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Introduction
The Neoproterozoic Adelaide Geosyncline and 
Stuart Shelf preserve deposits formed in a major 
rift basin and shelf which now separate the Gawler 
and Curnamona provinces which developed during 
the break-up of the supercontinent Rodinia (Preiss 
2000). The early stages of rifting and sedimentation 
were accompanied by localised basaltic and minor 
felsic magmatism within the basal Callanna Group, 
comprising the Wilangee Basalt near Broken Hill 
(NSW), the Cadlareena Volcanics in the Peake 
and Denison Inlier, the Noranda Volcanics in the 
Willouran Ranges, the Wooltana Volcanics bordering 
the Mount Painter Inlier, volcanics at Depot Creek in 
the southwest Flinders Ranges, the Boucaut Volcanics 
south of Olary, the Beda Basalt on the Stuart Shelf 
and the Gairdner Dolerite which intrudes the central 
Gawler Craton to the west; together these units have 
been referred to as the Willouran Basic Province 
(Fig. 1; Crawford and Hilyard 1990).

The Beda Basalt consists of a succession of 
subaerial, amygdaloidal to massive tholeiitic basalt 
flows interbedded with fluvial sandstones and 
conglomerates of the Backy Point Formation, which 
is exposed around the Cultana Inlier, an up-faulted 
block of the Gawler Craton on the northeast Eyre 
Peninsula, and occurs extensively in the subsurface 
within the Stuart Shelf (Figs 1, 2). This article 
provides new geochemical and isotopic data and a 
formal definition of the Beda Basalt (App. 1).

The basalts exposed around the Cultana Inlier 
(Fig. 2), which are here referred to as the Beda 
Basalt, were first mapped and described as the 
Roopena Volcanics, based on their petrological 
similarity with that sequence exposed south of 
Roopena Homestead ~40 km to the northwest 
(Crawford and Hiern 1964; Dalgarno et al. 1968; 
Crawford and Forbes 1969), which at the time 

were thought to be part of the Neoproterozoic 
Stuart Shelf sequence (Compston, Crawford and 
Bofinger 1966). They have since been recognised 
as belonging to the Mesoproterozoic Gawler Range 
Volcanics (Johnson 1993).

Subsequent drilling by Australian Selection Pty Ltd on 
the Stuart Shelf (Australian Selection 1977) revealed 
that the basalts exposed around the Cultana Inlier 
and the Roopena Volcanics to the northeast are not 
stratigraphically equivalent but separated by the 
Mesoproterozoic Pandurra Formation, and Mason, 

Figure 1 Map of Willouran Basic Province.
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Amygdaloidal basalt, often with black matrix.

Red-purple, moderately well-sorted, medium- to very fine-grained 
feldspathic quartzite to arkose; locally contains magnetic heavy mineral 
banding, dark green ?basic granules or dispersed, well-rounded pebbles 
to 10 cm. Moderate-scale trough cross-bedding and rare Liesegang-like 
banding and mud cracks. Lower parts include poorly-sorted, pebbly 
arkose. Minor very fine- to medium-grained sandstone and rare green 
magnetic sandstone. Quartz and limonite veinlets.

Lens of purple-grey amygdaloidal basalt as below.

Highly amygdaloidal, dark purple-grey basalt. Minor ?peperite with basalt 
clasts to 30 cm in red, fine-grained sandstone which also intrudes basalt 
as dykes several centimetres wide. May correlate with upper part of 
section at North Hummock.

Red-purple, hematitic feldspathic quartzite probably interbedded with dark grey, black 
or reddish, variably hematitic, amygdaloidal basalt and closely intermixed basalt and 
sandstone. Minor dark red-purple, cross-bedded, sandy basaltic tuff.

Red-purple to brown, very fine- to coarse-grained feldspathic quartzite to arkose, 
minor green chloritic sandstone near base, scattered heavy mineral grains and 
banding. Thin pebbly bands. Local cross-bedding. Common quartz veinlets.

Float of dark purple to black amygdaloidal basalt with quartz, clay and calcite in 
amygdales, which are often large and interconnected.
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North Hummock

South Hummock

?

?

Dark red-purple, moderately well-sorted, medium- to coarse-grained 
quartzitic–feldspathic sandstone with local heavy mineral banding and local 
trough cross-bedding. Minor pebbly interbeds. Quartz veining common.

Massive, totally altered, red, hematitic basalt; variably amygdaloidal, 
hematitic basalt with green chlorite and kaolinite alteration on joints; basalt 
breccias with purple sandstone matrix.

Purple to red-grey, medium-grained feldspathic quartzite, with possible 
large-scale cross-bedding; poorly sorted, pebbly feldspathic quartzite. Near 
top, local sandstone with closely packed clasts of black, amygdaloidal basalt.

Dyke of pale yellow-grey, moderately well-sorted sandstone; black, strongly 
hematitic towards unconformity. Infills fracture in quartz–feldspar porphyry.

1 km north of Douglas Point

Purple-red, moderately well-sorted, medium-  to coarse-grained, 
feldspathic quartzite with large-scale trough cross-bedding. 
Local fine pebbly interbeds; rare dispersed clasts of quartz 
porphyry and Moonabie Formation quartzite to 40 cm.

Fine-grained, totally altered basalt with ferruginous boxwork, 
quartz ± MnO2 ± bladed hematite ± pyrite veins; kaolinised, 
green to pale purple, magnetic, coarse-grained basalt.

Purple-red, medium- to very coarse-grained feldspathic quartzite 
with dark quartz grains; coarse-grained to pebbly, purple 
feldspathic quartzite. Local heavy mineral banding.

Interpreted relief on unconformity.

