Open File Envelope No. 8363

EL 1684

EMU DAM

PROGRESS AND FINAL REPORTS FOR THE PERIOD 31/10/90 TO 30/10/92

Submitted by

Newmont Australia Ltd 1992

© open file date 23/2/93

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

ENVELOPE 8363

TENEMENT:

EL 1684, Curnamona

TENEMENT HOLDER: Newcrest Mining Ltd

CONTENTS

REPORT:	Langmead, R.P., 1991. EL 1684 Curnamona. Quarte October, 1990 to 31 January 1991.	erly report for period 31	SADME NO. 8363 R 1 Pgs 3-9	
APPENDIX 1:	Land ownership details, EL 1684 Curnamona (Maloney	Field Services).	Pgs 10-12	
REPORTS:	Langmead R.P., 1991. EL 1684 Curnamona. Quart February 1991 to 30 April 1991.	8363 R 2 Pgs 13-21		
PLANS Plan 1	Langmead, R.P., 1991. EL 1684 Curnamona. Quarterly 1991 to 31 July 1991. Contours of total magnetic intensity (Draft).	y report for period 1 May Scale 1:25 000	8363 R 3 Pgs 22-29 8363-1	
Plan 2	Contours of Bouguer gravity. Density = 2.67 gms/cc (Draft).	1:25 000	8363-2	
REPORTS:	McEwen, G.D., 1991. EL 1684 Curnamona. Fourth qua 1 August to 31 October 1991.	8636 R 4 Pgs 30-38		
ADDENING 1.	McEwen, G.D., 1992. EL 1684 Curnamona. Fifth quar 31 October 1991 to 30 January 1992.	8636 R 5 Pgs 39-50		
APPENDIX 1: APPENDIX 2:	Drillhole logs. Drillhole smaple ledgers and certificates of analysis (CI 1AD3944).	Pgs 51-78 Pgs 79-121		
APPENDIX 3:	Drillhole graphic logs.		Pgs 122-152	
PLANS		Scale		
Plan 1	Drillhole locations (local grid).	1:25 000	8363-3	
Plan 2	Section 21 400E - AU results.	1:500	Pg. 153	A3
Plan 3	Section 21 400E - Cu results.	1:500	Pg. 154	A3
Plan 4	Section 22 000E - Au results.	1:500	Pg. 155	A3
Plan 5	Section 22 000E - Cu results.	1:500 1:500	Pg. 156	A3
Plan 6 Plan 7	Section 17 000E - Au results.	Pg. 157	A3	
Plan 8	Section 17 000E - Cu results.	Pg. 158	A3	
Plan 9	Section 18 600E - Au results.	Pg. 159	A3	
Plan 10	Section 18 600E - Cu results. Section 19 100E - Au results.	Pg. 160	A3	
Plan 11	Section 19 100E - Au results, Section 19 100E - Cu results,	Pg. 161	A4	
Plan 12	Section 25 000E - Au results.	1:500 1:500	Pg. 162	A4
Plan 13	Section 25 000E - Au results.	1:500	Pg. 163 pg. 164	A3 A3

			2A
			SADME NO.
REPORTS:	McEwen, G.D., 1992. EL 1684 Curnamona, c reports for the period 31 January to 31 July 1	ombined sixth and seventh quarterly 992.	8363 R 6 Pgs 165-167
	McEwen, G.D., 1992. EL 1684 Curnamona. I 1992.	Final report for period to 30 October	8363 R 7 Pgs 168-182
APPENDIX 1:	Drillhole graphic logs.		Pgs 183-213
PLANS		Scale	1 80 103 215
Plan 1	Drillhole locations (local grid).	1:25 000	8363-3
Plan 2	Drillhole locations. (AMG grid).	1:25 000	8363-4
LETTER:	Butt, A., 1992. Disk of corrected gravity dat retained in Reports Management Section).	a collected over EL 1684, (Disk is	Pg. 214

END OF CONTENTS

SEPARATELY HELD DATA

DRILLHOLE SAMPLES (held by SADME Core Library):

For up to date information on available drillhole samples, contact the Supervisor, SADME Core Library and quote the Exploration Licence and drillhole number/s you wish to query.

EL 1684 CURNAMONA

QUARTERLY REPORT FOR PERIOD 31 OCTOBER, 1990 TO 31 JANUARY 1991

BY: R.P. Langmead 31 January 1991

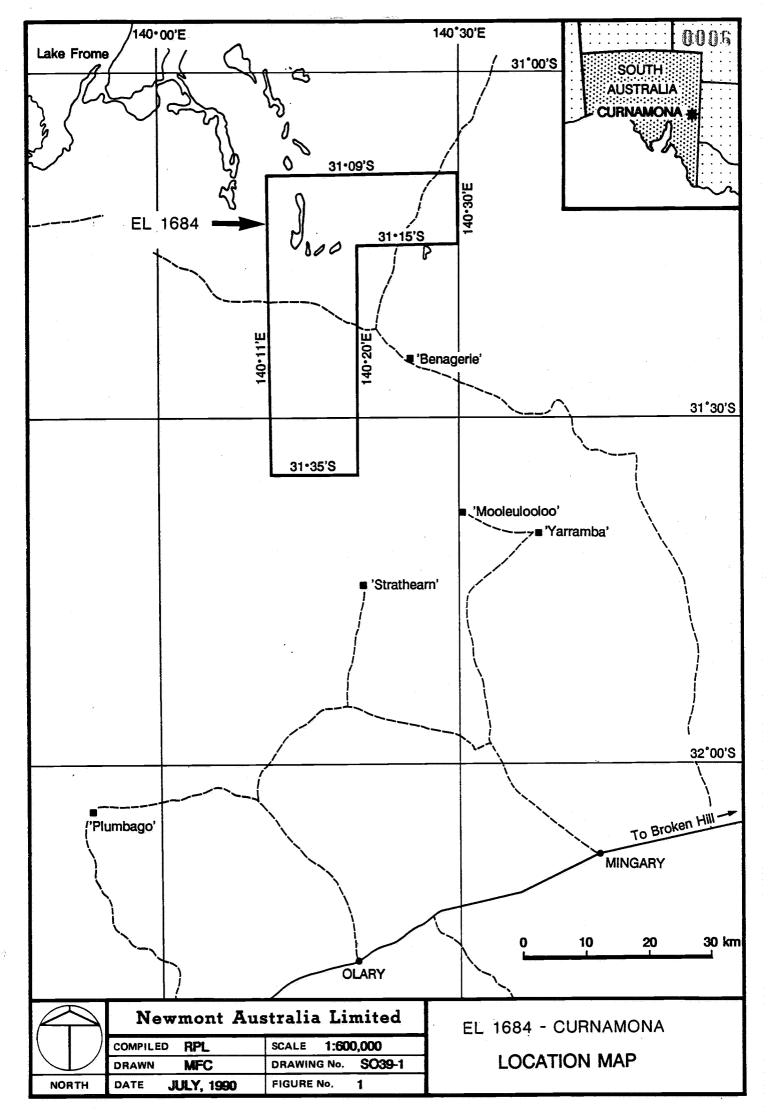
Distribution:

S.A. Department of Mines & Energy (1)
Brisbane Office (1)
Melbourne Office (1)

V 0017

CONTENTS

			PAGE NO
1.	Intr	oduction	1
2.	Exp	loration	2
	2.1	Land Tenure	2
	2.2	Previous Exploration	2
	2.3	Aeromagnetic Coverage	2
3.	Expe	enditure	4


APPENDIX

Appendix 1 Land Ownership Details, EL 1684 Curnamona Maloney Field Services

1. INTRODUCTION

Newmont Australia Limited made application for an Exploration Licence over 861 square kilometres north of Olary, S.A. on 10 July 1990. This application was subsequently granted as EL 1684 for a period of one year with a commencement date of 31 October, 1990.

Newmont's prime exploration target within EL 1684 is copper-gold-(uranium) mineralisation associated with intrusive rocks. As the tenement is completely covered by Phanerozoic rocks, exploration will be largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

2. EXPLORATION

2.1 Land Tenure

Maloney Field Services have been contracted by Newmont to conduct an ownership search of the properties situated wholly or partly within EL 1684. Details of that search are appended to this report.

2.2 Previous Exploration

Details of previous exploration activities in the vicinity of EL 1684 have been examined on open-file at the S.A.D.M.E.

A significant amount of exploration during the 1970's was directed towards locating sedimentary uranium mineralisation in palaeochannels of the Frome Embayment. Drilling programs for such targets in close proximity to EL 1684 were completed by the following companies.

Env. 1543, 1546, 1396
Env. 2291
Env. 2308, 2432
Env. 2531
Env. 3713

In more recent times, attention has been focussed more onto the base and precious metal potential of the ?Middle Proterozoic basement meta-sediments and volcanics. The 'Benagerie Ridge' shallow basement immediately west of EL 1684 has been assessed by Marathon Petroleum-Pan Aust-Biliton between 1982-88 for base metal mineralisation, with highly anomalous Zn, (Pb) values encountered in ?meta-evaporitic rocks and Cu-(Mo) mineralisation in breccia zones. (Refer envelopes 3713, 5851).

2.3 Aeromagnetic Coverage

EL 1684 is wholly covered by the following aeromagnetic surveys:-

- S.A.D.M.E. (1977), flown by Geoex Pty Ltd with 300 metre spaced E-W flight lines 1200 metre spaced N-S flight lines and a ground clearance of 100 m.
- S.A.D.M.E. (1978), flown by Geoex Pty Ltd with 600 metre spaced E-W flight lines and 1500 metre spaced N-S flight lines, and a ground clearance of 100 m.
- S.A.D.M.E. (1978), flown by Geoex Pty Ltd with 500 metre spaced E-W flight lines and 1000 metre spaced N-S flight lines and a ground clearance of 100 m. (Refer to Curnamona 1:250,000 scale, Aeromagnetic Map of Total Intensity, 1982, for survey limits).

The above surveys have been purchased from the S.A.D.M.E. in digital form and are currently being loaded onto Newmont's image processing equipment. Some difficulty is being experienced in converting from the S.A.D.M.E. tape format to one which is compatible with Newmont software.

Total expenditure incurred for the three monthly period 31 October 1990 to 31 January 1991 was \$11,392 apportioned as set out below -

Salaries and wages	2,248
Overheads	1,764
Geophysical data	4,042
Land management	2,620
Travel and accommodation	642
Freight	76
-	

TOTAL

\$11,392

APPENDIX 1

LAND OWNERSHIP DETAILS, EL 1684 CURNAMONA

Maloney Field Services

OWNERSHIP LIST FOR CURNAMONA ELA

PROPERTY DESCRIPTION

Pastoral Block 1173 Known as "Frome Downs" Crown Lease 1318/8

Pastoral Block 120 Known as "Billeroo West" Crown Lease 1286/12

Pastoral Block 121 Known as "Benagerie" Crown Lease 1292/4

Pastoral Block 1157 Known as "Peters" Crown Lease 1299/12

Pastoral Block 1158 Known as "Lignum" Crown Lease 1299/11

Pastoral Block 1252 Known as "Quinyambie" Crown Lease 1606/4

(for notices)

Frome Downs Pty. Ltd. C/- Mr. A. Wilson Frome Downs Station via Yunta 5440

Billeroo Ltd. and Pasmore Ltd. C/o Erudina Waukaringa via Yunta 5440

The Mutooroo Past. Co. Pty. Ltd. 45 King William St. Adelaide 5000

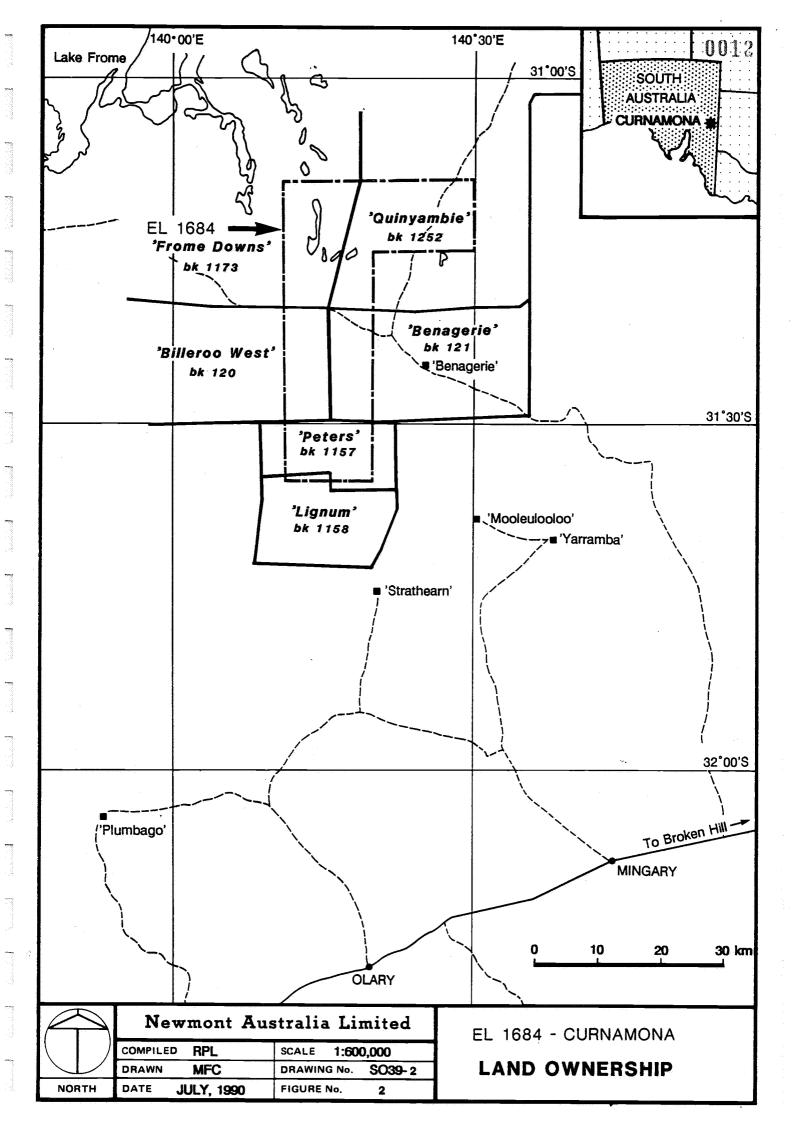
Brian Harvey Treloar Mooleulooloo Station via Olary 5440

Brian Harvey Treloar & Elizabeth Anne Treloar Mooleulooloo Station, via Olary 5440

Quinyambie Pastoral Company Pty. Ltd. C/- P.O. Box 346, Nth Adelaide 5006

OWNER CONTACT DETAILS

Mr. Alex Wilson Frome Downs Station Ph. (086) 48-4823


Erudina Proprietors Erudina Station The Ranges Ph.(086) 48-4827

Mr. Peter Morgan Mutooroo Station Ph. (080) 88-3199

Mr. Brian Treloar Mooleulooloo Stat. Ph. (080) 88-2377

Mr. Brian Treloar & Mrs. Elizabeth Treloar Ph. (080) 88-2377

Try Kidman Holdings Pty. Ltd., 183 Archer St., North Adelaide Ph. (08) 267-5422

NEWCREST MINING LIMITED

E.L. 1684 CURNAMONA

Quarterly Report for Period 1 February 1991 to 30 April 1991

> R.P. Langmead June 1991

Distribution:

Newcrest Mining Limited, Brisbane (1) Newcrest Mining Limited, Melbourne (1) S.A. Department of Mines & Energy (1)

TABLE OF CONTENTS

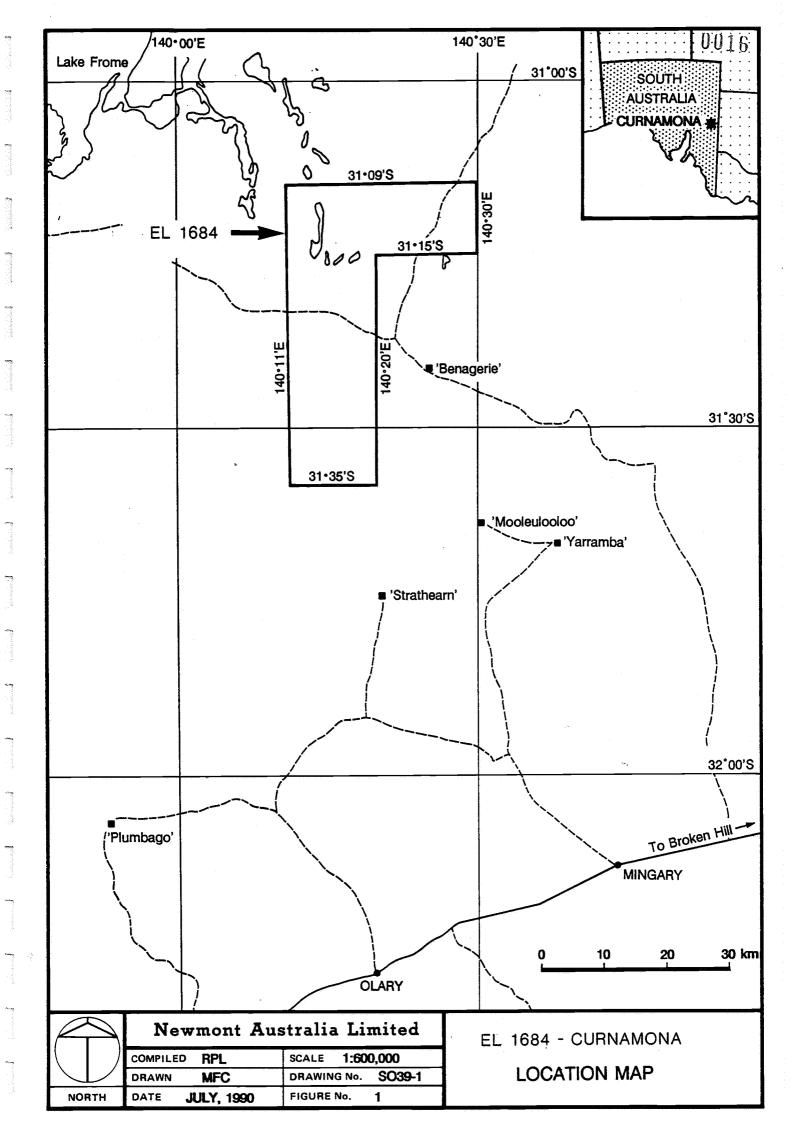

				Page
1.	INT	RODUCTION		1
2.	EXPLORATION			2
	2.1 2.2	Geology Survey Control		2 2
3.	Expe	nditure		3

Figure	es ·	
8		Scale
1	E.L. 1684 Curnamona Location Map	1:600,000
2	E.L. 1684 Curnamona Grid Location	1:250,000
3	Curnamona Grid Details	1: 50,000
4	Curnamona Benchmark Locations	1:250,000

Newmont Australia Limited made application for an Exploration Licence over 861 square kilometres north of Olary, S.A. on 10 July 1990. This application was granted as E.L. 1684 for a period of one year with a commencement date of 31 October, 1990.

Subsequently, Newmont Australia Limited has merged with BHP Gold Pty Ltd and changed names to Newcrest Mining Limited.

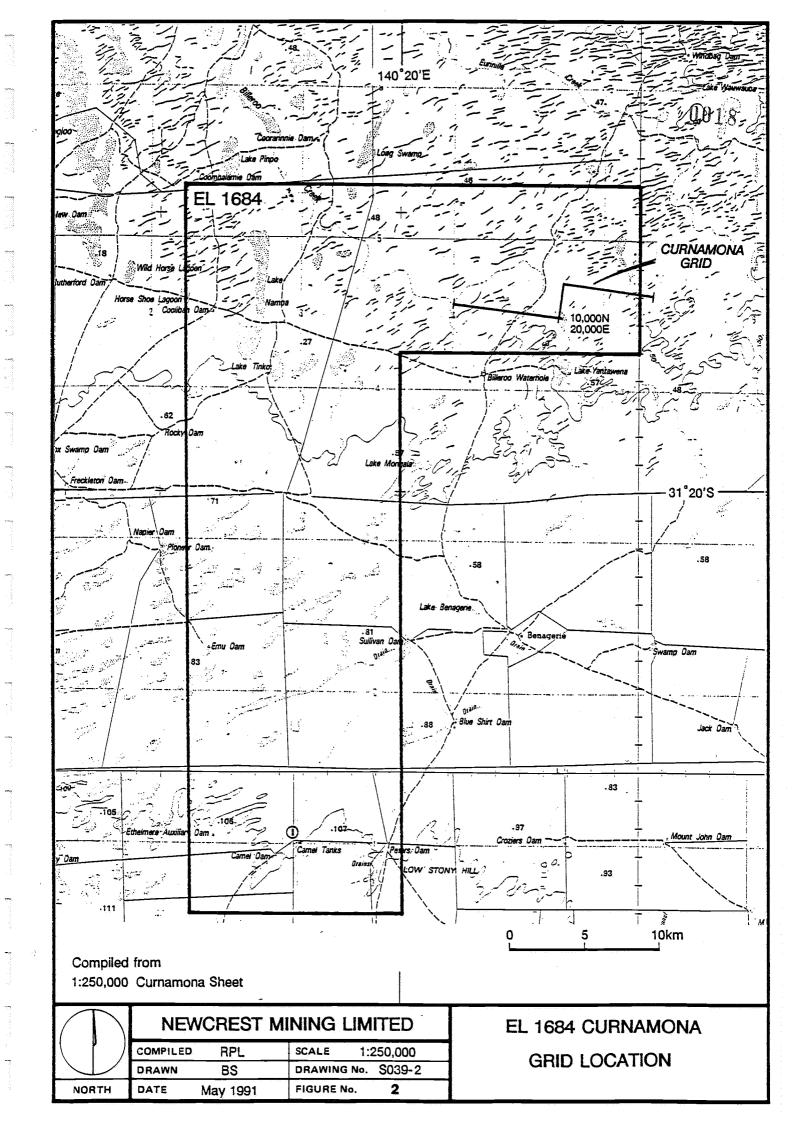
Newcrest's prime exploration target within E.L. 1684 is copper-gold-(uranium) mineralisation associated with intrusive rocks. As the prospective Proterozoic basement is completely covered by Phanerozoic rocks, exploration will be largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

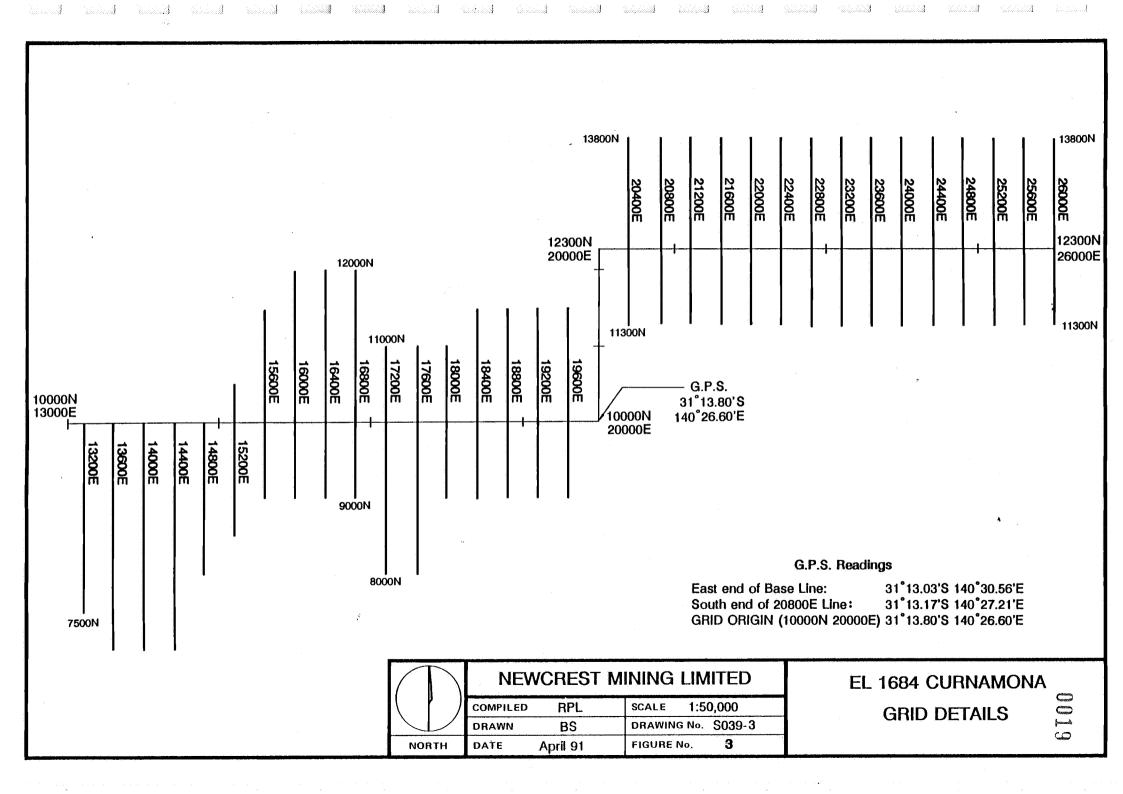
2. EXPLORATION

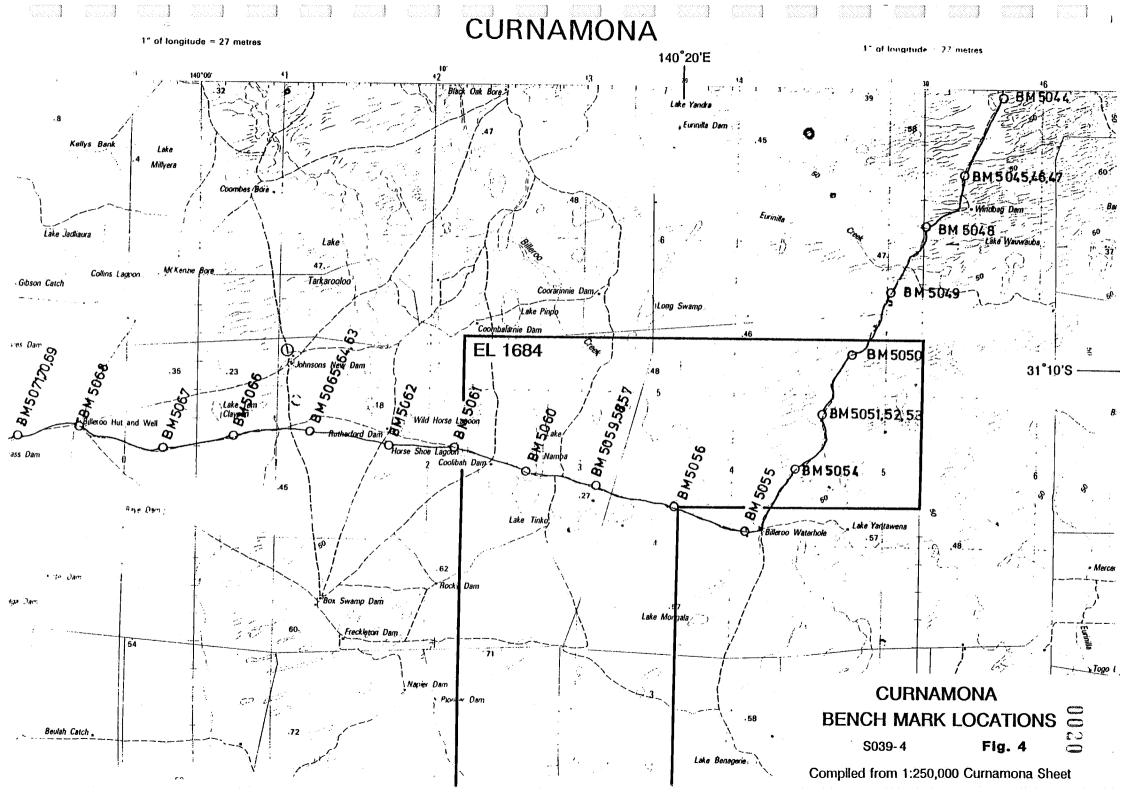
2.1 Geology

Compilation of previous drilling data in the vicinity of E.L. 1684 indicates more shallowly buried Middle Proterozoic basement to occur in the north-eastern portion of the tenement. Depth to basement here is expected to be in the 50-100 m range.

Aeromagnetic survey data also strongly indicates a major NE-SW trending tectonic zone passing through this area, as well as lesser N-S and north-westerly trending structures. Basement lithologies are expected to be metavolcanic/?intrusive rocks, and low grade meta-sedimentary sequences of probable Middle Proterozoic age.


Initial work will concentrate on this north-eastern portion of the tenement.


2.2 Survey Control


Approximately 100 line kilometres of tape and compass gridding has been completed during the quarter in the north-eastern portion of the tenement. The grid covers an area 13 kms long in an east-west direction and several kilometres in a north-south direction, over a number of magnetic highs within the major NE-SW trending structural corridor.

Grid pegs have been placed at 100 m intervals along lines, with lines placed 400 m apart. Several points on the grid have been positioned in latitude and longitude using a Magellan GPS Nav. 1000 Pro unit. (Refer to Figure 3 for details). This grid will provide the main survey control for planned ground geophysical surveys.

Local survey benchmark data has also been obtained from the S.A. Department of Lands for elevation control of ground gravity surveys.

3. EXPENDITURE

Total expenditure incurred for the three monthly period 1 February 1991 to 30 April 1991 was \$28,193 apportioned as set out below:-

	\$
Salaries and Wages	6,961.18
Employee overheads	4,979.14
Travel and Accommodation	1,268.00
Vehicle Operating	2,124.33
Field Living	4,986.06
Plans, communications, office overheads	<u> 7,874.31</u>
TOTAL	<u>\$28,193.02</u>

Total project expenditure to date:

\$39,585.02

NEWCREST MINING LIMITED

E.L. 1684 CURNAMONA

Quarterly Report for Period 1 May 1991 to 31 July 1991

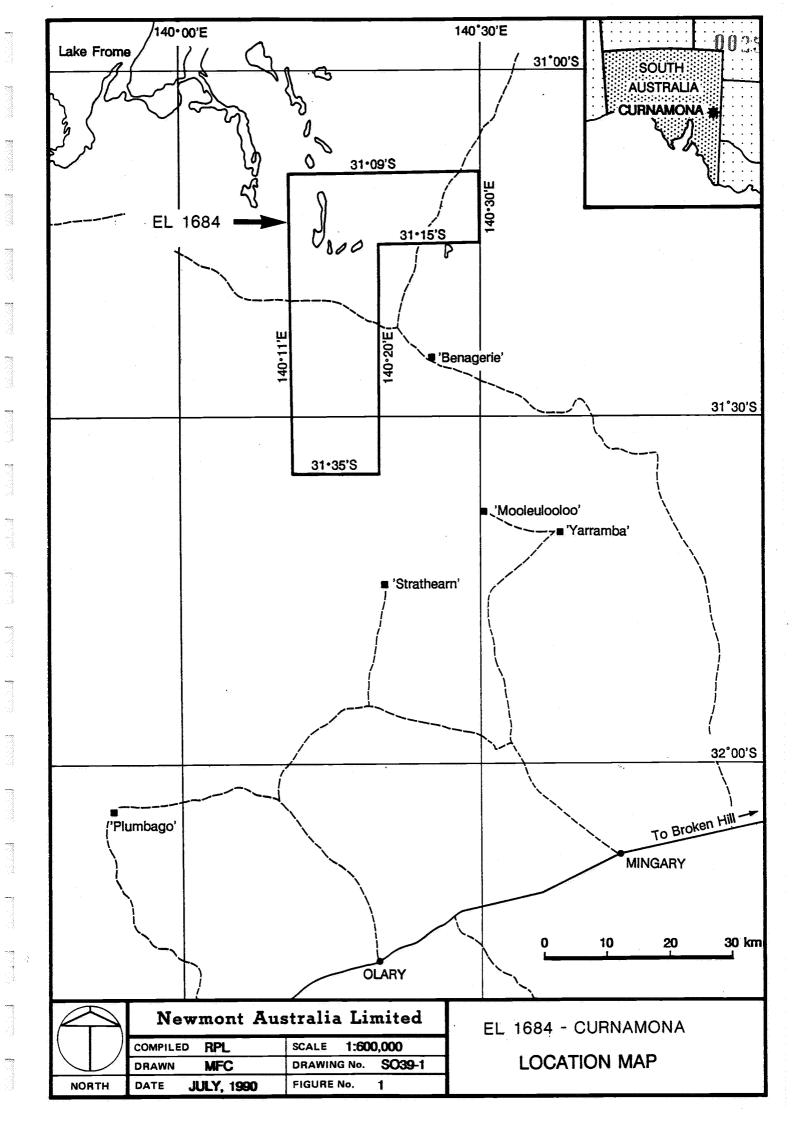
> R.P. Langmead August 1991

Distribution:

Newcrest Mining Limited, Brisbane (1)
Newcrest Mining Limited, Melbourne (1)
S.A. Department of Mines & Energy (1)

CONTENTS

				Page
1.	INTROI	OUCTIO	ON	1
2.	EXPLO	RATIO	N ACTIVITIES	2
		urvey Co Jeophysi	ontrol cal Surveys	2 2
		.2.1 .2.2	Ground Magnetics Gravity	2 2
3.	EXPEN	DITUR	E	3
Figur	es:			Scale
1 2 3	EL 1684	Curnar	nona Location Map nona Grid Location nona Grid Details	1:600,000 1:250,000 1:50,000
Plans	•			
П I -			l Magnetic Intensity, Curnamona grid guer Gravity, Curnamona grid	


1. INTRODUCTION

Newmont Australia Limited made application for an Exploration Licence over 861 sq km north of Olary, SA on 10 July, 1990. This application was granted as E.L. 1684 for a period of one year with a commencement date of 31 October, 1991.

Subsequently, Newmont Australia Limited has merged with BHP Gold Pty Ltd and changed names to Newcrest Mining Limited.

Newcrest's prime exploration target within E.L 1684 is copper-gold-(uranium) mineralisation associated with intrusive rocks. As the prospective Proterozoic basement is completely covered by Phanerozoic rocks, exploration will be largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

This report covers exploration activities undertaken in the third quarter between 1 May and 31 July 1991.

2. EXPLORATION ACTIVITIES

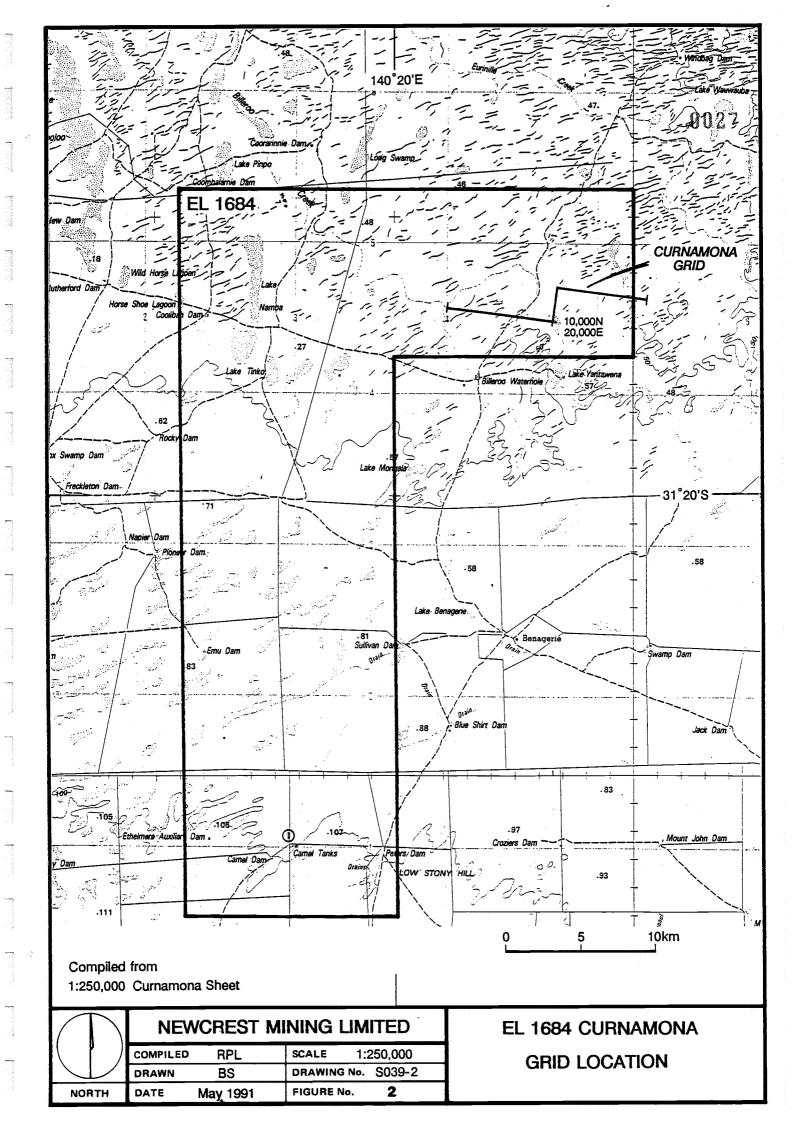
2.1 Survey Control

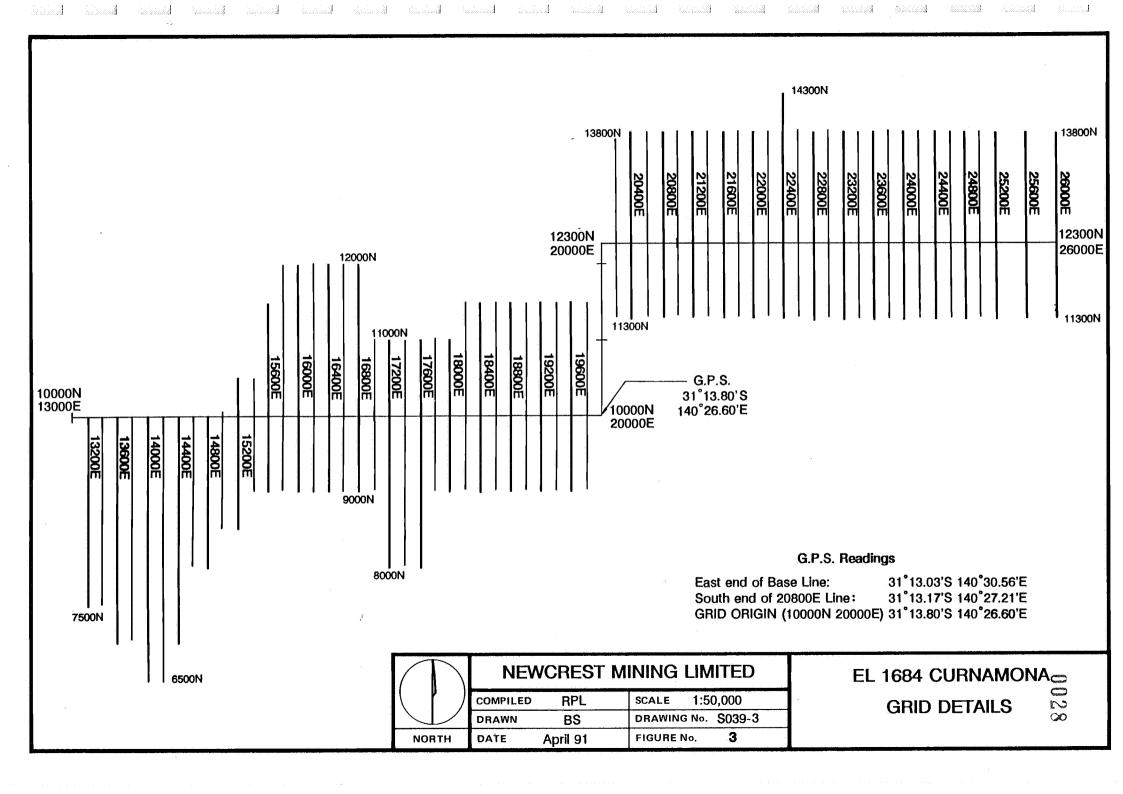
A 400 m x 100 m spaced, tape and compass grid completed during the second quarter has been infilled to a 200 m x 100 m grid peg spacing (refer Figures 2 and 3). This grid has provided the main survey control for ground magnetic and gravity surveys completed to date.

