SOUTH AUSTRALIA

DEPARTMENT OF MINES AND ENERGY

OPEN FILE ENVELOPE NO. 8293

EL 1626, CHARBA HILL EL 1627, PELTABINNA HILL EL 1652, UNALLA HILL

PROGRESS AND FINAL REPORTS FOR THE PERIOD 22/12/89 TO 14/11/90

Submitted by

CRA Exploration Pty Ltd

1990

Released on Open File: 15/3/91

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. The Department accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of original text or drawings.

ENVELOPE 8293

Transparencies held in Cylinder 8293/1

Survey Codes: 90SA03

90SA04 90SA05

TENEMENT:

EL 1626 - Charba Hill. EL 1627 - Peltabinna Hill. EL1652 - Unalla Hill.

TENEMENT HOLDER:

CRA Exploration Pty Ltd.

CONTENTS OF VOLUME ONE

REPORT:	Sugden, S.P. and Marinelli, J.F., 1990. First quarterly report for Charba Hill EL 1626 and Peltabinna Hill, EL 1627, South Australia, for the period ending 21st March, 1990. (CRA report no. 16525).			Pgs 3-32
APPENDIX 1:	-80# Stream sediment geochemistry - Peltabinna Hill EL 1627, Charba Hill EL 1626.			Pgs 33-81
APPENDIX 2:	Stockdale -80# geochemistry.			Pgs 82-222
APPENDIX 3:	Stockdale -80# anomaly prospects - Charba Hill EL 1626 EL 1627.	and Peltabinna	Hill	Pgs 223-225
APPENDIX 4:	Other mineral anomalies - Charba Hill EL 1626.			Pgs 226-228
APPENDIX 5:	Petrology report no. 5620 - Pontifex and Associates.			Pgs 229-235
APPENDIX 6:	Rock ledger - Charba Hill EL 1626 & Peltabinna Hill EL	1627.		Pgs 236-243
PLANS:		Scale	Company	SADME
			Plan No.	Plan No.
	Peltabinna Hill EL 1627, S.A Location plan.	1:250 000	SAa5191	Pg. 16
	Charba Hill EL 1626, S.A Location plan.	1:250 000	SAa5192	Pg. 17
	Peltabinna Hill EL 1627, S.A80# stream sediment sample location & number.	1: 100 000	SAa5220	8293-1
	Charba Hill EL 1626, S.A80# stream sediment sample location & number.	1: 100 000	SAa5221	8293-2
	Gawler Ranges EL's (Peltabinna Hill, Charba Hill, Unalla Hill). Proposed airborne survey area.	1:500 000	SAa5252	Pg. 18
	Peltabinna Hill EL 1627, S.A Gravel sample locations.	1: 100 000	SAa5260	8293-3
	Charba Hill EL 1626, S.A Gravel sample locations.	1: 100 000	SAa5261	8293-4
	Peltabinna Hill EL 1627, S.A Yartoo Prospect: Rock sample location & fact map.	1: 10 000	SAa5269	Pg. 19
	Peltabinna Hill EL 1627, S.A Rock sample locations.	1: 100 000	SAa5270	8293-5
	Charba Hill EL 1627, S.A Rock sample locations.	1:100 000	SAa5271	8293-6

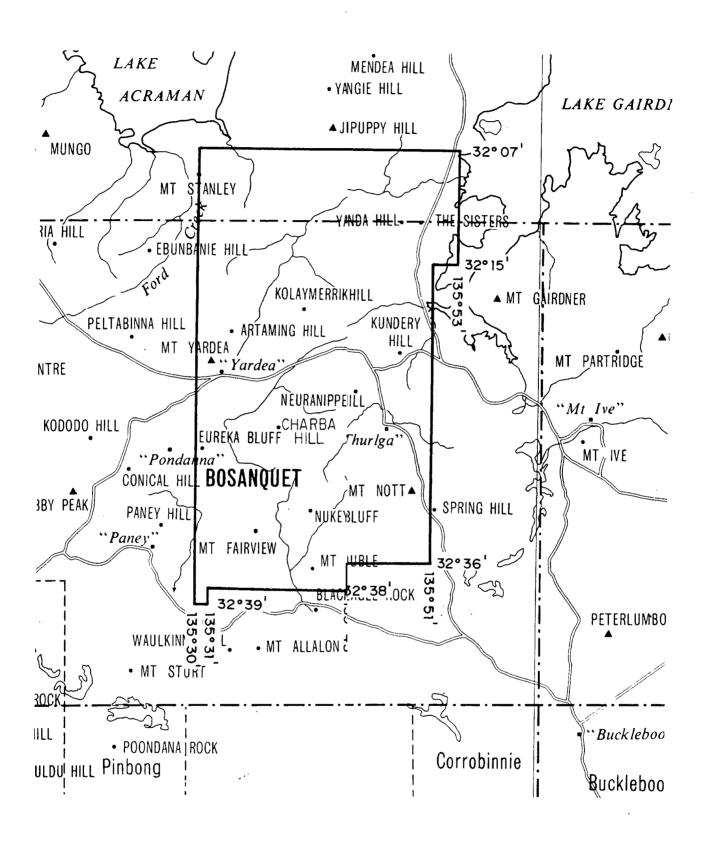
CONTENTS OF VOLUME TWO

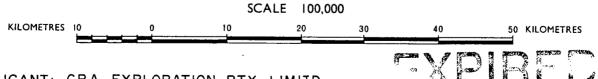
REPORT:

Sugden, S.P. and Marinelli, J.F., 1990. Second quarterly report for Charba Hill EL 1626 & Peltabinna Hill EL 1627, S.A. for the period ending 27th June, 1990 and Unalla Hill EL 1652, S.A. for the first quarterly report for the period ending 22nd July, 1990. (CRA report no. 16608).

Pgs 244-278

	,			
APPENDIX 1:	-80# Stream sediment assay data - Peltabinna Hill EL 162 EL 1626 and Unalla Hill EL 1652.	27, Charba Hill	1	Pgs 279-363
APPENDIX 2:	Rock sample ledger and assay results.			Pgs 364-378
APPENDIX 3:	Stockdale -80# anomaly prospects - Unalla Hill EL 1652.			Pgs 379-382
APPENDIX 4:	Other mineral anomalies - Unalla Hill EL 1652.			Pgs 383-385
APPENDIX 5:	Univariate statistics, histogram plots and correlation matri	v Vordon 90	H stroom	
ATTENDIA 3.	sediment data.	x - 1 aluca -ou	# Sucam	Pgs 386-424
APPENDIX 6:	Histogram plots and correlation matrix - log normalised - sediment data.	Yardea -80# s	tream	Pgs 425-442
APPENDIX 7:	Element anomaly plots - Yardea -80# stream sediment dat	a. .		Pgs 443-454
PLANS:		Scale	Company Plan No.	SADME Plan No.
	Peltabinna Hill EL 1627, S.A Location plan.	1:250 000	SAa5191	Pg. 256
	Charba Hill EL 1626, S.A Location plan.	1:250 000	SAa5192	Pg. 257
	Unalla Hill EL 1652, S.A. Location plan.	1: 250 000	SAa5204	Pg. 258
	Peltabinna Hill EL 1627, S.A80# stream sediment	1: 100 000	SAa5220	8293-7
	sample location & number.			
	Charba Hill EL 1626, S.A80# stream sediment sample location & number.	1: 100 000	SAa5221	8293-8
	Unalla Hill EL 1652, S.A80# stream sediment sample location & number.	1: 100 000	SAa5222	8293-9
	Gawler Ranges EL's (Peltabinna Hill, Charba Hill, Unalla Hill). Proposed airborne survey area.	1:500 000	SAa5252	Pg. 259
	Peltabinna Hill EL 1627, S.A Gravel sample locations.	1: 100 000	SAa5260	8293-10
	Charba Hill EL 1626, S.A Gravel sample locations.	1: 100 000	SAa5261	8293-11
	Unalla Hill EL 1652, S.A Gravel sample locations.	1: 100 000	SAa5262	8293-12
•	Peltabinna Hill EL 1627, S.A Rock sample locations.	1: 100 000	SAa5202 SAa5270	8293-12 8293-13
	Charba Hill EL 1626, S.A Rock sample locations.			
		1: 100 000	SAa5271	8293-14
	Unalla Hill EL 1652, S.A Rock sample locality plan.	1: 100 000	SAa5272	8293-15
	CONTENTS OF VOLUME THRE	EE		
REPORT:	Marinelli, J.F. and Mackee, G.L., 1990. Third quarterly re EL 1626 & Peltabinna Hill EL 1627, South Australia 21 September, 1990 and second quarterly report for U Australia for the period ending 22nd October, 1990.	for the period nalla Hill El 1	ending 652, South	Pgs 455-478
APPENDIX 1:	Peltabinna Hill EL 1627 - Follow up drainage assay result	S.		Pgs 479-485
APPENDIX 2:	Charba Hill EL 1626 - Follow-up drainage assay results.			Pgs 486-489
APPENDIX 3:	Petrology report no. 5702 - Pontifex and Associates.			Pgs 490-504
APPENDIX 4:	Charba Hill EL 1626 and Unalla Hill EL 1652 - Gravity d	ata		Pgs 505-524
APPENDIX 5:	Charba Hill EL 1626 and Unalla Hill EL 1652 - GEOTEM		s.	Pgs 525-527
PLANS (IN APPI	ENDIX 5):			SADME
•	GEOTEM survey profiles. (all at 1:25 000 scale).			plan no.
	Cotton Bush Dam Prospect.	Line 201/1.	÷	8293-16
	Cotton Bush Dam Prospect.	Line 201/1. Line 204/1.		8293-16 8293-17
,	Cotton Bush Dam Prospect.			
		Line 207/1.		8293-18
	Cotton Bush Dam Prospect.	Line 210/1.		8293-19
	Cotton Bush Dam Prospect.	Line 213/1.		8293-20
	Cotton Bush Dam Prospect.	Line 216/1.	<i></i>	8293-21
			-	


	•			
PLANS:				SADME
	•			plan no.
	GEOTEM survey profiles. (all at 1:25 000 scale).			
	Sherry Dam Prospect.	Line 101/3		8293-22
	Sherry Dam Prospect.	Line 104/2.		8293-23
	Sherry Dam Prospect.	Line 106/1.		8293-24
	Sherry Dam Prospect.	Line 107/1.		8293-25
	Sherry Dam Prospect.	Line 110/1.	•	8293-26
	Sherry Dam Prospect.	Line 113/1.		8293-27
	Sherry Dam Prospect.	Line 116/1.		8293-28
	Sherry Dam Prospect.	Line 119/1.		8293-29
	Sherry Dam Prospect.	Line 122/1.		8293-30
	Sherry Dam Prospect.	Line 125/1.		8293-31
	Sherry Dam Prospect.	Line 128/1.		8293-32
APPENDIX 6:	Unalla Hill EL 1652 - Kolendo Prospect follow-up drainag	ge assay results	•	Pgs 528-531
PLANS:	•	Scale	Company	SADME
			Plan No.	Plan No.
	Peltabinna Hill EL 1627, S.A., location plan.	1:250 000	SAa5191	Pg. 532
	Charba Hill EL 1626, S.A., location plan.	1:250 000	SAa5192	Pg. 533
	Unalla Hill EL 1652, S.A., location plan.	1:250 000	SAa5204	Pg. 534
	Peltabinna Hill EL 1627, S.A80# stream sediment	1:100 000	SAa5220	8293-33
•	sample location & number.			
	Charba Hill EL 1626, S.A80# stream sediment	1: 100 000	SAa5221	8293-34
	sample location & number.			
	Gawler Ranges EL's (Peltabinna Hill, Charba Hill,	1:500 000	SAa5252	Pg. 535
	Unalla Hill). Proposed airborne survey area.			- 6
	Peltabinna Hill EL 1627, S.A Gravel sample locations.	1: 100 000	SAa5260	8293-35
	Charba Hill EL 1626, S.A Gravel sample locations.	1: 100 000	SAa5261	8293-36
	Unalla Hill EL 1652, S.A Gravel sample locations.	1: 100 000	SAa5262	8293-37
	Charba Hill EL 1626, S.A Rock sample locations.	1: 100 000	SAa5271	8293-38
	Unalla Hill EL 1652, S.A Rock sample locality plan.	1: 100 000	SAa5272	8293-39
	Charba Hill EL 1626, S.A Sherry Dam Grid -	1: 25 000	SAa5400	8293-40
	Geological fact map.	1. 25 000	D. 115 .00	02/5 .0
	Unalla Hill EL 1652, S.A Kolendo Grid -	1: 25 000	SAa5412	Pg. 536
	Geological fact map.	. 25 000	0.40	18.000
	Unalla Hill EL 1652, S.A Cotton Bush Dam Grid -	1: 25 000	SAa5413	Pg. 537
	Geological fact map.	1. 25 000	51.45 (15)	- 6. 557
	Charba Hill EL 1626 - Prospect and grid locations.	1: 100 000	SAa5437	8293-41
	Unalla Hill EL 1652 - Prospect and grid locations.	1: 100 000	SAa5438	8293-42
	Charba Hill EL 1626 - Brambo Dam Prospect, TMI	1: 25 000	SAa5393	Pg. 538
	profiles.			- 8
	Charba Hill EL 1626 - Brambo Dam Prospect, gravity profiles.	1: 25 000	SAa5417	Pg. 539
	Charba Hill EL 1626 - Regional gravity survey.	1: 25 000	SAa5439	8293-43
	Wooly Dam Prospect - Bouguer gravity values.	,		
	Charba Hill EL 1626 - Regional gravity survey.	1: 25 000	SAa5411	8293-44
	Sherry Dam Prospect - Bouguer gravity values.			
	Charba Hill EL 1626 - Sherry Dam Prospect,	1: 25 000	SAa5395	Pg. 540
	Line 568400mE T.M.I. profile.			<i>6</i>
	Charba Hill EL 1626 - Sherry Dam Prospect,	1: 25 000	SAa5396	Pg. 541
	Line 569000mE T.M.I. profile.			- 6 . • · -
	Charba Hill EL 1626 - Sherry Dam Prospect,	1: 25 000	SAa5397	Pg. 542
	Line 569400mE T.M.I. profile.	000	JJ.,	- 0 1-
	min 202 LOUIN THEIR PROTIES			


PLANS:		Sc	ale	Company Plan No.	SADME Plan No.
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 6438200mE T.M.I. profile.	1:	25 000	SAa5398	Pg. 543
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 6438600mE T.M.I. profile.	1:	25 000	SAa5399	Pg. 544
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 571800mE T.M.I. profile.	1:	25 000	SAa5385	Pg. 545
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 572000mE T.M.I. profile.	1:	25 000	SAa5386	Pg. 546
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 572200mE T.M.I. profile.	1:	25 000	SAa5387	Pg. 547
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 573800mE T.M.I. profile.	1:	25 000	SAa5388	Pg. 548
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 574000mE T.M.I. profile.	1:	25 000	SAa5389	Pg. 549
	Charba Hill EL 1626 - Sherry Dam Prospect, Line 574200mE T.M.I. profile.	1:	25 000	SAa5390	Pg. 550
	Charba Hill EL 1626 - Sherry Dam Prospect, Gravity profiles (Sheet 1 of 3).	1:	25 000	SAa5414	8293-45
	Charba Hill EL 1626 - Sherry Dam Prospect, Gravity profiles (Sheet 2 of 3).	1:	25 000	SAa5415	Pg. 551
·	Charba Hill EL 1626 - Sherry Dam Prospect, Gravity profiles. (Sheet 3 of 3).	1:	25 000	SAa5416	Pg. 552
	Charba Hill EL 1626 - Sherry Dam Prospect, GEOTEM flight path map, Sheet 1 of 2.	1:	25 000	SAa5422	8293-46
	Charba Hill EL 1626 - Sherry Dam Prospect, GEOTEM flight Path map, Sheet 2 of 2.	1:	25 000	SAa5423	8293-47
	Unalla Hill EL 1652 - Cotton Bush Dam Prospect, T.M.I. profiles.	1:	25 000	SAa5394	Pg. 553
	Unalla Hill EL 1652 - Cotton Bush Dam Prospect, Bouguer gravity and T.M.I. profiles.	1:	10 000	SAa5435	8293-48
	Unalla Hill EL 1652 - Kolendo Prospect, T.M.I. profiles.	1:	25 000	SAa5401	Pg. 554
	Unalla Hill EL 1652 - Kolendo Prospect, Bouguer gravity and T.M.I. profiles.	1:	10 000	SAa5436	8293-49
	Unalla Hill EL 1652 - Cotton Bush Dam, GEOTEM flight path map.	1:	25 000	SAa5424	8293-50

CONTENTS OF VOLUME FOUR

REPORT:	Marinelli, J.F. and Mackee, G.L., 1990. Final and relinquishment report for Charba Hill EL 1626, Peltabinna Hill EL 1627 and Unalla Hill EL 1652, South Australia for the period ending 14th November, 1990. (CRA report no. 16953).			Pgs 555-574
APPENDIX 1:	Geoterrex Pty Ltd, 1990. Logistics report for an air Yardea, SA. (Job no. 2-640 - September, 1990)			Pgs 575-594
APPENDIX 2:	Geoterrex Pty Ltd, 1990. Logistics report - airborne survey. Yardea, South Australia. (Job no. 1-41	magnetic and radion	netric	Pgs 595-648
PLANS:		Scale	Company	SADME Plan No.
	Peltabinna Hill EL 1627, S.A., location plan.	1:250 000	SAa5191	Pg. 649
	Charba Hill EL 1626, S.A., location plan.	1:250 000	SAa5192	Pg. 650
	Unalla Hill EL 1652, S.A., location plan.	1: 250 000	SAa5204	Pg. 651

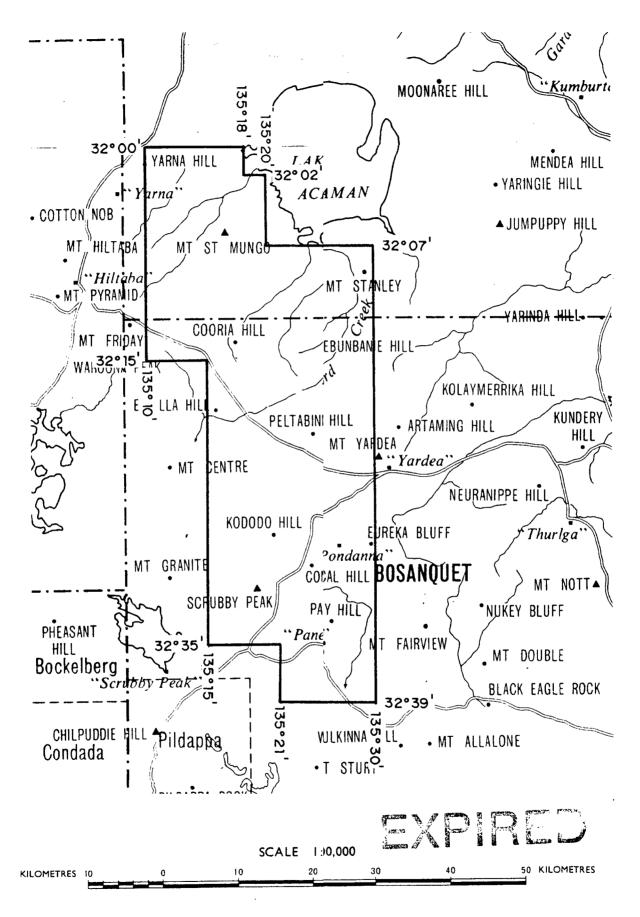
PLANS:		Scale	Company Plan No.	SADME Plan No.
	Peltabinna Hill EL 1627, S.A Yardea Airborne Survey - Flight path locations.	1: 100 000	SAa5454	8293-51 +T
	Charba Hill EL 1626, S.A Yardea Airborne Survey - Flight path locations.	1: 100 000	SAa5455	8293-52 +T
	Unalla Hill EL 1626, S.A Yardea Airborne Survey - Flight path locations.	1: 100 000	SAa5456	8293-53 +T
	Peltabinna Hill EL 1627, S.A Yardea Airborne Survey - Aeromagnetic contours.	1: 100 000	SAa5457	8293-54 +T
	Charba Hill EL 1626, S.A Yardea Airborne Survey - Aeromagnetic contours.	1: 100 000	SAa5458	8293-55 +T
	Unalla Hill EL (1626) S.A Yardea Airborne Survey - Aeromagnetic contours.	1: 100 000	SAa5459	8293-56 +T
	+T = Transparency.			
	END OF CONTENTS			

APPLICANT: CRA EXPLORATION PTY. LIMITD

DM: 343/89

AEA: 1889

square kilometres (approx.)

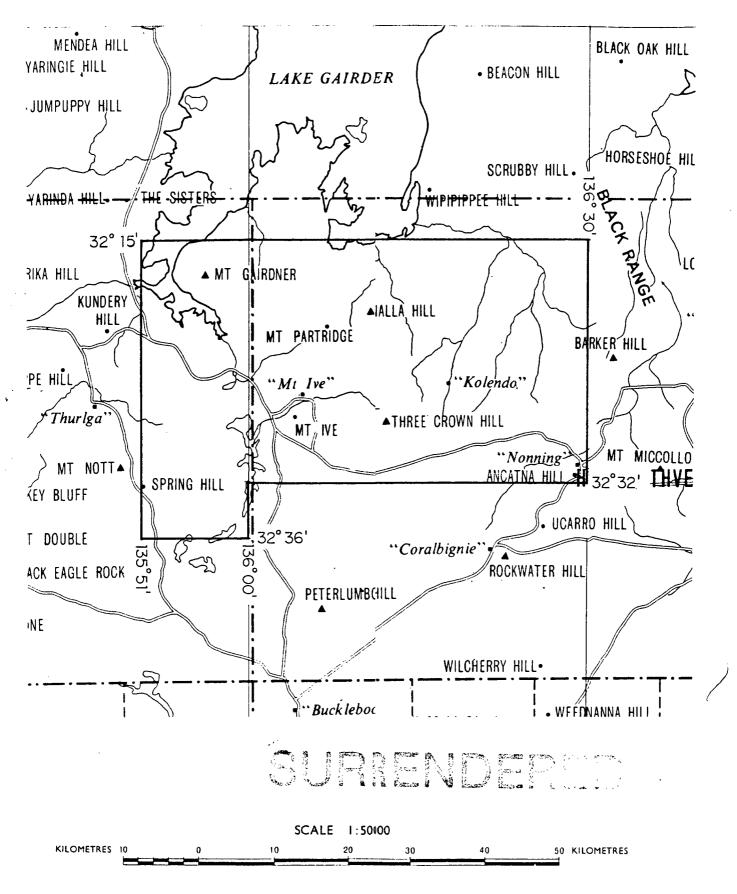

1:250000 PLANS: YARDEA

LOCALITY: CHARBA HILL AREA - Approx. 90 knnorthwest of Whyalla

DATE GRANTED: 22-12-89

DATE [PIRED: 21-12-90

EL No: 1626


APPLICANT: CRA EXPLORATION PTY. LIMITD

DM: 344 / 89 AEA: 1629 square kilometres (approx.)

1:250000 PLANS: YARDEA

LOCALITY: PELTABINNA HILL AREA-Approx. 25 km northwest of Whyalla

DATE GRANTED: 22-12-89 DATE PIRED: 21-12-90 EL No: 1627

APPLICANT: CRA EXPLORATION PTY LTD

DM: 379 / 89

ARE: 2024 square kilometres (approx.)

1:250000 PLANS: YARDEA

LOCALITY: UNALLA HILL AREA

Approx. 140 kn West of Port Augusta

DATE GRANTED: 23-4-90

DATE EXPED: 22-4-91

EL No: 1652

SEPARATELY HELD DATA

EL 1626, 1627, 1652

1) Data Tapes (Held by Geophysics Section)

SURVEY	YEAR	CONTRACTOR	TAPE NO OTHER DATA
MAG-RAD	1990	GEOTERREX	905A03 210cated, I gridded tape
CEOTEM	1990	CECTERREX	905AOH & 905AO5
GRAVITY	।११०	CRA?	1 3.511 disk (covers surveys over 5

2) Drill Samples (Held in SADME Core Libraries)

HOLE NO.

SAMPLE INTERVAL

CORE LIBRARY

3) 35mm Slides (Held by Photographic Projects Group)

-SURVEY/SUBJECT

DEE

NO. OF SLIDES

4) Transparencies (Held at Glenside)

Transparency			
Cylinder No.	Plan Title	<u>Scale</u>	Plan No.
TC 8293/1	Airborne Survey Area	1:500000	SAa 5252.
	Flight Path hocations	1:100000	5Aa 5454-56
	Aeromagnetic Contous	-51:100 000	SAa 5457-59

CRA EXPLORATION PTY. LIMITED

ETRST QUARTERLY REPORT FOR CHARBA HILL EL 1626

& PELTABINNA HILL EL 1627, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 21ST MARCH, 1990.

AUTHOR:

S.P. SUGDEN

J.F. MARINELLI

COPIES TO:

SADME

CIS CANBERRA

DATE:

30TH APRIL, 1990

SUBMITTED BY:

ACCEPTED BY:

"ALL RIGHTS IN THIS REPORT AND ITS CONTENTS (INCLUDING RIGHTS TO CONFIDENTIAL INFORMATION AND COPYRIGHT IN TEXT, DIAGRAMS AND PHOTOGRAPHS) REMAIN WITH CRA AND NO USE (INCLUDING USE OF REPRODUCTION, STORAGE OR TRANSMISSION) MAY BE MADE OF THE REPORT OR ITS CONTENTS FOR ANY PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF CRA. © CRA EXPLORATION PTY. LIMITED 1988"

16525

CONTENTS

•	Page
LIST OF PLANS	
LIST OF APPENDICES	
LIST OF TABLES	
1. SUMMARY	1
2. INTRODUCTION	1
3. LOCATION	2
4. GEOLOGY	2
5. PREVIOUS EXPLORATION	3
6. FIELD WORK COMPLETED	3
6.1 Reconnaissance Sampling	3
6.1.1 Peltabinna Hill EL 1627	3
6.1.1.1 Gravel Sampling	3
6.1.1.2 Geochemical Sampling	4
6.1.2 Charba Hill EL 1626	4
6.1.2.1 Gravel Sampling	4
6.1.2.2 Geochemical Sampling	5
6.2 Rock Chip Sampling	5
6.3 Follow Up Work	6
6.3.1 Stockdale -80# Geochemistry	6
6.3.2 Other Mineral Anomalies	6
6.4 Geophysics	6
EXPENDITURE	8
REFERENCES	9
KEYWORDS	10
LOCATION	10

LIST OF PLANS

Plan No.	<u>Title</u>	Scale
SAa 5191	Peltabinna Hill EL 1627, S.A Location Plan	1:250 000
SAa 5192	Charba Hill EL 1626, S.A Location Plan	1:250 000
SAa 5220	Peltabinna Hill EL 1627, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5221	Charba Hill EL 1626, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5252	Gawler Ranges EL's (Peltabinna Hill, Charba Hill, Unalla Hill) Proposed Airborne Survey Area	1:500 000
SAa 5260	Peltabinna Hill EL 1627, S.A Gravel Sample Locations	1:100 000
SAa 5261	Charba Hill EL 1626, S.A Gravel Sample Locations	1:100 000
SAa 5269	Peltabinna Hill EL 1627, S.A Yartoo Prospect: Rock Sample Location & Fact Map	1: 10 000
SAa 5270	Peltabinna Hill EL 1627, S.A Rock Sample Locations	1:100 000
SAa 5271	Charba Hill EL 1627, S.A Rock Sample Locations	1:100 000

LIST OF APPENDICES

Appendix I	-80# Stream Sediment Geochemistry
	- Peltabinna Hill EL 1627 & Charba Hill EL 1626
Appendix II	Stockdale -80# Geochemistry
Appendix III	Stockdale -80# Anomaly Prospects
	- Charba Hill EL 1626 & Peltabinna Hill EL 1627
Appendix IV	Other Mineral Anomalies - Charba Hill EL 1626
Appendix V	Petrology Report No. 5620 - Pontifex & Associates
Appendix VI	Rock Ledger - Charba Hill EL 1626 &
	Peltabinna Hill EL 1627

LIST OF TABLES

Table 1	Sample Number Sequences - Gravel Samples Peltabinna Hill EL 1627 & Charba Hill EL 1626
Table 2	Peltabinna Hill EL 1627 & Charba Hill EL 1626
	- Indicator Mineral Results Reported to 16/03/90
Table 3	Other Minerals Results to 16/03/90
	- Peltabinna Hill EL 1627 & Charba Hill EL 1626
Table 4	-80# Stream Sediment Assay Details

SUMMARY

Charba Hill EL 1626 & Peltabinna Hill EL 1627 were taken out to explore for epithermal type gold deposits, Roxby Downs style mineralisation and volcanogenic hosted base metal deposits.

To date exploration has involved a literature search of previous work, followed by systematic drainage gravel and -80# stream sediment sampling of Peltabinna Hill EL 1627. Stream sediment (-80#) samples which were located on Charba Hill EL 1626 and collected during the tenure of an earlier licence (Thurlga EL 1300) were also assayed. Infill gravel and stream sediment samples were also collected on Charba Hill EL 1626.

Only one anomalous F-U assay was noted in the data. Gravel sample results received to date have reported three positive results (all chromites). Apatite, Barite, Cassiterite, Florencite, Fluorite, Garnet, Monazite, Topaz and Zircon were reported from numerous samples.

On Charba Hill EL 1626 & Peltabinna Hill EL 1627 selected Stockdale -80# and "other mineral" anomalies were followed up with -80# stream sediment samples and float rock samples. Only anomalous assays interpreted to represent either a monazite heavy mineral component, lake sediments or iron scavenging were noted in the data.

Rock chip samples were also collected from quartz breccias on Peltabinna Hill EL 1627. No anomalous assays were reported. Petrographic description indicated that they were possible mesothermal-epithermal quartz veins within a tectonic breccia.

A proposal was made for an airborne magnetic and radiometric survey over parts of the licences and tenders requested. Geoterrex were the successful contractor with flying expected to commence in the next quarter.

2. INTRODUCTION

Peltabinna Hill EL 1627 and Charba Hill EL 1626 were applied for on the 25th September, 1989 to cover an area considered prospective for Roxby Downs and Epithermal styles of mineralisation. They were both granted for a one year term on the 22nd December, 1989.

This report details work completed during the first quarter.

3. LOCATION

Peltabinna Hill EL 1627 and Charba Hill EL 1626 are located over the western Gawler Ranges to the south of L. Acraman and west of L. Gairdner. The Yardea Station homestead is found in the centre of the area. The licence locations are shown on plans SAa 5191 and SAa 5192.

4. GEOLOGY

The following geological synopsis is taken largely from Blissett et.al. (1989).

The Gawler Ranges form the central part of the Archaean to Middle Proterozoic Gawler Craton which is a large, polygonal tectonic unit that has remained a stable cratonic area since about 1400 Ma.

Archaean and Early Proterozoic sequences were highly deformed prior to the eruption of the Gawler Range Volcanics circa 1590-1600 Ma. The volcanics form a thick blanket unconformably overlying the deformed metamorphic basement and extend from Paney in the south, to the Kingoonya-Tarcoola region in the north.

Around the margins and within the Gawler Ranges there are extensive regions of thin Cainozoic sediments which often mask relationships between rock units.

The Gawler Range Volcanics are predominantly a calc-alkaline assemblage of dacites, rhyodacites and rhyolites, with subsidiary potassic andesites and tholeitic basalts. They consist of ignimbrites (ash flows) welded to varying degrees, with localised lavas and agglomerates, erupted subaerially in a continental environment.

The Gawler Range Volcanics and intrusive Hiltaba Suite granites have undergone little deformation or metamorphism since Proterozoic times, responding to subsequent earth movements by epeirogenic block faulting and jointing on a regional scale. An unknown volume of the volcanics has been removed by erosion.

For a concise geological picture of the Charba Hill and Peltabinna Hill tenement area refer to the published Yardea 1:250 000 Geological Map Sheet.

5. PREVIOUS EXPLORATION

All previous exploration conducted within the area bounded by EL 1627 Peltabinna Hill and EL 1626 Charba Hill is outlined below.

The first recorded exploration work was by A.C.I. Technical Centre under S.M.L.'s 227-230 (Key, 1969). A follow up ground survey of BMR radiometric anomalies located within the Hiltaba Granite was completed. No positive results were recorded.

CRA Exploration carried out work under two separate titles in 1972 and 1986. Close (1972) describes ground follow up of a regional airborne radiometric survey. Stream sediment geochemistry, rock chip sampling and ground scintillometer traverses resulted in no anomalous metals being detected within S.M.L. 722. During 1986 a regional reconnaissance gravel sampling programme to detect diamondiferous kimberlites resulted in only one anomalous drainage being detected (Le Messurier 1986). However follow up sampling proved negative within EL 1300.

Stockdale Prospecting Limited held tenement under EL's 841, 842, 843 and 1157 in the area between 1982-1984. Robison (1982), (1983), (1984) and Davies (1982) describe Stockdale's work programmes as reconnaissance heavy mineral gravel sampling, -80# stream sediment geochemical sampling, aeromagnetic anomaly and airphoto anomaly follow up to detect diamondiferous kimberlites. No significant anomalies were detected.

Shell Metals Division entered into a Joint Venture Agreement with Stockdale during 1984 to pursue base metal occurrences using Stockdale geochemical data in EL 1157 (Hellsten, 1984). However no anomalies were detected and the JV was terminated.

6. FIELD WORK COMPLETED

- 6.1 Reconnaissance Sampling
- 6.1.1 Peltabinna Hill EL 1627
- 6.1.1.1 Gravel Sampling

During the quarter reconnaissance gravel sampling was completed over the licence area. The programme was helicopter assisted with 147, 35 kg, -2mm fraction gravel samples being collected. Table 1 lists the sample number sequences. The sample locations are shown on plan SAa 5260.

The samples were submitted to the CRAE Diamond Laboratory for indicator mineral observation and observation for other minerals which may be associated with epithermal gold or Roxby Downs styles of mineralisation. To the 16/03/90, 72 samples had been observed. Chromites were reported from four samples (1161451, 1161453, 1161612 and 1161628). Table 2 lists the indicator results received to the 16/03/90.

The samples were also observed for other minerals which may be indicative of possible mineralisation. Table 4 lists positive other mineral results received for the minerals of interest.

6.1.1.2 Geochemical Sampling

At each gravel sample site an identically numbered -80# stream sediment sample was collected. The samples were submitted to Analabs for assay with Table 4 listing the assay details. Appendix I contains the assay results with sample locations being shown on plan SAa 5220.

Examination of the data indicated only one sample (1161482) was highly anomalous reporting 1100 ppm F and 11 ppm U. Gold assays were all of low tenor with the highest value being 4.6 ppb.

A statistical interpretation of the data will therefore be carried out to determine if any areas of elevated multi-element chemistry exist.

6.1.2 Charba Hill EL 1626

6.1.2.1 Gravel Sampling

As Charba Hill was previously held as part of Thurlga EL 1300 only infill gravel samples were collected so as to bring the density up to a comparable level to that on Peltabinna Hill. Twenty five 35 kg -2mm fraction gravel samples were collected with Table 1 listing the sample number sequences. The sample locations are shown on plan SAa 5261. For details regarding Thurlga EL 1300 refer to Le Messurier (1986).

The samples were submitted to the CRAE Diamond laboratory for indicator mineral observation and observation for other minerals which may be associated with possible mineralisation. To the 16/3/89 fifteen samples had been observed. No indicators were reported.

Table 2 lists results received to the 16/3/90. The samples were also observed for other minerals which may be indicative of possible mineralisation. Table 4 lists positive other mineral results for the minerals of interest.

6.1.2.2 Geochemical Sampling

At each of the infill gravel sample sites an identically numbered -80# stream sediment sample was collected. The samples were submitted to Analabs for assay with Table 4 listing the assay details. Appendix I contains the assay results and locations are shown on plan SAa 5221.

-80# stream sediment samples were also collected for each of the gravel samples taken during the tenure of Thurlga EL 1300 but not processed. Those that were found on Charba Hill were therefore retrieved and assayed by Analabs. The relevant sample numbers are shown in Table 1 and assay details in Table 4. Locations are shown on plan SAa 5221. Appendix I contains the assay results. -80# samples were not collected with gravel samples 1234412-1234422.

6.2 Rock Chip Sampling

During the first quarter of exploration in Peltabinna Hill EL 1627 general reconnaissance work resulted in seven rock chip samples being collected. Locations are shown on plan SAa 5270.

collected. Locations are shown on plan SAa 5270.

33 km SE of Hilland HSL

At Yartoo, a north west trending subcropping zone of quartz veins and brecciated acid volcanics measuring approximately 800 m long by 1-5 m wide was sampled (see plan SAa 5269). Five rock chip samples (nos. 1158639-640, 648-650) were collected and submitted for multi-element analysis. Results were discouraging and are presented in Appendix VI. Three of the samples (renumbered 2541543-545) were selected for petrographic examination. They were identified as possible mesothermal-epithermal quartz veins in a tectonic volcanic/tuff/volcaniclastic breccia. Petrographic summaries are presented in Appendix V.

A rock sample (1158639) of 'black' Yardea Dacite located near the quartz-breccia was also assayed but results were negative.

Near Monument Dam a narrow glassy quartz vein (1158638) within Yardea Dacite was sampled. Results showed only slightly elevated bismuth. Assays are presented in Appendix VI.

6.3 Follow Up Work

6.3.1 Stockdale -80# Geochemistry

As discussed previously, Stockdale conducted an extensive -80# stream sediment program throughout the Gawler Ranges. Data from that survey was entered on the computer and anomalies selected for further follow up. A print out of results is contained in Appendix II.

Ten anomalous areas, six within Peltabinna Hill and four within Charba Hill were selected for follow up. Each was followed up with -80# samples being collected at the original site and upstream. Sample locations are shown on plans SAa 5220 and SAa 5221. A brief summary of each prospect is contained in Appendix III.

In all cases the original anomaly was not repeated and only weakly anomalous assays representing, a probable dolerite dyke (Perrinilba Hill), lake sediments (Donaldson Dam) and monazite (Munga Tank West) were noted. At this stage no further work is planned.

6.3.2 Other Mineral Anomalies

Within Charba Hill EL 1626 a number of anomalous other mineral results were noted in the old gravel sample data, which may reflect possible mineralisation. Eight areas were selected for follow up, with -80# stream sediment samples and occasionally rock float samples being collected at the original site and upstream. Sample locations are shown on plan SAa 5221. A brief discussion of each anomaly is contained in Appendix IV.

Except for occasional assays reflecting iron scavenging (Walpuppy Dam and Kolaymerrika Hill North), no anomalous chemistry was noted in either the stream sediment or rock samples. As a result no further work is recommended for these prospects at present unless other factors (i.e. geophysics) upgrade their potential.

6.4 Geophysics

During the quarter, tenders were invited from Austirex, Geoterrex and Kevron Geophysics for an airborne geophysical survey which was designed to cover parts of the licences and adjoin the recently released SADME Eyre Peninsula survey. The area to be flown is shown in plan SAa 5252. Specifications of the survey are as follows:

Length:

 $15\ 000\ 1ine\ km$

Flight Line Direction:

360°/180° true

300 m 80 m

Line Spacing: Terrain Clearance:

 $\label{thm:contract} \textbf{Geoterrex} \quad \textbf{were} \quad \textbf{subsequently} \quad \textbf{awarded} \quad \textbf{the} \quad \textbf{contract} \quad \textbf{with the survey}$ expected to commence during the next quarter.

S.P. SUGDEN/J.F. MARINELLI

SPS/JFM:pq

EXPENDITURE

Expenditure on Peltabinna Hill EL 1627 and Charba Hill EL 1626 to the 28th February, 1990 amounted to \$74 417.00 and \$68 369.00, respectively, as detailed below.

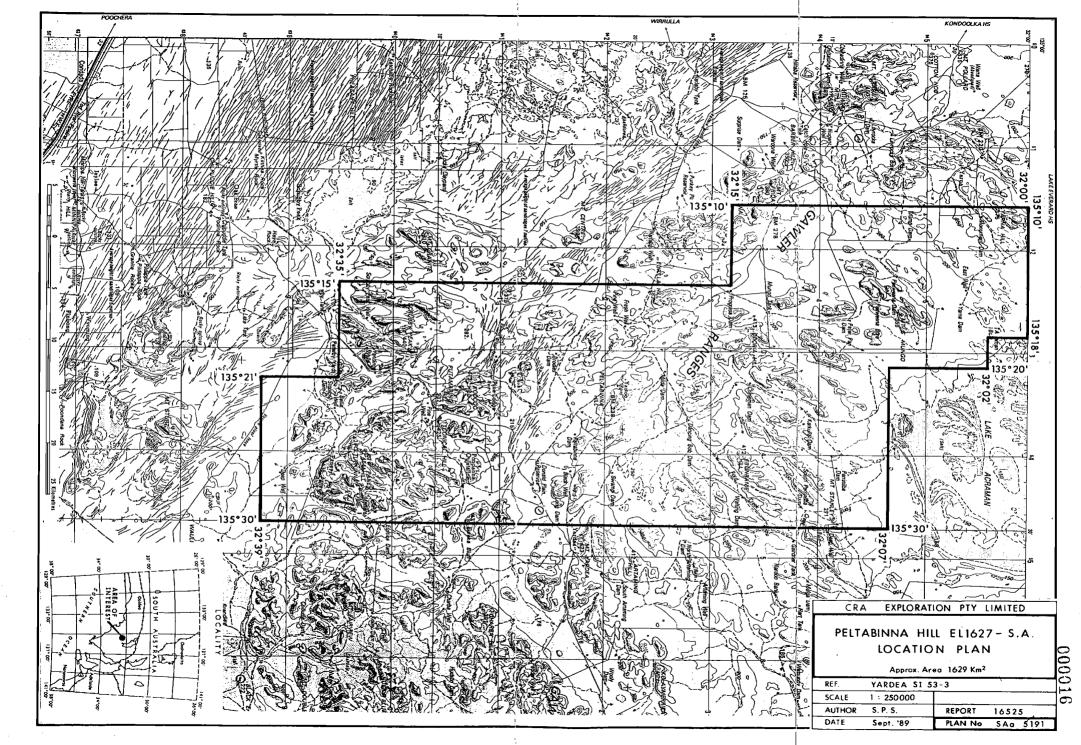
	Peltabinna Hill EL 1627	Charba Hill EL 1626
Payroll Supplies	\$15 916 3 424	\$17 032 5 112
Vehicle	2 988	4 687
Travel	1 983	1 990
Rent	5 099	4 935
Contractors	24 590	13 076
Laboratory	13 242	12 500
Overheads	7 175	9 037
	\$74 417	\$6 8 369

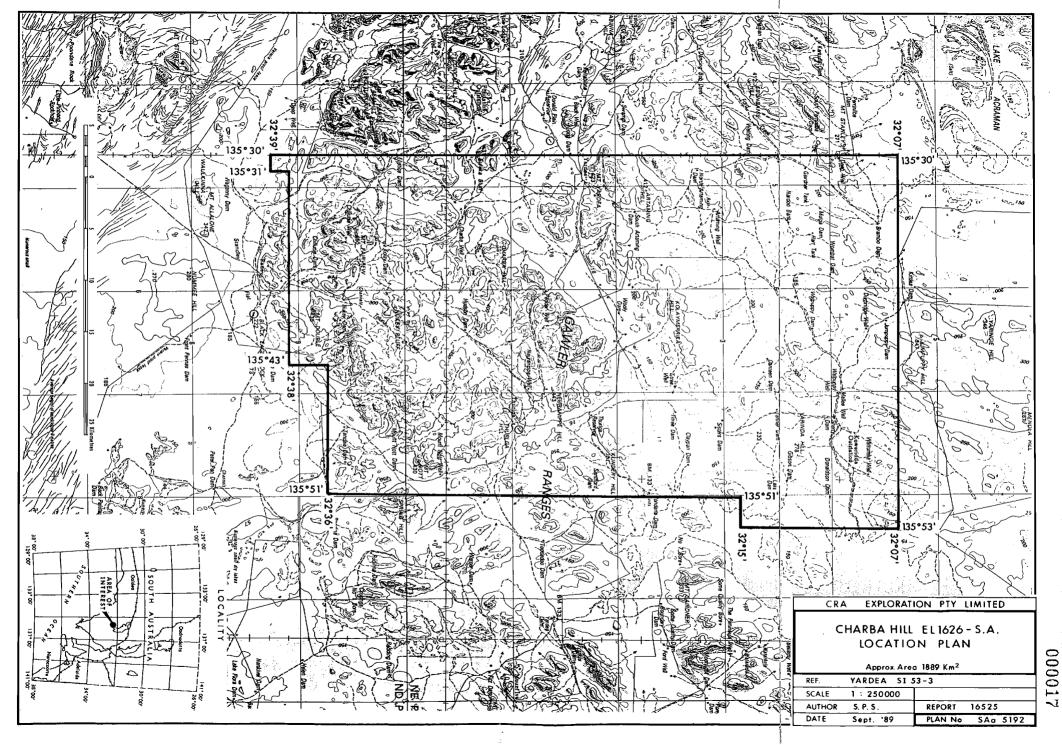
REFERENCES

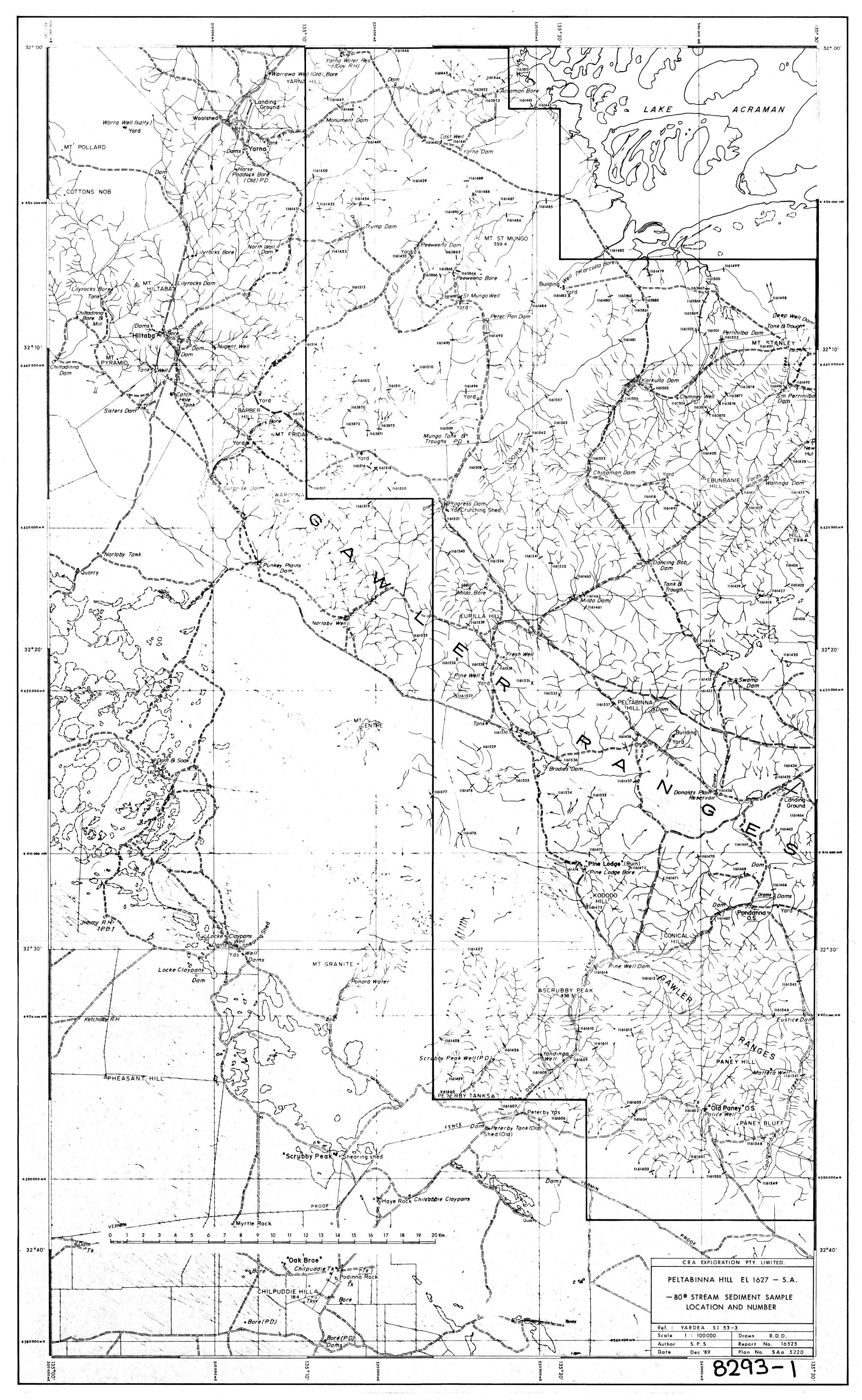
1984

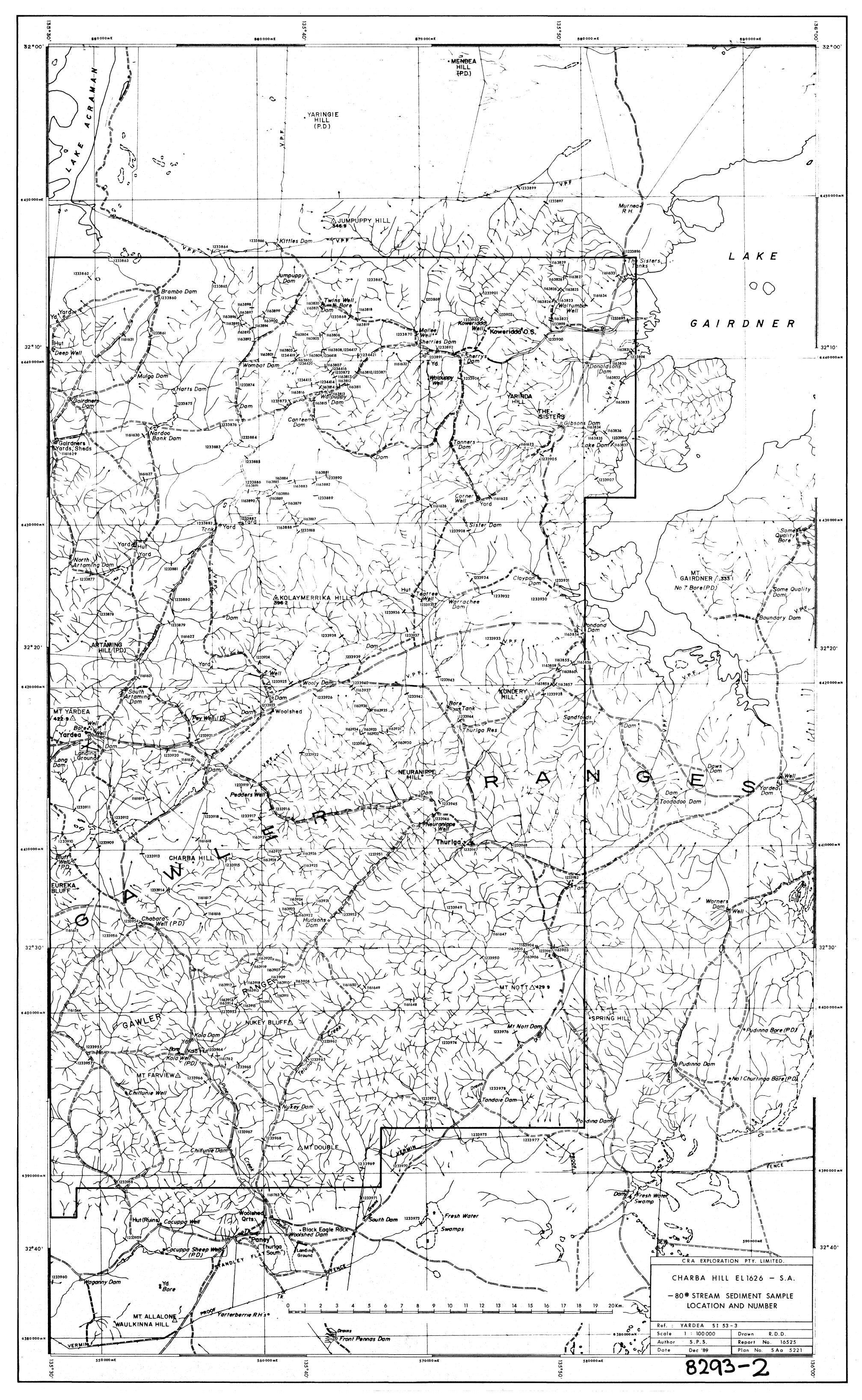
Blissett, A.H., Gawler Ranges Excursion, October 7th-9th, 1989. Geological Society of Australia (S.A. Division) Parker, A.J. & Scheffler, J. SADME Report Book No. 89/70 1989 Close, S.E. Final Report Hiltaba SML 722, South Australia. 1972 CRAE Report No. 3805 Davies, P.R. Stockdale Prospecting Limited EL Nos. 834, 841 1982 and Parts of 842, 844 - Relinquishment Report. SADME Env 4747 The Shell Co. of Aust. Limited - Metals Div. Hellsten, K.J. 1984 Mt. Nott EL's 1157, 1158 and 1159, S.A. - Fourth Progress Report for Quarter Ending 16th June, 1984. SADME Env 4267 SML's 227-230. Report to the Director of Mines, Key, W.W. SADME Covering Work and Expenditure for the 1969 Period 19th August, 1968 to 31st December, 1968. A.C.I. Technical Centre SADME Env 1069 LeMessurier, L.A. Final & Relinquishment Report on Thurlga EL 1300, 1986 South Australia. CRAE Report No. 130678 Robison, H.R. Stockdale Prospecting Limited EL 827 1982 Relinquishment Report. SADME Env 4836 Robison, H.R. Stockdale Prospecting Limited EL's 842, 843 and Seventh Quarterly Report to 3rd February, 1983 1983. SADME Env 4267 Robison, H.R. Stockdale Prospecting Limited Part EL 1158

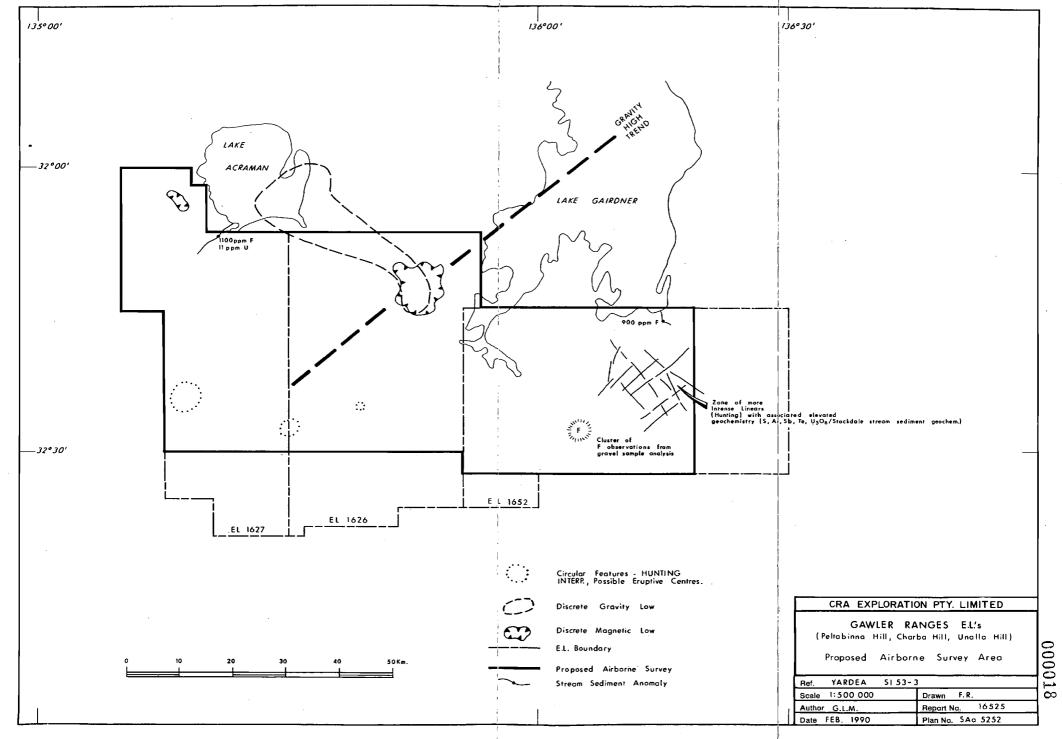
and Part EL 1159 Gawler Ranges. Relinquish-

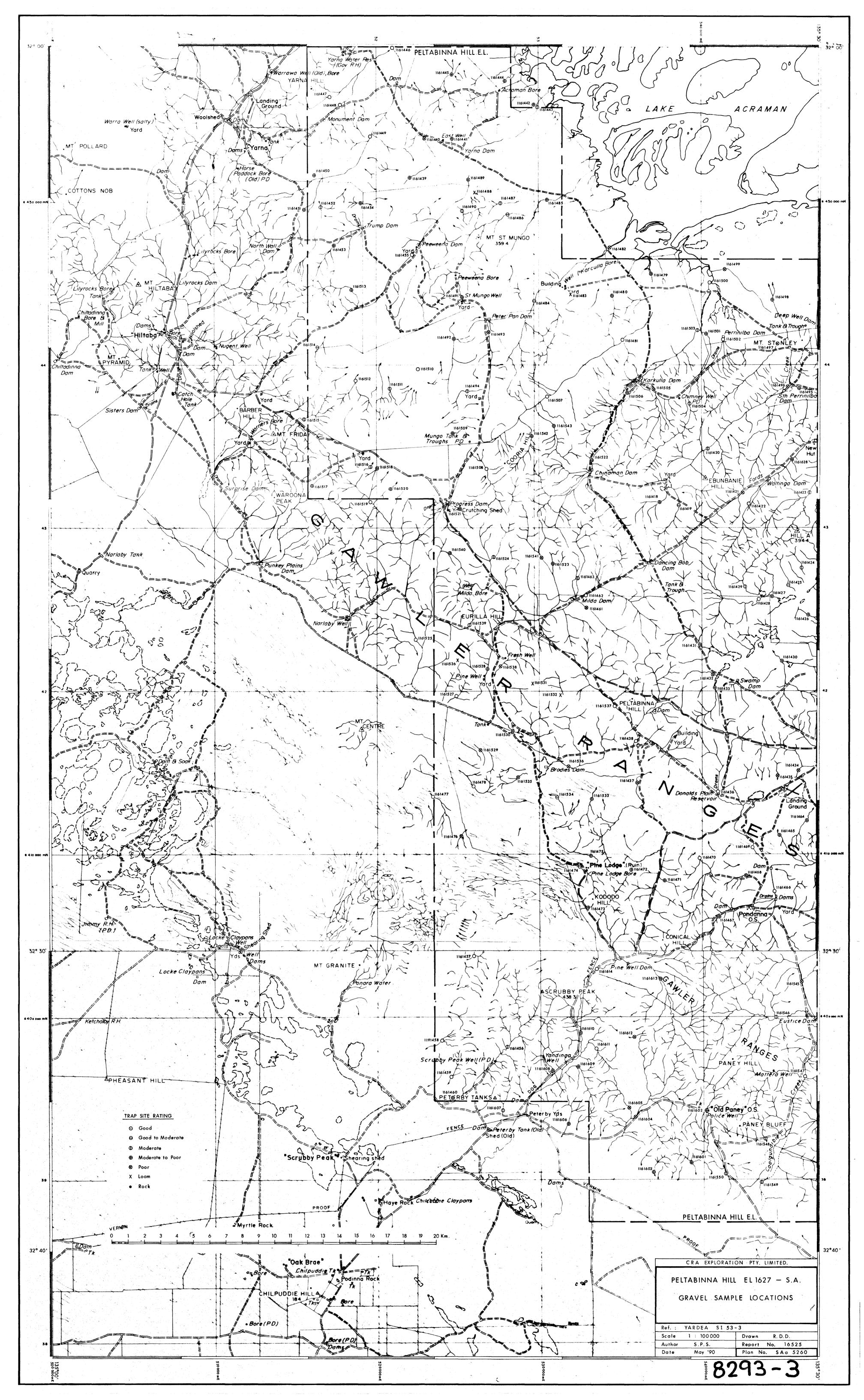

ment Report. SADME Env 5430

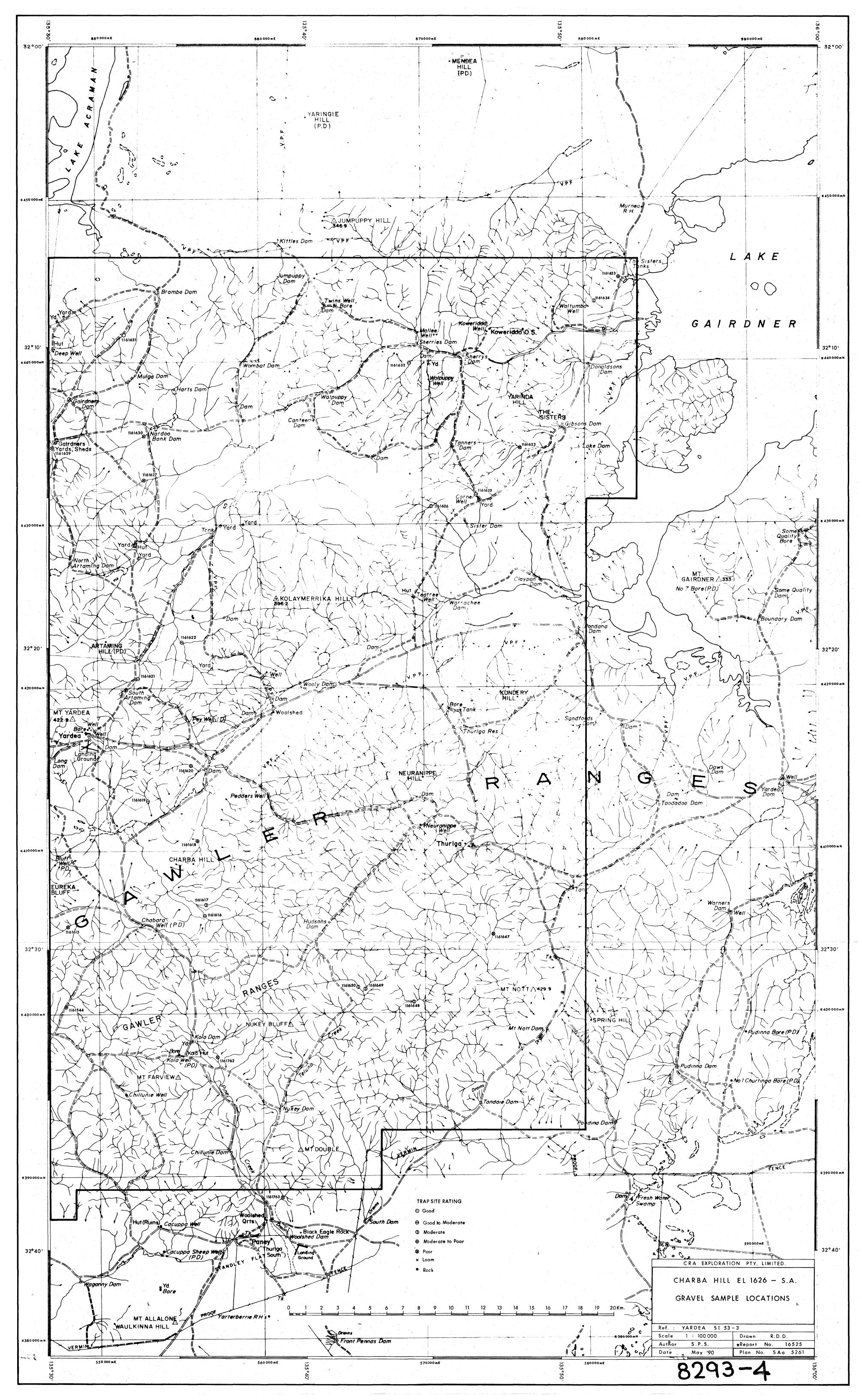

KEYWORDS

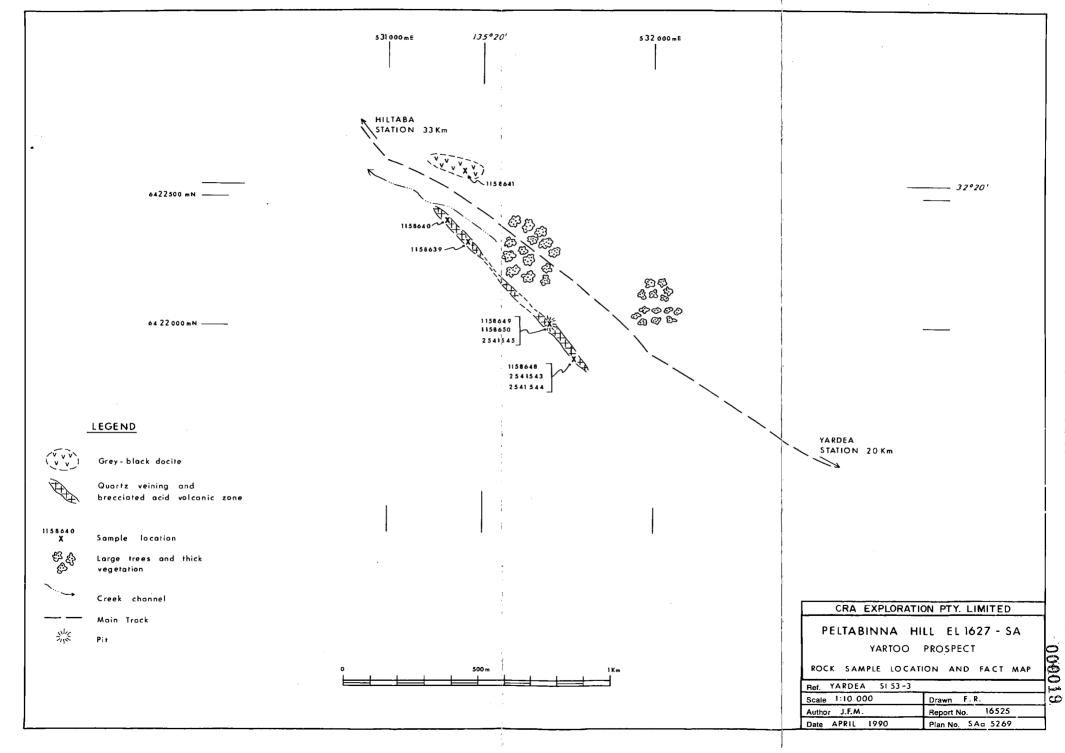

Geochem Rock, Geochem Drainage, Volcanogenic, Volcanics, Breccia, Proterozoic

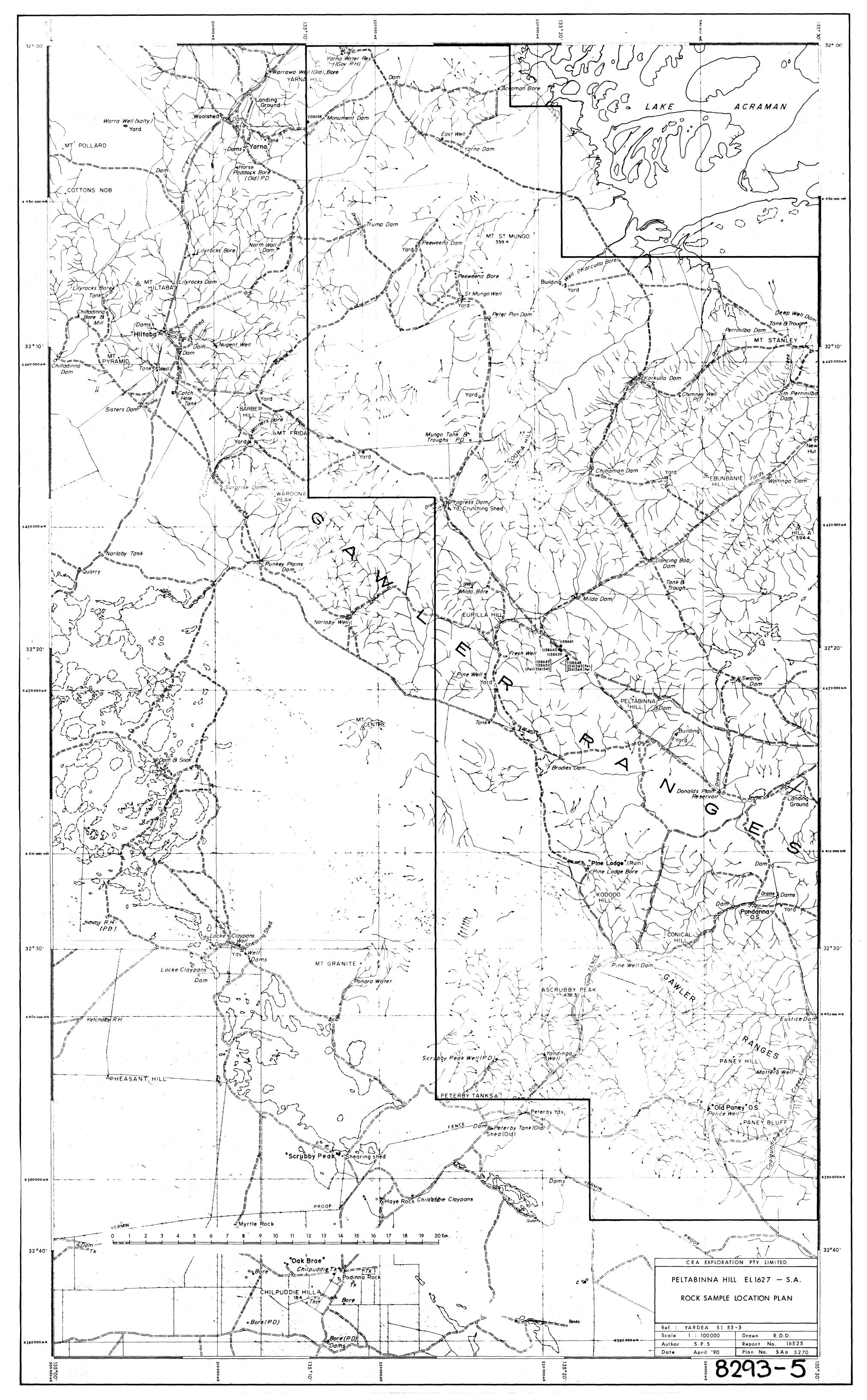

LOCATION


Yardea SI5303 1:250 000 sheet









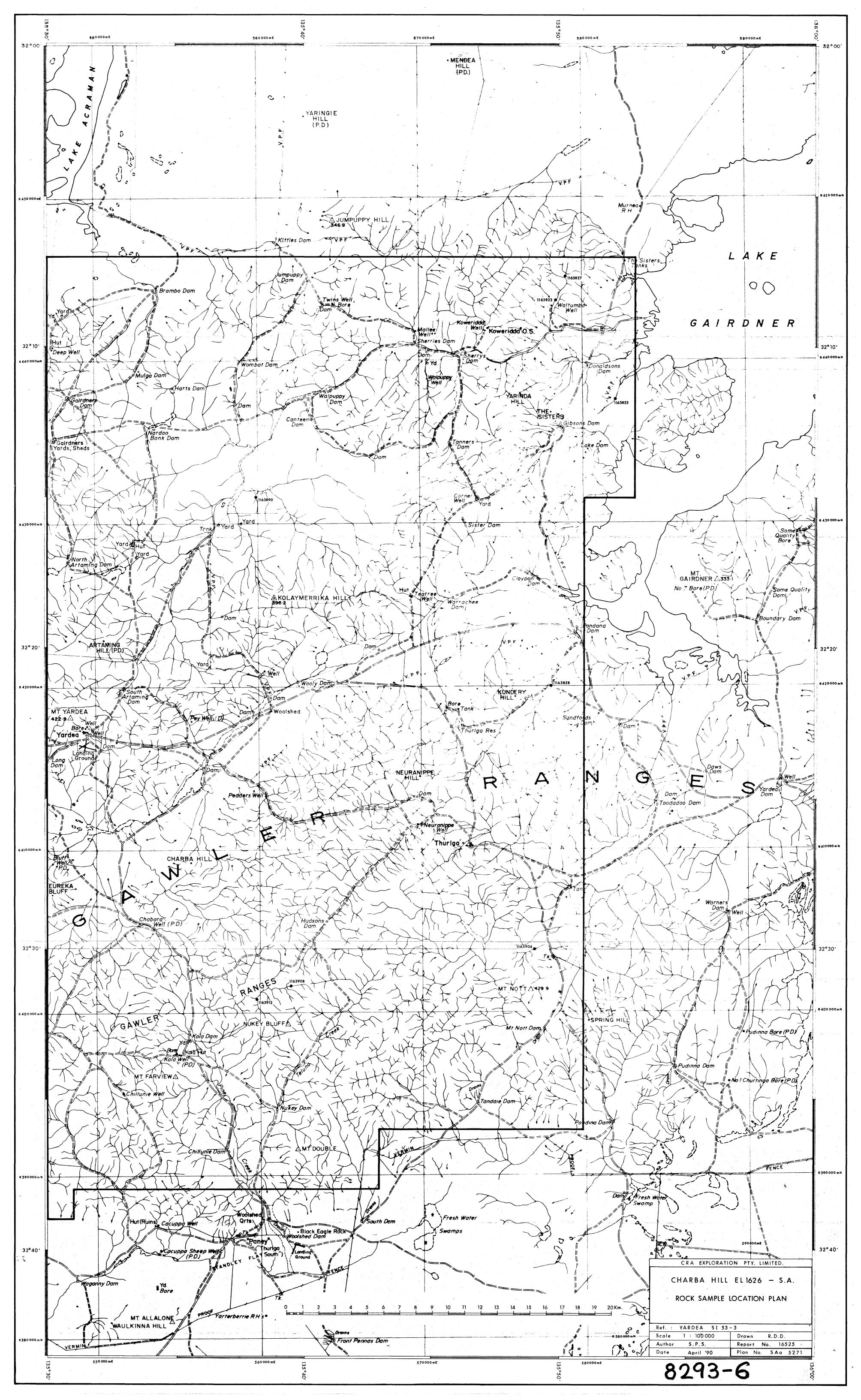


TABLE 1

SAMPLE NUMBER SEQUENCES - GRAVEL SAMPLES PELTABINNA HILL EL 1627 & CHARBA HILL EL 1626

Peltabinna Hill EL 1627

1161418-1161543 1161545-1161550 1161601-1161614 1161628

Charba Hill EL 1626

Current Samples 1161544

1161615-1161623 1161625-1161627 1161629-1161634 1161647-1161650 1161762-116763

Old Samples

1233860-1233863

1233865

1233867-1233892 1233894-1233895

1233898

1233900-1233926 1233928-1233958 1233962-1233969 1233972

1233981-1233982 1234412-1234422 nn 1973

TABLE 2

PELTABINNA HILL EL 1627 (P) & CHARBA HILL EL 1626 (C)

INDICATOR MINERAL RESULTS REPORTED TO 16/03/90

Sample No.	Licence	Result	Sample No.	Licence	Result
1161418	P	Negative	1161512	P	Negative
1161419	P	Negative	1161513	P	Negative
1161420	P	Negative	1161514	P	Negative
1161421	P	Negative	1161515	P	Negative
1161422	P	Negative	1161516	P	Negative
1161423	P	Negative	1161517	P	Negative
1161425	P	Negative	1161518	P	Negative
1161428	P	Negative	1161521	P	Negative
1161429	P	Negative	1161523	P	Negative
1161430	P	Negative	1161525	P	Negative
1161433	P	Negative	1161536	P	Negative
1161434	P	Negative	1161539	P	Negative
1161435	. P	Negative	1161541	P	Negative
1161440	P	Negative	1161543	P	Negative
1161442	P	Negative	1161544	\mathbf{C}	Negative
1161444	P	Negative	1161545	P	Negative
1161446	P	Negative	1161547	P	Negative
1161448	P	Negative	1161604	P	Negative
1161449	P	Negative	1161607	P	Negative
1161451	P	2 Chromites	1161608	P	Negative
1161453	P	2 Chromites	1161609	P	Negative
1161460	P	Negative	1161610	P	Negative
1161461	P	Negative	1161611	P	Negative
1161462	P	Negative	1161612	P	1 Chromite
1161463	P	Negative	1161613	P	Negative
1161464	P	Negative	1161616	Ċ	Negative
1161465	P	Negative	1161617	Č	Negative
1161466	P	Negative	1161618	Č	Negative
1161467	P	Negative	1161619	Č	Negative
1161468	P	Negative	1161620	Č	Negative
1161469	P	Negative	1161622	Č	Negative
1161470	P	Negative	1161623	č	Negative
1161470	P	Negative	1161626	Č	Negative
1161473	P	Negative	1161628	P	1 Chromite
1161474	P	Negative	1161630	Ċ	Negative
1161474	P	Negative	1161633	Č	Negative
1161478	P	Negative	1161647	Č	Negative
1161478	P	Negative	1161648	Č	Negative
1161475	P	Negative	1161763	Č	Negative
1161491	P	Negative	1161764	Č	Negative
1161495	P	Negative	1101104	Ŭ	поватью
	P	Negative			
1161499	P P	Negative			
1161500	P P	Negative			
1161502 1161504	P	Negative			
1161505	P P	Negative Negative			
1161511	r	Negative			

TABLE 3: Other mineral results to 16/3/90. Peltabinna Hill EL1627 & Charba Hill EL1626.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals Cu Minerals Cassiterite Florencite
1161418	Р	0.023	·		R	
1161419	Р	0.002	R		0	
1161420	Р	0.005	R		0	
1161421	Р	0.019	R		0	R
1161422	Р	0.001			Α	
1161423	Р	0.006			S	
1161425	Р	0.001	R			
1161428	Р	0				
1161429	Р	0.001	·R		0	
1161430	Р	0.007				
1161433	Р	0.004	R		0	
1161434	P	0.011	R		F	
1161435	P	0.008	R			
1161440	Р	0.003			R	
1161442	Р	0.126			F	
1161444	Р	0.001	Т		Α	
1161446	Р	0.001				
1161448	Р	0				
1161449	P	0.002				λ.
1161451	P	0.001				, F
1161453	Р	0.008	Т			R .
1161460	Р	0.001	•		Р	
1161461	P	0.003	F		F	
1161462	Р	0.001			F	,
1161463	Р	0.003	R		F	
1161464	Р	0	Т		, R	•
1161465	Р	0.001	F			
1161466	Р	0			0	
1161467	Р	0	Т		F	•
1161468	Р	0	R		R	

TABLE 3: Other mineral results to 16/3/90. Peltabinna Hill EL1627 & Charba Hill EL1626.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi	Minerals	Cu	Minerals	Cassit	erite	Florencite
1161469	Р	0	·		Α							
1161470	Р	0										
1161471	Р	0.001			R							
1161473	Р	0.003	R									
1161474	Р	0	R									
1161476	Р	0										
1161478	Р	0										
1161479	Р	0.008			R							
1161491	Р	0.006	R									
1161493	Р	0.027	T		R					R		
1161495	Р	0.018	R ·		F							
1161499	Р	0.09		•	F							
1161500	Р	0.013			F							
1161502	Р	0			Α		•					
1161504	Р	0.008	R		R							
1161505	Р	0.009			F							
1161511	Р	0.01	. R	0						Α		
1161512	Р	0.001										·
1161513	Р	0.003	R		R					, R		
1161514	Р	0.002		F	. R					F		
1161515	Р	0.004								R		T
1161516	Р	0.002	R									
1161517	Р	0.002			Α							
1161518	Р	0.001	Τ									
1161521	Р	0.007	R		•							
1161523	Р	0.009	Ŕ		F					Т		
1161525	Р	0.003										
1161536	Р	0.001			Р							
1161539	Р	0.002			С							
1161541	Р	0.007	R		Α							

TABLE 3: Other mineral results to 16/3/90. Peltabinna Hill EL1627 & Charba Hill EL1626.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals	Cu Minerals	Cassiterite	Florencite
1161543	P	0.002	R		F				
1161544	С	0	F		F				
1161545	P	0	R		Р				
1161546	Р	0	R	Т	R				
1161547	Р	0			Α				
1161604	Р	0.004			Α				
1161607	Р	0	•				•		
1161608	Р	0.002	F		R				
1161609	Р	0							
1161610	Р	0							•
1161611	Р	0	Τ						
1161612	Р	0	Τ		R				
1161613	Р	0		•	· F			•	
1161616	С	0.001	R		0				
1161617	С	0.001	R		Α				
1161618	С	0	F		R				
1161619	С	0.014	R						
1161620	С	0.005		•					
1161622	С	0.002	R		0			<u>.</u>	
1161623	С	0.01	Т					0	
1161626	С	0.003							
1161628	Р	0.005	Т		0				
1161630	С	0.04	Т					R	
1161633	С	0.006	R		F				
1161647	С	0.001	R	•					
1161648	С	0.001	R		F				
1161763	C	0.001							
1161764	С	0.007			R.				

0
\bigcirc
\mathcal{N}
CI

Sample 1161418 1161419 1161420	Fluorite	Garnet R F R	Gold	Monazite	Platinum	Pyrite	Sphalerite	Sulphide	Topaz T
1161421		R		•					
1161422		Ť							
1161423		R		Т					
1161425		R							
1161428									
1161429		Ŧ		T					
1161430	F	F F							
1161433									R
1161434		0							R F
1161435		F							F
1161440		R							
1161442		R							
1161444		R							
1161446		R							F
1161448									
1161449	R	F					4		F F
1161451		R							F
1161453	Т	F					•		
1161460		R							R
1161461		T							
1161462		R							
1161463		R							
1161464	_	T -							F
1161465	T	F							
1161466		_							
1161467		R							
1161468		R							

\subset)
\subset	\supset
C	>
C)
D	٥

Sample	Fluorite	Garnet	Gold	Monazite	Platinum	Pyrite	Sphalerite	Sulphide	Topaz
1161469						·	•	•	•
1161470									
1161471	F	R							
1161473	Т	R F R							
1161474		R							R
1161476									R S P R
1161478		Р					•		Р
1161479		R							R
1161491		R							
1161493		R							
1161495		R							
1161 49 9		. R							R
1161500									R
1161502									
1161504		R							R
1161505		R		T					
1161511	Α	T							R
1161512	R								F
1161513		R		R			1		
1161514	Α								R F
1161515	F .			, T					F
1161516	F	R							
1161517		T							
1161518		R							
1161521									
1161523		R					•		
1161525		R							
1161536	_	R							С
1161539	F	R							
1161541		R					•		•

000027

Sample	Fluorite	Garnet	Gold	Monazite	Platinum	Pyrite	Sphalerite	Sulphide	Topaz
1161543		T				-	. •	,	•
1161544		R							
1161545		F							
1161546	, S								
1161547		R							Т
1161604		R							
1161607		T							
1161608		Т							
1161609		R			,				
1161610		R							Р
1161611		R							
1161612		F	-	Т					R
1161613		R						•	
1161616		R			•				
1161617		F							
1161618		F							
1161619		T							
1161620		R							
1161622		F							
1161623	R	F							
1161626		R	•						
1161628		R							
1161630		R		Т					
1161633		R							.=
1161647		0		R					
1161648									Т
1161763		R							R F
1161764		R R							F

\Box	
\bigcirc	
\bigcirc	
ω	
\bigcirc	

Sample	U	Minerals	Zircon
1161418			R
1161419		,	R
1161420			R
1161421			R
1161422			
1161423			R
1161425			R
1161428			
1161429			
1161430			R
1161433			R
1161434			R
1161435			R
1161440			R
1161442			R
1161444			R
1161446			
1161448			
1161449			R
1161451			
1161453			
1161460			F
1161461			
1161462			R
1161463			R
1161464			
1161465			
1161466			
1161467			R
1161468			R

0
\Box
50

Sample	U Minerals	Zircon
1161469		
1161470		-
1161471		R
1161473		R
1161474		R
1161476		R
1161478		
1161479		
1161491		F
1161493		R
1161495		R
1161499		R
1161500		R
1161502		
1161504		
1161505		R
1161511		
1161512		
1161513		•
1161514		
1161515		•
1161516		R
1161517		
1161518		
1161521		R
1161523		R
1161525		
1161536		R
1161539		R
1161541		R

Sample 1161543	U	Minerals	Zircon R
1161544			
1161545			R T
1161546 1161547			. !
1161604			R
1161607			T
1161608			Ť
1161609			
1161610			
1161611			
1161612			R
1161613			R
1161616			R
1161617		,	R
1161618			R
1161619			R
1161620			T
1161622			R
1161623			R F
1161626 1161628			r R
1161630			R
1161633			R
1161647			F
1161648			R
1161763			• • • • • • • • • • • • • • • • • • • •
1161764			

TABLE 3: Other mineral results to 16/3/90. Peltabinna Hill EL1627 & Charba Hill EL1626.

Sample	Licence LEGEND:	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals Cu Minerals Cassiterite Florencite
			P: Peltabinna C: Charba Hi	-	Minerals:	P: Prevalent +50% A: Abundant 20-50% C: Common 10-20% S: Some 3-10% O: Often 1-3% F: Few 0.1-1% R: Rare 2-10 Grains T: Trace 1 Grain

TABLE 4
-80# STREAM SEDIMENT ASSAY DETAILS

Element	<u>Detection Limit</u> (ppm)	Assay Method
As	2	AAS
Te	0.1	AAS
F	100	SIE
Pb	5	AAS
${f Bi}$	10	AAS
Ag	0.5	AAS
Mo	0.1	ICP-MS
Nb	0.2	ICP-MS
Sb	0.05	ICP-MS
Sn	0.5	ICP-MS
U	0.05	ICP-MS
Ba	5	ICP
Ce	15	ICP
Co	. 5	ICP
\mathbf{Cr}	10	ICP
Cu	5	ICP
Fe	100	ICP
La	5	ICP ·
Mn	15	ICP
Ni	10	ICP
P	100	ICP
${f Th}$	10	ICP
Zn	5	ICP
Zr	5	ICP
V	2	ICP
Pd	0.001	Fire Carbon Rod
Pt	0.008	Fire Carbon Rod
Au	0.001	Fire Carbon Rod

APPENDIX I

-80# STREAM SEDIMENT GEOCHEMISTRY
- PELTABINNA HILL EL 1627 & CHARBA HILL EL 1626

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161418	3	0.1	320	20	5	0.25	1.22	11.4	0.54	3.73
1161419	3	0.2	300	25	5	0.25	0.82	8.26	0.5	3.42
1161420	3	0.1	400	15	5	0.25	0.98	12.4	0.44	4.29
1161421	3	0.2	400	15	10	0.25	0.7	13.3	0.3	3.95
1161422	3	0.05	26	. 15	5	0.25	0.57	8.37	0.37	2.1
1161423	3 `	0.1	320	20	5	0.25	0.66	9.6	0.32	2.62
1161424	2	0.05	330	15	5	0.25	0.69	10.4	0.37	2.51
1161425	3	0.1	280	20	5	0.25	0.76	13.1	0.32	3.53
1161426	- 2	0.05	260	20	5	0.25	0.9	17.4	0.33	3.08
1161427	5	0.1	3 30	25	5	0.25	1.71	23	0.46	3.91
1161428	2	0.2	320	20	5	0.25	1.14	10.4	0.37	3.21
1161429	3	0.05	320	20	5	0.25	0.85	12.1	0.34	2.85
1161430	3	0.2	260	20	5	0.25	0.82	13.9	0.35	2.87
1161431	2	0.05	260	15	5	0.25	0.79	12	0.28	2.48
1161432	3	0.05	300	10	10	0.25	0.47	9.71	0.28	2.08
1161433	2	0.4	200	5	5	0.25	0.42	8.14	0.24	1.99
1161434	. 3	0.7	280	15	10	0.25	0.52	11.9	0.3	4.01
1161435	2	0.05	200	15	10	0.25	0.67	12	0.3	3.67
1161436	2	0.05	170	5	10	0.25	0.64	6.27	0.35	1.02
1161437	2	0.05	180	10	5	0.5	1.02	9.3 5	0.49	2.52
1161438	3	0.05	260	15	5	0.25	0.87	10.8	0.42	3.22
1161439	4	0.05	170	15	5	0.25	0.66	11.7	0.43	3.88
1161440	1	0.05	200	10	_. 5	0.25	0.61	9.65	0.27	3.01
1161441	2 ·	0.05	220	5	5	0.25	0.34	6.84	0.31	2.54
1161442	3	0.1	390	10	10	0.25	0.49	9.87	0.3	6.7
1161443	3	0.1	560	20	10	0.25	1.1	19	0.46	7.57
1161444	2	0.05	390	15	5	0.25	0.55	7.81	0.34	1.84
1161445	1	0.05	300	10	, 5	0.25	0.57	5.34	0.34	1.37
1161446	2	0.4	300	15	5	0.25	0.98	9.08	0.54	2.81
1161447	1	0.1	220	15	5	0.25	0.63	10.2	0.33	2.63
1161448	1	0.05	220	10	5	0.25	0.43	6.41	0.34	2.24
1161449	2	0.05	170	15	5	0.25	0.64	14	0.39	4.29
1161450	1	0.05	130	10	10	0.25	0.67	7.34	0.33	2.25
1161451	2	0.1	170	10	10	0.25	0.55	9.13	0.37	2.84
1161452	2	0.05	310	10	10	0.25	0.46	9.05	0.32	2.95
1161453	2	0.05	150	10	10	0.25	0.42	8.57	0.27	3.44

SAMPNO	As PPM	Te PPM	FPPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161454	2	0.05	160	10	5	0.25	0.54	11.1	0.36	3.71
1161455	4	0.1	190	20	5	0.25	0.6	5.86	0.35	5.16
1161456	2	0.2	220	10	5	0.25	0.81	8.09	0.4	2.62
1161457	1	0.05	150	5	5	0.25	0.66	4.03	0.35	0.81
1161458	1 .	0.05	100	3	5	0.25	0.57	4.45	0.36	0.69
1161459	1	0.05	60	5	5	0.25	0.51	5.62	0.31	0.9
1161460	1	0.05	120	10	5	0.25	0.51	5.14	0.25	1.28
1161461	2	0.05	120	15	5	0.25	0.44	10.7	0.23	2.57
1161462	2	0.05	120	15	5	0.25	0.41	9.82	0.31	2.61
1161463	2	0.2	170	15	5	0.25	0.48	9.79	0.32	3.26
1161464	2	0.1	110	5	5	0.25	0.67	9.83	0.32	2.14
1161465	2	0.1	180	5	5	0.25	0.83	8.96	0.44	2.32
1161466	2	0.1	190	10	10	0.5	0.5	10.8	0.34	3.99
1161467	2	0.05	150	5	5	0.25	0.46	6.86	0.28	1.97
1161468	3	0.05	170	15	5	0.25	0.7	11.5	0.31	3.8
1161469	2	0. 0 5	240	15	10	0.25	0.56	9.61	0.36	3.5
1161470	1	0. 0 5	95	15	5	0.25	0.52	9.58	0.36	2.39
1161471	2	0.1	130	15	5	0.25	0.44	7.81	0.3	2.15
1161472	1	0.1	120	10	5	0.25	0.44	7.57	0.24	1.83
1161473	1	0.1	130	5	5	0.5	0.63	7.04	0.29	2.12
1161474	1	0.1	160	5	5	0.25	0.63	7.83	0.34	2.18
1161475	1	0.1	180	5	5	0.25	0.85	8.5	0.41	1.99
1161476	1	0.05	150	3	5	0.25	0.93	5.47	0.34	1.18
1161477	1	0.05	120	3	5	0.25	0.5	4.31	0.28	0.79
1161478	2	0.05	130	5	5	0.25	0.69	7.34	0.41	1.69
1161479	1	0.05	150	10	10	0.25	0.67	13.2	0.34	2.96
1161480	4	0.05	130	10	5	0.25	0.49	11.6	0.28	2.33
1161482	1 .	0.05	1100	10	5	0.25	1.55	20.9	0.36	4.38
1161483	2	0.05	240	. 5	5	0.25	0.43	8.15	0.29	2.01
1161484	3	0.05	340	5	5	0.25	1.59	15.5	0.45	4.3
1161485	2	0.05	530	15	5	0.25	1.58	16.7	0.68	6.47
1161486	3	0.05	430	10	5	0.25	1.07	9.13	0.47	5.47
1161487	1	0.05	450	15	5	0.25	1.34	16.9	0.52	5.78
1161488	2	0.05	360	5	5	0.25	0.76	8.09	0.36	3.28
1161489	2	0.05	400	15	5	0.25	0.95	12.3	0.33	4.98
1161490	1	0.05	290	15	5	0.25	0.76	8.2	0.29	3.22

SAMPNO	As PPM	Te PPM	FPPM	Pb PPM	Bi PPM	Aq PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161491	1	0.05	360	15	5	0.5	0.72	9.83	0.27	3.95
1161492	1	0.1	280	15	5	0.25	1.01	9.13	0.4	3.58
1161493	3	0.1	310	15	5	0.25	1.54	24.2	0.46	5.82
1161494	2	0.05	380	10	5	0.25	1.08	12	0.39	4. 6 6
1161495	3	0.1	340	10	10	0.25	1.03	15.7	0.44	5.63
1161496.	5	0.4	350	10	5	0.25	0.91	13.8	0.44	5.6
1161497	3	0.05	350	5	5	0.5	0.24	5.25	0.11	5.05
1161498	. 4	0.5	430	10	10	0.25	0.93	12.9	0.3	5.1 3
1161499	6	0.4	- 1	10	5	0.25	1.54	15.8	0.42	5.33
1161500	4	0.4	- 1	15	5	0.25	1.44	17.9	0.28	4.41
1161501	2	0.05	150	5 .	5	0.25	0.95	16.4	0.28	3.9
1161502	5	0.1	170	10	10	0.25	0.94	7.95	0.35	2.88
1161503	5	0.8	330	15	5	0.25	1.39	9.32	0.37	5.24
1161504	2	0.05 `	230	5	5	0.25	0.94	10.1	0.33	4.07
1161505	3	0.05	250	10	5	0.25	1.65	29.6	0.33	5.26
1161506	3	0.4	230	10	5	0.25	0.83	15.5	0.25	4.81
1161507	3	0.05	350	15	5	0.25	1.2	15.1	0.43	6.33
1161508	2	0.1	230	5	10	0.25	0.68	9.78	0.17	4.24
1161509	3	0.05	270	10	5	0.25	0.87	11.3	0.23	4.66
1161510	2	0.1	180	15	10	0.5	0.46	11.4	0.18	3.87
1161511	13	0.1	460	50	5	0.25	0.99	26.7	0.38	10.1
1161512	4	0.1	330	30	5	0.25	1.04	17	0.47	9.71
1161513	3	0.05	250	10	5	0.5	0.68	1 1	0.29	5.44
1161514	3	0.1	280	15	5	0.25	0.68	14.1	0.33	7.09
1161515	4	0.05	290	15	5	0.25	0.83	23.1	0.34	8.42
1161516	5	0.05	290	25	10	0.25	1.26	16.5	0.56	6.4
1161517	3	0.05	250	10	5	0.25	0.87	9.57	0.17	4.78
1161518	3	0.1	220	10	5	0.25	0.72	8.89	0.31	3.99
1161519	. 2	0.1	190	5	5	0.25	0.53	6.05	0.16	4.5
1161520	4	0.05	230	10	5	0.25	1.07	10.1	0.46	4.93
1161521	2	0.05	190	3	5	0.25	0.96	19.6	0.36	4.01
1161522	3	0.05	250	5	- 5	0.25	1.04	11.3	0.45	4.01
1161523	3	0.05	190	5	. 5	0.25	0.94	10.5	0.35	4.78
1161524	3	0.05	270	5	5	0.25	1	13.9	0.33	4.21
1161525	3	0.05	230	5	5	0.25	0.85	12.9	0.38	5.18
1161526	2	0.05	220	5	5	0.25	0.75	11.4	0.33	4.64

2 3 1 3 3 7	
6	
1 3 7 7 7 2 4 2 9 1	

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161527	2	0.05	210	3	5	0.25	0.67	10.3	0.29	3.43
1161528	3	0.05	230	10	10	0.25	0.77	10.5	0.27	5.42
1161529	2	0.05	200	3	5	0.25	0.58	6.41	0.22	2.14
1161530	3	0.1	230	5	10	0.25	0.89	10.1	0.36	3.93
1161531	2	0.05	180	5 .	10	0.25	1	9.37	0.43	3.77
1161532	2	0.05	190	5	5	0.25	0.74	7.99	0.31	3.59
1161533	2	0.1	200	3	5	0.25	0.65	8.05	0.21	3.26
1161534	3	0.05	360	15	5	0.25	1.09	12.9	0.37	5.35
1161535	2	0.05	240	5	5	0.25	0.66	6,98	0.31	3.44
1161536	5	0.05	360	20	5	0.25	0.77	10.4	0.4	4.64
1161537	3	0.05	230	15	10	0.5	0.62	8.4	0.27	5.03
1161538	2	0.1	230	5	10	0.25	0.58	9.2	0.28	4.02
1161539	2	0.1	240	5	10	0.5	0.68	10.9	0.28	4.06
1161540	2	0.05	260	5	10	0.25	0.87	9.14	0.39	6.18
1161541	3	0.05	270	10	. 5	0.25	1.27	13	0.41	4.34
1161542	3	0.1	210	5	5	0.5	0.92	11.5	0.31	4.12
1161543	2	0.1	230	5	5	0.25	0.77	13	0.25	4.18
1161544	3	0.05	250	10	5	0.25	0.82	9.86	0.33	4.51
1161545	3	0.05	230	10	5	0.25	0.61	10.8	0.29	5.16
1161546	2	0.05	240	5	5	0.25	0.72	10.7	0.29	4.08
1161547	3	0.05	300	5	5	0.25	0.85	12.4	0.29	4.37
1161548	3	0.05	290	10	5	0.25	0.87	10.9	0.33	4
1161549	5	0.05	280	15	10	0.25	0.86	12	0.29	5.16
1161550	3	0.05	290	5	5	0.25	1.62	10.1	0.56	4.2
1161601	3	0.1	220	10	5	0.25	1.29	8.77	0.39	3.71
1161602	2	0.05	180	5	5	0.25	1.26	10.6	0.44	4.53
1161603	2	0.1	160	5	5	0.25	1.1	8.26	0.33	3.87
1161604	2	0.6	190	10	5	0.25	0.95	9.19	0.31	3.27
1161605	2	0.05	130	15	5	0.25	0.88	7.53	0.27	3.02
1161606	2	0.1	190	10	10	0.25	1.1	8.2	0.39	3.74
1161607	2	0.05	170	5	5	0.5	0.93	7.96	0.29	3.32
1161608	2	0.05	160	5	5	0.25	1.06	8.15	0.4	5.29
1161609	2	0.05	120	5	5	0.25	1.08	7.16	0.37	2.54
1161610	2	0.05	180	5	5	0.25	1.21	9.68	0.41	3.49
1161611	2	0.1	140	3	5	0.25	1.32	6.28	0.3	2.99
1161612	3	0.1	190	5	5	0.25	1.32	11.6	0.44	4.5

SAMPNO	As PPM	Te PPM	FPPM	Pb PPM	Bi PPM	Aq PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161613	3	0.05	200	5	5	0.25	0.97	10.6	0.39	4.4
1161614	1	0.1	170	· 3	5	0.25	0.81	7.29	0.29	2.77
1161615	3	0.1	210	20	10	0.25	1.12	10.9	0.45	6.18
1161616	3	0.05	210	15	5	0.25	1.13	12.9	0.29	5 .06
1161617	3	0.05	220	10	5	0.25	1.11	15	0.26	4.89
1161618	2	0.1	170	10	5	0.25	1.06	11	0.4	4.16
1161619	3	0.05	400	15	5	0.25	1.59	14.7	0.52	5.99
1161620	4	0.2	260	10	10	0.25	1.39	18.3	0.42	5.46
1161621	3	0.05	290	15	5	0.25	1.1	16.9	0.46	5.49
1161622	4	0.05	290	15	5	0.25	1.35	21.9	0.4	5.85
1161623	. 4	0.05	350	20	10	0.25	1.33	22.7	0.5	10.2
1161625	5	0.1	240	15	5	0.25	1.04	17.1	0.53	11.7
1161626	3	0.05	280	10	5	0.25	1.01	15.7	0.35	5.42
1161627	3	0.05 `	420	15	5	0.25	1.1	16.2	0.43	6.46
1161628	3	0.05	310	15	10	0.25	1.73	15.8	0.54	6.31
1161629	4	0.1	320	20	5	0.25	1.19	17.3	0.42	5.69
1161630	2	0.05	310	5	5	0.25	1.06	12.9	0.37	4.81
1161631	2	0.05	200	3	5	0.25	8.0	11.4	0.27	4.17
1161632	3	0.05	230	3	5	0.25	0.96	11.8	0.46	5.18
11616 3 3	3	0.05	25 0	5	5	0.25	0.97	12	0.37	4.96
1161634	2	0.05	210	5	5	0.25	0.79	9.42	0.23	4.47
1161647	4	0.1	190	15	5	0.25	1.46	16.2	0.57	7.17
1161648	3	0.05	280	10	5	0.25	1.35	14.8	0.44	5.37
1161649	4	0.05	270	15	5	0.5	1.36	15	0.54	7.17
1161650	4	0.1	280	15	10	0.5	1.12	15	0.39	6.58
1161762	4	0.1	200	10	5	0.5	0.86	12.7	0.3	5.02
1161763	4	0.05	240	15	10	0.25	1.04	11	0.46	5.15
1161945	1	0.05	260	5	5	0.25	1.65	14.1	0.51	5.25
1161946	2	0.05	260	25	5	0.25	1.48	16.1	0.53	5.16
1161947	2	0.05	300	10	5	0.25	1.19	11.7	0.46	5.65
1161948	2	0.05	310	20	5	0.25	1.47	20.2	0.39	6.83
1161949	2	0.05	360	10	5	0.25	1.27	15	0.33	5.98
1161950	1	0.05	240	10	5	0.25	0. 9 2	12.7	0.34	4.72
1161951	2	0.05	450	10	5	0.25	1.1	13.1	0.37	6.96
1161952	2	0.05	320	15	5	0.5	1.12	. 12.3	0.4	5.73
1161953	2	0.05	310	15	5	0.25	1.29	13.8	0.38	6.73

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161954	2	0.05	250	1 0	5	0.25	1.39	16.5	0.43	5.86
1161955	2	0.05	260	10.	5	0.25	1.33	12	0.48	5.67
1161956	2	0.05	250	15	5	0.25	1.52	16.4	0.34	7.25
1161957	2	0.05	240	5	5	0.25	1.15	18.2	0.75	5.3
1161958	2	0.05	330	55	5	0.25	1.16	17.2	0.36	6.22
1161959	2	0.05	220	5	5	0.25	1.28	16.8	0.28	5.6
1161960	2	0.05	300	20	5	0.25	1.42	15.6	0.27	5.92
1161961	3	0.05	460	15	5	0.25	. 1.2	13	0.37	6.2
1161962	2	0.05	280	10	5	0.25	1.4	16.2	0.36	5.58
1161963	2	0.05	280	25	5	0.25	1.39	20.9	0.38	5.84
1161964	3	0.05	560	20	5	0.25	1.73	16.9	0.45	5.92
1161965	1	0.05	310	10	5	0.25	1.26	17.8	0.29	5.92
1161966	2	0.05	710	10	5	0.25	1.5 7 .	. 19	0.31	5.63
1161967	2	0.05	380	5	5	0.25	1.13	14.9	0.25	4.81
1161968	1	0.05	200	3	5	0.25	1.04	13.3	0.26	4.65
1161969	1	0.05	480,	3	5	0.25	1.13	19.8	0.25	4.62
1161970	2	0.05	390	5	5	0.25	1.14	13.3	0.34	5.09
1161971	2	0.05	360	3	5	0.25	1.04	13.8	0.29	4.7
1161972	3	0.05	380	10	. 5	0.25	1.1	14.4	0.46	4.95
1161973	2	0.05	240	10	5	0.25	1.4	14.6	0.51	4.86
1161974	2	0.05	350	3	5	0.25	0.97	12.5	0.32	4.25
1161975	2	0.05	280	3	5	0.25	1.09	11.9	0.33	3.79
1161976	2	0.05	150	3	5	0.25	0.89	12.3	0.33	4.59
1161977	4	0.05	280	1 0	5	0.25	1.04	13.7	0.46	5.7
1161978	7	0.05	640	1 0	5	0.25	1.18	12.2	0.43	5.17
1161979	7	0.05	500	10	5	0.25	1.1	12.2	0.52	5.18
1161980	3	0.05	900	5	5	0.25	0.89	11.7	0.33	4.44
1161981	• 4	0.05	360	3	5	0.25	1.12	12.3	0.36	4.52
1161982	2	0.05	310	3	5	0.25	1.07	10.4	0.37	3.85
1161983	4	0.05	310	10	5	0.25	1.64	15.2	1.08	6.03
1161984	3	0.05	210	10	5	0.25	1.15	13.2	0.4	4.97
1161985	5	0.05	380	15	5	0.25	1.41	21.4	0.37	7.1
1161986	4	0.05	300	. 1 0	5	0.25	1.22	15	0.31	5.43
1161987	4	0.05	380	10	5	0.25	1.29	17.1	0.33	5.87
1161988	3	0.05	250	5	5	0.25	1.13	17.9	0.37	5.56
1161989	3	0.05	380	10	5	0.25	1,19	24.5	0.28	6.01

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Aq PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1161990	4	0.05	360	5	5	0.25	1.1	13.6	0.34	5.2
1161991	3	0.05	400	20	5	0.25	1.21	16.6	0.36	5.94
1161992	3	0.05	360	10	5 .	0.25	1.52	14.2	0.52	5.73
1161993	2	0.05	390	10	5	0.25	1.1	12.9	0.37	5.18
1161994	3	0.05	350	10	5	0.25	0.89	6.93	0.25	6.3
1161995	2	0.05	390	5	5	0.25	1.03	15.1	0.28	5.61
1161996	2	0.05	260	10	5	0.25	1.29	16.2	0.9	5.8 1
1161997	1	0.05	270	5	5	0.25	0.97	12.2	0.24	4.92
1161998	2	0.05	270	5	5	0.25	1.12	15.5	0.27	5.51
1161999	3	0.05	350	20	5	0.25	1.2	6.44	0.19	6.82
1162000	2	0.05	310	5	5	0.25	1.35	18.3	0.3	5.76
1163801	1	0.05	170	5	5	0.25	1.14	11.4	0.37	3.31
1163802	1	0.05	280	5	5	0.25	1.25	11.6	0.39	4.1
1163803	2	0.05 `	340	5	5	0.25	1.48	15.5	0.38	6.06
1163804	<u>,</u> 1	0.05	310	3	5	0.25	1.16	10.2	0.24	3.69
1163805	1	0.05	210	5	5	0.25	1.15	11.7	0.35	4.45
1163806	2	0.05	220	5	5	0.25	1.09	16.5	0.3	4.56
1163807	2	0.05	350	10	5	0.25	1.21	17. 3	0.35	5.38
1163808	2	0.05	240	5	5	0.25	· 1	11.9	0.27	4.49
1163809	2	0.05	300	10	5	0.25	1.22	10.8	0.3	5.24
1163810	3	0.05	420	10	5	0.25	1.26	12.4	0.39	6.25
1163811	2	0.05	740	3	5	0.25	2.31	12.5	0.53	4.12
1163812	3	0.05	760	15	5	0.5	2.54	14.7	0.61	6.63
1163813	2	0.05	540	5	5	0.25	1.78	13.3	0.5	5.4
1163814	1	0.05	520	5	5	0.25	1.16	20.7	0.21	4.56
1163815	3	0.05	480	10	5	0.25	1.84	13.8	0.45	5.78
1163816	2	0.05	520	5	5	0.25	1.92	14.8	0.39	5.08
1163817	2	0.05	520	5	5	0.25	1.47	14	0.34	4.79
1163818	2	0.05	630	3 `	5	0.25	1.42	10.7	0.3	4.34
1163819	2	0.05	520	5	5	0.25	1.12	13.4	0.36	4.26
1163820	1	0.05	400	3	5	0.25	1.47	13.2	0.41	4.19
1163821	1	0.05	400	3	5	0.25	1.2	14.1	0.27	4.21
1163822	1	0.05	390	5	5	0.25	1.51	14	0.34	6.3
1163823	3	0.05	400	10	5	0.25	1.59	16.5	0.39	6.36
1163824	2	0.05	400	5	5	0.25	1.4	12.6	0.28	7.01
1163825	1	0.05	360	3	5	0.25	1.22	8.19	0.17	3.96

00040

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1163826	1	0.05	320	5	5	0.25	0.5	4.34	0.11	6.03
1163827	. 2	0.05	360	5	5	0.25	1.2	12.8	0.27	4.58
1163828	2	0.05	520	5	5	0.25	1.52	17	0.38	5.88
1163829	2	0.05	530	3	5	0.25	1.29	15.1	0.39	4.78
1163830	1	0.05	400	3	5	0.25	1.68	13.2	0.38	4.8
1163831	1	0.05	390	3	5 .	0.25	1.47	9.34	0.3	3.46
1163832	6	0.05	430	5	5	0.25	1.95	12.2	0.48	3.63
1163833	1	0.05	290	3	5	0.25	1.56	11.9	0.32	4.24
1163834	_ 2	0.05	350	5	5	0.25	1.23	16.1	0.41	5.8
1163835	3	0.05	400	10	` 5	0.25	1.28	15	0.34	5.79
1163836	1	0.05	300	. 5	5	0.25	1.15	12.8	0.29	4.74
1163837	4	0.05	430	10	5	0.25	1.19	15.9	0.45	. 7.04
1163838	1	0.05 、	420	5	5	0.25	1.17	11.5	0.43	4.22
1163839.	2	0.05	500	5	5	0.25	1.48	12.9	0.41	5.68
1163840	3	0.05	550	10	5	0.25	1.61	18.4	0.48	7.39
1163841	3	0.05	540	10	5	0.25	1.28	16.4	0.43	6.19
1163842	2	0.05	500	. 5	5	0.25	1.22	1 4	0.4	5.63
1163843	1	0.05	400	5	5	0.25	1.12	12.8	0.33	5.05
1163844	1	0.05	420	. 5	5	0.25	1.05	16.2	0.38	5.69
1163845	· 1	0.05	400	3	5	0.25	1.17	11.5	0.27	5.05
1163846	1	0.05	360	3	5	0.25	1.21	13	0.29	- 5.18
1163847	2	0.05	360	5	5	0.25	1.19	11.6	0.36	5.37
1163848	1	0.05	290	3	5	0.25	1.13	10.8	0.37	3.75
1163849	3	0.05	340	5	5	0.25	1.4	12. 3	0.34	4.63
1163850	2	0.05	340	10	5	0.25	1.23	12.1	0.42	5.33
1163851	1	0.05	290	3	5	0.25	1.07	9.82	0.34	4.38
1163852	1 .	0.05	230	3	5	0.25	0.99	11.9	0.23	4.42
1163853	1	0.05	240	3	5	0.25	1.09	9.44	0.23	4.16
1163854	3	0.05	350	10	5	0.25	1.24	15.5	0.32	6.32
1163855	2	0.05	340	5	5	0.25	1.03	8.2	0.28	5.55
1163856	2	0.05	340	10	5	0.25	1.28	11.4	0.31	6.46
1163857	. 4	0.05	360	10	5	0.25	1.41	15.2	0.41	6.82
1163858	2	0.05	580	10	5	0.25	1.81	16	0.46	5.9
1163859	2	0.05	560	10	5	0.25	1.43	15	0.37	6.12
1163860	1	0.05	550	5	5	. 0.25	1.29	13.1	0.32	5.05
1163861	1	0.05	350	5	5	0.25	1.07	10.1	0.66	-4.11

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Aq PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1163862	1	0.05	310	3	5	0.25	1.3	9.74	0.26	4.01
1163863	1	0.05	320	3	5	0.25	1.02	9.59	0.28	3.45
1163864	1	0.05	290	3	5	0.25	0.93	9.07	0.15	3.65
1163865	1	0.05	250	3	5	0.25	1.25	11.7	0.24	3.9
1163866	2	0.05	350	10	5	0.25	1.62	18.4	0.33	6.05
1163867	2	0.05	320	5	5	0.25	1.31	12.9	0.36	3.85
1163868	2	0.05	370	5	5	0.25	0.73	5.83	0.15	5.93
1163869	2	0.05	320	3	5	0.25	1.3	10.8	0.34	3.41
1163870	1	0.05	340	5	5	0.25	1.13	11.6	0.21	6.83
1163871	1	0. 0 5	250	5	5	0.25	1.09	11.5	0.26	5.47
1163872	1	0.05	220	3	5	0.25	1.16	8.63	0.26	4.37
1163873	1	0.05	270	25	5	0.25	1.19	17.2	0.31	6.59
1163874	2	0.05	310	5	5	0.25	1.68	16	0.28	5.28
1163875	2	0.05 `	340	5	. 5	0.25	1.34	15	0.24	5.21
1163876	1	0.05	300	5	5	0.25	1.41	15.9	0.22	5.59
1163877	1	0.05	280	5	5	0.25	1.88	10.9	0.51	4.59
1163878	1	0.05	280	10	5	0.25	1.33	11.5	0.43	5.43
1163879	2	0.05	290	15	5	0.25	1.15	16.1	0.57	6.57
1163880	1	0.05	270	10	5	0.25	0.91	10.7	0.33	4.44
1163881	2 ·	0.1	290	15	, 5	0.25	0.98	15.5	0.48	6.12
1163882	1 .	0.05	290	10	5	0.25	0.72	11	0.35	5.01
1163883	1	0.05	320	20	5	0.25	1.04	15.5	0.44	7.38
1163884	2	0.05	320	15	5	0.25	0.72	13.3	0.39	6.07
1163885	1	0.05	300	10	5	0.25	0.89	12.7	0.39	4.92
1163886	1	0.05	300	20	5	0.25	1.33	19.9	0.64	7.58
1163887	1	0.05	230	5	5	0.25	0.72	10.9	0.45	4.31
1163888	1	0.05	250	10	. 5	0.25	0.82	12.8	0.3	5.2
1163889	2	0.05	250	10	5	0.25	0.81	18.6	0.34	5.23
1163890	2	0.05	240	10	5	0.25	1.1	38.1	0.33	5.92
1163891	3	0.05	320	15	5	0.25	0.7	13.4	0.44	5.91
1163892	1	0.05	280	10	5	0.25	0.76	13	0.31	4.71
1163893	1	0.05	280	10	5	0.25	0.61	21.2	0.34	4.89
1163894	2	0.05	230	10	,5	0.25	0.56	12.9	0.3	4.6
1163895	. 2	0.05	350	15	5	0.25	0.93	13.1	0.42	5.38
1163896	1	0.05	360	10	5	0.25	0.92	17	0.54	4.35
1163897	1	0.05	320	5	5	0.25	0.62	11.9	0.27	3.87

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1163898	1 .	0.05	320	10	5	0.25	0.54	10.1	0.32	3.8
1163899	1	0.05	270	10	5	0.25	0.76	19.1	0.32	4.98
1163900	1	0.05	280	10	5	0.25	0.85	27.1	0.3	5.17
1163901	1	0.05	350	10	5	0.25	0.84	15.9	0.36	6.24
1163902	1	0.05	400	15	5	0.25	0.79	15.9	0.25	5.68
1163903	1	0.05	350	15	5	0.25	0.99	13.1	0.28	5.42
1163904	2	0.05	360	20	5	0.25	1.18	17.9	0.39	6.72
1163905	1	0.05	400	10	5	0.25	1.5	18.9	0.36	5.96
1163906	2	0.05	390	25	5	0.25	1.19	18.6	0.51	7. 9 8
1163907	1	0.05	450	10	5	0.25	0.79	12.3	0.35	5.09
1163908	4	0.05	410	15	5	0.25	1.15	2 0 .9	0.43	7.83
1163909	3	0.05	390	15	5	0.25	0.77	13.7	0.34	6.51
1163910	3	0.05	420	10	5	0.25	0.92	14	0.37	5.59
1163911	3	0.05 `	260	5	5	0.25	0.82	14.1	0.28	4.68
1163912	4	0.05	300	20	5	0.25	1.25	19.1	0.35	7.15
1163913	3	0.05	370	15	5	0.25	1.02	15.2	0.33	6.42
1163914	3	0.05	390	10	5	0.25	1.16	13.5	0.38	4.85
1163915	3	0.05	390	5	5	0.25	1.3	13	0.38	5
1163916	4	0.05	470	10	5	0.25	1.47	16.7	0.41	6.65
1163917	2	0.05	300	5	5	0.25	0.87	11.3	0.25	3.85
1163918	2	0.05	290	5	5	0.25	1.12	12.1	0.33	4.27
1163919	3	0.05	360	10	5	0.25	0.78	13.4	0.38	4.81
1163920	2	0.05	310	5	5	0.25	0.56	10.3	0.24	4.55
1163921	3	0.05	350	15	5	0.25	1.1	17.6	0.4 .	6.26
1163922	3	0.05	420	10	5	0.25	0.83	13	0.34	5.22
1163923	2	0.05	330	5	5	0.25	2.02	10.3	0.34	3.13
1163924	3	0.05	310	15	5	0.25	1.21	14.6	0.46	6.09
1163925	3	0.05	510	15	5	0.25	1.04	14.4	0.39	5.64
1163926	4	0.05	550	15	5	0.25	1.12	13.8	0.38	6.54
1163927	3	0.05	470	15	5	0.25	1.22	16.7	0.47	7.01
1163928	3	0.05	510	10	5	0.25	1.08	15.5	0.39	6.46
1163929	3	0.05	390	15	5	0.25	1.1	18.5	0.36	6.75
1163930	2	0.05	350	20	5	0.25	1.17	17.2	0.38	7.16
1163931	2	0.05	330	10	, 5	0.25	1 :	12.6	0.34	5.51
1163932	2	0.05	350	10	5	0.25	1.22	18.8	0.31	6.59
1163933	1	0.05	300	10	5	0.25	1.15	15.8	0.4	6.15

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1163934	2	0.05	280	10	5	0.25	1.45	15	0.42	6.6
1163935	1	0.05	190	5	5	0.25	1.06	14.1	0.28	5.98
1163936	2	0.05	240	15	5	0.25	1.27	15.4	0.4	6.68
1163937	1	0.05	180	. 10	5	0.25	1.07	22.1	0.26	6.36
1163938	1	0.05	210	10	5	0.25	0.82	11.6	0.29	5.72
1163939	2	0.05	280	10	5	0.25	0.86	15.6	0.3	5.26
1163940	1	0.05	210	10	5	0.25	0.76	15.2	0.32	5.43
1163941	2	0.05	300	15	5	0.25	0.88	14.7	0.31	5.78
1163942	2	0.05	310	10	5	0.25	0.82	12.8	0.27	. 5.52
1163943	3	0.05	700	20	5	0.25	2.36	18.2	0.62	6.62
1163944	1	0.05	360	10	5	0.25	1.18	15.6	0.51	5.16
1163945	2	0.05	280	10	5	0.25	1.01	16.2	0.45	5.6
1163946	3	0.05	330	15	5	0.25	0.92	18.5	0.48	5.02
1163947	2	0.05	320	5	5	0.25	0.75	13.5	0.37	4.67
1163948	2	0.05	420	10	5	0.25	0.83	15.5	0.44	5.75
1163949	3	0.05	420	10	5	0.25	0.7	14.2	0.36	5.6 6
1163950	2	0.05	390	10	5	0.25	0.64	15.1	0.34	4.97
1163951	3	0.05	400	10	5	0.25	0.99	13.5	0.46	4.73
1163952	2	0.05	390	10	5	0.25	0.87	13.9	0.53	5.14
1163953	3	0.05	420	10	5	0.25	0.79	14.3	0.44	5.55
1163954	2	0.05	290	10	5	0.25	0.65	13.8	0.46	5.68
1163955	2	0.05	220	10	5	0.25	0.68	16.8	0.4	5.57
1163956	3	0.05	430	5	5	0.25	0.44	12.8	0.33	4.74
1163957	· 1	0.05	240	5	5	0.25	0.41	13.9	0.27	4.72
1163958	2	0.05	280	15	5	0.25	0.46	14.2	0.31	5.63
1163959	3	0.05	490	15	5	0.25	0.78	18.7	0.45	6.82
1163960	2	0.05	300	10	5	0.25	0.47	13.4	0.34	5.34
1163961	2	0.05	350	10	5	0.25	1	13.6	0.4	6.04
1163962	2	0.05	490	15	5	0.25	1.02	14.8	0.58	5.68
1163963	3	0.05	390	15	5	0.25	0.97	17	0.39	6.34
1163964	2	0.05	450	15	5	0.25	0.64	14	0.34	5:78
1163965	2	0.05	600	15	5	0.25	0.76	15.8	0.42	5.84
1163966	2	0.05	490	15	5	0.25	0.43	13.1	0.27	5.39
1163967	3	0.05	550	15	5	0.25	0.44	11.1	0.36	4.89
1163968	3	0.05	430	30	5	0.25	0.87	16.1	0.42	6.72
1163969	2	0.05	350	15	5	0.25	0.58	14.5	0.34	6.43

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1163970	2	0.05	340	10	5	0.25	1.02	13	0.42	4.85
·1163971	2	0.05	350	5	5	0.25	0.81	12.7	0.5	5.09
1163972	2	0.05	320	10	5	0.25	0.46	11.4	0.41	4.52
1163973	2	0.05	400	10	5	0.25	0.53	12.1	0.36	5.22
1163974	2	0.05	390	15	5	0.25	0.69	. 16.1	0.34	6.26
1163975	3	0.05	350	15	5	0.25	0.61	15.3	0.33	5.87
1163976	2	0.05	390	10	5	0.25	0.6	14.3	0.64	6.4
1163977	2	0.05	310	10	5	0.25	0.9	16.7	0.43	5.66
1163978	2	0.05	310	10	5	0.25	0.6	16.4	0.26	6.04
1163979	2	0.05	310	5	5	0.25	0.45	13.9	0.27	4.94
1163980	2	0.05	390	10	- 5	0.25	1.01	14	0.43	4.98
1163981	2	0.05	390	15	5	0.25	0.97	14.9	0.56	5.6
1163982	3	0.05	420	10	5	0.25	0.87	12	0.36	4.95
1163983	2	0.05 `	310	5 .	. 5	0.25	0.75	12.2	0.25	3.87
1163984	2	0.05	260	5	5	0.25	0.47	9.46	0.29	3.85
1163985	2	0.05	290	10	5	0.25	0.73	12.6	0.31	4.81
1163986	2	0.05	290	10	5	0.25	0.59	12.3	0.29	6.48
1163987	2	0.05	260	10	5 -	0.25	0.51	15.2	0.35	4.62
1163988	2	0.05	300	15	5	0.25	0.75	13.1	0.36	5.41
1163989	1	0.05	200	5	5	0.25	1.06	11.2	0.49	3.4
1163990	1 ,	0.05	180	10	5	0.25-	1.48	19.4	0.34	5.7
1163991	2	0.05	210	15	5	0.25	0.9	12	0.36	4.33
1163992	1	0.05	190	10	5	0.25	1	14.9	0.29	4.5
1163993	3	0.05	290	15	5	0.25	1.02	14.1	0.43	4.78
1163994	2	0.05	260	10	5	0.25	0.7	13.9	0.28	4.31
1163995	2	0.05	. 220	20	5	0.25	1	16 .6	0.39	6.26
1163996	1	0.05	180	10	5	0.25	0.47	10.8	0.25	3.69
1163997	2	0.05	240	20	5	0.25	0.94	14.6	0.38	7.76
1163998	2	0.05	240	25	5	0.25	0.99	17.6	0.33	9.05
1163999	2	0.05	200	5	5	0.25	1.06	11.6	0.42	3.09
1164000	2	0.05	300	15	5	0.25	1.36	15.8	0.46	6.44
1233860	3	0.05	460	10	2.5	0.25	1.67	15.3	0.54	4.59
1233861	3	0.05	280	2.5	2.5	0.25	0.99	10.3	0.43	5.05
1233862	4	0.05	230	5	2.5	0.5	0.97	11.1	0.34	4
1233863	15	0.05	300	20	2.5	0.25	6.38	40.5	1.06	6.23
_1233865	3	0.05	300	5	2.5	0.5	1.09	14.5	0.35	4.09

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1233867	2	0.05	180	5	2.5	0.25	1.08	14.1	0.32	3.4
1233868	2	0.05	170	2.5	2.5	0.25	1.11	5.77	0.59	2.04
1233869	2	0.05	330	5	2.5	0.25	1.19	12.9	0.55	4.13
1233870	2	0.05	250	5	2.5	0.5	0.89	11.1	0.41	4.34
1233871	2	0.05	310	. 10.	2.5	0.5	1.05	16.5	0.47	5.95
1233872	2	0.05	250	10	2.5	0.25	0.92	13.9	0.44	4.73
1233873	3	0.05	400	20	2.5	0.25	1.02	10.7	0.42	6.88
1233874	2	0.05	400	10	2.5	0.25	0.4	4.82	0.025	2.84
1233875	2	0.05	200	10	2.5	0.25	0.92	13.5	0.29	5.78
1233876	2	0.05	300	10	2.5	0.25	0.85	10.8	0.3	4.96
1233877	2	0.05	250	10	2.5	0.5	1.01	. 14.4	0.32	5.66
1233878	3	0.05	270	15	2.5	0.25	0.16	13.7	0.58	4.91
1233879	3	0.05	250	20	2.5	0.5	1.3	15	0.53	5.78
1233880	2	0.05	400	20	2.5	0.5	1.37	17	0.53	5. 88
1233881	0.5	0.05	230	5	2.5	0.25	1.3	16.1	0.55	4.69
1233882		0.05	400	15	2.5	0.25	1.28	. 16.8	0.5	6.41
1233883	3 2	0.05	250	15	2.5	0.5	0.97	13.8	0.38	4.68
1233884	3	0.05	400	20	2.5	0.5	1.17	17.9	0.47	6.37
1233885	3	0.05	470	15	2.5	0.5	0.98	9.18	0.31	6.32
1233886	3	0.05	420	10	2.5	0.25	0.91	17	0.63	5.49
1233887	2	0.05	550	20	2.5	0.5	1.22	11.4	0.38	6.64
1233888	3	0.05	340	10	2.5	0.5	2.47	10.3	0.76	5.65
1233889	3	0.05	370	10	2.5	0.5	1.9	19.8	0.9	7.69
1233890	3	0.05	470	10	2.5	0.5	1.76	17.2	0.63	7.97
1233891	3	0.05	300	10	2.5	0.25	1.08	18.7	0.47	5.42
1233892	4	0.05	340	15	2.5	0.25	1.16	10.1	1.87	9.17
1233894	3	0.05	470	10	2.5	0.5	1.1	10.4	0.7	5.11
1233895	-5	0.05	330	15	2.5	0.25	1.05	7.07	0.9	8.01
1233898	2	0.05	270	10	2.5	0.25	1.2	14.4	0.46	5.64
1233900	2	0.05	320	15	2.5	0.25	1.13	14.9	0.47	4.68
1233901	3	0.05	340	15	2.5	0.25	1.27	20.9	0.55	5.75
1233902	2	0.05	330	10	2.5	0.25	0.89	10.2	0.36	5.2
1233903	2	0.05	320	10	2.5	0.25	0.91	9. 8 1	0.4	5.67
1233904	3	0.05	340	10	2.5	0.5	0.75	5.63	0.36	5.52
1233905	5	0.05	330	15	2.5	0.5	1.14	12.5	0.62	5.57
1233906	5	0.05	400	1, 5	2.5	0.5	1.32	9.9	0.67	6.77

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	ві РРМ	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1233907	2	0.05	490	5	2.5	0.25	1.1	6.55	0.43	4.36
1233908	- 6	0.2	490	10	2.5	0.5	0.81	11 .	0.51	7.4
1233909	6	0.05	400	15°	2.5	0.25	0.96	13.3	0.48	8.32
1233910	8	0.05	360	10	2.5	0.25	0.7	10.3	0.3	3.44
1233911	3	0.05	400	15	2.5	0.5	0.88	15.4	0.44	5.81
1233912	, 3	0.05	130	5	2.5	0.5	0.69	7.25	0.37	3.61
1233913	3	0.05	60	2.5	2.5	0.5	0.93	11	0.83	3.62
1233914	3	0.2	170	·5	2.5	0.5	1.13	8.37	0.54	4.35
1233915	3	0.05	180	1 0	2.5	0.5	1.53	9.18	0.6	5.72
1233916	3	0.05	200	5	2.5	0.5	1.25	14	0.45	5.48
1233917	4	0.05	250	15	2.5	0.5	1.2	14.2	0.38	5.65
1233918	3	0.05	230	5	2.5	0.5	0.97	12.2	0.29	3.28
1233919	3	0.05	260	5	2.5	0.5	0.92	14.2	0.54	4.98
1233920	4	0.05	240	2.5	2.5	0.5	0.88	14.6	0.31	3.93
1233921	2	0.05	250	1,0	2.5	0.5	0.17	4.19	0.025	3.59
1233922	6	0.05	330	20	2.5	0.5	1.35	22.4	0.42	7.75
1233923	4	0.05	300	20	2.5	0.5	0.87	17.6	0.43	6.95
1233924	4	0.05	250	10	2.5	0.5	1.1	8.49	0.54	3.16
1233925	6	0.05	300	15	2.5	0.25	1.43	15,1	0.67	6.48
1233926	3	0.05	260	5	. 2.5	0.5	0.9	12	0.34	4.26
1233928	2	0.05	250	5	2.5	0.25	1.05	13:5	0.48	4.61
1233929	3	0.05	330	10	10	0.25	1.21	16.3	0.49	5.42
1233930	6	0.2	400	20	2.5	0.25	0.82	11.4	0.4	6.28
1233931	5	0.05	340	10	2.5	0.25	0.94	13.3	0.46	5.88
1233932	5	0.05	330.	20	2.5	0.5	0.94	15.9	0.45	6.2
1233933	4	0.05	270	15	2.5	0.5	1.05	14	0.6	4.76
1233934	6	0.05	340	20	2.5	0.25	1.16	5.64	0.46	6.71
1233935	3	0.05	260	15	2.5	0.25	1.39	22.5	0.51	5.44
1233936	4	0.05	330	10	2.5	0.25	1.07	14.3	0.47	4.54
1233937	4	0.05	400	15	2.5	0.5	0.89	11.6	0.45	5.22
1233938	3	0.05	320	10	2,5	0.25	0.95	12.2	0.3	4.33
1233939	3	0.05	360	15	2.5	0.25	1.02	12.7	0.41	6.31
1233940	3	0.05	300	10	2.5	0.5	0.85	12	0.3	4.48
1233941	4	0.05	300	15	2.5	0.25	1.3	15.7	0.6	6:43
1233942	3	0.05	420	15	2.5	0.25	1.55	27.1	0.53	8.9
1233943	3	0.05	270	15	2.5	0.25	1.21	10.6	0.68	6.73

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Aq PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1233944	3	0.05	360	5	2.5	0.25	1.28	9.45	0.5	4.91
1233945	3	0.05	260	10	2.5	0.25	1.16	14	0.53	5.18
1233946	5	0.05	340	15	2.5	0.25	1.24	13.5	0.41	6.15
1233947	4	0.05	330	15	10	0.25	1.11	9.45	0.34	5.45
1233948	5	0.05	420	15	2.5	0.5	1.07	14.2	0.37	6.21
1233949	3	0.05	330	10	2.5	0.25	0.62	3.73	0.3	4.44
1233950	4	0.05	360	10	2.5	0.25	0.78	13.5	0.31	5.87
1233951	4	0.2	400	10	2.5	0.25	1.18	8.85	0.34	5.95
1233952	3	0.05	340	10	2.5	0.25	1.12	16.5	0.38	5.91
1233953	3	0.05	400	5	2.5	0.25	2.3	12.2	0.73	5.56
1233954	5	0.05	400	10	2.5	0.5	1.46	8.55	0.59	6.88
1233955	4	0.05	470	5	2.5	0.5	1.54	10.9	0.85	5.39
1233956	5	0.05 、	400	10	2.5	0.25	1.05	9.6	0.46	5.62
1233957	4	0.05	460	15	2.5	0.25	1.28	10.7	0.43	5.61
1233958	5	0.05	360	15	2.5	0.5	1.06	9.98	0.27	5.32
1233961	6	0.05	400	20	2.5	0.5	1.14	9.98	0.52	5.83
1 2 33962	5	0.05	340	15	2.5	0.25	1.42	12.6	1.1	7.4
1233963	4	0.05	360	20	2.5	0.25	1.36	12.1	0.38	5.98
1233964	2	0.05	340	20	2.5	0.25	1.08	10.6	0.38	5.05
1233965	4	0.05	340	25	2.5	0.25	1.2	11.3	0.36	5.9
1233966	4	0.05	360	10	10	0.5	0.84	10.9	0.36	5.7
1233967	7	0.05	330	20	2.5	0.25	1.09	13.9	8.05	7.32
1233968	5	0.05	420	10	2.5	0.25	0.79	10.4	0.29	5.18
1233969	4	0.05	340	10	2.5	0.25	0.56	5.24	0.17	4.26
1233972	5	0.05	400	30	2.5	0.5	1.2	12.1	0.41	5.72
1233974	4	0.05	420	30	10	0.5	0.81	5.59	0.32	6.44
1233976	3	0.05	400	10	2.5	0.5	0.66	8.55	0.17	4.56
1233978	5	0.05	460	15	2.5	0.5	0.83	12.2	0.26	6.4
1233981	6	0.05	400	25	2.5	0.5	1.19	11.6	0.27	5.36
1233982	4	0.05	470	15	2.5	0.25	0.66	10.4	0.29	5.09
1234005	6	0.05	210	10	2.5	0.25	0.96	6.94	0.41	2.38
1234077	3	0.05	240	20	2.5	0.25	0.43	2.81	0.39	6.43
1234078	4	0.05	240	15	2.5	0.25	0.73	12.2	0.4	5.55
1234079	2	0.05	210	15	2.5	0.25	0.4	3.75	0.41	4.45
1234080	4	0.05	230	10	2.5	0.25	0.56	13.4	0.52	4.95
1234081	2	0.05	210	15	2.5	0.25	0.62	10.7	0.5	4.04

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM	Sb PPM	Sn PPM
1234082	2	0.05	170	20	2.5	0.25	0.34	4.04	0.33	4.01
1234083	2	0.05	190	30	2.5	0.25	2.13	12.9	0.88	5.25
1234084	5	0.05	230	15	2.5	0.25	1.29	5.56	0.8	5.11
1234085	4	0.2	270	10	2.5	0.25	1.36	14.5	0.77	4.87
1234086	4	0.05	290	20	2.5	0.25	0.78	3.81	0.43	5.71
1234087	5	0.05	400	20	2.5	0.25	1.24	6.16	0.59	6.64
1234088	5	0.05	320	25	2.5	0.25	1.13	7.48	0.65	5.59
1234089	4	0.05	320	25	10	0.25	1.18	8.6	0.61	5.75
1234090	4	0.05	370	20	2.5	0.5	1.05	9.1	0.64	5.45
1234091	3	0.05	390	25	2.5	0.25	0.75	2.24	0.5	4.56
1234092	3	0.05	270	15	2.5	0.25	. 1.34	9.4	0.66	4.66
1234093	4	0.05	780	20	2.5	0.5	1.56	6.75	0.76	6.2
1234094	5	0.05	400	15 .	2.5	0.25	1.01	8.68	0.54	5.77
1234095	4	0.05	390	15	2.5	0.25	1.12	5.15	0.56	5.81
1234096	4	0.05	430	15	2.5	0.25	1.27	10.7	0.52	4.79
1234097	4	0.05	330	15	2.5	0.25	1.05	8.37	0.46	5.05
1234098	2	0.05	270	15	10	0.25	0.87	12.8	0.4	4.49
1234099	4	0.05	280	15	2.5	0.25	0.65	4.49	0.53	5.34
1234100	3	0.2	280	20	2.5	0.5	0.73	2.47	0.44	4.26
1234101	3	0.05	260	10	2.5	0.25	1.28	5.55	0.58	4.58
1234102	6	0.05	420	10	2.5	0.25	1,41	10.4	0.58	4.9
1234103	5	0.05	300	. 20	2.5	0.5	1.18	8.61	0.6	5.15
1234104	4	0.3	250	15	2.5	0.5	0.69	4.9	0.39	4.12
1234105	4	0.05	270	. 20	10	0.5	1.05	4.82	0.41	5
1234106	4	0.05	310	15	2.5	0.25	0.86	9.58	0.44	4.72

YARDEA -80# STREAM SEDIMENT DATA

SAMPNO	UPPM	Ва РРМ	Ce PPM	Co PPM	Çr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161418	1.12	294	49	10	39	20	34000	30	568	23
1161419	1.11	354	54	11	35	21	30900	35	426	23
1161420	1.48	343	60	11	43	19	35100	37	500	23
1161421	1.35	327	60	11	46	21	37600	37 .	741	25
1161422	1.41	380	27	6	25	13	20500	22	280	15
1161423	1.28	374	44	8	29	15	26200	29	401	18
1161424	1.03	405	35	7	29	13	26400	24	354	16
1161425	1.46	429	56	9	37	16	32900	. 32	478	19
1161426	. 1.3	436	38	6	32	12	33600	24	909	15
1161427	2.52	507	78	12	27	. 16	40100	46	697	20
1161428	1.21	427	62	11	45	17	33800	34	594	21
1161429	1.39	442	50	9	35	17	31100	32	467	19
1161430	1.38	404	44	7	26	13	29200	27	514	17
1161431	1.11	284	41	6	26	12	25800	24	433	16
1161432	1.42	354	59	7	28	12	23900	30	330	16
1161433	1.06	326	40	8	22	13	22300	25	341	17
1161434	1.08	274	52	12	33	19	29700	31	587	24
1161435	1.11	300	54	10	38	19	34400	37	543	24
1161436	0.82	254	27	5	12	11	15200	15	178	15
1161437	0.83	233	51	8	3 0	14	26800	30	320	18
1161438	1.39	271	55	9	27	18	28200	34	373	21
1161439	1.09	305	54	11	33	16	30600	34	383	22
1161440	0.97	285	34	5	33	13	28500	23	402	16
1161441	0.97	288	35	5	3 1	14	27800	22	319	17
1161442	0.97	327	34	7	30	14	25800	24	290	16
1161443	2.26	369	48	9	44	17	37900	32	309	27
1161444	0.92	277	26	3	22	10	20900	18	224	13
1161445	0.6	243	26	3	17	10	18200	. 16	. 193	12
1161446	0.89	273	42	7	32	15	27000	27	359	19
1161447	0.94	215	29	5	30	14	23600	20	294	17
1161448	0.79	236	34	5	23	13	22700	20	307	16
1161449	1.69	369	73	10	46	20	35600	39	595	22
1161450	1.66	181	29	3	22	12	19600	19	19.7	15
1161451	1.13	270	49	8	22	16	23600	30	310	19
1161452	1.77	379	56	8	28	15	23900	33	350	18
1161453	1.19	387	50	7	28	13	25400	29	352	18

YARDEA -80# STREAM SEDIMENT DATA

SAMPNO	UPPM	ВаРРМ	Ce PPM	Co PPM	Cr PPM	Çu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161454	1.12	333	43	6	30	14	28500	26	387	17
1161455	1.32	328	69	14	64	26	45500	45	541	30
1161456	1.02	232	42	7	28	14	23000	24	278	17
1161457	0.41	127	18	3	. 19	10	15600	11	291	. 13
1161458	0.39	108	15	3	5	9	16700	8	187	13
1161459	0.53	178	21	3	19	10	16500	12	223	12
1161460	0.58	160	19	3	21	8	14500	12	162	14.
1161461	1.06	341	55	8	26	13	25900	29	502	18
1161462	0.81	2 8 8	35	7	25	15	27000	24	394	20
1161463	1.05	322	49	9	31	15	28700	31	412	19
1161464	0.9	314	32	5	30	11	19800	21	311	15
1161465	1.13	375	37	3	23	11	21600 ·	21	281	13
1161466	1.26	329 (64	10	50	20	34800	36	493	23
1161467	0.99	330 `	47	7	34	12	22000	26	364	16
1161468	1.29	350	70	11	40	18	30600	42	544	23
1161469	1	307	60	10	42	19	31700	37	523	23
1161470	1.14	356	67	11	35	18	24900	33	686	19
1161471	0.85	303	43	6	27	13	23200	24	364	17
1161472	0.8	269	34	5	23	11	20700	19	314	13
1161473	0.97	433	40	3	23	11	22000	23	264	13
1161474	0.94	325	33	3	18	13	18600	18	235	1 2
1161475	0.99	291	42	· 7	22	11	21700	23	349	14
1161476	0.6	172	21	3	37	9	15100	13	165	23
1161477	0.4	140	19	3	15	10	14600	12	194	15
1161478	0.83	229	35	3	18	12	18700	21	249	13
1161479	1.23	426	34	7.	30	13	31100	26	432	16
1161480	0.91	345	28	5	29	· 12	27400	19	484	14
1161482	11.1	520	166	17	31	16	38300	50	712	19
1161483	0.7	362	23	· 3	25	9	18600	15	206	13
1161484	1.36	300	36	8	25	14	29700	23	490	16
1161485	1.31	357	60	13	48	21	41200	34	460	26
1161486	1.23	368	53	10	26	16	31800	30	388	19
1161487	1.71	346	64 -	9	45	17	32500	37	350	18
1161488	0.76	286	23	5	18	10	19500	13	224	12
1161489	1.08	315	41	8	28	13	27200	24	337	15
1161490	0.69	261	25	5	14	9	17800	15	204	11

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161491	0.97	303	39	8	24	16	24500	23	318	15
1161492	0.64	296	28	6	20	11	20100	17	242	1 4
1161493	1.08	260	44	1.3	29	20	37700	28	608	22
1161494	1,12	405	39	8	19	11	26300	25	335	14
1161495	1.32	319	53	12	53	20	. 34400	32	411	2.4
1161496	1.36	359	60	14	3 1	20	35100	34	364	24
1161497	1.78	384	38	10	34	14	39900	26	925	16
1161498	1.79	351	49	12	37	18	32500	31	364	2 1
1161499	7.86	441	31	9	43	15	42100	23	296	16
1161500	1.97	545	35	8	24	11	30600	24	409	12
1161501	1.44	375	32	7	17	10	26100	21	447	12 '
1161502	0.91	311	26	8	17	11	17800	18	151	14
1161503	1.25	456	24	8	. 5	13	36700	17	248	11
1161504	1.26	397	40	7	18	11	24300	24	387	12
1161505	1.34	332	35	10	4 1	. 13	40100	25	960	1 4
1161506	1.25	333	45	11	23	15	32800	29	557	17
1161507	1.33	315	76	1 4	44	22	41500	42	575	26
1161508	1.2	347	38	8	29	11	24800	23	424	13
1161509	1.4	337	40	9	33	13	28100	26	333	15
1161510	0.91	245	38	6	21	13	19000	19	295	12
1161511	3.89	166	75	7	31	12	17200	38	232	11
1161512	1.93	225	82	· 12	25	20	26200	43	468	21
1161513	1.3	344	53	9	26	12	24800	28	352	14
1161514	1.63	188	49	, 6	28	12	17500	25	239	12
1161515	2.95	181	66	6	25	11	16600	32	222	11
1161516	2.22	367	71	11	37	17	34100	4 1	432	20
1161517	1.89	375	68	8	26	13	26100	35	342	14
1161518	1.07	247	41	9	22	12	20600	25	266	17
1161519	1.12	326	40	6	24	11	20200	21	208	13
1161520	1.17	322	5 5	9	45	16	31800	30	410	20
1161521	0.86	274	30	6	14	9	23900	18	486	10
1161522	1.13	332	37	8	18	11	25100	24	351	15
1161523	1.07	325	46	9	32	14	27900	26	385	17
1161524	1.7	308	53	9	_. 19	11	26500	28	468	13
1161525	1.05	278	59	11	45	15	29500	3 1	359	20
1161526	1.11	288	53	10	28	17	26900	27	389	20

Cu PPM

Fe PPM

La PPM

Mn PPM

Ni PPM

14 .

Cr PPM

SAMPNO

U PPM

0.93

1.16

0.53

0.85

0.89

0.81

0.7

1.15

Ba PPM

Ce PPM

Co PPM

	1101332	0.61	202	40	,	2 1	14	20300	19	350	16	
	1161533	0.78	258	29	5	15	8	16000	15	202	10	
	1161534	1.7	410	69	9 .	25	14	28700	35	403	17	
	1161535	0.73	202	31	5	14	10	18000	17	179	. 12	
	1161536	1.21	291	176	23	19	20	30700	91	535	26	
	1161537	1.07	274	63	14	35	21	33800	38	504	25	
	1161538	0.98	282	42	7	20	11	21400	23	275	15	
	1161539	1.16	292	4 9	8	36	10	21100	25	252	14	
	1161540	0.95	284	40	6	21	10	21000	23	238	13	
	1161541	1.03	319	52	11	42	14	28300	29	439	18	
	1161542	1.14	287	40	10	17	13	23300	25	311	16	
	1161543	1.39	352	40	7	19	10	28000	23	443	11	
	1161544	1.19	359	59	·9	24	14	26200	31	433	16	
	1161545	1.07	318	63	13	. 26	20	31100	35	453	23	
	1161546	1.05	368	53	8	36	11	22900	28	346	14	ı
	1161547	1.26	378	50	8	27	11	22900	29	335	13	
	1161548	1.3	321	52	9	22	12	22000	28	275	19	
	1161549	1.66	402	65	13	28	16	30700	37	375	22	
	1161550	1.23	289	38	7	13	11	20000	24	254	13	
	1161601	1.07	271	42	6	16	11	19200	25	273	13	
	1161602 -	1.17	358	42	6	16	10	22500	22	340	13	
	1161603	0.95	271	38	5 ,	16	12	18800	20	242	11	
	1161604	1.03	272	30	5	12	8	16500	21	183	11	
	1161605	0.8	258	29	3	15	9	16200	18	194	. 5	
	1161606	0.99	245	38	- 6	18	11	21600	19	300	13	
	1161607	1	263	38	5	11	8	17900	19	246	. 5	
	1161608	0.86	271	37	5	13	10	20300	19	297	12	
,	1161609	0.69	212	25	5	12	8	14600	17	205	11	
	1161610	0.71	214	33	6	31	9	20600	20	248	1 4	

SAMPNO	UPPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161613	1.1	341	46	6	20	9	22900	24	333	11
1161614	0.63	182	28	3	12	8	16300	. 13	207	1.0
1161615	1.36	391	8 1	13	47	23	41100	44	723	24
1161616	1.55	529	56	7	23	11	27700	31	437	1 4
1161617	1.67	466	42	5	14	9	23300	27	286	1 1
1161618	1.02	453	34	5	14	11	23300	19	305	14
1161619	1.49	426	57	11	28	18	34500	35	488	20
1161620	1.65	430	58	9	23	15	33900	35	610	17
1161621	1.44	427	54	10	27	17	32700	33	436	20
1161622	2.08	530	57	10	27	13	34500	36	715	16
1161623	1.89	507	80	. 12	44	21	47600	46	782	23
1161625	1.61	497	6 8	10	37	. 18	37000	40	517	19
1161626	1.53	571 、	53	7	25	14	33100	29	490	15
1161627	3.08	460	85	15	39	21	39800	46	569	26
1161628	1.46	401	72	13	51	22	41600	39	604	33
1161629	1.44	402	55	12	. 34	19	36700	36	589	22
1161630	1.15	406	58 ·	10	27	15	33700	31	468	19
1161631	1.07	429	43	7	22	14	27200	23	475	14
1161632	1.36	543	47	8	24	14	29600	26	393	15
1161633	1.27	412	53	9	28	16	29600	31	383	17
1161634	1.34	422	41	6	19	10	24600	23	259	13
1161647	1.75	443	75	13	29	20	39600	42	651	23
1161648	1.95	606	91	1.2	26	12	30300	46	472	19
1161649	3.17	687	127	12	33	15	37900	65	556	19
1161650	2.11	553	87	12	36	16	38100	47	440	2 1
1161762	1.67	575	63	9	18	12	27800	33	406	16
1161763	1.18	353	49	10	23	16	30800	31	329	23
1161945	2.1	599	64	10	31	18	31600	36	626	11
1161946	1.89	597	54	8	28	18	31900	35	491	12
1161947	2	585	77	12	25	21	37000	41	576 ·	15
1161948	2.93	633	79	9	26	17	40700	44	607	12
1161949	2.39	617	81	9.	24	17	39400	47	457	12
1161950	1.91	695	58	7	23	16	28900	36	398	11
1161951	2.16	557	68	9	22	18	34600	41	496	14
1161952	1.93	512	62	12	, 35	24	41400	38	587	20
1161953	1.87	600	66	10	32	18	34300	39	474	18

SAMPNO	UPPM	_Ba PPM	Çe PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161954	2.01	623	. 57	10	31	. 19	34800	36	569	17
1161955	1.42	451	58	13	34	22	38600	35	510	21
1161956	2.04	630	56	8	20	16	30500	35	378	13
1161957	2.17	641	56	8	26 .	13	32700	36	.8 64	13
1161958	2.01	572	65	11	32	19	38300	40	717	19
1161959	2.04	752	47	7	2 1	12	27800	32	495	13
1161960	1.79	525	60	11	29	19	36200	36	561	18
1161961	2.09	531	78	12	3 5	24	40000	43	533	20
1161962	1.88	600	- 59	10	37	19	36600	34	572	20
1161963	2.01	615	57	9	27	19	38100	36	934	1 5
1161964	2.08	577	69	11	31	22	36600	4 1	533	21
1161965	2.27	707	50	7	27	13	32400	33	815	15
1161966	3.66	570 、	59	9	28	11	30500	37	573 ·	18
1161967	1.75	650	45 .	7	33	14	27600	27	410	17
1161968	1.78	-791	43	7	35	13	24600	27	324	. 19
1161969	1. 9 3	769	41	6	27	16	26700	26	519	16
1161970	1.84	698	56	9	29	17	31800	31	404	20
1161971	1,81	838	46	7	31	15	27500	29	302	18
1161972	1.58	631	57	11	62	18	35000	35	449	30
1161973	1.62	635	69	12	32	22	36500	40	684	20
1161974	1.58	865	56	7	25	14	24400	38	299	14
1161975	1.52	801	50	7	29	14	27000	36	394	15
1161976	1.77	803	68	10	38	17	30800	42	557	18
1161977	1.93	582	76	14	4 1	23	41800	45	509	26
1161978	2.56	439	60	14	24	20	37200	39	4.39	22
1161979	3.39	1050	63	12	26	20	34700	43	408	22
1161980	1.47	835	58	10	37	1 7	29900	37	391	22
1161981	1.7	827 ⁻	57	10	28	16	29100	4 0	459	19
-1161982	1.29	688	51	8	53	16	27300	32	324	32
1161983	1.78	454	71	15	34	24	44000	41	659	24
1161984	1.75	566	63	12	27	18	33300	39	486	20
1161985	2.18	518	60	13	26	20	42800	40	730	2 1
1161986	1.94	563	72	11	33	16	34300	43	413	20
1161987	1.94	544	72	10	32	17	36800	43	535	2 1
1161988	2.01	537	61	10	29	15	31300	37	507	18
1161989	2.32	622	60	9	33	14	34300	37	874	20

\Box
ζ
CT
6

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1161990	1.85	628	59	11	32	18	32600	37	453	21
1161991	1.67	510	64	12	5 8	21	39400	38	642	3 4
1161992	1.68	528	6 8	14	35	22	41400	40	569	26
1161993	1.72	553	71	13	30	18	34200	41	514	18
1161994	1.75	446	74	15	41	25	46900	43	745	25
1161995	1.85	565	71	12	35	19	36200	39	615	18
1161996	1.8	561	66	12	21	17	34800	36	700	1,7
1161997	1.67	510	60	10	26	17	31900	3 5	590	15
1161998	1.91	561	62	11,	32	16	34300	3 5	738	17
1161999	1.96	416	96	18	58	30	53200	52	898	28
1162000	2.36	669	66	8	38	18	37800	3 5	597	18
1163801	0.77	362	38	8	57	12	25900	22	498	3 1
1163802	0.98	407	41	8	27	12	27400	24	473	15
1163803	1.24	357 `	54	11	24	15	35700	33	600	19
1163804	0.93	440	44	6	23	9	21700	24	364	13
1163805	1.02	35 3	49	10	23	14	30000	30	430	19
1163806	1.17	319	41	9	32	14	34100	29	729	18
1163807	1.26	378	55	10	32	16	39000	34	695	20
1163808	1.05	349	44	9	23	13	29400	28	429	16
1163809	1.18	3 65	57	11	35	17	36400	36	467	23
1163810	1.42	388	66	12	40	20	43600	41	53 6	26
1163811	1.25	389	33	5	13	10	26000	25	412	5
1163812	1.49	409	64	10	24	21	44200	39	596	16
1163813	1.25	462	50	8	34	. 1 6	35000	33	390	11
1163814	1.39	350	37	5	17	11	49400	25	2040	5
1163815	1.22	423	47	8	22	18	38100	29	437	15
1163816	1.3	468	48	7	31	14	32900	29	511	5
1163817	1.15	420	43	7	31	14	32600	28	532	5
1163818	1.02	387	33	3	16	. 11	27000	21	383	5
1163819	0.88	328	45	7	12	12	29200	27	440	5
1163820	0.93	329	33	5	5	10	24000	21	365	5
1163821	1.02	324	34	5	5	9	27100	21	603	5
1163822	1.42	398	40	3	10	10	30600	21	314	5
1163823	1.57	408	59	9	43	18	39700	33	446	22
1163824	1.61	413	49	6	20	12	34800	27	432	17
1163825	1.14	440	38	3	13	9	23000	19	235	5

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1163826	1.44	312	34	3	5	8	33200	19	301	5
1163827	1.36	422	45	5	18	11	27700	23	295	5
1163828	1.64	494	77	9	29	16	36900	37	616	10
1163829	1.47	501	66	7	57	12	29300	31	368	3 1
1163830	1.52	586	58	8	20	14	28300	31	500	5
.1163831	1.51	668	34	3	5	10	21800	21	221	5
1163832	2.79	860	41	· 3	13	8	30000	30	209	5
1163833	1.4	740	43	3	5	11	24300	27	289	5
1163834	1.41	433	61	9	18	17	37400	38	553	1.4
1163835	1.36	451	64	10	35	17	36900	40	488	14
1163836	1.38	576	50	6	12	12	28600	3 1 ·	350	5
1163837	1.54	3 67	76	1 4	34	24	47200	47	615	24
1163838	1.31	768	48	8	58	15	27000	35	315	30
1163839	1.56	582	64	10	25	· 18	36200	40	515	12
1163840	1.63	431	85	13	47	26	51700	50	698	25
1163841	1.5	570	70	11	39	19	42100	43	582	23
1163842	1.41	575	61	10	47	19	37300	40	416	20
1163843	1.27	512	53	9	30	15	33100	36	420	13
1163844	1.45	546	61	8	39	16	34600	38	466	16
1163845	1.22	520	54	9	25	15	31900	35	471	14
1163846	1.67	657	42	5	12	11	27900	27	364	5
1163847	1.49	476	54	8	34	18	34400	36	415	15
1163848	1.19	634	45	6	51	12	24100	31	312	26
1163849	1.29	373	54	10	5	17	32700	37	394	11
1163850	1.39	435	63	10	24	19	38700	40	474	15
1163851	0.79	282	24	3	19	8	1,9700	15	188	12
1163852	0.88	253	30	3	13	8	21100	16	292	12
1163853	0.83	276	34	3	23	9	20700	18	228	5
1163854	1.65	464	68	1.1	43	18	36400	43	459	21
1163855	1.77	501	55	7	19	14	32400	35	509	15
1163856	1.97	478	74	8	35	15	38800	47	788	20
1163857	1.78	455	66	8	44	15	38400	40	639	30
1163858	1.8	458	65	9	34	16	34900	40	596	13
1163859	1.86	552	67	8	29	15	33900	37	459	17
1163860	1.78	568	54	7	24	13	27200	33	354	16
1163861	0.94	365	36	5	18	11	26700	20	355	13

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	_ Mn PPM	Ni PPM
1163862	0.95	349	43	6	21	12	26400	23	385	20
1163863	0.76	306	36	5	36	9	20900	20	272	23
1163864	0.82	254	29	3	28	8	22800	15	425	17
1163865	0.87	354	42	6	50	11	23100	22	349	30
1163866	1.48	369	66	9	80	16	32900	35	507	52
1163867	1.56	360	40	11	363	12	24200	23	333	293
1163868	2.08	284	45	6	26	9	33900	23	867	18
1163869	1.35	394	34	6	60	8	23500	20	358	46
1163870	1.47	213	61	6	19	11,	20100	32	320	5
1163871	1.08	255	54	, 6	10	12	20400	26	342	5
1163872	0.89	246	43	5	5	13	18800	22	313	5
1163873	1.24	274	53	8	31	21	25000	26	483	5
1163874	1.44	380	55	6	25	12	36000	33	612	5
1163875	1.37	404	61	8	31	15	37200	36	602	10
1163876	1.48	392	57	7	22	15	41100	33	891	10
1163877	1.12	406	48	8	39	14	28200	28	413	17
1163878	1.07	338	6 1	11	46	20	35500	34	530	24
1163879	1.87	551	125	16	54	21	41700	58	966	26
1163880	1	381	42	8	41	14	26600	28	416	19
1163881	1.64	497	79	11	49	21	39300	42	694	23
1163882	1.37	562	107	16	45	17	29500	36	840	20
1163883	1.82	492	105	15	69	27	49200	57	818	30
1163884	1.29	369	64	11	57	22	40500	43	413	27
1163885	1.21	523	45	6	39	13	29500	29	363	16
1163886	2.21	529	145	16	62	26	48000	71	974	29
1163887	1.24	515	54	7	37	14	26800	29	379	20
1163888	1.4	506	62	8	41	14	29000	35	405	21
1163889	1.21	377	51	8	32	13	37900	36	586	17
1163890	1.43	387	54	.8	41	13	46900	35	1307	1.6
1163891	2.51	512	79	11	46	21	39300	48	662	25
1163892	1.23	385	53	11	47	18	32400	29	652	26
1163893	1.14	308	38	7	35	13	34100	27	799	15
1163894	0.99	315	42	8	50	1,6	29400	28	454	23
1163895	1.18	372	66	13	57	21	39700	37	654	30
1163896	1.24	394	37	6	32	12	29400	24	554	16
1163897	1.01	392	29	5	29	10	22900	20	348	12

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1163898	0.91	367	3 1	5	26	11	21800	21	254	12
1163899	1.2	330	39	6 .	34	12	29200	23	720	13
1163900	1.21	302	35	6	3 9	13	36600	25	895	14
1163901	2.01	561	44	5	36	12	29800	30	321	13
1163902	1.81	500	55	6	36	14	29900	34	393	14
1163903	1.91	553	54	6	30	11	27000	34	317	12
1163904	2.47	618	81	7	43	13	35900	46	423	15
1163905	2.25	594	68	5	27	10	31600	38	395	5
1163906	2.18	522	97	8	42	18	`41100	54	565	18
1163907	1.26	390	72	13	38	20	30600	33	700	21
1163908	2.31	551	72	7	33	11	33400	39	385	14
1163909	1.67	568	86	10	45	15	35900	45	557	20
1163910	1.86	452 、	70	10	41	15	34400	39	445	20
1163911	1.46	407	44	6	28	11	24200	23	340	12
1163912	4.07	653	109	11	41	13	43700	53	548	20
1163913	3.33	640	122	12	36	12	33700	53	574	18
1163914	2.63	598	78	9	53	11	30500	43	426	30
1163915	1.98	530	54	8	35	11	28200	32	303	17
1163916	4.55	621	115	9	36	11	38100	56	668	16
1163917	1.61	407	49	6	28	10	24700	28	274	10
1163918	2.74	621	60	6	33	10	31300	37	318	14
1163919	2.23	485	80	10	34	12	27900	42	375	16
1163920	1.28	430	53	7	27	13	26200	33	338	14
1163921	2.54	684	85	9	39	13	40000	50	430	17
1163922	1.88	513	71	9	40	13	32500	4 1	364	17
1163923	1.52	417	43	6	28	7	22300	29	228	12
1163924	1.93	510	91	11	43	19	35800	48	. 641	22
1163925	2.9	567	71	9	32	12	30200	40	494	17
1163926	2.59	476	92	13	55	21	40600	48	488	24
1163927	2.05	446	75	9	48	15	36100	42	536	18
1163928	2.17	481	76	9	42	16	36400	41	492	24
1163929	2.45	603	69	7	37	13	33400	38	561	16
1163930	2.16	526	92	10	48	19	41100	49	568	21
1163931	1.67	579	60	8	39	15	32400	35	429	20
1163932	1.97	571	67	8	45	16	36300	38	554	21
1163933	2.07	567	6 3	7	41	12	32200	34	423	2 1

\subseteq
0000
0
\subset

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1163934	2.03	543	73	8	41	16	34400	42	513	17
1163935	1.85	633	57	7	34	15	31200	33	454	15
1163936	1.96	625	7 3	8	32	17	36400	40	556	18
1163937	2.08	477	46	5	25	11	32900	28	733	11
1163938	2.08	615	58	8	35	16	31900	35	514	18
1163939	. 1.84	614	52	8	39	17	30000	35	428	21
1163940	1.77	629	55	8	46	17	31100	36	394	25
1163941	2.04	610	61	9	49	17	35700	34	528	25
1163942	1.95	652	57	8	39	17	30700	34	478	22
1163943	2.25	597	69	10	34	19	36600	42	524	20
1163944	1.82	660	54	9	32	15	29700	34	384	19
1163945	1.94	628	60	8	28	16	32100	36	411	18
1163946	1.88	807	47	10	26	17	30200	31	476	21
1163947	1.7	507	53	11	29	18	31000	34	388	23
1163948	1.89	616	67	11	37	18	34100	40	446	22
1163949	1.79	476	61	13	40	20	35700	39	486	27
1163950	1.79	5 57	57	11	32	17	32100	36	432	. 22
1163951	1.8	564	52	12	29	18	30500	34	358	25
1163952	1.66	487	54	10	3 1	18	32600	34	354	23
1163953	1.74	487	61	13	39	21	36500	38	450	27
1163954	1.71	554	63	12	38	20	36300	38	443	25
1163955	1.84	584	60	10	27	17	33100	34	415	22
1163956	1.95	641	50	10	33	16	29400	31	341	21
1163957	1.76	648	49	7	24	14	24700	31	304	17
1163958	1.96	631	64	10	39	17	35000	37	387	22
1163959	2.27	438	71	15	. 45	24	43700	42	666	31
1163960	1.63	597	60	11	29	17	32200	35	416	23
1163961	1.7	556	72	12	37	19	37000	38	469	25
1163962	2.18	425	69	12	39	21	36100	42	432	26
1163963	2.13	570	73	11	36	18	35700	41	489	22
1163964	1.98	555	68	12	44	19	35300	40	542	24
1163965	2.34	540	68	12	44	20	37100	42	479	25
1163966	1.92	593	61	9	40	17	31500	36	378	20
1163967	1.98	399	54	11	30	16	28800	35	414	22
1163968	2.36	513	84	13	47	24	42900	50	664	28
1163969	1.93	539	60	10	41	20	34000	38	436	23

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1163970	1.34	576	55 .	11	- 33	2 1	34600	35	408	26
1163971	1.49	572	53	10	28	18	31200	35	385	22
1163972	1.4	586	52	10	32	18	29900	34	345	22
1163973	1.55	537	56	10	46	22	36200	36	419	25
1163974	2.02	689	58	9	44	18	32400	37	456	20
1163975	1.98	612	64	10	46	19	35100	37	531	23
1163976	1.79	574	59	11	45	20	35700	35	494	24
1163977	1.98	604	62	9	4 1	17	32300	34	521	19
1163978	2.34	634	55	9 .	45	17	32100	33	452	22
1163979	1.72	631	51	8	35	16	30100	33	446	21
1163980	1.73	603	55	9 .	34	17	30600	33	452	19
1163981	1.58	471	58 .	12	43	22	37500	38	490	30
1163982	1.51	504	54	11	48	. 20	34500	36	419	25
1163983	1.39	542 `	43	8	37	15 ⁻	25400	30	317	19
1163984	1.29	557	49	8	44 .	17	26900	32	335	23
1163985	1.6	557	57	10	45	19	34200	35	415	24
1163986	1.59	476	64	12	53	21	36400	39	459	28
1163987	1.75	567	63	11	54	18	33300	36	481	34
1163988	1.83	595	54	8	36	17	32800	33	449	22
1163989	1.38	624	40	6	27	15	25900	27	335	20
1163990	1.9	608	40	3	33	14	32900	28	852	21
1163991	1.61	567	51	8	31	16	32200	31	402	20
1163992	1.68	635	39	6	31	12	27500	27	493	20
1163993	1.59	524	58	9	41	18	35200	36	484	26
1163994	1.61	585	42	6	23	13	27100	25	371	18
1163995	2.41	725	67	8	30	16	35800	35	520	21
1163996	1.4	690	36	6	33	13	23400	25	277	22
1163997	2.11	641	66	9	50	20	35800	38	610	30
1163998	2.5	676	78	10	39	18	26800	40	673	26
1163999	1.35	769	37	6	42	11	23200	25	212	18
1164000	2.28	629	76	9	49	18	37500	43	537	23
1233860	2.78	529	39	8	31	12	33900	24	412	19
1233861	1.29	368	52	10	34	18	38700	29	504	22
1233862	1.27	381	35	8	34	13	28000	22	306	18
1233863	5.33	643	24	6	42	10	141500	18	752	14
1233865	1.19	418	39	6	25	11	31100	23	432	15

SAMPNO	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1233867	0.91	284	26	2.5	19	11	25900	15	353	13
1233868	0.56	268	18	2 .5	13	10	22100	13	211	12
1233869	1.04	262	35	6	29	14	29200	23	295	17
1233870	1.17	392	43	7	34	14	31800	24	377	18
1233871	1.55	399	62	10	45	19	43800	36	538	23
1233872	1.2	360	45	7	40	15	36100	26	532	20
1233873	1.87	381	88	15	65	25	52800	51	637	35
1233874	1.57	312	50	9	35	16	60400	30	1736	23
1233875	1.45	361	57	10	45	20	43700	34	526	23
1233876	1.17	360	49	8	38	16	38000	31	447	21
1233877	1.56	383	65	12	45	20	46200	33	710	26
1233878	1.12	312	53	10	48	19	38300	32	455	26
1233879	1.69	324	73	14	50	19	45500	42	593	27
1233880	2.11	503	56	10	39	14	40900	33	531	20
1233881	1.17	450	30	6	23	13	34100	21	435	18
1233882	2.13	414	91	14	49	19	50500	51	650	27
1233883	1.37	438	59	9	33	16	41700	33	602	22
1233884	2.44	437	80	14	51	21	52300	46	637	29
1233885	2.01	427	75	13	47	21	48200	42	638	28
1233886	5.94	352	66	12	51	15	36000	36	484	23
1233887	3.77	359	77	13	50	2 2	46500	41	606	28
1233888	1.8	623	54	9	29	14	30400	38	448	19
1233889	1.41	383	56	12	50	22	47100	40	514	29
1233890	1.57	445	70	14	48	20	39700	43	738	25
1233891	1.15	381	3 1	7	32	14	29800	26	483	17
1233892	1.39	437	53	12	47	20	37500	39	462	25
1233894	2.42	520	38	8	37	18	35000	28	342	23
1233895	1.53	431	54	10	42	20	37700	40	479	25
1233898	1.44	411	3 1	2.5	22	12	32500	21	341	15
1233900	1.39	458	33	5	24	12	27500	22	300	16
1233901	1.69	452	54	9	46	16	34800	38	415	19
1233902	1.5	377	34	5	21	1 1	32500	24	413	14
1233903	1.46	442	46	8	30	16	33300	33	350	20
1233904	1.36	438	44	10	37	17	36300	33	446	22
1233905	1.22	385	52	14	50	21	42300	38	466	31
1233906	1.49	385	61	13	57	21	41800	44	499	2 8

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	LaPPM	Mn PPM	Ni PPM
1233907	1.45	514	30	5	23	12	28600	24	347	15
1233908	1.5	335	60	14	52	24	47600	43	553	31
1233909	1.51	387	67	13	48	23	34600	40	4 7 7	25
1233910	1.03	274	35	10	28	15	21500	21	311	19
1233911	1.62	294	64	14	49	20	36400	42	569	27
1233912	0.92	343	30	8	26	14	26100	23	328	20
1233913	1.27	499	28	5	15	11	24700	22	328	1 4
1233914	1.6	455	48	9	32	12	27500	36	400	18
1233915	1.86	560	52	9	33	13	32700	32	654	18
1233916	1.72	538	55	9	33	14	31800	37	454	19
1233917	1.77	512	57	9	33	14	33200	38	470	18
1233918	1.21	451	34	6	26	11	23200	27	293	15
1233919	1.57	505	50	9	37	14	30200	36	4 2 2	19
1233920	1.17	382 `	33	6	25	12	26900	26	517	16
1233921	1.53	371	40	9	37	14	39400	28	1214	19
1233922	4.43	1554	7.9	7	23	10	39300	50	482	13
1233923	1.64	403	74	15	54	20	45200	47	696	27
1233924	1.42	458	34	7	32	12	27100	28	475	16
1233925	1.34	301	56	13	47	21	39200	40	492	29
1233926	1.39	482	38	7	29	11	23800	30	281	16
1233928	1.6	540	38	6	26	12	27500	29	338	1 6
1233929	1.7	473	56	11	45	19	37900	43	542	24
1233930	1.7	333	61	15	58	19	43400	40	559	27
1233931	1.21	337	50	11	51	20	41100	38	404	26
1233932	1.53	426	56	11	58	22	44300	43	515	28
1233933	1.34	463	48	8	40	18	35700	37	420	21
1233934	1.63	396	60	14	54	23	42700	43	617	27
1233935	1.62	472	45	7	32	15	38400	35	785	19
1233936	1.49	453	45	9	31	15	31800	36	450	19
1233937	1.4	483	55	12	32	18	35900	35	652	21
1233938	1.43	489	39	7	28	13	27800	3 1	337	16
1233939	1.6	469	61	13	50	21	42300	42	589	27
1233940	1.61	517	45	6	25	12	29100	34	388	14
1233941	2.2	584	61	7	32	14	36400	41	466	17
1233942	2.53	493	43	2.5	24	11	43700	3 1	1138	14
1233943	2.44	474	43	5	34	13	44400	33	1479	16

SAMPNO	UPPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1233944	1.59	479	4 4	8	36	13	30000	32	496	18
1233945	1.54	514	38	6	20	12	28900	29	463	16
1233946	1.63	565	50	8	45	16	34900	35	412	19
1233947	1.63	537	55	7	28	13	33600	36	499	16
1233948	1.71	482	62	13	43	17	38100	43	478	23
1233949	1.59	474	44	8	25	13	29100	31	510	18
1233950	1.6	447	57	11	41	15	32600	42	421	21
1233951	2.01	615	51	7	19	13	35600	35	432	16
1233952	2.16	501	56	8	32	13	31200	40	303	16
1233953	2.69	622	80	9	44	17	38400	4 1	479	22
1233954	1.56	427	84	12	61	22	35800	46	495	26
1233955	1.66	403	77	12	56	20	37300	43	562	27
1233956	1.27	355	73	12	41	17	31100	37	484	26
1233957	1.41	385 `	68	13	48	19	34400	35	617	30
1233958	1.31	368	63	9	43	15	30900	33	443	23
1233961	1.36	382	75	11	59	17	38500	40	508	30
1233962	1.87	509	86	12	56	16	36100	45	474	24
1233963	1.49	465	69	10	45	16	33000	37	462	22
1233964	1.42	437	65	9	40	14	29800	35	427	20
1233965	1.87	452	57	6	38	14	30800	3 1	397	1 7
1233966	1.3	386	67	10	51	17	34600	35	479	25
1233967	1.89	454	97	16	66	28	41300	49	592	30
1233968	1.37	471	68	11	51	16	31000	37	426	24
1233969	1.29	419	46	7	28	13	27600	26	373	17
1233972	1.62	470	67	9	45	16	35200	35	466	22
1233974	2.26	452	90	11	58	17	40100	51	502	24
1233976	1.46	494	49	7	30	12	25600	29	353	17
1233978	1.93	403	81	11	52	16	34300	47	396	23
1233981	2.09	502	71	8	40	15	30100	41	356	18
1233982	1.7	507	63	9	44	15	31400	37	429	20
1234005	0.99	344	46	9	41	21 ·	32700	28	317	25
1234077	1.52	275	49	10	4 1	23	50100	25	734	27
1234078	1.21	301	35	9	38	18	42000	22	457	22
1234079	1.9	306	46	7	35	17	44300	25	451	21
1234080	1.33	484	46	11	25	18	30500	26	352	23
1234081	1.65	870	61	10	55	34	40900	38	540	36

						······································	· · · · · · · · · · · · · · · · · · ·			y
SAMPNO	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	Fe PPM	La PPM	Mn PPM	Ni PPM
1234082	1.62	922	83	10	3 6	21	43800	55	435	2 3
1234083	2.82	687	68	12	70	35	82800	59	644	28
1234084	2.16	480	40	11	35	17	29600	35	358	20
1234085	2.7	7 3 2	49	15	45	24	39900	42	638	2 6
1234086	2.53	320	81	15	68	29	48400	54	840	30
1234087	2.45	465	58	14	49	26	51100	44	647	30
1234088	2.02	416	54	13	58	27	48600	39	652	28
1234089	2.23	453	54	14	49	25	46000	41	659	27
1234090	1.98	434	62	15	55	24	49200	48	502	30
1234091	2.32	575	77	18	51	28	46200	53	736	27
1234092	1.74	547	50	12	38	18	35000	38	378	2 2
1234093	3.85	467	69	15	57	29	60700	55	675	3 4
1234094	1.74	361 、	54	15	50	24	44600	45	478	29
1234095	2.01	540 `	46	12 ,	53	27	47300	41	503	32
1234096	2.15	527	53	12	40	18	37300	42	408	22
1234097	2.31	636	47	11	40	21	37000	40	438	22
1234098	1.83	634	47	9	39	18	34400	40	397	19
1234099	1.87	501	53	13 .	42	24	44800	40	602	25
1234100	1.71	452	57	14	48	22	42800	41	549	25
1234101	1 <i>.</i> 86	620	43	9	39	19	38700	35	426	2 0
1234102	2.04	627	50	13	40	18	38900	39	372	26
1234103	1.98	523	57	13	47	23	50300	45	544	29
1234104	1.55	447	60	15	46	21	40100	41	458	26
1234105	2.4	499	67	.13	44	2,3	45000	4,9	543	26
1234106	2.03	526	63	13	46	20	40100	47	479	25

Pd PPB

0.3

0.7

0.3

0.6

0.6

0.3

Pt PPB

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

Au PPB

1.5

2.3

0.5

1.2

1.8

2.1

East

North

V PPM

SAMPNO

P PPM

168.