Near and SW of Douglas Point

204507-010

Red-brown, hematised, fine-grained basalt containing 
amygdales filled with specular hematite.

Purple-red, hematised sandstone containing angular grey-green 
quartzite clasts 0.5–5.0 cm in diameter derived from Moonabie 
Formation scattered throughout sandstone and in conglomeratic 
lenses.

Clast-supported, poorly-sorted breccia composed of angular 
clasts 0.3–40 cm in diameter of grey quartzite derived from 
Moonabie Formation and red sandstone and arkose derived 
from Pandurra Formation in a blue-grey, medium-grained 
quartz–hematite matrix.

2.8 km west of Backy Point

600 m west of Backy Point
Red-purple, hematised, fine-grained basalt containing
amygdales filled with specular hematite.

Grey-pink to red, hematised, medium-grained to gritty 
sandstone.

Poorly sorted breccia, clast to matrix dominant, 
composed of angular clasts 0.2–30 cm in diameter of 
grey-green quartzite derived from the Moonabie 
Formation and lesser quartz, massive hematite and 
granite clasts.

Grey-green, massive quartzite with occasional heavy 
mineral bands and hematite veining.

Figure 2 Geology of the Beda Basalt and Backy Point Formation around the Cultana Inlier (adapted from Cowley 1991).
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Thomson and Tonkin (1978) were the first to use 
the name Beda Volcanics to describe the basalts 
overlying the Pandurra Formation in drillholes. While 
Mason, Thomson and Tonkin (1978) referred to the 
sediments as the Backy Point Beds, and Crawford 
and Forbes (1969) briefly defined these associated 
sediments as the Backy Point Formation, appearing 
on the PORT AUGUSTA 1:250 000 scale map, the 
authors never defined the Beda Volcanics due to 
an uncertainty about the relationship between what 
they termed the ‘lower Beda Volcanics’ which are 
interlayered with the Backy Point Formation and the 
thick basalt sequence of the ‘upper spilitic flows’, 
which are now accepted to be part of the same 
sequence.

Subsequent geochemical analysis of drillhole 
samples confirmed the distinction between the 
Beda Basalt and Roopena Volcanics (Giles and 
Teale 1979). The Beda Basalt has been compared 
lithologically and geochemically with a number of 
other basalt sequences in the Adelaide Geosyncline 
belonging to the c. 830 Ma Willouran Basic Province 
such as the Wooltana Volcanics, Cadlareena 
Volcanics, Noranda Volcanics, Wilangee Basalt, 
Boucaut Volcanics, volcanics at Depot Creek and 
the Gairdner Dolerite (Fig. 1; Preiss 1987; Woodget 
1987; Hilyard 1989; Crawford and Hilyard 1990).

Most recently Cowley (1991) and Cowley and Flint 
(1993) described in greater detail the outcrop 
geology and drillhole stratigraphy of both the 
Beda Basalt and Backy Point Formation, inferring 
instead that they and the Gairdner Dyke Swarm 
(now Gairdner Dolerite) are Mesoproterozoic 
(c. 1076 Ma) and that the Gairdner Dolerite 
comprises feeder dykes to the basalts (Mason, 
Thomson and Tonkin 1978).

Regional geological setting and 
stratigraphy
The Beda Basalt and Backy Point Formation are 
a sequence of interlayered fluvial sandstone and 
conglomerate and subaerial, amygdaloidal to 
massive tholeiitic basalt. The Beda Basalt occurs 
extensively beneath the cover of the younger 
Neoproterozoic units of the Stuart Shelf in a 
northwest-trending belt ~190 km by 40 km between 
the southern tip of the Cultana Inlier and the 
Carrapateena Arm of Lake Torrens (Fig. 3).

The only exposure of the formation occurs 
around the Cultana Inlier, a faulted block of 
the Gawler Craton which has undergone uplift 
along the Cultana Fault, removing the younger 
Neoproterozoic sequence and exposing the Beda 
Basalt along the coast of the northwestern Spencer 
Gulf near Backy Point, North and South Hummocks 
and north of Douglas Point (Fig. 2).

The type locality of the Beda Basalt is taken here 
as the exposures around the southeastern Cultana 
Inlier (Cowley 1991), including Douglas Point 
(GDA94, zone 53, 762970mE, 6361550mN, 
extending 400 m to the east and 1.7 km to the 
north) and 1 km ENE of Backy Point (extending 
400 m around the point GDA94, 760060mE, 
6354950mN; Fig. 2). These sites can be accessed 
by turning east along Port Bonython Road from the 
Lincoln Highway ~10 km north of Whyalla, and 
turning left after 16 km onto Fitzgerald Bay Road, 
which connects with a coastal track passing through 
Backy and Douglas points. Additional exposures at 
North Hummock (GDA94, zone 53, 762400mE, 
6374060mN) and South Hummock (GDA94, zone 
53, 763000mE, 6372800mN) lie within the Cultana 
Army Training Area and are not readily accessible, 
requiring negotiation with the Australian Defence 
Force.

The reference drillhole PSH 1/SAS 1 (SA Geodata 
Drillhole (DH) Number 136943; GDA94, 
734729mE, 6409671mN), located 25 km 
west of Port Augusta (Fig. 3), within the interval 
273.7–470.44 m is proposed. This hole was 
originally recommended as a reference drillhole by 
Mason, Thomson and Tonkin (1978) and here a 
new graphic log is provided (Fig. 4).

