Open File Envelope No. 2818

EL 254

CURNAMONA

PROGRESS AND TECHNICAL REPORTS TO LICENCE EXPIRY/SURRENDER, FOR THE PERIOD 2/7/1976 TO 1/7/1978

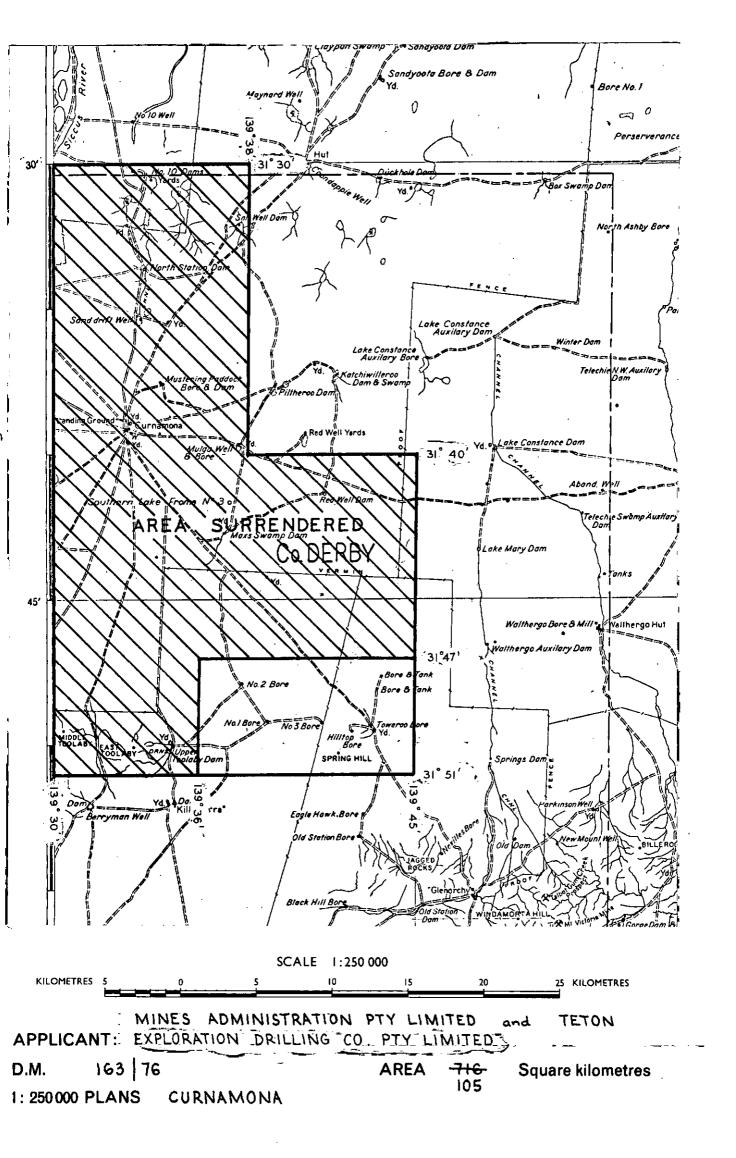
Submitted by Mines Administration Pty Ltd 1978

© 21/9/1978

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Branch

Minerals and Energy Resources


7th Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

SCHEDULE A

LOCALITY CURNAMONA AREA

- EXPIRED -

E.L. No. 254

TENEMENT:

EXPLORATION LICENCE 254

TENEMENT HOLDER:

MINES ADMINISTRATION PTY. LTD

REPORTS:

MURDOCK, R.B. 1976

A Reconnaissance Resistivity survey at Curnamona
South Australia for the Mines Adminstration for the
Mines Administration . (pgs. 5-32)
(No Plans)

BRYAN, R. 1976

Quarterly report Exploration Licence 254
(Curnamona) Period 2/7/76 to 1/10/76 (pgs. 33-35)

BRYAN, R. 1977

Quarterly report Exploration Licence 254 (curnamona) Period 2/10/76 to 1/1/77 (pgs. 36-39)

Plans:

Figure 1 Location Map E.L. 254 south Australia (pg 40)

REPORTS:

ELLIS, G.K. 1977

Evaluation of results of drilling programme on Exploration Licenc3 254 (Curnamona)

November / December 1976

July 1977 (pgs. 44-55)

Р	Ί	ans:	
_	_		

Figure 1	Location Map.	(pg 40 & 48)
Figure 2	Stratigraphic section.	(pg 50)
Figure 3	Structure contours at the base of the	
	Tertiary	(2818(2) - 8)
Figure 4	Structure contours at the base of the	
	Tertiary, showing basement geology	(2818(2)-9)
Figure 6	Isopach Map - Middle unit	(2818(2)-11)
Figure 7	Structure contours at the base of the	
	Limestone	(2818(2)-12)
Figure 5	Isopach map- Basal sand	(2818(2)-10)

Plans:

Figure 8	Isopach map	-Limestone	(2818(2)-13)
Resistivity Basement	Survey Contour plan	of Interpreted depth	to
	Plate 1		(2818(1)-1)
	Plate 2		(2818(1)-2)
	Plate 3		(2818(1)-3)
21 (p 10 m	Plate 4		(2818(1)-4)
	Plate 5		(2818(1)-5)
	Plate 6		(2818(1)-6)
	Plate 7		(2818(1)-7)
Composite Lit	hological Logs.		
	C1		(2819(1)-8)
	C2		(2818(1)-9)
	C3		(2818(1)-10)
	C4		(2818(1)-11)
	C5		(2818(1)-12)
	C6		(2818(1)-13)
	C7		(2818(1)-14)
	C8		(2818(1)-29)
	C9		(2818(1)-15)
	C10		(2818(1)-16)
	C11		(2818(1)-17)
	C12		(2818(1)-18)
	C13		(2818(1)-28)
	C14		(2818(1)-19)
	C15		(2818(1)-20)
	C16		(2818(1)-21)
	C17		(2818(1)-27)
	C18		(2818(1)-26)
	C19		(2818(1)-22)
	C20		(2818(1)-23)
	C21		(2818(1)-24)
	C22		(2818(1)-25)

CONTENTS ENVELOP 2818 Cont

REPORTS:

ELLIS, G.K. 1977

Quarterly report Exploration Licence 254

(Curnamona). South Australia

Quarter ended 1/4/77

(No Plans)

(pgs. 42-43)

BRYAN, R. 1977

Quarterly report Exploration Licence

254

(Curnamona) 28th April 1977

(No Plans)

(pg. 41)

ELLIS G.K. 1977

Quarterly report Exploration Licence

254 Curnamona South Australia

Period 2/4/77 to 1/7/77

(pgs. 56-57)

(No Plans)

ELLIS, G.K. 1977

Quarterly report Exploration Licence

254 Curnamona South Australia

Period 2/7/77 to 1/10/77

(pgs. 58-59)

(No Plans)

ELLIS, G.K. 1977

Quarterly report Exploration Licence 254

Curnamona South Australia

Period 2/10/77 to 1/1/78

(pgs. 60-61)

(No Plans)

WECKER, R. 1978

Quarterly report Exploration Licence 254

Curnamona South Australia

Quarter ended 1/4/78

(pgs. 62-63)

(No Plans)

CONTENTS ENVELOPE 2818 Cont

REPORT:
WECKER, R. 1978

Quarterly report Exploration Licence 254
Curnamona south Australia
Quarter ended 1/7/78 (pgs. 64-65)
(no Plans)

A RECONNAISSANCE RESISTIVITY SURVEY AT CURNAMONA, SOUTH AUSTRALIA FOR MINES ADMINISTRATION

By: R. B. Murdoch, B.A. (Earth Sciences),
Murdoch Geophysics (Australia) P/L,
14 Mallawa Street,
Kawana Waters Qld. 4557
Telephone: (071) 44 1267

Report No. 240 September, 1976.

Conclusions

A reconnaissance resistivity survey has been carried out over E.L. Curnamona in the Lake Frome Embayment, South Australia. The aim of the survey was to map the depth to Cambrian basement on the 6 lines nominated and to identify any Tertiary channel anomalies that might occur.

Two and possibly three channels were identified during the survey. The Killawarra Channel Anomaly (see Report 239), heads northwards crossing lines 1, 2 and probably line 3 near Curnamona Homestead. This channel may join the Curnamona Channel between lines 3 and 4. The latter Channel flowing westwards, crossing line 6 just south of line 4 and continuing westwards between lines 3 and 4.

A third channel would appear to occur just west of the E.L. boundary. It may flow northwards close to the boundary or enter the E.L. and merge with the Killawarra Channel near Curnamona Homestead.

Two other tributories of the Curnamona Channel are possible. One may head south crossing lines 4 and 5 and the other may meander north and west in the eastern part of the survey area. These two anomalies are not definite and are of second priority at this stage.

A drilling programme has been recommended to test the probable channel anomalies encountered within the survey area (priority 1 holes). Depending upon success it could be extended to include less definite anomalies (priority 2 holes). Resistivity could be used to more accurately define the paths of any channel found to be uraniferous.

Introduction

Under instruction from Mr. D. Brunt of Mines Administration Murdoch Geophysics (Australia) Pty. Ltd. have undertaken a reconnaissance resistivity survey at Curnamona, north of Yunta in South Australia. Field work associated with the survey was carried out in July and August 1976, in conjunction with a similar survey at Koonamore. A 3 man crew led by Mr. M. Armstrong and Mr. G. Connell were used for the survey.

The aim of the survey was to map the depth to Cambrian (or Precambrian) basement on the six lines surveyed, in particular to identify any Tertiary channelling anomalies that might occur.

Procedures

The resistivity survey was conducted along the six lines shown on Plate 1. The reading station interval was 500 metres. Each reading station was pegged and its respective line number and position marked on the peg. Compass bearings were maintained between reading stations not located on tracks. The reading station interval on all lines was measured by a vehicle speedometer.

The readings comprise detailed Schlumberger Array soundings at intervals of 1 km with rapid 3 point Schlumberger Array soundings at intervening intervals of ½ km. All soundings were expanded parallel to the traverse line for convenience.

The detailed soundings were expanded to a logarithmic formula with 22 individual readings being taken at each sounding for r values between 10 and 320 metres. As part of a follow-up programme, soundings where the depth to basement had not been adequately determined at r=320 metres were expanded out to r=500 metres. At the rapid sounding positions the readings taken were r=130, r=200 and r=320 metres. (Where r is the half current electrode separation).

<u>Presentation of results</u>

The sounding results were plotted on standard log-log graphs of apparent resistivity (vertical axis) against current electrode

.../3

separation from the centre of configuration (horizontal axis). They have not been included in this report but are available should they be required at any stage.

The profiles are presented on Plates 3 - 7 in two alternate forms.

- (a) Superimposed profile curves The r=130, 200 and 320 metre data obtained from both the detailed and rapid soundings have been plotted as profiles on the one set of axes. The vertical scale is logarithmic (1 cycle = 6.25 cm.) and the horizontal scale is 1 cm = 250 metres.
- (b) Resistivity pseudo-section The pseudo-section is a $t\omega$ o-dimensional display of all apparent resistivity results plotted beneath the profiles at the same horizontal scale. The vertical scale is 1 cm = 25 metres and the values have been logarithmically contoured.

Interpreted geological sections have been plotted beneath the pseudo-sections at the same scales.

Two contour plans accompany the report;

Plate 1 is a linear contour plan of depth to basement interpreted from the survey.

Plate 2 is a contour plan of apparent resistivity results obtained at r = 320 metres.

The scale of both plans is 1 cm = 500 metres. The contour interval on Plate 1 is 20 metres and on Plate 2 1 ohm metre.

Sounding Interpretation

The detailed soundings were interpreted by using the partial curve matching technique as follows:

-

TABLE 1 - DETAILED SOUNDING INTERPRETATION

				· · · · · · · · · · · · · · · · · · ·
	Layer	Resistivity (ohm_metres)	Thickness (metres)	Expected Geology
Line 1 OOE	1	45	0 - 7.5	Surface
	2	3. 25 to 5	7.5 - 110	Cainozoic
	3	17	110 +	Cambrian shale ?
		•		
1000E	1	5.5	D - 9	Surface
	2	9.6	9 - 36	Quaternary
	3	4	36 - 112	Tertiary
	4	Very high	112 +	Precambrian
2000E	1	10	0 - 28	Surface
2000-	2	5	28 - 128	Cainozoic
	3	35	128 +	Precambrian schist
	J	39	120 +	LIBCOMPLISH SCHISC
3000E	1	. 12	0 - 9.5	Surface
	2	7.8	9.5 - 124	Cainozoic
	3	Very high	124 +	Precambrian
4000E	1	10	0 - 60	Cainozoic
40005	2	.30	60 - 132	Precambrian schist(?)
	3	اور Very high	132 +	Cambrian
	J	very migh	122 +	090011911
5000E	1	15	0 - 8,5	Surface
	2	7.5	8.5 - 135	Cainozoic
	3	Very high	135 +	Precambrian
6000E	1	10	0 - 28	Quaternary
00000	2	<u>,</u> 0 5	28 - 50	Cainozoic
		7		
	3			Tertiary
	4	Very high	135 +	Precambrian
7000E	1	6.5	0 - 25	Quaternary
	2	8.5	25 - 145	Tertiary
	3	High	145 +	Precambrian

..../5

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

		Layer	Resistivity (ohm metres)		hickness metres)	Expected Geology
Line 1	8000E	1	9.5	0	- 12.5	Surface
		2	14.2	12.	5 - 62.5	Quaternary gravel
						or limestone
		3	6.5	62.	5 – 150	Tertiary
		4	Very high		150 +	Precambrian
	9000E	1	6.5	0	- 80	Cainozoic
		2	Very high		80 +	Precambrian
	10000E	1	11	0	- 5	Surface
		2	7.1	5	- 70	Cainozoic
		3	Very high		70 +	Precambrian
				_		
	11000E	1	4.4	0	- 25	Cainozoic
		3	Very high		25 +	Precambrian
Line 2	00E	1	5.2	0	- 20	Quaternary
		2	3.4 - 4.4	20	- 150	Tertiary
		3	High		150 +	Cambrian
	1000E	1	6.5	Ō	- 33	Quaternary
		2	2.6 - 2.2	33	- 160	Tertiary
		3	High		160 +	Cambrian
	2000E	1 .	8		- 10 -	Surface
		2	6.4	10	- 33	Quaternary
		3	3.25 - 2.75	33	- 165	Tertiary
		4	High		165 +	Cambrian
	3000E	1	6		- 32	Quaternary
		2	4.8	32	- 175	Tertiary
		3	Very high		175 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	THE T - DETATION SUPPLIED SUPPLIED THE THE TAILON (CONTINUED)						
		4	Resistivity		Thickness		
		Layer	(ohm metres)		(metres)	Expected Geology	
Line 2	4000E	1	17	Ō	- 5.8	Surface	
		2	4.25	5.	8 - 93	Cainozoic	
		3	3	93	- 153	Tertiary	
		4	High		153 +	Cambrian	
	5000 E	1	6.7	0	- 13	Surface	
		,2	2.7 - 3.6	13	- 143	Cainozoic	
		3	High		143 +	Cambrian	
	6000E	1	4 approx.	Ö	- 135	Cainozoic	
		2	High		135 +	Cambrian	
		(Data	poor on this s	sound	ing)		
			,				
	7000E	1	8		- 10	Surface	
		2	3 - 3.25	10	- 150	Cainozoic	
		3	High		150 +	Cambrian	
					ā		
	8000E	1	13		- 13	Surface	
		2	4.9 - 5.2	13	- 143	Cainozoic	
		3	High		143 +	Cambrian	
	9000 E	1	15		- 8	Surface	
		2	6 - 3.5	8	- 166	Cainozoic	
		3	Higher		166 +	Cambrian	
	10000E	1	4.4	Ū	- 14	Surface	
		2	7.7	14	- 28	Quaternary	
		3	5.2	28	- 92	Cainozoic	
		4	3.5	92	- 170	Tertiary	
		5	17.5		170 +	Cambrian	
	11000E	1	4.4		- 170	Cainozoic	
		2	42		170 +	Cambrian	

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	<u>Layer</u>	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 2 12000E	1	6	0 - 21	Quaternary
	2	10.5	21 - 61	Cainozoic
	3	5.8-4.5	61 - 164	Tertiary
	4	27.3	164 +	Cambrian
13000E	1	7	0 - 10	Surface
	2	5.6	10 - 100	Cainozoic
	3	4.5	100 - 180	T _{ertiary}
	4	7	180 +	Cambrian
14000E	1	34	0 - 4	Surface
	2	5.1	4 - 44	Quaternary
	3	5.25	44 - 98	Cainozoic
	4	8	98 - 158	Cainozoic (?)
	5	?	158 +	C _{ambrian} (?)
15000E	1	270	0 - 4.5	Surface :
	2	4.8	4.5 - 94	Cainozoic
	3	3.8	94 - 154	T _{ertiary}
	4	High	154 +	Cambrian
16000E	1	3.4	0 - 15	Surface
	2	5 .9 5	15 - 90	Cainozoic
	3	7.3	90 - 130	T _{ertiary}
	<u>L</u>	49	130 +	Cambrian
Line 2 1000W	1	13	0 - 11	Surface
,	2	22.7	11 - 95	Cainozoic gravels/
				limestone
	3	3. 15	95 – 161	T _{ertiary}
	4	High	161 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Layer	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 2 2000W	1	9.5	0 - 14	Surface
	2	3.8	14 - 154	Cainozoic
	3	High	154 +	Cambrian
3000₩	1	4.4	0 - 5	Surface
	2	18.5	5 - 26	Quaternary
	3	5.2	26 - 162	Tertiary
	4	20.3	162 +	Cambrian
4000W	1	7	0 - 8	Surface
	2	5 . 6	8 - 37	Quaternary
	3	2 . 75	37 - 131	Tertiary
	4	24.8	131 +	Cambrian
	7	24•0	15 J. T	OSWDITAN
5000W	1	8	0 - 9.5	Surface
	2	4.4	9.5 - 1 51	Cainozoic
	3	28	151 +	Cambrian
6000W	4		0 50	O A
w 0000	1	7.2	0 - 50	Quaternary
	2	4.7	50 - 160	Tertiary
	3	25	160 +	Cambrian
7000	1	7. 5	0 - 18.5	Surface
	2	3,7 5	18.5 - 48	Quaternary
	3	4,6	48 - 190	T _{ertiary}
	4	23	190 +	Cambrian
8000W	1	6.5	0 - 100	Cainozoic
	2	3.25	100 - 180	Tertiary
	3	30.8	180 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Laver	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 2 9000W	1	9.5	0 - 27.5	Quaternary
	2	33.2	27.5 - 36	Quaternary limestone/
				sand
	3	4.2	36 - 190	Tertiary
	4	3 5	190 +	Cambrian
10000W	1	5	0 - 80	Cainozoic
	2	2.5	80 - 160	Tertiary
	3	33	160 +	Cambrian
שםםם11	1	70	0 - 10.5	Surface
	2	4.2	10.5 - 31.5	Quaternary
	3	5	31.5 - 176	Tertiary
	4	12.5	176 +	Cambrian
Line 3 OOE	1	7	0 - 10	Surface
	2	1.75	10 - 18	Quaternary
	3	3	18 - 145	Cainozoic
	4	11.8	145 +	Cambrian
1000E	1	8	0 - 10	Surface
	2	24	10 - 16	Quaternary gravels
	3	2.4	16 - 21.5	Quaternary
	4	6.0 - 6.7	21.5 - 155	Cainozoic
	5	2.4	155 - (?)	Tertiary
	6	Very deep		Cambrian
2000E	1	12	0 - 11	Surface
	2	9.6	11 - 77	Cainozoic
	3	3.8	77 – 175	Tertiary
	4	21	175 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Layer	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 3 3000E	1	12	0 - 17.5	Quaternary
	2	6	17.5 - 119	Cainozoic
	3	4.1	119 - 165	Tertiary
	4	26	165 +	Cambrian
4000E	1	12	0 - 12	Surface
	,2	7.2	12 – 72	Quaternary
	3	3	72 - 160	Tertiary
	4	18	approx. 160 approx. +	Cambrian
	-	,	ino abbinx.	oguint tau
5000E	1	26	0 - 42	Quaternary
	2	10.4	42 - 170	C _{ainozoic}
	3	2.4	170 - 210	Tertiary
	4	High	210 +	Cambrian
		-		
6000E	1	7	0 - 46	Quaternary
	2	5.6	46 - 180	Cainozoic
	3	21.8	180 +	Cambrian
7000E	1	15	- 44	Quaternary
	2	4.5	44 - 178	Cainozoic
	3	27.5	178 +	Cambrian
			:	,
8000E	1	23	0 - 9.5	Surface
	2	9.2	9.5 - 123	Cainozoic
	3	2.25	123 - 162	Tertiary
	4	3 5	162 +	Cambrian
9000E	1	11	0 - 12	Surface
	2	33	12 - 60	Cainozoic gravels
				and limestone
	3	5.2	60 - 187	Tertiary
The second secon	4	18.75	187 +	Cambrian/11

