Open File Envelope No. 5545

EL 1117

SHEOAK HILL

PROGRESS REPORTS FOR THE PERIOD 15/3/83 TO 14/3/88

Submitted by
Shell Co. of Australia Ltd, Billiton Australia and Western Mining Corp. Ltd
1988

© 23/5/88

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

CONTENTS ENVELOPE 5545

TENEMENT: E.L. 1117 - Sheoak Hill.

A/FK 23/010. Fig. 2.

TENEMENT'	HOLDER:	The Shell	Company	y Of	Australia	Ltd.
-----------	---------	-----------	---------	------	-----------	------

TENEMENT HOLDER: The Shell Company Of Australia Ltd.	
REPORT: Progresss Report E.L. 1117 Period Ending 15th June 1984. Report No. 08.2310.	7, Pgs. 3-8
PLANS: Sheoak Hill E.L. Location Plan. Drg. No. A/MT 22/121. Fig. 1. Regional Ground Magnetic Profiles. Sheets 1, 2, 5, 6 & 7. Drg. No. A/FD 05/006 To A/FD 05/010. Figs. 2 To 6.	Pg. 8 5545-1 To 5
Magnetic Profile Line 35N. Fig. 7. 36N. Fig. 8.	Pg. 9 Pg. 10
37N. Fig. 9. 38N. Fig. 10.	Pg. 11 Pg. 12
39N. Fig. 11. 40N. Fig. 12.	Pg. 13 Pg. 14
44N. Fig. 13. 45N. Fig. 14.	Pg. 15 Pg. 16
46N. Fig. 15. REPORT: Progress Report E.L. 1117 Period Ending 15th September 1984.	Pg. 17 Pgs. 18-21
Report No. 08.2554. Progress Report E.L. 1117 Period Ending 15th December 1984 Report No. 08.2674.	Pgs. 22-26
APPENDIX 1: Rock Chip Geocehmistry. EL 1117	Pgs. 27-28
PLANS: Summary Of Ground Reconnaissance & Sample Locations. Drg. No. A/FK 23/001. Fig. 2.	Pg. 29
REPORT: Progress Report E.L. 1117 Period Ending 15th March 1985. Report E.L. 08.2851. Progress Report E.L. 1117 Period Ending 15th June 1985. Report No. 008.2856.	Pgs. 30-34 Pgs. 35-42 Pgs. 40 -42
PLANS: Residual Magnetic Intensity Contours-Barna. Drg. No.	5545-6

- <u>PLANS</u>: Magnetic Variation Contours-Barna. Drg. No. A/FK 23/009. 5545-7 Fig. 3.
- REPORT: Progress Report E.L. 1117 Period Ending 14th September 1985. Pgs. 43-47
 Report No. 08.2875.

 Progress Report E.L. 1117 Period Ending 14th December 1985. Pgs. 48-52
 Report No. 08.3094.
- PLANS: Sheoak Hill Interpreted Geology. Drg. No. A/FK 23/020. Fig. 1.Pg. 53 ... Ground Magnetic Profiles And Magnetic Trends. Drg. No. Pg. 54

 A/FK 23/012. Fig. 2.
- REPORT: Progress Report E.L. 1117 Period Ending 14th March 1986. Pgs. 55-68
 Report No. 08.3260.
- APPENDIX 1: Petrographic Descriptions. Pgs. 69-122

 APPENDIX 2: Analytical Results. Pgs. 123-155

 APPENDIX 3: RAB Logs And Analyses. Pgs. 156-199
- PLANS: Aeromagnetic Contours Sheoak Hill. Drg. No. A/FK 23/013. Pg. 200
 Fig. 2.
 - Outcrop Geology Sheets 3, 4, 8, 9, 12 & 14. Drg. No. 5545-8 To 13 A/FK 23/027 To A/FK 23/032. Figs. 4 To 9.
 - Miltalie North Geology With Geochemical Overlays For Zn & Mn. Pg. 201 Drg. No. A/FK 23/043. Fig. 10.
 - Location Map & Anomalous Geochemistry Sheets 3, 4, 8, 9 & 12. 5545-14 To 18 Drg. No. A/FK 23/033 To A/FK 23/037. Figs. 11 To 15.
 - Sheoak Hill Location Plan Sheet 14. Drg. No. A/FK 23/019. 5545-19 Fig. 16.
 - Channel Rock Chip Cu Geochemistry Sheet 14. 5545-20 Drg. No. A/FK 23/038. Fig. 17.
 - Channel Rock Chip Pb Geochemistry Sheet 14. 5545-21 Drg. No. A/FK 23/039. Fig. 18.
 - Channel Rock Chip Zn Geochemistry Sheet 14. 5545-22

Drg. No. A/FK 23/040. Fig. 19.

- Channel Rock Chip Mn Geochemistry Sheet 14. 5545-23 Drg. No. A/FK 23/041. Fig. 20.
- Channel Rock Chip Fe Geochemistry Sheet 14. 5545-24 Drg. No. A/FK 23/042. Fig. 21.

PLANS:	Regional Profile 13 Geology & Geochemistry.	Pg. 202
	Drg. No. A/FK 23/023. Fig. 22.	
	Profile 36N Geology. Drg. No. A/FK 23/024. Fig. 23.	Pg. 203
	Profile 44N RAB Drilling & Ground Magnetics.	Pg. 204
	Drg. No. A/FK 23/022. Fig. 24.	
	Profile 45N RAB Drilling & Ground Magnetics.	Pg. 205
	Drg. No. A/FK 23/021. Fig. 25.	
	Profile 67N Geology & Geochemistry. Drg. No. A/FK 23/025.	Pg. 206
	Fig. 26.	
	Profile 68N Geology & Geochemistrty. Drg. No. A/FK 23/026.	Pg. 207
	Fig. 27.	
REPORT:	Progress Report E.L. 1117 Period Ending 14th June 1986.	Pgs. 208-211
	Report No. 08.3332.	
	Progress Report E.L. 1117 Period Ending 14th September 1986.	Pgs. 212-215
	Report No. 08.3344.	
	Progress Report E.L. 1117 Period Ending 14th December 1986.	Pgs. 216-219
	Report No. 08.3476.	222
	Progress Report E.L. 1117 Period Ending 14th March 1987.	Pgs: 220 -230
Ŕ	TPP.	223-230
PLANS:	Sheet 6231 Barna Regional Stream Sediment Sampling Bulk	5545-25
	Leach Au. Drg. No. A/FB 01/112.	
REPORT:	Progress Report E.L. 1117 Period Ending 14th June 1987.	Pgs. 231-232
	Progress Report E.L. 1117 Period Ending 14th September 1987.	Pgs. 233-234
	Progress Report E.L. 1117 Period Ending 14th December 1987.	Pgs. 235-236
	Progress Report E.L. 1117 Period Ending 14th March 1988.	Pgs. 237-238

2"C" 5545. 5075. ENVELOPE NO.

5545/

TITLE SCALE PLAN NO. BARNA-S.A. BMR Regional Geophysical Survey Residual Magnetic Intensity Contours. (Reprocessed by Pitt Research Pty. Ltd.) 1:100 000 A/FK23/010,
BARNA - S.A. BMR Regional Geophysical Survey
BARNA - S.A. BMR Regional Geophys: cal Survey
Residual Magnetic Intensity Contours. (Reprocessed by Pitt Research Pty. Ltd.) 1:100 000 A/FK23/010,
(Reprocessed by Pitt Research Pty. Ltd.) 1:100 000 A/FK23/010,
(Reprocessed by Pitt Research Pty. Ltd.) 1:100 000 A/FR23/010.
<u> </u>

THE SHELL COMPANY OF AUSTRALIA LIMITED

METALS DIVISION

SHEOAK HILL E.L. 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 15TH JUNE, 1984

AUTHOR:

K.J. HELLSTEN

REPORT NO: 08.2310

DATE:

JUNE, 1984

DISTRIBUTION

COPY 1 Department of Mineral Resources and Energy, South Australia

COPY 2 Shell, Melbourne

COPY 3 Shell, Adelaide

CONTENTS

- 1.0 INTRODUCTION
- 2.0 SUMMARY OF EXPLORATION ACTIVITIES 16-3-84 TO 15-6-84
- 3.0 STATEMENT OF EXPENDITURE

LIST OF FIGURES

Figure No.	Title	Scale	Drawing No.
1	Sheoak Hill E.L. 1117, Location Plan	1:500,000	A/MT22/121
2	Regional Ground Magnetic Profiles, Sheet 1	1:50,000	A/FD05/006
3 .	Regional Ground Magnetic Profiles, Sheet 2	1:50,000	A/FD05/007
4	Regional Ground Magnetic Profiles, Sheet 5	1:50,000	A/FD05/008
5	Regional Ground Magnetic Profiles, Sheet 6	1:50,000	A/FD05/009
6	Regional Ground Magnetic Profiles, Sheet 7	1:50,000	A/FD05/010
7	Magnetic Profile Line 35N	1:10,000	
8	Magnetic Profile Line 36N	1:10,000	
9	Magnetic Profile Line 37N	1:10,000	
10	Magnetic Profile Line 38N	1:10,000	
11	Magnetic Profile Line 39N	1:10,000	
12	Magnetic Profile Line 40N	1:10,000	
13	Magnetic Profile Line 44N	1:10,000	
14	Magnetic Profile Line 45N	1:10,000	
15	Magnetic Profile Line 46N	1:10,000	

1.0 INTRODUCTION

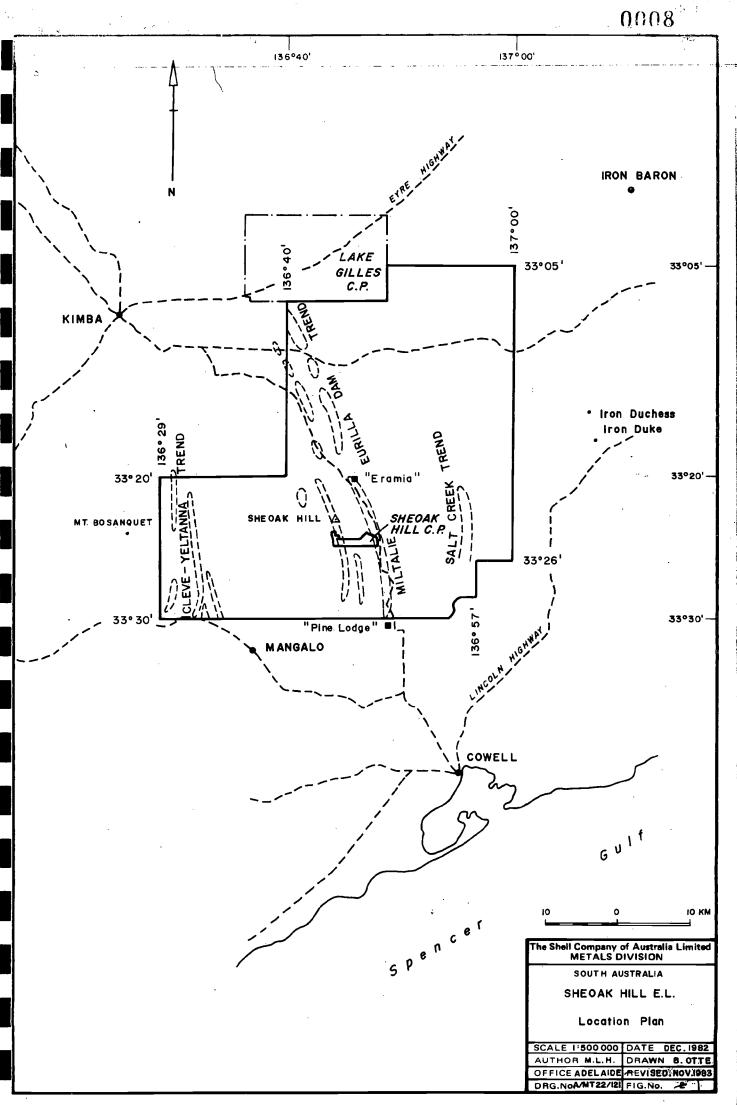
Sheoak Hill E.L. 1117 (Figure 1) was granted to The Shell Company of Australia Limited on 15th March, 1983 for an initial term of 1 year. An extension of this tenure to 24 months was granted on 13th February, 1984 with the expenditure commitment remaining at \$40,000 p.a.

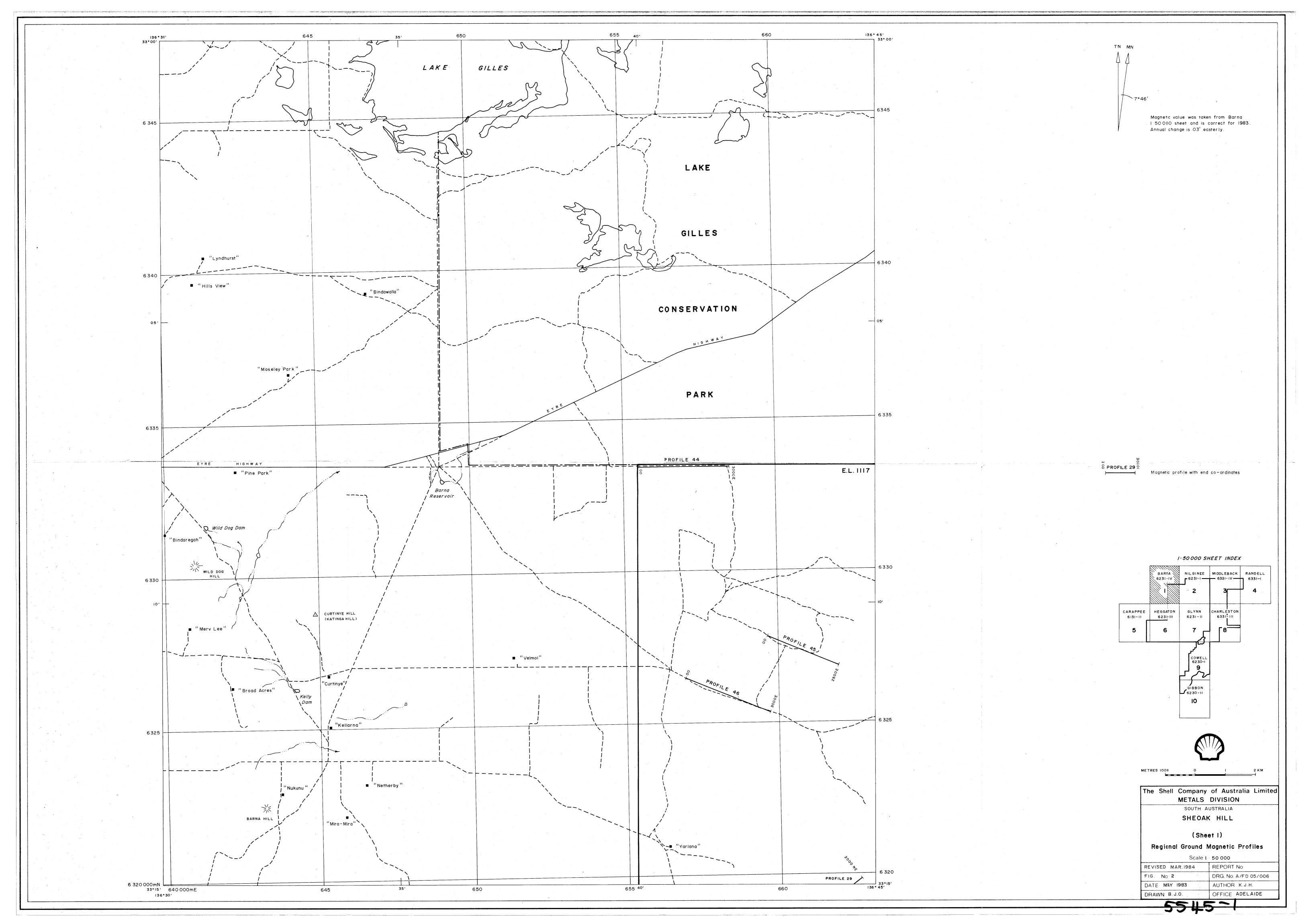
This report summarises the exploration activities within Exploration Licence 1117 during the period 16th March, 1984 to 15th June, 1984. During this time a joint venture agreement has been entered into with Poseidon who will fund the exploration programme whilst Shell remains as manager and operator. Reporting on E.L.s 1116 and 1117 will therefore be done separately in future.

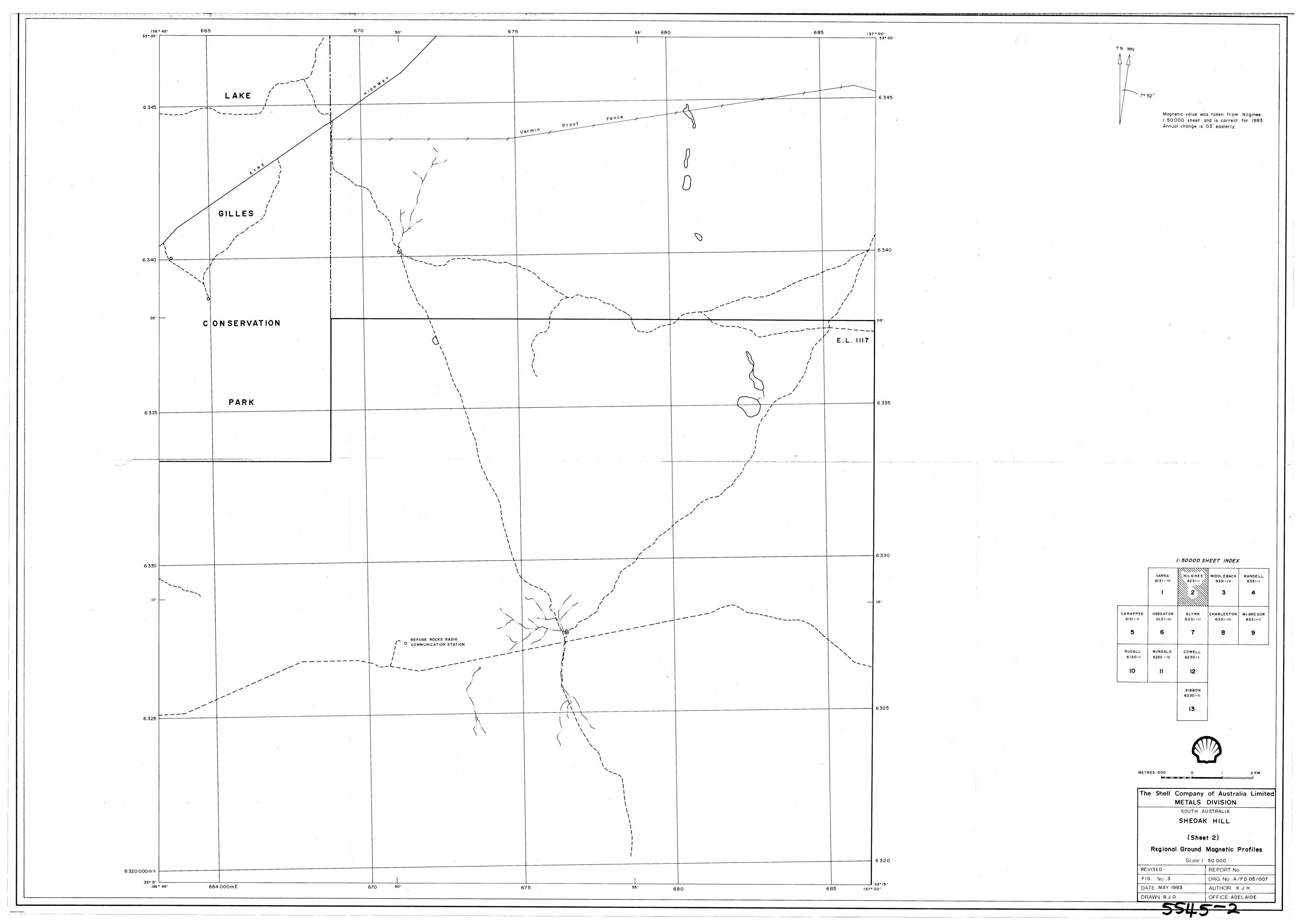
2.0 SUMMARY OF EXPLORATION ACTIVITIES 16-3-84 TO 15-6-84