Lithology
The Beda Basalt is a sequence of subaerial 
amygdaloidal to massive tholeiitic basalts (Fig. 5). 
Although intersected in over 100 drillholes, only 
30 penetrate to the base of the sequence. The 
preserved thickness of the basalt is variable, ranging 
from 1.1 m in drillhole PUB 40/SAU 24 (DH 
Number 139504) to almost 550 m in BDH 3 (DH 
Number 25356; Fig. 3) which contains ~70 flows 
(Delhi Petroleum Pty Ltd, Urangesellschaft Australia 
Pty Ltd and CSR Ltd 1986). The true thickness of 
the Beda Basalt is uncertain, as it was exposed 
everywhere to subaerial weathering and erosion 
prior to the deposition of the Tapley Hill Formation in 
the early Sturtian.

The basalts are substantially altered (Fig. 5a), 
but primary igneous textures are well preserved. 
They are composed of sericitised and chloritised 
plagioclase laths in a hematised and chloritised 
matrix of coarse-grained, green-yellow 
clinopyroxene altered to actinolite, tremolite, chlorite 
and epidote and introduced potassium feldspar (Fig. 
5b; Mason, Thomson and Tonkin 1978; Cowley 
1991). Amygdales contain calcite, quartz, chlorite, 
specular hematite, potassium feldspar and albite 
(Figs 5b, c). Flows range in thickness from <1 m 
to ~30 m thick. Brecciated flow tops are only 
sporadically developed and flow margins are most 
commonly marked by red-brown, fine-grained to 
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Figure 3 Subsurface extent of the Beda Basalt.

aphanitic basalt containing small densely packed 
amygdales (Figs 5d, e). The middle of the flows, 
particularly the thicker ones, consist of grey-black, 
medium-grained basalt with larger sparsely packed 
amygdales (Figs 5d, f). Small lenses of sand or silt 
or larger sandstone and conglomerate beds of the 
Backy Point Formation are recorded between many 
flows (Figs 4, 5d).

The interval of Beda Basalt within reference drillhole 
PSH 1/SAS 1 consists of a pile of 22 lava flows 
ranging from <1 m to almost 30 m thick, totalling 
almost 200 m (Figs 3, 4). Thin (5–20 cm) red 
siltstone beds occur between some flows. Logged 
flows coincide with sharp changes in the visible short 
wave infrared (VSWIR) and thermal infrared (TIR) 
HyLoggerTM spectra (Fig. 4), reflecting a difference 
in the bulk mineral composition of amygdaloidal-
rich tops and pyroxene-rich bottoms of the basalt 

flows compared to the amygdaloidal-sparse flow 
middles (see Gordon et al. 2014, this volume).

The Beda Basalt is interlayered with the Backy 
Point Formation, a white, red to purple, fine- to 
coarse-grained feldspathic and lithic sandstone to 
conglomerate with minor interbeds of red, brown 
and green micaceous siltstone. Interlayering can be 
observed in outcrop at North and South Hummocks, 
Douglas Point and west of Backy Point (Fig. 6a). 
In drillhole intersections southwest of the Cultana 
Inlier the Beda Basalt is interbedded with intervals 
several metres thick of Backy Point Formation (e.g. 
TR 3, DH Number 20447; Fig. 6b), but to the east 
and north of here the sediments typically occur 
either underlying or overlying the basalt sequence, 
as thin (<10 cm) beds between flows or are absent 
altogether (Cowley 1991).
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Sandstone is composed of subrounded to well-
rounded quartz, feldspar and lithic grains. It is 
rich in iron oxides which define heavy mineral 
banding and contains accessory tourmaline, zircon 
and monazite (Cowley 1991). The matrix of the 
sandstone around the Cultana Inlier is composed of 
quartz overgrowths, whereas in drillhole intersections 
the matrix is typically hematitic or calcareous or 
locally sericitic. Trough cross-bedding is common, 
and indicates a fluvial depositional environment, 
with much of the detritus derived locally.

Conglomerate is composed of angular to well-
rounded pebbles and cobbles of quartz, potassium 
feldspar, granite, quartz–feldspar porphyry and 
tourmaline–quartz rock derived from the Cultana 
Subsuite, felsic volcanics derived from the Gawler 
Range Volcanics, quartzite derived from the 
Pandurra and Moonabie formations and lesser 
chert, banded iron formation, hematite and gneiss 
(Cowley 1991).

At North and South Hummocks and north of 
Douglas Point the Backy Point Formation comprises 
basalt breccia composed of tightly packed angular 
clasts of amygdaloidal basalt in a sandstone matrix 
or an irregular mixture of basalt and sandstone with 
thin sandstone dykes intruding the basalt, and these 
are interpreted as volcanic bombs in sandstone or 
peperite (Fig. 6c; Cowley 1991).

Around the Cultana Inlier the Beda Basalt and 
Backy Point Formation unconformably overlie the 
Paleoproterozoic (c. 1745 Ma) Moonabie Formation 
(Fig. 6a) and Mesoproterozoic (c. 1585 Ma) 
Cultana Subsuite (McAvaney 2009), a porphyritic 
member of the Hiltaba Suite. On the Stuart Shelf 
they unconformably overlie the Pandurra Formation 
(Fig. 6e), and are typically unconformably overlain 
by the Tapley Hill Formation (Fig. 6f), the basal beds 
of which often contain clasts derived from the Beda 
Basalt.
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5 (a) Hematised basalt cropping out along shoreline 2.7 km WNW of 
Backy Point, looking east (site 1366487). (Photo 414075)

5 (b) Photomicrograph of basalt composed of quartz-filled 
amygdales and acicular plagioclase laths in a black, fine-grained 
groundmass (sample 1110471). (Photo 414076)

5 (c) Basalt containing potassium feldspar filled amygdales, 
South Hummock (site 1841183). (Photo 414077)