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

		· MILLED GOOMDING	THE LEW KETATION	(BONT INDED)
	Laver	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 3 10000E	1	7.5	0 - 11	Surface
	2	9.4	11 – 33	Quaternary
	3	39	33 - 77	Cainozoic
	4	4.95	77 – 165	Tertiary
	5	25.5	165 +	Cambrian
11000E	1	2	0 - 3.8	Surface
	2	7	3.8 - 96	Cainozoic
	3	3.2	96 – 175	Tertiary
	4	22	175 +	Cambrian
12000E	1	6	0 - 20	Surface
	2	4	20 - 150	Cainozoic
	3	18	150 +	Cambrian
13000E	1	4.7	0 - 145	Cainozoic
	2	High	145 +	Cambrian
14000E	1	26	0 - 7.5	Surface
	2	3.6	7.5 - 155	Cainozoic
	3	High	155 +	Cambrian
15000E	1	5	0 - 26	Quaternary
	2	3.2	26 - 155	Cainozoic
	3	High	155 +	Cambrian
16000E	1	7. 5	0 - 9	Surface
	2	2.75 - 3. 75	9 - 161	Cainozoic
	3	High	161 +	Cambrian
17000E	1	7.5	0 - 19.5	Quaternary
	2	4.9	19.5 - 161	Cainozoic
	3	12.5	161 +	Cambrian
				/19

. . . . / 12

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Layer	Resistivity (ohm metres)	Thic (met	kness res)	Expected Ge	ology
Line 3 18000E	1	6	0 -	11	Surface	
	2	3	11 -	37	Quaternary	
	.3	11.7	37 -	56	Cainozoic	
	4	2.5	56 -	150	Tertiary	
	5	High	151	0 +	Cambrian	
19000E	1	4 - 10	0 -	140	Cainozoic	
	2	Hịgh	140	D +	Cambrian	
			(Shali	low data	poor)	
20000E	1	.4	0 -	30	Quaternary	
	2	1.2 - 2.1	30 -	140	Cainozoic,	mainly
					Tertiary	
	3	81	140) +	Cambrian	
21000É	1	5. 5	10 -	27	Quaternary	
	2	3. 1	27 -	147	Cainozoic, r	nainly
					Tertiary	
	3	16.5	147	7 +	Cambrian	
22000E	1	7	o -	19	Quaternary	
	2	3. 5	19 -	161	Cainozoic	
	3	16	161	1 +	Cambrian	•
23000E	1	6	0 -	9	Surface	
	2	3	9 -	84	Cainozoic	
	3	3.4	84 -	159	Tertiary	
	4	High	159	9 +	Cambrian	
24000E	1	5	<u> </u>	75	Cainozoic	
	2	1 - 1.25	75 -	150	Tertiary	
	3	High	150) +	Cambrian	

018

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Layer	Resistivity (ohm metres)	T (hickness metres)	Expected Geology
Line 3 1000W	1	20	0	- 8	Surface
	2	3 - 2.5	8	- 166	Cainozoic
	3	18		166 +	Cambrian
2000W	1	22	0	- 12	Surface
	2	11	12	- 44	Cainozoic
	3	1.95	44	- 167	Cainozoic
	4	High		167 +	Cambrian
3000W	1	13	0	- 17	Surface
	2	39	17	- 29	Quaternary gravel
					and limestone
	3	3	29	- 173	Cainozoic
	4	22.3		173 +	Cambrian
4000W	1	24	O	- 14	Surface
	2	6	14	- 84	Quaternary
	3	1.8	84	- 197	Cainozoic
	4	13		197 +	Cambrian
		-8			
5000W	1	14	0	- 9	Surface
	2	2.8 - 3.6	9	- 153	Cainozoic
	3	14.3		153 +	Cambrian
Line 4 OOE	1	8	0	- 20	Quaternary
	2	3.2	20	- 184	Cainozoic
	3	10		184 +	Cambrian
1000E	1	6	0	- 25	Quaternary
	2	2.4	25	- 167	Cainozoic
	3	13		167 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

					
	Layer	Resistivity (ohm metres)		hickness metres)	Expected Geology
Line 4 2000E	1	8	0	- 15	Surface
	2	3.2	15	- 123	Cainozoic
	3	11.2		123 +	Cambrian
3000E	1	18	0	- 15	Surface
	2	2.2	15	- 54	Cainozoic
	3	3	54	- 139	Tertiary
	4	10,5		139 +	Cambrian
					,
4000E	1	13	0	- 44	Quaternary
	2	3, 2 5	44	- 176	Cainozoic
	3	13		176 +	Cambrian
5000E	1	10	0	- 9	Surface
	2	3 5	9	- 23	Quaternary gravels
					and limestone
	3	16.4	23	- 86	Cainozoic
	4	0,85	86	- 150	Tertiary
	5	High		150 +	Cambrian
6000E	1	11	0	- 22	Quaternary
	2	27 _, 5	22	- 70	Cainozoic gravel/
					limestone
	3	3 , 15	70	- 180	Tertiary
	4	High		180 +	Cambrian
7000E	1	5	0	- 100	Cainozoic
	2	2,5	100	- 180	Tertiary -
	3	17		180 +	Cambrian
3335E			_		
8000E	1	10	0	- 25 	Quaternary
	2	1.5	25	- 36	Cainozoic
	3	3.3	36	- 180	Tertiary
50 m m = 1	4	15		180 +	Cambrian/15/

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Laver	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 4 9000E	1	12	0 - 20	Quaternary
	2	6	20 - 130	Cainozoic
	3 ,	4.4	130 - 180	Tertiary
	4	20	180 +	Cambrian
10000E	1	11	0 - 9.5	Quaternary
	2	4	9.5 - 124	Cainozoic
	3	1.35	124 - 174	Tertiary
	4	High	174 +	Cambrian
11000E	1	9.5	0 - 16	Surface
	2	3. 0	16 - 175	Cainozoic
	3	18	175 +	Cambrian
12000E	1	15	0 - 9.5	Surface
	2	.3	9.5 - 14	Quaternary
	3	7.5	14 - 65	Cainozoic
	4	2	65 - 169	Tertiary
	5	3 0	169 +	Cambrian
13000E	1	5.5	0 - 18	Quaternary
	2	13.75	18 – 36	Quaternary
	3	7.2	36 - 119	Cainozoic
	4	1.6	119 – 188	Tertiary
	5	23.8	188 +	Cambrian:
Line 5 DOE	1	5	0 - 9	Surface
ř	2	3. 25	9 - 161	Cainozoic
	3	High	161 +	Cambrian
1000E	1	4.4	0 - 67	Cainozoic
	2	1.3	67 - 157	Tertiary
	3	High	157 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

Layer	Resistivity (ohm_metres)	Thickness (metres)	Expected Geology
1	63	0 - 3.6	Surface
2	1.5	3.6 - 120	Cainozoic
3	High	120 +	Cambrian
1	3 0	0 - 5.5	Surface
2	1	5.5 - 115	Cainozoic
3	High	115 +	Cambrian
_			_
			Surface
			Cainozoic
3	14	120 +	Cambrian
-1	21.5	П - 8.5	Surface
			Cainozoic
			Tertiary
4			Cambrian
			•
1	10	0 - 23	Quaternary
2	2	23 - 126	Cainozoic
3	16.1	126 +	Cambrian
			* .
			Surface
			Cainozoic
3	High	143 +	Cambrian
			Quaternary
			Cainozoic
3	14.5	171 +	Cambrian
1	6.4	0 - 9.5	Surface
			Cainozoic
3	17	134 +	Cambrian
	1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2	Layer (ohm metres) 1 63 2 1.5 3 High 1 30 2 1 3 High 1 210 2 1.4 3 14 1 21.5 2 5.4 3 0.55 4 7.75 1 10 2 2 3 16.1 1 9.3 2 2.3 3 High 1 8 2 2.4 3 14.5 1 6.4 2 1.6	Layer (ohm metres) (metres) 1 63 0 - 3.6 2 1.5 3.6 - 120 3 High 120 + 1 30 0 - 5.5 2 1 5.5 - 115 3 High 115 + 1 210 0 - 5.5 2 1.4 5.5 - 120 3 14 120 + 1 21.5 0 - 8.5 2 1.4 120 + 3 0.55 136 - 152 4 7.75 152 + 1 10 0 - 23 2 2 2 3 - 126 1 9.3 0 - 13 2 2.3 13 - 143

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED) 22

•				
	Laver	Resistivity (ohm_metres)	Thickness (metres)	Expected Geology
Line 5 2000₩	1	4	0 - 25	Quaternary
	2	2	25 - 160	Cainozoic
	3	14.7	160 +	Cambrian
3000W	1	9.• 5	.0 – 11	Surface
	2	2.37	11 - 154	Cainozoic
	3	16	154 +	Cambrian
4000W	1	5	0 - 6	Surface
	2	2	6 - 130	Cainozoic
	3	16	130 +	Cambrian
8 •				
Line 6 1000N	1	7. 5	0 - 7.5	Surface
	2	1.9 - 2.1	7.5 - 145	Cainozoic
	3	16	145 +	Cambrian
20001	4	ál		Ċ
2000N	1	24	0 - 4	Surface
	2 3	3. 6 8	4 - 28	Quaternary
	<i>5</i> 4	4.55	28 - 132 132 - 178	C _a inozoic Tertiary
	5	4• 55 ; 18	132 - 178 178 +	C _{ambrian}
	ر	10	1/0 +	ogmottan
3000N	1	4	O - 17.5	Surface
	2	7	17.5 - 139	Cainozoic
	3	1.95	13.9 - 172	Tertiary
	4	16.1	172 +	Cambrian
4000N	1	4.8	0 - 11	Surface
	2	6	11 - 116	Cainozoic
	3	2.4	116 - 168	Tertiary
	4	21	168 +	C _{ambrian}

•••/18

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED) 023

	Layer	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 6 5000N	1	5. 5	0 - 8.5	Surface
	2	8.25	8.5 - 136	Cainozoic
	3	2.55	136 - 166	Tertiary
	4	18	166 +	Cambrian
6000N	1	5	0 - 7.5	Surface
•	2	7. 5	7.5 - 50	Quaternary gravel
				and/or limestone
	3	2.8	50 – 175	Tertiary
	4	9.6	175 +	Cambrian
7000N	1	8	O - 15	Surface
	2	Lį	15 - 135	Cainozoic
	3	1.2	135 - 161	Tertiary
	4	15	161 +	Cambrian
8000N	1	4.8	O – 13	Surface
	2	6	13 - 85	Cainozoic
	3	1.8	85 - 158	Tertiary
	4	15	158 +	Cambrian
				†
9000N	1	17	0 - 5.5	Surface
	2	5.1	5.5 - 12	Quaternary
	3	7.5	12 - 95	Cainozoic
	4	2.25	95 - 178	Tertiary
	5	14.7	178 +	Cambrian
10000N	1	<i>7</i>	0 - 8.7	Surface
	2	4.55	8.7 - 89	Cainozoic
	3	1.92	89 – 156	Tertiary
	L	15	156 +	Cambrian

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	<u>Laver</u>	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 6 11000N	1	.6	0 - 21	Quaternary
	2	2.5 - 3	21 - 199	Cainozoic
	3	8	199 +	Cambrian
			,	
12000N	1	8	0 - 46	Quaternary
	2	2.4	46 - 180	Cainozoic
	3	15	180 +	Cambrian
13000N	1	10	0 - 38	Quaternary
	2	3	38 - 190	Cainozoic
	3	11.9	190 +	Cambrian
4/ 0000	•	88		
14000N	1	80 -	0 - 3	Surface
	2	5	3 - 29	Quaternary
	3	17.5	29 - 69	Cainozoic gravel
				and limestone
	4	2.2	69 - 150	Tertiary
	5	High	150 +	Cambrian
15000N	1	80	0 - 4.6	Surface
אוטטטכן	2	5.6	4.6 - 18	
				Quaternary
	3	7	18 - 110	Cainozoic
	4	2.1	110 - 189	Tertiary
	5	High	189 +	C _{ambrian}
16000N	1	3	0 - 8.5	Surface
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	4.4	8.5 - 96	Cainozoic
	3	1.3	96 - 170	Tertiary
	4	9.8	170 +	Cambrian
	-	> 0	37 U T	-400-4400

TABLE 1 - DETAILED SOUNDING INTERPRETATION (CONTINUED)

	Laver	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 6 17000N	1	6.6	0 ~ 8	Surface
	2	4.2	8 - 30	Quaternary
	3	6.9	30 - 73	Cainozoic
	4	2.4	73 - 193	Tertiary
	5	15	193 +	Cambrian
18000N	1	6	0 - 8.5	Surface
	2	15	8.5 - 85	Cainozoic
	3	1	85 - 14 5	- (7)
	4	High	145 +	Cambrian

At most soundings listed in Table 1 the first layer interpreted reflects near surface resistivity conditions. The resistivity and thickness of this layer is largely dependent upon surface moisture conditions and the separation of the first reading. At the remainder, the surface layer is too thin to be resolved from the underlying Cainozoic layer with first readings of r=10 metres. In such cases the first layer is the Cainozoic.

At most soundings the second layer, or first layer where no surface layer has been interpreted, has been loosely labelled Cainozoic. Resistivities of this layer are generally under 10 ohm metres. The exceptions are expected to be layers containing a high percentage of secondary 'limestone' and/or gravels. They vary from 10 to 40 ohm metres dependent upon the proportion of limestone and gravel compared with finer grained factions. These limestone layers are up to 60 metres thick. The only feature identifying them as Cainozoic is that they overlie Cainozoic layers (resistivities under 10 ohm metres), in areas of otherwise thick Cainozoic section. The prevailing geo-electric conditions are correlatable to drill evaluated type-examples at Billeroo West.

The geology of the Cainozoic layers interpreted would vary from clay and silts (low resistivity values) to sand and gravels

..../21

(higher values). Very low values (say under 2 ohm metres) may reflect very saline conditions. Higher values are also characteristic of drier and shallow Cainozoic sections.

The final layer interpreted has been taken as Cambrian basement. However, it could in part include Precambrian rocks, particularly on line 1. Cretaceous rocks are not expected to occur. The majority of basement resistivities fall into the range 10 - 40 ohm metres. These are similar values to those encountered at Billeroo West where the basement was weathered Cambrian. High values generally imply that the basement resistivity cannot be determined with any reliability from the soundings. Some of the basement resistivities on line 1 are very high (approaching infinity). The same resistivities were encountered over most of the Koonamore area and from surface geology are expected to be Precambrian quartzites or other crystalline rocks of similar age.

Multi-separation sounding analysis was carried out over each line to locate possible errors or erroneous results (i.e. isolated sharp departures at one reading point only). Such departures may not be errors, but if a corrected reading is placed back in the sounding graph, more often than not any rajor doubt in sounding interpretation can be removed. The analysis is not included in this report, but is available if required.

<u>Profile</u> Interpretation

The data obtained from both the detailed and rapid soundings is presented on Plates 3-7 in two alternative forms.

- (a) Pseudo-section The chief advantage of the pseudo-section is that it isolates vertical contrasts (due to resistivity changes within the basement) from horizontal contrasts (intra-basinal changes). It also tends to highlight shallow sand, gravel and secondary limestone deposits.
- (b) Superimposed profile curves Data recorded at r=130, 200 and 320 metres have been plotted as profiles, superimposed on each other for easy comparison. The profile curves show changes in depth to basement and resistivity contrasts. The relationship

. . . . / 22

between the individual curves combined with sounding depth to basement determinations identify channelling anomalies.

(c) Interpreted Sections — The interpreted sections plotted beneath the profiles summarizes the conclusions made from the profile and sounding interpretation. The sounding data is of chief importance in constructing the section, but the profiles, pseudosections and where used, multi-separation sounding analysis, take the doubt out of the interpretation.

Geological Interpretation

The interpreted thickness of Cainozoic sediments at Curnamona varies from 25 to 210 metres. Over most of the E.L. the interpreted depth to basement is between 140 and 180 metres. The shallowest sections occur on line 1 adjoining the Koonamorg Prospect (see Report 239) with the deepest overall sections on lines 3, 4 and 6. The contact between Precambrian and Cambrian basement would appear to occur between lines 1 and 2.

Deeper Cainozoic sections (Channelling Anomalies) can be interpreted as follows.

TABLE 2 - DEEPER CAINOZOIC SECTIONS

1. 6		Average Depth to Basement (in metres)
<u>Line Number</u>	<u> Line Interval</u>	pasement (in metres)
1	4750E – 8250E	140
2	9250W - 7000W	190
2	500E – 3250E	165
2	8500E – 13500E	170
* 3	4250W ~ 2000W	180
3	4500E - 9500E	175
3	15250Ë – 17750E	160
4	00Ë - 750E	184
4	5250E - 9500E	180
5	750W - 1250E	160
* 5	7000E - 8500E	170
6	10750N - 13500N	190
	 * Interpretation questionable 	3

028

The most important sections listed in this group are those considered likely to coincide with channelling. These would be thicker sections with steeper sided walls. Unless the channel parallels, or runs at an angle to the line, the optimum width for a channel in the Frome Embayment might be 1 - 2 kilometres.

Channelling is interpreted to occur as follows:

Line	1	6750E		8250E
Line	2	9250W	_	7000W
Line	2	500 E	-	3250E
Line	3	4500E	· 	7500E
*Line	.4	OOE	. ****	750 E
*Line	5	750W	-	1250E
Line	6	10750N	_	13500N

^{*} Questionable Channel Anomaly

<u>Discussion on Plate 1</u>

The net conclusions of the survey are presented on Plate 1. Depths to basement are partially contoured at intervals of 20 metres. However, because of the wide line spacing it is difficult to predict to any accuracy what happens to interpreted channels between lines.

Interpreted Channel segments have been joined to give an idea of possible meander path. The meander path selected is not the only one available. Likely channel paths are shown by heavier dashed lines and possible channels or local deeps by thinner dotted lines.

The Killawarra Channel Anomaly (see Report 239) has probably been intersected on line 1 and 2 as shown. The Curnamona Channel, known to occur on the adjoining Billeroo West E.L., probably enters the survey area by crossing line 6, just to the south of line 4. Depths to basement further north on line 6 suggest a channel may closely parallel the line. The Curnamona Channel may have crossed line 3, but probably flowed westwards between lines 3 and 4, perhaps keeping closer to line 4 than 3. The channel anomaly near Curnamona Homestead on line 3 may be a northerly continuation of the Killawarra Anomaly. This channel may have joined the Curnamona Channel between lines 3 and 4.

