SOUTH AUSTRALIA

DEPARTMENT OF MINES AND ENERGY

OPEN FILE ENVELOPE NO. 8288

EL 1054, TUCKEY AREA, POLDA BASIN

Compilation of technical data from CRAE Mineral exploration boreholes 83KD-1 and 83KD-1A, Tuckey area, Polda Basin.

Submitted by

CRA Exploration Pty Ltd & SADME

1988

(c) South Australian Department of Mines and Energy: 31/05/90

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. The Department accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of original text or drawings.

All rights reserved under the copyright. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the S.A. Department of Mines and Energy, P.O. Box 151, Eastwood, S.A. 5063.

ENVELOPE 8288

TENEMENT:

EL 1054; Tuckey area, Polda Basin.

TENEMENT HOLDER:

CRA Exploration Pty Ltd.

CONTENTS

REPORT:	Griffiths, M. (compiler), May 1990. Final drilling report for Cl 83KD-1 and 83KD-1A, EL 1054, Polda Basin, South Australia contents.		Pgs 3-8	
REPORT:	Scott, A.K., 1984. Fifth quarterly report on Tuckey EL 1054, South the period ending 18th January, 1984. (CRAE report no. 12527).	h Australia, for	Pgs 9-25	
APPENDIX 1: APPENDIX 2: APPENDIX 3:	Summary logs of Mercury 1 and Columbia 1. Bromine-in-halite analysis from Mercury 1. Drilling fluids programme for 83KD-1.		Pgs 26-28 Pgs 29-40 Pgs 41-57	. 9
PLANS		Company plan no.	SADME plan no.	
Fig. 1 Fig. 2 Fig. 3	Tuckey EL 1054 location map. Australian Occidental offshore drill holes. Kilroo seismic section - depth calculations for proposed drillhole 83KD-1. Comparison between proposed and actual	SAa 1932 SAa 2652 SAa 2656 SAa 2657	Pg. 11 Pg. 14 Pg. 18 Pg. 19	
Encl. 1 Encl. 2 Encl. 3	stratigraphy in 83KD-1A. Polda Basin geology, geophysics and drillholes. Polda Basin survey area 83-001: Kilroo seismic section, line 1, S.P. 180-846 (final stack). Kilroo seismic section - interpretation.	SAa 2361 SAa 2653 SAa 2654	8828-2 8288-1 8288-4	AI AO
Encl. 4	Kilroo seismic section - shotpoint maps.	SAa 2655	8288-3	A1 A2
REPORT:	Scott, A.K., 1984. Sixth quarterly report on Tuckey EL 1054, South the period ending 18th April, 1984. (CRAE report no. 12673).	1 Australia, for	Pgs 58-78	
APPENDIX 1: APPENDIX 2: APPENDIX 3: APPENDIX 4: APPENDIX 5:	Coal analyses. Petrographic examinations. Drillcore analyses. Specific gravity determinations. Detailed geological log of 83 KD-1A.	Company	Pgs 79-82 Pgs 83-98 Pgs 99-109 Pgs 110-111 Pgs 112-125	
٠ هم همير		plan no.	plan no.	

SAa 2805

8288-5

Composite borehole log, 83 KD-1A.

Encl. 5

REPORT:	Lewis, P., 1985. Ninth quarterly & final report on Tuckey EL 1054, for the period ending 18th January 1985. (CRAE report no. 13214)		Pgs 126-136
REPORT:	Hough, L.P., 1987. Well velocity survey for CRAE drillhole 83 K Polda Basin. South Australia. Department of Mines and Energy. Rep		Pgs 137-143
PLANS		SADME drwg no.	SADME plan no.
Fig. 5 Fig. 6	83 KD-1A: well site diagram. Seismic refraction analysis.	S 19012 S 19013	Pg. 144 Pg. 145
Fig. 7	Time vs depth curve.	S 19013	Pg. 145
Fig. 8	Power curve fit of time vs depth.	S 19014 S 19015	Pg. 147
Figs 9 & 10	Well velocity calculation forms.	S 19016 A&B	Pgs 148-149
REPORT:	Flint, R.B., Fanning, C.M. and Rankin, L.R., 1988. The Late Pr Formation of the Polda Basin. South Australia. Department of Mi Report Book, 88/6.		Pgs 150-179
PLANS		SADME drwg no.	SADME plan no.
Fig. 11	Locality plan.	S 19700	Pg. 180
Fig. 12	Summary geological log for CRAE 83 KD-1A.	S 19701	Pg. 181
Fig. 13	Chondrite-normalised diagram for basalts of the Kilroo Formation.	S 19702	Pg. 182
Fig. 14	Ti-Zr diagram comparing basalts of the Polda Basin with others in the Officer Basin, Adelaide Geosyncline and Roopena Volcanics of the Gawler Craton.	S 19703	Pg. 183

END OF CONTENTS

Memorandum to DME docket 369/89: author M. Griffiths, May 1990.

Re: Open-file Envelope 8288 - exploration data related to CRAE mineral exploration boreholes 83 KD-1 & 83 KD-1A, EL 1054, Polda Basin, South Australia.

ABSTRACT

Tuckey EL 1054 in which the subject boreholes were drilled covered the eastern portion of some previous CRAE tenements (ELs 670, 687 and 688) which were taken out in 1980 to explore for economic lignite deposits within the Polda Basin. By mid-1982 regional gravity surveys and extensive open-hole rotary drilling in these earlier tenements had outlined a quite substantial potential lignite resource, having reserves generally comparable to those mapped for the nearby Lock Coalfield. However, the majority of lignite seams discovered by CRAE occur below 200 metres depth and are sparsely distributed over a wide area of the basin, and so were deemed by the company not to constitute a mineable deposit.

Following the surrender of an adjacent Polda Basin offshore petroleum exploration permit in early 1983, data became available concerning the existence of 1700 metres of massive and interbedded. halite in Lower Palaeozoic sediments intersected by Australian Occidental's Mercury 1 well, drilled in January 1982. When they became aware of this in late 1983, CRAE switched emphasis from refining their eastern Polda Basin coal exploration programme within the Tuckey EL 1054 area, acquired in late 1982, to a search for commercial potash in association with thick evaporite sequences possibly developed in the onshore Polda region. The new project at the outset was greatly facilitated by SADME, who in mid-1983 had shot a 17km reflection seismic traverse near the northern basin boundary fault in the Tuckey area, to investigate the cause of a prominent local gravity low. Interpreted results indicated the presence of thick pre-Permian sediments underlying the previously drilled Permian to Miocene section of the basin, in what became designated the Kilroo sub-basin.

Investigative deep rotary drilling by CRAE commenced on 19th December 1983 with borehole 83KD-1. Unfortunately this had to be abandoned at 336 metres depth in mid-January, after the Christmas period work break, owing to insurmountable lost circulation problems. The rig was skidded 7 metres to the SE and a second borehole 83KD-1A was collared on 20th January 1984. Here rotary and then diamond drilling was successful in reaching a total depth of 1398 metres: the hole was continuously cored over the objective zone from 515 metres depth (as HQ to 665 metres, then NQ to TD). 83KD-1A was geophysically logged with natural gamma, caliper, long and short-spaced density, neutron, sonic and drift logs to 596 metres, at the completion of rotary mud drilling, and with natural gamma, neutron, SP and a suite of resistivity logs from 596 to 1384

metres (stopping short of TD owing to insufficient logging cable). Caliper and short-spaced density logs were only obtained down to 701 metres due to a blockage in the hole. Drilling ceased on 10th March 1984, after penetrating 90 metres of massive basalt.

Overall the hole intersected 301 metres of Tertiary sands, clays and lignite, 282 metres of Jurassic sands, grits and minor coal, 22 metres of Permo-Carboniferous diamictite and 793 metres of Late Proterozoic argillaceous re-beds and basalts (the last unit being newly defined as the Kilroo Formation). No evaporitic sediments were encountered. Stratigraphic correlation of the Kilroo Formation with the bottom-hole sequences in the offshore Polda Basin wells, plus data from other holes in the Officer Basin, suggests that evaporites, if present, would occur below the basalts in the Kilroo sub-basin (i.e. deeper than 1400 metres at the most prospective locality). However, on the evidence gained by drilling CRAE felt that there was no cetainty of evaporites existing at depth in the eastern Polda Basin, and that further work to test the model was economically unjustified. Accordingly they relinquished EL 1054 in April 1985.

Subsequent work by SADME has involved K-Ar geochronology and geochemical analysis of the basalt lithotypes cored in CRAE 83KD-1A. This has revealed that at least some of the sediments and interbedded basalts in the hole are of Adelaidean age, rather than the previously assumed early Palaeozoic age. This feature adds support to the idea of the Polda Basin being an aulacogen of the Adelaide Geosyncline, although most tectonic evidence available from the region fails to reinforce such a concept.

CRA EXPLORATION PTY. LIMITED

The contents of this report remain the property of C.R.A. Exploration Pty. Limited and may not be published in whole or in part nor used in a company prospectus without the written consent of the Company.

FIFTH QUARTERLY REPORT ON TUCKEY E.L. 1054, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 18TH JANUARY, 1984.

AUTHOR:

A.K. SCOTT

COPIES TO: ;

CRAE LIBRARY

SADME

DATE:

29TH FEBRUARY, 1984

P.L. For P.L. Scoth. Chin D. Tuelweer

SUBMITTED BY:

ACCEPTED BY:

12527

CON	re:	NΤ	S
-----	-----	----	---

			PAGE
1.	SUMM	MARY	1
2.	INTF	RODUCTION	.1
3.	GEOI	OGY	2
	3.1	Stratigraphy	2
	3.2	Structure	3
,	3.3	Halite	5
4.	DRIL	LING	5
	4.1	Site Selection	.5
	4.2	Prognosed Geology	6
	4.3	Planning	6
	4.4	Drilling Operations	7
	4.5	Geology of Drill Hole	7
	4.6	Discussion	8
EXPE	ENDIT	URE	9
REFE	ERENC	ES	10
LOCA	TION		10
KEYW	ORDS		10
LIST	OF I	PLANS	10
LIST	OF 7	TABLES	11
LIST	OF A	APPENDICES ;	11

UUUU7

1. SUMMARY

The structure of the eastern, or Kilroo, sub-basin of the Polda Basin has been reasonably well defined by a recent SADME seismic traverse which shows a narrow trough bounded on the north by a series of faults and on the south by a shallower shelf. The sub-basin is believed to contain about 450 m of Tertiary and Jurassic sediments and at least 550 m of Permian and pre-Permian rocks, some of which may be evaporites.

By analogy with the oil well Mercury No. 1 drilled 170 km to the west in the offshore part of the Polda Basin, it is hoped that massive halite, with associated potash, exists beneath the Permian in the Kilroo sub-basin, and drilling has commenced to search for such a sequence.

The initial hole was abandoned at 336 m after intersecting 115 m of probable Miocene clay, 186 m of Eocene (Poelpena Formation) sands and silts, including 5.5 m of lignite at 199 m, and 35 m of probable Jurassic silts and sands. There is reasonable correlation between the stratigraphy interpreted from the seismic section and that intersected in the hole.

A second hole is about to be commenced.

2. INTRODUCTION

E.L. 1054 of 355 km² was granted on 19th October, 1982, and covers part of the Polda Basin on the Eyre Peninsula (see plan no. SAa 1932). It is part of an earlier E.L. of $600~\rm km^2$ (no. 687) that was held by CRAE from 11th August, 1980, to 19th October, 1982.

In 1980 and 1981 CRAE drilled several rotary holes in E.L. 687 in the search for coal and lignite and discovered about 76 Mt of Eocene lignite above a depth of 200 m (see CRAE report no. 10307 for further details).

The Polda Basin is a narrow east-west trending trough containing 800-1000 m of Tertiary, Jurassic, Permian and probable early Palaeozoic sediments onshore, and a greater thickness offshore. Its onshore length is about 130 km and its width varies from about 8 to 20 km. A narrowing of the basin in the vicinity of the ETSA coal deposit (110 Mt of Jurassic coal) separates an eastern sub-basin 60 km long from a western sub-basin which extends well off-shore (see plan no. SAa 2361).

TABLE 1
STRATIGRAPHY OF THE POLDA BASIN

_								
		AGE	NAME	ROCK UNIT	THICKNESS (metres)	LITHOLOGY	STRATIGRAPHIC RELATIONS	EXPRESSION
	QUATERNARY	Pleistocene		Bridgewater Formation	30 m	Sand, off-white, cemented calcareous, clay interbeds	Uppermost unit in sequence	Outcrops west of Lock and in cliffs Drill Holes
	QUAT	?		Undifferentiated	6-7 m	Clay, vari-coloured, calcareous	Underlies Bridgewater Formation	
CAINOZOIC	TERTIARY	Middle Miocene		Undifferentiated	70 m	Green to grey clay & carbonaceous clays. Grey poorly sorted coarse sand & carbonaceous sand	Relationships unknown. Correlated with Munno Para Clay.	Many holes in Polda Trough
	TER	Middle Eocene		Poelpena Formation	Greater than 200 m	Grey, dark grey & brown coarse sand & lignite. Very carbonaceous	Unconformably on Jurassic. Overlain unconformably by ?Miocene or Quaternary	Many holes in Polda Trough - absent on southern edge. 81L41C cored hole.
MESOZOIC		Upper Jurassic		Polda Formation	Greater than 160 m	Dark grey to back very carbonaceous fine sand, silt & lignite and very coarse grey sands	Unconformably on Permian & Precambrian. Unconformably overlain by Tertiary in Polda Basin, conformably by Cretaceous on Ceduna Terrace	Many drill holes in Polda Trough
PALAEOZOIC		Permian		Boorthanna Formation	180 m	Pyritic diamictite & clay	Unconformably on Archaean & Proterozoic. Unconformably overlain by Jurassic	Polda No. 1 stratigraphic drill hole. Tuckey No. 1 stratigraphic drill hole. 80L30C cored hole.
		Adelaidean		Corunna Conglomerate	Exceeds 200 m	Conglomerate, sandstone & shale	Unconformably on Lincoln Complex. Unconformably overlain by Permian, Jurassic & Tertiary	
PROTEROZOIC		Carpentarian	Lincoln Complex			Granite, gneiss, migmatite, granulite, augen gneiss, quartzo-feldspathic gneiss. Synkimban Orogeny granites. Basic intrusives.	Overlain unconformably Corunna Conglomerate. Underlain by Hutchison Group	Southeast and northeast of Lock
		Nullaginian	Hutchison Group	Middleback Formation Warrow Quartzite		Metasiltstone, schist, iron formation, marble & quartzite	Overlain by Lincoln complex & underlain unconformably by Sleaford Complex	Outcrops southeast of Lock. May occur in drill holes
		Lower Proterozoic & Archaean	Sleaford Complex	Widbey Granite Kiana Granite	3	Granite, granite gneiss, schist, granulite metasediments, basic intrusives	Overlain unconformably by Hutchison Group	Outcrops north & south of Lock. May occur in drill holes

It has been known for some years that the Polda Basin contains sediments of Tertiary, Jurassic and Permian age, but not until the drilling of Columbia No. 1 and Mercury No. 1 by Australian Occidental Pty. Ltd. in 1982 was it established that a substantial pre-Permian sequence exists, at least in the offshore part. In Mercury No. 1, drilled on a dome, this older sequence contains 1700 m of halite with interbedded red shales, and may be equivalent to the Cambrian Observatory Hill beds intersected in Wilkinson No. 1 in the Tallaringa Trough.

Although a bromine profile of the salt intersection in Mercury No. 1 was inconclusive, it was felt that the mere presence of the salt was sufficient justification to initiate a potash search in the basin. It was planned to drill a hole in the western sub-basin in 1984, while SADME drilled a stratigraphic hole in the eastern sub-basin. However, the imposition of certain restrictions on E.L. 1054 and the cancellation of SADME's proposed hole made it necessary for CRAE to drill its first hole in the eastern sub-basin.

Fortunately SADME completed a 17 km long seismic traverse, known as the Kilroo seismic section, in the eastern sub-basin, most of it within E.L. 1054, in mid-1983 and results were made available in October and November that year. This clearly defined the basin structure and allowed a drill site to be chosen with confidence. Drilling commenced late in December, 1983, and was in progress at the end of the period covered by this report.

3. GEOLOGY

3.1 Stratigraphy

There are no outcrops of Tertiary, Jurassic or Permian rocks in the Polda Basin, but they are known from a large number of drill holes, the more important being Polda 1, Polda 8 and Lock 1 (drilled by SADME); 80L30C, 81L41C and 81LRM64 (drilled by CRAE, report no. 10307), RWF16 and RWF21 (drilled by Esso Australia Ltd., envelope 3783) and the two oil wells mentioned earlier. A summary of the stratigraphy appears in Table 1.

The Tertiary consists of grey clays and poorly sorted sands probably of Middle Miocene age and a Middle Eocene unit, the Poelpena Formation, of carbonaceous sands and lignite. Total Tertiary thickness is over 200 m in places. The Upper Jurassic Polda Formation, of fine and coarse sands, carbonaceous mudstone and lignite is at least 160 m thick onshore but is 500 m thick in Mercury No. 1.

Pre-Jurassic clays, sandstones and diamictites have been dated as late Carbonaceous-early Permian and have been given the name Coolardie Formation. This formation is at least 180 m thick (Lock 1) and is equated with the Boorthanna Formation in the Arckaringa Basin and the Cape Jervis Beds in the Troubridge Basin (Cooper, Harris and Meyer, 1982).

Subsurface information below the Permian is sketchy and is available only from the two offshore holes Columbia No. 1 and Mercury No. 1. Summary logs of these two holes are given in Appendix I and graphic logs in plan no. SAa 2652. The former penetrated 1 400 m of shales and sandstones with minor limestone and dolomite, whilst the latter intersected 500 m of calcareous red-brown siltstone overlying 1 700 m of halite and red siltstones and bottoming in 150 m of calcareous sandstone. It is thought that this sequence may be equivalent to the Observatory Hill Beds of Cambrian age in the Officer Basin. Onshore there are exposures of arkosic sandstone, grit and conglomerate, known as the Corunna Conglomerate, which are usually assigned to the Adelaidean although their age is uncertain. Carpentarian granites and gneisses, and metasediments of the Hutchison Group, crop out in places around the margins of the basin and are presumed to form the floor of the basin.

3.2 Structure

The Polda Basin is believed to have formed as a result of partial rifting during the separation of the Australian and Antarctic plates at some stage in the Palaeozoic.

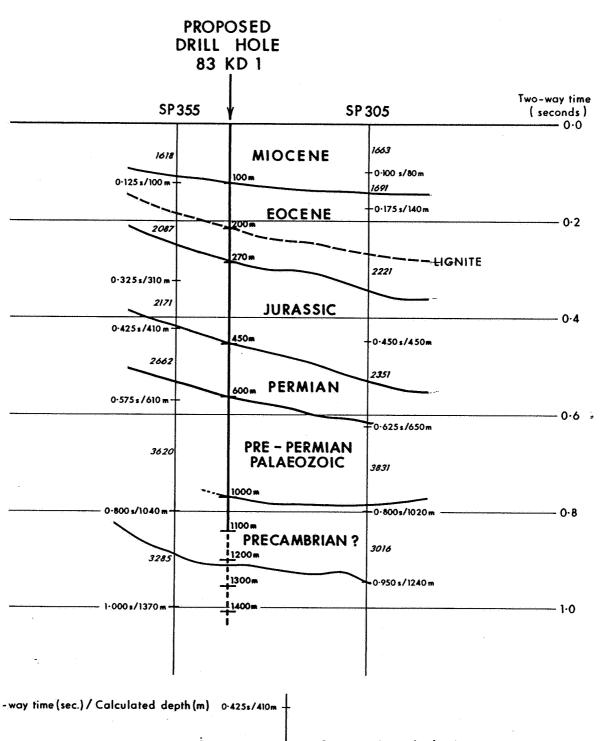
As mentioned earlier, the Polda Basin is divided into two sub-basins by a narrow shelf west of Lock. The eastern sub-basin, henceforth called the Kilroo Sub-basin, has a sharp northern boundary defined by a series of faults interpreted from regional and detailed gravity and from drilling (CRAE report no. 10307). The throw on this fault is in the order of 1 000 m, and its location is shown on plan no. SAa 2361. The sub-basin shelves more gently to the south.

The Kilroo seismic traverse provided some very useful information as well as confirming the existing structural interpretation. The final processed data is shown on plan no. SAa 2653 and the geological interpretation on an overlay (plan no. SAa 2654). Shot points are shown on the regional plan (no. SAa 2361) and in more detail on plan no. SAa 2655.

Interpretation of the seismic data was carried out by SADME and also by CRA Oil Group geologists. The Miocene-Eocene boundary is tentatively drawn at a strong reflection although its true location is not known. The Eocene-Jurassic boundary

is reasonably well defined from palynology carried out on Tuckey 1, 80LRM4 and 81L41C, although it is not defined by any obvious reflector. The reflection just above the base of the Tertiary is almost certainly due to the lignite seam encountered in 80LRM5, 81L41C and 80LRM64 (15 m thick in 81L41C). The boundary between the relatively unconsolidated Jurassic sediments and the hard Permian diamictites is probably the next major reflector, as shown, and this is supported by the small-scale arcuate reflections in the vicinity of shot point 430 that are believed to be characteristic of reflection patterns off large boulders lying in a less dense matrix.

The high speed of the next unit (3600-3800 m/s) may be caused by the presence of dense carbonates as in the Observatory Hill Beds elsewhere, although this speed is more characteristic of the Boorthanna Formation diamictites in the Tallaringa Trough (Milton, 1975). The significance of the strong reflector below this interval is unknown, especially as the next interval has a velocity around 2900-3300 m/s which is well below the speed expected for crystalline basement (over 5 000 m/s).

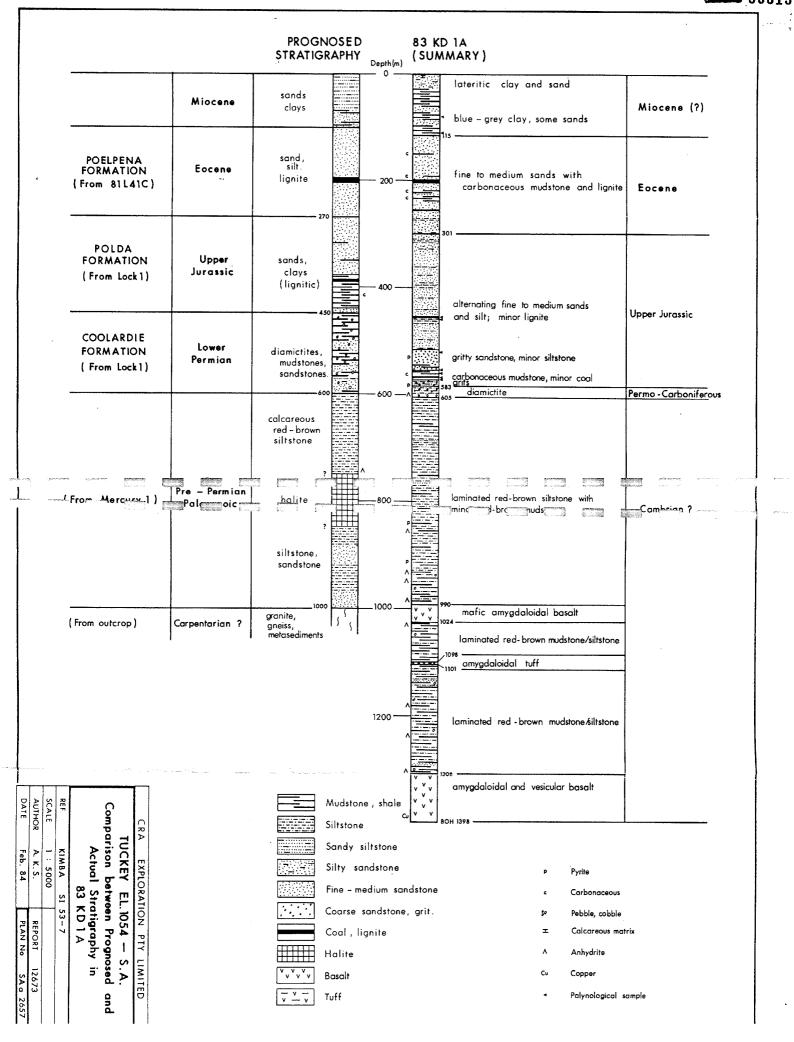

3.3 Halite

Occidental offshore hole Mercury No. 1 is known to have been drilled on a salt dome (from their own seismic work) and this almost certainly explains the thick (1 700 m) intersection of halite and interbedded halite and siltstone that was obtained between 1 400 and 3 100 m. CRAE carried out bromine in halite analyses on 5 m composite samples over the whole of the salt-bearing interval but the results were inconclusive. (See Appendix II for assays). Values ranged from 8 to 400 ppm Br but no trends were evident. It is believed that the rather erratic Br distribution is a result of remobilisation of the salt, a feature that would be in accordance with the interpreted diapir.

4. DRILLING

4.1 Site Selection

The latitude of 83KDl was selected entirely on the basis of the Kilroo seismic section. If potash-bearing evaporites exist in the basin, they will probably occur in the pre-Permian depocentre, which is most likely to coincide with the deepest part of the basin, near the northern bounding fault. This was refined by the interpretation of a possible small sub-basin beneath the Permian at shot point 340. Long-


Two-way time (sec.) / Calculated depth (m) 0.425s/410m - 2662 Seismic velocity (m/sec) 0.575s/610m -

CRA EXPLORATION PTY LIMITED

TUCKEY E.L.1054 — S.A.
Kilroo Seismic Section.

Depth Calculations for Proposed
Drill Hole 83 KD1

REFERENC	E KIMBA SI	53-7	
SCALE	1 : 25000 (H)		
AUTHOR	A.K.S.	REPORT	12527
DATE	Nov. 83	PLAN No	S Aa 2656

itudinally, the seismic traverse is approximately in the middle of the Kilroo sub-basin, and close to a small sub-basin interpreted from a detailed gravity traverse carried out in 1980 by CRAE (see CRAE report no. 10307). Furthermore, it was believed that a significant potash deposit would be detectable over a strike length of several km. The hole was therefore sited on the seismic section at SP340 where at least a small amount of stratigraphic control was available.

4.2 Prognosed Geology

Depths to the reflectors that would be encountered in 83KD1 were calculated from the velocity scans at SP305 and SP355, (shown in boxes at the top of the seismic section). Calculations and depths are shown on plan no. SAa 2656. It should be remembered that the calculated depths are only approximate because the velocity intervals do not coincide with reflectors in every case, and also because velocities vary from place to place due to natural variations in the physical properties of the rocks.

From plan no. SAa 2654, the expected stratigraphy and depths are as follows:

Miocene			0	_		100
Eocene			100	-		270
Jurassic			270	-		450
Permian			450	-		600
Pre-Permian			600	-	1	000
Precambrian	(?)	1	000-	ŀ		

Plan no. SAa 2657 shows this in graphic form.

4.3 Planning

The general drilling plan was to drill a large diameter (say 150 mm) hole with blade and/or roller bit down to the Permian diamictites and case off in hard rock between 450 and 500 m. Diamond coring would then commence in HQ size and continue to about 800 m where the HQ rods would remain in the hole as casing while coring was taken to final depth (about 1 100 m) in NQ. The hole would be geophysically logged at the completion of rotary drilling and again at final depth.

The selection of drilling muds was a major item in the planning stages. A high viscosity, high solids bentonite/polymer mud was considered suitable for the rotary section where wall stability in soft shales and friable sands was of

utmost importance. For the cored section of the hole, Baroid Australia was engaged to supply a mud programme (see Appendix III) and an on-site engineer. The basis of the drilling mud for this section was to be a saturated KCl fluid which would be expected to provide almost full recovery of potash-bearing core, although halite might suffer partial dissolution. An oil-based mud is normally regarded as the best medium for obtaining complete recovery of potash, but the cost of such a system for a hole of this size would be in the vicinity of \$50 000. This was regarded as excessive for a one-off exploration hole in a relatively unknown basin.

The drilling contract was awarded to F.A. Kelly Pty. Limited primarily because of the availability of a Warman 1500 rig which would be capable of continuing to 1400 or 1500 m if the need arose. Most other contractors in the same price range were offering Longyear 44 machines, the uprated version of which is rated at about 1 200 m in NQ.

4.4 Drilling Operations

For budgetary reasons the hole was commenced at short notice on December 19, 1983, although it was known that a three-week break was to be taken from Christmas to mid-January, 1984. The hole progressed to 336 m by 21st December, where a hard band was encountered. Many problems with mud breakdown had also been experienced. It was thus decided to circulate a heavy mud and cease drilling until mid-January, as there was insufficient time to carry out drilling, logging and casing before Christmas.

Operations recommenced on 17th January, 1984. On re-entry, it was found that a clay unit between the surface casing (set to 37 m) and 115 m had expanded and filled the hole. Circulation was lost on re-drilling through this material, and the problem of mud breakdown was again experienced. It was then decided to abandon the hole, and a new hole, 839 KD1A, was collared 10 m away on 20th January.

4.5 Geology of Drill Hole

Samples were collected at 2 m intervals, although the slow rate of penetration caused grinding of the shale and silt units, so that very little of these lithologies reached surface in recognisable chips.

A summary graphic log, as compared with the expected stratigraphy, is presented on plan no. SAa 2657, and a summary log is given below. Since the hole is in its early stages, the detailed log of this section of the hole will be given in the next quarterly report so that a complete log will be presented therein.

Miocene (?)	$\begin{bmatrix} 0 & -26 \\ 26 & -56 \\ 56 & -115 \end{bmatrix}$	Lateritic clayey sand Lateritic clay. Base of oxidation at 56 m Blue-grey clay, with minor sandy interbeds
Eocene (Poelpena Fm)	115 -199 199 -204.5 204.5-301	Fine-medium sands with minor coarse sand and carbonaceous mudstone Lignite Medium sands with minor silt- stone, carbonaceous shale and lignite
Upper Jurassic (Polda Fm)	301 -336	Interbedded siltstone and fine to medium sands

Note: Formation boundaries are tentative at present.

4.6 Discussion

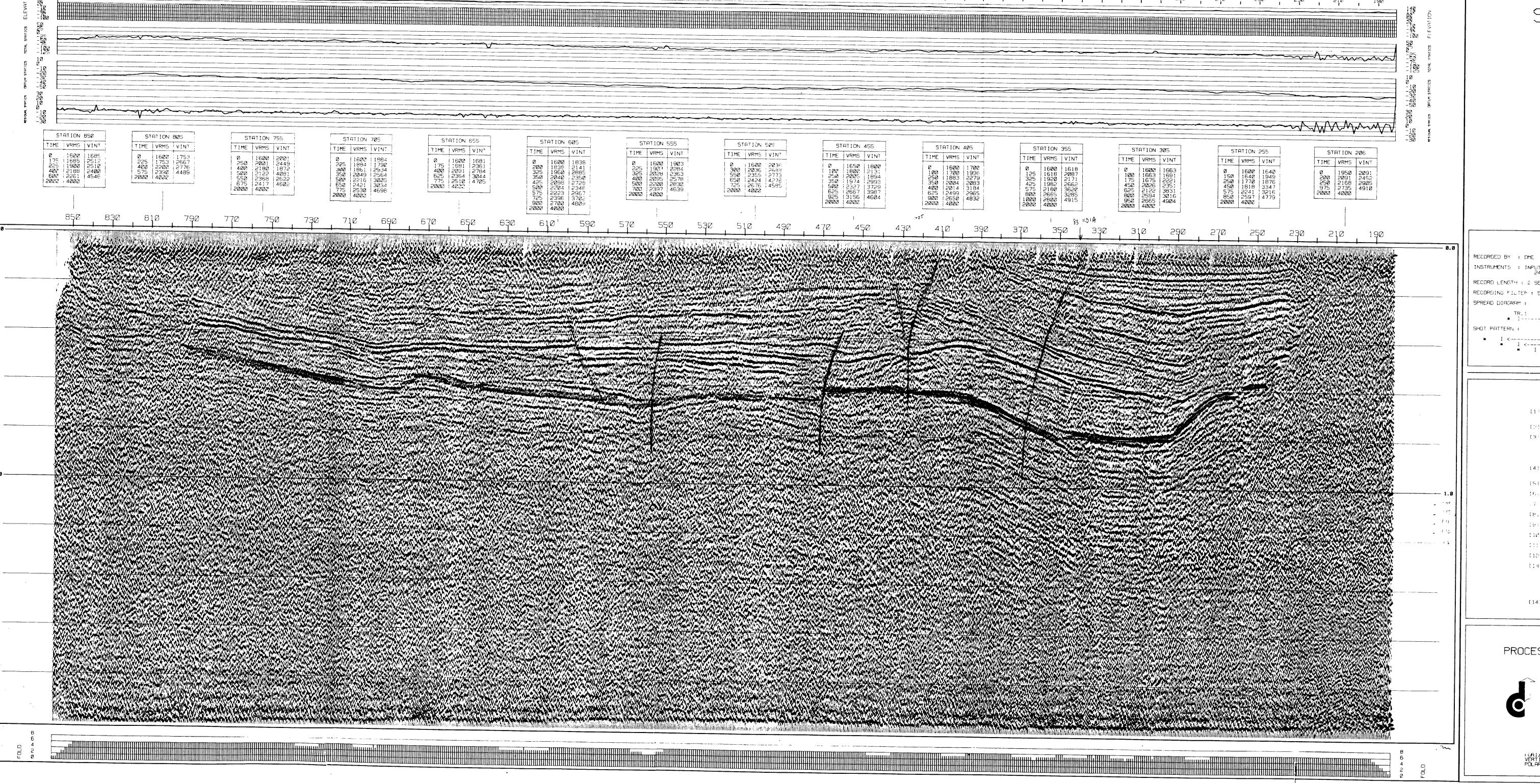
The base of the blue-grey clay at 115~m is reasonably close to the strong reflector estimated to lie at about 100~m. Whether this is in fact the Miocene/Eocene boundary is open to question.

The 5.5 m thick band of lignite at 199 m coincided very well with its estimated depth (200 m).

The Eocene/Jurassic boundary is very tentative at this stage. It is based on the appearance of the first of several compact, rather hard, carbonaceous shales.

Palynological examination of cuttings may help to locate these boundaries more accurately.

J.L. Thomas per A.K. Scott.


A.K. SCOTT

AKS/pw

EXPENDITURE

Expenditure for the period ended 31st January, 1984, the nearest accounting period was \$55 531.00, as listed below.

		\$
Drilling	40	151
Payroll	6	768
Supplies	2	855
Vehicle		602
Travel		213
Property		462
Tenements		608
Contractors		1
Overheads	3	871
	\$55	531

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY

SURVEY : POLDA BASIN

AREA: 83-001

TNF:

FINAL STACK

RECORDING PARAMETERS

INSTRUMENTS : INPUT/OUTPUT DHR 1632 24 CHANNEL RECORD LENGTH : 2 SECS. RECORDING FILTER : 500/OUT

DATE RECORDED: 1983 GEOPHONE TYPE : SINGLE/MARK PRODUCTS L25E 40 m.c. NUMBER OF GROUPS : 24 COVERAGE : BUC!. GROUP INTERVAL : 25 M. SHOT INTERVAL : 50 M.

SPREAD PATTERN: 0 - 50 - 625 ENERGY SOURCE : 1 KG. ANZITE BLUE SOURCE DEPTH : 20 M. AVERAGE SURVEY DATUM : Ø METRES A.H.D

PROCESSING SEQUENCE

REFORMAT FROM SEGA RESAMPLE TO 2 MV, SAMPLE RATE

[2] PREFIL TER (DESLONET AND APPLIED IN FIX DOMPIN

DATUM STATIC CORRECTIONS USING DIGICON'S STATICS: (PROCESSING OF UP # 100 M.

COMMON DEPTH POINT GATHER

VELOCITY ANALYSIS BEFORE RESIDUAL STATICS RESIDUAL STATELS FOMEL TATEON AND APPLICATION. VELOCITY ANALYSIS PRICE RESIDUAL STRYICS

110. PRE-STACK MUTE COMPUTER GENERATED STRETCH MUTE. III TIME VERTERS EGUALIZATION (WINDOW LENGTH 500 MELT

E121 COMMON DEPTH POINT STACK & FOLL [13] DIGITAL BANDPASS FILTER:

BANDPASS/SLOPE (DB/OCTAVE)

[14] TIME VARIANT EQUALIZATION (WINDOW LENGTH 100 MS.

