Open File Envelope No. 8782

EL 1718, EL 1719 AND EL 1725

SAFARI, LAKE WOORONG AND LEONARD RISE (COOBER PEDY RIDGE PROJECT)

CONSECUTIVE JOINT PARTIAL SURRENDER REPORTS FOR THE PERIODS 12/5/91 TO 13/11/93, AND 12/5/91 TO 7/4/94

Submitted by

BHP Minerals Ltd 1994

© 14/3/96

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia.

PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings.

This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia,

GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

CR 8018

EXPLORATION LICENCES 1718, 1719 AND 1725 SOUTH AUSTRALIA

RELINQUISHMENT REPORT, PARTIAL AREA REDUCTION FROM EL1719 AND 1725, TOTAL AREA REDUCTION FROM EL1718

13TH NOVEMBER, 1993

Volume 1 of 1

Prepared by:

M Valdez

Project Geologist

Issued by:

BHP Minerals
Exploration Department

M Raetz

Program Leader

Distribution:

Hawthorn
Brisbane
South Australian Department of Mines and Energy
M Raetz

SUMMARY

BHP Minerals Limited has partially relinquished EL's 1719 and 1725, and totally relinquished EL1718 on the 12th November 1993. These are the first relinquishments from the Coober Pedy Ridge Project.

Exploration for Pb-Ag-Zn and Cu-Au mineralisation in Lower Proterozoic rocks of the Coober Pedy Ridge area, South Australia, started in 1991. The work completed comprised aeromagnetic interpretation, depth to basement studies, anomaly selection, ground magnetic surveying, drilling of selected targets, bedrock geochemical analysis, geological and geochemical evaluation.

One RC hole (CR9306) was drilled in EL1719 intersecting basement at 73 metres. The magnetic target intersected is a magnetite quartz feldspar biotite rock (BIF).

Two RC holes (CR9116 and CR9208) were drilled in EL1725, intersecting basement at 56 metres and 74 metres, respectively. The magnetic targets intersected are quartz magnetite rock (BIF) and magnetite rich granite.

Three RC holes (CR9127, CR9203, CR9214) were drilled in EL1718. Hole CR9127 did not reach the basement. Hole CR 9203 reached the basement at 212 metres and CR9214 at 234 metres. These two holes intersected the magnetic targets which were, quartz magnetite and a complex BIF unit, respectively.

With these relinquishments, BHP's total Coober Pedy Ridge Project was reduced 38% in area. The relinquished areas are considered less prospective for any or all of the following reasons: 1) excessive depth to basement; 2) insignificant geochemical results; or, 3) less prospective stratigraphy.

TABLE OF CONTENTS

SUMMARY

1 IN	TRODUCTION	1
2 LC	OCATION AND ACCESS	1
3 EX	EPLORATION RATIONALE	. 1
4 TR	RADITIONAL LANDOWNER LIAISONS	1
5 EN	IVIRONMENTAL CONSIDERATIONS	1
6 RE	CLINQUISHMENT FROM EL1719	3
6.1	Exploration completed for the period from 12th May	
	1991 to 13 th November 1993.	3
6.1.1	Depth to basement study	3
6.1.2	Aeromagnetic interpretation and target selection	3
6.1.3	Drilling	4
7 RE	CLINQUISHMENT FROM EL1725	4
7.1	Exploration completed for the period from 12th May	6
	1991 to 13th November 1993.	
7.1.1	Depth to basement study	6
7.1.2	Aeromagnetic interpretation and target selection	6
7.1.3	Drilling	6
8 TC	OTAL RELINQUISHMENT OF EL1718	8
8.1	Exploration completed for the period from 12th May	
	1991 to 13 th November 1993.	8
8.1.1	Depth to basement study	8
8.1.2	Aeromagnetic interpretation and target selection	8
8.1.3	Drilling	8
9 D I	SCUSSION	9
RE	FERENCES	9

List of Tables

Table No.	<u>Title</u>
1	Drill hole specifications, EL 1719.
2	Drill hole specifications, EL 1725
3	Drill hole specifications, EL 1718.

List of Figures

Figure No. Title

1 Location

List of Appendix

Appendix 1. Magnetic models

Appendix 2. Graphic drill hole sections

Appendix 3. Descriptive drill hole logs

Appendix 4. Assay results

1 <u>INTRODUCTION</u>

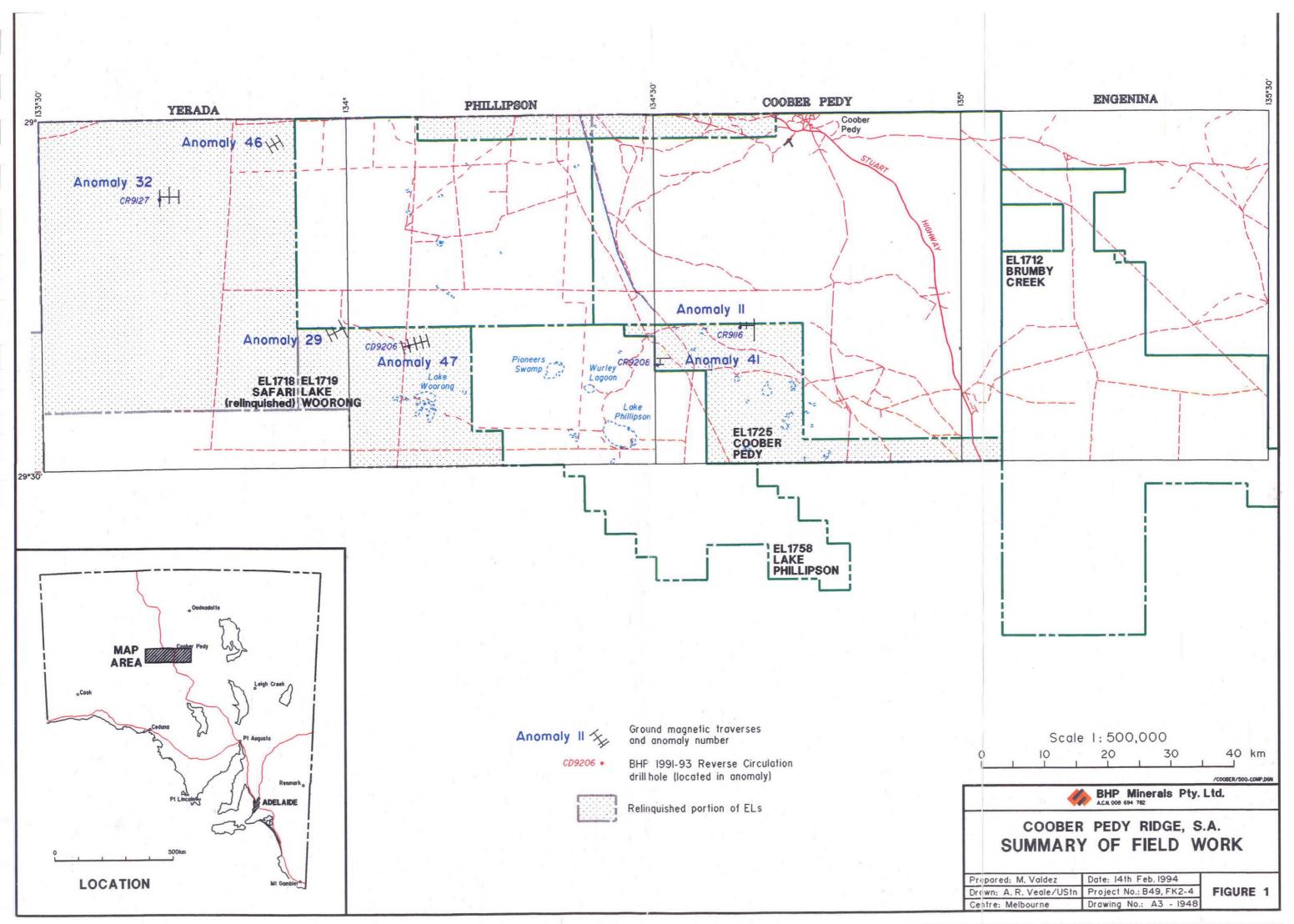
BHP Minerals Ltd (BHP) is actively exploring for Zn-Pb-Ag and Cu-Au mineralisation in Lower Proterozoic rocks of the Coober Pedy Ridge area, South Australia. BHP applied for EL's 1712, 1718, 1719 and 1725 located south of Coober Pedy, in 1991 (Figure 1). These Exploration Licences (EL) form a contiguous block of ground.

On 12th November 1993 EL's 1719 and 1725, were partially relinquished and EL1718 was totally relinquished. This report summarises the work completed in the relinquished areas from the 13th May 1991 to 12th November 1993.

2 LOCATION AND ACCESS

The tenements are located on the Coober Pedy and Billa Kalina 1:250,000 sheets (Figure 1). The main access is by the Stuart Highway and Tarcoola-Alice Springs railway. Station roads and tracks provide reasonable access throughout the area covered by these licences.

3 EXPLORATION RATIONALE


BHP is exploring for Zn-Pb-Ag and Cu-Au mineralisation in the area. Aeromagnetic data was used to map the mainly covered basement rocks that are interpreted to be of Proterozoic age.

4 TRADITIONAL LANDOWNER LIAISONS

BHP has been liaising with Mr Ricky Brown, a person recognised as having knowledge of the Coober Pedy area, in order to avoid sites significant to the Aboriginal people. Drill sites in the BHP tenements were inspected and Mr Brown advised, that to the best of his knowledge, no sites of significance would be affected by BHP activities (Read 1991a, 1991b, 1992a, 1992b, and 1992c; Valdez 1994).

5 **ENVIRONMENTAL CONSIDERATIONS**

Heavy vehicle access to drill sites was made via existing station tracks where possible. Short access tracks were graded into Anomalies 11, 29, 32, 41, 46 and 47. Drill holes were rehabilitated by backfilling with cuttings. Sumps, dug for mud collection when mud-drilling, were backfilled after drilling finished. Excess material was either removed from site or buried and covered by local soil.

6 **RELINQUISHMENT FROM EL1719**

Two areas were relinquished from this licence (Figure 1), a northern area and a southern area. The northern area relinquished is defined by:

Starting at point being intersection of longitude 134°07'E and latitude 29°00'S, thence due East to Longitude 134°24'E,

thence due South to latitude 29°02'S,

thence due West to Longitude 134°07'E, and

thence due North to point of commencement.

The southern area relinquished from this licence is define by:

Commencing at point being intersection of longitude 133°55'E and latitude 29°18'S,

thence due East to longitude 134°12'E,

thence due South to latitude 29°27'S,

thence due East to longitude 134°15'E,

thence due South to latitude 29°30'S.

thence due West to longitude 134°00'E,

thence due North to latitude 29°25'S,

thence due West to longitude 135°55'E, and

thence due North to point of commencement.

Exploration completed for the period from 12th May 1991 to 13th November 1993 in the relinquished areas

6.1.1 Depth to basement study

Depth to basement was calculated for the tenement blocks using previous drilling information. The northern area has an interpreted cover thickness mostly greater than 300 metres. The southern area shows an interpreted depth to basement usually less than 300 metres. Also, depth to the top of magnetic basement was calculated.

6.1.2 <u>Aeromagnetic interpretation and target selection</u>

Interpretation of the basement rocks was made by Read (1991a), using previous drilling information and geology of the outcropping rocks.

Two aeromagnetic targets were selected from the southern area for ground magnetic surveying, Anomaly 29 and Anomaly 47. The data collected was processed and the anomalies were modelled. These models are included in Appendix 1.

6.1.3 Drilling

_195m TD.

One hole was drilled, CR9206, which is located in Anomaly 47. The target was Cu-Au mineralisation. Hole specifications are summarised in Table 1.

The magnetic rocks intersected were: magnetite quartz BIF unit (134 - 150 m), and quartz magnetite feldspar gneiss (150 - 178 m). Graphic drill hole sections are included in Appendix 2 and descriptive drill logs in Appendix 3.

The best assay result come from the 64 to 74 m interval, with 192 ppm Cu, 20 ppm Pb, 25 ppm Zn and with Au and Ag below detection limits. These results correspond with quartz felspar haematite granofels. Complete assay results are included in Appendix 4.

7 RELINQUISHMENT FROM EL1725

EL 1725, Coober Pedy, is located south of the town of Coober Pedy, mostly included in the Coober Pedy Precious Stones Field. Here the exploration licence commences 50 m below surface. The top 50 m portion of ground is reserved for opal mining. Two areas, northern and southern areas, were relinquished from this licence (Figure 1). The northern area is defined by:

Starting by point being intersection of longitude 134°24'E and latitude 29°00S', thence due East to longitude 134°42'E, thence due South to latitude 29°02'S, thence due West to longitude 134°24'E, and thence due North to point of commencement.

The southern area relinquished from this licence is defined by:

Starting by point being intersection of longitude 134°27'E and latitude 29°18'S,

thence due East to longitude 134°45'E,

thence due South to latitude 29°28'S.

thence due East to longitude 135°04'E,

thence due South to latitude 29°30'S,

thence due West to longitude 134°35'E,

thence due North to latitude 29°22'E,

thence due West to longitude 134°30'E,

thence due North to latitude 29°19'S,

thence due West to longitude 134°27'E, and

thence due North to point of commencement.

TABLE 1
DRILL HOLE SPECIFICATONS, EL 1719

Hole	East	North	Grid	Inc.	Azimuth	Hole type	Interpreted depth to target (m)	Actual depth to target (m)	Total depth of hole (m)	Target	Target type
CR9206	131,000	130,800	Local	-60°	340°	RC	200	90	195	Ironstone	Cu-Au target

TABLE 2
DRILL HOLE SPECIFICATIONS, EL1725

Hole	East	North	Grid	Inc.	Azimuth	Hole type -	Interpreted depth to target (m)	Actual depth to target (m)	Total depth of hole (m)	Target	Target type
CR9116	465,000	6,758,005	AMG	-90°	354°	RC	100-110	64	100	- Magnetite quartzite/ skarn	BHT target
CR9208	451,900	6,752,300	AMG	-60°	354°	RC	150	76-100	112	- Mt Woods quartzite	BHT target

7.1 Exploration completed for the period from 12th May 1991 to 13th November 1993, in the abdicated areas

7.1.1 Depth to basement study

The depth to basement was studied using previous drilling information. The northern area is in an area with interpreted depth to basement greater than 150 metres. The southern area, with greater drill hole density than the northern one, shows mostly depth to basement less than 100 metres, with a relative small area with depth greater than 170 metres. Also, depth to the top of magnetic basement was calculated.

7.1.2 Aeromagnetic Interpretation and target selection

Interpretation of the basement rocks (Read, 1991a and 1992c) was made using aeromagnetic data and previous drill hole information. No targets were selected from the now relinquished northern area. Two aeromagnetic anomalies were selected from the southern area: Anomaly 11 and Anomaly 41. Ground magnetic surveys were compiled and magnetic models produced (Appendix 1) to select drill targets.

7.1.3 Drilling

Holes CR9116 and CR9208 were drilled in the southern area testing Anomalies 11 and 41 respectively. Hole specifications are shown in Table 3.

The magnetic targets were intersected in both holes, a BIF unit in hole CR9116, and a magnetic granite in hole CR9208. Graphic drill hole sections are included in Appendix 2 and descriptive sections in Appendix 3.

The best assay results from CR9116 come from 80 to 84 m interval with 11 ppm Cu, 9 ppm Pb, 39 ppm Zn, 0.09 ppm Au and 0.09 ppm Ag, which correspond to a quartz magnetite unit.

CR9208 shows as best result: 24 ppm Cu, 24 ppm Pb, 53 ppm Zn, <1 ppm Ag and < 0.02 ppm Au, from the 96 to 100 m interval which correspond to quartz feldspar biotite granofels rock. Complete assay results are included in Appendix 4.

TOTAL RELINQUISHMENT OF EL1718

8.1 Exploration completed for the period from 12th May 1991 to 13th November 1993

8.1.1 Depth to basement study

8

A depth to basement study was complete using previous drilling data. Also, depths to the top of magnetic basement were calculated.

An increase in depth to basement (from 20 metres to greater than 200 metres) is interpreted towards the west side of the tenement.

8.1.2 Aeromagnetic interpretation and target selection

An interpretation of the basement rocks was made by Read (1991a, 1992c) using previous drilling information and aeromagnetic data

This interpretation was used later to select magnetic anomalies. As result, two Anomalies were selected for ground magnetic surveys, Anomaly 32 and 46. The ground magnetic data was modelled (see Appendix 1), and drill hole locations established.

8.1.3 **Drilling**

Holes CR9127, CR9203 and CR9214 were drilled within the relinquished portion of the tenement. During 1991, hole CR9127 was drilled failing to reach the basement. Consequently, during 1992 hole CR9214 was drilled in the same anomaly, intersecting the basement at 234 metres. Holes specifications are included in Table 3. Hole CR9214 intersected the magnetic target at the 214 - 254 m interval, corresponding to a complex BIF unit. Geology log sections are included in Appendix 2 and descriptive logs in Appendix 3.

The best geochemistry came from the 258 - 262 m interval with 130 ppm Cu, 26 ppm Zn, 20 ppm Pb, <0.02 ppm Au and 1 ppm Ag, which corresponds to quartz biotite gneiss. The complete list of assay results is included in Appendix 4.

During 1992, hole CR9203 was drilled intersecting a highly magnetic basement rock from 238 to 248 metres. This intersection corresponds with a magnetite-haematite-chlorite- barite? magnetite body.

The best geochemical results, 11 ppm Cu, 30 ppm, Pb and 280 ppm Zn come from the 248 - 250 m interval, corresponding with a quartz-magnetite-patchy haematite rock.

TABLE 3
DRILL HOLE SPECIFICATIONS, EL1718

Hole	East	North	Grid	Inc.	Azimuth	Hole type	Interpreted depth to target (m)	Actual depth to target (m)	Actual depth of hole (m)	Target	Target type
CR9127	373,100	6,778,700	AMG	-90°	354°	RC	240-250	No Intersected	119	- Magnetite quartzite	BHT target
CR9203	150,000	151,000	Local	· -90°	354°	RC	200	240-244	272	- BIF	BHT tärget
CR9214	373,100	6,778,700	AMG	-90°	354°	RC	160	240-254	264	-Magnetite quartzite	BHT target

DISCUSSION

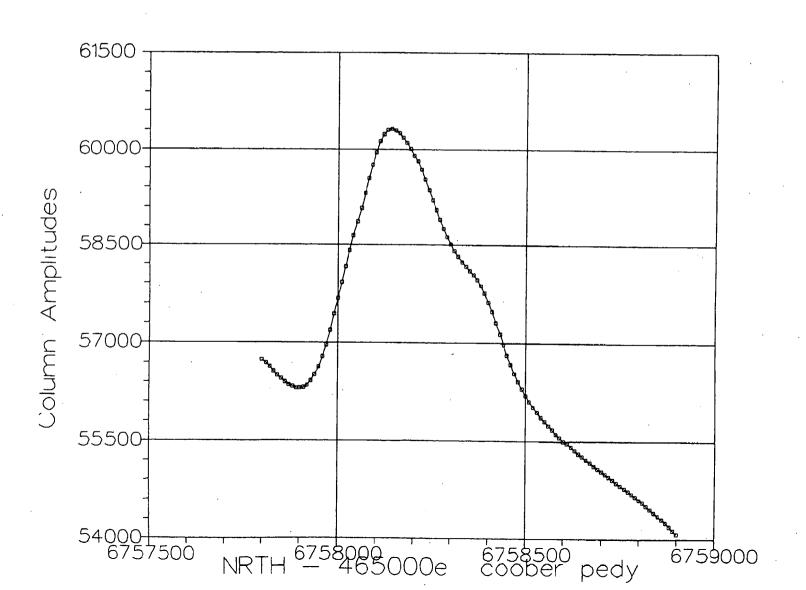
After two and half years of reconnaissance drilling into covered basement it became feasible to relinquish some areas, as exploration began to focus.

The areas relinquished were obviously considered less prospective than the areas retained for any or all of the following reasons:

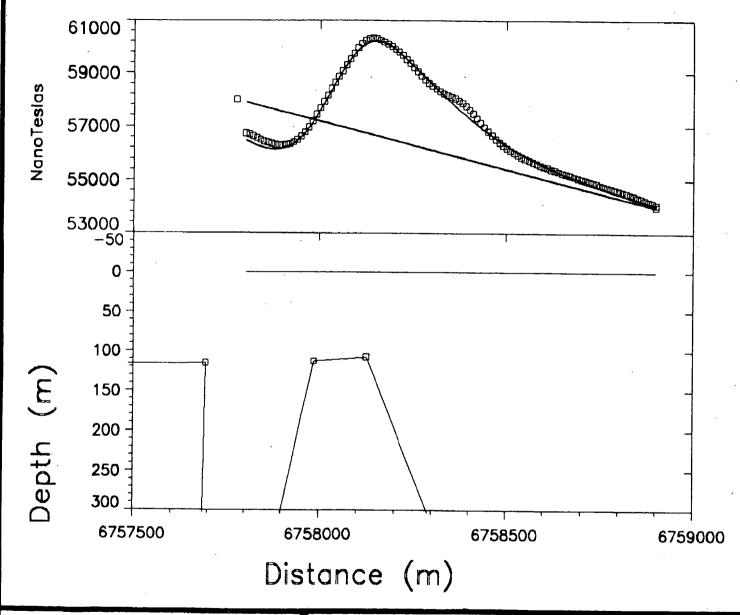
- excessive depth to basement;
- insignificant geochemical results; or,
- less prospective stratigraphy.

However it is fair to say that the area relinquished have not been exhaustively explored, but simply reflect the company most reasonable option at this time.

The geological basement interpretation map has been omitted from this report because it really reflects an overview interpretation, including areas still on closed file.


The reference list is included for completeness, although those reports remain on closed file at present.

REFERENCES


- Read, J.J., 1991a. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint First Quarterly Report for the Three Months Ended 13th August 1991, BHP Minerals, CR 7392.
- Read, J.J., 1991b. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Second Quarterly Report for the Three Months Ended 13th November 1991, BHP Minerals, CR 7474.
- Read, J.J., 1992a. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Third Quarterly Report for the Three Months Ended 13th February 1992, BHP Minerals, CR 7485.
- Read, J.J., 1992b. Exploration Licences 1712,1718,1719 and 1725, South Australia, Joint Fourth Quarterly Report for the Three months Ended 13th May 1992. BHP Minerals, CR 7652.
- Read, J.J., 1992c. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Fifth Report for the Six Months ended 13th November 1992. BHP Minerals, CR7696.
- Valdez, M.A., 1994. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Sixth Report for the year ended 13th November 1993. BHP Minerals, CR8011.

APPENDIX 1

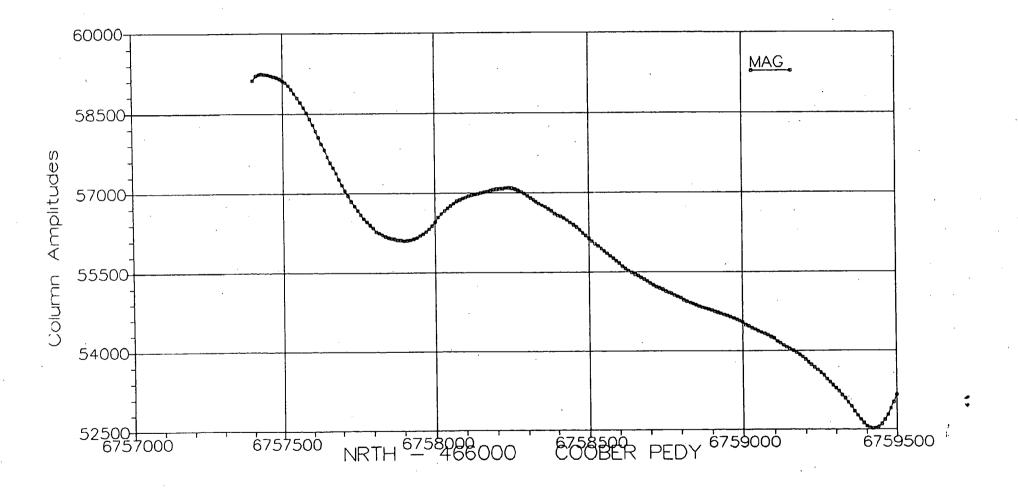
MAGNETIC MODEL

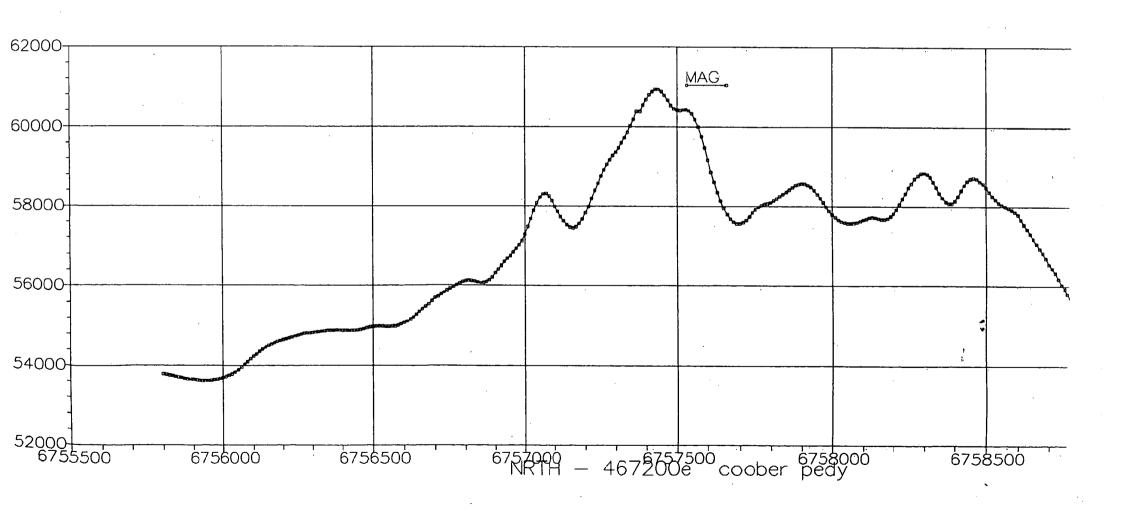
MAG

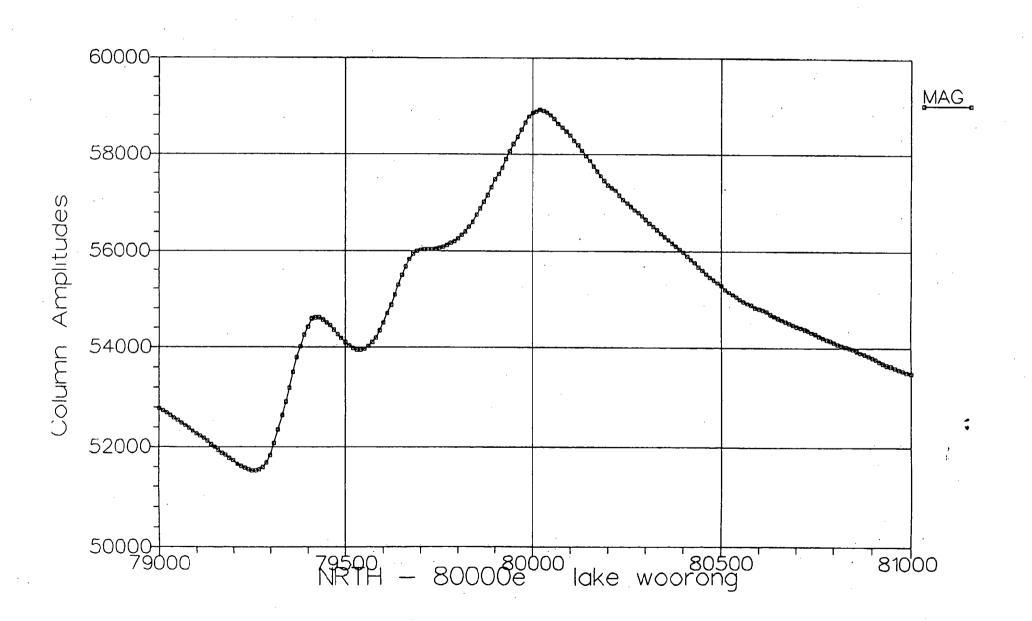
Inducing field: 56000. nt
Inclination: -61.00 deg
Strike Direction: 270.00 deg
Profile Direction: 360.00 deg

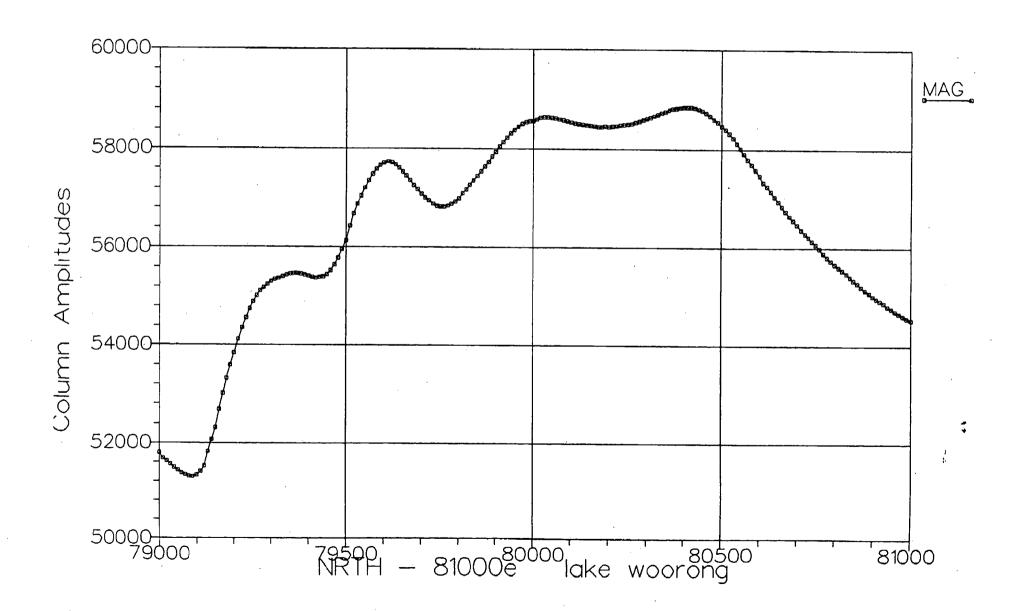
All Directions are Clockwise from Magnetic North

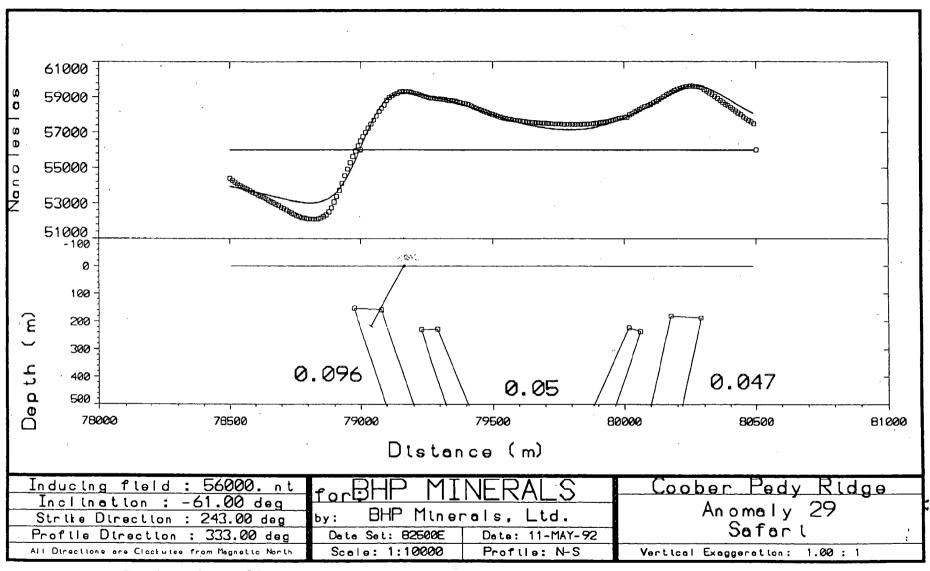
for: BHP MINERALS


by: BHP Minerals, Ltd.