Th PPM

Zn PPM

Zr PPM

1161424	186	5	36	111	53	0.3	0.3	0.5	546150	427500	
1161425	354	12	47	134	68	0.3	0.3	0.5	545300	426450	
1161426	186	10	46	179	58	0.3	0.3	0.5	546550	424650	
1161427	306	15	54	173	95	0.6	0.3	1.2	544350	425800	
1161428	25 5	11	53	133	63	0.3	0.3	0.5	543400	425700	
1161429	250	13	47	124	66	0.3	0.3	0.5	542700	425400	
1161430	217	12 ,	39	133	57	0.5	0.3	1.6	545000	421900	
1161431	151	12	35	112	49	0.3	0.3	0.5	539950	422800	
1161432	135	12	30	105	51	0.6	0.3	1.3	540700	421000	
1161433	127	12	32	95	51	0.3	0.3	1.1	540800	420200	
1161434	289	12	56	111	67	0.3	0.3	0.5	545800	415100	
1161435	237	13	57	124	65	0.3	0.3	2.9	544650	414850	
1161436	50	5	. 17	69	40	0.3	0.3	1.2	540800	413850	
1 16 1437	120	10	29	96	50	0.3	0.3	1.4	536050	414400	
1161438	354	12	47	104	63	0.3	0.3	1.5	535950	416950	
1161439	192	13	48	105	71	0.7	0.3	1.4	522100	451450	
1161440	- 138	5	45	131	53	0.3	0.3	0.5	523000	453800	
1161441	141	5	36	161	41	0.3	0.3	0.5	524100	453800	
1161442	114	11	34	121	55	0.3	0.3	0.5	529700	456000	
1161443	273	20	49	224	70	0.3	0.3	0.5	529900	455800	
1161444	115	5	29	93	35	0.3	0.3	0.5	528000	457400	
1161445	50	5	23	70	27	0.3	0.3	0.5	524700	457800	
1161446	207	12	41	94	53	0.3	0.3	0.5	521000	459400	
1161447	104	5	33	126	39	0:3	0.3	0.5	517150	456350	
1161448	105	5	31	89	33	0.3	0.3	0.5	517750	456000	
1161449	215	15	52	183	65	0.3	0.3	1.4	519600	453950	l
1161450	225	10	2 5	85	26	0.3	0.3	0.5	516200	451550	l
1161451	. 178	12	36	97	47	0.3	0.3	0.5	515500	449500	l
I .	i									4 4 0 0 0 0	

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161454	191	10	50	140	40	0.3	0.3	0.5	519100	449900
1161455	272	16	75	136	94	0.3	0.3	0.5	522200	446750
1161456	177	10	31	93	45	0.3	0.3	0.5	527900	398200
1161457	113	5 ·	12	45	18	0.3	0.3	0.5	525950	403750
1161458	50	5	8	66	12	0.3	0.3	0.5	523950	398550
1161459	50	5	14	74	17	0.3	0.3	0.5	524500	396300
1161460	50	5	15	71	22	0.3	0.3	0.5	524600	395000
1161461	176	11	47	115	52	0.3	0.3	0.5	532900	425150
1161462	174	11	46	91	50	0.3	0.3	1.3	532800	425900
1161463	243	12	50	106	57	0.3	0.3	0.5	532350	427000
1161464	151	5	28	121	49	0.3	0.3	3.1	546400	412050
1161465	170	5	28	112	34	0.3	0.3	0.5	544750 ·	411200
1161466	209	11 📡	50	133	63	0.3	0.3	0.5	544450	407700
1161467	114	5	31	95	40	0.3	0.3	0.5	541100	406200
1161468	233	15	52	128	57	0.3	0.3	0.5	542700	408700
1161469	333	14	51	110	60	0.3	0.3	0.5	543100	410450
1161470	211	5	34	111	45	0.3	0.3	0.5	539800	409800
1161471	172	5	32	91	37	0.3	0.3	0.5	537750	408400
1161472	133	5	26	92	34	0.3	0.3	0.5	535650	409100
1161473	148	5	24	104	29	0.3	0.3	0.5	533000	406750
1161474	118	5	23	99	. 28	0.7	0.3	0.5	532500	409250
1161475	196	5	31	99	38	0.3	0.3	0.5	533200	409900
1161476	50	5	16	69	23	0.3	0.3	0.5	525200	411150
1161477	50	5	18	48	20	0.3	0.3	0.5	523450	413550
1161478	130	5	22	95	31	0.3	0.3	0.5	526000	414150
1161479	161	12	45	123	62	0.3	0.3	0.5	536900	445600
1161480	140	5	49	110	51	0.3	0.3	0.5	534550	444200
1161482	192	15	76	151	8 3	0.7	0.6	2	534300	447200
1161483	107	5	29	83	33	0.3	0.3	0.5	5320 0 0	444250
1161484	117	13	52	98	75	0.3	0.3	1.1	529750	443850
1161485	349	17	72	134	87	0.3	0.3	0.5	530600	450100
1161486	265	16	52	114	60	0.3	0.3	0.5	528100	449300
1161487	340	15	46	136	69	0.3	0.3	0.5	527700	449900
1161488	148	5	34	82	33	0.3	0.3	0.5	526100	450500
1161489	205	15	46	96	56	0.3	0.3	0.5	525700	451350
1161490	130	5	27	69	32	0.3	0.3	0.5	525300	449350

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161491	183	13	40	89	44	0.3	0.3	1.7	525250	444200
·1161492	245	12	30	83	32	0.3	0.3	0.5	524800	441500
1161493	169	11	69	114	98	0.6	0.3	1.2	526900	442000
1161494	201	-13	40	105	47	0. 3	0.3	0.5	525600	438350
1161495	308	18	60	109	70	0.6	0.3	0.5	546000	438600
1161496	276	18	57	113	86	0.7	0.3	1.2	545300	438650
1161497	100	17	78	103	85	0.6	0.3	1.1	544700	441250
1161498	281	17	52	109	79	0.7	0.3	1.3	544400	443900
1161499	195	16	44	137	102	0.3	0.3	0.5	541500	445850
1161500	140	15	45	113	76	0.3	0.3	0.5	540500	445050
1161501	50	14	45	98	60	0.3	0.3	0.5	540300	441900
1161502	108	10	28	74	60	1	0.3	1.7	541350	441550
1161503	144	5 τ	26	69	56	1	0.9	0.5	539800	442150
1161504	163	14	45	113	57	0.3	0.3	0.5	539350	437550
1161505	136	14	90	137	90	0.3	0.3	0.5	537100	438500
1161506	140	15	62	118	76	0. 3	0.3	1.9	535550	438250
1161507	480	21	72	129	83	0.3	0.3	0.5	530550	438050
1161508	126	13	49	95	52	0.5	0.3	1	526800	433600
1161509	217	15	47	95	62	0.3	0.3	1.1	524750	435800
.1161510	126	12	33	94	33	0.3	0.3	0.5	522600	439700
1161511	177	32	39	143	34	0.3	0.3	1.6	520850	438500
1161512	242	27	48	110	49	0.3	0.3	0.5	518750	439000
1161513	168	18	40	115	43	0.3	0.3	0.5	518500	444550
1161514	164	19	29	84	30	0.3	0.3	0.5	516350	441050
1161515	175	29	33	158	27	0.3	0.3	0.5	515500	436700
1161516	470	18	49	134	55	0.3	0.3	2.2	519600	433800
1161517	241	19	42	110	40	0.3	0.3	1.9	516000	432550
1161518	236	15	34	78	38	0.5	0.3	1.3	520050	433700
1161519	153	11	63	108	35	0.3	0.3	0.5	519650	431600
1161520	364	15	43	108	47	0.3	0. 3	0.5	520850	432400
1161521	116	12	43	96	47	0.3	0.3	1.2	525200	431100
1161522	115	13	39	94	55	0.5	0.3	1.3	533250	434100
1161523	238	13	49	103	50	0.3	0.3	0.5	530850	427800
1161524	167	13	47	92	54	0.3	0.3	1.9	527200	428200
1161525	166	16	4 1	109	56	0.3	0.3	0.5	522400	423100
1161526	177	13	42	109	47	0.3	0.3	1.5	525000	421900

200	
100	
100	1
000	
300	
150	
300	
300	l
050	
200	
150	
900	
100	
400	
200	
700	
000	
000	
000	
300	
	•

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161527	138	10	33	. 95	33	0.3	0.3	1.1	524900	419700
1161528	173	1.7	57	109	68	0.6	0.3	1.2	526800	421350
1161529	50	5	16	66	27	0.3	0.3	0.5	526400	416400
1161530	186	14	42	108	52	1.8	0.3	3.1	528400	417550
1161531	167	10	34	79	37	0.3	0.3	0.5	529650	420450
1161532	198	10	34	83	34	0.3	0.3	0.5	531300	419700
1161533	114	10	24	85	26	0.3	0.3	0.5	533250	413400
1161534	275	17	38	150	43	0.3	0.3	1.7	531100	413500
1161535	125	5	21	84	27	0.5	0.3	1.3	528700	414700
1161536	234	13	46	102	64	1	0.3	2.4	531800	415400
1161537	214	16	65	107	64	0.6	0.3	4.2	534650	419100
1161538	202	14	34	104	37	0.3	0.3	0.5	527650	421550
1161539	180	13	32	93	42	0.6	0.3	0.5	525700	424050
1161540	140	13	27	107	34	0.7	0.3	0.5	524600	428400
1161541	166	15	46	94	58	0.5	0.3	0.5	530150	428150
1161542	148	14	38	96	52	0.6	0.3	0.5	529600	435650
1161543	121	13	42	102	59	0.3	0.3	0.5	530900	436200
1161544	200	15	42	118	47	0.6	0.3	1.7	547900	400400
1161545	140	17	46	113	60	0.6	0.3	1.6	546000	402100
1161546	195	14	33	1 0 3	40	0.3	0.3	1.8	544450	400000
1161547	126	14	32	113	45	0.6	0.3	1.1	546200	396300
1161548	178	14	35	107	42	0.7	0.3	1.5	543800	392450
1161549	172	18	42	126	66	0.9	0.3	1.5	543500	389800
1161550	109	12	30	87	40	0.6	0.3	1.2	541400	390300
1161601	161	11	35	87	35	0.3	0.3	0.5	539250	391050
1161602	186	11	33	101	38	0.3	0.3	0.5	540150	394200
1161603	155	5	29	87	32	0.3	0.3	1.4	536900	390450
1161604	50	11	21	77	34	0.6	0.3	1.6	535800	393900
1161605	105	5	22	67	26	0.3	0.3	1.1	535400	394400
1161606	146	5	34	84	33	0.3	0.3	0.5	531700	393400
1161607	107	5	25	59	29	0.3	0.3	0.5	527700	394200
1161608	175	5	28	87	33	0.3	0.3	0.5	530700	396700
1161609	121	5	21	63	25	0.3	0.3	0.5	532200	397000
1161610	130	10	26	77	33	0.6	0.3	0.5	532500	399000
1161611	115	5	24	64	28	0.3	0.3	0.5	533450	398000
1161612	158	11	32	115	42	0.7	0.3	1.6	535750	398800

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161613	119	10	33	101	39	0.3	0.3	1.2	537450	402050
1161614	50	5	17	67	23	0.3	0.3	1.2	533500	402900
1161615	290	13	70	134	68	0.3	0.3	0.5	548100	405400
1161616	151	12	104	129	49	0.3	0.3	0.5	556450	406050
1161617	113	13	34	148	46	0.3	0.3	0.5	556550	406700
1161618	151	5	36	107	42	0.3	0.3	0.5	556100	410650
1161619	438	13	58	130	60	0.3	0.3	1.4	553050	413100
1161620	364	14	56	134	67	0.9	0.3	1.7	555700	415250
1161621	240	14	54	117	66	0.7	0.3	0.5	552500	420600
1161622	258	14	58	135	79	0.3	0.3	2.3	555150	422800
1161623	314	16·	92	167	97	0.6	0.3	2.1	576050	434700
1161625	278	16	69	147	76	8.0	0.3	1.7	573350	431800
1161626	268	12	60	146	60	0.7	0.3	1.5	570600	431100
1161627	319	15	80	131	78	0.7	0.3	1.3	552900	432800
1161628	291	14	75	126	83	0.7	0.3	1.3	545550	432200
1161629	240	14	68	119	83	0.7	0.3	1.5	547300	434850
1161630	176	11	67	104	64	0.3	0.3	0.5	552900	435450
1161631	196	5	50	102	50	0.3	0.3	0.5	551750	441700
1161632	239	1 1	5 1	107	58	0.5	0.3	1.4	569300	439900
1161633	338	13	61	112	56	0.6	0.3	1.6	582200	445100
1161634	166	11	39	96	45	0.7	0.3	1.2	580700	443600
1161647	266	18	65	144	85	0.7	0.3	0.5	574200	404800
1161648	218	14	50	136	6 2	0.5	0.3	1.4	569300	400650
1161649	347	16	52	171	73	0.7	0.3	1.8	566300	401450
1161650	260	17	57	147	73	0.6	0.3	1.1	565900	401500
1161762	140	15	4 1	135	58	0.6	0.3	0.5	557200	397300
1161763	152	15	42	109	57	0.5	0.6	0.5	561150	388700
1161945	247	5	58	177	62	0.3	0.3	0.5	638100	410850
1161946	205	5	60	174	64	0.3	0.3	2.3	639000	411150
1161947	255	11	65	167	74	0.3	0.3	0.5	637400	408700
1161948	356	13	67	227	82	0.3	0.3	2	636500	408600
1161949	388	15	69	185	74	0.3	0.3	0.5	637300	409700
1161950	242	. 10	49	152	55	0.3	0.3	1.6	638650	409850
1161951	410	14	68	171	63	0.3	0.3	0.5	596700	419200
1161952	304	12	74	152	79	0.3	0.3	1.7	603850	421300
1161953	343	12	57	160	73	0.3	0.3	0.5	604200	421200

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161954	228	12	60	186	69	0.3	0.3	0.5	604500	421400
1161955	225	11	70	122	79	0.3	0.3	1.6	605850	421500
1161956	329	13	52	153	57	0.3	0.3	1.8	605500	421200
1161957	202	14	61	191	69	0.3	0.3	0.5	608700	418450
1161958	310	15	69	166	77	0.3	0.3	3.2	610500	419900
1161959	174	12	45	. 159	61	0.3	0.3	0.5	610950	416950
1161960	258	15	60	161	73	0.3	0.3	0.5	612800	420000
1161961	477	16	70	165	74	0.3	0.3	4.6	612400	421900
1161962	330	14	58	174	74	0.3	0.3	1.6	612250	422000
1161963	233	13	66	235	77	1.1	0.3	2.6	613900	423500
1161964	456	16	66	172	76 ·	0.3	0.3	0.5	611550	424450
1161965	221	14	55	186	66	0.3	0.3	2.8	611400	424500
1161966	336	15 、	53	159	63	0.3	0.3	1.7	611700	424800
1161967	193	11	46	163	59	0.3	0.3	2.4	606400	425400
1161968	225	11	41	157	49	0.3	0.3	0.5	606600	426300
1161969	211	11	46	196	52	0.3	0.3	0.5	607400	427500
1161970	270	12	49	170	61	0.3	0.3	0.5	607200	427500
1161971	240	13	45	163	51	0.3	0.3	1.8	608150	428500
1161972	291	12	59	162	67	0.3	0.3	2.9	609200	429150
1161973	364	12	65	167	70	0.3	0.3	0.5	616350	427650
1161974	202	13	38	134	49	0.3	0.3	0.5	610750	427200
1161975	192	12	36	166	49	0.3	0.3	0.5	617400	428000
1161976	237	14	45	178	57	0.3	0.3	0.5	610750	427800
1161977	568	16	75	149	85	0.3	0.3	0.5	618100	428300
1161978	411	11	64	113	104	1.5	0.3	0.5	617900	429759
1161979	508	16	57	136	84	0.3	0.3	0.5	618500	429900
1161980	332	13	52	142	62	0.3	0.3	0.5	618650	428300
1161981	370	17	47	139	61	0.3	0.3	0.5	618400	427700
1161982	216	13	43	136	55	0.3	0.3	0.5	619400	427900
1161983	328	15 .	79	143	85	0.3	0.3	0.5	621750	409200
1161984	253	16	55	140	73	0.3	0.3	0.5	621600	409250
1161985	232	17	67	182	102	0.3	0.3	0.5	621500	407900
1161986	312	17	54	158	71	0.3	0.3	0.5	620300	408800
1161987	412	18	61	159	75	0.3	0.3	0.5	619800	408500
1161988	215	16	50	165	69	0.3	0.3	0.5	618500	408450
1161989	201	16	56	192	77	0.3	0.3	0.5	619300	407650

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161990	206	14	57	150	74	0.3	0.3	0.5	631200	410500
1161991	250	15	70	170	87	0.3	0.3	0.5	631200	409700
1161992	268	15	76	142	90	0.3	0.3	2.2	631800	409700
1161993	257	14	63	140	70	0.3	0.3	0.5	630900	408900
1161994	301	16	95	140	92	0.3	0.3	1.7	632700	408500
1161995	293	14	72	166	70	0.3	0.3	0.5	632200	407600
1161996	187	15	60	152	8 1	0.3	0.3	0.5	620200	407500
1161997	224	13	56	159	64	0.3	0.3	0.5	619400	407600
1161998	208	15	57	166	72	0.3	0.3	0.5	620600	406800
1161999	610	20	104	169	98	0.3	0.3	0.5	639100	408600
1162000	240	13	58	218	77	0.3	0.3	0.5	638050	410000
1163801	. 164	5	43	110	47	0.3	0.3	1.1	561000	440300
1163802	198	10 ,	47	112	54	0.3	0.3	0.5	562250	440050
1163803	228	15	67	127	76	0.3	0.3	0.5	562300	440600
1163804	174	5	38	95	43	0.3	0.3	0.5	562200	441500
1163805	196	13	52	109	61	0.3	0.3	0.5	563800	441600
1163806	160	14	. 66	172	70	0.3	0.3	0.5	564000	441700
1163807	270	14	72	141	78	0.3	0.3	0.5	564100	439650
1163808	215	12	52	116	58	0.3	0.3	0.5	564050	441700
1163809	270	14	63	116	72	0.3	0.3	0.5	563950	440550
1163810	492	15	79	138	83	0.3	0.3	0.5	566050	439300
1163811	161	11	45	125	54	1.4	0.3	0.5	565450	438550
1163812	420	12	78	129	86	0.3	0.3	0.5	564950	438450
1163813	293	10	58	115	71	0.3	0.3	0.5	564400	437950
1163814	108	5	126	133	75	0.3	0.3	0.5	563800	438400
1163815	239	5	63	114	76	0.3	0.3	0.5	563350	437550
1163816	286	5	58	115	59	0.3	0.3	0.5	562850	437800
1163817	189	5	56	106	63	0.3	0.3	0.5	564700	439100
1163818	166	5	40	95	51	0.3	0.3	0.5	566150	442300
1163819	168	12	48	110	61	0.3	0.3	0.5	566100	442550
1163820	108	10	40	90	51	1.4	0.3	0.5	564000	443500
1163821	119	11	49	139	49	0.3	0.3	0.5	563850	443250
1163822	184	10	42	132	57	0.3	0.3	1.9	578100	442500
1163823	379	13	66	128	81	0.3	0.3	0.5	57840 0	443600
1163824	190	13	47	155	72	0.3	0.3	0.5	578200	443700
1163825	173	10	34	94	3 8	0.3	0.3	0.5	578 750	444250

Pd PPB

0.3

0.3

Pt PPB

0.3

0.3

Au PPB

1.6

0.5

East

578500

579000

North

444300

445100

V PPM

55

46

SAMPNO

1163826

1163827

P PPM

50

234

Th PPM

5

10

Zn PPM

39

43

Zr PPM

113

108

1163828	651	13	78	135	71	0.3	0.3	0.5	578900	445000	ĺ
1163829	363	12	55	125	54	0.3	0.3	1.2	578100	445700	ĺ
1163830	233	12	47	135	54	0.3	0.3	1.6	581700	439850	ı
1163831	146	5	29	108	34	0.3	0.3	0.5	583100	440600	ı
1163832	183	16	22	132	90	0.3	0.3	0.5	582400	438700	ı
1163833	133	11	29	124	38	0.3	0.3	0.5	582050	437600	ı
1163834	236	15	63	127	77	0.3	0.3	1.9	580700	435500	ĺ
1163835	290	15	65	120	76	0.3	0.3	1.4	580700	435450	ĺ
1163836	231	13	46	123	52	0.3	0.3	2.2	581350	435500	ı
1163837	398	17	90	128	101	0.9	0.3	2.3	581800	434750	ĺ
1163838	280	15	44	120	49	0.3	0.3	0.5	590050	411950	ı
1163839	292	16	56	132	66	0.3	0.3	2.5	590300	411500	ı
1163840	498	17	87	147	97	0.3	0.3	1.8	589950	411250	ı
1163841	336	16	62	152	83	0.9	0.3	1.7	588800	410450	ı
1163842	436	16	63	120	6,9	0.3	0.3	0.5	588750	410100	ı
1163843	276	15	52	121	58	0.3	0.3	0.5	587600	409700	ĺ
1163844	259	15	57	131	63	0.3	0.3	0.5	587900	409150	ĺ
 1163845	273	15	53	110	61	0.3	0.3	0.5	588050	409100	ĺ
1163846	164	13	40	140	48	0.3	0.3	0.5	586650	409250	l
1163847	274	14	53	124	60	0.3	0.3	2.9	587100	407550	l
1163848	178	14	35	109	42	0.3	0.3	0.5	588800	407150	l
1163849	256	12	50	115	68	0.3	0.3	1.7	588600	405350	
1163850	261	15	59	122	71	0.3	0.3	0.5	588800	405200	ĺ
1163851	50	5	22	84	31	0.3	0.3	2.2	528850	457850	l
1163852	114	5	33	110	32	0.3	0.3	0.5	526700	456500	ı
1163853	158	10	30	76	35	0.3	0.3	0.5	526750	456450	l
1163854	389	16	67	128	73	0.3	0.3	0.5	579800	423150	l
1163855	229	15	54	145	61	0.3	0.3	0.5	579250	421400	l
1163856	310	17	82	169	70	0.3	0.3	0.5	579400	421300	l
1163857	288	17	66	182	67	1.6	0.3	3.4	578200	420050	l
1163858	321	16	65	144	69	0.3	0.3	0.5	578000	420050	l
1163859	362	16	59	147	61	0.3	0.3	0.5	578300	421000	l
1163860	241	15	45	122	50	0.3	0.3	0.5	578450	420850	l
1163861	216	11	42	110	4 1	0.3	0.3	0.5	536000	443650	l

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163862	330	11	48	85	44	0.3	0.3	. 0.5	535850	443900
1163863	177	13	33	70	39	0.3	0.3	0.5	525000	446650
1163864	117	11	45	80	46	0.3	0.3	0.5	525150	445700
1163865	228	12	3 8	79	39	0.3	0.3	0.5	524850	445700
1163866	339	16	51	120	63	0.3	0.3	0.5	524000	445400
1163867	156	18	33	93	59	0.3	0.3	0.5	540500	444600
1163868	109	21	74	8 2	72	0.3	0.3	0.5	540300	443900
1163869	105	16	35	8 9	57	0.3	0.3	0.5	540000	442950
1163870	177	16	30	81	33	0.3	0.3	0.5	518400	437200
1163871	184	15	34	81	34	0.3	0.3	0.5	519550	436000
1163872	216	11	31	69	31	0.3	0.3	0.5	520250	436100
1163873	275	14	48	93	48	0.3	0.3	0.5	518100	436200
1163874	252	14 ,	60	136	68	0.3	0.3	0.5	540500	437150
1163875	306	15	80	121	69	0.3	0.3	0.5	540550	437000
1163876	251	14	78	139	78	0.3	0.3	0.5	541250	437700
1163877	199	13	46	113	47	0.3	0.3	0.5	541650	438150
1163878	214	15	58	118	63	0.3	0.3	0.5	542400	438800
1163879	378	19	77	159	. 75	0.3	0.3	0.5	561600	431250
1163880	149	15	44	96	45	0.3	0.3	0.5	536550	444000
1163881	330	17	71	149	73	0.3	0.3	0.5	563500	432800
1163882	207	13	49	128	56	0.3	0.3	0.5	563400	432600
1163883	494	20	95	174	90	0.3	0.3	0.5	562200	432650
1163884	270	19	69	123	78	0.3	0.3	1.7	561850	432700
1163885	278	14	49	123	56	0.3	0.3	1.4	561100	432350
1163886	489	21	. 105	170	88	0.3	0.3	2.5	560900	431950
1163887	209	12	49	112	47	0.3	0.3	0.5	562550	430100
1163888	222	16	54	123	56	0.3	0.3	0.5	562250	429900
1163889	187	18	61	116	75	0.3	0.3	1.7	560550	431750
1163890	180	19	82	139	76	0.3	0.3	0.5	559900	431600
1163891	411	20	79	136	73	0.3	0.3	0.5	559300	432050
1163892	189	14	53	117	60	0.3	0.3	1.8	559700	441200
1163893	100	16	69	113	61	0.3	0.3	0.5	559400	442000
1163894	143	16	53	108	64	0.3	0.3	0.5	559650	442050
1163895	222	17	68	125	74	0.3	0.3	2.3	558950	442200
1163896	182	15	56	116	55	0.3	0.8	0.5	558750	442700
1163897	152	12	41	95	42	0.3	0.3	0.5	558900	442800

Pd PPB

Pt PPB

Au PPB

East

North

V PPM

SAMPNO

P PPM

Th PPM

Zn PPM

Zr PPM

	 					<u> </u>			<u> </u>	1 1771111
1163898	121	12	34	89	42	0.3	0.3	0.5	559600	443300
1163899	50	10	54	128	46	0.3	0.3	0.5	560300	443000
1163900	120	13	7 6	145	65	0.3	1	0.5	560300	442700
1163901	127	14	37	133	51	0.3	0.3	0.5	587800	404400
1163902	179	15	47	161	53	0.3	0.9	1.7	586600	404350
1163903	189	14	40	148	46	0.3	0.3	2.3	577950	403900
1163904	250	16	58	182	54	0.3	0.8	0.5	576850	403800
1163905	194	17	46	208	52	0.3	0.3	0.5	576150	403100
1163906	401	20	67	175	60	0.3	0.9	1.8	576200	403450
1163907	163	15	46	118	56	0.3	0.8	0.5	561300	402800
1163908	197	23	36	231	61	0.3	0.3	0.5	561950	401600
1163909	218	19	52	139	64	0.3	0.8	0.5	560650	401900
1163910	237	19	49	137	64	0.3	0.3	0.5	560900	401500
1163911	126	15	. 24	151	43	0.3	0.3	0.5	560800	401100
1163912	322	23	55	212	7 3	0.3	0.3	1.8	559800	400800
1163913	276	19	50	163	63	0.3	0.3	0.5	559150	401050
1163914	208	19	41 .	137	55	0.3	0.8	1.3	558400	400450
1163915	164	18	39	123	64	0.3	0.3	1.9	558600	400400
1163916	241	19	57	159	62	0.3	0.3	0.5	558350	400900
1163917	148	15	29	116	44	0.3	0.3	0.5	558250	401600
1163918	149	16	31	136	47	0.3	0.3	0.5	558900	401800
1163919	158	19	42	136	57	0.3	0.3	0.5	559400	402950
1163920	50	18	36	120	48	0.3	0.9	1.7	559650	403200
1163921	252	22	48	193	69	0.3	0.3	2.3	563200	406650
1163922	204	20	44	133	64	0.3	0.3	1.9	562100	405900
1163923	170	14	23	124	36	0.3	0.3	1.7	562000	406100
1163924	302	22	46	126	62	0.3	0.3	2.6	562500	406600
1163925	332	22	37	149	48	0.3	0.3	0.5	562400	408900
1163926	353	22	63	137	82	0.3	0.9	0.5	562300	409650
1163927	324	18	49	164	59	0.3	0.3	0.5	561100	409600
1163928	297	18	52	153	68	0.3	0.3	3.1	561100	409400
1163929	277	17	47	191	58	0.3	0.3	0.5	560500	410700
1163930	323	20	60	177	63	0.3	0.3	1.2	568250	416500
1163931	275	18	47	83	48	0.3	0.3	4.2	567750	417200
1163932	230	19	53	169	58	0.3	0.3	0.5	567450	417100
1163933	234	17	43	166	47	0.3	0.3	0.5	566300	417100

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163934	282	17	55	92	54	0.3	0.3	1.8	566100	417200
1163935	186	16	43	99	49	0.3	0.3	0.5	566800	418100
1163936	432	17	50	169	55	0.3	0.3	0.5	566650	418600
1163937	143	15	47	239	53	0.3	1.3	0.5	565700	419900
1163938	211	18	45	172	61	0.3	0.3	0.5	602800	401800
1163939	250	17	48	131	62	1.2	0.3	0.5	603500	406300
1163940	263	21	45	142	57	0.3	0.3	0.5	603600	406500
1163941	414	19	55	163	63	0.3	0.3	1.1	604450	407200
1163942	324	18	47	147	54	0.3	0.3	0.5	605050	407600
1163943	377	15	59	162	70	0.3	0.8	0.5	605100	407750
1163944	190	17	42	133	57	0.3	0.3	0.5	605000	408000
1163945	290	15	49	149	56	0.3	0.3	0.5	604200	409500
1163946	166	15	42	132	70	0.3	0.9	0.5	613500	412700
1163947	208	16	46	118	65	0.3	0.3	0.5	614200	413400
1163948	327	18	50	141	62	0.3	0.3	0.5	614350	413450
1163949	296	17	58	120	75	1	0.3	0.5	614900	414150
1163950	235	18	46	126	61	0.3	0.3	0.5	615550	414900
1163951	258	15	49	111	79	0.3	0.8	0.5	615550	412000
1163952	211	17	49	118	69	0.3	0.3	0.5	616200	412750
1163953	308	· 17	59	116	77	0.3	0.3	0.5	616250	412600
1163954	288	18	58	121	73	0.3	0.3	0.5	616950	413900
1163955	293	17	49	134	66	0.3	0.3	3	617200	413800
1163956	190	17	4 1	114	76	1	0.8	0.5	618100	414200
1163957	180	15	44	117	47	0.3	0.3	0.5	618350	414100
1163958	293	18	51	133	69	0.3	0.9	1.6	619100	415300
1163959	419	19	76	135	94	0.3	1.1	1.7	619050	414950
1163960	250	17	50	127	66	0.3	0.3	0.5	619200	414900
1163961	462	18	58	136	73	0.3	0.3	0.5	619650	415800
1163962	532	18	63	121	79	0.3	0.3	2.3	619750	415600
1163963	465	19	61	150	69	0.3	0.3	2.6	620100	415800
1163964	408	20	56	134	71	0.9	0.3	1.1	620700	416500
1163965	342	20	58	135	77	0.3	0.3	2.1	620700	416300
1163966	309	18	48	.125	62	0.3	0.3	2	620800	416250
1163967	433	15	47	101	68	0.3	0.3	0.5	621000	416700
1163968	493	18	67	140	89	0.3	0.3	2.4	619000	418500
1163969	352	17	52	125	70	0.8	0.3	1.5	618700	419600

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163970	323	17	60	117	73	0.3	0.3	3.2	618400	420900
1163971	282	16	53	114	62	0.3	0.3	0.5	618250	420900
1163972	264	16	50	107	64	1	0.3	1.8	617300	421700
1163973	266	17	60	10 9	73	0.9	0.3	0.5	616600	422400
1163974	283	17	52	144	64	0.9	0.3	1.9	616000	418400
1163975	310	15	57	139	69	0.3	0.3	0.5	615250	417800
1163976	249	15	55	126	71	0.3	0.3	0.5	614950	417800
1163977	230	13	4 6	142	62	0.3	0.3	0.5	614950	417900
1163978	295	13	48	139	61	0. 9	0.3	0.5	614050	417400
1163979	218	15	44	125	57	0.3	0.3	0.5	614050	417300
1163980	298	14	4 6	142	60	0.9	0.3	0.5	613500	416700
1163981	322	17	61	117	75	0.3	0.3	1.7	613350	416700
1163982	247	15 ,	56	109	68	0.3	0.3	0.5	612600	416000
1163983	163	14	41	101	55	0.3	0.3	0.5	611900	415650
1163984	145	14	43	96	57	0.9	0.3	0.5	611850	415500
1163985	254	15	55	116	67	0.3	0.3	0.5	612350	415450
1163986	338	1,7	62	116	71	0.8	0.3	0.5	612400	414650
1163987	232	15	54	127	61	0.3	0.3	0.5	611300	414500
1163988	364	16	58	131	- 62	0.3	0.3	0.5	596900	430950
1163989	221	12	43	125	46	0.3	0.3	0.5	596150	431250
1163990	141	13	66	159	58	0.3	0.3	2.1	596800	430400
1163991	295	13	58	126	55	0.3	0.3	0.5	595500	429600
1163992	189	13	52	139	46	0.3	0.3	0.5	595550	428900
1163993	367	15	6 4	126	62	0.3	0.3	1.5	595550	428600
1163994	263	12	49	127	48	0.3	0.3	0.5	595400	428500
1163995	371	15	64	166	59	0.3	0.3	0.5	587000	429650
1163996	222	13	40	117	4 1	0.3	0.3	1.9	587200	427500
1163997	680	14	73	143	62	0.3	0.3	0.5	587700	427100
1163998	402	16	65	164	62	0.3	0.3	0.5	587650	426800
1163999	206	15	32	120	47	0.3	0.3	0.5	596200	420400
1164000	494	17	70	163	65	0.9	0.3	0.5	596800	419350
1233860	220	13	47	126	. 74			1.68	553600	444200
1233861	221	11	60	112	74			0.5	553400	441200
1233862	264	5	4 1	88	57			0.5	550000	445000
1233863	315	22	46	200	331			0.5	550800	446200
1233865	173	5	4 9	115	53			0.5	557200	445000

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233867	132	5	30	119	38			0.5	567800	444600
1233868	102	5	19	57	28			1.7	566200	442600
1233869	158	5	37	103	61			1.7	570200	443600
1233870	. 187	5	41	105	58			0.5	569800	441400
1233871	445	12	73	139	83			0.5	565800	439200
1233872	264	5	54	115	63			0.5	564600	439400
1233873	588	19	90	139	104		•	0.5	561800	437200
1233874	125	12	114	98	61			0.5	558800	438400
1233875	273	11	67	122	80			0.5	555000	437200
1233876	204	10	54	108	7 2			5.92	557600	436000
1233877	273	11	65	141	83			0.5	549700	426800
1233878	220	11	57	112	74			0.5	550200	424700
1233879	384	13	71	129	88	•		2.57	554400	423800
1233880	340	14	52	126	79			0.5	554600	425200
1233881	188	5	31	112	44			0.5	554400	427600
1233882	463	16	71	145	96 ·			0.5	557200	429600
1233883	276	12	62	128.	71			0.5	557700	434400
1233884	419	14	81	144	98			0.5	559300	435000
1233885	392	15	75	130	93			1.83	559400	434000
1233886	563	11	7 2	112	75			2.64	559400	432000
1233887	561	16	. 84	128	86			0.5	558800	430200
1233888	235	12	54	122	51			0.5	562200	420600
1233889	303	12	74	132	88			0.5	563600	431600
1233890	315	13	69	133	8 1			0.5	564000	433000
1233891	154	11	47	122	59			0.5	570400	440300
1233892	402	14	66	116	80			0.5	571200	440600
1233894	221	11	51	117	58			0.5	583200	440800
1233895	353	16	58	122	72			1.93	582800	442400
1233898	173	5	40	146	54			0.5	578200	442600
1233900	267	5	38	114	50			0.5	577800	441500
1233901	371	13	56	130	67			0.5	573600	444000
1233902	175	5	38	136	53			0.5	574600	442800
1233903	213	12	44	109	65			3.28	573800	442400
1233904	251	12	52	116	71 ·			0.5	572400	438400
1233905	291	15	72	114	93			0.5	577400	434000
1233906	394	15	79	117	87	•		0.5	581800	435000

00078

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233907	141	5	37	102	42			0.5	580800	432600
1233908	332	16	78	124	103			1.82	572900	429400
1233909	235	13	50	130	67			0.5	550000	410000
1233910	125	5	30	85	6 1			2.24	548600	410400
1233911	311	12	62	107	74			0.5	548800	412400
1233912	114	11	30	89	49			0.5	550800	411800
1233913	50	5	22	121	33			0.5	552600	409600
1233914	177	16	38	148	54			0.5	554400	407600
1233915	208	. 13	47	166	56			0.5	558000	409400
1233916	258	15	44	. 145	59			0.5	561000	412400
1233917	258	14	48	144	62			0.5	560000	411800
1233918	146	12	30	108	45			0.5	556500	412200
1233919	225	14	42	132	57			0.5	559000	414300
1233920	165	10	38	123	44			0.5	554600	416200
1233921	166	12	62	106	47			0.5	556000	417000
1233922	238	22	47	289	55			0.5	562500	415800
1233923	288	13	. 71	142	86			0.5	560300	419000
1233924	156	13	41	117	54			0.5	560200	421000
1233925	355	14	62	108	88			0.5	561700	420400
1233926	210	13	34	107	45			0.5	563200	419400
1233928	157	12	36	124	47			0.5	577600	419700
1233929	345	16	58	150	64			2.55	580000	423000
1233930	329	16	65	116	91			0.5	577600	425600
1233931	297	14	. 61	114	86			0.5	577900	426400
1233932	332	13	69	130	88			0.5	574300	425800
1233933	281	12	53	123	67			0.5	575000	423000
1233934	300	14	71	125	87			0.5	572800	426800
1233935	263	14	63	173	66			0.5	570000	425200
1233936	300	14	50	120	64			0.5	563800	424600
1233937	226	111	53	127	67			0.5	568900	423300
1233938	241	12	42	117	57			0.5	565000	423000
1233939	309	14	64	124	78			0.5	566200	421600
1233940	251	12	40	138	49		•	0.5	565400	420000
1233941	286	13	47	160	53			0.5	566500	416700
1233942	153	11	80	372	60	•		0.5	569000	419600
1233943	129	13	74	390	·76			0.5	570900	420700

SAMPNO	P PPM_	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233944	184	12	47	125	60			0.5	572500	418000
1233945	127	11	32	186	45			0.5	571000	413000
1233946	260	12	46	139	65			0.5	570600	412000
1233947	206	12	44	151	59			0.5	572200	410000
1233948	185	13	54	129	86			0.5	575500	410300
1233949	105	10	34	128	49			0.5	571900	406000
1233950	183	13	48	118	74			0.5	573800	403000
1233951	151	11	36	151	61			0.5	567500	409300
1233952	250	12	43	132	60			0.5	564800	406100
1233953	248	14	45	157	64			0.5	558400	400200
1233954	368	19	57	131	70			0.5	552100	405300
1233955	270	16	54	110	6 6			0.5	549800	397600
1233956	235	17	49	1 05	64			0.5	551300	404800
1233957	230	16	45	102	67			0.5	549500	397200
1233958	251	16	4 1	118	54			0.5	551000	389100
1233961	283	17	51	125	71			0.5	560000	388000
1233962	255	16	50	134	69			0.5	563700	395100
1233963	217	15	45	126	61			0.5	562800	397100
1233964	208	14	41	109	58			0.5	557000	397200
1233965	183	12	35	143	48			0.5	558400	396700
1233966	253	14	47	127	63			0.5	556400	395600
1233967	349	20	66	141	88			1.87	558400	393000
1233968	232	17	43	115	64			0.5	560200	392100
1233969	175	13	35	109	49			1 : 87	566200	390400
1233972	299	15	42	143	61			0.5	569900	394300
1233974	397	16	50	146	73			0.5	572100	398200
1233976	174	13	30	124	45			1.78	575600	398600
1233978	308	17	46	131	74			2.13	575200	395000
1233981	207	15	43	130	59			1.77	576900	403800
1233982	232	14	43	126	59		•	0.5	578800	408000
1234005	185	11	43	90	67			1.68	633400	445200
1234077	165	11	43	88	99			0.5	654100	379300
1234078	199	11	42	87	94			1.67	659500	377400
1234079	196	12	35	99	71			2.15	661300	377600
1234080	204	12	37	103	84			2.32	666600	380200
1234081	193	10	56	296	100			2.45	671200	382400

YARDEA -80# STREAM SEDIMENT DATA

SAMPNO	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM	Pd PPB	Pt PPB	Au PPB	East	_ North
1234082	201	17	52	207	102			0.5	673900	383700
1234083	282	30	75	675.	195			2.2	676200	384300
1234084	163	18	50	122	68			0.5	664900	386700
1234085	197	24	60	165	83			0.5	663000	384600
1234086	288	24	74	123	91			2.28	653200	385600
1234087	254	25	58	158	79			0.5	658300	388400
1234088	443	19	66	131	81			0.5	656000	388900
1234089	308	20	69	134	82			0.5	662600	389600
1234090	285	21	84	138	88			1.78	663400	389700
1234091	257	20	79	144	71			0.5	670000	390000
1234092	185	19	48	133	67			2.93	663800	392200
1234093	351	26	· 73	214	74	•		0.5	641000	403100
1234094	280	20	75	137	86			2.22	641600	399200
1234095	304	20	62	144	65			5.2	644000	404400
1234096	244	19	5 7	149	78			2.42	646800	403800
1234097	256	19	53	150	62			0.5	647800	405400
1234098	273	18	54	147	57			0.5	649000	406300
1234099	263	16	68	137	69			0.5	649800	407200
1234100	280	16	68	132	70	4		0.5	654000	406800
1234101	260	15	49	144	55			0.5	660400	403200
1234102	182	19	54	140	84			1.67	660200	395300
1234103	323	20	69	147	78			4.68	655900	399700
1234104	249	19	62	119	78			2.05	655700	400800
1234105	. 252	21	. 60	167	78			1.88	<u>655800</u> ,	399700
1234106	294	21	63	143	72			0.5	653200	397800

APPENDIX II

STOCKDALE -80# GEOCHEMISTRY

\Box
0
\bigcirc
င္တာ
ಌ

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p2676	1	1	22	10	5 .	0.5	0.05	1	1	2
p2677	6	1	. 27	9	6	0.5	0.05	· 1	1	2
p2678	5	1	3 3	15	5	0.5	0.8	1	1	2
p267 9	3	1	34	17	6	0.5	0.05	3	1	2
p2680	1	1	15	8	5	0.5	0.05	1	1	2
p2681	8	2	34	18	5	0.5	0.05	2	1	2
p2682	6	1	26	17	6	0.5	0.05	1	1	2
p2683	6	3	28	14	4	0.5	0.05	1	1	2
p2684	4	1	26	15	3	0.5	0.05	1	1	2
p2685	5	1 🔍	32	10	5	0.5	0.05	7	1	2
p2686	8	6	24	17	4	0.5	0.05	7	1	2
p2687	4	3	32	18	6	0.5	0.05	1	1	2
p2688	3	3	29	15	. 6	0.5	0.05	1	1	2
p2689	1	1	17	9	2	0.5	0.05	1	1	2
p2690	1	1	20	12	3	0.5	0.05	1	1.	2
p2691	3	1	23	14	3	0.5	0.05	1	1	2
p2692	1	1	18	23	1	0.5	0.05	1	1	2
p2693	3	1	32	21	6	0.5	0.05	1	1	2
p26 9 4	3	1	23	17	4	0.5	0.05	1	1	2
p2695	3	1	31	15	6	0.5	0.05	1	1	2
p26 9 6	3	1	122	20	3	0.5	0.05	1	1	2
p2 69 7	1	1	27	17	6	0.5	0.05	1	1	2
p26 9 9	10	7	44	20	6	0.5	0.05	1	1	2
p2700	8	3	47	24	5	0.5	0.05	5	1	2
p27 0 2	7	3	36	15	8	0.5	0.05	3	1	2
p27 03	4	1	30	16	5	0.5	0.05	1,	1	2
p27 0 4	11	5	36	18	2	0.5	0.05	14	1	2
p27 0 6	4	1	25	14	3	0.5	0.05	1	1	2
p27 0 7	1	1	27	12	6	0.5	0.05	1	1	2
p2708	9	3	39	9	4	0.5	0.05	3	1	2
p2709	12	7	48	24	8	0.5	0.05	8	1	2
p2710	12	8	48	18	4	0.5	0.05	1	1	2
p2711	8	4	60	28	6	0.5	0.1	7	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p2712	1	1	23	9	3	0.5	0.05	1	1	2
p2713	1	1	46	14	3	0.5	0.2	1	1	2
p2715	7	4	41	17	3	0.5	0.05	1	1	2
p2716	9	6	48	19	4	0.5	0.5	1	1 .	2
p2717	5	4	28	14	6	0.5	0.05	1	1	2
p2718	13	8	65	21	3	0.5	0.05	4	1	2
p2719	4	2	32	8	4	0.5	0.05	1	1	2
p2720	3	1	63	13	6	0.5	0.05	1	1	2
p2721	3 .	1	27	15	4	0.5	0.1	3	1	2
p2722	7	4	36	12	- 8	0.5	0.05	1	1	2
p2723	4	1	30	19	3	0.5	0.4	· 1	1	2
p2724	9	5	46	19	5	0.5	0.05	1	1	2
p2725	3	1	37	13	6	0.5	0.05	1	1	2
p2726	15	10	61	20	7	0.5	0.05	1	1	2
p2727	7	6	58	22	7	0.5	0.05	. 2	1	2
p2728	13	6	53	25	6	0.5	0.05	6	1	2
p2729	20	16	183	27	10	0.5	0.05	1	1	2
p2901	1	1	10	10	6	0.5	0.05	1	1	2
p2902	1	1	15	10	6	0.5	0.05	1	1	2
p29 0 3	1	1	10	7	4	0.5	0.05	1	1	2
p29 0 4	19	6	54	26	23	0.5	1.4	1	1	2
p2905	3	2	24	11	6	0.5	0.05	1	1	2
p2906	1 O	3	44	15	4	0.5	0.05	1	1	2
p2907	6	1	20	13	5	0.5	0.05	4	1	2
p29 0 8	11	6	40	19	5	0.5	0.05	1	1	2
p2909	1 ,	1	19	9	5	0.5	0.05	1	1	2
p2910	7	3	35	16	4	0.5	0.05	1	1	2
p2911	2	1	47	13	5	0.5	0.1	1	1	2
p2912	1	. 1	17	7	5	0.5	0.05	1	1	2
p2913	1	1	14	7	3	0.5	0.05	1	1	2
p2914	1	1	16	12	4	0.5	0.05	1	1	2
p2915	2	· 1	24	14	4	0.5	0.05	1	1	2
p2916	1	1	23	8	4	0.5	0.05	1	1	2

_
Ö
0
0
\bigcirc
\circ
CI

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p2 <u>9</u> 17	1	1	22	15	6	0.5	0.05	1	1	2
p2918	12	8	73	27	7	0.5	0.05	5	1	2
p2919	3	1	28	13	4	0.5	0.05	1	1	2
p2920	2	1	., 2 9	11	4	0.5	0.05	1	1	2
p2921	1 -	. 1	32	15	6	0.5	0.05	1	1	2
p2922	13	7	60	18	6	0.5	0.05	1	1	2
p2923	9	4	45	21	5	0.5	0.05	i 1	1	2
p2924	9	1	37	10	·5	0.5	0.05	1	1	2
p292 5	7	6	38	16	. 7	0.5	0.05	1	1	2
p2926	4	1 ,	31	16	2	0.5	0.05	1	1	2
p2927	1	1 `	28	12	5	0.5	0.05	1	1	2
p2928	1	1	28	16	5	0.5	0.05	1	1	2
p2930	3	1	33	13	5	0.5	0.05	i .	1	2
p29 3 1	6	3	46	18	6	0.5	0.05	1	1	2
p2932	7	. 2	34	16	6	0.5	0.05	2.	1	2
p29 33	17	11	70	23	8	0.5	0.05	1	1	2
p2934	5	2	32	13	4	0.5	0.05	1	1	2
p293 5	3	1	35	14	5	0.5	0.05	1	1	2
p29 3 6	1	1 .	2 5	13	3	0.5	0.05	1	1	2
p29 3 7	4	3	27	14	6	0.5	0.05	1	1	2
p2938	5	1	31	12	4	0.5	0.05	1	1	2
p2939	10	. 7	5 8	20	4	0.5	0.05	4	1	2
p2940	7	5	39	8	7	0.5	0.05	1	1	2
p2941	23	16	110	41	14	0.5	0.05	27	3	2
p2942	5	4	35	16	7	0.5	0.05	1	1	2
p2943	. 6	4	41.	14	5	0.5	0.05	1	1	2
p2944	7	4	41	14	5	0.5	0.05	1	1	2
p294 5	7	4	50	15	7	0.5	0.05	1	1	2
p2946	7	6	40	12	4	0.5	0.05	1	1	2
p2947	12	9	63	14	6	0.5	0.05	1	1	2
p2948	1	2	28	10	4	0.5	0.05	1	1	2
p2949	4	4	33	15	5	0.5	0.05	1	1	2
p2950	8	4	33	16	5	0.5	0.05	1	1	2

0
0
0
\bigcirc
CO
9

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p2951	12	9	59	15	6	0.5	0.05	1	1	2
p2952	9	3	38	17	8	0.5	0.05	3	1	2
p2953	2	2	28	16	6	0.5	0.05	1	1	2
p2954	. 8	5	49	14	8	0.5	0.05	2	1	2
p2955	4	1	29	19	5	0.5	0.1	1	1	2
p2956 ⁻	10	5	46	19	9	0.5	0.05	1	. 1	2
p2957	5	4	34	15	6	0.5	0.05	1	1	2
p2958	7	6	32	12	6	0.5	0.2	1	1	2
p2959	8	4	46	19.	5	0.5	0.05	3	1	2
p2960	1	1 🔍	23	3	5	0.5	0.05	. 1	1	2
p2961	1	1	22	16	4	0.5	0.05	1	1	2 ·
p2962	5	. 1	31	18	6	0.5	0.05	1	1	2
p2963	1	1	17	13	4	0.5	0.05	1	1	2
p2964	3	, 1	23	13	7	0.5	0.05	1	1	2
p2965	6	2	36	20	7	0.5	0.05	1	1	2
p2966	8	5	40	15	6	0.5	0.05	1	1	2
p2967	4	1	45	16	6	0.5	0.05	3	1	2
p2968	6	3	41	19	5	0.5	0.05	· 1	1	2
p2969	8	5	40	16	5	0.5	0.05	1	1	2
p29 70	1	1	41	20	6	0.5	0.05	1	1	2
p2971	5	2	32	18	6	0.5	0.05	1	1	2
p2972	4	3	31	17	5	0.5	0.05	1	1	.2
p2973	5	1	32	17	5	0.5	0.05	1	1	2
p2974	5	3	33	18	4	0.5	0.1	1	1	2
p2975	1	3	35	21	4	0.5	0.05	12	1	2
p2976	5	1	29	10	6	0.5	0.05	1	1	2
p2977	1	1	24	7	5	0.5	0.05	1	1	2
p2978	4	1	26	17	6	0.5	0.1	3	1	2
p29 79	16	9	49	20	2	0.5	0.05	7	. 1	2
p2980	12	3	43	16	9	0.5	0.05	1	1	2
p2981	3	1	26	14	4	0.5	0.1	1	1	2
p2982	.3	1	22	10	4	0.5	0.05	1	1	2
p2983	17	11	56	22	4	0.5	0.1	4	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p2984	7	7	38	14	4	0.5	0.05	1	1	2
p2985	6	4	27	11	8	0.5	0.05	1	1	2
p2986	6	3	23	16	4	0.5	0.1	. 5	1	2
p2987	1	1	. 21	14	5	0.5	0.05	1	1	2
p2988	5	1	33	17	7	0.5	0.05	1	1	2
p2989	1	1	18	7	3	0.5	0.05	1	1	2
p2990	7	1	36	24	9	0.5	0.05	1	1	2
p2991	4	1	24	14	8	0.5	0.05	1	1	2
p2992	1	1	25	10	6	0.5	0.05	1	1	2
p2993	9	6 🔨	37	13	10	0.5	0.05	1	3	2
p2994	6	1	48	12	8	0.5	0.05	1	1	2
p2995	3	1	23	19	6	0.5	0.05	1	1	2
p2997	8	3	33	19	6	0.5	0.05	1	1	2
p2998	6	1	27	16	6	0.5	0.05	1	1	2
p2999	2	1	28	9	7	0.5	0.05	1	1	2
p3000	9	3	39	19	6	0.5	0.05	1	· 1	2
p3001	8	3	38	17	4	0.5	0.05	1	1	2
p3002	3	1	37	13	6	0.5	0.05	1	1	2
p3003	4	1	30	13	5	0.5	0.05	1	1	2
p3004	10	4	. 41	15	9	0.5	0.05	1	1	2
p3005	6	1	34	14	7	0.5	0.05	1	1	2
p3006	7	1	46	15	6	0.5	0.05	· 1	1	2
p3007	5	4	49	14	7	0.5	0.05	1	1	2
p3008	1	1	19	1	5	0.5	0.05	1	1	2
p3009	4	1	21	9	5 .	0.5	0.05	1	1	2
p3010	8	3	50	15	9	0.5	0.05	1	1	2
p3011	5	1	42	9	. 5	0.5	0.05	1	1	2
p3012	1	1	22	7	5	0.5	0.05	1	1	2
p3013	5	1	23	7	5	0.5	0.05	1	1	2
p3014	9	5	35	14	6	0.5	0.05	1	1	2
p3015	5	1	35	13	6	0.5	0.05	1	1	2
p3016	13	10	47	51	9	0.5	0.05	1	1	2
p3017	5	1	21	19	6	0.5	0.05	. 1	1	2

_	\Box
Č	
C	
-	
) X
•	~

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p30 18	1	1	18	16	6	0.5	0.05	1	1	2
p3019	7	3	46	22	. 8	0.5	0.05	3	1	2
p3020	3	1	2 8	7	6	0.5	0.05	· 1	1	2
p3021	6	3	3 8	2.0	8	0.5	0.05	1	1	2
p3022	5	1	30	15	6	0.5	0.1	1	1	. 2
p3023	4	1	30	13	7	0.5	0.05	1	1	2
p3024	20	8	103	28	8	0.5	0.05	14	1	. 2
p3025	8	3	54	23	7	0.5	0.05	7	1	2
p3026	5	1	30	9	5	0.5	0.05	1	1	2
p3027	13	5 🔪	50	20	8	0.5	0.05	8	1	2
p3028	1	1	21	12	5	0.5	0.05	1	1	2
p3029	3	1	24	11	6	0.5	0.05	· 1	1	2
p3030	7	2	45	15	8	0.5	0.05	5	1	2
p3032	3	1	22	13	7	0.5	0.05	1	1	2
p3033	5	1	38	17	6	0.5	0.1	1	1	2
p3034	10	4	51	16	6	0.5	0.05	1	1	2
p3035	20	10	118	31	5	0.5	0.05	22	1	2
p3036	11	1	37	16	8	0.5	0.1	3	1	2
p3037	10	3	49	10	5	0.5	0.05	9	1	2
p3038	7	1	36	14	8	0.5	0.05	1	1	2
p3039	4	1	21	17	4	0.5	0.9	1	1	2
p3040	10	3	77	26	6	0.5	0.4	16	1	2
p3041	1	1	22	12	2	0.5	0.2	1	1 .	2
p3042	19	5	85	43	9	2	0.2	25	5	2
p3043	5	1	20	15	18	0.5	0.1	2	1	2
p3044	8	2	48	19	8	0.5	0.05	1	1	2
p3045	4	1	34	18	4	0.5	0.2	1	1	2
p3 046	3	1	21	11	7	0.5	0.05	1	1	2
p3047	1	1	8	1	1	0.5	0.05	1	1	42
p3.048	5	1	29	3	7	0.5	0.05	1	1	2
p3049	1	1	18	10	4	0.5	0.05	1	1	2
p3050	1	1	20	10	6	0.5	0.05	1	1	2
p3051	1	. 1	17	9	3	0.5	0.05	. 1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Со ррт	Мо ррт	S%	As ppm	Se ppm	Sb ppm
p3052	10	5	44	14	7	0.5	0.05	1	1	2
p3053	- 8	. 1	3 6	16	6	0.5	0.05	6	1	2
p3054	2	, 1	22	16	6	0.5	0.05	1	1	2
p3055	4	_1	33	13	7	0.5	0.05	1	1	2
p3056	1	1	7	5	6	2	0.05	1	1	2
p3057	1 .	1	- 19	7	7	0.5	0.05	1	1	2
p3058	5	2	37	10	6	0.5	0.05	1	1	2
p3059	8	4	43	11	6	0.5	0.05	1	1	2
p3060	6	1	28	14	8	0.5	0.05	1	1	2
p3061	6	1 🔨	39	8	7	0.5	0.05	1	1	2
p3062	5	1	26	10	. 8	0.5	0.05	1	1	2
p3063	5	1	34	7	7	0.5	0.05	1	1	2
p3064	7	1	29	11	9	0.5	0.05	1	1	2
p3 065	9	4	39	11	5	0.5	0.05	1	1	2
p3066	5	1	35	7	6	0.5	0.05	1	1	2
p3067	6	1	32	14	5	0.5	0.05	1	. 1	2
p3068	9	1	31	8	5	0.5	0.05	1	1	2
p3069	1	1	28	10	6	0.5	0.05	1	1	2
p3 0 70	1	1	22	10	6	0.5	0.05	1	1	2
p3071	2	1	31	8	5	0.5	0.05	1	1	2
p3072	1	1	21	10	6	0.5	0.05	1	1	2
p3073	1	1	8	5	5	0.5	0.05	1	1	2
p3074	3	1	41	16	7	0.5	0.05	1	. 1	2.
p3075	1	1	8	4	5	0.5	0.05	1	1	2
p3076	1	1	2	5	5	1	0.05	`1	. 1	2
p3077	1	1 .	3	6	4	1 '	0.05	1	1	2
p3078	1	· 1	1	4	3	1	0.05	1	ì	2
p3079	1 .	1	1	1	3	2	0.05	1	1	2
p3080	1	1 .	4	, 1	4	0.5	0.05	1	1	2
p3081	1	1	. 2	5	4	0.5	0.05	1	1	2
p3082	1	1	1	3	5	1	0.05	1	1	2
p3083	1	1 .	8	4	4	3	0.05	1	1	2
p3084	1	1	1	1	4	2	0.05	1	1	2

2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3085	1	1	1	1	5	0.5	0.05	1	1	2
p3086	1	1	¹ 1	1	6	1	0.05	. 1	1	2
p3087	1	1	6	5	4	0.5	0.05	1	1.	2
p3194	11	3	45	19	9	0.5	0.05	1	1	2
p3195	7	1	28	7	7	2	0.05	1	1	2
p3196	8	3	31	1:1	9	0.5	0.05	1	1	2
p3197	1	1	28	12	7	0.5	0.05	1	1	2
p3198	10	6	48	20	7	0.5	0.05	4	1	2
p3199	15	12	65	11	13	0.5	0.05	1	1 .	2
p3204	9	1 ,	15	9	7	2	0. 0 5	1	1	2
p3205	2	· 1	18	7	8	5	0.05	1	1	2
p3206	3	1	10	6	6	2	0.05	1 '	1	. 2 2
p3208	9	1	18	10	6	3	0.05	1	1	
p3211	12	7	44	17	7	0.5	0.05	1	1	2
p3213	15	9	63	13	9	0.5	0.05	1	1	2
p3214	13	7	49	14	7	0.5	0.5	3	1	2
p3215	1	1	25	11	4	0.5	0.05	1	1	2
p3216	1	1	16	5	3	0.5	0.05	1	1	2
p3217	1	1	8	4	5	0.5	0.05	1	1	2
p3218	5	5	41	16	· 5	0.5	0.05	1	1	2
p3219	5	1	38	17	8	0.5	0.05	4	1	2
p3220	9	7	51	16	6	0.5	0.05	1	1	2
p3221	1 .	4	24	11	5	0.5	0.05	1	1	2
p3222	1	4	26	9	6	0.5	0.05	1	1	2
p3223	7	4	3 9	20	6	0.5	0.05	2 .	1	2
p3224	7	5	46	10	7	0.5	0.05	1	1 ·	2
p3225	17	10	75	23	9	0.5	0.05	9	1	2
p3226	5	4	32	11	7	0.5	0.05	1	1	2
p3227	14	12	52	16	10	0.5	0.05	1	1	2
p3228	38	34	76	14	17	0.5	0.05	5	1	2
p3229	9	7	55	15	5	0.5	0.05	1	1	2
p3230	3	3	3 1	15	8	0.5	0.05	1	1	2
p3231	1	1	27	12	5	0.5	0.05	1	1	2

_		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
2		
_		
2		
2		
2		
	٠	

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3232	8	4	45	16	5	0.5	0.05	1	1	2
p3233	10	8	49	18	7	0.5	0.05	1	1	2
p3234	1	1	-23	13	4	0.5	0.1	1	1	2
p3235	9	6	45	18	5	0.5	0.05	1	1	2
p3236	1	1	25	14	6	0.5	0.05	2	. 1	2
p3237	8	7	42	9	8	0.5	0.05	1	1	2
p3238	9	6	55	24	7	0.5	0.05	11	1	2
p3239	9	. 7	51	20	6	0.5	0.05	1	1	2
p3240	9	8	5 9	20	7	0.5	0.05	1	1	2
p3242	5	6 ,	33	17	6	0.5	0.05	2	1	2
p3243	7	6	41	18	7	0.5	0.05	4	1	2
p3244	14	12	57	15	6	0.5	0.05	1	1	2
p3245	1	2	17	12	6	0.5	0.05	1	1	2
p3246	5	3	34	13	4	0.5	0.05	1	1	2
p3247	6	5	49	17	8	0.5	0.2	1	1	2
p3248	10	7	5 1	15	5	0.5	0.05	· 1	1	2
p3249	7	7	36	13	5	0.5	0.05	1	1	2
p3250	1	1	11	. 10	. 4	0.5	0.05	1	1	2
p3251	1	1	8	8	5	0.5	0.05	1	1	2
p3252	6	3	37	12	4	0.5	0.05	1	1	2
p3253	4	1	28	9	5	0.5	0.05	1	1	2
p3254	1	1	32	12	5	0.5	0.05	1	1	2
p3255	1	1	18	16	4	0.5	0.05	1	1	2
p3256	3	5	26	5	4	0.5	0.05	1	1	2
p3257	11	9	56	31	6	0.5	0.3	16	1	2
p3258	2	4	25	14	6	0.5	0.05	1	1	2
p3259	1	1	23 .	14	6	0.5	0.05	1	1	2
p3260	2	3	21	12	4	0.5	0.05	1	1	2
p3261	6	4	45	22	5	0.5	0.05	1	1	2
p3262	10	8	66	15	9	0.5	0.05	1	1	2
p3263	9	9	5 1	16	6	0.5	0.05	1	1	2
p3264	6	4	38	13	7	0.5	0.05	1	1	2
p 3 265	8	7	5 1	17	4	0.5	0.05	1	1	2

\bigcirc
\bigcirc
(2)
3

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3266	5	6	43	16	4	0.5	0.05	1	1	2
p3267	10	7	61	17	7	0.5	0.05	1	1	2
p3268	7	6	39	17	7	0.5	0.05	1	1	2
p3269	17	14	79	25	12	0.5	0.05	1	1	2
p3270	8	7	54	18	6	0.5	0.05	1	1	2
p3271	14	16	65	25	1	0.5	0.5	13	1	2
p3272	7	5	45	21	4	0.5	0.05	11	1	2
p3273	5	5 -	36	20	1	0.5	3.3	22	1	2
p3274	5	5	4 1	17	7	0.5	0.2	1	1	2
p3275	8	6	4 1	17	6	0.5	0.3	1	1	2
p3276	1	4	17	7	4	0.5	0.05	1	1 .	2
p3277	9	6	55	2 5	6	0.5	0.5	8	1	2
p3278	3	5	30	12	5	0.5	0.05	1	1	2
p3279	16	12	65	13	10	0.5	0.05	1	1	2
p3280	9	6	57	16	9	0.5	0.05	6	1	2
p3291	10	8	51	6	· 5	0.5	0.05	1	. 1	2
p3282	8	8	50	13	7	0.5	0.05	1	1	2
p3283	8	5	43	16	6	0.5	0.05	1	1	2
p3284	3	3	39	16	7	0.5	0.05	5	1	2
p328 5	5	4	26 ⁻	13	5	0.5	0.1	1	1	2
p3286	7	4	30	27	4	0.5	0.2	17	1	2
p3287	11	٠ 8	55	14	7	0.5	0.05	1	1	2
p3288	13	12	65	22	8	0.5	0.05	1	1	2
p3290	6	5	71	32	10	0.5	0.05	22	1	2
p3291	4	10	. 57	23	3	0.5	0.05	4	1	2
p3292	. 4	7	41	15	8	0.5	0.3	1	1	2
p3293	3	3	36	19	6	0.5	. 0.1	2	1	2
p3294	13	10	60	25	6	0.5	1.1	10	1	2
p3295	39	40	113	27	19	0.5	0.05	7	1	2
p3296	15	13	48	19	9	0.5	0.05	8	3	7
p3297	7	9	28	7	6	0.5	0.05	1	1	2
p3298	21	19	67	25	9	0.5	0.05	4	1	2
p3299	7	6	27	13	5	0.5	0.05	1	· 1	2

Co ppm

15

Mo ppm

0.5

S%

0.05

As ppm

9

Se ppm

Sb ppm

2

Sample No.

p3300

Ni ppm

30

Cu ppm

27

Zn ppm

82

Pb ppm

21

p3300	30	21	82	21	15	0.5	0.05	9	1	2
p3301	1	1	18	11	3	0.5	0.05	1	1	2
p3302	15	14	44	10	9	0.5	0.05	1	1	2
p3303	1	1	10	8	3	0.5	0.05	1	1	2
p3304	1	1	23	6	4	0.5	0.05	1	1	22
p3305	5	4	45	12	8	0.5	0.05	3	1	2
p33 06	9	8	38	20	4	0.5	0.05	1	. 1	2
p3307	7	8	47	15	5	0.5	0.05	1	1	2
p3308	5	5	27	13	6	0.5	0.05	1	1	2
p3309	10	6 ,	42	32	5	0.5	0.05	11	1	6
p3310	17	14	76	22	7	0.5	0.05	1 .	1	2
p3311	12	12	4 4	13	7	0.5	0.05	1	1	2
p3312	8	5	48	12	9	0.5	0.05	5	1	2
p3313	13	11	. 42	11	6	0.5	0.05	1	1	2
p3314	10	, 6	24	11	5	0.5	0.05	1	1	2
p3315	7	7	33	15	9	0.5	0.05	1	1	2
p3317	1	1	33	13	5	0.5	0.05	1	1	2
p3318	1	1	23	16	4	0.5	0.05	6	1	2
p3320	12	12	67	22	9	0.5	0.05	1	1	2
p3321	5	1	27	11	5	0.5	0.05	1	1	2
p3322	16	13	73	13	5	0.5	0.05	1	1	2
p3323	10	8	3 6	23	7	0.5	0.05	1	1	2
p3324	13	11	51	19	6	0.5	0.05	1	1	2
p3325	6	8	27	14	5	0.5	0.05	1	1	2
p3326	6	5	32	19	4	0.5	1	7	1	2
p3327	8	7	3 1	20	3	0.5	0.05	1	1	2
p3328	12	7	42	15	6	0.5	0.05	1	1	2
p3329	9	7	39	16	4	0.5	0.2	· 1	1	2
p3330	13	9	44	16	8	0.5	0.2	1 .	1	2
p3331	12	9	61	14	1	0.5	0.05	1	1	2
p3332	11	14	28	23	1	0.5	0.6	21	4	2
p3334	13	10	56	18	8	0.5	0.05	1	1	2
p3335	10	9	69	19	7	0.5	0.05	1	1	2

\Box
0
\bigcirc
ಲ
ightharpoons

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3336	3	1	38	16	5	0.5	0.05	1	1	2
p3337	7	8	42	23	1	0.5	8.0	11	1	8
p3338	8	11	37	27	3	0.5	0.9	12	1	2
p3339	4	9	23	24	1	0.5	0.4	13	4	6
p3340	6	6	44	20	1 .	0.5	0.6	6	1	2
p3341	11	8	62	14	7	0.5	0.05	1	1	2
p3342	3	1	37	16	6	0.5	0.05	1	1	2
p3343	7	6	44	13	5	0.5	0.05	1	1	2
p3344	8	13	40	29	1	0.5	0.9	10	1	2
p3345	8	4	31	18	2	0.5	0.3	3	1	. 5
p3346	. 8	7	10	28	1	0.5	5.7	27	3	2
p3347	8	14	20	41	1	0.5	4.6	47	8	2
p3348	12	14	28	20	6	0.5	0.7	8	2	2
p3349	10	10	26	11	5	0.5	0.05	2	1	2
p33 50	13	13	49	19	7	0.5	0.05	1	1	2
p3351	16	15	54	25	6	0.5	0.4	5	1	2
p3352	19	16	45	12	10	0.5	0.05	10	1	2
p3353	9	8	31	11	3	0.5	0.05	1	1	2
p3354	13	5	31	18	7	0.5	0.05	2	1	2
p3355	10	7	39	20	8	0.5	0.3	1	1	2
p3356	4	5	21	6	4	0.5	0.05	1	1	2
p3357	10	7	32	16	6	0.5	0.05	1	1	2
p3358	14	10	49	25	7	0.5	0.05	2	1	2
p3359	14	9	28	15	5	0.5	0.05	. 4	1	2
p3360	9	7	10	3	7	0.5	0.05	1	1	2
p3361	7	9	13	10	4	0.5	0.05	1	1	2
p3364	13	10	24	15	8	0.5	0.05	1	1	2
p3365	7	7	17	9	6	0.5	0.05	1	1	2
p3366	15	10	31	18	6	0.5	0.1	. 1	1	2
p3367	17	9	53	24	4	0.5	0.05	1	1	2
p3368	16	10	43	14	5	0.5	0.05	` 1 .	1	2
p3369	17	10	48	20	6	0.5	0.05	3	1	2
p 33 70	19	12	56	20	6	0.5	0.05	1	1	2

)
)
Ö)
\sim)
\tilde{w})
C	į

p3371 11 11 39 19 8 0.5 0.05 1 1 2 p3372 8 8 8 47 19 7 0.5 0.05 1 1 2 p3373 9 7 30 7 2 0.5 0.05 1 1 2 p3374 14 11 54 19 9 0.5 0.05 1 1 2 p3376 11 9 28 23 1 0.5 0.2 14 1 8 p3377 7 4 24 20 1 0.5 0.2 14 1 8 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3380 12 12 2 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 </th <th>Sample No.</th> <th>Ni ppm</th> <th>Cu ppm</th> <th>Zn ppm</th> <th>Pb ppm</th> <th>Co ppm</th> <th>Mo ppm</th> <th>S%</th> <th>As ppm</th> <th>Se ppm</th> <th>Sb ppm</th>	Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3373 9 7 30 7 2 0.5 0.05 1 1 2 p3374 14 11 54 19 9 0.5 0.05 1 1 2 p3375 12 9 43 11 7 0.5 0.05 1 1 2 p3376 11 9 28 23 1 0.5 0.2 14 1 8 p3377 7 4 24 20 1 0.5 3.3 6 1 2 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 7 0.5 0.05 1 1 2 p3382 16 9 41 15 </td <td>p3371</td> <td>11 .</td> <td>11</td> <td>39</td> <td></td> <td></td> <td>0.5</td> <td>0.05</td> <td>1</td> <td>1</td> <td></td>	p3371	11 .	11	39			0.5	0.05	1	1	
p3374 14 11 54 19 9 0.5 0.05 1 1 2 p3375 12 9 43 11 7 0.5 0.05 1 1 2 p3376 11 9 28 23 1 0.5 0.2 14 1 8 p3377 7 4 24 20 1 0.5 3.3 6 1 2 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3379 9 6 42 22 26 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3384 18 13 56 20 8		8	8	47	19	7	0.5	0. 0 5	1	1	2
p3375 12 9 43 11 7 0.5 0.05 1 1 2 p3376 11 9 28 23 1 0.5 0.2 14 1 8 p3377 7 4 24 20 1 0.5 0.3 6 1 2 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.05 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 <td< td=""><td>p3373</td><td>9</td><td>7</td><td>30</td><td>7</td><td>2</td><td>0.5</td><td>0.05</td><td>1</td><td>1</td><td>2</td></td<>	p3373	9	7	30	7	2	0.5	0. 0 5	1	1	2
p3376	p3374	14	11	54	19	9	0.5	0.05	1	1	2
p3377 7 4 24 20 1 0.5 3.3 6 1 2 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3379 9 6 42 22 6 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3381 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3386 17 14 60 24 6	p3375	12	9	43	11	7	0.5	0.05	1	1	2
p3377 7 4 24 20 1 0.5 3.3 6 1 2 p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3379 9 6 42 22 6 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3386 17 14 60		11	9	28	23	1	0.5	0.2	14	1	8
p3378 11 9 26 13 3 0.5 0.05 1 1 2 p3379 9 6 42 22 6 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 7 4	p3377	7	4	24	20	1	0.5	3.3	6	1	
p3379 9 6 42 22 6 0.5 0.05 1 1 2 p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 <t< td=""><td>p3378</td><td>11</td><td>9</td><td>26</td><td>13</td><td>3</td><td>0.5</td><td>0.05</td><td>1</td><td>1</td><td></td></t<>	p3378	11	9	26	1 3	3	0.5	0.05	1	1	
p3380 12 12 36 18 5 0.5 0.05 1 1 2 p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.05 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 <	p3379	9	6	42	22	6	0.5	0. 0 5	1	1	
p3381 12 9 32 17 7 0.5 0.05 1 1 2 p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3399 9 7 52 25 <t< td=""><td>p3380</td><td>12</td><td>12 ,</td><td>36</td><td>18</td><td>5</td><td></td><td>0.05</td><td>1</td><td>1</td><td></td></t<>	p3380	12	12 ,	3 6	18	5		0.05	1	1	
p3382 16 9 41 15 6 0.5 0.05 1 1 2 p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3391 9 6 35 11 <	p3381	12	9 `	3 2	17	7	0.5	0.05	1	1	
p3383 14 10 49 24 3 0.5 0.5 1 1 2 p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3399 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3393 9 6 35 11 <t< td=""><td>p3382</td><td>16</td><td>9</td><td>4 1</td><td>15</td><td>6</td><td>0.5</td><td>0.05</td><td>1 .</td><td>1</td><td></td></t<>	p3382	16	9	4 1	15	6	0.5	0.05	1 .	1	
p3384 18 13 56 20 8 0.5 0.05 1 1 2 p3385 17 14 60 24 6 0.5 0.05 1 1 2 p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3391 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 <	p3383	14	10	49	24	3		0.5	1	1	
p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17	p3384	18	13	56	20	8	0.5		1	1	
p3386 19 13 74 24 5 0.5 0.05 1 1 2 p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17	p338 5	17	14	60	24	6	0.5	0.05	• 1	1	2
p3387 12 6 52 19 6 0.5 0.05 1 1 2 p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4<	p3386	19	13	74	24	5 .	0.5	0.05	1	1	
p3388 15 11 56 25 6 0.5 0.05 1 1 2 p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 </td <td></td> <td></td> <td>6</td> <td>52</td> <td>19</td> <td>6</td> <td>0.5</td> <td>0.05</td> <td>1</td> <td>1</td> <td>2</td>			6	52	19	6	0.5	0.05	1	1	2
p3389 9 7 52 25 6 0.5 0.05 1 1 2 p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3400 5 3 25<		15	11	56	25	6	0.5	0.05	1	1	
p3390 15 10 60 22 6 0.5 0.05 1 1 2 p3392 19 13 81 26 8 0.5 0.05 1 1 2 p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34<			7	52	25	6	0.5	0.05	1	1	
p3393 9 6 35 11 7 0.5 0.05 1 1 2 p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3499 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37				60	22	6	0.5	0.05	1	1	
p3394 10 6 44 23 3 0.5 0.05 1 1 2 p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 1 2		19	13	81	26	8	0.5	0.05	1	1	2
p3395 9 9 31 17 3 0.5 0.05 1 1 2 p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3399 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 1 2			6			7	0.5	0.05	1	1	2
p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3399 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 1 2			6	44		3	0.5	0.05	1	1	2
p3396 7 6 21 15 4 0.5 0.05 1 1 2 p3397 2 1 18 14 4 0.5 0.05 1 1 2 p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3399 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 1 2			9			3	0.5	0.05	1	1 ,	2
p3398 7 2 29 19 5 0.5 0.1 1 1 2 p3399 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 2			6		15	4		0.05	1	1	
p3399 1 1 20 13 1 0.5 0.05 1 1 2 p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 1 2			1			4		0.05	1	1	2
p3400 5 3 25 15 4 0.5 0.05 1 1 2 p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 2		7	2		19	5	0.5	0.1	1	1	2
p3401 3 3 34 15 4 0.5 0.05 1 1 2 p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 2		1	1 ,			1			1	1	2
p3402 5 3 37 14 3 0.5 0.05 1 1 2 p3403 10 8 60 22 6 0.5 0.05 1 1 2	•		3	25	15	4	0.5	0.05	1	1	2
p3403 10 8 60 22 6 0.5 0.05 1 1 2			3		15	4	0.5	0.05	1	1	2
·			3			3			1	1	
p3404 6 4 45 29 4 0.5 0.05 1 1 2			8			6		0.05	1	1	
	p3404	6	4	45	29	4	0.5	0.05	1	1	2

0	
5	
ဏ	
9	

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3405	7	8	48	16	4	0.5	0.05	1	1	2
p3406	11	9	56	23	6	0.5	0.05	6	1	2
p3407	8	3	3 5	20	4	0.5	0.05	8	1	2
p3408	8	8	42	15	8	0.5	0.05	1	1	2
p3409	12	9	64	27	6	0.5	0.05	9	1	2
p 34 10	7	6	45	13	7	0.5	0.05	3	1	2
p3411	9	7	40	` 21	3	0.5	0.05	1	1	2
p 3 412	19	12	80	17	6	0.5	0.05	1	1	2
p3413	13	10	54	16	4	0.5	0.05	2	1	2
p3414	11	10 🔨	54	13	9	0.5	0.05	1	1	2
p 34 15	7	8	3 7	17	5	0.5	0.05	1	1 .	2
p3416	. 20	16	76	22	7	0.5	0.05	1	1	2
p3419	10	9	41	18	4	0.5	0.05	1	1	2
p3420	11	8	50	17	6	0.5	0.05	1	1	2
p3421	5	3	25	22	4	0.5	0.4	1	1	2
p3422	13	6	3 9	17	3	0.5	0.05	7	1	2
p3423	11	5	46	15	6	0.5	0.05	6	1	2
p3424	12	7	53	15	1	0.5	0.05	1	1	2
p3425	21	1 4	68	2 1	3	0.5	0.05	4	1	2
p3426	16	14	64	18	10	0.5	0.05	1	1	2
p3427	4	5	28	16	5	0.5	0.05	2	1	2
p3428	7	7	3 7	15	4	0.5	0.05	1	1	2
p3429	4	4	31	16	1	0.5	0.1	1	1	2
p3430	7	• 4	32	14	4	0.5	0.05	1	. 1	2
p3431	5	5	32	14	5	0.5	0.05	1	1	2
p3432	12	9	60	19	4	0.5	0.05	1	1	2
p3433	4	4	34	17	4	0.5	0.05	1	1	2
p3434	. 5	3	35	16	3	0.5	0.05	1	1	2 .
p343 5	5	5	42	. 23	6	0.5	0.05	1	1	2
p3436	4	7	38	14	7	0.5	0.05	5	1	2
p3437	19	17	75	18	11	0.5	0.05	. 1	1	2
p 3 438	20	13	74	20	12	0.5	0.05	1	1	2
p3440	6	5	43	6	5	0.5	0.1	1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3441	13	10	52	21	7	0.5	0.05	3	1	2
p3 442	13	13	66	25	8	0.5	0.05	1	1	2
p3443	15	10	6 1	17	9	0.5	0.05	1	1	2
p3444	3	1	37	18	2	0.5	0.3	1	1	2
p3445	10	7	52	24	5	0.5	0.05	1	1	2
p3446	9	6	3 6	19	4	0.5	0.05	1	1	2
p3447	7	5	28	17	3	0.5	0.05	1 .	1	2
p3448	7	5	35	20	5	0.5	0.05	1	1	2
p3449	10	8	29	27	1	0.5	0.7	25	2	4
p3450	14	9 (44	18	3	0.5	0.05	4	1	2
p3451	17	15	89	27	8	0.5	0.05	1	1	2
p3452	16	13	67	24	11	0.5	0.05	5	1	2
p3453	12	12	57	21	10	0.5	0.05	4	1	2
p3454	16	17	71	29	8	0.5	0.05	6	1	2
p3455	7	5	3 6	19	4	0.5	0.05	1	1	2
p3456	8	6	39	20	2	0.5	0.3	4	1	2
p3457	23	15	84	17	9	0.5	0.05	1	1	2
p3458	13	11	.5.5	19	6	0.5	0.05	1	1	2
p3459	10	5	50	20	3	0.5	0.05	1	1	2
p3460	10	7	35	21	3	0.5	0.2	7	1	2
p3461	6	5	35	15	3	0.5	0.05	1 .	1	2
p 3 462	7	4	46	11	4	0.5	0.05	1	· 1	2
p3463	7	8	45	18	5	0.5	0.05	1	1	2
p3464	18	14	75	22	8	0.5	0.05	1	1	2
p3466	11	9	5 1	23	5	0.5	0.05	3	1	2
p3467	11	8	47	25	4	0.5	0.2	6	1	2 .
p3469	8	5	36	19	2	0.5	0.05	. 1	1	2
p3471	13	11	57	20	5	0.5	0.05	1	1	2
p3472	10	8	39	16	5	0.5	0.05	1	1	2
p3474	10	9	63	29	7	0.5	0.05	1	1	2
p3475	8	6	38	13	2	0.5	0.05	1	1	2
p3476	8	6	43	17	4	0.5	0.05	1	1	. 2
p3477	9	6	49	23	6	0.5	0.05	1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	Ás ppm	Se ppm .	Sb ppm
p3478	7	6	39	22	. 5	0.5	0.05	1	1	2
p3479	13	10	50	17	6	0.5	0.05	1	1	2
p3481	8	6	50	27	7	0.5	0.2	11	1	5
p3482	7.	7	37	20	4	0.5	0.05	1	1	2
p3483	10	9	44	. 22	4	0.5	0.05	1	3	2
p3484	14	10	53	18	6	0.5	0.05	1	1	2
p3486	9	11	53	14	8	0.5	0.05	1	1	2
p3487	9	5	43	21	4	0.5	0.05	1	1	2
p3489	. 6	6	3 1	17	3	0.5	0.05	1	1	2
p3490	7	8 🛴	37	18	4	0.5	0.05	1	1	2 2
p3491	7	7	34	18	4	0.5	0.05	3	1	2
p3492	11	10	58	17	3	0.5	0.05	1	1	2
p3493	14	9	38	21	7	0.5	1.9	17	1	2
p3494	11	11	44	23	3	0.5	0.3	15	1	2
p3495	7	16	28	30	1	0.5	1.5	32	3	22
p3496	6	6	34	18	6	0.5	0.05	1	1	2
p3497	12	10	54	19	6	0.5	0.05	1	1	2
p3498	6	7	30	11	5	0.5	0.05	2	1	2
p3499	14	10	49	16	8	0.5	0.05	1	1	2
p350 0	14	-12	51	14	6	0.5	0.05	3	1.	2
p3501	21	18	75	18	7	0.5	0.05	1	1	2
p3502	12	12	49	10	5	0.5	0.05	1	1	2
p3503	11	10	45	17	7	0.5	0.05	1	1	2
p3504	- 13	10	50	15	5	0.5	0.05	1	. 1	2
p3505	10	10	55	19	6	0.5	0.05	1 ,	1	2
p3506	10	8	35	19	5 .	0.5	0.05	7	1	2
p3507	20	17	82	15	8	0.5	0.05	1	1 ,	2
p3508	14	12	61	13	7	0.5	0.05	1	1	2
p3509	15	12	69	13	7	0.5	0.05	1	1	2
p3510	14	14	67	20	8	0.5	0.05	1	1 ⋅	2
p3511	10	10	49	10	9	0.5	0.05	3	1	2
p3512	15	14	62	18	8	0.5	0.05	1	1	2
p3513	11	9	46	16	7	0.5	0.05	1	. 1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3514	9	7	38	18	10	0.5	0.05	1	1	2
p3515	12	9	53	18	10	0.5	0.05	3	1	2
p3516	10	6	43	18	7	0.5	0.05	1	1	2
p3517	11	10	48	11	6	0.5	0.05	1	1	2
p3518	16	13	64	11	12	0.5	0.05	1	1	2
p3 519	10	7	46	14	9	0.5	0.05	1	1	2
p3520	12	9	47	16	9	0.5	0.05	1	1	2
p3521	16	12	64	18	12	0.5	0.05	1	1	2
p3522	7	5	33	11	7	0.5	0.05	1	1	2
p3523	12	9 (55	17	10	0.5	0.05	1	1	2
p3524	7	3	34	6	8	0.5	0.05	1	1	2
p3525.	· 5	5	32	17	7	0.5	0.1	1	1	2
p3527	7	6	42	12	9	0.5	0.05	1	1	2
p3528	6	6	47	14	7	0.5	0.05	1	1	2
p3529	7	8	39	18	10	0.5	0.05	1	1	2
p3530	11	6	50	23	10	0.5	0.05	2	1	2
p3531	11	9	44	14	8	0.5	0.05	1	1	2
p3532	7	5	3 1	14	6	0.5	0.05	1	1	4
p3533	11	9	50	10	10	0.5	0.05	1	1	2
p3534	_ 16	12	68	19 -	9	0.5	0.05	1	1	2
p3535	15	12	70	20	9	0.5	0.05	1	1 .	2
p3536	12	10	55	- 23	8	0.5	0.05	1	₋ 1	2
p3537	14	10	66	11	11	0.5	0.05	1	· 1	2
p3538	8	4	37	18	7	0.5	0.05	1	1	2
p3539	15	8	-53	17	8	0.5	0.05	1	1	2
p3540	13	8	5 1	20	7	0.5	0.05	1	1	2
p3541	18	12	82	19	9	0.5	0.05	1 .	1	2
p3542	12	9	46	19	13	0.5	0.05	1	1	2
p3543	11	7	49	21	9	0.5	0.05	1	1	2
p3544	. 11	7	43	8	10	0.5	0.05	1	1	2
p 3 54 5	5	4	29	18	5	0.5	0.05	1	1	2
p3546	. 9	4	40	18	6	0.5	0.05	1	1	2
p3547	18	10	64	21	10	0.5	0.05	1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3548	6	5	33	18	9	0.5	0.05	1	1	2
p3549	12	7	. 48	21	12	0.5	0.05	1	1	2
p 3 550	9	5 -	40	13	10	0.5	0.05	1	. 1	2
p35 5 1	18	15	71	21	11	0.5	0.05	1	1	2
p3552	15	11	64	23	11	0.5	0.05	3	1	2
p3553	17	14	76	19	12	0.5	0.05	1	1	2
p3554	20	13	81	14	10	0.5	0.05	1	1	2
p 35 55	14	12	59	14	10	0.5	0.05	1	1	2
p3556	9	6	45	16	8	0.5	0.05	1	1	2
p3557	9	4 、	41	19	7	0.5	0.05	1	1	2
p3558	6	5	41	16	7	0.5	0.05	1	1	2
p3 5 59	8	5	38	19	10	. 0.5	0.05	1	1	2
p3560	8	5	46	16	8	0.5	0.05	4	1	2
p3562	14	10	69	22	8	0.5	0.05	1	1	2
p3563	13	8	58	22	8	0.5	0.05	1	1	2
p3564	. 11	9	52	18	8	0.5	0.05	1	1	2
p3565	11	8	62	19	11	0.5	0.05	2	1	2
p3566	11	6	59	21	7	0.5	0.05	1	1	2
p3567	10	7	67	16	7	0.5	0.05	1	1 -	2
p3568	13	11	80	32	9	0.5	0.05	8	1	2
p3569	16	9	66	24	9	0.5	0.05	5	1	2
p3570	10	3	5 3	25	6	0.5	0.05	4	1	2
p3571	7	6	47	13	9	0.5	0.05	1	1	2
p35 72	6	5	43	23	6	0.5	0.05	1	1	2
p3573	10	8	49	17	9	0.5	0.05	1	1	2
p3574	7	1	42	19	7	0.5	0.05	1	1	2
p3 57 5	6	5	40	11	8	0.5	0.05	1	1	2
p3576	7	6	41	15	7	0.5	0.05	1	1	2
p3577	8	1	31	19	8	0.5	0.3	5	1	2
p3578	9	7	43	20	7	0.5	0.05	1	1	2
p3580	10	7	46	16	7	0.5	0.05	1	1	2
p35 8 1	8	5	36	16	7	0.5	0.05	` 2	1	2
p3582	13	10	58	15	10	0.5	0.05	1	1	2

C
9
فسا
0
-

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3583	13	11	60	18	9	0.5	0.05	1	1	2
p3584	5	8	30	18	10	0.5	0.05	1	1	2
p3585	13	11	52	. 16	11	0.5	0.05	1	1	2
p3586	12	10	49	13	13	0.5	0.05	1	1	2
p3587	15	14	64	20	11	0.5	0.05	1	1	2
p3588	17	12	71	20	9	0.5	0.05	1	1	2
p3589	19	14	8 1	10	11	0.5	0.05	1	1	2
p3590	16	11	79	26	10	0.5	0.05	1	1	2
p3591	12	10	56	15	9	0.5	0.05	1	1	2
p3592	17	12	65	16	10	0.5	0.05	1	1	$\bar{\hat{z}}$
p3593	18	15	76	14	10	0.5	0.05	1	1	2
p3594	22	17 -	85	19	12	0.5	0.05	1 .	1	2
p3595	10	11	43	15	8	0.5	0.05	1	1	2
p3596	18	16	84	13	10	0.5	0.05	1	1	2
p3598	9	7	45	13	10	0.5	0.05	1	1	2
p3599	15	11	65	20	8	0.5	0.05	1	1	. 2
p3600	10	9	48	12	9	0.5	0.05	1	1	2
p3601	16	13	64	24	12	0.5	0.05	1	1	2
p3602	17	15	65	16	12	0.5	0.05	1	1	2
p3603	19	15	79	22	12	0.5	0.05	1	1	2
p3604	16	11	6 3	12	9	0.5	0.05	1	1	2
p3605	19	15	77	16	10	0.5	0.05	1	1	2
p3606	20	15	71	18	8	0.5	0.05	1	1	2
p3607	12	15	27	20	10	0.5	0.05	1	1	2
p3608	16	14	72	22	13	0.5	0.05	1	1	2
p3609	13	16	59	22	15	0.5	0.05	1	1	2
p3610	16	12	62	. 14	10	0.5	0.05	1	1	2
p3611	18	14	77	18	10	0.5	0.05	1	1	2
p3612	9	5	44	12	9	0.5	0.05	1 .	1	2
p3613	9 ,	6	35	20	8	0.5	0.3	1	1	2
p3614	7	5	35	. 20	9	0.5	0.05	1	1	2
p3615	10	5	39	15	10	0.5	0.05	1	1	2
p3616	4	6	33	22	8	0.5	0.05	1	1	$\frac{\overline{2}}{2}$
										=

C	C
Ć	
-	
	٥
D	ت

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3617	7	3	3 3	19	6	0.5	0.05	1	1	2
p3618	9	6	33	13	8	0.5	0.05	1	1	2
p3619	9	8	35	10	9	0.5	0.1	1	1	2
p3620	11	7	41	11	10	0.5	0.05	1	1	2
p3 621	8	9	52	19	10	0.5	0.05	3	1	2
p3622	1 4	9	5 6	21	9	0.5	0.05	1	1	2
p3623	9	5	49	16	8	0.5	0.05	· 1	1	2
p3625	6	3	27	21	6	0 .5	3.9	` 19	1	5
p3626	10	6	37	25	5	0.5	1.1	10	1	. 5
p3627	8	6 、	38	20	7	0.5	0.1	1	1	2
p3628	10	4	37	19	6	0.5	0.2	8	1	5
p3629	9	8	44	21	9	0.5	0.05	1	1	2
p3630	9	5	35	21	8	0.5	0.05	5	1	5
p3631	- 10	9	53	21	9	0.5	0.05	1	1	2
p 3 632	9	5	37	19	6	0.5	0.05	3	1	2
p3633	5	6	37	22	7	0.5	0.05	4	. 1	2
p3634	8	7	57	16	9	0.5	0.05	1	1	2
p3635	7	5	46	23	8	0.5	0.05	1	1	2
p3636	1 0	7	5 1	14	10	0.5	0.05	1	1	2
p3637	8	5	4 1	21	8	0.5	0.05	5	1	2
p3638	6	4	34	11	8	0.5	0.05	1	1	2
p3639	13	9	53	18	10	0.5	0.05	3	1	2
p3640	15	9	52	19	8	0.5	0.05	1	1	2
p3641	20	13	81	21	11	0.5	0.05	1	1	2
p3642	13	. 9	46	20	12	0.5	0.05	1	1	2
p3643	13	9	48	17	9	0.5	0.05	1	1	2
p3644	10	7	43	17	9	0.5	0.05	1	1	2
p3645	3	3	28	21	10	0.5	0.05	4	1	2
p3647	18	9	65	23	7 ·	0.5	0.05	6	1	2
p3648	5	4	33	16	7	0.5	0.05	. 6	1	4
p3649	12	7	49	21	11	0.5	0.05	4	1	2
p3650	6	5	39	22	8	0.5	0.05	4	1	2
p3651	19	14	71	23	11	0.5	0.05	4 .	1	2

0
-
\circ
ω

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3652	16	12	65	15	12	0.5	0.05	7	1	2
p3653	16	13	76	21	10	0.5	0.05	1	1	2
p3654	18	15	80	16	11	0.5	0.05	1	1	2
p3655	12	.11	58	17	9	0.5	0.05	1	1	2
p3656	12	8	. 54	19	10	0.5	0.05	6	1	2
p3657	18	13	72	18	10	0.5	0.05	8	1	2
p3658	16	13	67	27	10	0.5	0.05	11	1	2
p3659	10	6	46	27	9	0.5	0.05	6	1	2
p3660	9	7	4 1	13	9 .	0.5	0.05	4	1	2
p3661	16	12 、	67	25	13	0.5	0.05	5	1	2
p3662	12	10	61	20	12	0.5	0.05	1	1	2
p3663	14	12	64	18	12	0.5	0.05	1	1	2
p3664	11	8	58	23	10	0.5	0.05	5	1	2
p3665	13	16	59	22	12	0.5	0.05	3	1	2
p3666	16	15	72	23	10	0.5	0.05	4	1	2
p3667	20	19	67	26	10	0.5	0.05	7	1	4
p3668	21	19	59	22	12	0.5	0.05	1	1	2
p3669	23	23	75	14	13	0.5	0.05	5	1	2
p3670	19	17	4 6	20	15	0.5	0.05	1	1	2
p3671	19	19	45	22	14	0.5	0.05	6	1	5
p3672	21	14	76	23	11	0.5	0.05	3	1	2
p3673	19	17	75	27	9	0.5	0.05	1	1	2
p3674	20	13	8 1	23	9	0.5	0.05	1	1	2
p3675	15	13	48	25	7	0.5	0.3	11	1	12
p3676	18	14	61	21	13	0.5	0.05	1	-1	2
p3677	15	7	50	20	1.1	0.5	0.7	2	1	2
p3678	18	11	57	23	11	0.5	0.05	3	1	2
p3679	15	11	5 2	23	11	0.5	0.05	5	1	2
p3680	16	12	44	28	6	0.5	0.05	6	1	2
p3681	14	9	33	. 25	8	0.5	0.05	5	1	2
p36 8 2	· 13	10	34	27	8	0.5	0.05	6	1	2
p3683	19	15	47	2 8	10	0.5	0.05	9	1	2
p3684	18	17	40	29	8	0.5	0.05	8	. 1	2

)
)
)
}	
C	
1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3685	19	15	41	24	8	0.5	0.05	1	1	2
p3686	21	18	56	32	12	0.5	0.3	5	1	2
p3687	25	21	52	25	13	0.5	0.05	1	1	2
p3688	19	17	49	24	11	0.5	0.05	1	1	2
p3689	22 .	18	63	28	10	0.5	0.05	1	1	2
p3690	18	14	39	29	8	0.5	0.05	4	1	2
p3691	17	11	35	24	5	0.5	0.05	8	1	2
p3692	16	15	34	14	9	0.5	0.05	3	.1	2
p3693	19	17	41	17	10	0.5	0.05	1	1	2
p3694	14	13	、 31	32	6	0.5	0.05	9	1	5
p3695	17	12	49	26	6	0.5	0.05	7	1	2
p3696	13	10	50	20	7	0.5	0.05	2	1	2
p3697	23	18	68	29	10	0.5	0.05	1	1	2
p3698	20	14	42	23	12	0.5	0.05	1	1	2
p3699	13	14	37	23	6	0.5	0.05	3	1	2
p3700	18	11	63	26	6	0.5	0.05	8	1	2
p 3701	11	. 9	51	26	4	0.5	0.2	. 6	1	2
p3702	13	13	35	23	6	0.5	0.05	1	1	2
p3703	9	5	37	23	6	0.5	0.05	2	1	2
p3704	7	4	35	23	4	0.5	0.05	1	1	2
p3705	10	7	44	23	4	0.5	0.05	3	1	2
p3706	11	7	47	20	7	0.5	0.05	1	1	2
p3707	8	5	36	15	3	0.5	0.05	1	1	2
p3708	1	-1	1	1	1	0.5	0.1	1	1	2
p3709	16	10	57	23	6	0.5	0.05	1	1	2
p3710	12	7	49	23	6	0.5	0.05	5	1	2
p3711	9	10	36	19	9	0.5	0.05	1	1	2 ,
p3713	1	5	32	21	6	0.5	0.1	2	1	2
p3714	13	14	54	25	7	0.5	0.05	1	1	2
p3715	14	11	64	21	8	0.5	0.05	1	1	` 2
p3716	12	8	46	19	5	0.5	0.05	1	1	2
p3717	10	9	52	21	9	0.5	0.05	1	1	2
p3718	9	8	46	17	5	0.5	0.05	2	1	2

)
)
لعنام	
C	

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3719	10	8	43	20	8	0.5	0.05	1	1	2
p3720	9	10	45	25	. 9	0.5	0.05	1	1	2
p3721	9	8	.46	29	6	0.5	0.05	1 ·	1	2
p3722	10	12	49	22	6	0.5	0.05	1	1	2
p3723	6	7	4.5	22	6	0.5	0.05	1	1	2
p3724	8	9	48	19	7	0.5	0.05	1	1	2
p3725	7	6	37	21	6	0.5	0.05	1	1	2
p372 6	9	7	53	29	7	0.5	0.05	2	1	2
p3727	9 .	8	52	22	9	0.5	0.05	1	1	2
p3728	8	7 .	46	26	4	0.5	0.05	2	1	2
p3729	7	5	34	18	7	0.5	0.05	1	1	2
p3730	8	6	42	17	5	0.5	0.05	1	1	2
p37 3 1	9	9	50	21	6	0.5	0.05	1	1	2
p3732	11	6	40	20	5	0.5	0.05	1	1	2
p3733	9	7	42	19	4	0.5	0.05	2	1	2
p3734	9	7	45	21	8	0.5	0.05	1	1	2
p3736	12	10	60	23	7	0.5	0.05	4	1	2
p3737	7	4	34	21	1	0.5	0.05	9	1	2
p37 3 9	7	6	5 1	22	8	0.5	0.05	3	1	2
p3740	11	8	55	26	8	0.5	0.05	3	1	2
p3741	13	11	65	36	7	0.5	0.05	12	1	2
p3742	9	8	52	27	7	0.5	0.05	3	1	2
p3744	8	6	52	31	4	0.5	0.05	11	1	2
p3745	11	10	56	29	6	0.5	0.05	5	1	2
p3746	7	5	41	25	7	0.5	0.05	3	1	2
p3747	9	4	39	23	7	0.5	0.05	9.	1	2
p3748	9	. 7	47	16	6	0.5	0.05	10	· 1	2
p3749	11	7	53	25	8	0.5	0.05	2	. 1	2
p375 0	11	7	53	27	5	0.5	0.05	3	1	2
p3751	10	6	51	22	4	0.5	0.05	· 1	1	2
p3752	10	8	50	23	7	0.5	0.05	1	1	2
p3753	9	4	37	17	7	0.5	0.05	2	1	2
p3754	11	1	44	23	4	0.5	0.05	1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p375 5	12	8	56	22	7	0.5	0.05	1	1	2
p3756	9	6	40	15	6	0.5	0.05	1	1	2
p3757	15	8	44	20	8	0.5	0.05	1	1	2
p3759	15	1 1	53	23	6	0.5	0.05	1	1	2
p3760	10	8	52	21	5	0.5	0.05	4	1	2
p3763	13	11	55	30	8	0.5	0.05	5	1	2
p3764	14	10	54	24	7	0.5	0.05	1	1	2
p3765	12	8	49	22	7	0.5	0.05	1	1	2
p3768	14	10	54	24	9	0.5	0.05	5	1	2
p3769	10	6 .	51	21	6	0.5	0.05	6	1	2
p3770	16	11	64	26	7	0.5	0.05	5	1	2
p3773	15	12	67	23	6	0.5	0.05	15	1	2
p3774	16	10	53	21	8	0.5	0.05	4	1	2
p3775	15	9	53	20	9	0.5	0.05	6	1	2
p3777	13	8	47	17	7	0.5	0.05	3	1	2
p3778	11	9	41	21	8	0.5	0.05	2	1	2
p3779	13	8	48	18	5	0.5	0.05	1	1	2
p3780	13	8	48	22	7	0.5	0.05	1	1	2
p3781	18	12	52	20	6	0.5	0.05	1	1	2
p3782	12	11	46	22	9	0.5	0.05	1	1	2
p3783	13	6	42	12	6	0.5	0.05	1	1	2
p3784	13	9	43	19	5	0.5	0.05	1	1	2
p3785	13	8	44	24	4	0.5	0.05	1	1	2
p3786	13	10	48	23	5	0.5	0.05	4	1	2
p3787	8	4	40	18	3	0.5	0.05	1	1	6
p3788	7	5	42	21	6	0.5	0.05	2	1	2
p3790	15	7	66	25	4	0.5	0.05	3	1	2
p3791	14	7	59	29	6	0.5	0.05	6	1	2
p3792	12	6	52	23	3	0.5	0.05	1	1	2
p3793	13	7	65	29	7	0.5	0.05	1	1	2
p3794	9	3	55	19	6	0.5	0.05	1	1	2
p3795	18	11	71	21	9	0.5	0.05	1	1	2
p3796	10	6	49	24	7	0.5	0.05	1	1	2

C .)
\subset	2
C	>
۱.	4
C	2
_	I

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
p3 797	19	12	98	36	8	0.5	0.05	16	3	2
p 3 798	13	9	52	23	6	0.5	0.05	1	1	2
p3799	14	10	46	20	6	0.5	0.05	1	1	2
p3800	14	8	60	20	8	0.5	0.05	· 1	1	2
p3801	12	8	59	21	5	0.5	0.05	1	1	2
p3802	16	11	70	27	5	0.5	0.05	1	1	2
p3803	17	9	59	19	5	0.5	0.05	1	1	2
p3804	10	10	40	19	5	0.5	0.05	1	1	2
p3805	13	10	44	16	6	0.5	0.05	1	1	2
p3806	12	7 .	37	15	5	0.5	0.05	1	1	2
p3807	12	5	38	13	. 5	0.5	0.05	1	1	2
p3808	9	6	36	11	5	0.5	0.05	1	1	2
p3810	18	13	78	25	8	0.5	0.05	1	1	2 .
p3812	10	6	31	12	6	0.5	0.05	1	1	2
p3813	16	8	59	18	5	0.5	0.05	1	1	2
p3814	7	. 4	45	. 19	3	0.5	0.05	1	1	2
p3815	3	1	29	11	4	0.5	0.05	1	1	2
p3816	1	1	1	1	1	0.5	0.05	1	1	2
p3817	3	3	35	13	7	0.5	0.05	1	1	2
p3819	10	5	55	10	4	0.5	0.05	1	1	2
p3820	12	6	59	17	6	0.5	0.05	6	1	2
p3821	8	1	3 5	11	5	0.5	0.1	1	1	2
p3822	7	3	42	14	4	0.5	0.05	1	1	2
s6259	4	2	19	9	5	0.5	0.05	1	1	2
s6260	. 7	1	28	17	6	0.5	0.05	1	1	2
s6261	6	2	29	13	8	0.5	0.05	1	1	2
s6262	7	1	25	17	5	0.5	1.7	6	1	2
s6263	5	1	33	18	7	0.5	0.1	1	1	2
s6264	1	3	37	32	4	0.5	0.6	19	1	2
s6265	5	1	26	16	8	0.5	0.2	3	1	2
s6266	4	1	12	8	2	0.5	0.05	1	1	2
s6267	1	1	16	11	6	0.5	0.05	1	1	2 .
s6268	4	7	18	12	. 4	0.5	0.05	7	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6269	11	7	50	20	8	0.5	0.05	1	1	2
s6270	7	12	24	21	11	0.5	0.05	10	1	2
s6271	13	14	44	20	.8	0.5	0.05	1	1	2
s6272	1	1	12	13	5	0.5	0.05	1	1	2
s6273	9	11	66	18	5	0.5	0.05	4	1	2
s6274	11	10	48	17	6	0.5	0.05	1	1	2
s6507	7	6	30	15	7	0.5	0.05	1	1	2
s6508	7	8	32	13	8	0.5	0.05	1	1	2
s6509	10	11	33	18	11	0.5	0.05	1	1	2
s6510	8	7	. 26	7	3	0.5	0.05	9	1	2
s6511	8	6	26	16	7 .	0.5	0.05	7 .	1	2
s6512	18	13	41	12	9	0.5	0.05	1	1	2
s6513	15	16	43	16	10	0.5	0.05	1	1	2
s6514	21	16	45	23	12	0.5	0.05	1	1	2
s6515	15	- 12	42	16	15	0.5	0.05	1	1	2
s6516	11	10	29	10	7	0.5	0.05	1	1	2
s6517	20	21	46	13	8	0.5	0.05	1	1	2
s6518	24	15	59	22	6	0.5	0.05	1	1	2
s6519	9	9	32	12	6	0.5	0.05	1	1	2
s6520	13	8	36	18	5	0.5	0.05	1	1	2
s6521	13	10	35	15	7	0.5	0.05	1	1	. 2
s6522	5	3	28	16	4	0.5	0.05	1	1	2
s6523	13	9	34	14	9	0.5	0.05	1	1	2
s6524	14	12	47	16	9	0.5	0.05	1	1	2
s6525	13	5	51	18	3	0.5	0.05	4	1.	2
s6526	4	3	36	24	8	0.5	0.05	1	1	2
s6527	8	3	22	16	4	0.5	0.05	1	• 1	2
s6528	18	11	47	20	9	0.5	0.05	2	1	2
S6529	16	8	36	20	9	0.5	0.05	1	1	2
S6530	8	21	40	24	6	0.5	0.05	· 1	1	2
S6531	11	20	31	21	4	0.5	0.05	7	1	2
S6532	13	11	49	12	7	0.5	0.05	1	1	2 2
S6533	3	7	28	12	5	0.5	0.05	1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
S6534	11	11	31	14	7	0.5	0.05	1	1	2
S6535	13	11	49	19	8	0.5	0.05	1	1 .	2
S6536	13	12	54	17	9	0.5	0.05	6	1	2
S6537	13	13	48	19	10	0.5	0.05	1	1	2
S6538	19	16	46	18	14	0.5	0.05	1	1	2
S6539	12	16	45	13	11	0.5	0.05	1	1	2
S6540	10	11	39·	9	6	0.5	0.05	1	1	2
S6541	15	14	42	20	10	0.5	0.05	1	1	2
S6542	19	13	41	13	10	0.5	0.05	1	1	2
S6543	26	29 🔨	53	9	10	0.5	0.05	1	1	2
S6544	11	6	16	4	6	0.5	0.05	2	1	2
S6545	12	6	30	15	8	0.5	0.05	1	1	2
s6546	16	7	35	16	12	0.5	0.05	1	1	2
s6547	14	11	43	12	10	0.5	0.05	1	1	2
s6548	10	19	31	13	8	0.5	0.05	1	1	2
s6549	14	15	49	17	8	0.5	0.05	1	1	2
s6550	15	12	38	13	11	0.5	0.05	1	1	2
s6551	21	28	9	15	8	2	0.05	1	1	2
s6552	11	13	19	10	9	0.5	0.05	1	1	2
s6 5 53	6	9	33	11	9	0.5	0.05	1	1.	2
s6554	9	10	60	20	8	0.5	0.05	.1	1 .	2
s6555	12	14	56	15	9	0.5	0.05	1	1 .	2
s6556	10	8	38	11	7	0.5	0.05	1	1	2
s6557	11	13	47	13	8	0.5	0.05	1	1	2
s6558	9	12	33	15	7	0.5	0.05	1	1	2
s6559	19	15	43	20	10	0.5	0.05	1	1	2
s6560	14	13	4 4	16	7	0.5	0.05	1	1	2
s6561	10	9	37	18	7	0.5	0.05	1	1	2
s6562	18	11	43	18	5	0.5	0.05	1	1	2
s6563	13	13	49	23	8	0.5	0.05	1	1	2
s6564	9	11	26	8	7	0.5	0.05	1	1	2
s6565	14	4	34	13	. 9	0.5	0.05	1 .	1	2
s6566	4	1	22	11	5	0.5	0.05	1	1	2

7	
2	
2 2	
2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2 2 2	
2	
2	
2	÷
2 2	
_	

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6567	20	13	32	15	12	0.5	0.05	1	1	2
s6568	10	8	35	14	9	0.5	0.05	1	1	2
s6569	4	5	· 27	12	4	0.5	0.05	1	1	2
s6570	13	15	40	13	8	0.5	0.05	6	1	2
s6571	3	4	29	12	5	0.5	0.05	1	1	2
s6572	15	13	31	22	9	0.5	0.05	1	1	2
s6573	, 8	12	28	12	13	0.5	0.05	1	1	2
s6574	12	14	37	12	12	0.5	0.05	i 1	1	2
s6575	7	7	28	16	7	0.5	0.05	1	1	2
s6576	14	9 🛴	46	19	9	0.5	0.05	3	1	2
s6577	11	8	34	20	7	0.5	0.05	1	1	2
s6578	21	22	41	18	· 12	0.5	0.05	1	1	2
s6579	18	. 44	14	9	7	3	0.05	4	1	7
s6580	21	19	44	23	6	0.5	0.05	5	1	2
s6581	17	11	47	19	8	0.5	0.05	1	1	2
s6582	24	18	56	21	8	0.5	0.05	1	1	2
s6583	20	17	37	10	4	0.5	0.05	7	1	2
s6584	4	14	19	6	7	0.5	0.05	1	. 1	2
s6585	14	15	42	15	5	0.5	0.05	1	1	2
s6586	12	12	28	17	8	0.5	0.05	1	1	2
s6587	12	10	19	17	10	0.5	0.05	1	1	2
s65 8 8	5	1	17	11	10	0.5	0.05	1	1	2
s6589	8	12	28	13	9	0.5	0.05	1	1	2
s6590	16	14	48	10	7	0.5	0.05	1	1	2
s6591	13	13	34	15	10	0.5	0.05	1	1	2
s6592	14	10	32	25	9	0.5	0.05	1	1	2
s6593	9	8	34	15	6	0.5	0.05	6	1	2
s6594	11	12	42	23	8	0.5	0.05	1	1	2
s6595	5	9	24	16	6	0.5	0.05	1	1	2
s6596	10	16	25	10	6	0.5	0.1	5	1	2
s6597	7	11	38	13	9	0.5	0.05	1	1	2
s6598	. 5	8	39	15	6	0.5	0.05	1	· 1	2
s6599	8	10	35	24	9	0.5	0.05	1	1	2

_	
\subseteq	
	C
\mathbb{C})
	
-	٨
۳	Å

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6600	17	19	50	16	6	0.5	0.05	1	1	2
s6601	7	12	37	15	7	0.5	0.05	1	1	2
s6602	7	12	27	11	7	0.5	0.05	1	1	2
s6603	5	7	20	11	9	0.5	0.05	1	1	2
s6604	7	12	35	16	5	0.5	0.05	1	1	2
、s6605	3	5	22	14	11	0.5	0.05	1	1	2
s6606	11	14	47	20	8	0.5	0.05	1	1	2
s6607	8	8	38	13	6	0.5	0.05	1	. 1	2
s6608	3	7	. 16	11	5	0.5	0.05	1	1	2
s6609	25	20	63	15	13	0.5	0.05	1	1	2
s6610	6	5 `	24.	16	7	0.5	0.05	1	1	2
s6611	9	9	15	14	7	0.5	0.05	1	1	2
s6612	9	17	34	27	10	0.5	0.05	1	1	2
s6613	19	7	25	13	10	0.5	0.05	1	1	2
s6614	8	7	26	18	11	0.5	0.05	1	1	2
s6615	28	28	72	22	12	0.5	0.05	1	1	2
s6616	9	12	28	16	7	0.5	0.1	3	1	2
s6617	13	19 .	45	21	8	0.5	0.05	1	1	2
s6618	22	17	42	34	16	0.5	0.05	1	1	2
s6619	8	6	35	25	8	0.5	0.05	2	1	2
s6620	10	10	42	17	10	0.5	0.05	1	1	2
s6621	11	7	32	11	4	0.5	0.05	5	1	2
s6622	21	34	42	18	8	0.5	0.05	2	1	2
s6623	17	14	52	21	10	0.5	0.05	1	1	2
s6624	12	13	29	19	6	0.5	0.05	2	1	2
s6625	16	12	49	24	13	0.5	0.05	1	1	2
s6626	6	2	19	13	7	0.5	0.05	1	1	2
s6627	10	7	37	15	7	0.5	0.05	1	1	2
s6628	11	10	42	22	9	0.5	0.05	1	1	2
s6629	1	1	13	11	6	0.5	1	1	1	2
s6630	6	11	34	19	7	0.5	0.05	1	1	2
s6631	14	15	54	26	9	0.5	0.05	4	1	2
s6632	6	7	33	14	8	0.5	0.05	1	1	2 .

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm.	Se ppm	Sb ppm
s6633	9	13	30	15	5	0.5	0.05	i	1	2
s6634	12	10	37	14	9	0.5	0.05	1	1∙	2
s6635	6	4	36	18	5	0.5	0.1	1	1	2
s6636	3	14	30	13	7	0.5	0.05	1 ,	1	2
s6637	1 .	5	16	10	6	0.5	0.05	1	1	2
s6638	10	13	43	14	9	0.5	0.05	1 .	1	.2
s6639	1	7	25	11	6	0.5	0.05	. 1	1	2
s6640	6	6	27	18	5	0.5	0.05	4	1	. 2
s6641	7	. 8	26	16	3	0.5	0.05	1	1	. 2
s6642	3	4	23	14	6	0.5	0.05	1	1	2
s6643	4	4	38	16	7	0.5	0.05	1	1	2
s6644	15	14	41	23	11	0.5	0.05	1	1	2
s6645	6	6	2.6	17	7	0.5	0.05	1	1	2
s6646	3	· 9	19	10	6	0.5	0.05	1	1	2
s6647	12	12	35	16	. 9	0.5	0.05	· 1	1	2
s6648	7	6	34	14	9	0.5	0.05	1	1	2
s6649	11	11	42	18	6	0.5	0.05	1	1	2
s6650	9	12	59	21	5	0.5	0.05	1	1	2
s6651	9	13	47	14	6	0.5	0.05	1 .	1	2
s6652	19	21	61	23	7	0.5	0.05	1	1	2
s6653	18	18	53	2 2	13	0.5	0.05	1	1	2
s6654	10	17	40	21	12	0.5	0.05	1	1	2
s6655	13	16	53	22	10	0.5	0.05	1	• 1	2
s6656	8	12	41	26	9	0.5	0.05	1	1	2
s6657	12	12	26	16	6	0.5	0.05	3	1	2
s6658	6	12	38	19	7	0.5	0.05	1	· 1	2
s6659	4	1	17	8	8	0.5	0.05	1	1	2
s6660	15	16	48	17	7	0.5	0.05	1	1	2
s6661	18	20	53	15	9	0.5	0.05	1	1	2
s6662	16	13	50	17	10	0.5	0.05	1	1	2
s6663	16	16	51	14	10	0.5	0.05	1	1	2
s6664	10	12	37	12	11	0.5	0.05	1	1	2
s6665	5	. 8	29	22	12	0.5	0.05	. 1	1	2

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6666	5	7	42	13	9	0.5	0.05	1	1	2
s6667	13	12	50	22	, 7	0.5	0.05	1	1	2
s6668	17	15	4.8	12	8	0.5	0.05	1	1	2
s6669	15	. 9	47	17	7	0.5	0.05	1 '	1	2
s6670	10	16	35 ·	13	10	0.5	0.05	1	1	2
s6671	15	11	38	16	10	0.5	0.05	1	1	2
s6672	31	28	62	17	8	0.5	0.05	1	1	2
s6673	25	21	61	19	10	0.5	0.05	6	1	2
s6674	14	15	49	19	11	0.5	0.05	1	1	2
s6675	14	14 .	39	14	9 .	0.5	0.05	1	1	2
s6676	12	6	40	14	6	0.5	0.05	3	1	2
s6677	13	15	42	21	16	0.5	0.05	. 1	1	· 2
s6678	14	10	36	19	. 8	0.5	0.05	1	1	2
s6679	18	15	39	. 19	9	0.5	0.05	1	1	2 .
s6680	6	6	24	11	8	0.5	0.05	1	1	2
s6681	19	11	40	17	9	0.5	0.05	1	1	2
s6682	18	18	43	22	13	0.5	0.05	1	1	2
s6683	3	7	26	11	6	0.5	0.05	1	1	2
s6684	6	11	32	12	10	0.5	0.05	1	1	2
s6685	11 ,	11	33	17	11	0.5	0.05	1	1	2
s6686	8	10	31	18	11	0.5	0.05	, 1	1	2
s6687	6	7	23	12	7	0.5	0.05	2	1	2
s6688	12	11	3 5	17	8	0.5	0.05	1	1	. 2
s6689	15	18	46	18	6	0.5	0.05	1	1	2
s6690	13	20	40	18	9	0.5	0.05	1	1	2
s6691	8	10	3 9	24	6	0.5	0.05	1	1	2
s6692	4	6	31	17	7	0.5	0.05	1	1	2
s6693	1	2	17	12	6	0.5	0.05	1	1	2
s6694	9	7	30	9	6	0.5	0.05	3	1	2
s6695	16	1 4	3 9	17	11	0.5	0.05	3	1	2
s6696	1	1	8	8	6	0.5	0.05	1	1	2
s6697	12	10	14	12	5	0.5	0.05	8	1	2
s6698	10	13	32	14	13	0.5	0.05	1	1	2

C
0
المدير إ
\sim

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6699	7	6	44	20	5	0.5	0.05	1	1	2
s6700	9	7	17	21	8	0.5	0.05	5	1	2
s6701	13	12	42	19	6 ·	0.5	0.05	1	1	. 2
s6702	11	· 13	43	15	7	0.5	0.05	1	1	2
s6703	3	7	25	12	5	0.5	0.05	.1	1	2
s6704	7	13	32	15	10	0.5	0.05	1	1	2
s6705	8	5	29	11	10	0.5	0.05	1	1	2
s6706	16	7	31	17	3	0.5	0.05	1	. 1	2
s6707	20	14	45	19	7	0.5	0.05	1	1	2
s6708	12	9 .	39	16	8	0.5	0.05	1	1	2
s6709	22	20	80	20	8	0.5	0.05	1	1	2
s6710	15	13	42	17	9	0.5	0.05	1	1	2
s6711	8	10	34	18	8	0.5	0.05	1	1	2
s6712	10	7	27	12	3	0.5	0.05	2	1	2
s6713	18	13	49	18	12	0.5	0.05	1	1	2
s6714	14	10	37	13	7	0.5	0.05	1	1	2
s6715	11	10	47	12	10	0.5	0.05	1	1	2
s6716	22	20	57	18	10	0.5	0.05	3	1	2
s6717	13	12	40	17	4	0.5	0.05	1	1	2
s6718	9	12	30	20	6	0.5	0.1	8	1	2
s6719	16	15	53	22	8	0.5	0.05	1	1	2
s6720	19	12	47	19	5	0.5	0.05	6	1	2
s6721	11	1	25	8	5	0.5	0.05	1	1	2
s6722	19	12	41	25	9	0.5	0.05	1	1	. 2
s6723	12	8	40	18	1	0.5	0.05	6	1	2
s6724	17	13	48	27	1 1	0.5	0.05	1	1	2
s6725	15	21	46	15	9	0.5	0.05	4	1	2
s6726	11	6	30	15	7	0.5	0.05	1	1	2
s6727	17	21	5 5	17	11	0.5	0.05	1	1	2
s6728	12	12	40	16	7	0.5	0.05	1	1	2
s6729	5	5	24	7	8	0.5	0.05	1	1	2
s6730	9	8	3 9	14	7	0.5	0.05	1	1	2
s6731	17	13	41	14	7	0.5	0.05	1	1	2

2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	
2	

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6732	7	11	26	16	5	0.5	0.05	7	1	2
s6733	9	11	40	17	9	0.5	0.05	1	1	2
s6734	17	. 13	39	19	7	0.5	0.05	5	1	2
s6735	13	10	35	14	6	0.5	0.05	5	1	2
s6736	15	5	43	19	7	0.5	0.05	1	. 1	2
s6737	15	12	38	11	10	0.5	0.05	1	1	2
s6738	7	6	29	. 12	8	0.5	0.05	1	1	2
s6739	.13	19	32	19	13	0.5	0.05	1 .	1	2
s6740	9	12	38	19	12	0.5	0.05	1	1	2
s 6741	12	8 🔨	35	15	9	0.5	0.05	1	1	2
s6742	9	6	31	16	7	0.5	0.05	10	1	2
s 6743	16	14	4 1	14	7	0.5	0.1	1	1	2
s6744	9	4	21	10	5	0.5	0.05	8	1	2
s6745	11	8	35	18	10	0.5	0.05	1	1	2
s6746	8	9	40	15	8	0.5	0.05	2	. 1	2
s6747	20	13	38	23	9	0.5	0.05	5	1	2
s6748	8	9	3 6	17	5	0.5	0.05	2	1	2
s6749	12	5	27	17	7	0.5	0.05	1	1	2
s6750	16	9	34	19	7	0.5	0.05	2	1	2
s6751	15	17	49	27	10	0.5	0.05	1	1	2
s6752	20	15 -	63	28	8	0.5	0.05	1	1	2
s6753	19	11	48	21	5	0.5	0.05	3	1	2
s6754	12	13	47	29	4	0.5	0.05	1	1	2
s6755	16	15	48	27	9	0.5	0.05	1	1	2
s6756	21	16	43	31	15	0.5	0.05	1	1	2
s6757	9	10	3 1	17	5	0.5	0.05	1.	1	2
s6758	18	7	33	13	12	0.5	0.05	1	1	2
s6759	. 13	8	31	22	5	0.5	0.05	1	1	. 2
s6760	16	13	40	20	5	0.5	0.05	4	1	2
s6761	16	14	40	11	8	0.5	0.05	1	1	2
s6762	11	4	32	9	8 -	0.5	0.05	1	1	2
s6763	14	12	36	13	9	0.5	0.05	1	1	2
s6764	18	13	45	21	9	0.5	0.05	1	1	2

\Box
eiz-
4.
೧

Sample No.	Ni ppm	Cu ppm	Zn ppm	Pb ppm	Co ppm	Mo ppm	S%	As ppm	Se ppm	Sb ppm
s6765	14	14	36	17	4	0.5	0.05	5	1	2
s6766	14	6	34	19	7	0.5	0.05	6	1	2
s6767	19	8	30	18	6	0.5	0.05	1	1	2
s6768	18	9	47	14	7	0.5	0.05	1	1	2
s6769	15	9	42	18	6	0.5	0.05	1	1	2
s 6770	19	5	25	26	6	0.5	0.05	9	1	2
s6771	9	8	44	12	10	0.5	0.05	1 .	1	2
s6772	21	13	48	24	8	0.5	0.05	. 1	1	2
s6773	15	16	39	19	9	0.5	0.05	1	1	2
s6774	14	17 🤸	45	16	9	0.5	0.05	5	1	. 2
s6775	20	12	62	18	10	0.5	0.05	6	1	2
s6776	18	13	58	19	11	0.5	0.05	1	· 1	2
s6777	14	11	54	20	9	0.5	0.05	1	1	2
s6778	11	7	30	16	6	0.5	0.05	1	1	2
s6779	11	11	35	14	9	0.5	0.05	1 .	1	2
s6780	15	11	61	21	11	0.5	0.05	1	1	2
s6781	18	15	59	19	6	0.5	0.05	1	1	2
s6782	17	12	57	19	8	0.5	0.05	2	1	2
s6783	17	12	6 3	21	6	0.5	0.05	1	1	2
s6784	10	7	45	19	6	0.5	0.05	3	1	2
s6785	1	3	11	5	4	0.5	0.05	, 1	1	. 2
s6786	11	14	70	13	10	0.5	0.05	1	1	2
s6787	17	17	68	18	5	0.5	0.05	3	1	2
s6788	11	12	47	17	10	0.5	0.05	1	1	2
s6789	8	17	57	18	6	0.5	0.05	1	1	2
s6790	10	8	39	1 6	5	0.5	0.05	3	1	2
s6791	18	19	70	28	11	0.5	0.05	1	1	2
s6792	14	16	41	23	9	0.5	0.05	3	1	2
s6793	11	7	42	26	7	0.5	0.05	7	1	2
s6794	16	8	56	29	6	0.5	0.05	1	1	2
s6795	13	17	50	41	9	0.5	0.05	1	1	2
s6796	10	6	28	18	4	0.5	0.05	5	1	2
s6797	11	13	74	17	8	0.5	0.05	1	1	2

Co ppm

11

11

7

Mo ppm 0.5 0.5

0.5

Se ppm

1

As ppm

1

S%

0.05

0.05 0.05 Sb ppm 2

2

C
0
1-2
_ 7

		-	

Sample No. s6798

s6799

s6800

Ni ppm

16

17

17

Cu ppm

21

17

17

Zn ppm

108

73 84 Pb ppm

20

17

25

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p2 676	1	1.7	0.1	0.2	0.6	0.4	31	457	0.5	7
p2677	1	2.3	0.1	0.2	0.9	0.4	113	290	0.5	11
p2678	1	2.2	0.1	0.2	0.9	0.4	212	370	0.5	13
p2679	1	2	0.1	0.2	0.9	0.4	128	334	0.5	11
p2680	1	1.6	0.1	0.2	0.6	0.4	29	345	0.5	6
p2681	1	2.5	0.1	0.1	1	0.3	123	289	0.5	12
p2682	1	2.1	0.1	0.1	0.7	0.3	99	302	0.5	14
p2683	1	2.4	0.1	0.2	0.8	0.3	43	340	0.5	9
p2684	1	2.3	0.1	0.1	0.8	0.4	45	549	0.5	10
p2685	1	2.6	0.1	0.2	1.1	0.4	8 1	373	0.5	15
p2686	1	2.1	0.1	0.2	0.9	0.3	306	10	0.5	21
p2687	1	2.3	0.1	0.2	1	0.4	103	321	0.5	12
p2688	1	2.3	0.1	0.2	0.9	0.4	53	446	0.5	14
p2689	1	2	0.1	0.2	0.7	0.3	59	479	0.5	8
p2690	1	2	0.1	0.1	0.7	0.3	61	455	0.5	10
p2691	1	2.3	0.1	0.2	0.8	0.4	76	427	0.5	11
p2692	1	4.1	0.1	0.2	1	0.4	43	452	0.5	32
p2693	1	2.7	0.1	0.2	0.9	0.4	70	563	0.5	13
p2694	1	2.2	0.1	0.1	0.8	0.4	59	509	2	9
p2695	1	1.9	0.1	0.2	0.7	0.3	60	489	0.5	5
p2696	1	2.8	0.1	0.2	0.8	0.4	60	614	0.5	7
p2697	1 -	2.5	0.1	0.2	0.9	0.4	50	569	0.5	12
p2699	1	3.2	0.1	0.2	0.8	0.5	6 3	438	0.5	17
p2700	1	3.1	0.1	0.2	1.4	0.4	62	461	1	11
p2702	1	2.6	0.1	0.2	1.2	0.3	48	369	1	7
p2703	1	2.3	0.1	0.2	1.1	0.3	66	369	0.5	9
p2704	1	2.6	0.1	0.1	1.1	0.2	280	10	0.5	23
p2706	1	2.4	0.1	0.2	0.9	0.4	122	323	0.5	12
p2707	1	2.4	0.1	0.2	0.9	0.4	71	513	0.5	11
p270 8	1	2.8	0.1	0.2	1.2	0.4	60	312	0.5	9
p2709	1 '	3.1	0.1	0.2	1.4	0.4	76	324	0.5	9
p2710	1	3.2	0.1	0.2	1	0.3	92	294	0.5	16
p2711	1	3.4	0.1	0.2	1.2	0.4	93	561	1	10

00118

C
0
0
هده
 -
೦

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p2712	. 1	2.1	0.1	0.2	0.6	0.4	33	391	0.5	6
p2713	1	1.9	0.1	0.2	0.6	0.4	103	613	0.5	10
p2715	1	2.7	0.1	0.2	0.9	0.4	92	343	0.5	11
p2716	1	3.4	0.1	0.2	1	0.4	114	242	0.5	16
p2717	1	2.3	0.1	0.1	0.8	0.4	88	26 6	0.5	13
p2718	1	3.7	0.1	0.2	1.3	0.4	94	297	0.5	16
p2719	1	2.5	0.1	0.1	0.7	0.4	52	396	0.5	9
p2720	1	2.4	0.1	0.2	0.8	0.4	5 1	371	0.5	6
p2721	1	2.2	0.1	0.1	0.9	0.4	139	355	0.5	14
p2722	1	2.6	0.1	0.2	0.9	0.4	34	386	0.5	6
p2723	1	2.8	0.1	0.2	1	0.4	106	35 9	0.5	14
p2724	1	3.2	0.1	0.2	1	0.4	93	292	0.5	12
p2725	1	2.3	0.1	0.1	0.8	0.4	37	372	0.5	6
p2726	1	3.7	0.1	0.2	1.1	0.4	98	321	0.5	18
p2727	1	3.1	0.1	0.2	1.2	0.4	64	3 16	0.5	11
p2728	1	3.3	0.1	0.2	1.1	0.4	84	813	4	24
p2729	1	4.6	0.1	0.2	1.2	0.4	100	335	0.5	21
p2901	1	1.7	0.1	0.2	0.6	0.5	86	193	0.5	3
p2902	1	1.7	0.1	0.2	0.6	0.3	37	244	0.5	6 .
p2903	1	1.7	0.1	0.1	0.6	0.4	5 1.	238	0.5	3
p2904	1	2.9	0.1	0.2	0.9	0.4	198	201	0.5	14
p2905	1	1.9	0.1	0.2	0.6	0.4	30	322	0.5	8
p2906	1	3.2	0.1	0.2	1	0.4	101	165	0.5	17
p2907	1	2.2	0.1	0.2	0.9	0.3	176	10	0.5	14
p2908	1	3	0.1	0.1	1	0.3	186	58	0.5	16
p2909	1	1.9	0.05	0.2	0.6	0.3	39	282	0.5	11
p2910	1	2.9	0.1	0.2	0.9	0.3	81	197	0.5	14
p2911	1	2	0.1	0.2	0.7	0.3	122	181	0.5	10
p2912	1	1.6	0.1	0.2	0.6	0.3	33	249	1	8
p2913	1	1.5	0.1	0.2	0.6	0.5	34	242	0.5	6
p2914	1	1.7	0.1	0.2	0.6	0.4	55	263	1	7
p2915	1	1.8	0.05	0.2	0.7	0.4	58	193	0.5	5
p2916	1	1.9	0.1	0.2	0.6	0.3	33	300	0.5	9

C
N
0

Sample No.	Bi ppm	Fe %	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
. p2917	1	2.1	0.1	0.1	0.8	0.3	117	98	0.5	14
p2918	1	3.4	0.1	0.1	1.3	0.3	7 5	202	0.5	14
p2919	1	2.3	0.1	0.2	0.8	0.3	99	181	0.5	10
p2920	1	2.2	0.1	0.2	0.7	0.4	43	296	0.5	8
p2921	1	2.5	0.1	0.2	0.8	0.4	56	287	0.5	12
p2922	1	3.9	0.1	0.2	1	0.4	98	254	0.5	17
p2923	1	2.8	0.1	0.2	1,1	0.3	180	73	0.5	16
p2924	1	2.6	0.1	0.2	1	0.4	139	92	0.5	14
p2925	1	2.5	0.1	0.2	0.8	0.4	38	298	0.5	15
p2926	1	2.3	0.1	0.2	0.8	0.3	132	179	0.5	14
p2927	1	2.2	0.1	0.1	0.7	0.4	46	290	0.5	9
p2928	1	2.2	0.1	0.2	0.8	0.3	65	235	0.5	8
p2930	1	2.2	0.1	0.1	0.7	0.3	35	337	0.5	9
p2931	1	2.7	0.1	0.2	1.1	0.5	61	256	0.5	7
p 29 32	1	3	0.1	0.2	1.1	0.3	85	331	0.5	9
p2933	1	4.3	0.1	0.2	1.1	0.3	117	257	0.5	20
p2934	1	2.7	0.1	0.2	1	0.3	107	221	0.5	9
p2935	1	2.4	0.1	0.1	0.8	0.5	66	333	0.5	11
p2936	1	2.2	0.1	0.2	0.8	0.4	64	325	1	8
p2937	1	2.2	0.1	0.2	0.6	0.4	38	413	0.5	11
p2938	<u> </u>	2.3	0.1	0.2	0.9	0.4	116	231	1	9
p2939	1	3.3	0.1	0.2	1.2	0.5	76	330	0.5	12
p2940	1	2.7	0.1	0.2	0.8	0.4	5 1	342	0.5	10
p2941	5	5.2	0.2	0.2	2.5	0.4	79	231	9	14
p2942	1	2.5	0.1	0.1	0.9	0.4	88	270	0.5	12
p2943	1	2.9	0.1	0.2	1.1	0.4	90	304	2	5
p2944	1	2.7	0.1	0.2	0.8	0.4	83	252	0.5	11
p2945	1	2.8	0.1	0.2	1	0.4	110	284	0.5	12
p2946	1	2.7	0.1	0.2	0.8	0.4	54	275	0.5	10
p2947	1	3.3	0.1	0.2	1	0.4	56	316	0.5	15
p2948	1	2.1	0.1	0.2	0.6	0.5	30	412	0.5	10
p2949	1	2.5	0.1	0.1	0.9	0.4	50	324	0.5	6
p2950	1	2.6	0.1	0.2	0.8	0.4	88	287	0.5	13

_
<u></u>
1
E-
-
1

Sample No.	Bi ppm	Fe %	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p2951	1	3.4	0.1	0.2	1.1	0.4	61	366	0.5	13
p2952	1	2.7	0.1	0.2	1.2	0.4	63	340	0.5	6
p2953	1	2.4	0.1	0.2	0.8	0.4	77	300	0.5	12
p2954	1	3.1	0.1	0.2	1.1	0.3	79	340	0.5	13
p2955	1	2.5	0.1	0.1	1	0.4	103	240	0.5	12
p2956	1	3.2	0.1	0.2	1.1	0.3	91	274	0.5	17
p2957	1	2.7	0.1	0.2	0.9	0.3	96	283	0.5	15
p2958	1	3	0.1	0.1	0.8	0.4	114	428	0.5	13
p2959	1	3	0.1	0.1	1.2	0.4	130	255	0.5	15
p2960	1	2.3	0.1	0.2	0.8	0.4	63	274	0.5	6
p2961	1	2.3	0.1	0.2	0.8	0.4	65	510	1	10
p296 2	1	2.9	0.1	0.2	1	0.3	121	316	0.5	8
p2963	1	1.8	0.1	0.2	0.5	0.3	61	409	0.5	8
p2964	1	2.3	0.1	0.2	0.9	0.4	75	374	0.5	10
p2965	1	2.8	0.1	0.2	0.9	0.3	121	320	0.5	12
p2966	1	3	0.1	0.2	0.9	0.4	83	376	0.5	1 4
p2967	1	3.4	0.1	0.2	1.3	0.4	80	440	0.5	9
p2968	1	2.8	0.1	0.2	0.8	0.4	66	413	0.5	16
p2969	1	2.9	0.1	0.2	1.1	0.4	93	272	0.5	14
p2970	1	2.9	0.1	0.2	0.9	0.5	66	480	0.5	15
p2971	1	2.6	0.1	0.1	0.8	0.4	107	401	0.5	16
p2972	1	2.4	0.1	0.1	0.9	0.4	88	306	0.5	11
p2973	1	2.5	0.1	0.2	1	0.2	102	263	0.5	12
p2974	1	2.8	0.1	0.2	1	0.5	127	294	0.5	16
p2975	1	2.5	0.1	0.2	0.8	0.3	91	129	0.5	29
p2976	1	2.5	0.1	0.2	0.9	0.4	79	236	0.5	1 4
p2977	1	2	0.1	0.1	0.6	0.4	30	325	0.5	8
p2978	1	2.1	0.1	0.1	1.1	0.4	111	179	0.5	6
p2979	1	3.3	0.1	0.1	1.1	0.3	177	·10	0.5	19
p2980	1	3.5	0.1	0.2	1	0.4	100	331	0.5	17
p2981	1	2.2	0.1	0.2	8.0	0.4	78	299	0.5	8
p2982	1	2	0.1	0.2	0.6	0.4	56	263	0.5	7
p2983	1	3.5	0.1	0.2	1.1	0.3	179	. 10	0.5	19

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p2984	1	2.8	0.1	0.2	0.8	0.3	52	318	0.5	9
p2985	1	2.3	0.1	0.2	0.7	0.4	36	303	0.5	9
p2986	1	1.8	0.1	0.1	0.9	0.3	321	10	1	18 .
p2987	1	1.6	0.05	0.2	0.5	0.4	48	270	0.5	6
p2988	1	2.3	0.1	0.2	0.7 、	0.4	53	321	0.5	13
p2989	1	1.4	0.1	0.2	0.5	0.3	33	318	0.5	6
p2990	1	2.3	0.1	0.2	0.8	0.4	56	350	0.5	22
p2991	1	1.7	0.1	0.2	0.6	0.3	52	263	0.5	16
p2992	1	1.6	0.1	0.3	0.6	0.3	22	304	0.5	12
p2993	1	2.6	0.1	0.2	0.8	0.4	59	338	0.5	14
p2994	1	2.9	0.1	0.2	1.2	0.4	46	348	2	7
p2995	1	1.6	0.1	0.2	0.5	0.4	26	257	0.5	11
p2997	1	2.3	0.1	0.2	0.8	0.3	87	233	0.5	19
p2998	1	2	0.1	0.2	0.7	0.3	63	251	1	15
p2999	1	2.1	0.1	0.2	0.7	0.4	58	288	0.5	9
p30 00	1	2.7	0.1	0.2	0.8	0.3	108	160	0.5	17
p30 0 1	1	2.6	0.1	0.1	0.8	0.4	107	105	0.5	16
p3002	1	2.2	0.1	0.2	0.7	0.4	78	313	0.5	13
p3003	1	1.9	0.1	0.2	0.7	0.4	54	258	0.5	11
p3004	1 ·	2.9	0.1	0.2	0.9	0.4	102	284	0.5	16
p30 0 5	1	2.2	0.1	0.2	0.8	0.4	78	233	0.5	8
p3006	1	2.8	0.1	0.2	1	0.3	71	299	0.5	10
p30 0 7	1	2.7	0.1	0.2	0.7	0.4	46	358	0.5	11
p3008	1	1.4	0.05	0.2	0.5	0.3	68	252	1	6
p3009	1	1.8	0.1	0.2	0.6	0.3	116	167	1	9
p3010 ·	1	2.7	0.1	0.2	0.7	0.4	49	325	0.5	13
p3011	1	2.5	0.1	0.2	0.7	0.4	42	319	0.5	10
p3012	1	1.7	0.1	0.2	0.6	0.3	47	231	0.5	14
p301 3	1	1.7	0.1	0.2	0.5	0.4	45	268	0.5	18
p3014	1	2.5	0.1	0.2	0.9	0.3	99	181	0.5	19
p3015	1	2.2	0.1	0.2	0.7	0.3	48	389	0.5	14
p3016	1	3.1	0.1	0.2	0.8	0.3	56	276	0.5	30
p3017	1	1.7	0.1	0.2	0.5	. 0.3	34	224	1	25

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3018	1	1.5	0.1	0.2	0.6	0.3	28	252	1	23
p3019	1	2.6	0.1	0.2	0.9	0.4	56	310	0.5	12
p3020	1	1.9	0.1	0.2	0.6	0.4	3 1	3 70	0.5	9
p3021	1	2.2	0.1	0.2	0.7	0.4	36	· 311	0.5	11
p3022	1 ,	2.5	0.1	0.2	0.9	0.4	87	203	0.5	11
p3023	1	2.2	0.1	0.2	0.7	0.4	39	358	0.5	. 8
p3024	1	4.6	0.2	0.2	2.1	0.5	103	127	4	14
p3025	1	3	0.1	0.2	1.2	0.4	63	304	1	13
p3026	1	2.2	0.1	0.2	0.8	0.4	115	308	0.5	1,1
p3027	1	3.5	0.1	0.2	1.3	0.4	117	179	0.5	17
p3028	1	1.6	0.1	0.3	0.6	0.3	35	372	0.5	7
p3029	1	1.6	0.1	0.3	0.6	0.4	35	446	0.5	10
p3030	1	2.7	0.1	0.2	1	0.3	45	318	0.5	12
p3032	[*] 1	1.7	0.1	0.2	0.5	0.4	32	423	0.5	10
p3033	, 1	2	0.1	0.2	0.8	0.5	118	268	2	10
p3034 .	1	3.2	0.1	0.2	1	0.4	83	271	0.5	14
p3035	1	5.5	0.2	0.2	2.2	0.4	126	461	5	20
p3036	1	2.5	0.1	0.2	1	0.3	149	230	2	14
p3037	1	3	0.1	0.2	1.2	0.4	130	497	3	12
p3038	1	2.5	0.1	0.2	0.9	0.4	80	283	0.5	12
p303 9	1	2.5	0.1	0.2	0.7	0.4	194	588	2	11
p3040	6	4.5	0.1	. 0.2	1.8	0.4	1 3 8	781	7	9
p3041	1	1.8	.0.1	0.2	0.8	0.4	80	360	0.5	10
p3042	9	7.3	0.1	0.2	2.3	0.4	204	1893	8	10
p3043	1	2.1	0.1	0.2	8.0	0.4	49	599	9	2
p3044	1	2.9	0.1	0.2	0.9	0.4	59	357	0.5	15
p3045	1	3.2	0.1	0.2	1	0.3	76	438	0.5	27
p3046	1	1.6	0.05	0.3	0.6	0.3	32	342	0.5	7
p3047	1	1.5	0.1	0.2	0.6	0.3	34	298	0.5	0.5
p3048	1	2	0.1	0.3	0.7	0.4	37	298	0.5	8
p3049	1	1.6	0.1	0.2	0.6	0.4	33	381	0.5	7
p3050	1	1.5	0.05	0.2	0.6	0.4	29	274	1	5
p3051	1	1.6	0.1	0.3	0.5	0.4	25	321	0.5	5

TiO2 %

8.0

1.1

0.5

V2O5 %

0.4

0.4

0.3

Sr ppm

65

113

34

Ba ppm

283

301

407

U3O8 ppm

0.5

0.5

0.5

ThO2 ppm

13

13

9

Sample No.

p3052

p3053

p3054

Bi ppm

1

1

1

Fe%

2.9

2.5

1.6

Mn%

0.1

0.1

0.1

Cr%

0.2

0.2

0.2

PO 00 ,		1.0	0.1	0.2	0.5	0.0	U 7	701	0.5	9
p3055	1	2.1	0.1	0.2	0.6	0.4	34	340	0.5	8
p3056	1	0 .9	0.05	0.2	0.3	0.3	7	207	0.5	2
p3 0 57	1	1.6	0.1	0.2	0.6	0.4	35	420	. 2	9
p3 0 58	1	2.8	0.1	0.2	0.8	0.4	60	415	0.5	13
p3059	1	2.5	0.1	0.2	0.8	0.4	65	277	0.5	11
p3060	1	2	0.1	0.2	0.6	0.4	56	278	0.5	10
p3061	1	2.5 🔪	0.1	0.2	0.9	0.3	67	304	0.5	9
p3062	1	1.9	0.1	0.2	0.7	0.4	8 4	212	1	7
p3063	1	2.1	0.1	0.1	0.6	0.3	72	211	0.5	12
p3064	1	1.7	0.1	0.2	0.5	0.4	34	257	0.5	7
p3065	1	2.4	0.1	0.2	0.7	0.4	68	295	0.5	9
p3066	1	2.3	0.1	0.2	0.8	0.3	70	227	0.5	11
p3067	1	2.3	0.1	0.2	0.7	0.3	53	302	0.5	11
p3068	1	2.2	0.1	0.2	0.8	0.3	114	155	1	11
p3069	1	1.8	0.1	0.2	0.5	0.4	31	339	0.5	8
p307 0	1	1.7	0.1	0.2	0.6	0.5	30	. 309	0.5	7
p3071	1	2.2	0.1	0.2	0.7	0.3	48	355	0.5	8
p3072	, 1	1.6	0.1	0.2	0.6	0.4	41	311	0.5	7
p3073	1	1.1	0.05	0.2	0.4	0.3	57	205	0.5	3
p3074	1	2.4	0.1	0.2	1.1	0.4	3 0	271	2	4
p3075	1	1.2	0.05	0.2	0.4	0.3	23	312	0.5	2
p3076	1	1	0.05	0.3	0.4	0.4	37	702	2	3
p3077	1	0.8	0.05	0.3	0.4	0.4	22	226	0.5	2
p3078	1	0.7	0.05	0.3	0.3	0.4	2	211	0.5	0.5
p3079	1	0.7	0.05	0.3	0.3	0.4	2	214	0.5	0.5
p3080	1	0.8	0.05	0.2	0.4	0.4	7	187 .	0.5	0.5
p3081	1	0.8	0.05	0.2	0.3	0.3	4	224	0.5	0.5
p3082	1	0.7	0.05	0.2	0.3	0.4	3	187	0.5	0.5
p3083	1	1.1	0.05	0.3	0.4	0.4	13	233	0.5	2
p3084	1	0.6	0.05	0.3	0.3	0.4	4	185	0.5	0.5

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3085	1	0.7	0.05	0.2	0.4	0.4	4	221	0.5	2
p3086	1	0.7	0.05	0.2	0.3	0.4	6	255	0.5	0.5
p3087	1	1.1	0.1	0.2	0.4	0.4	13	325	0.5	2
p3194	1 ·	2.7	0.1	0.2	1.1	0.4	32	358	5	7
p3195	1	2.2	0.1	0.2	0.6	0.3	37	297	2	5
p3196	1	2.3	0.05	0.2	0.7	0.4	40	405	3	9
p3197	1	1.8	0.1	0.2	0.6	0.4	30	339	3	7
p3198	1	2.9	0.1	0.2	0.9	0.4	126	179	5	15
p3199	1	3.4	0.1	0.2	1	0.4	71	336	0.5	17
p3204	1	1.6	0.1	0.3	0.6	0.3	37	293	3	4
p3205	1	1.4	0.05	0.3	0.4	0.3	23	323	3	4
p3206	1	1.1	0.05	0.3	0.3	0.4	21	276	2	2
p3208	1	1.7	0.05	0.3	0.4	0.4	29	309	2	6
p3211	1	2.9	0.1	0.2	0.9	0.3	96	180	0.5	14
p3213	1	3.6	0.1	0.2	1.1	0.4	93	282	0.5	18
p3214	1	3.4	0.1	0.2	1	0.3	182	320	9	14
p3215	1	1.7	0.1	0.2	0.7	0.4	47	253	2	6
p3216	1 .	1.4	0.05	0.2	0.6	0.3	36	234	5	5
p3217	1	0.9	0.1	0.2	0.4	0.4	12	259	3	2
p3218	1	2.7	0.1	0.2	0.8	0.3	53	345	2	9
p3219	1	2.3	0.1	0.2	1	0.4	33	312	5	7
p3 220	1	3.2	0.1	0.2	0.8	0.5	81	378	3	12
p3221	1	2.1	0.1	0.2	0.6	0.4	33	356	6	. 8
p3222	1	2.2	0.1	0.2	0.7	0.5	34	312	4	7
p32 2 3	1	2.9	0.1	0.1	1	0.4	137	405	2	16
p3224	1	3	ិ0.1 ⋅	0.2	1.1	0.4	47	315	1	11
p3225	1	4.3	0.1	0.2	1.6	0.4	64	277	4	1 4
p32 26	1	2.3	0.1	0.2	0.9	0.4	29	293	6	6
p3227	1	3.1	0.1	0.2	1.1	0.4	45	312	. 4	6
p3228	1	4.3	0.1	0.2	1.3	0.4	79	280	5	11
p3229	1	3.3	0.1	0.2	0.9	0.4	77	332	0.5	15
p3230	1	2.3	0.1	0.2	0.8	0.4	38	372	5	. 8
p3231	1	2.3	0.1	0.1	0.7	0.3	35	352	4	8

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3232	1	3	0.1	0.2	0.9	0.4	64	373	6	12
p3233	1	3.1	0.1	0.2	0.9	0.4	68	265	3	14
p3234	1	1.9	0.05	0.1	0.6	0.3	33	380	5	5
p3235	1	3.1	0.1	0.2	0.9	0.4	.74	348	3	11
p 3236	1	2	0.1	0.2	0.9	0.4	39	334	6 .	4
p3237	1	2.9	0.1	0.2	0.8	0.4	49	349	3	9
p3238	1	3.3	0.1	0.2	1.5	0.4	. 55	408	4	7
p3239	1	3.5	0.1	0.2	1.1	0.4	72	356	5	14
p 3240	1	3.4	0.1	0.2	0.8	0.3	72	373	3	16
p3242	1	2.4	0.1	0.2	0.6	0.3	42	3 89	9	11
p3243	1	2.8	0.1	0.2	1	0.4	52	353	2	9
p3244	1	3.5	0.1	0.2	0.9	0.4	75	394	3	10
p3245	1	1.7	0.05	0.2	0.5	0.3	28	426	5	8
p3246	1	2.4	0.1	0.2	0.8	0.4	50	522	4 ·	11
p3247	1	3	0.1	0.2	0.9	0.4	132	325	6	14
p3248	1	3.2	0.1	0.2	0.9	0.3	34	367	3	13
p3249	1	2.6	0.1	0.2	0.7	0.4	52	306	2	12
p3250	1	1.5	0.1	0.2	0.5	0.4	33	422	7	4
p3251	1	1.5	0.05	0.2	0.5	0.4	27	591	4	3
p3252	1	2.6	0.1	0.2	0.7	0.3	62	324	0.5	11
p3253	1	2.6	0.1	0.2	0.9	0.4	61	425	2	11
p3254	1	1.9	0.1	0.2	0.6	. 0.3	34	392	2	10
p3255	1	1.7	0.05	0.1	0.5	0.3	21	423	4	10
p3256	1	2.1	0.1	0.1	0.6	0.4	25	435	4	7
p3257	1	4.7	0.1	0.1	0.9	0.3	103	455	6	22
p3258	1	2.2	0.1	0.2	0.8	0.4	40	648	5	5
p3259	1	2	0.1	0.2	0.6	0.4	31	361	5	9
p3260	1	2.1	0.1	0.2	0.6	0.4	32	533	5	6
p3261	1	2.7	0.1	0.2	0.8	0.4	45	385	5	11
p3262	1	3.7	0.1	0.2	1.2	0.5	66	492	2 :	10
p3263	´ 1	3	0.1	0.2	0.9	0.5	8 4	395	3	11
p3264	· 1	3.1	0.1	0.2	0.9	0.3	59	534	9	8
p3265	1	3.4	0.1	0.2	1	0.4	61	494	3	1 4

\bigcirc
N
-1

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p326 6	1	3.1	0.1	0.2	1	0.4	5 5	455	3	11
p3267	1	3.6	0.1	0.2	1	0.4	72	422	0.5	12
p3268	1	3.3	0.1	0.2	0.8	0.4	64	742	7	11
p3 269	1	4.3	0.1	0.2	1.1	0.4	84	440	0.5	17
p3270	1	3.2	0.1	0.2	0.9	0.4	56	472	2	12
p3271	1	5	0.2	0.2	0.7	0.4	197	10	7	22
p3272	1	4.8	0.1	0.2	0.9	0.5	86	691	6	15
p3273	1	3.6	0.1	0.1	1	0.3	239	217	14	19
p3274	1	3.3	0.1	0.2	1	0.4	101	502	2	14
p3275	1	3.2	0.1	0.2	0.8	0.4	94	428	4	18
p3276	1	1.9	0.1	0.2	0.5	0.4	38	564	5	8
p32 7 7	1	4	0.1	0.2	0.9	0.4	203	518	10	18
p3278	1	2.3	0.1	0.2	0.8	0.4	33	385	5	8
p3279	1	3.9	0.1	0.2	0.9	0.4	89	361	0.5	13
p3 2 80	1	3.1	0.1	0.2	1.4	0.4	51	356	8	7
p3 2 91	1	3.2	0.1	0.1	0.8	0.4	58	351	0.5	10
p3282	1	3.2	0.1	0.2	0.9	0.4	60	380	0.5	12
p3283	1	3.1	0.1	0.2	1	0.4	97	710	3	20
p3284	1	2.6	0.1	0.2	1.1	0.4	32	362	5	9
p3285	1	2.5	0.1	0.2	0.7	0.4	43	571	. 4	- 10
p3286	1	2.9	0.1	0.1	1.5	0.4	103	365	2	5
p3287	1	3.4	0.1	0.2	0.9	0.4	6 8	444	0.5	12
p3288	1	3.9	0.1	0.2	1.1	0.4	74	369	0.5	17
p3290	1	4.4	0.1	0.2	1.4	0.4	144	797	11	16 ,
p3 2 91	1	3.3	0.1	0.2	1	0.3	79	569	8	15
p3292	1	2.4	0.1	0.1	0.8	0.4	100	416	4	11
p3293	1	2.5	0.1	0.1	0.9	0.4	99	401	7	10
p3294	1	4.8	0.1	0.2	1.2	0.3	196	658	8	20
p3295	1	• 5.5	0.1	0.2	1.9	0.4	67	330	5	6
p3296	2	4.2	0.1	0.2	0.9	0.5	62	670	8	10
p3297	1	2.4	0.1	0.2	0.7	0.4	44	471	6	8
p3298	1	4.4	0.1	0.2	1.5	0.5	52	333	. 5	10
p3299	1	2.6	0.1	0.2	0.8	0.4	62	309	3	9

5			
7			
3			
5			
9			
3			
5			
9			
8			
2			
6			
4			
6			
5			
5			
0			
2			
5			
9			

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3300	1	4.1	0.1	0.2	1.5	0.4	44	267	2	4
p3301	3	1.3	0.05	0.2	0.5	0.5	19	305	1 .	0.5
p3302	1	3	0.1	0.2	0.8	0.4	50	338	. 5	6
p3303	2	1.1	0.05	0.2	0.4	0.4	15	312	. 2	0.5
p3304	1	1.7	0.1	0.2	0.6	0.3	48	284	0.5	1
p3305	1	2.5	0.1	0.2	0.9	0.3	64	455	11	10
p33 06	1	2.9	0.1	0.2	0.9	0.4	58	413	. 1	9
p33 07	1	3.1	0.1	0.1	0.8	0.4	74	392	3 ,	10
p3308	1	2.4	0.1	0.2	0.7	0.4	71	581	5	6
p3309	1	3.5 🧃	0.1	0.2	8.0	0.5	94	1270	12	3 6
p3310	1	3.8	0.1	0.2	0.9	0.4	88	407	3	15
p3311	1	3.4	0.1	0.2	0.8	0.4	77	397	0.5	15
p3312	1	2.8	0.1	0.2	1.2	0.4	60	330	6	9
p3313	1	3.2	0.1	0.2	0.8	0.4	72	320	· 2 •	13
. p3314	1	2.3	0.1	0.1	0.6	0.4	6 3	217	3	5
p33 15	1	2.5	0.1	0.2	0.6	0.4	39	296	3	7
p3317	1	2.3	0.1	0.2	0.8	0.5	60	327	5	8
p3318	2	1.5	0.05	0.2	0.5	0.3	28	249	0.5	5
p3320	1	3.8	0.1	0.2	1	0.4	88	4 1 7	0.5	19
p3321	1	2.2	0.1	0.2	0.8	0.1	42	431	0.5	8
p3322	· 1	4.2	0.1	0.2	0.9	0.4	82	454	0.5	15
p3323	1	3.6	0.1	0.2	1.1	0.4	61	356	0.5	29
p3324	1	3 .6 -	0.1	0.2	0.8	0.3	72	465	0.5	18
p332 5	1	2.6	0.1	0.2 .	0.6	0.3	50	489	0.5	12
p3326	1	3.6	0.1	0.2	0.7	0.3	123	392	0.5	16
p3327	1	3	0.1	0.2	0.8	0.4	6 3	397	0.5	14
p3328	1	3.4	0.1	0.1	1	0.4	106	255	0.5	16
p3329	1	3.4	0.1	0.2	0.8	0.4	87	408	0.5	15
p3330	1	3.5	0.1	0.2	0.9	0.4	125	427	0.5	15
p3331	1	4.4	0.1	0.2	1.2	0.4	84	452	0.5	20
p3332	3	5.5	0.1	0.1	0.9	0.3	81	21	0.5	12
p3334	1	4.1	0.1	0.2	1	0.4	73	530	0.5	15
p3335	1	4.2	0.1	0.2	1	0.4	93	522	0.5	19

\bigcirc
هدر
\mathcal{N}
9

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5.%	Sr ppm	.Ba ppm	U3O8 ppm	ThO2 ppm
p3336	1	3.4	0.1	0.2	0 .8	0.4	8 1	748	1	15
p3337	· 1	4.4	0.1	0.1	0.7	0.3	159	261	4	16
p3338	1	4.1	0.1	0.1	0.8	0.3	99	3 49	5	14
p3339	6	4.7	0.1	0.2	0.8	0.4	6 3	452	3	11
p3340	.1	4.2	0.1	0.2	0.8	0.3	141	431	1	20
p3341	1	3.7	0.1	0.2	0.9	0.4	. 82	491	0.5	19
p3342	1	3	0.1	0.2	0.9	0.4	68	498	0.5	12
p3343	1	3.2	0.1	0.2	1	0.3	73	481	0.5	15
p3344	1	4	0.1	0.1	0.8	0.3	190	268	. 5	17
p3345	1	3.3 、	0.1	0.2	0.7	0.4	145	473	4	17
p3346	3	3.3	0.1	0.1	0.8	0.2	407	10	6	13
p3347	14	3.2	0.1	0.1	1	0.3	419	10	7	16
p3348	1	3.7	0.1	0.2	0.8	0.4	1050	223	11	9
p3349	1	2.7	0.1	0.2	0.7	0.4	48	585	0.5	14
p3350	1	3.5	0.1	0.2	1	0.4	152	318	0.5	16
p3351	1	4.4	0.1	0.2	1.1	0.4	168	349	0.5	14
p3352	5	4	0.1	0.1	1.4	0.4	3 9	304	0.5	0.5
p3353	1	2.9	0.1	0.2	0.8	0.4	4 1	344	0.5	9
p3354	1	3.1	0.1	0.1	1.2	. 0.3	102	208	0.5	6
p3355	1	3.4	0.1	0.2	0.9	0.4	115	390	0.5	10
p3356	1 -	2.6	0.1	0.2	0.7	0.4	43	321	0.5	8
p3 35 7	1	3	0.1	0.2	0.8	0.4	55	372	0.5	11
p3358	1	3.6	0.1	0.2	1	0.3	86	425	0.5	16
p3359	1	3	0.1	0.2	0.9	0.3	158	10	0.5	15
p3360	1	2.6	0.1	0.2	0.5	0.4	25	312	0,5	2
p3361	1	2.5	0.1	0.2	0.5	0.4	27	324	0.5	3
p3364	1	2.9	0.1	0.2	0.6	0.4	62	255	0.5	11
p3365	1	2.4	. 0.1	0.2	0.6	0.4	37	321	0.5	. 8
p3366	1	3.4	0.1	0.2	0.7	0.3	57	582	0.5	12
p3367	1	3 .9	0.1	0.1	1	0.3	140	308	0.5	1.7
p3368	1	3.5	0.1	0.2	. 0.9	0.4	64	332	0.5	9
p3369	1	3.7	0.1	0.2	1.1	0.4	139	330	0.5	16
p3370	1	4.3	0.1	0.2	1.1	0.3	106	297	0.5	17

_
C
٥
هدا
φ
0

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O 5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3371	1	3.6	0.1	0.2	8.0	0.4	55	425	0.5	12
p3372	1	3.7	0.1	0.2	0.9	0.4	72	381	0.5	19
p3373	1	3.1	√0.1	0.2	0.8	0.4	45	428	0.5	11
p3374	1	3.9	0.1	0.1	0.9	0.4	78	392	0.5	16
p3375	. 1	3.4	0.1	0.2	0.8	0.4	5 2	430	0.5	1 4
p3376	1	4.5	0.1	0.2	0.7	0.3	128	381	2	16
p3377	1	2.8	0.1	0.2	0.8	0.2	540	223	8	14
p3378	1	3.1	0.1	0.2	0.7	0.4	68	705	0.5	14
p3379	1	3 .	0.1	0.2	0.8	0.3	94	452	0.5	16
p3380	1	3.2	0.1	0.2	0.7	0.3	46	475	0.5	11
p3381	1	3.1	0.1	0.1	0.6	0.3	52	573	0.5	13
p3382	1	3.3	0.1	0.2	0.9	0.4	55	502	0.5	11
p3383	1	4	0.1	0.2	1	0.4	165	290	0.5	19
p3384	1	4.1	0.1	0.2	0.9	0.4	1 1 8	279	0.5	19
p3385	1	4	0.1	0.2	1	0.4	91	374	0.5	20
p3386	1	4.4	0.2	0.2	1.1	0.4	. 88	401	0.5	18
p3387	1	3.2	0.1	0.2	0.9	0.3	77	433	0.5	16
p3388	1	4.1	0.1	0.2	1	0.4	69	531	0.5	16
p3389	1	3.5	0.1	0.2	0.9	0.4	86	519	0.5	16
p3390	1	3.9	0.1	0.2	1.1	0.3	124	326	0.5	19
p3392	1	4.5	0.1	0.2	1.2	0.5	93	376	0.5	21
p3393	1	3	0.1	0.2	0.8	0.4	42	474	0.5	10
p3394	1	3.2	0.1	0.2	0.8	0.4	56	452	0.5	15
p3395	1	2.9	0.1	0.1	0.7	0.4	64	675	0.5	9
p3396	1	2.5	0.1	0.1	0.8	0.4	7 7	775	0.5	9
p3397	1	1.9	0.1	0.1	0.7	0.4	58	745	0.5	11
p3398	1.	2.6	0.1	0.2	0.9	0.4	99	565	1	11
p3399	1	2	0.1	0.2	0.7	0.4	45	623	0.5	9
p3400	1	2.3	0.1	0.1	0.7	0.3	77	552	0.5	·11
p3401	1	2.5	0.1	0.2	0.8	0.4	45	586	0.5	12
p3402	1	2.7	0.1	0.2	0.9	0.4	46	509	0.5	10
p3403	1	3.5	0.1	0.2	1	0.4	71	483	0.5	16
p3404	1	2.9	0.1	0.2	1	0.4	49	628	0.5	16

Page 48

C	
\subset	
C	
-	

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3405	1	3.1	0.1	0.2	1	0.4	58	559	0.5	16
p3 406	1	3.3	0.1	0.2	1	0.4	68	542	0.5	22
p3407	1	2.5	0.1	0.1	1	0.4	144	212	0.5	20
p3408	1	2.6	0.1	0.2	0.8	0.4	71	518	0.5	23
p3409	4	3.3	0.1	0.2	1.4	0.4	48	529	3	11
p3410	1	2.8	0.1	0.2	0.8	0.4	62	565	0.5	19
p3411	1	2.8	0.1	0.2	0.9	0.5	52	582	0.5	15
p3412	1	4.3	0.1	0.2	1.1	0.4	100	385	0.5	18
p3413	1	3.4	0.1	0.2	0.9	0.3	74	544	0.5	23
p3414	1	3.3	0.1	0.2	0.9	0.4	6 1	554	0.5	20
p3415	1	2.6	0.1	0.2	0.7	0.4	52	588	0.5	19
p3416	1	4.3	0.1	0.2	1.1	0.3	88	400	0.5	22
p3419	1	2.8	0.1	0.2	0.9	0.4	56	542	0.5	17
p3420	1	3.1	0.1	0.2	0.9	0.4	63	537	0.5	19
p3421	1	2.3	0.1	0.2	0.7	0.4	80	656	0.5	15
p3422	1 '	3.2	0.1	0.2	0.9	0.4	175	378	0.5	19
p3423	1	3.2	0.1	0.1	1	0.3	144	442	0. 5	20
p3424	1	3.2	0.1	0.2	1	0.4	88	409	0.5	19
p3425	1	4.2	0.1	0.2	1.1	0.3	164	249	0.5	19
p3426	. 1	3.7	0.1	0.2	0.9	0.3	9 1	442	0.5	21
p3427	1	2.2	0.1	0.2	0.7	0.4	48	584	0.5	-15
p3428	1	2.4	0.1	0.2	0.7	0.3	47	586	0.5	15
p3429	1	2.3	0.1	0.1	0.8	0.4	96	509	0.5	12
p3430	1	2.5	0.1	0.1	0.9	0.3	133	445	0.5	17
p3431	· 3	2.4	0.1	0.2	0.8	0.4	40	6 3 3	1	1,1
p3432	1	3.7	0.1	0.2	1.1	0.4	83	3 97	0.5	19
p3433	1	2.6	0.1	0.2	0.9	0.3	6 4	477	0.5	16
p3434	1	2.6	0.1	0.2	0.9	0.4	82	470	0.5	17
p3 43 5	1	3	0.1	0.2	1	0.4	75	459	0.5	22
p3436	1	2.6	0.1	0.1	0.9	0.4	59	433	0.5	20
p3437	1	4	0.1	0.1	1	0.5	137	265	0.5	25
p3438	1	4.2	. 0.1	0.2	1.2	0.4	101	307	0.5	22
p3440	1	3	0.1	0.2	1	0.4	77	410	0.5	18

C .	
\subset	
Ç.	
N	

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3441	1	3.6	0.1	0.2	1.1	0.3	100	473	0.5	24
p3442	1	3.7	0.1	0.2	1	0.4	79	420	0.5	24
p3443	1	3.8	0.1	0.2	1	0.4	82	388	0.5	20
p3444	1	2.6	0.1	0.2	0.8	0.3	79	494	1	16
p3445	1	3.4	0.1	0.2	1.1	0.4	87	605	0.5	19
p3446	1	2.8	0.1	0.1	0.9	0.3	89	332	0.5	17
p3447	1	2.6	0.1	0.2	0.8	0.3	80	354	0.5	16
p3448	1	2.8	0.1	0.2	0.9	0.4	74	471 ·	0.5	13
p3449	7	6.2	0.1	0.2	0.8	0.4	202	614	5	18
p3450	1	3 .	0.1	0.1	1.1	0.4	221	247	0.5	18
p3451	1	4.4	0.2	0.2	1.1	0.4	97	395	0.5	27
p3452	1	3.8	0.1	0.2	1	0.4	108	398	0.5	28
p3453	1	3.3	0.1	0.2	0.9	0.4	63	496	0.5	22
p3454	1	3.9	0.2	0.2	1	0.3	77	455	0.5	31
p3455	1	2.7	0.1	0.2	0.9	0.4	57	573	0.5	. 15
p3456	1	3	0.1	0.2	1	0.3	347	306	2	23
p3457	1	4.7	0.2	0.2	1.3	0.4	94	406	0.5	22
p3458	1	3.3	0.1	0.2	1	0.4	66	537	0.5	20
p3459	1	3.1	0.1	0.2	1.1	0.3	75	497	0.5	16
p3460	1	2.9	0.1	0.1	0.9	0.3	138	646	0.5	21
p3461	1	2.4	0.1	0.2	0.7	0.4	65	570	0.5	18
p3462	1	3	0.1	0.2	0.9	0.4	66	628	0.5	18
p3463	1	2.8	0.1	0.2	8.0	0.4	58	542	0.5	18
p3464	1	4.1	0.2	0.2	1	0.4	103	419	0.5	20
p3466	1	3.2	0.1	0.2	1	0.5	87	468	0.5	19
p3467	1	3.3	0.1	0.2	1.2	0.4	133	467	2	17
p3469	1	2.7	0.1	0.2	0.9	0.4	1 0 5	623 _.	0.5	14
p3471	1	3.5	0.1	0.2	1	0.3	78	444	0.5	22
p3472	1	2.8	0.1	0.1	0.8	0.4	54	612	0:5	11
p3474	1	3.6	0.1	0.2	0.9	0.4	86	528	0.5	22
p3475	1	2.7	0.1	0.2	0.8	0.4	65	587	0.5	15
p3476	1	3	0.1	0.2	0.9	0.3	70	535	0.5	17
p3477	1	3.2	0.1	0.2	1	0.4	131	478	0.5	17 .

