Open File Envelope No. 11,231

EL 3314

COFFIN BAY

ANNUAL AND FINAL REPORTS TO LICENCE EXPIRY/SURRENDER FOR THE PERIOD 3/3/2005 TO 2/3/2010

Submitted by International Metals Pty Ltd and WCP Uranium Pty Ltd / Uranoz Ltd 2010

© 18/6/2010

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia.

PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Branch

Minerals and Energy Resources


7th Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

SCHEDULE A

APPLICANT: INTERNATIONAL METALS PTY LTD

FILE REF: 674/04 TYPE: MINERAL ONLY AREA: 957 km² (approx.)

1:250000 MAPSHEETS: LINCOLN

LOCALITY: COFFIN BAY AREA - Approximately 55 km northwest of Port Lincoln

DATE GRANTED: 03-Feb-2005 DATE EXPIRED: 02-Feb-2006 EL NO: 3314

27 May 2006

Records Officer **Mineral Tenements PIRSA GPO Box 1671** ADELAIDE SA 5001

Dear Sir/Madam

EL 3314 - Annual Technical Report for the period ending 2 March 2006

No field work was undertaken on EL 3314 during the first year of tenure. As there is no new technical data to report, an Annual Technical Report will not be submitted.

Expenditure for the first year was as follows:

Activity	Expense \$		
Geology	5,715		
Tenement maintenance	1,040		
Admin/overheads	1,013		
Total	7,768		

If you require further information, please contact Gary Ferris, the Managing Director, on 0423 259 488.

Yours sincerely

Teena Coppin **Tenement Manager**

Exploration Office 11A Croydon Road KESWICK SA 5035

Mob: 0423 259 488

InterMet Resources Limited

garyferris@intermetresources.com.au info@intermetresources.com.au ACN 112 291 960

www.intermetresources.com.au

Registered Office Level 41 Australia Square 264-278 George Street SYDNEY NSW 2000

Tel: +61 2 8221 0404 Fax: +61 2 8221 0407

MERFF

R2006/00584

ACN 112 291 960

1/22 Maple Avenue FORESTVILLE SA 5035 Telephone (08) 8351 3388 Facsimilie (08) 8351 0023

EXPLORATION LICENCE 3314 COULTA

ANNUAL TECHNICAL REPORTFor the Period Ending March 2007

Author: Gary Ferris

Leon Faulkner

Date: January 2007

Table of C	ontents	
INTRODUCT	FION	3
LOCATION A	AND ACCESS	3
PREVIOUS I	EXPLORATION	3
	AL SETTING	
CURRENT E	XPLORATION PROGRAM	7
	ING PROGRAM	
Figures		
	cation of EL3314 (Coulta)	2
	ew aeromagnetic data (100m line spacing) for EL3314 draped	
	gional 400 metred spaced aeromagnetic data	
	cation of holes from first phase of Coulta Drilling program	
	cation of holes from second phase of Coulta Drilling program.	
	Areas on EL3314 interpreted as representing potential	12
	eenstone rocks	10
Figure 6 De	etailed view of Area A showing prominent fold closure in the ne	14 orth
rigule o De		
Figure 7 Mo	delled magnetic data fro a line near hole COU006	14
	etailed view of Area B	
	odelled magnetic data for a line across hole COU011-014	
	odeled magnetic data for line across hole COU015-017	
Figure 11 De	etailed view of Area C	19
	odelled magnetic data for a line across hole COU005	
	etailed view of Area D	
	etailed view of Area E	
	etialed view of Area F and G	
	odelled magnetic data for a line across holes COU017-021	
Figure 17 De	etailed view of holes COU026-030	24
	nmary of Company Exploration for EL3461	
Appendice Appendix A A Appendix B O Appendix C O	hole summary	11

INTRODUCTION

EL 3314 (Coulta) is located on southern Eyre Peninsula approximately 50 km WNW of the township of Port Lincoln (Figure 1). EL 3314 comprises 957 km² and is located within the Coulta Domain, an Archaean province, which contains a greenstone belt highly prospective for komatiite hosted nickel and gold and Archaean VHMS style deposits, comparable to the rich Canadian Abitibi Belt and the Eastern Goldfields of Western Australia.

LOCATION AND ACCESS

EL 3314 is located on southern Eyre Peninsula and access from Port Lincoln is via the sealed Lincoln Highway and all weather graded roads (Figure 1).

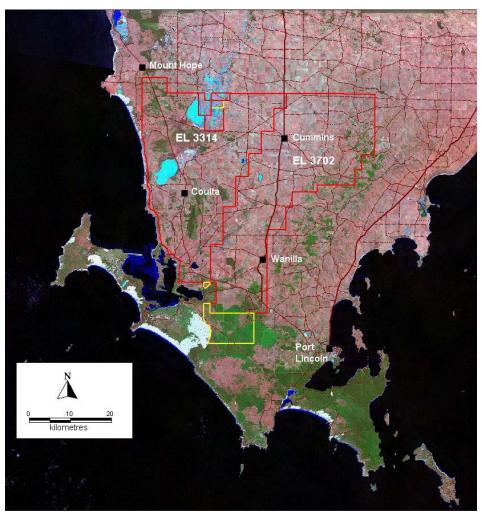


Figure 1 Location of EL 3314 (Coulta).

PREVIOUS EXPLORATION

Past exploration in this tenement included searches for uranium, industrial minerals, coal, diamonds, heavy mineral sands, gold and base metals.

Uranium was an exploration target from 1970 to 1982, although the first significant discovery was made near Port Lincoln in 1954, when a local resident discovered pitchblende mineralisation in a narrow zone within

Palaeoproterozoic metasediments. Endeavour Minerals NL (Endeavour) explored the northeast section of the Coffin Bay tenement from 1970 to 1973. Endeavour reported rotary drilling and radiometric anomalies, but submitted no technical data.

Uranerz (Australia) Pty Ltd (Uranerz) explored the eastern section of the tenement in 1975-76, looking for sedimentary uranium in lower Tertiary carbonaceous and pyritic sands. Extensive groundwater sampling identified low uranium concentrations associated with high sulphate, chloride and bicarbonate values. Seismic and gravity surveys delineated palaeochannels incised into basement. Rotary mud drilling (24 holes, 10 of which were in this tenement) yielded only low uranium values in most holes. In 1978-79, Uranerz also explored the southern portion of the Coffin Bay tenement, undertaking geological mapping, magnetic and radiometric surveys and water sampling, without finding significant uranium anomalies.

From 1980 to 1982, Afmeco Pty Ltd (Afmeco) searched for uranium across a region including the southern part of the tenement and extending further east. Afmeco carried out airborne and ground magnetic and radiometric surveys, collected soil samples and drilled 121 auger holes (10 in this tenement) and 8 diamond drill holes (5 in this tenement). Afmeco reported minor patchy pitchblende occurring in basement rocks.

Industrial minerals have attracted significant exploration efforts. Kaolin was a secondary target for Endeavour (see above) from 1970 to 1973. Blacker Motors Pty Ltd investigated the Mount Hope kaolin deposits in the western part of the tenement from 1971 to 1973. Exploration Drilling Pty Ltd targeted a similar area in 1973-74, followed by Loch Shiel Pty Ltd, who continued assessment of the kaolin until 1976. From 1986 to 1988, South Australian Kaolin Pty Ltd (SA Kaolin) undertook further assessment of the kaolin at Mount Hope, which is derived from a kaolinised granitic gneiss. SA Kaolin drilled 19 holes to obtain samples for testing. They concluded that the kaolin may not be of paper coating quality, but is of paper filler grade and suitable for ceramics.

Gypsum was another industrial mineral of interest. From 1985 to 1991, John F Gilfillan and Associates Pty Ltd assessed deposits in the lake and marginal dunes at Lake Malata. Drilling of 62 auger holes delineated 1.2 million tonnes of gypsite and gypsarenite suitable for plaster manufacture, but only after beneficiation. Five diamond drill holes outlined a further inferred resource containing 30 million tonnes of gypsum beneath the lake bed.

Near surface lignite coal was reported on Coffin Bay Peninsula prior to 1961. CRAE targeted Tertiary brown coal (lignite) in the northern part of the tenement in 1981-82, drilling five holes (2 in this tenement) without intersecting coal.

Stockdale Prospecting Ltd (Stockdale) explored for diamonds over a region generally north of the tenement from 1988 to 1992. Stockdale undertook airborne geophysical surveys, heavy mineral sampling and ground magnetic

surveys, before drilling 91 holes, two of which were in the tenement. The drilling located two kimberlites, which were investigated with a further 42 drill holes. Both kimberlites are small, and covered by 20 to 50 metres of Cainozoic sediments. Stockdale reported that neither is diamond bearing.

Heavy mineral sands were the initial target for Dominion Mining Ltd (Dominion) and Southern Ventures NL (Southern Ventures), who explored the eastern section of the tenement from 1989 to 1994. Drilling of 167 RC holes (11 in this tenement) returned a best intersection of 3 metres containing 1.41% TiO₂ and 0.15% ZrO₂.

Dominion and Southern Ventures subsequently switched to gold and base metals exploration. Work included soil, rock chip and stream sediment geochemistry, ground magnetics and 97 RC drill holes. Dominion and Southern Ventures found low-order gold and base metals anomalies in Hutchison Group metasediments of the basement, which included banded iron formation (BIF).

Company base metals exploration dates from 1970-71, when Southern Concrete Masonry Ltd targeted an area surrounding the Lady Franklin and Moonlight Mines for metalliferous minerals, although work appears to have been limited to a review of available data.

More recent base metals exploration dates from 1983-85, when CRAE explored the southern section of the tenement. CRAE investigated Lady Franklin prospect, where gravity, magnetic and IP surveys generated targets for 140 RAB holes and 8 percussion/diamond core holes. One hole intersected 14 metres of disseminated copper, lead, zinc mineralisation. CRAE also undertook regional exploration, following up a stream sediment survey and ground magnetic traverses with 29 RAB holes and 16 RC holes.

Lynch Mining Pty Ltd (Lynch) and Alphadale Pty Ltd (Alphadale) explored for gold and base metals between 1994 and 2004, covering an area generally to the north of the tenement. The initial target was a north trending linear feature named the Coffin bay Magnetic Anomaly, which here lies offshore, to the west of the tenement. Lynch and Alphadale recognised basement lithologies that were similar to those of the late Archaean Abitibi Belt in Canada, which contains Volcanic-hosted Massive Sulphide (VHMS) deposits. Drilling by Lynch and Alphadale intersected felsic metavolcanics, BIF, calc-silicates, tremolite marbles and magnetite-rich lithologies. Uranium-lead zircon dating confirmed a probable late Archaean age. Assays revealed some highly anomalous gold, lead, zinc, copper, silver, cobalt and molybdenum concentrations. Work continues on the areas considered the most prospective.

Goldstream Mining NL (Goldstream) searched for gold and base metals over the northern and eastern sections of the tenement between 1997 and 2000. Goldstream undertook geochemical sampling, data reviews and drilling. RAB drilling (33 holes) of magnetic anomalies in Archaean basement yielded moderately elevated gold, copper, lead and zinc values, but no evidence of hydrothermal alteration. Exploration in the southwest of the Coffin Bay tenement also included geochemical surveys, followed by aircore drilling (23 holes, 2 in this tenement). However, difficult regolith sampling conditions and difficult drilling hampered effective investigations.

A summary of previous exploration on EL 3314 is presented in Table 1.

Table 1 Summary of Company Exploration for EL 3461

GEOLOGICAL SETTING

Basement rocks beneath the project area are interpreted as predominantly Archaean gneisses of the Sleaford Complex. In the southern (Coffin Bay) tenement, north trending outliers of Palaeoproterozoic Hutchison Group metasediments are interfolded with the Archaean. There are also sub-circular bodies of Palaeoproterozoic Moody Suite granites in the northeast corner of Coffin Bay tenement. Offshore immediately west of Coffin Bay is a north trending belt representing interpreted extensions of the Archaean Hall Bay Volcanics and Price Metasediments. Immediately north of Coffin Bay tenement recently discovered rocks of the Coulta Greenstone Domain are complexly interfolded with the Sleaford Complex gneisses. The Coulta greenstones contain komatiites and are interpreted as a southern extension of the Harris Greenstone Domain.

Outcrop of basement is mainly confined to the Marble Range and coastal regions in southern Coffin Bay. Warrow Quartzite Member crops out strongly, flanked by Archaean granites of the Dutton Suite.

Amphibolite-facies metasediments with interlayered acid and basic Archaean Hall Bay Volcanics containing anomalous copper, zinc and gold have been drilled by Wirrie Gold and PIRSA to the north of EL 3314 at Mount Hope. Manganese rich garnets and gahnite indicate proximal alteration assemblages. Zinc anomalism has been intersected in a number of drillholes and thus there is good VHMS potential particularly within the felsic volcanics. EL 3314 covers over 80km of strike length of prospective stratigraphy with good possibility of structural repetition.

The Lady Franklin Mine and Moonlight Mines are located on EL 3314 and small amounts or ore containing galena and sphalerite with minor copper, silver and gold were mined in early 1900's. Ore is contained within thin sulphide rich lenses within the Hutchinson Group.

Overlying the basement in many areas of Eyre Peninsula are carbonaceous terrigenous clastics of the Pidinga Formation (Poelpena Formation or Wanilla Formation on southern Eyre Peninsula) that average 30_60 m in thickness and fill depressions and channels. These sediments are highly charged with groundwater, are pyritic and sometimes contain thin lignite. In view of the occurrence of potentially uranium-bearing granites in the regions, these channels and depressions may have potential for rollfront uranium.

CURRENT EXPLRATION PROGRAM

Aeromagnetic Survey

UTS geophysics was contracted to undertake a detailed aeromagnetic and radiometric survey over EL 3314. A total of 11, 632 Line kilometres were flown on lines 100 metres apart. The Final Report for the Survey is included ad Appendix A.

Figure 2 shows the new aeromagnetic data overlying the pre-existing 400 line spaced data. The new aeromagnetic data highlighted a series of N-S trending magnetic units, which are interpreted to represent possible mafic extrusives or iron-rich units of the Hall Bay Volcanics similar to those drilled in the vicinity of Mount Hope.

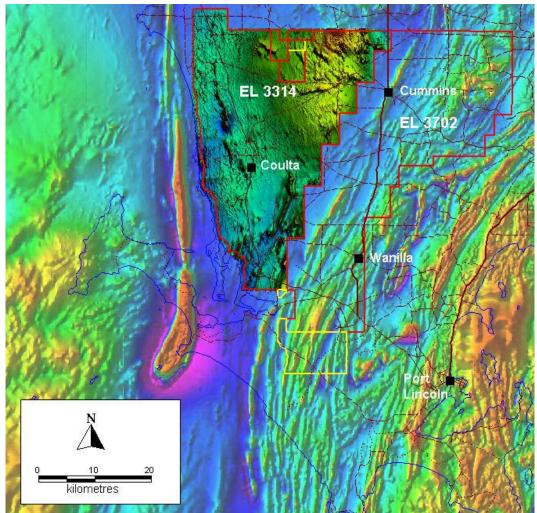


Figure 2 New aeromagnetic data (100 metre line spacing) for EL 3314 draped on regional 400 metred spaced aeromagnetic data.

PACE Drilling Program

InterMet successfully applied for a grant of \$50,000 from PIRSA, through its Plan for Accelerated Exploration (PACE).

Drilling was undertaken in two phases.

InterMet Resources initially drilled 22 holes (Phase 1) totaling 609 metres on EL 3314 (Figure 3). The original plan was to drill a mixture of rotary mud and air core holes, but difficulties with air core drilling due to groundwater and excessive drill bit failure prompted a change to RAB to achieve the aims of the program.

A second phase of drilling was undertaken with an RC rig aimed at drilling deeper and intersecting the magnetic features outlined by the recent aeromagnetic survey. Ten holes (COU023-032) were completed for 680 metres for a cumulative total of 33 holes for 1289 metres (Figure 4; Table 2.

The first stage of the drilling program was completed on November 29 2006. The second phase of drilling was completed on February 7 2007.

Geochemical analyses are presented in Appendix B (Phase 1) and Appendix C (Phase 2) and drill hole logs are presented in Appendix D.

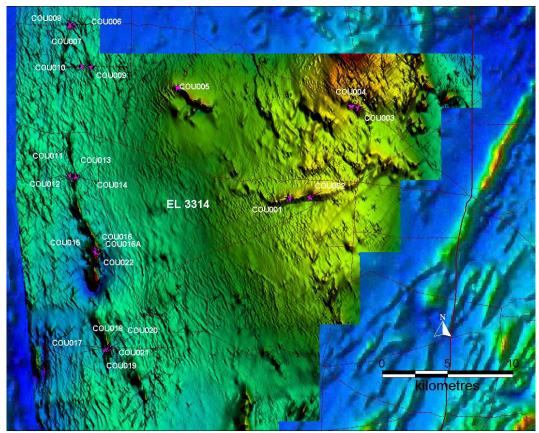


Figure 3 Location of holes from first phase of Coulta Drilling program

Results from First Program

The drilling failed to intersect any lithologies which would explain the aeromagnetic data due to difficult drilling conditions. Modeling of the magnetic data showed the magnetic features are between 50-90m deep and the drilling failed to penetrate to the required depth.

Best results from the first drilling program include:

Hole COU003 - 51 ppm Ag 38-41m

Hole COU006 - 481 ppm Cu (5-6 m); 324 ppm Zn (5-6 m); 1076 ppm Co (6-10 m)

Hole COU009 – 3.9 ppb Au (8-12 m)

Results from Second Program

All holes from the second program intersected granite/gneiss interpreted to represent Wangary Gneiss with varying magnetite content.

Best results from the second drilling program include:

Hole COU031 – 0.22% Zn, 442 ppm Pb (68-72m)

Hole COU031 – 583 ppm Zn, 231 ppm Pb (72-76m)

Hole COU031 – 310 ppm Zn, 124 ppm Cu (76-80m)

Hole COU031 – 814 ppm Zn, 150 ppm Pb (80-84m)

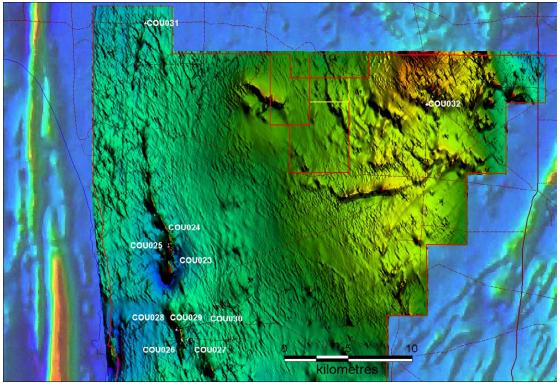


Figure 4 Location of holes from second phase of Coulta Drilling program

A summary of the drill holes is presented in Table 2

Table 2 Drill hole summary

Table 2 Drill hole summary Total					
Hole No.	Easting	Northing	Depth(m)	EOH Lithology	
COU001	553072	6208597	108	granite	
COU002	554720	6208657	54	granite	
COU003	558435	6215508	41	granite	
COU004	557845	6215667	42	clay??	
COU005	544596	6217064	14	biotite gneiss	
COU006	536417	6221812	14	biotite gneiss	
COU007	536649	6221804	22	granite	
COU008	536275	6221818	27	?granite/gneiss	
COU009	538019	6218611	24	biotite gneiss/schist	
COU010	537210	6218641	20	granite	
COU011	536646	6210295	27	granite	
COU012	536723	6210300	27	granite	
COU013	536784	6210300	27	biotite gneiss	
COU014	536387	6210312	21	gneiss	
COU015	538247	6204662	23.5	Granite/gneiss	
COU016	538344	6204460	21	Granite/gneiss	
COU016A	538349	6204467	20	Granite/gneiss	
COU017	539036	6197102	4	granite/biotite gneiss	
COU018	539142	6197113	8	granite/biotite gneiss	
COU019	539252	6197123	6	granite/biotite gneiss	
COU020	539275	6197126	7	granite/biotite gneiss	
COU021	539416	6197146	31.5	weathered granite	
COU022	538505	6204547	20	Granite	
COU023	538349	6204430	126	Granite	
COU024	538309	6204471	126	Granite	
COU025	538275	6204495	96	Granite	
COU026	539262	6197121	78	Granite	
COU027	539785	6197190	26	Granite	
COU028	539120	6197960	30	Granite	
COU029	539020	6197960	30	Granite	
COU030	538920	6197960	24	Granite	
COU031	536449	6221813	96	Granite	
COU032	558423	6215516	48	Granite	

Summary - Drilling Program

InterMet had previously outlined 7 areas (Areas A - G – see Figure 5) as areas of interest in searching for Archaean greenstone units which potentially host nickel, gold and base metal deposits.

InterMet interprets these features are part of the greenstone sequence intersected to the north of the tenement. Drilling of similar magnetic features in the Mount Hope area intersected a sequence of mafic and felsic seafloor volcanics with interlayered magnetite rich pelitic sediments. These units are termed the Hall Bay Volcanics and are considered prospective for volcanic hosted massive sulphide deposits and gold deposits.

The first stage of the Coulta drilling program failed to intersect any lithologies which would explain the magnetic features outlined in the aeromagnetic data due to difficult drilling conditions. Modelling of the magnetic data showed the magnetic features are between 50-90m deep and the drilling failed to penetrate to the required depth. Phase two was aimed at testing the strongest magnetic features with deep RC drilling.

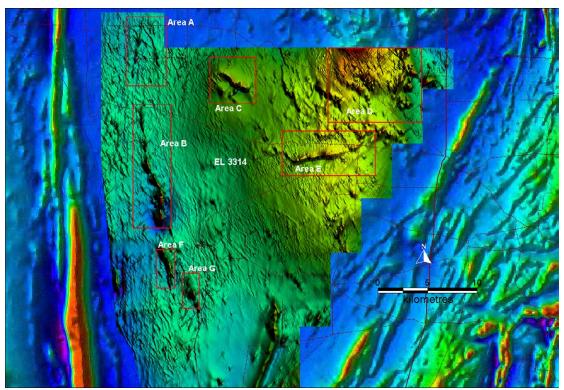


Figure 5 7 Areas on EL 3314 interpreted as representing potential Greenstone rocks.

Area A

Area A comprises a linear north-south trending fold closure (Figure 6). Previous exploration drilling within the vicinity by Abaleen Minerals was focussed on the search for kaolinite. Area A has no basement exposure and drill logs indicate basement is relatively shallow (generally <20 m) and comprises gneissic units. CRA drilled hole 81 CBR2 to the north of Area A in the search for coal and uranium and intersected granitic basement rocks at ~29 m.

5 Holes COU006-10 were drilled in Area A and all holes bottomed in granite. hole COU006 was located in the closure of a prominent fold closure on the new aeromagnetic data Figure 6) and reported slightly anomalous Cu 481 ppm (5-6 m); Zn 324 ppm (5-6 m); and Co 1076 ppm (6-10 m). Hole COU006 bottomed at 14m within a non-magnetic biotite granite. Figure 7 shows the magnetic profile generated from the aeromagnetic data and predicts the top of the magnetic unit within the basement is located at 55 m below the ground surface.

Hole COU031 was drilled to extend the depth of COU006. A quartz-feldsparbiotite granite gneiss was intersected. Assay results show anomalous zinc up to 0.22% intersected. Best results were:

Hole COU031 – 0.22% Zn, 442 ppm Pb (68-72m)

Hole COU031 – 583 ppm Zn, 231 ppm Pb (72-76m)

Hole COU031 - 310 ppm Zn, 124 ppm Cu (76-80m)

Hole COU031 – 814 ppm Zn, 150 ppm Pb (80-84m)

This area warrants further work and InterMet plans to undertake a soil sampling program within this area later in 2007.

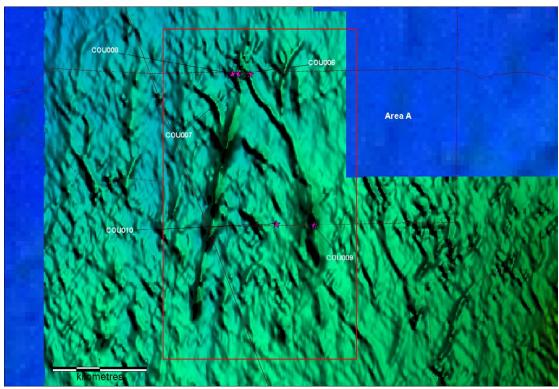


Figure 6 Detailed view of Area A showing prominent fold closure in the north.

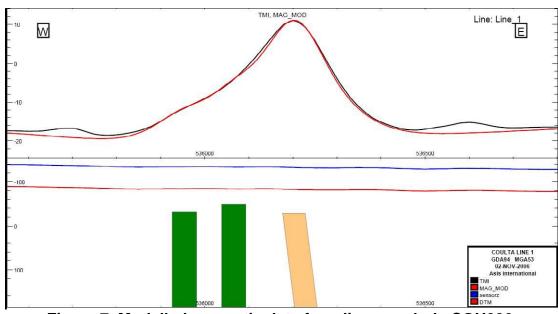


Figure 7 Modelled magnetic data for a line near hole COU006.

Area B

Area B is also a linear north-south trending magnetic feature with a strike length of 13 km (Figure 8), which contains no known exploration drill holes. Drill hole E1 drilled off the magnetic feature bottomed at 19 m in kaolinite.

4 holes COU 11-14 were drilled across a zone of N-S trending magnetic stratigraphy. All holes bottomed in biotite granite.

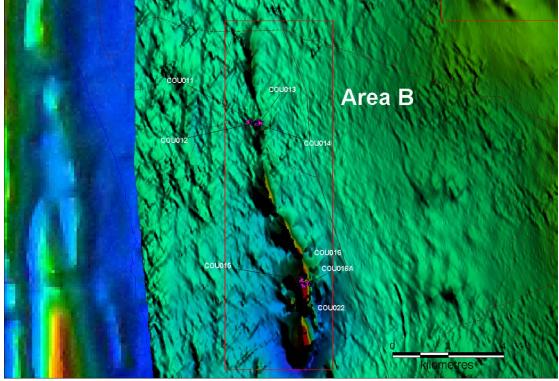


Figure 8 Detailed view of Area B

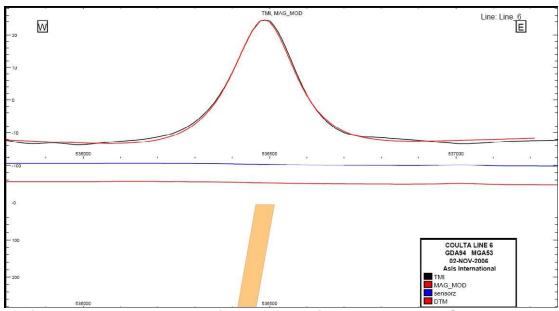


Figure 9 Modeled magnetic data for a line across holes COU011-014

Depths for holes COU011-014 ranged from 21-27 m. Figure 9 shows the predicted model of the magnetic unit within the basement. The predicted depth to the top of the magnetic unit is 55 m. No further holes were drilled on this traverse.

Holes COU015-017 and COU022 were drilled across part of the magnetic stratigraphy with the most intense magnetic response. All holes bottomed at ~22m in a non-magnetic granite. Figure 10 shows the predicted top of the magnetic basement is ~90m deep. Hence, the first drilling program failed to test the magnetic stratigraphy.

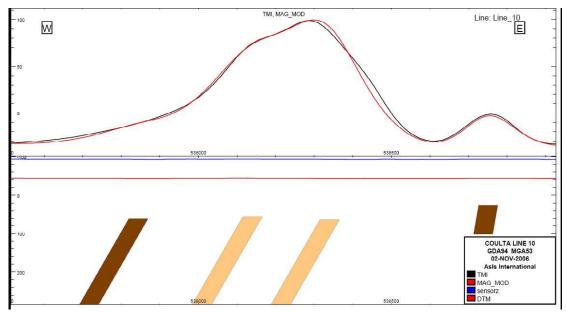


Figure 10 Modeled magnetic data for line across holes COU015-017.

Holes COU023-25 were drilled to extend the depth of the previous drilling and intersect the modeled magnetic features shown in Figure 10. All three holes

were drilled 60° to the east. All holes intersected gneissic units interpreted to be part of the Wangary Gneiss. These holes contained various amounts of magnetite which is reflected in the Fe content which ranged from 1.46% to 5.51% (Appendix B). All other assay results are low.

Area C

Area C is centred on Lake Malata and comprises a roughly circular area of complex basement rocks (Figure 11). Drill holes Lake Malata DH1-5 were drilled to define gypsum resources within Lake Malata. One hole COU005 was drilled to a depth of 14 m and intersected a non-magnetic biotite gneiss.

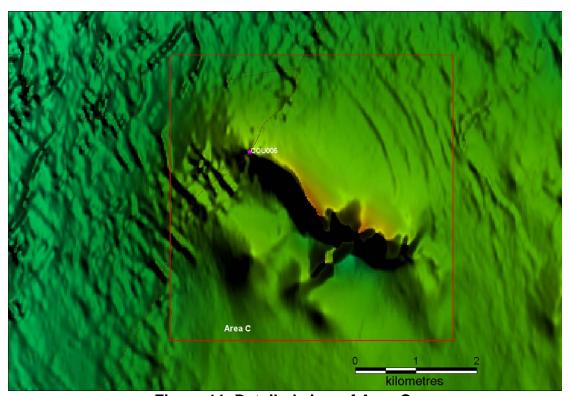


Figure 11 Detailed view of Area C.

Geophysical appraisal of this area has show this area to be much deeper than first interpreted. On line 4C the fresh rock is interpreted to be at an RL of -175 (depth below ground about 220 metres) with a much less magnetic zone representing weathering (or magnetite destruction through alteration??) at an RL of -55, or depth below ground of about 100 metres (Figure 12). No further drilling was undertaken in this area due to excessive depth, hence the prominent magnetic feature remains untested.

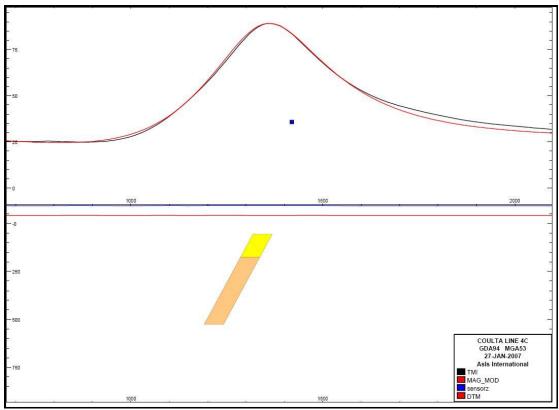


Figure 12 Modeled magnetic data for a line across hole COU005

Areas D and E

Areas D and E represent an area of complex basement lithology. Exploration drilling shows basement depth varies widely due to a major palaeochannel within the area. Area D is shown in Figure 13 and two holes COU003 and COU004 were drilled to test spot magnetic highs. Both holes intersected granite with hole COU003 containing magnetite and pyrite. Assays were generally low but the base of COU003 returned 51 ppm Ag. This may be due to contamination from the drill bit. Hole COU032 was drilled to a depth of 48m and no anomalous values were returned suggesting the initial result was due to contamination from the air core drill bit (weld).

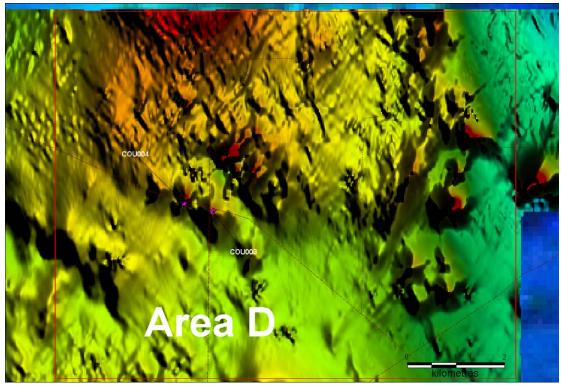


Figure 13 Detailed view of Area D.

Holes COU001 and COU002 were drilled in Area E (Figure 14). Both holes were within the Cummins Palaeochannel. COU001 bottomed at 108m and COU002 at 58m. Both holes bottomed in a granite. Palaeochannel samples from these holes have been submitted for uranium analysis by InterMet's joint venture partner WCP Uranium Ltd.

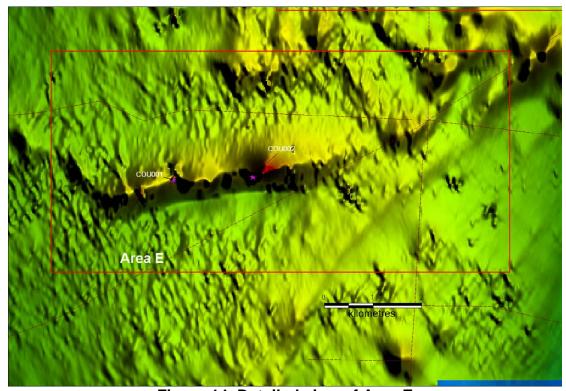


Figure 14 Detailed view of Area E

Area F

Area F is an extension of Area B (Figure 15) and comprises a roughly north-south trending linear magnetic feature. CRA drilled one line of holes and intersected a range of basement lithologies from granitic gneiss, amphibolite and mafic schist. Some of these units are interpreted to represent part of the Hall Bay Volcanics.

5 Holes COU017-021 were drilled across this magnetic unit and hole depths ranged from 4 to 31.5 m and all holes bottomed in granitic/gneissic basement rocks interpreted to be Wangary Gneiss. Figure 16 shows the modelled depth to the top of the magnetic stratigraphy and the magnetic units are interpreted to be 45 m below the ground surface.