 Data Set: 465000E
 Date: SEPT 1991

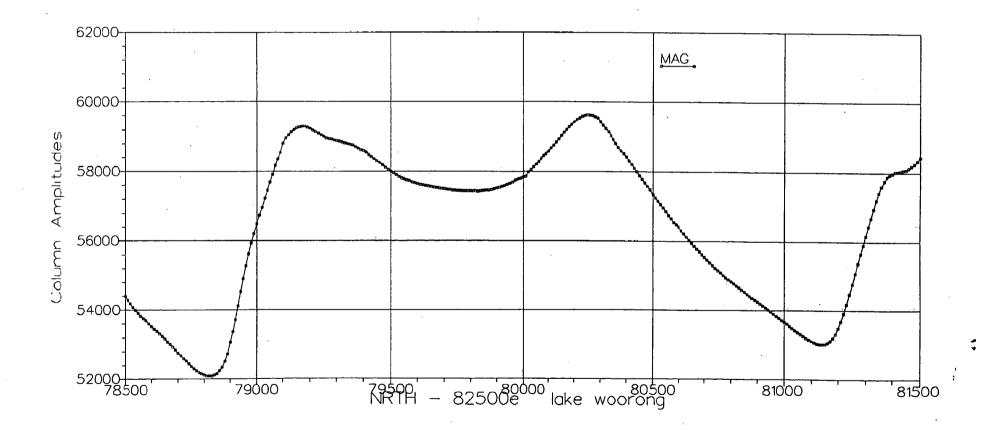

 Scale: 1:10000
 Profile: 46500

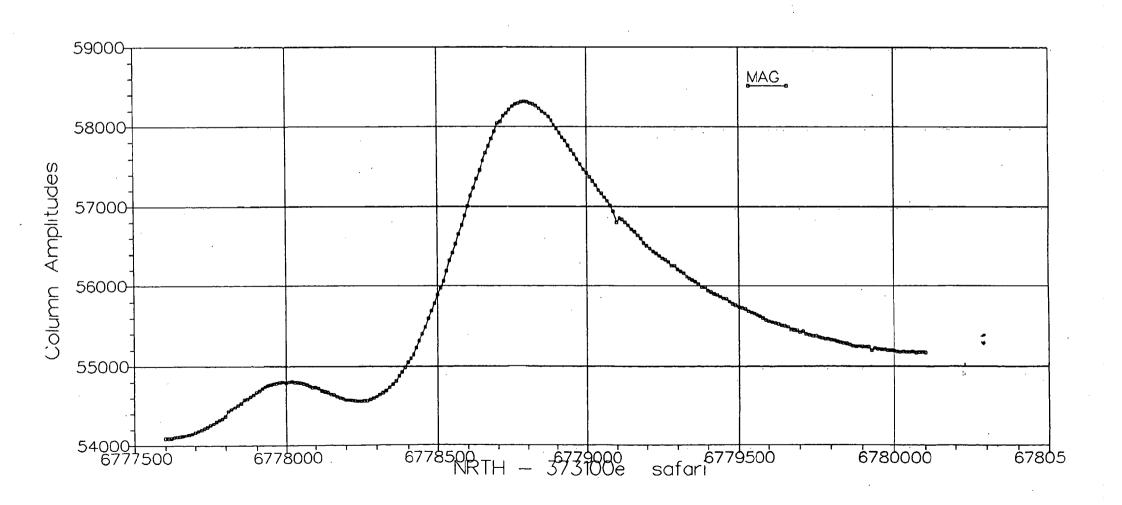

ANOMALY 11
COOBER PEDY RIDGE

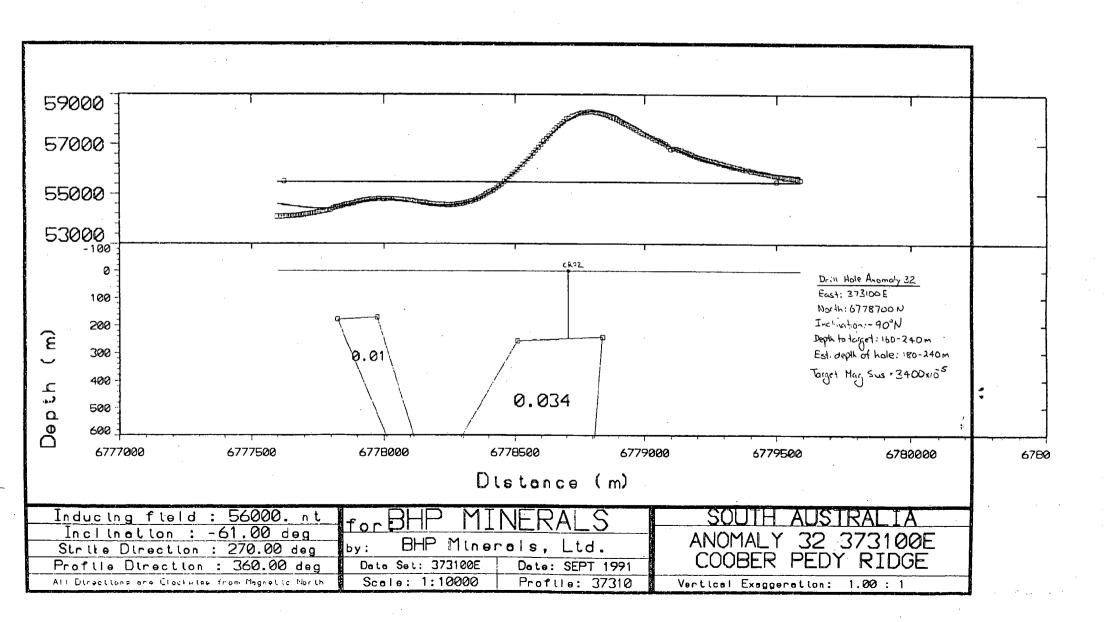

Vertical Exaggeration: 2.00 ; 1

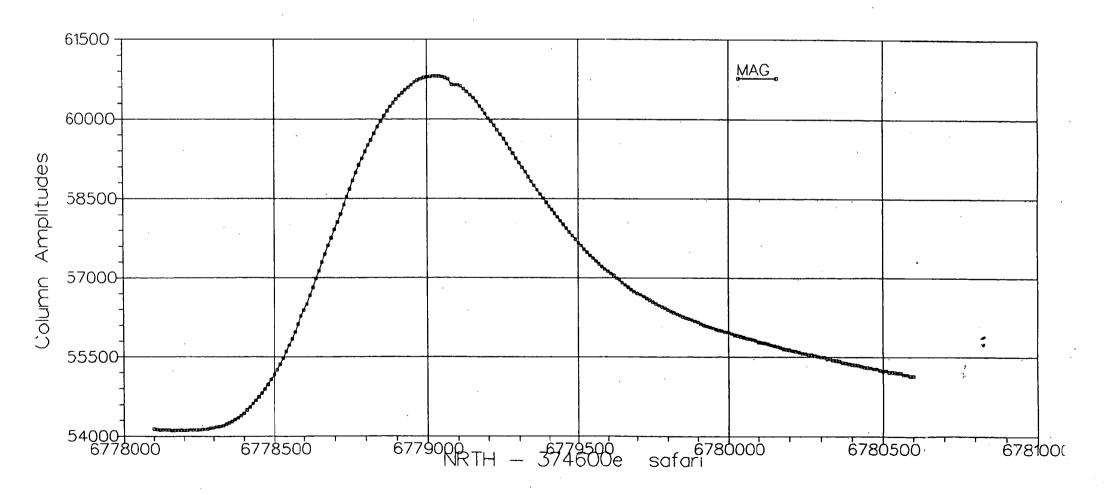
Drill Hole - Anomaly 29

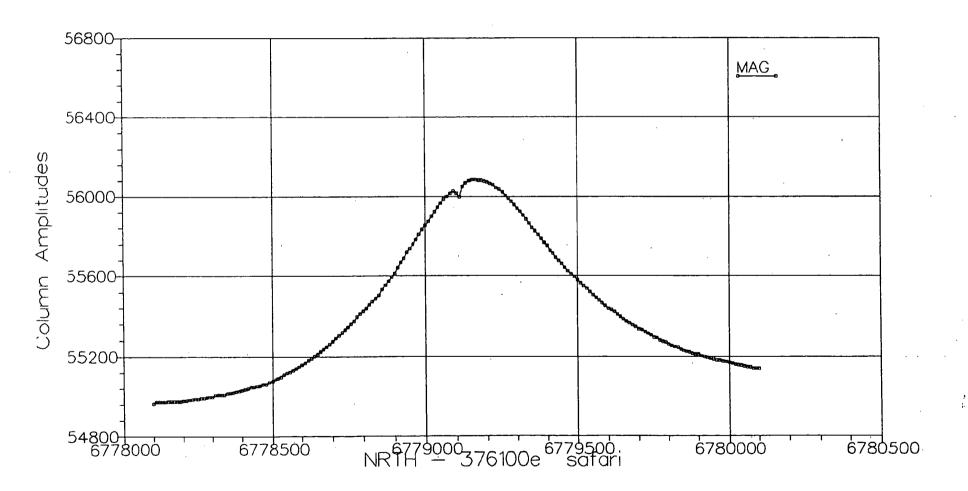
East: 92500E

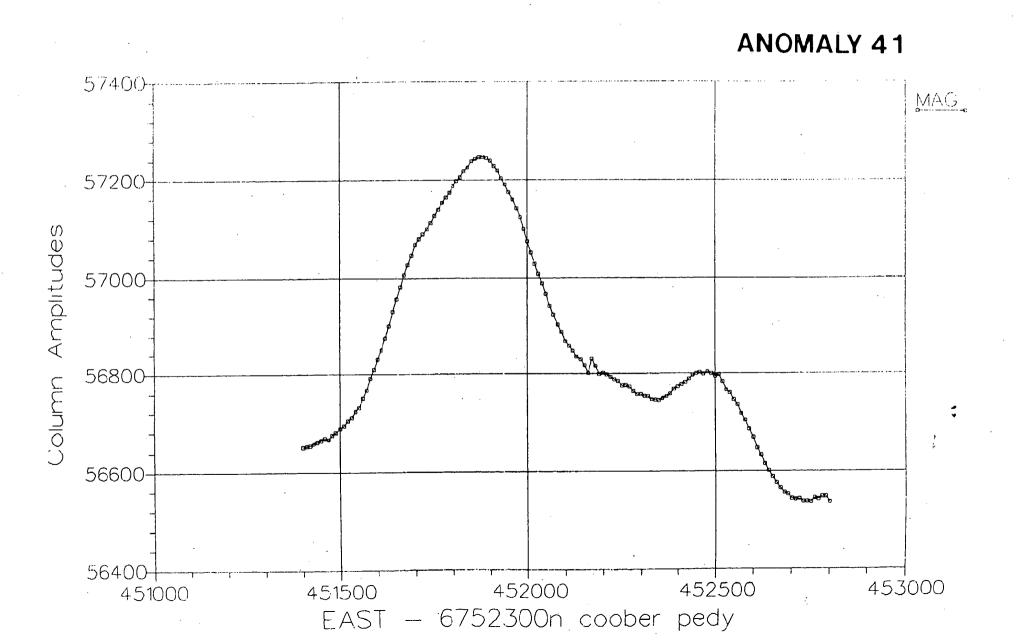

North: 79160 N

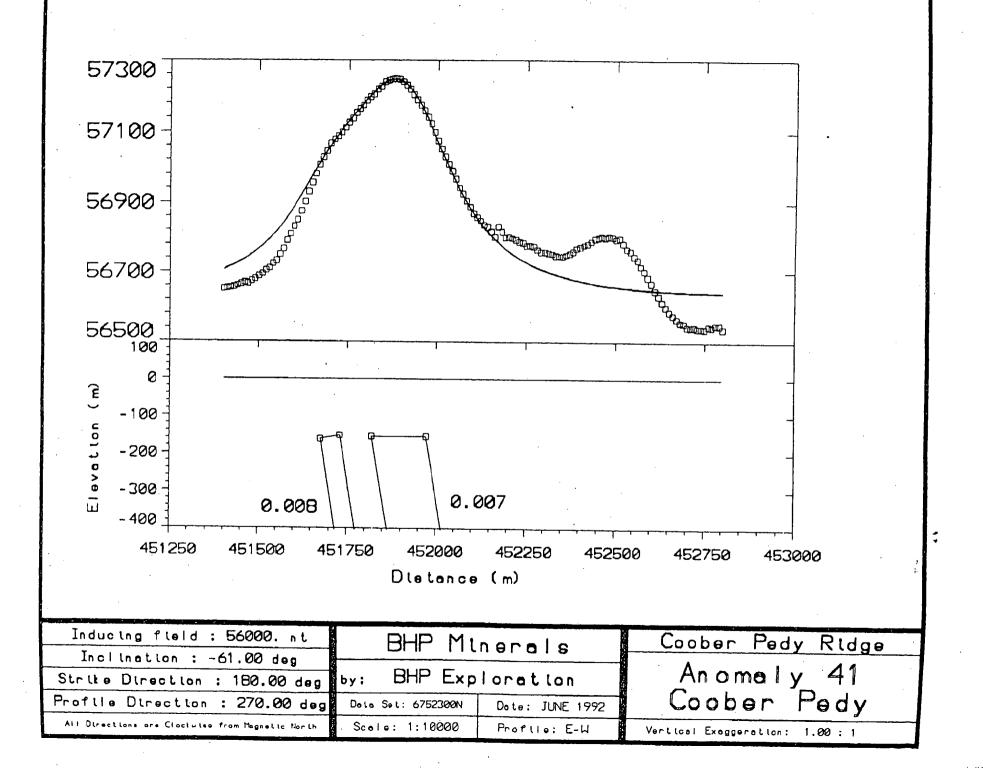

Inclination: - 60° and south

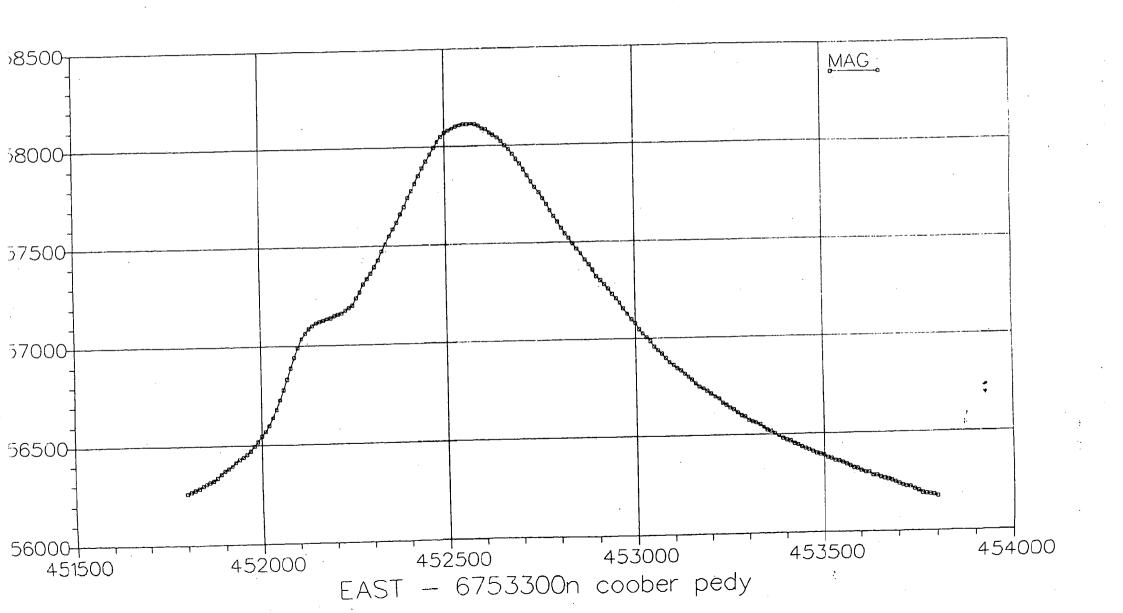

Dept. to larget: 180-200m

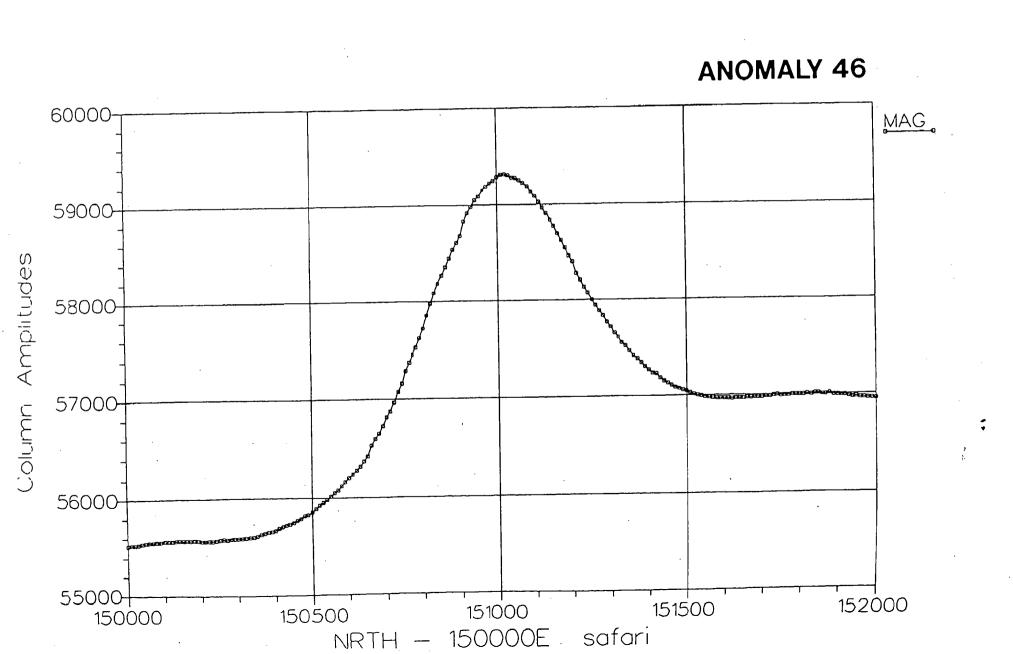

Ed. days of hole: 250 m

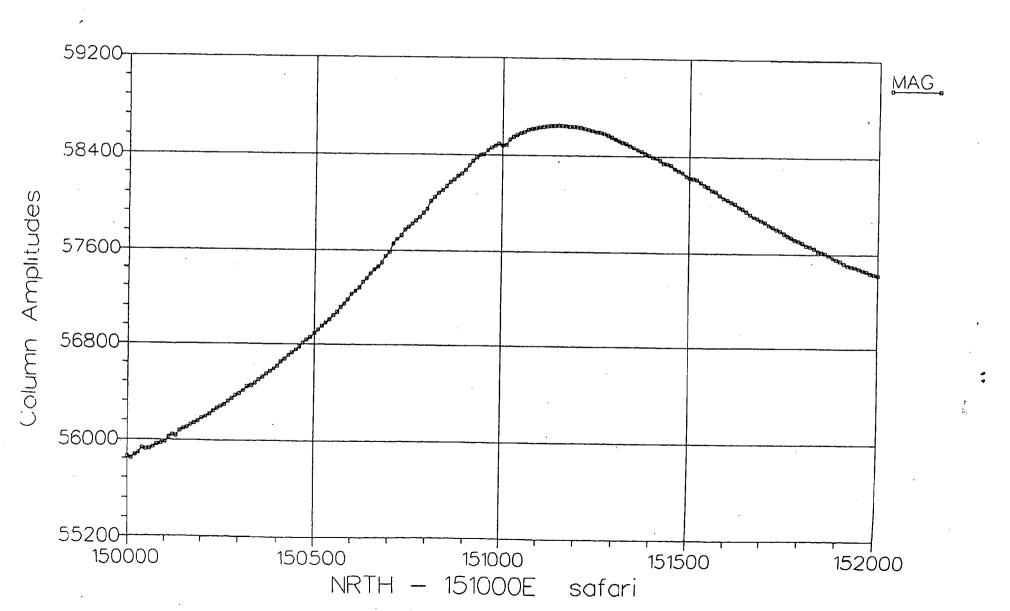

They is a second of the

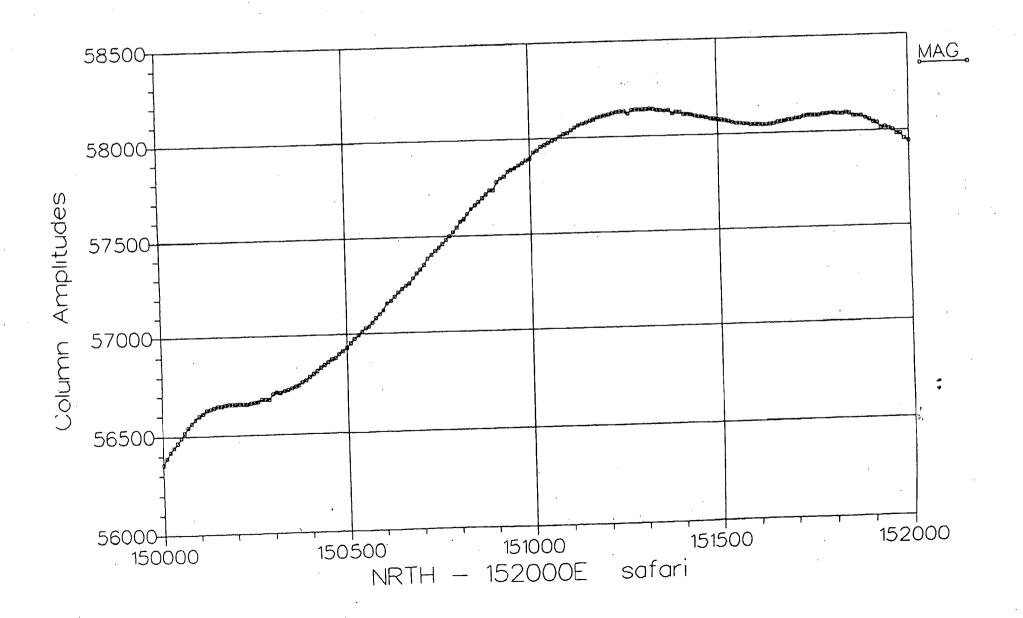


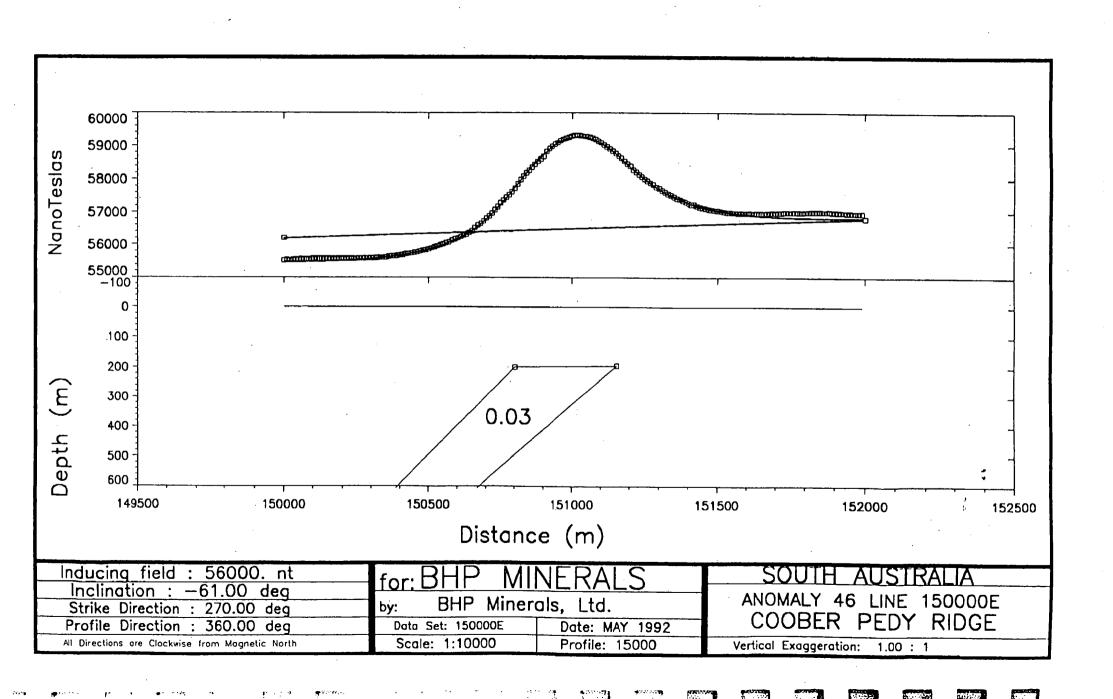


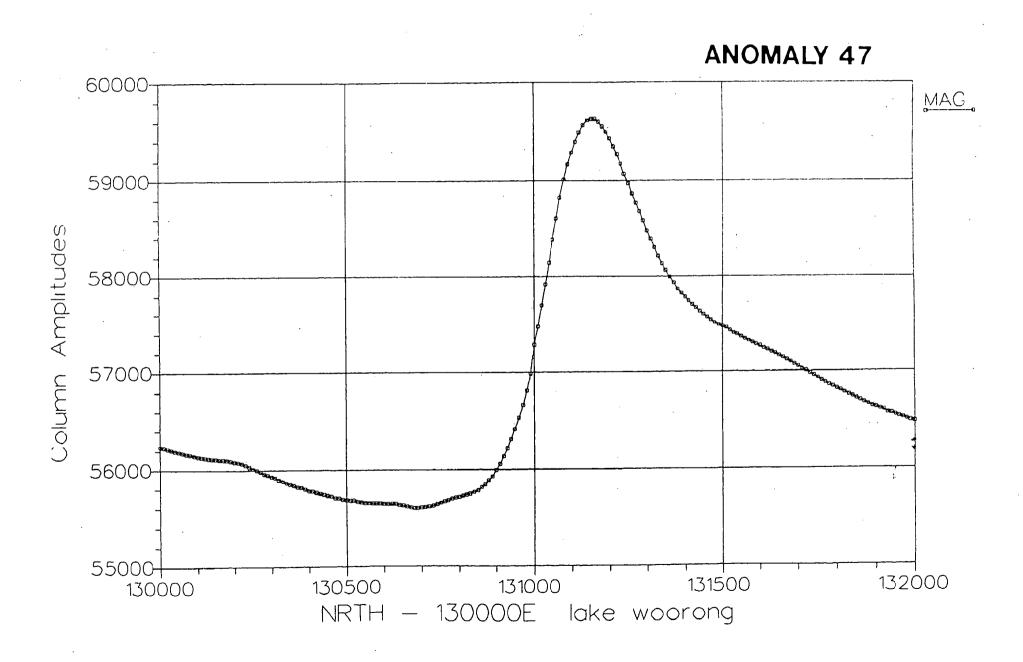


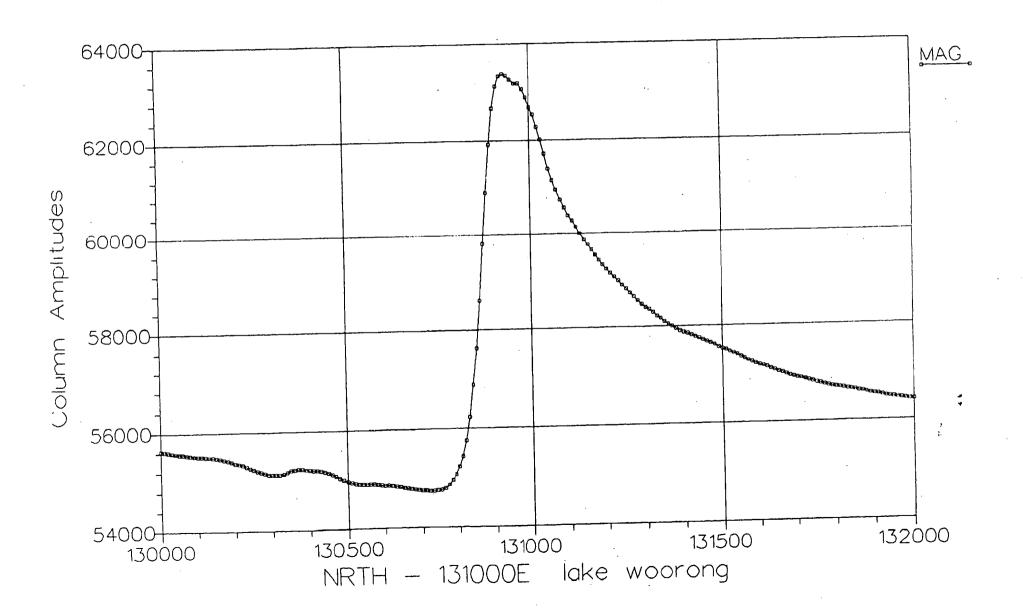


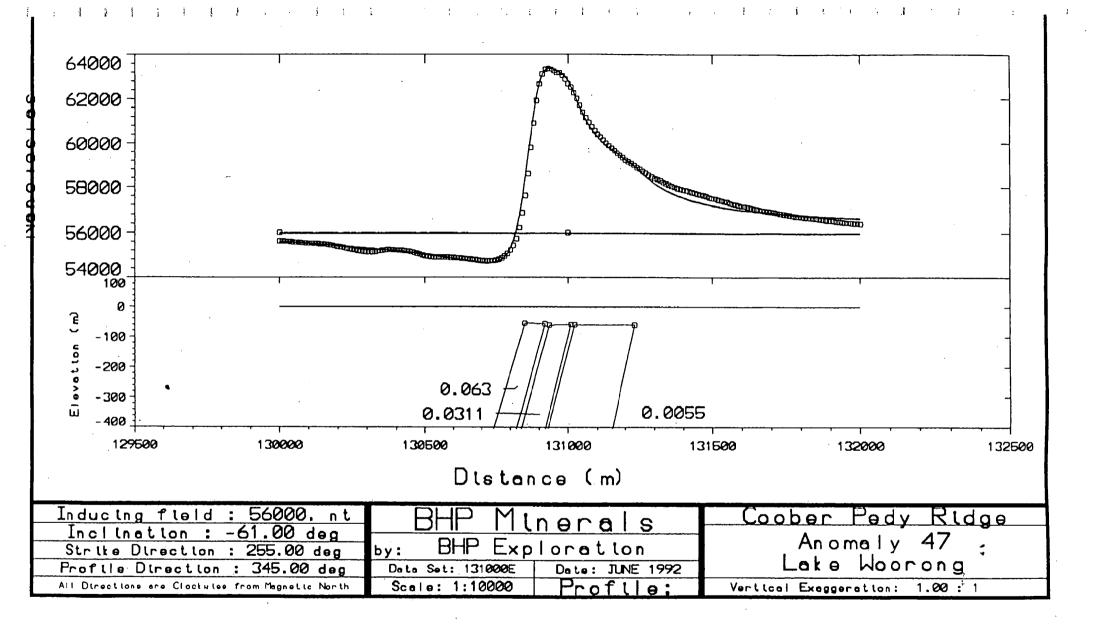


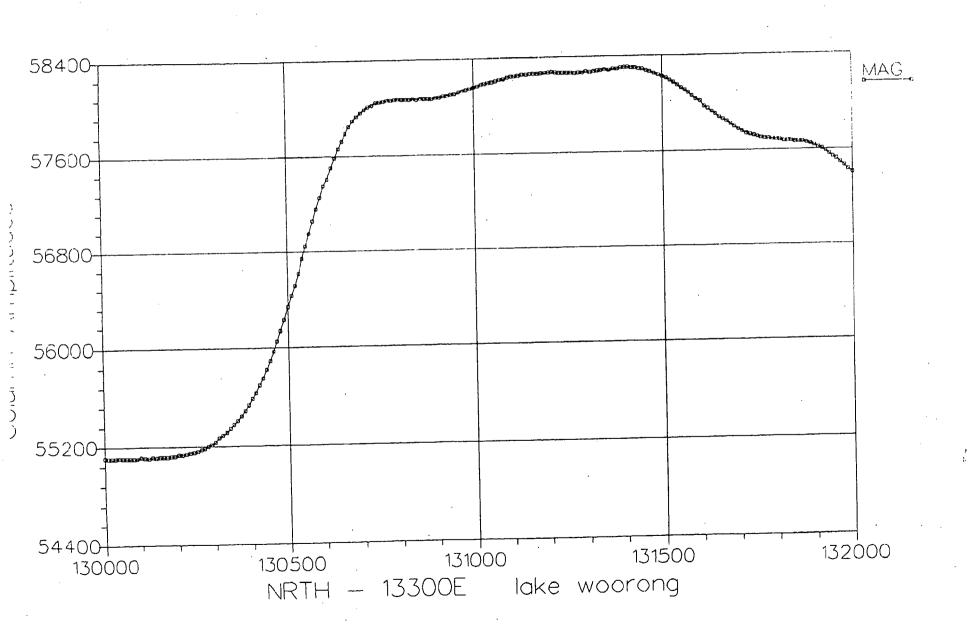


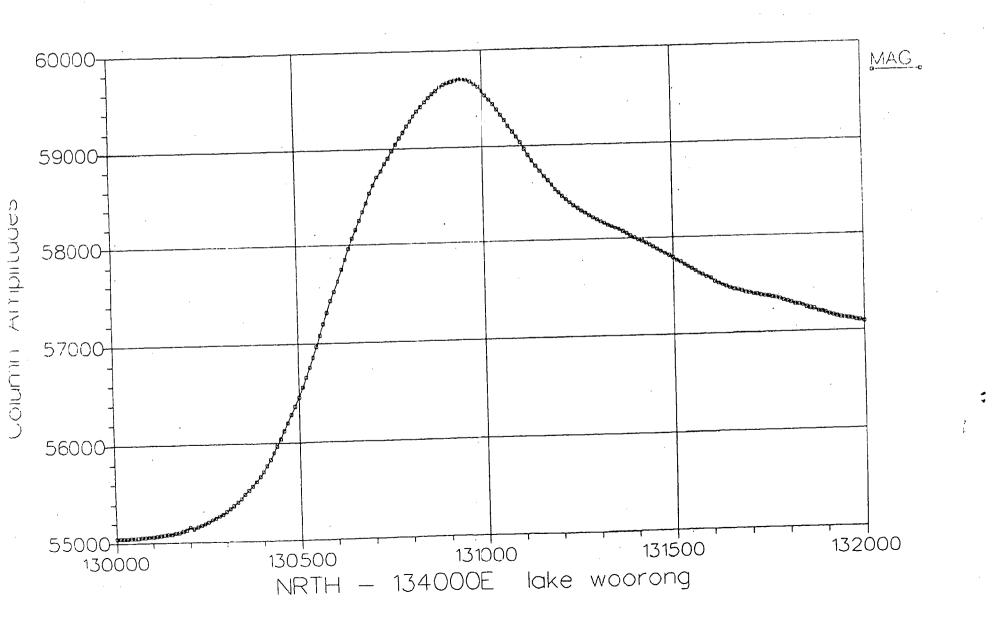

....

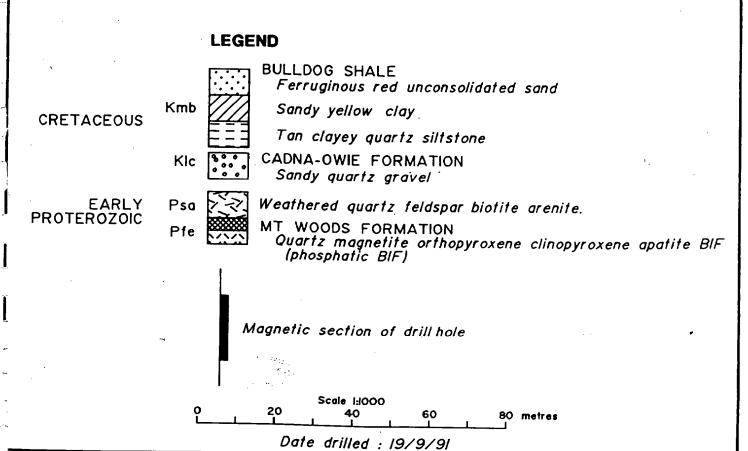






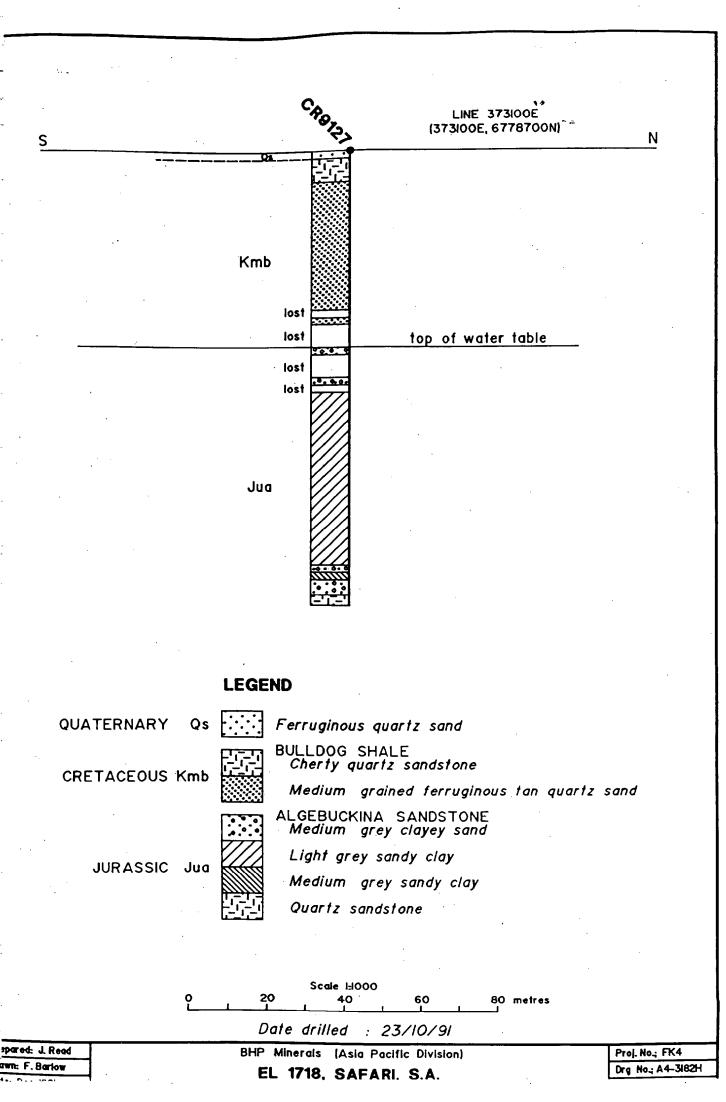


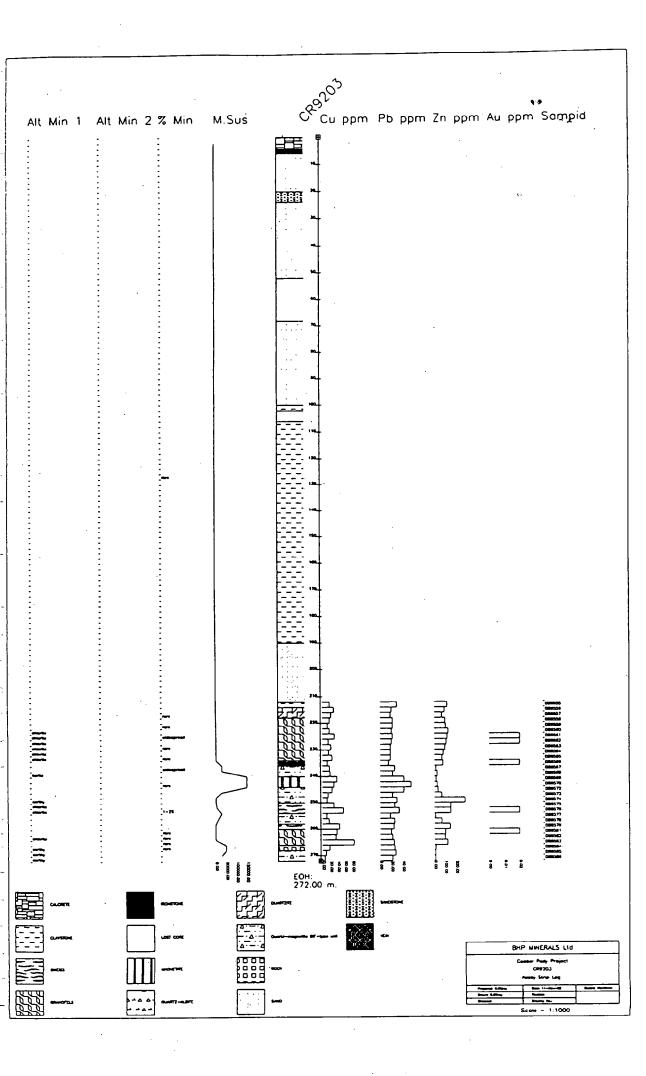


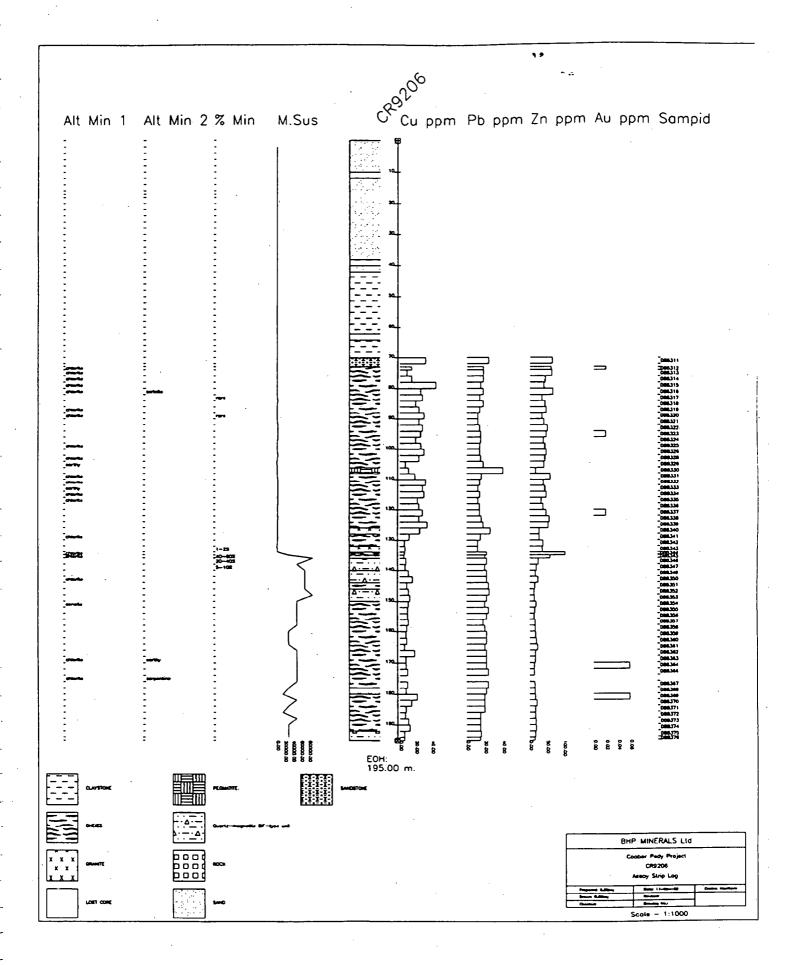


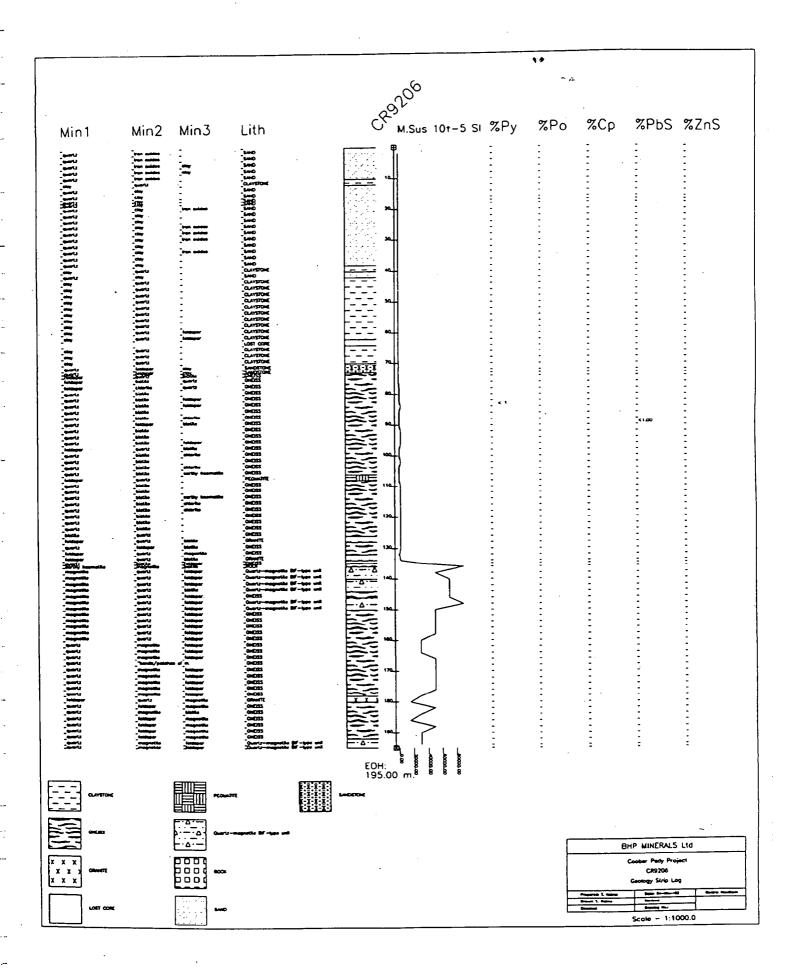
APPENDIX 2

GRAPHIC DRILL LOGS




Prepared: J. Read


BHP Minerals (Asia Pacific Division)


Prol No.: FK4

Pontifex & Associates Pty. Ltd.

L. (08) 332 6744 H. (08) 31 3816 X (08) 332 5062 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

MINERALOGICAL REPORT NO. 6186 by A.C. Purvis, PhD

September 17th, 1992

TO:

D.J. Gilbert B.H.P. Minerals 801 Glenferrie Rd HAWTHORN VIC 3122

YOUR REFERENCE:

Your letter dated 28/7/92

MATERIAL:

Percussion drill chip samples

IDENTIFICATION:

MRL 24099 to 24109, CR9204 to CR9205,

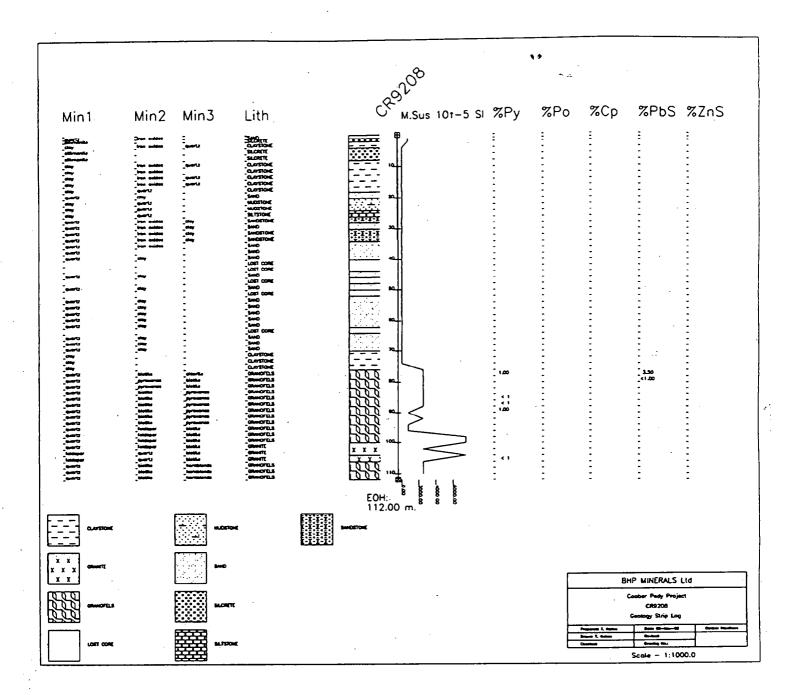
CR9206, CR9208

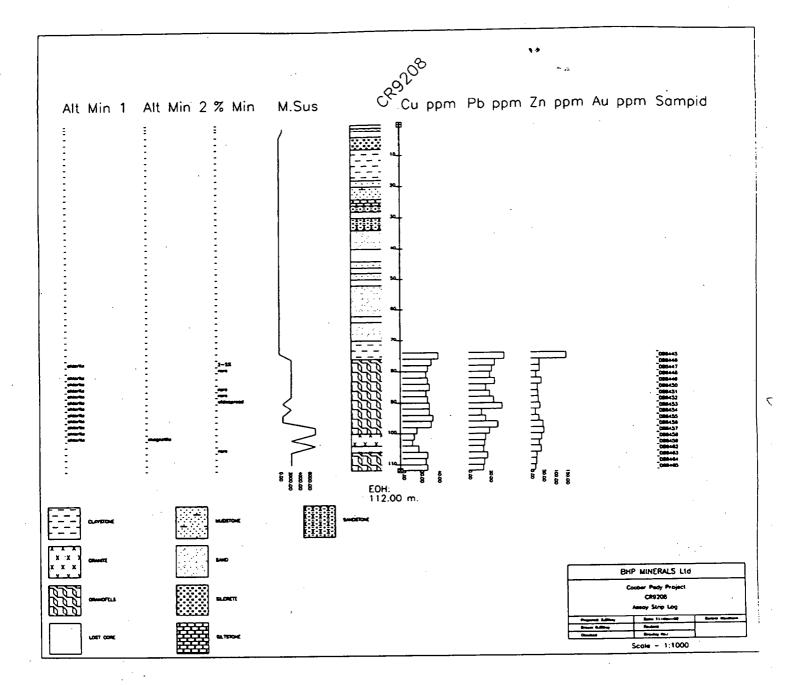
WORK REQUESTED:

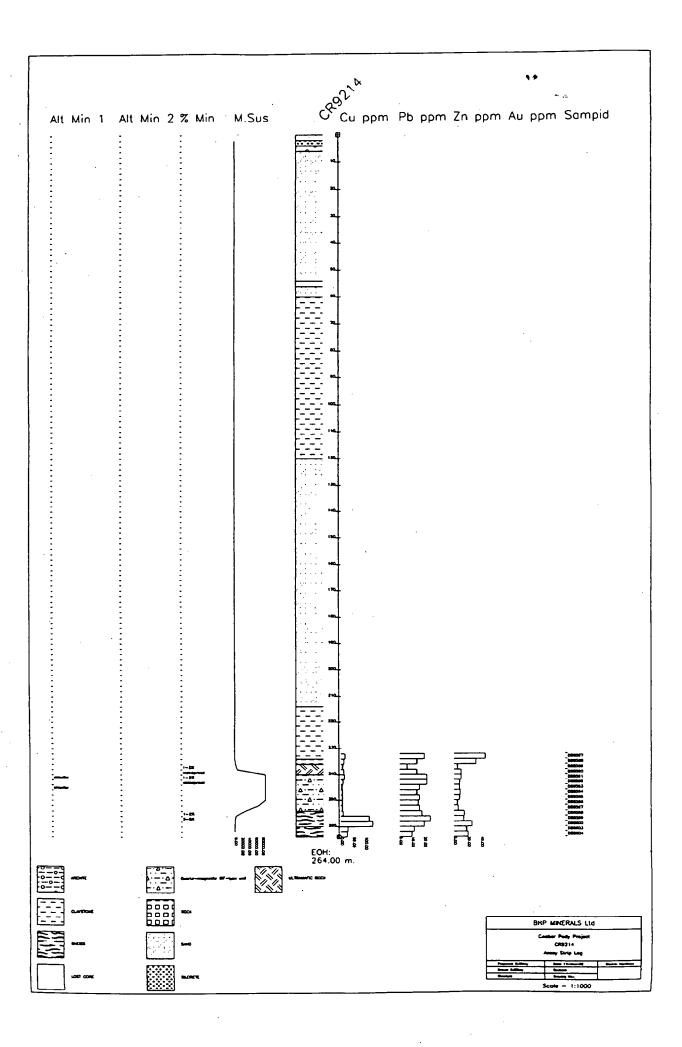
Initially preparation only of composite polished thin sections; later phone request to provide petrographic, mineragraphic descriptions and

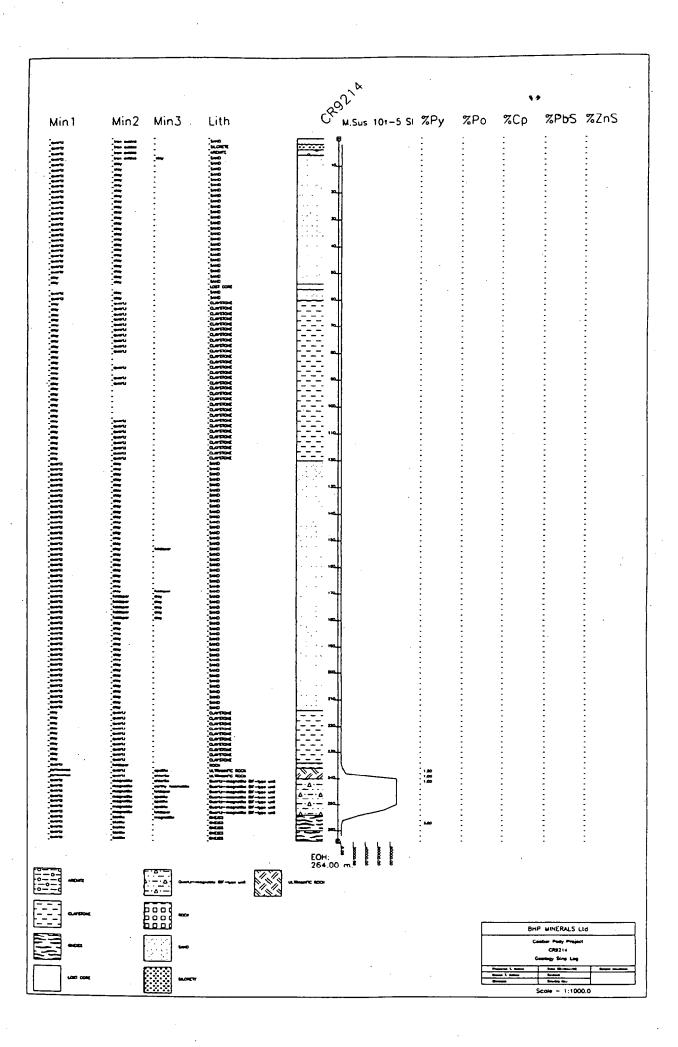
report.

SAMPLES & SECTIONS:


Returned to you with this report.


PONTIFEX & ASSOCIATES PTY LTD


MRL 24107 CR 9206, 136-138m Magnetite-apatite facies impure BIF with quartz, orthoclase, plagioclase, fresh to altered orthopyroxene and biotite.


Complex oxide lenses enclosing fresh to chlorite \pm carbonate altered orthopyroxene crystals and minor to abundant granular apatite, are abundant in this rock. The host rock is rich in coarse quartz with moderately abundant orthoclase and minor plagioclase. Partial rims of plagioclase enclose some of the oxide-sulphide lenses and there are inclusions of hercynite in the magnetite. Fine to coarse biotite (to 4mm grain size) occurs in some of the chips.

Fresh to partly oxidised coarse magnetite is the dominant opaque mineral with minor titanhematite containing ex-solution lamellae of ilmenite.

APPENDIX 3

DESCRIPTIVE DRILL LOGS

t : COOBER PEDY RIDGE

Hole Name : CR91016 Northing : 6758210

Hole Length: 100 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

g : 465000 de: -29.304541 h: 355

Longitude: 134.639598 Inclination: -90

Surface Rl : 170

n : 32))		inclination: -90					
From	- To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
	0	2	clayey ferruginous SAND	quartz clay	Medium light Red			-
	2	4	ferruginous clayey SAND	quartz clay	Medium Red			
	4	6	sandy CLAYSTONE	clay quartz	Medium light Yellow			
	6	8	sandy	clay quartz	Medium light Yellow		•	
			CLAYSTONE	•	•			
	8	10	clayey	quartz	light Tan			
			SILTSTONE	clay	1411			
	10	12	clayey	quartz	light			
			SILTSTONE	clay.	Tan	•		•
	12	14	clayey	quartz	light			
			SILTSTONE	clay	Tan			
•	14	16	clayey	quartz clay	light Tan			
			SILTSTONE	ctay	(ai)			
	16	18	clayey	quartz	light Tan			
			SILTSTONE	clay	1 311			-
	18	20	clayey ferruginous SILTSTONE	quartz clay	light Red			
	20	22	sandy	clay	light			
			CLAYSTONE	quartz	Tan	•		
	22	24	silty	clay	light			
			CLAYSTONE	quartz	Tan			

t : COOBER PEDY RIDGE

Hole Name: CR91016 Northing: 6758210 Hole Length: 100 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

g: 465000 de: -29.304541 h: 355

Northing: 6758210 Longitude: 134.639598 Inclination: -90

Surface Rl : 170

From	n - To	(m) Sample No	. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
	24	26	sandy	clay quartz	Medium light Red			
			CLAYSTONE	,				
	26	28	clayey	quartz clay	Medium light Red			
			SAND	•	•	•		
	28	30	clayey ferruginous SAND	quartz clay	Medium light Brown (Umber)			
	30	32	clayey	quartz clay	Medium light Tan			
		•	SAND	,				
	32 .	34	clayey	quartz clay	Medium Tan			
		•	SAND	,			·	
	34	36	clayey	quartz clay	Medium light Tan			
			SAND	·				
	36	38	clayey	quartz clay	light Tan			
			SAND			•		
	38	40	clayey	quartz clay	light Tan			
			SAND					\$
	40	42	clayey	quartz . clay	Medium light Tan) }-
•			SAND					
	42	44	clayey	quartz clay	Medium Grey			
			SAND					
	44	46	sandy	clay quartz	Medium dark Grey		·	
			CLAYSTONE					
	46	48		clay quartz	light Grey			
			CLAYSTONE		•			

t : COOBER PEDY RIDGE

Hole Name : CR91016

QUARTZITE

magnetite

Northing: 6758210

Hole Length: 100 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON

g: 465000 de: -29.304541 h : 355

Longitude: 134.639598. Inclination: -90

Surface Rl: 170

	11001111	•	

om - To	(m) Sa	mple No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	. Magsus
					1:				
48	50		CLAYSTONE	clay quartz	light Grey				
50	52	DL7853	CLAYSTONE	clay quartz	Medium light Grey				
52	54	DL 7854	clayey	quartz clay	light Grey				
54	56	DL 7855	GRAVEL, UNCONSOLIDATED clayey	quartz	Medium light				
			SAND	clay	Grey				
56	58	DL 7856	ARENITE	quartz biotite feldspar	Medium light Grey				
58	60	DL7857	ARENITE	quartz feldspar biotite	Medium light Grey				
60	62	DL 7858	ARENITE	quartz feldspar gypsum	Medium light Grey		,		
62	64	DL 7859		quartz feldspar	Medium light Grey				
64	66	DL 7860	ARENITE magnetite-bearing	gypsum quartz	Medium				,
		•	QUARTZITE	biotite magnetite	Grey				5
66	68	DL7861	magnetite-bearing GUARTZITE	quartz biotite magnetite	Medium Grey				
68	70	DL7862	magnetite-bearing	quartz biotite magnetite	Medium Grey				
70	72	DL7863	magnetite-bearing	quartz biotite	Medium Grey				

t : COOBER PEDY RIDGE g : 465000

Hole Name : CR91016

Northing : 6758210

Hole Length: 100 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

de: -29.304541 h : 355

Longitude: 134.639598 Inclination: -90

QUARTZITE

feldspar

Surface Rl : 170

h : 35	•>		Inclination: -yu	•		•	i e	
From	- To (m)	Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
	7 2 74	DL7864	magnetite-bearing	quartz biotite	Medium dark Grey			
			QUARTZITE	magnetite	u. c,			
	74 76	DL7865	magnetite-bearing	quartz biotite	Medium dark Grey			
			QUARTZITE	magnetite		•		•
	76 78	DL7866		quartz biotite	Medium dark Grey			
			QUARTZITE	magnetite				
	78 80	DL7867		quartz biotite	Medium dark Grey			
			QUARTZITE	magnetite				
	80 82	DL7868	magnetite-bearing	quartz biotite	Medium dark Grey			•
			QUARTZITE	feldspar				
	82 84	DL7869	magnetite-bearing	quartz biotite	Medium dark Grey	•		
			QUARTZITE ·	magnetite				
	84 86	5 DL7870	magnetite-bearing	quartz biotite	Medium dark Grey			
•			QUARTZITE	magnetite	·	•		
	86 88	B DL7871	magnetite-bearing garnetiferous	quartz biotite	Medium dark Grey			
			QUARTZITE	garnet	,			
	88 9	DL7872	? magnetite-bearing	quartz biotite	Medium dark Grey			
		•	QUARTZITE	magnetite				
	90 9	2 DL7873	s magnetite-bearing	quartz biotite	Medium dark Grey			
			QUARTZITE	magnetite				
	92 9	4 DL7874	4 magnetite-bearing	quartz biotite	Medium dark Grey			
		• •	QUARTZITE	magnetite				
	94 9	6 DL787	5 magnetite-bearing	quartz biotite	Medium dark Grey			
			0114 D T 7 1 T C	foldonon	•			

: : COOBER PEDY RIDGE

Hole Name : CR91016 Northing : 6758210

Hole Length: 100 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

Magsus

; 465000 le: -29.304541

Longitude: 134.639598

Surface Rl : 170

1: 355			Inclination : -90				*
From - To	(m)	Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration
96	98	DL 7876	magnetite-bearing	quartz biotite magnetite	Medium dark Grey		
98	100	DL7877	magnetite-bearing	quartz biotite feldspar	Medium dark Grey		
rd Samples	s Logg	ged Sampl	e Number From To				· .
ate Samplo	es' log	gged Sampl	e Number From To				

: COOBER PEDY RIDGE : 373100

Hole Name : CR91027

Northing: 6778700

Hole Length: 119

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

Amg Zone : 53 Surface Rl : 170

: 373100 e : -29.113746 : 355	Northing: 6778700 Longitude: 133.695759 Inclination: -90	Amg Zone : 53 Surface Rl : 170	Coord Reliab	ility : TAPE		•
From - To (m) Sample No.	Rocktype	Minerals :	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
0 2	ferruginous oxidised SAND	quartz iron oxides	Medium dark Red			100-500
2 4	ferruginous cherty SANDSTONE	quartz iron oxides	Medium light White		*	100-500
4 6	ferruginous SILCRETE	quartz iron oxides earthy haematite	Medium Red			10-100
6 8	ferruginous SANDSTONE	quartz iron oxides earthy haematite	Medium light Red			10-100
8 10	ferruginous SAND	quartz iron oxides earthy haematite	light White			10-100
10 12	oxidised ferruginous SAND	quartz iron oxides	light Tan			100-500
12 14	oxidised siliceous SAND	quartz	light Tan			10-100
14 16	oxidised siliceous SAND	quartz	light Red			10-100
16 18	oxidised siliceous SAND	quartz	light Red			10-100
18 20	ferruginous siliceous SAND	quartz clay	Medium light Tan			10-100
20 22	ferruginous siliceous SAND	quartz clay iron oxides	light Tan			10-100
22 24	ferruginous siliceous SAND	quartz clay iron oxides	light Red			10-100

: COOBER PÉDY RIDGE

Hole Name : CR91027 Northing : 6778700 Hole Length: 119 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

; : 373100 le : -29.113746 : : 355

Northing: 67/8/00 Longitude: 133.695759

Surface Rl : 170

Coord Reliability: TAPE

le: -29.1 : 355	13746	Inclination: -90	Surface Kt : 170	J COORD KELIAD	offity: Tape	
From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein % Vein Type Alteration	Magsus
24	26	siliceous oxidised SAND	quartz clay	Spotty Tan		10-100
26	28	siliceous oxidised SAND	quartz clay	light Tan		< 10
28	30	siliceous ferruginous SAND	quartz clay iron oxides	Medium Tan		< 10
30	32	siliceous ferruginous SAND	quartz clay iron oxides	Medium Tan		< 10
32	34	siliceous SAND	quartz clay	Medium light Grey		< 10
34	36	siliceous ferruginous SAND	quartz clay iron oxides	Medium Tan		< 10
3,6	38	siliceous ferruginous SAND	quartz clay iron oxides	light White	· ·	< 10 .
38	40				•	
		LOST CORE				*
. 40	42	siliceous clayey SAND	quartz clay	Medium light Tan		< 10 ,
42	44					
	٠,	LOST CORE				
44	46		•			

LOST CORE

LOST CORE

: COOBER PEDY RIDGE

Hole Name : CR91027

Hole Length : 119

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

ı: 373100 le: -29.113746 Northing: 6778700 Longitude: 133.695759

Amg Zone: 53 Surface RL: 170

•	355	Inclination	•	-90

From	- To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	48	50	siliceous clayey SAND	quartz clay	light Grey				< 10
	50	52							
			LOST CORE					,	-
	52	54							
			LOST CORE						
	54	56							
			LOST CORE ·						
•	56	58	oxidised clayey SAND	quartz clay iron oxides	light Grey	,			< 10
1	58	60							
			LOST CORE						
	60	62	monotonous sequence of sandy CLAYSTONE	clay quartz	Medium light Grey				< 10
	62	64	monotonous sequence of pyritic CLAYSTONE	clay quartz pyroboles	Medium light Grey				< 10
	64	66	sandy	clay	Medium light Grey				< 10 ,
			CLAYSTONE	quartz	diey				\$.
	66	68	sandy	clay	Medium light Grey				< 10
			CLAYSTONE	quartz	ui ey				•
	68	70	clayey	quartz clay	Medium light Grey				< 10
			SAND	,	2. 37	•			
	70	72	clayey	quartz clay	Medium light Grey				< 10
			SAND	/					•

t : COOBER PEDY RIDGE g : 373100

Hole Length: 119 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

de: -29.113746 h : 355

Hole Name : CR91027 Northing : 6778700 Longitude : 133.695759

Surface Rl : 170 Inclination: -90

From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
72	74	clayey	quartz clay	Medium light Grey			< 10
74	76	sandy CLAYSTONE	clay quartz	Medium light Grey			10-100
76	78	sandy monotonous sequence of CLAYSTONE	clay quartz	Medium light Grey			10-100
78	80	sandy monotonous sequence of CLAYSTONE	clay quartz	Medium light Grey			< 10
80	82 .	sandy monotonous sequence of CLAYSTONE	clay quartz	Medium light Grey			< 10
82	84	CLAYSTONE	clay	Medium light Grey			10-100
84	86	monotonous sequence of sandy CLAYSTONE	clay quartz	Medium light Grey			10-100
, 86	88	monotonous sequence of sandy CLAYSTONE	clay quartz	Medium light Grey			10-100
88	90 .	monotonous sequence of sandy CLAYSTONE	clay quartz	Medium light Grey			10-100 i.
90	92	monotonous sequence of sandy CLAYSTONE	clay quartz	Medium light Grey	•		10-100
92	94	monotonous sequence of CLAYSTONE	clay	Medium light Grey			< 10
94	96	monotonous sequence of pyritic CLAYSTONE	clay quartz pyroboles .	Medium light Grey	•		10-100

t : COOBER PEDY RIDGE

Hole Name : CR91027 Northing : 6778700

Hole Length: 119

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

ng: 373100 ide: -29.113746 :h : 355

Longitude: 133.695759 Inclination: -90

Amg Zone : 53 Surface Rl : 170

1 From -	To (m)	Sample	No. Ro	ocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
96	98	i		monotonous sequence of	clay	Medium light Grey				10-100
			(CLAYSTONE						
98	100)		monotonous sequence of	clay	Medium light Grey				10-100
				CLAYSTONE			•			
100	102	2	_	monotonous sequence of pyritic CLAYSTONE	clay quartz pyroboles	Medium light Grey				10-100
102	2 104	•		monotonous sequence of	clay quartz	Medium light Grey				10-100
				CLAYSTONE	7	,				
104	100			monotonous sequence of pyritic CLAYSTONE	clay quartz pyroboles	Medium light Grey				10-100
- 10	5 10	8		monotonous sequence of pyritic CLAYSTONE	clay quartz pyroboles	⁻ Medium light Grey				10-100
108	3 11	O DL		complex clayey SAND	quartz clay pyroboles	Medium light Grey	,			< 10
110) 11	2		sańdy	clay pyroboles	Medium light Grey				< 10
				CLAYSTONE						
11	2 11	4		siliceous	quartz	Medium Brown				< 10
				SAND		(Umber)				
11	4 11	6		siliceous	quartz	Medium light Brown				< 10
				SAND		(Umber)				
11	6 11	8 DI	L7515	siliceous pyritic SANDSTONE	quartz pyrobol es	Medium light White				< 10
11	8 12	20 DI	L7516	siliceous pyritic SANDSTONE	quartz pyroboles	Medium light White				10-100

t : COOBER PEDY RIDGE

Hole Name : CR91027

Northing : 6778700

Hole Length: 119 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J. READ

ng: 373100 ide: -29.113746

Longitude: 133.695759

Surface Rl : 170

Coord Reliability : TAPE

and Samples Logged Sample Number From To

:ate Samples logged Sample Number From To

ect : COOBER PEDY RIDGE

ing: 390375

Hole Name : CR9203 Northing : 6787121 Hole Length: 272 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude : -29.039364 imuth : 355

Longitude: 133.874102 Inclination: 90 Surface Rl: 80

Coord Reliability: SATL

1muth : 355		Inclination : 90		i				
Depth From	To (m) Sample	No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	0 2	ferruginous CALCRETE	carbonate quartz iron oxides	Medium light Tan	·		•	100-500 x 10 -5 SI Units
	2 4	ferruginous	carbonate quartz	Medium light Tan				100-500 x 10 -5 SI Units
	4 6	CALCRETE ferruginous	iron oxides earthy haematite	Medium dark				10-100 x 10 -5 si
	•	IRONSTONE	iron oxides quartz	Red				Units
	6 8	clayey	quartz clay	light White				< 10 x 10 -5 SI Units
		SAND	iron oxides					J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	8 10	clayey	quartz clay	light White			•	< 10 x 10 -5 \$1 Units
		SAND						
•	10 12	clayey	quartz clay iron oxides	Medium light White				< 10 x 10 -5 si Units
	12 14	clayey	quartz	Medium light				< 10 x 10 -5 si
		SAND	clay iron oxides	White			•	Units
	14 16	clayey	quartz iron oxides	Medium light White		•		< 10 x 10 -5 \$1 Units
		SAND	clay					‡
•	16 18	clayey SAND	quartz iron oxides	Medium light Brown				< 10 ,x 10 -5 SI Units :
			clay	(Umber)				
	18 20	clayey SAND	quartz iron oxides clay	Medium Tan				< 10 x 10 -5 \$1 Units
;	20 22	clayey ferruginous SANDSTONE	quartz clay iron oxides	Medium Tan				< 10 x 10 -5 SI Units
	22 24	clayey ferruginous SANDSTONE	quartz clay gypsum	Medium light Tan				10-100 x 10 -5 SI Units

ect : COOBER PEDY RIDGE

ing: 390375

Hole Name : CR9203 Northing : 6787121

Hole Length: 272 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude: -29.039364 imuth : 355

Longitude: 133.874102 Inclination: 90

Surface Rl : 80

Coord Reliability: SATL

Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
24	26	clayey	quartz clay	Medium light Tan				10-100 x 10 -5 SI Units
26	28	clayey ferruginous SAND	quartz iron oxides clay	light White				10-100 x 10 -5 SI Units
28	30	clayey SAND	quartz clay	Medium Tan				10-100 x 10 -5 SI Units
30	32	SAND	quartz	Medium light White				10-100 x 10 -5 SI Units
32	34	SAND	quartz	Medium light White				10-100 x 10 -5 SI Units
34	36	clayey	quartz clay	Medium light White				10-100 x 10 -5 s1 Units
36	38	clayey	quartz clay	Medium light White				10-100 x 10 -5 si Units
38	40	clayey	quartz clay	Medium light White	•			10-100 x 10 -5 SI Units
40	42	siliceous SAND	quartz	light White				< 10 x 10 -5 SI Units ¹⁶
42	44	siliceous SAND	quartz	light White				< 10 x 10 -5 SI Units
44	46	siliceous SAND	quartz	light White				10-100 x 10 -5 SI Units
46	48	siliceous SAND	quartz	light White				10-100 x 10 -5 sI Units

ect : COOBER PEDY RIDGE

ude: -29.039364

imuth : 355

ing: 390375

Hole Name: CR9203 Northing: 6787121

Longitude: 133.874102 Inclination: 90

Amg Zone : 53

Hole Length : 272 Contractor : FRANK WALSH DRILLING

Locality : EL 1718 SA Logged By : J.READ

Surface Rl : 80

Coord Reliability : SATL

Depth From	· To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	48	50	siliceous SAND	quartz	light White		,		10-100 x 10 -5 SI Units
	50	52	siliceous clayey SAND	quartz clay iron oxides	Medium light White			·	10-100 x 10 -5 SI Units
•	52	54							
			LOST CORE						
	54	56						•	
			LOST CORE						
	56	58							
			LOST CORE	•					
	58	60							
			LOST CORE						
	60	62							•
•	43	44	LOST CORE						
	62	64	LOST CORE						
	64	66	LOSI CORE						5
	-		LOST CORE				÷) Is
	66	68	2007 00112	·					
			LOST CORE			·			
	68	70	siliceous	quartz	light				
			SAND	clay	White				
	70	72	siliceous unconsolidated SAND	quartz	Pale (very light) White				

ect : COOBER PEDY RIDGE ing: 390375

Hole Length : 272 Amg Zone : 53 Surface Rl : 80

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude : -29.039364

Hole Name: CR9203 Northing: 6787121 Longitude: 133.874102

Coord Reliability : SATL

imuth : 355		Inclination: 90		·			·	
Depth From -	To (m) Samp	ole No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
77	2 74	siliceous unconsolidated SAND	quartz clay	Pale (very light) White)			
74	4 76	siliceous unconsolidated SAND	quartz	Pale (very light) White)			
70	6 78	siliceous unconsolidated SAND	quartz	Pale (very light) White)		÷	
78	8 80	siliceous unconsolidated SAND	quartz clay	Pale (very light) White)			
86	0 82	siliceous unconsolidated SAND	quartz clay	Pale (very light) White)			
8.	2 84	siliceous unconsolidated SAND	quartz	Pale (very light) White)			
. 8	4 86	siliceous unconsolidated SAND	quartz	Pale (very light) White				·
8.	6 88	siliceous unconsolidated SAND	quartz	Pale (very light) White)			.
. 8	8 90	siliceous unconsolidated SAND	quartz	Pale (very light) White)			e di
9	0 92	clayey unconsolidated SAND	quartz clay	Pale (very light) White)			·
	92 94	unconsolidated SAND	quartz	Pale (very light White) · · ·		· · · · · · · · · · · · · · · · · · ·	
9	9 4 96	unconsolidated clayey SAND	quartz clay	Medium light Grey				

ect : COOBER PEDY RIDGE ing : 390375

Hole Name : CR9203 Northing : 6787121 Hole Length : 272 Amg Zone : 53

Surface Rt : 80

Contractor : FRANK WALSH DRILLING

Locality : EL 1718 SA Logged By : J.READ

tude : -29.039364 imuth : 355 Longitude: 133.874102 Inclination: 90 Coord Reliability : SATL

imuth : 355		Ind	clination: 90						
Depth From	- To	(m) Sample No.	. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	96	98	unconsolidated clayey SAND	quartz clay	Medium light Grey				
	98	100	unconsolidated clayey SAND	quartz clay	Medium Grey	·			
1	100	102	sandy CLAYSTONE	clay quartz	Medium dark Grey				
•	102	104	LOST CORE						
	104	106	LOST CORE						
	106	108	sandy co-dominant CLAYSTONE	clay quartz	. Medium dark Grey		·		< 10 x 10 -5 SI Units
	108	110	sandy co-dominant CLAYSTONE	clay quartz	Medium dark Grey		·		< 10 x 10 -5 SI Units
	110	112	sandy co-dominant CLAYSIONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units
	112	114	sandy co-dominant CLAYSTONE	clay quartz	Medium dark Grey				< 10 /x 10 -5 SI Units ¹⁵
	114	116	sandy co-dominant CLAYSTONE	ctay quartz	Medium dark Grey				10-100 x 10 -5 SI Units
	116	118	sandy co-dominant CLAYSTONE	clay quartz	Dark Grey				10-100 x 10 -5 SI Units
	118	120	sandy co-dominant CLAYSTONE	clay quartz	Dark Grey				10-100 x 10 -5 SI Units

ect : COOBER PEDY RIDGE ing: 390375

Hole Name : CR9203

Amg Zone : 53 Northing : 6787121

Hole Length: 272 Contractor : FRANK WALSH DRILLING Locality: EL 1718 SA Logged By: J.READ

tude : -29.039364

Longitude: 133.874102

Surface Rl : 80

Coord Reliability: SATL

tude : -29.039364 imuth : 355	Longitude : 133.874102 Inclination : 90	Surface Rl : 80	Coord Reliabili	ty: SATL		
Depth From - To (m) Sampl	e No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
120 122	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			10-100 x 10 -5 SI Units
122 124 .	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey		•	< 10 x 10 -5 SI Units
124 126	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey			10-100 x 10 -5 SI Units
126 128	co-dominant sandy CLAYSTONE	clay quartz pyroboles	Medium dark Grey	rare trace (<		< 10 x 10 -5 SI Units
128 130	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			< 10 x 10 -5 SI Units
130 132	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey	•		< 10 x 10 -5 SI Units
132 134	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			< 10 x 10 -5 SI Units
134 136	co-dominant CLAYSTONE	clay. quartz	Dark Grey	·		< 10 x 10 -5 si Units
136 138	co-dominant CLAYSTONE	clay quartz	Dark Grey			< 10 ,x 10 -5 SI Units :
138 140	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			< 10 x 10 -5 SI Units
140 142	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey	: •,		< 10 x 10 -5 SI Units
142 144	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			10-100 x 10 -5 SI Units