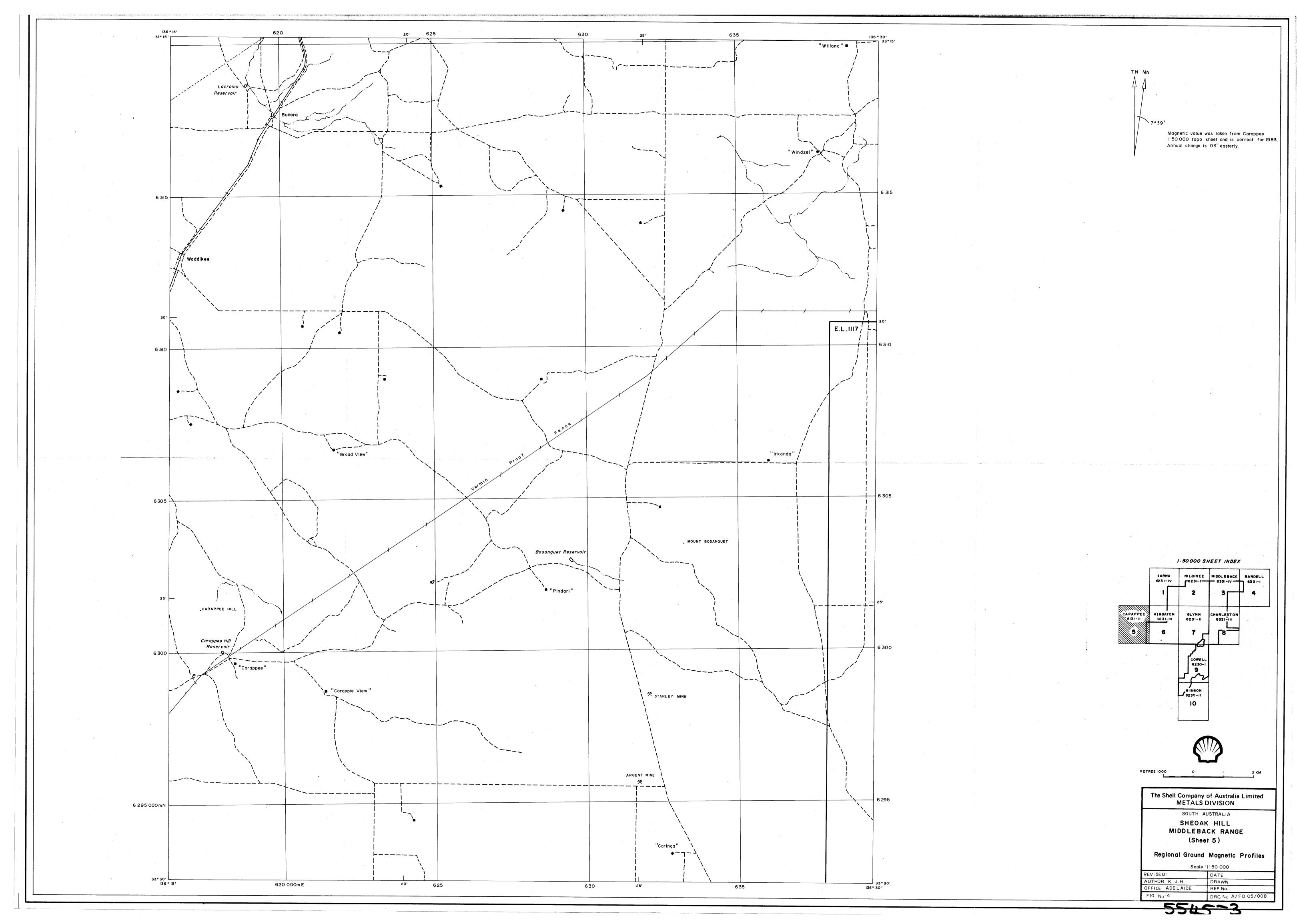
During the report period exploration has concentrated on the outline and definition of significant aeromagnetic trends for future bedrock testing. Nine regional ground magnetic profiles (35N, 36N, 37N, 38N, 39N, 40N, 44N, 45N and 46N) totalling 24 line kilometres were completed. The locations of these lines are shown in Figures 2-6 while the magnetic profiles are given as Figures 7-15.

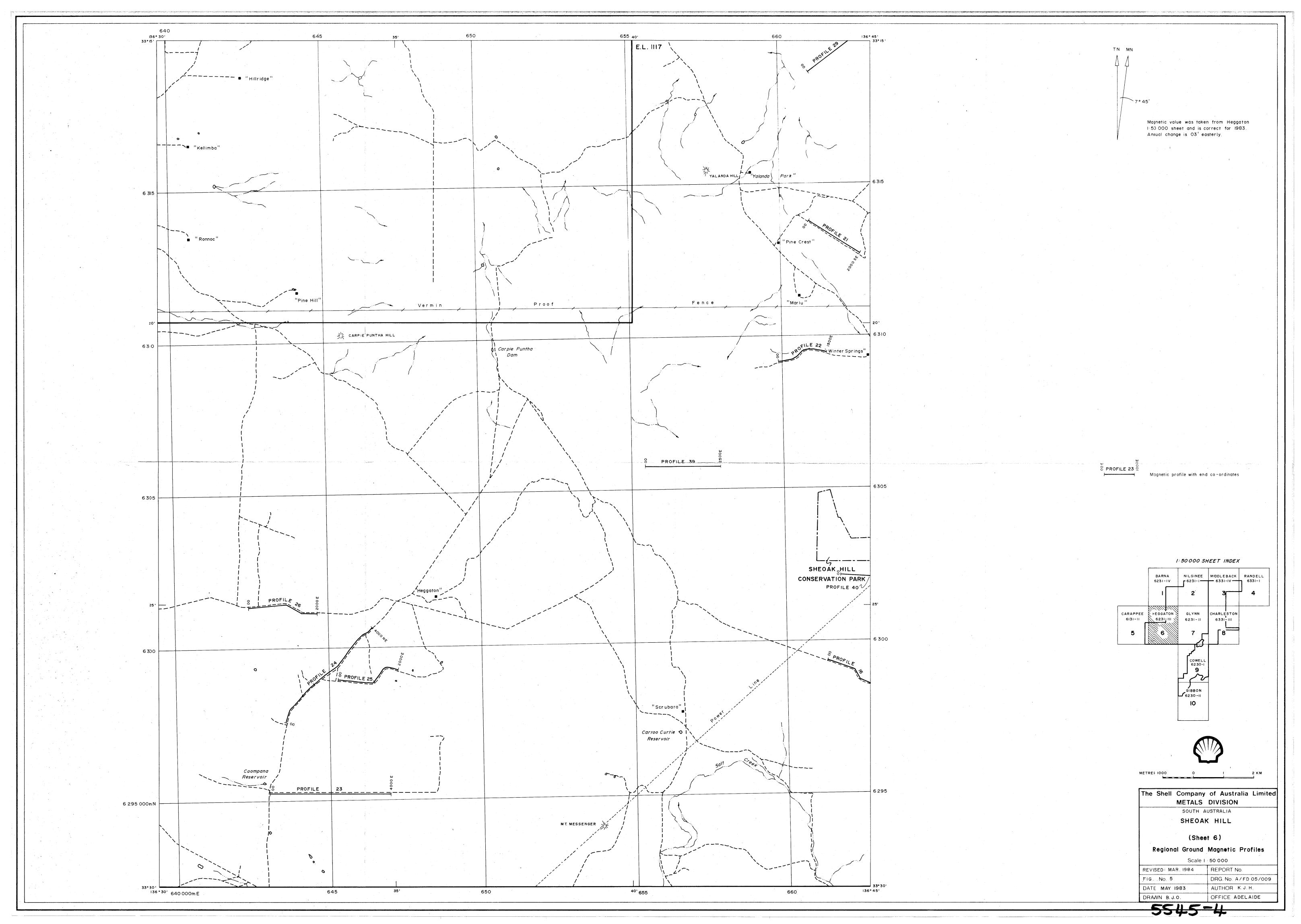
The lines were run along tracks or fencelines where possible, however, on some magnetic features no such access was available. Here the line was photolocated and surveyed using a compass bearing and pacing. All lines were pegged every 200 metres and covered with detailed ground magnetics using Geometrics G856 digital proton procession magnetometers. Readings were taken every 10 metres with a roving magnetometer while diurnal variations were monitored by a base station taking readings every 4 minutes.

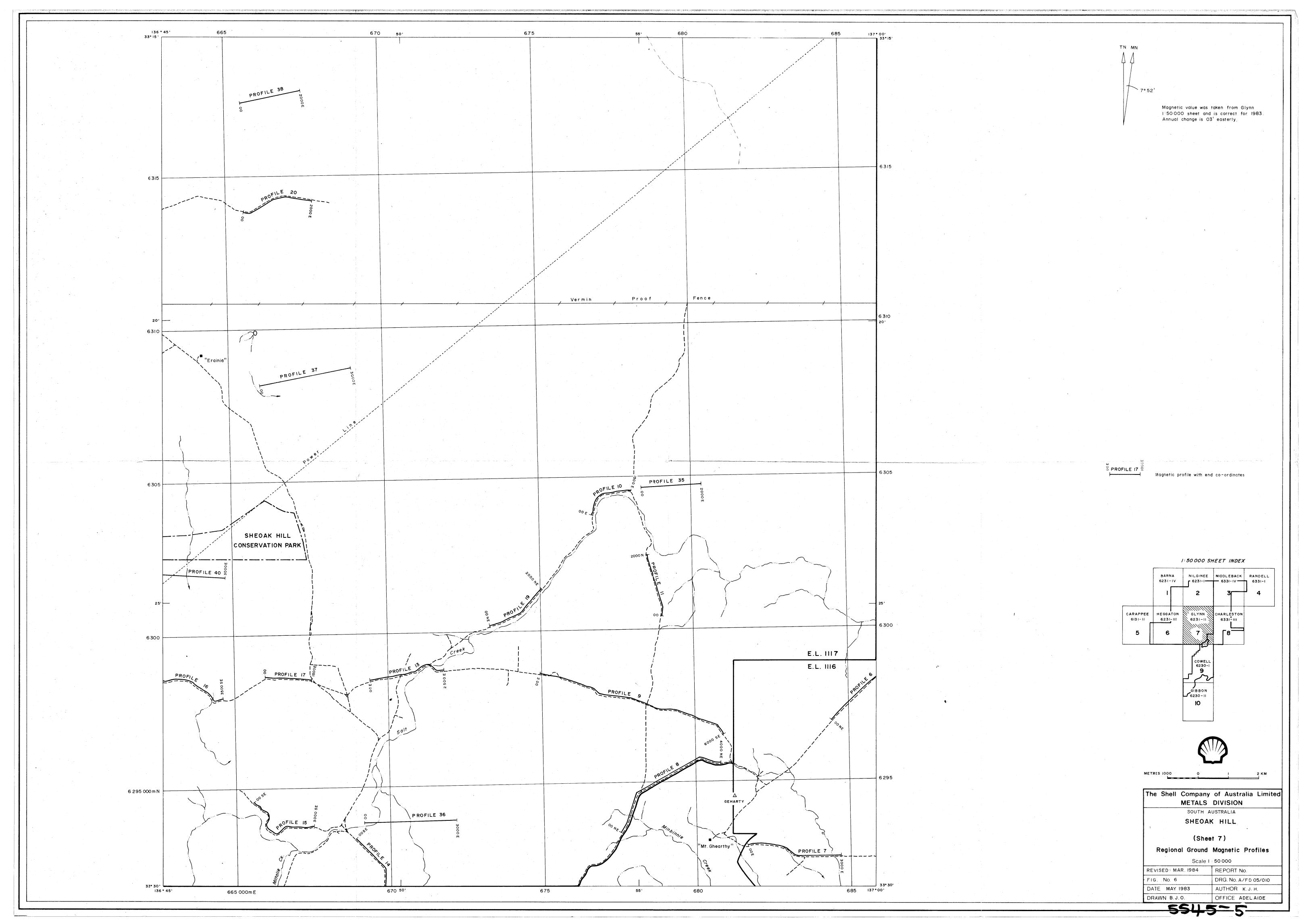

Each evening the data was transferred to tape using a H.P. 85 portable computer which also facilitated printout and plotting of the roving, base and corrected roving magnetometer readings. Later the information was transferred to the Adelaide office HP 9845 for storage, presentation plotting and modelling.

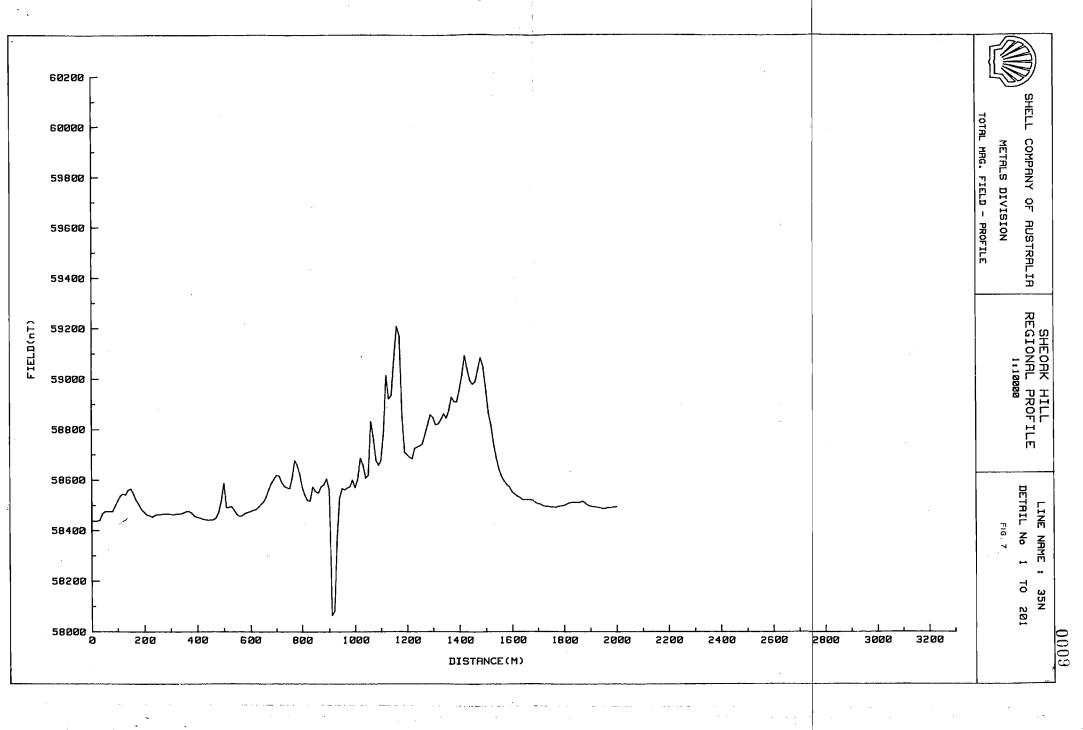

Ranking, modelling and assessment of the magnetic profiles is planned for the following quarter prior to drill testing of bedrock sources.

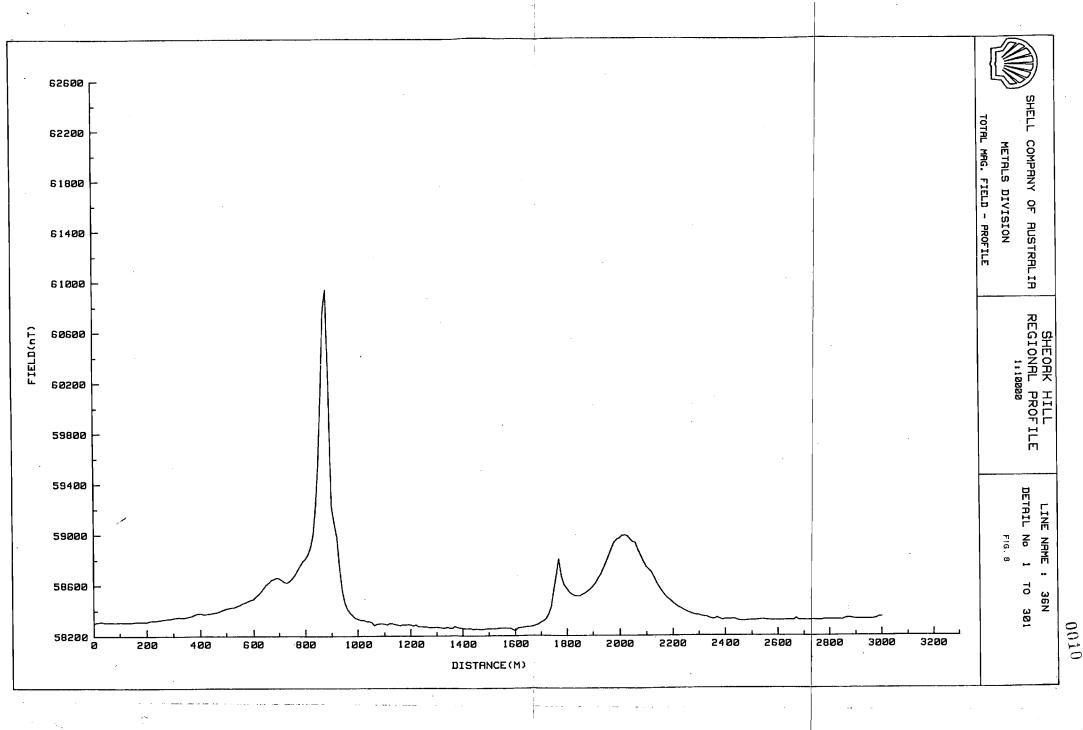

3.0 EXPENDITURE STATEMENT

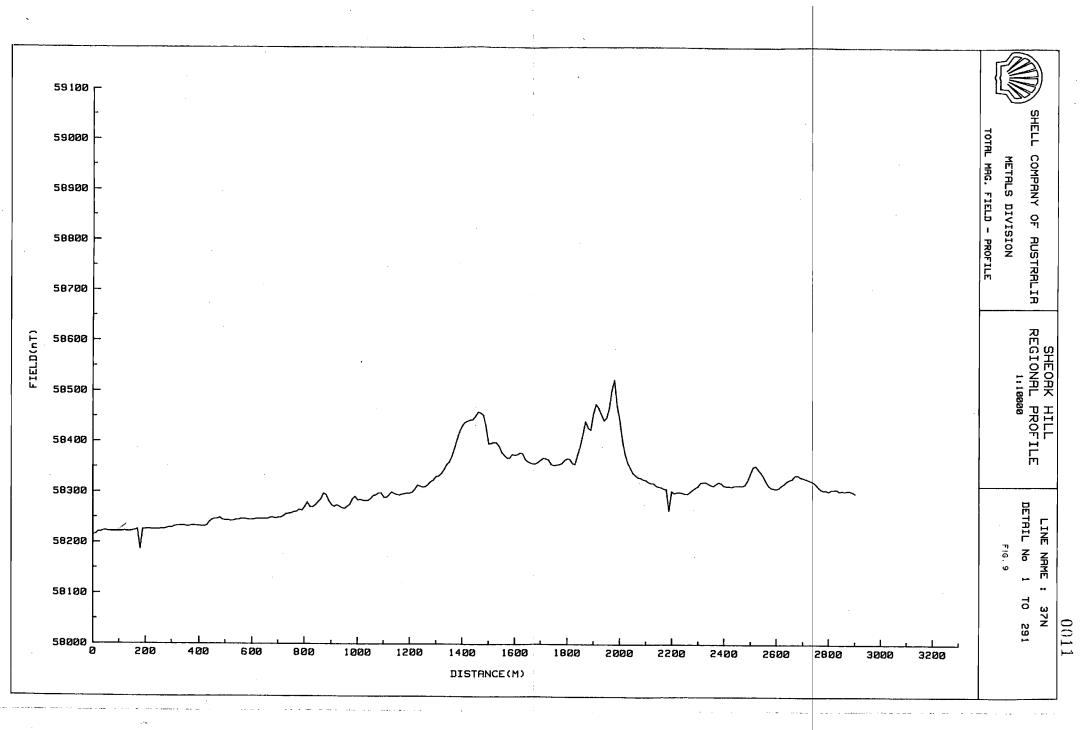

Expenditure for the quarter ending 31/3/84.