5 (e) Red-brown, fine-grained amygdale-rich flow top, drillhole 
PSH 1/SAS 1. (Photo 414079)

5 (d) Basalt flows in drillhole PSH 1/SAS 1. Flow 9 overlies 
sedimentary bed (s); flow 10 contains amygdalar top and 
bottom (a) and massive middle of flow (m). (Photo 414078)

5 (f) Grey-green, medium-grained basalt in middle of flow, drillhole 
PSH 1/SAS 1. (Photo 414080)

Figure 5 Beda Basalt.
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Flow 9
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m
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6 (a) Beda Basalt (Nae) and pink sandstone of the Backy Point 
Formation (Nak) overlying the Moonabie Formation (Lmm). Site 
1375584, 650 m west of Backy Point, looking north. (Photo 414081)

6 (b) Purple sandstone and polymict conglomerate of the Backy Point 
Formation (Nak) interlayered with amygdaloidal and massive basalt 
of the Beda Basalt (Nae) in drillhole TR 3. (Photo 414082)

6 (c) Example of peperite in drillcore from drillhole BDH 2, ~550 m. 
(Photo 414083)

6 (e) Beda Basalt (Nae) unconformably overlying red, pebbly 
sandstone of the Pandurra Formation (M-p) in drillhole PSH 1/SAS 1. 
(Photo 414085)

6 (d) Beda Basalt overlain by red siltstone of the Backy Point 
Formation containing basalt clasts in drillhole BDH 2. (Photo 414084)

6 (f) Beda Basalt (Nae) unconformably overlain by calcareous 
siltstone of the Tapley Hill Formation (Nnt) in drillhole PSH 1/SAS 1. 
(Photo 414086)

Nae

Nak

Nae

Nak

Nae

Nae

M-p

Lmm

Nak

Nae

Nae
Nnt

Figure 6 Contact relationships of the Beda Basalt.
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Table 1 New major and trace element data for the Beda Basalt 

Sample 
Lithology 
Easting (m) 
Northing (m) 
Drillhole 
Depth from (m) 
Depth to (m)