TiO2 %

0.9

0.9

1.2

0.9

0.9

V2O5 %

0.4

0.4

0.4

0.5

0.4

Sr ppm

67

119

164

63

75

Ba ppm

563

498

507

596

559

Sample No.

p3478

p3479

p3481

p3482

p3483

Bi ppm

1

1

2

1

1

Fe%

2.9

3.5

3.4

2.7

3

Mn%

0.1

0.1

0.1

0.1

0.1

Cr%

0.2

0.2

0.2

0.2

0.2

p3486 1 3 0.1 0.2 0.8 0.3 62 576 0.5 1 p3487 1 2.8 0.1 0.1 0.9 0.4 122 476 0.5 2 p3489 1 2.3 0.1 0.2 0.8 0.3 51 668 2 1 p3490 1 2.7 0.1 0.1 0.9 0.5 73 589 1 1 p3491 1 2.8 0.1 0.2 0.8 0.5 78 843 4 1 23 0.1 0.2 0.9 0.4 64 489 0.5 1 0.5 1 0.4 64 489 0.5 1 0.4 64 489 0.5 1 0.2 0.9 0.4 64 489 0.5 1 0.2 0.9 0.4 64 489 0.5 1 0.2 0.9 0.4 365 977											
p3487 1 2.8 0.1 0.1 0.9 0.4 122 476 0.5 2 p3489 1 2.3 0.1 0.2 0.8 0.3 51 668 2 1 p3490 1 2.7 0.1 0.1 0.9 0.5 73 589 1	p3484	1	3.5	0.1	0.1	0.8	0.4	87	508	0.5	16
p3489 1 2.3 0.1 0.2 0.8 0.3 51 668 2 1 p3490 1 2.7 0.1 0.1 0.9 0.5 73 589 1 1 p3491 1 2.8 0.1 0.2 0.8 0.5 78 843 4 1 p3492 1 3.3 0.1 0.2 0.9 0.4 64 489 0.5 1 p3493 1 3.5 0.1 0.2 0.9 0.4 64 489 0.5 1 p3494 1 3.7 0.1 0.2 0.9 0.4 127 353 2 2 p3495 6 3.9 0.1 0.2 0.4 0.3 270 280 8 2 p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 1 p3497 1 3.3	p3486	1	3	0.1	0.2	0.8	0.3	62	576	0.5	18
p3490 1 2.7 0.1 0.1 0.9 0.5 73 589 1 1 p3491 1 2.8 0.1 0.2 0.8 0.5 78 843 4 1 p3492 1 3.3 0.1 0.2 0.9 0.4 64 489 0.5 1 p3493 1 3.5 0.1 0.2 0.9 0.4 365 977 9 2 3 3 2 2 2 3	p3487	1	2.8	0.1	0.1	0.9	0.4	122	476	0.5	20
p3491 1 2.8 0.1 0.2 0.8 0.5 78 843 4 1 p3492 1 3.3 0.1 0.2 0.9 0.4 64 489 0.5 1 p3493 1 3.5 0.1 0.2 0.9 0.4 365 977 9 2 p3494 1 3.7 0.1 0.2 0.7 0.4 127 353 2 2 p3495 6 3.9 0.1 0.2 0.4 0.3 270 280 8 2 p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 1 p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 1 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 1 0.5 1 3.3 1	p3489	1	2.3	0.1	0.2	0.8	0.3	51	668	2	14
p3491 1 2.8 0.1 0.2 0.8 0.5 78 843 4 1 p3492 1 3.3 0.1 0.2 0.9 0.4 64 489 0.5 1 p3493 1 3.5 0.1 0.2 0.9 0.4 64 489 0.5 1 p3493 1 3.5 0.1 0.2 0.9 0.4 365 977 9 2 3 3 2 2 2 2 3 3 2 2 2 3 3 2 2 0 5 3 3 3	p3490	1	2.7	0.1	0.1	0.9	0.5	73	589	1	15
p3493 1 3.5 0.1 0.2 0.9 0.4 365 977 9 2 p3494 1 3.7 0.1 0.2 0.7 0.4 127 353 2 2 p3495 6 3.9 0.1 0.2 0.4 0.3 270 280 8 2 p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 1 p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 1 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 1 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 1 p3501 1 4.1 0.1 0.2 1 0.4 48 455 0.5 1 p3502 1 3.2	p3491	1		0.1	0.2	0.8	0.5	78	843	4	15
p3494 1 3,7 0.1 0.2 0.7 0.4 127 353 2 2 p3495 6 3.9 0.1 0.2 0.4 0.3 270 280 8 2 p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 1 p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 1 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 1 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 1 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 4.1 0.1 0.2 0.9 0.4 88 455 0.5 0.5 0.5 0.5 0.5 0.5 <td>p3492</td> <td>1</td> <td>3.3</td> <td>0.1</td> <td>0.2</td> <td>0.9</td> <td>0.4</td> <td>64</td> <td>489</td> <td>0.5</td> <td>18</td>	p3492	1	3.3	0.1	0.2	0.9	0.4	64	489	0.5	18
p3495 6 3.9 0.1 0.2 0.4 0.3 270 280 8 2 p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 1 p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 7 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 1 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 1 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 1 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 1 0.5 1 0.5 1	p3493	1	3.5	0.1	0.2	0.9	0.4	365	977	9	22
p3496 1 2.4 0.1 0.2 0.8 0.4 75 592 0.5 p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 1 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 <td< td=""><td>p3494</td><td>1</td><td>3.7</td><td>0.1</td><td>0.2</td><td>0.7</td><td>0.4</td><td>127</td><td>353</td><td>2</td><td>20</td></td<>	p3494	1	3.7	0.1	0.2	0.7	0.4	127	353	2	20
p3497 1 3.3 0.2 0.2 1 0.5 77 501 0.5 p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 1 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 1 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 1 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 1 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5	p3495	6	3.9	0.1	0.2	0.4	0.3	270	280	8	22
p3498 1 2.4 0.1 0.2 0.8 0.3 75 631 0.5 p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 <td>p3496</td> <td>1</td> <td>2.4</td> <td>0.1</td> <td>0.2</td> <td>0.8</td> <td>0.4</td> <td>75</td> <td>592</td> <td>0.5</td> <td>17</td>	p3496	1	2.4	0.1	0.2	0.8	0.4	75	592	0.5	17
p3499 1 3.5 0.1 0.2 1.1 0.3 97 615 0.5 p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 1 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 67 501 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 4		1	3.3	0.2	0.2	1	0.5	7 7	501	0.5	18
p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 p3501 1 4.1 0.1 0.2 1 0.4 88 455 0.5 p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5	p 3 498	1	2.4	0.1	0.2	0.8	0.3	75	6 3 1	0.5	15
p3500 1 3.4 0.1 0.2 1 0.4 133 311 0.5 1 p3501 1 0.1 0.2 1 0.4 88 455 0.5 1	p3499	1	3.5	0.1	0.2	1.1	0.3	97	615	0.5	19
p3502 1 3.2 0.1 0.2 0.9 0.4 65 531 0.5 p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 126 <td< td=""><td></td><td>1</td><td>3.4</td><td>0.1</td><td>0.2</td><td>1</td><td>0.4</td><td>· 133</td><td>311</td><td>0.5</td><td>19</td></td<>		1	3.4	0.1	0.2	1	0.4	· 133	311	0.5	19
p3503 1 3.2 0.1 0.2 0.9 0.4 86 500 0.5 p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5	p3501	1	4.1	0.1	0.2	1	0.4	88	455	0.5	15
p3504 1 3.3 0.1 0.2 0.9 0.4 67 501 0.5 p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5 <td>p3502</td> <td>1</td> <td>3.2</td> <td>0.1</td> <td>0.2</td> <td>0.9</td> <td>0.4</td> <td>65</td> <td>531</td> <td>0.5</td> <td>16</td>	p3502	1	3.2	0.1	0.2	0.9	0.4	65	531	0.5	16
p3505 1 3.2 0.1 0.2 0.9 0.4 74 578 0.5 p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3503	1	3.2	0.1	0.2	0.9	0.4	86	500	0.5	15
p3506 1 2.8 0.1 0.2 0.9 0.3 86 725 3 p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3504	1	3.3	0.1	0.2	0.9	0.4	67	501	0.5	13
p3507 1 4.3 0.1 0.2 1 0.4 98 417 0.5 p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3 5 05	1	3.2	0.1	0.2	0.9	0.4	74	578	0.5	18
p3508 1 3.5 0.1 0.2 1 0.3 82 513 0.5 p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3506	1	2.8	0.1	0.2	0.9	0.3	86	725	3	13
p3509 1 3.7 0.2 0.2 0.9 0.4 75 485 0.5 p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3507	1	4.3	0.1	0.2	1	0.4	98	417	0.5	16
p3510 1 3.9 0.1 0.2 1.1 0.4 93 484 0.5 p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3508	1	3.5	0.1	0.2	1	0.3	82	513	0.5	17
p3511 1 3.2 0.1 0.2 1 0.4 121 350 0.5 p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3509	1	3.7	0.2	0.2	0.9	0.4	75	485	0.5	16
p3512 1 3.7 0.1 0.2 0.9 0.4 126 464 0.5	p3510	1	3.9	0.1	0.2	1.1	0.4	93	484	0.5	18
President of the control of the cont	p3511	1	3.2	0.1	0.2	1	0.4	121	350	0.5	17
	p3512	1	3.7	0.1	0.2	0.9	0.4	126	464	0.5	16
p3513 1 3.2 0.1 0.2 1 0.4 105 504 0.5	p3513	1	3.2	0.1	0.2	1	0.4	105	504	0.5	16

000133

ThO2 ppm

13

19

21

16

20

U3O8 ppm

1

0.5

2 0.5

0.5

\mathbb{C}
0
þ.,,,,,,,
ರು

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3514	1 '	2.8	0.1	0.2	1.1	0.4	72	754	0.5	. 8
p3515	1	3.5	0.1	0.2	1	0.4	90	495	0.5	.19
p3516	1	3.1	0.1	0.2	0.9	0.4	97	468	0.5	14
p3517	1	3.1	0.1	0.1	0.8	0.4	61	5 32	0.5	19
p3518	1	3.7	0.1	0.2	1	0.4	86	481	0.5	1 6
p3519	1	3.2	0.1	0.2	0.9	0.4	67	496	0.5	16
p352 0	1	3.2	0.1	0.2	1	0.4	87	496	0.5	17
p3521	1	3 .9	0.1	0.2	1.1	0.4	. 79	433	0.5	18
p3522	1	2.7	0.1	0.2	0.8	0.4	87	529	0.5	14
p3523	1	3.3	0.1	0.2	0.9	0.4	87	466	0.5	18
p3524	1	2.8	0.1	0.2	0.9	0.3	77	503	0.5	15
p3525	1	2.8	0.1	0.2	0.8	0.4	230	3 69	0.5	19
p3527	. 1	3.2	0.1	0.2	1.1	0.4	80	473	0.5	17
p3528	1	3.2	0.1	0.2	1.1	0.4	75	561	0.5	19
p3529	1	2.8	0.1	0.2	0.9	0.4	52	527	0.5	15
p3530	1	3.3	0.1	0.2	1.3	0.5	6 0	545	0.5	15
p3531	1	3.1	0.1	0.2	1	0.3	71	520	0.5	14
p3532	1	2.5	0.1	0.2	0.8	0.4	57	537	2	13
p3533	1	3.2	0.1	0.2	1	0.3	74	478	0.5	18
p3534	1	4	0.2	0.2	1	0.4	95	400	0.5	20
p3535	1 .	4.1	0.2	0.2	1.1	0.4	104	430	0.5	18
p3536	1	3.4	0.1	0.2	1	0.4	87	439	0.5	17
p3537	1	3 .9	0.2	0.2	1	0.4	83	385	0.5	18
p3538	1	3	0.1	0.2	0.8	0.3	89	443	0.5	18
p3539	1	3.5	0.1	0.2	1	0.3	108	297	0.5	19
p3540	1	3.6	0.1	0.1	1.1	0.4	132	245	0.5	19
p3541	1	4.5	0.2	0.2	1.1	0.4	99	420	0.5	19
p3542	1	3	0.1	0.2	0.9	0.4	5 7	501	0.5	19
p3543	1 .	. 3.3	0.1	0.2	1	0.3	110	446	0.5	21
p3544	1	3.3	0.1	0.2	1	0.4	8 3	447	0.5	19
p3545	1	2.6	0.1	0.2	0.9	0.5	63	486	1	14
p3546	1	3.2	0.1	0.2	1.2	0.4	119	409	3	15
p3547	1	3.9	0.1	0.2	1.1	0.4	123	291	0.5	19

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3548	1 ·	2.6	0.1	0.2	0.9	0.4	8 3	584	3	18
p3549	1 -	3.1	0.1	0.1	0.9	0.4	121	426	2	17
p3550	1	2.9	0.1	0.2	1	0.4	87	472	2	15
p3551	1	4.1	0.2	0.2	1.3	0.4	110	400	0.5	20
p 355 2	1	3.9	0.1	0.2	1.2	0.3	103	401	0.5	19
p3553	1 .	4.2	0.2	0.2	1	0.4	85	466	0.5	18
p3554	1	4.3	0.1	0.2	1.1	0.3	87	362	0.5	16
p3555	1 '	3.5	0.1	0.2	1.1	0.4	84	401	0.5	16
p3556	1	3.4	0.1	0.2	0.9	0.4	92	483	0.5	19
p3557	1	2.9	0.1	0.2	1	0.3	93	437	0.5	16
p3558	.1	2.9	0.1	0.2	1	0.3	82	473	0.5	19
p3559	1	2.9	0.1	0.1	1.1	0.4	118	434	3	15
p3560	1	3.1	0.1	0.2	1.1	0.3	99	449	1	17
p3562	1	3.6	0.1	0.2	1	0.5	100	425	0.5	20
p3563	·1	3.7	0.1	0.2	1.3	0.4	76	421	0.5	21
p3564	. 1	3.6	0.1	0.2	1	0.5	74	483	0.5	18
p3565	1	3.6	0.1	0.2	1	0.3	100	382	0.5	22
p3566	1	3.6	0.1	0.1	1.2	0.4	74	528	0.5	16
p3567	1	3.7	0.1	0.2	1.2	0.3	72	478	0.5	18
p3568	1	4.1	0.2	0.2	1.8	0.4	81	470	4	19
p3569 🕠	1	3.6	0.2	0.2	1.6	0.3	106	458	. 4	20
p3570	1 ⋅	3.5	0.1	0.2	1.3	0.4	118	524	0.5	20
p3571	1	3.2	0.1	0.2	1	0.4	118	450	0.5	16
p3572	1	3.1	0.1	0.2	1.1	0.4	87	477	0.5	18
p3573	1	3.3	0.1	0.1	0.9	0.4	76	474	0.5	19
p3574	1	2.9	0.1	0.2	1.1	0.4	87	468	0.5	17
p3575	1	3.1	0.1	0.2	0.9	0.3	100	464	0.5	19
p3576	1	3 .	0.1	0.2	0.9	0.3	80	475	0.5	17
p3577	1 .	· 3	. 0.1	0.1	- 1	0.3	446	246	4	2 1
p3578	1	3.1	0.1	0.2	0.9	0.4	80	538	0.5	2 1
p3580	1	3.2	0.1	0.2	1	0.4	94	416	0.5	16
p3581	1 -	2.9	0.1	0.2	8.0	0.4	121	518	2	19
p3582.	1	3.7	0.1	0.2	1 .	0.3	132	357	0.5	15

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3583	1	3.8	0.1	0.2	1	0.3	80	430	0.5	18
p3584	1	2.3	0.1	0.2	0.7	0.4	5 7	629	2	1 4
p3585	1	3.5	0.1	0.2	0.9	0.3	82	502	0. 5	17
p3586	1	3.3	0.1	0.2	0.8	0.4	71	522	0.5	17
p3587	- 1	3.7	0.2	0.2	1	0.3	8 5	526	0.5	21
p3588	1	4.2	0.1	0.2	1.2	0.4	300	406	0.5	16
p3589	1	4.4	0.2	0.2	1.1	0.4	107	448	0.5	17
p3590	1	4.1	0.2	0.2	1.1	0.4	339	411	0.5	20
p3591	1	3.3	0.1	0.2	0.8	0.4	94	584	0.5	17
p3592	1	4	.0.1	0.2	1.1	0.4	93	464	0.5	14
p3593	1	4.2	0.1	0.2	1	0.4	99	480	0.5	15
p3594	1	4.4	0.2	0.2	1	0.5	104	425	0.5	16
p3595	1	3.1	0.1	0.2	0.8	0.4	63	610	0.5	17
p3596	1	4.3	0.1	0.2	1	0.4	100	414	0.5	16
p3598	1	2.9	0.1	0.2	0.9	0.4	79	599	2	18
p3599	1	3.8	0.1	0.2	1	0.4	76	478	0.5	20
p3600	1	3	0.1	0,2	0.9	0.3	64	524	0.5	16
p3601	1	3.6	0.2	0.2	1.1	0.4	82	602	0.5	18
p3602	1	3.8	0.2	0.2	1	0.3	83	489	0.5	18
p3603	1	4.3	0.2	0.2	1.1	0.4	94	384	0.5	19
p3604	1	3.9	0.1	0.2	1.1	0.4	92	440	0.5	. 17
p3605	1	4.2	0.1	0.2	1	0.4	97	400	. 0.5	18
p3606	1	4.2	0.1	0.2	1.2	0.3	108	379	0.5	19
p3607	1	3.3	0.1	0.2	1.1	0.4	66	501	1	16
p3608	1	3.9	0.2	0.2	1.1	0.4	96	415	0.5	20
p3609	1	3.5	0.1	0.2	0.9	0.4	83	476	0.5	22
p3610	1	3.8	0.1	0.2	1	0.4	83	448	0.5	17
p3611	1	4.5	0.1	0.2	1.1	0.4	111	368	0.5	16
p3612	1	3.1	0.1	0.2	1	0.4	67	550	0.5	18
p3613	1	3.1	0.1	0.1	1	0.3	156	438	. 2 .	23
p3614	1	· 3	0.1	0.2	1.1	0.3	100	552	0.5	18
p3615	1	3.1	0.1	0.2	1.1	0.3	139	354	0.5	20
p3616	1	2.6	0.1	0.2	0.9,	0.4	62	538	0.5	19

C	5
	\supset
(\Box
į	الت.
(
	_

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
- p3617	1	2.8	0.1	0.2	1	0.4	198	365	0.5	21
p3618	1 .	2.6	0.1	0.2	0.8	0.4	107	476	0.5	14.
p3619	1	3	0.1	0.1	0.8	0.3	113	510	0.5	20
p3620	1	3.1	0.1	0.2	1.1	0.4	119	401	0.5	16
p3621	1	3.3	0.1	0.2	0.8	0.4	85	524	0.5	23
p3622	1	3.7	0.2	0.2	1.1	0.4	93	322	0.5	20
p3623	1	3.3	0.1	0.2	1.1	0.4	105	404	0.5	19
p3625	1	2.5	0.1	0.1	0.8	0.3	764	38	9	19
p3626	1	3.3	0.1	0.1	1.1	0.4	345	342	-1	2 2
p3627	. 1	2.9	0.1	0.2	0.9	0.4	82	540	0.5	21
p3628	1	3.1	0.1	0.2	1	0.4	294	237	3	24
p3629	1	3.2	0.1	0.1	1	0.3	100	396	0.5	23
p3630	1	2.9	0.1	0.2	1.1	0.4	118	428	2	20
p3631	1 .	3.3	0.1	0.2	1	0.3	85	404	0.5	23
p3632	1 .	2.9	0.1	0.2	1.1	0.3	112	285	0.5	19
p3633	1	2.7	0.1	0.2	0.9	0.4	104	425	0.5	20
p3634	1	. 3	0.1	0.2	0.9	0.4	55	453	0.5	19
p3635	· 1	2.9	0.1	0.2	0.8	0.3	62	463	0.5	20
p3636	1 .	3.1	0.1	0.2	0.9	0.4	59	498	0.5	17
p3637	1	3	0.1	0.2	1.2	0.4	83	454	2	14
p3638	1	2.9	0.1	0.1	0.9	0.4	86	407	0.5	19
p3639	1	3.6	0.1	0.2	1	0.4	103	348	0.5	21
p 3640	1	3.7	0.1	0.2	1.1	0.4	130	228	0.5	21
p3641	1	4.6	0.2	0.2	1	0.5	99	341	0.5	20
p3642	1	3.2	0.1	0.2	0.9	0.3	- 60	465	0.5	18
p3643	1	3.4	0.1	0.2	1	0.4	. 109	424	0.5	21
p3644	1	3.2	0.1	0.2	1	0.4	8 1	438	0.5	22
p3645	1	2.5	0.1	0.2	0.9	0.4	62	508	. 4	14
p3647	1	4	0.1	0.2	1.1	0.4	123	276	0.5	21
p3648	1	2.5	0.1	0.1	0.8	0.4	85	500	3	18
p3649	1	3.3	0.1	0.2	1.1	0.3	122	371	2	18
p36 50	1	2.9	0.1	0.2	1	0.4	85	444	2	17
p3651	1	4	0.2	0.2	1.2	0.4	110	366	0.5	21

_	
\subseteq)
C	
}	
Ç	:
\circ	_

Sam p le No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3652	1	3.9	0.1	0.2	1.3	0.4	1 0 3	347	0.5	20
p3653	1	4.1	0.2	0.2	1	0.4	84	431	0.5	21
p3654	1	4.5	0.2	0.2	1.1	0.4	85	338	0.5	21
p3655	1	3.5	0.1	0.2	1	0.4	84	405	0.5	18
p3656	. 1	3.3	0.1	0.2	1. 2 ·	0.4	80	479	3	16
p3657	1	4.2	0.1	0.2	1.4	0.3	110	337	0.5	20
p3658	2	3.9	0.1	0.2	1.4	0.4	85	490	2	16
p3659	2	3.1	0.1	0.2	1.4	0.4	106	354	. 6	12
p3660	1	2.8	0.1	0.2	1	0.4	75	416	2	16
p3661	1	3.9 、	0.1	0.2	1.1	0.4	73	397	2	26
p3662	1	3.6	0.1	0.2	0.9	0.4	74	428	0.5	18
p3663	1 .	3.8	0.1	0.2	1	0.4	90	397	0.5	18
p 3664	1	3.6	0.1	0.2	1.1	0.4	78	459	0.5	19
p3665	. 1	3.6	0.1	0.2	1.1	0.4	85	446	0.5	21
p3666	1	3.9	0.1	0.2	1. 3	0.4	87	443	3	20
p3667	1.	4.4	0.1	0.2	1.3	0.3	87	506	2	20
p3668	1	4.1	0.1	0.1	0.9	0.4	76	507	3	17
p3669	1	4.9	0.2	0.2	1.1	0.4	81	385	0.5	20
p3670	1	3.7	0.1	0.1	0.9	0.3	63	503	2	15
p3671	3	3.6	0.1	0.2	0.8	0.4	59	555	6	18
p3672	1	4.7	0.1	0.2	1.1	0.3	99	396	0.5	21
p3673	1	4.3	0.2	0.2	1	0.4	99	496	0.5	24
p3674	1	4.6	0.1	0.2	1.1	0.3	108	353	0.5	20
p3675	1	3.7	0.1	0.1	0.9	0.3	182	319	2	22
p3676	1	4	0.1	0.2	1	0.4	95	371	0.5	22
p3677	1	3.4	0.1	0.2	1	0.4	230	322	4	22
p3678	1	3.9	0.1	0.1	1	0.3	1,15	325	0.5	28
p3679	1	3.5	0.1	0.2	0.9	0.4	88	495	6 ·	22
p3680	1	3.7	0.1	0.2	1	0.3	97	414	0.5	23
p3681	1	3.1	0.1	0.2	0.8	0.3	94	461	0.5	23
p3682	1	3.1	0.1	0.2	0.9	0.4	66	501	0.5	21
p3683	1	4	0.1	0.2	0.9	0.4	105	466	0.5	26
p3684	1	3.8	0.1	0.2	0.9	0.3	83	431	0.5	26

C)
Č	\supset
C)
	۵
C	2

Sample No.	Bi ppm	Fe %	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3685	1	3.7	0.1	0.2	0.9	0.3	103	395	0.5	22
p3686	1	4.4	0.1	0.2	1	0.4	152	403	1	28
p3687	í	4	0.1	0.2	0.8	0.4	60	471	0.5	21
p3688	1	3.8	0.1	0.2	0.7	0.3	71	451	0.5	22
p3689	1	4.4	0.1	0.2	0.9	0.4	80	362	0.5	21
p3690	1	3.5	0.1	0.1	0.8	0.4	115	274	0.5	21
p3691	1	3.2	0.1	0.2	0.9	0.3	225	353	0.5	24
p3692	1	3.4	0.1	0.1	0.7	0.4	67	392	0.5	21
p3693	1	4.2	0.1	0.2	0.8	0.4	79	327	0.5	20
p3694	1	3.1	0.1	0.1	0.7	0.3	67	938	2	32
p3695	1	3.8	0.1	0.2	0.9	0.4	195	268	2	24
p3696	1	3.3	0.1	0.2	0.9	0.3	94	321	0.5	20
p3697	1	4.6	0.1	0.2	1	0.4	82	371	0.5	25
p3698	1	3.6	0.1	0.2	0.9	0.4	95	415	2	19
р3699	1	3.2	0.1	0.2	0.8	0.4	69	383	0.5	21
p3700	1	4	0.1	0.1	1.2	0.3	97	357	0.5	20
p3701	1	3.6	0.1	0.1	0.9	0.3	145	338	0.5	24
p3702	1	3.4	0.1	0.2	0.8	0.4	74	413	3	√18
p3703	1	2.7	0.1	0.2	0.8	0.4	119	319	0.5	21
p3704	1	2.8	0.1	0.2	1	0.3	87	383	3	21
p3705	1	3.1	0.1	0.2	0.9	0.3	118	370	3	21
p3706	1	3.3	0.1	0.2	0.9	0.4	129	282	1	20
p370 7	1	3.2	0.1	0.1	1	0.3	123	289	0.5	21
p3708	1	2.7	0.1	0.2	0.5	0.4	0.5	378	0.5	0.5
p3709	1	3.9	0.1	0.2	1	0.3	149	273	0.5	25
p3710	1	3.5	0.1	0.2	1.1	0.4	121	307	1	21
p3711	, 1	2.9	0.1	0.2	0.9	0.4	67	548	3	18
p3713	1	2.3	0.1	0.2	0.8	0.4	113	543	5	20
p3714	1	3.9	0.1	0.2	0.9	0.4	64	445	0.5	19
p3715	1	3.9	0.1	0.2	. 1	0.4	88	380	0.5	17
p3716	1	3.3	0.1	0.2	0.9	0.4	90	422	0.5	18
p3717	1	3.6	0.1	0.2	1	0.4	71	473	0.5	20
p3718	1	3.6	0.1	0.2	1	0.4	65	581	0.5	22

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U 3 O8 ppm	ThO2 ppm
p3719	1	3.4	0.1	0.2	1	0.5	61	487	4	19
p3720	1	3.4	0.1	0.2	1	0.4	6 3	505	0. 5	22
p3721	1	3.5	0.1	0.2	1	0.4	68	507	0.5	22
p3722	1	3.8	0.1	0.2	1.2	0.4	75	451	1	20
p3723	1	-3.1	0.1	0.2	1	0.4	64	475	0.5	19
p3724	1	3.4	0.1	0.2	1	0.4	81	458	0.5	19
p3725	1	2.9	0.1	0.2	0.9	0.3	84	467	3	18
p3726	1	3.6	0.1	0.2	1.1	0.5	74	476	0.5	20
p3727	1	3.5	0.1	0.2	1	0.3	78	446	0.5	23
p3728	1	3.3	0.1	0.1	1.1	0.4	97	413	0.5	19
p3729	1	2.9	0.1	0.2	0.9	0.4	109	457	1	17
p3730	1	3	0.1	0.2	1	0.4	136	321	2	17
p3731	1	3.6	0.1	0.2	1.2	0.4	125	349	2	21
p3732	1	3.2	0.1	0.1	1.1	0.4	158	399	2	18
p3733	1	3.6	0.1	0.2	1.1	0.5	96	761	0.5	20
p3734	1	3.7	0.1	0.2	1	0.4	76	614	0.5	19
p3736	1	3.8	0.1	0.2	1.1	0.3	79	527	0.5	20
p3737	1	3	0.1	0.1	1	0.4	124	672	4	16
p3739	1	3.4	0.1	0.2	1.1	0.4	121	376	0.5	18
p3740	1	3.6	0.1	0.2	1.1	0.4	88	414	0.5	19
p3741	4 .	3.9	0.2	0.2	1.7	0.3	70	499	7	16
p3742	1	3.3	0.1	0.2	1.2	0.4	67	517	2	15
p3744	1	3.1	0.1	0.2	1.3	0.5	100	401	3	21
p3745	1	3.8	0.1	0.2	1.2	0.4	. 77	439	0.5	21
p3746	1	3.1	0.1	0.2	1.1	0.3	117	377	2	17
p3747	11	3	0.1	0.1	1.1	0.4	134	369	3	18
p3748	1	3.4	0.1	0.2	1.2	0.4	106	317	0.5	21
p37 49	1	3.6	0.1	0.2	1.1	0.4	82	497	0.5	23
p3750	1	3.8	0.1	0.2	1.2	0.5	80	551	0.5	24
p3751	1	3.7	0.1	0.2	1,1	0.4	80	514	0.5	17 .
p3752	1 .	3,4	0.1	0.2	1.1	0.4	93	471	0.5	21
p3753	1	3.1	0.1	0.1	1 1	0.4	133	378	0.5	20
p3754	1	3.4	0.1	0,2	1	0.4	119 .	312	0.5	18

Sample No.	Bi ppm	Fe%	Mn%	Cr%	Ti O2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3755	1	3.8	0.1	0.1	1	0.4	81	428	0.5	19
p3756	1	3.2	0.1	0.2	1	0.4	68	526	0.5	21
p3757	1	3.6	0.1	0.2	1	0.3	63	491	0.5	18
p3759	1 -	4	0.1	0.2	1	0.4	76	526 [°]	0.5	22
p3760	1	3.6	0.1	0.2	1.2	0.4	95	523	0.5	20
p3763	1.	3.8	0.1	0.2	1	0.5	83	489	0.5	22
p3764	1	4	0.1	. 0.2	1.2	0.4	93	443	0.5	22
p3765	1	3.4	0.1	0.2	1	0.4	114	376	0.5	19
p3768	1	3.7	0.1	0.2	1	0.4	89	482	0.5	21
p3769	1	3.3 🔨	0.1	0.2	1.1	0.4	130	395	0.5	24
p3770	1	4	0.2	0.2	1.5	0.5	73	483	0.5	17
p3773	4	3.8	0.2	0.2	1.8	0.3	65	571	3	17
p3774	1	3.6	0.1	0.1	1.2	0.3	80	535	0.5	17
p3775	3	3.7	0.1	0.2	1.5	0.4	57	593	0.5	16
p3777	1	3.4	0.1	0.2	1.3	0.4	-58	573	1	16
p3778	1	3.1	0.1	0.2	0.9	0.4	74	547	0.5	22
p3779	1	3.3	0.1	0.2	0.9	0.4	82	487	0.5	18
p3780	- 1	3.4	0.1	0.2	1	0.4	148	298	0.5	21
p3781	1	3.7	0.1	0.2	0.9	0.4	81	400	0.5	22
p3782	1	3.2	0.1	0.2	0.9	0.3	62	535	0.5	19
p3783	.1	3.1	0.1	0.2	1	0.4	74	507	3	16
p3784	1	3.2	0.1	0.2	0.9	0.4	9 6	486	0.5	18
p3785	1	3.4	0.1	0.1	1	0.4	82	504	2	18
p3786	1	3.4	0.1	0.2	1	0.4	80	546	2	20
p3787	1.	2.8	0.1	0.2	1	0.4	68	558	5	16
p3788	1	2.8	0.1	0.2	1.1	0.4	117	467	2	20
p3790	1	3.6	0.1	0.2	1.5	0.4	90	520	5	_. 15
p3791	3	3.5	0.1	0.2	1.7	0.5	77	495	3	13
p3792	1 .	3.5	0.1	0.2	1.3	0.4	102	518	3	1 6
p3793	1	3.7	0.1	0.2	1.5	. 0.4	98	439	3	19
p3794	1	3.2	0.1	0.2	1.5	0.4	71	525	3	11
p3795	1	4.1	0.1	0.1	1.3	0.3	100	453	0.5	22
p3796	1 .	3.4	0.1	0.2	1	0.3	176	354	0.5	21

00141

21	
12	
17	
13	
7	
0.5	
14	
8	
5.	
7	
7 9	
14	
13	
10	
7	
12	
18	
9	
3	
4	
15	

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
p3797	·10	4.5	0.2	0.2	2.7	0.3	65	448	5	12
p3798	1	3.6	0.1	0.2	- 1.1	0.4	78	479	0.5	22
p3799	1	3.5	0.1	0.2	1.1	0.3	68	541	0.5	19
p3800	1	3.6	0.1	0.2	1.1	0.4	92	492	0.5	22
p3801	1	3.7	0.1	0.1	1	0.4	7 5	470	0.5	19
p3802	1	4.4	0.1	0.2	1.2	0.3	100	447	0.5	21
p3803	1	3.7	0.1	0.2	1.3	0.4	95	451	0.5	18
p3804	1	2.9	0.1	0.2	0.7	0.4	54	624	2	21
p3805	1	3.4	0.1	0.2	1	0.4	69	492	0.5	14
p3806	1	2.9	. 0.1	0.1	0.8	0.4	59	501	0.5	13
p3807	1	2.8	0.1	0.2	0.8	0.3	45	360	0.5	10
p3808	1	2.7	0.1	0.2	0.7	0.3	69	307	1	13
p3810	1	4.3	0.1	0.2	1.1	0.4	85	279	0.5	21
p3812	1	2.6	0.1	0.2	0.7	0.3	91	321	1	12
p3813	1	3.8	0.2	0.2	1.1	0.4	101	292	0.5	17
p3814	1	2.8	0.1	0.2	0.8	0.4	50	423	0.5	13
p3815	1	2.2	0.1	0.2	0.7	0.4	31	366	0.5	7
p3816	1	2.4	0.1	0.2	0.7	0.5	0.5	226	0.5	0.5
p3817	1	2.4	0.1	0.2	0.8	0.3	46	500	0.5	14
p3819	1	2.9	0.1	0.2	1.1	0.4	64	306	2	. 8
p3820	2	3.2	0.1	0.2	1.4	0.4	47	276	1	5.
p3821	1	2.4	0.1	0.2	0.8	0.4	100	226	3	7
p3822	1	2.7	0.1	0.2	0.9	0.4	62	331	1	9
s6259	1 '	2.1	0.2	0.2	0.4	0.3	42	249	3	14
s6260	1	2.2	0.1	0.1	0.5	0.3	111	147	0.5	13
s6261	1	2.4	0.1	0.1	0.4	0.1	87	292	0.5	10
s6262	1	2.3	0.1	0.1	0.4	0.3	253	437	5	7
s6263	1	2.6	0.1	0.1	0.6	0.3	1 51	318	0.5	12
s6264	1	2.5	0.1	0.1	0.5	0.2	233	767	6	18
s6265	1	2.8	0.1	0.1	0.5	0.2	115	362	0.5	9
s6266	1	3.4	0.1	0.1	0.4	0.2	24	285	0.5	3
s6267	1	1.8	0.2	0.1	0.4	0.3	34	332	0.5	4
s6268	1	2.2	0.1	0.1	0.5	0.2	350	362	3	15

00
}~~
4
دن

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6 269	1	3.4	0.2	0.1	0.6	0.2	61	444	0.5	12
s6270	1	2	0.1	0.1	0.3	0.2	42	637	0.5	16
s6271	1	2.9	0.2	0.2	0.6	0.3	48	462	0.5	11
s6272	1	1.5	0.1	0.1	0.3	0.2	5 2	752	0.5	5
s6273	1	3	0.2	0.2	0.6	0.3	62	472	0.5	:13
s6274	1	3.1	0.2	0.2	0.6	0.3	74	550	0.5	11
s6507	1	2.6	0.1	0.05	0.5	0.2	232	77	2 .	12
s6508	1	2.9	0.1	0.1	0.6	0.2	155	106	0.5	10
s6509	1	2.9	0.2	0.1	0.5	0.2	58	291	0.5	13
s6510	1	3.4	0.1	0.1	0.6	0.2	199	207	0.5	18
s6511	1	2.6	0.1	0.05	0.5	0.1	268	58	2	13
s6512	1	3.7	0.2	0.1	0.7	0.3	73	369	0.5	12
s6513	1	3.6	0.2	0.1	0.7	0.3	62	. 355	0.5	15
s6514	1	3.8	0.1	0.1	0.8	0.2	77	271	0.5	16
s6515	1	2.8	0.2	0.2	0.5	0.2	43	317	0.5	10
s6516	1	2.9	0.2	0.05	0.5	0.3	187	125	0.5	12
s6517	1	3.6	0.1	0.1	0.6	0.2	123	206	0.5	12
s6518	1	3.4	0.1	0.1	0.7	0.2	149	39	0.5	14
ș6519	1	3.1	0.1	0.1	0.7	0.3	83	251	0.5	12
s6520	1	4.4	0.1	0.1	0.8	0.1	118	139	0.5	16
s6521	1	4.5	0.2	0.2	0.7	0.2	69	264	0.5	18
s6522	1	3.3	0.1	0.1	0.7	0.2	110	194	0.5	1.3
s6523	1	4.6	0.1	0.1	0.9	0.2	52	388	0.5	19
s6524	1	3.7	0.2	0.2	0.7	0.3	54	339	0.5	. 14
s6525	1	4.3	0.1	0.1	0.8	0.1	154	301	0.5	18
s6526	· 1	· 3.3	0.1	0.1	0.6	0.2	9 1	326	0.5	12
s6527	1	2.7	0.1	0.1	0.5	0.1	166	10	0.5	15
s6528	1	3.3	0.1	0.05	0.5	0.05	155	81	0.5	15
S6529	1	3.1	0.1	0.1	0.6	0.2	154	102	0.5	15
S6530	1	3.3	0.1	0.2	0.6	0.2	65	383	0.5	14
S6531	1	2.9	0.05	0.05	0.5	0.1	185	10	0.5	18
S6532	1 -	3.9	0.1	0.1	0.8	0.2	128	244	0.5	14
S 6533	1	2.9	0.1	0.1	0.6	0.1	191	178	0.5	11

Sample No.	· Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
S6534	1	2.9	0.1	0.1	0.6	0.2	69	336	0.5	9
S6535	1	3.8	0.1	0.1	0.7	0.2	176	273	0.5	15
S6536	1	3.5	0.05	0.1	0.6	0.1	192	200	0.5	15
S6537	1	3.2	0.1	0.1	0.6	0.2	162	187	0.5	13
S6538	1	4	0.1	0.1	0.7	0.3	67	330	0.5	15
S6539	1	3.3	0.1	0.05	0.6	0.1	102	295	0.5	14
S6540	1	3.2	0.05	0.05	0.3	0.05	216	101	0.5	12
S6541	1	3.4	0.1	0.1	0.6	0.2	81	351	0.5	14
S6542	1	4.1	0.2	0.2	0.8	0.3	81	306	0.5	16
S6543	1	3.6	0.05	0.05	0.5	0.05	146	127	0.5	14
S6544	1	4	0.05	0.05	0.5	0.05	82	199	0.5	14
S6545	1	4	0.05	0.1	0.6	0.05	116	188	0.5	16
s6546	1	4.5	0.1	0.1	0.8	0.3	61	285	0.5	1,4
s6547	1	4.2	0.1	0.2	0.8	0.3	70	319	0.5	11
s.6548	1	3.1	0.2	0.1	0.4	0.3	89	301	0.5	12
s6549	1	4.4	0.1	0.05	0.6	0.05	163	231	0.5	14
s6550	1	3.6	0.1	0.1	0.6	0.2	166	181	0.5	15
s6551	1	3.2	0.2	0.2	0.3	0.3	69	268	0.5	3
s6552	1	2.8	0.1	0.1	0.3	0.2	48	287	0.5	5
s6553	1	3	0.2	0.2	0.5	0.3	80	326	0.5	9
s6554	1	3.2	0.05	0.1	0.6	0.1	222	137	0.5	12
s6555	1	3.3	0.1	0.1	0.7	0.2	140	275	0.5	11
s6556	1	3.6	0.1	0.1	0.7	0.3	126	319	0.5	13
s6557	1	3.8	0.1	0.1	0.7	0.3	153	249	0.5	13
s6558	1	3.8	0.1	0.1	0.7	0.2	73	337	0.5	13
s6559	1	3.6	0.05	0.05	0.6	0.05	222	10	0.5	17
s6560	1	3.2	0.1	0.1	0.6	0.2	125	294	0.5	14
s6561	1	3.6	0.1	0.05	0.6	0.1	190	170	0.5	12
s6562	1	4.1	0.05	0.1	8.0	0.2	162	227	0.5	15
s6563	1	3.9	0.1	0.1	0.7	0.1	113	315	0.5	13
s6564	1	2.9	0.05	0.05	0.5	0.05	260	10	0.5	15
s6565	1	2.7	0.1	0.1	0.5	0.2	76	249	0.5	9
s6566	1	3	0.1	0.1	0.5	0.3	138	215	0.5	8

Page 62

0
0
0
-
\leftarrow
CT

Sample No.	Bi ppm	Fe%	M n %	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6567	1	4.7	0.2	0.1	0.8	0.3	48	274	0.5	17
s6568	1	3.3	0.1	0.2	0.6	0.3	55	304	0.5	13
s6569	1	3	0.05	0.1	0.7	0.2	194	134	0.5	13
s6570	1	3	0.05	0.05	0.4	0.05	227	124	0.5	14
s6571	1	3	0.1	0.1	0.5	0.2	84	275	0.5	10
s6572	1	3.9	0.1	0.1	0.7	0.3	63	304	0.5	14
s6573	1	3	0.2	0.1	0.5	0.3	56	327	0.5	15
s6574	1	3.6	0.2	. 0.1	0.7	0.3	62	277	0.5	. 14
s6575	1	2.8	0.05	0.05	0.4	0.05	313	10	0.5	16
s6576	1	4 、	0.1	0.1	0.7	0.2	111	282	0.5	1 6
s6577	1	3.4	0.2	0.2	0.5	0.3	75	282	0.5	10
s6578	1	4.1	0.2	0.1	0.5	0.3	64	321	0.5	11
s6579	2	3.4	0.2	0.1	0.3	0.3	25	242	0.5	6
s6580	1	4.1	0.05	0.05	0.5	0.1	156	47	0.5	15 [.]
s6581	1	4	0.1	0.1	0.6	0.2	101	250	0.5	1 6
s6582	1	4.5	0.2	0.1	0.7	0.4	82	249	0.5	1.5 ·
s6583	1	3.8	0.05	0.05	0.5	0.1	284	10	0.5	15
s6584	1	2.4	0.1	0.1	0.3	0.2	77	338	0.5	6
s6585	1	3.5	0.1	0.1	0.6	0.2	183	178	0.5	14
s6586	1	3.6	0.2	0.1	0.6	0.2	82	277	0.5	12
s6587	1	3	0.1	0.2	0.5	0.3	57	· 275	0.5	· 7
s6588	1	3	0.1 ·	0.1	0.5	0.3	37	250	0.5	8
s6589	1	3.3	0.2	0.1	0.5	0.3	66	292	0.5	11
s6590	1	4.2	0.2	0.1	8.0	0.2	103	292	0.5	13
s6591	1	3.8	- 0.1	0.1	0.6	0.3	48	300	0.5	1 6
s6592	1	4.2	0.2	0.2	8.0	0.4	54	256	0.5	14
s6593	1	3.5	0.1	0.05	0.6	0.1	152	119	0.5	14
s6594	1	3.7	0.1	0.1	0.7	0.2	84	305	0.5	1 6
s6595	1	2.6	0.05	0.05	0.4	0.05	278	5 8	0.5	15
s6596	1	2.5	0.05	0.05	0.3	0.05	346	10	4	1 4
s6597	1	2.6	0.2	0.2	0.5	0.3	72	293	0.5	10
s6598	1	2.7	0.1	0.1	0.5	0.2	154	252	0. 5	12
s6599	1	2.7	0.1	0.1	0.5	0.2	101	240	8	23

0
0
0
-
4
6

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6600	1	4	0.1	0.1	0.8	0.2	173	171	0.5	14
s6601	1	3.4	0.1	0.1	0.5	0.2	108	323	0.5	16
s6602	1	2.6	0.05	0.05	0.6	0.05	245	10	1	17
s6603	1	2.4	0.2	0.1	0.5	0.3	43	308	0.5	16
s6604	1	2.8	0.2	0.2	0.5	0.3	83	293	0.5	16
s6605	1	2.6	0.1	0.1	0.5	0.3	36	326	0.5	10
s6606	1	3.2	0.2	0.1	0.6	0.2	111	309	0.5	12
s6607	1	3.1	0.05	0.1	0.5	0.1	151	185	0.5	13
s6608	1	1.9	0.1	0.1	0.4	0.2	86	138	0.5	6
s660 9	1	3.9 🔍	0.2	0.2	0.7	0.3	84	340	0.5	12
s6610	1	2.8	0.1	0.1	0.5	0.2	97	233	0.5	10
s6611	1	2.4	0.1	0.1	0.3	0.3	39	279	0.5	6
s6612	1	3.6	0.1	0.1	0.6	0.3	69	318	0,5	15
s6613	1	4.7	0.1	0.1	0.7	0.2	35	265	0.5	14
s6614	1	2.9	0.1	0.1	0.5	0.2	46	308	0.5	11
s6615	1	3.9	0.3	0.05	0.6	0.05	134	249	0.5	18
s6616	1	2.7	0.05	0.05	0.4	0.05	330	10	3	15
s6617	√1	3.1	0.1	0.05	0.5	0.2	240	112	0.5	14
s6618	1	3.7	0.2	0.1	0.7	0.2	89	371	0.5	16
s6619	1	2.7	0.1	0.05	0.5	0.2	203	151	2	14
s6620	1	3.1	0.1	0.1	0.6	0.2	74	448	0.5	13
s6621	1	2.9	0.05	0.05	0.5	0.05	248	10	0.5	15
s6622	1	3.1	0.2	0.1	0.6	0.1	125	180	0.5	12
s6623	1	3.1	0.1	0.05	0.5	0.2	203	57	0.5	15
s6624	1	3.1	0.1	0.05	0.6	0.05	2 67	10	1	14
s6625	1	2.7	0.1	0.05	0.5	0.1	248	10	3	16
s6626	1	2.4	0.1	0.1	0.4	0.3	35	355	0.5	6
s6627	1	3.1	0.1	0.1	0.6	0.3	113	. 261	0.5	12
s6628	1	3	0.1	0.05	0.7	0.2	190	190	0.5	14
s6629	2	2.1	0.1	0.1	0.4	0.2	33	331	1	2
s6630	1	2.7	0.1	0.05	0.6	0.2	281	96	0.5	14
s66 3 1	1	2.8	0.05	0.05	0.5	0.05	278	65	0.5	15
s66 3 2	1	2.9	0.05	0.05	0.5	0.05	270	62	0.5	14

\subseteq)
\subset)
C	
l van	
1	Þ
- '	Ī

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U 3 O8 ppm	ThO2 ppm
s6633	1	2.9	0.1	0.1	0.6	0.2	155	175	0.5	10
s6634	1	3.2	0.1	0.1	0.6	0.2	80	327	0.5	11
s6635	1	2.7	0.05	0.05	0.6	0.05	284	86	0.5	14
s6636	1	2.5	0.1	0.1	0.5	0.3	70	356	0.5	11
s6637	1	2	0.1	0.1	0.4	0.2	34	296	0.5	3
s6638	1	3.1	0.2	0.1	0.6	0.3	67	343	0.5	10
s6639	1	2.4	0.2	0.1	0.4	0.2	45	353	0.5	7
s6640	1	2.7	0.1	0.05	0.6	0.1	34 6	10	2	16
s6641	1	3.1	0.1	0.1	0.5	0.1	267	69	0.5	17 .
s6642	1	2.3 🔨	0.1	0.1	0.5	0.2	116	228	0.5	8
s6643	1	2.8	0.1	0.1	0.6	0.3	83	352	0.5	11 .
s6644	1	3.6	0.2	0.1	0.7	0.2	72	320	0.5	15
s6645	1	2.8	0.1	0.1	0.6	0.2	110	294	0.5	12
s6646	1	2.5	0.2	0.2	0.5	0.3	64	291	0.5	10
s6647	1	3.3	0.2	0.2	0.7	0.3	58	333	0.5	15
s6648	1	3.1	0.2	0.1	0.6	0.2	67 ·	336	0.5	14
s6649	1	3.2	0.1	0.1	0.6	0.2	96	299	0.5	14
s6650	1	3.1	0.2	0.1	0.6	0.3	92	335	0.5	17
s6651	1 ·	-3.2	0.2	0.1	0.6	0.2	8 1	367	0.5	13
s6652	1	3.9	0.1	0.1	0.7	0.2	119	263	0.5	16
s6653	1	3.8	0.2	0.2	0.9	0.3	81	326	0.5	18
s6654	1	3.1	0.2	0.1	0.7	0.3	72	371	0.5	14
s665 5	1	3.9	0.2	0.2	0.8	0.3	83	381	0.5	16
s6656	1	3.3	0.2	0.2	0.7	0.3	80	408	0.5	23
s6657	1	3.5	0.1	0.1	0.7	0.3	63	349	0.5	16
s6658	1	2.9	0.2	0.1	0.6	0.3	60	388	0.5	12
s6659	1	2	0.1	0.1	0.6	0.2	73	344	0.5	14
s6660	1	3.1	0.1	0.1	0.6	0.2	231	101	0.5	14
s6661	1	3.4	0.2	0.1	0.6	0.3	146	244	0.5	12
s6662	1	3.8	0.2	0.2	0.8	0.2	103	343	0.5	12
s6663	1	3.7	0.2	0.2	0.7	0.3	90	303	0.5	14
s6664	1	3	0.2	0.2	0.6	0.3	64	328	0.5	11
s6665	1	2.6	0.2	0.1	0.6	0.3	70	342	0.5	8

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6666	1	3.3	0.2	0.1	0.7	0.2	88	342	0.5	10
s6667	1	3.6	0.2	0.1	0.7	0.2	130	267	0.5	13
s6668	1	3.9	0.2	0.2	0.7	. 0.2	86	268	0.5	1.5
s6669	1	4	0.2	0.2	0.7	0.3	99	300	0.5	11
s6670	1	3.2	0.2	0.2	0.7	0.3	81	349	0.5	12
s6671	* *1	3.6	0.1	0.1	0.7	0.2	82	303	0.5	14
s6672	1	4.1	0.1	0.1	0.8	0.2	121	253	0.5	18
s6673	1	4	0.1	0.1	0.8	0.2	197	132	0.5	16
s6674	1	3.1	0.1	0.1	0.6	0.1	151	246	0.5	14
s6675	1	3 .	0.1	0.1	0.6	0.1	82	300	0.5	12
s6676	1 .	3.8	0.1	0.1	0.7	0.1	134	305	0.5	12
s66 7 7	1	3.5	0.2	0.2	0.7	0.3	93	317	0.5	17
s 6 678	1	3.7	0.05	0.05	0.6	0.1	162	132	0.5	15
s6679	1	3.8	0.1	0.1	0.9	0.3	79	273	0.5	18
s66 8 0	1	2.7	0.2	0.1	0.6	0.3	47	286	0.5	10
s6681	· 1	4.2	0.05	0.05	0.8	0.1	133	192	0.5	17
s6682	1	3.8	0.2	0.1	0.8	0.3	77	327	0.5	19
s6683	1	2.5	0.2	0.1	.0.5	0.3	60	292	0.5	6
s6684	1	3	0.2	0.1	0.6	. 0.3	62	295	0.5	9
s6685	1	3.3	0.1	0.1	0.7	0.2	69	336	0.5	17
s6686	1	2.7	0.3	0.1	0.6	0.3	59	362	0.5	13
s6687	1	2.6	0.1	0.1	0.5	0.2	46	274	0.5	8
s6688	1	3.3	0.1	0.05	0.6	0.1	100	217	0.5	12
s6689	1	3.6	0.1	0.1	0.7	0.2	184	124	0.5	15
s6690	1	3.4	0.2	0.2	0.7	0.3	68	328	0.5	13
s6691	1	3.3	0.2	0.2	0.7	0.3	123	266	0.5	18
s6692	- 1	2.6	0.2	0.1	0.5	0.3	59	305	0.5	11
s6693	1	2.1	0.1	0.2	0.5	0.3	47	331	0.5	6
s6694	1	2.9	0.1	0.05	0.5	0.1	175	157	0.5	12
s6695	1	3.4	0.2	0.2	0.7	0.3	79	315	0.5	12
s6696	1	1.7	0.1	0.1	0.4	0.2	13	259	0.5	6
s6697	1	2.2	0.05	0.05	0.05	0.05	549	10	5	18
s6698	1	2.9	0.2	0.1	0.6	0.3	65	309	0.5	12

0148

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U 3 O8 ppm	ThO2 ppm
s669 9	1	3.3	0.1	0 .05	0.6	0.1	242	98	0.5	14
s6700	1	2.4	0.05	0.05	0.2	0.05	441	10	3	18
s6701	1	4	0.1	0.1	0.7	0.2	150	258	0.5	15
s6702	. 1	3.4	0.05	0.05	0.6	0.05	256	63	0.5	18
s6703	1	2.7	0.1	0.1	0.5	0.2	91	266	0.5	9
s6704	1	3	0.1	0.2	0.6	0.2	100	310	0.5	15
s67 0 5	1	3.3	0.1	0.1	0.5	0.3	60	306	0.5	13
s6706	1	4.2	0.5	0.5	0.7	0.05	131	171	0.5	20
s6707	1	4	0.1	0.1	0.7	0.3	111	179	0.5	16
s6708	1	3.7	0.2	0.1	0.7	0.3	92	272	0.5	14
s6709	1	3.7	0.2	0.1	0.7	0.2	107	178	0.5	17
s6710	1 ·	4.2	0.2	0.2	0.7	0.3	54	308	0.5	17
s6711	1	3.1°	0.2	0.1	0.6	0.3	58	305	0.5	. 11
s6712	['] 1	3	0.1	0.05	0.6	0.05	210	45	0.5	13
s6713	1.	4.1	0.2	0.1	0.8	0.4	64	299	0.5	20
s6714	1	3.6	0.1	0.05	0.7	0.2	105	199	0.5	16
s6715	1	3.6	0.1	0.1	0.7	0.2	100	272	0.5	14
s6716	1	4.5	0.1	0.1	0.7	0.1	114	228	0.5	15
s6717	1	3.8	0.1	0.1	0.9	0.2	201	121	0.5	15
s6718	1	3	0.05	0.05	0.5	0.05	276	38	2	17
s6719	. 1	4.1	0.2	0.1	0.7	0.3	70	279	0.5	18
s6720	1	4.2	0.1	0.1	0.7	0.3	137	175	0.5	19
s6721	1 '	4.6	0.2	0.2	0.9	0.4	39	202	0.5	17
s6722	1	5	8.2	0.1	0.9	0.3	63	301	0.5	22
s6723	1	3.3	0.05	0.05	0.5	0.05	264	10	0.5	22
s6724	1	4	0.1	0.1	0.7	0.2	80	307	0.5	20
s6725	1	3	0.05	0.05	0.5	0.05	202	10	0.5	18
s6726	1	3.9	0.1	0.1	0.7	0.2	65	250	0.5	17
s6727	1	3.9	0.3	0.2	0.8	0.3	67	281	0.5	18
s6728	1	3.3	0.05	0.05	0.5	0.05	307	49	0.5	16
s6729	1	2.9	0.1	0.1	0.5	0.3	63	273	0.5	10
s6730	1	3.2	0.1	0.05	0.6	0.2	164	213	0.5	12
s6731	. 1	3.9	0.1	0.1	0.7	0.1	302	65	0.5	14

00149

TiO2 %

0.5

0.6

0.6

0.5

Cr%

0.05

0.1

0.05

0.05

V2O5 %

0.05

0.2

0.05

0.05

Sr ppm

495

122

243

197

Ba ppm

10

277

10

40

Bi ppm

1

Fe%

2.8

3.5

3.7

3.2

Mn%

0.05

0.1

0.05

0.05

Sample No.

s6732

s6733

s6734

s6735

30/33	I	5.2	0.03	0.03	0.5	0.03	137	70	0.5	' '
s6736	1	4.1	0.1	0.2	0.8	0.3	72	273	0.5	1 4
s6737	1	3.6	0.2	0.1	0.7	0.2	65	307	0.5	16
s6738	1 .	2.8	0.1	0.1	0.5	0.2	74	303	0.5	7
s6739	1	3.2	0.1	0.1	0.7	0.3	55	306	0.5	13
s6740	1	3.2	0.2	0.1	0.7	0.2	69	335	0.5	13
s6741	1	3 🔨	0.1	0.1	0.6	0.2	201	140	0.5	15
s6742	1	2.9	0.1	0.1	0.5	0.1	198	50	0.5	12
s6743	1	3.7	0.1	0.1	0.8	0.2	154	140	0.5	13
s6744	1	2.7	0.1	0.1	0.6	0.2	226	10	1	15
s6745	1	4.3	0.1	0.1	0.7	0.3	107	280	0.5	13
s6746	1	2.8	0.1	0.1	0.6	0.2	129	212	0.5	12
s6747	1	5.1	0.1	0.2	1	0.3	56	265	0.5	18
s6748	1	3.3	0.2	0.2	0.6	0.3	77	311	0.5	11
s6749	1	4.8	0.1	0.2	0.8	0.3	50	314	0.5	23
s6750	1	4.3	0.2	0.1	0.7	0.2	83	292	0.5	18
s6751	1	3.8	0.2	0.2	0.8	0.3	72	316	0.5	18
s6752	1	3.9	0.2	0.1	0.9	0.2	125	217	0.5	14
s6753	1	3.7	0.2	0.1 -	0.7	0.3	174	202	0.5	15
s6754	1	3.4	0.2	0.2	0.7	0.3	128	304	0.5	16
s6755	1	3.6	0.2	0.1	0.8	0.3	102	351	0.5	17
s6756	1	3.5	0.2	. 0.1	0.7	0.2	76	344	0.5	19
s6757	1	2.6	0.1	0.1	0.5	0.2	157	257	0.5	13
s6758	1	4.6	0.1	0.1	0.8	0.2	53	285	0.5	18
s6759	1	2.8	0.1	0.05	0.7	0.1	377	116	0.5	15
s6760	1	3.7	0.1	0.1	0.8	0.2	165	102	0.5	17
s6761	1	3.9	0.2	0.1	0.7	0.3	99	255	0.5	16
s6762	1	3.7	0.1	0.1	0.7	0.3	56	309	0.5	11
s6763	1	3.6	0.1	0.1	0.6	0.2	59	332	0.5	13
s6764	1	3.9	0.1	0.1	0.7	0.1	117	287	0.5	13

ThO2 ppm

16

12

17

17

U3O8 ppm

3 0.5

0.5

0.5

_
CUUL
ا- ال
TOTOL

Sample No.	Bi ppm	Fe%	Mn%	Cr%	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6765	1	3.4	0.1	0.1	0.7	0.2	233	76	0.5	17
s6766	1	4.7	0.2	0.1	0.9	0.3	88	330	0.5	16
s6767	1	4.8	0.2	0.1	1	0.2	45	251	0.5	19
s6768	1	3.6	0.1	0.1	0.7	0.2	223	71	0.5	14
s6769	1	3.7	0.1	0.1	0.8	0.3	92	267	0.5	2 1
s6770	1	3.2	0.1	0.1	0.7	0.05	295	259	0.5	22
s6771	1	3.5	0.2	0.1	0.7	0.3	57	379	0.5	10
s6772	1	3.9	0.1	0.1	0.7	0.2	195	152	0.5	18
s6773	1	3.6	0.2	0.2	0.8	0.3	63	308	0.5	13
s6774	1	3 🔍	0.2	0.1	0.7	0.2	116	311	0.5	1 4
s6775	1	4.3	0.2	0.1	0.8	0.3	107	277	0.5	17
s6776	1	4.2	0.2	0.1	0.8	0.2	76	345	0.5	18
s6777	1	3.6	0.2	0.1	0.7	0.3	88	368	0.5	8
s6778	1	3	0.05	0.05	0.6	0.05	191	104	0.5	1 3
s6779	1	3	0.1	0.1	0.6	0.2	59	355	0.5	1 5
s6780	1	3.5	0.2	0.1	0.7	0.3	125	321	0.5	18
s6781	1	3.4	0.1	0.1	0.6	0.2	191	152	0.5	15
s6782	1	4.1	0.1	0.1	0.7	0.2	111	266	0.5	17
s6783	1	3.9	0.2	0.2	0.8	0.3	65	361	0.5	19
s6784	1	3	0.1	0.1	0.6	0.2	81	311	0.5	16
s6785	1	1.9	0.2	0.1	0.4	0.3	26	435	1	12
s6786	1	2.8	0.1	0.1	0.5	0.3	42	332	2	13
s6787	1	3.5	0.1	0.05	0.7	0.1	119	146	0.5	19
s6788	1	3.2	0.1	0.2	0.6	0.3	45	316	0.5	. 17
s6789	1	3	0.1	0.1	0.6	0.2	64	336	0.5	17
s6790	1	2.9	0.05	0.05	0.6	0.05	173	10	0.5	19
s6791	1	3.8	0.2	0.1	0.7	0.1	63	432	0.5	17
s6792	1	3.3	0.2	0.1	0.6	0.4	75	366	2	19
s6793	1	2.9	0.1	0.05	0.7	0.05	167	10	1	20
s6794	1	3.8	0.2	0.1	0.7	0.2	106	247	0.5	18
s6795	1	3.6	0.3	0.2	0.6	0.3	64	441	2	21
s6796	1	4.8	0.2	0.2	0.5	0.3	29	414	2	25
s6797	1	3.6	0.2	0.1	0.5	0.2	52	304	0.5	17

Sample No.	Bi ppm	Fe%	Mn%	Cr %	TiO2 %	V2O5 %	Sr ppm	Ba ppm	U3O8 ppm	ThO2 ppm
s6798	1	3.7	0.2	0.1	0.8	. 0.3	67	330	0.5	21
s6799	1	4	0.2	0.1	0.7	0.2	61	318	0.5	20
s6800	1	4.1	0.1	0.1	0.9	0.2	134	257	0.5	18

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p2676	2	2	2	10	412	6 1	16	0.1	1.7	0.7
p2677	2	2	2	13	315	60	16	0.4	1.8	5.1
p267 8	2	2	2	9	309	78	22	0.5	2.1	4.4
p2679	2	2	2	15	695	71	22	0.3	1.8	6.5
p2680	2	2	2	9	3 32	37	8	0.05	1.3	1.2
p2681	2	2	2	14	449	64	22	. 0.4	1.7	6.5
p26 8 2	2	2	2	11	406	63	18	0.5	1.7	5
p2683	2 .	2	2	14	406	58	17	0 .05	1.5	1.6
p2684	2	2	2	16	718	87	22	0.3	2.1	1.1
p26 8 5	2	2 .	2	·22	900	77	25	0.5	1.9	3.3
p2686	2	2 `	2	7	171	48	16	0.3	1.4	14.5
p26 8 7	2	2	2	14	413	62	17	0.05	1.6	4.2
p2688	2	2	2	15	499	67	16	0.05	1.9	1.7
p2689	2	2	2	12	396	74	16	0 .05	1.6	1.8
p2690	2	2	2	13	475	66	18	0.5	1.8	2.1
p2691	2	2	2	14	534	6 9	21	0.4	2	2.5
p2692	2	2	2	26	635	52	29	0.3	1.3	0.7
p2693	2	2	2	18	569	89	26	0.05	2	1.2
p2694	2	2	2	16	623	75	20	0.05	1.8	1.7
p2695	2	2	2	15	1155	58	22	0.2	1.7	2.2
p2696	2	2	2	18	840	83	26	0.05	1.8	1.1
p2697	2	2	2	19	739	91	25	0.3	2.1	1.3
p2699	2	2	2	13	303	87	24	0.2	2.4	1.1
p2700	2	2	2	35	700	70	21	0.3	1.7	1.9
p2702	2	2	2	32	791	55	18	0.05	1.5	1.7
p2703	2	2	2	25	502	60	18	0.2	1.5	2.6
p2704	2	2	2	11	295	55	21	0.3	1.6	15.9
p27 06	2	2	2	11	294	6 5	18	0.5	1.7	4.7
p2707	2	2	2	15	258	76	18	0.1	2	2
p2708	2	2	2	27	726	62	22	0.2	1.6	2.6
p2709	2	2	2	36	1572	56	26	0.05	1.5	3.4
p2710	2	2	2	14	358	71	24	0.5	2	3.4
p2711	2	2	2	33	1700	72	30	0. 0 5	1.6	1.3

2.5	
2.7	
0.7	
1.5	
3.2	
1.5	
2	
4.7	
0.9	
5.1	
12	
8	
1.4	
3.8	
3.7	
1.5	
1.5 1.5	
1.5	
1.5 2.2	
1.5 2.2 3.6	
1.5 2.2	
1.5 2.2 3.6	

000154

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	Κ%	Ca%
p2712	2	2	2	10	235	61	15	0.1	1.9	0.6
p2713	2	2	2	11	252	75	17	0.3	2	1.4
p271 5	2	2	2	14	523	5 5	21	0.7	1.6	4.3
p2716	2	2	2	13	369	65	24	0.2	1.7	4.7
p2717	2	2	2	10	.237	53	15	0.05	1.6	3.8
p2718	2	2	2	21	572	69	24	0.2	1.8	3.2
p2719	2	2	2	8	222	64	16	0.3	1.9	1.8
p2720	2	2	2	14	591	56	16	0.05	1.6	1.8
p2721	2	2	2	10	304	67	17	0.6	1.8	7.2
p2722	2	2 、	2	18	776	49	19	0.3	1.4	0.7
p272 3	2	2 `	2	16	663	55	21	0.3	1.8	2.4
p2724	2	2	2	16	574	62	19	0.2	1.6	4.1
p2725	2	2	2	16	492	48	17	0.05	1.4	1.4
p2726	2	2	2	15	486	79	25	0.2	2	2.5
p2727	2	2	2	20	477	57	21	0.6	1.7	2.7
p2728	2	2	2	26	337	158	38	0.2	3.3	0.7
p2729	2	2	2	20	403	98	34	0.3	2.2	1.5
p2901	2	2	2	8	590	28	13	0.5	1	3.2
p2902	2	2	2	8	469	27	10	0.3	1	1.5
p2903	2	2	2	5	309	28	9	0.4	1.1	2
p2904	2	2	2	8	176	67	64	0.3	1.9	4.7
p2905	2	2	2	8	-397	52	15	0.2	1.5	0.9
p2906	2	2	2	11	201	67	. 21	0.6	1.9	5.1
p2907	2	2	2 .	8	195	47	17	0.3	1.3	12
p2908	2	2	2	10	178	64	22	0.6	1.8	8
p2909	2	2	2	10	419	47	14	0.05	1.2	1.4
p2910	2	2	2	8	236	68	19	0.5	1.8	3.8
p2911	2	2	2	9	393	41	15	0.7	1.4	3.7
p2912	2	2	2	6	218	42	10	0.05	1.3	1.5
p2913	2	2	2	6	305	34	10	0.3	1.1	1.5
p2914	2	. 2	2	7	333	42	12	0.05	1.1	2.2
p2915	2	2	2	17	1508	33	21	0.3	1.2	3.6
p2916	2	2	2	9	312	52	14	0.3	1.4	1.2

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p2917	2	2	2	8	281	44	17	0.5	1.5	6.7
p2918	2	2	2	23	621	64	24	0.5	1.8	3.1
p2919	2	2	2	8	190	53	15	0.4	1.6	5 .7
p2920	2	2	2	11	377	43	15	0.3	1.4	1
p2921	2	2	2	8	305	55	18	0.5	1.7	. 1.9
p2922	2	2	2	12	2 37	83	25	0.8	2.3	1.9
p2923	2	2 ⁻	2	8	235	66	25	0.3	1.8	8.2
p2924	2	2	2	9	221	68	23	0.2	1.9	6.9
p2925	2	2	2	9	255	61	19	0.4	1.7	0.8
p2926	2	2 \	2	10	274	59	17	0.6	. 1.8	6.5
p2927	2	2	2	10	333	54	14	0.05	1.7	1.9
p2928	2	2	2	14	373	49	13	0.2	1.6	2.3
p2930	2	2	2	10	262	58	15	0.4	1.8	0.8
p2931	2	2	2	20	573	49	17	0.3	1.5	2.4
p2932	2	2	2	18	450	54	21	0.5	1.4	2.8
p2933	2	2	2	14	180	88	32	0.5	2.3	2.6
p2934	2	2	2	12	302	55 .	18	0.05	1.6	5.6
p2935	2	2	2	13	443	55	15	0.3	. 1.5	3
p2936	2	2	2	11	263	54	15	0.4	1.7	2.4
p29 3 7	2	2	2	10	303	62	18	0.5	1.9	0.9
p2938	2	2	2	13	549	49	19	0.3	1.3	5.2
p2939	2	2	2	22	497	62	20	0.05	1.7	2.7
p2940	2	2	2	13	416	57	18	0.05	1.8	1.5
p2941	2	21	15.	56	1544	61	30	0.1	1.3	2.7
p2942	2	2	2	11	380	54	17	0.4	1.5	3.9
p2943	2	2	2	23	705	48	20	0.2	1.5	2.8
p2944	2	2	2	12	384	58	23	0.6	2	2.9
p2945	2	2	2	16	367	65	25	0.5	1.9	3
p2946	2	2	2	10 -	285	56	17	0.05	1.5	1.3
p2947	2	2	2	14	433	72	25	0.4	2	0.9
p2948	2	2	2	10	270	55	15	0.5	1.7	8.0
p2949	2	2	2	16	541	57	17	0.6	1.4	1.8
p2950	2	2	2	10	145	62	18	0.5	1.8	4.4

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p2951	2	2	2	17	404	74	28	0.2	2	1.1
p2952	2	2	2	26	1005	4 9	23	0.3	1.3	2.3
p2953	2	2	2	12	344	52	14	0.05	1.5	2.5
p2954	2	2	2	16	420	68	22	0.5	2	2.9
p2955	2	2	2	14	417	56	18	0.5	1.5	4.8
p29 56	2	2	2	15	402	65	22	0.4	1.9	4.5
p2957	2	2	2	13	407	62	19	0.05	1.9	4.3
p2958	2	2	2	13	281	70	23	0.6	1.8	2.1
p2959	2	2	2	15	357	61	21	0.7	1.8	5.8
p2960	2	2 .	2	15	603	40	16	0.2	1.3	3.1
p2961	2	2 `	2	13	542	69	20	0.2	1.9	0.6
p2962	2	2	2	16	699	60	20	0.2	1.7	3.7
p2963	2	2	2	8	311	56	13	0.1	1.7	1.9
p2964	2	2	2	16	458	57	15	0.05	1.5	3
p2965	2	2	2	13	383	70	22	0.4	1.8	4.6
p2966	2	2	2	14	371	73	21	0.05	1.9	2.2
p2967	2	2	2	. 24	608	74	23	0.05	1.7	2
p2968	2	2	2	11	261	75	21	0.05	2.2	1.8
p2969	2	2	2	15	555	69	22	0.3	2	3.7
p2970	2	2	2	14	468	83	26	0.4	2.2	1.3
p2971	2	2	2	13	358	79	20	0.2	1.9	3.1
p2972	2	2	2	12	372	57	17	0.6	1.7	3.8
p2973	2	. 2	2	13	311	60	19	0.5	1.7	4.9
p2974	2	2	2	12	345	64	21	0.4	1.7	3.8
p2975	2	2	2	6	155	48	17	0.2	1.7	4.8
p2976	2	2	2	12	552	57	23	0.7	1.5	3.6
p2977	2	2	2	10	441	50	15	0.4	1.5	0.9
p2978	2	2	2	17	749	39	16	0.9	1.3	6.3
p2979	2	2	2	11	197	71	24	0.2	1.8	9.4
p2980	2	2	2	13	311	74	31	0.5	1.7	3.2
p2981	2	2	2	11	445	49	22	0.6	1.7	3
p2982	2	2	2	8	373	42	14	0.3	1.3	2.1
p2983	2	2	2	10	189	70	28	0.5	2	9.4

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	Κ%	Ca%
p2984	2	2	2	8	213	61	19	0.3	1.9	0.9
p2985	2	2	2	. 8	210	52	17	0.3	1.5	0 .8
p2986	2	2	2	7	141	44	15	0.5	1.4	15.1
p2987	2	2	2	10	457	47	14	0.05	1.4	1.9
p2988	2	. 2	2	12	346	64	20	0.7	1.7	1.4
p2989	2	5	2	8	342	45	11	0.05	1.4	1.2
p2990	2	2	2	19	3 77	94	31	0.3	2.1	1.3
p2991	2	2	2	13	361	67	21	0.4	1.6	1.6
p2992	9	2	2	15	670	48	19	0.4	1.2	0.8
p2993	2	2 、	2	14	402	77	26	0.8	2	0.7
p2994	2	2	2	32	59 5	61	21	0.05	1.3	1.5
p2995	2	2	2	9	225	68	14	0.2	1.5	0.6
p2997	2	2	2	14	289	75	2 5	0.2	1.5	2.6
p2998	2	2	2	11	350	62	22	0.4	1.7	2.2
p2999	2	2	2	11	334	62	18	0.4	1.6	1.7
p3000	2 .	2	2	11	223	75	2 5	0.5	2	5. 3
p3001	2	2	2	10	175	68	23	0.4	1.8	6
p3002	2	2	2	9 .	219	63	20	0.6	1.8	2.6
p3003	2	2	2	10	254	59	17	0.4	1.7	2.3
p3004	2	. 2	2	11	176	80	21	0.3	1.9	3.6
p3005	2	2	2	12	326	57	18	0.2	1.6	3.8
p3006	2	2	2	17	460	63	20	0.5	1.7	2.8
p3007	2	2	2	10	219	. 73	20	0.6	1.9	0.9
p3008	2	2	2	11	262	42	12	0.3	1.3	3.1
p3009	2	2	2	. 9	208	49	14	0.4	1.5	5.8
p3010	2	2	2	11	244	70	23	0.05	1.9	0.9
p3011	2	2	2	10	214	64	19	0.1	1.8	0.9
p3012	2	2	2	[`] 10	211	65	20	0.7	1.4	1.9
p3013	2	2	2	11	287	64	22	0.05	. 1.6	1.5
p3014	2	2	2	11	193	79	23	0.5	1.9	4.3
p3015	2	2	2	13	243	83	20	0.6	1.9	1.1
p3016	2	2	2	· 19	237	117	40	0.4	2.1	0.6
p3017	2	2	2	14	311	104	28	0.1	1.6	0.9

Sample No.	· Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
p3018	2	2	2	13	306	91	25	0.3	1.6	0.8
p3019	2	2	2	17	385	78	20	0.05	1.6	2.4
p3020	2	2	2	9	2 47	6 3	14	0.05	1.5	0.9
p3021	2	2	2	10	237	74	2 5	0.4	1.6	0.8
p3022	2	2	2	11	220	61	18	0.6	1.7	5.1
p3023	2	2	2	13	302	58	17	0.05	1.5	1
p3024	2	2	2	36	352	75	25	0.05	1.6	5.3
p3025	. 2	2	2	21	409	62	17	0.2	1.5	3.1
p3026	2	2	2	11	222	62	17	0.4	1.6	4.7
p3027	2	2 🔨	2	18	299	70	2 2	0.3	1.9	6.9
p3028	2	2	2	8	228	57	11	0.05	1.6	1.2
p3029	2	2	2	9	156	67	11	0.05	1.7	1.2
p3030	2	2	2	19	385	65	16	0.2	1.5	1.6
p3032	2	2	2	8	160	66	11	0.4	1.8	0.9
p3033	2	2	2	10	278	68	22	0.6	2	6.4
p3034	2	2	2	11	221	72	24	0.5	2.4	3.2
p3 03 5	2	5	2	39	288	92	26	0.2	1.7	4.2
p3036	2	2	2	12	271	65	19	0.4	1.6	8.3
p3037	2	. 2	2	21	399	79	22	0.2	1.9	4.6
p30 3 8	2	2	2	10	243	70	18	0.7	2	4.1
p3039	2	2	2	11	218	69	13	0.3	1.7	2.9
p3040	2	4	2	47	1040	97	20	0.3	1.9	2.3
p3041	2	2	2	9 .	278	58	14	0.8	1.9	4.7
p3042	2	15	13	81	2236	52	53	0.05	0.8	0.7
p3043	11	5	, 2	23	784	56	28	0.5	1.4	0.8
p3044	2	2	2	11	208	80	23	0.4	2	2.2
p3045	2	2	.2	28	395	54	25	0.4	1.3	1.9
p3046	2	2	2	9	182	50	12	0.05	1.3	1.1
p3047	12	2	2	1	170	7	4	0.5	0.9	2.7
p3048	2	2	2	11	255	47	13	0.05	1.4	1.7
p3049	. 2	2	2	7	122	57	13	0.05	1.5	1.2
p3050	2	2	2	11	356	3 3	9	0.2	1	1.9
p3051	2	2	2	8	266	43	10	0.2	1.4	0.6

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3052	2	2	2	11	222	72	22	0.6	1.9	2
p3053	2	2	2	16	245	62	21	0.5	1.6	7.7
p3054	2	2	2	9	185	69	18	0.3	1.9	0.6
p3055	2	2	2	10	200	64	19	0.05	1.5	0.7
p3056	2	2	2	5	167	15	5	0.3	0.8	0.6
p3057	2	5	2	12	3 62	64	19	0.4	1.6	0.6
p3058	. 2	2	2	12	320	75	24	0.5	1.9	1
p 3059	2	2	2	13	426	60	23	0.05	1.6	1.8
p3060	2	2	2	9	302	61	18	0.3	1.8	2
p3061	2	2 、	2	14	350	60	19	0.6	1.5	2.3
p3062	2	2 `	2	11	271	52	16	0.3	1.4	3.5
p3063	2	2	2	8	224	56	16	0.5	1.9	2.8
p3064	2	4	2	9	291	45	15	0.3	1.4	1.2
p3065	2	2	2	9	171	63	19	0.7	1.7	2
p30 6 6	-2	2	2	12	254	54	17	0.2	1.5	3.4
p3067	2	2	2	9	218	62	18	0.6	1.7	1.8
p3068	2	2	2	11	215	55	17	0.05	1.6	5.6
p3069	2	2	2	7	220	49	12	0.3	1.5	8.0
p3070	2	2	2	6	139	49	12	0.2	1.5	1
p3071	2	2	2	10	277	59	18	0.4	1.5	1.3
p3072	2	2	2	9	183	38	7	0.1	1.1	1.8
p3073	2	2	2	3	89	21	6	0.3	0.9	3.2
p3074	2	2	2	19	348	33	10	0.05	0.9	1.3
p3075	2	2	2	6	195	29	6	0.3	1	1.1
p3076	2	2	2	6	240	35	7	0.05	1.2	0.6
p 3077	2	2	2	6	104	16	2	0.05	8.0	0.6
p3078	2	. 2	2	2	173	7	1 1-	0.05	0.5	0.5
p3079	2	2	2	2	73	8	1	0.05	0.6	0.6
p3080	2	2	2	3	83	12	3	0.3	0.7	0.7
p3081	2	2	2	3	97	14	2	0.6	0.7	0.7
p3082	2	2	2	3	102	7	2	0.05	0.5	0.7
p3083	2	8	2	5	118	19	7	0.05	0.8	0.7
p3084	2	2	2	3	59	7	1 1	0.05	0.6	0.6

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	Κ%	Ca%
p3085	2	4	2	3	58	12	0.5	0.05	0.5	0.6
p3 086	2	7	2	4	132	12	3	0.05	0.6	0.6
p3087	2	2	2	6	187	19	5	0.1	0.9	0.7
p3 194	2	2	2	34	842	43	20	0.2	1.3	0.9
p3195	2	2	4	12	366	38	13	0.05	1.2	1.1
p3196	2	2	2	12	269	60	16	0. 05	1.5	0.9
p3197	2	2	2	8	161	43	12	0.4	-1.3	0.8
p3198	2	2	2	10	250	58	20	0.3	1.9	5.9
p3199	2	2	2	18	314	69	22	0.3	1.9	0.7
p3204	2	2 、	2	8	227	29	8	0.3	1.1	1.6
p3205	2	2	2	7	220	31	8	0.05	1.1	0.6
p3206	2	2	2	4	164	17	3	0.05	0.8	0.6
p3208	2	2	2	6	333	31	. 10	0.05	1	0.7
p3211	2	2	2	9	231	54	17	0.7	1.5	4.7
p3213	2	2	4	18	451	68	22	0.2	1.6	2.6
p3214	2	2 ·	2	23	901	69	24	0.3	1.7	2.8
p3215	2	2	2	12	702	26	13	0.6	1	2.8
p3216	2	2	2	8	520	22	9	0.5	0.9	2.2
p3217	2	2	2	3	3 10	17	5	0.3	0.8	0.7
p3218	2	2	2	9	196	54	18	0.5	1.8	0.8
p3219	2 ·	2	2	23	632	42	16	0.3	1.2	0.9
p3220	2	2	2	10	208	61	19	0.5	1.8	1.5
p3221	2	2	2	10	359	50	15	0.2	1.6	0.6
p3222	2	2	2	8	352	42	13	0.5	1.4	0.8
p3223	2	2	2	11	258	52	17	0.3	1.5	6.8
p3224	2	2	2	16	502	51	17	0.4	1.4	0.8
p3225	2	2	2	33	625	67	23	0.05	1.4	0.9
p3226	2	2	4	18	514	31	13	0.05	1.1	1.5
p3227	2	2	2	16	377	45	15	0.3	1.3	1.6
p3228	2	2	2	13	278	55	21	0.2	1.5	2.4
p3229	2	2	2	14	356	63	21	0.3	1.8	2.9
p3230	2	2	2	16	418	47	14	0.2	1.3	1.1
p3231	2	2	4	12	375	45	13	0.2	1.3	1.1

	C	
	\subset	2
	\mathbb{C}	
	ļ.	١
•	O	
	-	٨

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3232 .	2	· 2	4	14	394	62	19	0.2	1.8	2.3
p3233	2	2	4	13	408	56	18	0.4	1.6	1.7
p3234	2	2	. 4	9	274	47	12	0.7	1.5	1.1
p3235	2	· 2	2	16.	599	59	21	0.5	1.6	1.9
p3236	- 2	2	2	15	494	37	14	0.2	1.2	1.8
p3237	2	2	2	14	715	60	22	0.6	1.7	0.8
p3238	2	2	2	46	1475	45	23	0.4	1.3	1.6
p3239	2 .	2	2	19	816	6 3	22	0.5	1.7	2.9
p3240	2	2	2	12	273	71	21	0.1	2	0.8
p3242	2	2	2	12	382	47	16	0.4	1.5	1
p3243	2	2	` 2	- 24	957	50	20	0.2	1.5	1.3
p3244	2	2	2	13	322	73	25	0.3	2.1	0.9
p3245	2	2	2	8	282	44	14	0.05	1.5	0.6
p3246	2	2	2	12	362	62	20	0.05	1.9	0.7
p3247	2	2	2	11	237	68 .	20	0.5	1.8	2.7
p3248	2	2	2	13	342	69	22	0.4	2	1.9
p3249	2	2	2	10	262	59	15	0.4	1.7	1.1
p3250	2	2	2	8	411	29	11	0.05	1.1	1.2
p 3 251	2	2	2	10	382	29	10	0.05	0.8	0.5
p3252	2	2	2	10	273	61	15	0.05	1.7	2.1
p3253	2	2	2	17	682	50	18	0.3	1.3	2.9
p3254	2	2	2	12	465	52	17	0.5	1.6	0.7
p3255	2	. 2	2	11	352	4 4	14	0.05	1.3	0.9
p3256	2	2	2	16	657	55	1'9	0.4	1.4	0.8
p3257	2	2	2	16	428	82	26	8.0	2.1	2.2
p3258	2	2	2	23	966	53	20	0.5	1.4	1
p3259	2	2	2	15	660	47	14	0.5	1.2	1.2
p3260	2	2	2	11	406	58	20	0.3	1.8	0.6
p3261	2	2	. 2	19	641	60	20	0.4	1.6	1.1
p3262	2	2	2	23	689	67	26	0.4	1.8	0.8
p3263	2	2	2	14	403	61	2 1	0.6	1.6	1.4
p3264	2	2	2	23	644	67	23	0.05	1.6	0.8
p3265	2	2	2	12	320	69	22	0.4	1.9	0.9

Ç.,)
\subseteq)
C)
}	
O)
_	٥

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb p pm	Y ppm	P2O5 %	К%	Ca%
p3266	2	2	2	12	431	60	22	0.4	1.7	1
p3267	2	2	2	14	370	71	23	0.6	1.8	1.8
p3268	2	2	2	19	79 3	65	23	0.05	1.7	0.7
p3269	2	2	2	14	2 91	85	25	0.5	2.4	0.8
p3270	2	2	2	13	460	61	23	0.4	1.9	0.9
p3271	2	2	2	11	145	84	21	1.2	1.6	1.8
p3272	2	2	2	20	702	70	24	0.3	1.5	0.9
p3273	2	2	2	18	511	65	20	1.3	1.3	7
p3274	2	2	2	12	315	74	23	0.4	1.9	1.6
p3275	2	2 .	2	11	345	70	21	0.6	1.7	1.3
p3276	2	2	2	9	324	55	20	0.05	1.5	0.5
p 3277	2	2	2	15	628	76	24	0.6	2.2	1.3
p32 78	2	2	2	15	667	43	18	0.3	1.3	0.7
p3279	2	2	2	11	250	78	23	0.5	2	1.7
p3280	. 2	2	2	3 1	885	42	19	0.2	1.1	2
p3291	2	2	2	12	427	66	22	0.3	2	0.9
p3282	2	2	2	12	417	60	22	0.4	2	1.3
p32 83	2	2	2	15	206	110	27	0.4	2.6	3
p3284	2	2	2	24	816	39	16	0.1	1.3	· 1
p32 85	2	2	2 .	15	678	55	24	0.2	1.7	0.6
p3286	2	2	22	52	4619	43	47	0.5	1.3	3.7
p3287	2	2	2	11	344	68	21	0.7	1.8	1.8
p3288	2	2	2	13	416	73	26	0.7	2	1.4
p3290	2	2	2	31	777	77	25	0.2	. 1.8	3.9
p3291	2	2	2	19	697	5 3	22	0.4	1.3	1.2
p3292	2	2	2	14	530	52	19	0.6	1.5	1.6
p3293	2	2	2	15	529	49	18	0.1	1.3	2.3
p3294	2	2	2	21	610	95	32	0.3	2	2.7
p3295	2	2	2	26	934	40	19	0.05	0.8	1.7
p3296	2 .	2	2	21	899	69	29	0.2	1.7	0.8
p3297	2	2	2	14	563	59	22	0.4	1.5	0.7
p3298	4	2	2	25	1104	57	25	0.05	1.2	.1
p3299	2	2	2	14	562	38	16	0.8	1.1	2.6

\Box
د. ا
ರು
CO

		Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3:	300	2	2	. 2	19	732	` 3 1	16	0.1	0.9	1.6
p3:	301	2	2	2	10	407	21	10	0.05	0.8	0.9
p3:	302	2	2	2	11	413	42	15	0.2	1.2	1.8
p3:	303	2	2	2	5	280	17	8 .	0.05	0.8	0.9
p3:	304	10	2	2	4	290	31	10	0.05	1	1.3
p33	305	2	2	2	16	559	52	19	1	1.5	2
р33	306	2	2	2	15	802	47	21	0.3	1.3	2.9
р3:	307	2	2	2	15	608	61	22	0.5	1.5	1.6
p33	308	2	2	2	15	1072	59	23	0.05	1.6	1.3
p33	309	2	2 ,	, 2	24	297	220	54	0.3	4.1	0.7
p33	310	2	2	2	15	454	66	22	0.1	1.5	2.4
р3:	311	2	2	2	11	340	62	18	0.05	1.7	1.4
р3:	312	2	6	2	26	807	45	18	0.5	1.3	2.2
р3:	313	2	2	2	12	490	52	18	0.6	1.5	2.7
р3:	314	2	2	2 .	11	388	33	13	0.6	1.1	2.8
р3:	315	2	2	2	10	566	38	15	0.05	1.2	1.9
р3:	317	2	2	2	14	526	42	17	0.6	1.5	3
р3	318	2	2	2	8 .	411	17	10	0.05	0.8	1.7
р3	320	2	2	2	13	346	75	23	0.2	1.9	2.3
р3:	321	2	20	2	17	543	58	19	0.4	1.6	1.2
p3:	322	2	2	2	16	326	83	27	0.3	2	1.6
р3:	323	2	2	5	27	692	49	27	0.3	1.4	1.8
р3:	324	2 .	2	2	15	384	73	24	0.4	2	1.3
р3:	325	2	4	2	12	376	65	20	0.05	1.7	0.7
р3:	326	2	2	2	14	335	76	. 21	0.8	1.7	2.9
р3:	327	2	2	2	14	512	60	21	0.3	1.6	1.9
р3	328	2	2	2	12	282	66	20	0.5	1.5	3 .8
p3:	329	2	2	2	16	578	71	23	0.5	1.7	2.2
p3:	330	2	2	2	15	560	75	24	0.9	1.9	2
p33	331	2	2	2	22	438	67	30	0.2	1.6	0.9
	332	2	2	25	31	3490	44	40	1.1	1.1	1.7
•	334	2	2	2	17	426	87	27	0.3	1.9	0.8
р33	335	2	2	2	15	453	89	29	0.7	2.1	1.5

0
ļ .
(C)

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3336	2	6	2	18	478	103	32	0.6	2.2	0.7
p3337	2	2	2	16	330	86	25	1	1.7	2
p3338	2	2	2	20	938	80	29	0.9	1.6	2.7
p3339	2	2	2	23	841	78	25	1	1.7	0.9
p3340	2	2	2	16	346	101	27	0.8	2	1.8
p3341	2	. 2	2	16	470	86	26	0.4	2.2	1.2
p3342	2	2	2	17	629	71	23	0.1	1.7	1.8
p3343	2	2	2	15	736	68	23	0.3	1.7	1.8
p3344	2	2	2	15	544	73	24	1	1.5	3.7
p3345	2	2	2	15	385	94	25	0.8	1.9	4.4
p334 6	2	2	` 2	15	987	49	19	1.1	1.1	8.4
p3347	9	13	6	23	1523	26	18	. 1.7	0.5	6.9
p3348	2	2	2	15	967	36	16	0.7	1.1	2.7
p3349	2	2	2	15	710	74	21	0.4	1.9	1.5
p3350	2	2	2	12	369	62	20	0.4	1.8	5.6
p3351	2	2	2	19	1424	71	27	0.3	1.6	2.4
p3352	2	5	14	38	3602	35	33	0.2	0.9	1.3
p3353	2	2	2	14	570	58	18	0.05	1.4	0.9
p3354	2	2	2	21	1779	43	25	0.3	1.1	6.5
p3355	2	2.	2	16	521	64	20	0.3	1.6	2.6
p3356	2	2	2	12	377	46	15	0.1	1.2	1.6
p3357	2	2	2	12	563	54	- 18	0.05	1.4	1.7
p3358	2	2	2	16	620	66	23	0.7	1.7	3.4
p3359	2	2	2	9	385	51	22	0.7	1.3	10.7
p3360	2	2	2	7	250	26	8	0.05	0.9	1
p3361	2	2	2	9	413	36	11	0.05	1	0.9
p3364	2	2	2	11	535	45	18	0.4	1.3	2.5
p3365	2	2	2	11	452	47	14	0.4	1.4	1.5
p3366	2	2	2	17	694	78	22	0.3	1.8	0.9
p3367	2	2	2	18	683	76	27	0.7	1.9	4.9
p3368	2	2	2	20	983	65	23	0.4	1.6	1.3
p3369	2	2	2	18	645	72	24	0.6	2	5.2
p3370	2	2	2	17	471	76	27	0.3	1.9	3.1

\Box
00
ļ.,-
Q)
CT

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	Κ%	Ca%
p3371	2	2	2	16	412	75	22	0.3	1.7	0.9
p3372	2	2	2	18	425	7 5	25	0.4	1.7	1
p3373	2	2	2	14	426	69	18	0.2	1.8	1.1
p3374	2	. 2	2	13	222	80	22	0.4	2	1.2
p3375	2	2	2	14	417	84	23	0.3	2.2	0.9
p3376	2	2	2	17	719	97	25	0.8	1.9	4.4
p3377	2	2	2	11	301	81	16	0.6	1.6	5.9
p3378	2	2	2	19	522	121	29	0.5	2.3	2.1
p3379	2	2	2	16	444	89	24	0.2	2.1	3.1
p3380	2	2 .	2	. 13	425	79	21	0.05	1.9	1.1
p3381	2	2	2	14	495	80	21	0.3	2	1.7
p3382	2	2	2	17	718	84	25	0.4	2.1	1.5
p3383	2	2	2	14	3 75	85	25	0.3	1.9	5.4
p3384	2	2	2	15	424	85	26	0.3	1.8	4.2
p3385	2	2	2	17	457	87	28	0.5	2	2.6
p3386	2	2	2	17	321	102	3 0	0.5	2.3	1.6
p3387	2	2	2	18	510	83	25	0.5	2.2	2.3
p3388	2	2	2	18	547.	87	30	0.4	1.9	1.1
p3389	2	2	2	19	50 3	92	27	0.05	2	1.9
p3390	2	2	2	15	458	91	24	0.5	2.5	4.1
p3392	2	2	2	22	515	99	30	0.5	2.4	2.2
p3393	2	2	2	19	708	83	22	0.05	1.8	0.7
p3394	2	2	2 '	16	563	84	22	0.2	2	1.2
p3395	2	2	2	16	824 .	94	25	0.5	2.4	1.6
p3396	2	2	2	18	1158	91	26	0.3	2.2	2.8
p3397	2	2	2	12	596	89	20	0.05	2.3	2.5
p3398	2	2	2	15	643	85	24	1 .	. 2.2	3.7
p3399	2	2	2	14	517	81	20	0.2	2	1.3
p3400	. 2	2 .	2	14	592	81	20	0.5	2	2.5
p3401	2	4	2	18	679	83	24	0.05	2	0.8
p3402	2	2	. 2	17	672	78	23	0.1	1.9	1.3
p3403	2	2	2	16	371	92	28	0.3	2.2	1.6
p3404	2	7	2	21	671	90	26	0.2	2	0.9

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3405	2	2	2	18	66 4	88	27	0.3	2.1	1.4
p3406	2	2	2	18	626	86	28	0.3	2.2	1.8
p3407	2	2	2	14	491	7 3	21	0.5	1.9	9 .3
p3408	2	2	2	15	458	86	24	0.5	2.5	1.8
p3409	2	4	2	33	1895	74	35	0.5	2	1.4
p3410	2	2	2	16	535	91	29	0.3	2.4	1.1
p3411	2	2	2	19	532	87	27	0.1	2.1	1.3
p3412	2	· 2	2	16	307	99	29	0.4	2.6	2.1
p3413	2	2	2	19	522	101	32	0.4	2.5	2
p3414	2	2 、	2	21	944	98	37	0.5	2.5	8.0
p3415	2	2	2	16	569	97	26	. 0.4	2.6	0.8
p 3416	2	2	2	17	408	99	28	0.3	2.4	0.8
p3419	2	2	2	15	402	89	28	0.2	2.3	0.6
p3420	2	2	2	13	335	94	25	0.2	2.4	1
p3421	2	2	2	13	355	97	27	0.5	2.4	2
p3422	2	2	2	12	537	83	24	0.3	2.2	5.6
p3423	2	2	2	15	658	85	25	0.2	2.2	5.3
p3424	2	2	2	. 13	387	93	26	0.2	2.6	2.8
p3425	2	2 .	2	14	303	87	26	0.5	2	5.6
p34 2 6	· 2	2	2	16	297	94	29	0.4	2.5	1.1
p3427	2	2	2	15	523	8 1	22	0.6	2.2	1.1
p3428	2	2	2	15	490	88	26	0.4	2.2	0.7
p3429	2	2	2	14	648	81	22	0.6	2.2	2.5
p3430	2	2	2	13	434	82	23	0.6	2.3	5.4
p 3431	2	2	2	18	846	83	24	0.05	2	0 .6
p3432	2	2	2	17	583	85	28	0.5	2.2	2.5
p3433	2	2	2	17	640	72	24	0.05	1.7	2.3
p3434	2	2	2	15	477	74	23	0.5	2.2	3.1
p343 5	2	2	2	15	499	78	23	0.5	2.2	2.4
p3436	2	2	2	16	826	70	24	0.05	1.8	1.9
p3437	2	2	2	13	221	86	27	0.4	2.5	3.1
p3438	2	2	2	14	226	89	28	0.2	2	1.9
p3440	2	2	2	15	481	82	24	0.6	2.2	2

Zr ppm

406

505

431

Rb ppm

85

90

85

Y ppm

26

31

30

P2O5 %

0.3

0.4

0.4

Κ%

2

2.5

2.2

Ca%

3.6

0.7

2.1

Sn ppm 2

2

2

WO3 ppm

2

2

2

Ta2O5 ppm

2

2

2

Nb2O5 ppm

15

16

16

Sample No.

p3441

p3442

p3443

P3443	2	~	2	10	401	65	30	0.4	2.2	۷.۱
p3444	2	2	2	17	584	88	26	0.3	2.2	1.9
p3445	. 2	2	2	21	598	81	29	0.6	2.1	.1.9
p3446	2	2	2	15	500	77	24	0.5	2.2	4
p3447	2	2	2	13	472	67	2 1	0.6	1.9	3.9
p3448	2	2	2	18	587	83	25	0.3	2.1	. 2
p3449	2	2	2	18	1100	87	3 1	0.7	2	2.4
p3450	2	2	2	12	324	74	23	0.4	2	9.8
p3451	2	2 `	2	16	217	100	33	0.4	2.7	1.3
p3452	2	2	2	16	287	91	29	0.5	2.4	3.7
p3453	2	2	2	15	314	89	26	0.4	2.7	0.8
p3454	2	2	2	18	303	102	34	0.6	2.5	0.7
p34 5 5	2	2	2	17	745	88	25	0.5	2.4	1
p3456	2	2	2	11	214	91	25	0.5	2.1	6.4
p3457	2	2	2	18	225	105	33	0.2	2.5	0.8
p3458	2	2	2	15	435	100	. 29	0.4	2.6	0.6
p3459	2	2	2	27	996	88	30	0.3	2.2	2
p3460	2	2	2	16	703	96	28	0.4	2.5	4.7
p3461	2	2	2	12	439	89	24	0.4	2.4	1.8
p3462	2	2	2	20	605	107	29	0.05	2.3	1
p3463	2	2	2	13	350	92	23	0.5	2.4	8.0
p3464	2 .	2	2	17	4 5 5	94	33	0.4	2.5	1
p3466	2	2	2	19	634	90	31	0.1	2.2	1.1
p3467	2	2	2	25	1087	91	32	0.2	2.3	2.4
p3469	2	2	2	22	944	95	29	0.2	2.2	2.6
p3471	2	2	2	16	440	95	29	0.3	2.5	1.8
p3472	2	2	2	18	661	96	28	0.5	2.3	0.7
p3474	2	2	2	17	430	94	29	0.5	2.2	1.1
p3475	2	2	2	15 .	444	95	26	0.1	2.5	1
p3476	2	2	2	17	602	93	28	0.05	2.2	1.4
p3477	2	2	2	18	469	91	28	0.5	2.3	2.1

ļ .	1
C	
0	

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3478	2	2	2	2 0	787	85	2 9	0.3	2.3	1.4
p3479	2	2	2	18	363	97	29	0.4	2.3	2.1
p3481	2	2	2	26	839	9 3	31	0.6	2.2	2.3
p3482	2	2	2	18	561	92	26	0.7	2.4	1.2
p3483	2	2	2	15	3 87	94	2 7	0.5	2.4	1.4
p3484	2	2	2	13	366	84	27	0.3	2.3	1.4
p3486	2	2	2	14	346	91	29	0.3	2.5	0.7
p3487	2	2	2	13	344	81	24	0.6	2.2	4.8
p3489	2	2	2	15	471	95	29	0.4	2.6	0:7
p3490	2	2 ,	. 2	16	564	86	27	0.2	2.4	1.8
p3491	2	2	2	19	707	113	33	0.2	2.7	0.7
p3492	2	2	2	13	350	87	27	0.4	2.6	0.8
p3493	2	2	2	12	536	81	26	0.4	1.8	6.3
p3494	. 5	2	2	14	330	91	24	0.8	2.1	1.7
p3495	11	2	2	11	172	86	21	1.4	1.3	2.9
p3496	2	2	2	17	530	88	24	0.3	2.3	2.1
p3497	2	2	2	16	464	88	27	0.6	2.3	1.6
p3498	2	2	2	15	436	8 8	24	0.8	2.4	1.6
p3499	2	2	2	17	408	8 1	27	0.5	2	2.6
p3500	2	2	. 2	13	257	72	26	0.4	2.1	5.4
p3501	2	2	2	13	209	86	28	0.3	2.4	1.2
p3502	2	2	2	14	483	81	29	0.5	2.3	0.7
p3 503	2	2	2	17	726	75	26	0.7	2	2.3
p3504	2	2	2	16	672	8 4	30	0.6	2.3	1.1
p3505	2	2	2	15	401	89	27	0.4	2.5	0.8
p3506	2	2	2	18	895	88	32	0.4	2.2	1.7
p3507	2	2	2	14	305	87	26	0.4	2.4	1.2
p3508	2	2	2	20	742	91	31	0.7	2.4	0.9
p350 9	2	2	2	14	295	85	31	0.7	2.6	1.1
p3510	2	2	2	16	236	94	31	0.9	2.5	0.8
p3 511	2	2	2	13	363	78	25	0.6	2	4.5
p3512	2	2	2	13	295	81	28	0.5	2	4.2
p35 13	2	2	2	13	305	74	25	0.2	1.9	4.3

_	
\bigcirc	
}. -	
Q)	ļ
\odot	١

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3514	.2	2	2	26	1381	72	31	0.05	1.7	2
p3515	2	2	2	18	498	98	28	0.2	2.1	1.9
p3516	2	· 2	2	14	268	82	24	0.2	1.9	3 .7
p3517	2	2	2	13	362	90	27	0.2	2.2	0.8
p3518	2	2	2	15	575	91	. 30	0.3	2.3	0.9
p3519	2	2	2	16	487	88	27	0.5	2.2	1.6
p3520	2	2	2	18	626	90	29	0.2	2	2.4
p3521	2	2	2	18	658	89	31	0.4	2.3	0.8
p3522	2	2	2	14	510	76	24	0.6	1.8	3.1
p3523	2	2	2	13	250	89	25	0.4	2.4	2.5
p3524	2	2	2	16	541	86	26	0.6	2.1	2.9
p3525	2	2	2	14	406	89	21	0.7	2.2	4
p3527	2	2	2	15	356	93	24	0.3	2.2	2.1
p3528	2	2	2	19	436	107	27	0.6	2.3	0.9
p3529	2	2	2	19	521	96	29	0.05	2.2	0.5
p3530	2	2	2	30	1072	95	34	0.4	2.3	0.8
p3531	2	2	2	21	724	89	29	0.1	2.2	1.2
p3532	2	2	2	15	315	9 3	26	0.2	2.3	0.7
p3533	2	2	2	18	443	96	28	0.6	2.2	1.4
p3534	2	2	2	17	301	101	30	0.5	2.5	0.7
p3535	2	2	2	16	324	103	30	0.3	2.4	1.1
p3536	2	2	2	17	449	94	29	0.4 ,	2.4	1.3
p3537	2	2	2	15	200 .	104	28	0.3	2.5	0.9
p3538	2	2	2	15	417	92	26	0.6	2.1	2.9
p3539	2	2	2	15	263	94	25	0.5	2.4	2.9
p3540	2	2	2	14	274	90	27	0.4	2.2	4.8
p3541	2	2	2	17	230	109	29	0.6	2.6	1.1
p3542	2	2	2	18	550	100	29	0.1	2.5	0.8
p3543	2	2	2	17	519	88	26	0.2	2.2	2.4
p3544	2	2	2	17	424	97	28	0.2	2.3	2
p3545	2	2	2	23	918	84	27	0.3	2.1	1.6
p3546	2	2	2	23	604	91	28	0.5	2.2	3.4
p3547	2	2	. 2	17	304	98	28	0.3	2.4	3.6

_	_
	5
)
þ. 6	٠
	_
)

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3548	2	2	2	15	3 74	88	23	0.3	2.2	2.3
p35 49	2	2	2	16	484	84	26	0.5	2.3	3.8
p35 5 0	2	2	. 2	20	771	84	28	0.2	2.2	2.9
p 3551	2	2	2	22	680	9 3	30	0.6	2.1	2.2
p3552	2	2	2	19	501	87	30	0.4	2	2.3
p3553	2	2 .	2	17	295	97	30	0.5	2.4	0.8
p3554	2	2	2	17	317	98	30	0.5	2.6	1
p3 5 55	2	2	2	18	502	92	30	0.5	2 .2	1.3
p 3556	2	2	2	20	521	107	30	0.3	2.2	1.5
p3557	2	2 .	2 .	19	699	89	29	0.5	2.2	2.8
p35 5 8	2	2 `	2	20	730	93	27	0.2	2.3	2
p3559	. 2	2	2	21	666	8 1	27	0.8	2	5.3
p3560	2	2	2	19	542	′77	26	0.4	1.9	4.4
p3562	2	. 2	2	16	342	90	47	0.7	2.2	3
p3563	2	2	2	28	676	99	31	0.3	2	2.2
p3564	2	2	2	15	332	100	30	0.1	2.2	1.3
p3565	2	2	2	16	321	92	31	0.3	2	3.5
p3566	2	2	2	27	707	101	30	0.4	2.2	0.9
p3 5 67	2	2	2	25	626	99	31	0.5	2.2	1.3
p3568	2	2	2	50	1132	94	35	0.5	2.1	1
p3569	2 .	2	2	45	1161	110	38	0.2	2.3	2.5
p3570	. 2	2	2	22	470	100	30	0.4	2.2	4.2
p3571	2	2	2	15	357	84	24	0.6	2.1	2.9
p3572	2	2	2	21	464	95	27	0.3	2.3	1.6
p3573	2	2	2	18	426	94	27	8.0	2.2	1
p 3574	2	2	2	20	564	84	25	0.4	2.2	3.2
p3575	2	2	2	16	383	89	26	0.3	2.1	2.5
p3576	2	2	2	14	312	90	24	0.4	2.2	2.6
p3577	2	2	. 2	14	277	90	22	0.7	2	7.5
p3578	2	2	2	18	530	101	29	0.5	2.4	1.5
p3580	2	2	2	16	445	85	27	0.5	2.1	3
p3581	2	2	2	17	648	92	27	0.4	2.3	2.4
p3582	2	2	2	13	284	89	29	0.5	2.3	2.4

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3583	2	2	2	15	364	94	30	0.2	2.4	0.8
p3584	. 2	2	_. 2	14	249	90	26	0.5	2.3	0.6
p3585	2	2	2	14	259	98	29	0.5	2.6	1
p3586	2	. 2	2	14	398	93	28	.0.05	2.4	0.6
p3587	2	2	2	17	348	95	34	0.4	2.6	0.7
p3588	2	2	2	1.9	714	89	31	0.3	2.3	2.2
p3589	. 2	2	2	15	202	102	28	0.5	2.7	0.9
p3590	2	2	2	15	271	94	· 31	0.4	2.5	2.8
p3591	2	2	2	12	211	97	28	0.6	2.6	0.9-
p3592	2	2 .	2	15	390	94	29	0.3	2.3	1
p3593	2	2	2	14	389	93	28	0.4	2.3	1.1
p3594	2	2	2	16	321	99	31	0.5	2.4	1.1
p3595	2	2	2	15	379	93	30	0.2	2.4	0.5
p3 5 96	2	2	2	16	388	101	27	0.4	2.6	0.7
p3598	2	2	2	19	820	89	32	0.3	2.4	0.9
p3599	2	2	2	17	448	95	29	0.5	2.4	0.8
p3600	2	2	2	17	573	94	29	0.6	2.5	0.7
p3601	2	13	2	23	636	103	35	0.3	2.6	0.7
p3602	2	2	2	15	278	101	31	0.6	2.5	0.7
p3603	2	2	2	17	556	96	32	0.5	2.4	0.6
p3604	2	2	2	14	298	96	30	0.2	2.6	0.9
p3605	2	2	2	18	450	98	30	0.5	2.4	0.6
p3606	2	2	2	18	456	94	29	0.3	2.2	1.9
p3607	2	2	2	22	712	94	32	0.6	2.3	0.8
p3608	2	2	2	17	343	91	. 29	0.4	2.2	1.6
p3609	. 2	2	2	16	240	92	30	0.6	2.5	0.8
p3610	2	2	2	14	375	92	29	0.3	2.2	0.9
p3611	2	2	2	16	214	99	29	0.4	2.3	1
p3612	2	2	2	19	602	92	27	0.5	2.1	1.5
p3613	2	2	2	17	576	95	28	0.4	2.2	3
p3614	2	2	2	21	785	104	30	0.6	2.3	2.6
p361 5	2	2	2	12	317	78	26	0.3	1.8	6.9
p3616	2	2	2	19	5 79	93	24	0.5	2.4	1.7

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
p3617	2	2.	2	16	428	93	25	0.7	2.3	5
p3618	2	2	2	15	486	88	27	0.5	2.2	3.4
p3619	2	2	2	13	305	95	25	0.05	2.3	2.5
p3620	2	2	2	16	766	77	28	0.5	2	4.8
p362 1	2	2	2	17	383	97	28	0.4	2.4	1.1
p3622	2	2	2	15	293	87	27	0.3	2.3	3.4
p3623	2	2	2	15	346	90	27	0.2	2	3.2
p3625	2	2	2	12	335	78	21	0.7	1.5	8.4
p3626	2	2	2	17 ·	512	91	26	0.6	1.8	5.3
p3627	2	2 .	2	17	414	99	26	0.7	2.3	2
p3628	2	2.	2 .	17	365	103	27	0.5	2.1	8.1
p3629	2	2	2	14	330	89	26	0.05	2	3.1
p3630	2	2	2	23	700	99	, 33	0.5	2.3	3.5
p3631	2	2	2	14	295	91	25	0.3	2.4	1.9
p3632	2	2	2	14	402	74	24	0.4	2	6.5
p3633	2	2	2	14	408	85	24	0.4	2.2	3.3
p3634	2	2	2	14	270	91	25	0.5	2.2	0.8
p3635	2	2	2	15	435	89	27	0.1	2.1	1.3
p3636	2	2	2	15	374	96	29	0.1	2.4	0.9
p3637	2	2	2	32	1152	85	30	0.4	2	2.9
p3638	2 .	2	2	15	377	90	27	0.5	2.1	3.1
p3639	2	2	2	14	236	91	26	0.2	2.2	2.8
p3640	2	2	2	14	248	88	26	0.4	2.1	4.7
p 3641	2	2	2	15	233	110	31	0.5	2.5	1.2
p3642	2	2	2	18	517	101	29	0.5	2.3	0.7
p3643	2	2	2	16	569	89	27	0.2	2.3	2.5
p3644	2	2	2	16	453	93	27	0.4	2.2	2.1
p3645	2	2	2	21	732	87	25	0.2	2.1	1.6
p3647	2	2	2	17	287	97	27	0.2	2.3	3.6
p3648	2 .	2	. 2	15	346	9 1	24	0.6	2.2	2.3
p3649	2	2	2	16	470	84	26	0.2	2.1	4
p3650	2	2	2	19	730	85	28	0.4	2.2	2.9
p3651	2 .	2	2	22	738	89	30	0.6	2.2	2.3

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3652	2	. 2	2	18	517	89	· 29	0.4	1.9	2.6
p3653	2	2	2	16	283	94	31	0.5	2.4	0.7
p3654	2	2	2	15	306	92	28	0.3	2.3	0.9
. p3655	2	2	. 2	18	416	91	28	0.3	2.3	1.4
p3656	2	2	2	25	886	80	32	0.7	2	1.9
p3657	2	2	2	30	806	90	33	0.4	2.3	2.4
p3658	2	2	2	34	911	94	34	0.4	2.1	1.1
p36 5 9	2	2	2	35	1251	74	31	0.4	1.9	3.9
p3660	2	2	2	19	540	92	29	0.4	2.2	2.4
p3661	2	2 .	2	23	537	102	34	0.1	2.3	1.2
p3662	2	2 `	2 .	14	283	93	29	0.2	2.4	1.2
p3663	2	2	2	14	290	92	27	0.4	2.3	0.9
p3664	2	2	2	21	469	96	29	0.2	2	1.3
p3665	2	2	2	19	484	93	34	0.2	2.4	0.7
p3666	2	2	2	26	722	88	33	0.5	2.2	1.2
p3667	2	2	2	29	999	87	34	0.05	2	1.8
p3668	2	2	2	20	721	88	33	0.05	2.1	0.7
p3669	2	2	2	21	623	93	31	0.1	2.2	1
p3670	2	2	2	20	867	89	34	0.3	2	0.6
p3671	. 5	2	2	21	707	98	34	0.5	2.4	0.7
p3672	2	2	2	23	669	111	36	0.3	2.4	1.2
p3673	2	2	2 .	19	348	111	34	0.3	2.5	· 1
p3674	2	2	2	17	374	106	31	0.3	2.6	1.6
p3675	· 2	2	2	19	491	107	33	0.5	2.3	4.5
p3676	2	2	2	17	359	103	33	0.2	2.2	2.2
p3677	2	2	2 ·	18	435	101	32	0.5	2.2	3.6
p3678	2	2	2	17	351	101	31	0.4	2.3	3.1
p3679	2	2	2	23	497	115	39	0.6	2.6	1.5
p3680	2	2	2	25	918	97	38	0.4	2.1	3.3
p3681	2	2	2	19	556	98	32	0.05	2.2	2.6
p3682	2	2	2	20	612	98	32	0.05	2.1	1.5
p3683	2	2	2	21	558	104	33	0.6	2.4	2.3
p3684	2	2	2	17	448	88	29	0.05	1.9	2.6

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm ·	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p3685	. 6	2	2	18	5 2 9	98	32	0.05	2.2	3.2
p3686	2	2	2	27	694	124	43	0.7	2.4	2.4
p3687	5	2	2	21	435	108	35	0.5	2.2	1
p3688	. 2	2	2	14	357	87	26	0.3	2.2	1.5
p3689	2	2	2	16	458	96	29	0.1	2.2	1.3
p3 690	2	2	2	18	568	81	26	0.3	1.9	4.5
p3691	2	2	2	13	308	76	31	0.5	1.9	9.5
p3692	5	2	2	16	501	87	28	0.4	1.9	1.6
p36 93	2	2	2	15	482	89	28,	0.5	. 2	1.9
p36 9 4	6	2 、	_	22	249	213	40	0.6	4.1	1.4
p36 95	2	2	2	13	314	87	29	0.4	1.9	6.4
p3696	2	2	2	15	351	94	30	0.05	2.3	2.9
p3697	2	2	2	20	482	111	33	0.1	2.3	1
p3698	2	2	2	18	699	89	32	0.2	2.1	2.6
p3699	2	2	2	16	347	95	27	0.3	2.3	2.2
p3700	2	2	12	38	2079	103	53	0.2	2.1	2.3
p3701	2	2	2	15	367	97	31	0.7	2.1	3.7
p3702	2	2	2	18	575	85	30	0.2	2	2.2
p3703	2	2	2	13	362	83	29	0.5	2.1	4.8
p3704	2	2	. 2	15	376	86	27	0.4	2.1	3.1
p3705	2	2	2	18	477	99	29	0.4	2.3	4
p3706	2	2	2	12	275	84	26	0.4	2.3	5.2
p3707	2	2	2	13	360	78	24	0.4	1.9	6.4
p3708	2	2	2	1	97	1	0.5	0.6	1.3	2
p3709	2	2	2	16	321	106	33	0.4	2.1	4.1
p3710	2	2	2	. 13	330	85	26	0.4	2.1	4.1
p3711	5	2	2	16	439	97	33	0.5	2.3	0.8
p3713	2	2	2	12	343	92	24	0.05	2.4	1.9
p3714	2	2	2	13	384	97	30	0.2	2.4	0.7
p3715	2	2	2	13	260	89	27	0.6	2.3	2.5.
p3716	2	2	2	13	296	88	26	0.2	2.1	3.3
p3717	2	2	2	14	361	96	29	0.6	2.3	1
p3718	2	2	2	22	580	112	31	0.4	2.4	0.8

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
p3 719	2	2	2	18	515	99	32	0.3	2.1	0.6
p3720 ·	2	2	2	18	467	92	31	0.4	2.3	0.9
p3721	2	2	2	18	426	100	34	0.4	2.2	0.7
p3722	2	2	2	15	397	97	29	0.5	2.1	0.9
p3723	2	2	2	17	535	94	27	0.4	2.4	0.9
p3724	2	2	2	16	438	96	29	0.5	2.2	1.3
p3725	2	2	2	17	502	93	27	0.8	2.3	2
p3726	2	2	2	17	407	99	29	0.4	2.3	0.8
p3727	2	2	2	15	391	99	31	0.3	2.3	1.1
p3728	2	2	2	17	519	85	. 29	0.5	1.9	3.1
p3729	2	2	2	13	427	86	25	0.4	2.2	2.9
p3730	2	2	2	12	343	79	22	0.6	1.9	4.8
p3731	2	2	2	19	420	89	29	0.3	1.9	3.6
p3732	2	2	2	10	380	66	27	0.3	1.7	5.8
p3733	2	2	2	13	337	86	27	0.3	1.8	3.1
p3734	2	2	2	14	412	81	24	0.3	1.8	1.2
p3736	2	2	2	19	502	94	31	0.7	2.2	1.8
p3737	2	2	2	. 16	548	73	25	0.5	1.7	4.9
p373 9	2	2	2	13	368	76	27	0.4	1.8	4.5
p3740	2	2	2	18	444	94	29	0.4	2.1	2.4
p3741	2	2	2	42	1127	89	32	0.5	2	1.5
p3742	2	2	2	27	783	91	29	0.05	2.1	1.6
p3744	2	2	2	26	666	80	27	0.7	1.9	3.8
p3745	2	2	2	15	363	87	29	0.6	2.2	2.4
p3746	2	2	2	14 .	465	73	24	0.2	1.8	4.8
p3747	2	2	2	15	409	74	27	0.6	1.9	7
p3748	2	2	2	16	401	79	26	0.4	1.9	4.9
p3749	2	2	2	19	445	89	26	0.6	2.1	2.2
p3750	2	2	2	22.	463	104	29	0.3	2.2	0.9
p3751	2	2	2	16	399	96	26	0.5	2	1.1
p3752	2	2	2	16	413	93	29	0.5	2.2	1.7
p3753	2	2	2	12	319	67	22	0.2	1.9	7.3
p3754	2	2	2	11	311	73	24	0.2	1.9	5.2

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
p3755	2	2	2	16	348	96	3 0	0.3	2.1	0.9
p 3756	2	2	2	17	517	92	27	0.6	2	0.8
p3 757	2	2	2	16	489	91	29	0.1	2.1	0.8
p3759	2	2	2	17	421	96	30	0.2	2.2	0.9
p376 0	2	2	2	28	879	98	3 0	0.5	2.2	2.5
p3763	2	2	2	18	415	9 8	31	0.3	2	0.7
p3764	2	2	2	17	376	96	32	0.4	2.3	1.8
p3 765	2	2	2	13	374	89	26	0.5	2.1	2.9
p3768	2	2	2	17	393	95	29	0.1	2.2	1.6
p3769	2	2 ,	2	18	437	88	27	0.7	2.1	4.5
p377 0	2	2	2	35	915	93	31	0.5	2.2	1.4
p3773	5	2	2	60	1496	94	34	0.3	2	1.4
p3774	2	2	2	28	650	95	30	0.05	2.2	1.5
p3775	2	2	2	44	1213	90	30	0.3	2	1.1
p3777	2	2	2	35	967	96	29	0.2	2.2	1
p3778	4	2	2	15	435	93	25	0.5	2.1	1.5
p3779	2	2	2	19	544	92	27	0.3	2.1	1.7
p3780	2	2	2	15	381	83	29	0.2	2	5.6
p3781	2	2	2	1 6	416	92	27	0.3	2	1.9
p3782	2	2	2	18	560	93	27	0.4	2.2	1
p3783	2	2	2	20	606	94	27	0.5	2.2	1.5
p3784	2	2	2	19	549	100	28	0.5	2.3	2.2
p3785	2	2	2	22	706	94	29	0.2	2.3	1.6
p3786	2	2	2	22	723	98	. 27	0.4	2	1.6
p3787	2	2	2	21	565	104	26	0.2	2.1	1.4
p3788	2	2	2	21	623	98	27	0.3	2.2	2.3
p3790	2	2	6	43	1319	101	35	0.5	2.1	1.6
p3791	6	2	7	50	1514	95	36	0.2	2	1.5
p3792	2	2	2	34	977	101	33	0.3	2.2	2
p3793	2	2	2	37	985	104	32	0.5	2.2	1.1
p3794	2	2	2	15	1414	98	34	0.3	2.2	1.1
p 3795	2.	2	2	26	650	96	31	0.6	2.1	1.9
p 3796	2	2	2	15	352	94	27	0.3	2.1	2.9

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
p 3 797	2	2	18	98	2602	95	43	0.05	1.9	1.2
p3798	2	2	2	19	517	100	29	0.6	2.4	0.9
p3799	2	2	2	22	606	96	29	0.2	2.1	1.3
p3800	2	2	2	17	393	100	29	0.5	2.2	2.1
p3801	2	2	. 2	16	426	91	28	0.1	2.1	1.5
p3802	2	2	2	20	494	95	31	0.3	2	1.1
p3803	2	2	2	27	822	87	29	0.3	2.1	2.7
p3804	2	2	2	14	373	107	27	0.8	2.6	0.7
p3805	5	2	2	20	663	98	28	0.5	2.2	1.2
p3806	2	2	2	13	460	86	23	0.2	2.3	1.7
p3807	2	2	2	16	755	61	20	0.1	1.8	0.8
p3808	2	2	2	14	529	59	18	0.8	1.5	2.9
p3810	2	2	2	14	448	89	26	0.4	2.1	1
p3812	2	2	2	1 1	371	58	1 9 [.]	0.4	1.5	. 3.4
p3813	2	2	2	15	291	85	27	0.6	2.1	3.8
p3814	2	2	2	11	397	72	19	0.3	2	1
p3815	2	2	2	12	528	49	14	0.2	1.7	0.8
p3816	2	2	2	1	40	1	0.5	0.5	0.9	6.3
p3817	2	2	2	11	344	66	19	0.7	2	0.8
p3819	2	2	2	18	593	56	2 1	0.3	1.7	2.4
p3820	2	4	2	34	1 3 67	45	22	0.6	1.3	1.6
p382 1	2	9	2	11 .	3 15	50	16	0.2	1.5	5
p3822	2	2	2	15	513	52	19	0.5	1.6	2.3
s6259	2	2	2	22	568	58	14	0.05	1.1	1.2
s6260	2	2	. 2	15	370	73	18	0.1	1.4	4.6
s6261	2	2	2	11	412	67	22	0.3	1.7	3.5
s6262	2	2	2	12	558	83	3 5	0.05	1.9	3.4
s6263	2	2	2	14	511	66	27	0.05	1.7	4.4
s6264	2	2	2	20	416	156	28	0.2	2.7	1.4
s626 5	2	2	. 2	14	735	78	24	0.3	1.9	4.1
s6266	2	2	2	10	595	41	12	0.05	1	0.7
s6267	2	2	2	9	559	43	17	0.05	1.1	1
s6268	2	2	2	13	548	74	21	0.05	1.6	8.3

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	Κ%	Ca%
s6269	2	2	2	16	648	88	29	0.05	2.1	1.2
s6270	2	2	2	12	839	80	21	0.05	1.7 .	0.6
s6271	2	2	2	20	971	94	32	0.05	2.1	0.6
s6272	2	2	2	14	684	_. 78	22	0.05	2	0.5
s6273	2	2	2	21	846	81	31	0.5	2	0.6
s6274	2	2	2	18	887	94	32	0.05	2	2.1
s6507	2	2	2	9	277	. 63	18	0.5	1.6	9.2
s6508	2	2	2	9	295	64	19	0.3	1.7	6.6
s6509	-2	2	2	12	382	78	25	0.2	1.5	0.7
s6510	2	2	. 2	15	329	67	19	0.4	1.5	9.5
s6511	2	2	` 2	10	426	67	25	0.3	1.6	10.4
s6512	2	2	. 2	15	397	94	21	0.2	1.8	0.9
s6513	2	2	2	16	493	93	32	0.05	1.7	0.6
s6514	2	2	2	18	316	78	26	0.2	1.9	2.3
s6515	2	2	2	14	428	59	26	0.6	1.6	0.9
s6516	2	2	2	9	327	49	18	0.2	1.3	7.2
s6517	2	2	2	10	307	70	24	0.3	1.6	4.6
s6518	2	2 .	2	9	272	72	25	0.1	1.8	8.3
s6519	2	2	2	17	397	59	20	0.1	1.5	4
s6520	2	2	2	11	209	82	18	0.1	1.5	5.1
s6521	2 .	2	2	14	287	73	21	0.1	1.4	1.2
s6522	2	2	2	11	376	62	18	0.2	1.6	5.8
s6523	2	2	2	18	344	77	22	0.2	1.2	1.2
s6524	2	2	2	15	386	77	28	0.1	1.7	0.7
s6525	2	2	2	14	269	71	19	0.3	1.3	6.4
s6526	2	2	2	12	409	69	19	0.4	1.8	1.2
s6527	2	2	2	9	318	55	23	0.6	1.3	1 1 .8
s6528	2	2	2	12	294	76	30	0.4	1.5	8.8
S6529	2	2	2	11	347	71	30	0.4	1.6	8
S6530	2	2	2	14	444	72	21	0.5	1.7	1
S6531	2	2	2	10	286	67	21	0.4	1.6	12.9
S6532	2	2	2	12	295	77	24	0.6	2	3.5
S6533	2	2	2	9	330	56	16	0.5	1.5	5.2

C)
C		
C	_	
١.		
-		Į
C	۲	

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
S6534	2	2	. 2	12	535	66	24	0.5	1.6	0.9
S6535	2	2	2	12	319	86	25	0.5	2.2	2.8
S6536	2	2	2	12	295	83	25	0.5	1.9	5.5
S6537	2	2	2	12	416	76	31	0.8	1.8	4.4
S6538	2	2	2	15	466	72	35	0.9	1.6	1
S6539	2	2	2	14	443	63	24	1.2	1.6	4.4
S6540	2	2	2	11	350	64	21	0.9	1.7	8.4
S6541	2	2	2	15	433	76	31	0.7	1.9	0.8
S6542	2	2	2	13	445	73	30	0.6	1.6	1.4
S6543	2	2	2	10	455	74	26	0.8	1.6	6.1
S6544	2	2 `	2	11	355	64	28	0.6	1.1	9.3
S6545	2	2	2	11	328	74	21	0.6	1.4	5.4
s6546	2	2	2	17	366	81	26	0.7	1.5	1.2
s6547	2	2	2	17	27 1	71	24	0.7	1.7	1.3
s6548	2	2	2	9	3 9 7	53	2 2	1	1.4	1.7
s6549	2	2	2	12	300	80	24	0.7	1.9	4.1
s6550	. 2	2	2	11	290	65	22	0.8	1.8	4.9
s6551	2	2	2	8	418	35	17	1.1	1	0.7
s6552	2	2	2	7	356	42	15	1.3	1.1	0.9
s65 5 3	2 ·	2	2	9	324	- 60	20	0.7	1.5	1.5
s6554	2	2	2	10	297	68	20	0.6	1.6	6.3
s655 5	2	2	2	11	374	72	25	0.8	2	3.8
s6556	2	2	2	13	388	72	24	0.4	1.6	2.2
s6557	2	2	2	11	228	77	22	0.7	1.8	4
s6558	2	2	2	12	368	68	21	0.4	1.3	1.2
s6 5 59	2	2	2	11	207	78	25	0.7	1.7	9.5
s6560	2	2	2	11	378	77	24	0.9	1.8	3.3
s6561	2	2	2	10	238	72	21	0.5	1.7	5.4
s6562	2	2	2	11	207	8 4	26	0.5	1.8	5.1
s6563	2	2	2	14	253	82	23	0.4	1.8	2
s6564	2	2	2	9 .	258	57	18	0.6	1.1	12.7
s6565	2	2	2	10	52 7	57	22	0.7	1.4	1.7
s6566	2	2	2	8	345	50	18	0.6	1.3	4.8

_	
C .	
}	
O	

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
s6567	2	· 2	- 2	18	356	82	25	0.7	1.4	0.8
s6568	2	2	2	11	490	59	24	0.9	1.4	1.3
s6569	2	2	2	9	266	58	18	0.4	1.4	6.4
s6570	2	2	2	11	335	89	23	0.6	1.5	7.3
s6571	2	2	2	12	462	58	21	0.8	1.5	2.5
s6572	2	2	2	16	390	73	30	0.4	1.4	0.7
s6573	2	2	2	19	616	63	30	0.6	1.4	0.6
s6574	2	2	2	16	446	74	26	0.5	1.6	. 1
s6575	2	2	2	11	312	59	22	0.4	1.5	11.2
s6 5 76	2	2 ,	. 2	13	321	88	31	0.3	1.7	1.8
s6577	2	2		14	520	62	26	0.5	1.6	1.8
s6578	2	2	2	14	359	69	25	0.4	1.6	0.9
s6579	9	2	2	12	483	31	15	0.7	0.8	0.9
s65 8 0	2	2	2	11	260	83	24	0.6	1.9	6. 5
s6581	2	2	2	13	323	86	29	0.3	1.9	1.3
s6 58 2	2 .	2	2	14	293	89	26	0.2	2	1.2
s6583	2	2	2	10	207	77	18	0.4	1.8	8.8
s65 84	2	2	2	8	225	44	12	0.7	1.1	1.5
s6 58 5	2	2	2	12	277	68	23	0.5	1.9	5.6
s6 58 6	2	2	2	13	468	66	23	0.5	1.5	1.1
s6 58 7	2	2	2	11	450	55	18	0.8	1.3	0.7
s6 58 8	2	2	2	12	412	50	18	0.6	1	1.1
s6589	2	2	2	14	421	57	22	0.5	1.3	1.3
s6590	2	2	2	15	267	80	25	0.4	2.1	2.3
s6591	2	2	2	13	435	63	28	0.4	1.4	. 0.9
s6592	2	2	2 .	17	394	73	25	0.3	1.4	1
s6593	2	2	2	11	310	68	19	0.5	1.6	7
s6594	2	2	2	17	387	76	28	0.6	1.9	1.1
s6595	2	2	2	9	307	56	21	0.4	1.5	9.6
s6596	2	2	2	9	276	63	19	0.6	1.6	12.7
s6597	2	2	2	11	456	63	22	. 0.5	1.8	1.1
s6598	2	2	2	11	263	60	20	0.6	1.8	4.1
s6599	2	2	2	14	451	55	27	0.7	1.5	2.2

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
s6600	2	2	2	11	236	87	25	0.5	2	4.3
s6601	2	2	2	13	444	90	27	0.3	1.8	2.6
s6602	2	2	2	11	290	68	23	0.7	1.6	9.9
s6603	2	· 2	· 2	15	445	, 60	25	0.6	1.6	8.0
s6604	2	2	2	16	274	80	25	0.7	1.9	0.8
s6605	2	2	2	15	655	58	25	0.1	1.2	0.7
s6606	2	2	2	12	354	73	24	0.6	2.1	1.9
s6607	2	2	2	10	302	69	20	0.5	1.8	5.5
s6608	2	2	2	7	292	44	14	0.6	1.1	5.5
s6609	2	2 ,	2	. 11	261	82	34	0.3	1.7	1.5
s6610	2	2	` 2	8	207	47	16	0.7	1.4	3.3
s6611	2	2	2	9	385	45	18	0.6	0.9	1
s6612	2	2	2	13	346	69	28	0.6	1.5	1.3
s6613	2	2	2	15	333	84	22	0.3	1.2	0.6
s6614	2	2	2	13	565	70	21	0.9	1.4	0.9
s6615	2	2	2	14	320	91	39	0.5	1.8	4.2
s6616	2	2	2	10	351	63	26	0.6	1.5	12.4
s6 6 17	2	2	2	11	416	76	25	0.4	1.7	7.9
s6618	2	2	2	14	445	94	27	0.3	1.7	1.3
s6619	2	2	2	11	391	66	22	0.6	1.5	7.8
s6620	2	2	2	15	481	8 1	23	0.3	1.8	1.7
s6621	2	2	2	11	395	65	20	0.5	1.7	10.7
s6622	2	2	2	12	443	65	22	0.5	.1.7	5.7
s6623	2	2	2	11	3 75	69	25	0.4	1.6	9.4
s6624	2	2	2	11	329	69	27	0.6	1.5	9.6
s6625	2	2	2	10	346	68	30	0.4	1.5	12.2
s6626	2	2	2	14	641	59	20	0.9	1.3	0.8
s6627	2	2	2	12	439	78	27	0.7	1.7	3
s6628	2	2	2	12	408	75	24	0.6	1.6	5.8
s6629	2	2	2	14	698	47	1.8	0.5	1	0.7
s6630	2	2	2	10	3 57	67	21	0.5	1.6	8.7
s6631	2	2	2	11	368	76	31	0.4	1.6	9.4
s _. 6632	2	2	2	11	316	6 4	22	0.3	1.6	9.2

C .)
C)
)
10	۵
C	3
D	כ

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
s6633	2	. 2	2	9	356	64	23	0.4	1.4	5.9
s6634	2	2	2	12	424	78	23	0.5	1.8	1.2
s6635	2	2	2	9	335	63	21	0.4	1.7	8.9
s6636	2	2	2	12	460	59	19	0.9	1.5	0.8
s6637	2	2	2	15	667	38	18	0.5	1.1	1.2
s6638	2	2	2	14	498	68	24	0.2	1.6	0.9
s6639	2	2	2	· 17	680	51	19	0.05	1.5	0.8
s6640	2	2	2	10	328	58	20	0.6	1.4	11.9
s6641	2	2	2	10	276	60	. 17	0.4	1.5	9.1
s6642	2	2,	. 2	8	268	50	14	0.2	1.4	4
s6643	2	2	2	13	435	64	23	0.5	1.6	1.9
s6644	2	2	2	18	405	78	31	0.2	1	1.1
s6645	2	2	2	14	470	67	24	0.4	1.6	2.6
s6646	2 · .	. 2	2	21	608	48	22	0.5	1.2	1.9
s6647	2	2	2	21	540	75	32	0.4	1.5	0.8
s6648	2	2	2	18	532	70	27	0.7	1.4	1.4
s6649	2	2	2	14	377	79	25	0.3	1.9	2.6
s6650	2	2	2	14	399	101	25	0.3	2.3	1.8
s6651	2	2	2	12	304	87	23	0.2	2.3	1.3
s6652	2	2	2	12	270	102	30	0.5	2.2	2.6
s6653	2 .	2	2	19	384	90	33	0.2	1.8	0.7
s6654	2	2	2	18	500	77	33	0.5	1.7	0.7
·s6655	2	2	2	17	400	87	32	0.3	1.8	0.8
s6656	2	2	2	19	453	87	36	0.6	1.8	0.9
s6657	2	. 2	2	17	383	70	26	0.4	1.4	0.7
s6658	2	2	2 .	16	489	71	26	0.3	1.5	8.0
s6659	2	2	15	78	2793	37	66	0.6	1.1	2
s6660	2	2	2	12	325	76	28	0.6	1.9	7.7
s6661	2	2	2	11	312	85	28	0.6	1.8	3.1
s6662	2	2	2	15	319	89	28	0.3	1.9	1
s6663	2	2	2	15	322	85	28	0.6	1.8	1
s6664	2	2	2	15	415	. 68	25	0.7	1.7	· 1
s6665	2	2	2	17	495	59	28	0.5	1.5	8.0

_	_
	_
L	_
C	
!	
C	٠,
C	P

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
s6666	2	2	2	16	455	64	26	0.5	1.7	1.2
s6667	2	2	2	15	314	74	28	0.5	1.8	2.6
s6668	2	2	2	16	350	80	29	0.6	1.7	1
s6669	2	2	2	16	338	78	25	0.4	1.6	1.8
s6670	2	2	2	15	388	72	26	0.6	1.6	1.4
s6671	2	2	. 2	17	556	8 1	30	0.6	1.7	1.6
s6672	2	2	2 .	13	275	89	35	0.2	2	3.2
s6673	2	2	2	13	265	85	28	0.3	2.1	5.2
s6674	2	2	2	11	361	72	25	0.3	1.9	4.6
s667 5	2	2 ,	2	11	454	6 2	25	0.4	1.4	1.9
s6676	2	2	2	12	207	79	20	0.5	1.8	3.9
s6677	2	2	2	23	542	79	36	0.4	1.7	1.1
s6678	2	2	2	13	301	77	25	0.7	1.6	6.1
s6679	2	2	2	56	845	73	40	0.4	1.2	1.9
s6680	2	2	2	20	480	55	23	1	1.2	0.9
s6681	2	2	2	17	297	94	28	0.5	1.8	3.3
s6682	2	2	2	22	357	80	36	1	1.8	1
s6683	2	2	2	12	323	52	19	1.1	1.3	1.3
s6684	2	2	2	18	448	59	27	0.6	1.4	0.8
s6685	2	2	2	19	471	74	29	0.4	1.5	0.7
s6686	2	2	2	18	547	64	36	0.5	1.5	0.8
s6687	2	2	2	19	458	5 2	20	0.8	1.2	1.1
s6688	2	2	2	20	452	67	26	0.6	1.5	3
s6689	2	2	2	14	298	83	25	0.6	1.9	6.4
s6690	2	2	2	17	496	72	29	0.3	1.5	0.8
s6691	2	2	2	15	346	75	27	0.6	1.6	2.1
s6692	2	2	2	16	510	58	26	0.7	1.4	0.8
s6693	2	2	2	16	606	51	. 22	0.8	1.3	0.7
s6694	2	2	2	12	406	61	22	0.8	1.5	5.8
s6695	2	2	2	17	453	71	31	0.8	1.6	1
s 66 96	2	2	2	30	854	20	25	1.2	0.7	0.7
s6697	2	2	2	10	337	51	22	0.4	1.3	19.4
s6698	2	2	2	18	529	67	30	0.8	1.5	0.9

C	-
	D
C	\supset
١.	4
¥	>

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
s6699	2	2	2	10	259	69	20	0.4	1.6	8.2
s670 0	2	2	2	9	240	60	17	0.5	1.3	15.7
s6701	2	2	2	12	315	81	23	0.6	1.8	4.3
s6702	2 .	2	2	11	282	71	20	0.6	1.9	8.4
s6703	2	2	2	11	358	52	17	0.5	1.5	2.4
s6704	2	2	2	19	495	70	28	0.8	1.7	1.6
s6705	2	2	2	11	364	60	22	0.7	1.6	1.2
s6706	2	2	2	14	337	73	25	0.5	1.4	5.4
s670 7	2	2	2	11	274	101	29	0.6	2.2	2.4
s6708	2	2 .		12	39 6	73	23	0.7	1.5	2.9
s6709	2	2	2	13	354	89	26	0.6	1.7	4.5
s6710	2	2	2	14	450	69	27	0.7	1.5	1.2
s6711	2	2	2	18	763	56	26	0.4	1.4	1.1
s6712	2	2	2	10	234	66	18	0.6	1.5	9.1
s6713	2	2	2	16	508	79	36	0.5	1.7	1
s6714	2	2	2	12	323	85	25	0.5	1.8	4.5
s6715	2	2	2	14 .	392	80	26	0.5	1.8	1.9
s6716	2	2	2	14	243	103	27	0.65	1.8	1.6
s671 7	2	2	2	13	291	85	23	0.5	1.7	6.6
s6718	2	2	2	10	334	70	18	0.6	1.5	8.6
s6719	2	2	2	17	389	79	30	0.7	1.7	1.3
s672 0	2	2	2	13	300	83	26	0.3	1.7	5
s6721	2	2	2	18	415	64	22	0.3	1.1	0.7
s6722	2	2	2	19	295	91	29	0.5	1.6	1.1
s672 3	2	2	2	12	275	70	24	0.4	1.8	10.3
s6724	2	2	2	15	358	78	32	0.6	1.7	1.2
s6725	2	2	2	10	276	69	31	0.4	. 1.5	13.7
s672 6	2	2	2	15	463	6 2	22	0.5	1.6	1.9
s6727	2	2	2	15	398	79	34	0.6	1.8	1.1
s6728	2	2	2	10	325	63	21	0.5	1.8	9.9
s6729	2	2	2	12	470	50	20	0.5	1.4	1.4
s6730	2	2	2	10	377	61	22	0.5	1.4	5.7
s6731	2	2	2	10	203	78	22	0.5	1.8	7.8

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	K%	Ca%
s6732	2	2	2	9	302	55	19	0.4	1.6	12.9
s6733 ·	2	2	2	14	362	7 8	24	0.4	2	2.6
s6734	2	2	2	10	209	85	22	0.5	1.8	8.8
s6735	2	2	2	11	327	72	24	0.6	1.7	9.8
s6736	2	2	2	17	335	91	27	0.4	1.8	0.8
s6737	2	2	2	17	437	80	. 32	0.2	1.8	1
s6738	2	2	2	11	395	61	20	0.1	1.5	1.9
s6739	2	2	2	17	5 5 1	71	32	0.3	1.5	0.7
s6740	2	2	2	18	462	71	28	0.05	1.6	0.9
s6741	2	2 、		12	417	64	29	0.4	1.5	6.9
s6742	2	2	2	10	323	61	20	0.4	1.7	8
s6743	2	2	2	12	291	81	21	0.4	1.8	4.9
s6744	2	2	- 2	10	342	58	22	0.3	1.4	11.5
s6745	2	- 2	2	11	211	70	20	0.05	1.5	3.8
s6746	2	2	2	10	300	620	27	0.4	1.8	4.9
s6747	2	2	2	19	343	87	29	0.05	1.4	0.8
s6748	2	2	2	12	382	69	24	0.05	1.7	1.4
s6749	2	2	2	16	487	65	23	0.05	1.3	0.9
s6750	2	2	2	15	390	77	26	0.05	1.5	1.4
s6751	2	2	2	19	406	82	29	0.2	1.8	0.8
s6752	2 .	2	2	15	265	88	30	0.3	2.1	4.7
s6753	2	2	2	14	266	74	32	0.3	2.2	6.8
s6754	2	2	2	14	348	78	25	0.3	2.3	2.1
s6755	2	2 ~	2	17	386	80	31	0.4	2.2	1.3
s6756	2	2	2	17	495	69	31	0.05	1.7	. 1
s6757	2	2	2	10	425	52	21	0.1	1.7	4.6
s6758	2	2 .	2	17	319	79	28	0.4	1.5	1
s6759	2	2	2	12	205	64	20	0.2	1.7	8.9
s6760	2	2	2	12	256	77	23	0.3	1.8	7.7
s6761	2	2	2	14	280	74	27	0.05	1.5	2.7
s6762	2	2	2	14	334	76	26	0.3	1.8	1
s676 3	2	2	2	13	331	77	24	0.1	2	1.1
s6764	2	2	2	15	210	76	26	0.1	1.9	2.3

.4		
.9		
.2		
.3		
.1		
.9		
.8		
.6		
.6		
. 2 .7		
.1		
).5		
.9		
.7 2		
.1		
.6		
.6		
. 4		

Sample No.	Sn ppm	WO3 ppm	Ta2O5 ppm	Nb2O5 ppm	Zr ppm	Rb ppm	Y ppm	P2O5 %	К%	Ca%
s6765	2	2	2	12	333	80	23	0.2	2	8. 3
s6766	2	2	2	14	399	79	24	0.05	1.6	2.4
s6767	2	2	2	20	389	84	24	0.3	1.3	0.8
s6768	2	2	2	15	313	75	25	0.4	1.7	7.3
s6769	2	2	2	20	504	78	28	0.1	1.9	3.6
s6770	2	2	2	12	237	62	24	0.4	1.3	12.6
s6771	2	2	2	11	272	68	27	0.2	1.8	1
s6772	2	2	2	13	197	89	29	0.3	1.9	6.1
s6773	- 2	2	2	19	468	76	32	0.05	1.6	0.6
s6774	2	2 .	2	15	451	61	27	0.2	1.8	4.4
s6775	2	2 `	` 2	16	298	96	31	0.3	2	2.2
s6776	2	2	2	16.	316	91	31	0.2	2.2	1
s6777	2	2	2	18	545	80	29	0.4	1.8	1.5
s6778	2	2	2	.13	338	63	25	0.4	1.5	7.4
s6779	2	2	2	26	862	60	35	0.4	1.5	0.9
s6780	2	2	2	15	358	75	31	0.4	2.1	1.2
s67 8 1	2	2	2	13	344	82	26	0.5	1.9	5.3
s67 8 2	2	2	2	15	313	95	30	0.5	2	3.1
s6783	2	2	2	17	457	81	32	0.5	2.4	0.9
s6784	2	2	2	18	557	65	28	0.4	1.9	2.8
s6785	2	2	2	16	636	35	28	0.2	1.1	0.6
s6786	2	2	2	18	648	54	33	0.2	1.5	0.6
s6787	2	2	2	13	275	74	22	0.4	2.1	7.2
s6788	2	2	2	17	471	69	26	0.3	1.5	0.7
s6789	2	2	2	17	586	59	29	0.05	1.5	1.1
s6790	2	2	2	13	296	72	22	0.3	2.2	10.5
s6791	2	2	2	16	317	84	27	0.05	2.1	0.9
s6792	2	2	2	21	632	74	32	0.05	1.8	0.7
s6793	2	2	2	13	353	66	23	0.3	1.6	12
s6794	2	2	2	14	351	83	27	0.3	2.1	4.1
s6795	2	2	2	24	67 7	64	32	0.05	1.7	0.6
s6796	5	2	2	22	709	50	28	0.2	1.3	0.6
s6797	2	2	2	12	312	59	24	0.05	1.6	2.4

C	•
)
ļ	
\ \frac{1}{2}	_
•	-

Sample No.	on ppm	WO3 ppm	razos ppm	NOZOS ppm	zr ppm	no ppm	r ppm	P2U5 %	N %	Ca%
s6798	2	2	2	19	503	81	32	0.2	1.9	0.7
s6799	2	2	2	19	407	89	32	0.05	1.8	0.6
s6800	2	2	2	24	468	84	32	0.1	1.8	3.8

•	\subseteq	
		2
	C	_
	-	
	Č	_
	C	Χ.

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p2676	. 2	0.3	91.5	4.1	0.2	0.4	554836	6413013
p2677	2	0.4	75.8	8.5	0.5	0.3	549838	6411404
p2678	2	0.7	66.1	9.5	0.6	0.5	550092	6410074
p2679	2	0.7	69.8	8.1	0.5	0.3	546889	6411150
p2680	2	0.2	95.2	2.4	0.3	0.2	551051	6404516
p26 8 1	2	0.6	66	9.7	0.7	0.3	551000	6406774
p26 8 2	2	0.6	75.5	7.8	0.5	0.3	548800	6405661
p2683	2	0.05	85.9	6.1	0.4	0.3	559584	6414000
p2684	2	0.2	85.3	6.8	0.3	0.5	557724	6415261
p2685	2	0.4	73.3	7.6	0.4	0.3	560490	6410874
p2686	2	1.8	47.9	7.2	1	0.2	557200	6409529
p26 8 7	2	0.5	75.3	6.6	0.5	0.3	557122	6411262
p2688	2	0.3	82.1	5.5	0.3	0.3	552653	6409801
p2689	2	0.3	87.3	.3.8	0.3	0.4	554172	6407671
p2690	2	0.3	81.3	5.8	0.4	0.3	555838	6406807
p2691	2	0.3	72.2	9	0.4	0.3	558727	6407131
p2692	2	0.05	73.2	8.2	0.2	0.2	557481	6405828
p2693	2	0.2	80.2	7	0.4	0.5	553247	6405318
p2694	5	0.2	87. 3	5.5	0.3	0.4	563910	6405251
p2695	2	0.2	87.2	5.7	0.3	0.4	562888	6406613
p2696	2	0.3	87.8	3.5	0.2	0.6	562026	6411909
p2697	2	0.3	81.1	6.3	0.3	0.4	5 62 982	6414848
p2699	2	0.3	64	10.1	0.7	0.8	557432	6416376
p2700	2	0.3	76.8	6.3	0.4	0.4	560760	6406207
p2702	2	0.2	87.6	4.9	0.3	0.3	551167	6416368
p2703	2	0.2	81.3	6.3	0.4	0.3	548200	6416596
p2704	2	1.6	42.2	10.1	0.9	0.1	548200	6416596
p2706	2	0.5	67.4	7.7	0.7	0.3	552412	6420735
p2707	2	0.4	82.5	5.7	0.3	0.5	555565	6421693
p2708	2	0.05	72.2	9	0.5	0.2	553167	6424510
p2709	. 2	0.4	73.7	5 .7	0.6	0.2	556725	6424100
p2710	2	0.05	61.7	13.6	0.7	0.2	550263	6425065
p2711	2	0.1	79.4	5.8	0.6	0.5	555388	6427719

C
0
\Box
ļ.,
င္သာ
S

Sample No.	Te ppm	F%	Si O2 %	Al2O3 %	Mg%	Na%	East	North
p2712	2	0.2	85.7	5.2	0.3	0.3	551079	6426224
p2713	2	0.3	87.3	7.6	0.7	0.8	553484	6428002
p2715	2	0.5	66.3	7.6	0.7	0.3	550900	6431568
p2716	2	0.2	57.7	10.7	0.8	0.2	547136	6432065
p2717	2	0.4	75.7	5.5	0.6	0.2	546309	6432457
p2718		0.05	60.7	10.9	0.7	0.2	546653	6438505
p2719	2 2	0.05	77.1	7.8	0.6	0.3	547193	6441967
p2720	2	0.1	81.1	6.2	0.5	0.3	548010	6444086
p2721	2	0.9	64.8	6.9	0.6	0.3	550038	6444978
p2722	2	0.05	88.2	5.9	0.4	0.2	551921	6442929
p2723	2	0.05	70.5	11.2	0.5	0.3	553800	6444581
p2724	2	0.2	65.2	9	0.7	0.2	553250	6442225
p2725	2	0.2	90.2	3.8	0.3	0.2	557150	6443736
p2726	2	0.05	57.3	11.6	0.7	0.1	552250	6439100
p2727	2	0.05	75.7	9.1	0.5	0.2	555200	6438748
p2728	2	0.2	69.2	11.8	0.3	0.8	553137	6432800
p2729	2	0.05	54.4	14.5	0.6	0.3	556233	6433733
p2901	2	0.2	87.9	3.9	0.5	0.1	534686	6411897
p2902	2	0.2	92.8	2.3	0.3	0.1	533329	6413766
p2903	2	0. 0 5	89.2	4	0.3	0.05	529360	6415022
p2904	2	0.3	56.1	11.7	0.5	0.1	530275	6415699
p2905	2	0. 0 5	86.4	6.8	0.3	0.1	524693	6419560
p290 6	2	0.2	58.3	12.4	0.6	0.1	526627	6420624
p2907	. 2	1.3	52.9	8.5	0.7	0.1	522452	6421831
p2908	2	0.6	52.8	12	0.9	0.2	523764	6424484
p2909	2	0.2	90.3	3.6	0.4	0.2	518936	6422381
p2910	2	0. 0 5	65.3	12.7	0.6	0.1	521648	6425500
p2911	2	0.4	77.6	5.9	0.7	0.1	518364	6424703
p2912	2	0.2	87.9	4.1	0.4	0.2	515780	6427801
p2913	2	0.05	92.6	4.8	0.4	0.1	516046	6426930
p2914	2	0.4	87	2.1	0.5	0.2	513977	6428650
p2915	2	0.2	83	6.7	0.5	0.1	510710	6427678
p2916	2	0.05	84.7	5.1	0.4	0.2	511629	6430500

_	
Ē	
ļ	
C	

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p2917	2	0.5	62.2	10.2	0.6	0.1	521427	6428280
p2918	2	0.05	64	13.7	0.5	0.1	529491	6426477
p2919	2	0.5	68.5	7.8	0.6	0.2	527927	6426965
p2920	2	0.05	85.7	4.8	0.4	0.2	526978	6427849
p2921	2	0.05	69.2	9.2	0.5	0.1	523550	6426950
p2922	2	0.05	55.9	14 .	0.9	0.6	524233	6431800
p2923	2	0.8	52.6	10.9	0.7	0.1	522170	6433200
p2924	2	0.6	56.6°	11.1	0.7	0.1	523173	6434671
p2925	2	0.05	72.3	10.1	0.4	0.1	523746	6435419
p2926	2	0.7	61.9	10	0.7	0.3	526518	6436627
p2927	2	0.2	75.2	7.2 ·	0.4	0.2	527601	6435810
p2928	2	0.1	83.4	6.3	0.5	0.3	527026	6432720
p2930	2	0.05	78	10.3	0.5	0.2	534035	6431769
p2931	2	0.05	77.8	6.7	0.5	0.2	531795	6432317
p2932	2	0.2	77.5	6.7	0.8	0.5	530970	6435613
p2933	2	0.05	53.8	12.6	0.7	0.2	530000	6437705
p2934	2	0.4	67.5	8.2	0.7	0.2	535765	6438826
p2935	2	0.1	77.7	6.8	0.6	0.3	537174	6437509
p2936	2	0.2	77.7	7.8	0.6	0.3	539594	6439057
p2937	2	0.05	83.5	8.4	0.4	0.4	544726	6438398
p2938	2	0.5	72.4	5.5	0.7	0.2	534601	6426949
p2939	2	0.05	71	8	0.6	0.2	546131	6438543
p2940	2	0.05	77.1	8.2	0.5	0.2	543996	6436196
p2941	2	0.05	62.4	7.6	0.6	0.2	542033	6438692
p2942	2	0.2	73	8.9	0.6	0.2	532666	6427953
p294 3	2	0.2	73.1	7.6	0.6	0.2	530033	6428431
p2944	2	0.1	67.4	10.2	0.5	0.2		
p2945	2	0.05	65.6	12.6	0.6	0.2	535549	6425591
p2946	2	0.05	75.5	8.4	0.6	0.2	537463	6425750
p2947	2	0.05	65. 8	12.5	0.7	0.2	536737	6431616
p2948	2	0.05	85.2	6.8	0.3	0.3	539217	6429356
p2949	2	0.05	81	6.7	0.4	0.3	538188	6432400
p2950	2	0.3	70.7	8.5	0.7	0.2	543724	6432724

_	
C	
Ç	_
C	
1.	4
C	٥
-	

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p2951	2	0.05	68.7	10.4	0.5	0.2	541307	6431315
p2952	2	0.1	83.2	5.6	0.5	0.3	542396	6430130
p2953	2	0.4	80.5	5.2	0.6	0.5	538004	6435534
p2954	2	0.05	68.2	11.8	0.6	0.3	540188	6434900
p2955	2	0.5	68.5	9.6	0.8	0.7	546334	6432037
p29 56	2	0.4	61.9	8.9	0.7	0.2	547831	6427283
p2957	2	0.3	66.5	9.7	0.6	0.2	545635	6425906
p2958	2	0.8	64	9.7	1.8	2	543615	6425800
p2959	2	0.2	62	11.6	0.7	0.2	541385	6425744
p2960	2	0.2	81.2	6.1	0.5	0.2	540014	6422728
p2961	2	0.3	81.4	5.4	0.3	0.6	541972	6422043
p2962	2	0.3	69.5	8.5	0.7	0.4	544850	6421900
p2963	2	0.1	88	5.8	0.3	0.2	549161	6423514
p2964	2	0.4	76.6	5.4	0.5	0.2	552944	6422105
p2965	2	0.5	67	8.5	0.6	0.3	554860	6423294
p296 6	2	0.2	66.1	9.1	0.6	0.3	555411	6418155
p2967	2	0.3	70.8	6.4	0.5	0.4	557664	6419936
p2968	2	0.05	66.9	10.6	0.5	0.3	556583	6414840
p2969	2	0.2	65.8	10.6	0.6	0.2	560410	6419104
p2970	2	0.1	70.5	9.4	0.5	0.3	571100	6416693
p2971	2	0.2	70.9	9	0.5	0.2	578500	6402650
p2972	5	0.4	75.5	6.9	0.6	0.2	550500	6412758
p297 3	2	0.5	71.1	7.5	0.6	0.3	548591	6412502
p2974	2	0.1	66.7	10.1	0.4	0.2	546406	6412023
p2975	2	0.2	63.3	10	0.6	0.1	543040	6410496
p2976	2	0.3	71.2	8	0.6	0.2	542163	6408512
p2977	2	0.05	85.6	6.3	0.3	0.2	543426	6413685
p2978	2	0.3	71.9	9.3	0.6	0.1	541512	6415618
p2979	2	0.7	47.9	12	0.7	0.1	537348	6417640
p2980	2	0.05	58.5	13.7	0.6	0.2	535071	6418431
p2981	2	0.3	80	7.1	0.5	0.3	537138	6419060
p2982	2	0.2	80.5	6	0.5	0.1	532142	6417236
p2983	. 2	0.5	47.6	13.6	0.7	0.1	533176	6420381

C
0

C
N

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p2984	2	0.05	71.8	12.4	0.4	0.1	529794	6420013
p2985	2	0.05	82.4	8	0.4	0.2	519785	6431292
p2986	2	1.7	49.8	8.9	0.9	0.1	519066	6434928
p2987	2	0.1	91.6	4.8	0.4	0.2	515111	6431692
p2988	2	0.05	79.6	8.7	0.4	0.2	514574	6433698
p2989	2	0.1	90.9	4.4	0.4	0.2	512483	6434880
p2990	2	0.1	75.9	9.4	0.6	0.6	510750	6434950
p2991	2	0.1	85.7	7.2	0.5	0.3	512751	6436551
p2992	2	0.05	94.5	. 4	0.3	0.2	514833	6436453
p2993	2	0.05	77	10.2	0.4	0.3	520600	6444964
p2994	2	0.05	84.3	5.5	0.3	0.3	518268	6444837
p2995	2	0.05	91.2	5.3	0.3	0.2	517179	6442104
p2997	2	0.05	75.6	8 .8	0.5	0.2	512378	6438435
p2998	2	0.3	77.4	5.6	0.6	0.3	509569	6436647
p2999	2	0.05	76.9	8.8	0.5	0.2	514400	6447800
p3000	2	0.4	61.2	12.2	0.8	0.5	507924	6438563
p3001	2	0.5	59.6	9.7	0.8	0.3	506700	6438900
p3002	2	0.2	72.1	9.1	0.6	0.2	516150	6447691
p3003	2	0.3	83.9	5.9	0.5	0.2	518671	6448381
p3004	2	0.3	63.9	9.8	0.6	0.2	522500	6447367
p3005	2 .	0.2	75.1	8.7	0.6	0.2	526840	6442813
p3006	2	0.05	72.5	8 .8	0.5	0.2	525145	6444395
p3007	2	0.05	73.7	9.6	0.5	0.2	520471	6448015
p3008	2	0.3	88.2	5 .6	0.5	0.2	503744	6438382
p3009	2	0.6	75.1	7.4	0.6	0.2	500611	6440505
p3010	2	0.05	70.8	10.4	0.5	0.2	500705	6443172
p3011	2	0.05	75.5	9.2	0.5	0.2	503174	6443626
p3012	2	0.05	85.8	7.1	0.4	0.2	503000	6444929
p3013	2	0.2	86	5.9	0.4	0.2	502400	6448332
p3014	2	0.2	67.8	10.2	0.6	0.2	507400	6445000
p3015	2	0.05	82.4	8	0.3	0.3	508521	6448701
p3016	2	0.05	69.9	12.2	0.4	0.3	509072	6441216
p3017	2	0.05	87.2	7.1	0.4	0.5	511100	6443274

C)
C	D
÷.	4
٢	ر
C	٥

Sample No.	Te ppm	F%	SiO2 %	AI2O3 %	Mg%	Na%	East	North
p3018	2	0.3	87.4	5.4	0.4	0.4	510050	6444584
p3019	2	0.05	7 7.8	8.7	0.3	0.2	520249	6441049
p3020	2	0.05	87.9	5.3	0.4	0.2	524900	6443200
p3021	2	0.05	81.4	8.6	0.4	0.2	523004	6440345
p3022	2	0.4	65	8.9	0.6	0. 2 [,]	524850	6450000
p3023	2	0.05	83 .8	6.8	0.3	0.2	525950	6448285
p3024	2	0.05	57.7	11.2	0.6	0.2	528350	6447285
p3025	2	0.2	.70.4	7.1	0.5	0.2	529700	6449300
p3026	2	0.4	72.1	6.9	0.7	0.2	529104	6442700
p 3 027	2	0.3	55.8	12.5	0.7	0.1	530612	6444650
p3028	2	0.2	91.2	5.1	0.3	0.2	532411	6439753
p3029	2	0.2	89.6	4.7	0.3	0.3	532599	6443279
p3030	2	0.05	81.1	6.3	0.4	0.2	532300	6451071
p3032	2	0.05	90.1	5.9	0.3	0.2	532700	6449399
p3033	2	0.7	68.5	8.5	0.6	0.3	535063	6446087
p3034	2	0.05	59.8	13.4	0.6	0.2	535226	6441600
p3035	2	0.05	57.8	9.4	1.1	0.4	545213	6441800
p3036	2	0.6	64.4	9.3	0.7	0.2	541192	6441632
p3037	2	0.4	69.9	8.4	0.6	0.4	543664	6440302
p30 3 8	2	0.4	67.7	10.3	0.7	0.5	539300	6443300
p3039	2 .	0.4	75.1	5.5	1 .	0.7	540725	6445800
p3040	2	0.7	77	4.2	0.6	1.6	540482	6445247
p3041	2 2	. 0.4	81.2	7.8	0.4	0.3	537641	6444747
p3042		0.05	77.6	4.6	0.5	1.	536739	6446500
p3043	2	0.05	95.6	3.8	0.3	0.4	534460	6449900
p3044	2	0.05	67,6	10	0.5	0.2	529650	6455481
p3045	2	0.05	67.4	13	1.2	1.5	530524	6457000
p3046	2	0.05	97.2	4.8	0.3	0.2	526579	6456550
p3047	40	0.05	97.9	4.8	0.3	0.05	528800	6457900
p3048	2	0.05	87.7	5.3	0.4	0.1	527895	6458800
p3049	2	0.05	95.2	4.1	0.3	0.2	524418	6458043
p3050	2	0.1	97.5	2.8	0.3	0.1	526697	6463171
p3051	2	0.05	96.3	5	0.2	0.1	527490	6461937

\bigcirc
0
0
ف دا
Ü
4

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3052	2	0.05	69.7	9.4	0.5	0.1	519900	6454751
p3053	2	0.6	68.2	8.8	0.5	0.1	524400	6452500
p3054	2	0.05	93.2	5.5	0.2	0.4	518900	6452538
p3055	2	0.05	85.6	5.8	0.4	0.2	520973	6450512
p3056	2	0.05	108.3	3	0.1	0.05	516292	6450568
p3057	2	0.3	92.4	3.5	0.3	0.4	514850	6450550
p3058	2	0.05	72.1	9.6	0.5	0.2	515150	6453700
p3059	2	0.05	73 .1	7.9	0.6	0.1	516400	6454800
p3060	2	0.05	83.4	· 8.9	0.4	0.2	511350	6454850
p3061	2	0.05	79.4	8.4	0.5	0.2	509241	6454100
p3062	2	0.2	79.5	7.3	0.6	0.2	506007	6456265
p3063	2	0.4	75.4	8	0.8	0.7	507250	6458050
p3064	2	0.05	92.3	6.4	0.4	0.1	509700	6456800
p3065	2	0.05	74.9	9.5	0.7	0.2	512200	6456900
p3066	2	0.1	78.2	7.1	0.6	0.1	514924	6459741
p3067	2	0.05	77.1	8.8	0.5	0.2	518800 ′	6457800
p3068	2	0.3	73.1	7.8	0.6	0.1	510982	6459484
p3069	2	0.05	86.8	7	0.4	0.1	520100	6459000
p3070	2	0.05	91.4	6.8	0.4	0.1	517668	6459583
p3071	2	0.05	84.5	6.5	0.4	0.2	518400	6463900
p3072	2	0.2	91. 3	4.1	0.4	0.1	515850	6465306
p3073	2	0.2	93.9	4.6	0.3	0.05	519800	6465830
p3074	2	0.05	93	2.2	0.3	0.1	520600	6465100
p3075	2	0.05	102.9	3.1	0.2	0.1	522000	6467872
p3076	2	0.05	110.5	2.5	0.1	0.1	524000	6467900
p3077	2	0.05	106.4	1.6	0.1	0.05	526600	6467700
p3078	_. 2	0.05	115.7	0.05	0.1	0.05	528700	6467650
p3079	2	0.05	113.6	0.3	0.1	0.05	530500	6467400
p3080	2	0.05	109.1	1.8	0.1	0.05	532563	6467186
p3081	2	0.05 -	110.2	2.2	0.1	0.05	532850	6469800
p3082	2	0.05	112.6	0.2	0.1	0.05	530600	6469550
p3083	2	0.05	107.4	2.5	0.1	0.05	530600	6469550
p3084	2	0.05	115.9	0.8	0.1	0.05	528800	6469300

C
0
-
೮
CI

Sample No.	Te ppm	F%	SiO2 %	AI2O3 %	Mg%	Na%	East	North
p3085	2	0.05	111.9	2	0.1	0.05	526278	6469764
p 3086	2	0.05	112.5	1.4	0.1	0.05	542800	6469890
p 3 087	2	0.05	107.4	2.3	0.1	0.05	52290 0	6469948
p3194	2	0.05	93.2	5.5	0.3	0.2		
p3195	2 2	0.05	93.8	5.2	0.4	0.4		
p3196	2	0.05	90.9	6.1	0.3	0.3		
p3197	2	0.05	91.1	4.5	0.3	0.2		
p3198	2	0.05	60.9	1 3 .7	0.8	0.2		
p3199	2	0.05	66.8	12.8	0.5	0.2		
p3204	2	0.05	100.6	3.2	0.3	0.1	538648	6479700
p3205	2	0.05 `	101.1	3.4	0.2	0.1	538483	6478900
p3206	2	0.05	112.6	2.3	0.1	0.1	5 3 7555	6477841
p3208	2	0.05	101.5	3.4	0.2	0.1	540164	6476623
p3211	2	0.05	68.8	10.8	0.7	0.1		
p3213	2	0.05	62.9	1 3 .7	0.6	0.2		
p3214	2	0.5	6 5 .7	12.1	1.9	1.8		
p3215	. 2	0.05	8 5 .5	6.2	0.5	0.1		
p3216	2	0.05	89	4.7	0.4	0.1		
p3217	2	0.05	102.3	3.9	0.2	0.1		
p3218	2	0.05	74	9.9	0.5	0.2		
p3219	2	0.05	86.6	6.3	0.4	0.2		
p3220	2	0.05	66.2	12.2	0.7	0.2		
p3221	2	0.05	91	. 6.2	0.3	0.3		
p3222	2	0.05	86.7	7.2	0.3	0.2		
p3223	2	0.4	59.5	10.6	0.8	0.1		
·p3224	2	0.05	74.4	10.2	0.5	0.2		
p3225	2	0.05	64	11.9	0.6	0.2		
p3226	2	0.05	90.8	5.2	0.3	0.1		
p3227	2	0.05	81.8	6.9	0.6	0.2		
p3228	2	0.05	67.1	10.2	0.9	0.3		
p3229	2	0.05	62.6	11.1	0.8	0.1		
p3230	2	0.05	85.5	5.5	0.4	0.2		
p3231	2	0.05	84.6	4.8	0.4	0.2		

0	
5	
3	
1	
అ	
ರಾ	

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3232	2	0.05	67.9	11	0.6	0:2		•
p3233	2	0.05	70.2	10.4	0.6	0.2		
p3234	2	0.05	89.9	5.4	0.3	0.2		
p3235	2	0.05	69.8	9.4	0.7	0.1	•	
p3236	2	0.05	82.7	6.5	0.5	0.2		
p3237	2	0.05	76	9.5	0.5	0.2		
p3238	2	0.05	84.1	6.5	0.5	0.2	•	•
p3239	2	0.05	62.9	9.6	0.7	0.2	•	
p3240	2	0.05	66.8	11.7	0.6	0.3	*	
p3242	2	0.05 🔪	83.6	7.4	0.5	0.2		
p3243	2	0.05	77.4	8.2	0.7	0.2		
p3244	2	0.05	64.9	13	0.7	0.2		
p3245	2	0.05	92.9	4.9	0.3	0.3		
p3246	2	0.05	81.7	8.1	0.5	0.3		
p3247	2 2	0.05	62	11.9	1	0.5		
p3248	2	0.05	64.2	12.5	0.7	0.2		
p3249	2	0.05	74.6	10.8	0.4	0.1		
p3250	2	0.05	95.9	5.2	0.4	0.2		
p3251	2	0.05	103.7	2.2	0.3	0.2		
p3252	2	0.05	72.2	9	0.7	0.1		
p3253	2	0.05	75.1	8.8	0.7	0.2		
p3254	2	0.05	84.5	6.8	0.4	0.2		
p3255	2	0.05	94.1	3.9	0.3	0.2		
p3256	2	0.05	89.2	5.9	0.3	0.2	•	
p3257	2	0.05	57.8	13.9	1.4	1.4		
p3258	2	0.05	88.7	4.8	0.4	0.3		
p3259	2	0.05	90.1	4.7	0.3	0.1	57755 3	6451500
p3260	2	0.1	88.2	5.2	0.3	0.5		
p3261	2	0.05	78.3	8.8	0.5	0.2		
p3262	2	0.05	66.9	10.6	0.6	0.3		
p3263	2	0.05	72	10.3	1	0.3		
p3264	. 2 2	0.8	84	5.2	0.9	2.6		
p3265	2	0.05	64.9	1 2 .5	0.6	0.2		

C
-
تع
~1

Sample No.	Te ppm	F%	SiO2 %	AI2O3 %	Mg%	Na%	East	North
p3266	2	0.05	67.1	11.2	0.6	0.3		
p3267	. 2	0.05	60.1	11.8	0.8	0.2		
p3268	2	0.05	78.9	6.5	0.5	0.4	•	
p3269	2	0.05	58.6	14.5	0.9	0.5		
p3270	2	0.05	70.7	10.6	0.7	0.3		
p3271	5	1.8	44.5	14.8	5.3	7.2		
p3272	2	0.05	72.4	7.2	1	1.4		
p3273	10	3	44.4	10.7	2.5	7.6		
p3274	2	0.2	66.9	9. 9	1	1.2		
p3275	2	0.4	67.3	10.8	1.4	2 .2		
p3276	2	0.1	92.8	3	0.3	0.5		
p3277	2	0.05	59	12.5	0.9	1		
p3278	2	0.05	86.1	6.1	0.4	0.2		
p3279	2	0.05	59.2	13	8.0	0.1		
p3280	2	0.05	81.4	5.5	0.5	0.2		
p3291	2	0.05	68.7	13	0.6	0.1		
p3282	2	0.05	65.3	12.4	0.6	0.2		
p3283	2	0.1	64.2	11.1	0.5	0.4		
p3284 ··	2	0.05	86.1	5.2	0.4	0.2		
p3285	2	0.05	83.5	6.7	0.4	0.3		
p3286	2	0.4	63.2	9.2	1.8	0.6		
p3287	2	0.05	63.6	12.7	8.0	0.2		
p3288	2	0.05	57.2	12.4	0.7	0.1		
p3290	10	0.5	71.8	6	0.7	1.4		
p3291	2	0.05	77	8.3	0.6	0.4		
p3292	2	0.05	78.4	8.6	0.6	0.4		
p3293	2	0.3	78.7	4.2	0.7	0.5		
p3294	13	0.5	66.5	7.7	1	1.4		
p3295	9	0.05	84.5	1	0.7	0.4		
p3296	13	0.05	. 91.7	4.8	0.3	0.7		
p3297	2	0.05	94.3	5.4	0.3	0.5		
p3298	4	0.05	81.9	4.2	0.5	0.4		
p3299	2	0.05	86.7	5.8	0.5	0.2		

p3300 2 0.05 90.5 3.1 0.5 0.3 p3301 5 0.05 114.8 2.4 0.2 0.05 p3302 2 0.05 86.7 3.6 0.5 0.4 p3303 2 0.05 98.2 4 0.5 0.1 p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 79.6 7 0.7 0.3 p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315	Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3301 5 0.05 114.8 2.4 0.2 0.05 p3302 2 0.05 86.7 3.6 0.5 0.4 p3303 2 0.05 116.2 1.4 0.2 0.05 p3304 37 0.05 98.2 4 0.5 0.1 p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 79.6 7 0.7 0.3 p3308 2 0.05 74.9 8.9 0.8 0.6 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313	p3300	. 2	0.05						
p3303 2 0.05 116.2 1.4 0.2 0.05 p3304 37 0.05 98.2 4 0.5 0.1 p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3317	p3301	5	0.05	114.8	2.4				
p3303 2 0.05 116.2 1.4 0.2 0.05 p3304 37 0.05 98.2 4 0.5 0.1 p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3317	p3302	2	0.05	86.7					
p3304 37 0.05 98.2 4 0.5 0.1 p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3320	p3303	2	0.05	116.2					
p3305 2 0.05 79.7 7.1 0.7 0.5 p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.9 6.7 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320	p3304	37	0.05	98.2					
p3306 2 0.05 79.6 7 0.7 0.3 p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321	p3305	2	0.05	79.7	7.1				
p3307 2 0.05 74.9 8.9 0.8 0.6 p3308 2 0.4 88.8 3.8 0.5 0.9 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 75.9 6.7 0.7 0.2 p3314 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 79.7 8.2 0.5 0.3 p3320 2 0.05 83.7 6.7 0.4 0.4 p3322	p3306		0.05						
p3308 2 0.4 88.8 3.8 0.5 0.9 p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 83.7 6.7 0.4 0.4 p3321 2 0.05 87.2 14.4 0.7 0.1 p3322	p3307		0.05		. 8.9				
p3309 15 0.6 72 9.9 0.2 1.2 p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 79.7 8.2 0.5 0.3 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 67.1 11.6 0.7 0.3 p3323	p3308		0.4						
p3310 2 0.05 68 8.9 0.8 0.3 p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 67.1 11.7 0.9 0.9 p3323 </td <td>p3309</td> <td>15</td> <td>0.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	p3309	15	0.6						
p3311 2 0.05 75.1 8.8 0.7 0.2 p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 83.1 6.1 0.4 0.5 p332	p3310	2	0.05	68	8.9				
p3312 2 0.05 75.9 6.7 0.7 0.2 p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 102.8 3.5 0.4 0.05 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 82.5 6 0.5 0.4 p3328	p3311		0.05	75.1	8.8				
p3313 2 0.05 72.6 7 0.7 0.2 p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 63.2 12.7 0.8 0.2 p3329 <td>p3312</td> <td></td> <td>0.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	p3312		0.05						
p3314 2 0.05 89.7 6.1 0.4 0.1 p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 63.2 12.7 0.8 0.2 p	p3313	2	0.05				The second secon		
p3315 2 0.05 92.2 3.8 0.4 0.2 p3317 2 0.05 79.7 8.2 0.5 0.3 p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.05 69.2 12 1.2 1.3 p3	p3314	2	0.05		6.1				
p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332	p3315	2	0.05	92.2	3.8	0.4	0.2		
p3318 2 0.05 102.8 3.5 0.4 0.05 p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332	p3317	2	0.05	79.7	8.2	0.5	0.3		•
p3320 2 0.05 57.2 14.4 0.7 0.1 p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334	p33 18	2	0.05	102.8	3.5				
p3321 2 0.05 83.7 6.7 0.4 0.4 p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3320	2	0.05	57.2	14.4				•
p3322 2 0.05 61.1 11.6 0.7 0.3 p3323 2 0.05 67.1 11.7 0.9 0.9 p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3321	2	0.05	83.7	6.7	0.4	0.4		
p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3322	2 .	0.05	61.1	11.6	0.7	0.3		
p3324 2 0.05 68.4 9.9 0.7 0.3 p3325 2 0.05 83.1 6.1 0.4 0.5 p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3323	2	0.05	67.1	11.7	0.9	0.9		
p3326 10 1.8 66.1 8.7 1.5 4.9 p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6		2	0.05	68.4	9.9	0.7	0.3		
p3327 2 0.05 82.5 6 0.5 0.4 p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6			0.05	83.1	6.1	0.4	0.5		
p3328 2 0.05 63.2 12.7 0.8 0.2 p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3326	10	1.8	66.1	8.7	1.5	4.9		
p3329 2 0.2 74 9.2 0.8 1 p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	•	2		82.5	6	0.5	0.4		
p3330 2 0.05 69.2 12 1.2 1.3 p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6					12.7	0.8	0.2		
p3331 2 0.05 57.8 15.3 1 0.5 p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	p3329		0.2	74	9.2	8.0	1		
p3332 2 4 53.8 12 3.1 11.7 p3334 2 0.05 68.1 9.3 0.8 0.6	•		0.05	69.2	12	1.2	1.3		
p3334 2 0.05 68.1 9.3 0.8 0.6			0.05	57.8	15.3	1	0.5		
	•			53.8	12	3 .1	11.7		
p3335 2 0.05 59.3 14.7 1.2 1.8	•			68.1	9.3	0.8	0.6		
	p3335	2	0.05	59.3	14.7	1.2	1.8		

\bigcirc	
)
-	•
C)
C)

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p333 6	2	0.9	73.6	8.2	1.1	2.9		
p3337	14	2.9	56.8	11.9	4.5	9.8		,
p3338	8	2.9	59	9.4	5.6	8.5		
p333 9	6	3.1	71.6	9.1	1.9	10.5		
p3340	4	2.1	57.1	14	2.9	6.9		
p3341	2	0.05	64	15.4	0.8	0.9		
p3342	2	0.2	75.6	7.3	0.7	0 .9		
p3343	2	0.05	69.4	10.2	0.7	0.5		
p3344	8	2.5	48.7	13.9	4.5	7.7		
p3345	5	2	58.5	11.4	4.3	5.4		
p3346	2	4.5	34.5	8.1	1.9	9.2		
p3347	31	6.8	35.5	7.2	2. 2	14.8		
p3348	21	1.4	78.9	5.3	1.2	3.7		
p3349	8	0.05	91	5 .6	0.2	0.4		
p3350	2	0.05	59.4	13	1.1	0.3		
p3351	2	0.4	65.2	9.4	1.2	1.5		
p3352	2	0.05	90.1	3 .6	0.4	0.2		
p3353	2	0.05	83.5	6.7	0.5	0.4		
p3354	2	0.5	73.4	6.3	0.7	0.2		
p3355	2	0.4	74.4	7.5	0.8	1		
p3356	2	0.05	88	5	0.5	0.5		
p3357	2	0.05	81.5	8.1	0.6	0.4		
p3358	2	0.05	65.6	11.2	0.7	0.3		
p3359	2	0.7	56.7	11.1	0.6	0.3		
p3360	2	0.05	100	3.3	0.3	0.5	578000	6451500
p3361	2	0.05	99.8	3.9	0.3	0.3	577600	6449350
p3364	2	0.05	86	6 .6	0.4	0.3	581610	6447600
p3365	2	0.05	96.7	4.6	0.4	0.5	584050	6445500
p3366	2	0.2	83.5	6.3	0.9	1.2	583900	6442500
p3367	2	0.2	62.3	10.7	0.7	0.2	583100	6444635
p3368	2	0.05	79.9	7.9	0.5	0.4	578000	6441650
p3369	2	0.05	63.9	11.8	0.6	0.2	581016	6441728
p3370	2	0.05	63.3	11	0.7	0.2	575316	6439957

_	
\subset	,
	١
C	
N	
3	
)

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3371	2	0.05	80	7.8	0.4	0.3	575300	6446008
p3372	2	0.05	65.8	11.5	0.6	0.7	575550	6444561
p3373	2	0.2	84.6	6.9	0.4	1	577934	6443267
p3374	2	0.05	65.1	11.6	0.7	0.3	579903	6439882
p3375	2	0.05	73.1	9.4	0.6	0.4	580315	6439550
p3376	4	2.2	60	9	3.1	5.6	582268	6438400
p3377	7	1.9	54.1	6.5	2.1	2.5	583274	6441004
p3378	2	0.9	82.3	4.7	0.6	1.3	585700	6439300
p3379	2	0.3	71.6	8.9	0.6	0.4	587694	6437808
p3380	2	0.05 🔪	82.7	7.5	0.6	0.4	586228	6435300
p3381	2	0.05	82.9	7.3	0.4	0.4	584055	6433783
p3382	2	0.05	78.4	9.1	0.5	0.4	582729	6435253
p3383	2	8.0	58.9	9.8	1.7	1.4	582150	6434135
p3384	2	0.05	61.3	12.6	0.7	0.3	578502	6435915
p3385	2	0.05	64.4	12.7	0.6	0.3	575943	6434649
p3386	2	0.05	61.2	15.9	0.5	0.3	578300	6434852
p3387	2	0.05	72.5	11.9	0.4	0.3	579756	6432400
p3388	2	0.05	69.7	8.6	0.5	0.4	581296	6430932
p3389	2	0.1	73.1	9.5	0.5	0.7	577700	6428966
p3390	2	0.1	55.4	13.1	0.8	0.2	578628	6426090
p3392	2	0.05	56.9	15.2	0.6	0.2	576047	6426307
p3393	2	0.05	82.7	6.9	0.3	0.3	575600	6423688
p3394	2	0.05	73.5	10.4	0.4	0.3	574514	6421982
p3395	2	0.05	80.5	8.3	0.3	0.4	587526	6430678
p3396	2	0.3	82.3	7.6	. 0.3	0.4	588902	6431261
p3397	2	0.5	80.3	6.3	0.3	0.4	591892	6434208
p3398	2	0.5	70.4	9.7	0.6	0.9	593700	6435372
p3399	2	0.2	. 87.3	6.1	0.3	0.4	595176	6437725
p3400	2	0.2	79.2	8.8	0.4	0.4	597900	6437236
p3401	2	0.05	84.8	6.8	0.3	0.3	598119	6436206
p3402	2	0.05	77.6	7.2	0.4	0.3	602800	6440345
p3403	2	0.05	62.3	12.9	0.5	0.2	603156	6437967
p3404	2	0.1	72.2	7.7	0.4	0.3	603850	6437108

