy stringers. Core sub-vertically fractured from 148.65 to 150.00m, badly broken from 151.10 to 151.65m, subvertically fractured from 151.65 to 152.25m.

END OF HOLE

•

DRILLING RECORD

FROM	<u>TO</u>	CORE DRILLED	CORE RECOVERED	LOSS/GA	<u>IN</u> ,
<u>(</u> m)	(m)	(m)	(m)	(m)	•
105.00	108.00	3.00	1.50	-1.50	Poor recovery
108.00	108.60	0.60	0.60	-	(18.9.81)
108.60	110.20	1.60	1.60	-	·
110.20	111.60	1.40	1.30	-0.10	Slickensided
111.60	113.20	1.60	1.63	+0.03	
113.20	114.80	1.60	1.60	-	•
114.80	116.30	1.50	1.50	-	
116.30	117.90	1.60	1.60	-	
117.90	119.40	1.50	1.50	-	
119.40	121.00	1.60	1.60	-	
121.00	122.60	1.60	1.55	-0.05	
122.60	124.10	1.50	1.45	-0.05	(19/23.9.81)
124.10	125.65	1.55	1.60	+0.05	
125.65	127.25	1.60	1.60	-	
127.27	127.70	0.45	0.51	+0.06	
127.70	129.30	1.60	1.60	-	
129.30	131.20	1.90	1.90	-	
131.20	132.75	1.55	1.55	-	
132.75	134.25	1.50	1.54	+0.04	
134.25	135.85	1.60	1.60	-	
135.85	137.45	1.60	1.55	-0.05	
137.45	139.05	1.60	1.62	+0.02	

DRILLING RECORD (Continued)

FROM	<u>TO</u>	CORE DRILLED	CORE RECOVERED	LOSS/GAIN	-
(m)	(m)	(m)	(m)	(m)	
139.05	140.65	1.60	1.56	-0.04	
140.65	142.25	1.60	1.56	-0.04	
142.25	143.85	1.60	1.60	-	
143.85	145.45	1.60	1.60	-	`
145.45	147.05	1.60	1.60	-	
147.05	148.65	1.60	1.51	-0.09	Slickensided (24.9.81)
148.65	150.15	1.50	1.55	+0.05	Fracture zone
150.15	151.65	1.50	1.23	-0.27	Core badly broken
151.65	153.25	1.60	1.55	-0.05	Fracture zone
153.25	154.75	1.50	1.50	-	,
154.75	156.35	1.60	1.50	-0.10	
156.35	157.85	1.50	1.50	-	
157.85	159.45	1.60	1.53	-0.07	E.O.H. (25.9.81)

N.B.: Not yet reconciled with downhole geophysics.

1

;

<u>LOCATION</u> 3250N 3500E

DATE STARTED:

27.9.81

CORE SIZE: HQ

DATE FINISHED:

3.10.81

DRILLER:

Nitschke

Pre-collared to 120.00m (driller)

FROM (m)	<u>TO</u> (m)	THICKNESS (m)	DESCRIPTION
120.00	151.00	31.00	LIMESTONE. White, chalky. Some coral- like cellular structures preserved. Irregular hard, dense chert bands and lenses common. Fine dark clastic grains in basal 1.00m increasing to base.
151.00	153.16	2.16	SANDSTONE. Pale grey to grey-green. Coarse to poorly sorted at base grading to fine at top. Quartz/lithic. Weak, highly calcareous cement.
153.16	185.50	32.34	MUDSTONE. Dark grey to black. Carbonaceous and micaceous. Silty with thin sandy streaks and lenses showing flow structures common. Often pyritic. Thin iron-rich bands (± 0.05m) Core badly broken between 155.00 and 158.10m. Core sub-vertically fractured between 175.80 and 176.27m, 177.20 and 177.62m.
185.50	185.55	0.05	SANDSTONE. Green. Fine-grained. Highly glauconitic. Lenticular agglomerations of glauconite in 0.10m above and below.
185.55	204.48	18.93	MUDSTONE. As above. Light brown sideritic band between 195.32 and 195.35m. Core badly broken between 191.40 and 194.10m. Core sub-vertically fractured between 199.35 and 200.60m. Some slickensiding in basal $^{\pm}$ 1.00m.
204.48	206.15	1.67	SANDSTONE. Dark grey-green. Coarse-grained, poorly sorted. Mainly quartzose, some lithic grains. Sub-angular to sub-rounded. Some thin, angular, slickensided carbonaceous mudstone horizons at top. Highly glauconitic with abundant pyrite. Cemented. (Soft drilling).

1

DRILLING RECORD

FROM (m)	<u>TO</u> (m)	CORE DRILLED (m)	CORE RECOVERED (m)	LOSS/GAI	<u>N</u>
(m) 120.00 121.40 123.40 125.00 128.00 131.00 134.00 137.00 140.00 143.00 145.00 151.90 155.00 158.10 161.10 164.20 170.20 173.30 175.80 176.40	(m) 121.40 123.40 125.00 128.00 131.00 134.00 137.00 140.00 143.00 146.00 149.00 151.90 155.00 158.10 161.10 164.20 167.20 170.20 173.30 175.80 176.40 179.50	(m) 1.40 2.00 1.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	(m) 1.31 1.99 1.53 3.00 2.98 3.03 2.97 2.99 2.95 3.00 3.02 2.90 2.64 3.56 2.83 3.11 3.00 2.82 2.97 2.50 0.60 2.80	(m) -0.09 -0.01 -0.07 -0.02 +0.03 -0.01 -0.05 +0.02 -0.46 +0.46 -0.17 +0.01 -0.18 -0.13 -0.30	
176.40 179.50 182.50 185.20 188.30 191.00 194.10 196.75 199.85 203.35	179.30 182.50 185.20 188.30 191.00 194.10 196.75 199.85 203.35 206.15	3.10 3.00 2.70 3.10 2.70 3.10 2.65 3.10 3.50 2.80	3.00 2.67 3.10 2.68 3.10 2.65 2.86 3.47 2.80	-0.03 -0.02 -0.24 -0.03	Core broken Core fractured

END OF HOLE

THE SHELL COMPANY OF AUSTRALIA LIMITED

METALS DIVISION

SOUTH AUSTRALIA

REPORT ON E.L. 747, BUNABIE ROCKHOLE

E.L. 748, HUGHES

E.L. 749, NULLARBOR PLAIN

FOR THE QUARTER ENDING JANUARY 20TH, 1982

AUTHOR: R.J. WEEDEN

REPORT NO: 08.1121

DATE: JANUARY 1982

COPY NO: 1

DISTRIBUTION: Copy 1 Department of Mines and Energy, South Australia The Shell Company of Australia Limited, Metals Division, Melbourne The Shell Company of Australia Limited, Metals Division, Adelaide 4 B.H.P. Adelaide

B.H.P. Melbourne

CONTENTS

			Page No
1.0	INTR	ODUCTION	. 1
2.0	WORK	COMPLETED	1
	2.1	Prilling	1
	2.2	Geophysics	2
3.0	KEYWC	PRDS	2
4.0	EXPEN	DITURE	3

LIST OF FIGURES

Figure No.	Title	Drawing No.
1	Eucla Basin S.A. Coompana Area, Location Plan	A/MT 22/ 90
2	Coompana Project Summary Log DDH CD1 (1:1000)	A/TF 02/ 01
3	Coompana Project Drill Hole Profile DDH CD1 (1:2500)	A/PW 09/ 40
4	Coompana Project DDH CD1 Cu & Zn Geochemistry for Core Fillet Samples (1:250)	A/TF 02/ 05
5	Coompana Project DDH CD1 Magnetic Susceptibility (1:250)	A/TF 02/ 04
6	Coompana Project Summary Log DDH CD1 (1:1000)	A/TF 02/ 02
7	Coompana Project Drill Hole Profile DDH CD2 (1:1000)	A/PW 09/ 41
8	Coompana Project Summary Log DDH CD3 (1:1000)	A/TF 02/ 03
9	Coompana Project Summary Log DDH CD7 (1:1000)	A/TF 01/001

LIST OF APPENDICES

Appendix 1	Sample Record Sheets of Pre-collar drilling for CD1, CD2, CD3, CD4, CD5, CD6, CD7.
Appendix 2	Sample Record Sheets of diamond drilling for CD1, CD2, CD3 and CD7.
Appendix 3	Pontifex & Associates Pty. Ltd. Mineralogical Report No. 3549 Drill Core Samples (CD 1)
Appendix 4	Computer Logs of Density, Gamma, Neutron, Self Potential and Resistance for CD 1, CD 3, CD 6 and CD 7.

LIST OF TABLES

Table 1 Summary of Drilling Completed, Coompana Project

LIST OF ENCLOSURES

ţ

Enclosure No.

Title

Drawing No.

Coompana Project Gravity
Modelling Anomaly PM 3 Line 6000N

A/PW 09/ 42

147

1.0 INTRODUCTION

Exploration Licences 747, 748 and 749 were granted on the 20th October, 1980 for a period of one year. The term was extended for a further year on the 8th September, 1981.

The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250,000 sheet areas, South Australia adjacent to the border with Western Australia. (Figure 1).

The licences are referred to as Bunabie Rockhole (E.L. 747) Hughes (E.L. 748) and Nullarbor Plain (E.L. 749) and collectively form the Coompana Project.

The licences are the subject of a joint venture with Dampier Mining Company Limited.

Main exploration targets are oil shale within the Cretaceous Madura Formation and base metals associated with geophysical anomalies derived from sources in the Pre-cambriam basement.

2.0 WORK COMPLETED

2.1 Drilling

Drilling during the quarter was completed by Peter Nitschke Drilling Pty. Ltd. A summary of drilling done to date is presented in Table 1.

Diamond drill hole DDH CD 1 was continued during the quarter to test the coincident negative magnetic and gravity anomaly PM3 as well as testing for oil shale targets within the Cretaceous Madura Formation. A summary log and profile of the hole is presented in figure numbers 2 and 3 respectively. Assays for the oil yield within the Cainozoic sediments were very low 0.5 - 1.5 litres/tonne - (Appendix 2). Cu and Zn assays for DDH CD 1 (Appendix 2) were plotted with respect to lithology in Figure 3. No significant trends were indicated from the geochemistry, both core fillet and quarter core samples, for the Precambrian interbedded basaltic lava sequence. Petrology within the volcanic sequence, carried out by Pontifex and Associates Pty. Ltd., (Report No 3549 in Appendix 3) confirmed the low base metal values. Magnetic susceptibility for DDH CD 1 plotted against lithology (Figure 4) indicates magnetic lows for an amygdaloidal basaltic lava with bronze micaceous hematite and a highly vesicular basaltic lava. DDH CD 1 was terminated at 361.5m shortly before the hole collapsed.

DDH CD 2 was drilled to test the source of the coincident gravity and negative magnetic Anomaly PM4. After encountering considerable drilling difficulties, DDH CD 2 was abandoned at 194.8m within the Madura Formation (See summary log and profile in figures 5 and 6 respectively). Poor core recovery within the Madura Formation accounted for infrequent and unreliable samples. An oil yield of 5-15 litres tonne was obtained from 183.8 - 186.8m.

Assays for oil yield for DDH CD 7 and DDH CD 3 are presented in Appendix 2. Summary logs are presented in Figure Nos. 8 and 9 respectively. The sample location for the previous percussion pre-collaring program is presented in Appendix 1.

2.2 Geophysics

Geophysical logging was completed by Geoex Pty. Ltd, as summarised below:

Drill Hole	Depth of Casing (m)	Depth of Hole (m)	Interval Logged (m)
DDH CD 1	160	361.5	0 - 266.0
DDH CD 3	121	206.15	0 - 200.0
PDH CD 6	-	176.0	0 - 110.0
DDH CD 7	• –	159.45	0 - 80.0
		Tota	al 656.0 m

The computer logs for density, natural gamma, neutron, self potential and resistance for the above holes are included in Appendix 4. The interval logged in DDH CD 6 and DDH CD 7 did not penetrate beyond the Tertiary Limestones while in DDH CD 3 and DDH CD 1 only the Tertiary and Cretaceous sediments were logged. The survey in DDH CD 1 did not penetrate the Precambrian volcanics.

Preliminary modelling of data, collected during the last quarter was completed for Anomaly PM 3 on line 6000N by using the gravity model-fitting program GRAMOD. The model (Enclosure 1) suggests a sill (probably dolerite) within the volcanics, 380m beneath the surface, up to 2.0km in length and 570m thick.

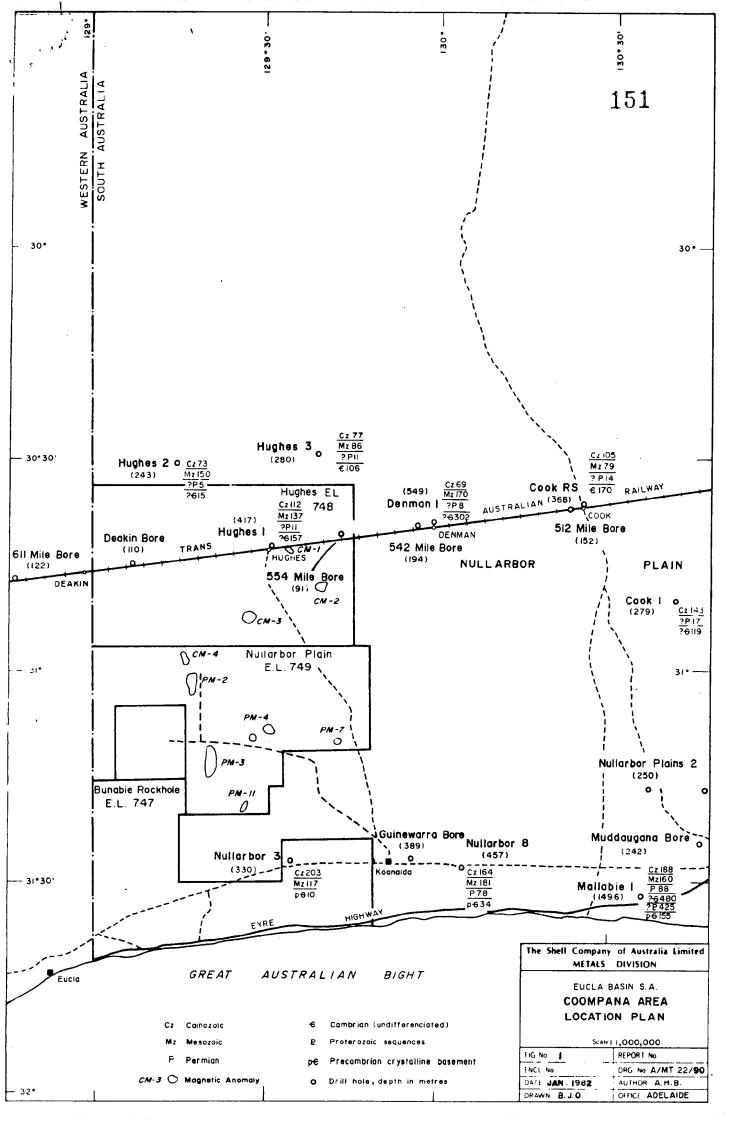
3.0 KEYWORDS

COOMPANA, COOK, oil shale, base metals, Madura Formation, Diamond Drilling, Geophysical Logging, Gravity Survey

4.0 EXPENDITURE

A summary of expenditure for the quarter ending December 31, 1981.

BUNABIE ROCKHOLE E.L. 747


Personnel and Personnel Burden	\$ 192
Support Costs	\$ 620
Concession Payments	\$ 1580
Geophysical Surveys	\$ 1233
Other Costs	\$ 100
General Admin. Services	\$ 50
Total	\$ 37 <i>7</i> 5

HUGHES E.L. 748

Personnel and Personnel Burden	\$ 874
Support Costs	\$ 6203
Concession Payments	\$ 2292
Geophysical Surveys	\$ 3663
Drilling	\$ 4230
Other Costs	\$ 8 5
Geological. Drawing and Computer	\$ 333
General Admin. Services	\$ 192
Total	\$ 17 872

NULLARBOR E.L. 749

Personnel and Personnel Burden	\$	20843
Support Costs	\$	21755
Concession Payments	\$	1763
Geophysical Surveys	\$	12619
Analysis Assays	\$	3028
Drilling	\$1	11382
Other Costs	\$	3720
Geological, Drawing and Computer	\$	291
General Admin. Services	\$	2512
Total	\$1	77913

	DEP	TH GRAPHIC			I															Sheet		of2	
	(m)	LOG								ES	CRI	PT	ION								1	152	
ARY	100		LIMESTONES	8.0			N	0	S	A	M 1	P L	E	R	Е	Т	J R	N	· · · · · · · · · · · · · · · · · · ·				-
TERTI	150			· 160·0 · 17]·8	White	mass	ive	· cł	nall	<у	lin	nes	to ne	97									
CRETACEOUS	200 _		MADURA FORMATION		•																		
	PROX		31	11.													The !		Compai METALS			olia Limi	ted
! !		ATES .Long.	129 ^C			AZIMU					-			٠.				CO	RE D OMPA	NA F	PROJ	ECT	
DEPTH 361.5 m INCLINATION -90° SUMMARY LOG DDH CD 1 State 1:1000																							
LOGGED BY R. J. Weeden DATE DRILLED 6/10-25/10/81 State 1:1000									/TF02. RJW														

	DEPTH	GRAPHIC				Ţ	Sheet .2 of .2			
,	, (m̀)	LOG			DESCRIPTION					
CRETACEOUS	250		MADURA FORMATION	- 263·5	Dark grey soft massive carbonaceous m	udstone	153 -			
CRET			LOONGANA SANDSTONE		Dark grey poorly sorted sandstone with mudstone units	h minor	-			
PERMIAN	300	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	PERMIAN	- 295·5	Poorly cemented, poorly sorted glacia		tone _			
Ĭ.	300	* * * *	TILLITE	- 301-5	Poorly sorted and consolidated tillite Interbedded basaltic lavas. Surface with amygdales		low _			
BRIAN	بالبنيانين	# # # CU # # # # # # #	QUIVALENT T RANGE VOLCA	- 336-5	Micaceous hematite associated with ba	sal t ic lav	- ra –			
PRECAMBRIAN	350	# # # # # # # # #	EQI GAWLER R	,	Highly vesicular basalt Interbedded basaltic lavas with amygdales					
	111111	",", ",","		- 356-8 - 361-5 E.O.H.	Fine grained dark grey/black basalt w	eakly magn	etic			
	TITTE						_			
	חייורי						·			
	-1 I J I I I									
	בינולבניון ווווווווווולבנינ		,				_			
	111111									
							15623			
	ROX.	Lat.	31 ⁰ 129 ⁰	11.9 21'		META	any of Australia Limited LS DIVISION DESCRIPTION			
	DEPTH 361.5 m INCLINATION -90° COOMPANA PROJECT SUMMARY LOG DDH CD 1 See 1:1000									
LOG	GED BY	R. J.	Weede	n	DATE DRIELED OF 10-25/10/81	HIG No 2 FNCL No DATE 10/11/8	REPORT No DRG No A/TF 02/01			

DDH CD I (1: 2500) 100 m INSET 1: 500 300 m 200m 300m EQH 361-5m

LEGEND

TERTIARY

Limestone (Nullarbor & Wilson Bluff)

CRETACEOUS

Madura Formation -Mudstones and clays

Loongana Sandstone Conglomeratic sandstone, glauconitic

PERMIAN

Coarse grained (glacial?) sands

Tillite

PRECAMBRIAN

Interbedded basaltic lavas

Basaltic basement

Massive basalt

Vesicular basalt

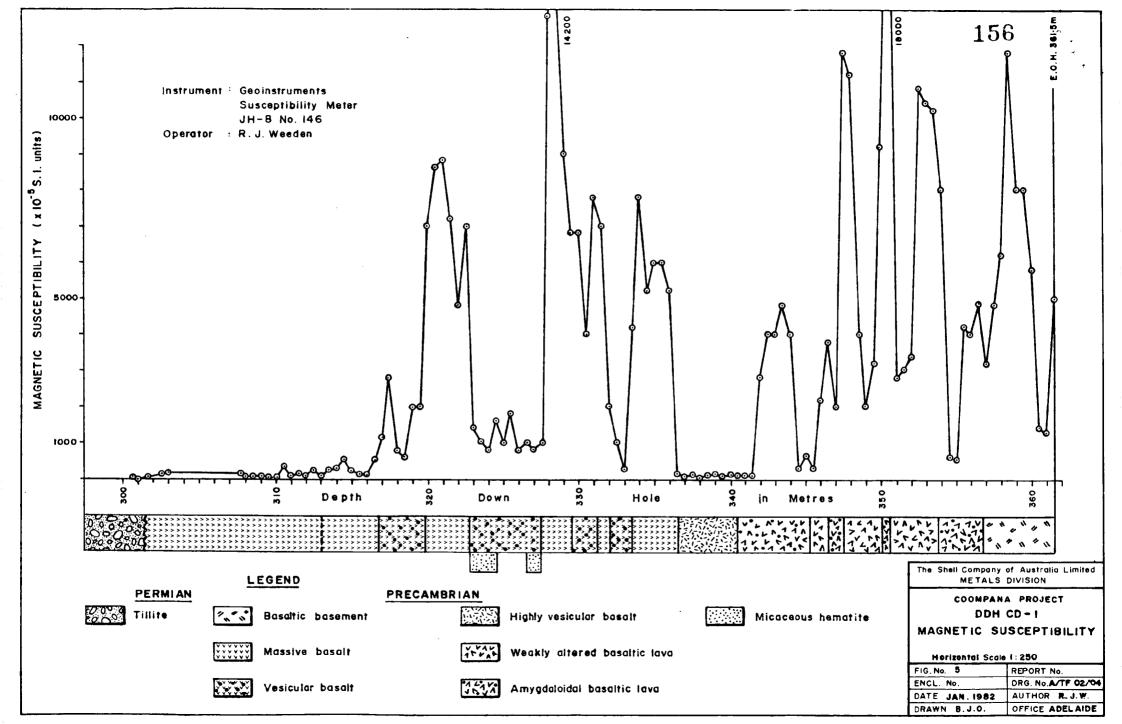
Highly vesicular basalt

Weakly altered basaltic lava

Amygdaloidal basaltic lava

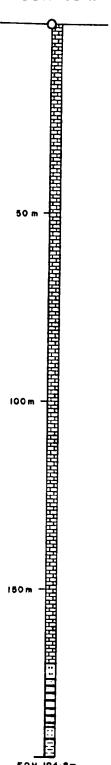
Micaceous hematite


---- Unconformity


Apparent conformable contact

The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
DRILL HOLE PROFILE
DDH CD1


SCALE 1:2500	DATE JAN 1982
AUTHOR RW	DRAWN 8JO
OFFICE ADELAIDE	REP.No.
DRG.No.A/PW 09/40	FIG.No. 3

	DEPTH (m)	GRAPHIC LOG			DESCRIPTION Sheet 1 of1
	ı			8.0	
	150		-Hampton Sandstone	· 127· 8	White to off white chalky massive fossiliferous (predominantly bryozoans) limestone
			DINGA M.	186·8 189·8	Medium grained grey fossiliferous calcareous sandstone Lignite with fine grained siltstone throughout. Severe core loss. Pale grey medium grained quartz sandstone Grey/green massive carbonaceous sandstone
DE	PTH .	Lat. FES Long. 194.8	m	28 '	The Shell Company of Australia Limited METALS DIVISION CORE DESCRIPTION COOMPANA PROJECT SUMMARY LOG DDH CD 2 Scan 1:1000 DATE DRILLED 26-31/10/81 The Shell Company of Australia Limited METALS DIVISION CORE DESCRIPTION COOMPANA PROJECT SUMMARY LOG DDH CD 2 Scan 1:1000
LO	GOED B	R J We	edeu		DATE DRILLED 26-31/10/81 FIG No 6 REPORT No

DDH CD 2

LEGEND

TERTIARY

Limestone (Nullarbor & Wilson Bluff)

Hampton Sandstone – fossiliferous sandstone.

Pihdinga Formation
- lignite

Poorly consolidated quartz

CRETACEOUS

Madura Formation – Mudstones and clays

Apparent conformable contact

The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
DRILL HOLE PROFILE
DDH CD 2

L	
SCALE 1:1000	DATE JAN 1982
AUTHOR R.W.	DRAWN B.J.O.
OFFICE ADEL AIDE	REP.No.
DRC No A/RW 09/41	FIC No. 7

	DEP	TH C	RAPHIC	T			Sheet . 1. of 1.				
	(m		LOG			DESCRIPTION					
	1	1		 				-			
		基			15.0		159	4			
:						·		ļ			
		E									
		挂						4			
		基		S				4			
	50			ы ы							
	30			2				1			
				ST		NO SAMPLE RET	U R N	\dashv			
		基		E							
		弄		Σ H							
		華		ı				\dashv			
		#		ВҰ				4			
	100	=		∢ .							
		甚	芸芸	H.				7			
		H		ы ж				+			
! 1				E- +				4			
	T E Sands tone			6	200	White chalky fossiliferous limestone	e with minor				
				2 (chert bands					
		畫		H E E				+			
	150	畫			151-00	Pale grey/green calcareous sandstone		4			
				•	153-16	ruio groy groon curcur cous sands conc	,				
				7 6		Dark grey to black carbonaceous, mic mudstone. Minor disseminated pyrite					
				TIOI		made contest without disseminated pyrice		\dashv			
				FORMATION				4			
				 	1			ļ			
				MADURA							
	200			MA	1	D. J.		+			
		-			204:48 206:15 E. O. H.	Dark grey green coarse grained poorl	y sorted quartz sandston Highly glauconitic.	e.			
								1			
			l	30°		·	The Shell Company of Australia Limite	d			
co	ORDI	NATES	Lat. Long.	129°	58' 16'	AZIMUTH	CORE DESCRIPTION	-			
						INCLINATION -90°	COOMPANA PROJECT SUMMARY LOG				
DEI	PTH		206.1	. W		inclination -90	DDH CD 3				
LOG	GGED	BY	C. Co.			DATE DRILLED 27/9-3/10/81	FIG No. 8 REPORT No. ENCL No. DRG. No. A/TF 02/0	3			
			190011	uson	Resear	ch)	DATE 10/11/81 AUTHOR RJW DRAWN OFFICE ADELAIDE	7			
								_			

--

- -

APPENDIX 1

Sample Record Sheets of Pre-collar drilling for CD 1, CD 2, CD 3, CD 4, CD 5, CD 6, CD 7

Shell	METALS	DIVISION

Sheet	of		
-------	----	--	--

162

endii		
SAMPLE TYPE	:	PERCUSSIO

LOCATION / PROJECT: PDH CD1 COOMPANA

SAMPLER:

DATE: 30/8/81 MAP/PHOTO REF:

ASSAY LAB:

SAMPLE DESPATCH

ASSAY REPORT NOS:

ORDER Nº: _____

SAMPLE	STORAGE:	

	LOCA	ATION	INTER'L	ANALYSES												
SAMPLE No.	230,	1	(m)		<u> </u>		<u> </u>	r	1		γ	-	·······	- · · · ·	ſ -	DESCRIPTION
63 25	0	2	2	 	 -			 	 				-			Tertiary Limestone
0.077	<u> </u>															
. 26	2	4	2													11 11
									1							
27	4	6	2					ļ ———	1							11 . 11
6328	6	7	2	I												8 8 22. 88
		<u> </u>		END	DF SAI	IPLE RE	TURN A	T 7.0m	<u></u>							
				E.O.H	(PER	CUSSION) 160	m _								
		ļ		l										-		
			<u> </u>													
						ļ — — — — — — — — — — — — — — — — — — —		ļ	<u>. </u>							
			ļ		<u> </u>			<u> </u>								
·			ļ		<u> </u>											
			<u> </u>					ļ <u>.</u>								
		 														
		!						ļ	.							
		ļ	 			<u> </u>	<u> </u>							L		
		 	<u> </u>	ļ	<u> </u>	<u>.</u>		<u> </u>								
		 	 		!		 -								ļ	
		 					 	<u> </u>						ļ	 	
		-	 	├ ──	 -		 		<u> </u>						<u> </u>	
		 	 						<u> </u>	ļ		ļ	ļ. <u> </u>		<u> </u>	
	· · · · · · · ·	 	 	 			<u> </u>	}	 				ļ ———			
		 	 		 	 		}				 	 			
	· · · · · · · · · · · · · · · · · · ·		 	 		ļ	<u> </u>	 	 			<u> </u>	<u> </u>		 	
		 -	i	 	 		 	——	 				<u> </u>		 	
			 	 	 	 	 	 	 		 	 	-		 	
		<u> </u>	 	 -	 				 	<u> </u>		 	 		 	
				 	 	 		 	 		 		 		 	
		 	 	 		 		 	 	 	 	 			1	
		t	 	 	 	 	 	 	 					 -	 	
EMARKS .				·		<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	'	L	Ь	<u> </u>

Shell	METALS	DIVISION

Sheet		of	
-------	--	----	--

163

SAMPLE TYPE:	PERCUSSION	LOCATION / PROJECT :	PDH CD2 COOMPANA	SAMPLER:	 DATE: 29/8/81	MAP / PHOTO REF:		<u>.</u>
ASSAY LAB:		SAMPLE DESPATCH	ASSA	Y REPORT NOS:				

ORDER No.		
	SAMPLE STORAGE:	

SAMPLE No.	LOC	ATION	INTER'L (m)		ANALYSES											
SAMPLE NO.			(m)			<u> </u>		1				1	Γ	T		DESCRIPTION
6321	0	2														Tertiary Limestone
								1						·		Tot starty Brings done
22	2	4														11 11
											i					
23	4	6											<u> </u>			11 11 -
		<u> </u>														
24	6	8														11 11
			<u> </u>													
		<u> </u>	1	END O	F SAMP	E RETI	IRN AT	8.0m								
		L	ļ	Ε.	о.н. (LE RET	SION)	.28m								
											<u> </u>		<u> </u>			
<u>.</u>		1														
	·		L													
			<u> </u>													
		ļ														
		ļ														
			<u> </u>										Ì			
		<u> </u>	<u> </u>									<u> </u>	<u> </u>			
		<u> </u>											1			
		ļ														
		<u> </u>														
		<u> </u>				,										
																
		<u> </u>									1					
			ļ											•		
			ļ													
			ļ			L										
		<u> </u>	ļ													
		ļ	L													
			ļ													
																
																
·		├														
1		<u> </u>							I							

REMARKS:		•	
	- 	 •	

Shell	METALS	DIVISION

REMARKS:

SAMPLE RECORD

Sheet		of		
	_	••	 ٠	

SAMPLE STORAGE:

164

SAMPLE TYPE:	PERCUSSION	LOCATION / PROJECT:	PDH CD3 COOMPAN.	A SAMPLER:		DATE:	 MAP / PHOTO REF:	
ASSAY LAB:		SAMPLE DESPATCH	ASS	SAY REPORT NOS:				
		ORDER Nº:						

	100	ATION	INTER'L		ANALYSES										L STONAGE.			
SAMPLE-No.	200	I	(m)		· · · · · · ·	<u> </u>	 	1	1	T					γ	DESCRIPTION		
6329	0	2	2					<u>† </u>		1		 		 	 	Tertiary Limestone		
			J															
30	_2	. 4	2													11 11		
31	Λ	6	2	 		 	 		 	 		-				11 11		
		}		<u> </u>								<u> </u>						
32	6	8	_2													11 11		
33	8	10	2			 	 	 			<u> </u>					11 11		
									†									
34	10	12	2													11 11		
		 		END	DE SAM	PLE RE	TIPN A	12m	 	 	 	ļ						
				END	Dr JAM	DE KE	ONN A	1211	 									
		ļ		E.O.	H. (PE	RCUSSI	N) 12	m										
		 			ļ	ļ <u>-</u> -												
		 	1			 			 		<u> </u>							
									†	 								
		 	 				_	ļ	 	 -	.	<u> </u>		<u> </u>	<u> </u>			
		 -	 			 			-	 								
		 	 		 	ļ	ļ		ļ	 								
			 	 			-	<u> </u>	 	 	 				 			
															<u> </u>			
· · · · · · · · · · · · · · · · · · ·		 	 	ļ			ļ	ļ <u>.</u>				ļ						
		 	 			 	-	 	 	 	 							
							l		<u> </u>	 					· · · · · · · · · · · · · · · · · · ·			
		 																
	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>		L	L	<u> </u>	<u> </u>	L	<u> </u>						

٠.