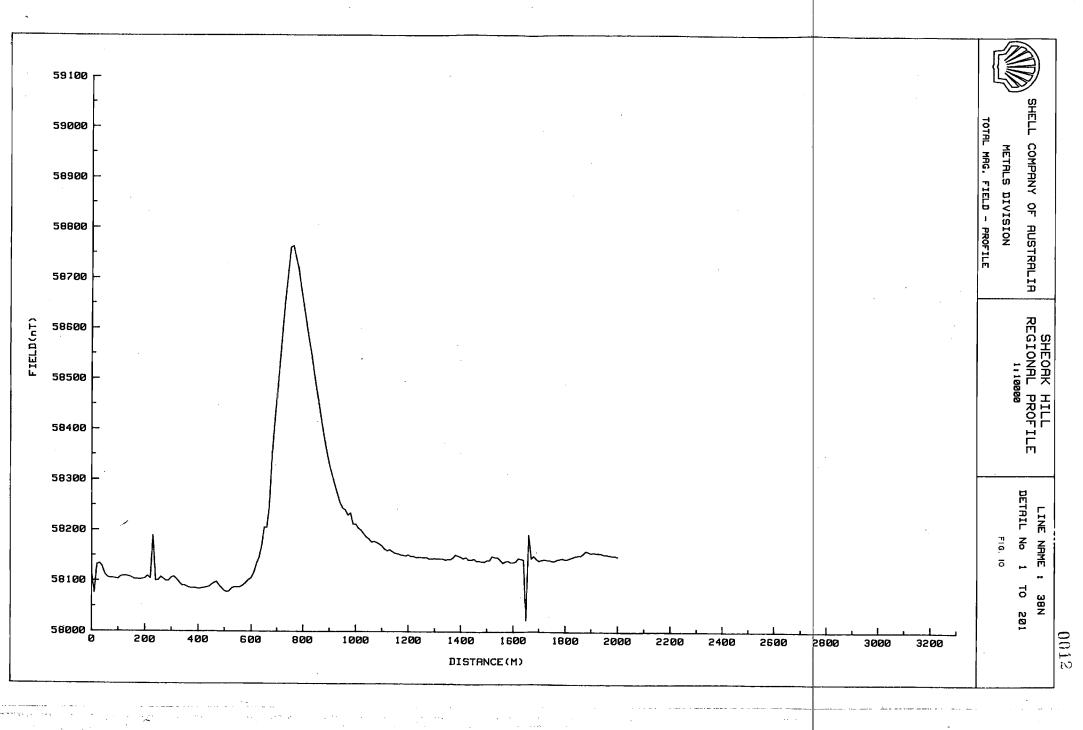

		Project to Date
•	\$	\$
Staffing/Support	7 692	24 7 23 ·
Concession Payments	2 769	5 282
Site preparation/Payments to Landholders &		
Consultants	141	885
Geology, Geophysics, Drawin	ng .	
Research & Computer	344	1 933
Overheads	184	2 520
		
TOTAL	11 130	35 343
		

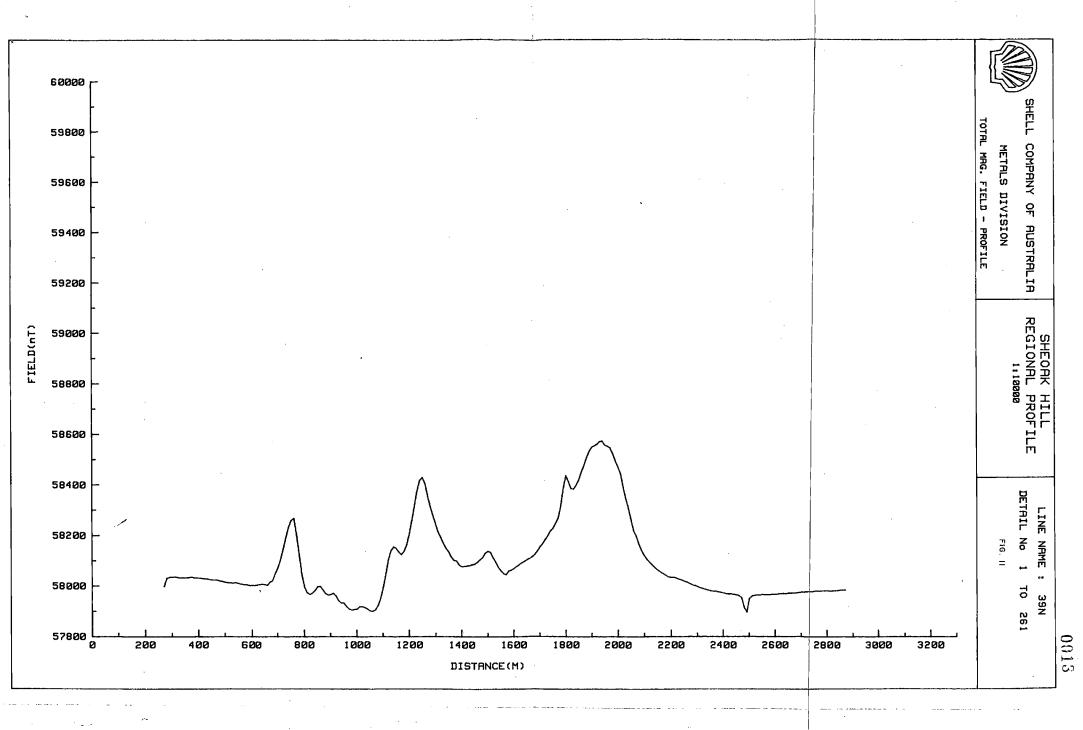


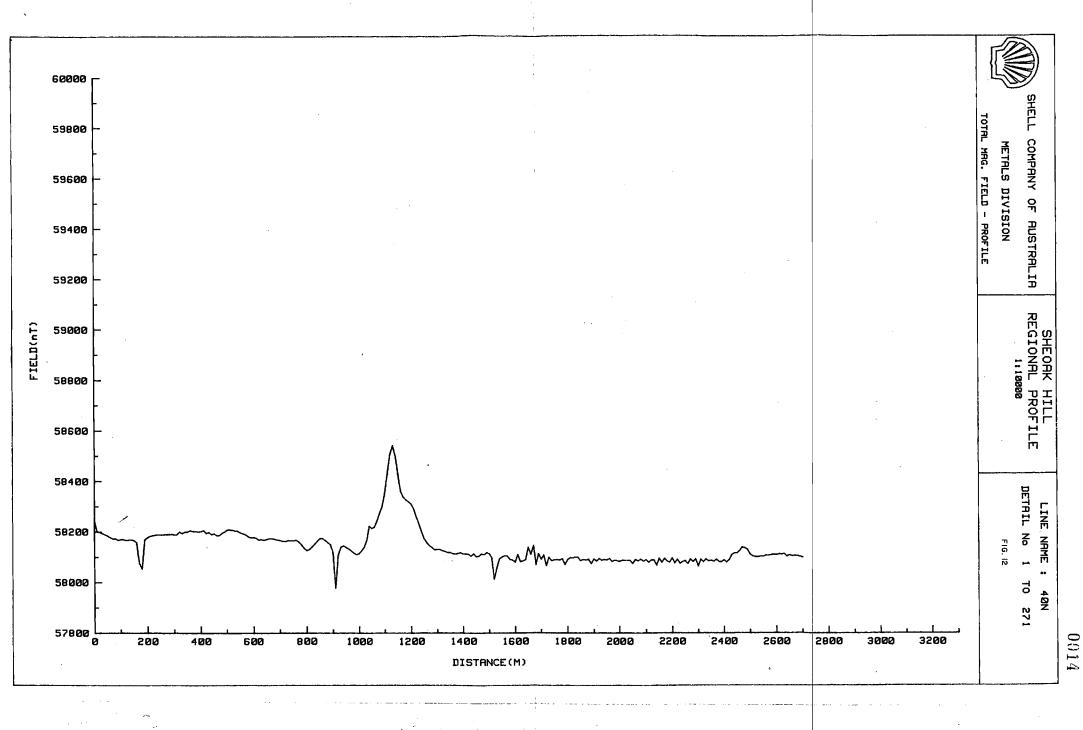


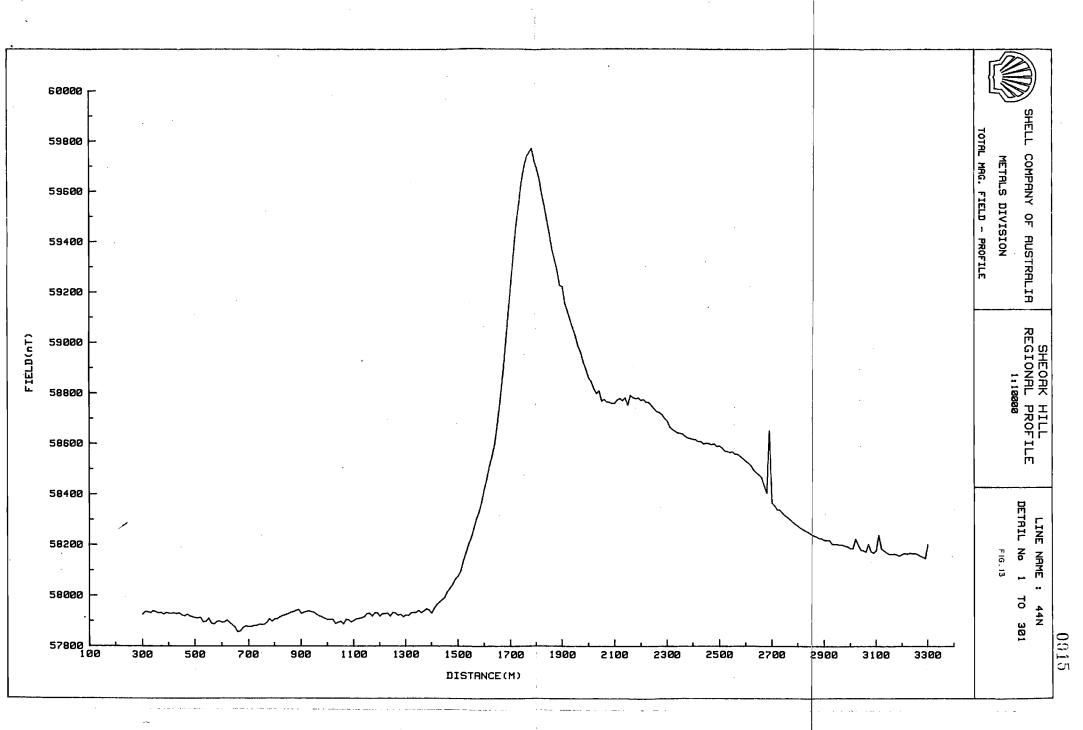


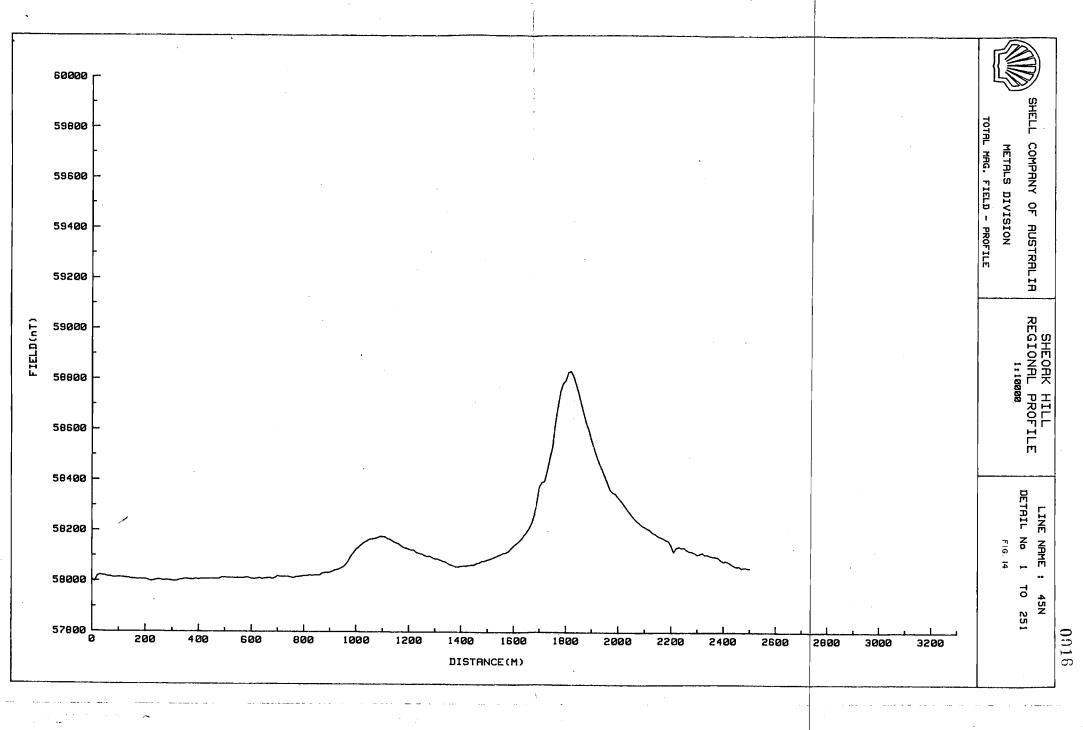


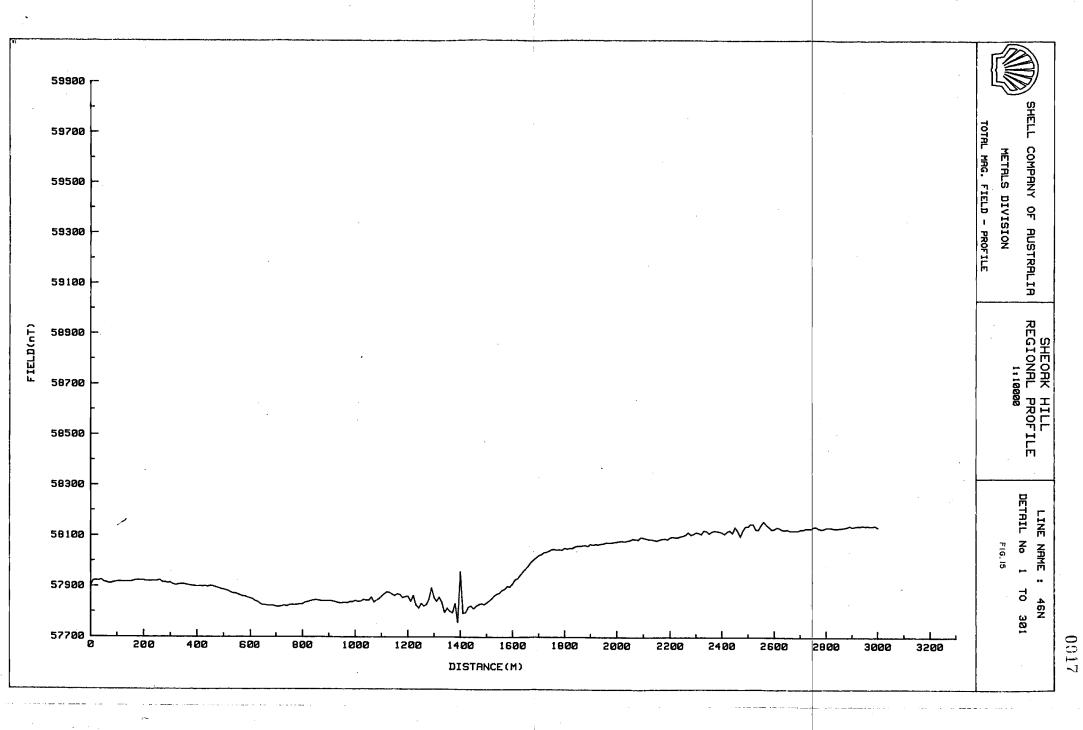












BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR THE QUARTER ENDING 15TH SEPTEMBER 1984

AUTHOR: G.J. DAVIDSON DATE: OCTOBER 1984

REPORT NO: 08.2554

Distribution

Copy 1: Department of Mines & Energy, S.A.

Copy 2: POSEIDON/ADELAIDE
Copy 3: SHELL/MELBOURNE
Copy 4: SHELL/ADELAIDE

CONTENTS

			Page
1.0	INTRODUCTION AND ACTIVITIES		1
2.0	EXPENDITURE STATEMENT	•	2

FIGURE

Drawing No.	<u>Title</u>	Scale
A/MT22/121	Sheoak Hill EL, Location Plan	1:500 000

1.0 INTRODUCTION

Sheoak Hill EL 1117 (Figure 1) was granted to The Shell Company of Australia Limited on 15th March, 1983 for an initial term of 1 year. An extension of this tenure to 24 months was granted on 13th February, 1984 with the expenditure commitment remaining at \$40 000 p.a.

A joint venture agreement has been entered into with Poseidon who will fund the exploration programme whilst Shell remains as manager and operator.

During the quarterly period (15/6/84 - 15/9/84) work on the licence was inactive. However a programme of reconnaissance rock chipping is planned for the final quarter of the year along known iron formation trends.

2.0 EXPENDITURE STATEMENT

Expenditure for the quarter ending 30th June 1984.

		Project to Date	<u>e</u>
Staffing/Support	4 275	28 998	
Concession Payments Site preparation/		5 282	
Payments to Landholders Consultants		885	
Geology, Geopysics, Dra	931	2 864	
Research & Computer Overheads	1 428	3 948	
:			
	6 634	41 977	

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 15TH DECEMBER 1984

AUTHOR: G.J. DAVIDSON

REPORT NO: 08.2674

DATE: DECEMBER 1984

DISTRIBUTION

Copy 1: Department of Mines Energy, SA

Copy 2: POSEIDON/ADELAIDE Copy 3: BILLITON/MELBOURNE Copy 4: BILLITON/ADELAIDE

CONTENTS

- 1.0 INTRODUCTION
- 2.0 WORK UNDERTAKEN IN THE QUARTER
- 3.0 EXPENDITURE STATEMENT

APPENDICES

APPENDIX I: Rock Chip Geochemistry

Figure No	<u>Title</u>	Scale	Drawing No
1	Sheoak Hill El, Location Plan	1:500 000	A/MT22/121
2	Summary of Ground Reconnaissance and Sample Locations	1:500 000	A/FK23/001

1.0 INTRODUCTION

Sheoak Hill EL 1117 (Figure 1) was granted to The Shell Company of Australia limited on 15th March, 1983 for an initial term of 1 year. An extension of this tenure to 24 months was granted on 13th February, 1984 with the expenditure commitment remaining at $$40\,000$ p.a.