2.2 Geophysical Surveys

2.2.1 Ground Magnetics

The Curnamona grid area was covered by a ground magnetic survey with readings taken at 10 m intervals along 200 m spaced north-south lines.

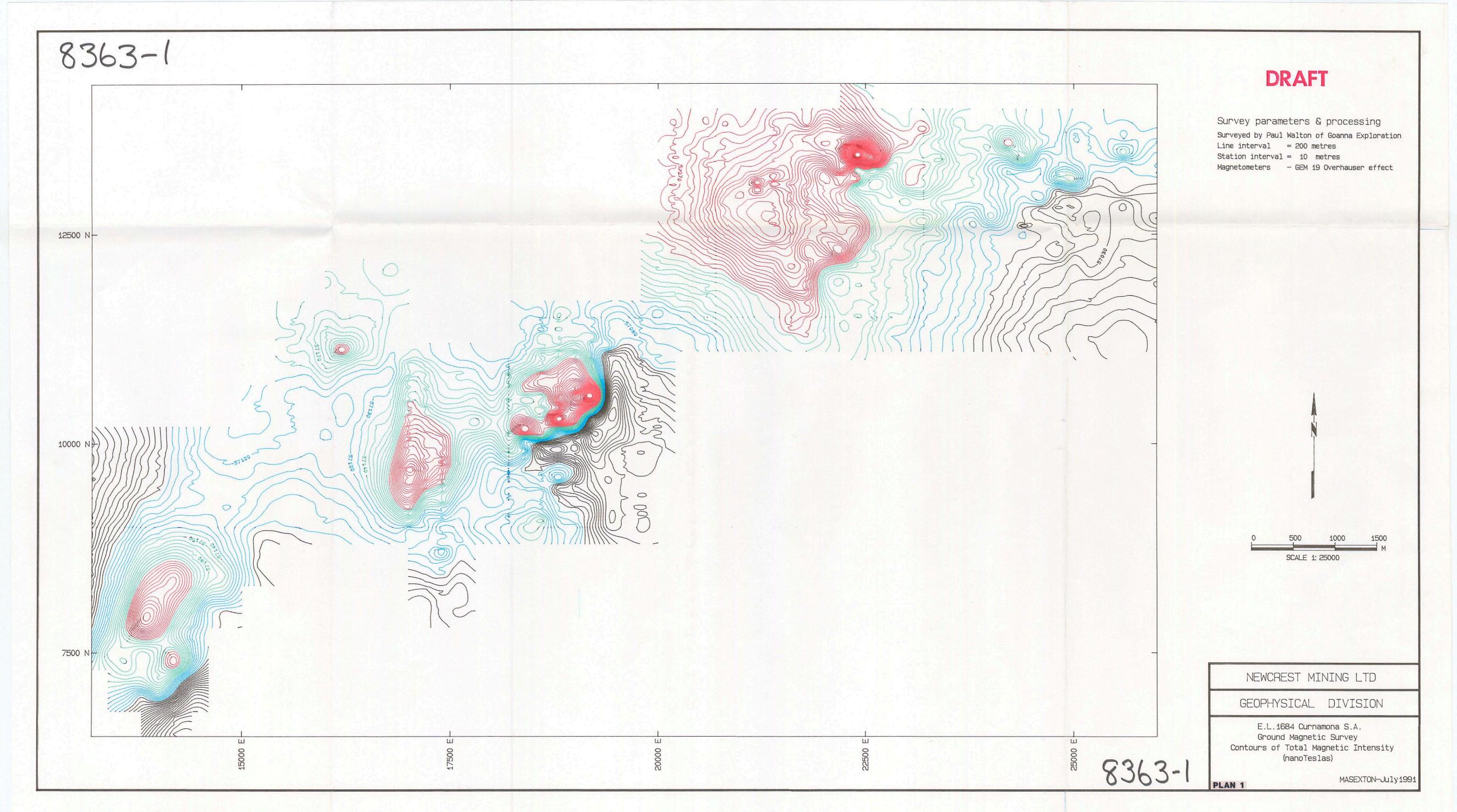

Instrumentation utilized were GEM, GSM 19 model, "Overhauser effect" memory magnetometers, with two instruments utilized in a roving configuration and a third for base station control. Data was transferred from magnetometer memory to computer disks each evening. Several grid lines were extended after computer profile plots of the magnetic data indicated insufficient coverage.

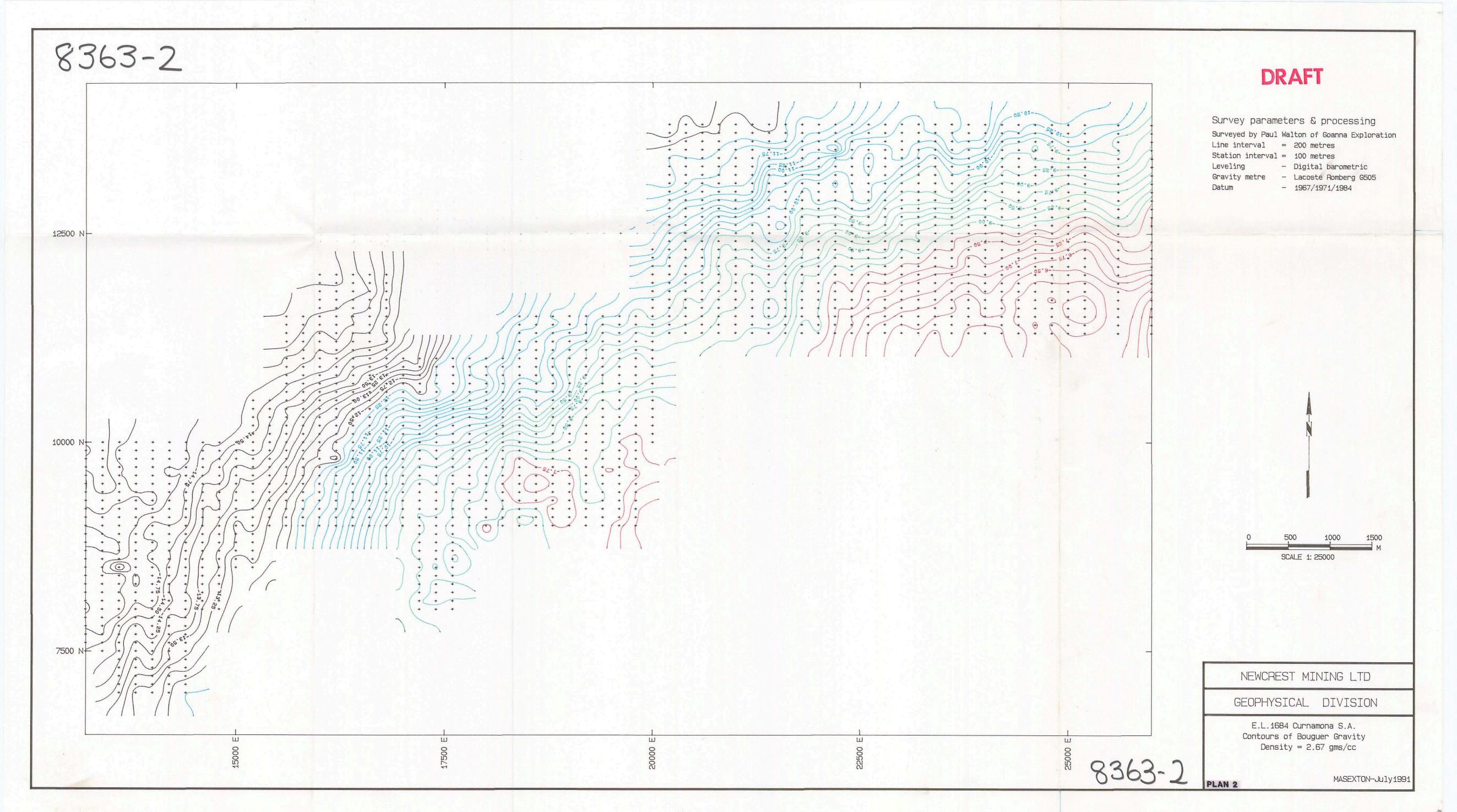

The contoured magnetic data (s) presented on Plan 1.

2.2.2 Gravity

Gravity readings were collected at 100 m intervals along 200 m spaced lines (as per the magnetic survey). Instrumentation utilized was a LaCoste and Romberg "Model G" Land Gravity Meter (unit number 505). Elevation control was achieved using digital barometers manufactured by Newmont Exploration Limited of Denver, Colorado. The barometers are designed around quartz pressure transducers with a field accuracy of ± 0.5 m. Local Lands Department bench marks were also used for elevation control.

The contoured gravity data is presented on Plan II.




3. EXPENDITURE

Total expenditure incurred for the three monthly period 1 May 1991 to 31 July 1991 was \$55,384 apportioned as set out below:

ITEM	EXPENDITURE
Salaries	7,214
Wages	6,187
Employee overheads	8,202
Geophysics	22,497
Field supplies	4,080
Travel & Accommodation	2,942
Motor Vehicles	1,024
Freight	715
Administration	2,523
TOTAL	\$55,384

Total project expenditure to date: \$94,969.

NEWCREST MINING LIMITED

EL1684 Curnamona
Fourth Quarterly Report for the Period
1 August to 31 October 1991

G.D. McEwen November 1991

Distribution:

Newcrest Mining Limited, Brisbane (1) Newcrest Mining Limited, Melbourne (1) S.A. Department of Mines and Energy (1)

CONTENTS

2.		Page
1.	INTRODUCTION	1
2.	EXPLORATION ACTIVITIES	2 .
	2.1 Drilling Programme	2
3.	APPLICATION FOR EXTENSION OF TENURE	2
4.	EXPENDITURE	3
Figu	PAGE	
rigu	163.	Scale
1.	Location Map showing Proposed Area for Relinquishment	1:600,000
2.	Geophysical Survey Grid Location	1:250,000
3.	Interpreted Geology	As shown
4.	Proposed Drill Hole locations	1:50,000

1. INTRODUCTION

Newmont Australia Limited made application for an Exploration Licence over 861 sq km north of Olary, S.A. on 10 July 1990. This application was granted as EL 1684 for a period of one year with a commencement date of 31 October 1991 (Figure 1).

Subsequently, Newmont Australia Limited has merged with BHP Gold Pty Ltd and changed names to Newcrest Mining Limited.

Newcrest's prime exploration target within EL 1684 is copper-gold-(uranium) mineralisation associated with intrusive rocks. As the prospective Proterozoic basement is completely covered by Phanerozoic rocks, exploration will be largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

This report covers exploration activities undertaken in the fourth quarter between 1 August and 31 October 1991. No field work was conducted during this period.

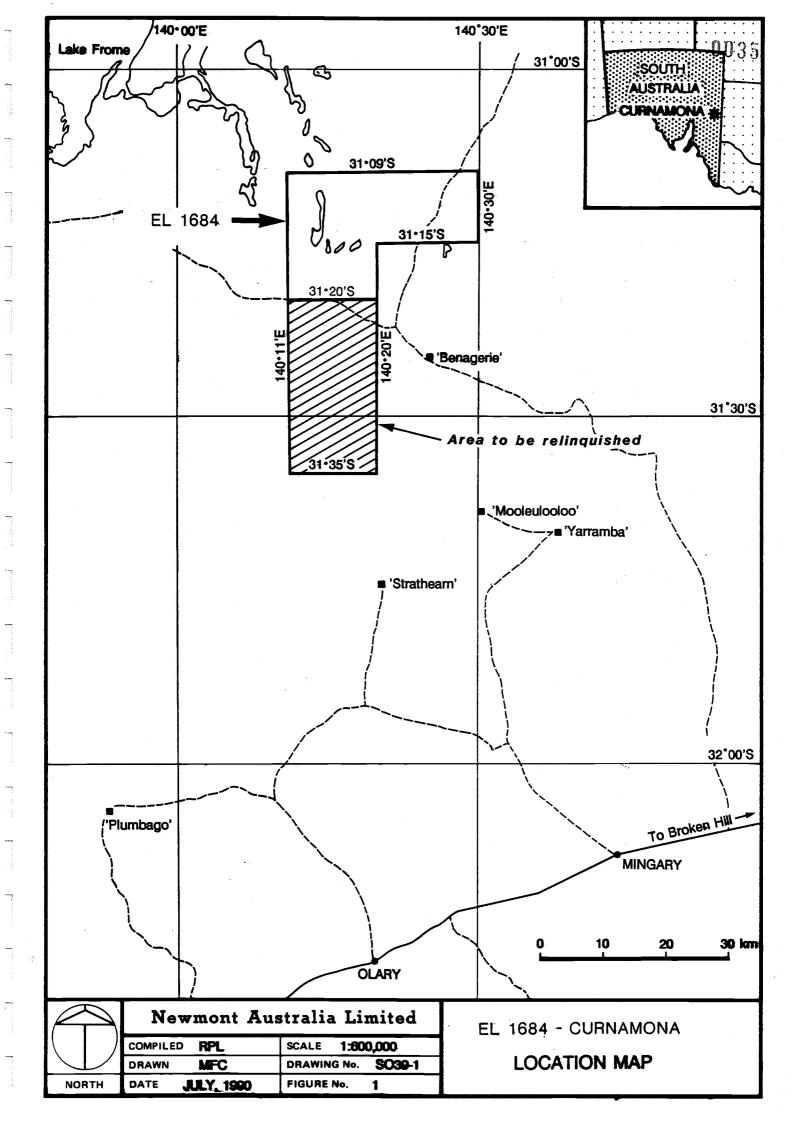
2. EXPLORATION ACTIVITIES

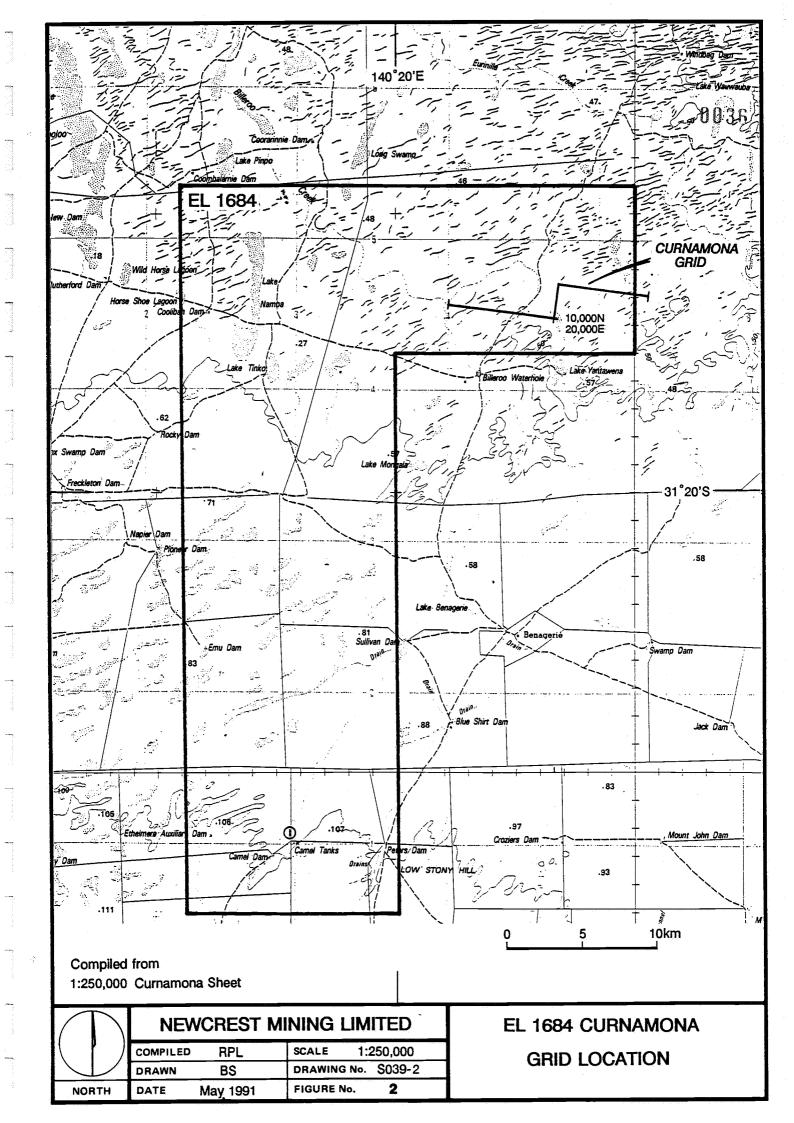
2.1 <u>Drilling Programme</u>

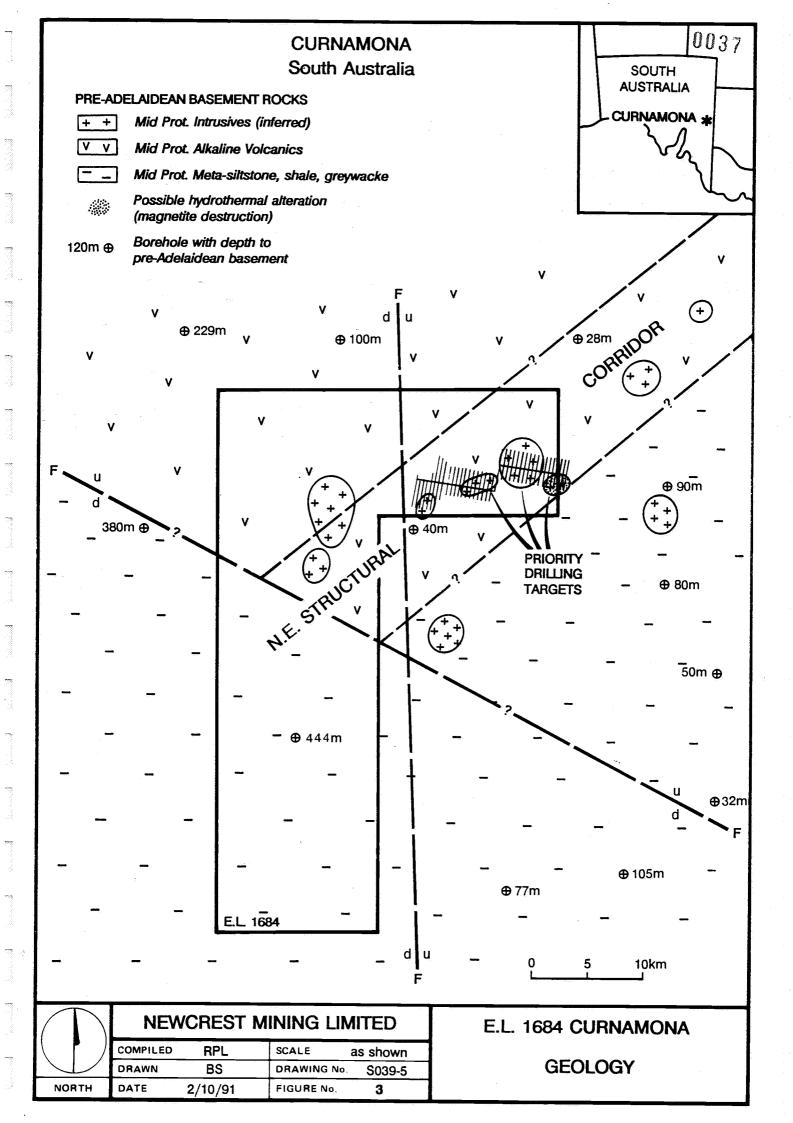
Processing of data collected from the ground magnetic and gravity surveys completed last quarter (Figure 2) has outlined several geophysical features which require drill testing. Approximately 1000 m of percussion drilling has been planned to investigate a linear series of magnetic "highs" and a coincident gravity "high"/magnetic "low" feature located within an interpreted NE-SW trending tectonic zone which passes through the northeastern portion of the tenement (Figure 3).

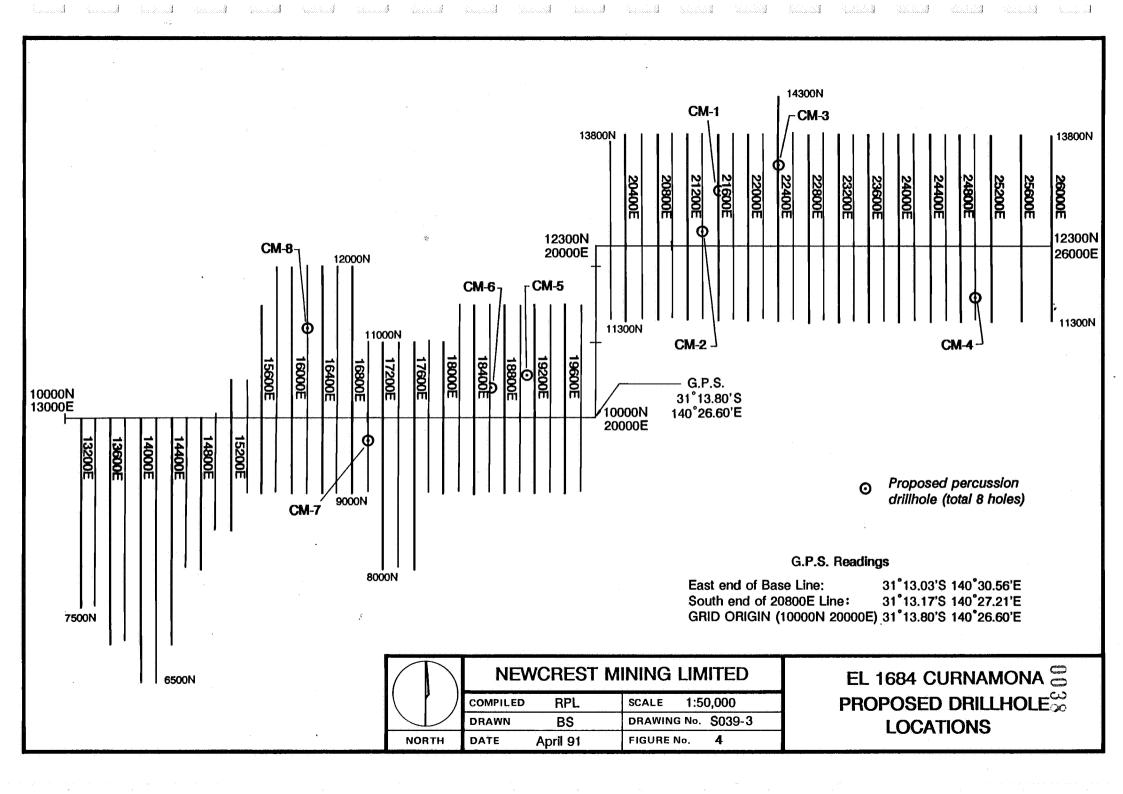
Compilation of previous drilling data in the vicinity of EL 1684 indicates that shallowly buried Middle Proterozoic basement occurs within the proposed drilling area. Depth to basement here is expected to range from 50 m to 100 m.

Adelaide based drilling company Frank Walsh Drilling has been contracted to complete the drilling programme, using a Walsh rig mounted on an eight wheel drive R.F.W. Work is expected to commence in late November-early December. Proposed drill hole locations are plotted on Figure 4.


3. APPLICATION FOR EXTENSION OF TENURE


As drill testing of geophysical targets could not be completed within the first year of tenure on EL 1684, application was made to extend this tenure for a further year. However, previous drilling data indicates that depths to basement exceed 400 m in the southernmost portion of the tenement. This is deemed too deep for Newcrest's current exploration strategy and application has been submitted for relinquishment of this area. Figure 1 shows the area proposed for relinquishment.


4. EXPENDITURE


Total expenditure incurred for the three monthly period 1 August to 30 October 1991 was \$15,190, a breakdown of which is given below:

ITEM	EXPENDITURE
Salaries & Wages	7770
Field Supplies	6487
Rentals & Rates	285
Travel & Accommodation	270
Vehicles	326
Administration	52
TOTAL	\$15,190

NEWCREST MINING LIMITED

Exploration Licence 1684
Curnamona
Fifth Quarterly Report for the Period
31 October 1991 to 30 January 1992

Grant D. McEwen BRISBANE

March 1992

Distribution:

Newcrest Mining Ltd, Brisbane (1) Newcrest Mining Ltd, Melbourne (1) S.A. Department of Mines and Energy (1)

CONTENTS

		Page
SUM	MARY	1
1.	INTRODUCTION	2
2.	EXPLORATION ACTIVITIES	3
	2.1 Drilling	3
3.	CONCLUSIONS AND RECOMMENDATIONS	6
4.	EXPENDITURE	7
Figu	es:	Scale
1	Location Map - EL 1684 Curnamona	1:600 000
2.	Geophysical Survey Grid Location	1:250 000

Appendices

- I Drillhole Logs
- II Drillhole Sample Ledgers and Certificates of Analysis
- III Drillhole Graphic Logs

Plans		
		Scale
1	Drillhole Locations (Local Grid)	1:25 000
2	Section 21 400E - Au Results	1:500
3	Section 21 400E - Cu Results	1:500
4	Section 22 000E - Au Results	1:500
5	Section 22 000E - Cu Results	1:500
6	Section 17 000E - Au Results	1:500
7	Section 17 000E - Cu Results	1:500
8	Section 18 600E - Au Results	1:500
9	Section 18 600E - Cu Results	1:500
10	Section 19 100E - Au Results	1:500
11	Section 19 100E - Cu Results	1:500
12	Section 25 000E - Au Results	1:500
13	Section 25 000E - Cu Results	1:500

SUMMARY

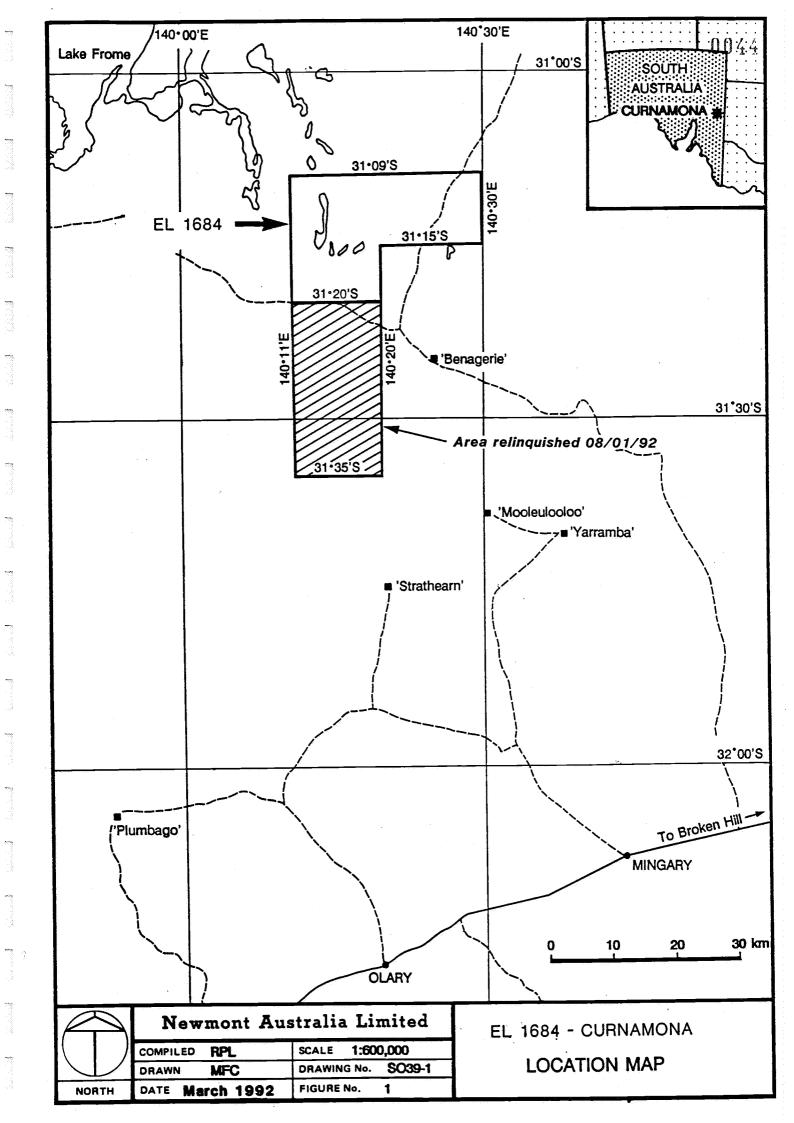
Exploration Licence 1684 Curnamona was granted to Newmont Australia Limited on 31 October 1990, for a term of one year.

Subsequently, Newmont Australia Limited merged with BHP Gold Mines to form the company Newcrest Mining Limited.

Applications to extend tenure of the northern half of the tenement for a further year and relinquish the southern half of the tenement were submitted in September and October 1991 respectively.

Scout drill testing of geophysical targets located within the northeastern portion of the tenement has delineated a linear belt of buried intrusives located within mafic to intermediate volcanics of Proterozoic age. Elevated base metal, silver, arsenic and bismuth values occur within altered volcanics overlying a magnetic feature interpreted as being a deep seated intermediate/felsic intrusive.

No significant gold results were returned from the drilling programme.


1. INTRODUCTION

Newmont Australia Limited made application for an Exploration Licence over 861 sq km north of Olary, S.A. on 10 July 1990. This application was granted as EL 1684 for a period of one year with a commencement date of 31 October 1990. Subsequently, Newmont Australia Limited merged with BHP Gold Limited and changed names to Newcrest Mining Limited.

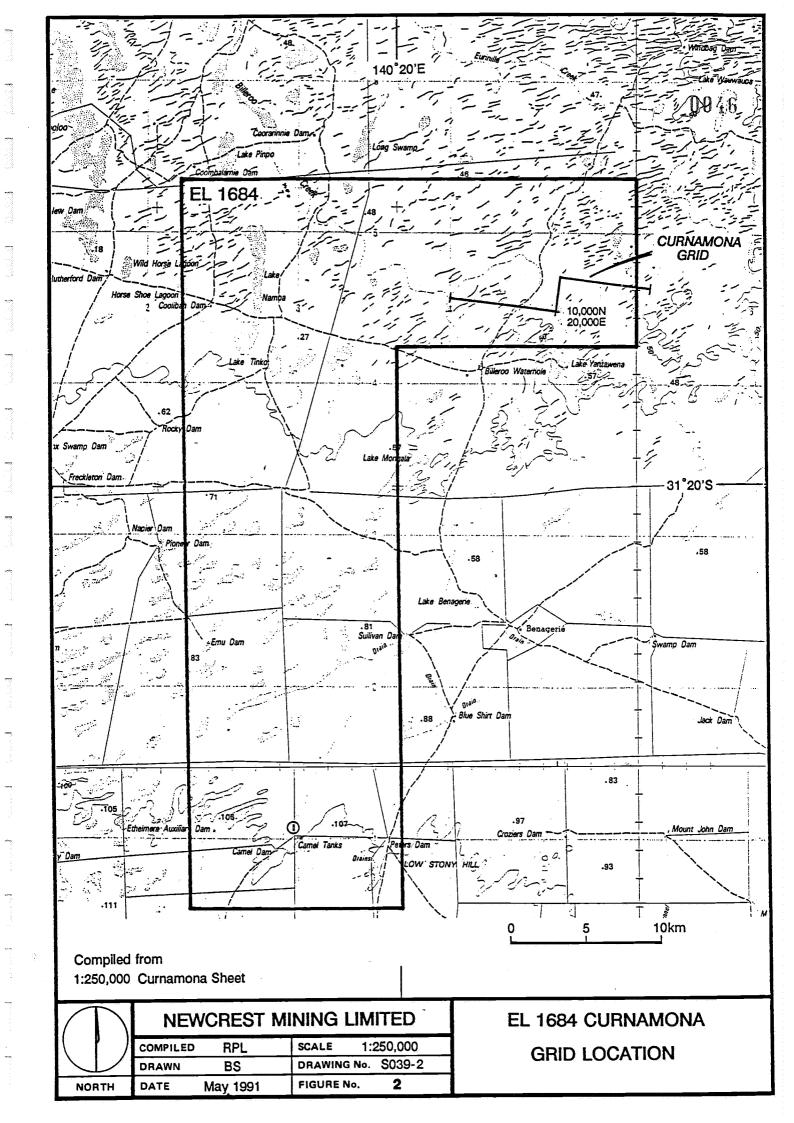
Application for an extension of tenure for a further year to 31 October 1992, along with a request for partial relinquishment were submitted on 17 September and 24 October 1991 respectively. The current tenement situation now stands as shown in Figure 1.

Newcrest's prime exploration target within EL 1684 is base metal-gold mineralisation associated with intrusive rocks. As the prospective Proterozoic basement is completely covered by Phanerozoic rocks, exploration has been largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

This report covers exploration activities undertaken during the fifth quarter, between 31 October 1991 and 30 January 1992. Work completed during this period comprised scout drilling of six percussion holes to test geophysical targets located within the eastern portion of the tenement. Total expenditure for the period was \$74,994.

2. EXPLORATION ACTIVITIES

2.1 <u>Drilling</u>


Using data collected from geophysical ground surveys completed over the eastern portion of the tenement (Figure 2) six targets were identified for follow-up scout drill testing. Three holes were planned to test a linear, NE trending series of magnetic features interpreted as representing intrusive stocks emplaced along a prominent crustal structure. A further two holes were targeted on zones of subdued magnetic response associated with these magnetic features and thought to possibly represent areas of hydrothermal alteration and magnetite destruction. A sixth hole was planned to test a coincident magnetic/gravity feature located on the eastern boundary of the tenement which may also represent large scale hydrothermal alteration.

Drilling commenced on 5 December 1991 and was carried out by Mt Barker based contractor Frank Walsh Drilling, using a modified Walsh rig mounted on an 8 x 8 RFW truck. A total of seven hundred and fifty four metres (754 m) were drilled using a combination of Rotary Mud drilling through the Phanerozoic clay/sand cover, followed by Reverse Circulation hammer drilling through oxidised to fresh basement. Rotary Mud samples were collected at 2 m intervals while all Reverse Circulation samples were collected at 1 m intervals.

Drillhole locations are plotted on Plan 1 using Local Grid co-ordinates, with Grid North = Magnetic North. Drillhole logs are presented in Appendix I and sections showing gold and copper results are presented in Plans 2 to 13.

Four hundred and thirty eight (438) 5 kg samples were selected and analysed for Au (Fire), Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V and Zn (ICP) by Classic Laboratories, Adelaide. Sample ledgers and laboratory certificates of analysis are presented in Appendix II.

All holes were drilled through a sequence of Quaternary aeolian sand and Tertiary(?) puggy clays before intersecting weathered bedrock. Average depth to basement for the programme was 39 m.

A summary of drilling results follows:

CMR-1/CMR-1A

Targeted on the most prominent magnetic feature located within the Newcrest geophysical survey area. Modelling of profiles across this feature indicates an approximate vertical depth to the magnetic source of 400 m. Drilling was planned to test for potential alteration within the overlying mafic volcanic sequence.

Drillhole CMR-1A returned the most significant results for all the holes completed in this programme, intersecting elevated Ag, As, Cu, Pb, Zn and Bi (to 17.5 ppm, 260 ppm, 1280 ppm, 460 ppm, 450 ppm and 165 ppm respectively). Mineralisation appears to be related to several zones of moderate to strong bleaching and pyritisation within massive basaltic to andesitic volcanics.

CMR-2

Targeted on a zone of subdued magnetic response located marginal to the large magnetic feature drill tested by CMR-1A. Geophysical interpretation suggests that this may represent an area of hydrothermal alteration associated with either a large deep seated intrusive or a small, shallowly emplaced stock/dyke located further to the northeast. Modelling of the smaller, intense magnetic feature to the northeast of CMR-2 indicates an approximate vertical depth to magnetic source of 110 m.

Drilling intersected two narrow zones of silicification and epidote alteration within basalts which returned weakly elevated As and Pb responses to 100 ppm and 220 ppm respectively. Alteration is associated with numerous narrow adamellite(?) dykes which have been intruded along brittle fractures within the mafic volcanics, indicating that a more substantial intrusive body may exist at depth.

No significant Au results were returned.

CMR-3

Targeted on a poorly defined magnetic feature located on the margin of an interpreted N-S trending structure. This structure appears to have offset the major northeasterly trending linear along which the magnetic features are aligned and, from gravity and borehole data, has been downfaulted to the west.

Drilling intersected a thick sequence of weathered haematitic basalts with numerous cross-cutting intermediate dykes of probable adamellite composition. No evidence of significant alteration or mineralisation was encountered in this hole, which failed to reach fresh bedrock.

CMR-4

As for hole CMR-2, this hole was targeted on a zone of possible hydrothermal alteration (magnetic low) located marginally to a series of high level intrusives (magnetic highs). Geophysical modelling of the magnetic features estimates approximate vertical depths to magnetic sources of between 50 and 250 m.

Drilling intersected a thick sequence of white kaolinitic clays containing abundant angular quartz, before encountering massive, fine quartz-rich adamellite. Weakly elevated As and Zn (to 145 ppm and 230 ppm respectively) results were returned from along the oxidised/fresh bedrock interface, where up to 1% pyrite was observed during drilling.

No significant Au results were returned.

Unexpectedly, magnetic susceptibility readings of chip samples taken every 5 m once hammer drilling commenced, were highest from this hole, particularly from near bottom of hole. This suggests that the subdued magnetic response returned from the ground magnetics survey may reflect the degree of deep weathering and kaolinitic clay cover in this area.

CMR-5

Targeted on the northernmost magnetic feature adjacent to hole number CMR-4.

As for CMR-4, drilling intersected white kaolinitic clays followed by fresh, massive adamellite. The kaolinitic clay sequence was thinner in CMR-5, however, with no evidence of sulphides at the oxidised/fresh bedrock interface.

No significant assay results were returned for this hole.

CMR-6

Targeted on near coincident gravity "high"-magnetic "low" features located on the eastern boundary of the tenement. Geophysical interpretation of these features is unclear, but it may represent large scale hydrothermal alteration of a non-magnetic intrusive.

Drilling intersected a deep sequence of quartz-rich kaolinitic clays, followed by a massive, medium grained intrusive of granodioritic composition.

Weakly elevated As (to 105 ppm) and Zn (to 115 ppm) values were returned from a narrow, weakly pyritic zone located immediately beneath the oxidised/fresh bedrock interface. No significant Au results were returned.

3. CONCLUSIONS AND RECOMMENDATIONS

Drill-testing of geophysical targets within the Newcrest grid area produced the following results:

- Depth to proterozoic basement averaged 38 m, as was indicated from the regional borehole database.
- The northeasterly trending belt of magnetic "highs" were found to relate to a series of intermediate/felsic intrusives having adamellite compositions, which have intruded a thick sequence of mafic to intermediate volcanics.
- Two areas of subdued magnetic relief lying adjacent to the margins of the magnetic "highs" are believed to be the result of deep weathering and clay cover, not the result of hydrothermal alteration. The two holes drilled to test these areas both intersected thick clay sequences overlying fresh basement.
- A near coincident gravity/magnetic feature was found to relate to deep weathering of a granodiorite, located on the eastern margin of the major northeast trending lineament.
- No significant gold results were returned for any of the holes.
- The only significant fresh bedrock anomalous base metal results were returned by hole CMR-1A, which intersected bleached and pyritised mafic/intermediate volcanics overlying the largest magnetic feature within the Newcrest grid area.