Shell	METALS	DIVISION

Sheet		of	
-------	--	----	--

SAMPLE STORAGE: -

SAMPLE TYPE:	PERCUSSION	LOCATION / PROJECT:P	DH CD4 COOMPA	NA SAMPLER:	 DATE:	27/8/81	MAP PHOTO REF	165	.
ASSAY LAB:		SAMPLE DESPATCH		ASSAY REPORT NOS:			_		
		OBDED NO.							

<u> </u>	100		T=		ANALYSES									TOTOTAGE.		
SAMPLE-No.	LUCI	ATION	INTER'L (m)				r		ANA	LYSES						DESCRIPTION
		 _	- ····	ļ					<u> </u>				<u> </u>			
6317	0	2	 		ļ	ļ	<u> </u>	<u> </u>	<u> </u>					İ	I	Tertiary Limestone
									<u> </u>		<u> </u>					
18	2	4	<u> </u>	ļ			L	<u> </u>	<u> </u>				}			11 10
				<u> </u>				l	1							
19	4	6							I						1	11 11
20	6	8		<u> </u>							1	1				11 11
		L]								
			END O	F SAMP	E RET	IRN AT	8m					<u> </u>			t	
			i	1			l	1					† — — —		1	
			E.O.	H. (PE	RCUSSI	ON) 141	m		† — —	— —				 	 	
<u>. </u>				, , , = _				†	†			 	 	 		
								1	† - 		<u> </u>		 	 	 	
								†			ļ		 	ļ	 	
									<u> </u>	-	 		 	 	 	
								 	 				├			
									 			 	 	ļ	ļ	
								<u> </u>	 				ļ		ļ	
									 		 		ļ			
							ļ		 							
									 							
						-		ļ	 					<u> </u>		
									<u> </u>		ļ			<u></u>		
									<u> </u>							
								<u> </u>								
						·		 	ļ							
								ļ								
								Ļ								
								L								
								L	L							
			ļ					.								
			L													
EMARKE :																L

Shell	METALS	DIVISION

Sheet	 of	

METALS DI	IVISION						•	100
SAMPLE TYPE:	PERCUSSION	LOCATION / PROJECT:	PDH CD5 COOMPANA	SAMPLER:	 DATE:	27/8/81	MAP / PHOTO REF:	100.
ASSAY LAB:		SAMPLE DESPATCH	ACCAV	DEBORT NOS:			MALE TO TO THE	

ORDER NO: ______ SAMPLE STORAGE: _____

SAMPLE No.				1						V0.50							
		TION	INTER'L (m)		1	r			T	YSES		, .	·			1	DESCRIPTION
6301	0	2	2		 			 	 		 	 			<u> </u>		
		 	 	·	<u> </u>			ļ	<u> </u>		 		<u> </u>			Tertiary	Limestone
02	2	4	2	 -	 			 	 		 			 	 	 	
				<u> </u>	 	 			 	 			 	ļ	 	<u>"</u>	- t1
03	4	6	2		 	···	<u> </u>			 				 	ļ	ļ	
					 				 	 				 	ļ	<u>"</u>	11
04	6	8	2		 									ļ			
					 					 			 	 		"	11
05	8	10	2					 	 	 		 			 	 	
										 		 	 	 		- "-	
					END	F SAME	IR DEC	LIDA: AF	10	<u> </u>		 			 		
					- CIVIII	JF SAWIE	1.F. R.F.	TIRN AT	LIOM			 		 -	 		
					E. O. I	I. (PEF	CUSSIO	N) 64m				 		 	 	 	
							OUDDE	M 7 0411					<u> </u>	 -	 	-	
									-			 			 	 	
												 				 	
												 		——			
												 				 	
												<u> </u>				 	
											· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
																 	
																 	
									-								
																	
										-				-		 	
																 	
																† '	
																 	
																 	
																	
										-							

Shell	METALS	DIVISION

Sheet of

167

SAMPLE TYPE:	PERCUSSION	LOCATION / PROJECT:	PDH CD6 COOMPANA	SAMPLER:	DATE:	25/8/81 MAP/PHOTO RE	<u> </u>
ASSAY LAB:		SAMPLE DESPATCH	ASSAY	REPORT NOS:			

ORDER NO: ______ SAMPLE STORAGE: _____

	LOCA	ATION	INTER'L	1					ANAI	YSES			 		<u> </u>	
SAMPLE-No.			(m)		r	ſ	<u> </u>	Γ	T			`	 	,	D	ESCRIPTION
6311	0	2	f	 							-				Tertiary	Limestone
	<u> </u>		 	†			<u> </u>	 	<u> </u>				 		TCT CTALLY	LIMES COILE
12	2	4		<u> </u>									 		"	11
				1												· · · · · · · · · · · · · · · · · · ·
13	4	6													11	11
		ł														
14	6	8		ļ					<u> </u>			=			11	11
		<u></u>	 	ļ			<u> </u>						 			
15	8	10		ļ	ļ				_				 			
			 	 			 	!	 				 			
6316	10	12	 		 			·	ļ				 ļ		11	11
			EMD (E SAME	IE DET	URN AT	1 2m	<u> </u>	 				 			
			END	SAME	LE REI	OKN AL	14 <u>~</u> III		 				 			
	·		E O	u /Du	PCUSST	ON) 17	Sm.		 				 			
			T. C.		100000	J. W. J 1 7.	<u> </u>			 						*****
							<u> </u>						 			
															÷.	
	 	<u> </u>														
									ļ							
			ļ	ļ		<u> </u>			ļ						ļ	
		ļ		ļ	 				<u> </u>				 			
	<u> </u>		 	 	 		}						 			
			 	 -			 	 	 	ļ	ļ		 		<u> </u>	
			 	 			 -		 -	ļ <u></u>			 		<u> </u>	
				 	 			 	 -				 ļ		ļ - · · · · · · · · · · · · · · · · · ·	
			 	 		 	 	 	 				 <u> </u>	 	 	
				†	 		 	 	 	<u> </u>	 	 	 	 		
		Ì		1			†	 	 		·		 	 	†	
															<u> </u>	- * * · · · · · · · · · · · · · · · · ·
														l		
	L	<u>i</u>	<u> </u>			<u> </u>	1	L	L	L	L					

REMARKS:			•		
					
	-	•	the state of the s		

Shell	METALS	DIVISION	
SAMPL	E TYPE:	PERCUSSION	L

Sheet	of	
-,,,	 vı	

SAMPLE STORAGE: ---

LOCATION / PROJECT: PDH CD7 COOMPANA	SAMPLER:		DATE:	25/8/81	MAP / PHOTO REF:	168
		•			MINT THOID HET.	

ASSAY LAB: _____ ASSAY REPORT NOS: ______

ORDER NO: ______

LOCATION INTER'L ANALYSES SAMPLE-No. (m) DESCRIPTION 6306 Tertiary Limestone 2 07 . 4 80 4 09 _6 .8 2 10 10 END OF SAMPLE RETURN AT 10m E.P.H. (PERCUSSION) 104m

REMARKS:	 •	
-	\cdot	
-		

APPENDIX 2

Sample Record Sheets of diamond drilling for CD 1, CD 2, CD 3 and CD 7 $\,$

Shell	METALS	DIVISION	
		PTITI	-

Sheet	 of	

Shell MEIALS			→	· • • • • • • • • • • • • • • • • • • •
SAMPLE TYPE:	FILLET	LOCATION / PROJECT: DDH CD1 COOMPANA SAMPLER:	DATE: 26/11/81 MAP/ PHOTO REF:	
ASSAY LAB:		SAMPLE DESPATCH ASSAY REPORT NOS: A		4 2 0
		ORDER NO:		170
			SAMPLE STORAGE:	

SAMPLE No.	LOCA	TION	INTER'L		ANALYSES											
SAMPLE NO.			(m)	PILLA	eld Ztopne		1	Τ	1	1	1	Τ	Т	Τ	γ	DESCRIPTION
				11010			<u> </u>	 	 	 	 	-	 	 	 	
6396	171.8	174.0	2.2	0.5 -	1.5		†	 	 	 	 	 	 	 	├	
97	174.0	176.0	2.0	11	11		1	 	 	 	 	 	 	 	 	
98	176	178	11	11	- 11			T	†	 	 	 -	 	├ ──	 	
99	178	180	11	11	"			<u> </u>	 	 	 		 	 	 	
6400	180	182	11	",	11:11		<u> </u>	 			 	 -	 	 	 	
01	182	184	11	11	11			<u> </u>			 	 	 	 	 	
02	184	186	- 11	11	11				1		 		 	 	 	
03	186	188	11	••	11								 	 	 	
- 04	188	_190	11	-	11						 -		 	 	 	
05	190	192	- 11	11	11						 		 		 	
· 06	192	194	11	11	11				† — —		 		 	 	 	
07	194	196	11	†1	11					 			 	ļ ———	 	
08	196	198	11	- 11	11					 	 		 	 	 	<u> </u>
09	198	200	11		11						ļ — — —		 	 	 	
6410	200	202	11	11	†1								 		 	
11	202	204	11	11	*1								 	 		
12	204	206	.11	11	11								 		 	
13	206	208	11	11	11											
14	208	210	- "	19	11										 	
15	_210	212	11	11	- 11											
16 17	212	214	- 11	11	••								 			
	214	216	"	11	11											
18	216	218	"	11	11										 	
19	218	220		11	11											
6420	220	222		11	- 11											
21	222	224			- 11											
22	224	226		- ''	11							-				
23	226	228		- 17	11											
24	228	_230		''	11											
25	_230	232		- 17	"											
26	232	234		- 11	**											
27	234	236	- ''		11											
- 28	_236	238			11]										
6429	238	240	11 1	11	" [
EMARKS: _																

METALS	DIVISION

Sheet		of	
-------	--	----	--

SAMPLE TYPE:	CORE FILLET	LOCATION / PROJECT :	DDH CD1 COOMP	ANA SAMPLER:	 DATE: 26/11	/81 MAP/ PHOTO REF:	474
ASSAY LAB:	AMDEL	SAMPLE DESPATCH		ASSAY REPORT NOS:		···	1/1 *
		ORDER NO:					

											•			9	AMPLE	STORAGE:
CAMPA E MA	LOCA	ATION	INTER'L	T												
SAMPLE-No.			(m)	Uil yheld Vitres/tonne								Υ	DESCRIPTION			
					37 1.40 1111			1	†	 	 	 	 	 	 	
6430	240	242	2.0	0.5	- 1.5			1	 	† 	 	 	 	 	 	
31	242	244	11	''	11			1	† 	 		├ ┈──	 	 		<u> </u>
32	244	246	11	11	*11		1		†	 	 	 	 	 	 	+
33	246	248	11	"	"		†	 	†	<u> </u>	<u> </u>	 	 	<u> </u>	 	
34	248	250	11	,,	11		 	†	 	 	 			 	 	
35	250	252	11	11	11			1	1	 	 	 	 	 	 	
36	252	254	**	"	**		1			<u> </u>				†	 	
37	254	256	11	11	#1					 	 	 	 	 	 	
38	256	258	- 11	11	11		1				 	 		 	 	
39	258	260	11	11	11	· · · · · · · · · · · · · · · · · · ·		†	† — —	 -		 	 	 	 	
6440	260	262	11	"	11			 	 	<u> </u>				 	 	
41	262	263.5	1.5	11	11				1		 	†		 	 	
42	263.5	265.5	2.0	11	11					 		-		 	 	
43	265.5	268.5	3.0	11	91.7					 			 	 	 	
44		271.5	3.0	- 11	- 11						†		 	 	 	
45	271.5	274.5	3.0	*1	11				<u> </u>			}			 	
46	274.5		2.8	17			i					†		 	 	
47	277.3		3.2	1.5	- 5.0						<u> </u>				 	
48	280.5	286.5	6.0		- 1.5				† — — — — — — — — — — — — — — — — — — —						 	
49	286.5	292.5	6.0	11	11				T	1			· · · · · · · ·		 	
6450		295.5	3.0	"	- 11	;			1					 	 	
51	295.5	310.5	6.0	- 11	- 11									<u> </u>		
															 	
																
													-			
										I						
									I	l						
					I											
					I											
ARKS:													-			

METALS	DIVISIO

Appendix II
Sheet ___ of ___.

SAMPLE TYPE: Filleted Core

LOCATION / PROJECT: DDH CD 1 COOMPANA

SAMPLER:

COMLABS DATE: 5/11/81 MAP/ PHOTO REF:

ASSAY LAB:

SAMPLE DESPATCH

ORDER NO:

ASSAY REPORT NOS:

811838

SAMPLE STORAGE: -

SAMPLE No.	LOCA	TION	INTER'L			T										
			(m)	Cu	Cu Pb Zn Bi Co Ag Au										DESCRIPTION	
6452	301.5	304.5	3.0	100	6	195	4	48	1	0.05				<u> </u>	 	
53	304.5		3.5	95	6	380	4	- 70	1	0.05					<u> </u>	<u> </u>
54	308.0	310.0	2.0	280	4	195	4	50	1	0.05				†		
6455	310.0	312.0	2.0	145	4	180	4	105	1	0.05				1	†	
56	312.0	313.0	1.0	170	4	130	4	80	1	0.05				1		
5 7		315.0	2.0	165	4	135	4	7 5	1	0.05					-	†
58		317.0	2.0	120	4	125	4	55	1	0.05			· · · · · · · · · · · · · · · · · · ·		†	
59		319.75	2,75	125	6	115	4	44	1	0.05				-	1	
6460	319.75	321.3	1.55	140	4	105	4	40	1	0.05					——	
61	321.3		1.5	130	12	90	4	44	1	0.05						
62	322.8	324.3	1.5	115	8	95	4	44	1	0.05				 	†	
63	324.3		1.5	90	10	100	4	48	1	0. 05				 	 	
64	325.8		1.6	220	8	110	4	48	1	0.05					†	
_6465	327.4	329.5	2.1	125	6	80	4	40	1	0.05				 	İ	
66	329.5		1.7	120	4	110	4	40	1	0.05					 	<u> </u>
67	331.2	333.5	2.3	120	4	125	4	40	1	0.05				—	 	
68	333.5		3.0	115	4	90	4	40	1	0.05					 	
69	336.5	338.5	2.0	65	4	260	4	40	1	0.05					 	
6470	338.5	340.4	1.9	50	4	120	4	3.6	1	0.05		1		<u> </u>	 	
71	340.4		2.0	65	12	250	4	40	1	0.05				 		
72	342.4	344.4	2.0	105	4	120	4	40	1	0.05						
73	344.4	346.5	2.1	38	8	135	4	48	1	0.05						
74	346.5	348.5	2.0	65	4	155	4	44	1	0.05					 	
6475	348.5	350.6	2.1	85	6	140	4	40	1	0.05		1				
76		353.8	3.2	100	4	120	4	40	1	0.05				 	 	
77	353.8	356.8	3.0	7 5	4	145	4	48	1	0.05					····	
78	356.8	359.0	2.2	130	4	130	4	44	1	0.05						<u> </u>
6479	359.0	361.5	2.5	90	4.	95	4	40	1	0.05				 	 	
		E O H													<u> </u>	
												1				
mmuon c																
METHODS	Cu,	Pb. Zn	Bi.	Co.	AAS 1											
				Ag	AAS 3											
				Au	AAS 5	4						l				
	<u> </u>															

METALS	DIVISIO

Sheet	 of	

SAMPLE TYPE:	QUARTER	CORE

LOCATION / PROJECT:

CD1 COOMPANA

SAMPLER:

_____ DATE: 16/11/81 MAP/PHOTO REF:

ASSAY LAB: __COM SAMPLE DESPATCH

ORDER NO:

3955

ASSAY REPORT NOS:

811933

SAMPLE STORAGE:

SAMPLE-No.	LOCATION INTER'L ANALYSES (in ppm)															
SAMPLE-NO.			(m)	Cu		Zn							l	l .		Density gcm-3
18116	322.8	32 3. 3	0.5	85		100										2.71
17	323.3	323.8	U U	90		95								<u> </u>		2.46
18	323.8	324.3	- 11	95		100									***************************************	2.54
19	324.3	324.8	11	130		95										2,53
20	324.8	325.3	11	80		105]								3.12
18121	325.3	325.8	11	7 5		95					<u> </u>					2.66
22	325.8	326.3		80		105										2.64
23	326.3	326.8	11	50		110										2.67
24	326.8	327.3		115		100	<u> </u>									2.48
25	327.3	327.8	- 11	120		100										2.67
18126	327.8	328.3	**	105		90								l		2.60
<u> </u>																
								<u> </u>								
															, , , , , , , , , , , , , , , , , , ,	
·																
														İ		
								<u> </u>								
								<u> </u>								
											L					
								.					L			
				<u> </u>				ļ	<u> </u>							
				<u> </u>				ļ	<u> </u>							
				ļ				<u> </u>	<u> </u>		ļ					
				ļ			<u></u>									
				L												
				ļ					<u> </u>							
							L	ļ	 				L			
								1	<u> </u>		L					
				<u> </u>			ļ		<u> </u>							
					L		.	ļ	ļ		ļ					
				L	L		<u> </u>	<u> </u>	L	<u> </u>		Ĺ	L			

REMARKS:				-	 	
	 				 	
-	 •	• •				

Shell	METALS	DIVISION

REMARKS:

SAMPLE RECORD

Sheet		of		
-------	--	----	--	--

SAMPLE	TYPE:	CORE FILLET

LOCATION / PROJECT: DDH CD2 COOMPANA SAMPLER: _____ DATE: 26/11/81 MAP/PHOTO REF:

ORDER Nº:

AMDEL ASSAY LAB:

SAMPLE DESPATCH

_____ ASSAY REPORT Nos: AC 2519/82

SAMPLE STORAGE: -

	LOCA	TIOM	INTER'L	1	ANALYSES												
SAMPLE-No.		TION	(m)	Q11 y	7tonne			ſ	1	7363					г	DESCRIPTION	
0.400	1.70	1.50				s			 				 	-			
6480 81	170 172	172 174	2	0,5	- 1,5		· · · · ·		 			<u> </u>	 	ļ	 		
82	174	176.8						 	 	·				 	 		
									 					 	 		
83		177.8			- 5.0				 				 	 	<u> </u>		
84	177.8			"	-"-	NO	CAMDI		 				<u> </u>		<u> </u>	No copp percepts	V
	180.8					NO	SAMPI	E	 	-				<u> </u>	 -	NO CORE RECORDED	Kecovote
85	183.8	186.8	3.0_	5	- 15		GAVDI		 				ļ			No cond pagentar	 -
	186.8			 		NO	SAMPI	F					 -	<u> </u>	 	NO CORE RECORDED	
86	189.8			1.5	- 5.0	· ·			 				ļ	 	<u> </u>		
87	191.8	193.0		"	"			ļ					<u> </u>		ļ		
88	193.0	194.8	1.8	0.5	1.5			L					ļ. <u>.</u>	<u> </u>			
:				<u> </u>													
	<u> </u>	E.O.H	•	!		_											
				ļ				ļ	 _								
			·						<u> </u>			!				·	
·	<u> </u>								ļ			<u> </u>					
								<u> </u>							<u> </u>		
									<u> </u>			<u> </u>		L	<u> </u>		
									<u>l</u>								
													I		I		
						•											
									Ţ								
															1		
				1									†			· · · · · · · · · · · · · · · · · · ·	
								1									
			-					<u>†</u>									
									 	 				†	t	-	
				 	 			 		 	·	 			 		
			-	 	 			 	 	 	 	 	 	 	 		
	 			 				 	 	t	 	 	 	 	t		
	t	· · · · · · · · · · · · · · · · · · ·		 			 	 -	 	 	 	 	 	 	 		
	 		· · · · · ·	† —			 	 	 	 	 	 	 	 	 	<u> </u>	
· · · · · · · · · · · · · · · · · · ·	 			 	-		 	 	 	 	 	 	 	 	 		
	†			 	 			 	 		 	 	 	 	 		
		L	<u> </u>	L		L	L	<u> </u>		<u> </u>	L	<u> </u>	'	<u></u>	<u> </u>	<u> </u>	

Shell	METALS	DIVISION

ASSAY LAB:

SAMPLE RECORD

Sheet ___ of ___.

SAMPLE TYPE:	CORE FILLET	LOCATION / PROJECT:
	· · · · · · · · · · · · · · · · · · ·	

AMDEL

OCATION / PROJECT: DDH CD3 COOMPANA

SAMPLER: _____ DA

DATE: 26.10.81 MAP/PHOTO REF:

SAMPLE DESPATCH

_____ ASSAY REPORT NOS: AC 1992/82

175

ORDER NO:

SAMPLE STORAGE: -

SAMPLE SIUHAGE:																
SAMPLE No.	LOCA	TION	INTER'L	Oil vi	Oil yield ANALYSES											
			(m)	litres	/tonne	s							<u> </u>	Ι	T	DESCRIPTION
6369	152.67	155.0	2.33	0.5 -	1.5											<u> </u>
70	155	157	2.0	- 11	=							- 			 	
71	157	159	11	11	**						<u> </u>				<u> </u>	
72	159	161	11	"	11										-	
73	161	163	11	11	11				1						 	
74	163	165	11	11	11							t		<u> </u>		
7 5	165	167	- 11	11	11							†		 		
76	167	169	11	11	"1							1		 -		
77	169	171	- 11	"	11				Ť	1					<u> </u>	
78	171	173	11	1111	11				1					 		
79	173	175	11	11	- 11		1		 	 		†		 	 	
. 80	175	175 177	11	- 11	11			†	† — — — — — — — — — — — — — — — — — — —	 		····	 		 	
81	177	179	11	. 11	11				<u> </u>			<u> </u>		<u> </u>	 	
82	179	181	11	11	11			1	<u> </u>				l		 	
83	181	183	11	11	11						†	İ	 			
84	183	185	- 11	"	**			İ		 		· · · · · · · · · · · · · · · · · · ·			 	
85 86	185	187	11	.,,	11			1								
86	187	189	11	11	11			1						<u> </u>		
								1	1							
							1			†	<u> </u>					
									†	†						
						,			<u> </u>	!						
							<u> </u>	1								
																
									1							
									<u> </u>						-	
										<u> </u>						
									t	<u> </u>						
							T —	1	 							
									1				····			
									T	 						
								1								
								1	 	† ·						
								<u> </u>								
															L	

REMARKS:	
-	

METALS	DIVISION

SAMPLE RECORD

Sheet ___ of ___.