Hole Name : CR9203 Northing : 6787121

Hole Length : 272 Amg Zone : 53 Surface Rl : 80

Contractor : FRANK WALSH DRILLING Locality : EL 1718 SA Logged By : J.READ

ect : COOBER PEDY RIDGE ing : 390375

Longitude: 133.874102

tude	:	-29.039364
imuth		355

nuth	:	355	Inclination :	90

Coord R	eliabili	ty:	SAIL
---------	----------	-----	------

Depth from - To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
144 146	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			,	10-100 x 10 -5 SI Units
146 148	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey	·			10-100 x 10 -5 SI Units
148 150	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey				< 10 x 10 -5 SI Units
150 152 ·	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey				< 10 x 10 -5 SI Units
152 154	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			•	< 10 x 10 -5 SI Units
154 156	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey				10-100 x 10 -5 SI Units
156 158	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey				< 10 x 10 -5 SI Units
158 160	co-dominant sandy CLAYSTONE	clay quartz	Dark Grey			·	10-100 x 10 -5 SI Units
160 162	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 ½x 10 -5 SI Units
162 164	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units
164 166	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units
166 168	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units

ect : COOBER PEDY RIDGE ing : 390375

Hole Length: 272 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude: -29.039364

Hole Name: CR9203 Northing: 6787121 Longitude: 133.874102 Inclination: 90

Surface Rt : 80

					-	_	-	
٠	mu	٠	h	•	٠.	٠.	٠,	
	1112	•	"	•	_	,	J	

Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
168	170	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units
170	172	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				< 10 x 10 -5 SI Units
172	174	co-dominant sandy CLAYSTONE	ċl ay quantz	Medium dark Grey				< 10 x 10 -5 SI Units
174	176	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey			•	< 10 x 10 -5 si Units
176	178	co-dominant sandy CLAYSTONE	clay quartz	Medium dark Grey				10-100 x 10 -5 SI Units
178	180	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey				10-100 x 10 -5 si Units
180	182	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey				< 10 x 10 -5 SI Units
182	184	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey	•			10-100 x 10 -5 SI Units
184	186	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey				10-100 x 10 -5 SI Units
186	188	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey			• .	10-100 x 10 -5 SI Units
188	190	monotonous sequence of CLAYSTONE	clay quartz	Medium Grey				10-100 x 10 -5 SI Units
190	192	clayey SAND	quartz clay feldspar	Medium Grey				10-100 x 10 -5 SI Units

Hole Name : CR9203

Hole Length: 272 Amg Zone: 53 Surface Rl: 80

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

ject : COOBER PEDY RIDGE
ting : 390375 itude: -29.039364

Northing : 6787121

Longitude: 133.874102

QUARTZITE

feldspar

zimuth : 355		Inclination: 90	Surface Rt : 00		CITY I SAIL				
Depth From - To	(m) Sample I	No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite	% Yein %	Vein Type	Alteration	Magsus
192	194	clayey	quartz clay	Medium Grey					10-100 x 10 -5 SI Units
		SAND	feldspar						
194	196	clayey	quartz clay	Medium Grey					< 10 x 10 -5 SI Units
		SAND	feldspar						
196	198	clayey	quartz clay	Medium Grey					< 10 x 10 -5 SI Units
		SAND	feldspar						
198	200	ctayey	quartz clay	Medium Grey				·	10-100 x 10 -5 SI Units
		SAND	feldspar						
200	202	clayey complex SAND	quartz clay feldspar	Medium Grey					10-100 x 10 -5 SI Units
202	204	clayey complex SAND	quartz clay feldspar	Medium Grey					10-100 x 10 -5 sI Units
204	206	clayey complex SAND	quartz clay feldspar	Medium Grey					10-100 x 10 -5 SI Units
206	208	clayey complex SAND	quartz clay feldspar	Medium Grey					10-100 x 10 -5 sI Units
208	210 .	clayey complex SAND	quartz clay feldspar	Medium Grey					10-100 x 10 -5 SI Units
210	212	clayey complex SAND	quartz feldspar clay	Medium Grey					10-100 x 10 -5 SI Units
214	216 DB8	9556 garnetiferous siliceous QUARTZITE	quartz K-feldspar garnet	light White	• .				100-500 x 10 -5 SI Units
216	218 DB8	1557 siliceous foliated	quartz biotite	light . White	rare trace (<	trace 1%)	chlorite	•	100-500 x 10 -5 SI Units

ect : COOBER PEDY RIDGE

Hole Name : CR9203

Contractor : FRANK WALSH DRILLING Locality : EL 1718 SA Logged By : J.READ

tude : -29.039364 imuth : 355

ing: 390375

Hole Length : 272 Amg Zone : 53 Surface Rl : 80 Northing: 6787121 Longitude: 133.874102

imuth: 355			ination : 90	Surface Rt : 60	Coord Retiabiti	ty: SAIL				
Depth From - To	(m) S	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite %	Vein X	Vein Type	Alteration	Magsus
218	220	DB8558	foliated granitic GRANOFELS	quartz biotite feldspar	Medium light White		trace 1%)	chlorite		100-500 x 10 -5 SI Units
220	222	DB8559	garnetiferous foliated GRANOFELS	quartz biotite feldspar	light White	rare trace	trace 1%)	chlorite		100-500 x 10 -5 SI Units
222	224	D88560	garnetiferous siliceous GRANOFELS	quartz biotite garnet	light White		minor (1- feldspar	irreg. patches, not re chlorite eins	100-500 x 10 -5 SI Units
224	226	DB8561	garnetiferous siliceous GRANOFELS	quartz biotite feldspar	Medium light White	widespread trace (<			irreg. patches, not re chlorite eins	100-500 x 10 -5 SI Units
226	228	DB8562	garnetiferous siliceous GRANOFELS	quartz biotite feldspar	Medium light White				pervasive zone chlorite	100-500 x 10 -5 SI Units
228	230	D88563	garnetiferous siliceous GRANOFELS	quartz biotite feldspar	Medium light White	rare trace (<	minor (1- chlorite	pervasive zone chlorite	100-500 x 10 -5 SI Units
230	232	DB8564	garnetiferous siliceous GRANOFELS	quartz biotite feldspar	Medium light White	·			pervasive zone chlorite	100-500 x 10 -5 SI Units
232	234	DB8565	garnetiferous siliceous GRANOFELS	quartz biotite feldspar	Medium light White				pervasive zone chlorite	100-500 x 10 -5 SI Units
234	236	DB8566	massive VEIN	quartz barite	light White					1000-5000 x 10 -5 SI Units
236	238	DB8567	magnetite-bearing siliceous Quartz-magnetite unit	quartz magnetite earthy haematite	Medium dark Black (Noir)	widespread trace (<				20000-40000 x 10 -5 SI Units
238	240	DB8568	altered siliceous Quartz-magnetite unit	quartz magnetite barite	Medium Black (Noir)	-	co- minant (25-50%)		disseminated se barite acent to veins	20000-40000 x 10 -5 SI Units
240	242	DB8569	MAGNETITE	magnetite barite earthy haematite	Medium dark Black (Noir)		co- minant (25-50%)	barite		>100000 x 10 -5 \$I Units

oject : COOBER PEDY RIDGE

iting: 390375

Hole Name : CR9203 Northing: 6787121

Amg Zone : 53 Surface Rl : 80

Hole Length: 272

Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

titude: -29.039364 \zimuth : 355

Longitude: 133.874102 Inclination: 90

Depth From -	To (m)	Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite %	Vein X	Vein Type	Alteration	Magsus
242	244	DB8570	MAGNETITE	magnetite barite earthy haematite	Medium dark Black (Noir)	rare trace (<	co- minant (25-50%)	barite		>100000 x 10 -5 SI Units
242	244	DB8571	MAGNETITE	magnetite barite earthy haematite	· Medium dark Black (Noir)	rare trace (<	co- minant (25-50%)	barite		>100000 x 10 -5 SI Units
244	246	D88572	Quartz-magnetite unit	quartz magnetite barite	Medium dark White		co- minant (25-50%)	barite		>100000 x 10 -5 SI Units
246	248	DB8573	Quartz-magnetite unit	quartz magnetîte barîte	Medium dark White		co- minant (25-50%)	barite ·		20000-40000 x 10 -5 SI Units
248	250	DB8574	Quartz-magnetite unit	quartz magnetite feldspar	Medium dark White				irreg. patches, not re earthy haeins	1000-5000 x 10 -5 SI Units
250	252	D88575	foliated garnetiferous GNEISS	quartz biotite feldspar	Medium dark Green				pervasive zone chlorite	1000-5000 x 10 -5 SI Units
252	254	DB8576	foliated GNEISS	quartz biotite feldspar	Medium dark Black (Noir)	1-2%			pervasive zone chlorite	5000-10000 x 10 - 5 SI Units
254	256	DB8577	massive Quartz-magnetite unit	quartz magnetite barite	Dark Black (Noir)		co- minant (25-50%)	barite		20000-40000 x 10 -5 SI Units
256	258	DB8578	massive micaceous Quartz-magnetite unit	quartz magnetite biotite	Dark Black (Noir)					10000-20000 x 10 -5 SI Units
258	260	088579	foliated GNEISS	quartz biotite feldspar	Medium dark Black (Noir)					1000-5000 x 10 -5 SI Units
260	262	DB8581	garnetiferous massive GRANOFELS	quartz biotite feldspar	Medium White	rare trace (<				100-500 x 10 -5 . SI Units
260	262	D88580					•			

ject : COOBER PEDY RIDGE
ting : 390375

RIDGE Hole Name : CR9203

Northing : 6787121

Hole Length: 272 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

zimuth : 355

itude: -29.039364

Longitude: 133.874102 Inclination: 90

Quartz-magnetite unit

Surface Rl : 80

Coord Reliability: SATL

Depth From - To	o (m) :	Sample No.	Rocktype	. н	inerals	Colour	Pyrite/Pyrrhotit	e X Vein X	Vein Type	Alteration	Magsus
262	264	DB8582	garnetiferous massive GRANOFELS	1	quartz biotite feldspar	Medium White	rare trace (<	rare ace (<<1%)	pyroboles	pervasive zone chlorite	100-500 x 10 -5 SI Units
264	266	088583	garnetiferous foliated		quartz biotite	Medium Black	rare trace (<				1000-5000 x 10 -5 \$1 Units

(Noir)

10 -5 GRANOFELS (Noir) 266 268 DB8584 magnetite-bearing magnetite Dark rare trace pervasive zone 40000-60000 x 10 pyroxenes Black (< earthy ha -5 SI Units ROCK quartz (Noir) 268 270 D88585 graphitic quartz Dark irreg. patches, not 40000-60000 x 10 magnetite Black re earthy haeins -5 SI Units

270 272 DB8586 graphitic quartz Dark irreg. patches, not 20000-40000 x 10 magnetite Black re earthy haeins -5 SI Units

Quartz-magnetite unit biotite (Noir)

Standard Samples Logged Sample Number From To
CR9203 D88580 260 262

Duplicate Samples logged Sample Number From To
CR9203 DB8571 242 244

ct : COOBER PEDY RIDGE ng : 373100

Hole Name : CR9214 Northing : 6778670

: CR9214 Hole Length : 264 6778670 Amg Zone : 53 Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

ude: -29.114016 nuth: 355 Longitude: 133.695755 Inclination: -90 Surface Rl : 150

Coord Reliability: TAPE

נננ . וו	•	tillation70			•		
th From - T	o (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
102	104 .	monotonous sequence of	clay	Medium light Grey			< 10 x 10 -5 \$ Units
	•	CLAYSTONE		0	·		-
104	106	sandy	clay quantz	light Grey		•	< 10 x 10 -5 s Units
		CLAYSTONE	qual (2	dicy			onits
106	108	sandy	clay	light			< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
108	110	sandy	clay	light	•		< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
110	112	sandy	clay	light			< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
112	114	sandy	clay	light			< 10 x 10 -5 s
		ÇLAYSTONE	quantz	Grey			Units
114	116	sandy	clay	light			< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
116	118	sandy	clay	φ. light			< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
118	120	sandy '	clay	light			< 10 x 10 -5 s
		CLAYSTONE	quartz	Grey			Units
120	122	clayey	quartz	light			< 10 x 10 -5 s
120	122		clay	Grey			Units
		SAND					
122	124	clayey	quartz clay	light Grey			< 10 x 10 -5 5 Units
		SAND	,	•			
124	126	clayey	quartz	light White			< 10 x 10 -5 s
		SAND	clay	white	•		Units

ct : COOBER PEDY RIDGE

Hole Length: 264

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

ng: 373100 ude: -29.114016 muth : 355

Hole Name: CR9214 Northing: 6778670 Longitude: 133.695755 Inclination: -90

Amg Zone : 53 Surface Rt : 150

Coord Reliability: TAPE

Depth From - To (m) Sampl	e No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
126 128	clayey	quartz clay	light White			10-100 x 10 -5 SI Units
128 130	clayey SAND .	quartz clay	light White	· .		< 10 x 10 -5 SI Units
130 132	clayey	quartz clay	light White			10-100 x 10 -5 SI Units
132 134	clayey	quartz clay	light White			
134 136	clayey SAND	quartz clay	light White			
136 138	clayey SAND	quartz clay	light White			
138 140	clayey SAND	quartz clay	light White			
140 142	clayey	quantz clay	light White			
142 144	clayey SAND	quartz clay	light White			.
144 146	clayey SAND	quartz clay	light White			₽
146 148	clayey SAND	quartz clay	light White			
148 150	clayey	quartz clay	Pale (very light White	:)		

ect : COOBER PEDY RIDGE ing: 373100

Hole Name : CR9214 Northing: 6778670

Hole Length: 264

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude : -29,114016 imuth : 355

Longitude: 133.695755 Inclination: -90

SAND

Amg Zone : 53 Surface Rl : 150

clay

Coord Reliability : TAPE

imuth : 355	Incl	lination : -90	•		•		;	•
Depth From - To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
150 1	52	clayey	quartz clay	Pale (very light) White	•		·	
152 1	54	clayey SAND	quartz clay feldspar	Pale (very light) White				
154 1	56	clayey SAND	quartz clay	Påle (very light) White				
156 1	58	clayey SAND	quartz clay	Pale (very light) White				
158 1	60	clayey SAND	quartz clay	Pale (very light) White				
. 160 1	62	clayey SAND	quartz clay	light Grey				
162 1	64	clayey SAND	quartz clay	light Grey				
164 1	66	clayey SAND	quartz clay	light Grey	·			
166 1	68	clayey SAND	quartz clay	light Grey				,
168 1	70	SAND	quartz clay feldspar	light Grey				
170	172	SAND	quartz feldspar clay	light White				
172	174		quartz feldspar	light White	:		•	

ct : COOBER PEDY RIDGE ng : 373100 ude : -29.114016 muth : 355

Hole Length: 264

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

Hole Name : CR9214 Northing : 6778670 Longitude : 133.695755

Amg Zone : 53 Surface Rl : 150

Coord Reliability : TAPE

Inclination: -90	551 1566 Kt 1 156	COOLG RECTABLITY . TAP
		•

Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
174	176	SAND	quartz feldspar clay	light White				
176 1	178	SAND	quartz feldspar clay	light White		,		
178 1	80	SAND	quantz feldspar clay	light White			•	
180 1	82	clayey	quantz clay	light White				10-100 x 10 -5 st Units
182 1	84	clayey	quartz clay	light White			1	10-100 x 10 -5 SI Units
184 1	86	clayey	quartz clay	light White	,			10-100 x 10 -5 SI Units
186 1	188	clayey	quartz clay	light White				10-100 x 10 -5 SI Units
188 1	90	SAND	quartz clay	Pale (very light) White		•		10-100 x 10 -5 st . Units
190 1	92	SAND	quartz clay	Pale (very light) White			·	10-100 x 10 -5 SI Units ,
192 1		SAND	quartz clay	Pale (very light) White				10-100 x 10 -5 SI Units
194 1	96 .	SAND	quartz clay	Pale (very light) White				10-100 x 10 -5 \$1 Units
196 1	98	SAND	quantz clay	Pale (very light) White				10-100 x 10 -5 sI Units

Hole Length : 264 Amg Zone : 53 Surface Rl : 150

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

ct : COOBER PEDY RIDGE ng : 373100 ude : -29.114016 muth : 355

Hole Name: CR9214 Northing: 6778670 Longitude: 133.695755 Inclination: -90

Coord Reliability : TAPE

Depth From - To (m) Sample No.	Rocktype	Minerals	Ĉölour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
198 200	SAND	quartz clay	Pale (very light) White			•	10-100 x 10 -5 SI Units
200 202	clayey	quartz clay	Pale (very light) White)			10-100 x 10 -5 SI Units
202 204	clayey	quantz clay	Pale (very light) White)			10-100 x 10 -5 SI Units
204 206	clayey	quantz clay	Pale (very light) White	·)			10-100 x 10 -5 SI Units
206 208	clayey	quartz clay	Pale (very light) White				10-100 x 10 -5 s1 Units
208 210	clayey	quartz clay	Pale (very light) White				10-100 x 10 -5 sI Units
210 212	clayey	quartz clay	Pale (very light) White	i			10-100 x 10 -5 SI Units
212 214	clayey	quartz clay	light White			·	10-100 x 10 -5 SI Units
214 216	sandy CLAYSTONE	clay quartz	Dark Grey		,		10-100 x 10 -5 SI Units
216 218	sandy massive CLAYSTONE	clay quartz	Dark Grey				10-100 x 10 -5 SI Units
218 220	sandy massive CLAYSTONE	clay quantz	Dark Grey				10-100 x 10 -5 SI Units
220 222	massive CLAYSTONE	clay quartz	Dark Grey				10-100 x 10 -5 SI Units

ect : COOBER PEDY RIDGE ing: 373100

tude : -29.114016

imuth : 355

Hole Name : CR9214 Northing : 6778670

Longitude: 133.695755 Inclination: -90

Hole Length : 264 Amg Zone : 53 Surface Rl : 150

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

Coord Reliability: TAPE

Depth From - To (m) Sample No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite	X Vein X	Vein Type	Alteration	Magsus
222 224 massive	clay quantz	Dark Grey			•		10-100 x 10 -5 sI
CLAYSTON		di cy					Units
224 226 massive	clay quartz	Dark Grey					10-100 x 10 -5 SI Units
CLAYSTON		•			•		units
226 228 massive	clay quartz	Dark Grey					10-100 x 10 -5 SI Units
CLAYSTON	E .	·				•	Ouitz
228 230 massive	clay quartz	Dark Grey	·				10-100 x 10 -5 SI Units
CLAYSTON	E						UIIIES
230 232 massive sandy	clay quartz	Dark Grey					10-100 x 10 -5 SI Units
CLAYSTON	E						GIII (3
232 234 DB8587 massive sandy CLAYSTON	clay quartz E	Dark Grey				•	10-100 x 10 -5 SI Units
234 236 DB8588 Rock	quartz feldspar	Medium Red			,		10-100 x 10 -5 SI Units
236 238 DB8589 graphiti siliceou ULTRAMAF	quartz .	Very dark Black (Noir)	1-2%	minor (1	- earthy haematite	٠,	1000-5000 x 10 -5 SI Units
238 240 DB8590 graphiti altered ULTRAMAF	quartz	Very dark Black (Noir)	widespread trace (<	minor (1)	- quartz		5000-10000 x 10 -
240 242 DB8591 graphiti altered Quartz-m	quartz magnetite agnetite unit chlorite	Medium dark White	widespread trace (<			pervasive zone chlorite	80000-100000 x 10 -5 SI Units
242 244 DB8592 graphitic	quartz magnetite	Medium White					80000-100000 x 10
Quartz-m	agnetite unit earthy haematite		•.	·			-5 SI Units
244 246 DB8593 graphiti altered	quartz magnetite agnetite unit feldspar	Medium White		minor (1	- chlorite	irreg. patches, not re chlorite eins	80000-100000 x 10 -5 SI Units

ect : COOBER PEDY RIDGE ing: 373100

Hole Name : CR9214

Amg Zone : 53

Hole Length : 264 Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

tude : -29.114016 Longitude: 133.695755 imuth : 355

Northing : 6778670 Inclination : -90

Surface Rl : 150 Coord Reliability : TAPE

Depth From - To	o (m) S	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein % Vein Type Alter	ation Magsus
246	248	DB8594	graphitic altered Quartz-magnetite unit	quartz magnetite apatite	Medium White	sub- chlorite dinate (5-25%)	80000-100000 x 10 -5 SI Units
248	250	DB8595	graphitic altered Quartz-magnetite unit	quartz magnetite apatite	Medium White		80000-100000 x 10 -5 SI Units
250	252	DB8596	graphitic altered Quartz-magnetite unit	quartz magnetite apatite	Medium White		80000-100000 x 10 -5 SI Units
252	254	DB8597	graphitic Quartz-magnetite unit	quartz magnetite feldspar	Medium White		60000-80000 x 10 -5 SI Units
254	256	DB8598	complex micaceous GNEISS	quartz biotite magnetite	Dark Black (Noir)		20000-40000 x 10 -5 SI Units
256	258	088599	pyritic micaceous GNEISS	quartz biotite	Dark Black (Noir)	2-5% minor (1- pyroboles	1000-5000 x 10 -5 SI Units
258	260	D88600	micaceous GNE1SS	quartz biotite	Medium light White		500-1000 x 10 -5 SI Units
258	260	DB8601	micaceous GNE1SS	quartz biotite	Medium light White		500-1000 x 10 -5 \$1 Units
258	260	DB8602					\$ }
260	262	DB8603	siliceous GNEISS	quartz biotite	light White		100-500 x 10 -5 SI Units
262	264	DB8604	siliceous GNEISS	quartz biotite	light White		100-500 x 10 -5 SI Units

ect : COOBER PEDY RIDGE

Hole Name : CR9214

Hole Length: 264

Contractor : FRANKWALSH DRILLING

Locality: EL 1718 SA Logged By: J.READ

ing: 373100 tude: -29.114016

CR9214

Northing : 6778670 Longitude: 133.695755 Amg Zone : 53

Surface Rl : 150

Coord Reliability: TAPE

Standard Samples Logged Sample Number From

DB8602

258 .

258

CR9214

DB8601

260

260

Duplicate Samples logged Sample Number From To

COOBER PEDY RIDGE PROJECT DRILL HOLE HEADER SHEET

HOLE NAME: CR 9/16 INCLINATION: VERTICAL
TOTAL DEPTH (m):
START DATE: 19.9.91 FINISH DATE: 20.9.91
EASTING CO-ORDINATE (m): 465000
NORTHING CO-ORDINATE (m): 6758210
REDUCED LEVEL (m):
GRID TYPE (AMG, GEO, LOCAL): AMG
ACCURACY (TOPO, GRID, SURV, OTHER):
PROJECT NAME: COOBER PEDY RIDGE
AREA (EL NUMBER OR NAME):
SHEET NAME (100,000 scale topo): COOBER PEDY
JOB NUMBER:
LOGGED BY:
CONTRACTOR FOR DRILLING: WALSH PTY LTO
RIG TYPE: &x& CUSTOMBUILT
REHABILITATION (Y/N):
COMMENT ON DRILL HOLE: Large scale questice baroling - up to I'm - reflected in MT Content (mag-su READURILLISHT READURILLISHT All and over I'm them
READIDRIELISHT readings) - enriched over In them

BHP MINERALS

COOBER PEDY RIDGE PROJECT

0F 2 HOLE NO. CR9116

	HOLE LITTLE CCV					STRUCTURES MINERALISATION :						ALTERATION 7.			COMMENTS
FLAG	HOLE NAME	INTERVAL	SAMPLE	LITHOLOGY		STRUCTURES		I I I I I I I I I I I I I I I I I I I		VEINING			Ν.	1 1	
Flag	: Hole Name	From To (metres) *	Sal	Rock Type QI Q2	Name Amount Name Nome Lightness Hue	Grain Size Contact Type Contact	Suffide Occurence Mode Suffide Grain Size	Pyrcholite Pyrcholite Chalcopyrite Collena Sphalerite O Sphalerite O O O O O O O O O O O O O O O O O O O	50 12 7071 72	Velo Mineral Type I Type I Velo Mineral	و ا	28 Mineral Mineral Mineral	99 Atteration Type 88 Mineral 1	Magn	Comments
1 2	3 4 5 6 7 8	9 10 11 12 13 14 15 16 17 16		25 26 27 28 29 30 31 32 33 34 35 36 3		T WI	3,000								
08	CR9116	0000240	-1-1-1-1-1-1			J W 1									
$\vdash \vdash \vdash$	++++	{}- 		SANDFECT DE		W.				3					
\vdash		0640			CYTQZ 6Y	Α									
Н	- - - -	0830	` - - 	SUUTCH		6 W									
$\mathbb{H}^{!}$		1230		S, L, T, C, T, D,	" 	G N				3					
-		┨┤┤┩╏ ┼	 		02(07) 77	6 11							1111		
		1635			QZCC7 71	A UI						1111		- -	
\vdash	++++	1840	-1-1-1-		02.664 777	G							1111	\Box	
-		203			QZCLY TR	16 6					444	1111	 		
H		2 2 3	 		C4CQ2 77	İ. W			144			$\bot \downarrow \downarrow \downarrow$	$\frac{1}{4}$		
\parallel		2436		CLAYSL D		G W			111	1 1 1 1		+++	1111		
\Box		263	0	CLAYSA		J W	<u> </u>		111			444	 	+++	1
1		283		SANDEY	azccy 6et	To W	11111		111		444	4+++	 	1-1-1	
		353	0	1-1-1-1-1-1	QZCC9 641	k w	11111	11111	$\downarrow\downarrow\downarrow$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+++	 - 	+++	
\prod			0	SANDLYD	PZCCY 6T	HW	44444	111111	++	1 1 1 1 1 1	+++	1111		++	
\Box		342		SANDCYD	OZMCY STU	J	<u>/ </u>	11111	111			+++		+++	Woter Table.
		3 2 3	0	SANDCHD	QZCCY GT	KW			11-1	- - - -		11-1-1	11111	++	
П		3 8 3	0	SANDCYID	02864 77	l k l l			444	1		+++	++++		miner gravels
		403	0	SANDCY	02 (14 77	L	<u>/</u>		+++	1			++++	+++	
		425	0	SANDCH	-02CC4 6T							11-1-1	++++	+++	
		445	0	5ANDC4 1	092 Sc4 5E	1 7 1	2			-		+++	╌╁╌┼╶┼╌┼	+++	
		465	0	CLAYSA	DC 4 CQ Z 4E	A							- 	+++	
Ш		484	0	CLAY	OCYMQZ 7E	A W	2							+++	
		505	0	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	DCYMOR 7E	<u> </u>	2	$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$			╁╁╂┫			+++	-
Ш		525	001785	3 CL47	0 6 7 7 0 2 6 6	A	2	 		++++	++-	 		-	
		5 4 5	b 5	`\\`\``\``\`\\\\\\\\\\\\\\\\\\\\\\\\\	0 Q Z S E Y 7 E	-1-1-1-	2	 			┼┼┼	+++	++++	+++	Weathered bayment -
Ц		5 6	0 5	SANDCY	002667 65	I G I W	2	┡ ╁┦╏╏┼┼┤			+++			- +	civit ex biotite.
c :		5 6 6	D D L 7 8 5 K	, 14 1. 16 1. A 1. The	00 2 M B1 M = 0 6 E	G 15 1 1 m	2								K. 1010 C. 55.6.
			1. 2.		≪1% 1 < 1% 2 1-2%			5 10-20% 6 20-40%		40-60% 60-80%	9	80-99 100%	1%		

BHP MINERALS

COOBER PEDY RIDGE PROJECT

SHEET _ 2 _ OF _ 2 _ HOLE NO. CR9116

FLAG HOLE NAME	INTERVAL	SAMPLÉ.	LITHOLOGY	STRUCTURES	MINERALISATION	VEINING	ALTERATION	COMMENTS
Flag Hole Name	From To	% Recovery Sample Preflx Sample Number	Rock Type Qualifier Rock Rock Type Qualifier Rock Rock Rock Rock Rock Rock Rock Rock		Mineralisation Mineralisation Sulfide Occurence Mode Sulfide Occure	Yein Mheral Type I Type I Yein Mheral	10 10 10 10 10 10 10 10	Magarelic Magare
1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23 24	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 424 34 44 54 647 464	95051 52 53 54 55 56 57	15859 6061 6263 64 55 66 67 68 69 70 71	7213141319701	3,000,01,000,000	Chrok er BI
C2 CR911		0017857	AREN DOZSEDSBI 6EG	H W2				4
 		56	AREN 0923F03GY 6F6	4 42				``
RR 4W1				NERALSP	2 50 81 -64 95 11	MEMER	VILAICEOVEINS	
KR 4~1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MENTED WEATHERED ROCK M	H W3	m T 4			MT - DI, IA.
	6 4 6 6 9	6 6		<i>H</i> W3	MT5			
	70	62	QZITMT SWDQZSBIMMT SER	T W3	m 73			-
	72		QZITMT GNOQZSBISMT SER	T	MT 4			"
	74		OZITMT GNOPZSBISMT 4ER		MTH			
	76	65		7	Mrs			· · · · · · · · · · · · · · · · · · ·
	78	66	QZITMT GNDQZSBISMT 4ER		MT S			,
	اج	(67		-	mrs			Trou Mag-Muse?
	82	68	QZITMT GNDQZSBISFD 4ER	I	M T S			
	84	6 9		2	m 7 S	* 19tz-m	20- play-apalie - CIF	
	86	110	QZITMT GNDQZSBISMT 4ER		m75			Trace fine 80.
	88	7,	721TMTGAGNDQZSBITGA 4ER	I)	MTS			Troce fine gr. pale pink GA.
	90	72	QZITMT GNDQZSBISMT 4ER	<u> </u>	mī s			
	92	73		I	m75			
	94	114	DZITMT SWDQZ SBISMT 4ER	T)	m 1 5			
	9 4	7 5	5 QZI7MT GWDQZSBISED 4ER	I	MTS			
	98	76	DZITMT GWDQZSBISMT 4ER	工	m 1 5			
	106	0× 787 7	7 DZITMT GNDQZSBISFOSER	I L	mr s		 	
				4 1 1 1 1 1 1 1 1		111111		
							┼┼┼┼┼┼┼┼┼	
			<u> </u>			- 	┼┼┼┼┼┼┼┼┼┼	++
				4			┼┧╎┩┞┼┡╋ ┼┼┼┼	+++
		2 ((SK m. GA < 41% 1 < 1%)	3 2-5% 4 5-10	, , , , , , , , , , , , , , , , , , , ,	40-60% 60-80%	9 80-99% > 100%	

COOBER PEDY RIDGE PROJECT DRILL HOLE HEADER SHEET

HOLE NAME: CR9127 INCLINATION: -90° N
TOTAL DEPTH (m): 19
START DATE: 23/10/91 FINISH DATE: 25/10/91
EASTING CO-ORDINATE (m): 373100 É
NORTHING CO-ORDINATE (m): 6778700 N
REDUCED LEVEL (m):
GRID TYPE (AMG, GEO, LOCAL): AMG
ACCURACY (TOPO, GRID, SURV, OTHER):
PROJECT NAME: Cooper Pedy Rudge
AREA (EL NUMBER OR NAME): Safar: EL 1718
SHEET NAME (100,000 scale topo):
JOB NUMBER: FK4
LOGGED BY: J Read
CONTRACTOR FOR DRILLING: Frank Walsh Drilling
RIG TYPE: Walsh Buit 818 RC
REHABILITATION (Y/N):
COMMENT ON DRILL HOLE: Diviled on aerometric anomaly 32 EDH in flowing sand, road not control. 72 nd casing left in hole in case we need

BHP MINERALS

COOBER PEDY RIDGE PROJECT

SHEET 1 OF 3 HOLE NO. CR9127

LOGGED BY SREET DATE 25/10/91

						<u> </u>														
FLAG	HOLE NAME	INTERV	/AL		SAMPLE	LITHOLOGY	. /		STRUCTURES		MINERALIS	SATION	V	EINING		ALTER	ATION		-	COMMENTS
Flag	Hole Name		Ta (melres)	% Recovery	Sample Pretix Sample Number	Rock Type OI 02 E E E E E E E E E	Hue I Anopos Ano		Contact Type Contact Type Interbeds Weathering	% Mineralisation		98949999999999999999999999999999999999	× > Z 73 74	200 Velt. Mineral	Alteration Type I	Mineral 1 99 Mineral 2	Alleration Type 2	Mineral 2	Susceptibility	Comments
	3 4 5 6 7 8	9 10 11 12 13	3 14 15 16		19 20 21 22 23 24	25 26 27 2825 3031 32 53 3435 3637 38 39 40 44 42 43 4 44 5 ~ ~ ~ ~ ~ F E O y F Q P O Z 5 F E	4847 484950 4 R U I	0 5	1 25 23 24 23 2		5859 6061 626 36 463	500760037411	(4)(3)		7,000				100	ccent sand.
1 1 1 1	 	2	4	\neg		SNSTFECHEDDOZMFE	6 W R H	+	1	11									0	herty sandshowe
	CR9127	4	6			SILCEE CHDQZMFEMHE	SRW H	1	1 2	11	11111								۶ ۱۱ ۲	iviete or welly
			8			SNSTEE CHDQZSFEMHE	620 7	+		d					111				>1 5	arymor dody
08		8	10			SAND FE DQZ MFE MHE	7118	1	121	T									۶۱ ^۲	oarse ets saud
20	CONKA		LEM A		T1 C 9	FERRUGI NOUS CHASTS		-												
08		10	12	30		SANDOX FE DQZ TEE	77 1	\ \		1										nusually magnetic
08	C 29, 27	12	114	50		SANDOXSI >QZ	777	1	W	1									> v	× × 1
08	c 2 a 1 2 7	14	16	\vdash		5 A N > O N S \ E Q > Q Z	TREE			1									< 1 0	door to light punt
OB	CRa1 27	16	111	30	,	SANDOXSIEQZQZ	7 RE		W W										41	
08	CR9127	18	20	20		SANDIFESICYDQZMCY	6TU 6	6	7	$\sqrt{1}$								Ш	> ()	was charge to
०छ	CR9, 27	20	22	1		SANDFESICYDRZHCYTFE	170	ŝ	2	1									> 1	
08	CR9127	22	24			SANDFESICYDQZMCYTFE	780	ł	W	$\sqrt{}$									> 1	
OB	CR9127	24	26	10		SANDSIOXCYDQZSCY	ST	+	N.	\prod									716	colon change to
OB	CR9127	26	28	11-		S.AND SI OXCY DQ Z SCY	77 E]	Ľ	W	١								Ш	<u> </u>	
OB	CR9127	28	30	05		SANDSIFECYDQZSCYNFE	STR	3	2	۱				i i					4	COCISM SON
D B	CR9127	30	32	0 5		SANDSIFECYDQZSCYMFE	STR	K	7	$ \Box $									 	sother ut coarse sound
80	C R 9 1 2 7	32	3 4	10		SAMDSI CYDQZSCY	GET :	3	2	\				7						color, poorly corted.
08	CR9127	34	36	30		SANDSIFECYDQZSKYNFE	STE	6	V										1	fine sand
08	CRQ127	36.	. 38	30		SANDSIFECYDQZMCYHFE	7 WT	K		П				1	$\perp \downarrow \downarrow \downarrow$	$\perp \downarrow \downarrow$		\bot	< 1	ironstone clasts
08	CR9127	38	40	00		L05T										444				
0 3	CR9127	40	42	10		SANDSI KYDQZSCY	670	ĸ	W	1				A A		$\perp \downarrow \downarrow \downarrow$			<u> </u>	
OB	CR9127	42	44			LOST										$\perp \downarrow \downarrow$		44-		
03	CR9127	44	46	00		4057				ot						114		44-		
0 ८	CR9127	46	48	00	<u> </u>	LOST						11111						11-		ob and all observed
08	CRQ1 27	48	50	05		SANDSI CYDQZCCY	TE:	н	\ \	١				111				\bot	411	water table. A
OB	CR9127	50	5 2	00		6057	1					 	\Box	1			+++	$\perp \!\!\! \perp$		water table of
οв	CR9127	52	54	00	11111	1057					 		+++	1111			+++	$+\!\!+$		taken
20	CR9127	54	56	00		1051		Ц					Щ		ШШ				Ш	
		·			<i>i</i> .	< «1% 1	< 1%		3 2-5	5%	. 5 10-2	0% 7	40-6	50%	9 8	30-99%				

BHP MINERALS

COOBER PEDY RIDGE PROJECT

SHEET_2_OF_3__HOLE NO. CRAINT

LOGGED BY J Read DATE 24/10/91

FLAG	HOLE NAME	INTERVAL	SAMPLE	LITHOLOGY	STRUCTURES	MINERALISATION .	VEINING AL	LTERATION	COMMENTS
Flag	Hole Nome	From To (metres) (metres)		Rock Type OI 02 EW Z Z NH	Contact Type Interbeds Weathering	Suitide Occurence Suitide Occurence Made Suitide Groin Size Pyrthoille Chalcopyrite Galeno Sphalerile Onher 7 7 7 7 7	Valu Minerai Type Type Yype Type 2 Alleration Type	Mineral 2 Alleration Type 2 Mineral 1 Mineral 2 Mineral 2 Consortibility	Comments
1 2	3 4 5 6 7 8	9 10 11 12 13 14 15 16 17		5 2 6 2 7 2 8 2 9 3 0 31 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0		58 59 60 61 62 63 64 65 66 67 68 69 7071 72	2 73 74 75 76 76 79 80 81 82 83 8	485868788899091 925	13
08	CRA127	56 581		SANDSIOX CYDQZSCYTFE / 7ET I					
08	6 8 8 5 E	0 F S A ND S		1057	 				
08	(0 9) 2 7	60 623	0	Chay NosabcyTQZ 6E A					(Clay/Sandy
०८	C & a \ 27	62 644		CLAYPYNDSADCYTPYTQZ 6E A	1 60		1.0		\
22	CONTR	INJ DETRI	TALRYRI	TECLASTS					
08	(29127	64 663	a l	Chay SADCYMQZ 6ÉC	WI			4	1 Species % d sand
08	CRQ127	66 684	0	CLAY SADCYSQZ GEG	uı				1 Tal cand
08	CR9127	68 704	0	SAND CYDAZCCY GEH	14			<	l clayer sound
R R	(0N1A	INS DETRI	TAL 8421	TE CLASTS					. Contany silvicte
OB	CR9127	70 724	0	SAND CYDOZCCY GE T.	1 101				(clasts
OB	CRQ127	72 744	g :	SAND CYDQZCCY GE I	u\			<	1 glove Sound
08	CR91 27	74 766	0	CLAY SADCINQZ 6E A	WI		1 7 1	1111111	1 soudy clay
03	CR9127	76 786	0	CLAY NOSADCYTQZ 6E A	MI				
0 3	CR91,27	78 866	0 .;	CLAY MOSAOCYTQZ 6E A	1 41			7	
03	CR9127	80 826	0	CLAY NOSADCYTQZ 6E A	U\				
08	CR9127	82 846	0	CLAY NO >CY 6E A	١١١				
08	C29127	84 865	0 54	CLAY MOSADKYTQZ GE A	W.1		1 4		1
03	CRAINT	86 885	0 1	CLAY MOSADKYTQZ 6E A	Mi		4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
08	C29127		0	CLAY NOSADCYTQZ 6E A	W \		33	7	<u> </u>
०८	C & Q \ 127	90 923	0	CLAY NOSADCYTQZ 6E A					
08	c 2 9 , 27	92 943	0 4	CLAY MO DCY 6E A	WI			4	
DB.	CR9127	94 963	٥	Chay Pynos ADK Y TRZTPY GE A	MI				1 desirial pyrile
08	CR9127	90 983	0	CLAY NO 7CY 6E A	UI		(A)	>	11
० ८	C R 9 1 2 7	981003	0	CLAY NO SCY GE A	W 1				
OB	C2a,27	100 1023	0	CLAYPYNOSADCYNQZTRY 6E A	01				1 deinson pyrite
08	craizz	102 1043	0	CLAY MOSADKYMQZ OF A	ul		 		
03	CR9127	104 1063	0	CLAYPYHOSAOCYMQZTRY BE A	. W1				1 detales proce
િહ	KR9127	106 1083	0	CLAYPYNOSA OCYSQZTPY GE A]				1 : NIGOTIAN

< «1". 1 < 1". 3 2-5". 5 10-20". 7 40-60".

. BHP MINERALS

COOBER PEDY RIDGE PROJECT

SHEET 3 OF 3 HOLE NO. CR9127

LOGGED BY 5 Recd DATE, 24/10/9

,			······································	· · ·	The state of the s	4			JAIG,IC	
FLAG	HOLE NAME	INTERVAL	SAMPLE	LITHOLOGY		STRUCTURES	MINERALISATION	VEINING	ALTERATION	COMMENTS
Flag	Hole Name	From To [metres]	Recovery Sample Preflx Sample Number	Rock Type Oudlitter Rock Type Oudlitter Rock Type Ol 02 E E S 26 27 26 129 30 31 32 73 3 34 35 36 37 38	Outsiffing Outsiffing Rock Mineral Mineral 2 3 55 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Goniact Type Interbeds Weathering X. Mineraliation	Solitide Occurence Sulfide Occu	Yean Mineral X X Yean. Mineral Yean. Mark X X X X Alterotion Type 1	Mineral 1 Mineral 2 Alferation Type 2 Mineral 1 Mineral 2 Magnetic Succeptibility	Comments
00	C R 9 1 27	(08 100	300L751A		39 40 4 4243 4445 4647 4849 50		359 6061 6263 6465 56 6768 69 7071 72	737475767879808	32 63 64 65 86 87 88 89 90 91 92 93	
0 B R Q	CLAYE	YSANDC	0101010		CCYTRY GE G					
08	CR9127	100 112	3 0	Chay SADCY	CQZTPY GE A		 		 	Book of clay
0 B	1 1 1 1 1	11.2 114	30	5 N N D 5 \ EQ > Q Z			┤┤╏╏╏╏╏			fine flowing
08	CR9127	114 116	20	5 A ND 51 E Q 7 Q Z	301 6	3			- 	sand
0 3	CRAILT	11.8	30017515	5 N S T S 1 P Y D Q Z	SPY GWT H	4 42	 	 		
86	84815	ECEMENT	 	ANOSTONE			╏╎╏╏╏╏╏╏			
08	c R 9 1 2 7	118119	20027516	5 N 5 T 5 1 P Y E Q D Q Z	5 P Y 6 2 H	4 42				
Re	ENDO	FHOLE								
ر د	(0 4 4 8	NOT CON	TRUL FLO	WINE SAND						
Ш						<u> </u>				
	<u> </u>									
$\sqcup \sqcup$	44 14					1111111				
Ш	, - - -									
$\sqcup \sqcup$										
H	 									
\square	 									
+	++++-									
- -										
		+++++	 							
$\dashv \downarrow$	┼┼┼┼┼					\Box				
+		++++						3		
+	 - - 							3		
+	┼┼┼┼					4411111		į		
++	┼┼┼┼┼					 				
$\dashv +$	┾┼┼┼┼	+++++	 			}				
++	╁╂┼┼┼					++11111				
++	┼┼╁┼┼	╅┼┼┼┼┼┼	+++++	+++++		}				
			 							

APPENDIX 4

DRILL SURVEY RESULTS

(Refer to Descriptive drill logs in Appendix 3 for sample number location down hole)

This Laboratory is registered by the National Association of Testing Authorities, Australia. The *test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

A.C.N. 009 076 555

Please note our new Phone Number is (08) 416 5300

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

CR 91 16

FINAL ANALYSIS

Your Order No: 16409/B49

Our Job Number

: 1AD3068

Samples received:

07-OCT-1991

Results reported : 21-OCT-1991

No. of samples

109

Report comprises a cover sheet and pages 1 to 6

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

he had

John Waters

Laboratory Manager - Adelaide

CC

Mr J Read

VIC

CC MM Mr M Raetz

VIC

Mr M Raetz

VIC

Report Codes:

- Not Analysed.

Distribution Codes:

N.A. L.N.R. - Listed But Not Received. Carbon Copy

EMElectronic Media

I.S. - Insufficent Sample. MM Magnetic Media

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This vacument shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

ANALYTICAL REPORT

Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn
DL7814	0.06	0.06		·	4	3	11
DL7815	0.08	0.06	0.10		3	5	14
DL7816	0.04	0.04			5	7	11
DL7817	0.06	0.06			6	5	16
DL7818	0.06	0.06			5	5	14
DL7819	0.04	0.04			8	7	20
DL7820	0.06	0.06			5	5	24
DL7821	0.08	0.08			3	9	30
DL7822	0.06	0.06			. 3	7	32
DL7823	0.06	0.06			5	7	24
DL7824	0.04	0.04			5	7	25
DL7825	0.04	0.04			6	7	45
DL7826	0.02	0.02			4	9	40
DL7827	0.02	0.02			11	9	25
DL7828	0.06	0.06			4	9	20
DL7829	0.10	0.10			4	8	17
DL7830	0.08	0.08			3	8	25
DL7831	0.10	0.10		·	4	11	38
DL7832	0.02	0.02			9	14	45
DL7833	0.02	0.02			5	7	25
DL7834	<0.02	<0.02			4	8	22
DL7835	0.02	0.02			5	5	20
DL7836	0.02	0.02			6	6	22
DL7837	0.02	0.02			7	9	28
DL7838	<0.02	<0.02			3	5. 7	36
DL7839	0.02	0.02			2	9	50 46
DL7840	<0.02	<0.02			3	8	64
DL7841	<0.02	<0.02			4	7	20
DL7842	<0.02	<0.02			10	12	46
DL7843	0.04	0.04			3	6	22
DL7844	<0.02	<0.02			7	8	20
DL7845	0.02	0.02			3	8	22
DL7846	0.02	0.02			8	6	24
DL7847	<0.02	<0.02			2	6	17
DL7848	0.02	0.02			4	7	16
DL7849	0.04						22
DL7850	0.02	0.02			5 4	7 7	38
DL7851	<0.02	<0.02			6	5	16
DL7852	0.04	0.04			4	5	42
DL7853	<0.02	<0.02			6	2	13
DL7854	<0.02	<0.02			9	, 4	42
DL7855	0.02	0.02			5	, 4	42
DL7856	0.02	0.02 <0.02			6	5	26
DL7857	<0.02				3	8	22
DL7858	0.02	0.02			3	3	22
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.02	0.02	0.02		1	1	1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

ANALYTICAL REPORT

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn
	_						
DL7859	0.02	0.02			2	4	25
DL7860	0.02	0.02			2	6	34
DL7861	0.04	0.04	0.04		4	6	24
DL7862	0.06	0.06			5	6	38
DL7863	0.08	0.08			11	8	34
DL7864	0.08	0.08			. 7	9	32
DL7865	0.04	0.04			10	8	26
DL7866	0.08	0.08	0.08		8	9	25
DL7867	0.08	0.08			9	10	32
DL7868	0.08	0.08			12	8	45
DL7869	0.10	0.10			10	9	34
DL7870	0.06	0.06			5	9	36
DL7871	0.06	0.06		·	12	8	24
DL7872	0.06	0.06			6	8	35
DL7873	0.06	0.06			6	8	28
DL7874	0.06	0.06			7	7	44
DL7875	0.08	0.08		·	7	10	36
DL7876	0.06	0.06			5	7	28
DL7877	0.04	0.04			5	7	28
							•
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.02	0.02	0.02	0.02	1	1	1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

CR9116

ANALYTICAL REPORT

Sample	Ag
DL7814 DL7815 DL7816 DL7817 DL7818 DL7819 DL7820 DL7821 DL7822 DL7823 DL7825 DL7826 DL7827 DL7828 DL7829 DL7830 DL7831 DL7832 DL7833 DL7834 DL7835 DL7836 DL7837 DL7838 DL7837 DL7838 DL7838 DL7838 DL7839 DL7840 DL7841 DL7842 DL7844 DL7845 DL7845 DL7845 DL7845 DL7845 DL7845 DL7845 DL7845 DL7855 DL7855 DL7855	Ag 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
DL7857	0.6
DL7858	0.8
Units	ppm
DL	0.2

AA7

Scheme

CR9116

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This adocument shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

ANALYTICAL REPORT

	Sample	Ag
	,	
	DL7859	0.8
	DL7860	1.0
•	DL7861	0.8
	DL7862	0.6
	DL7863	0.6
	DL7864	0.8
	DL7865	0.8
	DL7866	0.8
	DL7867	0.8
	DL7868	0.8
	DL7869	1.0
CR9116	DL7870	0.8
OP 1116	DL7871	0.8
	DL7872	0.8
	DL7873	0.8
	DL7874	0.8
	DL7875	0.8
	DL7876	0.6
	↑ DL7877	0.8
		
	Units	ppm
	DL	0.2
	Scheme	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

This Laboratory is registered by the National Association of Testing Authorities, Australia. The fest(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Please note our new Phone Number is (08) 416 5300

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

CR9127

7 1 NOV 1999

FINAL ANALYSIS REPORT

Your Order No: 16416/FK4

Our Job Number

: 1AD3401

Samples received:

07-NOV-1991

Results reported: 19-NOV-1991

No. of samples : 3

Report comprises a cover sheet and pages 1 to 2

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

John Waters

Laboratory Manager - Adelaide

CC CC

Mr Jeremy Read Mr Mike Raetz

VIC

MM

Mr Mike Raetz

VIC VIC

Report Codes:

Distribution Codes:

 Not Analysed. N.A.

Carbon Copy CC

- Listed But Not Received. L.N.R.

Electronic Media EM

I.S. Insufficent Sample.

Magnetic Media MM

"RELIABLE ANALYSES AT COMPETITIVE COST"

del Laboratories Limited A.C.N. 009 076 555 Trading as Classic Laboratories

ANALYTICAL REPORT						1AD3	8401 L6/FK4
Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn
DL 7514	0.04	0.06	0.04	<u>-</u> -	6	9	12
DL 7515	0.02	0.02	0.02		9	15	9
DL 7516	<0.02	0.02	<0.02		8	6	7
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.02	0.02	0.02	0.02	1	1	1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

ANALYTICAL REPORT

Job: 1AD3401 O/N: 16416/FK4

Sample	Ag
DL 7514	<0.2
DL 7515	0.4
DL 7516	0.2
Units	ppm
DL	0.2
Scheme	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Amdel Laboratories Limited Brown Street, Thebarton, 5031

Telephone: (08) 416 5300 Facsimile: (08) 234 0321

CR9203

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

FINAL ANALYSIS REPORT

Your Order No: 17814-FK4

Our Job Number

: 2AD2512

Samples received:

01-SEP-1992

Results reported : 07-SEP-1992

No. of samples 32

Report comprises a cover sheet and pages 1 to 2

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

for John Waters

Laboratory Manager - Adelaide

MM

Mr J Read

VIC

CC

Mr L Bettenay

VIC

Report Codes:

- Not Analysed. N.A.

Distribution Codes: CC Carbon Copy

L.N.R. - Listed But Not Received. I.S. - Insufficent Sample.