A joint venture agreement has been entered into with Poseidon with Shell remaining as manager and operator.

The joint venture partners seek base metal targets of the stratiform Broken Hill-Aggeneys style in the Lower Proterozoic Hutchison Group of the Gawler Craton. The basic exploration tools are magnetic horizons associated with BIF horizons such as the Middleback Jaspilite. It is therefore important to establish at an early stage that the magnetic horizons in the licence area are related to chemical sedimentation. During the quarterly period (15/9/84-15/12/84) work on the licence consisted of reconnaissance mapping and sampling

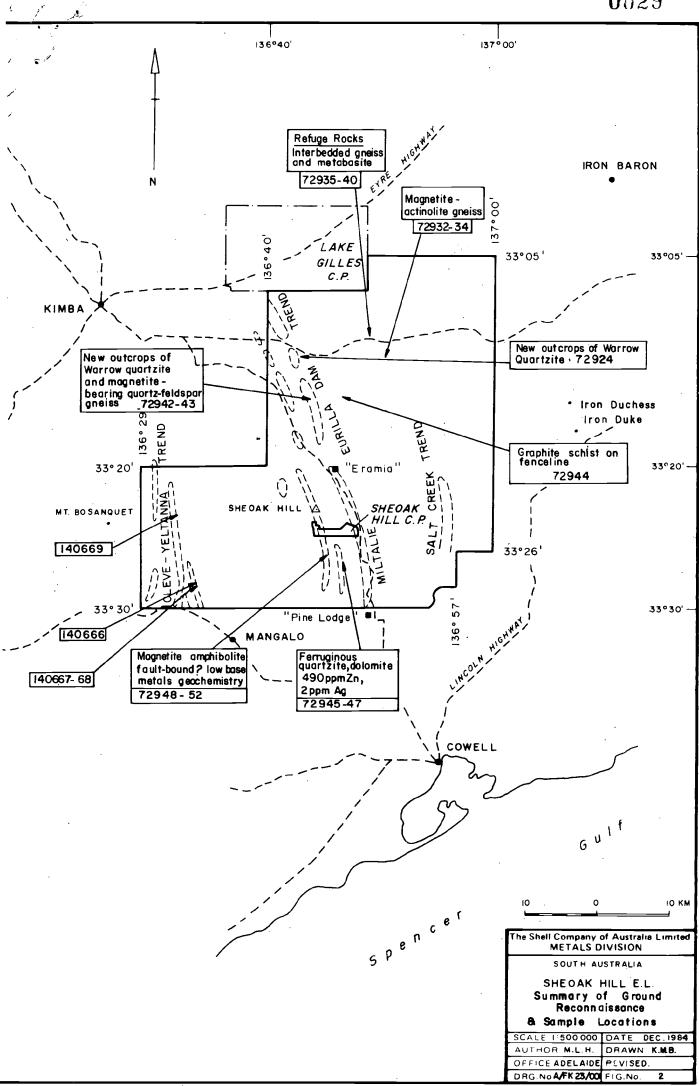
3.0 EXPENDITURE STATEMENT

Expenditure for the quarter ending 30th September 1984.

•		Project to Date
Staffing/Support Geology, Geophysics,	2 024	2 467
Drawing, Research & Computer Overheads	(482) (1 132)	307 259
	410	3 033
		

We are in the process of changing our method of calculating our indirect costs and proportioning regional office costs. We will base the calculation on a dollar spent basis instead of a time writing basis. The figures for this quarter include adjustments to correct the year to date total.

APPENDIX I


Rock Chip Geochemistry

The Shell Company of Australia Limited METALS DIVISION (S.A.)

GEOLOGICAL SAMPLE SHEET

PROJECT: SHEOAK FULL		SHEET.L.OFL
SAMPLE TYPE: RECONNAISSANCE ROCK-CHIPS	HOLE Nº	S.D.O. No.
CAMPLED BY		LABORATORY

SAMPLE N°	INTERVAL/ LOCATION	ANALYSES (in ppm unless otherwise stated) AND TECHNIQUES												
		(2)	Pb (5)	2n/(2)	Mn (5)	Fe (5)	A9 (1)	A3 (2)	Ba (10)	Au (0·02)	Ni (5)	(5)	Sn (4)	COMMENTS W < Wppm unless listed.
140666		3	30	32	220	1.53%	<1	(2	660	(O:05				
67		3	15	5	385	4980	41	6	110	(0.05				Thinly laminated iran formation Siliceous crudely transed chemical and
68		12	15	3	86	3640	<1	3	15	40.05				As above
40669		5	ユ	8	96	1.79%	<u>دا</u>	7	70	40.05				Silicified limestone?
72932		13	Ь	42	380	3.56%	<1	3	790	(0.02	20	10	< 4	Biotite -quartz - feldspar gneiss
33		21	20	38	245	1.37%	<1	<2	670	<0.02	< 5	45	4	Quartz-feldsour-aneiss aranite
34		76	14	42	295	3.45%	<1	<2	330	(0.02	36	18:	0	Quartz-feldspar-gneiss granite Muynetite-garnet-actinolite skarn
72935		4	12	33	200	1.91%	<1	42	530	40.02	6	و	12	Greissic granite
36		3	10	35	350	3.07%	<1	<2	1020	Ø-02	24	10	12	Quartz - Felds por - biolite augen gra
37		62	< 5	30	620	3.11%	<1	42	280	<0.02	46	20	4	Metabasite (N=10)
38		74	<i><5</i>	30	410	3.19%	<1	2	270	<0°02	22	16	12	11
39		3	8	28	310	7850	1	3	210	<0·02	6	< 5	10	Badded calc-silicate
72940		12	10	50	230	2.92%	<1	ζ2	790	⟨० •о2	24	14	4	Quartz-biotite-gneiss
41		<2	۷5	8	52 .	2960	<1	3	280	<0.02	<5	<5	10	Quartzite
42		<2	36	4	56	1900	<1	<2	250	60-02	< 5	<5	4	n ·
43		<2	10	27	135	9000	<١	<2	470	<0.02	6	< 5	8	Granite
44		3	135	6	24	4880	۷١_	2	210	<0.02	<5	ধ্য	18	Graphite schist [W=10]
72945		2	10	3	125	3080	_ 1	<2	75	⟨∪.02	< 5	<i>\5</i>	4	Calcite marble
46		135	6	16	140	7.30%	<1	<2	280	(0.02	6	< 5	<4	Erruginous quartzite
47		120	26	490	680	51.3%	2	20	120	€0.02	<i>5</i> 2	76	4	Ironstone
48		5	30	5	72	4600	<1	<2	330	60 02	< 5	< 5	44	Calcareous quartzite
49		68	<5	17	415	253%	<1	(2	430	60-02	68	24	44	Actinolite-tremolite rock
72950		10	44	. 58	44	8800	<1	(2	840	40.02	14	45	4	Banded quartzite
51		29	< 5	25	140	2.88%	<1	<2	45	<0°02	18	10	<4	Biotite - amphibalite
72952		(2	< 5	2	50	8050	۷١	2	50	60-02	45	< 5	6	Magnetite quartzite
							<u> </u>	<u> </u>	<u> </u>					J '

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 15TH MARCH 1985

AUTHOR: G.J. DAVIDSON

REPORT NO: 08.2851

DATE: APRIL 1985

DISTRIBUTION

Copy 1: Department of Mines Energy, SA

Copy 2: POSEIDON/ADELAIDE
Copy 3: BILLITON/MELBOURNE
Copy 4: BILLITON/ADELAIDE

CONTENTS

- 1.0 INTRODUCTION AND WORK UNDERTAKEN IN THE QUARTER
- 2.0 EXPENDITURE STATEMENT

Figure No	<u>Title</u>	Scale	<u>No</u>
1	Sheoak Hill EL, Location Plan	1:500 000	A/MT22/121

1.0 INTRODUCTION AND WORK UNDERTAKEN IN THE QUARTER

Sheoak Hill EL 1117 (Figure 1) was granted to The Shell Company of Australia limited on 15th March, 1983 for an initial term of 1 year. An extension of this tenure to 24 months was granted on 13th February, 1984 with the expenditure commitment remaining at \$40 000 p.a.

A joint venture agreement has been entered into with Poseidon with Shell remaining as manager and operator.

The joint venture partners seek base metal targets of the stratiform Broken Hill-Aggeneys style in the Lower Proterozoic Hutchison Group of the Gawler Craton.

In the last quarter, no active field-work occurred. Substantial progress has been made, however, in reprocessing and contouring the existing BMR aeromagnetics over the area using a Sydney-based contractor. The results of this work are expected shortly and will form the basis of subsequent exploration planning.

2.0 <u>EXPENDITURE STATEMENT</u> - SHEOAK HILL (FK23)

Expend	liture for the Quarter	
`	Ending 31/12/84	Project to Date
	2112218 2 7 7	
O. CC: /Currant	3 408	34 413
Staffing/Support	3 400	5 282
Concession Payments	272	373
Analysis/Assays	373	373
Site preparation/		
Payment to Landholders &	x	
Consultants		885
Geology, Geophysics,		
Drawing, Research &		
Computer	251	2 633
•	388	3 204
Overheads .	300	3 20 7
:	4 420	46 790
	4 420	40 700
		

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 15TH JUNE 1985

AUTHOR: G.J. DAVIDSON, P.J. ELLIOTT

DATE: JUNE 1985 REPORT NO: 08.2856

DISTRIBUTION

Copy 1: Department of Mines Energy, SA Copy 2: POSEIDON/ADELAIDE Copy 3: BILLITON/MELBOURNE Copy 4: BILLITON/ADELAIDE

CONTENTS

- 1.0 INTRODUCTION & SUMMARY OF WORK UNDERTAKEN IN THE QUARTER
- 2.0 AEROMAGNETIC DATA REPROCESSING
- 3.0 EXPENDITURE STATEMENT

Figure No	<u>Title</u>	Scale	Drawing No
1	Sheoak Hill EL, Location Plan	1:500 000	A/MT22/121
2	Residual Magnetic Contours Barna Sheet	1:100 000	A/FK23/010
3	Magnetic Variation Contours Barna Sheet	1:100 000	A/FK23/009

1.0 INTRODUCTION AND WORK UNDERTAKEN IN THE QUARTER

Sheoak Hill EL 1117 (Figure 1) was granted to The Shell Company of Australia limited on 15th March, 1983 for an initial term of 1 year. An extension of this tenure to 24 months was granted on 13th February, 1984 with the expenditure commitment remaining at \$40 000 p.a.

A joint venture agreement has been entered into with Poseidon with Shell remaining as manager and operator.

The joint venture partners seek base metal targets of the stratiform Broken Hill-Aggeneys style in the Lower Proterozoic Hutchison Group of the Gawler Craton.

In the last quarter, no active field-work occurred. Reprocessing and contouring the existing BMR aeromagnetics over the area occurred, using a Sydney-based contractor. The work has cheaply supplied a much improved picture of the aeromagnetics on which to base a planned second-half program.

At present, approximately 20 aeromagnetic trends will be followed up in the second-half program with rock chipping, ground magnetics and RAB drilling.

2.0 AEROMAGNETIC DATA REPROCESSING

The BMR data for the Barna 1:100 000 sheet was obtained in digital form and sent to Pitt Research Pty Ltd. The data was corrected for levelling errors and flight lines left out of the original contour plots were included. Two sheets were produced:-

- a) Levelled Residual Magnetic Contours (Figure 2)
- b) Magnetic Variation Contours (Figure 3)

A more detailed description of what these sets of contours represent is included as Appendix A.

3.0 EXPENDITURE STATEMENT - SHEOAK HILL (FK23)

Expend	iture for the Quarter	
	Ending 31/3/85	Project to Date
		
Staffing/Support	2 497	36 910
Concession Payments	3 009	8 291
Analysis/Assays	110	483
Site preparation/		
Payment to Landholders &		
Consultants		885
Geology, Geophysics,		
Drawing, Research &		
Computer	1 345	3 978
Overheads	399	3 603
Overneads	377	
		
	7 360	54 150
	7 300	31 230
		

APPENDIX A

Pitt Research Pty. Limited

Suite 4, 1st floor. 250 Pacific Highway. Crows Nest, NSW 2065.

Telex: AA24458 Telephone: (02) 438-3700, (02) 438-3916

17th May 1985

Mr. Peter J. Elliott, Billiton Australia, 66 Glen Osmond Road, Parkside, S.A. 5001

Dear Peter,

Please find enclosed the following contour maps for the Barna 1:100,000 map sheet:

- (a) Levelled Residual Magnetic Field contours
- (b) Magnetic variation contours

Comments on the above maps are:

Residual Magnetic Contours:

Data was interpolated to a square grid mesh of 200m x 200m. With this limitation, the contours are accurately positioned along the traverse flight paths. In the case of regional surveys, the interpolation of contours between flight lines is not as one would desire, due to the large traverse spacing. Manual contours based on the computer map would in this case considerably revise the structural trends, and could be very useful. Doug Morrison (Southlands Geophysical Services) would be prepared to prepare such contours in pencil from our computer drawn contours for a price of per kilometre. Ball point was used to obtain a resolution normally requiring a scale of 1:50,000.

Magnetic Variation Contours:

The magnetic variation map is an attempt to define and map areas in which changes in the magnetic field are arising from near—surface geology and to attempt to quantify the degree of magnetisation of such regions. I feel this to be important because mineralisation appears to frequently occur in such regions, and they are also amenable to field inspection.

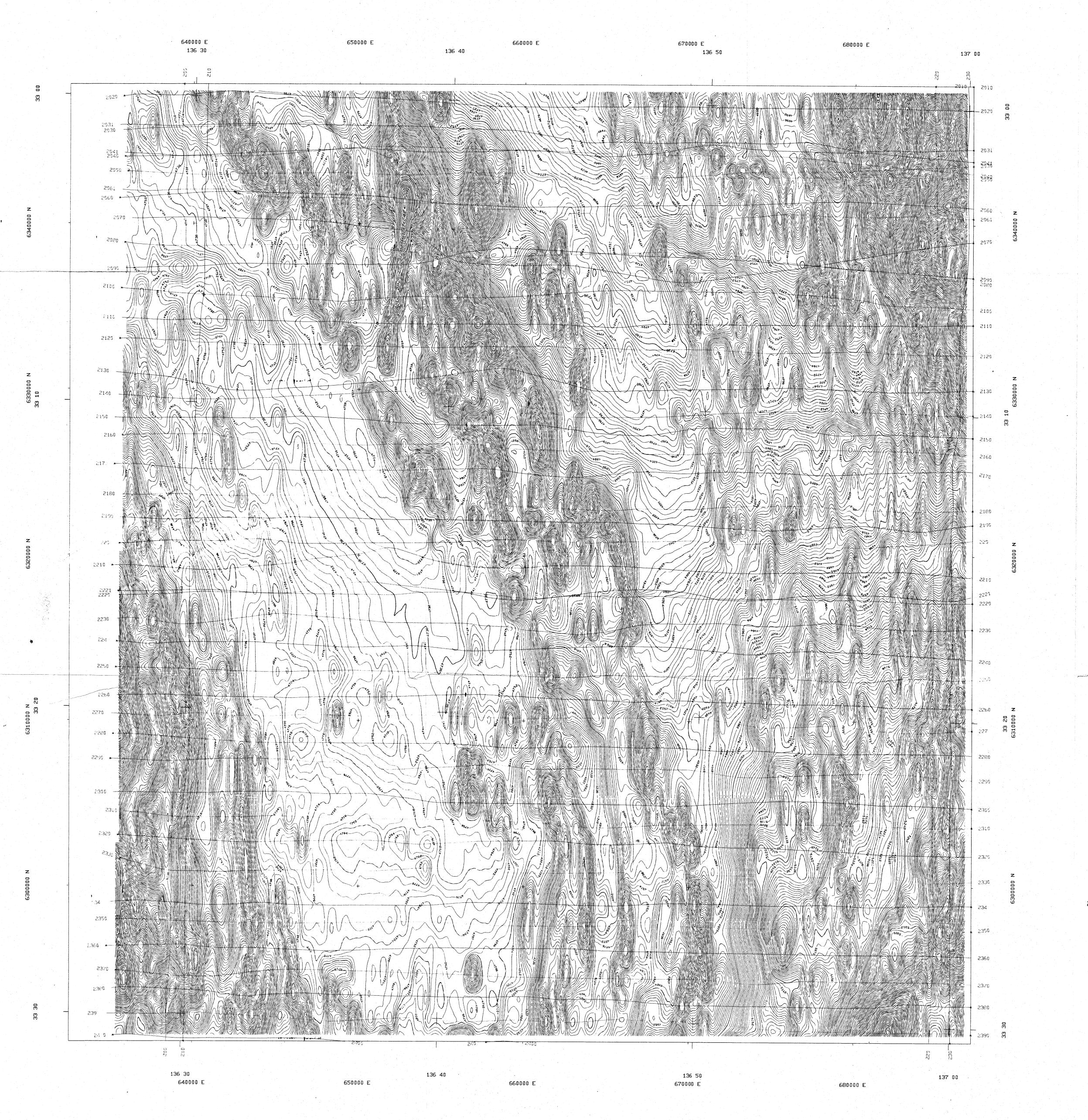
The raw observation data is first filtered by a one-dimensional high pass filter to extract the high frequency component of this data. The cut-off period is say 300 metres per half

cycle. This is done in an attempt to locate near surface magnetic sources. I have assumed that 'peaks' of narrow anomalies and 'steps' in the level of the magnetic field are due to changes in magnetic susceptibility of near-surface rocks. Profiles of this resulting data would be generally appear as bursts of 'noise'. Contour mapping of this high frequency information is not possible. This information is usually completely lost when contour maps are produced, particularly if these maps use a large grid cell size, or are 'filtered'. The ideal data for the above treatment is that derived from high-resolution caesium vapour magnetometers operated with high frequency sampling.

To produce a contourable map of the above information, the data derived from above is next demodulated by means of a special r.m.s. low pass filter of the same frequency as the above high pass filter. This filter is really a weighted square root of mean square filter in the same sense as is applied in electrical engineering when dealing with the power of an alternating electrical signal. For the data for each traverse, this process produces a profile which is always positive and which indicates the position and degree of magnetic variation due to near surface bodies.

To extract information in areas of low magnetic contrast, the logarithm of the above data is next computed.

After all the above operations are completed, the resulting information is gridded and contoured.


Anaglyph Contours of Residual Magnetics:

I suggest that consideration be given to plotting of an anaglyph of the residual magnetics. The set aside could perhaps be used for this purpose.

Please let me know if there is any query on work to date and if we can be of any further service on this or subsequent projects. An invoice for \$3,400 is included to cover work to date.