AMPLE TYP	E:	CORE	FILLET

LOCATION / PROJECT: DDH CD3 COOMPANA

SAMPLER:

DATE: 26/10/81 MAP/PHOTO REF:

ASSAY LAB:

__AMDEL

SAMPLE DESPATCH

_____ ASSAY REPORT NOS: AC 1992/82

ORDER NO: _

SAMPLE STORAGE:

																
SAMPLE No.	LOCA	TION	INTER'L	Oil y	ield				ANA	LYSES						DESCRIPTION
			(m)	litre	:/tonne			Cu	Pb	Zn						DESCRIPTION
6387	189	191	2.0	0.5	- 1.5											
88	191	193	11	11	11											
89	193	195	11	"	11											
90	195	197	11	"	11											
91	197	199	11	••	11											
	199	201	11	11	11											
92 93	201	203	11	11	11											
94	203		2.46	**	11											
95	205.46	206.15	0.7					200	5	100						
			_													
													···			
														<u> </u>		
														1		
						,								<u> </u>		
														<u> </u>	Î	
								}							i	
														<u> </u>	1	
															1	
															1	
								1	<u> </u>							
				T T												<u> </u>
				Ī				1	T					1	<u>† </u>	
															†	
				1				1		1					t	
													l			
					†				l				t	 	<u> </u>	
							1			1			 	<u> </u>	 	
EMARKS:						·		•	1		<u> </u>	<u></u>	'		٠	

REMARKS :			•		· · · · · · · · · · · · · · · · · · ·
		-			
				·	

METALS	DIVISION

SAMPLE RECORD

Sheet		of	
-------	--	----	--

SAMPLE	TYPE:	CORE FILLET	_

LOCATION / PROJECT: DDH CD7 COOMPANA SAMPLER: _____ DATE: 26/10/81 MAP / PHOTO REF: ___

AMDEL ASSAY LAB:

SAMPLE DESPATCH

ASSAY REPORT Nos: AC 1991/82

ORDER Nº:

SAMPLE STORAGE:

SAMPLE-No.	LOCA	TION	INTER'L	Oil y					ANA	YSES.						05000:
GAM7 C2-140.			(m)	litre	s/tonn	e						<u> </u>		T T		DESCRIPTION
6353	134.25	135.8	1.6		- 1.5			1	1					1		
								<u> </u>		—		├ ──			 	
54	135 85	137.4	. "	",	71		t —	† 	 		····	<u> </u>			·	
	100.03							 	1	 		 	-		 	
55	100 45	139.0	5 "	.,,	11			-	 					 		
	137.45	139.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 	 	 	 	 				 	 	
56	120 05	140.6	. :	11				 	 			 	 	 		
30	139.00	140.0	,			-	 	 	 -		 		 	 		- · · · · · · · · · · · · · · · · · ·
	1.40	140.0	5- 11	11	11			 	 			 	<u> </u>	ļ	<u> </u>	
57	140.65	142.2	P''	- "-	- ''		ļ	├ ───	-	ļ	 	<u> </u>	<u> </u>	ļ	L	
					ļ	<u> </u>		↓			ļ	!		<u> </u>	<u> </u>	·
58	142.25	143.8	5	11	*11				ļ		<u> </u>	<u> </u>			<u> </u>	
·								↓	ļ	L		<u> </u>				
59	143.85	145.4	5 "	11	11						<u> </u>	<u> </u>	<u></u>		<u> </u>	
<u></u>									<u> </u>							
60	145.45	147.0	5 1111	11	11			L			}			1	i	
											1					
61	147.05	148.6	5 11	**	11											
62	148.65	150.1	5 1.5	11	"			1								
									1						t	
63	150.15	151.6	5 1.5	11	11				1		<u> </u>		1			
									 		1				 	
64	151.65	153.2	5 1.6	11	11		†	†		†	t	1		 -		<u> </u>
			- 1.0					 	 	 						†
65	153 25	154.7	5 1.5	11	11		 		 	 	 		 		 	
		+5-7-1	7 1.5			<u> </u>	 	 	 	 	 		 		 	
66	154 75	156.3	- 1.0				 	 	 				 		 	
bo	154-73	150-3	بطماني					 	 			 	 		 	
67	156 25	157.8	51.5	,,	- 11			}	 	 		 		<u> </u>		
- 07	150.55	15/.0	3 1.3		 		 	 	 			<u> </u>	<u> </u>			
6066	155 6						 	 	 		 	 		<u> </u>		
6368	157.89	159.4	1.6	11	'''	ļ 	 		 		<u> </u>	.		<u> </u>	 	
						<u> </u>	 	 	1	 		ļ				
	 					<u> </u>		↓	ļ		 		ļ	L	<u> </u>	
	 				ļ			 	↓	L		1			L	<u> </u>
	LI			<u> </u>		<u> </u>	<u> </u>	1	<u> </u>	<u></u>		L		<u> </u>		

REMARKS :	•	 · · · · · · · · · · · · · · · · · · ·

METALS	DIVISION

SAMPLE RECORD

_____ ASSAY REPORT NOS:

Sheet	_ :	of	

SAMPLE TYPE:	CORE FILLET .	LOCATION / PROJECT:	DDH CD7 COOMPANA	SAMPLER:		DATE:	 MAP / PHOTO REF:
ASSAY LAB:		SAMPLE DESPATCH	ASSAY	REPORT NOS:	· :		

ORDER NO: SAMPLE STORAGE:

	LOCA	TION	INTER'L	Oil v	il yield ANALYSES							T				
SAMPLE No.					s/tonne	s	T	T		1	Τ	Τ	T	1	r	DESCRIPTION
6335	105	108	3		- 1.5				† — —	 	†	 	 	1	 	
																
36	108	110.2	2.2	"	11											
				ļ	ļ		ļ	ļ	ļ							
37	110.2	111.6	1.4	"	"		 	 	 		ļ		<u> </u>			
38	111 6	113.2	1.6	 			<u> </u>	 	├		 	 			}	
	*****	110.2	_ 1.0	<u> </u>			 	 	 	 	 	 	-		 	
39	113.2	114.8	1.4	11	"			 	 	 		1	 	-	 	
									1			1			 	
40	114.8	116.3	1.5	11	11							<u> </u>				
<u>·</u>				 			 		ļ							
41	116.3	117.9	1.6	 "	- 11			 	ļ	 _	<u> </u>	 	ļ			
42	117 0	119.4	1 6	 			 	 -	 	 	 -	 	ļ		ļ	
4/	11/.9	119.4	1.5	 	ļ			 	<u> </u>	 	 		 			
43.	119.4	121.0	1.6		- 11		† 	 		 	 	 	 			
											 	 	 			
14	121.0	122.6	1.6	"	••						i					
			·	<u> </u>			<u> </u>									
45	122.6	124.1	1.5	"	''		 	 _ _ _					ļ			
46	124 1	125.6	1 55					 	 		 		<u> </u>	•		
		123.0	1.33	 			 	 			 	 	 			
47	125.6	127.2	1.6		"	- -	 	 		 	 		 			
									 		†	-	 			
48	127.2	128.2	0.95	11	11											
				L												
49	128.2	129.6	1.42	- ''	"	·	<u> </u>	!	<u> </u>							
50	120.6	2 131.2	1 52	- ,,	,,		 	 	 	 	 	 				
	1530	101.4	1.52	 			 	 		 	 	 	 			
51	131-2	132.7	1.55		11		 	 	 		 -	 	 			<u> </u>
							1	†	 		 	 	1		 	
52	132.7	5 134.2	1.5	11	11							1	 		 	

REMARKS:	•	
		` `

APPENDIX 3

Pontifex & Associates Pty. Ltd. Mineralogical Report No. 3549

Pontifex & Associates Pty. Ltd.

TEL. 332 6744 A.H. 31 3816 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

180

MINERALOGICAL REPORT NO. 3549

23rd December, 1981

T0:

Mr. R. Weeden,

Shell Co. of Australia Ltd.,

Metals Division, 230 East Terrace, ADELAIDE. 5000

+ F02

YOUR REFERENCE:

3956/PW09/RJW

MATERIAL:

Drill Core samples (CD1)

IDENTIFICATION:

18127 to 18134

WORK REQUESTED:

Petrographic/mineragraphic

descriptions

SAMPLES & SECTIONS:

Returned to you with this report

PONTIFEX & ASSOCIATES PTY. LTD.

COMMENTS

Each rock is described independently with some comparisons in the suite noted in the descriptions. The petrography confirms your basalt classification, however the native copper recorded in your field notes could not be confirmed in thin or polished section. It appears that this may be mistaken for ultrafine hematite permeating fine micas, possibly a primarily oxidised chlorite (although normal clear chlorite is ubiquitous through interstitial (intersertal?) areas).

Fine dispersed hematite is fairly common, and may also be a primary component. Fine disseminated magnetite coxidised, including leucoxenised. Sparse micro phenocrysts of plagioclase are altered to K-spar (shown on stained offcuts), together with hematite dust. (Note that the groundmass plagioclase stains a very pale yellow colour).

Samples 18127 and 18130 are almost identical, characterised by scattered, small, poikilitic pyroxene crystals.

Sample 18132 is a highly vesicular basalt enriched in deuteric quartz and epidote, (rather than the tuff suggested in the field notes).

Field Note: Unmineralised lava above Cu-mineralisation.

About 50% of this rock consists of randomly interlocking plagioclase laths about 0.1 x 0.5 mm, with interstitial (or intersertal) chlorite, and very fine granular pyroxene altered to brownish turbid material. The chlorite may be deuteric, conceivably an altered glass (palagonite:?), however some is seen to pseudomorphically replace probable amphibole.

The other 50% consists of highly irregular poikilitic grains of clinopyroxene, about 1 mm across, incorporating numerous randomly oriented plagioclase laths, with resultant ophitic texture.

Minor phenocrysts of plagioclase 1x5 mm, are largely replaced by K-spar and hematite dust and vesicles filled by deuteric quartz \pm trace micaceous hematite. Accessory very fine leucoxenised magnetite, and trace fine micaceous hematite is disseminated.

weakly porphyritic in plagioclase, vesicles and minor fractures filled by chlorite and/or quartz; dispersed leucoxenitic and hematitic material, no evidence of native Cu.

Field Note: Native copper along fracture surfaces.

A vague layering is manifest by small (1 mm) vesicles, forming variably 5% to 25% of different ill-defined bands. Generally these vesicles are filled by extremely fine chlorite, but in some bands by fine quartz \pm fine chlorite and rare epidote with fine micaceous hematite partly around rims. Rare irregular voids, caused by flow-top brecciation?, are also filled by deuteric chlorite and quartz \pm space hematite.

Minor (7-10%), small (0.1 x 1 mm) phenocrysts of plagioclase crystals are scattered.

These components all occur in a 'basaltic-textured' groundmass of slender plagioclase laths (microlites) with interstitial chlorite and ? actinolite after pyroxene, all clouded with extremely fine leucoxenitic material and dispersed equally fine hematite.

18129 : basalt, fairly extensive alteration of plagioclase,

interstitial chlorite, irregular domains of deuteric

quartz chlorite;

disseminated fine hematite/limonite.

Field note: Possible native Cu in groundmass.

This rock is more altered and has a more heterogeneous, less distinctive primary texture than in the two samples above. About 50% of it consists of plagioclase laths, partly altered to fine epidote, chloritic clays and sparse fine quartz, loosely packed, and random to locally similarly oriented.

Pale chlorite is interstitial to these laths, also occurs in highly irregular domains throughout, commonly with intergrown extremely fine quartz. These appear to be primary deuteric components, filling primary textural discontinuities which may well relate to flow brecciation.

Extremely fine limonite/hematite is dispersed throughout some essentially 'interstitial', some possibly replacing disseminated magnetite, and some penetrating extremely fine micas (? chlorite).

18130 : massive basalt, characterised by scattered poikilitic crystals of clinopyroxene, interstitial chlorite; one vesicle filled with chlorite and a fracture partly filled by quartz.

Field Note: Lava at base of copper mineralisation.

This rock is very similar to 18127, noteably the 'spottiness' produced by scattered poikilitic clinopyroxene.

About 70% of the rock consists of randomly interlocking plagioclase laths, spotted with sericite alteration, and with ubiquitous interstitial chlorite and altered extremely fine pyroxene. Accessory, fine, primary titaniferous magnetite is disseminated and extensively leucoxenised.

About 30% of the rock consists of clinopyroxene crystals about 1 mm across but highly irregular/poikilitic due to enclosure of numerous randomly oriented plagioclase laths. Minor plagioclase phenocrysts of this size are also scattered, altered as in 18127.

A single, large, spheroidal vesicle is filled by fine chlorite. A fracture is filled partly by fine quartz mosaic, partly by chalcedony, partly by micas stained with hematite/limonite. Trace fine, hematite is dispersed.

18131

vesicular basalt;

intersticies within groundmass of chlorite altered

pyroxene magnetite and hematite dust;

vesicles filled by chlorite epidote quartz, lesser

K-spar and zeolite.

Field Note: Unmineralised hematite altered lava.

Most of this rock consists of a fairly homogeneous basalt, composed of small cloudy plagioclase laths, partly at random, and partly with a generalised common orientation. Chlorite and clouded (? uralitic) alteration products after very fine groundmass pyroxene are ubiquitous, more or less intergranular to the plagioclase. Fine (<0.1 mm) grains of magnetite, partly leucoxenised, are disseminated.

Vesicles (15%) up to 6 mm across are randomly disposed and filled by variable amounts of chlorite, coarse bipyramidal quartz crystals, fine granular epidote and an isotropic zeolite in one. Trace K-spar occurs in some vesicles, and this mineral also replaces some plagioclase laths.

Accessory hematite dust is dispersed and extremely fine micaceous hematite occurs as discontinuous rims around some vesicles.

18132

very highly vesicular basalt; vesicles filled with deuteric quartz ± epidote crystals, groundmass almost completely replaced by saussuritic to fine crystalline epidote lesser quartz and chlorite; trace micaceous hematite.

Field Note: Lapilli tuff below copper mineralisation.

About 50% of this rock consists of a loosely packed aggregate of spheroidal vesicles, ranging in size from 0.15 to 3 mm diameter, and locally coalescing. These are filled by quartz some of which is radial and in sheaf-like mosaics, and commonly accompanied by minor, extremely small epidote prisms.

Minor, patchy, irregular voids (10%) are also filled by fine crystalline quartz.

These components are all crowded within a basaltic-crystalline groundmass which has been almost completely replaced by cloudy, saussuritic to extremely fine crystalline epidote, minor fine quartz and chlorite.

Accessory extremely fine micaceous hematite, occurs in the groundmass and rarely in vesicles.

18133, 18134

basalts;

weakly altered including oxidised/leucoxenised

disseminated magnetite;

K-spar + hematite dust after sparse plagioclase

phenocrysts;

stringers of quartz, K-spar, chlorite.

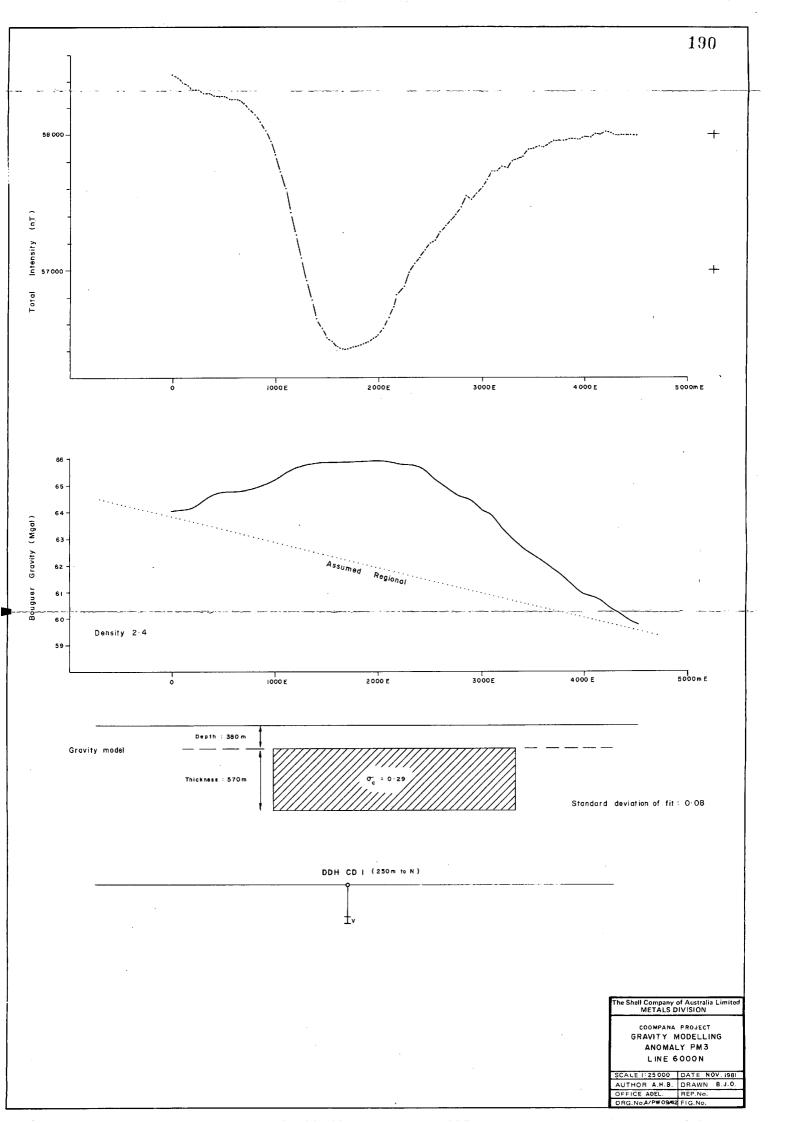
Field Note:

Basalts near base of sequence.

These rocks have essentially the same composition and texture, although 18134 is finer crystalline than 18133 (ie. plagioclase laths in the groundmass respectively about 0.2 mm compared with 0.4 mm).

These plagioclase laths form about 40% of the rock, and are randomly interlocking variable to a generalised similar orientation. Minor small plagioclase phenocrysts are replaced by K-spar and hematite dust.

Very small crystals of pyroxene (20-30%) are evenly scattered, and extremely fine but fairly clear chlorite (30%) is ubiquitous through interstitial areas within the plagioclase aggregate, also in irregular voids \pm fine deuteric quartz.


In 18134 pyroxene tends to form small poikilitic crystals partly enclosing plagioclase laths, the same as is developed to a greater extent in 18127 and 18130.

Fine disseminated magnetite is more abundant in 18134 than in 18133. In both the magnetite is oxidised and partly leucoxenised, with attendant limonite/hematite staining in 18134.

A thin stringer in 18133 consists of quartz and K-spar, a thin vein in 18134 consists of deuteric chlorite, extremely fine quartz clouded with hematite dust and minor K-spar.

APPENDIX 4

Computer Logs of Density, Gamma, Neutron, Self Potential and Resistance for CD 1, CD 3, CD 6 and CD 7.

THE SHELL COMPANY OF AUSTRALIA LIMITED

METALS DIVISION

SOUTH AUSTRALIA

REPORT ON E.L. 747, BUNABIE ROCKHOLE E.L. 748, HUGHES

E.L. 749, NULLARBOR PLAIN

FOR THE QUARTER ENDING APRIL 20TH, 1982

AUTHOR: R.J. WEEDEN DATE: APRIL, 1982

REPORT NO. 08.1129

COPY NO. 1

DISTRIBUTION: Copy 1

Department of Mines and Energy

South Australia

The Shell Company of Australia Limited, Metals Division, Melbourne

3 The Shell Company of Australia Limited, Metals Division, Adelaide

4 B.H.P. Adelaide

5 B.H.P. Melbourne

CONTENTS

		Page No.
1.0	INTRODUCTION	. 1
2.0	WORK COMPLETED	1
3.0	KEYWORDS	2
4.0	EXPENDITURE	3

LIST OF FIGURES

Figure No.	<u>Title</u>	Scale :	Drawing No.
1	Eucla Basin S.A., Coompana Area, Location Plan	1:1,000000	A/MT 22/90
2	Coompana Project Gravity Modelling Anomaly PM 4 Line 6000 I	E 1:25000	A/PW 09/38

LIST OF ENCLOSURES

Encl. No.	<u>Title</u>	Scale	Drawing No.
1	Coompana Project Gravity Modelling Anomaly PM 3 Line 6000 N 1:2	5000	A/PW 09/42

LIST OF APPENDICES

Appendix	I	внр	Co.	Ltd.	Exp	oloration	Department	Report E 1/15
Appendix	II	Amde	el Re	eport	MD	4078/82	"Testing of	f Cores"

1.0 INTRODUCTION

Exploration Licences 747, 748 and 749 were granted on the 20th October, 1980 for a period of one year. The term was extended for a further year on the 8th September, 1981.

The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250,000 sheet areas, South Australia adjacent to the border with Western Australia.

The licences are referred to as Bunabie Rockhole (E.L. 747) Hughes (E.L. 748) and Nullarbor Plain (E.L. 749) and collectively form the Coompana Project.

The licences are the subject of a joint venture with Dampier Mining Company Ltd.

Main exploration targets for the three licences are oil shale within the Cretaceous Madura Formation and base metals associated with geophysical anomalies derived from sources in the Pre-cambriam basement.

2.0 WORK COMPLETED

No field activity was carried out during the reporting period.

Detailed ICP AAS was carried out on three pieces of quarter core from DDH CD 1 to test for anomalous elements not detailed in routine analysis. (Refer to Appendix I). High tungsten values in all three samples are probably due to contamination as no tungsten minerals were identified in either thin or polished section.

Results from petrology, magnetic properties and geochemistry for DDH CD 1 were received from B.H.P. during the quarter.

A summary of the B.H.P. report is detailed below while the full report is attached in Appendix II.

2.0 Contd.

The volcanics between (318.6 and 360.2 m) were identified as alkali olivene basalts of non-orogenic continental origin with no deformation characteristics. The basalts consist of variably altered flows with amygdales containing altered chlorites and hematised magnetite. Traces of native copper have been detected within the more altered amygdaloidal oligoclase basalts associated with minor quartz and calcite. Traces of chalcopyrite were also recorded within the oligoclase amygdaloidal basalts. This tends to confirm work completed by Pontifex during the last quarter. (Refer to report 08.1121).

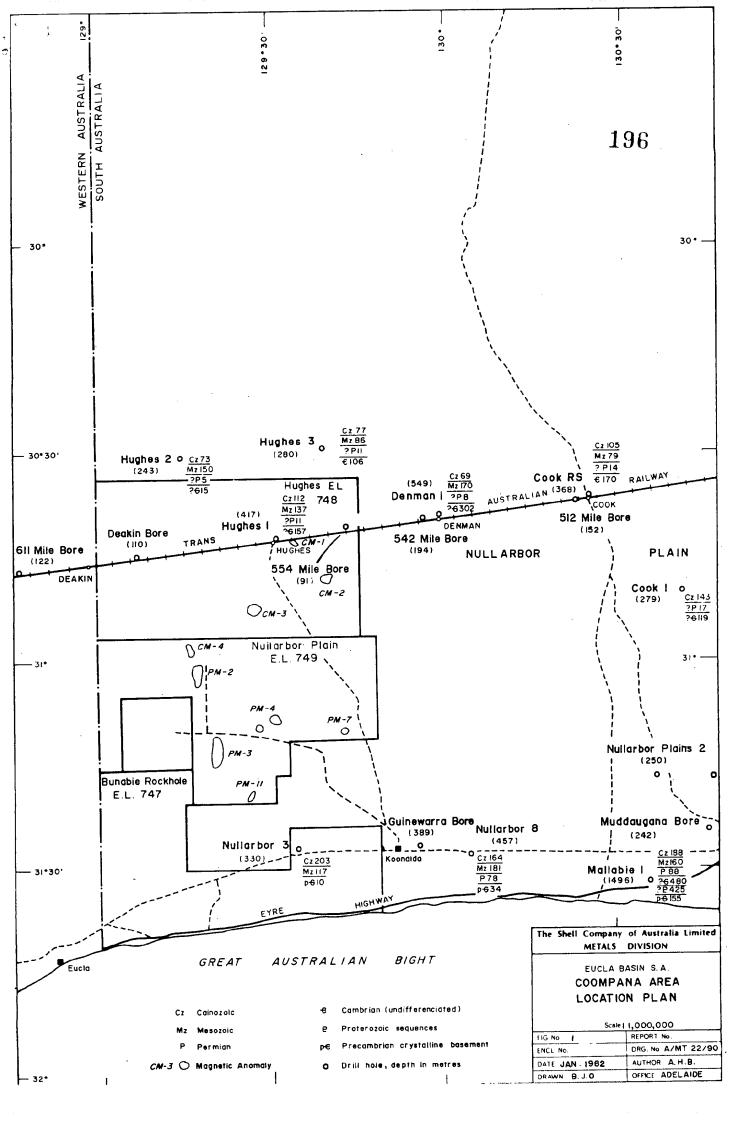
B.J. Gilbert, the senior petrologist within the research department of BHP suggests a late stage hydrothermal precipitation of native copper possibly derived from basement rocks and as such suggests extending the drill hole to test the basement for Roxby Downs' type mineralization.

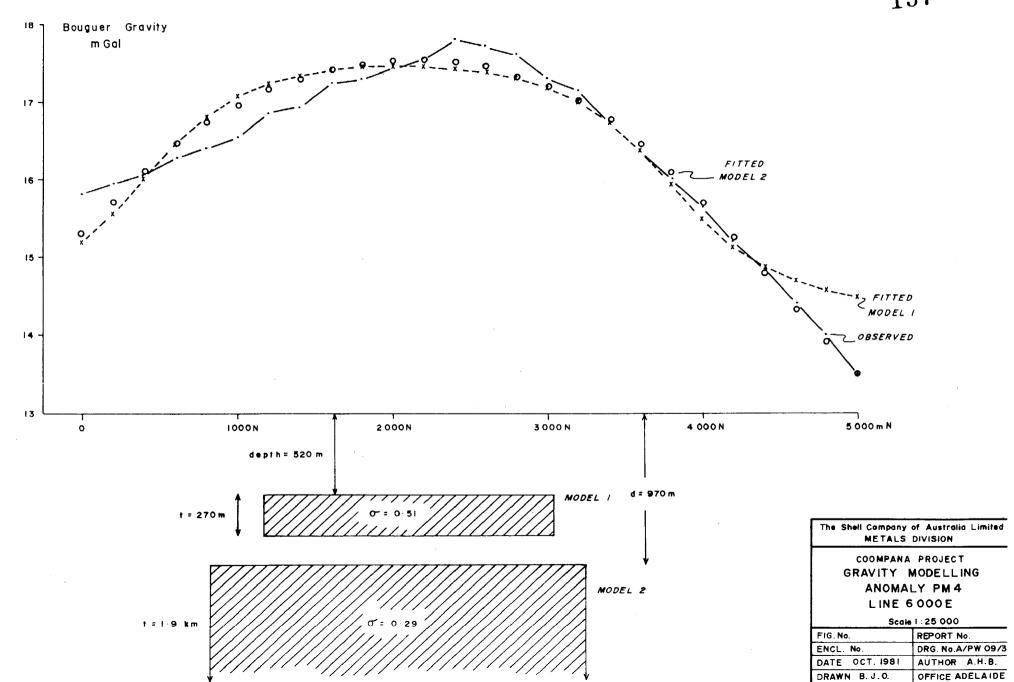
Magnetic property measurements were conducted on some of the core from DDH CD 1 by the Earth Resources Foundation at the Sydney University.

Results indicate that a negative magnetic anomaly would be generated by the strong remanent magnetic polarisation almost directly opposite to the present earth's field.

Further gravity modelling on line 6000 E over anomaly PM 4 (Refer to Fig. 2) and Line 6400 E over anomaly PM 3 (Refer to Enclosure No. 1) was conducted using the revised density measurements from DDH CD 1 in conjunction with minor variations in the Shell GRAVMOD computer program.

Compilation and reassessment of data is currently in progress in order to delineate targets for further follow-up.


3.0 KEYWORDS


Coompana, Cook, Eucla Basin, Oil shale, base metals, diamond drilling, Gravity modelling.

4.0 EXPENDITURE

A summary of expenditure as at March 31, 1982 is detailed below.

	Jan/Mar 1982	Project to date
Bunabie Rockhole E.L. 747		•
<u>Total</u>	. 0	3775 ———
Nullarbor Plain E.L. 748		
Personnel and Personnel Burden Support Costs Analysis/Assays Geological, Drawing and Computer General Admin.	206 1331 365 58 196	
<u>Total</u>	2156	180069
Hughes E.L. 749		•
Total	0	17872

APPENDIX I

BHP Co. Ltd. Exploration Department Report E 1/15

THE BROKEN HILL PROPRIETARY CO. LTD. EXPLORATION DEPARTMENT

Petrology Section

Subject:

Memo to: MR. F. BUNTING, EXPLORATION, CAMBERWELL.

E1/15: Petrology of volcanics with an alkali olivine basalt/trachyte association with comments on the occurrence of native copper, diamond drill hole CD1,

Coompana, South Australia.

245-273 Wellington Road Clayton, Victoria 3168 P.O. Box 264, Clayton Telephone 560-7066

Date 8th Feb., 1982.

Our Ref: DJG: DK

199

Your Ref: File:

M600

Date:

were 242/62 Lected 29/42/62

Introduction:

Several samples of diamond drill core from CD1, Coompana, S.A. were 24/52 submitted for petrological examination. The samples were collected com/A~A from the interval 318.55m to 360.15m.

The petrography of these samples is outlined in the Appendix.

Summary and conclusions:

1: These volcanics have been identified as altered amygdaloidal oligoclase basalt (mugearite), altered amygdaloidal oligoclase trachybasalt and incipiently altered ophitic chloritised olivine andesine basalt (hawaiite).

Petrogenetically, these volcanics can be classified as alkali olivine basalts of non-orogenic continental origin; they have an affiliation with the trachytes and may possibly be related to continental rifting. The volcanics are undeformed.

2: At least three and possibly four separate flows have been recognized; each flow unit comprises a basal ophitic chloritised olivine andesine basalt and an amygdaloidal oligoclase basalt towards the top. The amygdaloidal oligoclase basalts are more hematised and are generally more altered with a propylitic assemblage comprising chlorite epidote, calcite and quartz.

Supergene weathering may also have occurred in these amygdaloidal flow tops since some chlorite is altered to smectite and the magnetites have been hematised, though definite martites are absent.

3: Minute <1 to 90 µm grains of native copper have only been detected in the more deuterically altered amygdaloidal oligoclase basalts, where it occurs in the outer quartz rims of amygdales, as minute inclusions in plagioclase microlites and in post chloritisation/epidotization veinlets where it is closely associated with calcite and quartz. It is interesting to note that traces of chalcopyrite have been recorded within oligoclase basalt amygdales where it occurs between late stage epidote crystals associated with earthy hematite and also in the ophitic andesine basalt where it occurs as triangular interstitial patches between plagioclase microlites (possible magmatic origin?).

- 4: Two possible modes of origin are considered for the native copper:
 - (i) Supergene oxidation of pre-existing chalcopyrite.

(ii) Late stage hydrothermal precipitation.

200

The last mentioned mode of origin is favoured where native copper has precipitated under oxidizing and relatively high P_h conditions due to its co-existence with calcite.

The ultimate origin of this native copper is not fully understood but it is tantalising to consider its derivation from possible copper-bearing basement rocks.

5: Some of the ophitic chloritised olivine andesine basalts contain 7-10 vol.% disseminated high temperature subhedra/euhedra of magnetite with exsolution rutile.

Recommendation:

If there is any doubt that the magnetic anomaly over this Coompana occurrence cannot be entirely explained by the magnetite content of this volcanic sequence, the drill hole should be deepened to explore the underlying basement. Felsic volcanics (trachytes?) have been recorded by WMC, overlying the hematitic breccias of the Roxby Downs Deposit.

D.J. Gilbert \(\subseteq \)
Senior Petrologist.

CC: Dr. A. Goode)
Dr. C. Blain) Camberwell
Mr. J. Harms)
Dr. P. Haslett - Adelaide.
Mrs. D. Jenkinson - Camberwell
Office Library.

COOMPANA, S.A.

MRL 13468

Drill Hole No. and Interval: CD1, 318.55m

Hand Specimen Description: Brecciated (in part) greenish fine grained amygdaloidal volcanic rock. The sample is non-magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Altered amygdaloidal fine grained volcanic rock of probable alkali basaltic composition. Relict igneous texture is evident with random microlites of feldspar, ferromagnesians now altered to epidote, chlorite and clay. Scattered amygdales are filled with epidote, quartz and clay; the breccia or fracture zone is also filled with subpolygonal unstrained quartz, epidote and calcite.