Further exploration work is recommended to follow-up the anomalous results returned from CMR-1A. Air Core drilling to the limit of weathering, along with composite sampling of the weathered basement may be utilised to target specific sites for further deep percussion drilling.

4. EXPENDITURE

Total expenditure incurred for the three month period from 31 October 1991 to 30 January 1992 was \$74,994, a breakdown of which is given below:

Expenditure Type	\$
Salaries	9,064
Wages	1,125
Overheads	7,319
Office Rentals and Rates	702
Travel and Accommodation	1,351
Computer	113
Administration	16
Assaying	13,000
Drilling	32,356
Geophysics	168
Supplies	2,807
Exploration Office	5,425
Land Management	1,276
Field Living	272
Total	\$74,994

APPENDIX I

Drillhole Logs

NEWCREST MINING LIMITED GEOLOGICAL LEGEND

PROJECT: EL 1684 CURNAMONA

LITHOLOGY

WEATHERING LITHOLOGIES			
Symbol	Symbol Description		
WSP	WSP Saprolitic Clays		
WPD	WPD Pallid Clays		
ROK	Unknown lithology (texture destroyed by weathering)		

	SEDIMENTARY ROCKS		
Symbol Description			
SSD	Sand (Predominantly aeolian derived)		
SCY	SCY Clays (Massive to laminated, puggy)		
SSS	Sandstone		

VOLCANIC ROCKS		
Symbol	nbol Description	
VU	Volcanic (Undifferentiated)	
VDC	Dacite	
VAN	Andesite	*
VBS	Basalt	

	INTRUSIVE ROCKS		
Symbol Description			
IU	Intrusive (Undifferentiated		
IAD	Adamellite		
IGD	Granodiorite		

GEOLOGICAL LEGEND

MINERALS

Symbol	Mineral	Symbol	Mineral
al	alunite	hn	hornblende
am	amethyst	fe	iron oxides
1	arsenopyrite	js	jarosite
ap az	azurite	lm	limonite
ba	barite	mt	magnetite
bi	biotite	ma	malachite
bn	bornite	mn	mangaese minerals
ca	calcite/calcareous	mc	marcasite
cs	carbonaceous	mi	mica
cb	carbonate	mo	molybdenite
ch	chalcedony	ol	olivine
cc	chalcocite	or	orpiment
ср	chalcopyrite	ру	pyrite
cl	chlorite	px	pyroxene
cn	cinnabar	ph	pyrrhotite
cy	clay	qz	quartz
ci	clay (illite)	rg	realgar
ck	clay (kaolin)	sc	scheelite
cv	covellite	se	sericite
en	enargite	si	silica/siliceous
ep	epidote	sp	sphalerite
fd	feldspar	sb	stibnite
fs	fuchsite	sf	sulfides
gl	galena	ta	talc
gt	garnet	th	tetrahedrite
go	goethite	tm	tourmaline
gp	gypsum	wo	wollastonite
hm	hematite		

MINERALISATION STYLES

Min Style
Disseminated Vein Massive

GEOLOGICAL LEGEND

ALTERATION

Symbol	Alteration	Symbol	Alteration
ar	argillic	pv	pervasive
bh	bleached	pt	potassic
js	jasperoid	pp	propylitic
le	leached	si	silicification

STRUCTURE/TEXTURE

Symbol	Struct/Text	Symbol	Struct/Text
Bnd	Banded	Maf	Mafic
Bed	Bedded	Mag	Magnetic
Bio	Bioturbated	Mas	Massive
Bld	Bladed	Mg	Medium grained
11	Blocky	Mon	Monomictic
Bky Brx	Brecciated	Oxi	Oxidised
Cht	Cherty	Pil	Pillowed
il I	Coarse grained	Plm	Plumose
Cg	Colloform	Pol	Polymictic
Col	Comb	Por	Porphyritic
Com	4	Pug	Puggy
Crs	Crustiform	Sco	Scoriaceous
Xtl	Crystalline	Shd	Sheared
Dis	Disseminated	1	Spotted.
Fel	Felsic	Spt	Spotted Stained
Fg	Fine grained	Stn	Stockwork
Flb	Flow banded	Stk	
Fol	Foliated	Sug	Sugary
Fos	Fossiliferous	Tuf	Tuffaceous
Fre	Fractured	Umf	Ultramafic
Fsh	Fresh	Vn	Veined
Fri	Friable	Vcg	Very coarse grained
Hln	Hairline	Vfg	Very fine grained
Int	Intermediate	Ves	Vesicular
Kby	Knobbly	Vug	Vuggy
Lam	Laminated	Wel	Welded
Lit	Lithic	Znd	Zoned

GEOLOGICAL LEGEND

COLOURS

Symbol	Colour	Symbol	Colour
Bk Bl Br D Gr Gy Kk L	Black Blue Brown Dark (prefix) Green Grey Khaki Light (prefix)	Ow Or Pk Pu Rd Wh Yl	Off white Orange Pink Purple Red White Yellow

INTENSITIES

Symbol	Intensity	Symbol	Intensity
1	Trace	Tr	Trace
2	Weak	Wk	Weak
3	Moderate	Md	Moderate
4	Strong	St	Strong
5	Intense	Ab	Abundant

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

Hole Number:

CMR-1

0056

Project:

EL 1684 Curnamona

Prospect:

Target:

Mafic volcanics overlying deep seated magnetic feature

Logged by:

G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing:

65 47 040

Easting:

4 48 704

LOCAL:

Northing:

12 500

Easting:

21 400

Bearing:

(Mag)

(Grid)

Dip at Collar: -90°

DRILLING DETAILS

Contractor: Frank Walsh Drilling

Rig:

Walsh

Commenced:

5.12.91

Completed:

6.12.91

Final Depth:

28 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE			
0	28 m	RC Face Sampling Hammer	5½"			

SAMPLING DETAILS

Sample Nos.

From:

To:

LABORATORY	ELEMENTS	METHOD

Comments:

Hole collapsed - drilling abandoned. No samples analysed.

HOLE NO: PROJECT:

CMR-1 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
0 1 5 7 10 11 21 25	5 7 10 11 21 25	Mod Mod Mod Mod Mod Poor	LBr LBr LBr LBr Gy Gy Gy			SSD SSD SSD SSD SSD SCY SCY SCY							Fg (Water injection) Fg, clayey 5% qz fragments

Page 1 of 1

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

Hole Number:

CMR-1A

Project:

EL 1684 Curnamona

Prospect: -

Target:

Mafic volcanics overlying deep seated magnetic feature

Logged by: G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing:

65 47 081

Easting:

4 48 731

LOCAL:

Northing:

12 556.5

Easting: 21 402

Bearing:

(Mag)

(Grid)

Dip at Collar: -90°

DRILLING DETAILS

Contractor:

Frank Walsh Drilling

Rig:

Walsh

Commenced: 6.12.91

Completed:

8,12,91

Final Depth:

126 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE			
0	90 m	Rotary Mud	6"			
90 m	126 m	RC Face Sampling Hammer	5 <u>1</u> "			

SAMPLING DETAILS

Sample Nos.

From: CM 001R

To:

CM 052 R

LABORATORY	ELEMENTS	METHOD		
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2		

Comments:

Drilling stopped by high water flow rates.

Bidd Bidd barg Bidd Bidd Bidd Bard Bidd Bidd Bidd Long Load Lon Lon Long Long Long Long

HOLE No: PROJECT:

CMR-1A EL 1684 CURNAMONA

Fraul	TO RETUR	I COLOUID	MEATHERING	STRUCT/TXT	L I THOLOGY	ALTERATION	MIN	% SULF	QTZ	VNS	% QTZ	MAG-SUS	COMMENTS
FROM	10 KETUKI	COLOOK	MENTHERING					 	-		<u> </u>		
0 2	2 7	LBr		1.3	SSD SCY				1				cy2 cy2-3, Md cemented qz SSD
2		LBr Gy			SCY			1				,	. ,= ,
7	20 25	Gy		Pug-2	SCY	:	l				<u> </u>		Wk Sandy
25	32	Ow-LPkBr		Pug-2	SCY			1	į.		l .		i
32	40	YlPk			SCY		l	Į.	1				
20 25 32 40 46	46	PKYl	1		SCY			1	1				
46	50	YlPk		Pug-2 Pug-2	SCY SCY			l .	L				·
50	52 54	Ow-LYl LYl-Pk		Pug-2	SCY				1			I	
50 52 54	58 58	OW-LYL	1	Pug-2	SCY	1		1	1		1		·
58	62	OH	1	Pug-2	SCY		1		1		1		
62	64	Ow-LBr	[Pug-2	SCY				1				Tr Oxi, Int ROK
62 64	66	Br	1	1	SCY				1		1		Md Oxi, Int ROK
66	70	Br	i	Į.	SCY SCY	1			1		1		Ab Oxi, Int ROK
70	74	OW-LYL	Oxi-4	Int?	IU/IV?				1		1		cy5
74 78	78 86	Br LYlBr	UX1-4	11167	SCY	·	ľ				1		Tr Oxi ROK
86	88	Ow-LBr	0xi-5	j	ROK		:	1	Xt!	l .	Tr		cy5, Wk fe Stn
88	90	Ow-LBr	Oxi-4	Fg	VU?		L .	l .				1.03	cy4, Wk fe Stn Wet
90	91 Good	Gn	Fsh	Vfg	VAN		D-sf	TI TI					lwet
91	92 Good	LGn	Fsh	Mag-1	VAN		D-py D-py	Ti				ł	
92	93 Good	LGn.	Fsh Oxi-1	Por-2	VAN VAN		lo by	1 "	1				1
93	94 Good 95 Good	LGn LGn	Fsh	1701-2	VAN	bh2	D-py	Ti	-		1	1	
94 95	96 Good	LGn	Fsh	Vfg	VAN/VBS?		1 ''	1	1			l	1
96	97 Good	LGy	Fsh	1	VAN	bh5	D-py	Ti	r Ma	s?	Tr	1.45	cl flecks
97	98 Good	OW	Fsh	1	VAN	bh4		1					cl flecks cl flecks
98	99 Good	LGy	Fsh	•	VAN	bh4 bh2	р-ру	T	-			0.58	
99	100 Good	LGy	Fsh Fsh		VAN VAN	bh2	lo by	1 ''	' 			''''	
100	101 Good 102 Good	LGY LBr	Fsh	1	VAN	fe2	J		ı		l	!	
101 102	102 Good	LGY	Fsh		VAN	bh4	D-py	T			1		cl flecks
102	103 Good	LGy	Fsh	1	VAN	bh3	D-py	1 1			1	l	cl flecks
104	105 Good	LGy	Fsh		VAN	bh4 ep1	D-py	1 '	1		1	0.40	cl flecks
105	106 Good	Gn	Fsh	1	VAN	bh3	D-my nh2	1			1		
106	107 Good	GyGn	Fsh	Mag?	VAN VAN/VBS?		D-py,ph? D-py	1 '3	5		1	:	1
107	108 Good	Gy	Fsh Fsh		VAN/VBS?	1	D-sf	T					
108 109	109 Good 110 Good	LGY	Fsh	1	VAN	1	D-py	T				5.14	1
109	110 4004	Luy				1						J	

HOLE No: PROJECT:

CMR-1A EL 1684 CURNAMONA

FROM	TO R	ETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	111 G 112 G 113 G 114 G 115 G 116 G 117 G 120 G 121 G 122 N 123 N 124 F 125 N	Good Good Good Good Good Good Good Good	LGY LGY LGY LGY LGY LGY LGY GYGN GYGN GY	Fsh Fsh Fsh Fsh Fsh Fsh Fsh Fsh Fsh Fsh		VAN VAN VAN/VDC? VAN/VDC?	bh3 bh2 bh2 bh1 bh3 ep1 bh1 ep1 ep1 bh3 ep1 bh4 ep2	D-py D-py D-py D-py D-py D-py,ph? D-sf D-py D-py D-py D-py	1 Tr	hm? hm? Mas?	Tr Tr	2.41	Wet. Fracture/fault, abundant water Wet. Tr hm?? filled fractures Wet Wet

Page 2 of 2

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

0061

Hole Number:

CMR-2

Project:

EL 1684 Curnamona

Prospect:

Target:

Zone of subdued magnetic response located on margin of deep seated

magnetic feature Logged by:

G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing:

65 47 530

Easting:

4 49 386

LOCAL:

Northing:

13 049.5

Easting:

21 999.5

Bearing:

(Mag)

(Grid)

Dip at Collar: -90°

DRILLING DETAILS

Contractor:

Frank Walsh Drilling

Rig:

Walsh

Commenced:

8.12.91

Completed:

10.12.91

Final Depth:

139 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE		
0	56 m	Rotary Mud	6"		
56 m	139 m	RC Face Sampling Hammer	5½"		

SAMPLING DETAILS

Sample Nos.

From:

CM 057R

To:

CM 142R

LABORATORY	ELEMENTS	METHOD		
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2		

Comments:

Drilling stopped by $\mathring{\text{h}}\text{igh}$ water flow rates

HOLE No: PROJECT:

CMR-2 EL 1684 CURNAMONA

FROM	TO	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
0 5	5 10		LBR Ow-LY(Br		1	SSD SCY			•				су3
10 14	14 20	ł	Gy LYl-LGy		Pug-3	SCY SCY		! 			:		Md Sandy .
20 28	28 30		Gy LGy		Pug Cg	SCY SSD		<u> </u> 			3	:	су3/4
30 42	42 52		Gy-DGy Ow-LGy			SCY WSP? WSP?			}	:			Tr Vfg SSS fragments? Ab Oxi-5 ROK
52 56		V.Poor	Ow-YlBr Kk Kk	0xi-2 0xi-2	Vfg Vfg	SSS SSS	ep1						Wet Lam-2, cy2
57 58 59	59	Good	Br GyBr	Oxi-2	Vfg Vfg	SSS	mi? mi2		}			0.25	суЗ
60 61	61	Good Good	Br YlBr	Oxi-2 Oxi-2	Vfg Vfg	SSS SSS							cy2 cy3
62 63	63 64	Good V.Poor		Oxi-4 Oxi-2	Vfg	ROK SSS						0.18	fe Stn Mn fragments fe3 ROK
65	66	V.Poor Poor Mod	Br DBr DBr	Oxi-5 Oxi-4 Oxi-4	Vfg	WSP ROK SSS			1				cy4
66 67 68	68	Good Good	DBr Br	Oxi-4 Oxi-3	Vfg Vfg Vfg	SSS SSS			:				cy2 cy2
69 70	70	Mod Poor	DBr DBr	Oxi-3 Oxi-3	Vfg Vfg	SSS SSS						0.29	cy4
71 72	73	Poor Poor	DBr Br	Oxi-2 Oxi-2	Vfg Vfg	SSS VAN/VBS?							Tr Pk IAD?
73 74	.75	Mod Mod	Br Br	Oxi-1 Oxi-2 Oxi-3	Vfg Vfg Vfg	VAN VAN VAN						0.45	Tr Pk IAD?
75 76 77	77	Mod Mod Poor	Br Br Br	Oxi-3 Oxi-3	Vfg Vfg	VAN VAN							Mn Pk IAD?
78 79	79	Poor Mod	DBr DBr	Oxi-3 Oxi-2	Vfg Vfg	VAN VBS?				:	1	0.63	Md fe Stn
80 81	81 82	Mod Mod	DBr DBr	Oxi-2 Oxi-2		VBS VBS							
82 83	84	Mod Mod	DBr DBr	Oxi-1 Oxi-1 Oxi-1	\	VBS VBS VBS	ļ]	0.93	
84 85 86	86	Mod Mod Mod	DBr DBr DBr	Oxi-1 Oxi-1		VBS VBS]					Tr Pk IAD? Wet Md Pk IAD? Wet

HOLE No: PROJECT:

CMR-2 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
87	88	Poor	DBr	Oxi-1		VBS							
88	89	Mod	DBr	Oxi-2		VBS			,			Λ εο	
89	90	Mod	DBr	Oxi-1		VBS)		1	0.58	cy3. Damp
90	91	Poor	DBr	Oxi-1		VBS					_		cy3. Damp Tr Pk IAD? Wet
91	92	Poor	DBr	Oxi-1	,	VBS				Xtl	Tr		Wet
92	93	Mod	DBr	Oxi-1		VBS		1		Xtl	1 1		Wet
93	94	Mod	DBr	Fsh		VBS		i		Mas	Ţr		
94	95	Mod	DBr	Fsh		VBS	_]	'	Mas	Ţŗ		Wet
95	96	Роог	DGn	0xi-1	'	VBS	ep1]	İ	Mas	Tr 1		Wet
96	97	Poor	DGn	Oxi-1		VBS	١.			Mas	Tr	1	Wet. Tr Pk IAD?
97	98	Good	DGn	Fsh		VBS	ep4			Mas	11	-	Wet. Ab Pk IAD?
98	99	Poor	DGn	Fsh	•	VBS	ep3	•	·			0.51	40% Pk IAD. Wet
99	100	Mod	DGn	Fsh		VBS	ep2					0.51	40% Pk IAD, Cht-1. Wet
100	101	Good	DGn	Fsh		VBS	ер3	.	I	1			40% Pk IAD, Cht-1. Wet
101	102	Good	DGn	Fsh	1	VBS	ерЗ	Dpy	Tr				40% Pk IAD. Wet
102	103	Good	DGn	Fsh		VBS	ep1		Tr				10% Pk IAD. Wet
103	104	Poor	DGn	Fsh		VBS	ep1	Dpy	117		i	0.55	20% Pk IAD. Wet
104	105	Poor	DGn	Fsh		VBS	ep1		l tr		1	0.22	10% Pk IAD. Wet
105		Poor	DGn	Fsh		VBS	ep1	DbA	11	Mas	Tr	:	30% Pk IAD. Wet
106		Mod	DGn	Fsh		VBS	ep1		1	Mas	Tr		20% Pk IAD. Wet
107		Mod	Kk	Fsh		VBS	ep1	l	:	mas	l ''		40% Pk IAD. Wet
108		Mod	DGn	Fsh		VBS	ep1		· I		ı	0.68	40% Pk IAD. Wet
109		Good	DGn	Fsh	į.	VBS	ep1	D	T.	Mas	l Tr		10% Pk IAD. Wet
110		Good	DGn	Fsh	1	VBS	•	рру	Tr		l ''		10% Pk IAD. Brx. Wet
111		Mod	DGn	Fsh	-	VBS		Dpy Dpy		Mas	Tr		40% Pk IAD. Wet
112		Mod	DGn	Fsh	1	VBS		loby	1 ''	'''	1 "		20% Pk IAD. Wet
113		Mod	DGn	Fsh	:	VBS	1			Mas	l Tr	0.69	10% Pk IAD. Wet
114		Mod	DGn	Fsh	la	VBS VBS		Dpy	Tr.	Mas	Tr	_	Tr Pk IAD. Wet
115		Good	DGn	Fsh	Bky-2	AR2		Loby	1 "	Mas	l tr		5% Pk IAD. Wet
116		Mod	DGn	Fsh			an1	1	1		I "		40% Pk IAD. Wet
117		Роог	DGn	Fsh	:	VBS VBS	ep1 ep2	Į.	1			1	40% Pk IAD. Wet
118		Mod	DGn	Fsh	1	VBS		1	1			0.75	40% Pk IAD. Wet
119		Mod	DGn	Fsh	L	VBS	si3, ep1 ep2			Mas	Tr		20% Pk IAD. Wet
120		Mod	DGn	Fsh			Jehr	Dpy	l Tr		1 "		Tr Pk IAD. Wet
121		Mod	DGn	Fsh	, <u>ş</u>	VBS VBS	,	Laby	I "	i	1		Tr Pk IAD. Wet
122		Mod	DGn	Fsh	1	VBS	1	1					5% Pk IAD. Wet
123		Mod	DGn	Fsh	CF4-33	VAN/VBS?			1	:		0.58	40% Pk IAD. Wet
124		Mod	DGn	Fsh	Shd-2?	VAN/VBS?	1	1					20% Pk IAD. Wet
125		Mod	0Gn	Fsh		VBS?			l		1		30% Pk IAD. Wet
126	127	Mod	DGn	Fsh		VDSf		<u></u>	<u></u>	<u></u>	1	<u> </u>	

Page 2 of 3

HOLE No: PROJECT:

CMR-2 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	ата	Z VNS	% QTZ	MAG-SUS	COMMENTS
127 128 129 130 131 132 133 134 135 136 137	129 130 131 132 133 134 135 136 137	Mod Mod Mod Mod Mod Mod Good Mod Mod	DGn DGn DGn DGn DGn DGn DGn DRdGn DRdGn DRdGn DGn	Fsh Fsh Fsh	Brx-3? Mag-1 Mag-1 Bky-5 Bky-4 Bky-3	VBS	ep1 ep2 ep2 si4, ep3	Dpy Dpy Dpy Dpy	Tr Tr				0.66	40% Pk IAD. Wet Tr Pk IAD. Wet 10% Pk IAD. Wet 10% Pk IAD. Wet 20% Pk IAD. Wet 40% Pk IAD. Wet 50% Shd? Pk IAD. Wet 5% Pk IAD. Wet 5% Pk IAD. Wet 5% Pk IAD. Wet 5% Pk IAD, Frc-4. Wet 50% Pk IAD, Frc-4. Wet 50% Pk IAD, Frc-4. Wet

Page 3 of 3

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

Hole Number: CMR-3

Project: EL 1684 Curnamona Prospect:

Target:

Magnetic feature located adjacent to major interpreted N-S trending

Logged by: structure

G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing:

65 44 906

Easting:

4 44 024

LOCAL:

Northing:

9700

(Mag)

Easting: 17000

Bearing:

(Grid)

Dip at Collar: -90°

DRILLING DETAILS

Contractor: Frank Walsh Drilling

Rig:

Walsh

Commenced:

10.12.91

Completed: 11.12.91

Final Depth:

126 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE
0	23 m	Rotary Mud	6"
23 m	126 m	RC Face Sampling Hammer	5½"

SAMPLING DETAILS

Sample Nos.

From:

CM 143R

To:

CM 249R

LABORATORY	ELEMENTS	METHOD
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2

Comments:

Failed to reach fresh bedrock

HOLE No: PROJECT:

CMR-3 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
0	3		LBr			SSD							cy2, gp at base
3	19		Gy			SCY		ł			:		f. DOV framents
19	23		PuBr			SCY							fe ROK fragments
23		Poor	LPuBr	Oxi-4		ROK			1	:		0.57	fe Stn, Wet
24		Good	LPuBr	Oxi-3		VU			i '		l	0.57	fe Stn, Wet fe Stn
25		Good		Oxi-4	i i	VU	•	·	1	•			fe Stn
26		Good	LPuBr	Oxi-4		VU							fe Stn
27		Good		Oxi-4		VU				ļ	1		Tr cherty
28		Mod	LPuBr	Oxi-4		VBS?	i					4 00	Wk fe Stn, Tr jasper
29		Mod	LBr	Oxi-4		VU .			1			1.00	fe Stn
30		Good	LPuBr	Oxi-3		VU		Į :	1		1		fe Stn
31		Good	LPuBr	Oxi-4	1	VU	Į.			1	1		fe Stn
32		Good	LYLPuBr	oxi-4		VU			:		1		fe Stn
33		Good	PuBr	Oxi-4		VU					1 .	4 77	fe Stn
34		Good	LPuBr	Oxi-4	Por-3	VU					Į.	1.33	Wk fe Stn
35		Mod	LPuBr	Oxi-4]	VAN/VBS?	ep1						fe Stn
36		Mod	LPuBr	Oxi-4		VAN/VBS?		1	1				fe Stn
37		Mod	LPuBr	oxi-3	1	VAN?					l .		Ab VU? fe Stn (F-Mg IU)
38		Good	LPuBr	Oxi-4		1U?	ep1	il .				1 4 00	fe Stn
39		Good	LPuBr	Oxi-3		VBS		1	1		1	1.09	fe Stn
40		Good	LPuBr-Gy	Oxi-4	1	VAN/VBS?	1	1			L		116.300
41		Good	LGy	Oxi-4	i	IU			:	1		I	fe Stn
42	43	Mod	LPuBr	Oxi-4	Por-3	VU	1	1	1		į.		fe Stn
42 43		Good	LPuBr	Oxi-4		VU		-		1	1	1 54	fe Stn
44	45	Good	LPuBr	Oxi-4	1	VU	1	1	1	ļ	l	1.50	fe Stn
45	46	Good	LPuBr	Oxi-4	1	VU			5.		1		fe Stn
46	47	Mod	L.PuBr	Oxi-4	4	VU	1	1			1	ł	fe Stn
47	48	Mod	LPuBr	Oxi-4		VBS			1	l	l Tr	.I	fe Stn
48		Good	LPuBr	Oxi-3		VBS			1	Mas	1 1,		fe Stn
49	50	Mod	LPuBr	Oxi-3		VBS	1		1	1		1 1.77	fe Stn
50		Mod	LPuBr	Oxi-3	I	VBS		1	1	1			fe Stn
51		Good	LPuBr	Oxi-3	1	VAN/VBS?	Į.		1		1		fe Stn, 20% Int IU (ep2), Mg
52		Mod	LPuBr	Oxi-3		VAN/VBS?				1		1	fe Stn, Tr Int Iu, Mg
53	54	Mod	LPuBr-Gy	Oxi-3	I	VAN/VBS?	1	1				1 77	fe Stn
54		Mod	LPuBr	Oxi-3	Por-1	VAN/VBS?						1 '''	fe Stn
55		Good	LPuBr	Oxi-3	\$	VAN/VBS?		1		1			Wk fe Stn (qz-cl-bi?) Mg
56		Mod	LBr	Oxi-3	1	IU	1			1		1 54	Mg, qz-rich (IPQ?)
57		Mod	LBr	Oxi-3	Fel	IU	1	l	1		1	'"	Mg, qz-rich (IPQ?), Wk fe Stn
58		Mod	Br	Oxi-3	Fel	IU	1	1		Mas	Tr	2 77	fe Stn
59		Good	LBr	Oxi-3		VBS	1	1	1	Mas		2.33	10 001

Page 1 of 3

HOLE No: PROJECT:

CMR-3 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
60	- 61	Good	LPuBr-Gy	Oxi-3	Fel	IU			,				50% fe Stn VU
61					Fel	IU				l			Vfg-Mg, Wk fe Stn
62				Oxi-3	Fel	เบ			,		•		Vfg-Mg, Wk fe Stn
63				Oxi-3	Fel	IU				1		4 40	Mg, Wk fe Stn
64				0x1-3	Fel	IU			l			1.60	Mg, Wk fe Stn
65		Good		Oxi-3		VU?	•		l	Į.			fe Stn
66		Mod	LBr	Oxi-3	Por?-1	VAN/VBS?							fe Stn
67			DBr	Oxi-3		VBS			ł	l			fe Stn
68		Mod	Br	Oxi-3		VAN/VBS?					1		fe Stn
69		Good		Oxi-3		VAN/VBS?			1		ì	1.02	fe Stn
70		Good	LPuBr	Oxi-3		VAN/VBS?		Į.		1	1		fe Stn fe Stn
71		Mod		Oxi-3	:	VAN/VBS?	1		1	1	l	l	fe Stn
72		Mod	LPuBr	Oxi-3		VAN/VBS?							fe Stn
73		Mod	LPuBr	Oxi-4	:	VAN/VBS?		1	1		l	2.00	fe Stn
74	75	Good	LPuBr	Oxi-4	1	VAN/VBS?						2.09	fe Stn, Tr Fel IU?
75	76	Mod	LPuBr	Oxi-4		VAN/VBS?		l .	l			1	fe Stn
76		Mod	LPuBr	0xi-3	1	VAN/VBS?	1			Ì			fe Stn
77	78	Mod	LPuBr	Oxi-3		VAN/VBS?	l					1	fe Stn, si flooded
78	79	Good	LGy		Brx?	VAN/VBS?	s12,ep2		1			2 68	fe Stn
79	80	Mod	LBr	Oxi-4		VAN/VBS?			-		1	1 5.00	fe Stn
80	81	Mod	LBr	Oxi-3		VAN/VBS?		Ì	İ	1	1		fe Stn, Tr Fel? IU. Damp
81	82	Good	LBr	Oxi-4		VAN/VBS?					1	•	fe Stn
82	83	Mod	DBr	Oxi-3	1	VBS		1	1				fe Stn, Tr cherty
83	84	Good	Br	Oxi-3		VBS					1	1.50	fe Stn, Tr Fel IU?
84	.85	Mod	LPuBr	Oxi-3	1	VAN/VBS?	1	1			1	''''	fe Stn
85		Mod	LPuBr	Oxi-3	Por-1	VAN/VBS			1				fe Stn
86		Mod	LPuBr	Oxi-3		VAN/VBS	1			1	1		Wk fe Stn
87		Mod	LPuBR-Br		:	VAN/VBS			1	ł	1		fe Stn
88		Mod	LPuBr	Oxi-3	1	VAN/VBS		I	l	1	1	2.02	fe Stn, Tr Fel/Int IU?
89		Mod	LPuBr	Oxi-3		VAN/VBS	Į.						fe Stn, Tr Fel/Int IU?
90		Mod	LPuBr	Oxi-3	1	VAN/VBS		1					fe Stn, Tr Fel/Int IU?
91		Mod	LPuBr	Oxi-4		VAN/VBS	1		1	1	1		Wk fe Stn
92		Mod	LPuBr	Oxi-2		VAN/VBS VAN/VBS	ì			1			fe Stn
93		Mod	LPuBr	Oxi-3	u			1	1		**	1.54	50% fe Stn VU
94		Good	LPuBr	Oxi-3	Mg, Fel	IU	1		1		1		50% fe Stn VU
95		Mod	LPuBr	Oxi-3	Mg, Fel	VAN/VBS?	si?			Htn	Tr		fe Stn
96	97	Mod	LPuBr	Oxi-3	N= 501	IU	317		1		1		
97		Mod	LPuBr	0xi-3	Mg, Fel	ווט		l	1		1	ı	F-Mg
98		Mod	LGyBr	0xi-2	Fel/Int? Int?	IU					I	1.52	[Fg
99	100	Mod	LPuBr	0xi-3	intr	1.0		:	1				<u> </u>

entra estra delga berba estra estra estra estra estra della estra estra estra estra estra estra estra estra e

HOLE No: PROJECT:

CMR-3 EL 1684 CURNAMONA

FROM	τo	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QI	Z VNS	% QТ	Z MAG-SUS	COMMENTS
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 121	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 121 122 123 124	Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod		Oxi-3 Oxi-3 Oxi-3 Fsh Oxi-3	Fg Fg F-Mg Shd? Bnd?	IU IU VBS VBS VBS VBS VBS VBS VBS VBS VBS VBS	si?						0.79	fe Stn fe Stn fe Stn fe Stn Tr fe Stn Tr fe Stn fe Stn, Tr Mg Int IU (ep1) fe Stn fe Stn fe Stn fe Stn Tr fe Stn Tr fe Stn

Page 3 of 3

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

Hole Number:

CMR-4

Orni, i

EL 1684 Curnamona

Prospect: _

Target: Zone of subdued magnetic response adjacent to shallowly buried magnetic

(Grid)

Logged by:

Project:

feature.

G.D. McEwen

Date:

December 1991

0069

COLLAR DETAILS

AMG:

Northing:

65 45 350

Easting:

4 45 701

LOCAL:

Northing:

10 400

Easting:

18 600

Bearing:

- (Mag)

Dip at Collar:

-90°

DRILLING DETAILS

Contractor:

Frank Walsh Drilling

Rig:

Walsh

Commenced:

11.12.91

Completed:

12.12.91

Final Depth:

130 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE
0	84 m	Rotary Mud	6"
84 m	130 m	RC Face Sampling Hammer	5 <u>1</u> "

SAMPLING DETAILS

Sample Nos.

From:

CM 250R

To:

CM 325R

LABORATORY	ELEMENTS	METHOD
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2

Comments:

HOLE No: PROJECT:

CMR-4 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ	VNS	% QTZ	MAG-SUS	COMMENTS
0	3		LBr		Fg	SSD								gp crystals to 1cm, cy2
Ĭš	10		Gy		Pug-3	SCY								i I
10	11		Gy		F-Mg	SSD								1
111	14	1	Gy		Pug-2	SCY		:		1				1 · · · · · · · · · · · · · · · · · · ·
14	16		Gy		F-Mg	SSD			1					cy2
16	23		Gy-YlGn		Pug-2	SCY							l .	Mn F-Mg SSD bands
22	24		OW-LYI		Pug-4	SCY	ck?4			1		l		St sandy (Fg, qz)
23 24	26		OW-LYL		Pug-4	SCY	ck4			1		l		St sandy (Fg, qz)
24	28		OW-LYL		Pug-4	SCY	ck4	l	1	1				St sandy (Fg, angular qz)
26 28	30		OW-LYL	·	Pug-4	SCY	ck4						•	St sandy (Fg, angular qz)
30	32		OW-LYL		Pug-4	SCY	ck4		1	1		ļ	1	St sandy (Fg, angular qz)
32	34	l	OW-LYL		Pug-4	SCY	ck4	1		1		1		St sandy (Fg, angular qz)
34	36		OW-LYL	.	Pug-4	SCY	ck4		l	1			:	St sandy (Fg, angular qz)
36	38		OW-LYL		Pug-4	SCY	ck4		1	1		I	1	St sandy (Fg, angular qz)
38	40		OW-LYL		Pug-4	SCY	ck4						j	As above, Tr qz-rich Fg Fel I?
] 30	40		Wh		Pug-4	SCY	ck4			1			1	St sandy (Fg, angular qz)
40 42 44	44		Wh		Pug-4	SCY	ck4						•	St sandy (Fg, angular qz)
1 45	46		Wh	1	Pug-4	SCY	ck4		1			l		St sandy (Fg, angular qz)
44	48		Wh		Pug-4	SCY	ck4			1		i i		St sandy (Fg, angular qz)
40	50		Wh		Pug-4	SCY	ck4							St sandy (Fg, angular qz)
46 48 50	52	ł	wh	Į.	Pug-4	SCY	ck4	4		1		l	1	St sandy (Fg, angular qz)
52	54		Wh	Oxi-5	Fel	10?	cy5			1				As above, Mn qz-rich Fg Fel I?
54	56		Wh	0xi-5	Fel	IU	cy5		4	1				St sandy (Fg, angular qz)
56	58		OW-LGY	Oxi-5	Fel	ΙŪ	cy5	j		1		1	ì	St sandy (Fg, angular qz)
58			OH-LGY	Oxi-5	Fel	ΙŪ	cy5	ì					1	Ab qz-rich Fg Fel IU?
60			OW-LGY	Oxi-5	Fel	IU	cy5	1	l .	1			1	Ab qz-rich Fg Fel IU?
62			OW-LGY	Oxi-5	Fel	IU	cy5		1	1		1	1	Ab qz-rich Fg Fel IU?
64			OW-LGY	Oxi-5	Fel	iυ	cy5		1			1	ı	Ab Mg qz fragments
			OW-LGY	Oxi-5	Fel	lίυ	cy5					1		Ab Mg qz fragments
66			OW-LGY	Oxi-5	Fel	in	cy5		1					Ab Mg qz fragments
00	70		LGy	Oxi-5	Fel	Ιυ	cy5	D-py	Tr	r			1	Tr Fg Fel IU?
70 72 74 76	74		LGy	Oxi-5	Fel	lίυ	cy5	1 ''	1	1			1	Ab Mg qz fragments
1 4	74		LGy	Oxi-5	Fel	lίΰ	cy5			1			l	Ab Mg qz fragments
"	76 78	:I	LGy	Oxi-5	Fel	Ιυ	cy5	:		ı		1	1	Ab Mg qz fragments
78	1 60			0x1-5	Fel	iu	cy5	0-ру	Tr	rl		1		Ab Mg qz fragments
80	80 82		Gy Gy	Oxi-5	Fel	Ιίυ	cy5	D/M-py	Tr				1	Ab Mg qz fragments
1 80	84		Gy	Oxi-5	Fel	lίυ	cy5	М-ру	1 1	1		1		Ab Mg qz fragments
82	84		luy	المرا	1	1	1-/-	1 "		1		I	1	No sample return
84	85				Į.	1				1		I	1	No sample return
85	00	V.Poor		Oxi-4	Fel	10				1		1	1	Damp. Fri-4, F-Mg
	'l°′	7.500	<u> </u>]	<u> </u>		<u></u>	1	ــــــــــــــــــــــــــــــــــــــ				1	<u> </u>

AGENT TARREST TARREST TARREST TO THE TARREST T

HOLE No: PROJECT:

CMR-4 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
87	88	V.Poor	Br	Oxi-4	Fel	IU		D-py	Tr				Damp. Fri-4, F-Mg
88		V.Poor		Oxi-4	Fel	IU		D-py	Tr	1			Damp. Fri-3, F-Mg
89		V.Poor		Oxi-4	Fel	10		D-py	Tr				Damp. Fri-3, F-Mg
90		V.Poor		Oxi-3	Fel	IU .		D-py	Tr				Damp. F-Mg
91		V.Poor		Oxi-3	Fel	เบ		D-py	Tr				Damp. F-Mg
92		V.Poor		Oxi-3	Fel	IU	:	Ì	1				Damp. F-Mg
93	94		GnBr	Oxi-1	Fel/Int?	IU ·	'						
94		Good	Gn	Oxi-1	Fel/Int?	IN						2.64	
95		Good	Gn	Fsh	Fel/Int?	IAD			1				Mg
96			Gn	Fsh	Int	IAD		'				'	Wet. Mg
97	98		Gn	Fsh	Int	IAD							Wet. Mg
98		Mod	Gn	Fsh	Int	IAD							Damp. Mg
99			Br	Fsh	Int	IAD	ļ				Ì.	12.00	
100		Good	BrGn	Fsh	Mg	IAD	İ				1		Damp. Mg
101		Good	GyGn	Fsh	M-Cg	IAD]					
102		Good	Gy	Fsh	Por-2	IAD	1	D-py	Tr		l		fd phenocrysts
103	104		Gy	Fsh	Mag-2	IAD		D-py	Tr		l .		Mg
104		Good	PkGy	Fsh	Mag-2	IAD		D-py	Tr		1	20.40	Mg
105	106		PkGy	Fsh	Mag-2	IAD	l .	D-py	Tr				
106	107		PkGy	Fsh	Mag-3	IAD		D-py	Tr		1	•	<u> </u>
107	108		Gy	Fsh	Mag-3	IAD		D-py	Tr		•		<u>'</u>
108	109		Gy	Fsh		IAD		D-py	Tr				
109	110		PkGy	Fsh	Mag-3	IAD		D-py	Tr			23.80	<u> </u>
110	111		PkGy	Fsh	Mag-3	IAD		D-py	Tr		1		
111	112		PkGy	Fsh	Mag-2	IAD		D-py	Tr	·1			L 4 45 41 4 5 5 5
112	113		PkGy	Fsh	Mag-2	IAD	1						Por-4 (Cg fd to 3mm)
113	114		Gy	Fsh	Mag-2	IAD				:			Por-3
114	115		PkGy	Fsh	Mag-1	IAD		D-py	Tr		1	22.00	
115		Poor	Gy	Fsh	Mag-1	IAD	:	D-py	Tr		1		
116	117		PkGy	Fsh	Mag-2	IAD		D-py	Tr	1	1		la 0 40 415
117		Mod	PkGy	Fsh	Mag-2	IAD			·				Por-2 (Cg fd)
118		Good	Gy	Fsh	Mag-2	IAD	1	D-py	Tr	1		20.40	
119		Poor	PkGy	Fsh	Mag-3	IAD	1	ļ	1 _			29.60	
120		Mod	PkGy	Fsh	Mag-3	IAD		D-py	Tr			ł	
121		Mod	Gy	Fsh	Mag-3	IAD	[·	D-py	I				•
122		Mod	PkGy	Fsh	Mag-3	IAD	1	D-py	Tr		1		4
123		Mod	Gy	Fsh	Mag-3	IAD		D-py	Tr	·I	1		
124		Good	Gy	Fsh	Mag-3	IAD	1		_	I		22.40	
125		Good	PkGy	Fsh	Mag-3	IAD		D-py	Tr	1			
126		Mod	Gy	Fsh	Mag-3	IAD			1				
			<u> L'</u>		1	1		<u></u>		- برسیب با			

HOLE No: PROJECT:

CMR-4 EL 1684 CURNAMONA

ents that they deed they that that they the

ſ	FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	atz vns	% QTZ	MAG-SUS	COMMENTS
ſ	127 128	129	Mod	PkGy Gy	Fsh		IAD IAD		D-py	Tr		1		Damp Por-3 (Cg fd) Por-3 (Cg fd)
ı	129	130	Mod	LGy	Fsh	Mag-3	IAD		D-bA	Tr			33.30	P81-3 (cg 1d)

Page 3 of 3

NEWCREST MINING LIMITED Percussion Drill Hole Summary Sheet

Hole Number:

CMR-5

Project:

EL 1684 Curnamona

Prospect:

Target:

Shallowly buried magnetic feature

Logged by:

G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing: 65 45 451

Easting:

44 62 05

LOCAL:

Northing: 10 550

80 m

Easting:

19 100

Bearing:

(Mag) -

(Grid)

Dip at Collar:

DRILLING DETAILS

Contractor: Frank Walsh Drilling

Rig: Walsh

Commenced:

12.12.91

Completed:

13.12.91

Final Depth:

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE
0	32 m	Rotary Mud	6"
32	80	RC Face Sampling Hammer	5½"

SAMPLING DETAILS

Sample Nos.