Yours sincerely, PITT RESEARCH PTY LIMITED

John C. Pitt Managing Director

DATA PROCESSING AND MAPPING

- The airborne geophysical data for this map was acquired by the BMR for the S.A. Department of Mines. The nominal flight altitude was 150 metres and the nominal traverse spacing was 1,600 metres.
- Initial data processing was performed by the BMR, this including initial levelling, diurnal correction an subtraction of IGRF.
- Final data processing, editing, levelling and mapping was performed by Pitt Research Pty Limited assisted by Southlands Geophysical Services.

 Contours were generated from data interpolated to a grid resolution of 200 metres by 200 metres.
- ___Contours are shown at intervals of 4.8 nano-Teslas.
 - The low sides of bold contour lines are indicated by dashes.

000 0 2000 4000 6000 8000 10000 Metres

BILLITON AUSTRALIA

BARNA - S.A.

BMR - REGIONAL GEOPHYSICAL SURVEY

RESIDUAL MAGNETIC INTENSITY - CONTOURS

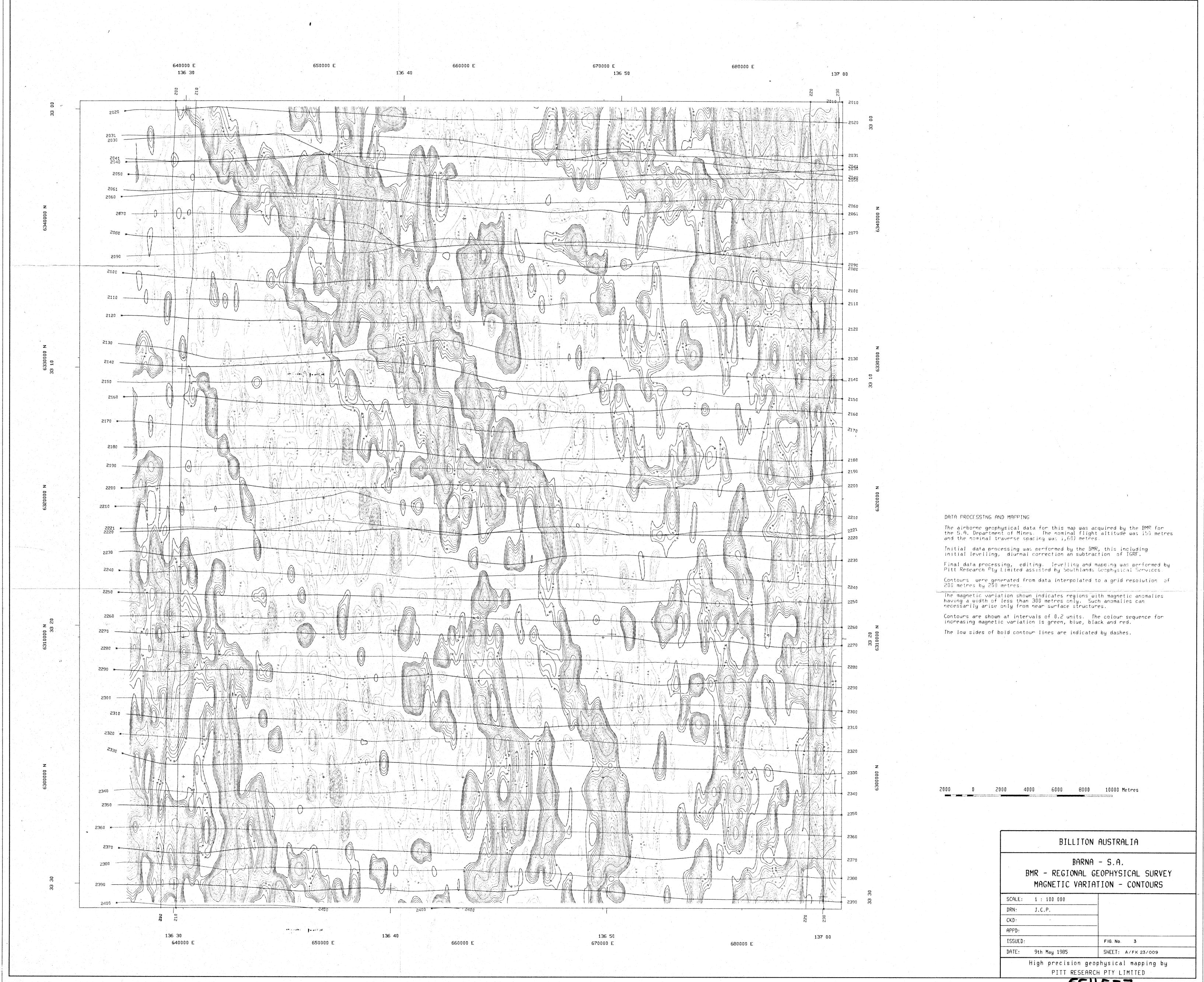
SCALE: 1:100 000

DRN: J.C.P.

CKD:

APPD:

ISSUED:


PIG No. 2

DATE: 9th May 1985

SHEET: A/FK 23/010

High precision geophysical mapping by PITT RESEARCH PTY LIMITED

5545-6

5545-7

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL, EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH SEPTEMBER 1985

AUTHOR: K. J. HELLSTEN

REPORT NO: 08.2875

SEPTEMBER 1985 DATE:

DISTRIBUTION

Copy 1: Department of Mines Energy, SA Copy 2: POSEIDON/ADELAIDE Copy 3: BILLITON/MELBOURNE Copy 4: BILLITON/ADELAIDE

CONTENTS

- 1.0 SUMMARY
- 2.0 EXPENDITURE STATEMENT

Figure No	<u>Title</u>	Scale	<u>No</u>
1	Sheoak Hill EL, Location Plan	1:500 000	A/MT22/121

1.0 SUMMARY

Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia Limited on 15 March 1983, and is current until 14 March 1986. The licence area is subject to a joint venture agreement between Billiton Australia and Poseidon Limited, with the former being manager and operator of exploration.

No field work has been conducted during the report period, however, considerable time has been spent in preparation for a major rock chip and RAB sampling programme due to commence early in following quarter. This includes compilation of the existing geological plans, rock ship sample analytical results and reprocessed BMR aeromagnetic data for the Barna 1:100 000 sheet (see Report No. 08.2856). An interpretation of the aeromagnetics, in conjunction with the outcrop maps and regional ground magnetic profiles, is presently underway.

On completion of this work, comprehensive check geological mapping, rock chip sampling and ground magnetic programme will be commenced. RAB drilling is proposed in areas of poor or nil outcrop to gain valuable geological and geochemical data.

2.0 EXPENDITURE STATEMENT - SHEOAK HILL (FK23)

Exper	editure for the Quarter Ending 14/9/85	Project t	to Date
Staffing/Support Concession Payments Analysis/Assays Site preparation/	1 983		893 291 483
Data Processing Geology, Geophysics, Drawing, Research &	4 000	5	385
Computer	984	4	462
Overheads	465	4	068
	7 432	61	582

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH DECEMBER 1985

AUTHOR: K.J. HELLSTEN DATE: DECEMBER 1985

REPORT NO: 08.3094

DISTRIBUTION

Copy 1: Department of Mines & Energy, S.A.

Copy 2: Poseidon/Adelaide Copy 3: Billiton/Melbourne Copy 4: Billiton/Adelaide

CONTENTS

		Page
1.0	SUMMARY	1
2.0	EXPENDITURE STATEMENT	2

LIST OF FIGURES

Figure No.	<u>Title</u>	Scale	Drawing No.
1	Sheoak Hill Interpreted Geology	1:125 000	A/FK23/020
2	Sheoak Hill Magnetic Profiles and Trends	1:125 000	A/FK23/012

1.0 SUMMARY

During the report period an extensive programme of geological mapping and rock chip sampling, supplemented by RAB drilling, was completed.

Geological mapping was concentrated in a north-south package of chemical sediments and complementary zone of several en echelon magnetic ridges extending from the Yarlana area to Miltalie North in the south (Figures 1 and 2). Limited work was also conducted on the Coompana Reservoir Trend. In conjunction with the mapping, 483 composite, channel rock chip samples were collected across outcropping chemical sediments, calc-silicate horizons and several quartzites.

The results of the geological and geochemical samples have recently been compiled, however, drafted copies are not yet available, Discussion of the results will therefore be left until the following quarterly report.

A RAB drilling programme totalling some 1414 metres and 65 holes was completed in early December in areas of poor or nil exposure. Relatively intense magnetic anomalies were tested on profiles 13, 36, 44, 45, 67 and 68 (Figure 2). Drafting of the drill sections is underway, however, the analytical results have been delayed due to heavy demands at the laboratory. Drill sections, plans and interpretations will be included in the following quarterly report when all data are received and drafted.

2.0 EXPENDITURE STATEMENT: SHEOAK HILL

	ture for the Quarter adding 30/9/85	Project to Date
Staffing/support	7 038	45 931
Concession payments		8 291
Analysis/assays		. 483
Site preparation/ payments to landholders & consultants	(600)	4 785
Geology, geophysics, drawing research & computer	ng 261	4 723
Overheads	8	4 47.5
	\$ 6 707	\$ 68 688

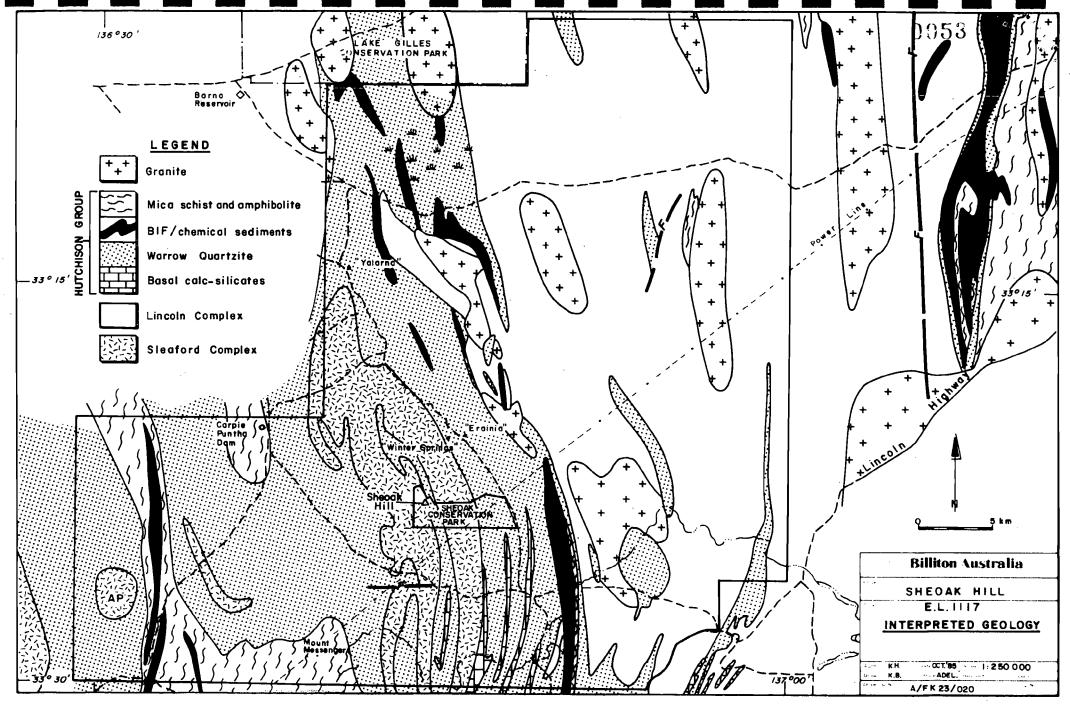
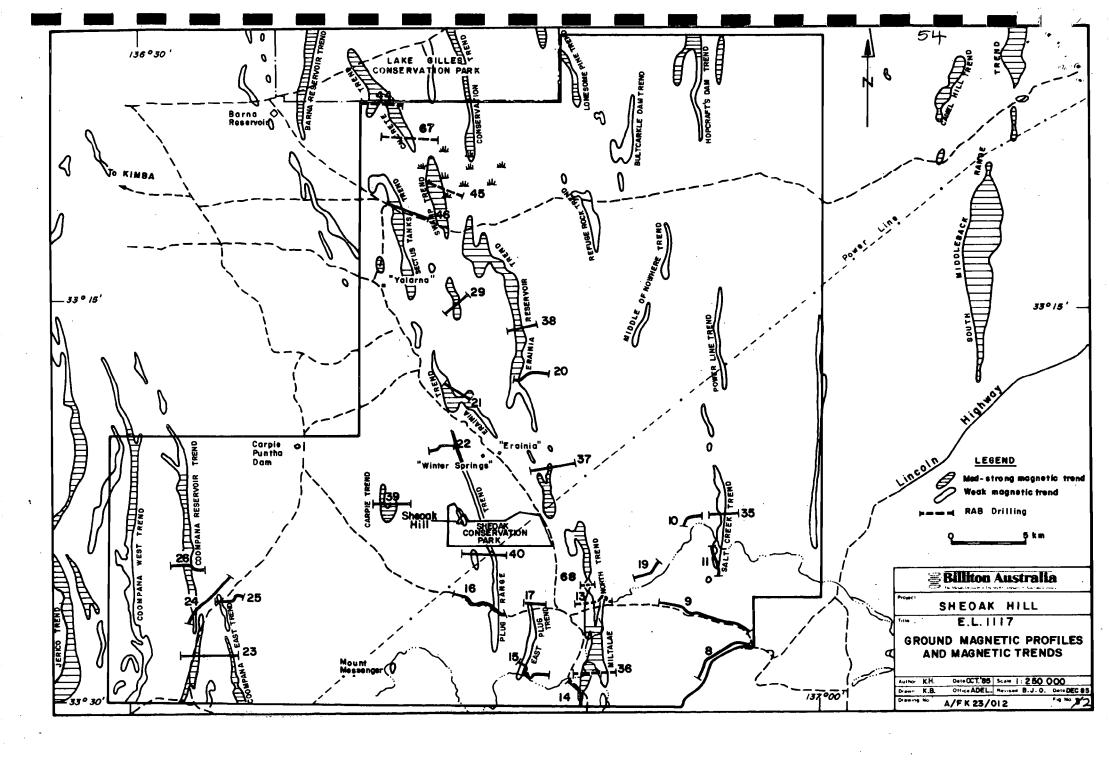



Fig. 1.

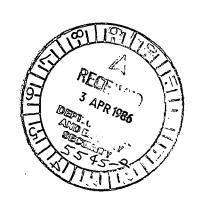
BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH MARCH 1986


AUTHOR: R. C. BERG DATE: MARCH 1986

REPORT NO: 08.3260

DISTRIBUTION

Copy 1: Department of Mines & Energy, S.A.

Copy 2: Billiton/Melbourne Copy 3: Billiton/Adelaide

CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	WORK COMPLETED	2
3.0	GEOLOGICAL SETTING	3
4.0	GEOLOGICAL MAPPING	4
5.0	ROCK CHIP SAMPLING	ϵ
6.0	RAB DRILLING	7
7.0	CONCLUSION	9
8.0	EXPENDITURE STATEMENT	10

LIST OF APPENDICES

APPENDIX I: PETROGRAPHIC DESCRIPTIONS

APPENDIX II: ANALYTICAL RESULTS

APPENDIX III: RAB LOGS AND ANALYSES

LIST OF FIGURES

Figure No.	<u>Title</u>	Scale	Drawing No.
1	Sheoak Hill Interpreted Geology	1:250 000	A/FK23/020
. 2	Sheoak Hill Aeromagnetic Contours	1:250 000	A/FK20/013
3	Sheoak Hill Magnetic Profiles and Trends	1:250 000	A/FK23/012
4	Outcrop Geology - Sheet 3	1:25 000	A/FK23/027
5	Outcrop Geology - Sheet 4	1:25 000	A/FK23/028
6	Outcrop Geology - Sheet 8	1:25 000	A/FK23/029
7	Outcrop Geology - Sheet 9	1:25 000	A/FK23/030
8	Outcrop Geology - Sheet 12	1:25 000	A/FK23/031
9	Outcrop Geology - Sheet 14	1:25 000	A/FK23/032
10	Miltalie North Geology with Geochem- ical Overlays for Zn and Mn	1:100 000	A/FK23/043
. 11	Location Map and Anomalous Geochemistry - Sheet 3	1:25 000	A/FK23/033
12	Location Map and Anomalous Geochemistry - Sheet 4	1:25 000	A/FK23/034
13	Location Map and Anomalous Geochemistry — Sheet 8	1:25 000	A/FK23/035
14	Location Map and Anomalous Geochemistry - Sheet 9	1:25 000	A/FK23/036
15	Location Map and Anomalous Geochemistry - Sheet 12	1:25 000	A/FK23/037
16	Location Map - Sheet 14	1:25 000	A/FK23/019
17	Sheet 14 - Rock Chip Geochemistry Cu Contours	1:25 000	A/FK23/038
18	Sheet 14 - Rock Chip Geochemistry Pb Contours	1:25 000	A/FK23/039
19	Sheet 14 - Rock Chip Geochemistry Zn Contours	1:25 000	A/FK23/040
20	Sheet 14 - Rock Chip Geochemistry Mn Contours	1:25 000	A/FK23/041

LIST OF FIGURES (CONT'D)

Figure No.	<u>Title</u>	Scale	Drawing No.
21	Sheet 14 - Rock Chip Geochemistry Fe Contours	1:25 000	A/FK23/042
22	Profile 13N - Ground Magnetics and and RAB Drilling	1:10 000	A/FK23/023
23	Profile 36N - Ground Magnetics and RAB Drilling	1:10 000	A/FK23/024
24	Profile 44N - Ground Magnetics and RAB Drilling	1:10 000	A/FK23/022
25	Profile 45N - Ground Magnetics and RAB Drilling	1:10 000	A/FK23/021
26	Profile 67N - Ground Magnetics and RAB Drilling	1:10 000	A/FK23/025
27	Profile 68N - Ground Magnetics and RAB Drilling	1:10 000	A/FK23/026

1.0 INTRODUCTION

Exploration Licence EL 1117, Sheoak Hill, was granted in 1983 and is current until 15/3/87.

This quarterly report describes the results of the work carried out in the previous reporting period, since the geochemical analyses and compilation have only recently been completed.

2.0 WORK COMPLETED

The work described in this report consisted of:

- Geological mapping on 1:25 000 scale.
- Channel rock chip sampling (483) accompanying the mapping.
- RAB drilling over six magnetic profiles (P 13, 36, 44, 45, 67, 68).

3.0 GEOLOGICAL SETTING

The eastern part of the licence covers the granitic gneisses of the Lincoln Complex, overlain in the west by the Lower Proterozoic chemical-metasedimentary sequence of the Hutchison Group (Figure 1).

Two prospective aeromagnetic trends, associated with BIFs, cherts, calc-silicates, are apparent from the aeromagnetic map (Figure 2), called the Miltalie-Eurilla Dam trend and the Campoona trend.

4.0 GEOLOGICAL MAPPING

Geological mapping on 1:25 000 scale has been carried out over the main magnetic trends, concentrating on the Miltalie-Eurilla Dam trend (Figure 3).

Two areas have been highlighted as prospective by the geological mapping:

i) A stacked sequence of chemical sediments has been outlined on the Miltalie North trend (Figure 3), stratigraphically above the Warrow Quartzite.

Calc-silicates and banded carbonates) Banded chert + Mn = Middleback) Massive Mn-rich ironstone) Jaspilite = Cook Gap Schist Biotite schist + Banded dolomite/opalite = Katunga Dolomite Massive quartzite = Warrow Quartzite Quartzo-feldspathic gneiss = Lincoln Complex

A sub-basin is proposed in this area with the margins defined by the chemical sedimentary sequence laterally, and the magnetic units along strike. This basin is at least 12 km long (N-S), is closed to the north, but remains open to the south - towards Miltalie.