The sample contains about 2 vol.% disseminated patches of earthy hematite/leucoxene (after magnetite?) and displays a propylitic alteration assemblage comprising epidote, chlorite and calcite. This volcanic rock is undeformed and also shows signs of supergene weathering with hematisation of earlier magnetites and the replacement of some chlorites by clay (smectite?).

MRL 13469

Drill Hole No. and Interval: CD1, 323.lm

Hand Specimen Description: Reddish brown (hematitic) fine grained amygdaloidal volcanic rock with abundant scattered greenish amygdales. The sample is weakly magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Altered (chloritized and epidotized) amygdaloidal oligoclase* basalt (mugearite).

A well preserved igneous texture is evident with abundant random plagioclase microlites, abundant scattered amygdales and occasional larger plagioclase/alkali feldspar phenocrysts. The amygdales are generally filled with epidote, chlorite and quartz in varying amounts, often with an outer rim of quartz, an intermediate zone of chlorite and an inner core of epidote which has been last to crystallise.

Plagioclase in the igneous matrix is also partly replaced by chlorite and epidote indicating a propylitic alteration assemblage.

The reddish colouration is due to fine secondary hematite, probably after original magnetites, though no definite martites were observed.

^{*} Plagioclase microlites mainly oligoclase but there is a range in composition from oligoclase to andesine (i.e. An₁₅ - An₃₂).

Rare minute (<1 to 30 μ m) native copper* grains were observed in the outer quartz rim of some amygdales and as occasional inclusions in plagioclase microlites.

202

The native copper may be related to late stage hydrothermal alteration, where oxidizing conditions would have prevailed. In the amygdale, native copper is clearly related to earlier formed quartz. Some amygdales are aligned roughly perpendicular to the core axis.

MRL 13470

Drill Hole No. and Interval: CD1, 323.7m

Hand Specimen Description: Reddish brown (hematitic) fine grained amygdaloidal volcanic rock with scattered green amygdales and veinlets of calcite with associated minute specks of native copper. The sample is non-magnetic, non-radioactive and shows very pale fluorescing calcite in the veinlets.

Rock Identification and Comments: Altered (chloritized and epidotized) amygdaloidal oligoclase** basalt (mugearite).

Well preserved igneous texture is evident with random microlites of plagioclase (some epidotised), occasional larger plagioclase phenocrysts, rare chloritised ferromagnesians and abundant chlorite/epidote/quartz filled amygdales. Both chlorite and epidote also occur as alteration products in the igneous groundmass.

The opaques comprise mainly fine earthy hematite, some with magnetite residuals and some pseudomorphing ferromagnesians. Subhedral hematite/rutile intergrowths probably represent earlier high temperature magnetites with rutile exsolution blades, subsequently martitized due to supergene effects. Scattered leucoxene is also evident, possibly after ferromagnesians.

A crosscutting veinlet of calcite (stain test) and quartz contains rare $<\!1$ - 90 μm grains of native copper. The close association of native copper with calcite suggests deposition under conditions of high p_h and moreover, this veinlet apparently post-dates the chlorite and epidote filled amygdales, indicating very late stage fluid circulation and deposition.

Major Cu, trace Fe according to SEM.

^{**} Plagioclase is mainly oligoclase but the composition ranges from oligoclase to andesine (i.e. ${\rm An}_{15}$ - ${\rm An}_{34}$).

MRL 13471

Drill Hole No. and Interval:

CD1, 329.4m

203

Hand Specimen Description : Grey "spotted" basaltic volcanic rock. The sample is strongly magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Ophitic chloritised olivine andesine* basalt (hawaiite).

A bulk sample of this rock was examined by XRD to determine possible presence of prehnite, zeolites and feldspathoids. These mineral phases were absent and the following were confirmed:

Andesine (dominant)
Quartz (sub-dominant)
Chlorite (accessory)
Augite (accessory)
Mica (trace)

This sample appears to represent a relatively fresh alkali olivine basalt underlying an amygdaloidal flow, both representing one extrusive unit. The spotting observed in the hand specimen is due to very well developed ophitic texture of igneous origin in which subhedra of augite completely enclose plagioclase microlites and occasional chloritised olivine subhedra/euhedra. The augite shows part alteration to an unidentified brownish phase.

A micro porphyritic texture is also present where occasional large chloritized and sericitized carlsbad-twinned alkali feldspar phenocrysts (sanidine according to stain and optics), are enclosed in the groundmass.

Crosscutting veinlets of earthy hematite, chlorite, quartz and clay are also evident, without mineralisation.

In reflected light, about 7 vol.% subhedra/euhedra of high temperature magnetite with rutile exsolution intergrowths together with occasional patches of earthy hematite, are present. Only incipient hematisation of magnetite was observed.

Petrogenetically this rock type represents a non-orogenic continental alkali olivine basalt association. In this case, all the olivines have been altered to chlorite and secondary magnetite.

^{*} The plagioclase is mainly andesine but shows a wide range in composition between oligoclase and labradorite (i.e. An₁₃ - An₅₄).

Drill Hole No. and Interval: CD1, 340.2m

Hand Specimen Description: Mottled very fine grained greenish grey to reddish-brown (hematitic) amygdaloidal volcanic rock. The sample is non-magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Altered (epidotised and chloritised) amygdaloidal oligoclase trachy basalt*.

A bulk sample of this rock was examined by XRD, where the following minerals were recorded:

Chlorite (dominant)
Quartz (sub-dominant)
Epidote (accessory)
Potash feldspar (accessory)
Smectite (accessory)
Plagioclase (trace)

The sample shows a relict igneous texture with abundant random epidotised oligoclase microlites, abundant potash feldspar microlites and chlorite/epidote/quartz/clay/earthy hematite filled amygdales. Some of these amygdales are aligned, making an angle of about 50 to the core axis which indicates a dip of 40. Occasional scattered euhedral pseudomorphs of quartz after feldspar phenocrysts and chlorite after ferromagnesian phenocrysts, are also evident.

In reflected light, earthy hematite is the main opaque mineral, though a rare microveinlet of <1 to 6 μm chalcopyrite occurs between epidote grains inside some amygdales. This chalcopyrite is sometimes associated with intergranular earthy hematite. Native copper is absent and one 6 μm yellow metallic grain was recorded in the matrix.

MRL 13473

Drill Hole No. and Interval: CD1, 343.4m

Hand Specimen Description : Very fine grained grey "spotted" basaltic rock with occasional amygdales. The sample is moderately magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Fine grained ophitic chloritised olivine andesine basalt** (similar to MRL 13471, though finer grained).

Again the spotting is due to well developed ophitic texture in which augite subhedra wrap themselves around plagioclase microlites. Other igneous textures include scattered subhedral to euhedral chloritized and iron-oxide impregnated relict olivine phenocrysts, occasional large carlsbad-twinned potash feldspar phenocrysts and rare quartz/chlorite

^{*} Roughly equal proportions of potash feldspar (XRD, stain test) and epidotised oligoclase (optics). Some residual oligoclase shows a composition An₁₂ - An₂₈.

^{**} The plagioclase is mainly andesine though it shows a range in composition from andesine to labradorite (i.e. $An_{32} - An_{52}$).

filled amygdales. The potash feldspar phenocrysts* show incipient alteration to sericite, chlorite, clay, calcite and rare epidote, indicating minor propylitic alteration. Chlorite also occurs in the groundmass between plagioclase microlites, some of which show a vague flow orientation. Rare crosscutting quartz veinlets are also evident.

In reflected light, about 10 vol.% opaques are evident; these comprise subhedra and euhedra of martitised magnetite with rutile exsolution lamellae (high temperature rapid cooling origin).

MRL 13474

Drill Hole No. and Interval: CDl, 344.65m.

Hand Specimen Description : Mottled fine grained reddish-brown (hematitic) amygdaloidal volcanic rock. The sample is non-magnetic, non-radioactive and contains no fluorescent minerals.

Rock Identification and Comments: Hematitic epidotised and chloritised amygdaloidal oligoclase**basalt (mugearite). Pronounced igneous texture with abundant felted vaguely aligned microlites of plagioclase, abundant epidote, chlorite and calcite filled amygdales together with scattered chloritised epidotized and possibly analcitized?***larger phenocrysts of plagioclase and carlsbad-twinned potash feldspar. Fine grained epidote and chlorite are also present in the groundmass indicating propylitic alteration.

In reflected light, the main opaque minerals are scattered patches of crystalline hematite, earthy hematite and rare possible chalcopyrite.

MRL 13475

Drill Hole No. and Interval: CD1, 360.15m

Hand Specimen Description: Fine grained grey "spotted" basaltic rock. The sample shows microfracture surfaces coated with chlorite and reddish earthy hematite. The sample is moderately magnetic, non-radioactive and contains no fluorescent minerals.

Biaxial negative, with very small 2V which indicates sanidine.

^{**} Mainly oligoclase, though the composition ranges from oligoclase to andesine (i.e. An₃₀ - An₃₂).

^{***} Both plagioclase and potash feldspar show part alteration to a low relief isotropic phase, possibly analcite (optical identification).

Rock Identification and Comments: Ophitic chloritised olivine andesine* basalt. (hawaiite)

Well developed igneous ophitic texture is evident with subhedra of augite enclosing plagioclase microlites, which is the cause of the spotted texture in the hand-specimen.

Scattered larger phenocrysts of partly chloritised, sericitized and epidotised potash feldspar as well as scattered potash feldspar groundmass microlites are also evident. This ophitic basalt originally contained olivine subhedra, now completely altered to chlorite and magnetite. Chloritic alteration is also present in the groundmass.

As in previous samples of this rock type, the augite shows alteration to an unidentified brownish anisotropic phase and it seems that these ophitic basalts represent the flow bottoms.

Occasional veinlets of quartz, chlorite-quartz and calcite-quartz-hematite are also present.

In reflected light, the opaques (7 vol.%) comprise mainly subhedra and euhedra of hematised magnetite with exsolution blades of rutile (high temperature origin). One rare 60 µm grain of chalcopyrite occurs interstitially between plagioclase microlites (magmatic origin?). The magnetites in this sample are more hematised than those in MRL 13471.

^{*} The plagic lase shows an andesine composition (i.e. $An_{33} - An_{44}$).

APPENDIX II

Amdel Report MD 4078/82 "Testing of Cores"

The Australian Mineral Development Laboratories

lemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662 Telex AA 82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

10 March 1982

208

3/114/0 MD 4078/82

Shell Company of Australia Limited Metals Division P.O. Box 1319 ADECAIDE SA 5000

Attention Mr R Weeden

REPORT MD 4078/82

YOUR REFERENCE:

Order No. 3585

SUBJECT:

Testing of Cores (DDH cDI)

MATERIAL:

18128, 18132 and 19134

DATE RECEIVED:

4 February 1982

INFORMATION REQUIRED:

Bulk Density and Chemical Analyses

Investigation and Report by: Lyn Day

Manager, Mineral & Materials Sciences Division: Dr William G. Spencer

holy Spenier

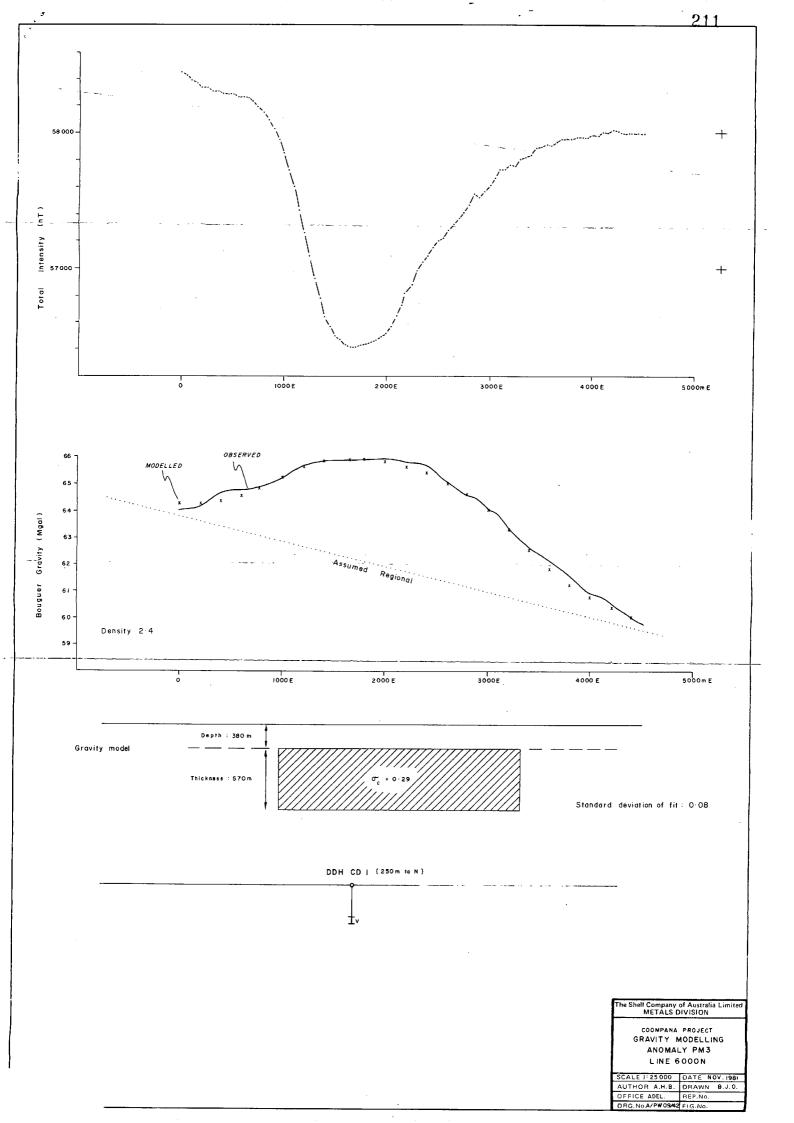
for Norton Jackson Managing Director

Pilot Plant: Osman Place Thebarton S.A., Telephone 43 8053 Branch Laboratories: Perth W.A. Telephone 325 7311 Melbourne Vic. Telephone 645 3093 | ja

Three samples of quarter core labelled 18128, 32 and 34 were submitted for bulk density determinations for gravity modelling and for chemical analysis.

2. PROCEDURES

The samples were tested on an as received basis. Bulk densities were determined by weighing the samples, soaking then im water for 24 hours and then reweighing them suspended in water and with surface water removed.


The chemical analyses were determined using inductively coupled plasma atomic emission spectrometry.

3. RESULTS3.1 Bulk Densities

Sample		Bulk Density
18128	322.82	2.73
18132	337.9~	2.77
-18134	360.8~	2.86

3.2 Chemical Analyses

·	CD1:	322·8m	337.9m	360.8m
Element		18128	18132	18134
			_ppm	
		2	<1	2
Ag		2 < 5	4	2 ·\$
As				10
Bi		40	10	10 <1
Cd		<1	1	68
Co		72	185	
Cr		97	54	94
Cu		145	150	44
Fe		7.8%	4.4%	8.7%
Mn		1000	565	1270
Mo		3	2	. 4
Nì		170	80	152
Pb		10	20	10
S		<50	<50	<50
V		236	137	242
W		260	305	85
Zn		88	52	93
La		14	18	14
Nb		2	5	5
Sb		<10	10	<10
Sn		7	15	8
Ta		7 <5	<5	♦
Ti		5410	2890	6300
Y		23	14	26

THE SHELL COMPANY OF AUSTRALIA LIMITED

METALS DIVISION

SOUTH AUSTRALIA

REPORT ON E.L.747, BUNABIE ROCKHOLE E.L.748, HUGHES E.L.749, NULLARBOR PLAIN

FOR THE QUARTER ENDING JULY 20TH, 1982

AUTHOR: R.J. WEEDEN DATE: AUGUST, 1982

REPORT NO.08.1204

AUGUST, 1982 COPY NO. 1

DISTRIBUTION: Copy 1 Department of Mines and Energy South Australia

- 2 The Shell Company of Australia Limited, Metals Division, Melbourne
- 3 The Shell Company of Australia Limited, Metals Division, Adelaide
- 4 B.H.P. Adelaide
- 5 B.H.P. Melbourne

LIST OF FIGURES

Figure No.	<u>Title</u>	Scale	Drawing No.
1.	Eucla Basin S.A. Coompana Area Location Plan	1: 1 000 000	A/MT22/90
2.	Coompana Project DDH CD 1 Magnetic Susceptibility	1:250	A/TF02/004
3.	Coompana Project Gravity Modelling Anomaly PM3 Line 6 000N		A/PW09/042

LIST OF TABLES

Table 1:	Magnetic Property Measurements for DDH CD 1
Table 2:	Density measurements of DDH CD 1
Table 3:	Coompana Project: Summary of Gravity Modelling Results

LIST OF APPENDICES

Appendix 1 Diamond drill hole logs for DDH CD 1 and CD 2

1.0 INTRODUCTION

Exploration licences 747, 748 and 749 are due to expire on the 20th October, 1982.

The licences are located in the Eucla Basin and cover parts of COOMPANA and COOK 1:250 000 sheet areas, South Australia adjacent to the border with Western Australia.

The licences are referred to as Bunabie Rockhole (E.L.747) Hughes (E.L.748) and Nullarbor Plain (E.L.749) and collectively form the Coompana Project.

The licences are the subject of a joint venture with Dampier Mining Company Ltd.

Main exploration targets for the three licences are oil shale within the Cretaceous Madura Formation and base metals associated with geophysical anomalies derived from sources in the Pre-Cambrian basement.

2.0 WORK COMPLETED

No field work was carried out during the reporting period.

2.1. Magnetic Modelling

Because of the recognised presence of remanance and the unknown strength and inclination of the remanent vector prior to the drilling of DDH CD 1 (anomaly PM3) no detailed magnetic modelling was attempted on the Coompana ground magnetics. The emphasis in the preliminary interpretation was on estimating depths to the top of the source.

After completion of DDH CD 1 limited magnetic modelling was carried out by Shell and BHP assuming three-dimensional prisms, a field strength of 58500 T and an inclination of $+64^{\circ}$ (i.e. exactly opposite to the earth's magnetic field).

Modelling of PM3 by BHP indicates a deeper plug-like source at a depth of approximately 500 m overlain by a shallower more magnetic sill-like source at approximately 300 m depth and off-set to the west.

Similar combinations of pipe shaped bodies corresponding to mafic intrusives and sill shaped bodies corresponding to intrusives and/or extrusive lithologies can be postulated to explain most of the magnetic features in the Coompana region.

The results of the magnetic property measurements carried out by the Earth Resources Foundation at Sydney University are listed in Table 1.

Sample Name	Inclination of Remanent Vector (Degrees)	Strength of Remanent Vector (emu x 10 ⁻⁶)	Q	Magnetic susceptibility (cgs x 10 ⁻⁶)
ap 1/201 2	62	39500	14	5000, 5075, 5100
CDI/321.3	-63 +62	43000	12	6200, 6500, 6800
CDI/352.9	+67	29700	11	4200, 5025, 5300
CDI/357.5	+85	4200	3	2400, 2600, 3000
CDI/3600	+54	9400	5	3250, 3300, 3600
1	1			

Notes

- 1. The inclination of the present earths field at Coompana is approximately +640
- 2. Q = remanent strength/induced strength.
- 3. The 3 susceptibilities quoted are minimum, mean and maximum.

Since drill hole DDH CD 1 was vertical the inclinations measured show that with the exception of CDI/3213, the rocks have a remanent magnetic polarization almost directly opposite to the present earths field. They would therefore, be expected to generate a negative magnetic anomaly.

The strength of the remanent magnetization ranges from 3 to 14 times that of the induced magnetization (due to magnetic susceptibility only). Treating the resultant magnetization as being caused by an "equivalent susceptibility" yields a value of around $30,000 \times 10^{-6}$ cgs which is extremely high!

On the basis of these measurements, a substantial body of the rocks samples would be expected to generate a large and dominantly negative magnetic anomaly. Magnetic susceptibility measurements were also recorded on drill core from DDH CD 1. These are presented in figure 2.

2.2. Gravity Modelling

Density measurements on 14 basalt samples from DDH CD 1 (Table 2) show an average density of 2.67 gm/cc ranging from 2.46 - 3.12 over 6 metres.

This average density is probably not representative of the basalt sequence intersected as the density recorded is unlikely to be contributing to the source of the gravity anomaly recorded over magnetic anomaly PM 3.

Results of the preliminary gravity modelling completed prior to the drilling programme are summarised in Table 3. Modelling using vertical three dimensional prisms and best fit criterion suggested prism shaped sources with density contrasts in the range 0.2-0.3; depths of 400 m to 1000 m and thicknesses of 600 m - 2000 m.

Subsequent modelling of line 6000 N, anomaly PM 3 (Model 3) indicates the data can be fitted equally well with a prism 3000 m thick at a depth of 400 m having a density contrast of 0.15 (figure 3).

TABLE 2

SAMPLE TYPE: QUARTER CORE

	Loca	ation	Interval	Description
Sample No.	From	То	m	Density gcm-3
18116	322.8	323.3	0.5	2.71
18117	323.3	323.8	0.5	2.46
18118	323.8	324.3	0.5	2.54
18119	324.3	324.8	0.5	2.53
18120	324.8	325.3	0.5	3.12
18121	325.3	325.8	0.5	2.66
18122	325.8	326.3	0.5	2.64
18123	326.3	326.8	0.5	2.67
18124	326.8	327.3	0.5	2.48
18125	327.3	327.8	0.5	2.67
18126	327.8	328.3	0.5	2.60

COOMPANA PROJECT - SUMMARY OF GRAVITY MODELLING RESULTS

Magnetic	Line	Mag.	Mag. depth	Location of	Max.	Depth	Density	Thickness	Width	Standard
Anomaly	PTHE	Peak	est.	Gravity Peak	Residual	Est.	Contrast	12010.1000	m ·	Dev.of
Anomary		roun		aravity roun	Gravity	m				Gravity
			·	_	m Gal					Model fit
PM-2	3000N	2000E	440 <u>~</u> 560	1800E	4.5	940	0.23	1550	2900	0.04
PM-3	4000N	2100E	330	2200E	4.0					
					[N	 Model No.1 385m	0.29	570	1180	0.08
*	6000N	1700E	280	1800E	1 /1 ()	Model No.2 760m	0.29	930	1120	0.05
			·			Model No.3 400m	0.15	3000		
PM-4*	2000E	2800N	360-520	no significa	ht anomaly					
	6000E	2400N	480-520	2500N	3.0	520	0.51	270	1960	0.13
	-					970	0.29	1920	2500	0.03
PM-7	3000N		380–560	no significa	 nt anomaly					
CM-4	3000N	3400E	400-500	3200E	2.5	410	0.21	680	1570	0.07

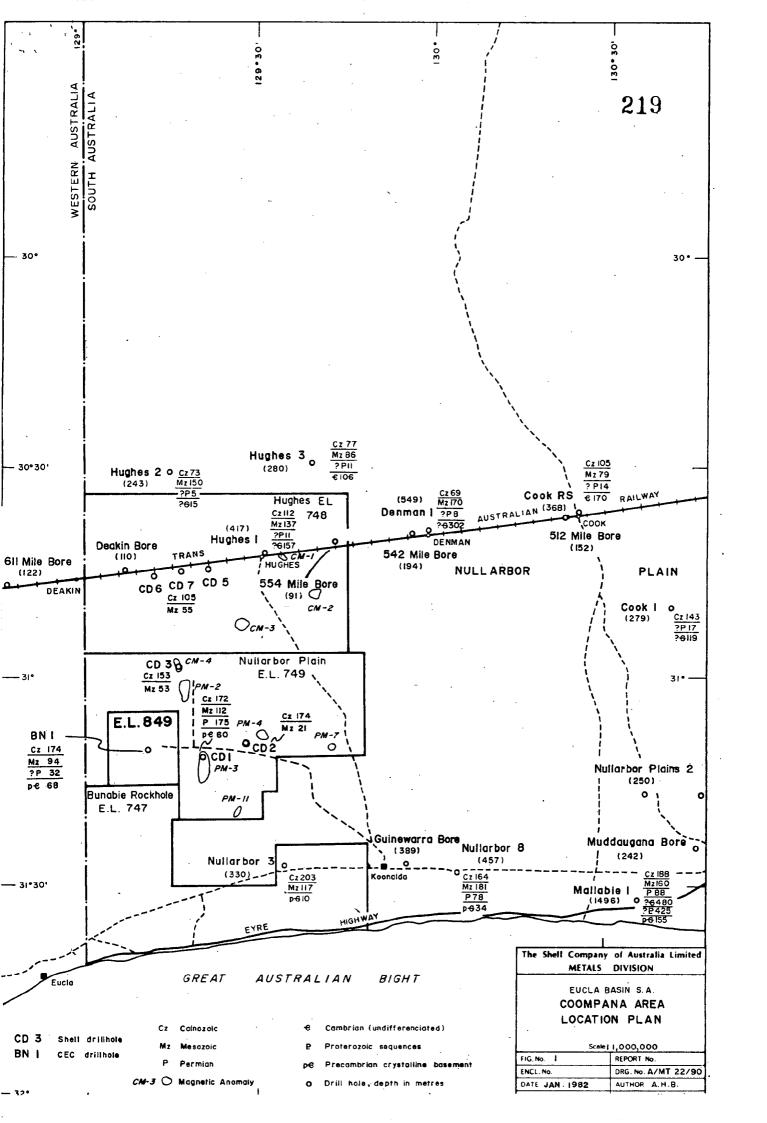
The gravity data are consistent with mafic intrusive sources (gabbro, dolerite) with a density of 2.8 - 3.0 gm/cc having the form of thick sills or elongated pipe shaped bodies.

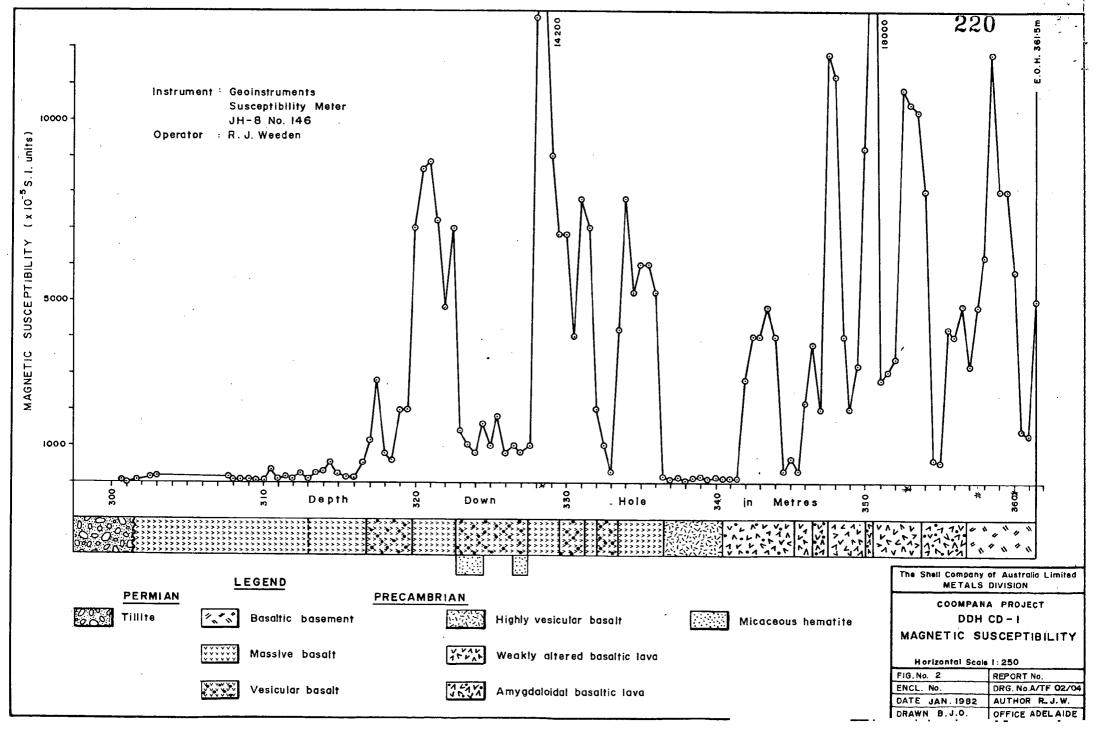
3.3. Diamond Drilling

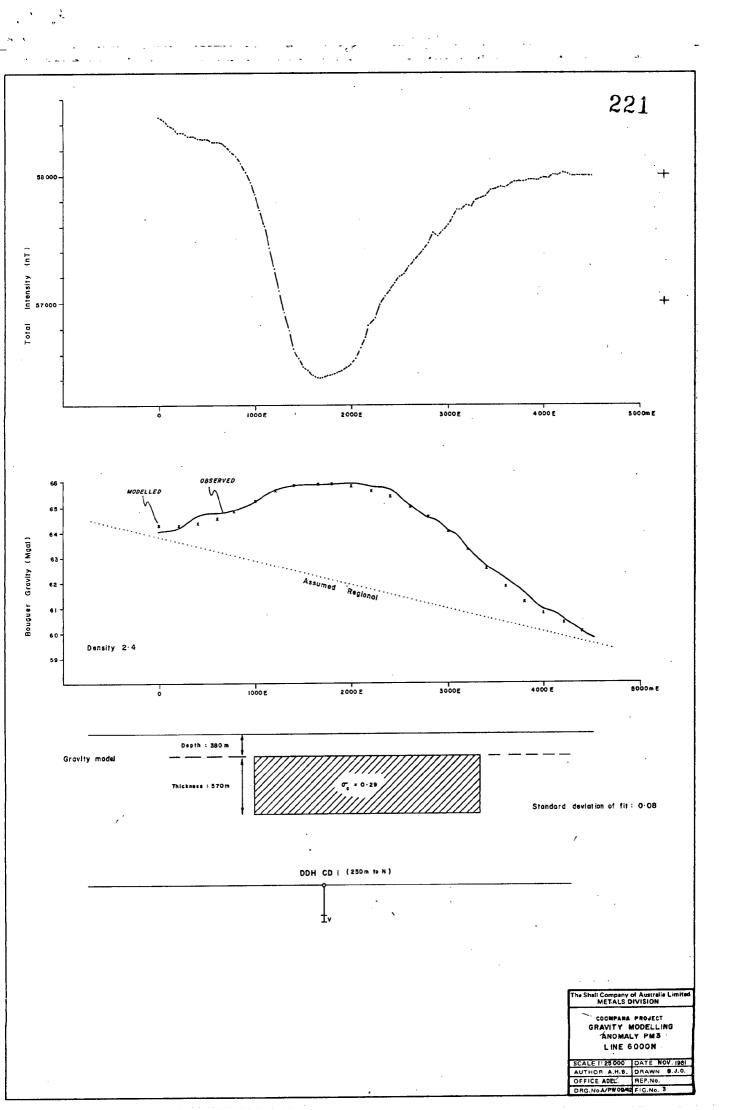
Completed logs for DDH CD 1 and CD 2 are included in Appendix No.1.