From:

CM 326R

To:

CM 379R

LABORATORY	ELEMENTS	METHOD
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2

Comments:

HOLE No: PROJECT:

CMR-5 EL 1684 CURNAMONA

FROM	TO	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	QTZ VNS	% QTZ	MAG-SUS	COMMENTS
0	2		LBR	·	Fg	SSD			:				суЗ
2	9		Gy		Pug-4	SCY			en e				
9	10		Kk			SCY							
10	12		Gy	1		SCY					, ,		
12	14		Gy-Bk			SCY						:	
14	21		Gy			SCY					•		
21	22		Kk-Gn		Pug-4	SCY		1	Į .		· '	:	, , , , , , , , , , , , , , , , , , ,
22	25		OM		Pug-4	SCY	ck5						Md Sandy
25	32		YlBr	Oxi-5	:	ROK	cy4 cy3		ļ		i	· .	10.4
32	33	V.Poor	Br	Oxi-4		IAD	суЗ	·	1 .				Wet
33	34	Good	LBr	Oxi-4	1	I AD	суЗ					4 77	Wet. Wk fe Stn
34		Good	LBr		M-Cg	IAD	}	ł	1	I '	i '	1.33	Wk fe Stn
35	36	Good	Br	Oxi-2		1 AD							
36	37	Good	LBr	Oxi-4?		IAD							-
37	38	Good	LBr	Oxi-2		IAD	ĺ	İ			·		
38	39	Good	LBr	Oxi-1	l.	IAD	1					3.07	
39		Good	LBr	Oxi-2		IAD						3.07	
40	41	Mod	LBr	Oxi-2		IAD							}
41		Mod	LBr	Oxi-2		IAD	ep1		l				
42		Good	LBr	Oxi-2	Į.	IAD					{	1 .	
43		Good	LBr	Oxi-2	l _	IAD						2 75	Cg phenocrysts to 4mm
44		Good	LBr	Oxi-1	Por-3	IAD			l		•	2.33	cg prieriocrysts to 4mm
45		Mod	LBr	Oxi-1	Por-3	IAD					i		
46		Good	LBr	Oxi-1	Į	IAD				ŀ			
47		Good	LBr	Oxi-1		IAD			4	-	l		
48		Good	LBr	Oxi-2		IAD						2.22	
491		Mod	LBr	Oxi-1		IAD						2.22	
50		Mod	LBr	Oxi-1	1	IAD		1					1
51		Mod	LBr	Oxi-1	Por-2	IAD				1			
52 53		Mod	LBr	0xi-1	I	IAD		I					
53		Mod	LBr	Oxi-1	Mag-2	IAD]	1	2.88	
54		Mod	PkBr	Oxi-1		IAD			1		1	2.00	il i
55 56	56	Good	YlBr	0xi-2		IAD	I		1		1		
56		Mod	Br	Oxi-1		IAD	1		1				
57	58	Mod	LBr	Oxi-2	l	IAD	cl3						
58		Mod	LBr	fsh	Mag-2	IAD		ł			ı	15.00	·
59		Good	LBr	Fsh	Mag-3	IAD						15.00	
60		Good	LBr	Oxi-1	I _	IAD	1						
61		Good	BrGn	Fsh	Mag-3	IAD	1	[.			1		
62	63	Good	BrGn	Fsh	Mag-3	IAD	1			1	Į		

The state that the party that the base that the

HOLE No: PROJECT:

CMR-5 EL 1684 CURNAMONA

FROM	то	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULI	QTZ VN	% QTZ	MAG-SUS	COMMENTS
63	64	Poor	LBr		Mag-3	IAD						14 40	Cg, Mag-3
64	65	Mod	LBr		Por-2	IAD			1		1	10.40	Ly, may-J
65	66	Mod	LBr		Mag-3	IAD							Wet
66	.67	Mod	Br		Mag-2	IAD		*					WEL
67	68		Br		Mag-2	IAD			٠,				
68 69			PkBr	Fsh		IAD		1		1	1	10.90	
69	70		Br		Mag-2	IAD						10.70	
70	71		LPkBr		Mag-2	IAD		·[1		
71			LPkBr		Mag-1	IAD		ነ	1	1			
72	73	Mod	LPkBr	Fsh	'	IAD	ļ.					•	
73	74		LGy	Fsh		IAD		ļ	l l	i	1	15.90	
74	75		LPk		Mag-3	IAD		1	i	1	1	1,70	
75			LPkGy		Mag-3	IAD	1					l	· ·
76	7 7	Mod	LPkGy		Mag-2	IAD		la	1 7			Į.	
77 78	78		Gy		Mag-3	IAD		D-py	- 1 '	'1	1		
78	79		PkGy		Mag-3	IAD			T	.		21.20	
79	80	Good	Gy	Fsh	Mag-3	IAD		р-ру	'	<u>' </u>		11.20	<u></u>

Page 2 of 2

Hole Number:

CMR-6

Project:

EL 1684 Curnamona

Prospect:

Target: Coincident gravity "high"/magnetic "low" features

Logged by:

G.D. McEwen

Date:

December 1991

COLLAR DETAILS

AMG:

Northing: 65 45 483

Easting:

4 52 107

LOCAL:

Northing: 11 400

Easting: 25 000

Bearing:

- (Mag) -

(Grid)

Dip at Collar:

-90°

DRILLING DETAILS

Contractor:

Frank Walsh Drilling

Rig:

Walsh

Commenced:

13.12.91

Completed:

15.12.91

Final Depth:

125 m

DRILLING SUMMARY

FROM	то	METHOD	BIT SIZE
0	91 m	Rotary Mud	6" 5½"
91 m	125 m	RC Face Sampling Hammer	

SAMPLING DETAILS

Sample Nos.

From:

CM 380R

To:

CM 442R

LABORATORY	ELEMENTS	METHOD
Classic Labs (Adelaide)	Au Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V, Zn	FAI IC2

Comments:

Land that the total that the terms that the terms that the terms t

HOLE No: PROJECT:

CMR-6 EL 1684 CURNAMONA

HOLE No: PROJECT:

CMR-6 EL 1684 CURNAMONA

FROM	TO	RETURN	COLOUR	WEATHERING	STRUCT/TXT	LITHOLOGY	ALTERATION	MIN	% SULF	OTZ VNS	% QTZ	MAG-SUS	COMMENTS
119 120 121 122 123 124	121 122 123 124	Mod Mod Mod	Gn LGn LGn Gn Gn Gn	Fsh Fsh Fsh Fsh Fsh		IGD IGD IGD IGD IGD	ep1	D-py D-py	Tr Tr				Wet Wet

Page 2 of 2

APPENDIX II

Drillhole Sample Ledgers and Certificates of Analysis

Project: EL 1684 Curnamona

SAM	PLE No	HOLE No	FROM	то	Au-ppm	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Mo-ppm	Pb-ppm	Sb-ppm	V-ppm	Zn-ppm
СМ	001R	CMR-1A	58.000	60.000	0.01	<0.5	18	<3	25	1	55	<5	12	22
	002R	CMR-1A	60.000		0.02	<0.5	25	<3	20	3 2	52 76	<5 <5	11	22 24
	003R	CMR-1A	62.000 64.000		0.02	0.5 8.5	30 260	<3 5	25 210	13	460	·<5	42	155
7.00	004R 005R	CMR-1A CMR-1A	66.000		0.02	17.5	220	14	140	10	370	<5	42	130
	006R	CMR-1A	68.000		0.01	2.0	120	11	85	6	200	<5	18	64
	007R	CMR-1A	70.000		0.03	3.5	40	4	38	2	88	<5 -5	10	30
	008R	CMR-1A	72.000		0.01	13.0	18	<3	30 80	1 5	52 185	<5 <5	8 22	22 84
	009R	CMR-1A CMR-1A	74.000	78.000	0.01	1.0 4.0	94 96	6 6	82	5	155	<5	20	82
	010R 011R	CMR-1A		80.000	0.01	17.5	22	12	50	2	48	<5	22	35
	012R	CMR-1A		82.000	R .	12.5	50	72	100	3	76	<5	11	46
8 .	013R	CMR-1A		84.000	8	1.5	95	100	85	6	94	< 5	9	64
	014R	CMR-1A	84.000		M	16.5	72	140	110 155	6	66 90	<5 <5	8 8	54 68
	015R	CMR-1A CMR-1A		88.000 90.000	9	8.0 8.5	84 120	165 17	145	6	82	\ 5	6	92
•	016R 017R	CMR-1A	11	91.000	a	1.0	н .	<3	720	4	28	<5	6	45
	018R	CMR-1A		92.000	ii .	1.0	7	<3	1280	3	32		11	72
	019R	CMR-1A	92.000	93.000	<0.01	<0.5	12	<3	160		48	<5	8	42
1	020R	CMR-1A		94.000	H	<0.5	12	<3	96	.8.	22 22		14 11	66 110
	021R	CMR-1A		95.000	8	<0.5	34 8	9 <3	42 64		7		6	42
	022R 023R	CMR-1A CMR-1A	B .	96.000 97.000	H	<0.5 <0.5	20	<3	52		17		14	86
	023R 024R	CMR-1A	1	98.000		<0.5	10	<3	u .		H·	<5	6	44
	025R	CMR-1A		99.000		<0.5	16	<3	20			H	6	55
СМ	026R	CMR-1A		100.00	1	<0.5	7	<3	13				5	36
	027R	CMR-1A	8	101.00	R	<0.5		<3	32			H .	5 6	56 40
	028R	CMR-1A	8	102.00	ъ .	<0.5 1.0	13 42	20	30 105	9			12	H I
	029R 030R	CMR-1A CMR-1A	3	103.00	9	K	24	8	11	8		g	13	
	031R	CMR-1A		105.00			g	B .	130	fi.			32	
	032R	CMR-1A		106.00		B _ ' _	R	11	100	II .	8	н	18	H _ T
	033R	CMR-1A		107.00				7	72			н	32	
	034R	CMR-1A		108.00	. 14		B .	8	5				36 28	
	035R 036R	CMR-1A CMR-1A		109.00	11	н.	R -	п .	9	н _			28	H 2-1
	037R	CMR-1A		111.00	. 8		11					li .	32	II - 1
	038R	CMR-1A		112.00	. н	F	8		B	3	5		16	
	039R	CMR-1A	112.00	113.00	0.01	1		. 8	1				19	B
1	040R	CMR-1A		114.00		1	9 .	R	8				22 42	B
	041R 042R	CMR-1A	114.00	115.00			#	1	4				40	4
	042R 043R	CMR-1A CMR-1A		117.00	n .		n.	1	· y				76	8
	044R	CMR-1A		118.00	1	:1	11	R	8	3	13			
СМ		CMR-1A		119.00				· e		11		В	54	
	046R	CMR-1A		120.00										
	047R	CMR-1A		121.00					и		- 8			' H
	048R 049R	CMR-1A		122.00			H							
	050R	CMR-1A		124.00		2		•	4	1		ii .		
	051R	CMR-1A		125.00							140		62	150
СМ	052R	CMR-1A	125.00	126.00	<0.01									
	057R	CMR-2		30.000										
	058R	CMR-2		44.000							5			
	053R 054R	CMR-2 CMR-2		50.000										
	055R	CMR-2		54.000										
	056R	CMR-2		56.000				<3	5 58	3 4	<	3 <5	78	46
СМ	059R	CMR-2	56.000	57.000	0.0°	<0.5	i 3	3 <3	12					
	060R	CMR-2		58.000				< 3	12					
CM	061R	CMR-2		59.000										
	062R 063R	CMR-2 CMR-2		60.000				3 <3		7 2 7 <1				
	064R	CMR-2	4 .	62.00								- 9		3 22
	065R	CMR-2		63.00					68		<:	3 <5	46	
СМ	066R	CMR-2		64.00			5 . 6	s <	3 8	B <1	· <	3 <5		
СМ	067R	CMR-2		65.00				5 <	3	> <				
CM	068R	CMR-2	65.000	66.00	<0.0	1 <0.	5 14	<	3 12	2 <1	1 <	3 <5	42	2 48

Page 1 of 7

<u>Project:</u>

EL 1684 Curnamona

	IPLE No	HOLE No	FROM	то	Au-ppm	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	мо-ррп	Pb-ppm	Sb-ppm	V-ppm	Zn-ppm
			· · · · · · · · ·	47.000		<0.5	8	<3	7	<1	<3	< 5	30	28
_	069R	CMR-2 CMR-2	66.000 67.000		0.01 <0.01	<0.5	10	<3	9	<1	<3	<5	32	34
	070R 071R	CMR-2	68.000		<0.01	<0.5	5	<3	7	<1	<3		30	22
	072R	CMR-2	69.000		0.02	<0.5	11	<3	9	<1	<3		44	34
	073R	CMR-2	70.000	71.000	0.01	<0.5	6	<3	8	<1	<3		34 32	18 7
CM	074R	CMR-2	71.000		<0.01	<0.5	4	<3	9	<1 <1	<3 <3		28	4
	075R	CMR-2	72.000		<0.01	<0.5 <0.5	4 4	<3 <3	9	<1	<3		18	3
	076R	CMR-2		74.000 75.000	<0.01	<0.5	18	<3	10	9	<3		30	19
CM	077R 078R	CMR-2 CMR-2		76.000	<0.01	<0.5	24	<3	15	<1	<3		34	74
	079R	CMR-2		77.000	<0.01	<0.5	28	<3	12		<3		34	70
1	080R	CMR-2	77.000	78.000	<0.01	<0.5	22	<3	13		<3 <3		34 35	52 92
СМ	081R	CMR-2		79.000	<0.01	<0.5	32	<3	15 19		<3	<5	38	
	082R	CMR-2		80.000	<0.01	<0.5 <0.5	22 46	<3 <3	16	8			42	
	083R	CMR-2		81.000	<0.01 <0.01	1	50	H	98		<3		40	
	084R 085R	CMR-2 CMR-2		82.000 83.000	<0.01	<0.5	24	8	22			<5	34	
	086R	CMR-2	83.000	84.000	<0.01	q							42	
	087R	CMR-2		85.000	N .	<0.5	34	<3					46	R 1
	088R	CMR-2	85.000	86.000	<0.01		E	H	11				44 42	
	089R	CMR-2	86.000	87.000	<0.01	<0.5			B	и .			42	E 1
	090R	CMR-2		88.000				H	п.		п _		36	
	091R	CMR-2		89.000					H.		8		1	
	092R	CMR-2 CMR-2	9 -	90.000	1		D .	H	1	B				
	093R 094R	CMR-2		92.000	Q.	9		н		<1				
	095R	CMR-2		93.000		· H		<3					H	
	096R	CMR-2	93.000	94.000	<0.01			н	H					
CM	097R	CMR-2		95.000		1					D _		1	
	1 098R	CMR-2		96.000								- I	1	4 6
CV		CMR-2	96.000	B '	A .			4 _			· H _	- B	D .	
	1 100R 1 102R	CMR-2 CMR-2		98.000	H	B				- 18	· a · .	<5	2	B
C	1 102R	CMR-2	1.	100.00	f	8	2	3.			<		4	
C		CMR-2		101.00	и	В	8					5 <5	· #	и
	1 105R	CMR-2		102.00		<0.5								и н
C		CMR-2		103.00		B	N .				· H .	3 <5 3 <5	9	
	1 107R	CMR-2	8	104.00		· H	. 4	K _		4 <			Ni .	
	1 108R	CMR-2	104.00				K	- 1		- 11	и .		ii .	
	1 109R	CMR-2	105.00	106.00	.8		. 9				_ R			
	4 110R 4 111R	CMR-2 CMR-2	107.00				B .				1 <	3 <		
	M 112R	CMR-2	108.00	н	'H				3 1				· 14	
	M 113R	CMR-2	109.00	110.00	0.0	1 <0.			4		2 <			
	M 114R	CMR-2		111.00						11		3 <: 3 <:		
	M 115R	CMR-2	111.00	112.0	<0.0				_1 _		1	5 <		
	M 116R	CMR-2		113.0							1 <	3 <		
	M 117R M 118R	CMR-2 CMR-2		0 114.0 0 115.0		u -						3 <	5 3	2 135
	M 119R	CMR-2		0 116.0				П			1 <	3 <		
	M 120R	CMR-2		0 117.0			N .		3	· R	1 <	3 <		
C	M 121R	CMR-2		0 118.0	0.0	1 <0.	5 10	0 <			1 <	3 <		0 115
Į.c	M 122R	CMR-2		0 119.0				2 <		- 1		3 <		5 85 2 58
C	M 123R	CMR-2		0 120.0				0 <		- g		3 < 3 <		4 62
C	M 124R	CMR-2		0 121.0				4 <		- 8		3 <		8 84
	M 125R M 126R	CMR-2 CMR-2		0 122.0 0 123.0				7			1 <			8 80
12	M 120K	CMR-2		0 124.0				7	3	2 <	1 <	3 <	5 3	2 94
	M 128R	CMR-2	124.0	0 125.0	0 <0.0	· B		7 <	3	4	1 <	·3 <		8 55
	M 129R	CMR-2		0 126.0		н	5 2	2 <	3	8 <		<3 <		4 60
0	M 130R	CMR-2	126.0	0 127.0	0.0				3	- 8				2 65 6 60
	M 131R	CMR-2		0 128.0					3		1 1	<3 <		6 60
	M 132R	CMR-2		0 129.0					3	-	1			8 52
	M 133R	CMR-2		0 130.0					3			3 <		2 55
-15	M 134R M 135R	CMR-2 CMR-2		0 131.0 0 132.0					3		:1	<3 <	5 3	0 58
	M 136R	CMR-2	132.0	0 133.0	0 <0.0						:1	<3 <		0 80
	M 137R	CMR-2	133.0	0 134.0	0.0						<1	5	5 3	65

Page 2 of 7

Project:

EL 1684 Curnamona

March Marc	SAMPLE N	HOLE No	FROM	то	Au-ppm	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Mo-ppm	Pb-ppm	Sb-ppm	V-ppm	Zn-ppm
© 11390	CM 138R	CMR-2	134.00	135.00	<0.01	<0.5	14	<3	5	<1	5	<5	28	58
District District										<1	<3			145
CH 1428 CMR-3 13.00 139.00 0.01			136.00	137.00	0.02									190
14 14 15 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16	CM 141R													185
CH 145R										1				110 78
© M 1458		4		1 1		<0.5	10	ς ς ς	50		1.4	ا ا	2,0	′°
CM 1428					3	<0.5	14	<3	24	2	9	<5	11	24
© M 1478						10.5								
CM 140R CMR-3 26,000 27,000 0.01 0.05 7 <3 20 2 10 <5 10 CM 150R CMR-3 27,000 28,000 0.01 0.05 7 <3 20 2 10 <5 7 CM 151R CMR-3 28,000 29,000 0.01 0.05 7 <3 20 2 10 <5 7 CM 151R CMR-3 28,000 29,000 0.01 0.05 7 <3 20 2 10 <5 7 CM 151R CMR-3 31,000 31,000 0.01 0.05 19 33 50 2 10 <5 9 CM 151R CMR-3 31,000 32,000 0.01 0.05 20 <3 22 2 9 <5 10 CM 151R CMR-3 31,000 34,000 0.01 0.05 13 <3 20 2 8 <5 9 CM 151R CMR-3 33,000 34,000 0.01 0.05 13 <3 20 2 8 <5 9 CM 151R CMR-3 33,000 34,000 0.01 0.05 10 <3 16 2 7 <5 8 CM 151R CMR-3 33,000 34,000 0.01 0.05 10 <3 16 2 7 <5 8 CM 151R CMR-3 33,000 34,000 0.01 0.05 10 <3 16 2 7 <5 8 CM 151R CMR-3 35,000 34,000 0.01 0.05 10 <3 16 2 7 <5 8 CM 151R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 151R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 35,000 34,000 0.01 0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 34,000 44,000 0.01 0.05 12 <3 8 2 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5 7 <5					<0.01	<0.5	10	<3	19	2	10	<5	9	19
Missan Missan	CM 148R						_	_				_	40	40
CM 1518 CMR-3 28.000 29.000 <0.01 <0.5 7 <3 20 2 10 <5 7 <6 0						<0.5	7	<3	20	2	10	<>	10	19
CM 152R CMR-3 33.0.000 31.000 < 0.01		H '	1			-0 E	7	-73	20	2	10	<5	7	17
CM 153R CNR-3 30,000 31,000 < 0,01 < 0,05 19		1.	9		н .	(0.5		,,	20,	- ا	, ,	'	'	•
CM 155R CNR-3 32.000 33.000 -0.01 <0.5 20 <3 22 2 9 <5 10 CM 155R CNR-3 32.000 33.000 <0.01 <0.5 13 <3 20 2 8 <5 9 CM 155R CNR-3 33.000 33.000 <0.01 <0.5 13 <3 20 2 8 <5 9 CM 155R CNR-3 32.000 35.000 <0.01 <0.5 13 <3 20 2 8 <5 9 CM 155R CNR-3 34.000 35.000 <0.01 <0.5 13 <3 16 2 7 <5 8 CM 155R CNR-3 35.000 35.000 <0.01 <0.5 13 <10 <3 16 2 7 <5 8 CM 155R CNR-3 35.000 35.000 <0.01 <0.5 13 <10 <3 16 2 7 <5 8 CM 155R CNR-3 35.000 35.000 <0.01 <0.5 12 <5 8 2 7 <5 8 CM 165R CNR-3 38.000 37.000 40.001 <0.5 12 <5 8 2 7 <5 8 CM 165R CNR-3 38.000 40.001 <0.5 12 <5 8 2 7 <5 8 CM 165R CNR-3 39.000 40.001 <0.5 12 <5 8 2 7 <5 8 CM 165R CNR-3 40.000 40.001 <0.5 12 <5 6 2 7 <5 7 <5 7 <6 7 <6 7 <6 7 <6 7 <6 7 <6					н .	<0.5	19	<3	50	2	10	<5	9	35
CH 156R CHR-3 33.000 34.000 0.01 <0.5 13 <3 20 2 8 <5 9 CHR-3 33.000 35.000 0.01 <0.5 13 <3 20 2 8 <5 9 CHR-3 35.000 35.000 0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 7 <5 8 CHR-3 35.000 35.000 <0.01 <0.5 10 <3 16 2 7 <5 7 <5 7 <6 CHR-3 35.000 35.000 <0.01 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10 <0.5 10		B			н									
CM 157R CMR-3 34.000 35.000 0.01 <0.5 13 <3 20 2 8 <5 9 CM 1588 CMR-3 35.000 36.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CM 1580 CMR-3 37.000 38.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CM 1580 CMR-3 37.000 38.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 1680 CMR-3 37.000 39.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 1680 CMR-3 37.000 39.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 1680 CMR-3 39.000 41.000 <0.01 <0.5 12 <3 5 2 8 <5 9 CM 1680 CMR-3 41.000 42.000 <0.01 <0.5 12 <3 5 2 8 <5 9 CM 1680 CMR-3 44.000 43.000 <0.01 <0.5 12 <3 6 2 7 <5 7 CM 1680 CMR-3 44.000 43.000 <0.01 <0.5 12 <3 6 2 7 <5 7 CM 1680 CMR-3 45.000 45.000 <0.01 <0.5 9 <3 7 3 10 <5 10 CM 1690 CMR-3 45.000 45.000 <0.01 <0.5 9 <3 7 3 10 <5 10 CM 1690 CMR-3 47.000 48.000 <0.01 <0.5 9 <3 5 2 10 <5 9 CM 1700 CMR-3 47.000 48.000 <0.01 <0.5 9 <3 5 2 10 <5 9 CM 1700 CMR-3 47.000 48.000 <0.01 <0.5 19 <3 4 1 8 <5 8 CM 1738 CMR-3 49.000 50.000 <0.01 <0.5 19 <3 4 1 8 <5 8 CM 1738 CMR-3 49.000 50.000 <0.01 <0.5 19 <3 4 1 8 <5 8 CM 1738 CMR-3 53.000 54.000 <0.01 <0.5 13 <3 5 2 7 <5 7 <5 7 CM 1768 CMR-3 54.000 54.000 <0.01 <0.5 11 <0.5 11 <0.5 12 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 7 <0.5 <0.5 7 <0.5 <0.5 7 <0.5 <0.5 7 <0.5 <0.5 7		CMR-3	32.000	33.000	<0.01	<0.5	20	<3	22	2	9.	<5	10	24
CM 158R CMR-3 35.000 36.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CMR-3 37.000 38.000 <0.01 <0.5 10 <3 16 2 7 <5 8 CMR-3 37.000 38.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CMR-3 37.000 38.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CMR-3 37.000 38.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CMR-3 37.000 38.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CMR-3 39.000 <0.000 <0.01 <0.5 12 <3 8 2 7 <5 8 CMR-3 39.000 <0.000 <0.01 <0.5 12 <3 5 2 8 <5 9 CMR-3 39.000 <0.000 <0.01 <0.5 12 <3 5 2 8 <5 9 CMR-3 39.000 <0.000 <0.01 <0.5 12 <3 5 2 8 <5 9 CMR-3 39.000 <0.01 <0.05 <0.01 <0.05 <0.000 <0.01 <0.05 <0.000 <0.01 <0.05 <0.000 <0.01 <0.05 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.00		1	8	4	Я.			_				_	_	4.
CM 159R CMR-3 36,000 37,000 <0.01 <0.5 10 <3 16 2 7 <5 8 CM 160R CMR-3 37,000 38,000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 161R CMR-3 38,000 39,000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 161R CMR-3 39,000 <0.01 <0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 39,000 <0.01 <0.05 12 <3 8 2 7 <5 8 CM 161R CMR-3 41,000 42,000 <0.01 <0.5 22 <3 5 2 8 <5 9 CM 161R CMR-3 41,000 42,000 <0.01 <0.05 12 <3 6 2 7 <5 7 <5 7 CM 166R CMR-3 42,000 43,000 <0.01 <0.05 12 <3 6 2 7 <5 7 <5 7 CM 166R CMR-3 43,000 44,000 <0.01 <0.05 12 <3 6 2 7 <5 7 <5 7 <0 M 167R CMR-3 44,000 45,000 <0.01 <0.05 44,000 45,000 <0.01 <0.05 44,000 44,000 44,000 <0.01 <0.05 44,000			B	2 .		<0.5	13	<3	20	2	8	<>	9	16
CM 150R						-0.5	40	_3	16	2	7	<5	8	36
CM 161R CMR-3 38,000 39,000 <0.01 <0.5 12 <3 8 2 7 <5 8 CM 162R CMR-3 39,000 40,000 <0.01 <0.5 22 <3 5 2 8 <5 9 CM 163R CMR-3 40,000 41,000 <0.01 <0.5 22 <3 5 2 8 <5 9 CM 164R CMR-3 41,000 42,000 <0.01 <0.5 22 <3 5 2 8 <5 9 CM 164R CMR-3 41,000 42,000 <0.01 <0.5 12 <3 6 2 7 <5 7 <5 7 CM 166R CMR-3 42,000 43,000 <0.01 <0.5 12 <3 6 2 7 <5 7 <5 7 CM 166R CMR-3 42,000 44,000 <0.01 <0.5 9 <3 7 3 10 <5 10 CM 167R CMR-3 44,000 45,000 <0.01 <0.5 9 <3 7 3 10 <5 9 CM 170R CMR-3 47,000 48,000 <0.01 <0.5 9 <3 5 2 10 <5 9 CM 170R CMR-3 47,000 48,000 <0.01 <0.5 19 <3 4 1 8 <5 8 CM 173R CMR-3 49,000 50,000 <0.01 <0.5 19 <3 4 1 8 <5 8 CM 173R CMR-3 49,000 50,000 <0.01 <0.5 13 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 13 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 10 <3 6 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 10 <3 6 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 10 <3 6 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 11 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 11 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 11 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 11 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 11 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 12 <3 4 1 9 <5 8 CMR-3 50,000 50,000 <0.01 <0.5 10 <3 5 2 7 <5 7 CM 174R CMR-3 50,000 50,000 <0.01 <0.5 10 <0.5 10 <3 5 2 7 <5 7 CM 174R					Ħ	(0.5	10	,,	10	ء ا	· ·			30
CM 162R CMR-3		3 '			Ð	<0.5	12	<3	8	2	7	<5	8	19
CM 163R					1									
CM 165R			R	n	<0.01	<0.5	22	<3	5	2	8	<5	9	14
CM 166R CMR-3	CM 164R	CMR-3	R.	u.	м .	ш		_			_	_	_	4.0
CM 167R		1			h	<0.5	12	<3	6	2	((°)	•	19
CM 168R CMR-3		T .	В	11		-0-		-7	,	7	10	-5	10	19
CM 169R		0	1	6.	n .	п	, ,	'	1 '	ر ا	,,,			
CM 170R				8			9	<3	5	2	10	<5	9	16
CH 171R CMR-3				0		n	'	1		_				
CM 173R			1	4	8		19	<3	4	1	8	<5	8	16
CM 174R		CMR-3	49.000	50.000	0.01				1	1 _	_	_	_	
CM 175R						8	13	<3	5	2	7	<5	0	16
CM 176R		9 .					10	-7	_	,			7	14
CM 177R						3	10	1 3	0		i '		ſ	
CM 178R						8	11	<3	5	2	7	<5	7	15
CM 179R						4				_			,	
CM 181R		a - · · -					12	<3	4	<1	7	<5	7	13
CM 182R	CM 180R	CMR-3						1		1				
CM 183R			3	R.	8	#	18	<3	4	1	9	<5	8	18
CM 184R		3					١			1 ,	1 2	_5	17	24
CM 185R							10	<3	•	4	9		13	24
CM 186R CMR-3 63.000 64.000 <0.01							10	-3	5	1 1	7	<5	7	17
CM 187R CMR-3 64.000 65.000 <0.01 <0.5 11 <3 5 1 6 <5 6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <								1			1			
CM 188R	CM 187R	- 1					11	<3	5	1	6	<5	·· 6	16
CM 189R		ш.						}	ŀ	İ		Ī	l	
CM 191R CMR-3 68.000 69.000 0.01 <0.5 9 <3 6 2 7 <5 7 CM 192R CMR-3 69.000 70.000 <0.01 <0.5 12 6 8 2 10 <5 7 CM 194R CMR-3 71.000 72.000 <0.01 <0.5 12 6 8 2 10 <5 7 CM 194R CMR-3 71.000 72.000 <0.01 <0.5 10 <3 6 2 6 <5 5 CM 195R CMR-3 72.000 73.000 <0.01 <0.5 10 <3 6 2 6 <5 5 CM 196R CMR-3 73.000 74.000 <0.01 <0.5 9 <3 6 2 7 <5 6 CM 197R CMR-3 75.000 75.000 0.01 <0.5 9 <3 6 2 7 <5 6 CM 198R CMR-3 75.000 76.000 <0.01 <0.5 9 <3 7 2 9 <5 6 CM 199R CMR-3 76.000 77.000 <0.01 <0.5 9 <3 7 2 9 <5 6 CM 199R CMR-3 76.000 77.000 <0.01 <0.5 9 <3 7 2 9 <5 6 CM 199R CMR-3 76.000 77.000 <0.01 <0.5 9 <3 7 2 9 <5 6 CM 204R CMR-3 78.000 79.000 0.01 <0.5 9 <3 7 2 9 <5 6 CM 204R CMR-3 79.000 80.000 0.01 <0.5 6 <3 40 4 6 <5 9 CM 204R CMR-3 80.000 81.000 0.02 CM 205R CMR-3 81.000 82.000 0.02 <0.5 10 7 34 7 8 <5 8	CM 189R	CMR-3					9	<3	7] 2	6	<5	8	19
CM 192R CMR-3 69.000 70.000 <0.01] _] _	. 1	1	.] -	,	,	17
CM 193R							9	′ <3	1 6	2	1 '	\ °	· (17
CM 194R CMR-3 71.000 72.000 <0.01							12		ء ا		10	<5	7	24
CM 195R							'' ا	` `	Ί '		1		l '	
CM 196R CMR-3							10	<3	6	a 2	: 6	<5	5	19
CM 197R CMR-3		•					ì	1	1			1		
CM 198R CMR-3	CM 197R		74.000	75.000	0.01		9	<3	6	5] 2	2 7	7 <5	6	22
CM 200R CMR-3 77.000 78.000 <0.01 CM 202R CMR-3 78.000 79.000 0.01 CM 203R CMR-3 79.000 80.000 0.01 <0.5 6 <3 40 4 6 <5 9 CM 204R CMR-3 80.000 81.000 0.02 CM 205R CMR-3 81.000 82.000 0.02 <0.5 10 7 34 7 8 <5 8							1	1				_		1
CM 202R						#	9	<3	7		9	′	6	24
CM 203R							1		1		ł			
CM 204R CMR-3 80.000 81.000 0.02 CM 205R CMR-3 81.000 82.000 0.02 <0.5 10 7 34 7 8 <5 8					К			<u>ہے</u> ا	40	1 4	.1 4	< 5	9	35
CM 205R CMR-3 81.000 82.000 0.02 <0.5 10 7 34 7 8 <5 8							1	1	1 ~	1	1	1 -	ľ	1
					0.02		10) 7	34	1 7	' 8	3 <5	8	22
CM 206R CMR-3 82.000 83.000 0.01	CM 206R	CMR-3					1		1	1	1	İ	1	Ì

Page 3 of 7

Project:

EL 1684 Curnamona

SAMPLE	No	HOLE No	FROM	то	Au-ppm	Ag-ppm	As-ppm	Ві-ррп	Cu-ррп	Мо-ррп	Pb-ppm	Sb-ppm	V-ppm	Zn-ppm
CM 207	∤	CMR-3	83.000	84.000	<0.01	<0.5	28				7	<5	11	20
CM 208	3R	CMR-3	84.000	85.000	0.01	<0.5	26	<3	9	4	8	<5	10	22
CM 209		CMR-3 CMR-3	85.000 86.000		<0.01	<0.5	20	ļ	1		ŀ			34
CM 21	В	CMR-3	87,000	88.000	0.01	<0.5	13	5	6	4	8	<5	8	24
CM 212		CMR-3	88.000	89.000 90.000	<0.01 <0.01	<0.5	24	3	5 5	6	8	<5	9	22
CM 21.		CMR-3 CMR-3	90.000	91.000	0.01				l	. 2	8	<5	8	17
CM 21	5R	CMR-3	91.000 92.000	92.000	<0.01 <0.01		10	<3	5 4	' '		1]	1 1
CM 21		CMR-3 CMR-3	93.000	94.000	0.01		10	<	5 5	3	9	<5	9	19
CM 21		CMR-3	94.000	95.000	<0.01	1	7	\ <	z .	3	6	<5	1 8	19
CM 21		CMR-3 CMR-3		96.000 97.000		n ·	,	1			1		1	17
CM 22		CMR-3	97.000	98.000	<0.01	<0.5	11	<	3	4 3	6	<5	1 8	17
CM 22		CMR-3		99.000			14	<	3	3 2	2 9	<5	1	17
CM 22 CM 22		CMR-3 CMR-3		101.00				1	i		, ,	<5		3 20
CM 22	25R	CMR-3		102.00			14	<	3	4 3	'			
CM 22		CMR-3 CMR-3		103.00		a	1	1 <	3	2 <	1 14	<5	1	2 30
CM 22		CMR-3	104.00	105.00	<0.01				3	3	3 (s <	1	1 28
CM 22		CMR-3		106.00		. H	10	1	3			1		
CM 23		CMR-3		108.00	0.0	<0.5	5	8 <	3 1	4	3 (5 < 5	5 1	0 32
CM 23	32R	CMR-3		109.00			1	2 4	3	4	3	5 </td <td>5 1</td> <td>1 32</td>	5 1	1 32
CM 23		CMR-3 CMR-3		110.00			1	`					-	0 32
CM 23		CMR-3	111.00	112.0	0.0	2 <0.	5 1	6 <	:3	5	3	5 </td <td>) 1</td> <td>0 32</td>) 1	0 32
CM 23	36R	CMR-3		113.0 114.0	- 1		5 1	5 <	:3	3	3	7 <	5 1	1 32
CM 2.		CMR-3 CMR-3		115.0			1		1		_	9 <		3 40
CM 2	39R	CMR-3	115.00	116.0	0 <0.0		5 3	4	·3	6	3	9 <	י וי	3 40
CM 2		CMR-3 CMR-3		0 117.0 0 118.0			5 2	4	<3	4	3	8 <	5 1	1 40
CM 2	42R	CMR-3	118.0	0 119.0	0 <0.0	1	_	7	<3	5	3	6 <	5	9 25
CM 2		CMR-3		0 120.0 0 121.0		8	2	1	3	1	1			
CM 2		CMR-3 CMR-3		0 122.0	· · · · · ·	- 1	5	8	<3	4	3	7 <	5	1 28
CM 2	46R	CMR-3		0 123.0			5	7	<3	5	3	6	5	9 24
CM 2		CMR-3	123.0	0 124.0 0 125.0	0.0	п.		ı			1			10 30
	49R	CMR-3	125.0	0 126.0	0.0	. 4	- 1		<3 <3	4 12	3	- 4	- 4	10 30 54 52
	250R	CMR-4		0 24.00					<3	5		20	5	10 6
CM 2		CMR-4 CMR-4	26.00	0 28.00	0.0		5	8	<3	6	_1 .	174	<5 <5	5 3
CM 2	253R	CMR-4	28.00	0 30.00	0.0			12	<3 <3	4			45	4
CM 2		CMR-4 CMR-4		0 32.00 0 34.00				11 6	<3	3	1	19	<5	4
	256R	CMR-4	34.00	0 36.0	00 <0.	0> 10	.5	5	<3	5			<5 ·	4 5 6 4 5 5 5 5 5 3 6 3 5 5
CM 2	257R	CMR-4		38.0				4	<3 <3	5			<5	4
	258R 259R	CMR-4 CMR-4		00 40.0 00 42.0				2	<3	4	2	30	<5	5
CM 2	260R	CMR-4	42.00	0.44	00 <0.	01 <0	.5	2	<3	5		32 26	<5 <5	5
CM :	261R	CMR-4		00 46.0 00 48.0			.5 .5	2	<3 <3	5 5		24	<5	3
CM	262R 263R	CMR-4 CMR-4		00 50.0			.5	2	<3	6	3	19	<5	6 3
CM	264R	CMR-4		00 52.0				2	<3 <3	9 8	3 5	28 24	<5 <5	
	265 R 266 R	CMR-4		00 54.0 00 56.0			.5 .5	2	<3	6	2	24	<5	
CM	267R	CMR-4		00 58.0	9	02 <0	.5	18	<3	8	5		<5 <5	3 5 3 6 5
CM	268R	CMR-4	58.0	00 60.0	00 0.		.5 .5	10 7	<3 <3	9 8	5 8	30 30	<5 5	6
	269R 270R	CMR-4 CMR-4		00 62.0 00 64.0			.5	7	<3	8	6	32	<5	
	271R	CMR-4	64.0	00 66.0	00 <0.	01 <0	.5	5	<3	8 8	10 7	32 28	<5 <5	7
CM	272R 273R	CMR-4		00 68.0 00 70.0			.5	5 9	<3 <3	36	7	30	<5	7
	1/5R	CMR-4	100.0	UU 8 1 U . L	, NO.	~ 1		25	<3	68	9	30	<5	7 5