Hole COU026 was drilled 60 to the west to a depth of 78 m and intersected a slightly magnetic variant of the Wangary Gneiss (Figure 17). Hole COU027 was drilled away from the main N-S trending magnetic feature and the Fe content was slightly lower than COU026. Fe content in COU026 ranged from 0.99% to 2.91% compared to 0.43% to 2.72% (Appendix B).

Holes COU028-COU030 were drilled to further test the basement lithology and all holes intersected magnetite bearing granitic gneiss interpreted to represent a more magnetite rich unit of the Wangary Gneiss.

Area GArea G comprises 3 discrete magnetic features within the regional N-S trend (Figure 15).

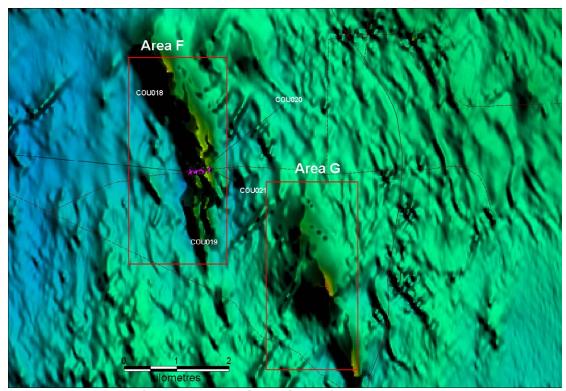
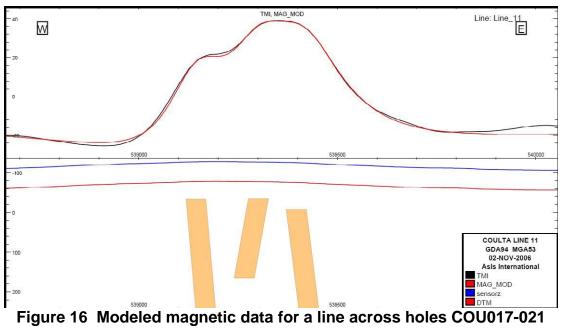



Figure 15 Detailed view of Area F and G

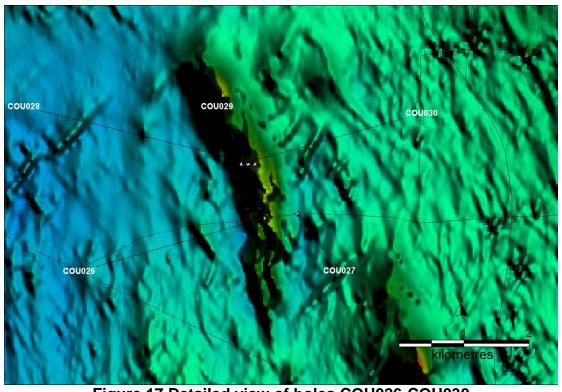


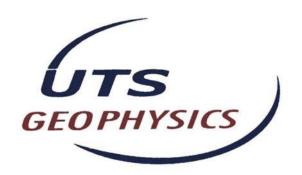
Figure 17 Detailed view of holes COU026-COU030

APPENDIX A Airborne Geophysics Survey Report UTS Geophysics

Logistics Report

for a

DETAILED AIRBORNE MAGNETIC, RADIOMETRIC AND DIGITAL TERRAIN SURVEY


for the

COULTA PROJECT

carried out on behalf of

INTERMET RESOURCES LIMITED

by

(UTS Job #A801)

FAUNTLEROY AVENUE, PERTH AIRPORT PO BOX 126, BELMONT WA 6984 Telephone +61 8 9479 4232 Facsimile +61 8 9479 7361 A.B.N. 31 058 054 603

TABLE OF CONTENTS

1	GENERAL SURVEY INFORMATION			
2	SU	RVEY SPECIFICATIONS	3	
3	AII	RCRAFT AND SURVEY EQUIPMENT	4	
	3.1	SURVEY AIRCRAFT		
	3.2	DATA POSITIONING AND FLIGHT NAVIGATION		
	3.3	UTS DATA ACQUISITION SYSTEM AND DIGITAL RECORDING		
	3.4	ALTITUDE READINGS		
	3.5	UTS STINGER MOUNTED MAGNETOMETER SYSTEM		
	3.6	TOTAL FIELD MAGNETOMETER	7	
	3.7	THREE COMPONENT VECTOR MAGNETOMETER	7	
	3.8	AIRCRAFT MAGNETIC COMPENSATION		
	3.9	DIURNAL MONITORING MAGNETOMETER		
	3.10	BAROMETRIC ALTITUDE		
	3.11	TEMPERATURE AND HUMIDITY		
	3.12	RADIOMETRIC DATA ACQUISITION		
4	PR	OJECT MANAGEMENT	10	
5	DA	TA PROCESSING PROCEDURES	11	
	5.1	DATA PRE-PROCESSING	11	
	5.2	MAGNETIC DATA PROCESSING		
	5.3	RADIOMETRIC DATA PROCESSING	13	
	5.4	DIGITAL TERRAIN MODEL DATA PROCESSING	14	
A	PPEN	DIX A - LOCATED DATA FORMATS	15	
A	PPEN	DIX B - COORDINATE SYSTEM DETAILS	17	
A	PPEN	DIX C - SURVEY BOUNDARY DETAILS	18	
A	PPEN	DIX D - PROJECT DATA OVERVIEW	19	

1 GENERAL SURVEY INFORMATION

UTS Geophysics conducted a low level airborne geophysical survey for the following company:

InterMet Resources Limited 262-266 Pirie Street Adelaide, South Australia, 5000

Acquisition for these surveys commenced on the 5th October 2006 and was completed on the 10th October 2006. The base location used for operating the aircraft and performing in-field quality control was Porth Lincoln, South Australia.

2 SURVEY SPECIFICATIONS

The area surveyed was located near Port Lincoln in South Australia. The survey was flown using the MGA94 coordinate system (a Universal Transverse Mercator projection) derived from the Geocentric Datum of Australia and was contained within zone 53 with a central meridian of 135 degrees. Details of the datum and projection system are provided in Appendix B of this report. Survey boundary coordinates are listed in Appendix C.

The survey data acquisition specifications for each area flown are specified in the following table:

PROJECT NAME	LINE SPACING	LINE DIRECTION	TIE LINE SPACING	TIE LINE DIRECTION	SENSOR HEIGHT	TOTAL LINE KM
Coulta	100m	090-270	1000m	000-180	50m	11,632
TOTAL						11,632

The specified sensor height for the magnetic samples is as stated in the above table. This sensor height may be varied where topographic relief or laws pertaining to built up areas do not allow this altitude to be maintained, or where the safety of the aircraft and equipment is endangered.

3 AIRCRAFT AND SURVEY EQUIPMENT

The UTS navigation flight control computer, data acquisition system and geophysical sensors were installed into a specialised geophysical survey aircraft.

The list of geophysical and navigation equipment used for the survey is as follows:

General Survey Equipment

- Cessna C210 fixed wing survey aircraft.
- UTS proprietory flight planning and survey navigation system.
- UTS proprietory high speed digital data acquisition system.
- Novatel 3951R, 12 channel precision navigation GPS.
- OMNILITE 132 real time differential GPS system.
- UTS LCD pilot navigation display and external track guidance display.
- UTS post mission data verification and processing system.
- Bendix King KRA-10A radar altimeter.

Magnetic Data Acquisition Equipment

- UTS tail stinger magnetometer installation.
- Scintrex Cesium Vapour CS-2 total field magnetometer.
- Fluxgate three component vector magnetometer.
- RMS Aeromagnetic Automatic Digital Compensator (AADC II).
- Diurnal monitoring magnetometer (Scintrex Envimag).

Radiometric Data Acquisition Equipment

- Exploranium GR-820 gamma ray spectrometer.
- Exploranium gamma ray detectors.
- Barometric altimeter (height and pressure measurements).
- Temperature and humidity sensor.

3.1 Survey Aircraft

The aircraft used for this survey was a Cessna C210 series fixed wing survey aircraft, operated by UTS Geophysics, registration VH-TKQ. The specifications are as follows:

Power Plant

•	Engine Type	Continental, IO-520

• Brake Horse Power 285 bhp

Fuel Type AV-GAS

Performance

•	Cruise speed	150 Kn
	Cruibe bpecu	150 111

• Survey speed 130 Kn

• Stall speed 60 Kn

Range 1185 Km

• Endurance (no reserves) 5.2 hours

• Fuel tank capacity 246 litres

3.2 Data Positioning and Flight Navigation

Survey data positioning and flight line navigation was derived using real-time differential GPS (Global Positioning System).

Navigation was performed using a UTS designed and built electronic pilot navigation system providing computer controlled digital navigation instrumentation mounted in the cockpit as well as an externally mounted track guidance system.

GPS derived positions were used to provide both aircraft navigation and survey data location information.

The GPS systems used for the survey were:

Aircraft GPS Model Novatel 3951R

Sample rate 0.5 Seconds (2 Hz)

• GPS satellite tracking channels 12 parallel

• Typical differentially corrected accuracy 1-2 metres (horizontal)

3-5 metres (vertical)

3.3 UTS Data Acquisition System and Digital Recording

All geophysical sensor data and positional information measured during the survey was recorded using a UTS developed, high speed, precision data acquisition system. Survey data was downloaded onto magnetic tape on completion of each survey flight.

Instrument synchronisation times were measured and removed in real-time by the UTS data acquisition system.

3.4 Altitude Readings

Accurate survey heights above the terrain were measured using a King radar altimeter installed in the aircraft. The height of each survey data point was measured by the radar altimeter and stored by the UTS data acquisition system.

Radar altimeter models
 King KRA- 10A altimeter

• Accuracy 0.3 metres

• Resolution 0.1 metres

• Range 0 - 500 metres

• Sample rate 0.1 Seconds (10Hz)

The digital terrain model is calculated by subtracting the terrain clearance (radar altimeter) from the GPS height (interpolated to 0.1 Hz), and as such the accuracy is constrained by the differentially corrected GPS position.

3.5 UTS Stinger Mounted Magnetometer System

The installation platform used for the acquisition of magnetic data was a tail mounted stinger. This proprietory stinger system was constructed of carbon fibre and designed for maximum rigidity and stability.

Both the total field magnetometer and three component vector magnetometer were located within the tail stinger.

3.6 Total Field Magnetometer

Total field magnetic data readings for the survey were made using a Scintrex Cesium Vapour CS-2 Magnetometer. This precision sensor has the following specifications:

Model Scintrex Cesium Vapour CS-2 Magnetometer

• Sample Rate 0.1 seconds (10Hz)

• Resolution 0.001nT

• Operating Range 15,000nT to 100,000nT

3.7 Three Component Vector Magnetometer

Three component vector magnetic data readings for the survey were made using a Develco Fluxgate Magnetometer. This precision sensor has the following specifications:

Model Develoo Fluxgate Magnetometer

• Sample Rate 0.1 seconds (10Hz)

• Resolution 0.1nT

• Operating Range -100,000nT to 100,000nT

3.8 Aircraft Magnetic Compensation

At the start of the survey, the system was calibrated for reduction of magnetic heading error. The heading and manoeuvre effects of the aircraft on the magnetic data was removed using an RMS Automatic Airborne Digital Compensator (AADC II).

Calibration of the aircraft heading effects were measured by flying a series of pitch, roll and yaw manoeuvres at high altitude while monitoring changes in the three axis magnetometer and the effect on total field readings. A 26 term model of the aircraft magnetic noise covering permanent, induced and eddy current fields was determined. These coefficients were then applied to the data collected during the survey in real-time.

UTS static compensation techniques were also employed to reduce the initial magnetic effects of the aircraft upon the survey data.

3.9 Diurnal Monitoring Magnetometer

A base station magnetometer was located in a low gradient area beyond the region of influence of any man made interference to monitor diurnal variations during the survey.

The specifications for the magnetometer used are as follows:

Model Scintrex Envimag

• Resolution 0.1 nT

• Sample interval 5 seconds (0.2 Hz)

• Operating range 20,000nT to 90,000nT

• Temperature $-20^{\circ}\text{C to } +50^{\circ}\text{C}$

3.10 Barometric Altitude

An Air DB barometric altimeter was installed in the aircraft so as to record and monitor barometric height and pressure. The data was recorded at 0.10 second intervals and is used for the reduction of the radiometric data.

Model Air DB barometric altimeter

• Accuracy 2 metres

• Height resolution 0.1 metres

• Height range 0 - 3500 metres

• Maximum operating pressure: 1,300 mb

Pressure resolution: 0.01 mb

• Sample rate 10 Hz

3.11 Temperature and Humidity

Temperature and humidity measurements were made during the survey at a sample rate of 10Hz. Ambient temperature was measured with a resolution of 0.1 degree Celsius and ambient humidity to a resolution of 0.1 percent.

3.12 Radiometric Data Acquisition

The gamma ray spectrometer used for the survey was capable of recording 256 channels and was self stabilising in order to minimise spectral drift. The detectors used contain thallium activated sodium iodide crystals.

Thorium source measurements were made each survey day to monitor system resolution and sensitivity. A calibration line was also flown at the start and end of each survey day to monitor ground moisture levels and system performance.

Spectrometer model Exploranium GR820

• Detector volume 32 litres

• Sample rate 1 Hz

4 **PROJECT MANAGEMENT**

Gary Ferris InterMet Resources Limited

UTS Geophysics Perth Office Nino Tufilli

David Abbott

Barrett Cameron

5 DATA PROCESSING PROCEDURES

5.1 Data Pre-processing

The raw survey data was loaded from the field tapes and the recorded data trimmed to the correct survey boundary extents. Any survey lines subsequently reflown were removed from the dataset.

At the commencement of each acquisition flight, all the instrumentation clocks were synchronized to local time, and the error and latency of each instrument in providing its data measurement calculated. The results of these latency measurements were recorded into a synchronisation file, and the results used to assign GPS positions to the magnetic, radiometric and elevation data. As a result of the physical separation of the sensors, a small residual offset still exists between instrument timings.

To compensate for this residual parallax error, an adjustment was made to the instrument clocks. The magnetic and radar altimeter data was adjusted by 0.600 seconds, and the radiometric data was adjusted by 1.375 seconds for each flight.

The synchronized, parallax corrected data was then exported as located ASCII data.

5.2 Magnetic Data Processing

The diurnal base station data was checked for spikes and steps, and suitably filtered prior to the removal of diurnal variations from the aircraft magnetic data.

The filtered diurnal measurements were subtracted from the diurnal base field and the residual corrections applied to the survey data by synchronising the diurnal data time and the aircraft survey time. The average diurnal base station value was added to the survey data.

The X and Y positioning of the data was then checked for spikes before applying the IGRF correction. Any spikes in the positions were manually edited. The updated IGRF 2005 correction was calculated at each data point (taking into account the height above sea level).

This regional magnetic gradient was subtracted from the survey data points.

Tie line levelling was applied to the data by least squares minimisation, using a polynomial fit of order 0, of the differences in magnetic values at the crossover points of the survey traverse and tie line data.

In order to remove any residual long wavelength variations in the tie line levelled data along the traverse lines, polynomial levelling was then applied.

Final micro-levelling techniques were then selectively applied to the tie line levelled data to remove minor residual variations in profile intensity

Located and gridded data were generated from the final processed magnetic data.

5.3 Radiometric Data Processing

Statistical noise reduction of the 256 channel data was performed using the Maximum Noise Fraction (MNF) method described by Dickson and Taylor (1998). This method constructs a noise covariance model from the survey data, which is then decorrelated and re-scaled so that the model has unit variance and no channel-to-channel correlation.

A principal component transformation of the noise-whitened data is performed, and the number of components to be saved is determined by ranking the eigenvectors by signal-to-noise ratio. The signal-rich components are retained, and the spectral data reconstructed without the noise fraction.

Channels 30-250 only are noise-cleaned, as these contain the regions of interest and are not dominated by the lower end of the Compton continuum. The energy spectrum between the potassium and thorium peaks was recalibrated from the noise-cleaned 256 channel measurements.

The aircraft background spectrum and the scaled unit cosmic spectrum were then subtracted from the 256 channel data. This 256 channel data was then windowed to the 5 primary channels of total count, potassium, uranium, thorium and low-energy uranium. Dead time corrections were then applied to the data. Radon background removal was performed using the Minty Spectral Ratio method (1992).

The radar altimeter data was corrected to standard temperature and pressure, and height corrected spectral stripping was then applied to the windowed data. Height attenuation corrections based on the STP radar altimeter were then performed to remove any altitude variation effects from the data.

The corrected count rate data was then converted to ground concentrations for potassium, uranium and thorium (sensitivity coefficients are supplied in Appendix E).

Final micro-levelling techniques were then selectively applied to the tie line levelled data to remove minor residual variations in profile intensities. Located and gridded data were generated from the final processed radiometric data.

5.4 Digital Terrain Model Data Processing

The radar altimeter data was subtracted from the GPS altimeter data. The separation distance between the GPS antenna and the radar altimeter of 1.4 metres was subtracted from the digital terrain data.

The digital terrain data thus derived was tie line levelled and gridded. Tie line levelled data was then examined and selectively microlevelled to produce a grid without line dependent artifacts.

For further information concerning the survey flown, please contact the following office:

Head Office Address:

UTS Geophysics Fauntleroy Avenue, Perth Airport REDCLIFFE WA 6104

Tel: +61 8 9479 4232 Fax: +61 8 9479 7361

Postal Address:

UTS Geophysics P.O. Box 126 BELMONT WA 6984

Quoting reference number: A801

APPENDIX A - LOCATED DATA FORMATS

MAGNETIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1		LINE NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	19	DATE	YYMMDD
4	F10.1	TIME	sec
5	18	FIDUCIAL NUMBER	
6	I4	UTM ZONE	
7	F12.6	LATITUDE (WGS84)	degrees
8	F12.6	LONGITUDE (WGS84)	degrees
9	F12.2	EASTING (MGA94)	metres
10	F12.2	NORTHING (MGA94)	metres
11	F8.1	RADAR ALTIMETER HEIGHT	metres
12	F8.1	GPS HEIGHT (WGS84)	metres
13	F8.1	TERRAIN HEIGHT (WGS84)	metres
14	F10.2	RAW MAGNETIC INTENSITY	nT
15	F10.2	DIURNAL CORRECTION	nT
16	F10.2	IGRF CORRECTION	nT
17	F10.2	DRN AND IGRF CORRECTED TMI	nT
18	F10.2	FINAL TOTAL MAGNETIC INTENSITY	nT

RADIOMETRIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1		LINE NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	19	DATE	YYMMDD
	F10.1	TIME	sec
5		FIDUCIAL NUMBER	
6	I4	UTM ZONE	
		LATITUDE (WGS84)	degrees
8		LONGITUDE (WGS84)	degrees
9		EASTING (MGA94)	metres
		NORTHING (MGA94)	metres
11		RADAR ALTIMETER HEIGHT	metres
		GPS HEIGHT (WGS84)	metres
13	15		milli sec
		PRESSURE	hPa
_		TEMPERATURE	Degrees Celcius
	F6.1	HUMIDITY	percent
17		TOTAL COUNT (RAW)	Counts/sec
18		POTASSIUM (RAW)	Counts/sec
19	16	* *	Counts/sec
20	16	, ,	Counts/sec
21		COSMIC (RAW)	Counts/sec
	F8.1	TOTAL COUNT (CORRECTED)	Counts/sec
23		POTASSIUM (CORRECTED)	Counts/sec
24		URANIUM (CORRECTED)	Counts/sec
25	F8.1	THORIUM (CORRECTED)	Counts/sec
26		DOSE RATE	nGy/hr
27		POTASSIUM GRND CONCENTRATION	
28		URANIUM GRND CONCENTRATION	
29	F9.4	THORIUM GRND CONCENTRATION	ppm

GRIDDED DATASET FORMATS

Gridding was performed using a bicubic spline algorithm.

The following grid formats have been provided:

• ER-Mapper format

LINE NUMBER FORMATS

Line numbers are identified with a six digit composite line number and have the following format - ALLLLB, where:

A Survey area number LLLL Survey line number

0001-8999 reserved for traverse lines 9001-9999 reserved for tie lines

B Line attempt number, 0 is attempt 1, 1 is attempt 2 etc..

UTS FILE NAMING FORMATS

Located and gridded data provided by UTS Geophysics uses the following 8 character file naming convention to be compatible with PC DOS based systems.

File names have the following general format - JJJJAABB.EEE, where:

JJJJ UTS Job number

AA Area number if the survey is broken into blocks

BB M Magnetic data
R Radiometric data
TC Total count data
K Potassium counts
U Uranium counts
Th Thorium counts

DT Digital terrain data

EEE File name extension

LDT Located digital data file

FMT Located data format definition file ERS Ermapper gridded data header file

Ermapper data portion has no extension

GRD Geosoft gridded data file

APPENDIX B - COORDINATE SYSTEM DETAILS

Locations for the survey data are provided in both geographical latitude and longitude and Universal Transverse Mercator metric projection coordinate systems.

WGS84 World Geodetic System 1984

Coordinate Type Geographical Semi Major Axis 6378137m

Flattening 1/298.257223563

MGA94 Map Grid of Australia 1994

Coordinate type Universal Transverse Mercator Projection Grid

Geodetic datum Geocentric Datum of Australia

Semi major axis 6378137m

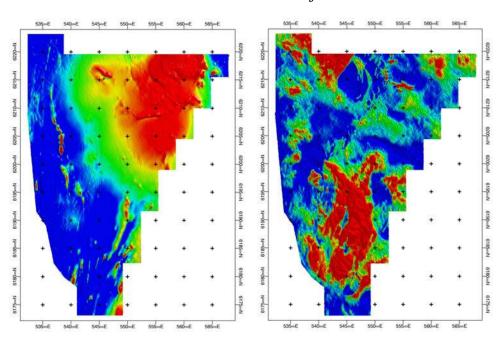
Flattening 1/298.257222101

APPENDIX C - SURVEY BOUNDARY DETAILS

COORDINATES REPORT

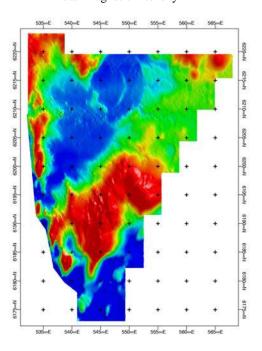
Job ID code: A8010101 Client: InterMet Resources Limited

Job: Coulta


Coordinates MGA94 Grid Zone: 53 Include Point: 0.0 0.00

Surround 532300 6223200 538700 6223200 538700 6219600 567800 6219600 567800 6215500 564700 6215500 564700 6210000 561600 6210000 561600 6204500 558500 6204500 558500 6199000 555400 6199000 555400 6191600 552300 6191600 552300 6182400 549100 6182400 549100 6173100 541100 6173100 541100 6178100 538800 6179900 537000 6182300 535600 6189000 533900 6191500 532300 6209200

532300 6223200


APPENDIX D - PROJECT DATA OVERVIEW

Coulta Project

Total Magnetic Intensity

Radiometric Total Count

Digital Terrain Model

APPENDIX E - ACQUISITION AND PROCESSING PARAMETERS

Magnetic Processing Parameters

Coulta Project

IGRF date - 2006.7

IGRF mean value - 59303.70 nT Magnetic inclination - -66.70 deg Magnetic declination - 6.83 deg Diurnal base value - 59535.00 nT

Radiometric Processing Parameters

Aircraft Background Coefficients

Height Attenuation Coefficients

Total Count: 33.69
Total Count: -0.0074 Potassium: 9.27
Potassium: -0.0094 Uranium: 0.59
Uranium: -0.0084 Thorium: 0.05

Thorium: -0.0074

Cosmic Correction Coefficients Sensitivity Coefficients

Total Count:1.615Total Count:37.9 cps/dose ratePotassium:0.092Potassium:151.5 cps/%kUranium:0.087Uranium:17.7 cps/ppmThorium:0.051Thorium:8.0 cps/ppm

Final Reduction - All data reduced to STP height datum 50m

APPENDIX B Geochemistry from Phase 1

ELEMENTS	Interval	Sample No	Au	Ag	As		Co	Cu	Mg	Mn	Ni	Pb	S	Zn
UNITS	(m)		ppb	ppm	ppm		ppm							
DETECTION			0.1	1		5	1	1	20	1	1	5	10	1
METHOD			B25/EETA	AT/OES	AT/OES	3	AT/OES							
Drill Hole No.														
COU 001	96-100	43065	1	Χ	Χ		2	2	382	76	6	12	5275	11
COU 001	100-104	43066	0.5	Χ	Χ		3	3	829	73	8	19	7754	18
COU 001	104-108	43067	0.7	Χ		13	5	3	1156	56	7	28	5787	19
COU002	53-54	43084	0.4	Χ		7	8	7	5836	463	Χ	18	3550	160
COU003	18-22	43091	0.2	2		6	Χ	4	747	68	1	88	560	16
COU003	22-26	43092	0.2	Χ		18	Χ	3	868	53	Χ	74	461	13
COU003	26-30	43093	0.7	1		16	Χ	6	699	46	1	65	1070	14
COU003	30-34	43094	0.7	2		8	Χ	7	571	64	3	65	2207	27
COU003	34-38	43095	0.3	3		11	Χ	5	546	52	2	74	1083	17
COU003	38-41	43096	1.3	51		8	18	21	524	73	3	71	1755	35
COU004	17-21	43107	0.4	2		19	Χ	11	563	84	1	121	5912	20
COU004	21-25	43108	0.4	2		18	Χ	7	440	45	4	79	5550	13
COU004	25-29	43109	1.1	Χ		11	Χ	12	576	58	Χ	88	791	16
COU004	29-33	43110	0.2	Χ		21	Χ	15	982	92	2	78	1635	25
COU004	33-37	43111	0.3	Χ		14	4	25	4203	136	14	55	1167	78
COU004	37-41	43112	0.4	Χ	X		7	39	7798	177	27	52	769	130
COU006	5-6	43121	2	2		8	28	481	3515	117	10	14	303	324
COU006	6-10	43122	1.8	2		9	1076	11	843	146	29	14	175	3
COU006	10-14	43123	1.8	3		7	13	8	665	64	20	10	110	6
COU007	20-21	43124	1	X		15	19	22	3342	163	7	33	227	34
COU009	6-7	43125	0.5	X	X		1	Χ	95	40	5	10	45	2
COU009	8-12	43126	3.9	2		7	17	6	926	123	22	49	158	12
COU009	12-16	43127	0.3	Χ		12	1	3	689	53	10	28	128	11
COU009	16-20	43128	0.2	1		14	2	3	510	48	6	45	65	6
COU009	20-24	43129	1.4	11		11	14	8	398	61	10	70	502	12
COU010	6-12	43130	0.7	Χ		34	23	30	2070	97	29	18	195	75

ELEMENTS	Interval	Sample No	Au	Ag	As	Co	Cu	Mg	Mn	Ni	Pb	S	Zn
UNITS	(m)		ppb	ppm									
DETECTION			0.1	1	5	1	1	20	1	1	5	10	1
METHOD			B25/EETA	AT/OES									
Drill Hole No.													
COU010	12-16	43131	0.5	Χ	6	5	6	1351	33	12	20	169	18
COU010	16-20	43132	0.2	Χ	17	4	4	1207	28	3	17	156	8
COU011	11-15	43133	0.3	Χ	18	8	7	1484	42	11	18	77	10
COU011	15-19	43134	0.5	Χ	17	7	5	1090	45	8	15	80	8
COU011	19-23	43135	0.5	Χ	15	4	14	904	51	20	20	151	14
COU011	23-26	43136	0.2	Χ	13	3	6	803	36	8	14	81	9
COU012	6-9	43137	0.6	Χ	15	10	Χ	2901	34	23	10	177	4
COU012	9-13	43138	0.7	Χ	12	8	1	718	38	4	15	75	3
COU012	13-17	43139	0.2	Χ	12	2	2	541	26	Χ	13	40	3
COU012	17-21	43140	0.2	Χ	11	2	2	672	17	2	6	57	5
COU012	21-25	43141	0.3	Χ	11	4	4	2565	30	7	15	67	9
COU012	25-27	43142	0.4	Χ	6	5	4	3589	40	7	14	237	12
COU013	6-8	43143	0.7	Χ	18	9	Χ	3577	191	6	11	99	X
COU013	8-12	43144	0.4	Χ	7	5	Χ	3200	109	4	12	63	X
COU013	12-16	43145	0.4	Χ	Χ	3	Χ	6334	50	15	12	48	4
COU013	16-20	43146	0.2	Χ	Χ	12	6	15836	129	59	7	34	22
COU013	20-24	43147	Χ	Χ	Χ	14	1	22769	248	66	Χ	28	37
COU013	24-26	43148	0.1	Χ	Χ	11	5	19533	191	53	7	129	25
COU013	26-28	43149	0.3	Χ	Χ	8	2	17445	148	47	10	106	17
COU014	15-19	43150	0.3	Χ	6	3	Χ	24373	57	15	6	18	19
COU014	19-20	43151	0.2	Χ	Χ	2	Χ	76903	299	33	Χ	21	19
COU014	20-21	43152	0.2	Χ	Χ	1	Χ	63153	199	18	Χ	Χ	13
COU015	23-23.5	43153	Χ	Χ	Χ	Χ	Χ	1197	42	3	30	80	X
COU017	3-4	43154	0.4	Χ	5	Χ	Χ	3043	38	3	31	285	X
COU018	4-7	43155	0.5	Χ	6	Χ	Χ	6301	33	3	29	565	Χ
COU018	7-8	43156	0.5	1	13	Χ	Χ	6475	37	3	16	522	Χ
COU019	3-5	43157	2.3	Χ	12	1	2	4400	117	7	50	481	38

ELEMENTS	Interval	Sample No	Au	Ag	As		Co		Cu		Mg	Mn	Ni	Pb	S	Zn
UNITS	(m)		ppb	ppm	ppm		ppm		ppm		ppm	ppm	ppm	ppm	ppm	ppm
DETECTION			0.1	1		5		1		1	20	1	1	5	10	1
METHOD			B25/EETA	AT/OES	AT/OE	S	AT/OES		AT/OE	S	AT/OES	AT/OES	AT/OES	AT/OES	AT/OES	AT/OES
Drill Hole No.																
COU019	5-6	43158	0.8	Χ	Χ		Χ			3	2728	103	6	77	174	36
COU020	6-7	43159	0.9	Χ		11	Χ		Χ		1225	36	5	46	97	4
COU020	7-8	43160	0.5	Χ	Χ		Χ		Χ		1153	38	4	47	64	4
COU021	4-7	43161	0.4	Χ		21		2	Χ		2326	29	10	Χ	123	2
COU021	7-15	43162	0.9	Χ		13	Χ		X		1141	25	2	25	84	4
COU021	15-21	43163	0.3	Χ		12	Χ			1	1098	26	1	72	187	3
COU021	21-28	43164	Χ	Χ		12	Χ			2	1783	40	3	42	134	9
COU021	30-31	43165	0.2	Χ		5	Χ			3	1508	41	4	39	118	13
COU021	31-31.5	43166	0.2	Χ		7	Χ			2	1753	59	8	39	98	19
COU016	20-21	43167	Χ	Χ	Χ		Χ		X		4296	49	5	Χ	83	1
COU022	6-8	43168	0.4	Χ		7	Χ		Χ		5763	41	5	7	113	X
COU022	8-10	43169	0.2	Χ	Χ		Χ			4	4364	46	9	6	132	2
COU022	10-14	43170	0.2	Χ	Χ		Χ			4	7053	28	6	Χ	118	4
COU022	14-18	43171	0.2	Χ		8		3		18	5268	74	12	Χ	132	27
COU022	18-20	43172	0.3	Χ	Χ		,	17		44	17150	507	23	Χ	142	100
CHECKS																
43065			0.7	Χ	X			2		2	418	93	6	7	4693	9
43131			0.5	Χ		8		5		6	1298	28	12	21	175	17
43157			2.2	Χ		14		1		2	4150	106	7	52	456	34
STANDARDS																
CMM-04			47.4													
OREAS 45P				Χ		11	13	31		732	2251	1368	414	21	314	144
CMM-04			45.5	Λ		• •				702	2201	1000	7.17		014	1-7-7
TKC5			40.0	16		664	16	65	1	674	17027	2041	2313	1555	12813	1133
CMM-04			45.2	10	,	- O	10	00	'	J17	11021	2041	2010	1000	12013	1100
CIVIIVI-04			40.2													

ELEMENTS	Interval	Sample No	Au	Ag	As	Co	Cu	Mg	Mn	Ni	Pb	S	Zn
UNITS	(m)		ppb	ppm									
DETECTION			0.1	1	5	1	1	20	1	1	5	10	1
METHOD			B25/EETA	AT/OES									
Drill Hole No.													
TKCLOW-2				5	144	37	298	18650	1008	550	186	7326	284
CMM-04			45.6										
WMG-1				2	Χ	180	5679	65129	1062	2529	11	33992	106
BLANKS													
Control Blank			0.1	Χ	Χ	2	Χ	Χ	2	2	Χ	Χ	1
Control Blank				Χ	Χ	1	2	22	4	2	Χ	16	X
Control Blank			Χ										
Acid Blank				Χ	Χ	Χ	2	27	2	1	Χ	Χ	X