1110471 
Basalt 
762554 
6374100

1951542 
Basalt 
729679 
6408451 
TR3 
249.75 
250.10

1951543 
Basalt 
729679 
6408451 
TR3 
251.02 
251.58

1951544 
Basalt 
729679 
6408451 
TR3 
270.32 
270.90

1951545 
Basalt 
729679 
6408451 
TR3 
282.41 
282.95

1959427 
Basalt 
743129 
6367031 
CU12 
214.30 
214.58

1961524 
Basalt 
734799 
6418512 
TR6 
212.50 
212.85

1961525 
Basalt 
734799 
6418512 
TR6 
219.00 
219.35

1961526 
Basalt 
734799 
6418512 
TR6 
225.65 
226.07

SiO2 58.0 42.8 51.3 51.3 51.2 45.2 50.4 50.1 50.6

TiO2 1.0 1.8 1.9 1.3 1.4 2.2 1.8 1.7 1.7

Al2O3 8.5 15.2 13.6 14.3 14.7 15.9 13.6 13.3 13.3

Fe2O3t 26.6 12.6 14.1 12.1 13.6 14.7 14.0 14.1 13.9

MnO 0.0 0.8 0.2 0.2 0.3 1.9 0.2 0.2 0.2

MgO 0.2 9.9 6.9 10.6 9.0 4.3 7.3 7.3 8.7

CaO 0.1 8.8 8.2 4.8 2.7 7.0 8.2 7.6 5.9

Na2O 4.1 0.8 2.7 3.1 4.1 2.1 2.6 3.2 4.6

K2O 1.2 5.8 0.9 2.1 2.5 5.3 1.7 2.0 1.0

P2O5 0.0 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.2

LOI 0.5 12.1 3.7 4.4 4.4 11.2 2.4 2.0 3.2

Total without LOI† 100.0 98.7 99.8 99.9 99.6 98.8 99.9 99.7 99.9

Ti 5 988.1 9 880.3 10 778.6 7 365.4 7 904.3 11 796.5 10 419.3 9 700.7 9 820.5

V 312.0 366.0 416.0 338.0 350.0 408.0 341.0 329.0 351.0

Cr 120.0 180.0 190.0 250.0 230.0 190.0 160.0 160.0 150.0

Co 17.0 43.8 49.6 50.6 48.0 82.2 46.9 45.7 48.1

Ni 46.0 119.0 107.0 125.0 126.0 190.0 92.0 90.0 89.0

Cu 22.0 19.0 75.0 53.0 49.0 115.0 61.0 48.0 60.0

Zn 54.0 78.0 112.0 142.0 190.0 54.0 121.0 114.0 136.0

Pb 12.0 10.0 15.0 31.0 23.0 7.0 13.0 15.0 21.0

Ga 8.7 18.3 19.1 16.8 17.0 20.8 18.2 17.8 17.8

Cs 0.3 3.4 3.5 3.2 2.1 5.7 2.0 4.4 1.2

Rb 39.3 202.0 34.1 84.8 87.8 270.0 84.8 98.5 41.1

Ba 94.7 264.0 148.0 327.0 414.0 197.5 197.0 389.0 123.0

Sr 22.3 38.5 148.5 117.5 130.0 22.0 144.0 146.5 111.5

Y 15.6 28.8 26.4 19.6 21.5 22.0 23.5 22.0 23.9

Zr 64.0 107.0 116.0 79.0 92.0 122.0 110.0 104.0 115.0

Th 1.9 2.3 1.8 1.6 2.5 1.8 1.6 1.4 2.0

U 6.2 1.8 0.3 0.3 0.9 1.5 0.4 0.3 0.4

Nb 4.7 6.8 7.4 4.8 5.4 8.3 7.0 6.5 7.3

Ta 0.4 0.5 0.5 0.4 0.4 0.6 0.5 0.5 0.5

Hf 2.0 3.1 3.3 2.3 2.6 3.5 3.1 2.9 3.2

La 6.1 13.6 10.7 7.9 9.7 17.3 10.1 9.6 11.0

Ce 18.8 32.9 24.0 16.9 20.7 45.4 22.4 20.9 24.0

Pr 2.4 5.0 3.6 2.5 3.2 7.0 3.1 2.8 3.3

Nd 10.8 22.7 16.4 11.6 14.1 30.4 14.3 13.7 15.3

Sm 2.9 5.5 4.4 3.1 3.6 6.2 3.8 3.6 3.9

Eu 1.0 1.9 1.6 1.1 1.3 2.1 1.4 1.2 1.2

Gd 3.3 6.3 5.1 3.7 4.3 5.4 4.3 4.1 4.2

Tb 0.5 0.9 0.8 0.6 0.7 0.8 0.7 0.7 0.8

Dy 3.0 5.7 5.3 3.8 4.4 4.7 4.5 4.4 4.5

Ho 0.6 1.1 1.0 0.8 0.9 0.9 0.9 0.8 0.9

Er 1.6 3.0 3.0 2.3 2.5 2.7 2.5 2.5 2.7

Tm 0.2 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4

Yb 1.5 2.5 2.5 1.9 2.1 2.5 2.3 2.2 2.4

Lu 0.2 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.4

Eu/Eu* 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 0.9

Zr/Y 4.1 3.7 4.4 4.0 4.3 5.5 4.7 4.7 4.8

Nb/Y 0.3 0.2 0.3 0.2 0.3 0.4 0.3 0.3 0.3

Zr/Nb 13.6 15.7 15.7 16.5 17.0 14.7 15.7 16.0 15.8

Ti/V 19.2 27.0 25.9 21.8 22.6 28.9 30.6 29.5 28.0

(La/Yb)N 3.0 4.0 3.1 2.9 3.3 5.0 3.1 3.2 3.3

† Major element values normalised to LOI-free assuming 100% totals. 

LOI = loss on ignition. 

Eu/Eu* = EuN/(SmN × GdN)0.5
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Geochronology
The age of the Beda Basalt is not well constrained 
due to its unsuitability for U–Pb dating and the 
fact that it is bound above and below by a lengthy 
hiatus. The youngest U–Pb zircon maximum 
depositional age obtained for the underlying 
Pandurra Formation is 1575 ± 5 Ma for a sample 
from Red Rock Hill on the northeast Eyre Peninsula 
(Fraser and Neumann 2010). Rb–Sr analyses 
of siltstone and shale beds from the Pandurra 
Formation in drillholes Peeweena 1 (DH Number 
16698; incorrectly called Red Millers Creek 1) and 
PY 1 (DH Number 20712) gave a date of 1424 
± 51 Ma, interpreted as a maximum depositional 
age (Fanning, Flint and Preiss 1983). Samples of 
the basal Tindelpina Shale Member of the overlying 
Tapley Hill Formation from drillholes Blinman 2 (DH 
Number 69427) in the Adelaide Geosyncline and 
SCYW-79 1A (DH Number 20829) on the Stuart 
Shelf yield a combined Re–Os age of 643 ± 2.4 Ma 
(Kendall, Creaser and Selby 2006).

Direct Rb–Sr and Ar–Ar geochronology have yielded 
conflicting results for the Beda Basalt. Webb and 
Hörr (1978) obtained a whole rock Rb–Sr age 
of 697 ± 34 Ma from an amygdaloidal flow in 
drillhole PSH 1/SAS 1. Webb and Coats (1980) 
obtained a Rb–Sr age of 1076 ± 34 Ma for an 
altered basalt from drillhole Delhi–Aquitane BDH 2 
(DH Number 25355) located 8 km west of Beda Hill 
on the southwestern edge of Lake Torrens (Fig. 3). 
Page, McCulloch and Black (1984) reprocessed 
the age obtained by Webb and Coats (1980) by 
removing samples with the greatest degree of 
alteration from the isochron, and obtained an age 
of c. 1200 Ma. The Beda Basalt is now generally 
accepted as belonging to the Willouran Basic 
Province based on its geochemical affinity to other 
volcanics within the province (Woodget 1987; 
Crawford and Hilyard 1990) which are constrained 
by geochronology to c. 830 Ma (Compston, 
Crawford and Bofinger 1966; Zhao, McCulloch and 
Korsch 1994; Wingate et al. 1998). Furthermore, 
Wingate et al. (1998) report an 827 ± 7 Ma 
Pb–Pb baddeleyite age for the Gairdner Dolerite, 
interpreted as feeders to the Beda Basalt.

Additional constraint on the age of the Beda Basalt 
is provided by the U–Pb zircon age of 802 ± 
10 Ma (Fanning et al. 1986) for the Rook Tuff in the 
Willouran Ranges, within the Curdimurka Subgroup, 
younger than the Arkaroola Subgroup which 
contains the Wooltana Volcanics, correlated with the 
Beda Basalt.

Geochemistry
The Beda Basalt is classified as subalkaline basalt 
to trachybasalt, basaltic trachyandesite, basaltic 
andesite and andesite (Figs 7a, b). The Beda Basalt 

displays both tholeiitic and calcalkaline affinity on 
the AFM classification diagram (Fig. 7c). The ternary 
Ti + Fe – Al–Mg diagram classifies the Beda Basalt 
as high-Fe and high-Mg tholeiitic basalt (Fig. 7d). 
Basalts classified as high-Fe tholeiites have likely 
been affected by ferruginisation.