Page 4 of 7

Project:

EL 1684 Curnamona

SAMPLE NO	HOLE NO	FROM	то	Au-ppm	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Mo-ppm	Pb-ppm	Sb-ppm	V-ррп	Zn-ppm
CM 275R	CMR-4	72.000		0.02	0.5	24	<3	36	10	26	<5 <5	9 8	52 92
CM 276R	CMR-4	74.000		<0.01	0.5	30	<3 <3	16 24	9	25 24	<5	9	185
CM 277R	CMR-4	76.000		0.02 <0.01	<0.5 0.5	24 40	<3	14	7	18		9	230
CM 278R	CMR-4 CMR-4	78.000 80.000		0.01	0.5	54	<3	10	9	24	<5	12	135
CM 279R CM 280R	CMR-4		84.000		0.5	145	<3	10	9	34	<5	10	120
CM 281R	CMR-4	86.000		0.01	<0.5	26	<3	10	4	13	<5	3	130
CM 282R	CMR-4		88.000	<0.01	<0.5	28	5	19	5	14	a .	5	85 82
CM 283R	CMR-4		89.000	<0.01	<0.5	15	8	16		16		6	92
CM 284R	CMR-4		90.000	0.02	<0.5	12	<3 4	12 17	5 6	11 17		8	70
CM 285R	CMR-4		91.000	0.02 <0.01	<0.5 <0.5	28 22	<3	13	5	15		8	75
CM 286R	CMR-4	91.000	93.000	#	<0.5	14	<3	13		17	4 : 1	6	56
CM 287R CM 288R	CMR-4 CMR-4	•	94.000		<0.5	10	<3	16	В .	17	<5	10	42
CM 289R	CMR-4		95.000	11	<0.5	15	<3	17	8	20	в ,	20	98
CM 290R	CMR-4		96.000		<0.5	13	<3	16		16	4	13	60
CM 291R	CMR-4	96.000	97.000	0.01	<0.5	15	<3				H 1	19	90
CM 292R	CMR-4	97.000	98.000	<0.01	<0.5	a	<3	13		R	B	17	105 85
CM 293R	CMR-4	98.000		R	<0.5						K	19 15	62
CM 294R	CMR-4		100.00		<0.5	24	<3 <3	30 12		a ·	В	18	70
CM 295R	CMR-4		101.00		<0.5 <0.5	7			1			13	70
CM 296R	CMR-4		102.00	B	<0.5	2	M.	11	n.			18	72
CM 297R CM 298R	CMR-4 CMR-4		103.00	1	<0.5	4		6	11	u .		17	60
CM 298R CM 299R	CMR-4		105.00		<0.5					24	<5	19	68
CM 300R	CMR-4		106.00	II.	<0.5	п.	<3	1,3				15	60
CM 302R	CMR-4		107.00		<0.5						1 .	20	70
CM 303R	CMR-4		108.00				u			13		17	50
CM 304R	CMR-4		109.00		8	4			a			25 16	60 55
CM 305R	CMR-4		110.00		В		1					17	52
CM 306R	CMR-4		111.00		1		8 _	R .	а .			17	42
CM 307R	CMR-4	111.00	112.00		1	1	В .					18	35
CM 308R CM 309R	CMR-4 CMR-4	113.00	1		t	•					<5	16	35
CM 310R	CMR-4		115.00	8	H						9 <5	30	46
CM 311R	CMR-4		116.00	K		*	2 <3	48					40
CM 312R	CMR-4	1	117.00		<0.5		3 <3	26			Я	8	46
CM 313R	CMR-4		118.00				<3						50
CM 314R	CMR-4		119.00				3 4				8 <5 2 <5		
CM 315R	CMR-4		120.00				s <3	4 .		2 17	- K		H .
CM 316R	CMR-4	120.00		H	н		<	. B		5 1	- 1		U 1
CM 317R	CMR-4	121.00		H		- A	<		- 11		7 <5		n F
CM 318R	CMR-4	122.00		- 41	Б	1			я		9 <5	. 4	
CM 319R CM 320R	CMR-4 CMR-4	124.00	- 1	. 8			5 <			7 1	5 <5	22	
CM 321R	CMR-4		126.00		9	. 1	5 <	3 2	4		1 <5		
CM 322R	CMR-4	126.00	127.0	0.0			4 <	- 1		- 1	6 <5		н :
CM 323R	CMR-4	127.00	128.0		<0.5		6 <	3 4	2		9 <5		
CM 324R	CMR-4		129.0		n	. 1	4 <				0 <	42	II .
CM 325R	CMR-4	129.00	130.0	0 <0.0		5	4 <	3 1	4] '	4 2	0 <5	16	40
CM 326R	CMR-5	20.000	22.00	0.0		_1		3 1	0 <		3 <	11	9
CM 327R	CMR-5		24.00			1	9 <	۱ اد	`	`	٠.	<u> </u>	
CM 328R	CMR-5	24.00	0 26.00 0 28.00	0.0	R	5 4	2 <	3 4	2	2 <	3 <	32	25
CM 329R CM 330R	CMR-5 CMR-5	28 00	0 30.00	0 <0.0		1 7	`	1	٦ '	_	1	1	
CM 331R	CMR-5	30.00	32.00	0.0	8	5 9	2 <	3 8	2	2	3 <	38	40
CM 332R	CMR-5		0 33.00				1	1	Ì		1	İ	1
CM 333R	CMR-5	33.00	0 34.00	0 <0.0		5 2	2 <	3 2	4	5	4 <	26	34
CM 334R	CMR-5	34.00	0 35.00	0.0		1	1	1	1	.1			
CM 335R	CMR-5	35.00	0 36.00	0.0		5	9 <	3 1	9	5	7 </td <td>22</td> <td>34</td>	22	34
CM 336R	CMR-5		0 37.00			_				,1			38
CM 337R	CMR-5		0 38.00			> 1	1 <	3 1	9	4	9 <	5 24	ا ،
CM 338R	CMR-5		0 39.00				ا ا	7 1	6	4	5 <	5 23	2 44
CM 339R	CMR-5		0 40.00			2 J	0 <	3 1	٠	7	~ `	´l ´ʻ	1 "
CM 340R	CMR-5		0 41.00 0 42.00			5	7 <	3 1	6	4	6 <	5 19	42
CM 341R CM 342R	CMR-5 CMR-5		0 43.00			1	Ί `	- I '			1	İ	l l
CM 342R	CMR-5		0 44.00			5	7 <	3 5	2	4	5 <	5 2	2 52
JOIN 343K	Tour.	13.00	71 77.00	٠, ٠.٠	<u> </u>	1							

Page 5 of 7

Project:

EL 1684 Curnamona

				- 						DI	Sh ====	V	70.000
SAMPLE No	HOLE NO	FROM	то		Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Mo-bbu	Pb-ppm	Sb-ppm	v-ppiii	Zn-ppm
CM 344R	CMR-5	44.000 45.000		0.02	<0.5	8	<3	18	6	8	<5	19	44
CM 345R CM 346R	CMR-5 CMR-5	46.000		0.02								19	40
CM 347R	CMR-5	47.000 48.000		0.01	<0.5	26	<3	55	4	8	<5	19	40
CM 348R CM 349R	CMR-5 CMR-5	49.000		<0.01	<0.5	8	<3	22	4	5	<5	22	48
CM 350R	CMR-5	50.000			-0 E	7	<3	20	5	6	<5	20	42
CM 351R CM 352R	CMR-5 CMR-5	51.000 52.000	53.000	<0.01 <0.01	<0.5	, ,	,	20	İ	ŀ			
CM 353R	CMR-5	53.000	54.000	0.01	<0.5	8	<3	18	3	3	<5	24	32
CM 354R CM 355R	CMR-5 CMR-5	1	55.000 56.000	<0.01 <0.01	<0.5	10	<3	18	4	6	<5	19	55
CM 356R	CMR-5	56.000	57.000	<0.01					4	<3	<5	30	48
CM 357R CM 358R	CMR-5 CMR-5		58.000 59.000	<0.01 <0.01	<0.5	19	<3	12	1 4	,	1		
CM 359R	CMR-5		60.000	<0.01	<0.5	9	<3	18	6	7	<5	17	50
CM 360R	CMR-5	60.000	0		<0.5	8	<3	100	4	8	<5	22	38
CM 361R CM 362R	CMR-5 CMR-5		62.000 63.000	B	\0.5				ŀ			ľ	
CM 363R	CMR-5		64.000		<0.5	9	<3	24	7	11	<5	20	60
CM 364R CM 365R	CMR-5 CMR-5		65.000		<0.5	8	<3	22	9	14	<5	22	65
CM 366R	CMR-5	66.000	67.000	<0.01	H .	_ ا		. 8	9	14	. <5	18	56
CM 367R CM 368R	CMR-5 CMR-5		68.000 69.000		<0.5	5	<3	l °	7	1			
CM 369R	CMR-5		70.000	0.01	<0.5	24	<3	7	' 6	15	<5	17	64
CM 370R	CMR-5		71.000		<0.5	32	2 <3	14	. 6	12	2 <5	16	48
CM 371R CM 372R	CMR-5 CMR-5		73.000	1	K .	1				1	1		-,
CM 373R	CMR-5		74.000	1	-8	10	<3	9	6	6	<5	17	54
CM 374R CM 375R	CMR-5 CMR-5		75.000	в .		1	<3	12	2 5	13	5 <5	18	50
CM 376R	CMR-5	76.000	77.000	<0.01	1	Ι,	.] .	\$ 9		2 20	<5	19	56
CM 377R CM 378R	CMR-5 CMR-5		78.000	4			5 < 3	ì	1	` د ا		1	1
CM 379R	CMR-5	79.000	80.000	0.01	<0.5	. ;	7 <3	11	1 4	13	3 <5	17	46
CM 380R	CMR-6		38.000 40.000		1		5 <	, ,	3 3	2 1	5 <5	35	16
CM 381R CM 382R	CMR-6		42.000	11						1	-		1
CM 383R	CMR-6		44.000			6	5 <3	3 9	7 '	21	0 <5	22	11
CM 384R CM 385R	CMR-6	B	46.000	B .		;	3 <	3	7	4 3	B <5	19	8
CM 386R	CMR-6	48.000	50.000	0.01			4 <	2		3 3	8 <5	16	7
CM 387R CM 388R	CMR-6		52.000 54.000		R	'	4 <] '	5	,	1	1	
CM 389R	CMR-6	54.000	56.000	0.0	0.5	5	3 <	3 '	9	3 3	4 <	5 19	6
CM 390R	CMR-6 CMR-6		58.000			,	3 <	3	9	4 2	8 <	5 24	12
CM 391R CM 392R	CMR-6		62.00			1	Ì	1	ľ				1
CM 393R	CMR-6		64.00			5	3 <	3	8	4 3	4 <	5 20	5 12
CM 394R CM 395R	CMR-6 CMR-6		0 66.000 0 68.000			5	2 <	3	9	4 4	8 <	5 2	, 9
CM 396R	CMR-6	68.000	70.00	0.0	2	ì	1	l l		4 4	5 <	5 3	12
CM 397R CM 398R	CMR-6 CMR-6		72.00 74.00			7	2 <	3	0	4 4		i	
CM 399R	CMR-6	74.000	76.00	0.0	2 0.	5	2 <	3 1	1	3 4	4 <	5 2	5 20
CM 400R CM 402R	CMR-6		78.00 80.00				1					1	
CM 402R	CMR-6		82.00	0.0	1 1.	0	4 <	3 1	4 <	1 8	2 <	5 2	8 38
CM 404R	CMR-6		0 84.00				3 <	3 1	1 <	1 3	2 <	5 2	4 19
CM 405R CM 406R	CMR-6		0 86.00 0 88.00			1		- '	1				
CM 407R	CMR-6	88.00	0 90.00	0 <0.0	1 1.	0	3 <	3 1	1	:1 2	?6 <	5 2	2 38
CM 408R CM 409R	CMR-6		0 91.00 0 92.00			5	7	3 1	6	1 2	2 <	5 3	8 48
CM 410R	CMR-6	92.00	0 93.00	0 <0.0	1	Į.		1		t		. ,	2 54
CM 411R	CMR-6		0 94.00 0 95.00			5 1	3 <	:3 1	4	2 1	8 <	5 3	2 54
CM 412R	CMR-6	94.00	טט.כליי	V (0.0	<u>'</u>								

Page 6 of 7

Project:

EL 1684 Curnamona

SAMPLE No	HOLE No	FROM	то	Au-ppm	Ag-ppm	As-ppm	Bi-ppm	Cu-ppm	Mo-ppm	Pb-ppm	Sb-ppm	V-ppm	Zn-ppm
CM 413R	CMR-6	95.000	96.000	0.01	<0.5	18	<3	10	3	19	<5	38	115
CM 414R	CMR-6	96.000		0.02			_		, ,			26	68
CM 415R	CMR-6		98.000		<0.5	105	<3	9	4	26	< 5	20	.00
CM 416R	CMR-6	98.000	99.000				_			25	<5	36	90
CM 417R	CMR-6		100.00	<0.01	<0.5	32	<3	8	6	25	'>	.30	70
CM 418R	CMR-6		101.00					1 ,	7	24	<5	34	82
CM 419R	CMR-6		102.00	0.02		36	<3	9	'	24	! '	34	٥٤
CM 420R	CMR-6		103.00		1	l	l _	,	6	. 22	<5	34	74
CM 421R	CMR-6		104.00			34	<3	9	°	22	\ \	34	, -
CM 422R	CMR-6		105.00					9	6	22	<5	40	70
CM 423R	CMR-6		106.00			30	<3	, ,	ľ	ء ا	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
CM 424R	CMR-6		107.00					1 11	6	19	<5	35	60
CM 425R	CMR-6		108.00	R.		32	<3	1 ''	l °	17	1	, ,,	"
CM 426R	CMR-6		109.00				17	9	6	22	<5	34	70
CM 427R	CMR-6		110.00			30	<3	, ,	0	- 22	, ,		'
CM 428R	CMR-6		111.00			75		9	6	22	<5	34	70
CM 429R	CMR-6		112.00			25	<3	,	"		1]	
CM 430R	CMR-6		113.00			ا ء۔	<3	10	7	28	<5	34	88
CM 431R	CMR-6		114.00			25	1 3	10	1 '	20		-	"
CM 432R	CMR-6		115.00			90	<3	18	9	14	<5	18	46
CM 433R	CMR-6		116.00			90	1 '3	1		'	1 "	l '	, ,
CM 434R	CMR-6		117.00			20	<3	16	7	20	<5	34	105
CM 435R	CMR-6		118.00			28	1	'	'l '	-	1	1	
CM 436R	CMR-6		119.00			٠,	<3	1 11	1 6	24	. <5	36	105
CM 437R	CMR-6		120.00	19		28		'	1	'		-	
CM 438R	CMR-6		121.00			19	<3	s Ι	3 6	22	<5	35	82
CM 439R	CMR-6		122.00			' '	`	Ί .	Ί	1	1	1	
CM 440R	CMR-6		123.00			28	<3		, 5	26	<5	32	96
CM 441R	CMR-6		124.00			1 29	' `-	Ί ΄				1	
CM 442R	CMR-6	124.00	125.00	<0.01		1	L					<u></u>	

Page 7 of 7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Please note our new Phone Number is (08) 416 5300

Mr Grant McEwen Newcrest Mining Limited PO Box 1367 MILTON QLD 4064

FINA<u>L ANALYSIS REPORT</u>

Your Order No: B 5060

Our Job Number : 1AD3944

Samples received: 19-DEC-1991

Results reported: 16-JAN-1992

No. of samples : 788

Report comprises a cover sheet and pages 1 to 35

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:
If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

John Waters

Laboratory Manager - Adelaide

MM

Mr G McEwen

QLD

Report Codes:

Distribution Codes:

N.A. - Not Analysed.

cc - Carbon Copy

L.N.R. - Listed But Not Received.

EM - Electronic Media

I.S. - Insufficent Sample.

MM - Magnetic Media

"RELIABLE ANALYSES AT COMPETITIVE COST"

Amdel Laboratories Limited A.C.N. 009 076 555 Trading as Classic Laboratories

CLASSIC LABORATORIES

ANALYTICAL REPORT

Sample	Au Avg	Au 2	Au Rp1 A	Au SS1
CM 001R	0.01	0.02		<0.01
CM 002R	0.02	0.02		
CM 003R	0.02	0.02		
CM 004R	0.02	0.02		
CM 005R	0.02	0.02		
CM 006R	0.01	0.01		410 419
CM 007R	0.03	0.03		
CM 008R	0.01	0.01		
CM 009R	0.01	0.01		
CM 010R	0.01	0.01		
CM 011R	0.01	0.01		
CM 012R	0.01	0.01	-	
CM 013R	0.01	0.01		
CM 014R	0.01	0.01		
CM 015R	0.02	0.02		
CM 016R	0.01	0.01		
CM 017R	0.01	0.01		
CM 018R	0.01	0.01		
CM 019R	<0.01	<0.01		
CM 020R	<0.01	<0.01		<0.01
CM 021R	0.01	0.02		
CM 022R	0.02	0.02		
CM 023R	0.02	0.02		
CM 024R	0.02 <0.01	<0.02		
CM 025R	0.01	0.01		-
CM 026R CM 027R	0.01	0.01		
CM 027R CM 028R	<0.01	<0.01		
CM 028R	<0.01	<0.01		***
CM 030R	0.01	0.01		
CM 030R	0.01	0.01		www.
CM 031R	0.01	0.01	-	
CM 032R	0.01	0.01		
CM 033R	<0.01	<0.01		
CM 034R	0.01	0.01		
CM 035R	0.02	0.02		
CM 030R	<0.01	<0.01		
CM 037R	<0.01	<0.01		
CM 039R	0.01	0.01		
CM 040R	0.02	0.02		
CM 041R	<0.01	<0.01		<0.01
CM 042R	0.01	0.01		
CM 042R	<0.01	<0.01		
CM 043R	0.01	0.01	⇔ :::	
CM 044R	0.01	0.01		
J	<u> </u>	- 		
Units	ppm	ppm	ppm	ppm
DL	0.01	0.01	0.01	0.01
Scheme	FAl	FA1	FA1	FA1

ANALYTICAL REPORT

O/N: B 5060 Au Au Rpl Au SS1 Sample Au Avg <0.01 <0.01 CM 046R CM 047R <0.01 <0.01 CM 048R <0.01 <0.01 0.01 0.01 CM 049R <0.01 <0.01 CM 050R <0.01 CM 051R <0.01 __ CM 052R <0.01 <0.01 0.01 ___ CM 053R 0.01 ___ CM 054R 0.01 0.01 <0.01 CM 055R <0.01 CM 056R <0.01 <0.01 0.02 CM 057R 0.02 <0.01 <0.01 CM 058R <0.01 CM 059R <0.01 CM 060R <0.01 <0.01 CM 061R <0.01 <0.01 <0.01 0.01 0.01 ___ CM 062R --0.01 0.01 CM 063R ---<0.01 <0.01 CM 064R --0.02 CM 065R 0.02 CM 066R <0.01 <0.01 <0.01 <0.01 CM 067R <0.01 <0.01 ---CM 068R CM 069R 0.01 0.01 ___ <0.01 CM 070R <0.01 CM 071R <0.01 <0.01 CM 072R 0.02 0.02 0.01 CM 073R 0.01 CM 074R <0.01 <0.01 <0.01 <0.01 CM 075R <0.01 <0.01 CM 076R 0.01 __ CM 077R 0.01 <0.01 <0.01 CM 078R __ <0.01 CM 079R <0.01 <0.01 CM 080R <0.01 <0.01 CM 081R <0.01 <0.01 CM 082R <0.01 <0.01 __

ppm ppm ppmUnits ppm 0.01 0.01 0.01 DL 0.01 FA1 FA1 FA1 Scheme FA1

<0.01

<0.01 <0.01

<0.01

<0.01

<0.01 <0.01

<0.01

__

__

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

CM 083R CM 084R

CM 085R

CM 086R

CM 087R

CM 088R

CM 089R

CM 090R

Sample	Au Avg	Au A	u Rpl A	u SS1
CM 091R	<0.01	<0.01		
CM 092R	<0.01	<0.01		
CM 093R	<0.01	<0.01		
CM 094R	<0.01	<0.01	***	
CM 095R	<0.01	<0.01		
CM 096R	<0.01	<0.01		
CM 097R	<0.01	<0.01		
CM 098R	<0.01	<0.01		
CM 099R	<0.01	<0.01		
CM 100R	<0.01	<0.01		
CM 101R	0.24	0.24	0.24	
CM 102R	0.01	0.01	-in-	
CM 103R	0.01	0.01		
CM 104R	<0.01	<0.01		
CM 105R	<0.01	<0.01	,	
CM 106R	<0.01	<0.01		
CM 107R	<0.01	<0.01		
CM 108R	<0.01	<0.01		
CM 109R	0.02	0.02		
CM 110R	0.01	0.01		
CM 111R	0.01	0.01		
CM 112R	0.01	0.01		
CM 113R	0.01	0.01		
CM 114R	<0.01	<0.01		
CM 115R	<0.01	<0.01		
CM 116R	0.01	0.01		
CM 117R	<0.01	<0.01		
CM 118R	<0.01	<0.01		
CM 119R	<0.01	<0.01		
CM 120R	<0.01	<0.01		
CM 121R	<0.01	0.01		<0.01
CM 122R	0.01	0.01		
CM 123R	<0.01	<0.01		
CM 124R	0.01	0.01		
CM 125R	<0.01	<0.01		
CM 126R	<0.01	<0.01		
CM 127R	0.01	0.01		
CM 128R	<0.01	<0.01		
CM 129R	<0.01	<0.01		
CM 130R	0.01	0.01		
CM 131R	0.01	0.01		***
CM 131R	<0.01	<0.01	****	
CM 132R	<0.01	<0.01		
	<0.01	<0.01		
	<0.01	<0.01	-	
CM 135R	~U.U.	-0.0T		
Units	ppm	ppm	ppm	ppm
DL	0.01	0.01	0.01	0.01
Scheme	FA1	FA1	FA1	FA1

Units

Scheme

DL

ANALYTICAL REPORT

O/N: B 5060 Au Au Rpl Au SS1 Sample Au Avg CM 136R <0.01 <0.01 <0.01 <0.01 CM 137R <0.01 CM 138R <0.01 CM 139R 0.01 0.01 CM 140R 0.02 0.02 <0.01 CM 141R 0.01 0.02 CM 142R 0.01 0.01 <0.01 <0.01 CM 143R <0.01 <0.01 CM 144R <0.01 CM 145R <0.01 <0.01 <0.01 CM 146R CM 147R <0.01 <0.01 <0.01 ___ <0.01 CM 148R <0.01 <0.01 CM 149R <0.01 <0.01 CM 150R <0.01 CM 151R <0.01 CM 152R <0.01 <0.01 <0.01 <0.01 CM 153R 0.02 0.02 CM 154R <0.01 <0.01 CM 155R CM 156R 0.01 0.01 0.01 0.01 CM 157R CM 158R <0.01 <0.01 CM 159R <0.01 <0.01 <0.01 CM 160R <0.01 <0.01 <0.01 <0.01 CM 161R <0.01 <0.01 CM 162R <0.01 <0.01 CM 163R CM 164R <0.01 <0.01 <0.01 <0.01 CM 165R ___ <0.01 <0.01 CM 166R <0.01 <0.01 CM 167R CM 168R 0.01 0.01 0.02 0.02 CM 169R <0.01 <0.01 CM 170R <0.01 <0.01 CM 171R 0.01 ___ CM 172R 0.01 <0.01 CM 173R <0.01 <0.01 CM 174R <0.01 <0.01 CM 175R <0.01 <0.01 <0.01 CM 176R CM 177R <0.01 <0.01 <0.01 <0.01 CM 178R CM 179R <0.01 <0.01 <0.01 <0.01 CM 180R

ppm

FA1

0.01

ppm

FA1

0.01

ppm

FA1

0.01

ppm

FA1

0.01

CLASSIC LABORATORIES

ANALYTICAL REPORT

O/N: B 5060 Au Au Rp1 Au SS1 Sample Au Avg <0.01 <0.01 CM 181R <0.01 0.01 CM 182R 0.01 <0.01 <0.01 CM 183R <0.01 <0.01 CM 184R CM 185R <0.01 <0.01 CM 186R <0.01 <0.01 CM 187R <0.01 <0.01 <0.01 <0.01 CM 188R <0.01 <0.01 CM 189R CM 190R <0.01 <0.01 __ 0.01 CM 191R 0.01 CM 192R <0.01 <0.01 <0.01 <0.01 CM 193R <0.01 <0.01 CM 194R · __ CM 195R <0.01 <0.01 <0.01 <0.01 CM 196R 0.01 CM 197R 0.01 CM 198R <0.01 <0.01 <0.01 <0.01 CM 199R <0.01 CM 200R <0.01 0.90 0.90 CM 201R 0.01 0.01 CM 202R 0.01 CM 203R 0.01 CM 204R 0.02 0.02 0.02 0.02 CM 205R 0.01 0.01 CM 206R CM 207R <0.01 <0.01 ___ CM 208R 0.01 0.01 CM 209R <0.01 <0.01 -CM 210R <0.01 <0.01 CM 211R 0.01 0.01 <0.01 CM 212R <0.01 <0.01 <0.01 CM 213R CM 214R 0.01 0.01 <0.01 <0.01 CM 215R CM 216R ---<0.01 <0.01 0.01 CM 217R 0.01 <0.01 <0.01 CM 218R CM 219R <0.01 <0.01 <0.01 <0.01 CM 220R <0.01 CM 221R <0.01 <0.01 --<0.01 CM 222R <0.01 CM 223R <0.01 <0.01 CM 224R <0.01 <0.01 <0.01 CM 225R <0.01 ppm Units ppmppmppm0.01 0.01 0.01 0.01 DL

FA1

FA1

FA1

Scheme

FA1

CLASSIC LABORATORIES

CM 266R

CM 267R

CM 268R

CM 269R

CM 270R

Units

Scheme

DL

<0.01

0.02

0.01

0.02

<0.01

ppm

0.01

FA1

<0.01

0.02

0.01

0.02

<0.01

ppm

0.01

FA1

ppm

0.01

FA1

ppm

0.01

FA1

ANALYTICAL REPORT

O/N: B 5060 Sample Au Au Rpl Au SSl Au Avg CM 226R <0.01 <0.01 <0.01 <0.01 CM 227R CM 228R <0.01 <0.01 <0.01 <0.01 CM 229R CM 230R <0.01 <0.01 CM 231R 0.02 0.02 CM 232R 0.01 0.01 CM 233R 0.01 0.01 CM 234R <0.01 <0.01 0.02 CM 235R 0.02 0.01 CM 236R 0.01 CM 237R <0.01 <0.01 CM 238R 0.02 0.02 CM 239R <0.01 <0.01 CM 240R <0.01 <0.01 **--** <0.01 <0.01 <0.01 CM 241R CM 242R <0.01 <0.01 <0.01 <0.01 CM 243R <0.01 <0.01 CM 244R 0.02 CM 245R 0.02 CM 246R ___ <0.01 <0.01 <0.01 <0.01 ___ CM 247R CM 248R 0.01 0.01 CM 249R <0.01 <0.01 CM 250R <0.01 <0.01 <0.01 <0.01 CM 251R CM 252R <0.01 <0.01 0.02 CM 253R 0.02 CM 254R <0.01 <0.01 CM 255R 0.02 0.02 CM 256R <0.01 <0.01 CM 257R <0.01 <0.01 CM 258R <0.01 <0.01 CM 259R <0.01 <0.01 CM 260R <0.01 <0.01 -- <0.01 CM 261R <0.01 <0.01 __ ---CM 262R 0.02 0.02 <0.01 CM 263R <0.01 CM 264R 0.01 0.01 CM 265R <0.01 <0.01

Sample	Au Avg	Au 2	Au Rpl A	u SS1
CM 271R	<0.01	<0.01		
CM 272R	<0.01	<0.01		
CM 273R	<0.01	<0.01		
CM 274R	<0.01	<0.01		
CM 275R	0.02	0.02		
CM 276R	<0.01	<0.01		
CM 277R	0.02	0.02		
CM 278R	<0.01	<0.01		
CM 279R	0.01	0.01		
CM 280R	0.01	0.01	***	
CM 281R	0.01	0.02		<0.01
CM 282R	<0.01	<0.01	-	
CM 283R	<0.01	<0.01		
CM 284R	0.02	0.02		
CM 285R	0.02	0.02		
CM 286R	<0.01	<0.01		
CM 287R	<0.01	<0.01		
CM 288R	<0.01	<0.01		
CM 289R	<0.01	<0.01		
CM 290R	0.02	0.02 0.01		
CM 291R	0.01 <0.01	<0.01		
CM 292R	0.01	0.01		
CM 293R CM 294R	0.01	0.02		
CM 294R CM 295R	<0.02	<0.02		
CM 295R	0.01	0.01		C10, 650
CM 297R	<0.01	<0.01		
CM 298R	0.02	0.02		
CM 299R	<0.01	<0.01		
CM 300R	0.01	0.01		
CM 301R	2.06	2.05	2.06	
CM 302R	0.03	0.03		
CM 303R	0.03	0.03		
CM 304R	0.01	0.01		
CM 305R	0.02	0.02		
CM 306R	0.02	0.02		
CM 307R	<0.01	<0.01		
CM 308R	<0.01	<0.01		
CM 309R	<0.01	<0.01		
CM 310R	0.01	0.01	 ,	
CM 311R	<0.01	<0.01		
CM 312R	<0.01	<0.01		
CM 313R	0.01	0.01		
CM 314R	<0.01	<0.01		
CM 315R	<0.01	<0.01		
_				
Units	ppm	ppm	ppm	ppm
DL	0.01	0.01	0.01	0.01
Scheme	FA1	FA1	FA1	FA1

Sample	Au Avg	Au Au	Rp1 A	u SS1
CM 316R	0.02	0.02		-
CM 317R	0.01	0.01		-
CM 318R	0.01	0.01		
CM 319R	0.01	0.01		
CM 320R	<0.01	<0.01		
CM 321R	<0.01	<0.01		<0.01
CM 322R	0.01	0.01		
CM 323R	<0.01	<0.01		
CM 324R	<0.01	<0.01		
CM 325R	<0.01	<0.01	÷-	
CM 326R	0.02	0.02		
CM 327R	<0.01	<0.01		,
CM 328R	0.02	0.02	-	
CM 329R	<0.01	<0.01		
CM 330R	<0.01	<0.01		
CM 331R	0.01	0.01		
CM 332R	0.01	0.01		
CM 333R	<0.01	<0.01		
CM 334R	0.01	0.01		
CM 335R	<0.01	<0.01		
CM 336R	<0.01	<0.01		
CM 337R	0.02	0.02		
CM 338R	<0.01	<0.01		
CM 339R	0.01	0.01		
CM 340R	<0.01	<0.01		
CM 341R	<0.01	<0.01		<0.01
CM 342R	<0.01	<0.01		
CM 343R	0.02	0.02		
CM 344R	0.02	0.02		
CM 345R	<0.01	<0.01		
CM 346R	0.02	0.02		-,-
CM 347R	0.01	0.01		
CM 348R	<0.01	<0.01		
CM 349R	<0.01	<0.01		
CM 350R	<0.01	<0.01		
CM 351R	<0.01	<0.01		
CM 351R	<0.01	<0.01		
CM 352R	0.01	0.01		
CM 353R	<0.01	<0.01		
CM 354R CM 355R	<0.01	<0.01		
CM 355R	<0.01	<0.01		
CM 357R	<0.01	<0.01		
	<0.01	<0.01		
	<0.01	<0.01		
CM 359R	<0.01	<0.01		
CM 360R	<0.0T	~0.0T	•	
Units	ppm	ppm	ppm	ppm
\mathtt{DL}	0.01	0.01	0.01	0.01
Scheme	FA1	FA1	FA1	FA1

Sample	Au Avg	Au A	u Rp1 A	u SS1
CM 361R	<0.01	<0.01	***	<0.01
CM 362R	0.02	0.02		
CM 363R	0.01	0.01		
CM 364R	<0.01	<0.01		
CM 365R	<0.01	<0.01		
CM 366R	<0.01	<0.01		
CM 367R	<0.01	<0.01		
CM 368R	<0.01	<0.01		***
CM 369R	0.01	0.01		
CM 370R	0.02	0.02		
CM 371R	<0.01	<0.01		
CM 372R	<0.01	<0.01		
CM 373R	<0.01	<0.01		
CM 374R	<0.01	<0.01		
CM 375R	<0.01	<0.01		
CM 376R	<0.01	<0.01		
CM 377R	<0.01	<0.01		
CM 378R	0.01	0.01		
CM 379R	0.01	0.01		
CM 380R	<0.01	<0.01		<0.01
CM 381R	0.01 <0.01	0.03 <0.01		VO. 01
CM 382R		<0.01		
CM 383R	<0.01 0.01	0.01		
CM 384R	0.01	0.01		
CM 385R CM 386R	<0.01	<0.01	-	
CM 386R CM 387R	<0.01	<0.01		
CM 387R	0.01	0.01		
CM 389R	0.01	0.01		
CM 389R	<0.01	<0.01	-	
CM 391R	<0.01	<0.01		
CM 392R	<0.01	<0.01		-,
CM 393R	0.01	0.01		
CM 394R	0.02	0.02		
CM 395R	0.02	0.02		
CM 396R	0.02	0.02		
CM 397R	0.02	0.02		
CM 398R	0.02	0.02		
CM 399R	0.02	0.02		
CM 400R	0.02	0.02		*** **
CM 401R	2.02	1.98	2.06	-
CM 402R	<0.01	<0.01		
CM 403R	0.01	0.01		
CM 404R	0.02	0.02		
CM 405R	0.02	0.02		-
Units	ppm	ppm	ppm	ppm
\mathtt{DL}	0.01	0.01	0.01	0.01
Scheme	FA1	FA1	FA1	FA1