3.0 PROPOSED PROGRAMME

An exploration programme in the Coompana Joint Venture area is dependent on the forthcoming results of BHP's proposal to deepen PDH BN 1. This hole, located on the adjoining E.L.849, will be extended by BHP as part of an agreement with CEC.


4.0 KEYWORDS


Coompana, Cook, Eucla Basin, base metals, oil shale, magnetic modelling, gravity modelling, diamond drilling.


5.0 EXPENDITURE

A summary of expenditure since the 31st March 1982 is detailed below.

Hughes E.L.748	
Personnel/Personnel Burden	105
Support Costs	92
Drawing/Computer/Eng.	141
	338
Nullarbor E.L.749	
Personnel/Personnel Burden	567
Support Costs	99
Analyses/Assays	165
Drawing/Computer/Eng.	677
	<u>1508</u>
Bunabie Rockhole E.L.747	
Support Costs	104

APPENDIX 1

METALS DIVISION (S.A.)

DIAMOND DRILL LOG

HOLE No. DDH CD 1

PROJECT	r T		mpano		DOWNHOL	E SURVE	YING	GENERAL COMMENTS						
AREA			abor f		INSTRUM	ENT : EA	STM4N	Hole	STOPPOO	. as	rods	pogmoux	<u>s</u> to	trahten
GRID			31° 41.5'	(0.(1)	DEPTH	DIP	AZIMUTH	Up.	' '				<u> </u>	
CO-ORDS		-ove	129051		0	vertical		<u>'</u>						
COLLAR ELEVATION	N	No	+ Meas	red	200:5m	-88°	306 mag		AL					
TOTAL	.:	361	.5 m		200 5 m		SOO Mag							
1:250 000 SHEET)		ompan	a	358.5m	-875°	340° mag							
1: 100 000 SHEET		Mer	dayer	rah										
1: 50 000 SHEET						·								
S. D. O. No												1		
ANALYSE BY	D			·										
CONTRACT	OR	Peter	r Nitsol	nte y ud			<u></u>		•					
RIG TYPE	ı,		gyear	44		DRIL	ING OBJE	CTIVE			DRILLING RESULT			
DRILLERS	s	サル	eloor	therre					multy	-	DDH CD 1 in tersected			
DATE STARTED	,		/10/81		and	regar	ve m	agral	test the	_ to	etlacs	with a	BM	ont -
DATE			10/81		11/25	maly	.KW=3		for oil	de de	ravori	sm in the c	orter	it earths
FINISHED		<u>-</u>	BREAKDOV	M/NI	Shal	a pot	anteal	<u> </u>		Fig	eld.			
CORE		TED	INTERVAL			7								
SIZE		ST/M	FROM	то										
PREC			0	160.0										
, HQ			160.0	185.0	ļ									
NQ			185.0	361.5	<u> </u>		····	<u></u>						
BQ	<u> </u>		•											
TOTAL C OF SUNDR														
TOTAL CO			. —											
TOTAL C														

DRILL HOLE : DD++ CD 1 Sheet

ROCK DESCRIPTION	CORE ANGLES	mineralization/comment224	CORE (REC D
0-160:0m: Pre coller in limestone. No		·	RUN SHORT
chip recovery 80 160.0m			0 1/2
			161.0
	- 		164.0 -
160.0 - 171.8 m TERTIARY LIMESTONE			1670
While to off - while chalky fore ground		171.5-171.8 m: Traces of glauconile	1 1
massive (mestone with traces of			173.0 -
Bryozoans & Shell frag ments. Clay			176.0 -
pellets 171.5 - 171.8 m. Contact at			1740 -
171.8m very distanct			185.0 -
		·	184:5
			187·5 -
171.8m - 263.5m MADURA FORMATION			190.5
			143:5 -
Dork grey to pale grey soft time-			196.5
ground Micaropus Mudstone.			19.5
Polarcuely massive throughout with a tendency to dry out and		at 197.1 m: Trace fire ground pyrite associated with	202.5 0.4
with a tendency to dry out and		associated with	100.6
Clack on arysig. Weakly combon-		slictorsidos	208:5 - 211.6 -
accous in places. Mynor sandy			2146 -
171.8 74.5m mynor won stoned			2176 0.7
1/1.8 /4.5m mypor Lion Stoured			220.6 -
sordstone lenses up to			2228 -
			725.9 -
184.5-142.5m clay pollofs, rate			226.5 -
Shell fragments (also at 200.5 m)			2295 -
202.9-203.1: massive lungsione			23.5.5 -
with narrow magular calcule			235.5
lipunung,			538.2
211.5-211.7 m Truncated cross bodding			241.5 -
up the hole (also at 241.7M)			2425 -
UD HE HOLD (also at EATI-71X)	1 1	1	[C4/3]

DRILL HOLE DDH CD 1 2 of 5

CORE CORE MINERALIZATION/COMMENTS ROCK DESCRIPTION REC 'D **ANGLES** 225 RUN SHORT 263.5m - 284.0m LOONGANA SANDSTONE 250:5 ट्यः <u>र</u> 256.5 265 5 268.5 273.0 - 274.6m 2 yourgsandstone lan comand condimerate sardslow 284.0 - 301.5m PERMIAN TILLITES? 3075 310.6 331.5 woothering In

DRILLHOLE: DDH CD 1

Sheef 3 of 5

ROCK DESCRIPTION	CORE ANGLES	MINERALIZATION/COMMENTS	COI REC	
301.5 - 361.5 m: BASIC VOLCANICS (Gawler (E.OH) Parge Volcanics(?))		226	Run 3495 3525	SHORT -
Green to gley variable massive to amphaloidal basaltic flows with chlorite planishes & clinopyroxen			358.2 358.2 352.2	
throughout. Vesicles contain varying amounts of Chlorite, epide quartz, K-feldspar, zeolile and			EOH	
Sol. 5 - 313.0n: weathered frieble green a reg feld spathic chloritic breadt				
massive Chloritic basaltic.				
316.8 - 319.75m: Amygdalordal basalt with minor banalite on fractures				
319.75 - 322.8 m: Massive basalt with disapproxene & chlorite. Vesicles with quartz and				
[Thin section No 18127 at 321.1m] 372.8 - 327.4 m: Vaguely layered Very fine vesicular basaf with		322.8 -327.4m: bronze-cappor coloured homografe rich		
extensive plagicilise afternoon and interstical Chlorite. Dissemunated time to matrix		mico flates in to 2-3mm wide scattered throughout Generally in the order		
and lumonite. Speckled appearance throughout. [Thun sections No 18128 at 3228		of 1% of volume of cope		
and No 18124 at 326.0]				

DRILLHOLE: DDH CD1 Sheet

ROCK DESCRIPTION	CORE ANGLES	MINERALIZATION/COMMENTS	CORE F REC D
327.4-329.5m: Massive baselt with Scattered clumpyrevene and munor unperstal chlorite		227	
Thin 50 chon to 18130 at 327.9m] 327.5 - 331.2m: Amyadalordal basalt			
331.2 - 332.0 m: Mottled appearance - massive basalt			
332.0 - 333.5m: Vesicular basalt with unterstitual Chlorite, altered pyroxene and magnetile plus			
traces of hematite. Vesides filled with charite, epidole, quartz, K-lebspar and zoolik			
massive basalt 336.5-340.4 m: Very highly vestadar basalt with vesides filled			
with giventz and epidote. Groundmass of epidote, musor quartz and chlorik plus			
Traces of Micaceous Lemante [Thin section No 18132 at 337.9m] 340.4 - 361.5m: Weakly altered			
basalt with coxidized and loucoxenised magnetis.			
Plagradase Phonogrysh with purar quarts and chlarite	1 1 .		
Dosalt from 340.4 - 345.3m, 346.5 - 347.4, 350.1 - 350.6m and			
757-8 - 356-7 m	I. <u>I. I. I. I</u>		

DRILLHOLE DOH CD 1 Sheet*

CORE CORE MINERALIZATION/COMMENTS ROCK DESCRIPTION REC D ANGLES [Thun sections No 18133 at 352.3 m

_		
	METALS	DIVISION
•		

FILLET MPLE TYPE:

LOCATION / PROJECT: DDH CD1 COOMPANA

SAMPLER:

SAMPLE STORAGE: -

______ DATE: 26/11/81 MAP/PHOTO REF: __

ISSAY LAB:

SAMPLE DESPATCH

ASSAY REPORT NOS: AC 2519/82

ORDER NO:

		 -	ANALYSES ANALYSES											${229}$		
AMPLE-No.	LOCA	TION	INTER'L (m)	031 75	le Id		·		1	1323						DESCRIPTION
			· · · · · · · · · · · · · · · · · · ·	Yitres	7 tonne	5	 	ļ								
		154.0			1 -		 	 								
6396		174.0	2.2	0.5 -	1.5		 									
97	174.0	176.0	2.0	-"	<u> </u>		 		 							
98	176	_178	11	11	<u>"</u>	<u></u>	 	 	 							
99	178	180	11	"	- ''-		 -	 	 	ļ						
6400	180	1.82	. 11	- 11	11.:		 	 	ļ							
01	182	_184		- "			∤		 							
02	184	186		<u>''</u>	11		 	 	 							
03	186	_188	- 11	- 11			. 	 	 							
04	188	190	11	17	11		-	↓								
05	190	192	"	''	''			ļ								
06	192	194	- ''	11	11	ļ	 			ļ				ļ		
07	194	196	11	<u>''</u>	''	ļ. <u></u>		ļ	ļ		<u> </u>		ļ	ļ		
08	196	198	11		 "	ļ		ļ	ļ		 					
	198	200	,,	"	111		<u> </u>	<u> </u>	↓				<u> </u>	<u> </u>		
6410	200	202	11	"	"			ļ	<u> </u>	ļ	 	 			 	
1.1	202	204	"	1 "	- 11		<u> </u>	<u> </u>		ļ		 	 			
12	204	206	"	<u>''</u>	11			<u> </u>	_		 	<u> </u>	ļ	_		
13	206	208	"		11				1	<u> </u>						
14	208	210	- ''	11	- ''				ļ	ļ	ļ		ļ <u>.</u>		ļ	
. 15	210_	212	,,	- 11	<u> </u>		<u> </u>			ļ	<u> </u>			<u> </u>		
16	212	214	- 11	••	-,,				<u> </u>				ļ	ļ	 	
17	214	216	11	''			<u> </u>		<u> </u>	<u> </u>		<u> </u>	ļ		 	
18	216	218	11	''	''	<u> </u>				L		ļ	ļ		L	
19	218	220	- 11	11	11	<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ		ļ	↓	ļ	
6420	220	222	11	11	11			<u> </u>	ļ			ļ	ļ	-	_	
21	222	224	- 11	11	11	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	ļ		}	
22	224	226	11	11	11				1	1	<u> </u>	<u> </u>	 	ļ	ļ	
23	226	228	11	11	11				<u> </u>		L	<u> </u>		<u> </u>	 	
24	228_	230	11	11	11					L	<u> </u>		 	 	 -	
25	230	232	''	11	"							ļ		ļ		
26	232	234	11	11	11					<u> </u>		<u> </u>	 	ļ	ļ	
27	234	236	11	11	11								1	ļ	↓	
28	236	238	11	11	"								<u> </u>	ļ		
6429	238	240	11	11	11	1]			1	<u> </u>	<u></u>	<u> </u>

EM	A	R	KS

		•	
 MET	TALS	DIVI	SION

EMARKS:

SHAPLE PRECORD

	AMPLE	TYPE:	CORE	FILLET
--	-------	-------	------	--------

LOCATION / PROJECT: DDH CD1 COOMPANA

SAMPLER:

DATE: 26/11/81 MAP/PHOTO REF:

ASSAY LAB: AMDEL SAMPLE DESPATCH

ASSAY REPORT NOS: _

					ORDE	R Nº:										£30		
···	,				SAMPLE											STORAGE:		
SAMPLE-No.	roc	ATION	INTER'L		ANALYSES													
			(m)	Yitre	E91d E7tonn					T	T	T	T	T	I	DESCRIPTION		
 	1			<u> </u>	1								1	1	1			
6430	240	242	2.0	0.5	- 1.5													
31	242	244	- 11	11	11 ,										 			
32	244	246	11		11							1	 	 	 			
33	246	248	11	11	11						1		 		 			
34	248	250	11	11	11					†	}	 	 	 	 			
35	250	252	1	''	11			1	1		 	 	† · · · · ·	 	 			
36	252	254	11	11	11			1	1	1		 		 	<u> </u>			
37	254	256	11	,,	11					T		1	 		<u> </u>			
38	256	258	17	- 11	11			1			<u> </u>	†	<u> </u>	 	 			
39	258	260	11	"	11			<u> </u>	 	 	 	 	 	 	 			
6440	260	262	11	"	"		†	 	 	 	<u> </u>	 	 	 	├ ┈─-			
41	262	263.5	1.5	11	"				 	†		 	 	 	 			
42	263.5		2.0	11	"				1	· ·		 	╁───	 	ł			
43	265.5		3.0	"	1117			1	†		 	 	 	 				
44		271.5	3.0	,,,	''		† — —	 	 	 	 	 	 	 	 	i		
45	271.5	274.5	3.0	11	"		†	 	 		 	 	 	 	 			
46	274.5		2.8		,,		†	 	 	 	 	 	 		 			
47	277.3		3.2	1.5	- 5.0			†	 	†			 	 	 			
48		286.5	6.0	0.5	- 1.5		 	 	 	 	 		 		 			
49		292.5	6.0	11	1,1		†		 	 		 	 	 		<u> </u>		
6450	292.5		3.0	11	"		 	 	 	 	 	 	 	 				
51		310.5	6.0	*1	11		<u> </u>	 			 	<u> </u>						
							 	 	 	 	<u> </u>	 	 					
							 	 	 	 		 	 		ļ			
							 	 	 		ļ	 	 		ļ			
							 	 	 	 		 			ļ			
							 		+	 			 	ļ	ļ			
							 	 	 	 	<u> </u>	 			ļ <u>.</u>			
									 	 	}	ļ			 			
					 		 	 	 	 	 							
	· · · · · · · · · ·				 		 	ļ		ļ	 					<u> </u>		
					 		 	 				ļ	ļ	l				
	-									 		 						
					 		 		 	<u> </u>			ļ					
	<u> </u>	·			<u>_</u> 1		L	l	L	L	Ī	1	1	ł	1	1		

A TATE OF THE STREET OF SELECTION APPLICATION AND ARRESTS OF SECTION ARRESTS OF SECTION AND ARRESTS OF SECTION AND ARRESTS OF SECTION ARRESTS OF SECTI

METALS DIVISION

.........

was the state of the state of

MPLE TYPE: Filleted Core

LOCATION / PROJECT: DDH CD 1 COOMPANA

SAMPLER:

COMLABS DATE: 5/11/81 MAP/PHOTO REF: __

ASSAY LAB:

SAMPLE DESPATCH

ASSAY REPORT NOS:

811838

ORDER Nº: SAMPLE STORAGE:

SAMPLE No.	LOCA	TION	INTER'L						ANAL	yses (pr	om unle	ess spe	ecifie	1)		DECCUPTION
3,447,447,144			(m)	Cu	Pb	Zn	Bi	Co	Ag	Au						DESCRIPTION
6452	301.5	304.5	3.0	100	6	195	4	48	1	0.05						
53	304.5	308.0	3.5	95	6	380	4	70	1	0.05						
54	308.0	310.0	2.0	280	4	195	4	50	1	0.05						
6455	310.0	312.0	2.0	145	4	180	4	105	1	0.05						
56	312.0	313.0	1.0	170	4	130	4	80	1	0.05						
57	313.0	315.0	2.0	165	4	135	4	75	11	0.05						
58	315.0	317.0	2.0	120	4	125	4	55	1	0.05						
5 9	317.0	319.75	2.75	125	6	115	4	44	11	0.05						
6460	319.75	321.3	1.55	140	4	105	4	40	1	0.05			<u> </u>			
61	321.3	322.8	1.5	130	12	90	4	44	1	0.05						
62	322.8	324.3	1.5	115	8	95	4	44	1	0.05			I			
63	324.3	325.8	1.5	90	10	100	4	48	1	0.05						
64		327,4	1.6	220	8	110	4	48	1	0.05						
6465	327.4	329.5	2.1	125	6	80	4	40	1	0.05						
66		331.2	1.7	120	4	110	4	40	1	0.05	•					
67	331.2	333.5	2.3	120	4	125	4	40	1	0.05	•					
68	333.5	336.5	3.0	115	4	90	4	40	1	0.05						
69		338.5	2.0	65	4	260	4	40	1	0.05						
6470	338.5		1.9	50_	4	120	4	36	1	0.05			<u> </u>			
71	340.4	342.4	2.0	65	12	250	4	40	1	0.05						
72	342.4	344.4	2.0	105	4	120	4	40	1	0.05				<u> </u>		
73	344.4	346.5	2.1	38	8	135	4	48	1	0.05			ļ	<u></u>		
74	346.5	348.5	2.0	65	4	155	4	44	1_	0.05						
6475	348.5	350.6	2.1	85	6	140	4	40	1	0.05						
76	350.6	353.8	3.2	100	4	120	4	40	11	0.05			L			
77	353.8		3.0	75	4	145	4	48	1	0.05						
78	356.8		2.2	130	4	130	4	44	1	0.05						
6479	359.0	361.5	2.5	90	4.	95	4	40	1	0.05			<u> </u>			
		E.O.H.														
		ļ														,
													ļ		L	
MF THODS	Cu,	Ph. Zn	Bi,	Co.	AAS_1											
	L			Ag	AAS 3											
	ļ			Au	AAS 5	Α										
	L	L			L					L		<u> </u>	l			

EMANNS .	

 METAL	•	DIVISIO	ı

REMARKS:

SAMPLE RECORD

_		_		
She	ę٤		of	

QUARTER CORE AMPLE TYPE:

LOCATION / PROJECT: CD1 COOMPANA

SAMPLER:

DATE: 16/11/81 MAP/PHOTO REF

ASSAY LAB: COM SAMPLE DESPATCH

3955 ASSAY REPORT NOS: 811933

ORDER NO:

٤	;/	١	M	Ρ	L	Ε	S	T	0	R	A	G	Ε	:	

				· · · · · · · · · · · · · · · · · · ·												
SAMPLE-No.	LOCA	TION	INTER'L			,	_	·	ANAI	YSES	(in ppm	1)				DESCRIPTION
			(m)	Cu	1.0	Zn					1					Density gcm-3
18116	322.8	323.3	0.5	85		100										2.71
17	323:3	323.8	11	90		95					1					2,46
18	323.8	324.3	11	95		100	L	L					·			2,54
19	324.3	324.8	11	130		95										2.53
20	324.8	325.3	11	80		105										3.12
18121	325.3	325.8	11	75		95										2.66
22	325.8	326.3	11	80		105										2.64
23	326.3	326.8	11	50		110										2,67
24	326.8	327.3	11	115		100										2.48
25	327.3	327.8	••	120		100										2.67
18126	327.8	328.3		105		90										2.60
				1	Ì						1					
										,						
						·				<u> </u>						
				1		-	 		1	†	 			i -		
							<u> </u>									
							 	 	 -	· · · · · · ·	1		· · · · · · ·	 		
							 		†	† — ·	1					
		1				,	†	†	†	1	1					<u> </u>
				 	†		 	 	 		1		 			
							 	 	 	 	1 1		1			
				 			 	 	 	 	+		 	 	ļ	
				 	 		 	 	 	 	+			 		
				 	 		 	 	 	 	+ -	· · · · · ·	 	 	 	
			 -	 					 	 	+		· · · · · · · · · · · · · · · · · · ·	 		
				 			 		 	 	+		 	 	 	
				 	 	ļ	 	 	 	 			 		 	
				 	 	 	 	 	 	 			 	 	 	
				 	 		 	 	 				 	 -	 -	
				 	 	 		 	 		+		 	-		
				 -	 		ļ		ļ		 		 		}	
				} _	}		 		-				ļ	<u> </u>		
	لـــــــــــــــــــــــــــــــــــــ		L	<u> 1 </u>	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>				<u> </u>	<u> </u>	<u> </u>

100 m INSET 1:500 200m 300m EOH 361-5m

DDH CD I

LEGEND

TERTIARY

Limestone (Nullarbor & Wilson Bluff)

CRETACEOUS

Madura Formation -Mudstones and clays

Loongana Sandstone Conglomeratic sandstone, glauconitic

PERMIAN

Coarse grained (glacial?) sands

Can Tillite

PRECAMBRIAN

Interbedded basaltic lavas

" Basaltic basement

Massive basalt

Vesicular basalt

Highly vesicular basalt

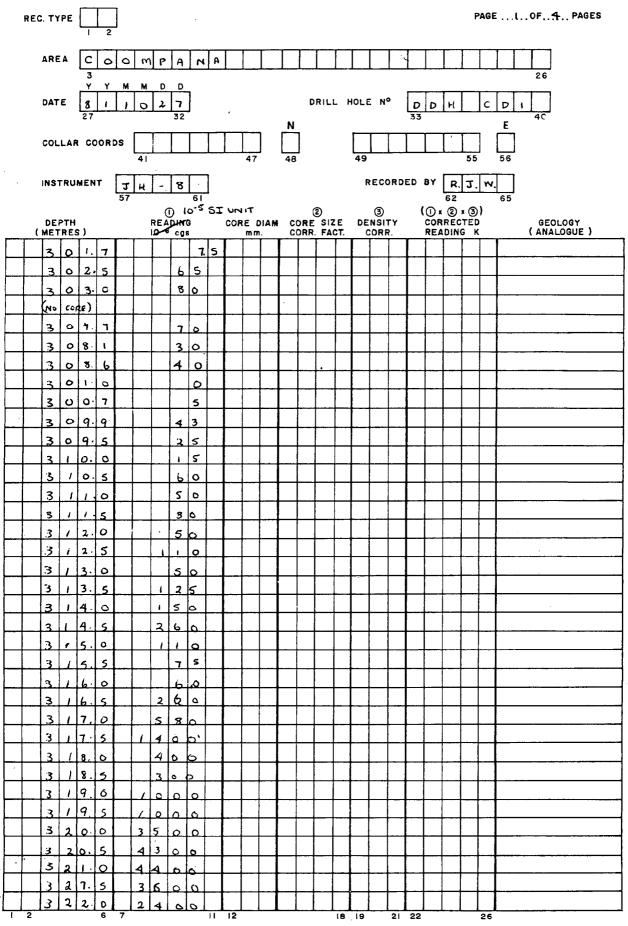
Weakly altered basaltic lava

Amygdaloidal basaltic lava

Micaceous hematite

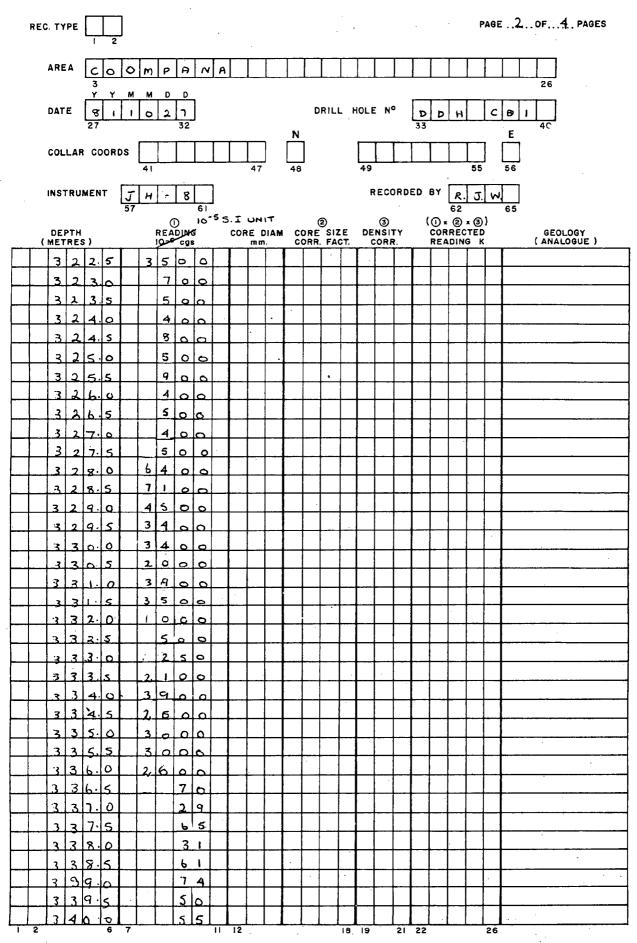
---- Unconformity

Apparent conformable contact

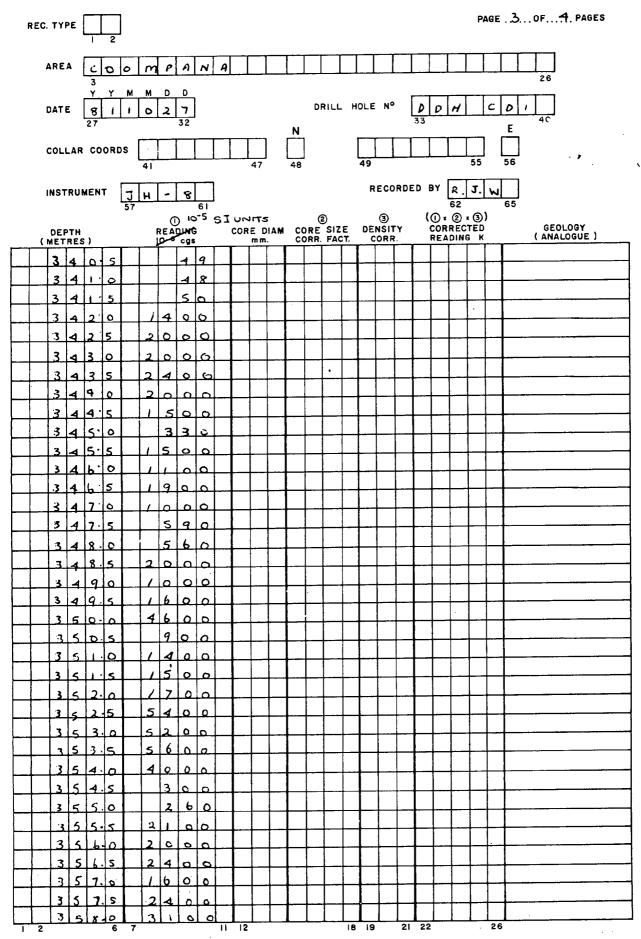

The Shell Company of Australia Limited METALS DIVISION

COOMPANA PROJECT
DRILL HOLE PROFILE
DDH CDI

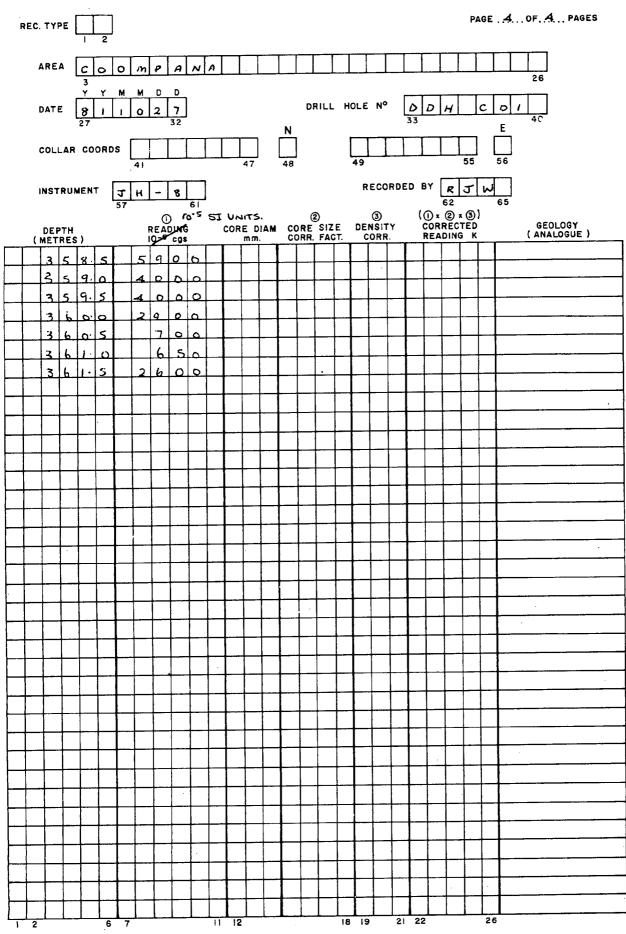
SCALE I: 2500 DATE JAN 1982
AUTHOR RW DRAWN 8JO
OFFICE ADELAIDE REP.NO.
DRG.NO.A/PW 09.440 FIG.No. 3


SHELL COMPANY OF AUSTRALIA LTD.