Beda Basalt has a broad range of silica content 
(42.83–58.2%; Table 1). MgO content is also 
variable (0.2–13%; typically 3–13%; Table 1). 
Beda Basalt is characterised by low K2O (<6%), 
high CaO (typically 3.8–≥11%) and high Na2O 
(typically 2.1–7.4%; Table 1; Fig. 8). Negative 
correlations are observed for CaO, SiO2, Na2O, 
P2O5, Fe2O3t and TiO2 with increasing MgO; 
Al2O3 forms a positive correlation with increasing 
MgO (Fig. 8). High Fe2O3t co ntent is observed in a 
few samples (e.g. 1110471) and is likely attributed 
to ferruginisation. Major element abundances are 
similar to the Wooltana Volcanics (830 Ma basalts, 
northern Flinders Ranges) and the Gairdner Dolerite 
(827 Ma; Fig. 8). The Beda Basalt can be more 
enriched in P2O5 and TiO2 compared with the 
Wooltana Volcanics (Fig. 8). Variation is observed 
in mobile elements such as CaO and K2O, which 
are likely attributed to alteration. Compared with 
the basalts from Depot Creek, the Beda Basalt is 
enriched in CaO and displays less variation in major 
elements with increasing MgO (Fig. 8).

Beda Basalt displays similar trace element 
abundances to the Gairdner Dolerite and Wooltana 
Volcanics (Fig. 9). Enrichments in elements such as 
La, Ce, Nb and Zr are observed in the Beda Basalt 
compared to mafic rocks with similar MgO content 
(Fig. 9). While some scatter is observed in these 
elements (La, Ce, Zr and Nb), the data generally 
forms decreasing fractionation trends with increasing 
MgO content (Fig. 9). These trends are also 
observed in the Wooltana Volcanics and Gairdner 
Dolerite (Fig. 9). Beda Basalt displays some scatter 
in the large-ion lithophile elements (LILE, such as 
Rb, Ba, K and Sr) and mobile elements on primitive 
mantle-normalised trace element plots which is 
likely due to alteration. High field strength elements 
(HFSE, such as Th, U, Nb, Ta, Zr, and rare earth 
elements, REE) and immobile elements are relatively 
flat and close to enriched mid-ocean-ridge basalt 
(MORB) abundances (Fig. 10a). Some Beda Basalt 
samples display significant negative Sr anomalies 
indicating the fractionation of plagioclase, but this is 
not reflected in Eu depletions on REE plots (Fig. 10b). 
Trace element abundances are also compared with 
Wooltana Volcanics, basalts from Depot Creek and 
Gairdner Dolerite samples. Trace element patterns 
are indistinguishable from those of the Wooltana 
Volcanics and basalts from Depot Creek (Fig. 10a). 
While the Gairdner Dolerite displays more variation 
in trace elements, on Figure 10b the Beda Basalt 
generally fits within this field with the exception of Sr.
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Figure 7 Classification diagrams for the Beda Basalt. (a) Zr/TiO2–Nb/Y classification diagram (Floyd and Winchester 
1978). (b) Na2O + K2O – SiO2 diagram (Le Maitre et al. 1989). (c) AFM diagram (Kuno 1968; A = oxides of Na2O + K2O, 
F = oxides of FeO + Fe2O3 and M = oxides of MgO). (d) Ti + Fe – Al–Mg classification diagram (Jensen 1976).

Table 2 Radiogenic isotope data for the Beda Basalt 

Sample Lithology Age (Ma) Nd (ppm)  Sm (ppm)  147Sm/144Nd  143Nd/144Nd T(DM) T(CHUR) ƐNd(0) ƐNd(t)

1110471 Basalt 830 9.92 2.66 0.1622 0.512154 2.91 2.14 –9.4 –5.8

1951542 Basalt 830 21.74 5.50 0.1529 0.512265 2.20 1.30 –7.3 –2.6

1951544 Basalt 830 11.49 3.15 0.1659 0.512508 2.04 0.65 –2.5 0.7

1959427 Basalt 830 27.44 5.76 0.1270 0.512328 1.45 0.68 –6.0 1.3

1961524 Basalt 830 15.31 4.12 0.1626 0.512524 1.86 0.51 –2.2 1.4

1961525 Basalt 830 14.70 3.97 0.1634 0.512553 1.81 0.39 –1.7 1.9

Isotope error measurements are two times the standard error. 
143Nd/144Nd CHUR(0) = 0.512638; 147Sm/144Nd CHUR(0) = 0.1967; 143Nd/144Nd DM(0) = 0.51316; 147Sm/144Nd DM(0) = 0.2145 
TDM =depleted-mantle model age; TCHUR = CHUR-model age.
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are similar (Fig. 10b). REE abundances in the Beda 
Basalt display more overlap with the Gairdner 
Dolerite (Fig. 10b).