Extensions of the resistivity traverses westwards, outside the survey area suggest another probable channelling anomaly occurs on line 2, with a possible anomaly on line 3.

Overall, depths to basement are greater in the Curnamona E.L. than eastwards in Billeroo West (moving away from the Benagerie High). Depths to basement may continue to increase progressively westwards towards the Flinders Ranges, supporting the possibility of a westerly drainage pattern.

<u>Discussion on Plate 2</u>

Plate 2 is a partial contour plan of the r = 320 resistivity results. Higher apparent resistivity values occur in the southern part of the survey area near Precambrian subcrop. The values decrease northwards as the Cainozoic section increases. Resistivity values on lines 2 northwards are similar to those occurring on Billeroo West, where the basement is Cambrian.

Recommendations

(a) Drilling - A preliminary drilling programme is recommended to test the Killawarra and Curnamona Channel Anomalies that occur within E.L.

Initial holes are recommended at the following sites.

(i) Priority 1 (probable Channels)

Line 1 7500E Line 2 2000E Line 3 6000E Line 6 12500E

Step-out holes are recommended at intervals of 500 metres either side of the initial holes to test the anomaly and to determine the uraniferous potential of the Channel sands.

(ii) Priority 2

- If considered warranted other possible channels or areas of thicker Cainozoic Section could be tested by drilling. Initial holes are recommended

030

as follows:

Line 2 10500E
Line 3 16500E
Line 4 00E
Line 4 8000E
Line 5 500E
Line 6 17000N

Drillsites have not been recommended outside the E.L.

(b) Resistivity - Resistivity could be used to follow-up areas of interest after completion of the drilling programme recommended above. In particular the method could more accurately define the path of any uraniferous channels located.

Murdoch Geophysics (Australia) Pty. Ltd.

(Inc. in N.S.W.)

Specialists in Electrical Resistivity Surveys

031

Phone: Maroochydore (071) 43 3178 (071) 44 1267 - After hours

14 Mallawa Street, Kawana Waters, via Mooloolaba, Qld. 4557 Australia

29th September, 1976.

Mr. D. Brunt, Mines Administration, 31 Charlotte Street, BRISBANE, QLD.

Dear David,

ADDENDUM TO REPORT 240

(a) Sounding Interpretation

The following corrections are made to sounding interpretation on line 1.

on tine 1.	Layer	Resistivity (ohm metres)	Thickness (metres)	Expected Geology
Line 1 OOE	1	15	0 - 7.5	Surface
	2	3. 75	7.5 - 82	Cainozoic
	3	17	82 +	Cambrian Shale?
1000E	1	5.5	0 - 9	Surface
	2	9.6	9 – 36	Quaternary
	3	4	36 - 100	Tertiary
	4	6.25	100 - 120	Weathered basement
	5	Very high	120 +	Precambrian quartzite
2000E	1	10	0 - 28	Quaternary
	2	5	28 - 100	Cainozoic
	3	7. 5	100 - 128	Weathered basement
	4	Very high	1 2 8 +	Precambrian quartzite
3000E	1	12	0 - 9.5	Surface
	2	7.8	9.5 - 90	Cainozoic
	3	9	90 - 120	Weathered basement
	4	Very high	120 +	Precambrian quartzite

The changes made do not affect any of the channelling anomalies interpreted.

On Plate 1 Tertiary resistivities have been plotted in brackets beneath interpreted depth to basement values. Ideal resistivities for the Tertiary section over channels within the Frome Embayment are 2 - 4 ohm metres. Experience shows that substantially more resistive Tertiary sections (i.e. over 6 ohm metres) generally contain either very coarse detritus or vis a weathered basement layer confused with the Tertiary section. Tertiary resistivities on line 1 and the eastern end of line 2 are above 6 ohm metres, whereas except for isolated cases elsewhere on Curnamona, values are under 5 ohm metres. Therefore it is possible that depths to basement on line 1 and the eastern end of line 2 have been overstated. The thickness of Tertiary section may be less than shown. However, the best target on line 1 is still 7500E and drilling was not recommended at the eastern end of line 2.

(b) <u>Plate 1</u> – The above changes somewhat downgrade the Killawarra Channel Anomaly on line 1 and also on the Koonamore Block to the south.

From drill evidence, the direction of flow of the Curnamona Channel is likely to be as shown on Plate 1 rather than as proposed in the body of the report.

The recommended drillsites remain the same, with perhaps line 1 7500E being given priority 2 status instead of priority 1.

Yours faithfully, MURDOCH GEOPHYSICS (AUSTRALIA) P/L,

R. MURDOCH, MANAGER.

heludech

MINES ADMINISTRATION PTY. LIMITED

31 CHARLOTTE STREET BRISBANE 4000

Postal Address: BOX 880 G.P.O. BRISBANE 4001

Telephone: 221-2366 Telegrams: MINAD, Brisbane

: AA42395 Telex

25th October 1976

The Director of Mines, Department of Mines, P.O. Box 151, EASTWOOD. S.A. 5063.

Dear Sir,

Quarterly Report EL 254 (Curnamona)

Please find enclosed the Quarterly Report for Exploration Licence No. 254 for the quarter ended 1st October 1976.

Expenditure during the quarter totalled \$7 720 - details are contained in the attached statement.

If there are any queries regarding this report, please do not hesitate to contact me.

Yours faithfully,

ADMINSTRATION PTY LIMITED

Manager: MTA

attch RB:SF

QUARTERLY REPORT

EL 254 (CURNAMONA) SOUTH AUSTRALIA

PERIOD 2/7/76 TO 1/10/76

Exploration Licence 254 which covers an area of 716 square kilometres in the southwestern Lake Frome area of South Australia (see Fig. 1), was granted to Mines Administration Pty Limited and Teton Exploration Drilling Company Pty Ltd, on the 2nd July 1976.

During the first quarter ended 1/10/76, a reconnaissance surface resistivity programme was carried out over the EL, to delineate possible Lower Tertiary palaeochannels considered prospective for uranium mineralization.

Resistivity Survey

The resistivity survey was carried out by Murdoch Geophysics (Aust) Pty Ltd of Kawana Waters, Queensland, during July and August 1976, and was planned to delineate Tertiary palaeochannels. Six resistivity profiles were run predominantly east-west across the EL. Each profile consisted of detailed Schlumberger Array soundings at intervals of 1 kilometre with rapid 3 point soundings at intervening intervals of 500 metres. All soundings were expanded parallel to the traverse line. For detailed soundings, 22 different current electron separations were used.

One, and possibly two palaeochannels were interpreted from the survey. The main Curnamona/Killawarra palaeochannel heads north, then northeast to east across the eastern boundary of the EL. Overall, changes in basement relief are fairly subtle with the possibility of Lower Tertiary sand development over wide areas of the EL. The full report on the resistivity survey is enclosed.

An openhole drilling programme is planned for the next quarter, to examine the resistivity interpreted palaeochannels; to determine their morphology, and evaluate their potential for uranium deposits.

Expenditure during the quarter totalled \$7 720 - an expenditure statement is attached.

G. K. ELLIS

Attachments: Results of resistivity survey on EL 254

: Statement of expenditure for period ended 1/10/76

Brisbane 25th October 1976

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1/10/76

Geophysical & Geological Costs	\$	\$
Salaries & Wages	1 099	
Drafting Supplies	8	
Contractor Geophysical	6 593	7 700
		
Logistics		
Communications		20
		
		\$ 7 720
		

M. A. EGERT
Assistant Accountant

AC-MDE

MINES ADMINISTRATION PTY. LIMITED

31 CHARLOTTE STREET BRISBANE 4000

in

036

Postal Address:

BOX 880 G.P.O. BRISBANE 4001

Telephone: 221-2366

Telegrams: MINAD, Brisbane Telex: AA42395

26th January 1977

The Director of Mines Department of Mines P.O. Box 151 EASTWOOD S.A. 5063

Dear Sir,

Quarterly Report EL 254 (Curnamona)

Please find enclosed the Quarterly Report for Exploration Licence No. 254 for the quarter ended 1st January 1977.

Expenditure during the quarter totalled \$19,262 - details are contained in the attached statement.

If there are any queries regarding this report, please do not hesitate to contact me.

Yours faithfully,

MINES ADMINISTRATION PTY. LIMITED

encs

Brisbane 26th January, 1977

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.1.76

Geophysical and Geological Costs	\$	\$
Salaries & Wages	3,962	
Drafting Supplies etc	27	
Contractor - Geophysical	3,171	7 , 160
Logistics		
Equipment Hire	35	
Vehicle Running	801	
Travel & Accommodation	216	
Communications	103	1,155
Drilling Costs		
Contractor - Drilling	10,947	10,947
		\$19 , 262

M. A. EGERT
Assistant Accountant

AC-MDE

QUARTERLY REPORT

EL 254 (CURNAMONA) SOUTH AUSTRALIA PERIOD 2/10/76 to 1/1/77

Exploration Licence 254 which covers an area of 716 square kilometres in the southwestern Lake Frome area of South Australia (see Fig. 1) was granted to Mines Administration Pty. Limited and Teton Exploration Drilling Company Pty. Ltd. on the 2nd July 1976.

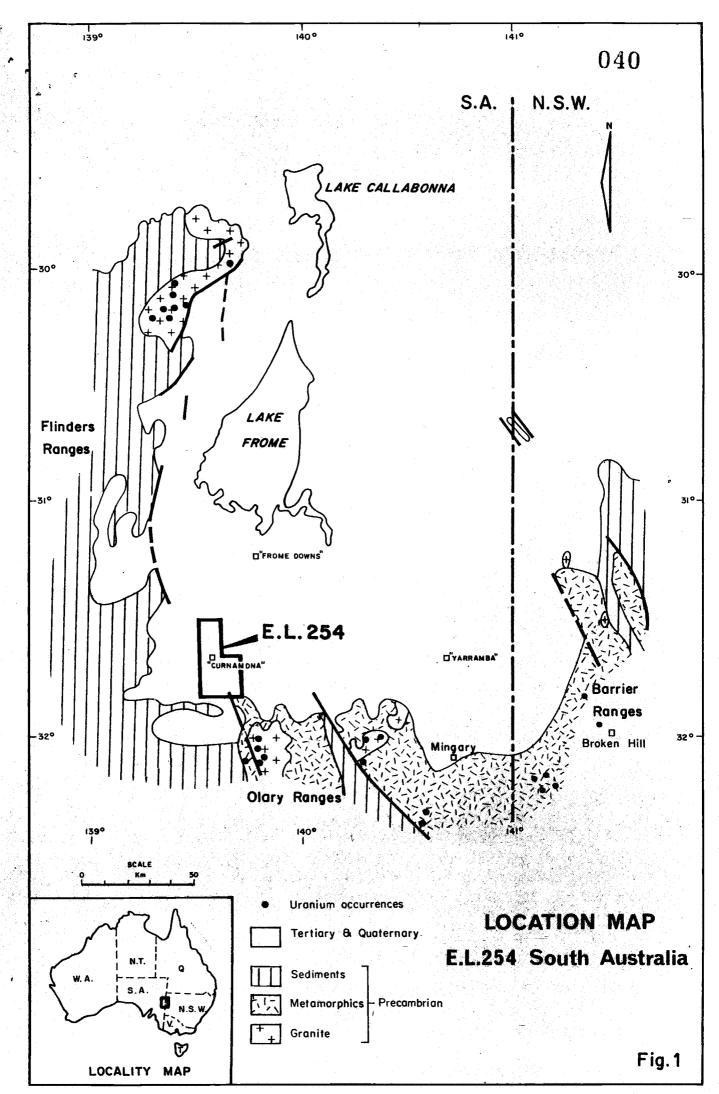
During the quarter ended 1/1/77, an openhole drilling programme was carried out on EL 254 to evaluate the potential of the resistivity interpreted palaeochannels, for uranium deposits.

Drilling Programme

From the 8th November to the 1st December 1976, a 22 hole, 3115 metre openhole drilling programme was carried out on EL 254 Curnamona. The drilling was undertaken by W. L. Sides and Son Pty. Ltd. of Clayton, Victoria, using a Mayhew 1000 rotary drilling rig. Cutting samples were collected from all holes and described at 1.5 metre intervals from surface to total depth. All holes were logged for gamma-ray, resistivity, and spontaneous potential by Geoscience Associates (Australia) Pty. Ltd. of Kilkenny, South Australia. The gamma-ray unit was calibrated against two in-ground uranium ore test pits, in turn calibrated against the United States Atomic Energy Commission test pits in Wyoming.

The main aim of the drilling programme was to delineate the Curnamona and other "palaeochannels" located by previous Esso Australia Ltd. drilling and the recent surface resistivity survey carried out by Murdoch Geophysics (Australia) Pty. Ltd.

Preliminary evaluation of the results of the drilling programme indicate that the Curnamona palaeochannel is only poorly developed on EL 254, and the


other resistivity interpreted "channels" are very poorly developed or absent. The palaeochannel sands encountered contained no significant uranium mineralization.

Accurate surveying (position and elevation) of MTA and existing Esso Australia drill holes is presently being carried out. A detailed evaluation of the drilling results will be undertaken as soon as this work is completed.

Exploration expenditure during the quarter totalled \$19,262 - a detailed statement is attached.

G. K. ELLIS

27th January 1977

MINES ADMINISTRATION PTY, LIMITED

31-CHARLOTTE STREET BRISBAÑE 4000

041

Postal Address:

BOX 880 G.P.O. BRISBANE 4001

Telephone: 221-2366 Telegrams: MINAD, Brisbane Telex: AA42395

28th April 1977

The Director, Department of Mines, P.O. Box 151, EASTWOOD S.A. 5063

Dear Sir,

Quarterly Report EL 254 (Curnamona)

Please find enclosed the Quarterly Report for Exploration Licence No. 254 for the quarter ended 1st April 1977.

Expenditure during the quarter totalled \$899 - details are contained in the attached statement.

If there are any queries regarding this report, please do not hesitate to contact me.

Yours faithfully,

MINES ADMINISTRATION PTY. LIMITED

<u>Robert Bryan</u>

General Manager - MTA

attch

QUARTERLY REPORT

EL 254 (CURNAMONA) SOUTH AUSTRALIA

QUARTER ENDED 1/4/77

-042

bу

G.K. ELLIS

Exploration Licence 254 which covers an area of 716 square kilometres in the south western Lake Frome area of South Australia, was granted to Mines Administration Pty. Limited and Teton Exploration Drilling Company Pty. Ltd., on the 2nd July 1976.

During the quarter ended 1/4/77, the elevations of MTA and existing Esso Australia drill holes were accurately determined by a licensed surveyor, P.B. Simmons of Wattle Park, South Australia. A detailed evaluation of the drilling results is presently being carried out, and the report on this work will be submitted with the next quarterly report.

Exploration expenditure during the quarter totalled \$899 - a detailed statement is attached.

G. K. ELLIS

28th April 1977

Brisbane.

20th April, 1977.

MINES ADMINISTRATION PTY. LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.4.77


REF: AC/MDE

	\$	\$
Geophysical & Geological Costs		
Salaries & Wages	223	
Drafting Supplies etc.	8	
Contractor - Surveying	625	
Survey Consumables	2	858
Logistics		
Freight	5	
Travel & Accommodation	23	
Communications	<u>13</u>	41
		\$899
		- <u> </u>

M. A. EGERT.

Assistant Accountant.

EVALUATION OF RESULTS
OF DRILLING PROGRAMME
ON EL 254 (CURNAMONA)
NOVEMBER/DECEMBER 1976

G. K. Ellis July 1977

ON EL 254 (CURNAMONA) NOVEMBER/DECEMBER 1976

INTRODUCTION

From the 8th November to the 1st December 1976, a 22 hole, 3115 metre reconnaissance open hole drilling programme was carried out over portion of EL 254 (Curnamona). The drilling was carried out by W.L. Sides and Son Pty. Ltd. of Clayton, Victoria using a Mayhew 1000 drilling rig. Down hole logging (gamma ray, point resistivity and S.P.) was conducted by Geoscience Associates (Australia) Pty. Ltd., of Kilkenny, South Australia. On site supervision was provided by project geologist G. K. Ellis of Mines Administration Pty. Limited on behalf of the MTA Joint Venture.

The main aims of the drilling programme were to further delineate the Lower Tertiary Curnamona Channel located by previous E.A. Rudd, and Esso Australia drilling, and, resistivity interpreted tributaries, and to evaluate their potential for uranium deposits.

GEOLOGICAL SETTING

The area of investigation is in the southwestern corner of the Frome Embayment. It is located to the north of Willyama Complex crystalline and metamorphic rocks and Adelaidean sediments of the Olary Ranges; and to the west of the Upper Proterozoic (Adelaidean) and Cambrian sediments of the Flinders Ranges.

The Frome Embayment is essentially a lobe of shallow marine sediments of the Great Artesian Basin which gradually thin southwards. These sediments are absent south and southwest of Lake Frome. In the southern half of the Frome Embayment Lower Tertiary deposition, initiated as a response to uplift of the Olary Ranges, occurred in distinct fluvial palaeochannels incised into Cambrian and PreCambrian rocks.

BASEMENT STRATIGRAPHY

Proterozoic (?)