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3405	2	0.05	68.9	10.4	0.5	0.3	602228	6433375
p3406	5	0.2	67.7	10.2	0.6	0.6	604900	6432600
p3407	2	1	57.3	9.4	0.6	0.2	597150	6434800
p3408	9	0.05	70.8	10.7	0.4	0.3	594181	6434010
p3409	2	0.05	76.4	7.2	0.3	0.3	596100	6431285
p3410	2	0.05	70.7	10.6	0.4	0.3	602743	6429339
p3411	2	0.05	77.3	8.5	0.4	0.3	604800	6430612
p3412	2	0.05	56	15.4	0.6	0.2	604700	6430000
p3413	2	0.1	62.4	12.5	0.6	0.5	606300	6429628
p3414	2	0.1	67.4	10	0.4	0.3	603986	6428403
p3415	2	0.05	73.1	11.1	0.3	0.4	604022	6425015
p3416	2	0.05	55.2	14.7	0.6	0.2	600005	6423600
p3419	2	0.05	71.7	9.9	0.4	0.4	5 9 5757	6424205
p3420	2	0.05	67	11.5	0.5	0.3	593995	6422862
p3421	2	0.7	75	7.4	0.8	1	589000	6419882
p3422	2	0.4	55.6	13.2	1	0.3	590167	6420714
p3423	2	. 0.5	56.1	11	0.9	0.4	590615	6421881
p3424	2	0.1	61.8	13.6	0.5	0.5	591800	6423687
p3425	2	0.05	51.3	16	0.8	0.2	591000	6425016
p3426	2	0.05	61.6	14.8	0.5	0.4	591200	6425700
p3427	2	0.2	83.6	7.4	0.2	0.3	591714	6430608
p3428	2	0.2	81.6	7.9	0.3	0.3	589452	6429219
p3429	2	0.2	78.7	8.1	0.3	0.3	587037	6427977
p3430	2	0.4	65.2	11.6	0.4	0.3	587606	6424647
p3431	2	0.3	. 85.1	4.9	0.2	0.4	589200	6423900
p3432	2	0.05	59.9	14.3	0.6	0.2	582857	6421400
p3433	2	0.3	76.3	6.8	0.5	0.3	579350	6421408
p3434	2	0.4	69.4	9	0.5	0.3	577445	6419626
p3435	2	0.2	68.7	10	0.5	0.4	576252	6417050
p3436	23	0.5	76.2	5.3	0.5	0.3	578838	6416303
p3437	2	0.05	53	16.7	0.6	0.1	581141	6416100
p3438	9	0.05	5 5.1	15.1	0.7	0.2	580248	6419793
p3440	2	0.05	65.9	11.5	0.5	0.3	584000	6418821

\subset	
CUU	
\subset	
7	
\subset	
N	•

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3441	2	0,05	56.4	12.4	0.7	0.2	604835	6417440
p3442	2	0.05	60.3	13.2	0.6	0.2	583076	6405118
p3443	2	0.05	57.1	13.9	0.5	0.1	592349	6401814
p3444	2	0.5	74.9	7.7	0.5	0.6	593400	6399350
p3445	2	0.05	61.8	15.2	0.5	0.3	593265	6398161
p3446	2	0.2	62.2	11.9	0.5	0.2	609000	6417000
p3447	2	0.4	71.3	8.6	0.5	0.2	590350	6393500
p3448	2	0.1	74.4	9	0.4	0.3	590100	6392900
p344 9	7	1	58.8	9.7	2.5	3.8	591067	6406421
p3450	2	0.8	48.7	12.1	0.9	0.2	596767	6404468
p3451	2	0.05	55.5	16.1	0.5	0.2	595045	6405961
p3452	6	0.05	52.1	14	0.7	0.2	595150	6407444
p3453	8	0.05	65.7	13.2	0.4	0.3	594703	6409600
p3454	7	0.05	60.8	14.1	0.4	0.4	594237	6412181
p3455	2	0.05	76.9	9.7	0.3	0.4	591592	6410682
p3456	2	0.8	53.1	12.9	1.2	0.9	590258	6411667
p3457	2	0.05	54.5	15.2	0.5	0.2	591821	6413467
p3458	2	0.05	63.6	12.9	0.5	0.3	592100	6414641
p3459	2	0.1	70.2	9.1	0.4	0.3	593796	6415590
p3460	2	0.8	60.1	10.5	1.2	1.2	591310	6417489
p3461	2	0.4	74	8.3	0.4	0.3	594680	6418834
p3462	2	0.5	66.6	7.1	0.4	0.5	595972	6420578
p3463	2	0.05	70.6	11.5	0.4	0.3	599324	6421738
p3464	2	0.05	56.7	15.7	0.6	0.2	602994	6420446
p3466	2	0.05	66.4	11.8	0.6	0.4	607950	6422235
p3467	2	0.4	65.7	10.3	1.1	1	609600	6423313
p3469	2	0.2	71.4	10.6	0.4	0.4	604620	6423774
p3471	2	0.05	59.1	13.8	0.4	0.2	604300	6426854
p3472	2	0.1	72.4	10	0.3	0.4	606800	6426794
p3474	2	0.05	61.3	14.1	0.6	0.3	608900	6427937
p3475	2	0.05	74.2	10.3	0.3	0.3	607700	6427987
p3476	2	0.05	67.1	10.5	0.5	0.4	610100	6426169
p3477	10	0.05	64.8	11.3	0.7	0.4	609050	6424909
F - · · ·	• •				- • •	=	- -	· · - · -

€
0
S
\circ
ω

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3478	2	0.3	75.2	7.5	0.5	0.4	610300	6425103
p3479	2	0.5	60.3	12.7	0.9	0.7		
p3481	26	0.5	67.8	10	1.1	1.2	611938	6424932
p3482	2	0.05	75.3	10.7	0.4	0.4	608450	6427419
p3483	2	0.05	73.5	11.3	0.5	0.4	611400	6426515
p3484	2	0.05	62.6	12.9	0.8	0.3	611150	6427981
p3486	. 2	0.05	6 9 .4	11.2	0.4	0.4	611900	6429600
p3487	2	0.4	57.1	11.9	0.8	0.2	610000	6428833
p3489	2	0.1	79.4	10.2	0.3	0.6	614165	6429214
p3490	2	0.1	70	10.8	0.5	0.4	614261	6427301
p3491	2	0.6	74	10	1	1.7	614700	6430649
p3492	2	0.05	64.9	12.2	0.6	0.3	616452	6427669
p3493	2	1.6	45.4	13.3	3.1	3.1	617979	6429866
p3494	14	1.5	54.4	13.8	3	4.6	618520	6427839
p3495	38	6	40.2	12	10.4	16.2	618585	6429942
p3496	2	0.2	70.8	10.7	0.5	0.4	616884	6426400
p3497	2	0.05	62.8	13.2	0.6	0.3	614950	6425823
p3498	2	0.05	78.6	10.7	0.4	0.4	615658	6425293
p3499	2	0.05	59.4	14.1	0.7	0.2	613650	6422618
p3500	2	0.1	55	14.7	0.8	0.2	615400	6422500
p3501	2	0.05	58.6	15.7	0.7	0.2	617034	6424337
p3502		0.05	67.7 ⁻	11.5	0.6	0.5	617650	6425900
p3503	2 2	0.2	65.9	9.6	0.9	0.3	619012	6426147
p3504	2	0.05	64.3	11.7	0.5	0.2	601187	6423752
p3505	2	0.05	67.6	13.4	0.5	0.3	621700	6430965
p3506	2	0.3	74.7	8.2	0.6	0.5	620600	6432750
p3507	2	0.05	56,9	15.3	0.7	0.2	623272	6431507
p3508	2	0.05	63.4	13.7	0.5	0.2	623443	6431901
p3509	2	0.05	60.3	13.4	0.7	0.2	624728	6429328
p3510	2	0.05	60.7	15.6	0.4	0.3	626980	6432633
p3511	2	0.1	53.8	11.6	0.9	0.2	625701	6429107
p3512	2	0.05	52.7	13.2	1	0.1	623601	6427333
p3513	2	0.05	57.6	11.3	0.8	0.1	620647	6424812

\bigcirc
C/S
S S
P

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3514	2	0.05	71.7	6.5	0.7	0.2	619197	6424638
p3515	2	0.05	59.7	14	0.5	0.2	615900	6421097
p3516	2	0.05	61.4	12.1	0.7	0.2	618800	6422637
p3517	2	0.05	64.9	10.4	0.6	0.2	619598	6423312
p3518	2	0.05	61	13.6	0.7	0,2	622767	6425239
p3519	2	0.05	63.3	11.3	0.5	0.2	620620	6422365
p3520	2	0.05	64	11.6	0.6	0.2	62,3047	6421864
p3521	2	0.05	5 7.1	15.3	0.5	0.1	619681	6421172
p3522	2	0.05	65.8	10.1	0.7	0.3	620028	6421009
p3523	2	0.05	58.6	13.6	0.6	0.1	618350 ·	6420136
p3524	. 2	0.05	66.8	11.4	0.5	0.2	617700	6418300
p3525	2	0.4	61.9	10.4	1.3	0.9	616400	6420555
p3527	2	0.05	61.7	13.2	0.5	0.2	615012	6420158
p3528	2	0.05	64.3	12.6	0.5	0.4	609148	6419900
p3529	. 2	0.05	76.6	7.6	0.3	0.4	607500	6420083
p3530	2	. 0.05	68.6	10.8	0.3	0.3	605700	6419337
p3531	2	0.05	68.6	10	0.6	0.3	605350	6421600
p3532	2	0.05	76.7	7.6	0.5	0.4	604125	6418300
p3533	2	0.05	63.4	14.1	0.5	0.2	606250	6416000
p3534	2	0.05	56.7	15.3	0.5	0.2	605600	6415483
p3535	2	0.05	54.8	16.2	0.5	0.2	606215	6414400
p3536	2	0.05	62.6	14.7	0.5	0.2	603324	6417800
p3537	2	0.05	56.8	15.7	0.5	0.2	605703	6414313
p3538	2	0.05	62.4	11.9	0.5	0.3	604038	6415400
p3539	2	0.05	58	15.2	0.5	0.1	599574	6416600
p3540	2 `	0.05	52.6	14.7	0.6	0.1	599353	6415600
p3541	2	0.05	54.2	18.5	0.4	0.2	598022	6417717
p3542	2	0.05	68	13.1	0.3	0.2	598750	6414749
p3543	2	0.05	59	15.2	0.6	0.2	596582	6416100
p3544	2	0.05	59.9	12.9	0.4	0.2	596451	6411700
p3545	2	0.05	76.9	8.3	0.3	0.3	594935	6414320
p3546	2	0.05	63.3	11.6	0.6	0.4	598336	6411700
p3547	2	0.05	54.2	16.1	0.6	0.1	601200	6412800

00205	0
13 C	
\circ	\Box
_	TV
C	\circ
	C

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3548	2	0.05	73	10.2	0.4	0.4	599178	6409242
p3549	2	0.05	58	14.7	0.6	0.2	601250	6407226
p3550	2	0.05	68.9	10.5	0.5	0.3	602642	6412112
p3551	2	0.05	55.2	14.7	0.7	0.1	602200	6410150
p3552	2	0.05	55.7	13	0.7	0. 2	602421	6404317
p3553	2	0.05	59.2	14.4	0.5	0.2	603936	6406754
p3554	2	0.05	56.6	18.6	0.4	0.1	606200	6407650
p3555	2	0.05	63.1	14.2	0.6	0.2	606602	6410600
p3556	2	0.05	63	9.3	0.5	0.4	609075	6410200
p3557	2	0.05	61.8	12.1	0.6	0.3	609762	6409925
p3558	2	0.05	65.6	11.6	0.4	0.3	609968	6410825
p3559	2	0.05	59.3	12.9	0.7	0.4	610651	6413076
p3560	2	0.05	60. 9	11.1	0.7	0.2	610100	6413300
p3562	2	0.05	56.7	14.4	0.7	0.3	610053	6413500
p3563		0.05	60.8	13.5	0.5	0.2	608800	6414500
p3564	2 2	0.05	59.9	10	0.6	0.2	608550	6414700
p3565	2	0.05	55.3	11.8	0.7	0.2	608800	6414700
p3566	2	0.05	67.3	12.1	0.4	0.3	610300	6415949
p3567	2	0.05	62	14.7	0.4	0.2	610450	6416064
p3568	2	0.05	64.8	13.1	0.5	0.4	609050	6416620
p3569	7	0.05	59.7	13.1	0.6	0.4	608800	6416604
p3570	2	0.5	57.4	15.3 -	0.6	0.4		
p3571	2	0.05	57.8	13,8	0.5	0.2	607900	6417436
p3572	2	0.05	66.4	10.9	0.5	0.3	611849	6417749
p3573	2	0.05	64	13.7	0.4	0.2	612900	6420601
p3574	2	0.05	61.7	11.5	0.5	0.2	613408	6418973
p3575	. 2	0.05	61.3	12.5	0.6	0.3	615442	6418005
p3576	2	0.05	62.4	12.7	0.5	0.2	616289	6417432
p3577	5	0.9	51.6	10.3	2.4	1.6	616992	6417469
p3578	2 .	0.05	63.1	12.2	0.5	0.3	618168	6417548
p3580	2	0.05	60.5	12.5	0.6	0.2	622786	6416722
p3581	2	0.05	65.6	11.4	0.7	0.5	622000	6417863
p3582	2	0.05	55.7	14.9	0.8	0.3	624126	6417585

_	
\subseteq)
	2
	כ
0	2

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
`p3583	2	0.05	58.6	13.7	0.6	0.4	62345 5	6415873
p3584	2	0.5	77.9	9.5	0.3	0.4	625778	6418935
p3585	2	0.05	62.6	12.7	0.6	0.2	624422	6419120
p3586	2	0.05	61.3	12.3	0.6	0.4	627900	6421880
p3587	2	0.05	61.9	14.4	0.4	0.3	628200	6427647
p3588	2	0.05	53.4	15.5	0.6	0.2	630328	6429805
p3589	2	0.05	55.4	16.1	0.5	0.2	629850	6431336
p3590	2	0.05	52.9	15.8	0.4	0.2	632135	6428900
p3591	2	0.05	64.1	15.5	0.5	0.3	630700	6424140
p3592	2	0.05	57.3	14.8	0.8	0.2	627230	6424743
p3593	2	0.05	56	15.2	0.8	0.1	626840	6423100
p3594	2	0.05	57.5	18.1	0.6	0.2	633284	6421400
p3595	2	0.05	70.9	9.6	0.5	0.4	634000	6426300
p3596	2	0.05	57.9	16.5	0.5	0.2	634892	6425458
p3598	2	0.05	67.2	8.7	0.6	0.3	636400	6424917
p3599	2	0.05	62.3	15.9	0.4	0.2	640921	6429089
p3600	2	0.05	69.6	12.4	0.4	0.3	637677	6421250
p3601	2	0.05	62.6	14.9	0.4	0.3	635400	6422215
p3602	2	0.05	61	15.7	0.5	0.4	629050	6415241
p3603	2	0.05	58.5	16	0.5	0.3	632054	6418767
p3604	2	0.05	57.1	14.9	0.6	0.2	626379	6422036
p3605	2	0.05	57.2	15.9	0.6	0.3	630507	6419215
p3606	2	0.05	55.8	15.8	0.7	0.1	634609	6418408
p3607	2	0.05	67.3	13.2	0.4	0.3	632562	6415650
p3608	2	0.05	57.4	15.9	0.6	0.2	634481	6416200
p3609	-2	0.05	63.3	14.7	0.4	0.3	629556	6416295
p3610	2	0.05	60.4	14.1	0.6	0.2	626447	6417160
p3611	2	0.05	56	16	0.8	0.5	624356	6415613
p3612	2	0.05	67.5	13	0.5	0.3	622128	6415196
p3613	11	0.4	62.4	11.5	1.4	1.5	620118	6415845
p3614	2	0.1	64.1	9.8	0.6	0.4	617900	6416654
p3615	2	0.3	52.6	11.6	0.9	0.1	617300	6416707
p3616	4	0.05	67.8	10.6	0.3	0.3	614452	6417402

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na %	East	North
p3617	2	0.05	58.1	13.3	0.9	0.4	616600	6414922
p3618	2	0.05	66.6	11.8	0.5	0.3	615613	6212000
p3619	5	0.2	64.2	10.5	1 -	1.1	614842	6411300
p3620	2	0.05	54.8	13.1	0.7	0.2	613780	6410489
p3621	2	0.05	64.6	14.7	0.6	0.6	617013	6410650
p3622	2	0.05	54.5	15.7	0.6	0.1	617500	6412462
p3623	2	0.2	55.1	11.6	0.8	0.3	618001	6412326
p3625	10	1.7	42.6	11	1.8	2.4	617766	6414000
p3626	16	1.1	52	11.4	2.1	2.2	619200	6415091
p3627	2	0.05	69.1	12.6	0.4	0.3	615350	6415731
p3628	18	0.9	52.8	11.6	1.3	1	615817	6415010
p3629	2	0.05	59.9	12.1	0.5	0.2	613900	6414466
p3630	13	0.2	64.3	11.1	0.6	0.4	614352	6413400
p3631	2	0.05	60.8	14.4	0.5	0.2	612758	6415096
p3632	2	0.3	59.1	11.9	0.7	0.2	611250	6414506
p3633	2	0.2	62.8·	11.8	0.6	0.3	612900	6416234
p3634	2	0.05	68.9	12.3	0.4	0.2	604339	6400953
p3635	2	0.05	68.4	10.3	0.4	0.2	601010	6399238
p3636	2	0.05	65.9	11.9	0.4	0.2	599920	6403364
p3637	2	0.1	69.3	9.5	0.5	0.3	604073	6404217
p3638	2	0.05	61.2	12.7	0.5	0.3	607428	6404184
p3639	2 ·	0.05	57	14.8	0.6	0.2	608300	6400450
p3640	2	0.05	52.6	15.4	0.6	0.2	610800	6400500
p3641	2	0.05	54.7	17.4	0.5	0.2	613176	6400218
p3642	2	0.05	67.2	11.3	0.4	0.2	615200	6400700
p3643	2	0.05	59.8	14.8	0.6	0.3	613395	6403486
p3644	2	0.05	62.9	13.6	0.5	0.3	613051	6405049
p3645	2	0.3	71	8.4	0.4	0.4	614412	6406034
p3647	2	0.05	51.9	15.3	0.7	0.1	617024	6401900
p3648	2	0.1	72.8	9.6	0.4	0.5	621828	6409594
p3649	2	0.3	58.5	11.2	0.8	0.3	624261	6409610
p3 650	2	0.2	67	10	0.5	0.4	621500	6412300
p3651	2	0.05	56.8	16.9	0.6	0.2	627010	6410192

C
(C)
てい
\bigcirc
∞

Sample No.	Te ppm	. F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3652	·2	0.05	56.2	13.4	0.7	0.2	625366	6411550
p365 3	2	0.05	5 7 .2	13.5	0.5	0.2	628652	6413780
p3654	2	0.05	53.8	16.1	0.5	0.1	627459	6413278
p3655	2	0.05	61.6	14.8	0.5	0.2	630548	6410952
p3656	2	0.05	66.8	10.5	0.6	0.6	628062	6408926
p3657	2	0.05	56.1	16.1	0.6	0 .2	629845	6409629
p3658	2	0.05	64.9	10.5	0.6	0.4	631555	6410151
p365 9	2	0.4	64.1	8.8	0.8	0.3	617161	6403714
p3660	2	0.05	66.8	11.5	0.4	0.2	621150	6402500
p3661	2	0.05	59.3	14.7	0.5	0.2	627118	6404305
p3662	2	0.05	61.4	13	0.5	0.2	632527	6405584
p3663	2	0.05	60.7	14.4	0.6	0.2	634004	6412823
p3664	- 2	0.05	63.6	11.6	0.6	0.3	635845	6412765
p3665	2	0.05	66.2	11.1	0.4	0.4	637995	6416143
p3666	2	0.05	60.7	14.5	0.5	0.2	638330	6416250
p3667	5	0.05	69.9	9.7	0.6	0.3	637132	6418628
p3668	4	0.05	72	11.2	0.5	0.4	636287	6418884
p3669	2	0.05	63.5	13.4	0.5	0.3	640700	6417300
p3670	5	0.05	79.3	8.4	0.4	0.5	610000	6417550
p3671	12	0.05	82.1	8.6	0.2	0.6	638900	6408697
p3672	2	0.05	60.1	11.3	0.6	0.3	640667	6406913
p3673	. 2	0.05	63.1	13.3	0.5	0.4	636300	6406100
p3674	2	0.05	55	15.3	0.6	0.1	638490	6405958
p3675	15	0.7	59.5	10.4	1.1	1.1	640434	6403420
p3676	2	0.05	61	13.2	0.5	0.2	640149	6400202
p3677	2	0.2	56.8	12.1	0.6	0.3	638200	6402250
p3678	2	0.05	55.2	15	0.5	0.2	635900	6399500
p3679	4	0.05	68.3	12.1	0.4	0.3	635700	6401100
p3680	2	0.05	65.8	9.9	0.5	0.2	635650	6398900
p3681	2	0.05	75.5	8.1	0.5	0.5	632700	6397401
p3682	2	0.05	77.3	7.1	0.4	0.4	636250	6399500
p3683	2	0.05	67	12.4	0.6	0.7	632800	6393150
p3684	2	0.05	72.6	8.8	0.5	0.2	631000	6398700

C	
C	5
i	٥
_	
C	د

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3685	2	0.05	70.2	8.7	0.5	0.3	626659	6398440
p3686	7	0.05	65.3	11	0.7	1.1	632600	6401517
p3687	2	0.05	74	9.8	0.3	0.3	628904	6403735
p3688	2	0.05	73.3	10.1	0.4	0.4	598039	6406050
p3689	2	0.05	62.1	12.4	0.5	0.2	599476	6405000
p3690	2	0.2	65.9	8.1	0.6	0.2	620800	6386750
p3691	2 .	0.4	55.7	11	0.7	0.2	622900	6386650
p3692	2	0.05	78.3	6.4	0.4	0.3	619100	6387800
p3693	2 .	0.05	70.3	9.4	0.4	0.2	620993	6390700
p3694	8	0.3	74.1	9.2	0.1	0.7	617650	6390434
p3695	2	0.2	57.1	10.2	0.8	0.3	620200	6392476
p3696	2	0.05	64.1	10.8	0.5	0.2	618231	6395600
p3697	2	0.05	58.3	13.7	0.4	0.2	616526	6398596
p3698	2	0.05	69.8	10.8	0.6	0.2	625500	6402000
p3699	2	0.05	71.8	9.5	0.4	0.2	619350	6401033
p3700	2	0.05	54.4	13.2	0.6	0.2	621200	6401006
p3701	2	0.3	52	13.3	1.3	1.4	620900	6397990
p3702	2	0.05	74.1	7.8	0.5	0.3	621100	6393192
p3703	2	0.2	59.2	10.8	0.6	0.2	622700	6393300
p3704	2	0.05	62.5	11.6	0.5	0.2	622250	6391378
p3705	2	0.05	59	10.8	0.6	0.3	626100	6387400
p3706	2	0.05	53.6	13.2	0.7	0.2	627700	6390300
p3707	2	0.05	53	13.7	0.6	0.1	626697	6391999
p3708	2	0.05	97.9	6.1	0.4	0.1	628000	6395100
p3709	7	0.05	50.4	13.3	1	0.7	629150	6397350
p3710	2	0.05	55.3	13.8	0.7	0.2	614800	6402575
p3711	2	0.1	70.9	10.5	0.5	0.8	613420	6410547
p3713	2	0.2	72.5	8.4	0.6	0.8	614700	6423892
p3714	2	0.05	56.8	14.8	0.3	0.2	614472	6423504
p3715	2	0.05	55.9	16.2	0.5	0.1	614150	6423450
p3716	2	0.05	58.6	12.8	0.5	0.2	614100	6422232
p3717	2	0.05	59.1	13.3	0.6	0.2	614073	6422154
p3718	2	0.05	64.8	10.2	0.4	0.3	613900	6421656

			_
	()
	(\mathbb{C}
	(**)
	i	`	5
	۲		۵
١,	C)

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3719	2	0.05	61.7	13.3	0.4	0 .3	613 300	6422262
p3720	2	0.05	64.5	12.4	0.4	0.3	613329	6422064
p3721	2	0.05	59.8	14	0.3	0.3	613377	6422087
p3722	2	0.05	57.2	13.5	0.5	0.3	613271	6421884
p3723	2	0.05	61.8	13.1	0.3	0.2	613220	6421843
p3724	2	0.05	58.9	15.2	0.5	0.2	613113	6421400
p3725	2	0.05	66.8	12.2	0.6	0.3	613113	6421050
p3726	2	0.05	62.6	12.9	0.4	0.3	612600	6420962
p3727	2	0.05	59	15	0.5	0.3	613100	6420850
p3728	2	0.05	57.9	12.9	0.7	0.2	613228	6420407
p3729	2	0.05	62.2	11.7	0.7	0.3	613366	6420050
p3730	2	0.05	57.4	10.9	1.1	0.2	612205	6420915
p3731	2	0.05	55.9	12.5	0.8	0.3		
p3732	2	0.2	54.1	10.7	1	0.1	613998	6423710
p3733	2	0.05	54	15.6	0.6	0.2	613800	6423537
p3734	2	0.05	59.6	14.3	0.6	0.1	613700	6423449
p3736	2 .	0.05	58.7	13.4	0.5	0.2	613283	6423000
p3737	2	0.05	61.2	10.4	0.7	0.2	613022	6422717
p3739	2 .	0.05	55.7	11.9	8.0	0.2	612771	6422672
p3740	2	0.05	61.6	12.9	0.5	0.2	612800	6422458
p3741	2	0.05	64.3	11.8	0.5	0.3	611600	6422167
p3742	2	0.05	66.7	11.7	0.5	0.3	612091	6421823
p3744	2	0.05	61.5	11.6	0.7	0.2	611527	6421061
p3745	2	0.05	54.2	15.7	0.4	0.2	611407	6420992
p3746	2	0.2	58.3	10.2	0.8	0.2	611330	6420915
p3747	2	0.1	55.3	13.3	0.7	0.2	611304	6420877
p3748	2	0.05	56.5	14.1	0.7	0.1	611249	6420828
p3749	2	0.05	57.8	11.6	0.7	0.3	611141	6420760
p3750	2	0.05	62.8	11.9	0.6	0.4	610942	6420563
p3751	2	0.05	60.9	13.2	0.5	0.3		
p3752	2	0.05	61.5	13	0.4	0.3	611500	6420054
p3753	2	0.8	50.8	9.2	0.9	0.1	610424	6419833
p3754	2	0.3	53.4	11.9	0.8	0.1	610352	6419764

_	_
	\supseteq
C	\supseteq
C	\supseteq
	J
-	
-	-

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3755	2	0.05	58.2	14.5	0.5	0.3	610206	6419646
p3756	2	0.05	67	11.8	0.4	0.3	609900	6419514
p3757	2	0.05	66.8	12 .	0.4	0.3	•	
p3759	2	0.05	61.6	13. 1	0.5	0.3	609534	6418906
p3760	6	0.05	71.5	9.8	0.5	0.5	609403	6418778
p3763	2	0.05	65.2	10.4	0.6	0.4	611200	6419395
p3764	2	0.05	59.8	15.1	0.5	0.3	610945	6419546
p3765	2	0.05	60.9	12.5	0.7	0.2	610808	6419352
p3768	2	0. 05	65.3	9.3	0.5	0.3	610081	6418720
p3769	2	0.4	60.6	10.6	0.7	0.3	609669	6418486
p3770	2	0.05	66.1	12.6	0.4	0.3	609500	6418315
p3773	10	0.05	80	9.1	0.4	0.5	613998	6423584
p3774	2	0.05	69.6	10.2	0.5	0.4	613964	6423292
p3775	6	0.05	79.4	8.6	0.3	0.5	613700	6423104
p3777	9	0.1	80	6.5	0.3	0.5	613104	6422642
p3778	8	0.05	71.1	9.6	0.5	0.4		
p3779	2	0.05	68.6	10.9	0.5	0.3	612886	6422344
p3780	2	0.3	56.9	11.9	0.6	0.2	612536	6422035
p3781	· 2	0.05	63.1	12.5	0.5	0.2	612712	6421555
p3782	2	0.05	76.3	9.1	0.4	0.4	612239	6421862
p3783	5	0.05	74.3	9	0.5	0.5	611900	6421513
p3784	6	0.05	72.6	10.9	0.4	0.5	611733	6421198
p3785	2	0.05	74.3	9.4	0.4	0.4	611350	6420936
p3786	2	0.2	70.9	8.6	0.6	0.5	611200	6420734
p3787	11	0.2	74.6	8.8	0.5	0.5	611280	6420542
p3788	2	0.1	68.4	11	0.5	0.5	611070	6420403
p3790	2	0.05	65.5	12.6	0.6	0.4	610900	6419844
p3791	7	0.1	74.2	8.8	0.5	0.5	610446	6419736
p3792	- 5	0.2	68.2	9.3	0.6	0.5	610400	6419514
p3793	9	0.05	66.4 ·	11.8	0.7	0.5		
p3794	2	0.1	74.2	8.6	0.4	0.5	609500	6419020
p3795	2	0.05	57.3	14.7	0.7	0.3	609446	6418721
p3796	2	0.05	59.6	13.1	0.7	0.3	609141	6418560

ς,)
<u></u>	
77	_
F	<u>.</u>
N)

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
p3 797	2	0.05	64.7	8.3	0.5	0.4	612450	6419450
p3798	2	0.05	62.2	13.4	0.6	0.3	612750	6420027
p3799	4	0.05	70.9	11.6	0.4	0.3	612658	6421367
p3800	2	. 0.05	63.3	11.3	0.6	0.4	611681	6421657
p3801	2	0.05	65	12.6	0.6	0.3	611195	6422073
p3802	2	0.05	60.7	12.5	0.7	0.4	610900	6422523
p3803	2	0.05	65.3	12.2	0.6	0.3	611736	6422148
p3804	8	0.05	77.3	11.1	0.2	0.4		
p3805	2	0.05	72	10.8	0.4	0.3	612610	6421932
p3806	2 2 2 2	0.5	75.4	6.4	0.3	0.4	597800	6407371
p3807	2	0.05	83.8	8.4	0.3	0.3		
p3808	2	0.05	82.7	7.3	0.4	0.3		
p3810	2	0.05	58.1	16.1	0.5	0.2		
p3812	2 2	0.1	81.1	7.7	0.5	0.3	561400	6446566
p3813	2 .	0.05	57.4	15.7	0.5	0.2	557500	6446901
p3814	2	0.05	73.9	9.3	0.5	0.2	557229	6435950
p3815	2	0.05	82.4	7.3	0.4	0.2	561779	6447079
p3816	2	0.2	95.9	3.9	0.3	0.05	561600	6448194
p3817	2	0.05	77	8.8	0.3	0.3	561200	6448141
p3819	2	0.05	74	8.9	0.5	0.2	549196	6438277
p3820	2	0.05	76.7	8.5	0.5	0.2		•
p3821	2	0.5	68.6	8.8	0.8	0.4		•
p3822	4	0.05	78.2	9.7	0.5	0.2		
s6259	2	0.05	95.6	5.5	0.4	0.2	483340	6462646
s6260	2	0.05	79.2	9	0.6	0.1	487403	6461443
s6261	2	0.05	79.9	7.9	0.5	0.2	515780	6427801
s6262	2	0.9	7 7.9	6.1	0.8	1.7	547674	6414702
s6263	2	0.2	68.4	9.6	0.8	0.4	539758	6398817
s6264	2	1.1	72.2	8.8	1.5	2.9	560650	6401750
s6265	2	0.3	76.2	9.3	0.7	. 1	559578	6388982
s6266	2	0.05	84.9	6.5	0.2	0.1		
s6267	2	0.05	95.6	6.2	0.3	0.05	547200	6376620
s6268	2	0.9	67.3	6.9	1.4	0.2	576833	6393877

_	
\Box)
)
	١
17	,
だ上び	

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6269	2	0.05	70.9	10.1	0.5	0.1	580215	6405019
s6270	2	0.05	95.6	3.8	0.2	0.3	588314	6403800
s6271	2 2	0.05	79.1	9.8	0.3	0.2	617800	6394841
s6272	2	0.05	101.4	4.4	0.1	0.4	627300	6393950
s6273	2	0.05	83.2	9.6	0.4	0.7	637200	6394050
s6274	2	0.05	72.7	8.5	0.4	0.2	639869	6426410
s6507	2	0.5	53.6	9.2	0.7	0.05	593194	6366899
s6508	2	0.2	59.7	10.5	0.6	0.05	593257	6366477
s6509	2	0.05	82.4	6.4	0.4	0.05	599500	6370850
s6510	2	0.3	51.5	12.5	0.7	0.1	601700	6373400
s6511	2	0.6	53	10.7	0.6	0.05	604800	6374900
s6512	2	0.05	66.1	11.3	0.4	0.05	610100	6373700
s6513	2	0.05	68.1	11.2	0.4	0.1	606400	6376000
s6514	2	0.05	60.1	14.4	0.5	0.05	599598	6363839
s6515	2 2	0.05	79.2	8.9	0.3	0.05	602100	6363555
s6516	· 2	0.3	63.4	8.4	0.6	0.05	602648	6363075
s6517	2	0.05	60.3	12.3	0.6	0.05	600633	6363094
s6518	2 2	0.4	50.4	10.8	0.6	0.05	605483	6365260
s6519	2	0.05	62	11.5	0.6	0.05	603388	6365546
s6520	2	0.05	51.5	15.8	0.7	0.05	607650	6361100
s6521	2 2	0.05	60.8	13.7	0.6	0.05	607503	6362684
s6522	2	0.05	59.2	11	0.5	0.05	608876	6363030
s6523	2	0.05	56.1	16.3	0.3	0.05	609852	6363003
s6524	2	0.05	65.4	11.8	0.3	0.05	611219	6363425
s6525	2	0.05	49.4	14.7	0.7	0.05	608200	6365450
s6526	2	0.05	69.2	11.8	0.5	0.1	607734	6365949
s6527	2 2	0.8	55	9.3	0.6	0.05	607082	6366680
s6528	2	0.4	51	10.6	0.6	0.05	606369	6367375
S6529	2	0.4	55.7	10.2	0.5	0.05	605741	6368068
S6530	2	0.05	73.2	10.7	0.4	0.1	605072	6368799
S6531	2	0.9	46.9	11.5	0.7	0.1	604390	6369530
S6532	2	0.05	54.1	14.1	0.5	0.05	598687	6358628
S6533	2	0.05	61.3	10.5	0.6	0.05	597730	6358626

\mathbf{C}
0
TO
فط
P

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
S6534	2	0.05	75.2	8.5	0.4	0.05	594496	6360341
S6535	2	0.05	54.7	12.9	0.6	0.05	594944	6360779
S6536	. 2	0.1	53.1	11.4	0.6	0.05	594456	6362533
S6537	2	0.05	57.5	12.5	0.5	0.05	596095	6362837
S6538	2	0.05	62.9	12.7	0.4	0.05	600234	6362608
S6539	2	0.05	59.7	10.9	0.5	0.05	5 9 9 770	6361880
S6540	2	0.5	49.8	10.1	0.7	0.05	603300	6362650
S6541	2	0.05	65.9	9.8	0.4	0.05	602400	6359300
S6542	2	0.05	59.7	13.4	0.4	0.05	600800	6359800
S6543	2	0.2	58.6	9.7	0.7	0.05	600077	6360641
S6544	2	0.2	46.8	12.8	0.5	0.05	605959	6360073
S6545	2	0.05	56.2	12.1	0.6	0.05	606496	6360508
s6546	2	0.05	60.4	14.5	0.4	0.05	605709	6361194
s6547	2	0.05	62.2	13.8	0.5	0.05	607014	6358266
s6548	2	0.05	83.7	5	0.4	0.1	604953	6353340
s6549	2 -	0.05	55.1	11.5	0.6	0.05	601000	6358550
s6550	2	0:05	57.5	9.8	0.6	0.05	599221	6358201
s6551	2 2	0.05	101.1	0.8	0.2	0.05	598996	6356415
s6552	2	0.05	95.8	3.8	0.3	0.05	597050	6356050
s6553	2	0.05	68.1	9.7	0.4	0.05	595914	6356306
s6554	2	0.3	53.6	9.9	0.6	0.05	595600	6354669
s6555	2	0.05	59.5	13.2	0.5	0.05	601600	6358050
s6556	2	0.05	60.2	11.2	0.5	0.05	600712	6356847
s6557	2	0.05	51.7	12.2	0.6	0.05	595450	6353694
s6558	2	0.05	64.2	12	0.4	0.05		
s6559	2	0.3	46	13.4	0.6	0.05	593859	6352451
s6560	2 2	0.05	60.8	11.5	0.5	0.05	595098	6352965
s6561	2	0.05	53.2	12.2	0.7	0.05	598133	6350367
s6562	2	0.05	51.2	13.2	0.6	0.05	597877	6352493
s6563	2 2	0.05	57.5	12.4	0.5	0.05	597888	6351634
s6564	2	0.7	45.8	12.7	0.6	0.05	597928	6349046
s6565	2	0.05	77.3	7.9	0.4	0.05		
s6566	2	0.05	65.4	8.6	0.5	0.05	596814	6349951

)
\subset	
C	
13	٥
-	٤
ت	

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6567	2	0.05	54.1	18.2	0.3	0.05	597328	6349999
s6568	2	0.05	73.8	9.3	0.3	0.05		
s6569	2	0.05	55.2	11.8	0.6	0.05		
s6570	2	0.3	52.8	11.4	0.6	0.05	•	
s6571	2	0.05	70.3	10	0.5	0.05	615200	6352805
s6572	2	0.05	69.7	9.7	0.4	0.1	619209	6353991
s6573	2	0.05	81.1	7.9	0.3	0.1	621158	6355277
s6574	2	0.05	70.6	11	0.4	0.05	623735	6357760
s6575	2	0.9	48.3	9.4	0.9	0.05	624644	6359157
s6576	2	0.05	58.6	14.2	0.6	0.05	626014	6358697
s6577	2	0.05	79.4	7.4	0.4	0.05	627907	6358019
s6578	2	0.05	80.2	7	0.3	0.1	629050	6355400
s6579	5	0.05	103.5	2	0.2	0.05	627924	6354915
s6580	2	0.05	55.1	12.8	0.7	0.2	626981	6354473
s6581	2	0.05	62.8	12	0.6	0.05	623250	6354700
s6582	2	0.05	59.5	12.8	0.5	0.05	624792	6356014
s6583	2	0.2	. 49.2	12.9	0.9	0.05	623972	6356454
s6584	2	0.05	94.1	3.4	0.4	0.05	608900	6349100
s6585	2	0.05	58.5	11.3	0.6	0.05	607450	6358650
s6586	2	0.05	76.3	8.3	0.4	0.05		
s6587	2	0.05	89.9	6.1	0.4	0.2		`
s6588	2	0.05	75.7	9.8	0.3	0.05		•
s6589	2	0.05	74.6	8	0.3	0.1	612597	6348403
s6590	2	0.05	56.8	14.8	0.4	0.05	610100	6352300
s6591	2	0.05	72.7	10.2	0.3	0.05	610885	6353304
s6592	2	0.05	62.5	13.6	0.3	0.05	613538	6353316
s6593		0.1	52.2	11.7	0.6	0.05	613925	6353250
s6594	2 2	0.05	63.5	13.8	0.4	0.05	616784	6348662
s6595	2	0.8	54.9	7.6	0.8	0.05		
s6596	2	. 1	50.2	9.1	0.8	0.05	607023	6349250
s6597	2	0.05	75	9.3	0.4	0.05	607399	6350519
s6598	2	0.1	65.7	8.9	0.6	0.05	606701	6350516
s6599	2	0.05	75.2	8.7	0.5	0.05	604740	6350434

C	-
\boldsymbol{C}	
C	
À	٥
 -	
O	5

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6600	2	0.05	53.5	14.1	0.5	0.05	604700	6351711
s6601	. 2	0.05	65.3	10.8	0.9	0.2	600200	6365776
s6602	2 ·	0.9	53.4	9	0.9	0.3	599332	6367154
s6603	2	0.05	87.1	4.8	0.3	0.2	599776	6367695
s6604	2	0.05	70.7	11.9	0.5	0.1	599800	6369100
s6605	2	0.05	84.9	7	0.3	0.1	598479	6365645
s6606	2	0.05	67	11.1	0.5	0. 0 5	596441	6363750
s6607	2	0.1	58.8	10.5	0.6	0. 0 5	594327	6363735
s6608	2	0.2	80.9	4.8	0.4	0.05	593698	6362962
s6609	2	0.05	61.2	12	0.5	0.05		
s6610	2	0.05	72.4	7	0.5	0.05	598800	6359550
s6611	2	0.05	93.1	5.1	0.3	0.05	613142	6360938
s6612	2	0.05	70.4	9.7	0.4	0.05	612468	6361071
s6613	, 2	0.05	54.4	17.9	0.3	0.05	613442	6359902
s6614	2	0.05	77.8	9.3	0.3	0.05	613200	6363000
s6615	2	0.05	54.2	14.3	0.5	0.05	613100	6365674
s6616	2	0.9	50.9	9.5	0.7	0.05	613100	6366741
s6617	2	0.6	55.1	8.9	0.6	0.05	613100	6367770
s6618	2	0.05	65.5	12.2	0.4	0.05	612700	6368743.
s6619	2	0.4	62.9	9.2	0.6	0.05	613100	6369659
s6620	2	0.05	65.6	12.7	0.4	0.05	613150	6370708
s6621	2	0.8	49.1	10.8	0.7	0.1		-
s6622	2	0.2	60.4	10	0.5	0.05	610954	6368900
s6623	2	0.6	51.8	10.6	0.6	0.05	609924	6369077
s6624	2 2	0.6	52.4	10.5	0.6	0.05	608938	6369243
s6625	2	0.9	48.9	10.7	0.6	0.05	613689	6368350
s6626	2 2	0.05	90	6.5	0.2	0.05	614604	6368350
s6627	2	0.05	97.6	10.6	0.4	0.05	615545	6368300
s6628	2	0.2	58.9	10.1	0.6	0.05	616499	6368300
s6629	2	0.05	99.7	2.6	0.2	0.05	617666	6367961
s6630	2	0.7	55.5	8.6	0.6	0.05	618511	6368650
s6631	2	0.6	50.6	11.2	0.6	0.05	619436	6367648
s6632	2 2	0.5	53.8	10.8	0.6	0.05	620480	6367400

Sample No.	Te ppm	F%	SiO2 %	AI2O3 %	Mg%	Na%	East	North
s6633	2	0.3	64.1	8.6	0.6	0.05	621436	6367300
s6634	2	0.05	71.2	11.5	0.4	0.05	622600	6367200
s6635	2	0.7	51.5	10.7	0.8	0.1	623100	6367950
s6636	2	0.05	83.3	6.9	0.3	0.05	624100	6367700
s6637	2	0.05	96.4	3.7	0.3	0.05	625400	6368000
s6638	2	0.05	73.5	8.9	0.5	0.05	626200	6368100
s6639	2	0.05	87.2	6.1	0.4	0.05	627350	6368350
s6640	2 2 2	0.9	50.7	9. 9	0.7	0.05	623050	6365263
s6641	2	0.4	51.9	11.5	0.7	0.05	619950	6365200
s6642	2	0.1	77.8	6.4	0.4	0.05	617674	6364180
s6643	2	0.05	73.4	10.2	0.6	0.1	639400	6365600
s6644	2 2	0.05	66.4	12.3	0.4	0.1	638650	6368100
s6645	2	0.05	68	10	0.5	0.1	638321	6361500
s6646	2	0.05	84.8	6.1	0.4	0.05	639157	6361603
s6647	2	0.05	70.2	10.9	0.4	0.05	637857	6361849
s6648	2	0.05	70.8	11.8	0.4	0.05	637700	6361300
s6649	2 2 2 2	0.05	65.9	10.7	_ 0.5	0.05	630900	6372500
s6650	2	0.05	66.6	11	0.5	0.1	631900	6375415
s6651	2	0.05	66.7	10.7	0.4	0.05	633611	6373368
s6652	2	0.05	56.8	15.5	0.5	0.05	633384	6373606
s6653	2	0.05	65.4	13.2	0.4	0.1	633100	6 3 69900
s6654	2	0.05	73.7	10.4	0.3	0.1	631502	6368600
s66 5 5	2	0.05	63.3	13.2	0.4	0.1	632049	6367609
s6656	2	0.05	67.2	13.8	0.3	0.1	632639	6364900
s6657	. 2	0.05	68.1	12.3	0.2	0.1		
s6658	2	0.05	75.1	9.5	0.3	0.1	629865	6367461
s6659	2	0.05	92.5	3.8	0.4	0.05	629100	6367850
s6660	2 2	0.3	55	10.3	0.6	0.05	628041	6367350
s6661	2	0.05	62.2	11.7	0.7	0.05	628923	6365782
s6662	2	0.05	61.7	12.5	0.5	0.05	612014	6368718
s6663	2 .	0.05	65.3	13.3	0.4	0.05	628995	6362977
s6664	2	0.05	76.6	8.6	0.4	0.05	629845	6363227
s6665	2	0.05	82.3	7.4	0.3	0.1	630000	6361431

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6666	2	0.05	67.1	8.9	0.5	0.05	631700	6360500
s6667	2	0.05	61,4	12.3	0.5	0.05	630650	6360375
s6668	2	0.05	62	15.3	0.6	0.1	635090	6359963
s6669	2	0.05	60.2	14	0.8	0.1	634120	6360434
s6670	2	0.05	69.8	10.6	0.4	0.05	633594	6362318
s6671	2 2 2	0.05	65.4	13.1	0.4	0.05	632276	6363264
s6672	2	0.05	51.9	15.7	0.5	0.05	600681	6350380
s6673		0.5	47.4	13.4	0.5	0.5	600478	6351733
s6674	2	0.5	56.5	11.8	0.5	0.5	600814	6351677
s6675	2 2	0.05	71.5	10.1	0.5	0.05	600605	6348627
s6676	2	0.05	55.6	13.4	0.6	0.05	603359	6347554
s6677	2 2	0.05	67.7	11.7	0.4	0.1	636212	6353618
s6678	2	0.05	52.4	13.4	0.5	0.05	639073	6352807
s6679	2	0.05	63.3	10.3	0.5	0.05	637317	6356069
s6680	2	0.05	80.5	6.9	0.3	0.1	637200	6356504
s6681	2	0.05	53	15	0.5	0.05	637000	6357089
s6682	2	0.05	65.3	12.1	0.3	0.1	636900	6358100
s6683	2 2	0.05	79.7	6.8	0.4	0.05	636100	6359000
s6684	2	0.05	83	7.1	0.4	0.2	635857	6354677
s6685	2	0.05	70.6	10.6	0.4	0.1	634473	6354665
s6686	2	0.05	82.9	6.3	0.3	0.2	633550	6354580
s6687	2	0.05	86	6.1	0.3	0.05	639218	6351248
s6688	2	0.05	67.6	10.8	0.5	0.05	638337	6349581
s6689	2	0.05	56	12.2	0.6	0.05	637031	6349508
s6690	2	0.05	74.2	7.8	0.4	0.1	630047	6353165
s6691	2	0.05	59.9	13.7	0.5	0.05	633250	6357350
s6692	2	0.05	80.2	7.6	0.4	0.1	631741	6359554
s6693	2 2	0.05	91.5	3.9	0.3	0.1	630600	6359362
s6694		0.05	63.3	10.5	0.8	0.05	629800	6358000
s6695	2	0.05	71	10.1	0.5	0.1	630750	6357837
s6696	2 .	0.05	106.7	1.5	0.2	0.05	632200	6355500
s6697	2	1.9	38.3	7.3	1.2	0.05	632307	6354146
s6698	2	0.05	77.5	. 8	0.4	0.1	634500	6351400

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6699	2	0.5	49.1	10.8	0.7	0.05	634985	6349434
s6700	2	1.3	42.5	8.1	0.9	0.05		
s6701	2	0.05	54	13.1	0.5	0.05		
s6702	2	0.5	49.5	10.5	0.6	0.05		
s6703	2	0.05	73.5	7.8	0.5	0.05		
s6704	. 2 2	0.05	72.9	9.7	0.5	0.1		
s6705	2	0.05	71.1	9.5	0.4	0.05		
s6706	2	0.05	52.7	14.1	0.6	0.1	4	
s6707	2	0.05	56.6	14.3	0.6	0.05		
s6708	2	0.05	61.2	11	0.5	0.05		
s6709	2	0.05	58,1	14.1	0.5	0.05		
s6710	2	0.05	63.4	14.1	0.4	0.05		
s6711	2 2	0.05	77.8	7.5	0.4	0.05	629461	6348943
s6712	2	0.5	54.1	9.3	0.6	0.05	627563	6349191
s6713	2	0.05	59.7	14	0.4	0.05	626812	6349438
s6714	2	0.05	53.2	13.4	0.5	0.05		
s6715	2	0.05	61.8	11.4	0.6	0.1	631900	635065 0
s6716	2 2 2 2 2	0.05	57.2	14.5	0.7	0.1	631194	6351290
s6717	2	0.05	50.6	13.7	0.6	0.05	627519	6351689
s6718		0.5	50.2	11.3	0.8	0.4	627524	6350380
s6719	2	0.05	60.2	13.9	0.4	0.05	626394	6849987
s6720	2	0.05	51.3	13.3	0.5	0.05	625354	6349549
s6721	2	0.05	54.7	17.1	0.2	0.05	625600	6351050
s6722	. 2 2	0.05	52.5	19.5	0.3	0.05	625348	6352351
s6723	2	0.6	45.3	12.9	0.8	0.05	623045	6350132
s6724	2	. 0.05	60.9	14.9	0.4	0.05	624399	6349112
s6725	2	0.9	41.1	12	0.7	0.05	622719	6348260
s6726	2	0.05	58.1	13.7	0.4	0.05	621354	6349029
s6727	2	0.05	64.3	12.7	0.4	0.05		
s6728	2 2	0.7	45.2	11.3	0.7	0.05	621890	6350049
s6729		0.05	75.6	7.4	0.4	0.05	620720	6351538
s6730	2	0.2	59.5	9.6	0.7	0.05	616735	6351545
s6731	2	0.2	48.2	12.8	0.7	0.05	617657	6351734

C
0
\Box
S
\mathcal{N}
0

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6732	2	1.1	42.5	10.1	1.2	0.05	618101	6351333
s6733	2	0.05	60.1	11.1	0.5	0.05	617175	6350688
s6734	2	0.1	48	14.7	0.7	0.05	623189	6358968
s6735	2	0.5	50.4	12	0.6	0.05	622607	6359632
s6736	2	0.05	60.6	16.4	0.4	0.1	622288	6361588
s6737	2	0.05	67.6	12.6	0.4	0.05	621770	6361529
s6738	2	0.05	75.1	7.5	0.5	0.05	619970	6361593
s6739	2	0.05	74.5	10.4	0.3	0.1	620881	6363009
s6740	2	0.05	72.5	10	0.4	0.1	619339	6359585
s6741	2	0.3	58.1	10.4	0.8	0.05	619984	6357547
s6742	2	0.4	56.9	10.4	0.6	0.05	615865	6359920
s6743	2	0.05	56.1	14.9	0.6	0.05	618156	6358531
s6744	2	0.7	51.5	10.5	0.8	0.05	614800	6358000
s6745	2	- 0.05	58.1	13.5	0.5	0.05	616680	6356410
s6746	2	0.05	66.1	10.3	0.5	0.05	615449	6356750
s6747	2	0.05	55.4	17.1	0.3	0.05	618845	6354547
s6748	2	0.05	69.9	11.6	0.4	0.05	616879	6354045
s6749	2	0.05	57.3	15.8	0.3	0.05	613090	6355865
s6750	2	0.05	61.6 .	15.1	0.4	0.05	613064	6354560
s6751	2	0.05	65.1	14.2	0.3	0.1	645711	6350176
s6752	2	0.05	52	16.7	0.5	0.05	648344	6358635
s6753	2	0.05	51.3	14.8	0.5	0.05	647925	6358274
s6754	2	0.05	56.9	16.3	0.4	0.05	646941	6354631
s6755	2	0.05	61.8	16.3	0.3	0.05	604750	6357135
s6756	2	0.05	67.3	11.6	0.4	0.05	605046	6358340
s6757	2	0.05	69	10.5	0.6	0.05	609599	6357701
s6758	2	0.05	57.4	16.9	0.3	0.05	612261	6356508
s6759	2	0.4	48.6	14,1	0.9	0.05	606765	6357263
s6760	2	0.05	49.6	15.6	0.5	0.05	611174	6357744
s6761	2	0.05	61.5	13.9	0.5	0.05	611915	6357298
s6762	2	0.05	63.3	15.1	0.4	0.05	612188	6356941
s6763	2	0.05	65.4	14.3	0.4	0.05	611782	6354315
s6764	2	0.05	57.7	14.6	0.5	0.05	608100	6354650

Sample No.	Te ppm	F%	SiO2 %	Al2O3 %	Mg%	Na%	East	North
s6765	2	0.3	46.1	13.6	0.8	0.2	606143	6348861
s6766	2	0.05	57.7	13.6	0.5	0.05	610377	6353832
s6767	2	0.05	52.7	21.2	0.2	0.05	603600	6349242
s6768	. 2	0.1	50.8	13.8	0.9	0.2	643723	6350450
s6769	2	0.05	54.9	16.2	0.5	0.05	645990	6348520
s6770	2	0.8	44.2	12.3	0.8	0.05	637569	6354731
s6771	2	0.05	61.1	13.5	0.5	0.05	641170	6362800
s6772	2	0.05	52.2	15.7	0.6	0.05	644100	6363250
s6773	2	0.05	70.5	10.9	0.4	0.1	644153	6361803
s6774	2	0.05	61.8	10.7	0.6	0.1	644107	6359765
s6775	2	0.05	56.1	15.3	0.5	0.05	643900	6353700
s6776	2	0.05	57.3	15.2	0.4	0.05	643310	6355217
s6777	2	0.05	64	12.5	0.5	0.05	641540	6356132
s6778	2	0.3	57	11	0.7	0.05	641525	6361675
s6779	2	0.05	7 6.7	7. 7	0.5	0.1	641137	6357048
s6780	2	0.05	61.2	13.6	0.5	0.05	645515	6354698
s6781	2	0.05	57.2	12.4	0.7	0.1	649353	6359865
s6782	2	0.05	53,1	15.3	0.4	0.05	648581	6359425
s6783	2	0.05	63.6	14.4	0.4	0.1	650200	6467100
s6784	2	0.05	70.1	9.5	0.5	0.05	648600	6366850
s6785	2	0.05	103.5	2.9	0.2	0.2	647686	6350273
s6786	2	0.05	82.3	7.8	0.2	0.1	648613	6350376
s6787	2	0.3	50.8	13.7	0.7	0.2	649328	6350366
s6788	2	0.05	76	10.4	0.3	0.05	651401	6350630
s6789	2	0.05	76.5	9.3	0.4	0.1	652070	6351815
s6790	2	0.8	47.8	11.5	0.6	0.1	652900	6354309
s6791	2	0.05	62.1	14	0.4	0.05	646700	6362650
s6792	2	0.05	76.4	9,9	0.4	0.2	649700	6361800
s6793	2	8.0	48.7	10.9	0.6	0.05	652700	6362850
s6794	2	0.05	55	15	0.4	0.05	652750	6364622
s6795	2	0.05	85.3	7.3	0.3	0.3	656340	6364900
s6796	2	0.05	90.9	6	0.3	0.5	656392	6364400
s6797	2	0.05	72.7	10.1	0.5	0.05	656366	6368000

C
\mathbf{C}
$\tilde{\omega}$
\mathcal{S}
\mathcal{W}

ب	ampie No.	ie ppiii	1 /0	3102 /8	A1200 /8	1VIG 70	1.Acr. 1.0	Last	NOTE
	s6798	2	0.05	66.6	14.4	0.3	0.1	656383	6362050
	s6799	2	0.05	62.6	14.8	0.3	0.05	656406	6361600
	s6800	2	0.05	53.3	14.3	0.5	0.05	644701	6352134

APPENDIX III

STOCKDALE -80# ANOMALY PROSPECTS
- CHARBA HILL EL 1626 & PELTABINNA HILL EL 1627

Acraman Bore (Peltabinna Hill EL 1627)

Stockdale results:

P3047; 12 ppm Sn, 42 ppm Sb, 40 ppm Te

Follow up:

4 samples were collected (1161851-1161853 and 1161444). anomalous chemistry was noted and the original results were not

repeated.

Conclusions:

No further work.

L. Acraman (Peltabinna Hill EL 1627)

Stockdale results:

P3042; 85 ppm Zn, 43 ppm Pb, 25 ppm As, 5 ppm Se, 9 ppm Bi,

8 ppm U_3O_8 , 81 ppm Nb_2O_5 , 1040 ppm Sn

Follow up:

4 samples were collected (1163861, 1163862, 1163880 & 1161480)

No anomalous chemistry was noted and the original result was

not repeated.

Conclusion:

No further work

Peeweena Bore (Peltabinna Hill EL 1327)

Stockdale results:

P3024. 103 ppm Zn, 14 ppm As, 4 ppm U_3O_8 .

Follow up:

4 samples were collected (1163863-1163866). No anomalous

chemistry was noted and the original result no repeated.

Conclusions:

No further work.

Perrinilba Dam (Peltabinna Hill EL 1627)

Stockdale results:

P3040; 16 ppm As, 6 ppm Bi, 4 ppm WO_3 , 47 ppm Nb_2O_5

Follow up:

5 samples were collected (1163867-1163869, 1161501 & 1161503) A weakly anomalous Te assay of 0.8 ppm was reported from 1161503 and anomalous Cr (363 ppm) & Ni (293 ppm) from

1163867. The original anomaly was not repeated.

Conclusions:

The anomalous Cr & Ni assays probably represent a mafic lith-

ology, perhaps a nearby dolerite dyke.

No further work is recommended at this stage.

Mungo Tank West (Peltabinna Hill EL 1627)

Stockdale results:

P2986; 1.7% F

Follow up:

6 samples were collected (1163870-1163873, 1161511 & 1161512) Weakly anomalous assays were reported for U (3.89 ppm), As (13 ppm), Pb (50 ppm), Th (32 ppm), Nb (26.7 ppm) and Au (1.6 ppb) in sample 1161511. The Fluorine anomaly was not

repeated.

Conclusions:

The anomalous results for sample 1161511 probably reflect a monazite component in the stream. No further work is

recommended.

Chimney Well (Peltabinna Hill EL 1627)

Stockdale results: P2941; 110 ppm Zn, 3 ppm Se, 9 ppm U₃O₈, 27 ppm As,

56 ppm Nb₂O₅

Follow up: 5 samples were collected (1163874-1163878). No anomalous

chemistry was noted and the anomaly not repeated.

Conclusions: No further work.

Donaldsons Dam (Charba Hill EL 1626)

Stockdale results: P3377; 3.3% S, 6 ppm As, 8 ppm U₃O_g, 7 ppm Te, 1.9% F

Follow up: 2 samples were collected (1163830 & 1163831). No anomalous

assays were reported with the anomaly not being repeated.

Conclusions: No further work. The original result may be due to Lake sedi-

ment contamination of the sample.

Donaldsons Dam South (Charba Hill EL 1626)

Stockdale results: P3376; 14 ppm As, 8 ppm Sb, 4 ppm Te, 2 ppm U, 2.2% F,

5.6% Na.

Follow up: Two samples were collected (1163832 & 1163833). Weakly ele-

vated As (6 ppm) and U (2.79 ppm) were reported in sample 1163832. Except for Uranium, the original anomaly was not repeated. A rock sample of quartz breccia was also collected

at site 1163833. No anomalous assays were reported.

Conclusions: No further work.

Hudsons Dam (Charba Hill EL 1626)

Stockdale results: P2696; 122 ppm Zn, 6 ppm Te

Follow up: 4 samples were collected (1163921-1163924). No anomalous

assays were reported and the anomaly was not repeated. Gold was observed to be above detection limit (max. 2.6 ppb) for all

samples.

Conclusions: No further work.

Peddus Well (Charba Hill EL 1626)

Stockdale results: P2686; 1.8% F

Follow up: 5 samples were collected (1163925-1163929). No anomalous

assays were reported and the anomaly was not repeated.

Conclusions: No further work.

APPENDIX IV

OTHER MINERAL ANOMALIES - CHARBA HILL EL 1626

Walpuppy Dam

Conclusions:

Anomalous samples: 1233871 (Trace Monazite), 1233416 (Rare Topaz), 1234418 (Rare

Topaz & Apatite), 1234419 (Rare Topaz), 1233868 (Rare

Monazite) and 1234413 (Trace Monazite)

Follow up: 21 -80# stream sediment samples (1163801-1163821) were

collected. Anomalous Zn (126 ppm), Mn (2040 ppm) and elevated Fe (4.94%) assays were reported from sample 1163814.

The anomalous assays reported are due to iron scavenging.

vated re (4.94%) assays were reported from sample 1163814.

further work is recommended at this stage.

Kolaymerrika Hill North

Anomalous sample: 1233886 (Few Topaz)

Follow up: 21 -80# stream sediment samples (1163879, 1163881-1163900)

were collected. Sample 1163890 reported weakly anomalous Nb 38.1 ppm, Fe 4.96% and Mn 1307 ppm. A sample of Quartz Breccia was also collected at site 1163890. No anomalous

chemistry was noted.

Conclusions: The weakly anomalous assays are probably due to iron scaveng-

ing. No further work recommended at present.

Waltumba Well

Anomalous sample: 1233898 (Rare Fluorite and Apatite)

Follow up: 8 -80# stream sediment samples were collected (1163822-

1163829). No anomalous chemistry was noted. A rock sample of Quartz Breccia was collected at site 1163823 and a green dacitic rock at site 1163827. No anomalous chemistry was

noted in either sample.

Conclusions: No further work.

Poondana Ruins

Anomalous sample: 1233929 (Rare Apatite and Abundant Garnet)

Follow up: 7 samples were collected (1163854-1163860). No anomalous

assays were noted. A rock sample of a green dacite rock was also collected at site 1163858. No anomalous chemistry was

noted.

Conclusions: No further work.

Lake Dam

Anomalous sample: 1233906 (Trace Cassiterite, Few Garnet & Rare Zircon)

Follow up: 4 samples were collected (1163834-1163837). No anomalous

assays were noted with gold being noted above detection limit

(max. 2.3 ppb).

Conclusions: No further work.

Mt. Nott

Anomalous sample: 1233981 (Rare Apatite)

Follow up: 4 samples were collected (1163903-1163906). No anomalous

assays were noted. A sample of Quartz Breccia was also collected at site 1163904 with no anomalous chemistry being

noted.

Conclusions: No further work.

Nukey Bluff

Anomalous sample: 1233953 (Rare Apatite)

Follow up: 14 samples were collected (1163907-1163920). No anomalous

chemistry was noted. Rock samples of Quartz Breccia and Laterite were also collected from sites 1163912 and 1163908, respectively. No anomalous chemistry was noted in either

sample.

Conclusions: No further work.

Neuranippe Hill

Anomalous sample: 1233940 (Rare Apatite)

Follow up: 8 samples were collected (1163930-1163937). No anomalous

assays were noted with Au being weakly elevated in sample

1163931 (4.2 ppb).

Conclusions: No further work at this stage.

APPENDIX V

PETROLOGY REPORT NO. 5620 - PONTIFEX & ASSOCIATES

Pontifex & Associates Pty. Ltd. 000230

TEL. (08) 332 6744 A.H. (08) 31 3816 FAX (08) 332 5062 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

MINERALOGICAL REPORT NO. 5620

March 28th, 1990

TO:

J.F. Marinelli

CRA Exploration Pty Ltd

31 Osmond Tce

NORWOOD SA 5067

COPY TO:

CRA Exploration Pty Ltd 31 Osmond Terrace

NORWOOD SA 5067

Attn. D. Timlin

The Chief Geologist Information Services CRA Exploration Pty Ltd

PO Box 3709

MANUKA ACT 2603

YOUR REFERENCE:

DPO No. 37823

MATERIAL:

Rock Samples

IDENTIFICATION:

2541543, 1544, 1545

WORK REQUESTED:

Section preparation and description, with

comments on genesis.

SAMPLES & SECTIONS:

Returned to you with this report.

Ian R. Pontifex

PONTIFEX & ASSOCIATES PTY LTD

SUMMARY COMMENTS

The three samples 2541543, 544 and 545 described, collectively appear to represent a tectonic breccia or fractures, developed within a facies composed largely of an altered glassy felsic volcanic. This volcanic appears to partly represent a volcanic breccia (545) but it forms a finer tuff or related (reworked) volcaniclastic sediment in 543 and 544.

Disruptions within these facies have been extensively invaded by vein quartz; as a parallel sequence of more or less sheeted veins in 544; compared with a relatively random stockwork in 543, 545.

The veining largely consists of primary compact fine to quite coarse sparry quartz crystals, containing abundant fluid inclusions and in a comb-like arrangement, perpendicular to the vein walls.

This type of quartz is commonly, objectively interpreted to represent veining at relatively medium to greater depth in zones which may be regarded as 'mesothermal', according to the historic classification of Lindgren, and far more recently to a paper presented at Bicentennial Gold '88, Melbourne.

Thinner stringers cutting across the coarser, sparry, comb quartz, consist of much finer quartz. These may be objectively regarded to have epithermal characteristics; however, in their contect of filling between the coarser crystals, they may simply represent the latest stages of contiguous and basically a single mesothermal veining event. Stringers along micro dislocations cutting across coarse comb quartz, may be due to recrystallisation, related to superimposed deformation.

Notwithstanding the above, the author has seen layers of comb-textured quartz of fine to medium crystal size, intercalated with known epithermal quartz and exhalative sinters. The host rocks to the veining described in this report are apparently extrusive andd probably subaerial, and although sinter quartz is not apparent, an interpretation of high level ('epithermal') veining cannot be discounted.

2541543

Tuff and/or volcaniclastic facies of glassy-felsic lava, inherently silicifed and sericitised; fractured and brecciated then invaded by quartz veining, mostly of medium to coarse comb-like primary growth texture, which to a large extent has also silicified the rock matrix.

This host to abundant random quartz veins, is a crudely layered fragmental rock. It consists of abundant angular fragments to 5 mm size, average about 1 mm, as a weakly layered, loose-packed aggregate, in a structureless ultrafine matrix. The fragments consist of variable concentrations of ultrafine, (and some microcrystalline) sericite and silica. These components may to a large extent replace former fine felspar; (there is no evidence of existing felspar).

Fine relict textures in some of the fragments indicate that they derived from glassy lava, some are internally fragmental, to suggest an original glassy tuff, ?reworked. Laminations is some fragments may be due to flow, (but cannot be positively distinguished from bedding in a siliceous sericitic mudstone?).

The whole-rock matrix consists of similar ultrafine sericite and silica, but incorporating discontinuous networks and stringers of micro sparry quartz.

These stringers appear to relate to extensive coarser scale quartz veining, which commonly cuts through the fragmental clasts. Several veins of coarser quartz are subparallel, narrower veins and stringers are relatively at random. The quartz in these veins is fine through to coarse, sparry/prismatic euhedral crystals to 4 mm long, generally arranged in comb-like aggregates, oriented perpendicular to the vein walls. This is a primary growth texture, with individual crystals typically with zones of concentrated minute fluid inclusions, particularly just inside the outer crystal faces.

2541543 cont:

Some intersticies between coarser quartz crystals, being the latest open space in the openings occupied by the quartz veining, are occupied by cryptocrystalline to microprismatic quartz (with textures often attributed to "epithermal" quartz).

The veining includes several "generations" which were probably contiguous as part of essentially a single event, including rare threads and stringers along late stage microfractures through the coarse sparry quartz.

The host rock may be indentified as a tuff or juvenile volcaniclastic (epiclastic) facies, fractured/brecciated post deposition, then invaded by quartz veining. This extensive veining was probably partly repsonsible for the sericite and silica 'alteration' particularly in the rock matrix. However, these minerals, particularly within the clasts, are partly and perhaps dominantly inherited from the volcanic provenance of the rock-forming components.

2541544

Two laminations and one thin 'bed' of silty to fine sandy volcaniclastic sediment (?reworked tuff), preserved in a sequence of parallel veins of coarse comb-like quartz crystals, crowded with fluid inclusions, rarer, later quartz stringers.

This small rock sample is dominated by a layered sequence, mostly of quartz veins, but with just three layers/laminations of 'host rock', two at 2 mm thick and one 15 mm thick, intercalated at irregular intervals.

This host rock is seen as a finer grained and better sorted equivalent of the more extensive rock in 2541543, suggesting a derived volcaniclastic sediment (possibly a reworked tuff). It consists of a loose-packed, vaguely bedded aggregate of angular siliceous/sericite detritus, the same as the fragments in 1543, but average and fairly consistent size of about 0.15 mm in the thickest layers, and only 0.03mm size in the two thin laminations between quartz veins.

The matrix in the thicker layer has been extensively, pervasively silicified, probably by silica emanating from the extensive, dominating layered quartz veins.

These veins almost invariably consist of tightly packed sparry crystals, clouded with abundant minute fluid inclusions, some defining vague growth zones, and perpendicular to the vein walls, i.e. a primary comb-like growth texture.

A later generation of relatively random quartz stringers cut across some of this coarse vein quartz. Minor microfractures which locally very marginally dislocate some comb-prisms are permeated by threads and stringers of almost cryptocrystalline quartz.

2541545

Heterogeneous tectonic breccia, developed within altered felsic glassy lava material, possibly a primary volcanic breccia; extensive quartz veining throughout the breccia, including comb-textured veins as in 2541543, 544, but as a more random stockwork.

This sample is also dominated by medium, sparry/prismatic vein quartz crystals (to 3 mm long), in comb-like and some relatively more granular aggregates, but the veins are generally more random than in the layered sequences in 2541544.

These veins cut through, and/or incorporate more extensive areas of in-situ tectonic breccia than seen in the other two samples. The breccia clasts are very angular, and consist of ultra fine silica \pm sericite with some coloured reddish-brown due to intense clouding by ultrafine hematite.

These tectonic fragments are all interpreted to be altered felsic/glassy volcanic lava, but the extent to which, in a gross sense, they may be a disrupted flow, or a brecciated primary fragmental cannot be determined. In particular, there are adjacent blocks, of relict, flow-laminated glass, now devitrified and/or otherwise silicified and partly sericitised as a short 'column' between two parallel quartz veins, and this seems to be a disrupted small lapilli.

APPENDIX VI

ROCK LEDGER - CHARBA HILL EL 1626 & PELTABINNA HILL EL 1627

ROCK LEDGER: GAWLER RANGES

SAMPLE NO.	DESCRIPTION	EAST	NORTH	Au PPM	As PPM	Se PPM
1158638	Quartz vein in Yardea dacite.	515800	6454800	<0.01	2	<2
1158639	Quartz - acid volcanic - tuff breccia	531300	6422330	< 0.01	6	<2
1158640	Stockwork quartz veined/brecciated acid volcanic.	531230	6422400	0.01	2	<2
1158641	Black dacite. Trace pyrite.	531300	6422600	0.01	2	<2
1158648	Banded to colloform white quartz vein.	531700	6421870	0.013	<1	<0.1
1158649	White quartz in quartz-acid volcanic breccia.	531600	6422000	0.005	<1	<0.1
1158650	Acid volcanic quartz breccia.	531600	6422000	0.005	2	0.1
1163823	Quartz breccia.	578400	6443600	<0.005	<1	<0.1
1163827	Green dacite.	579000	6445100	0.008	8	0.2
1163833	Quartz breccia.	582050	6437600	<0.005	<1	0.2
1163858	Green dacite.	578000	6420050	<0.005	4	0.1
1163890	Quartz breccia.	559900	6431600	<0.005	7	<0.1
1163904	Quartz breccia.	576850	6403800	0.008	<1	0.6
1163908	Laterite.	561950	6401600	0.013	1 8	1.3
1163912	Quartz breccia.	559800	6400800	< 0.005	2	0.5
2541543	Altered? acid volcanic microporphyry & qtz vein.	531700	6421870	Petrology		٠
2541544	Massive to banded, colloform brecciated qtz vein.	531700	6421870	Petrology		
2541545	Silicified acid volcanic and quartz vein.	531600	6422000	Petrology		•

SAMPLE NO.	Te PPM	F ppm	Bi PPM	Sb PPM	U PPM	Sn PPM	Pb PPM	Ag PPM
1158638	<0.5		42	4	4	28	52	<1
1158639	<0.5		<4	6	5	<4	. 45	<1
1158640	<0.5		<4	<4 .	<4	<4	30	<1
1158641	<0.5		4	<4	4	6	40	<1
1158648	0.1	370	0.12	0.68	0.26	1.39	5	0.5
1158649	<0.1	380	<0.1	0.62	0.29	1.33	10	<0.5
1158650	<0.1	350	0.18	0.73	0.65	2.03	10	<0.5
1163823	<0.1	280	<0.1	0.43	0.55	1.19	5	<0.5
1163827	0.3	370	0.29	0.5	5.42	7.29	20	<0.5
1163833	<0.1	300	0.14	0.54	0.3	1.79	10	<0.5
1163858	0.3	580	0.11	0.16	5.61	7.91	25	0.5
1163890	<0.1	350	0.16	0.89	0.52	1.6	<5	<0.5
1163904	0.1	410	0.41	0.91	1.28	1.19	5	0.5
1163908	<0.1	410	0.18	0.51	3.21	7.69	55	0.5
1163912	0.3	340	<0.1	0.3	0.69	1.66	5	<0.5
2541543	,							
2541544						٠		
2541545								

SAMPLE NO.	Co PPM	Cu PPM	Ni PPM	Zn PPM	Cr PPM	Mn PPM	Mo PPM	Ba PPM
1158638	8	16		52		400	11	450
1158639	6	11		24		110	62	670
1158640	10	7		9		120	24	340
1158641	22	10		80		880	22	1060
1158648	<5	13	<10	5	71	133	<10	173
1158649	< 5	8	<10	<5	<10	6 9	<10	110
1158650	136	25	11	7	54	103	<10	185
1163823	<5	7	10	8 .	<10	150	<10	156
1163827	10	97	11	38	27	675	<10	1348
1163833	<5	9	<10	<5	<10	156	<10	454
1163858	8	9	<10	96	25	853	<10	1745
1163890	<5	. 10	11	7	<10	203	<10	62
1163904	<5	11	10	. 9	<10	151	<10	42
1163908	<5	5	<10	39	22	132	<10	930
1163912	<5	7	<10	6	<10	168	<10	91
2541543	•							
2541544						•		
2541545								

SAMPLE NO.	Ce PPM	Nb PPm	V PPM	K PPM	Na PPM	Fe PPM	La PPM	P PPM
1158638		13	<10	=				120110
1158639		12	10	,				
1158640		8	20					
1158641		20	30					
1158648	<15	<10	4	1927	189	9900	< 5	<100
1158649	<15	<10	3	1498	147	6500	<5	<100
1158650	<15	<10	8	2922	166	9900	8	<100
1163823	<15	<10	5	5442	219	12700	5	<100
1163827	129	<10	38	34500	26000	37800	64	857
1163833	22	<10	7	1147	189	12600	14	<100
1163858	151	16	25	45900	23200	40200	86	814
1163890	33	<10	11	1034	178	17400	17	180
1163904	75	<10	5	1328	268	16700	37	<100
1163908	94	13	60	25400	518	287000	73	324
1163912	16	<10	5	2176	1078	15000	7	<100
2541543								
2541544							·	
2541545								

	. —	_ •	• .	• • • •	7.0	, 0	100	07.0
1158639	12	25	105	56	<10	<10	170	88.8
1158640	8	180	74	32	<10	<10	125	90
1158641	20	18	195	210	<10	<10	410	67.2
1158648	<10							
1158649	<10	7						
1158650	<10				•			
1163823	<10							
1163827	25							
1163833	<10							
1163858	29							
1163890	<10							
1163904	<10			·				
1163908	33							
1163912	<10							•
2541543						•		
2541544								
2541545							•	
							•	
							•	
							•	

Sr PPM

44.

Ta PPM

<10

W PPM

10

Zr PPM

195

SiO2 %

84.8

SAMPLE NO.

1158638

Th PPM

12

Li PPM

26

Rb PPM

84

					
SAMPLE NO.	TiO2 %	Al2O3 %	Fe2O3 %	MnO%	MgO%
1158638	0.28	6.55	3.42	0.06	0.36
1158639	0.16	5.1	3.1	0.02	0.12
1158640	0.16	4.16	2.2	0.02	0.08
1158641	0.7	13.7	6.5	0.11	0.77
1158648					
1158649					
1158650					
1163823					
1163827					
1163833					
1163858					
1163890					
1163904					
1163908					
1163912					
2541543					
2541544		•			
2541545					

K2O% 1.97 1.74 1.27 4.76

CaO%

0.39 0.17 0.14 2.34 Na20%

1.69 0.24 0.3 3.4

SAMPLE NO.	P2O5 %	LOI %
1158638	0.06	0.54
1158639	0.1	1.37
1158640	0.04	1.26
1158641	0.18	1.13
1158648		
1158649		
1158650		
1163823		
1163827		
1163833		
1163858		
1163890		
1163904		
1163908		
1163912		
2541543		
2541544		
2541545		

CRA EXPLORATION PTY. LIMITED

SECOND QUARTERLY REPORT FOR CHARBA HILL EL 1626 & PELTABINNA HILL EL 1627, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 27TH JUNE, 1990

<u>AND</u>

FIRST QUARTERLY REPORT FOR

UNALLA HILL EL 1652, SOUTH AUSTRALIA

FOR THE PERIOD ENDING 22ND JULY, 1990.

AUTHOR:

S.P. SUGDEN J.F. MARINELLI

COPIES TO:

SADME

CIS CANBERRA

DATE:

14TH JUNE, 1990

SUBMITTED BY:

ACCEPTED BY:

"ALL RIGHTS IN THIS REPORT AND ITS CONTENTS (INCLUDING RIGHTS TO CONFIDENTIAL INFORMATION AND COPYRIGHT IN TEXT, DIAGRAMS AND PHOTOGRAPHS) REMAIN WITH CRA AND NO USE (INCLUDING USE OF REPRODUCTION, STORAGE OR TRANSMISSION) MAY BE MADE OF THE REPORT OR ITS CONTENTS FOR ANY PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF CRA. © CRA EXPLORATION PTY. LIMITED 1988"

16608

<u>CO</u>	<u>NTEN</u>	<u>VTS</u>		<u>Page</u>
LIS	ST OF	PLANS	3	
LIS	T OF	TABLE	es s	
LIS	ST OF	APPEN	IDICES	
1.	SUM	IMARY		1
2.		RODUC		1
3.	LOC	ATION		1
4.	GEO	LOGY		2
5.	PRE	vious	EXPLORATION - UNALLA HILL EL 1652	3
6.	WOI	RK CON	MPLETED DURING THE QUARTER	3
	6.1	Peltab	oinna Hill EL 1627	3
		6.1.1	Gravel Sampling	3
		6.1.2	Geochemistry	3
	6.2	Charb	a Hill EL 1626	.4
		6.2.1	Gravel Sampling	4
		6.2.2	Geochemistry	4
	6.3	Unalla	a Hill EL 1652	4
		6.3.1	Gravel Sampling	4
		6.3.2	Reconnaissance Geochemical Sampling	5
		6.3.3	Rock Chip Sampling	5
		6.3.4	Follow Up Geochemical Sampling	6
			6.3.4.1 Stockdale -80# Geochemistry	6
			6.3.4.2 Other Minerals Anomalies	6
	6.4	Stream	n Sediment Data Statistical Interpretation	7
	6.5	Geoph	nysics	7
EX	PEND	ITURE		8
RE]	FERE:	NCES		9
LO	CATIO	ON		9
KE'	YWOI	RDS		9

[&]quot;CRA CONFIDENTIAL INFORMATION - UNAUTHORISED USE PROHIBITED."

LIST OF PLANS

<u>Plan No</u> .	<u>Title</u>	<u>Scale</u>
SAa 5191	Peltabinna Hill EL 1627, S.A., Location Plan	1:250 000
SAa 5192	Charba Hill EL 1626, S.A., Location Plan	1:250 000
SAa 5204	Unalla Hill EL 1652, S.A., Location Plan	1:250 000
SAa 5220	Peltabinna Hill EL 1627, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5221	Charba Hill EL 1626, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5222	Unalla Hill EL 1652, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5252	Gawler Ranges EL's (Peltabinna Hill, Charba Hill, Unalla Hill) Proposed Airborne Survey Area	1:500 000
SAa 5260	Peltabinna Hill EL 1627, S.A Gravel Sample Locations	1:100 000
SAa 5261	Charba Hill EL 1626, S.A Gravel Sample Locations	1:100 000
SAa 5262	Unalla Hill EL 1652, S.A Gravel Sample Locations	1:100 000
SAa 5270	Peltabinna Hill EL 1627, S.A Rock Sample Locations	1:100 000
SAa 5271	Charba Hill EL 1626, S.A Rock Sample Locations	1:100 000
SAa 5272	Unalla Hill EL 1652, S.A Rock Sample Locality Plan	1:100 000

LIST OF TABLES

Table 1	Sample Number Sequences - Gravel Samples
	Peltabinna Hill EL 1627, Charba Hill EL 1626 & Unalla Hill EL 1652
Table 2	Indicator Mineral Results for Peltabinna Hill EL 1627 (P), Charba Hill EL 1626
	(C) & Unalla Hill EL 1652 (U) Reported to 04/05/90
Table 3	Other Mineral Results for Peltabinna Hill, Charba Hill & Unalla Hill for the
	Period Ending 04/05/90
Table 4	Microdiamond Results for Charba Hill EL 1626 (C), Peltabinna Hill EL 1627
	(P) & Unalla Hill EL 1652 (U) for the Period Ending 01/06/90
Table 5	-80# Stream Sediment Assay Details
Table 6	Stream Sediment Anomalies, Peltabinna Hill EL 1627, Charba Hill EL 1626 &
	Unalla Hill EL 1652
Table 7	Samples Re-observed for Bastnaesite from Charba Hill EL 1626 (C) & Unalla
	Hill EL 1652 (U)

LIST OF APPENDICES

Appendix I	-80# Stream Sediment Assay Data - Peltabinna Hill EL 1627, Charba Hill EL 1626 & Unalla Hill EL 1652
A 1* TT	
Appendix II	Rock Sample Ledger and Assay Results
Appendix III	Stockdale -80# Anomaly Prospects - Unalla Hill EL 1652
Appendix IV	Other Mineral Anomalies - Unalla Hill EL 1652
Appendix V	Univariate Statistics, Histogram Plots & Correlation Matrix - Yardea -
	80# Stream Sediment Data
Appendix VI	Histogram Plots and Correlation Matrix - Log Normalised - Yardea -80#
	Stream Sediment Data
Appendix VII	Element Anomaly Plots - Yardea -80# Stream Sediment Data

1. SUMMARY

Final results were received for all infill and reconnaissance gravel samples collected over the three licences. Except for one picroilmenite found on Unalla Hill only occasional chromites were reported. Follow up of the picroilmenite was undertaken with only one chromite reported in an upstream sample. Partial microdiamond results were received with no microdiamonds being reported. Fluorite, monazite, cassiterite and florencite were reported in a number of samples.

On Unalla Hill EL 1652, selected Stockdale -80# and "other mineral" anomalies were followed up with -80# stream sediment and occasional rock float samples. Except for weakly anomalous U, As & F assays in the Struggle Dam area, no anomalous results were noted in the stream sediment data. Three hematitic breccia or rock samples from the Unalla Hill to Larry Dam area reported various anomalous levels of As, +/-U, +/-Bi, +/-Pb, +/-Co +/-Ni+/-Mo and Ba. The assays are not reflected in the stream sediment data, suggesting that thin veins are the probable origin. The prospectivity of the area however is enhanced with detailed interpretation of the geophysics recommended.

Detailed statistical interpretation of the geochemical data was completed. No major multielement anomalies were noted in the data. Follow up was recommended for 10 areas which reported either elevated gold pathfinder, base metals, F & U, and bastnaesite.

The airborne geophysical survey was flown with preliminary plans received from the contractor.

2. <u>INTRODUCTION</u>

Peltabinna Hill EL 1627 and Charba Hill EL 1626 were applied for on the 25th September, 1989 to cover an area considered prospective for Roxby Downs and epithermal styles of mineralisation. They were both granted for a one year term on the 22nd December, 1989.

Unalla Hill EL 1652 was applied for on the 17th October, 1989 and granted on the 23rd April, 1990.

A study of open file data indicated a number of anomalous assays for As, U, Te, Sb, Bi, Sn & F which suggested the area was prospective for epithermal gold mineralisation.

This report details work completed during the second quarter of tenure for Peltabinna Hill EL 1627 and Charba Hill EL 1626 and the first quarter of tenure for Unalla Hill EL 1652.

3. LOCATION

Peltabinna Hill EL 1627 and Charba Hill EL 1626 are located over the western Gawler Ranges to the south of L. Acraman and west of L. Gairdner. The Yardea Station homestead is found in the centre of the area. The licence locations are shown on plans SAa 5191 and SAa 5192.

"CRA CONFIDENTIAL INFORMATION — UNAUTHORISED USE PROHIBITED."

Unalla Hill EL 1652 is located immediately to the east of Charba Hill EL 1626 and is roughly centred on Kolando Station. Its location is shown on plan SAa 5204.

4. GEOLOGY

The following geological synopsis is taken largely from Blissett et.al. (1989).

The Gawler Ranges form the central part of the Archaean to Middle Proterozoic Gawler Craton which is a large, polygonal tectonic unit that has remained a stable cratonic area since about 1400 Ma.

Archaean and Early Proterozoic sequences were highly deformed prior to the eruption of the Gawler Range Volcanics circa 1590-1600 Ma. The volcanics form a thick blanket unconformably overlying the deformed metamorphic basement and extend from Paney in the south, to the Kingoonya-Tarcoola region in the north.

Around the margins and within the Gawler Ranges there are extensive regions of thin Cainozoic sediments which often mask relationships between rock units.

The Gawler Range Volcanics are predominantly a calc-alkaline assemblage of dacites, rhyodacites and rhyolites, with subsidiary potassic andesites and tholeitic basalts. They consist of ignimbrites (ash flows) welded to varying degrees, with localised lavas and agglomerates, erupted subaerially in a continental environment.

The Gawler Range Volcanics and intrusive Hiltaba Suite granites have undergone little deformation or metamorphism since Proterozoic times, responding to subsequent earth movements by epeirogenic block faulting and jointing on a regional scale. An unknown volume of the volcanics has been removed by erosion.

For a concise geological picture of the area refer to the published Yardea 1:250 000 Geological Map Sheet.

5. PREVIOUS EXPLORATION - UNALLA HILL EL 1652

For Unalla Hill EL 1652 a literature review of all previous exploration was completed during the first quarter.

Stockdale Prospecting Limited held tenement under EL's 1158 and 1159 between 1982-1984. Robison (1984a) and (1984b) describes work programmes consisting of reconnaissance heavy mineral gravel sampling, -80# stream sediment geochemical sampling, aeromagnetic anomaly and airphoto anomaly follow up to detect diamondiferous kimberlites. No significant anomalies were detected.

CRA Exploration completed a regional reconnaissance gravel sampling programme to detect diamondiferous kimberlites under EL 1299 (LeMessurier, 1986a) and EL 1300 (LeMessurier, 1986b). However, no anomalous indicator minerals and microdiamond results were observed in drainages falling within the current title.

6. WORK COMPLETED DURING THE QUARTER

6.1 Peltabinna Hill EL 1627

6.1.1 Gravel Sampling

Final gravel sample results were received during the quarter. Results are listed in Table 2, with single chromites being found in samples 1161509 & 1161542. Fluorite was reported in two samples, florencite in one and monazite in three samples. For a detailed listing of other minerals results refer to Table 3. Forty-seven samples were also processed for microdiamonds with none being reported. Table 4 lists the samples processed.

Follow up is also proposed for the bastnaesite occurrences reported last quarter. Two areas, near Mungo Tank in the north and Eustice Dam in the south will be followed up. Details are contained in Table 6.

6.1.2 Geochemistry

Geostatistical interpretation of the stream sediment data was also completed. For further details refer to Section 7.2.

From this, four areas were selected for follow up. These are listed in Table 6. Two areas (Perrinalba Dam and South Perrinalba Dam) reported anomalous Te & As. Near L. Acraman a coincident F & U anomaly was noted and near Mungo Tank anomalous U, As & F were noted in conjunction with bastnaesite from the gravel sample.

6.2 Charba Hill EL 1626

6.2.1 Gravel Sampling

Final gravel sample results were received during the quarter. Results are listed in Table 2. No indicators were found. Florencite was noted in sample 1161634. For a detailed listing of the other minerals data refer to Table 3. Eight samples were also processed for microdiamonds with none being reported. Table 4 lists the samples processed.

Samples collected during the tenure of Thurlga EL 1300 which contained carbonate were reobserved for bastnaesite during the period. No bastnaesite was found with Table 7 listing the samples observed.

6.2.2 Geochemistry

Geostatistical interpretation of the stream sediment data was also completed. For further details refer to Section 7.4.

From this three areas were selected for follow up. In the south of the licence near Chillunie Dam, anomalous Sb, As & Cu were noted and to the north near Brambo Dam two areas, the first anomalous in U, Sb & As and the second anomalous in Zn & Cu were noted. Further details are contained in Table 6.

6.3 Unalla Hill EL 1652

6.3.1 Gravel Sampling

As Unalla Hill was previously held as part of Thurlga EL 1300 and Kolendo EL 1299 only infill samples were collected so as to bring the density up to a comparable level to that on Peltabinna Hill. Twenty-seven 35 kg -2 mm fraction gravel samples were collected with Table 1 listing the sample number sequences. The sample locations are shown on plan SAa 5262. For further details regarding Thurlga EL 1300 and Kolendo EL 1299 refer to LeMessurier (1986b).

The samples were submitted to the CRAE Diamond laboratory for indicator mineral observation and observation for other minerals which may be associated with possible mineralisation.

Observation results were received during the quarter for all samples, with sample 1161754 reporting one picroilmenite and 1161761 two chromites. Observation results are listed in Table 2 and other mineral results in Table 3.

Sample 1161754 was followed up during the quarter with five samples being collected (1161901-1161905). Their locations are shown on plan SAa 5262. The picroilmenite was not repeated, however, one chromite was found upstream in sample 1161902. Results are shown in Table 2 and other mineral results in Table 3.

Microdiamond results were received for ten samples. Results are tabulated in Table 4. Negative results were reported for all samples.

6.3.2 Reconnaissance Geochemical Sampling

At each of the infill gravel sites an identically numbered -80# stream sediment sample was collected. The samples were submitted to Analabs for assay with Table 5 listing the assay details. Appendix I contains the assay results and locations are shown on plan SAa 5222.

-80# stream sediment samples were also collected for each of the gravel samples collected during the tenure of Thurlga EL 1300 and Kolendo EL 1299, but not processed. Those that were found on Unalla Hill were therefore retrieved and assayed by Analabs. The relevant sample numbers are shown in Table 1 and assay details in Table 5. Locations are shown on plan SAa 5222. Appendix I contains the assay results. -80# samples were not collected with gravel samples 1234401-1234411.

During the quarter the data were statistically interpreted. The results of this are presented in Section 6.4.

From this, two areas were recommended for follow up. The first, to the north near Struggle Dam, was a weak U, As, F & Cu anomaly and the second, near Arcasia Dam in the north east, anomalous in Au & Sb. Further details are contained in Table 6.

6.3.3 Rock Chip Sampling

Rock chip samples were collected during the quarter from mapped quartz horizons shown on the Yardea 1:250 000 geology sheet WNW of Nonning Homestead.

Two rock chip samples (2541551 and 2541552) of white quartz/mottled grey cherty quartz were collected at South Government Dam. One rock chip sample (2541553) of grey banded cherty quartz was collected at New Ancatna Dam. No significant elevation in multi-element geochemistry was observed. Rock chip sample locations are shown in plan SAa 5272. Geochemistry results are shown in Appendix II.

6.3.4 Follow Up Geochemical Sampling

6.3.4.1 Stockdale -80# Geochemistry

As discussed previously, Stockdale conducted an extensive -80# stream sediment sampling program throughout the Gawler Ranges. Data from that survey were entered on the computer and anomaly selected for further follow up. A print out of their results is contained in the first quarterly report (Sugden & Marinelli, 1990).

Eight anomalous areas within Unalla Hill were selected for follow up. Each was followed with -80# samples and occasionally rock float samples being collected at the original site and upstream. Sample locations are shown on plan SAa 5222 and assays in Appendix I. A brief summary of each prospect is contained in Appendix III. Rock chip assays are shown in Appendix II and locations on plan SAa 5272.

Except for weakly anomalous F, U & As assays from the Struggle Dam area, no anomalous stream sediment geochemistry was noted in the area. In the centre of the licence between Unalla Hill & Larry Dam however, two float rock samples (1161960 & 1161988) of hematite and hematite matrix breccia reported variably anomalous As, Sb, Ni, Mo, Co, Ce, La & U. A third sample of hematite with quartz (1163975) in the same area from CRA other mineral anomaly also assayed anomalous As, Bi, U, Pb, Mo & Ba. To date this is the only area where hematite has been noted in the dacite breccias with breccia samples elsewhere on the licences having a quartz matrix.

As stream sediment geochemistry has not indicated any anomalous chemistry (despite fairly intensive follow up in the area), the area could have potential for a concealed orebody with thin hematite breccia veins being the only surface expression. It is therefore recommended that the airborne geophysics for this area be studied in detail for any anomalous patterns.

6.3.4.2 Other Minerals Anomalies

Within Unalla Hill EL 1652 a number of anomalous other mineral results were noted in the old gravel sample data, which may reflect possible mineralisation. Eight areas were selected for follow up with -80# stream sediment samples and occasionally rock float samples, being collected at the original site and upstream. Sample locations are shown on plan SAa 5222 and assays in Appendix I. A brief discussion of each anomaly is contained in Appendix IV. Rock chip locations are shown on plan SAa 5272 and assays contained in Appendix II.

Except for occasional elevated assays no anomalous patterns were noted in the stream sediment data. One rock sample (1163975) of hematite and quartz from the Dawes Dam area reported anomalous As, Bi, U, Pb, Mo, Ba & V. This sample is discussed with other similar rock samples in the previous section (7.3.4.1).

6.4 Stream Sediment Data Statistical Interpretation

During the period data from the reconnaissance and follow up stream sediment surveys were merged and statistically interpreted. The complete data set is presented in Appendix I.

Using the Statview II statistics program on the Mac II, simple univariate statistics, histogram plots and correlation matrices were calculated for the normal and Log transformed data. Program output for the normal data is contained in Appendix V and Log transformed data in Appendix VI.

A perusal of the results indicated that there were no obvious anomalous, precious or base metal assays with results being of low tenor. It was noted that elements which were assayed by ICP-MS appeared to approach normal distributions.

From the correlation matrix a number of observations could be made. Firstly gold was found to correlate poorly with all elements. A number of good correlations were noted which appear to reflect either heavy mineral components (Ce-La-U-Zr-Ba) or Iron and Manganese scavenging (Fe-P-Zn-Cu-Co-La). No correlations except for Cr with Ni were noted which may reflect possible mineralisation.

Anomaly plots were also made for the major elements. Reduced scale plots of these are presented in Appendix VII. From these plots ten areas were identified which had anomalous multi-element signatures and were considered worthy of follow up. Table 6 lists the anomalies in greater detail.

6.5 Geophysics

During the period an airborne magnetic and radiometric survey was flown over parts of the three licences as shown on plan SAa 5252.

At the date of writing, preliminary plans had been received from the contractor. It is expected that finals will be received soon and will be included in the next quarterly report.

S.P. SUGDEN

SPS/pq

EXPENDITURE

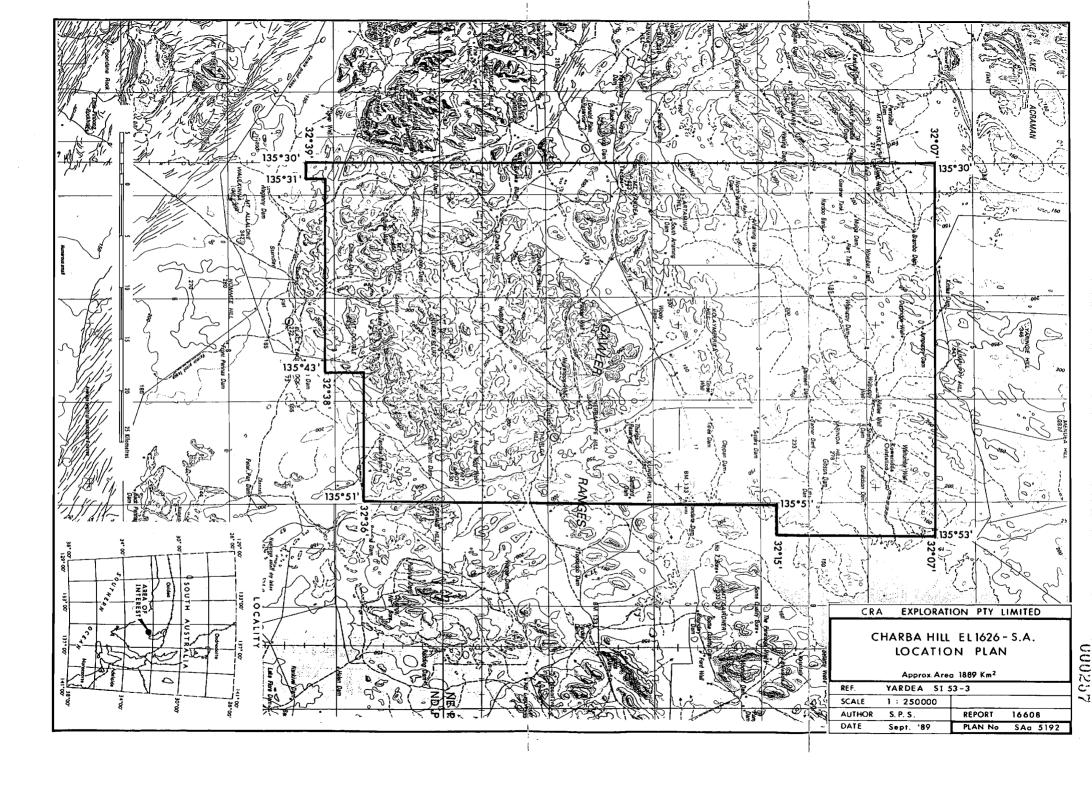
Expenditure on Charba Hill EL 1626 and Peltabinna Hill EL 1627 for the three month period ending 30th June, 1990, the nearest accounting period, amounted to \$43,397.00 and \$47,747.00, respectively, as detailed below.

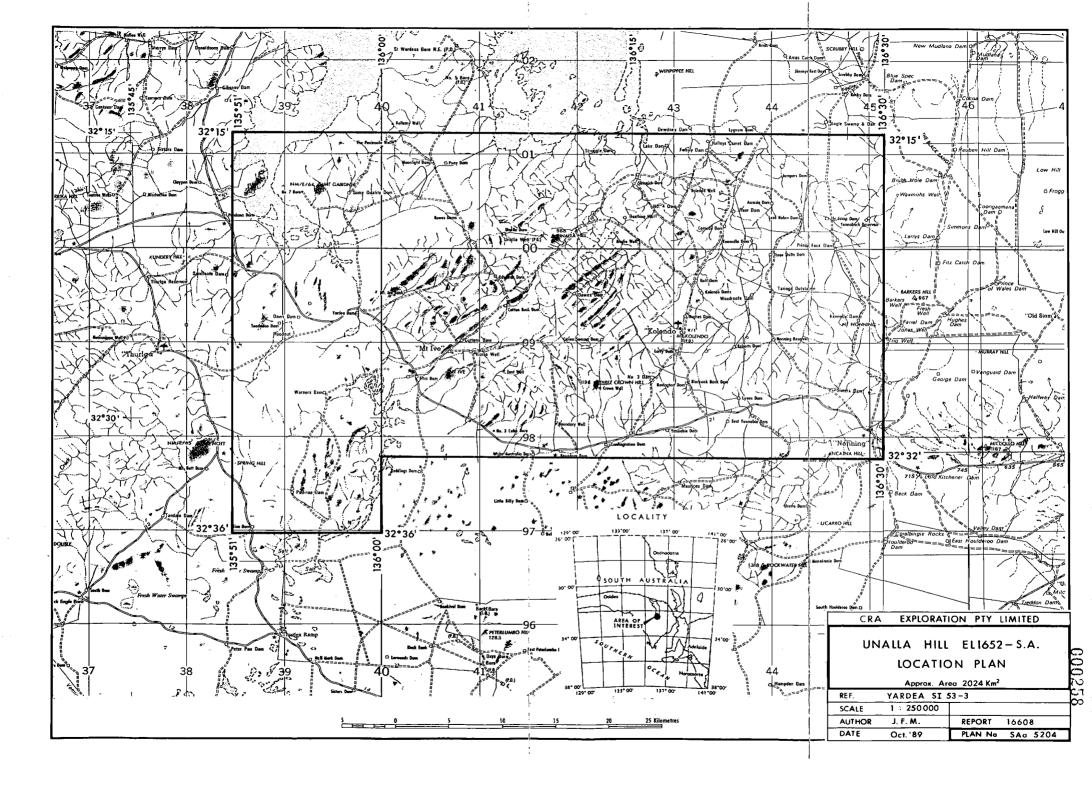
		\$	\$
Payroll		10,390	6,164
Supplies Vehicle		749 2,408	818 2,180
Travel		706	116
Rent		2,114	2,488
Contractors		13,396	13,729
Laboratory Overheads		10,690 2,944	19,978 2,274
	m	0.42, 2.05	
	Totals	\$43,397 	\$47,747 ———

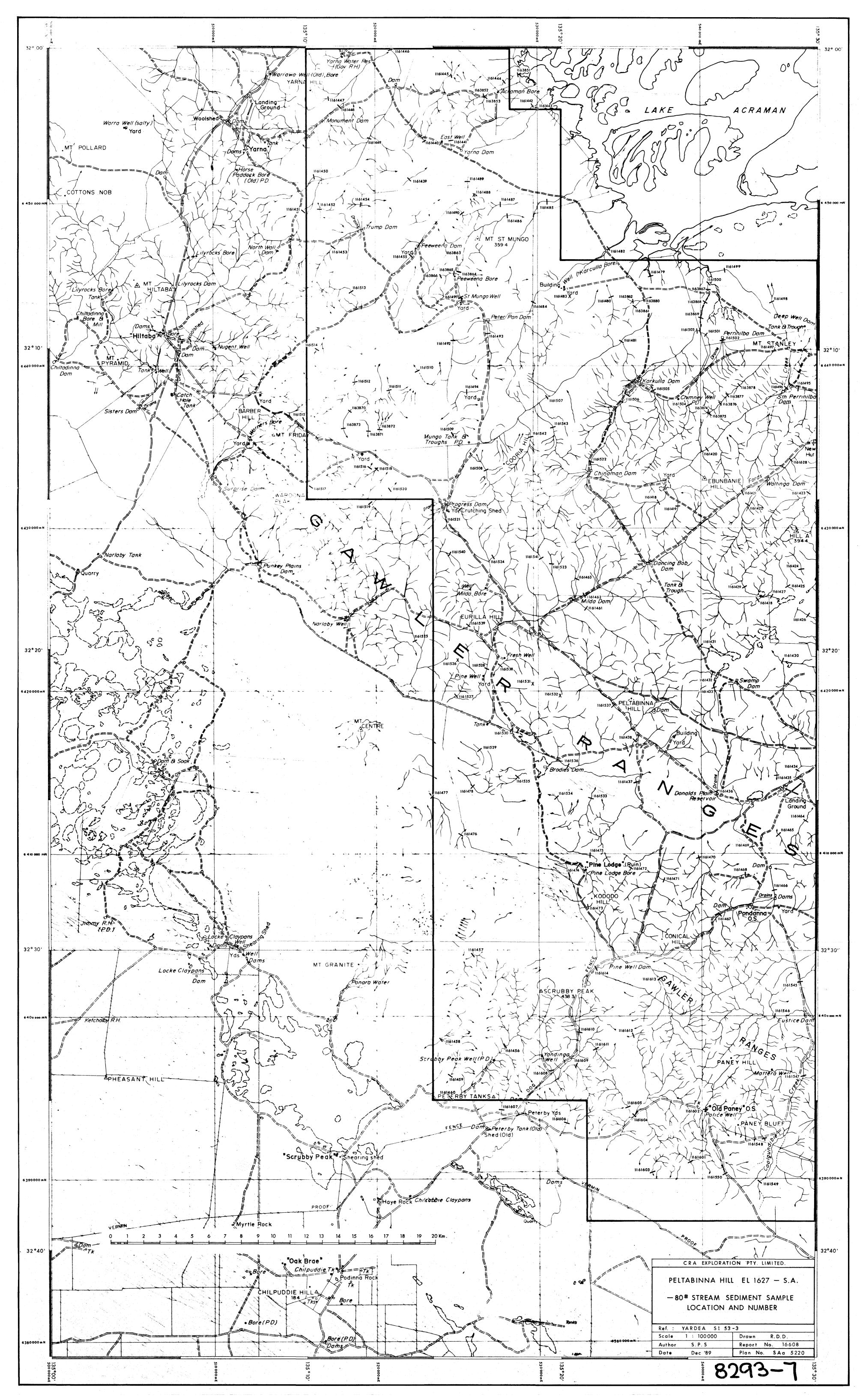
Expenditure on Unalla Hill EL 1652 for the period ending 30th June, 1990, the nearest accounting period, amounted to \$78,742.00, as detailed below.

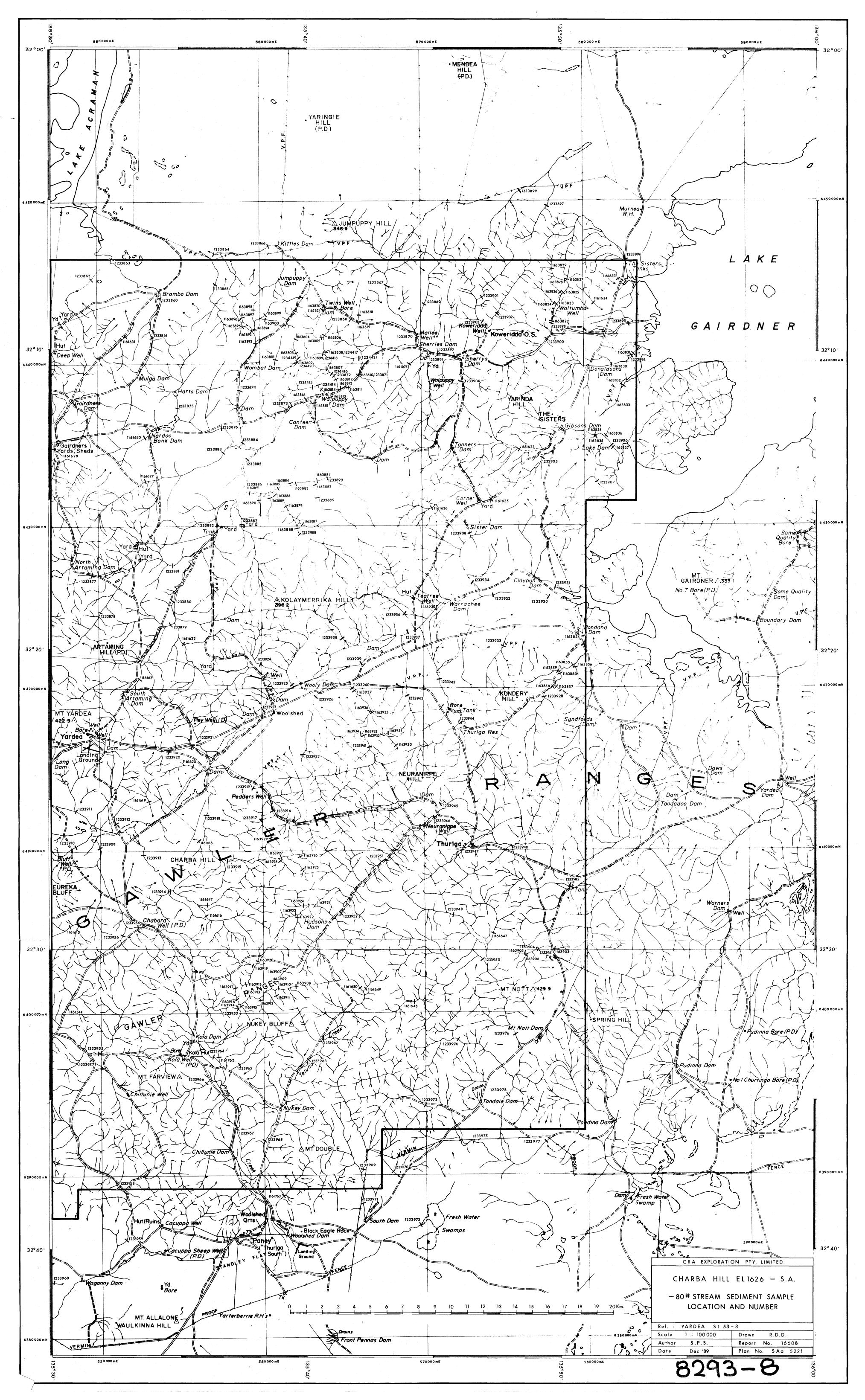
		\$
Payroll		8,038
Supplies		(351)
Vehicle		2,936
Travel		1,166
Rent		4,096
Contractors		50,311
Laboratory		8,393
Overheads		4,153
	Total	\$78,742

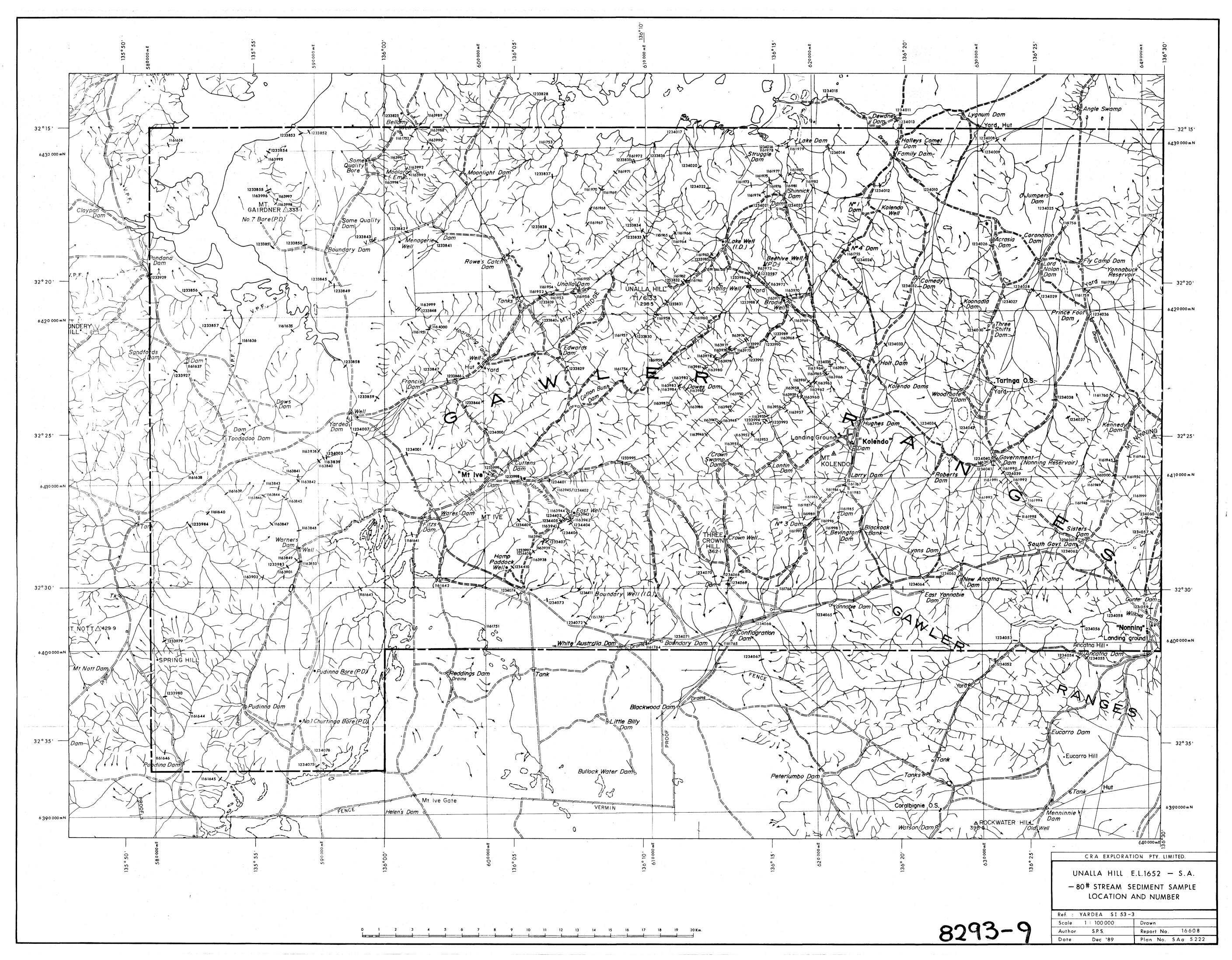
REFERENCES


Blissett, A.H., Gawler Ranges Excursion, October 7-9, 1989. Geological Society of Australia (S.A. Division) Parker, A.J. & Scheffler, J. SADME Report Book No. 89/70. LeMessurier, L.A. Final & Relinquishment Report on Thurlga EL 1300, S.A. 1986a CRAE Report No. 130678. LeMessurier, L.A. Final & Relinquishment Report on Thurlga EL 1300, S.A. 1986b CRAE Internal Report No. 130678. Robison, H.R. Stockdale Prospecting Limited Part EL 1158 and Part EL 1159 1984a Gawler Ranges. Relinquishment Report. SADME Env 5430. Robison, H.R. Part Exploration Licence No. 1159 Relinquishment Report. 1984b Stockdale Prospecting Limited. SADME Open File Env. 5430. Sugden, S.P. & First Quarterly Report for Charba Hill EL 1626 & Peltabinna Hill Marinelli, J.F. EL 1627 for the Period Ending 21st March, 1990. 1990 CRAE Report No. 16525.

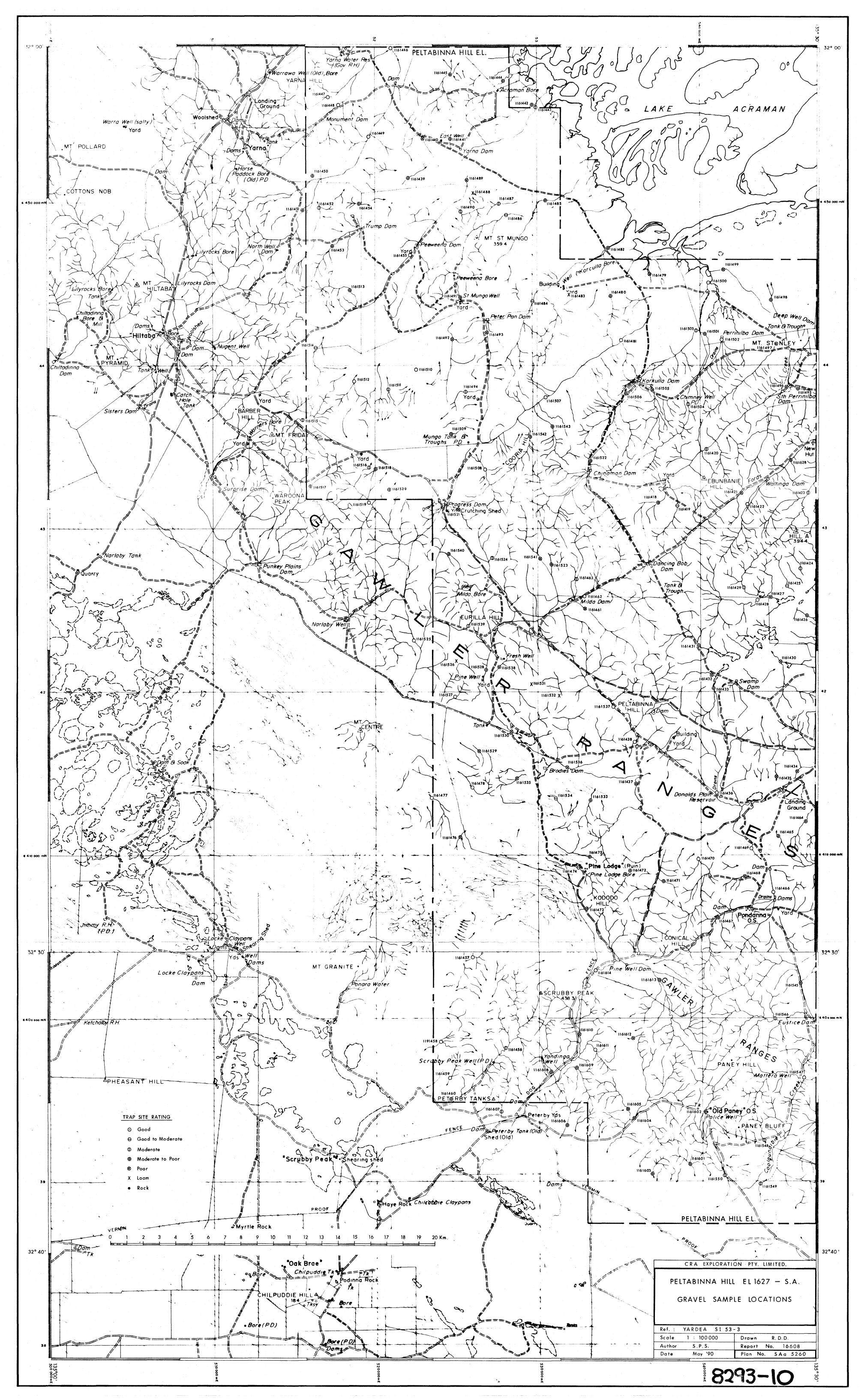

LOCATION

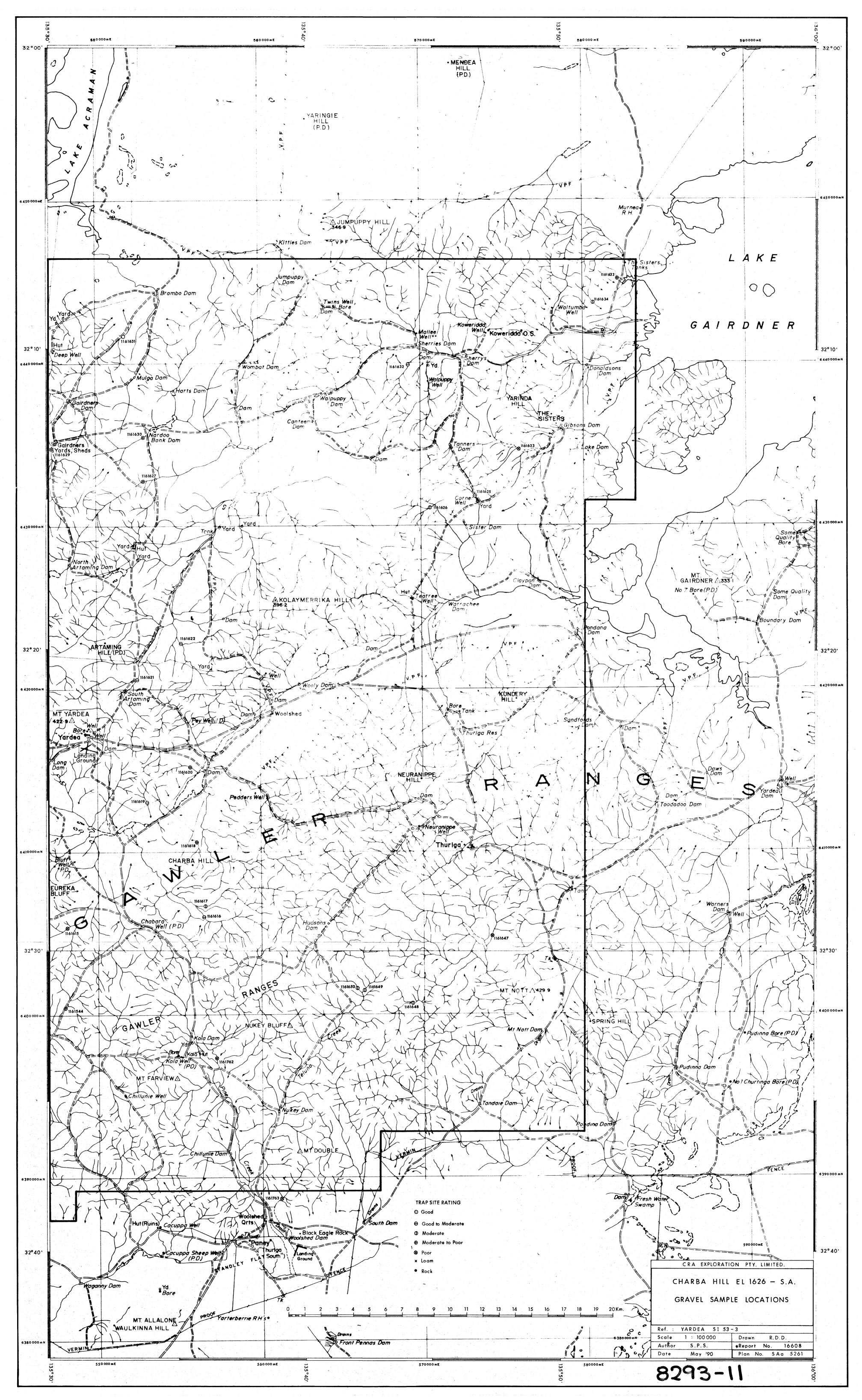

Yardea	SI5303	1:250 000 sheet
Yartoo	5933	1:100 000 sheet
Yardea	6033	1:100 000 sheet
Kolendo	6133	1:100 000 sheet
Minnipa	5932	1:100 000 sheet
Cacuppa	6032	1:100 000 sheet
Buckleboo	6132	1:100 000 sheet

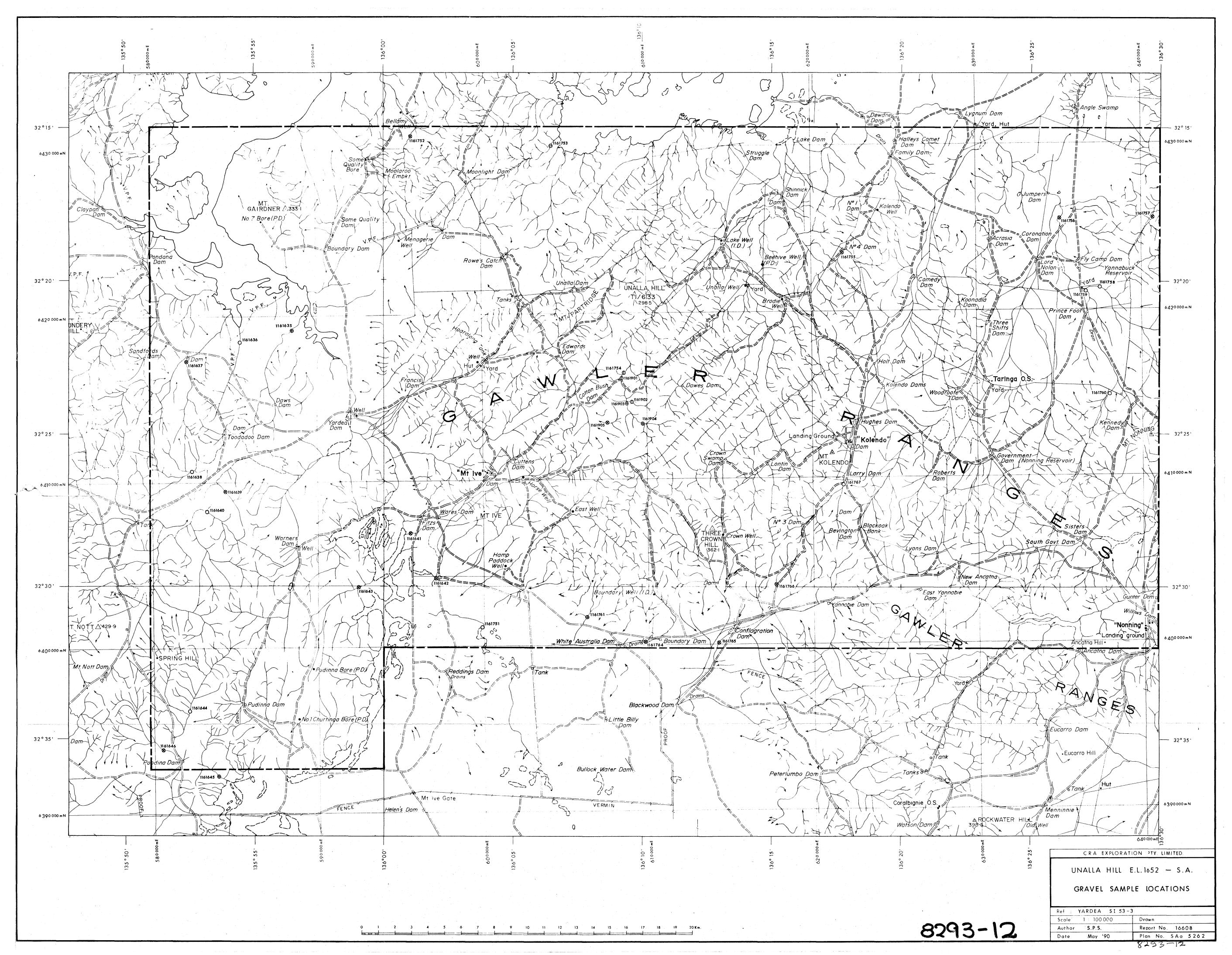

KEYWORDS

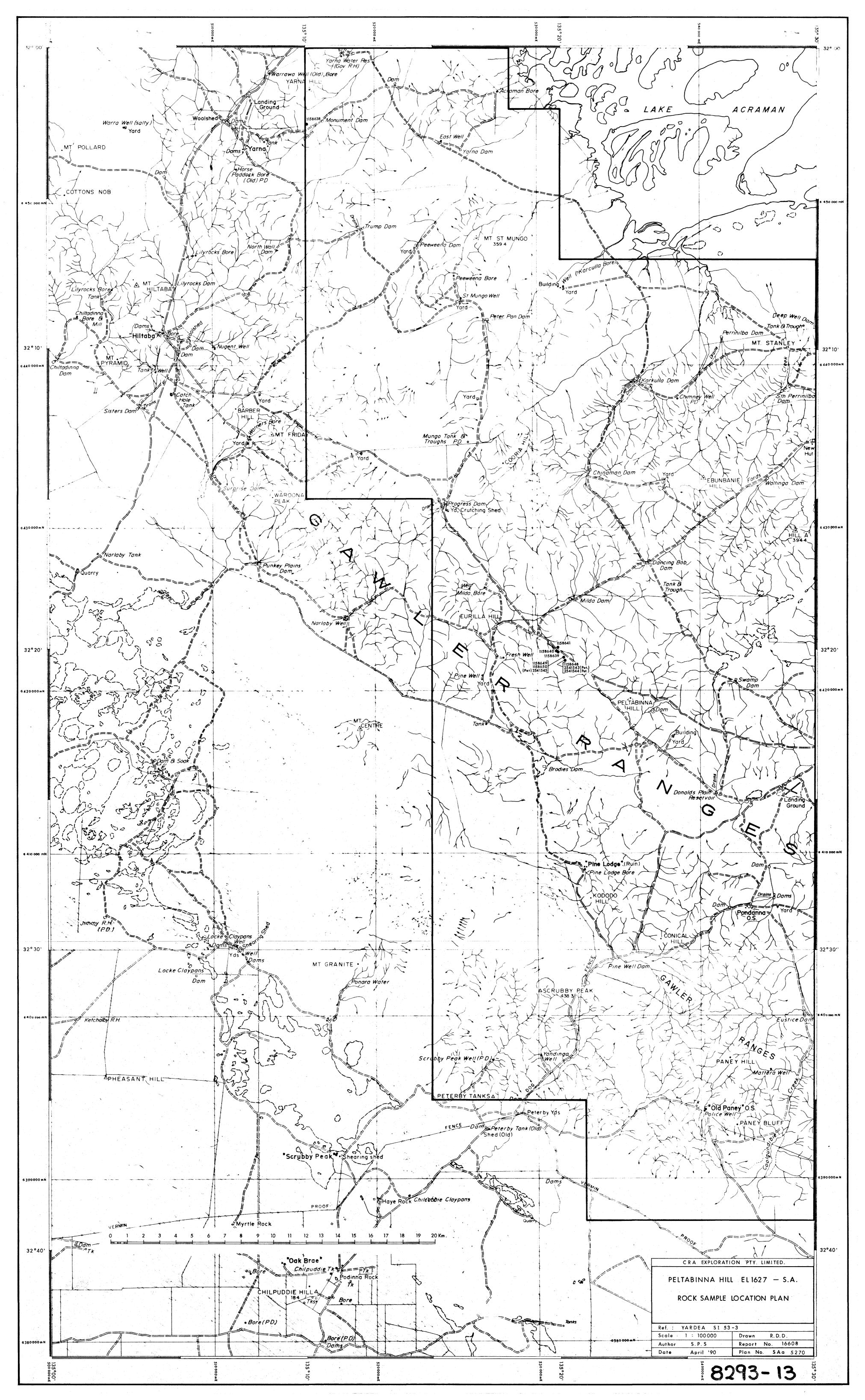

Geochem Rock, Geochem Drainage, Volcanogenic, Volcanics, Breccia, Proterozoic, Gold, Base Metals, Uranium, Geophys-Magnetics.

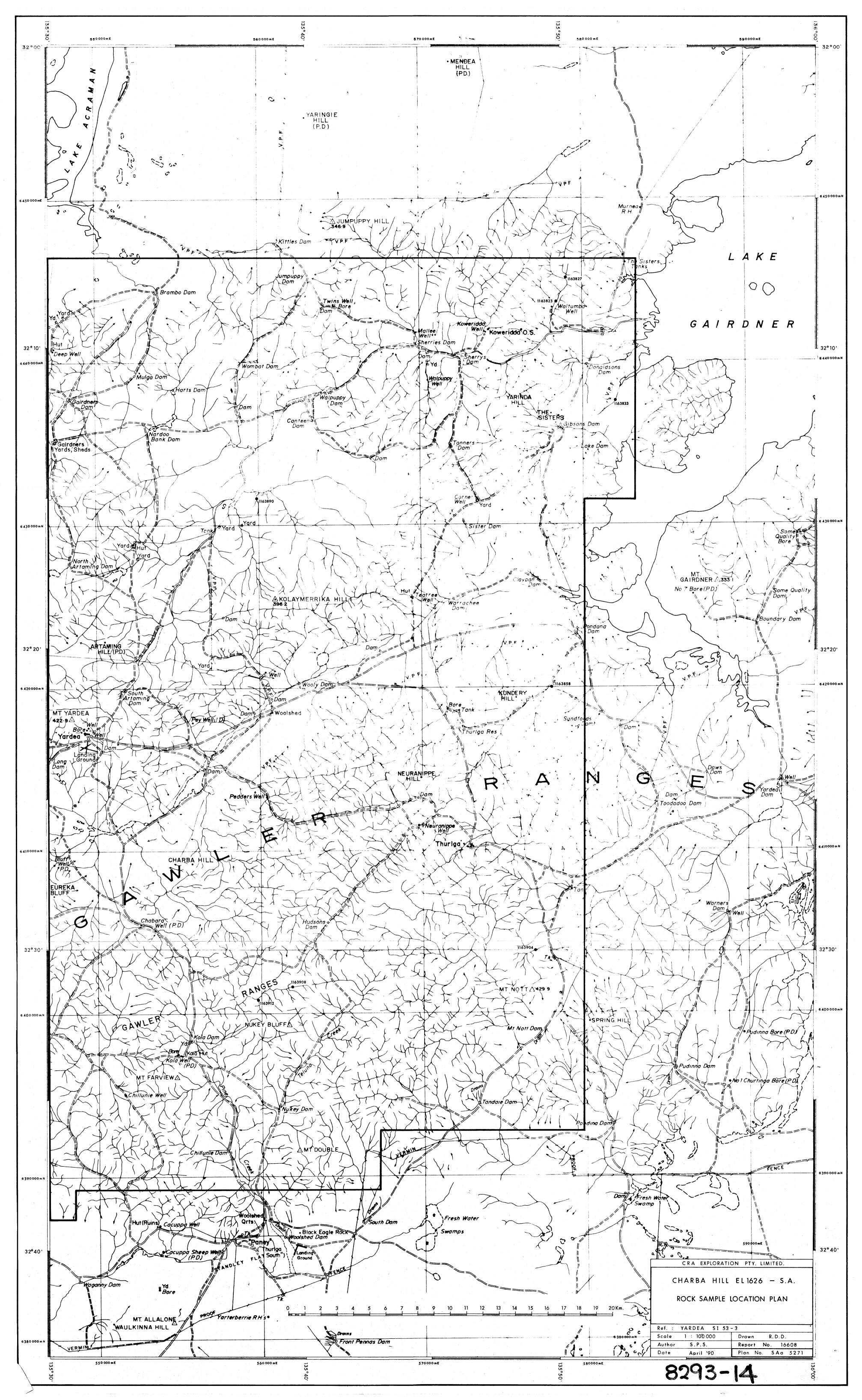












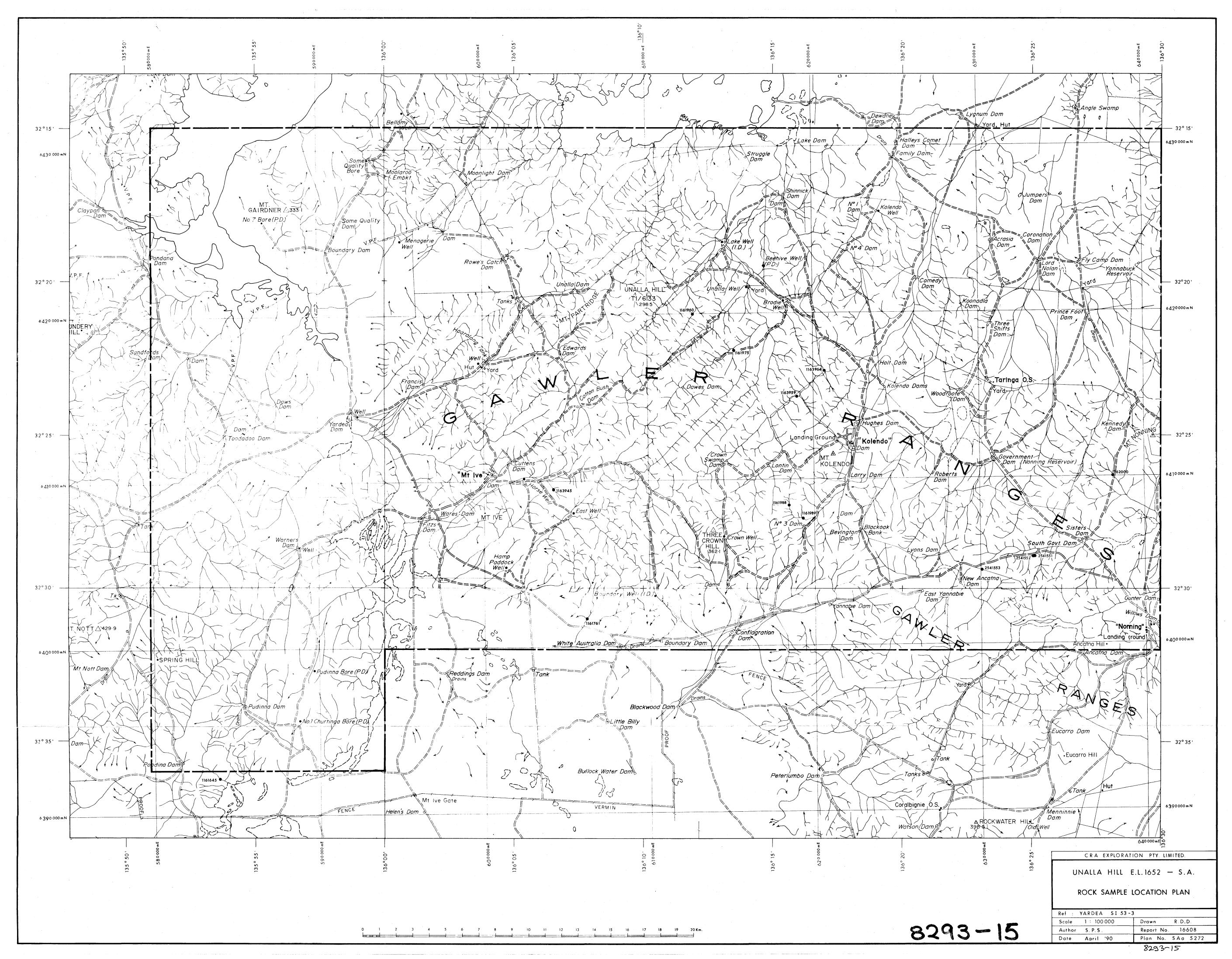


TABLE 1

SAMPLE NUMBER SEQUENCES - GRAVEL SAMPLES PELTABINNA HILL EL 1627, CHARBA HILL EL 1626 & UNALLA HILL EL; 1652

PELTABINNA HILL	CHARBA HILL EL 1626
1161418-1161543 1161545-1161550	<u>Current Samples</u> 1161544 1161615-1161623
1161601-1161614 1161628	1161625-1161627
	1161629-1161634
UNALLA HILL EL 1652	1161647-1161650 1161762-116763
Current Samples	Old Samples
1161624	1233860-1233863
1161628	1233865
1161635-1161646	1233867-1233892
1161751-1161761	1233894-1233895
1161764-1161767	1233898
1161901-1161905	1233900-1233926
0110 1	1233928-1233958
Old Samples	1233962-1233969
1233829-1233859	1233972
1233927 1233979-1233980	1233974
1233983-1234003	1233976 1233978
1234008-1234010	1233978
1234012	1233981-1233982
1234014	1234412-123442
1234014	
1234020-1234030	
1234032-1234042	
1234053	
1234056-1234066	
1234068-1234076	
1234401-1234411	

<u>INDICATOR MINERAL RESULTS FOR PELTABINNA HILL EL 1627 (P).</u>
CHARBA HILL EL 1626 (C) & UNALLA HILL EL 1652 (U), REPORTED TO 04/05/90

Sample No.	<u>EL</u>	Result	Sample No.	<u>EL</u>	Result	Sample No.	<u>EL</u>	Result
1161424	P	NIL	1161506	P	NIL	1161635	U	NIL
1161426	P	NIL	1161507	P	NIL	1161636	Ū	NIL
1161427	P	NIL	1161508	P	NIL	1161637	U	NIL
1161431	P	NIL	1161509	P	1 chrmt	1161638	U	NIL
1161432	P	NIL	1161510	P	NIL	1161639	U	NIL
1161436	P	NIL	1161519	P	NIL	1161640	U	NIL
1161437	P	NIL	1161520	P	NIL	1161641	U	NIL
1161438	P	NIL	1161522	P	NIL	1161642	U	NIL
1161439	P	NIL	1161524	P	NIL	1161643	U	NIL
1161441	P	NIL	1161526	P	NIL	1161644	U	NIL
1161443	P	NIL	1161527	P	NIL	1161645	U	NIL
1161445	P	NIL	1161528	P	NIL	1161646	U	NIL
1161447	P	NIL	1161529	P	NIL	1161649	C	NIL
1161450	P	NIL	1161530	P	NIL	1161650	C	NIL
1161452	P	NIL	1161531	P	NIL	1161751	U	NIL
1161454	P	NIL	1161532	P	NIL	1161752	U	NIL
1161455	P	NIL	1161533	P	NIL	1161753	U	NIL
1161456	P	NIL	1161534	P	NIL	1161754	U	1 picro
1161457	P	NIL	1161535	P	NIL	1161755	U	NIL
1161458	P	NIL	1161537	P	NIL	1161756	U	NIL
1161459	P	NIL	1161538	P	NIL	1161757	U	NIL
1161472	P	NIL	1161540	P	NIL	1161758	U	NIL
1161475	P	NIL	1161542	P	1 chrmt	1161759	U	NIL
1161477	P	NIL	1161546	P	NIL	1161760	U	NIL
1161480	P	NIL	1161548	P	NIL	1161761	U	2 chrmts
1161481	P	NIL	1161549	P	NIL	1161762	C	NIL
1161482	P	NIL	1161550	P	NIL	1161765	U	NIL
1161483	P	NIL	1161601	P	NIL	1161766	U	NIL
1161484	P	NIL	1161602	P	NIL	1161767	U	NIL
1161485	P	NIL	1161603	P	NIL	1161901	U	NIL
1161486	P	NIL	1161605	P	NIL	1161902	U	1 chrmt
1161487	P	NIL	1161606	P	NIL	1161903	U	NIL
1161488	P	NIL	1161614	P	NIL	1161904	U	NIL
1161489	P	NIL	1161615	C	NIL	1161905	U	NIL
1161490	P	NIL	1161621	C	NIL			
1161492	P	NIL	1161624	U	NIL			
1161494	P	NIL	1161625	С	NIL			
1161496	P	NIL	1161627	C	NIL			
1161497	P	NIL	1161629	CCCC	NIL			
1161498	P	NIL	1161631	C	NIL			
1161501	P	NIL	1161632	C C	NIL			
1161503	P	NIL	1161634	C	NIL			

chrmt = chromite / picro = picroilmenite

Sample

Licence

Con. Wt. (Kg)

Apatite

Bastensite

Barite

Bi Minerals Cu Minerals Cassiterite

LEGEND:

Licences: : Peltabinna Hill

C: Charba Hill

U: Unalla Hill

Minerals:

Prevalent +50%

A: Abundant 20-50%

C: Common 10-20%

S: Some 3-10%

O: Often 1-3%

F: Few 0.1-1%

R: Rare 2-10 Grains

T: Trace 1 Grain

TABLE 3: Other mineral results for Peltabinna Hill, Charba Hill and Unalla Hill, for the period ending 4/5/90.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals	Cu Minerals	Cassiterite
1161424	Р	0.001	т					
1161426	Р	0.003	Т		R			
1161427	Р	0.006			С			
1161431	Р	0.023	R		F			
1161432	Р	0.004	R		Α			
1161436	Р	0.001			Р			
1161437	Р	0			Α `			
1161438	Р	0.001	Т		0			
1161439	Р	0.02			S			
1161441	Р	0.001			•			
1161443	Р	0	· T					
1161445	Р	0.001	Т					
1161447	Р	0.002						
1161450	Р	0.001						
1161452	Р	0.002	R		S			Т
1161454	Р	0.007	Т					
1161455	Р	0.003	Т					
1161456	Р	0.002						
1161457	Р	0						
1161458	Р	0.002						
1161459	Р	0	Т					
1161472	Р	0	R					
1161475	Р	0.001	R					
1161477	Р	0	Т					
1161480	Р	0.033	Т		F			
1161481	Р	0			R			
1161482	Р	0.126	Т		F			Т
1161483	Р	0.002						
1161484	Р	0.003			F			
1161485	Ρ.	0.004	R		F			

TABLE 3: Other mineral results for Peltabinna Hill, Charba Hill and Unalla Hill, for the period ending (4/5/90.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals	Cu Minerals	Cassiterite
1161486	Р	0.007	·т					
1161487	Р	0.004					٠	
1161488	Р	0.001			•			
1161489	Р	0.011	R		R			
1161490	Р	0.002						
1161492	Р	0.002	R		R			
1161494	Р	0.009	T		F			•
1161496	P	0.002			R.			
1161497	Р	0.006			Α			
1161498	Р	0.096			0			
1161501	Р	0.014			S			
1161503	P	0.006	•		0			
1161506	Р	0.005			С			
1161507	Р	0			Т			
1161508	Р	0.014	T		0			•
1161509	Р	0.003	R					R
1161510	Р	0						
1161519	Р	0.001			R		,	
1161520	Р	0.001	R	·				
1161522	Р	0.016	F		С			
1161524	Р	0.002	R		C			•
1161526	Р	0.019						
1161527	Р	0.001						
1161528	Р	0.008	R		S	•		Т
1161529	Р	0						
1161530	Р	0.001			F			
1161531	Р	0						
1161532	Р	0						
1161533	Р	0.005						
1161534	Р	. 0	Т					

TABLE 3: Other mineral results for Peltabinna Hill, Charba Hill and Unalla Hill, for the period ending (4/5/90.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals	Cu Minerals	Cassiterite
1161535	Р	0	•					
1161537	Р	0	T		S			
1161538	Р	0.002	R		R			
1161540	Р	0.005	R		F			
1161542	Р	0.005	R		F			
1161546	Р	0	R		R			
1161548	Р	0	R		Т			
1161549	Р	0.001	T		Р			
1161550	Р	0	R		Р			
1161601	Р	0.001	R					
1161602	Р	0	R					
1161603	Р	0.001	R					
1161605	Р	0.001						
1161606	P	0.001	T					Т
1161614	Р	0						
1161615	С	0	R		R			
1161621	С	0.002			R			
1161624	U	0.003	R					,
1161625	С	0.009			F			0
1161627	С	0.087			F			
1161629	С	0.001	Т		С			
1161631	С	0.001						
1161632	С	0.005			F			
1161634	С	0.118	R		F			
1161635	U	0.043	R		F			
1161636	U	0.007			F			•
1161637	U	0.001	R		Α			
1161638	U	0						
1161639	U	0.004	R		R			
1161640	U	0.046			0			

TABLE 3: Other mineral results for Peltabinna Hill, Charba Hill and Unalla Hill, for the period ending (4/5/90.

Sample	Licence	Con. Wt. (Kg)	Apatite	Bastensite	Barite	Bi Minerals	Cu Minerals	Cassiterite
1161641	U	0.063	•		R			
1161642	U	0.039			S			
1161643	U	0	F					
1161644	U	0.002	R		R			
1161645	U	0.023			0			
1161646	U	0.03			S			
1161649	С	0.003	R					
1161650	С	0	R		Α			
1161751	U	0.001			R			
1161752	U	0	R		Α			
1161753	U	0.011	R		F			
1161754	U	0.018	R					Т
1161755	U	0	R		F			
1161756	U	0.002	R	,	Т			
1161757	U	0.011	R					
1161758	U	0.048						
1161759	U	0.006						
1161760	U	0	Т					
1161761	U	0.018			R			
1161762	С	0.003	Т		Р			
1161765	U	0.013			R			
1161766	U	0.003			Α			
1161767	U	0.001	R		· P	,		
1161901	U	0.016	R					Т
1161902	U	0.004	R					T
1161903	U	0.012	R		R			-
1161904	U	0.005	Τ .		R			F
1161905	U	0	R					

\bigcirc
110
σ
6

Sample 1161424 1161426 1161427 1161431 1161432 1161436 1161437 1161438 1161443 1161443 1161443	Florencite	Fluorite	Garnet R R R R R R R R R	Gold	Monazite	Platinum	Pyrite	Sphalerite
1161450 1161452 1161454 1161455 1161456 1161457		F	R O S T R		R	·		
1161458 1161459 1161472 1161475 1161477 1161480 1161481 1161482	Т	·	R T R R R		Т			
1161483 1161484 1161485			R T R					

11	61489	F		
11	61490	· R		
11	61492	R	•	
11	61494	F		
11	61496	R		
	61497	R		
11	61498	R		
	61501			
	61503	R		
	61506	R		
	61507			
	61508	R	•	
	61509	R	T	
	61510			
	61519	Т		
	61520	R		•
	61522	R		
	61524	R		
	61526			
	61527	Т		
	61528	F		
	61529	•		
	61530	R		
	61531	R		
	61532			
	61533	R		
11	61534		•	

Gold

Monazite

Platinum

Pyrite

Sphalerite

Florencite

Fluorite

Garnet

R R

Т

Sample

1161486

	•	

Sample	Florencite	Fluorite	Garnet	Gold	Monazite	Platinum	Pyrite	Sphalerite
1161535							•	•
1161537								
1161538			R					
1161540			R					
1161542			R					
1161546		S						
1161548			R	•				
1161549			Т					
1161550			R					
1161601			R					
1161602								
1161603			T T R					
1161605			R					
1161606								
1161614								
1161615			R					
1161621			R					
1161624		F	R					
1161625								-
1161627			R					
1161629								
1161631			T F					
1161632			F					
1161634	R	•	R					
1161635			R					
1161636			T					
1161637			R					
1161638			R					
1161639			F					
1161640		R	R					

\Box	
C	
C	
Ţ,	
O	

Sample	Florencite	Fluorite	Garnet	Gold	Monazite	Platinum	Pyrite	Sphalerite
1161641			Т					
1161642			R					
1161643			R					
1161644			T					
1161645		•	R		,			
1161646			R					
1161649			R		•			
1161650			R					
1161751			R					
1161752		R	0					
1161753			R					
1161754		R T	F T					
1161755		T	T					
1161756			F					
1161757			F					•
1161758			R					
1161759			R					,
1161760			R					
1161761			Т					
1161762			R					
1161765		R	F					
1161766			R					
1161767		R						
1161901		R						
1161902		F	R	•				
1161903		R						
1161904			R					
1161905			Т					•

C
\bigcirc
170
\sim I

Sample 1161424 1161426	Sulphide	Topaz T	U Minerals	Zircon R R
1161427		* *		R
1161431				R
1161432				R
1161436		F		R
1161437				R
1161438		R		R
1161439				R
1161441				÷
1161443		• -		
1161445				
1161447				
1161450		R		
1161452		R		R
1161454				R
1161455		R		
1161456				T
1161457		R		R
1161458		F		R
1161459		F		R
1161472				
1161475		R		R
1161477		F		
1161480				R
1161481		R		
1161482		R		R
1161483		R		Т
1161484				
1161485		R		

0
\odot
w
\sim 1
 -

Sample	Sulphide	Topaz	U Minerals	Zircon
1161486	-			R
1161487				
1161488		_	•	
1161489		R		Т
1161490				
1161492		R		R
1161494		•		R
1161496				R
1161497			•	R
1161498				R
1161501				
1161503				F
1161506				
1161507		Т		
1161508				R
1161509		R		R
1161510		F		
1161519	•			R
1161520		T		R
1161522				F
1161524		R		F
1161526			•	Т
1161527		R		Т
1161528		R		R
1161529		F		R
1161530		R		
1161531			•	
1161532				. Т
1161533		F		R
1161534		R		• •

C
\bigcirc
W
~1
\mathcal{N}

Sample 1161535 1161537	Sulphide	Topaz P	U Minerals	Zircon R T
1161538 1161540	•	R		R R
1161542		R		R
1161546		, ,		T
1161548	•			R
1161549				T
1161550	-			T
1161601				R
1161602				
1161603		Т		R
1161605		R		
1161606				R
1161614		F		
1161615				R
1161621		_		R
1161624		R		
1161625				_
1161627 1161629				F
1161631				
1161632				R
1161634				R
1161635				R
1161636				
1161637		R		R
1161638				Т
1161639		T		R
1161640				R

\Box
175
~1
Ç

Sample 1161641 1161642 1161643 1161644	Sulphide	Topaz R F	U Minerals	Zircon R R R
1161645		F		R
1161646				
1161649				R
1161650		R		Т
1161751		0		0
1161752				R
1161753				R
1161754				R
1161755				F
1161756				R
1161757				F
1161758				Т
1161759				R
1161760				
1161761				R
1161762				R
1161765		F		R
1161766		F		R
1161767				Т
1161901				R
1161902				T
1161903				R
1161904				R
1161905				

TABLE 4

MICRODIAMOND RESULTS FOR CHARBA HILL EL 1626 (C),
PELTABINNA HILL EL 1627 (P) & UNALLA HILL EL 1652 (U)
FOR THE PERIOD ENDING 01/06/90

Sample No.	<u>EL</u>	Result	Sample No.	<u>EL</u>	Result
1161422	P	NIL	1161524	P	NIL
1161424	P	NIL	1161525	P	NIL
1161426	P	NIL	1161527	P P	NIL
1161430	P	NIL	1161529		NIL
1161431	P	NIL	1161531	P	NIL
1161432	P	NIL	1161532	P	NIL
1161433	P	NIL	1161538	P	NIL
1161435	P	NIL	1161542	P	NIL
1161436	P	NIL	1161546	P	NIL
1161437	P	NIL	1161549	P	NIL
1161441	P	NIL	1161550	P	NIL
1161450	P	NIL	1161606	P	NIL
1161451	P	NIL	1161615	С	NIL
1161452	P	NIL	1161617	С	NIL
1161457	P	NIL	1161618	С	NIL
1161459	P	NIL	1161621	00000	NIL
1161466	P	NIL	1161625	С	NIL
1161470	P	NIL	1161626	С	NIL
1161471	P	NIL	1161629		NIL
1161473	P	NIL	1161636	U	NIL
1161476	P	NIL	1161637	U	NIL
1161477	P	NIL	1161640	U	NIL
1161483	P	NIL	1161641	U	NIL
1161486	P	NIL	1161643	U	NIL
1161494	P	NIL	1161645	U	NIL
1161496	P	NIL	1161746	U	NIL
1161501	P	NIL	1161752	U	NIL
1161505	P	NIL	1161755	U	NIL
1161507	P	NIL	1161761	U	NIL
1161508	P	NIL	1161762	C	NIL
1161515	P	NIL			
1161518	P	NIL			
1161519	P	NIL			
1161520	P	NIL			
1161523	P	NIL			

[&]quot;CRA CONFIDENTIAL INFORMATION - UNAUTHORISED USE PROHIBITED."

TABLE 5
-80# STREAM SEDIMENT ASSAY DETAILS

<u>Element</u>	Detection Limit (ppm)	Assay Method
As	2	AAS
Te	0.1	AAS
F	100	SIE
Pb	5	AAS
Bi	10	AAS
Ag	0.5	AAS
Mo	0.1	ICP-MS
Nb	0.2	ICP-MS
Sb	0.05	ICP-MS
Sn	0.5	ICP-MS
U	0.05	ICP-MS
Ba	5	ICP
Ce	15	ICP
Co	5	ICP
Cr	10	ICP
Cu	5	ICP
Fe	100	ICP
La	5	ICP
Mn	15	ICP
Ni	10	ICP
P	100	ICP
Th	10	ICP
Zn	5	ICP
Zr	5 5 2	ICP
V		ICP
Pd	0.001	Fire Carbon Rod
Pt	0.008	Fire Carbon Rod
Au	0.001	Fire Carbon Rod

[&]quot;CRA CONFIDENTIAL INFORMATION - UNAUTHORISED USE PROHIBITED."

 $\frac{\text{TABLE 6}}{\text{STREAM SEDIMENT ANOMALIES - PELTABINNA HILL EL 1627, CHARBA HILL EL 1626 & UNALLA HILL EL 1652}}$

LICENCE	ANOMALY NAME (& PRIORITY)	SAMPLE NO.	RESULTS	NO. FOLLOW UP SAMPLES	REMARKS
Peltabinna Hill EL 1627	Perrinalba Dam (2)	1161503	Te 0.8 ppm As 5 ppm	10 -80#	
	South Perrinalba Dam (3)	1161496	Te 0.4 ppm As 5 ppm	12 -80#	
	L. Acraman (1)	1161482	F 1100 ppm U 11.1 ppm	11 -80#	
	Mungo Tank (1)	1161511	U 3.89 ppm As 13 ppm F 460 ppm Bastnaesite 1-3%	20 -80# 4 gravel	
		1161514	Bastnaesite 0.1-1%		
	Eustice Dam (2)	1161546	Bastnaesite 0.1-1%	7 gravel 7 -80#	
Charba Hill EL 1626	Chillunie Dam (2)	1233967	Sb 8.05 ppm As 7 ppm Cu 28 ppm	14 -80#	
	Brambo Dam (1)	1233863	U 5.33 ppm Sb 1.06 ppm As 15 ppm	10 -80#	Also geophysical anomaly
1	Brambo Dam East (2)	2543417	Zn 195 ppm Cu 27 ppm	10 -80#	
Unalla Hill EL 1652	Struggle Dam (3)	1161979	U 3.39 ppm As 7 ppm F 500 ppm	8 -80#	
		1161980	Cu 23 ppm F 900 ppm		
	Arcasia Dam (3)	1234026	Au 8.65 ppm Sb 0.64 ppm	1 -80#	Repeat only, suspect Lab error due to low weight assayed.

TABLE 7

SAMPLES RE-OBSERVED FOR BASTNAESITE FROM CHARBA HILL EL 1626 (C)

& UNALLA HILL EL 1652 (U)

<u>SAMPLE</u>	<u>LICENCE</u>	RESULT
1233835 1233848	U U	
1233854 1233855 1233868	U U	
1233869 1233893	C C Outside	
1233898 1233905		
1233946 1233948	C C C C	
1233962 1233979 1233987	C U U	
1233992 1234009	U U	
1234020 1234023	Ŭ U	
1234041 1234082	U Outside	
1234083 1234084 1234087	Outside Outside Outside	
1234090	Outside	

[&]quot;CRA CONFIDENTIAL INFORMATION - UNAUTHORISED USE PROHIBITED."