PROCESSED BY : DIGITAL EXPLORATION LTD. DIGICON, BRISBANE

QUALITY CONTROL CHECK


: RICK SLACK : KEN ALLEN

DATE : OCTOBER 1983

IÚRIZONTHL SUÁLÉ : SZ IKHŰÉSZINUH VERTÍCAL SCALE : S INCHESZSEC POLARITY : NORMAL RELATIVÉ TO FIELD RECORDING

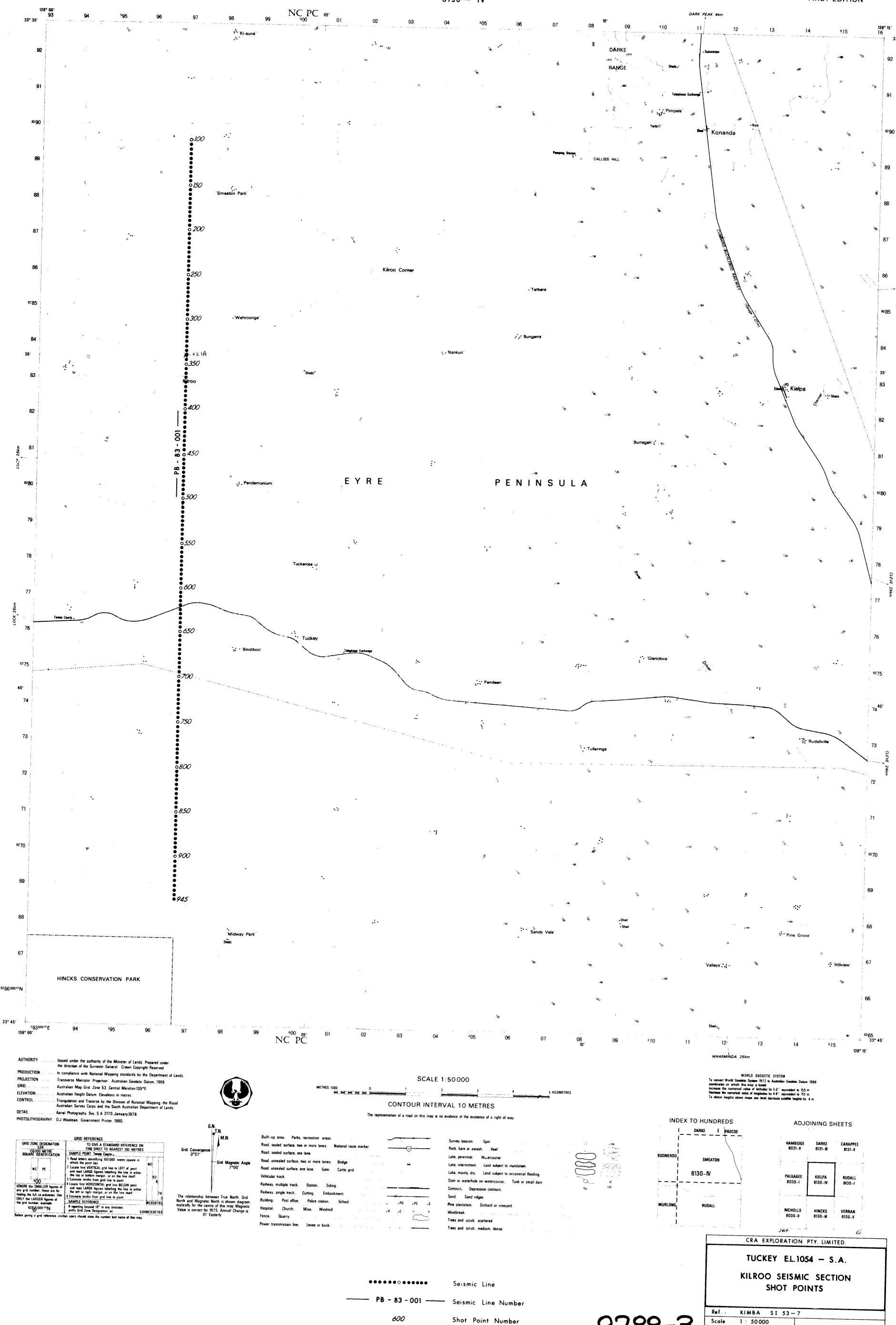
Scale 1:25 000

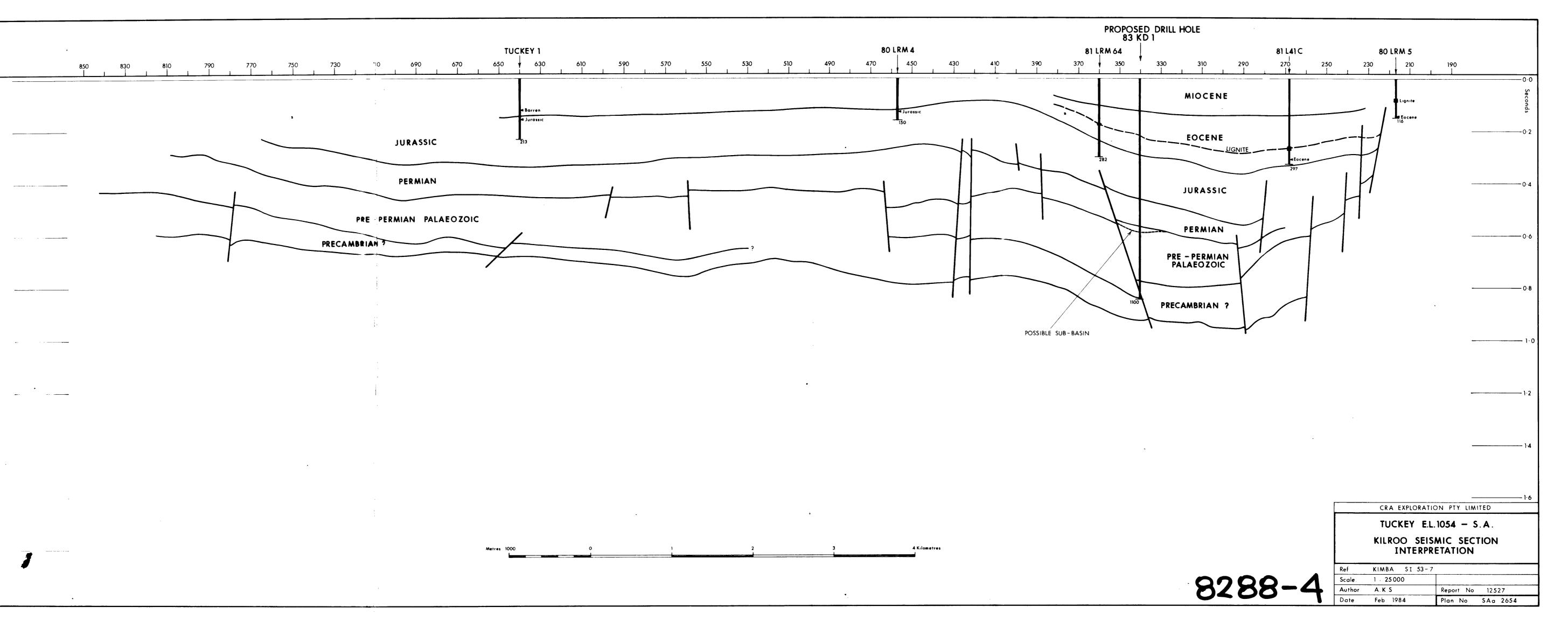
TUCKEY EL 1054 - KILPOO SEISMIC SECTION

Author

Date.

A. K. S


Feb. 84.


Report No. 12527

SAa 2655

Plan No.

KIELPA SOUTH AUSTRALIA 6130 - IV

REFERENCES

Cooper, B.J.,	The Late Palaeozoic Coolardie Formation,
Harris, W.K. &	Polda Basin. G.S.S.A. Quart. Geol. Notes,
Meyer, G.M., 1982	No. 81.
Milton, B.E. 1975	Reconnaissance Seismic Exploration, Southwest Arckaringa Basin, S.A., 1974. G.S.S.A. Quart. Geol. Notes, No. 53.

LOCATION

Kimba SI 53-7

1:250 000

KEYWORDS

Coal, Halite, Potash, Basin, Drill-rotary, Geophys-seismic.

LIST OF PLANS

Plan No.	Title	Scale
SAa 1932 SAa 2361	Tuckey E.L. 1054 Location Map Tuckey E.L. 1054 Polda Basin - S.A. Geology, Geophysics and Drill- Holes	1:250 000 1:250 000
SAa 2652		1: 10 000
SAa 2653	Tuckey E.L. 1054. Kilroo Seismic Section	1: 25 000
SAa 2654	Tuckey E.L. 1054. Kilroo Seismic Section. Interpretation	1: 25 000
SAa 2655	Tuckey E.L. 1054. Kilroo Seismic Traverse. Shot Points.	1: 50 000
SAa 2656	Tuckey E.L. 1054. Kilroo Seismic Section. Depth Calculations for Proposed Hole 83KD1.	1: 25 000
SAa 2657	Tuckey E.L. 1054. Comparison between Prognosed and Actual Stratigraphy in 83KD1.	1: 5 000

LIST OF TABLES

Table 1 Stratigraphy of the Polda Basin.

LIST OF APPENDICES

Appendix I Summary Logs of Mercury No. 1 and Columbia No. 1.

Appendix II Bromine in Halite Analyses from Mercury No. 1.

Appendix III Drilling Fluids Programme for 83KD1.

APPENDIX I

SUMMARY LOGS OF MERCURY NO. 1 AND COLUMBIA NO. 1

MERCURY NO. 1

1

Australian Occidental Pty. Ltd. (Petroleum Division)

Lat. 33° 33' 47.5" S Long. 134° 14' 14.0" E

November '81 - February '82

Total Depth - 3 251 m Water Depth - 77 m

RKB 16 m above sea level Sea bed at depth of 93 m below RKB

Quaternary	93- 110 m	
Poelpena Fm.	110- 288 m	
Polda Fm.	288- 799 m	Claystone, sst, 1st with minor coal 660-770 m. Best coal 3 m @ 740 m
Permo-Carb.	799- 886 m	Claystone, conglomerate, shale
Pre-Permian:		
Unit III	886-1393 m	Calc. red bed sequence as inter- bedded stst and sst (sandier near base). Trace anhydrite at base.
Unit II	1393-3100 m	Massive clear light orange-brown halite with minor shale and dolomitic interbeds. 1393-1556 Halite 95% 1556-1609 Lst, shale. Halite nil. 1609-2255 Halite 95% 2255-2538 Shale interbeds. Halite 50% 2538-2824 Dolomitic stst. Halite 5% 2824-2978 Stst interbeds. Halite 60% 2978-3100 Halite 90%. Stst interbeds
Unit I	3100-3251 m	Well sorted sst with calc cement.
	· · · · · · · · · · · · · · · · · · ·	and with out of cement.

Some silty zones.

COLUMBIA NO. 1

\$ a.

Australian Occidental Pty. Ltd.

33° 29' 38.9" S Lat. Long. 133° 53' 4.5" E

February-April '82

Total Depth - 2 168 m Water Depth -

RKB 17 m above sea level Sea bed at depth of 91 m below RKB

Quaternary 91-112 m Poelpena Fm. 112-(?)270 m Polda Fm. (?)270-706 m Stst, becoming sandier towards base. Bottom 150 m mainly sst. Minor coal in lower two-thirds. Permo-Carb. 706-771 m Boulder clay, stst. Pre-Permian: Unit IV 771-954 m Mainly stst with minor sst interbeds. Dol. and 1st. interbeds 771-830 m. Minor anhydrite 900 m. Unit III 954-1286 m Silty sst and stst 954-1060 m. Mainly sst 1060-1286 m except for lst 1165-1175 m and stst 1175-1195 m. Unit II 1286-1701 m Stst with very minor dol. and lst. 1286-1674 m. Sst 1674-1701 m. Anhydrite 1610 m. Unit I 1701-2168 m Stst 1701-1735 Sst 1735-1997 Stst 1997-2168

i

APPENDIX II

BROMINE IN HALITE ANALYSES FROM MERCURY NO. 1

Analysis code Bl/1 Report AC 5759/83

Page 1

Order B 0504

Results in ppm

Sample	% Halite	Br	
951150 1345	2.50	360	
951151 prr	2.20	320	
951152 1362	2.80	430	
951153 1375	2.50	420	
951154 ا	2.00	370	
951155 1400 1375	2.50	390	
951155	5.30	28ø	
951157	7.10	230	
951158	7.20	240	
951159	5.50	190	
951160	8.60	270	
951161	9.50	270	
951162	6.30	220	
951163	7.70	260	
951164	7.20	240	
951165	74.3	10	
951166	76.6	10	
951167	83.2	15	
951168	61.7	15	
951169	87.4	35	
951170	87.6	10	
951171	86.8	110	
951172	87.2	10	
951173	89.1	15	
951174	90.9	15	
951175	82.1	20	
951176	78.Ø	20	
951177	67.4	400.	
951178	30.4	25	
951179	89.3	15	
951180	91.2	20	
951181	90.5	50	
951182	92.9	50	
951183	91.2	40	
951184	52.8	8.0	
951185	39.1	85	
957786	95.0	15	
951187	51.7	45	
951188	21.0	169	
951189	1ં8.હ	100	
Data limit		(5)	

Detn limit

(5)

Analysis code	B1/1
---------------	------

Report AC 5759/83 Page 2

Order B 0604 Results in ppm

Sample	% Halite	Br
951190	24.4	210
951191	27.2	210
951192	18.0	280
951193	34.5	130
951194	85.2	15
951195	77.]	35
951196	47.6	35
951197	88.5	15
951198	88.8	10
951199	77.8	15
951200	90.4	10
951201	82.9	15
951202	65.5	35
951203	56.5	6Ø
951204	50.7	25
951205	44.5	40
951206	90.5	15
951207	85.1	10
951208	75.3	10
951209	70.4 79.7	20 20
951210 951211	84.1	20 10
951212	78.6	20
951213	82.1	5
951214	87.7	55
951215	92.3	15
951215	49.4	35
951217	76.6	25
951218	88.4	15
951219	87.8	20
951220	91.9	20
951221	92.4	15
951222	93.5	30
951223	89.2	1 4
951224	93.7	20
951225	93.7	10
951226	85.7	130
951227	77.7	20
951228	90.6	5
951229	89.7	10
Detn limit		(5)

Analysis code B1/1 Report AC 5759/83

Sample

% Halite Br

Page 3

Order B Ø604

Results in ppm

951230	88.1	15
951231	88.7	15
951232	89.1	10
951233	87.2	10
951234	90.8	5
951235	89.0	15
951236	87.9	< 5
951237	89.0	iø
951238	73.8	35
951239	87.2	15
951240	84.7	10
951241	65.8	10
951242	85.0	20
951243	90.0	25
951244	88.9	25
951245	92.2	20
951246	87.3	20
951247	88.8	15
951248	82.2	20
951249	76.7	10
951250	82.0	10
951251	83.8	20
951252	88.8	15
951253	90.7	.5
951254	85.0	15
951.255	92.0	15
951256	92.5	5
951257	94.2	5
951258	93.3	15
951259	98.9	< 5
951260	91.7	15
951261	91.2	5
951262	92.0	15
951263	. 85.0	5
951264	91.2	.5
951265	84.7	5
951265	94.1	15
951267	91.1	110
951268	90.2	10
951269	93.3	5
Detn limit		(5)

Analysis code B1/1	Report AC 5759/83	Page 4
	Order B 0604	Results in ppm
Sample	0 77-7-24	
95127 <i>a</i>	% Halite	Br 5
951271	94.9	5

	0 110 2 2 2 0	<i>D</i> :
951270	95.4	5
951271	94.9	5
951272	92.0	1.0
951273	88.2	5
951274	89.0	5
951275	92.5	10
951276	91.2	5
951277	91.0	5
951278	93.1	< 5
951279	92.8	10
951280	100.1	< 5
951281	87.3	5
951282	92.1	5
951283	83.0	20
951284	89.5	5
951285	85.2	5
951286	87.7	15
951287 951288	89.7	5
951289	93.9	5
951290	94.6	10
951291	90.5 91.0	10
951292	90.9	5 15
951293	91.4	10
951294	93.0	15
951295	94.9	5
951296	95.5	10
951297	92.0	5
951293	92.8	15
951299	91.2	10
951300 ;	91.6	15
951301	88.9	< 5
951302	89.0	60
951303	88.9	10
951304	88.5	20
951305	80.3	20
951306	78.5	5
951307	83.6	15
951308	91.8	.5
951309	85.5	20

Detn limit (5)

Analysis	code Bl/l	Report AC 57	59/83		Page 5
		Order B 0604		Resu	lts in ppm
	Sample 951310	g.	Halite	Br 15	
Quedalis of Condalis	951311 951312 951313 951314 951315 951316 951317 951318 951320 951320 951321 951322 951323 951324 951325 951326 951327	23.6 36.9 85.4 77.4 86.5 88.0 26.0 10.2 9.25 25.9 13.1 9.50	82.9 88.6 73.6 84.2 87.5 89.6 90.6 46.0 34.3 61.2 78.4 10.3 10.6	15 15 10 20 15 10 20 15 20 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20	160 35 -12 12 12 8 8 60 170 150 60 140

Detn limit

(5)

Analysis code Bl/1 Report AC 5759/83

Page 6

Order B 0604

Results in ppm

Sample	% Halite	Br
951350	4.10	140
951351	13.6	180
951352	10.2	190
951353	8.30	130
951354	9.80	140
951355	9.70	140
951356	9.90	140
951357	11.8	140
951358	11.8	120
951359	8.60	170
95136ø	10.7	170
951361	7.50	130
951362	7.50	90
951363	7.40	110
951364	7.10	17Ø
951365	6.70	95
951366	13.8	130
951367	10.7	220
951368	9.40	170
951369	8.10	170
951370	10.1	90
951371	8.60	180
951372	10.1	220
951373	13.3	190
951374	18.5	210
951375	7.90	180
951376	39.5	35
951377 VS V	58.0	15
951378	42.0	45
951379	46.9	45
951380 951381	26.6	5Ø
951382	22.8 18.3	55 110
951383	33.6	50
951384	32.8	120
951385	16.1	150
951386	13.8	170
951387	16.9	130
951388	11.8	250
951389	9.20	230
	.e. + 144 €1	
Detn limit		(5)

Page

Analysis code B1/1 Report AC 5759/83 Order B 0504 Results in ppm Sample % Halite Br 7.80 7.70 7.10 17.2 9.00 8.60 6.00 6.00 7.30 7.90 8.60 7.50 11.0 19.3 10.9 9.70 11.2 8.50 5.40 10.8 7.90 7.00 8.40 9.40 5.70 5.20 8.00 7.00 7.10 8.00 7.40 8.00 7.80 10.9 11.5 8.50 8.50

Detn limit

(5)

5.20

8.60

5.70

Analysis code Bl/l	Report AC 5759/83		Page	:	8
	Order B 0604	Results	in	pp	m
Sample	% Halite	Br			
951430	9.40	190			
951431	8.80	210			
951432	8.90	230			
951433 951434	7.80	230			
951435	8.20 10.7	210 200			
951436	11.1	25Ø			
951437	16.7	250			
951438	12.9	260			
951439	9.70	210			
951440	9.50	180			
951441	6.30	150			
951442	13.9	250			
951443	12.9	200			
951444	9.40	210			
951445 951446	12.0	210			
951447	1.2.0	190			
951448	43.3 15.2	3Ø 13Ø			
951449	82.2	5			
951450	22.4	80			
951451	43.4	25			
951452	22.5	70			
951453	18.3	110			
951454	14.7	130			
951455	9.90	210			
951456	11.4	230			
951457	25 • Ø	150			
951458 951459	88.2	20 20			
951460	89.3 91.3	2Ø 5			
951461	78.0	25			
951462	64.6	20			
951463	69.8	90			
951464	72.9	25			
951465	81.5	30			
951466	70.2	20			
951467	51.5	55			
951458	54.3	20			
951469	65.9	25			

(5)

Detn limit

Analysis code B1/1 Report AC 5759/83

Page 9

Order B 0504

Results in ppm

Sample	% Halite	Br
951470	10.3	100
951471	72.Ø	10
951472	64.5	25
951473	27.1	70
951474	31.4	60
951475	49.2	40
951476	53.6	3Ø
951477	76.0	20
951478	73.9	20
951479	78.5	15
951480	81.5	10
951481	84.7	110
951482	82.3	10
951483	80.8	15
951484	77.2	<5
951485	52.8	15
951486	85.5	5
951487	72.5	< 5
951488	85.0	55
951489	37.7	45
951490	70.8	10
951491	77.2	< 5
كەن 3 951492	71.7	10
M1-1572.5-1575	71.1	230

Detn limit

(5)

Head Office and Central Laboratory 305 SOUTH ROAD, MILE END SOUTH STH. AUST. 5031 TEL.: (08) 43 5722 TELEX: AA89323

NATA REGISTERED No. 1526

REF.:

COM 831707

REF.:

DPO B0609-0610

Mr. A. Scott, CRA Exploration Pty Ltd, P.O. Box 254, NORWOOD SA 5067,

12.9.83

Dear Tony,

RE: JOB COM 831707

Enclosed are the assays for the samples delivered to our laboratory on the 10th August 1983.

Yours sincerely, COMLABS PTY LTD

per

c.c.: NORWOOD

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM831707

O/N : B 0609-0610

Re	su1	ts	in	ppm

				L 1		
SAMPLE	Br	%К	Li	В	I	%Salt Recovered
951322	160	0.14	<1	10	<10	23.6
951323	35	0.05	<1	<10	<10	36.9
951324	I.S.	I.S.	I.S.	I.S.	I.S.	I.S.
951325	12	0.01	<1	20	10	85.4
951326	12	0.01	<1	20	<10	77.4
951327	8	0.01	<1	50	<10	87.4
951328	8	0.01	<1	<10	10	86.5
951329	8	0.01	<1	<10	<10	88.0
951330	60	0.07	<1	<10	10	26.0
951331	170	0.18	<1	<10	<10	10.2
951332	150	0.20	<1	<10	<1.0	9 • 2 5
951333	60	0.11	<1	50	<10	25.9
951334	100	0.07	<1	2.0	12	13.1
951335	140	0.18	<1	<10	<10	9.50
951336	ı.s.	I.S.	I.S.	I.S.	I.S.	I.S.
951337	I.S.	0.20	<1	<50	I.S.	6.85

NOTE: Results expressed as ppm in salt

Method of Analysis : Br I : XRF

Li K : AAS6 B : COL10

APPENDIX III

DRILLING FLUIDS PROGRAMME FOR 83KD1

RECOMMENDED MUD PROGRAM FOR POTASH DRILLING SOUTH AUSTRALIA

Prepared by: John Quayle
John Knox

December 1983.

TABLE OF CONTENTS

I.	INTRODUCTION

- II. CASING PROGRAM AND LITHOLOGY
- III. RECOMMENDED MUD PROGRAM
- IV. COST ESTIMATES
- V. LAB TESTS
- VI. ENGINEERS RESUMES
- VII. PRICE LIST

.**.*

1

POTASH DRILLING

INTRODUCTION

C.R.A. Exploration is proposing to drill a 1,200 metre hole in the Polda Basin of South Australia to explore for evapourites and in particular, deposits of Potash. Previous offshore exploration in the Polda Basin has encountered thick sections of Halite and it is understood that the geological section may be similar to an area of the Officer Basin recently drilled by Comalco.

One of the priorities of this drilling program will be to obtain 100% core recovery so that a thorough economic and geological evaluation may be made of the area. Potash deposits are notoriously difficult to successfully core, mainly because it is unusual to find a single salt deposit of pure KCl.

Generally speaking, the potash will contain traces of magnesium or other minerals and because of the varying solubility of the magnesium and potassium chloride it becomes difficult to maintain 100% core recovery and avoid large washed out hole sections in the evapourites.

If the hole can be drilled quickly it may be possible to have good core recovery but the problem of washed out hole gives greater potential for snapped rods and resulting delays in fishing, etc. The only way 100% core recovery can be guaranteed is to use an invert emulsion oil mud with the water phase saturated with CALCIUM CHLORIDE. This method has been used very successfully and provided a continuous drilling program can be maintained and the mud re-used, costs do not become excessive. On an exploration hole oil mud costs become prohibitively expensive and it will be necessary to use a saturated KCl/brine in the initial exploration stage.

In Australia, Potassium Chloride is available in two grades:-

1. Agricultural grade which is approximately 99% KCl but is slow to dissolve and coarse crystalline.

POTASH DRILLING

INTRODUCTION (Cont)

2. Industrial grade which is 99.6% pure KCl and is easily dissolved because of it's finely crystalline nature.

We would recommend that the agricultural grade be used as close to saturation point as possible because of the cost advantages. Agricultural grade Muriate of Potash is readily available in Adelaide but the industrial grade has to be imported and is more expensive. We would suggest that a small amount of industrial grade KCl be carried in suspension by the mud system in order to prevent leaching of the core through undersaturation of the mud. The importance of saturation of the KCl brine cannot be overemphasized and every attempt should be made to have a super-saturated system in the hole. It is expected the temperature gradient in this are will be low so the varying solubility due to temperature will be low.

We have recommended the use of Hydroxyethyl cellulose (HEC) as the primary viscosifying polymer in this mud system. HEC is a synthetic cellulosic material and is completely resistant to bacterial break down. It is non-ionic and it is not affected by varying concentrations of electrolytes or by trace elements such as boron or chromium. A cheaper material such as guar gum (sold under various trade names) can be used but it is subject to bacterial attack even in a saturated brine. It's major disadvantage is that it tends to coagulate and settle out in the bottom of the tanks in a semi-solid state. This happened on the Comalco drilling program when some left over mud stocks were being used and the end result was the material had to be dug out of the mud tanks. XC POLYMER could be used in this system but it is more expensive and the gel strengths it develops tends to suspend the cuttings and lead to sludge build up in the rods.

/Cont...

POTASH DRILLING

INTRODUCTION (Cont)

DEXTRID has also been programmed to reduce filtrate loss and to eliminate dispersion of shales and clays in the borehole. It would be possible to drill with just KCl/HEC but every attempt should be made to reduce hole washout when drilling deep coreholes in sedimentary systems. All too often a hole is lost when rods snap in a washed out hole through vibration and rod rattle.

157 .

POTASH DRILLING

CASING PROGRAM AND LITHOLOGY

1. Precollar 5" diameter to 500 metres, set HW casing.

2. Diamond Coring

500 - 800 metres - HQWL size 800 - 1,200 metres - NQWL size

LITHOLOGY

0 - 500 metres - <u>Tertiary - Jurasic</u> - Siltstones, Coal

500 - 1,200 metres - Cambrian - Shales, Sandstones, Limestones, Halite

00044

RECOMMENDED MUD PROGRAM

Company Well Name and Number	C.R.A. EXPI	ORTION		-	Date		R 6, 198	
Location	South Austr	alia	County	Onshore	State	d Depth South A		
Casing: Surf.	HW @ 500	metres	InterHW	@ 800 metres				
RECO Metres	DDD MEIGHT MWENDED MU	D PROPERTIES	FILTRATE			TREATME	NT	
0-500m	Precollar	, set HW casir	ng					
HQWL Hole			· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , 	· _ · · · · · · · · · · · · · · · · · ·		
	9.68	33–35	6-8cc	10+	then add nearly s 85 lbs/k grade KC	n water m n add 2 l d coarse saturated bbl. The Cl (Potas	bs/bbl D grade KC d — appro en add fi ssium Chl	EXTRID l until ximately ne oride)
<u>NQWL Hole</u> 800-1200m		as above			approximum will sup maximum ering th	mately 14 per—satur protecti me potash bbl CAUS	lbs/bbl ate and on when formati	- this give encount- on. Add
			-	9	31bs/	bbl k		4
	5.				230			PPM
				Kcc	= 21	+-250	6.	4 1

Estimated cost for mud materials: \$5,954.55 Recommended Program Based Upon Cost estimate based on Baroid experience in the Officer Basin on Comalco Exploration drilling.

The above recommendations are statements of opinion only, and are made without any warranty of any kind as to performance and without assumption of any liability by NL Industries, Inc., or its agents.

POTASH DRILLING

RECOMMENDED MUD PROGRAM

After precollaring and setting casing we recommend drilling into the Cambrian Transition zone with a saturated KCl/HEC (Hydroxyethyl cellulose) mud with additions of DEXTRID for shale and filtration control.

We recommend that the pH of the mud be raised to around 10.0 with CAUSTIC SODA. This will minimize corrosion.

We would also recommend that the HEC be hydrated in fresh water before adding to the brine, this has proven to be more economical and effective than adding the HEC directly to the brine. DEXTRID is again recommended for extra filtration control and to improve borehole stability and core recovery. At all times the mud must be saturated with KCl to provide good core recovery and to eliminate washout in the Halite/Potash sections.

Suggested Mud Properties

Density - 9.68 ppg (saturated)

Viscosity - 33 - 35 sec/qt

API Filtrate - 6 - 8 ccs

pH - 10 +

Solids - Minimum

Yield Point - 8 - 10 lbs/100 sq.ft.

It is anticipated that after the mud system has been formulated it will be easy to maintain and the simplicity of the system makes it possible for someone with very little training to run it effectively.

POTASH DRILLING

LOST CIRCULATION

Lost circulation is always a problem in any coring operation, and the slim hole nature of this program makes the use of lost circulation materials very limited.

Several approaches may be made and are as follows in order of priority:-

A. Add MICA (Fine) to the circulating system. MICA is about the only lost circulation material which can successfully be used without plugging up the pump and the core-barrel. This approach has very good success particularly if seepage losses are across a porous sandstone section.

Each time the rods are pulled a slug of mud with a high concentration of MICA (50-60 lbs/100 gals) should be spotted across the thief zone so that the formation will not be broken down when running the rods back into the hole.

B. GUNK SQUEEZE

A gunk squeeze is a method of curing lost circulation by the expanding effect of bentonite when it hydrates. The objective is to keep the bentonite from hydrating until it reaches the zone of lost circulation.

Procedure

Pour half a bag of QUIK GEL into eight gallons of diesel and mix throughly. Pour two gallons of diesel down the rods (76 mm in this case), followed by the "gunk" squeeze, then a further two gallons of diesel. This isolates the "gunk" from water contact to ensure the squeeze does not expand in drill rods.

POTASH DRILLING

ŝ

LOST CIRCULATION (Cont)

B. GUNK SQUEEZE/Procedure (Cont)

Calculate the time required to pump the "gunk" down the rods.

Time =
$$\frac{\text{Rod volume (gallons)}}{\text{Pump output (gallons/minute)}}$$

(in second gear the pump should have an output of approximately 10 imperial gallons/minute).

The inner tube should have been pulled prior to pouring "gunk" down the rods. Have the rods sitting just off bottom and stationary. Pump the "gunk" down the rods until the pump pressure gauge registers an increase of pressure (indicating the "gunk" has reached the bottom", raise the rods clear of the squeeze and shut off the pump. Allow enough time for the squeeze to expand, approximately 10 minutes. Set the inner tube, restart the pump and wash, or rotate if necessary through the gunk squeeze. When the rods are on bottom, check mud returns. If no returns are apparent, re-run "gunk squeeze". When returns are evident, recommence drilling. If mud returns cannot be regained after running two "gunk squeezes" the loss zone is most likely to be a large fracture and drilling blind would be necessary. Six to eight pounds of HYSEAL could be added to the "gunk" to assist in regaining returns.

There are definite advantages in using a "gunk squeeze" if successful:-

- Saves time. The whole process takes only an hour at the most compared with using cement which takes about 10 hours to harden.
- ii. Easily prepared and spotted, requires no extra supervision.

POTASH DRILLING

LOST CIRCULATION (Cont)

B. GUNK SQUEEZE/Procedure (Cont)

- iii. Cheap half a sack of QUIK GEL and diesel to required amount.
- iv. With retained returns, mud costs are reduced.
- v. Stabilises formation reducing cave when tripping, thereby reducing bit costs and lost time getting back on bottom.

C. CEMENT

When all else fails with lost circulation it may be necessary to use quick setting cement in order to try to plug off the thief zone.

The advantage of Quick Setting Cement is that it requires little setting time and does not hold up progress. We would recommend that QUIK SET 30 or QUIK SET 60 be used rather than using QUIK SET 15, which may set prematurely in the rod string. If losses are severe it may be necessary to mix HYSEAL into the cement in order to help seal off the loss zone.

POTASH DRILLING

CEMENTING REQUIREMENTS

It will be the responsibility of the Baroid Mud Engineer on site to supervise the formulation and pumping of cement when casing is run and when the hole is abandoned.

On surface casing it is expected that normal Portland Construction Cement (Class A) will be used with 2% CaCl₂ being used as an accelerator. It will be the mud engineer's responsibility to weigh the mud and prepare the make up water with 2% CaCl₂. Slurry density is expected to be around 15.5 – 16.0 ppg, but this will be determined by discussions with the operator and the drilling contractor or drilling consultant.

In addition the mud engineer will advise drilling personnel on QUIK SET mixing procedures and supervise any other cementing requirements. Again we would emphasize the need for consultation with the operator, contractor and consultant so that the mud engineer has a clear idea of what is required.

POTASH DRILLING

COST ESTIMATES

It is assumed that the hole has been precollared to 500 metres and HW casing has been set at that point.

Volumes

500 - 800 metres HQWL hole

Casing Volume
$$-4.5 \text{ m}^3 29 \text{ bbls}$$
Hole Volume $-2.0 \text{ m}^3 12 \text{ bbls}$
Surface Volume $-6.0 \text{ m}^3 38 \text{ bbls} \equiv 212 \text{ ft}^3$
Daily Maintenance $-15.0 \text{ m}^3 (8 \text{ days on hole})$
TOTAL -27.5 m^3

The above figure allows for a daily consumption of $1.875\ m^3/day$ which is realistic for this type of drilling.

500-800m 5- 800m -1200 Materials Consumption Daily 19 52 KCl (Coarse) 242 kg/m³ 2 Sx KCl (Fine) 40 kg/m³ 4 kg = 1/5 Sx. HEC 2 kg/m³ DEXTRID 6 kg/m³ CAUSTIC SODA 1/5 5% 2 kg/m³ SODA ASH BARADEFORM CORT 415 . Toka TRIM I If 143.

POTASH DRILLING

COST ESTIMATES (Cont)

Estimated Materials Required

PRODUCT	UNIT	UNIT COST	QUANTITY	COST A\$
KCl (Coarse)	50 kg	\$12.47	133 sxs	\$1,658.51
KCl (Fine)	50 kg	28.90	22 sxs	635.80
HEC	25 kg	197.00	3 sxs	591.00
DEXTRID	50 lb	51.50	8 sxs	412.00
CAUSTIC SODA	40 kg	34.50	2 sxs	69.00
		TOTAL COST FOR	INTERVAL	\$3,366.31

800 - 1,200 metres NQWL Hole

Additional hole volume required - 20 m^3 Daily maintenance - 17 m^3 (9 days on hole)

TOTAL - 19 m^3

The above figure allows for $1.88 \, \mathrm{m}^3/\mathrm{day}$ maintenance.

Materials Consumption

 KC1 (Coarse)
 - 242 kg/m³

 KC1 (Fine)
 - 40 kg/m³

 HEC
 - 2 kg/m³

 DEXTRID
 - 6 kg/m³

 CAUSTIC
 - 2 kg/m³

POTASH DRILLING

COST ESTIMATES (Cont)

Estimated Materials Required

PRODUCT	UNIT	UNIT COST	QUANTITY	COST A\$
KCl (Coarse)	50 kg	\$12.47	92 sxs	\$1,147.24
KCl (Fine)	50 kg	28.90	15 sxs	433.50
HEC	25 kg	197.00	2 sxs	394.00
DEXTRID	50 lb	51.50	5 sxs	257.50
CAUSTIC SODA	40 kg	34.50	1 sx	34.50
		TOTAL COST FO	R INTERVAL	\$2,266.74

Total Recommended Materials for one hole and Recommended Contingency items

PRODUCT	UNIT	UNIT COST	<u> QUANTITY</u>	COST A\$
KCl (Coarse)	50 kg	\$12.47	225 sxs	\$2,805.75
KCl (Fine)	50 kg	28.90	37 sxs	1,069.30
HEC	25 kg	197.00	5 sxs	985.00
DEXTRID	50 lb	51.50	13 sxs	669.50
CAUSTIC	40 kg	34.50	3 sxs	103.50
BARADEFOAM	20 ltr	110.20	1 drm	110.20
MICA (Fine)	19 kg	14.31	10 sxs	143.10
HYSEAL	10 kg	13.64	5 sxs	68.20
· .		TOTAL ESTIM	NATED MATERIALS	\$5.954.55

POTASH DRILLING

COST ESTIMATES (Cont)

- 1. All costs are based on a trouble free hole with no allowance for lost circulation.
- 2. Prices are based on delivery ex Adelaide warehouse.
- 3. All products will be shrink wrapped and palletized.
- 4. All products returned in a re-usable condition will be credited in full.
- 5. All prices quoted will remain firm for the duration of the hole.