In the central portion of the sub-basin, the chemical sedimentary package has an apparent thickness in excess of 1 km. Subvertical dips occur throughout, however, some structural thickening is probable. The basin is bounded by Warrow Quartzite to the east and west, and hence appears to represent a regional syncline. This is difficult to prove, as neither the magnetic horizon nor the cherts or manganese-rich units crop out on the western side of the inferred fold axis.

The main magnetic anomaly lies within the calc-silicates, but does not crop out. Some drilling was therefore carried out in this area during the RAB programme.

ii) Several en echelon, relatively intense magnetic anomalies (the Calcrete, Swamp and northern section of the Erainia Reservoir trends) occur in the north central portion of the EL. No surface expression is present, however, they lie adjacent to Warrow Quartzite outcrops, and hence are probably due to Hutchison Group sediments. RAB drilling has been completed on profiles 44, 45 and 67 (Figure 3), to determine the magnetic source and host sequence.

On the northern section of the Erainia Reservoir trend, graphitic cherts and graphitic schists crop out immediately east of the magnetic horizon, upgrading the area. Further south, the magnetic unit is seen as magnetic diorites within granites and the Lincoln Complex, and hence is not an attractive exploration target.

Other geologically interesting areas not previously noted by the SADME mapping, are a package of calc-silicates in the Lincoln Complex, 4 km north of "Erainia", and 'pyjama' rocks near the Erainia trend.

A brief visit to the Coompana Reservoir trend confirmed the presence of chemical units. Only banded cherts were noted near the major magnetic anomaly, however, some previously unrecognised 'pyjama' rock was noted west of the trend.

The results of the geological mapping are presented as outcrop geology sheets (Figures 4 to 9), together with the petrography.

Details of the petrographic descriptions are given in Appendix I.

5.0 ROCK CHIP SAMPLING

Channel rock chip sampling has been carried out in conjunction with the geological mapping.

A total of 483 samples have been collected. Generally, 25 m composite samples were taken and analysed for Cu, Pb, Zn, Mn, Fe and Ag by AAS. Selected samples on the Miltalie North trend have been analysed for Au.

All analytical results are given in Appendix II.

The rock chip sampling located a base metal anomalous sub-basin with Pb/Zn/Mn ranging from 40-850 / 40-530 / 200->10% respectively, in the Miltalie North area. RAB drilling confirmed these anomalous areas.

A summary geological plan, with geochemical overlays for Zn and Mn, is presented in Figure 10.

Rock chip locations with anomalous geochemistry, are shown on Figures 11 to 16.

Analytical results of the Miltalie North area have been plotted and contoured (Figures 17 to 21).

6.0 RAB DRILLING

Six RAB lines have been completed over regional magnetic profiles and in areas of anomalous rock chip geochemistry (Figure 3).

In total, 1414 m were drilled in 65 holes, 13 holes and 835 m (av. 64 m) using Underdale's Gryphon rig, and 579 m in 52 holes (av. 11 m) with the Investigator. Obviously there is extremely deep weathering in the north of the licence area, especially in the uncleared areas.

In general, anomalous geochemistry and prospective rock types have only been identified in the Miltalie North area (P 68). Details of each profile are described hereafter.

Profile 13: (Figure 22)

Background base metal values were recorded on the entire line, which consists of a sequence of interbedded quartz-mica schists, chlorite-amphibole schists and quartz-diopside calc-silicates. The peak result was 115 ppm Cu over the bottom 3 m in RSH 20, with lead values less than 20 ppm Pb and zinc below 50 ppm Zn in all samples. Manganese values increase steadily towards the east, however, the most geochemically anomalous horizons from the rock chip sampling (the cherts and Mn ironstones) were not tested by the RAB drilling, due to impenetrable alluvials associated with Salt Creek.

Profile 36: (Figure 23)

Geochemical results for RSH 42-52 were not anomalous. The best results were 90 ppm Cu over the bottom 3 m in RSH 42, and 1 m @ 140 ppm Cu for RSH 44, 10-11 m. The low levels of base metals and the unfavourable stratigraphy over the western magnetic ridge on lines 13N and 36N indicate all future exploration on the prospect should be concentrated north of Profile 13N.

Profile 44: (Figure 24)

Non-magnetic leucocratic granite was intersected in all six holes on profile 44, without significant geochemistry.

Profile 45: (Figure 25)

The eight holes on profile 45 intersected mainly dolerite/amphibolite (max. susc. 350×10^{-5}). Depth of weathered bedrock was generally 50-60 m and drilling progress was slow. No significant base metal anomalies emerged.

Profile 67: (Figure 26)

All holes bottomed in granite ?gneisses with generally background geochemistry. Weakly elevated lead (av. 110 ppm Pb) was present in RSH 11, 14-24 m, and RSH 12 with 2 m @ 440 ppm Pb (18-20 m). In both holes, however, the best results are in weathered bedrock and kaolin, with lead values dropping to background (20-50 ppm) in the fresher bottom samples. Weakly elevated zinc (125 ppm) is also present in RSH 14, 34-42 m. No further work is warranted.

Profile 68: (Figure 27)

The RAB drilling on this line confirms the geological and geochemical results of the rock chip sampling programme. Lead values are universally low, being less than 20 ppm Pb. Cu and Zn are of the same order of magnitude as those from the rock chips with peak results being:

RSH 33: 6-12 m (6 m) @ 165 ppm Zn

RSH 34: 6-9 m (3 m) @ 140 ppm Cu, 200 ppm Zn

RSH 38: 4-6 m (2 m) @ 175 ppm Zn

RSH 40: 6-8 m (2 m) @ 320 ppm Cu, 300 ppm Zn, 9.45% Mn

All petrographic descriptions are given in Appendix I, and drill logs with geochemical analyses in Appendix III.

7.0 CONCLUSION

Evaluation of the main magnetic trends by regional ground magnetics, mapping and RAB drilling, located one prospective area, the Miltalie North area.

The similar levels of base metals in RAB and surface samples indicate the existing large, low order, geochemical anomaly at Miltalie North is probably not the surface expression of a relatively shallow base metal deposit. Target generation will therefore need to concentrate on hidden targets.

A sirotem grid of $5 \times 1.5 \text{ km}$ is hence proposed as the best exploration tool to cover the base metal anomalous sub-basin.

8.0 EXPENDITURE STATEMENT: SHEOAK HILL

	ce for the Quarter 31/12/85	Project to Date
Staffing/Support	27 675	73 606
Concession Payments	75	8 366
Analyses/Assays	5 665	6 148
Site Preparation/Payments to Landholders & Consultants	2 906	7 691
Geology, geophysics, drawing research & computer	2 718	7 441
Overheads	2 954	7 429
\$	52 690	\$ 121 378

APPENDIX I: PETROGRAPHY

Pontifex & Associates Pty. Ltd.

TEL. 332 6744 A.H. 31 3816

26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD

SOUTH AUSTRALIA 5067

KJH KM

FILE FK23/807

REC'D 3/10/66

MINERALOGICAL REPORT NO. 4668

by A.C. Purvis PhD. & I.R. Pontifex MSc.

28th November, 198.

TO:

Mr. Ken Hellsten

Shell Metals

66 Glen Osmond Road, PARKSIDE S.A. 5063

YOUR REFERENCE:

3945/FK23/KJH/02

MATERIAL:

Rock samples (45)

IDENTIFICATION:

33967 - 34000 34101 - 34110

WORK REQUESTED:

Brief description with comments

on comparisons with rocks previously

examined from Menninnie Dam

Binocular Microscope examination initially, but thin sections as

required.

SAMPLES & SECTIONS:

Returned to you with this report.

PONTIFEX & ASSOCIATES PTY. LTD.

SUMMARY COMMENTS

This report covers a batch of 45 samples for brief description under binocular microscope, but with thin sections prepared from 23 selected samples as directed in your order No. 2945/FK23/KJH/02.

These rocks were sectioned to enable information to be provided for you which was not resolvable in hand specimen, mainly on the basis that they were:

- possible or probable calc-silicates and potassic calcsilicates or igneous amphibolites,
- (2) quartzites which could be of either detrital origin (meta-quartz sandstones), or of chemical origin (meta-cherts), or
- (3) gneisses of igneous or sedimentary origin.

Potassic calc-silicates are represented by samples 33972(A), 74, 34103, and the sample labelled 'Plug Range'. Apatite is abundant in 33974 and in the Plug Range sample. These rocks relate closely to potassic, and phosphatic-potassic calc-silicates in the Menninnie Dam Sequence. No 33992 is a coarse actinolite rock and probably derived from an impure dolomite.

Some of the quartzites contain detrital heavy minerals and thus appear to be meta-quartz sandstones, and considered to represent Warrow Quartzite. This correlation is supported by the local preservation of fresh alkali felspar, which is a common constituent of the Warrow Quartzite. These samples include 33977, 80 and 96.

No. 33988 is a calcareous meta-arkose and possibly also a facies of the Warrow Quartzite. No. 33997 is a sericite-bearing quartzite possibly a metasandstone.

Other quartzites have laeyrs of graphite + apatite (33979, 33995) or silicified and/or limonitised ?silicate + oxide layers (33999, 34102), and may be graphitic or ferruginous metacherts.

Summary Comments continued:

The quartz fabric seen in the thin sections of most of the quartzites, indicates a period of exaggerated grain growth followed by recrystallisation. The original (exaggerated grain growth) fabric is preserved in 33997 and 34110, with the quartz C-axes lying in the foliation, but most of the others have the quartz C-axes at about 90° to the foliation (33972, 77, 80, 88, 95, 96). Some samples (33979, 33999, 34101) have their quartz C-axes at 45-90° to the foliation. The lower angles of (C-axes to foliation) occur in the possible metacherts and the higher angles in the metasandstones. No. 33995 has alternating domains of different fabrics but may be a metachert.

Samples 339712(B), 33987, 34101 appear to be metabasalts or metadolerites although WO34101 has tourmaline-decorated quartz veins and a metamorphosed quartz-chlorite-altered area now rich in quartz and garnet. No. 33971 appears to be a metamorphosed brecciated quartz-diorite but No. 34110 appears to be metamorphosed arkosic sandstone. No. 34994 is an allanite-rich quartz-monzonite and is probably rich in rare-earth elements. Sample 34104 (not sectioned) is a muscovite-tourmaline-bearing pegmatite.

In the interests of economy only a limited number of sections were cut, as requested in your order. However many of the unsectioned rocks include quartzites which really need also to be examined in thin section to determine whether they are of detrital (Warrow Quartzite?), or chemical origin. Some weathered, layered, quartzofelspathic rocks (33984, 85, 91, 93) were also not sectioned but are not likely to have been chemical sediments. Following receipt of this report it is suggested that any remaining samples, where the binocular microscope assessment does not provide sufficient information should be selected for follow-up petrography.

Several ferruginous/manganiferous lithologies, 33998, 34000, 34101(part), and 34107(part) were not sectioned, and very little could be ascertained in hand specimen. Therefore a representative polished section is being made of each of these four samples and will be checked for possible gossanous (or other genetic) characteristics. These will be reported on within the week.

DESCRIPTIONS OF THIN SECTIONS

33971 :

biotite-quartz-plagioclase gneiss with zircon, apatite and allanite : quartz diorite gneiss.

This rock is dominated by large clots of coarse plagioclase to 10mm in diameter in a biotite-rich matrix. Lenses of recrystallised quartz are rare and about 1mm in size.

Parts of the matrix contain interstitial quartz, but most of it consists of fragments of felspar grains in fine biotite. The quartz occurs in a vein-like layer 3-5mm thick containing a similar abundance of felspar fragments to the adjacent biotite-rich rock.

Accessories include opaque oxides, apatite, zircon and allanite.

This appears to be a quartz-diorite, which was brecciated and quartz-veined before being metamorphosed.

33972A: layered potassic calc-silicate with concordant quartz veins.

Layers in this rock are 2-5mm thick and are alternately rich in microcline and partly sericitised plagioclase. Quartz-rich lenses up to 2mm wide appear to be partly disrupted concordant veins. They have a strong fabric (C-axes at 90° to the veins).

Clinopyroxene is common (20 - 30%) in the various layers as grains 0.2 to 2mm in size, and is accompanied by minor (5%) green hornblende. Accessories include sphene, apatite and allanite.

The felspars are granular with grains 0.2 to 1mm in size. The sericitisation of the plagioclase is quite variable in intensity and is much stronger in some layers than in others. Where the plagioclase is strongly altered the clinopyroxene is commonly altered to limonite stained clays.

One of the quartz ?veins contains limonite after intergranular suphides (?).

33972 : amphibolite with concordant quartz veins.

This is a basic amphibolite with brown hornblende in most parts of the rock. Actinolite pseudomorphs of clinopyroxene grains are abundant to dominant in some layers. Plagioclase is abundant (40-45%), it is commonly weakly sericitised, and uniformly distributed as grains 0.2-0.5mm in size. There are scattered opaque oxide grains, other accessories include apatite and zircon and scattered small grains of epidote in the more highly sericitised felspar grains.

Concordant quartz veins to 2mm swide; and thin late stage veins of clay and limonite are present.

potassic calc-silicate, with layers containing clinopyroxene, microcline and apatite; retrogressed adjacent to an epidote vein.

This is a strongly layered rock with layers 2-10mm thick which in hand specimen are alternately greenish grey and pale pink and appear to consist of clinopyroxene and alkali felspar. The layering is locally disrupted and lenticular possibly reflecting some mobility of calcium during a pre-metamorphic veining episode.

The mineralogy is confirmed in thin section and it is seen that there are also layers of pure or nearly pure, apatite up to lmm thick, indicating a close similarity with some of the potassic calc-silicates in the Menninnie Dam Sequence.

The dominant layering is of clinopyroxene layers with minor microcline alternating with microcline layers with minor clinopyroxe and apatite. The apatite layers occur within the microcline layers or adjacent to the clinopyroxene layers.

The texture is mostly granular with grains about 0.2mm some of the clinopyroxene is coarse (to 4mm grain size). Some of the more irregular, originally clinopyroxene rich layers are cut by veins of epidote and these layers are extensively retrogressed to coarse prismatic actinolite. A thinner quartz-epidote vein is also present with no associated retrogression.

Accessory sphene is common in the clinopyroxene rich layers and some of the apatite layers.

weathered quartzite with traces of tourmaline, leucoxenised sphene, apatite and zircon (?Warrow Quartzite).

This is a weathered quartzite with a layering defined by clay patches. In thin section it consists of small grains (<0.4mm) with a strong fabric (C-axes 90° to layering) and large grains 1-2mm) with little or no fabric. Patches of clay are scattered and by analogy with other quartzites in this suite, were probably derived from biotite and alkali felspar.

The most common accessory is leucoxene after sphene, but apatite, blue-green tourmaline and rare zircon are also present. Their presence suggests that this was a sandstone with traces of heavy minerals and ?felspars. The larger unoriented quartz grains may be remnants of detrital grains.

33979: quartzite with accessory graphite and apatite (meta impure chemical chert)

As in 33977 this rock has fine quartz grains with a strong fabric (C-axes at 45° to layering) and deformed coarser grains with no fabric. The coarser grains in this case are up to 4mm in size as residual cores within the fine quartz and the fabric is considered to represent recrystallisation subsequent to exaggerated grain growth.

A layering is indicated by thin laminae of schistose graphite with small leached out grains (?pyrite or alkali felspar) and traces of apatite. These laeyrs are locally stained by limonite. This may have been a chemical sediment, in the form of a weakly graphitic-phosphatic chert.

layered felspathic quartzite with accessory rutile and zircon (Warrow Quartzite).

This is a well-layered quartzite in hand specimen with elongate grains of white felspar and limonitic layers. In this section it is seen to consist of small quartz grains about 0.4mm in size with a strong fabric (C-axes at 90° to layering).

Scattered lenticular grains of alkali felspar are 0.2 to 2mm long and in some layers are limonitised and/or sericitised and locally leached out.

Accessory zircon and rutile are common and are 0.1 to 0.4mm long. They are probably detrital indicating that this rock was a sandstone with accessory heavy minerals.

mafic <u>amphibolite</u> with biotite and opaque oxides.

This is a schistose, apparently lineated amphibolite cut at right angles to the lineation, and showing abundant end sections of green hornblende and weakly zoned plaioclase is present in roughly equal amounts. Both minerals have a grainsize of 0.2-0.5mm.

Accessory opaque oxides (rimmed by sphene), apatite and biotite are present.

Some of the felspar is sericitised close to minute fracture which locally expand into epidote lenses.

33987: schistose, fine grained amphibolite with very minor alkali felspar (metabasalt).

This rock has a protomylonitic texture with somewhat lenticular grains of plagioclase and very minor alkali felspar, to 0.2mm and of green hornblende, to 0.4mm; all set in a matrix of very finely recrystallised plagioclase and minor fine acicular hornblende. The plagioclase is locally altered to sericite, particularly in the vicinity of thin quartz veins.

Lenticular shear zones contain schistose fine amphibole and a very fine felspar mosaic and are similar to the thin discrete shear zone in No. 33972A.

Accessories include sphene and broken acicular apatite crystals, suggesting that this is a metabasalt.

actinolite-plagioclase-quartz-microcline schist

(?metasandstone)

CALCARIOUS mela-ARKUSE

Grains of microcline and minor sericitised plagioclase 0.5 to 1.5mm in diameter are scattered through this rock in a schistose matrix of actinolite, microcline and quartz, with a grainsize of 0.1-0.4mm. Accessories include apatite, sphene and rare allanite.

This appears to have been a felspathic quartz sandstone although in hand specimen it is different to distinguish from a potassic calc-silicate.

layered, felspar-rich amphibolite, partly retrogressed to sericite and epidote, with traces of scapolite and concordant quartz veins.

In hand specimen this is a strongly layered rock with prominent quartz layers or veins. In thin section it is seen to be plagioclaserich, with layers of granular felspar, some of which are totally retrogressed to sericite + epidote. Minor hornblende is present, and there are some hornblende-rich layers 1-2mm thick composed dominantly of schistose green hornblende. Rare radioactive grains occur in the hornblende, enclosed in pleochroic haloes. Traces of scapolite occur as poikiloblastic grains to 2mm.

Concordant quartz veins to 3mm wide are common and are 5-10mm apart.

Accessories include apatite and leucoxene after sphene.

It is likely that this rock is a mixed chemical-volcaniclastic sediment.

epidote-bearing actinolite rock.

Actinolite prisms to 10mm comprise most of this rock, together with about 1-2% epidote as interstitial grains to 4mm long and traces of alkali felspar.

It is likely that the original rock was an impure dolomite.

33994: metamorphosed, allanite-rich, quartz-monzonite

This sample was sectioned because,

- (1) it appeared to be potassium felspar rich, and
- (2) it had scattered coarse grains of possible calc-silicate minerals.

These coarse grains are seen in thin section to be allanite and make up about 2% of the rock. There are also abundant accessory grains of sphene, apatite and zircon, suggesting that the rock is rare-earth-element-rich granitoid. The allanite grains are up to 2mm in diameter with dark and pale yellow-brown zones.

The grainsize is about 0.7mm with about 35-40% each of sericitised plagioclase and fresh microcline. Opaque oxides chlorite and quartz make up the remainder with 15-20% quartz. The quartz is recrystallised but occurs in patches 0.5-lmm in size. Some of the felspar is recrystallised also and occurs as grains less than 0.05mm in size.