APPENDIX C Geochemistry from Phase 2

ELEMENTS	Drill Hole	Interval	Au		Ag		As		Bi	Cu		Fe	Ni	Pb	U	Zn
UNITS			ppb		ppm		ppm		ppm	ppm		%	ppm	ppm	ppm	ppm
DETECTION				1		0.01		0.5	0.01		1	0.01	1	1	0.01	1
METHOD			B/ETA		B/MS	3	B/MS		B/MS	B/OES		B/OES	B/OES	B/MS	B/MS	B/OES
43173	COU023	28-32	Χ			0.03	Χ		0.01		5	2.74	27	12	11.47	21
43174	COU023	32-36	X			0.01	Χ		0.02		7	2.2	7	9	13.15	18
43175	COU023	36-40	X			0.05		0.9	0.08		5	1.69	7	10	15.35	10
43176	COU023	40-44	X			0.04		0.6	0.02		6	3.36	7	5	9.78	13
43177	COU023	44-48	Χ			0.02	Χ		0.02		4	3.61	11	8	10.01	21
43178	COU023	48-52	Χ			0.13	Χ		0.05		3	5.05	19	7	8.53	25
43179	COU023	52-56	Χ			0.02	Χ		0.02		5	4.33	7	6	12.61	11
43180	COU023	56-60		1	Χ			0.7	0.02		4	2.77	5	6	16.84	11
43181	COU023	60-64	Χ		Χ		Χ		0.03		3	1.81	6	5	16.02	10
43182	COU023	64-68	Χ		Χ		Χ		0.01		6	1.54	5	7	12.66	7
43183	COU023	68-72	Χ		Χ		Χ		0.01		4	1.29	5	8	14.07	9
43184	COU023	72-76		3	Χ		Χ		0.02		6	2.04	6	7	16.47	15
43185	COU023	76-80	Χ		Χ		Χ		0.01		4	1.89	6	6	17.81	20
43186	COU023	80-84	Χ		Χ		Χ		0.02		8	2.89	6	3	9.05	14
43187	COU023	84-88	Χ		Χ		Χ		0.02		9	1.87	6	5	10.14	14
43188	COU023	88-92	X		Χ		Χ		0.02		6	4.6	44	4	8	39
43189	COU023	92-96	X		Χ		Χ		0.02		2	4.4	5	4	6.54	50
43190	COU023	96-100	X		Χ		Χ		0.01		1	4.82	5	5	8.03	54
43191	COU023	100-104	X		Χ		Χ		0.02		3	2.89	5	7	9.53	29
43192	COU023	104-108	Χ		Χ		Χ		0.02		5	2.51	4	6	13.59	21
43193	COU023	108-112	X		Χ		Χ		0.02		6	2.44	7	5	10.19	19
43194	COU023	112-116	X		Χ		Χ		0.01		6	2.64	9	8	8.51	27
43195	COU023	116-120	X		Χ		Χ		0.02		6	2.2	5	6	7.01	16
43196	COU023	120-124	Χ		Χ		Χ		0.02		3	1.56	4	5	5.38	8
43197	COU023	124-126	Χ		Χ		Χ		0.03		3	1.63	6	4	3.29	10
43198	COU024	28-32		1	Χ		Χ		0.02		4	3.73	9	5	5.23	14
43199	COU024	32-36	Χ		Χ			0.7	0.04		1	3.9	10	5	6.4	20
43200	COU024	36-40	Χ		Χ		Χ		0.01		3	1.48	5	7	12.82	8

ELEMENTS	Drill Hole	Interval	Au		Ag	As		Bi		Cu		Fe	N	li	Pb		U		Zn	
UNITS			ppb		ppm	ppm		ppm		ppm		%	р	pm	ppi	m	ppr	n	ppm	
DETECTION				1	0.01		0.5	(0.01		1	(0.01		1		1	0.01		1
METHOD			B/ETA		B/MS	B/MS		B/MS		B/OES		B/OES	6 B	OES	B/N	ИS	B/N	/IS	B/OES	
43201	COU024	40-44	Χ		Χ	X			0.01			4	1.86		8		8	11.	59	15
43202	COU024	44-48	Χ		Χ		1.8		0.02			5	2.09		10		7	15.	67	13
43203	COU024	48-52	Χ		Χ	X			0.01			6	3.06		11		6	15.	71	24
43204	COU024	52-56	Χ		Χ	X			0.03			7	5.51		8		5	6.	07	14
43205	COU024	56-60	Χ		Χ	X			0.01			4	2		7		6	7.	67	11
43206	COU024	60-64	X		Χ	X			0.01			3	1.46		7		5	9.	97	9
43207	COU024	64-68	Χ		Χ		0.8		0.02			7	2.91		7		5	8.	11	9
43208	COU024	68-72	Χ		Χ		0.7	Χ				6	3.53		6		3	12.	25	14
43209	COU024	72-76	Χ		Χ	X			0.01			6	2.62		6		5	16.	43	14
43210	COU024	76-80	Χ		Χ	X			0.01			5	1.91		6		7	12.	81	16
43211	COU024	80-84	Χ		Χ	X			0.01			4	2.16		6		7	8.	73	18
43212	COU024	84-88	X		Χ		0.7		0.02			5	2.11		6		7	15.	24	14
43213	COU024	88-92	Χ		Χ	X			0.01			5	1.76		6		12	23.	65	12
43214	COU024	92-96	Χ		Χ	X			0.02			4	1.49		5		25	20.	39	12
43215	COU024	96-100	Χ		Χ		0.7		0.02			7	1.92		6		4	19.	21	11
43216	COU024	100-104	Χ		Χ	X			0.02			7	2.04		7		4	14.	57	11
43217	COU024	104-108	Χ		Χ	X			0.02			6	3.54		7		5	11	.5	13
43218	COU024	108-112	Χ		Χ	X			0.02			5	2.29		6		5	12.	03	13
43219	COU024	112-116	X		Χ	X			0.02			4	2.04		6		4	12.	53	15
43220	COU024	116-120	Χ		Χ	X			0.02			4	2.19		5		5	9	9.4	22
43221	COU024	120-122	Χ		Χ	X			0.03			3	3.18		6		5	9.	93	24
43222	COU024	122-126	Χ		Χ	X			0.01			6	1.75		5		6	10.	89	11
43223	COU025	36-40		4	Χ	X			0.05			4	0.4		3		4	6.	48	3
43224	COU025	40-44		2	0.0)2	1.7		0.19			7	1.53		6		6	7.	15	12
43225	COU025	44-48	Χ		0.0)1	1.9		0.09			2	3.32		12		3	6.	01	15
43226	COU025	48-52	Χ		0.0)4 X			0.05			3	4.88		13		4	5.	57	19
43227	COU025	52-56		1	0.0)5	4.1		0.02			5	2.21		7		3	11.	01	18
43228	COU025	56-60	X		0.0)2	2.5		0.03			4	2.92		9		3	10.	79	18

ELEMENTS	Drill Hole	Interval	Au	Ag		As	Е	Bi	Cu	Fe	e 1	Ni	Pb	U	Z	<u>'</u> n
UNITS			ppb	ppm	1	ppm	р	pm	ppm	%	ŗ	pm	ppm	ppm	n p	ppm
DETECTION				1	0.01		0.5	0.01		1	0.01	1	I	1	0.01	1
METHOD			B/ETA	B/M	S	B/MS	E	3/MS	B/OES	B/	OES E	3/OES	B/MS	B/M	IS E	B/OES
43229	COU025	60-64	Χ		0.0	1	0.9	0.0	l	4	1.71		6	4	8.52	12
43230	COU025	64-68	Χ		0.0	1	0.9	0.0	l	4	1.55		6	5	9.33	13
43231	COU025	68-72	Χ		0.0	8	0.6	0.2	2	4	1.65		6	7	15.06	14
43232	COU025	72-76	Χ		0.0	5 X		0.02	2	3	1.78		5	6	5.98	13
43233	COU025	76-79	Χ		0.0	3	0.7	0.02	2	4	1.64		6	3	6.72	13
43234	COU025	79-81	Χ		0.0	2	0.7	0.04	1	28	6.28		69	10	4.5	48
43235	COU025	81-84	Χ		0.0	1	0.6	0.04	1	8	1.96		8	5	11.89	15
43236	COU025	84-88	Χ	Х			0.5	0.02	2	5	1.75		6	3	12.33	12
43237	COU025	88-92	Χ	Х		Χ		0.0	l	3	1.82		4	10	7.64	15
43238	COU025	92-96	Χ	Х			1.2	0.0	l	4	4.9		5	3	7.41	27
43239	COU026	0-4	Χ		0.0	1	2.5	0.07	7	12	2.91		9	14	0.67	18
43240	COU026	4-8	Χ	Х			0.7	0.03	3	5	1.28		3	14	0.99	16
43241	COU026	8-12	Χ		0.0	2	0.7	0.03	3	15	2.3		10	11	3.98	59
43242	COU026	12-16	Χ		0.0	3	0.7	0.03	3	8	1.58		8	12	2.58	40
43243	COU026	16-20		1	0.0	8	1	0.04	1	8	1.01		6	12	2.98	30
43244	COU026	20-24	Χ		0.0	9	1.2	0.04	1	11	1.8		9	11	4.4	58
43245	COU026	24-28	Χ		0.0	6	1.2	0.04	ļ	9	1.77		12	10	3.7	49
43246	COU026	28-32	Χ		0.0	7	1.3	0.04	ļ	10	1.53		14	9	3.73	44
43247	COU026	32-36	Χ		0.0	8	1.4	0.04	ļ	6	1.5		11	10	3.26	41
43248	COU026	36-40	Χ		0.0	6	1.3	0.0	5	6	1.39		12	11	4.6	46
43249	COU026	40-44	Χ		0.0	5	1.4	0.13	3	6	1.17		9	12	4.11	37
43250	COU026	44-48	Χ		0.0	5	1.4	0.1	l	5	1.03		7	13	4.27	36
43251	COU026	48-52	Χ		0.0	4	0.9	0.06	6	4	1.2		8	12	4.33	36
43252	COU026	52-56	Χ		0.0	5	1.5	0.08	3	5	0.99		7	13	3.38	32
43253	COU026	56-60	Χ		0.0	5	1.3	0.05	5	10	1.67		14	10	5.26	56
43254	COU026	60-64	X		0.0	5	1	0.03	3	6	1.25		7	10	3.26	41
43255	COU026	64-68		2	0.0	8	1	0.08	3	19	2.23		7	10	4.51	68
43256	COU026	68-72	Χ		0.0	5	1.5	0.04	1	7	1.89		7	10	3.68	62

ELEMENTS	Drill Hole	Interval	Au	Ag		As	Bi	(Cu	Fe	Ni	Pb	U	Zr	1
UNITS			ppb	ppm	1	ppm	рр	m þ	opm	%	ppm	ppm	ppn	n pp	om
DETECTION				1	0.01		0.5	0.01		1	0.01	1	1	0.01	1
METHOD			B/ETA	B/M	S	B/MS	B/ľ	MS E	B/OES	B/OE	S B/OES	B/MS	B/M	1S B/	OES
43257	COU026	72-76	Χ		0.07		0.8	0.04		17	2.77	12	9	3.24	88
43258	COU026	76-78	Χ		0.05		1.1	0.05		10	2.29	6	11	2.97	54
43259	COU027	0-4		2	0.02		3.8	0.1		16	2.72	6	13	0.5	7
43260	COU027	4-8	Χ		0.01		0.7	0.04		6	0.43	2	17	0.82	5
43261	COU027	8-12	Χ		0.01		2.4	0.03		8	0.82	2	16	2.02	4
43262	COU027	12-16	Χ		0.05		2.2	0.07		10	0.67	2	14	5.62	5
43263	COU027	16-20		1	0.02	Χ		0.1		4	0.68	3	10	3.53	16
43264	COU027	20-24		1	0.04		1.7	0.12		10	1.54	4	10	3.99	28
43265	COU027	24-26	Χ		0.03		1.7	0.1		6	1.23	5	10	3.43	31
43266	COU028	0-4	Χ		0.02		5.4	0.19		5	4.98	9	12	0.47	9
43267	COU028	4-8		1 X			0.5	0.04		2	0.32	2	5	0.58	4
43268	COU028	8-12	Χ	Х			0.8	0.03		5	1.12	4	14	1.08	5
43269	COU028	12-16	Χ	X			0.6	0.04		5	0.61	2	28	2.87	4
43270	COU028	16-20	Χ		0.01	Χ		0.06		6	0.41	2	33	6.78	3
43271	COU028	20-24	Χ		0.03	Χ		0.09		22	2.62	15	25	12.01	73
43272	COU028	24-28	Χ		0.07		0.8	0.09		51	4.84	39	17	21.3	151
43273	COU028	28-30	Χ		0.1	Χ		0.13		85	5.87	44	23	31.34	199
43274	COU029	0-4	Χ		0.03		3.9	0.13		5	2.57	7	7	0.77	9
43275	COU029	4-8		1 X			0.8	0.06		3	0.65	2	21	0.83	4
43276	COU029	8-12	Χ	X		Χ		0.03		3	0.26	2	17	1.14	3
43277	COU029	12-16	Χ	X		Χ		0.09		2	0.29	2	20	3.16	1
43278	COU029	16-20	Χ	X		Χ		0.05		10	2.05	8	13	4.27	52
43279	COU029	20-24	Χ		0.11		1.2	0.06		39	2.26	12	11	25.62	84
43280	COU029	24-28	Χ		0.09		0.9	0.04		31	0.89	7	15	29.72	26
43281	COU029	28-30	X		0.03		0.9	0.04		7	0.77	6	13	30.02	15
43282	COU030	0-4		2	0.03		1.2	0.06		2	0.74	3	12	1.03	4
43283	COU030	4-8	Χ		0.02		1.2	0.04		3	0.87	3	14	2.06	22
43284	COU030	8-12	Χ		0.04		0.8	0.05		7	1.59	7	11	4.29	46

ELEMENTS	Drill Hole	Interval	Au	Ag	A	As	В	i (Cu	Fe	N	li	Pb	U	Z	Z n
UNITS			ppb	ppm	ŗ	opm	p	om	opm	%	р	pm	ppm	ppr	n p	pm
DETECTION				1	0.01		0.5	0.01		1	0.01		1	1	0.01	1
METHOD			B/ETA	B/MS	E	B/MS	В	/MS	B/OES	B/O	ES B	/OES	B/MS	B/N	/IS E	B/OES
43285	COU030	12-16	Х		0.04		0.5	0.04		11	2.66		10	11	6.41	76
43286	COU030	16-20	Х		0.06		0.6	0.05		13	2.67		10	9	6.94	78
43287	COU030	20-24	Х		0.04	Χ		0.04		14	2.9		11	10	6.92	87
43288	COU031	0-4	Х		0.03		5.3	0.21		1	4.56		17	11	0.66	7
43289	COU031	4-8		3	0.01	Χ		0.35		1	0.47		4	10	0.31	2
43290	COU031	8-12		2	0.01		1.5	0.36		2	1.26		2	16	1.72	3
43291	COU031	12-16	Х		0.02		8.0	0.3		4	0.78		3	5	5.83	10
43292	COU031	16-20	Х	X			0.7	1.23		3	0.42		1	7	3.42	5
43293	COU031	20-24		2	0.05		0.9	1.16		5	0.46		2	8	4.19	9
43294	COU031	24-28		1	0.03		8.0	0.12		4	0.58		5	4	6.88	21
43295	COU031	28-32	Х		0.04		0.7	0.07		2	0.62		5	5	4.71	18
43296	COU031	32-36	Χ		0.04		0.9	0.08		3	0.74		7	4	5.16	25
43297	COU031	36-40	Χ		0.03		1.4	0.27		3	1		9	5	5.25	48
43298	COU031	40-44	Χ		0.04		1	0.32		5	1.35		21	4	4.67	55
43299	COU031	44-48		1	0.09		0.6	0.87		1	2.5		46	4	3.96	44
43300	COU031	48-52		3	0.08	Χ		1.19		1	2.6		49	3	3.74	35
43301	COU031	52-56	Χ		0.04		8.0	0.5		3	1.66		23	4	4.03	21
43302	COU031	56-60	Χ		0.03		0.7	0.53		2	2.46		35	3	2.99	25
43303	COU031	60-64	Χ		0.04		1.1	0.21		4	1.52		13	10	6.93	41
43304	COU031	64-68	Χ		0.05		8.0	0.14		4	1.17		6	6	8.86	23
43305	COU031	68-72		1	0.34		7	0.67		36	2.96		25	442	5.62	2214
43306	COU031	72-76	Χ		0.42		8.5	0.5		70	5.06		63	231	6.8	583
43307	COU031	76-80	X		0.33		1.9	0.41		124	5.01		48	85	4.03	310
43308	COU031	80-84	X		0.18		1.4	0.15		35	3.68		51	150	3.75	814
43309	COU031	84-88	X		0.11		0.7	0.39		63	6		80	15	1.5	121
43310	COU031	88-92	X		0.09		1	0.09		18	3.09		37	15	4.67	77
43311	COU031	92-96	X		0.04		0.9	0.06	Χ		0.03	Χ		6	5.47	Χ
43312	COU032	0-4		4	0.03		4.4	0.14		7	3.09		12	8	1.15	10

ELEMENTS	Drill Hole	Interval	Au		Ag		As		Bi		Cu		Fe		Ni		Pb	U		Zn	
UNITS			ppb	1	opm		ppm		ppm		ppm		%		ppm		ppm	ppr		ppm	
DETECTION				1		0.01		0.5	C	0.01		1	C	0.01		1		1	0.01		1
METHOD			B/ETA		B/MS		B/MS		B/MS		B/OES		B/OES	;	B/OES		B/MS	B/N	1S	B/OES	
43313	COU032	4-8	Х			0.02		2.6	6	0.09	9		4	1.1		4		4	0.5	59	4
43314	COU032	8-12	Х			0.01		5.	5	0.03	3		7	1.12		4		6	1.0)7	3
43315	COU032	12-16		1	Χ			18.8	3	0.15	5		9	5.84		2		17	2.9	97	5
43316	COU032	16-20		2	Χ			2.6	6	0.03	3		4	0.72		4		22	2.9	95	5
43317	COU032	20-24	Χ		Χ			1.6	3	0.02	2		2	0.55		2		21	4.7	76	3
43318	COU032	24-28		1		0.09		1.3	3	0.09	9		7	0.56		4		35	30.1	17	5
43319	COU032	28-32		1		0.09			I	0.03	3		3	0.63		2		17	8.1	18	10
43320	COU032	32-36	X			0.12		0.9	9	0.04	1		8	0.95		12		15	10	.7	83
43321	COU032	36-40	X			0.06		0.5	5	0.03	3		3	1.07		3		10	9.0)9	33
43322	COU032	40-44	X			0.03		0.5	5	0.03	3		4	1.33		4		10	9.7	72	62
43323	COU032	44-48	Χ			0.03		0.0	6	0.05	5		4	1.31		4		9	7.7	73	50
OLIFOKO																					
CHECKS			V			0.00	V			0.04			4	0.7		07		40	44.0	20	40
43173			X			0.02	Χ	0.	-	0.01			4	2.7		27		12	11.2		18
43199			X			0.01		0.7		0.03			1	3.6		10		4		.7	14
43225			X			0.01		1.0		0.06			2	3.46		14		3	5.9		17
43251			X			0.03		0.9	9	0.05			4	1.18		9		11	4.2		35
43277			X			0.02		0.4		0.09			2	0.29		2		21		.5	2
43303			Х			0.03		0.9	1	0.2	<u> </u>		4	1.55		12		11	7.4	ю	38
		STANDARDS	S																		
		CMM-04		43		0.78		93.0	3	8.78	3	9	9	7.87		90		53	2.7	73	83
		NGL-18		21		1.08		39.0	3	8.54	4	2	8	4.15		23		44	0.9	99	21
		PL-11		22		4.59		37.3	3	42.68	3	3	1	10.12		26		207	1.3	36	24
		AMIS0004		405		0.21		200.9		2		10	8	3.6		213		98	74.0)9	232
		BSL5		7		2.03		15.6		18.8	3	2	5	3.55		24		94	4.2	29	22
		CMM-04		55		0.74		81.4		8.28		9		8.33		92		49	2.4		85
		AMIS0004		385		0.27		185.3		1.79		9		3.03		218		92	71.8		217
									-		-	·	-							-	

APPENDIX D Drill Hole Log Sheets

		Coulta Pr	oject				
Drill Hole No.	COU001	AMG Easting 553072	Drilling Method Rotary Mud	Total Depth (m)	108		
		AMG Northing 6208597	Drill Company Underdale				
Date: 17 November	2006						
Geologist: AFC		Zone: 53					
Samp	le No.	Description					
sandy soil, earthy, carbonate							
		white carbonate, earthy clay					

		Geologist: AFC	Zone: 53		
Depth	Lithology	Sample No.		Description	
0 -1	SOIL		sandy soil, earthy, carbonate		
1 - 2	CLAY		white carbonate, earthy clay		
2 - 3	CLAY		white mud grained qtz sandstone clay ceme	ented	
3-4	CLAY		as above but now orange colour is dominar	nt	
4-5	SANDSTONE		clean, fairly coarse qtz sandstone well roun	ded	
5-6	SANDSTONE		well sorted clean well rounded qtz sand sto	ne	
6-7	SANDSTONE		as above		
7-8	SANDSTONE		as above perhaps a little finer grained.		
8-9	SAND		sorted fine sands in pat cemented by orang		
9-10	SAND		sands plus orange and cream coloured clay	/S	
10-11	SAND		mainly clean sands, but some cream clay		
11-12	SAND		mainly clean sands and minor clay		
12-13	SAND		mainly clean qtz, sands minor clay		
13-14	SAND		qtz sands, some orange clays but more cre	am clay layers	
14-15	SAND		well rounded qtz sands, minor orange clay	cement	
15-16	SAND		as above		
16-17	SAND		as above		
17-18	SAND		sand and clays. Not much sample.		
18-19	SAND		well washed rather coarse well sorted well	rounded sand	
19-20	SAND		well sorted clean qtz sands		
20-21	SAND		as above		
21-22	SAND		as above		
22-23	SAND		as above but less well sorted - more coase	faction	
23-24	SAND		fine grained qtz sands		
24-25	SAND		coarser sands, pieces of wood obvious		
25-26	SAND	43001	as above coarse angular qtz. Blue?		
26-27	SAND	43002	as above		
27-28	SAND	43003	as above		
28-29	CLAY	43004	blank lignitic clays with minor coarse qtz		
29-30	SAND	43005	unsorted sands, bigger fine faction, minor v	oody pieces.	
30-31	SAND		as above		
31-32	SAND	43006	cleaner sands still has wood coarses graine	ed	
32-33	SAND	43007	as above. Course angular sands		

Depth	Lithology	Sample No.	Description
33-34	SAND	43008	quite coarse, angular sands
34-35	SAND	43009	unsorted angular sands with woody fragments
35-36	SAND	43010	finer grained as above
36-37	SAND		as above
37-38	CLAY		lignitic clay with qtz sands
38-39	SAND	43011	quartz sands not well sorted
39-40	SAND	43012	coarse unsorted sands. Very angular
40-41	SAND	43013	better sorted - less coarse qtz grains.
41-42	SAND	43014	fine grained sands quite well sorted
42-43	SAND		fine grained sands and woody fragments
43-44	SAND		coarse grained sands - poorly sorted.
44-45	SAND	43015	coarse angular qtz sands
45-46	CLAY	43016	grey clays ligmitic clas and coarse qtz.
46-47	SAND	43017	unsorted qtz and gravel. Some wood
47-48	SAND	43018	largely finer grained, some lignitic clay and some coarse
48-49	SAND	43019	as above, fine grained, better sorted same lignitic clay.
49-50	SAND	43020	as above but includes some grey (not lignitic) clay
50-51	SAND	43021	poorly sorted sands, trace of musionite appearing
51-52	SAND	43022	medium grained but poorly sorted? Weather lithic fragments
52-53	SAND	43023	as above. Some woody fragments
53-54	SAND	43024	as above
54-55	SAND	43025	as above. Poorly sorted up to med grained atz sand
55-56	SAND	43026	coarse sands but new also grey clay
56-57	SAND	43027	as above with grey clays
57-58	SAND	43028	as above
58-59	SAND	43029	as above less grey clays
59-60	SAND	43030	as above
60-61	SAND	43031	unsorted qtz, grey clay and pink clays
61-62	SAND	43032	mix of unsorted qtz to coarse with grey clays
62-63	SAND	43033	as above
63-64	SAND	43034	mainly clays occassional grit and sands
64-65	SAND	43035	mainly clays some dark (lignitic clays?) + grey clays
65-66	SAND	43036	????
66-67	SAND	43037	as above, well sorted, partly rounded, qtz sands
67-68	SAND	43038	as above, small pellets of white clay? Lithitic fragments
68-69	SAND	43039	as above
69-70	SAND	43040	as above small pieces of wood. A little coarser.
70-71	SAND	43041	unsorted sand fine - coarse, pellets of clay and wood, red rounded sand.
71-72	SAND	43042	as above rather more clay
72-73	SAND	43043	as above

Depth	Lithology	Sample No.	Description
73-74	SAND	43044	grey clays becoming more dominant in unsorted coarse sands
74-75	SAND	43045	as above - grey clays and mixed sands
75-76	SAND	43046	as above
76-77	SAND	43047	as above perhaps less clay. Wood pieces persist.
78-79	SAND	43048	Med grained sands with mud and wood. Med rounded sorted. Little clay.
79-80	SAND	43049	as above. Med sands
80-81	SAND	43050	as above. Med sands
81-82	SAND	43051	a little coarser. Unsorted sands
82-83	SAND	43052	coarser grained unsorted medium rounded sands.
83-84	SAND	43053	coarse grained to angular grit sized sands. Minor copmosite, grains have pyrite?
84-85	SAND	43054	medium to fine grained sand
85-86	SAND	43055	medium to fine grained sand minor pink clay lithic clays
86-87	SAND	43056	as above
87-88	SAND	43057	coarser grained to grit sized component.
88-89	SAND	43058	as above. Small pyritic cememted aggregates
90-91	SAND	43059	unsorted finer grained, more black minerals? Very fine grained
91-92	SAND	43060	unsorted fine - med sands muscout and pink clay and learies = minor
92-93	SAND	43061	coarsing sands
93-94	SAND	43062	as above. Minor grit component
94-95	SAND	43063	as above
95-96	SAND	43064	clean sands - fine to grits. Mainly angular minor hearies + muscouite + pink lithic fragments (clayey)
96-97	SAND		poorly sorted sands, possibly top of basement psr
97-98	CLAY	43065	white clays? Inducted with much qtz
98-99	CLAY	43003	angular qtz, very coarse, with white clays
99-100	CLAY		as above
100-101	CLAY		as above
101-102	CLAY	43066	as above
102-103	CLAY	43000	much less angular qtz, now clay dominated
103-104	CLAY		as above
104-105	CLAY		white clay pellets have little qtz in them.
105-106	CLAY	43067	as above
106-107	CLAY	43007	white clay with fine qtz sandsized and white feldspar and mica (biotite)
107-108	GRANITE		white feldspar clear qtz and black biotite.

		Coulta Pro	ject				
Drill Hole No.	COU002	AMG Easting 554720	Drilling Method Rotary Mud	Total Depth (m)	54		
		AMG Northing 6208657	Drill Company Underdale				
Date: 18 November	er 2006						
Geologist: AFC		Zone: 53					
Sam	ple No.	Description					
		Dones laminated calcrete in grane	o candy clay				

<u> </u>		Date: To November 2006		
		Geologist: AFC	Zone: 53	
Depth	Lithology	Sample No.		Description
0 -1	CLAY/CALCRETE		Dense laminated calcrete in orange sandy of	clay
1 - 2	CLAY/CALCRETE		as above plus some rare well rounded qtz g	prits
2 - 3	CLAY/CALCRETE		as above	
3-4	SAND		less clays - unsorted angular gravel - sand.	Some quite inducted orange sands
4-5	SAND		as above. Minor qtz gravel. Orange fe? Cla	y cemented sands + calcrete
5-6	SAND		as above	
6-7	SAND		orange mixed sands, sandy clay with white	clay lenses.
7-8	SAND		orange clayey sands, some coarse faction t	o grit sized qtz.
8-9	SAND		orange sands, poorly sorted, clay + ognits a	are minor, some white clay pellets.
9-10	SAND		as above qtz grains med well rounded.	
10-11	SAND		as above	
11-12	SAND		as above, poorly sorted medium well round	ed orange sands.
12-13	SAND		as above	
13-14	SAND		orange(limonitic) colour lessening in mixed	sands
14-15	SAND		white poorly sorted sands, lithic fraction + m	nuscovite
15-16	SAND		white poorly sorted sands, mainly med - fine	9
16-17	SAND		as above	
17-18	SAND		white sands with small lematitic clay specks	3.
18-19	SAND		fine white sands, well rounded	
19-20	SAND	43068	fine white sands, lemantitic clay specks	
20-21	SAND	43069	white sands coarse grained angular some li	gnitic clay
21-22	SAND	43070	as above, lignitic much less.	
22-23	SAND	43071	as above, lignitic much less.	
23-24	SAND	43072	as above, angular coarse sands, lignites.	
24-25	SAND	43073	finer grained but with woody pieces.	
25-26	SAND	43074	as above	
26-27	SAND	43075	as above	
27-28	SAND	43076	as above perhaps coarser	
28-29	SAND	43077	as above med-fine sands with woody pieces	S
29-30	SAND	43078	poorly sorted angular qtz sands with woody	pieces.
30-31	SAND		fine sands, well sorted, angular silt size - fire	esand. Psr
31-32	SAND	43079	fine sands, well sorted, angular	
32-33	SAND	43080	fine sands, angular, small heavy minerals?	Black lustrous.

Depth	Lithology	Sample No.	Description
33-34	SAND	43081	fine angular sands, some woody fragments.
34-35	SAND	43082	as above
35-36	SAND	43083	as above, fine sands, with some woody fragments
36-37	SAND		as above, some well rounded coarse qtz grains psr.
37-38	SAND		no sample return. (very fine sand not settling)
38-39	SAND		No sample return.
39-40	SAND		No sample return
40-41	SAND		no sample return
41-42	SAND		no sample return (very fine sand not settling out?)
42-43	SAND		nsr
43-44	SAND		no sample return - good circulation
44-45	SAND		nsr
45-46	SAND		nsr
46-47	SAND		nsr
47-48	SAND		nsr
48-49	SAND		nsr
49-50	SAND		nsr
50-51	SAND		nsr
51-52	SAND		nsr
52-53	SAND	·	nsr. Flushed through sieve
53-54	CLAY		very fine grained fresh biotite
54-55	GRANITE	43084	could be fine grained biotite granite

CALCRETE

CALCRETE

CLAY

SAND

SAND

SAND

SAND

SAND

SAND

SAND

CLAY

Depth

0 -1 1 - 2

2 - 3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

24-25

25-26

26-27

27-28

28-29

29-30

30-31

31-32

32-33

Lithology

	Coulta F	Project							
Drill Hole No. COU 0	AMG Easting 558435	Drill Method Mud	Rotary	Total Depth (m)					
	AMG Northing 6215508	Drill Company U	Inderdale						
Date: 22 November 2006									
Geologist: AFC	Zone: 53								
Sample No.		Description							
	powdered calcrete and clays								
	as above								
	brown clays fine silts								
	brown clays, some red fe oxid	e colouration							
	brown - clay silt. Some coarse	e fraction of rounded qtz.							
	brown clays - silt minor lithic fr	action + grit sized qtz. Fe ceme	ented pisoli	tes					
	grey clay quite indurated - dry	0 7 7 1							
	grey clay, quite indurated - dry	/							
	mix of grey clays and yellow fe	e stained clays in sample							
	clay, indurated dry, mix of gre	y yellow and red-brown. Minor	porcelleite						
	clays red and orange clays. M	linor fe modules.							
	as above								
43085	brown-dark brown - silts. Som	ne fe cemented granites							
43086	clean fine silts with minor flake	es. ? Lignitic							
43087	fines silts, well sorted + a few	well rounded grit grains.							
43088	clean well-sorted silts also sor	ne yellow silts intersected.							
43089	as above								
43090	clean well sorted silts.								
	more sand then into weathere	ed basement? Coarse pegmatit	te						
43091	orange clays with muscovite fl	akes							
43091	as above								
	as above								
	as above								

grey clayey fine grained quartz - weathered basement

grey clay with sands, very fine grained. Well rounded

as above

as above

as above

as above

as above

grey clay minor fine quartz

grey clay with pyritic concreticers

very fine sands? Very fine quartz

43092

43093

43094

Depth	Lithology	Sample No.	Description
33-34	CLAY		as above
34-35	CLAY		grey clays minor fine qtz. Small pellets of orange clay
35-36	CLAY	43095	as above
36-37	CLAY	43095	as above
37-38	CLAY		grey clays very fine qtz
38-39	CLAY		grey very fine sands - clay. Very fine muscovite
39-40	CLAY	43096	as above but had layer is micro granite with quite abundant pyrite and some magnetite
40-41	GRANITE		grey sand, clay sized.