The oldest rock unit encountered in the area consists of yellow-brown to dark grey-brown, slightly fissile, and slightly micaceous slate. This unit

CONTENTS

	Page
INTRODUCTION	1
GEOLOGICAL SETTING	1
BASEMENT STRATIGRAPHY	1
Proterozoic	1
Cambrian	2
TERTIARY STRATIGRAPHY AND PALAEOGEOGRAPHY	. 2
Basal Sand	3
Lower Clay	3
Middle Unit	3
Upper Clay	. 3
Upper Unit	4
Middle Tertiary to Quaternary	4
URANIUM MINERALIZATION	5
CONCLUSIONS AND RECOMMENDATIONS	5
REFERENCES	7

LIST OF FIGURES

FIG. 1	Location Map								
FIG. 2	Stratigraphic Section								
FIG. 3	Structure Contours at the base of the Tertiary								
FIG. 4	Structure Contours at the base of the Tertiary, showing Basement Geology								
FIG. 5	Isopach Map - Basal Sand								
FIG. 6	Isopach Map - Middle Unit								
FIG. 7	Structure Contours at the base of the Limestone								
FIG. 8	Isopach Map - Limestone								

Composite lithological logs

CURNAMONA

ROTARY DRILLING

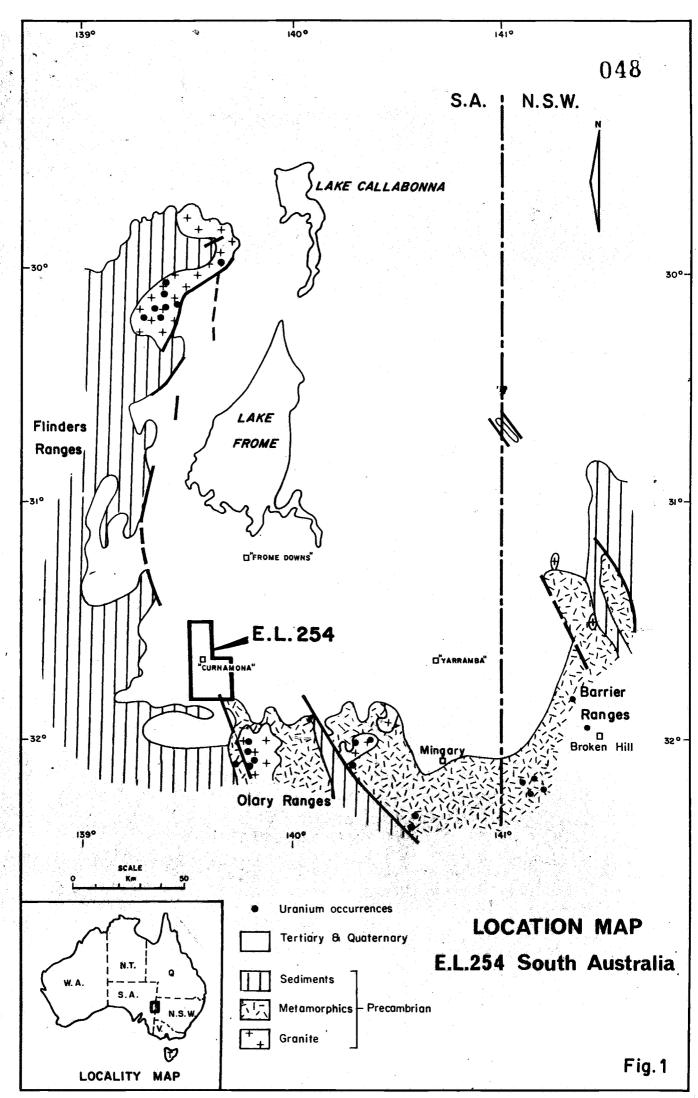
LOGGING

RESISTIVITY

FROME EMBAYMENT

ARROWIE BASIN

LOWER TERTIARY


PALAEOCHANNELS

NAMBA FORMATION

LIMESTONE

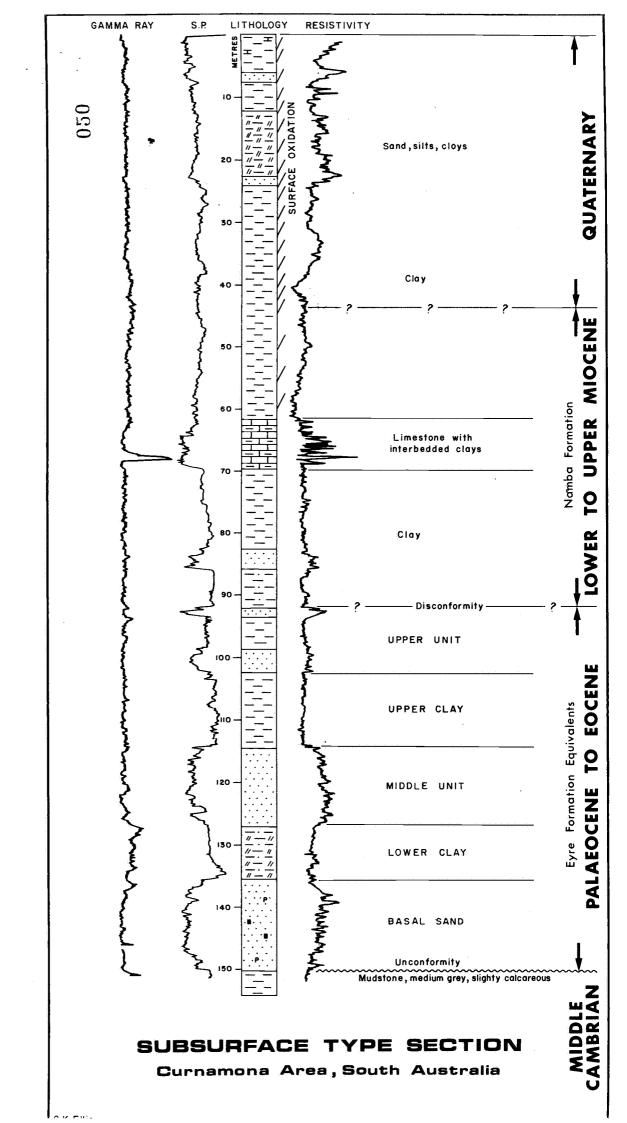
URANIUM

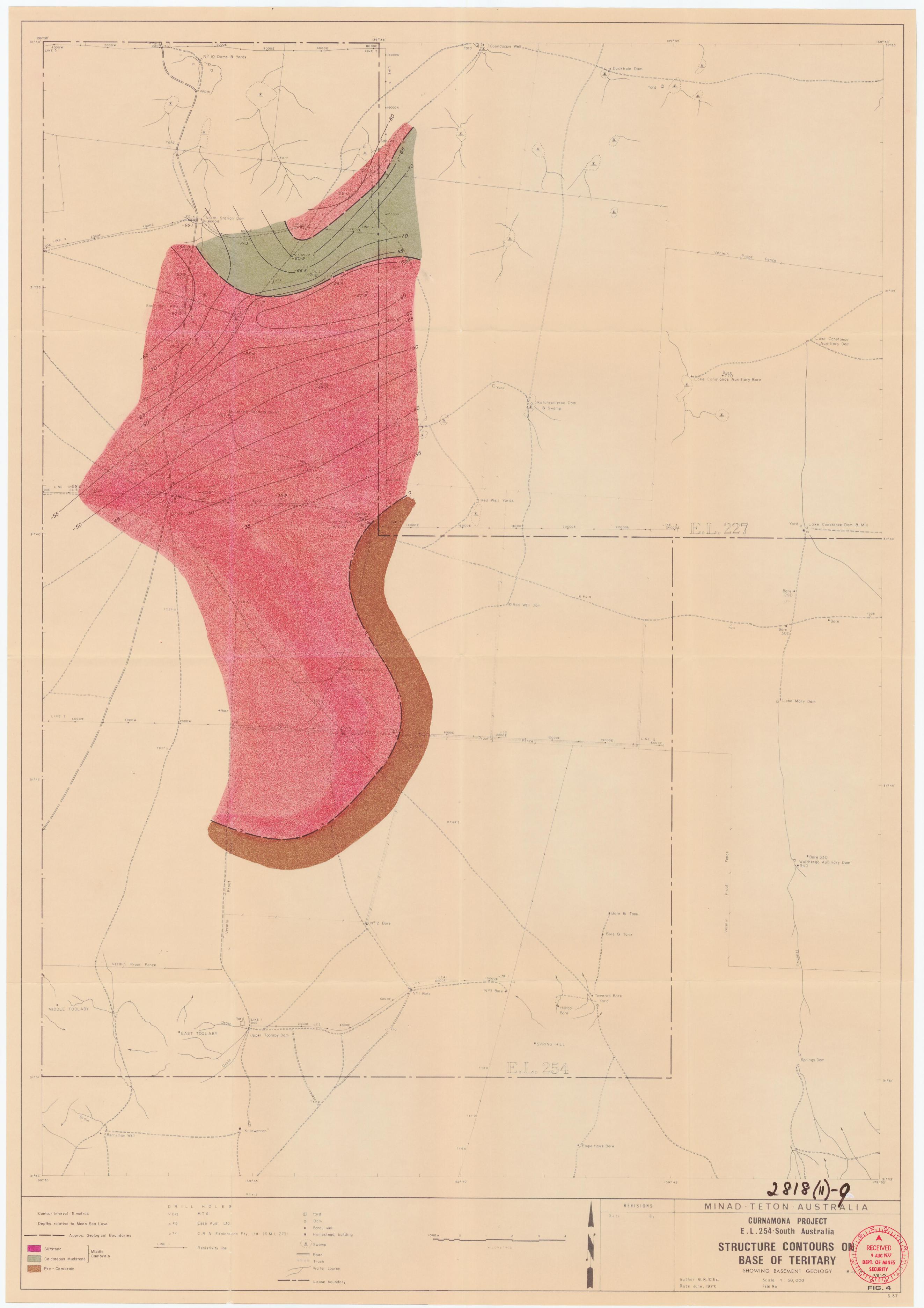
CURNAMONA 1:250,000 SHEET

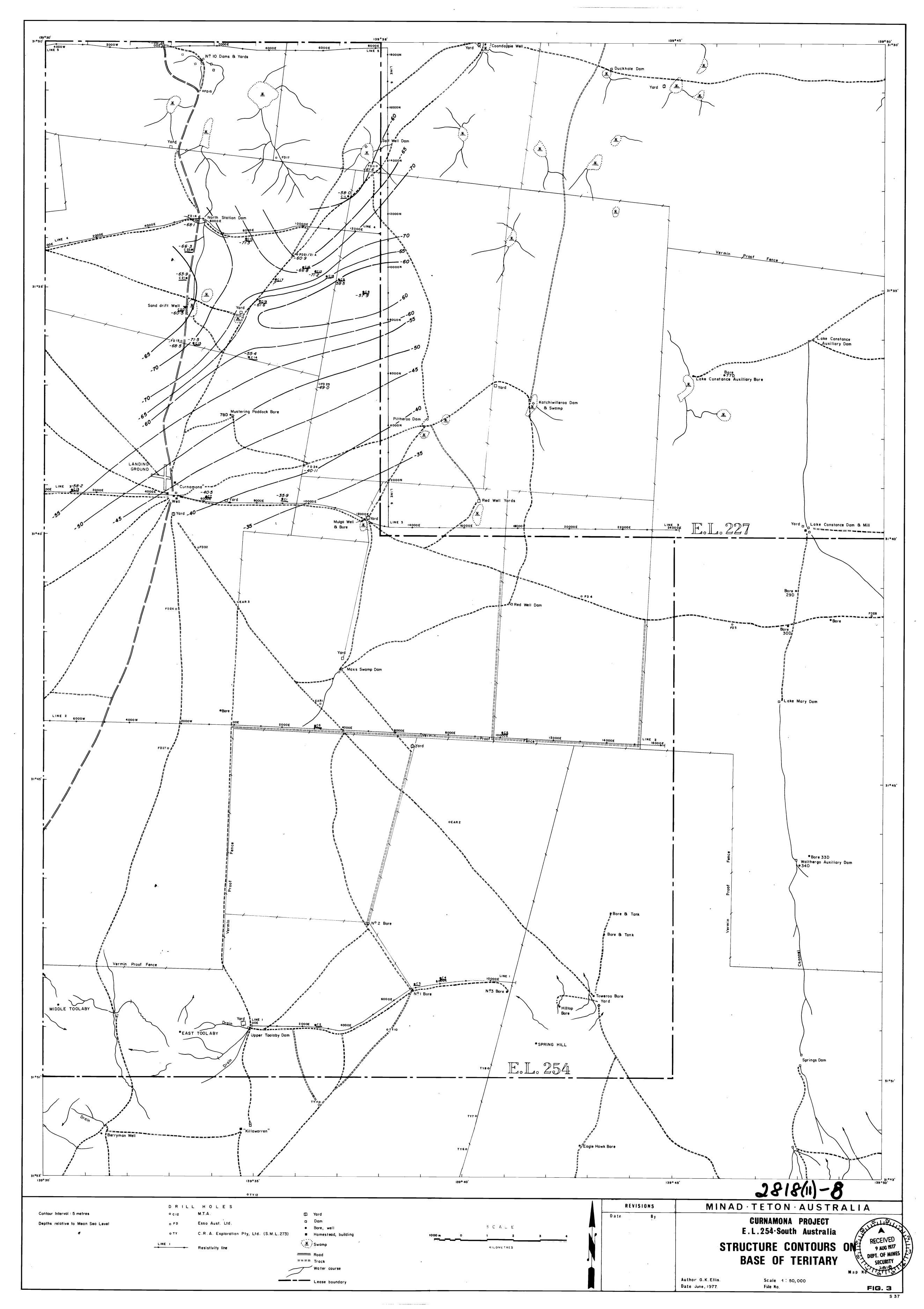
which was encountered in drill holes C2, 3 and 4 in the south of EL 254 (Fig. 4) is probably equivalent to the Adelaidean sediments outcropping in the Toolaby Hills to the west.

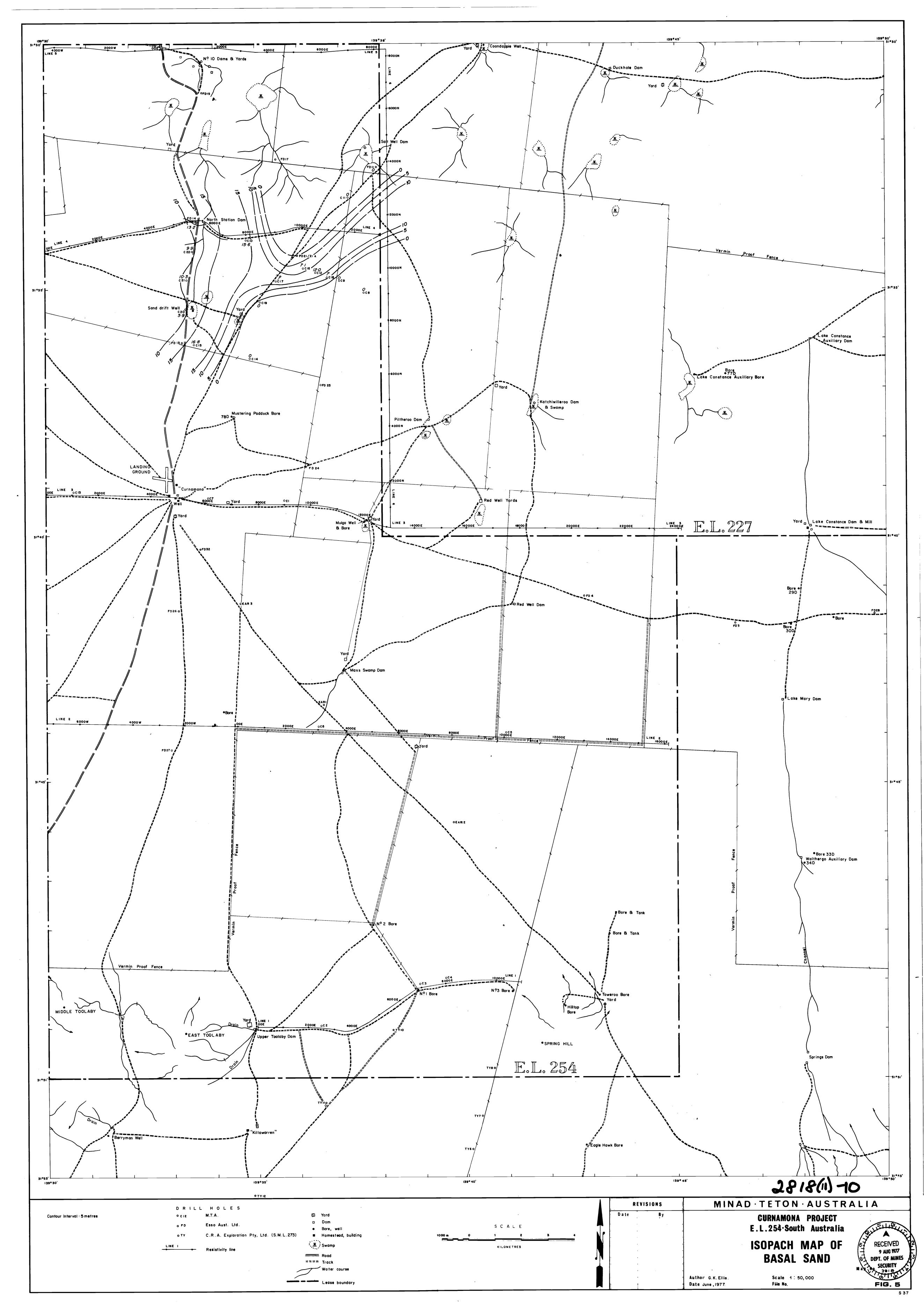
Cambrian

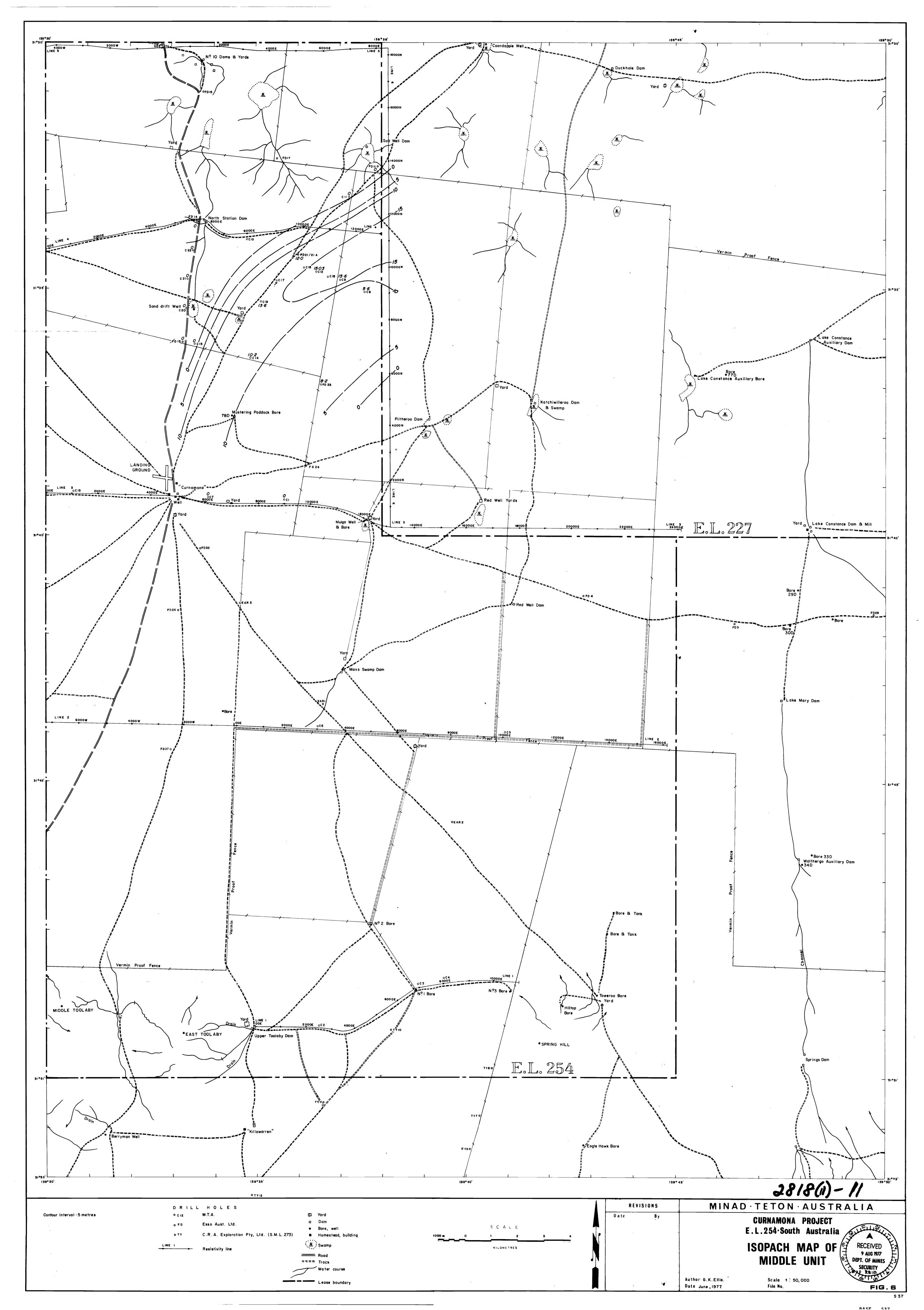
Basement in the northern two-thirds of the area is flat-lying micaceous red-brown shale, siltstone and minor sandstone (Fig. 4). These sediments are very similar to Middle Cambrian sediments in drill holes Lake Frome 1, 2 and 3 south of Lake Frome, which contain early Middle Cambrian sediments of the Arrowie Basin, dipping gently to the west (Wopfner, 1970) and probably equivalent to the Moodlatana or Balcoracana formations of the Frome Group, described by Daily (1956). Along the course of the Lower Tertiary Curnamona palaeochannel the "red beds" have been eroded exposing an underlying light to medium grey, slightly calcareous mudstone, which may well be equivalent to the Wirrealpa Limestone (Fig. 4). Deposition of these sediments occurred in a sublittoral environment.