Sample	Au Avg	Au Au	Rp1 A	u SS1
CM 406R	0.02	0.02		
CM 407R	<0.01	<0.01		
CM 408R	0.01	0.01		
CM 409R	0.01	0.01	 ,	
CM 410R	<0.01	<0.01		
CM 411R	0.01	0.01		
CM 412R	<0.01	<0.01		
CM 413R	0.01	0.01 0.02		
CM 414R	0.02 0.01	0.02		
CM 415R CM 416R	0.01	0.02		
CM 416R CM 417R	<0.01	<0.01		
CM 417R	<0.01	<0.01		
CM 419R	0.02	0.02		
CM 420R	<0.01	<0.01		
CM 421R	<0.01	0.01		<0.01
CM 422R	<0.01	<0.01		
CM 423R	0.01	0.01		
CM 424R	0.01	0.01		
CM 425R	0.01	0.01		
CM 426R	0.02	0.02		
CM 427R	<0.01	<0.01		
CM 428R	<0.01	<0.01		
CM 429R	<0.01	<0.01		
CM 430R	0.02	0.02		·
CM 431R	0.02	0.02		
CM 432R	0.02	0.02 0.02		
CM 433R	0.02 <0.01	<0.02		
CM 434R CM 435R	0.01	0.01		
CM 435R CM 436R	<0.01	<0.01		***
CM 437R	0.01	0.01		
CM 437R	0.01	0.01		,,
CM 439R	<0.01	<0.01		
CM 440R	<0.01	<0.01		
CM 441R	<0.01	<0.01		<0.01
CM 442R	<0.01	<0.01		
CM 443R	1.05	1.05	1.04	
CM 444R	2.24	2.40	2.08	
CM 445R	0.28	0.32	0.25	
CM 446R	2.32	2.46	2.18	-
Units	ppm	mqq	ppm	ppm
DL	0.01	0.01	0.01	0.01
Scheme	FA1	FA1	FA1	FA1
~~~~~~~		-, <del></del> -		



O/N: B 5060 ANALYTICAL REPORT Cd Co Cr Cu Βi As Sample Ag 10 25 <2 <3 <1 18 <0.5 CM 001R 20 <1 <2 6 <3 25 <0.5 CM 002R 9 25 <1 <2 0.5 <3 30 CM 003R 260 220 7 34 210 <1 5 8.5 CM 004R 7 22 140 <1 14 CM 005R 17.5 120 40 16 85 <1 3 11 CM 006R 2.0 3.5 40
13.0 18
1.0 94
4.0 96
17.5 22
12.5 50
1.5 95
16.5 72
8.0 84
8.5 120
1.0 10
1.0 7 9 38 <1 2 4 CM 007R 3.5 8 <2 30 <3 <1 CM 008R 26 80 6 6 <1 CM 009R 82 <1 5 20 6 CM 010R 50 12 <1 <2 13 22 CM 011R 3 <1 13 100 72 CM 012R 3 15 85 2 20 110 3 15 155 4 6 145 2 18 720 3 15 1280 4 24 160 7 18 96 <1 95 72 100 CM 013R <1 140 CM 014R <1 165 CM 015R 17 <1 CM 016R <3 <1 CM 017R <1 <3 1.0 7 CM 018R 3 <3 12 CM 019R <0.5 <3 1 12 <0.5 CM 020R 2 7 25 42 9 <0.5 34 CM 021R 30 64 3 8 <3 <1 <0.5 CM 022R 38 52 <3 2 4 <0.5 20 CM 023R <1 3 28 38 <3 <0.5 10 CM 024R 3 42 20 <3 <1 CM 025R <0.5 16 2 24 13 7 <1 <0.5 <3 CM 026R <1 18 32 <2 6 <3 <0.5 CM 027R 18 30 4 <1 <2 13 <0.5 CM 028R 20 <1 6 30 105 42 20 8 CM 029R 1.0 <1 1 2 <1 1 <1 -5 15 46 0.5 24 CM 030R 2.0 12 30 130 14 90 CM 031R 100 30 16 11 190 CM 032R 72 16 46 1.0 <3 CM 033R 84 320 38 34 8 145 3.0 CM 034R 30 55 3 <3 15 CM 035R <0.5 38 4 40 155 <1 1.0 24 CM 036R 4 50 210 <1 35 22 1.5 CM 037R <1 2 38 42 16 7 0.5 CM 038R 7 12 <1 3 48 CM 039R <0.5 16 3 40 56 <1 24 11 CM 040R <0.5 3 48 11 <1 <0.5 13 4 CM 041R <1 <1 <1 44 5 25 12 54 CM 042R <0.5 8 66 175 195 44 CM 043R 1.0 4 115 34

17

9

ppm

3

IC2

1

ppm

IC2

1

16

60

ppm

1

IC2

<0.5

1.5

ppm

0.5

IC2

CM 044R

CM 045R

Units

Scheme

DL

150

ppm

IC2

1

5

ppm

IC2

44

ppm

IC2





O/N: B 5060 ANALYTICAL REPORT Cu Co Cr Cd Βi As Ag Sample 54 4 35 7 <1 19 0.5 CM 046R 65 40 7 9 <1 28 CM 047R 0.5 105 18 <1 11 12 CM 048R 1.5 45 26 175 16 <1 10 1.0 86 CM 049R 155 34 <1 6 40 9 2.0 CM 050R 290 7 54 <1 78 15 4.0 CM 051R 7 44 30 3 <1 34 1.0 CM 052R 9 38 <3 <1 <2 <0.5 5 CM 053R 10 <1 <2 28 <3 <0.5 3 CM 054R 5 74 30 <1 <3 <0.5 9 CM 055R 72 58 5 <3 <1 14 <0.5 CM 056R 11 5 34 <1 <3 2 <0.5 CM 057R 32 6 22 <3 <1 10 <0.5 CM 058R 7 12 <1 65 <3 3 CM 059R <0.5 12 4 62 <1 <3 4 CM 060R <0.5 5 64 13 <1 <3 <0.5 8 CM 061R 7 3 48 <1 <3 3 <0.5 CM 062R 7 3 42 <3 <1 4 <0.5 CM 063R 10 48 <1 4 <3 8 <0.5 CM 064R 50 68 22 <3 <1 48 CM 065R <0.5 28 8 <1 3 <3 6 CM 066R <0.5 9 48 <1 5 <3 <0.5 6 CM 067R 12 8 48 <1 14 <3 <0.5 CM 068R 35 7 6 <1 <0.5 8 <3 CM 069R 9 38 8 10 <3 <1 CM 070R <0.5 7 28 5 <3 <1 5 <0.5 CM 071R 9 7 38 <1 <0.5 <3 11 CM 072R 8 5 38 <3 <1 <0.5 6 CM 073R 4 40 9 <3 <1 <0.5 4 CM 074R 6 40 3 <3 <1 4 <0.5 CM 075R 9 3 42 <1 <3 4 <0.5 CM 076R 10 6 36 <1 <3 18 <0.5 CM 077R 35 15 15 <1 <3 24 <0.5 CM 078R 12 34 16 <1 <3 28 <0.5 CM 079R 13 44 14 <3 <1 <0.5 22 CM 080R 15 38 22 <3 <1 32 <0.5 CM 081R 19 38 19 <1 <3 22 CM 082R <0.5 16 30 34 🐭 <1 46 <3 <0.5 CM 083R 98 34 34 <3 <1 50 <0.5 CM 084R 22 30 19 <3 <1 24 <0.5 CM 085R 18 24 32 <1 <3 34 <0.5 CM 086R 32 34 14 <1 <3 34 <0.5 CM 087R 22 . 38 18 <1 <3 30 <0.5 CM 088R 17 38 14 <1 <3 24 <0.5 CM 089R 7 34 15 <1 <3 26 CM 090R <0.5 ppm ppm ppm ppm ppm ppm Units ppm 1 2 2 3 1 1 0.5 DL IC2 IC2 IC2 IC2 IC2 IC2 IC2 Scheme



ANALYTICAL REPORT Job: 1AD3944
O/N: B 5060

Sample	Ag	As	Bi	Cđ	Со	Cr	Cu
CM 091R	<0.5	26	<3	<1	11	44	4
CM 092R	<0.5	26	<3	<1	12	52	9
CM 093R	<0.5	24	<3	<1	11	42	6
	<0.5	15	<3	<1	12	54	11
	<0.5	20	<3	<1	11	52	19
CM 095R	<0.5	17	<3	<1	13	58	42
CM 096R	<0.5	24	<3	<1	13	36	62
CM 097R		30	<3	<1	12	50	270
CM 098R	<0.5	22	<3	<1	11	46	42
CM 099R	<0.5		<3	<1	9	54	46
CM 100R	<0.5	18	<3	1	25	19	80
CM 101R	2.0	34		1	12	48	17
CM 102R	<0.5	9	<3	1	16	66	5
CM 103R	<0.5	6	<3			50	64
CM 104R	<0.5	40	<3	3	19 28		92
CM 105R	<0.5	42	<3	<1	28	54	
CM 106R	<0.5	38	<3	<1	22	40	82
CM 107R	<0.5	28	<3	<1	28	60	24
CM 108R	<0.5	44	<3	<1	42	34	9
CM 109R	<0.5	32	<3	<1	22	44	12
CM 110R	<0.5	32	<3	<1	26	35	12
CM 111R	<0.5	34	<3	<1	28	50	13
CM 112R	<0.5	28	<3	<1	18	54	11
CM 113R	<0.5	28	<3	<1	16	55	11
CM 114R	<0.5	24	<3	<1	17	46	13
CM 115R	<0.5	92	<3	<1	72	44	19
CM 116R	<0.5	36	<3	<1	28	50	14
CM 117R	<0.5	35	<3	<1	20	60	15
CM 117R	<0.5	25	<3	<1	19	46	5
CM 119R	<0.5	30	<3	<1	17	76	11
CM 120R	<0.5	24	<3	<1	13	68	7
CM 121R	<0.5	100	<3	<1	94	50	7
	<0.5	62	<3	<1	55	52	6
CM 122R		30	<3	<1	22	40	6
CM 123R	<0.5	24	<3	<1	18	52	6
CM 124R	<0.5	22	<3	<1	14	48	4
CM 125R	<0.5			<1	8	44	3
CM 126R	<0.5	17	<3		7	50	2
CM 127R	<0.5	17	<3	<1	7	44	4
CM 128R	<0.5	17	<3	<1	7	50	8
CM 129R	<0.5	22	<3	<1			2
CM 130R	<0.5	14	<3	<1	8	44	
CM 131R	<0.5	16	<3	<1	9	62	4
CM 132R	<0.5	20	<3	<1	9	64	2
CM 133R	<0.5	11	<3	<1	7	54	4
CM 134R	<0.5	12	<3	<1	7	40	3
CM 135R	<0.5	18	<3	<1	15	44	4
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.5	1	3	1	2	2	1
Scheme	IC2	IC2	IC2	IC2	IC2	IC2	IC2



ANALYTICAL REPORT Job: 1AD3944
O/N: B 5060

Sample	Ag	As	Bi	Cd	Со	Cr	Cu
CM 136R	<0.5	17	<3	<1	12	40	11
CM 137R	<0.5	44	<3	<1	44	60	17
CM 138R	<0.5	14	<3	<1	12	40	5
CM 139R	<0.5	15	<3	<1	12	40	3
CM 140R	<0.5	20	<3	<1	15	40	<1
CM 141R	<0.5	18	<3	1	12	60	7
CM 142R	<0.5	11	<3	<1	8	50	8.
CM 143R	<0.5	16	<3	<1	12	3.2	50
CM 145R	<0.5	14	<3	<1	3	46	24
CM 147R	<0.5	10	<3	<1	2	52	19
CM 149R	<0.5	7	<3	<1	<2	42	20
CM 151R	<0.5	7	<3	<1	3	44	20
CM 153R	<0.5	19	<3	<1	4	40	50
CM 155R	<0.5	20	<3	<1	3	40	22
CM 157R	<0.5	13	<3	<1	<2	38	20
CM 159R	<0.5	10	<3	<1	4	42	16
CM 161R	<0.5	12	<3	<1	2	46	8 5
CM 163R	<0.5	22	<3	<1	<2	48 52	6
CM 165R	<0.5	12	<3	<1	2 2	52 52	7
CM 167R	<0.5	9	<3	<1	<2	38	5
CM 169R	<0.5	9	<3	<1	<2 <2	30	4
CM 171R	<0.5	19	<3	<1	<2	38	5
CM 173R	<0.5	13	<3	<1 <1	<2	38	6
CM 175R	<0.5	10	<3	<1	<2	38	5
CM 177R	<0.5	11	<3 <3	<1	<2	24	4
CM 179R	<0.5	12	<3	<1	2	28	4
CM 181R	<0.5	18	<3	<1	3	40	6
CM 183R	<0.5	10	<3	<1	2	32	5
CM 185R	<0.5	10 11	<3	<1	2	38	5
CM 187R	<0.5	9	<3	<1	3	40	7
CM 189R	<0.5	9	<3	<1	3	38	6
CM 191R	<0.5	12	6	<1	3	42	8
CM 193R	<0.5 <0.5	10	<3	<1	3	40	6
CM 195R	<0.5	9	<3	<1	3	40	6
CM 197R	<0.5	9	<3	<1	3	42	7
CM 199R	1.0	105	<3	<1	19	15	58
CM 201R	<0.5	6	<3	<1	3	55	40
CM 203R CM 205R	<0.5	10	7	<1	3	56	34
CM 203R	<0.5	28	<3	<1	4	60	7
CM 207R	<0.5	26	<3	<1	4	56	9
CM 209R	<0.5	13	5	<1	3	58	6
CM 211R	<0.5	24	3	<1	3	54	5
	<0.5	10	<3	<1	. 3	42	4
CM 215R CM 217R	<0.5	10	<3	<1	3	56	5
CM 21/R	<b>&lt;0.</b> 5	TO	\3				·
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
$\mathtt{DL}$	0.5	1	3	1	2 TC2	2 TC2	IC2
Scheme	IC2	IC2	IC2	IC2	IC2	IC2	1,02





ANALYTICAL REPORT Job: 1AD3944 O/N: B 5060

Sample	Ag	As	Bi	Cđ	Со	Cr	Cu
CM 219R	<0.5	7	<3	<1	. 3	52	5.
CM 221R	<0.5	11	<3	<1	3	48	4
CM 223R	<0.5	14	<.3	<1	3	40	3
CM 225R	<0.5	14	<3	<1	4	44	4
CM 227R	<0.5	11	<3	<1	5	24	2
CM 229R	<0.5	10	<3	<1	4	48	3
CM 231R	<0.5	8	<3	<1	4	54	14
CM 233R	<0.5	12	<3	<1	4	48	4
CM 235R	<0.5	16	<3	<1	4	50	5
CM 237R	<0.5	15	<3	<1	4	44	3
CM 239R	<0.5	34	<3	<1	5	54	6
CM 241R	<0.5	24	<3	<1	4	48	4
CM 243R	<0.5	7	<3	<1	3	50	5
CM 245R	<0.5	8	<3	<1	3	45	4
CM 247R	<0.5	7	<3	<1	3	45	5
CM 249R	<0.5	ıı	<3	<1	3	44	4
CM 250R	<0.5	30	<3	<1	24	42	12
CM 251R	<0.5	12	<3	<1	4	28	5
CM 252R	<0.5	8	<3	<1	<2	25	6
CM 252R	<0.5	12	<3	<1	<2	30	4
CM 254R	<0.5	11	<3	<1	<2	20	4
CM 254R	<0.5	6	<3	<1	<2	22	3
CM 255R	<0.5	5	<3	<1	<2	32	5
		4	<3	<1	<2	48	5
CM 257R CM 258R		4	<3	<1	<2	30	5
		2	<3	<1	<2	40	4
CM 259R		2	<3	<1	<2	24	5
CM 260R		2	<3	<1	<2	40	5
CM 261R		2	<3	<1	<2	24	5
CM 262R		2	<3	<1	<2	48	6
CM 263R		2	<3	<1	<2	22	9
CM 264R			<3	<1	<2	46	8
CM 265R		2 2	<3	<1	<2	22	6
CM 266R				<1	<2	44	8
CM 267R		18	<3	<1	<2	25	9
CM 268R		10	<3		<2	48	8
CM 269R		7	<3	<1	<2	24	8
CM 270R		7	<3	<1	<2	42	
CM 271F		5	<3	<1		15	: 8. 8
CM 272F		5	<3	<1	<2		
CM 273F		9	<3	<1	<2	32	36
CM 274F		25	<3	<1	7	16	68
CM 275F		24	<3	<1	7	34	36
CM 276F		30	<3	<1	7	17	16
CM 277F	₹ <0.5	24	<3	<1	7	3.4	24
CM 278F	0.5	40	<3	<1	12	18	14
Units			ppm	ppm	ppm	ppm	ppm
DI			3	1	2	2	1
Scheme	iC2	IC2	IC2	IC2	IC2	IC2	IC2



## CLASSIC LABORATORIES

	•				don		
	ANALYTI	CAL REP	ORT		O/N	: B 506	U.
Sample	Ag	As	Bi	Cd	Co	Cr	Cu
CM 279R	0.5	54	<3	<1	12	38	10
CM 280R	0.5	145	<3	<1	30	16	10
CM 281R	<0.5	26	<3	<1	7	<2	10
CM 282R	<0.5	28	5	<1	8	17	19
CM 283R	<0.5	15	8	<1	6	25	16
CM 284R	<0.5	12	<3	<1	4	48	12
CM 285R	<0.5	28	4	<1	10	28	17
CM 286R	<0.5	22	<3	<1	8	42	13
CM 287R	<0.5	14	<3	<1	6	22	13
CM 288R	<0.5	10	<3	<1	6	46	16
CM 289R	<0.5	15	<3	<1	8	74	17
CM 290R	<0.5	13	<3	<1	7	40	16
CM 291R	<0.5	15	<3	<1	7	86	11
CM 292R	<0.5	13	<3	<1	7	42	13
CM 293R	<0.5	7	<3	<1	5	98	12
CM 294R	<0.5	24	<3	<1	9	48	30 12
CM 295R	<0.5	7	<3	<1	5 5	88 70	12
CM 296R	<0.5	6	<3	<1	5 5	76	11
CM 297R	<0.5	6	<3	<1 <1	4	46	12
CM 298R	<0.5	4	<3 <3	<1	5	78	17
CM 299R	<0.5	7 5	<3	<1	4	54	13
CM 300R	<0.5	170	<3	<1	22	94	82
CM 301R CM 302R	<0.5 <0.5	5	<3	<1	4	72	18
CM 302R CM 303R	<0.5	6	<3	<1	4	28	24
CM 303R	<0.5	16	<3	<1	6	65	30
CM 304R	<0.5	9	<3	<1	5	24	25
CM 305R	<0.5	6	<3	<1	5	48	18
CM 307R	<0.5	6	<3	<1	4	25	17
CM 307R	<0.5	3	<3	<1	4	75	24
CM 309R	<0.5	4	<3	<1	4	45	18
CM 310R	<0.5	7	3	<1	3	76	22
CM 311R	<0.5	52	<3	<1	4	44	48
CM 312R	<0.5	8	<3	<1	3,	66	26
CM 313R	<0.5	4	<3	<1	4	18	24
CM 314R	<0.5	8	4	<1	4	30	26
CM 315R	<0.5	6	<3	<1	4	36	24
CM 316R	<0.5	4	<3	<1	4	62	15
CM 317R	<0.5	5	<3	<1	4	45	, 16
CM 318R	<0.5	4	<3	<1	4	58	16
CM 319R	<0.5	13	<3	<1	4	32	24
CM 320R	<0.5	5	<3	<1	4	44	16
CM 321R	<0.5	5	<3	<1	3	30	24
CM 322R	<0.5	4	<3	<1	3	66	35
CM 323R	<0.5	6	<3	<1	5	32	42
Units	ppm	ppm	ppm	ppm	ppm 2	ppm 2	ppm 1
DL	0.5	1	3 TC2	1 IC2	IC2	IC2	IC2
Scheme	IC2	IC2	IC2	102	102		



Scheme

IC2

IC2



O/N: B 5060 ANALYTICAL REPORT Cd CrCu Вi Co Sample Ag As 18 3 56 4 <3 <1 CM 324R <0.5 <0.5 4 <3 <1 3 25 14 CM 325R 9 <3 <1 7 34 10 <0.5 CM 327R <1 5 34 42 42 <3 <0.5 CM 329R 5 34 82 <1 <3 <0.5 92 CM 331R 6 24 84 <3 <1 CM 333R <0.5 22 70 19 <3 <1 4 <0.5 9 CM 335R 3 <3 <1 54 19 CM 337R <0.5 11 5 <3 <1 52 16 <0.5 10 CM 339R 7 <3 <1 4 52 16 CM 341R <0.5 7 4 50 52 <3 <1 CM 343R <0.5 4 58 18 <3 <1 <0.5 8 CM 345R 6 44 55 <3 <1 CM 347R <0.5 26 22 <1 4 48 CM 349R <0.5 8 <3 4 54 20 7 <3 <1 CM 351R <0.5 8 <3 <1 4 40 18 <0.5 CM 353R <3 <1 3 35 18 10 <0.5 CM 355R 8 50 12 <3 <1 19 CM 357R <0.5 4 44 18 <1 <0.5 <3 CM 359R 9 5 100 <1 60 <0.5 8 <3 CM 361R 5 <3 24 9 <1 65 <0.5 CM 363R 5 58 8 <3 <1 22 CM 365R <0.5 <1 4 68 8 5 <3 <0.5 CM 367R 4 7 48 <1 24 <3 CM 369R <0.5 14 5 50 <3 <1 CM 371R <0.5 3.2 4 9 <1 34 CM 373R <0.5 10 <3 12 4 6 <3 <1 46 CM 375R <0.5 4 9 <3 <1 55 <0.5 5 CM 377R 5 30 11 7 <3 <1 <0.5 CM 379R 5 8 <3 <1 75 6 CM 381R <0.5 3 9 <1 68 6 <3 CM 383R <0.5 7 <2 76 0.5 3 <3 <1 CM 385R 6 <3 <1 <2 62 0.5 4 CM 387R 2 64 9 <1 3 <3 CM 389R 0.5 9 3 68 <3 <1 CM 391R 0.5 3 78 8 <2 0.5 3 <3 <1 CM 393R 2 <3 <1 <2 66 9 CM 395R 0.5 <1 2 76 10 2 <3 0.5 CM 397R 58 11 <2 2 <3 <1 CM 399R 0.5 98 80 22 <3 <1 CM 401R <0.5 165 30 14 <2 <3 <1 CM 403R 1.0 4 35 11 3 3 <3 <1 CM 405R 0.5 28 11 <1 4 <3 3 CM 407R 1.0 22 16 <1 12 7 <3 CM 409R <0.5 14 10 26 <3 <1 CM 411R <0.5 13 ppmppm ppm ppm ppm Units ppm ppm 1 2 2 3 1 0.5 1 DL

IC2

IC2

IC2

IC2

IC2



## CLASSIC LABORATORIES

0105

•	Job:	1AD3944
ANALYTICAL REPORT	O/N:	B 5060

Sample	Ag	As	Bi	ca	Co	Cr	Cu
CM 413R	<0.5	18	<3	<1	10	25	10
CM 415R	<0.5	105	<3	<1	11	22	9
CM 417R	<0.5	32	<3	<1	6	50	8
CM 419R	<0.5	36	<3	<1	6	52	9
CM 421R	<0.5	34	<3	<1	6	46	9
CM 423R	<0.5	3.0	<3	<1	6	62	9
CM 425R	<0.5	32	<3	<1	5	48	11
CM 427R	<0.5	30	<3	<1	5	48	9
CM 429R	<0.5	25	<3	<1	5	40	9
CM 431R	<0.5	25	<3	<1	5	72	10
CM 433R	<0.5	90	<3	<1	26	88	18
CM 435R	<0.5	28	<3	<1	13	54	16
CM 437R	<0.5	28	<3	<1	8	56	11
CM 439R	<0.5	19	<3	<1	5	52	8
CM 441R	<0.5	28	<3	<1	6	48	7
CM 443R	0.5	100	<3	<1	18	13	55
CM 445R	1.5	32	<3	1	24	14	75
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.5	1	3	1	2	2	1
Scheme	IC2	IC2	IC2	IC2	IC2	IC2	IC2



ANALYTICAL REPORT

Job: 1AD3944
O/N: B 5060

Sample	Fe	Mn	Мо	Ni	Pb	P	Sb
CM 001R	1.17	210	1	2	55	95	<5
CM 002R	1.08	30	3	2	52	90	<5
CM 003R	1.30	80	2	3	76	125	<5
CM 004R	9.05	370	13	14	460	660	<b>&lt;</b> 5
CM 005R	8.60	330 .	10	12	370	510	<b>&lt;</b> 5
CM 006R	4.24	110	6	6	200	280	<b>&lt;</b> 5
CM 007R	1.49	95	2	3	88 53	120 90	<5 <5
CM 008R	1.00	55 105	1	2 7	52 185	250	<5
CM 009R	4.78	135	5 5	8	155	250	<b>&lt;</b> 5
CM 010R	4.88	135	2	4	48	110	<b>&lt;</b> 5
CM 011R	1.48	110 260	3	6	76	180	<b>&lt;</b> 5
CM 012R	2.54 4.44	100	6	7	94	270	<5
CM 013R CM 014R	3.30	60	6	6	66	175	<5
CM 014R CM 015R	4.36	60	6	8	90	195	<5
CM 015R	5.05	130	6	10	82	185	<5
CM 010R	0.85	70	4	7	28	75	<5
CM 017R	1.26	180	3	8	32	55	<5
CM 019R	1.12	145	4	9	48	50	<5
CM 020R	1.40	220	5	12	22	60	<5
CM 021R	1.17	110	9	12	22	35	<5
CM 022R	1.00	105	4	9	7	35	<5
CM 023R	1.44	145	4	16	17	30	<5
CM 024R	0.88	85	3	9	8.	30	<b>&lt;</b> 5
CM 025R	1.09	110	4	12	10	30 45	<5 <5
CM 026R	0.68	70	4	7	6	45 45	<5 <5
CM 027R	0.38	30	5 2	5	9 6	80	<5
CM 028R	2.44	170	3	6 11	25	30	<5
CM 029R	1.08	100 260	3	7	8	45	<b>&lt;</b> 5
CM 030R CM 031R	1.07 2.48	710	8	18	72	45	<5
CM 031R CM 032R	1.15	110	10	25	250	60	<5
CM 032R	3.00	530	6	24	60	40	<5
CM 033R	6.90	1.05%	7	40	70	195	<5
CM 034R	2.64	3450	3	10	15	280	<5
CM 036R	2.32	2500	3	13	24	630	<5
CM 037R	1.83	1140	3	13	14	165	<5
CM 038R	1.64	970	3	11	5	120	<5
CM 039R	1.65	780	3	11	3	220	<5
CM 040R	1.98	1300	3	12	5	125	<5
CM 041R	1.79	1940	12	11	<3	240	<5
CM 042R	1.75	960	4	16	7	140	<5
CM 043R	2.14	1420	6	20	22	220	<5
CM 044R	1.69	1400	3	14	13	250	<5
CM 045R	1.69	320	4	14	250	180	<5
Units	%	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.01	5	1	1	3. TC2	5 TC2	5 IC2
Scheme	IC2	IC2	IC2	IC2	IC2	IC2	102
Upper Scheme		IC2					



## CLASSIC LABORATORIES

0107

Job: 1AD3944

	ANALYTIC	AT. REPOR	ьth			1AD3944 B 5060	
	ANALITIC	•					
Sample	Fe	Mn	Мо	Ni	Pb	P	Sb
CM 046R	1.99	600	7	13	10	290	<5
CM 047R	1.02	200	4	14	11	100	<5
CM 048R	0.84	45	7	12	25	40	<5
CM 049R	1.31	180	4	19	22	170	<5
CM 050R	2.36	2050	4	13	94	260	<5
CM 051R	2.54	1100	10	20	140	240	<5
CM 052R	3.16	2550	6	18	1,4	180	<b>&lt;</b> 5
CM 053R	0.69	50	2	5	5	85	<b>&lt;</b> 5
CM 054R	0.52	40	1,	3	4	105	<b>&lt;</b> 5
CM 055R	6.55	210	4	13	<3	330	<5
CM 056R	10.2	250	4	16	<3	530	<b>&lt;</b> 5
CM 057R	0.78	65	2	9	7	40	<b>&lt;</b> 5
CM 058R	1.30	3.5	3	9	8.	40	<b>&lt;</b> 5
CM 059R	4.26	680	3	10	<3	105	<b>&lt;</b> 5
CM 060R	5.90	660	3 3 2 3 2	10	<3	160	<b>&lt;</b> 5
CM 061R	8.25	640	3	12	<3	270	<5
CM 062R	4.20	400		8	<3	140	<5 <5
CM 063R	5.45	180	<1	9	<3	160	<5 <5
CM 064R	6.90	580	<1	12	<3	250 950	<5
CM 065R	19.8	1000	1	38	<3	130	<5
CM 066R	3.60	230	<1	7	<3	240	<5
CM 067R	7.75	230	<1	13	<3 <3	600	<5
CM 068R	11.8	340	<1	19	<3	300	<b>&lt;</b> 5
CM 069R	8.95	250	<1	12	<3	420	<b>&lt;</b> 5
CM 070R	10.2	270	<1	16 12	<3	250	<b>&lt;</b> 5
CM 071R	6.70	350	<1	12 15	<3	310	<b>&lt;</b> 5
CM 072R	10.1	550	<1	10	<3	200	<b>&lt;</b> 5
CM 073R	6.50	400	<1 <1	8	<3	140	<b>&lt;</b> 5
CM 074R	3.98	350	<1	7	<3	80	<5
CM 075R	3.38	470	<1	9	<3	5.0	<5
CM 076R	3.26	640	<1	11	<3	80	<5
CM 077R	5.00	630	<1	22	<3	135	<5
CM 078R	8.75	860	<1	24	<3	95	<5
CM 079R	7.95	820 830	<1	20	<3	105	<5
CM 080R	6.75	1250	<1	28	<3	90	<5
CM 081R	10.5	1360	<1	28	<3	90	<5
CM 082R	10.9	1900	<1	40	<3	530	<5
CM 083R	14.9	2300	<1	40	<3	580	<5
CM 084R	13.8 11.0	1400	<1	28	<3	195	<5
CM 085R		2400	<1	35	<3	240	<5
CM 086R	14.9	5200	<1	30	<3	600	<5
CM 087R	12.7	3150	<1	34	<3	610	<5
CM 088R	12.4		<1	30	<3	600	<5
CM 089R	13.2	5500 8400	<1	30	<3	510	<5
CM 090R	14.1	8400		30	7.5	0.10	
Units	%	ppm	ppm	ppm 1	ppm 3	ppm 5	ppm 5
DL	0.01	5 IC2	1 IC2	IC2	IC2	IC2	IC2
Scheme	IC2	102	102				
Upper Scheme	IC2						



ANALYTICAL REPORT Job: 1AD3944
O/N: B 5060

Sample	Fe	Mn	Мо	Ni	Pb	P	Sb
CM 091R	9.85	2350	<1	22	<3	520	<5
CM 092R	12.5	4050	<1	28	<3	520	<5
CM 093R	11.6	2900	<1	26	<3	420	<5
CM 094R	11.0	2550	<1	28	<3	210	<5
CM 095R	11.4	2750	<1	28	<3	380	<5
CM 096R	12.7	3700	<1	3.0	<3	430	<5
CM 097R	12.5	4350	<1	30	<3	530	<5
CM 098R	9.60	2950	<1	25	<3	480	<5
CM 099R	9.25	2800	<1	30	<3	570	<5
CM 100R	8.20	3050	<1	25	<3	630	<5
CM 101R	4.00	3150	3	34	165	720	<5
CM 102R	7.40	2750	<1	28	4	750	<5
CM 103R	10.9	4500	<1	40	<3	700	<5
CM 104R	9.65	3700	<1	34	6.	710	<5
CM 105R	9.00	2350	<1	38	<3	730	<5
CM 106R	8.20	2600	<1	28	3	680	<5
CM 107R	15.0	1.20%	<1	40	<3	570	<5
CM 108R	13.3	1.26%	<1	42	<3	610	<b>&lt;</b> 5
CM 109R	11.0	9900	<1	30	<3	620	<b>&lt;</b> 5
CM 110R	11.2	9000	<1	32	<3	530	<b>&lt;</b> 5
CM 111R	11.7	9900	<1	35	<3	570	<5 45
CM 112R	12.0	1.21%	<1	28	<3	590	<b>&lt;</b> 5
CM 113R	11.9	1.00%	2	28	<3	580	<5 <5
CM 114R	12.2	7400	1	28	<3	640	< <u>5</u>
CM 115R	16.2	7700	1	52	<3	850	<5
CM 116R	14.2	7100	2	32	5	570	<5.
CM 117R	11.4	5300	1	26	<3	620	<5
CM 118R	10.7	5000	<1	22	<3	630	<5 <5
CM 119R	11.6	5400	<1	24	<3	740	<5
CM 120R	9.05	4250	<1	24	<3	680	
CM 121R	10.8	4800	<1	54	<3	850 740	<5.
CM 122R	8.70	4450	<1	40	<3	740 540	<5 <5
CM 123R	8.15	8000	<1	25	<3	540	<5 <5
CM 124R	9.50	8300	<1	26	<3	470 550	<5 <5
CM 125R	10.5	5900	<1	22	<3	550 530	<5 <5
CM 126R	10.4	7900	<1	17	<3	530 560	<5 <5
CM 127R	10.5	4600	<1	20	<3	560	<5
CM 128R	8.45	9900	<1	17	<3	520	<5
CM 129R	8.20	3650	<1	19	<3	580	<5
CM 130R	9.35	7400	<1	18	<3	550 550	<5
CM 131R	9.30	5200	<1	22	<3	550	<b>&lt;</b> 5
CM 132R	11.1	3250	<1	30	<3	830	
CM 133R	9.25	1.10%	<1	18	<3	600	<5
CM 134R	8.55	7100	<1	17	<3	490	<5
CM 135R	9.70	9800	<1	22	<3	520	<5
Units	8	ppm	ppm	ppm	ppm	ppm	ppm 5
DL	0.01	5	1	1	3 IC2	5 IC2	IC2
Scheme	IC2	IC2	IC2	IC2	102	102	102
Upper Scheme	IC2	IC2					





Job: 1AD3944
ANALYTICAL REPORT O/N: B 5060

					•		
Sample	Fe	Mn	Мо	Ni	Pb	P	Sb
CM 136R	9.40	3850	<1	19	<3	530	<5
CM 137R	11.3	1.61%	<1	38	5	630	<5
CM 138R	9.45	1.18%	<1	20	5	520	<5
CM 139R	14.6	1.05%	<1	25	<3	480	<5
CM 140R	17.9	8600	<1	28	<3	490	<5
CM 141R	8.35	5200	<1	24	<3	480	<5
CM 142R	5.90	4100	<1	17	<3	450	<5
CM 143R	2.74	290	<1	15	14	690	<5
CM 145R	2.20	180	2	8	9	240	<5
CM 143R	2.04	140	2	8	10	230	<5
CM 149R	2.28	80	2	7	10	195	<5
CM 151R	2.08	90	2	7	10	125	<5
CM 151R	3.76	190	2	7	10	190	<5
CM 155R	2.76	160	2	7	9	220	<5
CM 157R	2.70	80	2	6	8.	200	<5
CM 157R	3.38	1040	2	8	-7	160	<5
CM 161R	2.80	250	2	8	7	230	<5
CM 161R	2.22	80	2	7	8	220	<5
CM 165R	2.86	250	2	9	7	110	<5
CM 163R	3.62	310	3	9	10	250	<5
CM 167R	3.38	340	2	8	10	220	<5
CM 171R	3.16	230	ī	7	8	240	<5
CM 171R CM 173R	3.16	190	2	8	7	310	<5
CM 175R	2.98	210	2	8	7	360	<5
CM 175R	3.26	210	2	8	7	125	<5
CM 177R	1.66	165	<1	5	7	75	<5
CM 181R	2.82	190	1	7	9	165	<5
CM 183R	3.04	195	2	10	6	360	<5
CM 185R	2.12	180	ī	7	7	270	<5
CM 187R	2.72	220	ī	8	6	40	<5
CM 189R	2.68	135	2	9	6	105	<5
CM 189R	2.96	155	2	9	7	110	<5
CM 191R CM 193R	2.64	220	2	10	10	120	<5
CM 195R	2.80	175	2	9	6	95	<5
CM 195R CM 197R	2.90	200	2	9	7	85	<5
CM 197R CM 199R	3.16	200	2	10	9	115	<5
CM 199R CM 201R	4.50	1660	6	25	80	1640	<5
CM 201R CM 203R	2.24	220	4	8	6	290	<5
CM 205R CM 205R	1.82	520	7	7	8	360	<5
CM 203R CM 207R	2.88	155	4	8	7	270	<5