100	Ī	r	ıt	e	r	N	1	e	t	
	R	E	S	0	U	R	C	E	S	

Depth 0 -1

1 - 2

2 - 3

3-4

4-5

5-6 6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14 14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

24-25

25-26

26-27

27-28

28-29

29-30 30-31

31-32

32-33

SOIL

CLAY

Lithology

Drill Hole No. COU 004	Coulta Pro	Drill Method Aircore	Total Depth (m) 42					
Drill Hole No. COU 004	AMG Easting	Drill Method Aircore	Total Depth (III) 42					
	AMG Northing	Drill Company Underdale						
Date: 22 November 2006								
Geologist: AFC	Zone: 53							
Sample No.		Description						
	lupin crop - soil + carbonates							
	yellow brown clays							
	yellow clays some indented clay w	ith fine qtz grains some fe pisolitis (ma	agnetic)					
	as above							
	quite inducted khaki clays with qtz	grains + magnetic pisolites						
	yellow brown inducted clays with o	tz grain to magnetic pisolites						
	red brown clays nsr							
43097	very clean white silts, well sorted -	some clean white well rounded sand I	peds highly in donated					
43098	mix of fine grey silts and bright rec	brown clays						
43099	grey silts and clays with loads of p	orcellenite with qtz grains well rounded	d cemented in.					
43100	white powder with some inducted	pieces, porcellanite plus some minorite	e nods					
43101	pale brown - white clay							
43102	yellow clays, silty, small fe nobules							
43103	as above bit fragmenting look ou	t for tungsten pieces.						
43104	yellow silty clays very fine.							
43105	clean, very fine silts. Rare coarser	qtz granules, oxidised fe granules						
43106	clean very fine silts							
	top of the basement. Fine grey cla	ys with granular grit sized qtz.						
43107	grey and orange clays							
45107	grey and orange clays							
	grey and orange clays - minor coarse angular qtz							
	grey and orange clays							
43108	clays with inducted? Silicified weathered? Granite							
45100	clays							
clays								
	grey clays							
43109	as above							
45105	as above							
	grey clays minor qtz component	grey clays minor qtz component						
	grey clays							
43110	as above							
70110	dark grey clays							

dark grey clays

as above clays

Depth	Lithology	Sample No.	Description
33-34	CLAY		dark grey clays
34-35	CLAY	43111	dark grey clays
35-36	CLAY	43111	as above
36-37	CLAY		as above
37-38	CLAY		as above
38-39	CLAY		dark clays as above some coarse angular qtz
39-40	CLAY	43112	dark grey clays, minor fine qtz, now some fresh biotite
40-41	CLAY		khaki green grey yellow clays no coarse qtz
41-42	CLAY		green clay, no coarse qtz

Depth

0 -1

1 - 2

2 - 3

3-4

4-5 5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

Lithology

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY SAND

SAND

SAND

SAND

SAND

SAND

SAND

GRANITE

43120

Coulta Project								
Drill Hole No. COU 005	AMG Easting	Drill Method	Aircore	Total Depth ((m)	14		
	AMG Northing	Drill Company	Underdale			_		
Date: 23 November 2006						_		
Geologist: AFC	Zone: 53							
Sample No.		Description						
	grey clays - lake mud. Some	fine silt layers						
	as above							
	as above							
	khaki clays with qtz grains to	grit size						
	green clays some fe pellets -	magnetic some qtz						
	mix green clays and re brown	clays with fine qtz						
43113	clean white silt - fine sand - s	ome well rounded atz granule	s. Some lithio	c fragments				
43114	green and orange sands							
43115	fine orange sands - quite clay	rey						
43116	fine clean and orange sands							
43117	fine sands ? Lignitic							
43118	fine sands, lignitic lithic fragn	nents of fine bi gneiss						
43119	fine sands with small amount	of biotite						

fine qtz sands then into bi gneiss

Depth 0 -1

1 - 2

2 - 3

3-4

4-5

5-6 6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

Lithology

SOIL

IRONSTONE

CLAY

CLAY

GRAVEL

QUARTZ VEIN GNEISS

GNEISS

GNEISS

GNEISS

GNEISS

GNEISS

GNEISS

GNEISS

	Coulta Project									
Drill Hole No.	COU 006	AMG Easting 536417	Drill Method	Aircore	Total Depth (m)	14				
		AMG Northing 6221 812	Drill Company	Underdale						
Date: 23 Nove	mber 2006									
Geologist: AF	С	Zone: 53								
;	Sample No.		Description							
		soil orange. Some qtz gravel and for	e store							
		ironstone pellets in red and white cl	lays. Magnetic							
		white clays plus inducted grey clay	and bands							
		clays + fe cemented weathered lithi	ic clays							
		fine grained sand with "buck shot" of	gravel and porcellenite fra	agments						
	43121	qtz vein in weathered basement								
		weathered basement with qtz grain	s and clay silicified feldsp	oars						
	43122	weathered gneiss? With large phen	ocrysts of qtz							
	43122	as above								
		as above includes some Fe-rich Ma	aterial							
		as above no Fe								
	42402	ferruginous material looks like biotit	te = biotite granite							
	43123	white silicified clay ex feldspar clear	r qtz + some possible ser	ricite						
			<u> </u>							

ferruginous material again some ribbons of qtz? Biotite gneiss granite

Lithology CLAY

CALCRETE

CALCRETE

CALCRETE CALCARENITE

CALCARENITE

CLAY

Depth

0 -1

1 - 2

2 - 3 3-4

4-5

5-6

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17 17-18

18-19

19-20

20-21

21-22

Coulta Project										
Drill Hole No. COU 007	AMG Easting 536649	Drill Method	Aircore	Total Depth (m)						
	AMG Northing 6221804	Drill Company	Undordolo							
Deter 22 Nevember 2000	AMG NORthing 6221804	Drill Company	Underdale							
Date: 23 November 2006	Zone: 53									
Geologist: AFC	Zone. 55									
Sample No.	builds and north class	Description								
	bright red earth clay									
	highly incucted carbonate									
	as above with some clays									
	as above									
	carbonate and sediments									
	as above									
	clays with fe latenite + pisolites									
	as above									
	brown clays with misc lithic lasts									
	browned white clays with lithic clas	ts								
	white basement clayss									
	white to yellow basement clays									
	as above									
	as above + large qtz fragment									
	white clays									
	white clays									
	white clays									
	first basement fragments - weather	red								
	- U									
	quite a bit of fine grained magnetite	9								
 43124	coarse qtz feldspar = lay? Bit of bi									
43124	coarse qtz teldspar = lay? Bit of bi	otited sercite								

sample of pug clay from inside bit.

	Coulta Fi	oject		
COU 008	AMG Easting 536649	Drill Method RAB hammer	Total Depth (m)	27
	AMG Northing 6221804	Drill Company Underda	le	
006				
	Zone: 53			
No.		Description		
	brown clay soil			
	006	COU 008 AMG Easting 536649 AMG Northing 6221804 2006 Zone: 53	hammer AMG Northing 6221804 Drill Company Underda Zone: 53 No. Description	COU 008 AMG Easting 536649 Drill Method RAB hammer AMG Northing 6221804 Drill Company Underdale Zone: 53 Drill Method RAB hammer Drill Company Underdale

		ocologist. Al o	2016. 00
Depth	Lithology	Sample No.	Description
0 -1	SOIL		brown clay soil
1 - 2	SOIL		yellow clay soil
2 - 3	SOIL		as above
3-4	CLAY		yellow clays with carbonate and fe nodules
4-5	CLAY		unsorted clay sands with lithic fragments
5-6	SAND		unsorted seds with lithic fragments
6-7	SAND		white snads minor clays qtz up to grit size
7-8	SAND		as above perhaps more clay
8-9	SAND		as above white clayey with qtz
9-10	CLAY		white clays with qtz component
10-11	CLAY		as above
11-12	CLAY		as above
12-13	CLAY		as above
13-14	CLAY		as above
14-15	CLAY		white clays with qtz component
15-16	CLAY		white clays with qtz med grained angular
16-17	CLAY		white clays with qtz med grained angular
17-18	CLAY		coarse qtz in white clay
18-19	CLAY		coarse qtz in white clay
19-20	CLAY		grits in white clay
20-21	CLAY		coarse qtz grit size angular in clays
21-22	CLAY		as above
22-23	CLAY		as above - little sericite appearing and some qtz
23-24	CLAY		as above
24-25	CLAY		as above
25-26	CLAY		pug clay with coarse angular qtz (sometimes with sericite)
26-27	CLAY		qtz rich coarse angular qtz

I	r	ıt	e	r	N	1	e	t	
					R				

CALCRETE

CALCRETE

CLAY

CLAY

CLAY

CLAY CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

Depth

0 -1 1 - 2

2 - 3

3-4

4-5

5-6 6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

Lithology

	Coulta Project								
Drill Hole No. COU 009	AMG Easting 538019	Drilling Method Aircore	Total Depth (m) 2						
	AMG Northing 6218611	Drill Company Underdale							
Date: 25 November 2006									
Geologist: GF	Zone: 53								
Sample No.		Description							
	Calcrete- sheet calcrete, white to p	ale brown with minor soil							
	Calcrete - sandy, fine to medium g	rained							
	Clay, orange-brown, calcereous, s	andy							
	Clay, orange, fine, slightly sandy								
	Clay, yellow-brown, slightly sandy	(fine grained), calcereous							
	Clay, off-white to pale brown, fine-	powdery							
43125	Clay, red-brown, ferruginous, mino	r indurated layers (ferricrete), minor v	c quartz gravel						
	Clay, off-white, with abundant cg a	ngular quartz - weathered basement							
	Clay, orange-brown, with abundan	t quartz (medium grained) and fine mu	uscovite						
43126	Clay, pale grey, micaceous, minor	quartz (clear)							
43120	Clay, pale grey, micaceous, minor	quartz (clear)							
	Clay, pale grey, micaceous, minor	quartz (clear)							
43127	Clay, off-white, slighly more quartz	present, micaceous							
	Clay, off-white, slighly more quartz	present, micaceous							
	Clay, pale yellow, micaceous, with	fine grained quartz							
	Clay, pale yellow, micaceous, with	fine grained quartz							
	Clay, pale yellow, micaceous, with	fine grained quartz							
 43128	Clay, pale yellow, micaceous, with	fine grained quartz							
43120	Clay, pale grey to yellow, micaceo	us, fine quartz							
	Clay, pale grey to yellow, micaceo	us, fine quartz							

Clay, pale grey, micaceous, with m-c grained clear quartz

43129

Clay, pale grey, micaceous, with m-c grained clear quartz, with some indurated layers

Clay, orange-pale green, Fe-stained, micaceous, quartz (f-c) and rare vc quartz

Clay, orange-pale green, Fe-stained, micaceous, quartz (f-c) and rare vc quartz

CALCRETE

CALCRETE

CLAY

Depth 0 -1

1 - 2

2 - 3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15 15-16

16-17

17-18

18-19

19-20

Lithology

	Coulta Pro	•	T.					
Drill Hole No. COU	010 AMG Easting 538019	Drilling Method Aircore	Total Depth (m)	20				
	AMG Northing 6218611	Drill Company Underdale						
Date: 25 November 2006								
Geologist: GF	Zone: 53							
Sample No.		Description						
	Calcrete, hard, white to pale yellow	Calcrete, hard, white to pale yellow, fractured						
	Calcrete, sandy							
	Clay, calcereous, with hard indura	ted layers						
	Clay, red-brown with some white i	ndurated calcrete layers						
	Clay, orange-brown, calcereous	Clay, orange-brown, calcereous						
	Clay, orange to grey, slightly plast	Clay, orange to grey, slightly plastic, some indurated fragments, rare quartz gravel						
	Clay, off-white to white, abundant	coarse quartz grains						
	Clay, off-white to cream, with abu	Clay, off-white to cream, with abundant gravel						
43130	Clay, white with patches of Fe mo	Clay, white with patches of Fe mottling, some vc quartz						
43130	Clay, white with patches of Fe mo	Clay, white with patches of Fe mottling, some vc quartz						
	Clay, heavily iron stained orange/	white, with minor ironstone fragments						
	Clay, off-white kaolin, micaceous,	f-m quartz						
43131	Clay, off-white kaolin, micaceous,	f-m quartz						
	Clay, off-white kaolin, micaceous,	f-m quartz						
	Clay, off-white kaolin, micaceous,	f-m quartz						
<u> </u>	Clay, wet, pale orange/grey/white,	Clay, wet, pale orange/grey/white, micaceous, abundant f-m quartz						
 	Clay, wet, pale orange/grey/white,	micaceous, abundant f-m quartz						
43132	Clay, wet, pale orange/grey/white,	micaceous, abundant f-m quartz						
43132	Clay wet hale orange/groy/white	Clay wet hale grange/grey/white micacegus abundant f-m quartz						

Clay, wet, pale orange/grey/white, micaceous, abundant f-m quartz

Clay, wet, pale orange/grey/white, micaceous, abundant f-m quartz

		Coulta Pr	oject	
Drill Hole No.	COU 011	AMG Easting 536646	Drilling Method Aircore	Total Depth 27m
l		AMG Northing 6210295	Drill Company Underdale	
Date: 25 November	er 2006			
Geologist: GF		Zone: 53		
Sam	ple No.		Description	
		Calcrete, sheet calcrete, off-white	te with SOIL, brown, clayey	
		0	1 (11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

		Geologist: GF	Zone: 53
Depth	Lithology	Sample No.	Description
0 -1	CALCRETE		Calcrete, sheet calcrete, off-white with SOIL, brown, clayey
1 - 2	CLAY		Clay, brown, calcereous, some indurated layers or boulders
2 - 3	CLAY		Clay, yellow-brown, calcereous, with some indurated layers or boulders
3-4	CLAY		Clay, yellow-brown, calcereous, with some indurated layers or boulders
4-5	CLAY		Clay, yellow-brown, calcereous, with some indurated layers or boulders
5-6	CLAY		Clay, pale yellow-brown, calcereous, hard layers, sandy
6-7	CLAY		Clay, pale yellow-brown, calcereous, hard layers, sandy
7-8	CLAY		Clay, pale yellow-brown, calcereous, hard layers, sandy
8-9	CLAY		Clay, pale yellow-brown, calcereous, hard layers, sandy
9-10	CLAY		Clay, pale yellow-brown, calcereous, hard layers, sandy
10-11	CLAY		Clay, varicoloured, grey-orange-green, micaceous
11-12	CLAY		Clay, orange (Fe-stained), micaceous, abundant f-m quartz
12-13	CLAY	43133	Clay, off-white, kaolin, micaceous
13-14	CLAY	43133	Clay, off-white, kaolin, micaceous
14-15	CLAY		Clay, off-white, kaolin, micaceous
15-16	CLAY	43134	Clay, off-white, kaolin, micaceous, f-m quartz
16-17	CLAY		Clay, pale yellow, f-m quartz, micaceous
17-18	CLAY		Clay, wet sample "puggy", rare VC quartz, patches of orange Fe staining
18-19	CLAY		Clay, wet sample "puggy", rare VC quartz, patches of orange Fe staining
19-20	CLAY		PSR - water pumped down the hole
20-21	CLAY	43135	Granite, bleached, coarse grained quartz and mica
21-22	CLAY	43133	PSR - water pumped down the hole
22-23	CLAY		Clay, weathered granite, white, angular quartz - PSR
23-24	CLAY		Clay, off-white, f-m quartz, micaceous
24-25	CLAY	43136	Clay, off-white, f-m quartz, micaceous
25-26	CLAY	43130	Clay, off-white, f-m quartz, micaceous PSR
26-27	CLAY		Clay, off-white, f-m quartz, micaceous

-	Ī	r	lt	e	r	N	1	e	t	
						R				

Depth

0 -1

1 - 2 2 - 3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

24-25

25-26

26-27

SOIL

CLAY

GRANITE GNEISS

Lithology

		Coulta Project									
Drill Hole No.	COU 012			Drilling Method RAB	Total Depth ((m) 27					
		AMG Northing 62	10300	Drill Company Underdale							
Date: 25 November 2	006										
Geologist: GF		Zone: 53									
Sample	No.			Description	·						
		Soil, brown, clayey w	rith calcrete (?sheet or	boulder)							
		Clay, calcereous, yel	llow-brown, some thin	hard layers							
		Clay, calcereous, off-	-white, some thin hard	layers							
		Clay, calcereous, off-	-white, some thin hard	layers							
		Clay, calcereous, off-	-white, some thin hard	layers							
		Clay, calcereous, off-	-white, some thin hard	layers							
		Clay, orange-brown	(Fe-stained), slightly p	lastic							
4313	37	Clay, orange-brown	(Fe-stained), slightly p	lastic							
		Clay, pale green to o	range (mottled), ?wea	thered basement							
		Clay, off-white, minor quartz, micaceous Clay, off-white, minor quartz, micaceous									
4313	RS.										
4010	,,,	Clay, off-white, minor quartz, micaceous									
		Clay, off-white, minor	r quartz, micaceous								
4313	39	Clay, off-white, minor	r quartz, micaceous								
		Clay, off-white, minor	r quartz, micaceous								
		Clay, off-white, minor	r quartz, micaceous - \	Net Sample							
		Clay, off-white, minor	r quartz, micaceous								
4314	ın		· • · · · · · · · · · · · · · · · · · ·	117 1							
4317	•		· · · · · · · · · · · · · · · · · · ·	117 1							
		Clay, pale green, fine	e quartz (?more schist	ose layer),							
	Date: 25 November 2 Geologist: GF Sample 4313 4313	Date: 25 November 2006	Drill Hole No. COU 012 AMG Easting 5367 AMG Northing 62 Date: 25 November 2006 Geologist: GF Sample No. Soil, brown, clayey w Clay, calcereous, yel Clay, calcereous, off Clay, calcereous, off Clay, calcereous, off Clay, calcereous, off Clay, orange-brown Clay, pale green to clay, off-white, mino Clay, white to off-white Cla	AMG Easting 536723 AMG Northing 6210300 Date: 25 November 2006 Geologist: GF Sample No. Soil, brown, clayey with calcrete (?sheet or Clay, calcereous, yellow-brown, some thin Clay, calcereous, off-white, some thin hard Clay, calcereous, off-white, minor quart, slightly p Clay, orange-brown (Fe-stained), slightly p Clay, orange-brown (Fe-stained), slightly p Clay, off-white, minor quartz, micaceous Clay, white to off-white, quartz rich, micaceous Clay, white to off-	Drill Hole No. COU 012 AMG Easting 536723 Drilling Method RAB AMG Northing 6210300 Drill Company Underdale Company Underdale Date: 25 November 2006 Geologist: GF Sample No. Description Soil, brown, clayey with calcrete (?sheet or boulder) Clay, calcereous, yellow-brown, some thin hard layers Clay, calcereous, off-white, some thin hard layers Clay, orange-brown (Fe-stained), slightly plastic Clay, orange-brown (Fe-stained), slightly plastic Clay, off-white, minor quartz, micaceous Clay, off-white, minor quartz, micaceous	Drill Hole No. COU 012 AMG Easting 536723 Drilling Method RAB Total Depth (AMG Northing 6210300 Drill Company Underdale Calogist: GF Zone: 53 Sample No. Description Soil, brown, clayey with calcrete (?sheet or boulder) Clay, calcereous, yellow-brown, some thin hard layers Clay, calcereous, off-white, some thin hard layers Clay, orange-brown (Fe-stained), slightly plastic Clay, orange-brown (Fe-stained), slightly plastic Clay, off-white, minor quartz, micaceous Clay, off-wh					

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample

Clay, off-white, fine to coarse quartz, micaceous, sloppy sample - weathered granite gneiss - Hole

43141

43142

InterMet	T	_									
InterMet						TA	A				
IIIICIIVICI	ı	n	1	0	r		/	P	+		
RESOURCES											

		Coulta Pro							
Drill Hole No.	COU 013	AMG Easting 536784	Drilling Method RAB	Total Depth (m)	2				
		AMG Northing 6210300	Drill Company Underdale						
Date: 26 Novembe	r 2006								
Geologist: GF		Zone: 53							
Sam	ple No.		Description						
		Soil, calcereous with sheet calcrete)						
		Clay, calcereous, pale brown, sand	ly with fragments of calcrete						
		Clay, calcereous, pale brown, sand	ly with fragments of calcrete						
		Clay, calcereous, pale brown, sandy with fragments of calcrete Clay, calcereous, pale brown, sandy with fragments of calcrete							
		Clay, calcereous, pale brown, sand	ly with fragments of calcrete, slightly d	amp					
4.	3143	Clay, dark grey to pale orange, with	n fragments of calcrete						
1	3143	Clay, pale green, slightly plastic, zo	ones of orange Fe-staining						
		Clay, pale green to pale orange, m	icaceous, fine quartz						
4.	3144	Clay, pale green to pale orange, m	icaceous, fine quartz						
	7177	Clay, pale green to pale orange, m	icaceous, fine quartz						
		Clay, pale green, quartz rich (fine to	o coarse), micaceous, fine grained gre	y mineral (non-magn	etic-				
43	3145	Clay, pale green, quartz rich (fine to	o coarse), micaceous, fine grained gre	y mineral (non-magn	etic-				

		Geologist: GF	Zone: 53
Depth	Lithology	Sample No.	Description
0 -1	SOIL/CALCRETE		Soil, calcereous with sheet calcrete
1 - 2	CLAY		Clay, calcereous, pale brown, sandy with fragments of calcrete
2 - 3	CLAY		Clay, calcereous, pale brown, sandy with fragments of calcrete
3-4	CLAY		Clay, calcereous, pale brown, sandy with fragments of calcrete
4-5	CLAY		Clay, calcereous, pale brown, sandy with fragments of calcrete
5-6	CLAY		Clay, calcereous, pale brown, sandy with fragments of calcrete, slightly damp
6-7	CLAY	43143	Clay, dark grey to pale orange, with fragments of calcrete
7-8	CLAY	43143	Clay, pale green, slightly plastic, zones of orange Fe-staining
8-9	CLAY		Clay, pale green to pale orange, micaceous, fine quartz
9-10	CLAY	43144	Clay, pale green to pale orange, micaceous, fine quartz
10-11	CLAY	43144	Clay, pale green to pale orange, micaceous, fine quartz
11-12	CLAY		Clay, pale green, quartz rich (fine to coarse), micaceous, fine grained grey mineral (non-magnetic-
12-13	CLAY	43145	Clay, pale green, quartz rich (fine to coarse), micaceous, fine grained grey mineral (non-magnetic-
13-14	CLAY		Clay, pale green, quartz rich (fine to coarse), micaceous, fine grained grey mineral (non-magnetic-
14-15	CLAY		Clay, pale green, quartz rich (fine to coarse), micaceous, becoming slightly pale orange with depth
15-16	CLAY		Clay, pale green to pale orange, chips of quartz and mica (basement fragments- mica rich granite or
16-17	CLAY		Clay, heavily Fe-stained, micaceous, fine quartz (schistose band)
17-18	CLAY	43146	Clay, heavily Fe-stained, micaceous, fine quartz (schistose band)
18-19	CLAY	43140	Clay, heavily Fe-stained, micaceous, fine quartz (schistose band)
19-20	CLAY		Clay, heavily Fe-stained, micaceous, fine quartz (schistose band)
20-21	CLAY		Clay, olive green, very micaceous, fine quartz - weathered schist layer
21-22	CLAY	43147	Clay, olive green, very micaceous, fine quartz - weathered schist layer
22-23	CLAY	43147	Clay, olive green, very micaceous, fine quartz - weathered schist layer with some chips of coarse
23-24	CLAY		Clay, olive green, very micaceous, fine quartz - weathered schist layer with some chips of coarse
24-25	CLAY	43148	Clay, olive green, very micaceous, fine quartz - weathered schist layer with some chips of coarse
25-26	GNEISS	43140	Biotite rich gneiss, medium to coarse grained quartz-feldspar-biotite
26-27	GNEISS	43149	Biotite rich gneiss, medium to coarse grained quartz-feldspar-biotite

	r) t	e	r	N	1	e	t	
R	E	S	0	U	R	c	E	s	

SOIL/CALCRETE CLAY/CALCRETE

CALCRETE

CALCRETE SAND

SAND/CLAY CLAY

IRONSTONE

CLAY

CLAY

CLAY

CLAY CLAY

CLAY

CLAY

CLAY

GNEISS

GNEISS

GNEISS

Depth 0 -1

3-4 4-5

5-6 6-7

7-8 8-9

9-10

10-11

11-12

12-13

13-14 14-15

15-16

16-17 17-18

18-19

19-20

20-21

Lithology

		Coulta Project AMG Easting 536387 Drilling Method RAB Total Depth (m)								
Drill Hole No.	COU 014	AMG Easting 536387	Drilling Method RAB	Total Depth (m)						
		AMG Northing 6210312	Drill Company Underdale		_					
Date: 26 November 20	006									
Geologist: GF		Zone: 53								
Sample	No.		Description							
		Soil, sandy, calcereous with sheet	calcrete							
		Clay, off-white, calcereous, slightly	sandy with ?sheet calcrete or large bo	oulders						
		Calcrete, off-white, hard, sandy, ve	ery fine black mineral (biotite or iron ox	ide)						
		Calcrete, off-white, hard, sandy, ve	ery fine black mineral (biotite or iron ox	ide)						
		Sand, calcereous, clayey with calc	rete fragments							
		Sand as above with Fe-stained cla	y, slightly indurated							
		Clay, orange to orange brown (Fe-stained), plastic								
		Clay, orange to orange brown (Fe-	stained) with zones of white clay, plas	tic						
		Clay, red-brown to white with fragr	ments of ironstone (weathering zone)							
		Ironstone, red-brown, indurated Fe	e-rich clay, some patches of white clay	(mottled zone)						
		Clay, off-white, fine quartz								
		Clay, off-white, fine quartz, abunda	ant fine to medium grained quartz							
		Clay, off-white, fine quartz								
		Clay, off-white, fine quartz								
		Clay, off-white, fine quartz								
43150	0	Clay, off-white, Gravel fine to very	coarse quartz							
		Clay, off-white, Gravel fine to very	coarse quartz							
		Clay, green (khaki), to pale orange	e, micaceous, biotite rich gneiss fragme	ents	_					
		Gneiss, coarse grained quartz-feld	Ispar-biotite		_					

Gneiss, coarse grained quartz-feldspar-biotite

Gneiss, coarse grained quartz-feldspar-biotite

43151

43152

I	r	ıt	e	r	N	1	e	t	
					R				

CALCRETE

CLAY

GRANITE

GRAVEL

GRAVEL CLAY

Depth

0 -1 1 - 2

2 - 3

3-4

4-5

5-6 6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-23.5

Lithology

43153

		Coulta Pro	iect		
Drill Hole No.	COU 015	AMG Easting 538247	Drilling Method RAB	Total Depth (m)	23.5
		AMG Northing 6204662	Drill Company Underdale		
Date: 26 November	er 2006				
Geologist: GF		Zone: 53			
Sam	ple No.		Description		
		Soil, brown, calcereous with sheet	calcrete		
		Calcrete, sheet, off-white to brown			
		Clay, calcereous, off-white, with fra	agments of calcrete		
		Clay, calcereous, off-white, with fra	agments of calcrete and some fragmen	nts of ironstone	
		Gravel, very coarse quartz with so	me rounded pebbles		
		As above with fragments of weather	ered granite and ironstone		
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
			dant quartz (fine to very coarse graine	,	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d)	
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d), puggy - slightly da	amp
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d), puggy - slightly da	amp
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d), puggy - slightly da	amp
		Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d), puggy - slightly da	amp
	·	Clay, off-white, micacaeous, abund	dant quartz (fine to very coarse graine	d), puggy - slightly da	amp
			dant very coarse quartz and white feld:		
		Clay, off-white to white, with abund	dant very coarse quartz and white feld:	spar grains	

Clay, off-white to white, with abundant very coarse quartz and white feldspar grains

Clay, off-white to white, with abundant very coarse quartz and white feldspar grains

Clay, off-white to white, with abundant very coarse quartz and white feldspar grains

Clay, off-white to white, with abundant very coarse quartz and white feldspar grains

In	_	-					_			
	te	r	1	Λ	P	+				
TII	u	1	LV	1	·	L				
R E S	s o	U	R	C	E	S				

CALCRETE/CLAY

CLAY/GRAVEL SAND

GRAVEL GRAVEL

GRAVEL CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

CLAY

GRANITE/GNEISS

CLAY

Depth 0 -1

1 - 2

2 - 3

3-4 4-5

5-6 6-7

7-8 8-9

9-10

10-11

11-12 12-13

13-14 14-15

15-16

16-17

17-18

18-19 19-20

20-21

Lithology

Drill Hole No.	COU 016	AMG Easting 538344	Drilling Method Aircore	Total Depth (m)							
		AMG Northing 6204460	Drill Company Underdale								
Date: 26 November 20	006										
Geologist: GF		Zone: 53									
Sample	No.		Description								
		Soil, brown, calcereous with shee	t calcrete (surface maghemite around a	nts nests)							
		Clay, orange-grey-pale green, slig	htly plastic, minor calcrete								
		Clay, orange-grey-pale green, slig	htly plastic, plus calcrete								
		Clay, iron-stained with gravel									
		Sand, fine to very coarse grained quartz, clayey									
		Gravel, very coarse quartz with ironstone fragments - hard layer at 5.5m (open hole hammer)									
		Gravel, very coarse quartz with ironstone fragments									
		Gravel, very coarse quartz, subanglar to rounded									
		Clay, off-white, abundant fine to very coarse quartz - weatherd basement									
		Clay, off-white, abundant fine to v	ery coarse quartz - weatherd basement								
			ery coarse quartz - weatherd basement								
			ery coarse quartz - weatherd basement								
		Clay, off-white, abundant fine to very coarse quartz - weatherd basement									
		Clay, off-white, abundant fine to v	ery coarse quartz - weatherd basement								
		Clay, off-white, abundant fine to v	ery coarse quartz - weatherd basement								
			ery coarse quartz - weatherd basement								
			ery coarse quartz - weatherd basement								
		Clay, off-white, abundant fine to v	ery coarse quartz, minor biotite rich ago	gregates - weatherd							
		, , , , , , , , , , , , , , , , , , ,	ery coarse quartz, minor biotite rich ago	, ,							
		Clay off-white abundant fine to v	Clay, off-white, abundant fine to very coarse quartz, minor biotite rich aggregates - weatherd								

Clay, off-white, abundant fine to very coarse quartz - weatherd basement

Hole abandoned due to excessive water at basement contact - decided to try Rotary Mud - Hole COU016A

43167

T					7	K			
			e						
R	E	S	0	U	R	C	E	S	

CALCRETE/CLAY

CLAY/GRAVEL SAND

CLAY

GRAVEL GRAVEL

GRAVEL CLAY

GRANITE/GNEISS

Lithology

Depth

0 -1 1 - 2

2 - 3

3-4 4-5

5-6 6-7

7-8 8-9

9-10

10-11

11-12

12-13

13-14

14-15 15-16

16-17

17-18

18-19

19-20

Drill Hole No. COU 010	Coulta Pro A AMG Easting 538349	Drilling Method Rotary	Total Depth (m)	_					
		Mud							
	AMG Northing 6204467	Drill Company Underdale							
Date: 26 November 2006									
Geologist: GF	Zone: 53								
Sample No.		Description							
	Soil, brown, calcereous with sheet	calcrete (surface maghemite around a	nts nests)						
	Clay, orange-grey-pale green, sligh	ntly plastic, minor calcrete							
	Clay, orange-grey-pale green, sligh	ntly plastic, plus calcrete							
	Clay, iron-stained with gravel			Ī					
	Sand, fine to very coarse grained of	Sand, fine to very coarse grained quartz, clayey							
	Gravel, very coarse quartz with ironstone fragments - hard layer at 5.5m (open hole hammer)								
	Gravel, very coarse quartz with ironstone fragments								
	Gravel, very coarse quartz, subang	Gravel, very coarse quartz, subanglar to rounded							
	Clay, off-white, abundant fine to ve	Clay, off-white, abundant fine to very coarse quartz - weatherd basement							
	Clay, off-white, abundant fine to ve	Clay, off-white, abundant fine to very coarse quartz - weatherd basement							
	Clay, off-white, abundant fine to ve	ry coarse quartz - weatherd basement		Ī					
	Clay, off-white, abundant fine to ve	Clay, off-white, abundant fine to very coarse quartz - weatherd basement							
	Clay, off-white, abundant fine to ve	ry coarse quartz - weatherd basement		Ī					
	Clay, off-white, abundant fine to ve	Clay, off-white, abundant fine to very coarse quartz - weatherd basement							
	Clay, off-white, abundant fine to ve	Clay, off-white, abundant fine to very coarse quartz - weatherd basement							
	Clay, off-white, abundant fine to ve	ry coarse quartz - weatherd basement		_					
	Clay, off-white, abundant fine to ve	ry coarse quartz - weatherd basement		Ī					
	Clay, off-white, abundant fine to ve	ry coarse quartz, minor biotite rich ago	regates - weatherd						

Clay, off-white, abundant fine to very coarse quartz, minor biotite rich aggregates - weatherd

Clay, off-white, abundant fine to very coarse quartz, minor biotite rich aggregates - weatherd

CALCRETE CLAY CLAY

GRANITE/GNEISS

Lithology

Depth 0 -1 1 - 2 2 - 3

Y	Coulta Project										
	Drill Hole No.	COU 017	AMG Easting 539036	Drilling Method RAB	Total Depth (m)	4					
			AMG Northing 6197102	Drill Company Underdale							
	Date: 27 Novembe	r 2006									
	Geologist: GF		Zone: 53								
	Sam	ple No.		Description							
			Calcrete/Soil								
			Clay, orange-brown, sandy, slightly	micaceous							
			Clay, brown to orange with fine to o	oarse quartz							
	43	3154	Granite/Gneiss - coarse grained qu	artz-feldspar-biotite-muscovite, bleac	hed						