EM Electronic Media MM Magnetic Media

Amdel Laboratories Limited A.C.N. 009 076 555

ANALYTICAL REPORT

Job: 2AD2512 O/N: 17814-FK4

Sample	Au Avg	Au	Au Rpl	Au SS
DB8555	<0.02	<0.02		<0.02
DB8556	<0.02	<0.02		
DB8557	<0.02	<0.02		
DB8558	<0.02	<0.02		
DB8559	<0.02	<0.02		
DB8560	<0.02	<0.02		
DB8561	0.02	0.02		
DB8562	0.02	0.02		
DB8563	<0.02	<0.02	·	
DB8564	<0.02	<0.02		
DB8565	<0.02	<0.02		
DB8566	0.02	0.02		
DB8567	<0.02	<0.02		
DB8568	<0.02	<0.02		
DB8569	<0.02	<0.02		
DB8570	<0.02	<0.02		
DB8571	<0.02	<0.02		
DB8572	<0.02	<0.02		
DB8573	<0.02	<0.02	· 	
DB8574	<0.02	<0.02		
DB8575	<0.02	<0.02		<0.02
DB8576	0.02	0.02		
DB8577	<0.02	<0.02		
DB8578	<0.02	<0.02		
DB8579	<0.02	<0.02		
DB8580	0.08	0.10	0.06	
DB8581	0.02	0.02		
DB8582	<0.02	<0.02		
DB8583	<0.02	<0.02		
DB8584	<0.02	<0.02		
DB8585	<0.02	<0.02		
DB8586	<0.02	<0.02		
Units	mqq	ppm	ppm	ppm
\mathtt{DL}	0.02	0.02	0.02	0.02
Scheme	- AA7	AA7	AA7	AA7

jamdel

Scheme

ANALYTICAI	. REPORT				2AD2512 17814-FK4
Sample	Cu	Pb	Zn	Аg	
DB8555	18	30	120	<1	
DB8556	30	20	94	<1	
DB8557	22	18	68	<1	
DB8558	18	22	98	<1	
DB8559	13	22	105	<1	
DB8560	18	20	130	<1	
DB8561	32	22	120	<1	•
DB8562	15	20	110	<1	
DB8563	22	18	100	<1	
DB8564	16	18	84	<1	
DB8565	25	18	72	<1	
DB8566	12	15	80	<1	
DB8567	18	26	14	1	
DB8568	19	22	26	1	
DB8569	38	42	16	2	
DB8570	30	55	26	2	
DB8571	30	60	30	2	•
DB8572	25	42	34	2	
DB8573	14	22	. 66	<1	
DB8574	11	30	280	1	
DB8575	30	26	150	1	
DB8576	56	34	150	1	
DB8577	. 10	18	9	<1	
DB8578	17	26	70	1	
DB8579	4.5	25	145	1	
DB8580	5000	830	2850	3	
DB8581	38	20	105	<1	
DB8582	35	22	100	<1	
DB8583	84	25	125	1 .	
DB8584	18	26	10	1	
DB8585	9	28	9	1	
DB8586	5	22	8	1	
Units	ppm	ppm	ppm	ppm	
DL	2	4	2	1	
٠ - ١				2222	

AAIA

AA1A

AA1A

AA1A

This Laboratory is registered by the National This Laboratory is legislated by its fall than Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Amdel Laboratories Limited Brown Street, Thebarton, 5031

Telephone: (08) 416 5300 Facsimile: (08) 234 0321

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

CR9 206 C. R. 9. 208

FINAL ANALYSIS REPORT

Your Order No: 17807/FK3

Our Job Number

: 2AD2173

Samples received:

03-AUG-1992

Results reported : 07-AUG-1992

No. of samples 155

Report comprises a cover sheet and pages 1 to 8

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

for John Waters

Laboratory Manager - Adelaide

MM CC

Mr J Read

VIC

L Bettenay

VIC

Report Codes:

N.A.

Distribution Codes: CC

- Not Analysed.

Carbon Copy

L.N.R. - Listed But Not Received. I.S. - Insufficent Sample.

EM Electronic Media MM Magnetic Media

Amdel Laboratories Limited A.C.N. 009 076 555

ANALYTICAL REPORT

Job: 2AD2173 O/N: 17807/fk3

-					•
	Sample	Au Avg	Au	Au Rpl	Au SS1
7	DB8445	<0.02	<0.02		<0.02
•	DB8446	<0.02	<0.02		\0.02
•	DB8447	<0.02			
	DB8448		<0.02		
		<0.02	<0.02	=-	
	DB8449	<0.02	<0.02		
	DB8450	<0.02	<0.02		
CR9208	DB8451	<0.02	<0.02		
C16-1500	DB8452	<0.02	<0.02		
•	DB8453	<0.02	<0.02		
	DB8454	<0.02	<0.02		
•	DB8455	<0.02	<0.02		
	DB8456	<0.02	<0.02		
	DB8457	<0.02	<0.02		
	DB8458	<0.02	<0.02		
	DB8459	<0.02	<0.02		
	DB8460	<0.02	<0.02		
	DB8461	0.08	0.08	0.08	
	DB8462	<0.02	<0.02	0.08	
	DB8463	<0.02	<0.02		
	DB8464	<0.02			;
Α.	DB8465		<0.02		
1_	DB8388	<0.02	0.02		<0.02
		<0.02	<0.02		
	DB8389	<0.02	<0.02		
•	DB8390	<0.02	<0.02		
	DB8391	<0.02	<0.02		
	DB8392	<0.02	<0.02		
•	DB8393	<0.02	<0.02		
	DB8394	<0.02	<0.02		
	DB8395	<0.02	<0.02		
•	DB8396	<0.02	<0.02		
	DB8397	0.02	0.02	. <u></u>	
	DB8398	<0.02	<0.02		
	DB8399	<0.02	<0.02	·	
	DB8400	<0.02	<0.02		
	DB8401	<0.02	<0.02		
	DB8402	<0.02	<0.02		
	DB8403	<0.02	<0.02	· 	
	DB8404	<0.02	<0.02		
	DB8405	<0.02	<0.02		
	DB8406	<0.02	<0.02		
	DB8407	<0.02	<0.02		<0.03
	DB8407	<0.02			<0.02
*	DB8408		<0.02		
•		<0.02	<0.02		
	DB8410	<0.02	<0.02	~-	
	DB8411	<0.02	<0.02		
	Units	ppm	ppm	ppm	ppm
	DL	0.02	0.02	0.02	0.02
	Scheme	AA7	AA7	AA7	AA7

ANALYTICAL REPORT

Job: 2AD2173 O/N:~17807/fk3

	Sample	Au Avg	Au	Au Rpl	Au SS1
	DB8412	<0.02	<0.02		
	DB8413	<0.02	<0.02		
	DB8414	0.02	0.02		
	DB8415	<0.02	<0.02		
	DB8416	<0.02	<0.02		
	DB8417	<0.02	<0.02		
	DB8418	<0.02	<0.02		
•	DB8419	<0.02	<0.02		
	DB8420	<0.02	<0.02		
	DB8421	<0.02	<0.02		
	DB8422	<0.02	<0.02		
	DB8423	<0.02	<0.02		
	DB8424	<0.02	<0.02		
	DB8425	<0.02	<0.02		
	DB8426	<0.02	<0.02		
	DB8427	<0.02	<0.02		<0.02
	DB8428	<0.02	<0.02		<0.02
	DB8429	<0.02	<0.02		
	DB8430	<0.02	<0.02		
	DB8431	<0.02	<0.02		
	DB8432	<0.02	<0.02		
	DB8433	<0.02	<0.02		
	DB8434	<0.02	<0.02		
	DB8435	<0.02	<0.02		
	DB8436	<0.02	<0.02		
	DB8437	<0.02	<0.02		
	DB8438	<0.02	<0.02		
	DB8439	<0.02	<0.02		
	DB8440	<0.02	<0.02		
	DB8441	<0.02	<0.02		
	DB8442	<0.02	<0.02		
	DB8443	<0.02	<0.02		
	DB8444	<0.02	<0.02		
1		<0.02	<0.02		
	DB8312	0.02	0.02		
0.0000/-	DB8313	<0.02	<0.02		<0.02
CP9206	DB8314	<0.02	<0.02		
	DB8315	<0.02	<0.02		
	DB8316	<0.02	<0.02		
	DB8317	<0.02	<0.02		
	DB8318	<0.02	<0.02		
	DB8319	<0.02	<0.02		
	DB8320	<0.02	<0.02		
	DB8321	<0.02	<0.02		
	DB8322	<0.02	<0.02		
	Units	** *** ***	~~~	nn-	
•	DL	mqq	mqq	mqq	ppm
	.Scheme	0.02	0.02	0.02	0.02
	· · · · · · · · · · · · · · · · · · ·	AA7	AA7	AA7	AA7

ANALYTICAL REPORT

Job: 2AD2173 O/N: 17807/fk3

DB8323	Sample	Au Avg	Au	Au Rp1	Au SS1
DB8324 <0.02	DB8323	0.02	0.02		
DB8325 <0.02					
DB8326					
DB8327 <0.02					
DB8328 <0.02					
DB8329					
DB8330					
DB8331					
DB8332					
DB8333					
DB8334					<0.02
DB8335					
DB8336					
DB8337					
DB8338					
DB8339	· · · · · · · · · · · · · · · · · · ·				
DB8340					
DB8341					
DB8342					
DB8343					
DB8344					
DB8345					
DB8346					
DB8347					
DB8348					
DB8349				0 10	
DB8350				0.10	
DB8351					
DB8352					
DB8353					
DB8354					<0.02
DB8355					\0.02
DB8356				·	
DB8357					
DB8358					
DB8359					
DB8360					
DB8361					
DB8362					
DB8363					
DB8364 0.06 0.06 DB8365 <0.02 <0.02 DB8366 <0.02 <0.02 DB8367 <0.02 <0.02 Units ppm ppm ppm ppm DL 0.02 0.02 0.02 0.02					
DB8365					
DB8366					
DB8367 <0.02 <0.02 Units					
Units ppm ppm ppm ppm DL 0.02 0.02 0.02 0.02					
DL 0.02 0.02 0.02 0.02	-2000	10.02	.0.02		
DL 0.02 0.02 0.02 0.02	Units	maa.	maa	mag	maa

ANALYTICAL REPORT

Job: 2AD2173 O/N:~17807/fk3

	Sample	Au Avg	Au	Au Rp1	Au SS1
	DB8368	<0.02	<0.02		- -
	DB8369	0.06	0.06		
	DB8370	<0.02	<0.02		
CR9206	DB8371	<0.02	<0.02		
CH 1000	DB8372	<0.02	<0.02	,	
	DB8373	<0.02	<0.02		<0.02
	DB8374	<0.02	<0.02		
	DB8375	<0.02	<0.02		
1	DB8376	<0.02	<0.02		
	DB8377	<0.02	<0.02		
	DB8378	L.N.R.	L.N.R.	L.N.R.	L.N.R.
	DB8379	L.N.R.	L.N.R.	L.N.R.	L.N.R.
	DB8380	<0.02	<0.02		
•	DB8381	0.02	0.02		
	DB8382	<0.02	<0.02	·	
	DB8383	<0.02	<0.02		
	DB8384	<0.02	<0.02		
	DB8385	<0,.02	<0.02		
	DB8386	<0.02	<0.02		
	DB8387	<0.02	<0.02		
	Units	ppm	ppm	ppm	ppm
	DL	0.02	0.02	0.02	0.02
	Scheme	AA7	AA7	AA7	AA7

				•		•
	ANALY	TICAL REPORT				2AD2173 _17807/fk3
	Sample	Cu	Pb	Zn	Ag	
T	 DB8445	40	34	150	<1	
4		32	25	35	<1	
	DB8446					
	DB8447	28	22	36	<1	
	DB8448	26	20.		<1	
	DB8449	28	25	44	<1	
	DB8450	30	16	28	<1	
	DB8451	26	20	30	<1	
	DB8452	28	24	32	<1	
CR9208	DB8453	30	32	38	<1	
C / 1300	DB8454	30	12	20	<1	
•	DB8455	34	16	34	<1	
	DB8456	32	28	52	<1	
	DB8457	16	20	55	<1	
	DB8458	13	16	46	<1	
	DB8459	1,1	15	36	<1	
	DB8460	11	18	38	<1	
	DB8461	4800	810	2600	3	
			14	44	<1	
	DB8462	18			<1	
•	DB8463	28	18	25		
	DB8464	26	15	24	<1	•
	_DB8465	28	14	20	<1	
	DB8388	14	12	30	<1	
	DB8389	24	14	42	<1	
Þ.	DB8390	30	22	92	<1	
	DB8391	40	18	28	<1	
	DB8392	56	20	35	<1	
	DB8393	28	18	28	<1	
	DB8394	15	14	20	<1	•
	DB8395	16	12	22	<1	
	DB8396	18	16	34	<1	
	DB8397	14	12	24	<1	
	DB8398	20	15	28	<1	
	DB8399	14	12	34	<1	
	DB8400	. 17	10	28	<1	
	DB8401	17	10	16	<1	
•	DB8402	19	10	18	<1	
	DB8403	19	12	30	<1	
	DB8404	25	12	28	<1	
	DB8404	10	12	25	<1	
	DB8405	4	14	32	<1	
		6	15	30	<1	
	DB8407			24	<1	
	DB8408	6	14		<1	
	DB8409	6	12	36 24	<1	
	DB8410	7	18	24	<1	
•	DB8411	13	18	22	\1	

Units

Scheme

 \mathtt{DL}

ppm 2 AA1A ppm 2

AA1A

ppm

AA1A

ppm .

CR9206

3313 T. Umw.					2AD2173
ANALYTI	CAL REPOI	K.T.	•	O/N:-	_17807/fk3
Sample	Cu	Pb	Zn	Ag.	
DB8412	10	15	24	<1	
DB8413	10	. 15	24	<1	
DB8414	12	20	20	1	
DB8415	14	18	20	1	
DB8416	12	18	18	ī	
DB8417	16	18	16	ī	
DB8418	15	16	24	ī	
DB8419	18	15	26	- ī	
DB8420	7	14	26	<1	
DB8421	20	16	22	1	
DB8422	16	15	19	<1	
DB8423	13	14	28	<1	
DB8424	20	15	32	1	
DB8425	17	14	22	<1	
DB8426	15	16	20	<1	
DB8427	16	14	20	<1	
DB8428	12	14	28	<1	
DB8428	12	20	48		
DB8430	9	14	28	1 <1	
DB8431	6				
		12	26	<1	
DB8432	9	15	26	1	
DB8433	6	15	30	<1	
DB8434	9	10	8	<1.	
DB8435	8 7	14	16	<1	
DB8436		14	20	<1	
DB8437	7	12	30	<1	
DB8438	9	12	20	<1	
DB8439	9	12	14	<1	
DB8440	10	16	25	<1	
DB8441	9	14	22	<1	
DB8442	12	14	22	<1	
DB8443	13	12	42	<1	
DB8444	15	16	54	<1	
DB8311	32	24	65	<1	
DB8312	15	18	62	<1	
DB8313	9	18	64	<1	
DB8314	. 15	18	45	. <1	
DB8315	45	15	42	<1	
DB8316	26	18	68	<1	
DB8317	28	14	36	<1	
DB8318	20	18	45	<1	
DB8319	24	14	48	<1	
DB8320	30	12	36	<1	•
DB8321	24	12	42	<1	
DB8322	28	14	52	<1	•
IIni+-	30	~~~			
Units	ppm	ppm	ppm	ppm	
DL	2	4	2	1	•
Scheme	AA1A	AAlA	AA1A	AA1A	

DB8323	ANALYI	CICAL REPOR	т		Job: 0/N:	2AD2173 1_7807/fk3
DB8324 20 15 40 <1 DB8325 26 14 44 <1 DB8326 30 14 48 <1 DB8327 28 12 40 <1 DB8328 24 15 44 <1 DB8329 7 18 42 <1 DB8330 11 40 17 <1 DB8331 19 16 60 <1 DB8332 32 14 40 <1 DB8333 28 12 44 <1 DB8336 24 14 40 <1 DB8337 28 14 48 <1 DB8336 24 16 58 <1 DB8337 28 14 48 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8355 10 24 15 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8359 8 22 18 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8361 6 20 24 <1 DB8366 10 24 14 1 DB8366 8 22 17 1 DB8366 8 22 17 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 8 22 17 1 DB8366 10 24 14 1	Sample	Cu	Pb	Zn	Ag	
DB8325						
DB8326 30 14 48 <1 DB8327 28 12 40 <1 DB8328 24 15 44 <1 DB8329 7 18 42 <1 DB8330 11 40 17 <1 DB8331 19 16 60 <1 DB8332 32 14 40 <1 DB8333 28 12 44 <1 DB8333 28 12 44 <1 DB8334 30 14 48 <1 DB8335 22 12 34 <1 DB8336 24 14 40 <1 DB8337 28 14 48 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8339 34 18 54 <1 DB8339 34 18 54 <1 DB8341 12 15 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8359 8 22 18 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8363 8 22 14 1 DB8366 10 24 15 1 DB8367 10 24 15 1 DB8366 8 22 14 1 DB8366 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1		20	15	40	<1	
DB8327	•	26	14	44	<1	
DB8328		30	14	48	<1	4
DB8329 7 18 42 <1 DB8330 11 40 17 <1 DB8331 19 16 60 <1 DB8332 32 14 40 <1 DB8333 28 12 44 <1 DB8333 38 12 44 <1 DB8335 22 12 34 <1 DB8336 24 14 40 <1 DB8337 28 14 40 <1 DB8337 28 14 40 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 66 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8351 9 24 15 1 DB8355 10 24 15 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8357 11 18 16 1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 15 DB8361 6 20 24 15 DB8363 8 22 17 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8366 8 22 14 1 DB8366 10 24 14 1				40	<1	
DB8330	DB8328	24	15	44	<1	
DB8331 19 16 60 <1 DB8332 32 14 40 <1 DB8333 28 12 44 <1 DB8333 38 12 44 40 <1 DB83334 30 14 48 <1 DB8335 22 12 34 <1 DB8336 24 14 40 <1 DB8337 28 14 48 <1 DB8337 28 14 48 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8351 9 24 15 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 15 DB8361 6 20 24 15 DB8363 8 22 17 1 DB8366 10 22 17 <1 DB8366 10 24 14 1	DB8329	7	18	42	<1	
DB8332 32 14 40 <1 DB8333 28 12 44 <1 DB8334 30 14 48 <1 DB8335 22 12 34 <1 DB8336 24 14 40 <1 DB8337 28 14 48 <1 DB8337 28 14 48 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8351 9 24 15 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1	DB8330	11	40	17	<1	
DB8333	DB8331	19	16	60	<1	
DB8334 30 14 48 <1 DB8335 22 12 34 <1 DB8336 24 14 40 <1 DB8337 28 14 48 <1 DB8338 24 16 58 <1 DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 20 <1 DB8359 8 22 20 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 8 22 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 15 1 DB8366 10 24 15 1	DB8332	32	14	40	<1	
DB8335	DB8333	28	12	44	<1	
DB8336	DB8334	30	14	48	<1	
DB8337	DB8335	22	12	34	<1	
DB8338	DB8336	24	14	40	<1	
DB8339 34 18 54 <1 DB8340 25 26 28 <1 DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8367 10 24 15 1 DB8368 9 20 16 <1 DB8369 8 22 18 <1 DB8369 8 22 18 <1 DB8369 9 20 16 <1 DB8369 9 20 16 U1	DB8337	28	14	48		
DB8340	DB8338		16	- 58		
DB8341 12 15 28 <1 DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8366 10 24 15 1 DB8367 10 24 15 1 DB8366 10 22 13 <1 DB8367 1 1 18 16 1 DB8368 9 20 16 <1 DB8369 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm	DB8339	34	18	54	<1	
DB8342 6 12 40 <1 DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm ppm	DB8340	25	26	28		
DB8343 7 12 38 <1 DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 14 1 DB8364 8 22 17 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DB ppm ppm ppm ppm ppm DB ppm ppm ppm ppm ppm		12	15			
DB8344 6 22 105 <1 DB8345 5 20 60 1 DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 15 1 DB8366 10 24 15 1 DB8367 10 24 15 1 DB8366 10 24 11 1 DB8367 10 24 11 1 DB8366 10 24 11 1 DB8366 10 24 14 1 DB8367 10 24 15 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DB ppm ppm DB ppm ppm		6				
DB8345		7				
DB8346 8 22 26 1 DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm ppm DL 2 4 2 1						
DB8347 7 20 20 1 DB8348 4900 800 2650 3 DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 17 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1	*					
DB8348						
DB8349 11 22 17 1 DB8350 16 22 25 1 DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8350	•					
DB8351 9 24 15 1 DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8352 11 25 13 1 DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8353 13 22 14 1 DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 14 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8354 11 20 19 1 DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8355 10 24 15 1 DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8356 10 22 13 <1 DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8357 11 18 16 1 DB8358 9 20 16 <1 DB8359 8 22 18 <1 DB8360 9 22 20 <1 DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8358 9 20 16 <1						
DB8359 8 22 18 <1						
DB8360 9 22 20 <1						
DB8361 6 20 24 <1 DB8362 19 22 17 <1 DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8362 19 22 17 <1	•					
DB8363 8 22 17 1 DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8364 8 22 14 1 DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						•
DB8365 8 22 14 1 DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8366 10 24 14 1 DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
DB8367 10 24 15 1 Units ppm ppm ppm ppm DL 2 4 2 1						
Units ppm ppm ppm DL 2 4 2 1						
DL 2 4 2 1	220307	10	23		*	
DL 2 4 2 1	Units	mqq	ppm	ppm	ppm	
Scheme AA1A AA1A AA1A	DL		4		1	
	Scheme	AA1A	AA1A	AA1A	AA1A	

ANALYTICAL REPORT

Job: 2AD2173 O/N: 17807/fk3

	Sample	Cu	Pb	Zn	Ag
	DB8368	8	22	16	1
	DB8369	22	20	17	<1
	DB8370	15	20	22	<1
	DB8371	8	20	17	1
- 0	DB8372	7	15	17	<1
CR9206	DB8373	11	15	19	<1
^ .	DB8374	13	15	20	<1
\	DB8375	6	16	18	<1
•	DB8376	. 6	15	15	<1
	DB8377	7	16	17	<1
	DB8378	L.N.R.	L.N.R.	L.N.R.	L.N.R.
	DB8379	L.N.R.	L.N.R.	L.N.R.	L.N.R.
	DB8380	14	12	42	<1
•	DB8381	19	16	28	<1
	DB8382	19	12	26	<1
	DB8383	17	14	30	<1
	DB8384	14	12	32	<1
	DB8385	14	14	34	<1
	DB8386	19	14	32	<1
	DB8387	15	14	26	<1
	Units	ppm	ppm	ppm	ppm
	DĻ	2	4	2	1
,	Scheme	AA1A	AA1A	AA1A	AA1A

test(s) reported herein have been performed in document shall not be reproduced except in full,

Amdel Laboratories Limited Brown Street, Thebarton, 5031

Telephone: (08) 416 5300 Facsimile: (08) 234 0321

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

CR9214

FINAL ANALYSIS REPORT

Your Order No: FK4/17816

Our Job Number : 2AD2735

Samples received: 21-SEP-1992

Results reported : 30-SEP-1992

No. of samples 18

Report comprises a cover sheet and pages 1 to 2

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

John Waters

Laboratory Manager - Adelaide

MM CC

Mr Jeremy Read

VIC

Mr Mike Raetz

VIC

Report Codes:

- Not Analysed.

Distribution Codes:

N.A.

CC Carbon Copy

L.N.R. - Listed But Not Received.

EM Electronic Media

I.S. - Insufficent Sample.

MM Magnetic Media

ANALYTICAL REPORT

Job: 2AD2735 O/N: FK4/17816

Sample	Au Avg	Au	Au Rpl	Au SS
DB8587	<0.02	<0.02		
DB8588	<0.02	<0.02		
DB8589	<0.02	<0.02		
DB8590	<0.02	<0.02		
DB8591	<0.02	<0.02		. <u></u>
DB8592	<0.02	<0.02		
DB8593	<0.02	<0.02	. <u>-</u> _	
DB8594	<0.02	<002		
DB8595	<0.02	<0.02		
DB8596	<0.02	<0.02		
DB8597	<0.02	<0.02		
DB8598	<0.02	<0.02		
DB8599	<0.02	<0.02		
DB8600	<0.02	<0.02		·
DB8601	<0.02	<0.02		
DB8602	0.06	0.06		
DB8603	<0.02	<0.02		<u></u>
DB8604	<0.02	<0.02		
Units	ppm	ppm	nnm	nnm
DL	0.02	0.02	ppm 0.02	mqq
Scheme	AA7	AA7	AA7	0.02 AA7

ANALYT	ICAL REPO	RT		Job: O/N:	2AD2735 FK4/17816
Sample	Cu	Pb	Zn	Аg	
DB8587	16	20	46	<1	
DB8588	11	14	32	<1	
DB8589	7	-6	5	<1	
DB8590	11	14	10		
DB8591	13	22	10	<1	•
DB8592	8	22	8	1 2	
DB8593	4	16	8	1	
DB8594	. 6	14	9	1	
DB8595	6	16	8	2	
DB8596	5	15	5	1	
DB8597	5	16	6	1	
DB8598	8	18	15	1	
DB8599	115	25	14	1	
DB8600	130	20	26	<1	•
DB8601	160	20	24	1	
DB8602	5200	810	3000	3	
DB8603	28	12	18	<1	
DB8604	26	10	20	_	
			20	<1	
Units	ppm	ppm	ppm	nnm	
DL	. 2	4	ррш 2	ppm 1	
Scheme	AAlA	AA1A	AA1A	AA1A	

CR 8401

EXPLORATION LICENCES 1719 AND 1725 SOUTH AUSTRALIA

RELINQUISHMENT REPORT, PARTIAL AREA REDUCTION FROM EL1719 AND 1725 April 1994

Mu Valdey

M Valdez Project Geologist

BHP Minerals Exploration Department

Distribution:

- 1 Hawthorn
- 1 Brisbane
- 2 Mines and Energy South Australia

8782 8782

SUMMARY

BHP Minerals Limited has again partially relinquished EL's 1719 and 1725 on the 7th April 1994. These are the second relinquishments from the Coober Pedy Ridge Project.

Exploration for Zn-Pb-Ag and Cu-Au mineralisation in Lower Proterozoic rocks of the Coober Pedy Ridge area, South Australia, started in 1991. The work completed comprised of aeromagnetic interpretation, depth to basement studies, anomaly selection, ground magnetic surveying, drilling of selected targets, bedrock geochemical analysis, geological and geochemical evaluation.

One RC hole (CR9120) was drilled in EL1719 intersecting basement at 124m. The magnetic target intersected is a quartz magnetite rock.

Four RC holes and one Diamond drill hole (CR9115, CR9117, CR9213, CR93001 and CD93009) were drilled in EL1725, intersecting basement at 34.5, 93.5, 114, 149 and 62m respectively. The magnetic target intersected are magnetite quartzite, amphibolite + metasediments, magnetite gneiss, syntectonic granite + BIF, and garnet quartz magnetite gneiss.

With these relinquishments, BHP's total Coober Pedy Ridge Project has been reduced by 9.6% overall. The relinquished areas are considered less prospective for any or all of the following reasons: 1) excessive depth to basement; 2) insignificant geochemical results; or, 3) less prospective stratigraphy.

TABLE OF CONTENTS

SÜMMARY

1	INTRODUCTION	1
2	LOCATION AND ACCESS	1
3.	EXPLORATION RATIONALE	. 1
4	TRADITIONAL LANDOWNER LIAISONS	. 1
5	ENVIRONMENTAL CONSIDERATIONS	2
6	RELINQUISHMENT FROM EL1719	4
6.1	Exploration completed for the period from 12th May	
	1991to 7th April 1994.	4
6.1.1	Depth to basement study	
6.1.2	Aeromagnetic interpretation and target selection	4
6.1.3	Drilling	4
7	RELINQUISHMENT FROM EL1725	6
7.1	Exploration completed for the period from 12th May	
	1991 to 7th April 1994.	7
7.1.1	Depth to basement study	7
7.1.2	Aeromagnetic interpretation and target selection	7
7.1.3	Drilling	7
8	DISCUSSION	10
	REFERENCES	10

List of Tables

<u>Table No.</u> <u>Title</u>

1 Drill hole specifications, EL 1719

2 Drill hole specifications, EL 1725

List of Figures

Figure No. Title

1 Location

List of Appendix

Appendix 1. Ground Magnetic profiles and models

Appendix 2. Graphic drill hole sections

Appendix 3. Descriptive drill hole logs

Appendix 4. Assay results

I INTRODUCTION

BHP Minerals Ltd (BHP) is actively exploring for Zn-Pb-Ag and Cu-Au mineralisation in Lower Proterozoic rocks of the Coober Pedy Ridge area, South Australia. BHP applied for EL's 1712, 1718, 1719 and 1725 located south of Coober Pedy, in 1991 (Figure 1). These Exploration Licences form a contiguous block of ground. In November 1993 EL 1712, 1719 were partially relinquished and EL 1718 totally relinquished (Valdez 1994b), Table 1.

On 7th April 1994 EL's 1719 and 1725, were again partially relinquished (Fig. 1, Table 1). This report summarises the work completed in the now relinquished areas from the 13th May 1991 to 7th April 1994.

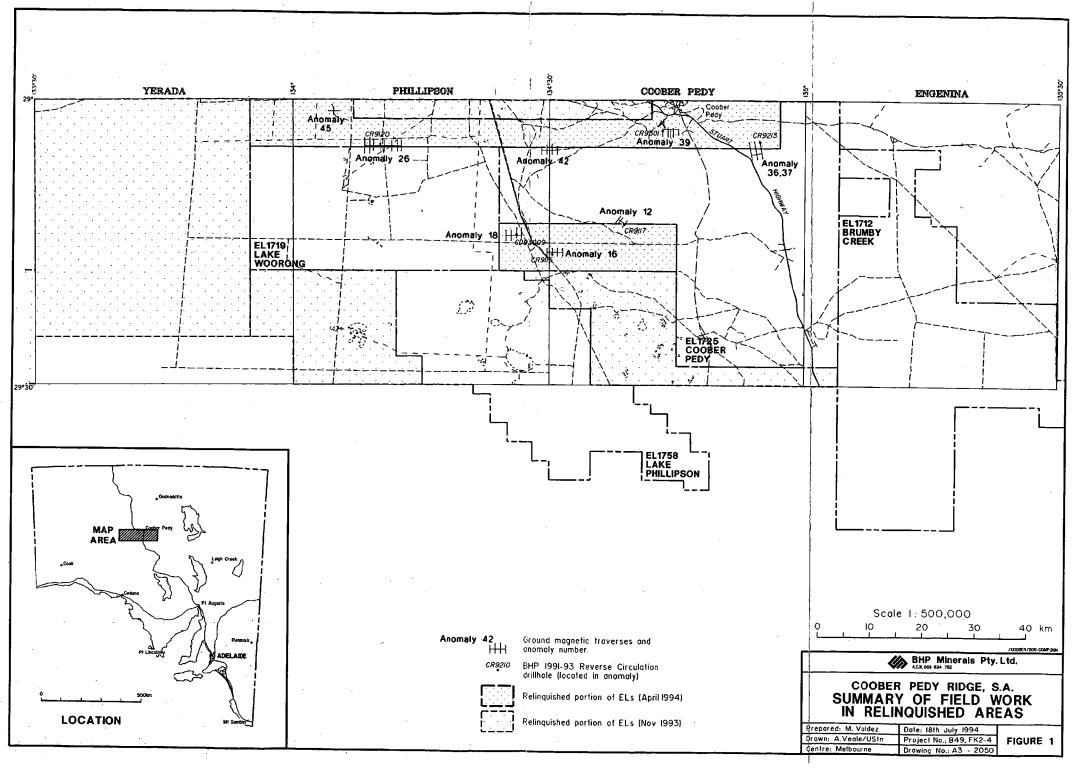
2 LOCATION AND ACCESS

The tenements are located on the Coober Pedy and Billa Kalina 1:250,000 sheets (Figure 1). The main access is by the Stuart Highway and Tarcoola-Alice Springs railway. Station roads and tracks provide reasonable access throughout the area covered by these licences.

3 **EXPLORATION RATIONALE**

BHP is exploring for Zn-Pb-Ag and Cu-Au mineralisation in the area. Aeromagnetic data was used to map the mainly covered basement rocks that are interpreted to be of Proterozoic age.

4 TRADITIONAL LANDOWNER LIAISONS


BHP has been liaising with Mr Ricky Brown, a person recognised as having knowledge of the Coober Pedy area, in order to avoid sites significant to the Aboriginal people. Drill sites in the BHP tenements were inspected and Mr. Brown advised, that to the best of his knowledge, no sites of significance would be affected by BHP activities Read 1991a, 1991b, 1992a, 1992b and 1992c; Valdez 1994a).

5

Heavy vehicle access to drill sites was made via existing station tracks where possible. Short access tracks were graded into Anomalies 12, 16, 18, 36/37 and 39. Drill holes were rehabilitated by backfilling with cuttings. Sumps, dug for mud collection when mud-drilling, were backfilled after drilling finished. Excess material was either removed from site or buried and covered by local soil.

TABLE 1
AREA REDUCTIONS

Exploration Licence No.	Original Area (Km²)	First Relinquishment November 1993 Area reduction (Km²)	This Relinquishment April 1994 Area reduction (Km²)	Actual Area (Km²)
1712	1955	0.00	0.00	1955
1718	2407	(2407)	0.00	
1719	2124	(715)	(281)	1128
1725	3199	(649)	(648)	1902
Total	9685	3,771	929	4,985
	100%	(-38.94%)	(-9.59%)	51.47%

6 RELINQUISHMENT FROM EL1719

Approximately 281km² were relinquished from this licence (Figure 1, Table 1). The relinquished area is defined by:

Commencing at a point being the intersection of longitude 133°55'E and latitude 29°00'S thence due East to Longitude 134°07'E, thence due South to latitude 29°02'S, thence due East to Longitude 134°24'E thence due South to Latitude 29°05' thence due West to Longitude 133°55', and thence due North to point of commencement.

6.1 Exploration completed for the period from 12th May 1991 to 7th April 1994 in the relinquished area

6.1.1 Depth to basement study

Depth to basement was calculated for the tenement blocks using previous drilling information. Depths from 100 to 200m were expected. CR9120 intersected basement at a depth of 124m on Anomaly 26 (Read, 1991b).

6.1.2 Aeromagnetic interpretation and target selection

Interpretation of the basement rocks was made by Read (1991a), using previous drilling information and geology of the Mt. Woods Inlier located to the east within EL1725.

One aeromagnetic target was selected for ground magnetic surveying, Anomaly 26. The data collected was processed and a selected anomaly modelled. This model is included in Appendix 1.

6.1.3 Drilling

RC hole, CR9120, was drilled at Anomaly 26. The target was an east-west elongated magnetic feature interpreted to be prospective for Broken Hill Type (BHT) mineralisation. Hole specifications are summarised in Table 2.

TABLE 2

Drill hole specifications from relinquished portion of EL1719

Anomaly No.	Hole	Co-o East	ord's North	Grid	Dip	Azimuth	Hole Type	Est. Depth to Target	Depth to basement (m)	Actual depth to target	Total depth of hole	Target
26	CR9120	419,100	6,782,720	AMG	-90	-	RC	80-100	124	124-131	131	Quartz magnetite horizon within Kararri Mylonite Zone.

Basement was intersected at 124m and comprised of quartz-magentite (BIF unit). The magnetic target intersected was a quartz-magnetite unit (124m - 131m). Graphic drill hole sections are included in Appendix 2 and descriptive drill logs in Appendix 3.

The best assay results came from the 126-128m interval with 0.10ppm Au, 14ppm Cu, 8ppm Pb, 42ppm Zn, 0.5ppm Ag. These results correspond with a garnetiferous quartz-magnetite rock. Complete assay results are included in Appendix 4.

RELINQUISHMENT FROM EL1725

7

EL 1725, Coober Pedy, is located south of the town of Coober Pedy, mostly included in the Coober Pedy Precious Stones Field. Here the exploration licence commences 50m below surface. The top 50m portion of ground is reserved for opal mining. Two areas, northern and southern areas, were relinquished from this licence (Figure 1, Table 1). The northern area is defined by:

Commencing at a point being the intersection of longitude 134°24'E and latitude 29°02'S, thence due East to longitude 134°42'E, thence due North to Latitude 29°00'S, thence due East to Longitude 134°57'E, thence due South to Latitude 29°05'S, thence due West to longitude 134°24'E, and thence due North to point of commencement.

The southern area relinquished from this licence is defined by:

Commencing at a point being the intersection of longitude 134°27'E and latitude 29°13'S, thence due East to longitude 134°45'E, thence due South to latitude 29°13'S, thence due West to longitude 134°27'E, and thence due North to point of commencement.

7.1 Exploration completed for the period from 12th May 1991 to 7th April 1994

7.1.1 Depth to basement study

Depth to basement was calculated for the tenement blocks using previous drilling information (Read, 1991a).

Depth to basement was expected to be between 100 and 200m in the northern area, and between 35 and 150m in the southern area. The drill holes revealed depths from 114 to 149m in anomalies 39 and 36/37 respectively (northern area). Basement was intersected at 24.5, 62 and 93.5m in anomalies 16, 18 and 12 respectively.

7.1.2 <u>Aeromagnetic interpretation and target selection</u>

Interpretation of the basement rocks was made by Read (1991a), using previous drilling information and geology of the outcropping rocks.

Six aeromagnetic anomalies were selected for ground magnetic surveying, anomalies 11, 12, 16, 18, 36 and 39 (Read, 1991, 1992a, 1992b, 1992c; Valdez 1994a). The data collected was processed and selected magnetic anomalies were modelled (see Appendix 1).

7.1.3 **Drilling**

Five RC holes and one Diamond drill hole were drilled within the relinquished area. Hole specifications and targets are summarised in Table 3.

A total of 224m of Diamond drilling and 973m of RC drilling were completed.

Best assay results are summarised in Table 4. Complete assay results are included in Appendix 4.

TABLE 3

Drill hole specifications from relinquished portion of EL1725

Anomaly No.	Hole	Co East	o-ord's North	Grid	Dip	Azimuth	Hole Type	Est. Depth to Target (m)	Depth to Basement (m)	. Actual depth to target (m)	Total depth of hole (m)	Target
12	CR9117	41,500	9,910	LOCAL	-60°	34° .	RC	130-150	108	-	230	Amphibolite, meta sediments
16	CR9115	452,000	6,761,700	AMG	-60⁰	355°	RC	170	- 40	40	156	Magnetite quartzite
18	CD93009	445,000	6,765,700	AMG	-60°	354°	MUD/DDH	110	72	102-174	224	Garnet quartz magnetite gneiss
. 36/37	CR9213	122,000	122,250	LOCAL	-60⁰	345°	RC	150	132	142-186	208	Garnet quartz- magnetite
39	CR93001	472,900	6,785,960	AMG	-60°	354°	MUD/RC	170	172	210-276	279	Syn-Tectonic Granite/BIF

TABLE 4

Best assay results, RC and DDH drilling from relinquished areas

Anoma	lly Hole	Depth (m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppm)	Rock Type
12	CR9117	192-196	5	4	19	1.20	0.18	Quartz magnetite rock
16	CR9115	58-60	7	6	12	0.60	0.10	Magnetite quartzite
18	CD93009	86-87.5	105	5	28	1.00	<0.02	Magnetite garnet quartz feldspar amphibole gneiss
37	CR9213	186-190	. 8	8 ·	62	<1.00	0.02	Quartz biotite gneiss
39	CR93001	226-270	46	15	88	0.75	<0.02	Quartz amphibole garnet chlorite gneiss

9 **DISCUSSION**

After almost three years of reconnaissance drilling into covered basement further area reduction is warranted over EL's 1719 and 1725 (Valdez 1994a). Exploration work continues on the remaining areas of the licences.

The areas were relinquished for any or all of the following reasons:

- excessive depth to basement
- insignificant geochemical results
- less prospective stratigraphy

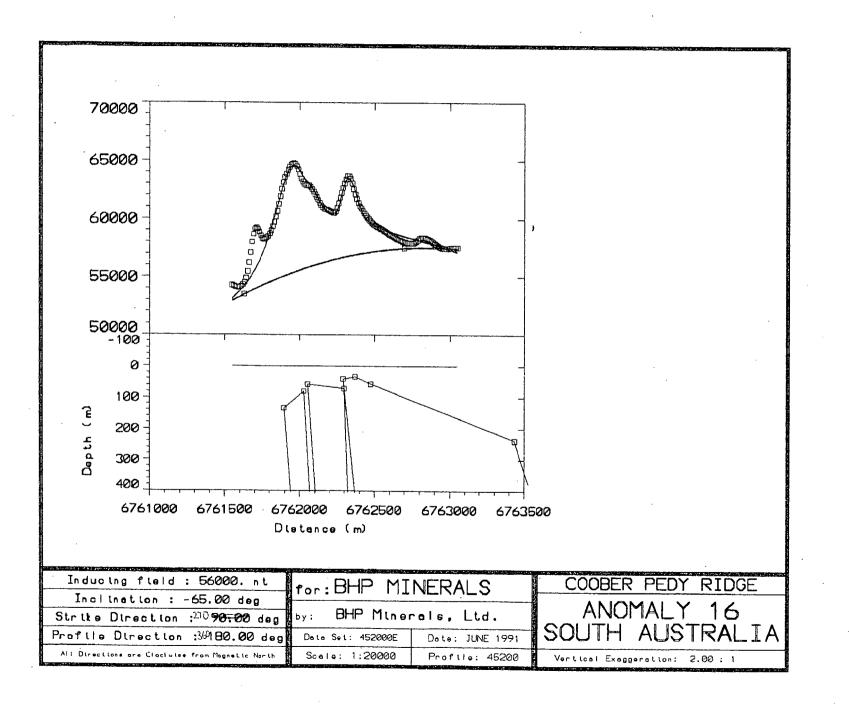
However it is fair to say that the areas relinquished have not been exhaustively explored, but that the reduction simply reflects the company's most reasonable option at this time.

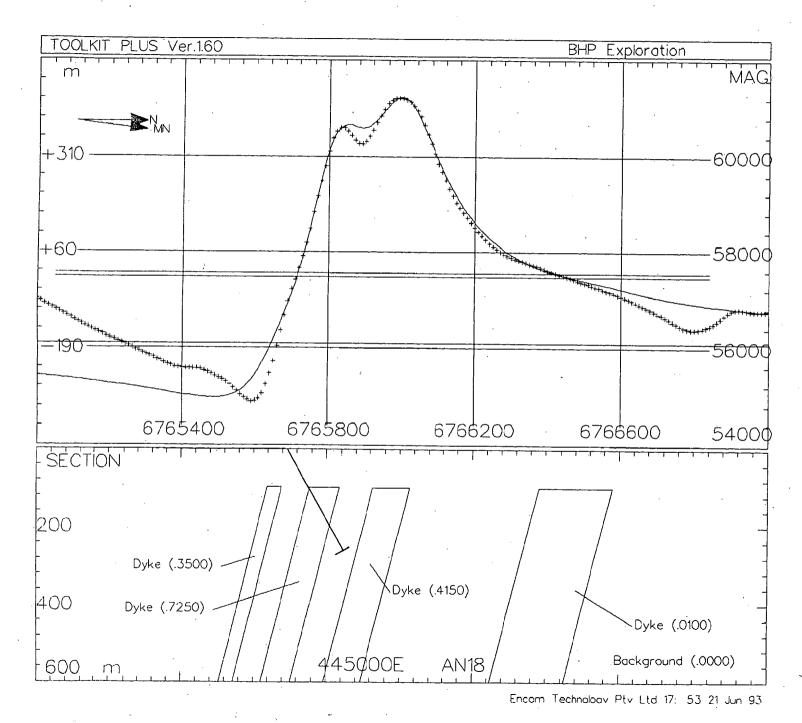
The geological basement interpretation map has been omitted from this report because it really reflects an overview interpretation, including areas still on closed file.

The reference list is included for completeness, although those reports remain on closed file at present.

REFERENCES

- Read, J.J., 1991a. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint First Quaterly Report for the Three Months Ended 13th August 1991, BHP Minerals, CR 7392.
- Read, J.J., 1991b. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Second Quarterly Report for the Three Months Ended 13th November 1991, BHP Minerals, CR 7474.
- Read, J.J., 1992a. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Third Quarterly Report for the Three Months Ended 13th February 1992, BHP Minerals, CR 7485.


- Read, J.J., 1992b. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Fourth Quarterly Report for the Three Months Ended 13th May 1992, BHP Minerals, CR 7485.
- Read, J.J., 1992c. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint fifth Report for the Six Months Ended 13th November 1992, BHP Minerals, CR 7696.
- Valdez, M.A., 1994a. Exploration Licences 1712, 1718, 1719 and 1725, South Australia, Joint Sixth Report for the year ended 13th November 1993. BHP Minerals, CR8011.
- Valdez, M.A., 1994b. Exploration Licences 1718, 1719 and 1725, South Australia. Relinquishment Report, partial area reduction from EL1719 and 1725. Total area reduction from EL1718. 13th November 1993. BHP Minerals, CR8018.


Appendix 1

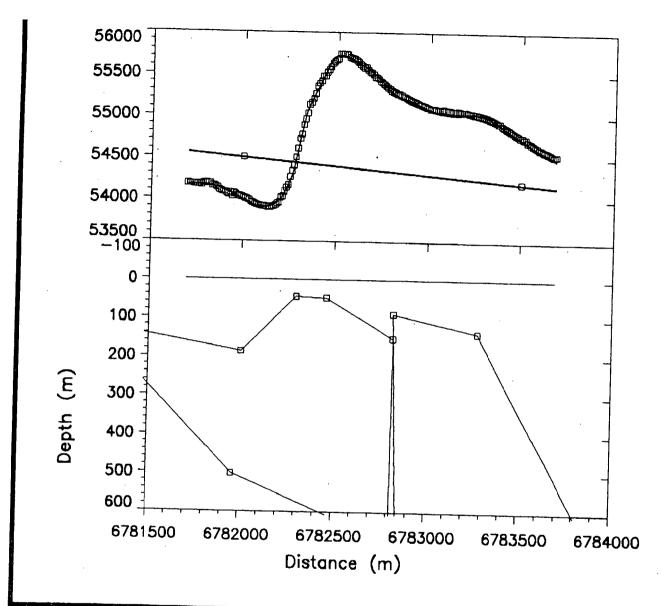
Ground Magnetic Profiles and Models and Sections

EL No.	Anomaly	Line	Ground Mag		Model
			From	To	
1719	26	422,400E	6,781,700N	6,783,700N	Yes (2)
1719	26	419,100E	6,781,700N	6,783,700N	Yes (2)
1725	16	452,000E	6,761,500N	6,763,000N	Yes
1725	18	445,000E	6,764,800N	6,766,800N	Yes
1725	36/37	122,000E*	119,000N	121,000N	Yes (3)
1725	36/37	122,000E*	121,500N	122,700N	Yes (2)
1725	39	472,900E	6,784,750N	6,790,150N	Yes
1725	45	410,300E	6,788,550N	6,786,350N	Yes (2)

^{*} Local co-ordinates

AN 18

445000E
6765700N


Incl' -60°N

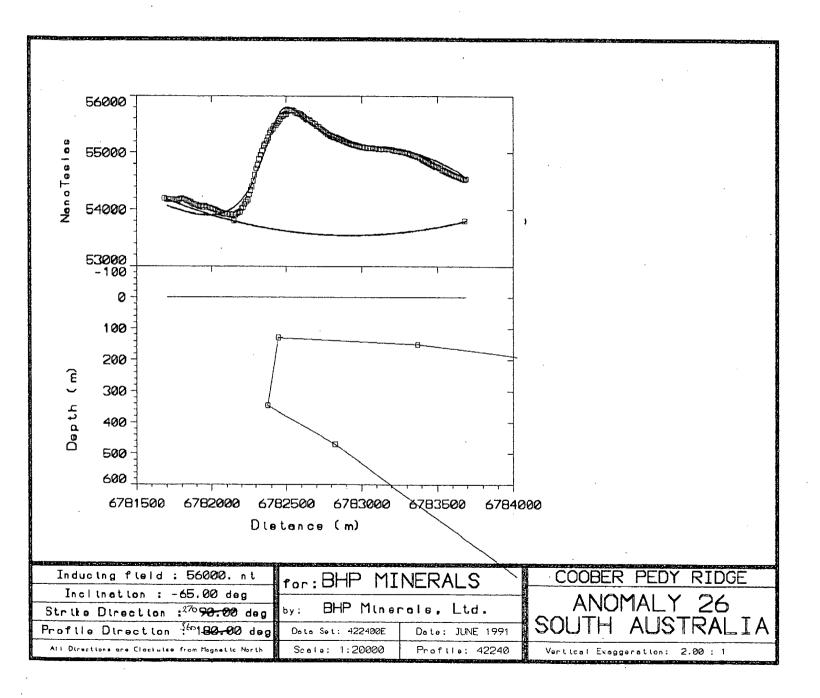
Azimuth 355°

Depth of hole 300m

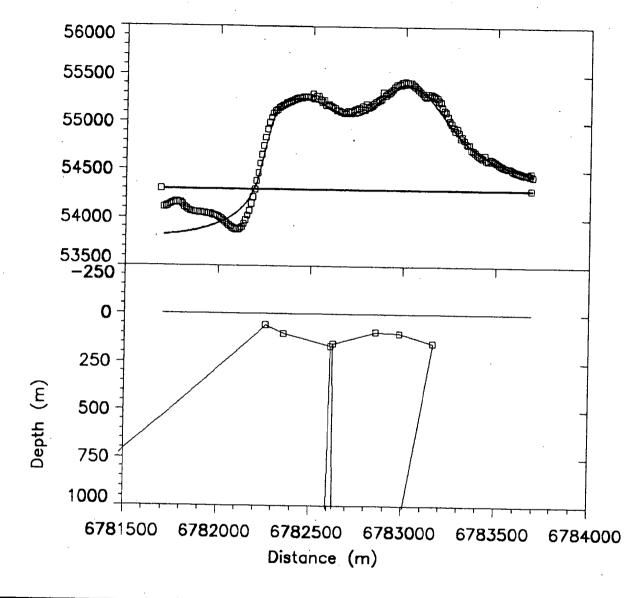
Depth to mag 110m

Susc 72500 x 10-55I

Inducing field: 56000. nt Inclination: -61.00 deg Strike Direction: 270.00 deg Profile Direction: 360.00 deg All Directions are Clockwise from Magnetic North


BHP MINERALS for:

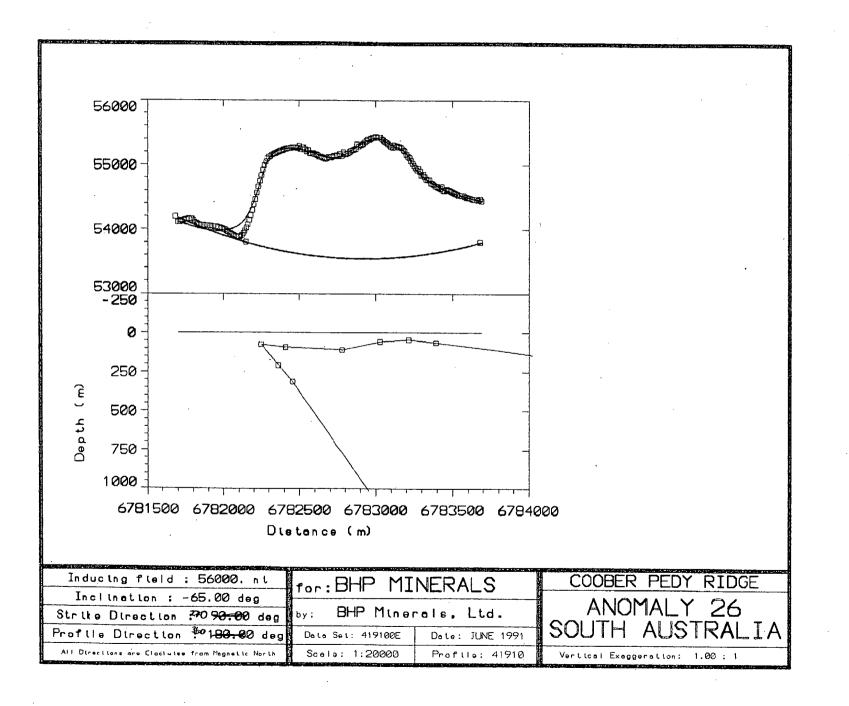
BHP Minerals, Ltd. by:


Data Set: 42240DE Date: JUNE 1991 Scale: 1:20000 Profile: 42240

SOUTH AUSTRALIA ANOMALY 26 COOBER PEDY RIDGE

Vertical Exaggeration: 2.00 : 1

(782000) - 54,000


Inducing field : 56000. nt	for: BHP MINERALS			
Inclination : -61.00 deg	TOT. DITT. IVII	ior: DIII WIINERALS		
Strike Direction : 270.00 deg	ьу: ВНР Minerals, Ltd.			
Profile Direction : 360.00 deg	Data Set: 419100E	Date: JUNE 1991		
All Directions are Clockwise from Magnetic North	Scale: 1:20000	Profile: 41910		