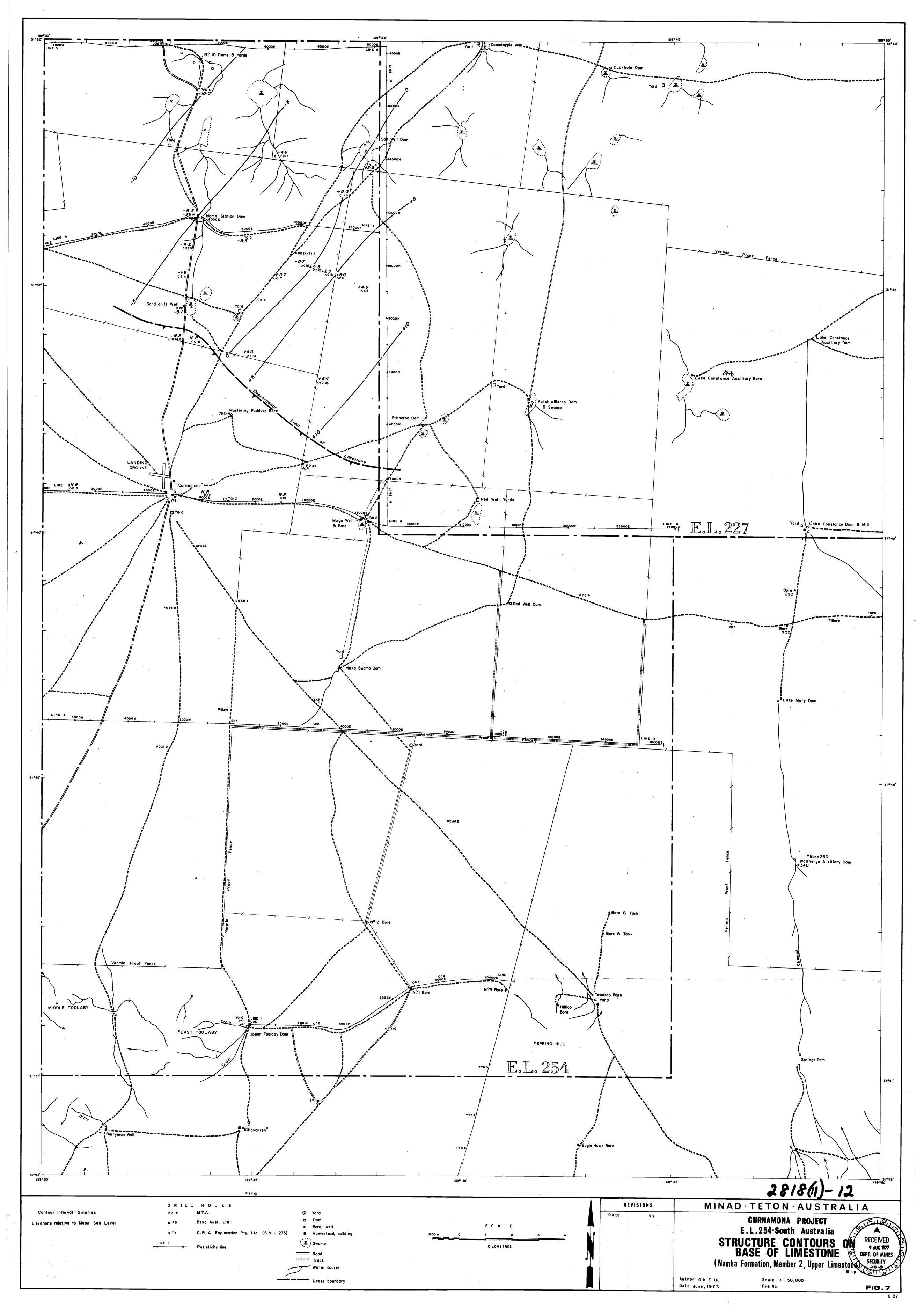

TERTIARY STRATIGRAPHY AND PALAEOGEOGRAPHY

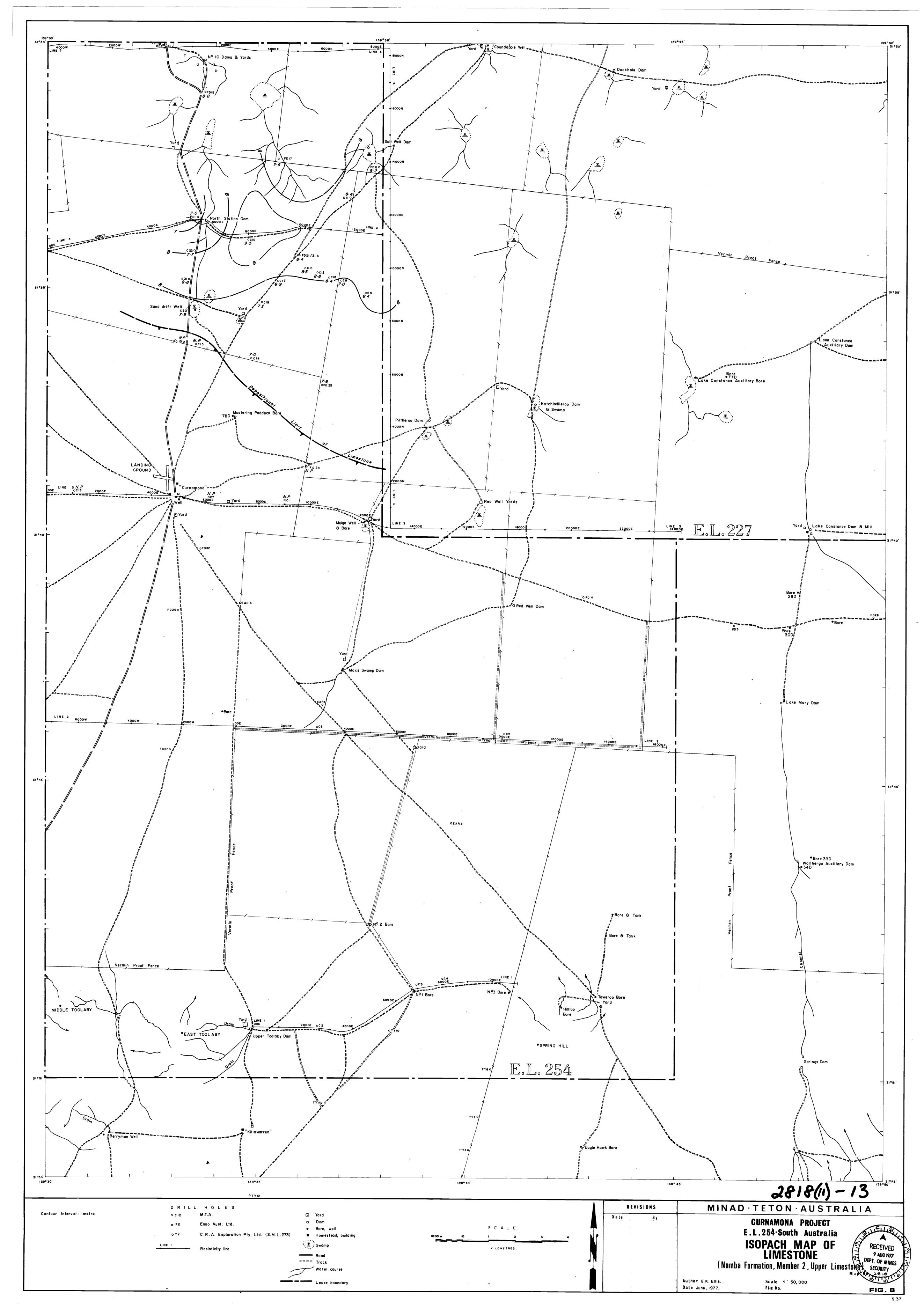

Lower Tertiary sediments are represented by a sequence of sediments deposited in the fluviatile environment of the Curnamona Channel. These sediments are equivalent to the Eyre Formation sediments described by Wopfner et al (1974). The generalized stratigraphic section is shown in Fig. 2.

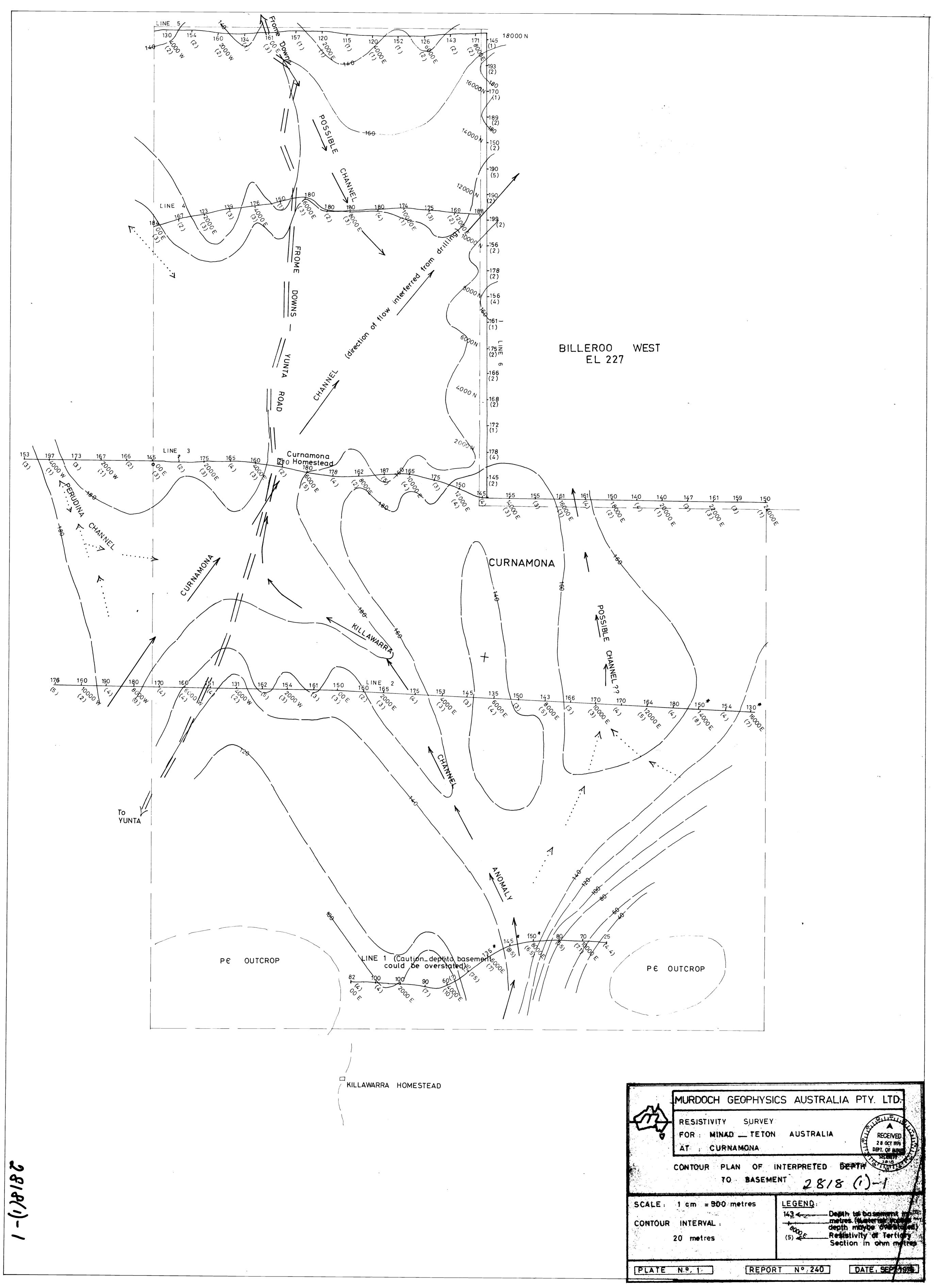

Exploration in the area has delineated the Lower Tertiary Curnamona palaeochannel. The Curnamona Channel is 5 to 10 kilometres wide, has been defined over 10 kilometres and contains up to 65 metres of channel-fill sediments. The channel extends from the central western boundary in an easterly to northeasterly direction across EL 254 (Fig. 3).


Deposition of the Lower Tertiary palaeochannel sediments occurred in a meandering river initially, with sinuosity increasing with time, which is partially indicated by the increase in width of the "channel" with time (Figs. 5 and 6). The Structure Contour Map at the Base of the Tertiary (Fig. 3) illustrates that the channel has virtually no gradient.


Detailed examination of the drill hole cuttings and the S.P., resistivity and gamma ray logs of MTA, and other company drill holes, has enabled the division of the palaeochannel section into five units (Fig. 2).