CRA EXPLORATION PTY. LIMITED

The contents of this report remain the property of C.R.A. Exploration Pty. Limite and may not be published in where a part nor used in a company prosperus without the written consent of the Company.

SIXTH QUARTERLY REPORT ON

TUCKEY E.L. 1054, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 18TH APRIL, 1984.

AUTHOR:

A.K. SCOTT

COPIES TO:

CRAE LIBRARY

SADME

DATE:

30TH MAY, 1984

SUBMITTED BY:

ACCEPTED BY:

all told Turbull

CON	TENTS		PAGE
1.	SUMM	ARY	1
2.	RECO	MMENDATIONS	1
3.	INTR	ODUCTION	1
4.	SEIS	MIC INTERPRETATION	2
5.	DRIL	LING	2
	5.1	Drilling Operations	3
	5.2	Sample Recovery	3
	5.3	Other Investigations	. 3
	5.4	Cost	4
6.	GEOL	OGY OF DRILL HOLE	4
	6.1	Stratigraphy	4
		6.1.1 Tertiary	5
		6.1.2 Jurassic	5
		6.1.3 Permo-Carboniferous	6
		6.1.4 (?)Cambrian	6
	6.2	Mineralisation	7
	6.3	Geophysical Logging	8
7.	INTE	ERPRETATION OF DRILLING RESULTS	9
	7.1	Re-interpretation of Seismic Section	9
	7.2	Depositional Environments	9
		7.2.1 Tertiary	9
		7.2.2 Jurassic	9
		7.2.3 Permo-Carboniferous	10
		7.2.4 (?)Cambrian	10
	7.3	Geological History	10
8.	IMPI	LICATIONS FOR POTASH EXPLORATION	13
	8.1	Regional Correlations	13

CONTENTS (CONT.)	PAGE
8.2 Potash Potential	13
9. CONCLUSION	14
EXPENDITURE	15
REFERENCES	16
LOCATION	16
KEYWORDS	16
LIST OF PLANS	16
LIST OF TABLES	17
LIST OF APPENDICES	17

515; Lee log 1113-114

1. SUMMARY

1 See P.3

Following the abandonment of an earlier hole at 336 m, a new hole, cored from 596 m) to total depth, was drilled to 1398 m in the eastern (or Kilroo) sub-basin of the Polda Trough. It intersected 301 m of Tertiary sands, clays and lignite, 282 m of Upper Jurassic sands, silts, grits and minor coal, 22 m of Permo-Carboniferous diamictite, and 793 m of argillaceous red beds and basalts of possible Cambrian age. No evaporitic sediments were intersected.

The (?)Cambrian palaeoenvironment deduced from the core is thought to have been a large flat depression in a landscape of low relief where periodic shallow inundation by fresh water caused reworking of near surface sediment. Deep crustal fractures allowed occasional outpouring of basalt over a wide area.

From comparisons with the stratigraphy in Polda offshore hole Mercury No. 1 and in the Officer Basin, it is thought that the stratigraphic position of evaporites in the Kilroo Sub-basin is below the basalt intersected at the bottom of 83KD1A, although there is no certainty that evaporites actually exist in the sub-basin at all.

2. RECOMMENDATIONS

The following recommendations are made.

- Wait for the results of the SADME age dating of the basalts to see whether they are in fact of Cambrian age.
- Consider the value of an east-west seismic line to determine the shape of the sub-basin with more confidence.
- Ascertain the practicability and economics of solution mining of potash at depths below 1400 m.

3. INTRODUCTION

E.L. 1054 of 355 km² was granted on 19th October, 1982, and covers part of the Polda Basin on the Eyre Peninsula (see plan no. SAa 1932). It was obtained to search for potash in the pre-Permian sediments of the eastern (or Kilroo) subbasin of the Polda Basin.

The previous quarterly report (CRAE report no. 12527) contains details of the stratigraphy and structure of the Polda Basin and in particular of the Kilroo sub-basin. It also gives details of an important SADME seismic profile and its interpretation. On the basis of the seismic section and a thick pre-Permian halite sequence intersected offshore, a hole was planned to penetrate to Carpentarian basement in the Kilroo area. The hole, which was also described in the previous report, was abandoned at 336 m.

A new hole, 83KD1A, was drilled to a depth of 1398 m at the same location. During drilling, a brief re-appraisal of the Kilroo seismic data was undertaken by a consultant. This report describes the seismic re-interpretation, the geology of the drillhole and the implications arising therefrom.

4. SEISMIC INTERPRETATION

A consultant geophysicist, Mr. A. Mitchell, briefly reassessed the Kilroo seismic data in order to make an estimate of the depth to basement.

He selected a fair event at 1.01 sec (estimated depth 1360 m) which turned out to be the top of the lower volcanic unit at 1308 m.

Another event was picked at about 1.36 sec but this was much less definite, and the possibility was admitted that it may be a multiple. If the event is real, it was calculated that its depth might be between 1920 and 2190 m, or perhaps deeper.

5. DRILLING

Details of site selection, prognosed geology and planning were set out in the previous quarterly report. The location of the hole is shown on plan no. SAa 2361.

It was intended to drill the hole to Precambrian basement, but during drilling it became evident that this might be at least 2000 m deep. The drilling budget was unable to meet the cost of such a deep hole so it was stopped at 1398 m after penetrating 90 m of basalt. This was approximately 300 m deeper than originally planned.

5.1 Drilling Operations

83KD1A was collared approximately 7 m away from 83KD1 on 20th January and was drilled to 120 m where 150 mm OD steel casing was set and cemented. Rotary mud drilling continued to 456 m, where a 3 m HQ core was cut to 459 m, and then resumed to 515 m, at which depth diamond drilling in HQ size commenced. Hard diamictite was struck at 593 m and 100 mm ID steel casing was set and cemented at 596 m after logging and reaming.

HQ coring continued to 616 m where the bentonite/polymer mud system was changed to a saturated KCl/polymer mix. At 665 m, core size was reduced from HQ to NQ with the HQ rods left in the hole as casing. The hole was completed in NQ size with the KCl/polymer mud, although the KCl concentration was gradually reduced to about 50% of saturation around 1000 m and then further reduced towards the end of the hole. The HQ rods were then withdrawn and the hole again logged.

5.2 Sample Recovery

Samples were collected at 2 m intervals for the rotary drilled section of the hole from surface to 515 m. The sample collection arrangement was poor and almost no sample return was obtained from shale formations.

Core recovery averaged 60% from 515 to 589 m, most of the losses occurring in friable Jurassic grits. Below 589 m core recovery was virtually 100%.

5.3 Other Investigations

The hole was geophysically logged at 596 m and 1398 m, and chemical analyses, specific gravity determinations and petrographic examinations were made on selected samples of core. In addition, SADME made palynological and coal quality studies and also completed a well shoot and vertical seismic profiling at the completion of drilling. SADME also intends to carry out K-Ar dating on the basalts.

5.4 Cost

The total cost of the drilling programme (including the abandoned hole) was about \$212 000 which included supervision, overheads, analyses, logging, etc. The contractual drilling cost of 83KD1A was approximately \$140 000 giving an overall cost per metre of \$100.

- 4 -

6. GEOLOGY OF DRILL HOLE

6.1 Stratigraphy

83KD1A intersected 301 m of Tertiary, 282 m of Upper Jurassic and 22 m of Permo-Carboniferous sediments and 793 m of pre-Permian, possibly Cambrian, sediments and volcanics. The hole bottomed in basalt.

A summary log is given below and a summary graphic log together with the prognosed stratigraphy is shown in plan no. SAa 2657. A detailed composite borehole log is given on plan no. SAa 2805, and the detailed geological log is attached as Appendix V.

Summary Log, 83KD1A

Tertiary	C	0- 115 115- 301	Clay, s	
Upper Jurassic		301- 583		carbonaceous mudstone, minor grits at base
Permo- Carboniferous	נ	583- 605	Diamict	cite
(?)Cambrian		605- 990 990-1024 1024-1098 1098-1101 1101-1308 1308-1398	Altered Laminat Amygdal Laminat Altered	ed red-brown siltstone/mudstone amygdaloidal basalt ed red-brown mudstone/siltstone oidal tuff ed red-brown mudstone/siltstone amygdaloidal and vesicular twith minor copper mineral-ton.

Detailed stratigraphy is described below. Much of the description of lithologies above 515 m is based on the geophysical logs, because of the poor sample recovery in this interval.

6.1.1 Tertiary

The Tertiary succession consists of two fairly distinct units. The upper one (0-115 m) is a sticky blue-grey clay with a few interbeds of fine rounded sand. Above the base of oxidation (56 m) the clays are lateritic and sandy. The age of this unit is not certain, but has tentatively been assigned to the Miocene by analogy with other holes in the basin, pending the outcome of the SADME palynological study.

The lower part of the Tertiary section (115-301 m approx.) consists of fine to medium, sub-angular to sub-rounded quartz sands, occasionally with a matrix of white clay, containing thin interbeds of coarse sands, clays, carbonaceous clays and lignite. The main lignite seam is 5.5 m thick at 199 m and correlates with the 15 m seam intersected at 222 m in an earlier CRAE drillhole (81L41C) 1700 m to the north, and with a 2 m intersection at 158 m in 81LRM64 500 m to the south. This unit is assumed to be equivalent to the Poelpena Formation of Eocene age.

The depth of the Tertiary/Jurassic boundary is somewhat conjectural but is based on the geophysical logs which show a distinct change from the mainly sandy Tertiary to a cyclic sand/silt sequence.

6.1.2 Jurassic

From 301 to 516.5 m, the Jurassic consists of many cycles of upwards-fining sand and silt, together with minor beds of carbonaceous mudstone and coal. The cycles, which vary in thickness from 10 to 20 m, have a fine to medium, occasionally coarse, base of sub-angular to rounded quartz sand grading into a silty top.

Several thin coal beds occur, the thickest of which is 1.5 m and lies at a depth of 456.8 m within a section of mudstone and carbonaceous mudstone. Analyses carried out by Amdel (for SADME) (see Appendix I) indicate that the coal is a sub-bituminous, high ash type, not unlike the coal in the deposit at Lock, 45 km to the west.

From 516.5 - 583.2 m, the Jurassic consists mainly of pyritic grits, gritty sandstones and siltstone except for a layer of mudstone, carbonaceous mudstone and minor coal from 555.4 - 573.3 m. The grits are poorly sorted, light grey and friable and contain angular to rounded grains varying in size from silt to pebbles. Lithologies are mainly clear quartz with some pale blue and milky quartz, and minor feld-spar, ironstone, mica, diopsidic rock and gneiss. Framboidal pyrite is common.

The age of this unit is confirmed by palynology as Upper Jurassic, and it is therefore assigned to the Polda Formation.

6.1.3 Permo-Carboniferous

Two distinct Permo-Carboniferous lithotypes were intersected in 83KD1A. The upper one extends from 583.2-593.3 m and is a white, well sorted, very fine, thinly bedded kaolinitic sandstone containing occasional pebbles and bands of diamictite. Scouring of the sandstone is evident in places and pyrite framboids are common.

The lower lithotype, from 593.3-605.3 m, is a dark grey, hard, massive diamictite containing angular to rounded matrix—supported cobbles up to 6 cm across. The commonest cobble lithologies are pink (low biotite) granite and fine to medium white quartzite. Others are quartz-feldspar-biotite schist, gneissic granite, granodiorite, biotite quartzite, feldspar-biotite-garnet granofels, black siliceous slate, grey slate, quartz-feldspar-tourmaline schist, siltstone and sandstone. The bottom 0.3 m contains many clasts of red-brown siltstone.

These lithologies are very similar to Permo-Carboniferous diamictites of the Coolardie Formation intersected elsewhere in the Polda Basin.

6.1.4 (?) Cambrian

The (?)Cambrian consists of a monotonous sequence of laminated red-brown siltstone and shale with major intercalations of altered amygdaloidal basalt and tuff.

Petrographic examinations were made of 12 samples of drill core, and these are attached in Appendix II.

From 605.3 to 990.4 m the red beds are mainly micaceous siltstone containing some thin bands of fine sandy siltstone and thicker zones of darker brown mudstone. Pyrite framboids and blue-grey reduction zones occur from place to place. Thin veins of anhydrite, generally sub-vertical, occur sporadically throughout the core. Shallow water sedimentary structures are common and include cross-bedding, scour and fill, flame structures, dewatering channels, intraformational brecciation and slumping, graded bedding, dessication cracks and ripple marks. From 1023.8 to 1097.95 m, the laminated sequence contains more mudstone than siltstone. Below about 1050 m, cyclic graded bedding is common: each cycle is 1-3 cm thick, and has a silty base (often with a few granules of granitic material in a tiny scour channel) which grades upward into mudstone. Dessication cracks, scour and fill structures and flame structures are common. Anhydrite veins occur throughout the section, and are especially abundant in the top 4 m just beneath the basalt flow.

A dark grey amygdaloidal tuff occurs at 1097.95-1100.6 m. It has a sharp basal contact, and a gradual change at the top into banded red beds. It contains flattened amygdales of anhydrite and calcite.

From 1100.6 to 1308.45 m the cyclic graded bed sequence of red beds contains approximately equal quantities of mudstone and siltstone, although there is an increase in the thickness and frequency of conglomeratic beds. There are a few thin beds of fine sandstone. This interval again contains anhydrite veins and nodules, and many sedimentary structures.

The basalt intervals at 990.4-1023.8 m and 1308.45-1398.2 m contain vesicular, amygdaloidal and massive basalt flows. The basalt mainly consists of sericitised and albitised plagioclase, chloritised pyroxene and oxidised magnetite. Amygdales are filled by prehnite or chlorite, or their alteration clays.

The upper basalt interval appears to consist of one amygdaloidal flow, whereas the lower interval contains about 10 individual flows, each characterised by a vesicular purplish-brown top, a medium to coarse grained amygdaloidal centre, and a finer grained massive basal section. Their thickness varies from 0.5 m to 24 m. Native Cu occurs disseminated and in veins around 1380 m, and large hematite grains are common below 1388 m.

The red bed/basalt sequence is tentatively ascribed a Cambrian age by analogy with similar sequences in the Officer Basin. It is hoped that K-Ar age dating of the basalts to be carried out by SADME will provide a definite age for this sequence.

6.2 Mineralisation

No evaporitic minerals were intersected in the hole, except for the veins of anhydrite which occur sporadically throughout the red beds.

The 5.5 m thick lignite intersection at 199 m is part of a known seam that was drilled and evaluated by CRAE in 1981 (see CRAE report no. 10307). The Jurassic coal intersection at 456.8 m is thin and of very poor quality. Analyses are given in Appendix I.

Native copper was noted in basalt between 1378.4 and 1382.5 m as disseminations, joint coatings and vein fillings. Maximum assay was 0.4% Cu over the interval 1378-1379 m.

In order to check for any unsuspected occurrences of metals, five samples of the grits at the base of the Jurassic and four samples of diamictite were assayed for U and Au but all values were below detection limit (see log sheets in Appendix V). Also, four samples of red beds, one of tuff and six of basalt were analysed for Cu, Pb, Zn, Ni, Co, Ag, U and Au. These assays are also given on the log sheets in Appendix V. Furthermore, 26 samples of basalt were analysed for the above elements plus Bi, Cr, Ba, Ce, Nb, Rb, Sn, V, Sr, Y, Zr and Ti as part of a SADME project to characterise the basalts geographically and chronologically by comparison with similar data from other basalt suites elsewhere in the state. These trace element analyses appear in Appendix III.

Specific gravity determinations were carried out on 10 samples of red bed mudstone/siltstone and 10 samples of basalt. A table of results is given in Appendix IV. For the mudstone/siltstone sequence, there appears to be significant change in s.g. around 900 m, the average above that depth being 2.51 and below being 2.68. For basalt, the average s.g. of the vesicular variety is 2.66, the amygdaloidal type 2.86 and the fine grained dense parts 3.00. It is estimated that these three sub-types occur in the ratio 1:7:2 in the drill core, thus giving an average s.g. for basalt of 2.87.

6.3 Geophysical Logging

The hole was logged at 596 m and again at total depth by Geoscience Associates Pty. Ltd.

At 596 m, before casing was set, the following tools were run: caliper, natural gamma, neutron, 30 cm density, 80 cm density, sonic and drift. At total depth the HQ casing was removed so that the hole was uncased below 596 m. Logs run below 596 m were natural gamma, neutron, self potential and resistivity (0.4 m and 1.6 m normal and 1.8 m lateral) to a depth of 1384 m (due to shortage of cable) and caliper and long and short spaced density to 701 m (due to hole blockage). All of these, except 0.4 m normal and 1.8 m lateral resistivity, are shown on the composite borehole log (plan no. SAa 2805).

7. INTERPRETATION OF DRILLING RESULTS

7.1 Re-interpretation of Seismic Section

On the basis of the lithological and palynological data derived from 83KD1A, the Kilroo seismic traverse (plan no. SAa 2653) can be re-interpreted. The new interpretation is shown on a transparent overlay (plan no. SAa 2654) to the section.

The main changes to the pre-drilling interpretation are:
(a) the increase in thickness of the Jurassic section and consequent thinning of the Permo-Carboniferous, and
(b) the recognition that the upper volcanic intersection (990-1024 m) is represented by the interval between the two strong reflections at about 0.77 and 0.80 seconds.

The position of the lower volcanic unit (the top of which was at 1308 m) is not obvious from the profile, and the depth to Precambrian basement is still unknown.

7.2 Depositional Environments

7.2.1 Tertiary

The clays, sands and lignite of the Tertiary sequence were deposited in a variety of environments including a possible marine barred basin, and non-marine fluviatile and paludal environments.

7.2.2 Jurassic

The alternating silts and sands in the upper three-quarters of the Jurassic section in 83KD1A appear to have characteristics of flysch-type sedimentation.

Deep marine conditions would have prevailed, with periodic rapid influxes of detritus. The grits and clays at the base of the Jurassic suggest initial basin development, with occasional still-stands providing swampy conditions of limited areal extent.

12

AGE			KAKE	ROCK UNIT	MAXIMUM THICKNESS (metres)	LITHOLOGY	STRATIGRAPHIC RELATIONS	EXPRESSION
CAINOZOIC	QUATERNARY	Pleistocene		Bridgewater Formation	30 m	Sand, off-white, cemented calcareous, clay interbeds	Uppermost unit in sequence	Outcrops west of Lock and in cliffs Drill holes
	QUATE	7		Undifferentiated	6-7 m	Clay, vari-coloured, calcareous	Underlies Bridgewater Formation	
		Middle Miocene		Undifferentiated	70 m	Green to grey clay & carbonaceous clays. Grey poorly sorted coarse sand & carbonaceous sand	Relationships unknown. Correlated with Munno Para Clay.	Many holes in Polda Trough
	TER	Middle Eocene		Poelpena Formation	Greater than 200 m	Grey, dark grey & brown coarse sand & lignite. Very carbonaceous	Unconformably on Jurassic. Overlain unconformably by ?Miocene or Quaternary	Many holes in Polda Trough - absent on southern edge. 81L41C cored hole.
MESOZOIC		Upper Jurassic	•	Polda Formation	500 m	Dark grey to black very carbonaceous fine sand, silt & lignite and very coarse grey sands	Unconformably on Permain & Precambrian. Unconformably overlain by Tertiary	Many drill holes in Polda Trough
PALAEOZOIC		Permo-Carboniferous		Coolardie Formation	Greater than 180 m	Pyritic diamictite 5 clay	Unconformably on Archaean & Proterozoic. Unconformably overlain by Jurassic	Polda No. 1 stratigraphic drill hole. Tuckey No. 1 stratigraphic drill hole. 80L30C & 83KDlA cored holes.
		Lower Cambrian			2200 m	Red shales & silt- stones, massive halite, amygdaloidal basalts	Lower contact not observed. Unconformably overlain by Permo- Carboniferous	Hercury No. 1, Columbia No. 1, 83KD1A.
PROTEROZOIC		Adelaidean		Corunna Conglomerate	Exceeds 200 m	Conglomerate, sandstone a shale	Unconformably on Lincoln Complex. Unconformably overlain by Permian, Jurassic & Tertiary	
		Carpentarian	Lincoln Complex			Granite, gneiss, migmatite, granulite, augen gneiss, quartzo- feldspathic gneiss. Synkimban Orogeny granites. Basic intrusives.	Overlain unconformably Corunna Conglomerate. Underlain by Hutchison Group	Southeast and northeast of Lock
		Nullaginian	Hutchison Group	Middleback Formation Warrow Quartzite		Hetasiltstone, schist, iron formation, marble & quartrite	Overlain by Lincoln complex & underlain unconformably by Sleaford Complex	Outcrope southeast of Lock. May occur in drill holes
		Lower Proterozoic 6 Archaean	Sleaford Complex	Widbey Granite Kiana Granite	7	Granite, granite gneiss, schist, granulite metasediments, basic intrusives	Overlain unconformably by Hutchison Group	Outcrops north & south of Lock. May occur in drill holes

7.2.3 Permo-Carboniferous

The fine grained laminated white sands in the top half of the sequence were probably deposited in a terminal glacial lake in which floating ice dumped pebbles and other detritus from time to time. The grey diamictite is a typical unsorted glacial deposit.

7.2.4 (?) Cambrian

The abundance of dessication cracks, fine scours and intraclasts of mudstone show that the red beds were deposited in very shallow water with frequent periods of emergence, whilst the absence of evaporite mineral casts strongly suggests that the water was non-marine. The depositional environment is envisaged as a large shallow inland lake in which intermittent inundation from both runoff and direct precipitation caused reworking of the upper few millimetres of sediment to produce a thin graded bed, followed by deposition of another few millimetres of fine detritus. After drying, the clayey surface layer cracked and was incorporated as intraclasts in the later overlying layer of sediment.

The basalts appear to have been extruded subaerially as evidenced by abundant vesicular, purplish-brown (oxidised) layers and lack of pillow structures. A flat topography is indicated by sub-horizontal layering in places and absence of brecciation on flow bottoms, whether they be basalt/basalt contacts or mudstone/basalt contacts. If the above two assumptions are correct, they imply that a large volume of lava spread over a fairly wide area, and this in turn suggests a deep seated source. The lack of brecciation and presence of tuffaceous sediments may also indicate considerable distance from the vent.

7.3 Geological History

A revised stratigraphic chart for the Polda Basin appears in Table 1.

Prior to (?)Cambrian sedimentation, the area must have had little topographic relief. A large inland depression then developed in which fine sediment (containing iron hydroxides?) was slowly deposited and then reworked during periods of intermittent inundation by fresh water. Although saline evaporite minerals were absent from the succession, gypsum must have been deposited in small amounts, to be subsequently altered by diagenesis to veins and nodules of anhydrite.

At various times during the (?) Cambrian deep fractures apparently tapped mantle magmas allowing extrusion of basalts over wide areas. Deuteric or later effects caused extensive alteration to the basalts and may have been accompanied by the introduction of native copper.

It is interesting to speculate whether these deep fractures were an early indication of an inherent weakness in this part of the earth's crust where the Polda Trough was later to form.

There is a large gap in the stratigraphic record until the Permo-Carboniferous when glacial activity was widespread, presumably on a terrain of high relief. The assumed uplift may have been the first significant event in the period of tectonic instability that culminated in the development of the later rift.

At the site of 83KD1A, the Permo-Carboniferous record of unsorted diamictites overlain by laminated lake sediments suggests the retreat of a glacier.

By the early Jurassic, isolated rift grabens such as the Polda and Robe-Penola Troughs had begun forming (Fraser and Tilbury, 1979). The chief structure in the Kilroo Sub-basin is the east-west fault marking its northern boundary. The seismic section (plan no. SAa 2653) suggests that the sub-basin is a half-graben. Continued faulting lead to the development of more extensive rift valleys parallel to the continental shelf, but the Polda was bypassed by this phase.

Initial sediment influx into the Polda rift valley consisted of a mixture of coarse and fine material of probable fluviatile origin together with the development of coal swamps in places. The bulk of Jurassic sedimentation, however, was a deep marine flysch facies of alternating silts, silty sands and sands, typical of rapidly filling deep troughs, although shallower facies were deposited locally.

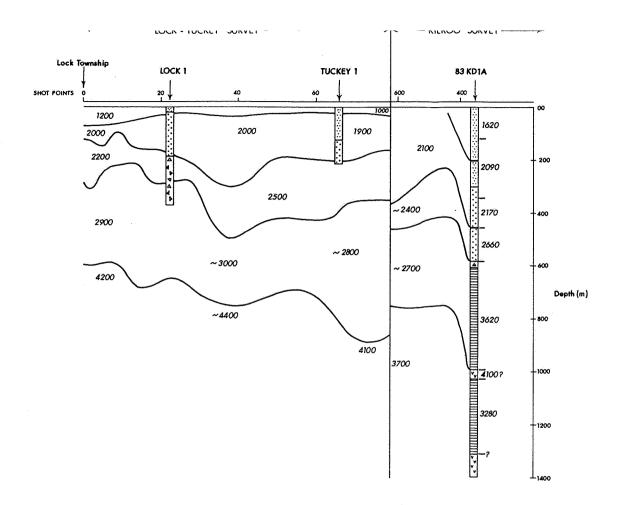
Separation of the Australian and Antarctic plates was completed by the Eocene, at which time the Polda Trough was accumulating fluviatile and lacustrine sequences of sands, silts and lignite.

8. IMPLICATIONS FOR POTASH EXPLORATION

8.1 Regional Correlations

The pre-Permian red bed sequence intersected in 83KD1A appears very similar to the red beds in Mercury No. 1 between the Permian diamictites and massive halite, and also to the Trainor Hill Sandstone of the Officer Basin as found in the Marla area (e.g. in Byilkaoora No. 1) (Benbow and Pitt, 1979).

Further, the basalts in 83KD1A are almost identical to descriptions of basalts from the Kulyong Volcanics of the Officer Basin. The Kulyong Volcanics are generally believed to lie approximately at the boundary between the Observatory Hill Beds and the overlying Trainor Hill Sandstone.


Thus, if the halite in Mercury No. 1 is assumed to be equivalent to the evaporites and carbonates of the Observatory Hill Beds, then the following regional correlation can be made.

Polda Ba	sin	Officer Basin		
Mercury No. 1	83KD1A	OTTIGET BUBLI		
Red Beds	Red Beds	Red Beds (Trainor Hill Sst)		
	Basalt	Basalt (Kulyong Volcanics)		
Evaporites	?	Evaporites (Observatory Hill Beds)		

If these correlations are correct (and there is a large amount of supposition about them at the present time) then it is clear that 83KD1A was not drilled deep enough to determine whether the evaporite sequence is present or not beneath the basalt in the Kilroo Sub-basin.

8.2 Potash Potential

The stratigraphy of the Kilroo Sub-basin below 1400 m at the site of 83KD1A is not known. Two suggestions arising from a study of the seismic section are that the basalt may continue to the bottom of the basin at about 2300 m, or that Corunna Conglomerate may lie beneath the basalt with

25 kilometres HORIZONTAL 1000 metres VERTICAL 0

LEGEND

Coal or lignite

Tertiary

Permo-Carboniferous

Calculated seismic velocity (m/sec)

Interpreted reflection

CRA EXPLORATION PTY LIMITED

TUCKEY, EL 1054 - S.A. SEISMIC INTERPRETATION FROM LOCK TO KILROO

REF.	KIMBA SI 53-7	
SCALE	H: 1:250000 V: 1: 10 000	
AUTHOR	AKS	REPORT 12673
DATE	1-6-84	PLAN No SAa 2812

basement occurring somewhere between 1900 and 2200 m. Both of these suggestions are very tentative.

From the seismic section and from regional gravity, it is believed that 83KD1A was drilled in, or close to, the deepest part of the sub-basin, and therefore in the most favourable location for intersecting evaporites if they exist. Although the same stratigraphy is likely to be shallower in areas around the margin of the sub-basin, these areas are unlikely to be favourable for evaporite accumulation. Furthermore, a compilation of the SADME Kilroo seismic data and a 1976 SADME seismic traverse from Lock to Tuckey (McInerney, 1977) suggests that the pre-Permian stratigraphy rises about 400 m from Kilroo to Lock, but this still leaves the top of any evaporite sequence beneath the basalt at a depth no shallower than about 1000 m (see plan no. SAa 2812).

Although the quality of the 1976 seismic data is not good, and the interpretation was based on very limited drillhole information, there does seem to be some thinning of the pre-Permian sequence westwards towards a possible basement ridge in the Lock area (suggested by the regional gravity). If this is so, it would indicate that the ridge was a topographic feature during pre-Permian sedimentation, thus confirming that the geographic centre of the sub-basin was also the depocentre and likely site for evaporite accumulation.

9. CONCLUSION

Although there is no proof of age relationships yet available for the pre-Permian stratigraphy intersected in 83KD1A, there is reasonable circumstantial evidence to suggest that the stratigraphic position of an evaporite sequence in the Kilroo Sub-basin is beneath the basalt at the bottom of the hole. However, this is not to say that evaporites do exist in this sub-basin: they could be replaced by a thick sequence of basalt, Corunna Conglomerate or some other (unknown) unit.

If evaporites do exist, they are most likely to occur in the vicinity of 83KD1A and will be at a depth greater than 1400 m. They are unlikely to occur at shallower depths closer to the basin margins.

A.K. SCOTT

EXPENDITURE

Expenditure for the period ended 30th April, 1984, the nearest accounting period was \$160 073.00, as listed below.

	•	Ý
	123	696
	16	930
	2	807
	3	486
	2	162
		575
	3	213
	7	204
Total	\$160	073
	Total	16 2 3 2 3 7

REFERENCES

Benbow, M.C. and Pitt, G.M., 1979.

Byilkaoora No. 1 Well Completion Report. SADME Rept. Bk. No. 79/115.

Fraser, A.R. and Tilbury, L.A., 1979.

Structure and Stratigraphy of the Ceduna Terrace Region, Great Australian Bight Basin. APEA Jour. Vol. 19, Pt. 1.

McInerney, P.M., 1977.

Seismic Refraction Investigations in the Polda Basin. SADME Rept. Bk. No. 77/74.

LOCATION

Kimba SI 53-7 1:250 000

KEYWORDS

Coal, Potash, Basin, Drill-rotary, Geophys-seismic, Drill-diamond.

LIST OF PLANS

Plan	No.	<u>Title</u>	5	cal	<u>.e</u>
SAa 1		Tuckey E.L. 1054 Location Map			000
SAa 2	2361	Tuckey E.L. 1054 Polda Basin - S.A. Geology, Geophysics and Drillholes	1:2	250	000
SAa 2	2657	Tuckey E.L. 1054 Comparison between Prognosed and Actual Stratigraphy	1:	5	0.00
		in 83KD1A			
SAa 2	2653	Tuckey E.L. 1054 Kilroo Seismic Section	1:	25	000
SAa 2	2654	Tuckey E.L. 1054 Kilroo Seismic Section. Interpretation	1:	25	000
SAa 2	2812	Tuckey E.L. 1054 Seismic Interpretation from Lock to Kilroo	1:2	250	000
SAa 2	2805	Tuckey E.L. 1054 Composite Borehole Log 83KD1A.	1:		5.00

LIST OF TABLES

Table 1 Stratigraphy Of The Polda Basin

LIST OF APPENDICES

I	Coal Analyses
II	Petrographic Examinations
III	Drillcore Analyses
IV	Specific Gravity Determinations
77	Detailed Geological Log of 83KD1A

APPENDIX I

COAL ANALYSES

The Australian Mineral Development Laboratories

nington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662 Telex AA 82520

Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

amde[

83 KD 1A

13 March 1984

F1/16/0 6472/84

Department of Mines & Energy S.A, PO Box 151,

EASTWOOD SA 5063

Attention: George Kwitko

REPORT F6472/84

CLIENT REFERENCE:

EX-135, 12/06/234

TITLE:

Coal quality and rank of seven coal

samples from CRA KD-1A

SAMPLE IDENTIFICATION:

Samples 1-7

MATERIAL:

Coal

LOCALITY:

CRA KD-1A; Polda Basin

DATE RECEIVED:

23 February 1984

WORK REQUIRED:

Proximate analyses, ultimate analyses, specific energy and

vitrinite reflectance

Investigation and Report by: Brian L. Watson

Chief - Fuels Section: Dr Brian G. Steveson

Manager, Mineral and Materials Sciences Division: Dr William G. Spence

Bruin fleuera.

for Brian S. Hickman Managing Director

lemington Street, Frewville
South Australia 5063,
Telephone (08) 79 1662
Telex: Amdel AA82520
Pilot Plant:
Osman Place
Thebarton, S.A.
Telephone (08) 43 8053
Branch Laboratories:
Melbourne, Vic.
Telephone (03) 645 3093
Perth, W.A.
Telephone (09) 325 7311
Townsville
Queensland 4814

Telephone (077) 75 1377

Head Office:

cah

TABLE 1: PROXIMATE ANALYSES

	Sample No.	Depth	Moisture	Volatile	Fixed	Ash
	NO.	(m)	(%)	matter (%)	carbon (%)	(%)
1	1	456.80-457.09	15.0	29.8	19.3	35.9
	2	457.09-457.30	7.1	22.3	8.4	62.2
urasic	- 3	457.30-457.60	12.1	28.2	16.1	43.6
	4	457.60-458.01	11.8	29.2	15.9	43.1
	5	458.01-458.20	7.6	25.0	8.3	59.1
₩	6	458.20-458.40	12.9	30.6	16.2	40.3
MO-	7	568.20-568.60	21.5	27.1	24.3	27.1
niferous	3&4*	457.30-458.01	11.4	-		. -

 $[\]star$ composited on an equal weight, as received basis

TABLE 2: ULTIMATE ANALYSES AND SPECIFIC ENERGY

Sample No	Depth (m)	C (%)	H (%)	S (%)	C1 (%)	Na (%)	Gross Specific Energy (MJ/kg)
3&4*	457.30-458.01	28.9	3.00	0.23	0.71	0.76	11.64
7	568.20-568.60	35.0	2.88	1.38	0.96	0.99	13.92

^{*}Composited on an equal weight, as received basis

TABLE 3: VITRINITE REFLECTANCE MEASUREMENTS

Sample No	Depth	Mean Maximum Reflectance	Standard Deviation	Range	Number of Determinations
	(m)	(%)			Decerminacions
3&4*	457.30-458.01	0.26	0.03	0.21-0.35	42
7	568.20-568.60	0.29	0.04	0.21-0.36	41

^{*}Composited on an equal weight, as received basis

ï

APPENDIX II

PETROGRAPHIC EXAMINATIONS

Pontifex & Associates Pty. Ltd.

00089

TEL. 332 6744 A.H. 31 3816 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

MINERALOGICAL REPORT NO. 4266

27th March, 1984

TO:

Mr. David Andrews

Mr. Tony Scott,

CRA Exploration Pty. Ltd.,

PO Box 254

NORWOOD SA 5067

COPY TO:

The Administrator,

CRA Exploration Pty. Ltd.,

PO Box 254

NORWOOD S.A 5067

The Manager,

Information Services

CRA Exploration Pty. Ltd.,

PO Box 656

FYSHWICK ACT 2069

YOUR REFERENCE:

Order No. B0859

MATERIAL:

Drill core

IDENTIFICATION:

1158223 1158224

1130224

1158225

WORK REQUESTED:

Thin section, petrographic description

SAMPLES & SECTIONS:

Returned to you with this report.

PONTIFEX & ASSOCIATES PTY. LTD.

<u>1158223</u>: strongly vesicular basalt;

vesicules filled by chlorite, sericitic clays

Depth and prehnite;

992.4 m rock also albitised and oxidised.

This core represents a relatively coarse basalt, gradational in texture to (subophitic) fine dolerite; it contains abundant vesicles (7 to 10% of the rock).