Depth 0 -1

1 - 2

2 - 3

3-4 4-5

5-6 6-7

7-8

SOIL

SAND

SAND

SANDSTONE GRANITE/GNEISS

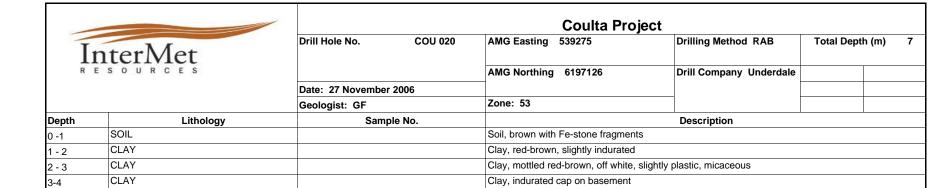
GRANITE/GNEISS GRANITE/GNEISS

GRANITE/GNEISS

Lithology

	Coulta Project										
Drill Hole No.	COU 018	AMG Easting 539142	Drilling Method RAB	Total Depth (m)	8						
		AMG Northing 6197113	Drill Company Underdale								
Date: 27 November 2006	6										
Geologist: GF		Zone: 53									
Sample No	o.		Description								
		Soil, chocolate brown, sandy, calcereous with calcrete fragments									
		Sand, fine to medium grained, well	sorted, calcereous								
		Sand, fine to medium grained, well	sorted, calcereous								
		Sand as above with thin layers of s	andstone								
		Granite/Gneiss, coarse grained qua	artz and feldspar								
43155		Granite/Gneiss, coarse grained qua	artz and feldspar								
		Granite/Gneiss, coarse grained qua	artz and feldspar								
43156		Granite/Gneiss, coarse grained qua	artz, feldspar and biotite								

			Coulta Project									
T	nterMet	Drill Hole No.	COU 019	AMG Easting	539252	Drilling Method RAB	Total Dept	h (m) 6				
	ESOURCES			AMG Northing	6197123	Drill Company Underdale	Drill Company Underdale					
K	ESOURCES	Date: 27 November 2006										
		Geologist: GF		Zone: 53								
Depth	Lithology	Sam	ple No.	Description								
0 -1	SOIL			Soil, brown, cal	cereous, becoming	clay with depth, brown with ironstone	fragments					
1 - 2	CLAY			Clay, brown, sli	ghtly plastic, some	ironstone fragments						
2 - 3	CLAY			Clay, brown, sli	ghtly plastic, some	ironstone fragments with coarse grain	ed quartz and	feldspar				
3-4	GRANITE/GNEISS	4.0	1457	Granite/Gneiss	, coarse quartz-feld	spar-biotite with minor muscovite						
1 E	CDANITE/CNEISS	4.3	3157	Cranita/Chains, goards guartz foldanar histita with minor musquita								


43158

Granite/Gneiss, coarse quartz-feldspar-biotite with minor muscovite

Granite/Gneiss, coarse quartz-feldspar-biotite with minor muscovite

GRANITE/GNEISS

GRANITE/GNEISS

43159

43160

Clay, white, micaceous, quartz-feldspar-biotite chips

Clay, white, micaceous, quartz-feldspar-biotite chips

Granite, coarse grained quartz and feldspar with minor mica

CLAY

CLAY

GRANITE

4-5

5-6

6-7

T	-	. +	e	**	7	Л	_	+	
T	1.	Ιl	C	L	T.	1	C	ι	
P	F	S	0	U	R	C	E	S	

Drill Hole No.	COU 021	AMG Easting 53941	6 Drilling Method RAB rollerbit	Total Depth (m) 31.5
		AMG Northing 6197	7146 Drill Company Underdale	
Date: 27 November	er 2006			
Geologist: GF		Zone: 53		
C	usla Nia		Description	

		Geologist: GF	Zone: 53
Depth	Lithology	Sample No.	Description
0 -1	SOIL/CALCRETE		Soil, clayey, brown, sandy with pisolites
1 - 2	CLAY		Clay, orange-brown, with iron pisolites
2 - 3	CLAY		Clay, yellow-brown, slightly plastic, sandy
3-4	CLAY		Clay, mottled - red-brown-white-orange (feruginous cap on weathered basement)
4-5	CLAY		Clay, mottled - red-brown-white-orange (feruginous cap on weathered basement)
5-6	CLAY	43161	Clay, mottled - red-brown-white-orange (feruginous cap on weathered basement)
6-7	CLAY		Clay, mottled - red-brown-white-orange (feruginous cap on weathered basement)
7-8	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
8-9	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
9-10	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
10-11	CLAY	43162	Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
11-12	CLAY	43102	Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
12-13	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
13-14	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
14-15	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
15-16	CLAY	43163	Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
16-17	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
17-18	CLAY		Clay, white to pale grey, slightly plastic, micaceous, fine to medium quartz
18-19	CLAY		Clay, white, micaceous, fine to coarse white quartz with patches of iron staining
19-20	CLAY		Clay, white, micaceous, fine to coarse white quartz
20-21	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
21-22	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
22-23	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
23-24	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
24-25	CLAY	43164	Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
25-26	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
26-27	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
27-28	CLAY		Clay, white to brown (Fe-staining), very micaceous, fine to coarse grained quartz - weathered granite
28-29	CLAY		NO SAMPLE
29-30	CLAY		Clay, pale yellow to brown, micaceous, fine to coarse quartz
30-31	CLAY	43165	Clay, off-white to white, micaceous, fine to coarse quartz
31-31.5	CLAY	43166	Clay, off-white to white, micaceous, fine to coarse quartz

7		_			-					
ı	1	1	0	r	A	Λ	P	+		
1	1.	L		1	Τ,	1	-	L		
R	E	S	0	U	R	C	E	S		

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

GRANITE/GNEISS

43172

CALCRETE

CALCRETE

GRAVEL

CLAY

CLAY

CLAY

Depth 0 -1

1 - 2

2 - 3

3-4

4-5

5-6 6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15 15-16

16-17

17-18

18-19

19-20

Lithology

			Coulta Project							
Drill Hole No.	COU 022	AMG Easting	538505	Drilling Method Rotary Mud	Total Depth (m)	20				
		AMG Northing	6204547	Drill Company Underdale						
Date: 29 November 2006										
Geologist: GF		Zone: 53								
Sample No)_			Description						
		, ,	ereous with sheet							
		Calcrete, sheet c	alcrete, yellow-bro	own, fine to medium grained quartz, th	nen thin ferruginous	layer				
		Calcrete, sheet c	alcrete, yellow-bro	own, fine to medium grained quartz						
		Gravel, quartz, su	ubangular to round	ded						
		Clay, white, mica	ceous, wet, fine to	coarse quartz and bleached feldspa	r grains					
		Clay, white, micaceous, wet, fine to coarse quartz and bleached feldspar grains								
43168		Clay, off-white with iron-rich fragments								
43100		Clay, off-white with iron-rich fragments								
43169		Granite, coarse aggregates - quartz-feldspar-biotite - highly weathered								
43103		Granite, coarse a	nggregates - quartz	z-feldspar-biotite - highly weathered						
		Granite, coarse a	nggregates - quarta	z-feldspar-biotite - highly weathered						
43170		Granite, coarse a	nggregates - quarta	z-feldspar-biotite - highly weathered						
45170		Granite, coarse a	nggregates - quarta	z-feldspar-biotite - highly weathered						
		Granite, coarse a	nggregates - quartz	z-feldspar-biotite - highly weathered						
43171		Clay, heavily iron	stained with irons	stone fragments, quartz-feldspar-bioti	te grains					
		Clay, heavily iron	stained with irons	stone fragments, quartz-feldspar-bioti	te grains					
		Clay, heavily iron	stained with irons	stone fragments, quartz-feldspar-bioti	te grains					
1		Clay, heavily iron	stained with irons	stone fragments, quartz-feldspar-bioti	te grains					

Granite, brown iron rich clay with chips of medium to coarse grained granite/gneiss

Granite, brown iron rich clay with chips of medium to coarse grained granite/gneiss

			Coulta Proj	ect		
Drill Hole No.	COU 023	AMG Easting	538349	Drilling Method Aircore	Total Depth (m)	126
		AMG Northing	6204430	Drill Company Underdale		
Date: 31/1/07					60° to 090°)
Geologist: RD		Zone: 53				
Samn	la Na			Description		

		Geologist: RD	Zone: 53	
Depth	Lithology	Sample No.	Description	
0-20			0-20 for description see hole COU016	
20-21	CLAY		white, off-white clag with angular coarse quartz - minor feldspar and miccas probably granitic	
21-22	CLAY		white, off-white clag with angular coarse quartz - minor feldspar and miccas probably granitic	
22-23	CLAY		white, off-white clag with angular coarse quartz - minor feldspar and miccas probably granitic	
23-24	CLAY		more white - as above quartz up to > 1cm	
24-25	CLAY			
25-26	GRANITE/GNEISS		beige - powdered quartz feldspar mica granite - is much harder	
26-27	GRANITE/GNEISS		beige - powdered quartz feldspar mica granite - is much harder	
27-28	GRANITE/GNEISS		beginning fresh rock - quartz - feldspar minor bi granite	
28-29	GRANITE/GNEISS	43173	granite rock chips - as above	
29-30	GRANITE/GNEISS		greenish clag with mic? (bi) - probably micci? Shear band	
30-31	GRANITE/GNEISS		quartz - bi with feldspar gneiss - minor (?) component. Greenish probably orthogneiss - granite?	
31-32	GRANITE/GNEISS		off white - inc bi	
32-33	GRANITE/GNEISS	43174	off white to green	
33-34	GRANITE/GNEISS		bi rich - quartz bi gneiss - greenish colour powder	
34-35	GRANITE/GNEISS		quartz bi gneiss	
35-36	GRANITE/GNEISS		quartz bi gneiss	
36-37	GRANITE/GNEISS	43175	quartz bi gneiss	
37-38	GRANITE/GNEISS		quartz bi gneiss	
38-39	GRANITE/GNEISS		quartz bi gneiss	
39-40	GRANITE/GNEISS		quartz bi gneiss	
40-41	GRANITE/GNEISS	43176	quartz bi gneiss	
41-42	GRANITE/GNEISS		quartz bi pl gneiss (granite?) pinky to white feldspar, greenish bi (Ti rich?)	
42-43	GRANITE/GNEISS		quartz bi gneiss	
43-44	GRANITE/GNEISS		quartz bi gneiss	
44-45	GRANITE/GNEISS	43177	quartz bi gneiss	
45-46	GRANITE/GNEISS		quartz bi gneiss	
46-47	GRANITE/GNEISS		quartz bi gneiss	
47-48	GRANITE/GNEISS		rock powder more greenish - bi rich, bi rich schist - some magnetite	
48-49	GRANITE/GNEISS	43178	back to quartz bi feldspar rock - still some magnetite	
49-50	SCHIST		quartz feldspar bi rich - some magnetite	
50-51	SCHIST		bi rich quartz feldspar schist? With magnetite and pyrite	
51-52	GNEISS		bi schist with quartz feldspar with magnetite	

Depth	Lithology	Sample No.	Description
52-53	GNEISS	43179	quartz - feldspar - bi gneiss with fine magnetite
53-54	GNEISS		quartz - feldspar - bi gneiss with fine magnetite
54-55	GNEISS		quartz - feldspar - bi gneiss with fine magnetite
55-56	GNEISS		quartz - feldspar - less bi - fine magnetite
56-57	GNEISS	43180	quartz - feldspar - less bi - fine magnetite with ? Trace sulphides
57-58	GNEISS		quartz - feldspar - less bi - fine magnetite, no sulphides visible
58-59	GNEISS		quartz - feldspar - less bi - fine magnetite, redish coloured minor possible altered bi?
59-60	GNEISS		quartz - feldspar - less bi - fine magnetite
60-61	GNEISS	43181	quartz - feldspar - less bi - fine magnetite
61-62	GNEISS		quartz - feldspar - less bi - fine magnetite, some green plag
62-63	GNEISS		feldspar (plag) quartz bi gneiss minor mag
63-64	GNEISS		feldspar slightly more bi rich minor mag
64-65	GNEISS	43182	feldspar - red feldspar
65-66	GNEISS		feldspar
66-67	GNEISS		feldspar
67-68	GNEISS		feldspar
68-69	GNEISS	43183	feldspar
69-70	GNEISS		feldspar
70-71	GNEISS		feldspar
71-72	GNEISS		feldspar
72-73	GNEISS	43184	feldspar slightly more schisty (green micca powder)
73-74	GNEISS		feldspar
74-75	GNEISS		feldspar
75-76	GNEISS		feldspar
76-77	GNEISS	43185	feldspar
77-78	GNEISS		feldspar
78-79	GNEISS		feldspar more bi rich
79-80	GNEISS		feldspar
80-81	GNEISS	43186	feldspar
81-82	GNEISS		feldspar bi rich
82-83	GNEISS		feldspar
83-84	GNEISS		feldspar few granite pyrite
84-85	GNEISS	43187	as above quartz feldspar bi gneiss with minor magnetite and ? Of pyrite
85-86	GNEISS		quartz feldspar bi gneiss with minor magnetite and ? Of pyrite
86-87	GNEISS		quartz feldspar bi gneiss with minor magnetite
87-88	GNEISS		quartz feldspar bi gneiss
88-89	GNEISS	43188	quartz feldspar bi gneiss
89-90	SCHIST		quartz feldspar bi gneiss bi rich
90-91	SCHIST		bi schist - minor quartz feldspar
91-92	SCHIST		bi schist

Depth	Lithology	Sample No.	Description
92-93	SCHIST	43189	quartz bi rich schist - minor magnetite
93-94	SCHIST		quartz bi rich schist
94-95	SCHIST		quartz bi rich schist
95-96	SCHIST		quartz bi rich schist
96-97	SCHIST	43190	quartz bi rich schist
97-98	SCHIST		quartz bi rich schist
98-99	SCHIST		quartz bi rich schist
99-100	SCHIST		quartz bi rich schist
100-101	GNEISS	43191	quartz feldspar bi gneiss (more felsic less bi) - minor magnetite
101-102	GNEISS		quartz feldspar bi gneiss
102-103	GNEISS		quartz feldspar bi gneiss more bi rich lager
103-104	GNEISS		quartz feldspar bi gneiss more bi rich lager
104-105	GNEISS	43192	quartz feldspar bi gneiss more felsic
105-106	GNEISS		quartz feldspar bi gneiss
106-107	GNEISS		quartz feldspar bi gneiss with minor magnetite (more bi rich)
107-108	GNEISS		quartz feldspar bi gneiss
108-109	GNEISS	43193	quartz feldspar bi gneiss felsic lager
109-110	GNEISS		quartz feldspar bi gneiss
110-111	GNEISS		quartz feldspar bi gneiss
111-112	GNEISS		quartz feldspar bi gneiss becoming bi rich
112-113	GNEISS	43194	quartz feldspar bi gneiss
113-114	GNEISS		quartz feldspar bi gneiss
114-115	GNEISS		quartz feldspar bi gneiss slightly more felsic
115-116	GNEISS		quartz feldspar bi gneiss
116-117	GNEISS	43195	quartz feldspar bi gneiss becoming bi rich
117-118	GNEISS		quartz feldspar bi gneiss
118-119	GNEISS		quartz feldspar bi gneiss felsic
119-120	GNEISS		quartz feldspar bi gneiss
120-121	GNEISS	43196	quartz feldspar bi gneiss
121-122	GNEISS		quartz feldspar bi gneiss feldspar rich (pl)
122-123	GNEISS		quartz feldspar bi gneiss bi
123-124	GNEISS		quartz feldspar bi gneiss
124-125	GNEISS	43197	quartz feldspar bi gneiss
125-126	GNEISS		quartz feldspar bi gneiss END OF HOLE

			Coulta Project			
Drill Hole No.	COU 024	AMG Easting	538309	Drilling Method Aircore	Total Depth (m)	126
		AMG Northing	6204471	Drill Company Underdale		
Date: 1/2/07					60° to 090°	
Geologist: RD		Zone: 53				
Committe N	l a			Decembelian		

		Geologist: RD	Zone: 53
Depth	Lithology	Sample No.	Description
0-14			
14-15	CLAY		hit weathered basement - micas quartz clay
20-21	CLAY		pale brown micas clay
21-22	CLAY		pale brown micas clay
22-23	CLAY		pale brown micas clay
23-24	CLAY		pale brown micas clay
24-25	CLAY		beige quartz mica clay
25-26	CLAY		beige angular coarse-gravel quartz - mica clay
26-27	GRAVEL		off white - angular coarse gravel quartz beginning fresh rock
27-28	GRANITE/GNEISS		quartz - biotite - plagioclase granite/gneiss (biotite-greenish hi Ti)
28-29	GRANITE/GNEISS	43198	quartz - biotite - plagioclase
29-30	GRANITE/GNEISS		quartz - biotite - plagioclase with felsic
30-31	GRANITE/GNEISS		quartz - biotite - plagioclase
31-32	GRANITE/GNEISS		quartz - biotite - plagioclase more biotite rich and minor mag
32-33	GRANITE/GNEISS	43199	quartz - biotite - plagioclase
33-34	GRANITE/GNEISS		quartz - biotite - plagioclase
34-35	GRANITE/GNEISS		quartz - biotite - plagioclase felsic - Visual mag assoc with quartz feldspar
35-36	GRANITE/GNEISS		quartz - biotite - plagioclase
36-37	GRANITE/GNEISS	43200	quartz - biotite - plagioclase
37-38	GRANITE/GNEISS		quartz - biotite - plagioclase
38-39	GRANITE/GNEISS		quartz - biotite - plagioclase
39-40	GRANITE/GNEISS		quartz - biotite - plagioclase slightly more biotite
40-41	GRANITE/GNEISS	43201	feldspar - quartz - biotite granite gneiss with magnetite
41-42	GRANITE/GNEISS		feldspar - quartz - biotite
42-43	GRANITE/GNEISS		feldspar - quartz - biotite more biotite rich - less magnetite
43-44	GRANITE/GNEISS		feldspar - quartz - biotite
44-45	GRANITE/GNEISS	43202	feldspar - quartz - biotite more felsic with pink feldspar
45-46	GRANITE/GNEISS		feldspar - quartz - biotite
46-47	GRANITE/GNEISS		feldspar - quartz - biotite
47-48	GRANITE/GNEISS		feldspar - quartz - biotite
48-49	GRANITE/GNEISS	43203	feldspar - quartz - biotite
49-50	GRANITE/GNEISS		feldspar - quartz - biotite
50-51	GRANITE/GNEISS		feldspar - quartz - biotite more biotite

Depth	Lithology	Sample No.	Description
51-52	GRANITE/GNEISS		feldspar - quartz - biotite
52-53	GRANITE/GNEISS	43204	feldspar - quartz - biotite
53-54	GRANITE/GNEISS		feldspar - quartz - biotite
54-55	GRANITE/GNEISS		feldspar - quartz - biotite
55-56	GRANITE/GNEISS		feldspar - quartz - biotite more felsic visual magnetite
56-57	GRANITE/GNEISS	43205	feldspar - quartz - biotite
57-58	GRANITE/GNEISS		feldspar - quartz - biotite
58-59	GRANITE/GNEISS		feldspar - quartz - biotite including biotite
59-60	GRANITE/GNEISS		feldspar - quartz - biotite
60-61	GRANITE/GNEISS	43206	feldspar - quartz - biotite
61-62	GRANITE/GNEISS		feldspar - quartz - biotite
62-63	GRANITE/GNEISS		quartz - feldspar - green biotite minor magnetite
63-64	GRANITE/GNEISS		quartz - feldspar
64-65	GRANITE/GNEISS	43207	quartz - feldspar
65-66	GRANITE/GNEISS		quartz - feldspar and pyrite
66-67	GRANITE/GNEISS		quartz - feldspar
67-68	GRANITE/GNEISS		quartz - feldspar
68-69	GRANITE/GNEISS	43208	quartz - feldspar biotite rich schisty lager
69-70	GRANITE/GNEISS		quartz - feldspar
70-71	GRANITE/GNEISS		quartz - feldspar felsic
71-72	GRANITE/GNEISS		quartz - feldspar visual magnetite
72-73	GRANITE/GNEISS	43209	quartz - feldspar
73-74	GRANITE/GNEISS		quartz - feldspar and pyrite
74-75	GRANITE/GNEISS		quartz - feldspar
75-76	GRANITE/GNEISS		quartz - feldspar
76-77	GRANITE/GNEISS	43210	quartz - feldspar
77-78	GRANITE/GNEISS		quartz - feldspar
78-79	GRANITE/GNEISS		quartz - feldspar
79-80	GRANITE/GNEISS		quartz - feldspar
80-81	GRANITE/GNEISS	43211	quartz - feldspar
81-82	GRANITE/GNEISS		quartz - feldspar
82-83	GRANITE/GNEISS		quartz - feldspar more biotite rich
83-84	GRANITE/GNEISS		quartz - feldspar
84-85	GRANITE/GNEISS	43212	feldspar and quartz and biotite and minor magnetite
85-86	GRANITE/GNEISS		feldspar and quartz
86-87	GRANITE/GNEISS		feldspar and quartz
87-88	GRANITE/GNEISS		feldspar and quartz
88-89	GRANITE/GNEISS	43213	feldspar and quartz
89-90	GRANITE/GNEISS		feldspar and quartz
90-91	GRANITE/GNEISS		feldspar and quartz

Depth	Lithology	Sample No.	Description
91-92	GRANITE/GNEISS		feldspar and quartz
92-93	GRANITE/GNEISS	43214	feldspar and quartz
93-94	GRANITE/GNEISS		feldspar and quartz
94-95	GRANITE/GNEISS		feldspar and quartz
95-96	GRANITE/GNEISS		feldspar and quartz
96-97	GRANITE/GNEISS	43215	feldspar and quartz
97-98	GRANITE/GNEISS		feldspar and quartz
98-99	GRANITE/GNEISS		feldspar and quartz
99-100	GRANITE/GNEISS		feldspar and quartz
100-101	GRANITE/GNEISS	43216	feldspar and quartz more biotite
101-102	GRANITE/GNEISS		feldspar and quartz
102-103	GRANITE/GNEISS		feldspar and quartz
103-104	GRANITE/GNEISS		feldspar and quartz
104-105	GRANITE/GNEISS	43217	feldspar and quartz
105-106	GRANITE/GNEISS		feldspar and quartz
106-107	GRANITE/GNEISS		feldspar and quartz and biotite and minor magnetite
107-108	GRANITE/GNEISS		feldspar and quartz biotite rich
108-109	GRANITE/GNEISS	43218	feldspar and quartz felspar rich
109-110	GRANITE/GNEISS		feldspar and quartz
110-111	GRANITE/GNEISS		feldspar and quartz biotite rich
111-112	GRANITE/GNEISS		feldspar and quartz
112-113	GRANITE/GNEISS	43219	feldspar and quartz felsic
113-114	GRANITE/GNEISS		feldspar and quartz
114-115	GRANITE/GNEISS		feldspar and quartz biotite rich
115-116	GRANITE/GNEISS		feldspar and quartz
116-117	GRANITE/GNEISS	43220	feldspar and quartz
117-118	GRANITE/GNEISS		feldspar and quartz
118-119	GRANITE/GNEISS		feldspar and quartz
119-120	GRANITE/GNEISS		feldspar and quartz
120-121	GRANITE/GNEISS	43221	feldspar and quartz visual magnetite
121-122	GRANITE/GNEISS		feldspar and quartz with biotite rich schisty lager
122-123	GRANITE/GNEISS		feldspar and quartz
123-124	GRANITE/GNEISS		feldspar and quartz becoming felsic
124-125	GRANITE/GNEISS	43222	feldspar and quartz
125-126	GRANITE/GNEISS		feldspar and quartz END OF HOLE
		1	l .

			Coulta Project			
Drill Hole No.	COU 025	AMG Easting	538275	Drilling Method Aircore	Total Depth (m)	96
		AMG Northing	j 6204495	Drill Company Underdale		
Date: 2/2/07					60° to 090	•
Geologist: RD		Zone: 53				

		Geologist: RD	Zone: 53
Depth	Lithology	Sample No.	Description
0-10			
10-11	GRAVEL		red coarse - gravel angular quartz - mica clay beginning of basement
11-12	CLAY		off white gravel angular quartz - mica clay beginning of basement
12-20	CLAY		
20-21	CLAY		pink quartz mica clay
21-22	CLAY		pink quartz mica clay
22-23	CLAY		off white mica clay
23-24	CLAY		off white mica clay
24-25	CLAY		off white mica clay
25-26	CLAY		off white mica clay
26-27	CLAY		off white mica clay
27-28	CLAY		off white mica clay
28-29	CLAY		off white mica clay
29-30	CLAY		off white mica clay
30-31	CLAY		off white mica clay
31-32	CLAY		off white mica clay
32-33	CLAY		off white mica clay
33-34	CLAY		off white mica clay
34-35	CLAY		off white mica clay
35-36	CLAY		orangey quartz mica clay
36-37	CLAY	43223	orangey-grey quartz mica clay
37-38	CLAY		beige quartz mica clay
38-39	CLAY		quartz mica clay
39-40	CLAY		beige - quartz some feldspar less mica less clay beginning fresh basement
40-41	CLAY	43224	coarse quartz - feldspar - little clay/mica - saprolite
41-42	GRANITE		white and orange feldspar - greenish biotite - quartz granite basement
42-43	GRANITE		white and orange feldspar
43-44	GRANITE		white and orange feldspar
44-45	GRANITE	43225	white and orange feldspar
45-46	GRANITE		biotite - quartz - pyrite schisty layer
46-47	GRANITE		biotite - quartz - pyrite schisty layer
47-48	GRANITE		biotite - quartz
48-49	GRANITE	43226	biotite - quartz

Depth	Lithology	Sample No.	Description
49-50	GRANITE		biotite - quartz
50-51	GRANITE		biotite - quartz with pyrite
51-52	GRANITE		feldspar - quartz - biotite gneiss with minor magnetite
52-53	GRANITE	43227	feldspar - quartz - biotite
53-54	GRANITE		feldspar - quartz - biotite
54-55	GRANITE		feldspar - quartz - biotite with pyrite
55-56	GRANITE		feldspar - quartz - biotite
56-57	GRANITE	43228	feldspar - quartz - biotite with pyrite
57-58	GRANITE		feldspar - quartz - biotite more biotite rich schisty layer
58-59	GRANITE		feldspar - quartz - biotite back to quartz feldspar rich with pyrite
59-60	GRANITE		feldspar - quartz - biotite
60-61	GRANITE	43229	feldspar - quartz - biotite
61-62	GRANITE		feldspar - quartz - biotite
62-63	GRANITE		feldspar - quartz - biotite
63-64	GRANITE		feldspar - quartz - biotite
64-65	GRANITE	43230	feldspar - quartz - biotite
65-66	GRANITE		feldspar - quartz - biotite
66-67	GRANITE		feldspar - quartz - biotite
67-68	GRANITE		feldspar - quartz - biotite
68-69	GRANITE	43231	feldspar - quartz - biotite
69-70	GRANITE		feldspar - quartz - biotite
70-71	GRANITE		feldspar - quartz - biotite
71-72	GRANITE		feldspar - quartz - biotite
72-73	GRANITE	43232	feldspar - quartz - biotite
73-74	GRANITE		feldspar - quartz - biotite
74-75	GRANITE		feldspar - quartz - biotite
75-76	GRANITE		feldspar - quartz - biotite
76-77	GRANITE	43233	feldspar - quartz - biotite
77-78	GRANITE		feldspar - quartz - biotite
78-79	GRANITE		feldspar - quartz - biotite
79-80	GRANITE	43234	amphibolite ? And magnetite - biotite - pyrite
80-81	GRANITE		amphibolite
81-82	GRANITE	43235	some amphibolite but mostly quartz feldspar biotite gneiss
82-83	GRANITE		quartz feldspar biotite granitic gneiss
83-84	GRANITE		quartz feldspar biotite granitic gneiss
84-85	GRANITE	43236	quartz feldspar biotite granitic gneiss
85-86	GRANITE		quartz feldspar biotite
86-87	GRANITE		quartz feldspar biotite
87-88	GRANITE		quartz feldspar biotite
88-89	GRANITE	43237	quartz feldspar biotite

Depth	Lithology	Sample No.	Description
89-90	GRANITE		quartz feldspar biotite
90-91	GRANITE		quartz feldspar biotite more biotite rich
91-92	GRANITE		quartz feldspar biotite
92-93	GRANITE	43238	quartz feldspar biotite
93-94	GRANITE		quartz feldspar biotite
94-95	GRANITE		quartz feldspar biotite more feldspar and magnetite and pyrite
95-96	GRANITE		quartz feldspar biotite - biotite rich END OF HOLE

		Coulta Pro	ject	
Drill Hole No.	COU 026	AMG Easting 539262	Drilling Method Aircore Tot	al Depth (m) 78
		AMG Northing 6197121	Drill Company Underdale	
Date: 3/2/07				60° to 090°
Geologist: RD		Zone: 53		
Samn	le No		Description	

		Geologist: RD	Zone: 53			
Depth	Lithology	Sample No.	Description			
0-1		43239	red clay and silt and calcrete			
1-2			red and grey clay and iron stone			
2-3			angular quartz in calcrete			
3-4			angular quartz in calcrete			
4-5		43240	coarse to gravel angular quartz and biotite			
5-6			coarse to gravel angular quartz and biotite with weathered feldspar			
6-7			coarse to gravel angular quartz and biotite			
7-8			coarse to gravel angular quartz and biotite			
8-9		43241	plagioclase + biotite + quartz with muscovite granite fresh basement			
9-10			plagioclase + biotite + quartz with muscovite granite			
10-11			plagioclase + biotite + quartz with muscovite granite			
11-12			plagioclase + biotite + quartz with muscovite granite			
12-13		43242	plagioclase + biotite + quartz with muscovite granite			
13-14			plagioclase + biotite + quartz with muscovite granite			
14-15			plagioclase + biotite + quartz with muscovite granite			
15-16			biotite + minor rich schisty layer			
16-17		43243	back to quartz feldspar biotite granite			
17-18			back to quartz feldspar biotite granite			
18-19			quartz feldspar biotite with muscovite granite			
19-20			quartz feldspar biotite with muscovite granite			
20-21		43244	dark biotite plagioclase - quartz granite			
21-22			dark biotite plagioclase less biotite			
22-23			dark biotite plagioclase			
23-24			dark biotite plagioclase			
24-25		43245	dark orange ? Feldspar and some ?			
25-26			dark orange ? Feldspar and some ?			
26-27			dark more biotite rich layer with muscovite			
27-28			dark more biotite rich layer with muscovite			
28-29		43246	dark more biotite rich layer with muscovite			
29-30			quartz feldspar (plagioclase) biotite with muscovite			
30-31			dark biotite plagioclase			
31-32			dark biotite plagioclase			
32-33		43247	dark biotite plagioclase			

Depth	Lithology	Sample No.	Description
33-34			dark biotite plagioclase
34-35			dark biotite plagioclase
35-36			dark biotite plagioclase - trace magnetite
36-37		43248	dark biotite plagioclase
37-38			dark biotite plagioclase
38-39			dark biotite plagioclase
39-40			dark biotite plagioclase
40-41		43249	quartz biotite feldspar (plagioclase) with muscovite
41-42			quartz biotite feldspar (plagioclase) with muscovite
42-43			quartz biotite feldspar (plagioclase) with muscovite
43-44			quartz biotite feldspar (plagioclase) with muscovite
44-45		43250	quartz biotite feldspar (plagioclase) with muscovite
45-46			quartz biotite feldspar (plagioclase) with muscovite
46-47			quartz biotite feldspar (plagioclase) with muscovite
47-48			quartz biotite feldspar (plagioclase) with muscovite
48-49		43251	quartz biotite feldspar (plagioclase) with muscovite
49-50			quartz biotite feldspar (plagioclase) with muscovite
50-51			quartz biotite feldspar (plagioclase) with muscovite
51-52			quartz biotite feldspar (plagioclase) with muscovite
52-53		43252	quartz biotite feldspar (plagioclase) with muscovite
53-54			quartz biotite feldspar (plagioclase) with muscovite
54-55			quartz biotite feldspar (plagioclase) with muscovite
55-56			quartz biotite feldspar (plagioclase) with muscovite
56-57		43253	quartz biotite feldspar (plagioclase) with muscovite
57-58			quartz biotite feldspar (plagioclase) with muscovite
58-59			quartz biotite feldspar (plagioclase) with muscovite
59-60			quartz biotite feldspar (plagioclase) with muscovite
60-61		43254	quartz biotite feldspar (plagioclase) with muscovite
61-62			quartz biotite feldspar (plagioclase) with muscovite
62-63			quartz biotite feldspar (plagioclase) with muscovite
63-64			quartz biotite feldspar (plagioclase) with muscovite
64-65		43255	quartz biotite feldspar (plagioclase) with muscovite some magnetite
65-66			quartz biotite feldspar (plagioclase) with muscovite some magnetite
66-67			quartz biotite feldspar (plagioclase) with muscovite some magnetite
67-68			quartz biotite feldspar (plagioclase) with muscovite
68-69		43256	quartz biotite feldspar (plagioclase) with muscovite
69-70			quartz biotite feldspar (plagioclase) with muscovite
70-71			quartz biotite feldspar (plagioclase) with muscovite
71-72			quartz biotite feldspar (plagioclase) with muscovite
72-73		43257	quartz biotite feldspar (plagioclase) with muscovite with pyrite

Depth	Lithology	Sample No.	Description	
73-74			quartz biotite feldspar (plagioclase) with muscovite	
74-75			quartz biotite feldspar (plagioclase) with muscovite	
75-76			quartz biotite feldspar (plagioclase) with muscovite	
76-77		43258	quartz biotite feldspar (plagioclase) with muscovite	
77-78			quartz biotite feldspar (plagioclase) with muscovite END OF HOLE	