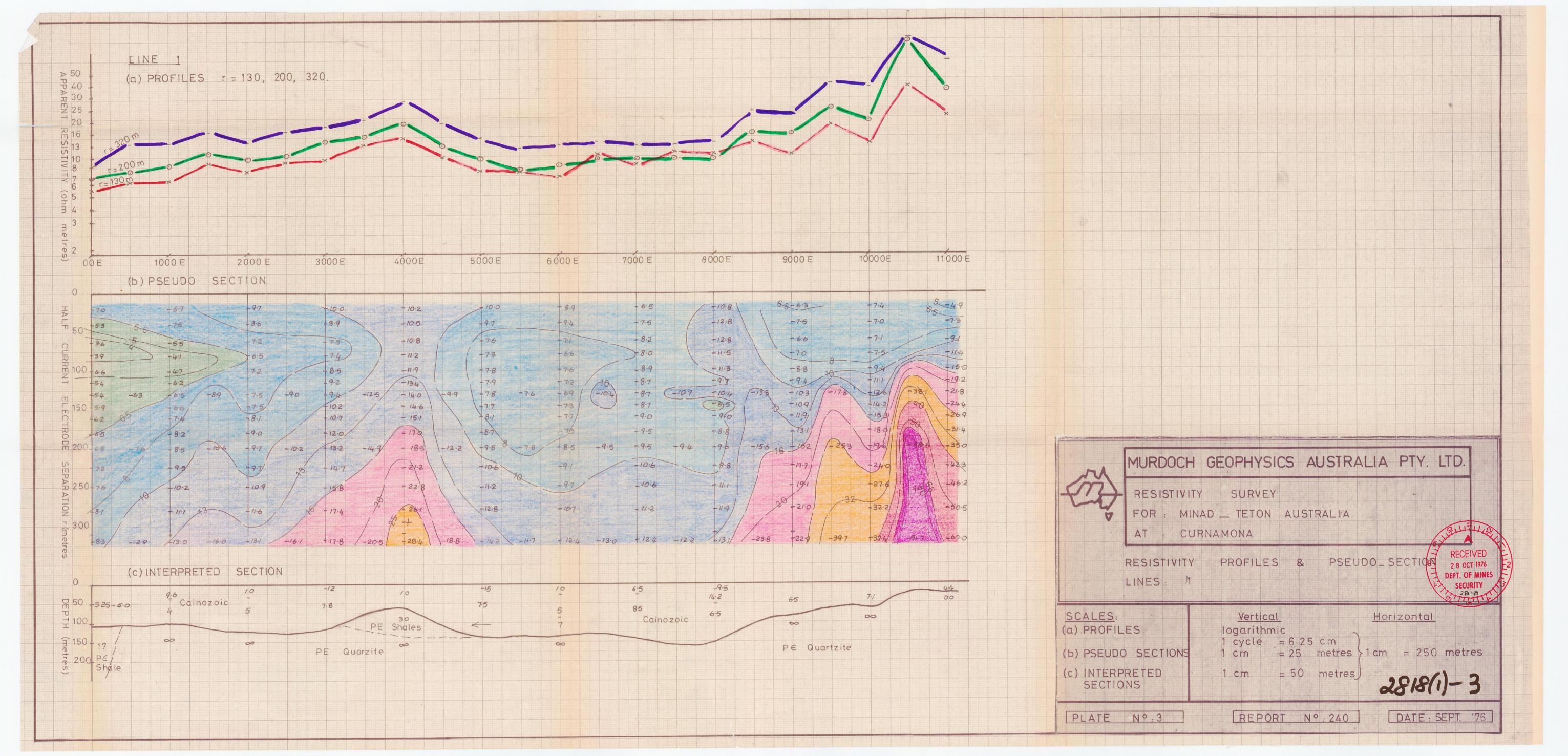


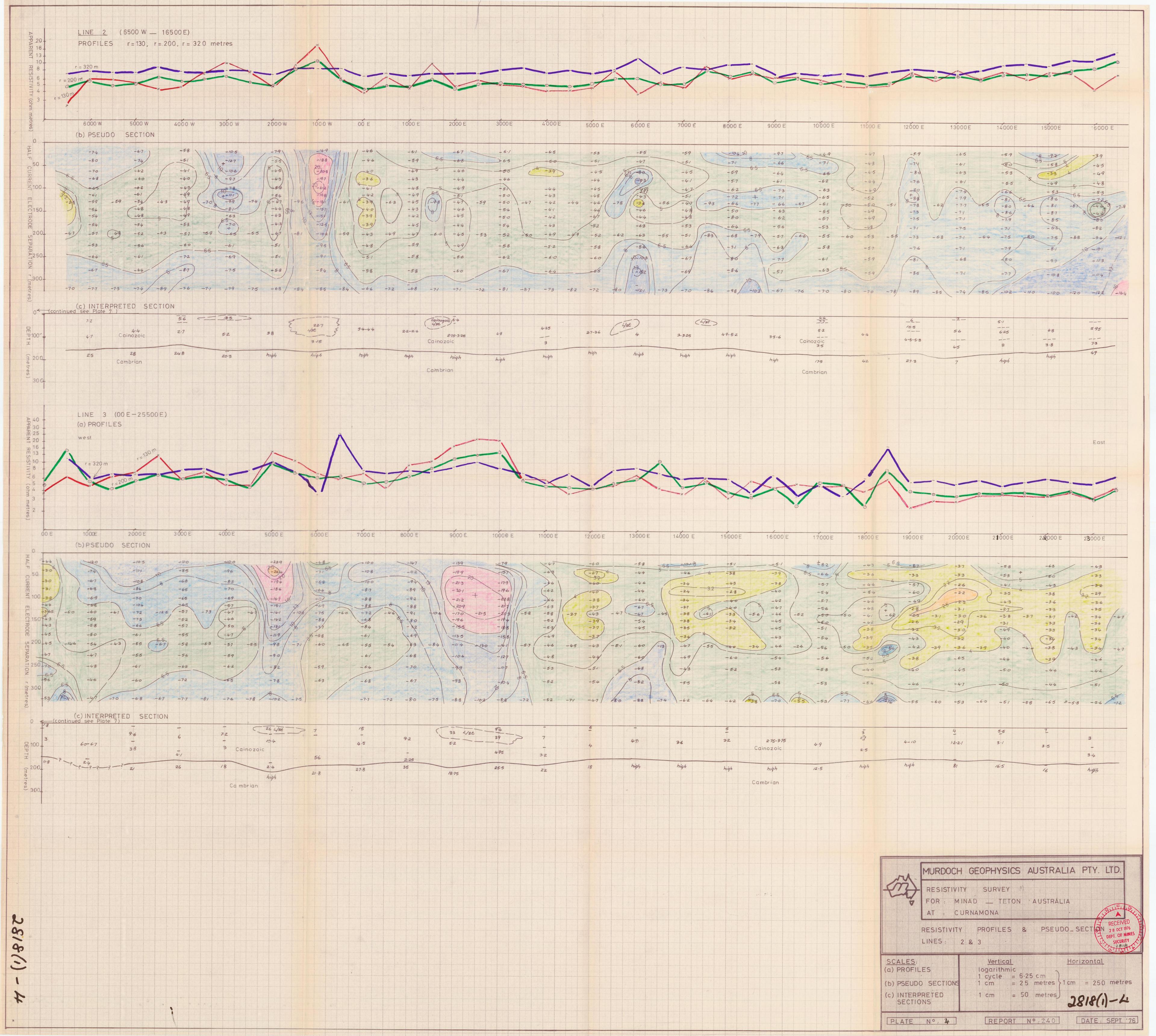


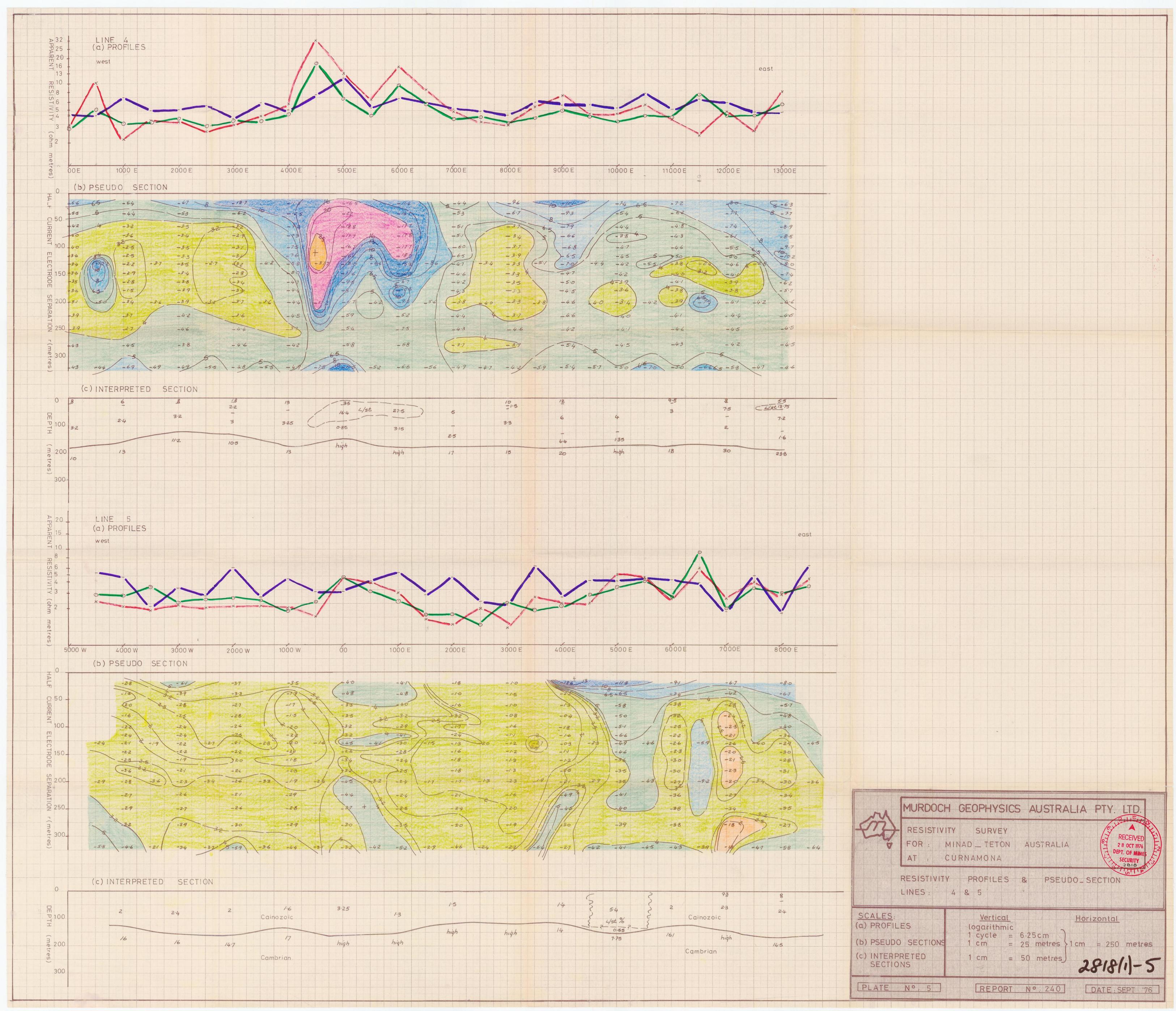


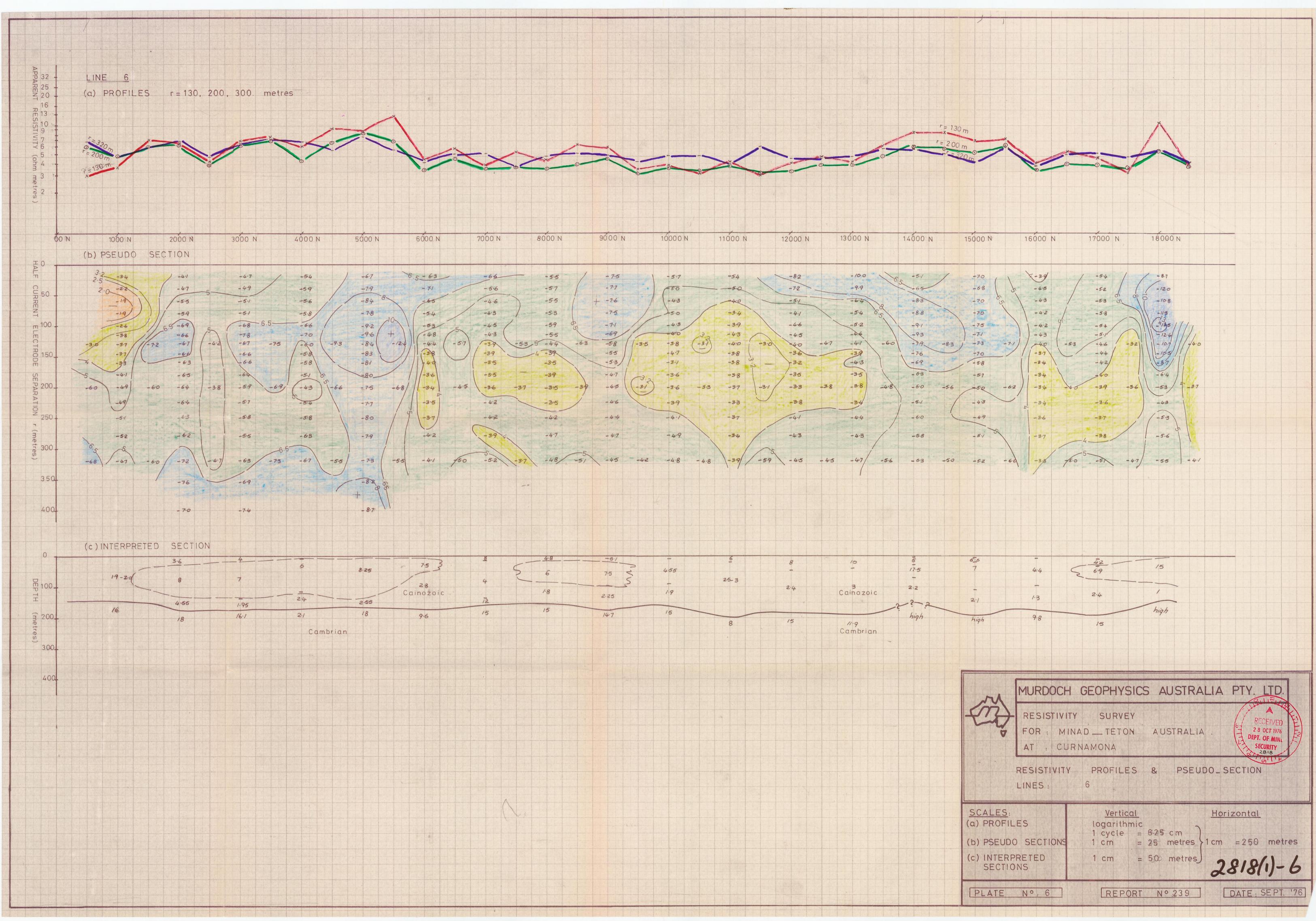
the state of the s

CONTOUR INTERVAL : 1 ohm metres under 10 ohm metres. Thence logarithmic


SCALE: 1 cm = 500 metres


28 OCT 1976
DEPT. OF MINES
SECURITY
2818


PLATE Nº: 2 REPORT Nº: 240


DATE: SEPT. 1926

LEGEND:

	CURNAMONA			HOLE SIZE 12cm MAIR MWATER HOLE NO. C1 LOGGEO BY GK ELLIS DATE 14/11/75
EVATION22.	LOCATION:			1.4.2 Pm 1.4.2 Cm
P		SCALE	<u> </u>	T.O. 200,000 P.D.
NALYSIS OR	RADIOACTIVITY	H STRIP		LITHOLOGY LOG
		1	, 	0-3.0 SPANDY CLAY med byn, ufg-fg, subvind, pour serbing strong limenite oxidential. 3.0 CLAY red bon, soft, 11 silly.
and the force of the late of the late of]===	,	3.0 CLAY red bm, coft, il silly.
3 4 1 1	*]==[,	tim- hald in pt -> calcase out (Economic
3 7 1 1 1	10		J'S	9.0 SAND - GRANEL orange bon, fq-eq-veq-lem sulvad, pour sorted, worm I manife existation.
]:::	12	12.0 SAND ways but fq-mg-cq, subvad-subang, prouly south
		∄]	/ ấু	2007
<i>{ 2</i>		<u>]</u> : : [[) `	18.0 SAND yellow wange, fg-mg, subound, fair-good souting
里发制		d .:-:-	18/2	Strong Imposite oxidation
		马:::::::::::::::::::::::::::::::::::::	150	24.0 SAND-CRAVEL enange by, mo-veg (1em) abral subary, for - poor covering, strong limitable oxidation
		3.6.9	نِ ﴿	l .
	30	_ <u></u>	/	31.3 Circl 14 gg and bon, silty, without bom horartile and getter timent and
			/	31.3 (10.4)
			/	
	40	4=		
		1==	/	
13 学量		1==	/	
3]=		3
R L]===		
国 国建		1==		
	• / •		,	
			l	
		1=-		
		.===		
3		1	1	72.0 CLAU It-med gy - med gy brm, sl illy in pt, sl andornais
			1	
		==	1	
		°====]	
		4=		
		·===	1	
		====		
		1=	-	
		<u>, ====</u>	_	
		1=	-	
		4=		
		4=	-	
		"===		
		直三	-	
3		===		
KIII		20-]	-	
]	-	
以三、但]=	-	0
		ᆗᆖ	=	128.0 STUTTEN IN DECEMBER AND DESCRIPTION OF STUTE
} /		**====================================	_	(ord green gent)
		1	-	
		====	-	2818 (1)-9
		40-		× 010 C13
1 + " >= 1	月 111111111111111111111111111111111111	1	_	

	135.4m	LOCATION:				LOGGED BY G.K.ELLIS DATE 9-11-76
AP			SCALE		the same of the same of the same	T.D. 88.5 m P.O. 87.0 m
ANALYSIS	OR RADIO	ACTIVITY DEPT	TH STRIP			LITHOLOGY LOG
y in	I ZA I		1==1	/		n-red bon , colcurous , SI sorly
	Ub		==	100	3.0-12.0 CLHY rd	dbm-yellowbm, soft.
			1	LE B		
33		10	1==	/ &	12 ALA 2 2 AL C.C.	d bun, fa-vice -> GRAVEL (Icm) subund, poor into cooldation
			1	7 2	sorted strong limor	ite coldation
7 1				1 9	: O. S - CLAY NA bon	i, silly , coft
			.]==	13		
3]==	1 2		
3			3==	ľ	24.0 RLAY It gy wi	th yellow limenite and red has matite mottle
3]			•
	12116	-30	-===	ľ		the territory of the death.
}			1==		330 CLAY Hay-wh	inter, kardinitie , 1-ft, 11 cilly, le nutthing in pt
			==	ľ		
			=	•	420 CIM palegren gr	very, firm with interbedden arange, soft cur voice in 866 from 13-20 cps
					44.5m incre	rase in 8 66 from 13-20cps
]==	-		
		*	,====			
2 = 5						
			_=	-		
			<u> </u>	1		•
1			==			
			=	-		
- {		**************************************	•===			
 { }			==			
} ≤			7=-	:	@ 76.5 interlad	ded wronge Child grades to greenth yellow Ch
1 7			<u>==</u> =			
1						
HIE				7	BGO SLATE, dry-dr	gybra, fictile, micacous i firm-hard
		······································	°	:		
			4			
			4	;		
		10	<u>•</u>			
			₫ ·			•
			7			and the second section of the section of the second section of the section of the second section of the
			. 🗦			
			Έ"			
			4			<u> </u>
			1			
		1	20			
	•		4			
			7			The state of the s
			=			
, , : ,		1	30			
			4			
			4			2818 (1)-9
			الــ	- 1	1	

PROJEC'	T		WRN	nmo		:-		HOLE SIZE 120M MAIR MWATER HOLE NO
ELEVATION	190.2	- Wi		LOC	ATION:	DCALE		T.D. 115.5m RD. 115.0m
MAP								
ANALYSIS	OR	RADI	OACTI	VITY	DEPTH	STRIP LOG		LITHOLOGY LOG
	C	3				+:	1	O-6.0 CLAMEN SAND red brn. fg-mg, subang-subvad, fair-poor southing strong limounite axidation collection is pt (calcuste)
3							Sus	6.0 CLAY relibon.
-		Ē			10	000	1 S S S S S S S S S S S S S S S S S S S	9.0 GRAVEL Icm-2cm -> mg, schang-subvid, how souting, strong limostiff and other (102 km) 12.0 cctry ovange bu.
\$							12	15.0 SILT SAND overgo bon-yellow but, moreage in gram sige with depth silt size as up sand - Ifying sand, subang-suband, good fair soling strong timemited or ilation.
1	(A)				20-		PATIO	22.5 CLM overge by,
1	Ş		S T		-		1/2	
1	3				30 -	i. • .		28.7 Smolaphia ovary hom, fq-mq-krq - 12cm subang-suband, poor sorting, shorn liminite excitation 31.9 CLAN red bin-orange born
3	3	2						35.3 can willow-orange work subana, good souting showing
1 3	{ }				40-	· : :		35.2 SAND yellow-orange, vfg-fg, subang, good souting, strong orange liminite staining
<i>\\\\</i>		4						er a carro al rease Come lubara fair and artire transporter
}					50-			46.5 SAND red-orner, forms subang, faingood sorting, tray orange time nite and homeatile ordelation.
}	}		W N				-	48.0 CLAY white wilt gy, kaolinitis delly in pt
\{			3			==	-	
1	5		5					60.0 CLAY pale yellow-orange-strongly midised
\$	}				- -		- -	
}	>		<u> </u>		70-] . =	-	72.0 CLAY white-polo of , brobatic , of city in pt
				₹ 3				
-{/-				3	80			71.5 SARVE white-pale of My in any-cobang, fair control (o), 9/2 about 12third fragments - ned box collection-phale, needed land
.				1] 		knowinths - becoming welgen with depth
) (\(\frac{1}{2} \)	-90	<u> </u>		89.7 SAND yellow - ovange, v changey, v sity, fq-veq, any-shang
\$							-//	common red but state framents - range bon , st misosous with depth gradual in weese in lithic fragments -> decrease in
*					100	<u></u>	-/	at are intent - 100 le littir -> weethered balances
				13	1	<u> 1</u>		- Timonité chaque interperent.
33	,		٠.,		1	<u> </u>	-	
1	C	3					=	
H : 7 3 4	-; k i d	i i fri	+	===1	 -₹	=======================================	=	
	_ · _ · _ ·				120	<u> </u>		
						7		
	·				130	, <u></u>		
								2818(1)-10
			···		14	<u> </u>		2010(1110
				•		7		

PROJECT	CURNAMONA	 	MOLE SIZE ICCM WATER HOLE NO.
ELEVATION	LOCATION:		LOGGED BY G.K.ELLIS DATE 10-11-76
MAP		CALE	T.D. 97.Sm P.D. 95.Sm
ANALYSIS OR R	ADIOACTIVITY DEPTH	STRIP	LITHOLOGY LOG
3		::::\	0-60 CLANDY (And, rellow, fg-mg, subary-subard, fair soutry velages in pt (short) liming to suidate checks in pt (calculate band)
		! \ <u>\$</u>	1 / a a a C take and and
			9.0 STAND redbra ing cobargerabord, good souting strong
#	10-		Timonite midahon,
	1 1 1 1 1		13.5 CLAM red bm,
		 /\$	16.5 SILT red bra, u powdery, loft
	20		'l
3 2		· · · · · ·	21.0 SAND bon, for my, subary what, good sorting with it pt shows in pale yellow-white is the
			27.0 SARND red bor-orange bon ing-cg, subang-rubond, fair souting.
	-30		about timonite arms charing on grains.
\$ - L \$			
			d d dalla
	40-		of decrease is undness with depth.
		/	1
		· · · /	110 cano wed born, for submit-colony from which strong bounded
			46.5 STOD red bor, fg, subord-rebong, fine surling, strong bounded optidation, some projects of homester?
-} = 3	-50		49.5 CLAY white-ubjet on . V knolimitic, powdery.
			23.5 Could below a self- Office
	_ 50-		
		/	
			590 CIAN willow hom strongly one is selly in pt souly
} {		/	59.0 CLAN yellow Lm , strongly on wised, silty in pt, sandy in pt, vh-ty-my, any-orbang.
#\$ / 	70-		
		/	
]:	The second will be the second workless
1 3 3 3		/	78.0-84.0 CLAY yellow hu- findy Lors, some hermalite op
1 3 1		/	
3 \$ 1		/	
		<u> </u>	grithy day new base - about forgret: It red bon-yollow hom
+ ()	-90	圭昌	67.8 SLATE, al fisile, st munions
1]	
. =		1==	
t	100 -]	
]	
		=	
		1	
	:	∄ ∤	
		<u> </u>	
	•	1	
. <u> </u>	120]	
]	
		-	
		1	
	130	-	
		<u> </u>	
	•	<u> </u>	2818 (1)-11
	140]	2010 (11-11
]	
	*	-	

1. Sm

1

MINAD TETON - AUSTRALIA HOLE SIZE 12cm MAIR WATER HOLE NO. CURNITHONA PROJECT _ LOGGED BY G.K.ELLIS DATE 13-11-76 114.9m LOCATION: ELEVATION ... 123m P.D. BCALE_ OR RADIOACTIVITY DEPTH STRIP LITHOLOGY LOG ANALYSIS 0-7.5 CLAY red bon, soft frim, calcarcous new Fip 7.5 SAND red bm. fq. subang-subvid, good souting, stong limenity ox B.O SAND yellow excesse, formy, subang, fair sorting stong liminite ox B.S CLAY red bm. loft-frin. 13.5 smulgravel mg-reg-lan, subval-rud, pouly sold strong limente as 14.4 cute H-mad rad but: 202 SAND Poli vange, fq-mg, evbang-exbond, fait southern), ething 23.4 CLAM rel bon, st sity. 27.0 SAND och bom fg. subang, god siting, strong limonite oxidation will thong limite raidabish ing eg, so bay - solved, fair sorting 36.2 CLAU It gy-It yellow gy, ctrong yellow limonite mettering 45 B-52 4 SAILD/SAILDY CLAY no evidence in samples, log christer. Sordy. 52.4 Chay It go with red harmatte nothing 72.0 cathy medgy with red bacemeter mothering 762 CLAY Hon-Hormitary-white, kartintic souly 762-824 (at order to complet. (324 HBG garage astivity) 112.0 SHALE It-medgy, of fille - Hgy bon, first, of microcous. 2818 (1)-12