Albitised plagioclase laths 0.2 - 0.7 mm in length, are interlocked with vague common orientation to form the essential rock-forming aggregate, which contains scattered subophitic pyroxene grains (10 - 12%) about 0.3 mm in size, also small oxidised magnetite grains.

Vesicles have a random size to 10 mm in diameter. They are slightly irregular in shape, rimmed by chlorite, with in some vesicles a more sericitic clay interleaved with the chlorite. In-fillings of fibrous (rather than platy) prehnite occur in the larger vesicles, but appear to be partly to completely altered to a nearly isotropic brownish clay. There is a generalised parallelism of some of the more elongate vesicles (?flow orientation).

1158224: coarse grained vesicular basalt (gradational to micro-dolerite); abundant, highly irregular vesicles, more or less interstitial, filled by chlorite + trace prehnite.

This rock is broadly similar to 1158223, but is coarser crystalline. The essential aggregate of plagioclase laths, 0.2 to 1.2 mm. long, are relatively more randomly interlocked, and clouded by clay alteration, as well as albitised, and partly altered to fine prehnite. Pyroxene crystals (15%) to 1 mm, are scattered with a subophitic textural relationship. These are altered to chlorite with hematite on fractures, and grain boundaries. Opaque oxide grains are disseminated.

Vesicles in this rock are highly irregular, and more or less interstitial, with their margins defined by projecting plagicclase crystal faces. They are up to 4 mm in length and are filled by chlorite with very rare interleaved ?prehnite.

altered olivine-bearing basalt;

abundant vesicles filled with chloritic clays.

Deple 1022.8 m

This is a finer-grained basalt than 1158223 - 4, with smaller (0.2 to 0.8 mm), random felspar laths forming an aggregate studded with abundant pyroxene crystals 0.2 mm in size. The plagioclase is altered to albite and very fine sericite; the pyroxene is altered to chloritic-clays.

Clay-limonite pseudomorphs after olivine crystals (3 - 5%). Disseminated Fe \pm Ti oxides are oxidised and very fine grained.

Irregular vesicles 0.5 - 5 mm in length have a vaguely layered distribution with the elongate vesicles showing a common (?flow) orientation, (although the felspar laths are not oriented). Fibrous yellow chloritic clays fill the vesicles with fractures filled by ?saponite.

Pontifex & Associates Pty. Ltd.

TEL. 332 6744 A.H. 31 3816 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

MINERALOGICAL REPORT NO. 4270

5th April, 1984

TO:

Mr. A.K. Scott,

CRA Exploration Pty. Ltd.,

PO Box 254

NORWOOD S.A. 5067

COPY TO:

The Administrator,

CRA Exploration Pty. Ltd.,

PO Box 254

NORWOOD S.A 5067

The Manager,

Information Services, CRA Exploration Ltd.,

PO Box 656

FYSHWICK ACT 2069

YOUR REFERENCE:

Order No. B0619

A/C No. 4479

MATERIAL:

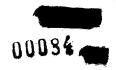
Drill core samples

IDENTIFICATION:

1159017 to 1159025

WORK REQUESTED:

Thin section preparation,


petrographic description with

comments as specified.

SAMPLES & SECTIONS:

Returned to you with this report.

PONTIFEX & ASSOCIATES PTY. LATD

COMMENTS

The core samples in this batch represent three essential lithologies.

- 1. Samples 1159017, 1159021, 1159023, 1159024, all represent a fine, commonly graded, thin bedded, sandstone-siltstone-claystone facies, dominated by detrital quartz-muscovite and microcline but including minor to abundant authigenic anhydrite, quartz and carbonate. These sequences may result from the repeated flooding of an ancient playa lake backswamp, or saline flood plain environment. The detritus is derived mainly from fine grained, micaceous metasediments. There is no tuffaceous component in any of these rocks.
- 2. Samples 1159018, 19, 20 and 25, are amygdaloidal basalts, with vesicles filled variously by chlorite, interlayered chlorite and sericite, carbonate, and prehnite, rarely with traces of pumpellyite and anhydrite. This assemblage indicates temperatures in the range $150 300^{\circ}$ C, depending on pressure. One of these (1159020), was an olivine basalt, with the olivine now replaced by hematite and chlorite.
- 3. Samples 1159022 is a volcaniclastic fine sandstone with some admixed clastic detritus from facies (1), above, and small vesicle—shaped concretions mostly of anhydrite, but with less abundant carbonate, quartz and albite.

Objectively, based only on the petrography, the depositional environment of this sequence may be interpreted as one of broad mature streams, possibly ephemeral type, crossing a system of playa lakes or saline flood plains, with sporadic intercalated basaltic flows. Most of the sediments are derived from a metamorphic area of probably low-grade metasediments(quartz-biotite-muscovite + chlorite + microcline), but with sparse shallow-water carbonate

The volcaniclastic sediment 1159022 is probably an epiclastic facies, distal from the then main centre of volcanism.

Saline groundwaters were conceivably responsible for the deposition of sulphate, quartz/chalcedony, and some carbonate in the sediments, although the sulphate may be primary of evaporite genesis.

Burial metamorphism with temperatures of 150°C plus, has then caused the formation of the anhydrite as now seen, also of some calcite and quartz in the sedimentary facies. The chlorite, and the prehnite + pumpellyite + chlorite + calcite + anhydrite assemblages in the basalts, have also most likely formed by percolating groundwaters rich in dissolved salts, becoming localised in voids, and interstitial areas, and finally crystallising the minerals during burial metamorphism.

**

limonitic, micaceous and felspathic, fine quartz sandstone, with siltstone lenses and minor authigenic carbonate

Depth 613.7 m

This is a thin bedded micaceous sandstone, with a bedding foliation defined by strongly oriented flakes of detrital white mica (7 - 10% of the whole rock). Detrital grains of quartz and microcline in subequal proportions form the bulk of the rock, with a grain size of 0.1 to 0.2 mm. LImonite is common on grain boundaries.

Lenses of siltstone up to 2 mm thick occur in some parts of the sandstone. These are parallel to the bedding and have variously, sharp or diffuse contacts with the sandstone. They are richer in mica and limonite than the sand. Most of the siltstone bodies appear to be lenses but some appear to be fragments (intraclasts).

Authigenic carbonate (5 - 7%) occurs as patches about 1 mm in size, composed of one or two grains.

Accessory minerals include oxidised opaque grains and chlorite after biotite. There is no obvious volcanic detritus.

coarse crystalline basalt or dolerite,

with interstitial areas filled by chlorite,

lesser clouded clinozoisite;

Depth 1370.9 m

also accessory prehnite and trace pumpellyite

At least 50% of this rock consists of randomly and intimately interlocked laths of albitised, weakly chloritised and sericitised, plagioclase laths 0.5 - 2 mm in length, and about 30% consists of granular to subophitic clinopyroxene.

Opaque oxides (10%) are disseminated, and irregular, amoeboidal to skeletal intersticies between plagioclase laths are mostly occupied by extremely fine fibrous chlorite of apparent deuteric origin. Clouded clinozoisite/epidote occurs in some of these interstitial areas with very minor prehnite and traces of pale green pumpellyite. Rare replacement of plagioclase by prehnite occurs in some areas.

limonitised-glassy and vesicular basalt, vesicles filled by fibrous prehnite and trace pumpellyite

Depth 1384.6 m

The bulk of this rock consists of a densely limonitised glassy groundmass crowded with random very small felspar crystals (35%), and euhedral to skeletal clinopyroxene crystals (15%).

Numerous vesicles up to 8 mm in mean diameter, are lined by chlorite and filled by fibrous (rather than platy) prehnite. Small rosettes of pale green pumpellyite occur on the walls of some of the vesicles.

vesicular olivine basalt,

intersticies and vesicles filled by

Depth

prehnite, calcite, chlorite and rare anhydrite;

fine hematite-chlorite pseudomorphs after

olivine (reddish metallic mineral)

Field note:

1390.0 m

identify the reddish metallic mineral

About 40% of this rock consists of random, albitised plagioclase laths 0.2 - 2 mm long, aggregated with granular to subophitic pyroxene crystals (30%), and hematite-chlorite pseudomorphs after olivine crystals (7%).

The reddish material mentioned in your field note is probably the hematite in these pseudomorphs, although accessory disseminated magnetite is also hematised (oxidised).

Numerous irregular intersticies, mostly between plagioclase laths are filled by various mixtures of fine fibrous chlorite, rarer calcite, and prehnite, with rare calcite—anhydrite pseudomorphs of thin platy crystals (?qypsum).

Vesicles which are really enlarged intersticies, are filled mainly by fibrous prehnite and carbonate.

micaceous-felspathic-limonitic siltstone

grading into limonitic mudstone;

Depth

1025.0 m

minor, scattered small reduction spots, including a thick conformable vein or

recrystallised bed of anhydrite

Field note:

identify the whitish translucent mineral

This sample has weakly graded beds of a finer clastic (more distal?) facies than that represented by samples 1159017 and 1159024.

Basically it consists of thin beds (0.2 to 1 mm) with silty bases grading into thicker limonitic mudstone, which may have originally been sideritic (?flood-plain/backswamp deposits). Muscovite, quartz and microcline are the main detrital minerals, with minor chlorite, possibly after biotite.

Relatively thicker siltstones(15 mm thick) occur at the top and bottom of the core sample. One of these thick siltstones is separated from the apparently overlying mudstone by a thick conformable vein (?? or recrystallised bed) of blocky anhydrite, which sends a thin irregular offshoot cutting across the whole siltstone-mudstone sequence. This anhydrite is presumably the "whitish translucent mineral" mentioned in your field notes.

mixed volcaniclastic, and clastic-micaceousfelspathic siltstone to very fine sandstone; minor small ovoid nodules variously of anhydrite,

Depth

10993 m

calcite, lesser albite and quartz

This rock is a very fine grained epiclastic sediment, despite its remarkable similarity in hand specimen to a vesicular basalt.

The main detrital component is variously chloritised, silicified and/or limonitised glassy volcanic fragments (but not shards), with minor quartz, plagioclase, microcline and white mica. The grain size is 0.03 - 0.1 mm - i.e. silt to very fine sand size.

The mica tends to be more altered (expanded across the cleavage and ?kaolinised) than in the sediments with no volcanic components. Rare larger limonitised clasts to 1.5 mm long are present.

Authigenic concretions form about 10% of the rock; they are 0.2 to 2 mm in maximum diameter, with a circular to elliptical shape and filled mainly by granular to bladed anhydrite and granular calcite. Minor quartz and albite occur in some of them, and rare detrital grains occur in some.

disrupted, carbonate-rich, micaceousfelspathic-limonitic sandstone, siltstone and mudstone, with authigenic carbonate, anhydrite,

Depth

1181-9 m

quartz and rare adularia

This sample represents a graded sandstone-siltstone-mudstone sequence, with disrupted sandstone layers, overlying a predominantly muddy unit incorporating abundant authigenic anhydrite, quartz and carbonate. The graded sequence is right way up, in relation to the "up" arrow on the sample.

This graded sequence occupied 15 mm of the thin section and has units 2 - 7 mm thick, with fine detrital muscovite, quartz, microcline, varying rapidly within each unit from a size of 0.2 mm (fine sand) to <0.1 mm (mud, fine silt).

The matrix is rich in carbonate, including scattered patches of authigenic carbonate, and scattered small blades of authigenic anhydrite. Large lenses of quartz (with some chalcedony in a spherulitic pattern) and anhydrite occur in sandy parts of the two uppermost, thickest units. Minor authigenic adularia occurs locally.

The disrupted mudstone unit has lenses and shreds of micaceous-limonitic mudstone 0.2 - 10 mm in length, in a clear matrix dominated by granular to bladed anhydrite with minor carbonate and granular to radiating quartz and/or chalcedony. The mudstone contains minor detrital muscovite, quartz and microcline silt.

sequence of graded, quartz-muscovite-

microcline, very fine sandstone-siltstone-

Depth

claystone units, including greenish claystones,

1183.6 m

and accessory carbonates;

minor authigenic anhydrite

Field note:

do the greenish bands contain tuffaceous material?

This sedimentary sequence consists of graded very fine sandstone-siltstone-claystone units 4 - 15 mm thick. The main detrital minerals are quartz, muscovite and microcline, with minor chlorite, accessory carbonate, and fine greenish clays in the finer grained units.

There is no recognisable tuffaceous component.

The grading is right-way-up in relation to the "up" arrow on the sample, with a grain size variation from 0.1 mm (very fine sand) to less than 0.03 mm (fine silt-clay). A quartzofelspathic layer with minor chlorite and biotite, at the base of each unit is followed by a more micaceous layer with abundant muscovite, and minor biotite and chlorite, as thin, strongly oriented flakes, to 0.4 mm long. The quartz and felspar in this layer are about 0.05 mm in size (coarse silt). Opaque oxides are most abundant in these layers. with accessory leucoxene in the claystone layers.

Minor authigenic anhydrite occurs in the sandier layers. It has a bladed habit like that of the detrital micas but blockier, or a granular habit, when finer grained.

flow-layered basalt

with vesicular schlieren containing chlorite,

Depth

and/or sericite; disseminated oxidised opaque

1330.4 m

Despite the fine clastic, volcaniclastic layered appearance of this hand specimen, the rock is seen in hand specimen to be holocrystalline, manifest as a felted aggregate of small sericitised felspar laths 0.1 - 0.2 mm long, and subordinate pyroxene granules

0.05 - 0.1 mm in diameter, with a limonitised mesostasis.

grains and oxidised pyroxenes

The layers in this rock consist largely of discontinuous, thin elongate voids along schlieren, 0.5 to 2 mm thick, within the felted aggregate and filled by fibrous chlorite and/or sericite, with scattered oxidised opaque crystals (?pyrite). are also lined by altered felspars and oxidised pyroxene crystals.

The schlieren were probably formed by shearing when the extrusive magma was very thick and viscous.

APPENDIX III

DRILLCORE ANALYSES

NATA REGISTERED No. 1526

UR REF .:

COM 840503

OUR REF.:

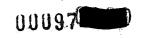
DPO B 0621

Mr. A. Scott, CRA Exploration Pty Ltd, 31 Osmond Terrace, NORWOOD SA 5067,

5.4.84

Pear Tony,

RE: JOB COM 840503


Enclosed are the assays for the samples delivered to our laboratory on the 20th March 1984.

Yours sincerely, COMLAPS PTY LTD

per:

c.c.: NORWOOD

c.c.: FYSHVICK

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

Ŧ	^	D	CO	M Q	1. 1	۱ د	$^{\circ}$
	u	n	LU.	и о	41		\mathbf{v}

O/N : B 0621

		Re	sults i	n ppm			
SAMPLE	Cu	Рb	Zn	Ni	Co	Bi	Cr
1159026	18	6	65	48	28	< 4	14
1159027	20	.8	80	38	26	<4	6
1159028	24	6	38	38	26	<4	6
1159029	18	8	65	60.	32	<4	6
1159030	14	4	65	48	24	<4	4
1159031	2.0	6	36	50	30	<4	6
1159032	26	4	120	70	34	<4	1.8
1159033	1 2	6	135	6.0	36	<4	12
1159034	1 2	6	85	38	28	< 4	6
11,59035	38	6	70	50	30	<4	:6
1159036	26	4	90	60	38	<4	14
1159037	4 2	4	9.5	48	28	<4	8
1159038	16	6	3 2	36	22	<4	6
1159039	1 2	6	48	36	2.2	<4	6
1159040	12	4	65	34	20	<4	6
1159041	28	4	120	46	30	<4	8
1159042	1 4	6	120	38	26	<.4	6
1159043	16	6	80	38	30	<4	8
1159044	2 0	6	55	46	32	<4	10
1159045	5 5	6	210	32	2.6	<4	6
1159046	5 5	4	65	36	28	<4	6
1159047	700	6	6.0	28	18	<4	6
1159048	2.4	4	75	40	28	<4	8
1159049	16	6	85	3 4	28	<4	8
1159050	3 2	6	75	3 2	. 28	<4	3,

- 2 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840503

o/N : B 0621

Results in ppm

SAMPLE	Cu	РЪ	Zn	Ni	Со	Bi	Cr
1159051	6	6	80	36	28	<4	8

Method of Analysis : Cu Pb Zn Ni Co Bi : AAS1 Cr : AAS2

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840503

O/N : B 0621

		Rea	sults i	n ppm			
SAMPLE	Вa	Ce	Nb	RЪ	Sn	ВA	v
1159026	10	<20	8	8	<4	<1	200
1159027	<10	20	7	6	<4	<1	220
1159028	4 5	20	7	16	8	<1	170
1159029	<10	20	.5	8	<4	<1	160
1159030	8.5	<20	6	38	4	<1	170
1159031	230	<20	6	5.5	< 4	<1	180
1159032	50	<20	7	20	6	<1	200
1159033	6 5	20	10	22	4	<1	310
1159034	5 0	20	10	8	<4	<1	240
1159035	25	20	9	1 4	<4	<1	220
1159036	60	20	10	9	<4	<1	230
1159037	9.5	<20	10	32	<4	<1	210
1159038	300	30	10	85	<4	<1	200
1159039	170	<20	9	75	<4	<1	220
1159040	140	20	8	60	<4	<1	230
1159041	<10	<20	9	3	<4	<1	290
1159042	15	20	10	7	4	<1	250
1159043	1 5	20	10	6	<4	<1	260
1159044	< 1.0	20	12	6	4	<1	260
1159045	20	20	10	1.0	8	<1	260
1159046	<10	20	10	2	.4	<1	250
1159047	320	20	10	6 5	6	<1	240
1159048	15 ~	2.0	10	.8	6	<1	230
1159049	<10	20	9	6	<4	<1	270
1159050	45	20	12	10	<4	<1	230

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840503 O/N : B 0621

Results in ppm

Nb Rb Sn Ag SAMPLE Ba Ce 70 <20 9 20 <4 <1 240 1159051

Method of Analysis : Ba Ce Nb Rb Sn : XRF1

Ag V

.../ 5

- 5 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840503

O/N : B 0621

Results i	n ppm
-----------	-------

nobolito in pp								
	SAMPLE	Sr	Ü	Y	Zr	%Ti	Au	
	1159026	26	<4	12	70	0.70	0.05	
	1159027	44	<4	14	75	0.72	<0.01	
	1159028	90	<4	16	75	0.74	<0.01	
	1159029	38	<4	8	60	0.64	<0.01	
	1159030	125	<4	12	60	0.70	<0.01	
	1159031	150	<4	12	6 5	0.68	<0.01	
	1159032	100	<4	14	70	0.74	<0.01	
	1159033	7 5	<4	18	95	0.92	<0.01	
	1159034	5 5	<4	20	105	0.96	<0.01	
	1159035	7 5	<4	16	90	0.82	<0.01	
	1159036	90	<4	20	95	0.84	<0.01	
	1159037	120	<4	18	9 5	0.90	<0.01	
	1159038	230	<4	20	95	0.98	<0.01	
	1159039	220	<4	16	9 5	0.90	<0.01	
	1159040	220	< 4-	18	100	0.88	<0.01	
	1159041	70	<4	16	95	0.86	<0.01	
	1159042	5 5	<4	16	90	0.76	<0.01	
	1159043	6 5	¹ <4	1.8	1.05	0.98	<0.01	
	1159044	38	<4	18	100	0.84	<0.01	
	1159045	6 5	<4	18	100	0.86	<0.01	
	1159046	3 2	<4	18	100	0.84	<0.01	
	1159047	180	<4	16	100	0.82	<0.01	
	1159048	7 5	<4	18	95	0.82	<0.01	
	1159049	46	<4	20	100	0.88	<0.01	
	1159050	125	<4	18	100	1.00	<0.01	

- 6 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840503

O/N : B 0621

Results in ppm

SAMPLE Sr U Y Zr %Ti Au

1159051 115 <4 16 90 0.96 <0.01

Method of Analysis : Sr U Y Zr : XRF1

Ti : COL4 Au : FAS1

Head Office and Central Laboratory 305 SOUTH ROAD, MILE END SOUTH STH. AUST. 5031 TEL: (08) 43 5722

NATA REGISTERED No. 1526

DUR REF.:

COM 840662

YOUR REF.:

DPO B 0622

Mr. A. Scott, CRA Exploration Pty Ltd., P.O. Box 254, NORWOOD SA 5067,

18.4.84

Dear Sir,

RE: JOB COM 840662

Enclosed are the assays for the samples delivered to our laboratory on the 6th April 1984.

Yours sincerely, COMLABS PTY LTD

ner

c.c.: FYSHWICK c.c.: NORWOOD

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840662

O/N : B 0622

Results in ppm

S AMP LE	U	Au
1159052	<4	<0.01
1159053	<4	<0.01
1159054	<4	<0.01
1159055	<4	<0.01
1159056	<4	<0.01
1159057	<4	<0.01
1159058	<4	<0.01
,1159059	<4	<0.01
1159060	<4	<0.01
1159061	<4	<0.01
1159062	<4	<0.01
1159063	<4	<0.01
1159064	<4	<0.01
1159065	<4	<0.01
1159066~	<4	<0.01
1159067	<4	<0.01
1159068	<4	<0.01
_11590 ⁶ 9	<4	<0.01
1159070	<4	<0.01
1159071	<4	<0.01

Method of Analysis : U : XRF1

Au : FAS1

- 2 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM840662

O/N : B 0622

		Result	s in pp	m		
SAMPLE	Cu	Рb	Zn	N1	Co	Ag
1159061	2.0	8	46	42	16	<1
1159062	12	10	60	48	18	<1
1159063	390	6	160	100	3.6	<1
1159064	18	10	4 2	40	16	<1
1159065	1 2	16	65	44	18	<1
1159066	340	<4	8 5	48	2,6	<1
1159067	3800	6	90	40	24	<1
1159068	2900	6	100	32	22	<1
1159069	1950	8	110	32	22	<1
1159070	1850	6	80	30	24	<1
1159071	44	6	110	4 2	28	<1

Method of Analysis : Cu Pb Zn Ni Co : AAS1
Ag : AAS3

APPENDIX IV

SPECIFIC GRAVITY DETERMINATIONS

83KD1A - SPECIFIC GRAVITY DETERMINATIONS

Sample No.	Depth (m)	<u>s.g.</u>	<u>Lithology</u>
1159072	616	2.49	Laminated micaceous shale
1159073	692	2.61	Banded mudstone/siltstone (60/40)
1159074	693	2.43	Banded siltstone/sandy siltstone (40/60)
1159075	753	2.56	Laminated mudstone/siltstone (60/40)
1159076	756	2.42	Laminated siltstone
1159077	850	2.53	Banded mudstone/siltstone
1159078	950	2.66	Laminated mudstone/siltstone (70/30)
1159079	1053	2.67	Laminated siltstone/mudstone (50/50)
1159080	1154	2.68	Laminated mudstone/siltstone (60/40)
1159081	1271	2.69	Laminated mudstone/siltstone (50/50)
1159082(2)	995	2.81	Amygdaloidal basalt
1159083(3)	1014	2.97	Fm.gr. massive basalt
1159084(2)	1312	2.90	Amygdaloidal basalt
1159085(¹)	1326	2.56*	
1159086(3)	1333	3.01	F.gr. banded dense basalt
1159087(3)	1348	3.02	F.gr. massive basalt
1159088(1)	1356	2.68*	Vesicular and amygdaloidal basalt
1159089(2)	1372	2.89	M.gr. massive basalt
1159090(1)	1386	2.73*	Purple vesicular and amygdaloidal basalt
1159091(2)	1392	2.85	Massive amygdaloidal basalt.

^{*} Wax impregnated.

CALCULATIONS

Siltstor	ne/Mudstone: 6	00- 900 m	2.51	
	9	00-1300 m	2.68	
Basalt:	Vesicular(1) Amygdaloidal(2 F/gr dense(3)) 2.86	0 10% 0 70% 0 20%	Average = 2.87

APPENDIX V

DETAILED GEOLOGICAL LOG OF 83KD1A

CO-ORDINATES _____ AZIMUTH _____ DRILL CORE LOG
RL COLLAR ___ /O.8 m (abprox) INCLINATION VERTICAL DRILL TYPE _____ WARMAN 1500 _____ CO COMMENCED 19-12-83 DEPTH 1398-2 HOLE No. 83 KD 1 COMPLETED 10.3.84 CASING LEFT DPO No(s) B 0621 . B 0622 SPECIAL FEATURES ASSAY VALUES REC. COME GRAPHIC SAMPLE FROM TO REC CORE DESCRIPTION WEATH, ALTERATION , FRACTURING FROM (M) (M) SIZE LOG TO(M) VEINING , MINERALIZATION No. (M) (M) (M) 208m : Calcrete, sand.
(86 ") : Calcrete red-by clay, sand
--- Rod-by lateratic clay, sand as above Buff, v.f.gr. sub-ang send and clay, Some sand grains coated with red to wide. As above, but redder. 10 No sample. Hydropol caused placeulation of class 14 22 V. Far buff and red sands and clay 24 and to sub-rd sands, mior 32 clay sand is 9/2 (many grains with next Fe exide) and red and life felora Similar to above but coarser gramed. 34 34 36 a above. 36 42 Mottled Ut. bn., yell., and red-bn clay; some Ots and Jelgar grains common. Clay mottled yell, en, gy. 44 48 Mottled pandy clay Send ~ 20%. 48 50 56 as above. 50 a alove. 56 82 28 64 Lt. bu., f. gr., rd. to well rd. gtz sand. sand Hydropol curalled. 66 70 as above No sample. 70 Minor nample of blue - gy clay 72 78 94 Dk blue-gy clay and alk. gy-blue clay 94 96 F.gr. white sub. rd - rd, clean quarte sand will v. minor white fel par. 98 LOGGED BY AK Scott DATE SUMMARY AND_ SPECIAL COMMENTS

CRAE IIT

SHEET 1 OF 13

KOTARY DRILL CORE LOG CO-ORDINATES _____ AZIMUTH__ _____ DRILLERS HOLE No. _ 83 K3 / COMMENCED DEPTH____ RL COLLAR. INCLINATION____ __ DRILL TYPE ___ COMPLETED ___ CASING LEFT DPO No(s)___ SPECIAL FEATURES ASSAY VALUES COME GRAPHIC CORE DESCRIPTION SAMPLE FROM TO REC WEATH. , ALTERATION . FRACTURING TO(M) SIZE (M) LOG VEINING , MINERALIZATION No. (M) (M) (M) 98 100 Blue-gy, clay Possibly minor sand. Blue-gy, to gy-gn clay some yellowi Black clay, Foetid odow. Carbonacen 102 104 104 110 110 1/2 116 118 130 Many grains one pate yellow. Minor c. gr. soul. Minor carbonaceou interledded - water is it don't brown 130 132 V. F. gr. sands and minor carb. shale. 134 sands and minor carb. shall 140 sands most m. gr. 144 146 It. hu. sul-ang, to sul-rd Minor carbonacious shale 146 sands. Possibly minor shall 150 154 to sub-rol. It. bu. sands Kelsbar. V. minor shalo minor felspar. with minor felspar. 154 156 160 F. gr. It. bn., sub-ang to sub-rd. gtz 160 162 sands . minor fell spar. 164 170 170 174 174 192 Mar sands, suls-and, to suls-rd gy, clay \$186 - 188. Drillers reported significant lights redrilling 83 KD (A) 192 194 C.gr. sands; nearly all gts. 194 200 SUMMARY AND LOGGED BY 4K.Scott DATE __

CRAE II7 PLAN No M 414

SPECIAL COMMENTS

__DRILL CORE LOG HOLE No. 83 KD 1 CO-ORDINATES ___ ___ AZIMUTH__ _____ DRILLERS COMMENCED DEPTH____ RL COLLAR INCLINATION___ CASING LEFT ___ DRILL TYPE _ COMPLETED DPO No(s)_ SPECIAL FEATURES DEPTH CORE ASSAY VALUES REC. CORE GRAPHIC SAMPLE FROM TO REC WEATH. , ALTERATION , FRACTURING CORE DESCRIPTION FROM(M) TO(M) (M) (M) (M) (M) SIZE LOG VEINING , MINERALIZATION No. with carl shale 200 sands with blue - gr. clay 206 214 Most gtz grains clear some Minor parte F-m.gr. sand, otherwise as above. 214 224 M.gr. sand. 224 228 228 230 C.gr., sul-ang to sul- rd. gts sand 230 240 ::: Cgr. sands 240 244 244 sands 248 250 a matrix of white clay 250 260 M. gr. sand in M-cgv. sand in matrix of while clay 260 268 minor while clay matrix. 268 270 while clay mathis. 270 2.72 276 276 280 Mer. sand and white clay 280 282 M. ev. clean g/ sand. 282 298 100 No sample, but probably cart. shale. 298 300 AK SCOTT DATE ___ LOGGED BY SUMMARY AND_ SPECIAL COMMENTS SHEET 3 OF /3

CRAE II7 PLAN No M 414

DEF	TH	CORE				SPECIAL	FEATURES		T				ASS	AY V	ALUES	; -
FROM(M)		REC.	CORE	GRAPHIC LOG	CORE DESCRIPTION	WEATH, ALTE	RATION , FRACTURING , MINERALIZATION	SAMPLE No.	FROM (M)		REC (M)	$\overline{}$	7	Ï		_
300	302			23.5	F.gr. sand, possibly with white clay matrix.						1		+			_
302	304			#:::5 =::::	Marc and with white elas											-
304	316			F.::. <u>-</u> -l	F-max sand probably with matrix											_
				<u> </u>	F-mgr sand probably with matrix of white clay											
			Z,o	-:::-												
				:::-::			· · · · · · · · · · · · · · · · · · ·									_
				-:::-								_		\vdash	$-\!\!\!+\!\!\!\!-$	_
3.7								 		<u> </u>	\vdash	$-\!\!\!+$	+	╂──┤	-+	_
3/6	320	\vdash		-	Cgr. sand and clay sand has about 30 % bluish milky gts gasing Minor p			 			1-1	-+		+-+		_
320	222	\vdash			No sample. Hard. Probably shale.	1		╅───	-		\vdash	-+		+	+	-
322		\vdash		\equiv	as above.	 		 				-+	+-	\vdash	-	-
		\vdash				 		 		<u> </u>	1 1	$\neg \vdash$	1	1-1	-	-
326	32 F				Blue shale.			1	l		\dagger		1		-	-
	330			نبن	Fm.g.v. sub-rd. gtz sand with claver matrix	ð	······································									
330	336		-,,-		No sample, but some carly shall and blue											_
					shell cuttings obtained Probably similar											_
				Ш	to 320-322. Hand al- 336 m.											_
336	356			-:	Soft, f m.gr., sub-ang to sub-and guards											
			34-	:.:: <u>:</u> :	sands with probable clay matrix. Contain	.								\sqcup		
				<u>::::::</u>	this interbeds of carb. and by shale				ļ					\sqcup		
		\vdash		<u> </u>	up to 10 cm thick. One of these at	-								├		_
				20.5	336 m. Sad / clay ratio uncertain			ļ	ļ					\vdash		
		\vdash			but about 60/40.						\vdash			\vdash	\dashv	
		-	350		and the state of 			-						\vdash	-+	_
		-		=:::::				+		·		\dashv	-+	\vdash	-	_
		\vdash						 				-	_	+	\dashv	-
356	360			=	Soft dk. by clay with some sand							-+		\vdash	-	-
	- 60				containing 5-10 cm thick interleds			1				_	_	\vdash	\neg	_
			36-		of hard dk. bu. carb, shale.	 						\neg				_
360	364			:-::=	Gy- on clay and f. ex sand		· · · · · · · · · · · · · · · · · · ·									_
364	366			:::::	Fm.gr., and -ang to rd. while quarte sand											_
366	368			### 5	From sound and claim 75 by They be at Raid class											
368	372			11:1	Gy. clay (85%) and J c.gr. sand (15%).											
							· · · · · · · · · · · · · · · · · · ·									
372	376		ع		Dh. bn. clay.						 			\vdash		_
								 			\vdash			$\vdash \downarrow$	-	
376					Dh. bn. clay and sand.			-			\vdash	\dashv		\vdash	+	_
378	382	├─┤	-380	::::	F. m.gr. It gy, sub-ang to sub-rd. quants sal with occasional larger grains. Minox			 			\vdash	+			-	-
				===	sand with occasional larger grains. Munor			 			\vdash	-	+-		-	-
382	201				plapar. Dk. bn. clay.		·	1				+	+	$\vdash \dashv$	-	-
			c			<u> </u>		 					1		\top	_
												_	1		\top	_
				\equiv	Account of the second of the s											_
392	394				Dk. bu, shale and coal.											_
394	396			\equiv	Br. shale							\bot			\bot	_
	399		c	::::.l	Figr. sand with this teds of cart shale.	9		L			igspace			\sqcup	\bot	
398	400		<i>ل</i> يمة	::·:	Firmgr, sub-ang. to nd. sand. ling carried out between 22.12.83 and 16.1.84 apred at top in expanding clay (0-118 m). New	L					يلـــــــــــــــــــــــــــــــــــــ		COTT			_

___ DRILL CORE LOG CO-ORDINATES DRILLERS _ HOLE No. 83 KD IA _____AZIMUTH____ COMMENCED____ DEPTH____ RL COLLAR_ __INCLINATION____ DRILL TYPE ... COMPLETED CASING LEFT DPO No(s)___ SPECIAL FEATURES ASSAY VALUES CORE GRAPHIC SAMPLE FROM TO REC CORE DESCRIPTION WEATH. , ALTERATION , FRACTURING FROM (M) TO (M) (M) SIZE ကေ VEINING , MINERALIZATION (M) (M) (M) No. 400 404 404 408 408 with felspar Possibly some sinor clay 416 418 Ficgr (most f. - m. or.) 420 420 428 some who felspar. Mer. sub-ang, to sub-not, gtz sand. 428 430 430 456 dow. Nearly all return is m-cgi sand but very few chips of a dh. to cart. shall also obtained . Con patches soften. In light of come at this interval is likely consist of alternating lands of gy met. and lignite or carb. state Coved. Marily dk. bu. carl, shale (or lignite 456 459 and go mot. 456.3 - 4568; It Am. carl. not. 456.P - 458.35; Black to all bon lignite with lands of dk. by. carb. mot. and coal 459 474 Very poor samples Fairly hard. Much sand and occasional lignila fragments obtained 474 515 samples obtained. allameting Rend and poft bands. When thit retrieved, all rollers had been This rection mobable contains s of siltatore of sandolone mixture of the two. Hectric LOGGED BY F.K. SCOTT DATE SUMMARY AND_ HO coming commenced at 515. SPECIAL COMMENTS

CRAE II7 PLAN NoM 414

SHEET 5 OF 13

DIMPOND DRILL CORE LOG CO-ORDINATES DEPTH HOLE No. 83 KP /A __ AZIMUTH___ DRILLERS COMMENCED RL COLLAR__ INCLINATION __ DRILL TYPE __ COMPLETED _ CASING LEFT____ DPO No(s)____ DEPTH SPECIAL FEATURES ASSAY VALUES (ppm) REC. CORE GRAPHI SAMPLE FROM TO REC WEATH. . ALTERATION . FRACTURING CORE DESCRIPTION FROM(M) TO(M) (M) SIZE LOG VEINING , MINERALIZATION No. (M) (M) (M) U Au 515.0 517.0 028 HO 515.0 - 555.4. Gritty est with interledy 517.0 520.0 2.29 of stat. and silly sat. Mainly poorly bedded 520.0 521.3 0.84 friable guitty sot Grams 521.3 5244 2.31 5144 5282 301 528.2 531.0 2:23 1159052 5200 521.3 0.82 4 400 531.0 534.0 2.38 but most mi-c. gr. Gran 534.0 537.0 0.74 lithologies mainly clear gtz. but-537.0 540.0 2.63 5400 5430 1.44 white: minor to common with 543.0 544 3 074 Celepar. minor black ironstance 5443 548.0 100 coal, while mica disposidic nock. Large fragment (4 cm) of hotile - Alspar - gts queins at 524.7 548.0 550.3 1.27 530,3 554.4 0.14 1159053 528.2 529.2 0.72 <4 <0.01 554.4 555.4 913 555 4 5580 123 558.0 561.1 2.10 sill ast. at 515.0 - 516.5 (?) . 529.6-561.1 5620 0.89 531.7.5372-538.7.548.0 -549.5 (2) 1159054 5320 535.0 1.50 <4 KQ01 5620 5650 3.05 Lt. - mid gy, laminated stat. containing 565.0 566.8 1.65 wishs of carb. matter at 121.3-523.4. 566.8 567.4 0.60 524.3-525.6. 529.2-529.6. 543.5(2)-547.0(2). 567.4 569.9 2.09 550.2-555.4 when other thin band 569.9 572.2 2.08 1-5 cm thick. Section 543.5-547.0 572.1 575.3 3.00 contains part of large felspathic 575.3 580.0 0.47 at top also coal, 580.0 583.0 1.31 hard m.gr. pelipathic zone 1159055 542.0 5440080 < 4 <0.01 583.0 586.0 142 course ang .- rd! 586.0 589.0 2.36 and pramboided pyrite. 589.0 592.0 3.09 at 547.1 is a thin band or warre 591.0 595.0 282 grit containing a 15 mm gtz. Gebble 5950 5964 140 Bedding an ales with LCA: 596.4 598.0 1.89 75° at 5/9.4 in grit 578.0 601.0 3.12 P5 at 5230 in 6010 606.2 5.13 P3° et 5375 in stat 606.2 610.0 3.97 55° at 539.8 in gril 610.0 616.0 6.10 87° at 550.4 in 616.0 622:0 5.89 6220 627.06.16 alternating carly met. 6220 634.0 6.06 with miner coal) and son-couls 6340 640.0 6.00 ay-bu. sust. 6400 6420 2.11 greery dk. bn. - bl. carb. 642.0 646.0 3.88 mat. at 556.8(2)-559.7; 560.95-646.0 6520 607 561.25. 561.85 - 562.45: 563.1 - 564.1. 6520 658.0 6.05 568.1 - 569.1. Brittle black coal at 6580 6640 600 568.3 - 568.7. 6640 665.1 096 Non-carl mal is soft and contains Clakes and wisks of carlo. material. 665-1 667.0 1.63 NO 6670 6730 5.87 occurs at 561.7 - 521.8 673.0 679.0 6.03 6780 6850 597 A.K. SCOTT DATE LOGGED BY