Magnetic Susceptibility Measurements


23

SHELL COMPANY OF AUSTRALIA LTD. Magnetic Susceptibility Measurements


236

SHELL COMPANY OF AUSTRALIA LTD. Magnetic Susceptibility Measurements

237

SHELL COMPANY OF AUSTRALIA LTD. Magnetic Susceptibility Measurements

SIZE CORRECTION : (MULTIPLY READING)

METER SM-5 JH-8

NQ x1-6 x1-8

BQ x1-8 x2-1

DENSITY CORRECTION: NOT NECESSARY FOR SM - 5 OR JH - 8 METERS.

METALS DIVISION (S.A.)

DIAMOND DRILL LOG

HOLE No. DDH CD 2 :

PROJECT	г <		mpa	na		LE SURVE	YING		GENERA	L COMMENTS	238
AREA			abor F		INSTRUM	MENT:		Hole abando	med at	194.8m 000	hob
GRID	1 4	_AT	31° 10'		DEPTH	DIP	AZIMUTH	collapsed.	45m of	rods los	t down hole.
CO-ORDS		<i>∞</i> 06	129028	<u>'</u>	0	Vertical		•			
COLLAR ELEVATION	, !	Not	meas	ured	Not	Survey	<u>ed</u>				
TOTAL DEPTH		19	4.8m								
1 250 000 SHEET		\subset	som bo	na .							
1: 100 000 SHEET		Ma	rdaya	Frah							
1:50 000 SHEET		ı									·
S. D. O. No.											
ANALYSE (D										
CONTRACTO	OR F	ابراا.	ing Pty	hke 1 Ltd				•			
RIG TYPE	L	_01	ng year			DRIL	LING OBJE	ECTIVE		DRILLING R	ESULT
DRILLERS		7 70	olt relour		To	est c	maid	ent growitg	H06 0	ebandonad	Short of
DATE STARTED	- 1		10/81		and	regat	ive m	To test the			
DATE FINISHED		3ι	/16/81		Made	malegal	From	to for			
DR	ILLI	NG E	BREAKDOV	VN	છો ≤	shale r	Dolent	ral.			
CORE	QUOT		INTERVAL								
SIZE	COST	∠ M	FROM	τo	·						
PREC			0	158.0							
но			128.0m	194.8m							
NQ											
ВО		1									
TOTAL CO									_		
								•			
OF HOLE											
TOTAL CO											
PER MET	RE				L						

DRILLHOLE DDH CD 2 Sheet

ROCK DESCRIPTION	,	COF		MINERALIZATION/COMMENTS	COI REC	
0-128:0: Precollar in Tertary Linestone					RUN	SHORE
No sample return 9-128m.					0	
					158	128
					1308	
128.0 - 170.3m TERTIARY LIMESTONE					133.8	-
	 				136:4	-
While to off-while massive fossilverous	i				1394	
chally lunestone. Friable throughout					142.5	
with minor pag in places. Charty			Ī		M5.5	-
podules gathered throughout unit -					1485	01
up to 5cm wide. Shall freegments					51.5	-
and Bryozoons					154.5	-,
					1565	-
			•		1585]
170.3 - 173.9 m HAMPTON SANDSTONE (?)					1615	-
					1646	
Grey sandy medium grained triate calcareous sectionant with Bryozzan				at 173.8-173.9m: Glawconile	1672	_
colcarous Sectionant result Bryozons					1203	
and shall tragments					1738	0.1
					176.8	1.6
					177-8	_
173.9-186.8m PIDINGA FORMATION(?)					1808	1.6
		1			183.8	3.0
173.9-176.8m: Dark brown black					186.8	5.3
Corbonaceous Ligatic Sandstone					189.8	3.0
176.8-180.5m: Black Fine grained					191.8	
massive clarify lightle. Slicken-					194.8	-
sides devis loped at 177.9 and					EOH	
78.8m:		1		_		
180.5-186.8m: Dark brown black		1		186-8-186-7m: Pyrite band		
continuerous liante sandama				with monor concreteous		
tua qui ground 180.4 - 180 5 m.			L	of pyrike (1cm in diam)		
186.8-184.8: Palo gree un consolidated quartz sondstone	L			1 '	ļ	
1 quartz standstone	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$				<u></u>	لــــــــــــــــــــــــــــــــــــــ

METALS DIVISION (S.A.)

FIELD DIAMOND DRILL LOG

DRILLHOLE DDH CD 2 Sheet 2 of 2

	CORE ANGLES			MINERALIZATION/COMMENTS240	CORE REC'D	
189.8 - 194.8 m MADURA FORMATION (E.O.H)						
Gree green fine grained massive mudstone. Carbonaceous with minor glauconite. Unit. tends to develop Wild cracks on drying out 189.8-189.85: Poorty cement quarts			-	·		
Mud cracks on dryung out				1848-184.85: fine graned dos		
189.8-189.85: Poorly coment quarts				189-8-189-85: fine grand dos pyrile (20%)		
			<u> </u>			
	-	+.	+			-
						<u> </u>
	$\frac{1}{1}$					
			+			
					<u> </u>	-
	_					_

 METALS	DIVISIO

SAMPLE RECORD

Sheet	 of	

METALS DIVISION	j
-----------------	---

MPLE TYPE: CORE FILLET

LOCATION / PROJECT: DDH CD2 COOMPANA SAMPLER: ______ DATE: 26/11/81 MAP/PHOTO REF

ASSAY LAB:

AMDEL

SAMPLE DESPATCH

ASSAY REPORT Nos: AC 2519/82

ORDER NO:

						·										STORAGE:	 .		
SAMPLE No.	LE-NO. LOCATION INTER'L ANALYSES							DESCRIPTION											
			(m)	Yitre	7 tonne	s		<u></u>	<u> </u>							DESCRIPTION			
6480	170	172	2	0.5	- 1.5				<u> </u>						<u></u>				
81	172	174	2		- 11				<u> </u>										
82	174	176.8		- ''	"				<u> </u>										
83	176.8	177.8	1.0	1.5	- 5.0									l					
84	177.8	180.8	3.0	,,	• 11				L										
· 	180.8	183.8	3.0			NO	SAMPI	E								NO CORE	RECORDE) k-/	ر. ب
85	183.8	186.8	_3.0	- 5	- 15														
	186.8	189.8	3.0			NO	SAMPI	E						}		NO CORE	RECORDE)	11
86	189.8	191.8	2.0	1.5	- 5.0					I									
87	191.8	193.0		- ''	11 -														
- 88	193.0	194.8		0.5	- 1.5					1							 		
									1	 		· · · · · · · · · · · · · · · · · · ·		t					
		E.O.H							Ť					 					
											<u>.</u>				<u> </u>	<u> </u>			
			*						 			 		 					
				<u> </u>					 	 				-		<u> </u>			
									 	 		<u> </u>		<u> </u>					
			···						 						 	 			_
									 	 -				 	 				
								······	 	 						}			
								·····	 					 	 -				
			-	<u> </u>		· · · · · ·			 	 	<u> </u>	 	· · · · · · · · · · · · · · · · · · ·	}		 			
							·		 	 		}	<u> </u>						
				·					 	ļ					ļ		_ .	 	
									 			}	ļ			ļ		·	
									 	 	ļ	 		 	 	}			
									 	ļ	ļ		ļ	<u> </u>	ļ	 			
								ļ	ļ	 	<u> </u>	<u> </u>		<u> </u>	 				
		+							↓	ļ	ļ		ļ <u>.</u>	ļ	L				
				ļ						ļ	ļ					!			
				ļ <u>.</u>					 	ļ	ļ	 			ļ	.			
									ļ				ļ	L		.			
·									<u> </u>		ļ	<u></u>		<u> </u>	L	L			
									1	<u> </u>									
								L	<u>L</u>		<u> </u>					L			
		<u>_</u>		L	<u>[</u>]				1	1	l	1]	I]				

MARKS :	

THE SHELL COMPANY OF AUSTRALIA LIMITED

METALS DIVISION

SOUTH AUSTRALIA

REPORT ON E.L.748, HUGHES

E.L.749, NULLARBOR PLAIN

FOR THE QUARTER ENDING OCTOBER 20TH, 1982

FINAL REPORT

AUTHOR: M.L. HIGGINS

DATE: JANUARY, 1983

REPORT NO. 08.1244

COPY NO. 1

DISTRIBUTION:

Copy 1

Department of Mines and Energy South Australia

- 2 The Shell Company of Australia Limited, Metals Division, Melbourne
- 3 The Shell Company of Australia Limited, Metals Division, Adelaide
- 4 B.H.P. Adelaide
- 5 B.H.P. Melbourne

	•	Page No.
1.0	INTRODUCTION	1
2.0	REGIONAL GEOLOGY	1
3.0	EXPLORATION TARGETS	1
4.0	SUMMARY OF PREVIOUS EXPLORATION	2
	4.1 Quarter Ending 20th January, 1982	2
	4.2 Quarter Ending 20th April, 1981	2
	4.3 Quarter Ending 20th July, 1981	2 😽
	4.4 Quarter Ending 20th October, 1981	2
	4.5 Quarter Ending 20th January, 1982	3
	4.6 Quarter Ending 20th April, 1982	3
	4.7 Quarter Ending 20th July, 1982	3
5.0	SUMMARY	4
6.0	EXPENDITURE	5
7.0	KEYWORDS	6

LIST OF FIGURES

			24 4
Figure No.	Title	Scale	Drawing No.
1.	Eucla Basin S.A. Coompana Area Location Plan	1: 1 000 000	A/MT22/90
2.	Aeromagnetic Contours	1: 1 000 000	A/MT22/025
3.	Coompana Area - S.A. Magnetic Features	1: 1 000 000	A/MT22/029
	LIST OF ENCLOSURES		
1.	Grid and Drillhole Location Map	1: 250 000	A /MT22 /092

1.0 INTRODUCTION

Exploration Licences 748 and 749 expired on the 20th October, 1982 after a two year term of tenure. They were, along with E.L.747 which was relinquished separately on the 3rd September, 1982, the subject of a joint venture agreement with Dampier Mining Company Ltd., with Shell acting as the manager.

The licences mentioned above are referred to as Bunabie Rockhole (E.L.747), Hughes (E.L.748) and Nullarbor Plain (E.L.749) and cover areas of 2104, 3051 and 2345 $\rm km^2$ respectively (see figure 1).

No field work was undertaken in the final quarter year period of tenure, however a data assessment and re-evaluation of geological interpretation and concepts was undertaken. This led to the decision to allow the licences to lapse.

This report does not detail previous work but provides an overview of the exploration programme. It also represents the Final Report for both E.L.748 and 749.

2.0 REGIONAL GEOLOGY

The Eucla Basin evolved by subsidence of the Precambrian basement during the Mesozoic. It is a broad structure representing a gentle epeirogenic downwarp of the southern continental margin of Australia and is an area of Cretaceous and Tertiary deposition. The basin is bounded by the Gawler Block to the east, the Albany-Fraser Province to the west, the Officer Basin to the north and extends to the edge of the continental shelf of the Great Australian Bight. Before and possibly during the Proterozoic, the basement was tectonically deformed, enabling the accumulation of Proterozoic sediments and volcanics in deep basement troughs e.g. the Mallabie Depression to the east. A number of large deep-seated faults have been interpreted in or along the margins of the Eucla Basin.

Recent regional aeromagnetic surveying on the COOK and COOMPANA 1:250,000 sheet area has revealed an intense, broad, reversely magnetised magnetic anomaly derived from a deep, intrabasement source. A number of shallow (some less than 200m) negative anomalies and trends are distributed around this feature. (Figures 2 and 3). Many of the discrete anomalies are located along northeast or northwest striking faults indicated on the aeromagnetic data.

3.0 EXPLORATION TARGETS

The prime targets were: -

Base metals associated with regional magnetic and gravity anomalies of unknown origin in the basement. The linear and discrete magnetic anomalies may indicate mafic/ultramafic bodies with potential for nickel, chromium, platinum, vanadium etc.

3.0 EXPLORATION TARGETS (Continued)

Oil shales associated with the Lower Cretaceous Madura Formation.

Uranium associated with Tertiary lignites and sandstones.

4.0 SUMMARY OF PREVIOUS EXPLORATION

The two-year exploration programme has been detailed at length in interim quarterly reports; a summary of these follows with report number included for easy reference.

4.1 Quarter Ending 20th January, 1981

- . data assessment
- . BMR aeromagnetics obtained and reprocessed, resulting in aeromagnetic contour plans and stacked profiles for the Merdeyerrah, Coompana, Bunburra and Bundulla 1:100 000 sheets.
- . magnetic/structural interpretation of Merdeyerrah and Coompana sheets completed by Layton.
- . assessment and limited sampling of previous drilling through Lower Cretaceous to assess oil shale potential.

4.2 Quarter Ending 20th April, 1981 (08.870)

- . no fieldwork
- preparations made for gridding, ground magnetics, gravity and percussion/diamond drilling.

4.3 Quarter Ending 20th July, 1981 (08.958)

- ground magnetics completed over selected aeromagnetic anomalies CM-1, CM-2, CM-4, PMM-2, PM-3, PM-4 and PM-7 (Encl. 1).
- . maximum intensities lie in the range -500 nT to -2000 nT with estimated source depths at between 250m to 600m.
- . gravity in progress.

4.4 Quarter Ending 20th October, 1981 (08.1005)

- interpretation of ground magnetic data indicated the general source of anomalies appeared to be depth limited implying sill-like sources.
- . gravity completed over anomalies PM-2, PM-3, PM-4, PM-7 and CM-4.
- . gravity anomalies coincidentwith magnetic anomalies detected at four sites, and the depth estimates are consistent with those interpreted from magnetics.
- . percussion/diamond drilling was started; the proposal included three holes (DDH's CD5, 6 and 7, see Encl. 1) located to test oil shale potential and another four to test the geophysical anomalies.
- . to date, holes DDH CD3, 6 and 7 have been completed, DDH CD5 was abandoned.

. . . /3

4.5 Quarter Ending 20th January, 1982 (08.1121)

- DDH CD1 completed; it tested both oil shale potential, which was very low, and the geophysical anomaly PM3; a Precambrian interbedded basaltic lava sequence was intercepted and its magnetic susceptibility is in accord with the recorded surface response. No anomalous geochemistry.
- . DDH CD2 completed; it was sited on dual targets as for CD1, however had to be abandoned before intersecting basement; negative oil shale results in Madura Formation.
- . geophysical logging of holes DDH CD1, 3, 6 and 7 completed.
- . planned hole DDH CD4 deleted from programme.

4.6 Quarter Ending 20th April, 1982 (08.1129)

- . no fieldwork
- . detailed ICP AAS on limited samples to test for elements not routinely analysed.
- . detailed petrological work and geophysical modelling undertaken by BHP for the J.V. partners.
- . magnetic property measurements on core from DDH CD1 indicate that a magnetic anomaly of the type observed could be expected to be generated by the strong remanent polarisation recorded in the core.
- . compilation and assessment of data in progress.

4.7 Quarter Ending 20th July, 1982 (08.1204)

- . no fieldwork
- . further, more detailed, magnetic and gravity modelling by both Shell and BHP.

248

Following the intensive review of geophysical data which was undertaken during the last two quarter periods of tenure, the decision was made to relinquish both EL's 748 and 749.

Though there remained an element of doubt as to the source of the recorded magnetic/gravity anomalies, Shell's modelling indicated with reasonable confidence that the intersected volcanic sequence could explain these features. The fact that the core samples recorded negative remanent magnetic polarisation was a strong factor in reaching this conclusion.

A geological scenario may be postubated whereby a deep seated mafic magma chamber was tapped by feeder dykes/pipes of basic (dolerite-gabbro) composition and resulted in extrusion of continental basaltic flows of limited areal extent. This may explain the limited extent of some of the strong aeromagnetic anomalies.

6.0 EXPENDITURE

A summary of total expenditure for the term of the tenure of EL's 748 and 749 is detailed below: -

	;	\$
HUGHES EL 748		
Staffing/Support Payments to Govts. Aerial Photography Geophysical Surveys Borehole Logging Drawing, Computer	3	9 21 29 2 85 663 230 518
Total Direct Cost Admin	18	709 935
Total Project Cost	19	649
NULLARBOR EL 749 Staffing/Support Payments to Govts. Topographical Surveys Ground Geophysics Airborne Analysis/Assays	1 3 8 3	36 2 763 720 685 934 558
RAB Drilling		416
Diamond Drilling		738
Borehole Logging Drawing Engineering Computer	_	228 005
Total Direct Cost		409
Admin Services	8	970
Total Project Cost	188	379

7.0 KEYWORDS

Eucla Basin, intrabasement, mafic/ultramafic, oil shale, gravity, magnetic susceptibility, ICP AAS, feeder dykes.

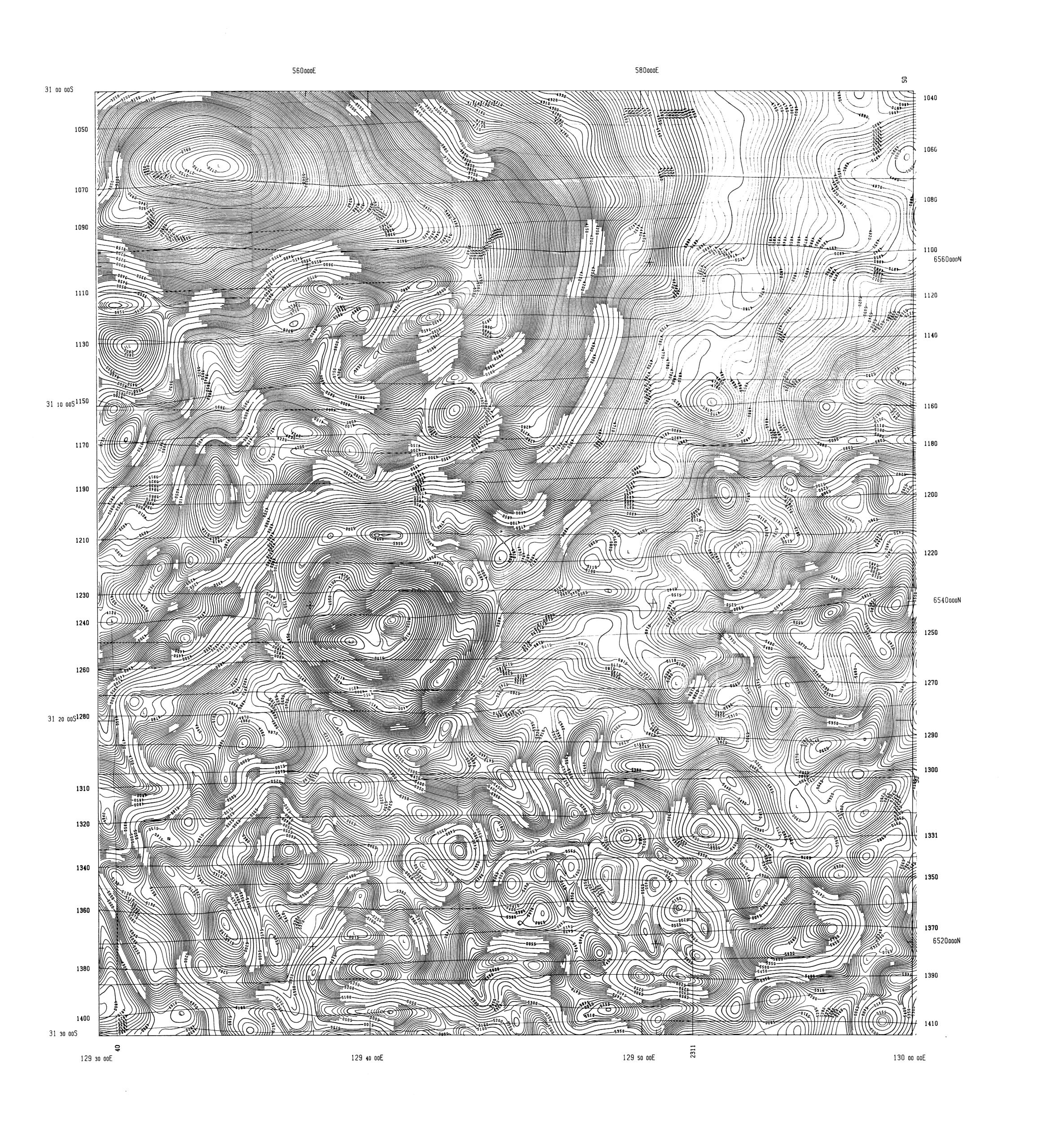
Envelope 4046

Transparencies of the 1:100,000 scale

Merdayerrah

Coompana

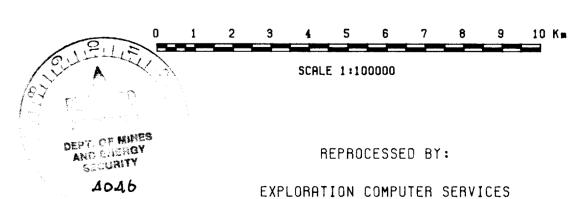
Bunburra


Bundulla sheets

- Magnetic contours
- Magnetic profiles

From reprocessing of BMR data.

Held in transparency cylinder 4046/l


SURVEY FLOWN BY: BUREAU OF MINERAL RESOURCES

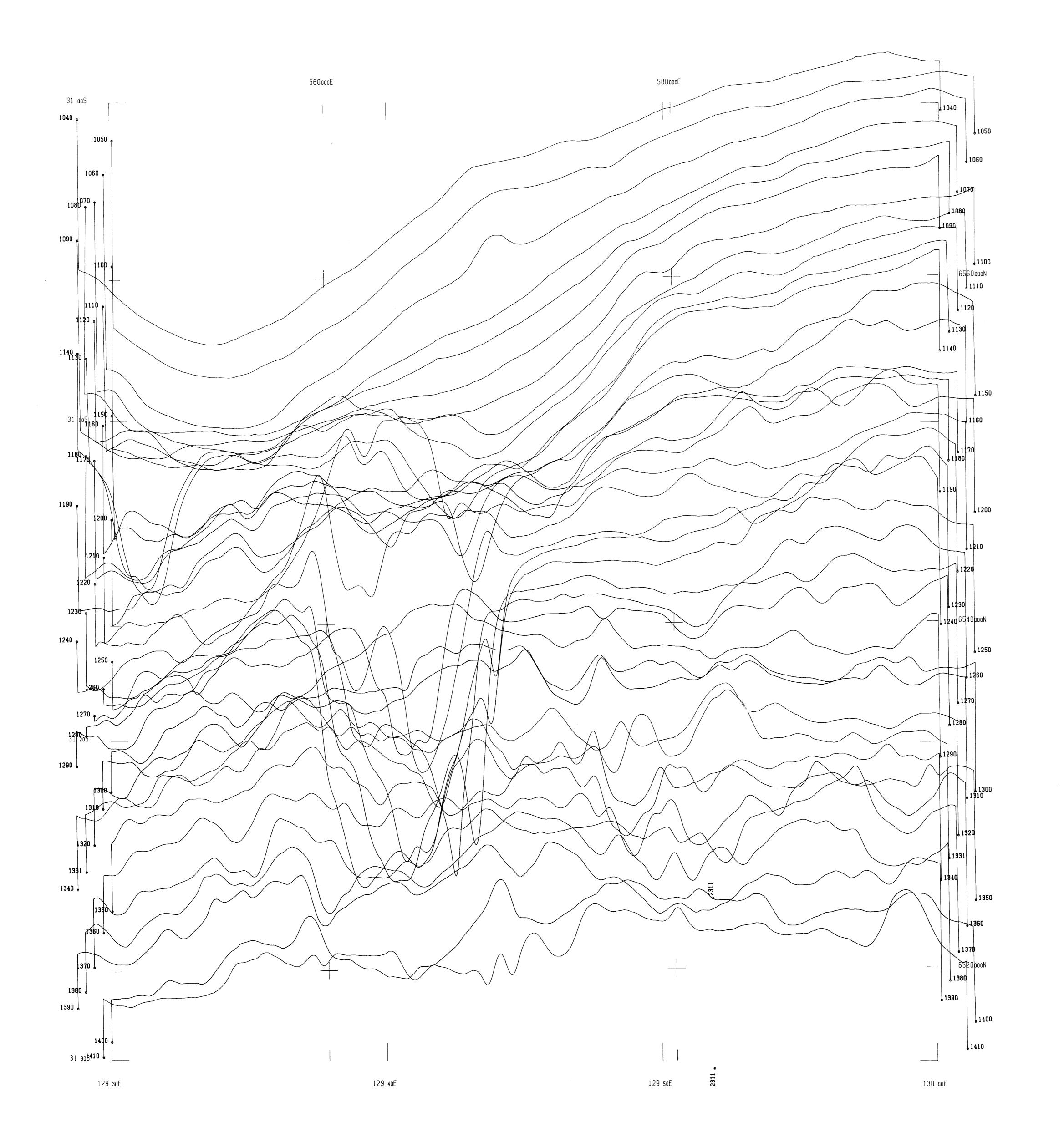
1.0 SEC., APPROX 50M LINEAR SAMPLING DATA RECORDING INTERVAL : AT MEAN GROUND SPEED OF 100 KNOTS

DETECTOR MEAN TERRAIN CLEARANCE : DETECTOR IN AIRCRAFT AT 150 METRES MTC NOMINAL FLIGHT LINE SPACING : 1500m East - West

PROCESSING SPECIFICATIONS GRID MESH :150m by 210m CONTOUR INTERVAL : 5 nT HORIZONTAL SCALE 1: 100000 SHEET 4835

GRID NOTATION REFERS TO AUSTRALIAN METRIC GRID

EXPLORATION COMPUTER SERVICES The Shell Company of Australia Limited


METALS DIVISION

COOMPANA S.A. SHEET 4835

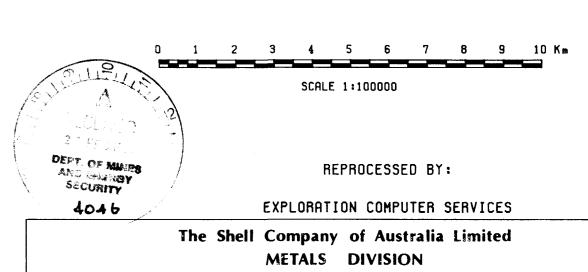
MAGNETIC CONTOURS DATE:

PROJ NO.