MINAD TETON - AUSTRALIA PROJECT WRNAMONA HOLE SIZE 12 cm D'AIR MWATER HOLE NO. C6 LOGGED BY G.K. ELLIS DATE 14. 11-76 ELEVATION 106.8m T.D. 120,0m RD. 119.0m SCALE ___ ANALYSIS OR RADIOACTIVITY DEPTH STRIP LITHOLOGY LOG 0-15.0 CLAY Hered bran red bom , soft firm 150 SILT rid bin . 1-ft.
16.5 SANDIDARIVE red bin med_eg, Sibang-sibind, poor costing I strong I, mainte oxidation thin calcrete interbeds, com white, v had suff.
18.0 Clay red bin , soft.
21.0 SILT, red bin, v. pounderny, 24.5 sand oncyclom, A-Og, Subang, poor sorting stong limente oxidation 29.8 CLAU Hogy with strong yellow limente mottle; mod 31.0 CLAY Hogy, I city in pt, strong and boen lite mothing, brusesa. extlust manite nothing. 525-540 CLAR Hogy white, Il tradicitie? little or mothy 63.0 city med gy (dkgyinpt) st cabonicours. 86.5 CLAUVITY-white kaokinitin. soft, st silly 93.2 CLAY pole yellow-bun 110.7 SILTSTA | MUDITAL red ben and gray green, st microis, st file <u>r-i-</u> CAMBRIAN 2818 (1)-13

MINAD TETON - AUSTRALIA HOLE SIZE 12cm WAIR WATER HOLE NO. PROJECT _____ CURNAMONA LOGGED BY G.K.ELLIS DATE 14-11.76 ELEVATION BS.ZM LOCATION: . 137.0m P.D. 136.5m SCALE .. LITHOLOGY LOG ox OR RADIOACTIVITY DEPTH ANALYSIS 0-7.5 CLAMEN (PND rid born, formy, exband, for or together good to the power born, ma-actual come, silm, power tong strong over & limitation or what is 7.5- CLAY red bon, soft frim 10.5 SILT md bon , of sandy near tip (V/1-17) 16.0. SAND many by Afring , Chand-and, fair-good so, tring , shorp ways 1 months should 19.1 citil redbon-gy , rilly 24.3 SAND yellow-armse, vfg-fg, subord-rod, good sorting, strong limenite oxidation. 33.3 and It gy , with story red haematite and yellow liminite mothling 72.0 CLAY It gy-white knotinitic 61.6 some white Hyp. 19-mg, subvey-school, god into methologismen 93.4 CLAN H-model, silly 1090 SAND WHE - H 3 b. 11 , uffer for Sobren solver , and they is clared to what appearance with to yellow timenite to 201. of grown 113.3 Clift Har , from 1205-123 This her reichning gores- god ? recolored complete 1237 MUDETIL or and I weatherd , friend soft MMB and 2818 (1)-14

MINAD TETON - AUSTRALIA _ HOLE SIZE 12cm | MAIR | WATER | HOLE NO. | C S CURNAMORIE PROJECT _ 42.2% LOGGED BY GREWS DATE 21-1-76 155.ûm OR RADIOACTIVITY DEPTH ANALYSIS LITHOLOGY LOG - 45 ball fincer red by very hand. 3.0 SAND brange bon figure, subindered, good sorting, strong liminite onidation 19.5 SILT med bon, il sandy, powdry 22. S. SAND mange bon formy , sibarg-sibred , good souting , strong lominite 25.2 clay ad bun, dilly 30.0 SAND yellow bm, fg-mg, sverrt, good souting, stong limonite 38.0 CIAU. Hegy with red bacmatite motthing 64.5 CLAY It M- It gy bur will yellow liminite mothing. 71.2 LIMESTONE , lite-com, calcilate, from will interhelly real any CLAY to 75.5 and dk ay, rabonacroni CLAY to 78.2 78.2 CIAY 14-MIL gy B4.5 SANTS If 14 - 171 km, from, standard good souting neutral appraisance BBO CLALL Hay Altgrange ex of in sought, is cited as of lead with rembers 1417 MUDSIN' 1.1 bm, s/ microcous ist sady(v/) 2818 (17-15

MINAD TETON - AUSTRALIA PROJECT _____CURITING ON THE ___ HOLE SIZE 18CM BAIR DWATER HOLE NO. C10 LOGGED BY /L KELLIS DATE 23-11-76 T.D. 152.0m RD. 151 CW OR RADIOACTIVITY DEPTH STRIP LITHOLOGY LOG 0-9.0 CLAU II bom withou dicaterous int (had chicket bands) sandy and silly new base . xa shirenil prosts, pritree book lav-bardes, fg, welly, auto 00 13.5 CLAY It and bon - red bon 31.5 SAND paleydlow bm, vholy, sibond and, good strong mod-strong limenite oxidation. stilly in pt. 51.5 CLAU It gy will and bacmattermolthing 57.2 SAND pale orange, fg, sibord-und, good sorting, strong 64.8 CLASS It gy with red basemalite multhing. 75.5 I IMESTONE white-cum, calcilutte, firm hand will grow gray CLAM interbods. 85.0 CIAY It-mid ofren gray. 135.4 CIAH It mil gran gy . stadiatic , strandy (sand introduced in san ples) 28/3 (1)-16

HOLE SIZE 12cm MAIR MATER HOLE NO. C! CUPNAMIONA LOGGED BY G.K.ELLIS DATE 24-11-76 79.5m 152.0m P.D. 151.5m ANALYSIS OF RADIOACTIVITY DEPTH STRIP LITHOLOGY LOG 0-6.0 CLAY Him-red by sitty in pt. 6.0 - CLAY yellowbm- nd bm thin SILERETE layers developed new Lace, nd bon-white -v had 165 (AND grange bom, fig.mg, sibarg-submed, feir sorting, strong limenite scidation clayer towards base 25.5 CLAY red bon 30.0 SAND yellowbon, fq, saborg-red, good sorting istrong limenite oxidation. 45.0 CLAY It gy with yellow liminate nottling 57.0 CLAY Ityy with strong red hormatite mothering 64.5 clay Ityy with yellow liminite mothing 70.8 LIMESTONE white-com, additable, frim-hard, with interbolded It gray gree and med on cram 79.2 CLAY It-mady - It gen gy . fim 2818 (1)-17 137.5 MIDIN (SIGSTA) ad bin fin had , fistile , of museras CAMBRIAN

MINAD TETON - AUSTRALIA HOLE SIZE 12cm Mair Water HOLE NO. ______ WRN PHON A LOGGED BY G.K.ELLIS DATE 24-11-75 52.2m LITHOLOGY LOG ANALYSIS OF RADIOACTIVITY DEPTH 0-6.0 CLAY It-motion SI numerous Calcavarus Carenting ct silly , edemons 6.0 sprv & H yellow Lm, vfq-fq, subsery, fair white, stong liminite oxidation. 10,5 SAND It red by formy subay-subard, fair-good sorting, strong limonite oxidation. 15.0 GRAVE It red by veg-lem, submid, poor solling, shory limonth and become to oridate 18.0 CIAU ILAN bom with som yellow liminde moltling 40.5 SAND par gellow . fg. mg . sibmd-rnd , fair-good looking med himmite oxidation . 45.0 CLAY Hay with yellow limonite mothering 52.5 City Hyy with ad hormatile mottling 60.0 city It gy will and yellow limite mitting and to vid 73.7 LIMESTONE white-even, calcilutite, frim, with interbodded greening BZ.S CLAT 11-mol gy - It grangy 113.0 CIPHALA Sit St souly, 49.19, schang, nechology CIAN Hamily - Hyren ey shadiniti 142.5 50 15 wh represented in culties som plan bichely activities leaves with they increased in 2518 (17-18

MINAD TETON - AUSTRALIA HOLE SIZE 12cm MAIR MWATER HOLE NO. C14 PROJECT . <u> CURNAMONA</u> ELEVATION _ 870m LOGGED BY GKEUS DATE 25-11-76 LOCATION: 1525 P.D. __ 152.0m ANALYSIS OR RADIOACTIVITY LITHOLOGY LOG 0-12.0 CLAY It bom will bond; of CARLEGEE, pick bon, y hard, silectors in ple corestoring nod de near top. 12.0 JAND grange, farmy, subang. Subond, fire-good sitting 16.5 teaming Gamler - mg-veg - gravel (&mm-lnm)
liminity - Leemalile pebbles cohmlind 25.8 CLAY red bur, fim 30,0 SAND red by subang-submit, fair-good so-ting . H-g. story limonit pridato. 34.5 CIAY ad box, soly in pt 37.5 SAND pole yellow box, vfq-fq, subang-sibal, fair-good sorting 46.5 CLAY It gy will strong vid bu bound the mothing 57.0 SAND red bur-overge by, my, sulnd-red, good sosting, strong limonite oxidation 16.0 CLAY Hyrn gy with yellow limosite metting 76.0 LIMESTONE white com, calcibilite, from with given as CLAY intelled, 77.5m, and gry curry interbede 79.5m- 03.0 (v dangay section) 83,0 (M) 14 - ml gy - 14 gree- Cy -376-953151 sarly , uf 138.0 Classela but st kentindi 2313(1)-19 1424 MIDSIA ordbox, soft (Mallerd) CAT. 8 (1. 8)

MINAD TETON - AUSTRALIA PROJECT WRNIAMONA HOLE SIZE 121M WAIR WATER HOLE NO. _______ ELEVATION 83.5m LOGGED BY G. ELLIS DATE 27-11-76 _ R.D. ____/70.5m SCALE_ OR RADIOACTIVITY DEPTH STRIP LITHOLOGY LOG 0-9.0 (1 M red bon, calcarous concertionary models developed entity 9.0 SAND red bom subord-ond, fing, firegood sorting, strong liminate oxidation.

10.5 CLAY gray-ond Lom, of silly what, picky bon of silveous.

15.0 SLT red bon. sandy in pt v/7-17, subang-subord, strong timents oxidation. 30.0 SAND yellow-orange, ng-vcg, cobord and, fair souting attom meditar
33.0 CIAY Hay with strong yellow liminals metthing 42.0 CLAY Hay with mad red bromatile nothing, silly in pt 54.0 (1 Ay afa bit v sady vy 60.0 CIAY H gr - H grangy will mad ord barnet to and yallow limonde matthis 82.6 SANDY CLAY Hogy-mology, famy, subout, noted experience 1010 CLAY H-mdgy - gog gran 135.0 ? (LAU Hyy (mod gyrft) - caning? Kaslinitit winh 83 same ochinty string it sently. 124.2 2818(1)-20 1560 Missist Politon, vary realized CAMBE HOL

	CURNAMONA		TETON — AUSTRALIA ZI.OM MAIR SWATER HOLE NO
	CO LOCATION		LOGGED BY G.K.EZUS DATE 27-11-76
MAP		\$CALE	1.5
ANALYSIS OR R	ADIOACTIVITY DEPT	H STRIP	LITHOLOGY LOG
\ C16		1	0-9.0 CLAY red by, filly with bonds of CALLRETE white-bon a hourd, likeous in pt.
	-		
		/×	9.0 SAND orange, for subvind, good sorting, story limonite oxidation
{	-10		
	-	- / c	15.0-16.5 CLAY md by firm, sardy, silly.
{	20 -		
57-22-21 July	emeral, and sud []		21.0 SANDY CLAY and bom, soundy uff, silly in pt
}"""""			`
}	30		200600
			30.0 SAND yellow bom, vfg-fg, siboug. submo, good corting, st silty strong liminate oxidation
	\$		as a complex ill at all 1: -1 W.
	-40		30.0 CLAY It gy with strong yellow limonile milling
}	_		
}			
}	50		51.0 CLAY It go with strong ord howafte and mod yellow limint mithing.
}	} -	/	
}	60		
			sl sandy 57.0-630, sfq.
}			
}	70		63.0 CLAU It of with yellow limonite mottling
}			
2 3	}		74.5 LIMETIONE com-white calcillate from with groungs outry introducts to 79.5 and med-dogy comprished to best
3	-80		
5	}		83.0 CIM H-md gy, slandy ron typ
\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	}		
}	- 00		
} • • • • • • • • • • • • • • • • • • •			
	100		
\$			
\\ \\ \	-110		
	-		
	-120		
A STATE OF THE STA			
}			
} **	-130		CIAY H-md a. Id
{		<u> </u>	CLAY It-med gy - It grongy, st loadinitie.
> 2	}		1327 save length country not represent in samples but obtaining indicates a sounding regions
	* * -		
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
3 5	150 M		
<i>j</i>	\{\bar{\}}		150 O HODIN/SHALE and gy, & hand.
S C16	160		2018(1)-21
, 7 1 1 1	1 1 1 1 1 1 1 1		

ROJECT	WRHAMONA		HOLE SIZE 12cm MAIR MWATER HOLE NO. C19
EVATION	LOCATION:	***************************************	LOGGED BY G.K. ELLIS DATE 29-11-76
\P		\$CALE	T.D. 155.5m RD. 155.0m
NALYSIS OR RA	DIOACTIVITY DEPT	H STRIP	LITHOLOGY LOG
} \ C19			D-18.0 CLAY It-med but - not but, aboutlands of pinkbon-ved but CARLERTE, il sileccous, v band, anechoming in pt.
			SYPC P
3 17 1 T	-10	量	PC8
	1	量	8 18.0 sand sange bm. fg-vcq. xibag-sibad, poorsaling, stong line exidation
	20	1. /	21.0 SANDICILT yellow bur, vfg, - rilt, clayed in bt
		1-1	With Bong I mainte oxidation
	50		
		1	of a great the graph of the same of the sa
	40		36.0 certy. It my will strong yellow himonite motthing
1 /			
	\$	==	
	50	副	52.5 CLAY It gy will and shrong and boomstile matthing, sandy is
			1 ()
	•	======================================	N I II
			66.0 CIAY It gy not mh vellow liminite mattering
	70	4=1,	74.7 LIMESTONE white-com, additable, from with interladed gree gay extry
		=	gay City
	1 2 5	車	BI. 9 CIM It-md of grading to Hyrangy will dopt.
F 13 11			
	113		•
	100		
]=	
	120	, ===	
!	******		
!	130	,]	
}	3		unches being copy of expected a citizy south.
35			of Indiante now here
3 (1	14	"	
{ }		<u> </u>	144.6 SILTSN red by , fries - hard, fisile , of meacens
	(80)	• = M	2818 (1)-22
3.5- 6/9);	4 - 21	אסוט כוויאל

PROJECT CURNA	ANOM	IEION - AUSTRALIA 25,5m Mare HOLE NO. CZO Mair Marer HOLE NO. CZO
ELEVATION BI.4m LOCATIO	•	LOGGED BY G.K. FLLIS DATE 30-11-76
MAP	SCALE	T.D. 152.0m RD. 151.5m
ANALYSIS OR RADIOACTIVITY DE	PTH STRIP	LITHOLOGY LOG
C20	== 1,	0-3.0 city ad bn- It bm, with had bands of CHICRETE, re bn-pick-bm
	1	Programme Advance of the programme and the progr
	. = 3	3.0 SAND It- and bon up- for subord, fire-good souting, strong Im
18 /	4:1/.	oxidetion this band : of conceets alo is of
		16.5 CLAY and bon
	20===/?	19.5 SILTISAND red by silt-vfg soil, good soiting, stong word att.
	3	
	1	on a subject of
	30=====	27.0 CIM It gy and bry 1: 5%
		grading to the gy with yellow liminste mothling
	三二	
	•==/	
	一一	·
		10 0 cm
	50-	48.0 CLAY white It gy with rd hornate matthing st silly and soundy new top
	•••	
]==	
]	
	70	70.5 copy Hyginh ye low liminite motthing
		4 · · · · · · · · · · · · · · · · · · ·
		16 6 CIAY It-wed blue go with the hands if LIMESTONE white com relatible, frim
		grading to green gry Coly and is associal intertemit proposition goding book to Hand of Coly with minor Limetonia bands of the 14.5 Color Hay - Harren gy.
		184.5 C(#4 1+74-1-9120-91.
	•••	
		30.2 SAND Hyg, formy, submit and, fair-good souting, revited appe
3 S E E E E E E E E E E	1	greding to CHYPI PAND 1121-1121
	00 =	grading to comply sand light my
	<u> </u>	ie diamone: soud with depth)
	==	102 C C 1 CM II I
	110	103.5 CIFY Hand gy
		and he boul as are as
	120	gredeing to Hond on - gre- gry
]==[
	130	
18 日本日本日本		d looking in page 1911 at content in seconds.
	140	1
	11-11-11	
* >		#151LTSIN MIDSIN of bom, walked , st minus.
3.0 (20)	0 M =	
CZO	=======================================	0515 (1)-23

MINAU ISIUN - AUSINALIA (URNAMONA HOLE SIZE 12cm FAIR DWATER HOLE NO. CZ! PROJECT ELEVATION ______________________ LOGGED BY G.K. ELUS DATE 30-11-76 LOCATION: 156.0m ANALYSIS OR RADIOACTIVITY DEPTH LITHOLOGY LOG 0-9.0 CAM Hand Lon, sI sandy, silly in jet about bonds of cALLETE, a bond, sI silveres. 50 SAND red by yellow, my. og , Sobord, fair sating, strong himsite 22.5 GRAUBZ/SAMD vog -> kun, school and, poor soving, though homele oscilation, liminik felblus Al ham.
24.0 CLAU If gybra- red bus. of city. 39.0 strong polo yellow bon, fg-mg, school-rod, fair. good sorting 48.0 CIM Hay will red hornathe mothly, statty reatip 70.5 CLAY High with yellow I mainty matthing, from smooth 73.9 LIMETTONE white-com cabilitie from with intelled; of green of came at the items of came of base 82.7 CIFU 12-med gr 87.5 SAND H gy, velogen at sp. fg.mg, school-and, fair sorting, revival apparance. ant of clay discusses with depth. 1016 Cety Hand gy - Haven of 134.7 SAND It By. fg-cy, schang-school, fair sorting, neutral approved chapter in pt. of Icantinitie. MSOMIDIAN SILTSM of bom , & microceos fittile, frim. 2313(17-24

AUSTRALIA PROJECT __ CUKHAMONA HOLE SIZE 121M DAIR WWATER HOLE NO. CZZ LOGGED BY G. K. ETLIS DATE 1-12-76 LITHOLOGY LOG ANALYSIS OR RADIOACTIVITY DEPTH 0-13.5 CIAU It-med bom, silly in pt with bands of CALCRETE, x hard, il silicious, red Lom. 13.5 SILT and Low ist souly 18.01 AND yellow Lm, vfg-fg, seLang-silmed good souting, strong yellow 13.5 SILT nd bm, sl sandy (ufg) 30.0 CLAY rd by, solly 42.0 Stars , yellow bon , of for subad good sorting , stanggellow line into 48.0 CIAY It gy by with yellow liminate mothing SSS CLAY It of mith story red hoenable mothling, it yellow times ite mothling, strilly at top. 76.3 CIMETTONE whiteeerm, calcilute, fin with interledden greaty clay 84.0 CLAY mad-dt gy. 900 City It-md on 99.7-103.7 sl sandy, vfg-fr, sulmod, neutral of passare MUDITA STITISTER ped bon, st meacous, werkend (5-1) 146.1 2418(1)-25