CM 207R CM 209R	2.86	740	4	8	8	330	<5
		510	4	8	8	240	<5
CM 211R	2.08	530	6	9	8	290	<5
CM 213R	2.66		2	· 7	8	280	<5
CM 215R	2.82	310	3	7	9	260	<5
CM 217R	2.84	420	· 3	,	<i>9</i>	200	~~
Units	%	ppm	ppm	ppm 1	ppm 3	ppm 5	ppm 5
DL	0.01	5 TC2	1 IC2	IC2	IC2		IC2
Scheme	IC2	IC2	102	104	102	102	
Upper Scheme	IC2	IC2					



ANALYTICAL REPORT



0110

Job: 1AD3944 O/N: B 5060

	WINTTTT	.02111 1011	<b>021</b>			•	
Sample	Fe	Mn	Мо	Ni	Pb	P	Sb
CM 219R	2.62	730	3	7	6	260	<5
CM 221R	2.26	350	.3	7	6	250	<5
CM 223R	2.76	670	2	6	9	280	<5
CM 225R	2.80	410	3	6	9	280	<5
CM 227R	2.86	115	<1	8	14	610	<5
CM 229R	2.78	360	3	8	6	340	<5
CM 231R	2.42	530	3 3	9	6	250	<5
CM 233R	3.16	430	3	8	5	370	<5
CM 235R	2.94	370	3	8	5	350	<5
CM 237R	3.50	310	3	8	7	360	<5
CM 239R	3.74	270	3	8	9	370	<5
CM 241R	3.52	340	3	7	8	350	<5
CM 243R	2.88	340	3	7	6	340	<b>&lt;</b> 5
CM 245R	3.22	430	3	7	7	450	<b>&lt;</b> 5
CM 247R	3.04	630	3	6	6	330	<b>&lt;</b> 5
CM 249R	3.36	410	3	6	6	400	<b>&lt;</b> 5
CM 250R	3.94	460	1	32	12	165	<5
CM 251R	0.81	270	2	6	20	165	<5
CM 252R	0.51	125	<1	4	16	145	<5
CM 253R	0.59	110	2	3	16	160	<5 <5
CM 254R	0.57	70	1	4	20	170	<5 <5
CM 255R	0.45	55	1	2	19	175 195	<5
CM 256R	0.61	90	1	5	28	170	<5
CM 257R	0.48	75	3	3 4	24 26	270	<5
CM 258R	0.47	75 70	1 2	3	30	195	<b>&lt;</b> 5
CM 259R	0.36	70	<1	4	32	210	<b>&lt;</b> 5
CM 260R	0.48	130 80	2	3	26	210	<5
CM 261R	0.31	60	<1	4	24	195	<5
CM 262R	0.35	85	3	4	19	165	<5
CM 263R	0.38 0.37	60	3	4	28	185	<5
CM 264R	0.31	60	5	3	24	180	<5
CM 265R	0.32	55	2	3	24	170	<5
CM 266R CM 267R	0.40	60	5	4	30	190	<5
	0.37	40	5	4	30	195	<5
CM 268R CM 269R	0.30	50	8	3	30	210	<5
CM 209R CM 270R	0.43	95	6	4	32	220	<5
CM 271R	0.43	75 75	10	4	32	210	<5
CM 271R	0.34	60	7	3	28	210	<5
CM 272R	0.41	85	7	3	30	220	<5
CM 274R	0.65	85	9	7	30	250	<5
CM 274R	0.55	45	10	6	26	250	<5
CM 275R	0.52	50	9	5	25	220	<5
CM 277R	0.60	80	8	5	24	220	<5
CM 277R	0.84	65	7	9	18	200	<5
			-				***
Units	%	ppm	ppm	ppm	ppm	ppm	ppm
$\mathtt{DL}$	0.01	5	1	1	3 IC2	5 IC2	5 IC2
Scheme	IC2	IC2	IC2	IC2	102	102	102

Job: 1AD3944



O/N: B 5060 ANALYTICAL REPORT Pb P Sb Mo Ni Sample Fe Mn 9 8 24 220 <5 45 0.76 CM 279R 9 19 34 270 <5 70 CM 280R 1.48 4 13 100 <5 6 0.76 65 CM 281R <5 7 95 5 14 70 CM 282R 0.89 <5 125 4 8 16 CM 283R 0.87 70 6 11 95 <5 0.70 65 5 CM 284R 12 <5 6 17 160 85 1.23 CM 285R 9 15 170 <5 5 95 CM 286R 1.12 6 190 <5 17 3 110 CM 287R 1.06 220 <5 10 17 6 1.71 185 CM 288R 9 240 <5 8 20 CM 289R 270 2.66 9 16 210 <5 2.36 6 CM 290R 240 420 9 10 13 200 <5 3.32 CM 291R 5 8 13 185 <5 3.08 400 CM 292R 8 13 180 <5 11 390 2.78 CM 293R 145 <5 9 11 4 320 CM 294R 3.80 8 18 320 <5 8 CM 295R 3.60 460 <5 22 310 12 3.34 510 8 CM 296R 22 <5 270 3.58 480 9 9 CM 297R 9 5 16 490 <5 620 CM 298R 4.26 9 24 260 <5 430 10 3.90 CM 299R 3.80 <5 12 26 7 560 CM 300R 3.64 <5 1000 1 38 30 10.5 165 CM 301R 8 2 5 400 <5 9 30 CM 302R 4.12 530 6 330 <5 CM 303R 480 13 4.26 8 <5 3.58 18 140 380 CM 304R 3 6 13 120 <5 290 3.44 CM 305R 8 6 <5 11 145 290 3.58 CM 306R <5 6 140 2 8 CM 307R 3.42 340 <5 8 10 155 4 4.00 260 CM 308R 9 <5 9 170 280 2 CM 309R 4.18 9 <5 8 125 4 CM 310R 350 3.90 9 14 340 <5 3 450 CM 311R 3.92 <5 9 13 340 6 CM 312R 4.26 380 <5 5 12 350 CM 313R 3.80 350 2 <5 310 2 6 8 300 CM 314R 3.78 <5 2 8 12 470 CM 315R 4.48 390 8 18 540 <5 5 CM 316R 4.36 450 <5 530 6 9 11 CM 317R 4.22 470 <5 7 7 550 4 CM 318R 4.66 350 <5 7 9 520 2 4.34 440 CM 319R <5 7 15 7 600 CM 320R 500 4.34 11 <5 8 630 3 CM 321R 4.02 400 <5 650 5 9 6 CM 322R 4.16 430 <5 7 9 570 CM 323R 340 2 3.78 ppm ppm ppm mag Units ્ર ppm ppm5 3 5 1 5 1 DL 0.01 IC2 IC2 IC2 IC2 IC2 IC2 Scheme IC2 Upper Scheme IC2



0112



Job: 1AD3944 O/N: B 5060 ANALYTICAL REPORT P Sb Mo Ni Pb Sample Fe Mn 7 7 <5 20 480 3.72 320 CM 324R 420 <5 20 4 6 3.78 300 CM 325R 115 <5 11 <3 750 <1 CM 327R 1.54 11 <3 165 <5 CM 329R 4.18 180 2 3 4 280 <5 CM 331R 5.05 250 2 11 5 220 11 185 <5 2.70 CM 333R 7 6 5 4 7 260 <5 100 CM 335R 3.36 9 420 <5 105 3.76 CM 337R 6 5 105 400 <5 4 3.46 CM 339R 6 6 270 <5 110 4 2.84 CM 341R <5 4 7 5 280 115 CM 343R 2.88 5 8 8 5 6 3 6 7 530 <5 110 6 CM 345R 3.48 7 100 4 440 <5 3.72 CM 347R 110 4 6 560 <5 3.00 CM 349R 5 3 4 4 6 6 610 <5 115 3.18 CM 351R 5 4 7 <5 480 3.26 115 CM 353R 6 560 <5 CM 355R 3.92 110 7 <5 <3 410 140 7
7
8
1.
7
14
6
15
6
6
12
5
8
6
13
7
20
6
9
6
6
6 3.48 CM 357R 580 <5 175 CM 359R 3.98 4 570 <5 165 CM 361R 4.08 7 570 <5 4.12 340 CM 363R <5 590 CM 365R 9 4.40 520 <5 9. 560 CM 367R 3.58 800 590 <5 3.68 700 6 CM 369R <5 440 6 510 CM 371R 3.40 6 490 <5 3.42 370 CM 373R 540 <5 440 5 3.98 CM 375R 7 <5 560 680 3.86 CM 377R 4 540 <5 490 CM 379R 3.74 <5 3.0 2 CM 381R 1.45 450 <5 130 160 4 CM 383R 0.96 6 5 195 <5 70 4 CM 385R 0.56 38 <5 3 180 65 CM 387R 0.51 5 5 6 6 5 6 4 <5 3 34 190 CM 389R 90 0.40 28 220 <5 0.56 105 4 CM 391R 4 34 220 <5 135 CM 393R 0.51 48 260 <5 0.32 60 4 CM 395R <5 210 0.51 45 CM 397R 160 4 <5 260 CM 399R 3 44 0.26 40 40 5 5 32 960 165 <1 CM 401R 10.3 <5 82 350 <1 CM 403R 0.44 70 <5 7 32 250 <1 125 CM 405R 0.64 <5 26 230 6 CM 407R 0.94 80 <1 <5 <1 16 22 170 CM 409R 2.60 1150 15 18 200 <5 630 2 CM 411R 2.60 ppm ppmppm ppm Units 웅 ppm ppm 5 1 5 0.01 5 1 DL

IC2

IC2

IC2

IC2

Scheme

Upper Scheme

IC2

IC2

IC2

IC2





ANALYTICAL REPORT Job: 1AD3944
O/N: B 5060

Sample	Fe	Mn	Mo	Ni	Pb	P	Sb
CM 413R	3.30	470	3	11	19	370	<5
CM 415R	2.74	340	4	7	26	270	<5
CM 417R	3.72	430	6	8	25	390	<5
CM 419R	3.58	420	7	9	24	450	<5
CM 421R	3.68	460	6	8	22	540	<5
CM 423R	4.12	510	6	9	22	560	<5
CM 425R	3.78	490	6	8	19	560	<5
CM 427R	3.74	480	6	8	22	480	<5
CM 429R	3.66	490	6	8	22	560	<5
CM 431R	3.36	380	7	9	28	240	<5
CM 431R	2.26	140	9	12	14	140	<5
	3.36	300	7	9	20	290	<5
	3.84	530	6	10	24	560	<5
CM 437R		510	6	8	22	490	<5
CM 439R	3.76	440	5	7	26	500	<5
CM 441R	3.22		5	24	74	1580	<5
CM 443R	4.12	1520		and the second second	160	690	<b>&lt;</b> 5
CM 445R	3.80	2800	5	3.2	TOO	090	<b>\</b> 5
Units	%	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.01	5	1	1	3	5	5
Scheme	IC2	IC2	IC2	IC2	IC2	IC2	IC2

Job: 1AD3944 O/N: B 5060





ANALYTICAL REPORT

Sample	V	Zn
CM 001R CM 002R CM 003R CM 004R CM 005R CM 006R CM 006R CM 007R CM 008R CM 009R CM 010R CM 011R CM 012R CM 013R CM 014R CM 015R CM 018R CM 019R CM 021R CM 021R CM 021R CM 021R CM 025R CM 024R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 027R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 025R CM 027R CM 025R CM 027R CM 025R CM 027R CM 025R CM 027R CM 025R CM 027R CM 025R CM 027R CM 027R CM 027R CM 028R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 027R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031R CM 031	12 11 92 42 18 10 82 22 11 98 86 61 84 11 16 16 16 16 13 13 18 18 18 18 18 18 18 18 18 18 18 18 18	22 24 5 0 4 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DL Scheme	IC2	1 IC2



ANALYTICAL REPORT

Job: 1AD3944 O/N: B 5060

Sample	V	Zn
CM 046R CM 047R CM 048R CM 049R CM 050R CM 051R CM 052R CM 053R CM 055R CM 055R CM 056R CM 057R CM 058R CM 069R CM 061R CM 064R CM 065R CM 066R CM 067R CM 068R CM 069R CM 071R CM 071R CM 072R CM 073R CM 074R CM 075R CM 075R CM 076R CM 077R CM 077R CM 077R CM 077R CM 077R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 078R CM 088R CM 084R CM 084R CM 084R CM 087R CM 088R CM 089R CM 089R CM 090R Units	40 40 15 15 15 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18	42 50 185 185 185 186 186 186 122 113 188 187 187 187 187 187 187 187 187 187
DL Scheme	1 IC2	IC2





Job: 1AD3944 O/N: B 5060



ANALYTICAL REPORT

Sample	v	Zn
CM 091R CM 092R CM 093R CM 094R CM 095R CM 096R CM 097R CM 098R CM 101R CM 101R CM 102R CM 103R CM 104R CM 105R CM 106R CM 107R CM 106R CM 107R CM 107R CM 110R CM 111R CM 112R CM 112R CM 113R CM 114R CM 115R CM 115R CM 115R CM 116R CM 117R CM 117R CM 118R CM 119R CM 119R CM 121R CM 121R CM 122R CM 123R CM 124R CM 124R CM 125R CM 124R CM 126R CM 127R	342 4088 4044 4044 4082 4044 4044 4044 40	62 85 74 78 105 76 80 105 105 105 105 105 105 105 10
CM 126R	28 32 28 34 32 36	80 94 55 60 65
CM 132R CM 133R CM 134R CM 135R	62 28 32 30 ppm	80 52 55 58 ppm
DL Scheme	IC2	IC2



## CLASSIC LABORATORIES

ANALYTICAL REPORT

Sample	V	Zn
CM 136R	30	80
CM 137R	32	65
CM 138R	28	58
CM 139R	32	145
CM 140R	38	190
CM 141R	17	185
CM 142R	11	110
CM 143R	28	78
CM 145R	11	24
CM 147R	9	19
CM 149R	10	19
CM 151R	7	17
CM 153R	9	35
CM 155R	10	24
CM 157R	9 .	16
CM 159R	8	36
CM 161R	8	19
CM 163R	9	14
CM 165R	7	19
CM 167R	10	19
CM 169R	9	16
CM 171R	8	16
CM 173R	7	16
CM 175R	7	14
CM 177R	7	15
CM 179R	7	13
CM 181R	8	18
CM 183R	13	24
CM 185R	7	17
CM 187R	6	16
CM 189R	8	19
CM 191R	7	17
CM 193R	7	24
CM 195R	5	19
CM 197R	6	22
CM 199R	6	24
CM 201R	42	92
CM 203R	9	35
CM 205R	8	22
CM 207R	11	20
CM 209R	10	22
CM 211R	8	24
CM 213R	9	22
CM 215R	8	17
CM 217R	9	19
Units	ppm	ppm
$\mathtt{DL}$	1	1
Scheme	IC2	IC2

Job: 1AD3944

O/N: B 5060

0117



ANALYTICAL REPORT

CM 251R

CM 269R

CM 270R

CM 271R

CM 272R

CM 273R

CM 274R

CM 275R

CM 276R CM 277R

CM 278R

Job: 1AD3944 O/N: B 5060 V Zn Sample CM 219R CM 221R CM 223R CM 225R CM 227R CM 229R CM 231R CM 233R CM 235R CM 237R CM 239R CM 241R CM 243R CM 245R CM 247R CM 249R CM 250R 

5 .



ANALYTICAL REPORT

Job: 1AD3944 O/N: B 5060

Sample	V	Zn
CM 279R CM 280R CM 281R CM 281R CM 282R CM 284R CM 285R CM 286R CM 287R CM 288R CM 290R CM 291R CM 291R CM 292R CM 293R CM 294R CM 295R CM 296R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 297R CM 301R CM 301R CM 301R CM 302R CM 304R CM 305R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 307R CM 311R CM 312R CM 312R CM 312R CM 312R CM 312R CM 312R CM 322R CM 322R CM 322R CM 323R Units	12 10 35 66 88 60 10 13 13 14 15 17 17 18 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	130052205628005520020808000522556008446858526 m2
DL Scheme	IC2	1 IC2

Job: 1AD3944 O/N: B 5060





## ANALYTICAL REPORT

Sample	, <b>v</b>	Zn
CM 324R CM 325R CM 327R CM 329R CM 331R CM 333R CM 335R CM 335R CM 335R CM 347R CM 343R CM 345R CM 345R CM 345R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 365R CM 377R CM 379R CM 379R CM 379R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389R CM 389	18 16 13 28 22 22 22 19 20 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	409504484224408225808056484066187622920889884 pp 1 1 1 2 1 2 9 3 1 3 4 5 pp 1
DL Scheme	IC2	IC2

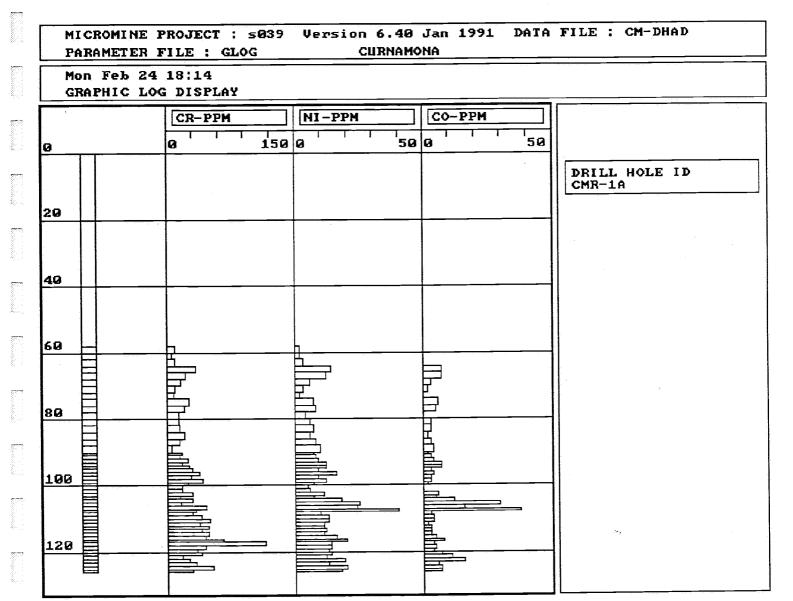


ANALYTICAL REPORT

Job: 1AD3944 O/N: B 5060

Sample	V	Zn
CM 413R	38	115
CM 415R	26	68
CM 417R	36	90
CM 419R	34	82
CM 421R	34	74
CM 423R	40	70
CM 425R	35	60
CM 427R	34	70
CM 429R	34	70
CM 431R	34	88
CM 433R	18	46
CM 435R	34	105
CM 437R	36	105
CM 437R	35	82
CM 441R	32	96
CM 441R	32	86
	32	180
CM 445R	J.2	<b></b>
Units	ppm	ppm
DL	1	1
Scheme	IC2	IC2
DOME		

APPENDIX III


**Drillhole Graphic Logs** 

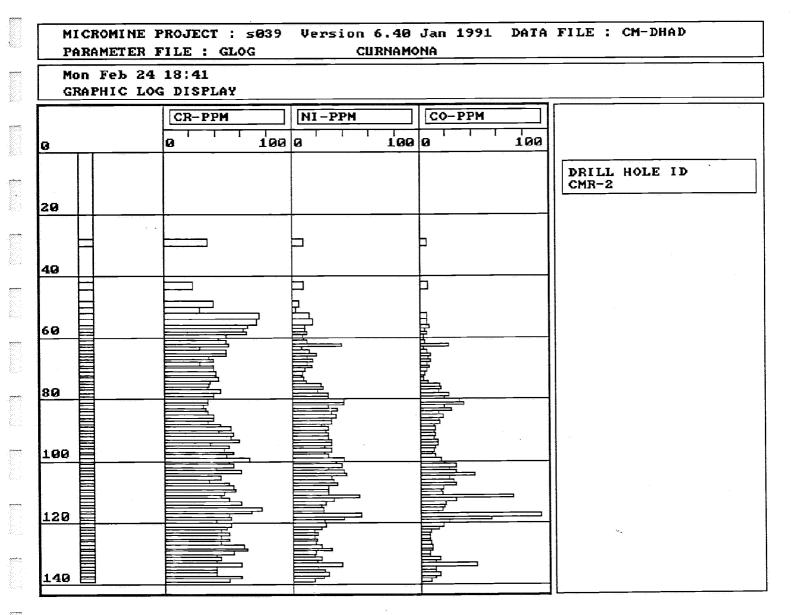
DATA FILE : CM-DHAD MICROMINE PROJECT : s039 Version 6.40 Jan 1991 CURNAMONA PARAMETER FILE : GLOG Mon Feb 24 18:03 GRAPHIC LOG DISPLAY AG-PPM AS-PPM AU-PPM 0.1 300 20 0 0 DRILL HOLE ID CMR-1A 20 40 60 80 100 120

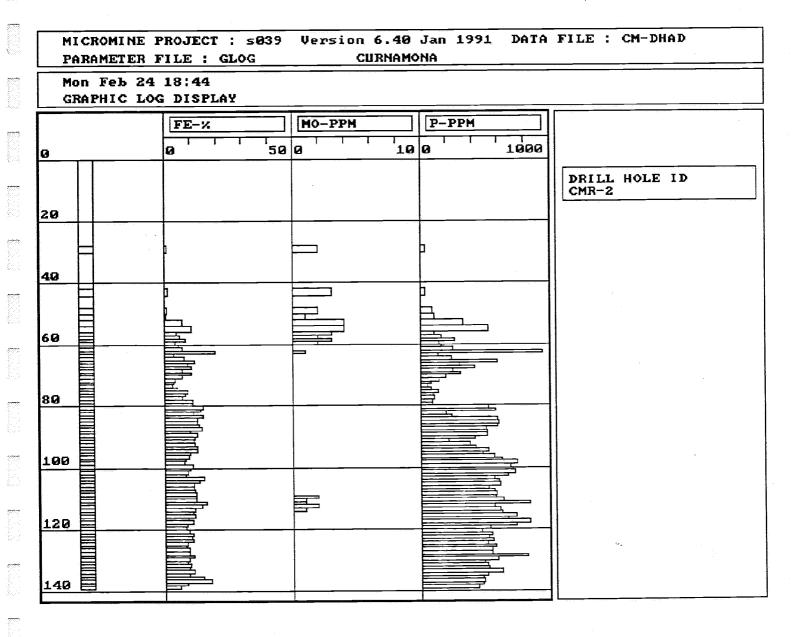
MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 17:57 GRAPHIC LOG DISPLAY ZN-PPM СЦ-РРМ PB-PPM 500 0 500 1500 0 DRILL HOLE ID CMR-1A 20 40 60 80 100

120

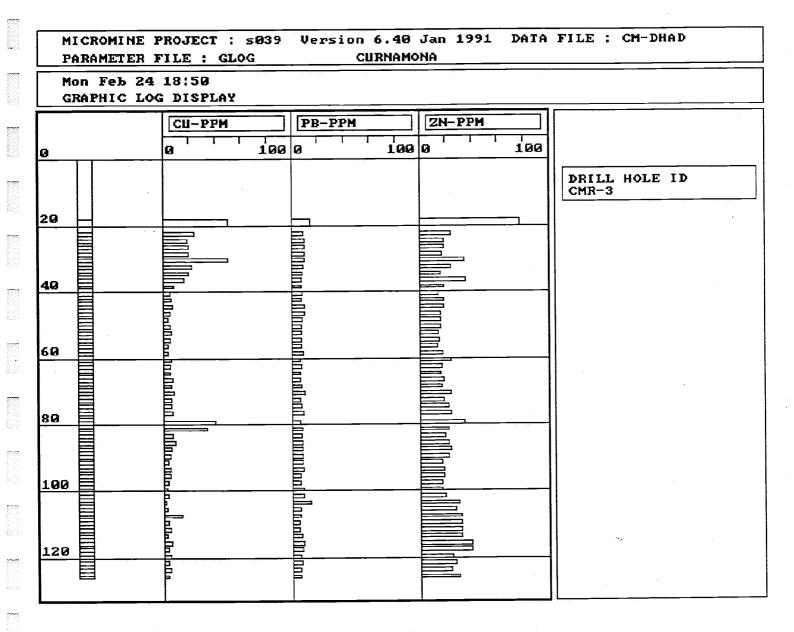
DATA FILE : CM-DHAD Version 6.40 Jan 1991 MICROMINE PROJECT : s039 PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:07 GRAPHIC LOG DISPLAY CD-PPM V-PPM BI-PPM 200 0 400 DRILL HOLE ID CMR-1A 20 40 60 80 100 120




DATA FILE : CM-DHAD Version 6.40 Jan 1991 MICROMINE PROJECT : s039 **CURNAMONA** PARAMETER FILE : GLOG Mon Feb 24 18:17 GRAPHIC LOG DISPLAY P-PPM MO-PPM FE-% 1000 20 0 100 ø DRILL HOLE ID CMR-1A 20 40 60 80 100 120


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:31 GRAPHIC LOG DISPLAY AG-PPM AS-PPM AU-PPM 150 0.10 5 0 DRILL HOLE ID CMR-2 20 40 68 80 100 120

140


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD CURNAMONA PARAMETER FILE : GLOG Mon Feb 24 18:35 GRAPHIC LOG DISPLAY PB-PPM ZN-PPM CU-PPM 100 0 300 0 300 Ø DRILL HOLE ID CMR-2 20  $\Box$ 40 60 80 100 120 140

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:38 GRAPHIC LOG DISPLAY CD-PPM BI-PPM U-PPM 100 5 0 5 0 DRILL HOLE ID CMR-2 20 40 60 80 100 120

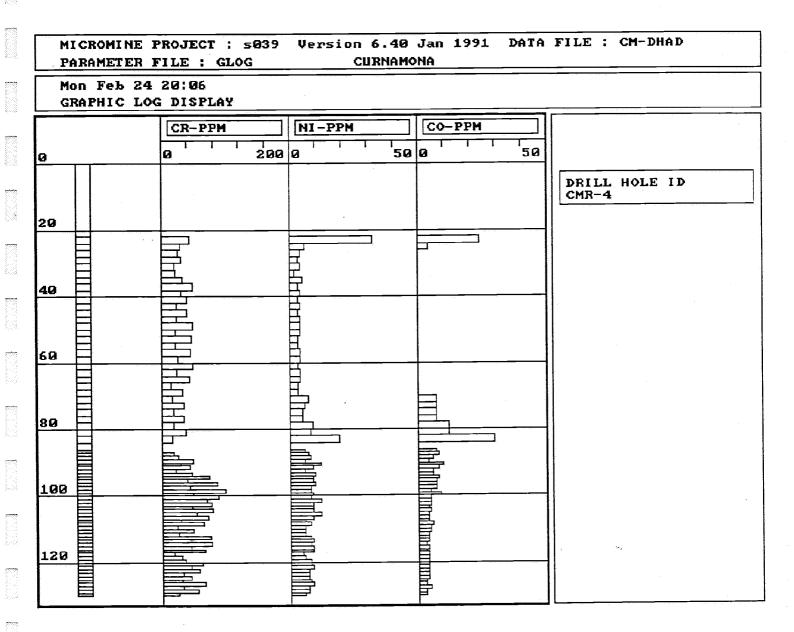




MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:48 GRAPHIC LOG DISPLAY AG-PPM AS-PPM AU-PPM 0.10 50 Ø DRILL HOLE ID CMR-3 20 40 60 80 100 120



MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:53 GRAPHIC LOG DISPLAY V-PPM BI-PPM CD-PPM 50 20 0 0 DRILL HOLE ID CMR-3 20 40 60 80 100 120


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:56 GRAPHIC LOG DISPLAY CO-PPM NI-PPM CR-PPM 50 0 100 0 50 ø DRILL HOLE ID CMR-3 20 40 60 80 100 120

DATA FILE : CM-DHAD MICROMINE PROJECT : 5039 Version 6.40 Jan 1991 PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 18:59 GRAPHIC LOG DISPLAY MO-PPM P-PPM FE-N 100 100 1000 DRILL HOLE ID CMR-3 20 40 60 80 100 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 19:57 GRAPHIC LOG DISPLAY AU-PPM AG-PPM AS-PPM 200 0.1 0 5 0 Ø DRILL HOLE ID CMR-4 20 40 60 80 100 120

DATA FILE : CM-DHAD MICROMINE PROJECT : s039 Version 6.40 Jan 1991 PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:01 GRAPHIC LOG DISPLAY ZN-PPM CU-PPM PB-PPM 300 100 0 100 0 ø DRILL HOLE ID CMR-4 20 40 60 80 100 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD CURNAMONA PARAMETER FILE : GLOG Mon Feb 24 20:04 GRAPHIC LOG DISPLAY BI-PPM CD-PPM U-PPM 100 20 0 5 0 DRILL HOLE ID CMR-4 20 40 60 80 100 120



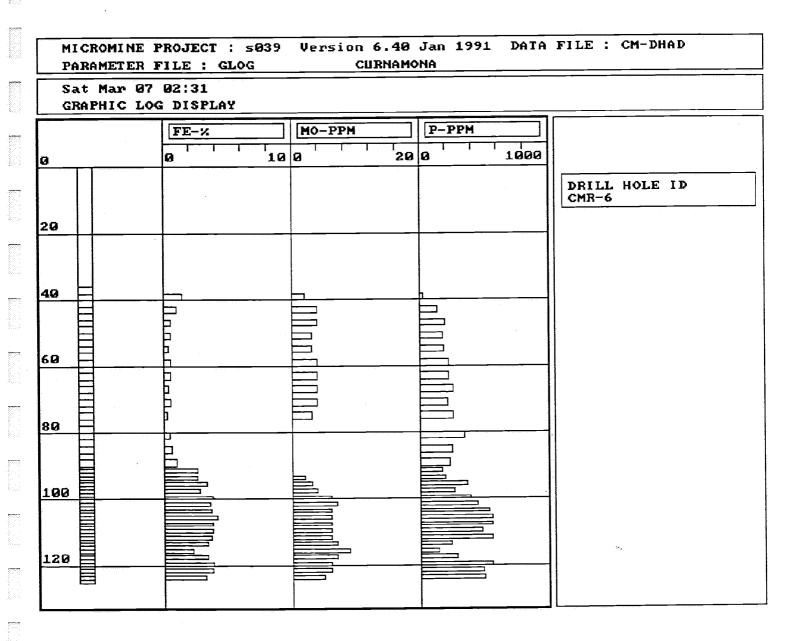
MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 20:09 GRAPHIC LOG DISPLAY P-PPM MO-PPM FE-X 1000 100 20 0 DRILL HOLE ID CMR-4 20 40 60 80 100 120

P	ARA	ROMINE METER Feb 24	FILE :	GLO			n 6.40 Curnamo		1991	DATA	FILE : CM-DHAD
		HIC LO		PLAY		AG-PPM		AS-	PPM	7	
0	1	<del> </del>	0	1 1	0.1		5	0	ı ı	100	
											DRILL HOLE ID CMR-5
20_											
	H										
40											
	E							0.01			
60					<del></del>		<del></del>		-		
									_		so _n
									_		
80		·	<b>–</b>	<del></del>			:	<u> </u>			

	MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA										
	Mon Feb 24 20:14 GRAPHIC LOG DISPLAY										
			СЦ-РРМ		PB-PPM		ZN-PP	М			
0			0	200	8	100	8	100			
									DRILL CMR-5	HOLE I	D
20								· · · · · · · · · · · · · · · · · · ·			
40						_		<b>L</b>			
					0.01.00.00.0						
80										v,	

	MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA							
	Mon Feb 24 20:16 GRAPHIC LOG DISPLAY							
0			BI-PPM 5	<b>CD-PPM 0</b> 5	0 100			
						DRILL HOLE ID CMR-5		
20								
<u></u>								
40		,						
40								
60								
60								
80								

DATA FILE : CM-DHAD MICROMINE PROJECT : s039 Version 6.40 Jan 1991 CURNAMONA PARAMETER FILE : GLOG Mon Feb 24 20:18 GRAPHIC LOG DISPLAY CO-PPM NI-PPM CR-PPM 100 0 100 0 100 Ø DRILL HOLE ID CMR-5 20 40 60 80


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:20 GRAPHIC LOG DISPLAY P-PPM FE-% MO-PPM 100 1000 100 0 DRILL HOLE ID CMR-5 20 40 60 80

	MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA							
	Sat Mar 07 02:14 GRAPHIC LOG DISPLAY							
Ø			AU-PPM 0 0	AG-PPI	10	AS-PPM	150	
								DRILL HOLE ID CMR-6
20								
40						<u></u>		
60			<u> </u>			] ] ]		
00				חחחח				
100							=	
120								. o,
	目	· · · · · · · · · · · · · · · · · · ·						

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Sat Mar 07 02:24 GRAPHIC LOG DISPLAY CU-PPM PB-PPM ZN-PPM 150 100 0 100 0 DRILL HOLE ID CMR-6 20 40 60 80 100 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Sat Mar 07 02:26 GRAPHIC LOG DISPLAY U-PPM CD-PPM BI-PPM 50 1 0 1. ø DRILL HOLE ID CMR-6 20 40 60 88 100 120

DATA FILE : CM-DHAD MICROMINE PROJECT : s039 Version 6.40 Jan 1991 CURNAMONA PARAMETER FILE : GLOG Sat Mar 07 02:29 GRAPHIC LOG DISPLAY CO-PPM NI-PPM CR-PPM 100 0 50 DRILL HOLE ID CMR-6 20 40 60 80 100 120





# **Newcrest Mining Limited**

A.C.N. 005 683 625

Level 2 John Oxley Centre (South) 339 Coronation Drive Milton Queensland 4064
P.O. Box 1367 Milton Queensland 4064
Telephone 07:858 0858 Fax 07:369 7143

4 September 1992

The Director-General Department of Mines & Energy 191 Greenhill Road PARKSIDE SA 5063

Dear Sir,

RE: EXPLORATION LICENCE 1684 CURNAMONA, COMBINED SIXTH & SEVENTH QUARTERLY REPORTS FOR THE PERIOD 31 JANUARY TO 31 JULY 1992

#### **INTRODUCTION**

Newmont Australia Limited made application for an Exploration Licence over 861 sq km north of Olary, SA on 10 July 1990. This application was granted as EL 1684 for a period of one year with a commencement date of 31 October 1990. Subsequently, Newmont Australia Limited merged with BHP Gold Limited and changed names to Newcrest Mining Limited.

Applications submitted during September/October 1991 to extend tenure on the northern half of the tenement while relinquishing the southern half were granted late in 1991. The current tenement status is outlined in Figure 1.

#### **EXPLORATION STATUS**

Scout drill testing of a NE trending linear belt of geophysical anomalies located within the northeastern portion of the tenement (completed in December 1991) intersected elevated base metal, silver, arsenic and bismuth values associated with altered mafic to intermediate volcanics overlying a large, deep-seated (+400m vertical depth) magnetic feature. Drill testing of shallower magnetic features intersected massive, unaltered felsic intrusives with no associated base metal or gold anomalism.

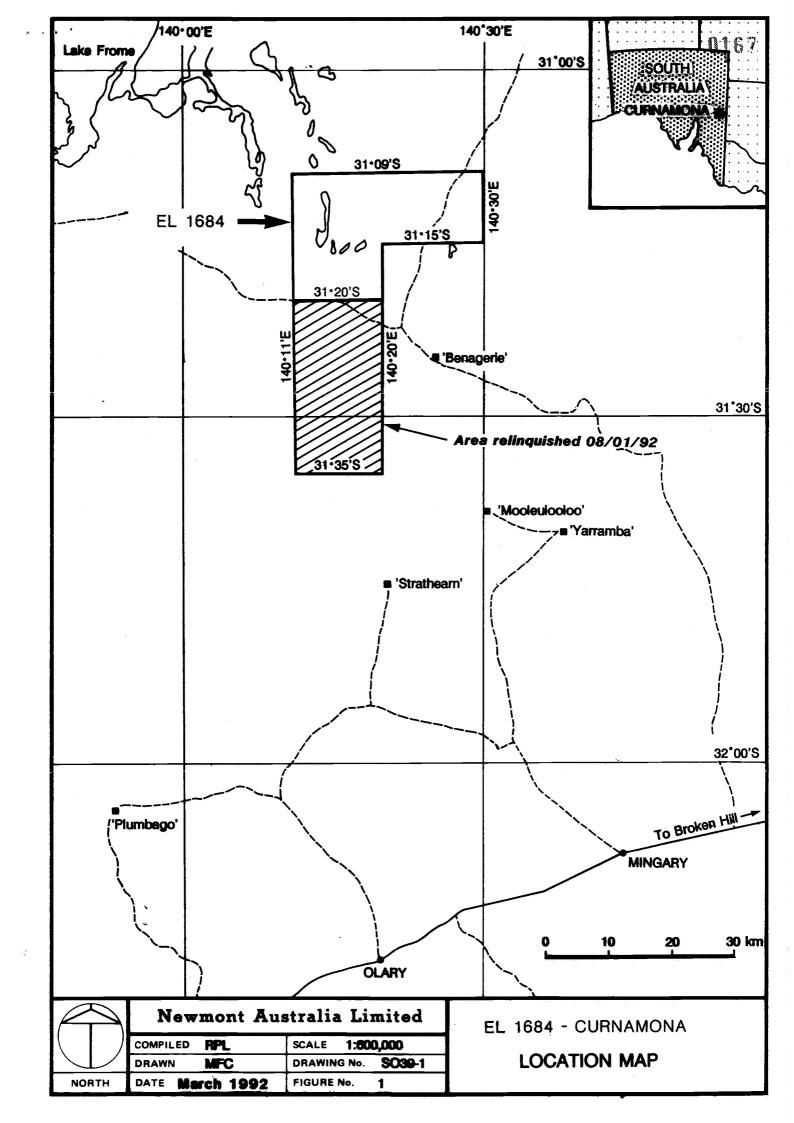
.../2

Drilling commitments elsewhere within South Australia over the period April-May 1992 resulted in no follow-up exploration work being completed on EL 1684.

Results from the 1991 drilling indicate potential for shallowly buried, base metal rich/gold depleted mineralisation, so a decision was made to continue exploration in Joint Venture with an experienced base metal oriented partner. To date, one company has expressed interest in the tenement, but no agreements on further exploration work have been made.

Total expenditure for the period was 31 January to 31 July 1992 was \$7,168, a breakdown of which is given in Table 1.

Table 1.


# **EXPLORATION LICENCE 1684 CURNAMONA**

## Expenditure Statement for the Period 31 January to 31 July 1992

EXPENDITURE TYPE	\$ (Sixth Quart)	\$ (Seventh Quart)
Salaries	3,564	703
Office Rentals & Rates	234	100
Motor Vehicles	53	
Supplies	31	
Exploration Office	1,260	1,096
Field Living	27	
Administration		100
Total	\$5,169	\$1,999

Yours faithfully,

GRANT McEWEN
Senior Geologist



S039-6

# **NEWCREST MINING LIMITED**

Exploration Licence 1684
Curnamona
Final Report for Period to
30 October 1992

Grant D. McEwen BRISBANE

November 1992

### Distribution:

Newcrest Mining Limited, Brisbane (1) Newcrest Mining Limited, Melbourne (1) S.A. Department of Mines and Energy (1)

# TABLE OF CONTENTS

		Page
SUM	MARY	1
1.	INTRODUCTION	2
2.	EXPLORATION COMPLETED	3
	<ul> <li>2.1 Land Tenure</li> <li>2.2 Previous Exploration</li> <li>2.3 Geology</li> <li>2.4 Geophysics</li> <li>2.5 Drilling</li> </ul>	3 3 4 5
3.	CONCLUSIONS	7
4.	EXPENDITURE	8
Figu	res:	Scale
1	Location Map - EL 1684 Curnamona	1:600 000
2	Land Ownership	1:600 000
3	Interpreted Geology	As Shown
4	Grid Location	1:250 000
5	Grid Details	1:50 000
		<i>"</i> , – 110 v 111 ,
Plans		
1	Drillhole Locations (Local Grid)	1:25 000