33995 : layered weakly graphitic quartzite.

This is a quartzite with a diffuse layering on a scale of 5-20mm in hand specimen.

In thin section it consists of quartz grains 0.2 to 0.5mm in size, with a strong fabric probably reflecting recrystallisation following exaggerated grain growth. The darker areas contain traces of ?graphite and sericite with a layer-parallel orientation.

This may have been a weakly graphitic chert or less probably a graphitic sandstone.

The quartz fabric is not uniform, with domains to 10x30mm but with the C-axes mostly about 90° to the foliation.

33996 U

sericite-bearing quartzite, with traces of tourmaline and leucoxene (?Warrow quartzite).

This is a massive weakly layered quartzite in hand specimen. In thin section it is seen to have minor muscovite defining two schistosities at about 30° to each other, and quartz grains 0.05 to 0.4mm in size with a strong fabric (C-axes at a high angle to the schistosity). Tourmaline grains to 0.4mm in size have greenish-brown rounded cores and pale-green rims, and appear to be essentially of detrital origin. Other probably detrital grains include leucoxene and rare zircons.

It is suggested that this rock is a metasandstone.

In hand specimen this is a quartzite with subparallel limonite veins. In thin section the quartz is seen as grains 0.5 to 2mm in length with rare grains to 5mm. These grains are elongate parallel to the sparse muscovite in the rock, and have undulose extinction and sutured grain boundaries. They thus appear to have escaped the recrystallisation which has affected the previously described quartzites, but have a moderately developed fabric. In this sample however the grains are elongate parallel to their C-axes which tend to be parallel to the schistosity.

Small leached or clay-altered grains were probably felspar. There are no detrital heavy minerals, but this rock was possibly part of the Warrow Quartzite.

quartzite with silicified and limonitised layers:
metachert or BIF (?)

This is a layered quartzitic rock with weathered brown limonitic layers in hand specimen alternating with paler quartzitic layers.

The thin section shows lenticular layers from 0.1 to 2mm thick. Quartz layers consisting of granular quartz with a strong fabric (C-axes at 45° to the layering) alternate with silicified and/or limonitised layers. These weathered layers contain fine granular fabric-free quartz and/or fine limonite, locally after a granular mineral with grains about 0.2mm in size.

Similar layers occur in weathered banded-iron-formations, and correspond to amphibole \pm clinopyroxene \pm magnetite at depth. This rock is considered to be a weathered BIF.

34101: iron-rich amphibolite, with tourmaline and a garnetquartz-rich layer: (meta iron-rich basalt or dolerite).

This is mostly an amphibolite with schistose dark green (iron-rich) hornblende dominant over granular quartz and weakly sericitised plagioclase. Thin laminae of fine grained opaque oxides to 4mm long are scattered, and large felspar grains contain biotite and secondary sericite or carbonate.

Tourmaline is concentrated along one side of a concordant quartz vein and is strongly zoned. The core has patches of bluish green and orange-brown and the rim is a dark to very dark greenish brown, almost black. The tourmaline crystals are about 1-2mm in size and are subhedral.

Similar tourmaline crystals occur on one side of a layer, 8-10mm thick, of quartz-garnet. This layer has abundant grains of garnet about lmm in size, locally intergrown with sericitised plagioclase, in a quartz-rich matrix with minor hornblende and tourmaline, accessory opaque oxides and apatite. This layer was probably chloritised and silicified before metamorphism.

This is considered to be a metamorphosed iron-rich basalt or dolerite, with zones of quartz-chlorite tourmaline alteration and tourmaline-decorated quartz veins.

This is a layered quartzite, with soft white porcelaneous layers alternating with hard glassy quartzitic layers. The layers are 1-10mm thick, and are locally offset by microfaults.

The quartzitic layers have fine grained quartz with a strong fabric (C-axes at 45-90° to the layering). The silicified porcelaneous layers are porous with textures indicating former granular to prismatic minerals with a grain size of 0.2 to 2mm and these appear to have been amphibole + pyroxene.

The rock was probably a chemical sediment.

layered, microcline-magnesiohornblendeclinopyroxene rock:
(potassic calc-silicate)

This is a strongly but irregularly layered rock with some lenticular veins. The layers are from 1 to 15mm thick and are mostly either pale green magnesiohornblende or fine granular clinopyroxene, with minor to very minor microcline. Some microcline-rich layers are also present but the thickest layer is predominantly clinopyroxene.

Veins cutting the clinopyroxene rich layer consist of :

- (1) actinolite + quartz
- (2) microcline, and
- (3) quartz with limonite after sulphides and leached-out areas.

weathered, garnet-bearing, layered metasediment(?) including limonite boxwork after probable amphibole and colloform possible phosphatic minerals:

(?phosphatic potassic, calc-silicate).

In hand specimen this is a layered rock with thick brown limonitic layers, alternating with thinner greenish to cream layers with scattered small dark crystals.

In thin section limonite-rich layers alternate with layers rich in kaolin, or in colloform unidentified clays <u>+</u> chalcedony <u>+</u> phosphates, with small interstitial patches of possible jarosite, and a dark-green mineral (?vivianite), and accessory residual quartz. Small grains of garnet about 0.5mm in size are scattered along the pale limonite-fine layers, and make up 5 to 20% of these layers.

The limonite-rich layers have 15-35% limonite in colloform clays \pm chalcedony, with a few limonite-veined garnet grains. Some of these layers contain leucoxene possibly after sphene.

The limonite texture suggests the former pressure of amphibole and (or clinopyroxene) to suggest a calc-silicate. The colloform minerals include phosphates. This could establish clear link with the phosphatic-potassic calc-silicates such as No. 33974. Analyses for phosphorus, as well as Cu, Pb and Zn (to test the nature of the yellow and green secondary minerals), are suggested for this sample.

34110 : garnet-biotite-quartz-plagioclase gneiss (?metasediment)

This is a quartz-rich, biotite, quartz, felspar gneiss, with quartz (40%) showing a strong quartz fabric (C-axes parallel to layering), and a strong layer-parallel schistosity defined by fine schistose bitite (20%). Plagioclase (35-40%) occurs largely as anhedral grains 0.5-2mm in size with some smaller grains in biotite-plagioclase lenses. There is a trace of allanite.

Thick biotite-rich layers 2-4mm and 8-10mm thick respectively, have abundant (225%) garnet grains, less than 1mm in diameter, and some limonite after pyrite grains to 0.4mm in size.

About 10% of the biotite is oriented at a high angle to the schistosity.

The abundance of quartz and the presence of garnet suggest a metasedimentary gneiss rather than an igneous gneiss.

PLUG RANGE:

garnetiferous, potassic, calc-silicate, with abundant epidote.

In hand specimen this is a heterogeneous rock with an irregular layering possibly defined by alkali felspar (pink) and clinopyroxene (green) with scattered garnet patches.

This is broadly confirmed in thin section, but the layering is irregular and lenticular, and there is much less clinopyroxene than would appear to be the case, in hand specimen. Much of the green area is composed of an aggregate of heterogeneous, zoned clinozoisite-epidote grains, 0.5-2mm in size, probably after calcic plagioclase. The clinopyroxene occurs as grains to 3mm, but is commonly altered, at least partly, to actinolite and/or carbonate + quartz. The original clinopyroxene content was about 20%.

The alkali felspar (15-20%) is weakly perthitic-microcline, as irregular lenses of grains to 0.5mm in size.

The garnet is an orange colour, and may be a grossularalmandine-spessartite solid solution. It occurs as amoeboid patches up to 15mm in diameter, together with coarse sphene and apatite as grains to 1mm long.

This is a moderately phosphatic potassic calc-silicate, less clearly layered than No. 33974.

Pontifex & Associates Pty. Ltd.

TEL. 332 6744 A.H. 31 3816 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

SUPPLEMENTARY MINERALOGICAL REPORT TO PREVIOUS REPORT 4668.

6th December, 1985

TO:

Mr. Ken Hellsten

Shell Metals

66 Glen Osmond Road, PARKSIDE S.A. 5063

YOUR REFERENCE:

4956/FK23/KJH/02

MATERIAL:

Selected ironstones, and one rock sample from previous batch of 45, described in report 4668

IDENTIFICATION:

33998, 34000, 34104,

34107, 34109

WORK REQUESTED:

Preparation and description of polished sections and one

thin section.

SAMPLES & SECTIONS:

Returned with whole batch

of 45 samples.

PONTIFEX & ASSOCIATES PTY. LTD

SUMMARY COMMENTS

One lump of each of the ironstone samples 33998, 34000, 34104, 34107 were examined in polished section since there was negligible indication of their genesis in hand specimen.

This did allow certain pre-existing minerals to be interpreted from their boxwork/replica forms, and some suggestions of genesis. They are not true gossans, even though minor completely oxidised pyrite occurs in some of these ironstones.

As a group they appear to represent a gneissic schistose assemblage of amphiboles, mica, lesser oxidised garnets rare graphite; possible oxidised altered felspars; with oxidised magnetite and ilmenite in 34107. Tentative interpretations are:

33998 : amphibolite or calc silicate

34000 : graphitic cherty calc-silicate (?chemical sediment)

34104 : metasediment cherty, micaceous, garnet-rich layers.

34107 : "basic-gneiss"

The sample 34109 examined in an extra thin section is tough massive, unusually white, clinopyroxene rock, with cloudy diffuse "tremolitic" alteration, and quartz veinlets. It is not a quartzite as suggested in the hand specimen description, previous report.

massive yellowish limonite with fairly abundant relict textures after probable amphibole: tenatively interpreted as a completely ferruginised ?amphibolite rock or an ?actinolite-tremolite rock possibly related to the calc-silicates in this suite.

Macroscopically, this is an extremely fine mass of yellowish limonite, with minor, scattered, very small voids, rare small fibrous component, some veins of dark brown goethite, and local crusts of white calcrete.

The polished section is seen in reflected light to consist of massive, apparently microcrystalline limonite commonly with a weakly micaceous/schistose layered fabric, and highly irregular supergene/colloform layering.

In many areas however the limonite does form replicas and rare boxwork after random poorly-defined prisms, almost certainly of former amphibole. There is no indigenous quartz, although some of the amphibole appears to be silicified.

massive limonite rock, relict cherty domains

+ minute pyrite grains; minor fine graphite,
minor pseudomorphs afte rpyrite in a former aggregate
largely of amphibole;
??graphitic, cherty calc-silicate facies; oxidised,
meta ?chemical sediment.

Macroscopically, this massive limonite rock is slightly darker brown than 33998, it is inherently vaguely layered, and has some very fine cellular areas scattered on the sawn surface.

Relict textures, very poorly preserved in limonite indicate that at least 50% of the rock consisted of random to weakly schistose fibro-lamellar form crystals, almost certainly amphibole.

Minor irregular areas of cherty quartz contain sparse minute pyrite grains and/or extremely fine graphite. Minor, equally fine graphite occurs elsewhere in clusters. Minor boxwork after clusters of coarser (0.1mm) crystals of pyrite also occur locally.

This may have been a carbonaceous, pyritic, iron-silica-rich chemical sediment.

layered micaceous, amphibole, garnet 'gneiss' with a cherty layer; completely oxidised to limonite and minor MnO, as boxwork and replica; ?? meta sediment, possibly with cherty and calcsilicate layers.

In hand specimen this is massive, microcrystalline limonite, incorporating a discontinuous, lenticular cherty layer, and one surface is strongly micaceous.

Microscopically, the micaceous surfaces are seen as part of layers of schistose ?biotite, completely altered to ?vermiculite, then oxidised to limonite with minor interstitial fillings and veinlets of manganese oxides. They layers grade into and incorporate irregular lenses of limonite boxwork-replica after amphibole and/or pyroxene.

A layer up to 10mm thick between the micaceous layers is dominated by limonite \pm MnO replica, and some boxwork after a loose-packed aggregate of garnet crystals average size about 0.3mm, together with (partly as a matrix), finer oxidised amphibole.

The chert lense contains several oxidised garnet crystals.

massive limonite after an aggregate of possible altered felspars amphibole and/or micas; with scattered fine oxidised magnetite, grains of ilmenite, and boxwork after garnet; possibly an oxidised "basic-gneiss".

Macroscopically, this is massive, dark brown, cryptocrystalline limonite/goethite, possibly siliceous. No distinctive relict textures but some fine cellular areas and semi-planar voids apparently along shrinkage or dessication partings.

In polished section the most distinctive features are small (to 0.05mm) irregular grains of magnetite (5% of the whole rock), with a vaguely layered to random distribution and now completely oxidised and pseudomorphed by martite/limonite. Accessory small ilmenite laths and subrounded grains of ilmenite is locally scattered in the vicinity of the magnetite.

Boxwork after subrounded/dodecahedral crystals, about 0.4mm across are locally loosely clustered, (in a vague layer), and these seem almost certainly to be after garnet.

The major host to these minor components is massive and may be limonitised, altered felspars or amphiboles; and/or micas; apart from minor veins with sparry quartz, there is no "rock-forming" quartz. Trace minute graphite flakes occur locally.

massive clinopyroxene rock, meta 'pure' dolomite; veined by quartz (ex chert laminations?)

This tough massive white rock is not a felspathic quartzite? as previously reported.

Petrographically, it is seen to consist of a weakly layered, massive very fine granular aggregate of diopsidic clinopyroxene, clouded by extremely fine fibrous tremolitic alteration. The white colour indicates a very Mg-rich metamorphic calc-silicate, conceivably derived from a 'pure' dolomite.

Quartz veinlets occur mostly along the layering, more closely spaced in some bands than in others. They may be original chert laminae.

TEL. 332 6744 A.H. 31 3816 26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD SOUTH AUSTRALIA 5067

BRIEF BINOCULAR MICROSCOPE DESCRIPTIONS OF HAND SPECIMENS

(not cut in thin section)

WITH COMMENTS ON STRATIGRAPHIC REPRESENTATION

WHERE APPROPRIATE

28th November, 1985

- A. thick, bedded, felspathic quartzite, metasandstone, possibly Warrow Quartzite.
- B. mica quartzofelspathic gneiss, metasediment.

The very large rock with this number is a thick bedded quartzite on a 30mm to 50mm scale. One bed is a coarse crystalline mass of more or less fused quartz grains. This is interlayered with a bed 50mm thick, of fine layered quartz and subordinate felspar altered to clays (stained pale reddish brown by limonite). The rock is identified as a metafelspathic sandstone, which may represent Warrow Quartzite.

The smaller samples is a medium grained, mica quartzofelspathic gneiss, almost certainly a metasediment.

33968: (micaceous), felspathic-quartzite; metafelspathic and weakly micaceous sandstone, Warrow Quartzite?

A vaguely layered to massive coarse quartzite with minor cream coloured, partly altered felspar grains, and lesser weathered muscovite flakes, all with a quite clearly defined laeyred distribution throughout the quartzite.

- A. medium grained, micaceous quartz-felspar gneiss
- B. finer slightly more massive micaceous quartzosefelspathic gneiss/quartzite.

quartes felipolis queiss grantaite

Several lumps of rock in this sample have a gneissic layering with abundant schistose muscovite ubiquitous through a generally subordinate, medium size, granuloblastic aggreate of quartz and felspar. Minor biotite accompanies muscovite.

One large different rock consists of layers with a finer grained more massive granuloblastic aggregate of quartz and felspar, with finer mica more or less intergranular. The mica is sparse and not particularly schistose in one reddish-coloured band; but more abundant, schistose biotite, in a dark grey band.

Both lithologies appear to be meta clastic sediments.

33970: grey, laminated, very fine quartzite ? metachert.

Macroscopically, this is a fairly homogeneous, massive very fine metamorphically-microcrystalline quartzose rock. It is dark grey, possibly due to trace dispersed graphite. A vague thin layering is manifest as trains or variably continuous laminae of an indeterminate white phase, and a weak fissile planar parting.

33973 : massive coarse quartzite, genesis indeterminate.

This is a massive coarse quartzite, apparently recrystallised and with exaggerated quartz crystal growth. Genesis indeterminate in hand specimen.

- A. petrographically identified as potassic-calc-silicate rock.
- B. massive clinopyroxene rock (?metadolomite)
- C. (quartz)-felspar with actinolite possible apatite, trace garnet.

One large rock (A) in this sample is identified in thin section as a potassic calc-silicate.

Two other, different, rocks occur in the sample however and are seen in hand specimen to be:

- B: massive aggregate of pale green clinopyroxene; conceivably a metamorphosed impure dolomite.
- C: a pale-coloured granoblastic aggregate of white felspar (apparently K-spar and plagioclase), quartz; possible apatite; also minor green actinolite in irregular layers, lenses and along shears. Trace extremely small garnet crystals are scattered. This is tentatively regarded as a calc-silicate-bearing felspathic rock, conceivably related to 33974A.

massive quartzite, (genesis indeterminate in hand specimen)

This is a massive fairly homogeneous pale grey quartzite, apparently fine to medium grained, with poorly defined patches of clear to pinkish subhedral crystalline quartz.

Individual quartz grains are fused into a siliceous mass, without any (relict), textures to allow an interpretation of the original rock type.

33976:

gneissic, probable biotite granitoid;
accessory garnet and magnetite.

At least 60% of this rock consists of a fine to medium, metamorphic granulose aggregate of quartz and felspar, including pinkish probable K-spar. Fine biotite (20%) is uniformly disposed throughout, not particularly schistose, in fact probably with a relict igneous mode of occurrence. Accessory small (0.5mm) crystals of garnet and of magnetite are scattered. (The rock weakly attracts a swinging magnet.)

massive structureless quartzite, minor possible relicts of altered felspar.

Fine crystalline quartzite, with individual crystals indistinguishable in handspecimen, but fused into a structureless mass. Rare cream coloured 'grains' appear to be 'altered' felspar, possible K-spar.

Similar to many aspects of 3397; it lacks the commonly fissile characteristics of the preceding sample, 33977 which was identified petrographically a probable Warrow Quartzite.

- A. identified in thin section quartzitic metachemical chert.
- B. macro identification suggests similar chert with colloform nodules of quartz and possible phosphate.
- C. ?? silicified carbonate with some boxworks

One lump of rock in this **sample (A)** was identified in thin section as a quartzite with accessory apatite and graphite, probably a meta-impure chemical chert.

One other lump in the sample (B) not sectioned has a massive, cherty, siliceous composition, but includes irregular domains of adjacent colloform/spherulitic texture, also probably mostly siliceous but including fibrous, radiating crystals, with 'cauliflower' arrangement and yellowish. This may include phosphatic material, as alluded to in the description of the thin section 33979(A).

A third lump of rock in this Sample (C), has a very fine rather heterogeneous siliceous matrix simlar to that in B, but is characterised by extensive areas of siliceous boxwork, partly gradational to replica, which appears to be after carbonate. Some of this boxwork includes vague, microspherulitic, yellowish secondary material, which is probably limonitic-siliceous, but should be checked chemically as a possible secondary metallic salt. This sample C may be a silicified limestone.

33981: laminated fine quartzite (??meta quartz sandstone) accessory fine hematite grains.

0 1

This is a homogeneous, cream-coloured, extremely fine crystalline quartzite with a laminated structure with a coincidental fine foliation. Minor discrete small grains (to lmm) are scattered along the layering. These are moderately highlighted on the weathered surface, also seen underbinocular on a freshly broken surface (where they appear as micro-augen). Accessory very small hematite grains are scattered through one of the three lumps of rock in this sample.