			Coulta Pro	ject		
Drill Hole No.	COU 027	AMG Easting	539785	Drilling Method Aircore	Total Depth (n	n) 26
		AMG Northing	6197190	Drill Company Underdale	•	
Date: 4/2/07	Date: 4/2/07				Vertica	al
Geologist: RD		Zone: 53				
Sam	Sample No.			Description		

		Geologist: RD	Zone: 53				
Depth	Lithology	Sample No.	Description				
0-1		43259	red brown clay and silty topsoil with calcrete				
1-2			some red brown clay mostly calcrete				
2-3			some coarse quartz (angular - rounded) and grey clay				
3-4			white coarse quartz rich loaded saprolite				
4-5		43260	white coarse quartz rich loaded saprolite				
5-6			beige coarse feldspar (weathered orange) and quartz saprolite				
6-7			beige coarse feldspar (weathered orange) and quartz saprolite some Fe rich clay				
7-8			beige coarse feldspar (weathered orange) and quartz saprolite				
8-9		43261	beige coarse feldspar (weathered orange) and quartz saprolite				
9-10			beige coarse feldspar (weathered orange) and quartz saprolite				
10-11		43262	beige coarse feldspar (weathered orange) and quartz saprolite some miccas clay				
11-12			beige coarse feldspar (weathered orange) and quartz saprolite				
12-13			beige coarse feldspar (weathered orange) and quartz saprolite				
13-14			beige coarse feldspar (weathered orange) and quartz saprolite some micas				
14-15			beige coarse feldspar (weathered orange) and quartz saprolite				
15-16			beige coarse feldspar (weathered orange) and quartz saprolite				
16-17		43263	beige coarse feldspar (weathered orange) and quartz saprolite				
17-18			beige coarse feldspar (weathered orange) and quartz saprolite				
18-19			colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
19-20			colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
20-21		43264	colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
21-22			colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
22-23			colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
23-24			colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
24-25		43265	colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				
25-26	·		colour change to grey green - quartz feldspar biotite with muscovite basement - same as 026				

Coulta Project

Vertical

Drill Hole No. COU 028 AMG Easting 539120 Drilling Method Aircore Total Depth (m) 30

AMG Northing 6197960 Drill Company Underdale
Date: 4/2/07

Geologist: RD Zone: 53

		Geologist. ND	Zone. 55
Depth	Lithology	Sample No.	Description
0-1		43266	brown clay and soil
1-2			brown clay - calcrete/ Fe stone
2-3			brown and grey clay - Fe stone
3-4			red clays with Fe stone - some rounded quartz
4-5		43267	coarse - gravel angular -rounded quartz ? With calcrete
5-6			coarse - gravel angular -rounded quartz some micas
6-7			coarse - gravel angular -rounded quartz
7-8			coarse - gravel angular -rounded quartz
8-9		43268	well rounded-angular quartz sand coarse-gravel
9-10			well rounded-angular quartz sand coarse-gravel
10-11			well rounded-angular quartz sand coarse-gravel some Fe staining
11-12			quartz Fe stone
12-13		43269	angular quartz with miccas? White clay
13-14			angular quartz with miccas? White silty clay
14-15			angular quartz with miccas? White clay
15-16			angular quartz with miccas? White clay
16-17		43270	angular quartz with miccas? White clay
17-18			angular quartz with miccas? White clay
18-19			angular quartz with miccas? White clay
19-20			angular quartz with miccas? White clay
20-21		43271	angular quartz with miccas? White clay
21-22			angular quartz with miccas? White clay
22-23			transition to biotite quartz schist
23-24			transition quartz biotite feldspar and muscovite schist/gneiss
24-25		43272	quartz biotite feldspar granite schist
25-26			biotite quartz feldspar schist
26-27			biotite granite quartz feldspar muscovite schist
27-28			biotite quartz feldspar with granite with muscovite
28-29		43273	biotite quartz feldspar with granite with muscovite
29-30			biotite quartz feldspar with granite with muscovite END OF HOLE

			Coulta Project				
Drill Hole No.	COU 029	AMG Easting	539020	Drilling Method Aircore	Total Depth	(m)	30
		AMG Northing	j 6197960	Drill Company Underdale			
Date: 4/2/07	Date: 4/2/07				Vert	tical	
Geologist: RD		Zone: 53					
Sam	Sample No.			Description			

		Geologist: RD	Zone: 53		
Depth	Lithology	Sample No.	Description		
0-1		43274	red brown clay and silty soil		
1-2			red brown clay and silty soil		
2-3			beige brown clays some micas clays		
3-4			red coarse-gravel rounded Fe stained quartz ?		
4-5		43275	red brown silty clay with calcrete		
5-6			calcrete		
6-7			angular-rounded clean quartz gravel		
7-8			white silty clay with angular-rounded quartz		
8-9		43276	white silty clay slightly mica? clay		
9-10			white silty clay		
10-11			white silty clay		
11-12			white silty clay		
12-13		43277	white silty clay		
13-14			white coarse angular quartz and weakened feldspar and micceous clay		
14-15			white coarse angular quartz and micceous clay		
15-16			angular quartz		
16-17		43278	weathered feldspar biotite muscovite quartz basement		
17-18			weathered feldspar biotite muscovite quartz basement		
18-19			biotite muscovite quartz schist		
19-20			biotite muscovite quartz schist		
20-21		43279	biotite muscovite quartz feldspar schist gneiss		
21-22			biotite muscovite quartz feldspar schist gneiss		
22-23			biotite muscovite quartz feldspar schist gneiss		
23-24			biotite muscovite quartz feldspar schist gneiss		
24-25		43280	biotite muscovite quartz feldspar schist gneiss		
25-26			biotite muscovite quartz feldspar schist gneiss		
26-27			biotite muscovite quartz feldspar schist gneiss		
27-28			biotite muscovite quartz feldspar minimal liniation visable		
28-29		43281	biotite muscovite quartz feldspar more of a muscovite schist		
29-30			biotite muscovite quartz feldspar END OF HOLE		

			Coulta Pro	ject		
Drill Hole No.	COU 030	AMG Easting	538920	Drilling Method Aircore	Total Depth (m)	24
		AMG Northing	6197960	Drill Company Underda	le	
Date: 4/2/07	Date: 4/2/07				Vertica	ıl
Geologist: RD		Zone: 53				
Sam	Sample No.			Description		

		Geologist: RD	Zone: 53		
Depth	Lithology	Sample No.	Description		
0-1		43282	red silty soil with white clay		
1-2			angular coarse quartz with clay and calcrete		
2-3			angular coarse quartz with calcrete		
3-4			angular coarse quartz		
4-5		43283	angular coarse quartz and feldspar (weathered)		
5-6			Fe stained quartz feldspar biotite saprolite		
6-7			quartz biotite muscovite feldspar schist/gneiss		
7-8			quartz biotite muscovite feldspar		
8-9		43284	quartz biotite muscovite feldspar		
9-10			quartz biotite muscovite feldspar		
10-11			quartz biotite muscovite feldspar		
11-12			quartz biotite muscovite feldspar		
12-13		43285	quartz biotite muscovite feldspar		
13-14			quartz biotite muscovite feldspar		
14-15			quartz biotite muscovite feldspar		
15-16			quartz biotite muscovite feldspar		
16-17		43286	quartz biotite muscovite feldspar		
17-18			quartz biotite muscovite feldspar		
18-19			biotite-muscovite-quartz-feldspar schist/gneiss with pyrite		
19-20			biotite-muscovite-quartz-feldspar schist/gneiss		
20-21		43287	biotite-muscovite-quartz-feldspar schist/gneiss		
21-22			biotite-muscovite-quartz-feldspar schist/gneiss		
22-23			biotite-muscovite-quartz-feldspar schist/gneiss		
23-24			biotite-muscovite-quartz-feldspar schist/gneiss END OF HOLE		

			Coulta Proje	ct		
Drill Hole No.	COU 031	AMG Easting	536419	Drilling Method Aircore	Total Depth (m)	96
D / F/0/07		AMG Northing	6221813	Drill Company Underdale		
Date: 5/2/07					60° to 270°	
Geologist: RD		Zone: 53				
Samn	No No			Description		

		Geologist: RD	Zone: 53				
Depth	Lithology	Sample No.	Description				
0-1		43288	red brown silty soild and clay				
1-2			red brown silty soild and clay				
2-3			light brown silty clay				
3-4			light brown silty clay				
4-5		43289	light brown with coarse angular quartz grains				
5-6			off white clays calcrete and angular quartz				
6-7			off white clays calcrete and angular quartz				
7-8			off white clays calcrete and angular quartz				
8-9		43290	white to red brown clays some Fe stone/staining				
9-10			white to red brown clays some Fe stone/staining				
10-11			white to red brown clays				
11-12			white to red brown clays				
12-13		43291	white angular quartz rich				
13-14			Fe stained quartz				
14-15			Fe stained weathered quartz and biotite				
15-16			Fe stained weathered quartz and biotite feldspar				
16-17		43292	Fe stained weathered quartz and biotite feldspar				
17-18			Fe stained weathered quartz and biotite feldspar				
18-19			Fe stained weathered quartz and biotite feldspar				
19-20			Fe stained weathered quartz and biotite feldspar				
20-21		43293	Fe stained weathered quartz and biotite feldspar				
21-22			Fe stained weathered quartz and biotite feldspar				
22-23			Fe stained weathered quartz and biotite feldspar				
23-24			Fe stained weathered quartz and biotite feldspar				
24-25		43294	Fe stained weathered quartz and biotite feldspar				
25-26			less Fe staining quartz rich and biotite and plagioclase granite/gneiss found H2O 5.5 pplagioclases				
26-27			less Fe staining quartz rich and biotite and plagioclase granite/gneiss found H2O 5.5 pplagioclases				
27-28			less Fe staining quartz rich and biotite and plagioclase granite/gneiss found H2O 5.5 pplagioclases				
28-29		43295	less Fe staining quartz rich and biotite and plagioclase granite/gneiss found H2O 5.5 pplagioclases				
29-30			still Fe staining quartz rich - biotite - plagioclase - muscovite granite/ gneiss				
30-31			fresh granite				
31-32			fresh granite				
32-33		43296	fresh granite				

Depth	Lithology	Sample No.	Description
33-34			fresh granite
34-35			fresh granite
35-36			fresh granite
36-37		43297	fresh granite more biotite rich
37-38			fresh granite
38-39			fresh granite
39-40			fresh granite
40-41		43298	fresh granite (went through a fracture with H2O)
41-42			fresh granite
42-43			fresh granite visable folication
43-44			fresh granite
44-45		43299	quartz biotite schist
45-46			biotite schist
46-47			biotite schist
47-48			quartz biotite gneiss
48-49		43300	quartz biotite gneiss
49-50			quartz biotite schist
50-51			biotite schist
51-52			biotite schist
52-53		43301	biotite schist
53-54			quartz biotite schist/gneiss
54-55			quartz biotite schist/gneiss
55-56			quartz biotite schist/gneiss
56-57		43302	quartz biotite schist/gneiss
57-58			biotite schist
58-59			biotite schist
59-60			biotite schist
60-61		43303	biotite schist
61-62			quartz biotite gneiss
62-63			quartz biotite with muscovite gneiss
63-64			quartz biotite with muscovite gneiss
64-65		43304	quartz biotite with muscovite gneiss
65-66			quartz biotite with muscovite gneiss
66-67			quartz biotite with muscovite gneiss
67-68			quartz biotite with muscovite gneiss
68-69		43305	quartz biotite with muscovite gneiss
69-70			quartz biotite with muscovite gneiss
70-71			quartz biotite with muscovite gneiss
71-72			quartz biotite with muscovite gneiss more biotite rich
72-73		43306	slight colour change to greenish and ? - quartz biotite gneiss

Depth	Lithology	Sample No.	Description
73-74			slight colour change to greenish and ? - quartz biotite gneiss
74-75			slight colour change to greenish and ? - quartz biotite gneiss
75-76			slight colour change some pyrite
76-77		43307	slight colour change
77-78			slight colour change
78-79			slight colour change
79-80			slight colour change
80-81		43308	slight colour change
81-82			slight colour change
82-83			slight colour change
83-84			slight colour change
84-85		43309	slight colour change
85-86			slight colour change
86-87			slight colour change
87-88			slight colour change
88-89		43310	slight colour change with pyrite
89-90			slight colour change
90-91			becoming more quartz rich with plagioclase
91-92			becoming more quartz rich with plagioclase
92-93		43311	becoming more quartz rich with plagioclase
93-94			quartz biotite gneiss
94-95			quartz biotite gneiss
95-96	,		quartz biotite gneiss END OF HOLE

			Coulta Project			
Drill Hole No.	COU 032	AMG Easting	558423	Drilling Method Aircore	Total Depth	(m) 48
		AMG Northing	6215516	Drill Company Underdale		
Date: 5/2/07		Vert		tical		
Geologist: RD		Zone: 53				
Sample N	0.			Description		

		Geologist: RD	Zone: 53
Depth	Lithology	Sample No.	Description
0-1		43312	beige silty soil and clay
1-2			brown clay
2-3			red clay some Fe stone/calcrete (calcereous soils)
3-4			red clay some Fe stone/calcrete (calcereous soils)
4-5		43313	red brown clay with calcrete (calcereous soils)
5-6			calcrete/ Fe stone
6-7			fine-coarse angular-rounded quartz ? With calcrete
7-8			calcrete and clay and silt
8-9		43314	calcrete and clay and silt
9-10			calcrete and clay and silt
10-11			smokey angular quartz grains with calcrete
11-12			smokey angular quartz grains
12-13		43315	smokey angular quartz grains some micas
13-14			smokey angular quartz grains
14-15			smokey angular quartz grains
15-16			smokey angular quartz grains
16-17		43316	smokey angular quartz grains some rounded- quartz grains
17-18			smokey angular quartz grains
18-19			white mica? clay
19-20			white mica? clay
20-21			white mica? clay
21-22			white mica? clay
22-23		43317	white mica? clay
23-24			white mica? clay
24-25			white mica? clay
25-26			grey micaeous clay
26-27		43318	grey micaeous clay
27-28			grey micaeous clay beginning to see fresh micas
28-29			grey micaeous clay
29-30			grey micaeous clay
30-31		43319	grey micaeous clay silty clay
31-32			grey micaeous clay
32-33			grey micaeous clay

Depth	Lithology	Sample No.	Description
33-34			grey micaeous clay
34-35		43320	grey micaeous clay
35-36			quartz mica (muscovite) clay fresh basement
36-37			quartz muscovite
37-38			quartz muscovite feldspar with biotite granite fine grained grey granite
38-39		43321	quartz muscovite feldspar with biotite granite fine grained grey granite
39-40			quartz muscovite feldspar with biotite granite fine grained grey granite
40-41			quartz muscovite feldspar with biotite granite fine grained grey granite
41-42			quartz muscovite feldspar with biotite granite fine grained grey granite
42-43		43322	quartz muscovite feldspar with biotite granite fine grained grey granite
43-44			quartz muscovite feldspar with biotite granite fine grained grey granite
44-45			quartz muscovite feldspar with biotite granite fine grained grey granite
45-46			quartz muscovite feldspar with biotite granite fine grained grey granite
46-47		43323	quartz muscovite feldspar with biotite granite fine grained grey granite
47-48			quartz muscovite feldspar with biotite granite fine grained grey granite END OF HOLE

Annual Report

Reporting Period: 03/03/2007 to 02/03/2008

Tenement Number(s): EL 3314

Project: Coffin Bay

Tenement Holder(s): Intermet Resources

Operator: Uranoz Ltd

Author of Report: Darin Rowley

Date of Report: 06/04/2009

Contents List

1. SUMMARY	4
2. INTRODUCTION, HISTORY AND EXPLORATION RATIONALE	
3. GEOLOGY	
3.1. Regional Geology	6
3.2. Exploration Model	7
3.3. Interpreted Paleochannel Locations	7
4. GEOPHYSICS	9
4.1. Airborne Aeromagnetics	
4.2. Airborne Radiometrics	
5. REMOTE SENSING DATA	12
6. SURFACE GEOCHEMISTRY	12
7. DRILLING	
8. INTERPRETATION	12
9. ENVIRONMENT	
10. REPORTING ON ORE RESERVES AND RESOURCES	
11. EXPENDITURE STATEMENT	14
12. CONCLUSIONS	14
13. REFERENCES	14
List of Figures Figure 1: Location of EL 3314 Figure 3: Idealised section through Tertiary Palaeochannel (after Figure 4, Hou & Alley, Figure 4: EL 3314 Interpreted Paleo Channel Locations	2003).8
Figure 5: EL 3314 Magnetics	
Figure 6: EL 3314 Radiometric - Uranium	
Figure 7: EL 3702 U (ppb) in groundwater over radiometrics – shaded U count	
List of Tables	
Table 1: Simplified stratigraphy of the Frome Embayment. Taken from McKay & Miezit	
pp.96 (after Drexel & Preiss, 1995)	
Table 2: Expenditure Statement for EL 3314 for the period 03/03/07 to 02/03/08	14
List of Appendices	
14. APPENDIX 1: GEOPHYSICAL REPORT	
15. APPENDIX 2: AEROMAGNETIC RAW DATA	
16. APPENDIX 3: AERO-RADIOMETRICS DATA	
17. APPENDIX 1: GEOCHEMISTRY OF EL 3314 GROUNDWATER SAMPLES	17

File Verification Listing

Exploration Work Type	Filename	Format
Office Studies		
Literature search	080302_EL3314_Annual Report.pdf	pdf
Database compilation	080302_EL3314_Annual Report.pdf	pdf
Computer modelling	080302_EL3314_Annual Report.pdf	pdf
Reprocessing of data	080302_EL3314_Annual Report.pdf	pdf
General research	080302_EL3314_Annual Report.pdf	pdf
Report preparation	080302_EL3314_Annual Report.pdf	pdf
Airborne Geophysics		
Logistics Report	Append1_EL3314_Airborne_Geophysics_Report	pdf
Airborne magnetics	Append2_EL3314_mag.dat	dat
Airborne radiometrics	Append3_EL3314_rad.dat	dat
Geochemical Surveying		
Groundwater sampling	Append4_EL3314_Water_Samples	txt
File Verification Listing	080302_EL3314_Annual Report.pdf	pdf

1. SUMMARY

EL 3314 is located within the Eyre Peninsula. Intermet has targeted EL 3314 for Archaean komatiite-hosted nickel, volcanic hosted massive sulphides (base metals), orogenic lode gold, Iron and sedimentary (rollfront) uranium mineralisation. Work for this reporting period was exploration for sedimentary-style uranium deposits by Intermet's Joint Venture Partner Uranoz. The points below summarise this work. Figure 1 shows the location of the tenement and the sites that groundwater was collected

- Water sampling and multi element analysis. 44 samples were collected from water bores
 and multi element analysed. Sample locations are shown in Figure 3 and sample results
 are shown in Appendix 4. Groundwater samples suggest groundwater U in include both
 leaching from felsic igneous basement minerals and from sediment hosted accumulations
 previously deposited from these groundwaters.
- Aeromagnetic and Radiometric survey. This survey was a high-resolution with 100m line spacing and has provided high quality data which will assist defining basement structures which may have an influence on the morphology of palaeochannels within the tenement.
 11632 line km were flown.
- A soil sampling program was conducted. Unfortunately, during the acquisition of Intermet Resources by Hillgrove Resources in August 2008, the soil sampling data was lost.

2. INTRODUCTION, HISTORY AND EXPLORATION RATIONALE

EL3314 is located approximately 45km NW of Port Lincoln in South Australia. The tenement is located along the Tod Highway, overlies the townships of Wanilla among others and is 953km².in size. This tenement forms part of the Wanilla project which includes ELs 3948, 3302 and 3671. Sheet names for the project area are Lincoln Special (1:250000) and Coulta / Cummins / Lincoln/ Wangary (1:100000). Figure 1 shows the location of EL 3314.

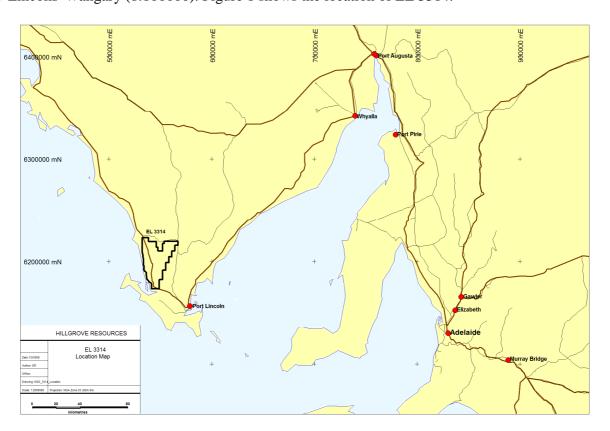


Figure 1: Location of EL 3314

EL 3314 was granted on the 03/03/2005 to Intermet Resources. Intermet Resources renewed this tenement a number of times and have subsequently Joint Ventured the rights for Uranium exploration to WCP Uranium. WCP are required to maintain minimum expenditure for the tenement (ie. \$125,000 per annum to satisfy PIRSA requirements) and may earn up to 80% of the rights to the tenement by spending \$750,000.

Previous exploration for uranium within the area of EL 3314 was initiated on the encouraging combination of suitable Tertiary aquifers, the presence of reduced organic material within them, and the indication of uranium enrichment in the basement rocks, particularly in the Lincoln Complex granitoids in the eastern Eyre Peninsula. Current exploration is focused on sedimentary "roll-front" style uranium mineralisation similar to that discovered elsewhere on the Gawler Craton e.g. Warrior, Yarramba) and in the Eyre Formation further to the east (e.g. Honeymoon).

3. GEOLOGY

The description given below of the regional geological setting within the Frome Embayment is taken directly from McKay & Miezitis, 2001.

3.1. Regional Geology

The Frome Embayment is a lobe on the southern part of the Callabonna Sub-basin which is the south-western portion of the Lake Eyre Basin (Callen & others,1995). The Callabonna Sub-basin comprises Tertiary shallow-water sediments. The Flinders, Olary and Barrier Ranges flanking the embayment, consist mainly of Precambrian and Cambrian metamorphic and sedimentary rocks which contain many small uranium deposits and widespread disseminated uranium mineralisation.

During the early Tertiary, well-sorted sand (Eyre Formation) was deposited as a thin, laterally continuous horizon covering the full width of the Sub-basin in the north. In the south, the Eyre Formation equivalents are angular, poorly sorted, fluvial sand and interbedded clay and silt deposited in major stream channels of extent (Brunt, 1978). The channels were incised into Precambrian basement and marine clay of the Late Cretaceous Marree Subgroup. Clay, sand and dolomite of the Namba Formation (Miocene) formed a continuous sequence disconformably overlying the channel sediments (Callen & Tedford, 1976). A thicker sequence of the Namba Formation accumulated closer to the Flinders Ranges to form the small Poontana Sub-basin.

The Honeymoon, East Kalkaroo, Yarramba and Goulds Dam deposits are in palaeochannel sand of the Eyre Formation (Palaeocene.Eocene), whereas the Beverley deposit is in sand of the overlying Namba Formation (Miocene) (Table 1). The palaeochannels in the southern part of the Frome Embayment flank a structural high in the underlying basement, the Benagerie Ridge.

The Lincoln 1: 250000 government geology shows the regional geology of the tenement area and can be downloaded from Geoscience Australia. A generalized stratigraphic column for the Frome Embayment is given below.

		Age	Lithology	Average thickness (m)	Uranium deposits		
Sub-basin (Lake Eyre Basin)	Coonarbine, Eurinilla, Millyera Formation & other units	Pleistocene to Recent	Soil, dune sand, sand, clay, gravel, calcrete, gypcrete	Variable, thin	•		
sin (Lake	Willawortina Formation	Late Miocene to Early Pleistocene	Clay, sand, sandy conglomerate and dolomite	0-150			
sub-ba	Namba Formation	Miocene	Silt & clay, with minor sand, limestone, dolomite	200	Beverley		
	DISCONFORMITY						
Callabonna	Eyre Formation	Early Palaeocene to Late Eocene	Sand & sandstone, some pebble beds	10–75	Honeymoon, East Kalkaroo, Yarramba, Goulds Dam		
			UNCONFORMITY				
ii	Maree Subgroup	Cretaceous	Shale and siltstone	150-275			
Eromanga Basin	Cadna-Owie Formation & Algebuckina Sandstone	Jurassic to Cretaceous	Shale, sand, silt and boulder lenses	Variable			

Table 1: Simplified stratigraphy of the Frome Embayment. Taken from McKay & Miezitis, 2001, pp.96 (after Drexel & Preiss, 1995).

3.2. Exploration Model

A generalised model for the formation of these uranium deposits can be applied, (e.g. Hou & Alley, 2003 shown below in Figure 2) although each occurrence will obviously vary in its detailed setting. Tertiary channel sands were derived from eroded basement rocks of the Gawler Craton, many of which are enriched in uranium. These sands contain a high organic carbon content which reflects the abundant vegetation along the channels and in major swamps. The reduced, alkaline ground waters fixed uranium which was then remobilised by oxidised waters moving through the sealed aquifers. Uranium was precipitated at the redox boundary between the oxidised and reduced sequences. Deposits could be formed as typical roll-front bodies, tabular zones in contact with locally preserved reduced sections (for example the outside of major bends in the channel course as at Honeymoon), or in interbedded oxidised sand and carbonaceous clay sequences (Figure 3). Channels that are draining bedrock containing uranium – REE enriched lithologies such as the Hiltaba Suite granitoids or equivalents would be of highest priority.

3.3. Interpreted Paleochannel Locations

Desktop studies of geology and topography maps combined with field data collected during sampling of groundwater from water bores defined areas that are interpreted as paleochannels. The location of these interpreted paleochannels is shown in Figure 2 below.

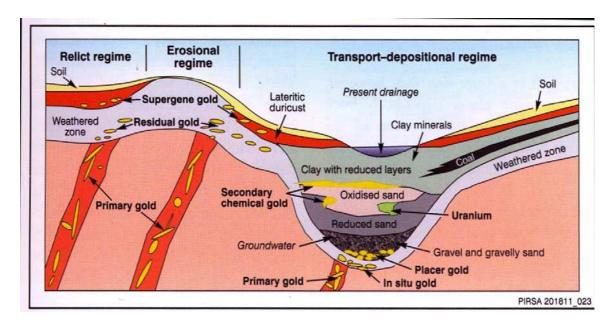


Figure 2: Idealised section through Tertiary Palaeochannel (after Figure 4, Hou & Alley, 2003)

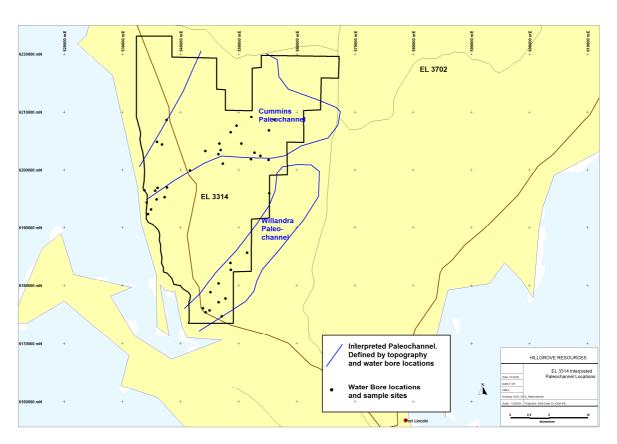


Figure 3: EL 3314 Interpreted Paleo Channel Locations

4. GEOPHYSICS

UTS Geophysics conducted a detailed low level airborne geophysical survey for Uranoz / Intermet Resources between the 5th October 2006 and the 10th October 2006. The survey was flown using the MGA (GDA94) coordinate system. 100m east-west lines were flown with north-south tie lines every 1000m. Sensor height was 50m. Radiometric, magnetic and digital terrain data were collected and processed. Appendix 1 is a report on the logistics and data processing techniques employed for the survey. Appendix 1 also provides an overview of the results of the airborne survey. Appendix 2 is the magnetic field data in a ".DAT" file. Appendix 3 is the radiometrics field data in a ".DAT" file.

Figure 5 shows a shaded total magnetic image with interpreted paleo channel locations. Figure 6 shows a radiometrics U count image with interpreted paleo channel locations.

4.1. Airborne Aeromagnetics

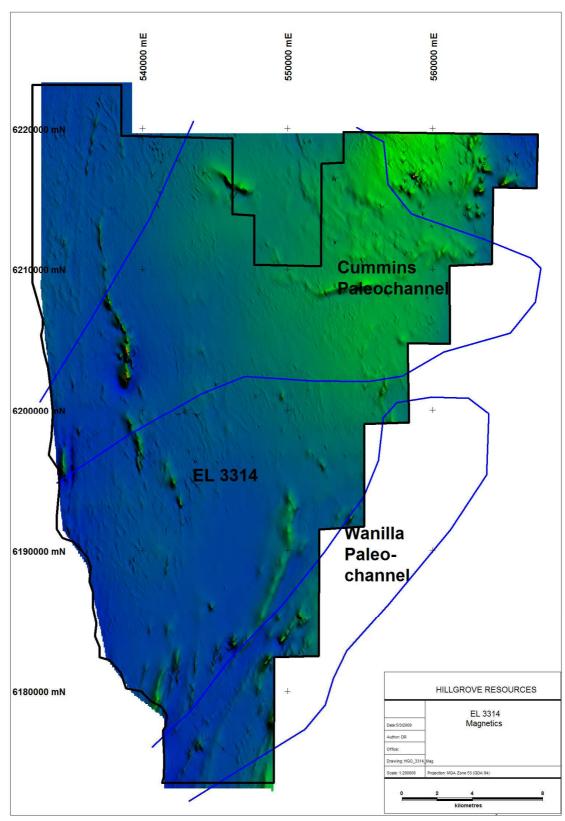


Figure 4: EL 3314 Magnetics

4.2. Airborne Radiometrics

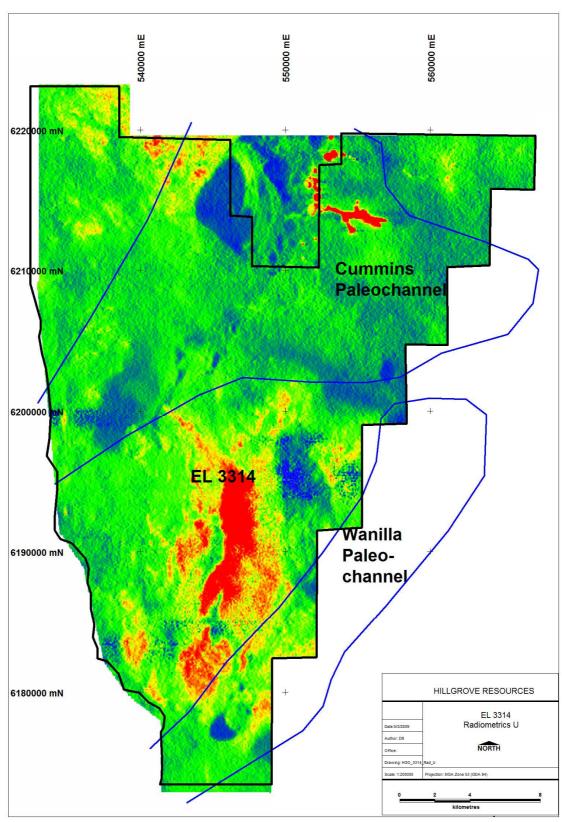


Figure 5: EL 3314 Radiometric - Uranium

5. REMOTE SENSING DATA

Not applicable

6. SURFACE GEOCHEMISTRY

Groundwater samples were collected from 44 water bores. Sample sites are located on figure 3 and Figure 7 (below) and tabulated in Appendix 4.

Figure 6 shows the U results (U ppb) of the groundwater survey over EL 3314. The most anomalous U in water concentration is seen in the Wanilla paleochannel semi coincident with an airborne radiometrics U count anomaly.

7. DRILLING

Not applicable

8. INTERPRETATION

Australian U deposits have generally been directly or indirectly associated with nearby U enriched felsic igneous rocks of ages from Archaean to mid Phanerozoic. Archaean to early Proterozoic basement underlies locations of all wells sampled for this Coulta data set.

Figure 7 shows the U results (U ppb) of the groundwater survey over EL 3314. The most anomalous U in water concentration is seen in or adjacent to the Wanilla paleochannel. This groundwater data set suggests various scenarios for the occurrence of as yet un-discovered palaeodrainage hosted U deposits associated around the Wanilla palaeochannels. Sources of groundwater U in the sample set include both leaching from felsic igneous basement minerals and from sediment hosted accumulations previously deposited from these groundwaters.

Some sampled locations provided groundwaters that geochemically matched groundwaters from Goulds Dam and Honeymoon style U deposits.

Figure 7 outlines a U in paleochannel target area. An airborne radiometrics U count anomaly within an interpreted paleochannel has anomalous U in groundwater geochemistry. Further work in this area is warranted.