CRAE II7 PLAN No M 414 SUMMARY AND ______SPECIAL COMMENTS

SHEET 6 OF 13

UULL

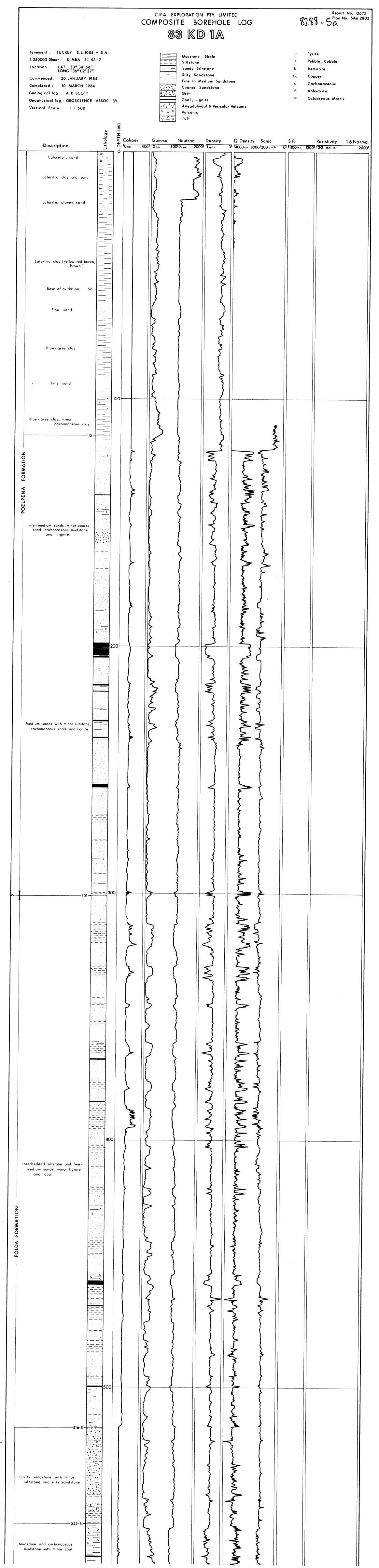
ŀ			DRILL	CORE LOG												
CO-ORDINATES	·	DEP	TH			Н	OLE !	No	83	<u> </u>) I P	<u>. </u>				
RL COLLAR		the second se	DRILL TYPE	COMPLETED												
DEPTH CORE	EGRAPHIC	CORE	ESCRIPTION	SPECIAL FEATURES	SAMPLE	FROM	то	REC			ASSA	Y V	ALUE	S (p	(maj	
FROM(M) TO(M) REC.	LOG	CORE	ESCRIPTION	SPECIAL FEATURES WEATH, ALTERATION, FRACTURING VEINING, MINERALIZATION	No.	(M)	(M)	(M)	G.	Ph	Zu	N:	6	Asl	u	Δ.,
685.0 691.0 5.72 NG		573.3 - 583.2. al	ternating pyritic stat.					1		1	-			-4	-	-1100
691.0 697.0 5.94	1	and grits.	- 						T .							_
697.0 703.0 5.96		Laminated It.	and alk. gy. stst. milt													i
70 3.0 709.0 5.99		many small (1-10 mm) pyrite framboid	2												
709.0 715.0 5.95		and wright of	1-10 mm) pyrite framboid cant. matter, at			[
7/5.0 7210 5.99	1	5733-5742;	574.45-574.85. 582.7-					L								
721.0 727.0 5.96	<u> </u>	283.5					ļ	ļ								
7270 737.0 592	 	Remarider is	mainly coarse poorly				<u> </u>		<u> </u>	Ш	\vdash		\sqcup			
733.0 739.0 6.9		sorted ang to	sub- rd. lithic grit z, felspar, granite		 	ļ	ļ	<u> </u>		\sqcup	\longrightarrow		$oldsymbol{\sqcup}$			
739.0 745.0 598		containing of	z, felspar, granite			ļ			<u> </u>	igsquare	$\vdash \vdash$		\longrightarrow			
745.0 751.0 6.02	-	ironstone, s	tst-, quantzite.		<u> </u>		ļ			\sqcup						
751.0 757.0 590	+		40 6		 			<u> </u>	_	\vdash						
7570 7630 603	+	583.2 - 593.3 While	mell sorted , u. f. gv		1159056	580.0	183.0	1.23	-		\vdash				4	<0.01
763.0 769.0 5.95	 	auco-ang is	a. , showy readed		 	-		├	-	\vdash	\vdash			+		
775.0 781.0 5.92	+	ast contain	ing bands of diamietite		 			┼	-	$\vdash\vdash$	\vdash		-+	\rightarrow		
781.0 787.0 603	+	La places whi	ches possibly die	·	 			 	-		\vdash		-+	\dashv	\dashv	
717.0 793.0 6.01	+	Tax Factor In	rite framboids common.				 	-	-	\vdash	 			\dashv	\dashv	
793.0 799.0 5.89	+	3832-3863: 17ā	les los granite,		<u> </u>			-	 	╁╾┤	 		-+	\dashv	-	
799.0 805.0 5.97	+	containe a covo	and grance		 		 	-		\vdash	-		-	\dashv	-+	
805.0 811.0 5.96	+	granted, and	amelia strales contains		 			-		\vdash	-		-+	-		
811.0 817.0 5.98		1 1 1 1 1 1 1 1	It are to the		1157057	5910	(92.0	10		\vdash			_	-	- i.	10.0>
817.0 823.05.94	1	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	It gg. met and set Pyrite common		1131037	3 /	3	1.0				-+	-+	-	-	10.01
P230 829.0 5.95	1	598.6 - 5916 · W	Shite v. f. gr. laminated		 	<u> </u>	 	1		\vdash	$\overline{}$		-	\dashv	-	
P29.0 835.0 598		set with occ	sional small publics.				-	1			\neg		\neg	\neg	\dashv	
835.0 841.0 5.94		Cross-bedded and	d scoured. Small		1159058	595.0	5-96 0								24	< 0.01
841.0 846.0 494		caulto evident	- Pyrite granboids		1								$\neg \uparrow$			
846.0 850.0 4.07		up to 15 mm.	7 0								\neg		\neg	\neg		
850.0 856.0 5.95		591.6-593.3 : Se	inilar to lot section							\Box				\neg		
856.0 862.0 6.05		but with more	Ali (1-3 mm) clay		1159059	599.0	6000							7	(4	(0.01
162.0 868.0 6.01		bands.	7 7							\Box						
861.0 874.0 5.96														\neg		
8740 880.0 597		593.3-605.3. Dk.g.	unsorted diameetite													
810.0 886.0 5.99		with matrix - sel	perted cobbles up							\Box						
886.0 892.0 5.85		to 6 cm. Matu	is contains much		1159060	604.4	605.4							-	4	(0,0)
1920 8980 591	1	silt-sized dk	gy material and													
898.0 901.7 3.60	<u> </u>	sand Cobbles	are generally sub-		<u> </u>			L		\sqcup					_	
901.7 907.0 5.18	_	and but warn	how and to rd							\sqcup						
907.0 913.0 5.88	ļ	Commonest cobbi	es are mc.gir.							\sqcup		_				
913.0 914.0 6.00		pink granite i	with low brothe					_		\vdash						
919.0 925.0 6.01		content, and	f m. gr. white	·						\vdash						
925:0 931.0 5.99	-		is one gtz-plapar-													
911.0 937.0 5.97	 	troute schief,	greissic granite,		1139061	612.0	613.0		20	8	46	42	16	<1	54	(0,01
937.0 941.8 4.78	+	granodionite,	biolite quartzite,		 			\vdash		 	-+		\rightarrow	-+	\dashv	
943.0 949.0 5-99	+	black siliceous	garnet granofels							-+	\dashv		\dashv	-+	-+	
949.0 955.0 5.90	+		Spar - tourmalue(?)	Two sub-horizontal	 						-+	-+	\dashv	-+	\dashv	
955.0 960.0 490	+	of the	atat Tax	veins of (?) anky drit sach Jum thick at 597.0	 			\vdash		\vdash	-+	\dashv	-+	+	\dashv	
960.0 964.0 4.00		schiol to gy.	stat, f.gr. sat.	SACE SHE FREH AS SYNC	1			\vdash \dashv		\vdash	-+	-+	\dashv		\dashv	
964.0 970.0 5.91	1	The bottom D. 2.	u contains many							\vdash	-+	$\neg \dagger$	-+	\dashv	\dashv	
	<u> </u>	hole reamed out to		100 mm caring		لسسنا	D BY_	4	K		<u>- </u>		ATE		باست	
SUMMARY ANDSPECIAL COMMENTS			depth long continued	in HQ.							_ OF					

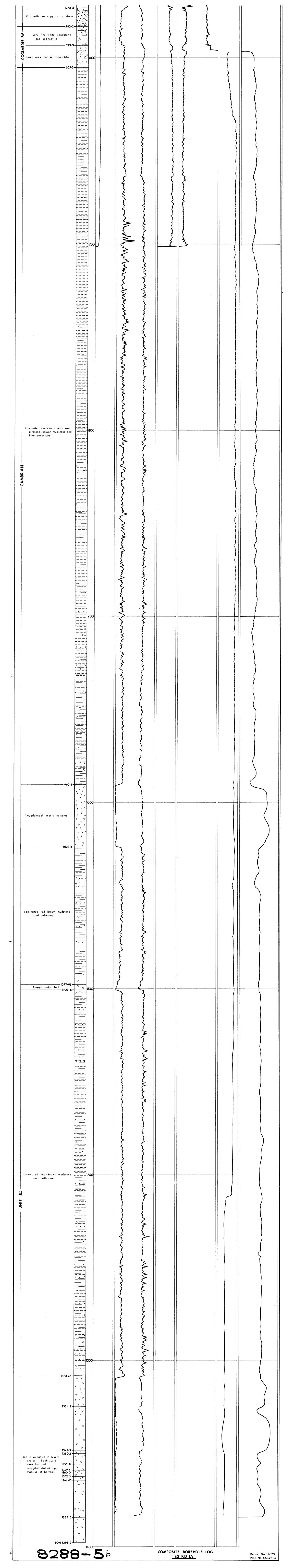
I and the second			DRILL	CORE L	.OG									0 7		
CO-ORDINATES	·	AZIMUTH	DRILLERS		COMMENCED										\mathcal{V}	
RL COLLAR		INCLINATION	DRILL TYPE		COMPLETED		CAS	NG LEF	T		0	PO No	o(s)			
DEPTH CORE REC. CORE	GRAPHIC	0005 05500	ISTICH.		FEATURES	SAMPLE	FROM	TO	REC	Ì		SSAY	VA	LUES	/ppm	٠)
FROM(M) TO(M) REC.	LOG			VEINING	, MINERALIZATION	No.	(M)	(M)	(M)	Cul	Pb.	zn	Nic	A م	ا	u
970.0 976.0 5.99 NQ		clasts of red-by s	tot (the underlying								1	_			4	7
976.0 982.0 5.99		unit) although	there may be								1	\neg		\top	\top	\neg
9820 9880 5.99		some strumbino	the contact appears	,			1							\top	1	7
9880 9904 1.62		erosional.														\neg
990.4 994.0 3.71																
994.0 1000.0 6.01		605.3 - 990.4 Laura												\Box		
1000.0 1006.0 603		micaceous stat				<u> </u>										
1006,0 1008.2 2.15		content of f.gr.	sandy state											\bot	\perp	
1008.2 1009.0 0.80		towards base	Contains bands up												L	
10090 10144 540		to 30 cm thick is														
1014.4 1019.2 4.80		or cream micac			5 sesily on											_
1019.2 1022.8 361		Ali (1-30 mm) pa	tings of blue-gy		and blue-gr			L								
1022-8 1027.0 422		on blue-gu, mel	and laminal	not par	teries and Bu											
1027.0 10320 605		of biolite Beduction	spots also blue-gy.	histile -	Camual.											
103 3.0 1039.0 5.95		Dk red- bn. mst				<u> </u>										
1039.0 1045.0 5.93		the lands and It	ricker zones up to				ļ				_			\bot		
1045.01051.0 6.04		several metres (at										\bot				
1051.0 1057.0 6.06		graphic lig Most	of there								_				4	
1057.0 1063.0 595		blisupted by into	aformational				<u></u>		_		_	_	\perp		4_	
1063.0 1069.0 5.99		brecuiation.					ļ				_	\dashv			_	
1069.0 1074.2 5.20		Biolite flakes	are prominent	Bedding	angles	<u> </u>						\dashv	\dashv	┷	4	
1074.1 1078.0 3.80		throughout cone.	Pyrite frambouds	general	\$70-880		ļ				_	\dashv		4	1_	
1078,0 1084.0 5.97		1-5 mm dianeter ar	e common from	of LCA	in the part	1		ļ		-	-	\dashv	\dashv	+	-	
1084.0 1090.0 6.05		605-3-635. 979-84	= ; 854.6 - 854.9; 908.8-	y Mis		ļ		ļ			\dashv		-	+	╁	
1090.0 1096.0 5.96		912.0; 928.			on, beading		<u> </u>	ļ	-	-	-	-+	\dashv	$+\!-$	-	_
1096. 0 1097.0 092		CD 10	-1: E F F	angle i	approx. o		 	ļ	_	-			+	-		_
1097.0 1099.4 2.38		skallow males	sedimentary structure		tal in stit;				-	-	\dashv	\dashv	+	+	+-	
1099.4 1105.0 5.70		very common: cros		ful up	65 6 LCH		ļ				\dashv	+			4-	_
1105.0 1111.0 5.94	+		tructures develoring	in give	sandy silts						\dashv	\dashv	\dashv	+	+-	_
1111.0 1117.0 6.00			material becauter		0						-+	+	-	+	+-	_
1117.0 1123.0 6.00		graded bedding d	isacation cracks										-		+-	_
1123.0 1129.0 5.75		and ripple weeks.	5	~P · / ·	F 5 1-111	ļ		ļ					+		+	_
11240 1133.8 4.78		02 Wa m 06 dol	(and several isolated	Then lufe	to 2 mg) calcite						-+	+	+	+	+	-
1138.0 1144 06.05		void (05-2 mm)	on the some		20-626 month	}			\vdash	-	-	+	+	+	+-	
11440 1150.06.05		surface on have	calcite-filled	6 LCA.	10 and 90 "	ļ .			-		-+	+	+		+	_
1150.0 1155.1 5.08	-		same slake Shake	/o CCA.					\vdash		-+	+	+	+	+	
115 5.1 1159.0 3.91			reular (flat hing)	····						\dashv	+	+	+	+-	+	
11590 1165.05.93		To describe to	triangular to	C. 1	tical veins					\dashv	-	+	-+	+	+-	-
1165.0 1171.0 6.02			common slape		transparent,					-+	-+	十	+	+	+	-
1171.0 1177.0 6.01		in something	out I man on edge.	() A 10 -	on - calcaren					_	\dashv	+	十	+	+	_
11770 118305.99		The state of the s			et 793, 803.					-		\dashv	十	+	+	
11830 11390 6.04			·		robh ankydrikt					\dashv	\dashv	\top	\top	\top	1	_
1189.0 1195.0 5.98		Sul- nertical be	reccia somes (unally	J. 1/40	7 ~ 7~~					$\neg \dagger$	\neg	\neg	+	\top	1	_
1195.0 1199.0 2.94		will calcareous								$\neg \uparrow$	1	\top	1	1	1	-
1/98.0 /2040 602		606.4-6066.636.1-	636 7 . 637.2 - 639.2.			1159062	970.0	971.0	\dashv	/2	,0	601	48 11	8 21	cu	<u>_</u>
1204.0 1210.0 6.02				Sul- re	rtial reins						\top	十		1	1	_
12100 121605.87		at 818.2 - 825.3 lani	al of detital		lay occur						$\neg \dagger$	十	1	1	1	
1216.0 1218.7 2.72		Rematile occur in re	d-6Q. N. F.gr.	sporodical	6. esp. 816.5				$\neg \neg$			\top	\top		T	_
12/8.7 1222 0 3.30		thinly ledded sill	ist.	./	, , ,					$\neg \uparrow$	T	\top	\top	T	T	_
		10 rode left in Lole "			prl 2 665.									TE		_

SETTING COME COME DATE OF THE CORRESPONDED C	COMMENCED DEPTH HOLE COMPLETED CASING LEFT DPO	
The first of the same of the s	IAL STATUTES	
The part of the part of the alternative temperature to the metal part of the alternative temperature to the alternative temperature temperature to the alternative temperature	TERATION FRACTURING SAMPLE FROM TO REC ASS	ASSAY VALUES (ppm)
Had with him as the context increase downwell, them 93. When 95. metals Stephing (20) and consist of the attention from only control patient 100 1121 last 100 1121 last 101 1121 last 101 1121 last 102 1121 last 103 1121 last 104 1121 last 105 1121 last	ING , MINERALIZATION NO. (M) (M) (M) Cu PL Zm	In Ni Co Ag U 1
156 1112 (166) 156 1112 (166) 157 1112 (166) 158 1112 (166) 158 1112 (166) 159 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (166) 150 1112 (167) 150 112 (167) 150 112 (167)	965 several	
120 1121 closed of most and alta (append Grofes) and occur in 120 1121 closed on the application of the appl	vertical Bactures	
120 121 1261 Comment of the copy loss from \$77. 120 121 121 121 Comment of the copy of severally works. 121 121 121 121 Comment of the copy of severally works. 121 121 121 121 Comment of the copy of		
Historicism Below the sight occurrency channels, the personal control of the personal occurrency occurrency of the personal occurrency occurrency occurrency of the personal occurrency occurr		
PROJECTORY BASED LOSSING AND CONTROL COLLEGE BY SECTION OF SECTION		+-+-+-
Company of the compan		
Tell Mich 166 Tell Mich 167 Tell M		
sico picto est small anhydrit marrie (1-1 mm) are anhydrit lamit (1 mm) The piet ist common of piet about a graphic litility security (1 mm) The piet ist (2 mm) are piet about a graphic litility security (2 mm) The piet ist (2 mm) are trade about a graphic litility security (2 mm) The piet ist (2 mm) are trade about a graphy litility (2 mm) The piet ist (2 mm) are trade about a graphy litility (2 mm) The piet ist (3 mm) are trade about a graphy litility (3 mm) The piet ist (4 mm) are trade about a graphy litility (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet ist (4 mm) are trade about (4 mm) The piet about (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4 mm) The piet (4 mm) are trade about (4		
Go. 1310 575 Go. Go.	tual veins of	
120 1170 175 100 1275 187 10	nte (about 1 mm	
120 1150 C59 120 1150 C59 120 1150 C50 12		
ItCO 1920 Cot Bettern to content was of the Gry-m mal somity 120 1020 Cot 1	Lelow 1909.	
Confession 177 990.4 - 1023.8. Hand m. gv. olk gap married Stock 1971 600 any statistical suck with a grandman 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 600 and 1972 600 and 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 12 12 1972 12 1972 600 and 1157026 992.0 993.0 18 6 65 48 28		
Confession 177 990.4 - 1023.8. Hand m. gv. olk gap married Stock 1971 600 any statistical suck with a grandman 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 600 and 1972 600 and 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 12 12 1972 12 1972 600 and 1157026 992.0 993.0 18 6 65 48 28	met possible	
Confession 177 990.4 - 1023.8. Hand m. gv. olk gap married Stock 1971 600 any statistical suck with a grandman 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 600 and 1972 600 and 1157026 992.0 993.0 18 6 65 48 28 < Stock 1971 12 12 1972 12 1972 600 and 1157026 992.0 993.0 18 6 65 48 28	Sullita 7	
100 1111 6 60		
100 1111 6 60		
150 1110 6 03 00 aprillet (3) - general (2) - heapethte - 1159016 992.0 993.0 18 6 65 48 28 < 1120 1120 1120 1120 1120 1120 1120 1120		
122 1116 2 2 27 (persphyselts 2) Latter missal in 126 1116 2 27 (persphyselts 2) Latter missal in 126 1116 2 27 (persphyselts 2) Latter missal in 126 1116 2 27 (persphyselts 2) Latter missal in 126 1116 2 27 (persphyselts 2) Latter missal in 126 1116 2 20 11 - 5 m account of missal in 126 1116 2 20 11 - 5 m account of missal in 126 1116 2 20 11 - 5 m account of missal in 126 1116 2 20 11 - 5 m account of missal in 126 1116 2 20 11 - 5 m account of missal in 126 1116 2 20 11 - 5 m account of missal in 127 127 127 127 127 127 127 127 127 127	11/9-1/2010/2010 19 1/6	16/19/29/11/11/2
122 11162 2018 and the ga antick animal in the 11162 227 (persphyshits 2) Latter rainal in the 11160 172 range of course Animal in the 11160 172 range of course Animal in the 11160 172 range of course part effect the 11150 2017 997 998 20 80 38 26 6 1 100 1116 11160 1160 1175 range of course part effect the 11150 2017 of 11160 1175 course and course for the 11160 11160 1160 1175 course and course for the 11160 1175 course fo	1/13 7026 992-01993-0 118 6 163	163 48 28 1 1 34 8.0
(1) 11215 237 (pyrophyllite?) Latter unional is 15. 11300 1321 union and county throughout 15. 11300 1321 union and county throughout 15. 11300 1321 union and county throughout 15. 11300 1320 union and county throughout 15. 11300 1320 union and county throughout 15. 11300 1320 union 15. 11300 1320 un		
11500 133		
300 1)26 26 milt nearly in rounded marshs 1159027 997 998 20 8 80 38 26 21 166 1156 360 1-5 mm array from pate expected 1150 360		
126 11360 3 60 1-5 mm acros 5 one parts expected (6.0 11820 6 60 991.0 - 997.5 and 1004.5 - 1007.0 are 1.0 11820 6 60 1991.0 - 997.5 and 1004.5 - 1007.0 are 1.0 11820 6 60 1991.0 163 1639 (ap to 1 cm) annighted favoring (ap to 1 cm) annighted (ap to 1 cm) annigh		
(6.0) 132.0 (600) 991.0 - 997.5 and 1004.5 - 1007.0 are (10.1) 132.0 (600) 192.0 (1920) 192.1 (1159027 997 998 20 8 80	80 38 26 21 44 40
120 11840 5.77		
180 11896 1633 1810 1075 1810 1075 1810 1075 1810 1075 1810 1075 1810 1002 1002 1002 1002 1003 24 6 38 38 26 4 1004 138 38 26 4 1004 138 38 26 4 1004 138 38 26 4 1004 1004 1004 1004 1004 1004 1004 1		
436 137 249 246 27 38 246 246 27 38 38 26 37 38 26 37 38 246 38 246 38 38 246 3		
1056135041075 1115704107 1159021602 1003 24 6 38 38 26 6 1004137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 38 26 6 104137125240 24 6 38 28 24 6 104137125240 24 6 38 28 24 6 104137125240 24 6 38 28 24 6 104137125240 24 6 38 28 24 6 104137125240 24 6 38 28 24 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 6 104137125240 24 6 38 28 28 6 104137125240 24 6 38 28 28 28 28 28 28 28 28 28 28 28 28 28		
Fig. 11587.0417 Americal with radiating table - Fr. 0. 11560.07.21 Fr. 0. 11560.07.21 66. 11560.07.21 Fr. 0. 11560.07.21 66. 11570.05.00 The unit contains shread promisent 11570.29 1007 1008 17 8 65 60 32 41 220 11378.07.99 neins of tale/sexperitie/antiquite 77. 0. 13740.6.00 at 10 - 20° to Ling 78. 0. 13740.6.00 Top I cm is banded. Bottom I m is 78. 0. 13740.6.00 F. gr. and orange - lin in bottom few 78. 0. 1387.2 201 cm . Unit is massive. 78. 0. 1387.2 201 cm . Unit is massive. 78. 0. 1440 1023.8 - 1047.95 Laminated red - lin. met 78. 0. 1440 1023.8 - 1047.95 Laminated red - lin. met 78. 0. 1440 1159.021 1017 1018 20 6 36 50 30 41 20 6 mile mineral (anhydrit?) 20 6 - 2 mm thick in the laminated 20 6 36 50 30 41 21 6 mile mineral (anhydrit?) 21 6 mile mineral (anhydrit?) 22 6 mile mineral (anhydrit?) 23 6 mile mineral (anhydrit?) 24 6 mile mineral (anhydrit?) 25 6 mile mineral (anhydrit?) 26 6 mile mineral (anhydrit?) 27 6 mile mineral (anhydrit?) 28 6 mile mineral (anhydrit?) 29 6 mile mineral (anhydrit?) 20 70 34 4 120 70 34	1159021 1002 1003 24 6 38	38 38 26 41 44 40
Fig. 11587.0447 Americal with radiating table - 17.0 1160.05.21 From 1158.05.21 60.8 1160.05.21 Fig. 1158.05.29 60.8 112.0 6.01 The unit contains shread promisent 11570.29 1007 1008 18 8 65 60 32 c/ 220 1378.05.99 Neins of tale/sexpertine/antiquits 77.0 1374.0 6.04 At 10 - 20° to Lea. 78.0 1374.0 6.04 At 10 - 20° to Lea. 78.0 1374.0 138 410 79.1 1391.8 410 Top I cm is handed. Bottom I m is 79.1 1391.8 410 11590.30 1012 1013 14 4 65 48 24 6 16.2 1398.2 201 Em. Unit is massive. 8.0 of Heist 1023.8 - 1047.95 Laminated red - bin. met 8.0 of Heist 1023.8 - 1047.95 Laminated red - bin. met 8.0 of mits 1023.8 - 1047.95 Laminated red - bin. met 8.0 of white mineral (ambiguit?) 8.0 of white mineral (ambiguit?) 8.0 of white mineral (ambiguit?) 8.1390.31 1017 1018 20 6 36 50 30 c/ 8.1390.31 1017 1018 20 6 36 50 50 30 c/ 8.1390.31 1017 1018 1018 1018 1018 1018 1018 101		
Fr.0 1360.8 380 parcially pectalite or a 2 zerlite. 60. 1872.0 6.01 The unit-contains shread promient 11570.39 1007 1008 118 8 65 60 32 (1) 120. 1378.0 5.99 reins of talc/respertin/antigorite 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1378.0 5.94 120. 1379.0 5.00 120. 138.0 5.94		
60.8 1366.0 5.21 66.8 1316.0 5.21 66.8 1312.0 6.01 The unit contains alveral prominent 11.570.29 1007 1008 11.8 8 65 60 31 11.570.29 1007 1008 11.8 8 65 60 31 11.570.29 1007 1008 11.8 8 65 60 31 11.570.29 1007 1008 11.570.29 1007 1008 11.570.29 1007 1008 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1012 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1017 1018 20 6 36 50 30 11.570.20 1012		
1572.0 6.01 The unit - contains several prominent 1157029 1007 1008 19 8 65 60 32 (1 72.0 1378.0 5.99		
12:0 13780 5.99 neins of tale/respectus/antigorite 27:0 13780 5.99 neins of tale/respectus/antigorite 27:0 13780 5.99 10:0 1371, 258 10:0 1371, 258 10:0 1371, 258 10:0 1376.2 430 10:0 1376.2 430 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 201 10:0 1376.2 1012 10:0 1376.2 1013 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:	11/2020 11/2 1/2 0 //5	15 50 11 11 11 11
77.0 1384.0 6.04 at 10-20° to Lia. () 87.0 1387.6 388 87.6 1398.8 400 Top 1 cm is banded. battam 1 m is 91.8 1296.3 4.31 10.2 1382 201 can. (hit is massive. 10.2 1882 201 and minor stat the latter calcusers in place. Top 1 m rather industed and miny sub-forizontal veins ef white mineral (antiquite?) 0.5 - 2 mm thick in the 4 m From 1040-1060 more silly and into 1 other 250 500. About 1040 and 1159032 1022 1023 26 4 120 70 34 51	113 10 27 1867 1868 178 8 83	23 60 32 87 84 88
1023.8 - 1097.95 Lamated red-bn. mt and minor stot the latter calcurated in places. Top 1 m reter idunated in places. Top 1 m reter idunated and many who from reter idunated of white mineral (an hydrite?) 0.5 - 2 mm thick in half and From 1040-1060 more silly and in place 50/50, abole 1040 and 1159031, 1023 1023 1023 1062 1023 1064 120 70 34 51 in place 50/50, abole 1040 and 1159031, 1022 1023 106 4/20 70 34 51		
1726 13918 4:10 Top 1 cm is banded. Bottom 1 m is 1159030 1012 1013 114 4 65 48 24 <1 6-2 13982 2:01 Com. Unit is massive. 1023.8 - 1097.95. Laximated red-bu. met and minor stat the latter calendary in place. Top 1 m rather indunated and many sub-having retire of white mineral (an hydrite?) 0.5 - 2 mm thick in by 4 m. From 1040-1060 more sill; and inst- stat- = 50/50, abote 1040 and 1159031 1017 1018 20 6 36 50 30 <1		
918 1396.2 4:31		
1023.8 - 1097.95 Laximated red - bu. met 1023.8 - 1097.95 Laximated red - bu. met 1023.8 - 1097.95 Laximated red - bu. met 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 4 120 70 34 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 <1 1159031 1017 1018 20 6 36 50 <1 1159031 1017 1018 20 6		
1023.8 - 1097.95 Laximated red - bu. met 1023.8 - 1097.95 Laximated red - bu. met 1023.8 - 1097.95 Laximated red - bu. met 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1017 1018 20 6 36 50 30 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 1023 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70 34 <1 1159031 1012 26 4 120 70	1159030 1012 1013 14 4 65	65 48 24 <1 <4 <0
1023.8 - 1097.95 Laninated red-bn. met and minor stat the latter calcuracy in place. Top /m rather inducated and many sub-horizontal veins of white mineral (anhydrite?) 0.5 - 2 mm thick in tap 4 m. From 1040-1060 more silly and incl. / atal. ≈ 50/50. Abobe 1040 and 1159022 1022 1023 26 4/20 70 34 <1		
and minor stat the latter calculated in place. Top 1 m rether inducated and many sub-horizontal veins of white mineral (anhydrite?) 0.5 - 2 mm thick in the 4 m. From 1040-1060 more silly and inch / etcl ~ 50/50, above 1040 and 1159022 1022 1023 26 4 120 70 34 <1		
in place. Top 1 m rather indurated, 1159031 1017 1018 20 6 36 50 30 <1 and many sub-horizontal veins of white mineral (anhydrite?) 0.5 - 2 mm thick in typ 4 m. From 1040-1060 more silly and inst- / etct- ≈ 50/50, above 1040 and 1159032 1022 1023 26 4 120 70 34 <1		
and many sub-harir antel veins of white mineral (anhydrite?) 0.5 - 2 mm thick in ty 4 m. From 1040-1060 was silly and inch / etcl = 50/50, above 1040 and 1159022 1022 1023 26 4/20 70 34 <1		
and many sub-harir antel veins of white mineral (anhydrite?) 0.5 - 2 mm thick in ty 4 m. From 1040-1060 was silly and inch / etcl = 50/50, above 1040 and 1159022 1022 1023 26 4/20 70 34 <1	1159031 1017 1018 20 6 36	36 50 30 11 440.
of white mineral (anhydrite?) 0.5 - 2 mm thick in ty 4 m. From 1040 - 1060 more villy and inch / etcl = 50/50, above 1040 and 1159022 1022 1023 26 4/20 70 34 <1		
0.5 - 2 mm thick in the 4 m. From 1040 - 1060 more villy and inch / etcl = 50/50, about 1040 and 1159022, 1022 1023 26 4/20 70 34 <1		
From 1040-1060 more villy and 1159022 1022 1023 26 4 120 70 34 51		
inch / atat = 50/50, above 1040 and 1159022, 1022 1023 26 4/20 70 34 51		
18 Jun 1969 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W-2027 1022 27 1/20	120 70 24 11 11 11
	110 1022 1023 48 4 120	1 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
, 700 100 100 100 100 100 100 100 100 100		

1					DRILL	ILL CORE LOG															
CO-0	RDINATE	ES			AZIMUTH DRILLERS	COMMENCED		DEP	TH				IOLE	No	83	KÞ	14				
RLC	OLLAR.				INCLINATION DRILL TYPE	COMPLETED															
DE	PTH	CORE			Y	SPECIAL FEATURES	T		T	1	T										
E PONTEN	TO(M)	REC.	CORE	GRAPHIC	CORE DESCRIPTION	WEATH. , ALTERATION , FRACTURING	SAMPLE	FROM	то	REC	_			AY \							
		(M)	3126	we		VEINING , MINERALIZATION	No.	(M)	(M)	(M)	Cy	PL	Zn	N.	Co	Ag	u	Au			
-	,	-			Below 1050, cyclic graded ledding commo																
-					Cycle cenerally 1-3 cm thick but	ì				1	<u></u>		1		1	لــــا	L				
\vdash					lower part is It. bu , sometimes weak										П						
					laver part is It. bu nometines weak	Much facturing					T	Т									
					celcarlous and met occasionally with	1096.2 - 1096.9 I mask															
					a little evanitie cal at base in a	sul-went is al Fraction			-												
					scow channel: this grades into the	contain an hydrite.	Ī			1											
					acour channel; this grades into the upper part of dk, bu anst. Seding to					†						\Box					
					structures very common especially				t	†	 	1	—		\vdash	\vdash	-				
					devalering channels desication					 	+	 	-	\vdash	\vdash	\vdash	-				
					cracks scow and fill clamal.		l	 	-	╁──	+-	+-	-	\vdash	\vdash	 	\dashv				
					Carlos Leons and Hill Carriers.				 	├	┼	 	-		┢╼┩						
		\vdash			Their ogl. hands especially at- 1041, 1045;	015/00/ 1 //:	 		 	 	+	+			\vdash	 					
		$\vdash \vdash \vdash$			1041. 1045.	M redding				-		—	<u> </u>	\vdash	\vdash						
		\vdash			1049. 1054: 10665. 1075 Far. red-by sills ast. at 1041.6-1044.8	generally at 90 45 LCA			ļ	 	1	1	 		لصا						
-		$\vdash \vdash$			ill sst. at 1041.4-1044.8	V			 	ــــ	 	 	 	igwdap	igwdapprox	,					
-					anhydite modules at 1043.,062.10755					1	<u> </u>	igspace		\sqcup	\sqcup	Щ.					
		$\vdash\vdash\vdash$. Small avoids of anhydrite common			ļ	ļ	<u> </u>	<u></u>			\sqcup	\sqcup	Ш	لــــا				
		\vdash			below 1090 (See next-remit-).							\perp				\Box					
									L												
					1097.95-1100.6. Dk. gg., f. gr. (silt-nird) amygdalaidal tuff with few thin by.																
\vdash		LI			amygdaloidal tiff with few their by.												\neg				
					met bands		1159063	1099.0	1100.0		390	6	160	100	36	41	<4	10.0>			
L						1							\Box								
					Base of wint has 6 cm of green state																
					which shen merals into dhe are rock												$\neg \uparrow$				
					beds. Any godales up to 4 mm are												\neg				
					beds. Any odales wo to 4 min and					 		\vdash		-1			\rightarrow				
					common and contain thempact Pilro					 		\vdash	\vdash	-+							
					radiating colourless crystals with	9									\longrightarrow	-+	\dashv				
					at-least one good cleaved - zeolite ??					-			\vdash \vdash			\dashv	\dashv				
					They are Clattered Rovisontally and						<u> </u>	\vdash			—		\rightarrow				
					they are gratified consontally and						<u> </u>	\vdash									
					occur maily from 1100.0 up to 1098.2							\vdash				_					
 		 			but also with overlying must to					ļ		\vdash				\longrightarrow	-				
 		-			about 1090. This zape also contains					L		\sqcup									
 					a few thin (1-5 mm) bu. met. bands.					L	لــــا	\sqcup									
├──					Top of unit merges into graded beds							Ш									
					of gy- bu most. /stst, which are			l				Ш					1				
					probably treffaceous up to about 1096							$oxed{oxed}$	I								
					Cocambo of greyer colour)			I					I	[
					And the second s		<u> </u>	I					T	T		T	T				
					1100.6-1308.45 Laminated red-bu. stat/us	Fractures at 0-200															
				لــــــــــــــــــــــــــــــــــــــ	secrence (similar to 1023.8-1097.95)	to LCA relatively,							\neg	T		\neg					
					but about 50/10. Graded ledding	common throughout	1159064	1/22.0	1123.0		18	10	42	40	16	<1	<4	(001			
		I	I		common. Miner gy-en net in	this rection Hilled															
		I	I		thin bands. Very thin cal bads	with anhydrite or							\neg				1	,			
			I	I	(usually < 5 mm thick) containing	a Lydrite / calcite							\neg	\neg	$\neg \uparrow$	\neg	\dashv				
					mostly granite publes but a	mixture Major factures	 					\Box	$\overline{}$		\neg		\neg				
					per dulydito (?) also, Some silk	at 1133,1141, 1144, 1152					-	-1		$\neg \uparrow$	-+	-	+				
					actions weakly calcalous.	1155 1160 1170-3 1178 1183						-+	-	-+	-+	-+	-+				
						1189, 1192 1215, 1216-8 1224			*****			-		\dashv	-+	\rightarrow	-+				
61.41.4	IARY A				, some some some some some some some some	, 111L, (LIS, 1218-6, 1214)	,		1	1	1	017									
	AL COM		S					LOGGE	D BY_						DATE _						
					Sign of the second	The second secon				SH	FFT	10	ΩĒ		13						