LEVATION			LOCATION:	BCALE		LOGGED BY G, K.ELLIS DATE 25-11-76 T.D. 142.0 m P.D. 141.5 m
ANALYSIS	OR RAI	DIOACTIVIT	DEPTH	STRIP LOG		LITHOLOGY LOG
	CIB					0-10.5 CIAY and bom_It bon with about bands of white CARCET v houd, concentration modules in pt
			-		12	si sandy altap.
 			# <u></u>		t ac	•
\\$		يود برسب		· · · ·	1/5	10.5 struc orange bm, mg (cgin pt), subord-ond, fair-good sortin strong limonite oxidation cq-vcq rear base, about limite pubbles 13.5 CLAY It gy bn-ond bm, silm
12		11311	計 =		/。	13 C CLAY It my bon - and bon . silt
13)重					Z.	
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
13 連			=	==	/g	
}					/	<u> </u>
 }					//	33.0 SAND orange bom , uff fg , subang , silly , strong liminate excitation
茅槽				 	/	
				<u> </u>	/	39.0 CLAY red by, il silly il souly
H					<u>/</u> ,	•
泽重						43.5 SAMD yellow Low, vfg-fg, subout, good sorting, stong limints or
				==		48.0 cere Hay will and yellow I mismit and and howart to mother
					1	, , , , , , , , , , , , , , , , , , ,
{				==	_	
自由			60	=		
3 1						60 CLAN It gy with It yelow himmed mostly
§				三		
			70		_	
; }				丰丰	ع ا	71.8 LIMPITOR whiterm calcilotte, from with prengy CLAM interber
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7		工厂	•	V VI
135		3		!-	9'.	60.2 CIAN It-med gy _ It med given gy.
						•
\:{						
}		掛譜	•••			
計画						30.0-36.0 d sady 1fg
[]			事 :			
18			100			
				 		
]		
			110			
勝重	F			1-=-	-	
IF THE]		
13 11	\$ 	 	120			
 } : :						
K			130	ļ. <u> —</u>	.]	
`{		#\#				2418(1) -26
12	CIB]	-	d kadinilie mes box 410 very had dvilling SILCRETE? Top of contration &
			140	1		A Charmele Mil Mak

ENLINE MINAD TETON - AUSTRALIA PROJECT _____COPHADOSIA HOLE SIZE 12cm MAIR MWATER HOLE NO. _ LOGGED BY G.K.ELLIS DATE 28-11-75 1480 mg R.D. OR RADIOACTIVITY DEPTH LITHOLOGY LOG D-C.D. CLAY rd bon with budant bunks of casses to white and be 017 3.0 CLAM Hay-red bon, it lity, body for colerete new Top (ela) 3.5 32 con redbu formy that god sorting esting oil latin 210 CLAY Hay whilm I dilly 31.5 SAND over ge lam, formy (gir ph) school and, good sorting, strong oxidexion 39.0 CLAY Hyy-yellow what yellow liminte matthing 500 CI Ail Itay -yellow Im, about yellow liminte milling, and red hacamatile milling. 54. 7 SAND yellow Lim, off for school, silly, fine good sorting , shown in b 62.6 : (Ay It gy with mod ved harmatic molthing , mion collect I mornito moltling 75.8 CIMESTONE LATEr-com icalcilation, from with groungy CLAY interests making CLAM interbols near base 82.7 city Hand gry - Hand grange of lastinite livered bise 2818 (1)-27
141.0 SICCRETO? V.V. hardy could not pendent but ong fit
-miride formate account them shill wheat sileces. - top of polosophensel sucho ?

HOLE NO. __C 13 __ HOLE SIZE 12cm WAIR WWATER PROJECT ___ LOGGED BY GK. ELLIS DATE 25-11-76 SCALE_ LITHOLOGY LOG OR RADIOACTIVITY DEPTH DOEIAY It bom will about coloaveous sone untions - silveins is pt sandy was base vfg-fg. 105 SANDY SILT med bm, uff, subary-subard 21.0 SAND pole yellow on , fg , sebral and , good sorting , strong liminite 28.5 CIAY It gy with yellow limonite and minor red harmelte mother 39.0 CLAU It gy with strong and harmatite mottling decrease in intensity of watthing towards base. 525 CLAY Itgy with geller limenite and minor and becautile mattering 74.5 becoming lity, il sarly il kardinitie? 82.5 SAND white-Han ifq, submissed good suring, neutral appearance clayer in ph. trolinia. 100.4 C. f. 11 - md gy. 1380 CIPI Hardy at pargellow - yellow orange

2818 (1)-28

117.2 MODIN WITH rd by meracos find from hat chillen?

PROJEC	PROJECT WARTEN HOLE NO. CO									
ELEVATION	ELEVATION 82.7m LOCATION:							LOGGED BY G. K.ELLIS DATE 21-11-76		
MAP_			-			SCALE		T.D. 146.0p R.D. 195.5m		
ENV 28										
ANALYSIS	OR I	RADIO	ACTIVI	[א	DEPTH	STRIP LOG		LITHOLOGY LOG		
\	-CE	7.		-			/	0-210 CLAY It bon-mod bon, will bands of literous concepts, and but y hand		
} ****	,						1/2			
}	{		专	.,			12.00			
	1		\$	-	10		۱۹			
})		\		=	==	0			
	5 .		4		. =		1 2	silly and al sandylvig) now base		
13	3	##	\$		20		1/3			
\$	}		ξ <u>.</u>		. :		1/2	21.0 SILTY CHAN It-med bon , Il souly is pt		
			}	-						
3			7		1		1	27.0 SILT red bon-overye bon, s' sanda		
1					30		Y .			
1							/.	39.5 SAND any boo, ufg-fg, subarg-sibard, good sorting itting		
1			}			· [·]·		Ilmonit pplachon		
3	7	7			40	<u> </u>	ľ			
· ·		, (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	: =			40,9 City Hay will strong and harmalite melthing		
\	1		٠		(]		ľ			
}	}	<u>.</u> • \			50		/	•		
{	/							•		
\{	}- :						/			
)		?		=					
}	1: = 1	7			60		/ .	630 capel Ityq will mad yollow limonite mottling		
. .	· } :	-f						And they was defined in the second		
}	1	1			-					
3	<i>-</i>	- 5		-1	70-	= 1		(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
\}	₹ #	2			-	==		63.4 LIMETTONE white-com. calcilute from all interbil) of prease CLAY to 75.0m		
N.		5						74.5 77.8 Cuty mildle ay with the patcher Lines 700 de		
5	7 :	F		I		<u> </u>	 	77.8 Cuty med ey ldtgg in pt		
\$	1	.)	<u> </u>		-					
§	<i>3</i> =	[{₹								
	>	۶			711	- · · - ·	1			
* * *	şi:1	<u>.</u> [{				<u> </u>		66.7 CIMPI SMD and gy, sI souly in pt. if is find newhole pre-		
1).	3	ş				==	1			
\ \	ا الحر	\$						93.1 Cepy mdgn		
→					100					
	į	\$			= = =					
}	5 1	}								
.	3.1	}						,		
3										
'}	3 [ŧξ			_		1			
	SEE	:			. =					
}	3	٦		1	120					
{ **	15	<u>}</u>			. =					
*	فخمس	72			=			127,2 contrasting thank of my colony of with and other a		
}	3		<u> </u>		130	<u></u>		M. A		
}		13			-	==	1	122.6 Card Home of ground .		
>	3	. [}			=					
1	}	أنجر						2318(1)-20		
					140	7		2818(1)-29 1406 MYDSTNINIST Rd bon , sl film , sl minusys, frim		
	1	9	3		=	<u>(</u>		CAMBZIATI		
-	· · ; • ·].	e na i		r -	=	. 				

Basal Sand

The basal unit of Lower Tertiary deposition is a light grey to light grey-brown, fine to medium grained quartzose sand. The grains are subrounded to subangular and show fair to good sorting. The sand has a neutral to fresh appearance, with light to dark grey-brown humic staining on 10% of the grains, a trace to common yellow shiny pyrite, and a trace of dark brown carbonaceous matter. The sand is very clayey and silty, and quite often is very poorly represented in the cuttings samples, (e.g. C12 and C16).

The distribution of the Basal Sand is shown in the Isopach Map of the Basal Sand (Fig. 5). In the Curnamona Channel the Basal Sand is up to 15 metres thick. The present southwestern (upstream) limit is ill-defined, however there is some indication that it consists of a series of small tributary channels.

Lower Clay

The Basal Sand is overlain by a thin (up to 5 metres) discontinuous medium to dark grey clay which is slightly kaolinitic.

Middle Unit

The Middle Unit consists of light grey, fine to medium grained quartzose sand. The sand grains are generally subangular to subrounded and show fair sorting. The sand generally has a neutral appearance, though a faint tinge of light brown humic grain staining and a trace to common yellow dull to shiny pyrite is occasionally present. This sand is also poorly represented in the cuttings samples.

The distribution of the Middle Unit is shown in the Isopach Map of the Middle Unit (Fig. 6). It can be seen that the "channel" for the Middle Unit sand is very much wider than that for the Basal Sand. In the Curnamona Channel the Middle Unit is up to 10 metres thick. The present upstream limit of the Curnamona Channel is much better defined than for the Basal Sand.

Upper Clay

The Middle Unit is overlain by a thin and often discontinuous light to

medium grey, slightly kaolinitic clay. This unit is often indistinguishable from the overlying Upper Unit.

Upper Unit

The Upper Unit consists of sequence of interbedded sands, silts and clays. The sands are light grey, very fine to fine grained and quartzose. The sand grains are generally subrounded (subangular in part) and show fair sorting. The sand usually has a neutral appearance with slight evidence of weak limonite oxidation. The silts and clays are light to medium grey and very slightly kaolinitic. The upper boundary is generally ill-defined and merges with the overlying Namba Formation.

Beyond the channel margins rather than encountering shallow basement, a thick clay section is present, which appears to be either the facies equivalent of the Lower Tertiary palaeochannel section or Cretaceous sediments (though they bear no similarity to the Cretaceous clays elsewhere in the southern Frome Embayment). The clays appear to have been deposited in a lacustrine or broad flood plain environment associated with the middle to upper part of the fluvial regime of the Curnamona Channel, indicative of a very mature fluvial system.

In the far south of the area drill holes C3 and C4 intersected a "channel" sand section at a depth of 60 to 70 metres. It is a white to pale grey, very fine to fine grained (but becoming coaser with depth) quartzose sand. The grains are generally angular to subangular and show fair to poor sorting. Kaolinite and white feldspar (?) are common, and fragments of weathered orange-brown slate gradually increase with depth, as does the amount and strength of limonite oxidation. This sand is very immature and is most probably locally derived.

Middle Tertiary to Quaternary

Deposition of the Lower Tertiary channel sequence was followed by a period of non-deposition and minor erosion prior to deposition of the Middle Tertiary sediments (Callen, 1974).

A sequence of light to medium grey, slightly mottled clays and minor light grey, fine grained sands of the Miocene Namba Formation overlies the Lower Tertiary channel sequence. Within this sequence a limestone is present; it is a white to cream calcilutite with interbedded grey and green clays in the upper

half, and medium to dark grey, slightly carbonaceous clays in the lower half. It is equivalent to the upper carbonate of member 2 of the Namba Formation and was deposited in a supratidal lagoon environment or inland lake (Callen, 1975). The limestone section was cored in Esso's drill hole FD21A, and the core described in detail (Graveson, 1973). The limit of this unit is shown on the Structure Contour Map (Fig. 7), which also shows a general northeast-southwest strike and a shallow northwesterly dip. Toward the limit of the limestone deposition (i.e. shoreline) the clay/limestone ratio gradually increases, with the limestone becoming the minor constituent, with the increasing influence of terrigenous sediments. The limestone is 5 to 9 metres thick (Fig. 8).

The upper part of the section consists of light grey clay with yellow limonite and red maematite mottling and light brown to red-brown silts, sands and clays with layers of hard concretionary calcrete close to the top of the section.

URANIUM MINERALIZATION

There is very little uranium mineralization developed in the area of investigation. Very minor gamma-ray kicks are occasionally associated with the neutral to fresh sands of the channel section (e.g. in the Basal Sand of C12 and C16) but they are not considered to be significant.

The carbonate unit of the Namba Formation contains anomalous radioactivity associated with carbonaceous clay interbeds in the lower half of the unit. There does not appear to be any marked pattern in the distribution of mineralization, although often areas of thicker (7 to 9 metres) limestone development contain the anomalous mineralization. This mineralization which was probably introduced during deposition of the enclosing sediment is not considered to be economically significant.

CONCLUSIONS AND RECOMMENDATIONS

Tertiary sedimentation is represented by the fluvial deposition in the northeast trending Curnamona palaeochannel. These sediments are probably equivalent to Eyre Formation sediments. The channel section is only poorly developed in the area of interest, though it gradually improves downstream.

The results of the drilling programme have not revealed any uranium

mineralization considered to be of economic significance. Minor mineralization was encountered in the area, associated with neutral to fresh sands of the channel section, and carbonaceous clays in the Namba Formation limestone. It is therefore recommended that no further work should be carried out in the area of investigation.

However it is felt that the potential for uranium deposits in the hard rock area in the vicinity of the Spring Hill Uranium Prospect in the southeast corner of the area does warrant further work. A programme of geological mapping, soil and rock-chip geochemistry, ground radiometrics and follow-up drilling is planned to evaluate this area.

G. K. Ellis

28th July 1977

REFERENCES

- CALLEN, R.A., 1974. Geology of the Frome 1:125,000 geological map and adjacent regions. S. Aust. Dept. Mines unpublished report, RB 74/25.
- CALLEN, R.A., 1975. The stratigraphy, sedimentology and uranium deposits of Tertiary rocks, Lake Frome area, South Australia. S. Aust. Dept. Mines unpublished report, RB 75/103.
- DATLY, B., 1956. The Cambrian in South Australia, in <u>El sistema Cambrico</u>. 20th International Geological Congress V.2: 91-147.
- GRAVESON, D.H., 1973. Final Report, SML 544, South Australia. Esso Aust.

 <u>Limited unpublished report, PMR 13/73</u>.
- WOPFNER, H., 1970. Early Cambrian palaeography, Frome Embayment, South Australia.

 Bull. Am. Assoc. Petrol. Geologists 54: 2395-2409.
- WOPFNER, H., CALLEN, R.A., and HARRIS, W.K., 1974. The Lower Tertiary Eyre
 Formation of the southwestern Great Artesian Basin. <u>J. geol. Soc. Aust.</u>,

 21(1): 17-51.

QUARTERLY REPORT

EL 254 (CURNAMONA), SOUTH AUSTRALIA

PERIOD 2.4.77 TO 1.7.77

by G.K. ELLIS

Exploration Licence 254, which covers an area of 716 square kilometres in the southwestern Lake Frome area of South Australia (Fig. 1), was granted to Mines Administration Pty Limited and Teton Exploration Drilling Company Pty Ltd, on 2nd July, 1976.

During the quarter ended 1st July, 1977, detailed evaluation and compilation of the results of the November/December 1976 drilling programme was completed. A copy of the report is enclosed.

Exploration expenditure during the quarter totalled \$1,092.00 - a detailed statement is attached.

Atllis

<u>G. K. ELLIS</u> Project Geologist - MTA

057

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.7.77

	Ş	Ş
Geophysical and Geological Costs		
Salaries and Wages	966	
Drafting Supplies	121	1,087
Logistics		
Freight	5	5
		\$1,092

Ref: AC/MDE

M. A. EGERT Accountant

QUARTERLY REPORT

EL 254 (CURNAMONA) SOUTH AUSTRALIA

PERIOD 2/7/77 - 1/10/77

Exploration Licence 254, which covers an area of 105 square kilometres in the southwestern Lake Frome area of South Australia, was granted to Mines Administration Pty. Limited and Teton Exploration Drilling Company Pty. Ltd. on 2nd July 1976.

During the quarter ended 1st October 1977 no work was carried out on EL 254.

Exploration expenditure during the quarter totalled \$910.

G. K. ELLIS

Project Geologist - MTA

26th October 1977

059

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.10.77

REF: AC/MDE

Geophysical and Geological Costs		
Salaries and Wages	754	
Drafting Supplies etc.	118	872
Logistics		
Communications	28	
Freight	10	38
		\$910

M. A. Egert

060

QUARTERLY REPORT EL 254 (CURNAMONA) SOUTH AUSTRALIA PERIOD 2/10/77 - 1/1/78

Exploration Licence 254 which covers an area of 105 square kilometres in the south-western Lake Frome area of South Australia was granted to Mines Administration Pty. Limited and Teton Exploration Drilling Company Pty. Ltd. on 2nd July 1976.

During the quarter ended 1st January 1978, no work was carried out on EL 254.

The expenditure during the quarter totalled \$62.

G.K. Ellis PROJECT GEOLOGIST - MTA

20th January 1978

EDU. 2818 II

Brisbane.
18th January, 1978.

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.1.78

REF: AC/MDE

\$

Geophysical and Geological Costs

Salaries and Wages

\$<u>62</u>

M. A. Egert.

Accountant.

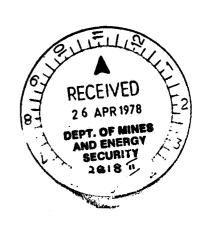
QUARTERLY REPORT

EL 254 (CURNAMONA) SOUTH AUSTRALIA

QUARTER ENDED 1/4/78

Exploration Licence No 254 (Curnamona) was granted to Mines Administration Pty Limited and Teton Exploration Drilling Company Pty Ltd on 1st July 1976 for a period of one year. After partial relinquishment a 12 month Extension of Term was granted over the southeastern portion now constituting EL 254. The tenement covers an area of 105 kms² in the southern Lake Frome area of South Australia.

During the quarter no work was carried out on the tenement.


Expenditure during the quarter totalled \$201 - a detailed expenditure statement is attached.

R. Wecker

Project Geologist

18th April 1978

attch

Brisbane

17th April 1978

063

Mines Administration Pty Limited

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.4.78

Logistics

M. A. Egert
Accountant

MINES ADMINISTRATION PTY LIMITED.

QUARTERLY REPORT

EL 254 (CURNAMONA)

QUARTER ENDED 1.7.78

Exploration Licence 254 (Curnamona) was granted to Mines Administration Pty. Limited and Teton Exploration Drilling Company Pty. Ltd on the 2nd July 1976. The tenement encompassed an area of 716 kms in the southern Lake Frome area of South Australia. Following relinquishment of the majority of the Licence area on the 2nd July 1977, extension of EL 254 was granted until the 1st July 1978. This reduced tenement covered 105 kms and was centered on the Spring Hill uranium prospect.

The Spring Hill prospect is held under mining leases and contains an estimated 1 000 tonnes of ore at an average grade of 1.1 kg/tonne. The mineralisation is present as davidite associated with veinlets in granite and metasediment host rocks. Field reconnaissance failed to find any extension of the mineralisation outside the mining leases. Consequently, no additional exploration of the area was justified.

During the quarter ended 1.7.78, no field activities were undertaken on EL 254.

Expenditure during the quarter totalled \$142 - a detailed expenditure statement is attached.

Yours faithfully, MINES ADMINISTRATION PTY. LIMITED.

selve

Ross Wecker. Geologist.

Rec'd
15/8/78

Distriction
Energy

Secondary

28/8 II

Brisbane

20th July, 1978.

Mines Administration Pty. Limited

STATEMENT OF EXPENDITURE

EL 254 (CURNAMONA)

QUARTER ENDED 1.7.78

	\$	\$
Geophysical and Geological Costs		
Salaries and Wages Drafting Supplies	101 41	142
		\$ 142

M. A. Egert
Accountant