One outcrop and five drillhole Beda Basalt 
samples were analysed for whole-rock Sm–
Nd analyses. These Sm–Nd results are listed 
in Table 2. 143Nd/144Nd values range from 
0.512154–0.512553 and 147Sm/144Nd values 
between 0.1270 and 0.1659 (Table 2). These values 
are significantly lower than those reported by Foden 
et al. (2002) for the Beda Basalt (143Nd/144Nd 
= 0.512707–0.512714 and 147Sm/144Nd = 
0.1772–0.186) but comparable with Sm–Nd values 
of the volcanics at Depot Creek (Fig. 11). Beda 
Basalt samples with juvenile Nd signatures have 
147Sm/144Nd ratios that are indistinguishable from 
the Gairdner Dolerite and Wooltana Volcanics. 
TDM values range from 1.4 to 2.9 Ga but form 
three TDM groups: ≤ 1.5 Ga, 1.6–2.1 Ga and 
≥ 2.2 Ga. εNd(830 Ma) values range from 5.8 to 3.4 
(Table 2; Fig. 11). However, the Nd values for the 
Beda Basalt do not display any correlation with the 
TDM groups. While the Beda Basalt samples with 
the oldest TDM ages do have the most evolved Nd 
signatures, one sample with a TDM of 2.4 Ga has 
an εNd(830 Ma) value of +2.6. Beda Basalt samples 
with TDM between 1.6 and 2.2 Ga have εNd(830 Ma) 
values that range between 0.7 and 3.4 (Table 2). 
The sample with the youngest TDM (1.4 Ga) has an 
εNd(830 Ma) value of +1.3. The majority of the Beda 
Basalt samples have TDM ages that are similar to the 
range for other Neoproterozoic mafic rocks (Foden 
et al. 2002), clustering around 1.6 Ga. At least two 
source regions appear to have been sampled during 
this event, an enriched mantle and a depleted 
mantle source, and more evolved signatures 
suggest assimilation of crustal material, most likely 
Mesoproterozoic basement either en route via 
crustal contamination or assimilation and fractional 
crystallisation (Fig. 11).

Tectonic setting and source region 
discrimination
Figure 12 illustrates tectonic setting discrimination 
diagrams for basalts to distinguish within-plate 
basalts, island arc tholeiites and calcalkali basalts 
(Figs 12a, b); tholeiitic and alkali basalts (Figs 12c, 
d); and continental and oceanic tholeiites (Figs 12e, f).

Beda Basalt is a within-plate basalt as illustrated 
by the Ti–Zr–Y ternary diagram and the Zr/Y–Zr 
diagram (Figs 12a, b). Some overlap is observed 
between the within-plate basalt and MORB fields on 
these diagrams.

The Beda Basalt is predominantly continental 
tholeiite transitional to MORB as illustrated by the 
Ti/Y–Nb/Y diagram and TiO2–Y/Nb (Figs 12c, d). 

0 5 10 15
0

2

4

30

25

20

15

10

5

0

15

10

0

5

20

25

6

8

10

12

0.1

0.0

0.2

0.3

0.4

0.6

0.5

Cao K2O

SiO2P2O5

Fe2O3t TiO2

MgO MgO

0 5 10 15
MgO

0 5 10 15
0

65

60

55

50

45

40

2

4

6

8

10

12

0 5 10 15
MgO

0 5 10 15
MgO

0 5 10 15
MgO

204507-013

Beda Basalt

Wooltana Volcanics Gairdner Dolerite

Basalts, Depot Creek

Figure 8 Major element variation diagrams for the Beda 
Basalt, Wooltana Volcanics, basalts from Depot Creek and 
Gairdner Dolerite. 

Beda Basalt displays REE profiles that are near flat 
with slight enrichment in light REE (LREE) relative to 
heavy REE (HREE; Fig. 10b), also indicated by low 
(La/YbN) ratios (2.9–5; where N represents values 
normalised to chondrite). Eu/Eu* values range 
from 0.9–1.1, which correspond to near-flat Eu 
anomalies (Table 1; Fig. 10b). LREE abundances for 
the Beda Basalt are variable and abundances range 
between enriched MORB and bulk crust values, 
while HREE abundances are more uniform and 
correspond to oceanic-island basalt, enriched MORB 
and bulk crust values (Fig. 10b). Beda Basalt is more 
enriched in LREE (La through to Gd) compared with 
the Wooltana Volcanics and basalts from Depot 
Creek, while HREE (Tb through to Lu) abundances 
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Figure 9  Trace element variation diagrams for the Beda 
Basalt, Wooltana Volcanics, basalts from Depot Creek and 
Gairdner Dolerite.

Some samples from the Beda Basalt display oceanic 
affinity (Figs 12e, f).

Potential source regions for the Beda Basalt are 
shown on Figures 13a and 13b. On the Nb/Y–Zr/Y 
diagram the Beda Basalt lies on a trend between 
normal MORB or primitive mantle and crustal 
values, suggesting assimilation of lower to upper 
crustal material occurred either en route, or at some 
point prior to eruption, i.e. crustal contamination. 
Enriched LREE and trace element ratios such as 
La/Yb, Th/Nb, Ce/Y, Th/Sm, Zr/Y and Nb/Y are 
suggestive of crustal contamination, while Nb/La, 

Zr/Nb and La/Sm ratios and positive Nd values do 
not reflect significant amounts of assimilated crustal 
material (Fig. 13b).

While samples 1951542 and 1110471 have 
evolved Nd signatures, trace element ratios such 
as Zr/Y, Nd/Sm and Zr/Nb are similar to Beda 
Basalt with juvenile Nd signatures, enriched MORB 
and primitive mantle values, suggesting minor 
crustal contamination in conjunction with subcrustal 
alteration possibly occurred in these two samples. 
Incompatible element ratios are similar to enriched 
MORB values, while Nb/Zr ratios for all samples are 
indistinguishable from bulk crustal values and small 
negative Nb anomalies suggest small portions of 
crustal material may have been assimilated in the 
Beda Basalt.