CRAÉ 117 PLAN No M414


ω.υ.	RDINATE	s			AZIMUTH DRILLERS	COMMENCED		DEP	TH			HO	LE N	o. <u>_8</u>	3 K	
RL CC	LLAR_				INCLINATION DRILL TYPE	COMPLETED		CAS	ING LEF	т		D	PO No	(s)		
DEP	TH	CORE														_
		REC.	CORE	GRAPHIC	CORE DESCRIPTION W	SPECIAL FEATURES WEATH, ALTERATION, FRACTURING VEINING, MINERALIZATION	SAMPLE	FROM	то	REC		Α	SSAY	VAL	UES	Ų
FROM(M)	TO(M)	(M)	SIZE	LOG		VEINING , MINERALIZATION	No.	(M)	(M)	(M)	cu l	Pb	zn	Ni C	iβ	ì
					and contains sections of land v. f.gr. " silicified (2) sandy stat . also few lads ,	129-53 1244 1245-7					-				-	4
					ailivide (2) sander atit alle tour led	1274 1200 1305		1		1		-+				
					of Sot.	at 30° to LCA at	 	 	 		-+	-+			+	_
								 	 		-+	-+	-+			
-						1278-5 1280, 1281.	<u> </u>	<u> </u>	<u> </u>							
					Col. at 1111, 1119, 1139, 1140, 1171, 1210, 1228, 1248			<u> </u>								
					12505 1255 1269 1275 1279 1286 1296 1297											
					1299 and elsewhere.			<u> </u>								_
					ankydrite at 11425 1144 1183.2 1183.8(lot)											
					sul- Paris ontal rains) 1187, 1231, 1236-8 and										1	_
					1245 (brecciated veins), 1262, 1274, 1289,				 		\neg	\neg	_	\neg	_	-
					1302.5 and elsewhere.		 			1	_	-+	_	\dashv	+-	-
					Hard R. gr. silvings sandy stat at		 	 	 	 	-+	_	-		+-	_
\vdash					1/33.0 - 1/33.5 1/35.7 - 1/36.0 1/36.6 1/37.6 1/44.2 -		 	 	-	├─-	\dashv			-	-	
\vdash										$\vdash \vdash$	\longrightarrow		-		-	_
 					1144.5- 1149.4-1150.0 1213 1226 1233-1233.5				ļ						_	_
					1248, 1253, 1257.6-1258.3, Generally more	and the state of t	ļ	<u> </u>								
\vdash		-			common 1285-1297. Hand calcaneous stat								\bot			
					1304.15 -1304.4			L			T	T				_
																_
					Very Rand f.gr., ang to sub-rd. sot								\neg	\neg	1	-
					containing clear g/z and red jispers							_			+	_
					at 1286 1290 and 1293.4-1294.1. V & gr.		1159065					., 1,			+	
					silty not 1246.8 - 1247.3		113 4063	71710	7173.0	-+	14	16 6	23 4	7/1	121	-
 		_			suy 24 1246.8 - 1241.3	the state of the s	<u> </u>						$-\vdash$			_
 													_	_		
 					Granular mixture of anny dilt got (?)											
					and most fragments 1189.7-1182.1	and the same and t										
					Mat / stat = 50/70 1117-1125 and 1131 - 1189.	a care a service and a service										
		1									T					
	l	1			Brains of granite and anhydrite (?)									1		
					scattered Arough met 1stat 1300-1306.	- Constant and the Con				-+			-	_	+	-
					75.00 /350.						_	_	+		+	-
					1208 1 1 1 1 1 1		-				-			+		-
 			-		1308.45 - 1398.2. Series of makic volcanic flows, each with a top labout 50-			ļ			\dashv	\dashv			+-	4
 		\dashv			Trous, each with a top labour 50-	···					-					4
					100 cm thick of ak. purplish - gy						\bot					
\vdash					versular and amygdaloidal tock with										1	_
					100 cm thick of dk. pumplish - gy vesicular and amygdaloidal bock, with prehaite, grading to a loner section of mid gy-gm. for m.gr. amygdaloidal br non-amygdaloidal rock. Individual flows are described below.								T	T	T	
				I	and gran fit mar amy eduloidal ar		1159033	1307.0	13100		/2	61	35	60 3	6 41	
	T				non- amy dalaidal rock. Individual						+	- 	1	1	1	7
					thous and described felous	1				\dashv	-	-	\dashv		+-	+
										-		-+	+-	+-	+-	\dashv
		_			130 9.417 - 12.74.0 Ma.						\dashv	-+	-		+	\dashv
-		-+			130 P. 45 - 13248. Mar, mas sing dk gg. amy odaloidal valcanic very similar to Su	A + 10 0 F						-	٠.	_	-	4
		\dashv			any or alora variance very similar to Su	w-vertical fracture	1157034	1314	13/5		/2	6 1	12,	2	1 <1	4
		\dashv			pagements and follings of red-lan most and	illed mith soft taloy									1_	4
	\rightarrow				fragments and fellings of red-in mst. Inc	aterial et 1313.5 Syt									1	_
		\dashv				ed material in Rovisontal			1							
						int at 13144		T		[T					I
$oxed{L}$				l	1324.8-1348.3: about change to dk. purplish-		1159035	1319	1320		38	6 7	0 5	6 3	1>	T
	[T	en resicular rock brecuiated in places.							\top		T	Τ	1
					Vericles gul-rd. and generally 1-5 man	4					+	-		+	1	1
		-			The state of the s	the state of the s									4	4
	- 1	- 1	4		diameter (most about 2 mm). Host are empty	l l	Į	1.		- 1	- 1	- 1	4	ı	1	


	OLLAR_				AZIMUTH DRILLERS DRILL TYPE	COMMENCED										-
DE	PTH	CORE	-	П												=
FROM(M)	TO(M)		CORE	GRAPHIC	CORE DESCRIPTION	SPECIAL FEATURES WEATH, ALTERATION, FRACTURING VEINING, MINERALIZATION	SAMPLE	FROM (M)	TO	REC	-		ASSA	Y V	ALUE	S
		177			but some contain a zeolité. Large veins	, amende (mineral management)	No.	(m)	(M)	11007	Cu	y la	Z٩	Ni	Co	_
					or resicles contain pretrict red jespoint	100		 		+	+-	 	00			
					material or earthy dk. purple or	a(:)	1159036	1324	1325	+	26	+4	90	60	38	_
		_			de by material at 13275, a change	<u> </u>	 	 		+-	₩	 	\longrightarrow			_
					dk. on. malerial. Out 1827.5 a change		 	 		+	_					_
					week massive and apply additional in		 			-	┼	\sqcup	\vdash	\longrightarrow		
					rock, massive and amygdaloidal in					—	ـــ	\sqcup	1			٠
					upper part weathy builted and non-		1159037	1329	1330		42	4	95	48	28	<u>خ</u>
		-			amy godaloidal in lover part (dolerill	آها				4		igsquare				_
					Conjugates are large (10-45 mm) flatters. Rosis outally and generally several com	4	ļ		·	ــــــ	<u> </u>				$ \bot $	_
					toris on Tally and generally several com		ļ	ļ		↓	<u> </u>	\sqcup				
					apart in nertical direction. Rare below		<u> </u>	ļ		1						
			-	$\vdash \vdash$	1830, none below 1333. Most contain a	 	1159028	1334	1335	1	16	6	32	36	21	<
ļi					thin rim of white mi eral and filling	Rock contains several					<u> </u>	Ш				_
					of preknite but a few are emply sout	sul-vertical gracture						Ш	[\Box		
					of prokaito but a few are camply sout	Vein of 2 colite at 170						Ш		\Box		_
		\rightarrow			Bandens in lower part is 1-2 min	to LCW at 1334.		<u> </u>								
					. thick and rather inegular and		1159039	1339	1340		/2	6	48	36	22	<
					indistrict: Possible applita(?) in bands.											
													\Box			_
					1348.3-1350.2; Sharp change to v. ak. gy.											_
		_			vesicular F. Ev. volcamo becomin .											
					China dia di VV. Jona di Cara di Vara di Villa di Salita	,	1159040	1344	1345		12	4	65	34	20	~
		1			the above for section with pew amygdales.							$\overline{}$	\neg		_	_
												\Box				_
					13502-13558: Vencular old gy-gn volcani with much prelinte fully or partly filling	٤										_
					with much preliate fully or partly filling										\neg	_
					cavities Gradually becomes less		1159041	1349	1350	\vdash	28	4	120	46	30	~
	1				vesicular and lighter in colour abunuard	2								1	\neg	_
	l													$\neg \uparrow$	+	_
					1355.8-1359.5: Change over 5 em to dk.								\neg	_	\top	_
					surplish -on vericular/annodal nidal volcani									\neg	十	_
			,		with much preknite, Gradual change to gy-g appropriate rock and then in about of		1157042	1254	1200		14	2	/20	22	24	-
					amendalsidal rock and then an about		70 1012	135 4	/ 34 3					-	~	-
	$\neg \top$				charle by 70° to LCA) to a least and							\neg	-+	-+	-+	_
. 1					amygdalaidal volcanic et 1358.5.						$\overline{}$	-+	-+	-	一十	-
										 	\dashv		\dashv	-+	\rightarrow	_
					13595-13600. about classo to mushist.		1159 043	11/10	176-		16	\neg	80	10	,	_
		\exists			13595-1360.0: Abrupt- change to purplish- gy, amy gdaloidal volcanic flen gradation to gy-gn amy gdaloidal rock.		"37 543	127	1200		<u>-°</u>			 -	' +	-
		\dashv		$\neg \uparrow$	gradation 16 man a manda laidal and					\vdash		\rightarrow	\dashv	+	-+	-
					The same was the s					-+	-	-+	+	+	+	
		\neg			1360,0 - 1362.5 : Gradual change over 10 cm					-+	-	$\overline{}$	-+	-+	+	-
					15 dk. gr. vericular and amyedaloidal		1159044	1264	12/	\vdash	,	-	7	46	,	_
					volcanic then gradual change to		77574	/307	1363	$\overline{}$	-	-		70	34	-
		\dashv			lighter finer granted amy exalaidal rock					-+		\dashv	-+	+	+	
		_			The grant any grant and							+	+	-+	\rightarrow	-
		$\neg \dagger$		$\neg \uparrow$	1362:5-1364.45. Gradual change over 5cm	1						-+	+	+	+	_
		\neg			15 dk, purplish - gy, vericular/any gralaid	b	1157045	12/5	127	- 		7	210	\pm	-	_
		\dashv			volcanic. Gradual change to lighter	T	113 7043	1367	13/6	-			-10	, <u>, , , , , , , , , , , , , , , , , , ,</u>		<u><</u>
		\dashv		-+	amy golaloidal rock	3.					-	\dashv	-+	+	+	
		\neg		-	may your nous					\rightarrow	\dashv	\dashv	-+	+	+	_
						1	لـــــــــــــــــــــــــــــــــــــ									
SUMM	ARY AN							LOGGE	D BY_	# K	(Sc -	,T-T		D/	ATE _	

					DRILL	DRILL CORE LOG					CAST TOOM TOTAL TUCKET EET									
co-c	RDINAT	ES			AZIMUTH DRILLERS	COMMENCED		DEP	тн			H	OLE	No:	83	KD	11	í .		
RLC	OLLAR				INCLINATION DRILL TYPE	COMPLETED		CAS	ING LEF	Υ			OPO	Notel						
DE	FTH	CORE				SPECIAL FEATURES	T	1	1		一			10(8)						
FROM(M)	TO(46)	MEC	COME	104	CORE DESCRIPTION	SPECIAL FEATURES WEATH, ALTERATION, FRACTURING VEINING, MINERALIZATION	SAMPLE	FROM	TO	REC	<u> </u>		ASSA	4Y '	VALU	ES (r	<u>(۲۰۰۰</u>			
		1:				VEINING , MINERALIZATION	No.	(M)	(M)	(M)	Cu	PL	Zn	Ni	Co	AG	la	Au		
		+		 	1367 To 1367 S. Works Change 18 ax	the same of the sa	1	L	1			1	1	1	1	1 -	1	i		
	<u> </u>	+			purplish - gy vericular and any daloidal		1159044	1374	1375		55	4	65	136	28	<1	44	100		
		+			Gradually becoming her resider and mid gy-gur in colony although anygotales still common to about 1370						[1									
		-	ļ		Gradually becoming been resident and												1			
-		1—			mid gy-gu in colour although any dales		1159066	1377	1378		340	14	85	4.8	26	1	14	100		
					still common to about 1370		1159067			\vdash	3100	7	90	40	24	127	1	1		
							1159047				700	-	100	1	18	127	17.	K 0, 0		
					Grains of native Cu disseminated	Paik alteration	1159068			\vdash			••	4.	!	121	15.7	500		
						of felsper (?) common	1/3 7068	1380	1341	-F	2900	- 6	100	32	22	1	14	<0.0		
					with lest around 1380.7 also on	1370 - 1384.				 	1950	-	110	32	22	11	14	40.0		
					joint surfaces and in veins mily		1159070			-	1850	-6-	80	30	24	<1	14	< 0.0		
					prehaite Bulk content estimated as		1159071		-	\vdash	44	-61	110	42	28	<1	44	400		
		1			probable buck content estimated as		1159048	1384	1385	\sqcup	24	4	75	40	28	<1	< 4	<00		
					less than 0.5 % Cu.								لـــا			<u> </u>				
-		-																		
\vdash		\vdash			13845-13982: Change over 5 cm to															
		\vdash			all perpetial - gry, venicular and															
					amy odalaidal volcanic although mar		1159049	1179	1390	$\neg \uparrow$	16	7	20	34	28	1	214	400		
					and olk. gr-gy at 1384.8-1385, as		115 7 5 7 7	12.1	1070	\rightarrow		쒸				۲	- 4	70,0		
					amy dalaidal volcanic although m.gr. and olk gy-gu at 1364.8-1315. as and 13816.15-1385.35. Below 1386					\rightarrow	-+	\rightarrow			\vdash		-			
					gradual clange to mid gy-ga mgr. amygdalaidal wolcanic.					-+	-+	-+			1	 				
					a sure laide la sure la la sure la sur					-4		\rightarrow		,l	<u> </u>			<u> </u>		
					·						-				 	\sqcup		<u> </u>		
					Contains disseminated suprete (?)		1159050	1394	1385	\dashv	32	6	75	32	28	<1	44	<0.0		
					13983 - 1292 (Tit to 129 110 (1)					_	_		\dashv		\square	ш				
				-	1388.3 - 1393.4 (estimated 1% cuprits)												\square			
		\vdash			1375-1 - 1395-3 (estimated 1-2% cuprits)															
					and 1398.0-1398.2 (estricted 5th cuprite).		1159051	1398.0	13982		6	6	80	36	28	<1	44	400		
					"Caprite" later found to be hematite mich a	metallic coppery lustre.														
					END OF HOLE						\neg	\neg								
												\dashv	$\neg \dagger$							
										\dashv	-	\dashv	-+				-			
										\rightarrow	-+	+	-							
			T		ABBREVIATIOUS						\rightarrow		\rightarrow							
					H.M.M. Carrier and					+	-	\dashv								
					pet sandatine 9/2 quanti					-+	$-\!\!\!+$									
$\neg \uparrow$		-									\bot	\rightarrow	\dashv							
-+		_			1					\bot	\dashv		\dashv							
		-+	-	-	most and stone of five						\dashv			\dashv						
-+					cgl confenerate m medium	<u></u>			1						[[I			
		+			c coarse			I		$_{\perp}\Gamma$	T		T				\neg			
					It light gr gramed			I				\neg	\neg							
					alk allerk any ampular	<u></u>						\neg	\top	1		1				
					gr grey rd wolmoled					\neg	\top	-	\neg	\neg		-				
					gu green carb carbonaceous					+	\dashv	+	-	\neg †	\dashv	\neg	_			
					wh white					+	-	+	+	-+	-+		-+			
	I		[be black	The second secon		†	-+	-	-+	-+	+	-+	+	\rightarrow				
		\Box	T		bu brown			+		-+-	-+	+	\dashv	\rightarrow	-+		\rightarrow			
										+	\dashv	$\overline{}$	\dashv			\rightarrow	\longrightarrow			
										-	\dashv	+	\dashv	 -	\rightarrow	\dashv				
C, 1224	ARY AN							1	1_	1	\bot					1				
	ART AN						-	LOGGE	D BY	A.K.	200	TT		0	ATE _					
			4									. >								

CRAE II7 PLAN Nom 414

SHEET 13 OF 13

CRA EXPLORATION PTY. LIMITED

į

The contents of this report remain the property of C.R.A. Exploration Pty. Limited and may not be published in whole or in part nor used in a company prospectus without the written consent of the Company.

NINTH QUARTERLY & FINAL REPORT ON

TUCKEY E.L. 1054, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 18TH JANUARY, 1985.

AUTHOR:

P. LEWIS

COPIES TO:

CIS CANBERRA

SADME

DATE:

25TH MARCH, 1985

SUBMITTED, BY:

ACCEPTED BY:

RECEIVED
3 APR 1985

DEPT. OF MINES
AND ENERGY
SECURITY
3973-7
13214

	<u>CONTENTS</u>			001	
			3	PAGE	
	1. SUMM	ARY		1	
	2. INTR	INTRODUCTION			
	3. CONC	. CONCLUSIONS			
	4. WORK	CARRIE	D OUT	2	
	4.1	Coal E	xploration	2	
		4.1.1	Data Evaluation	2	
		4.1.2	1980 Gravity Survey	2	
		4.1.3	1981 Gravity Survey	3	
		4.1.4	Drilling	3	
			4.1.4.1 Drill Hole Results	3	
	•		4.1.4.2 Lignite Analyses	4	
			4.1.4.3 Geochemistry	4	P
			4.1.4.4 Palynology	4	
		4.1.5	Downhole Geophysics	4	
		4.1.6	Geophysical Surveys	4	
	4.2	Potash	Exploration	5	
		4.2.1	Data Evaluation	5	
		4.2.2	Drilling	6	
		4.2.3	Downhole Geophysics	6	
]	EXPENDITU	7			
REFERENCES					
LOCATION					
KEYWORDS					

0

LIST OF PLANS

1. SUMMARY

Tuckey E.L. 1054 covers part of, one of three tenements which were taken out to explore for economic lignite deposits within the Polda Basin. Interest in the area was generated by the Lock Coalfield in the central part of the basin and the reported lignitic intervals in previous company, SADME and water bores drilled within the basin. An assessment of this data outlined prospective areas to be tested by drilling. In addition detailed gravity data was obtained over the northern margin fault in an attempt to define the basement topography.

Seventy two rotary mud holes (including three partially cored holes) for a total of 7922 m were drilled by CRAE in the Polda Basin. Sixteen open holes and two partially cored holes were drilled within Tuckey E.L. 1054. The thickest lignite intersections made by CRAE occur in this area being a 15.3 m seam from 221 m in 81LRM41C and an 8.9 m seam from 60 m in 80LRM5C. The results of drilling in the area have indicated a potential lignite resource of 220 million tonnes, of which 140 million tonnes occurs below 200 m. The quality of the lignite is comparable to other South Australian lignites. The depth of the lignite precludes further exploration for a mineable resource at present.

The intersection of halite in Lower Palaeozoic sequences in Mercury No. 1 drilled in the offshore Polda Basin generated interest in the Tuckey area for potash associated with similar evaporitic sequences. A 17 km seismic traverse complete over the Polda Basin within the Tuckey area indicated the presence of Pre-Permian sediments. A 1398 m rotary mud/diamond drill hole intersected 793 m of ?Cambrian argillaceous red beds and basalts.

No evaporitic sediments were intersected. Stratigraphic correlation of this sequence with holes drilled in the offshore Polda Basin and in Officer Basin suggest that evaporites if present would occur below the basalts at the base of the hole. There is no certainty that evaporites exist in this part of the basin. Further exploration for potash is not justified on present results.

į

2. INTRODUCTION

Tuckey E.L. 1054 was granted to CRA Exploration Pty. Limited on 19th October, 1982. The term of the licence was extended to 36 months on 19th October, 1984. The licence covers an area of 355 square kilometres over the eastern part of the Polda Basin (plan SAa 1932) and coincides with the northern retained portion of E.L. 687 previously held by CRAE.

3. CONCLUSIONS

The results of drilling by CRAE within Tuckey E.L. 1054 have indicated a potential lignite resource of 220 million tonnes. However, the depth to and quality of the lignite precludes further exploration of this resource at present.

The potash potential of the eastern onshore part of the Polda Basin remains untested. However, if evaporitic sequences are present they would occur below 1000 m on the basin margin and 1400 m in the centre of the basin. If potash was associated with such sequences it is most likely to occur in the deepest part of the basin (Scott 1984b). The presence of the basalts in the sequence downgrades the potential of the area. The cost of further exploration for potash below 1400 m in this area is not considered justified at present.

4. WORK CARRIED OUT

4.1 Coal Exploration

4.1.1 Data Evaluation

All open file data on the onshore portion of the Polda Basin was reviewed. Data from 211 drill holes (Company, SADME and water bore) was summarised noting the depth to and thickness of reported carbonaceous/lignite intervals and basement lithologies. This data was compiled onto 1:250 000 base plans and used to define target areas for drill testing (Flitcroft, 1980).

4.1.2 1980 Gravity Survey

Gravity data was acquired at 113 stations along two traverses (station spacing 500 m) across the eastern end of the Polda Basin in an attempt to define the basement topography. Qualitative interpretation of the data indicated a sub-basin

adjacent to the northern margin fault. The location of the traverses, survey specifications, data listings, profiles and interpretation occur in Flitcroft, 1980.

4.1.3 1981 Gravity Survey

Following the first phase of drilling Geoterrex Pty. Limited were contracted to complete a gravity survey over the northern margin fault. Gravity data was acquired at 130 stations along five 5 km traverses. Interpretation of the data indicated the fault is near vertical within the Tuckey E.L. but dips 45°-60° to the south to the west of the licence. Throw on the fault is interpreted to be around 1000 m. Survey specifications, data listings, location of traverses and interpretation of the data occur in McBain, 1981.

4.1.4 Drilling

Two drilling programmes were completed to assess the lignite potential of the Polda Basin tenements. The first comprising 42 holes (including two partially cored holes) was completed by Thompson Drilling during August-October, 1980, and the second comprising 30 holes (including one partially cored hole) was completed by W.L. Sides and Sons during May-July, 1981. Sixteen open holes and two partially cored holes were completed in the area covered by Tuckey E.L. 1054.

4.1.4.1 Drill Hole Results

Lignite was intersected in eight holes drilled within Tuckey E.L. 1054, the thickest intersections being a 15.3 m seam from 221 m in 81LRM41C and an 8.9 m seam from 60 m in 80LRM5C. The results of the drilling completed around these holes have indicated a potential lignite resource of 220 million tonnes of which 140 million tonnes occurs below 200 m of cover. The lignite occurs in narrow zones roughly parallel to the northern margin fault, the shallow lignite occurring on the upthrown side of the fault. Both lignite occurrences remain open to the east. Detailed drill logs, cross sections and a full evaluation of the drilling programmes occur in Flitcroft, 1980 and 1982.

4.1.4.2 Lignite Analyses

Samples of the lignite intersected in holes 80LRM5C and 81LRM41C were submitted for proximate and ultimate analyses. The lignites have high moisture, moderate to high ash, and moderately high sodium, chlorine and sulphur contents. The lignites are comparable to the Tertiary lignites of the north St. Vincent Basin and Kingston areas. Full analyses are presented in Flitcroft, 1982.

4.1.4.3 Geochemistry

Samples of the basement and selected samples of the cover sediments were analysed for copper, lead, zinc, cobalt, gold, silver and molybdenum by AAS techniques and tin, tungsten, uranium and tantalum by XRF techniques. No anomalous assays worthy of follow up were returned. Full assay results occur in Flitcroft, 1982.

4.1.3.4 Palynology

Palynological examination of three core samples of the lignite in 80LRM5C indicated an Eocene age. A report on all age determinations is presented in Appendix IV of Flitcroft, 1982.

4.1.5 Downhole Geophysics

All holes drilled in the 1980 and 1981 drilling programmes were geophysically logged by Geoex Pty. Limited for caliper, natural gamma, neutron, short and long spaced density, resistance and self potential. Downhole geophysical logs occur in Flitcroft, 1980 and 1982.

4.1.6 Geophysical Surveys

Gravity and experimental seismic and E.M. surveys were conducted along a 3 km north south traverse through drill holes 81LRM41-80LRM5-81LRM42. Gravity readings were taken at 40 m intervals from 400 mN to 3000 mN. The survey specifications, data listings, profiles and interpretation occur in Flitcroft, 1981. The results were consistent with those obtained from the earlier surveys.

An experimental seismic reflection survey was conducted by the SADME from 650~mN to 1700~mN. All data and results are held by the SADME.

An experimental E.M. survey was conducted by Geoterrex along the traverse from 200 mN to 2700 mN using the 'maxi-probe' EMR-16 system developed by Geoprobe Limited. The apparent resistivities and an interpretation report occur in Flitcroft, 1981.

4.2 Potash Exploration

4.2.1 Data Evaluation

Thick sequences of ?Lower Palaeozoic sediments were intersected in two oil exploration wells (Mercury No. 1, Columbia No. 1) drilled by Australian Occidental Pty. Ltd. in the offshore Polda Basin. Mercury No. 1 which was drilled on an interpreted salt dome intersected 1700 m of interbedded halite and red siltstones. Five metre composite samples were taken from this interval and submitted for bromine in salt analyses. Bromine values ranged from 8-400 ppm but no trends were evident. Full analyses were presented in Appendix II of Scott, 1984a.

Although the bromine profile of the salt intersection in Mercury No. 1 was inconclusive the presence of the salt indicated exploration of the onshore portion of the Polda Basin for potash associated with similar sequences was warranted.

The SADME initially planned to drill a stratigraphic hole in the eastern part of the Polda Basin. A 17 km seismic traverse was completed by the SADME mainly within Tuckey E.L. 1054 to provide better definition of the bottom of the basin and to site the drill hole. With the SADME stratigraphic hole being drilled in the eastern part of the Polda Basin, CRAE planned to drill a hole in the western part of the basin. The SADME drill hole was later cancelled and CRAE decided to drill the first hole in the eastern part of the basin. An interpretation of the stratigraphy and structure of this part of the basin was made from available drill hole data, gravity data and the SADME seismic section (Scott, 1984a). A hole was proposed to test an interpreted sub-basin marginal to the deepest part of the basin.

4.2.2 Drilling

drilling was completed by F.A. Kelly Pty. Ltd. during the period December, 1983 - March, 1984, using a Warman 1500 drill rig. The initial drill hole 83KD1 was abandoned at m due to problems with lost circulation and swelling s. Drill hole 83KDlA sited approximately 7 m away from clays. 83KDl was completed at 1398 m after penetrating 90 m of basalt. The hole intersected 301 m of Tertiary sands, clays lignite, 282 m of Jurassic sands, grits and minor coal, 22 m of Permo-Carboniferous diamictite and 793 m of ?Cambrian argillaceous red beds and basalts. No evaporitic sediments were intersected. Detailed descriptions of the stratigraphy intersected in the drill hole occur in Scott, 1984b. Stratigraphic correlation of this sequence with that in holes drilled in the offshore Polda Basin and the Officer Basin suggests that evaporites, if present, would occur below the However, there is no certainty that evaporites basalts. exist in this part of the basin.

Selected samples of the Jurassic grits, Permian diamictite and ?Cambrian red-beds, tuffs and basalts were analysed for selected elements. Native copper occurs in the basalt between 1378.4 m and 1382.5 m. Maximum copper assay over this interval was 4000 ppm. Full assay results, detailed drill log, petrological descriptions and discussion of the drilling programme occur in Scott, 1984a and 1984b.

4.2.3 Downhole Geophysics

The drill hole was geophysically logged by Geoscience Associates Pty. Ltd. Natural gamma, caliper, long (80 cm) and short (30 cm) spaced density, neutron, sonic and drift logs were obtained to 596 m at the completion of the rotary mud drilling. Natural gamma, neutron, self potential and resistivity (0.4 m and 1.6 m normal and 1.8 m lateral) logs were obtained from 596 m to 1384m. Caliper and short spaced density logs were only obtained to 701 m due to a blockage in the hole. All geophysical logs except the 0.4 m normal and 1.8 m lateral logs are shown on plan SAa 2805, in Scott, 1984b.

Raulkeris

P. LEWIS

PL/pw

EXPENDITURE

Expenditure for the period ended 31st January, 1985, the nearest accounting period was \$1202.00, as listed below.

		\$
Payroll Supplies Tenement Contractors Overheads		1287 4 662 -1431 680
	Total	<u></u>
	iotai	\$1202

REFERENCES

Flitcroft, M.J.N. 1980

First Quarterly Report on Polda Basin, South Australia. McLachlan E.L. 670 For The Period Ending October 7, 1980, Tuckey E.L. 687, Sheringa E.L. 688 For The Period Ending November 11, 1980. CRAE Report No. 10307.

Flitcroft, M.J.N. 1981

Fourth Quarterly Report on Polda Basin, South Australia. McLachlan E.L. 670 For The Period Ending July 7, 1981, Tuckey E.L. 687, Sheringa E.L. 688 For The Period Ending August 11, 1981. CRAE Report No. 10307

Flitcroft, M.J.N. 1982

Sixth Quarterly Report on Polda Basin, South Australia. McLachlan E.L. 670 For The Period Ending January 7, 1982, Tuckey E.L. 687, Sheringa E.L. 688 For The Period Ending February 11, 1982. CRAE Report No. 10307

McBain, D.R. 1981

Third Quarterly Report on Polda Basin, South Australia. McLachlan E.L. 670 For The Period Ending April 7, 1981, Tuckey E.L. 687, Sheringa E.L. 688 For The Period Ending May 11, 1981. CRAE Report No. 10307

Scott, A.K. 1984a

Fifth Quarterly Report on Tuckey E.L. 1054, South Australia, For The Period Ending 18th January, 1984. CRAE Report No. 12527

Scott, A.K. 1984b

Sixth Quarterly Report on Tuckey E.L. 1054, South Australia, For The Period Ending 18th April, 1984. CRAE Report No. 12675

ï

i

LOCATION

Kimba SI 53-07 1:250 000 sheet

KEYWORDS

History

LIST OF PLANS

Plan No. <u>Title</u>

<u>Scale</u>

SAa 1932 Tuckey E.L. 1054 Location Map

1:250 000

REPT. BK. NO. 87/52

WELL VELOCITY SURVEY FOR DRILL HOLE C.R.A.E. KD#1A E.L.1054, POLDA BASIN

OIL, GAS AND COAL DIVISION

Ву

L.P. HOUGH

CONTENTS		PAGE				
ABSTRACT						
INTRODUCTION	1					
PROCEDURE	1					
COMPUTATIONS	2					
RESULTS	3					
CONCLUSIONS	5					
		Plan Nos				
FIG. 1 Shot Point Location M	lap	86-818				
FIG. 2 Well Site Diagram		s 19012				
FIG. 3 Seismic Refraction An	alysis	s 19013				
FIG. 4 Time versus Depth Plo	ot	s 19014				
FIG. 5 Power Curve Fit of Ti	me versus Depth Points	S 19015				
FIG. 6 Seismic Reflection Li	ne PB 83-001	86-819				
TABLE 1 Results		s 19016A				
TABLE 2 Computations of Veloc	cities	S 19016B				

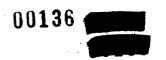
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT. BK. NO. 87/52 D.M.E. NO. NEC-4

WELL VELOCITY SURVEY FOR DRILL HOLE
C.R.A.E. KD#1A
E.L. 1054, POLDA BASIN

INTRODUCTION

A check shot velocity survey was conducted by S.A.D.M.E. as part of a normal geophysical logging programme performed for CRAE by GEOSCIENCE ASSOC. PTY LTD. of Adelaide in drill hole CRAE KD#1A on March 15th 1984.


The drill hole is located on S.A.D.M.E. seismic line PB83-001 at shot point 338 (see FIGS 1 & 2) within exploration licence area 1054 which covers part of the onshore section of the Polda Basin.

The survey was undertaken to provide a correlation between the 1983 seismic reflection profile, and the lithological and geophysical borehole logs, and to determine overall average formation velocities.

Drilling was terminated at 1398 metres depth below ground surface (elevation 110.251 A.H.D.) and the well geophone was lowered to a maximum depth of 1380 m due to insufficient logging cable.

PROCEDURE

A wall locking geophone was lowered to pre-determined depths using electric logging cable supplied by the GEOSCIENCE ASSOC PTY LTD. logging unit. The logging cable was coupled to a portable 6 channel OYO MCSEIS 150 recording seismograph unit.

The energy source ranged from Anzomex "A" boosters (25 gms) up to Anzite Blue (2 kgs). If a preamplifier had been in place on the well geophone it is considered that the charge size could have been reduced considerably from the 2 kilogram size. Most shots were detonated in the mud pit (18 metres offset from the well head) although 4 records were taken at 50 and 100 m offsets (see Fig. 2).

Results were produced as hard paper copies and also as a timeable video display.

Trace 1 on all records represents the time to a reference geophone located at the top of the well, trace 2 is available as an uphole geophone at the shot point but was not utilized and trace 3-6 inclusive displays the signal of the down hole geophone at different amplifer gain settings.

Thirty-two (32) poor-fair records were taken at twenty one (21) levels in the hole, 12 records being rejected. The well geophone was located at levels chosen to coincide with significant formation boundaries selected from a study of the drill core and cutting sumaries. Geophysical logs were only available from surface to 605 metres at the time of the survey. Intermediate shots were also taken resulting in a maximum subsurface sample interval of 190 metres. Results of the survey are tabulated in TABLE 1. Records were taken both when running in the hole and also on the way up from total depth.