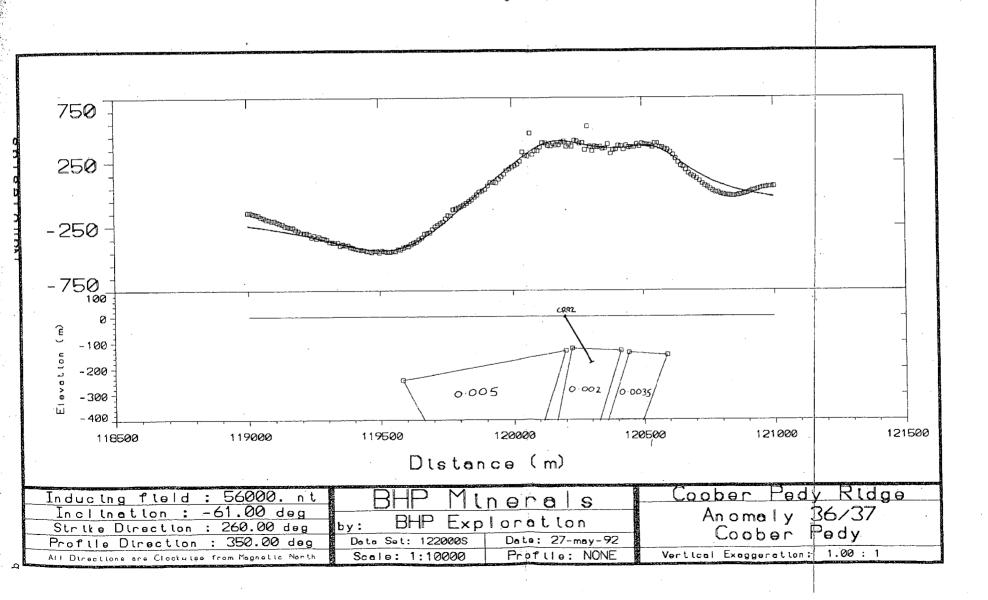
SOUTH AUSTRALIA

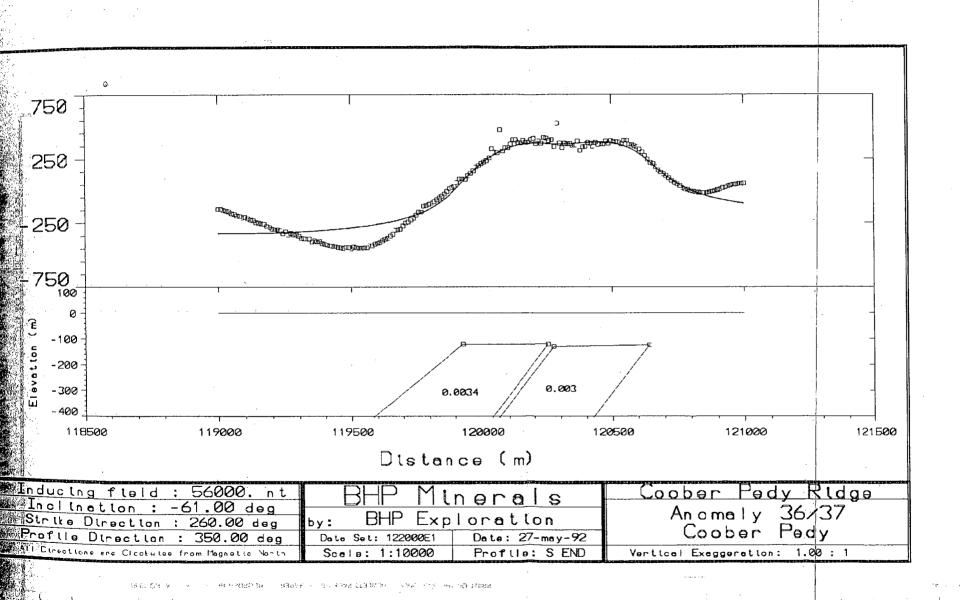
ANOMALY 26

COOBER PEDY RIDGE

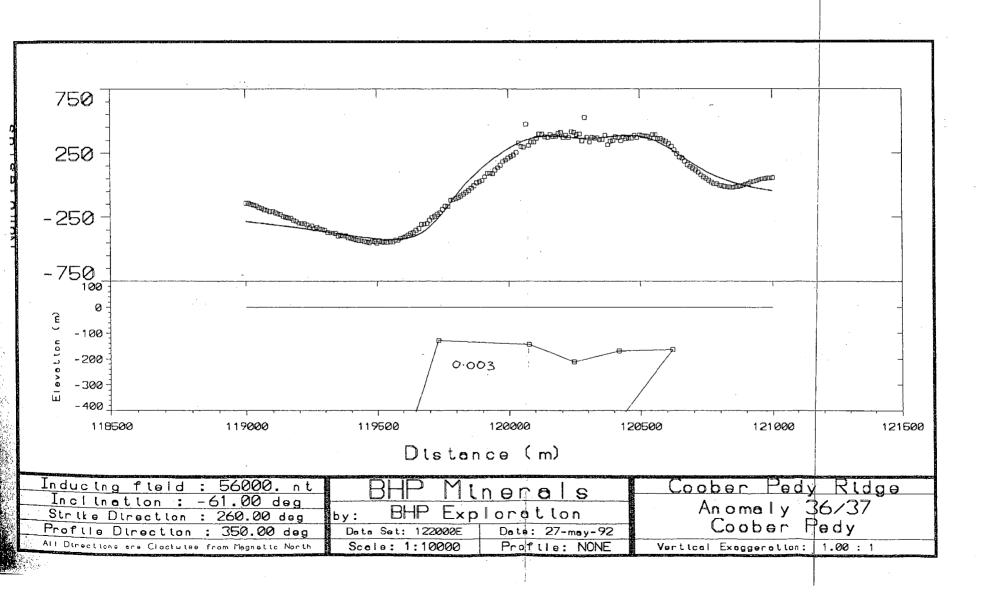
Vertical Exaggeration: 1.00 : 1

Drill Hole- Anomaly 36


East: 12 2000E


North: 120800N

Inclination: - 600 grid N

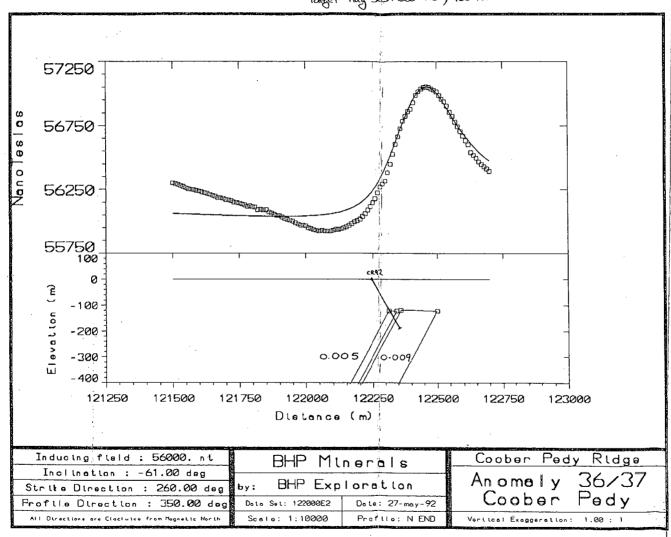

Depth to target 150m Est. Depth Of Hole 200m

Target Mag Sus 200 x105 s.I. units

Anomaly 36 - Alternative Model

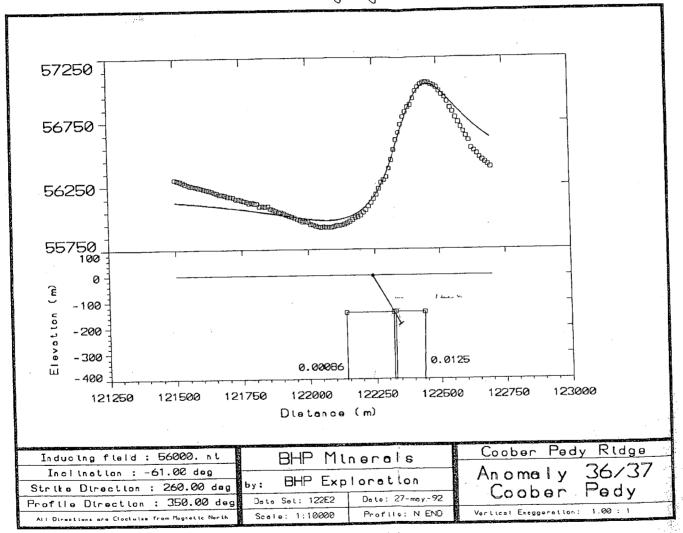
Do:11 Hole - Anomaly 37

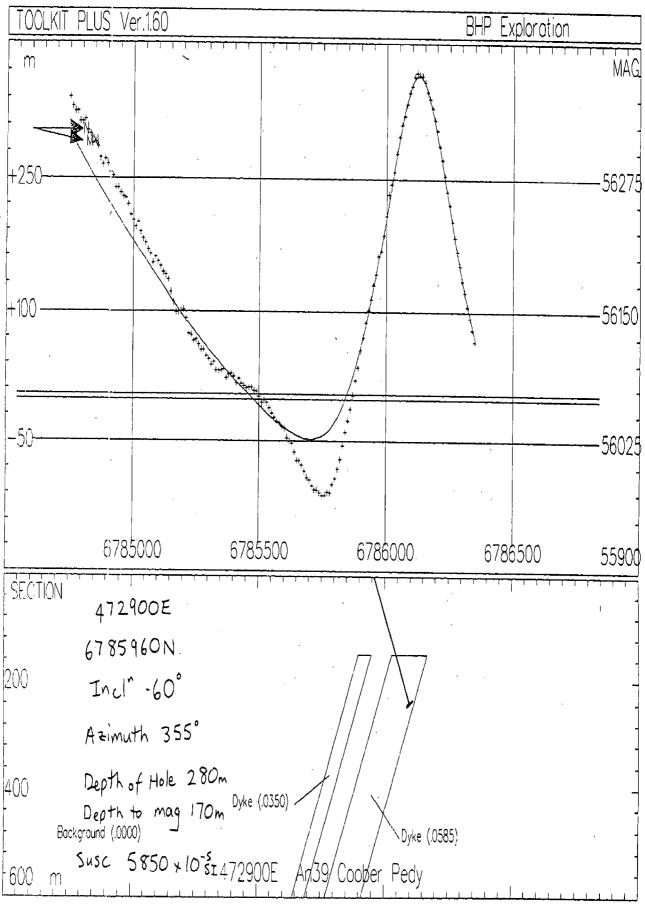
East: 122 000 E

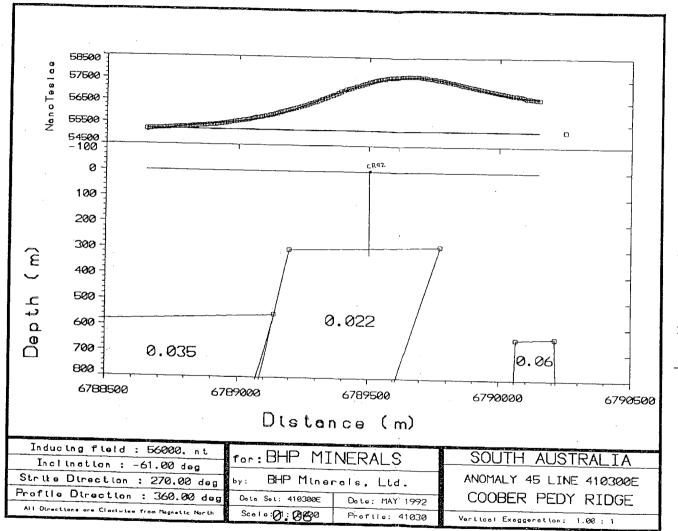

North: 122250 N

Inclination: -600 grd N

Dopth To Target: 150 m


Est. Dopth of Hole: 220 m

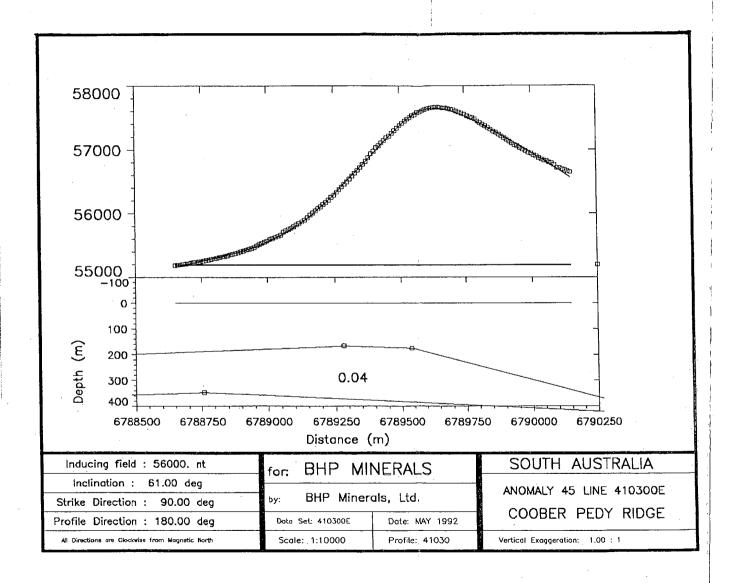

Target Hag Sus: 500 v105, 900 x105 S.T. Units

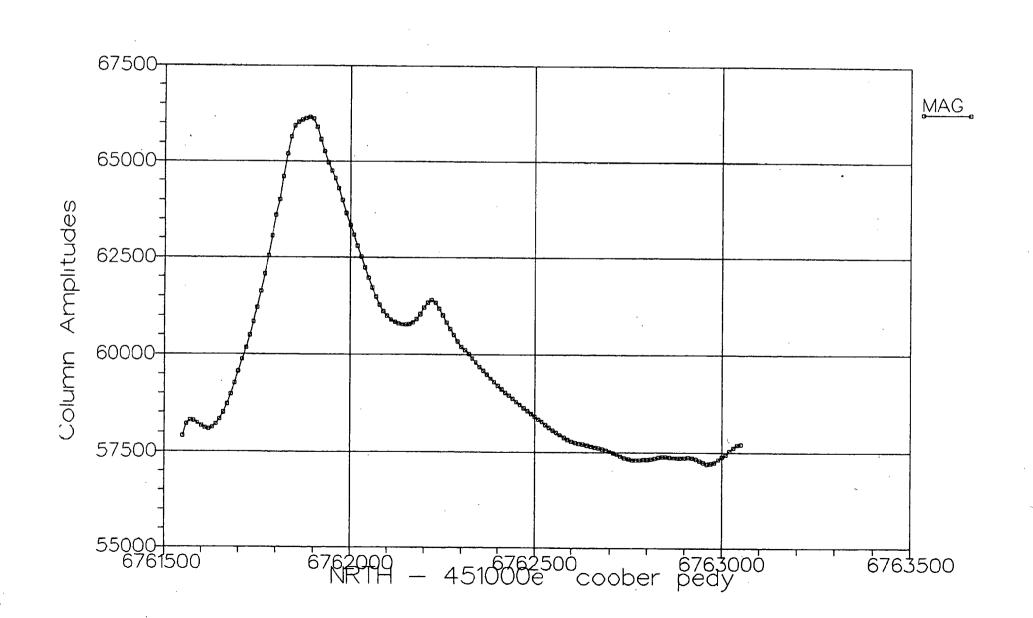


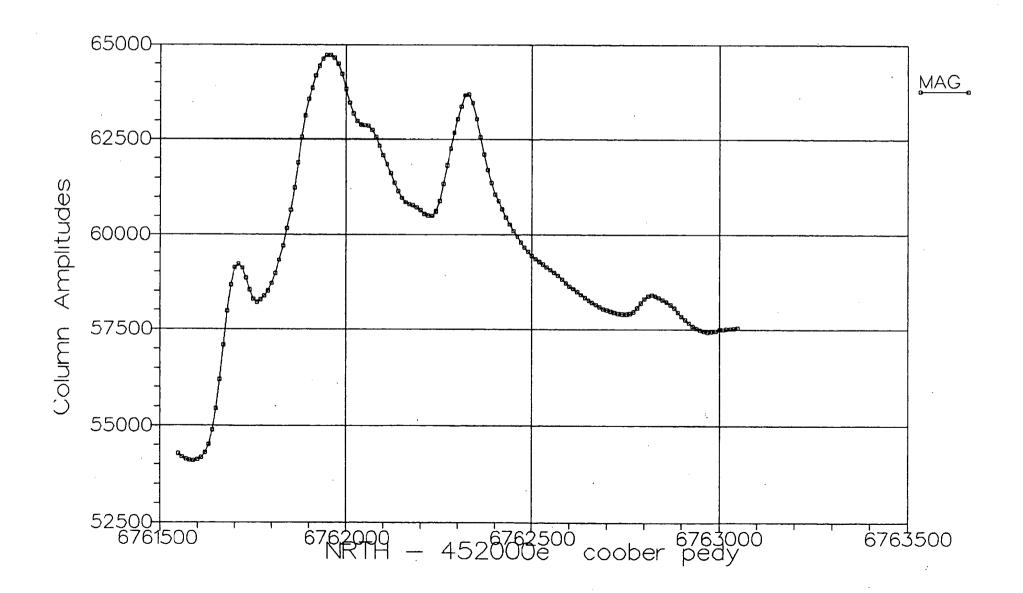
East: 122000 E
North: 122250N
Inclination: -60°gold N
Depth to Torget: 150 m
Est. Depth of Hole: 220 m

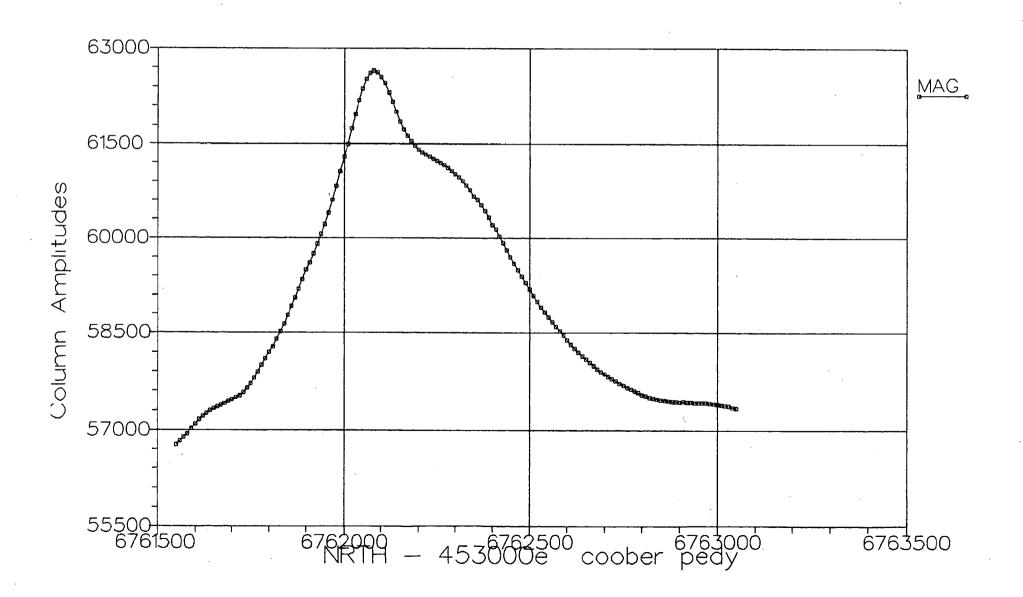
Target Hag Sus: 5000 MOS, 9000 MOS S. I. Units