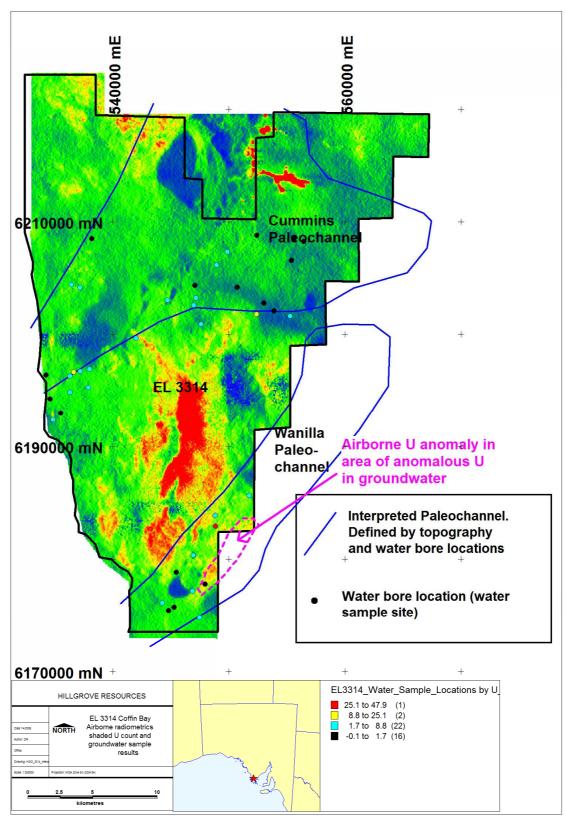


Figure 7: EL 3702 U (ppb) in groundwater over radiometrics – shaded U count

9. ENVIRONMENT

Exploration work undertaken for the reporting period had insignificant to no environmental impact.

10. REPORTING ON ORE RESERVES AND RESOURCES

Not applicable

11. EXPENDITURE STATEMENT

Below is a detailed expenditure statement for the reporting period 03/03/07 to 2/03/08 on EL 3314. Cumulative expenditure on EL 3702 is \$446,925.

Activity	Expenditure
Personnel – Geologists, consultants, field hands	\$49,416
Tenement maintenance, legal costs	\$7,087
Assays	\$11,517
Vehicle Costs	\$4,845
Travel/Accommodation	\$5,744
Field Expenses	\$1,703
Communications/Sundry	\$2,091
Admin/overheads	\$11,371
Reptem Survey	\$30,000
Total	\$123,774

Table 2: Expenditure Statement for EL 3314 for the period 03/03/07 to 02/03/08

12. CONCLUSIONS

Results from airborne radiometrics, groundwater sampling and desk top studies have defined a radiometrics U count anomaly within a paleochannel that contains anomalous U in groundwater geochemistry (Figure 7). Further work is warranted in this area.

13. REFERENCES

Hou, B. and Alley, N., 2003, A model for gold and uranium dispersion and concentration in residual and transported regolith along palaeodrainage systems – a case study from the central Gawler Craton, MESA Journal, 30: 49-53.

McKay, A.D. & Miezitis, Y., 2001. Australia's uranium resources, geology and development of deposits. AGSO . Geoscience Australia, Mineral Resource Report 1

14. APPENDIX 1: GEOPHYSICAL REPORT

See attached electronic file "Append1_EL3314_Airborne_Geophysics_Report". This report details the logistics, data acquisition operations and processing.

15. APPENDIX 2: AEROMAGNETIC RAW DATA

See attached electronic file "Append2_EL3314_mag"

This file contains no headers. Tabulated below are the header details.

MAGNETIC LOCATED DATA

FIELD FORMAT DESCRIPTION UNITS ______ 1 T8 LINE NUMBER 2 I4 FLIGHT/AREA NUMBER AAFF (Area/Flight) 3 I9 DATE YYMMDD 4 F10.1 TIME sec 5 I8 FIDUCIAL NUMBER 6 I4 UTM ZONE 7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) degrees 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 F8.1 TERRAIN HEIGHT (WGS84) metres 14 F10.2 RAW MAGNETIC INTENSITY nT 15 F10.2 DIURNAL CORRECTION nT 16 F10.2 IGRF CORRECTION nT 17 F10.2 DRN AND IGRF CORRECTED TMI nT 18 F10.2 FINAL TOTAL MAGNETIC INTENSITY nT

16. APPENDIX 3: AERO-RADIOMETRICS DATA

See attached electronic file "Append3_EL3314_rad"

This file contains no headers. Tabulated below are the header details.

RADIOMETRIC LOCATED DATA

FIELD FORMAT DESCRIPTION UNITS

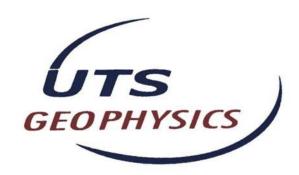
1 18 LINE NUMBER
2 14 FLIGHT/AREA NUMBER AAFF (Area/Flight)
3 19 DATE YYMMDD
4 F10.1 TIME sec
5 18 FIDUCIAL NUMBER
6 14 UTM ZONE
7 F12.6 LATITUDE (WGS84) degrees
8 F12.6 LONGITUDE (WGS84) degrees

- 9 F12.2 EASTING (MGA94) metres
- 10 F12.2 NORTHING (MGA94) metres
- 11 F8.1 RADAR ALTIMETER HEIGHT metres
- 12 F8.1 GPS HEIGHT (WGS84) metres
- 13 I5 LIVE TIME milli sec
- 14 F8.1 PRESSURE hPa
- 15 F6.1 TEMPERATURE Degrees Celcius
- 16 F6.1 HUMIDITY percent
- 17 I6 TOTAL COUNT (RAW) Counts/sec
- 18 I6 POTASSIUM (RAW) Counts/sec
- 19 I6 URANIUM (RAW) Counts/sec
- 20 I6 THORIUM (RAW) Counts/sec
- 21 I6 COSMIC (RAW) Counts/sec
- 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec
- 23 F8.1 POTASSIUM (CORRECTED) Counts/sec
- 24 F8.1 URANIUM (CORRECTED) Counts/sec
- 25 F8.1 THORIUM (CORRECTED) Counts/sec
- 26 F9.4 DOSE RATE nGy/hr
- 27 F9.4 POTASSIUM GRND CONCENTRATION %
- 28 F9.4 URANIUM GRND CONCENTRATION ppm
- 29 F9.4 THORIUM GRND CONCENTRATION ppm

Logistics Report

for a

DETAILED AIRBORNE MAGNETIC, RADIOMETRIC AND DIGITAL TERRAIN SURVEY


for the

COULTA PROJECT

carried out on behalf of

INTERMET RESOURCES LIMITED

by

(UTS Job #A801)

FAUNTLEROY AVENUE, PERTH AIRPORT PO BOX 126, BELMONT WA 6984 Telephone +61 8 9479 4232 Facsimile +61 8 9479 7361 A.B.N. 31 058 054 603

TABLE OF CONTENTS

1	GE	NERAL SURVEY INFORMATION	3
2	SU	RVEY SPECIFICATIONS	3
•	A T1		4
3	AII	RCRAFT AND SURVEY EQUIPMENT	
	3.1	SURVEY AIRCRAFT	
	3.2	DATA POSITIONING AND FLIGHT NAVIGATION	
	3.3	UTS DATA ACQUISITION SYSTEM AND DIGITAL RECORDING	
	3.4	ALTITUDE READINGS	
	3.5	UTS STINGER MOUNTED MAGNETOMETER SYSTEM	
	3.6	TOTAL FIELD MAGNETOMETER	
	3.7	THREE COMPONENT VECTOR MAGNETOMETER	
	3.8	AIRCRAFT MAGNETIC COMPENSATION	
	3.9	DIURNAL MONITORING MAGNETOMETER	
	3.10 3.11	TEMPERATURE AND HUMIDITY	
	3.12	RADIOMETRIC DATA ACQUISITION	
4	PR	OJECT MANAGEMENT	10
5	DA	TA PROCESSING PROCEDURES	11
	5.1	Data Pre-processing	11
	5.2	MAGNETIC DATA PROCESSING.	
	5.3	RADIOMETRIC DATA PROCESSING	
	5.4	DIGITAL TERRAIN MODEL DATA PROCESSING	
A	PPEN	DIX A - LOCATED DATA FORMATS	15
A	PPEN	DIX B - COORDINATE SYSTEM DETAILS	17
A	PPEN	DIX C - SURVEY BOUNDARY DETAILS	18
A	PPEN	DIX D - PROJECT DATA OVERVIEW	19

1 GENERAL SURVEY INFORMATION

UTS Geophysics conducted a low level airborne geophysical survey for the following company:

InterMet Resources Limited 262-266 Pirie Street Adelaide, South Australia, 5000

Acquisition for these surveys commenced on the 5th October 2006 and was completed on the 10th October 2006. The base location used for operating the aircraft and performing in-field quality control was Porth Lincoln, South Australia.

2 SURVEY SPECIFICATIONS

The area surveyed was located near Port Lincoln in South Australia. The survey was flown using the MGA94 coordinate system (a Universal Transverse Mercator projection) derived from the Geocentric Datum of Australia and was contained within zone 53 with a central meridian of 135 degrees. Details of the datum and projection system are provided in Appendix B of this report. Survey boundary coordinates are listed in Appendix C.

The survey data acquisition specifications for each area flown are specified in the following table:

PROJECT NAME	LINE SPACING	LINE DIRECTION	TIE LINE SPACING	TIE LINE DIRECTION	SENSOR HEIGHT	TOTAL LINE KM
Coulta	100m	090-270	1000m	000-180	50m	11,632
TOTAL						11,632

The specified sensor height for the magnetic samples is as stated in the above table. This sensor height may be varied where topographic relief or laws pertaining to built up areas do not allow this altitude to be maintained, or where the safety of the aircraft and equipment is endangered.

3 AIRCRAFT AND SURVEY EQUIPMENT

The UTS navigation flight control computer, data acquisition system and geophysical sensors were installed into a specialised geophysical survey aircraft.

The list of geophysical and navigation equipment used for the survey is as follows:

General Survey Equipment

- Cessna C210 fixed wing survey aircraft.
- UTS proprietory flight planning and survey navigation system.
- UTS proprietory high speed digital data acquisition system.
- Novatel 3951R, 12 channel precision navigation GPS.
- OMNILITE 132 real time differential GPS system.
- UTS LCD pilot navigation display and external track guidance display.
- UTS post mission data verification and processing system.
- Bendix King KRA-10A radar altimeter.

Magnetic Data Acquisition Equipment

- UTS tail stinger magnetometer installation.
- Scintrex Cesium Vapour CS-2 total field magnetometer.
- Fluxgate three component vector magnetometer.
- RMS Aeromagnetic Automatic Digital Compensator (AADC II).
- Diurnal monitoring magnetometer (Scintrex Envimag).

Radiometric Data Acquisition Equipment

- Exploranium GR-820 gamma ray spectrometer.
- Exploranium gamma ray detectors.
- Barometric altimeter (height and pressure measurements).
- Temperature and humidity sensor.

3.1 Survey Aircraft

The aircraft used for this survey was a Cessna C210 series fixed wing survey aircraft, operated by UTS Geophysics, registration VH-TKQ. The specifications are as follows:

Power Plant

•	Engine Type	Continental, IO-520

• Brake Horse Power 285 bhp

Fuel Type AV-GAS

Performance

• Cruise speed	150 Kn
----------------	--------

• Survey speed 130 Kn

Stall speed 60 Kn

• Range 1185 Km

• Endurance (no reserves) 5.2 hours

• Fuel tank capacity 246 litres

3.2 Data Positioning and Flight Navigation

Survey data positioning and flight line navigation was derived using real-time differential GPS (Global Positioning System).

Navigation was performed using a UTS designed and built electronic pilot navigation system providing computer controlled digital navigation instrumentation mounted in the cockpit as well as an externally mounted track guidance system.

GPS derived positions were used to provide both aircraft navigation and survey data location information.

The GPS systems used for the survey were:

Aircraft GPS Model Novatel 3951R

Sample rate 0.5 Seconds (2 Hz)

• GPS satellite tracking channels 12 parallel

• Typical differentially corrected accuracy 1-2 metres (horizontal)

3-5 metres (vertical)

3.3 UTS Data Acquisition System and Digital Recording

All geophysical sensor data and positional information measured during the survey was recorded using a UTS developed, high speed, precision data acquisition system. Survey data was downloaded onto magnetic tape on completion of each survey flight.

Instrument synchronisation times were measured and removed in real-time by the UTS data acquisition system.

3.4 Altitude Readings

Accurate survey heights above the terrain were measured using a King radar altimeter installed in the aircraft. The height of each survey data point was measured by the radar altimeter and stored by the UTS data acquisition system.

Radar altimeter models
 King KRA- 10A altimeter

• Accuracy 0.3 metres

• Resolution 0.1 metres

• Range 0 - 500 metres

• Sample rate 0.1 Seconds (10Hz)

The digital terrain model is calculated by subtracting the terrain clearance (radar altimeter) from the GPS height (interpolated to 0.1 Hz), and as such the accuracy is constrained by the differentially corrected GPS position.

3.5 UTS Stinger Mounted Magnetometer System

The installation platform used for the acquisition of magnetic data was a tail mounted stinger. This proprietory stinger system was constructed of carbon fibre and designed for maximum rigidity and stability.

Both the total field magnetometer and three component vector magnetometer were located within the tail stinger.

3.6 Total Field Magnetometer

Total field magnetic data readings for the survey were made using a Scintrex Cesium Vapour CS-2 Magnetometer. This precision sensor has the following specifications:

Model Scintrex Cesium Vapour CS-2 Magnetometer

• Sample Rate 0.1 seconds (10Hz)

• Resolution 0.001nT

• Operating Range 15,000nT to 100,000nT

3.7 Three Component Vector Magnetometer

Three component vector magnetic data readings for the survey were made using a Develco Fluxgate Magnetometer. This precision sensor has the following specifications:

Model Develoo Fluxgate Magnetometer

• Sample Rate 0.1 seconds (10Hz)

• Resolution 0.1nT

• Operating Range -100,000nT to 100,000nT

3.8 Aircraft Magnetic Compensation

At the start of the survey, the system was calibrated for reduction of magnetic heading error. The heading and manoeuvre effects of the aircraft on the magnetic data was removed using an RMS Automatic Airborne Digital Compensator (AADC II).

Calibration of the aircraft heading effects were measured by flying a series of pitch, roll and yaw manoeuvres at high altitude while monitoring changes in the three axis magnetometer and the effect on total field readings. A 26 term model of the aircraft magnetic noise covering permanent, induced and eddy current fields was determined. These coefficients were then applied to the data collected during the survey in real-time.

UTS static compensation techniques were also employed to reduce the initial magnetic effects of the aircraft upon the survey data.

3.9 Diurnal Monitoring Magnetometer

A base station magnetometer was located in a low gradient area beyond the region of influence of any man made interference to monitor diurnal variations during the survey.

The specifications for the magnetometer used are as follows:

Model Scintrex Envimag

• Resolution 0.1 nT

• Sample interval 5 seconds (0.2 Hz)

• Operating range 20,000nT to 90,000nT

• Temperature $-20^{\circ}\text{C to } +50^{\circ}\text{C}$

3.10 Barometric Altitude

An Air DB barometric altimeter was installed in the aircraft so as to record and monitor barometric height and pressure. The data was recorded at 0.10 second intervals and is used for the reduction of the radiometric data.

Model Air DB barometric altimeter

• Accuracy 2 metres

• Height resolution 0.1 metres

• Height range 0 - 3500 metres

• Maximum operating pressure: 1,300 mb

Pressure resolution: 0.01 mb

• Sample rate 10 Hz

3.11 Temperature and Humidity

Temperature and humidity measurements were made during the survey at a sample rate of 10Hz. Ambient temperature was measured with a resolution of 0.1 degree Celsius and ambient humidity to a resolution of 0.1 percent.

3.12 Radiometric Data Acquisition

The gamma ray spectrometer used for the survey was capable of recording 256 channels and was self stabilising in order to minimise spectral drift. The detectors used contain thallium activated sodium iodide crystals.

Thorium source measurements were made each survey day to monitor system resolution and sensitivity. A calibration line was also flown at the start and end of each survey day to monitor ground moisture levels and system performance.

Spectrometer model Exploranium GR820

• Detector volume 32 litres

• Sample rate 1 Hz

4 **PROJECT MANAGEMENT**

Gary Ferris InterMet Resources Limited

UTS Geophysics Perth Office Nino Tufilli

David Abbott

Barrett Cameron

5 DATA PROCESSING PROCEDURES

5.1 Data Pre-processing

The raw survey data was loaded from the field tapes and the recorded data trimmed to the correct survey boundary extents. Any survey lines subsequently reflown were removed from the dataset.

At the commencement of each acquisition flight, all the instrumentation clocks were synchronized to local time, and the error and latency of each instrument in providing its data measurement calculated. The results of these latency measurements were recorded into a synchronisation file, and the results used to assign GPS positions to the magnetic, radiometric and elevation data. As a result of the physical separation of the sensors, a small residual offset still exists between instrument timings.

To compensate for this residual parallax error, an adjustment was made to the instrument clocks. The magnetic and radar altimeter data was adjusted by 0.600 seconds, and the radiometric data was adjusted by 1.375 seconds for each flight.

The synchronized, parallax corrected data was then exported as located ASCII data.

5.2 Magnetic Data Processing

The diurnal base station data was checked for spikes and steps, and suitably filtered prior to the removal of diurnal variations from the aircraft magnetic data.

The filtered diurnal measurements were subtracted from the diurnal base field and the residual corrections applied to the survey data by synchronising the diurnal data time and the aircraft survey time. The average diurnal base station value was added to the survey data.

The X and Y positioning of the data was then checked for spikes before applying the IGRF correction. Any spikes in the positions were manually edited. The updated IGRF 2005 correction was calculated at each data point (taking into account the height above sea level).

This regional magnetic gradient was subtracted from the survey data points.

Tie line levelling was applied to the data by least squares minimisation, using a polynomial fit of order 0, of the differences in magnetic values at the crossover points of the survey traverse and tie line data.

In order to remove any residual long wavelength variations in the tie line levelled data along the traverse lines, polynomial levelling was then applied.

Final micro-levelling techniques were then selectively applied to the tie line levelled data to remove minor residual variations in profile intensity

Located and gridded data were generated from the final processed magnetic data.

5.3 Radiometric Data Processing

Statistical noise reduction of the 256 channel data was performed using the Maximum Noise Fraction (MNF) method described by Dickson and Taylor (1998). This method constructs a noise covariance model from the survey data, which is then decorrelated and re-scaled so that the model has unit variance and no channel-to-channel correlation.

A principal component transformation of the noise-whitened data is performed, and the number of components to be saved is determined by ranking the eigenvectors by signal-to-noise ratio. The signal-rich components are retained, and the spectral data reconstructed without the noise fraction.

Channels 30-250 only are noise-cleaned, as these contain the regions of interest and are not dominated by the lower end of the Compton continuum. The energy spectrum between the potassium and thorium peaks was recalibrated from the noise-cleaned 256 channel measurements.

The aircraft background spectrum and the scaled unit cosmic spectrum were then subtracted from the 256 channel data. This 256 channel data was then windowed to the 5 primary channels of total count, potassium, uranium, thorium and low-energy uranium. Dead time corrections were then applied to the data. Radon background removal was performed using the Minty Spectral Ratio method (1992).

The radar altimeter data was corrected to standard temperature and pressure, and height corrected spectral stripping was then applied to the windowed data. Height attenuation corrections based on the STP radar altimeter were then performed to remove any altitude variation effects from the data.

The corrected count rate data was then converted to ground concentrations for potassium, uranium and thorium (sensitivity coefficients are supplied in Appendix E).

Final micro-levelling techniques were then selectively applied to the tie line levelled data to remove minor residual variations in profile intensities. Located and gridded data were generated from the final processed radiometric data.

5.4 Digital Terrain Model Data Processing

The radar altimeter data was subtracted from the GPS altimeter data. The separation distance between the GPS antenna and the radar altimeter of 1.4 metres was subtracted from the digital terrain data.

The digital terrain data thus derived was tie line levelled and gridded. Tie line levelled data was then examined and selectively microlevelled to produce a grid without line dependent artifacts.

For further information concerning the survey flown, please contact the following office:

Head Office Address:

UTS Geophysics Fauntleroy Avenue, Perth Airport REDCLIFFE WA 6104

Tel: +61 8 9479 4232 Fax: +61 8 9479 7361

Postal Address:

UTS Geophysics P.O. Box 126 BELMONT WA 6984

Quoting reference number: A801

APPENDIX A - LOCATED DATA FORMATS

MAGNETIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
		LINE NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	19	DATE	YYMMDD
	F10.1	TIME	sec
5	18	FIDUCIAL NUMBER	
6	14	UTM ZONE	
7	F12.6	LATITUDE (WGS84)	degrees
	F12.6	LONGITUDE (WGS84)	degrees
9	F12.2	EASTING (MGA94)	metres
10	F12.2	NORTHING (MGA94)	metres
11	F8.1	RADAR ALTIMETER HEIGHT	metres
12	F8.1	GPS HEIGHT (WGS84)	metres
13	F8.1	TERRAIN HEIGHT (WGS84)	metres
14	F10.2	RAW MAGNETIC INTENSITY	nT
_		DIURNAL CORRECTION	nT
16	F10.2	IGRF CORRECTION	nT
		DRN AND IGRF CORRECTED TMI	
18	F10.2	FINAL TOTAL MAGNETIC INTENSITY	nT

RADIOMETRIC LOCATED DATA

TITLE				
1 I8 LINE NUMBER 2 I4 FLIGHT/AREA NUMBER AAFF (Area/Flight) 3 I9 DATE YYMMDD 4 F10.1 TIME Sec 5 I8 FIDUCIAL NUMBER 6 I4 UTM ZONE 7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) metres 10 F12.2 EASTING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION ppm	FIELD	FORMAT	DESCRIPTION	UNITS
3	1	I8		
4 F10.1 TIME sec 5 18 FIDUCIAL NUMBER degrees 6 14 UTM ZONE degrees 7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) metres 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 15 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 16 TOTAL COUNT (RAW) Counts/sec 19 16 URANIUM (RAW) Counts/sec 20 16 THORIUM (RAW) Counts/sec 21 16 COSMIC (RAW) Counts/sec 22 F8.1 <	2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
5 I8 FIDUCIAL NUMBER 6 I4 UTM ZONE 7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) degrees 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED)	3	19	DATE	YYMMDD
6 I4 UTM ZONE 7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) degrees 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.		F10.1	TIME	sec
7 F12.6 LATITUDE (WGS84) degrees 8 F12.6 LONGITUDE (WGS84) degrees 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION ppm		I8	FIDUCIAL NUMBER	
8 F12.6 LONGITUDE (WGS84) degrees 9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 16 TOTAL COUNT (RAW) Counts/sec 18 16 POTASSIUM (RAW) Counts/sec 20 16 THORIUM (RAW) Counts/sec 21 16 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr <td< td=""><td></td><td></td><td></td><td></td></td<>				
9 F12.2 EASTING (MGA94) metres 10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % F9.4 URANIUM GRND CONCENTRATION ppm		F12.6	LATITUDE (WGS84)	degrees
10 F12.2 NORTHING (MGA94) metres 11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % F9.4 URANIUM GRND CONCENTRATION ppm		F12.6	LONGITUDE (WGS84)	degrees
11 F8.1 RADAR ALTIMETER HEIGHT metres 12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % F9.4 URANIUM GRND CONCENTRATION ppm	9	F12.2	EASTING (MGA94)	metres
12 F8.1 GPS HEIGHT (WGS84) metres 13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm				metres
13 I5 LIVE TIME milli sec 14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % F9.4 URANIUM GRND CONCENTRATION ppm				metres
14 F8.1 PRESSURE hPa 15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	12	F8.1	GPS HEIGHT (WGS84)	metres
15 F6.1 TEMPERATURE Degrees Celcius 16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION \$ 28 F9.4 URANIUM GRND CONCENTRATION ppm				milli sec
16 F6.1 HUMIDITY percent 17 I6 TOTAL COUNT (RAW) Counts/sec 18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm				hPa
17 16 TOTAL COUNT (RAW) Counts/sec 18 16 POTASSIUM (RAW) Counts/sec 19 16 URANIUM (RAW) Counts/sec 20 16 THORIUM (RAW) Counts/sec 21 16 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	15	F6.1	TEMPERATURE	Degrees Celcius
18 I6 POTASSIUM (RAW) Counts/sec 19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	16	F6.1	HUMIDITY	percent
19 I6 URANIUM (RAW) Counts/sec 20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	17			Counts/sec
20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	18	16	POTASSIUM (RAW)	Counts/sec
20 I6 THORIUM (RAW) Counts/sec 21 I6 COSMIC (RAW) Counts/sec 22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	19	16	URANIUM (RAW)	Counts/sec
22 F8.1 TOTAL COUNT (CORRECTED) Counts/sec 23 F8.1 POTASSIUM (CORRECTED) Counts/sec 24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	20	16	THORIUM (RAW)	Counts/sec
F8.1 POTASSIUM (CORRECTED) Counts/sec 14 F8.1 URANIUM (CORRECTED) Counts/sec 15 F8.1 THORIUM (CORRECTED) Counts/sec 16 F9.4 DOSE RATE nGy/hr 17 F9.4 POTASSIUM GRND CONCENTRATION % 18 F9.4 URANIUM GRND CONCENTRATION ppm				
24 F8.1 URANIUM (CORRECTED) Counts/sec 25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	22	F8.1	TOTAL COUNT (CORRECTED)	Counts/sec
25 F8.1 THORIUM (CORRECTED) Counts/sec 26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	23	F8.1	POTASSIUM (CORRECTED)	Counts/sec
26 F9.4 DOSE RATE nGy/hr 27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	24	F8.1	URANIUM (CORRECTED)	Counts/sec
27 F9.4 POTASSIUM GRND CONCENTRATION % 28 F9.4 URANIUM GRND CONCENTRATION ppm	25	F8.1	THORIUM (CORRECTED)	Counts/sec
28 F9.4 URANIUM GRND CONCENTRATION ppm				nGy/hr
	27	F9.4	POTASSIUM GRND CONCENTRATION	%
29 F9.4 THORIUM GRND CONCENTRATION ppm				
	29	F9.4	THORIUM GRND CONCENTRATION	ppm

GRIDDED DATASET FORMATS

Gridding was performed using a bicubic spline algorithm.

The following grid formats have been provided:

• ER-Mapper format

LINE NUMBER FORMATS

Line numbers are identified with a six digit composite line number and have the following format - ALLLLB, where:

A Survey area number LLLL Survey line number

0001-8999 reserved for traverse lines 9001-9999 reserved for tie lines

B Line attempt number, 0 is attempt 1, 1 is attempt 2 etc..

UTS FILE NAMING FORMATS

Located and gridded data provided by UTS Geophysics uses the following 8 character file naming convention to be compatible with PC DOS based systems.

File names have the following general format - JJJJAABB.EEE, where:

JJJJ UTS Job number

AA Area number if the survey is broken into blocks

BB M Magnetic data
R Radiometric data
TC Total count data
K Potassium counts
U Uranium counts
Th Thorium counts

DT Digital terrain data

EEE File name extension

LDT Located digital data file

FMT Located data format definition file ERS Ermapper gridded data header file

Ermapper data portion has no extension

GRD Geosoft gridded data file

APPENDIX B - COORDINATE SYSTEM DETAILS

Locations for the survey data are provided in both geographical latitude and longitude and Universal Transverse Mercator metric projection coordinate systems.

WGS84 World Geodetic System 1984

Coordinate Type Geographical Semi Major Axis 6378137m

Flattening 1/298.257223563

MGA94 Map Grid of Australia 1994

Coordinate type Universal Transverse Mercator Projection Grid

Geodetic datum Geocentric Datum of Australia

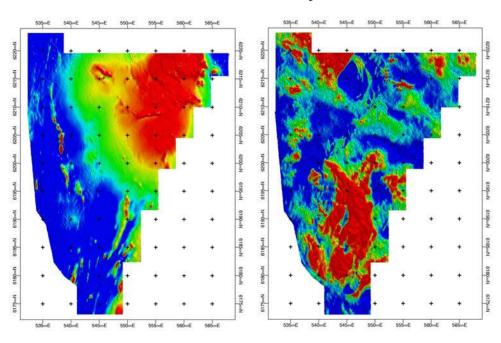
Semi major axis 6378137m

Flattening 1/298.257222101

APPENDIX C - SURVEY BOUNDARY DETAILS

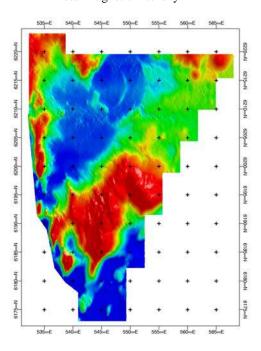
COORDINATES REPORT

Job ID code: A8010101 Client: InterMet Resources Limited


Job: Coulta

Coordinates MGA94 Grid Zone: 53 Include Point: 0.0 0.00

Surround 532300 6223200 538700 6223200 538700 6219600 567800 6219600 567800 6215500 564700 6215500 564700 6210000 561600 6210000 561600 6204500 558500 6204500 558500 6199000 555400 6199000 555400 6191600 552300 6191600 552300 6182400 549100 6182400 549100 6173100 541100 6173100 541100 6178100 538800 6179900 537000 6182300 535600 6189000 533900 6191500 532300 6209200 532300 6223200


APPENDIX D - PROJECT DATA OVERVIEW

Coulta Project

Total Magnetic Intensity

Radiometric Total Count

Digital Terrain Model

APPENDIX E - ACQUISITION AND PROCESSING PARAMETERS

Magnetic Processing Parameters

Coulta Project

IGRF date - 2006.7

IGRF mean value - 59303.70 nT Magnetic inclination - -66.70 deg Magnetic declination - 6.83 deg Diurnal base value - 59535.00 nT

Radiometric Processing Parameters

Aircraft Background Coefficients

Height Attenuation Coefficients

Total Count: 33.69
Potassium: 9.27
Uranium: 0.59
Thorium: 0.05

Total Count: -0.0074 Potassium: -0.0094 Uranium: -0.0084 Thorium: -0.0074

Cosmic Correction Coefficients

Sensitivity Coefficients

Total Count:1.615Total Count:37.9 cps/dose ratePotassium:0.092Potassium:151.5 cps/%kUranium:0.087Uranium:17.7 cps/ppmThorium:0.051Thorium:8.0 cps/ppm

Final Reduction - All data reduced to STP height datum 50m

17. APPENDIX 1: GEOCHEMISTRY OF EL 3314 GROUNDWATER SAMPLES

Sample	East_MGA	North_MGA	рН	Eh_mV	Ionic_Strengthsalinity_	Ca_ppm_DL_0_1
	545289.01	6175740.75	7.36	426	0.0322173	105.5
CW011	544790.02	6175453.75	7.54	441	0.00963122	75.3
CW012	545473.02	6178836.76	7.2	438	0.0371441	79.6
CW013	547966.03	6177794.75	7.25	391	0.102385	190.3
CW022	546874.02	6177171.75	7.5	361	0.0365891	77.4
CW042	551725.03	6185646.77	7.41	350	0.0393861	58.8
CW045	544273.02	6176136.75	7.07	-44	0.15108	404.4
CW046	546923.02	6180336.76	7.1	376	0.041046	83.2
CW051	548828.02	6183894.77	7.15	270	0.0653471	128.3
CW053	548838.02	6182937.76	7.93	323	0.083899	137.1
CW066	555276.03	6201624.79	6.86	289	0.0625106	212
CW067	552365.03	6201799.79	7.8	350	0.0649142	93.7
CW068	553904.02	6202103.79	7.33	252	0.0303382	-0.1
CW069	537988	6196916.78	7.45	388	0	36.4
CW070	537213.01	6196721.78	6.87	296	0.818339	3146.6
CW071	536328	6196289.78	7.82	341	0.0816965	-0.1
CW072	534237	6196401.78	7.56	362	0.0333164	4.2
CW073	534600	6194265.78	7.7	360	0.0622818	95.2
CW074	534839	6192407.77	7.54	359	0.104286	211
CW075	535507	6193005.77	7.38	405	0.0790851	-0.1
CW076	536638	6196648.78	8.33	382	0.00925768	30.5
CW077	542018.01	6199669.79	8.17	367	0.0723232	110.5
CW078	538196	6208523.8	7.63	369	0.137805	42.2
CW079	544706.01	6203031.79	7.55	329	0.0389227	230.6
CW080	546974.02	6202591.8	7.34	376	0.0353205	41.8
CW081	547597.02	6200910.79	6.88	352	0.0613285	394.3
CW083	547164.02	6203239.8	7.77	401	0.052884	94.6
CW084	553003.03	6202776.79	6.66	398	0.0102448	25.5
CW085	547066.02	6204344.79	7.21	-38	0.113492	206.3
CW086	548937.02	6206166.79	7.42	343	0.0763655	229.6
CW087	549863.02	6207330.8	7.44	352	0.106474	274.4
CW092	536307	6194863.77	7.68	368	0.0380535	131
CW093	537911	6195287.78	7.37	375	0.0243311	134.5
CW094	537175.99	6204168.79	7.76	240	0.0284192	138.7
CW095	536454	6204418.79	7.45	371	0.028346	133.5
CW096	550733.02	6204198.79	6.64	401	0.0169921	54.8
CW097	555411.03	6206583.81	7.14	232	0.0843522	136
CW098	547482.03	6174787.75	7.86	383	0.0367392	197.2
CW106	556432.04	6208258.81	6.82	423	0.0810933	131.5
CW107	552409.03	6208815.8	7.28	322	0.0980378	229.8
CW108	555578.03	6208508.81	7.78	161	0.10754	236.6