COMPUTATIONS

Values of slant arrival times to the downhole geophone were first corrected to the vertical and secondly corrected to the 100 metre A.H.D. seismic datum by the application of datum statics, see Table 1.

Datum corrections were estimated from results of a refraction spread recorded at the well site Fig. 3 and also from analysis of uphole times recorded along the seismic line in the near vicinity.

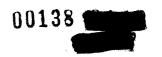
An average velocity to datum from surface was estimated at 725 m/sec.

Average velocities to depth and interval velocities between geophone locations were then calculated see TABLE 2. Average formation velocities can be estimated from the plot of corrected times versus depth, FIG. 4, and these can be compared with the interval velocities calculated in Table 2.

Two power curves of the form y = axb where:

Y = depth

a,b = are constants


x = time

were fitted to the data points by linear regression see FIG. 5.

RESULTS

On the basis of the average formation velocities calculated by linear regression (fig 4), five (5) velocity zones were identified. These are listed below with their corresponding depth range and for comparison the geological time horizons are also given.

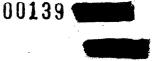
<u>DEPTH</u>	VELOCITY	<u>DEPTH</u>	GEOLOGICAL AGE
(BELOW DATUM)	(M/S)	(BELOW DATUM)	
0		0	
90	V ₀ 1584	104.75	MIOCENE
230	V ₁ 1761	290.75	EOCENE
506	V ₂ 2143	572.75	JURASSIC
670	V3 3098	594.75	PERMIAN
T.D.	V4 4599	T.D.	CAMBRIAN?

It is obvious that the velocity zones do not compare exactly with the geological time zone boundaries but have a more favourable correlation with geological events with the time zones.

A greater number of sample points in the well would clarify this situation further but basically velocity V0 = 1484 ms corresponds to the Miocene sequence of clays and sands. Velocity V1 of 1761 m/sec is correlated with the basal Miocene or possibly the top of the Eocene unit down to a depth of approximately 230 metres below datum. From 230 to about 506 metres below datum the formation velocity is 2143 m/sec. This depth range includes both the basal Eocene and the upper sequence of the Jurassic time zone. A lithological change at about 506 m within the Jurassic sequence causes the V4 layer velocity of 3098 m/sec. This velocity appears to continue through the Permian formation and into the upper red bed sequence to a depth of approximately 670 m below datum. Below this level the velocity is 4599 m/sec to the total depth of the hole.

These figures of formation velocity are regarded as more reliable than the individual interval velocities calculated between separate data points as tabled in Table 2 and displayed in Fig. 5. Of particular note is the apparent lack of velocity contrast at the top of the Jurassic and Permian sequences.

Two power curves of the form $y = ax^b$ where y = depth(m)


x = time (secs)

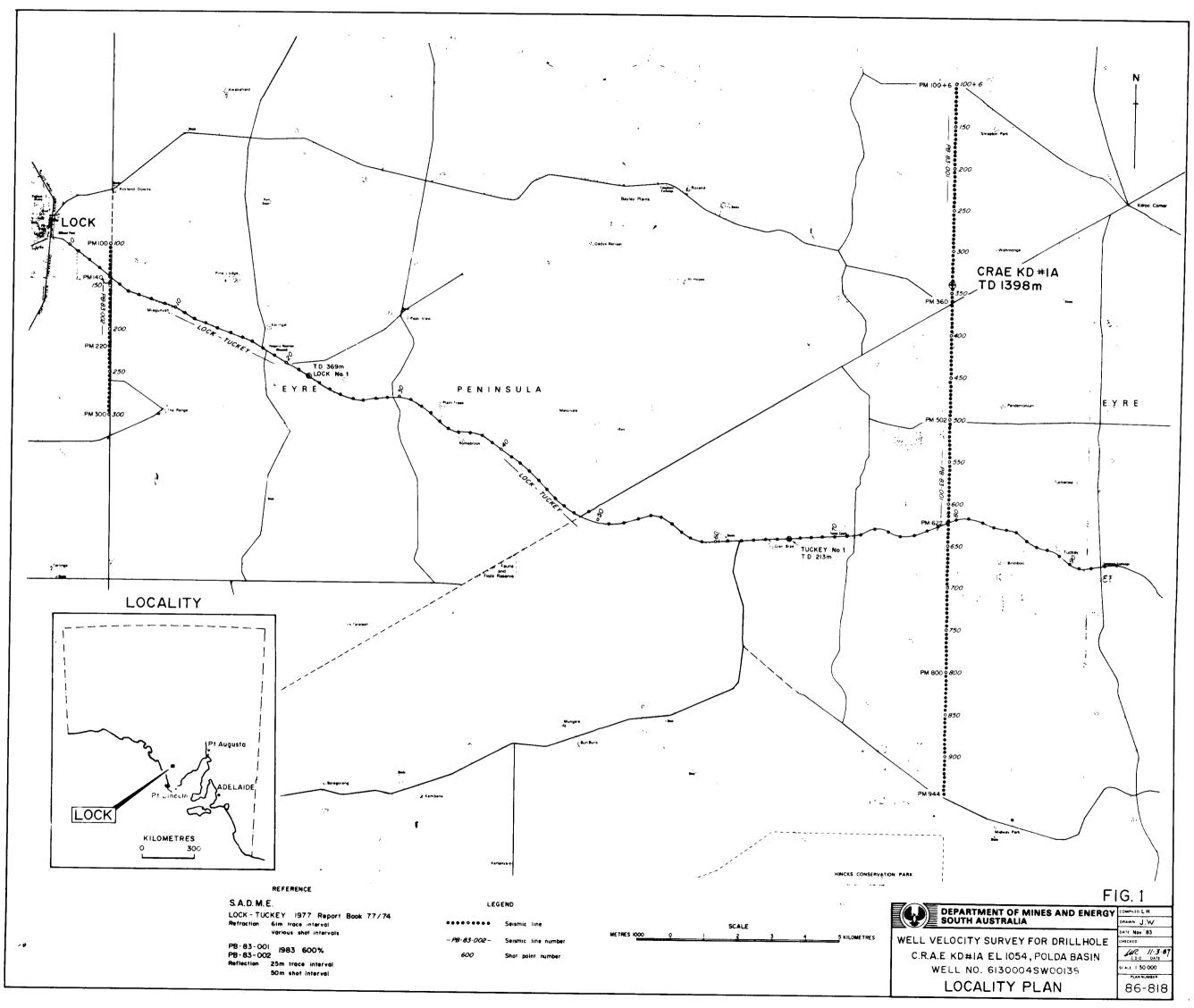
a,b are constants

were fitted to the time-depth points (FIG. 5).

These depth functions:-

- 1. $Z = 1024 t^{1.11}$ fits the time-depth points down to 505 m. (near base of Jurassic)
- 2. $Z = 1525 \ t^{1.75}$ fits the time-depth points from 505 m T.D. allow quick prediction of depth from seismic reflection times.

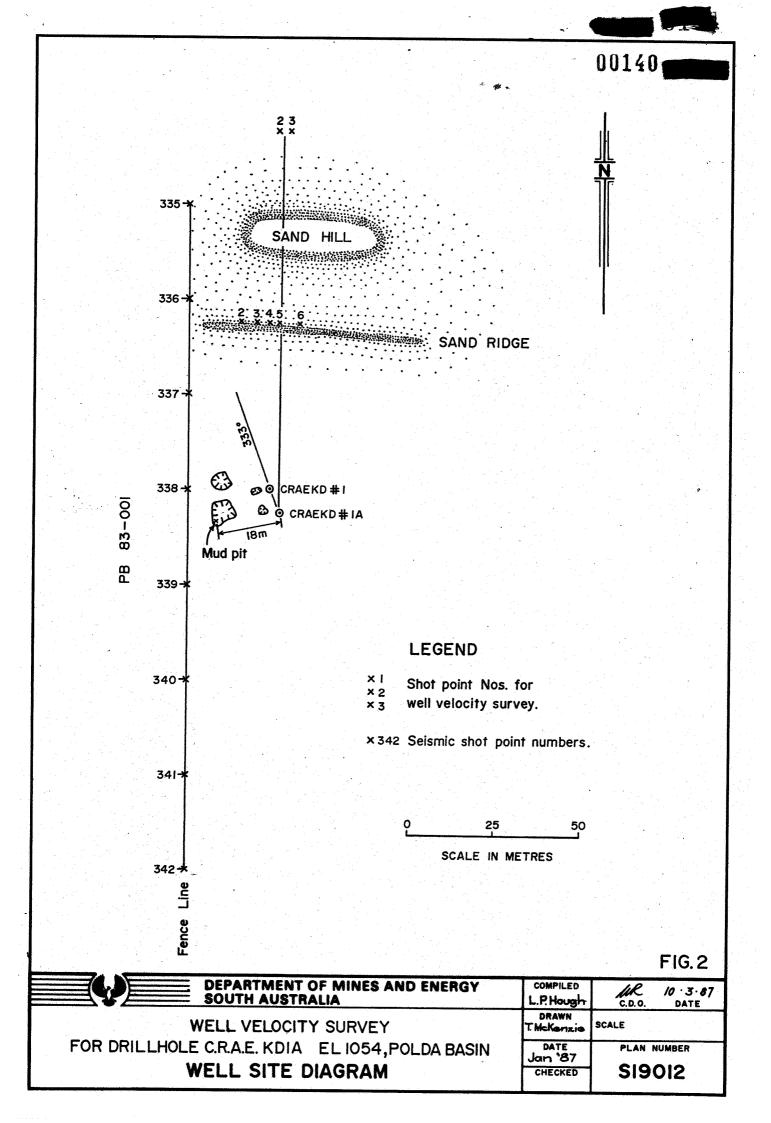
A correlation between the seismic section profile over the drill hole and geological horizons intersected is provided in FIG 6 where check shot times are plotted on the section.

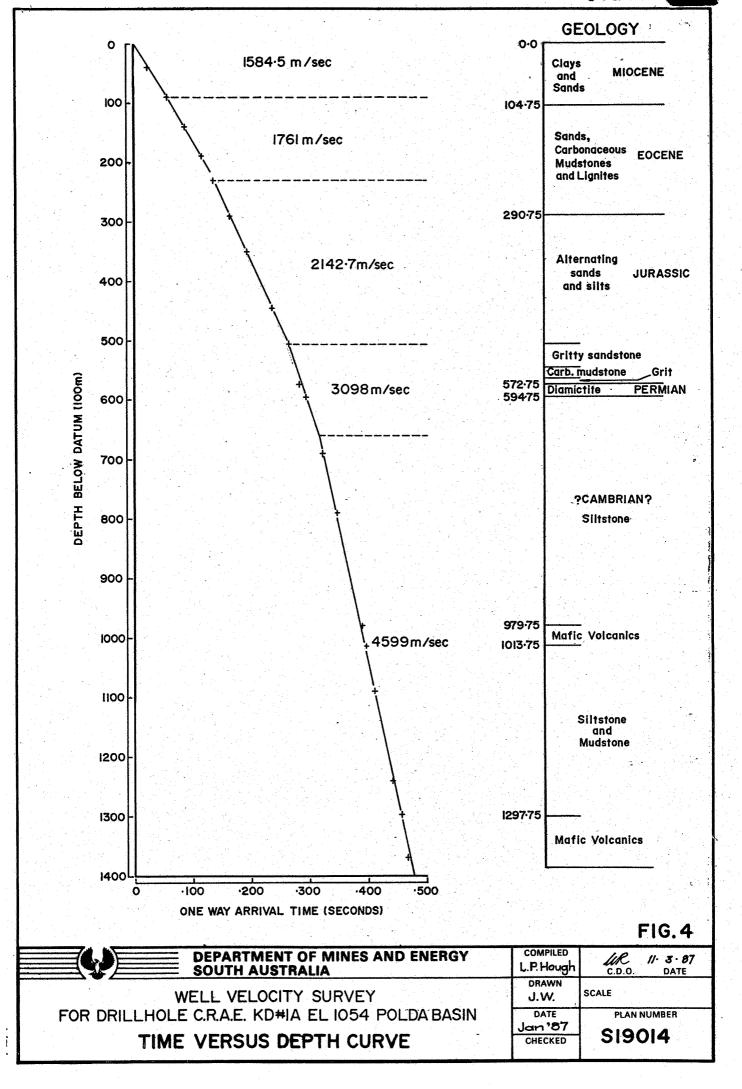

A good correlation between seismic events and geological formations is apparent.

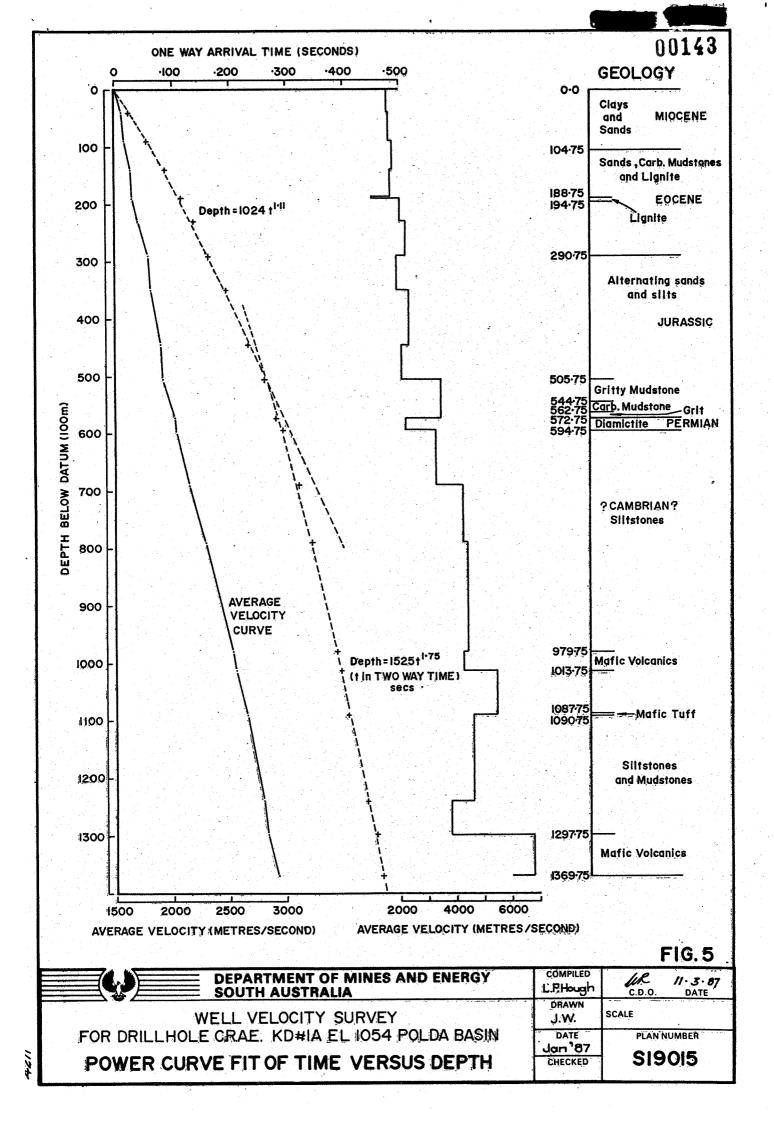
CONCLUSIONS AND RECOMMENDATIONS

Results obtained during the well velocity survey are considered reliable and have enabled a good tie between geological horizons intersected in the drill hole KD#lA and the seismic section PB83-001.

With the good correlation between geological formation and seismic velocity a sound basis for interpretation of future seismic work is now provided for this part of the Polda Basin.


It is recommended further work be conducted westward in the basin to provide a clearer picture of the geology and the seismic velocity distribution, particularly with regard to the Permian and Jurassic formations.




ia i

8288-6

17.64

SURVEY: POLDA BASIN

HREFF: 83-001

LINE :

SP: 180 84c

FINAL STACK

NORTH

RECORDING PARAMETERS

PROCESSING SEQUENCE

(1) REFORMATIFROM SEGY RESAMPLE TO 2 MS. SAMPLE RATE

(3) PREDICTIVE DECONVOLUTION : GOP = 20 MSF

GAP = 20 MSE. 120 MSE. OPERATOR 0,1% WHITE NOISE A 2 GATES CENGTH

(4) DATUM STATIC CORRECTIONS USING DIGICUN % STATICS (PROCESSING NATUM = 1000 M.

[5] COMMON DEPTH POINT GATHER

L61 VELOCITY ANALYSIS BEFORE RESIDUAL STATE

[7] RESIDUAL STATICS COMPLITATION AND APPLICA

TRI VELOCITY ANALYSIS AFTER RESIDUAL STATICS

[9] NORMAL MOVEOUT CORRECT

[10] PRE-STACK MUTE (COMPUTER GENERATED STRETT)

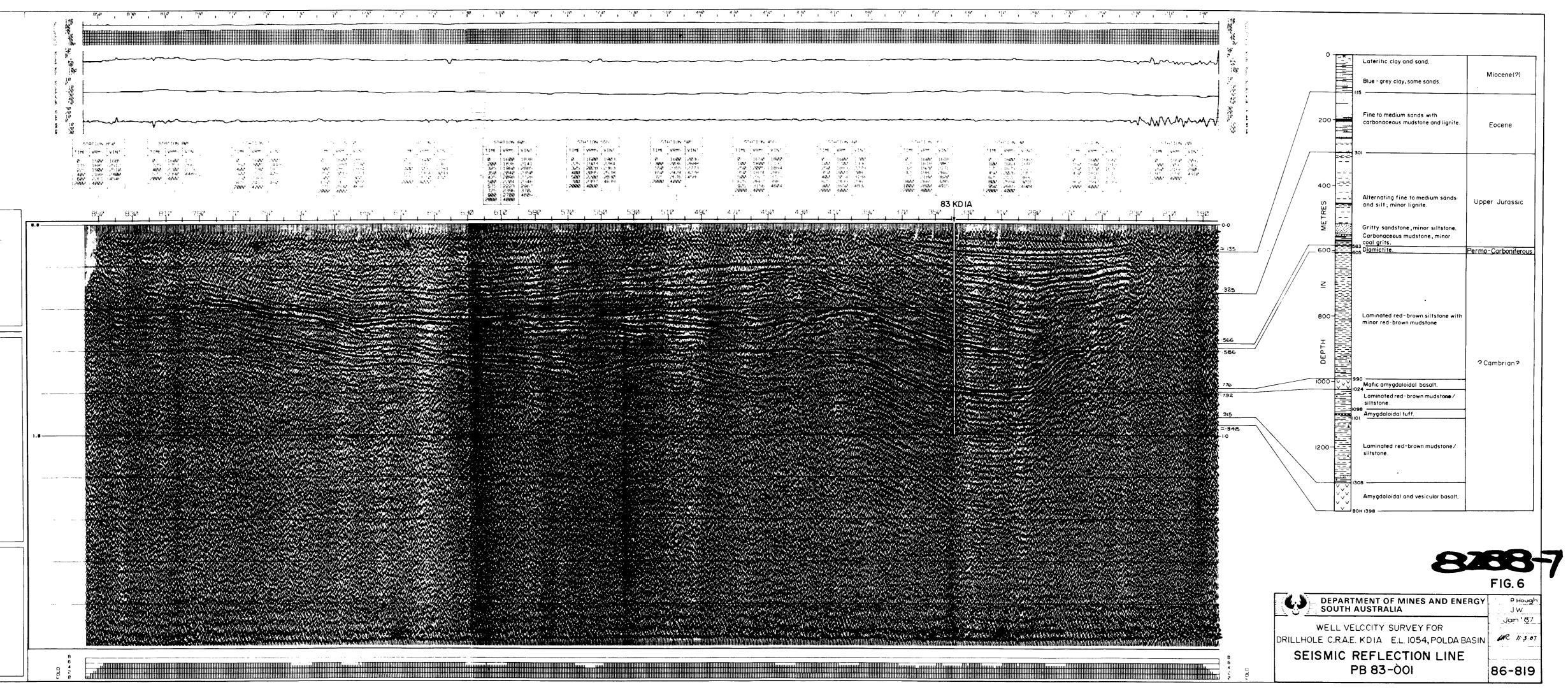
[11] TIME VARIANT FOURCIZATION (WINDOW LENGTH 5000 MC

LIE: COMMON DEPTH POINT . THEH

13: DIGITHE BRADPHS FILTER:
THE (SECONO: BRADPHSS/SLOPE (DB/DCTAVE.
0.6 20/18 1000-38 HZ
0.6 15/18-800-36 HZ
1.4 15/18-70/36 HZ
1.6 25/18-70/36 HZ

1.6 25/18 70/36 HZ - [14] - TIME VARIANT EQUÂ(124*10N HAINDOW LENGTH 100 MS

PROCESSED BY : DIGITAL EXPLORATION LTD.
DIGICON, BRISBANE



QUALITY CONTROL CHECK

GEOPHYSICIST : RICH SLEEN
SUPERVISOR : KEN BLEEN

DATE : OCTOBER 1983

HORIZONTAL SCALE : 50 TRACES/INCH VERTICAL SCALE : 5 INCHES/SEC POLARITY : NORMAL RELATIVE TO FIELD RECORDING

CATIZ

Department of Mines and Energy - South Australia

WELL VELOCITY CALCULATION FORM

SHOTHOLE INFORMATION LOCATION Elevation Total Depth Elevation Elevation of mud sump 109.77m Name C.R.A.E. KD# IA Coordinates Hundred, 1/250000 Sheet Area or Field Section 110-25m 1398 33° 35 '00" approx. Distance & Direction from Wall Hundred of Poldo SEC. 70 Distance 18m west of well Unit Number 6130004SW00138 AHD metres Smeaton **Rasin** Accord Shelhola Number Rumber Dem Vi Interval Va Elevation Well H cotanil cos i Asd Asd Dqs ΔD_{qd} Tge **∆**Tod Average Velocity Reading Felarity Grade Sevetion Stotlide Velocity 200 05 32 128 G 199 OZ 18 0.996 126.09 92712-6 115:29 115:29 189-75 G16 Elevation Datum Plans loss 100 0.5 32 99:03 18 Skiption Shell 0.984 0.27 28 DET 200 7 0 0 500 0 1.000 200 0.5 26 99 03 18 0.996 5.27 26 Sozs 301 0.5 175 8 300:03 18 0.998 175.45 9.27 12.8 162.65 162.65 1200.75 1768 516 0.5 277.0 0.999 276.72 9.27 12.8 263 92 263 92 505 75 5503 10 1916 10m 605 0 5 306 G04 03 18 3060 9-27 120 293-20 293-20 594-75 2028 990 0.5 32 401 389.03 18 1.000 4010 9.27128 388 20 388 20 379 75 2524 1380 0.74 138122 1003 0.397 11.47 158 0.997 484 54 11 73 162 468 34 468 34 136 978 2/24 1380 074 100 486 138148 100-22)25 1380 074 138119 50 0.399 11-44 15:8 Dom - Geophone depth measured from well elevation 20. 1380 0.5 34 1379:03 18 1.000 9.27 128 1308 05 1307.03 18 1.000 927128 20-1250 0-5 249 03 18 1.000 727120 Ds - Ceath of shat 1250 074 GO 159 1251-35 50z 0.999 458 5411-6016-0 442-54 442-54 1239 75 De . Shathole elevation to datum plane 280 1308 074 H = Horizontal distance from well to shatspire 1309:37 50 1162160 0.222 17 2/21 1308 0:50 S - Straight line travel poth from shot to well growled 474 1309-19 502 0.999 473-5311-4415-8 467-73 457-73 1297-75 1200 0:74 • ست fat a Uphale time at shappeint 1201:37 504 0.999 11-6216-0 T = Observed time from shotpoint to well exceptane. 54- 1100 074 1101:35 Ds 58 4265 0.999 426-07 1160 160 410 07 410 07 1080 75 te" : " " to reference géophono. 20 G/2m 1024 0.74 1025:5850g 0.999 -11-88 16-5 De = Difference in elevation between mell tabotopoint 1024 0.5 9-2712-8 102303 18 1.000 -And a short datumpling 1024 0:5 1.000 409 0 927 128 336 20 5962 1013 75 409 1023:03 18 2559 And - Dr-De 2200 Dis - Da-Desiae; teni . H. Dat Clare Control To Vert travel time from Short clare gentlem 33 800 0.5 358 799-03 18 1:000 358:0 9:27 128 345:20 345:2 789:75 699.03 18 700 05 34 334 5 1.000 334-5 9:27 125 321-70 321-7 68975 583 0 5 33 28c. Totale Tipe 252 datom plane . . 58203 18 1.000 296-015-27 128 283-20 283-2 97275 VAST Pol - Dom - Amd 355247.5 455 0.5 454 OB IA 0.999 247 25 9 27128 234 45 234 45444 75 360 0.5 360206.5 359:03 10 0.999 206 29 9.27 12:8 183:49 193:49 349 75 Vi = laterual velocity -10ozs 240 0.5 354 1482 239.03 JA 0.997 147.76 927 128 134 96134 96 229.75 1702 Va = Average . 199 127G 198:03 18 0.996 127.09 927 128 114-29 114-29 188-75 1652 Surveyed by: 0.993 98:11 527 128 85 31 65:51 139:75 30 10₂₅ 150 36 ര 98.8 149 03 18 0.5 1638 Date 0.984 69.47 9.27 12.8 5mg7 56 G7 69.75 380 99-03 18 IOO. 0.5 70.6 (584) Weathering Date 50 0-039 3831 9-27 12-6 25-51 25-51 39-75 0.5 37.G 408 49.03 /A 1558 Av. velocity from surface to 100m AHD 725m/sec. Casing Resert PLAN S19016A

4271

SHOTHOLE INFORMATION Elevation Elevation of mud sump 109.77m Distance & Direction from Well Distance 18m west of well					WELL VELOCITY CAL								MATERIAL STREET	LOCATION!									
				Valle C.R.A.E. KD # IA Unit Number Point 338 P.B. 83-001				(Derr	Elevation Total Depth Corrick Place 110-25 1398 1398 1398 1398		Coordinates Section Hundred, 1:250000 Shoet Area or Field 33° 35' 00" Hundred of Polda 136° 2' 38" approx. SEC. 70 Smeaton Basin												
	Shethele Humber	Dgm	Ds	tus	tr	Reading	Pelacity	Grade	Dgs	Н	cotan i	cos i	T	т —	Δsd V		Tgd Average	Dgd	ΔDgd	ΔTgd	Vi Interval	Va Average	Elevation Well
	5		- kra			, arg. , ag. 44°			orners		, a				1-	1	O	0			Velocity	Velocity	Δmd
_		50												1	+-	1		39.75	39.75	25.51	1558		Us Elevation Datum Plane
		100											 		1	 		89.75	50.0	31.16	1605		Elevation Short
_		150												+-	1	1		139.75	50.0	28.64	1746		
-		199				4	. 3.00		*				 	+-	-	 		18875	49.0	28.98			
	a, man	200							The same of the same	1			 	+-	╁	 			1.00	1.00	1000		
\Box	I	240		/							 		 	+	+-	 		189.75 229.75	40.00			1 - 1 - 1 - 1	S Dgs Dgd
		301									T -	 		+	1	 		290.75				15	
_		360										 	<u> </u>	+	\vdash	 		349.75		30.84	1913		\ulletin \ulletin
		455												┼	\vdash	 	234.45		95.00	40.90			
\Box	i	516		ate							 	 	 	+	-	-				29.47			<u> </u>
		583				****						 		+	 	 	263.92						Dgm = Geophone depth measured from well elevation
T		605									1		<u> </u>	-	 	 	283.20			10.00			Dgs = shet -
		700									7.77		<u> </u>	╁	├	 	293.20						Dgd = datum -
-	\Box	800						\dashv			 	7	<u> </u>	+			32170			23.50			Ds = Depth of shot
7		990				-		\dashv			1 75 -				 		345 20		1900	43.00	4419		De = Shothole elevation to datum plane
T		1024						\dashv	· ·					-			388:20		34.0	8:00			H - Horizontal distance from well to shotpoint
		1100				***************************************	-		-	- 4	 				ļ	ļ	396.20			13.87			S = Straight line travel path from shot to well goo
		1250						+				2222	*********	-	 	ļ	410.07		150.0		4620	Victoria de la composición dela composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composici	tus = Uphele time at shetpoint
T		1308						\neg					******	┼	-		442.54		58.0		3818		T = Observed time from shotpaint to wall geophone. tr = " " to reference geophone.
T		1380						-			100	74.		┼	<u> </u>	<u> </u>	457.73				G78G		Δe = Difference in elevation between well & shotpo
	,	14.44		7.				$\neg \uparrow$					J	 	1	<u> </u>	4G8·34	136975			<u> </u>		Δsd = " shot edatum pl
	,~~.	,			-			一十		-		· · · · · · · · · · · · · · · · · · ·		+	-	 							Asd - Ds-De
I								-		** .		12.72.7-12								-			Dgs = Dgn-Ds ± Ae; tan i = H Dgs Tgs = Cos i T= Vert travel time from shot elev. to geop
I		الدر الدرايين الدراي الدرايين الدرايين ا				1.00			7 +			-	-	┿		<u> </u>	 						Igs - COS i Ta Vert. travel time from Shot elev. to geop
I				1000					· · · · · · · · · · · · · · · · · · ·				av fac compression	-	 	 	 						Tgd = Tgs ± Asd detum plane
\prod								十	# 7/41±0		 		1		\vdash		 						Dgd = Dgm - Amd
\Box								\dashv						-			 				1		Vi = Interval velocity = $\frac{\Delta D_{sd}}{\Delta T_{sd}}$ Va = Average = $\frac{D_{sd}}{T_{sd}}$
\Box					11.00		- -	$\neg +$			-												Va = Average - Dod
-								+		ausilianum niim al													Surveyed by:
7						10 10 10		-+			anga kananan dapatahan d			<u> </u>			1 1				-		Date:
1	一十						-i	+	+	1	, 4 //					1							
十	一十				-		1.00	\dashv		1 Sec. 1	Grand Control			3									Weathering Data
十	\dashv				andre , rec			_															
+	+		-+					=-	×				-			· · · · · · · · · · · · · · · · · · ·					Γ		
4								_ 1 .		1	1		1	I	- 1		9	. L					Casing Record

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT.BK.NO. 88/6
THE LATE PROTEROZOIC KILROO FORMATION OF THE POLDA BASIN

GEOLOGICAL SURVEY

by

R.B. FLINT¹

C.M. FANNING²

L.R. RANKIN¹

JANUARY, 1988

DME.151/87

- 1. Geological Survey of South Australia 191 Greenhill Road, Parkside, S. Aust. 5063
- 2. Amdel Ltd.,
 31 Flemington Street, Frewville, S. Aust. 5063

CONTENTS	PAGE NO.
ABSTRACT	1 .
INTRODUCTION	1
KILROO FORMATION	2
Derivation	
Type section	
Distribution	
Thickness	
Lithologies	
Environment of deposition	
Boundary relationship	
GEOCHRONOLOGY	4
GEOCHEMISTRY	5
DISCUSSION	6
REFERENCES	7
APPENDIX 1 THIN SECTION DESCRIPTIONS	11
TABLES	
1 W Are data Court to the first a train a company	

1.

K-Ar data for basalts within drillhole CRA 83KDlA. Silicate and trace-element geochemistry for basalts within 2. CRA 83KD1A.

FIG	URES	Plan No.
2.	Locality plan Summary geological log for CRA 83KD1A Chondrite-normalised diagram for basalts of	S19700 S19701
Λ	the Kilroo Formation.	S19702
4.	Ti-Zr diagram comparing basalts of the Polda Basin with others in the Officer Basin, Adelaide Geosyncline and Roopena Volcanics of the Gawler Craton.	S19703

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT BK. NO. 88/6 DME NO. 151/87 DISK NO. 24

THE LATE PROTEROZOIC KILROO FORMATION OF THE POLDA BASIN

ABSTRACT

Drillhole 83KDlA by CRA Exploration Pty. Ltd. in the eastern Polda Basin intersected 793 m of interlayered amygdaloidal basalts and evaporite-bearing reddish-brown mudstones below Carboniferous-Permian sediments. K-Ar geochronology and geochemistry indicate a Late Proterozoic age, probably equivalent to initial sequences in the Adelaide Geosyncline.

INTRODUCTION

An intracratonic graben on the southern Gawler Craton is narrow (less than 25 km wide) but extends for more than 350 km from near Cleve in the east, past Elliston westwards to the continental margin in the Great Australian Bight (Fig. 1). graben is fault-bounded, contains up to 5 000 m of sediments and is totally covered by Cainozoic sediments. Sediments associated with the graben include the ?Middle Proterozoic Blue Range Beds (Flint & Parker, 1981), volcanics, halite and evaporite-bearing clastics of previously assumed early Palaeozoic age (McClure, 1982a & 1982b; CRAE, 1984), Carboniferous - Permian Coolardie Formation (Cooper et al., 1982), Jurassic Polda Formation (Gatehouse & Cooper, 1982), Eocene Poelpena Formation (Harris, 1964) and unnamed Pliocene and Pleistocene sediments. Of these, only the volcanic-evaporite sequence, and Palaeozoic and Mesozoic sediments are totally restricted to the graben. Sediment thicknesses of the Blue Range Beds and Tertiary sequences are much greater within the graben, but the units also laterally extend onto Archaean - Early Proterozoic granitoids and metamorphics of the neighbouring craton.

Basin terminology has varied considerably. The term Polda Basin (Jack, 1914) initially applied to a groundwater basin in Quaternary sediments, but subsequent discovery of Tertiary and Mesozoic sediments led Wopfner (1970) to include all Mesozoic -

Recent sediments. A graben offshore was named Elliston Trough (Hammons, 1966; Smith & Kammerling, 1969) while Polda Trough was used for both offshore and onshore grabens (Parkin, 1969). Polda Basin and Polda Trough were used by Nelson et al. (1986). In this paper, preference is given to Polda Basin and it is used for all sediments deposited within the fault-bordered graben. Sedimentation from the ?Middle Proterozoic to Tertiary was episodic and controlled by rejuvenation of tectonism along the same fundamental fault planes.

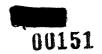
Reviews of general stratigraphy for the Polda Basin are presented in Cooper & Gatehouse (1983) and Parker et al. (1986) whereas a summary of geophysical exploration and interpretation is documented by Nelson et al. (1986). Drilling throughout the basin is extensive but shallow (<200 m) and is targetted on groundwater, coal and uranium in Cainozoic and Mesozoic sediments. Stratigraphic information is poorly known for older sequences, especially prior to the late Palaeozoic Coolardie Formation, despite the fact that gravity and aeromagnetic data suggest a total basin thickness approaching 5 000 m. For the entire Polda Basin, only four drillholes have intersected pre-Carboniferous-Permian sediments; they are Australian Occidental Pty. Ltd. Columbia 1 and Mercury 1, SADME Colton 1 and CRA The sequence in the latter drillhole was fully cored and, based on petrological, geochemical and geochronological investigations, is here defined as the Kilroo Formation (new name).

KILROO FORMATION

Derivation: Adapted from Kilroo Corner, a prominent road junction 14 km SW of Darke Peak township on the KIMBA 1:250 000 topographic map.

Type section: Interval 605.3 - 1398.2 m in drillhole CRA 83KD1A (Fig. 2) which is stored in the SADME Core Library at Glenside. Distribution: Probable correlatives of the formation occur to the west in Colton 1 (110.0 - 124.65 m), and further west (offshore) in Mercury 1 (886 - 3100 m) and Columbia 1 (771 -1701 m) (Flint, in prep.). The unit is probably widespread throughout deeper portions of the Polda Basin. Thickness: Ranges from at least 793 m in CRA 83KD1A to possibly

2214 m in Mercury 1.



<u>Lithologies:</u> The formation has not been subdivided into members and thus contains a variety of rock types including both volcanics and sediments. Thin section descriptions are contained in Appendix 1.

In CRA 83KDlA, basalts are medium- to coarse-grained and consist of subophitic albitic plagioclase laths, clinopyroxene, pseudomorphed olivine, and opaques. Interstitial material is either chlorite or intensely-altered, very fine-grained basalt comprising skeletal plagioclase laths, chloritised pyroxene, opaques and epidote. Amygdales up to 10 mm are abundant, consisting of either chlorite or chlorite rims with centres of calcite and/or large clusters of radiating prehnite. ?andesite crystal tuff contains very angular fragments of quartz, feldspar and ?pumice in a chlorite + calcite + opaque matrix. Within the tuff, ellipsoids (?amygdales or pumice) are common; constituent minerals are chlorite, calcite and anhydrite. Associated sediments are dominantly reddish-brown, laminated siltstones and mudstones. Characteristics include thin bedding, graded bedding, detrital quartz + feldspar + mica, and anhydrite aggregates, layers and veins.