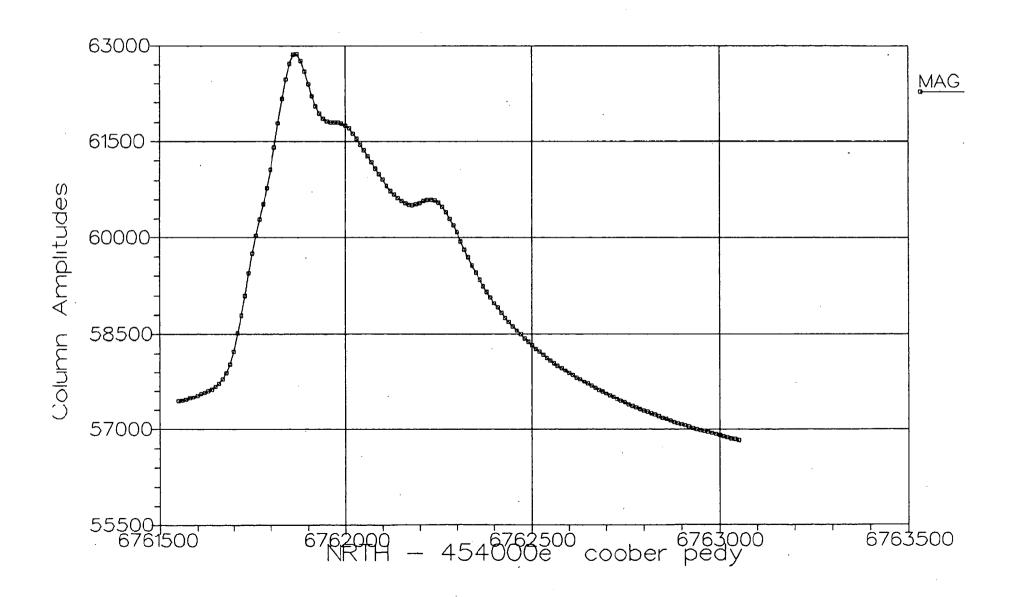
Alternative Drill Site

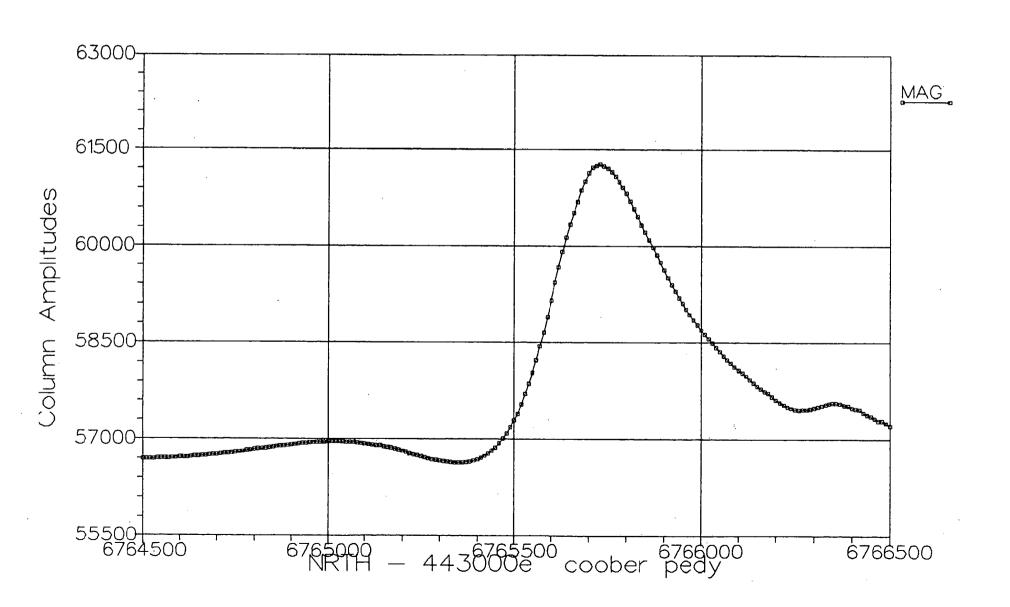

Drill Hole Anomaly 45

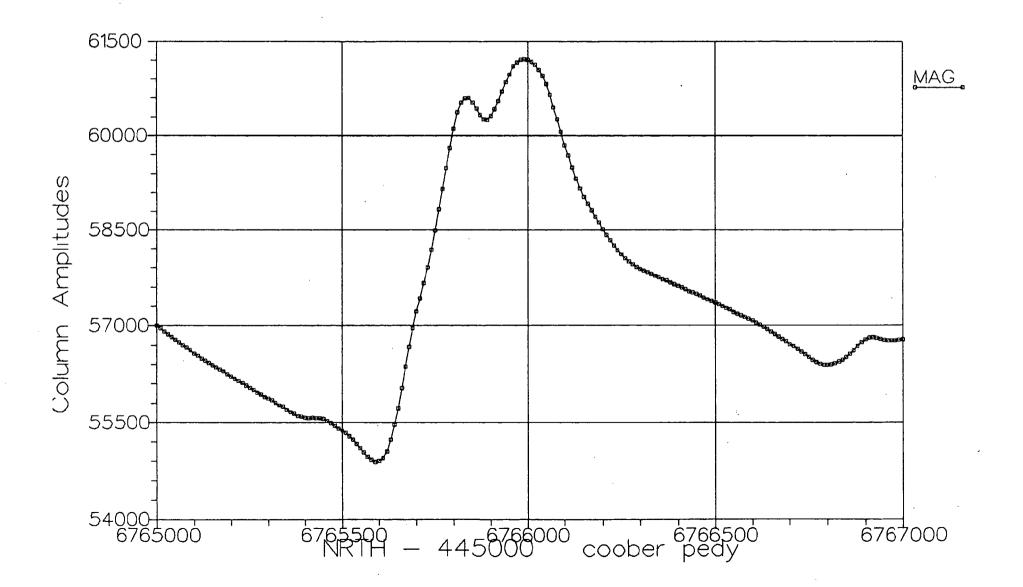

East: 410300E

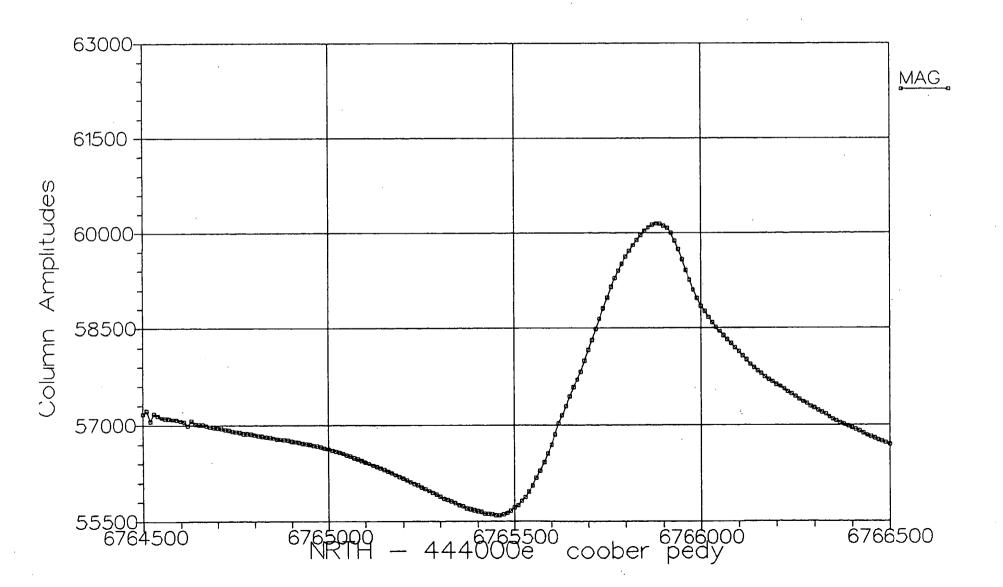

born: 6789500 N

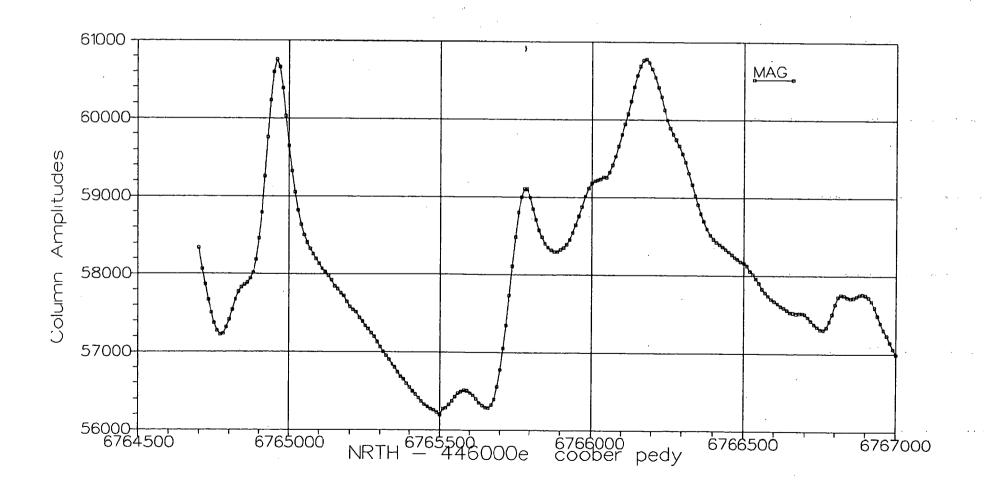

Inclination: -90°

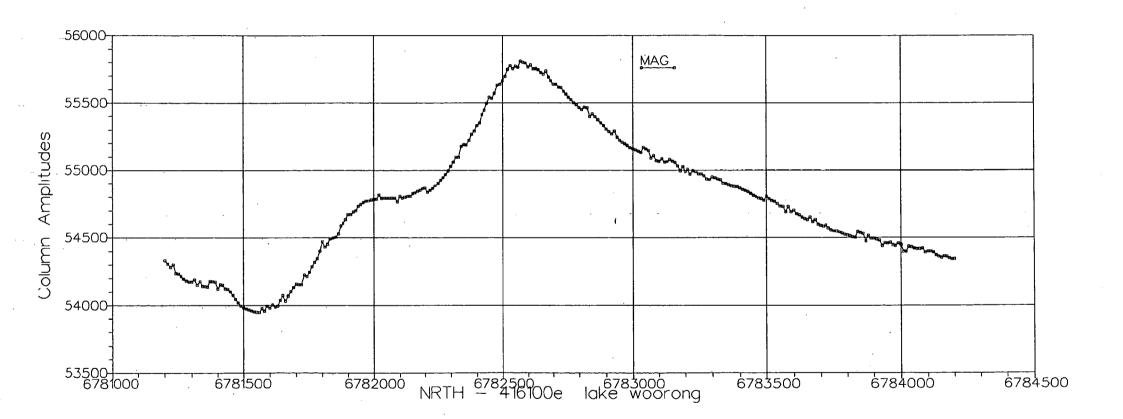

Depth to larget: 280-300
Est. depth of hole: 300
Target May Sus: 220010-5

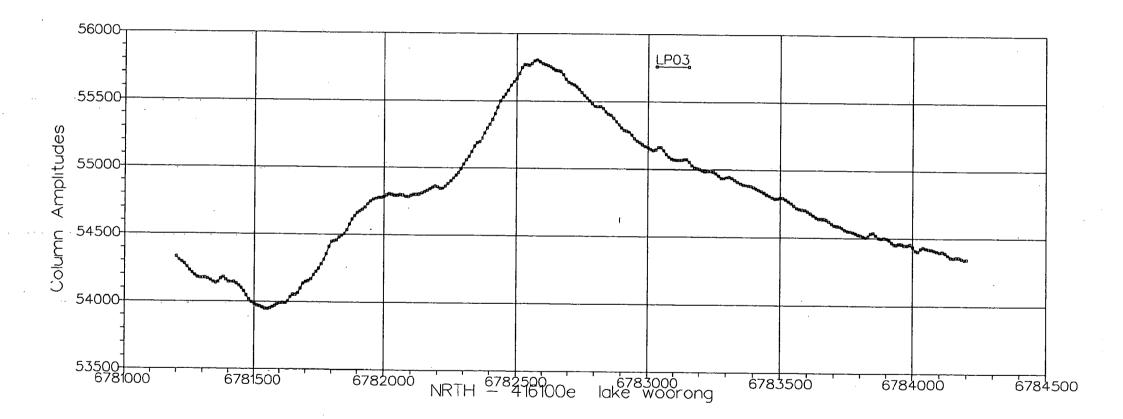


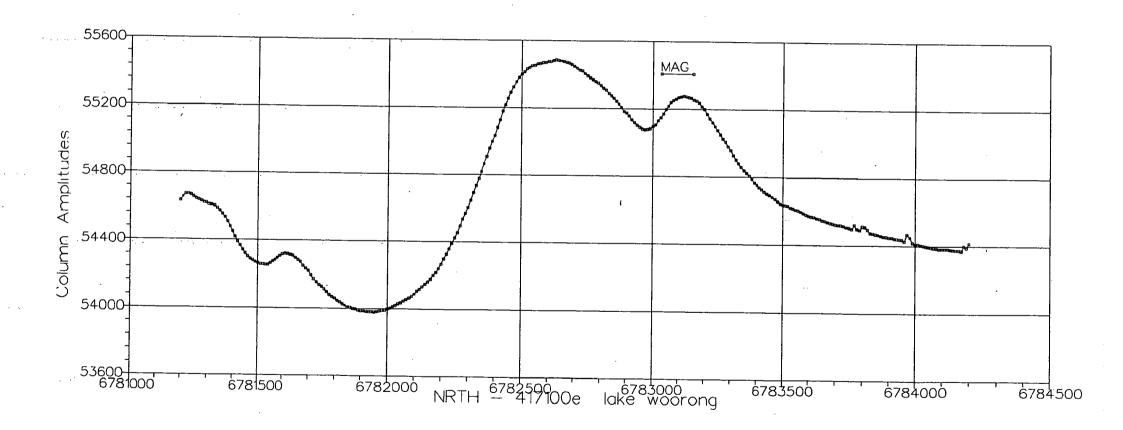


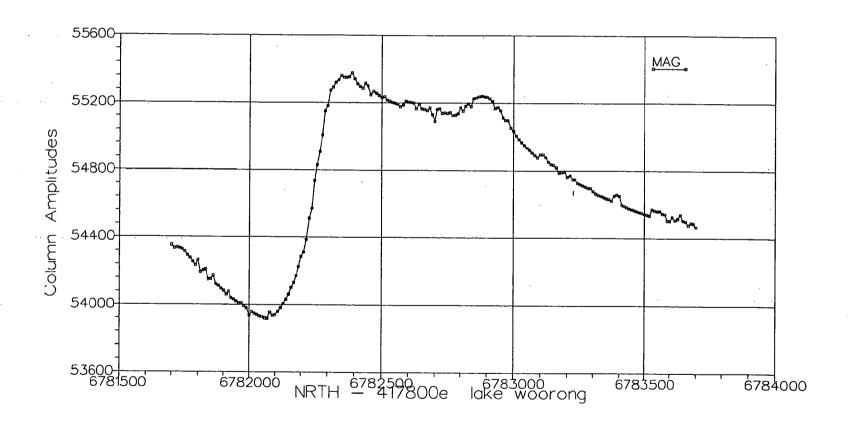


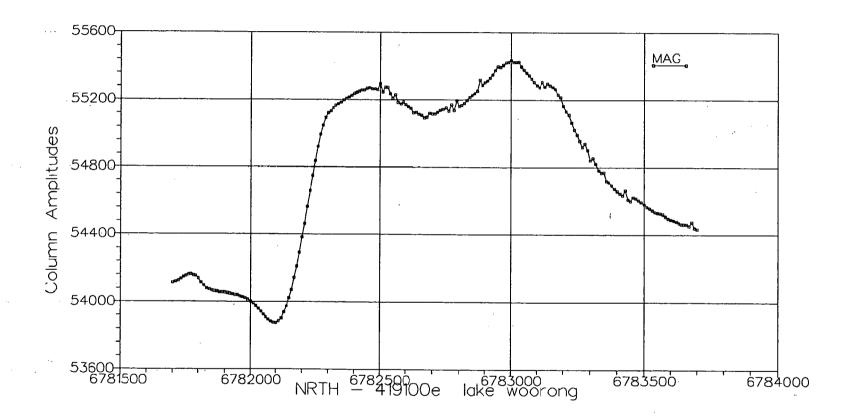


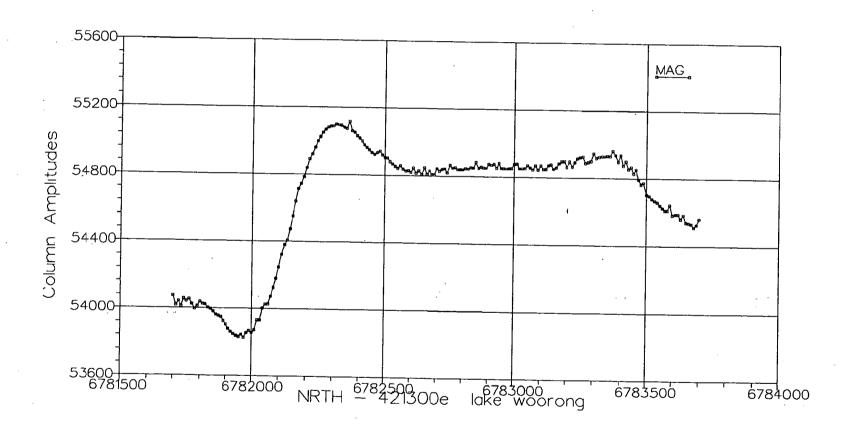


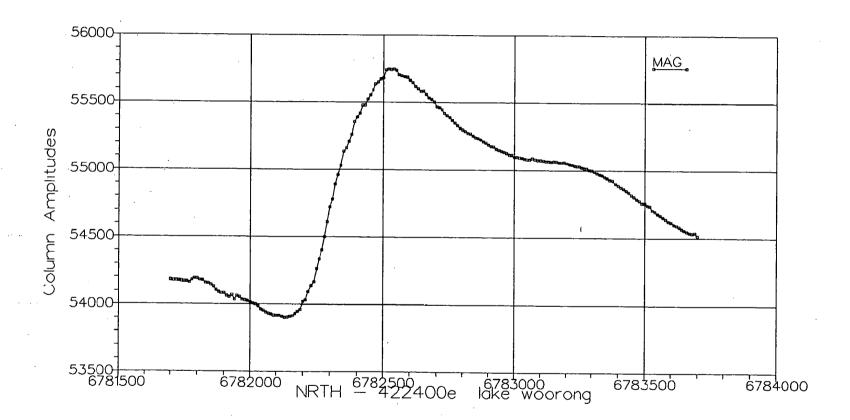


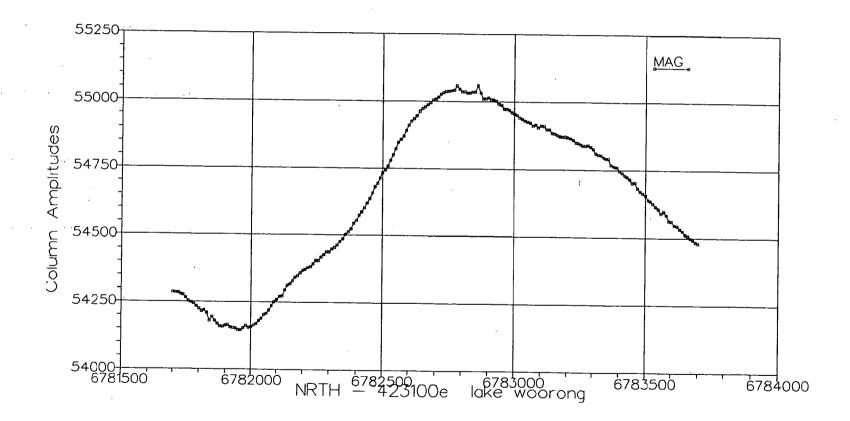


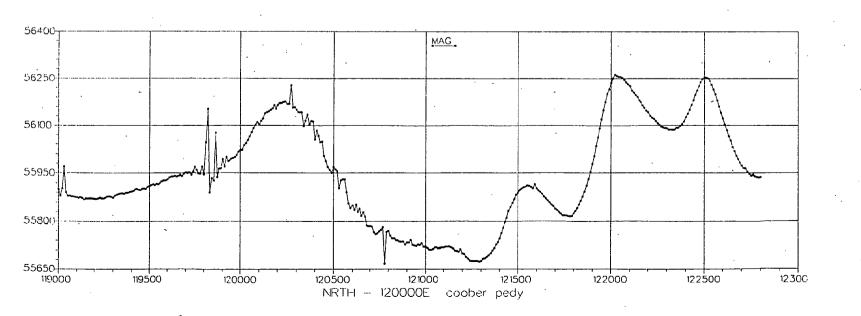


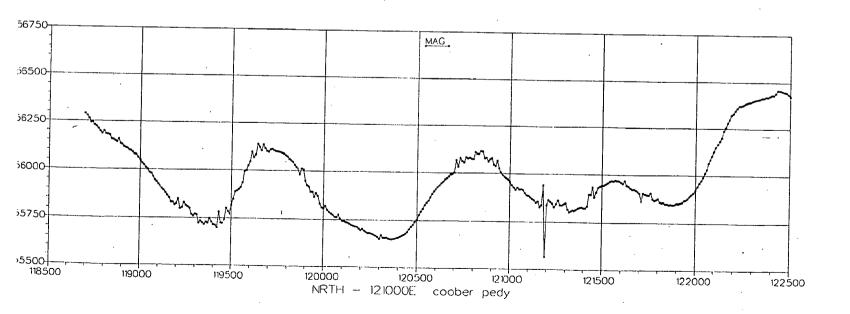


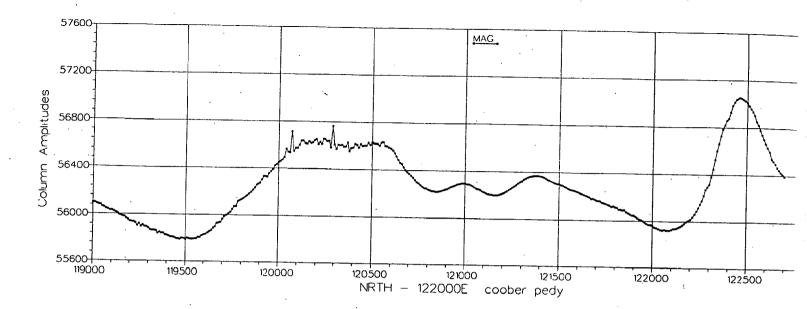


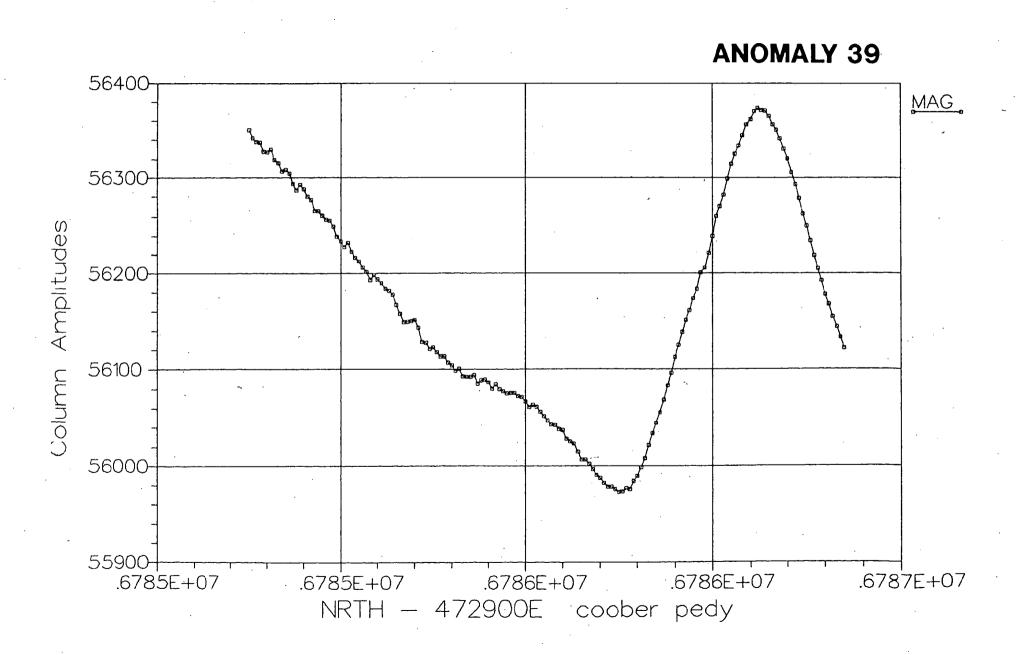


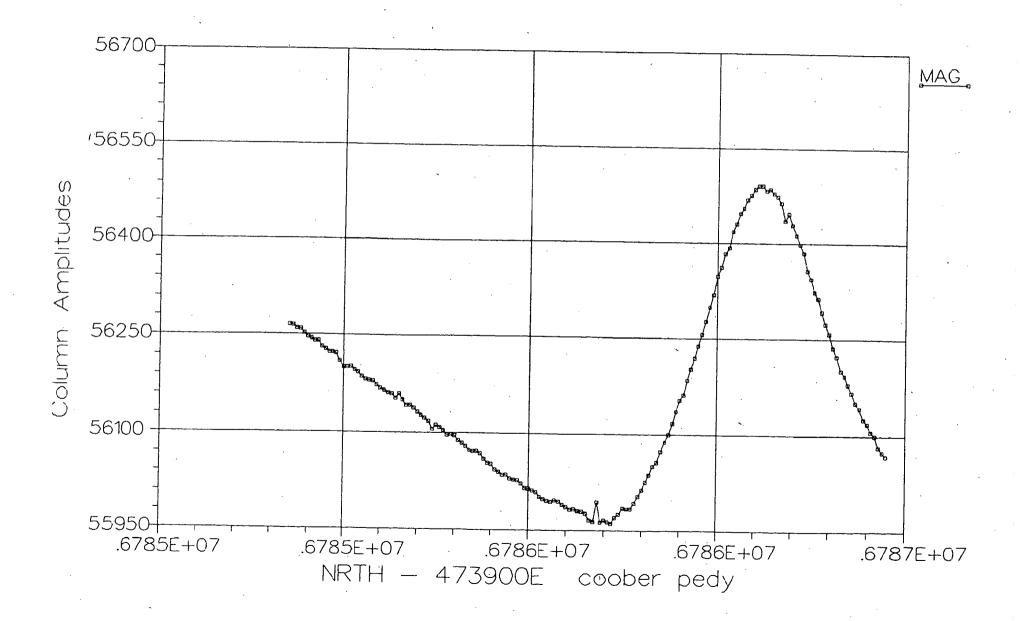


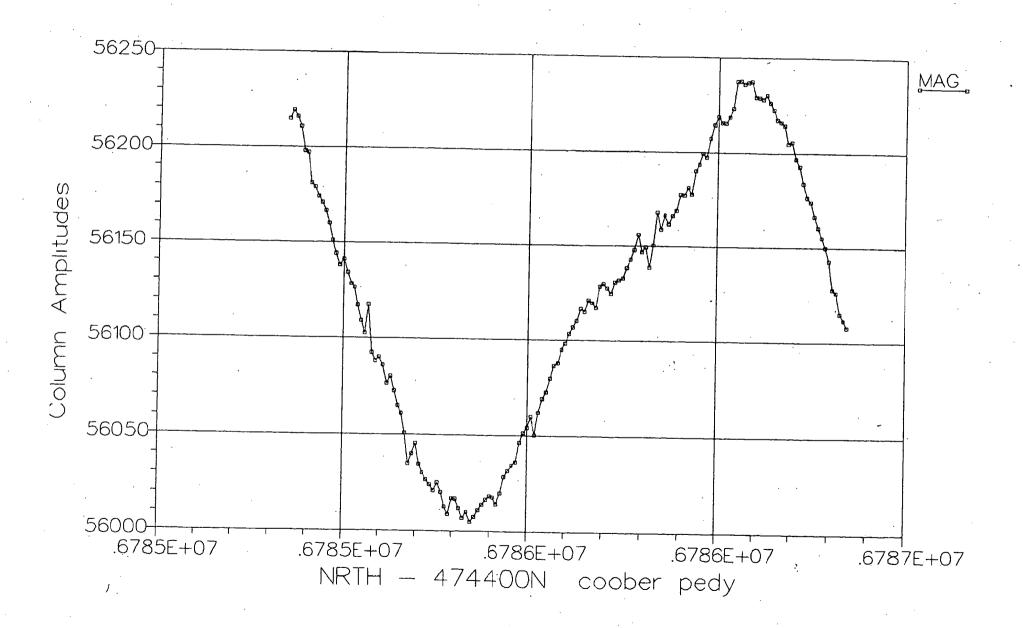


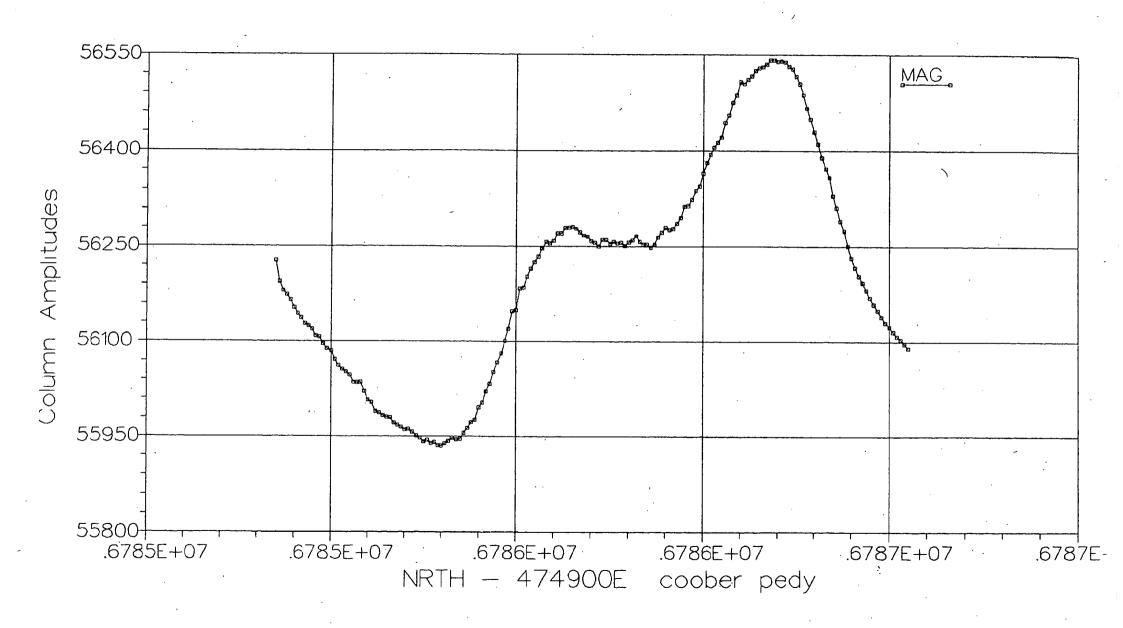


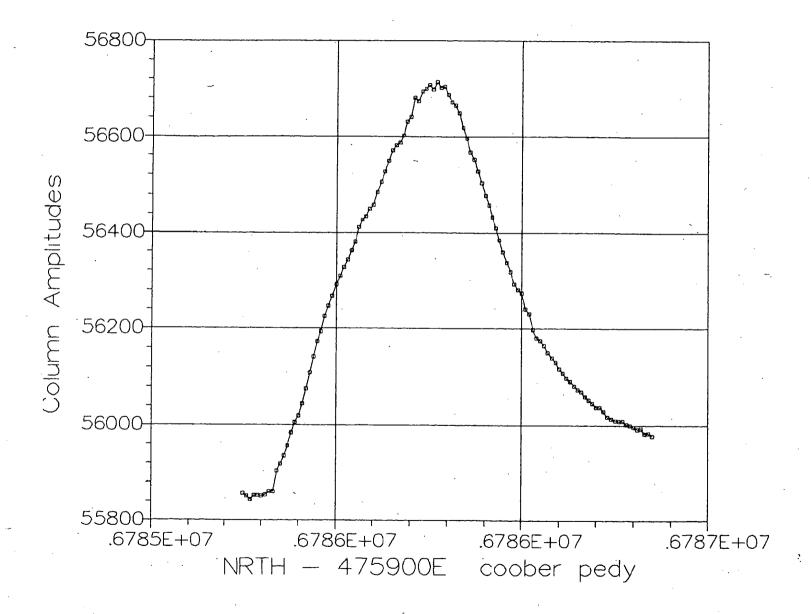


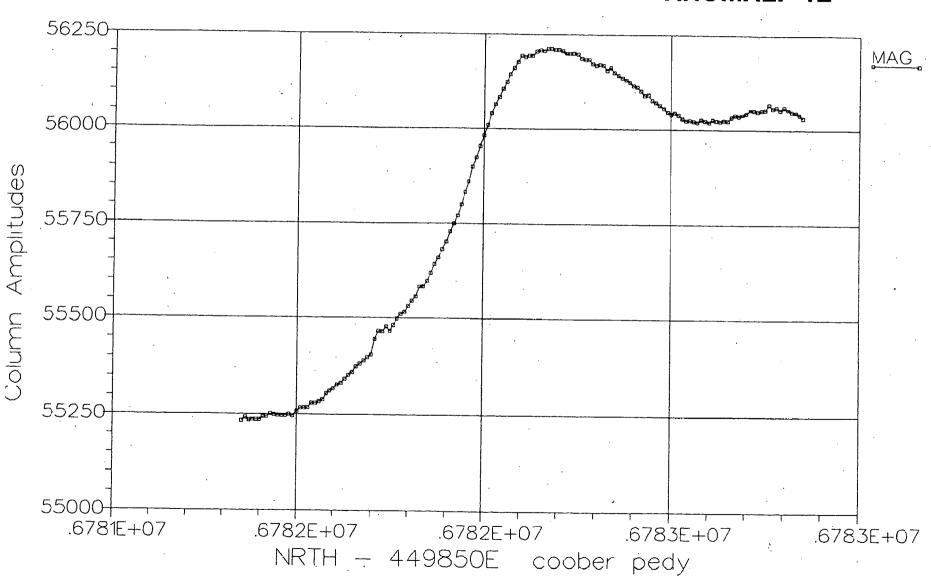


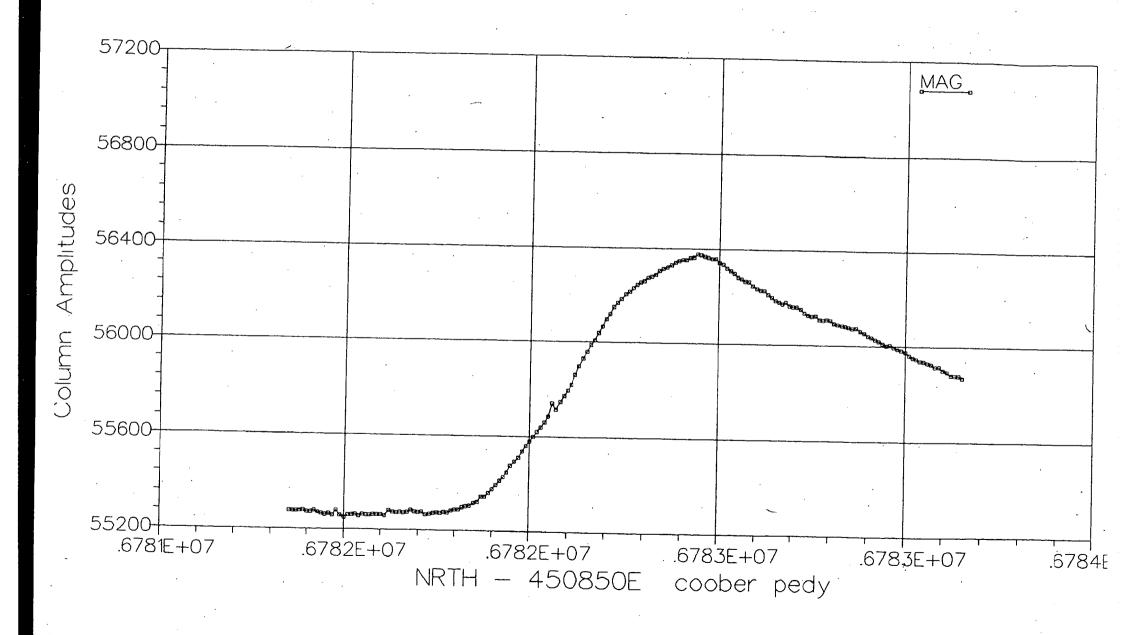

ANOMALY 36/37

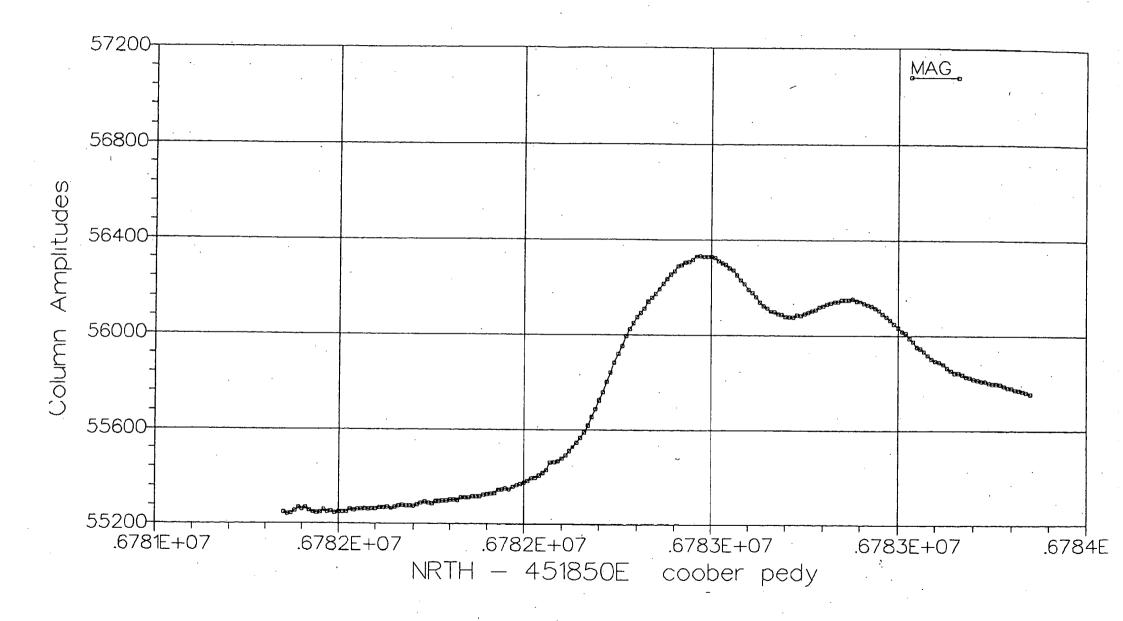


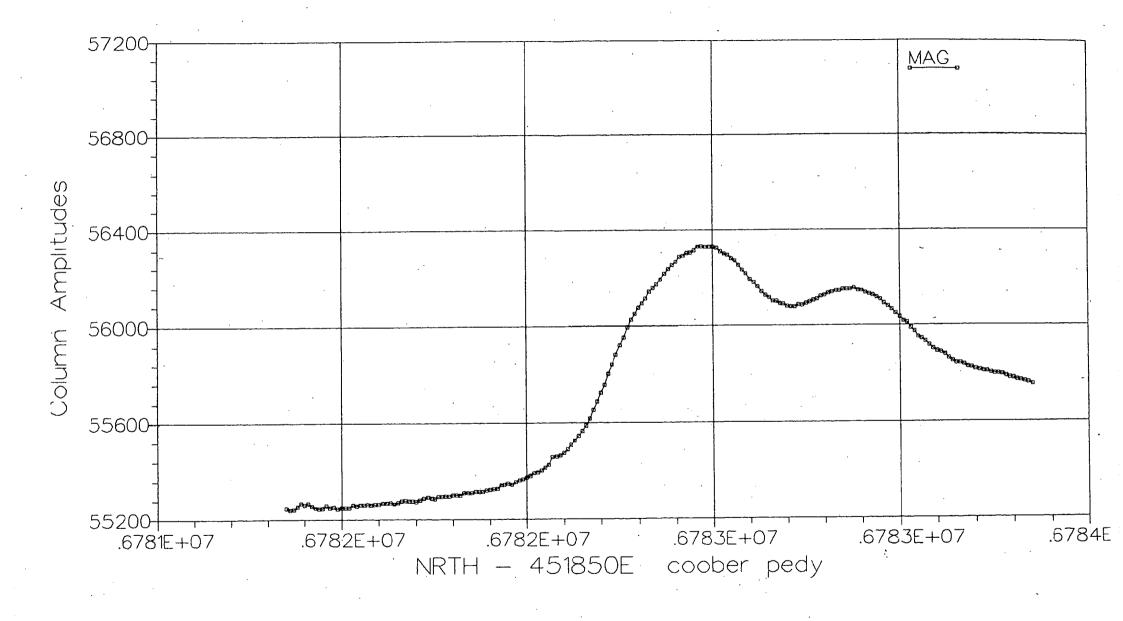


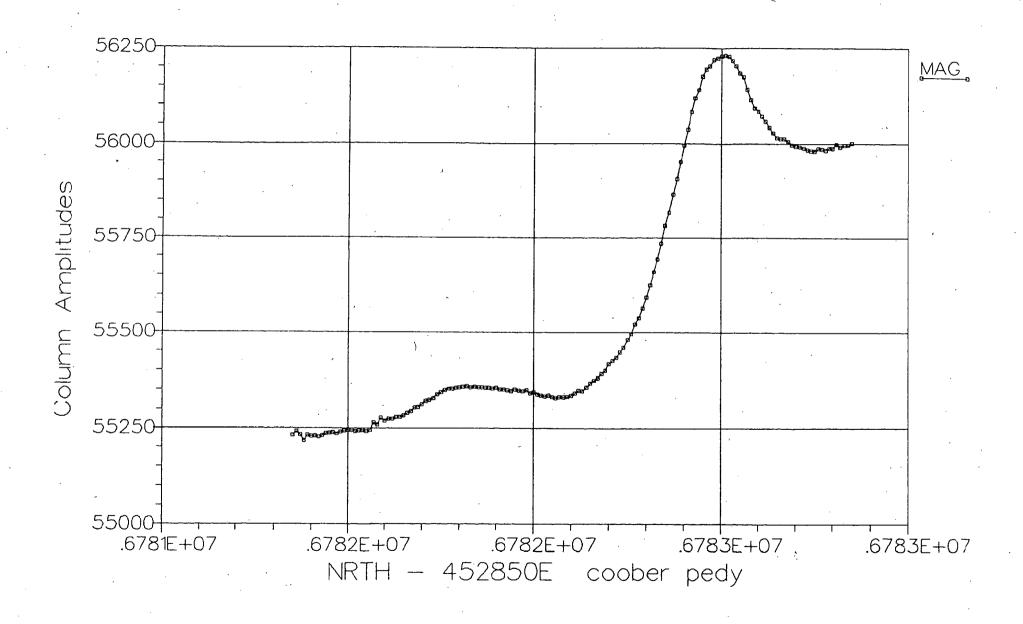


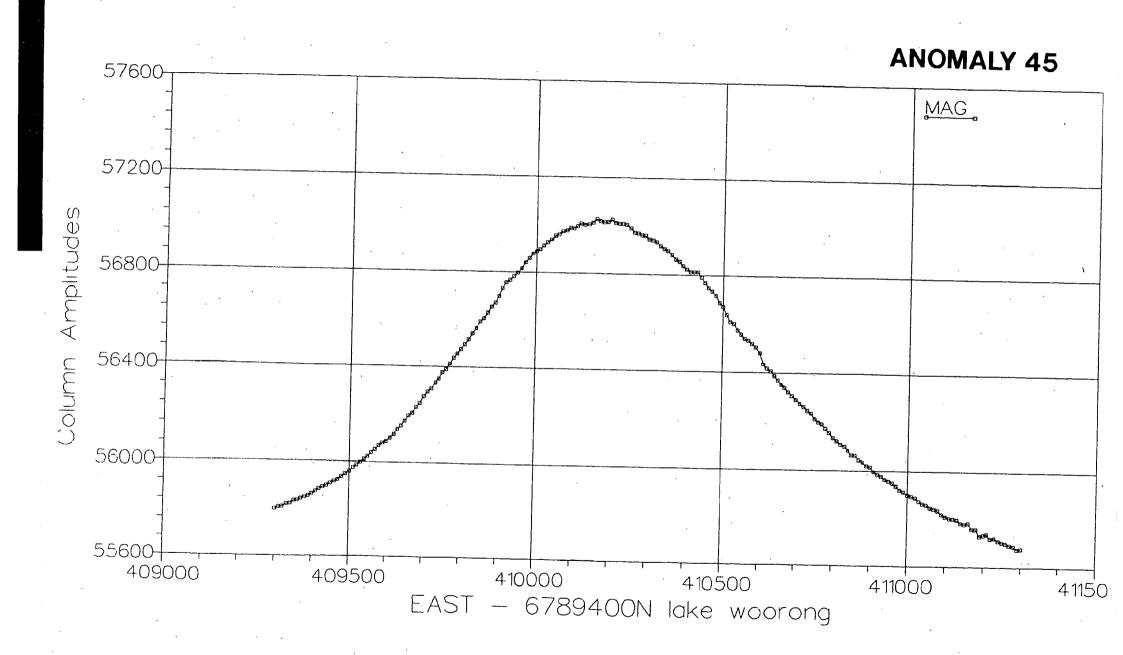


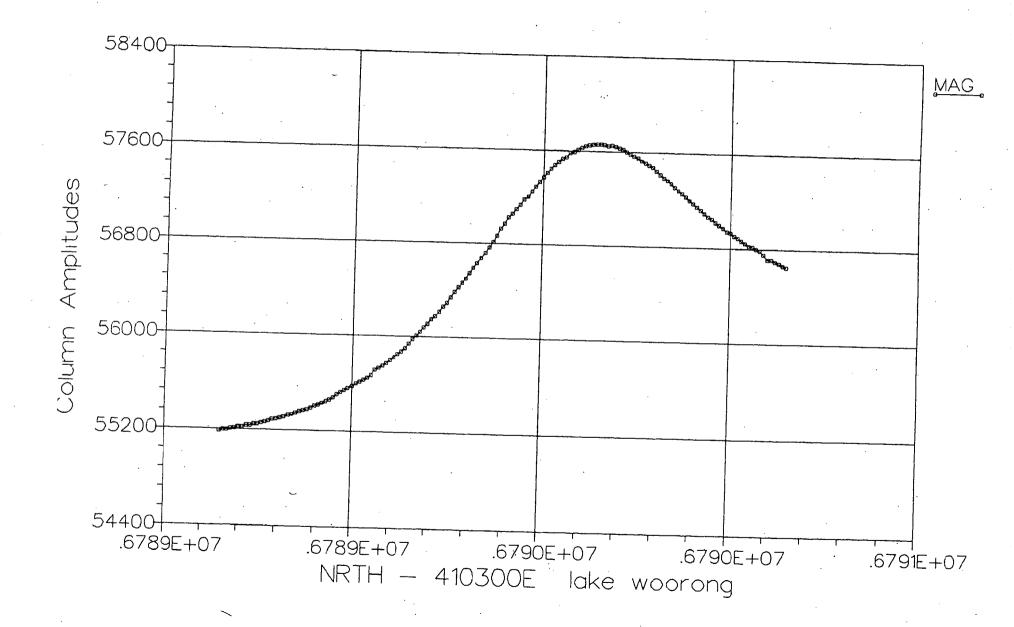


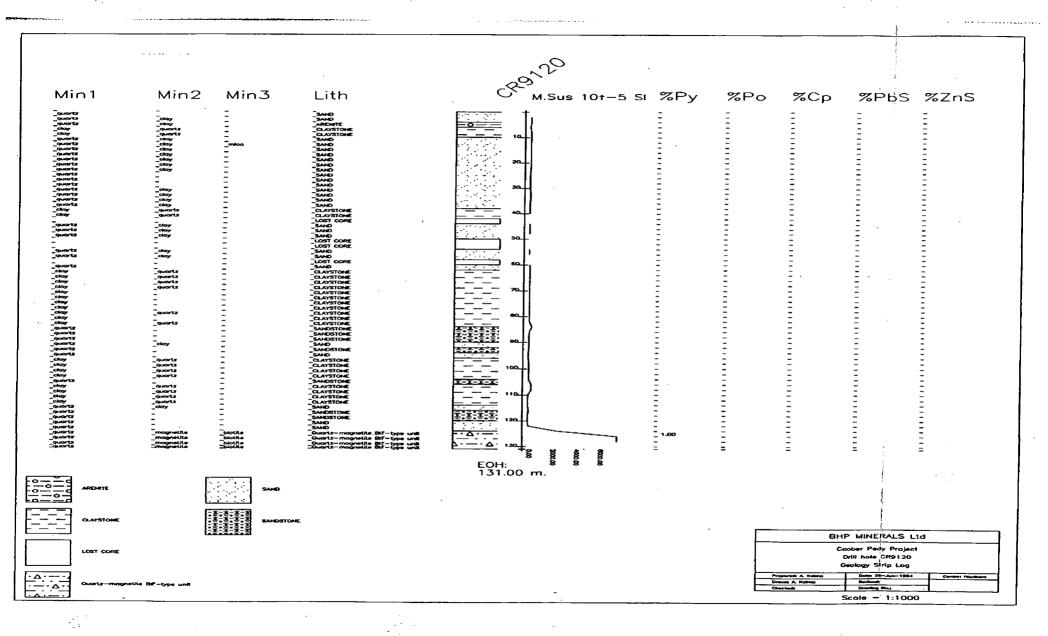




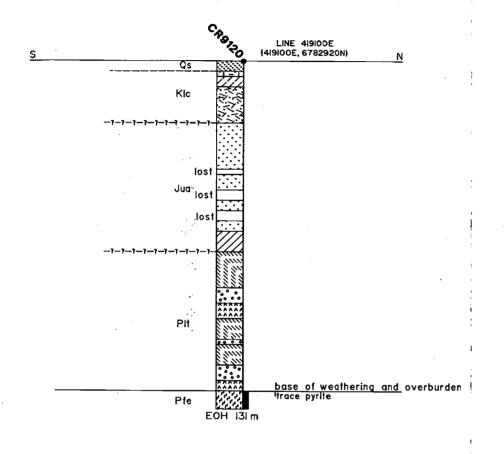

ANOMALY 42








Appendix 2


Graphic Drill hole Sections

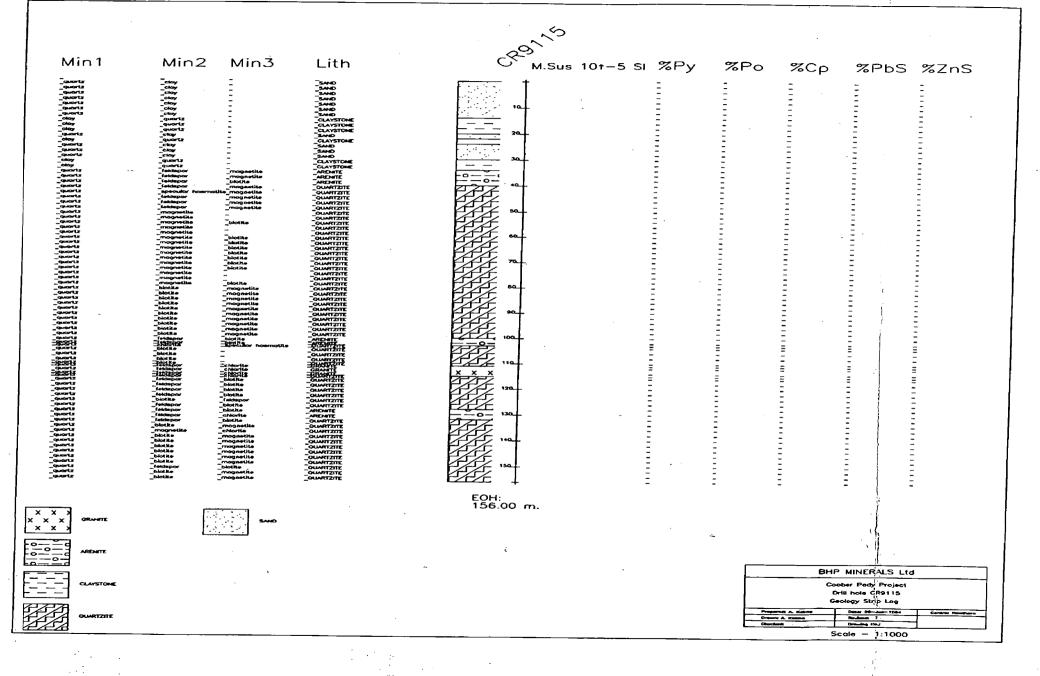
(Geology and Assay Strip Logs)

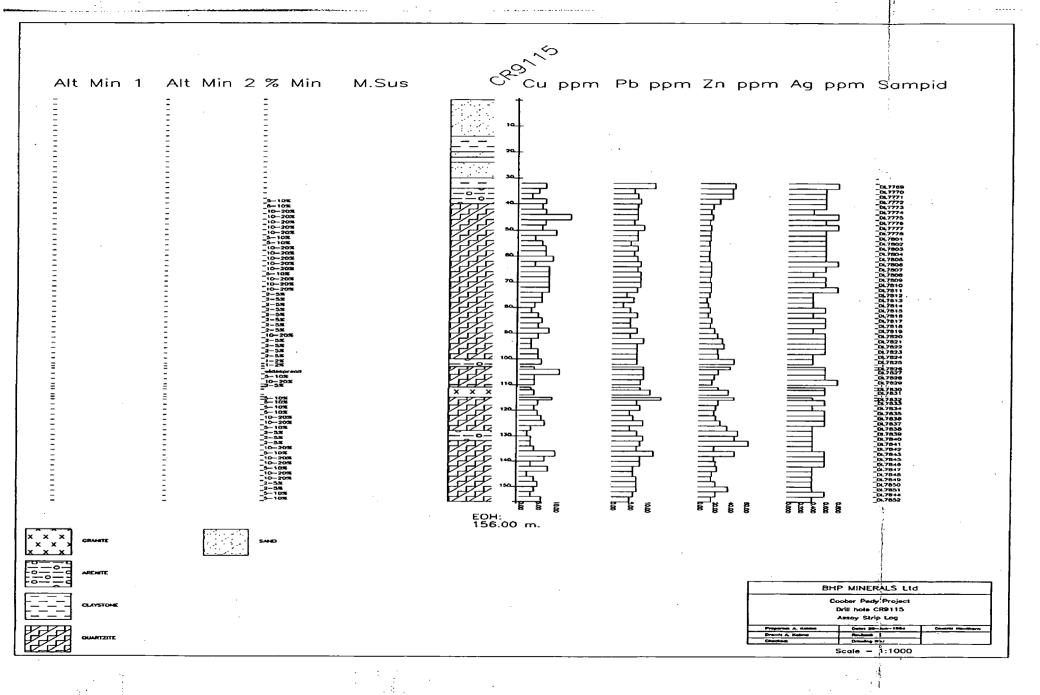
Hole	Anomaly	EL
CR9120	26	1719
CR9115	16	1725
CR9117	12	1725
CR9213	36/37	1725
CR93001	39	1725
CR93009	18	1725

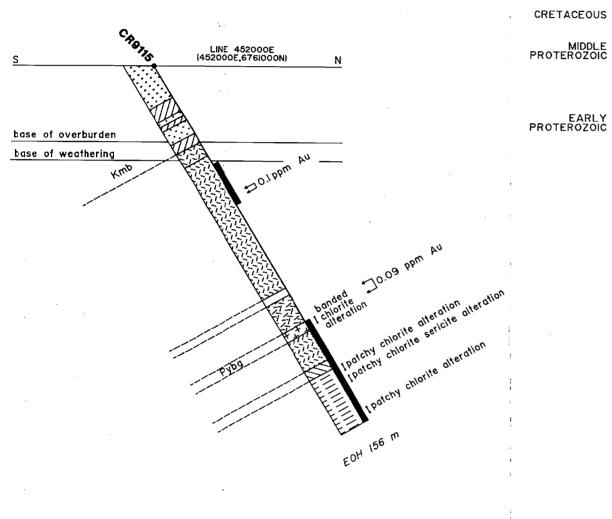
LEGEND

QUATERNARY	Qs 🌉	Undifferentiated ferruginous quartz sand
		CADNA-OWIE FORMATION Quartz drenite
CRETACEOUS	Klc	Light tan ferruginous clay
		Siliceous light tan coarse grained quartz sand
JURASSIC	Jua Jua	ALGEBUCKINA SANDSTONE Coarse grained sand
UURASSIC		Dark grey carbonaceous clay
	<i>Eurin</i>	MOUNT TOONDINA FORMATION Light gréy claystone
PERMIAN	Plt 👯	Pale quartz sandstone
	^^^^	Clayey quartz sand
EARLY PROTEROZOIC	Pfe ₂	SUITE TWO - QUARTZ MAGNETITE Gneissic quartz magnetite
	1	

Magnetic section of drill hole


Scale I:1000 20 40 60 80 metres


Date drilled : 2/10/91



EL 1719, LAKE WOORONG, S.A. ANOMALY 26 DRILL SECTION, HOLE CR9120

Prepared: J. Read	Date: Dec 1991	
Drawn: F. Barlow	Project No.: FK4	Fig
Centre: Melbourne	Drawing No.: A3-1958N	_

LEGEND

CRETACEOUS

BULLDOG SHALE Light red-brown ferruginous unconsolidated sands

Light tan and light grey sandy clay

MIDDLE PROTEROZOIC

SKYLARK HILLS GRANITE Magnetic quartz feldspar granite

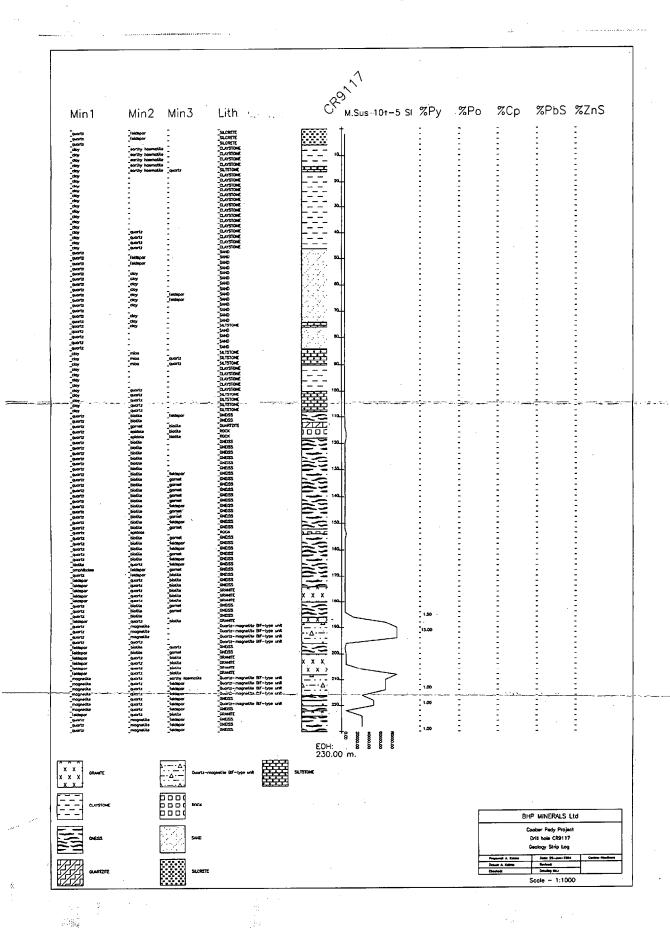
Quartz + orthoclase + cordierite + plagioclase granofels (meta pelite) Quartz orthoclase magnetite + cordierite + plagioclase granofels, with hercynite, sillimanite corundum and sapphirine (meta pelite) Retrogressed quartz plagioclase orthoclase magnetite granofels

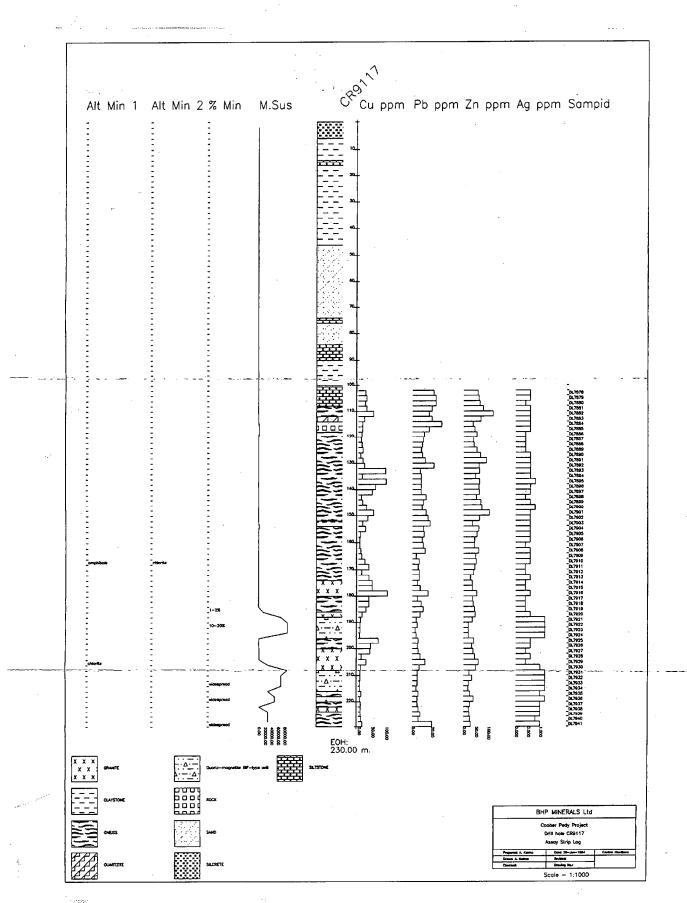
Quartz feldspar biotite quartzite with minor magnetite

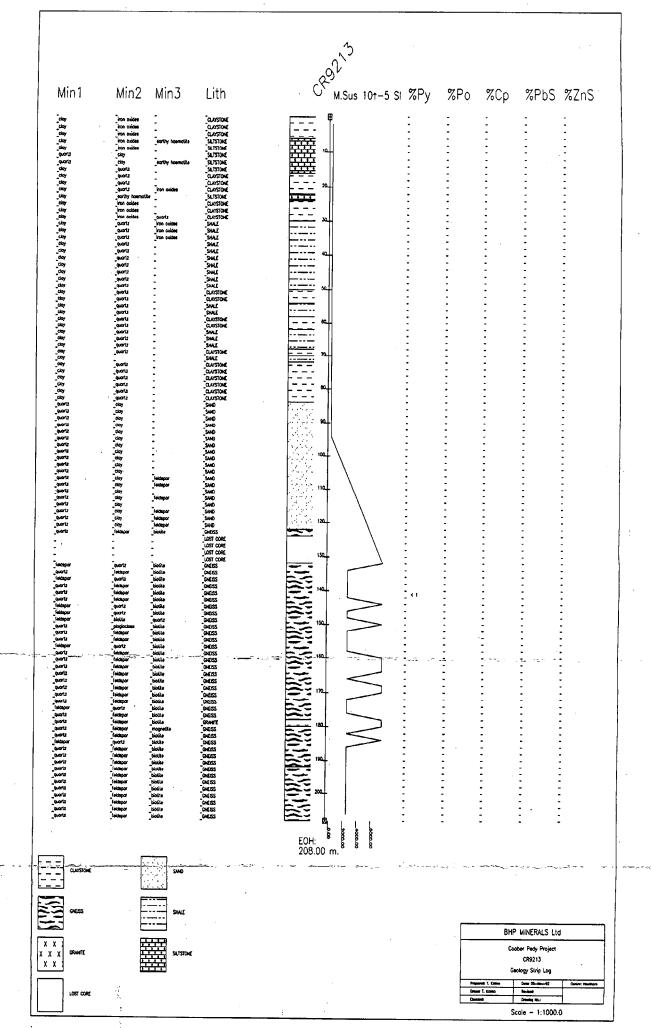
Granitic quartz feldspar biotite granulite

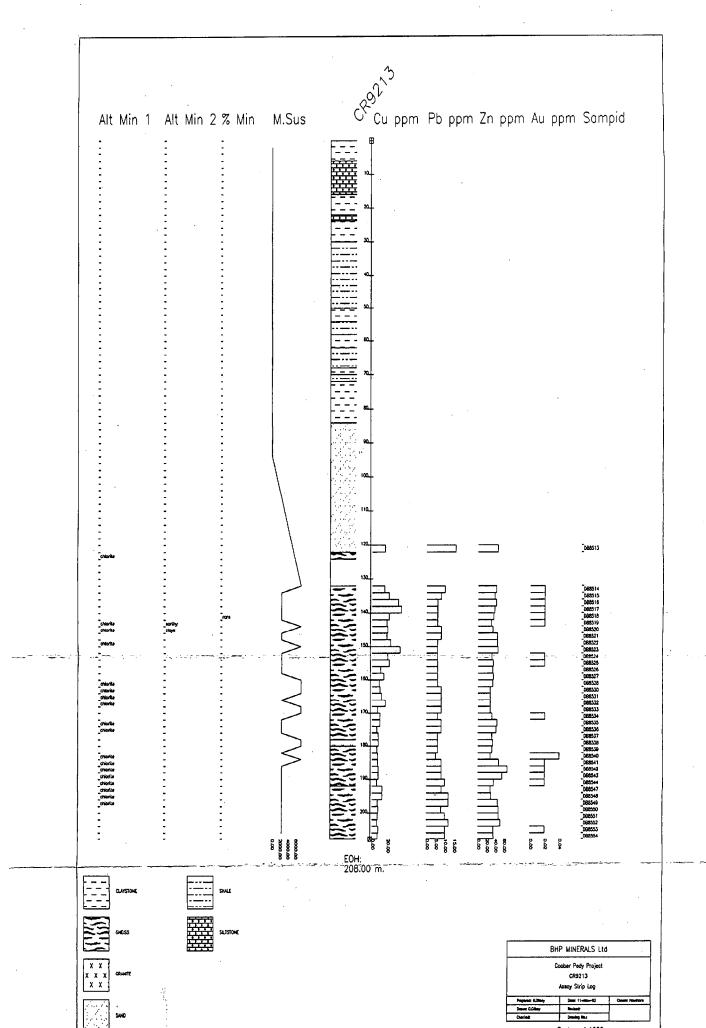
Quartz orthoclase cordierite plagioclase granofels with magnetite hematite, sillimanite, biotite and zircon, (meta pelite)

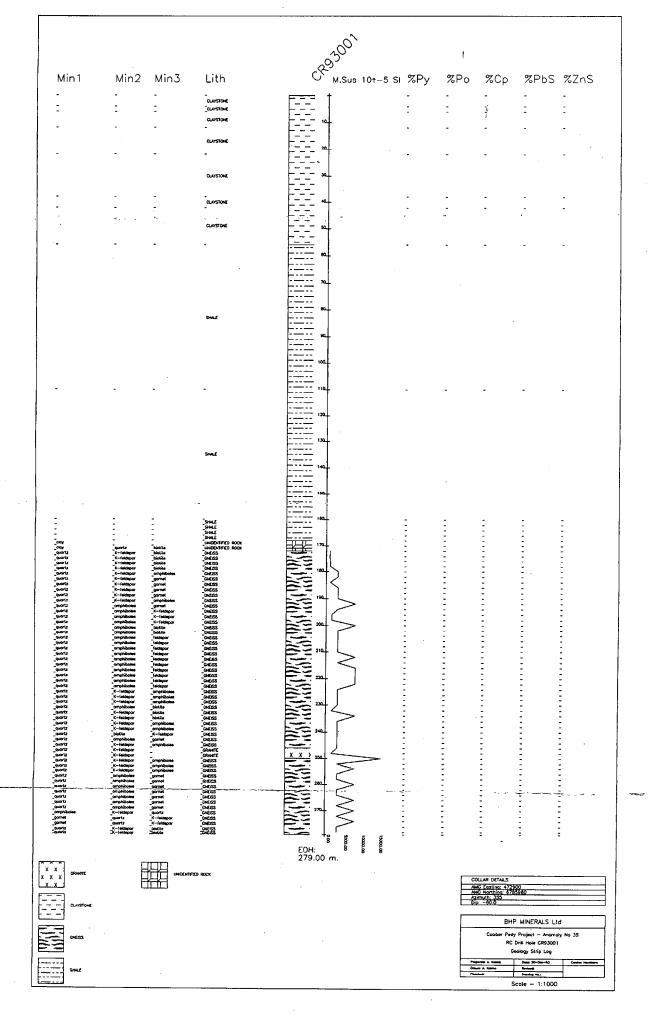
Magnetic section of drill hole

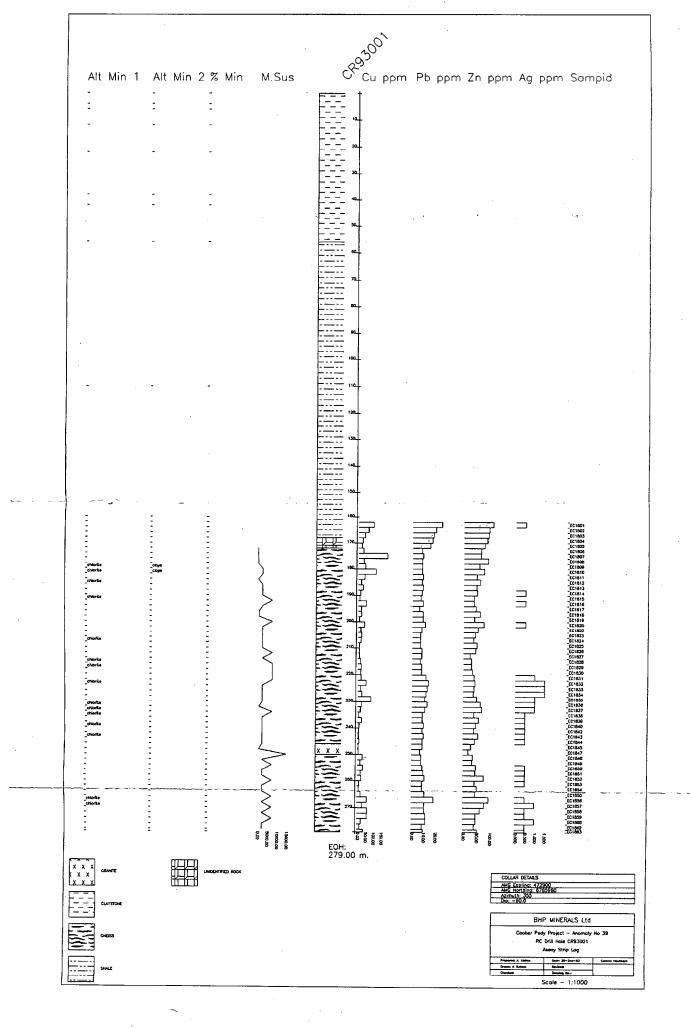

Scale I:1000

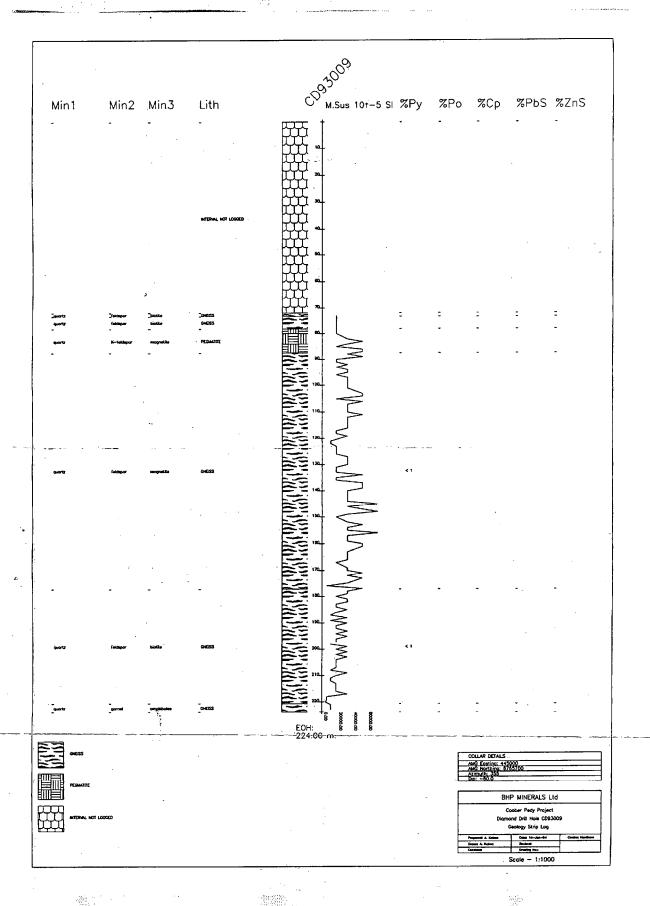

Date drilled : 16/9/91

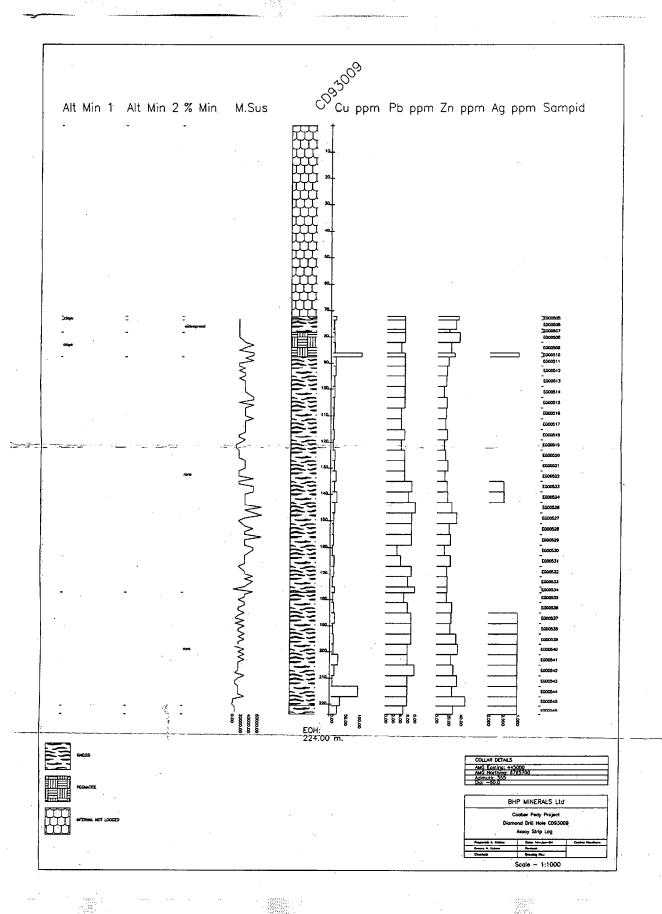

BHP Minerals
Asia Pacific Division


EL 1725, COOBER PEDY, S.A. **ANOMALY 16** DRILL SECTION, HOLE CR9115


Prepared: J. Read Date: Nov 1991 Drawn: F. Barlow Project No.: FK4 Centre: Melbourne Drawing No.: A3-1958L







Appendix 3

Descriptive Drillhole Logs

(Holes CR9115, CR9117, CR9120, CR9213, CR93001 and CD93009)

Appendix 3

Descriptive Drillhole Logs

(Holes CR9115, CR9117, CR9120, CR9213, CR93001 and CD93009)

Project : COOBER PEDY RIDGE

Easting : 452000

Latitude : -29.272615 Azimuth : 355 Hole Name : CR91015

Northing: 6761700 Longitude: 134,50589 Hole Length: 156 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

Longitude: 134.50589 Inclination: -60

50589 Surface Rl : 170

Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
0	2	clayey ferruginous SAND	· quartz clay	light Red			-	· ·
2	4	clayey	quartz clay	Pale (very light Red	:)			
		SAND	•	7				
4	6	clayey	quartz clay	Palest White		•		
	٠	SAND	313,	-				
6	8	clayey	quartz clay	Medium light Brown				
•	· •	SAND	Ctay	(Umber)				
8	10	clayey	quartz	light				
	SAND	SAND	clay	Brown (Umber)				
10	12	clayey	quartz	light	·			
		SAND	clay	Brown (Umber)				
12	14	clayey	quartz	light				•
		SAND	clay	Grey				
14	16	sandy	clay	light				
		CLAYSTONE	quartz	Tan				
16	18	- sandy	clay	light				
,		CLAYSTONE	quartz	Tan				
18	20	sandy	clay	Light			•	
•		CLAYSTONE	quartz	Tan				
20	22	clayey	quartz	Light			-	
		SAND	clay	Tan				•
22	24	sandy	clay · ·	light	•			
		CLAYSTONE	quartz	Tan				

Project : COOBER PEDY RIDGE

Easting : 452000

Hole Name : CR91015 Northing: 6761700

Hole Length: 156 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

Vein Type Alteration

Latitude : -29.272615 Azimuth: 355

Longitude: 134.50589 Inclination: -60

Surface Rl : 170

AZIIIUCH : 355	Inclination: -60			
Depth From - To (m) Sar	mple No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %
24 26	silty clayey SAND	quartz clay	light Tan	
26 28	clayey SAND	quartz clay	Medium light Tan	
28 30	clayey SAND	quartz clay	light Grey	
30 32	sandy CLAYSTONE	clay quartz	light Grey	•
32 34	DL7769 sandy CLAYSTONE	clay quartz	light Grey	
34 36	DL7770 ARENITE	quartz feldspar magnetite	Pale (very light) Grey	
36 38	DL7771 ARENITE	quartz feldspar magnetite	Pale (very light) Grey	· ·
38 40	DL7772 granitic ARENITE	quartz feldspar biotite	Pale (very light) Grey	
. 40 42	DL7773 magnetite-bearing QUARTZITE	quartz feldspar magnetite	Medium Grey	
42 44	DL7774 magnetite-bearing QUARTZITE	quartz specular haematite magnetite	Medium Grey	
44 46	DL7775 magnetite bearing QUARTZITE	quartz feldspar magnetite	Medium Grey	
46 48.	DL7776 magnetite-bearing QUARTZITE	quartz feldspar magnetite	Medium Grey	

Project : COOBER PEDY RIDGE

Easting : 452000 Latitude : -29.272615

Azimuth: 355

Hole Name : CR91015

Northing : 6761700

Hole Length: 156 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON

Longitude: 134.50589

Inclination: -60

Surface Rl: 170

Depth From - To	(m) S	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
48	50	DL 777 7	magnetite-bearing	quartz feldspar	Medium Grey				
		-	QUARTZITE	magnetite			•		
50	52	DL7778	magnetite-bearing	quartz magnetīte	Medium Grey				
			QUARTZITE	• -	·	•			
52	54	DL7801	magnetite-bearing	quartz magnetite	Medium Grey				,
			QUARTZITE	•	•				
54	56	DL7802	magnetite-bearing	quartz magnetite	Medium Grey				
	•		QUARTZITE	biotite	2. 2,	•			
56	58	DL7803	magnetite-bearing	quartz magnetite	Medium Grey	,		÷	•
			QUARTZITE						
58	60	DL7804	magnetite-bearing	quartz magnetite	Medium				
			QUARTZITE	magnetite	Grey				
60	62	DL7805	magnetite-bearing	quartz magnetite	Medium Grey				
			QUARTZITE	biotite	ui cy				
62	64	DL7806	magnetite-bearing	quartz magnetite	Medium Grey				
			QUARTZITE	biotite	uiey			•	
64	66	DL7807	magnetite-bearing	quartz	Medium	<i>,</i>			
			QUARTZI1E	magnetite biotite	Grey				
66	68	DL7808	magnetite-bearing	quartz	Medium				
			QUARTZITE	magnetite biotite	Grey		•		
. 68	70	DL7809	magnetite-bearing	quartz	Medium	•		•	
			QUARTZITE	magnetite biotite	Grey			•	
70	72	DL7810	magnetite-bearing	quartz	Medium				
			QUARTZITE	magnetite biotite	Grey .				•

Project : COOBER PEDY RIDGE

Easting : 452000

Hole Name : CR91015 Northing : 6761700 Hole Length: 156 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON

Latitude : -29.272615 Azimuth : 355 Longitude: 134.50589
Inclination: -60

Surface Rl : 170

Azimuth: 3	55		Inclination: -60							
Depth From	- To (m) Sample No	. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Ve	in% \	ein Type	Alteration	Magsus
,	72	74 DL781	1 magnetite-bearing QUARTZITE	quartz magnetite biotite	Medium Grey					
	74	76 DL781	2 magnetite-bearing QUARTZITE	quartz magnetite	Medium Grey					
	76	78 DL781	<pre>3 magnetite-bearing . QUARTZITE</pre>	quartz magnetīte	Medium Grey					·
	78	80 DL781	4 magnetite-bearing	quartz magnetite biotite	Medium Grey					• ,
	80	82 DL:781	5 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					
	82	84 DL781	6 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					·
	84	86 DL781	7 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					
	86	88 DL781	8 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					
	88	90 DL781	9 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					
	90	92 DL782	0 magnetite-bearing	quartz biotite magnetite	Medium Grey		·			•
	92	94 DL782	21 magnetite-bearing.	quartz biotite magnetite	Medium Grey				·	. ·
	94	96 DL782	22 magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey					

Project : COOBER PEDY RIDGE

Easting : 452000

Hole Name : CR91015

Northing: 6761700

Hole Length: 156 Amg Zone : 53

Contractor: FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON

Latitude : -29.272615 Azimuth : 355

Longitude: 134.50589 Inclination: -60

Surface Rl: 170

Depth From - To	(m) Sampl	le No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
96	98 (DL7823	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey				
98	100 [DL7824	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium Grey				
100	102 (DL7825	ARENITE	quartz feldspar biotite	Medium light Tan				
102	103 í	DL7826	ARENITE	quartz feldspar biotite	Medium light Tan	`			
103	104 (DL7826	QUARTZITE	quartz chlorite specular haematite	Medium Red				
104	106 I	DL7827	magnetite-bearing pyritic QUARTZITE	quartz biotite pyroboles	Medium Grey		• .		
106	108 (DL7828	magnetite-bearing QUARTZITE	quartz ·biotite	Medium Grey				
108	110 .4	DL7829	magnetite-bearing QUARTZITE	quartz biotite	Medium Grey	•		·	
110	111 (DL7830	magnetite-bearing QUARTZITE	quartz biotite	Medium Grey				
115	116 · ·	DL7832	magnetite-bearing QUARTZITE	quartz feldspar chlorite	Medium light Grey				
116	118	DL7833	magnetite-bearing QUARTZITE	quartz feldspar biotite	Medium Grey				
118	120	DL7834	magnetite-bearing.	quartz feldspar biotite	Medium Grey		• •		

Project : COOBER PEDY RIDGE Easting : 452000

Hole Name : CR91015

Northing: 6761700 Longitude: 134.50589 Inclination: -60

Hole Length: 156 Amg Zone : 53 Surface Rl : 170

Contractor : FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON

Latitude : -29.272615 Azimuth : 355

AZIMULN : 300			inclination : -60						
Depth From - To	(m) Sa	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein ⊺ype	Alteration	Magsus
120	122	DL 783 5	magnetite-bearing	quartz feldspar biotite	Medium Grey				
122	124	DL7836	magnetite-bearing	quartz feldspar biotite	Medium light Grey				
124	126	DL7837	magnetite-bearing QUARTZITE	quartz biotite feldspar	. Medium light Grey				
126	128	DL7838	magnetite-bearing QUARTZITE	quartz feldspar biotite	Medium light Grey				
128	130	DL7839	ARENITE	quartz feldspar biotite	Medium light Grey				
132	134	DL7841	QUARTZITE	quartz feldspar biotite	Medium light Grey				
134	136	DL7842	magnetite-bearing	quartz biotite magnetite	Medium light Grey		e.m.		
138	140	DL7845	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium light Grey		•		
14,0	142	DL7846	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium light Grey				
142 _	144	DL7847	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium light Grey				
144	146	DL7848	magnetite-bearing QUARTZITE	quartz biotite magnetite	Medium light Grey				
. 146 	148	DL7849	magnetite-bearing	quartz biotite magnetite	Medium light Grey		·		

Colour

Grey

Grey

Grey

Grey

Medium light

Medium light

Medium light

Medium light

Project : COOBER PEDY RIDGE

Easting: 452000 Latitude: -29.272615

Azimuth : 355

Hole Name : CR91015

Northing: 6761700 Longitude: 134.50589 Hole Length: 156 Amg Zone: 53 Contractor : FRANK WALSH DRILLING

Pyrite/Pyrrhotite % Vein %

Locality: EL 1725 CO Logged By: J. CAMERON

Magsus

Vein Type Alteration

Inclination: -60

Surface Rl : 170

Depth	From - To	(m)	Sample No.	Rocktype	— Minerals
	148	150	DL7850	magnetite-bearing	quartz biotite
				QUARTZITE	magnetite
	150	152	DL7851	-	quartz feldspar
				QUARTZITE	biotite
	152	154	DL7844	magnetite-bearing	quartz biotite
				QUARTZITE	magnetite
•	154	156	DL7852	magnetite-bearing	quartz biotite
				QUARTZITE	magnetite
				•	
Standar	d Samples	Logg	ed Sample	Number From To	
					-
S. m. l. i				- North and Edit	
Duplica	ate samples	s log	ged Sample	Number From To	_

Project : COOBER PEDY RIDGE

Latitude : -29.217287

Easting: 465790

22

24

Northing: 6767880

Hole Name : CR91017

Hole Length: 230 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

< 10

Azimuth: 34

Longitude : 134.648032 Inclination : -60

CLAYSTONE

oxidised

CLAYSTONE

Surface Rl : 170 Coord Reliability: TAPE

AZIMOTH . J4		Thetmation . Ou						
Depth From -	To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	0 2	cherty SILCRETE	quartz feldspar	light Grey				10-100
;	2 4	cherty SILCRETE	quartz feldspar	light Grey				10-100
4	4 6	cherty SILCRETE	quartz	light Grey				< 10
	6 8	oxidised CLAYSTONE	clay earthy haematite	Medium light Grey				< 10
	8 10	oxidised silty CLAYSTONE	clay earthy haematite	Pale (very light) Grey				< 10
10	0 12	oxidised silty CLAYSTONE	clay . earthy haematite	Medium Red				< 10
17	2 14	oxidised silty CLAYSTONE	clay earthy haematite gypsum	Medium Red				< 10
. 14	4 16	oxidised clayey SILTSTONE	clay earthy haematite quartz	Medium Red				< 10
10	6 18	oxidised clayey CLAYSTONE	clay	Medium light White				< 10
· 18	8 20	oxidised CLAYSTONE	clay	light Red		_		< 10
2	0 22	oxidised	clay	light				< 10

Red

light

Red

clay

Project : COOBER PEDY RIDGE

Hole Name : CR91017

Northing : 6767880

Hole Length : 230

Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Easting: 465790 Latitude: -29.217287

Inclination: -60

TAPE

Latitude : -29.21/28/	Longitude : 134.648032	Surface Rl : 170	Coord Reliability: T
Azimuth : 34	Inclination : -60	•	*

Depth From - To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein % Veir	Type Alteration	Magsus
24 26	oxidised clayey CLAYSTONE	clay	Medium Red			10-100
26 28	oxidised clayey CLAYSTONE	clay	Medium Red			10-100
28 30	oxidised clayey CLAYSTONE	clay .	Medium dark Tan			< 10
30 32	oxidised clayey CLAYSTONE	clay	Medium Tan		•	10-100
32 34	oxidised clayey CLAYSTONE	clay	Medium dark Tan			10-100
34 36	oxidised CLAYSTONE	clay	Medium light Tan			< 10
36 38	oxidised CLAYSTONE	clay	light Tan			< 10
38 40	siliceous CLAYSTONE	clay quartz	Medium dark Black (Noir)			< 10
40 42	siliceous CLAYSTONE	clay quartz	Medium dark Black (Noir)			·< 10
42 44	siliceous CLAYSTONE	clay quartz	Medium Black (Noir)			< 10
44 46	sandy CLAYSTONE	clay quartz	Medium Brown (Umber)	·		< 10 .
46 48	oxidised sandy SAND	quartz	Medium light Tan			< 10

Project : COOBER PEDY RIDGE

Latitude : -29.217287

Azimuth: 34

Easting : 465790

Hole Name : CR91017

Northing: 6767880 Longitude: 134.648032

Hole Length: 230

Amg Zone : 53 Surface Rl : 170

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Inclination: -60

AZIMATTI . 34		metmation: -ou						
Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
48	50	oxidised sandy SAND	· quartz feldspar	Medium light Tan			·	< 10
50	52 ,	oxidised siliceous SAND	quartz feldspar	Medium Brown (Umber)				. < 10
52	54	oxidised siliceous SAND	quartz	Medium Brown (Umber)				< 10
54	56	oxidised clayey SAND	quartz clay	Medium dark Brown (Umber)	·			< 10
56	58	oxidised clayey SAND	quartz clay	Medium Brown (Umber)	•			< 10
58	60	oxidised clayey SAND	quartz clay	Medium Brown (Umber)				< 10
60	62	oxidised clayey SAND	quartz clay	Medium light Brown (Umber)				< 10
62	64	oxidised clayey SAND	quartz clay feldspar	Medium light Brown (Umber)			•	< 10
. 64	66	clayey siliceous SAND	quartz clay feldspar	Medium Brown (Umber)			· .	< 10
66	68	clayey siliceous SAND	quartz . clay	Medium light Tan	· · ·			< 10
68	70	clayey siliceous SAND	quartz	Medium light Tan				< 10
70	72	clayey siliceous SAND	quartz clay	Medium light . Tan				< 10

Project : COOBER PEDY RIDGE

Easting : 465790 Latitude : -29.217287 Azimuth : 34 Hole Name: CR91017 Northing : 6767880