4046(I)-1

SURVEY FLOWN BY:

BUREAU OF MINERAL RESOURCES


DATA RECORDING INTERVAL :

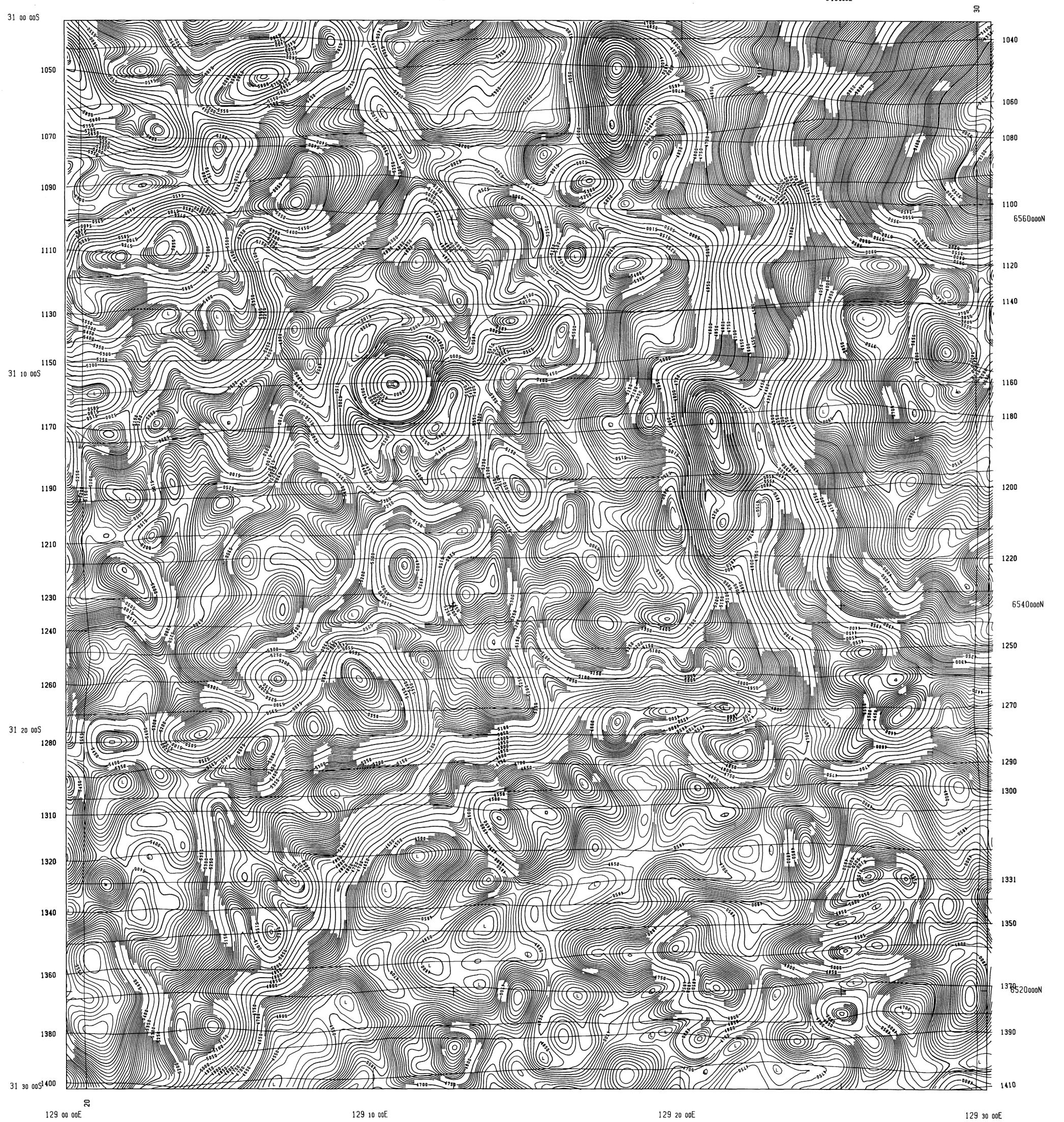
CANBERRA 1.0 SEC., APPROX 50M LINEAR SAMPLING AT MEAN GROUND SPEED OF 100 KNOTS

DETECTOR MEAN TERRAIN CLEARANCE : DETECTOR IN AIRCRAFT AT 150 METRES MTC NOMINAL FLIGHT LINE SPACING :

1500m East - West

PROCESSING SPECIFICATIONS VERTICAL SCALE=120 nT per cm HORIZONTAL SCALE 1 : 100000 SHEET 4835 GRID NOTATION REFERS TO AUSTRALIAN METRIC GRID

COOMPANA S.A.


SHEET 4835 MAGNETIC PROFILES

PROJ NO.

09-0CT-80

4046-(I)-2

DATE:

SURVEY FLOWN BY:

BUREAU OF MINERAL RESOURCES

CANBERRA

DATA RECORDING INTERVAL:

1.0 SEC., APPROX 50M LINEAR SAMPLING

AT MEAN GROUND SPEED OF 100 KNOTS

AT MEAN GROUND SPEED OF 100 KNOTS
DETECTOR MEAN TERRAIN CLEARANCE : DETECTOR IN AIRCRAFT AT 150 METRES MTC
NOMINAL FLIGHT LINE SPACING : 1500m East - West

PROCESSING SPECIFICATIONS

GRID MESH :150m by 210m

CONTOUR INTERVAL : 5 nT

HORIZONTAL SCALE 1 : 100000

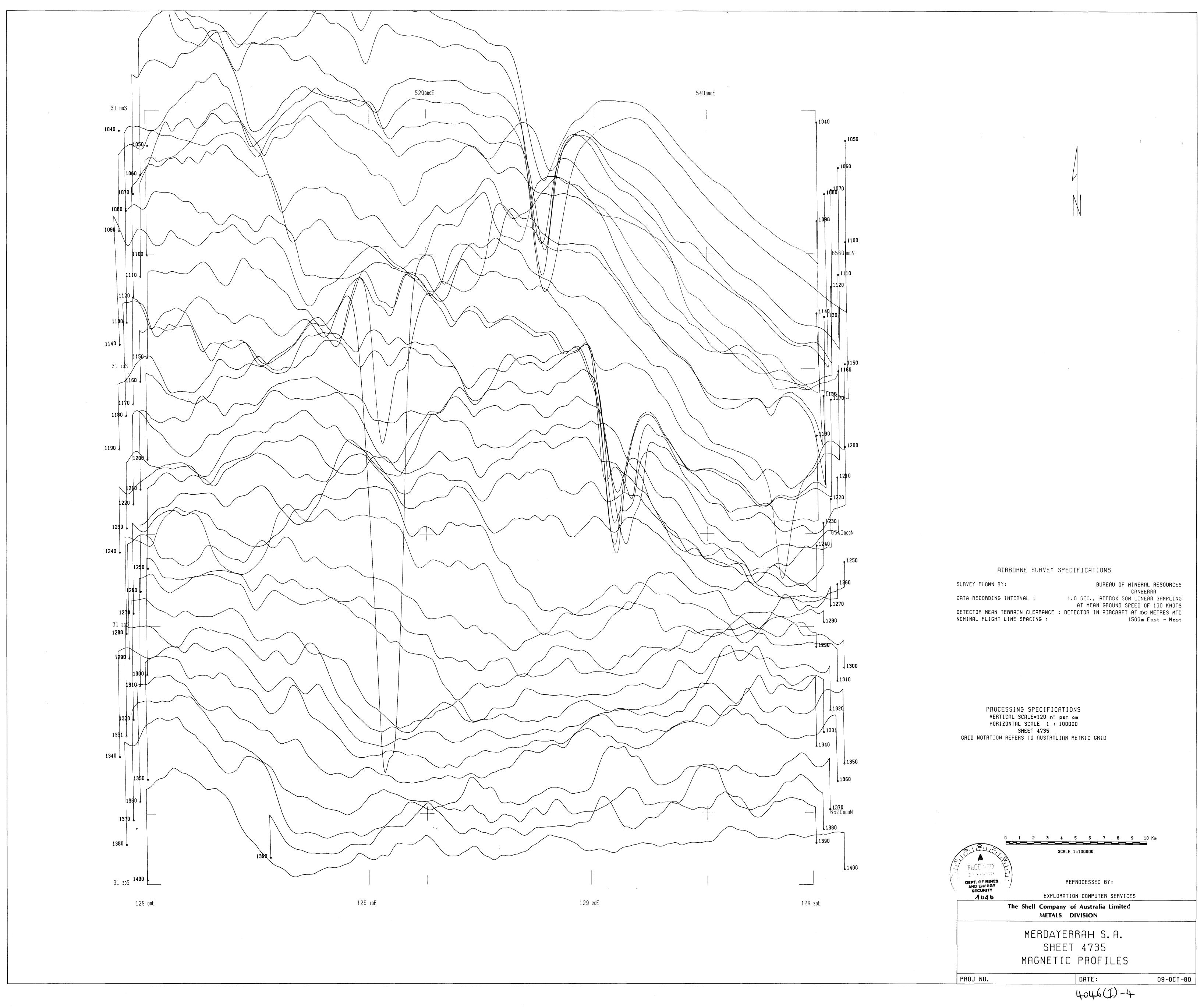
SHEET 4735

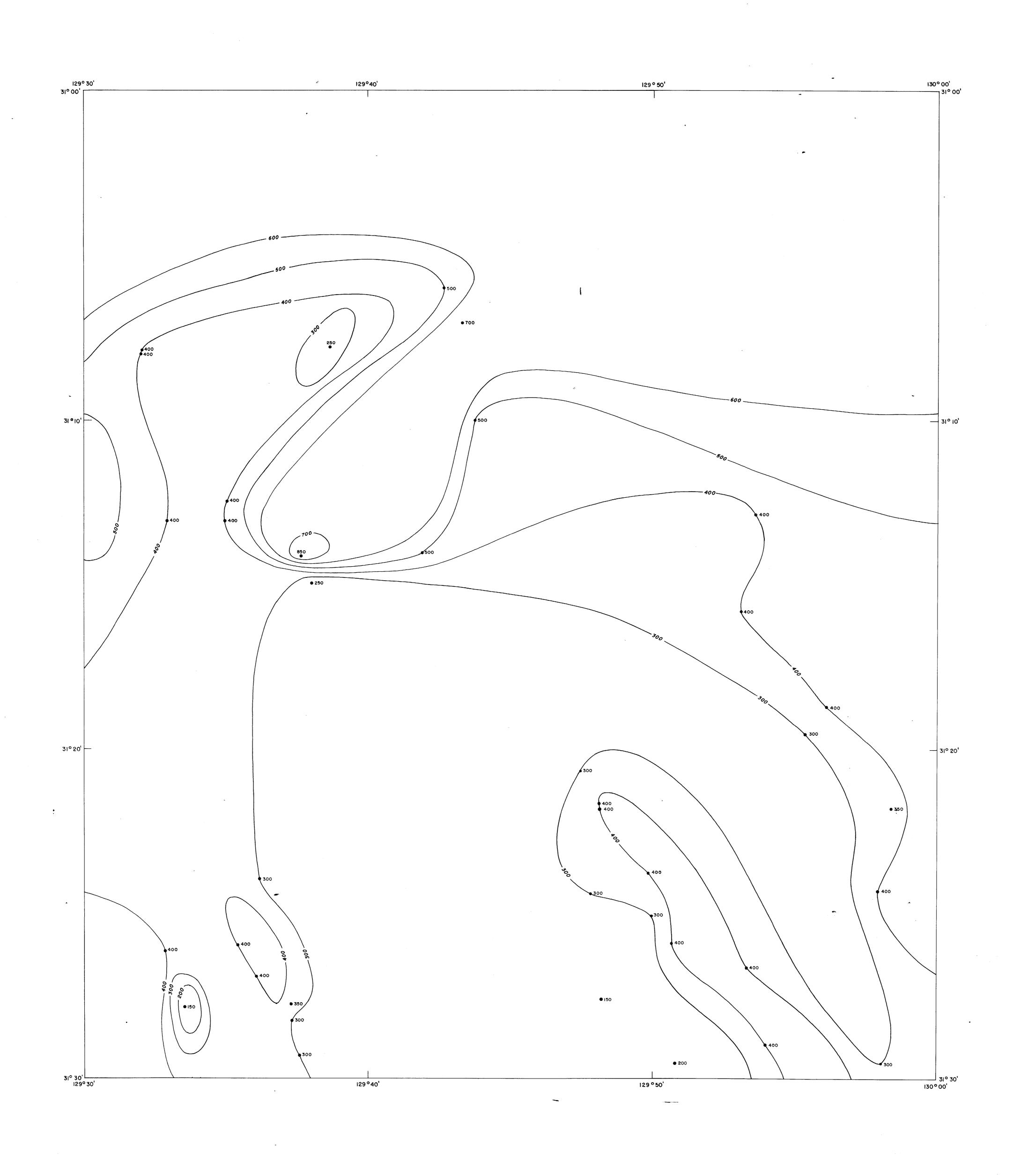
GRID NOTATION REFERS TO AUSTRALIAN METRIC GRID

DEPT. OF MINES
AND ENLAGY
SECURITY
4046

PROJ NO.

REPROCESSED BY:


EXPLORATION COMPUTER SERVICES


. 0 1 2 3 4 5 6 7 8 9 10 Km

The Shell Company of Australia Limited
METALS DIVISION

MERDAYERRAH S.A. SHEET 4735 MAGNETIC CONTOURS

DATE:

LEGEND

500 POSITION WHERE DEPTH DETERMINED

•500 POSITION WHERE DEPTH DETERMINED

SCALE 1: 100 000

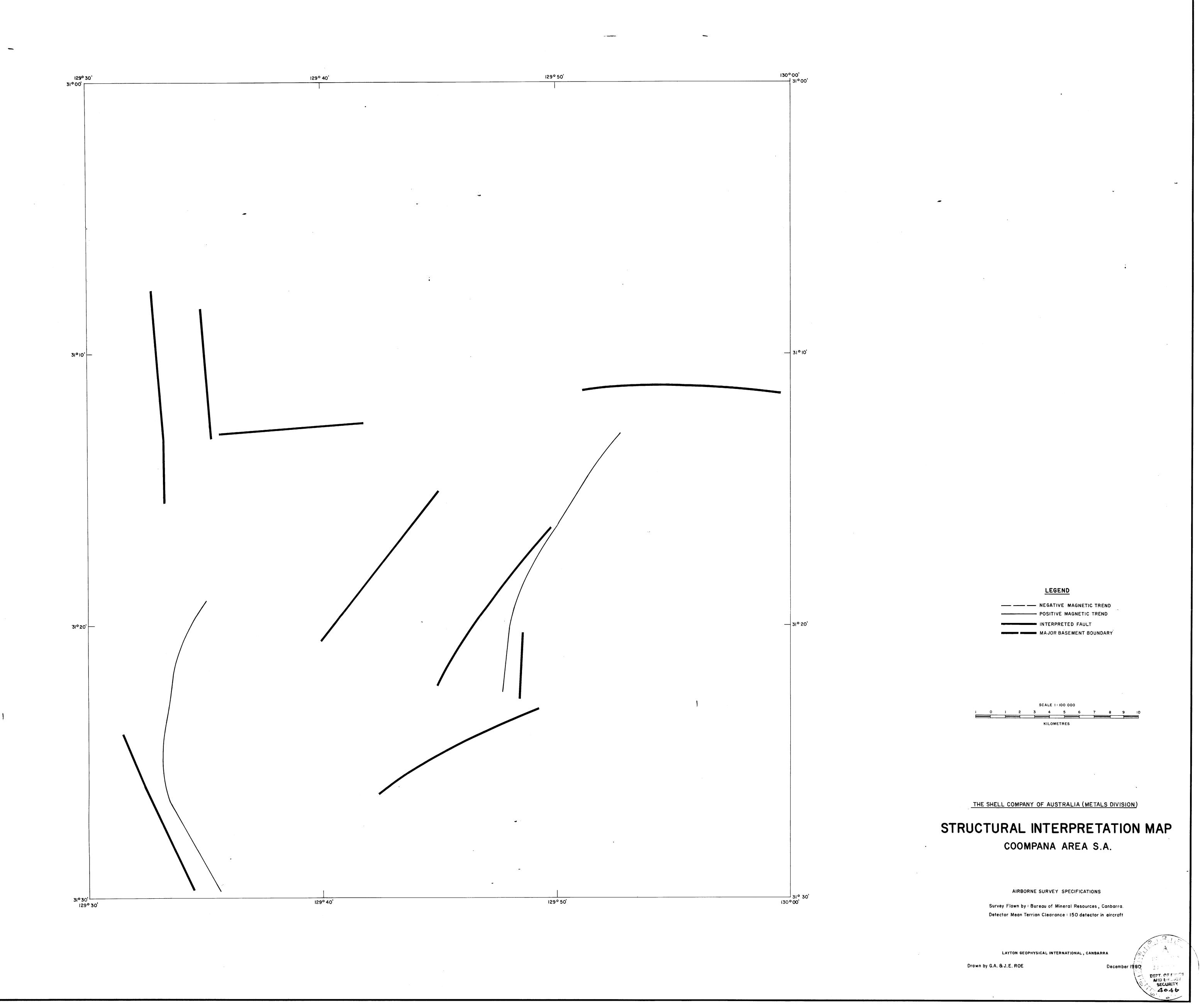
THE SHELL COMPANY OF AUSTRALIA (METALS DIVISION)

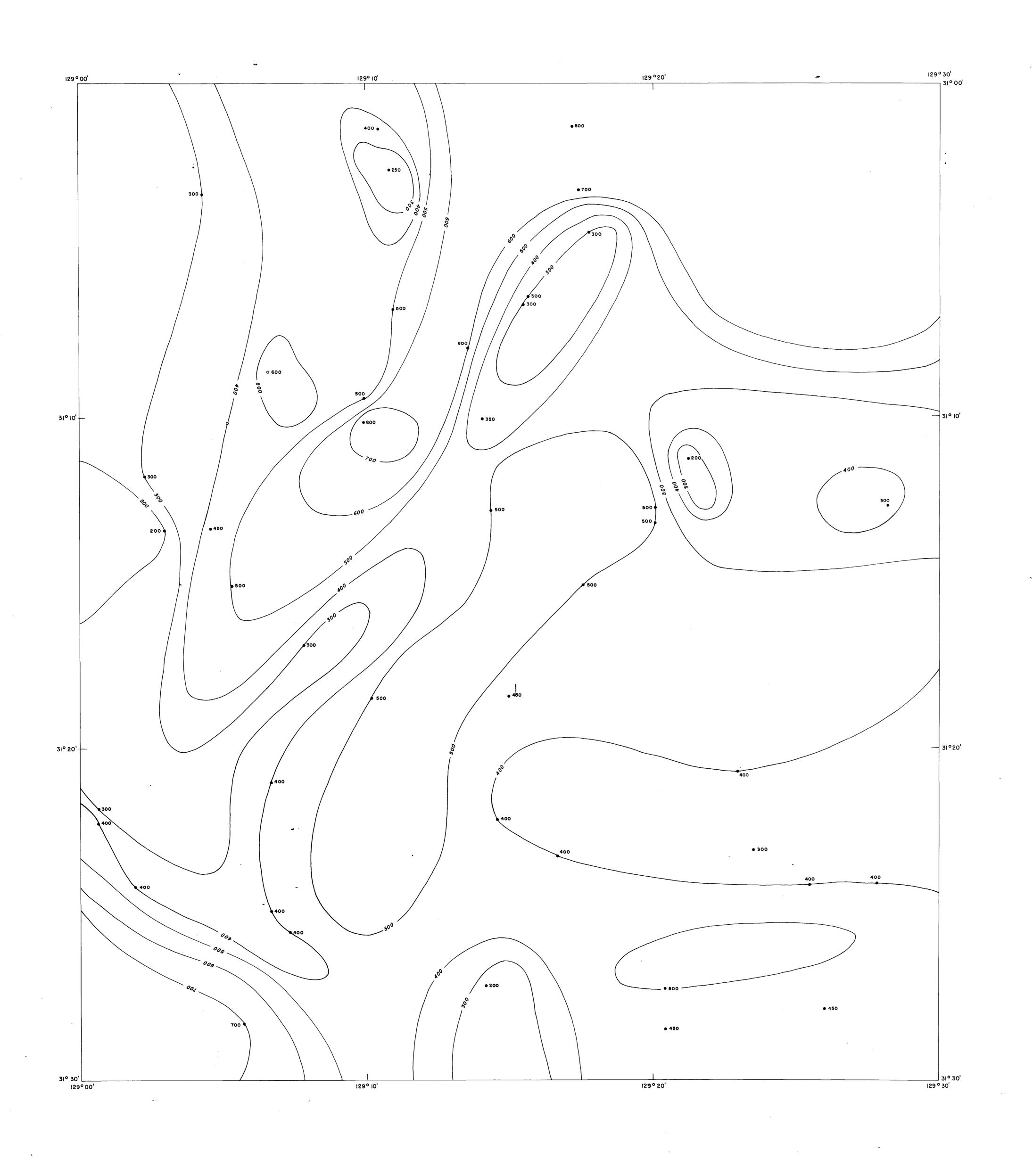
INTERPRETATED DEPTH TO BASEMENT MAP

COOMPANA AREA S.A.

CONTOUR INTERVAL 100 meters

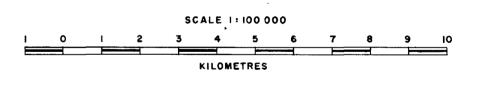

AIRBORNE SURVEY SPECIFICATION


Survey Flown by: Bureau of Mineral Resources, Canbarra.


Detector Mean Terrain Clearance: 150m detector in aircraft

LAYTON GEOPHYSICAL INTERNATIONAL, CANBARR

Drawn by G.A- & J.E. ROE



LEGEND

500 MAXIMUM DEPTH TO BASEMENT (metres)

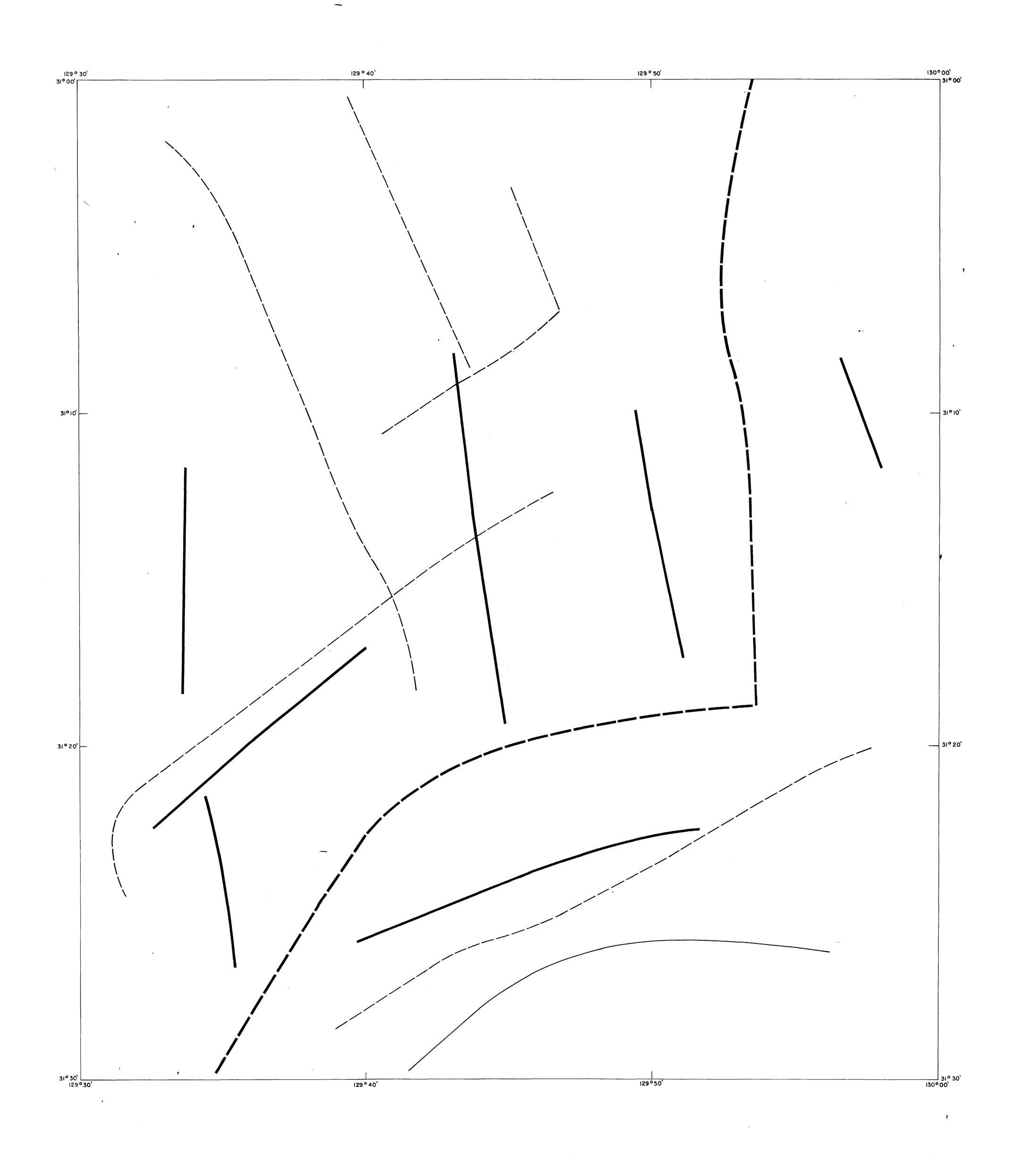
POSITION WHERE DEPTH DETERMINED

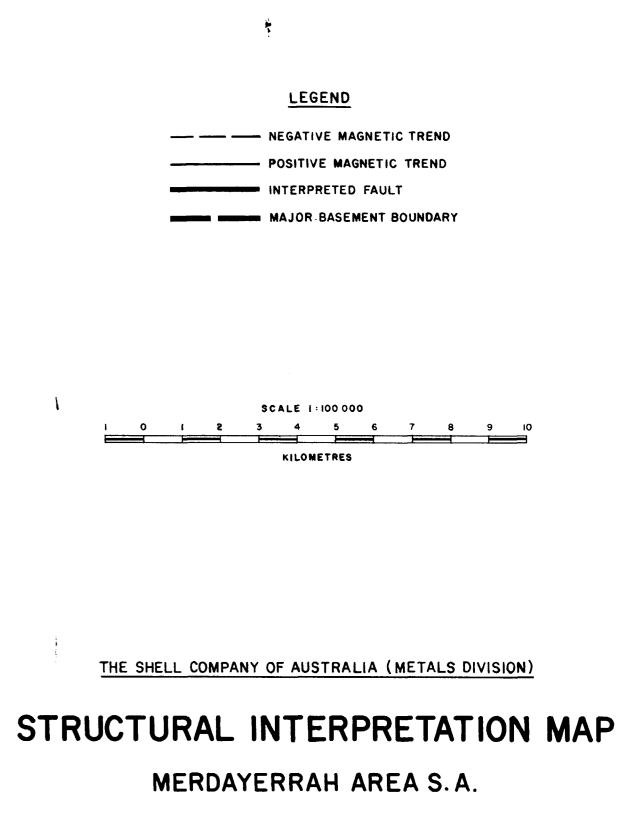
THE SHELL COMPANY OF AUSTRALIA (METALS DIVISION)

INTERPRETATED DEPTH TO BASEMENT MAP

MERDAYERRAH AREA S.A.

CONTOUR INTERVAL 100 metres

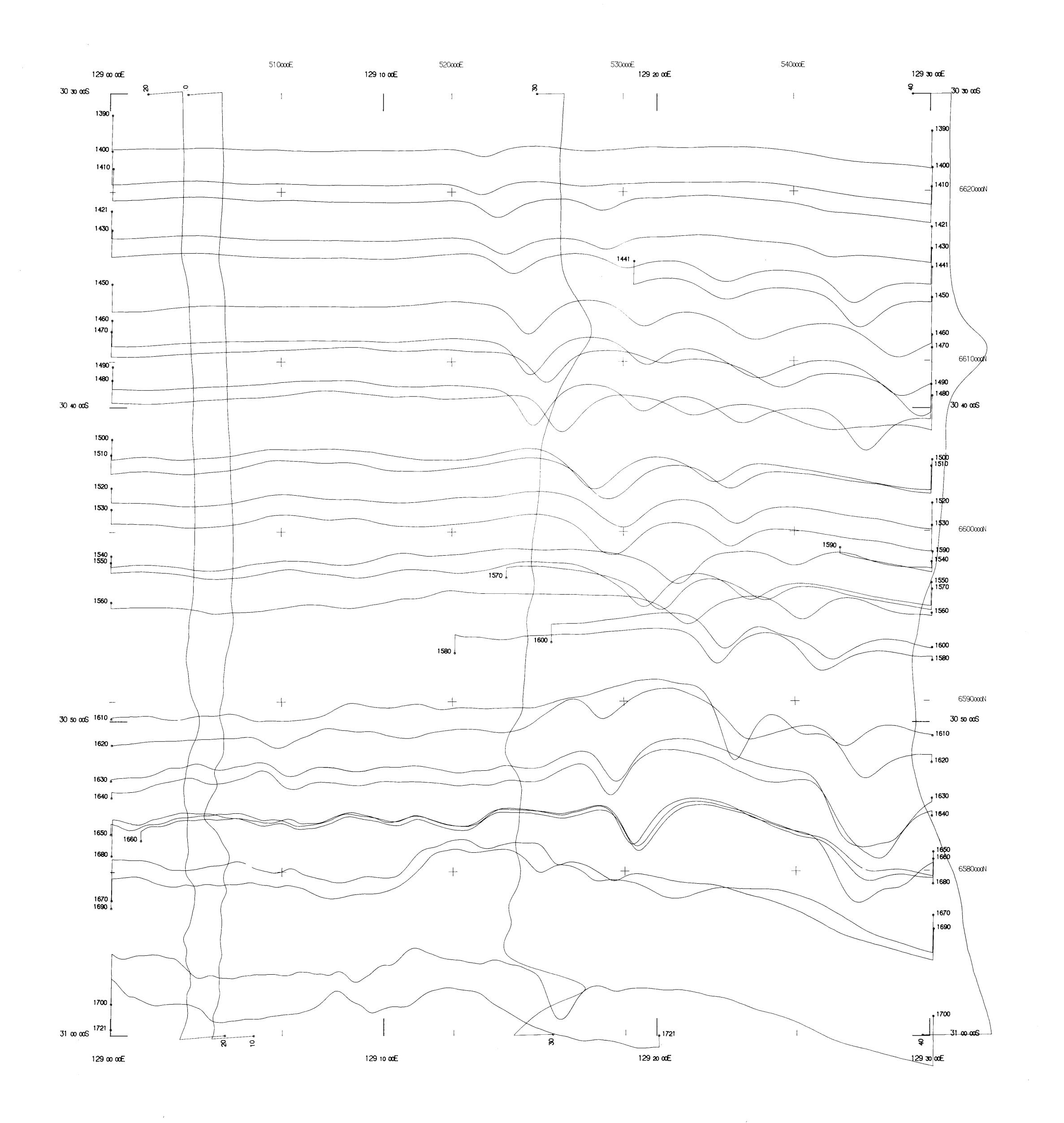

AIRBORNE SURVEY SPECIFICATIONS


Survey Flown by: Bureau of Mineral Resources, Canbarra.