<u>APPENDIX I</u> -80# STREAM SEDIMENT ASSAY DATA - PELTABINNA HILL EL 1627, CHARBA HILL EL 1626 & UNALLA HILL EL 1652

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1161418	3	0.1	320	20	5	0.25	1.22	11.4
1161419	3	0.2	300	25	5	0.25	0.82	8.26
1161420	3	0.1	400	15	5	0.25	0.98	12.4
1161421	3	0.2	400	15	10	0.25	0.7	13.3
1161422	3	0.05	26	15	5	0.25	0.57	8.37
1161423	3	0.1	320	20	5	0.25	0.66	9.6
1161424	2	0.05	330	15	5	0.25	0.69	10.4
1161425	3	0.1	280	20	\ 5	0.25	0.76	13.1
1161426	2	0.05	260	20	5	0.25	0.9	17.4
1161427	5	0.1	330	25	5	0.25	1.71	23
1161428	· 2	0.2	320	20	5	0.25	1.14	10.4
1161429	3	0.05	320	20	5	0.25	0.85	12.1
1161430	3	0.2	260	20	5	0.25	0.82	13.9
1161431	2	0.05	260	15	5	0.25	0.79	12
1161432	3	0.05	300	10	10	0.25	0.47	9.71
1161433	2	0.4	200	5	5	0.25	0.42	8.14
1161434	3	0.7	280	15	10	0.25	0.52	11.9
1161435	2	0.05	200	15	10	0.25	0.67	12
1161436	2	0.05	170	5	10	0.25	0.64	6.27
1161437	2	0.05	180	10	5	0.5	1.02	9.35
1161438	3	0.05	260	15	5	0.25	0.87	10.8
1161439	4	0.05	170	15	5	0.25	0.66	11.7
1161440	1	0.05	200	10	5	0.25	0.61	9.65
1161441	2	0.05	220	5	5	0.25	0.34	6.84
1161442	3	0.1	390	10	10	0.25	0.49	9.87
1161443	3	0.1	560	20	10	0.25	1.1	19
1161444	2	0.05	390	15	5	0.25	0.55	7.81
1161445	0.5	0.05	300	10	5	0.25	0.57	5.34
1161446	2	0.4	300	15	5	0.25	0.98	9.08
1161447	1	0.1	220	15	5	0.25	0.63	10.2
1161448	1	0.05	220	10	5	0.25	0.43	6.41
1161449	2	0.05	170	15	5	0.25	0.64	14

1161451	2	0.1	170	10	10	0.25	0.55	9.13
1161452	2	0.05	310	10	10	0.25	0.46	9.05
1161453	2	0.05	. 150	10	10	0.25	0.42	8.57
1161454	2	0.05	160	10	5	0.25	0.54	11.1
1161455	4	0.1	190	20	5	0.25	0.6	5.86
1161456	2	0.2	220	10	5	0.25	0.81	8.09
1161457	0.5	0.05	150	5	5	0.25	0.66	4.03
1161458	0.5	0.05	100	2.5	5	0.25	0.57	4.45
1161459	0.5	0.05	60	5	5	0.25	0.51	5.62
1161460	1	0.05	120	10	5	0.25	0.51	5.14
1161461	2	0.05	120	15	5	0.25	0.44	10.7
1161462	2	0.05	120	15	5	0.25	0.41	9.82
1161463	2	0.2	170	15	5	0.25	0.48	9.79
1161464	2	0.1	110	5	5	0.25	0.67	9.83
1161465	2	0.1	180	5	5	0.25	0.83	8.96
1161466	2	0.1	190	10	10	0.5	0.5	10.8
1161467	2	0.05	150	5	5	0.25	0.46	6.86
1161468	3	0.05	170	15	5	0.25	0.7	11.5
1161469	2	0.05	240	15	10	0.25	0.56	9.61
1161470	1	0.05	95	15	5	0.25	0.52	9.58
1161471	2	0.1	130	15	5	0.25	0.44	7.81
1161472	1	0.1	120	10	5	0.25	0.44	7.57
1161473	1	0.1	130	5	5	0.5	0.63	7.04
1161474	1	0.1	160	5	5	0.25	0.63	7.83
1161475	1	0.1	180	5	5	0.25	0.85	8.5
1161476	1	0.05	150	2.5	5	0.25	0.93	5.47
1161477	1	0.05	120	2.5	5	0.25	0.5	4.31
1161478	2	0.05	130	5	5	0.25	0.69	7.34
1161479	0.5	0.05	150	10	10	0.25	0.67	13.2
1161480	4	0.05	130	10	5	0.25	0.49	11.6
1161482	0.5	0.05	1100	10	5	0.25	1.55	20.9

Pb PPM

10

F PPM

130

SAMPNO

1161450

As PPM

0.5

Te PPM

0.05

Ag PPM

0.25

Bi PPM

10

Mo PPM

0.67

Nb PPM

7.34

Page 2

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1161483	2	0.05	240	5	5	0.25	0.43	8.15
1161484	3	0.05	340	5	5	0.25	1.59	15.5
1161485	2	0.05	530	15	5	0.25	1.58	16.7
1161486	3	0.05	430	10	5	0.25	1.07	9.13
1161487	0.5	0.05	450	15	5	0.25	1.34	16. 9
1161488	2	0.05	360	5	5	0.25	0.76	8.09
1161489	2	0.05	400	15	5	0.25	0.95	12.3
1161490	0.5	0.05	290	15	5	0.25	0.76	8.2
1161491	· 1	0.05	360	15	5	0.5	0.72	9.83
1161492	0.5	´0.1	280	15	5	0.25	1.01	9.13
1161493	3	0.1	310	15	5	0.25	1.54	24.2
1161494	2	0.05	380	10	5	0.25	1.08	12
1161495	3	0.1	340	10	10	0.25	1.03	15.7
1161496	5	0.4	350	10	5	0.25	0.91	13.8
1161497	3	0.05	350	5	5	0.5	0.24	5.25
1161498	4	0.5	430	10	10	0.25	0.93	12.9
1161499	6	0.4		10	5	0.25	1.54	15.8
1161500	4	0.4		15	5	0.25	1.44	17.9
1161501	2	0.05	150	5	5	0.25	0.95	16.4
1161502	5	0.1	170	10	10	0.25	0.94	7.95
1161503	5	0.8	330	15	5	0.25	1.39	9.32
1161504	2	0.05	230	5	5	0.25	0.94	10.1
1161505	3	0.05	250	10	5	0.25	1.65	29.6
1161506	3	0.4	230	10	5	0.25	0.83	15.5
1161507	3	0.05	350	15	5	0.25	1.2	15.1
1161508	2	0.1	230	5	10	0.25	0.68	9.78
1161509	3	0.05	270	10	, 5	0.25	0.87	11.3
1161510	2	0.1	180	15	10	0.5	0.46	11.4
1161511	13	0.1	460	50	5	0.25	0.99	26.7
1161512	4	0.1	330	30	5	0.25	1.04	17
1161513	3	0.05	250	10	5	0.5	0.68	11
1161514	3	0.1	280	15	5	0.25	0.68	14.1

000282

5	0.25	0.75	11.4
5	0.25	0.67	10.3
10	0.25	0.77	10.5
5	0.25	0.58	6.41
10	0.25	0.89	10.1
10	0.25	1	9.37
5	0.25	0.74	7.99
5	0.25	0.65	8.05
5	0.25	1.09	12.9
5	0.25	0.66	6.98
5	0.25	0.77	10.4
10	0.5	0.62	8.4
10	0.25	0.58	9.2
10	0.5	0.68	10.9
10	0.25	0.87	9.14
5	0.25	1.27	13
5	0.5	0.92	11.5
5	0.25	0.77	13
5	0.25	0.82	9.86
5	0.25	0.61	10.8
5	0.25	0.72	10.7

Page 4

SAMPNO

As PPM

Te PPM

0.05

0.05

0.05

0.1

0.1

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.1

0.05

0.05

0.1

0.05

0.05

0.05

0.05

0.1

0.1

0.05

0.05

0.1

0.1

0.05

0.05

0.05

F PPM

Pb PPM

2.5

2.5

2.5

2.5

Bi PPM

Ag PPM

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

Mo PPM

0.83

1.26

0.87

0.72

0.53

1.07

0.96

1.04

0.94

0.85

Nb PPM

23.1

16.5

9.57

8.89

6.05

10.1

19.6

11.3

10.5

13.9

12.9

0
Ö
N
φ 4

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM
1161547	3	0.05	300	5	5	0.25	0.85	12.4
1161548	3	0.05	290	10	5	0.25	0.87	10.9
1161549	5	0.05	280	15	10	0.25	0.86	12
1161550	3	0.05	290	5	5	0.25	1.62	10.1
1161601	3	0.1	220	10	5	0.25	1.29	8.77
1161602	2	0.05	180	5	5	0.25	1.26	10.6
1161603	2	0.1	160	5	5	0.25	1.1	8.26
1161604	2	0.6	190	10	5	0.25	0.95	9.19
1161605	2	0.05	130	15	5	0.25	0.88	7.53
1161606	2	0.1	190	10	10	0.25	1.1	8.2
1161607	2	0.05	170	5	5	0.5	0.93	7.96
1161608	2	0.05	160	5	5	0.25	1.06	8.15
1161609	2	0.05	120	5	5	0.25	1.08	7.16
1161610	2	0.05	180	5 、	5	0.25	1.21	9.68
1161611	2	0.1	140	2.5	5	0.25	1.32	6.28
1161612	3	0.1	190	5	5	0.25	1.32	11.6
1161613	3	0.05	200	5	5	0.25	0.97	10.6
1161614	1	0.1	170	2.5	5	0.25	0.81	7.29
1161615	3	0.1	210	20	10	0.25	1.12	10.9
1161616	3	0.05	210	15	5	0.25	1.13	12.9
1161617	3	0.05	220	10	. 5	0.25	1.11	15
1161618	2	0.1	170	10	5	0.25	1.06	11
1161619	3	0.05	400	15	5	0.25	1.59	14.7
1161620	4	0.2	260	10	10	0.25	1.39	18.3
1161621	3	0.05	290	15	5	0.25	1.1	16.9
1161622	4	0.05	290	15	5	0.25	1.35	21.9
1161623	4	0.05	350	20	10	0.25	1.33	22.7
1161624	5	0.05	380	25	5	0.5	1.59	11.4
1161625	5	0.1	240	15	5	0.25	1.04	17.1
1161626	3	0.05	280	10	5	0.25	1.01	15.7
1161627	3	0.05	420	15	5	0.25	1.1	16.2
1161628	3	0.05	310	15	10	0.25	1.73	15.8

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1161629	4	0.1	320	20	5	0.25	1.19	17.3
1161630	2	0.05	310	5	5	0.25	1.06	12.9
1161631	2	0.05	200	2.5	5	0.25	0.8	11.4
1161632	3	0.05	230	2.5	5	0.25	0.96	11.8
1161633	3	0.05	250	5	5	0.25	0.97	12
1161634	2	0.05	210	5	5 .	0.25	0.79	9.42
1161635	4	0.05	290	10	5	0.25	1.11	14.6
1161636	3	0.1	220	10	5	0.25	0.98	13.3
1161637	4	0.05	260	10	10	0.25	1.04	15.9
1161638	2	0.05	270	10	5	0.25	1.31	13.6
1161639	5	0.05	260	10	10	0.25	0.95	12.9
1161640	3	0.05	260	15	5	0.25	0.99	15.3
1161641	3	0.05	240	15	5	0.25	0.97	17.4
1161642	4	0.1	340	10	10	0.25	0.63	10.3
1161643	3	0.05	240	10	5	0.25	0.96	14.3
1161644	3	0.05	220	10	5	0.25	0.87	13.7
1161645	3	0.2	350	5	5	0.25	1.11	15.2
1161646	5	0.05	220	15	5	0.25	1.18	17.1
1161647	4	0.1	190	15	5	0.25	1.46	16.2
1161648	3	0.05	280	10	5	0.25	1.35	14.8
1161649	4	0.05	270	15	5	0.5	1.36	15
1161650	4	0.1	280	15	10	0.5	1.12	15
1161751	2	0.05	240	5	5	0.25	0.93	11.8
1161752	4	0.1	210	10	5	0.25	1.07	15.2
1161753	3	0.1	240	15	5	0.25	0.85	15.6
1161754	4	0.6	310	15	5	0.25	1.13	15.9
1161755	3	0.05	250	10	5	0.25	0.8	12.1
1161756	3	0.1	290	15	5	0.25	0.96	24.6
1161757	4	0.05	260	10	5	0.25	1.2	14
1161758	3	0.05	250	10	5	0.25	0.96	18
1161759	3	0.1	240	10	5	0.25	1	13.7
1161760	2	0.05	240	10	5	0.25	0.81	14

SAMPNO	As PPM	Te PPM	FPPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM
1161761	3	0.05	230	10	5	0.25	0.88	15.7
1161762	4	0.1	200	10	5	0.5	0.86	12.7
1161763	4	0.05	240	15	10	0.25	1.04	11
1161764	5	0.05	270	15	5	0.25	1.06	20.8
1161765	5	0.05	310	15	5	0.25	5.33	21.2
1161766	3	0.1	240	10	10	0.25	2.18	27
1161767	4	0.05	330	10	5	0.25	1.66	5.51
1161945	1	0.05	260	5	5	0.25	1.65	14.1
1161946	2	0.05	260	25	5	0.25	1.48	16.1
1161947	2	0.05	300	10	5	0.25	1.19	11.7
1161948	2	0.05	310	20	5	0.25	1.47	20.2
1161949	2	0.05	360	10	5	0.25	1.27	15
1161950	1	0.05	240	10	5	0.25	0.92	12.7
1161951	2	0.05	450	10	5	0.25	1.1	13.1
1161952	2	0.05	320	15	5	0.5	1.12	12.3
1161953	2	0.05	310	. 15	5	0.25	1.29	13.8
1161954	2	0.05	250	10	5	0.25	1.39	16.5
1161955	2	0.05	260	10	5	0.25	1.33	12
1161956	2	0.05	250	15	5	0.25	1.52	16.4
1161957	2	0.05	. 240	5	5	0.25	1.15	18.2
1161958	2	0.05	330	55	5	0.25	1.16	17.2
1161959	2	0.05	220	5	5	0.25	1.28	16.8
1161960	2	0.05	300	20	5	0.25	1.42	15.6
1161961	3	0.05	460	15	5	0.25	1.2	13
1161962	2	0.05	280	10	5 .	0.25	1.4	16.2
1161963	2	0.05	280	25	5	0.25	1.39	20.9
1161964	3	0.05	560	20	5	0.25	1.73	16.9
1161965	1	0.05	310	10	5 .	0.25	1.26	17.8
1161966	2	0.05	710	10	5	0.25	1.57	19
1161967	2	0.05	380	5	5	0.25	1.13	14.9
1161968	1	0.05	200	2.5	5	0.25	1.04	13.3
1161969	1	0.05	480	2.5	5	0.25	1.13	19.8

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM
1161970	2	0.05	390	5	5	0.25	1.14	13.3
1161971	2	0.05	360	2.5	5	0.25	1.04	13.8
1161972	3	0.05	380	10	5	0.25	1.1	14.4
1161973	2	0.05	240	10	5	0.25	1.4	14.6
1161974	2	0.05	350	2.5	5	0.25	0.97	12.5
1161975	2	0.05	280	2.5	5	0.25	1.09	11.9
1161976	2	0.05	150	2.5	5	0.25	0.89	12.3
1161977	4	0.05	280	10	5	0.25	1.04	13.7
1161978	7	0.05	640	10	5	0.25	1.18	12.2
1161979	7	0.05	500	10	5	0.25	1.1	12.2
1161980	3	0.05	900	5	5	0.25	0.89	11.7
1161981	4	0.05	360	2.5	5	0.25	1.12	12.3
1161982	2	0.05	310	2.5	5	0.25	1.07	10.4
1161983	4	0.05	310	10	5	0.25	1.64	15.2
1161984	3	0.05	210	10	5	0.25	1.15	13.2
1161985	5	0.05	380	15	5	0.25	1.41	21.4
1161986	4	0.05	300	10	5	0.25	1.22	15
1161987	4	0.05	380	10	5	0.25	1.29	17.1
1161988	3	0.05	250	5	5	0.25	1.13	17.9
1161989	3	0.05	380	10	· 5	0.25	1.19	24.5
1161990	4	0.05	360	5	5	0.25	1.1	13.6
1161991	3	0.05	400	20	5	0.25	1.21	16.6
1161992	3	0.05	360	10	5	0.25	1.52	14.2
1161993	2	0.05	390	10	5	0.25	1.1	12.9
1161994	3	0.05	350	10	5	0.25	0.89	6.93
1161995	2	0.05	390	5 ,	5	0.25	1.03	15.1
1161996	2	0.05	260	10	5	0.25	1.29	16.2
1161997	1	0.05	270	5	5	0.25	0.97	12.2
1161998	2	0.05	270	5	5	0.25	1.12	15.5
1161999	3	0.05	350	20	5	0.25	1.2	6.44
1162000	2	0.05	310	5	5	0.25	1.35	18.3
1163801	1	0.05	170	5	5	0.25	1.14	11.4

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1163802	1	0.05	280	5	5	0.25	1.25	11.6
1163803	2	0.05	340	5	5	0.25	1.48	15.5
1163804	1	0.05	310	2.5	5	0.25	1.16	10.2
1163805	1	0.05	210	5	5	0.25	1.15	11.7
1163806	2	0.05	220	5	5	0.25	1.09	16.5
1163807	2	0.05	350	10	5	0.25	1.21	17.3
1163808	2	0.05	240	5	5	0.25	1	11.9
1163809	2	0.05	300	10	5	0.25	1.22	10.8
1163810	3	0.05	420	10	5	0.25	1.26	12.4
1163811	2	0.05	740	2.5	5	0.25	2.31	12.5
1163812	3	0.05	760	15	5	0.5	2.54	14.7
1163813	2	0.05	540	5	5	0.25	1.78	13.3
1163814	1	0.05	520	5	5	0.25	1.16	20.7
1163815	3	0.05	480	10	5	0.25	1.84	13.8
1163816	2	0.05	520	5	5	0.25	1.92	14.8
1163817	2	0.05	520	5	5	0.25	1.47	14
1163818	2	0.05	630	2.5	5	0.25	1.42	10.7
1163819	2	0.05	520	5	5	0.25	1.12	13.4
1163820	1	0.05	400	2.5	5	0.25	1.47	13.2
1163821	1	0.05	400	2.5	5	0.25	1.2	14.1
1163822	1	0.05	390	5	5	0.25	1.51	14
1163823	3	0.05	400	10	5	0.25	1.59	16.5
1163824	2	0.05	400	5	5	0.25	1.4	12.6
1163825	1	0.05	360	2.5	5	0.25	1.22	8.19
1163826	1	0.05	320	5	5	0.25	0.5	4.34
1163827	2	0.05	360	5	5	0.25	1.2	12.8
1163828	2	0.05	520	5	5	0.25	1.52	17
1163829	2	0.05	530	2.5	5	0.25	1.29	15.1
1163830	, 1	0.05	400	2.5	5	0.25	1.68	13.2
1163831	1	0.05	390	2.5	5	0.25	1.47	9.34
1163832	6	0.05	430	5	5	0.25	1.95	12.2
1163833	1	0.05	290	2.5	5	0.25	1.56	11.9

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1163834	2	0.05	350	5	5	0.25	1.23	16.1
1163835	3	0.05	400	10	5	0.25	1.28	15
1163836	1	0.05	300	5	5	0.25	1.15	12.8
1163837	4	0.05	430	10	5	0.25	1.19	15.9
1163838	1	0.05	420	5	5	0.25	1.17	11.5
1163839	2	0.05	500	5	5	0.25	1.48	12.9
1163840	3	0.05	550	10	5	0.25	1.61	18.4
1163841	3	0.05	540	10	5	0.25	1.28	16.4
1163842	2	0.05	500	5	5	0.25	1.22	14
1163843	1	0.05	400	- 5	5	0.25	1.12	12.8
1163844	1	0.05	420	5	5	0.25	1.05	16.2
1163845	1	0.05	400	2.5	5	0.25	1.17	11.5
1163846	1	0.05	360	2.5	5	0.25	1.21	13
1163847	2	0.05	360	5	5	0.25	1.19	11.6
1163848	0.5	0.05	290	2.5	5	0.25	1.13	10.8
1163849	3	0.05	340	5	5	0.25	1.4	12.3
1163850	2	0.05	340	10	5	0.25	1.23	12.1
1163851	1	0.05	290	2.5	5	0.25	1.07	9.82
1163852	0.5	0.05	230	2.5	5	0.25	0.99	11.9
1163853	1	0.05	240	2.5	5	0.25	1.09	9.44
1163854	3	0.05	350	10	5	0.25	1.24	15.5
1163855	2	0.05	340	5	5	0.25	1.03	8.2
1163856	2	0.05	340	10	5	0.25	1.28	11.4
1163857	4	0.05	360	10	5	0.25	1.41	15.2
1163858	2	0.05	580	10	5	0.25	1.81	16
1163859	2	0.05	560	10	5	0.25	1.43	15
1163860	1	0.05	550	5	5	0.25	1.29	13.1
1163861	1	0.05	350	5	5	0.25	1.07	10.1
1163862	1	0.05	310	2.5	5	0.25	1.3	9.74
1163863	1	0.05	320	2.5	5	0.25	1.02	9.59
1163864	0.5	0.05	290	2.5	5	0.25	0.93	9.07
1163865	1	0.05	250	2.5	5	0.25	1.25	11.7

G/ 4/11 / 10	7101111	1011111	1 1 1 141	1 01 1 101		Ay FFIVI	INDELIN	INDECIN
1163866	2	0.05	350	10	5	0.25	1.62	18.4
1163867	2	0.05	320	5	5	0.25	1.31	12.9
1163868	2	0.05	370	5	5	0.25	0.73	5.83
1163869	2	0.05	320	2.5	5	0.25	1.3	10.8
1163870	1	0.05	340	5	5	0.25	1.13	11.6
1163871	1	0.05	250	5	5	0.25	1.09	11.5
1163872	1	0.05	220	2.5	5	0.25	1.16	8.63
1163873	1	0.05	270	25	5	0.25	1.19	17.2
1163874	2	0.05	310	5	5	0.25	1.68	16
1163875	2	0.05	340	5	5	0.25	1.34	15
1163876	1	0.05	300	5	5	0.25	1.41	15.9
1163877	1	0.05	280	5	5	0.25	1.88	10.9
1163878	1	0.05	280	10	5	0.25	1.33	11.5
1163879	2	0.05	290	15	5	0.25	1.15	16.1
1163880	1	0.05	270	10	5	0.25	0.91	10.7
1163881	2	0.1	290	15	5	0.25	0.98	15.5
1163882	1	0.05	290	10	5	0.25	0.72	11
1163883	1	0.05	320	20	5	0.25	1.04	15.5
1163884	2	0.05	320	15	5	0.25	0.72	13.3
1163885	1	0.05	300	10	5	0.25	0.89	12.7
1163886	1	0.05	300	20	5	0.25	1.33	19.9
1163887	1	0.05	230	5	5	0.25	0.72	10.9
1163888	1	0.05	250	10	5	0.25	0.82	12.8
1163889	2	0.05	250	10	5	0.25	0.81	18.6
1163890	2	0.05	240	10	5	0.25	1.1	38.1
1163891	3	0.05	320	15	5	0.25	0.7	13.4
1163892	1	0.05	280	10	5	0.25	0.76	13
1163893	1	0.05	280	10	5	0.25	0.61	21.2
1163894	2	0.05	230	10	5	0.25	0.56	12.9
1163895	2	0.05	350	15	5	0.25	0.93	13.1
1163896	1	0.05	360	10	5	0.25	0.92	17
1163897	1	0.05	320	5	5	0.25	0.62	11.9

Pb PPM

Bi PPM

Ag PPM

Mo PPM

Nb PPM

SAMPNO

As PPM

Te PPM

F PPM

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1163898	1	0.05	320	10	5	0.25	0.54	10.1
1163899	1	0.05	270	10	5	0.25	0.76	19.1
1163900	1	0.05	280	10	5	0.25	0.85	27.1
1163901	1	0.05	350	10	5	0.25	0.84	15.9
1163902	1	0.05	400	15	5	0.25	0.79	15.9
1163903	1	0.05	350	15	5	0.25	0.99	13.1
1163904	. 2	0.05	360	20	5	0.25	1.18	17.9
1163905	1	0.05	400	10	5	0.25	1.5	18.9
1163906	2	0.05	390	25	5	0.25	1.19	18.6
1163907	1	0.05	450	10	5	0.25	0.79	12.3
1163908	. 4	0.05	410	15	5	0.25	1.15	20.9
1163909	3	0.05	390	15	5	0.25	0.77	13.7
1163910	3	0.05	420	10	5	0.25	0.92	14
1163911	3	0.05	260	5	5	0.25	0.82	14.1
1163912	4	0.05	300	20	5	0.25	1.25	19.1
1163913	3	0.05	370	15	5	0.25	1.02	15.2
1163914	3	0.05	390	10	5	0.25	1.16	13.5
1163915	3	0.05	390	5	5	0.25	1.3	13
1163916	4	0.05	470	10	5	0.25	1.47	16.7
1163917	2	0.05	300	5	5	0.25	0.87	11.3
1163918	2	0.05	290	5	5	0.25	1.12	12.1
1163919	3	0.05	360	10	5	0.25	0.78	13.4
1163920	2	0.05	310	5	5	0.25	0.56	10.3
1163921	3	0.05	350	15	5	0.25	1.1	17.6
1163922	3	0.05	420	10	5	0.25	0.83	13
1163923	2	0.05	330	5	5	0.25	2.02	10.3
1163924	3	0.05	310	15	5	0.25	1.21	14.6
1163925	3	0.05	510	15	5	0.25	1.04	14.4
1163926	4	0.05	550	15	5	0.25	1.12	13.8
1163927	3	0.05	470	15	5	0.25	1.22	16.7
1163928	3	0.05	510	10	5	0.25	1.08	15.5
1163929	3	0.05	390	15	5	0.25	1.1	18.5

\subset
\subset
\subset
T
Y
D ,

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM
1163930	2	0.05	350	20	5	0.25	1.17	17.2
1163931	2	0.05	330	10	5	0.25	1	12.6
1163932	2	0.05	350	10	5	0.25	1.22	18.8
1163933	1	0.05	300	10	5	0.25	1.15	15.8
1163934	2	0.05	280	10	5	0.25	1.45	15
1163935	1	0.05	190	5	5	0.25	1.06	14.1
1163936	2	0.05	240	15	5	0.25	1.27	15.4
1163937	1	0.05	180	1 0	5	0.25	1.07	22.1
1163938	1	0.05	210	10	5	0.25	0.82	11.6
1163939	2	0.05	280	10	5	0.25	0.86	15.6
1163940	1	0.05	210	10	5	0.25	0.76	15.2
1163941	2	0.05	300	15	5	0.25	0.88	14.7
1163942	2	0.05	310	10	5	0.25	0.82	12.8
1163943	3	0.05	700	20	5	0.25	2.36	18.2
1163944	1	0.05	360	10	5	0.25	1.18	15.6
1163945	2	0.05	280	10	5	0.25	1.01	16.2
1163946	3	0.05	330	15	5	0.25	0.92	18.5
1163947	2	0.05	320	5	5	0.25	0.75	13.5
1163948	2	0.05	420	10	5	0.25	0.83	15.5
1163949	3	0.05	420	10	5	0.25	0.7	14.2
1163950	2	0.05	390	10	5	0.25	0.64	15.1
1163951	3	0.05	400	10	5	0.25	0.99	13.5
1163952	2	0.05	390	10	5	0.25	0.87	13.9
1163953	3	0.05	420	10	5	0.25	0.79	14.3
1163954	2	0.05	290	10	5	0.25	0.65	13.8
1163955	2	0.05	220	10	5	0.25	0.68	16.8
1163956	3	0.05	430	5	5	0.25	0.44	12.8
1163957	0.5	0.05	240	5	5	0.25	0.41	13.9
1163958	2	0.05	280	15	· 5	0.25	0.46	14.2
1163959	3	0.05	490	15	5	0.25	0.78	18.7
1163960	2	0.05	300	10	5	0.25	0.47	13.4
1163961	2	0.05	350	10	5	0.25	1	13.6

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1163962	2	0.05	490	15	5	0.25	1.02	14.8
1163963	3	0.05	390	15	5	0.25	0.97	17
1163964	2	0.05	450	15 ·	5	0.25	0.64	14
1163965	2	0.05	600	15	5	0.25	0.76	15.8
1163966	2	0.05	490	15	5	0.25	0.43	13.1
1163967	3	0.05	550	15	5	0.25	0.44	11.1
1163968	3	0.05	430	30	5	0.25	0.87	16.1
1163969	2	0.05	350	15	5	0.25	0.58	14.5
1163970	2	0.05	340	10	5	0.25	1.02	13
1163971	2	0.05	350	5	5	0.25	0.81	12.7
1163972	2	0.05	320	10	5	0.25	0.46	11.4
1163973	2	0.05	400	10	5	0.25	0.53	12.1
1163974	2	0.05	390	15	5	0.25	0.69	16.1
1163975	3	0.05	350	15	5	0.25	0.61	15.3
1163976	2	0.05	390	10	5	0.25	0.6	14.3
1163977	2	0.05	310	10	5	0.25	0.9	16.7
1163978	2	0.05	310	10	5	0.25	0.6	16.4
1163979	2	0.05	310	5	5	0.25	0.45	13.9
1163980	2	0.05	390	10	5	0.25	1.01	14
1163981	2	0.05	390	15	5	0.25	0.97	14.9
1163982	3	0.05	420	10	5	0.25	0.87	12
1163983	2	0.05	310	5	5	0.25	0.75	12.2
1163984	2	0.05	260	5	5	0.25	0.47	9.46
1163985	2	0.05	290	10	5	0.25	0.73	12.6
1.163986	2	0.05	290	10	5	0.25	0.59	12.3
1163987	2	0.05	260	10	5	0.25	0.51	15.2
1163988	2	0.05	300	15	5	0.25	0.75	13.1
1163989	1	0.05	200	5	5	0.25	1.06	11.2
1163990	1	0.05	180	10	5	0.25	1.48	19.4
1163991	2	0.05	210	15	5	0.25	0.9	12
1163992	1	0.05	190	10	5	0.25	1	14.9
1163993	3	0.05	290	15	5	0.25	1.02	14.1

SAMPNO	As PPM	Te PPM	FPPM ·	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1163994	2	0.05	260	10	5	0.25	0.7	13.9
1163995	2	0.05	220	20	5	0.25	1	16.6
1163996	1	0.05	180	10	5	0.25	0.47	10.8
1163997	2	0.05	240	20	5	0.25	0.94	14.6
1163998	2	0.05	240	25	5	0.25	0.99	17.6
1163999	2	0.05	200	5 .	5	0.25	1.06	11.6
1164000	2	0.05	300	15	5	0.25	1.36	15.8
1233829	5	0.05	270	15	5	0.25	0.7	5.62
1233830	3	0.05	500	5	5	0.25	0.93	13.7
1233831	3	0.05	560	20	5	0.25	0.92	3.48
1233832	2	0.2	200	5	5	0.25	0.77	5.81
1233833	0.5	0.05	240	15	5	0.5	0.76	3.92
1233834	2	0.05	280	20	5	0.5	1.04	15.4
1233835	2	0.05	200	15	5	0.5	0.89	12.9
1233836	• 3	0.05	300	15	5	0.5	0.94	13.2
1233837	5	0.05	250	10	5	0.5	0.89	11.2
1233838	2	0.05	160	2.5	5	0.25	0.85	16.1
1233839	3	0.05	220	2.5	5	0.25	0.83	14.9
1233840	2	0.05	320	10	5	0.5	0.96	5.09
1233841	2	0.05	230	5	5	0.5	1.12	9.7
1233842	2	0.05	230	10	5	0.25	1.03	11.7
1233843	0.5	0.2	170	5	5	0.5	0.96	13.4
1233844	2	0.2	500	5	5	0.25	0.75	10.2
1233845	2	0.05	240	2.5	- 5	0.25	0.66	8.92
1233846	2	0.05	330	5	5	0.25	0.95	11.8
1233847	3	0.05	300	5	5	0.25	0.71	11.9
1233848	3	0.05	400	10	5	0.5	1.08	14.5
1233849	2	0.2	280	5	10	0.5	1.1	12.2
1233850	2	0.05	200	5	5	0.5	1.19	10.7
1233851	2	0.05	170	5	5	0.25	0.89	12.5
1233852	3	0.05	190	5	10	0.5	0.91	12.5
1233853	3	0.05	180	2.5	5	0.5	0.8	15.2

	-			
5 .	. 5	0.5	0.89	11.1
10	5	0.5	1.05	16.5
10	5	0.25	0.92	13.9
20	5	0.25	1.02	10.7
10	5	0.25	0.4	4.82
10	5	0.25	0.92	13.5
10	5	0.25	0.85	10.8
10	5	0.5	1.01	14.4
15	5	0.25	0.16	13.7
20	5	0.5	1.3	15
20	5	0.5	1.37	17
5	5	0.25	1.3	16.1
15	5	0.25	1.28	16.8
15	5	0.5	0.97	13.8
20	5	0.5	1.17	17.9
15	5	0.5	0.98	9.18
10	5	0.25	0.91	17
20	5	0.5	1.22	11.4

Ag PPM

0.5

0.25

0.25

0.25

0.5

0.5

0.25

0.25

0.5

0.25

0.5

0.25

0.25

0.25

Mo PPM

0.77

0.84

0.93

0.92

0.87

0.42

1.67

0.99

0.97

6.38

1.09

1.08

1.11

1.19

Nb PPM

11.1

12.9

13.4

13.1

12.4

17.2

15.3

10.3

11.1

40.5

14.5

14.1

5.77

12.9

Page	1

SAMPNO

1233854

1233855

1233856

1233857

1233858

1233859

1233860

1233861

1233862

1233863

1233865

1233867

1233868

1233869

1233870

1233871

1233872

1233873

1233874

1233875

1233876

1233877

1233878

1233879

1233880

1233881

1233882

1233883

1233884

1233885

1233886

1233887

As PPM

2

2

2

3

2

2

3

3

4

15

3

2

2

2

2

2

2

3

2

2

2

2

3

3

2

0.5

3

2

3

3

3

2

Te PPM

0.05

0.05

0.05

0.2

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

F PPM

160

150

210

210

190

280

460

280

230

300

300

180

170

330

250

310

250

400

400

200

300

250

270

250

400

230

400

250

400

470

420

550

Pb PPM

2.5

2.5

10

10

10

15

10

2.5

5

20

5

5

2.5

5

Bi PPM

5

5

5

5

5

5

5

5

5

5

SAMPNO	As PPM	Te PPM	FPPM	Pb PPM	Ві РРМ	Ag PPM	Mo PPM	Nb PPM
1233888	3	0.05	340	10	5	0.5	2.47	10.3
1233889	3	0.05	370	10	5	0.5	1.9	19.8
1233890	3	0.05	470	10	5	0.5	1.76	17.2
1233891	3	0.05	300	10	5	0.25	1.08	18.7
1233892	4	0.05	340	15	5	0.25	1.16	10.1
1233894	3	0.05	470	10	5	0.5	1.1	10.4
1233895	5	0.05	330	15	5	0.25	1.05	7.07
1233898	2	0.05	270 -	10	5	0.25	1.2	14.4
1233900	2	0.05	320	15	5	0.25	1.13	14.9
1233901	3	0.05	340	15	5	0.25	1.27	20.9
1233902	2	0.05	330	10	5	0.25	0.89	10.2
1233903	2	0.05	320	10	5	0.25	0.91	9.81
1233904	3	0.05	340	10	5	0.5	0.75	5.63
1233905	5	0.05	330	15	5	0.5	1.14	12.5
1233906	5	0.05	400	15	5	0.5	1.32	9.9
1233907	2	0.05	490	5	5	0.25	1.1	6.55
1233908	6	0.2	490	10	5	0.5	0.81	11
1233909	6	0.05	400	15	5	0.25	0.96	13.3
1233910	8	0.05	360	10	5	0.25	0.7	10.3
1233911	3	0.05	400	15	5	0.5	0.88	15,4
1233912	3	0.05	130	5	5	0.5	0.69	7.25
1233913	3	0.05	60	2.5	5	0.5	0.93	11
1233914	3	0.2	170	5	5	0.5	1.13	8.37
1233915	3	0.05	180	10	5	0.5	1.53	9.18
1233916	3	0.05	200	5	5	0.5	1.25	14
1233917	4	0.05	250	15	5	0.5	1.2	14.2
1233918	3	0.05	230	5	5	0.5	0.97	12.2
1233919	3	0.05	260	5	5	0.5	0.92	14.2
1233920	4	0.05	240	2.5	5	0.5	0.88	14.6
1233921	2	0.05	250	10	5	0.5	0.17	4.19
1233922	6	0.05	330	20	5	0.5	1.35	22.4
1233923	4	0.05	300	20	5	0.5	0.87	17.6

				1 0 1 1 141		Ag i rivi	INIO E E INI	INDEFIN
1233924	4	0.05	250	10	5	0.5	1.1	8.49
1233925	6	0.05	300	15	5	0.25	1.43	15.1
1233926	3	0.05	260	5	5	0.5	0.9	12
1233927	5	0.05	300	10	5	0.25	0.93	14.7
1233928	2	0.05	250	5	5	0.25	1.05	13.5
1233929	3	0.05	330	10	. 10	0.25	1.21	16.3
1233930	6	0.2	400	20	5	0.25	0.82	11.4
1233931	5	0.05	340	10	5	0.25	0.94	13.3
1233932	5	0.05	330	20	5	0.5	0.94	15.9
1233933	4	0.05	270	15	5	0.5	1.05	14
1233934	6	0.05	340	20	5	0.25	1.16	5.64
1233935	3	0.05	260	15	5	0.25	1.39	22.5
1233936	4	0.05	330	10	5	0.25	1.07	14.3
1233937	4	0.05	400	15	5	0.5	0.89	11.6
1233938	· 3	0.05	320	10	5	0.25	0.95	12.2
1233939	3	0.05	360	15	5	0.25	1.02	12.7
1233940	3	0.05	300	10 ·	5	0.5	0.85	12
1233941	4	0.05	300	15	5	0.25	1.3	15.7
1233942	3	0.05	420	15	5	0.25	1.55	27.1
1233943	3	0.05	270	15	5	0.25	1.21	10.6
1233944	3	0.05	360	5	5	0.25	1.28	9.45
1233945	3	0.05	260	10	5	0.25	1.16	14
1233946	5	0.05	340	15	5	0.25	1.24	13.5
1233947	4	0.05	330	15	10	0.25	1.11	9.45
1233948	5	0.05	420	15	5	0.5	1.07	14.2
1233949	3	0.05	330	10	5	0.25	0.62	3.73
1233950	4	0.05	360	10	5	0.25	0.78	13.5
1233951	4	0.2	400	10	5	0.25	1.18	8.85
1233952	3	0.05	340	10	5	0.25	1.12	16.5
1233953	3	0.05	400	5	5	0.25	2.3	12.2
1233954	5	0.05	400	10	5	0.5	1.46	8.55
1233955	4	0.05	470	5	5	0.5	1.54	10.9

Pb PPM

Bi PPM

Ag PPM

Mo PPM

Nb PPM

SAMPNO

As PPM

Te PPM

F PPM

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1233956	5	0.05	400	10	5	0.25	1.05	9.6
1233957	4	0.05	460	15	5	0.25	1.28	10.7
1233958	5	0.05	360	15	5	0.5	1.06	9.98
1233962	5	0.05	340	15	5	0.25	1.42	12.6
1233963	4	0.05	360	20	5	0.25	1.36	12.1
1233964	2	0.05	340	20	5	0.25	1.08	10.6
1233965	4	0.05	340	25	5	0.25	1.2	11.3
1233966	4	0.05	360	10	10	0.5	0.84	10.9
1233967	7	0.05	330	20	5	0.25	1.09	13.9
1233968	5	0.05	420	10	5	0.25	0.79	10.4
1233969	4	0.05	340	10	5	0.25	0.56	5.24
1233972	5	0.05	400	30	5	0.5	1.2	12.1
1233974	4	0.05	420	30	10	0.5	0.81	5.59
1233976	3	0.05	400	10	5	0.5	0.66	8.55
1233978	5	0.05	460	15	5	0.5	0.83	12.2
1233979	. 4	0.05	470	15	5	0.5	1.18	10.1
1233980	4	0.05	400	20	5	1	1.45	11.6
1233981	6	0.05	400	25	5	0.5	1.19	11.6
1233982	4	0.05	470	15	5	0.25	0.66	10.4
1233983	4	0.05	540	10	5	0.25	0.71.	9.68
1233984	5	0.05	330	25	5	0.5	0.84	10.8
1233985	4	0.05	420	20	5	0.5	0.48	12.7
1233986	4	0.05	490	15	20	0.5	0.84	12.3
1233987	4	0.05	460	15	5	0.5	0.62	13.6
1233988	5	0.05	470	25	5	0.5	0.63	11.6
1233989	4	0.05	400	15	5	0.5	1.17	9.68
1233990	3	0.05	600	15	. 5	0.5	1.06	13.1
1233991	4	0.05	610	30	5	0.5	1.02	15.8
1233992	4	0.05	470	25	5	0.5	0.59	10.1
1233993	4	0.05	580	25	5	0.25	0.94	12.6
1233994	_. 5	0.05	470	20	5	0.25	0.67	11.7
1233995	5	0.05	540	20	5	0.5	0.83	21.2

SAMPNO	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	Ag PPM	Mo PPM	Nb PPM
1233996	4	0.05	600	15	10	0.5	0.8	10.8
1233997	5	0.05	480	10	5	0.25	0.93	14.5
1233998	6	0.05	470	20	5	0.25	1.04	10.4
1233999	10	0.05	600	15	5	0.25	1.58	8.85
1234000	6 .	0.05	420	10	5	0.25	1.44	10.3
1234001	4	0.05	400	10	5	0.5	1.22	10.7
1234002	4	0.05	210	5	5	0.5	1.49	10.1
1234003	6	0.05	380	15	5	0.5	1.1	10.9
1234008	4	0.05	210	10	5	0.25	1.3	10.2
1234009	- 5	0.05	300	15	5	0.25	1.79	11.7
1234010	6	0.05	250	15	5	1	1.25	11
1234012	9	0.05	290	15	5	0.5	1.07	14.1
1234014	4	0.05	240	10	5	0.25	0.95	7.17
1234016	6	0.05	370	10	5	0.5	1.12	10.2
1234017	6	0.05	340	15	10	0.25	1.12	11.5
1234020	5	0.05	310	15	5	0.5	1.37	19.2
1234021	5	0.05	310	10	5	0.25	1.43	11.7
1234022	4	0.05	310	10	5	0.5	0.96	7.91
1234023	4	0.05	300	5	5	0.25	0.91	7.79
1234024	7	0.05	310	15	5	0.25	1.07	13.8
1234025	5	0.05	320	15	5	0.25	1.1	18.5
1234026	3	0.05	200	5	5	0.5	0.96	12.6
1234027	4	0.05	350	15	5	0.25	1.42	18.2
1234028	5	0.05	400	20	5	0.25	1.14	17.4
1234029	4	0.05	300	15	5	0.25	1.08	16.4
1234030	4	0.05	260	1.5	5	0.25	0.73	14.1
1234032	5	0.05	320	15	5	0.25	0.52	9.63
1234033	5	0.05	370	15	5	0.25	0.53	10.4
1234034	7	0.05	300	15	5	0.25	0.85	16.7
1234035	5	0.05	540	10	5	0.5	0.64	10.2
1234036	3	0.05	290	10	5	0.25	0.49	4.6
1234037	4	0.05	260	15	5	0.25	0.2	3.94

		U	U.LU	0.00	17.6
290	25	5	0.25	0.75	10.3
430	20	5	0.25	0.61	10.4
290	15	5	0.25	0.32	7.13
320	10	5	0.25	0.65	9.9
290	15	5	0.25	0.61	13
280	10	5	0.5	1.06	6.1
300	10	5	0.25	0.6	8.8
280	15	5	0.25	0.71	11.7
270	15	5	0.5	0.64	8.38
270	20	5	0.25	0.85	19
340	10	5	0.5	0.69	18.2
340	15	5	0.25	0.53	10.1
300	10	5	0.5	0.54	7.22
330	15	5	0.25	0.53	14.7
320	15	5	0.25	1.06	8.67
320	15	5	0.25	0.78	9.09
290	10	5	0.25	0.57	11.8

SAMPNO

1234038

1234039

1234040

1234041

1234042

1234053

1234056

1234057

1234058

1234059

1234060

1234061

1234062

1234063

1234064

1234065

1234066

1234068

1234069

1234070

1234071

1234072

1234073

1234074

1234075

1234076

As PPM

4

5

5

6

6

5

3

3

3

3

3

3

2

3

3

Te PPM

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

F PPM

290

290

350

300

320

280

330

280

330

Pb PPM

20

15

20

15

20

15

10

35

20

Bi PPM

5

5

5

5

5

5

5

5

5

Ag PPM

0.25

0.25

0.5

0.5

0.25

0.5

0.5

0.25

0.25

Mo PPM

0.9

0.65

0.97

0.64

0.69

0.96

0.79

0.72

0.86

Nb PPM

6.71

10.5

18.4

8.4

15.6

14.3

13 6.98

14.2

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161418	0.54	3.73	1.12	294	49	10	39	20
1161419	0.5	3.42	1.11	354	54	11	35	21
1161420	0.44	4.29	1.48	343	60	11	43	19
1161421	0.3	3.95	1.35	327	60	11	46	21
1161422	0.37	2.1	1.41	380	27	6	25	13
1161423	0.32	2.62	1.28	374	44	8	29	15
1161424	0.37	2.51	1.03	405	35	7	29	13
1161425	0.32	3.53	1.46	429	56	9	37	16
1161426	0.33	3.08	1.3	436	38	6	32	12
1161427	0.46	3.91	2.52	507	78	12	27	16
1161428	0.37	3.21	1.21	427	62	11	45	17
1161429	0.34	2.85	1.39	442	50	9	35	17
1161430	0.35	2.87	1.38	404	44	7	26	13
1161431	0.28	2.48	1.11	284	41	6	26	12
1161432	0.28	2.08	1.42	354	59	7	28	12
1161433	0.24	1.99	1.06	326	40	8	22	13
1161434	0.3	4.01	1.08	274	52	12	33	19
1161435	0.3	3.67	1.11	300	54	10	38	19
1161436	0.35	1.02	0.82	254	27	5	12	11
1161437	0.49	2.52	0.83	233	51	8	30	14
1161438	0.42	3.22	1.39	271	55	9 .	27	18
1161439	0.43	3.88	1.09	305	54	11	33	16
1161440	0.27	3.01	0.97	285	34	5	33	13
1161441	0.31	2.54	0.97	288	35	5	31	14
1161442	0.3	6.7	0.97	327	34	. 7	30	14
1161443	0.46	7.57	2.26	369	48	9	44	17
1161444	0.34	1.84	0.92	277 .	26	2.5	22	10
1161445	0.34	1.37	0.6	243	26	2.5	17	10
1161446	0.54	2.81	0.89	273	42	7	32	15
1161447	0.33	2.63	0.94	215	29	5	30	14
1161448	0.34	2.24	0.79	236	34	5	23	13
1161449	0.39	4.29	1.69	369	73	10	46	20

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161450	0.33	2.25	1.66	181	29	2.5	22	12
1161451	0.37	2.84	1.13	270	49	8	22	16
1161452	0.32	2.95	1.77	379	56	8	28	15
1161453	0.27	3.44	1.19	387	50	7	28	13
1161454	0.36	3.71	1.12	333	43	6	30	14
1161455	0.35	5.16	1.32	328	69	14	64	26
1161456	0.4	2.62	1.02	232	42	7	28	14
1161457	0.35	0.81	0.41	127	18	2.5	19	10
1161458	0.36	0.69	0.39	108	15	2.5	5	9
1161459	0.31	0.9	0.53	178	21	2.5	19	10
1161460	0.25	1.28	0.58	160	19	2.5	21	8
1161461	0.23	2.57	1.06	341	55	8	26	13
1161462	0.31	2.61	0.81	288	35	7	25	15
1161463	0.32	3.26	1.05	322	49	9	31	15
1161464	0.32	2.14	0.9	314	32	5	30	11
1161465	0.44	2.32	1.13	375	37	2.5	23	11
1161466	0.34	3.99	1.26	329	64	10	50	20
1161467	0.28	1.97	0.99	330	47	7	34	12
1161468	0.31	3.8	1.29	350	70	11	40	18
1161469	0.36	3.5	1	307	60	10	42	19
1161470	0.36	2.39	1.14	356	67	11	35	18
1161471	0.3	2.15	0.85	303	43	6	27	13
1161472	0.24	1.83	0.8	269	34	5	23	11
1161473	0.29	2.12	0.97	433	40	2.5	23	11
1161474	0.34	2.18	0.94	325	33	2.5	18	13
1161475	0.41	1.99	0.99	291	42	7	22	11
1161476	0.34	1.18	0.6	172	21	2.5	37	9
1161477	0.28	0.79	0.4	140	19	2.5	15	10
1161478	0.41	1.69	0.83	229	35	2.5	18	12
1161479	0.34	2.96	1.23	426	. 34	7	30	13
1161480	0.28	2.33	0.91	345	28	5	29	12
1161482	0.36	4.38	11.1	520	166	17	31	16

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161483	0.29	2.01	0.7	362	23	2.5	25	9
1161484	0.45	4.3	1.36	300	36	8	25	14
1161485	0.68	6.47	1.31	357	60	13	48	21
1161486	0.47	5.47	1.23	368	53	10	26	16
1161487	0.52	5.78	1.71	346	64	9	45	1.7
1161488	0.36	3.28	0.76	286	23	5	18	10
1161489	0.33	4.98	1.08	315	41	8	28	13
1161490	0.29	3.22	0.69	261	. 25	5	14	9
1161491	0.27	3.95	0.97	303	39	8	24	16
1161492	0.4	3.58	0.64	296	28	6	20	11
1161493	0.46	5.82	1.08	260	44	13	29	20
1161494	0.39	4.66	1.12	405	39	8	19	11
1161495	0.44	5.63	1.32	319	53	12	53	20
1161496	0.44	5.6	1.36	359	60	14	31	20
1161497	0.11	5.05	1.78	384	38	10	34	14
1161498	0.3	5.13	1.79	351	49	12	37	18
1161499	0.42	5.33	7.86	441	31	9	43	15
1161500	0.28	4.41	1.97	545	35	8	24	11
1161501	0.28	3.9	1.44	375	32	7	17	10
1161502	0.35	2.88	0.91	311	26	8	17	11
1161503	0.37	5.24	1.25	456	24	8	5	13
1161504	0.33	4.07	1.26	397	40	7	18	11
1161505	0.33	5.26	1.34	332	35	10	4 1	13
1161506	0.25	4.81	1.25	333	45	11	23	15
1161507	0.43	6.33	1.33	315	76	14	4 4	22
1161508	0.17	4.24	1.2	347	38	8	29	11
1161509	0.23	4.66	1.4	337	40	9	33	13
1161510	0.18	3.87	0.91	245	38	6	21	13
1161511	0.38	10.1	3.89	166	75	7	31	12
1161512	0.47	9.71	1.93	225	82	12	25	20
1161513	0.29	5.44	1.3	344	53	9	26	12
1161514	0.33	7.09	1.63	188	49	6	28	12

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161515	0.34	8.42	2.95	181	66	6	25	11
1161516	0.56	6.4	2.22	367	71	11	37	17
1161517	0.17	4.78	1.89	375	68	8	26	13
1161518	0.31	3.99	1.07	247	41	9	22	12
1161519	0.16	4.5	1.12	326	40	6	24	11
1161520	0.46	4.93	1.17	322	55	9	45	16
1161521	0.36	4.01	0.86	274	30	6	14	9
1161522	0.45	4.01	1.13	332	37	8	18	11
1161523	0.35	4.78	1.07	325	46	9	32	14
1161524	0.33	4.21	1.7	308	53	9	19	11
1161525	0.38	5.18	1.05	278	59	11	45	- 15
1161526	0.33	4.64	1.11	288	53	10	28	17
1161527	0.29	3.43	0.93	261	36	. 6	21	11
1161528	0.27	5.42	1.16	295	66	13	4 0	19
1161529	0.22	2.14	0.53	178	19	2.5	5	7
1161530	0.36	3.93	0.85	279	44	9	21	14
1161531	0.43	3.77	0.89	260	46	9	30	15
1161532	0.31	3.59	0.81	262	40	7	21	14
1161533	0.21	3.26	0.78	258	29	5	15	8
1161534	0.37	5.35	1.7	410	69	9	25	14
1161535	0.31	3.44	0.73	202	31	5	14	10
1161536	0.4	4.64	1.21	291	176	23	19	20
1161537	0.27	5.03	1.07	274	63	14	35	21
1161538	0.28	4.02	0.98	282	42	7	20	11
1161539	0.28	4.06	1.16	292	49	8	36	10
1161540	0.39	6.18	0.95	284	40	6	21	10
1161541	0.41	4.34	1.03	319	52	11	42	. 14
1161542	0.31	4.12	1.14	287	40	10	17	13
1161543	0.25	4.18	1.39	352	40	7	19	10
1161544	0.33	4.51	1.19	359	59	9	24	14
1161545	0.29	5.16	1.07	318	63	13	26	20
1161546	0.29	4.08	1.05	368	53	8	36	11

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161547	0.29	4.37	1.26	378	- 50	8	27	11
1161548	0.33	4	1.3	321	52	9	. 22	12
1161549	0.29	5.16	1.66	402	65	13	28	16
1161550	0.56	4.2	1.23	289	38	7	13	11
1161601	0.39	3.71	1.07	271	42	6	16	11
1161602	0.44	4.53	1.17	358	42	6	16	10
1161603	0.33	3.87	0.95	271	38	5	1 6	12
1161604	0.31	3.27	1.03	272	30	5	12	8
1161605	0.27	3.02	0.8	258	29	3	15	9
1161606	0.39	3.74	0.99	245	38	6	18	11
1161607	0.29	3.32	1	263	38	5	11	8
1161608	0.4	5.29	0.86	271	37	5	13	10
1161609	0.37	2.54	0.69	212	25	5	12	8
1161610	0.41	3.49	0.71	214	33	6	31	9
1161611	0.3	2.99	0.7	238	29	2.5	11	11
1161612	0.44	4.5	1.15	372	49	6	22	12
1161613	0.39	4.4	1.1	341	46	6	20	9
1161614	0.29	2.77	0.63	182	28	2.5	12	8
1161615	0.45	6.18	1.36	391	81	13	47	23
1161616	0.29	5.06	1.55	529	56	7	23	11
1161617	0.26	4.89	1.67	466	42	5	14	9
1161618	0.4	4.16	1.02	453	34	5	14	11
1161619	0.52	5.99	1.49	426	57	11	28	18
1161620	0.42	5.46	1.65	430	58	9	23	15
1161621	0.46	5.49	1.44	427	54	10	27	17
1161622	0.4	5.85	2.08	530	57	10	27	13
1161623	0.5	10.2	1.89	507	80	12	44	21
1161624	0.42	7.18	2.16	. 545	91	12	45	24
1161625	0.53	11.7	1.61	497	68	10	37	18
1161626	0.35	5.42	1.53	571	53	7	25	14
1161627	0.43	6.46	3.08	460	85	15	39	21
1161628	0.54	6.31	1.46	401	72	13	51	22

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161629	0.42	5.69	1.44	402	55	12	34	19
1161630	0.37	4.81	1.15	406	58	10 -	27	15
1161631	0.27	4.17	1.07	429	43	7	22	14
1161632	0.46	5.18	1.36	543	47	8	24	14
1161633	0.37	4.96	1.27	412	53	9	28	16
1161634	0.23	4.47	1.34	422	41	6	19	10
1161635	0.42	5.69	1.59	589	56	- 10	38	17
1161636	0.32	4.69	1.45	782	46	8	37	13
1161637	0.42	5.46	1.47	523	56	11	27	17
1161638	0.46	5.21	1.5	614	62	10	34	16
1161639	0.38	5.44	1.42	446	55	11	36	20
1161640	0.46	6.35	1.6	578	60	11	39	19
1161641	0.43	5.72	1.73	737	62	12	38	18
1161642	0.3	4.01	1.33	609	40	11	20	16
1161643	0.38	5.48	1.78	621	50	8	25	12
1161644	0.39	5.39	1.42	500	57	10	37	17
1161645	0.34	4.91	1.5	482	40	6	23	11
1161646	0.46	5.7	1.38	434	51.	11	28.	18
1161647	0.57	7.17	1.75	443	75	13	29	20
1161648	0.44	5.37	1.95	606	91	12	26	12
1161649	0.54	7.17	3.17	687	127	12	33	15
1161650	0.39	6.58	2.11	553	87	12	36	16
1161751	0.36	4.42	2.22	693	51	7	20	14
1161752	0.43	5.96	1.86	659	52	7	31	16
1161753	0.42	-5.57	1.89	689	54	7 .	29	15
1161754	0.51	7.1	2.02	565	74	12	38	25
1161755	0.39	5	1.44	666	54	9	24	19
1161756	0.52	6.45	1.77	764	68	13	55	25
1161757	0.48	5.43	1.64	664	55	10	26	19
1161758	0.57	5.79	1.98	754	69	10	25	22
1161759	0.55	5.74	1.95	794	65	11	25	20
1161760	0.33	5.54	1.87	649	64	9	30	20

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1161761	0.4	6.92	2.13	710	60	8	24	16
1161762	0.3	5.02	1.67	575	63	9,	18	12
1161763	0.46	5.15	1.18	353	49	10	23	16
1161764	0.49	7.02	1.64	536	72	15	39	23
1161765	0.51	8.6	2.12	532	75	14	56	24
1161766	0.52	5.07	1.96	555	45	8	33	17
1161767	0.46	4.78	2	623	49	8	36	17
1161945	0.51	5.25	2.1	599	64	10	31	18
1161946	0.53	5.16	1.89	597	54	8	28	18
1161947	0.46	5.65	2	585	77	12	25	21
1161948	0.39	6.83	2.93	633	79	9	26	17
1161949	0.33	5.98	2.39	617	81	9	24	17
1161950	0.34	4.72	1.91	695	58	7	23	16
1161951	0.37	6.96	2.16	557	68	9	22	18
1161952	0.4	5.73	1.93	512	62	12	35	24
1161953	0.38	6.73	1.87	600	66	10	32	18
1161954	0.43	5.86	2.01	623	57	10	31	19
1161955	0.48	5.67	1.42	451	58	13	34	22
1161956	0.34	7.25	2.04	630	56	8	20	16
1161957	0.75	5.3	2.17	641	56	8	26	13
1161958	0.36	6.22	2.01	572	65	11	32	19
1161959	0.28	5.6	2.04	752	47	7	21	12
1161960	0.27	5.92	1.79	525	60	11	29	19
1161961	0.37	6.2	2.09	531	78	12	35	24
1161962	0.36	5.58	1.88	600	59	10	37	19
1161963	0.38	5.84	2.01	615	57	. 9	27	19
1161964	0.45	5.92	2.08	577	69	11	31	22
1161965	0.29	5.92	2.27	707	.50	7	27	13
1161966	0.31	5.63	3.66	570	59	9	28	11
1161967	0.25	4.81	1.75	650	45	7	33	14
1161968	0.26	4.65	1.78	791	43	7	35	13
1161969	0.25	4.62	1.93	769	41	6	27	16

1101970	0.34	5.09	1.04	090	36	9	29	1 /
1161971	0.29	4.7	1.81	838	46	7	31	15
1161972	0.46	4.95	1.58	631	57	11	62	18
1161973	0.51	4.86	1.62	635	69	12	32	22
1161974	0.32	4.25	1.58	865	56	7	25	14
1161975	0.33	3.79	1.52	801	50	7	29	14
1161976	0.33	4.59	1.77	803	68	10	38	· 17
1161977	0.46	5.7	1.93	582	76	14	41	23
1161978	0.43	5.17	2.56	439	60	14	24	20
1161979	0.52	5.18	3.39	1050	63	12	26	20
1161980	0.33	4.44	1.47	835	58	10	37	17
1161981	0.36	4.52	1.7	827	57	10	28	16
1161982	0.37	3.85	1.29	688	51	8	53	16
1161983	1.08	6.03	1.78	454	71	15	34	24
1161984	0.4	4.97	1.75	566	63	12	27	18
1161985	0.37	7.1	2.18	518	60	13	26	20
1161986	0.31	5.43	1.94	563	72	11	33	16
1161987	0.33	5.87	1.94	544	72	10	32	17
1161988	0.37	5.56	2.01	537	61	- 10	29	15
1161989	0.28	6.01	2.32	622	60	9	33	14
1161990	0.34	5.2	1.85	628	59	11	32	18
1161991	0.36	5.94	1.67	510	64	12	58	21
1161992	0.52	5.73	1.68	528	68	14	35	22
1161993	0.37	5.18	1.72	553	71	13	30	18
1161994	0.25	6.3	1.75	446	74	15	41	25
1161995	0.28	5.61	1.85	565	71	12	35	19
1161996	0.9	5.81	1.8	561	66	12	21	17
1161997	0.24	4.92	1.67	510	60	10	26	17
1161998	0.27	5.51	1.91	561	62	11	32	16
1161999	0.19	6.82	1.96	416	96	18	58	30
1162000	0.3	5.76	2.36	669	66	8	38	18
1163801	0.37	3.31	0.77	362	38	8	57	12

Ba PPM

698

Ce PPM

56

Co PPM

9

Cr PPM

29

Cu PPM

17

SAMPNO

1161970

Sb PPM

0.34

Sn PPM

5.09

U PPM

1.84

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163802	0.39	4.1	0.98	407	41	8	27	12
1163803	0.38	6.06	1.24	357	54	11	24	15
1163804	0.24	3.69	0.93	440	4 4	6	23	9
1163805	0.35	4.45	1.02	353	49	1 0	23	14
1163806	0.3	4.56	1.17	319	4 1	9	32	14
1163807	0.35	5.38	1.26	378	55	1 0	32	16
1163808	0.27	4.49	1.05	349	4 4	9	23	13
1163809	0.3	5.24	1.18	365	57	11	35	17
1163810	0.39	6.25	1.42	388	66	12	4 0	20
1 1 6 3 8 1 1	0.53	4.12	1.25	389	33	5	13	10
1163812	0.61	6.63	1.49	409	64	10	24	21
1163813	0.5	5.4	1.25	462	50	. 8	34	16
1163814	0.21	4.56	1.39	350	37	5	17	11
1163815	0.45	5.78	1.22	423	47	8	22	18
1163816	0.39	5.08	1.3	468	48	7	31	14
1163817	0.34	4.79	1.15	420	43	7	31	14
1163818	0.3	4.34	1.02	387	33	2.5	16	11
1163819	0.36	4.26	0.88	328	45	7	12	12
1163820	0.41	4.19	0.93	329	33	5	5	10
1163821	0.27	4.21	1.02	324	34	5	5	9
1163822	0.34	6.3	1.42	398	40	2.5	10	10
1163823	0.39	6.36	1.57	408	59	9	43	18
1163824	0.28	7.01	1.61	413	49	6	20	12
1163825	0.17	3.96	1.14	440	38	2.5	13	9
1163826	0.11	6.03	1.44	312	34	2.5	5	8
1163827	0.27	4.58	1.36	422	45	5	18	11
1163828	0.38	5.88	1.64	494	77	9	29	16
1163829	0.39	4.78	1.47	501	66	7	57	12
1163830	0.38	4.8	1.52	586	58	8	20	14
1 1 6 3 8 3 1	0.3	3.46	1.51	668	34	2.5	5	10
1163832	0.48	3.63	2.79	860	4 1	2.5	13	8
1163833	0.32	4.24	1.4	740	43	2.5	5	11

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163834	0.41	5.8	1.41	433	61	9	18	17
1163835	0.34	5.79	1.36	451	64	10	35	17
1163836	0.29	4.74	1.38	576	50	6	12	12
1163837	0.45	7.04	1.54	367	76	14	34	24
1163838	0.43	4.22	1.31	768	48	8	58	15
1163839	0.41	5.68	1.56	582	64	10	25	18
1163840	0.48	7.39	1.63	431	85	13	47	26
1163841	0.43	6.19	1.5	570	70	11	39	19
1163842	0.4	5.63	1.41	575	61	10	47	19
1163843	0.33	5.05	1.27	512	53	9	30	15
1163844	0.38	5.69	1.45	546	61	8	39	16
1163845	0.27	5.05	1.22	520	54	9	25	15
1163846	0.29	5.18	1.67	657	42	5	12	11
1163847	0.36	5.37	1.49	476	54	8	34	18
1163848	0.37	3.75	1.19	634	45	6	51	12
1163849	0.34	4.63	1.29	373	54	10	5	17
1163850	0.42	5.33	1.39	435	63	10	24	19
1163851	0.34	4.38	0.79	282	24	2.5	19	8
1163852	0.23	4.42	0.88	253	30	2.5	13	8
1163853	0.23	4.16	0.83	276	34	2.5	23	9
1163854	0.32	6.32	1.65	. 464	68	11	43	18
1163855	0.28	5.55	1.77	501	55	7	19	14
1163856	0.31	6.46	1.97	478	74	8	35	15
1163857	0.41	6.82	1.78	455	66	8	44	15
1163858	0.46	5.9	1.8	458	65	9	34	16
1163859	0.37	6.12	1.86	552	67	8	29	15
1163860	0.32	5.05	1.78	568	54	7	24	13
1163861	0.66	4.11	0.94	365	36	5	18	11
1163862	0.26	4.01	0.95	349	43	6	21	12
1163863	0.28	3.45	0.76	306	36	5	36	9
1163864	0.15	3.65	0.82	254	29	2.5	28	8
1163865	0.24	3.9	0.87	354	42	6	50	11

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163866	0.33	6.05	1.48	369	66	9	80	16
1163867	0.36	3.85	1.56	360	40	11	363	12
1163868	0.15	5.93	2.08	284	45	6	26	9
1163869	0.34	3.41	1.35	394	34	6	60	8
1163870	0.21	6.83	1.47	213	61	6	19	11
1163871	0.26	5.47	1.08	255	54	6	10	12
1163872	0.26	4.37	0.89	246	43	5	5	13
1163873	0.31	6.59	1.24	274	53	8	31	21
1163874	0.28	5.28	1.44	380	55	6	25	12
1163875	0.24	5.21	1.37	404	61	8	31	15
1163876	0.22	5.59	1.48	392	57	7	22	15
1163877	0.51	4.59	1.12	406	48	8	39	14
1163878	0.43	5.43	1.07	338	61	11.	46	20
1163879	0.57	6.57	1.87	551	125	16	54	21
1163880	0.33	4.44	1	381	42	8	41	14
1163881	0.48	6.12	1.64	497	79	11	49	21
1163882	0.35	5.01	1.37	562	107	16	45	17
1163883	0.44	7.38	1.82	492	105	15	69	27
1163884	0.39	6.07	1.29	369	64	11	57	22
1163885	0.39	4.92	1.21	523	45	6	39	13
1163886	0.64	7.58	2.21	529	145	16	62	26
1163887	0.45	4.31	1.24	515	54	7	37	14
1163888	0.3	5.2	1.4	506	62	8	41	14
1163889	0.34	5.23	1.21	377	51	8	32	13
1163890	0.33	5.92	1.43	387	54	8	41	13
1163891	0.44	5.91	2.51	512	79	11	46	21
1163892	0.31	4.71	1.23	385	53	11	47	18
1163893	0.34	4.89	1.14	308	38	7	35	13
1163894	0.3	4.6	0.99	315	42	8	50	16
1163895	0.42	5.38	1.18	372	66	13	57	21
1163896	0.54	4.35	1.24	394	37	6	32	12
1163897	0.27	3.87	1.01	392	29	5	29	10

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163898	0.32	3.8	0.91	367	31	5	26	11
1163899	0.32	4.98	1.2	330	39	6	34	12
1163900	0.3	5.17	1.21	302	35	6	39	13
1163901	0.36	6.24	2.01	561	44	5	36	12
1163902	0.25	5.68	1.81	500	55	6	36	14
1163903	0.28	5.42	1.91	553	54	6	30	11
1163904	0.39	6.72	2.47	618	81	7	43	13
1163905	0.36	5.96	2.25	594	68	5	27	10
1163906	0.51	7.98	2.18	522	97	8	42	18
1163907	0.35	5.09	1.26	390	72	13	38	20
1163908	0.43	7.83	2.31	551	72	7	33	11
1163909	0.34	6.51	1.67	568	86	10	45	15
1163910	0.37	5.59	1.86	452	70	10	41	15
1163911	0.28	4.68	1.46	407	44	6	28	11
1163912	0.35	7.15	4.07	653	109	11	41	13
1163913	0.33	6.42	3.33	640	122	12	36	12
1163914	0.38	4.85	2.63	598	78	9	53	11
1163915	0.38	5	1.98	530	54	8	35	11
1163916	0.41	6.65	4.55	621	115	9	36	11
1163917	0.25	3.85	1.61	407	49	6	28	10
1163918	0.33	4.27	2.74	621	60	6	33	10
1163919	0.38	4.81	2.23	485	80	10	34	12
1163920	0.24	4.55	1.28	430	53	7	27	13
1163921	0.4	6.26	2.54	684	85	9	39	13
1163922	0.34	5.22	1.88	513	71	9	40	13
1163923	0.34	3.13	1.52	417	43	6	28	7
1163924	0.46	6.09	1.93	510	91	11	43	19
1163925	0.39	5.64	2.9	567	71	9	32	12
1163926	0.38	6.54	2.59	476	92	13	. 55	21
1163927	0.47	7.01	2.05	446	75	9	48	15
1163928	0.39	6.46	2.17	481	76		42	16
1163929	0.36	6.75	2.45	603	69	9 7	37	13

652	57	8	39	17
597	69	10	34	19
660	54	9	32	15
628	60	8	28	16
807	47	10	26	17
507	53	11	29	18
616	67	11	37	18
476	61	13	40	20
557	57	11	32	17
564	52	12	29	18
487	54	10	31	18
487	6 1	13	39 .	21
554	63	12	38	20 .
584	60	10	27	17
641	50	10	33	16
648	49	7	24	14
631	64	10	39	17
438	71	15	45	24
597	60	11	29	17
556	72	12	37	19

Co PPM

10

8

8

7

8

7

8

5

8

8

8

9

Cr PPM

48

39

45

41

41

34

32

25

35

39

46

49

Cu PPM

19

15

16

12

16

15

17

11

16

17

17

17

0003

<u>⊢</u> န

Page 34

SAMPNO

1163930

1163931

1163932

1163933

1163934

1163935

1163936

1163937

1163938

1163939

1163940

1163941

1163942

1163943

1163944

1163945

1163946

1163947

1163948

1163949

1163950

1163951

1163952

1163953

1163954

1163955

1163956

1163957

1163958

1163959

1163960

1163961

Sb PPM

0.38

0.34

0.31

0.4

0.42

0.28

0.4

0.26

0.29

0.3

0.32

0.31

0.27

0.62

0.51

0.45

0.48

0.37

0.44

0.36

0.34

0.46

0.53

0.44

0.46

0.4

0.33

0.27

0.31

0.45

0.34

0.4

Sn PPM

7.16

5.51

6.59

6.15

6.6

5.98

6.68

6.36

5.72

5.26

5.43

5.78

5.52

6.62

5.16

5.6

5.02

4.67

5.75

5.66

4.97

4.73

5.14

5.55

5.68

5.57

4.74

4.72

5.63

6.82

5.34

6.04

U PPM

2.16

1.67

1.97

2.07

2.03

1.85

1.96

2.08

2.08

1.84

1.77

2.04

1.95

2.25

1.82

1.94

1.88

1.7

1.89

1.79

1.79

1.8

1.66

1.74

1.71

1.84

1.95

1.76

1.96

2.27

1.63

1.7

Ba PPM

526

579

571

567

543

633

625

477

615

614

629

610

Ce PPM

92

60

67

63

73

57

73

46

58

52

55

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163962	0.58	5.68	2.18	425	69	12	39	21
1163963	0.39	6.34	2.13	570	73	11	36	18
1163964	0.34	5.78	1.98	555	68	12	44	19
1163965	0.42	5.84	2.34	540	68	12	44	20
1163966	0.27	5.39	1.92	593	61	9	4 0	17
1163967	0.36	4.89	1.98	399	54	11	30	16
1163968	0.42	6.72	2.36	513	84	13	47	24
1163969	0.34	6.43	1.93	539	60	10	4 1	20
1163970	0.42	4.85	1.34	576	55	11	33	21
1163971	0.5	5.09	1.49	572	53	10	28	18
1163972	0.41	4.52	1.4	586	52	10	32	18
1163973	0.36	5.22	1.55	537	56	10	4 6	22
1163974	0.34	6.26	2.02	689	58	9	44	18
1163975	0.33	5.87	1.98	612	64	10	4 6	19
1163976	0.64	6.4	1.79	574	59	11	4 5	20
1163977	0.43	5.66	1.98 .	604	62	9	4 1	17
1163978	0.26	6.04	2.34	634	55	9	45	17
1163979	0.27	4.94	1.72	631	51	8	35	16
1163980	0.43	4.98	1.73	603	55	9	34	17
1163981	0.56	5.6	1.58	471	58	12	43	22
1163982	0.36	4.95	1.51	504	54	11	4 8	20
1163983	0.25	3.87	1.39	542	43	8	37	15
1163984	0.29	3.85	1.29	557	49	8	4 4	17
1163985	0.31	4.81	1.6	557	57	10	45	19
1163986	0.29	6.48	1.59	476	64	12	53	21
1163987	0.35	4.62	1.75	567	63	11	54	18
1163988	0.36	5.41	1.83	595	54	8	36	17
1163989	0.49	3.4	1.38	624	40	6	27	15
1163990	0.34	5.7	1.9	608	40	2.5	33	14
1163991	0.36	4.33	1.61	567	51	8	31	16
1163992	0.29	4.5	1.68	635	39	6	3 1	12
1163993	0.43	4.78	1.59	524	58	9	4 1	18

SAMPNO	Sb PPM	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM	Cu PPM
1163994	0.28	4.31	1.61	585	42	6	23	13
1163995	0.39	6.26	2.41	725	67	8 '	30	16
1163996	0.25	3.69	1.4	690	36	6	33	13
1163997	0.38	7.76	2.11	641	66	9	50	20
1163998	0.33	9.05	2.5	676	78	10	39	18
1163999	0.42	3.09	1.35	769	37	6	42	11
1164000	0.46	6.44	2.28	629	76	9	49	18
1233829	0.26	5.5	1.74	458	67	12	42	21
1233830	0.32	5.63	1.86	558	63	9	35	16
1233831	0.48	4.65	1.89	459	73	13	51	22
1233832	0.36	4.11	1.99	634	51	7	27	14
1233833	0.3	5.54	2.06	569	56	8	31	17
1233834	0.42	6.06	1.76	520	57	9	40	17
1233835	0.37	4.76	1.64	578	49	8	30	14
1233836	0.36	5.39	1.66	586	54	8	33	16
1233837	0.25	5.23	1.76	508	61	10	39	17
1233838	0.36	5.87	1.73	687	35	5	26	13
1233839	0.31	4.23	1.59	647	39	6	26	13
1233840	0.52	5.16	1.7	480	60	11	34	20
1233841	0.54	5.93	2.04	861	58	10	47	18
1233842	0.33	5.3	1.58	572	49	7	26	13
1233843	0.35	4.99	1.77	655	47	6	31	12
1233844	0.31	4.71	2.04	531	50	9	43	18
1233845	0.29	3.73	1.39	653	36	7	33	13
1233846	0.34	5.55	1.52	445	59	10	43	18
1233847	0.28	4.72	1.63	483	51	9	36	16
1233848	0.28	5.74	2.16	602	73	9	36	16
1233849	0.53	5.31	1.36	539	50	9	35	16
1233850	0.43	4.74	1.43	614	38	6	27	30
1233851	0.26	4.79	1.51	568	40	6	35	12
1233852	0.38	3.57	1.37	812	43	8	31	16
1233853	0.27	4.24	1.36	696	38	7	32	13

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1233854	0.24	3.88	1.48	833	32	2.5	27	12
1233855	0.26	3.79	1.43	697	32	2.5	23	11
1233856	0.26	4.92	1.51	499	47	7	36	13
1233857	0.22	5.26	1.51	571	47	8	32	14
1233858	0.29	4.13	1.41	768	38	6 ·	26	13
1233859	0.87	5.32	1.73	583	55	7	33	14
1233860	0.54	4.59	2.78	529	39	8	31	12
1233861	0.43	5.05	1.29	368	52	10	34	18
1233862	0.34	4	1.27	381	35	8	34	13
1233863	1.06	6.23	5.33	643	24	6	42	10
1233865	0.35	4.09	1.19	418	39	6	25	11
1233867	0.32	3.4	0.91	284	26	2.5	19	11
1233868	0.59	2.04	0.56	268	18	2.5	13	10
1233869	0.55	4.13	1.04	262	35	6	29	14
1233870	0.41	4.34	1.17	392	43	7	34	14
1233871	0.47	5.95	1.55	399	62	10	45	19
1233872	0.44	4.73	1.2	360	45	7	40	15
1233873	0.42	6.88	1.87	381	88	. 15	65	25
1233874	0.025	2.84	1.57	312	50	9	35	16
1233875	0.29	5.78	1.45	361	57	10	45	20
1233876	0.3	4.96	1.17	360	49	8	38	16
1233877	0.32	5.66	1.56	383	65	12	45	20
1233878	0.58	4.91	1.12	312	53	10	48	19
1233879	0.53	5.78	1.69	324	73	14	50	19
1233880	0.53	5.88	2.11	503	56	10	39	14
1233881	0.55	4.69	1.17	450	30	6	23	13
1233882	0.5	6.41	2.13	414	91	14	49	19
1233883	0.38	4.68	1.37	438	59	9	33	16
1233884	0.47	6.37	2.44	437	80	14	51	21
1233885	0.31	6.32	2.01	427	75	13	47	21
1233886	0.63	5.49	5.94	352	66	12	51	15
1233887	0.38	6.64	3.77	359	77	13	50	22

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1233888	0.76	5.65	1.8	623	54	9	29	14
1233889	0.9	7.69	1.41	383	56	12	50	22
1233890	0.63	7.97	1.57	445	70	14	48	20
1233891	0.47	5.42	1.15	381	31	7	32	14
1233892	1.87	9.17	1.39	437	53	12	47	20
1233894	0.7	5.11	2.42	520	38	8	37	18
1233895	0.9	8.01	1.53	431	54	10	42	20
1233898	0.46	5.64	1.44	. 411	31	2.5	22	12
1233900	0.47	4.68	1.39	458	33	5	24	12
1233901	0.55	5.75	1.69	452	54	9	46	16
1233902	0.36	5.2	1.5	377	34	5	21	11
1233903	0.4	5.67	1.46	442	46	8	′ 30	16
1233904	0.36	5.52	1.36	438	44	. 10	37	17
1233905	0.62	5.57	1.22	385	52	14	5 0	21
1233906	0.67	6.77	1.49	385	61	13	57	21
1233907	0.43	4.36	1.45	514	30	5	23	12
1233908	0.51	7.4	1.5	335	60	14	52	24
1233909	0.48	8.32	1.51	387	67	13	48	23
1233910	0.3	3.44	1.03	274	35	10	28	15
1233911	0.44	5.81	1.62	294	64	14	49	20
1233912	0.37	3.61	0.92	343	30	8	26	14
1233913	0.83	3.62	1.27	499	28	5	15	11
1233914	0.54	4.35	1.6	455	48	9	32	12
1233915	0.6	5.72	1.86	560	52	9	33	13
1233916	0.45	5.48	1.72	538	55	9	33	14
1233917	0.38	5.65	1.77	512	57	9	33	14
1233918	0.29	3.28	1.21	451	34	6	26	11
1233919	0.54	4.98	1.57	505	50	9	37	14
1233920	0.31	3.93	1.17	382	33	6	25	12
1233921	0.025	3.59	1.53	371	40	9	37	14
1233922	0.42	7.75	4.43	1554	79	7 .	23	10
1233923	0.43	6.95	1.64	403	74	15	54	20

SAMIFINO	SD FFIVI	OH FFIVI	U PPM	Ba PPIVI	Ce PPM	Со РРМ	Cr PPM	Cu PPM
1233924	0.54	3.16	1.42	458	34	7	32	12
1233925	0.67	6.48	1.34	301	56	13	47	21
1233926	0.34	4.26	1.39	482	38	7	29	11
1233927	0.51	5.76	1.51	374	51	13	44	19
1233928	0.48	4.61	1.6	540	38	6	26	12
1233929	0.49	5.42	1.7	473	56	11	4.5	19
1233930	0.4	6.28	1.7	333	61	15	58	19
1233931	0.46	5.88	1.21	337	50	11	51	20
1233932	0.45	6.2	1.53	426	56	11	58	22
1233933	0.6	4.76	1.34	463	48	8	40	18
1233934	0.46	6.71	1.63	396	60	14	54	23
1233935	0.51	5.44	1.62	472	45	7	32	15
1233936	0.47	4.54	1.49	453	45	9	31	15
1233937	0.45	5.22	1.4	483	55	12	32	18
1233938	0.3	4.33	1.43	489	39	· 7	28	13
1233939	0.41	6.31	1.6	469	61	13	50	21
1233940	0.3	4.48	1.61	517	45	6	25	12
1233941	0.6	6.43	2.2	584	61	7	32	14
1233942	0.53	8.9	2.53	493	43	2.5	24	11
1233943	0.68	6.73	2.44	474	43	5	34	13
1233944	0.5	4.91	1.59	479	4 4	8	36	13
1233945	0.53	5.18	1.54	514	38	6	20	12
1233946	0.41	6.15	1.63	565	50	8	45	16
1233947	0.34	5.45	1.63	537	55	7	28	13
1233948	0.37	6.21	1.71	482	62	13	43	17
1233949	0.3	4.44	1.59	474	44	8	25	13
1233950	0.31	5.87	1.6	447	57	11	4 1	15
1233951	0.34	5.95	2.01	615	51	7	19	13
1233952	0.38	5.91	2.16	501	56	8	32	13
1233953	0.73	5.56	2.69	622	80	· 9	44	17
1233954	0.59	6.88	1.56	427	84	12	61	22
1233955	0.85	5.39	1.66	403	77	12	56	20
								=

Ba PPM

Ce PPM

Co PPM

Cr PPM

Cu PPM

SAMPNO

Sb PPM

Sn PPM

U PPM

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	. Cu PPM
1233956	0.46	5.62	1.27	355	73	12	41	17
1233957	0.43	5.61	1.41	385	68	13	48	19
1233958	0.27	5.32	1.31	368	63	9	43	15
1233962	1.1	7.4	1.87	509	86	12	56	16
1233963	0.38	5.98	1.49	465	69	10	45	16
1233964	0.38	5.05	1.42	437	65	9	40	14
1233965	0.36	5.9	1.87	452	57	6	38	14
1233966	0.36	5.7	1.3	386	67	10	51	17
1233967	8.05	7.32	1.89	454	97	16	66	28
1233968	0.29	5.18	1.37	471	68	11	51	16
1233969	0.17	4.26	1.29	419	46	7	28	13
1233972	0.41	5.72	1.62	470	67	9	45	16
1233974	0.32	6.44	2.26	452	90	11	58	17
1233976	0.17	4.56	1.46	494	49	7	30	12
1233978	0.26	6.4	1.93	403	8 1	11	52	16
1233979	0.6	4.86	1.66	466	5 1	6	31	16
1233980	0.89	5.3	1.74	447	59	6	39	15
1233981	0.27	5.36	2.09	502	71	8	40	15
1233982	0.29	5.09	1.7	507	63	9	44	15
1233983	0.35	5.24	1.72	478	57	9	46	18
1233984	0.43	6.72	1.86	397	91	12 -	55	20
1233985	0.19	5.56	2.42	629	43	5	40 .	15
1233986	0.22	5.02	1.92	526	59	8	44	16
1233987	0.28	3.92	1.7	629	46	7	42	16
1233988	0.28	4.89	1.63	554	60	10	48	19
1233989	0.54	4.49	1.57	472	63	11	65	19
1233990	0.5	4.37	2.06	628	56	9	47	16
1233991	0.42	6.05	3.1	627	72	9	47	16
1233992	0.31	5.02	1.73	536	55	8	45	17
1233993	0.38	5.11	3.81	470	66	13	43	19
1233994	0.27	5.11	1.82	527	61	10	42	19
1233995	0.2	7.23	2.58	562	64	9	55	18

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1233996	0.26	5.45	2.08	578	6 1 ·	7	46	15
1233997	0.34	6.18	1.69	415	76	13	53	24
1233998	0.96	3.64	2.04	551	63	10	66	18
1233999	0.67	2.96	1.56	554	57	9	46	18
1234000	0.65	2.33	1.5	545	53	8	40	16
1234001	0.41	2.98	1.81	565	49	6	47	15
1234002	0.56	3.63	1.87	792	64	10	. 54	21
1234003	0.45	3.85	1.68	512	79	12	60	20
1234008	0.67	2.09	1.62	965	54	6	42	18
1234009	0.67	4.35	1.8	459	70	13	70	28
1234010	0.58	3.73	1.87	531	74	11	49	23
1234012	0.4	2.81	1.93	522	63	. 13	47	24
1234014	0.29	2.82	1.56	635	53	8	4 1	19
1234016	0.41	2.45	2.68	. 742	56	9	43	15
1234017	0.39	3.56	1.66	495	58	10	47	20
1234020	0.56	5.73	2.01	705	46	7	26	16
1234021	0.87	4.09	1.86	651	48	7	30	17
1234022	2.35	4.97	1.66	543	58	10	41	18
1234023	0.44	3.93	1.38	675	50	9	28	21
1234024	1.81	5.44	1.6	396	62	13	42	24
1234025	0.9	6.43	1.81	460	69	14	50	27
1234026	0.64	4.47	1.75	693	56	8	30	20
1234027	0.86	6	1.4	546	62	18	49	27
1234028	0.65	6.89	1.84	301	69	18	54	31
1234029	0.69	5.39	1.63	554	69	12	38	24
1234030	0.55	6.11	1.44	391	52	11	40	24
1234032	0.46	5.47	1.39	370	57	12	43	23
1234033	0.48	5.11	1.48	448	58	12	38	19
1234034	0.48	5.6	1.46	407	59	12	41	24
1234035	0.55	4.11	1.27	670	4 0	10	27	12
1234036	0.23	4.9	2.26	672	61	7	29	20
1234037	0.28	4.68	2.3	655	55	8	30	· 16

SAMPNO	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
1234038	0.36	6.21	1.87	462	71	13	42	23
1234039	0.39	6.38	1.69	425	68	14	44	23
1234040	0.53	7.85	1.74	296	72	15	47	29
1234041	0.4	6.29	1.45	375	64	12	43	25
1234042	0.42	7.1	1.45	356	67	14	50	25
1234053	0.53	6.74	2.28	431	74	10	38	20
1234056	0.61	5.63	1.98	521	54	9	30	18
1234057	0.43	7.39	2.52	525	84	16	4 1	2 1
1234058	0.49	7.01	2.71	558	80	11	39	20
1234059	0.42	7.78	2.04	389	79	13	47	2 1
1234060	0.31	7.28	2.02	408	80	1 4	49	2 4
1234061	0.26	6.59	1.9	473	85	13	. 47	26
1234062	0.47	7.15	2.16	488	76	13	42	23
1234063	0.55	6.82	1.56	406	72	14	4 6	25
1234064	0.57	6.42	2.17	573	63	10	29	19
1234065	0.33	6.79	2.41	537	53	6	18	1 4
1234066	0.44	6.31	1.51	416	6 1	12	38	19
1234068	0.42	7.07	1.85	577	45	7	23	17
1234069	0.44	7.22	1.71.	435	73	13	36	23
1234070	0.41	7.46	1.64	376	68	13	45	23
1234071	0.43	6.58	1.53	417	67	13	41	22
1234072	0.16	6.14	2.05	575	46	5	17	13
1234073	0.58	6.11	1.43	412	57	10	30	23
1234074	0.5	5.81	1.56	510	52	9	28	17
1234075	0.44	7.53	1.5	395	61	12	35	22
1234076	0.57	5.31	1.44	477	42	9	38	16

	• •	
12	39	133
12	35	112
12	30	105
12	32	95
12	56	111
13	57	124
5	17	69
1 0	29	96
12	4 7	104
13	48	105
5	45	131
5	36	161
11	3 4	121
20	49	224
5	29	93
5	23	70
12	41	94
5	33	126
5	31	89
15	52	183

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

Ni PPM

P PPM

Th PPM

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1161450	19600	19	197	15	225	10	25	85
1161451	23600	30	310	19	178	12	36	97
1161452	23900	33	350	18	211	12	42	102
1161453	25400	29	352	18	. 189	11	38	125
1161454	28500	26	387	17	191	10	50	140
1161455	45500	45	541	30	272	16	75	136
1161456	23000	24	278	17	177	10	31	93
1161457	15600	11	291	13	113	5	12	45
1161458	16700	8	187	13	50	5	8	66
1161459	16500	12	223	. 12	50	5	14	74
1161460	14500	12	162	14	50	5	15	71
1161461	25900	29	502	18	176	11	47	115
1161462	27000	24	394	20	174	11	46	91
1161463	28700	31	412	19	243	12	50	106
1161464	19800	21	311	15	151	5	28	121
1161465	21600	21	281	13	170	5	28	112
1161466	34800	36	493	23	209	11	50	133
1161467	22000	26	364	16	114	5	31	95
1161468	30600	42	544	23	233	15	52	128
1161469	31700	37	523	23	333	14	51	110
1161470	24900	33	686	19	211	5	34	111
1161471	23200	24	364	17	172	5	32	91
1161472	20700	19	314	13	133	5	26	92
1161473	22000	23	264	13	148	5	24	104
1161474	18600	18	235	12	118	5	23	99
1161475	21700	23	349	14	196	5	31	99
1161476	15100	13	165	23	50	5	16	69
1161477	14600	12	194	15	50	5	18	48
1161478	18700	21	249	13	130	5	22	95
1161479	31100	26	432	16	161	12	45	123
1161480	27400	19	484	14	140	5	49	110
1161482	38300	50	712	19	192	15	76	151

		0 4	700	20	073	1 /	1 2	134
1161486	31800	30	388	19	265	16	52	114
1161487	32500	37	350	18	340	15	46	136
1161488	19500	13	224	12	148	5	34	82
1161489	27200	24	337	15	205	15	46	96
1161490	17800	15	204	11	130	5	27	69
1161491	24500	23	318	15	183	13	40	89
1161492	20100	17	242	14	245	12	30	83
1161493	37700	28	608	22	169	11	69	114
1161494	26300	25	335	14	201	13	40	105
1161495	34400	32	411	24	308	18	60	109
1161496	35100	34	364	24	276	18	57	113
1161497	39900	26	925	16	100	17	78	103
1161498	32500	31	364	21	281	17	52	109
1161499	42100	23	296	16	195	16	44	137
1161500	30600	24	409	12	140	15	45	113
1161501	26100	21	447	12	50	14	45	98
1161502	17800	18	151	14	108	10	28	74
1161503	36700	17	248	11	144	5	26	69
1161504	24300	24	387	12	163	14	45	113
1161505	40100	25	960	14	136	14	90	137
1161506	32800	29	557	17	140	15	62	118
1161507	41500	42	575	26	480	21	72	129
1161508	24800	23	424	13	126	13	49	95
1161509	28100	26	333	15	217	15	47	95
1161510	19000	19	295	12	126	12	33	94
1161511	17200	38	232	11	177	32	39	143
1161512	26200	43	468	21	242	27	48	110
1161513	24800	28	352	14	168	18	40	115
1161514	17500	25	239	12	164	19	29	84

P PPM

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1161515	16600	32	222	11	175	29	33	. 158
1161516	34100	41	432	20	470	18	49	134
1161517	26100	35	342	14	241	19	42	110
1161518	20600	25	266	17	236	15	34	78
1161519	20200	21	208	13	153	11	63	108
1161520	31800	30	410	20	364	15	43	108
1161521	23900	18	486	10	116	12	43	96
1161522	25100	24	351	15	115	13	39	94
1161523	27900	26	385	17	238	13	49	103
1161524	26500	28	468	13	167	13	47	92
1161525	29500	31	359	20	166	16	41	109
1161526	26900	27	389	20	177	13	42	109
1161527	18900	18	235	13	138	10	33	95
1161528	35600	35	557	24	173	17	57	109
1161529	12200	10	124	5	·50	5	16	66
1161530	25000	27	484	18	186	14	42	108
1161531	21400	21	469	17	167	10	34	79
1161532	20500	19	350	16	198	10	34	83
1161533	16000	15	202	10	114	10	24	85
1161534	28700	35	403	17	275	17	38	150
1161535	18000	17	179	12	125	5	21	84
1161536	30700	91	535	26	234	13	46	102
1161537	33800	38	504	25	214	16	65	107
1161538	21400	23	275	15	202	14	34	104
1161539	21100	25	252	14	180	13	32	93
1161540	21000	23	238	13	140	13	27	107
1161541	28300	29	439	18	166	15	46	94
1161542	23300	25	311	16	148	14	38	96
1161543	28000	23	443	11	121	13	42	102
1161544	26200	31	433	16	200	15	42	118
1161545	31100	35	453	23	140	17	46	113
1161546	22900	28	346	1 4	1.95	14	33	103

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1161547	22900	29	335	13	126	14	32	113
1161548	22000	28	275	19	178	14	35	107
1161549	30700	37	375	22	172	18	42	126
1161550	20000	24	254	13	109	12	30	87
1161601	19200	25	273	13	161	11	35	87
1161602	22500	22	340	13	186	11	33	101
1161603	18800	20	242	11	155	5	29	87
1161604	16500	21	183	11	50	11	21	77
1161605	16200	18	194	5	105	5	22	67
1161606	21600	19	300	13	146	5	34	84
1161607	17900	19	246	5	107	5	25	59
1161608	20300	19	297	12	175	5	28	87
1161609	14600	17	205	11	121	5	21	63
1161610	20600	20	248	14	130	10	26	77
1161611	18000	15	201	12	115	5	24	64
1161612	29000	27	297	14	158	11	· 32	115
1161613	22900	24	333	11	119	10	33	101
1161614	16300	. 13	207	10	50	5	17	67
1161615	41100	44	723	24	290	13	70	134
1161616	27700	31	437	14	151	12	104	129
1161617	23300	27	286	11	113	13	34	148
1161618	23300	19	305	14	151	5	36	107
1161619	34500	35	488	20	438	13	58	130
1161620	33900	35	610	17	364	14	56	134
1161621	32700	33	436	20	240	14	54	117
1161622	34500	36	715	16	258	14	58	135
1161623	47600	46	782	23	314	16	92	167
1161624	42900	48	721	23	619	15	91	161
1161625	37000	40	517	19	278	16	69	147
1161626	33100	29	490 .	15	268	12	60	146
1161627	39800	46	569	26	319	15	80	131
1161628	41600	39	604	33	291	14	75	126

_ '	17	07	173
25	5	44	90
15	16	48	150.
05	14	57	134
06	14	33	124
75	16	53	127
66	18	65	144
18	14	50 -	136
47	16	52	171
60	17	57	147
34	11	45	121
00	14	67	155
98	13	57	154
79	17	71	155
65	11	48	130
28	13	· 75	163
24	12	54	121
03	15	56	167
96	14	58	162
48	14	56	155

O 11011 1 10	101111	Ea 1 1 141	1411111141	14111141	1 1 1 101	11111111	ZITETVI	
1161629	36700	36	589	-22	240	14	68	119
1161630	33700	31	468	19	176	11	67	104
1161631	27200	23	475	14	196	· 5	50	102
1161632	29600	26	393	15	239	11	51	107
1161633	29600	31	383	17	338	13	61	112
1161634	24600	23	259	13	166	11	39	96
1161635	35300	34	426	21	285	15	59	145
1161636	26400	31	339	15	273	14	48	125
1161637	32400	34	461	21	240	16	57	129
1161638	29400	30	576	23	210	13	46	132
1161639	32900	37	378	25	351	16	59	123
1161640	38400	35	529	22	278	14	67	142
1161641	37700	34	618	21	221	14	64	149
1161642	24600	26	267	20	225	5	44	90
1161643	28700	30	334	16	215	16	48	150.
1161644	35100	32	468	22	205	14	57	134
1161645	25400	24	265	14	106	14	33	124
1161646	35800	33	371	24	175	16	53	127
1161647	39600	42	651	23	266	18	65	144
1161648	30300	46	472	19	218	14	50 -	136
1161649	37900	65	556	19	347	16	52	171
1161650	38100	47	440	21	260	17	57	147
1161751	23800	27	430	15	334	11	45	121
1161752	32000	32	474	16	300	14	67	155
1161753	31100	34	401	14	198	13	57	154
1161754	43000	43	665	23	279	17	71	155
1161755	31000	33	411	18	165	11	48	130
1161756	43300	36	918	23	428	13	· 75	163
1161757	32700	33	380	19	224	12	54	121
1161758	34900	38	552	19	303	15	56	167
1161759	34400	37	743	19	296	14	58	162
1161760	31500	37	464	18	248	14	56	155

P PPM

Th PPM

Zn PPM

Zr PPM

000327

SAMPNO

Fe PPM

La PPM

Mn PPM

14	410	1 4	68	171
20	304	12	74	152
18	343	12	57	160
17	228	12	60	186
21	225	11	70	122
13	329	13	52	153
13	202	1 4	61	191
19	310	15	69	166
13	174	12	45	159
18	258	15	. 60	161
20	477	16	70	165
20	330	14	58	174
15	233	13	66	235
21	456	16	66	172
15	221	1 4	55	186
18	336	15	53	159
17	193	11	46	163
19	225	11	4 1	157
16	211	11	46	196

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

4 1

Mn PPM

Ni PPM

P PPM

1101373	30300	40	004	20	304	1 4	63	107
1161974	24400	38	299	14	202	13	38	. 134
1161975	27000	36	394	15	192	12	36	166
1161976	30800	42	557	18	237	14	45	178
1161977	41800	45	509	26	568	16	75	149
1161978	37200	39	439	22	411	11	64	113
1161979	34700	43	408	22	508	16	57	136
1161980	29900	37	391	22	332	13	52	142
1161981	29100	40	459	19	370	17	47	139
1161982	27300	32	324	32	216	13	43	136
1161983	44000	41	659	24	328	15	79	143
1161984	33300	39	486	20	253	16	55	140
1161985	42800	40	730	21	232	17	67	182
1161986	34300	43	413	20	312	17	54	158
1161987	36800	43	535	21	412	18	61	159
1161988	31300	37	507	18	215	16	50	165
1161989	34300	37	874	. 20	201	16	56	192
1161990	32600	37	453	21	206	14	57	150
1161991	39400	38	642	34	250	15	70	170
1161992	41400	40	569	26	268	15	76	142
1161993	34200	41 -	514	18	257	14	63	140
1161994	46900	43	745	25	301	16	95	140
1161995	36200	39	615	18	293	14	72	166
1161996	34800	36	700	17	187	15	60	152
1161997	31900	35	590	15	224	13	56	159
1161998	34300	35	738	17	208	15	57	166
1161999	53200	52	898	28	610	20	104	169
1162000	37800	35	597	18	240	13	58	218
4400004						_		

P PPM

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1163802	27400	24	473	15	198	10	47	112
1163803	35700	33	·600	19	228	15 ·	67	127
1163804	21700	24	364	13	174	5	38	95
1163805	30000	30	430	19	196	13	52	109
1163806	34100	29	729	18	160	14	66	172
1163807	39000	34	695	20	270	14	. 72	141
1163808	29400	28	429	16	215	12	52	116
1163809	36400	36	467	23	270	14	63	116
1163810	43600	41	536	26	492	15	79	138
1163811	26000	25	412	5	161	11	45	125
1163812	44200	39	596	16	420	12	78	129
1163813	35000	33	390	11	293	10	58	115
1163814	49400	25	2040	5	108	5	126	133
1163815	38100	29	437	15	239	5	63	114
1163816	32900	29	511	5	286	5	58	115
1163817	32600	28	532	5	189	5	56	106
1163818	27000	21	383	5	166	5	40	95
1163819	29200	27	440	5	168	12	48	110
1163820	24000	21	365	5	108	10	40	90
1163821	27100	21	603	5	119	11	49	139
1163822	30600	21	314	5	184	10	42	132
1163823	39700	33	446	22	379	13	66	128
1163824	34800	27	432	17	190	13	47	155
1163825	23000	19	235	5	173	10	34	94
1163826	33200	19	301	5	50	5	39	113
1163827	27700	23	295	5	234	10	43	108
1163828	36900	37	616	10	651	13	78	135
1163829	29300	31	368	31	363	12	55	125
1163830	28300	31	500	. 5	233	12	47	135
1163831	21800	21	221	5	146	5	29	108
1163832	30000	30	209	5	183	16	22	132
1163833	24300	27	289	5	133	11	29	124

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1163834	37400	38	553	14	236	15	63	127
1163835	36900	40	488	14	290	15	65	120
1163836	28600	31	350	5	231	13	46	123
1163837	47200	47	615	24	398	17	90	128
1163838	27000	35	315	30	280	15	44	120
1163839	36200	40	515	12	292	16	56	132
1163840	51700	50	698	25	498	17	87	147
1163841	42100	43	582	23	336	16	62	152
1163842	37300	4 0	416	20	436	16	63	120
1163843	33100	36	420	13	276	15	52	121
1163844	34600	38	466	16	259	15	57	131
1163845	31900	35	471	14	273	15	53	110
1163846	27900	27	364	5	164	13	40	140
1163847	34400	36	415	15	274	14	53	124
1163848	24100	31	312	26	178	1 4	35	109
1163849	32700	37	394	11	256	12	50	115
1163850	38700	40	474	15	261	15	59	122
1163851	19700	15	188	12	50	5	22	84
1163852	21100	16	292	12	114	5	33	110
1163853	20700	18	228	5	158	10	30	76
1163854	36400	43	459	21	389	16	67	128
1163855	32400	35	509	15	229	15	54	145
1163856	38800	47	788	20	310	17	82	169
1163857	38400	40	639	30	288	17	66	182
1163858	34900	40	596	13	321	16	65	144
1163859	33900	37	459	17	362	16	59	147
1163860	27200	33	354	16	241	15	45	122
1163861	26700	20	355	13	216	11	42	110
1163862	26400	23	385	20	330	11 -	48	85
1163863	20900	20	272	23	177	13	33	70
1163864	22800	15	425	17	117	11	45	80
1163865	23100	22	349	30	228	12	38	79

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1163866	32900	35	507	52	339	16	51	120
1163867	24200	23	333	293	156	18	33	93
1163868	33900	23	867	18	109	21	74	82
1163869	23500	20 .	358	46	105	16	35	89
1163870	20100	32	320	5	177	16	30	81
1163871	20400	26	342	5	184	15	34	81
1163872	18800	22	313	5	216	11	31	69
1163873	25000	26	483	5	275	14	48	93
1163874	36000	33	612	5	252	14	60	136
1163875	37200	36	602	10	306	15	80	121
1163876	41100	33	891	10	251	14	78	139
1163877	28200	28	413	17	199	13	46	113
1163878	35500	34	530	24	214	15	58	118
1163879	41700	58	966	26	378	19	77	159
1163880	26600	28	416	19	149	15	44	96
1163881	39300	42	694	23	330	17	71	149
1163882	29500	36	840	20	207	13	49	128
1163883	49200	57	818	30	494	20	95	174
1163884	40500	43	413	27	270	19	69	123
1163885	29500	29	363	16	278	14	49	123
1163886	48000	71	974	29	489	21	105	170
1163887	26800	29	379	20	209	12	49	112
1163888	29000	35	405	21	222	16	54	123
1163889	37900	36	586	17	187	18	61	116
1163890	46900	35	1307	16	180	19	82	139
1163891	39300	48	662	25	411	20	79	136
1163892	32400	29	652	26	189	14	53	117
1163893	34100	27	799	15	100	16	69	113
1163894	29400	28	454	23	143	16	53	108
1163895	39700	37	654	30	222	17	68	125
1163896	29400	24	554	16	182	15	56	116
1163897	22900	20	348	12	152	12	41	95

		_				. •	U ,	
1163900	36600	25	895	14	120	13	76	145
1163901	29800	30	321	13	127	14	37	133
1163902	29900	34	393	14	179	15	47	161
1163903	27000	34	317	12	189	14	40	148
1163904	35900	46	423	15	250	16	58	182
1163905	31600	38	395	5	194	17	46	208
1163906	41100	54	565	18	401	20	67	175
1163907	30600	33	700	21	163	15	46	118
1163908	33400	39	385	14	197	23	36	231
1163909	35900	45	557	20	218	19	52	139
1163910	34400	39	445	20	237	19	49	137
1163911	24200	23	340	12	126	15	24	151
1163912	43700	53	548	20	322	23	55	212
1163913	33700	53	574	18	276	19	50	163
1163914	30500	43	426	30	208	19	41	137
1163915	28200	32	303	17	164	18	39	123
1163916	38100	56	668	16	241	19	57	159
1163917	24700	28	274	10	148	15	29	116
1163918	31300	37	318	14	149	16	31	136
1163919	27900	42	375	16	158	1 9	42	136
1163920	26200	33	338	14	50	18	36	120
1163921	40000	50	430	17	252	22	48	193
1163922	32500	41	364	17	204	20	44	133
1163923	22300	29	228	12	170	14	23	124
1163924	35800	48	641	22	302	22	46	126
1163925	30200	40	494	17	332	22	37	149
1163926	40600	48	488	24	353	22	63	137
1163927	36100	42	536	18	324	18	49	164
1163928	36400	41	492	24	297	18	52	153
1163929	33400	38	561	16	277	17	. 47	191

P PPM

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	Р РРМ	Th PPM	Zn PPM	Zr PPM
1163930	41100	49	568	21	323	20	60	177
1163931	32400	35	429	20	275	18	47	83
1163932	36300	38	554	21	230	19	53	169
1163933	32200	34	423	21	234	17	43	166
1163934	34400	42	513	17	282	17	55	92
1163935	31200	33	454	15	186	· 16	43	99
1163936	36400	40	556	18	432	17	50	169
1163937	32900	28	733	11	143.	15	47	239
1163938	31900	35	514	18	211	18	45	172
1163939	30000	35	428	21	250	17	48	131
1163940	31100	36	394	25	263	21	45	142
1163941	35700	34	528	25	414	19	55	163
1163942	30700	34	478	22	324	18	47	147
1163943	36600	42	524	20	377	15	59	162
1163944	29700	34	384	- 19	190	17	42	133
1163945	32100	36	411	18	290	15	49	149
1163946	30200	31	476	21	166	15	42	132
1163947	31000	34	388	23	208	16	46	118
1163948	34100	40	446	22	327	18	50	141
1163949	35700	39	486	27	296	17	58	120
1163950	32100	36	432	22	235	18	46	126
1163951	30500	34	358	25	258	15	49	111
1163952	32600	34	354	23	211	17	49	118
1163953	36500	38	450	27	308	17	59	116
1163954	36300	38	443	25	288	18	58	121
1163955	33100	34	415	22	293	17	49	134
1163956	29400	31	341	21	190	17	41	. 114
1163957	24700	31	304	17	180	15	44	117
1163958	35000	37	387	22	293	18	51	133
1163959	43700	42	666	31	419	19	76	135
1163960	32200	35	416	23	250	17	50	127
1163961	37000	38	469	25	462	18	58	136

1103903	33700	41	409	22	465	19	61	150
1163964	35300	40	542	. 24	408	20	56	134
1163965	37100	42	479	25	342	20	58	135
1163966	31500	36	378	20	309	18	48	125
1163967	28800	35	414	22	433	15	47	101
1163968	42900	50	664	28	493	18	67	140
1163969	34000	38	436	23	352	17	52	125
1163970	34600	35	408	26	323	17	60	117
1163971	31200	35	385	22	282	16	53	114
1163972	29900	34	345	22	264	16	50	107
1163973	36200	36	419	25	266	17	60	109
1163974	32400	37	456	20	283	17	52	144
1163975	35100	37	531	23	310	15	57	139
1163976	35700	35	494	24	249	15	55	126
1163977	32300	34	521	19	230	13	46	142
1163978	32100	33	452	22	295	13	48	139
1163979	30100	33	446	21	218	15	44	125
1163980	30600	33	452	19	298	14	46	142
1163981	37500	38	490	30	322	17	61	117
1163982	34500	36	419	25	247	15	56	109
1163983	25400	30	317	19	163	14	41	101
1163984	26900	. 32	335	23	145	14	43	96
1163985	34200	35	415	24	254	15	55	116
1163986	36400	39	459	28	338	17	62	116
1163987	33300	36	481	34	232	15	54	127
1163988	32800	33	449	22	364	16	58	131
1163989	25900	27	335	20 .	221	12	43	125
1163990	32900	28	852	21	141	13	66	159
1163991	32200	31	402	20	295	13	58	126
1163992	27500	27	493	20	189	13	52	139
4400000	05000					_		

P PPM

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

			V-V	- ·	0,1	, ,	V T	100
1163996	23400	25	277	22	222	13	40	117
1163997	35800	38	610	30	680	14	73	143
1163998	26800	40	673	26	402	16	65	164
1163999	23200	25	212	18	206	15	32	120
1164000	37500	43	537	23	494	17	70	163
1233829	43700	35	509	26	272	13	68	122
1233830	34700	35	504	20	280	14	55	133
1233831	47500	37	1183	28	350	14	86	120
1233832	36900	29	1041	18	166	12	56	107
1233833	37500	33	684	19	260	12	61	124
1233834	34800	33	415	21	381	13	57	122
1233835	30400	28	363	19	261	12	48	126
1233836	33400	30	416	19	401	12	62	126
1233837	36700	34	464	22	287	14	59	138
1233838	30800	21	463	15	173	10	39	180
1233839	28000	26	286	15	169	11	36	136
1233840	40500	32	588	25	256	12	64	113
1233841	40700	35	434	23	263	14	63	155
1233842	29900	27	412	17	215	11	50	130
1233843	29900	27	379	15	242	11	52	142
1233844	29500	34	291	20	315	13	48	106
1233845	26200	23	288	17	191	12	36	108
1233846	38800	32	496	25	342	13	62	124
1233847	32700	32	357	22	289	14	50	123
1233848	36700	41	496	20	453	15	65	148
1233849	38500	27	445	23	233	12	61	129
1233850	29200	23	327	16	229	5	55	123
- 1233851	32500	26	569	17	214	11	50	144
1233852	29200	28	278	19	257	12	39	132

P PPM

Th PPM

Zn PPM

Zr PPM

SAMPNO

Fe PPM

La PPM

Mn PPM

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1233854	25500	20	286	12	170	5	36	138
1233855	26600	20	317	13	162	5	37	133
1233856	33900	28	530	18	177	11	54	132
1233857	31800	29	420	18	192	11	44	135
1233858	28700	26	296	15	185	5	40	130
1233859	32600	3 1	410	17	436	12	53	143
1233860	33900	24	412	19	220	13	47	126
1233861	38700	29	504	22	221	11	60	112
1233862	28000	22	306	18	264	5	4 1	8 8
1233863	141500	18	752	14	315	22	46	200
1233865	31100	23	432	15	173	5	49	115
1233867	25900	15	353	13	132	5	30	119
1233868	22100	13	211	12	102	5	19	57
1233869	29200	23	295	17	158	5	37	103
1233870	31800	24	377	18	187	5	41	105
1233871	43800	36	538	23	445	12	73	139
1233872	36100	26	532	20	264	5	54	115
1233873	52800	5 1	637	35	588	. 19	90	139
1.233874	60400	30	1736	23	125	12	114	98
1233875	43700	34	526	23	273	11	67	122
1233876	38000	31	447	21	204	10	54	108
1233877	46200	33	710	26	273	11	65	141
1233878	38300	32	455	26	220	11	57	112
1233879	45500	4.2	593	27	384	13	71	129
1233880	40900	33	531	20	340	14	52	126
1233881	34100	21	435	18	188	5	31	112
1233882	50500	5 1	650	27	463	16	71	145
1233883	41700	33	602	22	276	12	62	128
1233884	52300	46	637	29	419	14	8 1	144
1233885	48200	42	638	28	392	15	75	130
1233886	36000	36	484	23	563	11	72	112
1233887	46500	4 1	606	28	561	16	84	128

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1233888	30400	38	448	19	235	12	54	122
1233889	47100	40	514	29	303	12	74	132
1233890	39700	43	738	25	315	13	69	133
1233891	29800	26	483	17	154	11	47	122
1233892	37500	39	462	25	402	14	66	116
1233894	35000	28	342	23	221	11	51	117
1233895	37700	40	479	25	353	16	58	122
1233898	32500	21	341	15	173	5	40	146
1233900	27500	22	300	16	267	5	38	114
1233901	34800	38	415	19	371	13	56	130
1233902	32500	24	413	14	175	5	38	136
1233903	33300	33	350	20	213	12	44	109
1233904	36300	33	446	22	251	12	52	116
1233905	42300	38	466	31	291	15	72	114
1233906	41800	44	499	28	394	15	7 9	117
1233907	28600	24	347	15	141	5	37	102
1233908	47600	43	553	31	332	16	7.8	124
1233909	34600	40	477	25	235	13	50	130
1233910	21500	21	311	19	125	5	30	85
1233911	36400	42	569	27	311	12	62	107
1233912	26100	23	328	20	114	11	30	89
1233913	24700	22	328	14	50	5	22	121
1233914	27500	36	400	18	177	16	38	148
1233915	32700	32	654	18	208	13	47	166
1233916	31800	37	454	19	258	15	44	145
1233917	33200	38	470	18	258	14	48	144
1233918	23200	27	293	15	146	12	30	108
1233919	30200	36	422	19	225	14	42	132
1233920	26900	26	517	16	165	10	38	123
1233921	39400	28	1214	19	166	12	62	106
1233922	39300	50	482	13	238	22	47	289
1233923	45200	47	696	27	288	13	71	142

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1233924	27100	28	475	16	156	13	41	117
1233925	39200	40	492	29	355	14	62	108
1233926	23800	30	281	16	210	13	34	107
1233927	33600	35	400	26	250	14	55	111
1233928	27500	29	338	16	157	12	36	124
1233929	37900	43	542	24	345	16	58	150
1233930	43400	40	559	27	329	16	65	116
1233931	41100	38	404	26	297	14	61	114
1233932	44300	43	515	28	332	13	69	130
1233933	35700	37	420	21	281	12	53	123
1233934	42700	43	617	27	300	14	71	125
1233935	38400	35	785	19	263	14	63	173
1233936	31800	36	450	19	300	14	50	120
1233937	35900	35	652	21	226	11	53	127
1233938	27800	31	337	16	241	12	42	117
1233939	42300	42	589	27	309	14	64	124
1233940	29100	34	388	14	251	12	40	138
1233941	36400	41	466	17	286	13	47	160
1233942	43700	31	1138	14	153	11	80	372
1233943	44400	33	1479	16	129	13	74	390
1233944	30000	32	496	18	184	12	47	125
1233945	28900	29	463	16	127	11	32	186
1233946	34900	35	412	19	260	12	4 6	139
1233947	33600	36	499	16	206	12	4 4	151
1233948	38100	43	478	23	185	13	54	129
1233949	29100	31	510	18	105	10	34	128
1233950	32600	42	421	21	183	13	48	118
1233951	35600	35	432	16	151	11	36	151
1233952	31200	40	303	16	250	12	43	132
1233953	38400	41	479	22	248	14	45	157
1233954	35800	46	495	26	368	19	57	131
1233955	37300	43	562	27	270	16	54	110

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1233956	31100	37	484	26	235	17	49	105
1233957	34400	35	617	30	230	16	45	102
1233958	30900	33	443	23	251	16	41	118
1233962	36100	45	474	24	255	16	50	134
1233963	33000	37	462	22	217	15	45	126
1233964	29800	35	427	20	208	14	4 1	109
1233965	30800	31	397	17	183	12	35	143
1233966	34600	35	479	25	253	14	47	127
1233967	41300	49	592	30	349	20	66	141
1233968	31000	37	426	24	232	17	43	115
1233969	27600	26	373	17	175	13	35	109
1233972	35200	35	466	22	299	15	42	143
1233974	40100	51	502	24	397	16	50	146
1233976	25600	29	353	17	174	13	30	124
1233978	34300	47	396	23	308	17	46	131
1233979	29400	31	304	21	197	14	34	145
1233980	31400	33	361	19	265	12	43	134
1233981	30100	41	356	18	207	15	43	130
1233982	31400	37	429	20	232	14	43	126
1233983	32300	36	389	21	243	14	48	128
1233984	43400	51	583	26	429	17	67	144
1233985	36500	30	791	16	155	10	47	163
1233986	30700	35	380	19	279	14	44	126
1233987	29300	31	404	19	193	12	40	145
1233988	33700	35	372	23	290	14	51	117
1233989	34000	38	388	32	283	14	52	114
1233990	31700	34	384	20	225	14	42	133
1233991	34300	42	461	19	311	18	44	152
1233992	31900	33	392	22	260	12	47	133
1233993	32800	39	582	23	276	15	43	118
1233994	34200	37	413	22	242	14	48	124
1233995	40100	38	627	23	266	14	51	185

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1233996	32000	36	405	23	262	13	39	134
1233997	39600	44	510	29	405	17	67	130
1233998	33800	39	363	27	261	14	48	139
1233999	33900	34	447	22	234	11	47	121
1234000	28100	34	348	21	237	13	41	112
1234001	31500	31	376	17	188	12	40	139
1234002	41000	35	598	30	365	13	53	162
1234003	40800	44	659	25	361	16	63	136
1234008	26500	35	407	16	279	5	38	147
1234009	41600	42	506	29	485	15	69	123
1234010	40100	41	584	- 23	395	11	66	136
1234012	33400	37	377	23	557	13	59	104
1234014	35600	35	434	20	277	10	48	124
1234016	29700	36	382	18	268	13	46	104
1234017	35300	35	401	23	309	12	54	116
1234020	32600	31	584	18	193	10	44	163
1234021	32500	31	413	20	234	12	41	143
1234022	36300	33	515	23	445	11	61	136 ·
1234023	31000	32	391	19	255	5	44	112
1234024	43400	36	514	29	328	13	70	118
1234025	48000	38	686	32	539	13	84	140
1234026	39700	34	611	22	233	5	47	157
1234027	50400	33	678	34	335	5	90	123
1234028	56400	35	948	36	801	12	111	131
1234029	43500	35	840	26	658	12	71	144
1234030	45300	32	455	27	317	5	78	118
1234032	43400	34	480	26	343	10	70	115
1234033	37400	35	393	25	302	11	57	110
1234034	43100	35	569	26	267	5	68	128
1234035	28300	26	277	21	139	5	37	93
1234036	40800	36	836	20	192	11	54	178
1234037	36800	35	660	17	209	10	53	138

SAMPNO	Fe PPM	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	Zr PPM
1234038	43200	38	653	25	371	11	71	139
1234039	44200	36	577	28	308	12	75	129
1234040	54900	40	706	34	425	13	94	140
1234041	45200	38	552	29	321	12	73	128
1234042	49900	37	610	33	382	12	80	127
1234053	42300	44	561	23	336	14	58	152
1234056	30800	33	310	21	232	12	42	126
1234057	44200	41	917	25	332	13	68	155
1234058	39300	44	219	26	341	16	58	159
1234059	44200	44	577	28	389	17	77	147
1234060	49500	44	655	29	448	14	84	156
1234061	49400	49	550	30	387	16	80	151
1234062	44200	43	607	29	347	16	73	152
1234063	45200	41	585	29	367	14	75	143
1234064	37600	39	422	23	203	13	47	156
1234065	30400	32	324	15	138	11	34	187
1234066	39900	35	527	25	260	11	56	125
1234068	36200	27	438	20	179	10	35	145
1234069	45000	41	605	27	317	12	65	141
1234070	48200	41	516	29	277	12	68	136
1234071	44300	37	640	27	257	10	64	136
1234072	30900	27	449	15	124	5	34	158
1234073	35200	38	375	23	344	12	53	128
1234074	32100	33	373	20	294	11	46	120
1234075	37900	37	439	25	280	11	53	120
1234076	29100	27	310	19 ~	215	10	37	104

OCIVII 140	A 1 1 1A1	FUFFB	FLFFD	Auffb	∟ası .	1401111
1161418	65	0.25	0.25	1.5	537450	431600
1161419	69	0.7	0.25	2.3	538600	431350
1161420	73	0.25	0.25	0.5	540400	434800
1161421	82	0.6	0.25	1.2	542500	432100
1161422	52	0.6	0.25	1.8	542900	431400
1161423	59	0.25	0.25	2.1	546600	432200
1161424	53	0.25	0.25	0.5	546150	427500
1161425	68	0.25	0.25	0.5	545300	426450
1161426	58	0.25	0.25	0.5	546550	424650
1161427	95	0.6	0.25	1.2	544350	425800
1161428	63	0.25	0.25	0.5 ·	543400	425700
1161429	66	0.25	0.25	0.5	542700	425400
1161430	57	0.5	0.25	1.6	545000	421900
1161431	49	0.25	0.25	0.5	539950	422800
1161432	5 1	0.6	0.25	1.3	540700	421000
1161433	51	0.25	0.25	1.1	540800	420200
1161434	67	0.25	0.25	0.5	545800	415100
1161435	65	0.25	0.25	2.9	544650	414850
1161436	40	0.25	0.25	1.2	540800	413850
1161437	50	0.25	0.25	1.4	536050	414400
1161438	63	0.25	0.25	1.5	535950	416950
1161439	71	0.7	0.25	1.4	522100	451450
1161440	53	0.25	0.25	0.5	523000	453800
1161441	41	0.25	0.25	0.5	524100	453800
1161442	55	0.25	0.25	0.5	529700	456000
1161443	70	0.25	0.25	0.5	529900	455800
1161444	35	0.25	0.25	0.5	528000	457400
1161445	27	0.25	0.25	0.5	524700	457800
1161446	53	0.25	0.25	0.5	521000	459400
1161447	39	0.25	0.25	0.5	517150	456350
1161448	33	0.25	0.25	0.5	517750	456000
1161449	65	0.25	0.25	1.4	519600	453950

Au PPB

East

North

SAMPNO

V PPM

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161450	26	0.25	0.25	0.5	516200	451550
1161451	47	0.25	0.25	0.5	515500	449500
1161452	43	0.25	0.25	0.5	516550	449600
1161453	41	0.25	0.25	0.5	517400	447300
1161454	40	0.25	0.25	0.5	519100	449900
1161455	94	0.25	0.25	0.5	522200	446750
1161456	45	0.25	0.25	0.5	527900	398200
1161457	18	0.25	0.25	0.5	525950	403750
1161458	12	0.25	0.25	0.5	523950	398550
1161459	17	0.25	0.25	0.5	524500	396300
1161460	22	0.25	0.25	0.5	524600	395000
1161461	52	0.25	0.25	0.5	532900	425150
1161462	50	0.25	0.25	1.3	532800	425900
1161463	57	0.25	0.25	0.5	532350	427000
1161464	49	0.25	0.25	3.1	546400	412050
1161465	34	0.25	0.25	0.5	544750	411200
1161466	63	0.25	0.25	0.5	544450	407700
1161467	40	0.25	0.25	0.5	541100	406200
1161468	57	0.25	0.25	0.5	542700	408700
1161469	60	0.25	0.25	0.5	543100	410450
1161470	45	0.25	0.25	0.5	539800	409800
1161471	37	0.25	0.25	0.5	537750	408400
1161472	34	0.25	0.25	0.5	535650	409100
1161473	29	0.25	0.25	0.5	533000	406750
1161474	28	0.7	0.25	0.5	532500	409250
1161475	38	0.25	0.25	0.5	533200	409900
1161476	23	0.25	0.25	0.5	525200	411150
1161477	20	0.25	0.25	0.5	523450	413550
1161478	31	0.25	0.25	0.5	526000	414150
1161479	62	0.25 .	0.25	0.5	536900	445600
1161480	51	0.25	0.25	0.5	534550	444200
1161482	83	0.7	0.6	2	534300	447200

			•	•		
SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161483	33	0.25	0.25	0.5	532000	444250
1161484	75	0.25	0.25	1.1	529750	443850
1161485	87	0.25	0.25	0.5	530600	450100
1161486	60	0.25	0.25	0.5	528100	449300
1161487	69	0.25	0.25	0.5	527700	449900
1161488	33	0.25	0.25	0.5	526100	450500
1161489	56	0.25	0.25	0.5	525700	451350
1161490	32	0.25	0.25	0.5	525300	449350
1161491	4 4	0.25	0.25	1.7	525250	444200
1161492	32	0.25	0.25	0.5	524800	441500
1161493	98	0.6	0.25	1.2	526900	442000
1161494	47	0.25	0.25	0.5	525600	438350
1161495	70	0.6	0.25	0.5	546000	438600
1161496	86	0.7	0.25	1.2	545300	438650
1161497	85	0.6	0.25	. 1.1	544700	441250
1161498	79	0.7	0.25	1.3	544400	443900
1161499	102	0.25	0.25	0.5	541500	445850
1161500	76	0.25	0.25	0.5	540500	445050
1161501	60	0.25	0.25	0.5	540300	441900
1161502	60	1	0.25	1.7	541350	441550
1161503	56	1	0.9	0.5	539800	442150
1161504	57	0.25	0.25	0.5	539350	437550
1161505	90	0.25	0.25	0.5	537100	438500
1161506	76	0.25	0.25	1.9	535550	438250
1161507	83	0.25	0.25	0.5	530550	438050
1161508	52	0.5	0.25	1	526800	433600
1161509	62	0.25	0.25	1.1	524750	435800
1161510	33	0.25	0.25	0.5	522600	439700
1161511	34	0.25	0.25	1.6	520850	438500
1161512	49	0.25	0.25	0.5	518750	439000
1161513	43	0.25	0.25	0.5	518500	444550
1161514	30	0.25	0.25	0.5	516350	441050

SHIVIFIAC	V FFIVI	FUFFB	FLFFD	AU PPB	⊏asi	NOLLI
1161515	27	0.25	0.25	0.5	515500	436700
1161516	55	0.25	0.25	2.2	519600	433800
1161517	40	0.25	0.25	1.9	516000	432550
1161518	38	0.5	0.25	1.3	520050	433700
1161519	35	0.25	0.25	0.5	519650	431600
1161520	47	0.25	0.25	0.5	520850	432400
1161521	47	0.25	0.25	1.2	525200	431100
1161522	55	0.5	0.25	1.3	533250	434100
1161523	50	0.25	0.25	0.5	530850	427800
1161524	54	0.25	0.25	1.9	527200	428200
1161525	56	0.25	0.25	0.5	522400	423100
1161526	47	0.25	0.25	1.5	525000	421900
1161527	33	0.25	0.25	1.1	524900	419700
1161528	68	0.6	0.25	1.2	526800	421350
1161529	27	0.25	0.25	0.5	526400	416400
1161530	52	1.8	0.25	3.1	528400	417550
1161531	37	0.25	0.25	0.5	529650	420450
1161532	34	0.25	0.25	0.5	531300	419700
1161533	26	0.25	0.25	0.5	533250	413400
1161534	43	0.25	0.25	1.7	531100	413500
1161535	27	0.5	0.25	1.3	528700	414700
1161536	64	1	0.25	2.4	531800	415400
1161537	64	0.6	0.25	4.2	534650	419100
1161538	37	0.25	0.25	0.5	527650	421550
1161539	42	0.6	0.25	0.5	525700	424050
1161540	34	0.7	0.25	0.5	524600	428400
1161541	58	0.5	0.25	0.5	530150	428150
1161542	52	0.6	0.25	0.5	529600	435650
1161543	59	0.25	0.25	0.5	530900	436200
1161544	47	0.6	0.25	1.7	547900	400400
1161545	60	0.6	0.25	1.6	546000	402100
1161546	40	0.25	0.25	1.8	544450	400000

Au PPB

East

North

SAMPNO

V PPM

Pd PPB

000346

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161547	45	0.6	0.25	1.1	546200	396300
1161548	42	0.7	0.25	1.5	543800	392450
1161549	66	0.9	0.25	1.5	543500	389800
1161550	40	0.6	0.25	1.2	541400	390300
1161601	35	0.25	0.25	0.5	539250	391050
1161602	38	0.25	0.25	0.5	540150	394200
1161603	32	0.25	0.25	1.4	536900	390450
1161604	34	0.6	0.25	1.6	535800	393900
1161605	26	0.25	0.25	1.1	535400	394400
1161606	33	0.25	0.25	0.5	531700	393400
1161607	29	0.25	0.25	0.5	527700	394200
1161608	33	0.25	0.25	0.5	530700	396700
1161609	25	0.25	0.25	0.5	532200	397000
1161610	33	0.6	0.25	0.5	532500	399000
1161611	28	0.25	0.25	0.5	533450	398000
1161612	42	0.7	0.25	1.6	535750	398800
1161613	39	0.25	0.25	1.2	537450	402050
1161614	23	0.25	0.25	1.2	533500	402900
1161615	68	0.25	0.25	0.5	548100	405400
1161616	49	0.25	0.25	0.5	556450	406050
1161617	46	0.25	0.25	0.5	556550	406700
1161618	42	0.25	0.25	0.5	556100	410650
1161619	60	0.25	0.25	1.4	553050	413100
1161620	67	0.9	0.25	1.7	555700	415250
1161621	66	0.7	0.25	0.5	552500	420600
1161622	79	0.25	0.25	2.3	555150	422800
1161623	97	0.6	0.25	2.1	576050	434700
1161624	82	1	0.25	2.9	581200	430450
1161625	76	0.8	0.25	1.7	573350	431800
1161626	60	0.7	0.25	1.5	570600	431100
1161627	78	0.7	0.25	1.3	552900	432800
1161628	83	0.7	0.25	1.3	545550	432200

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161629	83	0.7	0.25	1.5	547300	434850
1161630	64	0.25	0.25	0.5	552900	435450
1161631	50	0.25	0.25	0.5	551750	441700
1161632	58	0.5	0.25	1.4	569300	439900
1161633	56	0.6	0.25	1.6	582200	445100
1161634	45	0.7	0.25	1.2	580700	443600
1161635	71	0.7	0.25	1.9	588500	419200
1161636	48	0.25	0.25	0.5	585400	418450
1161637	69	0.7	0.25	1.4	582100	417350
1161638	55	0.5	0.25	1.1	582400	410700
1161639	72	0.7	0.25	1.5	584400	409450
1161640	73	0.6	0.25	1.5	583300	408300
1161641	77	0.25	0.25	1.4	595600	406850
1161642	57	0.7	0.25	1.2	597100	404100
1161643	54	0.6	0.25	0.5	592400	403600
1161644	65	0.5	0.25	1	582150	396300
1161645	52	0.6	0.25	1.6	583850	392250
1161646	78	0.7	0.25	1.5	580500	393900
1161647	85	0.7	0.25	0.5	574200	404800
1161648	62	0.5	0.25	1.4	569300	400650
1161649	73	0.7	0.25	1.8	566300	401450
1161650	73	0.6	0.25	1.1	565900	401500
1161751	44	0.25	0.25	0.5	599900	401100
1161752	61	0.5	0.25	0.5	595850	430800
1161753	56	0.6	0.25	0.5	604300	430100
1161754	78	0.6	0.25	0.5	608600	416400
1161755	57	0.6	0.25	0.5	621900	423500
1161756	78	0.5	0.25	0.5	635050	425500
1161757	68	0.6	0.25	1	640800	425500
1161758	67	0.5	0.25	0.5	637450	421300
1161759	61	0.25	0.25	1.1	636600	421100
1161760	61	0.25	0.25	1.7	637950	414900

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1161761	59	0.6	0.25	1	606200	401700
1161762	58	0.6	0.25	0.5	557200	397300
1161763	57	0.5	0.6	0.5	561150	388700
1161764	91	1.1	0.5	1.8	609750	400200
1161765	102	0.6	0.5	0.5	614200	400100
1161766	63	0.5	0.25	3.5	617700	403600
1161767	75	0.5	0.25	1.2	621900	409600
1161945	62	0.25	0.25	0.5	638100	410850
1161946	64	0.25	0.25	2.3	639000	411150
1161947	74	0.25	0.25	0.5	637400	408700
1161948	82	0.25	0.25	2	636500	408600
1161949	74	0.25	0.25	0.5	637300	409700
1161950	55	0.25	0.25	1.6	638650	409850
1161951	63	0.25	0.25	0.5	596700	419200
1161952	79	0.25	0.25	1.7	603850	421300
1161953	73	0.25	0.25	0.5	604200	421200
1161954	69	0.25	0.25	0.5	604500	421400
1161955	79	0.25	0.25	1.6	605850	421500
1161956	57	0.25	0.25	1.8	605500	421200
1161957	69	0.25	0.25	0.5	608700	418450
1161958	77	0.25	0.25	3.2	610500	419900
1161959	61	0.25	0.25	0.5	610950	416950
1161960	73	0.25	0.25	0.5	612800	420000
1161961	74	0.25	0.25	4.6	612400	421900
1161962	74	0.25	0.25	1.6	612250	422000
1161963	77	1.1	0.25	2.6	613900	423500
1161964	76	0.25	0.25	0.5	611550	424450
1161965	66	0.25	0.25	2.8	611400	424500
1161966	63	0.25	0.25	1.7	611700	424800
1161967	59	0.25	0.25	2.4	606400	425400
1161968	49	0.25	0.25	0.5	606600	426300
1161969	52	0.25	0.25	0.5	607400	427500

CAMIFIAC	A LLIM	FUFFB	FLFFB	AUFFD	⊏ası	MOLLII
1161970	61	0.25	0.25	0.5	607200	427500
1161971	51	0.25	0.25	1.8	608150	428500
1161972	67	0.25	0.25	2.9	609200	429150
1161973	70	0.25	0.25	0.5	616350	427650
1161974	49	0.25	0.25	0.5	610750	427200
1161975	49	0.25	0.25	0.5	617400	428000
1161976	57	0.25	0.25	0.5	610750	427800
1161977	85	0.25	0.25	0.5	618100	428300
1161978	104	1.5	0.25	0.5	617900	429759
1161979	84	0.25	0.25	0.5	618500	429900
1161980	62	0.25	0.25	0.5	618650	428300
1161981	61	0.25	0.25	0.5	618400	427700
1161982	55	0.25	0.25	0.5	619400	427900
1161983	85	0.25	0.25	0.5	621750	409200
1161984	73	0.25	0.25	0.5	621600	409250
1161985	102	0.25	0.25	0.5	621500	407900
1161986	71	0.25	0.25	0.5	620300	408800
1161987	75	0.25	0.25	0.5	619800	408500
1161988	69	0.25	0.25	0.5	618500	408450
1161989	77	0.25	0.25	0.5	619300	407650
1161990	74	0.25	0.25	0.5	631200	410500
1161991	87	0.25	0.25	0.5	631200	409700
1161992	90	0.25	0.25	2.2	631800	409700
1161993	70	0.25	0.25	0.5	630900	408900
1161994	92	0.25	0.25	1.7	632700	408500
1161995	70	0.25	0.25	0.5	632200	407600
1161996	8 1	0.25	0.25	0.5	620200	407500
1161997	64	0.25	0.25	0.5	619400	407600
1161998	72	0.25	0.25	0.5	620600	406800
1161999	98	0.25	0.25	0.5	639100	408600
1162000	77	0.25	0.25	0.5	638050	410000
1163801	47	0.25	0.25	1.1	561000	440300

Au PPB

East

North

SAMPNO

V PPM

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163802	54	0.25	0.25	0.5	562250	440050
1163803	76	0.25	0.25	0.5	562300	440600
1163804	43	0.25	0.25	0.5	562200	441500
1163805	61	0.25	0.25	0.5	563800	441600
1163806	70	0.25	0.25	0.5	564000	441700
1163807	78	0.25	0.25	0.5	564100	439650
1163808	58	0.25	0.25	0.5	564050	441700
1163809	72	0.25	0.25	0.5	563950	440550
1163810	83	0.25	0.25	0.5	566050	439300
1163811	54	1.4	0.25	0.5	565450	438550
1163812	86	0.25	0.25	0.5	564950	438450
1163813	71	0.25	0.25	0.5	564400	437950
1163814	75	0.25	0.25	0.5	563800	438400
1163815	76	0.25	0.25	0.5	563350	437550
1163816	59	0.25	0.25	0.5	562850	437800
1163817	63	0.25	0.25	0.5	564700	439100
1163818	51	0.25	0.25	0.5	566150	442300
1163819	61	0.25	0.25	0.5	566100	442550
1163820	51	1.4	0.25	0.5	564000	443500
1163821	49	0.25	0.25	0.5	563850	443250
1163822	57	0.25	0.25	1.9	578100	442500
1163823	81	0.25	0.25	0.5	578400	443600
1163824	72	0.25	0.25	0.5	578200	443700
1163825	38	0.25	0.25	0.5	578750	444250
1163826	55	0.25	0.25	1.6	578500	444300
1163827	46	0.25	0.25	0.5	579000	445100
1163828	71	0.25	0.25	0.5	578900	445000
1163829	54	0.25	0.25	1.2	578100	445700
1163830	54	0.25	0.25	1.6	581700	439850
1163831	34	0.25	0.25	0.5	583100	440600
1163832	90	0.25	0.25	0.5	582400	438700
1163833	38	0.25	0.25	0.5	582050	437600

SAMPINO	V PPIVI	PUPPB	PLPPD	AUPPB	Easi	MOLIU
1163834	77	0.25	0.25	1.9	580700	435500
1163835	76	0.25	0.25	1.4	580700	435450
1163836	52	0.25	0.25	2.2	581350	435500
1163837	101	0.9	0.25	2.3	581800	434750
1163838	49	0.25	0.25	0.5	590050	411950
1163839	66	0.25	0.25	2.5	590300	411500
1163840	97	0.25	0.25	1.8	589950	411250
1163841	83	0.9	0.25	1.7	588800	410450
1163842	69	0.25	0.25	0.5	588750	410100
1163843	58	0.25	0.25	0.5	587600	409700
1163844	63	0.25	0.25	0.5	587900	409150
1163845	61	0.25	0.25	0.5	588050	409100
1163846	48	0.25	0.25	0.5	586650	409250
1163847	60	0.25	0.25	2.9	587100	407550
1163848	42	0.25	0.25	0.5	588800	407150
1163849	68	0.25	0.25	1.7	588600	405350
1163850	71	0.25	0.25	0.5	588800	405200
1163851	31	0.25	0.25	2.2	528850	457850
1163852	32	0.25	0.25	0.5	526700	456500
1163853	35	0.25	0.25	0.5	526750	456450
1163854	73	0.25	0.25	0.5	579800	423150
1163855	61	0.25	0.25	0.5	579250	421400
1163856	70	0.25	0.25	0.5	579400	421300
1163857	67	1.6	0.25	3.4	578200	420050
1163858	69	0.25	0.25	0.5	578000	420050
1163859	61	0.25	0.25	0.5	578300	421000
1163860	50	0.25	0.25	0.5	578450	420850
1163861	41	0.25	0.25	0.5	536000	443650
1163862	44	0.25	0.25	0.5	535850	443900
1163863	39	0.25	0.25	0.5	525000	446650
1163864	46	0.25	0.25	0.5	525150	445700
1163865	39	0.25	0.25	0.5	524850	445700

Au PPB

East

North

SAMPNO

V PPM

300352

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163866	63	0.25	0.25	0.5	524000	445400
1163867	59	0.25	0.25	0.5	540500	444600
1163868	72	0.25	0.25	0.5	540300	443900
1163869	57	0.25	0.25	0.5	540000	442950
1163870	33	0.25	0.25	0.5	518400	437200
1163871	34	0.25	0.25	0.5	519550	436000
1163872	31	0.25	0.25	0.5	520250	436100
1163873	48	0.25	0.25	0.5	518100	436200
1163874	68	0.25	0.25	0.5	540500	437150
1163875	69	0.25	0.25	0.5	540550	437000
1163876	78	0.25	0.25	0.5	541250	437700
1163877	47	0.25	0.25	0.5	541650	438150
1163878	63	0.25	0.25	0.5	542400	438800
1163879	75	0.25	0.25	0.5	561600	431250
1163880	45	0.25	0.25	0.5	536550	444000
1163881	73	0.25	0.25	0.5	563500	432800
1163882	56	0.25	0.25	0.5	563400	432600
1163883	90	0.25	0.25	0.5	562200	432650
1163884	7,8	0.25	0.25	1.7	561850	432700
1163885	56	0.25	0.25	1.4	561100	432350
1163886	88	0.25	0.25	2.5	560900	431950
1163887	47	0.25	0.25	0.5	562550	430100
1163888	56	0.25	0.25	0.5	562250	429900
1163889	75	0.25	0.25	1.7	560550	431750
1163890	76	0.25	0.25	0.5	559900	431600
1163891	73	0.25	0.25	0.5	559300	432050
1163892	60	0.25	0.25	1.8	559700	441200
1163893	61	0.25	0.25	0.5	559400	442000
1163894	64	0.25	0.25	0.5	559650	442050
1163895	74	0.25	0.25	2.3	558950	442200
1163896	55	0.25	0.8	0.5	558750	442700
1163897	42	0.25	0.25	0.5	558900	442800

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163898	42	0.25	0.25	0.5	559600	443300
1163899	46	0.25	0.25	0.5	560300	443000
1163900	65	0.25	1	0.5	560300	442700
1163901	51	0.25	0.25	0.5	587800	404400
1163902	53	0.25	0.9	1.7	586600	404350
1163903	46	0.25	0.25	2.3	577950	403900
1163904	54	0.25	0.8	0.5	576850	403800
1163905	52	0.25	0.25	0.5	576150	403100
1163906	60	0.25	0.9	1.8	576200	403450
1163907	56	0.25	0.8	0.5	561300	402800
1163908	61	0.25	0.25	0.5	561950	401600
1163909	64	0.25	0.8	0.5	560650	401900
1163910	64	0.25	0.25	0.5	560900	401500
1163911	43	0.25	0.25	0.5	560800	401100
1163912	73	0.25	0.25	1.8	559800	400800
1163913	63	0.25	0.25	0.5	559150	401050
1163914	55	0.25	0.8	1.3	558400	400450
1163915	64	0.25	0.25	1.9	558600	400400
1163916	62	0.25	0.25	0.5	558350	400900
1163917	44	0.25	0.25	0.5	558250	401600
1163918	47	0.25	0.25	0.5	558900	401800
1163919	57	0.25	0.25	0.5	559400	402950
1163920	48	0.25	0.9	1.7	559650	403200
1163921	69	0.25	0.25	2.3	563200	406650
1163922	64	0.25	0.25	1.9	562100	405900
1163923	36	0.25	0.25	1.7	562000	406100
1163924	62	0.25	0.25	2.6	562500	406600
1163925	48	0.25	0.25	0.5	562400	408900
1163926	82	0.25	0.9	0.5	562300	409650
1163927	59	0.25	0.25	0.5	561100	409600
1163928	68	0.25	0.25	3.1	561100	409400
1163929	58	0.25	0.25	0.5	560500	410700

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163930	63	0.25	0.25	1.2	568250	416500
1163931	48	0.25	0.25	4.2	567750	417200
1163932	58	0.25	0.25	0.5	567450	417100
1163933	47	0.25	0.25	0.5	566300	417100
1163934	54	0.25	0.25	1.8	566100	417200
1163935	49	0.25	0.25	. 0.5	566800	418100
1163936	55	0.25	0.25	0.5	566650	418600
1163937	53	0.25	1.3	0.5	565700	419900
1163938	61	0.25	0.25	0.5	602800	401800
1163939	62	1.2	0.25	0.5	603500	406300
1163940	57	0.25	0.25	0.5	603600	406500
1163941	63	0.25	0.25	1.1	604450	407200
1163942	54	0.25	0.25	0.5	605050	407600
1163943	70	0.25	0.8	0.5	605100	407750
1163944	57	0.25	0.25	0.5	605000	408000
1163945	56	0.25	0.25	0.5	604200	409500
1163946	70	0.25	0.9	0.5	613500	412700
1163947	65	0.25	0.25	0.5	614200	413400
1163948	62	0.25	0.25	0.5	614350	413450
1163949	75	1	0.25	0.5	614900	414150
1163950	61	0.25	0.25	0.5	615550	414900
1163951	79	0.25	0.8	0.5	615550	412000
1163952	69	0.25	0.25	0.5	616200	412750
1163953	77	0.25	0.25	0.5	616250	412600
1163954	73	0.25	0.25	0.5	616950	413900
1163955	66	0.25	0.25	3	617200	413800
1163956	76	1	0.8	0.5	618100	414200
1163957	47	0.25	0.25	0.5	618350	414100
1163958	69	0.25	0.9	1.6	619100	415300
1163959	94	0.25	1.1	1.7	619050	414950
1163960	66	0.25	0.25	0.5	619200	414900
1163961	73	0.25	0.25	0.5	619650	415800

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1163962	79	0.25	0.25	2.3	619750	415600
1163963	69	0.25	0.25	2.6	620100	415800
1163964	71	0.9	0.25	1.1	620700	416500
1163965	77	0.25	0.25	2.1	620700	416300
1163966	62	0.25	0.25	2	620800	416250
1163967	68	0.25	0.25	0.5	621000	416700
1163968	89	0.25	0.25	2.4	619000	418500
1163969	70	0.8	0.25	1.5	618700	419600
1163970	73	0.25	0.25	3.2	618400	420900
1163971	62	0.25	0.25	0.5	618250	420900
1163972	64	1	0.25	1.8	617300	421700
1163973	73	0.9	0.25	0.5	616600	422400
1163974	64	0.9	0.25	1.9	616000	418400
1163975	69	0.25	0.25	0.5	615250	417800
1163976	71	0.25	0.25	0.5	614950	417800
1163977	62	0.25	0.25	0.5	614950	417900
1163978	61	0.9	0.25	0.5	614050	417400
1163979	57	0.25	0.25	0.5	614050	417300
1163980	60	0.9	0.25	0.5	613500	416700
1163981	75	0.25	0.25	1.7	613350	416700
1163982	68	0.25	0.25	0.5	612600	416000
1163983	55	0.25	0.25	0.5	611900	415650
1163984	57	0.9	0.25	0.5	611850	415500
1163985	67	0.25	0.25	0.5	612350	415450
1163986	71	0.8	0.25	0.5	612400	414650
1163987	61	0.25	0.25	0.5	611300	414500
1163988	62	0.25	0.25	0.5	596900	430950
1163989	46	0.25	0.25	0.5	596150	431250
1163990	58	0.25	0.25	2.1	596800	430400
1163991	55	0.25	0.25	0.5	595500	429600
1163992	46	0.25	0.25	0.5	595550	428900
1163993	62	0.25	0.25	1.5	595550	428600

1103334	40	0.23	0.25	0.5	595400	420000
1163995	59	0.25	0.25	0.5	587000	429650
1163996	41	0.25	0.25	1.9	587200	427500
1163997	62	0.25	0.25	0.5	587700	427100
1163998	62	0.25	0.25	0.5	587650	426800
1163999	47	0.25	0.25	0.5	596200	420400
1164000	65	0.9	0.25	0.5	596800	419350
1233829	81			0.5	605000	416800
1233830	69			1.7	609300	418800
1233831	79			0.5	611200	420700
1233832	46			0.5	612000	421800
1233833	65			1.88	609800	424500
1233834	67			0.5	609600	424900
1233835	56			0.5	608900	429000
1233836	61			0.5	610300	429000
1233837	71			0.5	604300	428400
1233838	47			0.5	604200	425000
1233839	50			0.5	603700	421200
1233840	67			0.5	603800	419300
1233841	72			0.5	597000	424100
1233842	52		•	0.5	595500	424800
1233843	51			0.5	593800	424600
1233844	69			1.93	598700	414900
1233845	56			0.5	590900	422200
1233846	75			0.5	597900	416200
1233847	68			0.5	597200	416600
1233848	72			2.2	596100	420400
1233849	75	•		0.5	591200	421900
1233850	49			0.5	589400	424400
1233851	59			0.5	587400	424400
1233852	65			0.5	589800	431200
1233853	63	•		0.5	589200	430700

0.25

Au PPB

0.5

East

595400

North

428500

SAMPNO

1163994

V PPM

48

Pd PPB

0.25

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233854	46			1.73	587000	430000
1233855	44			0.5	587200	427800
1233856	63			0.5	583000	421600
1233857	63			0.5	584400	419600
1233858	48			0.5	591500	417200
1233859	60			0.5	593600	415100
1233860	74			1.68	553600	444200
1233861	74			0.5	553400	441200
1233862	57			0.5	550000	445000
1233863	331	•		0.5	550800	446200
1233865	53			0.5	557200	445000
1233867	38			0.5	567800	444600
1233868	28	•		1.7	566200	442600
1233869	61			1.7	570200	443600
1233870	58			0.5	569800	441400
1233871	83			0.5	565800	439200
1233872	63			0.5	564600	439400
1233873	104			0.5	561800	437200
1233874	61			0.5	558800	438400
1233875	80			0.5	555000	437200
1233876	72			5.92	557600	436000
1233877	83			0.5	549700	426800
1233878	74			0.5	550200	424700
1233879	88			2.57	554400	423800
1233880	79			0.5	554600	425200
1233881	44			0.5	554400	427600
1233882	96			0.5	557200	429600
1233883	71			0.5	557700	434400
1233884	98			0.5	559300	435000
1233885	93			1.83	559400	434000
1233886	75			2.64	559400	432000
1233887	86			0.5	558800	430200

0 0 0 0	• .	0.0	00400	700000
1233891	59	0.5	570400	440300
1233892	80	0.5	571200	440600
1233894	58	0.5	583200	440800
1233895	72	1.93	582800	442400
1233898	54	0.5	578200	442600
1233900	50	0.5	577800	441500
1233901	67	0.5	573600	444000
1233902	53	0.5	574600	442800
1233903	65	3.28	573800	442400
1233904	71	0.5	572400	438400
1233905	93	0.5	577400	434000
1233906	87	0.5	581800	435000
1233907	42	0.5	580800	432600
1233908	103	1.82	572900	429400
1233909	67	0.5	550000	410000
1233910	6 1	2.24	548600	410400
1233911	74	0.5	548800	412400
1233912	49	0.5	550800	411800
1233913	33	0.5	552600	409600
1233914	54	0.5	554400	407600
1233915	56	0.5	558000	409400
1233916	59	0.5	561000	412400
1233917	62	0.5	560000	411800
1233918	45	0.5	556500	412200
1233919	57	0.5	559000	414300
1233920	44	0.5	554600	416200
1233921	47	0.5	556000	417000
1233922	55	0.5	562500	415800
4000000	0.0	0.5	50000	44000

Au PPB

0.5

0.5

0.5

East

562200

563600

564000

North

420600

431600

433000

SAMPNO

1233888

1233889

1233890

1233923

86

V PPM

51

88

81

Pd PPB

560300

419000

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233924	54			0.5	560200	421000
1233925	88			0.5	561700	420400
1233926	45			0.5	563200	419400
1233927	85			0.5	581600	417100
1233928	47			0.5	577600	419700
1233929	64			2.55	580000	423000
1233930	9 1			0.5	577600	425600
1233931	86	·		0.5	577900	426400
1233932	88			0.5	574300	425800
1233933	67			0.5	575000	423000
1233934	87			0.5	572800	426800
1233935	66			0.5	570000	425200
1233936	64			0.5	563800	424600
1233937	67		•	0.5	568900	423300
1233938	57			0.5	565000	423000
1233939	78			0.5	566200	421600
1233940	4 9			0.5	565400	420000
1233941	53			0.5	566500	416700
1233942	60			0.5	569000	419600
1233943	76			0.5	570900	420700
1233944	60			0.5	572500	418000
1233945	45			0.5	571000	413000
1233946	65			0.5	570600	412000
1233947	59			0.5	572200	410000
1233948	86			0.5	575500	410300
1233949	. 49			0.5	571900	406000
1233950	74			0.5	573800	403000
1233951	6 1			0.5	567500	409300
1233952	60			0.5	564800	406100
1233953	6 4			0.5	558400	400200
1233954	70	,		0.5	552100	405300
1233955	66			0.5	549800	397600

1200002	0.3	0.5	303/00	393100
1233963	61	0.5	562800	397100
1233964	58	0.5	557000	397200
1233965	48	0.5	558400	396700
1233966	63	0.5	556400	395600
1233967	88	1.87	558400	393000
1233968	64	0.5	560200	392100
1233969	4 9	1.87	566200	390400
1233972	61	0.5	569900	394300
1233974	73	0.5	572100	398200
1233976	45	1.78	575600	398600
1233978	74	2.13	575200	395000
1233979	48	0.5	580600	400800
1233980	52	0.5	580600	395000
1233981	59	1.77	576900	403800
1233982	59	0.5	578800	408000
1233983	63	1.78	587500	405000
1233984	85	0.5	581800	407300
1233985	57	0.5	613800	423300
1233986	65	0.5	616300	422200
1233987	59	0.5	616800	422500
1233988	70	0.5	616500	420900
1233989	76	0.5	617600	418600
1233990	63	0.5	617100	418600
1233991	73	0.5	616100	417600
1233992	6 1	0.5	615600	418600
1233993	70	1.7	617500	413300
1233994	69	0.5	617000	413500
100000	7 ^			

Au PPB

0.5

0.5

0.5

0.5

East

North

SAMPNO

V PPM

Pd PPB

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1233996	54			0.5	605900	407800
1233997	85			0.5	602700	405600
1233998	75			0.5	602600	410400
1233999	59			0.5	601000	410800
1234000	6 1			0.5	600000	413200
1234001	54			0.5	595000	412400
1234002	65			0.5	592400	412900
1234003	77			1.73	590000	411400
1234008	45			0.5	631300	430200
1234009	89			0.5	630500	429600
1234010	77			0.5	627800	427000
1234012	97			0.5	624400	427700
1234014	66			0.5	621300	439800
1234016	76 .			1.73	617900	429700
1234017	74			0.5	612400	431000
1234020	62			0.5	613200	428400
1234021	63	•		0.5	617600	426400
1234022	69			0.5	613900	427300
1234023	60			0.5	618000	425900
1234024	93			0.5	622600	423300
1234025	93			0.5	634600	426000
1234026	62			8.65	630800	423900
1234027	102			1.77	631800	421100
1234028	106			0.5	633200	421200
1234029	73			0.5	633500	421000
1234030	92			0.5	630600	419000
1234032	90			0.5	626700	421900
1234033	86		•	2.07	624600	413200
1234034	86	•		0.5	627200	413200
1234035	68			1.95	621200	417000
1234036	61			0.5	636900	419600
1234037	58			4.35	635300	413800

SAMPNO	V PPM	Pd PPB	Pt PPB	Au PPB	East	North
1234038	83			0.5	634600	414600
1234039	86			0.5	631400	410400
1234040	. 111			0.5	630200	410700
1234041	91			2.9	630400	410500
1234042	100			0.5	628500	412600
1234053	68			0.5	632200	400100
1234056	69			0.5	636200	400800
1234057	76			4.53	640200	406400
1234058	75			0.5	637700	401900
1234059	89			0.5	640200	402100
1234060	103			0.5	640800	407500
1234061	93	•		1.75	635700	406200
1234062	85			0.5	636000	405600
1234063	93			2	628600	404000
1234064	70			0.5	626800	403600
1234065	47			3.12	621200	401600
1234066	78		•	0.5	616400	401100
1234068	53			0.5	614300	404300
1234069	90			1.72	614700	403800
1234070	99			1.68	613500	404400
1234071	85			0.5	611200	400100
1234072	48			0.5	606000	401400
1234073	76		•	1.93	603900	402700
1234074	62			2.82	601800	403100
1234075	81 ,			2.82	589800	393100
1234076	6 1			1.78	590200	393600

APPENDIX II ROCK SAMPLE LEDGER & ASSAY RESULTS

ROCK LEDGER : GAWLER RANGES

						
SAMPLE NO.	DESCRIPTION	EAST	NORTH	Au PPM	As PPM	Se PPM
1158638	Quartz vein in Yardea dacite.	515600	6454800	<0.01	2	<2
1158639	Quartz - acid volcanic - tuff breccia	531300	6422330	< 0.01	6	<2
1158640	Stockwork quartz veined/brecciated acid volcanic.	531230	6422400	0.01	2	<2
1158641	Black dacite. Trace pyrite.	531300	6422600	0.01	2	<2
1158648	Banded to colloform white quartz vein.	531700	6421870	0.013	<1	<0.1
1158649	White quartz in quartz-acid volcanic breccia.	531600	6422000	0.005	<1	<0.1
1158650	Acid volcanic quartz breccia.	531600	6422000	0.005	2	0.1
1161645	Quartz mica greisen	583850	6392250	< 0.005	<1	<0.1
1161761	Quartz hematite breccia.	606200	6401700	< 0.005	15	<0.1
1161960	Masssive hematite.	612800	6420000	< 0.005	12	<0.1
1161988	Hematite quartz matrix breccia.	618650	6428300	< 0.005	13	<0.1
1161989	Colloform quartz breccia.	619300	6407650	< 0.005	1	<0.1
1162000	Quartz breccia.	638050	6410000	< 0.005	<1	0.1
1163823	Quartz breccia.	578400	6443600	< 0.005	<1	<0.1
1163827	Green dacite.	579000	6445100	0.008	8	0.2
1163833	Quartz breccia.	582050	6437600	< 0.005	<1	0.2
1163858	Green dacite.	578000	6420050	< 0.005	4	0.1
1163890	Quartz breccia.	559900	6431600	< 0.005	7	<0.1
1163904	Quartz breccia.	576850	6403800	0.008	<1	0.6
1163908	Laterite.	561950	6401600	0.013	18	1.3
1163912	Quartz breccia.	559800	6400800	< 0.005	2	0.5
1163945	Quartz.	604200	6409500	0.006	1	0.1
1163959	Quartz.	619050	6414950	< 0.005	<1	0.8
1163964	Quartz.	620700	6416500	< 0.005	<1	1.2
1163975	Hematite with quartz.	615250	6417800	< 0.005	44	0.5
2541543	Altered? acid volcanic microporphyry & qtz vein.	531700	6421870	Petrology		
2541544	Massive to banded, colloform brecciated qtz vein.	531700	6421870	Petrology		
2541545	Silicified acid volcanic and quartz vein.	531600	6422000	Petrology		
2541551	White quartz/chert horizon	633250	6405200	0.004	14	
2541552	Gray mottled quartz/chert horizon	633200	6405200	0.001	12	

ROCK LEDGER : GAWLER RANGES

<u> </u>			· · · · · · · · · · · · · · · · · · ·			
SAMPLE NO.	DESCRIPTION	EAST	NORTH	Au PPM	As PPM	Se PPM
2541553	Gray banded quartz/chert horizon	630050	6404400	0.001	1	

	-	

SAMPLE NO.	Te PPM	F ppm	Bi PPM	Sb PPM	U PPM	Sn PPM	Pb PPM	Ag PPM
1158638	<0.5		42	4	4	28	52	<1
1158639	<0.5		<4	6	5	<4	45	<1
1158640	<0.5		<4	<4	<4	<4	30	<1
1158641	<0.5		4	<4	4	6	40	<1
1158648	0.1	370	0.12	0.68	0.26	1.39	5	0.5
1158649	<0.1	380	<0.1	0.62	0.29	1.33	10	<0.5
1158650	<0.1	350	0.18	0.73	0.65	2.03	10	<0.5
1161645	0.1	380	<0.1	0.1	1.08	2.19	5	<0.5
1161761	<0.1	410	0.17	3.79	1.8	0.75	<5	<0.5
1161960	0.1	320	0.48	2.7	3.8	0.74	<5	<0.5
1161988	<0.1	370	0.14	4.51	2.57	0.69	<5	<0.5
1161989	<0.1	420	<0.1	1.21	0.2	0.77	<5	<0.5
1162000	<0.1	320	<0.1	1.07	1.36	1.08	10	<0.5
1163823	<0.1	280	<0.1	0.43	0.55	1.19	5	<0.5
1163827	0.3	370	0.29	0.5	5.42	7.29	20	<0.5
1163833	<0.1	300	0.14	0.54	0.3	1.79	10	<0.5
1163858	0.3	580	0.11	0.16	5.61	7.91	25	0.5
1163890	<0.1	350	0.16	0.89	0.52	1.6	<5	<0.5
1163904	0.1	410	0.41	0.91	1.28	1.19	5	0.5
1163908	<0.1	410	0.18	0.51	3.21 -	7.69	- 55	0.5
1163912	0.3	340	<0.1	0.3	0.69	1.66	5	<0.5
1163945	0.1	780	0.38	0.14	0.57	0.79	5	<0.5
1163959	<0.1	370	0.13	2.38	0.11	0.76	10	<0.5
1163964	0.1	320	<0.1	0.36	0.1	0.68	<5	<0.5
1163975	0.1	590	2.72	6.2	25.2	1.16	45	0.5
2541543					•			
2541544				. •				
2541545			-					
2541551	<0.1	110	0.12	10.6	1.03	3.45	25	<5
2541552	<0.1	190	1.69	12.2	1.93	7.85	110	<5

L	· · · · · · · · · · · · · · · · · · ·							
SAMPLE NO.	Te PPM	F ppm	Bi PPM	Sb PPM	U PPM	Sn PPM	Pb PPM	Ag PPM
2541553	<0.1	<100	<0.10	9.07	0.23	1.62	<5	<5

\bar{c}
ن
Ö
ō

SAMPLE NO.	Co PPM	Cu PPM	Ni PPM	Zn PPM	Cr PPM	Mn PPM	Mo PPM	Ba PPM
1158638	8	16		52		400	11	450
1158639	6	11		24		110	62	670
1158640	10	7		9		120	24	340
1158641	22	10		80		880	22	1060
1158648	<5	13	<10	5	71	133	<10	173
1158649	<5	8	<10	<5	<10	69	<10	110
1158650	136	25	11	7	54	103	<10	185
1161645	<5	7	<10	5	15	63	<10	50
1161761	<5	6	<10	14	11	121	<10	130
1161960	<5	8	<10	21	<10	144	65	87
1161988	1375	8	38	12	<10	140	20	304
1161989	<5	7	· <10	<5	<10	134	<10	141
1162000	<5	11	10	<5	17	190	<10	340
1163823	<5	7	10	8	<10	150	<10	156
1163827	10	97	11	38	27	675	<10	1348
1163833	<5	9	<10	<5	<10	156	<10	454
1163858	8	9	<10	96	25	853	<10	1745
1163890	<5	10	11	7	<10	203	<10	62
1163904	<5	11	10	9	<10	151	<10	42
1163908	<5	5	<10	39	22	132	<10	930
1163912	<5	7	<10	6	<10	168	<10	91
1163945	<5	7	<10	<5	12	139	<10	99
1163959	<5	10	10	<5	<10	134	<10	560
1163964	<5	5	<10	<5	<10	129	<10	195
1163975	<5	11	<10	18	<10	102	22	1965
2541543								7. 7
2541544								
2541545					,			
2541551	<5	9	<10	6	246	141	8.79	496
2541552	<5	12	<10	117	194	113	12.3	769

<u> </u>								
SAMPLE NO.	Co PPM	Cu PPM	Ni PPM	Zn PPM	Cr PPM	Mn PPM	Mo PPM	Ba PPM
2541553	<5	5	<10	<5	227	141	5.16	88

C	,
)
Ĉ)
<u>.</u>)
~	ĭ
-	١

SAMPLE NO.	Ce PPM	Nb PPm	V PPM	K PPM	Na PPM	Fe PPM	La PPM	P PPM
1158638		13	<10		***	<u></u>		
1158639		12	10					
1158640		. 8	20					
1158641		20	30				,	
1158648	<15	<10	4	1927	189	9900	<5	<100
1158649	<15	<10	3	1498	147	6500	<5	<100
1158650	<15	<10	8	2922	166	9900	8	<100
1161645	19	<10	7	4312	102	5400	9	<100
1161761	<15	<10	13	526	227	168000	7	<100
1161960	244	<10	9	250	132	438000	115	<100
1161988	353	<10	22	250	117	223000	185	173
1161989	<15	<10	<2	1034	128	10900	6	50
1162000	49	<10	11	5623	544	16900	34	193
1163823	<15	<10	. 5	5442	219	12700	5	<100
1163827	129	<10	38	34500	26000	37800	64	857
1163833	22	<10	7	1147	189	12600	14	<100
1163858	151	16	25	45900	23200	40200	86	814
1163890	33	<10	11	1034	178	17400	17	180
1163904	75	<10	5	1328	268	16700	37	<100
1163908	94	13	60	25400	518	287000	73	324
1163912	16	<10	5	2176	1078	15000	7	<100
1163945	43	<10	4	1294	121	15700	25	<100
1163959	<15	<10	4	537	234	10000	<5	<100
1163964	<15	<10	-3	250	<50	7300	<5	<100
1163975	58	<10	91	250	249	312000	46	350
2541543								
2541544			•					
2541545								•
2541551	<15	<10	4			10600	7	<100
2541552	52	<10	5			13000	28	<100

									
SAMPLE NO.	Ce PPM	Nb PPm	V PPM	KPPM	Na PPM	Fe PPM	La PPM	P PPM	
2541553	<15	<10	4			12200	<5	<100	

1100040	0	100	, –	02	< 10	~10	123	90
1158641	20	18	195	210	<10	<10	410	67.2
1158648	<10							
1158649	<10							
1158650	<10					•		
1161645	<10					·		
1161761	<10							
1161960	<10	•						
1161988	<10							
1161989	<10							•
1162000	<10							
1163823	<10							
1163827	25							
1163833	<10							
1163858	29			,				
1163890	<10		÷					
1163904	<10							
1163908	33							
1163912	<10							
1163945	<10							
1163959	<10							
1163964	<10							
1163975	20							
2541543								
2541544								
2541545								
2541551	<10							
								· ·

Sr PPM

44

56

32

Ta PPM

<10

<10

<10

WPPM

10

<10

<10

Zr PPM

195

170

125

SiO2 %

84.8

88.8

90

SAMPLE NO.

1158638

1158639

1158640

2541552

Th PPM

12

12

8

<10

Li PPM

26

2.5

180

Rb PPM

84

105

74

								····
SAMPLE NO.	Th PPM	Li PPM	Rb PPM	Sr PPM	Ta PPM	WPPM	Zr PPM	SiO2 %
2541553	<10		<u> </u>	· · · · · · · · · · · · · · · · · · ·				

0003
نث
<u>ت</u>

							<u> </u>	
SAMPLE NO.	TiO2 %	Al2O3 %	Fe2O3 %	MnO%	MgO%	CaO%	Na20%	K2O %
1158638	0.28	6.55	3.42	0.06	0.36	0.39	1.69	1.97
1158639	0.16	5.1	3.1	0.02	0.12	0.17	0.24	1.74
1158640	0.16	4.16	2.2	0.02	0.08	0.14	0.3	1.27
1158641	0.7	13.7	6.5	0.11	0.77	2.34	3.4	4.76
1158648								
1158649								
1158650								
1161645								
1161761								
1161960				•				
1161988								
1161989								
1162000								
1163823								
1163827								
1163833								
1163858								
1163890								
1163904								
1163908								
1163912								
1163945								·
1163959	·							
1163964								
1163975								
2541543								
2541544								
2541545							•	
2541551								
2541552								

			· · · · · · · · · · · · · · · · · · ·					
SAMPLE NO.	TiO2 %	Al2O3 %	Fe2O3 %	MnO%	MgO%	CaO%	Na20%	K2O%
2541553			<u> </u>					

P2O5 %	LOI%
0.06	0.54
0.1	1.37
0.04	1.26
0.18	1.13
	•
•	
	0.06 0.1 0.04

		
SAMPLE NO.	P2O5 %	LOI%
25/1553		

<u>APPENDIX III</u> STOCKDALE -80# ANOMALY PROSPECTS - UNALLA HILL EL 1652

Bellamy Well

Stockdale Results: P3409; 9 ppm As, 33 ppm Nb2O5 and 1895 ppm Zr.

Follow up: 7 samples were collected (1163988-1163994 and 1161752). No

anomalous chemistry was noted and the anomaly not repeated.

Conclusion: No further work

Unalla Hill North

Stockdale Result: P3481; 11 ppm As, 26 ppm Te, 5 ppm As

Follow up: Three samples were collected (1161964-1161966). No anomalous

chemistry was noted and the anomaly was not repeated.

Conclusion: No further work.

Unalla Hill

Stockdale Result: P3773; 15 ppm As, 60 ppm Nb2O5, 1490 ppm Sr.

Garnet was reported in gravel samples from this area and was

intensively followed up.

Follow up: Seven samples were collected (1161957-1161963). No anomalous

chemistry was noted and the original result was not repeated. A sample of massive hematite was collected at site 1161960. Elevated Sb, U, Ce & La and anomalous Mo (65 ppm) were noted. The high

Mo value may be due to sample contamination.

<u>Conclusions</u>: The data should be viewed in conjunction with the completed airborne

survey before any further work is completed.

Struggle Dam

Stockdale Result: P3493; 17 ppm As, 1.6% F.

P3495; 32 ppm As, 22 ppm Sb, 38 ppm Te and 6% F.

Follow up: Ten samples were collected (1161973-1161982). The absolute values

of the Stockdale chemistry were not repeated but weakly anomalous or elevated U (3.39 ppm), As (7 ppm) and F (500 ppm) were reported from sample 1161979, F (900 ppm) from 1161980 and As (7 ppm), F (640 ppm) from 1161978. No anomalous chemistry was noted

upstream of 1161978.

Conclusions: Limited follow up upstream of 1161980 is recommended.

Crown Swamp Dam North

Stockdale Result: P3628; 8 ppm As, 5 ppm Sb, 18 ppm Te

Follow up: Five samples were collected (1163946-1163950). No anomalous

assays were reported and the original anomaly was not repeated.

<u>Conclusion</u>: No further work.

Crown Swamp Dam

Note: This is a combined Stockdale chemistry/CRAE other mineral anomaly.

Stockdale Result: P3625; 19 ppm As, 5 ppm Sb, 10 ppm Te, 1.7% F.

<u>CRAE Result</u>: 1234035; often Barite and Apatite (1-3%).

Follow up: Sixteen samples were collected (1163951-1163967). Gold was noted

to be above detection limits in a number of samples, (max. 3.03 ppb) with a slight bias in the positive results to tributaries draining from the north west. No other anomalous chemistry was noted. The Stockdale anomaly was not repeated. Samples of quartz were collected at site 1163959 and site 1163964. No anomalous chemistry was noted in

either sample.

<u>Conclusions</u>: No further work unless the airborne survey upgrades the area.

Larry Dam

Stockdale Result: P3648; 6 ppm As, 4 ppm Sb

Follow up: Eleven samples were collected (1161767, 1161983-1161989 and

1161996-1161998). Weakly elevated Sb (0.9 ppm) was noted in 1161996. Two rock samples, one of dacite breccia with hematite quartz matrix at site 1161988 and the other of coloform quartz breccia at site 1161989. Elevated As (13 ppm), Sb (4.51 ppm), Ni (38 ppm) & Mo (20 ppm) and anomalous Co (1375 ppm). Ce (353 ppm) and La (185 ppm) were reported for the hematite quartz dacite breccia.

Conclusions: The anomalous assays in the hematite breccia show some weak

similarities to those of the massive hematite (1161960) at the Unalla Hill anomaly. The data should be viewed in conjunction with the airborne geophysical data before any further work is completed.

Nonning Reservoir

Stockdale Result:

P3658; As 11 ppm

Follow up:

Six samples were collected (1161991-1161995). Gold was noted to be above detection limit in samples 1161992 & 1161994. No other

anomalous chemistry was noted.

Conclusions:

No further work.

Mt. Nonning

Stockdale Result:

P3671; 12 ppm Te, 6 ppm As, 5 ppm Sb.

Follow up:

Eight samples were collected (1161945-1161950 and 1161999-1162000). Gold was noted above detection limit in samples 1161946, 1161948 and 1161950. The original anomaly was not repeated.

A rock sample of quartz breccia was collected at site 1162000 with no

anomalous assays being reported.

Conclusions:

No further work.

<u>APPENDIX IV</u> OTHER MINERAL ANOMALIES - UNALLA HILL EL 1652

Mt. Gairdner

Anomalous samples:

1233584 (Trace Fluorite) and

1235585 (Rare Fluorite)

Follow up:

Four samples were collected (1163995-1163998). No anomalous

chemistry was noted.

Conclusion:

No further work.

Warners Dam:

Anomalous samples: 1234003 (Often Barite, Rare Topaz, Few Zircon)

Follow up:

Fifteen samples were collected (1163838-1163850 & 1163901-1163902). Gold was noted above detection limit in a number of samples and Pt was noted above detection limit (0.5 ppb) in sample

1163902. No other anomalous chemistry was noted.

Conclusion:

No further work.

Ford Well South

Anomalous sample:

1233848 (Few Fluorite).

Follow up:

Three samples were collected (1163999, 1164000 & 1161951). No

anomalous chemistry was noted.

Conclusion:

No further work.

Unalla Dam

Anomalous sample:

1233839 (Rare Monazite)

Follow up:

Five samples were collected (1161952-1161956). Gold was noted

above detection in three samples (952, 955 & 956). No anomalous

chemistry was noted.

Conclusion:

No further work.

Lake Gairdner South

Anomalous sample:

1233835 (Trace Monazite)

Follow up:

Six samples were collected (1161967-1161972). Gold was noted

above detection limits in a number of samples. No anomalous

chemistry was otherwise noted.

Conclusion:

No further work.

Brodie Well

Anomalous sample:

1233987 (Rare Monazite)

Follow up:

Five samples were collected (1163968-1163973). Gold was noted

to be above detection limit in all samples except 1163971. No other

anomalous chemistry was noted.

Conclusion: No further work.

East Well

Anomalous samples:

1234402 (Few Fluorite)

1234408 (Few Fluorite, Trace Topaz and Few Apatite), 1234407 (Rare Apatite), 1234404 (Rare Apatite & Fluorite), 1234403 (Rare Fluorite) & 1234406 (Few Topaz). These samples were taken

following up a microdiamond in 1233997.

Follow up:

Eight samples were collected (1163938-1163945). No anomalous chemistry was noted. A rock sample of quartz was collected at site 1163945. Gold was noted above detection limit at 6 ppb and

Fluorine was elevated at 780 ppm.

Conclusion:

No further work unless geophysics upgrades the area.

Dawes Dam

Anomalous sample:

1233992 (Rare Fluorite)

Follow up:

Fourteen samples were collected (1163974-1163987). No anomalous chemistry was noted. A rock sample of hematite with quartz was collected from site 1163975. Anomalous As (44 ppm), Bi (2.72 ppm), U (25.2 ppm), Pb (45 ppm), Mo (22 ppm), Ba (1965 ppm) & U (91 ppm) were reported.

Conclusion:

The rock sample shows similar anomalous values to other hematitic rock samples from the Unalla Hill and Larry Dam anomalies. At this stage, no further work is proposed unless the area is upgraded by geophysics.

APPENDIX V UNIVARIATE STATISTICS, HISTOGRAM PLOTS & CORRELATION MATRIX - YARDEA -80# STREAM SEDIMENT DATA

X1: AS PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
2.93	1.55	.06	2.42	53.06	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
.5	15	14.5	2164.5	8122.25	0		
Kurtosis:	Skewness:			•	•		
7.87	1.75						

X2: Te PPM						
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:	
.07	.07	2.42E-3	4.34E-3	100.28	739	
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:	
.05	. 8	.75	48.55	6.39	0	
Kurtosis:	Skewness:					
52.57	6.66					

	X3:FPPM							
Mean:	Std. Dev.	Std. Error:	Variance:	Coef. Var.:	Count:			
314.89	111.66	4.11	12468.32	35.46	737			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
26	1100	1074	232071	82252601	2			
Kurtosis:	Skewness:							
4.93	1.31			·				

X4: Pb PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
11.36	6.19	.23	38.31	54.5	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sgr.:	# Missing:		
2.5	55	52.5	8392.5	123581.25	0		
Kurtosis:	Skewness:						
4.94	1.26						

X5: B1 PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
5.37	1.39	.05	1.93	25.85	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
5	20	15	3970	22750	0		
Kurtosis:	Skewness:		_				
22.43	4.18						

X6: Ag PPM						
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:	
.3	1.1	3.86E-3	.01	34.97	739	
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:	
.25	1	.75	221.5	74.5	0	
Kurtosis:	Skewness:	•				
4.99	2.06					

		X7:1	Mo PP M		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
1.03	.43	.02	.18	41.72	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
.16	6.38	6.22	758.12	912.94	0
Kurtosis:	Skewness:			-	
46.06	4.37				

X8: Nb PPM								
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:			
12.6	4.22	.16	17.82	33.51	739			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
2.24	40.5	38.26	9310.37	130449:87	0			
Kurtosis:	Skewness:							
4.58	.98							

Xg:Sb PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
.42	.34	.01	.11	80.07	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
.03	8.05	8.03	312.76	217.11	0		
Kurtosis:	Skewness:	•					
349.88	16.33						

		× 10:	Sn PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
5.08	1.41	.05	1.97	27.64	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing: .
.69	11.7	11.01	3757.19	20559.54	О
Kurtosis:	Skewness:				•
1.25	os				

		X 1 1	: U PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
1.66	.73	.03	.54	44.27	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sgr.:	# Missing:
.39	1 1.1	10.71	1225.56	2430.25	0
Kurtosis:	Skewness:				
47.38	4.87				

X ₁₂ : Ba PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
472.11	148.24	5.45	21975.58	31.4	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
108	1554	1446	348887	180929939	0		
Kurtosis:	Skewness:						
3.66	.85						

X ₁₃ : Ce PPM								
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:			
55.83	19.09	.7	364.58	34.2	739			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
15	262	247	41260	2572698	0			
Kurtosis:	Skewness:		•		•			
21.87	2.68							

X ₁₄ : Co PPM								
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:			
9.03	3.1	.11	9.58	34.26	739			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
2.5	23	20.5	6676	67380.5	0			
Kurtosis:	Skewness:			•				
.28	.14							

		× 15 :	Cr PPM	-	
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
34.96	17.06	.63	291.04	48.79	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
5	363	358	25839	1118247	0
Kurtosis:	Skewness:			•	
183.25	9.67				

		X 16	Cu PPM		
Mean:	Std. Dev.:	Std. Error:	<u>Variance:</u>	Coef. Var.:	Count:
16.3	4.49	.17	20.2	27.58	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
7	35	28	12043	211161	О
Kurtosis:	Skewness:				
.4	.57				

		X 17 :	Fe PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
33171.04	8879	326.62	78836612.87	26.77	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
12200	141500	129300	24513400	8.71E11	0
Kurtosis:	Skewness:				
30.22	2.77				

X ₁₈ : La PPM							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
33.44	9.83	.36	96.54	29.38	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
8	145	137	24711	897541	0		
Kurtosis:	Skewness:						
23.29	2.25						

		X 19:	Mn PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
470.98	181.41	6.67	32911.37	38.52	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
124	2040	1916	348057	188217787	0
Kurtosis:	Skewness:				
12.54	2.32				

X ₂₀ : Nf PPM							
<u>Me</u> an:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
20.02	11.83	.44	139.94	59.08	739		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
5	293	288	14796	399516	0		
Kurtosis:	Skewness:				- 1		
382.08	16.68						

		X21	: P-PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	<u>Co</u> unt:
247.87	101.54	3.74	10311.18	40.97	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
50	801	75 1	183177	53014001	О
Kurtosis:	Skewness:				•
2.43	1.05				

		X ₂₂ :	Th PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
13.36	4.18	.15	17.51	31.32	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
5	32	27	9874	144852	0
Kurtosis:	Skewness:		•		•
1.15	07				

		X ₂₃ :	Zn PPM	_	_
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
51.46	15.83	.58	250.45	30.76	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
8	126	118	38026	2141500	0
Kurtosis:	Skewness:				
1.12	.54				

X ₂₄ : Zr PPM								
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:			
130.35	38.36	1.41	1471.59	29.43	739			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
45	675	630	96328	13642300	0			
Kurtosis:	Skewness:							
59.64	5.03							

Yardea -80# Stream sediment Data - Total set.

		X 25	: V PPM		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:
63.3	20.11	.74	404.52	31.77	739
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
12	331	319	46780	3259790	0
Kurtosis:	Skewness:				
43.53	3.51				

		×26:	Pd PPB		
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef Var.:	Count:
.35	.23	.01	.05	65.44	455
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:
.25	1.8	1.55	161.3	81.62	284
Kurtosis:	Skewness:			•	
8.27	2.67				

X ₂₇ : Pt PPB							
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:		
.28	.13	.01	.02	47.05	455		
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:		
.25	1.3	1.05	126.55	42.97	284		
Kurtosis:	Skewness:						
23.23	4.82						

X 28 : Au PPB								
Mean:	Std. Dev.:	Std. Error:	Variance:	Coef. Var.:	Count:			
.95	.84	.03	.7	88	739			
Minimum:	Maximum:	Range:	Sum:	Sum of Sqr.:	# Missing:			
.5	8.65	8.15	705.07	1192.9	0			
Kurtosis:	Skewness:							
13.35	2.81							

		Correla	ition Mai	rix for V	ariables:	X1 X2	5	
	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM _	Aq PPM	Mo PPM	Nb PPM
As PPM	1							
Te PPM	.04	1						_
F PPM	.21	07	1					<u> </u>
Pb PPM	.41	.02	.19	1				
Bi PPM	.04	.12	06	.04	1			
Ag PPM	.25	- .02	.04	.13	.05	1		
Mo PPM	.24	05	.24	.02	08	7.70E-4	1	
Nb PPM	.09	- 06	.19	.15	06	1	.42	1
Sb PPM	.26	03	.06	.14	04	.05	.21	.08
Sn PPM	.29	08	.36	.42	07	.03	.25	.47
U PPM	.32	08	.44	.33	07	.07	.3	.33_
Ba PPM	. 1	- .1	.16	.03	13	.08	.19	.25
Ce PPM	.31	09	.35	.44	03	.07	.15	.21
Co PPM	.39	.02	.3	.46	.02	.05	.04	.13
Cr PPM	.2	07	.18	.28	-4.09E - 3	.11	.05	.08
Cu PPM	.35	02	.22	.49	1.31E-3	.09	.04	.05

	<u>As PPM</u>	Te PPM	F PPM	Pb PPM	B1 PPM	Ag PPM	Mo PPM	Nb PPM
Fe PPM	.42	05	.28	.45	07	.11	.39	.31
La PPM	.38	09	.36	.49	03	.1	.18	.2
Mn PPM	.06	05	.17	.29	06	01	.17	.34
NI PPM	.16	03	.09	.18	3.26E-3	.05	.02	.01
P PPM	.28	08	.36	.41	04	.09	.2	.24
Th PPM	.28	03	.32	.39	.02	04	.16	.3
Zn PPM	.18	06	.3	.37	06	.02	.19	.33
r PPM	.14	09	.14	.31	- .06	.03	.28	.38
V PPM	.49	02	.29	.41	04	.06	.39	.37
Au PPB	.06	-7.87E-4	.03	.15	.03	03	03	.01

i		Correlation Matrix for Variables: X ₁ X ₂ 6							
	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM	
Sb PPM	1								
Sn PPM	.15	1			Ī				
U PPM	.12	.43	1						
Ba PPM	.06	.23	.47	1					
Ce PPM	.15	.55	.6	.29	1			i	
Co PPM	.2	.5	.29	.08	.62	1			
Cr PPM	.13	.23	.16	.07	.29	.45	1		
Cu PPM	.24	.45	.22	.16	.5	.81	.44	1	

	Correlation Matrix for Variables: X ₁ X ₂ 6							
	Sb PPM	Sn PPM	U PPM	Ba PPM	Ce PPM	Co PPM	Cr PPM	Cu PPM
Fe PPM	.19	.55	.45	.23	.47	.6	.37	.68
La PPM	.18	.57	.57	.3.7	.92	.66	.33	.6
Mn PPM	.06	.39	.27	.12	.36	.43	.22	.42
Ni PPM	. 1	.15	.08	.02	.18	.4	.9	.35
P PPM	.18	.51	.36	.25	.57	.59	.35	. 6 5
Th PPM	.1	.56	.47	.24	.55	.51	.35	.37
Zn PPM	.12	.57	.3	.15	.5	.68	.34	.7
Zr PPM	.11	.44	.51	.52	.41	.17	.15	.31
V PPM	.2	.49	.39	.2	. 4	.65	.37	.65
Au PPB	.03	.09	.09	.02	.12	.16	.02	.17

	Correlation Matrix for Variables: X ₁ X ₂₆							
	<u>Fe PPM</u>	La PPM	Mn PPM	Ni PPM	P PPM	Th PPM	Zn PPM	· Zr PPM
e PPM	1							
a PPM	.57_	1						
n PPM	.62	.37	1					
i PPM	.25	.21	.13	1		:		
PPM	.56	.6	.31	.24	1			
PPM	.42	.63	.26	.23	.39	1		
PPM	.74	.56	.74	.23	.64	.39	1 .	
PPM	.51	.5	.4	.05	.26	.39	.36	1
PPM	.9	.5	.48	.27	.52	.42	.67	.43
u PPB	.12	.14	.06	.04	.07	.1	.1	.06

Correlation Matrix for	Variables: X ₁ X ₂₆	
V PPM I Au PPB .13	Au PPB	
	;	

_%	AS PPM	Column 32
1	.5	•
2	.5	•
3	1	•
4	1	•
5	1	•

10 1

%	As PPM	Column 32
20	2	•
30	2 -	•
40	2	•
50	3	•
60	3	•
70	3	•
80	4	•

%	As PPM	Column 32
90	5	•
95	5.55	•
96	6	•
97	6	•
98	6	•
99	8	•

Percentile Comparison for $\mathbf{X} = \mathbf{2} : \mathsf{Te} \; \mathsf{PPM} = \mathbf{Y} = \mathbf{1} : \mathsf{Column} \; \mathbf{32}$

_^	TE PPIT	COlumn 52
1	.05	•
2	.05	•
3	.05	•
4	.05	•
5	.05	•
10	.05	•

%	Te PPM	Column 32
20	.05	•
30	.05	•
40	.05	•
50	.05	•
60	.05	•
70	.05	•
80	.05	•

%	Te PPM	Column 32
90	. 1	•
95	.1	•
96	.2	•
97	.2	•
98	.2	•
99	.4	•

Percentile Comparison for X $_3$: FPPM $_1$: Column 32

F PPM	Column 32
120	•
130	•
150	•
159.8	•
170	•
190	• ′
	120 130 150 159.8 170

%	F PPM	Column 32
20	230	•
30	250	•
40	280	•
50	300	•
60	330	•
70	350	•
80	400	•

%	F PPM	Column 32
90	450	•
95	520	•
96	540	•
97	550	•
98	595.2	•
99	647.8	•

Percentile Comparison for X 4 : Pb PPM Y 1 : Column 32

	<i>7</i> 0	PU PPIT	COIGHIII 32
		2.5	•
	2	2.5	•
1	7	٥.	

	2	2.5	•
Ì	3	2.5	•
	4	2.5	•
	5	2.5	•
	10	5	•

% Pb PPM Column 32

		00101111102
20	5	•
30	10	•
40	10	•
50	10	•
60	10	• .
70	15	•
80	15	•

%	Рb	PPM	Column 32
• •			

90	20	•
95	20	•
96	20	•
97	25	•
98_	25 ·	•
99	30	•

Percentile Comparison for X 5 : Bi PPM Y 1 : Column 32

% Bi PPM Column 32

1	5	•
2	5	•
3	5	•
4	5	•
5	5	•
10	5	•

8	Bi DDM	Column 32
70	DIPPI	Column 32

	DIPPII	Columnia
20 30	5.	•
30	5	•
40	5	•
50	5	•
60	5	•
70	5	•
80	5	•

90	5	•
95	10	•
96	10	•
97	10	•
98	10	•
99	10	•

Percentile Comparison for X 6: Ag PPM Y 1: Column 32

% Ag PPM Column 32

	.,	71g 1 1 1 1	COTGINITIOE
	1	.25	•
	2	.25	•
	3	.25	•
	4	.25	•
	5	.25	•
ı	10	.25	•

%	Aa PPM	Column 32
70	Ay FFII	COMMIT 5.