Inclination: -60

Hole Length: 230 Amg Zone : 53 Surface Rl : 170

Contractor: FRANK WALSH DRILLING Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Longitude : 134.648032

epth From - To	o (m) Sample N	lo. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein % Vein Type Alteration	Magsus .
72	74	clayey siliceous SAND	quartz clay	Medium light Tan		< 10
74	76 ·	clayey siliceous SILTSTONE	quartz clay	Medium Grey		< 10
76	78	siliceous oxidised SAND	quartz	Medium light Grey		< 10
78	80	siliceous oxidised SAND	quartz	Medium light Grey		< 10
80	82	siliceous oxidised SAND	quartz	Medium light Grey		10-100
. 82	84	siliceous SAND	quartz	light Brown (Umber)		< 10
84	86	siliceous clayey SILTSTONE	clay mica	Medium dark Grey		< 10
86	88	clayey carbonaceous SILTSTONE	clay mica quartz	Medium dark Grey		< 10
88	90	clayey sandy SILTSTONE	clay mica quartz	Dark Grey	,	< 10
90	92	carbonaceous CLAYSTONE	clay	Medium dark Black (Noir)		< 10
92	94	carbonaceous CLAYSTONE	clay	Medium Black (Noir)		< 10
. 94	96 .	carbonaceous CLAYSTONE	clay	Medium dark Black (Noir)		10-100

Project : COOBER PEDY RIDGE Easting : 465790

Hole Name : CR91017 Northing : 6767880 Hole Length: 230 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Latitude : -29.217287 Azimuth : 34

Longitude: 134.648032 Inclination: -60

Surface Rl :

170	Coord	Reliability:	TAPE
-----	-------	--------------	------

rom - To	(m) Sa	ample No.	Rocktype	Minerals	Çolour	Pyrite/Pyrrhotite % Vein % Vei	n Type Alteration	Magsus
96	98	·	carbonaceous	clay	Medium Black	. •		10-100
•			CLAYSTONE	·	(Noir)			
98	100		silty	clay quartz	Medium light Grey			10-100
			CLAYSTONE		·			
100	102	·	clayey siliceous SILTSTONE	clay quartz	Medium Grey			10-100
102	104	DL7878	clayey siliceous SILTSTONE	clay quartz	Medium Grey			10-100
104	106	DL7879	sandy clayey SILTSTONE	clay quartz	Medium Grey			10-100
106	108	DL 7880	·	clay quartz	Medium Grey			10-100
			SILTSTONE	4				
108,	110	DL 7881	siliceous garnetiferous GNEISS	quartz biotite feldspar	light Grey	· ·		10-100
110	112	DL7882	siliceous garnetiferous GNEISS	quartz biotite	light Grey			100-500
112	114	DL7883	siliceous garnetiferous QUARTZITE	quartz garnet biotite	Medium light White			500-1000
114	116	DL7884	siliceous	quartz epidote	light White			500-1000
			ROCK	biotite				
116	118	DL 7885	siliceous	quartz epidote	light White			1000-5000
			ROCK	biotite				
118	120	DL7886	siliceous	quartz biotite	light White			1000-5000

Project : COOBER PEDY RIDGE Easting : 465790

Hole Name : CR91017 Northing : 6767880

Hole Length: 230 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Latitude : -29.217287 Azimuth : 34

Longitude: 134.648032 Inclination: -60

Surface Rl : 170

Azimuth : 34	•			inclination : -ou						
Depth From	- То	(m) Samp	le No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
1	120	1 2 2 (DL7887	siliceous	quartz biotite	light White				500-1000
				GNEISS						
1	122	124 1	DL7888	sīliceous	quartz biotite	light White	,			500-1000
				GNEISS			:			
1	124	126	DL7889	siliceous	quartz biotite	light White				500-1000
				GNEISS			·			
. 1	126	128	DL7890	siliceous	quartz biotite	Medium light White				500-1000
				GNEISS					•	
1	128	130	DL7891	siliceous	quartz biotite	Medium light White			·.	500-1000
				GNEISS					•	
1	130	132	DL7892	siliceous	quartz biotite	Medium light White			•	500-1000
				GNEISS	feldspar		•			
1	132	134	DL7893	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium Green	٠.	•		500-1000
1	134	136	DL7894	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium Green				500-1000
1	136	138	DL7895	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium Green				500-1000
1	138	140 _	DL7896	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium Green				100-500
, 1	140	142	DL7897	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium Green				500-1000
	142	144	DL7898	siliceous garnetiferous GNEISS	quartz biotite feldspar	Medium light White				500-1000

Project : COOBER PEDY RIDGE

Easting : 465790

Latitude : -29.217287 Azimuth : 34

Hole Name: CR91017

Northing : 6767880

Hole Length: 230 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON/J. READ

Longitude: 134.648032

Inclination: -60

Surface Rl: 170

I G RELIADILITY : IMPE			
	. *		

Depth From - To	(m) 9	Sample No.	Rocktype	Mînerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
144	146	DL7899	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium light White				500-1000
146	148	DL7900	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium light White				500-1000
148	150	DL7901	siliceous garnetiferous GNEISS	quartz biotite feldspar	Medium dark Green				100-500
150	152	DL7902	siliceous garnetiferous GNEISS	quartz biotite garnet	Medium light Green				100-500
152	154	DL7903	siliceous ROCK	quartz epidote	Medium White				100-500
154	156	DL7904	GNEISS	quartz biotite garnet	Medium Black (Noir)				1000-5000
156	158	DL7905	siliceous garnetiferous GNEISS	quartz biotite feldspar	Medium Green				500-1000
158	160	DL7906	siliceous garnetiferous GNEISS	quartz biotite feldspar	Medium Green				500-1000
160	162	DL7907	siliceous garnețiferous GNEISS	quartz biotite garnet	Medium Blue				500-1000
162	164	DL7908	siliceous garnetiferous GNEISS	quartz biotite feldspar	Medium dark Green				500-1000
164	166	. DL7909	garnetiferous GNEISS	biotite quartz feldspar	Dark Green				500-1000
166	168	DL7910	garnetiferous mafic GNEISS	amphiboles feldspar garnet	. Dark Green chlor	rite		irreg. patches, not re amphiboleeins	500-1000

Project : COOBER PEDY RIDGE

Easting : 465790

Latitude: -29.217287

Hole Name: CR91017

Northing: 6767880 Longitude: 134.648032

Quartz-magnetite unit

pyroboles

(Noir)

Hole Length: 230 Amg Zone : 53 Surface Rl: 170

Contractor: FRANK WALSH DRILLING

Coord Reliability: TAPE

Locality: EL 1725 CO Logged By: J. CAMERON/J. READ

Inclination: -60

Azimuth: 34 Depth From - To (m) Sample No. Rocktype Minerals Colour Pyrite/Pyrrhotite % Vein % Vein Type Alteration Magsus 168 170 DL7911 siliceous Medium dark quartz 500-1000 garnetiferous feldspar Black GNEISS biotite (Noir) 170 172 DL7912 siliceous feldspar Medium 500-1000 garnetiferous quartz Red GNEISS biotite 172 174 DL7913 siliceous feldspar Medium 500-1000 garnetiferous quartz Green GNEISS biotite 174 176 DL7914 siliceous feldspar Medium light 500-1000 quartz Red . GRANITE biotite 176 178 DL7915 siliceous feldspar Medium light 500-1000 massive quartz Red GRANITE biotite 178 180 DL7916 metafeldspar Medium 500-1000 garnetiferous quartz Red GRANITE biotite 180 182 DL7917 siliceous Medium light · quartz 500-1000 garnetiferous biotite White GNEISS garnet DL7918 siliceous 182 184 quartz Medium light 500-1000 garnetiferous biotite White GNEISS garnet 184 186 DL7919 siliceous quartz Medium dark 1-2% minor (1- feldspar 500-1000 biotite White GNEISS 188 DL7920 siliceous 186 feldspar Medium 10000-20000 massive quartz Orange GRANITE biotite 188 190 DL7921 siliceous Medium dark quartz 60000-80000 massive Black magnetite Quartz-magnetite unit (Noir) 192 DL7922 siliceous 190 quartz Medium dark 10-20% 80000-100000 massive magnetite Black

Project : COOBER PEDY RIDGE

Easting : 465790

Hole Name: CR91017 Northing : 6767880

Longitude : 134.648032

Hole Length: 230 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality : EL 1725 CO Logged By : J. CAMERON/J. READ

Latitude: -29.217287 Azimuth: 34

Inclination: -60

Surface Rl : 170 Coord Reliability: TAPE

om - To	(m) Sa	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite %	Vein %	Vein Type	Alteration	Magsus
192	194	DL7923	siliceous massive Quartz-magnetite unit	quartz magnetite	Medium dark Black (Noir)					80000-10000
194	196	DL 7924	siliceous massive Quartz-magnetite unit	quartz quartz	Medium dark Black (Noir)					80000-10000
196	198	DL7925	garnetiferous GNEISS	feldspar biotite quartz	Medium Red					1000-5000
198	200	DL7926	garnetiferous GNEISS	feldspar biotite garnet	Medium Red					500-1000
200	202	DL7927	massive	feldspar quartz	Medium light Red				•	1000-5000
202	204	DL7928	GRANITE massive	feldspar quartz	Medium light Red					1000-5000
204	206	DL7929	GRANITE massive	biotite feldspar	Medium light					1000-5000
			GRANITE	quartz biotite	Red				re chlorite eins	
206	208	DL7930	massive GRANITE	feldspar . quartz biotite	Medium Red				· ·	20000-40000
208	210	DL7931	gneissic magnetite-bearing Quartz-magnetite unit	magnetite quartz earthy haematite	Dark Black (Noir)		dominant 50%)	feldspar		80000-10000
210	212	DL7932	gneissic magnetite-bearing Quartz-magnetite unit	magnetite quartz feldspar	Dark Black (Noir)					60000-80000
212	214	DL7933	gneissic magnetite-bearing Quartz-magnetite unit	magnetite quartz feldspar	Dark Black (Noir)	widespread trace (<				60000-80000
214	216	DL7934	gneissic magnetite-bearing Quartz-magnetite unit	magnetite quartz feldspar	Dark Black (Noir)					60000-80000

Project : COOBER PEDY RIDGE

Easting : 419100

Hole Name : CR91020

Northing : 6782920

Hole Length: 131 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA Logged By: J. READ

Latitude : -29.079428 Azimuth : 355

Longitude: 134.168786 Inclination: -90

Surface Rl : 180

From - To	(m) Sampi	le No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein % Vein Type Alteration	Magsus
0	2	ferruginous oxidised SAND	quartz	Medium Red		100-500
. 5	4	ferruginous clayey SAND	quartz clay	light Red	• .	10-100
4	6	oxidised ċlayey ARENITE	quartz clay gypsum	light White		10-100
6	8	ferruginous sandy CLAYSTONE	clay quartz	Medium light Tan		< 10
8	10	sandy CLAYSTONE	clay quartz	Medium dark Tan		10-100
10	12	siliceous oxidised SAND	quartz clay	Medium dark Tan		10-100
12	14	siliceous oxidised SAND \	quartz clay mica	Medium dark Tan		10-100
14	16	siliceous oxidised SAND	quartz clay	Medium dark Tan		10-100
16	18	siliceous oxidised SAND	quartz clay	Medium Tan	·	10-100
18	20	siliceous oxidised > SAND	quartz clay	Medium light Tan		10-100
20	22	siliceous clayey SAND	quartz clay	Medium Tan		10-100
22 .	24	siliceous clayey SAND	quartz clay	light Tan		10-100

Project : COOBER PEDY RIDGE

Easting : 419100

Latitude : -29.079428 Azimuth : 355

Hole Name : CR91020

Northing: 6782920

Longitude: 134.168786

Inclination: -90

Hole Length : 131 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA Logged By: J. READ

Surface Rl : 180 Coord Reliability: TAPE

Depth From -	To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
24	4	26	siliceous oxidised SAND	quartz	Pale (very light) Grey	,			< 10
26	6	28	siliceous oxidised SAND	quartz	Pale (very light) Grey				< 10
28	8 ·	30	siliceous oxidised SAND	quartz	Pale (very light) Grey				< 10
30	0	32	siliceous clayey SAND	quartz clay	Medium light Tan				< 10
32	2	34	siliceous ferruginous SAND	quartz clay	Medium Tan				10-100
34	4 .	36	ferruginous clayey SAND	quartz clay	Medium Tan		÷		10-100
· 3 <i>6</i>	6	38	siliceous clayey SAND	quartz clay	Pale (very light) Grey	·			< 10
	8	40	oxidised sandy CLAYSTONE	clay quartz	Pale (very light) Grey				< 10
40	0	42	ferruginous sandy CLAYSTONE	clay quartz	light Grey				< 10
42	2	44		· ·					
			LOST CORE					• •	,
44	4	46	ferruginous clayey SAND	quartz clay	Medium Tan				< 10
40	6	48	ferruginous clayey SAND	quartz clay	Medium light Tan				< 10

Project : COOBER PEDY RIDGE Easting : 419100

Hole Name : CR91020

Northing : 6782920

Hole Length: 131

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA. Logged By: J. READ

Latitude: -29.079428 Azimuth: 355

Longitude: 134.168786 Inclination: -90

Amg Zone : 53 Surface Rl : 180

7.2.1110(1)			The macron 1 70			•		
Depth From	1 - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
	48	50	oxidised clayey SAND	quartz clay	light Grey	•		< 10
	50	52						
			LOST CORE	•		•		
	52	54						
			LOST CORE					
	54	56	siliceous oxidised SAND	quartz clay	Pale (very l Grey	ight)	,	< 10
	56	58	ferruginous clayey SAND	quartz clay	Medium Tan	•		< 10
•	58	60.						
			LOST CORE					
	60	62	siliceous oxidised SAND	quartz	Pale (very l Grey	ight)		10-100
	. 62	64	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey			10-100
	. 64	66	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey	*		10-100
	66	68	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey			10-100
	68	70	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey			10-100
	70	72	monotonous sequence of	clay	Medium Grey		,	10-100
e e			CLAYSTONE		-,			•

Project : COOBER PEDY RIDGE

Easting : 419100

Latitude : -29.079428 Azimuth : 355

Hole Name : CR91020

Northing : 6782920 Longitude : 134.168786 Hole Length: 131 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA Logged By: J. READ

Inclination: -90

Surface Rl : 180

Depth From - To	(m) Sa	mple No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %.	Vein Type	Alteration	Magsus
72	74		monotonous sequence of	clay	Medium Grey	·			10-100
			CLAYSTONE		,				•
74	76	٠.	monotonous sequence of	clay	Medium Grey				. 10-100
			CLAYSTONE						
76	78		monotonous sequence of	clay	Medium light Grey				10-100
			CLAYSTONE ,						
78	80	•	monotonous sequence of	clay quartz	Medium light Grey				10-100
			CLAYSTONE	•	·				
80	82		monotonous sequence of	clay	Medium light Grey				10-100
			CLAYSTONE		•				
82	84		monotonous sequence of	clay quartz	Medium light Grey	`			10-100
			CLAYSTONE	•	•				
. 84	86		complex siliceous SANDSTONE	quartz	Pale (very light White	, ,	-		100-500
86	88		siliceous	quartz	Pale (very light	·)			10-100
			SANDSTONE		White				,
88	90		siliceous	quartz	ljght Grey				10-100
			SANDSTONE					•	
90	. 92		siliceous clayey	quartz clay	light Grey				10-100
÷	:		SAND	, , , , , , , , , , , , , , , , , , ,	,				
92	94	DL7981	siliceous pyritic	quartz pyroboles	Medium light Gréy				10-100
•			SANDSTONE	F /	-		•		
94	96		siliceous	quartz	light Grey				< 10
	•		SAND		. 41.07				

Project : COOBER PEDY RIDGE

Easting : 419100 Latitude : -29.079428

Azimuth : 355

Hole Name : CR91020

Northing : 6782920

Hole Length: 131 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA Logged By: J. READ

Longitude: 134.168786 Inclination: -90

Surface Rl : 180

Depth From	n - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
·	96	98	sandy CLAYSTONE	clay quartz	Medium light Grey				< 10
-	98	100	sandy CLAYSTONĖ	clay quartz	Medium light Grey				10-100
	100	102	sandy monotonous sequence of CLAYSTONE	clay quartz	Medium light Grey		-	· ·	10-100
٠.	102	104	sandy CLAYSTONE	clay quartz	Medium light Grey				10-100
	104	106	siliceous SANDSTONÉ	quartz	light Grey				10-100
	106	108	complex sandy CLAYSTONE	clay quartz	Medium light Grey				100-500
	108	110	complex sandy CLAYSTONE	clay quartz	Medium light Grey				100-500
	110	112	complex sandy CLAYSTONE	clay quartz	Medium light Grey			· ·	< 10
	112	114	complex sandy CLAYSTONE	clay quartz	Medium light Grey			<i>,</i>	< 10
٠.	114	116	siliceous clayey SAND	quartz clay	light Grey				< 10
	116	118	siliceous SANDSTONE	quartz	Pale (very light Grey				10-100
	118	120	siliceous SANDSTONE	quartz	Pale (very light Grey				< 10

Project : COOBER PEDY RIDGE

Easting : 419100

Hole Name : CR91020 Northing : 6782920

Hole Length: 131 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL 1719 LA Logged By: J. READ

Latitude : -29.079428 Azimuth : 355

Longitude: 134.168786 Inclination: -90

Surface Rl : 180

Coord Reliability: TAPE

Depth From - 1	(m) S	Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
120	122	DL7982	siliceous clayey SAND	quartz	Palest Grey				< 10
122	124	DL7983	siliceous clayey SAND	quartz	Pale (very light) Grey				10-100
124	126	DL7984	siliceous garnetiferous Quartz-magnetite unit	quartz magnetite biotite	Medium light White	widespread trace (<			1000-5000
126	128	DL7985	siliceous garnetiferous Quartz-magnetite unit	quartz magnetite biotite	Medium light Blue				5000-10000
128	130	DL7986	siliceous garnetiferous Quartz-magnetite unit	quartz magnetite biotite	light Blue				5000-10000
130	131	DL7987	siliceous garnetiferous Quartz-magnetite unit	quartz magnetite biotite	light Blue				

Standard Samples Logged Sample Number From To

Duplicate Samples logged Sample Number From To

Project : COOBER PEDY RIDGE

Easting: 491360 Northing: 678

Hole Name : CR92013 Northing : 6783901 Longitude : 134 9112 Hole Length: 208 Amg Zone: 53 Contractor : FRANKWALSH DRILLING

Locality : EL 1725 CO Logged By : J.READ

Latitude : -29.073119 Azimuth : 345 Longitude: 134.911231 Inclination: -60

34.911231 Surface RI : 214

Depth From	- To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	0	2	ferruginous clayey CLAYSTONE	clay iron oxides	light Tan			-	< 10
	2	4	ferruginous clayey CLAYSTONE	clay iron oxides	light Tan				< 10
·	4	6	ferruginous massive CLAYSTONE	clay iron oxides	Medium light Tan				< 10
	6	8	clayey ferruginous SILTSTONE	clay iron oxides earthy haematite	Medium dark Brown (Umber)		-		< 10
	8	10	ferruginous SILTSTONE	clay iron oxides	Medium Yellow				< 10
	10	12	SILTSTONE	quartz clay	Medium Grey		,		< 10
	12	14	SILTSTONE	quartz clay earthy haematite	Medium Red				< 10
	14	16	clayey SILTSTONE	clay quartz	Pale (very light) Grey) 			< 10
	16	18	sandy unconsolidated CLAYSTONE	clay quartz	Pale (very light) Grey		. •		. < 10
	18	20	sandy CLAYSTONE	clay quartz	Pale (very light) Grey)			< 10
	20	22	sandy ferruginous CLAYSTONE	clay quartz iron oxides	light Grey				< 10
	22	24	ferruginous SILTSTONE	clay earthy haematite gypsum	Medium light Red				< 10

Project : COOBER PEDY RIDGE Easting : 491360 Latitude : -29.073119 Azimuth : 345

Hole Length: 208

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Hole Name : CR92013 Northing : 6783901 Longitude : 134.911231 Inclination : -60

Amg Zone : 53 Surface Rl : 214

Coord Reliability: TA

Depth From -	To (m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
24	4	26	CLAYSTONE	clay iron oxides	Medium Grey				< 10
26	6	28 ·	CLAYSTONE	clay iron oxides	Medium Grey			·	< 10
28	8	30	sandy monotonous sequence of CLAYSTONE	clay iron oxides quartz	Medium Grey				< 10
30	0	32	ferruginous SHALE	clay quartz iron oxides	Medium dark Brown (Umber)				< 10
33	2	34	ferruginous SHALE	clay quartz iron oxides	Medium dark Brown (Umber)				< 10
. 34	4	36	ferruginous SHALE	clay quartz iron oxides .	Medium dark Brown (Umber)		•		< 10
36	6	38	SHALE	clay quartz gypsum	Medium dark Brown (Umber)				< 10
. 38	8 .	40	carbonaceous SHALE	clay quartz gypsum	Medium dark Brown (Umber)				< 10
41	0	42	carbonaceous sandy SHALE	clay quartz	Dark Grey				< 10
4.	2	44	carbonaceous sandy SHALE	clay quartz	Dark Grey				< 10
4.	.4	46	carbonaceous sandy SHALE	clay quartz	Dark Grey				< 10
4	6	48	carbonaceous sandy SHALE	clay quartz	Dark Grey			:	< 10

Project : COOBER PEDY RIDGE Easting : 491360

Latitude : -29.073119

Azimuth: 345

Hole Name : CR92013 Northing : 6783901 Longitude : 134.911231 Inclination : -60

Hole Length: 208

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Amg Zone : 53 Surface Rl : 214

AZIIIQCII	J-J		THE CHACTON : -00						
Depth From	m - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus -
	48	50	carbonaceous monotonous sequence of SHALE	clay quartz	Dark Grey			·	< 10
	50	52	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey				< 10
	52	54	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey				< 10
·	54	56	carbonaceous monotonous sequence of SHALE	clay quartz	Medium dark Grey				< 10
	56	58	carbonaceous sandy SHALE	clay quartz	Dark Grey				< 10
<u>. </u>	58	60	carbonaceous CLAYSTONE	clay quartz	Medium dark Grey				< 10
	60	62	carbonaceous massive CLAYSTONE	clay quartz	Dark Grey				< 10
	62	64	carbonaceous monotonous sequence of SHALE	clay quartz	Dark Grey			·	< 10
	64	66 .	carbonaceous monotonous sequence of SHALE	clay quartz	Dark Grey				< 10
	66	68	carbonaceous monotonous sequence of SHALE	clay quartz	Dark Grey				< 10
	68	70	carbonaceous monotonous sequence of CLAYSTONE	clay quartz	Dark Grey				< 10
	70	72	carbonaceous monotonous sequence of SHALE	clay	Dark Grey			· ·	< 10

Project : COOBER PEDY RIDGE

Easting : 491360

Latitude : -29.073119

Hole Name : CR92013

Northing : 6783901

Hole Length: 208 Amg Zone : 53

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Longitude: 134.911231

Surface Rl : 214

Latit Azimu	ude : -29.0 th : 345	73119	Longitude : 134.911231 Inclination : -60	Surface Rl	: 214 Coord Reliab	oility: TAPE	•		
Dept	h From - To	(m) Sample	No. Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
~	. 72	74	carbonaceous	clay quartz	Medium dark Grey			·	< 10
			CLAYSTONE	444. 12	 ,			-	•
	74	76	carbonaceous	clay	Medium dark		•		< 10
			CLAYSTONE	quartz	Grey				
	76	78	carbonaceous	clay	Medium dark				< 10
			CLAYSTONE	quartz	Grey				
	78	80	carbonaceous	clay	Dark				< 10
		•	CLAYSTONE	quartz	Grey	•			
	80	82	carbonaceous	clay	Dark				< 10
		-	CLAYSTONE	quartz	Grey			· ·	
	82	84	carbonaceous	clay	Dark				< 10
			CLAYSTONE	quartz	Grey				
	84	86	clayey	quartz	Medium		•		< 10
			SAND	clay	White .				•
	86	88	siliceous	quartz	Medium light				10-100
			clayey SAND	clay	White				
	88	90	siliceous	quartz	Medium light				10-100
		-	clayey SAND	clay	White				
	90	92 -	siliceous	quartz	light				10-100
			unconsolidated SAND	clay	White				•
	92	94	siliceous	quartz	light	•			10-100
			unconsolidated SAND	clay	White		v		
	94	96 ·	siliceous	quartz	light				10-100
			unconsolidated SAND	clay	White				

Project : COOBER PEDY RIDGE Easting : 491360

Hole Name: CR92013 Northing: 6783901

Hole Length: 208 Amg Zone : 53 Surface Rl : 214

Contractor : FRANKWALSH DRILLING -

Locality: EL 1725 CO Logged By: J.READ

Latitude : -29.073119 Azimuth : 345

Longitude: 134.911231 Inclination: -60

Depth From - To (a) Sample No. Rocktype Minerals Colour Pyrite/Pyrrhotite % Vein % Vein Type Alteration 96 98 siticeous unconsolidated sANO 98 100 siticeous quantz light sANO 100 102 siticeous quantz light clay white sANO 100 102 siticeous quantz light clay white sANO 100 104 siticeous quantz light clay white sANO 100 105 siticeous quantz light clay white sANO 100 106 siticeous quantz light unconsolidated sANO 100 107 siticeous quantz light clay white sANO 100 108 unconsolidated clay white sANO 100 109 unconsolidated clay white sANO 100 110 unconsolidated clay white sANO 110 112 unconsolidated clay white sANO 110 112 unconsolidated clay white sANO 110 112 unconsolidated clay white sANO 110 116 unconsolidated clay white sANO 110 117 unconsolidated clay white sANO 110 118 unconsolidated clay white sANO 111 118 unconsolidated clay white sANO 112 114 the unconsolidated clay white sANO 115 115 the unconsolidated clay white sANO 116 118 unconsolidated clay white sANO 117 the the unconsolidated clay white sANO 118 120 (unconsolidated clay white sANO 119 the the unconsolidated clay white sANO 110 the the unconsolidated clay white sANO 111 the unconsolidated clay white sANO 112 the the unconsolidated clay white sANO 113 the unconsolidated clay white sANO 114 the unconsolidated clay white sANO 115 the unconsolidated the unconsolidated clay white sANO 116 the unconsolidated the unconsolidat	: 345	inclination : -60			•		•	
unconsolidated SAND 98 100 siliceous quartz light Unite SAND 100 102 siliceous quartz light Unite SAND 100 102 siliceous quartz light White SAND 102 104 siliceous quartz light White SAND 104 106 unconsolidated SAND 106 108 unconsolidated SAND 107 108 unconsolidated SAND 108 110 quartz light White SAND 108 110 unconsolidated SAND 109 110 112 unconsolidated SAND 110 112 unconsolidated sand feldspar 110 112 unconsolidated sAND 110 111 unconsolidated sAND 111 114 unconsolidated sAND 115 116 unconsolidated sAND 116 118 unconsolidated quartz light Unite SAND 117 118 120 unconsolidated quartz light Unite SAND 119 118 120 unconsolidated quartz light Unite SAND 110 112 light unconsolidated SAND 111 115 light unconsolidated SAND 112 light unconsolidated SAND 113 120 unconsolidated quartz light Unite SAND 114 115 light unconsolidated SAND 115 light unconsolidated SAND 116 light unconsolidated SAND 117 light unconsolidated SAND 118 light unconsolidated Clay White	From - To (m) Sample No. F	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite %	Vein % Vein Ty	/pe Alteration	Magsus
unconsolidated SAND 100 102 siliceous quartz light white SAND 102 104 siliceous quartz clay White SAND 105 106 unconsolidated SAND 106 108 unconsolidated SAND 107 108 110 unconsolidated SAND 108 110 unconsolidated SAND 109 112 unconsolidated SAND 110 112 unconsolidated SAND 110 112 unconsolidated SAND 111 115 unconsolidated clay White SAND 116 118 unconsolidated clay White SAND 117 118 120 unconsolidated clay White SAND 118 120 unconsolidated clay White		unconsol i dated	quartz clay	light White				· .
unconsolidated SAND 102 104 siliceous quartz clay White SAND 104 106 unconsolidated SAND 106 108 unconsolidated SAND 107 108 unconsolidated sold relay White SAND 108 110 unconsolidated sold relay white sol		unconsolidated	quartz clay					
unconsolidated SAND 104 106 unconsolidated SAND 106 108 unconsolidated SAND 108 110 unconsolidated SAND 108 110 unconsolidated SAND 108 110 unconsolidated SAND 110 112 unconsolidated SAND 111 114 unconsolidated SAND 115 116 unconsolidated SAND 116 118 unconsolidated SAND 117 118 unconsolidated SAND		unconsol i dated						
unconsolidated SAND 106 108 unconsolidated SAND 108 110 unconsolidated SAND 108 110 unconsolidated SAND 110 112 unconsolidated SAND 110 112 unconsolidated SAND 111 114 unconsolidated SAND 115 116 unconsolidated SAND 116 118 unconsolidated SAND 117 118 unconsolidated SAND 118 120 unconsolidated SAND	102 104	unconsol idated						
unconsolidated SAND feldspar 108 110 quartz light clay White feldspar 110 112 quartz Pale (very light) white feldspar 111 114 quartz clay White feldspar 115 116 118 quartz light white feldspar 116 118 quartz light white feldspar 117 118 120 quartz light white feldspar 118 120 quartz light white feldspar 119 quartz light white feldspar 110 110 quartz light white feldspar 1110 1110 quartz light white feldspar 112 113 quartz light white feldspar 113 120 quartz light white feldspar 114 115 quartz light white feldspar 115 120 quartz light white quartz light white feldspar	104 106		quartz clay					
unconsolidated SAND feldspar 110 112 quartz pale (very light) white 112 114 unconsolidated SAND quartz pale (very light) 114 116 unconsolidated SAND feldspar 115 118 quartz light clay white 116 118 quartz light clay white 117 118 quartz light clay white 118 120 quartz light clay white	106 108		clay					
unconsolidated SAND 112 114 quartz Pale (very light) unconsolidated clay White SAND feldspar 114 116 unconsolidated clay White SAND 116 118 unconsolidated clay White SAND quartz light clay White SAND 116 118 unconsolidated clay White SAND quartz light clay White SAND quartz light clay White SAND 118 120 quartz light clay White	108 110		clay	light White	· · · · ·			·
unconsolidated sAND feldspar 114 116 unconsolidated sAND quartz light unconsolidated sAND quartz light unconsolidated sAND quartz light unconsolidated sAND feldspar 118 120 quartz light unconsolidated sand feldspar quartz light unconsolidated clay White	110 112		quartz clay	Pale (very light White)	·		
unconsolidated clay White SAND 116 118 quartz light unconsolidated clay White SAND feldspar 118 120 quartz light unconsolidated clay White	112 114		clay	Pale (very light White)			
unconsolidated clay White SAND feldspar 118 120 quartz light unconsolidated clay White	114 116							
unconsolidated clay White	116 118		clay		-	·		
Tetospar .	118 120	unconsolidated SAND						

Project : COOBER PEDY RIDGE

Hole Name : CR92013

Northing: 6783901

Hole Length: 208

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Easting: 491360 Latitude: -29.073119 Longitude: 134.911231 Azimuth : 345

Inclination : -60

Amg Zone : 53 Surface Rl : 214 Coord Reliability : TAPE

Depth From	m - To	(m) Sa	imple No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	120	122	DB8513	complex clayey SAND	quartz clay feldspar	Medium light White	· .	· ·		
	122	124		weathered altered GNEISS	quartz feldspar biotite	Medium Brown (Umber)			irreg. patches, not re chlorite eins	
	124	126	•			•				
•				LOST CORE						4
	126	128								
				LOST CORE						
	128	130								
				LOST CORE	•					
	130	132			•					
				LOST CORE		. •				
	. 132	134	DB8514	magnetite-bearing possible GNEISS	feldspar quartz biotite	Medium Orange		·		5000-10000
	134	136	D88515	magnetite-bearing massive GNEISS	quartz feldspar biotite	Medium light Orange				1000-5000
	136	138	DB8516	magnetite-bearing garnetiferous GNEISS	feldspar quartz biotite	Medium dark Orange				1000-5000
	138	140	DB8517	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange				1000-5000
. ·	140	142	DB8518	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium dark Orange	rare trace (<			1000-5000
	142	144	DB8519	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium dark Orange earth	.)	(1- feldspar	irreg. patches, not re chlorite eins	1000-5000

Project : COOBER PEDY RIDGE

Latitude: -29.073119

Azimuth : 345

Easting : 491360

Northing: 6783901

Hole Name : CR92013 Hole Length: 208

Amg Zone : 53 Surface Rl : 214 Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Longitude: 134.911231 Inclination: -60

Depth From - Te	o (m) S	Sample No.	Rocktype	Minerals	Colour -	Pyrite/Pyrrhotite % Vein % Vein T	pe Alteration	Magsus
144	146	D88520	magnetite-bearing siliceous GNEISS	feldspar quartz biotite	Medium Orange clays		irreg. patches, not re chlorite eins	5000-10000
146	148	DB8521	magnetite-bearing garnetiferous GNEISS	feldspar quartz biotite	Medium Orange			1000-5000
148	150	DB8522	magnetite-bearing garnetiferous GNEISS	feldspar biotite quartz	Medium Orange		irreg. patches, not re chlorite eins	1000-5000
150	152	DB8523	magnetite-bearing garnetiferous GNEISS	quartz plagioclase biotite	Medium Orange			5000-10000
152	154	DB8524	magnetite-bearing	quartz feldspar biotite	Medium Orange			1000-5000
154	156	DB8525	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange			1000-5000
156	158	DB8526	magnetite-bearing siliceous GNEISS	feldspar quantz biotite	Medium dark Orange	•		1000-5000
158	160	DB8527	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange			1000-5000
160	162	D88528	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange		irreg. patches, not re chlorite eins	5000-10000
162	164	D88530	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange	·	irreg. patches, not re chlorite eins	5000-10000
164	166	D88531	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange		irreg. patches, not re chlorite eins	5000-10000
166	168	DB8532	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange	trace chlor 1%)	ite irreg. patches, not re chlorite eins	1000-5000

Project : COOBER PEDY RIDGE Easting : 491360

Hole Name : CR92013

Northing: 6783901 Longitude: 134.911231

Hole Length: 208 Amg Zone : 53 Surface Rl : 214

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Latitude : -29.073119 Azimuth: 345

Inclination: -60

Coord Re	liabil	lity :	TAPE
----------	--------	--------	------

Depth From - To	(m) Sampl	e No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
168	170 D	в8533	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange				5000-10000
170	172 D	в8534	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange				5000-10000
172 -	174 D	в8535	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange			irreg. patches, not re chlorite eins	1000-5000
174	176 D	B8536	magnetite-bearing granitic GNEISS	feldspar quartz biotite	Medium Orange			irreg. patches, not re chlorite eins	1000-5000
176	178 D	B8537	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange				1000-5000
178	180 D	88538	magnetite-bearing GRANITE	quartz feldspar biotite	Medium light Orange				5000-10000
180	182 D	B8539	magnetite-bearing siliceous GNEISS	quartz feldspar magnetite	Medium Orange		·	•	5000-10000
182	184 D	B8540	magnetite-bearing micaceous GNEISS	quartz feldspar biotite	Medium Orange			irreg. patches, not re chlorite eins	1000-5000
184	186 D	B8541	magnetite-bearing micaceous GNEISS	feldspar quartz biotite	Medium dark Orange			pervasive zone chlorite	5000-10000
186	188 D	в8542	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium light Orange			pervasive zone chlorite	1000-5000
188	190 D	B8543	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange	trace 1%)	chlorite	irreg. patches, not re chlorite eins	1000-5000
190	192 D	в8544	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange	trace 1%)	chlorite	irreg. patches, not re chlorite eins	1000-5000

Project : COOBER PEDY RIDGE

Duplicate Samples logged Sample Number From To

DB8529

DB8545

160

190

162

192

CR92013

CR92013

Hole Name : CR92013

Hole Length: 208 Amg Zone : 53

Contractor : FRANKWALSH DRILLING

Locality: EL 1725 CO Logged By: J.READ

Easting : 4 Latitude : Azimuth : 1	-29.0			Northing: 6783901 Longitude: 134.911231 Inclination: -60	Amg Zone : 53 Surface Rl : 214	Coord Reliab	oility : TAPE			
Depth From	m - To	(m) Sa	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
	192	194	D88547	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium dark Orange	•		irreg. patches, not re chlorite eins	1000-5000
	194	196	DB8548	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium dark Orange			pervasive zone chlorite	1000-5000
	196	198	DB8549	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium dark Orange		-	pervasive zone chlorite	1000-5000
	198	200	DB8550	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium Orange	trace 1%)	quartz		1000-5000
	200	202	DB8551	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium light Orange				1000-5000
	202	204	DB8552	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium light Orange				1000-5000
	204	206	DB8553	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium light Orange				1000-5000/
	206	208	D88554	magnetite-bearing siliceous GNEISS	quartz feldspar biotite	Medium light Orange				1000-5000
tandard S	amples	Logge	d Sampl	e Number From To						
R92013	•		DB854	6 190 192					•	

BHP Minerals - Southern Proterozoic Logsheet (Page No 24 of 26)

Hole Length: 224

Amg Zone : 53

Hole Name: CD93009

Project : COOBER PEDY RIDGE

Locality: EL1725

Prospect: ANOMALY 18

Northing : 6765700 Easting : 445000 Logged By : M VALDEZ Surface Rl: 180 Coord Reliability: TAPE Latitude : -29.236228 Longitude: 134.434033 Minerals -Pyrite/Pyrrhotite % Other Mineral Alteration Weathering Colour Depth From - To (m) Type Rocktype 0 72 major litho INTERVAL NOT LOGGED MODERATE WEATHERING 73.4 minor Medium clays 72 garnetiferous quartz crude bands and magnetite-bearing feldspan Grey litho irregular patches GNEISS biotite Medium dark widespread trace (<1 FRESH ROCK 72 177.25 major garnetiferous quartz Black (Noir) magnetite litho magnetite-bearing feldspar GNEISS biotite 87.5 minor granitic quartz Medium light clays FRESH ROCK 78.2 disseminations K-feldspar Red litho magnetite-bearing PEGMATITE magnet i.te 87.5 177.25 minor Medium rare trace (<<1% FRESH ROCK magnetite-bearing quartz garnetiferous feldspar Grey litho magnetite GNEISS FRESH ROCK amphiboles Medium light 91.81 91.93 minor quartz Grey litho BRECCIA clay K-feldspar Medium FRESH ROCK 102.06 102.54 minor litho quartz Red GRANITE clay FRESH ROCK Medium light 111.8 minor quartz litho K-feldspar Red PEGMATITE FRESH ROCK Medium light 164.08 164.23 minor K-feldspar quartz Red litho GRANITE FRESH ROCK light 176.3 176.67 minor guartz litho K-feldspar -White PEGMATITE amphiboles Medium light FRESH ROCK rare trace (<<1% 177.25 220.6 major magnetite-bearing quartz litho garnetiferous feldspar Grey GNEISS biotite FRESH ROCK Medium _187.05 187.4 minor granitic K-feldspar quartz Red litho biotite PEGMATITE

Contractor : SILVER CITY

Project : COOBER PEDY RIDGE

Easting : 472900

Hole Name : CR93001 Northing : 6785960 Hole Length: 279 Amg Zone: 53

279 Cd

Contractor : FRANK WALSH DRILLING

Locality: EL1725 COO Logged By: S.MCCAUGHEY

Latitude : -29.054275 Azimuth : 355

Northing : 6785960 Longitude : 134.721622

Longitude: 134.721622 Surf Inclination: -60

Surface Rt : 120

Coord Reliability : TAPE

Pyrite/Pyrrhotite % Vein % Vein Type Alteration

Magsus

CLAYSTONE ARed CLAYSTONE CLAYSTONE CLAYSTONE ARED CLAYSTONE Light Grey SHALE 110 160 sandy SHALE Light Crey SHALE Light Crey SHALE Light Crey SHALE	Depth	From - 1	ro (m)	Sample No.	Rocktype	Minerals	Colour	Руг
CLAYSTONE 4 6 sandy Medium dark Orange CLAYSTONE 6 12 Medium White CLAYSTONE 12 22 sandy Light Red CLAYSTONE 22 38 sandy Pale (very light) Orange CLAYSTONE 38 42 sandy Pale (very light) Red CLAYSTONE 42 56 sandy Pale (very light) Red CLAYSTONE 42 56 sandy Pale (very light) Red CLAYSTONE 56 110 Medium dark Grey SHALE 110 160 sandy Light Grey SHALE 160 162 sandy Light Grey SHALE		0	4				Medium light	
CLAYSTONE CLAYSTONE CLAYSTONE 12 22 sandy CLAYSTONE 22 38 sandy CLAYSTONE CLAYSTONE 38 42 sandy CLAYSTONE 42 56 sandy CLAYSTONE 42 56 sandy CLAYSTONE 56 110 SHALE 110 160 sandy SHALE 160 162 sandy Clayey SHALE CLAYSTONE Medium White Alight Grey SHALE Light Grey SHALE Light Grey SHALE		•			CLAYSTONE		or arige	
CLAYSTONE CLAYSTONE CLAYSTONE 12 22 sandy light Red CLAYSTONE 22 38 sandy Pale (very light) Orange CLAYSTONE 38 42 sandy Pale (very light) Red CLAYSTONE 42 56 sandy Pale (very light) Red CLAYSTONE 43 56 sandy Pale (very light) Tan CLAYSTONE 56 110 Medium dark Grey SHALE 110 160 sandy light Grey SHALE 160 162 sandy Light Grey SHALE		4	, 6		sandy	•		
CLAYSTONE 12 22 sandy CLAYSTONE 22 38 sandy CLAYSTONE 38 42 sandy CLAYSTONE 42 56 sandy CLAYSTONE 56 110 SHALE 110 160 sandy SHALE 160 162 sandy CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE CLAYSTONE Medium dark Grey Light Grey			-		CLAYSTONE	•	·	
CLAYSTONE 12 22 sandy CLAYSTONE 22 38 sandy CLAYSTONE 38 42 sandy CLAYSTONE 42 56 sandy CLAYSTONE 56 110 SHALE 110 160 sandy SHALE 160 162 sandy Clayey SHALE 110 162 sandy Clayey SHALE 1110 162 sandy Clayey SHALE		6	12					
CLAYSTONE 22 38 sandy Pale (very light) Orange CLAYSTONE 38 42 sandy Pale (very light) Red CLAYSTONE 42 56 sandy Pale (very light) Tan CLAYSTONE 56 110 Medium dark Grey SHALE 110 160 sandy light Grey SHALE 160 162 sandy clayey SHALE					CLAYSTONE		will co	
CLAYSTONE 22 38 sandy CLAYSTONE 38 42 sandy CLAYSTONE 42 56 sandy CLAYSTONE 56 110 SHALE 110 160 sandy SHALE 160 162 sandy Clayey SHALE 110 162 sandy Clayey SHALE 110 162 sandy Clayey SHALE		12	22	•	sandy			
CLAYSTONE 38 42 sandy CLAYSTONE 42 56 sandy CLAYSTONE 56 110 SHALE 110 160 sandy SHALE 160 162 sandy Clayey SHALE 170 162 sandy Clayey SHALE 180 162 sandy Clayey SHALE 180 162 sandy Clayey SHALE					CLAYSTONE		Keo	
CLAYSTONE 38 42 Sandy Pale (very light) Red CLAYSTONE 42 56 Sandy Pale (very light) Tan CLAYSTONE 56 110 Medium dark Grey SHALE 110 160 Sandy Light Grey SHALE 160 162 Sandy clayey SHALE		22	38		sandy			
CLAYSTONE CLAYSTONE Pale (very light) Tan CLAYSTONE Medium dark Grey SHALE 110 160 sandy SHALE 160 162 sandy clayey SHALE Light Grey					CLAYSTONE		or ange.	
CLAYSTONE 42 56 sandy Pale (very light) Tan CLAYSTONE Medium dark Grey SHALE 110 160 sandy light Grey SHALE 160 162 sandy clayey SHALE		38	42		sandy			
CLAYSTONE Tan CLAYSTONE SHALE 110 160 sandy light Grey SHALE 160 162 sandy clayey SHALE Light Grey SHALE Clayey SHALE					CLAYSTONE			
CLAYSTONE 56 110 Medium dark Grey SHALE 110 160 sandy Light Grey SHALE 160 162 sandy Light Grey SHALE 160 162 sandy Clayey SHALE		42	56		sandy			
SHALE SHALE SHALE 110 160 sandy SHALE 160 162 sandy clayey SHALE SHALE Crey Light Grey Grey Grey Grey					CLAYSTONE		Idii	
SHALE 110 160 sandy light Grey SHALE 160 162 sandy light clayey SHALE SHALE		56	110					
SHALE SHALE 160 162 sandy light clayey Grey SHALE					SHALE		u. c,	
SHALE 160 162 sandy light clayey Grey SHALE		110	160		sandy	. •		
clayey Grey SHALE					SHALE		,	
		160	162		clayey			
162 164 EC1801 sandy Light		162	14/	EC1001	_			
162 164 EC1801 sandy light clayey Grey SHALE		102	104	EC 1001	clayey	• :		
164 166 EC1802 sandy light		164	166	EC1802	sandy			
Clayey Grey SHALE		-					Grey .	

Project : COOBER PEDY RIDGE Easting : 472900 Latitude : -29.054275 Azimuth : 355

Hole Name : CR93001

Northing: 6785960

Hole Length: 279 Amg Zone: 53

Contractor : FRANK WALSH DRILLING

Locality: EL1725 COO Logged By: S.MCCAUGHEY

Longitude: 134.721622 Inclination: -60

Surface Rl : 120

Azimuth: 355		Inclination : -60			•		•	
Depth From - To	(m) Sample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
166	168 EC1803	sandy clayey SHALE		light Grey				
168	170 EC1804	clayey UNIDENTIFIED ROCK	clay -	light Grey				
170	72 EC1805	clayey UNIDENTIFIED ROCK	clay quartz biotite	light Grey	-		•	
172	74 EC1806	possible clayey GNEISS	quartz K-feldspar biotite	Pale (very light) Tan				100-500 x 10 -5 SI Units
174 1 -	76 EC1807	weathered clayey GNEISS	quartz K-feldspar biotite	Pale (very light) Tan		-		10-100 x 10 -5 SI Units
176 . 1	78 EC1808	weathered clayey GNEISS	quartz K-feldspar biotite	Pale (very light) Tan				100-500 x 10 -5 SI Units
178 1	80 EC1809	weathered clayey GNEISS	quartz K-feldspar biotite	Pale (very light) Tan clays			chlorite	100-500 x 10 -5 SI Units
180 1	82 EC1810	altered GNEISS	quartz K-feldspar amphiboles	Medium light Tan clays			irreg. patches, not re chlorite eins	1000-5000 x 10 -5 SI Units
182 1	84 EC1811	weathered GNEISS	quartz K-feldspar garnet	light Tan				1000-5000 x 10 -5 SI Units
184 1	86 EC1812	weathered altered GNEISS	quartz K-feldspar garnet	light Tan		. *	pervasive zone chlorite	100-500 x 10 -5 SI Units
. 186 1	88 EC1813	GNEISS	quartz K-feldspar garnet	light Tan				1000-5000 x 10 -5 SI Units
188 1	90 EC1814	GNEISS	quartz K-feldspar garnet	light Tan	·			1000-5000 x 10 -5 SI Units

Project : COOBER PEDY RIDGE Easting : 472900

Latitude: -29.054275 Azimuth: 355

Hole Name : CR93001 Northing : 6785960

Longitude : 134.721622

Hole Length: 279 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality : EL1725 COO Logged By : S.MCCAUGHEY

Inclination: -60

Surface Rl : 120

Depth Fro	m - To	(m) Sa	mple No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % N	/ein % Vein Type	Alteration	Magsus
•••••									•••••	
	190	192	EC1815	GNEISS	quartz K-feldspar amphiboles	light Tan	·		chlorite	1000-5000 x 10 -5 SI Units
•	192	194	EC1816	GNEISS	quartz amphiboles garnet	Medium Grey			•	5000-10000 x 10 - 5 SI Units
	194	196	EC1817	GNEISS	quartz amphiboles K-feldspar	light Grey	·			1000-5000 x 10 -5 \$I Units
,	196	198	EC1818	GNEISS	quartz amphiboles K-feldspar	light Grey				500-1000 x 10 -5 SI Units
•	198	200	EC1819	GNEISS	quartz amphiboles K-feldspar	light Grey				500-1000 x 10 -5 SI Units
	200	202 .	EC1821	GNEISS	quartz amphiboles biotite	Medium light Grey		,		5000-10000 x 10 - 5 SI Units
	200	202	EC1820	GNEISS	quartz amphiboles biotite	Medium light Grey		·		5000-10000 x 10 -
	202	204	EC1822	GNEISS	quartz amphiboles biotite	Medium light Grey				1000-5000 x 10 -5 SI Units
	204	206	EC1823	GNEISS	quartz amphiboles feldspar	Medium light Grey				1000-5000 x 10 -5 SI Units
	206	208	EC1824	GNEISS	quartz amphiboles feldspar	Medium light Grey		·	irreg. patches, not re chlorite eins	1000-5000 x 10 -5 SI Units
•	208	210	EC1825	GNEISS	quartz amphiboles feldspar	Medium light Grey				1000-5000 x 10 -5 SI Units
	210	212	EC1826	GNEISS	quartz amphiboles feldspar	Medium light Grey				1000-5000 x 10 -5 SI Units

Project : COOBER PEDY RIDGE Easting : 472900

Hole Name : CR93001

Hole Length: 279

Contractor : FRANK WALSH DRILLING

Locality: EL1725 COO Logged By: S.MCCAUGHEY

Latitude : -29.054275 Azimuth: 355

Northing: 6785960 Longitude: 134.721622 Inclination: -60 Amg Zone : 53 Surface Rt : 120

th From - To	(m) Sa	mple No.	Rocktype 	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
212	214	EC1827	GNEISS	quartz amphiboles feldspar	Medium light Grey				5000-10000 x 10 5 SI Units
214	216	EC1828	GNEISS	quartz amphiboles feldspar	Medium light Grey			irreg. patches, not re chlorite eins	1000-5000 x 10 SI Units
216	218	EC1829	GNEISS	quartz amphiboles feldspar	Medium light Grey			irreg. patches, not re chlorite eins	5000-10000 x 10 5 SI Units
218	220	EC1830	GNEISS	quartž amphiboles feldspar	Medium light Grey			٠.	5000-10000 x 10 5 SI Units
220	222	EC1831	GNEISS	quartz amphiboles feldspar	Medium light Grey				5000-10000 x 1 5 SI Units
222	224	EC1832	GNEISS	quartz amphiboles feldspar	Medium′light Grey		·	irreg. patches, not re chlorite eins	5000-10000 x 1 5 SI Units
224	226	EC1833	GNEISS	quartz K-feldspar amphiboles	light Tan				1000-5000 x 10 SI Units
226	228	EC1834	GNEISS	quartz K-feldspar amphiboles	light Tan				1000-5000 x 10 SI Units
228	230	EC1835	GNEISS	quartz K-feldspar amphiboles	light Tan		•		1000-5000 x 10 SI Units
230	232	EC1836	GNEISS	quartz amphiboles biotite	Medium Grey			irreg. patches, not re chlorite eins	1000-5000 x 10 SI Units
232	234	EC1837	GNEISS	quartz K-feldspar biotite	light Tan	· .		irreg. patches, not re chlorite eins	500-1000 x 10 SI Units
234	236	EC1838	GNÉISS	quartz K-feldspar biotite	light Tan			pervasive zone chlorite	5000-10000 x 1 5 SI Units

Project : COOBER PEDY RIDGE Easting : 472900

Hole Name : CR93001

Hole Length: 279

Contractor : FRANK WALSH DRILLING

Locality: EL1725 COO Logged By: S.MCCAUGHEY

Latitude : -29.054275 Azimuth : 355

Northing: 6785960 Longitude: 134.721622

Inclination : -60

Amg Zone : 53 Surface Rl : 120 Coord Reliability : TAPE

	Suitace Kt : 120	Coord Rectability : IA
i (A		·

Depth Fr	om - Te	o (m) S	ample No.	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Vein %	Vein Type	Alteration	Magsus
· ·	236	238	EC1839	GNEISS	quartz K-feldspar amphiboles	Medium Tan				1000-5000 x 10 -5 SI Units
	238	240	EC1840	GNEISS	quartz K·feldspar amphiboles	Medium Tan			irreg. patches, not re chlorite eins	1000-5000 x 10 -5 SI Units
	238	240	EC1841	GNEISS	quartz K-feldspar amphiboles	Medium Tan	· · · · · · · · · · · · · · · · · · ·		irreg. patches, not re chlorite eins	1000-5000 x 10 -5 SI Units
	240	242	EC1842	GNEISS	quartz biotite K-feldspar	Pale (very light) Tan				1000-5000 x 10 -5 SI Units
	242	244	EC1843	GNEISS	quartz amphiboles garnet	Pale (very light) Tan			irreg. patches, not re chlorite eins	1000-5000 x 10 -5 SI Units
	244	246	EC1844	GNEISS	quartz K-feldspar amphiboles	Pale (very light) Grey			· .	1000-5000 x 10 -5 SI Units
	246	248	EC1845	, foliated GRANITE	quartz K-feldspar	light Red			•	1000-5000 x 10 -5 SI Units
	246	248	EC1846	foliated GRANITE	quartz K-feldspar	light Red				1000-5000 x 10 -5 SI Units
	248	250	EC1847	foliated GRANITE	quantz K-feldspar	light Red				500-1000 x 10 -5 SI Units
	250	252	EC1848	GNEISS	quartz K-feldspa r amphiboles	light Red				10000-20000 x 10 -5 SI Units
	252	254	EC1849	GNEISS	quartz K-feldspar amphiboles	light Red				1000-5000 x 10 -5 SI Units
	254	256	EC1850	GNEISS	quartz K-feldspar amphiboles	light Red				5000-10000 x 10 - 5 SI Units