Sample	Mg_ppm_DL_0_1	Na_ppm_DL_10	K_ppm_DL_0_1	Cl_ppm_DL_50	SO4_ppm_DL_30
CW010	23.6	188	3.7	239	792
CW011	18.4	97	2.9	82	0.1
CW012	49.7	430	10.2	572	483
CW013	174.1	1341	35.9	2246	678
CW022	63.9	358	15.9	505	522
CW042	73.9	571	9	895	178.5
CW045	291	1952	23.8	3778	461.7
CW046	65.5	511	12.8	915	286.2
CW051	123.3	862	23	1534	291
CW053	160.6	1216	23.2	1946	326.4
CW066	110.7	802	18.2	1293	264.3
CW067	129.7	794	20.3	1453	505.2
CW068	68.8	333	8.4	566	421.5
CW069	0.1	-10	-0.1	-86	319
CW070	2022	8061	420.7	19401	1810.2
CW071	50.1	1444	-0.1	2041	778.8
CW072	81.6	142	10.1	213	877.2
CW073	125.1	546	20.7	992	957.6
CW074	192.3	1020	31.5	2064	1188.6
CW075	40.7	1205	28.9	1737	1119
CW076	43	-10	26.6	37	102.7
CW077	133.1	592	7.6	1243	1155
CW078	14.6	5727	2.7	447	119.4
CW079	117.2	223	8.3	597	104.8
CW080	236.3	172	7.3	346	104.3
CW081	85	613	16.7	1151	105.3
CW083	71.6	952	31.2	1110	106.7
CW084	11.3	124	3	199	101.1
CW085	145.1	1924	44.1	3064	116.6
CW086	130.1	1030	27.6	1979	104.9
CW087	113.7	1748	47	2825	109.8
CW092	70.5	464	13.9	827	115.7
CW093	41.9	239	6.9	381	110.6
CW094	45.8	310	12.3	488	118.2
CW095	45.8	310	10.1	499	121.8
CW096	25.8	180	8.2	404	105.3
CW097	151	1266	30.6	2360	118.1
CW098	58.1	392	8.8	659	116.7
CW106	136.4	1264	35.2	2252	112.5
CW107	127.8	1085	29.4	1966	1089.3
CW108	121.4	1274	29.4	2172	1196.1

Sample	HCO3_ppm_DL_5_	Li_ppb_DL_5	B_ppbDL_5	Al_ppmDL_0_05	Si_ppm_DL_0_5	Sc_ppb_DL_0_1
CW010	118.95	6.4	159	0.93	2.9	3.1
CW011	125.66	-0.5	13	0.32	2.4	0.7
CW012	173.85	-0.5	410	0.26	8.3	0.6
CW013	364.78	6.6	1918	0.4	11.7	1
CW022	173.24	4	1236	0.41	3.9	0.7
CW042	175.07	3.1	1286	0.17	6.7	2.2
CW045	126.88	8.7	359	0.17	2	3.6
CW046	159.21	-0.5	738	0.16	14.6	3.2
CW051	238.51	-0.5	862	0.2	6.7	0.7
CW053	331.84	1.5	2270	0.11	7.3	2.2
CW066	158.6	12.1	719	0.58	13.7	3.4
CW067	111.02	11.9	568	-0.05	11.6	9.1
CW068	62.22	1.7	235	0.05	4.8	1.2
CW069	159.21	-0.5	-5	0.05	4.4	1.5
CW070	111.02	160.2	1592	0.35	12.4	5.2
CW071	142.13	8.3	-5	0.43	-0.5	-0.1
CW072	221.43	17.9	-5	0.13	3.9	2.6
CW073	126.88	6.8	-5	0.4	0.8	2.9
CW074	158.6	13.3	683	0.25	13.8	3.1
CW075	165.31	10.5	-5	0.32	-0.5	4.9
CW076	166.53	11.9	-5	0.2	6.9	3
CW077	142.74	7.1	222	0.28	4.7	2.6
CW078	141.52	3.4	-5	0.47	-0.5	4.9
CW079	253.76	1.5	-5	0.74	4.1	3
CW080	324.52	2.9	909	0.15	5	1
CW081	315.37	5.7	891	0.15	9.7	3.6
CW083	394.67	6.9	3404	0.69	17.2	4.2
CW084	46.97	7.6	-5	0.18	4.4	4
CW085	379.42	8	1756	0.19	11.5	3.2
CW086	151.28	22.5	567	0.14	8	17
CW087	317.2	19.7	3313	0.09	19.6	2
CW092	159.21	8.2	265	0.1	9.2	3.3
CW093	141.52	8.2	125	0.14	7.2	2.2
CW094	175.07	9	181	0.1	4	3
CW095	173.24	7.5	288	0.06	5.8	2.2
CW096	24.4	10.6	-5	0.11	8.5	6
CW097	165.31	23.3	1502	0.05	11.4	5.9
CW098	206.18	3.4	356	0.18	2.9	5.9
CW106	141.52	13.3	2230	0.18	11.3	1
CW107	189.1	15.4	874	0.14	9.2	0.3
CW108	245.22	9.5	1322	0.36	10.3	1.6

Sample	V_ppb_DL_10	Mn_ppb_DL_5	Fe_ppb_DL_5	Co_ppb_DL_0_1	Ni_ppb_DL_0_5
CW010	29	26	567	0.3	29.2
CW011	-10	8	503	-0.1	3.6
CW012	31	8	273	0.2	27.2
CW013	73	-5	-5	-0.1	-0.5
CW022	60	36	448	-0.1	3.6
CW042	62	-5	536	0.3	12
CW045	131	103	128	2	229.7
CW046	66	6	1033	0.5	12.1
CW051	47	-5	548	-0.1	2.2
CW053	145	-5	566	0.2	2
CW066	34	16	-5	0.3	9
CW067	-10	-5	60	0.2	17.6
CW068	-10	-5	299	-0.1	3.8
CW069	-10	-5	11	-0.1	-0.5
CW070	1335	102	-5	3	-0.5
CW071	-10	9	599	-0.1	2.3
CW072	28	-5	620	-0.1	3.6
CW073	15	-5	332	-0.1	0.8
CW074	102	-5	224	-0.1	6.1
CW075	-10	-5	726	-0.1	5.5
CW076	122	-5	497	-0.1	9.3
CW077	69	-5	396	-0.1	0.9
CW078	-10	7	453	-0.1	5.3
CW079	18	-5	38	0.3	39.9
CW080	18	-5	306	-0.1	17.1
CW081	102	-5	348	0.8	0.5
CW083	334	10	669	-0.1	4.7
CW084	37	7	627	-0.1	5.2
CW085	184	12	546	-0.1	1.9
CW086	140	9	368	0.3	4.8
CW087	233	8	259	0.1	1.7
CW092	128	-5	617	-0.1	-0.5
CW093	79	-5	482	-0.1	5.8
CW094	117	-5	561	-0.1	3.1
CW095	62	-5	636	-0.1	1.1
CW096	51	-5	555	0.4	14.2
CW097	143	-5	640	-0.1	24.4
CW098	60	-5	498	-0.1	-0.5
CW106	155	94	637	-0.1	1.7
CW107	151	-5	359	-0.1	-0.5
CW108	164	201	490	0.2	6.5

Sample	Cu_ppb_DL_0_5	Zn_ppb_DL_0_5	Rb_ppb_DL_1	Sr_ppb_DL_10	Cd_ppb_DL_0_05
CW010	14.9	1248	3	709	1.58
CW011	1.1	846	2	840	0.51
CW012	-0.5	186	6	572	0.45
CW013	4.3	-5	18	2063	1.38
CW022	2.7	269	7	1259	1.18
CW042	28.7	391	8	702	0.75
CW045	12.4	1264	11	5016	0.18
CW046	38.8	957	7	946	0.9
CW051	446.9	342	14	1330	0.18
CW053	13.8	163	11	1783	1.8
CW066	3.5	247	42	697	0.46
CW067	131.1	425	25	2478	0.74
CW068	5.3	140	7	1521	0.28
CW069	6.4	-5	3	4365	-0.05
CW070	235	185	120	41031	1.24
CW071	-0.5	337	8	3711	0.21
CW072	-0.5	368	16	2729	0.58
CW073	-0.5	270	17	4760	-0.05
CW074	71.6	493	21	5786	0.68
CW075	-0.5	251	5	2589	0.63
CW076	58.5	560	1	5198	0.95
CW077	54.3	201	8	5521	24.93
CW078	105.2	418	4	3004	0.88
CW079	64.7	450	-1	1980	0.47
CW080	9.5	586	-1	2426	-0.05
CW081	30.5	758	8	3497	1.04
CW083	47.2	479	15	2695	0.83
CW084	16.2	423	3	1694	0.33
CW085	13.6	404	24	3515	0.4
CW086	15.6	451	23	3380	1.13
CW087	32.8	276	37	3797	0.81
CW092	8.5	343	3	4783	0.14
CW093	3.2	158	-1	4207	0.57
CW094	2.1	128	3	3250	-0.05
CW095	2.9	-5	2	3412	0.48
CW096	9.2	183	12	1844	0.38
CW097	12.2	109	14	3403	0.4
CW098	1.4	157	3	3553	0.34
CW106	16.2	457	15	3505	0.37
CW107	7.7	443	17	3573	0.14
CW108	10	612	20	3209	0.71

Sample	Ba_ppb_DL_1	TI_ppb_DL_0_01	Pb_ppb_DL_0_01	U_ppb_DL_0_01	Bi_ppb_DL_0_01
CW010	23	0.15	21.57	0.67	0.08
CW011	9	0.15	16.91	0.81	0.02
CW012	55	0.18	12.12	0.56	0.03
CW013	50	0.43	13.45	0.91	0.03
CW022	36	0.07	12.2	3.08	0.04
CW042	15	0.65	-0.01	6.05	0.05
CW045	46	0.52	2.81	1.73	0.05
CW046	38	0.32	24.13	2.16	0.02
CW051	54	0.2	-0.01	2	0.02
CW053	46	0.19	-0.01	37.83	0.08
CW066	83	0.07	-0.01	4.81	0.02
CW067	32	0.15	0.25	22.18	0.01
CW068	-1	-0.01	-0.01	0.21	-0.01
CW069	82	-0.01	-0.01	4.74	0.02
CW070	51	0.41	8	7.8	0.07
CW071	13	0.04	-0.01	2.37	0.02
CW072	2	0.07	0.36	0.61	-0.01
CW073	38	0.06	-0.01	-0.1	0.04
CW074	97	0.1	0.25	6.87	-0.01
CW075	-1	-0.01	-0.01	0.85	0.03
CW076	74	-0.01	-0.01	11.08	0.01
CW077	153	0.01	-0.01	3.32	0.02
CW078	-1	0.51	-0.01	1.26	0.04
CW079	62	0.79	-0.01	2.96	0.03
CW080	120	0.63	0.23	4.18	0.08
CW081	185	0.4	0.48	1.88	0.04
CW083	81	0.28	0.37	4	-0.01
CW084	5	0.13	-0.01	0.15	0.04
CW085	40	0.37	0.54	1.18	-0.01
CW086	83	0.46	0.15	1.87	0.03
CW087	68	0.33	0.56	2.84	0.01
CW092	89	0.06	-0.01	3.58	-0.01
CW093	104	0.05	1.11	5.67	0.07
CW094	13	0.05	-0.01	2.43	-0.01
CW095	32	0.08	-0.01	3.38	-0.01
CW096	49	0.17	15.12	-0.1	-0.01
CW097	49	0.17	-0.01	-0.1	0.05
CW098	21	0.06	-0.01	2.27	0.02
CW106	46	0.12	8.38	0.43	0.03
CW107	105	0.08	-0.01	0.46	0.06
CW108	47	0.05	0.73	0.17	0.04

CW010 0.059 0.01 CW011 0.012 0.01 CW012 0.0002 0.7 CW013 0.006 1.2 CW022 0.014 1.3 CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW			
CW011 0.012 0.01 CW012 0.0002 0.7 CW013 0.006 1.2 CW022 0.014 1.3 CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW0			F_ppm
CW012 0.0002 0.7 CW013 0.006 1.2 CW022 0.014 1.3 CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW0			0.01
CW013 0.006 1.2 CW022 0.014 1.3 CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 <td< td=""><td></td><td></td><td></td></td<>			
CW022 0.014 1.3 CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW084 0.297 0.01 <t< td=""><td></td><td></td><td></td></t<>			
CW042 0.067 1.4 CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.029 0.01 CW084 0.297 0.01 <			
CW045 0.009 0.01 CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2			
CW046 0.007 0.8 CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552			
CW051 0.0002 0.525388 CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552			
CW053 1.087 0.9 CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552		0.007	0.8
CW066 0.035 0.375312 CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552		0.0002	
CW067 0.008 0.01 CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW053	1.087	0.9
CW068 0.005 0.01 CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW066	0.035	0.375312
CW069 0.0002 0.649251 CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW067	0.008	0.01
CW070 0.023 0.649251 CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW068	0.005	0.01
CW071 0.016 0.606673 CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW069	0.0002	0.649251
CW072 0.015 1.1 CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW070	0.023	0.649251
CW073 0.015 0.649251 CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW071	0.016	0.606673
CW074 0.014 0.486467 CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW072	0.015	1.1
CW075 0.038 0.8 CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW073	0.015	0.649251
CW076 0.011 0.9 CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW074	0.014	0.486467
CW077 0.172 0.7 CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW075	0.038	0.8
CW078 0.032 0.5 CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW076	0.011	0.9
CW079 0.029 0.7 CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW077	0.172	0.7
CW080 0.0002 1.8 CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW078	0.032	0.5
CW081 0.026 0.202338 CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW079	0.029	0.7
CW083 0.023 3.80413 CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW080	0.0002	1.8
CW084 0.297 0.01 CW085 0.016 1.2 CW086 0.012 0.448552	CW081	0.026	0.202338
CW085 0.016 1.2 CW086 0.012 0.448552	CW083	0.023	3.80413
CW086 0.012 0.448552	CW084	0.297	0.01
	CW085	0.016	1.2
CW087 0.008 0.6	CW086	0.012	0.448552
0.00	CW087	0.008	0.6
CW092 0.014 0.7	CW092	0.014	0.7
CW093 0.027 0.649251	CW093	0.027	0.649251
CW094 0.003 0.649251	CW094	0.003	0.649251
CW095 0.016 0.7	CW095	0.016	0.7
CW096 0.01 0.01			0.01
CW097 0.014 0.304814	CW097	0.014	0.304814
CW098 0.006 0.01	CW098	0.006	0.01
CW106 0.012 0.525388	CW106	0.012	
CW107 0.597 0.5		0.597	
CW108 0.612 0.5	CW108	0.612	0.5

Annual Report

Reporting Period: 03/03/2008 to 02/03/2009

Tenement Number(s): EL 3314

Project: Coffin Bay

Tenement Holder(s): Intermet Resources

Operator: Intermet Resources

Author of Report: Darin Rowley

Date of Report: 23/04/2009

Contents List

1. SUMMARY	4
2. INTRODUCTION, HISTORY AND EXPLORATION RATIONALE	4
3. GEOLOGY	6
3.1. Regional Geology	6
3.2. Exploration Model	. 7
3.3. Interpreted Paleochannel Locations	
4. GEOPHÝSICS	. 8
5. REMOTE SENSING DATA	11
6. SURFACE GEOCHEMISTRY	11
7. DRILLING	
8. OTHER STUDIES OR WORK	11
9. ENVIRONMENT	11
10. REPORTING ON ORE RESERVES AND RESOURCES	11
11. DISCUSSION	
12. EXPENDITURE STATEMENT	11
13. CONCLUSIONS	12
14. REFERENCES	12
List of Figures Figure 1: Location of EL 3314 and Heli TDEM survey area	. 8 9
List of Appendices 15. APPENDIX 1: HELI-BORNE TDEM LOGISTICS REPORT	12
16. APPENDIX 2: HELI-BORNE TDEM DATA FILE	

File Verification Listing

Exploration Work Type	Filename	Format		
Office Studies				
Literature search	090302_EL3314_Annual Report.pdf	pdf		
Database compilation	090302_EL3314_Annual Report.pdf	pdf		
Computer modelling	090302_EL3314_Annual Report.pdf	pdf		
Reprocessing of data	090302_EL3314_Annual Report.pdf	pdf		
General research	090302_EL3314_Annual Report.pdf	pdf		
Report preparation	090302_EL3314_Annual Report.pdf	pdf		
Airborne Geophysics				
Logistics Report	Append1_EL3314_TDEM_Logistics_Report	pdf		
Heli TDEM	Append2_EL3314_TDEM_Raw_Data	dat		
File Verification Listing	080302_EL3314_Annual Report.pdf	pdf		

1. SUMMARY

EL 3314 is located within the Eyre Peninsula. Intermet has targeted EL 3314 for Archean komatiite-hosted nickel, volcanic hosted massive sulphides (base metals), orogenic lode gold, Iron and sedimentary (rollfront) uranium mineralisation. Work for this reporting period was exploration for sedimentary-style uranium deposits by Intermet's Joint Venture Partner Uranoz. The points below summarise this work. Figure 1 shows the location of the tenement and the area that was covered by Helicopter TDEM.

 1090.8 line km on 400m line spacing of Helicopter TDEM carried out by Geosolutions Pty Ltd

2. INTRODUCTION, HISTORY AND EXPLORATION RATIONALE

EL3314 is located approximately 45km NW of Port Lincoln in South Australia. The tenement is located along the Tod Highway, overlies the townships of Wanilla among others and is 953km².in size. This tenement forms part of the Wanilla project which includes ELs 3948, 3702 and 3671. Sheet names for the project area are Lincoln Special (1:250000) and Coulta / Cummins / Lincoln/ Wangary (1:100000). Figure 1 shows the location of EL 3314.

EL 3314 was granted on the 03/03/2005 to Intermet Resources. Intermet Resources renewed this tenement a number of times and have subsequently Joint Ventured the rights for Uranium exploration to WCP Uranium. WCP withdrew from the Joint Venture during this reporting period returning 100% of tenure to Intermet Resources.

Previous exploration for uranium within the area of EL 3314 was initiated on the encouraging combination of suitable Tertiary aquifers, the presence of reduced organic material within them, and the indication of uranium enrichment in the basement rocks, particularly in the Lincoln Complex granitoids in the eastern Eyre Peninsula. Current exploration is focused on sedimentary "roll-front" style uranium mineralisation similar to that discovered elsewhere on the Gawler Craton (e.g. Warrior, Yarramba) and in the Eyre Formation further to the east (e.g. Honeymoon).

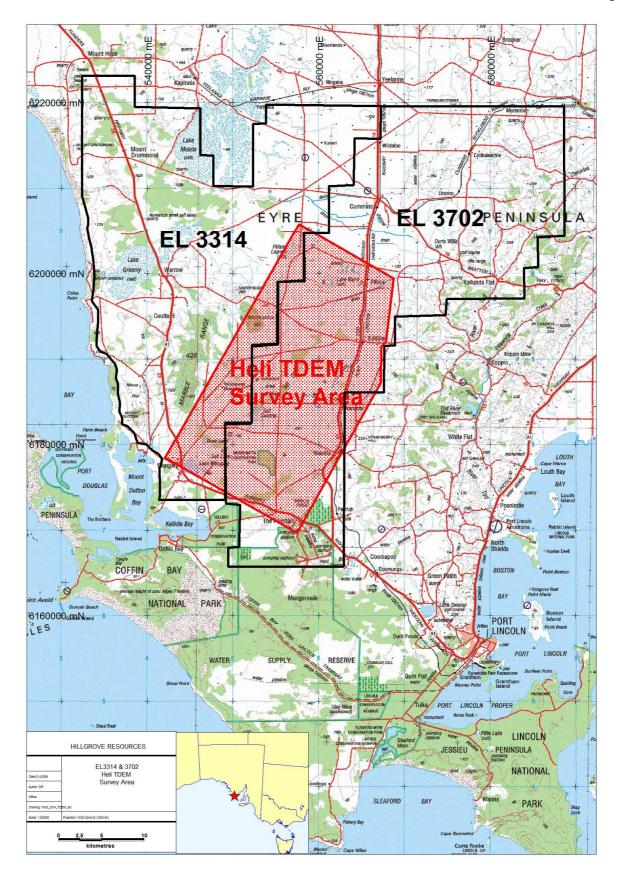


Figure 1: Location of EL 3314 and Heli TDEM survey area

3. GEOLOGY

The description given below of the regional geological setting within the Frome Embayment is taken directly from McKay & Miezitis, 2001.

3.1. Regional Geology

The Frome Embayment is a lobe on the southern part of the Callabonna Sub-basin which is the south-western portion of the Lake Eyre Basin (Callen & others,1995). The Callabonna Sub-basin comprises Tertiary shallow-water sediments. The Flinders, Olary and Barrier Ranges flanking the embayment, consist mainly of Precambrian and Cambrian metamorphic and sedimentary rocks which contain many small uranium deposits and widespread disseminated uranium mineralisation.

During the early Tertiary, well-sorted sand (Eyre Formation) was deposited as a thin, laterally continuous horizon covering the full width of the Sub-basin in the north. In the south, the Eyre Formation equivalents are angular, poorly sorted, fluvial sand and interbedded clay and silt deposited in major stream channels of extent (Brunt, 1978). The channels were incised into Precambrian basement and marine clay of the Late Cretaceous Marree Subgroup. Clay, sand and dolomite of the Namba Formation (Miocene) formed a continuous sequence disconformably overlying the channel sediments (Callen & Tedford, 1976). A thicker sequence of the Namba Formation accumulated closer to the Flinders Ranges to form the small Poontana Sub-basin.

The Honeymoon, East Kalkaroo, Yarramba and Goulds Dam deposits are in palaeochannel sand of the Eyre Formation (Palaeocene.Eocene), whereas the Beverley deposit is in sand of the overlying Namba Formation (Miocene) (Table 1). The palaeochannels in the southern part of the Frome Embayment flank a structural high in the underlying basement, the Benagerie Ridge.

The Lincoln 1: 250000 government geology shows the regional geology of the tenement area and can be downloaded from Geoscience Australia. A generalized stratigraphic column for the Frome Embayment is given below.

		Age	Lithology	Average thickness (m)	Uranium deposits	
Sub-basin (Lake Eyre Basin)	Coonarbine, Eurinilla, Millyera Formation & other units	Pleistocene to Recent	Soil, dune sand, sand, clay, gravel, calcrete, gypcrete	Variable, thin	•	
sin (Lake	Willawortina Formation	Late Miocene to Early Pleistocene	Clay, sand, sandy conglomerate and dolomite	0-150		
ub-bas	Namba Formation	Miocene	Silt & clay, with minor sand, limestone, dolomite	200	Beverley	
	DISCONFORMITY					
Callabonna	Eyre Formation	Early Palaeocene to Late Eocene	Sand & sandstone, some pebble beds	10–75	Honeymoon, East Kalkaroo, Yarramba, Goulds Dam	
			UNCONFORMITY			
Eromanga Basin	Maree Subgroup	Cretaceous	Shale and siltstone	150-275		
	Cadna-Owie Formation & Algebuckina Sandstone	Jurassic to Cretaceous	Shale, sand, silt and boulder lenses	Variable		

Table 1: Simplified stratigraphy of the Frome Embayment. Taken from McKay & Miezitis, 2001, pp.96 (after Drexel & Preiss, 1995).

3.2. Exploration Model

A generalised model for the formation of these uranium deposits can be applied, (e.g. Hou & Alley, 2003 shown below in Figure 2) although each occurrence will obviously vary in its detailed setting. Tertiary channel sands were derived from eroded basement rocks of the Gawler Craton, many of which are enriched in uranium. These sands contain a high organic carbon content which reflects the abundant vegetation along the channels and in major swamps. The reduced, alkaline ground waters fixed uranium which was then remobilised by oxidised waters moving through the sealed aquifers. Uranium was precipitated at the redox boundary between the oxidised and reduced sequences. Deposits could be formed as typical roll-front bodies, tabular zones in contact with locally preserved reduced sections (for example the outside of major bends in the channel course as at Honeymoon), or in interbedded oxidised sand and carbonaceous clay sequences (Figure 3). Channels that are draining bedrock containing uranium – REE enriched lithologies such as the Hiltaba Suite granitoids or equivalents would be of highest priority.

3.3. Interpreted Paleochannel Locations

Desktop studies of geology and topography maps combined with field data collected during sampling of groundwater from water bores (previous Annual Technical Reports) defined areas that are interpreted as paleochannels. The location of these interpreted paleochannels are shown in Figure 3 below.

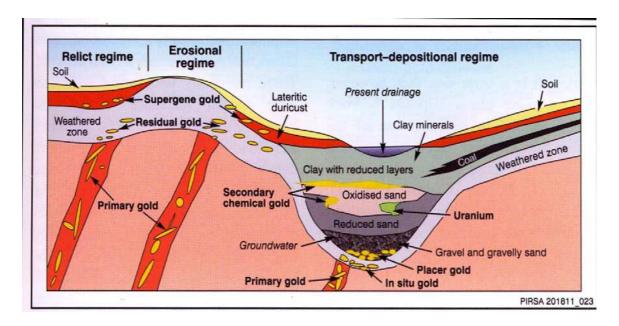


Figure 2: Idealised section through Tertiary Palaeochannel (after Figure 4, Hou & Alley, 2003)

4. GEOPHYSICS

Geosolutions Pty Ltd conducted 1090.8 line km of Helicopter borne TDEM at 400m line spacing across the Willandra and Unnamed paleo channels in search of conductive bodies that may represent sedimentary style uranium deposits. Figure 3 shows the location of the survey in relation to the paleo channels. This area was targeted based on work detailed in previous Annual Technical Reports.

The TDEM survey was flown during January 2008. The cost of the survey was included in the previous reporting period's expenditure statement. Results are shown in this report as they were not compiled into the previous report.

Appendix 1 is a logistics report on the TDEM survey. Appendix 2 is the raw data file. Figure 4 shows the processed results of the survey with previous work overlain.

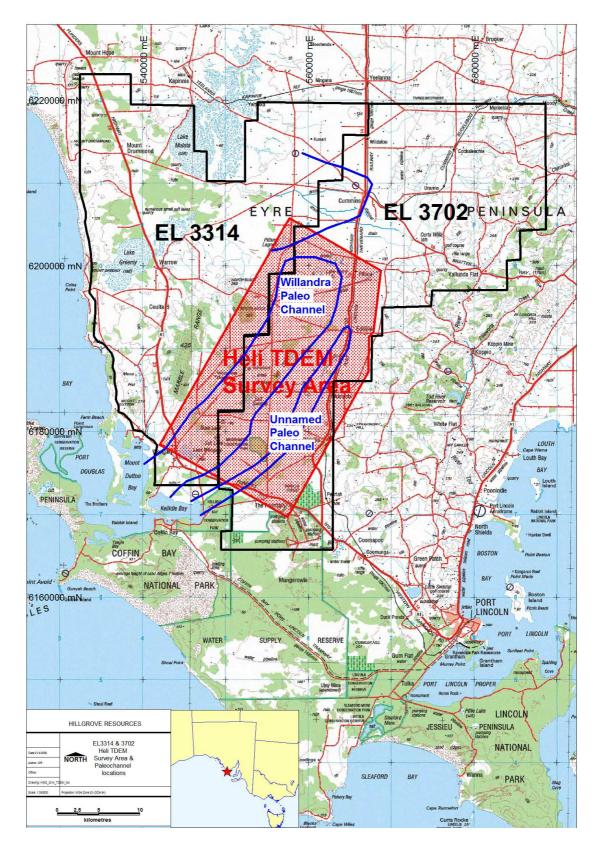


Figure 3: EL 3314 Heli TDEM area and Interpreted Paleo Channel Locations

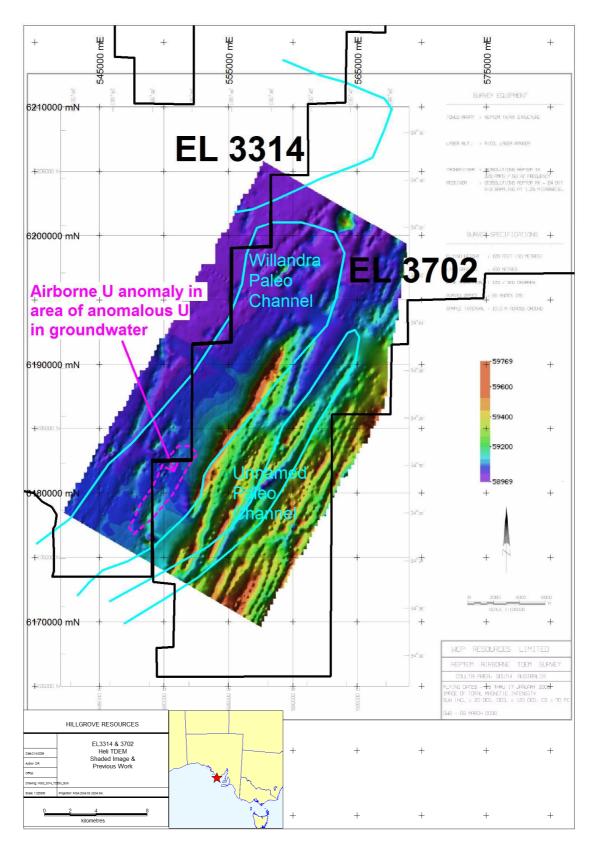


Figure 4: Heli-borne shaded TDEM with previous work overlain

5. REMOTE SENSING DATA

Not Applicable

6. SURFACE GEOCHEMISTRY

Not Applicable

7. DRILLING

Not Applicable

8. OTHER STUDIES OR WORK

Not Applicable

9. ENVIRONMENT

Not Applicable

10. REPORTING ON ORE RESERVES AND RESOURCES

Not Applicable

11. DISCUSSION

Heli-borne TDEM shows a weakly conductive body that coincides with a groundwater U anomaly and a radiometrics anomaly (Figure 4). This area warrants further investigation.

12. EXPENDITURE STATEMENT

Below is a detailed expenditure statement for the reporting period 03/03/078 to 02/03/09 on EL 3314. Cumulative expenditure on EL 3314 is \$453,760.

Activity	Expenditure
Personnel – Geologists, consultants, field hands	\$ 137
Tenement maintenance, legal costs	\$5,930
Admin/overheads	\$ 768
Total	\$6,835

13. CONCLUSIONS

A heli-borne TDEM survey was completed over the Wanilla and Unamed paleo channels in search of conductive bodies that may be sedimentary style Uranium deposits. Figure 4 shows a loosely coincident weak conductive anomaly – radiometrics U anomaly – U in groundwater anomaly. Further work should be undertaken in this area.

14. REFERENCES

Hou, B. and Alley, N., 2003, A model for gold and uranium dispersion and concentration in residual and transported regolith along palaeodrainage systems – a case study from the central Gawler Craton, MESA Journal, 30: 49-53.

McKay, A.D. & Miezitis, Y., 2001. Australia's uranium resources, geology and development of deposits. AGSO. Geoscience Australia, Mineral Resource Report 1

15. APPENDIX 1: HELI-BORNE TDEM LOGISTICS REPORT

The Heli-borne TDEM Logistics report is attached in file "Append_1_TDEM_Logistics_Report".

16. APPENDIX 2: HELI-BORNE TDEM DATA FILE

The Heli-borne TDEM raw data file is attached in file "Append_2_TDEM_Raw_Data".

LOGISTICS REPORT

REPTEM HELICOPTER TDEM SURVEY

Coulta Area, South Australia March 2008

For WCP Reources Limited

By Geosolutions Pty. Ltd.

SURVEY DETAILS

Survey Equipment

Helicopter : Eurocopter Squirrel BA. VH-HHO

Towed Array : REPTEM TX / RX structure.

Transmitter : Geosolutions proprietary REPTEM transmitter.

Receiver : Geosolutions proprietary REPTEM receiver.

24 bit A-D sampling at 1.25 microseconds.

Transmitter area : Single turn of 412 square metres.

Receiver area : Single turn of 138 square metres.

Power system : 24 HP Honda V-twin alternator system.

Survey Specifications

Flying Height : 120 feet (35 metres) depending upon terrain.

Line Direction : 120 / 300 degrees true.

Line Spacing : 400 metres.

Survey Speed : 55 Knots - Indicated Air Speed.

Sample Rate : 50 per Second.

Map Datum : GDA 94.

Survey Resolutions

ATDEM data : Windowed to 18 channels and resampled to 10m

across ground.

Laser Altimeter : 10 centimetre resolution sampled 80 times per

second.

Data Processing

Airborne TDEM Data : Geosolutions proprietary airborne geophysical

survey data

Navigation Data : Geosolutions proprietary airborne geophysical

processing package.

survey data processing package.

OPERATIONAL DETAILS

WCP RESOURCES - COULTA

13 January 2008

Four flights. Lines 1635 thru 1340.

14 January 2008

Two flights. Lines 1330 thru 1310. Receiver malfunction – new RXR from Adelaide.

15 January 2008

One flight. Lines 1305 thru 1210. Port side front arm broken. Return to Adelaide for repair.

16 January 2008

No flying.

17 January 2008

Three flights. Lines 1205 thru 1005.

End of job.

Total Kilometres Flown – 1090.8

20 May 2010

Records Officer Mineral Tenements PIRSA GPO Box 1671 ADELAIDE SA 5001

Dear Sir/Madam

EL3314 - Coffin Bay Final Annual Technical Report

I wish to advise that no technical work has occurred on this lease since the last Annual Technical Report which was submitted in 2009. As such, a final report is not required and all previous reports can be released to open file.

Please contact me on (08) 9424 9600 if you have any queries or require additional information.

Yours faithfully

Adam Freeman Geology Manager

A. Freeman

RECEIVED 25 MAY 2010 1

Registered Office Level 41 Australia Square 264-278 George Street SYDNEY NSW 2000

Tel: +61 2 8221 0404 Fax: +61 2 8221 0407 International Metals Pty Limited

ACN 110 663 155

info@intermetresources.com.au

www.intermetresources.com.au

Exploration Office Suite F, Level 1 1139 Hay Street WEST PERTH WA 6005

Tel: +61 8 9424 9600 Fax: +61 8 9424 9699