	719 FFII	COMMITTEE
20	.25	•
30	.25	•
40	.25	•
50	.25	•
60	.25	•
70	.25	•
80	،25	•

90	.5	•	
95	.5	•	
96	.5	•	
97	.5	•	
98	.5	•	
99	.5	•	

Percentile Comparison for X 7:Mo PPM $Y_1:Column 32$

% Mo PPM Column 32

1	.39	•
2	.43	•
3	.44	•
4	.46	•
5	.49	•
10	.6	•

	%		Μo	PPM	Column 32
--	---	--	----	-----	-----------

70 - 110 PPIT COIGHINS		
20	.72	•
30	.84	•
40	.92	•
50	1	•
60	1.08	•
70	1.15	•
80	1.26	•

% Mo PPM Column 32

90	1.44	•
95	1.59	•
96	1.65	•
97	1.74	•
98	1.91	•
99	2.3	•

Percentile Comparison for X 8 : Nb PPM Y 1 : Column 32

% Nb PPM Column 32

	1	3.91	•
	2	4.39	•
	3	5.03	•
	4	5.47	•
	5	5.63	•
İ	10	7.66	•

%	Nb PPM	Column 32

76	ND PPM	Column 32
20	9.49	•
30	10.5	•
40	11.51	•
50	12.4	•
60	13.3	•
70	14.3	•
80	15.6	•

% Nb PPM Column 32

90	17.2	•
95	19	•
96	19.8	•
97	20.9	•
98	22.32	•
99	24.83	•

Percentile Comparison for X g : Sb PPM Y 1 : Column 32

% Sb PPM Column 32

	1	.16	•
	2	.19	•
	3	.22	•
	4	.23	•
	5	.24	•
ı	10	.27	•

%	Sh F	PM	Column 32
70	- JU F		COMMINISE

20	.3	•
30	.33	•
40	.35	•
50	.38	•
60	.41	•
70	.44	•
80	.5	•

90	.57	•
95	.66	•
96	.68	•
97	.78	•
98	.88	•
99	1.06	•

Percentile Comparison for X $_{10}$: Sn PPM Y $_{1}$: Column 32

% Sn PPM Column 32

1	1.36	•
2	2.02	•
3	2.13	•
4	2.33	•
5	2.52	•
10	3.27	•

	JIIFFII	COIGINITIO
20	4.01	•
30	4.49	•
40	4.89	•
50	5.18	•
60	5.47	• ,
70	5.73	•
80	6.13	•

Sn PPM Column 32

90	6.72	•
95	7.17	•
96	7.32	•
97	7.48	•
98	7.82	•
99	8.63	•

Percentile Comparison for X 11 : U PPM Y 1 : Column 32

U PPM Column 32

1		.58	•
2		.7	•
3		.78	•
4		.82	•
5		.86	•
Γī	0	.99	•

%	U PPM	Column 32
20	1.2	•
30	1.36	•
40	1.46	•
50	1.59	•
60	1.7	•
70	1.84	•
80	1.98	•

% U PPM Column 32

90	2.24	•
95	2.57	•
96	2.69	•
97	2.91	•
98	3.37	•
99	4.28	•

Percentile Comparison for X 12: Ba PPM Y 1: Column 32

% Ba PPM Column 32

		D u 1.11	
	1	178	•
	2	212.28	•
	3	235.01	•
	4	253.06	•
	5	260	•
ı	10	288.4	•

% Ba PPM Column 32

-70	Da PPII	COIGHIII 32
20	349.3	•
30	385	•
40	426.1	•
50	462	•
60	507	•
70	546	•
80	584	•

% Ba PPM Column 32

90	642.2	•
95	701.85	•
96	741.88	•
97	772.3	•
98	805.88	•
99	861.44	•

Percentile Comparison for X 13 : Ce PPM Y 1 : Column 32

Ce PPM Column 32

	1	20.78	•
İ	2	25	•
	3	27.67	•
	4	29	•
	5	30	•
	10	35	•

%	Ce PPM	Column 32

20	41	•
30	47	•
40	52	•
50	55	•
60	58	•
70	62	•
80	68	•

%	$\Gamma \wedge$	DDM	Column	マつ
70	Ce	PPI	Column	2

90	75	•
95	82.55	•
96	85	•
97	91	•
98	96	•
99	115.77	•

Percentile Comparison for X 14 : Co PPM Y 1 : Column 32

Co PPM Column 32

-	2.5	•
2	2.5	•
3	2.5	•
4	2.5	•
5	2.5	•
10	5	•

%	Co PPM	Column 32
70	COPFII	COMMINISZ

_	70	CO PPIT	Column 32
	20	6	•
	20 30	7	•
	40	8	•
	50	9	•
ĺ	60	10	•
ĺ	70	11	•
	80	12	•

90	13	•
95	14	•
96	14	•
97	15	•
98	15	•
99	16	•

Percentile Comparison for X $_{15}$: Cr PPM Y $_1$: Column 32

Cr PPM Column 32

1	5	•
2	11.28	•
3	12.67	•
4	13.06	•
5	15	•
10	20	•

%	Cr	DDM	Column 32
70		PPII	COMMINISZ

	•	
20	25	•
30	28	•
40	31	•
50	34	•
60	37_	•
70	41	•
80	45	•

9	50	•
95	55	•
96	57	•
97	58	•
98	60	•
99	66	•

Percentile Comparison for X $_{16}$: Cu PPM $_{1}$: Column 32

Cu PPM Column 32

1	8	•
2	9	•
3	9	•
4	10	•
5	10	•
10	11 ,	•

<u> </u>	Cu PPI I	COIGITIT 32
20	12	•
30	13	•
40	15	•
50	16	•
60	17	•
70	18	•
80	20	•

%	Cu	PPM	Column	32
70	Cu	FFII	Column	~ ~

90	22	•
95	24	•
96	24.94	•
97	25.33	•
98	27	•
99	29	•

Percentile Comparison for X 17 : Fe PPM Y 1 : Column 32

% Fe PPM Column 32

1	15956	•
2	17284	•
3	18468	•
4	19218	•
5	20145	•
10	23000	•

%	Fe	PPM	Column 32
70		, , , ,	Coldinii 52

	70	FE PPII	COIGHIH 32
	20	26900	•
	30	29200	•
į	40	31010	•
	50	32700	•
	60	34600	•
	70	36400	•
	80	39200	•

90	43400	•
95	46720	•
96	47600	· •
97	49200	•
98	50100	•
99	52844	•

Percentile Comparison for X 18: La PPM Y 1: Column 32

% La PPM Column 32

-	12.89	• ,
2	15	•′
3	17	•
4	18	•
5	19	•
10	22	•

%	La DDM	Column 32
70	La PPM	Column 32

. •		
20	26	•
30	29	•
40	32	•
50	34	•
60	35.9	•
70	37	•
80	40	•

90	43	•
95	47	•
96	49	•
97	50	•
98	52.72	•
99	56.11	•

Percentile Comparison for X $_{19}$: Mn PPM $_{1}$: Column 32

%	Mn	DDM	Column	32
70	1 11 1	PFII	COldini	JZ

Ì	1	186.56	•
Ì	2	202.56	•
ı	3	211.67	•
ı	4	228	•
ı	5	240.35	•
	10	291	•

%	Mn	PPM	Column 32
---	----	-----	-----------

		001diiii.02
20	341	•
30	380	•
40	412	•
50	443	•
60	478	•
70	515	•
80	580.5	•

Mn PPM Column 32

90	665.6	•
95	783.65	•
96	830.22	•
97	869.31	•
98	923.04	•
99	1051.67	•

Percentile Comparison for X 20 : Ni PPM Y 1 : Column 32

Ni PPM Column 32

1	5	•
2	5	•
3	5	•
4	10	•
5	11	•
10	12	•

%	NI DDM	Column 32
70	NIPPI	COMMINISZ

_%	NIPPI	Column 32
20	15	•
30	16	•
40	18	•
50	19	•
60	21	•
70	23	•
80	25	•

% Ni PPM Column 32

90	27	•
95	30	• .
96	30	•
97	31	•
98	32	•
99	34.11	•

Percentile Comparison for X 21 : P PPM Y 1 : Column 32

P PPM Column 32

İ	1	50	•
	2	50	•
	3	105	•
	4	108	•
İ	5	114	•
	10	133.8	•

%	P PPM	Column 32

70	FFFII	COIGITITITIE
20	167	•
30	189	•
40	214	•
50	236	•
60	259.9	•
70	282	•
80	316.7	•

		3014IIII 62
90	371	•
95	432.55	•
96	447.82	•
97	477.99	•
98	496.88	•
99	570.2	•

Percentile Comparison for X 22: Th PPM Y 1: Column 32

	%	Th PPM	Column 32
	1	5	•
	2	5	•
	3	5	•
	4	5	•
ĺ	5	5	•
	10	5	•

%	Th PPM	Column 32
20	11	•
30	12	•
40	13	•
50	14	•
60	14	•
70	15	•
80	16	•

%	Th PPM_	Column 32
90	18	•
95	20	•
96	20	•
97	21	•
98	22	•
99	24	•

Percentile Comparison for X 23 : Zn PPM Y 1 : Column 32

_%	Zn PPM	Column 32
1	16.89	•
2	22	•
3	23.67	•
4	26	•
5	28.45	•
10	33	•

%	Zn PPM	Column 32
20	39	•
30	43	•
40	47	•
50	50	•
60	54	•
70	58	•
80	64	•

%	Zn PPM	Column 32
90	72	•
95	78	•
96	79.94	•
97	82.66	•
98	89.16	•
99	95	•

Percentile Comparison for X 24: Zr PPM Y 1: Column 32

%	Zr PPM	Column 32
1	66	•
2	69.28	•
3	76.67	•
4	81.06	•
5	83	•
10	94	•

%	Zr PPM	Column 32
20	108	•
30	115	•
40	122	•
50	127	•
60	134	•
70	140	•
80	149	•

%	Zr PPM	Column 32
90	166	•
95	178	•
96	182.94	•
97	188.32	•
98	207.72	•
99	235.44	•

Percentile Comparison for X 25 : V PPM Y 1 : Column 32

	%	V PPM_	Column 32
	1	24.78	•
	2	27	•
Ì	3	30.67	•
	4	33	•
	5	33	•
Ì	10	41	•

%	V PPM	Column 32
20	49	•
30	55	•
40	59	•
50	62	•
60	67	•
70	71	•
80	76	•

%	V PPM	Column 32
90	85	•
95	91.55	•
96	93	•
97	97	•
98	100	•
99	103	•

Percentile Comparison for X 26 : Au PPB Y 1 : Column 32

<u></u> %	AU PPB	Column 32
1	.5	•
2	.5	•
3	.5	•
4	.5	•
5	.5	•
10	.5	•

	%	Au PPB	Column 32
	20	.5	•
, .	30	.5	•
	40	.5	•
	50	.5	•
	60	.5	•
	70	1.1	•
	80	1.67	•

%	Au PPB	Column 32
90	2	•
95	2.5	•
96	2.79	•
97	2.91	•
98	3.18	•
99	4.22	•

Percentile Comparison for X 27 : Pd PPB Y 1 : Column 32

	%	Pd PPB	Column 32
	1	.25	•
	2	.25	•
	3	.25	•
	4	.25	•
-	5	.25	•
	10	.25	•

%		Pd PPB	Column 32
	20	.25	•
	30	.25	•
	40	.25	•
	50	.25	•
	60	.25	•
	70	.25	•
	80	.5	•

.7	•
.9	•
.9	•
1	•
1	•
1.39	•
	.9 1

%	Pt PPB	Column 32	%	Pt PPB	Column 32	%	Pt PPB	Column 32
1	.25	•	20	.25	•	90	.25	•
2	.25	•	30	.25	•	95	.25	•
3	.25	•	40	.25	•	96	.66	•
4	.25	•	50	.25	•	97	.8	•
5	.25	•	60	.25	•	98	.9	•
10	.25	•	70	.25	•	99	.9	•
			80	.25	•			

Percentile Comparison for X 1 : ROXBY Cu-U-Au Y 1:.

% ROXBY C...

1	-17.41	•
2	-14.14	•
3	-12.75	•
4	-11.52	•
5	-10.69	•
10	-7.65	•

%	ROXBY	۲
70	NONDI	· · ·

20	-4.4	•
30	-1.89	•
40	29	•
50	1.13	•
60	2.23	•
70	3.15	•
80	4.29	•

% ROXBY C

	90	·5.98	•
	95	7.36	•
ı	96	7.73	•
İ	97	8.08	•
I	98	8.94	•
I	99	10.02	•

Percentile Comparison for X 2 : EPITHERMAL Au Y 1:.

% EPITHER... .

1	-9.36	•
2	-8.06	•
3	-7.5	•
4	-6.87	•
5	-6.49	•
10	-5.41	•

% FPITHER

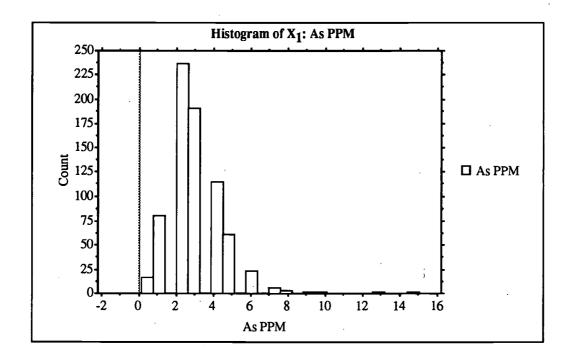
	70	EPHINER	
	20	-3.5	•
	30	-1.98	•
	40	98	•
	50	.06	•
	60	1.26	•
İ	70	2.16	•
	80	3.35	•

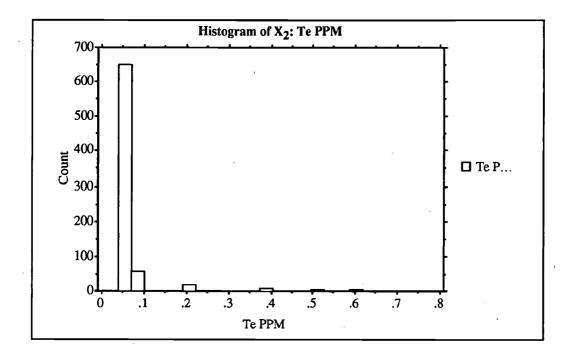
% EPITHER.

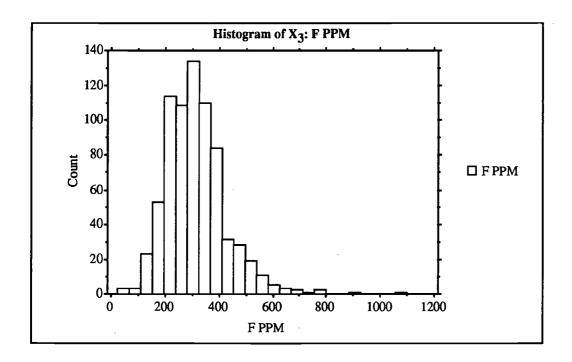
90	4.96	•
95	6.21	
96	6.57	•
97	7.17	• .
98	7.98	•
99	8.88	•

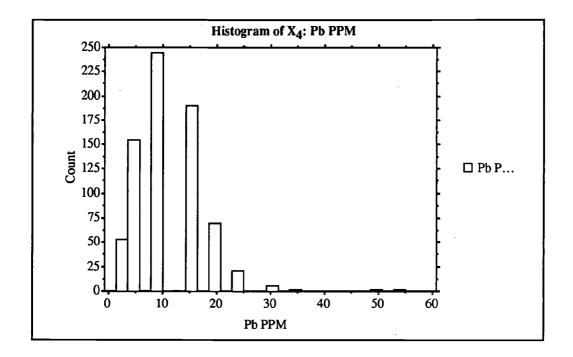
Percentile Comparison for X 3 : VOLCANOGENIC U Y 1:.

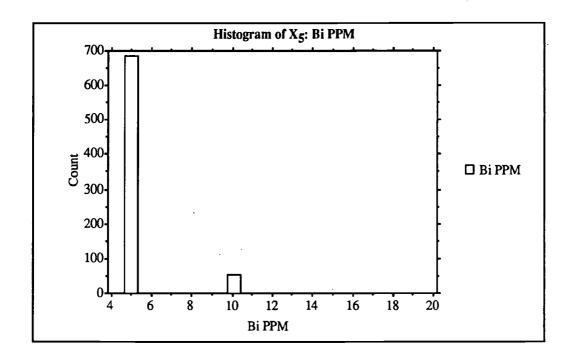
% VOLCANO... .

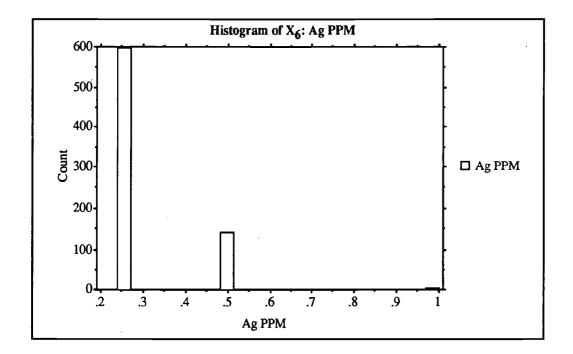

-	-12.73	•
2	-11.11	•
3	-9.77	•
4	-9.31	•
5	-8.74	•
10	-6.3	•

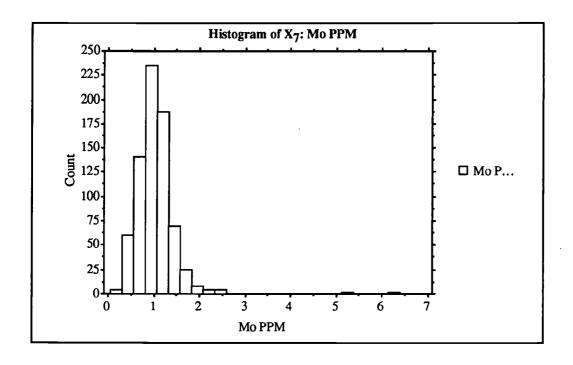

% VOLCANO..

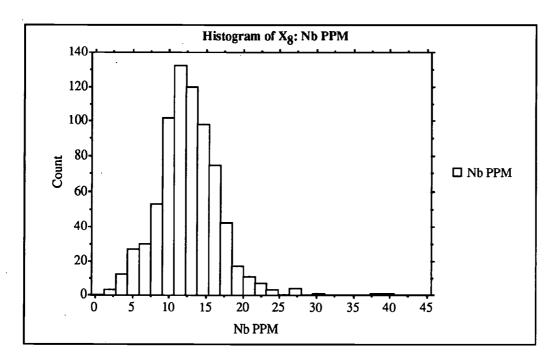

ĺ	20	-3.44	•
	30	-2.07	•
	40	78	•
	50	.53	•
	60	1.64	•
	70	2.56	•
	80	3.75	•

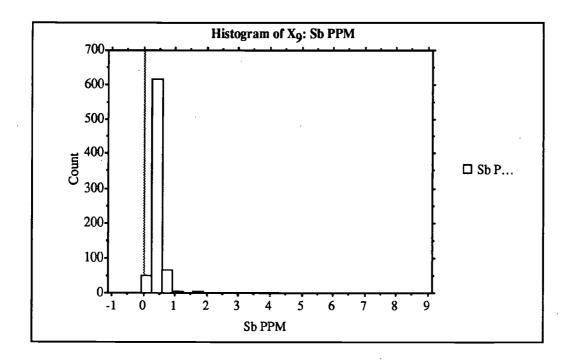

% VOLCANO...

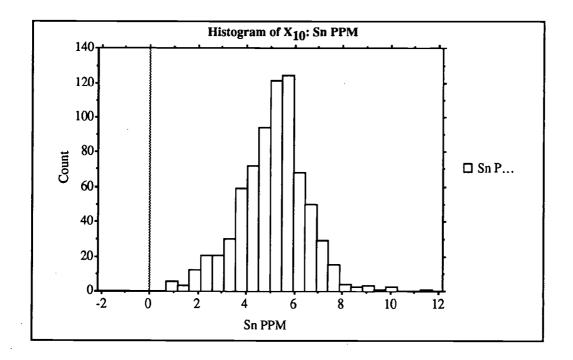

	5.2	•
95	6.53	•
96	7.1	•
97	7.38	•
98	8.08	•
99	9.71	•

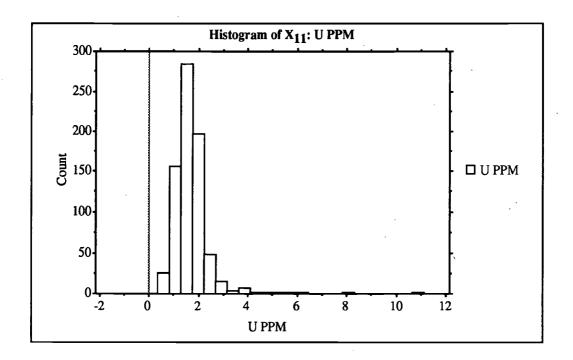


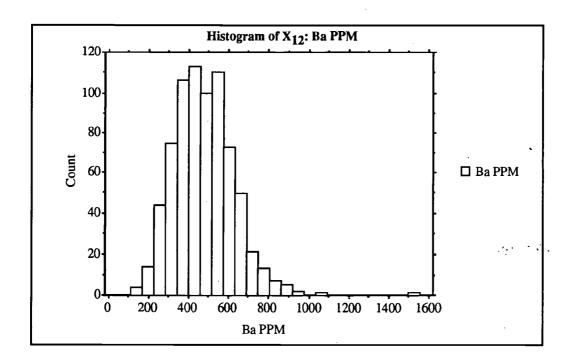


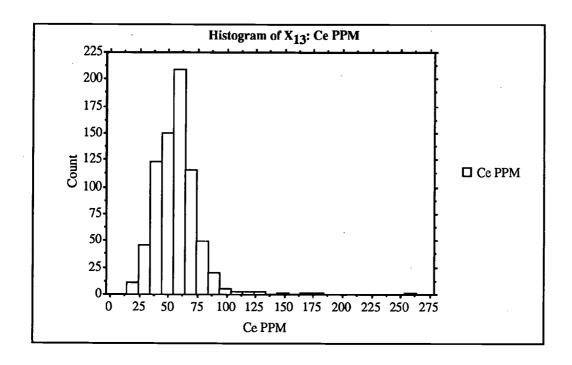


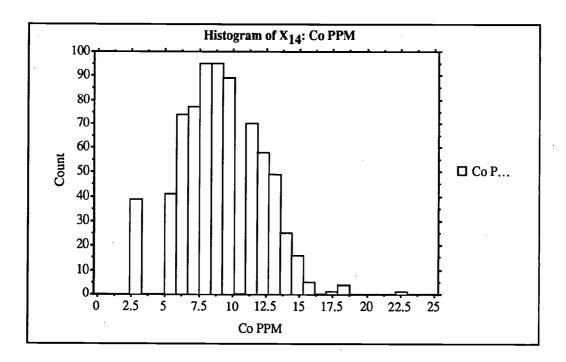


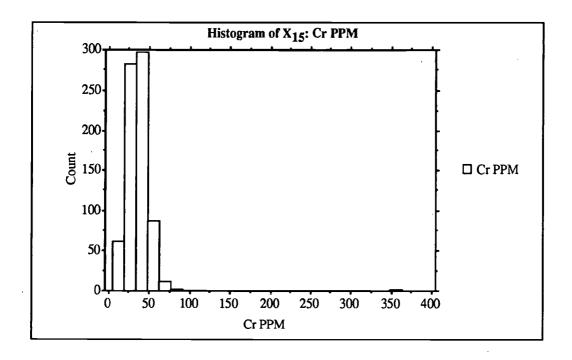


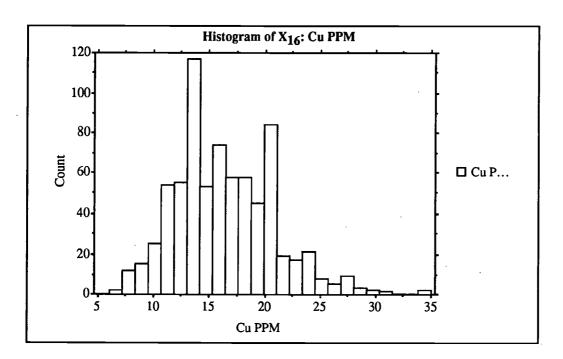


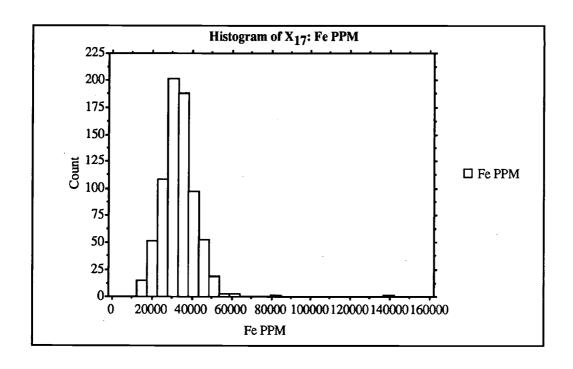


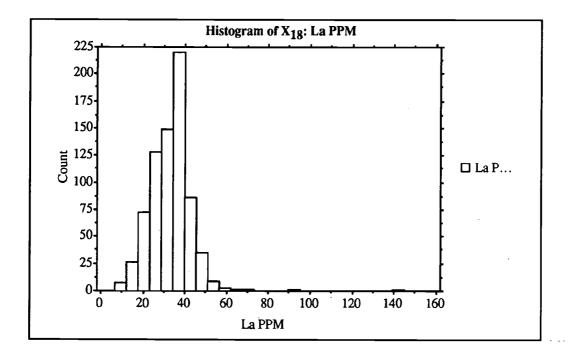


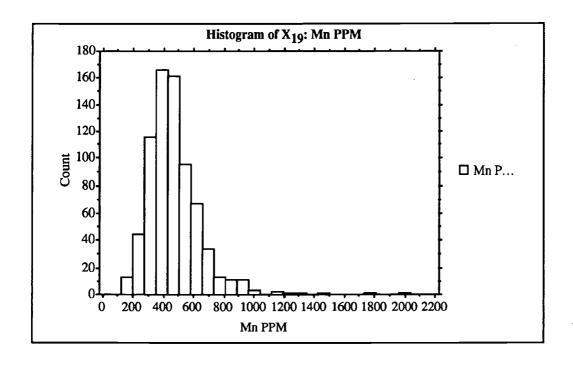


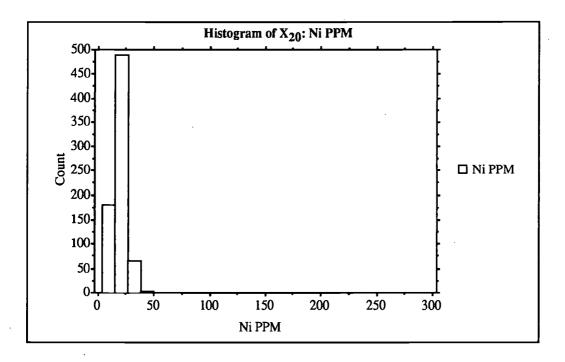


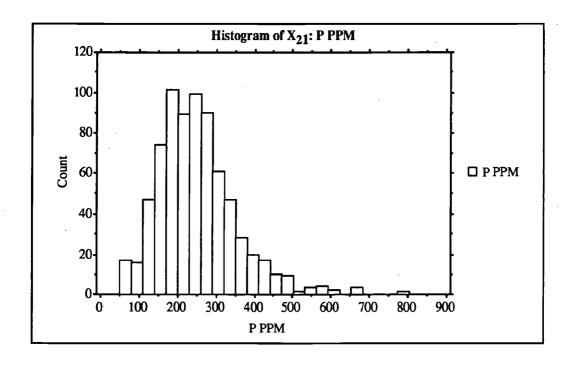


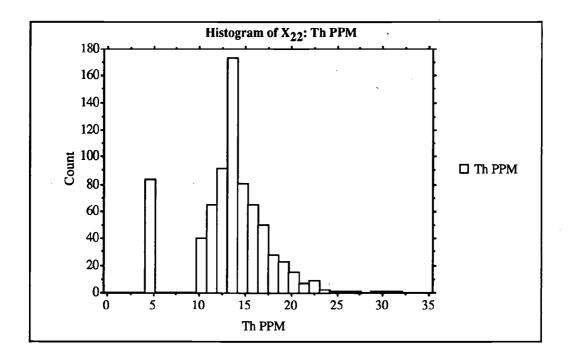


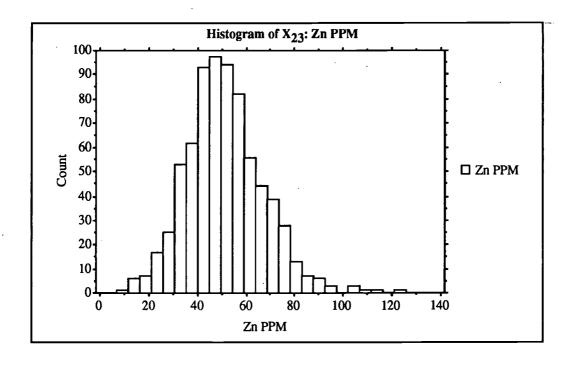


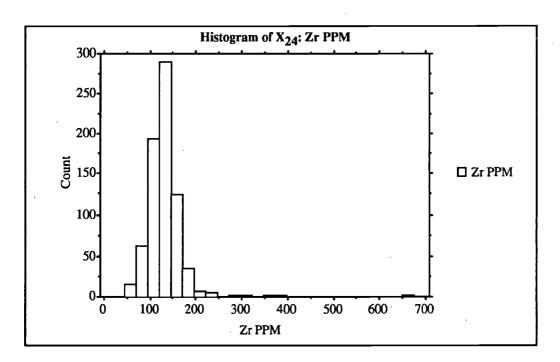


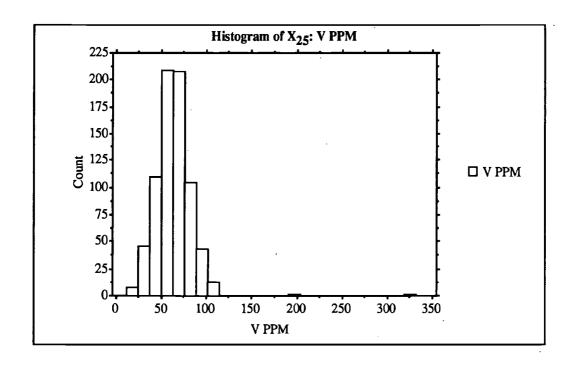


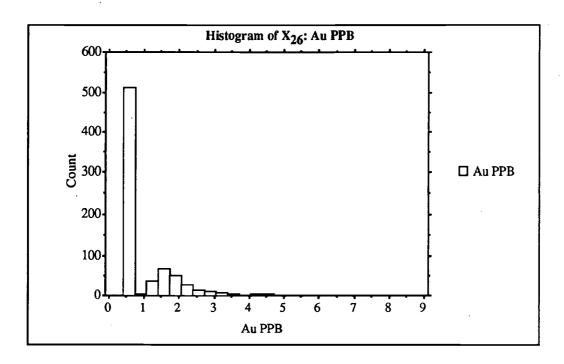


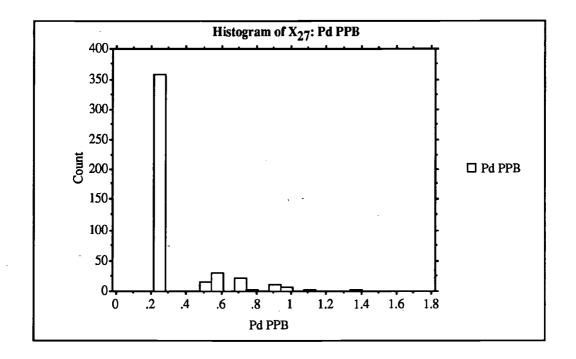


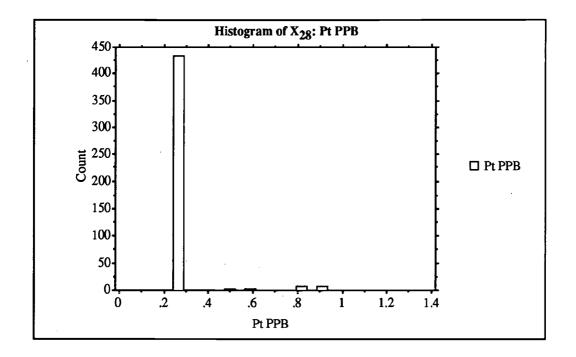








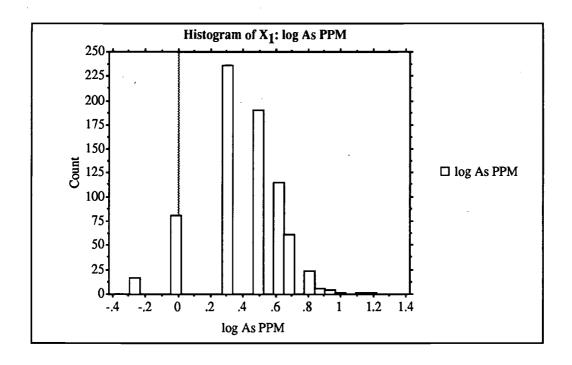


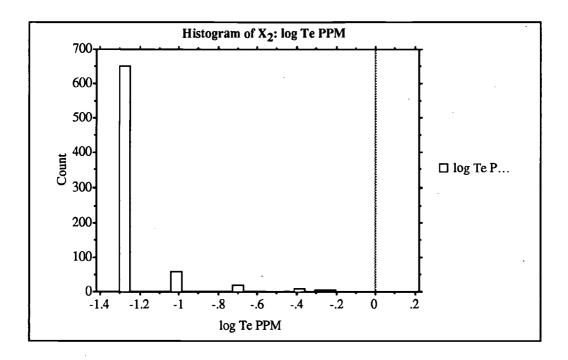


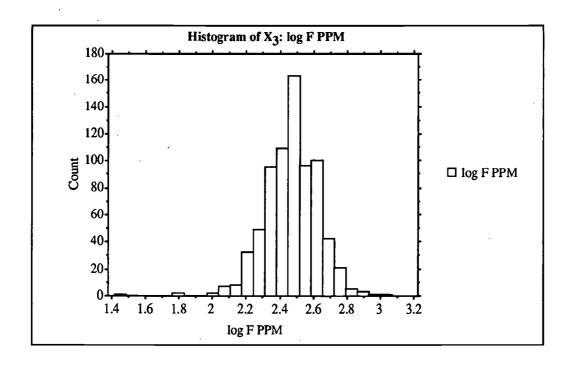
	AS PPM	Te PPI·I	F PPM	Pb PPM	BI PPM	Mo PPM	Nb PPM	Sb PPI1
PPM	1_							
PPM	.04	1						
PM	.21	07	1					
PPM	.41	.02	.19	1				
PPM	.04	.12	06	.04	1	_		
PPM	.24	05	.24	.02	08	1		
PPM	.09	06	.19	.15	06	.42	1	
PPM	.26	03	.06	.14	04	.21	.08	1
PPM	.29	08	.36	.42	07	.25	.47	.15
PM	.32	08	.44	.33	- .07	.3	.33	.12
PPM	.1	1	.16	.03	13	.19	.25	.06
PPM	.31	09	.35	.44	03	.15	.21	.15
PPM	.39	.02	.3	.46	.02	.04	.13	.2
PPM	.2	07	.18	.28	-4.09E-3	.05	.08	.13
PPM	.35	02	.22	.49	1.31E-3	.04	.05	.24
PPM	.42	05	.28	.45	07	.39	.31	.19

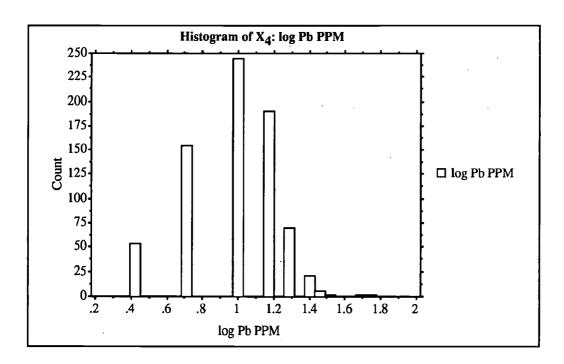
Note: 2 cases deleted with missing values.

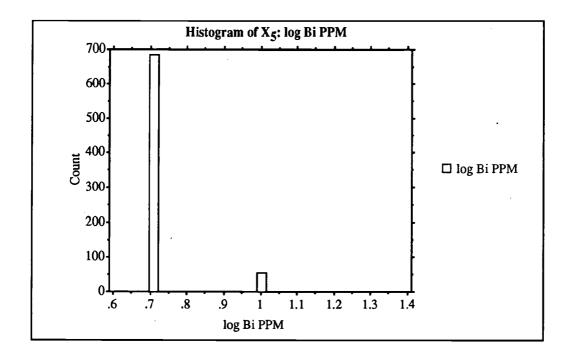
		Correlat	tion Matr	ix for V	ariables:	X1 X2	5	
	As PPM	Te PPM	F PPM	Pb PPM	Bi PPM	1:10 PPM	Nb PPM	Sb PPM
La PPM	.38	09	.36	.49	03	.18	.2	.18
Mn PPM	.06	05	.17	.29	06	.17	.34	.06
NI PPM	.16	-:.03	.09	.18	3.26E-3	.02	.01	. 1
P PPM	.28	08	.36	.41	04	.2	.24	.18
Th PPM	.28	03	.32	.39	.02	.16	.3	. 1
Zn PPM	.18	06	.3	.37	06	.19	.33	.12
Zr PPM	.14	09	.14	.31	06	.28	.38	.11
V PPM	.49	02	.29	.41	04	.39	.37	. 2
Au PPB	.06	-7.87E-4	.03	.15	.03	03	.01	.03

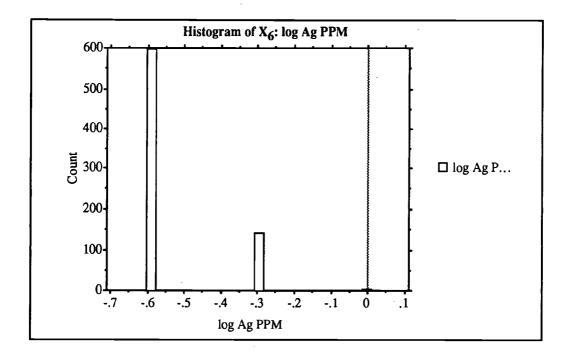

		Correlation Matrix for Variables: X ₁ X ₂₅									
	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Cr PPM_	Cu PPM	Fe PPM			
5n PPM	1										
J PPM	.43	1									
Ва РРМ	.23	.47	1	,							
Ce PPM	.55	.6	.29	1							
Co PPM	.5	.29	.08	.62	1 .						
Cr PPM	.23	.16	.07	.29	.45	1					
Cu PPM	.45	.22	.16	.5	.81	.44	1				
Fe PPM	.55	.45	.23	.47	.6	.37	.68	1			

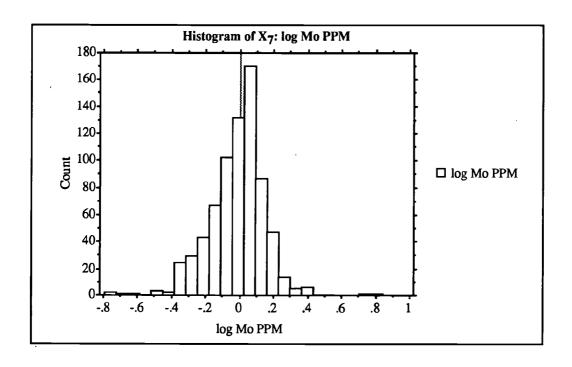

		Correl	ation Mati	rix for V	'ariables:	X ₁ X ₂	:5	
	Sn PPM	U PPM	Ва РРМ	Ce PPM	Co PPM	Çr PPM	Cu PPM	Fe PPM
La PPM	.57	.57	.37	.92	.66	.33	.6	.57
Mn PPM	.39	.27	.12	.36	.43	.22	.42	.62
Ni PPM	.15	.08	.02	T.18	.4	.9	.35	.25
P PPM	.51	.36	.25	.57	.59	.35	.65	.56
Th PPM	.56	.47	.24	.55	.51	.35	.37	.42
Zn PPM	.57	.3	.15	.5	.68	.34	.7	.74
Zr PPM	.44	.51	.52	.41	.17	.15	.31	.51
V PPM	.49	.39	. 2	.4	.65	.37	.65	.9
Au PPB	.09	.09	.02	.12	.16	.02	.17	.12

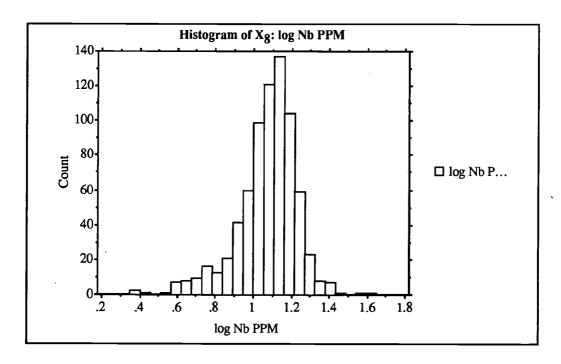

—			NI PPM	P PPM	Th PPM	Zn PPM	Zr PPM	V PPM
<u> </u>					•			
	37	1						
PPM .2	21	.13	1			•		
.6. MPC	5	.31	.24	1				
PPM .6	53	.26	.23	.39	1			
PPM .5	56	.74	.23	.64	.39	1		
PPM .5	5	.4	.05	.26	.39	.36	1	
PPM .5	5	.48	.27	.52	.42	.67	.43	1
PPB .1	4	.06	.04	.07	. 1	1.1	.06	.13

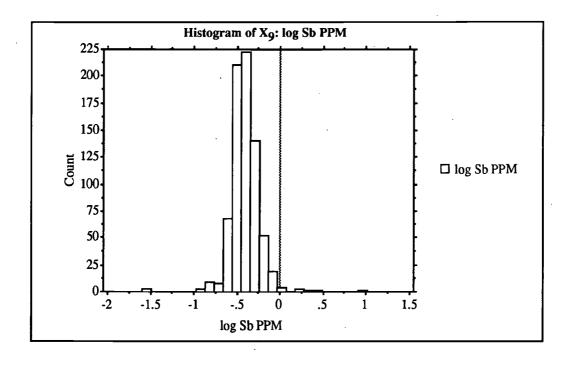

	Correlation Matrix	for Variables: X ₁ X ₂₅
	Au PPB	Au PPB 1
,		·
·		

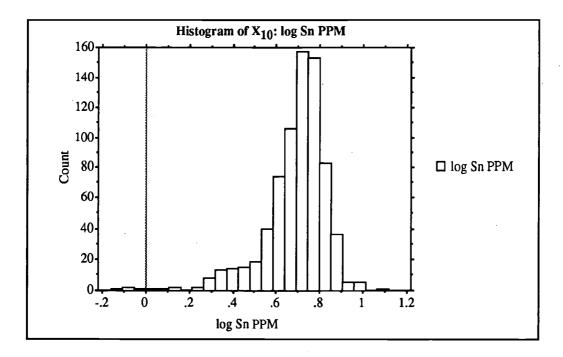

APPENDIX VI HISTROGRAM PLOTS & CORRELATION MATRIX - LOG NORMALISED - YARDEA -80# STREAM SEDIMENT DATA

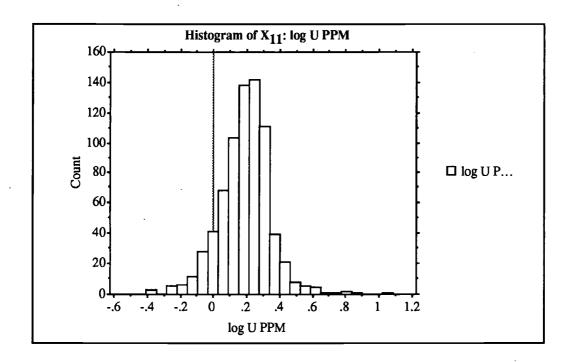


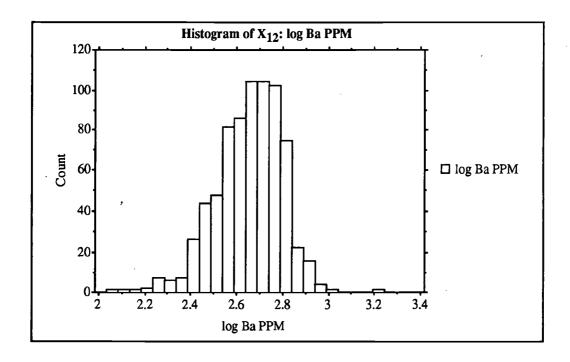


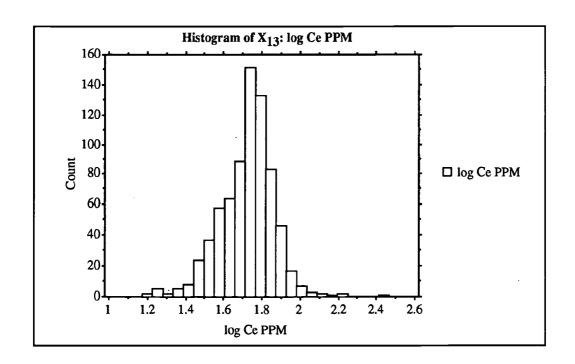


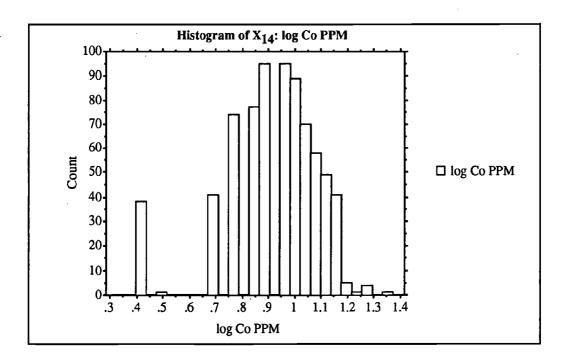


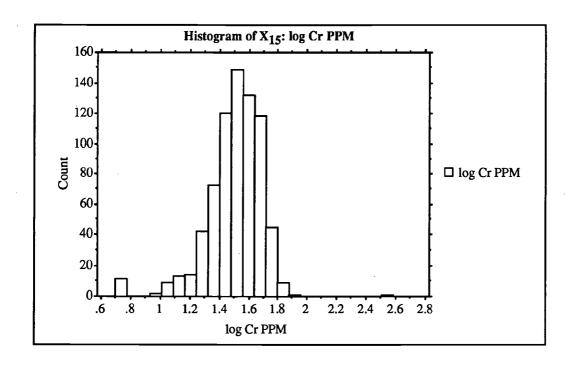


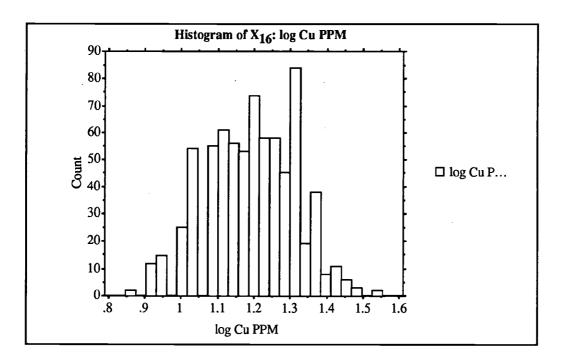


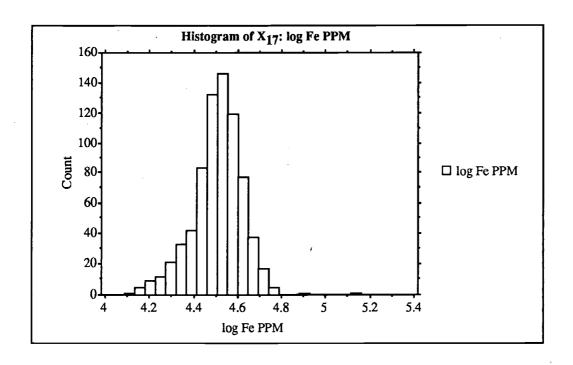


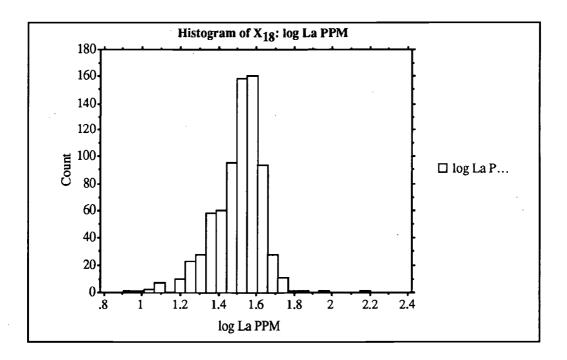


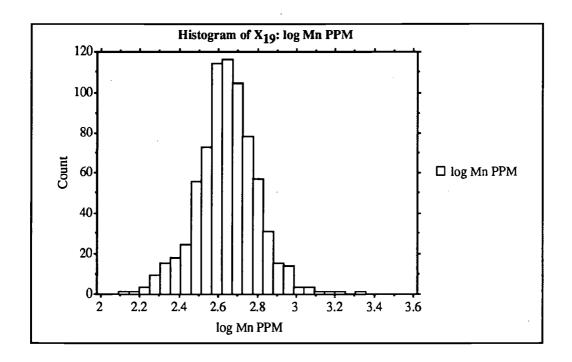


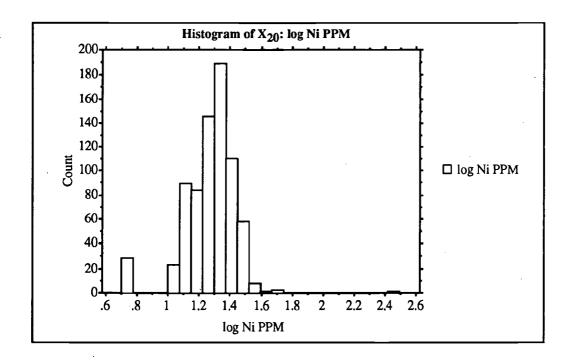


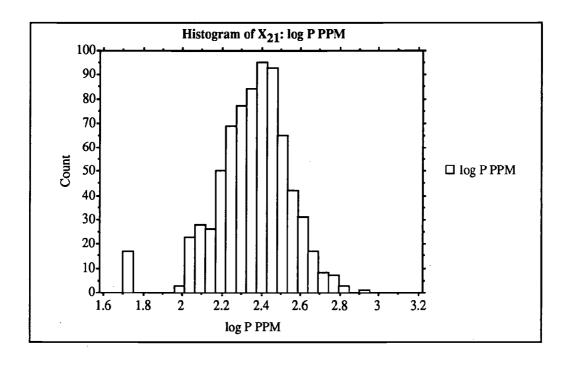


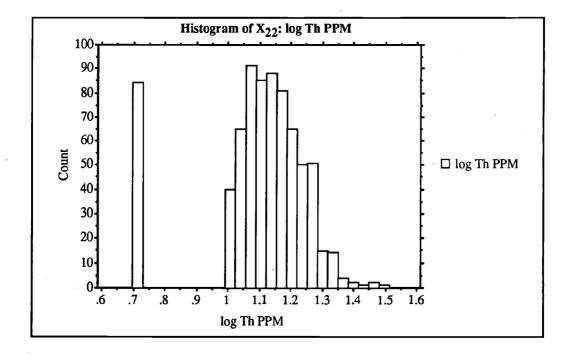


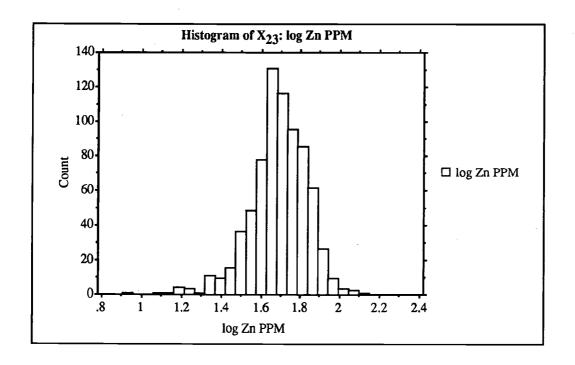


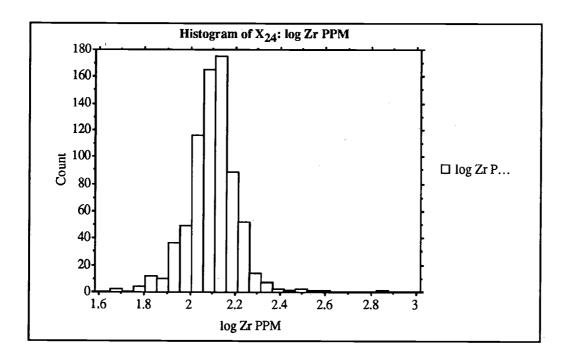


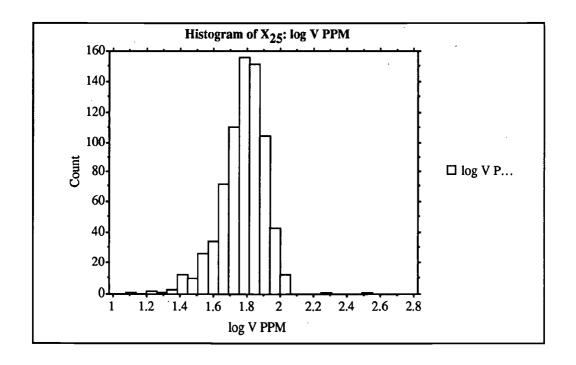


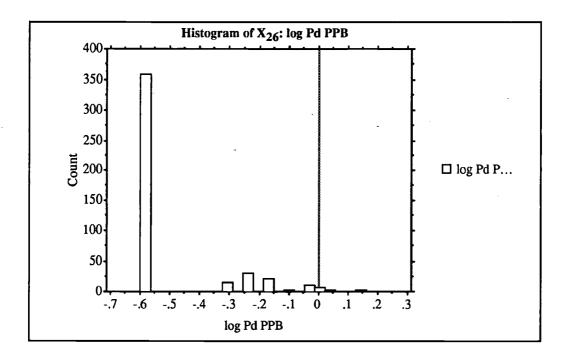


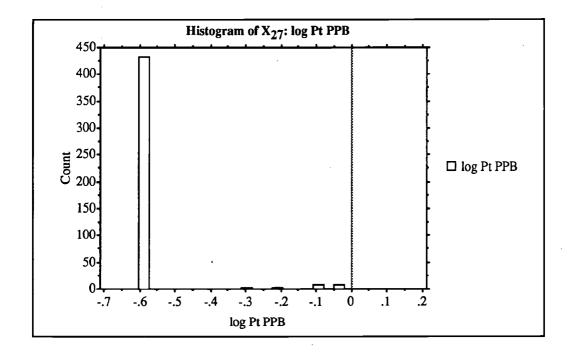


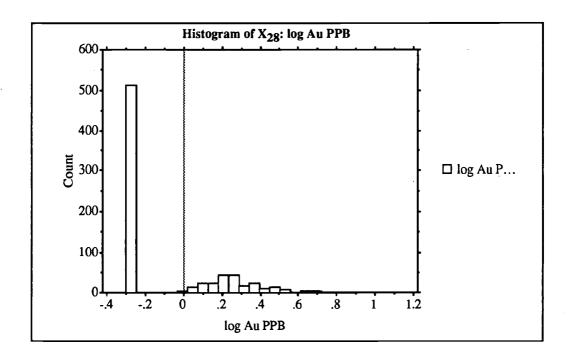








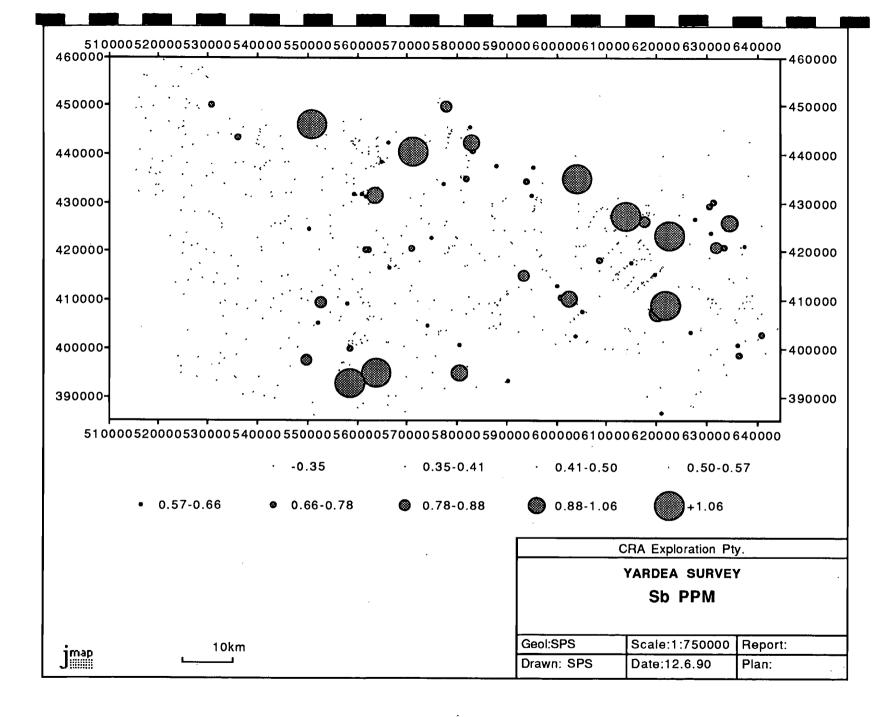


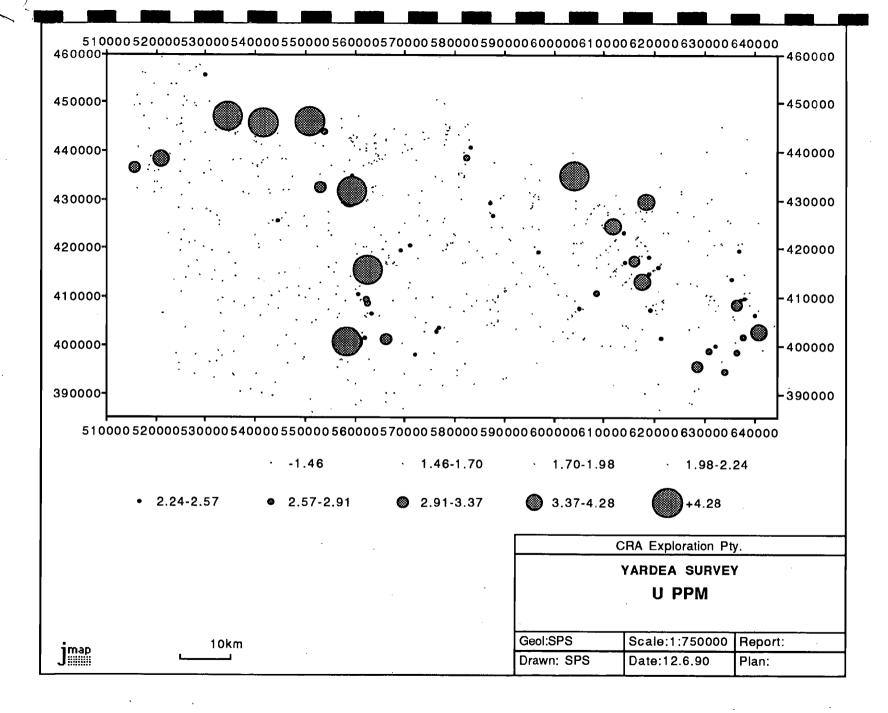


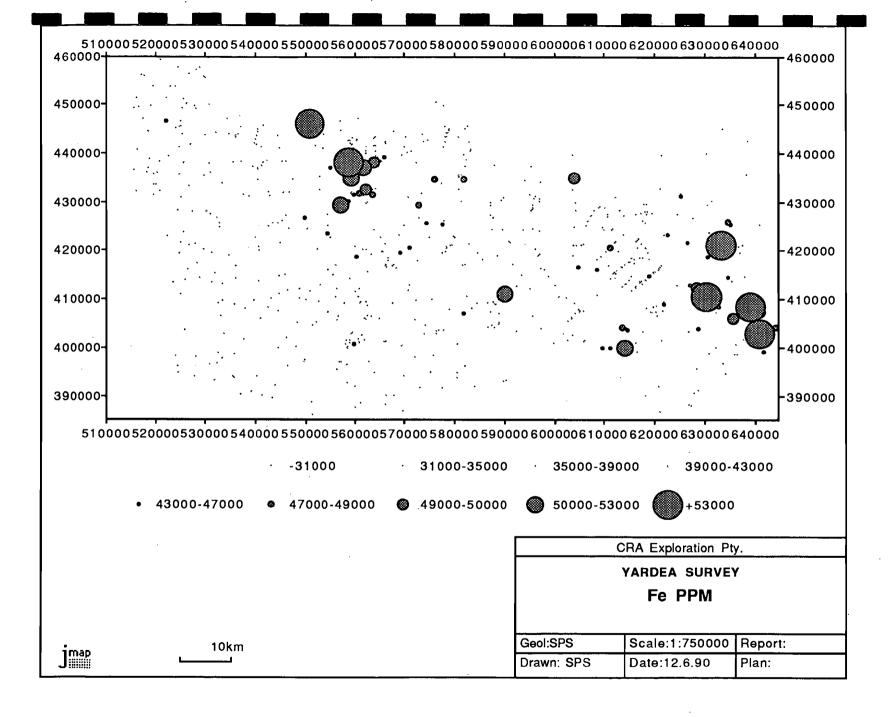
		Correlat	ion Matr	ix for Va	artables:	X1 X26	5	
	log As P	<u>log Te P</u>	log F PPM	log Pb P	<u>log Bi P</u>	log Ag P.	<u>log Mo P</u>	log Nb P
log As PPM	1							
log Te PPM	.05	1						
log F PPM	.25	13	1					
log Pb PPM	.44	.03	.24	1				
log Bi PPM	.06	.18	07	.07	1			
log Ag PPM	.26	01	.04	.13	.04	1		
log Mo P	.13	08	.29	03	09	.01	1	
log Nb PPM	.05	07	.24	.12	- .05	09	.42	1
log Sb PPM	.34	04	.12	.26	06	.08	.44	.19
log Sn PPM	.33 .	12	.49	.38	07	.05	.3	.46
log U PPM	.37	12	.46	.42	08	.11	.27	.34
log Ba PPM	.17	- .15	.26	. 1	14	1.1	.23	.29
log Ce PPM	.37	12	.44	.51	03	.08	.18	.28
log Co PPM	.47	-9.26E-4	.36	.52	.04	.07	.06	.18
log Cr PPM		11	.27	.48	.01	.16	.01	.15
log Cu PPM		05	.29	.56	.01	. 1	.04	.08

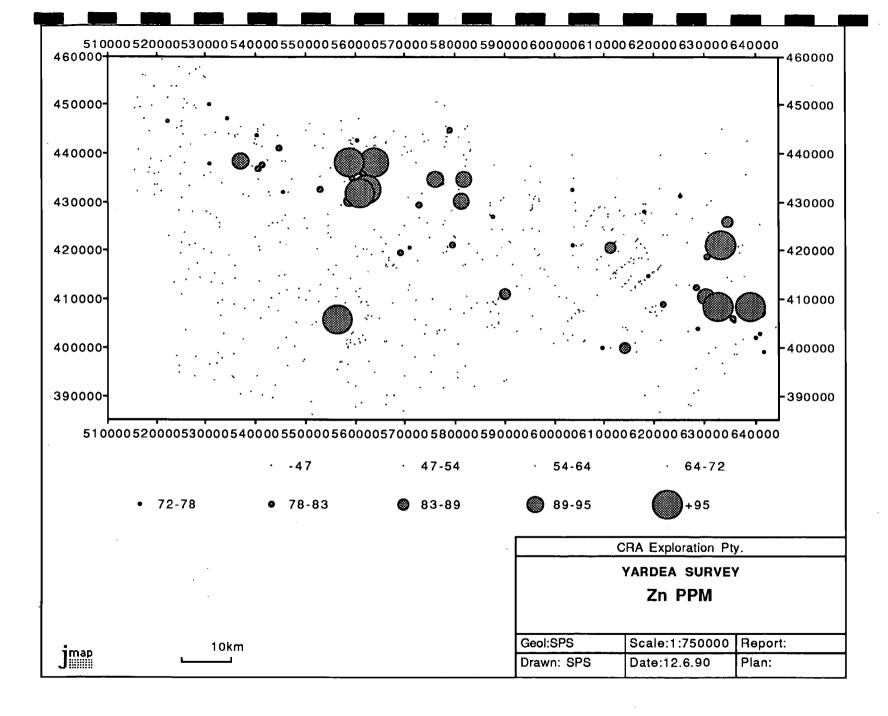
_		Correla	tion Matr	ix for V	artables:	X1 X2	6	
	100 As P	log Te P	log F PPM	log Pb P	log Bi P	log Ag P	log Mo P	log Nb P
log Fe PPM	.42	11	.41	.52	07	.13	.25	.25
log La PPM	.45	11	.46	.56	02	.11	.21	.28
log Mn P	.17	09	.26	.38	07	.02	.18	.29
log Ni PPM	.39	03	.15	.45	.04	.13	07	.02
log P PPM	.36	1	.43	.46	03	1.1	.26	.3
log Th PPM	.29	04	.39	.38	.03	01	.16	.29
log Zn PPM	.28	08	.4	.44	05	.03	.21	.34
log Zr PPM	.23	13	.27	.36	07	.06	.29	.43
log V PPM	.5	06	.43	.49	04	.09	.23	.33
log Au PPB	. 1	.03	.04	.14	.04	06	02	.03

		Correla	tion Matr	ix for Va	ariables:	X1 X26	5	
	log Sb P	log Sn P	log U PPM	log Ba P	log Ce P	log Co P	log Cr P	log Cu P
log Sb PPM	1							
log Sn PPM	.21	1						
log U PPM	.21	.62	1					
log Ba PPM	.16	.39	.65	1				
log Ce PPM	.22	.65	.68	.41	1			•
log Co PPM	.28	.54	.43	.23	.72	1		
log Cr PPM	.23	.35	.38	.25	.53	.62	1	
log Cu PPM	.37	.46	.39	.27	.63	.79	.62	1


	Correlation Matrix for Variables: X ₁ X ₂₆										
	log Sb P	log Sn P	log U PPM	log Ba P	log Ce P.	log Co P.	log Cr P	log Cu P			
log Fe PPM	.31	.64	.6	.4	.63	.66	.57	.75			
log La PPM	.29	.66	.72	.51	.93	.75	.58	.7			
log Mn P	. 1	.5	.45	.28	.54	.55	.45	.55			
log Ņi PPM	.3	.27	.26	.16	.43	.66	.78	.66			
log P PPM	.33	.58	.54	.41	.71	.65	.56	.7			
log Th PPM	.12	.58	.57	.31	.63	.58	.47	.4			
log Zn PPM	.19	.66	.51	.35	.65	.71	.55	.72			
log Zr PPM	.22	.56	.72	.65	.56	.31	.34	.4			
log V PPM	.31	.62	.56	.4	.61	.76	.58	.74			
log Au PPB	.02	.09	.09	.01	.13	.17	.04	.15			


Fe PPM La PPM	.72	1						
Mn P	.77	.57	1	i	İ	1	1	
NI PPM	.52	.48	.35	1				
P PPM	.66	.72	.46	.47	1			
Th PPM	.47	.69	.37	.38	.48	1		
Zn PPM	.83	.71	.79	.45	.7	.48	1	
Zr PPM	.62	.64	.55	.22	.44	.44	.52	1
V PPM	.89	.71	.66	.54	.65	.5	.82	.53
Au PPB	.11	.15	.04	.09	.06	1.11].1	.04


Correlation M	latrix for	Variables:	X ₁ X ₂ 6	
log V PPM log Au PPB	log V PPM 1 .16	log Au P		
·				
		·		


APPENDIX VII ELEMENT ANOMALY PLOTS - YARDEA -80# STREAM SEDIMENT DATA

000444

CRA EXPLORATION PTY. LIMITED

THIRD QUARTERLY REPORT FOR CHARBA HILL EL 1626 & PELTABINNA HILL EL 1627, SOUTH AUSTRALIA,

FOR THE PERIOD ENDING 21ST SEPTEMBER, 1990

AND

SECOND QUARTERLY REPORT FOR

UNALLA HILL EL 1652, SOUTH AUSTRALIA

FOR THE PERIOD ENDING 22ND OCTOBER, 1990.

AUTHOR:

J.F. MARINELLI

G.L. MACKEE

COPIES TO:

SADME

CIS CANBERRA

DATE:

3RD OCTOBER, 1990

SUBMITTED BY:

ACCEPTED BY:

"ALL RIGHTS IN THIS REPORT AND ITS CONTENTS (INCLUDING RIGHTS TO CONFIDENTIAL INFORMATION AND COPYRIGHT IN TEXT, DIAGRAMS AND PHOTOGRAPHS) REMAIN WITH CRA AND NO USE (INCLUDING USE OF REPRODUCTION, STORAGE OR TRANSMISSION) MAY BE MADE OF THE REPORT OR ITS CONTENTS FOR ANY PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF CRA.

CRA EXPLORATION PTY. LIMITED 1988"

<u>CO</u>	NTEN	<u>TS</u>		<u>Page</u>
LIS LIS	T OF T	PLANS FABLE APPEN DPO'S	S	
1.	SUM	MARY		1
	1.1 1.2 1.3	Charb	inna Hill E.L. 1627 a Hill E.L. 1626 a Hill E.L. 1652	1 1 1
2.	INTR	ODUC	TION	1
3.	LOCA	ATION		2
- 4.	GEO	LOGY		2
5.	WOR	K COM	IPLETED DURING THE QUARTER	3
	5.1	Peltab	inna Hill E.L. 1627	3
		5.1.2	Gravel Sampling Geochemistry Geophysics 5.1.3.1 Airborne Survey	3 3 4 4
	5.2	Charba	a Hill E.L. 1626	4
		5.2.2	Gravel Sampling Geochemistry Geological Mapping Geophysics 5.2.4.1 Airborne Survey 5.2.4.2 Brambo Dam Prospect 5.2.4.3 Wooly Dam Prospect 5.2.4.4 Sherry Dam Prospect 5.2.4.5 Geotem Airborne Survey	4 4 5 5 6 6 6 6
	5.3	Unalla	Hill E.L. 1652	7
		5.3.1 5.3.2 5.3.3 5.3.4	Geochemistry Geological Mapping	7 7 7 7 7 8 8 8
REF LOC	ENDI EREN CATIO WOR	N		•9 10 10 10

LIST OF PLANS

Plan No.	<u>Title</u>	Scale
SAa 5191	Peltabinna Hill EL 1627, S.A., Location Plan	1:250 000
SAa 5192	Charba Hill EL 1626, S.A., Location Plan	1:250 000
SAa 5204	Unalla Hill EL 1652, S.A., Location Plan	1:250 000
SAa 5220	Peltabinna Hill EL 1627, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5221	Charba Hill EL 1626, S.A80# Stream Sediment Sample Location & Number	1:100 000
SAa 5252	Gawler Ranges EL's (Peltabinna Hill, Charba Hill, Unalla Hill) Proposed Airborne Survey Area	1:500 000
SAa 5260	Peltabinna Hill EL 1627, S.A Gravel Sample Locations	1:100 000
SAa 5261	Charba Hill EL 1626, S.A Gravel Sample Locations	1:100 000
SAa 5262	Unalla Hill EL 1652, S.A Gravel Sample Locations	1:100 000
SAa 5271	Charba Hill EL 1626, S.A Rock Sample Locations	1:100 000
SAa 5272	Unalla Hill EL 1652, S.A Rock Sample Locality Plan	1:100 000
SAa 5400	Charba Hill EL 1626, S.A Sherry Dam Grid - Geological Fact Map	1: 25 000
SAa 5412	Unalla Hill EL 1652, S.A Kolendo Grid - Geological Fact Map	1: 25 000
SAa 5413	Unalla Hill EL 1652, S.A Cotton Bush Dam Grid - Geological Fact Map	1: 25 000
SAa 5437	Charba Hill EL 1626 - Prospect and Grid Locations	1:100 000
SAa 5438	Unalla Hill EL 1652 - Prospect and Grid Locations	1:100 000
SAa 5393	Charba Hill EL 1626 - Brambo Dam Prospect, TMI Profiles	1: 25 000
SAa 5417	Charba Hill EL 1626 - Brambo Dam Prospect, Gravity Profiles	1: 25 000
SAa 5439	Charba Hill EL 1626 - Regional Gravity Survey, Wooly Dam Prospect - Bouguer Gravity Values	1: 25 000
SAa 5411	Charba Hill EL 1626 - Regional Gravity Survey, Sherry Dam Prospect - Bouguer Gravity Values	1: 25 000
SAa 5395	Charba Hill EL 1626 - Sherry Dam Prospect, Line 568400mE T.M.I. Profile	1: 25 000
SAa 5396	Charba Hill EL 1626 - Sherry Dam Prospect, Line 569000mE T.M.I. Profile	1: 25 000
SAa 5397	Charba Hill EL 1626 - Sherry Dam Prospect, Line 569400mE T.M.I. Profile	1: 25 000
SAa 5398	Charba Hill EL 1626 - Sherry Dam Prospect, Line 6438200mN T.M.I. Profile	1: 25 000
SAa 5399	Charba Hill EL 1626 - Sherry Dam Prospect, Line 6438600mN T.M.I. Profile	1: 25 000
SAa 5385	Charba Hill EL 1626 - Sherry Dam Prospect, Line 571800mE T.M.I. Profile	1: 25 000
SAa 5386	Charba Hill EL 1626 - Sherry Dam Prospect, Line 572000mE T.M.I. Profile	1: 25 000
SAa 5387	Charba Hill EL 1626 - Sherry Dam Prospect, Line 572200mE T.M.I. Profile	1: 25 000
SAa 5388	Charba Hill EL 1626 - Sherry Dam Prospect, Line 573800mE T.M.I. Profile	1: 25 000
SAa 5389	Charba Hill EL 1626 - Sherry Dam Prospect, Line 574000mE T.M.I. Profile	1: 25 000
SAa 5390	Charba Hill EL 1626 - Sherry Dam Prospect, Line 574200mE T.M.I. Profile	1: 25 000
SAa 5414	Charba Hill EL 1626 - Sherry Dam Prospect, Gravity Profiles (Sheet 1 of 3)	1: 25 000
SAa 5415	Charba Hill ÉL 1626 - Sherry Dam Prospect, Gravity Profiles (Sheet 2 of 3)	1: 25 000

LIST OF PLANS (Cont....)

Plan No.	<u>Title</u>	<u>Scale</u>
SAa 5416	Charba Hill EL 1626 - Sherry Dam Prospect, Gravity Profiles (Sheet 3 of 3)	1: 25 000
SAa 5422	Charba Hill EL 1626 - Sherry Dam Prospect, Geotem Flight Patha Map, Sheet 1 of 2	1: 25 000
SAa 5423	Charba Hill EL 1626 - Sherry Dam Prospect, Geotem Flight Patha Map, Sheet 2 of 2	1: 25 000
SAa 5394	Unalla Hill EL 1652 - Cotton Bush Dam Prospect, T.M.I. Profiles	1: 25 000
SAa 5435	Unalla Hill EL 1652 - Cotton Bush Dam Prospect, Bouguer Gravity and T.M.I. Profiles	1: 10 000
SAa 5401	Unalla Hill EL 1652 - Kolendo Prospect, T.M.I. Profiles	1: 25 000
SAa 5436	Unalla Hill EL 1652 - Kolendo Prospect, Bouguer Gravity and T.M.I. Profiles	1: 10 000
SAa 5424	Unalla Hill EL 1652 - Cotton Bush Dam, Geotem Flight Path Map	1: 25 000

LIST OF TABLES

Table 1	Indicator Mineral Results for Peltabinna Hill EL 1627 (P),
Table 2	Other Mineral Results for Peltabinna Hill E.L. 1627
Table 3	Microdiamond Results for Charba Hill EL 1626 (C), Peltabinna Hill EL 1627
	(P) & Unalla Hill EL 1652 (U) for the Period Ending 07/09/90
Table 4	Stream Sediment Anomalies, Peltabinna Hill EL 1627, Charba Hill EL 1626 &
	Unalla Hill EL 1652
Table 5	Rock Sample Ledger and Assay Results
Table 6	Detailed Gravity/Magnetic Coverage - Yardea

LIST OF APPENDICES

Appendix I	Peltabinna Hill EL 1627 - Follow-up Drainage Assay Results
Appendix II	Charba Hill EL 1626 - Follow-up Drainage Assay Results
Appendix III	Petrology Report No. 5702 - Pontifex and Associates
Appendix IV	Charba Hill EL 1626 and Unalla Hill EL 1652 - Gravity Data
Appendix V	Charba Hill EL 1626 and Unalla Hill EL 1652 - Geotem Survey
• •	Results
Appendix VI	Unalla Hill EL 1652 - Kolendo Prospect Follow-up Drainage Assay
	Results

LIST OF DPO'S

N.B. This list includes all DPO's used for previous and current reports.

37724	37729	37734	37823
37725	37730	37735	37826
37726	37731	37736	37830
37727	37733	37737	37833

1. SUMMARY

1.1 Peltabinna Hill E.L. 1627

Follow-up gravel sampling at Mungo Tank, and geochemical sampling at Mungo Tank, Lake Acraman, Perrinilba Dam and South Perrinilba Dam gave insufficient encouragement to warrant further work. Preliminary assessment of the airborne magnetic/radiometric survey did not generate any potential hydrothermal/volcanic centres within the E.L.

1.2 Charba Hill E.L. 1626

Follow-up geochemical sampling at Brambo Dam and Sherry Dam showed no significantly anomalous metal values. Detailed geological mapping of parts of the Sherry Dam Prospect revealed a 400 metre long, narrow silicified and sulphidic porphyry which returned elevated metal values (69 ppm Sb, 1010 ppm Pb, 143 ppm Cu, 240 ppm Zn). No extensions were located. Magnetically subdued areas within the Sherry Dam complex were traced to rhyolite and microgranite outcrop within the dominant Yardea Dacite. The gravity surveying at Sherry Dam indicates a 5-6 mgal bouguer gravity low; the causative source is interpreted as underlying granite.

A general 1-2 mgal bouguer gravity low at Wooly Dam Prospect was not considered worthy of further follow-up due to the low regional geochemical values.

A test Geotem EM survey flown over the Sherry Dam prospect revealed no bedrock conductors. Strong surficial anomalies correlate with drainage and alluvial cover.

1.3 <u>Unalla Hill E.L. 1652</u>

Geological mapping and rock-chip sampling were completed at Cotton Bush and Kolendo prospects. Low geochemical assay values, combined with lack of geophysical targets from ground magnetics and gravity traversing, have downgraded both prospects.

A test Geotem EM survey was flown over the Cotton Bush Dam prospect. No bedrock conductors were detected, with strong surficial anomalies correlating with drainage and alluvial cover.

2. <u>INTRODUCTION</u>

Peltabinna Hill EL 1627 and Charba Hill EL 1626 were applied for on the 25th September, 1989 to cover an area considered prospective for Roxby Downs and epithermal styles of mineralisation. They were both granted for a one year term on the 22nd December, 1989.

Unalla Hill EL 1652 was applied for on the 17th October, 1989 and granted on the 23rd April, 1990.

A study of open file data indicated a number of anomalous assays for As, U, Te, Sb, Bi, Sn & F which suggested the area was prospective for epithermal gold mineralisation.

This report details work completed during the third quarter of tenure for Peltabinna Hill EL 1627 and Charba Hill EL 1626 and the second quarter of tenure for Unalla Hill EL 1652.

3. LOCATION

Peltabinna Hill EL 1627 and Charba Hill EL 1626 are located over the western Gawler Ranges to the south of L. Acraman and west of L. Gairdner. The Yardea Station homestead is found in the centre of the area. The licence locations are shown on plans SAa 5191 and SAa 5192.

Unalla Hill EL 1652 is located immediately to the east of Charba Hill EL 1626 and is roughly centred on Kolendo Station. Its location is shown on plan SAa 5204.

4. GEOLOGY

The following geological synopsis is taken largely from Blissett et.al. (1989).

The Gawler Ranges form the central part of the Archaean to Middle Proterozoic Gawler Craton which is a large, polygonal tectonic unit that has remained a stable cratonic area since about 1400 Ma.

Archaean and Early Proterozoic sequences were highly deformed prior to the eruption of the Gawler Range Volcanics circa 1590-1600 Ma. The volcanics form a thick blanket unconformably overlying the deformed metamorphic basement and extend from Paney in the south, to the Kingoonya-Tarcoola region in the north.

Around the margins and within the Gawler Ranges there are extensive regions of thin Cainozoic sediments which often mask relationships between rock units.

The Gawler Range Volcanics are predominantly a calc-alkaline assemblage of dacites, rhyodacites and rhyolites, with subsidiary potassic andesites and tholeiitic basalts. They consist of ignimbrites (ash flows) welded to varying degrees, with localised lavas and agglomerates, erupted subaerially in a continental environment.

The Gawler Range Volcanics and intrusive Hiltaba Suite granites have undergone little deformation or metamorphism since Proterozoic times, responding to subsequent earth movements by epeirogenic block faulting and jointing on a regional scale. An unknown volume of the volcanics has been removed by erosion.

For a concise geological picture of the area refer to the published Yardea 1:250 000 Geological Map Sheet.

5. WORK COMPLETED DURING THE OUARTER

5.1 Peltabinna Hill E.L. 1627

5.1.1 Gravel Sampling

Follow up sampling was completed at the Mungo Tank bastnaesite anomaly. Two gravel samples (1161906 and 1161907) were collected. Kimberlitic indicators were not observed whilst bastnaesite was observed as <1% in both samples. No further work is warranted. Table 1 lists kimberlitic indicators. Table 2 lists other mineral data. Gravel sample locations are shown in plan SAa 5260.

A further 96 samples from the first quarter's sampling program were processed for microdiamonds but none were reported. Table 3 lists the samples processed.

Follow up of the Eustice Dam bastnaesite anomaly (Table 4) was not attempted due to wet conditions. Because of it's lower priority and the negligible bastnaesite results at Mungo Tank, the area was downgraded and further work not recommended.

5.1.2 Geochemistry

Follow up geochemistry was completed on anomalies at Mungo Tank, Lake Acraman, Perrinilba Dam and South Perrinilba Dam (Table 4).

At Mungo Tank bastnaesite anomaly, seven -80# mesh drainage samples (2543690-696) and two rock samples (2543692, 1161907) were collected. No mineralisation was noted, however quartz veins with iron/mafic alteration haloes were observed in outcropping granite. Except for 1300 ppm F, 29 ppm As and 88 ppm Pb reported in drainage sample 2543693, no other anomalous chemistry was reported.

A petrological report of sample 2543692 indicated a greisen derived from an equigranular biotite-bearing granitoid. Because of the paucity of results to date no further work is recommended at Mungo Tank.

At Lake Acraman anomaly, seven -80# mesh drainage samples (2543683-689) were collected following initial elevation in U and F. Slightly elevated F (1300 ppm) and U (5.42 ppm) in sample 2543685 was sourced to a salt pan depression in the drainage. No other mineralisation was observed or reported. No further work is warranted.

The Perrinilba Dam anomaly was followed up with eight -80# mesh drainage (2543675-682) and one rock sample (2543680) following initial elevation in Te and As. However no elevated metals were observed. Further work is not recommended.

At South Perrinilba Dam anomaly, elevated Te and As was also followed up with thirteen -80# mesh drainage samples (2543662-674). No anomalous metals were noted and therefore further work is not recommended.

For the above areas, drainage sample assays are shown in Appendix I. Rock sample assays are shown in Table 5. A petrological report is included in Appendix II. Drainage sample locations are shown in plan SAa 5220. Rock sample locations are shown in plan SAa 5270.

5.1.3 Geophysics

5.1.3.1 Airborne Survey

The preliminary data from the detailed airborne magnetic and radiometric survey completed in March (plan SAa 5252) was assessed for possible hydrothermal alteration centres within the Gawler Range volcanics. All magnetically quiet zones correspond to known occurrences of Hiltaba granite, and no targets within the E.L. were selected for follow-up.

Final plans fo the contoured magnetic data are in preparation and will be submitted with full survey specifications with the next quarterly report.

5.2 Charba Hill E.L. 1626

5.2.1 Gravel Sampling

The remaining 18 samples left outstanding from the first quarter's sampling program were processed for microdiamonds. However, none were recorded. Further work is not recommended.

Table 3 lists the samples processed. Gravel sample locations are shown in plan SAa 5261.

5.2.2 Geochemistry

Follow up geochemistry was completed on two anomalous areas at Brambo Dam (Table 4). Rock chip and petrology samples were collected from the Sherry Dam Prospect during geological mapping (see section 5.2.3 below).

At Brambo Dam a previous drainage sample elevated in Sb, As and Cu was followed up with six -80# mesh drainage samples (2543652-657). Results showed no elevated metal values. No further work is recommended.

At Brambo Dam East a previous drainage with elevated Cu and Zn was followed up with four -80# mesh drainage samples (2543658-661). No elevated metals were recorded in assays. No further work is required.

Follow up drainage sample locations are shown in plan SAa 5221. Assays are included in Appendix II.

During geological mapping carried out at the Sherry Dam prospect Grid, seven rock chip samples (25;41570-575, 2543680) and nine petrology samples (2541570-571, 2541573-574, 2543576-580) were collected. A narrow NE trending 1-2m wide, 400m long zone of subcropping silicified and sulphidic porphyry was sampled near its south western limit (2541574). Assays returned included 69 ppm Sb, 1010 ppm Pb, 143 ppm Cu and 240 ppm Zn.

Polished section mineralogy of the same sample identified traces of galena, chalcopyrite, and covellite. A similar rock chip from the NE terminus of the zone returned no elevated metals (2541573).

Extensive ground checking failed to extend the silicified zone. Lack of precious metals also was a negative factor and therefore further work is not recommended.

The geophysical summary in section 5.2.4 also downgrades the prospect.

Rock assays are presented in Table 5. Rock sample locations for geochemical and petrological samples are presented in plans SAa 5400 and SAa 5271.

5.2.3 Geological Mapping

A geological fact map of the Sherry Dam Prospect Grid was completed and is presented as plan SAa 5400.

The Sherry Dam area was chosen for follow up work because of coincident regional gravity low and magnetic low nature (plan SAa 5252).

The Prospect is dominated by dacite porphyry (Yardea Dacite), dacite scree and soil cover/alluvium. Local variations exist within the dacite and include crystal rich to crystal poor dacite porphyry, rhyodacite, rhyolite and microgranite. The latter forms a subtle stock like outcrop within the dacite pile and is associated with a gravity/magnetic low.

Mineralisation was not evident except for small, isolated zones of silicification with sulphides, quartz veinlets, kaolinisation? and greisenisation.

Petrological samples were collected for analysis as mentioned in section 5.2.2 above. In the petrological report presented in Appendix III, it is stated that the trace mineralisation is related to silicification, greisenisation and locally strong HF alteration which may remove Na, K, Ca, Mg and Fe from the host dacite, leaving Si, Al, Ti, Zr and minor Ca. It appears that mineralisation is of shallow origin (note vughy quartz veins) and has deposited minor Pb, Zn, Cu and As±Sb as sulphides in veins and altered dacite (sample 2541574 in section 5.2.2 above).

From mapping, geochemistry and petrology carried out to date, the possibility of extensive mineralisation at Sherry Dam is remote. Further work on the prospect is not recommended.

Ground geophysical work carried out over the prospect supports this also and is covered in section 5.2.4 below.

5.2.4 Geophysics

5.2.4.1 Airborne Survey

The preliminary data from the detailed airborne magnetic and radiometric survey completed in March (plan SAa 5252) was assessed for possible hydrothermal alteration centres within the Gawler Range volcanics. Three areas of subdued magnetic relief were selected for further work - Brambo Dam, Sherry Dam and Wooly Dam (plan SAa 5437).

Final plans of the contoured magnetic data are in preparation and will be submitted with full survey specifications in the next quarterly report.

5.2.4.2 Brambo Dam Prospect

A discrete magnetic low approximately one kilometer across, and adjacent to elevated Cu/Zn geochemical samples (section 5.2.2), was traversed with two orthogonal lines of gravity and ground magnetics at 100 metre and 10 metre station intervals respectively. Coverage is listed in Table 6 and magnetic and gravity profiles appear in plans SAa 5393 and SAa 5417. The geophysical data indicate coincident magnetic/gravity anomalies of -500nT and -1.0 mgal. However, subsequent follow-up geochemical sampling has not confirmed the earlier elevated geochemistry and the prospect was downgraded.

5.2.4.3 Wooly Dam Prospect

A zone of subdued aeromagnetic relief along a strong NE trending linear was followed up with regional gravity traversing at approximately 500 metre and 200 station spacing (plan SAa 5439). Station locations were emplaced using differential GPS navigation, with elevations being determined by photogrammetric methods. Estimated positional accuracies, (derived from correlation with optically observed stations), are ± 20 metres horizontally and ± 1 metre vertically.

A poorly defined local bouguer gravity low of approximately 2 mgals was detected, but no further work on the prospect is warranted at this stage.

5.2.4.4 Sherry Dam Prospect

The preliminary aeromagnetic data detailed a complex ovoid area of subdued and/or reversely polarised magnetic sources approximately 10 km x 6 km across. This zone corresponds with a regional gravity low and was considered a potential volcanic centre with possible associated hydrothermal alteration. Some 47.4 line km of detailed gravity and magnetic traversing (100 metre and 10 metre station intervals respectively, refer Table 6), were completed over selected parts of the complex, plus an additional 192 regional gravity reconnaissance stations. Station locations and associated Bouguer gravity values are shown in plan SAa 5411. A complete listing of all gravity data is included in Appendix IV. Ground magnetic profiles are shown in plans SAa 5395-SAa 5399 and SAa 5385-SAa 5390; Bouguer gravity profiles are shown in plans SAa 5414-SAa 5416.

The ground magnetic data is exceptionally noisy over the exposed dacite areas, and more subdued in areas of alluvial cover. A significant local magnetic/gravity low is coincident with the microgranite 'stock' traversed by lines 574000mE and 574200mE (plans SAa 5389, SAa 5390 and SAa 5415).

Contouring of the gravity data (regional and detailed) on plan SAa 5400 shows a 5-6 mgal low associated with the prospect area. The low geochemical assays associated with the area and the geophysical data indicate that the most probable source of the gravity/magnetic complex is a granite beneath the volcanic cover.

5.2.4.5 GEOTEM Airborne Survey

A test airborne electromagnetic survey (GEOTEM) was completed over the Sherry Dam prospect (full details are included in Appendix V, and flight path locations are shown in plans SAa 5422 and SAa 5423). No bedrock conductors were detected within the resistive exposed volcanics, and strong surficial conductors correlate with the drainage and alluvium cover. GEOTEM profiles are also included in Appendix V.

5.3 Unalla Hill E.L. 1652

5.3.1 Gravel Sampling

The remaining 21 samples outstanding from the first quarter's sampling program were processed for microdiamonds. However, no microdiamonds were recorded.

Table 3 lists samples processed. Gravel sample locations are shown in plan SAa 5262.

5.3.2 Geochemistry

Due to poor results received from follow up drainage geochemistry in the adjoining Peltabinna Hill and Charba Hill E.L.'s, work did not continue on the low priority Struggle Dam and Arcasia Dam anomalies (Table 4). The areas are therefore downgraded and no further work is recommended.

Three rock chip samples (2543697-699) were collected from a NW trending 1km x 0.5m subcropping quartz vein at the Kolendo Prospect. Trace sulphides were observed. Only sample 2543698 returned slightly elevated Cu. No other base or previous metal values were enhanced. Rock sample locations are presented in plan SAa 5412 and SAa 5272. Assay results are presented in Table 5.

5.3.3 Geological Mapping

Geological fact maps were completed for the Kolendo Prospect and Cotton Bush Dam Prospect Grids (plans SAa 5412 and 5413).

The Kolendo Prospect geology is dominated by unaltered and unmineralised dacite porphyry and associated volcanic scree. A 1km x 0.5m quartz±trace sulphide vein subcrops in the NW quarter of the grid. Refer to section 5.3.2 above for details.

No other mineralisation or alteration was observed at Kolendo.

The Cotton Bush Dam Prospect geology is composed of dacite porphyry, quartz-dacite porphyry and rhyodacite. Some of the grid is covered by volcanic scree and alluvium. The rhyodacite outcrop in the centre of the grid corresponds to an aeromagnetic low defined from the recently completed airborne survey (refer to section 5.3.4 below).

Mineralisation and/or alteration was not observed.

5.3.4 Geophysics

5.3.4.1 Airborne Survey

The preliminary data from the detailed airborne magnetic and radiometric survey completed in March (plan SAa 5252) was assessed for possible hydrothermal alteration centres within the Gawler Range volcanics. One area of subdued magnetic relief was selected for further work (Cotton Bush Dam prospect). One further similar prospect, Kolendo, was selected from regional magnetic data to the east of the detailed survey. Prospect locations are shown in plan SAa 5438.

Final plans of the contoured magnetic data are in preparation and will be submitted with full survey details in the next quarterly report.

5.3.4.2 Cotton Bush Dam Prospect

This circular zone of subdued magnetic relief some 4 km across lie adjacent to a strong N-W trending magnetic linear (?fault). Two east-west traverses of ground magnetics (10 metre stations) and gravity (100 metre stations) did not disclose any targets considered worthy of drill-testing, plans SAa 5394 and SAa 5435). A 1 mgal bouguer gravity low corresponds with the location of the N-W trending aeromagnetic linear.

5.3.4.3 Kolendo Prospect

A small zone of subdued magnetic relief approximately 1 km across was traversed with orthogonal magnetic and gravity surveying plans SAa 5401 and SAa 5436. A small bouguer gravity high of 1-1.5 mgal was detected on line 6410900mN at 625200mE and also on line 624500mE at 6410000mN. Follow-up geochemical sampling was completed and locations are shown in plan SAa 5412. Results are negative and shown in Appendix VI.

No further work is warranted on this prospect.

5.3.4.4 GEOTEM Survey

J. L. Marker

A test airborne electromagnetic survey (GEOTEM) was also completed over the Cotton Bush Dam Prospect (details are included in Appendix V, and flight path locations are shown in plan SAa 5424). No bedrock conductors were detected, and strong surficial conductors correlate with areas of alluvial cover. GEOTEM profiles are included in Appendix V.

J.F. MARINELLI & G.L. MACKEE

JFM/GLM/dt

EXPENDITURE

Expenditure on Charba Hill EL 1626 and Peltabinna Hill EL 1627 for the three month period ending 30th September, 1990, the nearest accounting period, amounted to \$69,080.00 and \$30,943.00, respectively, as detailed below.

		\$	\$
Payroll		25 241	3 730
Supplies		2 142	1 202
Vehicle		3 701	2 040
Travel		1 038	292
Rent		3 464	2 399
Contractors		18 289	6 696
Laboratory		7 785	12 417
Sundry		1 080	1 080
Overheads		6 340	1 087
	Totals	\$ 69 080	\$ 30 943

Expenditure on Unalla Hill EL 1652 for the period ending 30th September, 1990, the nearest accounting period, amounted to \$47,135.00, as detailed below.

		\$
Payroll		15 142
Supplies		2 089
Vehicle		1 969
Travel		2 033
Rent		3 348
Contractors		17 575
Laboratory		140
Sundry		1 080
Overheads		3 759
		
	Total	\$ 47 135

REFERENCES

Blissett, A.H., Gawler Ranges Excursion, October 7-9, 1989. Parker, A.J. & Geological Society of Australia (S.A. Division) Scheffler, J. SADME Report Book No. 89/70.

LeMessurier, L.A. Final & Relinquishment Report on Thurlga EL 1300, S.A. 1986a CRAE Report No. 130678.

LeMessurier, L.A. Final & Relinquishment Report on Thurlga EL 1300, S.A. 1986b CRAE Internal Report No. 130678.

Robison, H.R. Stockdale Prospecting Limited Part EL 1158 and Part EL 1159 Gawler Ranges. Relinquishment Report. SADME Env 5430.

Robison, H.R. Part Exploration Licence No. 1159 Relinquishment Report. Stockdale Prospecting Limited. SADME Open File Env. 5430.

Sugden, S.P. & First Quarterly Report for Charba Hill EL 1626 & Peltabinna Hill EL 1627 for the Period Ending 21st March, 1990.

CRAE Report No. 16525.

Sugden, S.P. & Second Quarterly Report for Charba Hill E.L. 1626 & Peltabinna Hill EL 1627 for the Period Ending 27th June, 1990 and First Quarterly Report for Unalla Hill EL 1652 for the Period Ending 22nd July, 1990. CRAE Report No. 16608.

LOCATION

Yardea	SI5303	1:250 000 sheet
Yartoo	5933	1:100 000 sheet
Yardea	6033	1:100 000 sheet
Kolendo	6133	1:100 000 sheet
Minnipa	5932	1:100 000 sheet
Cacuppa	6032	1:100 000 sheet
Buckleboo	6132	1:100 000 sheet

KEYWORDS

Geochem Rock, Geochem Drainage, Volcanogenic, Volcanics, Breccia, Proterozoic, Gold, Base Metals, Uranium, Geophys-Magnetics.

TABLE 1

INDICATOR MINERAL RESULTS FOR PELTABINNA HILL E.L. 1627 (P)

Sample No.	<u>E.L</u> .	Results
1161906	P	Nil
1161907	P	Nil

TABLE 2: Other mineral results for Peltabinna Hill. EL 1627

Sample 1161906 1161907	Sample 1161906 1161907	Licence P P	Con. Wt. (Kg) 0.007 0.002	Apatite	Bastnaesite F R	Barite	Bi Minerals	Cu Minerals

LEGEND:

Licences: : Peltabinna Hill

C: Charba Hill

U: Unalla Hill

Minerals: Prevalent +50%

A: Abundant 20-50%

C: Common 10-20%

S: Some 3-10%

O: Often 1-3% F: Few 0.1-1%

R: Rare 2-10 Grains

T: Trace 1 Grain

Sample	Cassiterite	Fluorencite	Fluorite	Garnet	Gold	Monazite	Platinum	Pyrite
1161906	С	Т	Α			R		•
1161907	R		0	•				

. . . .

.

Sample	Sphalerite	Sulphide	Topaz	U Minerals	Zircon
1161906			R		
1161907					

MICRODIAMOND RESULTS FOR CHARBA HILL E.L. 1626 (C), PELTABINNA HILL E.L. 1627 (P) AND UNALLA HILL E.L. 1652 (U) FOR THE PERIOD ENDING 07/09/90

TABLE 3

Sample No.	E.L.	Result	Sample No.	E.L.	Result	Sample No.	E.L.	_Result	Sample No.	E.L.	Result	Sample No.	E.L.	Result
	_											_		
1161418	P	Nil	1161464	·P	Nil	1161503	P	Nil	1161601	\mathbf{P}	Nil	1161644	U	Nil
1161419	P	Nil	1161465	P	Nil	1161504	P	Nil	1161602	\mathbf{P}	Nil	1161647	C	Nil
1161420	P	Nil	1161467	P	Nil	1161506	P	Nil	1161603	P	Nil	1161648	С	Nil
1161421	P	Nil	1161468	P	Nil	1161509	P	Nil	1161604	P	Nil	1161649	C	Nil
1161423	P	Nil	1161469	P	Nil	1161510	P	Nil	1161605	P	Nil	1161650	С	Nil
1161427	P	Nil	1161472	P	Nil	1161511	P	Nil	1161607	P	Nil	1161751	U	Nil
1161428	P	Nil	1161474	P	Nil	1161512	P	Nil	1161608	P	Ni1	1161753	U	Nil
1161429	P	Nil	1161475	P	Nil	1161513	P	Nil	1161609	P	Nil	1161754	U	Nil
1161434	Ρ.	Nil	1161478	P	Nil	1161514	P	Nil	1161610	P	Nil	1161756	U	Nil
1161438	P	Nil	1161479	P	Nil	1161516	P	Ni1	1161611	P	Nil	1161758	U	Nil
1161439	P	Nil	1161480	P	Nil	1161517	P	Nil	1161613	P	Nil	1161759	Ū	Nil
1161440	P	Nil	1161481	P	Nil	1161521	\mathbf{P}	Nil	1161614	P	Ni1	1161760	U	Nil
1161442	P	Nil	1161482	P	Nil	1161522	P	Nil	1161616	С	Nil	1161763	C	Nil
1161443	P	Nil	1161484	P	Nil	1161526	P	Nil	1161619	С	Nil	1161764	C	Nil
1161444	P	Nil	1161485	P	Ni1	1161528	P	Nil	1161620	С	Nil	1161765	U	Nil
1161445	P	Nil	1161487	P	Nil	1161530	P	Nil	1161622	C	Ni1	1161766	U	Nil
1161446	P	Nil	1161488	P	Nil	1161533	P	Nil	1161623	С	Nil	1161767	U	Nil
1161448	P	Nil	1161489	P	Nil	1161534	P	Nil	1161624	С	Ni1	1161901	U	Nil
1161449	P	Nil	1161490	P	Nil	1161535	P	Nil	1161627	С	Ni1	1161902	U	Nil
1161453	P	Nil	1161491	P	Ni1	1161536	P	Nil .	1161628	P	Ni1	1161903	U	Nil
1161454	P	Nil	1161492	P	Nil	1161537	P	Nil	1161630	C	Nil	1161904	U	Nil
1161455	P	Nil	1161493	P	Nil	1161539	P	Nil	1161631	C	Nil	1161905	U	Nil
1161456	P	Nil	1161495	P	Nil	1161540	P	Nil	1161632	C	Nil			
1161458	P	Nil	1161497	P	Ni1	1161543	·P	Nil	1161634	С	Nil			
1161460	P	Nil	1151498	P	Nil	1161544	C	Nil	1161635	U	Nil			
1161461	P	Nil	1161499	P	Nil	1161545	P	Nil	1161638	Ū	Nil			
1161462	P	Nil	1161500	P	Nil	1161547	P	Nil	1161639	Ū	Nil			
1161463	P	Nil	1161502	P	Nil	1161548	P	Nil	1161642	Ū	Nil	1		

TABLE 4 STREAM SEDIMENT ANOMALIES - PELTABINNA HILL EL 1627, CHARBA HILL EL 1626 & UNALLA HILL EL 1652

I		· · · · · · · · · · · · · · · · · · ·			
LICENCE	ANOMALY NAME (& PRIORITY)	SAMPLE NO.	RESULTS	NO. FOLLOW UP SAMPLES	REMARKS
Peltabinna Hill EL 1627	Perrinalba Dam (2)	1161503	Te 0.8 ppm As 5 ppm	10 -80#	
	South Perrinalba Dam (3)	1161496	Te 0.4 ppm As 5 ppm	12 -80#	
	L. Acraman (1)	1161482	F 1100 ppm U 11.1 ppm	11 -80#	
	Mungo Tank (1)	1161511	U 3.89 ppm As 13 ppm F 460 ppm Bastnaesite 1-3%	20 -80# 4 gravel	
		1161514	Bastnaesite 0.1-1%		
	Eustice Dam (2)	1161546	Bastnaesite 0.1-1%	7 gravel 7 -80#	
Charba Hill EL 1626	Chillunie Dam (2)	1233967	Sb 8.05 ppm As 7 ppm Cu 28 ppm	14 -80#	
, •	Brambo Dam (1)	1233863	U 5.33 ppm Sb 1.06 ppm As 15 ppm	10 -80#	Also geophysical anomaly
	Brambo Dam East (2)	2543417	Zn 195 ppm Cu 27 ppm	10 -80#	
Unalla Hill EL 1652	Struggle Dam (3)	1161979	U 3.39 ppm As 7 ppm F 500 ppm	8 -80#	
•		1161980	Cu 23 ppm F 900 ppm		
-	Arcasia Dam (3)	1234026	Au 8.65 ppb Sb 0.64 ppm	1 -80#	Repeat only, suspect Lab error due to low weight assayed.

TABLE 5 ROCK SAMPLE LEDGER & ASSAY RESULTS

SAMPLE NO.	DESCRIPTION	EAST	NORTH	Au PPM	As PPM	Se PPM	Te PPM
2541551	White quartz/chert horizon	633250	6405200	0.004	14	 	<0.1
2541552	Gray mottled quartz/chert horizon	633200	6405200	0.001	12		<0.1
2541553	Gray banded quartz/chert horizon	630050	6404400	0.001	1		<0.1
1161907	Mafic altd & replaced Granite?	516400	6441000	< 0.005			
2511569	Granular smokey quartz vein	520350	6438100	<0.005			
2541570	Altered microgranite (greisen). Petrology	572370	6435630	<0.005			
2541571	Vughy quartz vein. Petrology	572370	6433380	0.007			
2541572	Grey siliceous tuff?	573800	6435000	0.011			•;-
2541573	Bleached dacite? porphyry . Petrology	569445	6434200	<0.005			
2541574	Quartz-sulphide veined acid porphyry . Petrology	569340	6434030	0.007			
2541575	Ferruginised acid porphyry.	574010	6435000	<0.005			
2543680	Ferruginised /brecciated acid volcanic	537900	6440300	<0.005			
2543690	Mafic altd & replaced Granite?	518400	6438350	<0.005			
2543692	Mafic altd & replaced Granite?	520350	6438100	<0.005			
2541576	Dacite porphyry with cryptocrystalline groundmass	574235	6436860	Petrology			
2541577	Dacite porphyry.	574000	6437950	Petrology			
2541578	Rhyodacite porphyry.	573970	6437875	Petrology			
2541579	K-feldspar rhyodacite porphyry	571920	6433350	Petrology			
2541580	Rhyolite/microgranite	573800	6435660	Petrology			
2543692	Grey quartz porphyry / greisen	520300	6438150	Petrology			
2541588	Clay altered/bleached volcanic	571850	6433270	0.002	3		
2543697	Sulphidic quartz vein in dacite	624040	6411435	<0.008	3		
2543698	u	623910	6411705	<0.008	8		
2543699	II .	623815	6411965	<0.008	1		

SAMPLE NO.	F ppm	Bi PPM	Sb PPM	U PPM	Sn PPM	Рь РРМ	Ag PPM	Co PPM	Cu PPM	Ni PPM
2541551	110	0.12	10.6	1.03	3.45	25	<5	<5	9	<10
2541552	190	1.69	12.2	1.93	7.85	110	<5	<5	1 2	<10
2541553	<100	< 0.10	9.07	0.23	1.62	<5	<5	<5	5	<10
1161907			0.76	5.26		30.9	<5	5	23	10
2511569			1.07	13.8		90.4	<5	<5	40	<10
2541570			1.14	5.74		16.3	<5	7	5	<10
2541571			4.14	6.57		26.5	. <5	<5	16	<10
2541572			0.93	3.05		8 1	<5	<5	11	<10
2541573			2.32	3.48		21.1	<5	<5	5	<10
2541574			68.8	4.13		1010	<5	<5	143	10
2541575			0.79	2.86		95.6	<5	<5	13	<10
2543680			0.69	4.39		40.7	<5	<5	6	<10
2543690			0.76	6.98		21.1	<5	<5	6	<10
2543692			1.49	16.1		81.4	<5	<5	68	<10
2541576										
2541577										
2541578										
2541579										
2541580			:	•						
2543692										
2541588		14.3	1.8	4.69		35	<0.5	<5	5	<10
2543697			:			10	2	<5	10	5
2543698			•			10	<1	<5	432	5
2543699						10	<1	<5	98	5

·				
SAMPLE NO.	Zn PPM	Cr PPM	Mn PPM	Mo PPM
2541551	6	246	141	8.79
2541552	117	194	113	12.3
2541553	<5	227	141	5.16
1161907	44		762	
2511569	262		2369	
2541570	3 1		167	
2541571	9		71	
2541572	169		487	
2541573	<5		60	
2541574	240		160	
2541575	66		292	
2543680	11		196	
2543690	34		374	
2543692	515		2184	
2541576				
2541577				
2541578				
2541579				
2541580				
2543692				
2541588	20	35	64	1.98
2543697	<2	200	80	180
2543698	4	250	90	20
2543699	4	200	100	10

TABLE 6

DETAILED GRAVITY/MAGNETIC COVERAGE - YARDEA

Prospect	Line	<u>From</u>	<u>To</u>	<u>KM</u>
Sherry Dam (CHARBA HILL EL)	568400mE 569000mE 569400mE 6438200mN 6438600mN	6432500mN 6433500mN 6432500mN 567500mE 567500mE	6440000mN 6436000mN 6440000mN 570500mE 569400mE	7.5 2.5 7.5 3.0 1.9
	571800mE 572000mE 572200mE 573800mE 574000mE 574200mE	6431000mN 6430500mN 6431000mN 6434500mN 6430500mN 6434500mN	6433500mN 6438000mN 6433500mN 6437000mN 6438000mN 6437000mN	2.5 7.5 2.5 2.5 7.5 2.5
				47.4
Brambo Dam (CHARBA HILL EL)	6445100mN 552200mE	551200mE 6443000mN	553200mE 6446000mN	2.0 3.0 5.0
Cotton Bush Dam (UNALLA HILL EL)	6413800mN 6413000mN	605500mE 606500mE	610000mE 610000mE	4.5 3.5 8.0
Kolendo (UNALLA HILL EL)	6410900mN 624500mE	623000mE 6409400mN	626000mE 6412400mN	3.0 3.0 6.0

Total Line Km: 66.4

APPENDIX I

PELTABINNA HILL EL 1627 -FOLLOW-UP DRAINAGE ASSAY RESULTS

ANALAS A Division of Inchespe Inspection and Testing Services Australia Phy Ltd.

Phone (08)3365099

16 Sunbeam Road, Glynde, S.A. 5070

Fax (08) 3365564

ANALYTICAL REPORT No.

15.6.35.05224

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

INVOICE TO:

Mrs D Timlin

CRA Exploration Pty Ltd

PO Box 254 1

Norwood SA 5034 ORDER No. PROJECT

37734

DATE RECEIVED RESULTS REQUIRED

02/07/90

ASAP

No. OF PAGES DATE OF RESULTS REPORTED No. OF COPIES 16/07/90

TOTAL No. OF SAMPLES

21

-AARIJ FAN MOERC		
SAMPLE NUMBERS	SAMPLE DESCRIPTION	ELEMENT/METHOD
25 62/82	ro Prep : 004,016 -	Au/334
2543662/82	ro Prep :	Pb/101
254 62/82	ro Prep :	Te/116,As/114,Ag,Zn,Cu,Ni,Co,Fe,Mn/201
_		

RESULTS

Mr SP Sugden

CRA Exploration Pty Ltd

PO Box 254

NORWOOD SA 5067

RESULTS

TO

Mr JF Marinelli

CRA Exploration Pty Ltd

PO Box 254

TO

Norwood SA 5034 **REMARKS**

RESULTS

, то

CRAE Information Systems CRA Exploration Pty Ltd:

PO Box 3709

MANUKA ACT 2603

ANALABS

A Division of Inchcage Inspection and Testing Services Australia Pty. Ltd.

ANALYTICAL DATA

	SAMPLE PRE	FDX		REPORT NUM	BER	REPORT DAT	TE CLI	ENT ORDER No.		PAGE
			15.	6.35.05	224	16/07/	90 377	34	1	of 2
TUBE No.	SAMPLE No.	Au	Pb	Te.	As	Ag	Zn	ä	. Ni	Ĉ
j	2543662	<0.001	5	<0.1	5	<5	67	48	26	11
₽	2543663	<0.001	5	<0.1	2	<5	33	20	14	⟨5
3	2543664	<0.001	<5	<0.1	3	<5	53	17	20	7
	2543665	<0.001	5	0.1	3	< 5	56	23	23	9
5	2543666	<0.001	5	0.1	3	<5	68	25	31	12
ĵ	2543667	<0.001	<5	<0.1	3	<5	66	23	24	8
7	2543668	<0.001	<5	<0.1	3	<5	36	12	15	4
	2543669	<0.001	5	<0.1	2	<5	37	10	13	<5
•	2543670	<0.001	<5	. <0.1	3	<5	47	14	21	, Q
10	2543671	<0.001	<5	<0.1	Ŋ	<5	50	15	19	8
1	2543672	<0.001	5	<0.1	B	<5	69	20	25	10
12	2543673	<0.001	5	<0.1	S	<5	64	20	26	9
4 3	2543674	<0.001	<5	0.1	. 2	<5	46	10	13	\5
1	2543675	<0.001	10	<0.1	7	<5	42	15	22	11
15	2543676	<0.001	5	<0.1	5	<5	43	14	23	9
6	2543677	<0.001	5	<0.1	2	<5	164	13:	17	<5
<u>1</u>	2543678	0.001	<5	<0.1	2	<5.	35	11	15	<5
4 8	2543679	<0.001	10	<0.1	3	<5	64	16	19	6
	2543680	0.001	10	<0.1	6	<5	58	23	28:	12
20	2543681	0.001	10	0.1	6	<5	42	19	25	10
	2543682	0.001	5	<0.1	4	<5	42	14	20	7
22										
L B	DETECTION	0.001	5	0.1	1	5	5	.5	10	5
	UNITS	PPM	bbw	bbw	bbw	bbw	bbw	bbw	bbw	bbw
25	METHOD	334	- 101	116	114	201	201	201	201	201

Results in ppm unless otherwise specified

T = element present; but concentration too low to measure

X = element concentration is below detection limit

AUTHORISED D.K.ROWIEY

OFFICER

ANALYTICAL DATA

	SAMPLE PREI	FIX		REPORT NÚM	BEA	REPORT DA	(TE	. CUI	ENT. ORDER: No		PAGE	
			15.	6.35.05	224	16/07/90 37734		2	OF	2		
TUBE No.	Sample No.	Ee.	Mn									
	2543662	3.67	431									
2	2543663	2.01	259									
	2543664	3.25	406					_				
	2543665	3.24	463									
5	2543666	3.89	504									
	2543667	3.88	550							·		
7	2543668	2.22	-277									
	2543669	2.19	287							-		
	2543670	2.96	372									
10	2543671	2.88	415							•		
	2543672	3.87	532									
12	2543673	3.73	445									
	2543674	2.63	441									
	2543675	3.19	367									
15	2543676	2.96	347									
	2543677	6.54	1764		·				•	-		
1-	2543678	2.20	232									
	2543679	3.06	434					_				
	2543680	3.52	351									
20	2543681	2.88	243									
	2543682	2.53	287									
22	· .											
	DETECTION	0.01	15									
	UNITS	%	ppm									-
25	METHOD	201	201									

Results in ppm unless otherwise specified

T = element present, but concentration too low to measure

X = element concentration is below detection limit

= element not determined

AUTHORISED D.K.Rowley

ANALABS

Division of Inchcape Inspection and Testing Services Australia Ptv. Ltd.

Phone (08)3365099

16 Sunbeas Road, Slynde, S.A. 5070

Fax (08) 3365564

ANALYTICAL REPORT No.

15.6.35.05308

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

NVOICETO: Mrs D Timlin

CRA Exploration Fty Ltd

PO Box 254

Norwood SA 5034

ORDER No. PROJECT

37735

DATE RECEIVED RESULTS REQUIRED

20/07/90

ASAF

No: OF PAGES DATE No: OF RESULTS REPORTED OF COPIES

2 06/08/9 1

TOTAL No. OF SAMPLES

AMPLE NUMBERS	SAMPLE DESCRIPTION	ELEMENT/METHOD
683/96,2543723	ro Prep : 004,016	Au/334
43683/96,2543723	ro Prep :	F/129,As/114,U,Pb/222,

RESULTS

Mr SP Sugden

CRA Exploration Pty Ltd

PO Box 254

NORWOOD SA 5067

RESULTS

TO

TO

Mr JF Marinelli

CRA Exploration Pty Ltd

PO Box 254

Norwood SA 5034

REMARKS

RESULTS

TO

CRAE Information Systems CRA Exploration Pty Ltd

PO Box 3709

MANUKA ACT 2603

2, X 250 AUTHORISED OFFICER

ANALABS

ANALYTICAL DATA

	SAMPLE PRE	FIX:		REPORT NUM	BER	REPORT DAT	TE CUI	ENT ORDER No.		PAGE
			15.	6.35.0 5 3	808	06/08/9	90 3773	55	1	OF 2
TUBE No.	SAMPLE No.	Au	F	As	Ü	РЬ	Ag	Zn	C	Ni
	2543683	0.001	700	2	4.57	17.30	<5	59	13	14
₽.	2543684	0.001	380	2	2.28	16.90	<5	54	14	12
3	2543685	0.001	1300	3	5.42	16.70	<5	51	15	15
-	2543686	0.001	260	2	1.19	16.80	<5	49	14	15
5	2543687	0.001	250	2	1.11	14.80	<5	44	13	15
	2543688	0.030	260	4	1.12	18.30	<5	55	21	21
7	2543689	0.001	190	3	1.11	11.00	<5	36	10	<10
0	2543690	0.001	170	1	1.22	16.40	<5	26	12	14
	2543691	0.001	260	2	1.66	24.20	<5	- 33	17	17
10	2543692	0.001	470	12	3.27	53.90	<5	35	12	10
	2543693	0.001	1300	20	3.37	88.10	<5	45	15	15
12	2543694	0.003	500	9	5.77	56.90	<5	37	14	15
13	2543695	+0.001	470	4	1.46	18.30	⟨5	28	18	11
<u> </u>	2543696	0.001	290	2	1.84	26.20	<5	26	13	i. 4
15	,	. ~	1 = 3		·	7.5	: :			3 - 1
 			_							
17	-		1			_				
- 18 18										
							-			
20							+			
						-				
22					,					
23	DETECTION	0.001	20	1	0.05	3.00	5	5	5	10
	UNITS	PPM	PPM	bbw	ÞÞm	ppm	PPM	ÞÞm	₽ Pp m	bbw
25	METHOD	334	129 5.6.	114	222	222	201	201	201	201

Results in porn unless otherwise specified

J = element present; but concentration too low to measure

X = element concentration is below detection limit

— = element not determined

AUTHORISED D.K.Rowley

ANALYTICAL DÂTA

	SAMPLE PRE	FIX		REPORT NUM	BER	REPORT DAT	LE CI	ENT ORDER NO	1.	PAGE
			15.	6.35.05	308	06/08/9	06/08/90 37735		2 of 2	
TUBE No.	SAMPLE No.	Co	Ba	Fe	Th	Μn				
ł	2543683	13	501	3.57	<10	668				
2	2543684	9	432	2.91	<10	665				
В	2543685	14	468	3.78	11	545				
F	2543686	7	371	3.23	10	443				
5	2543687	7	372	2.84	<10	427	•			
•	2543688	12	315	3.78	15	447				
7	2543689	5	285	2.18	<10	338				
(,	2543690	5	211	1.70	12	345				
	2543691	10	209	2.16	21	366				
10	2543692	<5	174	1.36	21	189				
1	2543693	6	189	1.73	31	195	_			
12	2543694	.5	165	1.75	24	240				
3	2543695	. 9	231	1.70	15	175				
4	2543696	6	197	1.73	17	234				
15		1		•						
6		-		_						
17.							_			
•					·	=				
19	``		-							
20			-							
		٠.								
22										
В	DETECTION	5	5	0.01	10	. 15	_			
24	UNITS	· bbw	ÞÞm	7.	bbw	bbw				
25	METHOD	201	201	201	201	201	-			

Results in port unless otherwise specified
T = element present; but concentration too low to measure
X = element concentration is below detection limit
== element not determined

APPENDIX II

<u>CHARBA HILL EL 1626 -</u> <u>FOLLOW-UP DRAINAGE ASSAYS RESULTS</u>

INVOICE TO:

2

ANALABS

Phone (08)3365099

16 Sunbeam Road, Glynde, S.A. 5070

Fax (08) 3365564

ANALYTICAL REPORT No.

15.6.35.05223

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

ORDER No. PROJECT

Mrs D Timlin CRA Exploration Pty Ltd PO Box 254

Norwood SA 5034 37733

DATE RECEIVED RESULTS REQUIRED

02/07/90 **ASAP**

No. OF PAGES DATE No. OF COPIES OF COPIES

13/07/90

TOTAL No. OF SAMPLES

10

SAMPLE NUMBERS	SAMPLE DESCRIPTION	ELEMENT/METHOD:
23 652/661 -	ro Prep : 004,016	Au/334
2543652/661	ro Prep :	Pb/101
253652/661	ro Prep :	As/114,U,Sb/222,Ag,Zn,Cu,Ni,Co,Ba,Th,Fe,Mn/201
•		
_		

RESULTS ΤÒ

Mr SP Sugden

CRA Exploration Pty Ltd PO Box 254

NORWOOD SA 5067

RESULTS

ΤŌ

Mr JF Marinelli

CRA Exploration Pty Ltd

PO Box 254

5034 Norwood SA

RESULTS

CRAE Information Systems CRA Exploration Pty Ltd

PO Box 3709

MANUKA ACT 2603 **REMARKS**

AUTHORISED OFFICER

ANALABS

ANALYTICAL DATA

	SAMPLE PRE	FIX		REPORT NUM	BER	REPORT DA	TE CLI	ENT ORDER No		PAGE
			15.	.6.35.05	223	13/07/	90 377	0 37733		OF 2
TÜBE No.	SAMPLE No.	. Au	As	ΡЬ	Ú	Sb.	Ag	Zn	. Cu	Ni
	2543652	0.001	14	⟨5	4.39	0.95	<5	53	15	10
f	2543653	0.002	2	5	0.98	0.86	<5	35	17	15
3	2543654	<0.001	3	<5	1.80	0.81	<5	74	21	24
	2543655	<0.001	3	⟨5	2.08	0.78	<5	67	21	25
5	2543656	<0.001	. 2	<5	1.01	0.34	<5	52	15	15
5	2543657	<0.001	2	< 5	0.92	0.33	. <5	45	16	18
í	2543658	<0.001	2	<5	1.32	0.17	<5	90	10	11
8	2543659	<0.001	7	<5	1.03	0.13	< 5	58	9	11
	2543660	<0.001	2	<5	1.21	0.39	<5	85	11	12
10	2543661	<0.001	2	< 5	0.78	0.72	<5	42	12	14
1										
12										
13								·		-
1										
15.										
-		•								
<u>'</u>										_
18										
										
20								_		. .
1										
22			_							
2 3	DETECTION		. 1	5	0.05	0.05	5	5	5	10
1	UNITS	PPM	bbw		bbw	ppm		bbw	bbw	bbw
25	METHOD Results in pormu	334	114		222	222	201	201	201	201

AUTHORISED D.K.Rowley

Results in ppm unless otherwise specified

T is element present; but concentration too low to measure

X is element concentration is below detection limit

— element not determined

ANALABS

(Stor) of Inchcape Inspection and Testing Services Australia Pty. Ltd.

ANALYTICAL DATA:

	SAMPLE PREI	FIX		REPORT NUM		REPORT DAT	E CUI	ENT ORDER No.		PAGE
			15.	6.35.05	223	13/07/9	70 37733		·2 of 2	
TUBE No.	SAMPLE No.	Co	Ba	Th	Fe	Min				
	2543652	<5	1056	21	12.06	556				-
î	2543653	6	539	<10	2.58	427			_	
3	2543654	10	499	17	4.13	591				
	2543655	9	411	17	3.80	449				_
5	2543656	5	402	<10	2.70	352				
	2543657	7	421	<10	2.77	395				
í i	2543658	<5	375	<10	3 .9 8	876				
8	2543659	<5	320	<10	3.02	548				
1	2543660	<5	341	10	3.87	842	-	·		
10	2543661	<5	371	<10	2.21	246				
12		-								
13	-									
15										
6						"	_			
` `										
16										
20										
22										
23	DETECTION	5	5	10	0.01	15				
	UNITS	bbw	bbw	ppm	7.	bbw				
25	METHOD	201	201	201	201	201				

AUTHORISED D.K.Rowley

APPENDIX III

PETROLOGY REPORT NO 5702 - PONTIFEX & ASSOCIATES

Pontifex & Associates Pty. Ltd. 600191

EL. (08) 332 6744 A.H. (08) 31 3816 EAX (08) 332 S062

26 KENSINGTON ROAD, ROSE PARK **SOUTH AUSTRALIA**

P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

MINERALOGICAL REPORT NO. 5702 by A.C. Purvis, PhD.

August 22nd, 1990

TO:

J.F. Marinelli/S.P. Sugden CRA Exploration Pty Ltd 31 Osmond Terrace NORWOOD SA 5067

COPY TO:

CRA Exploration Pty Ltd 31 Osmond Terrace NORWOOD SA 5067

Attention: D. Timlin

The Chief Geologist Information Services CRA Exploration Pty Ltd PO Box 3709 MANUKA ACT 2603

YOUR REFERENCE:

DPO No. 37830

MATERIAL:

Rock Samples, Central Gawler Ranges

(Yardea Dacite)

IDENTIFICATION:

2541570 to 580

(discontinuous - 9 in all)

also 2543692

WORK REQUESTED:

Thin section preparation and description,

with comments as specified.

SAMPLES & SECTIONS:

Returned to you with this report.

Ian R. Pontifex

PONTIFEX & ASSOCIATES PTY LTD MINERALOGY — PETROLOGY

INTRODUCTION

The ten rock samples discussed in this report are from an area 10km x 10km mapped as Yardea Dacite near Mr Ive Station in the Gawler Ranges. They were examined in thin sections supplemented by a single polished section of weakly mineralised rock. They are discussed under two headings -

- (1) least altered rocks and
- (2) silicified rocks and greisens.

(1) Least Altered Rocks

There is some variation within the Yardea Dacite from a sparsely porphyritic variety (2541576) in which K-felspar comprises perhaps 15% of the total phenocryst population, to more highly porphyritic varieties (2541577) in which K-felspar comprises <5% of the phenocryst population.

The writer (ACP) has seen even more phenocryst-rich variants of the Yardea dacite in this area. The phenocryst-poor variety has a groundmass of very fine grain size with plates of quartz possibly derived from tridymite, whereas the phenocryst rich variety is more typically granophyric.

Quartz phenocrysts were seen only in No. 2541578 which was deemed a rhyodacite in your field notes, but which has plagioclase in the groundmass in addition to granophyre. It is therefore likely to be less potassic than Nos. 2541576-77, and should probably be called a quartz-felspar porphyritic dacite. No. 2541579, however, has subequal amounts of plagioclase and K-felspar phenocrysts and may be termed, more appropriately than No. 2541578, a rhyodacite.

No. 2541580 is a microgranite porphyry and appears to have been intrusive.

The two dacites (2541576-77) have quite abundant ferromagnesian phenocrysts, altered to chlorite + carbonate, as well as microphenocrysts of magnetite and apatite. These are less abundant in 2541578-79, with both ferromagnesian phenocrysts and apatite being rare in 2541579.

INTRODUCTION - Least Altered Rocks continued:

Zircon occurs throughout and may indicate that crustal melting has contributed significantly to these rocks.

(2) Silicified Rocks and Greisens

The silicified rocks (2541570-74) contain rutile derived from titnomagnetite and rare zircon crystals, and commonly, felspar phenocrysts preserved as areas of clear quartz + sericite set in clouded quartz. Space-filling quartz veins are common, and locally contain dendritic crystals of rutile. Apatite has been preserved only in 2541571. No. 2541573 has felspar phenocrysts altered to quartz and spherulitic topaz, and has quartz veins containing topaz and fluorite. This indicates alteration by HF-rich fluids removing Na, K, Ca, Mg and Fe from the rock, leaving Si, Al, Ti, Zr and very minor Ca (as fluorite).

No. 2541574 (Polished section) has vughy patches containing variously, sphalerite, tetrahedrite-tennantite, galena and chalcopyrite (locally as 'chalcopyrite disease' in sphalerite). Patches of covellite + chalcocite are also present.

Sample No. 2543692 is a greisen most probably derived from Hiltaba Granite.

The mineralisation is related to silicification, greisenisation and locally strong HF-alteration. It appears to be of shallow origin (note vughy quartz veins) and has deposited minor PbZnCu and As +Sb as sulphides in veins and in altered dacite.

INDIVIDUAL DESCRIPTIONS

2541570

Quartz-sericite greisen derived from a porphyritic rock. Minor rutile derived from magnetite microphenocrysts.

Field Note:

Altered microgranitoid (greisen) sample from a 30m x 3m zone of subcrop/float within dacite. Light green to pink colour points to alteration with minor flakes of muscovite/sericite evident.

In this rock, patches of relatively clear (i.e. unclouded) quartz with minor to abundant sericite appear to have replaced mostly euhedral crystals, probably mostly plagioclase (+ orthoclase + minor ferromagnesian crystals) 0.5 - 4mm long. Patches rich in small crystals of rutile; 0.5mm in size, are common and appear to have replaced titanomagnetite microphenocrysts. There are rare crystals of zircon but no apatite was seen.

The probable groundmass has been replaced by quartz clouded by abundant fluid inclusions.

Quartz with crystal-lined cavities; minor leucoxene, limonite and rutile. Trace apatite, zircon, muscovite.

Field Note:

Vughy quartz float: Off white, crystalline, sugary textured, vughy quartz vein? material not found as outcrop in the Central Grid. Some secondary weathered? or altered? minerals in vughs could point to mineralisation.

This sample is dominantly quartz with patches rich in very small fluid inclusions. It has, however, very minor amounts of leucoxene, rutile, zircon and apatite suggesting that at least part of the rock represents silicified dacite. Small patches and isolated flakes of muscovite are also present as in 2541570. Cavities to 3mm in diameter are commonly lined by small quartz crystals, rarely with chalcedony.

Leucoxene and clouded quartz occur in some of the cavities.

Silicified and quartz veined porphyritic rock with leucoxene, topaz and fluorite.

Field Note:

Bleached dacite? porphyry. 30m x 2m wide linear outcropping zone of bleached dacite ?porphyry associated with quartz veining (c.f. 2541574). Country rock is dacite porphyry.

Veins of relatively clear granular quartz define a subparallel network across this rock and occur singly or in sets to 10mm wide, enclosing silicified rock fragments. Grains and euhedral small crystals of topaz are common throughout the veins but fluorite is comparatively rare, as small interstitial patches.

The host rock is dominated by the kind of clouded quartz seen in 2541572, with probable felspar phenocrysts to 3mm long at least partly replaced by patches of microspherulitic topaz, together with quartz. Patches of leucoxene and finer rutile have replaced microphenocrysts of titanomagnetite to 1mm in size, and there are rare zircon crystals. A minor porosity has developed within the altered rock and small grains of fluorite occur locally between rosettes of topaz.

The formation of topaz and fluorite in this rock may be due to reactions such as:

(1)
$$2(Na,K)$$
 Al Si_3O_8 + $2HF$ = $Al_2SiO_4F_2$ + $5SiO_2$ + $[(Na,K)_2O + H_2O]$ alkali felspar topaz quartz solution $524-556g$ $157g$ $300g$

(2)
$$CaAl_2Si_2O_8 + 4HF = Al_2SIO_4F_2 + CaF_2 + SiO_2 + 2H_2O_4$$

anorthite topaz fluorite quartz 278g 157g 78g 60g

A. Thin section

Silicified poorly preserved porphyritic rock with very minor sericite and abundant limonite and rutile; cut by quartz veins containing thin dendritic crystals of rutile.

Field Note:

Silicified and trace sulphidic and porphyry.

Linear zone approximately 400m x 1-2m wide of float/subcrop/outcropping silica veined, altered acid porphyry. Vughy quartz veins; disseminated galena; trace of pyrite and copper carbonates? (malachites?).

The thin section contains:

- (1) Angular areas of silicified porphyritic volcanic rock with minor sericite and reasonably abundant limonite and rutile. Phenocrysts to 2mm long have been replaced by clear quartz + sericite in a clouded quartz matrix.
- (2) Areas containing patches and single grains of clouded quartz, to 0.4mm long, set in clear quartz with elongate dendritic crystals of rutile.
- (3) Partly vughy veins of granular to prismatic clear quartz with elongate dendrites of rutile to 2mm long, and minor limonite, possibly after sulphides.

B. Polished thin section

This rock appears to be mainly quartz with disseminated mostly fine grained rutile derived from titanomagnetite, and both granular and prismatic in habit. There are also rare residual magnetite grains. Patches of covellite + chalcocite locally accompany the rutile, in patches to 1mm in size. Rare elongate rutile crystals to 1mm are also present.

Sulphides occur mostly within crystal-lined vughs as follows:

- (1) tetrahedrite-tenantite with sphalerite and galena (1mm diameter)
- (2) galena (0.5mm)
- (3) two patches of sphalerite with minor galena and chalcopyrite (chalcopyrite diesease') (1.5 x 0.5mm) (0.5mm diameter)
- (4) sphalerite with chalcopyrite 'disease' (0.3mm)
- (5) chalcopyrite rimmed by chalcocite and covellite (0.2mm)

These indicate Cu-Fe-Pb-Zn-(As-Sb)-S mineralisation of relatively low grade.

Chlorite-carbonate-hematite-leucoxenealtered porphyritic potassic dacite or rhyodacite.

Field Note:

Medium grained porphyritic euhedral (plagioclase>>k-felspar) dacite. Minor to moderate hornblende (bladed) phenocrysts in a distinct brown crypto-crystalline (glassy!) groundmass. No quartz observed. Normally subordinate and interbanded with more typical dacite porphyry (Yardea Dacite) in several localities.

The phenocrysts in this rock are dominantly plagioclase as grains 0.5 to 4mm in size commonly very rounded and resorbed, with alteration to albite, alkali felspar, sericite and limonite, with less abundant highly resorbed alkali felspar phenocrysts (3-5%) to 5mm long, clouded and brownish.

Ferromagnesian phenocrysts occur singly or in clusters with leucoxenised magnetite microphenocrysts, and fresh apatite and in some clusters, altered plagioclase. They have been altered to chlorite + carbonate + leucoxene and were up to 2mm long. They were almost certainly pyroxene crystals as hornblende is rare in these rocks.

The groundmass is very fine grained and may represent devitrified glass. It is composed essentially of limonite-stained alkali felspar and 35% quartz with minor chlorite and oxidised fine opaque. Much of the quartz appears to be as paramorphs of elongate crystals of tridymite which is consistent with the high temperature of eruption of the Yardea Dacite.

Chlorite-albite-epidote-sericite-leucoxenehematite altered dacite porphyry.

Field Note:

Medium grained to coarse grained porphyrytic dacite exhibiting subhedral plagioclase >> k-felspar phenocrysts and moderately abundant dark green bladed, singular to massive aggregates of hornblende. Groundmass is microcrystalline felspar dominant as distinct to crypto crystalline in above description. This rock is the dominant volcanic rock in the area. No quartz phenocrysts observed.

This thin section reveals only two alkali felspar phenocrysts and thus contrasts with 2541576 in the abundance of k-felspar. Plagioclase phenocrysts are larger (to 8mm) more abundant (to 30%) and more euhedral than in 2541576, but are altered to aibite, sericite, epidote and k-felspar, locally to chlorite and biotite.

Ferromagnesian phenocrysts occur commonly in clusters with fresh, oxidised or leucoxenised titanomagnetite phenocrysts, apatite needles and generally smaller plagioclase phenocrysts. Many of the larger plagioclase phenocrysts are by contrast resorbed with groundmass as inclusions.

The groundmass contrasts with that in No. 2541576 in consisting of quartz, granophyre and alkali felspar as grains to 0.4mm in size, with interstitial areas of chlorite.

Quartz-bearing dacite porphyry with zenoliths of dolerite. Chlorite-nontronite-limonite-epidote-albite-leucoxene-hematite alteration. Rare garnet.

Field Note:

Medium grained porphyritic purple brown rhyodacite with minor medium grained 'quartz eye' phenocrysts in groundmass. Minor to trace hornblende phenocrysts set in a microcrystalline quartzofelspathic groundmass. Very limited outcrop.

The phenocrysts of plagioclase (25%) and quartz (3-4%) in this rock are highly inequigranular with quartz as rounded crystals 0.2 to 4mm long and plagioclase from 0.5 to>10mm in diameter. The plagioclase phenocrysts show alteration to albite, clays, chlorite, and locally, epidote, and occur singly or in clusters. Inclusions of quartz or of goundmass occur locally.

The ferromagnesian minerals occur as grains generally <1mm long, altered to chlorite or clays (?nontonite). They occur with oxidised and/or leucoxenised opaque oxide microphenocrysts and apatite crystals.

The groundmass is granular to granophyric but contains plagioclase as well as quartz, k-felspar, minor oxides and chlorite-clay patches. It is therefore almost certainly less potassic than the preceding samples. The nomenclature traditionally applied to the Gawler Range Volcanics seems to me to be sometimes illogical, as in the present case, where I would call this a dacite.

Xenoliths are common in this rock and are to 5mm in diameter. They are doleritic with plagioclase laths to 1mm long set in chlorite and clays. Grains of garnet occur in an area 3mm in diameter and these may represent a xenocryst disaggregated immediately prior to the crystallisation of the rock.

Clay-limonite-hematite altered rhodacite porphyry (granophyric).

Field Note:

Medium to coarse ground rhyodacite dominated by phenocrysts of pink to orange k-felspar, lesser white to pink stained plagioclase, trace quartz eyes. Reduction in microcrystalline quartzo-felspathic groundmass compared to previously described rhyodacite. Few areas of subcrop and float overall.

The amount of plagioclase and k-felspar phenocrysts in this rock appear to be about equal so that the name rhyodacite would be more appropriate for this rock than for 2541578. Quartz eyes were not observed in thin section, however and appear to be quite rare. Felspar phenocrysts of both types are from 0.5 to 5mm in size. The plagioclase is commonly altered to sericite and shows resorption with pseudo-inclusions of quartz. The orthoclase is clay-clouded with inclusions and rare rims of plagioclase and rare pseudoinclusions of quartz and granophyre. Ferromagnesian phenocrysts are much less abundant than in the Yardea Dacite and have been altered to brown clays. Oxidised magnetite microphenocrysts are common however. Apatite is rare and there are sparsely scattered zircons.

The groundmass is mostly granophyric with minor granular quartz, clays and opaque oxide grains. Possibly xenoliths to 5mm diameter consist mostly of altered plagioclase laths with minor magnetite and clay-altered ferromagnesian grains. They have a grain size of 0.5 to 2mm.

Microgranite porphyry with altered biotite.

Field Note:

Small (stock-like) fine to medium ground tan coloured acid porphyry. Abundant quartz and k-felspar. Sometimes aplitic. Can be silicified near the contact with dacite. Can appear as an equigranular microgranite in texture and composition in part. Some minor epidote? dispersed in the groundmass (<5%) of microgranite. Circular outcrop pattern of 400m diameter.

Quartz	35%
Orthoclase	55%
Plagioclase	7%
Biotite (altered)	3%

This is a highly porphyric rock with resorbed but generally euhedral phenocrysts of β -quartz (bipyramidal) to 2mm, clouded orthoclase phenocrysts 2-5mm long and rare weakly sericitised phenocrysts of plagioclase, generally <2mm long. All of these weakly sericitised phenocrysts show marginal intergrowths with the groundmass, which is granular, with most grains of quartz, orthoclase and rare plagioclase 0.1 to 0.3mm in size. Scattered small biotite flakes have been altered to clays and/or sericite, limonite and leucoxene, but no epidote was seen in this thin section.

The absence of accessories (magnetite, apatite, zircon) suggests that this rock is highly fractionated.

Greisen derived from an equigranular biotite-bearing granitoid. Possible zinnwaldite.

Field Note:

Grey quartz porphyry?

This rock occurs some 50km from the above rock suite and was not collected by the writer. it occurs in? near? Yardea Dacite contact/s with Hiltaba Granite.

This is a greisen with distinctive quartz-mica pseudomorphs of felspar grains 4-8mm long and coarse primary quartz grains mostly 2-5mm long. Minor (2%) biotite has been altered to limonite and mica, locally overgrown by small mica spherulites. The mica is very pale brownish in colour and nearly uniaxial and may be Zinnwaldite $[K_2(Fe_{2-1}^{2+}Li_{2-3}Al_2)(Si_{6-7}Al_{2-1}) O_{20}(OH, F)_4]$.

The original rock was probably Hiltaba Granite.

APPENDIX IV

CHARBA HILL EL 1626 AND UNALLA HILL EL 1652

GRAVITY DATA

```
NAM CHARBA HILL EL - Sherry Dam Prospect
  GRAVITY READINGS WERE CORRECTED FOR EARTH TIDE
  GRAVITY READINGS WERE CORRECTED FOR METER DRIFT
  GRAVITY READINGS WERE CORRECTED FOR LATITUDE USING ISOGAL84
  FREE AIR CORRECTION WAS APPLIED USING 2gh/R
  BOUGER CORRECTION WAS APPLIED USING DENSITY OF 2.4grams/cc
PAR FREE ; .3086
PAR ZONE ; 53.
PAR GMT ; 9.5
PAR BASE STATION ; A : 565800. 6420800. 979481.94
PAR BASE STATION ; B : 573684. 6431408. 979478.55
PAR METER ;
              : 1.0155
TYP LINE
VAR BASE ID; STATION; RAW GRAVITY; ELEVATION; EASTING; NORTHING; HOUR; MINUTE; DAY
VAR MONTH; YEAR; BOUGER CORRECTED GRAVITY
FMT (A1,1X,F9.4,1X,F8.3,1X,F7.3,1X,F8.1,1X,F9.1,5(1X,I2.2),1X,F10.3)
EOH
A 8901.3395 2941.410 169.000 565800.0 6420800.0 10:51 23.06.90
B 8901.6000 2935.730 166.000 573684.0 6431408.0 11:18 23.06.90
A 8901.3395 2941.320 169.000 565800.0 6420800.0 11:37 23.06.90
B 8901.6000 2935.650 166.000 573684.0 6431408.0 11:56 23.06.90
 8901.6000 2949.960 166.000 573684.0 6431408.0 09:38 25.06.90
  8901.6000 2949.960 166.000 573684.0 6431408.0 09:38 25.06.90
                                                                               9.009
  8901.3395 2955.640 169.000 565800.0 6420800.0 10:00 25.06.90
                                                                               7.556
B 8901.6000 2949.950 166.000 573684.0 6431408.0 10:18 25.06.90
  8901.5001 2953.550 155.950 574000.0 6430500.0 10:29 25.06.90
                                                                               9.925
  8901.5002 2953.260 156.670 574000.0 6430600.0 10:38 25.06.90
                                                                               9.857
  8901.5003 2953.320 157.460 574000.0 6430700.0 10:53 25.06.90
                                                                              10.161
  8901.5004 2953.480 158.120 574000.0 6430800.0 10:58 25.06.90
                                                                              10.535
  8901.5005 2953.200 158.770 574000.0 6430900.0 11:02 25.06.90
                                                                              10.461
  8901.5006 2952.860 159.410 574000.0 6431000.0 11:07 25.06.90
                                                                              10.323
  8901.5007 2952.320 160.000 574000.0 6431100.0 11:13 25.06.90
                                                                               9.972
  8901.5008 2952.080 160.570 574000.0 6431200.0 11:18 25.06.90
                                                                               9.922
  8901.5009 2951.500 161.220 574000.0 6431300.0 11:24 25.06.90
                                                                               9.543
  8901.5010 2951.170 161.960 574000.0 6431400.0 11:28 25.06.90
                                                                               9.436
  8901.5011 2950.580 163.280 574000.0 6431500.0 11:32 25.06.90
                                                                               9.184
B 8901.6000 2949.920 166.000 573684.0 6431408.0 11:37 25.06.90
  8901.5012 2949.990 165.110 574000.0 6431600.0 11:43 25.06.90
                                                                               9.039
  8901.5013 2949.400 167.030 574000.0 6431700.0 11:48 25.06.90
                                                                               8.911
  8901.5014 2948.890 168.980 574000.0 6431800.0 11:53 25.06.90
                                                                               8.870
  8901.5015 2948.380 171.160 574000.0 6431900.0 11:57 25.06.90
                                                                               8.877
  8901.5016 2947.930 172.980 574000.0 6432000.0 12:37 25.06.90 8901.5017 2947.500 175.450 574000.0 6432100.0 12:42 25.06.90 8901.5018 2946.380 180.390 574000.0 6432200.0 12:47 25.06.90 8901.5019 2945.640 183.670 574000.0 6432300.0 12:56 25.06.90 8901.5020 2945.150 185.220 574000.0 6432400.0 13:02 25.06.90 8901.5021 2945.150 185.220 574000.0 6432400.0 13:02 25.06.90
                                                                               8.873
                                                                               9.021
                                                                               8.980
                                                                               8.981
                                                                               8.879
  8901.5021 2944.260 188.550 574000.0 6432500.0 13:08 25.06.90
                                                                               8.739
  8901.5022 2942.880 194.350 574000.0 6432600.0 13:15 25.06.90 8901.5023 2940.170 207.790 574000.0 6432700.0 13:27 25.06.90
                                                                               8.612
                                                                               8.717
  8901.5024 2935.420 230.130 574000.0 6432800.0 13:38 25.06.90
                                                                               8.591
  8901.5025 2933.060 241.370 574000.0 6432900.0 13:50 25.06.90 8901.5026 2936.760 223.480 574000.0 6433000.0 13:57 25.06.90
                                                                               8.598
                                                                               8.730
  8901.5027 2939.000 211.070 574000.0 6433100.0 14:03 25.06.90
                                                                               8.514
  8901.5028 2940.070 206.080 574000.0 6433200.0 14:11 25.06.90
                                                                               8.645
  8901.5029 2938.710 212.080 574000.0 6433300.0 14:17 25.06.90
                                                                               8.582
B 8901.6000 2949.880 166.000 573684.0 6431408.0 14:36 25.06.90
  8901.5030 2938.740 212.140 574000.0 6433400.0 14:50 25.06.90
                                                                               8.702
  8901.5031 2938.800 211.130 574000.0 6433500.0 15:02 25.06.90
                                                                               8.623
  8901.5032 2939.320 208.330 574000.0 6433600.0 15:10 25.06.90
                                                                               8.643
```

```
8901.5033 2938.910 209.710 574000.0 6433700.0 15:17 25.06.90
                                                                                         8.584
   8901.5034 2939.450 206.210 574000.0 6433800.0 15:21 25.06.90
                                                                                         8.480
   8901.5035 2940.470 201.090 574000.0 6433900.0 15:27 25.06.90 8901.5036 2940.840 199.190 574000.0 6434000.0 15:34 25.06.90 8901.5037 2941.310 196.360 574000.0 6434100.0 15:39 25.06.90 8901.5038 2941.710 193.870 574000.0 6434200.0 15:43 25.06.90
                                                                                         8.529
                                                                                         8.583
                                                                                         8.548
                                                                                         8.512
   8901.5039 2941.580 194.480 574000.0 6434300.0 15:52 25.06.90 8901.5040 2941.800 192.760 574000.0 6434400.0 16:00 25.06.90
                                                                                         8.577
                                                                                         8.517
   8901.5041 2942.720 187.400 574000.0 6434500.0 16:06 25.06.90
                                                                                         8.415
   8901.5042 2943.440 183.630 574000.0 6434600.0 16:12 25.06.90
                                                                                         8.439
   8901.5043 2943.650 181.400 574000.0 6434700.0 16:17 25.06.90
                                                                                         8.264
   8901.5044 2944.160 179.510 574000.0 6434800.0 16:21 25.06.90
                                                                                         8.464
   8901.5045 2944.440 177.240 574000.0 6434900.0 16:27 25.06.90
                                                                                         8.352
  8901.6000 2949.910 166.000 573684.0 6431408.0 16:57 25.06.90
  8901.6000 2949.840 166.000 573684.0 6431408.0 09:40 26.06.90
   8901.5046 2944.670 175.450 574000.0 6435000.0 10:08 26.06.90
                                                                                         8.364
   8901.5047 2944.580 175.290 574000.0 6435100.0 10:27 26.06.90
                                                                                         8.315
   8901.5048 2943.880 178.140 574000.0 6435200.0 10:34 26.06.90
                                                                                         8.268
   8901.5049 2943.950 176.400 574000.0 6435300.0 10:40 26.06.90
                                                                                         8.053
   8901.5050 2943.850 176.140 574000.0 6435400.0 10:46 26.06.90
                                                                                         7.972
   8901.5051 2944.090 174.770 574000.0 6435500.0 10:50 26.06.90
                                                                                         8.005
   8901.5052 2944.100 174.870 574000.0 6435600.0 10:56 26.06.90
                                                                                         8.110
   8901.5053 2943.970 176.170 574000.0 6435700.0 10:59 26.06.90
                                                                                         8.320
   8901.5054 2943.850 176.520 574000.0 6435800.0 11:05 26.06.90
                                                                                         8.344
   8901.5055 2944.020 176.210 574000.0 6435900.0 11:09 26.06.90
                                                                                         8.526
   8901.5056 2944.020 176.450 574000.0 6436000.0 11:15 26.06.90
                                                                                         8.648
   8901.5057 2943.830 177.370 574000.0 6436100.0 11:19 26.06.90
                                                                                         8.719
   8901.5058 2943.720 178.140 574000.0 6436200.0 11:24 26.06.90
                                                                                         8.839
   8901.5059 2943.610 178.380 574000.0 6436300.0 11:30 26.06.90
                                                                                         8.850
   8901.5060 2943.240 179.230 574000.0 6436400.0 11:35 26.06.90
                                                                                         8.723
   8901.5061 2943.150 180.220 574000.0 6436500.0 11:39 26.06.90
                                                                                         8.910
   8901.5062 2942.980 181.300 574000.0 6436600.0 11:43 26.06.90
                                                                                         9.033
   8901.5063 2942.760 182.470 574000.0 6436700.0 11:48 26.06.90
                                                                                         9.125
   8901.5064 2942.410 183.820 574000.0 6436800.0 11:52 26.06.90
                                                                                         9.121
   8901.5065 2942.160 185.190 574000.0 6436900.0 11:56 26.06.90 8901.5066 2941.730 186.520 574000.0 6437000.0 12:01 26.06.90
                                                                                         9.224
                                                                                         9.135
B 8901.6000 2949.840 166.000 573684.0 6431408.0 12:26 26.06.90
   8901.5067 2941.540 187.950 574000.0 6437100.0 13:33 26.06.90
                                                                                         9.315
   8901.5068 2941.040 189.430 574000.0 6437200.0 13:37 26.06.90
                                                                                         9.188
   8901.5069 2940.740 192.540 574000.0 6437300.0 13:43 26.06.90
                                                                                         9.601
   8901.5070 2938.980 201.750 574000.0 6437400.0 13:53 26.06.90
                                                                                         9.795
   8901.5071 2939.250 200.290 574000.0 6437500.0 14:00 26.06.90
                                                                                         9.842
   8901.5072 2939.760 196.770 574000.0 6437600.0 14:05 26.06.90
                                                                                         9.707
   8901.5073 2939.500 197.430 574000.0 6437700.0 14:09 26.06.90
                                                                                         9.654
   8901.5074 2938.850 200.020 574000.0 6437800.0 14:13 26.06.90
                                                                                         9.604
   8901.5075 2938.190 204.890 574000.0 6437900.0 14:18 26.06.90
                                                                                        10.016
   8901.5076 2934.610 222.950 574000.0 6438000.0 14:30 26.06.90
                                                                                        10.195
8901.5076 2934.610 222.950 574000.0 6438000.0 14:30 26.06.90 8901.5077 2941.660 186.590 573800.0 6437000.0 14:49 26.06.90 8901.5078 2941.850 185.750 573800.0 6436900.0 15:06 26.06.90 8901.5079 2941.740 186.700 573800.0 6436800.0 15:12 26.06.90 8901.5080 2949.780 166.000 573684.0 6431408.0 15:43 26.06.90 8901.5080 2941.760 186.910 573800.0 6436700.0 16:09 26.06.90 8901.5081 2941.980 186.090 573800.0 6436600.0 16:13 26.06.90 8901.5082 2942.520 182.300 573800.0 6436500.0 16:20 26.06.90 8901.5083 2942.700 181.280 573800.0 6436400.0 16:23 26.06.90 8901.5083 2942.700 181.280 573800.0 6436400.0 16:23 26.06.90 8901.5083 2942.700 181.280 573800.0 6436300.0 16:29 26.06.90
                                                                                         9.104
                                                                                         9.058
                                                                                         9.073
                                                                                         9.054
                                                                                         9.030
                                                                                         8.714
                                                                                         8.610
   8901.5084 2942.750 181.010 573800.0 6436300.0 16:29 26.06.90
                                                                                         8.525
   8901.5085 2942.660 180.590 573800.0 6436200.0 16:32 26.06.90
                                                                                         8.271
   8901.5086 2942.840 181.160 573800.0 6436100.0 16:36 26.06.90
                                                                                         8.494
B 8901.6000 2949.850 166.000 573684.0 6431408.0 16:55 26.06.90
B 8901.6000 2949.740 166.000 573684.0 6431408.0 09:15 27.06.90
```

İ

```
8901.5087 2942.370 183.490 573800.0 6436000.0 09:41 27.06.90
                                                                               8.525
  8901.5088 2942.360 184.130 573800.0 6435900.0 09:51 27.06.90
                                                                               8.575
  8901.5089 2942.720 181.660 573800.0 6435800.0 09:57 27.06.90
                                                                               8.356
  8901.5090 2942.790 180.800 573800.0 6435700.0 10:03 27.06.90
                                                                               8.176
  8901.5091 2942.010 183.860 573800.0 6435600.0 10:10 27.06.90
                                                                               7.944
  8901.5092 2941.980 183.800 573800.0 6435500.0 10:17 27.06.90
                                                                               7.827
  8901.5093 2942.740 180.530 573800.0 6435400.0 10:23 27.06.90
                                                                               7.848
  8901.5094 2942.070 183.500 573800.0 6435300.0 10:37 27.06.90
                                                                               7.708
  8901.5095 2941.440 188.180 573800.0 6435200.0 10:44 27.06.90
                                                                               7.961
  8901.5096 2942.280 184.170 573800.0 6435100.0 10:49 27.06.90
                                                                               7.911
  8901.5097 2943.590 178.260 573800.0 6435000.0 10:59 27.06.90
                                                                               7.943
  8901.5098 2943.670 178.280 573800.0 6434900.0 11:06 27.06.90
                                                                               7.953
  8901.5099 2943.620 179.750 573800.0 6434800.0 11:12 27.06.90
                                                                               8.131
  8901.5100 2943.450 181.070 573800.0 6434700.0 11:16 27.06.90
                                                                               8.157
  8901.5101 2943.310 182.720 573800.0 6434600.0 11:19 27.06.90
                                                                               8.281
  8901.5102 2942.730 185.200 573800.0 6434500.0 11:25 27.06.90
                                                                               8.130
  8901.6000 2949.760 166.000 573684.0 6431408.0 12:01 27.06.90
  8901.5103 2943.300 184.030 574200.0 6434500.0 13:03 27.06.90
                                                                               8.497
  8901.5104 2943.780 181.790 574200.0 6434600.0 13:10 27.06.90
                                                                               8.599
  8901.5105 2944.060 179.310 574200.0 6434700.0 13:15 27.06.90
                                                                               8.447
  8901.5106 2944.290 177.490 574200.0 6434800.0 13:21 27.06.90
                                                                               8.382
  8901.5107 2944.710 176.430 574200.0 6434900.0 13:27 27.06.90
                                                                               8.666
  8901.5108 2944.970 174.870 574200.0 6435000.0 13:32 27.06.90
                                                                               8.684
  8901.5109 2945.330 172.280 574200.0 6435100.0 13:37 27.06.90 8901.5110 2945.060 173.000 574200.0 6435200.0 13:42 27.06.90
                                                                               8.591
                                                                               8.543
  8901.5111 2944.930 172.790 574200.0 6435300.0 13:47 27.06.90 8901.5112 2944.970 172.540 574200.0 6435400.0 13:52 27.06.90 8901.5113 2944.930 172.330 574200.0 6435500.0 13:57 27.06.90
                                                                               8.444
                                                                               8.510
                                                                               8.503
  8901.5114 2944.770 172.610 574200.0 6435600.0 14:04 27.06.90
                                                                               8.477
8901.5115 2944.650 173.130 574200.0 6435700.0 14:09 27.06.90 8901.5116 2944.640 173.790 574200.0 6435800.0 14:14 27.06.90 B 8901.6000 2949.650 166.000 573684.0 6431408.0 14:42 27.06.90
                                                                               8.540
                                                                               8.743
  8901.5117 2944.340 174.560 574200.0 6435900.0 15:09 27.06.90
                                                                               8.690
  8901.5118 2944.070 175.800 574200.0 6436000.0 15:16 27.06.90
                                                                               8.746
  8901.5119 2943.720 177.030 574200.0 6436100.0 15:20 27.06.90
                                                                               8.719
  8901.5120 2943.400 178.200 574200.0 6436200.0 15:28 27.06.90
                                                                               8.709
  8901.5521 2943.270 179.220 574200.0 6436300.0 15:33 27.06.90
                                                                               8.862
  8901.5122 2943.010 180.280 574200.0 6436400.0 15:37 27.06.90
                                                                               8.891
  8901.5123 2942.900 181.380 574200.0 6436500.0 15:40 27.06.90
                                                                               9.080
  8901.5124 2942.730 182.650 574200.0 6436600.0 15:44 27.06.90 8901.5125 2942.130 186.440 574200.0 6436700.0 15:51 27.06.90 8901.5126 2941.490 189.290 574200.0 6436800.0 15:58 27.06.90 8901.5127 2941.330 189.850 574200.0 6436900.0 16:01 27.06.90
                                                                               9.244
                                                                               9.493
                                                                               9.507
                                                                               9.534
  8901.5128 2941.220 190.100 574200.0 6437000.0 16:06 27.06.90
                                                                               9.549
B 8901.6000 2949.640 166.000 573684.0 6431408.0 16:46 27.06.90
B 8901.6000 2949.580 166.000 573684.0 6431408.0 08:42 28.06.90
  8901.5129 2950.310 161.000 572000.0 6430500.0 08:53 28.06.90
                                                                               8.040
  8901.5130 2949.980 161.580 572000.0 6430600.0 08:58 28.06.90
                                                                               7.898
  8901.5131 2949.640 162.380 572000.0 6430700.0 09:03 28.06.90
                                                                               7.792
  8901.5132 2948.780 165.190 572000.0 6430800.0 09:07 28.06.90
                                                                               7.574
B 8901.6000 2949.580 166.000 573684.0 6431408.0 09:16 28.06.90
  8901.5133 2948.140 170.530 572000.0 6430900.0 09:28 28.06.90
                                                                               8.097
  8901.5134 2946.200 179.440 572000.0 6431000.0 09:38 28.06.90
                                                                               8.039
  8901.5135 2944.060 188.800 572000.0 6431100.0 09:43 28.06.90
                                                                               7.874
  8901.5136 2942.710 194.790 572000.0 6431200.0 09:48 28.06.90
                                                                               7.813
  8901.5137 2940.660 204.270 572000.0 6431300.0 09:53 28.06.90
                                                                               7.763
  8901.5138 2939.070 211.100 572000.0 6431400.0 10:00 28.06.90
                                                                               7.632
  8901.5139 2940.580 202.480 572000.0 6431500.0 10:06 28.06.90
                                                                               7.452
  8901.5140 2941.870 194.520 572000.0 6431600.0 10:12 28.06.90
                                                                               7.186
  8901.5141 2942.310 189.450 572000.0 6431700.0 10:17 28.06.90
                                                                               6.654
```

```
8901.5142 2943.050 184.760 572000.0 6431800.0 10:21 28.06.90
                                                                                    6.506
  8901.5143 2943.470 182.580 572000.0 6431900.0 10:26 28.06.90
                                                                                    6.552
  8901.5144 2943.090 184.350 572000.0 6432000.0 10:30 28.06.90
                                                                                    6.604
  8901.5145 2942.440 186.000 572000.0 6432100.0 10:36 28.06.90
                                                                                    6.354
  8901.5146 2942.330 187.060 572000.0 6432200.0 10:40 28.06.90
                                                                                    6.532
  8901.5147 2942.190 188.450 572000.0 6432300.0 10:45 28.06.90
                                                                                    6.748
  8901.5148 2942.590 186.330 572000.0 6432400.0 10:51 28.06.90
                                                                                   6.784
  8901.5149 2942.500 185.510 572000.0 6432500.0 10:56 28.06.90
                                                                                   6.593
  8901.5150 2942.350 186.060 572000.0 6432600.0 11:01 28.06.90
                                                                                    6.624
  8901.5151 2942.010 188.340 572000.0 6432700.0 11:06 28.06.90
                                                                                    6.820
  8901.5152 2941.100 192.660 572000.0 6432800.0 11:10 28.06.90
                                                                                   6.860
  8901.5153 2939.840 199.260 572000.0 6432900.0 11:13 28.06.90
                                                                                   7.017
  8901.5154 2938.270 207.740 572000.0 6433000.0 11:18 28.06.90
                                                                                   7.246
  8901.5155 2936.460 216.370 572000.0 6433100.0 11:24 28.06.90
                                                                                   7.262
                                                                                   7.212
  8901.5156 2935.770 219.180 572000.0 6433200.0 11:28 28.06.90
  8901.5157 2936.020 218.040 572000.0 6433300.0 11:33 28.06.90
                                                                                   7.299
  8901.5158 2936.960 213.030 572000.0 6433400.0 11:38 28.06.90
                                                                                   7.286
  8901.5159 2938.270 205.960 572000.0 6433500.0 11:44 28.06.90
                                                                                   7.222
  8901.5160 2938.880 201.340 572000.0 6433600.0 11:50 28.06.90
                                                                                   6.953
B 8901.6000 2949.690 166.000 573684.0 6431408.0 11:58 28.06.90
  8901.5161 2937.590 207.870 572000.0 6433700.0 12:35 28.06.90
                                                                                   7.072
  8901.5162 2937.030 210.170 572000.0 6433800.0 12:41 28.06.90 8901.5163 2936.390 213.790 572000.0 6433900.0 12:47 28.06.90
                                                                                   7.054
                                                                                   7.228
  8901.5164 2936.950 208.840 572000.0 6434000.0 12:54 28.06.90
                                                                                    6.848
  8901.5165 2937.550 205.220 572000.0 6434100.0 12:58 28.06.90 8901.5166 2937.920 203.150 572000.0 6434200.0 13:02 28.06.90 8901.5167 2938.330 201.450 572000.0 6434300.0 13:07 28.06.90 8901.5168 2938.580 199.940 572000.0 6434400.0 13:11 28.06.90 8901.5169 2938.750 198.480 572000.0 6434500.0 13:15 28.06.90
                                                                                    6.782
                                                                                    6.804
                                                                                    6.944
                                                                                    6.960
                                                                                    6.904
  8901.5170 2938.830 197.800 572000.0 6434600.0 13:19 28.06.90 8901.5171 2938.750 198.400 572000.0 6434700.0 13:23 28.06.90
                                                                                    6.919
                                                                                   7.036
  8901.5172 2938.870 197.170 572000.0 6434800.0 13:27 28.06.90
                                                                                   6.978
  8901.5173 2938.560 198.710 572000.0 6434900.0 13:31 28.06.90 8901.5174 2938.990 196.220 572000.0 6435000.0 13:36 28.06.90
                                                                                   7.056
                                                                                   7.052
  8901.5175 2939.170 194.780 572000.0 6435100.0 13:41 28.06.90 8901.5176 2939.550 192.840 572000.0 6435200.0 13:46 28.06.90 8901.5177 2940.130 189.700 572000.0 6435300.0 13:50 28.06.90
                                                                                   7.011
                                                                                   7.071
                                                                                   7.084
  8901.5178 2940.320 188.120 572000.0 6435400.0 13:56 28.06.90
                                                                                   7.025
B 8901.6000 2949.660 166.000 573684.0 6431408.0 14:06 28.06.90
  8901.5179 2940.450 186.950 572000.0 6435500.0 14:17 28.06.90
                                                                                   7.043
  8901.5180 2940.630 185.730 572000.0 6435600.0 14:29 28.06.90 8901.5181 2940.620 185.340 572000.0 6435700.0 14:33 28.06.90
                                                                                   7.104
                                                                                   7.106
  8901.5182 2940.830 184.700 572000.0 6435800.0 14:44 28.06.90
                                                                                   7.313
  8901.5183 2940.890 184.410 572000.0 6435900.0 14:48 28.06.90
                                                                                   7.407
  8901.5184 2941.060 184.120 572000.0 6436000.0 14:53 28.06.90
                                                                                   7.617
  8901.5185 2941.200 182.610 572000.0 6436100.0 14:57 28.06.90
                                                                                   7.539
  8901.5186 2941.430 181.500 572000.0 6436200.0 15:01 28.06.90
                                                                                   7.636
  8901.5187 2941.590 180.480 572000.0 6436300.0 15:05 28.06.90 8901.5188 2941.700 179.520 572000.0 6436400.0 15:08 28.06.90
                                                                                   7.681
                                                                                   7.682
  8901.5189 2941.810 178.660 572000.0 6436500.0 15:12 28.06.90
                                                                                   7.708
  8901.5190 2941.880 178.020 572000.0 6436600.0 15:16 28.06.90
                                                                                   7.740
  8901.5191 2942.150 176.860 572000.0 6436700.0 15:19 28.06.90
                                                                                   7.862
  8901.5192 2942.240 176.460 572000.0 6436800.0 15:23 28.06.90
                                                                                   7.964
  8901.5193 2942.400 176.170 572000.0 6436900.0 15:27 28.06.90
                                                                                   8.160
  8901.5194 2942.350 176.580 572000.0 6437000.0 15:33 28.06.90
                                                                                   8.297
  8901.5195 2941.470 180.630 572000.0 6437100.0 15:39 28.06.90
                                                                                   8.344
  8901.5196 2941.100 178.950 572000.0 6437200.0 15:44 28.06.90
                                                                                   7.719
  8901.5197 2941.620 176.430 572000.0 6437300.0 15:49 28.06.90
                                                                                   7.824
  8901.5198 2942.110 173.500 572000.0 6437400.0 15:53 28.06.90
                                                                                   7.809
  8901.5199 2942.110 173.200 572000.0 6437500.0 15:57 28.06.90
                                                                                   7.840
```

```
8901.5200 2941.650 175.410 572000.0 6437600.0 16:02 28.06.90
                                                                       7.928
  8901.5201 2940.350 181.820 572000.0 6437700.0 16:08 28.06.90
                                                                       8.038
  8901.5202 2940.800 179.460 572000.0 6437800.0 16:15 28.06.90
                                                                       8.115
  8901.5203 2941.960 173.380 572000.0 6437900.0 16:22 28.06.90
                                                                       8.144
  8901.5204 2942.500 169.940 572000.0 6438000.0 16:28 28.06.90
                                                                       8.085
B 8901.6000 2948.890 166.000 573684.0 6431408.0 16:45 28.06.90
 8901.6000 2948.930 166.000 573684.0 6431408.0 09:23 29.06.90
  8901.5205 2946.200 176.440 571800.0 6431000.0 09:45 29.06.90
                                                                       8.081
  8901.5206 2944.200 184.870 571800.0 6431100.0 09:52 29.06.90
                                                                       7.866
  8901.5207 2941.830 195.850 571800.0 6431200.0 09:59 29.06.90
                                                                       7.802
  8901.5208 2940.420 202.240 571800.0 6431300.0 10:07 29.06.90
                                                                       7.763
  8901.5209 2940.280 201.520 571800.0 6431400.0 10:14 29.06.90
                                                                       7.543
  8901.5210 2941.140 196.770 571800.0 6431500.0 10:24 29.06.90
                                                                       7.503
  8901.5211 2942.030 190.660 571800.0 6431600.0 10:31 29.06.90
                                                                       7.214
  8901.5212 2942.090 187.400 571800.0 6431700.0 10:36 29.06.90
                                                                       6.672
  8901.5213 2941.870 186.930 571800.0 6431800.0 10:40 29.06.90
                                                                       6.423
  8901.5214 2941.280 189.700 571800.0 6431900.0 10:45 29.06.90
                                                                       6.468
  8901.5215 2940.220 194.010 571800.0 6432000.0 10:51 29.06.90
                                                                       6.354
  8901.5216 2939.410 198.280 571800.0 6432100.0 10:57 29.06.90
                                                                       6.485
  8901.5217 2938.640 203.250 571800.0 6432200.0 11:07 29.06.90
                                                                       6.800
  8901.5218 2939.270 199.240 571800.0 6432300.0 11:17 29.06.90
                                                                       6.678
  8901.5219 2940.580 191.510 571800.0 6432400.0 11:24 29.06.90 8901.5220 2941.610 186.380 571800.0 6432500.0 11:30 29.06.90 8901.5221 2941.190 187.980 571800.0 6432600.0 11:37 29.06.90
                                                                       6.478
                                                                       6.533
                                                                       6.507
  8901.5222 2941.170 189.430 571800.0 6432700.0 11:41 29.06.90
                                                                       6.857
  8901.5223 2940.080 194.690 571800.0 6432800.0 11:47 29.06.90
                                                                       6.908
                                                                       6.992
  8901.5224 2939.340 198.400 571800.0 6432900.0 11:54 29.06.90
B 8901.6000 2949.010 166.000 573684.0 6431408.0 12:12 29.06.90
  8901.5225 2938.590 202.230 571800.0 6433000.0 13:11 29.06.90
                                                                       7.103
  8901.5226 2937.410 207.920 571800.0 6433100.0 13:17 29.06.90
                                                                       7.157
  8901.5227 2936.260 212.400 571800.0 6433200.0 13:31 29.06.90
                                                                       6.992
  8901.5228 2935.280 216.080 571800.0 6433300.0 13:38 29.06.90
                                                                       6.833
  8901.5229 2934.980 219.140 571800.0 6433400.0 13:44 29.06.90
                                                                       7.237
  8901.5230 2936.030 213.270 571800.0 6433500.0 13:51 29.06.90
                                                                       7.163
  8901.5231 2938.830 199.990 572200.0 6433500.0 14:12 29.06.90
                                                                       7.265
  8901.5232 2937.440 206.650 572200.0 6433400.0 14:17 29.06.90
                                                                       7.158
  8901.5233 2935.540 217.390 572200.0 6433300.0 14:24 29.06.90
                                                                       7.378
  8901.5234 2934.430 223.000 572200.0 6433200.0 14:34 29.06.90
                                                                       7.340
  8901.5235 2933.740 226.680 572200.0 6433100.0 14:42 29.06.90
                                                                       7.328
B 8901.6000 2948.970 166.000 573684.0 6431408.0 15:14 29.06.90
  8901.5236 2936.820 211.720 572200.0 6433000.0 15:32 29.06.90
                                                                       7.297
  8901.5237 2939.400 198.270 572200.0 6432900.0 15:39 29.06.90
                                                                       7.063
  8901.5238 2940.730 192.220 572200.0 6432800.0 15:47 29.06.90
                                                                       7.092
  8901.5239 2941.390 189.110 572200.0 6432700.0 15:52 29.06.90
                                                                       7.047
  8901.5240 2942.290 184.420 572200.0 6432600.0 15:57 29.06.90
                                                                       6.919
  8901.5241 2942.490 182.900 572200.0 6432500.0 16:02 29.06.90
                                                                       6.735
  8901.5242 2942.540 182.880 572200.0 6432400.0 16:08 29.06.90
                                                                       6.711
  8901.5243 2942.820 181.970 572200.0 6432300.0 16:13 29.06.90
                                                                       6.735
  8901.5244 2942.860 181.070 572200.0 6432200.0 16:17 29.06.90
                                                                       6.518
  8901.5245 2943.250 179.640 572200.0 6432100.0 16:21 29.06.90
                                                                        6.546
  8901.5246 2943.150 180.260 572200.0 6432000.0 16:25 29.06.90
                                                                        6.501
B 8901.6000 2948.940 166.000 573684.0 6431408.0 16:40 29.06.90
B 8901.6000 2948.920 166.000 573684.0 6431408.0 08:28 30.06.90
  8901.5247 2942.740 182.500 572200.0 6431900.0 08:45 30.06.90
                                                                       6.490
  8901.5248 2942.050 187.040 572200.0 6431800.0 08:53 30.06.90
                                                                       6.650
  8901.5249 2941.330 193.410 572200.0 6431700.0 08:58 30.06.90
                                                                       7.159
  8901.5250 2939.810 202.500 572200.0 6431600.0 09:06 30.06.90
                                                                       7.418
  8901.5251 2938.200 211.720 572200.0 6431500.0 09:13 30.06.90
                                                                       7.612
  8901.5252 2938.250 211.660 572200.0 6431400.0 09:32 30.06.90
                                                                       7.564
  8901.5253 2942.130 193.060 572200.0 6431300.0 09:39 30.06.90
                                                                       7.578
```

```
8901.5254 2944.510 182.170 572200.0 6431200.0 09:47 30.06.90
                                                                            7.663
  8901.5255 2945.990 175.300 572200.0 6431100.0 09:52 30.06.90
                                                                            7.668
  8901.5256 2947.330 169.390 572200.0 6431000.0 10:17 30.06.90
                                                                            7.715
B 8901.6000 2949.000 166.000 573684.0 6431408.0 10:28 30.06.90
B 8901.6000 2948.920 166.000 573684.0 6431408.0 11:51 30.06.90
  8901.5257 2929.180 245.970 569000.0 6433500.0 12:37 30.06.90
                                                                            6.988
  8901.5258 2928.630 248.500 569000.0 6433600.0 12:42 30.06.90
                                                                            7.023
  8901.5259 2929.080 245.830 569000.0 6433700.0 12:47 30.06.90
                                                                            6.997
  8901.5260 2930.210 239.610 569000.0 6433800.0 12:56 30.06.90
                                                                            6.924
                                                                            6.807
  8901.5261 2931.280 233.460 569000.0 6433900.0 13:01 30.06.90
                                                                            6.452
  8901.5262 2931.920 228.270 569000.0 6434000.0 13:07 30.06.90
  8901.5263 2932.860 224.250 569000.0 6434100.0 13:11 30.06.90
                                                                            6.645
  8901.5264 2933.050 221.680 569000.0 6434200.0 13:16 30.06.90
                                                                            6.375
  8901.5265 2932.530 222.830 569000.0 6434300.0 13:20
                                                            30.06.90
                                                                            6.155
  8901.5266 2931.350 230.170 569000.0 6434400.0 13:27
                                                            30.06.90
                                                                            6.542
  8901.5267 2930.450 234.080 569000.0 6434500.0 13:33
                                                            30.06.90
                                                                            6.505
  8901.5268 2931.640 228.160 569000.0 6434600.0 13:40 30.06.90
                                                                            6.556
  8901.5269 2932.630 222.530 569000.0 6434700.0 13:45
                                                            30.06.90
                                                                            6.465
  8901.5270 2932.520 220.930 569000.0 6434800.0 13:50 30.06.90 8901.5271 2931.620 224.070 569000.0 6434900.0 13:55 30.06.90 8901.5272 2930.790 228.480 569000.0 6435000.0 13:59 30.06.90 8901.5273 2929.540 234.070 569000.0 6435100.0 14:05 30.06.90
                                                                            6.091
                                                                            5.895
                                                                            6.034
                                                                            5.989
  8901.5274 2928.400 240.160 569000.0 6435200.0 14:10
                                                            30.06.90
                                                                            6.159
8901.5275 2926.570 251.180 569000.0 6435300.0 14:15
B 8901.6000 2949.070 166.000 573684.0 6431408.0 14:43
8901.5276 2922.030 272.750 569000.0 6435400.0 15:17
                                                            30.06.90
                                                                            6.649
                                                            30.06.90
                                                            30.06.90
                                                                            6.576
  8901.5277 2920.980 278.280 569000.0 6435500.0 15:22 30.06.90 8901.5278 2923.730 264.650 569000.0 6435600.0 15:27 30.06.90
                                                                            6.732
                                                                            6.783
  8901.5279 2925.890 253.380 569000.0 6435700.0 15:32 30.06.90
                                                                            6.723
  8901.5280 2927.780 243.940 569000.0 6435800.0 15:37
                                                                            6.768
                                                            30.06.90
  8901.5281 2929.550 235.240 569000.0 6435900.0 15:42 30.06.90
                                                                            6.844
  8901.5282 2930.750 227.850 569000.0 6436000.0 15:47
                                                            30.06.90
                                                                            6.612
  8901.5283 2934.380 222.480 569400.0 6432500.0 16:25 30.06.90
                                                                            6.651
  8901.5284 2934.490 221.480 569400.0 6432600.0 16:29 30.06.90
                                                                            6.633
                                                                            6.735
  8901.5285 2934.350 222.290 569400.0 6432700.0 16:32 30.06.90
  8901.5286 2933.840 225.290 569400.0 6432800.0 16:36 30.06.90
                                                                            6.915
B 8901.6000 2948.930 166.000 573684.0 6431408.0 17:13 30.06.90
B 8901.6000 2948.930 166.000 573684.0 6431408.0 08:57 02.07.90
  8901.6001 2947.140 170.000 573426.0 6431821.0 09:04 02.07.90
                                                                           8.320
  8901.6002 2945.490 177.000 573209.0 6432354.0 09:10 02.07.90
                                                                            8.483
                                                                            7.329
  8901.6003 2943.260 181.000 572945.0 6432742.0 09:16 02.07.90
                                                                            7.384
  8901.6004 2941.590 188.000 572702.0 6433156.0 09:21 02.07.90
  8901.6005 2939.770 195.000 572371.0 6433601.0 09:26 02.07.90
                                                                            7.309
                                                                            7.337
  8901.6006 2937.690 204.000 572271.0 6433981.0 09:32 02.07.90
  8901.6007 2937.980 200.000 572056.0 6434528.0 09:38 02.07.90
                                                                            7.204
  8901.6008 2938.740 195.000 571846.0 6434898.0 09:43 02.07.90
                                                                            7.212
                                                                            7.355
  8901.6009 2939.560 190.000 571994.0 6435367.0 09:48 02.07.90
  8901.6010 2940.080 185.000 572081.0 6435906.0 09:53 02.07.90
                                                                            7.245
  8901.6011 2940.920 181.000 572174.0 6436398.0 09:57 02.07.90
                                                                            7.633
  8901.6012 2941.920 176.000 572300.0 6436811.0 10:01 02.07.90
                                                                            7.918
                                                                            8.182
  8901.6013 2942.640 172.000 572485.0 6437301.0 10:06 02.07.90
  8901.6014 2943.550 169.000 572579.0 6437790.0 10:11 02.07.90
                                                                            8.845
  8901.6015 2943.810 166.000 572693.0 6438308.0 10:17 02.07.90
                                                                            8.870
  8901.6016 2944.160 163.000 572675.0 6438734.0 10:21 02.07.90
                                                                            8.917
  8901.6017 2944.240 161.000 572585.0 6439287.0 10:25 02.07.90
                                                                            8.990
  8901.6018 2945.010 157.000 572669.0 6439764.0 10:29 02.07.90
                                                                            9.295
  8901.6019 2945.420 156.000 572903.0 6440240.0 10:34 02.07.90
                                                                            9.856
  8901.6020 2945.811 154.000 573170.0 6440618.0 10:39 02.07.90
                                                                           10.118
  8901.6021 2945.910 154.000 573448.0 6440907.0 10:45 02.07.90
                                                                           10.432
  8901.6022 2946.200 154.000 573911.0 6440688.0 10:49 02.07.90
                                                                           10.568
```

```
8901.6023 2946.470 150.000 574117.0 6440256.0 10:54 02.07.90
                                                                      9.698
  8901.6024 2947.670 150.000 574557.0 6440057.0 10:59 02.07.90
                                                                     10.773
  8901.6025 2947.680 149.000 575110.0 6440145.0 11:02 02.07.90
                                                                     10.644
  8901.6026 2948.290 144.000 575573.0 6440113.0 11:06 02.07.90
                                                                     10.208
  8901.6027 2948.750 145.000 576092.0 6440123.0 11:11 02.07.90
                                                                     10.892
  8901.6028 2948.610 145.000 576594.0 6440203.0 11:16 02.07.90
                                                                     10.811
B 8901.6000 2948.940 166.000 573684.0 6431408.0 11:39 02.07.90
  8901.6029 2941.220 180.000 571842.0 6436612.0 11:59 02.07.90
                                                                      7.899
  8901.6030 2940.260 190.000 571518.0 6436230.0 12:43 02.07.90
                                                                      8.747
  8901.6031 2939.390 188.000 571117.0 6435903.0 12:48 02.07.90
                                                                      7.211
  8901.6032 2938.770 192.000 570988.0 6435485.0 12:53 02.07.90
                                                                      7.105
  8901.6033 2937.940 196.000 570840.0 6435093.0 12:58 02.07.90
                                                                      6.805
                                                                      6.578
  8901.6034 2937.170 200.000 570458.0
                                       6434718.0 13:05 02.07.90
                                                                      6.285
  8901.6035 2934.920 210.000 570012.0 6434611.0 13:10 02.07.90
  8901.6036 2932.430 221.000 569128.0
                                       6434774.0 13:18 02.07.90
                                                                      6.152
                                                                      6.454
  8901.6037 2933.400 217.000 568516.0 6434968.0 13:24 02.07.90
                                                                      6.708
  8901.6038 2934.910 211.000 568094.0 6434914.0 13:30 02.07.90
  8901.6039 2936.000 207.000 567603.0 6434650.0 13:38 02.07.90
                                                                      6.796
  8901.6040 2937.140 204.000 567210.0 6434353.0 13:45 02.07.90
                                                                      7.118
  8901.6041 2938.680 200.000 566780.0 6434190.0 13:50 02.07.90
                                                                      7.735
  8901.6042 2938.550 201.000 566241.0 6434333.0 13:55 02.07.90
                                                                      7.916
  8901.6043 2939.920 198.000 565805.0 6434432.0 13:59 02.07.90 8901.6044 2939.640 199.000 565303.0 6434730.0 14:04 02.07.90
                                                                      8.759
                                                                      8.902
                                                                      9.158
  8901.6045 2938.850 203.000 565043.0 6435043.0 14:08 02.07.90
  8901.6046 2940.520 193.000 564562.0 6435370.0 14:14 02.07.90
                                                                      9.026
  8901.6047 2941.170 191.000 564231.0 6435629.0 14:18 02.07.90
                                                                       9.464
B 8901.6000 2948.810 166.000 573684.0 6431408.0 14:50 02.07.90
B 8901.6000 2948.800 166.000 573684.0 6431408.0 08:59 03.07.90
  8901.6048 2941.820 186.000 563735.0 6435836.0 09:37 03.07.90
                                                                       9.235
  8901.6049 2941.980 184.000 563545.0 6436216.0 09:42 03.07.90
                                                                       9.259
  8901.6050 2942.290 180.000 563297.0 6436575.0 09:47 03.07.90
                                                                       9.005
  8901.6051 2941.910 180.000 563010.0 6437091.0 09:51 03.07.90
                                                                       8.995
  8901.6052 2942.150 177.000 562837.0 6437422.0 09:57 03.07.90
                                                                      8.856
  8901.6053 2942.480 173.000 562800.0 6437711.0 10:01 03.07.90
                                                                      8.573
  8901.6054 2942.160 173.000 563315.0 6437871.0 10:06 03.07.90
                                                                      8.365
  8901.6055 2941.990 174.000 563775.0 6437914.0 10:11 03.07.90
                                                                      8.429
  8901.6056 2941.360 174.000 564289.0 6438068.0 10:15 03.07.90
                                                                      7.902
                                                                      7.906
  8901.6057 2941.250 174.000 564788.0 6438225.0 10:19 03.07.90
  8901.6058 2941.060 169.000 565198.0 6438519.0 10:23 03.07.90
                                                                       6.893
  8901.6059 2941.160 168.000 565601.0 6438783.0 10:27 03.07.90
                                                                       6.982
                                                                       6.902
  8901.6060 2941.060 167.000 565975.0 6439095.0 10:30 03.07.90
                                                                      7.277
  8901.6061 2941.130 167.000 566265.0 6439510.0 10:34 03.07.90
  8901.6062 2940.920 167.000 566521.0 6440038.0 10:39 03.07.90
                                                                      7.450
  8901.6063 2941.190 165.000 566905.0 6440335.0 10:43 03.07.90
                                                                      7.528
  8901.6064 2941.140 164.000 567279.0 6440623.0 10:49 03.07.90
                                                                      7.480
  8901.6065 2941.560 163.000 567781.0 6440851.0 11:01 03.07.90
                                                                      7.862
                                                                      7.322
  8901.6066 2941.180 162.000 568229.0 6440924.0 11:06 03.07.90
  8901.6067 2941.890 161.000 568692.0 6441003.0 11:10 03.07.90
                                                                      7.894
  8901.6068 2942.390 160.000 569262.0 6440952.0 11:14 03.07.90
                                                                       8.158
  8901.6069 2942.680 160.000
                             569684.0 6441031.0 11:18 03.07.90
                                                                       8.510
  8901.6070 2942.810 160.000 570129.0 6440929.0 11:22 03.07.90
                                                                       8.567
                                                                       8.295
  8901.6071 2943.330 157.000 570412.0 6440685.0 11:26 03.07.90
  8901.6072 2943.780 154.000 571004.0 6440558.0 11:30 03.07.90
                                                                       8.039
  8901.6073 2944.210 155.000 571449.0 6440474.0 11:34 03.07.90
                                                                      8.621
  8901.6074 2944.780 156.000 572007.0 6440465.0 11:39 03.07.90
                                                                       9.400
  8901.6075 2945.160 154.000 572437.0 6440583.0 11:43 03.07.90
                                                                       9.459
  8901.6076 2945.390 157.000 572959.0 6440860.0 11:47 03.07.90
                                                                     10.517
B 8901.6000 2948.920 166.000 573684.0 6431408.0 12:07 03.07.90
  8901.6077 2942.750 161.000 569809.0 6441495.0 13:20 03.07.90
                                                                      9.127
  8901.6078 2942.150 163.000 569606.0 6441821.0 13:24 03.07.90
                                                                      9.171
```