Detector Mean Terrain Clearance: 150m detector in aircraft

LAYTON GEOPHYSICAL INTERNATIONAL, CANBARRA

Drawn by G.A.& J.E.ROE



Survey Flown by : Bureau of Mineral Resources, Canbarra.

Detector Mean Terrian Clearance: 150m detector in aircraft

Drawn by G.A. & J.E. ROE

DEPT. OF MINES
AND ENERGY
SECURITY
4046

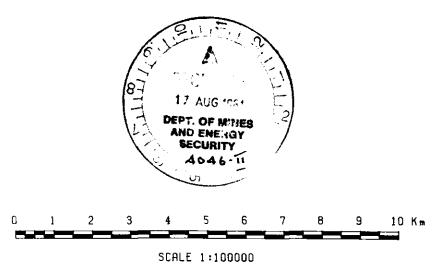
SURVEY FLOWN BY:

BUREAU OF MINERAL RESOURCES 1.0 SEC., APPROX 50M LINEAR SAMPLING

DATA RECORDING INTERVAL : AT MEAN GROUND SPEED OF 100 KNOTS DETECTOR MEAN TERRAIN CLEARANCE : DETECTOR IN AIRCRAFT AT 150 METRES MTC

NOMINAL FLIGHT LINE SPACING :

ENCL.No. 2 DRG.No. A/PW 08/006


PROJECT COOMPANA

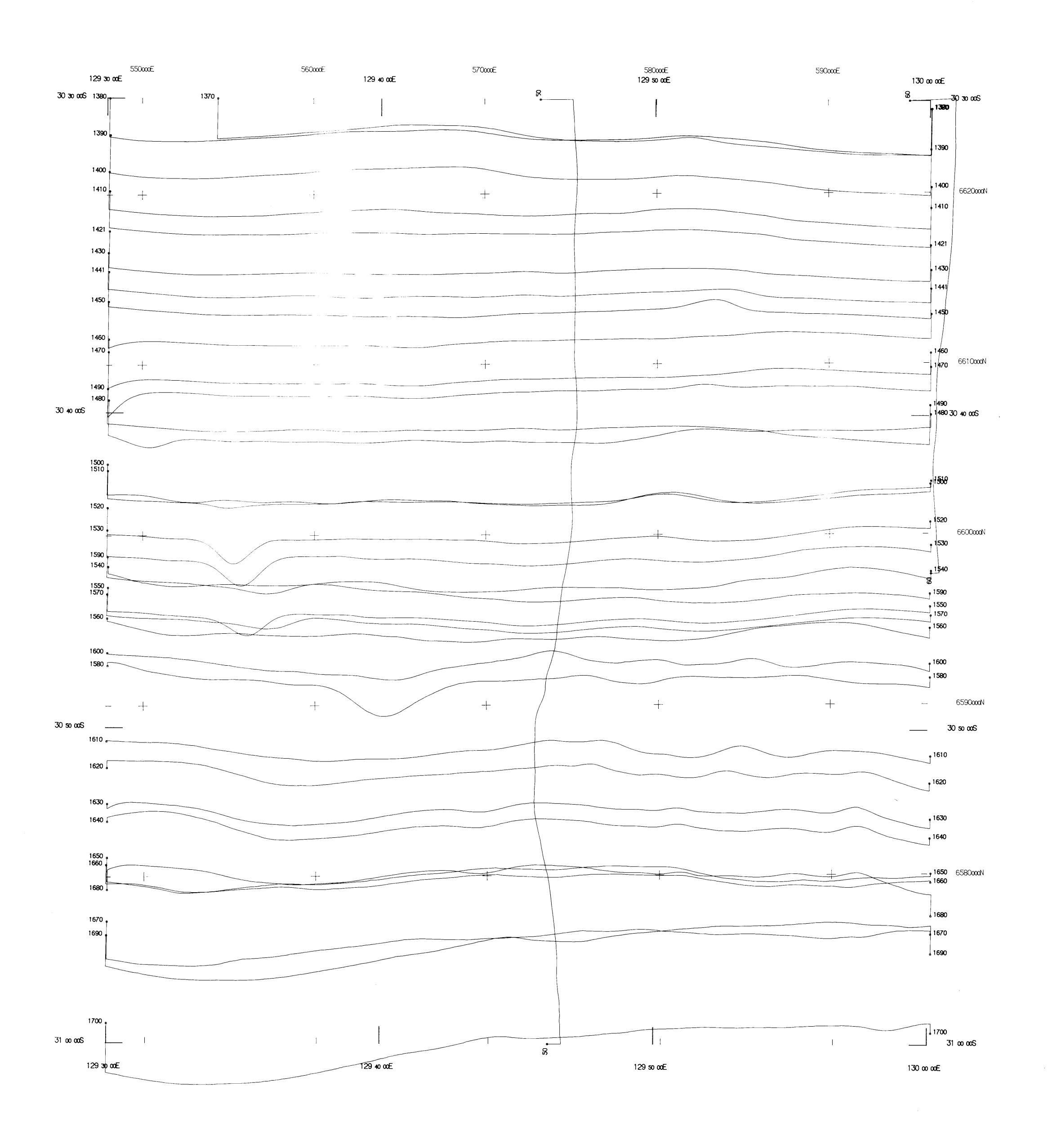
1500m East - West

PROCESSING SPECIFICATIONS

VERTICAL SCALE = 120 nT per cm. HORIZONTAL SCALE 1 : 100000

SHEET 4736 GRID NOTATION REFERS TO AUSTRALIAN METRIC GRID

REPROCESSED BY:


EXPLORATION COMPUTER SERVICES

The Shell Company of Australia Limited MFTALS DIVISION

BUNBURRA S.A. SHEET 4736

MAGNETIC PROFILES

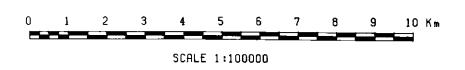
DATE:

SURVEY FLOWN BY:

BUREAU OF MINERAL RESOURCES

DATA RECORDING INTERVAL :

1.0 SEC., APPROX 50M LINEAR SAMPLING AT MEAN GROUND SPEED OF 100 KNOTS


NOMINAL FLIGHT LINE SPACING :

DETECTOR MEAN TERRAIN CLEARANCE : DETECTOR IN AIRCRAFT AT 150 METRES MTC 1500m East - West

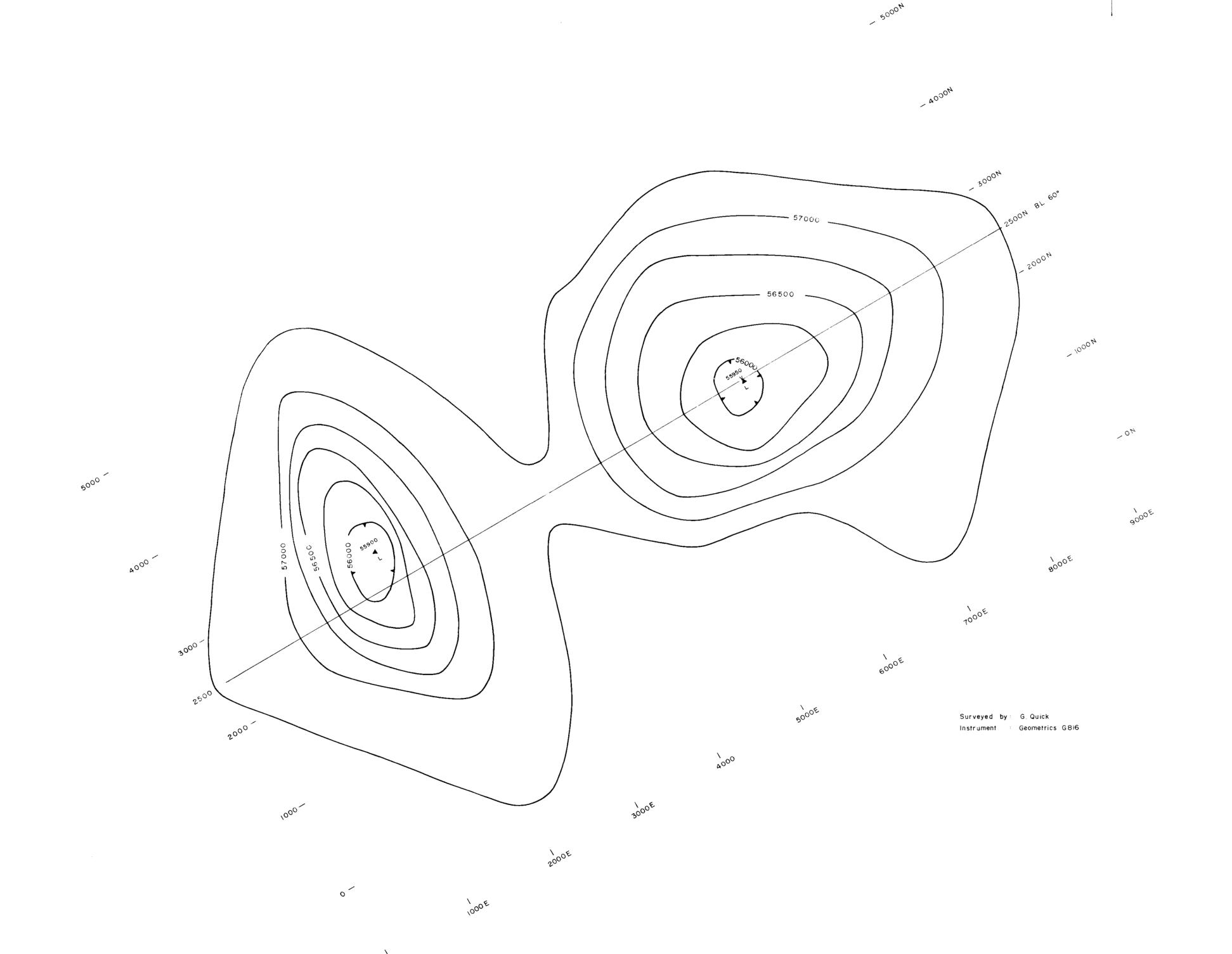
PROCESSING SPECIFICATIONS

VERTICAL SCALE = 120 nT per cm HORIZONTAL SCALE 1 : 100000 SHEET 4836 GRID NOTATION REFERS TO AUSTRALIAN METRIC GRID

REPROCESSED BY:

EXPLORATION COMPUTER SERVICES

The Shell Company of Australia Limited METALS DIVISION

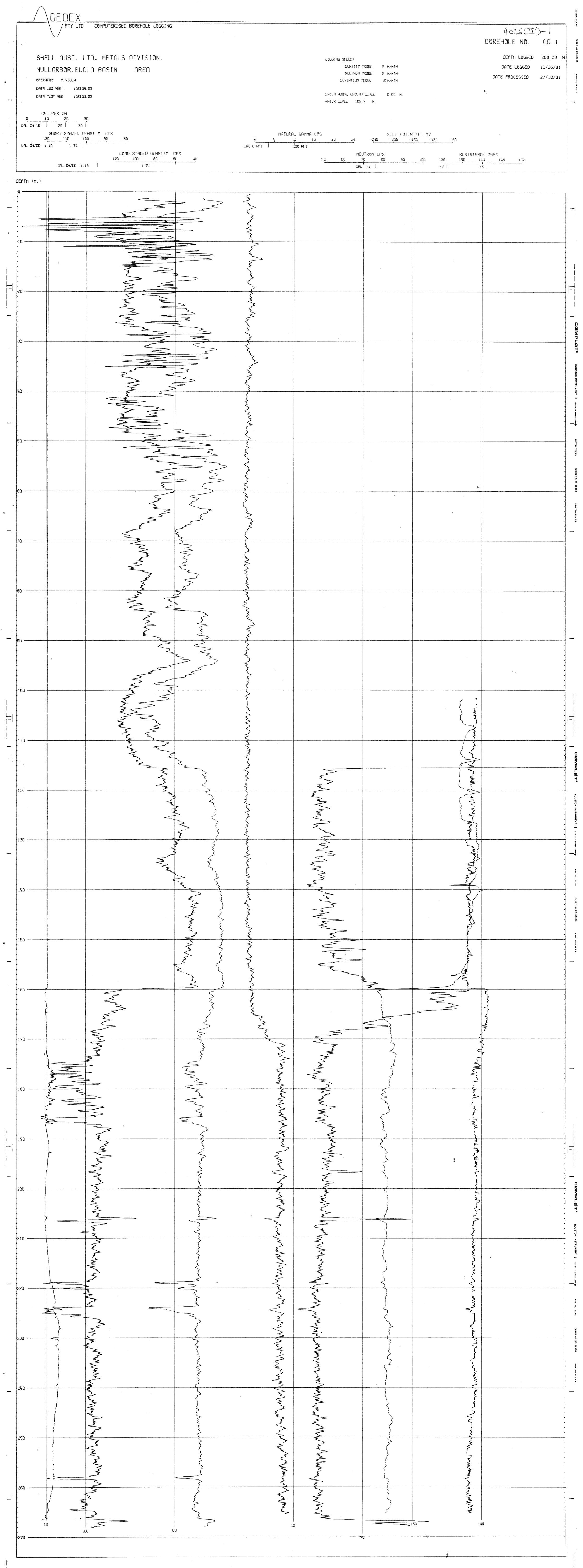

BUNDULLA S.A.

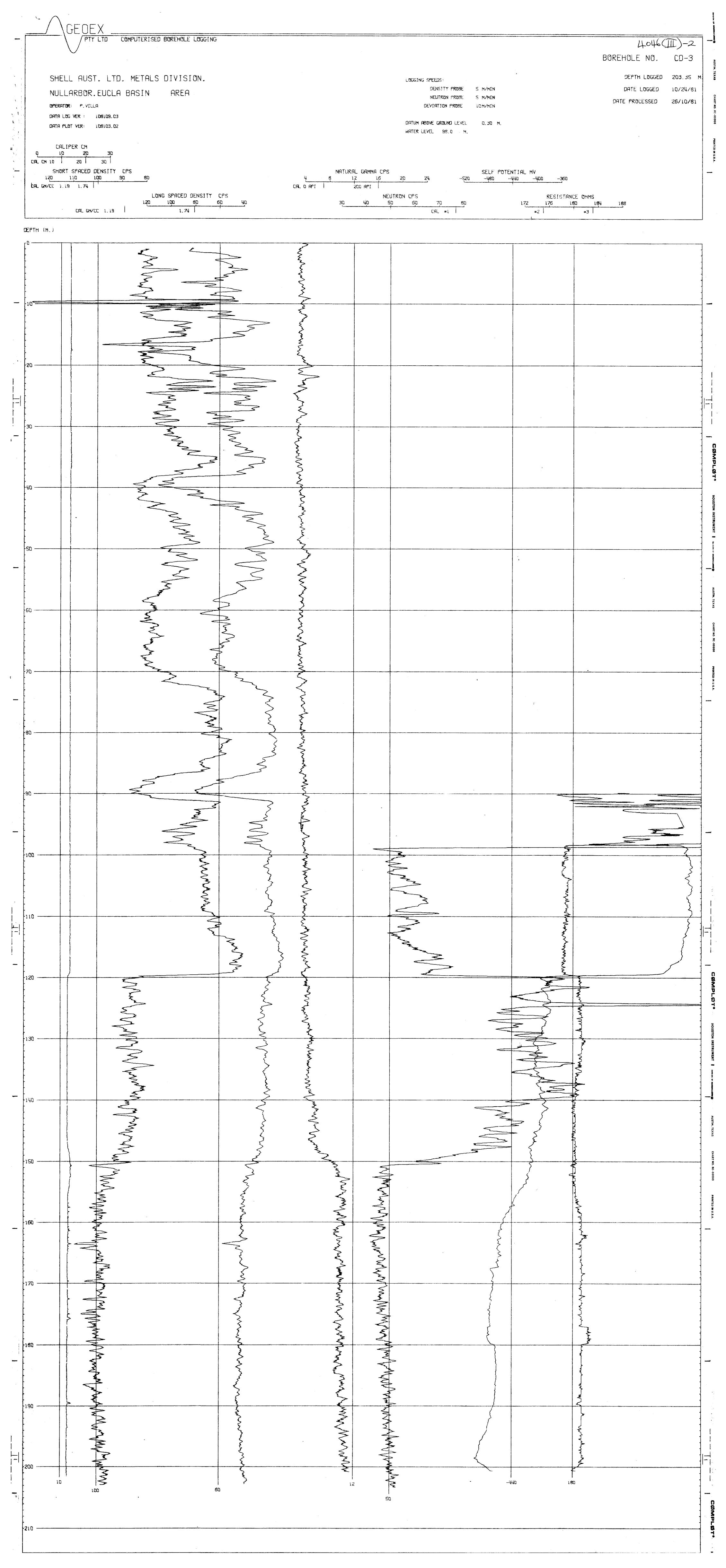
SHEET 4836

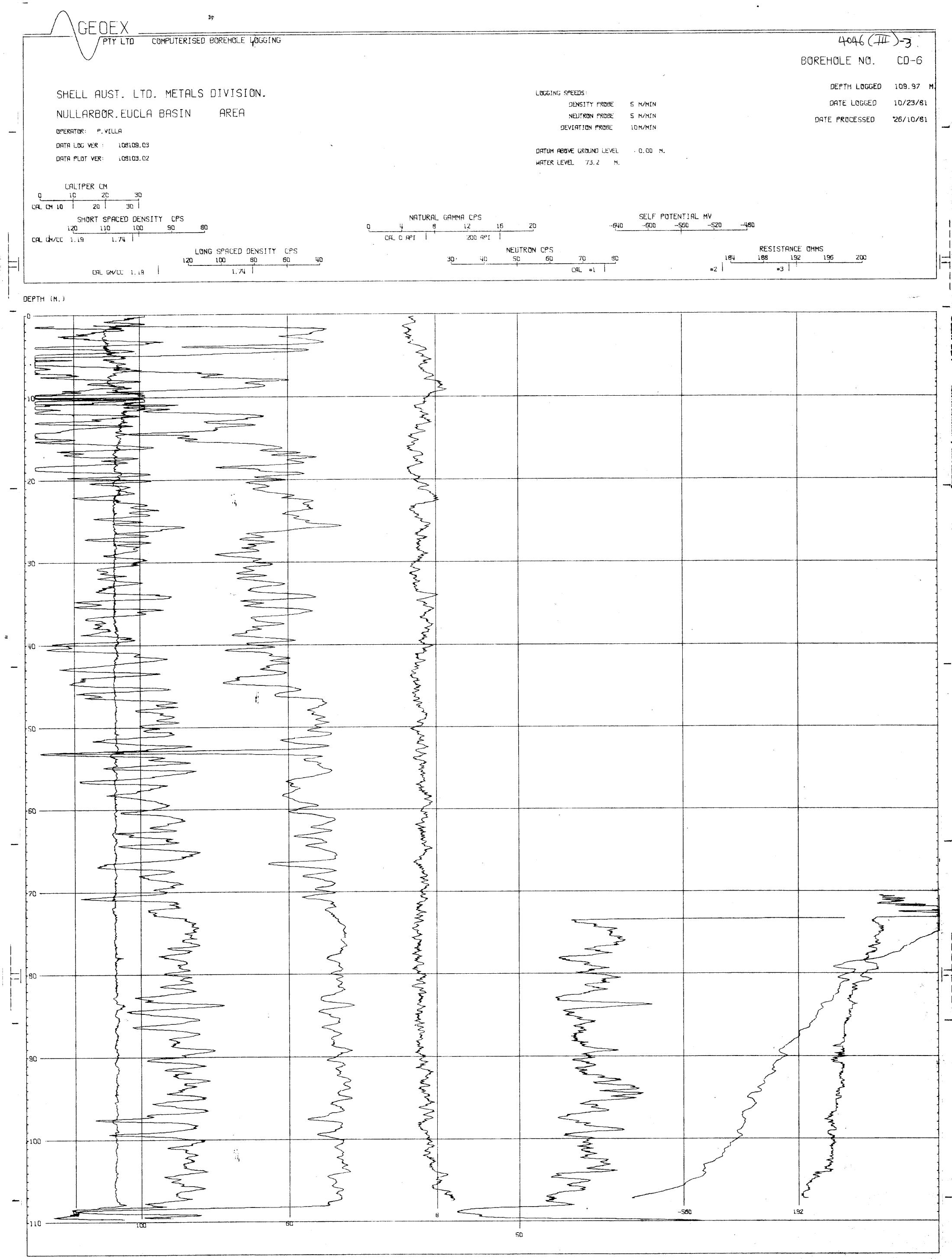
MAGNETIC PROFILES ENCL. No. 4 DRG.No. A/PW 08/008

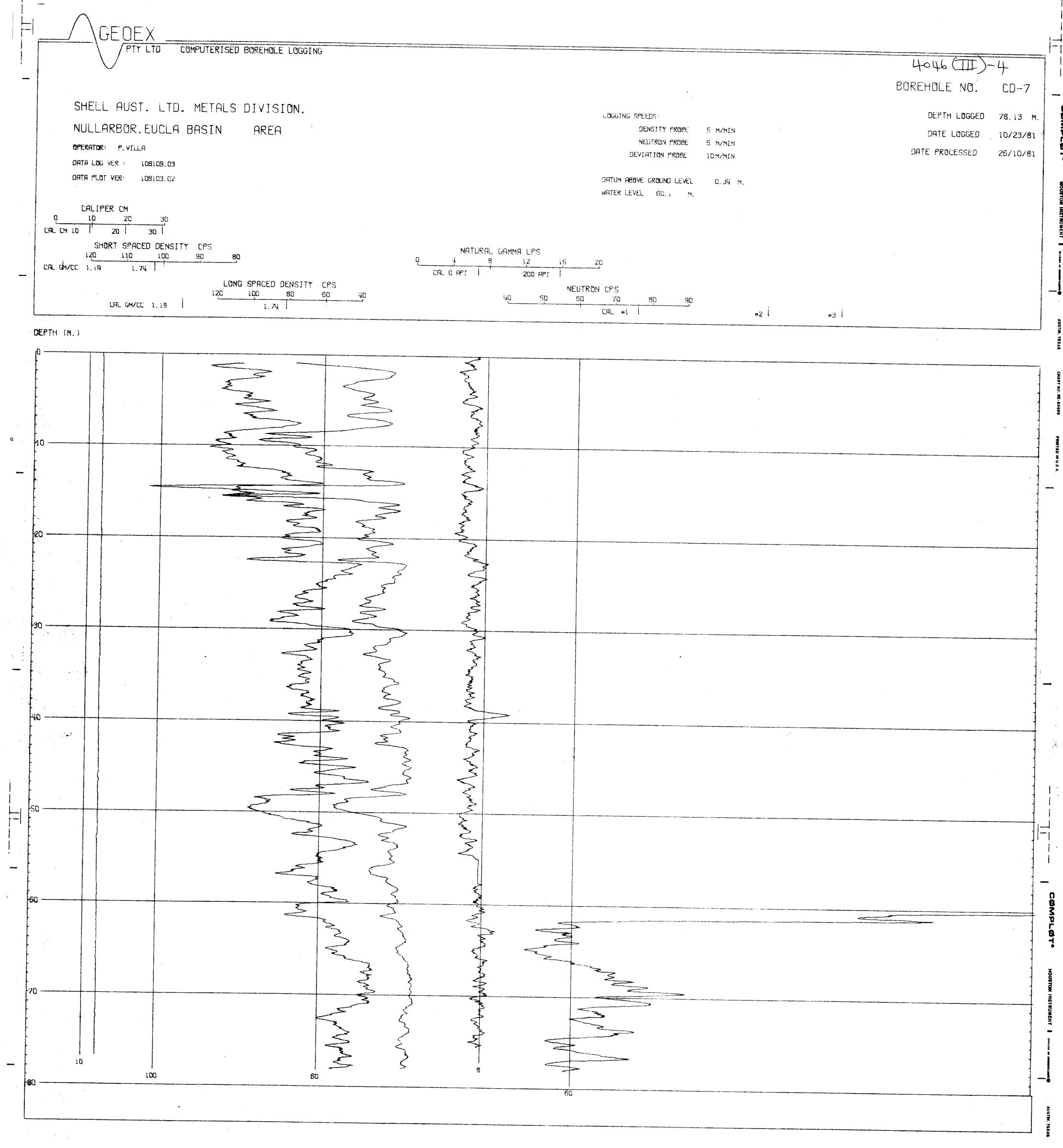
PROJECT: COOMPANA

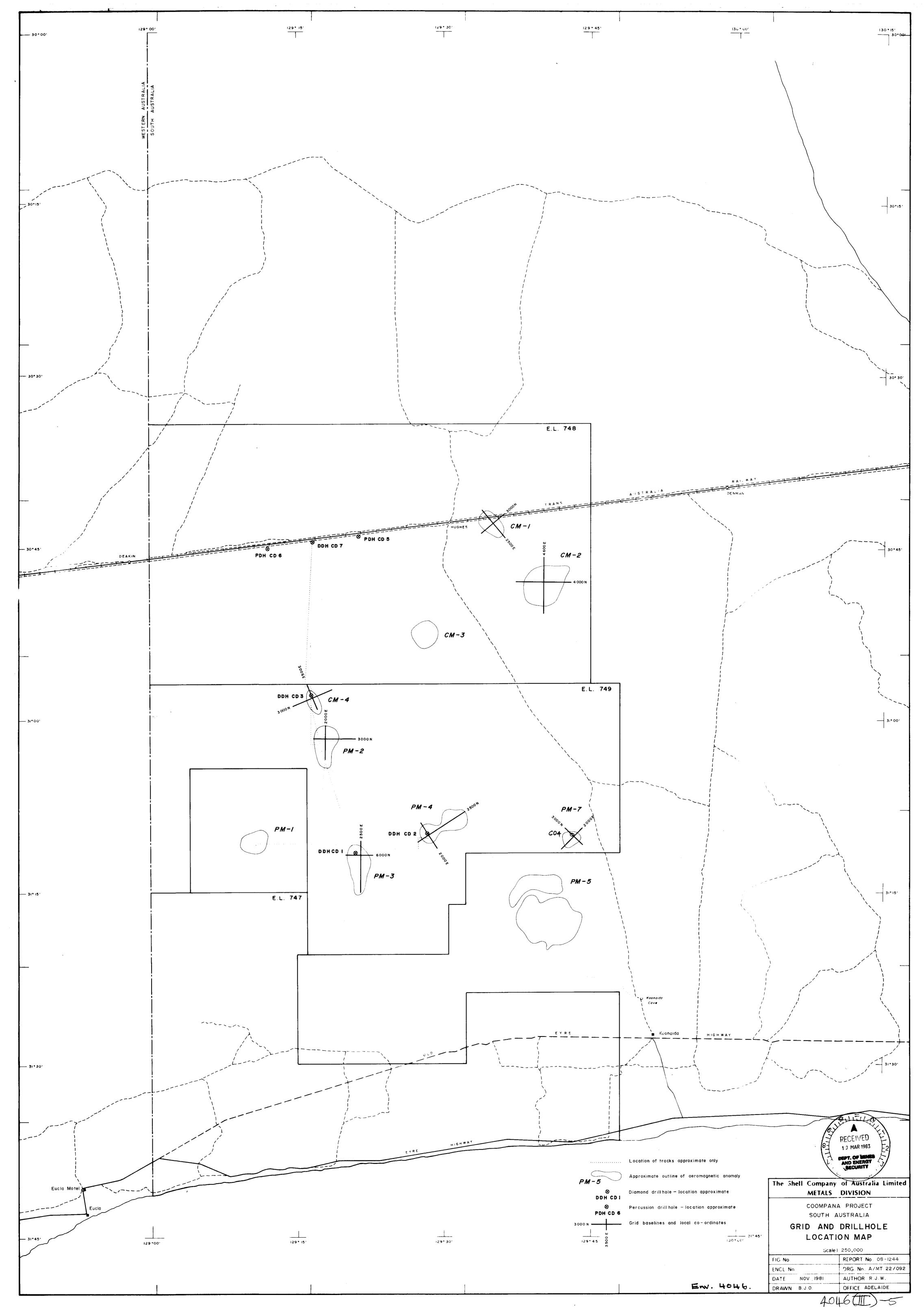
DATE: 4046 (II) -4






	of Australia Limited DIVISION	
COOMPAN	IA PROJECT	
ANOMALY PM 4		
CONTO	URS OF	
TOTAL ***		
TOTAL MAGNE	TIC INTENSITY	
	TIC INTENSITY	
Scale I	: 25,000	


OFFICE ADELAIDE


DRAWN B J.O.