Project : COOBER PEDY RIDGE Easting : 472900

Hole Name : CR93001 Northing: 6785960

Hole Length: 279 Amg Zone : 53

Contractor : FRANK WALSH DRILLING

Locality: EL1725 COO Logged By: S.MCCAUGHEY

Latitude : -29,054275 Azimuth : 355

Longitude: 134.721622 Inclination: -60

Surface Rl : 120

zimuth : 355			Inclination : -60					
Depth From - To	(m) S	Sample No.	Rocktype	Minerals	Colour .	Pyrite/Pyrrhotite % Vein %	Vein Type Alteration	Magsus
256	258	EC1851	GNEISS	quartz amphiboles garnet	light Red		·. :	1000-5000 x 10 -5 SI Units
258	260	EC1852	GNEISS	quartz amphiboles garnet	light Red			1000-5000 x 10 -5 SI Units
260	262	EC1853	GNEISS	quartz amphiboles garnet	light Red			5000-10000 x 10 - 5 SI Units
262	264	EC1854	GNEISS	quartz amphiboles garnet	light Red			1000-5000 x 10 -5 SI Units
264	266	EC1855	GNEISS	quartz amphiboles garnet	light Red			1000-5000 x 10 -5 SI Units
266	268	EC1856	GNEISS	quartz amphiboles garnet	light Red		chlorite	5000-10000 x 10 - 5 SI Units
268	270	EC1857	GNEISS	quartz amphiboles garnet	light Red		chlorite	1000-5000 x 10 -5 SI Units
270	272	EC1858	GNEISS	amphiboles K-feldspar quartz	light . Red	•		5000-10000 x 10 - 5 SI Units
272	274	EC1859	GNEISS	garnet quartz K-feldspar	light Red			1000-5000 x 10 -5 SI Units
274	276	· EC1860	GNEISS	garnet quartz K-feldspar	light Red			5000-10000 x 10 - 5 SI Units
274	276	EC1861	GNEISS	garnet quartz K-feldspar	light Red			5000-10000 x 10 - 5 SI Units
276	278	EC1862 -	GNEISS	quartz K-feldspar biotite	light Grey		• .	1000-5000 x 10 -5 SI Units

Project : COOBER PEDY RIDGE Easting : 472900

Hole Name : CR93001

Northing: 6785960

Amg Zone : 53

Hole Length: 279

Contractor : FRANK WALSH DRILLING

Pyrite/Pyrrhotite % Vein %

Locality : EL1725 COO Logged By : S.MCCAUGHEY

Magsus

SI Units

1000-5000 x 10 -5

Vein Type Alteration

Latitude : -29.054275 Azimuth: 355

Longitude : 134.721622 Inclination: -60

Surface Rt : 120

Minerals

quartz.

biotite

K-feldspar

Coord Reliability: TAPE

Colour

light

Grey

Depth Fro	m - To	(m) Sam	ple No. Rocktype	e 	
	278	279	EC1864		
	278	279	EC1863		
			GNEISS	•	
Standard S	amples	Logged	Sample Number	From	To
CR93001			EC1864	278	279
Duplicate	Samole	Lonnad	Sample Number	From	To
			sample number		To
CR93001			EC1821	200	202
CR93001			EC1841	238	240
CR93001 CR93001			EC1846	246	248
CK73001			EC1861	274	276

BHP Minerals - Southern Proterozoic Logsheet (Page No 25 of 26)

Project : COOBER PEDY RIDGE Easting : 445000

Hole Name: CD93009 Northing: 6765700

Hole Length: 224 Amg Zone : 53

Contractor : SILVER CITY

Locality: EL1725

Prospect: ANOMALY 18

Latitude : -29.236228 Longitude: 134.434033 Surface Rl: 180 Coord Reliability: TAPE Logged By : M VALDEZ Rocktype Depth From - To (m) Type Minerals Colour Pyrite/Pyrrhotite % Other Mineral Alteration Weathering 187.7 189 minor granitic K-feldspar Medium FRESH ROCK litho quartz Red . . PEGMATITE biotite 192.75 193.5 minor magnetite-bearing quartz Dark ' FRESH ROCK litho feldspar Black (Noir) GNEISS biotite 194.95 200.2 minor magnetite-bearing Medium light quartz FRESH ROCK litho feldspar Grey · PEGMATITE magnetite 200.2 200.95 minor quartz Medium light FRESH ROCK litho feldspar Red **GNEISS** biotite 200.95 201.93 minor granitic K-feldspar Medium light FRESH ROCK litho quartz Red PEGMATITE garnet 201.93 202.55 minor quartz light FRESH ROCK litho feldspar White GNEISS magnetite 202.55 203.3 minor quartz Medium light FRESH ROCK litho K-feldspar Red PEGMATITE garnet 203.3 205 minor magnetite-bearing quartz Medium light FRESH ROCK litho feldspar Black (Noir) GNEISS magnetite 205 224 minor garnetiferous quartz Medium light FRESH ROCK litho feldspar Red GNEISS biotite 206.35 206.7 minor granitic quartz. Medium light FRESH ROCK litho K-feldspar Red PEGMATITE amphiboles 214.15 215.25 minor granitic quartz Medium light FRESH ROCK litho K-feldspar Red PEGMATITE garnet 216.4 217.22 minor granitic quartz Medium light FRESH ROCK litho K-feldspar Red PEGMATITE garnet

(Page No 26 of 26)

Project : COOBER PEDY RIDGE Easting : 445000

Hole Name : CD93009 Northing : 6765700

Hole Length: 224 Amg Zone : 53

Contractor : SILVER CITY

Locality: EL1725

Prospect : ANOMALY 18

Latitude : -29.236228

Longitude: 134.434033

Surface RL: 180

Coord Reliability : TAPE

Logged By : M VALDEZ

		•			Logged by . II VA	DEL	
Depth From -	To (m) Type	Rocktype	Minerals	Colour	Pyrite/Pyrrhotite % Other Mineral	Alteration	Weathering
217.5	218.1 minor litho	granitic PEGMATITE	quartz K-feldspar garnet	Medium light Red			FRESH ROCK
220.6	224 major litho	garnetiferous GNEISS	quartz garnet amphiboles	Medium light Red			FRESH ROCK
221.7	222 minor litho	garnetiferous GNEISS	garnet quartz K-feldspar	Medium Red			FRESH ROCK

HP Minerals - Southern Proterozoic Logsheet (Page No 25 of 27)

ject : COOBER PEDY RIDGE usting : 445000 atitude : -29.236228 cality : EL1725

Hole Name: CD93009 Northing: 6765700 Longitude: 134.434033 Prospect: ANOMALY 18

Hole Length : 224 Amg Zone : 53 Surface Rl : 180 Logged By : M VALDEZ

Contractor : SILVER CITY
Coord Reliability : TAPE

jeol From	Geol To	Magsus
72	77	
73	73 74	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
74	75	10000-20000 x 10 -5 SI Units
75 76	76 77	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
77	78	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
.78 79	79 [*] 80	20000-40000 x 10 -5 SI Units
80	81	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
81	82	20000-40000 x 10 -5 SI Units
82 83	83 84	20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
84	85	20000-40000 x 10 -5 SI Units
85 86	86 87	10000-20000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
87	88	40000-60000 x 10 -5 SI Units
88 89	89 90	20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
. 90	91	40000-60000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
91 92	92 93	10000-20000 x 10 -5 SI Units
93	94	20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
94	95	20000-40000 x 10 -5 SI Units
95 96	96 • 97	20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
97	98	20000-40000 x 10 -5 SI Units
98 99	99 100	20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units
100	101	20000-40000 x 10 -5 SI Units
10 1 102	102 103	20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units
103	104	40000-60000 x 10 -5 SI Units
104 105	105 106	40000-60000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
106	107	10000-20000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
107 108	108 109	20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units
109	110	20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units
110 111	111 - 112	20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
· 112	113	20000-40000 x 10 -5 SI Units
113 114	114 115	20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
115	116	20000-40000 x 10 -5 SI Units
116 117	117 118	20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
118	119	10000-20000 x 10 -5 SI Units
. 119 120	120 121	20000-40000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units
121	. 122	5000-10000 x 10 -5 SI Units
122 123	123 124	5000-10000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
124	125	10000-20000 x 10 -5 SI Units
125 126	126 127	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
127	128	20000-40000 x 10 -5 SI Units
128 129	129 130	5000-10000 x 10 -5 SI Units
130	131	20000-40000 x 10 -5 SI Units
131 132	132 133	10000-20000 x 10 -5 SI Units
133	134	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
134 135	135 136	40000-60000 x 10 -5 SI Units
136	136	10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units
137 138	138	40000-60000 x 10 -5 SI Units
139	139 140	40000-60000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units
140 141	141 142	20000-40000 x 10 -5 SI Units
142	142 143	20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units
143 144	144	20000-40000 x 10 -5 SI Units
145	145 146	20000-40000 x 10 -5 SI Units 60000-80000 x 10 -5 SI Units
146	147	20000-40000 x 10 -5 SI Units

P Minerals - Southern Proterozoic Logsheet (Page No 26 of 27) oject : COOBER PEDY RIDGE Hole Name : CD93009 Hole Length: 224 Contractor : SILVER CITY sting : 445000 Northing : 6765700 Amg Zone : 53 titude : -29.236228 Surface Rl: 180 Longitude : 134.434033 Coord Reliability: TAPE cality: EL1725 Prospect : ANOMALY 18 Logged By : M VALDEZ Geol From Geol To Magsus 40000-60000 x 10 -5 SI Units 60000-80000 x 10 -5 SI Units

20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 60000-80000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 St Units 20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 1000-5000 x 10 -5 SI Units 40000-60000 x 10 -5 SI Units 177 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 197.1 202.3 5000-10000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units 5000-10000 x 10 -5 SI Units 10000-20000 x 10 -5 SI Units 20000-40000 x 10 -5 SI Units 1000-5000 x 10 -5 SI Units 1000-5000 x 10 -5 SI Units

500-1000 x 10 -5 SI Units

P Minerals - Southern Proterozoic Logsheet (Page No 27 of 27)

oject : COOBER PEDY RIDGE sting : 445000 titude : -29.236228 cality : EL1725

Hole Name : CD93009 Northing : 6765700 Longitude : 134.434033 Prospect : ANOMALY 18

Hole Length : 224 Amg Zone : 53 Surface Rl : 180 Logged By : M VALDEZ

Contractor : SILVER CITY

Geol From	Geol To	Magsus
221	222	5000-10000 x 10 -5 SI Units
222	223	5000-10000 x 10 -5 SI Units
223	224	5000-10000 x 10 -5 SI Units

Appendix 4

Assay Results

EL No.	Anomaly	Hole	Sample No.	
			From	То
1719	26	CR9120	DL7981	DL7987
1725	12	CR9117	DL7878	DL7941
	16	CR9115	DL7769	DL7852
	18	CD93009	DG505	EG548
	37	CR9213	DB8513	DB8554
	39	CR93001	EC1861	EC1864

DL7813

Units

Scheme

DL

0.08

ppm

0.02

AA7

0.08

ppm.

0.02

AA7

ppm

0.02

AA7

ppm

AA7

0.02

CLASSIC LABORATORIES

Job: 1AD3068

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

	ΔN	ALYTICAL	DEBOD	m			AD3000
	AIV	TLITICAL	. KEPUK	ľ		O/N: 1	6409/B49
Sample	Au Avç) At	ı Au Rp	1 Au SS	L Cu	Pb	Zn
DL7769	0.04	0.04			- 7	1.0	4.5
DL7770	0.02				- 7		
DL7771	0.02				· 5 · 3	6	
DL7772	0.04				. 7	7	
DL7773	0.04				6	8 7	
DL7774	0.04				_	7	
DL7775	0.06				•	7	
DL7776	0.04				7	6	
DL7777	0.04					9	13 15
DL7778	0.04			·	10	7	14
DL7779	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.		IND
DL7780	L.Ņ.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I. N P	I N D
DL7781	L.N.R.	L.N.R.	·L.N.R.	L.N.R.	L.N.R.	L.N.R	I N P
DL7782	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	INR	I N D
DL7783	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I. N.R.
DL7784	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	IN.R
DL7785	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I. N.R
DL7786	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7787	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7788	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7789	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	E.N.R.
DL7790	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I N P
DL7791	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7792	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7793	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I N. R.
DL7794	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7795	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7796	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	I N. R
DL7797	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7798	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7799	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
DL7800	L.N.R.		L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
, DL7801	0.06	0.06			4	7	14
DL7802	0.06	0.06			6	5	12
DL7803 DL7804	0.06	0.06			7	7	1, 3
DL7804.	0.10	0.10			7	. 6	12
DL7805	0.06	0.06			9	7	12
DL7807	0.10 0.06	0.10			4	8	15
DL7807	0.06	0.06 0.06			8	7	15
DL7809	0.06	0.06			8	8	15
DL7810	0.06	0.06			8	8	14
DL7811	0.08	0.08			8	8	15
DL7812	0.06	0.06			8	7	15
DL7813	0.08	0.00			6	4	13

9

ppm

AA7

6

ppm

AA7

1

6

 ${\tt ppm}$

AA7

1

ANALYTICAL REPORT

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported nerein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

*	•				•			
Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn	
DL7814	0.06	0.06			4	3	11	
DL7815	0.08	0.06	0.10		3	5	14	
DL7816	0.04	0.04			5	7	11	
DL7817	0.06	0.06			6	5	16	
DL7818	0.06	0.06			5	5	14	
DL7819	0.04	0.04			8	7	20	
DL7820	0.06	0.06			5	5	24	
DL7821	0.08	0.08			. 3	9	30	
DL7822	0.06	0.06			3	7	32	
DL7823	0.06	0.06			5	7.		
DL7824	0.04	0.04			5	7	25	
DL7825	0.04	0.04			6	, 7	45	•
DL7826	0.02	0.02			4	9	40	
DL7827	0.02	0.02			11	9	25	
DL7828	0.06	0.06	·		4	9	20	
DL7829	0.10	0.10			4	8	17	
DL7830	0.08	0.08			3	8	25	
DL7831	0.10	0.10			4	11	38	
DL7832	0.02	0.02			9	14	45	
DL7833	0.02	0.02			5	7	25	
DL7834	<0.02	<0.02			4	8	22	
DL7835	0.02	0.02			5	5	, \ 20	
DL7836	0.02	0.02			6	6	. 22	
DL7837	0.02	0.02			7	9	28	
DL7838	<0.02	<0.02			3	5	. 36	
DL7839	0.02	0.02			2	7	50	
DL7840	<0.02	<0.02			3	9	46	
DL7841	<0.02	<0.02			3	8	64	
DL7842	<0.02	<0.02			4	7	20	
DL7843	0.04	0.04			10	12	46	
DL7844	<0.02	<0.02		·	3	6	22	
DL7845	0.02	0.02			7	8	20	
DL7846	0.02	0.02			3	8	22	
, DL7847	<0.02	<0.02			8	6	24	
DL7848	0.02	0.02	<u>-</u>		2	6	17	
DL7849	0.04	0.04			4	7	16	
DL7850	0.02	0.02			5	7	22	
DL7851	<0.02	<0.02			4	. 7	38	
DL7852	0.04	0.04			6	5	16	
DL7853	<0.02	<0.02			4	5	42	
DL7854	<0.02	<0.02			6	2	13	
DL7855	0.02	0.02			. 9	. 4.	42.	
DL7856	0.02	0.02			5	5	42	
DL7857	<0.02	<0.02			6	5	26	
DL7858	0.02	0.02			3	. 8	22	
22.300	3.02	0.00			3	3	22	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
DL	0.02	0.02	0.02	0.02	1	1	1	
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7	

This Laboratory is registered by the National Association of Testing Authorities, Australia. The lest(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068
ANALYTICAL REPORT O/N: 16409/B49

•	•				٠.		
Sample	Au Avg	Au	Au Rpi	Au SS1	Cu	Pb	Zn
DL7859	0.02	0.02			2	4	25
DL7860	0.02	0.02			2	6	34
DL7861	0.04	0.04	0.04		4	6	24
DL7862	0.06	0.06			5	6	38
DL7863	0.08	0.08			11	8	34
DL7864	0.08	0.08			7	9	32
DL7865	0.04	0.04			10	8	26
DL7866	0.08	0.08	0.08		8	9	25
DL7867	0.08	0.08			9	10	32
DL7868	0.08	0.08			12	8	45
DL7869	0.10	0.10			10	9	34
DL7870	0.06	0.06			5	9	36
DL7871 -	0.06	0.06			12	8	24
DL7872	0.06	0.06			6	8	35
DL7873	0.06	0.06			6	8	28
DL7874	0.06	0.06			7	7	44
DL7875	0.08	0.08			7	10	36
DL7876	0.06	0.06			5	7	28
DL7877	0.04	0.04			5	′ 7	28
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DL	0.02	0.02	0.02	0.02	1	1	, 1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

ANALYTICAL REPORT

Sample	Ag
DL7769 DL7770 DL7771 DL7772 DL7773 DL7774 DL7775 DL7776 DL7777 DL7778 DL7778 DL7778 DL7778 DL7781 DL7781 DL7781 DL7785 DL7786 DL7787 DL7788 DL7788 DL7788 DL7788 DL7789 DL7789 DL7790 DL7791 DL7792 DL7793 DL7799 DL7799 DL7799 DL7799 DL7799 DL7799 DL7798 DL7799 DL7798 DL7799 DL7798 DL7799 DL7780 DL7780 DL7780 DL7780 DL7780 DL7801 DL7802 DL7803 DL7806 DL7807 DL7808 DL7807 DL7808 DL7809 DL7809 DL7810 DL7811 DL7812 DL7813	0.8 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
	0.2

Scheme

This Laboratory is registered by the National Association of Testing Authorities. Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3068 O/N: 16409/B49

ANALYTICAL REPORT

Sample	Ag
DL7814 DL7815 DL7816 DL7817 DL7818 DL7819 DL7820 DL7821 DL7822 DL7823 DL7824 DL7825 DL7826 DL7826 DL7829 DL7829 DL7830 DL7831 DL7832 DL7833 DL7834 DL7835 DL7838 DL7837 DL7838 DL7840 DL7837 DL7838 DL78440 DL7841 DL7842 DL7845 DL7850 DL7851 DL7852 DL7853 DL7855 DL7855 DL7855 DL7855	0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Units DL Scheme	ppm 0.2 AA7

AA7 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in fulf.

Job: 1AD3068 O/N: 16409/B49

ANALYTICAL REPORT

Sample	Ag
DL7859	0.8
DL7860	1.0
DL7861	0.8
DL7862	0.6
DL7863	0.6
DL7864	0.8
DL7865	0.8
DL7866	0.8
DL7867 .	0.8
DL7868	0.8
DL7869	1.0
DL7870	0.8
DL7871	0.8
DL7872.	0.8
DL7873	0.8
DL7874	0.8
DL7875	0.8
DL7876	0.6
DL7877	0.8
Units	ppm
DL	0.2
Scheme	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

Job: 1AD3067 O/N: 16408/B49

							-	
Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn	
DL7878	0.02	0.02	·	0.04	26	22	. 58	
DL7879	<0.02	<0.02			30	24	62	
DL7880	0.02	0.02			. 25	24		
DL7881	<0.02	<0.02			30	20	66	
DL7882	0.02	0.02			54		80	lics
DL7883	<0.02	<0.02			22	17	120-	
DL7884	<0.02	<0.02				20	70-	iis
DL7885	<0.02	<0.02			15	30	. 38	
DL7886	<0.02	<0.02			15	17	45	
DL7887	0.04	0.04			12	12	54	
DL7888	<0.02	<0.02			10	11	40	
DL7889	<0.02	<0.02			13	10	42 <	
DL7890	<0.02	<0.02			16	9	54	
DL7891	0.02				8	10	68	
DL7892	<0.02	0.02			16	13	92	
DL7893		<0.02			22	22	. 62	
DL7894	<0.02	<0.02			98	8	64	
	<0.02	<0.02			14	9	48	
DL7895	<0.02	<0.02			100	9	65	
DL7896	<0.02	<0.02			62	9	62	
DL7897	0.02	0.02			50	9	64	
DL7898	0.02	0.02		0.02	11	14	52	
DL7899	0.04	0.04			15	11	70	
DL7900	<0.02	<0.02			30	10	75	
DL7901	<0.02	<0.02			54	14	105	
DL7902	0.02	0.02			34	16	65	
DL7903	<0.02	<0.02			15	18	35	
DL7904	<0.02	<0.02			26	11	62	
DL7905	<0.02	<0.02			8	12	55	
DL7906	0.04	0.04			5	10	45	
DL7907	<0.02	<0.02			. 5	11	44	
DL7908	0.04	0.04			9	13	62	
DL7909	0.04	0.04			. 12	4	50	
DL7910	0.04	0.04			24	7	52	
DL7911	0.04	0.04			38	6	46	
DL7912	0.02	0.02			12	7	42	
DL7913	0.02	0.02			38	7	28	
DL7914	0.06	0.06			50	5	35	
DL7915	0.02	0.02		- -	50	8	36	
DL7916	0.04	0.04			105	16	54	
DL7917	<0.02	<0.02			38	· 5	36	
DL7918	0.04	0.04		0.04	38	, 9	40	
DL7919	0.04	0.04			28	11	45	
DL7920	0.08	0.08			13	8	48	
DL7921	0.14	0.14			8	4	36	
DL7922	0.14	0.16	0.10		6	5	20	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm .	•
DL	0.02	0.02	0.02	0.02	1	1	1	
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7	

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3067 O/N: 16408/B49

ANALYTICAL REPORT

Sample	Au Avg	Au	Au Rpi	Au SS1	Cu	Pb	Zn
DL7923	0.18	0.22	0.14		6	3	19/197
					_		ì
DL7924	0.18	0.22	0.14		5	4	20/194
DL7925	0.02	0.02			72	6	42
DL7926 .	0.02	0.02		· ·	44	5	32
DL7927	0.06	0.06			42	6 .	38
DL7928	0.06	0.06			10	8	45
DL7929	0.10	0.10			28	13	60
DL7930	0.12	0.12	0.12		9	7	50
DL7931	0.14	0.14			6	5	22
DL7932	0.12	0.12			6	5	34
DL7933	0.14	0.18	0.10		- 5	5	20
DL7934	0.16	0.16			5	. 4	18
DL7935	0.12	0.12			10	6	. 25
DL7936	0.12	0.12			5	5	40
DL7937	0.12	0.12			8	- 5	25
DL7938	0.12	0.12	·	0.12	7	6	20
DL7939	0.10	0.10			7	8	22
DL7940	0.16	0.16	0.14		9	6	25
DL7941	0.14	0.14			13	20	28
Units	ppm	ppm	ppm	. ppm	ppm	ppm	ppm
DL	0.02	0.02	0.02	0.02	1	1	1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3067 O/N: 16408/B49

ANALYTICAL REPORT

Sample	Ag
DL7878	0.6
DL7879	0.6
DL7880	0.4
DL7881	0.6
DL7882	0.6
DL7883	0.6
DL7884	0.6
DL7885	0.6
DL7886	0.4
DL7887	0.4
DL7888	0.4
DL7889	0.4
DL7890	0.6
DL7891	0.6
DL7892	0.6
DL7893 DL7894	0.6
DL7895	0.6 0.8
DL7896	0.6
DL7897	0.6
DL7898	0.4
DL7899	0.6
DL7900	0.8
DL7901	0.6
DL7902	0.6
DL7903	0.6
DL7904	0.6
DL7905	0.6
DL7906	0.6
DL7907	0.4
DL7908	0.6
DL7909	0.6
DL7910	0.6
DL7911	0.4
DL7912	0.4
DL7913	0.6
DL7914	0.4
DL7915	0.4
DL7916	0.6
DL7917	0.4
DL7918	0.4
DL7919	
DL7920 DL7921	0.6
DL7921 DL7922	1.2
DL/ 344	1.4
Units	ppm
DL	F F
	0.2

This Laboratory is registered by the National Association of Testing Authorities, Australia. The lest(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

Job: 1/AD3067 O/N: 16408/B49

Sample	Ag
DL7923	1.2
DL7924	1.2
DL7925	0.6
DL7926	0.6
DL7927	0.4
DL7928	0.6
DL7929	0.4
DL7930	1.0
DL7931	1.2
DL7932	1.2
DL7933	1.2
DL7934	1.2
DL7935	1.0
DL7936	1.2
DL7937	1.0
DL7938	1.0
DL7939	1.0
DL7940.	0.8
DL7941	1.0
Units	ppm
DL	0.2
Scheme	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The lest(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced expens in the

ANALYTICAL REPORT

Job: 1AD3071 O/N: 16412/FK2

Sample	Au Avg	Au	Au Rp1	Au SS1	Cu	Pb	Zn
DL7981	0.02	<0.02		0.04	3	6	9
DL7982	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	
DL7983	<0.02	<0.02			6	5	14
DL7984	0.04	0.04			12	. 8	30
DL7985	0.10	0.10			14	. 8	42
DL7986	0.02	0.02			15	. 6	50
DL7987	<0.02	<0.02			16	5	56
Units	ppm	ppm	ppm	ppm	ppm	ppm '	ppm
DL	0.02	0.02	0.02	0.02	1	1	1
Scheme	AA7	AA7	AA7	AA7	AA7	AA7	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 1AD3071 O/N: 16412/FK2

ANALYTICAL REPORT

Sample	Ag
DL7981	0.2
DL7982	L.N.R.
DL7983	0.2
DL7984	0.4
DL7985	0.4
DL7986	0.6
DL7987	0.6
Units	ppm
DL	0.2
Scheme	AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Amdel Laboratories Limited Brown Street, Thebarton, 5031

Telephone: (08) 416 5300 Facsimile: (08) 234 0321

Mr Jeremy Read BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

ANALYSIS REPORT

Your Order No: 17811/B49

Our Job Number : 2AD2404

Samples received: 24-AUG-1992

Results reported : 28-AUG-1992

No. of samples : 42

Report comprises a cover sheet and pages 1 to 2

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

John Waters

Laboratory Manager - Adelaide

MM.

Mr J Read

VIC

Mr L Bettenay

VIC

Report Codes:

N.A. - Not Analysed.

Distribution Codes:

L.N.R. - Listed But Not Received.

CC Carbon Copy

- Insufficent Sample. I.S.

EMElectronic Media MM

Magnetic Media

Amdel Laboratories Limited A.C.N. 009 076 555

ANALYTICAL REPORT

Job: 2AD2404 O/N: 17811/B49

Sample	Au Avg	Au	Au Rp1	Au SS
DB8513	<0.02	<0.02	<u></u>	0.02
DB8514	0.02	0.02		0.02
DB8515	0.02	0.02	· -	
DB8516	0.02	0.02		
DB8517	0.02	0.02		
DB8518	0.02	0.02		
DB8519	0.02	0.02		
DB8520	<0.02	<0.02		
DB8521	<0.02	<0.02		
DB8522	<0.02	<0.02		
DB8523	<0.02	<0.02		
DB8524	0.02	0.02		·
DB8525	0.02	0.02		
DB8526	<0.02	<0.02		
DB8527	<0.02	<0.02		
DB8528	<0.02	<0.02		
DB8529	<0.02	<0.02		
DB8530	<0.02	<0.02		
DB8531	<0.02	<0.02	·	
DB8532	<0.02	<0.02		
DB8533	<0.02	<0.02		<0.02
DB8534	0.02	0.02		
DB8535	<0.02	<0.02		
DB8536	<0.02	<0.02		
DB8537 DB8538	<0.02	<0.02		
DB8538	<0.02	<0.02		
DB8540	<0.02 0.04	<0.02		
DB8541	0.04	0.04 0.02		
DB8542	0.02	0.02		
DB8543	0.02	0.02		
DB8544	0.02	0.02		
DB8545	0.04	0.04		
DB8546	0.10	0.10		
DB8547	<0.02	<0.02		
DB8548	<0.02	<0.02		
DB8549	<0.02	<0.02		
DB8550	<0.02	<0.02		
DB8551	<0.02	<0.02		
DB8552	<0.02	<0.02		
DB8553	0.02	0.02		<0.02
DB8554	<0.02	<0.02		
Units	ppm	ppm	ppm	mqq
DL	0.02	0.02	0.02	0.02
Scheme	AA7	AA7	AA7	AA7

	JOD:	ZADZ4U4
ANALYTICAL REPORT	0/N:	17811/B49
•		

Sample	Cu	Pb	Zn	Ag
DB8513	17	16	46	<1
DB8514	16	10	42	<1
DB8515	. 22	. 8	-38	<1
DB8516	34	6	42	<1
DB8517	38	6	38	<1
DB8518	22	6	36	<1
DB8519	19	6	30	<1
DB8520	20	8	34	<1
DB8521	19	8	45	<1
DB8522	24	6	45	<1
DB8523	36	6	46	<1
DB8524	20	6	32	<1
DB8525	22	6	35.	<1
DB8526	11	. 6	34	<1
DB8527	15	6	35	<1.
DB8528	9	6	34	<1
DB8529	12	6	35	<1
DB8530	10	8	28	<1
DB8531	12	. 8	28	<1
DB8532	17	8	28	<1
DB8533.	7	8.	28	<1
DB8534	10	6	32	<1
DB8535	· / 10	8	44	<1
DB8536	6	. 8	42	<1
DB8537	8	6	32	<1
DB8538	8	6	34	<1
DB8539	6	. 6	32	<1
DB8540	7	5	28	<1
DB8541	7	8	48	<1
DB8542	8	. 8	68	<1
DB8543	8	8	56	<1
DB8544	· 6	10	36	<1
DB8545	5	12	36	<1
DB8546	5100	850	2850	3
DB8547	13	8	28	<1
DB8548	13	12	30	<1
DB8549	7	. 12	46	<1
DB8550	8	8	48	<1
DB8551	7	10	48	<1
DB8552	6	12	52	<1
DB8553	8	10	36	, <1
DB8554	7	10	36	<1
Units	mqq	ppm	ppm	ppm
DL	` 2	4	2	1
Scheme	AA1A	AA1A	AA1A	AA1A

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced

ANALYTICAL SERVICES

Amdel Laboratories Limited

Brown Street, Thebarton, 5031 Telephone: (08) 416 5300 Facsimile: (0 Facsimile: (08) 234 0321

Mr Mike Raetz BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

FINAL ANALYSIS REPORT

Your Order No: 17830

Our Job Number

: 3AD2574

Samples received:

22-JUL-1993

Results reported: 05-AUG-1993

No. of samples 67

Report comprises a cover sheet and pages 1 to 4

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

Note:

If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

11 ma

John Waters

Laboratory Manager - Adelaide

CC MM

Mr Mike Raetz

VIC

Mr Mike Raetz

VIC

Report Codes:

Distribution Codes:

- Not Analysed.

CC Carbon Copy

L.N.R. - Listed But Not Received.

Electronic Media

- Insufficent Sample.

MM Magnetic Media

Amdel Laboratories Limited A.C.N. 009 076 555

EM

	ANALY	rical R	EPORT	•	_	ob: 3AD	2574 30
Sample	Cu	Pb	Zn	Ag	Fe	Mn	P
EC1801	96	25	110	0.5	9.20	5400	280
EC1802	64	20	95	<0.5	8.50	3300	340
EC1803	42 .	18	92	<0.5	8.00	2050	400
EC1804 .	28	17.	88	<0.5	7.00	1600	340
EC1805	22	15	78	<0.5	6.60	1450	310
EC1806	32	8	65	<0.5	5.20	730	100
EC1807	185	9	64	<0.5	3.54	710	145
EC1808	34	8	90	<0.5	5.95	4150	560
EC1809	44	8	58	<0.5	4.64	1980	290
EC1810	110	8	76	<0.5	6.50	2000	250
EC1811	40	9	48	<0.5	3.96	1980	160
EC1812	18	8	62	<0.5	5.00	450	195
EC1813	30	9	48	<0.5	4.88	960	350
EC1814	14	8	50	0.5	5.95	1200	140
EC1815	9	7	38	<0.5°	5.75	930	220
EC1816	50	9	. 38	0.5	7.60	980	670
EC1817	19	6	46	<0.5	4.92 4.70	810 1000	200 340
EC1818	20	9	62 40	<0.5	3,70	670	250
EC1819	8 40	9 11	76	<0.5 0.5	7.35	900	580
EC1820	36	10	74	0.5	7.05	910	510
EC1821 EC1822	16	8.	54	<0.5	4.30	850	430
EC1822 EC1823	22	7	44	<0.5	4.34	1080	220
EC1823	18	7	38	<0.5	4.92	700	240
EC1825	9	7	50	<0.5	4.26	830	170
EC1826	9	8	46	<0.5	4.96	690	220
EC1827	9	8	25	<0.5	4.90	620	150
EC1828	16	7	. 30	<0.5	4.52	580	170
EC1829	20	8	30	<0.5	5.05	590	195
EC1830	18	8	34	<0.5	5.65	730	185
EC1831	20	12	40	1.0	5.95	900	310
EC1832	52	14	44 .	1.5	6.40	920	410
EC1833	18	13	40	1.5	4.70	1100	120
EC1834	26	12	38	1.5	5.35	890	270
EC1835	84	11	50	1.0	6.70	950	140
EC1836	24	13	64	1.0	6.55	940	270
EC1837	17	11	70	1.0	5.60	1400	300
EC1838	8	9	40	0.5	7.15	950	410
EC1839	26	9	58	0.5	5.25	2200	160
EC1840	10	10	48	0.5	6.35	940	290
EC1841	10	. 11	54	0.5	6.50	960	330 230
EC1842	7	9	.40	0.5	3.94 4.42	530 650	165
EC1843	7	10	56	0.5 0.5	. 5.90	760	210
EC1844	10	9	44 30	<0.5	2.10	560	195
EC1845	5	. 9	30	\0. 5		300	
Units	ppm	ppm	ppm	ppm	*	ppm	bbw
DL	1	3	1	0.5	0.01	5	5
Scheme	IC2E	IC2E	IC2E	IC2E	IC2E	IC2E	IC2E

Sample	Cu	Pb	Zn	Ag	Гe	Mn	P
EC1846	. 5	9	38	<0.5	2.22	620	195
EC1847	6	7	20	<0.5	1.65	360	195
EC1848	32	8	36	<0.5	5.60	910	170
EC1849	17	. 8	34	<0.5	4.50	1480	115
EC1850	35	9.	48.	0.5	5.95	1180	400
EC1851	20	10	46	0.5	5.95	1040	360
EC1852	24	11	78	0.5	7.10	1140	690
EC1853	11	9	44	0.5	6.75	1000	220
EC1854	9	9,	52	<0.5	5.30	1040	230
EC1855	22	11	45	<0.5	5.70	1220	190
EC1856	62	19	96	0.5	7.55	1540	460 -
EC1857	30	11	80	1.0	6.40	1450	300
EC1858	64	11	64	0.5	6.75	1760	350
EC1859	62	12	48	0.5	7.05	1720	160
EC1860	24	12	48	1.0	6.30	1820	.150
EC1861	32	20	55	1.5	7.50	2000	150
EC1862	15	9	42	0.5	7.10	820	155
EC1863	38	10	54	0.5	5.35	1980	115
EC1864	940	480	1060	2.0	21.8-	1220	2750
EC4428	34	32	90	<0.5	4.72	830	480
EC4429	30	30	84	<0.5	5.95	1320	370
EC4430	14	. 11	36	<0.5	2.58	700	480
Units	ppm	ppm	ppm	ppm	. %	ppm	ppm
ÐL	1	. 3	1	0.5	0.01	5	5
Scheme	IC2E	IC2E	IC2E	IC2E	IC2E	IC2E	IC2E

Scheme

IC2E

Job: 3AD2574 O/N: 17830

	ANALYT	CAL R	EPORT			O/N: 178	
Sample	`Ni	Co	As a	Au Avg	Au	Au Rpl	Au SS
EC1801	28	19	2	<0.02	<0.02		<0.02
EC1802	28	16	2	<0.02	<0.02		
EC1803	26	14	2	<0.02	<0.02		
EC1804	25	13	2	0.02	0.02		
EC1805	24	11	<1	<0.02	<0.02		
EC1806	17	ġ	1	0.02	0.02		
EC1807	22	12	<1	<0.02	<0.02		
EC1808	28	13	1	<0.02	<0.02		
EC1809	22	11	<1	<0.02	<0.02		
EC1810 .	32	15	2	<0.02	<0.02		
EC1811	24	9	1	<0.02	<0.02		
EC1812	19	12	<1	<0.02	<0.02		
EC1812	19	11	<1	0.02	0.02		
	30	13	2	<0.02	<0.02		
EC1814 EC1815	30	11	<1	<0.02	<0.02		
EC1815	17	22	3	0.02	0.02		
EC1817	25	12	1	<0.02	<0.02		
	20	12	ī	<0.02	< 0.02		
EC1818	13	7	1	<0.02	<0.02		
EC1819 EC1820	22	17	2	0.02	0.02		
	22	16	2	<0.02	<0.02		<0.02
EC1821	18	11	<1	0.02	0.02		
EC1822 EC1823	24	12	1	0.02	0.02		
EC1823	25	12	<1	0.02	0.02		
EC1825	22	10	<1	0.02	0.02		
EC1826	24	12	. 1	<0.02	<0.02		
EC1827	25	10	1	<0.02	- <0.02		
EC1828	24	9	1	0.04	0.04		
EC1829	26	11	2	<0.02	<0.02		
EC1830	32	12	1	<0.02	<0.02		
EC1831	34	14	<1	<0.02	<0.02		
EC1832	32	17	<1	<0.02	<0.02	_ _ -	
EC1833	30	13	<1	<0.02	<0.02		
EC1834	30	12	1	<0.02	<0.02	:	
EC1835	36	16	<1	<0.02	<0.02		
EC1836	30	17	3	<0.02	<0.02		
EC1837	28	14	<1	0.04	0.04		
EC1838	25	13	3	<0.02	<0.02		
EC1839.	40	15	<1	<0.02	<0.02		
EC1840	28	14	2	<0.02	<0.02		
EC1841	28	15	<1	<0.02	<0.02		<0.02
EC1842	14	8	<1	<0.02			
EC1843	22	11	2	<0.02			
EC1844	24	11	1	0.04			
EC1845	8	5	1	<0.02	<0.0	2	
Units	ppm	ppm	ppn				ppm
DL	1	2	1				0.02 AA7
			7001	ר א א	ΔΔ	, AA/	AA/

IC2E IC2E

(y) amdel

						O/N: 178	30
·	ANALYI	CICAL RE	EPORT			O/N. 170	30
Sample	Ni	Со	As	Au Avg	Au	Au Rpl	Au SS
EC1846	9	5	1	<0.02	<0.02	- -	
EC1847	5	3	2	<0.02	<0.02		
EC1848	22	9	<1	0.02	0.02		
EC1849	25	9	2	<0.02	<0.02		
EC1850	24	12	1	0.02	0.02		
EC1851	. 24	13	<1	0.02	0.02		
EC1852	24	17	1	<0.02	<0.02		
EC1852	32	14	2	<0.02	<0.02		
EC1854	. 25	13	1	0.02	0.02		
EC1855	24	12	<1	<0.02	<0.02		
EC1856	28	22	·ı	<0.02	<0.02		
EC1857	28	16	<1	<0.02	<0.02		
EC1858	32	20	<1	<0.02	<0.02		
EC1859	38	18	<1	<0.02	<0.02		•
EC1860	34	16	<1	<0.02	<0.02		
EC1861	42	20	4	<0.02	<0.02		<0.02
EC1862	28	14	1	0.02	0.02		
EC1863	40	17	1	0.02	0.02		
EC1864	58	46	17	<0.02	<0.02		
EC4428	32	. 17	3	<0.02	<0.02		
EC4429	34	16	4	0.02	0.02		
EC4429	17	-8	13	<0.02	<0.02	,	
EC4430	1,	•					•
Units `	ppm	ppm	ppm	mqq	ppm		mqq
DL ·	1	2	1	0.02	0.02		0.02
Scheme	IC2Ē	IC2E	IC2E	AA7	AA7	AA7	AA7
Scheme	1020						

Job: 3AD2574

AA7

AA7

AA7

AA7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL SERVICES

KACMA

Amdel Laboratories Limited Brown Street, Thebarton, 5031

Telephone: (08) 416 5300 Facsimile: (08) 234 0321

Mr Mike Raetz BHP Exploration Ltd 801 Glenferrie Road Hawthorn VIC 3122

ANALYSIS REPORT

Your Order No: 17835/FK3

Our Job Number

: 3AD3846

Samples received:

04-NOV-1993

Results reported: 11-NOV-1993

No. of samples

58

Report comprises a cover sheet and pages 1 to 4

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

If you have any enquiries please contact Mr Trevor Francis quoting the above job number.

Approved Signatory:

John Waters

Laboratory Manager - Adelaide

Mr Mike Raetz

VIC

MM

Mr Mike Raetz

VIC

Report Codes:

Distribution Codes:

N.A. Not Analysed.

CC Carbon Copy

L.N.R. - Listed But Not Received. - Insufficent Sample. I.S.

EMElectronic Media

MM Magnetic Media

Amdel Laboratories Limited A.C.N. 009 076 555

	ANALY	TICAL	REPORT				D3846 835/FK3
Sample	Cu	· Pb	Zn	Ag	Fe	Mn	· P
EG 491	5	50	50	0.5	10.00	1350	1320
EG 492	11	10	48	0.5	9.75	1420	1120
EG 493	19	14	58	0.5	11.4	1680	1320
EG 494	10	10	26	<0.5	8.15	640	1080
EG 495	100 .	10	24	<0.5	11.6	1160	4450
EG 496	34	8	16	<0.5	12.4	500	1260
EG 497	12	9	28	0.5	11.7	1100	1600
EG 498	5	15	32	0.5	12.1	1000	1120
EG 499	3	8	. 40	0.5	9.15	1020	1250
EG 500	9	8	40	0.5	11.6	1380	820
EG. 501	15	9	38	1.0	10.9	1260	1300
EG 502	5	6	38	<0.5	10.1	920	680
EG 503	7	6	38	<0.5	10.5	950	730
EG 504	880	460	960	1.5	20.6	1120	2550
EG 505	12	5	34	<0.5	9.70	530	230
EG 506	4	5	30	<0.5	11.4	700	130
EG 507	- 6	5	19	<0.5	12.4	650	125
EG 508	. 6	. 5	36	<0.5	13.0	510	100
EG 509	7	4	22	<0.5	11.2	340	105
EG 510	105	5	28	1.0	13.8	390	185
EG 511	11	5	18	<0.5	14.6	600	270
EG 512	10	5	15	< 0.5	14.2	720	270
EG 513	6	5.	14	<0.5	14.6	720	290
EG 514	7 4	. 5 . 5	10	<0.5	12.6	740	200
EG 515	4 .	. 5	15 14	<0.5 <0.5	13.4	860 1180	360 250
EG 516 EG 517	3	. 4	13	<0.5	12.4	1100	350
EG 517	5	5	16	<0.5	12.4	990	410
EG 518	2	4	11	<0.5	9.10	760	115
EG 520	9	5	13	<0.5	12.3	780	250
EG 520	7	5	17	<0.5	12.1	850	195
EG 522	13	5	12	<0.5	12.9	710	240
EG 523	8	7	16	0.5	13.4	780	260
EG 524	16	6	17	0.5	14.9	880	150
EG 525	13	4	19	<0.5	13.9	890	170
EG 526	9	8	24	<0.5	18.2	1340	470
EG 527	6	7	32	<0.5	19.6	1150	1100
EG 528	4	7	20	<0.5	19.6	1020	690
EG 529	6	7	22	<0.5	19.1	1000	1260
EG 530	2	3	12	<0.5	11.6	760	230
EG 531	8	4	22	<0.5	12.7	840	410
EG 532	7	7	16	<0.5	13.7	880	260
EG 533	2	6	17	<0.5	15.1	1000	310
EG 534	10	8	17	<0.5	14.4	980	200
EG 535	4	5	16	<0.5	13.4	1060	160
Units	ppm	ppm	mqq	mqq	Ł	ppm	ppm
DL	1	3	1	0.5	0.01	5	5
Scheme	IC2E	ICSE	IC2E	IC5E	IC2E	IC2E	IC2E

Sample	Cu	Pb	∕zn	Ag .	Fe	Mn	P
EG 536	. 7	. 6	. 25	<0.5	14.0	740	270
EG 537	11	7	24	1.0	10.9	470	105
EG 538	. 4	7	22	1.0	14.6	640	290
EG 539	7	7	32	1.0	13.2	460	55
EG 540	6	6	35	1.0	12.4	620	40
EG 541	24	6	24	1.0	10.9	710	55
EG 542	10	8	28	1.0	11.4	520	185
EG 543	3	6	34	1.0	11.9	480	100
EG 544	96	6	26	1.0	11.4	470	150
EG 545	30	6	48	1.0	6.75	670	140
EG 546	20	5	28	1.0	3.64	400	95
EG 547	25	8	28	1.0	3.64	440	105
EG 548	800	460	1020	2.5	22.1	1200	2600
Units	ppm	ppm	ppm	ppm	*	ppm	ppm
DL	1	· 3	1	0.5	0.01	5	5
Scheme	IC2E						

ANALYTICAL REPORT

Job: 3AD3846 O/N: 17835/FK3 (v) amdel

(alling)

•						Job: 3A	D3846
	ANALY	TICAL R	EPORT			O/N: 17	835/FK3
						•	·
Sample	Ni	Co	As	Au Avg	. Au	Au Rpl	Au SS
						•	
EG 491	36	15	<1	<0.02	<0.02		<0.02
EG 492	34	14	<1	<0.02	<0.02		
EG 493	46	17	<1	<0.02	<0.02		
EG 494	14	8	<1	<0.02	<0.02		
EG 495	28	18	1	<0.02	<0.02		
EG 496	26	12	<1	<0.02	<0.02		
EG 497	30	15	<1	<0.02	<0.02		
EG 498	22	11	<1	<0.02	<0.02		
EG 499	22	11	<1	<0.02	<0.02		·~
	42	15	<1	<0.02	<0.02		
EG 500 EG 501	38	18	<1	0.02	0.02		
		13	<1	<0.02	<0.02		
EG 502	28	12	<1	<0.02	<0.02		
EG 503	28		10	<0.02	<0.02		
EG 504	48	42 9	<1 <1	<0.02	<0.02		
EG 505	24				<0.02		
EG 506	24	10	<1	<0.02			
EG 507	22	11	<1	<0.02	<0.02		
EG 508	. 16	12	<1	<0.02	<0.02		
EG 509	8	10	<1	0.02	0.02		
EG 510	19	25	<1	<0.02	<0.02		
EG 511	20	9	<1	<0.02	<0.02		<0.02
EG 512	25	9	<1	<0.02	<0.02		
EG 513	24	10	<1	0.02	0.02		
EG 514	19	7	<1	<0.02	<0.02		
EG 515	19	8	<1	<0.02	<0.02		
EG 516	17	8	<1	<0.02	<0.02		
EG 517	18	8	<1	<0.02	<0.02		
EG 518	15	7	<1	<0.02	<0.02		
EG 519	24	9	<1	<0.02	<0.02		
EG 520	20	8	<1	<0.02	<0.02		
EG 521	22	9	<1	<0.02	<0.02		
EG 522	22	8	<1	0.02	0.02		
EG 523	22	9	<1	<0.02	<0.02		
EG 523	17	á	<1	<0.02	<0.02		·
		8	<1	0.02	0.02		
EG 525	18	8	<1	<0.02	<0.02		
EG 526	18				<0.02		
EG 527	- 20	9	<1	<0.02			
EG 528	20	8	<1	<0.02	<0.02		
EG 529	18	7	<1	<0.02	<0.02		
EG 530	24	8	<1	<0.02	<0.02		
EG 531	22	9	<1	<0.02	<0.02		<0.02
EG 532	20	7	<1	<0.02	<0.02		
EG 533	22	8	<1	<0.02	<0.02		
ÉG 534	19	ͺ 6	<1	<0.02	<0.02		
EG 535	25	10	<1	<0.02	<0.02		
	•						
Units	ppm	ppm	ppm	ppm	ppm	mqq	ppm
DL	1	2	1	0.02	0.02	0.02	0.02
Scheme	ICSE	IC2E	ICSE	AA7	AA7	AA7	AA7
	•						

	ANALY	PICAL F	EPORT		_		03846 335/FK3
Sample	Ni	Со	As .	Au Avg	Au A	Au Rpl	Au SS
EG 536	20	8	· <1	<0.02	<0.02		
EG 537	16	7	<1	<0.02	<0.02		
EG 538	22	9	<1	<0.02	<0.02		
EG 539	20	11	<1	<0.02	<0.02		
EG 540	. 22	11	<1	<0.02	<0.02		
EG 541	24	10	<1	<0.02	<0.02		·
EG 542	25	10	<1	<0.02	<0.02		
EG 543	30	12	<1	<0.02	<0.02		
EG 544	42	14	<1	<0.02	<0.02		
EG 545	40	12	<1	<0.02	<0.02	·	
EG 546	28	8	.<1	<0.02	<0.02		
EG 547	30	10	<1	<0.02	<0.02		
EG 548	48	4 2	9	<0.02	<0.02	"	
Units	ppm	ppm	mqq	ppm	ppm	ppm	ppm
DL	1	2	1	0.02	0.02	0.02	0.02
Scheme	IC2E	IC2E	IC2E	AA7	AA7	AA7	AA7

'P Minerals - Southern Proterozoic Logsheet (Page No 12 of 12)

oject: COOBER PEDY RIDGE esting: 445000 etitude: -29.236228 cality: EL1725

Hole Name: CD93009 Northing: 6765700 Longitude: 134.434033 Prospect: ANOMALY 18 Hole Length : 224 Amg Zone : 53 Surface Rl : 180 Logged By : M VALDEZ

Contractor : SILVER CITY Coord Reliability : TAPE

Sample No	From	To	Sample Type	Cu	Pb	Zn	Ag	Auavg	Fe	Mn	Р	. Ni	Co	As
₹G00505	72	73.4	FILL	12	5	34	5	02	9.7	530	230	24	9	-1
5G00506	73.4	77	FILL	4	5	30	5	02	11.4	700	130	24	1Ó	-1
EG00507	77	78.2	FILL	6	5	19	5	02	12.4	650	125	22	11	-1
EG00508	78.2	82	FILL	6	5	36	5	02	13	510	100	16	12	- 1
EG00509	82	86	FILL	7	4	22	5	.02	11.2	340	105	8	10	-1
EG00510	86	87.5	FILL	105	5	28	1	02	13.8	390	185	19	25	-1
EG00511	87.5	91	FILL	11	5	18	5	02	14.6	600	270	20	9	-1
IG00512	91	95	FILL	10	5	15	5	02	14.2	720	270	25	9	-1
EG00513	95	99	FILL	6	5	14	5	.02	14.6	720	290	24	10	-1
EG00514	99	103	FILL	7	5	10	5	02	12.6	740	200	19	7	-1
EG00515	103	107	FILL	4	5	15	5	02	13.4	860	360	19	8	-1
EG00516	107		FILL	4	4	14	5	02	13	1180	250	17	8	-1
EG00517	111		FILL	3	4	13	5	02	12.4	1100	350	18	8	-
EG00518	115		FILL	5	5	16	5	02	12.2	990	410	15	7	-1
IG00519	119		FILL	2	1.	11	5	02	9.1	760	115	24		-1
5G00520	123		FILL	9	5	13	5	02	12.3				9	-1
IG00521	127		FILL	7	5	17				780	250	20	8	-1
EG00522	131	135	FILL	13	5 5		5	02	12.1	850	195	22	9	-1
EG00523	135		FILL		-	12	5	.02	12.9	710	240	22	8	-1
1G00524	139		QC	8	7	16	.5	02	13.4	780	260	22	9	-1
IG00525	139			16	6	17	.5	02	14.9	880	150	17	8	-1
EG00526			DPQC	13	4	19	5	.02	13.9	890	170	18	8	- 1
EG00528 EG00527	143		FILL	9	8	24	5	02	18.2	1340	470	18	8	-1
EG00527 EG00528	147	151	FILL	6	7	32	5	02	19.6	1150	1100	20	9	-1
	151	155	FILL	4	7	20	5	02	19.6	1020	690	20	8	- 1
EG00529	155	159	FILL	6	7	22	٠.5	02	19.1	1000	1260	18	7	- 1
EG00530	159	163	FILL	2	3	12	5	02	11.6	760	230	24	8	- 1
EG00531	163	167	FILL	8	4	22	5	02	12.7	840	410	22	9	- 1
EG00532	167	171	FILL	7	7	16	5	02	13.7	880	260	20	7	- 1
EG00533	171	175	FILL	2	6	17	5	02	15.1	1000	310	22	8	- 1
EG00534		177.25	FILL	10	8	17	5	02	14.4	980	200	19	6	- 1
EG00535	177.25	181	FILL	4	5	16	5	02	13.4	1060	160	25	10	- 1
IG00536	181	185	FILL	7	6	25	5	02	14	740	270	20	8	- 1
EG00537	185	189	FILL	11	7	24	1	02	10.9	470	105	16	7	- 1
EG00538	189	193	FILL	4	7	22	1	02	14.6	640	290	22	9	- 1
IG00539	193	197	FILL	7	7	32	1	02	13.2	460	55	20	11	- 1
∃G00540	197	201	FILL	6	6	35	1	02	12.4	620	40	22	11	-1
IG00541	201	205	FILL	24	6	24	1	02	10.9	710	55	24	10	- 1
IG00542	205	209	FILL	10	8	28	1	02	11.4	520	185	25	10	- 1
1G00543	209	213	FILL	3	6	34	1	02	11.9	480	100	30	12	- 1
EG00544	213	217	FILL	96	6	26	1	02	11.4	470	150	42	14	-1
IG00545	217	220.6	FILL	30	6	48	1	02	6.75	670	140.	40	12	-1
:G00546	220.6	240	QC	20	5	28	1	02	3.64	400	95	28	8	- 1
IG00547	220.6	240	DPQC	25	8	28	1	02	3.64	440	105	30	10	-1
IG00548	220.6	240	SS	800	460	1020	2.5	02	22.1	1200	2600	48	42	9