_ 1 #

```
8901.6079 2941.260 166.000 569155.0 6441982.0 13:27 03.07.90
                                                                      9.005
  8901.6080 2940.840 169.000 568630.0 6442194.0 13:32 03.07.90
                                                                      9.353
  8901.6081 2939.490 173.000 568211.0 6442378.0 13:36 03.07.90
                                                                      8.944
                                                                      9.142
  8901.6082 2939.580 173.000 567686.0 6442526.0 13:41 03.07.90
                                                                      9.678
  8901.6083 2939.740 175.000 567260.0
                                       6442472.0 13:46 03.07.90
                                                                      8.388
  8901.6084 2937.870 178.000 566757.0 6442454.0 14:05 03.07.90
                                                                      8.604
  8901.6085 2937.170 182.000 566241.0 6442592.0 14:09 03.07.90
  8901.6086 2936.710 185.000 565805.0 6442617.0 14:12 03.07.90
                                                                      8.774
  8901.6087 2936.050 190.000 565406.0 6442856.0 14:20 03.07.90
                                                                      9.313
                                                                      9.165
  8901.6088 2934.640 195.000 564898.0 6443198.0 14:26 03.07.90
В 8901.6000 2948.880 166.000 573684.0
                                       6431408.0 15:02 03.07.90
  8901.6089 2949.610 165.000 574214.0 6431526.0 15:09 03.07.90
                                                                      9.643
  8901.6090 2949.230 168.000 574600.0
                                       6431824.0 15:14 03.07.90 -
                                                                     10.106
                                       6432143.0 15:18
                                                       03.07.90
                                                                     10.415
  8901.6091 2947.870 175.000 575017.0
  8901.6092 2947.350 175.000 575340.0
                                                                     10.155
                                       6432498.0 15:22
                                                       03.07.90
                                                                     10.546
                                       6432873.0 15:27
                                                       03.07.90
  8901.6093 2948.270 171.000 575700.0
                                                                     11.036
  8901.6094 2948.720 170.000 576113.0
                                       6433190.0 15:31 03.07.90
  8901.6095 2949.050 166.000 576173.0
                                                                     10.940
                                       6433723.0 15:34
                                                       03.07.90
  8901.6096 2949.630 162.000 576476.0 6434088.0 15:45 03.07.90 8901.6097 2952.290 152.000 577002.0 6434277.0 15:49 03.07.90
                                                                     10.985
                                                                     11.764
  8901.6098 2952.540 149.000 577349.0 6434562.0 15:53 03.07.90
                                                                     11.614
  8901.6099 2953.260 146.000 577834.0 6434859.0 15:58 03.07.90
                                                                     11.951
                                                                     11.750
  8901.6100 2953.200 144.000 578020.0 6435223.0 16:02 03.07.90
  8901.6101 2953.280 141.000 578315.0 6435679.0 16:05 03.07.90
                                                                     11.551
  8901.6102 2953.470 139.000 578652.0 6435977.0 16:09 03.07.90
                                                                     11.556
  8901.6103 2952.910 140.000 578885.0 6436517.0 16:12 03.07.90
                                                                     11.595
B 8901.6000 2948.780 166.000 573684.0 6431408.0 16:25 03.07.90
B 8901.6000 2948.770 166.000 573684.0 6431408.0 08:45 04.07.90
                                                                      9.569
  8901.6104 2949.710 165.000 573315.0 6431250.0 08:52 04.07.90
                                                       04.07.90
                                                                      9.454
  8901.6105 2950.150 163.000 572855.0 6431134.0 08:58
  8901.6106 2951.250 160.000 572423.0 6430848.0 09:08 04.07.90
                                                                      9.639
                                                                      9.167
  8901.6107 2950.850 161.000 572076.0 6430548.0 09:13 04.07.90
  8901.6108 2951.320 161.000 571719.0 6430182.0 09:18 04.07.90
                                                                      9.323
  8901.6109 2952.570 165.000 571454.0 6429774.0 09:23 04.07.90
                                                                     11.069
                                                        04.07.90
                                                                     11.494
  8901.6110 2954.980 157.000 571205.0 6429330.0 09:27
                                                                     10.451
  8901.6111 2954.140 158.000 571043.0 6428846.0 09:31 04.07.90
                                                                     11.385
  8901.6112 2955.020 160.000 570849.0 6428421.0 09:37 04.07.90
                                                                     10.940
  8901.6113 2955.770 156.000 570814.0 6427960.0 09:41 04.07.90
  8901.6114 2956.540 153.000 570606.0 6427481.0 09:46 04.07.90
                                                                     10.699
                                                                     11.018
  8901.6115 2957.610 151.000 570344.0 6427070.0 09:51 04.07.90
  8901.6116 2958.040 155.000 569831.0 6426224.0 09:56 04.07.90
                                                                     11.608
  8901.6117 2957.060 156.000 569385.0
                                       6425425.0 10:03
                                                        04.07.90
                                                                     10.160
  8901.6118 2958.730 148.000 569447.0 6424472.0 10:09 04.07.90
                                                                      9.441
                                                                      9.295
  8901.6119 2960.350 143.000 569494.0 6423511.0 10:14 04.07.90
  8901.6120 2959.120 150.000 569528.0 6422461.0 10:20
                                                        04.07.90
                                                                      8.662
  8901.6121 2958.330 151.000 568687.0 6422011.0 10:25
                                                        04.07.90
                                                                      7.682
  8901.6122 2958.880 151.000 567805.0 6421715.0 10:31 04.07.90
                                                                      7.960
  8901.6123 2957.980 159.000 566924.0 6421295.0 10:37
                                                        04.07.90
                                                                      8.328
  8901.6124 2956.980 165.000 566068.0 6420809.0 10:42 04.07.90
                                                                      8.143
B 8901.6000 2950.110 166.000 573684.0 6431408.0 11:03
                                                        04.07.90
A 8901.3395 2955.760 169.000 565800.0 6420800.0 12:00 04.07.90
  8901.6125 2956.970 166.000 565033.0 6420273.0 12:26 04.07.90
                                                                      5.463
  8901.6126 2958.280 163.000 564528.0 6420159.0 12:30
                                                        04.07.90
                                                                       6.098
  8901.6127 2957.570 166.000 564050.0 6420016.0 12:34 04.07.90
                                                                      5.901
  8901.6128 2957.820 170.000 563612.0 6419668.0 12:37 04.07.90
                                                                       6.733
  8901.6129 2956.800 168.000 563114.0 6419912.0 12:42 04.07.90
                                                                      5.475
  8901.6130 2957.710 171.000 562745.0 6419631.0 12:48 04.07.90
                                                                      6.828
  8901.6131 2956.590 172.000 562246.0 6419430.0 12:55 04.07.90
                                                                      5.768
  8901.6132 2956.260 174.000 561824.0 6419210.0 12:59 04.07.90
                                                                       5.694
  8901.6133 2956.430 174.000 561354.0 6418975.0 13:03 04.07.90
                                                                      5.703
```

```
8901.6134 2957.190 172.000 560916.0 6418772.0 13:07 04.07.90
                                                                                                 5.921
   8901.6135 2957.780 171.000 560412.0 6418538.0 13:26 04.07.90
                                                                                                 6.193
   8901.6136 2958.170 170.000 560045.0 6418404.0 13:30 04.07.90 8901.6137 2958.130 171.000 559556.0 6418083.0 13:34 04.07.90 8901.6138 2956.590 173.000 559088.0 6417680.0 13:39 04.07.90 8901.6139 2957.040 175.000 558681.0 6417784.0 13:45 04.07.90 8901.6140 2956.250 182.000 558300.0 6417636.0 13:53 04.07.90
                                                                                                 6.294
                                                                                                 6.233
                                                                                                 4.798
                                                                                                 5.761
                                                                                                 6.319
   8901.6141 2956.150 180.000 557751.0 6417180.0 13:59 04.07.90
                                                                                                 5.482
   8901.6142 2955.580 183.000 557342.0 6416986.0 14:04 04.07.90
                                                                                                 5.393
   8901.6143 2955.750 193.000 556957.0 6417032.0 14:08 04.07.90
                                                                                                 7.678
   8901.6144 2955.530 193.000 556507.0 6416697.0 14:15 04.07.90
                                                                                                 7.225
   8901.6145 2954.730 197.000 555973.0 6416654.0 14:20 04.07.90
                                                                                                 7.220
A 8901.3395 2955.330 169.000 565800.0 6420800.0 14:33 04.07.90
   8901.6146 2957.520 168.000 560647.0 6419232.0 14:45 04.07.90
                                                                                                 6.052
   8901.6147 2956.310 173.000 560444.0 6419671.0 14:50 04.07.90
                                                                                                 6.198
   8901.6148 2955.510 179.000 560239.0 6420090.0 14:56 04.07.90
                                                                                                 6.956
   8901.6149 2955.500 183.000 560122.0 6420622.0 15:01 04.07.90
                                                                                                 8.182
   8901.6150 2955.500 178.000 560991.0 6418323.0 15:18 04.07.90
                                                                                                 5.515
   8901.6151 2954.620 183.000 561142.0 6417808.0 15:24 04.07.90
                                                                                                 5.298
   8901.6152 2953.950 190.000 561356.0 6417361.0 15:30 04.07.90
                                                                                                 5.757
   8901.6153 2953.320 195.000 561538.0 6416912.0 15:35 04.07.90
                                                                                                 5.838
   8901.6154 2950.650 206.000 561726.0 6416497.0 15:41 04.07.90
                                                                                                 5.117
   8901.6155 2953.630 179.000 566372.0 6419758.0 16:01 04.07.90
                                                                                                 5.048
   8901.6156 2954.120 174.000 566103.0 6420102.0 16:06 04.07.90
                                                                                                 4.780
   8901.6157 2954.830 169.000 565924.0 6420529.0 16:16 04.07.90
                                                                                                 4.812
   8901.6158 2956.550 163.000 565648.0 6421018.0 16:21 04.07.90
                                                                                                 5.692
   8901.6159 2957.730 157.000 565467.0 6421383.0 16:29 04.07.90
                                                                                                 5.942
A 8901.3395 2954.930 169.000 565800.0 6420800.0 16:35 04.07.90
  8901.6000 2949.330 166.000 573684.0 6431408.0 08:30 05.07.90
   8901.6104 2948.840 165.000 573315.0 6431250.0 08:41 05.07.90
                                                                                                 8.216
   8901.6114 2955.560 153.000 570606.0 6427481.0 08:55 05.07.90
                                                                                                 9.807
   8901.6119 2958.970 143.000 569494.0 6423511.0 09:06 05.07.90 8901.6124 2954.790 165.000 566068.0 6420809.0 09:14 05.07.90
                                                                                                 8.303
                                                                                                 6.623
B 8901.6000 2949.160 166.000 573684.0 6420809.0 09:14 05.07.90
A 8901.3395 2954.930 169.000 565800.0 6420800.0 10:01 05.07.90
8901.6160 2954.240 177.000 561313.0 6421436.0 10:43 05.07.90
8901.6161 2955.110 174.000 561290.0 6421273.0 10:52 05.07.90
                                                                                                 6.569
                                                                                                 6.711
  8901.6161 2955.110 174.000 561290.0 6421273.0 10:52 05.07.90 8901.6162 2955.410 173.000 561448.0 6421091.0 10:56 05.07.90 8901.6163 2956.550 172.000 561606.0 6420909.0 11:00 05.07.90 8901.6164 2957.440 170.000 561707.0 6420712.0 11:10 05.07.90 8901.6165 2957.280 170.000 561895.0 6420476.0 11:18 05.07.90 8901.6166 2957.840 167.000 561991.0 6420375.0 11:22 05.07.90 8901.6167 2957.750 166.000 562135.0 6420321.0 11:26 05.07.90 8901.6168 2957.380 165.000 562311.0 6420321.0 11:34 05.07.90 8901.6169 2956.850 166.000 562471.0 6420028.0 11:47 05.07.90 8901.6170 2956.380 168.000 562583.0 6419885.0 11:53 05.07.90 8901.6171 2956.110 170.000 562640.0 6419727.0 11:59 05.07.90 8901.3395 2954.930 169.000 5658800.0 6420800.0 12:09 05.07.90
                                                                                                 6.675
                                                                                                 7.493
                                                                                                 7.838
                                                                                                 7.503
7.377
                                                                                                 7.040
                                                                                                 6.318
                                                                                                 5.913
                                                                                                 5.746
                                                                                                 5.770
A 8901.3395 2954.930 169.000 565800.0 6420800.0 12:09 05.07.90
   8901.6172 2956.780 172.000 562730.0 6419496.0 12:49 05.07.90
                                                                                                 6.703
   8901.6173 2956.610 175.000 562787.0 6419338.0 12:53 05.07.90
                                                                                                 7.036
   8901.6174 2956.210 176.000 562857.0 6419160.0 12:56 05.07.90
                                                                                                 6.706
   8901.6175 2955.730 178.000 562985.0 6419038.0 13:01 05.07.90
                                                                                                 6.544
   8901.6176 2955.250 178.000 563032.0 6418820.0 13:06 05.07.90
                                                                                                 5.898
   8901.6177 2954.770 182.000 563100.0 6418657.0 13:10 05.07.90
                                                                                                 6.119
   8901.6178 2953.050 184.000 563302.0 6418550.0 13:49 05.07.90
                                                                                                 4.717
   8901.6179 2951.910 188.000 563301.0 6418339.0 13:53 05.07.90
                                                                                                 4.232
   8901.6180 2951.420 192.000 563397.0 6418046.0 13:57 05.07.90
                                                                                                 4.347
   8901.6181 2951.140 195.000 563499.0 6417861.0 14:02 05.07.90
                                                                                                 4.549
   8901.6182 2951.150 197.000 563607.0 6417698.0 14:06 05.07.90
                                                                                                 4.854
   8901.6183 2951.230 200.000 563751.0 6417654.0 14:11 05.07.90
                                                                                                 5.525
```

```
8901.6184 2951.030 203.000 563826.0 6417503.0 14:15 05.07.90
                                                                       5.832
A 8901.3395 2954.900 169.000 565800.0 6420800.0 14:39 05.07.90
  8901.6000 2949.280 166.000 573684.0 6431408.0 08:26 06.07.90
  8901.5286 2934.060 225.290 569400.0 6432800.0 09:06 06.07.90
                                                                       6.826
  8901.5287 2933.330 228.680 569400.0 6432900.0 09:14 06.07.90
                                                                       6.861
                                                                       6.518
  8901.5288 2932.500 230.740 569400.0 6433000.0 09:18 06.07.90
  8901.5289 2931.600 233.560 569400.0 6433100.0 09:23 06.07.90
                                                                       6.262
  8901.5290 2930.940 238.970 569400.0 6433200.0 09:34 06.07.90
                                                                       6.786
  8901.5291 2929.640 245.680 569400.0 6433300.0 09:39 06.07.90
                                                                        6.929
  8901.5292 2928.690 250.040 569400.0 6433400.0 09:44 06.07.90
                                                                       6.940
  8901.5293 2928.020 253.190 569400.0 6433500.0 09:49 06.07.90
                                                                       6.986
  8901.5294 2927.360 255.950 569400.0 6433600.0 09:57 06.07.90
                                                                       6.962
  8901.5295 2927.540 254.140 569400.0 6433700.0 10:02 06.07.90
                                                                       6.845
  8901.5296 2928.150 251.290 569400.0 6433800.0 10:07 06.07.90
                                                                       6.949
            2928.940 246.980 569400.0 6433900.0 10:13 06.07.90
                                                                       6.935
  8901.5297
  8901.5298 2929.780 241.920 569400.0 6434000.0 10:19 06.07.90 8901.5299 2931.070 234.740 569400.0 6434100.0 10:23 06.07.90
                                                                       6.816
                                                                       6.715
  8901.5300 2931.940 228.360 569400.0 6434200.0 10:30 06.07.90
                                                                       6.355
  8901.5301
            2933.010 221.830 569400.0 6434300.0 10:34 06.07.90
                                                                       6.165
  8901.5302 2933.860 217.280 569400.0 6434400.0 10:37 06.07.90
                                                                       6.161
  8901.5303 2934.430 214.100 569400.0 6434500.0 10:41 06.07.90
                                                                       6.157
  8901.5304 2934.790 212.740 569400.0 6434600.0 10:46 06.07.90
                                                                       6.317
  8901.5305 2934.870 212.330 569400.0 6434700.0 10:49 06.07.90
                                                                       6.387
  8901.5306 2934.460 213.500 569400.0 6434800.0 10:55 06.07.90
                                                                       6.289
  8901.5307 2933.210 217.370 569400.0 6434900.0 10:59 06.07.90
                                                                       5.895
  8901.5308 2931.720 222.870 569400.0 6435000.0 11:05 06.07.90
                                                                       5.596
  8901.5309 2929.770 232.650 569400.0 6435100.0 11:09 06.07.90
                                                                       5.714
  8901.5310 2927.340 247.690 569400.0 6435200.0 11:13 06.07.90
                                                                        6.433
B 8901.6000 2949.230 166.000 573684.0 6431408.0 11:39 06.07.90
  8901.5311 2923.390 267.440 569400.0 6435300.0 12:26 06.07.90
                                                                        6.565
                                                                        6.733
  8901.5312 2922.200 273.750 569400.0 6435400.0 12:31 06.07.90
  8901.5313 2923.100 270.050 569400.0 6435500.0 12:35 06.07.90
                                                                        6.953
  8901.5314 2924.120 265.340 569400.0 6435600.0 12:41 06.07.90
                                                                       7.085
  8901.5315 2925.950 255.230 569400.0 6435700.0 12:47 06.07.90
                                                                        6.923
  8901.5316 2928.400 242.730 569400.0 6435800.0 12:51 06.07.90
                                                                        6.897
                                                                        6.881
  8901.5317 2930.000 234.460 569400.0 6435900.0 12:58 06.07.90
                                                                        6.917
  8901.5318 2930.710 230.800 569400.0 6436000.0 13:01 06.07.90
  8901.5319 2931.870 224.280 569400.0 6436100.0 13:08 06.07.90
                                                                        6.817
  8901.5320 2931.790 224.560 569400.0 6436200.0 13:13 06.07.90
                                                                        6.865
  8901.5321 2931.310 227.050 569400.0 6436300.0 13:18 06.07.90
                                                                        6.965
  8901.5322 2930.800 228.980 569400.0 6436400.0 13:23 06.07.90
                                                                        6.917
  8901.5323 2931.450 226.070 569400.0 6436500.0 13:27 06.07.90
                                                                        7.048
  8901.5324 2932.950 217.770 569400.0 6436600.0 13:35 06.07.90
                                                                        6.924
  8901.5325 2934.010 211.500 569400.0 6436700.0 13:39 06.07.90
                                                                        6.776
  8901.5326 2935.270 205.030 569400.0 6436800.0 13:44 06.07.90
                                                                        6.789
  8901.5327
            2936.600 197.730 569400.0 6436900.0 13:48 06.07.90
                                                                        6.701
  8901.5328 2936.380 197.610 569400.0 6437000.0 13:53 06.07.90
                                                                        6.525
  8901.5329 2935.870 199.210 569400.0 6437100.0 14:02 06.07.90
                                                                        6.408
  8901.5330 2936.020 198.160 569400.0 6437200.0 14:07 06.07.90
                                                                        6.415
  8901.5331 2935.530 199.540 569400.0 6437300.0 14:11 06.07.90
                                                                        6.275
  8901.5332 2935.040 203.230 569400.0 6437400.0 14:16 06.07.90
                                                                        6.613
  8901.5333 2934.000 208.610 569400.0 6437500.0 14:20 06.07.90
                                                                        6.742
  8901.5334 2933.020 213.290 569400.0 6437600.0 14:25 06.07.90
                                                                        6.786
  8901.5335 2932.490 216.160 569400.0 6437700.0 14:30 06.07.90
                                                                        6.913
B 8901.6000 2949.320 166.000 573684.0 6431408.0 15:10 06.07.90
  8901.5336 2931.720 220.010 569400.0 6437800.0 15:40 06.07.90
                                                                        6.985
            2931.890 219.160 569400.0 6437900.0 15:46 06.07.90
  8901.5337
                                                                       7.054
  8901.5338 2931.720 218.510 569400.0 6438000.0 15:49 06.07.90 8901.5339 2930.530 222.230 569400.0 6438100.0 15:55 06.07.90
                                                                        6.820
                                                                       6.454
  8901.5340 2930.060 226.560 569400.0 6438200.0 16:01 06.07.90
                                                                       6.945
```

```
8901.5341 2929.480 229.690 569400.0 6438300.0 16:08 06.07.90
                                                                     7.075
B 8901.6000 2949.340 166.000 573684.0 6431408.0 16:55 06.07.90
B 8901.6000 2949.280 166.000 573684.0 6431408.0 09:31 07.07.90
  8901.6104 2948.820 165.000 573315.0 6431250.0 09:36 07.07.90
                                                                     8.220
  8901.6105 2949.360 163.000 572855.0 6431134.0 09:41 07.07.90
                                                                     8.270
  8901.6106 2950.420 160.000 572423.0 6430848.0 09:50 07.07.90
                                                                     8.520
  8901.6107 2950.070 161.000 572076.0 6430548.0 09:56 07.07.90
                                                                     8.152
  8901.6108 2950.490 161.000 571719.0 6430182.0 10:00 07.07.90
                                                                     8.310
  8901.6109 2951.720 165.000 571454.0 6429774.0 10:04 07.07.90
                                                                    10.088
  8901.6110 2953.190 157.000 571205.0 6429330.0 10:07 07.07.90
                                                                     9.600
  8901.6111 2953.330 158.000 571043.0 6428846.0 10:11 07.07.90
                                                                     9.595
  8901.6112 2954.240 160.000 570849.0 6428421.0 10:16 07.07.90
                                                                    10.622
  8901.6113 2954.920 156.000 570814.0 6427960.0 10:19 07.07.90
                                                                    10.148
  8901.6114 2955.710 153.000 570606.0 6427481.0 10:23 07.07.90
                                                                     9.979
  8901.6115 2956.760 151.000 570344.0 6427070.0 10:27 07.07.90
                                                                    10.330
  8901.6116 2957.210 155.000 569831.0 6426224.0 10:33 07.07.90
                                                                    10.994
  8901.6117 2956.230 156.000 569385.0 6425425.0 10:38 07.07.90
                                                                     9.619
  8901.6118 2957.880 148.000 569447.0 6424472.0 10:43 07.07.90
                                                                     8.942
  8901.6119 2959.360 143.000 569494.0 6423511.0 10:47 07.07.90
                                                                     8.706
  8901.6120 2958.230 150.000 569528.0 6422461.0 10:52 07.07.90
                                                                     8.237
  8901.6121 2957.420 151.000 568687.0 6422011.0 10:57 07.07.90
                                                                     7.290
  8901.6122 2957.930 151.000 567805.0 6421715.0 11:01 07.07.90
                                                                     7.589
  8901.6123 2956.110 159.000 566924.0 6421295.0 11:06 07.07.90
                                                                     7.086
  8901.6124 2955.150 165.000 566068.0 6420809.0 11:12 07.07.90
                                                                     6.995
B 8901.6000 2949.190 166.000 573684.0 6431408.0 11:35 07.07.90
  8901.6185 2941.720 166.000 570461.0 6439708.0 13:19 07.07.90
                                                                     7.473
  8901.6186 2942.400 161.000 570445.0 6440233.0 13:27 07.07.90
                                                                     7.513
  8901.6187 2943.180 160.000 570406.0 6440885.0 13:35 07.07.90
                                                                     8.576
  8901.6188 2942.980 164.000 570505.0 6441068.0 13:40 07.07.90
                                                                     9.335
  8901.6189 2942.370 168.000 570603.0 6441166.0 13:46 07.07.90
                                                                     9.615
  8901.6190 2941.880 169.000 570661.0 6441366.0 13:51 07.07.90
                                                                     9.471
  8901.6191 2941.160 173.000 570728.0 6441580.0 14:05 07.07.90
                                                                     9.724
  8901.6192 2940.040 178.000 570795.0 6441731.0 14:22 07.07.90
                                                                     9.731
B 8901.6000 2949.230 166.000 573684.0 6431408.0 14:54 07.07.90
B 8901.6000 2949.140 166.000 573684.0 6431408.0 08:27 09.07.90
  8901.5342 2937.050 166.190 552200.0 6443000.0 09:48 09.07.90
                                                                     5.184
  8901.5343 2936.970 165.250 552200.0 6443100.0 09:54 09.07.90
                                                                     4.980
  8901.5344 2937.110 164.250 552200.0 6443200.0 09:58 09.07.90
                                                                     4.988
  8901.5345 2937.080 163.360 552200.0 6443300.0 10:01 09.07.90
                                                                     4.846
  8901.5346 2937.190 162.610 552200.0 6443400.0 10:05 09.07.90
                                                                     4.875
  8901.5347 2937.270 161.820 552200.0 6443500.0 10:08 09.07.90
                                                                     4.866
  8901.5348 2937.470 161.060 552200.0 6443600.0 10:12 09.07.90
                                                                     4.984
  8901.5349 2937.650 160.350 552200.0 6443700.0 10:16 09.07.90
                                                                     5.093
  8901.5350 2937.840 159.670 552200.0 6443800.0 10:20 09.07.90
                                                                     5.217
  8901.5351 2937.920 158.920 552200.0 6443900.0 10:24 09.07.90
                                                                     5.215
  8901.5352 2937.970 158.110 552200.0 6444000.0 10:32 09.07.90
                                                                     5.170
  8901.5353 2938.110 157.360 552200.0 6444100.0 10:35 09.07.90
                                                                     5.230
  8901.5354 2938.150 156.510 552200.0 6444200.0 10:41 09.07.90
                                                                     5.167
  8901.5355 2938.190 155.740 552200.0 6444300.0 10:45 09.07.90
                                                                     5.120
  8901.5356 2938.020 155.000 552200.0 6444400.0 10:48 09.07.90
                                                                     4.867
  8901.5357 2937.850 154.390 552200.0 6444500.0 10:52 09.07.90
                                                                     4.641
  8901.5358 2937.790 153.920 552200.0 6444600.0 10:56 09.07.90
                                                                     4.555
  8901.5359 2937.850 153.170 552200.0 6444700.0 11:00 09.07.90
                                                                     4.533
  8901.5360 2937.790 152.240 552200.0 6444800.0 11:04 09.07.90
                                                                     4.353
  8901.5361 2938.030 151.120 552200.0 6444900.0 11:08 09.07.90
                                                                     4.437
  8901.5362 2938.240 150.210 552200.0 6445000.0 11:12 09.07.90
                                                                     4.535
  8901.5363 2938.810 148.270 552200.0 6445100.0 11:17 09.07.90
                                                                     4.785
  8901.5364 2938.960 148.040 552200.0 6445200.0 11:22 09.07.90
                                                                     4.962
  8901.5365 2938.510 150.100 552200.0 6445300.0 11:26 09.07.90
                                                                     5.004
  8901.5366 2938.510 149.820 552200.0 6445400.0 11:30 09.07.90
                                                                     5.019
```

į

```
8901.5367 2938.950 147.880 552200.0 6445500.0 11:35 09.07.90
                                                                          5.137
                                                                          5.235
  8901.5368 2939.150 147.020 552200.0 6445600.0 11:40 09.07.90
  8901.5369 2938.850 148.130 552200.0 6445700.0 11:44 09.07.90
                                                                          5.232
                                                                          5.350
  8901.5370 2938.750 148.840 552200.0 6445800.0 11:50 09.07.90
  8901.5371 2938.810 148.550 552200.0 6445900.0 11:54 09.07.90
                                                                          5.424
  8901.5372 2938.910 148.240 552200.0 6446000.0 11:59 09.07.90
                                                                          5.535
  8901.5373 2939.030 149.180 551200.0 6445100.0 13:11 09.07.90
                                                                          5.191
  8901.5374 2938.830 149.860 551300.0 6445100.0 13:17 09.07.90
                                                                          5.130
  8901.5375 2938.730 150.360 551400.0 6445100.0 13:20 09.07.90
                                                                          5.133
  8901.5376 2938.370 151.390 551500.0 6445100.0 13:24 09.07.90
                                                                          4.982
                                                                          4.833
  8901.5377 2938.110 151.940 551600.0 6445100.0 13:28 09.07.90
  8901.5378 2938.090 151.490 551700.0 6445100.0 13:32 09.07.90
                                                                          4.722
  8901.5379 2938.220 150.820 551800.0 6445100.0 13:37 09.07.90
                                                                          4.717
  8901.5380 2938.290 150.250 551900.0 6445100.0 13:42 09.07.90
                                                                          4.672
  8901.5381 2938.350 150.090 552000.0 6445100.0 13:46 09.07.90
                                                                          4.702
  8901.5382 2938.560 149.460 552100.0 6445100.0 13:50 09.07.90
                                                                          4.787
  8901.5363 2938.780 148.270 552200.0 6445100.0 13:54 09.07.90
                                                                          4.766
  8901.5383 2938.840 148.130 552300.0 6445100.0 13:59 09.07.90 8901.5384 2939.090 148.070 552400.0 6445100.0 14:03 09.07.90
                                                                          4.800
                                                                          5.044
  8901.5385 2939.040 148.540 552500.0 6445100.0 14:08 09.07.90
                                                                          5.093
  8901.5386 2938.510 151.460 552600.0 6445100.0 14:14 09.07.90 8901.5387 2938.780 151.980 552700.0 6445100.0 14:19 09.07.90 8901.5388 2938.950 151.700 552800.0 6445100.0 14:23 09.07.90
                                                                          5.162
                                                                          5.546
                                                                          5.664
  8901.5389 2939.130 151.510 552900.0 6445100.0 14:26 09.07.90
                                                                          5.809
  8901.5390 2939.090 151.690 553000.0 6445100.0 14:30 09.07.90
                                                                          5.808
  8901.5391 2938.980 151.880 553100.0 6445100.0 14:34 09.07.90
                                                                          5.738
  8901.5392 2939.080 152.070 553200.0 6445100.0 14:39 09.07.90
                                                                          5.882
  8901.5363 2938.770 148.270 552200.0 6445100.0 14:50 09.07.90
                                                                          4.783
B 8901.6000 2949.080 166.000 573684.0 6431408.0 16:07 09.07.90
B 8901.6000 2949.070 166.000 573684.0 6431408.0 08:29 10.07.90
  8901.5395 2928.500 233.040 569400.0 6438400.0 09:12 10.07.90
                                                                          7.105
                                                                          7.165
  8901.5396 2928.060 235.220 569400.0 6438500.0 10:17 10.07.90
  8901.5397 2928.730 231.590 569400.0 6438600.0 10:29 10.07.90
                                                                          7.163
  8901.5398 2929.500 227.780 569400.0 6438700.0 10:34 10.07.90
                                                                          7.228
  8901.5399 2930.050 224.860 569400.0 6438800.0 10:39 10.07.90
                                                                          7.255
  8901.5400 2930.230 223.510 569400.0 6438900.0 10:43 10.07.90
                                                                          7.230
  8901.5401 2931.310 217.550 569400.0 6439000.0 10:49 10.07.90
                                                                          7.165
  8901.5402 2934.000 204.090 569400.0 6439100.0 11:00 10.07.90
                                                                          7.181
  8901.5403 2935.480 196.210 569400.0 6439200.0 11:06 10.07.90
                                                                          7.125
  8901.5404 2935.580 195.810 569400.0 6439300.0 11:11 10.07.90
                                                                          7.215
  8901.5405 2934.730 199.770 569400.0 6439400.0 11:16 10.07.90
                                                                          7.243
  8901.5406 2936.040 193.540 569400.0 6439500.0 11:20 10.07.90
                                                                          7.356
  8901.5407 2937.460 186.050 569400.0 6439600.0 11:25 10.07.90
                                                                          7.320
  8901.5408 2938.830 179.520 569400.0 6439700.0 11:30 10.07.90
                                                                          7.432
  8901.5409 2940.160 172.550 569400.0 6439800.0 11:36 10.07.90
                                                                          7.412
  8901.5410 2940.180 171.470 569400.0 6439900.0 11:40 10.07.90
                                                                          7.281
  8901.5411 2940.540 170.000 569400.0 6440000.0 11:44 10.07.90
                                                                          7.414
 8901.6000 2949.130 166.000 573684.0 6431408.0 12:09 10.07.90
  8901.5412 2939.270 175.620 568400.0 6440000.0 13:12 10.07.90
                                                                          7.275
  8901.5413 2938.620 178.680 568400.0 6439900.0 13:21 10.07.90
                                                                          7.177
  8901.5414 2937.970 182.290 568400.0 6439800.0 13:26 10.07.90
                                                                          7.191
  8901.5415 2937.250 185.620 568400.0 6439700.0 13:31 10.07.90
                                                                          7.076
  8901.5416 2936.870 187.880 568400.0 6439600.0 13:40 10.07.90
                                                                          7.086
  8901.5417 2936.060 191.800 568400.0 6439500.0 13:47 10.07.90
                                                                          7.003
  8901.5418 2935.450 194.990 568400.0 6439400.0 13:51 10.07.90
                                                                          6.972
  8901.5419 2934.660 199.600 568400.0 6439300.0 13:55 10.07.90
                                                                          7.051
  8901.5420 2933.730 204.010 568400.0 6439200.0 13:59 10.07.90 8901.5421 2933.730 204.500 568400.0 6439100.0 14:03 10.07.90
                                                                          6.947
                                                                          6.976
  8901.5422 2934.760 199.280 568400.0 6439000.0 14:13 10.07.90
                                                                          6.873
  8901.5423 2934.470 199.680 568400.0 6438900.0 14:17 10.07.90
                                                                          6.589
```

ļ

1

•

1

```
8901.5424 2933.500 205.800 568400.0 6438800.0 14:23 10.07.90
                                                                            6.799
  8901.5425 2932.970 209.060 568400.0 6438700.0 14:29 10.07.90
                                                                            6.865
  8901.5426 2934.700 199.560 568400.0 6438600.0 14:39 10.07.90
                                                                            6.588
  8901.5427 2935.000 198.000 568400.0 6438500.0 14:44 10.07.90
                                                                            6.499
  8901.5428 2933.330 206.660 568400.0 6438400.0 14:54 10.07.90
                                                                            6.527
  8901.5429 2932.440 211.520 568400.0 6438300.0 15:00 10.07.90
                                                                            6.558
  8901.5430 2931.880 214.290 568400.0 6438200.0 15:04 10.07.90
                                                                            6.492
 8901.6000 2949.050 166.000 573684.0 6431408.0 15:57 10.07.90
 8901.6000 2949.030 166.000 573684.0 6431408.0 08:39 11.07.90
  8901.5431 2931.750 215.390 568400.0 6438100.0 09:20 11.07.90
                                                                            6.597
  8901.5432 2932.170 213.010 568400.0 6438000.0 09:25 11.07.90
                                                                            6.461
  8901.5433 2930.520 219.440 568400.0 6437900.0 09:30 11.07.90
                                                                            6.044
  8901.5434 2928.670 230.060 568400.0 6437800.0 09:36 11.07.90
                                                                            6.292
                                                                            6.449
  8901.5435 2926.400 242.300 568400.0 6437700.0 09:45 11.07.90
  8901.5436 2922.820 260.640 568400.0 6437600.0 09:51 11.07.90
                                                                            6.537
  8901.5437 2921.720 266.800 568400.0 6437500.0 09:54 11.07.90
                                                                            6.622
  8901.5438 2920.340 273.410 568400.0 6437400.0 09:58 11.07.90
                                                                            6.516
  8901.5439 2917.110 287.010 568400.0 6437300.0 10:20 11.07.90
                                                                            5.983
  8901.5440 2913.030 303.770 568400.0 6437200.0 10:26 11.07.90
                                                                            5.235
  8901.5441 2913.290 301.680 568400.0 6437100.0 10:31 11.07.90 8901.5442 2918.050 280.860 568400.0 6437000.0 10:39 11.07.90
                                                                            4.994
                                                                            5.449
  8901.5443 2922.530 259.900 568400.0 6436900.0 10:43 11.07.90
                                                                            5.590
  8901.5444 2926.700 240.220 568400.0 6436800.0 10:48 11.07.90 8901.5445 2929.650 227.110 568400.0 6436700.0 10:51 11.07.90 8901.5446 2928.450 236.480 568400.0 6436600.0 11:18 11.07.90
                                                                            5.681
                                                                            5.892
                                                                            6.543
8901.5447 2928.620 236.590 568400.0 6436500.0 11:22 11.07.90 8901.5448 2930.000 229.640 568400.0 6436400.0 11:26 11.07.90 B 8901.6000 2948.960 166.000 573684.0 6431408.0 12:05 11.07.90
                                                                            6.666
                                                                            6.557
B 8901.6000 2948.850 166.000 573684.0 6431408.0 12:27 11.07.90
  8901.5449 2928.570 238.490 568400.0 6436300.0 13:06 11.07.90
                                                                            6.958
  8901.5450 2926.990 247.290 568400.0 6436200.0 13:11 11.07.90
                                                                            7.098
  8901.5451 2926.280 250.780 568400.0 6436100.0 13:14 11.07.90
                                                                            7.024
  8901.5452 2927.040 247.280 568400.0 6436000.0 13:20 11.07.90
                                                                            6.996
  8901.5453 2927.360 246.280 568400.0 6435900.0 13:28 11.07.90
                                                                            7.037
  8901.5454 2928.110 242.930 568400.0 6435800.0 13:34 11.07.90
                                                                            7.029
  8901.5455 2928.960 238.440 568400.0 6435700.0 13:38 11.07.90
                                                                            6.889
  8901.5456 2929.970 232.620 568400.0 6435600.0 13:39 11.07.90
                                                                            6.636
                                                                            6.752
  8901.5457 2930.540 230.740 568400.0 6435500.0 13:43 11.07.90
  8901.5458 2931.080 227.450 568400.0 6435400.0 13:45 11.07.90
                                                                            6.545
  8901.5459 2931.770 224.100 568400.0 6435300.0 13:48 11.07.90
                                                                            6.478
  8901.5460 2932.180 221.100 568400.0 6435200.0 13:50 11.07.90
                                                                            6.200
  8901.5461 2932.980 218.210 568400.0 6435100.0 13:53 11.07.90
                                                                            6.340
                                                                            6.330
  8901.5462 2933.640 215.280 568400.0 6435000.0 13:56 11.07.90
                                                                            6.111
  8901.5463 2933.830 213.650 568400.0 6434900.0 13:58 11.07.90
  8901.5464 2934.090 213.170 568400.0 6434800.0 14:02 11.07.90
                                                                            6.202
                                                                            6.027
  8901.5465 2933.820 214.010 568400.0 6434700.0 14:04 11.07.90
                                                                            6.080
  8901.5466 2933.540 216.000 568400.0 6434600.0 14:07 11.07.90
                                                                            6.497
  8901.5467 2933.260 219.750 568400.0 6434500.0 14:10 11.07.90
                                                                            6.483
  8901.5468 2932.570 223.430 568400.0 6434400.0 14:14 11.07.90
                                                                            6.603
  8901.5469 2932.580 224.320 568400.0 6434300.0 14:17 11.07.90
                                                                            6.303
  8901.5470 2932.880 221.750 568400.0 6434200.0 14:19 11.07.90
                                                                            6.402
  8901.5471 2932.450 224.700 568400.0 6434100.0 14:23 11.07.90
  8901.5472 2931.530 231.680 568400.0 6434000.0 14:25 11.07.90
                                                                            6.838
  8901.5473 2930.700 236.450 568400.0 6433900.0 14:29 11.07.90
                                                                             6.907
  8901.5474 2930.790 236.560 568400.0 6433800.0 14:31 11.07.90
                                                                             6.948
  8901.5475 2931.630 232.340 568400.0 6433700.0 14:34 11.07.90
                                                                            6.854
  8901.5476 2932.550 229.320 568400.0 6433600.0 14:38 11.07.90
                                                                            7.089
  8901.5477 2933.340 225.510 568400.0 6433500.0 14:41 11.07.90
                                                                            7.030
  8901.5478 2933.970 222.830 568400.0 6433400.0 14:44 11.07.90 8901.5479 2934.170 222.710 568400.0 6433300.0 14:49 11.07.90
                                                                            7.041
                                                                            7.146
```

1

i

```
8901.5480 2934.570 221.310 568400.0 6433200.0 14:58 11.07.90
                                                                                              7.188
  8901.6000 2948.900 166.000 573684.0 6431408.0 15:30 11.07.90
B 8901.6000 2949.000 166.000 573684.0 6431408.0 09:08 12.07.90
   8901.5478 2934.080 222.830 568400.0 6433400.0 09:51 12.07.90
                                                                                              7.061
   8901.5479 2934.250 222.710 568400.0 6433300.0 09:56 12.07.90
                                                                                              7.136
   8901.5480 2934.620 221.310 568400.0 6433200.0 10:02 12.07.90
                                                                                              7.148
   8901.5481 2935.390 217.570 568400.0 6433100.0 10:07 12.07.90
                                                                                              7.083
   8901.5482 2935.400 215.940 568400.0 6433000.0 10:11 12.07.90
                                                                                              6.683
   8901.5483 2936.250 214.010 568400.0 6432900.0 10:16 12.07.90
                                                                                              7.073
   8901.5484 2936.660 212.080 568400.0 6432800.0 10:19 12.07.90
                                                                                              7.016
   8901.5485 2937.090 211.120 568400.0 6432700.0 10:25 12.07.90
                                                                                              7.181
   8901.5486 2937.170 211.080 568400.0 6432600.0 10:29 12.07.90
                                                                                              7.180
   8901.5487 2937.360 211.540 568400.0 6432500.0 10:32 12.07.90
                                                                                              7.394
B 8901.6000 2949.000 166.000 573684.0 6431408.0 11:20 12.07.90
B 8901.6000 2948.980 166.000 573684.0 6431408.0 11:52 12.07.90
   8901.5488 2940.370 175.080 570500.0 6438200.0 12:24 12.07.90
                                                                                              7.131
   8901.5489 2939.370 179.720 570400.0 6438200.0 12:29 12.07.90
                                                                                              7.076
   8901.5490 2937.880 186.670 570300.0 6438200.0 12:33 12.07.90
                                                                                              7.001
   8901.5491 2935.690 197.680 570200.0 6438200.0 12:38 12.07.90
                                                                                              7.056
   8901.5492 2932.370 214.480 570100.0 6438200.0 12:44 12.07.90
                                                                                              7.161
   8901.5493 2928.830 231.720 570000.0 6438200.0 12:51 12.07.90
                                                                                              7.135
   8901.5494 2927.550 238.610 569900.0 6438200.0 12:57 12.07.90
                                                                                              7.262
   8901.5495 2926.480 244.140 569800.0 6438200.0 13:06 12.07.90
                                                                                              7.322
   8901.5496 2926.400 244.140 569700.0 6438200.0 13:09 12.07.90
                                                                                              7.242
   8901.5497 2926.800 242.390 569600.0 6438200.0 13:14 12.07.90
                                                                                              7.287
   8901.5498 2928.470 233.760 569500.0 6438200.0 13:17 12.07.90
                                                                                              7.199
  8901.5499 2929.670 226.560 569400.0 6438200.0 13:21 12.07.90
                                                                                              6.929
   8901.5500 2931.160 218.340 569300.0 6438200.0 13:26 12.07.90
                                                                                              6.743
   8901.5501 2932.610 211.870 569200.0 6438200.0 13:29 12.07.90
                                                                                              6.878
  8901.5501 2932.610 211.870 569200.0 6438200.0 13:29 12.07.90 8901.5502 2933.720 205.610 569100.0 6438200.0 13:33 12.07.90 8901.5503 2933.640 205.860 569000.0 6438200.0 13:36 12.07.90 8901.5504 2933.120 208.190 568900.0 6438200.0 13:40 12.07.90 8901.5505 2932.500 210.560 568800.0 6438200.0 13:44 12.07.90 8901.5506 2932.720 210.220 568700.0 6438200.0 13:49 12.07.90 8901.5507 2933.100 207.580 568600.0 6438200.0 13:54 12.07.90 8901.5508 2932.880 208.530 568500.0 6438200.0 13:58 12.07.90 8901.5509 2931.760 214.290 568400.0 6438200.0 14:02 12.07.90 8901.5509 2931.760 214.290 568400.0 6438200.0 14:07 12.07.90 8901.5510 2931.680 214.740 568300.0 6438200.0 14:07 12.07.90
                                                                                              6.712
                                                                                              6.683
                                                                                              6.638
                                                                                              6.500
                                                                                              6.656
                                                                                              6.497
                                                                                              6.472
                                                                                              6.528
  8901.5510 2931.680 214.740 568300.0 6438200.0 14:07 12.07.90 8901.5511 2932.360 211.340 568200.0 6438200.0 14:13 12.07.90 8901.5512 2932.240 211.800 568100.0 6438200.0 14:20 12.07.90 8901.5513 2930.480 221.090 568000.0 6438200.0 14:25 12.07.90
                                                                                              6.542
                                                                                              6.533
                                                                                              6.509
                                                                                              6.647
  8901.5514 2929.420 227.190 567900.0 6438200.0 14:30 12.07.90
                                                                                              6.835
  8901.5515 2928.820 230.400 567800.0 6438200.0 14:35 12.07.90
                                                                                              6.892
  8901.5516 2929.080 229.610 567700.0 6438200.0 14:40 12.07.90 8901.5517 2929.470 227.450 567600.0 6438200.0 14:45 12.07.90
                                                                                              6:996
                                                                                              6.948
   8901.5518 2929.040 229.260 567500.0 6438200.0 14:52 12.07.90
                                                                                              6.891
B 8901.6000 2948.850 166.000 573684.0 6431408.0 15:47 12.07.90
EOD
```

END

```
NAM CHARBA HILL EL - SHERRY DAM PROSPECT
 GRAVITY READINGS WERE CORRECTED FOR EARTH TIDE
; GRAVITY READINGS WERE CORRECTED FOR METER DRIFT
; GRAVITY READINGS WERE CORRECTED FOR LATITUDE USING ISOGAL84
; FREE AIR CORRECTION WAS APPLIED USING 2gh/R
; BOUGER CORRECTION WAS APPLIED USING DENSITY OF 2.4grams/cc
PAR FREE ; 0.3086
PAR ZONE ; 53.
PAR GMT ; 9.5
PAR BASE STATION; B: 573684. 6431408. 979478.55
PAR METER ; : 1.02183
VAR BASE ID; STATION; RAW GRAVITY; ELEVATION; EASTING; NORTHING; HOUR; MINUTE; DAY
VAR MONTH; YEAR; BOUGER CORRECTED GRAVITY
FMT (A1,1X,F9.4,1X,F8.3,1X,F7.3,1X,F8.1,1X,F9.1,5(1X,I2.2),1X,F10.3)
B 8901.6000 3022.290 166.000 573684.0 6431408.0 09:46 28.08.90
  8901.5519 3001.910 231.595 569400.0 6438600.0 10:39 28.08.90
                                                                       7.059
  8901.5520 3004.780 216.385 569300.0 6438600.0 10:45 28.08.90
                                                                       6.847
  8901.5521 3004.770 217.015 569200.0 6438600.0 10:52 28.08.90
                                                                       6.973
  8901.5522 3005.300 214.605 569100.0 6438600.0 10:57 28.08.90
                                                                       7.018
  8901.5523 3006.170 209.145 569000.0 6438600.0 11:04 28.08.90
                                                                       6.783
  8901.5524 3007.250 203.540 568900.0 6438600.0 11:08 28.08.90 8901.5525 3008.550 196.015 568800.0 6438600.0 11:13 28.08.90
                                                                       6.729
                                                                       6.503
  8901.5526 3008.780 194.705 568700.0 6438600.0 12:27 28.08.90
                                                                       6.512
  8901.5527 3008.790 195.055 568600.0 6438600.0 12:32 28.08.90
                                                                       6.596
  8901.5528 3008.740 195.195 568500.0 6438600.0 12:38 28.08.90
                                                                       6.578
  8901.5529 3007.930 199.560 568400.0 6438600.0 12:44 28.08.90
                                                                       6.655
  8901.5530 3006.350 207.735 568300.0 6438600.0 12:49 28.08.90
                                                                       6.733
  8901.5531 3006.040 209.175 568200.0 6438600.0 12:53 28.08.90
                                                                       6.716
  8901.5532 3006.010 209.650 568100.0 6438600.0 12:57 28.08.90
                                                                       6.785
  8901.5533 3005.880 209.860 568000.0 6438600.0 13:01 28.08.90
                                                                       6.697
                                                                       6.801
  8901.5534 3005.570 211.875 567900.0 6438600.0 13:06 28.08.90
  8901.5535 3006.430 207.565 567800.0 6438600.0 13:11 28.08.90
                                                                       6.789
  8901.5536 3007.700 201.265 567700.0 6438600.0 13:17 28.08.90
                                                                       6.785
  8901.5537 3006.510 207.735 567600.0 6438600.0 13:22 28.08.90
                                                                       6.911
  8901.5538 3006.230 209.225 567500.0 6438600.0 13:26 28.08.90
                                                                       6.934
B 8901.6000 3022.130 166.000 573684.0 6431408.0 14:20 28.08.90
EOD
```

END

```
NAM UNALLA HILL EL - COTTON BUSH DAM PROSPECT
  GRAVITY READINGS WERE CORRECTED FOR EARTH TIDE
  GRAVITY READINGS WERE CORRECTED FOR METER DRIFT
  GRAVITY READINGS WERE CORRECTED FOR LATITUDE USING ISOGAL84
  FREE AIR CORRECTION WAS APPLIED USING 2gh/R
  BOUGER CORRECTION WAS APPLIED USING DENSITY OF 2.4grams/cc
PAR FREE ; .3086
PAR ZONE ; 53.
PAR GMT ; 9.5
PAR BASE STATION ; A : 500000. 6400000. 979500.83
PAR BASE STATION; B: 606000. 6413800. 979493.6
PAR METER ; : 1.02183
TYP LINE
VAR BASE ID; STATION; RAW GRAVITY; ELEVATION; EASTING; NORTHING; HOUR; MINUTE; DAY
VAR MONTH; YEAR; BOUGER CORRECTED GRAVITY
FMT (A1,1X,F9.4,1X,F8.3,1X,F7.3,1X,F8.1,1X,F9.1,5(1X,I2.2),1X,F10.3)
A 8901.3388 3037.810 131.950 500000.0 6400000.0 15:11 28.08.90
B 8901.7006 3026.090 203.730 606000.0 6413800.0 15:55 28.08.90
A 8901.3388 3037.770 131.950 500000.0 6400000.0 16:24 28.08.90
  8901.3388 3037.770 131.950 500000.0 6400000.0 16:24 28.08.90
                                                                              5.588
B 8901.7006 3026.110 203.730 606000.0 6413800.0 16:55 28.08.90
  8901.7001 3025.220 215.000 605500.0 6413800.0 17:13 28.08.90
                                                                             20.529
  8901.7002 3026.600 207.950 605600.0 6413800.0 17:16 28.08.90
                                                                             20.482
  8901.7003 3026.350 206.820 605700.0 6413800.0 17:18 28.08.90
                                                                             19.994
  8901.7004 3025.970 205.880 605800.0 6413800.0 17:21 28.08.90
                                                                             19.411
  8901.7005 3025.980 204.680 605900.0 6413800.0 17:24 28.08.90
                                                                             19.174
B 8901.7006 3026.110 203.730 606000.0 6413800.0 17:28 28.08.90
  8901.7006 3026.110 203.730 606000.0 6413800.0 17:28 28.08.90 8901.7007 3026.440 202.780 606100.0 6413800.0 17:33 28.08.90
                                                                             19.112
                                                                             19.251
  8901.7008 3026.710 201.960 606200.0 6413800.0 17:36 28.08.90
                                                                             19.356
  8901.7009 3026.640 201.930 606300.0 6413800.0 17:39 28.08.90
                                                                             19.278
  8901.7010 3026.450 202.910 606400.0 6413800.0 17:42 28.08.90
                                                                             19.286
8901.7011 3026.180 204.040 606500.0 6413800.0 17:45 28.08.90 B 8901.7006 3026.120 203.730 606000.0 6413800.0 17:51 28.08.90 B 8901.7006 3026.210 203.730 606000.0 6413800.0 08:24 29.08.90
                                                                             19.244
  8901.7012 3025.930 205.270 606600.0 6413800.0 08:31 29.08.90 8901.7013 3025.760 206.430 606700.0 6413800.0 08:34 29.08.90
                                                                             19.147
                                                                             19.214
  8901.7014 3025.730 207.850 606800.0 6413800.0 08:37 29.08.90
                                                                             19.477
  8901.7015 3025.410 209.940 606900.0 6413800.0 08:41 29.08.90 8901.7016 3024.960 212.460 607000.0 6413800.0 08:49 29.08.90
                                                                             19.583
                                                                             19.643
  8901.7017 3024.530 215.370 607100.0 6413800.0 08:51 29.08.90
                                                                             19.806
  8901.7018 3024.110 217.830 607200.0 6413800.0 08:53 29.08.90
                                                                             19.886
  8901.7019 3023.130 222.910 607300.0 6413800.0 08:57 29.08.90 8901.7020 3022.420 226.190 607400.0 6413800.0 09:00 29.08.90
                                                                             19.936
                                                                             19.889
  8901.7021 3021.950 228.460 607500.0 6413800.0 09:04 29.08.90
                                                                             19.879
  8901.7022 3021.480 230.740 607600.0 6413800.0 09:07 29.08.90
                                                                             19.870
  8901.7023 3021.280 231.660 607700.0 6413800.0 09:10 29.08.90
                                                                             19.856
  8901.7024 3021.150 232.780 607800.0 6413800.0 09:14 29.08.90
                                                                             19.955
  8901.7025 3021.160 233.100 607900.0 6413800.0 09:17 29.08.90
                                                                             20.032
  8901.7026 3021.220 233.190 608000.0 6413800.0 09:20 29.08.90
                                                                             20.112
  8901.7027 3022.020 229.430 608100.0 6413800.0 09:25 29.08.90
                                                                             20.151
  8901.7028 3021.070 234.060 608200.0 6413800.0 09:28 29.08.90
                                                                             20.139
  8901.7029 3020.340 237.890 608300.0 6413800.0 09:30 29.08.90
                                                                             20.185
  8901.7030 3019.950 240.310 608400.0 6413800.0 09:33 29.08.90
                                                                             20.288
  8901.7031 3019.760 241.320 608500.0 6413800.0 09:35 29.08.90
                                                                             20.303
  8901.7032 3020.070 240.050 608600.0 6413800.0 09:38 29.08.90
                                                                             20.357
                                                                             20.501
  8901.7033 3020.330 239.460 608700.0 6413800.0 09:41 29.08.90
```

```
8901.7034 3020.580 238.860 608800.0 6413800.0 09:44 29.08.90
                                                                       20.632
  8901.7035
            3020.690 238.490 608900.0 6413800.0 09:47 29.08.90
                                                                       20.668
  8901.7036
            3020.760 238.250 609000.0 6413800.0 09:49 29.08.90
                                                                       20.690
            3020.670 238.720 609100.0 6413800.0 09:52 29.08.90
                                                                       20.696
  8901.7037
            3020.660 239.360 609200.0 6413800.0 09:55 29.08.90
                                                                       20.818
  8901.7038
  8901.7039 3020.330 241.230 609300.0 6413800.0 09:57 29.08.90
                                                                       20.868
  8901.7040 3019.910 244.030 609400.0 6413800.0 10:00 29.08.90
                                                                       21.018
  8901.7041 3019.330 247.000 609500.0 6413800.0 10:03 29.08.90
                                                                       21.040
  8901.7042 3018.650 250.710 609600.0 6413800.0 10:06 29.08.90
                                                                       21.113
  8901.7043 3017.940 254.400 609700.0 6413800.0 10:08 29.08.90
                                                                       21.151
  8901.7044 3017.350 257.690 609800.0 6413800.0 10:11 29.08.90
                                                                       21.229
  8901.7045 3017.240 258.570 609900.0 6413800.0 10:14 29.08.90
                                                                       21.299
  8901.7046 3017.420 257.550 610000.0 6413800.0 10:18 29.08.90
                                                                       21.272
B 8901.7006 3026.240 203.730 606000.0 6413800.0 10:45 29.08.90
  8901.7047 3026.170 207.800 606400.0 6413000.0 10:53 29.08.90
                                                                       19.298
  8901.7048 3026.200 207.770 606500.0 6413000.0 10:56 29.08.90
                                                                       19.324
  8901.7049 3026.100 207.780 606600.0 6413000.0 10:59 29.08.90
                                                                       19.226
                                                                       19.214
  8901.7050 3026.010 208.160 606700.0 6413000.0 11:02 29.08.90
  8901.7051 3025.890 209.050 606800.0 6413000.0 11:06 29.08.90
                                                                       19.278
  8901.7052 3025.800 209.800 606900.0 6413000.0 11:09 29.08.90
                                                                       19.343
  8901.7053 3025.630 210.780 607000.0 6413000.0 11:11 29.08.90
                                                                       19.374
  8901.7054 3025.320 211.940 607100.0 6413000.0 11:14 29.08.90
                                                                       19.298
  8901.7055 3025.130 213.170 607200.0 6413000.0 11:18 29.08.90
                                                                       19.361
  8901.7056 3025.070 214.360 607300.0 6413000.0 11:21 29.08.90
                                                                       19.547
            3025.070 215.720
  8901.7057
                              607400.0 6413000.0 11:27
                                                         29.08.90
                                                                       19.831
  8901.7058 3024.470 219.290
                              607500.0 6413000.0 11:32
                                                         29.08.90
                                                                       19.959
  8901.7059 3023.820 222.650
                              607600.0 6413000.0 11:35 29.08.90
                                                                       19.992
  8901.7060 3023.110 226.040 607700.0 6413000.0 11:38 29.08.90
                                                                       19.969
  8901.7061 3023.030 226.490 607800.0 6413000.0 11:42 29.08.90
                                                                       19.983
            3022.620 227.440 607900.0 6413000.0 11:45 29.08.90
  8901.7062
                                                                       19.762
            3021.730 231.990
  8901.7063
                              608000.0 6413000.0 11:50 29.08.90
                                                                       19.796
  8901.7064 3020.980 236.000
                              608100.0 6413000.0 11:54 29.08.90
                                                                       19.861
  8901.7065 3020.530 238.540
                              608200.0 6413000.0 11:58 29.08.90
                                                                       19.928
  8901.7066 3020.940 236.720 608300.0 6413000.0 12:03 29.08.90
                                                                       19.973
  8901.7067 3019.990 241.800 608400.0 6413000.0 12:06 29.08.90
                                                                       20.055
            3018.450 250.260 608500.0 6413000.0 12:13 29.08.90
                                                                       20.234
20.394
  8901.7068
            3018.490 250.830
  8901.7069
                              608600.0 6413000.0 12:16 29.08.90
  8901.7070 3018.150 253.060
                              608700.0 6413000.0 12:19 29.08.90
                                                                       20.509
  8901.7071
8901.7072
                                                                       20.588
            3018.590
                      251.260
                              608800.0 6413000.0 12:22 29.08.90
            3018.430 252.620
                              608900.0 6413000.0 12:26 29.08.90
  8901.7073 3017.920 255.570 609000.0 6413000.0 12:29 29.08.90 8901.7074 3017.810 255.340 609100.0 6413000.0 12:31 29.08.90
                                                                       20.798.
                                                                       20.640
  8901.7075 3017.560 258.040 609200.0 6413000.0 12:35 29.08.90
                                                                       20.944
  8901.7076 3017.250 260.160 609300.0 6413000.0 12:38 29.08.90
                                                                       21.067
  8901.7077 3017.760 257.520 609400.0 6413000.0 12:42 29.08.90
                                                                       21.044
  8901.7078 3018.350 254.700 609500.0 6413000.0 12:45 29.08.90
                                                                       21.065
  8901.7079 3018.720 252.330 609600.0 6413000.0 12:48 29.08.90
                                                                       20.954
  8901.7080 3019.240 250.290 609700.0 6413000.0 12:52 29.08.90
                                                                       21.065
  8901.7081 3019.080 251.440 609800.0 6413000.0 12:55 29.08.90
                                                                       21.141
  8901.7082 3018.870 253.470 609900.0 6413000.0 12:58 29.08.90 8901.7083 3018.400 255.930 610000.0 6413000.0 13:01 29.08.90
                                                                       21.348
                                                                       21.377
B 8901.7006 3026.200 203.730 606000.0 6413800.0 13:31 29.08.90
EOD
END
```

8.500

```
NAM UNALLA HILL EL - KOLENDO GRAVITY SURVEY
         Base Station value is approximate only - no tie completed
   GRAVITY READINGS WERE CORRECTED FOR EARTH TIDE
    GRAVITY READINGS WERE CORRECTED FOR METER DRIFT
    GRAVITY READINGS WERE CORRECTED FOR LATITUDE USING ISOGAL84
 ; FREE AIR CORRECTION WAS APPLIED USING 2gh/R
 ; BOUGER CORRECTION WAS APPLIED USING DENSITY OF 2.4grams/cc
 PAR FREE ; .3086
 PAR ZONE ; 53.
 PAR GMT ; 9.5
 PAR BASE STATION ; A : 624500. 6410900. 979483.
 PAR METER ; : 1.02183
 VAR BASE ID; STATION; RAW GRAVITY; ELEVATION; EASTING; NORTHING; HOUR; MINUTE; DAY
 VAR MONTH; YEAR; BOUGER CORRECTED GRAVITY
 FMT (A1,1X,F9.4,1X,F8.3,1X,F7.3,1X,F8.1,1X,F9.1,5(1X,12.2),1X,F10.3)
 A 8901.7084 3025.320 215.000 624500.0 6410900.0 09:04 30.08.90
    8901.7085 3015.140 267.110 626000.0 6410900.0 09:21 30.08.90
                                                                                                                         9.249
    8901.7086 3019.620 244.890 625900.0 6410900.0 09:27 30.08.90
                                                                                                                         9.228
    8901.7087 3022.420 231.010 625800.0 6410900.0 09:31 30.08.90
                                                                                                                         9.217
    8901.7088 3024.550 219.690 625700.0 6410900.0 09:36 30.08.90
                                                                                                                         9.050
    8901.7089 3025.910 211.460 625600.0 6410900.0 09:39 30.08.90
                                                                                                                        8.735
    8901.7090 3026.600 207.410 625500.0 6410900.0 09:43 30.08.90
                                                                                                                         8.601

      8901.7091
      3027.070
      204.660
      625400.0
      6410900.0
      09:46
      30.08.90

      8901.7092
      3027.740
      203.560
      625300.0
      6410900.0
      09:51
      30.08.90

      8901.7093
      3027.880
      202.930
      625200.0
      6410900.0
      09:54
      30.08.90

      8901.7094
      3027.980
      202.010
      625100.0
      6410900.0
      09:58
      30.08.90

      8901.7095
      3027.360
      203.420
      625000.0
      6410900.0
      10:01
      30.08.90

      8901.7096
      3026.600
      205.780
      624900.0
      6410900.0
      10:05
      30.08.90

      8901.7097
      3026.090
      208.440
      624800.0
      6410900.0
      10:18
      30.08.90

      8901.7098
      3025.580
      210.810
      624700.0
      6410900.0
      10:14
      30.08.90

      8901.7099
      3025.460
      213.280
      624600.0
      6410900.0
      10:18
      30.08.90

      8901.7084
      3025.220
      215.000
      624500.0
      6410900.0
      10:18
      30.08.90

      8901.7101
      3023.550
      223.180
      624400.0
      6410900.0
      10:27
      30.08.90

    8901.7091 3027.070 204.660 625400.0 6410900.0 09:46 30.08.90
                                                                                                                         8.511
                                                                                                                         8.967
                                                                                                                         8.978
                                                                                                                         8.888
                                                                                                                         8.545
                                                                                                                         8.255
                                                                                                                         8.283
                                                                                                                         8.251
                                                                                                                         8.639
                                                                                                                         8.748
                                                                                                                         8.675
                                                                                                                         8.724
                                                                                                                         9.014
    8901.7103 3019.530 245.050 624100.0 6410900.0 10:35 30.08.90
                                                                                                                         9.132
    8901.7104 3015.080 267.080 624000.0 6410900.0 10:43 30.08.90 8901.7105 3010.380 290.820 623900.0 6410900.0 10:50 30.08.90 8901.7106 3011.580 286.140 623800.0 6410900.0 10:56 30.08.90
                                                                                                                         9.135
                                                                                                                         9.236
                                                                                                                         9:488
    8901.7107 3014.210 273.340 623700.0 6410900.0 11:02 30.08.90 8901.7108 3016.650 261.300 623600.0 6410900.0 11:07 30.08.90 8901.7109 3018.420 252.280 623500.0 6410900.0 11:11 30.08.90 8901.7110 3018.350 253.050 623400.0 6410900.0 11:16 30.08.90
                                                                                                                         9.522
                                                                                                                         9.519
                                                                                                                         9.458
                                                                                                                         9.540
    8901.7111 3016.630 262.000 623300.0 6410900.0 11:20 30.08.90
                                                                                                                         9.630
    8901.7112 3014.650 271.630 623200.0 6410900.0 11:24 30.08.90 8901.7113 3012.370 282.930 623100.0 6410900.0 11:28 30.08.90
                                                                                                                         9.595
                                                                                                                         9.599
    8901.7114 3009.290 296.800 623000.0 6410900.0 11:33 30.08.90
                                                                                                                         9.316
A 8901.7084 3025.410 215.000 624500.0 6410900.0 11:55 30.08.90 8901.7115 3025.330 218.400 624500.0 6409400.0 12:51 30.08.90
                                                                                                                         8.377
    8901.7116 3025.850 214.490 624500.0 6409500.0 12:54 30.08.90
                                                                                                                         8.173
    8901.7117 3026.260 212.110 624500.0 6409600.0 12:57 30.08.90
                                                                                                                        8.173
    8901.7118 3026.380 211.350 624500.0 6409700.0 13:00 30.08.90
                                                                                                                        8.213
    8901.7119 3026.440 210.690 624500.0 6409800.0 13:03 30.08.90
                                                                                                                        8.211
    8901.7120 3026.770 209.740 624500.0 6409900.0 13:06 30.08.90
                                                                                                                        8.425
    8901.7121 3026.690 210.140 624500.0 6410000.0 13:08 30.08.90
```

```
8901.7122 3026.500 209.440 624500.0 6410100.0 13:10 30.08.90
                                                                                 8.235
  8901.7123 3026.230 209.440 624500.0 6410200.0 13:13 30.08.90
                                                                                 8.033
  8901.7124 3026.200 209.210 624500.0 6410300.0 13:16 30.08.90
                                                                                 8.028
  8901.7125 3026.270 208.890 624500.0 6410400.0 13:20 30.08.90
                                                                                8.107
  8901.7126 3026.270 208.890 624500.0 6410400.0 13:20 30.08.90 8901.7126 3026.480 208.640 624500.0 6410500.0 13:23 30.08.90 8901.7127 3026.240 209.760 624500.0 6410600.0 13:25 30.08.90 8901.7128 3025.900 211.540 624500.0 6410700.0 13:28 30.08.90 8901.7129 3025.710 213.310 624500.0 6410800.0 13:31 30.08.90
                                                                                8.343
                                                                                8.403
                                                                                8.498
                                                                                8.743
A 8901.7084 3025.410 215.000 624500.0 6410900.0 13:35 30.08.90
  8901.7084 3025.410 215.000 624500.0 6410900.0 13:35 30.08.90
                                                                                 8.860
  8901.7130 3025.010 217.490 624500.0 6411000.0 13:38 30.08.90
                                                                                 9.042
  8901.7131 3024.340 220.920 624500.0 6411100.0 13:43 30.08.90
                                                                                 9.145
  8901.7132 3023.110 227.290 624500.0 6411200.0 13:47 30.08.90
                                                                                 9.282
  8901.7133 3021.620 234.910 624500.0 6411300.0 13:51 30.08.90
                                                                                9.413
  8901.7134 3020.610 240.030 624500.0 6411400.0 13:54 30.08.90
                                                                                9.516
  8901.7135 3019.320 246.670 624500.0 6411500.0 13:58 30.08.90
                                                                                 9.648
  8901.7136 3019.290 246.830 624500.0 6411600.0 14:01 30.08.90
                                                                                9.726
  8901.7137 3021.220 236.660 624500.0 6411700.0 14:05 30.08.90
                                                                                9.671
  8901.7138 3022.660 228.680 624500.0 6411800.0 14:09 30.08.90
                                                                                9.568
  8901.7139 3023.650 223.900 624500.0 6411900.0 14:12 30.08.90
                                                                                9.666
  8901.7140 3023.820 223.550 624500.0 6412000.0 14:15 30.08.90
                                                                                9.843
  8901.7141 3023.590 225.090 624500.0 6412100.0 14:18 30.08.90
                                                                               10.003
  8901.7142 3023.590 225.070 624500.0 6412200.0 14:22 30.08.90
                                                                               10.075
  8901.7143 3023.450 225.660 624500.0 6412300.0 14:26 30.08.90
                                                                               10.130
  8901.7144 3023.750 224.190 624500.0 6412400.0 14:30 30.08.90
                                                                               10.209
A 8901.7084 3025.360 215.000 624500.0 6410900.0 14:52 30.08.90
EOD
```

END

APPENDIX V

CHARBA HILL EL 1626 AND UNALLA HILL EL 1652

GEOTEM SURVEY RESULTS

CHARBA HILL EL 1626 and UNALLA HILL EL 1652 GEOTEM SURVEY SPECIFICATIONS

Survey Area Names : Sherry Dam Prospect

Cotton Bush Dam Prospect

Coverage : Sherry Dam - 109 km

Cotton Bush Dam - 48 km

Minimum Line Length : 8 km

Line Separation : 1.2 km

M. T. C. : 120 metres (Aircraft), 60 metres (Sensor)

Navigation : Controlled 1:25,000 photos

Aircraft : CASA C212-200 turbo-prop STOL aircraft

GEOTEM System : 12 Channels, digital Rx

Analog records at 1:25,000 scale

Analog records at 1:25,000 scale

Magnetometer : 0.1 nT Sensitivity at 1.0 sec intervals

Digital Recording : 9-track tape

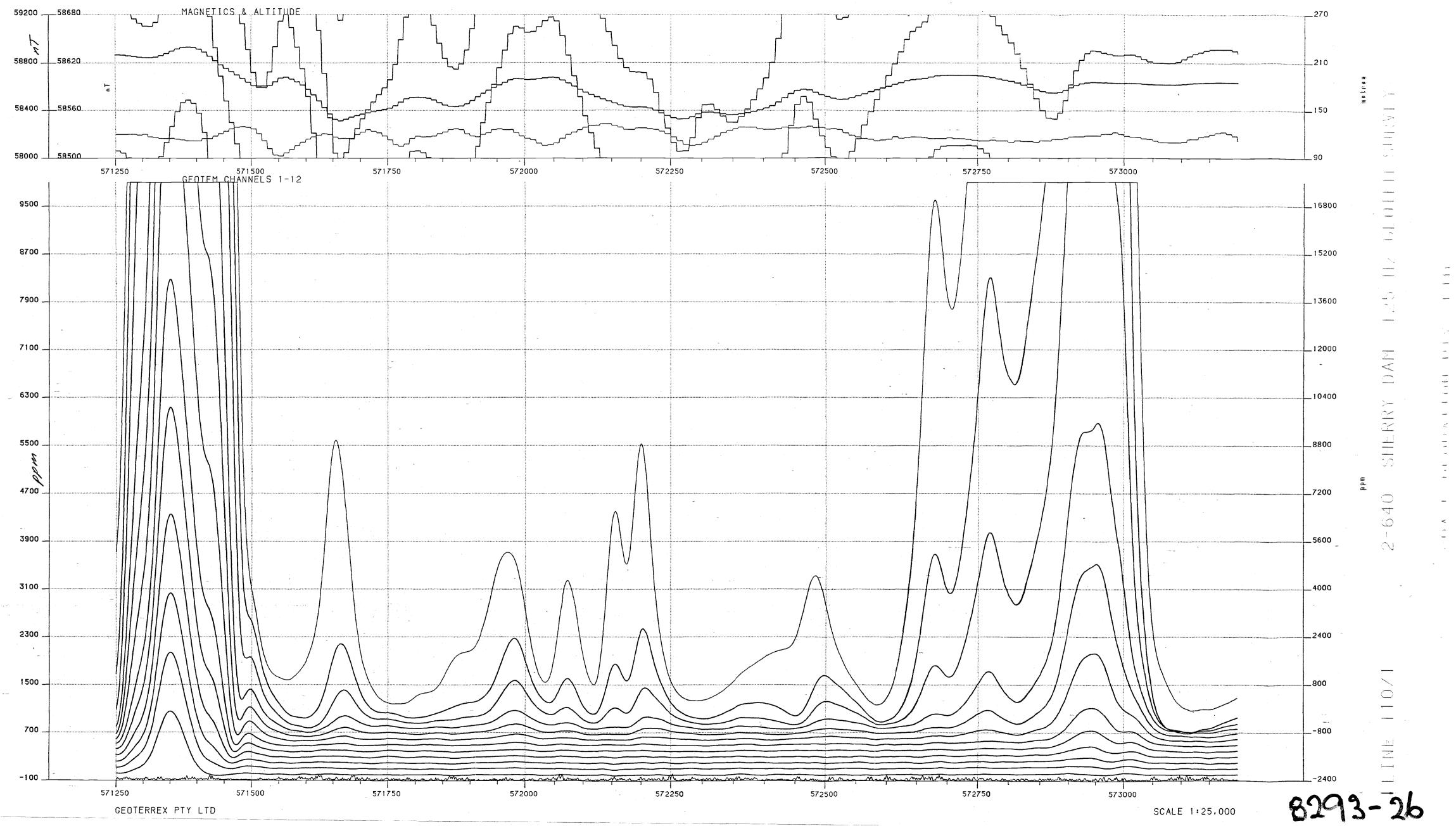
CRA EXPLORATION PTY LTD

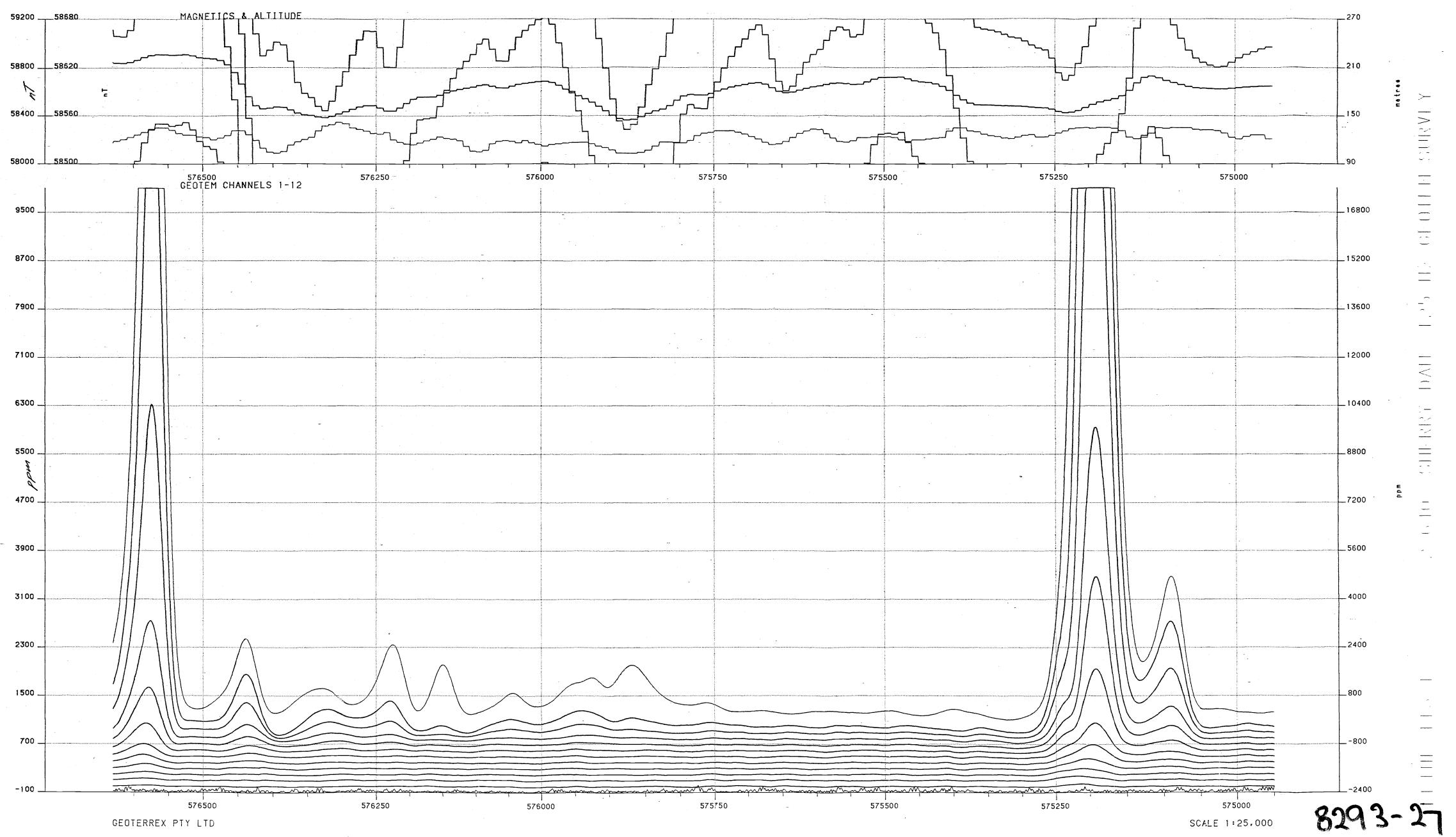
ELECTROMAGNETIC SURVEY LOCATED DATA TAPE FORMAT

COLUMN	DESCRIPTION
1 - 4 5 - 12 13 - 20 21 - 28 29 - 36 37 - 44 45 - 48 49 - 54 55 - 60 61 - 66 67 - 72 73 - 78 79 - 84 85 - 90 91 - 96 97 - 102 103 - 108 109 - 114 115 - 120	FLIGHT NUMBER LINE FIDUCIAL AMG EASTING AMG NORTHING TOTAL MAGNETIC FIELD RADAR ALTIMETER GEOTEM CHANNEL 1 GEOTEM CHANNEL 2 GEOTEM CHANNEL 4 GEOTEM CHANNEL 5 GEOTEM CHANNEL 5 GEOTEM CHANNEL 7 GEOTEM CHANNEL 7 GEOTEM CHANNEL 8 GEOTEM CHANNEL 9 GEOTEM CHANNEL 9 GEOTEM CHANNEL 10 GEOTEM CHANNEL 11 GEOTEM CHANNEL 12
121 - 126	GEOTEM 50 HZ MONITOR
Record length Block size 9-Track ASCII	126 Bytes 8064 Bytes 6250 bpi

CRA EXPLORATION PTY. LTD.

CRA EXPLORATION PTY. LTD.


CRA EXPLORATION PTY. LTD.


CRA EXPLORATION PTY. LTD

CRA EXPLORATION PTY. LID.

CRA EXPLORATION PTY. LTD.

CRA EXPLORATION PIY, I ID.

CRA EXPLORATION PIY. I TO.

CRA FXPLORATION PTY. LTD.

APPENDIX VI

UNALLA HILL EL 1652 - KOLENDO PROSPECT

FOLLOW-UP DRAINAGE ASSAY RESULTS

Phone (08)3365099

16 Sunbesa Road, Glynde, S.A. 5070

Fax (08) 3385584

ANALYTICAL REPORT No.

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

NVOICE TO:

Mrs D Timlin

CRA Exploration Pty Ltd

PO Box 254

Norwood SA 5034

ORDER No. **PROJECT** 37837

RESULTS REQUIRED DATE RECEIVED

> 15/10/90 ASAP

No OF PAGES DATE OF RESULTS REPORTED

No. OF COPIES

25/10/90

TOTAL No. OF SAMPLES

SAMPLE NUMBERS	SAMPLE DESCRIPTION	ELEMENT/METHOD
2541589/90	ro Prep : 021	Au/334
2 15 89 790	ra Prep :	Cu,Pb,Zn,Ag,Co,Ni,Cr,Mn,Fe/140
254 15 39 /90	ro Prep :	A≘/114
	,	

RESULTS

TO

TO

Mr JF Marinelli

CRA Exploration Pty Ltd

PO Box 254

the second second respective Norwood SA 5034

REMARKS

RESULTS

CRAE Information Systems CRA Exploration Pty Ltd

PO Box 3709

MANUKA ACT 2603

RESULTS

TO

000530

ANALYTICAL DATA

	SAMPLE PRE	FIX		REPORT NUM	BER	REPORT DAT	re CLI	ENT ORDER No		PAGE
_			1.0	6.35.05	709	25/10/9	90 37 6 3	5 7y 5 7	1.	OF 🚌
UBE No.	SAMPLE No.	Au	Asi	in Cuc	, Fb	Zn	. Ag	, Co	NΣ	- P
E 1	2541589	0.001	E.	. 24	15	52	<1.	10	20	ot
2	2541590	0:001	t::	28	20	64	<1	15	25	10
3										
4		_				_				
5	·									_
6		, <u>.</u> ¥ .		,	,3	1 -		.d		
7										
8										
9										
10	_									
_11			_							
12										
13										
14										
15			,							
_16						÷.			er to do o	
17			English of		i . :	; 19	į <u>.</u> .	, (<u> </u>		
18	·									
19				./	-					
20		· 					-			
21								•		
22				_					٠.	
23	DETECTION	0.001	1	2	5	2	1.	5	5.	tn:
24	UNITS	PFM	PPM	PPM	Pic44	PPM	PPM	PPM	FFM	PPM
25	METHOD	334	114	140	140	140	140	140	140	1.40

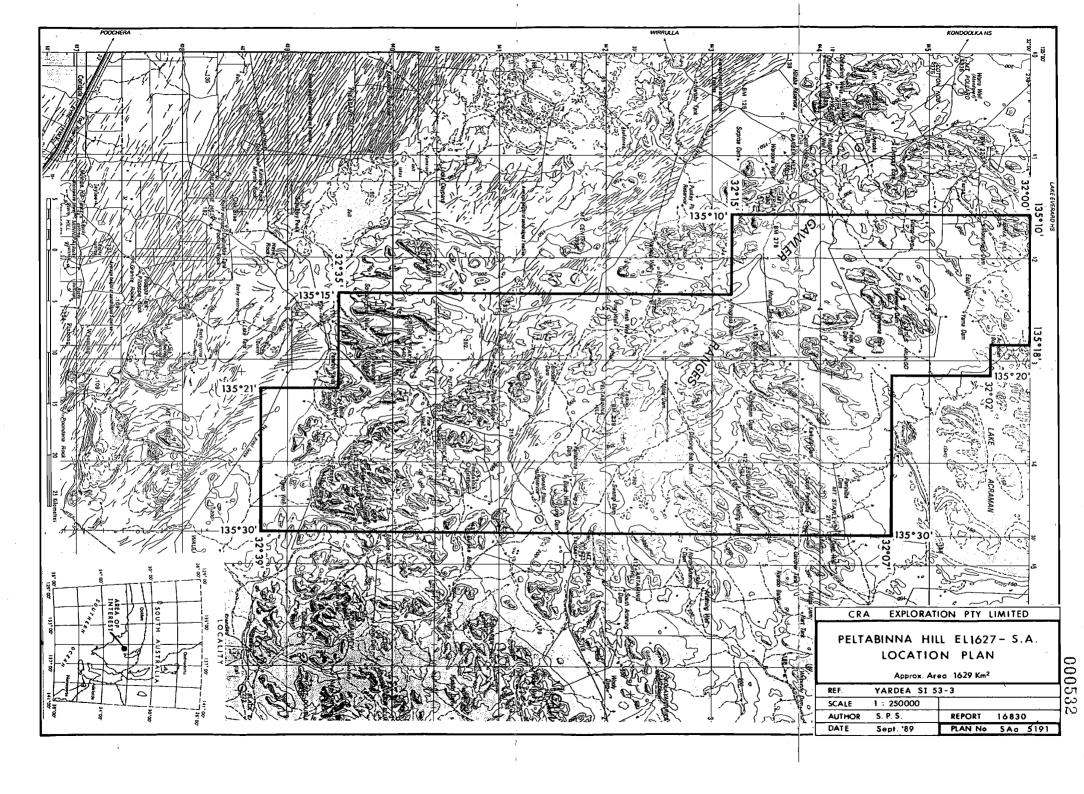
Results in ppm unless otherwise specified
T = element present, but concentration too low to measure
X = element concentration is below detection limit
= element not determined

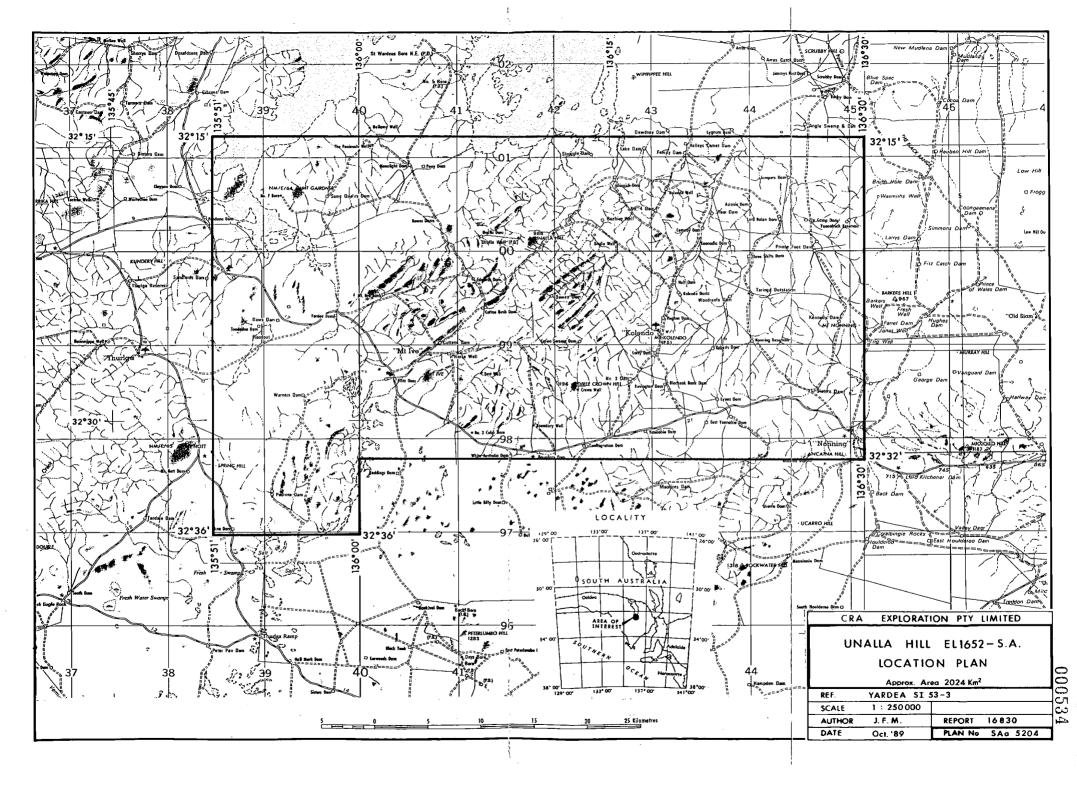
ANALABS n of Inchase Inspection and Testing Services Australia Pty. Ltd: 000531 ANALYTICAL DATA

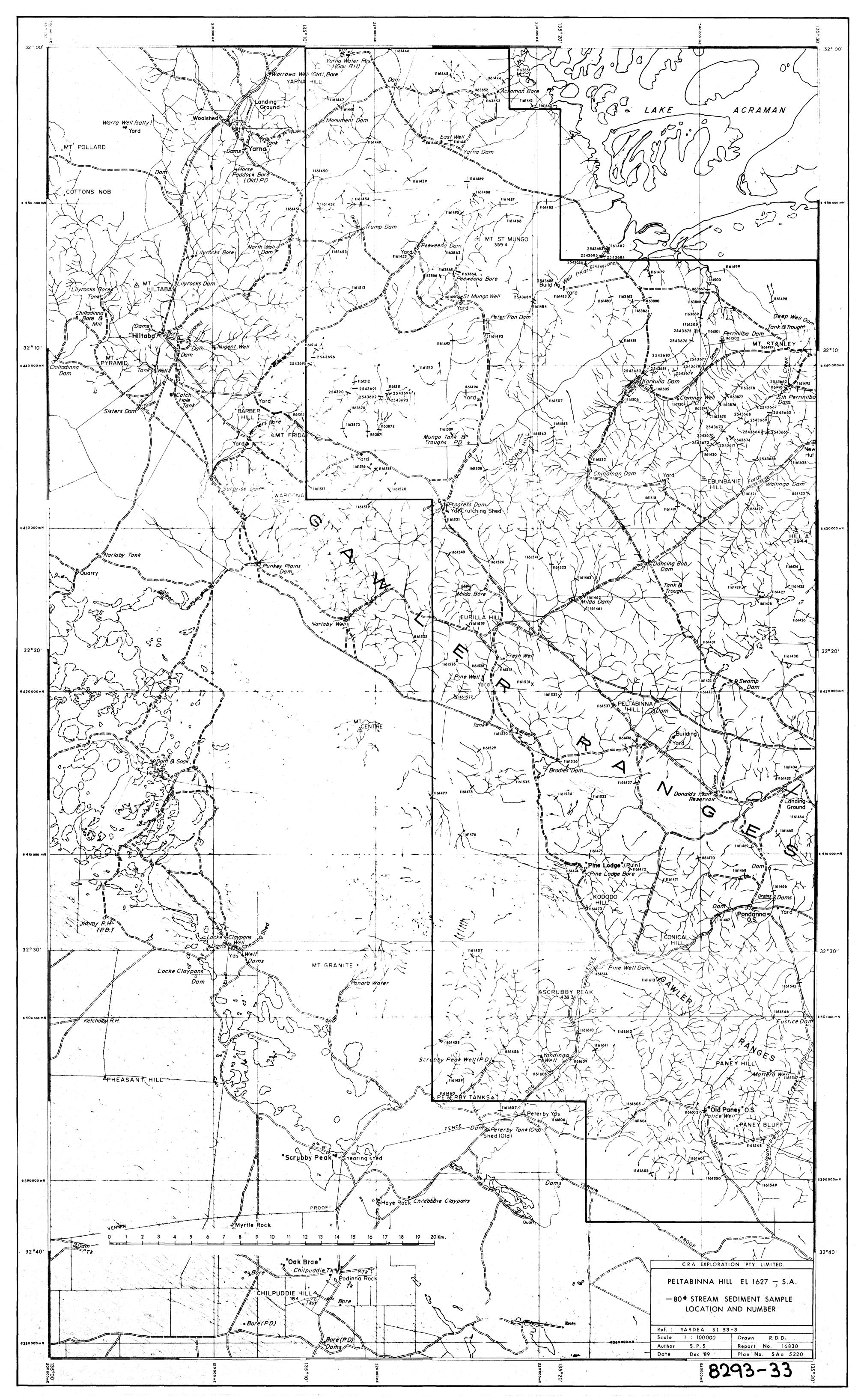
SAMPLE PRÉFIX REPORT DATE CLIENT ORDER No. PAGE REPORT NUMBER PAGE 15.6.35.05709 25/10/90 37837 OF TUBE SAMPLE ા કે Mini Fe No No o academic 1 2541589 410 30600 2 2541590 425 33100 3 4 5 6 10 11 5 16 100 \$ 15 1 . 1 . , DETECTION -1 UNITS PPM FFM METHOD 140 140

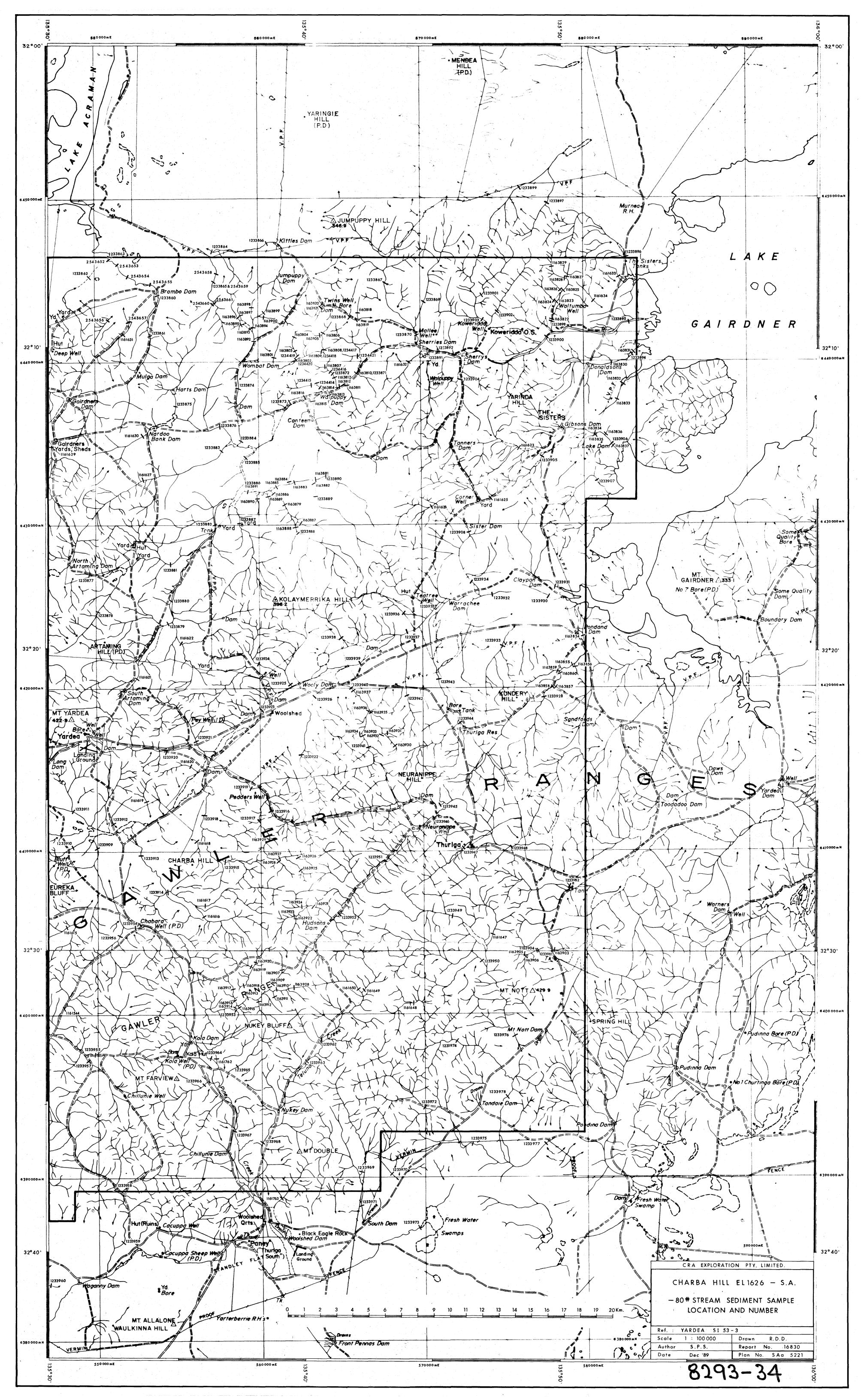
Results in ppm unless otherwise specified

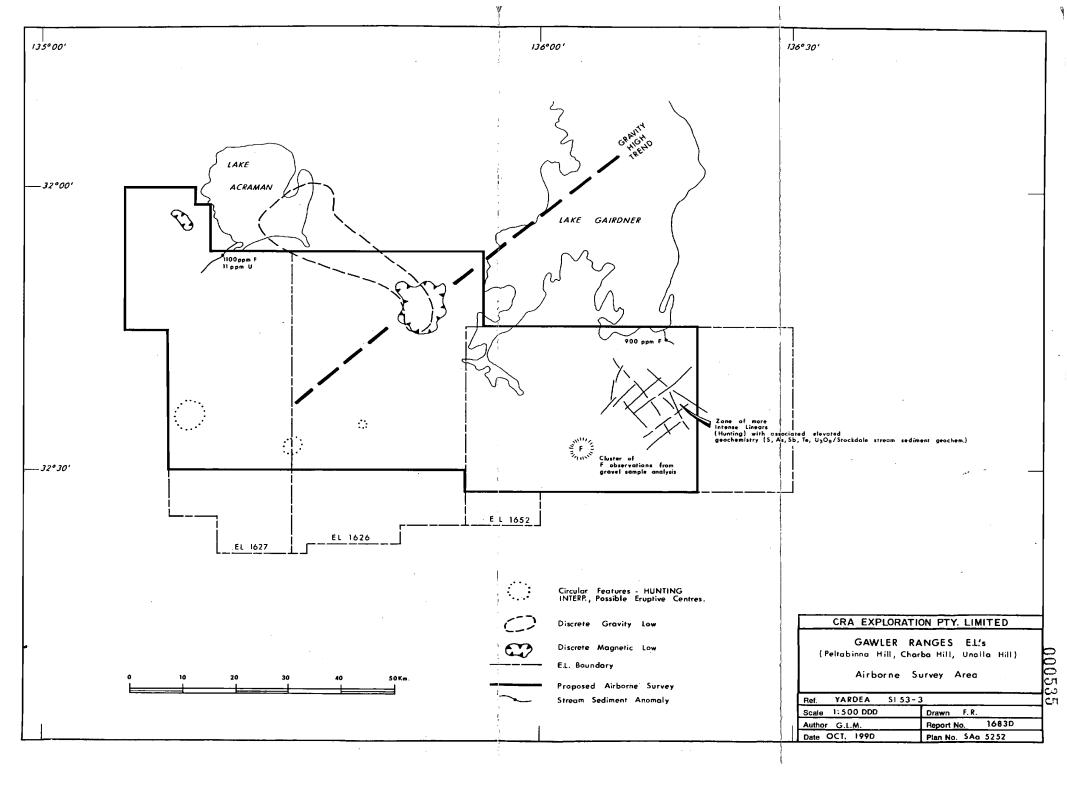
T = element present; but concentration too low to measure

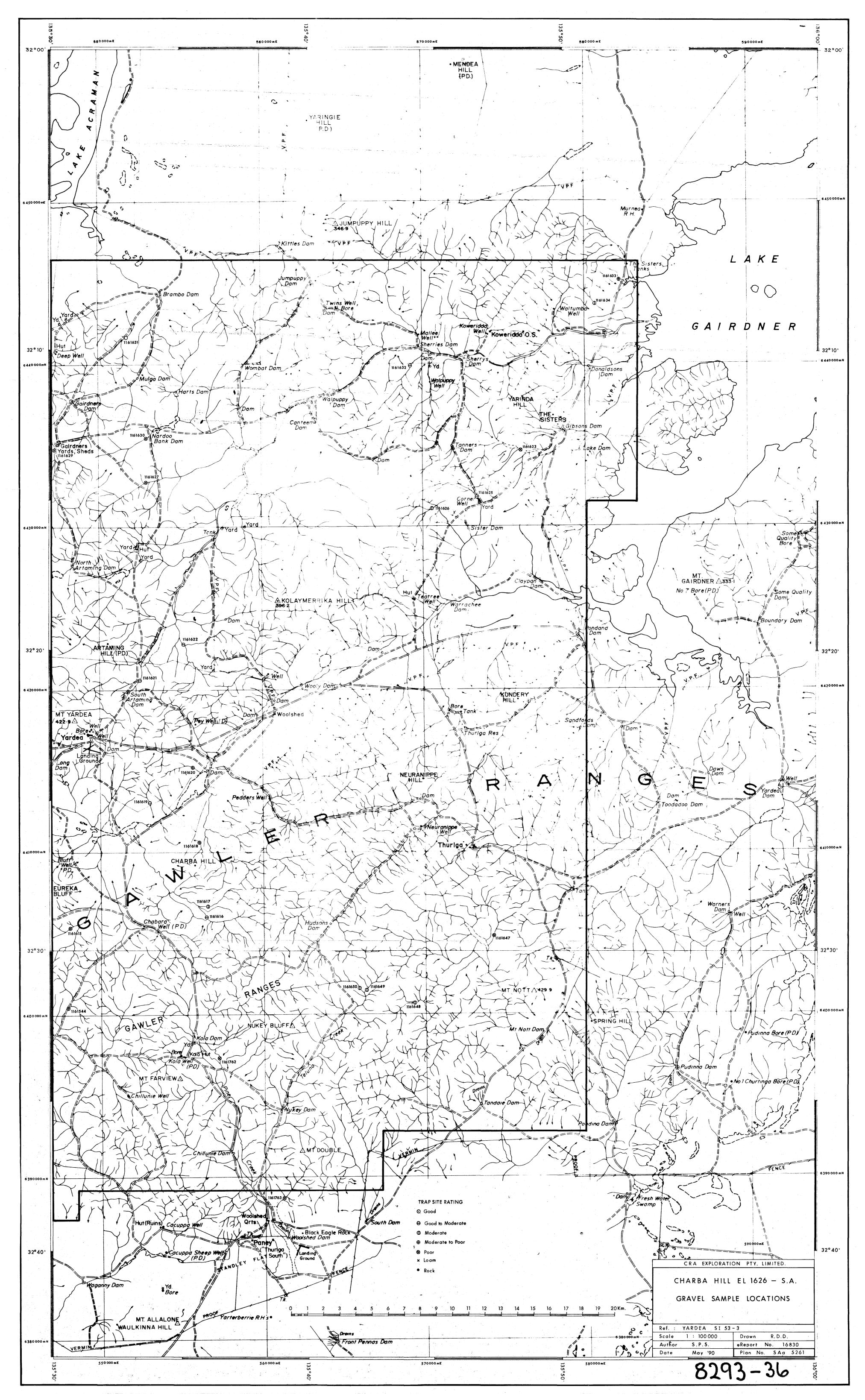

X = element concentration is below detection limit

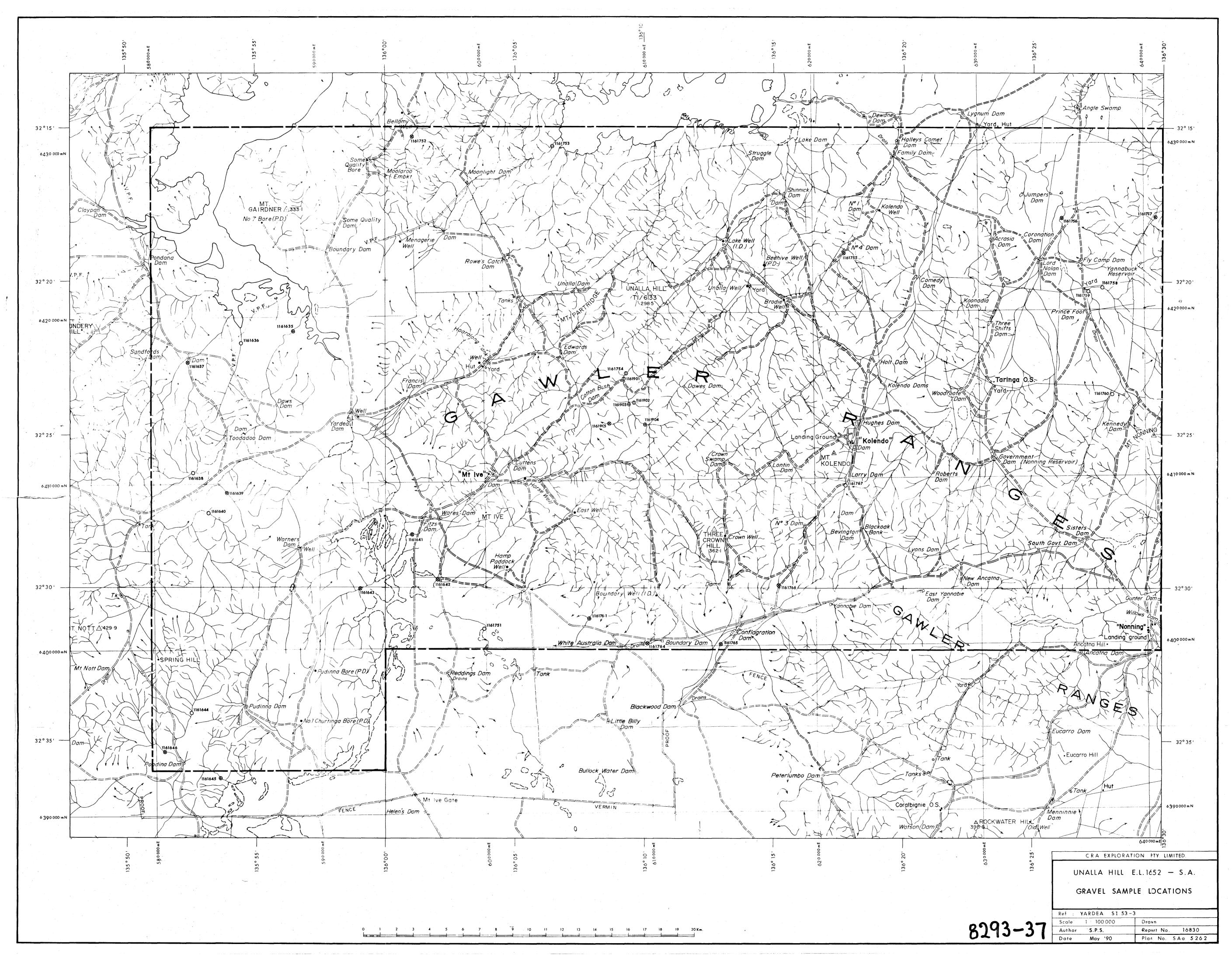

— = element not determined

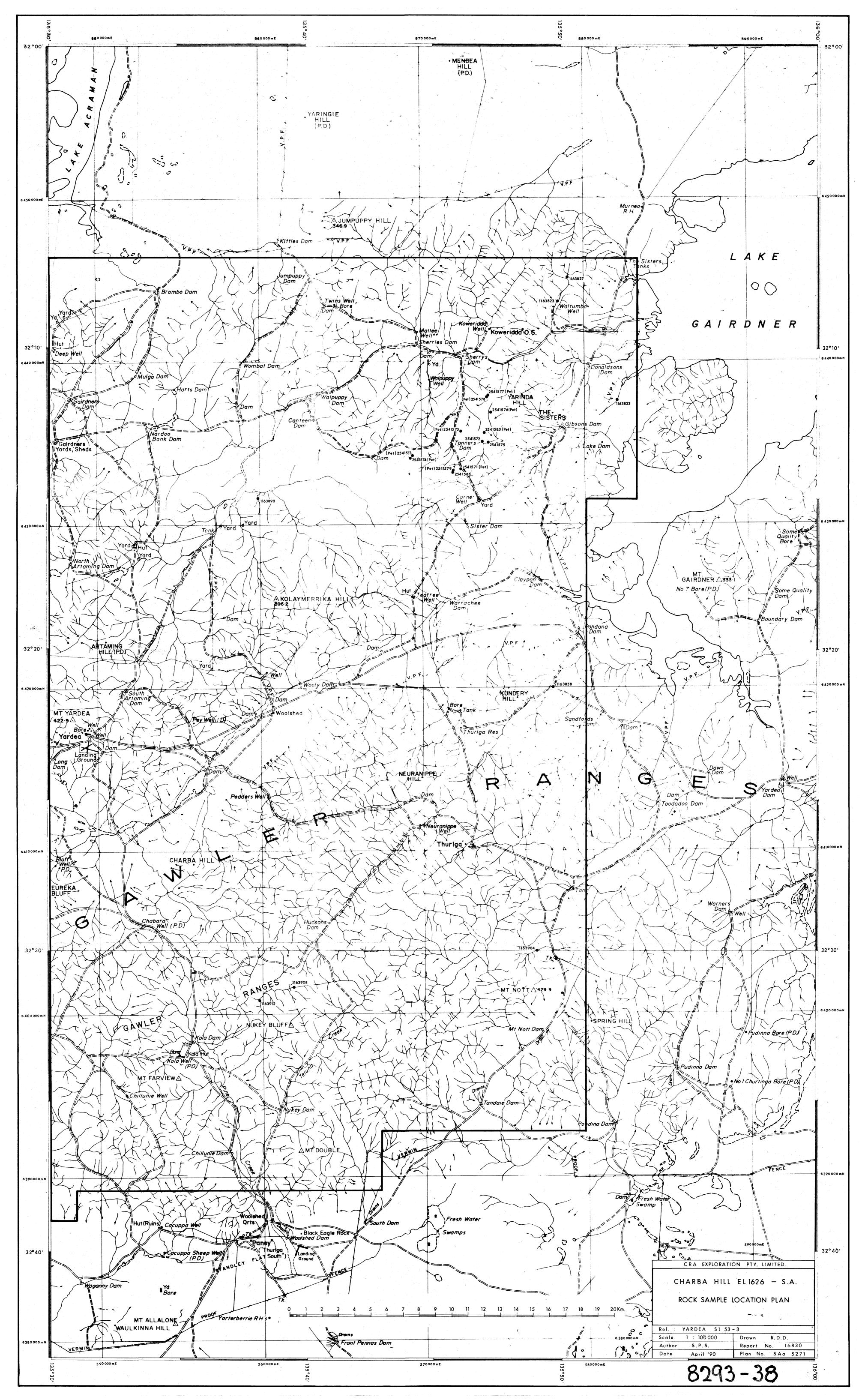

0

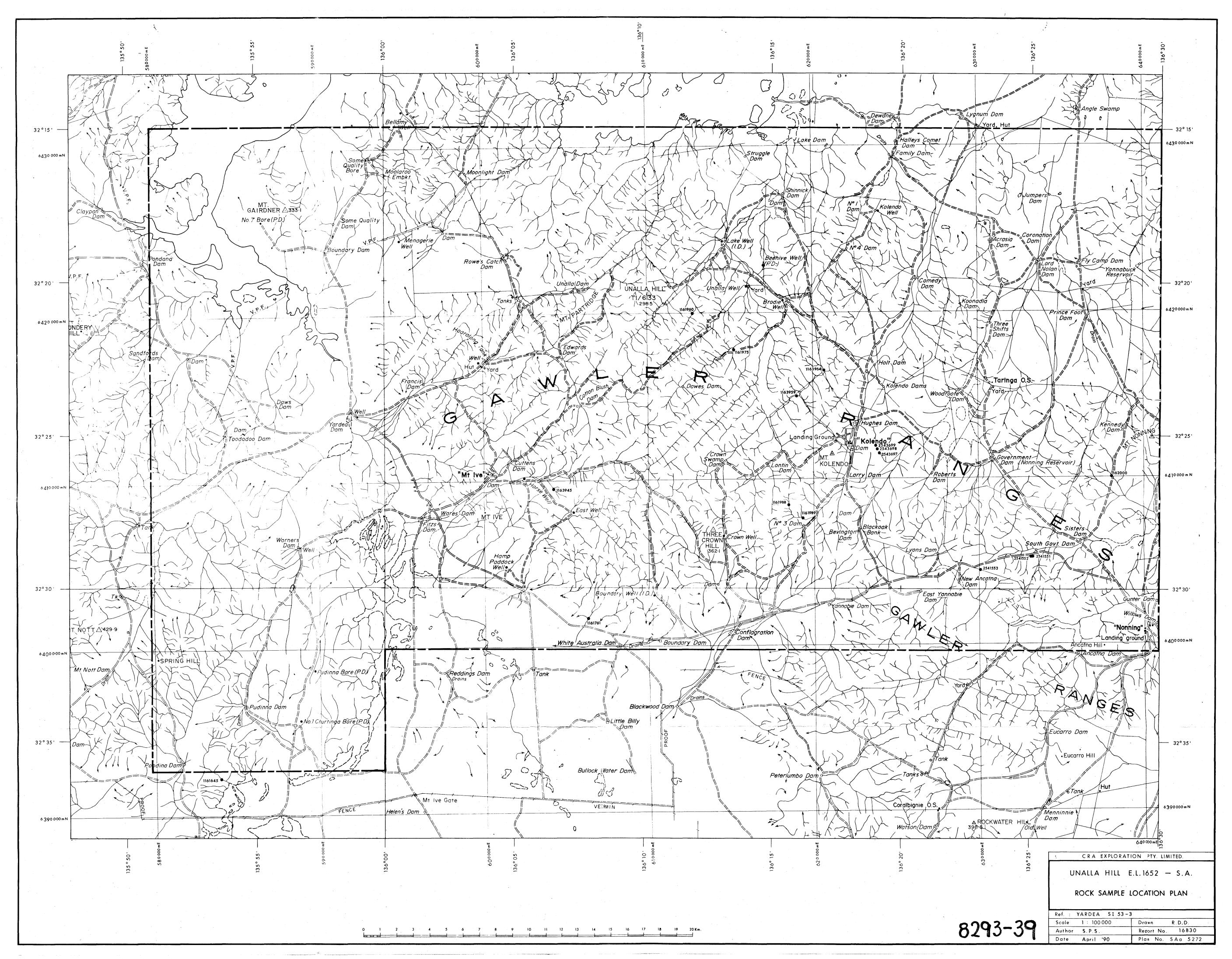

alia Mas

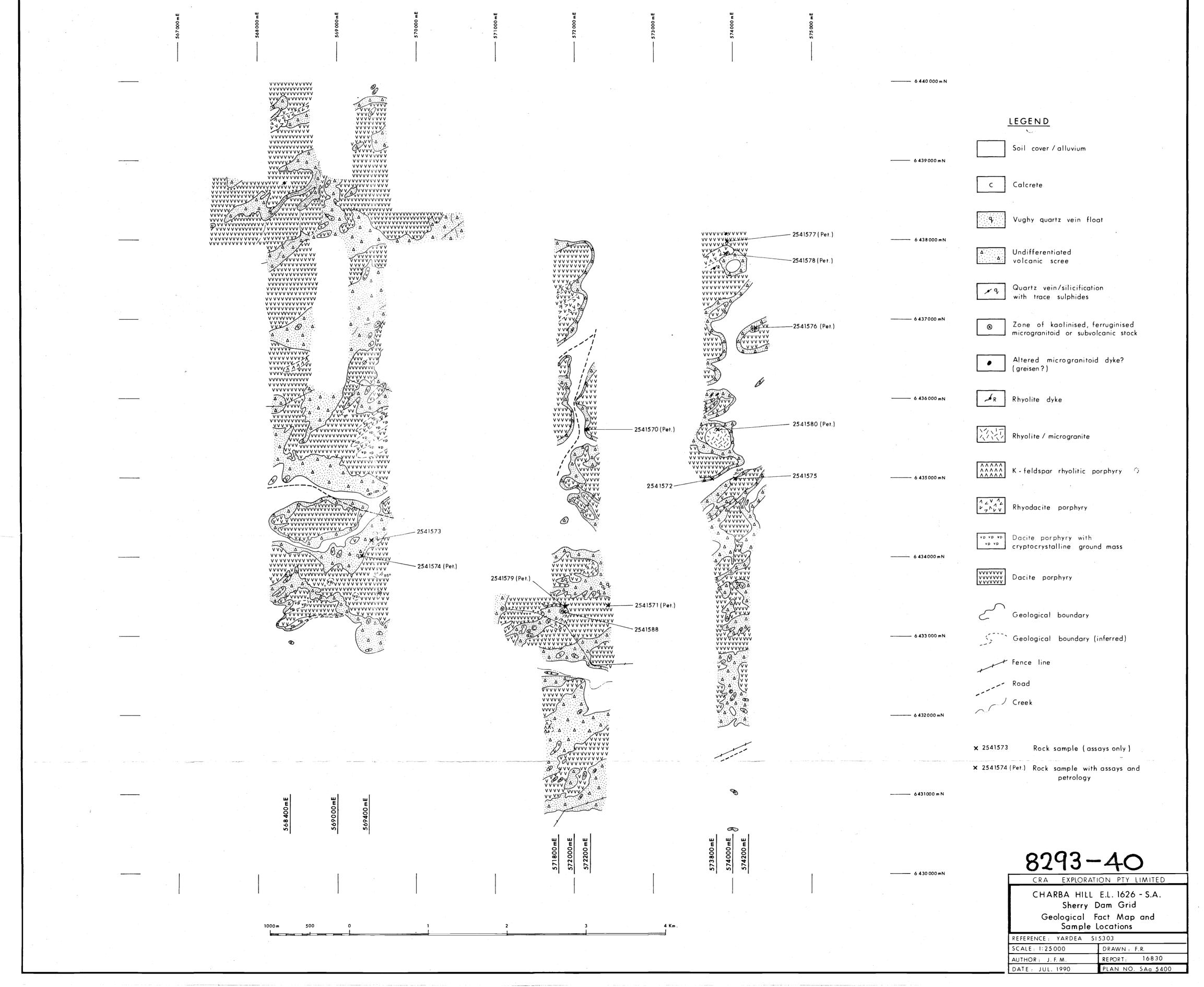

AUTHORISED D.K.Rowley

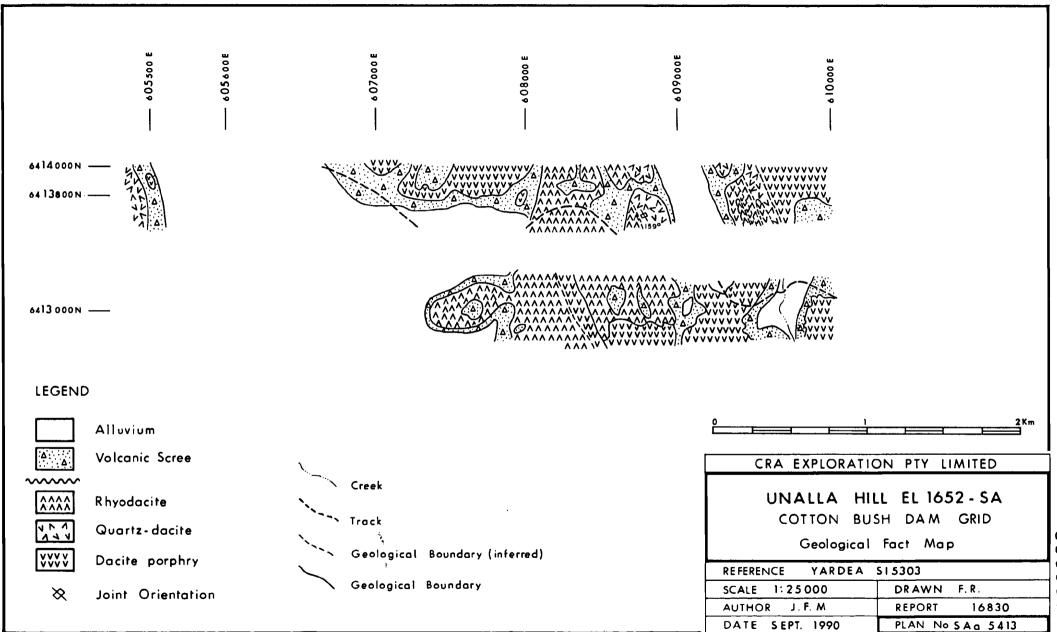


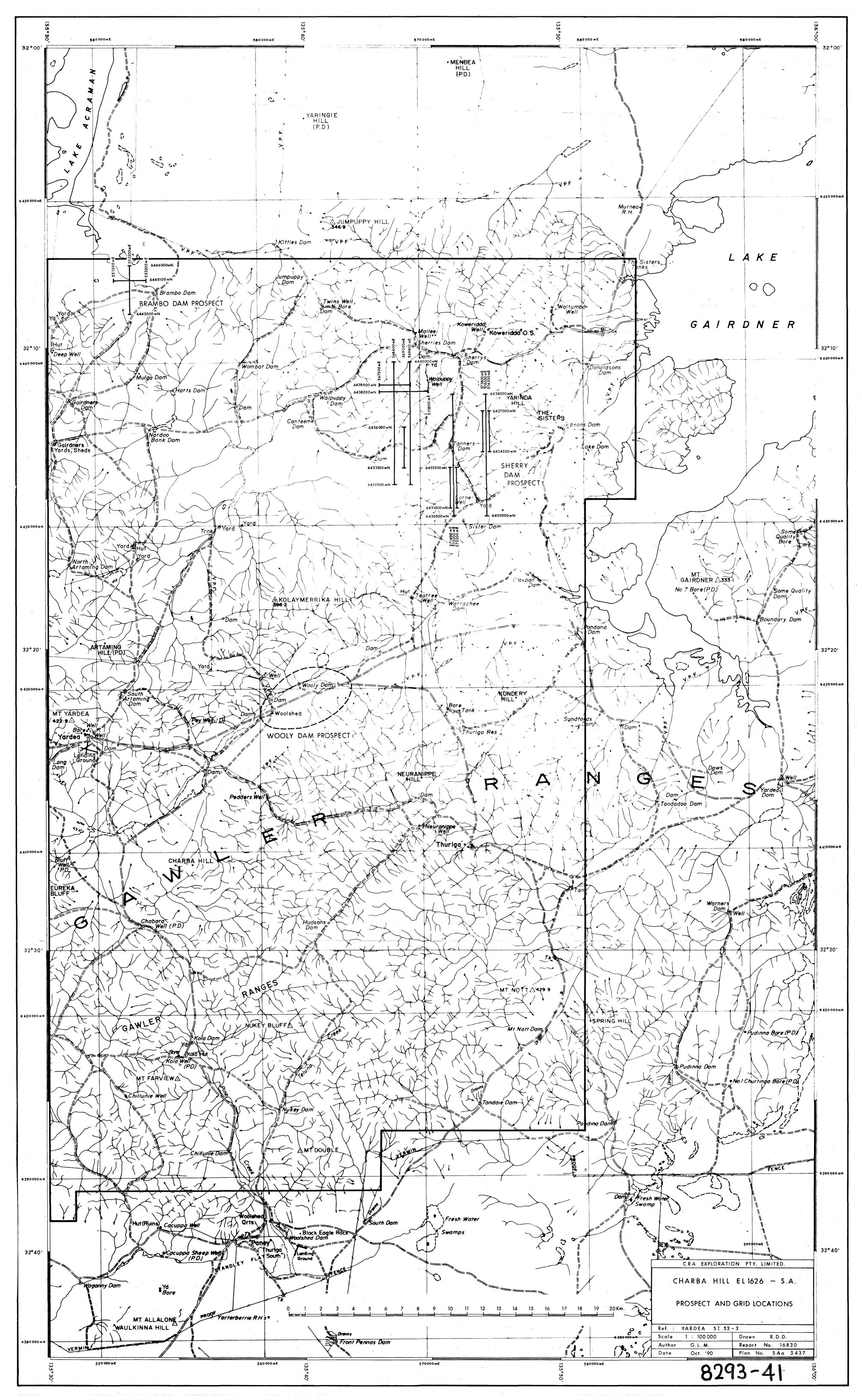


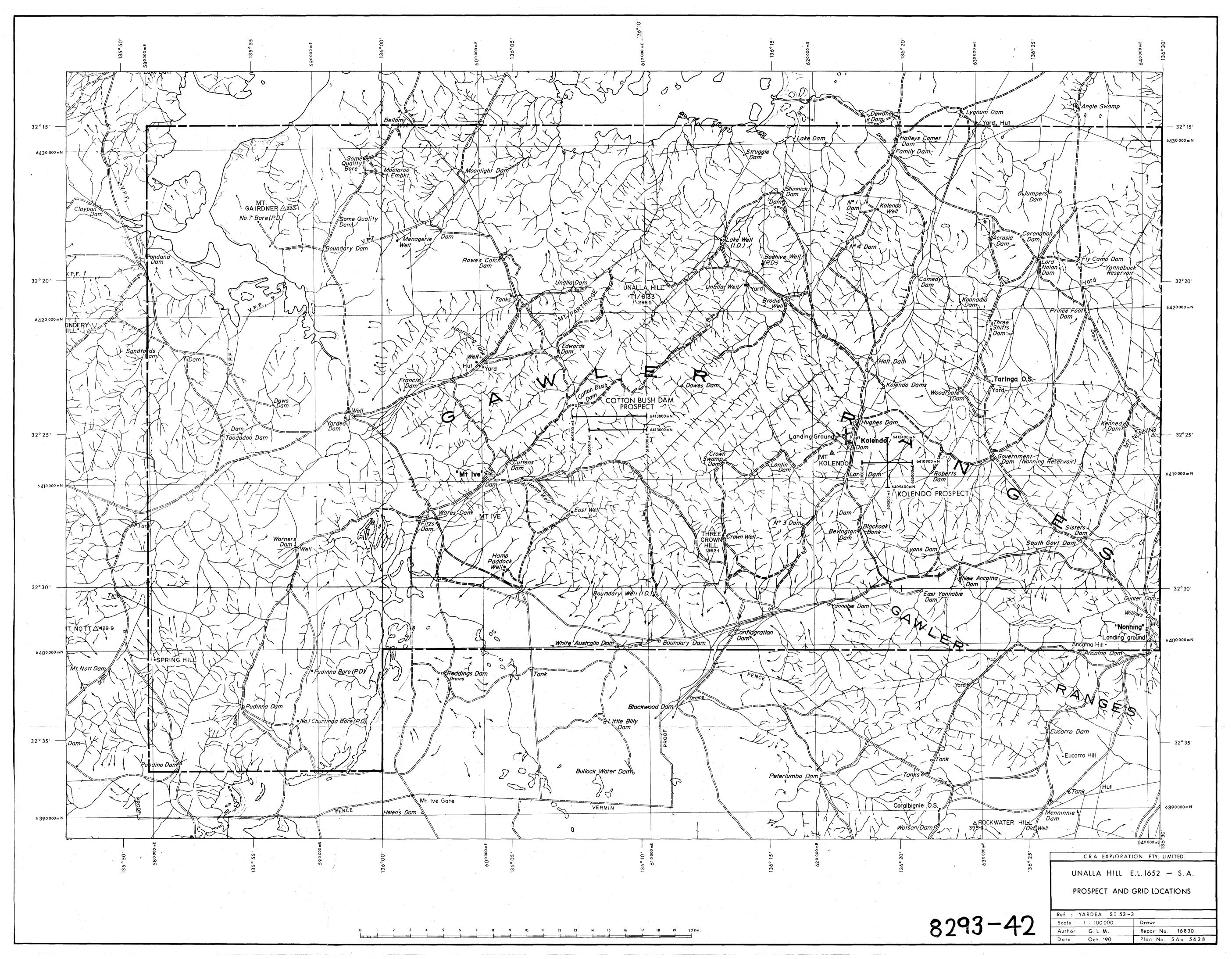


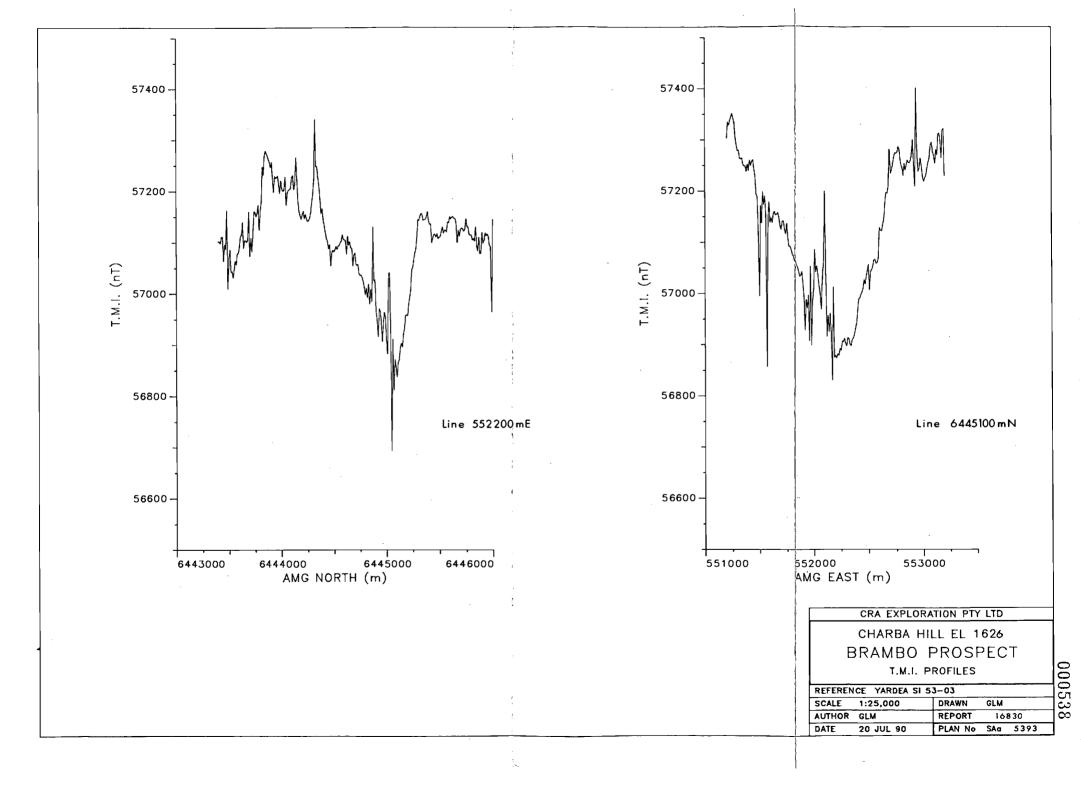


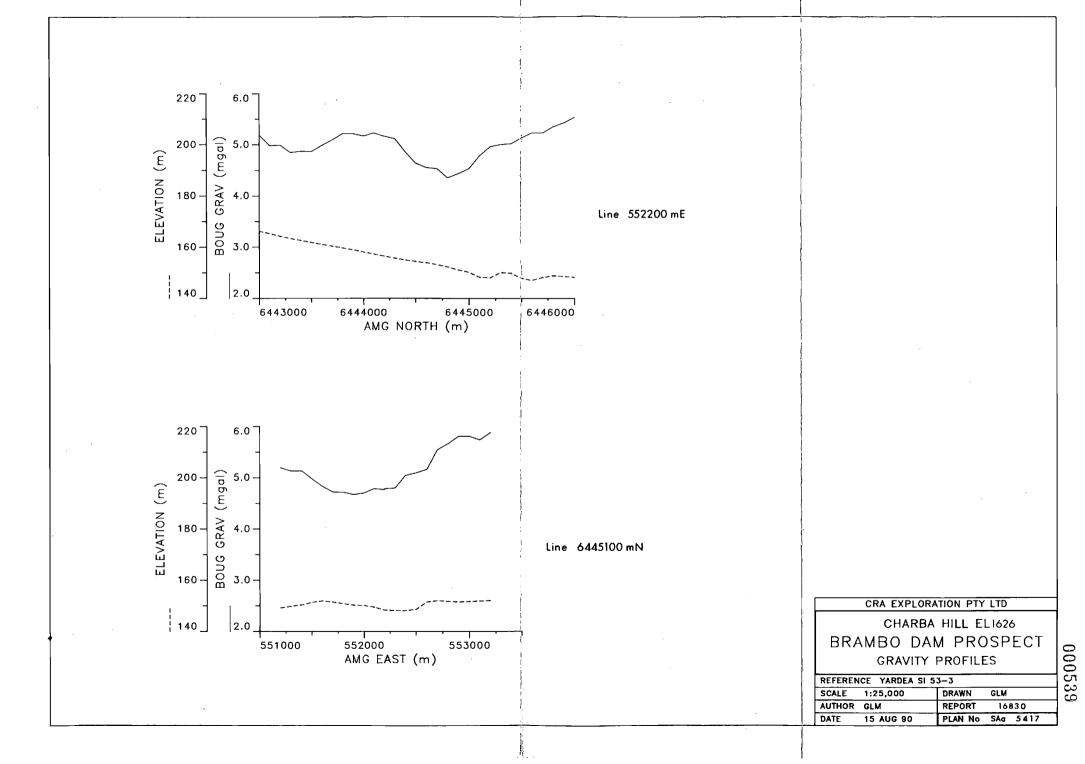


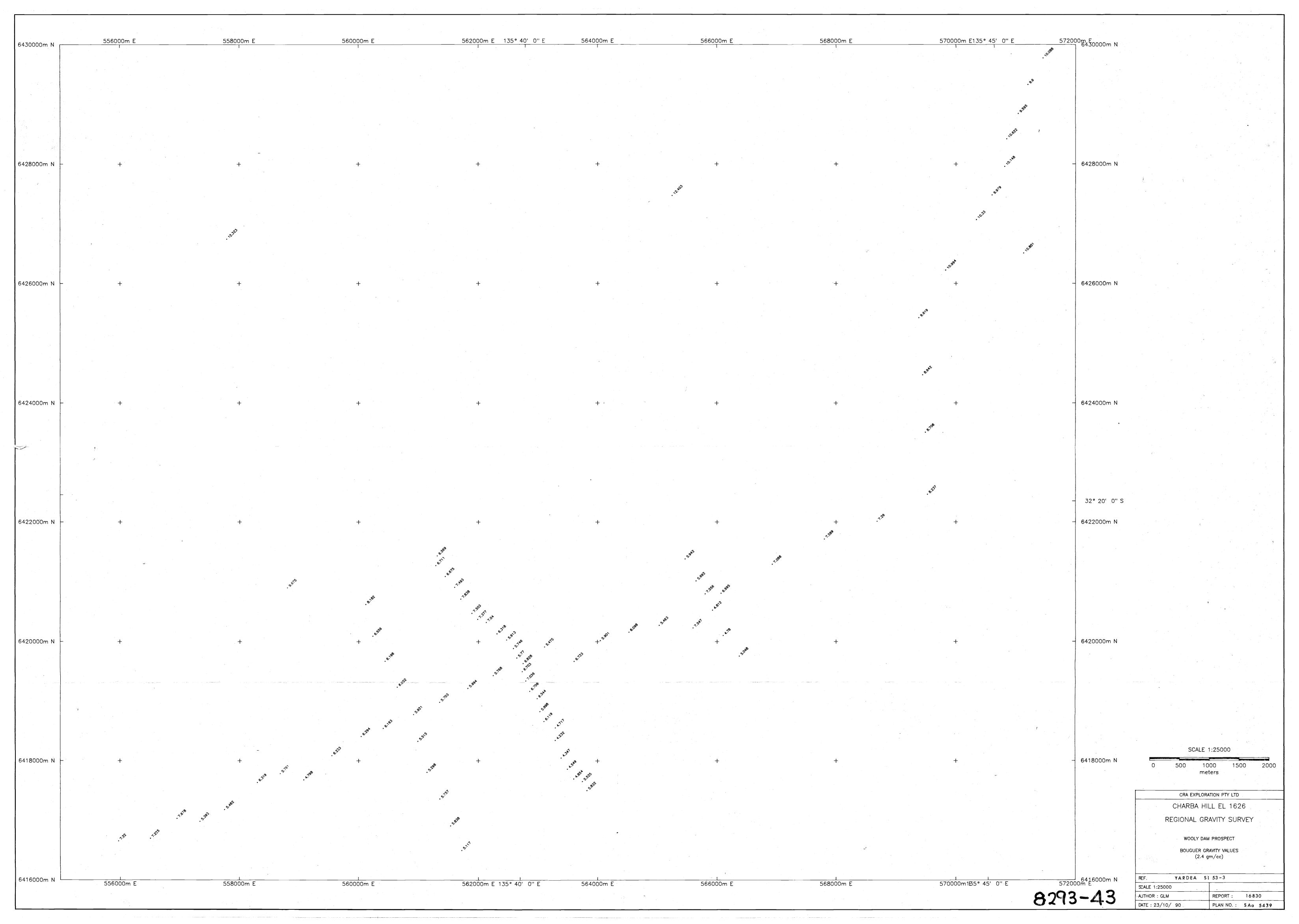


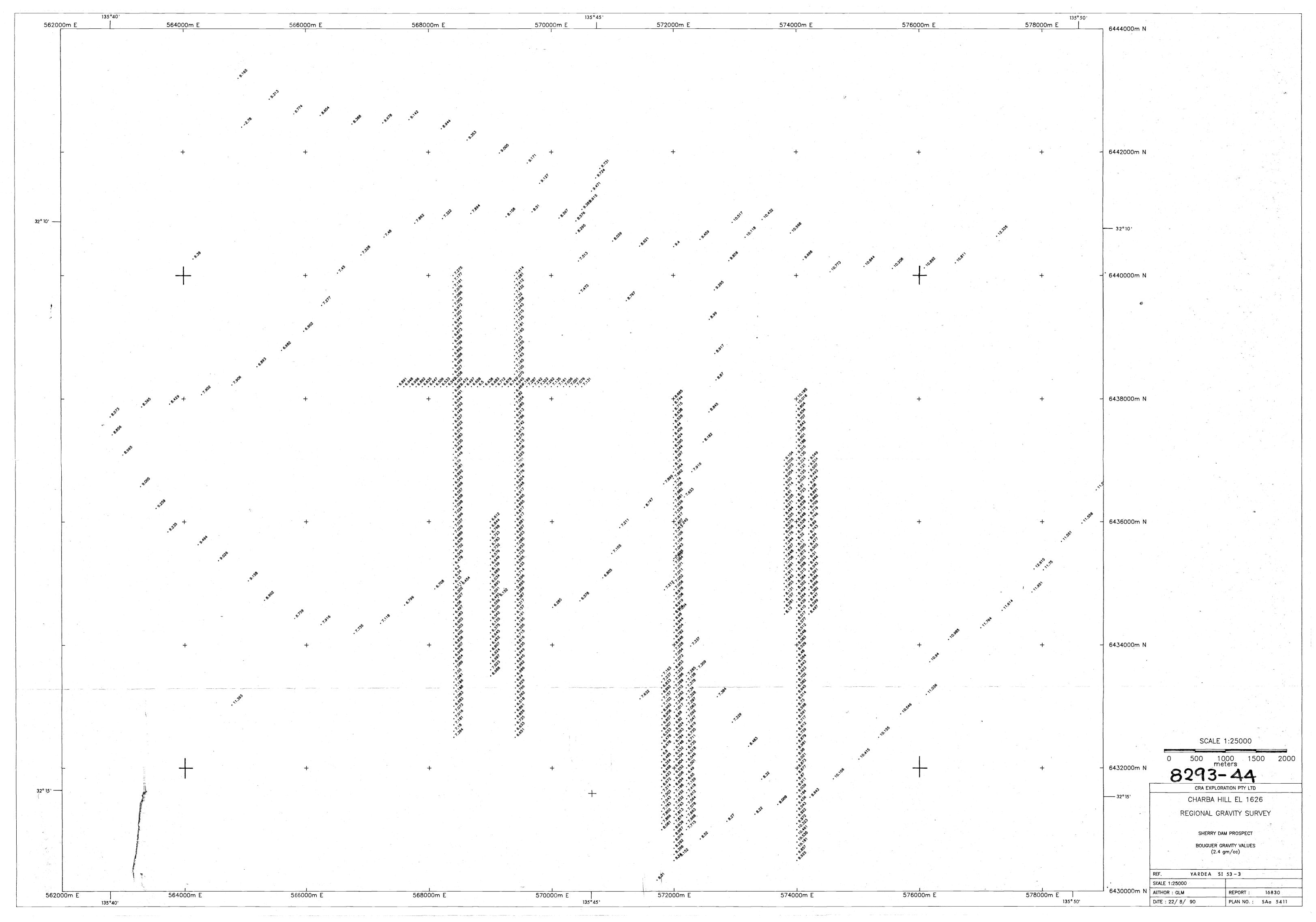


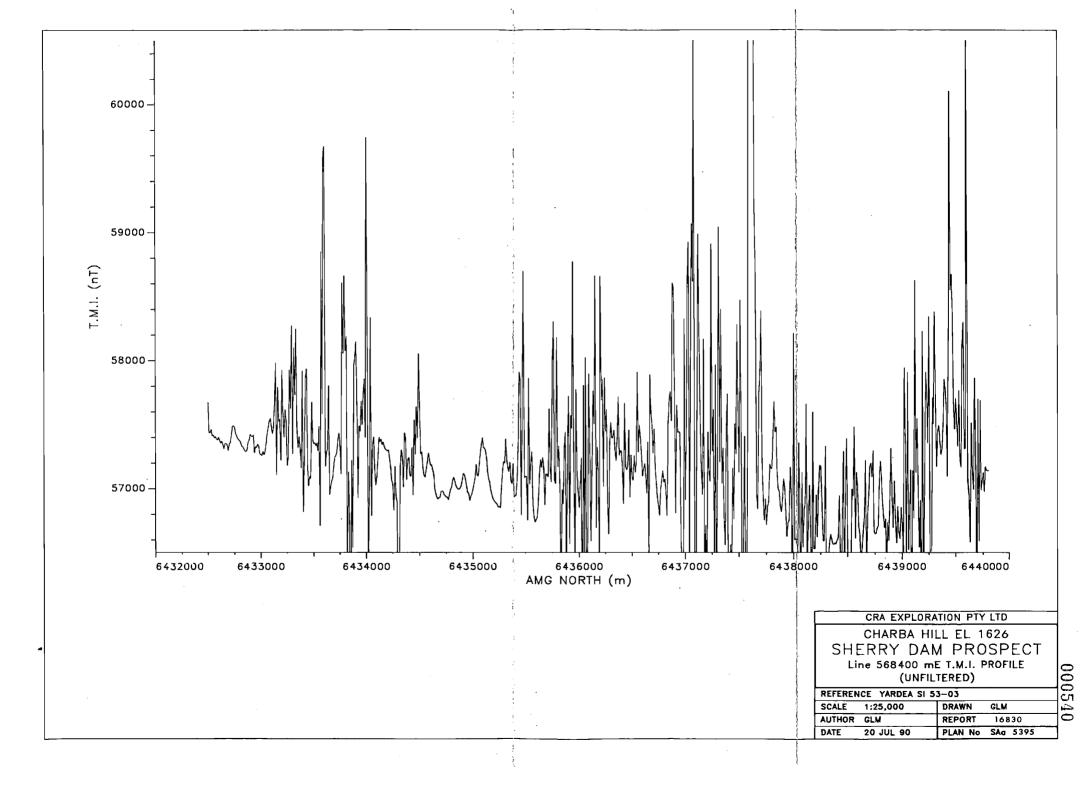

LEGEND

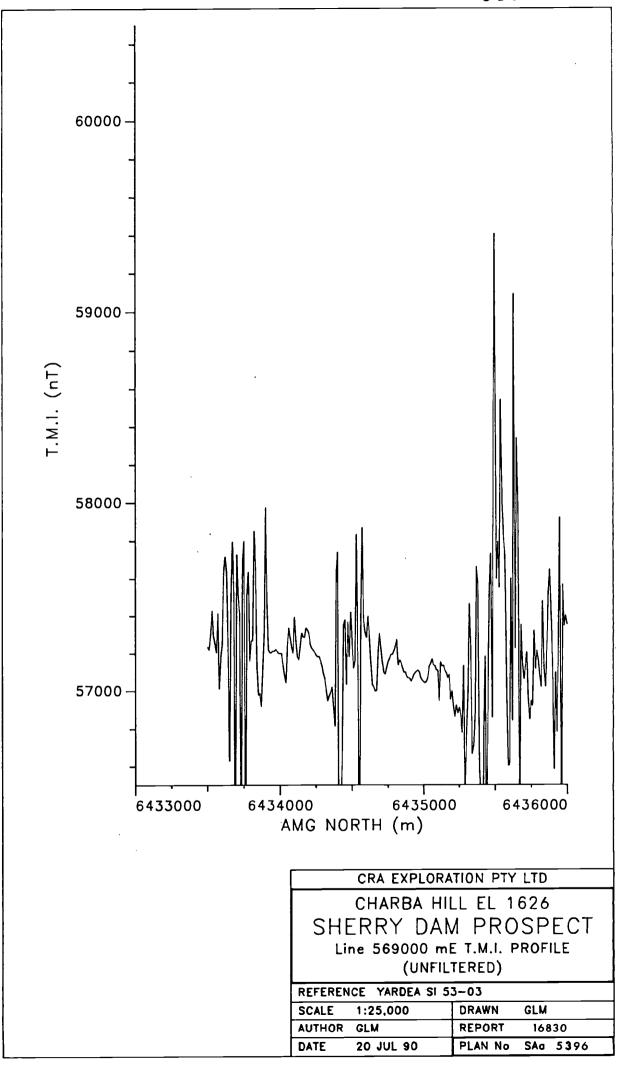

Alluvium

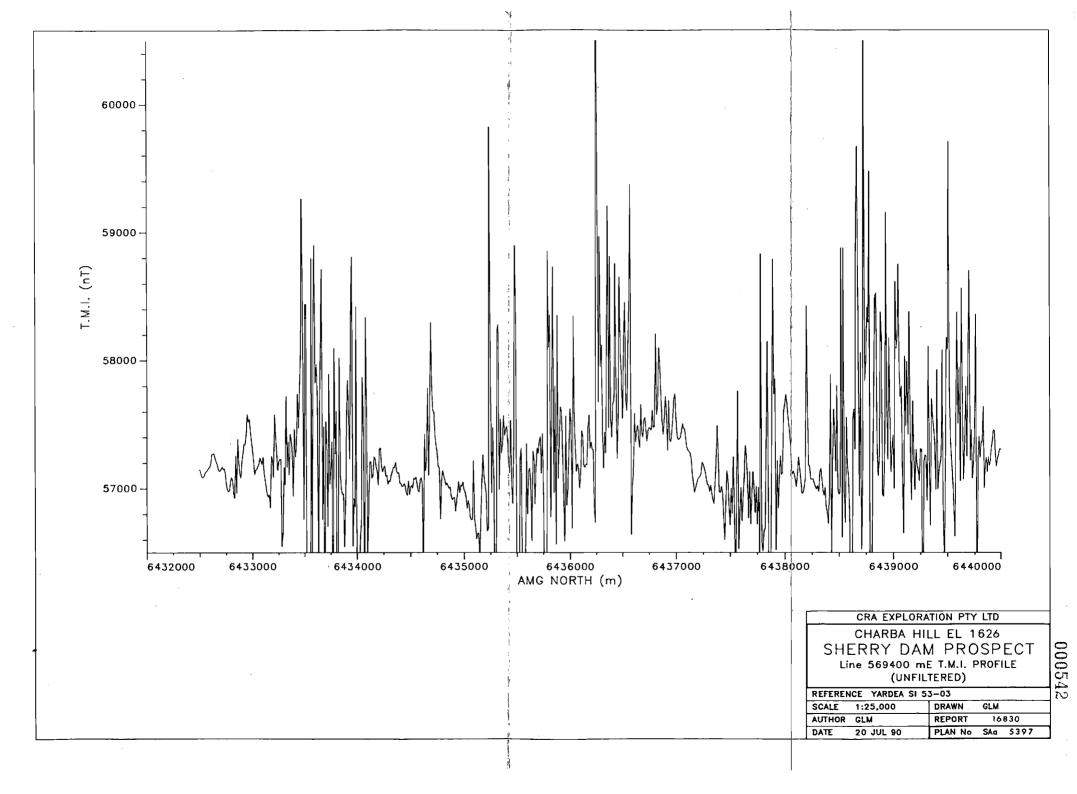


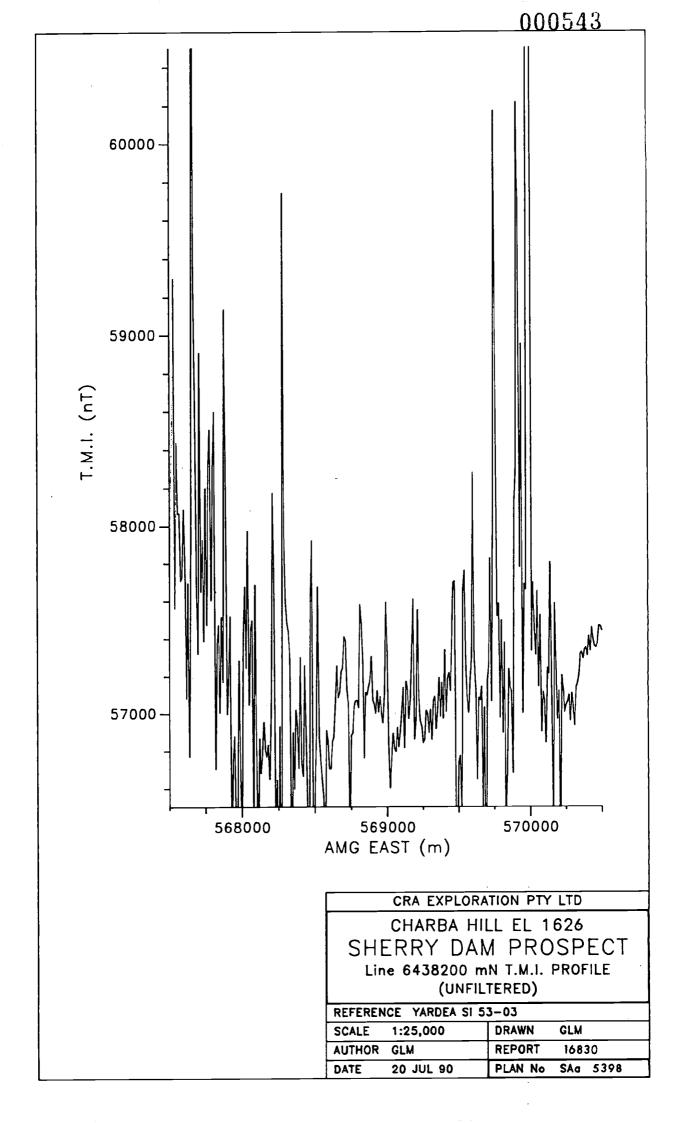


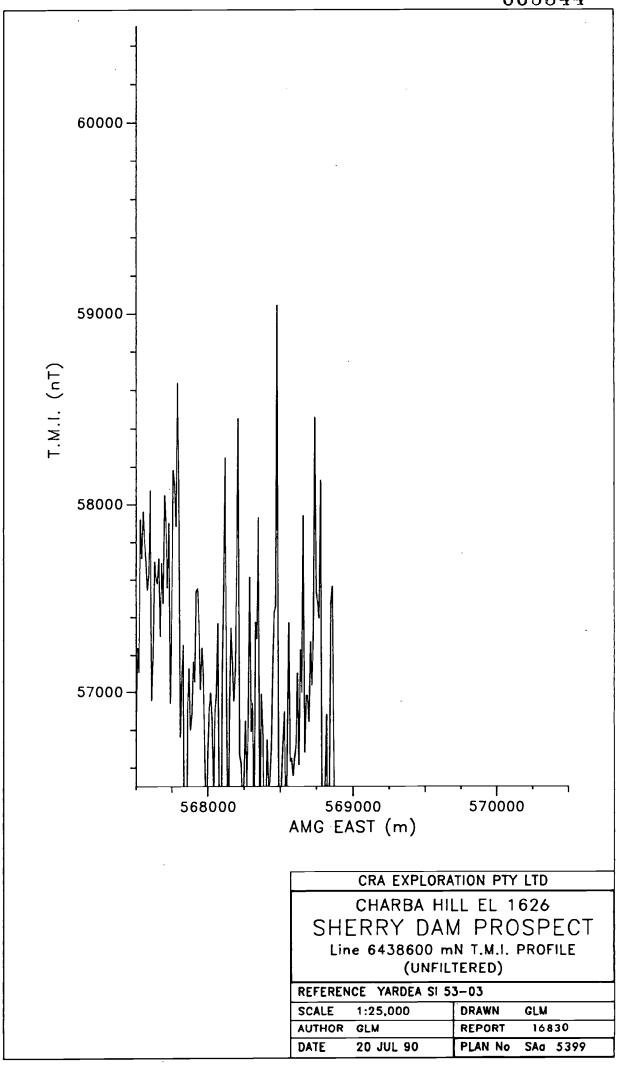


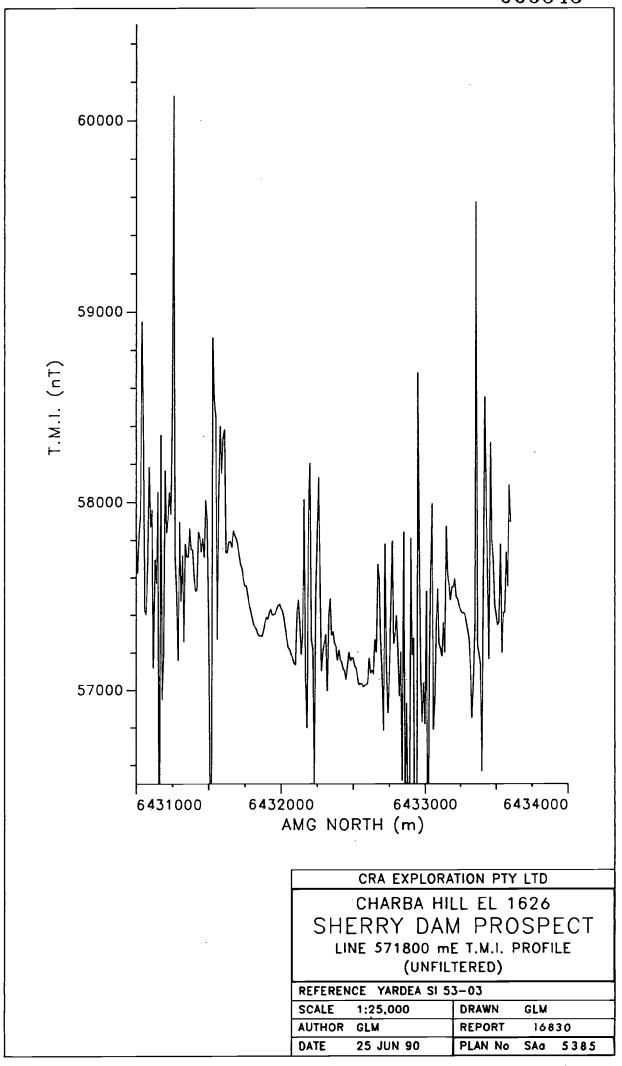


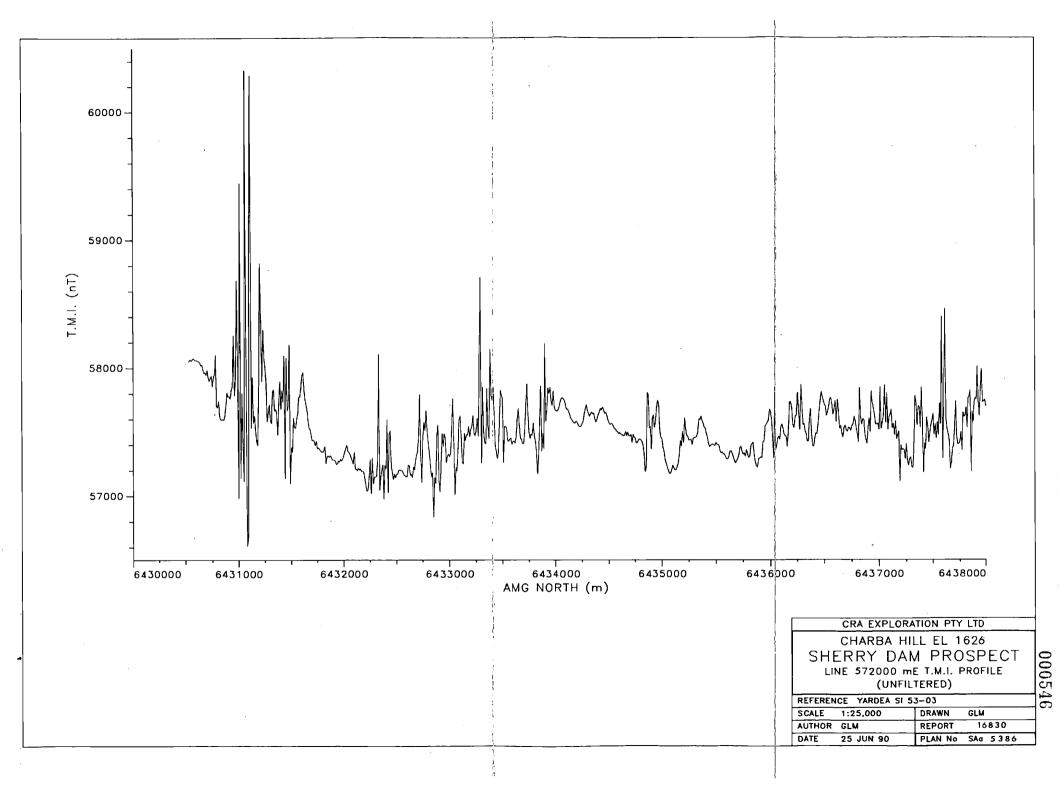


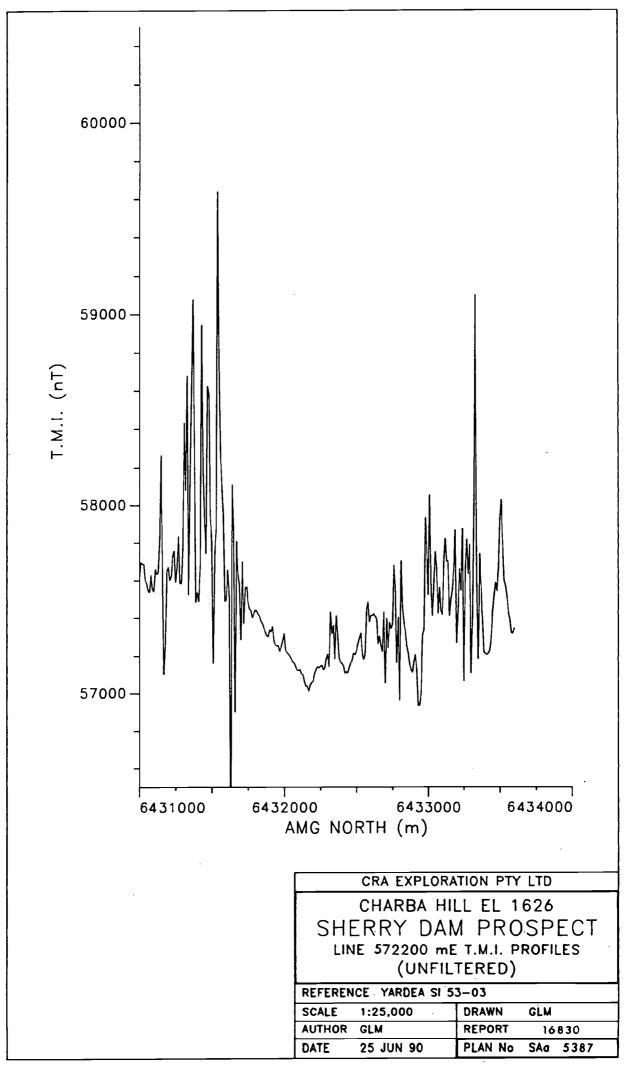


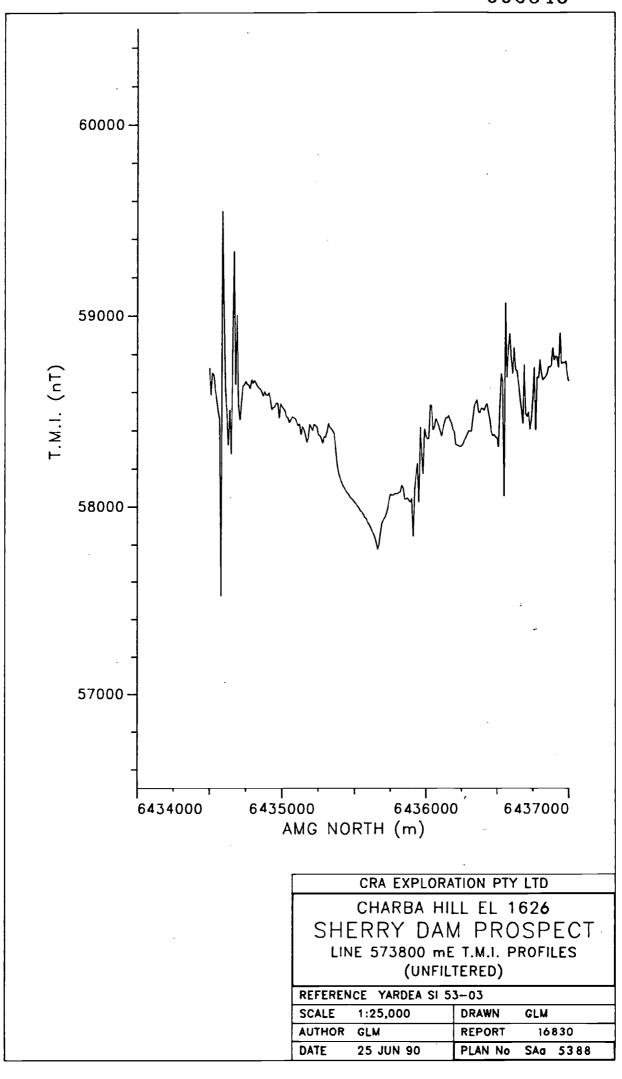


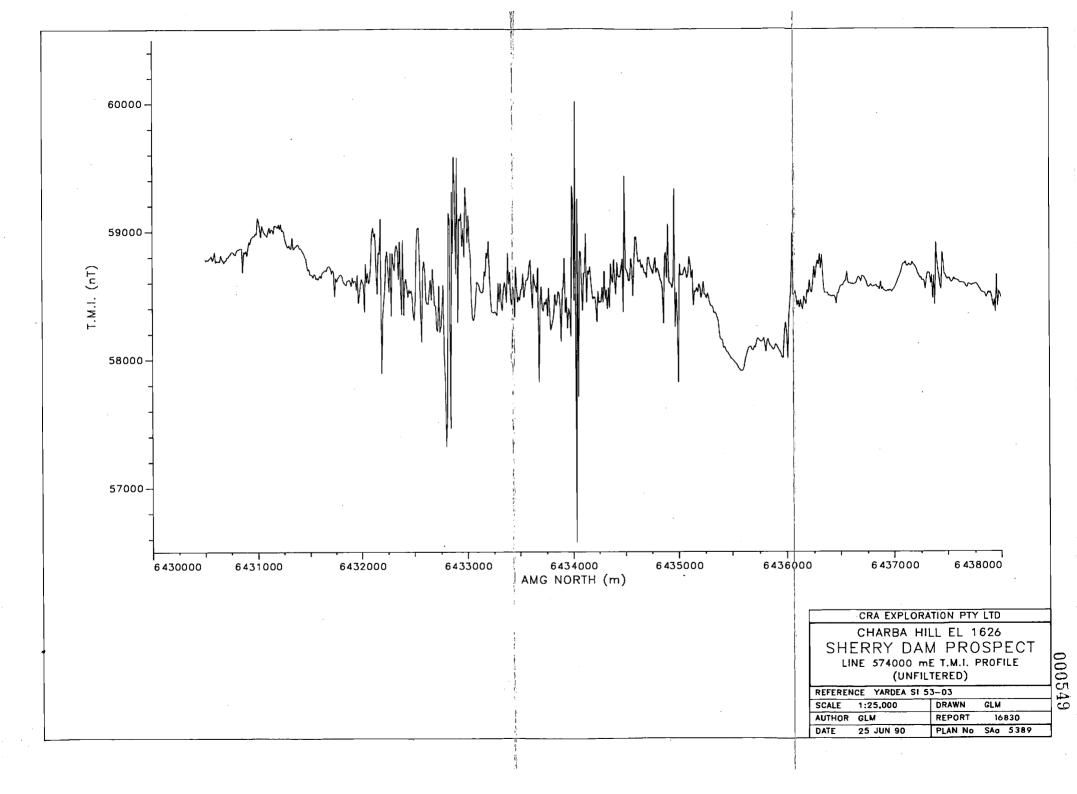


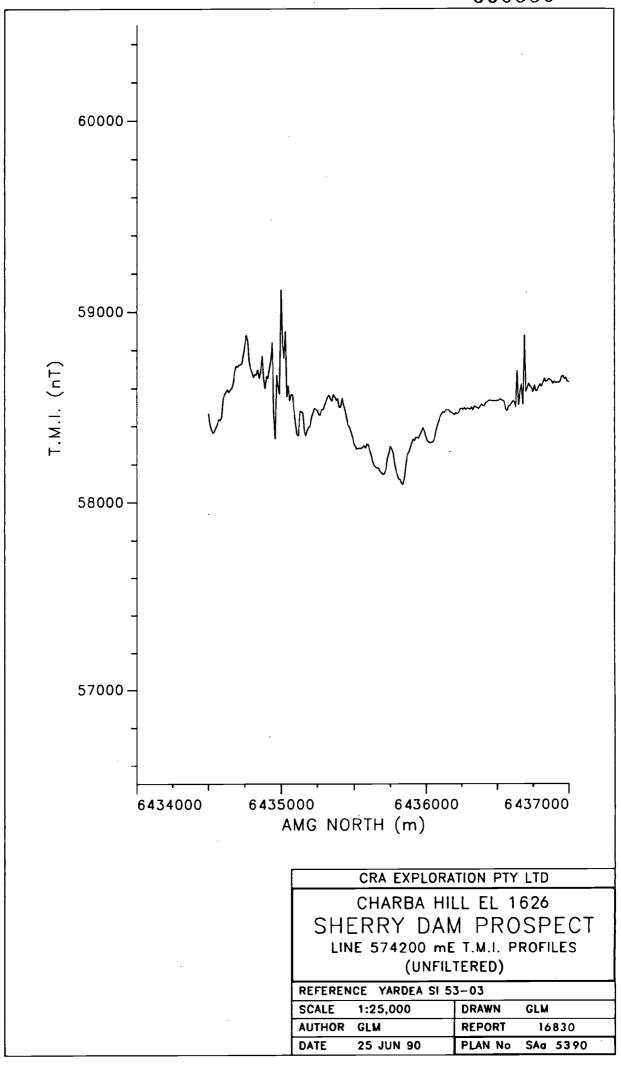


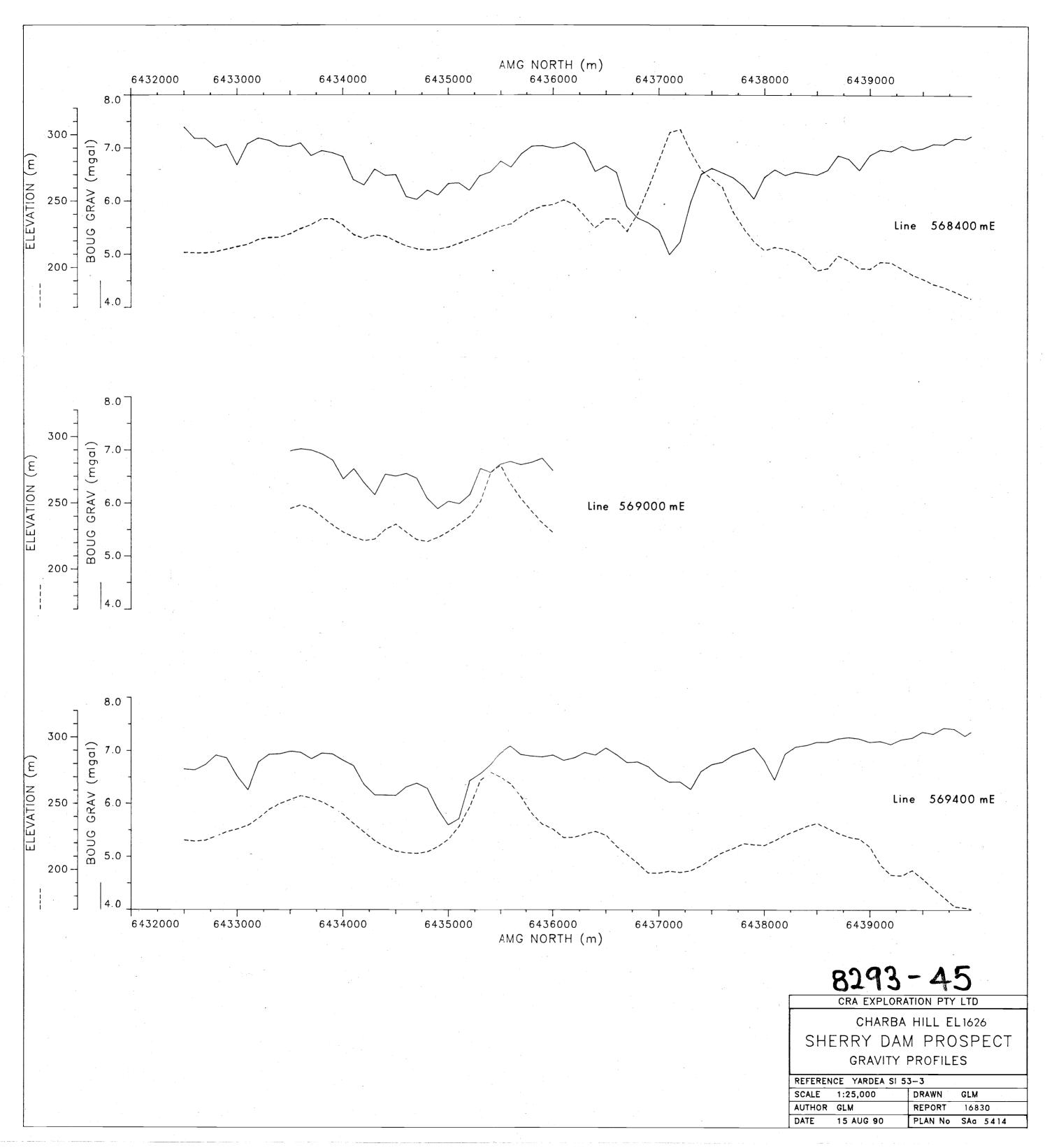


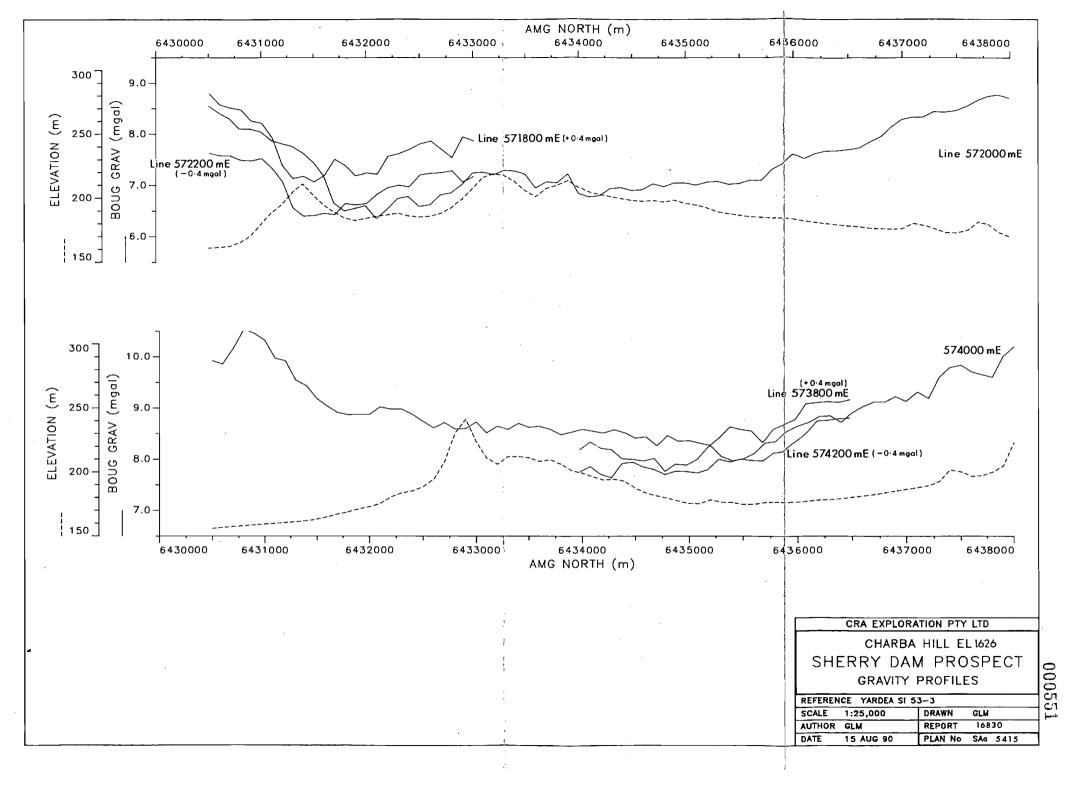


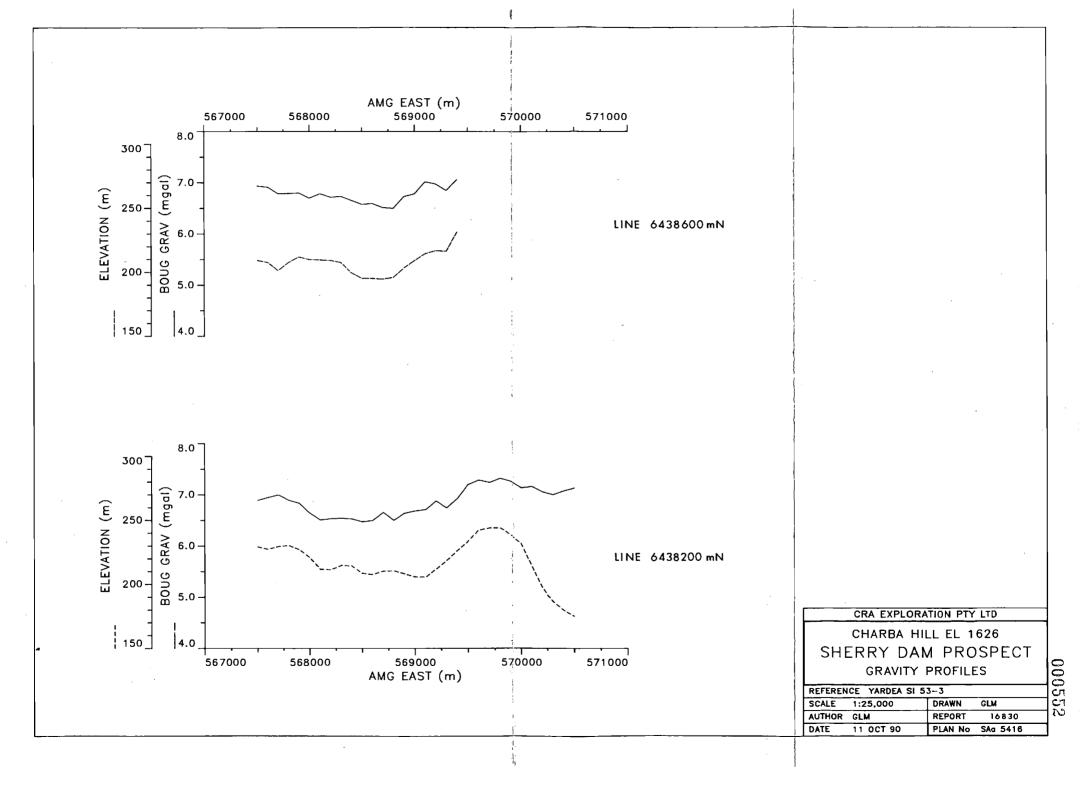


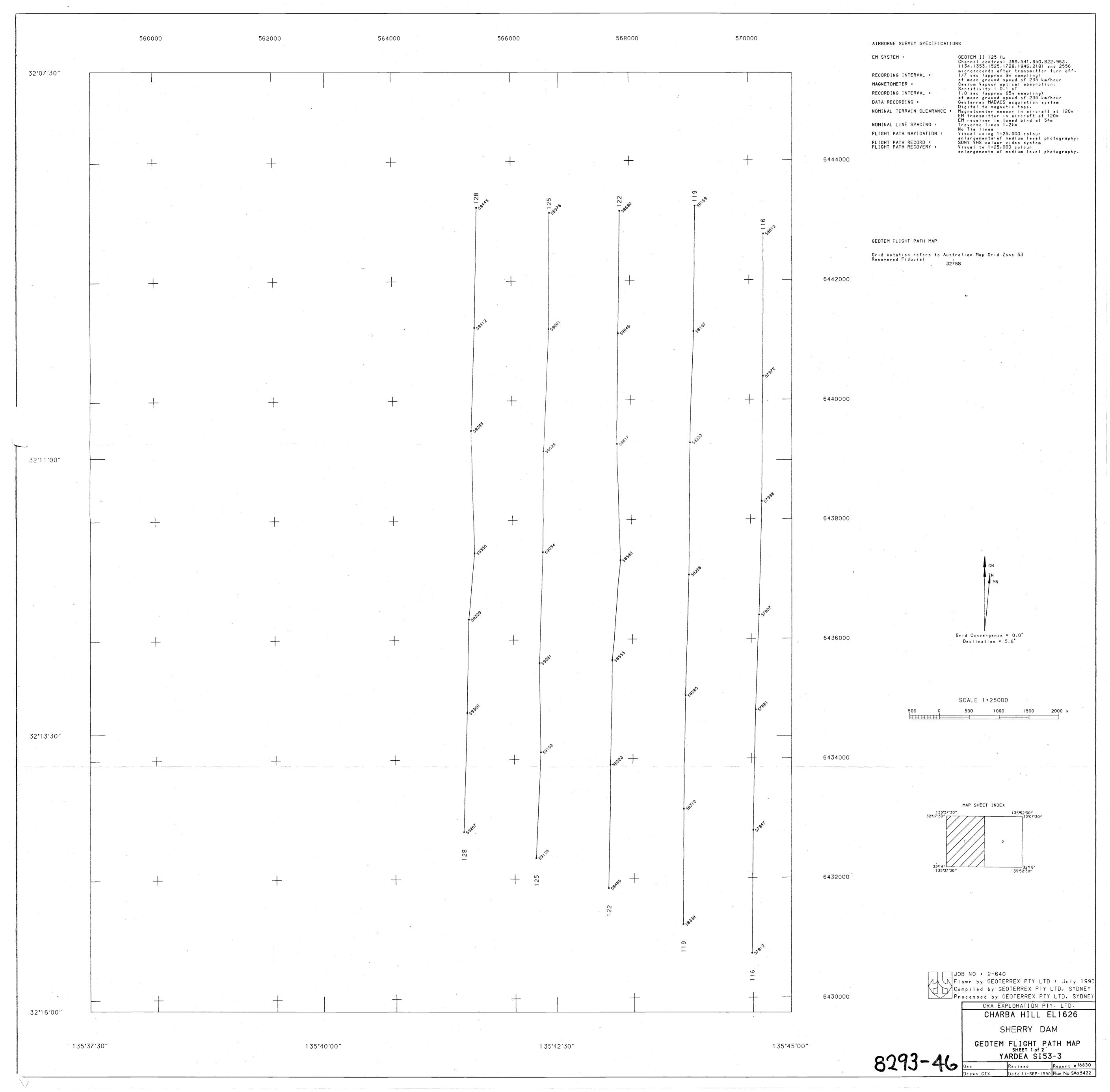


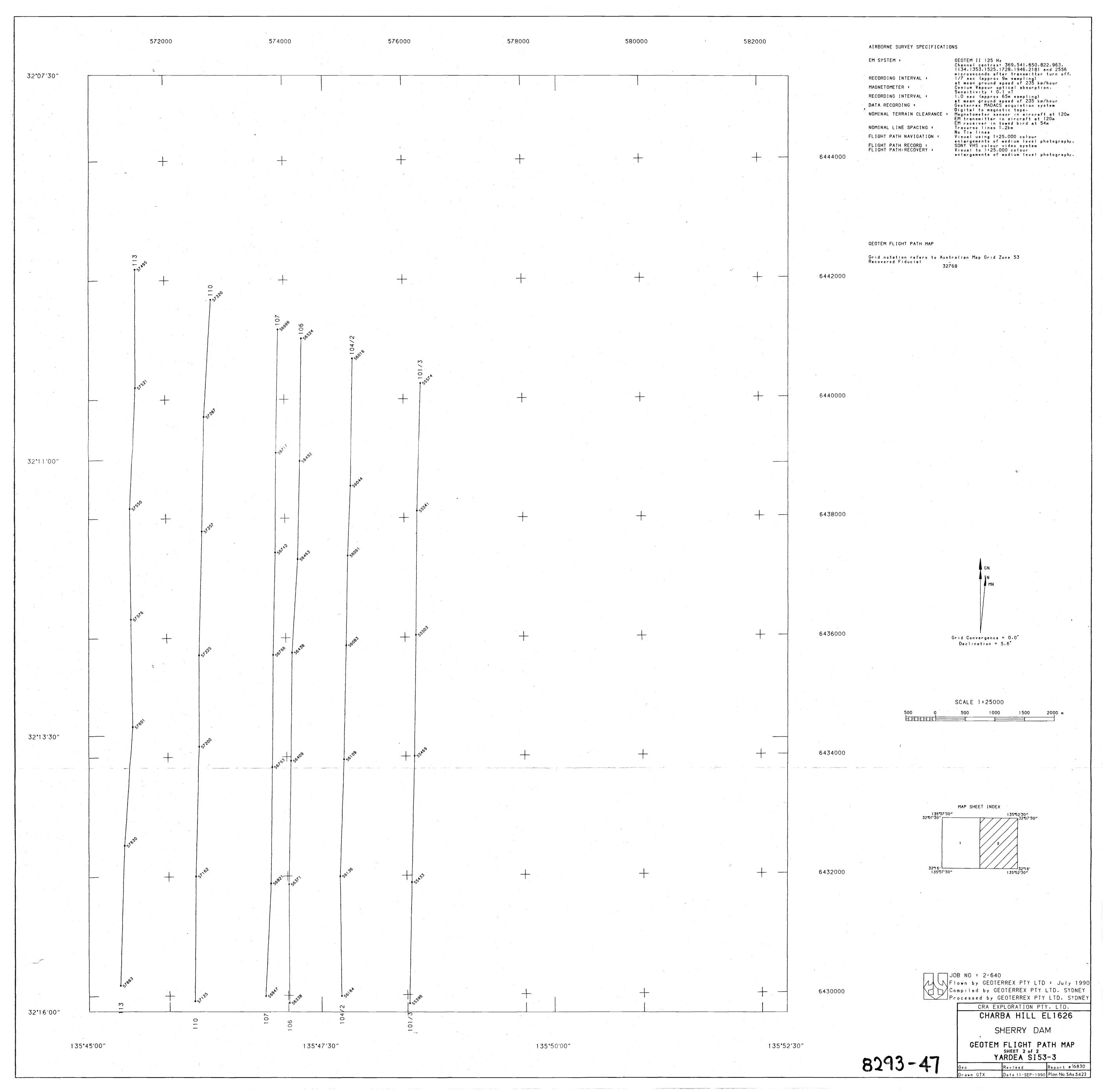


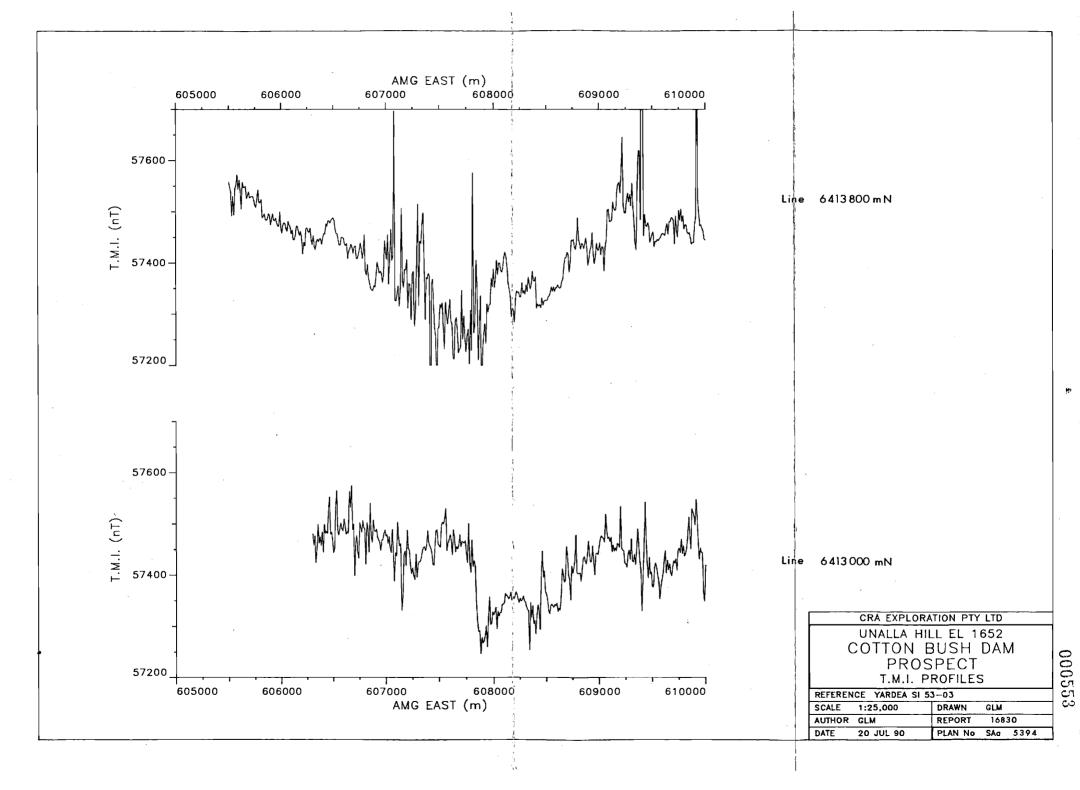


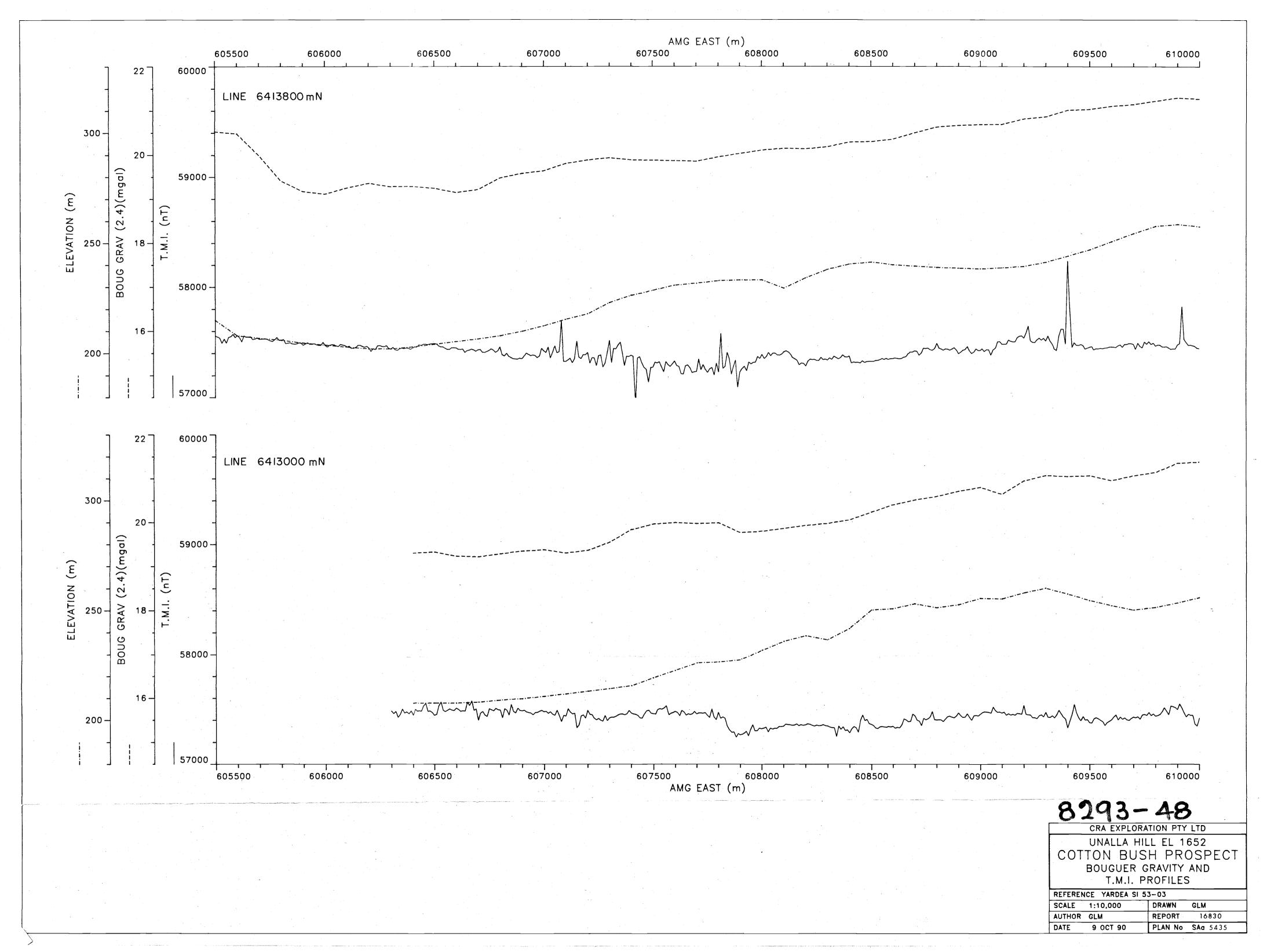


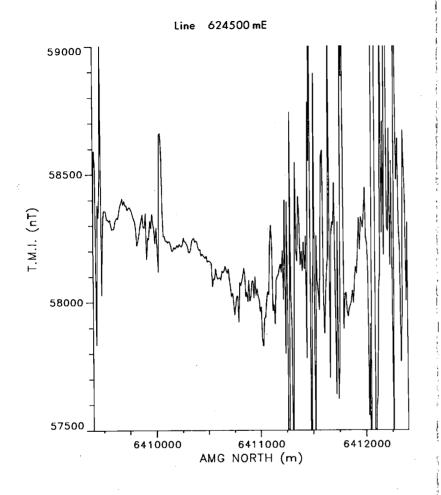


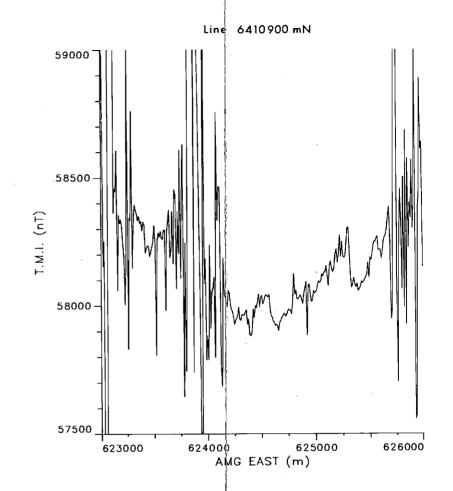


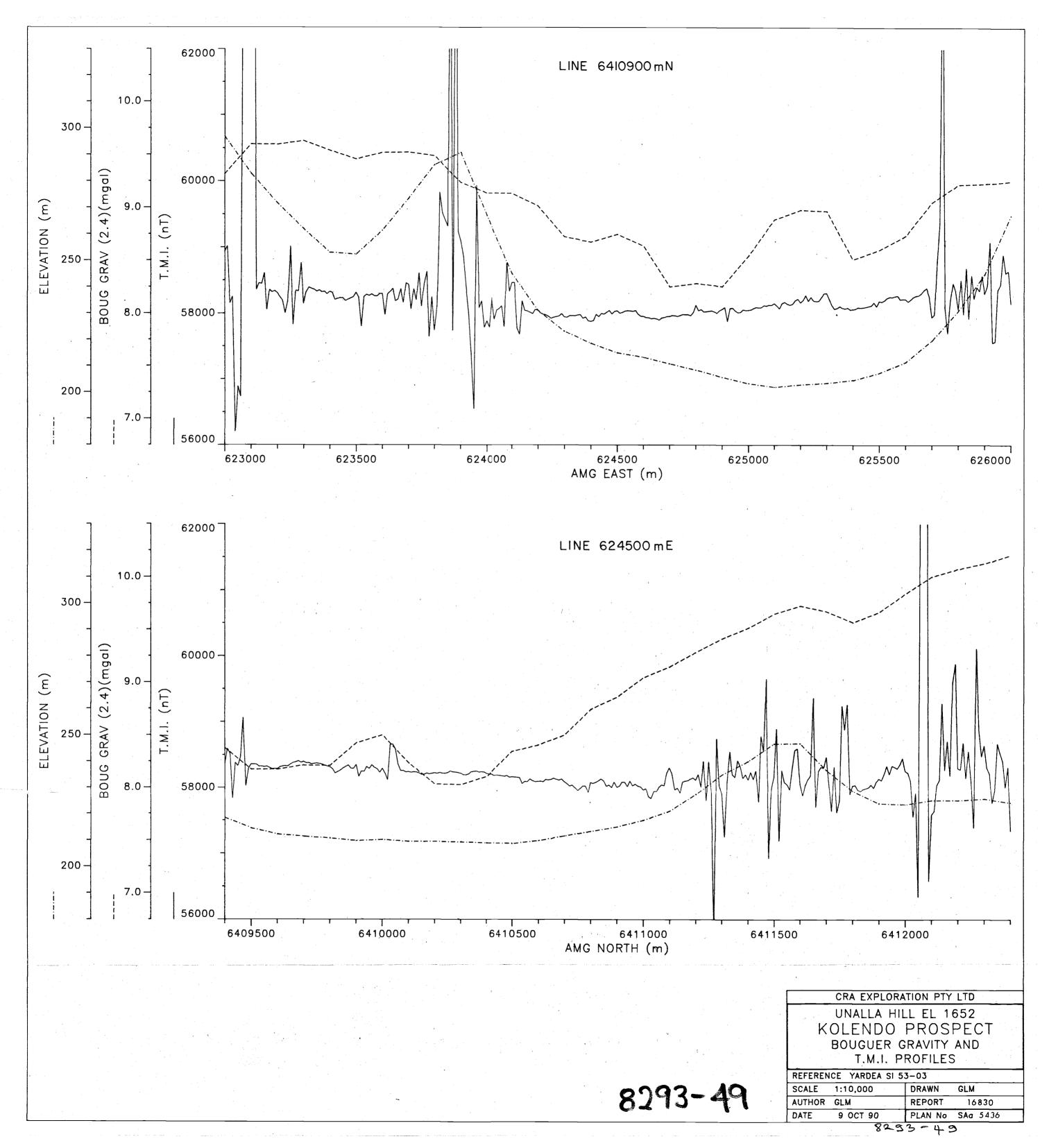


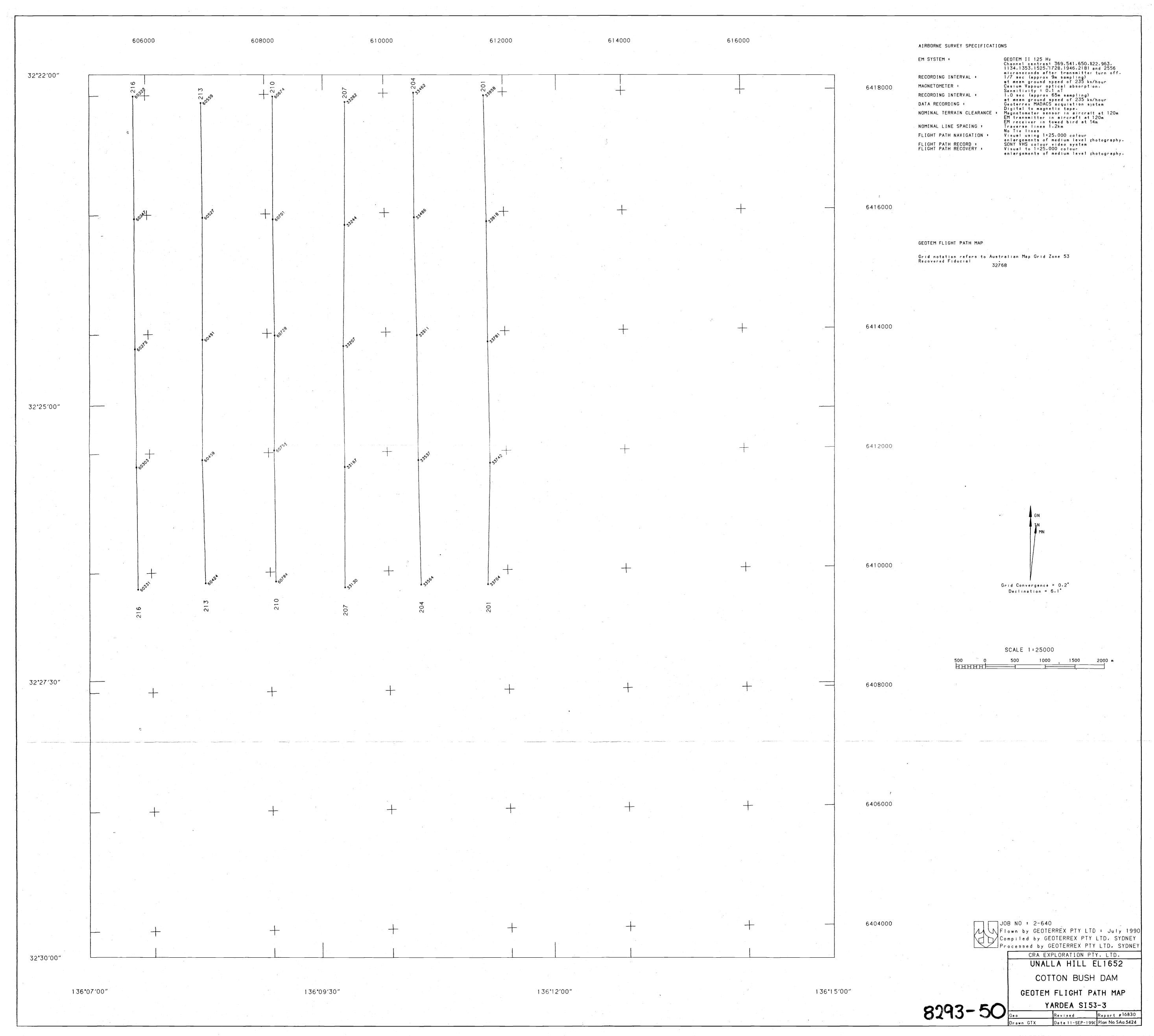









CRA EXPLORATION PTY LTD


UNALLA HILL EL 1652 KOLENDO PROSPECT

T.M.I. PROFILES

000554

SCALE	1:25,000	DRAWN	GLM
AUTHOR	GLM	REPORT	16830
DATE	24 JUL 90	PLAN No	SAg 5401

IV

CRA EXPLORATION PTY. LIMITED

FINAL AND RELINQUISHMENT REPORT FOR

CHARBA HILL EL 1626, PELTABINNA HILL EL 1627

AND UNALLA HILL EL 1652, SOUTH AUSTRALIA

FOR THE PERIOD ENDING 14TH NOVEMBER, 1990

AUTHOR:

J.F. MARINELLI

G.L. MACKEE

COPIES TO:

SADME

CIS CANBERRA

DATE:

10TH DECEMBER, 1990

SUBMITTED BY:

ACCEPTED BY:

"ALL RIGHTS IN THIS REPORT AND ITS CONTENTS (INCLUDING RIGHTS TO CONFIDENTIAL INFORMATION AND COPYRIGHT IN TEXT, DIAGRAMS AND PHOTOGRAPHS) REMAIN WITH CRA AND NO USE (INCLUDING USE OF REPRODUCTION, STORAGE OR TRANSMISSION) MAY BE MADE OF THE REPORT OR ITS CONTENTS FOR ANY PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF CRA.

CRA EXPLORATION PTY. LIMITED 1988"

<u>CO</u>	NTEN	<u>TS</u>	-	Page
LIS	ST OF	PLANS APPEN DPO'S		
1.	SUM	MARY		1
2.	INTE	RODUC	TION	1
3.	CON	CLUSIO	ONS & RECOMMENDATIONS	2
4.	LOC	ATION		. 2
5.	GEO	LOGY		2
6.	ARE	A SELE	CTION	3
7.	PRE	VIOUS I	EXPLORATION	4
8.	WOF	RK COM	APLETED DURING PREVIOUS QUARTERS	4
	8.1	Peltab	inna Hill E.L. 1627	4
			Gravel Sampling Geochemical Sampling Rock Chip Sampling Geophysics 8.1.4.1 Airborne Survey	4 5 5 6 6
	8.2	Charb	a Hill E.L. 1626	6
		8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Gravel Sampling Geochemical Sampling Rock Chip Sampling Geological Mapping Geophysics 8.2.5.1 Airborne Survey 8.2.5.2 Brambo Dam Prospect 8.2.5.3 Wooly Dam Prospect 8.2.5.4 Sherry Dam Prospect 8.2.5.5 GEOTEM Airborne Survey	6 6 7 7 8 8 8 8 8
	8.3	Unalla	Hill E.L. 1652	9
		8.3.2 8.3.3 8.3.4 8.3.5	Rock Chip Sampling	9 9 10 10 10 11 11 11

CONTENTS (Cont)	Page
9. WORK COMPLETED DURING FINAL QUARTER	12
9.1 Geophysics9.2 Discussion	12 12
EXPENDITURE REFERENCES LOCATION KEYWORDS	14 15 16 16

LIST OF PLANS

Plan No.	<u>Title</u>	Scale
SAa 5191	Peltabinna Hill EL 1627, S.A., Location Plan	1:250 000
SAa 5192	Charba Hill EL 1626, S.A., Location Plan	1:250 000
SAa 5204	Unalla Hill EL 1652, S.A., Location Plan	1:250 000
SAa 5454	Peltabinna Hill EL 1627, S.A Yardea Airborne Survey - Flight Path Locations	1:100 000
SAa 5455	Charba Hill EL 1626, S.A Yardea Airborne Survey - Flight Path Locations	1:100 000
SAa 5456	Unalla Hill EL 1652, S.A Yardea Airborne Survey - Flight Path Locations	1:100 000
SAa 5457	Peltabinna Hill EL 1627, S.A Yardea Airborne Survey - Aeromagnetic Contours	1:100 000
SAa 5458	Charba Hill EL 1626, S.A Yardea Airborne Survey - Aeromagnetic Contours	1:100 000
SAa 5459	Unalla Hill EL 1652, S.A Yardea Airborne Survey - Aeromagnetic Contours	1:100 000

LIST OF APPENDICES

Appendix I	Charba Hill EL 1626 and Unalla Hill EL 1652 - Logistics Report -
Appendix II	Airborne Electromagnetic Survey Peltabinna Hill EL 1627, Charba Hill EL 1626 and Unalla Hill 1652 - Logistics Report - airborne Magnetic and Radiometric Survey

LIST OF DPO'S

N.B. This list includes all DPO's used for previous and current reports.

37724	37729	37734	37823
37725	37730	37735	37826
37726	37731	37736	37830
37727	37733	3 7 737	37833

1. **SUMMARY**

Peltabinna Hill EL 1627, Charba Hill EL 1626 and Unalla Hill EL 1652 were acquired to investigate the concept of hydrothermal and base metal mineralisation associated with volcanic centres as a primary target in the Gawler Range Volcanic province. Non-magnetic Roxby Downs style orebodies masked and preserved by younger flows within the volcanics were a secondary target.

The geophysical signature of primary targets was expected to be regional gravity lows associated with subdued magnetic relief caused by alteration products. Secondary targets were expected to show large local gravity highs of more than several mgals magnitude.

Regional stream sediment sampling resulted in low multi-element values throughout, although some statistical anomalies were generated.

An airborne magnetic/radiometric survey over parts of each EL resulted in five targets for detailed gravity and geochemical follow up. Brambo Dam and Kolendo Prospects represented possible discrete vents while Cotton Bush Dam, Wooly Dam and Sherry Dam represented complexes up to several kilometres across possibly representing volcanic centres and/or caldera collapse structures.

Detailed ground geophysics associated with mapping rock chip and stream/gravel sampling failed to return anomalous values expected of mineralised volcanic vents and complexes.

Geochemical follow up of isolated multi-element anomalies failed to enhance original samples. Test GEOTEM traverses flown across Sherry Dam and Cotton Bush Dam failed to generate basement conductors representing possible mineralisation.

A subsequent data review of all work completed within the three EL's failed to generate further substantial targets. No further work was recommended and title was relinquished on 14th November, 1990.

2. <u>INTRODUCTION</u>

Peltabinna Hill EL 1627 and Charba Hill EL 1626 were applied for on the 25th September, 1989 to cover an area considered prospective for Roxby Downs and epithermal styles of mineralisation. They were both granted for a one year term on the 22nd December, 1989.

Unalla Hill EL 1652 was applied for on the 17th October, 1989 and granted on the 23rd April, 1990. A study of open file data indicated a number of anomalous assays for As, U, Te, Sb, Bi, Sn and F which suggested the area was prospective for epithermal gold mineralisation.

This report summarises work completed during the first three quarters of tenure for Peltabinna Hill EL 1627 and Charba Hill EL 1626. The report also summarises work completed during the first two quarters of tenure for Unalla Hill EL 1652. Finally it details work completed up to date of relinquishment for all three EL's. Date of surrender was November 14, 1990.

3. CONCLUSIONS AND RECOMMENDATIONS

Detailed exploration using drainage and rock chip geochemistry, aerial and ground geophysics and geological mapping did not produce targets worthy of drill testing within EL's Peltabinna Hill, Charba Hill and Unalla Hill.

No further work was recommended.

4. LOCATION

Peltabinna Hill EL 1627 and Charba Hill EL 1626 are located over the western Gawler Ranges to the south of L. Acraman and west of L. Gairdner. The Yardea Station homestead is found in the centre of the area. The licence locations are shown on plans SAa 5191 and SAa 5192.

Unalla Hill EL 1652 is located immediately to the east of Charba Hill EL 1626 and is roughly centred on Kolendo Station. Its location is shown on plan SAa 5204.

5. GEOLOGY

The following geological synopsis is taken largely from Blissett et.al. (1989).

The Gawler Ranges form the central part of the Archaean to Middle Proterozoic Gawler Craton which is a large, polygonal tectonic unit that has remained a stable cratonic area since about 1400 Ma.

Archaean and Early Proterozoic sequences were highly deformed prior to the eruption of the Gawler Range Volcanics circa 1590-1600 Ma. The volcanics form a thick blanket unconformably overlying the deformed metamorphic basement and extend from Paney in the south, to the Kingoonya-Tarcoola region in the north.

Around the margins and within the Gawler Ranges there are extensive regions of thin Cainozoic sediments which often mask relationships between rock units.

The Gawler Range Volcanics are predominantly a calc-alkaline assemblage of dacites, rhyodacites and rhyolites, with subsidiary potassic andesites and tholeitic basalts. They consist of ignimbrites (ash flows) welded to varying degrees, with localised lavas and agglomerates, erupted subaerially in a continental environment.

The Gawler Range Volcanics and intrusive Hiltaba Suite granites have undergone little deformation or metamorphism since Proterozoic times, responding to subsequent earth movements by epeirogenic block faulting and jointing on a regional scale. An unknown volume of the volcanics has been removed by erosion.

For a concise geological picture of the area refer to the published Yardea 1:250 000 Geological Map Sheet.

6. AREA SELECTION

Following an overseas study tour, a number of similarities were noted between areas visited and the Gawler Range Volcanic province of South Australia. These similarities indicated that potential existed for the Gawler Range Volcanics to host economic mineralisation such as gold, base metals, diamonds and rare earths. In addition, most deposits visited overseas shared a number of common geological factors, which along with factors unique to each deposits assisted in area selection.

The Gawler Range Volcanics are a sequence of Carpentarian basalt, rhyolite, rhyodacite and dacite, lavas, ash flow tuffs and airfall tuffs. They cover an area of approximately 20,000 km² in the centre of the Gawler Craton. The age of the rocks were found to be equivalent to similar volcanic rocks at Kiruna (Sweden), the St. Francis Mountains (Missouri), Bancroft (Canada) and volcanics associated with the Olympic Dam deposits (all Middle Proterozoic).

All the overseas areas visited were associated with alkaline igneous rocks, typically rhyolites, syenites, granites, alkali basalts, prophyrys, etc. Equivalents of the dacitic rocks from Gawler Range Volcanics were not noted in the overseas deposits. Geochemically, however, the Gawler Range Volcanics have a highly alkaline character with enriched K_2O , P_2O_5 and Fe_2O_3 and depleted CaO and Al_2O_3 when compared to Cainozoic equivalents, (Giles, 1980). In this respect they were similar to the areas visited overseas.

After a study of the known geology and geophysics of the Gawler Range province, a number of areas were identified as possibly being prospective.

The area covered by Peltabinna Hill EL 1627, Charba Hill EL 1626 and Unalla Hill EL 1652 was one such area. This area is covered by the Yardea dacite, a vast ashflow sheet which is considered to be the youngest unit of the province. It therefore is prospective for shallow late stage epithermal systems. Geological mapping has not identified any volcanic centres in the province. However within the licence areas a study of the published regional magnetics and gravity revealed a number of discrete magnetic lows which may be representative of eruptive centres under the dacite. A number of these lows, located in the north of the Charba Hill licence area, are also associated with a gravity trough.

As the area was open ground, Charba Hill, Peltabinna Hill and Unalla Hill were applied for to cover the prospective area.

7. PREVIOUS EXPLORATION

All previous exploration conducted within the area bounded by EL 1627 Peltabinna Hill, EL 1626 Charba Hill and EL 1651 Unalla Hill is summarised below.

The first recorded exploration work was by A.C.I. Technical Centre under S.M.L.'s 227-230 (Key, 1969). A follow up ground survey of BMR radiometric anomalies located within the Hiltaba Granite was completed. No positive results were recorded.

CRA Exploration carried out work under two separate titles in 1972 and 1986. Close (1972) describes ground follow up of a regional airborne radiometric survey. Stream sediment geochemistry, rock chip sampling and ground scintillometer traverses resulted in no anomalous metals being detected within S.M.L. 722. During 1986 a regional reconnaissance gravel sampling programme to detect diamondiferous kimberlites resulted in only one anomalous drainage being detected (LeMessurier 1986a and b). However follow up sampling proved negative within EL's 1299 and 1300.

Stockdale Prospecting Limited held tenement under EL's 841, 842, 843, 1157, 1158 and 1159 in the area between 1982-1984. Robison (1982), (1983), (1984a), (1984b) and Davies (1982) describe Stockdale's work programmes as reconnaissance heavy mineral gravel sampling, -80# stream sediment geochemical sampling, aeromagnetic anomaly and airphoto anomaly follow up to detect diamondiferous kimberlites. No significant anomalies were detected.

Shell Metals Division entered into a Joint Venture Agreement with Stockdale during 1984 to pursue base metal occurrences using Stockdale geochemical data in EL 1157 (Hellsten, 1984). However o anomalies were detected and the JV terminated.

8. WORK COMPLETED DURING PREVIOUS QUARTERS

This section summarises work completed in Peltabinna Hill EL 1627 and Charba Hill EL 1626 during the first three quarters of tenure. It also summarises work completed in Unalla Hill EL 1652 during the first two quarters of tenure.

Detailed work including plans, tables and appendices can be found in the respective quarterly reports submitted by Sugden and Marinelli (1990a and 1990b) and Marinelli and Mackee (1990).

8.1 Peltabinna Hill EL 1627

8.1.1 Gravel Sampling

During the first quarter reconnaissance gravel sampling was completed over the licence area. One hundred and forty seven gravel samples were collected and submitted for analysis of diamond and indicator mineral observation. Other mineral observations for detection of epithermal gold and/or Roxby Downs style mineralogy were also conducted.

In the second and third quarters all results were received with no microdiamonds reported. Chromites were recorded in six samples, fluorite in two samples, fluorencite in one sample, monazite in three and bastnaesite in two samples.

Follow up work during the second and third quarters did not enhance the Peltabinna Hill EL's diamond and other minerals potential. No further work was recommended at the end of the third quarter.

8.1.2 Geochemical Sampling

At each gravel sample site an identically numbered -80# stream sediment sample was collected and subsequently submitted for analysis. Elements assayed for were As, Te, F, Pb, Bi, Ag, Mo, Nb, Sb, Sn, U, Ba, Ce, Co, Cr, Cu, Fe, La, Mn, Ni, P, Th, Zn, Zr, V, Pd, Pt and Au (First quarterly report).

Primary examination of data indicated only one anomalous sample located at Lake Acraman (1100 ppm F and 11 ppm U). No samples appeared anomalous in Au.

Geostatistical interpretation of the data generated three other areas for follow up. Perrinilba Dam and South Perrinilba Dam both anomalous in Te and As; and Mungo Tank anomalous in U, As and F in conjunction with a bastnaesite anomaly in a gravel sample.

Follow up completed during the third quarter at Mungo Tank resulted in slight elevation in F (1300 ppm), As (29 ppm) and Pb (88 ppm). A petrology sample identified greisen derived from an equigranular biotite-bearing granitoid. Because of the paucity of results no further work was recommended.

Follow up at Perrinilba and South Perrinilba resulted in no enhancement of anomalies and therefore no further work was warranted.

Drainage geochemistry results from Stockdale's exploration from the early 1980's was entered into a computer for geostatistical interpretation. Six anomalous areas were followed up with no significant anomalies repeated (Appendix III - First quarterly report). No further work was warranted.

8.1.3 Rock Chip Sampling

During the first quarter general reconnaissance work in Peltabinna Hill EL resulted in seven rock chip samples being collected.

At Yartoo, a north-west trending zone of quartz veins and brecciated acid volcanics was sampled with five rock chip and three petrographic samples. Assay results returned negligible metals whilst petrographic results identified possible meso thermal-epithermal quartz veins in a tectonic volcanic tuff/volcaniclastic breccia being unmineralised.

One rock sample of the 'black' Yardea Dacite located near the quartz breccia returned low metal values.

Near Monument Dam a narrow glassy quartz vein within Yardea Dacite was sampled with only slightly elevated bismuth observed. No further work was warranted.

8.1.4 Geophysics

8.1.4.1 Airborne Survey

During the second quarter an airborne magnetic and radiometric survey was flown over part of the licence area.

Data assessment carried out during the third quarter concentrated on identification of possible hydrothermal alteration centres within the Gawler Range Volcanics. All magnetically quiet zones correspond to known occurrences of Hiltaba Granite. Therefore no targets within the E.L. were selected for follow up.

8.2 Charba Hill E.L. 1626

8.2.1 Gravel Sampling

Charba Hill was previously held as part of Thurlga EL 1300 (LeMessnrier, 1986a) and therefore only infill gravel samples were collected to bring the sample density to a comparable level with Peltabinna Hill EL (First quarterly report).

Twenty five gravel samples were collected and submitted for analysis of diamond and indicator mineral observation. Other mineral observations for detection of epithermal gold and/or Roxby Downs style mineralogy were also conducted.

All gravel samples reported negative results for diamonds and indicators during the second and third quarters.

Other mineral observation results lead to follow up sampling (by -80# stream sediment sampling) at Walpuppy Dam, Dolaymerrika Hill North, Waltumba Well, Poondana Ruins, Lake Dam, Mt. Nott, Nukey Bluff and Neuranippe Hill (Appendix 4 - First quarterly report). No significant metal anomalism was detected and no further work was recommended at each locality.

8.2.2 Geochemical Sampling

At each infill gravel sample site identically numbered -80# stream sediment sample was collected and subsequently submitted for analysis. Elements assayed for were the same as for section 8.1.2 above.

The unprocessed -80# stream sediment samples collected from the former Thurlga EL 1300 which fell within Charba Hill EL were retrieved and assayed (First quarterly report).

During the second quarter assay results were interpreted using geostatistics and three areas of anomalous metals were selected for follow up (Table 6 - Second quarterly report). Brambo Dam and Brambo Dam East were intensively drainage sampled but no elevated metals were repeated. No further work was warranted in the two areas together with Chillunie Dam, where the low order metal anomalies previously indicated were downgraded (Third quarterly report).

Drainage geochemistry results from Stockdale's exploration form the 1980's was also analysed to generate possible geostatistical anomalies. Four anomalous areas were highlighted and followed up (Appendix III - First quarterly report). However metal values were not repeated and further work was not recommended.

8.2.3 Rock Chip Sampling

Rock chip and petrology samples were collected at the Sherry Dam Prospect during the third quarter (see section 8.2.4 and 8.2.5.4 below).

During geological mapping seven rock chip and nine petrology samples were collected and submitted for analysis. Assay values returned from a narrow NE trending 1-2m wide, 400m long zone of subcropping silicified and sulphidic porphyry included 69 ppm Sb, 1010 ppm Pb, 143 ppm Cu and 240 ppm Zn.

Polished section mineralogy of the sample above identified traces of galena, chalcopyrite, covellite, sphalerite and tetrahedrite-tennantite. Extensive ground checking failed to extend the silicified zone. Lack of precious metals downgraded the area and no further work was recommended.

8.2.4 Geological Mapping

A geological fact map was completed over the Sherry Dam Prospect Grid during the third quarter (see section 8.2.3 and 8.2.5.4).

The Sherry Dam Prospect was chosen for mapping to help explain a coincident regional gravity low and magnetic low. The Prospect is dominated by dacite porphyry (Yardea Dacite), dacite scree and soil cover/alluvium. Minor compositional variation exists within the dacite. A microgranite stock forms a low hill within the dacite pile and is associated with a local gravity/magnetic low.

Mineralisation throughout the prospect was absent except for traces of silicification±sulphides, quartz veinlets, kaolinisation and greisenisation.

Nine petrological samples were collected as mentioned in section 8.2.3 above. The petrology report (Appendix III - Third quarterly report) stated that trace mineralisation is related to silicification, greisenisation and locally strong HF alteration which may remove Na, K, Ca, Mg and Fe from the hsot dacite, leaving Si, Al, Ti, Zr and minor Ca. Mineralisation is of a shallow origin and has deposited minor Pb, Zn, Cu and As±Sb as sulphides in veins and altered dacite.

Mapping, geochemistry and petrology carried out during the third quarter did not enhance the prospect of occurrence of extensive mineralisation at Sherry Dam. This was also evident in ground geophysical work carried out (see section 8.2.5.4 below).

Further work at Sherry dam was therefore not recommended.

8.2.5 Geophysics

8.2.5.1 Airborne Survey

During the second quarter an airborne magnetic and radiometric survey was flown over part of the licence area. Data assessment carried out during the third quarter concentrated on identification of possible hydrothermal alteration centres within the Gawler Range Volcanics. Three areas of subdued magnetic relief were selected for further work - Brambo Dam, Sherry Dam and Wooly Dam.

8.2.5.2 Brambo Dam Prospect

A discrete magnetic low approximately one kilometer across, and adjacent to elevated Cu/Zn geochemical samples (section 8.2.2), was traversed with two orthogonal lines of gravity and ground magnetics at 100 metre and 10 metre station intervals respectively (Third quarterly report). The geophysical data indicate coincident magnetic/gravity anomalies of -500nT and -1.0 mgal. However, subsequent follow-up geochemical sampling did not confirm the earlier elevated geochemistry and the prospect was downgraded.

8.2.5.3 Wooly Dam Prospect

A zone of subdued aeromagnetic relief along a strong NE trending linear was followed up with regional gravity traversing at approximately 500 metre and 200 station spacing (Third quarterly report). Station locations were emplaced using differential GPS navigation, with elevations being determined by photogrammetric methods. Estimated positional accuracies, (derived from correlation with optically observed stations), were ± 20 metres horizontally and ± 1 metre vertically.

A poorly defined local bouguer gravity low of approximately 2 mgals was detected, but no further work on the prospect was warranted.

8.2.5.4 Sherry Dam Prospect

The preliminary aeromagnetic data detailed a complex ovoid area of subdued and/or reversely polarised magnetic sources approximately 10 km x 6 km across. This zone corresponds with a regional gravity low and was considered a potential volcanic centre with possible associated hydrothermal alteration. Some 47.4 line km of detailed gravity and magnetic traversing (100 metre and 10 metre station intervals respectively), were completed over selected parts of the complex, plus an additional 192 regional gravity reconnaissance stations. (Third quarterly report).

The ground magnetic data is exceptionally noisy over the exposed dacite areas, and more subdued in areas of alluvial cover. A significant local magnetic/gravity low is coincident with the microgranite 'stock' (refer to section 8.2.4 above).

Contouring of the gravity data (regional and detailed) shows a 5-6 mgal low associated with the prospect area. The low geochemical assays associated with the area and the geophysical data indicate that the most probable source of the gravity/magnetic complex is a granite beneath the volcanic cover.

8.2.5.5 GEOTEM Airborne Survey

A test airborne electromagnetic survey (GEOTEM) was completed over the Sherry Dam prospect (Appendix V - Third quarterly report,). No bedrock conductors were detected within the resistive exposed volcanics, and strong surficial conductors correlate with the drainage and alluvium cover.

8.3 Unalla Hill E.L. 1652

8.3.1 Gravel Sampling

As Unalla Hill was previously held as part of Thurlga EL 1300 (LeMessurier, 1986a) and Kolendo EL 1299 (LeMessurier, 1986b) only infill samples were collected to bring the sample density to a comparable level with Peltabinna Hill EL (First quarterly report).

Twenty seven gravel samples were collected and submitted for analysis of diamond and indicator mineral observation. Other mineral observations for detection of epithermal gold and/or Roxby Downs style mineralogy were also conducted.

Results received indicated no microdiamonds but one sample reported a picroilmenite whilst another sample reported two chromites. The picroilmenite drainage was followed up but only reported one chromite. The two chromite drainage was followed up with five samples but no chromites were reported. No further work was therefore warranted.

Other minerals data was received and eight areas reflecting possible mineralisation were chosen for more intensive drainage and rock chip follow up (Appendix IV - First quarterly report).

Except for occasional elevated assays no anomalous patterns emerged in the stream sediment data. One rock sample of quartz and hematite from Dawes Dam reported anomalous As, Bi, U, Pb, Mo, Ba and V. Because this area did not indicate any of the anomalous metals mentioned, it was thought to have potential for a concealed orebody with thin hematite±quartz breccia veins being the only surface expression. However detailed study of the airborne geophysics failed to reveal an anomalous pattern and therefore the area was downgraded (Second quarterly report).

8.3.2 Geochemical Sampling

At each of the infill gravel sample sites an identically numbered -80# stream sediment sample was collected. Drainage samples were recovered from the Thurlga EL 1300 and Kolendo EL 1299 gravel surveys. Those that were found to occur within Unalla Hill EL were retrieved and together with the infill samples were submitted for multi-element analysis. Elements chosen were identical to those in seciton 8.1.2 above.

Results were of low tenor. Data was processed using geostatistal interpretation which resulted in two areas being recommended for follow up (Struggle Dam - weak U, As, F and Cu anomaly; Arcasia Dam - weak Au and Sb anomaly).

At the same time Stockdale's -80# drianage sample data falling within Unalla Hill EL was obtained and entered onto the computer for processing. Eight anomalous areas were noted and followed up with intensive -80# drainage sampling and rock sampling where required (Appendix III - First quarterly report).

Except for weakly anomalous F, U and As assays near Struggle Dam, no anomalous stream geochemistry was noted. Some minor hematite breccia and hematite quartz float was collected between Unalla Hill and Larry Dam. As explained in section 8.3.1, the significance of hematite was downgraded by geophysics and also iron (hematite) scavenging. All eight areas were therefore downgraded and no further work recommended.

Also, due to poor results from nearby Peltabinna Hill and Charba Hill EL follow up drainage geochemistry, the initial low priority Struggle Dam and Arcasia Dam anomalies were downgraded.

8.3.3 <u>Stream Sediment Data Statistical Interpretation</u>

All reconnaissance and follow up -80# stream sediment data was merged and statistically interpreted at the end of the first quarter. Using the statistics program on the Mac II computer, simple univariate statistics, histogram plots and correlation matrices were calculated for the normal and log transformed data (Appendices V & VI - First quarterly report).

No obvious anomalies were highlighted, with precious and base metals assays being of low tenor. Elements assayed by ICP-MS appeared to approach normal distributions.

From the correlation matrix gold was found to correlate poorly with all elements whilst good correlations were noted (Ce-La-U-Zr-Ba) or iron/manganese scavenging (Fe-P-Zn-Cu-Co-La). No correlations except for Cr and Ni were noted which may have reflected possible mineralisation.

8.3.4 Rock Chip Sampling

During the first quarter rock chip samples were collected from mapped quartz horizons shown on the Yardea 1:250 000 geology sheet WNW of Nonning Homestead.

Assays returned negligible multi-element values. No further work was warranted.

During the second quarter three rock chip samples were collected from a NW trending 1km x 0.5m subcropping quartz vein at the Kolendo Prospect (see sections 8.3.5 and 8.3.6.3 below). Trace sulphides were observed in all samples but only one returned slightly elevated Cu. Because of low overall metal values no further work was warranted.

8.3.5 <u>Geological Mapping</u>

Geological fact maps were completed for the Kolendo and Cotton Bush Dam Prospects during the second quarter.

The Kolendo Prospect geology is dominated by unaltered and unmineralised dacite porphyry and associated volcanic scree. A 1km x 0.5m quartz±trace sulphide vein subcrops in the NW quarter of the prospect grid. Refer to section 8.3.4 above. No other mineralisation or alteration was observed at Kolendo.

The Cotton Bush Dam Prospect geology is composed of dacite porphyry, quartz-dacite porphyry and rhyodacite. Some of the grid is covered by volcanic scree and alluvium. The rhyodacite outcrop in the centre of the prospect grid corresponds to the aeromagnetic low zone defined from the airborne survey (see section 8.3.6.3 below).

Mineralisation and/or alteration was not observed.

8.3.6 *Geophysics*

8.3.6.1 Airborne Survey

During the first quarter an airborne magnetic and radiometric survey was flown over part of the licence area. Data assessment carried out during the second quarter concentrated on assessment of possible hydrothermal alteration centres occurring within the Gawler Range Volcanics. One area of subdued magnetic relief was selected for further work (Cotton Bush Dam Prospect). One further similar prospect, Kolendo, was selected from regional magnetic data to the east of the detailed survey.

8.3.6.2 Cotton Bush Dam Prospect

This anomaly was selected as a circular zone of subdued magnetic relief some 4km across lying adjacent to a strong NW trending magnetic linear (?fault). Two east-west traverses of ground magnetics (10 metre stations) and gravity (100 metre stations) did not disclose any targets worthy of drill testing (First quarterly report).

A 1 mgal Bouguer gravity low corresponds with the location of the NW trending aeromagnetic linear. No further work was warranted.

8.3.6.3. Kolendo Prospect

A small zone of subdued magnetic relief approximately 1km across was traversed with orthogonal magnetic and gravity surveying (First quarterly report). A small Bouguer gravity high of 1-1.5 mgal was detected on the south eastern quarter of the grid. Follow up ground inspection revealed higher ferromagnesium mineral content in the dacite porphyry. Stream sediment geochemistry down stream returned negligible metal assays. No further work was warranted on the prospect.

8.3.6.4 GEOTEM Airborne Survey

A test airborne electromagnetic (GEOTEM) survey was completed over the Cotton Bush Dam Prospect (Appendix V - First quarterly report). No bedrock conductors were detected, and strong surficial conductors correlate with areas of alluvial cover.

9. WORK COMPLETED DURING FINAL QUARTER

9.1 Geophysics

Final plans were received from the contractor for the magnetic and radiometric airborne survey conducted over parts of EL's Peltabinna Hill, Charba Hill and Unalla Hill. Flight line path coverage is shown in plans SAa 5454, SAa 5455 and SAa 5456 for the respective EL's. Aeromagnetic contours are given as plans SAa 5457, SAa 5458 and SAa 5459.

A logistics report by the contractor for the airborne magnetic and radiometric survey over part of the three EL's is included as Appendix I. A logistics report for the airborne electromagnetic survey completed over prospects within EL's Charba Hill and Unalla Hill is included as Appendix II.

9.2 Discussion

Peltabinna Hill, Charba Hill and Unalla Hill EL's were taken up to investigate the concept of hydrothermal precious and base metal mineralisation associated with volcanic centres within the acidic to basic Gawler Range Volcanics pile. A secondary target was considered to be largely hematitic (i.e. non-magnetic) Roxby Downs style orebodies masked and preserved by the younger volcanic flows.

The geophysical signature of the primary targets was expected to be regional gravity lows associated with subdued magnetic relief caused by the alteration products. Inspection of the regional geophysical data revealed several potential targets, plus zones of excessive fracturing coincident with geochemical anomalies. The secondary targets were expected to show up as large local gravity anomalies of greater than several mgals magnitude.

Results of initial regional stream sediment sampling were of low tenor, but some statistical multi-element anomalies were generated. A detailed airborne magnetic/radiometric survey was flown over an area covering those parts of the three EL's containing the regional derived targets. From this data, five zones of low to non-magnetic relief were selected for detailed gravity and geochemical follow-up. The targets ranged from single anomalies representing potentially discrete veins (Brambo Dam, Kolendo) to complexes up to several kilometres across representing volcanic centres and/or caldera collapse structures (Cotton Bush Dam, Wooly Dam, Sherry Dam).

Detailed gravity in-fill in the five prospects confirmed associated bouguer gravity lows in all cases. However, associated mapping, rock chip and stream/gravel sampling over the areas failed to return the precious and base metal values anticipated with large mineralised alteration systems. Geochemical follow up of several other isolated multi-element anomalies failed to improve on the original samples.

Test GEOTEM (airborne EM) traverses were flown across the Sherry Dam and Cotton Bush Dam magnetic complexes to ascertain the response within the outcropping GRV blocks and the jointed/faulted zones which may be expected to obscure areas of clay alteration. The outcrop areas proved to be quite resistive with no indication of basement conductors at depth, while the intervening areas all showed typical surficial conductor responses related to thin conductive cover and drainage features.

A subsequent review of the area covered by the three EL's has failed to generate any further substantial targets. The geochemistry was of generally low tenor throughout, metal values being very low in the western Peltabinna EL area (dominated by Hiltaba suite granites), and increasing to the east without becoming significantly anomalous.

Consequently, it was recommended that no further exploration be completed within the EL's.

Title was relinquished on 14th November, 1990.

J.F. MARINELLI & G.L. MACKEE

J. L. Machen

JFM/GLM/dt

EXPENDITURE

Expenditure on Charba Hill EL 1626 and Peltabinna Hill EL 1627 for the two month period ending 30th November, 1990, the nearest accounting period, amounted to \$8,045.00 and \$4,736.00, respectively, as detailed below.

		EL 1626 \$	EL 1627 \$
Payroll Supplies Vehicle Rent Contractors Overheads		4 624 2 725 945 585 (2 755) 1 921	4 199 575 1 109 850 (3 446) 1 449
	Totals	\$ 8 045	\$ 4 736

Expenditure on Unalla Hill EL 1652 for the period ending 30th November, 1990, the nearest accounting period, amounted to \$10,214.00, as detailed below.

		EL 1652 \$
Payroll Supplies Vehicle Rent Contractors Laboratory Overheads		5 562 2 484 1 313 1 320 (2 755) 59 2 231
	Total	\$ 10 214

REFERENCES

Blissett, A.H., Parker, A.J. & Scheffler, J.	Gawler Ranges Excursion, October 7-9, 1989. Geological Society of Australia (S.A. Division) SADME Report Book No. 89/70.
Close, .S.E, 1972	Final Report Hiltaba SML 722, South Australia. CRAE Report No. 3805.
Davies, P.R., 1982	Stockdale Prospecting Limited EL Nos. 834, 841 and Parts of 842, 844 - Relinquishment Report. SADME Env. 4747.
Giles, C.W., 1980	A comparative study of Archaean and Proterozoic Felsic Volcanic Associations in Southern Australia. University of Adelaide Ph.D. Thesis (unpubl.).
Hellsten, K.J., 1984	The Shell Co. of Aust. Limited - Metals Div. Mt. Nott EL's 1157, 1158 and 1159, S.A Fourth Progress Report for Quarter Ending 16th June, 1984. SADME Env. 4267.
Key, .WW., 1969	SML's 227-230. Report to the Director of Mines, SADME Covering Work and Expenditure for the Period 19th August, 1968 to 31st December, 1968. A.C.I. Technical Centre. SADME Env. 1069.
LeMessurier, L.A. 1986a	Final & Relinquishment Report on Thurlga EL 1300, S.A. CRAE Report No. 130678.
LeMessurier, L.A. 1986b	Final & Relinquishment Report on Kolendo EL 1299, S.A. CRAE Internal Report No. 130670.
Marinelli, J.F. & Mackee, G.L., 1990	Third quarterly report for Charba Hill EL 1626 & Peltabinna Hill EL 1627, S.A. for the period ending 21st September, 1990 and Second quarterly report for Unalla Hill EL 1652, S.A., for the period ending 22nd October, 1990. CRAE Report No. 16830.
Robison, H.R., 1982	Stockdale Prospecting Limited EL 827 Relinquishment Report. SADME Env. 4836.
Robison, H.R., 1983	Stockdale Prospecting Limited EL's 842, 843 and 844. Seventh Quarterly Report to 3rd February, 1983. SADME Env. 4267.
Robison, H.R., 1984a	Stockdale Prospecting Limited Part EL 1158 and Part EL 1159 Gawler Ranges. Relinquishment Report. SADME Env. 5430.
Robison, H.R., 1984b	Part Exploration Licence No. 1159 Relinquishment Report. Stockdale Prospecting Limited. SADME Open File Env. 5430.
Sugden, S.P. & Marinelli, J.F., 1990a	First Quarterly Report for Charba Hill EL 1626 & Peltabinna Hill EL 1627, S.A., for the period ending 21st March, 1990. CRAE Report No. 16525.

REFERENCES (Cont...)

Sugden, S.P. & Marinelli, J.F., 1990b

Second Quarterly Report for Charba Hill EL 1626 &

Peltabinna Hill EL 1627, S.A., for the period ending 27th June, 1990 and First Quarterly Report for Unalla Hill EL 1652, S.A. for the period ending 22nd July, 1990. CRAE

Report No. 16608.

LOCATION

Yardea	SI5303	1:250 000 sheet
Yartoo	5933	1:100 000 sheet
Yardea	6033	1:100 000 sheet
Kolendo	6133	1:100 000 sheet
Minnipa	5932	1:100 000 sheet
Cacuppa	6032	1:100 000 sheet
Buckleboo	6132	1:100 000 sheet

KEYWORDS

Base Metals, Breccia, Geochem Drainage, Geochem Rock, Geophys-Magnetics, Gold, Proterozoic, Volcanics, Volcanogenic, Uranium

APPENDIX I

<u>CHARBA HILL EL 1626 AND UNALLA HILL EL 1652</u> <u>LOGISTICS REPORT - AIRBORNE ELECTROMAGNETIC SURVEY</u> LOGISTICS REPORT FOR AN AIRBORNE ELECTROMAGNETIC SURVEY

YARDEA, SA

FOR

CRA EXPLORATION PTY LTD

JOB NO. 2-640

SEPTEMBER 1990

GEOTERREX PTY. LTD. 13 WHITING STREET, ARTARMON NSW 2064

GEOTEM LOGISTICS REPORT TABLE OF CONTENTS

	P7	\GE
	INTRODUCTION	1
1.	SURVEY OPERATIONS SUMMARY	3
2.	FLIGHT PATH RECOVERY	4
3.	GEOTEM ELECTROMAGNETIC SYSTEM	5
	3.1 EQUIPMENT AND SPECIFICATIONS	5
	3.2 SYSTEM DESCRIPTION	6
	3.3 SYSTEM CALIBRATION	8
	3.4 DATA PROCESSING	8
4.	MAGNETOMETER SYSTEM	9
	4.1 SPECIFICATIONS	9
5.	AUXILIARY EQUIPMENT	10
	5.1 DATA ACQUISITION SYSTEM	10
	5.2 TRACKING CAMERA	12
	5.3 ALTIMETER	12
	5.4 ANALOGUE RECORDER	12
6.	SURVEY PRODUCTS	15
	6.1 DELIVERABLE ITEMS	15
	6.2 MULTI-PARAMETER PLOTS	15
	6.3 TAPE FORMAT	15

LIST OF FIGURES

	TAGE
FIGURE 1: FIGURE 2: FIGURE 3:	Location Map
	LIST OF TABLES
	PAGE
TABLE 1:	Survey Progress 3
TABLE 2:	Receiver Channel Positions 5
TABLE 3:	Multi-Parameter Plot Scales

INTRODUCTION

From the 10th to 11th of July 1990, Geoterrex Pty Ltd conducted an airborne electromagnetic survey within the Gawler Ranges, South Australia for CRA Exploration Pty Ltd. This report summarises the logistics, survey parameters, calibration procedures and processing details of the survey.

In all, 157 kilometres of GEOTEM electromagnetic data was collected in 2 flights over Cotton Bush Dam and Sherry Dam survey areas (Figure 1) at a base operating frequency of 125 Hz. The survey was flown with 1.2 kilometre spaced lines on a true N/S bearing.

The base of operations was Kimba, South Australia.

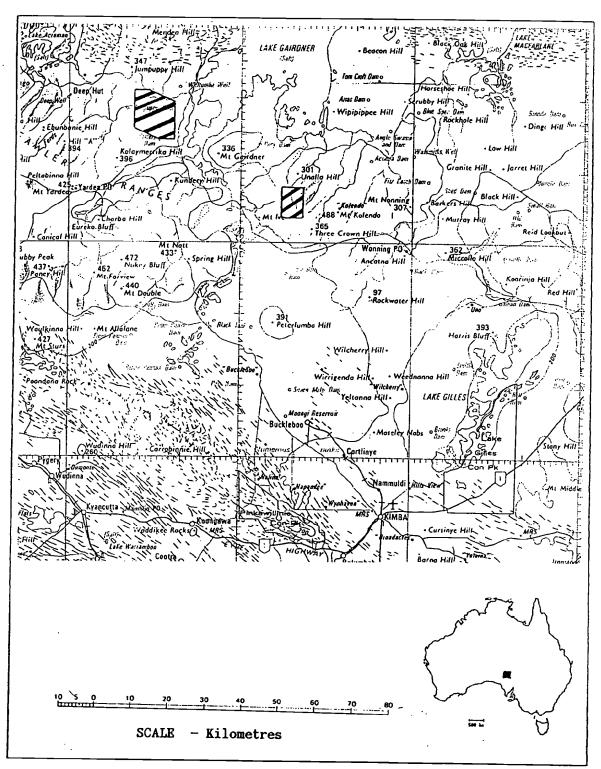


Figure 1 Location Map

1. SURVEY OPERATIONS SUMMARY

Base of Operations:

Kimba, South Australia

Airstrip:

Kimba Airport

Aircraft:

CASA C212-200 Turbo Prop, VH-TEM

Survey Specifications:

Type of survey:

Electromagnetic 157 kilometres

Survey size: Line direction:

 $0^{\circ}/180^{\circ}$ true north

Line spacing: Minimum line length: 1200 metres 5 kilometres

Nominal aircraft

terrain clearance:

120 metres

Nominal aircraft speed: 60 metres per second

Field Personnel:

Pilot/Project Manager:

J. Edwards

Pilot

T. Haldane

Electronics Technician: Data Compiler:

T. Green T. Donnollan

S. Reid

Geophysicist:

TABLE 1: Survey Progress

Flight 1:

10 July 1990

Flight 2:

11 July 1990

2. FLIGHT PATH RECOVERY

Flight path recovery is the location by image recorded on the aircraft video tape of the aircraft's position on photography to be used in map compilation.

CRA Exploration Pty. Ltd. supplied aerial photography which consisted of two sets of 1:25,000 enlargements of controlled 1:87,000 B/W photographs. One set of the photography was marked with control points whose positions are known in latitude/longitude and in AMG coordinates. The other set of photography was used in the construction of flight strips, for navigation.

The path recovery was carried out in the field onto the controlled photography. Identifiable points on both video and photography, no greater than two kilometres apart, were marked on both, with the fiducial number transferred from video tape to the recovery photograph. These recovered fiducials, joined by straight lines, constitute the flight path of the aircraft.

The recovered flight path was then digitised from the controlled set of photography. The AMG coordinates of each digitised recovered fiducial were determined by fitting a low order polynomial trend surface to the control point network to remove distortion. The position of each point was then calculated relative to the control surface. Erroneous points were checked by comparing the average aircraft speed between adjacent recovered fiducials (fiducial numbers being real time value in seconds) and the average speed for the whole line. Any significant speed changes over short intervals (1 or 2 kilometres) were noted and the surrounding recovery was checked for errors and corrected where necessary.

The difference in the computed coordinates of the transfer points was used to estimate the accuracy of the AMG coordinate transformation.

3. GEOTEM ELECTROMAGNETIC SYSTEM

3.1 EQUIPMENT AND SPECIFICATIONS

Model:

GEOTEM II

Geometry

Transmitter height (agl):
Receiver bird height (agl):
Tx - Rx horizontal separation:

120 metres 54 metres 115 metres

(agl - above ground level)

Transmitter

Coil axis:

vertical

Signal:

half sine wave current pulse

Base frequency:

125 Hertz

Repetition rate:

250 pulses per second

Pulse width: Loop area:

1020 microseconds 231 square metres

Number of turns:

3

Peak Current:

600 amps

Tx loop dipole moment:

 $4.15 \times 10^5 \text{ Am}^2$

Receiver

Coil axis:

horizontal, parallel to flight direction

Digitising rate:

32,000 samples/second

Pulses per reading:

31

Stored readings/second:

7

Gate distribution:

Combined Linear

Gate times:

Expressed below in micro seconds after

transmitter shut-off.

Channel positions for 125 Hz

TABLE 2

	125 Hz
CHANNEL NUMBER	CENTRE
	(u secs)
1	369
2	541
3	650
4	822
5	963
6	1134
7	1353
8	1525
9	1728
10	1946
11	2181
12	2556

3.2 SYSTEM DESCRIPTION

GEOTEM is a time domain towed bird electromagnetic system incorporating a high speed EM receiver. The primary electromagnetic pulses are created by a series of discontinuous sinusoidal current pulses fed into a three turn shielded transmitting loop surrounding the aircraft and fixed to the nose, tail and wing tips. The pulse repetition rate is typically 125 Hz (250 bipolar pulses per second) or 75 Hz (150 bipolar pulses per second). Each transmitted current pulse lasts 1020 microseconds, followed by 2980 microseconds off time for 125 Hz (5646 microseconds for 75 Hz). Peak current through the loop is 600 Amps, resulting in a primary magnetic dipole moment of 4.15 x 105Am².

The EM sensor is a wire coil wound around a ferrite core mounted horizontally in a "bird", towed by the aircraft on a 135 metre long cable. The cable is demagnetised to reduce noise levels. Mean terrain clearance for the aircraft is about 120 metres with the bird being situated 66 m below and 115 metres behind the aircraft. The geometry of the system is displayed in Figure 2A.

For each primary pulse a secondary magnetic field is produced by decaying eddy currents in the ground. These in turn induce a voltage in the receiver coil which is in proportion to the electromagnetic field. This voltage is sampled over 20 time gates whose centres and widths are software selectable and which may be placed anywhere within or outside the transmitter pulse. (Figure 2B)

The signals received from each sample pass through anti-aliasing filters and are then digitised with an A/D converter at sampling rates of up to 100 khz. The digital data stream from the A/D converter passes into an array processor where all the numerically intensive processing tasks are carried out. The array processor is under control of a multi-tasking minicomputer. The onboard processing sequence is as follows:

<u>Transient Analysis</u>: Wide-band frequency analysis enables the separation of noise from signal in real time.

<u>Digital Stacking</u>: The stacking of 31 transients (125 Hz) to produce 1 recorded reading, of which 7 are recorded every second

<u>Windowing of Transient Data</u>: The transient is initially sampled over 250 channels which are then amalgamated to form 12 channels.

At a normal survey altitude of 120 metres terrain clearance, the typical effective penetration depth of the system is estimated to be 200-300 metres, dependent on conductivity contrast between the target and host rock, target size and attitude and overburden conductivity.

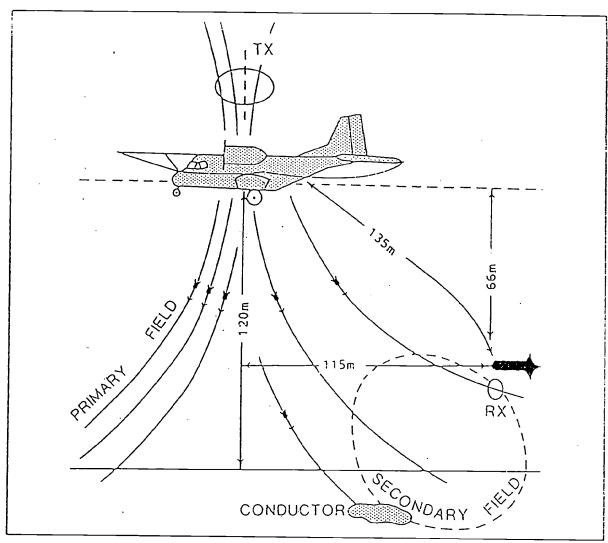


Figure 2A System Geometry

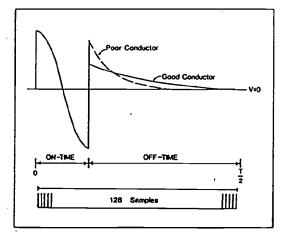
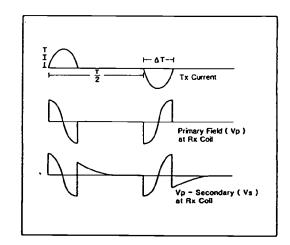



Figure 2B Sampling and Wave Form

3.3 SYSTEM CALIBRATION

All checks and adjustments are performed at high altitude at the start of each flight to allow for automatic compensation and calibration at survey altitude.

Compensation. During the flight, the transmitter creates eddy currents within the structure of the aircraft that have measurable effects at the receiver coil. Compensation for this signal is effected numerically within the receiver by a statistical analysis of the signal at the bird in the absence of ground response (by flying at an altitude in excess of 600 m above ground level). The observed signal is used to define a compensation signal which is subtracted from the observed to produce a null and thus effectively buck out any response due to changing geometry between receiver and transmitter.

Normalisation. All EM response channels are automatically calibrated and reduced to parts per million of the primary field in the receiver. This is achieved by dividing the measured voltage by the voltage induced by the primary field at the bird.

3.4 DATA PROCESSING

Levelling

GEOTEM is a very low drift and self calibrating system, with little necessity for data levelling.

Synchronisation Lag

A 4.3 second lag correction is applied to the digital GEOTEM values to synchronise them with the flight path.

Spheric Removal

Individual spheric events are removed by the application of a check on each individual reading, and a statistical check along each channel of data. The software prevents the removal of more than 3 consecutive readings (0.4 seconds of data) to minimize data distortion of true ground response.

Filtering

The GEOTEM data is filtered with a 1.4 second cut-off filter to reduce high frequency scatter with minimal effect to the narrowest possible real anomalies (wavelength of about 4 seconds).

4. MAGNETOMETER SYSTEM

4.1 **SPECIFICATIONS**

Model:

Scintrex caesium vapour optical absorption magnetometer

Mounting:

Tail stinger

Sample interval: 140 milliseconds, once per second *

Sensitivity:

0.10 nT

To operate both the GEOTEM system and the magnetometer system simultaneously, the GEOTEM transmitter is switched off for a period of 140 milliseconds every second to allow for a noise free magnetometer reading.

AUXILIARY EQUIPMENT

5.1 DATA ACQUISITION SYSTEM

Model:

Geoterrex Pty Ltd MADACS

Program:

EM25

The MADACS is a computer based software system using an Interdata 6/16 minicomputer. This processor is linked to two Digi-Data Model 1600 magnetic tape drives. These tape drives have a feature which allows checking of the recording process as many times as the particular application permits. The checking procedure includes elimination of errors due to bad tape spots. Multiple buffers permit recording, processing and acquisition of data to be carried out simultaneously with no dead time. The system uses an IBM compatible laptop for operator-system communication.

The key feature of this system is that all data collection, verification, buffering, and recording is software-controlled. Therefore, the acquisition system may be economically altered to fit almost any requirement. Critical parameters are automatically monitored during flight, with visual and aural alarms provided for the operator.

Survey parameters are displayed during flight in their correct physical units, making operator comparisons simple. The survey program operates on a request-response basis, with the system pre-empting the operator and rejecting all illegal responses.

The MADACS is used to control and command the operations of all the ancillary equipment. This includes the GEOTEM receiver, magnetometer, camera, altimeter, tape drive and analogue chart recorder.

The system is based on a precision clock. Time is digitally recorded as a six-figure number called a "fiducial". A fiducial number equals the real time in tenths of seconds after midnight, for example, 000000 corresponds to midnight and 360000 corresponds to 10.00am. Fiducials are generated on digital tape, video tape and analogue charts at ten second intervals. The fiducial numbers do not increment by units, they are calculated from the clock time by the computer. This system does not require digital recording of line numbers, part numbers and line direction, thus avoiding a source of digital recording errors. These are recorded on the flight log by the operator.

The MADACS data acquisition system has the following specifications and features:

Precision clock: The system is controlled by a precision clock which allows data to be collected at any multiple of 0.1 seconds.

Computer: The system is based on an Interdata 6/16 mini-computer. The computer has the following interfaces:

- Digital Input/Output Bus
 This bus is capable of recording from, writing to, testing and controlling 16 external digital devices.
- Analogue Input Module
 This module has 16 analogue inputs with 12 bit resolution.
- Analogue Output Module
 This module has 12 analogue outputs with 12 bit resolution.
- Magnetic Tape Controller
 This interface/controller is capable of handling four 9-track NR21 tape transports. Tapes are written in an IBM compatible binary format with full parity, cyclic redundancy and longitudinal check characteristics.
- Magnetometer Interface
 This interface converts the signal from the high sensitivity caesium vapour magnetometer into a format acceptable to the MADACS.
- Camera Controller
 The interface allows the MADACS to control and monitor all aspects of the tracking camera's operation. A video screen provides constant monitoring of camera operation to the operator.
- Operator's Console
 This is an IBM compatible laptop computer, via which the operator communicates with the system. While on line during survey, all parameters are continuously displayed on the monitor unless the system senses an abnormal condition in which case a diagnostic message and the time sensed are displayed. The message remains until acknowledged by the operator.

Recorded Digital Data

Each second:

Flight number

Time Altitude

Total magnetic field

Each 0.14 seconds:

20 EM gates

Transmitter primary field

50 Hertz monitor

THE STATE OF

5.2 TRACKING CAMERA

Model:

Sony DXC101P Video Camera

The tracking camera is equipped with a 4 mm wide-angle lens. The video tape is synchronised with the geophysical record by a digital fiducial display that increments every tenth of a second. These fiducials are recorded on the video tape and displayed on the bottom left of the video screen. Times are recorded from the digital information provided by the MADACS system.

5.3 ALTIMETER

Model:

Sperry Stars AA200 radio altimeter system

Sample interval:

1.0 second

Accuracy:

+/- 1.5% of indicated altitude.

Synchronisation:

The average of the output of the altimeter over each second is calculated and assigned to the time recorded

at the end of each sample.

The Sperry radio altimeter is a high quality instrument whose output is factory calibrated. It is fitted with a test function which checks the calibration of a terrain clearance of 100 feet and altitudes which are multiples of 100 feet.

5.4 ANALOGUE RECORDER

Model:

RMS GR33 Thermal Dot Matrix Printer

Chart speed:

ll cm/minute; time increases from left to right

Chart width:

30.5 cm

Event marks:

20 second marks are recorded on the bottom of the chart with the associated fiducial numbers being

printed at the base of the chart.

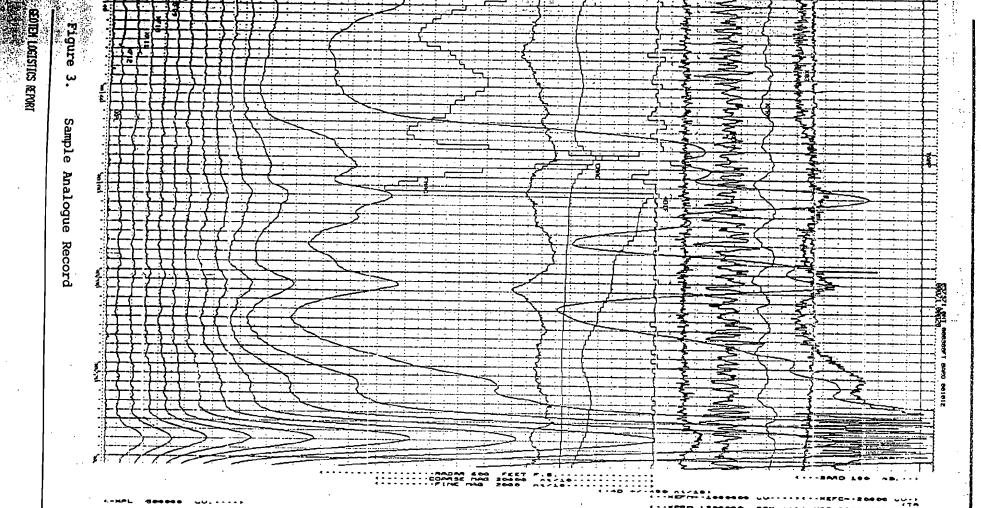
0.1 volts/cm

Channels recorded & Scales

Barometer 22 mB/cm Chan 3 noise monitor 500 ppm/cm Primary field monitor 0.25 volts/cm Chan 12 noise monitor 400 ppm/cm Magnetic field fourth difference 10 nT/cm Total magnetic field Fine scale 20 nT/cm Coarse scale 200 nT/cm Terrain clearance 15 metres/cm Geotem ch 1 - 12 200 ppm/cm

A sample analogue record is shown in Figure 3.

Zero Positions:


These zero positions are annotated on the analogue

sample.

50 Hz monitor

Synchronisation:

A lag of 5.0 seconds occurs between the Geotem channels and the magnetometer, altimeter traces.

DATE 30/11/85 FLIGHT NO. 0001

JOB NO. 2-616

LINE NO. 19515

AREA...

GEOTERREX LIMITED

-£3-

6. SURVEY PRODUCTS

6.1 ITEMS DELIVERED

Final Flight Path Maps at 1:25,000 scale (ink on plastic)
Multi-parameter Profile plots at 1:25,000 scale
Located data tape
Located data tape summary
Recovered line listing
Mileage list
Flight logs
All recovery photography
Flight path video tape
Flight strips
Logistics report

6.2 MULTI-PARAMETER PLOTS

The final GEOTEM data is presented as multi-parameter profiles plotted at suitable scales on a fiducially annotated X-axis as listed below, from top to bottom. The horizontal scale is 1:25,000. The GEOTEM channels are plotted over separate scales to optimise the high dynamic range of the EM signal.

TABLE 3

Channel	Trace Colour	Scale
AXIS 1		
Coarse Magnetics	Red	200 nT/cm
Fine Magnetics	Green	30 nT/cm
Aircraft Altitude	Black	30 m/cm
AXIS 2 (Sherry Dam)		
GEOTEM Channel 1	Black	800 ppm/cm
GEOTEM Channel 2-12	Red	400 ppm/cm
50 Hz Monitor	Black	0.1 volts/cm
AXIS 2 (Cotton Bush Dam)		
GEOTEM Channel 1	Black	1000 ppm/cm
GEOTEM Channel 2-3	Green	600 ppm/cm
GEOTEM Channel 4-12	Red	400 ppm/cm
50 Hz Monitor	Black	0.1 volts/cm

6.3 DATA TAPES AND FORMAT

A located data tape for each survey area was produced in a format described overleaf.

CRA EXPLORATION PTY LTD YARDEA, SA ELECTROMAGNETIC SURVEY LOCATED DATA TAPE FORMAT

COLUMN		DESCRIPTION
1 - 4		FLIGHT NUMBER
5 - 12		LINE
13 - 20		FIDUCIAL
21 - 28		AMG EASTING
29 - 36		AMG NORTHING
37 - 44		TOTAL MAGNETIC FIELD
45 - 48		RADAR ALTIMETER
49 - 54		GEOTEM CHANNEL 1
55 - 60		GEOTEM CHANNEL 2
61 - 66		GEOTEM CHANNEL 3
67 - 72		GEOTEM CHANNEL 4
73 - 78		GEOTEM CHANNEL 5
79 - 84		GEOTEM CHANNEL 6
85 - 90		GEOTEM CHANNEL 7
91 - 96		GEOTEM CHANNEL 8
97 - 102		GEOTEM CHANNEL 9
103 - 108		GEOTEM CHANNEL 10
109 - 114		GEOTEM CHANNEL 11
115 - 120		GEOTEM CHANNEL 12
121 - 126		GEOTEM 50 HZ MONITOR
Record length	=	126 Bytes
Block size	=	
Code	=	9-Track ASCII
Density	=	6250 bpi

APPENDIX II

PELTABINNA HILL EL 1627, CHARBA HILL EL 1626

AND UNALLA HILL EL 1652

LOGISTICS REPORT
AIRBORNE MAGNETIC AND RADIOMETRIC SURVEY

LOGISTICS REPORT

FOR AN

AIRBORNE MAGNETIC & RADIOMETRIC SURVEY

YARDEA, SOUTH AUSTRALIA.

FOR

CRA EXPLORATION PTY LTD

JOB NO. 1-412

NOVEMBER 1990

GEOTERREX PTY. LTD. 13 WHITING STREET, ARTARMON NSW 2064

TABLE OF CONTENTS

		P	AGE
	INTRODUCTIO	ис	1
1.	SURVEY OPER	RATIONS SUMMARY	3
2.	DATA ACQUIS	SITION PARAMETERS	4
3.	EQUIPMENT F	AND SPECIFICATIONS	5
4.	CALIBRATION	PROCEDURES AND RESULTS	10
5.	DATA PROCES	SING	13
6	ITEMS DELIV	TERED	16
APPEND	OIX A:	MAGNETOMETER CALIBRATION DATA	
	S A1-A12 S A13-A14 A2	FOM Test Results FOM Analogues Parallax Test Analogues Heading Test Results Heading Test Diagram	
APPEND	IX B:	SPECTROMETER CALIBRATION DATA	
FIGURE	S B1-B2 S B3-B6 S B7-B10	Uranium and Thorium Source Check Data Uranium and Thorium Source Check Spectra Cosmic Background Graphs Height Attenuation Graphs Thorium Peak Resolution Check	
APPEND	IX C:	MAGNETIC DATA TAPE FORMATS	
FABLE (FABLE (C2	Field Data Tape Format Calibration Data Tape and Located Data Tape Gridded Data Tape Format	Formats

APPENDIX D: RMS THERMAL PAPER STORAGE INSTRUCTIONS

LIST OF FIGURES

		PAGE
	Location Map	
	LIST OF TABLES	
		PAGE
TABLE 1:	Survey Progress	. 3
TARTE 2.	Altimates Calibration Desults	12

INTRODUCTION

From the 27th February to 29th March 1990, Geoterrex Pty Ltd conducted an airborne magnetometer and spectrometer survey of the Yardea area (Figure 1) in South Australia for CRA Exploration Pty Ltd. This report summarises the logistics, survey parameters, calibration procedures and processing details of the survey.

In all 14706.9 kilometres of airborne magnetic and radiometric data was collected in 19 flights over the survey area, namely Yardea. A line spacing of 300 metres and orientation of North-south was used.

The base of operations was Kimba, South Australia.

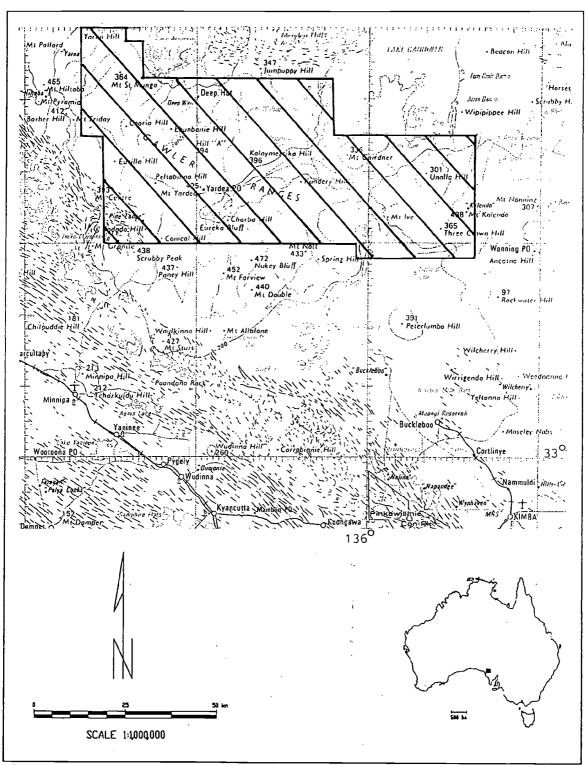


Figure 1 Location Map

1. SURVEY OPERATIONS SUMMARY

Base of Operations: Kimba, South Australia

Airstrip: Kimba, South Australia

Aircraft: Rockwell Shrike Commander 500S. (VH-PWO).

Field Personnel

Pilot: Mark Whitaker
Electronics Technician: Peter Anderson
Data Compiler: Michael Drewett
Syledis Technician: Michael Drewett
Project Manager: Michael Drewett

TABLE 1: Survey Progress

Mobiliz	ation:	27th February	
		4th March	Syledis network installation completed
Flight	1:	5th March	No production, compensation flight
Flight	2:	8th March	Production
Flight	3:	9th March	Production
Flight	4:	10th March	Production
Flight	5:	11th March	Production, IFG failed
Flight	6:	12th March	Production
Flight	7:	13th March	Production
Flight	8:	15th March	Production
Flight	9:	16th March	Production, altimeter failed
Flight	10:	17th March	Production
Flight	11:	18th March	Production
Flight	12:	20th March	Production
Flight	13:	21st March	Production
Flight	14:	22nd March	Production
Flight	15:	23rd March	Production
Flight	16:	24th March	Production
Flight	17:	26th March	Some production, turbulence
Flight	18:	27th March	Production .
Flight	19:	29th March	Production :

2. DATA ACQUISITION PARAMETERS

2.1 SURVEY PARAMETERS

Type of survey: Magnetic and radiometric

Survey size: 14706.9 kilometres

Traverse line direction: North-South
Traverse line spacing: 300 metres

Tie line direction: Orthogonal to traverse lines

Tie line spacing: 4.0 kilometres
Average line length: 50 kilometres

Nominal aircraft terrain

clearance: 80 metres

Nominal aircraft speed: 65 metres per second

2.2 FLIGHT PATH RECOVERY

The Syledis electronic navigation system was employed for this survey. The Syledis system is a widely used UHF radio navigation system operating in the frequency range of 400-450 MHz.

Prior to the commencement of data acquisition, a network of four Syledis beacons was established in the vicinity of the survey area to ensure adequate coverage. Each beacon was positioned at sites of known latitude/longitude by making use of existing government surveyed trig stations and/or GPS positioning. Each beacon was equipped with batteries, battery chargers, solar panels and automatic timers to allow continued un-manned operation.

The STR4 Syledis receiver mounted in the aircraft interrogates the beacons as required to calculate its position in real time as well as providing the pilots with steering information. In order to verify the correct operation of the system and the accuracy of the X-Y co-ordinates a field calibration was conducted before flying of the survey commenced. The Syledis information was stored digitally as AMG Co-ordinates.

The Syledis data was read into the field computer on a daily basis and was plotted to ensure data quality control and to determine any necessary reflights.

Office processing consisted of generating a speed report of the Syledis flight path that was checked for erroneous points by comparing the average aircraft speed between adjacent fixes (being real time values in seconds) and the average speed for the entire line. Significant speed changes over short intervals were noted and the Syledis data was checked for errors and corrected where necessary. The final flight path maps were then plotted and used as required during data processing.

3. EQUIPMENT AND SPECIFICATIONS

3.1 MAGNETOMETER

Model:

Scintrex cesium vapour optical absorption magnetometer

Mounting:

Tail stinger

Sample interval: 0.2 seconds

Sensitivity:

0.02 nT

Average noise for the survey data is calculated from the fourth difference monitor using the equation:

Fourth difference noise envelope/16 = Average Data Noise

Figure of Merit

sum of noise envelopes produced by ten degree roll,

pitch and yaw manoeuvres heading N, S, E and W.

1.68 nT (average of 0.14 nT per manoeuvre).

System Parallax: Less than one sample interval (see Section 4).

3.2 SPECTROMETER

Model:

Nuclear Data ADC/ND-560

Detectors:

8 Harshaw all viewing 4 pi NaI(Tl) crystals, totalling 33.5 litres. Crystals, photomultiplier tubes and preamplifiers are all mounted in temperature

controlled, insulated compartments.

Sample interval:

1 second

Number of Channels:

256

Synchronisation:

The spectrometer sample is allocated to the time recorded at the end of the sample interval.

Window Definitions:

Channel 68 to 255 Total Count -Potassium Channel 116 to 133 Uranium Channel 141 to 158 Thorium Channel 206 to 240

Cosmic Channel 0

Nominal Window MeV:

Ranges

Total Count -0.3 to 3.0 MeV Potassium 1.36 to 1.56 MeV

(K40, 1.46 MeV)

Uranium 1.66 to 1.86 MeV

(Ri214, 176 MeV)

Thorium 2.42 to 2.82 MeV

(T1208, 2.615 MeV)

Cosmic above 3.0 MeV

3.3 DATA ACQUISITION SYSTEM

Model:

Geoterrex Pty Ltd MADACS

Program:

ULMS1

The MADACS is a computer based software system using an Interdata 6/16 processor with 32K of memory. This processor is linked to a Digi-Data Model 1600 magnetic tape drive. This tape drive has a feature which allows checking of the recording process as many times as the particular application permits. The checking procedure includes elimination of errors due to bad tape spots. Multiple buffers permit recording, processing and acquisition of data to be carried out simultaneously with no dead time. The system uses a Cybernex alpha numeric keyboard and VDU for operator-system communication.

The key feature of this system is that all data collection, verification, buffering, and recording is software-controlled. Therefore, the acquisition system may be economically altered to fit almost any requirement. Critical parameters are automatically monitored during flight, with visual and aural alarms provided for the operator.

Survey parameters are displayed during flight in their correct physical units, making operator comparisons simple. The survey program operates on a request-response basis, with the system pre-empting the operator and rejecting all illegal responses.

The MADACS is used to control and command the operations of all the ancillary equipment. This includes the magnetometer, spectrometer, camera, altimeter, tape drive and analogue chart recorder.

The system is based on a precision clock. Time is digitally recorded as a six-figure number called a "fiducial". A fiducial number equals the real time in tenths of seconds after midnight, for example, 000000 corresponds to midnight and 360000 corresponds to 10.00am. Fiducials are generated on digital tape, film and analogue charts at ten second intervals. The fiducial numbers do not increment by units, they are calculated from the clock time by the computer. This system does not require digital recording of line numbers, part numbers and line direction, thus avoiding a source of digital recording errors. These are recorded on the flight log by the operator.

Technical Specifications

Precision clock: The system is controlled by a precision clock which allows data to be collected at any multiple of 0.1 seconds.

Computer: The system is based on an Interdata 6/16 mini-computer with 32 kilobytes of core memory. The computer has the following interfaces:

- Digital Input/Output Bus
 This bus is capable of recording from, writing to, testing and controlling 16 external digital devices.
- Analogue Input Module
 This module has 16 analogue inputs with 12 bit resolution.

Analogue Output Module

This module has 12 analogue outputs with 12 bit resolution.

Magnetic Tape Controller

This interface/controller is capable of handling four 9-track NR21 tape transports. Tapes are written in an IBM compatible binary format with full parity, cyclic redundancy and longitudinal check characteristics.

Magnetometer Interface

This interface converts the signal from the high sensitivity cesium vapour magnetometer into a format acceptable to the MADACS.

Camera Controller

The interface allows the MADACS to control and monitor all aspects of the tracking camera's operation.

Operator's Console

This is a Cybernex alpha numeric keyboard and VDU, via which the operator communicates with the system. While on line during survey, all parameters are continuously displayed on the monitor unless the system senses an abnormal condition in which case a diagnostic message and the time sensed are displayed. The message remains until acknowledged by the operator.

Recorded Digital Data (See Field Tape Format, Appendix C)

Each second:

Flight number

Time Altitude

Syledis co-ordinates Spectrometer windows

256 channels of radiometric data

Live time

Each 0.2 seconds:

Total magnetic field

3.4 TRACKING CAMERA

Model:

Geocam 75 SF

The tracking camera is a 35mm continuous strip camera equipped with a 17mm wide-angle lens. The 35mm film is synchronised with the geophysical record by means of fiducial marks printed every second and fiducial numbers recorded on the film every ten seconds. The ten second fiducial mark is the large dot between the ten thousand and one thousand digits. Times are not recorded from an incrementing counter, they are recorded from the digital information provided by the MADACS system.

3.5 ALTIMETER

Model: Sperry Stars AA200 radio altimeter system

Sample interval: 1.0 second

Accuracy: +/-1.5% (+/- 1m at 60m)

Synchronisation: The average of the output of the altimeter over each

second is calculated and assigned to the time recorded

at the end of each sample.

3.6 ANALOGUE RECORDERS

Model:

RMS GR33 Thermal Dot Matrix Printer

Chart speed:

10 cm/minute; time increases from left to right

Chart width:

12 inches

Event marks:

10 second marks are recorded on both sides of the chart with the associated fiducial numbers being

printed at the base of the chart.

Channels recorded & full-scale values:

Total magnetic field

Fine scale: 20 nT (& 50 for flight 1)

Coarse scale:

200 nT (& 500 for flight 1)

Magnetic field fourth difference:+/-20 nT Terrain clearance: 200 mg

-20 nT 200 metres

Total Count:
Potassium:
Uranium:
Thorium:

2000 counts/sec 500 counts/sec 200/300 counts/sec 200/300 counts/sec

Cosmic:

500 counts/sec

All fields increase in value towards the top of the chart.

A sample analogue record is shown in Figure 2.

Zero Positions:

These zero positions are annotated on the analogue sample. The zero position of each radiometric channel is calibrated automatically at the start of each line. Between lines each trace resides in its mid-range position.

Synchronisation:

No lags occur between traces, other than that which occurs between the magnetic field and its fourth difference.

Compton Effect:

Corrections

The analogue radiometric channels have been Compton

corrected using:

Alpha (Thorium into Uranium) - 0.29
Beta (Thorium into Potassium) - 0.37
Gamma (Uranium into Potassium) - 0.72

The radiometric data recorded on the field tapes has

not been corrected.

Cosmic Background

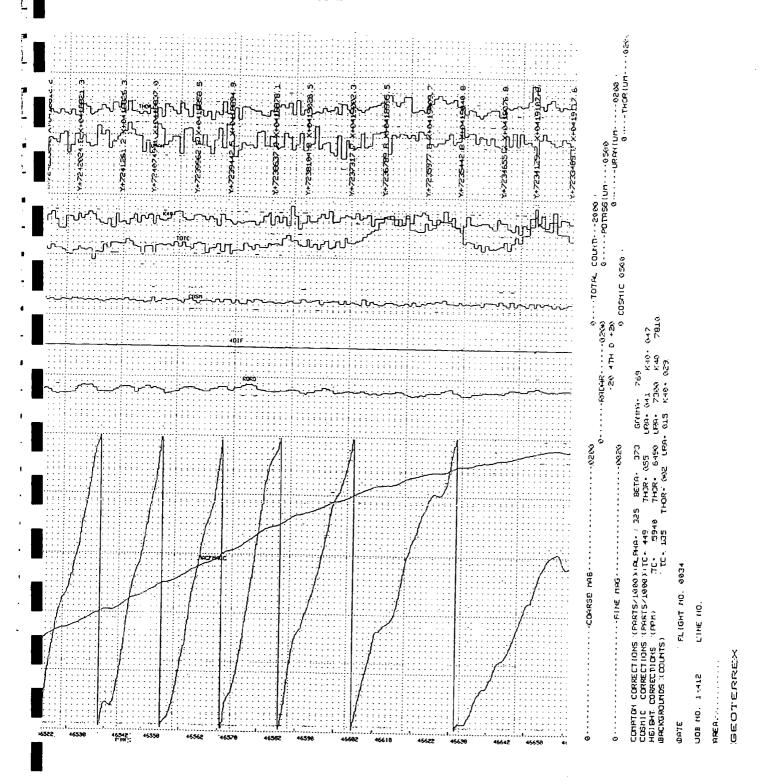
Correction:

The analogue radiometric channels have been corrected, in real time, for aircraft and cosmic background using the equations set out in Section 4. The erroneous potassium background value of 37 counts is displayed on the analogues, however the correct value of 27 counts is being used to correct the data.

Nov 1990

3.7 GROUND MAGNETOMETER BASE STATION

Sensor:


Cesium Vapour

Magnetometer:
Sample interval:
Sensitivity:

IFG
5 seconds

0.1 nT

FIGURE 2. SAMPLE ANALOGUE RECORD

4. CALIBRATION PROCEDURES AND RESULTS

4.1 MAGNETOMETER

The following calibration tests were carried out on the magnetometer.

Manoeuvre test to determine Figure of Merit (FOM)

This test was carried out on 5 March 1990 in South Australia and is considered the most important of the magnetometer tests. The settings of the compensation coils determined from this test remain fixed during the heading effect test and during the survey. The Figure of Merit for this test was: FOM = 1.68 nT. The Figure of Merit test analogues (Figures A1-A12) and a Table of Results (Table A1) can be found in Appendix A.

Parallax

This test was carried out on 13 May 1990. The aircraft was flown in opposite directions over a sharp magnetic anomaly with the tracking camera and magnetometer operating. The time lag between the magnetic source being recorded on the tracking film and its anomaly being recorded was determined as being less than 1 sample interval.

Copies of the parallax test analogues can be found in Appendix A, Figures Al3-Al4.

Heading Effect Test

This test was conducted on 5 March 1990 in South Australia following a compensation coil FOM test. Test lines were flown, one each with bearings of 000, 090, 180 and 270 degrees over a common point. These lines were flown, in a low gradient area, while the ground station was running and synchronised. It is necessary to use a low gradient area so that slight deviations in the test line navigation do not significantly affect the results of this test. The results of this heading test can be found in Appendix A (Table A5 and Figure A15).

4.2 SPECTROMETER

The following checks and determinations were carried out for the radiometric data.

Pre and Post-flight Source Check Procedures

- Pre and post-flight U and Th source checks with samples in a standard position relative to the crystals and the aircraft in a standard parking position - recorded for 100 seconds.
- Pre and post-flight test line recorded at survey altitude.

The results of the pre and post-flight uranium and thorium source checks can be found in Appendix B, Table B1. An annotated sample of the spectra plotted with each uranium and thorium source check is presented in Appendix B, Figures B1 and B2. The two figures combined form the output of one source check.

Compton Stripping Coefficients

These coefficients have been most recently determined from 46 source checks conducted during August 1989. They are:-

Alpha - 0.325 +/- 0.015 Beta - 0.373 +/- 0.024 Gamma - 0.769 +/- 0.038 Delta - 0.036 +/- 0.017

Background Determination

This test was carried out in July 1989 to determine the relationship between cosmic events (energies greater than 3.0 MeV) and counts recorded in other channels. The test was flown overland with the spectrometer system correctly calibrated as for survey work. Data was recorded at eight high altitudes: 5000 feet, 6000 feet, 7000 feet, 8000 feet, 9000 feet, 10000 feet, 11000 feet and 12000 feet ASL.

The best fit linear equations for these tests are:-

Th background = 0.055 x Cosmic + 1.65 U background = 0.041 x Cosmic + 14.69 K background = 0.047 x Cosmic + 29.29 TC background = 0.449 x Cosmic + 134.97

where

cosmic = counts of energies greater than 3.0 MeV stored in channel 0. x background = counts to be subtracted from window x.

Graphs of these equations are presented in Appendix B (Figures B3-B6).

Height Attenuation Coefficients

In July 1985 linear height attenuation coefficients were determined using the procedure outlined below:

- a) An area with "homogeneous" radioactivity, high count rates and relatively flat terrain was selected.
- b) An easily repeatable line was flown over this area at eight different altitudes: 200 feet, 250 feet, 300 feet, 400 feet, 500 feet, 600 feet, 700 feet and 800 feet. The spectrometer was correctly calibrated for this test flight.
- c) Sections of each line sharing the most constant terrain clearance and count rate were selected for data processing.
- d) The altitude data for each line section was corrected using the altitude calibrations recorded on the same flight, and averaged.
- e) The radiometric data for each line section was background corrected using a height correction for alpha. The resultant data was averaged.
- f) The resulting count rates in each channel were plotted and attenuation coefficients suitable for an air temperature of 18C were determined.

Graphs of the results can be found in Appendix B, (Figures B7-B10).

The	coefficients	are:	Total co	ount	0.00574	per	metre
			Potassiu	um count	0.00713	per	metre
			Uranium	count	0.00730	per	metre
			Thorium	count	0.00581	per	metre

During all spectrometer tests the data used is the window data recorded on field tapes. The widths of these windows are specified in Section 3.

Resolution

The resolution of the spectrometer is defined as the full width of the Thorium peak at its half peak height position, expressed as a percentage of the peak MeV value. The spectrometer resolution was checked before, during and after the survey with the following results:

Flight 1 5.72% Flight 8 5.95%

Flight 19 5.8% (see Figure B11, Appendix B).

4.3 ALTIMETER

The Sperry radio altimeter is a high quality instrument whose output is factory calibrated. It is fitted with a test function which checks the calibration of a terrain clearance of 100 feet and altitudes which are multiples of 100 feet. Calibration of the recorded terrain clearance, both analogue and digital, with respect to the altimeter reading is carried out using a potentiometer to vary the reading while recording the altimeter's output. The results of a recent altimeter calibration carried out in December 1989 are presented in Table 2.

TABLE 2: ALTIMETER CALIBRATION RESULTS

INDICATED ALT (metres)	RECORDED ALT (metres)
45.7	46.9
61	. 62.5
67.1	65.6
91.4	92.5
121.9	121.9
152.4	163.8
182.9	196.9

5. DATA PROCESSING

On receipt of all the data in Sydney, path recovery, analogue records and flight logs were checked for consistency of line numbering.

5.1 FIELD TAPES

These are recorded in binary format, (see Appendix C for detailed description) and are compacted and reformatted in ASCII code. The following information is retained on file as the Compacted Field Tape (CFT).

- flight path
- magnetic reading (0.1 nT)
- thorium count
- uranium count
- potassium count
- total count
- altimeter (feet)
- fiducial (time in tenth seconds after midnight)
- spectrometer live time (milliseconds)
- cosmic count
- Syledis Easting co-ordinate
- Syledis Northing co-ordinate

The 256 channels of radiometric data are not selected from the field tape unless there is some indication in the thorium and cesium peak positions that the radiometric channels have drifted away from the normal window settings. If it is necessary to re-construct radiometric data due to channel drift, summed spectral plots are produced for each survey line. These are examined to determine at what stage the drift began and which new channel positions define the principal radiometric windows.

Due to the difference in the sample interval between the magnetic and the radiometric data, the radiometric values are repeated for each 0.2 second reading between the 1.0 second readings. This gives both magnetic and radiometric readings for each 0.2 second interval. All channels are checked and edited for single reading spikes and recording gaps, any single reading spikes are removed manually.

5.2 MAGNETICS

Levelling

The aeromagnetic data is tie line levelled. The base station record is used as a storm monitor only. No attempt is made to subtract the base station values from the airborne values. The tie lines are levelled to a common datum first and then the traverse lines are levelled to the tie line network. The method involves the fitting of polynomials to the observed flight line/tie line intersection errors along each traverse line in the survey. These intersection locations are adjusted to give minimum intersection errors. The aircraft heading effect is eliminated by the levelling process and therefore is not subtracted as a separate process before levelling.

Parallax

The results from continuous testing indicates that the parallax error affecting the position of aeromagnetic data is less than one sample interval (0.2 seconds). Therefore no parallax correction is applied to the data.

International Geomagnetic Reference Field

The International Geomagnetic Reference Field known as IGRF (1985) is subtracted from the data and a datum of 2000 nanoteslas is then added to ensure that there are no negative magnetic values before contouring.

Gridding and Contouring

Grid mesh size:

60 x 60 metres

Grid filter:

11 Point triangular, 0.75 nT threshold

Residual magnetic

contour maps:

Horizontal scale - 1:25,000

Contour interval -

2, 20 & 200 nT

Residual Stacked Profiles

The levelled magnetic data with the IGRF (1985) removed are also presented as stacked profiles. They are plotted at a horizontal scale of 1:25,000 and a vertical scale of 50 nT/cm. A constant base level of 2150 nT was used. The base level is a straight line joining the ends of the flight path at its intersections with the sheet boundaries.

5.3 RADIOMETRICS

Corrections

The radiometric data was corrected for:

- Spectrometer dead time
 - "Dead time" is the fraction of 1 second when the spectrometer is actually counting the energy levels and not registering the incoming counts. A typical "dead time" is 15 milliseconds in a 1 second sample period.
- Cosmic effect and aircraft background
 - Through test flying outlined in Section 4, Geoterrex Pty Ltd has established the coefficients for the linear relationship between the incoming cosmic counts (energies greater than 3 MeV) and their contribution to the background in each window.
- Changes in ambient air temperatures

The effects of changing air temperature are incorporated in the notion of a temperature corrected altitude that will be used in other calculations. The field operator records the outside temperature at regular intervals throughout each flight while at survey altitudes.

Compton scattering

These coefficients were determined from the calibration procedures outlined in Section 4. It should be noted that alpha coefficient is height dependent under the linear relation:

true alpha = ground + $0.02 + 0.00025 \times height$

Height attenuation

The survey data was exponentially height attenuated to a common datum of 70 metres, which was the nominal survey altitude, using the coefficients determined in Section 4.

Gridding and Contouring

Channel:

All channels (Total Count, Potassium, Uranium, Thorium)

Grid mesh size:

60 x 60 metres

Grid filter:

3 Point triangular, no threshold

5.4 DATA TAPES

Located Data Tape

A levelled located data tape, containing all traverse line, tie line and calibration line data, was recorded in 9-track ASCII code at a density of 6250 bpi in a format described in Appendix C. This format is a variant of the South Australian Department of Minerals and Energy standard format for airborne geophysical survey data.

Gridded Data Tape

A gridded data tape was produced of the magnetic, uranium, potassium, thorium and total count grids.

6. ITEMS DELIVERED

Final Flight Path Maps on film at 1:25,000 scale Final Residual Magnetic Contour Maps on film at 1:25,000 scale Final Residual Magnetic Profile Maps on film at 1:25,000 scale Preliminary Residual Magnetic Contour Maps on paper at 1:25,000 scale Preliminary Stacked Profile Maps Binders containing Analogue Charts Summary Radiometric Count Files Verification Radiometric Count Files Radiometric Gridded Data Tape Magnetic Gridded Data Tape Located Calibration Data Tape Located Magnetic/Radiometric Data Tape Flight Logs and Index Mileage listing Recovered Line Listing Diurnal charts Logistics Report.

APPENDIX A: MAGNETOMETER CALIBRATION DATA

TABLE A1 - FIGURE OF MERIT TEST RESULTS

5	March	1990
---	-------	------

HEADING	ROLLS	PITCHES	YAWS	TOTAL
North	0.15 nT	0.14 nT	0.15 nT	0.44 nT
South	0.17 nT	0.14 nT	0.17 nT	0.48 nT
East	0.15 nT	0.19 nT	0.07 nT	0.41 nT
West	0.12 nT	0.15 nT	0.08 nT	0.35 nT
			F.O.M	1.68 nT

FIGURE A1 : Compensation Test - North - Pitches March 5th 1990: MAGF Fine Scale 10nT

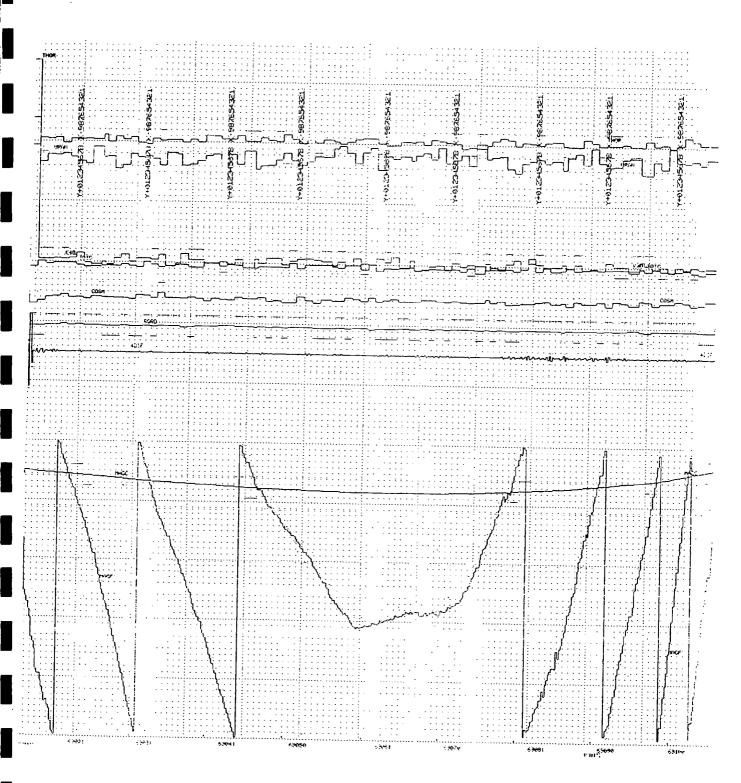


FIGURE A2 : Compensation Test - North - Rolls March 5th 1990: MAGF Fine Scale 10nT

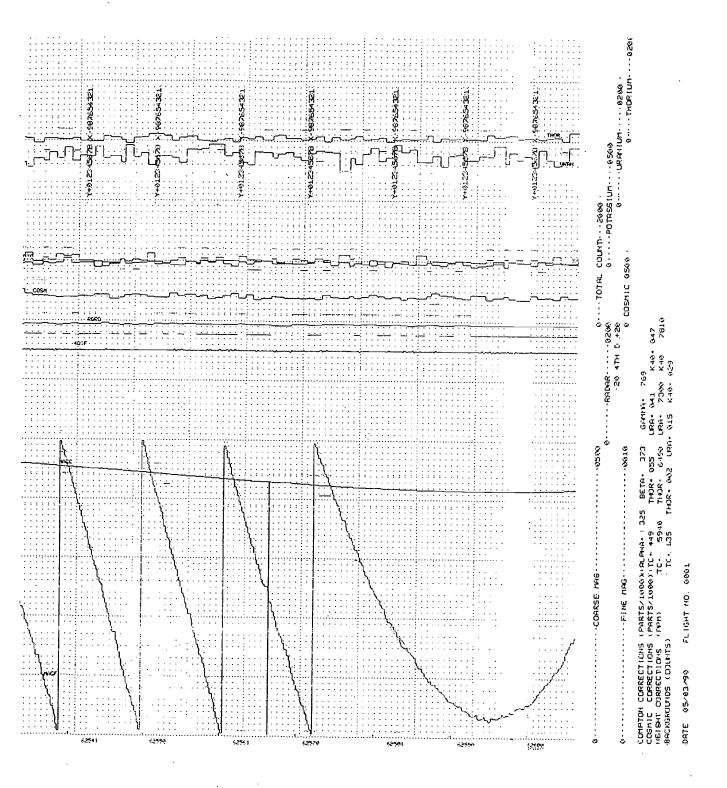


FIGURE A3 : Compensation Test - North - Yaws March 5th 1990: MAGF Fine Scale 10nT

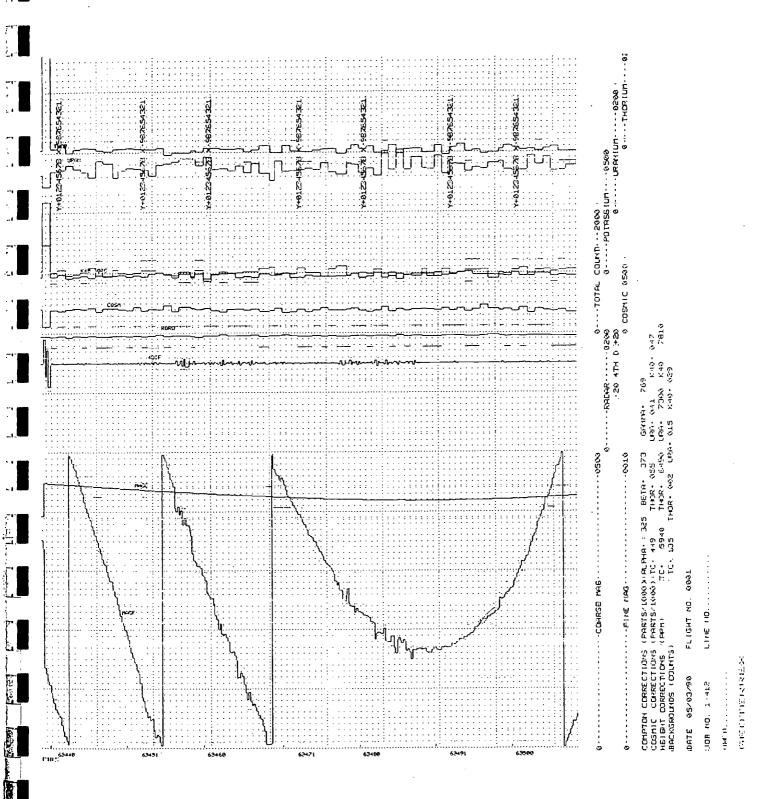


FIGURE A4 : Compensation Test - South - Pitches March 5th 1990: MAGF Fine Scale 10nT

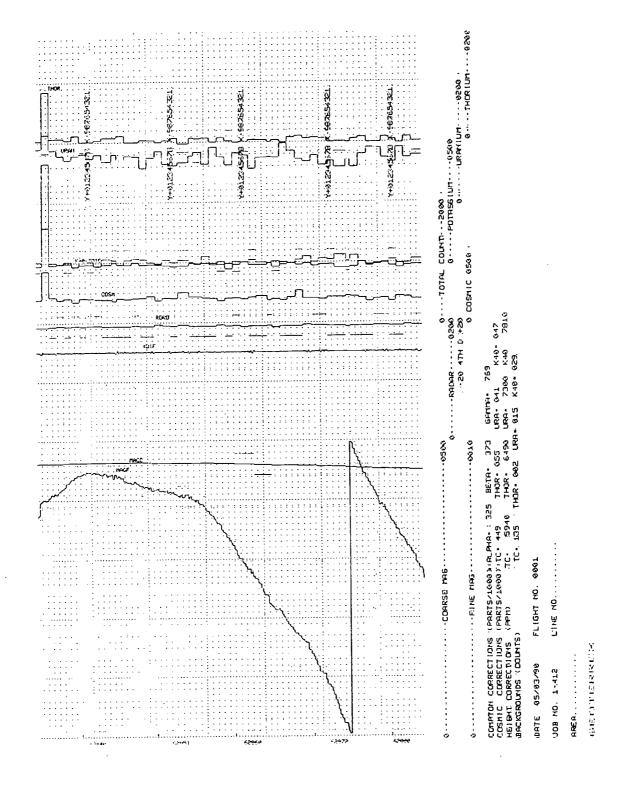


FIGURE A5 : Compensation Test - South - Rolls March 5th 1990: MAGF Fine Scale 10nT

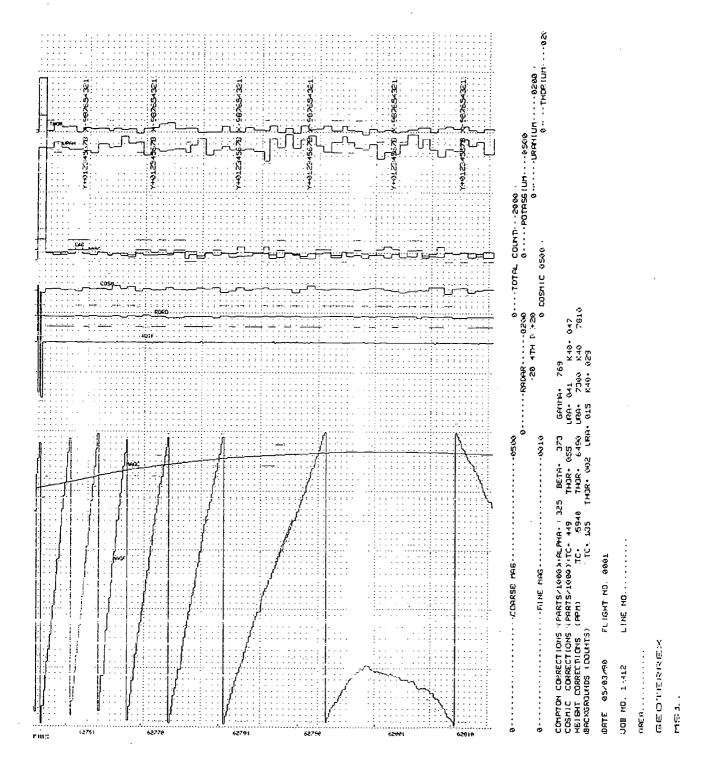


FIGURE A6 : Compensation Test - South - Yaws March 5th 1990: MAGF Fine Scale 10nT

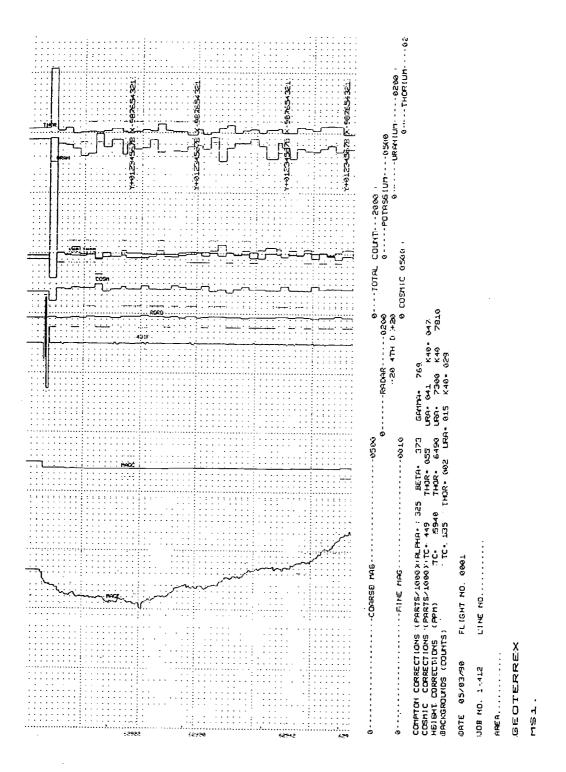


FIGURE A7 : Compensation Test - East - Pitches March 5th 1990: MAGF Fine Scale 10nT

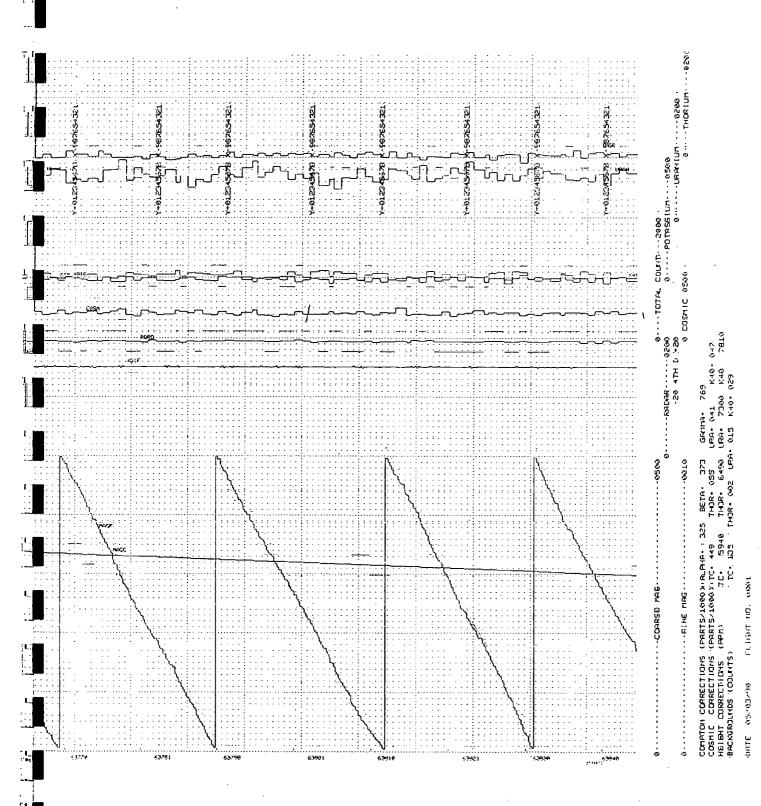


FIGURE A8 : Compensation Test - East - Rolls March 5th 1990: MAGF Fine Scale 10nT

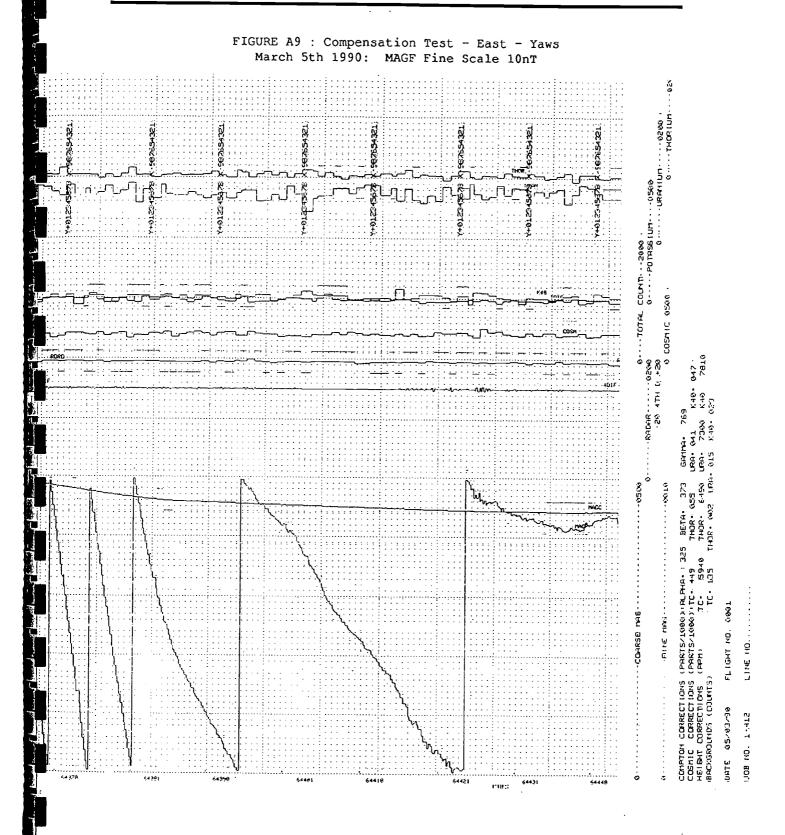
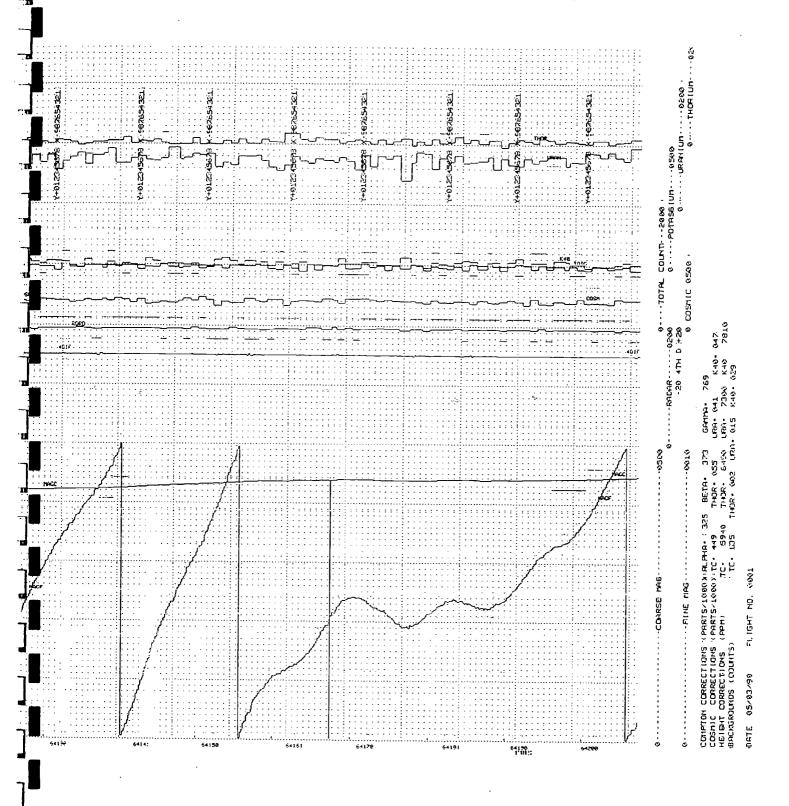
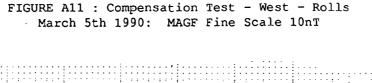





FIGURE A10 : Compensation Test - West - Pitches March 5th 1990: MAGF Fine Scale 10nT

CCHITCH CORRECTIONS (PARTS/1606) PLP4 19:1 325 BETG 373 CCHITC (CORRECTIONS (PRITS/1606) PTC 45 TIPSR 655 H518HT CORRECTIONS (PPH) TC 55 TO 1192R 6458 BRCKSROUNDS (COUNTS)

のかついなんのない

AIRBORNE MAGNETICS REPORT

FIGURE A12 : Compensation Test - West - Yaws March 5th 1990: MAGF Fine Scale 10nT

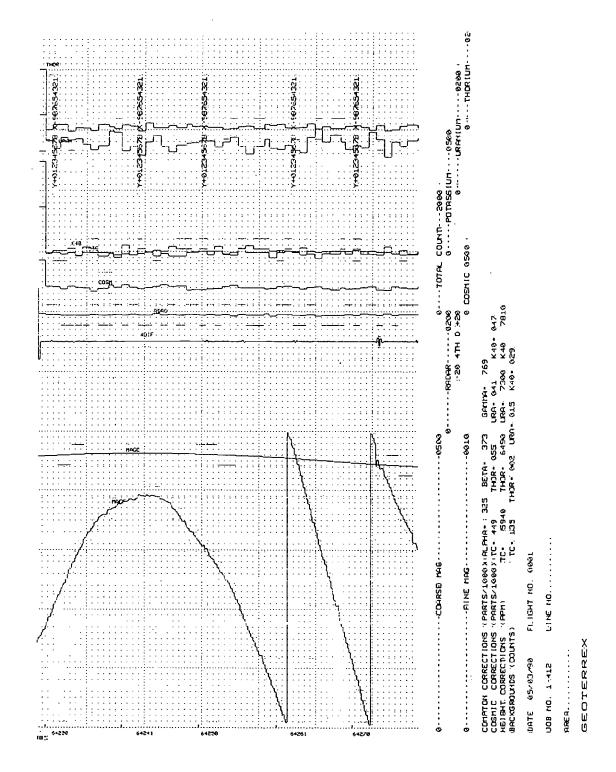


FIGURE A13 : Lag Test - East



FIGURE A14 : Lag Test - West

TABLE A2 - CLOVERLEAF/HEADING TEST

5 March 1990

HEADING	FIDUCIAL	MAGNETIC VALUE (nT)	DIURNAL CORRECTION (nT)	CORRECTED MAG VALUE (nT)
000	65109.3	10.3	0.0	10.3
090	65178.9	10.1	0.0	10.1
180	65243.7	10.2	-0.1	10.1
270	63303.0 65043.0	9.9	-0.2 0.9 AVG	9.7 10.0 9.85

Heading Variation

N-S: 0.2 nT

E-W: 0.2 nT

Total Variation

0.8 nT

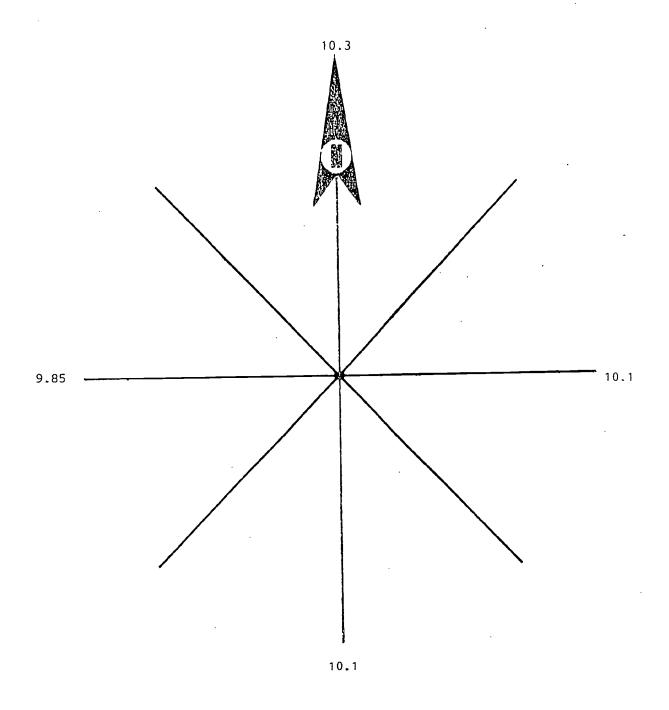
FIGURE A15(a) - HEADING TEST DIAGRAM

Date:

5 March 1990

Area:

Yardea, SA.


Magnetometer:

Optically pumped cesium vapour magnetometer

Sensitivity:

0.04 nT

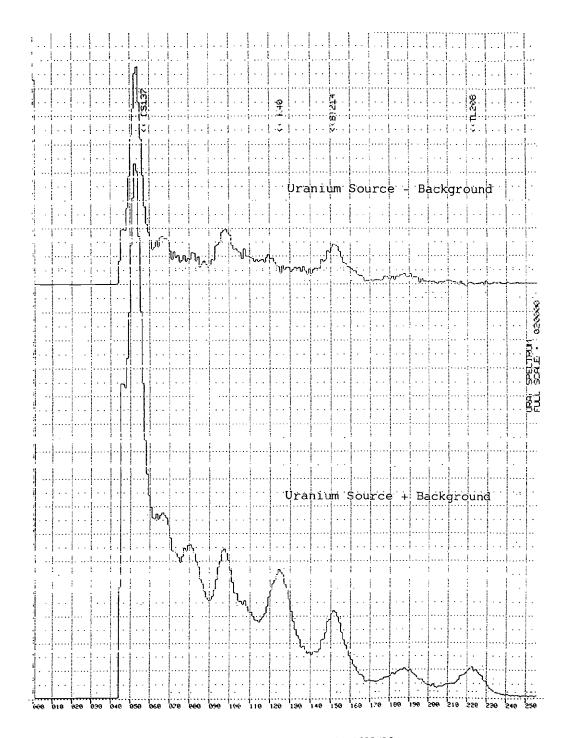
Sampling Interval: 0.2 seconds

Magnetic readings have been corrected for diurnal variation.

APPENDIX B: SPECTROMETER CALIBRATION DATA

TABLE B1:


URANIUM AND THORIUM SOURCE CHECK DATA


(Units - Counts; Sample Period - 100 Seconds)

	CHANNEL	PRE-FLIGHT		POST-FLIGHT	
FLIGHT	CIMMINDI	U Source	Th Source	U Source	Th Source
		O DOUICE	In bouled	0 000100	111 000100
2	Th	617	19513	286	18436
	U	10372	6226	9372	6615
	K	8307	7277	8006	7282
	TC	104629	201086	104948	204680
3	Th	772	19344		
	U ·	10509	6300		
	K	8247	6429		
	TC	108783	204330		
4	mh	706	10500	970	18220
4	Th		19580		6754
	U	10054	7270	9474	
	K	7367	6971	8354	108508
	TC	105662	206154		
5	Th	533	19176	867	17621
Ū	บ	10980	6377	9583	6674
	ĸ	8713	6675	8531	7310
	TC	108285	195429	108261	204672
6	Th	565	18279	939	17810
	U	9819	6305	9757	6909
	K	8177	6317	8102	6747
	TC	99333	187058	107959	202767
7	Th	546	19540	863	17868
	U	11154	6695	9142	6408
	K	8244	6692	8257	. 7037
	TC	111572	202249	105981	199086
8	T h	454	19357	697	19779
	U	10608	6259	10321	755 7
	K	8563	6401	7972	6815
	TC	107917	197145	107341	210367
9	Th	991	19855		
	U	11125	6463		
	K	9492	7364		
	TC	113805	202756		
10	Th	596	19513	1069	18045
	ប	10622	7019	9488	6521
	K	8344	7102	9187	7233
	TC	123172	231415	110566	1538

APPENDIX B

		•			
11	Th	597	19519	6907	19577
	U	10050	6455	10296	6521
	ĸ	8297	6495	8318	5931
	TC	108306	199205	109968	203985
12	Th	539	19341	556	19498
	Ū	11069	6481	9665	6638
	K	8629	7068	8249	7282
	TC	110259	199709	104695	204591
10	m.\.	607	10220	400	10026
13	Th	607	19328	498	19826
	Ŭ	10585	6451	10377	7143
	K	7437	6453	7841	7143
	TC	106293	199889	110054	203667
14	Th	613	19612	1001	20134
•	U	10249	7128	10709	7082
	K	7926	6445	8158	7226
	TC	109006	208929	112232	208680
15	Th	805	19596	881	18205
	Ū	10353	6344	9146	6704
	K	8274	6679	8392	6912
	TC	110030	202076	6 5 65	205353
1.6	_1	61.4	10072	000	10041
16	Th	614	19273	839	19341
	Ŭ	11251	6630	9742	6952
	K	8380	7037	8046	6907
	TC	114952	104803	104983	203253
17	Th	347	19721	646	19677
	Ū	10372	6226	9372	6615
	K	8157	7682	7743	6581
	TC	108135	207682	104717	203795
18	Th	632	19779	606	19545
	U	10575	6257	10032	6035
	K	7901	6442	8017	6739
	TC	109778	204275	107726	206986
				_	
19	Th	563	17950	559	17932
	Ū	95372	6205	7572	5653
	K	6923	6026	7572	6020
	TC	987259	186998	980838	180203



SQUECE THIST PERIOD : ::00:00:120 SECONDS RESULTS !!!! COUNTS

THORIUM WINDOW & UR SOURCE 00000482 00010963 URANIUM WINDOW & UR SOURCE 00008166 HINDOM & UR SOURCE K46 HINDON & UR SOURCE 00112508 TOTAL 00019390 00007012 THORIUM NIMBON & TH SOURCE URANTUM HINDON & TH SOURCE HINDON & TH SOURCE 00006600 K40 00204709 HINDON & TH SOURCE TOTAL

SOURCE THST PERIOD | 00000120 SECONDS RESULTS IN COUNTS

THORIUM HINDON & UR SOURCE 00000482 URANTUM HINDON & UR SOURCE 00010963 K40 HINDON & UR SOURCE 00008166 TOTAL HINDON & UR SOURCE 00112508 THORIUM HINDOW & TH SOURCE 00019390 URANIUM HINDOM & TH SOURCE 00007012 K40 WINDOW & TH SOURCE 00006600 TOTAL HINDOW & TH SOURCE 00204709

FIGURE B3 - COSMIC BACKGROUND TEST - URANIUM



FIGURE B4 - COSMIC BACKGROUND TEST - POTASSIUM

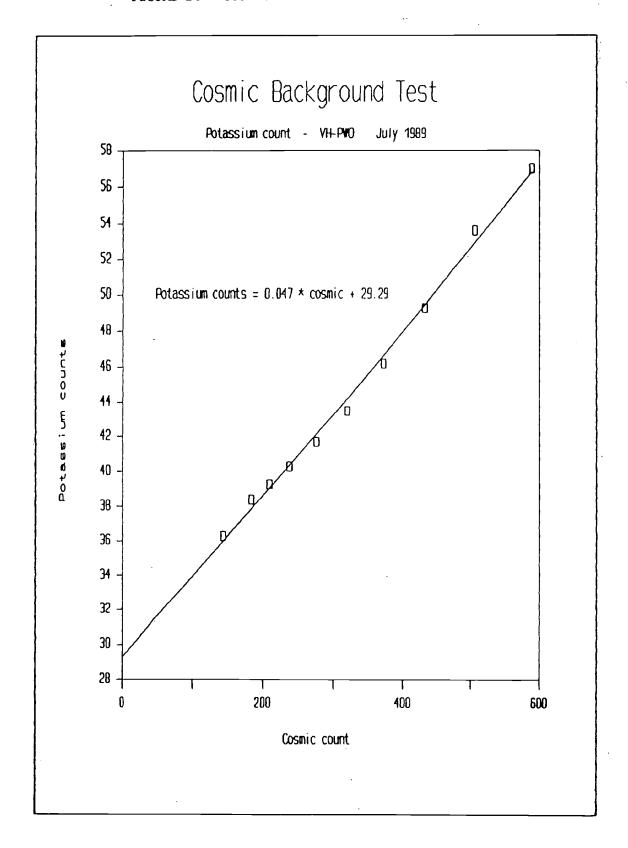


FIGURE B5 - COSMIC BACKGROUND TEST - THORIUM

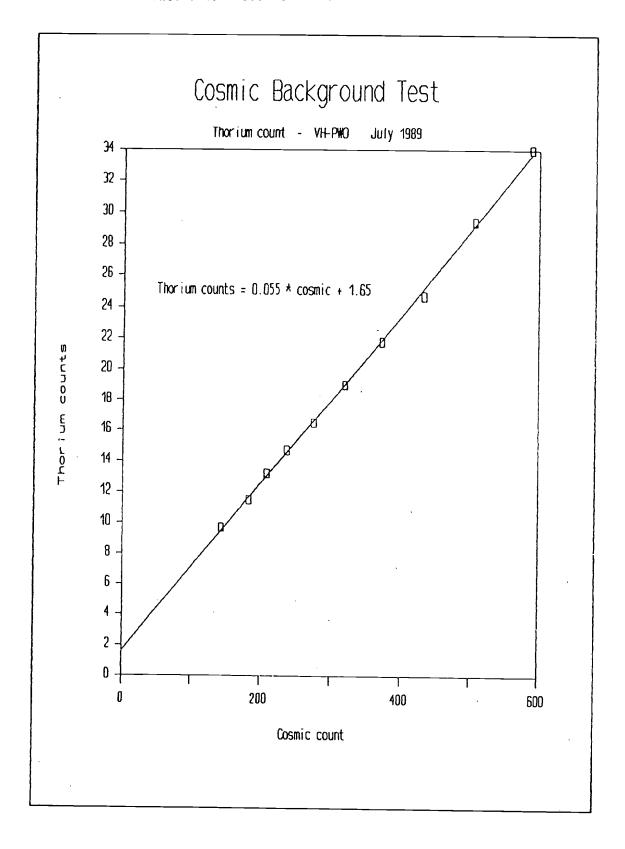
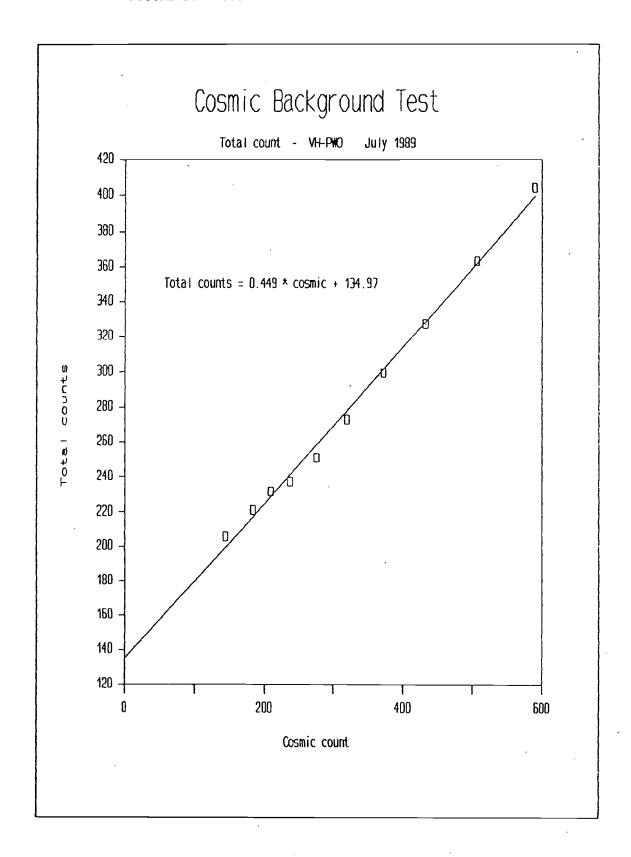
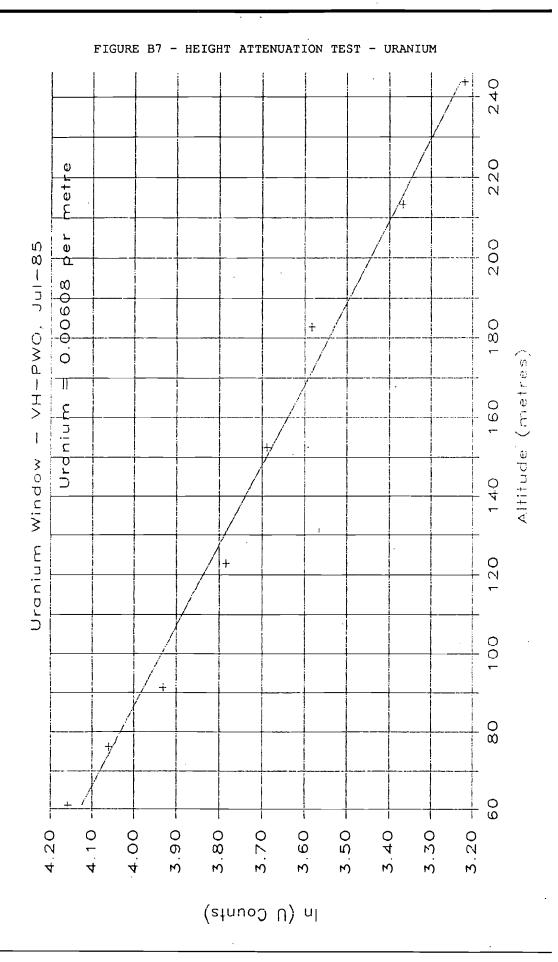
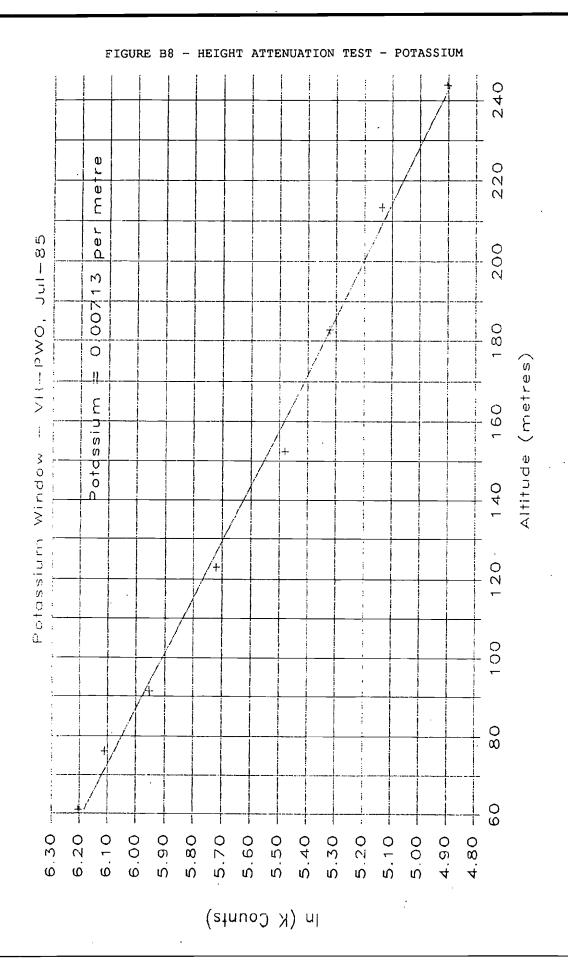
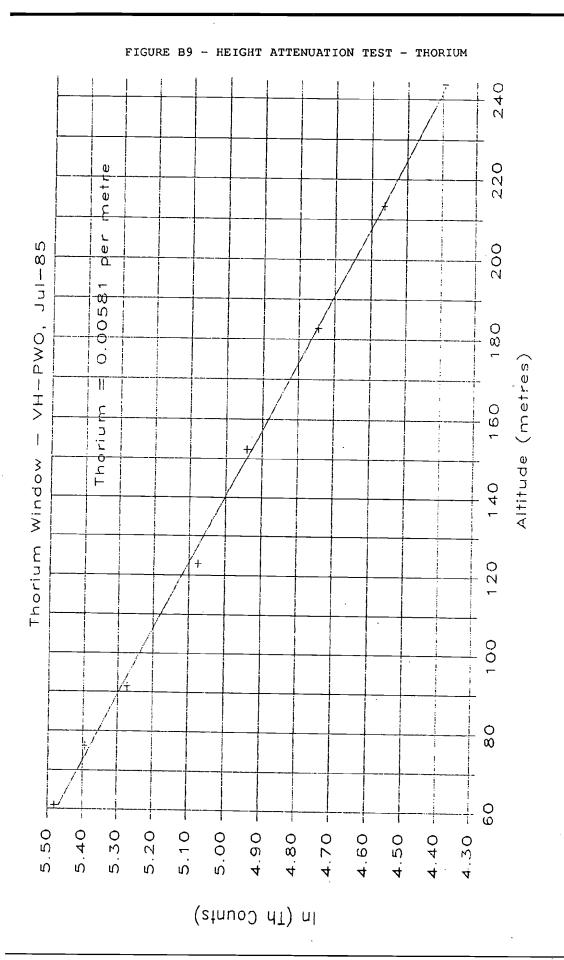






FIGURE B6 - COSMIC BACKGROUND TEST - TOTAL COUNT

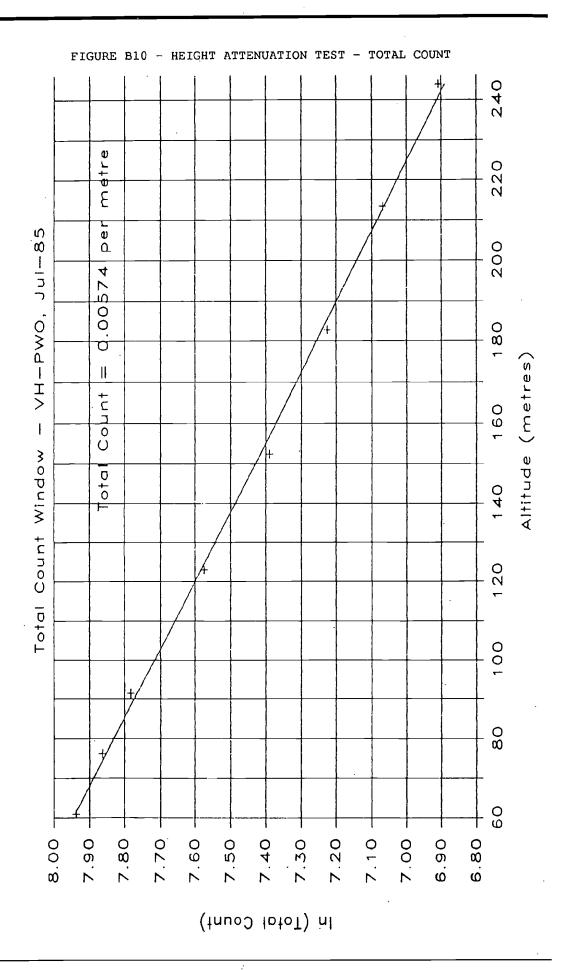
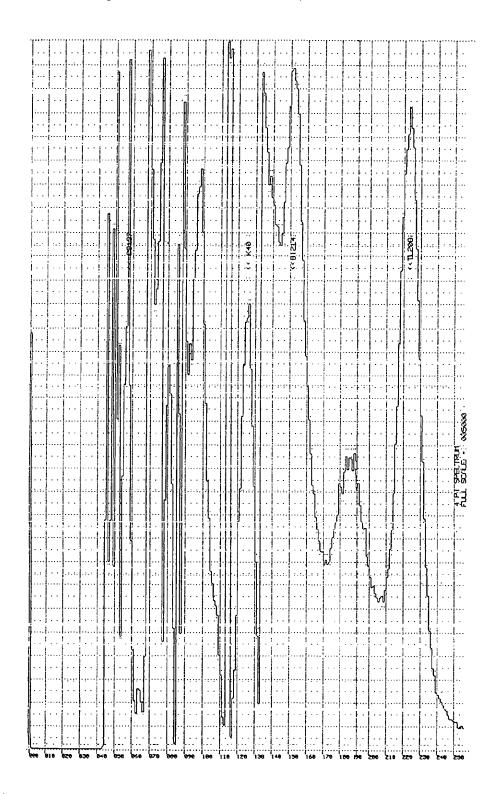



FIGURE B11 - SPECTROMETER RESOLUTION CHECK Flight 19; 29 March 1990; Resolution = 5.8%.

APPENDIX C: MAGNETIC DATA TAPE FORMATS

TABLE C1: FIELD DATA TAPE FORMAT

Geoterrex 9-track field tapes are recorded in binary code at 800 bpi. The format for each one second record is:

Byte Position	Number of Bytes	Description
^ 1		
0 - 1	2	Flight Number
2 - 5	4	Fiducial Number
6 - 9	. 4	Magnetometer @ T-0.0 seconds
10 - 13 *	4	Magnetometer @ T-0.1 seconds
14 - 17	4	Magnetometer @ T-0.2 seconds
18 - 21 *	4	Magnetometer @ T-0.3 seconds
22 - 25	4	Magnetometer @ T-0.4 seconds
26 - 29 *	4	Magnetometer @ T-0.5 seconds
30 - 33	4	Magnetometer @ T-0.6 seconds
34 - 37 *	4	Magnetometer @ T-0.7 seconds
38 - 41	4	Magnetometer @ T-0.8 seconds
42 - 45 *	4	Magnetometer @ T-0.9 seconds
46 - 47	2	Radar Altimeter
48 - 49 *	2	Pressure Altimeter or Pressure
50 - 51 *	2	Temperature
52 53 *	2	Relative Humidity
54 - 55 *	2	For VLF Analogue Input
56 - 57 *	2	For 2nd VLF Analogue Input
58 - 63	6	Doppler Northing
64 - 69	6	Doppler Easting
70 - 75	6	For Zone Data
76 - 81	6	For ID Square Data
82 - 87	6	Doppler Ground Speed
88 - 93	6	For Drift Velocity Data
94 - 99	6	For Heading Velocity Data
100 - 103	4	Syledis Data Logged Time
104 - 113	10	Syledis Y-Coordinate
114 - 123	10	Syledis X-Coordinate
124 - 132	9	Syledis Course and Speed
133 - 141	9	Syledis Quality of Fix
142 - 145	4	Syledis Measurement to Data Delay
146 - 165	20	Syledis Left/Right Information
166 - 167	2	Thorium
168 - 169	2	Uranium
170 - 171	2	Potassium
172 - 173	2	Total Count
174 - 175	2	Cosmic Count
176 - 177	2	Live Time
178 - 409	232	For Channels 24-255 inc. 1 byte each

^{*} Positions not used in this survey

RECORD SIZE - 410 Bytes BLOCK SIZE - 4100 Bytes

RECORDING MODE - Binary (IBM compatible)

PROGRAM - ULMS1

TABLE C2: LOCATED AND CALIBRATION DATA TAPE FORMATS.

CRA EXPLORATION PTY LTD

YARDEA, S.A.

ASEG-GDF DATA FILE

COL	UMN		LOCATED DATA TAPE FORMAT DESCRIPTION	CALIBRATION DATA TAPE FORMAT DESCRIPTION
1	_	4	Flight	Flight
5	_	12	Line	Line
13		20	Date (DDMMYY)	Date (DDMMYY)
21	_	28	Fiducial	Fiducial
29	_	36	Easting	Easting
37		44	Northing	Northing
		52	Raw Magnetic Value	Raw Magnetic Value
53		60	Levelled Magnetic Value	Unused
61	_	68	Diurnal Correction	Unused
69	_	72	Uncorrected Total Count	Uncorrected Total Count
73	_	76	Uncorrected Potassium Count	Uncorrected Potassium Count
77	_	80	Uncorrected Uranium Count	Uncorrected Uranium Count
81	_	84	Uncorrected Thorium Count	Uncorrected Thorium Count
85	_	88	Corrected Total Count	Unused
89	_	92	Corrected Potassium Count	Unused
93	-	96	Corrected Uranium Count	Unused
97	_	100	Corrected Thorium Count	Unused
101	_	104	Cosmic Count	Cosmic Count
105	_	108	Live Time	Live Time
109	_	112	Radar Altimeter	Radar Altimeter

Record Length: 112 Bytes
Block Size: 14336 Bytes
Density: 6250 Bpi
Recording Mode: ASCII

TABLE C3 GRIDDED DATA TAPE FORMAT

Area Name:

Yardea

Recording Density:

9 Track, 6250 bpi

Recording Mode:

ASCII

Logical Record Length:

512 Bytes (fixed) 8192 Bytes (fixed)

Physical Blocksize: Blocking Factor:

16 Logical Records per Block

Record Format:

(6418)

Logical Structure

The gridded data are structured such that the first block of data is a header block containing information pertinent to the grid and the remainder of the blocks contain the actual gridded data values. All information has been archived as INTEGER values.

Grid Header

The grid header block will be the first block on the tape and will contain the following information:

Record Number 1

Characters	Format	Contents
1 - 8	18	Width of gridded area (X grid intervals)
9 - 16	18	Height of gridded area (Y grid intervals)
17 - 24	18	X Coordinate of Lower Left-Hand Corner (metres)
25 - 32	18	Y Coordinate of Lower Left-Hand Corner (metres)
33 - 40	18	X Grid Interval (metres)
41 - 48	18	Y Grid Interval (metres)
49 - 56	18	Angle Grid Rotated relative to UTM East-West
		(degree counter clockwise)
57 - 64	18	Gridded Data Divisor (archived units)
65 - 72	18	Null Value
72 - 128		Zeroes (unused)

Record Numbers 2 to 16

These records are zero filled (unused).

Gridded Data

The gridded data are archived with each horizontal row beginning a new record, commencing at record number 1 of the second block of the tape.

A single logical record will contain 64 gridded values, written using a Fortran Format of (6418), so the number of successive records used for a horizontal row of gridded values is the number of grid points wide divided by 64 (this will be evenly divisible). Each physical block of data will be blocked to contain 64 logical records.

Grid points which could not be given an interpolated value have been assigned a null value (-9999999), distinguishable from valid data. In order to convert the valid grid values to whole units, simply divide each value by the grid value divisor. For example, if the grid value divisor from the header record is 10, then divide all archived values by 10.0, storing the result as a real value, in order to obtain whole units.

The gridded data will end with an End of File.

APPENDIX D: RMS THERMAL PAPER STORAGE INSTRUCTIONS

PAPER STORAGE AND HANDLING, RMS 2030 THERMAL PAPER

STORAGE:

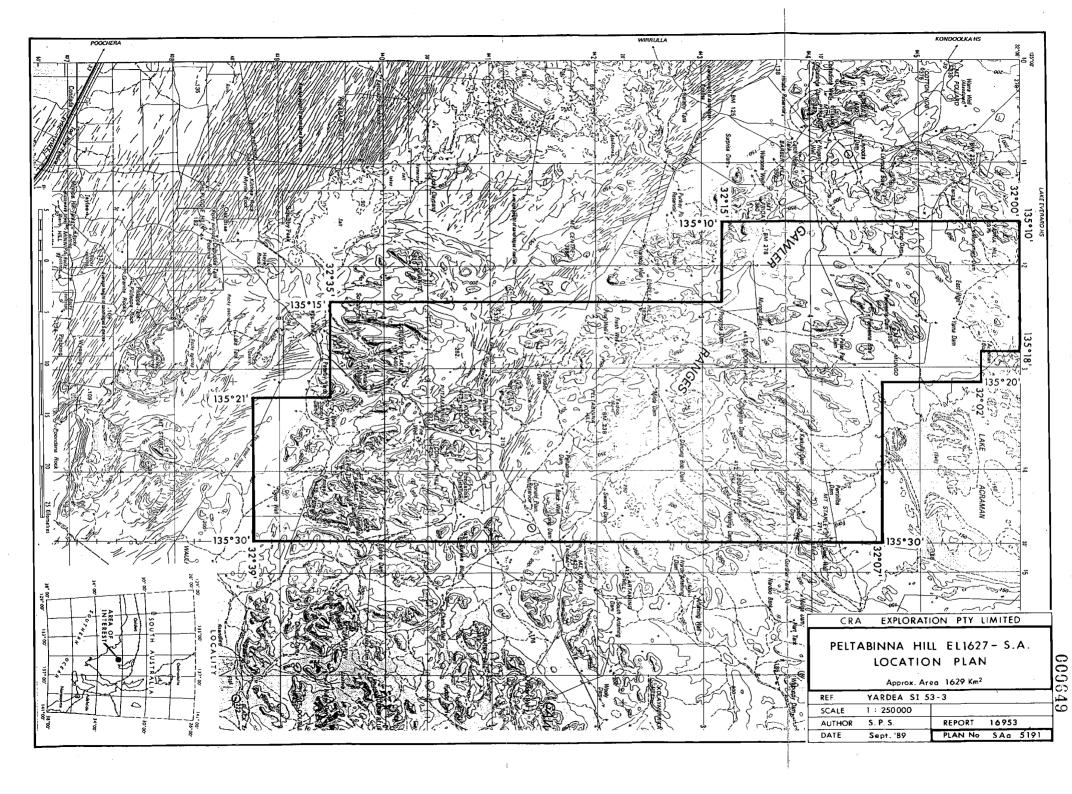
Ambient Temperature: Relative Humidity:

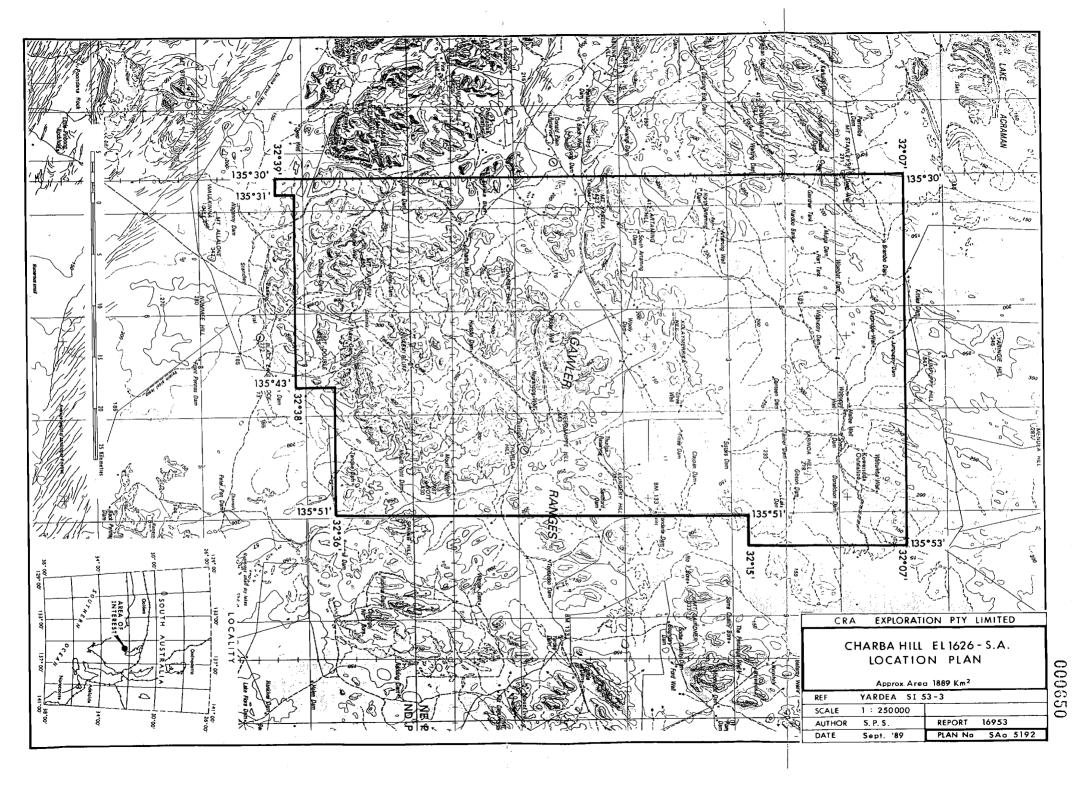
Less than 25°C Less than 65%

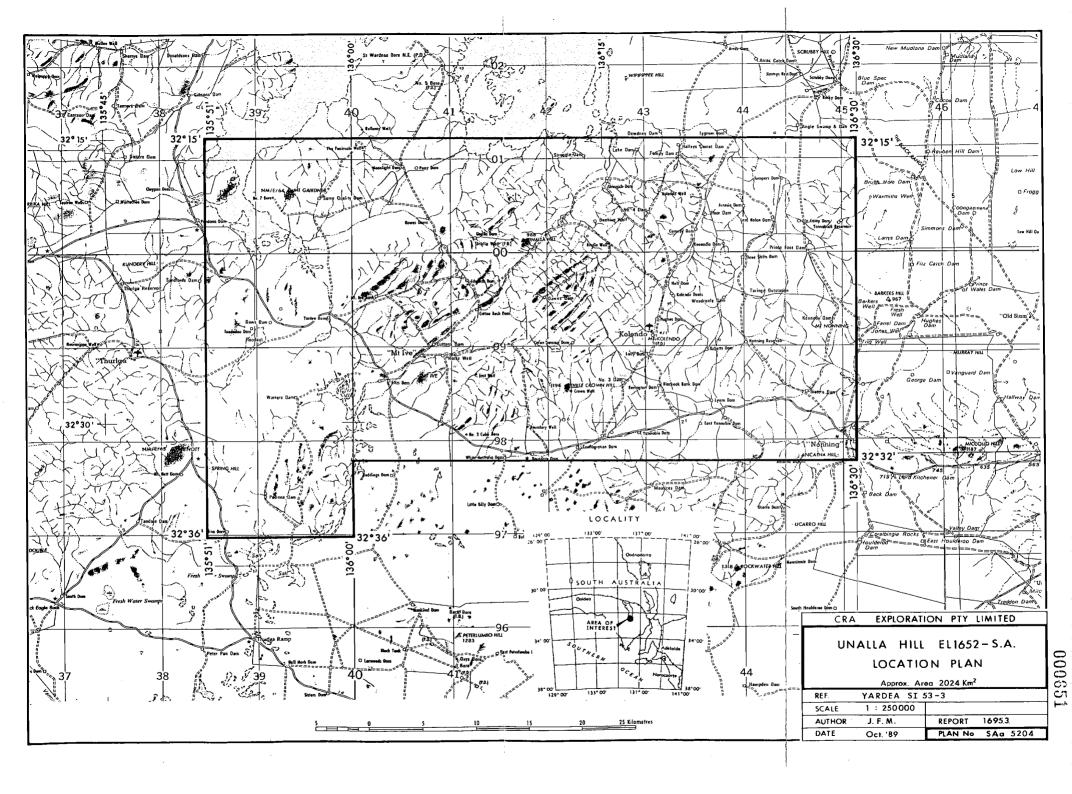
Storage Location:

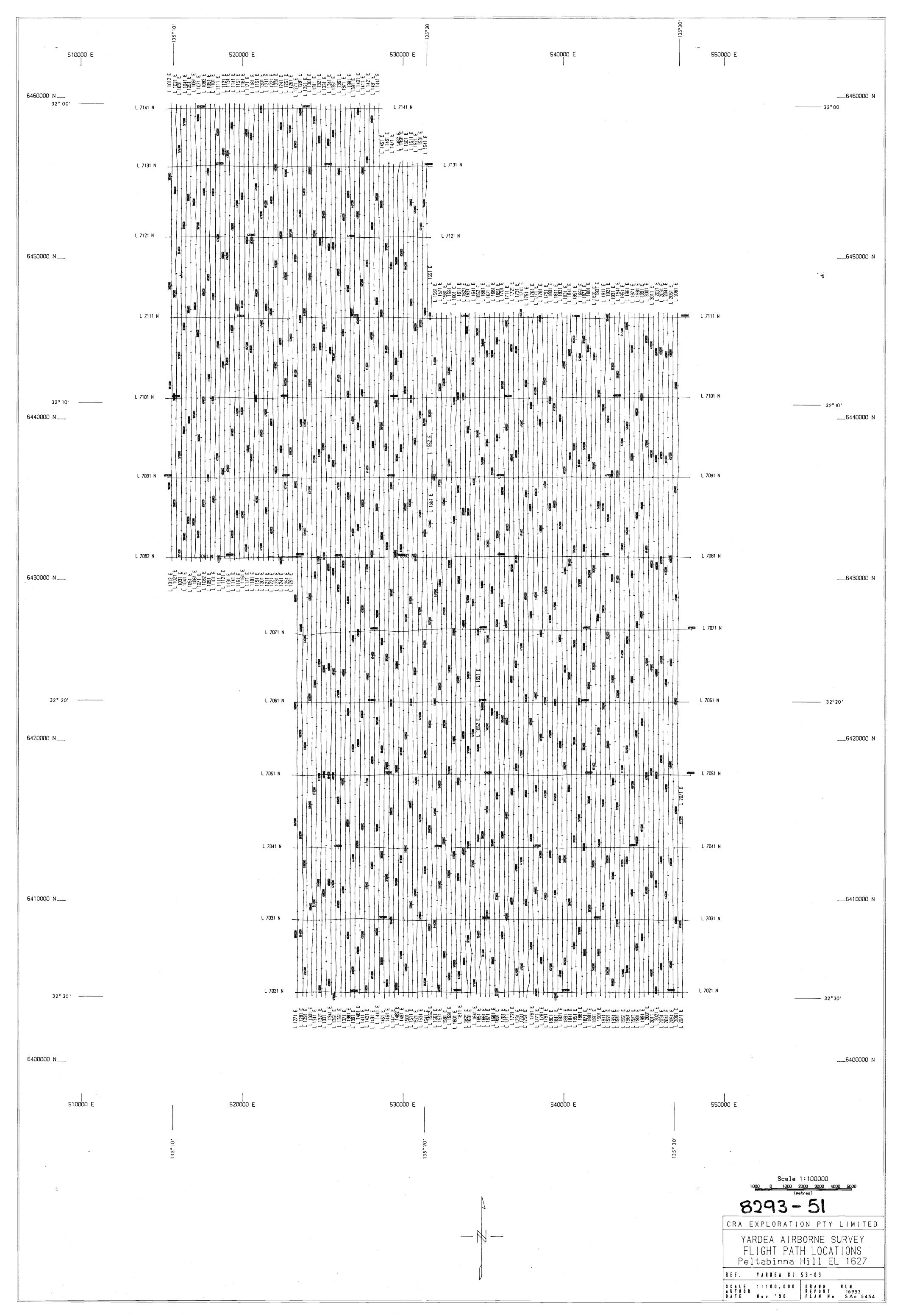
In darkness before and after exposure.

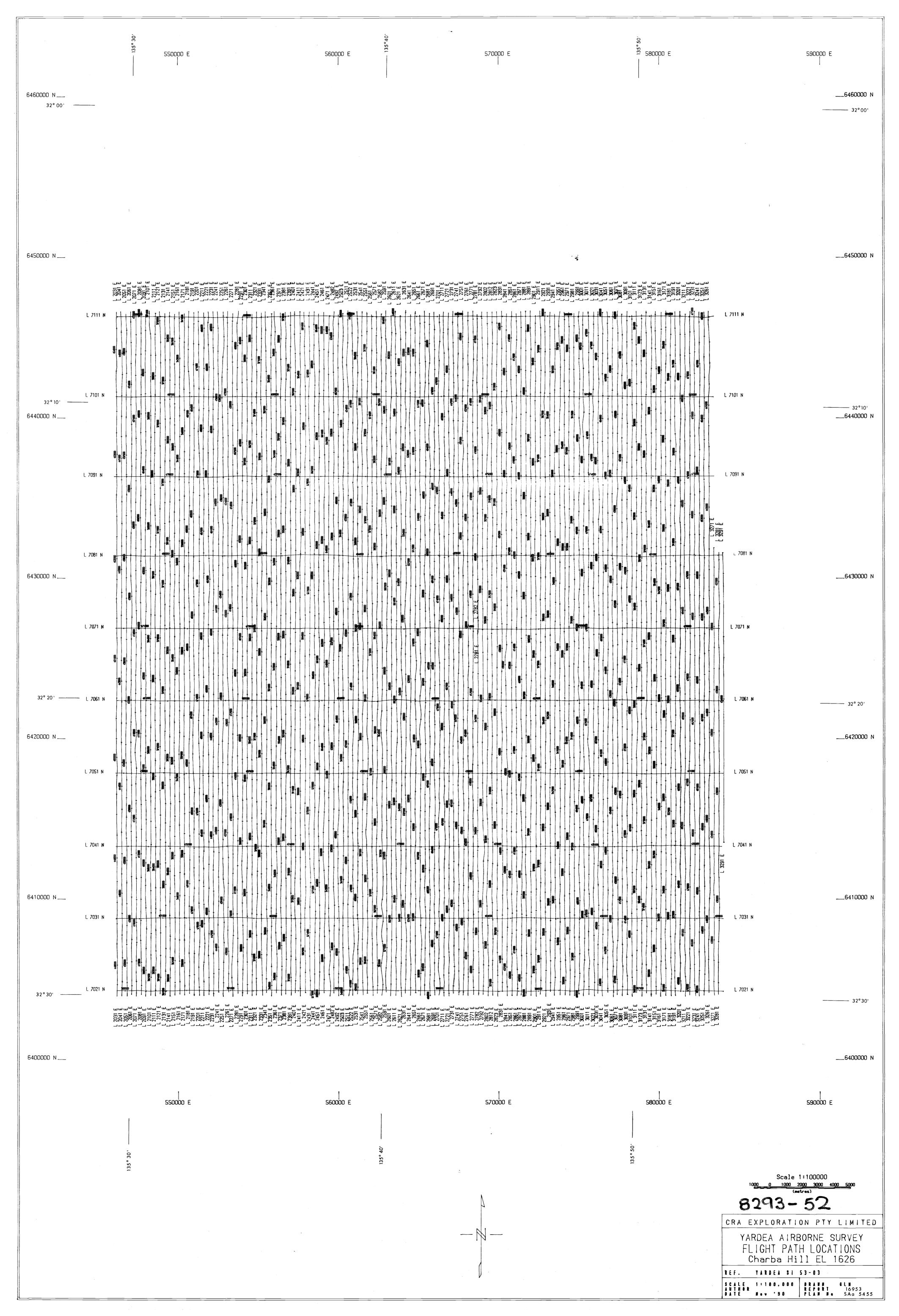
Under these conditions, the paper should retain its characteristics and the printed images will remain legible for at least 5 years, although in the case of blue image paper, there may be some slight fading.


TO ELIMINATE PREMATURE PAPER DEVELOPMENT:


- Careful attention must be paid to ambient temperature and relative humidity for long term storage of RMS 2030 Thermal Paper. Colour development begins at temperatures between 70 to 100°C, and reaches saturation density between 80 and 120°C. Premature development of the paper may occur at lower temperatures, and particularly if the humidity is greater than 65%.
 - eg. Ambient Temperature if the paper is stored for 24 hours at a temperature of 60°C, some development may occur.


 Ambient Temperature and Relative Humidity if the paper is stored for 24 hours at a temperature of 45°C when the relative humidity is 90%, development may also occur.
- Avoid use of solvent-type adhesives. Adhesives containing volatile organic solvents such as alcohol, ester, ketone, etc causes colour formation and therefore rubber-type adhesives etc should not be used. Starch, PVA and CMC type adhesives are recommended.
- Frictional heat generated by rubbing a finger nail or sharp object over the surface will cause images to develop.
- Thermal paper will develop colour if brought into contact with freshly processed Diazo copying paper.


TO ELIMINATE PAPER FADING:


- File exposed paper in the dark immediately after exposure. Thermal paper will turn yellow, and blue printed images will tend to fade if exposed to direct sunlight or to fluorescent lighting for long periods. Do not store paper near windows.
- Prolonged contact with PVC film containing plasticizers such as ester phthalate will reduce the image forming ability of the paper and cause printed images to fade. We recommend that files made of polythylene, polypropylene, polyester, etc be used.
- Self-adhesive cellophane tapes containing an alcohol type plasticizer will cause the image to fade. Double-sided adhesive tape is recommended for use instead of paste.
- Handling thermal paper with dirty or sweaty fingers might cause images to fade.
- Do not store developed paper with the sensitized surfaces touching as images might be transferred from one sheet to another.