In Columbia 1 and Mercury 1, volcanics are absent but similar laminated reddish-brown mudstones are associated with medium-grained sandstones, carbonate-cemented sandstones and siliceous siltstones. Evaporites are also present, particularly in Mercury 1 which contains a 1707 m -thick interval of predominantly massive rock salt.

Environment of deposition: The abundance of reddish-brown clastics and evaporite minerals infer deposition in an arid, terrestrial, fluvial system. Massive rock salt suggests a continental, playa-lake environment. Multiple basaltic lava flows and an ?andesitic crystal tuff indicate active tectonism and volcanism synchronous with sedimentation. Collectively, the environmental setting was probably an intracratonic graben or rift valley with predominantly basic volcanism associated with sedimentation in arid, terrestrial fluvial systems and playa lakes.

Boundary relationship: The Kilroo Formation is unconformably overlain by diamictites of the late Palaeozoic Coolardie Formation. Basalt clasts occur within the diamictites. The lower contact is ambiguous, and absent in CRA 83KDlA and Colton 1. Within Mercury 1 and Columbia 1, brecciation, secondary silicification and discontinuity in bedding orientation suggest a stratigraphic break. Importance of the break is unknown; lower white quartzose sandstones may represent either a continuation of the succession or an older clastic sequence like the ?Middle Proterozoic Blue Range Beds (Flint, in prep.).

GEOCHRONOLOGY

K-Ar geochronology was attempted on five basalt samples from CRA 83KDlA, two from the upper volcanic unit and three from the lowermost basalts. All the specimens are amygdaloidal, thus isotopic analyses were performed on plagioclase and clinopyroxene mineral separates. Procedural methods are outlined in Webb et al. (1986). Plagioclase concentrates contained significant quantities of carbonate in addition to iron-stained feldspar, and were acid leached in dilute HCl (10%) and very dilute HF (<1%) to obtain carbonate-free, clouded plagioclase concentrates. The K-Ar data are presented in Table 1.

Plagioclase analyses yield ages of 768 ± 9 and 764 ± 42 Ma which are within analytical uncertainty of each other. A higher uncertainty (±5.5%) for sample 6130 RS 122 results from imprecision in the duplicate K determinations, whereas the age for 6130 RS 121 is artificially more precise since there was only sufficient feldspar for a single K determination. Both plagioclase concentrates have significant radiogenic Ar (87.6 and 70.3%) and K contents are within the normal range for feldspar.

K contents in clinopyroxene concentrates are abnormally low, especially 6130 RS 122 for which no age is calculated. The pyroxene ages range from 235 \pm 15 to 884 \pm 97 Ma. Although the precision of the duplicate K analyses appears good, internal replication of each analysis is poor and overall precision is >10% (standard deviation). The older ages of 884 \pm 97 and 817 \pm 12 Ma suggest a Late Proterozoic age for extrusion of the

basalts. Younger clinopyroxene ages may result from clinopyroxene crystals not remaining as closed systems with respect to K and Ar since crystallisation.

The plagioclase K-Ar ages of 768 ± 9 and 764 ± 42 Ma are considered to provide a better estimate than the pyroxene ages for the minimum time elapsed since crystallisation of these amygdaloidal basalts. Both the plagioclase and older pyroxene ages are similar to the age of the Rook Tuff in the Willouran Ranges of the northern Adelaide Geosyncline. The Rook Tuff formed contemporaneously with early Adelaidean sedimentation and has a U-Pb zircon age of 802 ± 10 Ma (Fanning et al., 1986). Collectively, K-Ar mineral ages from drillhole CRA 83KDlA imply that evaporitic red beds and interlayered amygdaloidal basalts in the eastern Polda Basin are also Late Proterozoic (Adelaidean).

GEOCHEMISTRY

Silicate and trace-element analyses of 9 basalts from CRA 83KDlA (Table 2) were compared with assumed Cambrian amygdaloidal basalts of the Kulyong Volcanics from the northern Officer Basin (4742 RS 1-5), altered basalt of unknown age from drillhole Mallabie #1 on the eastern Nullarbor Plain (5034 RS 1), amygdaloidal basalts from the Stuart Shelf and basal successions in the Adelaide Geosyncline (6333 RS 45, 6334 RS 94-99, 6434 RS 1-10, 6041 RS 161-164, 6737 RS 1167-1169) and altered basalts of the Middle Proterozoic Roopena Volcanics (6332 RS 476-487).

On the Pearce and Cann (1973) Ti/100 - Zr - 3Y triangular diagram often used to determine the tectonic setting of basalts, analyses of basalts from both the Polda Basin and Adelaide Geosyncline plot within the field for "within-plate basalts". Analyses for the Kulyong Volcanics from the Officer Basin plot within the "volcanic-arc basalt" field.

On the chondrite-normalised diagram (Fig. 3), basalts from the Polda Basin and Adelaide Geosyncline show a similar pattern but with the former having consistently lower chondrite-normalised values. Sr, a relatively mobile element, is the only exception. The Kulyong Volcanics and Roopena Volcanics exhibit very different patterns which are also illustrated in the Ti-Zr discrimination diagram (Fig. 4). Geochemical similarities between basalts from the Polda Basin and Adelaide Geosyncline are

further supported. A comparison of basalt from Mallabie #1 to the other volcanics is inconclusive, probably due to the high degree of alteration in the only sample, which may also not be representative.

DISCUSSION

The possible presence of Adelaidean sediments within the Polda Basin has not been previously suspected. The K-Ar isotopic and geochemical data for basalts from CRA 83KDlA in the eastern Polda Basin imply that some (?majority) of the sediments in deeper portions of the basin are of Adelaidean age, rather than the previously assumed early Palaeozoic age which was based on regional lithological correlations with the Officer Basin.

Some, but not all, features of the Polda Basin are consistent with it being an aulacogen of the Adelaide Geosyncline. Aulacogens are "elongated basins (of the order of ten times as long as wide) closely associated with geosynclines, from which they branch and penetrate far into the craton" and "are bounded by deep-seated faults" (Preiss, 1987). Typically the mouths of aulacogens merge with the geosyncline, however the Polda Basin and Adelaide Geosyncline are disjoint and the corresponding portion of the geosyncline lacks any early Adelaidean, rift-related sediments. Tectonic activity, aulacogen width and thickness, and diversity of sediments typically increase towards the geosyncline (Preiss, 1987). Insufficient data are known about the Polda Basin to make definitive statements on easterly or westerly trends, however volcanics are only known from the eastern end of the basin.

Hydrocarbon and mineral potential of the Polda Basin require re-assessment because of the revised stratigraphic interpretation. During exploration for hydrocarbons in the western Officer Basin, a thick Late Proterozoic, evaporite-bearing sequence (Browne Beds) was discovered below both Cambrian sediments and basalts and Late Proterozoic glacial sediments (Townson, 1985). The possibility exists that early Adelaidean sediments, evaporites and volcanics exist, not only in deeper portions of the Polda Basin, but also within the western and eastern Officer Basins.

REFERENCES

- Cooper, B.J. and Gatehouse, C.G., 1983. The Polda Trough:

 periodic sedimentation since the Proterozoic? Geol.

 Soc. Aust. Abst. 9:117-118.
- Cooper, B.J. Harris, W.K. and Meyer, G.M., 1982. The Late Palaeozoic Coolardie Formation, Polda Basin. Geol. Surv. S. Aust., Q. geol. Notes 81: 9-13.
- CRA Exploration Pty. Ltd., 1984. Tuckey EL 1054, S. Aust. Dept. Mines and Energy open file Env. 3973 (unpublished).
- Fanning, C.M., Ludwig, K.R., Forbes, B.G. and Preiss, W.V., 1986. Single and multiple grain U-Pb zircon analyses for the early Adelaidean Rook Tuff, Willouran Ranges, South Australia. Geol. Soc. Aust. Abst. 15:71-72.
- Flint, R.B. (in press). <u>ELLISTON map sheet</u>, <u>Geological Atlas of</u>
 South Australia, 1:250 000 series. Geological Survey of
 South Australia.
- Flint, R.B. and Parker, A.J., 1981. The Blue Range Beds of central Eyre Peninsula. Geol. Surv. S. Aust., Q. geol. Notes 80:12-15.
- Flint, R.B. and Rankin, L.R. (in press). <u>KIMBA Map sheet</u>,

 <u>Geological Atlas of South Australia</u>, 1:250 000 series.

 Geological Survey of South Australia.
- Gatehouse, C.G. and Cooper, B.J., 1982. The Late Jurassic Polda Formation, Eyre Peninsula. Geol. Surv. S. Aust., Q. geol. Notes 81:13-16.
- Hammons, R.H., 1966. Interpretation aeromagnetic survey, offshore South Australia OEL's 33 & 38. S. Aust. Dept. Mines and Energy open file Env. 648 (unpublished).
- Harris, W.K., 1964. New and redefined names in South Australian Lower Tertiary stratigraphy. Geol. Surv. S. Aust., Q. geol. Notes 20:1-3.
- Jack, R.L., 1914. The geology of the County Jervois and portions of the Counties Buxton and York, with special reference to underground water supplies. Geol-Surv.S.Aust., Bull. 3.
- McClure, I, 1982a. Mercury No. 1, Offshore Polda Basin, EPP-SA15: well completion report. S. Aust. Dept. Mines and Energy open file Env. 5161 (unpublished).

- McClure, I. 1982b. Columbia No. 1, Offshore Polda Basin, EPP-SAl5: well completion report. S. Aust. Dept. Mines and Energy open file Env. 5160 (unpublished).
- Nelson, R.G. Crabb, T.N. and Gerdes, R.A., 1986. A review of geophysical exploration in the Polda Basin, South Australia. Aust. Pet. Explor. Assoc. J., 26:319-333.
- Parker, A.J., Fanning, C.M. and Flint, R.B., 1986. Geology. In:
 C.R. Twidale, M.J. Tyler and M. Davies (eds.). Natural
 History of Eyre Peninsula. Occas. Publ. R. Soc. S.
 Aust., 4:21-45.
- Parkin, L.W., 1969. <u>Handbook of South Australian geology</u> Geol. Surv. S. Aust.
- Pearce, J.A. and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses.

 <u>Earth Planet. Sci. Letters</u> 19:290-300
- Preiss, W.V., 1987. The Adelaide Geosyncline: Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geol. Surv. S. Aust., Bull. 53.
- Smith, R. and Kamerling, P., 1969. Geological framework of the Great Australian Bight. <u>Aust. Pet. Explor. Assoc. J.</u>, 9:60-66.
- Townson, W.G., 1985. The subsurface geology of the western Officer Basin results of Shell's 1980-1984 petroleum exploration campaign. Aust. Pet. Explor. Assoc. J., 25:34-51.
- Webb, A.W., Thomson, B.P., Blissett, A.H., Daly, S.J., Flint, R.B. and Parker, A.J., 1986. Geochronology of the Gawler Craton, South Australia. Aust. J. Earth Sci., 33:119-143.
- Wopfner, H., 1970. Depositional history and tectonics of South Australian sedimentary basins. Mineral Resour. Rev., S. Aust., 133:32-50.

TABLE 1 K-Ar data for basalts within drillhole CRA 83KDlA

DEPTH (m)	SAMPLE	MINERAL	&K	40 _{Ar} (X10 ⁻¹⁰ moles/g)	40 _{Ar} */40 total	Ar AGE#
Upper volcanic 991.85- 993.80		Plagioclase	0.448	7.4508	0.876	768±9
11	u	Clinopyroxene	0.016 0.015	0.0678	0.157	235±15
1007.6	6130 RS 73	Clinopyroxene		0.03342 0.03322	0.235 0.196	427±51 425±60
Lower volcanic	unit:					
1354.9	6130 RS 69	Clinopyroxene	0.007 0.007	0.1385	0.374	884±97
1379.6	6130 RS 71	Clinopyroxene	0.044 0.043	0.7793	0.761	817±12
1385 . 9- 1387 . 0	6130 RS 122	Plagioclase	0.105 0.112	1.7828	0.703	764±42
"	и	Clinopyroxene	0.001 0.001	0.0501	0.239	-

^{*}Radiogenic 40Ar

 $\lambda \beta = 4.962 \times 10^{-10} y^{-1}$ atom %

 $\lambda E = 0.581 \times 10^{-10} \text{ y}^{-1}$

[#] Error limits for analytical uncertainty at one standard deviation Constants: 40K = 0.01167 atom %

من مناف وجمه مناف معمد معمد.	6130 RS 71	6130 RS 75	6130 RS 76	6130 RS 77	6130 RS 78	6130 RS 79	6130 RS 80	6130 RS 81	6130 RS 82
DEPTH (m)	1379.6	997 – 998	1007 - 1008	1017 - 1018	1324 - 1325		1334 - 1335		
SiO ₂	49.10	49.20	48.30	48.20	47.10	49.30	49.20	49.40	49.00
TiO_2	1.67	1.31	1.08	1.19	1.52	1.61	1.64	1.61	1.60
$A1_{2}O_{3}$	13.30	13.90	13.90	13.50	13.80				
Fe_2O_3	13.00	12.00	11.10	11.50	11.90	12.70	12.70	12.60	12.60
MnO	0.23	0.20	0.16	0.17	0.18	0.17	0.16	0.16	0.16
MgO	6.75	7.20	8.45	10.40	7.55	7.20	7.00	7.05	7.00
CaO	8.80	8.80	9.65	6.10	7.95	7.45	8.75	9.05	9.05
Na ₂ O	3.12	4.54	3.94	3.58	4.92	4.88	3.18	3.20	3.12
к ₂ О	1.90	0.18	0.14	1.53	0.24	0.74	2.06	1.87	1.78
P ₂ O ₅	0.13	0.07	0.06	0.08	0.10	0.12	0.10	0.08	0.11
LOI	1.95	3.26	3.60	4.48	4.56	2.84	2.12	2.14	2.02
TOTAL	99.95	100.66	100.38	100.73	99.82	100.41	100.61	100.76	99.94
Ва	270	<10	<10	230	60	95	300	170	140
Ce	25	20	20	<20	20	<20	30	<20	20
Со	80	26	.32	30	38	28	22	22	20
Cr	180	6	6	6	14	8	6	6	6
Cu	<10	20	18	20	26	42	16	12	12
Nb	8	7	5	6	10	10	1.0	9	8
Ni	110	38	60	50	60	48	36	36	34
Pb	<50	8	8	6	4	4	6	6	4
Rb	52	6	8	55	9	32	85	75	60
Sr	170	44	38	150	90	120	230	220	220
V	410	220	160	180	230	210	200	220	230
Y	40	14	8	12	20	18	20	16	18
Zn	150	80	65	36	90	95	32	48	65
Zr	150	75	60	65	95	95	95	95	100

TABLE 2 Silicate and trace element geochemistry for basalts within CRA 83KDlA

APPENDIX 1

THIN SECTION DESCRIPTIONS

LOCATION: 1386.4-1386.45 m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C48312 (Amdel)

The basalt is similar to 6130 RS 70 and has both coarse- and fine-grained phases.

Coarser-grained minerals include relic olivine, clinopyroxene and plagioclase. Anhedral olivine crystals, up to 1.5 mm, are not common (1%) and have been entirely pseudomorphed by very fine-grained ?antigorite and reddish-brown opaques. Clinopyroxene (30%) forms large crystals up to 1 mm in size. Many are zoned having clear, pale-green centres and greenish-brown rims. Clinopyroxene has an ophitic texture with large (<1.5 mm) feldspars. The feldspars are dominantly polysynthetically-twinned plagioclase, but blockier (up to 1.0 x 0.4 mm) untwinned crystals are also present.

A finer-grained, basaltic matrix (20-25%) dominantly consists of skeletal, plagioclase laths, abundant opaques and very fine-grained ?epidote. Opaques are fine-grained and form either a rectangular network or radiating clusters.

Amygdales are not common (3-5%) though large (up to 10 mm) and entirely consist of very coarse-grained radiating clusters of prehnite.

LOCATION: 1374.9 m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C42169 (Amdel)

The basalt is amygdaloidal and consists of both coarse- and fine-grained basaltic phases.

Coarser-grained minerals consist of relic olivine, clinopyroxene and plagioclase. Euhedral olivine crystals (<1%) up to 1.7 mm have been psuedomorphed by ?antigorite, opaques and leucoxene. Clinopyroxene (15%) forms large subhedral crystals (<1.5 mm) which display sector zoning and zoning from clear, pale green centres to thin, greenish-brown rims. Plagioclase is the dominant mineral constituent (35%) and has intense cloudiness due to either minute inclusions or alteration to clay. Grainsize of the plagioclase is similar to the clinopyroxene and the two minerals have a subophitic texture.

Between the coarse-grained crystals of clinopyroxene, plagioclase and relic olivine is a finer-grained basaltic matrix with a grainsize less than 0.15 mm (25%). The composition is chiefly intensely-altered chloritised pyroxene, skeletal plagioclase, abundant opaques and minor epidote.

Amygdales are common (25%) and consist of chlorite, chlorite rims with calcite centres and chlorite rims with centres of prehnite.

LOCATION: 1354.9 m in CRA 83KDIA

ROCK NAME: Basalt

THIN SECTION: C42168

The specimen is a medium- to coarse-grained basalt containing amygdales, altered plagioclase, clinopyroxene and opaques.

Possible olivine phenocrysts (< 1%), and up to lmm, have been completely altered to very fine-grained ?antigorite, reddish-brown opaques and ?leucoxene. Clinopyroxene (25%) forms large crystals up to 1.5mm which are zoned with clear centres and greenish brown rims. clinopyroxene is ophitically intergrown with coarse-grained laths of plagioclase, 1-2mm in length and extensively altered to sericite and prehnite. Plagioclase is abundant (50%). Opaques (5-10%) form both anhedral aggregates (< 0.5mm) but is also enriched in zones of finer-grained basalt between coarser basaltic material.

Amygdales (20%) are less than 3mm across consist of either totally chlorite or chlorite rims and prehnite-rich centres.

LOCATION: 1351.2 - 1351.3m in CRA 83KD1A

ROCK NAME: Amygdaloidal basalt

THIN SECTION: C48311 (Amdel)

This medium- to coarse-grained basalt contains relatively-fresh plagioclase, clinopyroxene and opaques, and amygdales containing chlorite and prelimite.

Clinopyroxene occurs in two forms. Large crystals (up to 2mm) are clear to pale green and zoned with thin darker rims. A much greater population of smaller grains (< 0.1 mm and 25%) are generally darker green, but also present are zoned crystals. Both forms of clinopyroxene are subophitically with plagioclase. Plagioclase laths (45%) up to 2mm in length are clouded due to numerous fine inclusions. Opaques (10%) form both interstitial infill in anhedral aggregates up to 0.2 0.3 mm and is concentrated (within the basalt) near the margins of amygdales.

Amygdales are abundant (20%), irregular in shape and up to 7mm across. Chlorite rims the amygdales, however prehnite in radiating coarse-grained clusters is the dominant constituent.

LOCATION: 1344.9 m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C42167 (Amdel)

This fine-grained basalt is very similar in composition and texture to 6130 RS 67, consisting of serictised plagioclase (40%), uralitised clinopyroxene (40%) and opaques (10%). Chlorite occurs as an interstitial phase (5%).

LOCATION: 1344.2 m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C42166 (Amdel)

The basalt is very similar in compostion to 6130 RS 66. Fine-grained, sericitised plagioclase (40%), uralitised clinopyroxene (35-40%) and opaques are intergrown with a random intergranular texture. Chlorite forms an interstitial infill (10-15%) but does not form melanocratic banding as in 6130 RS 66 and 118.

LOCATION: 1335 m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C42165 (Amdel)

This specimen is a fine-grained basalt displaying melanocratic banding, similar to 6130 RS 118. Plagioclase laths (35%), less than 0.3mm, are heavily sericitised. Pyroxene crystals (30%) are anhedral, fine grained and moderately uralitised. Interstitial opaques are anhedral, up to 0.4mm, and form 7-10%. Chlorite occurs as a fine-grained interstitial infill and is the cause for the melanocratic banding observable in the drillcore.

LOCATION: 1334m in CRA 83KD1A

ROCK NAME: Basalt

THIN SECTION: C48310 (Amdel)

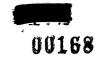
This fine-grained basalt displays prominent, melanocratic banding which is defined by a greater abundance of opaques and interstitial chlorite.

Plagioclase laths (35%) are albitic, extensively sericitised, randomly oriented and range in size up to 0.4mm. Clinopyroxene (?augite) occur as numerous small, anhedral crystals (0.1mm - 35%). Interstitial opaque aggregates to 0.3mm are common (5-7%).

Melanocratic banding and aggregates (consipcuous in drillcore and forming 20%) is defined by enrichment in opaques and chloritised groundmass. The bands are up to 3mm wide and irregular in outline. They consist of marginally finer-grained plagioclase, iron-rich pyroxene rimmed by abundant opaques and very fine-grained epidote (collectively 65% of the bands), whereas the remainder is a very fine-grained chloritised groundmass.

SPECIMEN: 6130 RS 117B

LOCATION: 1308.4 - 1308.5m in CRA 83KD1A


ROCK NAME: Amygdaloidal basalt

THIN SECTION: C48309 (Amdel)

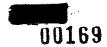
An amygdaloidal basalt, similar to 6130 RS 117A, but differs in containing xenoliths of mudstone.

Xenoliths vary in size up to 10mm. They consist of mudstone which contain angular quartz, plagioclase, muscovite in a clayrich matrix, and also have iron-rich rims up to 0.3mm wide. Epidote occurs as recrystallised grains and aggregates, and some recrystallisation of quartz also occurring.

Adjacent to the larger xenoliths is a zone, 0.3 - 0.4mm wide, which consists of radiating ?zeolite clusters, very fine - grained opaques and some plagioclase laths. Within amygdales immediately in contact with the xenoliths, recrystallised quartz, calcite and anhydrite occur.

SPECIMEN: 6130 RS 117A

LOCATION: 1308.4 - 1308.5m in CRA 83KD1A


ROCK NAME: Amygdaloidal basalt

THIN SECTION: C48309 (Amdel)

This altered, amygdaloidal basalt was sampled near the top of the lowermost basaltic sequence.

Plagioclase (35%) varies from small blocky crystals to long laths up to 1.5mm. Plagioclase is albitic and moderately sercitised. Opaques occur both as subhedral crystals (< 0.75mm - 1%), but mostly (15%) in association with ?leucoxene and represent altered ?pyroxene. Aggregates of reddish-brown iron oxides (< 0.4mm) may represent former olivine phenocrysts. A fine-grained interstitial groundmass (25-30%) is mostly chlorite.

Amygdales are common (20%), irregular in shape and are characterised by an enrichment of opaques and leucoxene within the adjacent basalt. Amygdales chiefly consist of chlorite-rich rims and calcite, but minor intergrowths of calcite and anhydrite are also present.

LOCATION: 1103m in CRA 83KD1A

ROCK NAME: Amygdaloidal crystal tuff

THIN SECTION: C48308 (Amdel)

The specimen is an ?andesitic crystal tuff containing angular fragments of quartz and feldspar in a very extensively altered matrix. Ellipsoidal, probable amygdales range in size up to 4mm.

Crystal fragments, forming 5%, consist of feldspar, quartz and feldspar composites. Most fragments are angular to very angular and small < 0.05mm. Composite feldspar aggregates are up to 0.2mm in size, cloudy and moderately altered to ?prehnite. Minor muscovite flakes are also present.

The matrix (65%) consists of abundant small mafic grains which have been extensively altered to chlorite and very-fine, disseminated opaques. Chlorite also occurs as an interstitial infill (15-20%), within which very tiny ellipsoids occur (similar to RS 115).

Large elliposids, up to 4mm in size, contain a variety of infilling minerals. They include;

- chlorite
- chlorite rims with anhydrite in the centre,
- chlorite rims with calcite and opaques,
- calcite,
- calcite rims with anhydrite in the centre,
- very coarsely crystalline anhydrite.

The ellipsoids probably represent amygdales.

LOCATION: 1100.8 - 1100.9m in CRA 83KD1A

ROCK NAME: Andesitic crystal tuff

THIN SECTION: C48307 (Amdel)

A very - chloritised, ?andesitic tuff containing angular fragments of quartz, plagioclase, potassium feldspar, mica and ?pumice.

Plagioclase (2%) occurs as small (< 0.1mm), angular fragments exhibiting polysynthetic twinning. Potassium feldspar (? anorthoclase) (2%) similarly occurs as very angular grains up to 0.2mm. Angular quartz grains (2%) range in size up to 0.15mm. One zircon crystal (0.1mm in size), minor chloritised biotite and muscovite flakes are also present.

The matrix consists of three components. The dominant phase (70%) is mafic material extensively altered to chlorite and calcite, and with opaques (10%) occurring as both aggregates and finely disseminated material. The remaining matrix (25%) is also chlorite which occurs as interstitial infill. Within this material, are rims of opaques. These represent either altered pumice (fiamme) or former gas bubbles.

Near the contact of the crystal tuff with mudstone, calcite is common occurring as large aggregates to 2mm and interstitial infill. Calcite veins (containing minor anhydrite) also occur within the mudstone.

LOCATION: 1022.8m in CRA 83KD1A

ROCK NAME: Amygdaloidal basalt

THIN SECTION: 1158225 (Pontifex)

A fine-grained, altered basalt containing plagioclase, clinopyroxene, opaques and amygdales.

Plagioclase laths (40%) are randomly oriented, commonly 0.2 - 0.3mm in length but with some laths up to 1.5mm. Plagioclase is heavily sericitised and clouded by clay alteration. Clinopyroxene (30%0 occurs both as large crystals (< 0.4mm) with subophitic plagioclase and as much smaller interstitial grains; both types are extensively chlorised. Limonite and ?antigorite aggregates (< 0.3mm) may reprsent former olivine phenocrysts (2-3%). Opaques minerals occur both as discrete cystals and as finely disseminated material (10%).

Amygdales (20%) range in size up to 3mm. Most consist of radiating chlorite aggegrates but some also contain a very thin rim of ?quartz.

SPECIMEN: 6130 RS 72)

LOCATION: 992.4m in CRA 83KDlA

ROCK NAME: Amygdaloidal basalt

THIN SECTION: 1158223 (Pontifex)

A medium-grained, relatively-fresh basalt containing clinopyroxene, plagioclase, opaques and abundant amygdales (20%).

Albitic plagioclase laths up to 1.0mm in length, are only weakly sericitised and are randomly oriented. Plagioclase (50%) is subophitically intergrown with clinopyroxene. Clinopyroxene cystals (< 0.4mm) are occasionally zoned and often have altered margins (10-15%). Interstitial opaques (< 0.2mm) are common (5-10%). ?Antigorite and limonite aggregates probably represent relic olivine phenocrysts.

Irregularly distributed are finer-grained zones of basalt; these areas up to $10\,\mathrm{mm}$ across and commonly near amygdales contain finer-grained diopside, finer-grained plagioclase laths which are intensely sericitised, and opaques.

Amygdales are common and range in size up to 10mm. They are rimmed by fine-grained chlorite, and in the larger amygdales coarse-grained (2.5mm) radiating aggregates of prelinite have been partly altered to an isotropic brownish clay. Chlorite also occurs as an interstitial infill between plagioclase laths.

LOCATION: 1024.9 - 1025.0 m in CRA 83KD1A

ROCK NAME: Laminated mudstone

THIN SECTION: C48306 (Amdel)

A laminated, reddish-brown mudstone which exhibits graded bedding and veins of crystalline anhydrite.

Coarser layers within the mudstone consist of very fine-grained (< 0.1mm) quartz, plagioclase, ?potassium feldspar, opaques, muscovite and clay. Muscovite flakes (< 0.5mm) are common, and detrital quartz and feldspar grains are dominantly angular. Opaques are also common, often forming 10-15% of these coarser layers.

The clay-rich layers consist dominantly of clay and opaques (85-90%), with minor muscovite and very fine-grained angular quartz and feldspar.

Several veins of anhydrite, up to 2mm wide, cosist of coarsely-crystalline crystals up to 0.75mm. The anhydrite exhibits typical rectangular cleavage and variable relief when the stage is rotated. Anhydrite also occurs in some of the coarser silty units, as does minor gypsum. One prominent anhydrite vein disrupts bedding and indicates very local thrusting.

LOCATION: 1007.0 m in CRA 83KD1A

ROCK NAME: Amygdaloidal basalt

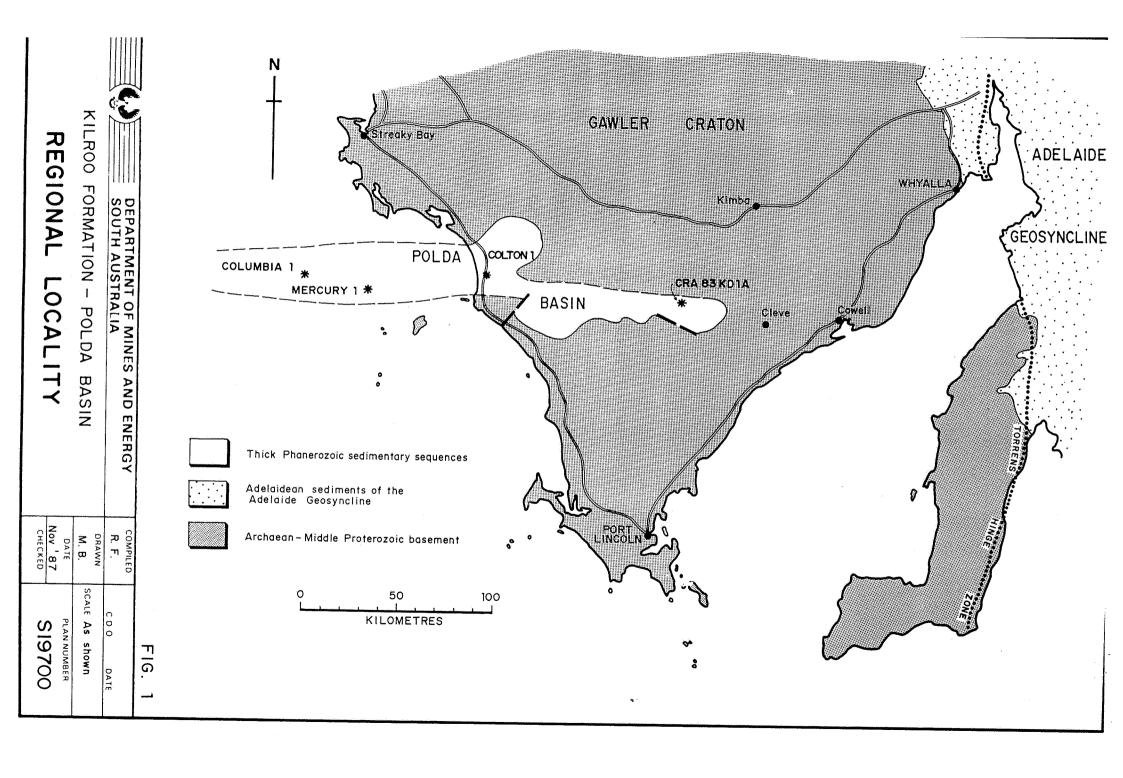
THIN SECTION: C48305 (Amdel)

A medium-grained, relatively-fresh basalt containing clinopyroxene, plagioclase, opaques and abundant amygdales.

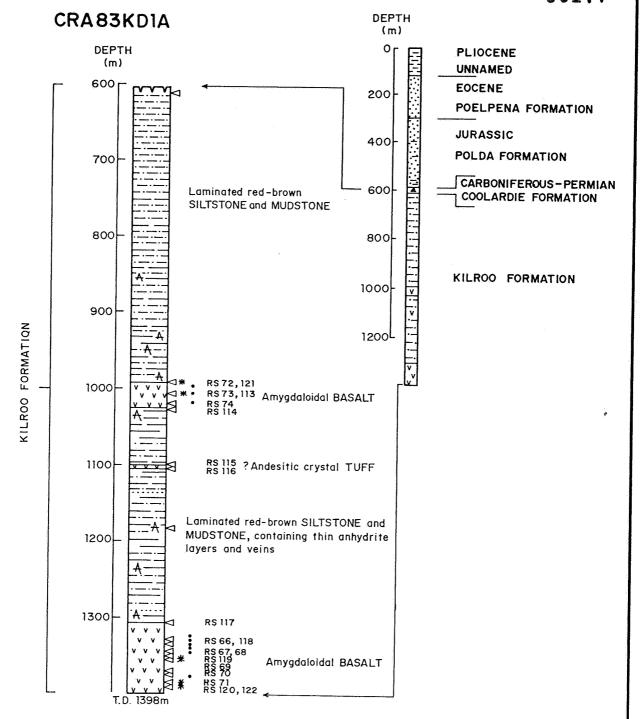
Plagioclase laths (40%) < 0.75mm in length show variable sericitisation from weak to intense, and are subophitically intergrown with clinopyroxene. Clinopyroxene phenocrysts (20-25%) are occasionally zoned, exhibit lamellar twinning and are only weakly chloritised. Opaque minerals (5%) occur as both large aggregates (< 1.5mm) and as intergranular infill.

Amygdales are common (35%), irregularly shaped up to 7mm and consist mostly of fine-grained chlorite.

LOCATION: 1007.6m in CRA 83KD1A


ROCK NAME: Amygdaloidal basalt

THIN SECTION: 1158224 (Pontifex)


A medium - to coarse-grained basalt containing plagioclase, clinopyroxene, opaques and abundant amygdales.

Clinopyroxene cystals (< 1.5mm) and comprising 15% are occassionally zoned, exhibit lamellar twinning and are relatively fresh. Clinopyroxene and plagioclase show a subophitic texture. Plagioclase laths, up to 1.5mm, are clouded by clay alteration and, in part, extensively altered to prehnite. Interstitial opaques are common. Anhedral crystals to 1mm which are completely altered to ?antigorite and/or chlorite and opaques may represent relic olivine phenocrysts.

Amygdales are common (15%), range in size up to 2mm and consist dominantly of fine-grained chlorite.

00177

- ✓ Petrology
- * Geochronology
- Geochemistry (silicate analyses)
- A Anhydrite

		FIG. 2
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED R. F.	C D O DATE
KILROO FORMATION - POLDA BASIN	DRAWN M. B.	SCALE
LOG CRA83KD1A	Nov '87	PLAN NUMBER S 19701

MEAN BASALTIC ANALYSES MEAN KILR00 Polda Basin (9) 1000-Adelaide Geosyncline (24) BASALTIC ANALYSES FORMATION -DEPARTMENT OF MINES SOUTH AUSTRALIA o······o Officer Basin (5) Gawler Craton (12) (Roopena Volcanics) Chondrite - normalised values POLDA BASIN AND ENERGY DATE Nov '87 R. F. M. B. Cs Rь Ba Th U Nb La Sr Zr Ti Υ S19702 PLAN NUMBER FIG. Ü

- Polda Basin (Kilroo Formation)
- Adelaide Geosyncline
- o Officer Basin (Kulyong Volcanics)
- △ Mallabie 1
- * Gawler Craton (Roopena Volcanics)

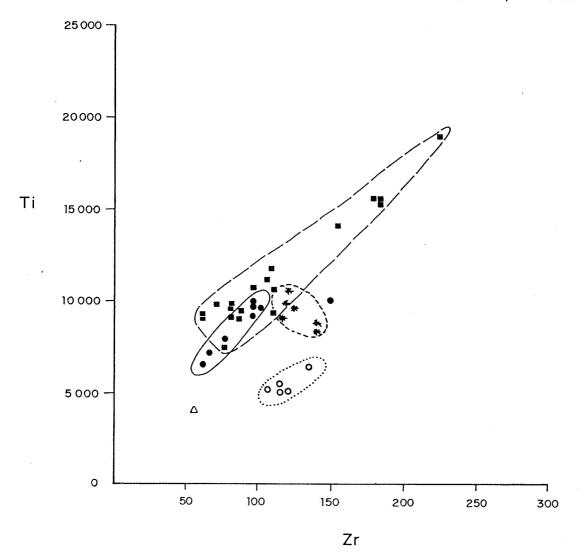


FIG. 4

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED R.F.	C D O DATE
KILROO FORMATION - POLDA BASIN	DRAWN M.B.	SCALE
Ti vs Zr	DATE Nov '87 CHECKED	PLAN NUMBER S19703