2	Drillhole Locations (AMG)	1:25 000
Appe	endices:	
Ι	Drillhole Graphic Logs	

#### **SUMMARY**

Exploration Licence 1684 Curnamona was granted to Newmont Australia Limited on 31 October 1991, for a term of one year.

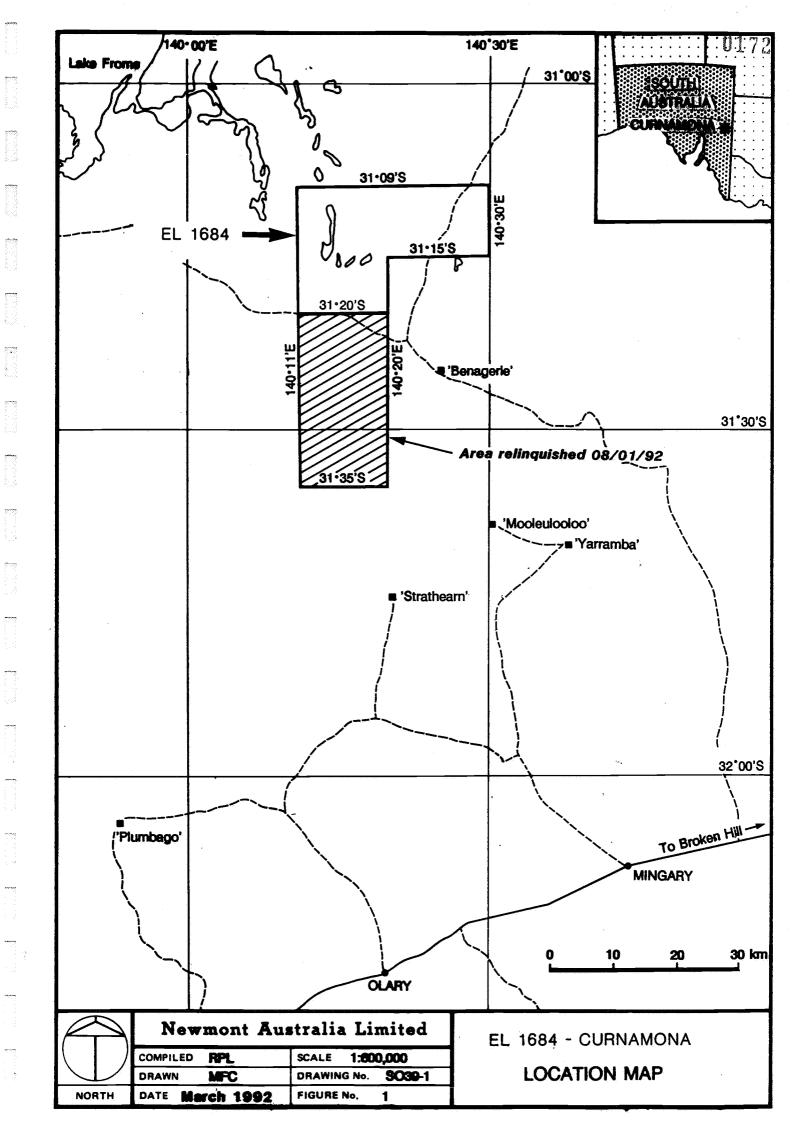
Subsequently, Newmont Australia Limited merged with BHP Gold Mines to form the company Newcrest Mining Limited.

Applications to extend tenure of the northern half of the tenement for a further year and relinquish the southern half of the tenement were submitted in September and October 1991 respectively.

Scout drill testing of geophysical targets located within the northeastern portion of the tenement delineated a linear belt of buried intrusives located within mafic to intermediate volcanics of Proterozoic age. Elevated base metal, silver, arsenic and bismuth values occur within altered volcanics overlying a magnetic feature interpreted as being a deep seated intermediate/felsic intrusive.

No significant gold results were returned from the drilling programme.

The restricted nature of the base metal mineralisation/alteration within the volcanics and discouraging gold results significantly downgraded the prospectivity of this tenement and the tenure was allowed to lapse on 30 October 1992.


# 1. INTRODUCTION

Newmont Australia Limited made application for an Exploration Licence over 861 sq km north of Olary, S.A. on 10 July 1990. This application was granted as EL 1684 for a period of one year with a commencement date of 31 October 1990. Subsequently, Newmont Australia Limited merged with BHP Gold Limited and changed names to Newcrest Mining Limited.

Application for an extension of tenure for a further year to 31 October 1992, along with a request for partial relinquishment were submitted on 17 September and 24 October 1991 respectively. Following Mines Department approval for the partial relinquishment, tenement status stood as shown in Figure 1.

Newcrest's prime exploration target within EL 1684 was base metal-gold mineralisation associated with intrusive rocks. As the prospective Proterozoic basement is completely covered by Phanerozoic rocks, exploration was largely dependent upon geophysical and drilling information, combined with geological-geophysical modelling.

This report summarises all exploration activities completed by Newcrest on EL 1684 during the life of the tenement, from 31 October 1990 to 30 October 1992. Full details of all work programs carried out have been submitted to the S.A. Department of Mines and Energy as Quarterly Reports, numbered 1 through 7.



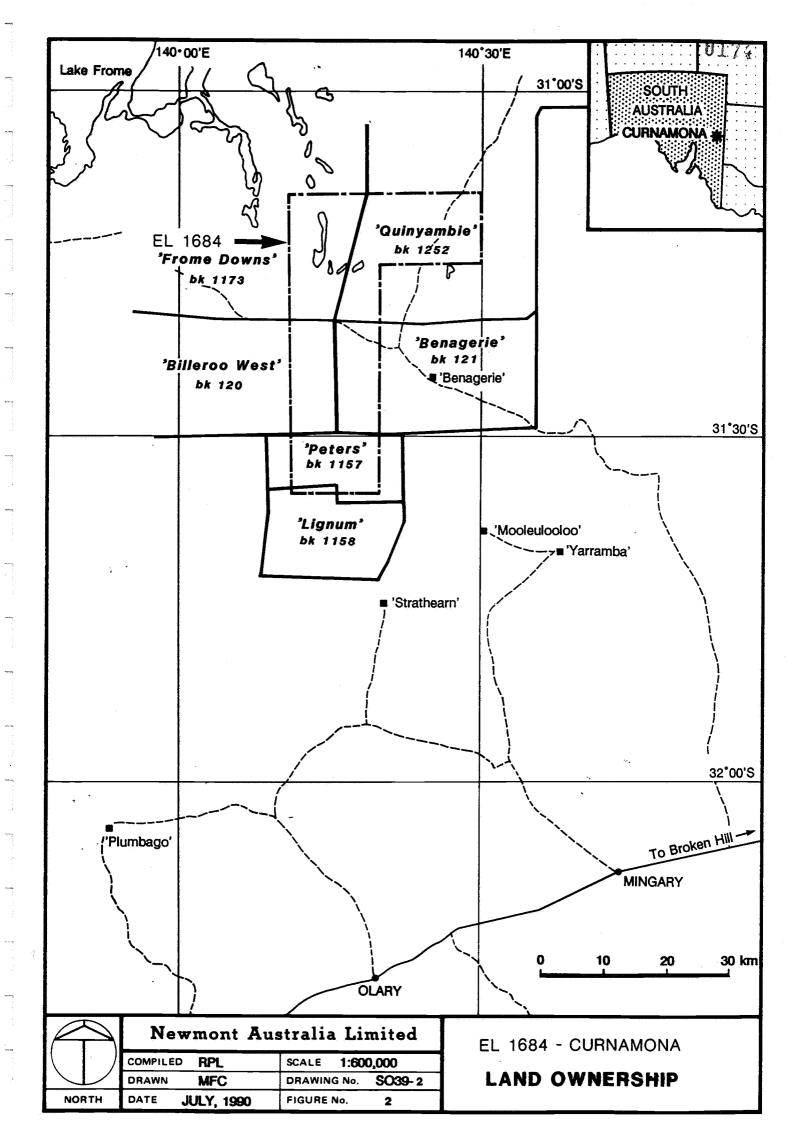
#### 2. EXPLORATION COMPLETED

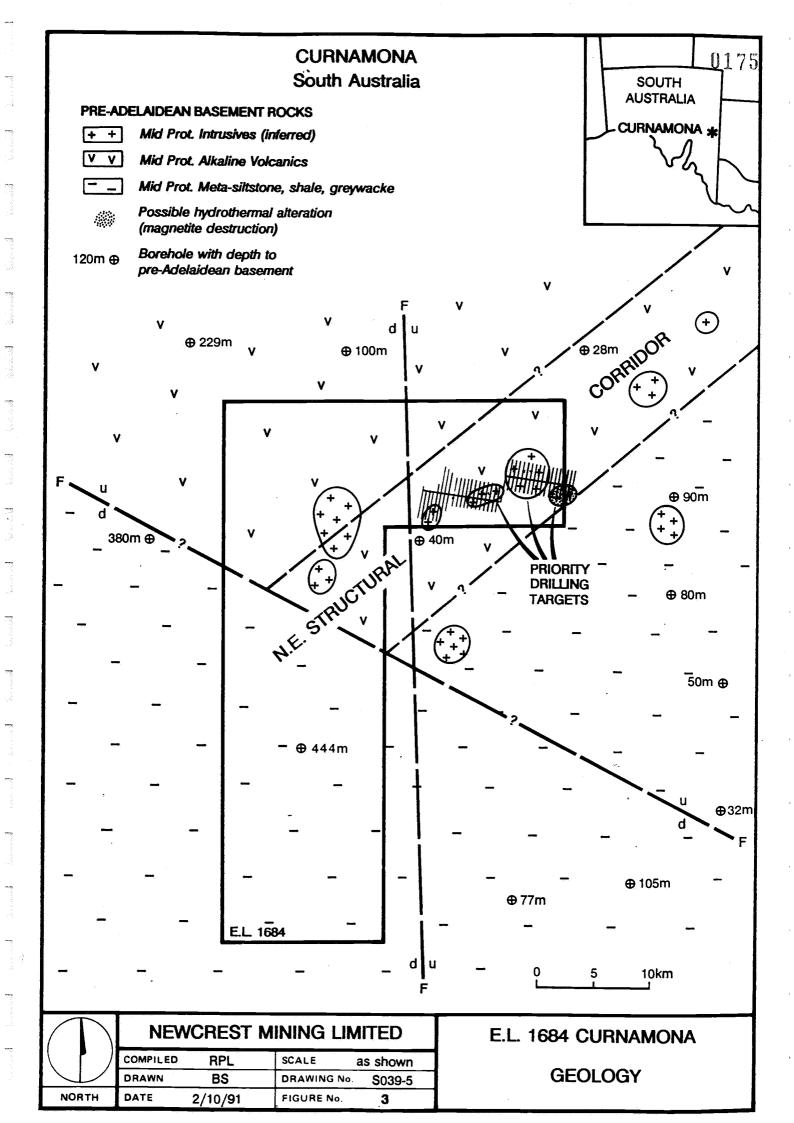
#### 2.1 Land Tenure

Maloney Field Services were contracted by Newcrest (then Newmont Australia Limited) to conduct an ownership search of the properties situated wholly or partly within EL 1684. The boundaries of properties which fall within this category are shown in Figure 2.

# 2.2 Previous Exploration

Examination of S.A.D.M.E. open-file records shows that a significant amount of exploration during the 1970's was directed towards locating sedimentary uranium mineralisation in palaeochannels of the Frome Embayment. Drilling programs conducted in close proximity to EL 1684 were completed by:


Sedimentary Uranium NL (1970-72) Mines Administration (1973) Tricentrol (1973, 1974) Mines Administration/Teton (1975) Marathon Petroleum Aust Ltd (1980-82)


More recent exploration has focussed on the base and precious metal potential of the Middle Proterozoic basement meta-sediments and volcanics. Marathon-Pan Aust-Biliton (1982-88) have returned highly anomalous Zn, (Pb) values from ?meta-evaporitic rocks and Cu-(Mo) mineralisation from breccia zones associated with the 'Benagerie Ridge' located immediately west of EL 1684.

### 2.3 Geology

Compilation of previous drilling data in the vicinity of EL 1684 indicates more shallowly buried Middle Proterozoic basement to occur in the north eastern portion of the tenement. Depth to basement here is interpreted to be in the 50 to 100 m range.

Aeromagnetic survey data (S.A.D.M.E., 1977 and 1978) strongly indicates the presence of a major NE-SW trending tectonic zone which passes through the north eastern portion of the tenement, as well as lesser N-S and NW-SE trending structures. Magnetic features aligned within the main NE-SW trending corridor are believed to represent shallowly buried intrusives, within meta-volcanics and low grade meta-sedimentary sequences of probable Middle Proterozoic age (Figure 3).



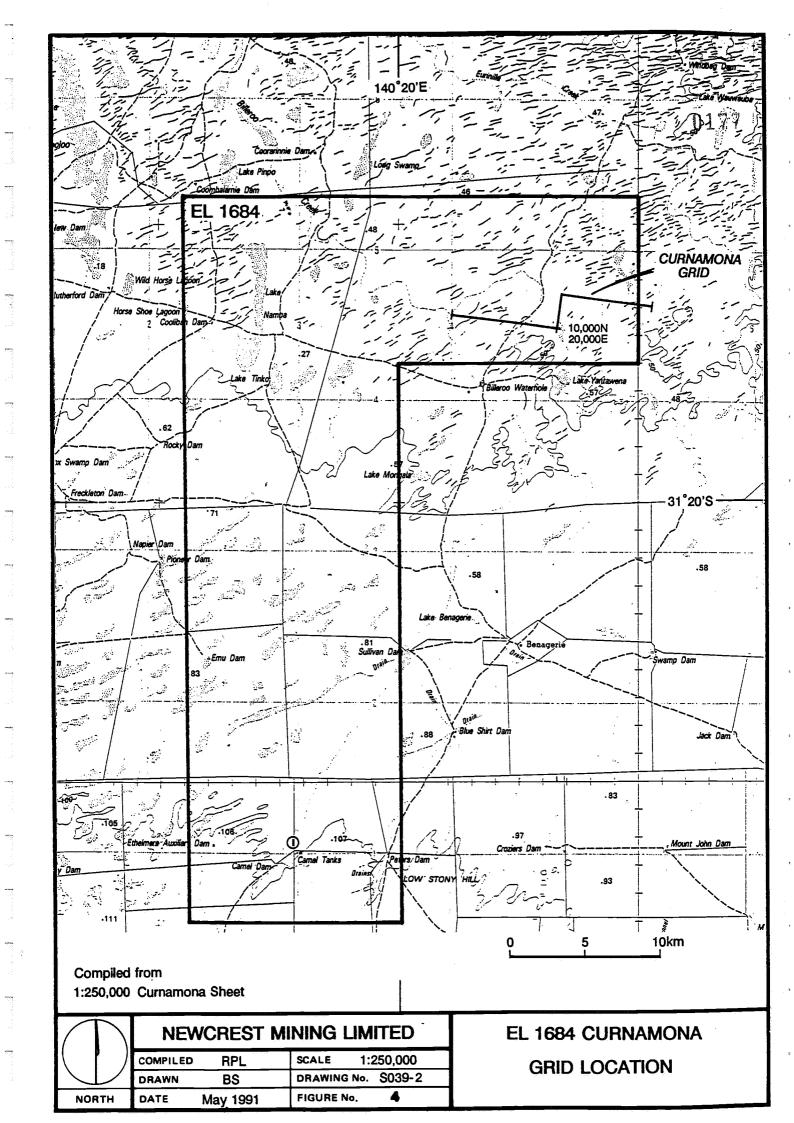


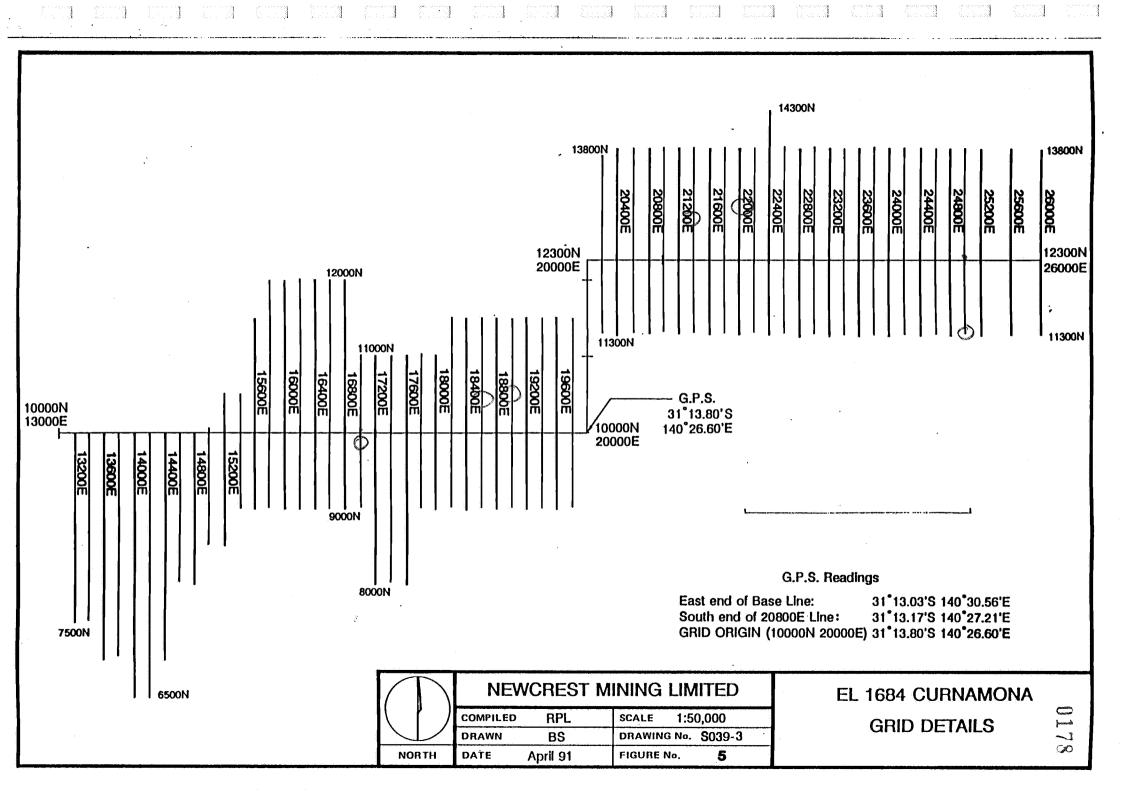
# 2.4 Geophysics

Approximately 100 line kilometres of tape and compass gridding was completed within the north eastern portion of the tenement. The grid covers an area 13 km long in an E-W direction and several kilometres in a N-S direction, over a number of magnetic features within the major NE-SW trending structural corridor (Figures 3 and 4).

Grid pegs were placed at 100 m intervals along 200 m spaced lines. End points of the stepped base line were positioned in latitude and longitude using a Magellan GPS Nav. 1000 Pro unit (Figure 5). This grid was used to provide the main survey control for ground magnetics and gravity survey work.

<u>Ground Magnetics:</u> The grid area was covered by a ground magnetics survey, with readings taken at 10 m intervals along 200 m spaced N-S lines.


Instrumentation utilised were GEM, GSM 19 model, "Overhauser effect" memory magnetometers, with two instruments utilised in a roving configuration and a third for base station control. Contours of magnetic data have been presented in the Third Quarterly Report (1 May to 31 July 1991).


The survey was carried out to accurately define the locations of a series of magnetic "highs" which are aligned along the major NE-SW trending structural corridor. Five significant features were defined from this survey, two of which exhibit strong evidence of possible multiple intrusive events and hydrothermal alteration/magnetite destruction. The linear trend along which these features lie appears to have been offset to the south west by a N-S trending structure, with possible down-faulting of the western block.

<u>Gravity:</u> Gravity readings were collected at 100 m intervals along 200 m spaced N-S lines.

Instrumentation utilised comprised a LaCoste and Romberg "Model G" Land Gravity Meter. Elevation control was achieved using digital barometers manufactured by Newmont Exploration Limited of Denver, Colorado. Local Lands Department bench marks were also used for elevation control. Contours of the gravity data have been presented in the Third Quarterly Report (1 May to 31 July 1991).

Results from the gravity survey outline a consistent gravity gradient from NW to SE, with a prominent "high" located in the south eastern corner of the gridded area. This feature appears coincident with a large magnetic "low", as indicated from the ground magnetics survey.





### 2.5 Drilling

Modelling of magnetic profiles across the five features outlined from the ground survey, indicates depths to the magnetic sources range from 50 to 400 m, as was generally interpreted from previous drilling data within the region.

Based on the results from the geophysical ground surveys, six targets were identified for first-pass scout drill testing. Three holes were planned to test the linear, NE trending series of magnetic features, interpreted as representing intrusive stocks that have been emplaced along a prominent crustal structure. A further two holes were targeted on zones of subdued magnetic response associated with these magnetic "highs" and interpreted as representing areas of hydrothermal alteration and magnetite destruction. A sixth hole was planned to test the coincident magnetic/gravity feature located in the south eastern corner of the grid area.

Drilling was completed by Frank Walsh Drilling, using a modified "Walsh" rig mounted on an 8 x 8 RFW truck. All six holes were completed for a total of seven hundred and fifty four metres (754 m) of Rotary Mud and Reverse Circulation hammer drilling. Drillhole locations are presented on Plan 3 (local grid) and Plan 4 (AMG coordinates).

Rotary Mud samples were collected at 2 m intervals while all Reverse Circulation samples were collected at 1 m intervals.

Four hundred and thirty eight (438) 5 kg samples were analysed for Au (Fire), Ag, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, P, Sb, V and Zn (ICP) by Classic Laboratories, Adelaide. Down-hole graphic logs of selected elements are presented in Appendix I. Sample ledgers and laboratory certificates of analysis have previously been presented in the Fifth Quarterly Report (31 October 1991 to 30 January 1992), as have the drill logs and sections.

All holes passed through a sequence of Quaternary aeolian sand and Tertiary(?) puggy clays before intersecting weathered bedrock. Average depth of this cover sequence was only 39 m for the programme.

Three holes (CMR-1A, 2 and 3) intersected mafic to intermediate volcanics beneath the cover sequence. Numerous narrow adamellite(?) dykes and minor quartz veining occur along brittle fractures within these volcanics, evidence that more substantial intrusive bodies may exist at depth.

Drillhole CMR-1A returned the most significant results for all holes completed, intersecting elevated Ag, As, Cu, Pb, Zn and Bi (to 17.5 ppm, 260 ppm, 1280 ppm, 460 ppm, 450 ppm and 165 ppm respectively). Mineralisation is related to several narrow zones of moderate to strong bleaching and pyritisation within massive basalt/andesite.

Two holes (CMR-4 and 5) intersected white kaolinitic clays overlying massive, fine grained quartz-rich adamellite(?). No evidence of alteration or mineralisation were observed in either hole.

The final hole (CMR-6), targeted on the coincident magnetic/gravity feature, intersected a thick sequence of quartz-rich kaolinitic clays which overly a massive, medium grained intrusive of granodioritic composition.

No significant Au results were returned from this drilling programme.

#### 3. CONCLUSIONS

Drill-testing of geophysical targets within the Newcrest gridded area recorded the following results:

- Depth to Proterozoic basement averaged 39 m, as suggested by the current regional borehole database.
- The north easterly trending belt of magnetic "highs" were found to relate to a series of intermediate/felsic intrusives with adamellite compositions, that have intruded a thick mafic to intermediate volcanic pile.
- Areas of subdued magnetic relief lying adjacent to the margins of magnetic "highs" appear to be the result of deep weathering and clay cover, not the result of hydrothermal alteration.
- The coincident gravity/magnetic feature was found to relate to deep weathering of granodiorite located on the south eastern margin of the major north east trending structural corridor.
- No significant gold anomalism was located from the drilling programme.
- The only significant fresh bedrock anomalous base metal results were returned from hole CMR-1A, which intersected bleached and pyritised mafic/intermediate volcanics overlying the largest magnetic "high" within the Newcrest gridded area.

The lack of evidence from the drilling, of any moderate to large zones of hydrothermal alteration associated with the intrusive units, along with the discouraging gold assay results, has significantly downgraded the exploration potential of this area. Although elevated base metal results were returned from a single drillhole, alteration and mineralisation appeared restricted and was not deemed encouraging enough to pursue. Subsequently, the tenure on EL 1684 was allowed to lapse on 30 October 1992.

# 4. EXPENDITURE

Total expenditure incurred for the whole of life of EL 1684 Curnamona (31 October 1990 to 30 October 1992) was \$189,668, apportioned as shown below:

Expenditure Type	\$
Salaries and Wages	46,085
Employee Overheads	22,259
Assaying	13,000
Drilling	32,356
Geophysics	26,707
Supplies	13,405
Exploration Office	7,781
Rentals and Rates	1,321
Travel and Accommodation	6,473
Vehicles	3,527
Freight	791
Computer	113
Administration	10,565
Field Living	5,285
Total	\$189,668

APPENDIX I

**Drillhole Graphic Logs** 

MICROMINE PROJECT : 5039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:03 GRAPHIC LOG DISPLAY AU-PPM AG-PPM AS-PPM 20 0 0.10 300 ø DRILL HOLE ID CMR-1A 20 40 60 80 8 120

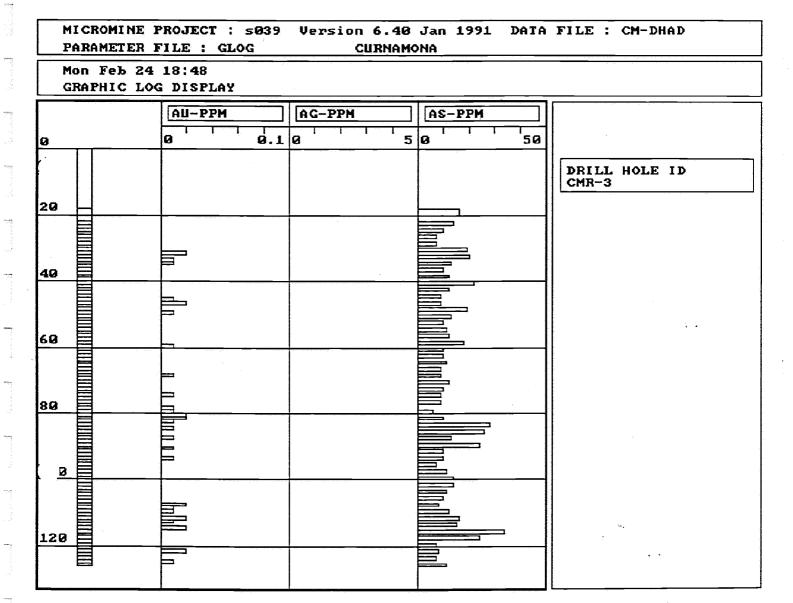
MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 17:57 GRAPHIC LOG DISPLAY PB-PPM CU-PPM ZN-PPM 1500 0 500 0 500 DRILL HOLE ID CMR-1A 20 40 60 80 9 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:07 GRAPHIC LOG DISPLAY CD-PPM BI-PPM U-PPM 400 200 0 5 0 DRILL HOLE ID CMR-1A 20 40 60 80 9 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 18:14 GRAPHIC LOG DISPLAY CR-PPM NI-PPM CO-PPM 150 0 5.0 50 0 0 DRILL HOLE ID CMR-1A 20 40 60 80 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:17 GRAPHIC LOG DISPLAY P-PPM FE-× MO-PPM 1000 100 20 0 DRILL HOLE ID 20 40 60 80 8 120

MICROMINE PROJECT : 5039 Version 6.40 Jan 1991 DATA FILE: CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 18:31 GRAPHIC LOG DISPLAY AG-PPM AS-PPM AU-PPM 150 0.1 5 0 DRILL HOLE ID CMR-2 20 40 60 80 100 120


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 18:35 GRAPHIC LOG DISPLAY PB-PPM ZN-PPM CU-PPM 300 0 100 0 300 DRILL HOLE ID CMR-2 20 40 60 80 100 120


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:38 GRAPHIC LOG DISPLAY BI-PPM CD-PPM U-PPM 100 DRILL HOLE ID CMR-2 20 40 60 80 100 120 140

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:41 GRAPHIC LOG DISPLAY CR-PPM NI-PPM CO-PPM 100 0 100 0 100 DRILL HOLE ID CMR-2 20 40 60 80 100 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 18:44 GRAPHIC LOG DISPLAY FE-% MO-PPM 1000 50 0 10 0 0 DRILL HOLE ID CMR-2 20 40 60 80 100 120

----

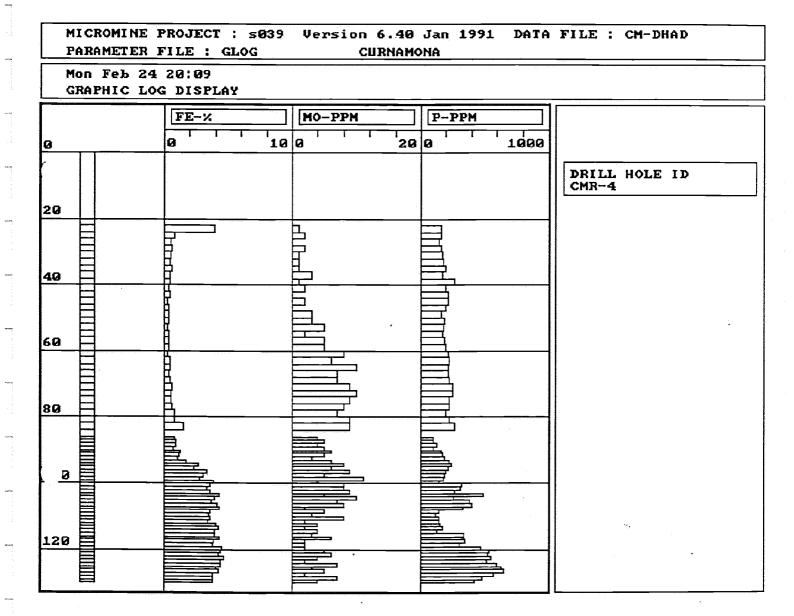




MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:53 GRAPHIC LOG DISPLAY U-PPM CD-PPM BI-PPM 20 0 50 5 0 DRILL HOLE ID CMR-3 20 40 60 80 8

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:56 GRAPHIC LOG DISPLAY CO-PPM CR-PPM 100 0 50 0 50 DRILL HOLE ID CMR-3 20 40 60 80 3 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 18:59 GRAPHIC LOG DISPLAY P-PPM MO-PPM 100 10 0 1000 DRILL HOLE ID CMR-3 20 40 60 88 8 120


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 19:57 GRAPHIC LOG DISPLAY AG-PPM AS-PPM AU-PPM 200 5 0 Ø DRILL HOLE ID CMR-4 20 40 60 80 8 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:01 GRAPHIC LOG DISPLAY CU-PPM PB-PPM ZN-PPM 100 0 300 100 0 Ø DRILL HOLE ID CMR-4 20 40 60 80 128

.

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:04 GRAPHIC LOG DISPLAY BI-PPM CD-PPM U-PPM 100 20 0 5 0 9 DRILL HOLE ID CMR-4 20 40 60 80 8 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 20:06 GRAPHIC LOG DISPLAY NI-PPM CR-PPM CO-PPM 200 0 50 50 DRILL HOLE ID CMR-4 20 40 60 80 0 120



MICROMINE PROJECT: s039 Version 6.40 Jan 1991 DATA FILE: CM-DHAD
PARAMETER FILE: GLOG CURNAMONA

Mon Feb 24 20:12
GRAPHIC LOG DISPLAY

AU-FPM AC-PPM AS-PPM

0 0.1 0 5 0 100

DRILL HOLE ID

CMR-5

MICROMINE PROJECT : 5039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:14 GRAPHIC LOG DISPLAY PB-PPM ZN-PPM CU-PPM 100 200 0 100 0 DRILL HOLE ID CMR-5 20 40 80

----

.....

***

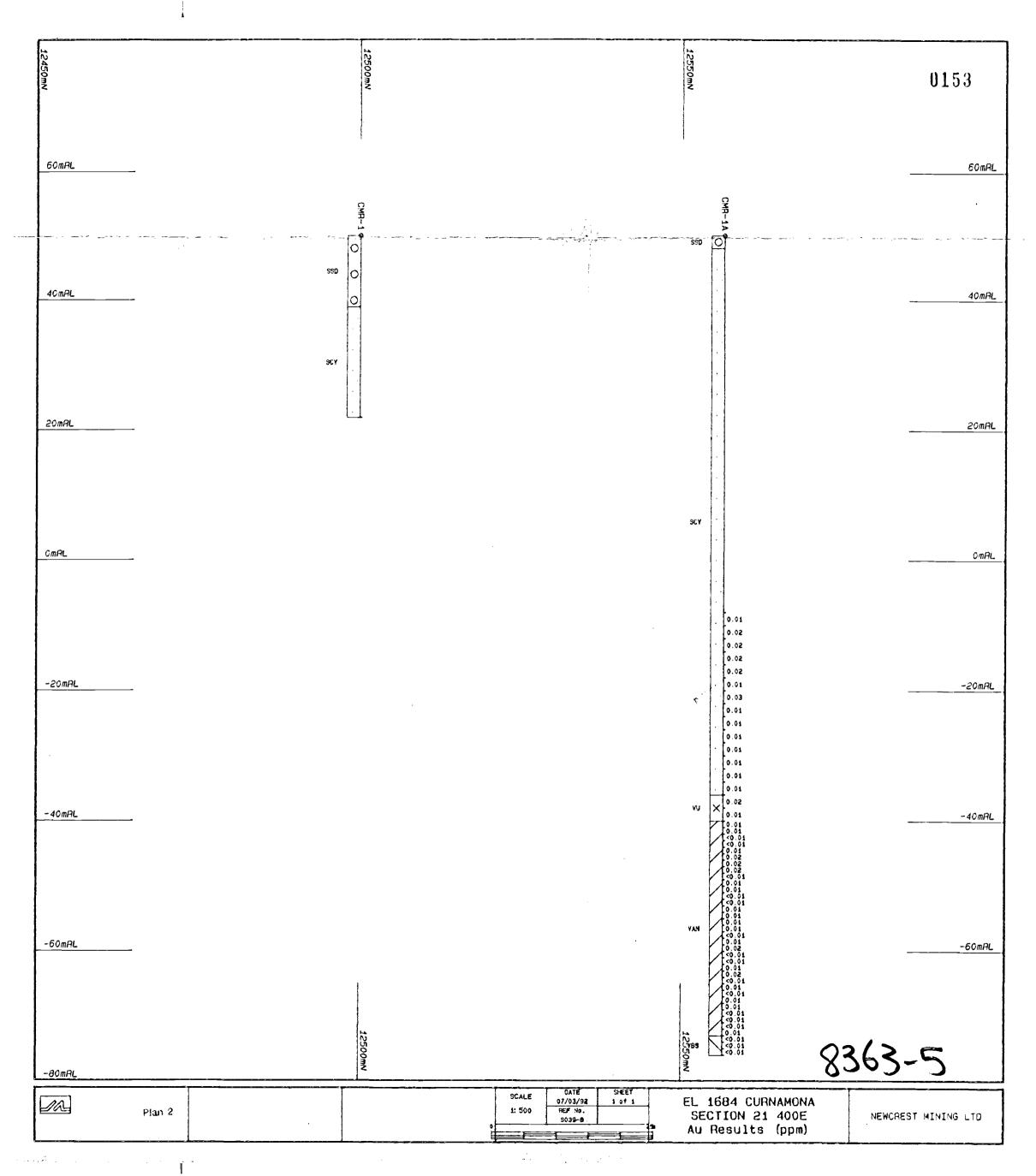
MICROMINE PROJECT : 5039 DATA FILE : CM-DHAD Version 6.40 Jan 1991 PARAMETER FILE : GLOG **CURNAMONA** Mon Feb 24 20:18 GRAPHIC LOG DISPLAY NI-PPM CO-PPM CR-PPM 100 0 100 100 0 DRILL HOLE ID CMR-5 20 40

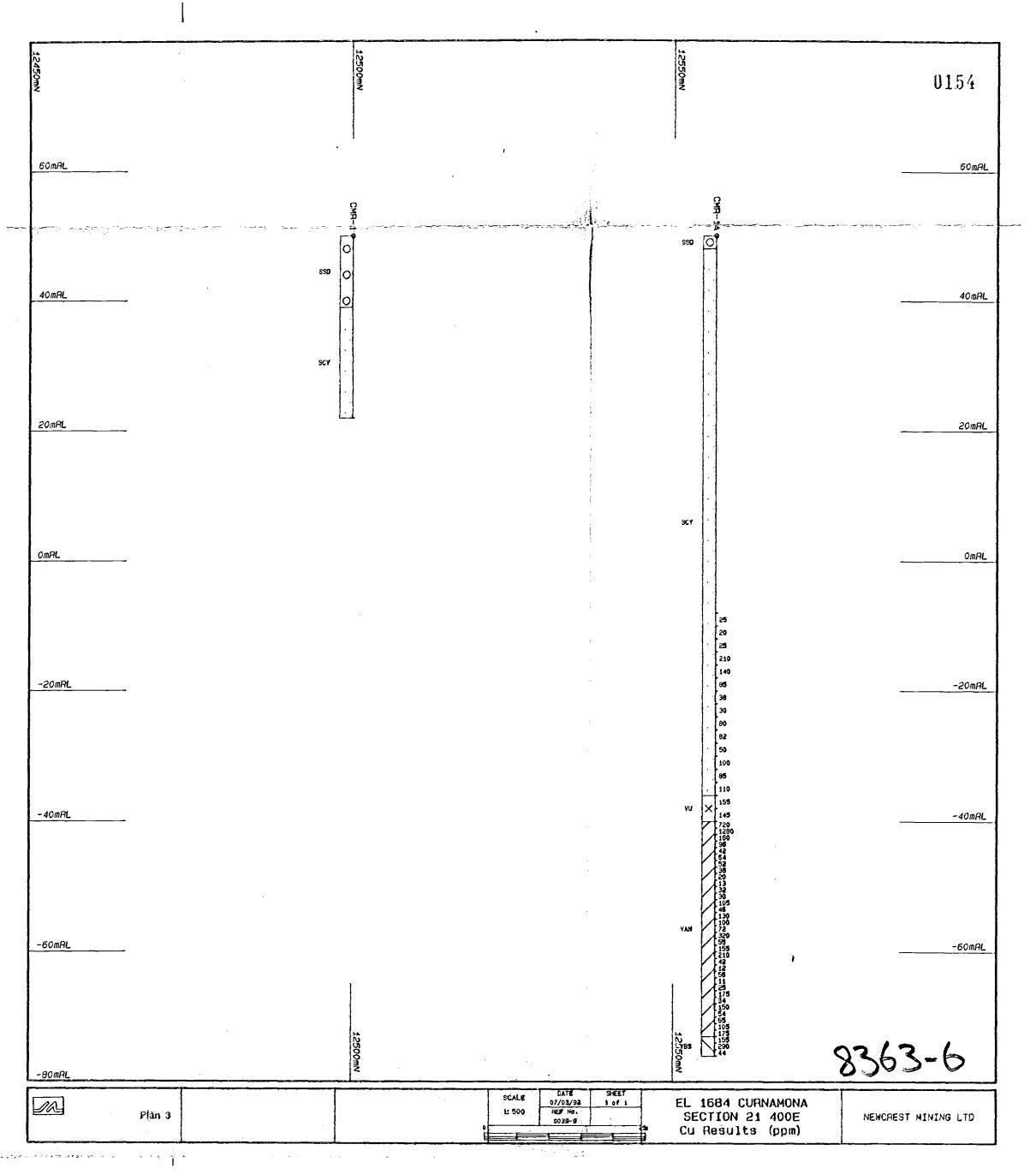
80

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Mon Feb 24 20:20 GRAPHIC LOG DISPLAY FE-% MO-PPM P-PPM 10 0 1000 100 DRILL HOLE ID CMR-5 20 40

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG **CURNAMONA** Sat Mar 07 02:14 GRAPHIC LOG DISPLAY AU-PPM AG-PPM AS-PPM 0.1 0 10 0 150 Ø DRILL HOLE ID CMR-6 20 40 60 80 0 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Sat Mar 07 02:24 GRAPHIC LOG DISPLAY CU-PPM PB-PPM ZN-PPM 100 0 100 0 150 DRILL HOLE ID CMR-6 20 40 69 80 3 120


•						FILE : CM-DHAD				
PARAMETER FILE : GLOG CURNAMONA										
•		Mar 07 PHIC LOG	Ø2:26 Display							
			BI-PPM	CD-PPM	U-PPM					
<b>G</b> ,			2 1		8 50					
r .					·	DRILL HOLE ID				
20										
-										
40										
	E									
	E					range				
60	É			•						
80	E									
	3									
120										
<u> </u>										


MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Sat Mar 07 02:29 GRAPHIC LOG DISPLAY CR-PPM NI-PPM CO-PPM 100 0 50 0 50 DRILL HOLE ID CMR-6 20 40 60 80 Ø 120

MICROMINE PROJECT : s039 Version 6.40 Jan 1991 DATA FILE : CM-DHAD PARAMETER FILE : GLOG CURNAMONA Sat Mar 07 02:31 GRAPHIC LOG DISPLAY FE-% P-PPM MO-PPM 100 20 0 1000 DRILL HOLE ID CMR-6 20 40 60 80 .0 120

8363-3	17000mE	18000mE	19000mE	20000mE	21000mE	22000mE	23000mE	24000mE	25000mE	26000mE
14000mN	+		-	+	+-		+	+	+	14000mN
13000mN	+		+	+	<del>*</del>		+	+	+	13000mN
12000mN	+	-	+	+	+	+	+	+	<u>+</u> × cmr−6	12000mN
11000mN	+		× CMR-5 CMR-4	+	+	+	+	+-	+	11000mN
10000mN	→ × CMR-3		+	+	+	+	+	+	+	10000mN
16000mE	17000mE	18000mE	19000mE	20000mE	21000mE	22000mE	23000mE	24000mE	25000mE	26000mE
	Ġrid North = Ma	nole Location & Number agnetic North			1: 25 000	DATE SHEET 24/02/92 1 of 1 REF No. S039-6 Plan 1 1250m	Drillh (L	584 CURNAMON nole Locatio ocal Grid)	ns NE	WCREST MINING LTD

8363-4 BB	444000mE	445000mE	446000mE	447000mE	448000mE	449000mE	450000mE	451000mE	452000mE	453000mE
6548000mN	+	1	+	+	+	- <del> </del>	- <del> -</del> CMR-2	+	+	6548000mN
6547000mN	+	+	+	+	+	*GM2-11A		+	+	6547000mN
6546000mN	+	+		+	+	+	+	+ .	+ CMR-6	6546000mN
6545000mN	→ CMR-3	+	+	+	+	-	+	+	+	6545000mN
443000mE	444000mE	445000mE	446000mE	447000mE	448000mE	449000mE	450000mE	451000mE	452000mE	453000mN
	NOTES: XCMR-1 Drillho	le Location & Number			SCALE 1: 25 000	DATE SHEET 24/02/92 1 of 1 REF No. S039-7 Plan 2	Drillh (	584 CURNAMON nole Location AMG Grid)		wcrest mining Ltd 363-4







## **Newcrest Mining Limited**

A.C.N. 005 683 625

Level 2 John Oxley Centre (South) 339 Coronation Drive Milton Queensland 4064 P.O. Box 1367 Milton Queensland 4064 Telephone 07:858 0858 Fax 07:369 7143

8 December, 1992

The Director-General Department of Mines & Energy PO Box 151 **EASTWOOD** SA 5063

Dear Ross.

## RE: **EXPLORATION LICENCE 1684**

Please find enclosed a disk containing an ASCII file of the corrected gravity data collected over EL 1684. The file has nine columns: date, easting, northing, latitude, longitude, elevation, bouguer anomaly density 2.00 g/cc, bouguer anomaly density 2.20 g/cc, bouguer anomaly density 2.67 g/cc; and is written in format (F9.0, F9.1, F9.0 F10.5, F9.4, F9.1, 3F 10.6). The data has had free air, terrain, drift and tide corrections applied.

Isogal ties for the survey were between Benchmark 5054 (gravity base) and South Australian Government Isogal Station 6491/9104 at Olde Quinyambie Airstrip.

Yours sincerely,

Amanda Butt.

affached.

AMANDA BUTT Geophysicist

enc.

Copy sent to Mineral Geophysics 24/3/93 Original retained in Reports Management.