Implications for a large igneous 
province
The Willouran Basic Province in the base of the 
Adelaide Geosyncline sedimentary succession 
was first defined by Crawford and Hilyard (1990). 
This basic province included the following units: 
Wooltana Volcanics, Beda Basalt, Cadlareena 
Volcanics, Noranda Volcanics, Wilangee Basalt 
(Broken Hill) and the intrusive units, the Gairdner 
Dolerite and Little Broken Hill Gabbro (NSW). 
Further to this, additional Neoproterozoic-aged 
igneous rocks have also been identified as 
displaying geochemical affinity to the rocks from the 
Willouran Basic Province. These include the volcanics 
at Depot Creek, volcanics in Bitter Springs Formation 
(Amadeus Basin), pillow basalts in the Benagerie 
Ridge, Curnamona Province (LNM 10, DH Number 
145894), and mafic volcanic and plutonic rocks in 
southern China (Zhao, McCulloch and Korsch 1994; 
Li et al. 1999; Wang et al. 2010).

Previous authors (Crawford and Hilyard 1990; Li 
et al. 1999; Wang et al. 2010), have discussed 
the significance of the Willouran Basic Province 
or large igneous province. It extends across more 
than 1000 km in south-central Australia and covers 
an area in excess of 210 000 km2 (Crawford and 
Hilyard 1990). This prominent Neoproterozoic 
large igneous province is related to the breakup of 
the supercontinent Rodinia (Zhao, McCulloch and 
Korsch 1994; Li et al. 1999; Wang et al. 2010).

Mafic dyke swarms of the Gairdner Dolerite are 
interpreted as being derived from decompressional 
melting of a large-scale, uniform asthenospheric 
mantle plume. Flood basalt volcanism then followed 
as a result of the upwelling plume head causing 
doming in the continental lithosphere (Zhao, 
McCulloch and Korsch 1994) which produced the 
volcanics listed above, and including the Beda 
Basalt. The Gairdner Dolerite and other intrusive 
units are believed to be the feeders for the volcanics. 
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enriched MORB (Klein 2004) and bulk crust (Rudnick and Gao 2003).

The related large-scale crustal extension and 
thinning was likely responsible for the formation 
of the Neoproterozoic Centralian Superbasin in 
central-southern Australia.

Younger analogues for the Willouran Basic Province 
include the Cretaceous Paraná-Etendeka large 
igneous province of South America and southern 
Africa (Deckart et al. 1998; Ewart et al. 1998), 
Jurassic Karoo–Ferrar large igneous province 
of South Africa and Antarctica (Ellam and Cox 
1989, 1991; Marzoli et al. 1999; Jourdan et al. 
2004) and Miocene–Pliocene Columbia River 
flood basalts of the western United States (Hooper 
1982; Hooper 1990; Hooper 1997). Crawford and 
Hilyard (1990) demonstrated that the Beda Basalt 
is a true continental flood tholeiite which displays 
close affinity to the Paraná basalts. The Wooltana 
Volcanics display close affinity to tholeiitic basalts 
erupted immediately prior to the opening of the 
South Atlantic Ocean.

Appendix 1: Definition of the 
Beda Basalt
Name. Beda Basalt. 

Derivation of name. Beda Bore was the first to 
intersect the basalt.

Synonyms. Beda Volcanics (superseded term).

Lithology. Subaerial amygdaloidal to massive 
tholeiitic basalts.

Age. Neoproterozoic.

Distribution. The Beda Basalt occurs extensively 
beneath the cover of the younger Neoproterozoic 
units of the Stuart Shelf in a northwest-trending 
belt ~190 km by 40 km between the southern tip 
of the Cultana Inlier and the Carrapateena Arm of 
Lake Torrens. The only exposure of the formation 
occurs around the Cultana Inlier, where the basalt is 
exposed along the coast of the northwestern Spencer 
Gulf near Backy Point, North and South Hummocks 
and north of Douglas Point.

Thickness. The true thickness of the Beda Basalt is 
uncertain as it was exposed everywhere to subaerial 

Figure 11 Nd evolution diagrams for the Beda Basalt, 
Wooltana Volcanics, basalts from Depot Creek and 
Gairdner Dolerite. TDM age ranges are indicated by dotted 
line and blue bands.
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weathering and erosion prior to the deposition of 
the Tapley Hill Formation in the early Sturtian. In 
drillcore, individual flows range in thickness from 
<1 m to ~30 m thick. In drillhole PSH 1/SAS 1 a 
pile of 22 lava flows totals almost 200 m thickness.

Contact relationships. The Beda Basalt is 
interlayered with the Backy Point Formation. Small 
lenses of sand or silt or larger sandstone and 
conglomerate beds of the Backy Point Formation are 
recorded between many lava flows in both outcrop 
(North and South Hummocks, Douglas Point and 
west of Backy Point) and drillcore (e.g. drillhole 
TR 3).

Around the Cultana Inlier the Beda Basalt and 
Backy Point Formation unconformably overlie the 
Paleoproterozoic (c. 1740 Ma) Moonabie Formation 
and Mesoproterozoic (c. 1580 Ma) Cultana 
Subsuite. On the Stuart Shelf they unconformably 
overlie the Pandurra Formation, and are typically 
unconformably overlain by the Tapley Hill 
Formation.

Type locality and reference drillhole. The 
type locality of the Beda Basalt includes exposures 
around the southeastern Cultana Inlier: Douglas 
Point (GDA94, zone 53, 762970mE, 6361550mN, 
extending 400 m to the east and 1.7 km to the 
north) and 1 km ENE of Backy Point (extending 
400 m around the point GDA94, 760060mE, 
6354950mN). The interval 273.7–470.44 m from 
drillhole PSH 1/SAS 1 (DH Number 136943); 
GDA94, 734729mE, 6409671mN) located 25 km 
west of Port Augusta, is proposed as the reference 
drillhole intersection.
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