This appears to be a meta quartz sandstone (?Warrow Quartzite), but a thin section is needed to confirm this.

33982: A. fine quartzite with parting planes (along the bedding?)

B. more heterogeneous quartzite with small quartz "augen" in matrix of very fine crystalline quartz.

One rock in this sample is a cream coloured, fine crystalline quartzite in which the crystals are essentially fused into a fairly homogeneous mass. This mass has numerous parallel parting planes, presumably along an original bedding. Minor small voids along the bedding, seen on the weathered surface, may be original felspars, altered and removed.

The other rock consists of a layered loosepacked aggregate of irregularly lenticular/ovoid grains of glassy deformed quartz grains ("augen"), incorporated within a matrix of microcrystalline quartz. It is uncertain in hand specimen if the "augen" are of entirely metamorphic, or possibly original sedimentary origin, these need to be determined in thin section. The rock does appear however to be a metasediment.

33983 : quartzite : of "fused" "glassy" quartz mass with a purplish colour.

The two lumps in this sample consist of a 'fused' mass of apparently coarse crystalline, "glassy" quartz with a distinctive purplish hue. A vague layering is manifest as clay-filled, sub-parallel but wavy microfractures. Genesis indeterminate from hand specimen study.

thin bedded felspathic quartzite (?Warrow), partly altered to clays by deep weathering.

About 60% of this rock consists of a laminated to thin bedded, rather loosely-packed aggregate of quartz grains, average size about 1mm, slightly elongated in the plane of the layering. The remaining 40% consists of voids partly filled by clays, and interpreted to mostly represent completely altered and partly leached out felspar grains. Some continuous laminae of white clays are interbedded however, to suggest some original pelitic layers, which would have been metamorphosed, but since broken down again by prolonged weathering.

33985: essentially the same as 33984, but less clearly bedded, due to more abundant and widespread clays.

33990: weathered, (micaceous) and felspathic quartzite, with a tectonically elongated fabric (?Warrow Ouartzite).

Six lumps of rock constitute this sample, they are all basically quartzites, all more or less thin bedded, with parting along the bedding. Some are quite coarse and obviously granulose with a loose-packed aggregate of partly elongate to strongly elongate grains, with pore space and or clays representing former felspars intergranular. Other sub-samples are more "cherty" without the obvious granularity or former felspar content. Accessory muscovite is intergranular in some of the samples.

33991: weathered, sheared quartzo-felspathic metasediment with weak protomylonite fabric, felspar retrograded to micas now largely altered to clays.

The four sub-samples forming this sample are basically "quartzitic" but rather than massive/granulose, the quartz has been tectonically elongated and attenuated, possibly in a shear zone to produce a fine virtual proto-mylonite structure. Original intergranular felspars have been similarly elongated and retrograded to schistose micas, altered to clays, between the quartz.

33993 : thin bedded, argillised-felspathic, quartzitic metasediment (?Warrow Quartzite).

This is a single, large sample of laminated to thin bedded quartzite. It is basically microcrystalline to massive, but the layering is produced by variably continuous laminae, and minor small grains scattered along the bedding of 'clays', almost certainly after felspar(s).

33994:

Five lumps of rock in this sample are the same, and were identified in one thin section as a meta, allanite-rich, quartz monzonite.

One lump is a weakly schistose amphibolite, with small crystals of dark green amphibole (hornblende), similarly oriented and aggregated with a subordinate amounts of white (?altered) plagioclase crystals.

Massive, micro to cryptocrystalline (?siliceous) goethite, to be checked in polished section.

34000:

As for 33998

34104 :

One lump in this sample is a muscovite-tourmaline ("granitic") pegmatite. Three other lumps consist of vaguely layered extremely fine/compact (?siliceous) limonite, and the genesis will attempt to be determined in polished section.

34105: massive quartzite with vuggy clay patches.

This is a massive, white to off-white coarse crystalline quartzite, with minor randomly scattered partly vuggy patches of clays, which are possibly after felspar.

Probably a meta sandstone.

saccharoidal and moderately porous quartzite, variably iron-stained, rare fine limonite boxwork.

This is a yellowish to brownish coloured quartzite, breaking in hand specimen along at least two parallel planes which probably represent bedding. This quartzite is quite saccharoidal with fairly abundant, irregular, intergranular voids, partly filled by yellowish and brownish limonite. Also there are abundant, small drusy voids enclosed by microsparry quartz.

Rare limonite boxwork occurs in several of the voids.

34107:

One subsample in this sample was identified in thin section as a weathered, garnet-bearing, laeyred metasediment. The other subsamples are massive to vaguely layered, botryoidal and fragmental, ferruginous/manganiferous material, to be examined in polished section.

34108 : lineated, biotite-quartz-felspar schist; meta pelitic sediment.

This is a fine crystalline, grey lineated schist, composed essentially of abundant fine biotite and rarer muscovite, ubiquitous through a very fine granular aggregate of quartz and felspar.

34109: tectonised felspathic-quartzite?
= Dispsibile

This is a mass of fine to irregularly medium grained 'white' quartz and/or deformed felspar, and 'glassy' quartz in patches and sets of parallel veinlets. Pale green veneers, partly along slip planes appear to consist of extremely fine fibrous actinolite.

This rock needs to be investigated in thin section for a satisfactory diagnosis, and will be further reported on together with the iron-stones.

07354/FK23/R

0113

RSH53

35136

L45/1800E :

fine grained amphibolite;

accessory biotite, garnet, opaque oxides, rarer

apatite: meta dolerite

These chips consist of a subequal abundance of randomly interlocking subhedral crystals of green actinolitic-hornblende and plagioclase, average size about 0.3mm. The plagioclase is commonly partly altered to sericite + clouded saussurite.

Accessory quartz, biotite, opaque oxides, garnet and rarer apatite occurs in some chips.

RSH56

35243

L45/2100 :

sillimanite-quartz gneiss, (in which the sillimanite has been retrograded to fibrolite-sericite); incorporating decussate fine muscovite apparently of greisen hydrothermal-type genesis.

Most of these chips are dominated by stressed, inequigranular granoblastic quartz aggregate, with a grain size of 0.03mm to 3mm, and generally with strongly sutured, intergranular itnergranular contacts.

The other components which may form up to 50% of the quartzose chips consist of:

- decussate fine muscovite, i.e. non-schistose, and apparently a hydrothermal alteration phase, which may be after plagioclase, but partly together with quartz in a greisen-like relationship.
- 2. fibrolitic sillimanite, intimately mixed with extremely fine sericite (retrograde sillimanite), incorporating rarer sillimanite prisms. Together with the quartz, representing sillimanite-quartz gneiss.

Some separate chips consist entirely of the fibrolitic-sericitic component, (having broken out of the gneiss during percussion drilling).

RSH61/74

35456

L44/2150E :

chips of (plagioclase), perthitic-microcline and abundant quartz; pegmatitic-granite or leuco-granite.

This chips forming this sample are much the same as for 35418 except that there is a higher proportion of quartz (80%) and lesser K-spar (15%) up to 6mm size. The K-spar is basically microcline, and commonly perthitic.

Minor sericitised plagioclase is composite with quartz, and several individual chips of clouded plagioclase are present.

Several contamination chips of laterite are present.

RSH60

35418

L44/1850E :

chips of quartz and microcline, probably a granitic-pegmatite (or coarse/leucogranite), moderately stressed; accessory biotite, monazite.

About half of these chips consist of weakly stressed, inequigranular but generally fine allotriomorphic quartz. The other approximate half consists of microcline and perthitic microcline, also weakly to moderately stressed, and these are highlighted on the stained offcut.

These minerals occur independently as chips up to 6mm, indicating a fairly coarse original grain size; also they form composite chips.

Minor flakes of biotite occur separately, these have been selectively crushed during drilling.

Two coarse (2mm) chips of monazite occur in the section examined.

The perthitic nature of some of the microcline, and the presence of monazite indicates a probable granitic-pegmatite, rather than simply a straight forward leuco-granite.

RSH63

35519

L44/1650E :

seucogranite; moderately tectonised with localised

sericitic alteration and recrystallisation of quartz, also some quartz veining + sericite.

These chips are leuco, quartzo-felspathic as in 35243, 35456, but include chips of quartz micromosaic not seen in those chips. This micromosaic is however composite with several chips of stressed microcline, and rarely with partly sericitised plagioclaes, and indicates an original leucogranite (?pegmatitic) in which quartz has selectively recrystallised.

Some chips have been even more strongly tectonised however, manifest as sericitised micro-fractured, and evidence of invasion by generally fine vein quartz + seicite. Several chips with quite coarse vein quartz are present.

Some chips are very fine quartzo-felspathic, and quite extensively sericitised, these may be considered as microgranite.

APPENDIX II:

ANALYSES

COMLABS Pty. Ltd.

COMPUTERISED ANALYTICAL LABORATORIES

0124

Head Office and Central Laboratory 305 South Road, Mile End South, Sth. Aust. 5031. Tel: (08) 43 5722 Telex: AA89323

NATA REGISTERED No. 1526

OUR REF.:

COM851861

YOUR REF.:

3944/FK23/KJH/01

Mr. K. Hellsten The Shell Co. of Aust. Ltd. 66 Glen Osmond Road PARKSIDE

SA

5063

October 29, 1985

Dear Ken

RE: JOB COM851861

Enclosed are the assays for the samples delivered to our laboratory on October 10, 1985

Yours Sincerely, COMLABS PTY LTD

per

c.c.:

No. of copies : C

Report Length 17 pages

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full. JOB COM851861

			ANA	LYTICAL I	REPORT	0/N :	3944/FK23/F	1851861 (JH/101
	SAMPLE	Cu	Pb	Zn	A g	Fe	Mn	0125
	W (1	12	1 4	14	· <1	1.00	48	0120
Profile 1	2	12 6 7 8	14	< 2	<1	0.52	55	
) 3	7	16	4	<1	0.64	42	
	€ (4	8	18	2	<1	0.63	55	
Profil 2	5 5	5	18	2	<1	0.71	40	
ــه حــ ۲۰۱	~ (6	7	8	<2	<1	0.54	55	
	w (7	8 7 6 7	20	<2	<1	0.57	50	
3	8	7	18	<2	<1	0.69	75 -	
	É. (9	7	22	<2	<1	0.59	34	
	W (10 11 12 13	7 8 12	8	<2	< 1	0.52	60	
,	11	8	12	<2	<1	0.63	50	
4	12	12	14	<2	<1	0.62	85	
·	13	12	22	<2	<1	0.50	32	
	e √ 14	5	24	3	<1	0.64	5 5	
	~ (15	3	32	2	<1	0.56	38	
	15	3 6 4	24	2	<1	0.63	55	•
~	17	4	14	<2	<1	0.51	48	
	€ (18	4	14	<2	<1	0.55	70	
	س (19	6	20	7	<1	0.95	110	
6	20	6 4 4	26		<1		100	
	€ (21	4	16	4	<1	0.71	80	
	€ (22	4	18	<2	<1	0.73	48	
[]	23 -	4 2 7	8	<2	<1	0.60	42	
			10	2	<1	0.84	85	
.17.	r 25	4	12	< 2	<1	1.46	42	
	UNITS	pp m	ppm	ppm	ррm	%	ppm	
	SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AAŠZA

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in fulf.

		ANAL	YTICAL R	EPORT	0/N :	JOB COM85 3 944 /FK23/KJH	1861 /101
SAMPLE	Cu	Рb	Zn	Ag	Fe	Mn	
12 / 26	3	36	<2	<1	0.49	7 5	0126
12 \ 26 \ 27 \ \dots 28	5 ·	20	<2	<1	0.49	32	
w \ 28	4	14	<2	<1	1.42	44	
w(29	4	24	2	<1	1.04	28	
29 30 31 4 32	3	26	2	<1	3.45	26	
31	6	24	<2	<1	1.37	28	
€ (32	4	4	<2	<1	0.81	28	
2 33 34 35 36 36 37	2	16	6	<1	0.80	55	
34	3	8	. 4	<1	0.82	36	
14 35	3	10	2	<1	0.93	75	
/ 36	4 -	24	7	<1	0.86	65	
w \ 37	4	28	9	<1	1.46	90	
∨ (38	2	18	. 10	<1	1.05	70	
√ \ 38 15 \ 39 € \ 40	3	24	12	<1	1.18	115	
€ (40	3	16	9	<1	1.25	125	
W (41	6	12	3	<1	0.88	65	
42	6	10	<2	<1	0.68	70	
43	5	10	<2	<1	0.79	5,5	
16 44	2	14	<2	<1	0.64	60	
45	3	6	<2	<1	0.65	5 5	
46	2	4	<2	<1	0.61	36	
41 42 43 44 45 46 47	4	<4	<2	<1	0.62	60	
w (48	3	8	<2	<1	0.53	36	
√ 484950	10	8	<2	<1	0.80	90	
17 / 50	5	44	<2	<1	0.62	46	
UNITS	ppm	ppm	ppm	ррm	%	ррm	·
SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AAS2A

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

			ANA	LYTICAL RE	PORT	0/N : 3	JOB COM 944/FK23/k	
SAMI	PLE	Сu	Рb	Zn	Ag	Fe	Mn-	0127
17 <	51	5	32	<2	<1	0.54	60	
/	52	5 ·	24	4	<1	0.58	36	
E	53	5	14	<2	<1	0.51	50	
N	5 4	4	22	<2	<1	0.51	34	
	5 5	6	12	<2	<1	0.43	24	
	56	5	6	< 2	<1	0.43	36	.• · ·
18	57	2	4	<2	<1	0.31	14	
	58	3	4	<2	<1	0.41	26	
	59	<2	14	<2	<1	0.29	14	
ϵ	60	2	20	<2	<1	0.28	32	
v/ (61	65	28	18	<1	6.15	48	
	62	4	18	<2	<1	0.78	26	
	63	4	14	<2	<1	0.50	18	
19	64	5	26	<2	<1	0.39	32	
	65	. 3	24	< 2	<1	0.32	22	·
E (66	4	16	<2	<1	0.41	60	
E (67	4	6	<2	<1	0.44	32	
	68	3	22	<2	<1	0.48	46	
20	68 69	7	50	<2	<1	0.42	34	
	70	6	34	<2	<1	0.81	55	
w	71	4	60	<2	<1	0.52	60	
14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72	14	22	4	<1	0.92	200	
14 /	73	5	6	<2	<1	0.35	42	
21	74	3	10	<2	<1	0.30	36	
22	75	<2	16	<2	<1	0.29	16	
N	ITS	pp m	ppm	ppm	ppm	X	ppm	
SCH	EME	AAS1	AAS1	A A S 1	AAS3	AAS2	AAS2	

AAS2A

- 4 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		ANA	ALYTICAL	REPORT	0/N :	JOB (COM851861 3/KJH/101
SAMPLE	C.u	Рb	Zn	Ag	Fe	Mn	
[₩] (76	2	10	. <2	<1	0.33	36	0128
$\begin{array}{c} & \times \\ & 76 \\ & 77 \\ & \epsilon \\ & 78 \end{array}$	<2	8	<2	<1	0.34	24	
€ (178	3	8	<2	<1	0.41	34	
w (79	. 3	40	<2	<1	0.30	46	
24 2 80	3	20	<2	<1	0.40	8 5	
81	<2	16	<2	<1	0.44	30	
79 24 80 81 6 82	4	16	<2	<1	0.39	44	
√ (83	.2		<2	<1	0.28	20	
 	5	12	<2	<1	0.56	46	
) 85	<2	6	<2	<1	0.39	5 5	
€ \ 86	2	10	5	<1	0.43	42	
₩ (87 24 88 6 89	18	10	14	<1	3.95	280	
24 } 88	8	22	7	<1	0.92	75	
€ 89	3	6	<2	<1	0.54	28	
27 \ 91 \(\nu\) \ 92	4	. 24	2	· <1	0.72	28 .	
27 \ 91	4	44	<2	<1	0.39	24	
w (92	3	12	5	<1	0.66	5 5	
€ (93	10	20	10	<1	4.25	220	
94 95 96 97	6	24	3	<1	0.82	60	
28 \ 95	2	18	3	<1	0.67	60	
96	4	24	4	<1	0.50	95	
w 97	12	16	. 3	<1	0.47	42	
(,0	9	12	<2	<1	0.54	34	
	5	10	5	<1	0.74	75	
€ (100	3	10	<2	<1	0.40	75	
UNITS	bbw	ppm	bbw	ppm	%	ppm	
SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AASZA

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

JOB COM851861

		ANA	LYTICAL	REPORT	0/N :		3/KJH/101
SAMPLE	. C n	Pb	Zn	Ag	Fе	Mn	0129
v′ (101	5	<4	<2	<1	0.36	42	
30) 102 4 (103	10	4	<2	<1	0.61	50	
٤ (103	3	<4	<2	<1	0.27	28	
~ (104	4	20	<2	<1	0.34	44	
105	4	12	<2	<1	0.48	30	
106	7	8	<2	<1	0.47	42	
104 105 106 107 108	5	20 12 8 4	<2	<1	0.25	28	
108	3	6	<2	<1	0.25	32	
109	4	14	<2	<1	0.26	26	
110	3	8	<2	<1	0.25	36	
F 111	3	12	<2	<1	0.25	34	
8 112	5	85	<2	<1	0.27	34	
₩ (113	4	18	<2	<1	0.38	60	
Y (113 114 115 116	5	4	<2	<1	0.36	50	
115	4	10	<2	<1	0.27	18	
€ (116	3	10	<2	<1	0.22	24	
^E (117	3	18			0.25	36	
10 \ 118	4	6	<2	<1	0.34	50	
w (119	3	<4	<2	<1	0.23	26	
€ (120	7	14	<2	<1	1.05	65	
36 121 w 122	16	4	4	<1	1.95	42	
w (122	12	4	3	<1	1.57	38	
W/ 123	8 .	<4	5	<1	0.65	5 5	
$\begin{array}{c c} & & \\ $	5	<4	3	<1	0.49	75	
125	5 6	4	2	<1	0.52	44	
UNITS	ppm∙	ppm	ppm	ppm	*	ppm	
SCHEME	AAS1	A A S 1	AAS1	A A S 3	A A S 2 A A S 2 A	A A S 2	5 (45

- 6 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		ANA	LYTICAL	REPORT	JOB COM851861 3944/FK23/KJH/101		
SAMPLE	Cu	Рb	Zn	Ag	Fe	Mn	
£ (126	7	8	5	<1	0.61	60	0130
€ (127	12	46	10	<1	2.05	60	0100
127	5	8	2	<1	0.99	80	
37 { 129	4	4	3	<1	0.97	50	
w (130	8	6	3	<1	0.90	46	
£ (131	3	6	3	<1	0.29	44	
131 132 133 134 135	3	14	2	<1	0.36	44	
35 \ 133	4 5	<4	2	<1	0.30	36	
134	5	4	4	<1	0.42	48	
√ (135	2	<4	2	<1	0.31	24	
w ₍ 136	5	<4	3	<1	0.30	65	
w (136 39	3	< 4	2	<1	0.32	48	
138	4	<4	2	<1	0.34	60	
€ (139	3	4	4	<1	0.84	32	
ε (140	20	4	10	<1	1.75	750	
34 \ 141	7	<4	5	<1	7.70	180	
1	5	8	8	<1	5.95	460	
143	12	4	12	<1	3.80	630	
	7	4	8	<1	2.00	430	
w / 145	5	16	12	<1	3.60	155	
146	9	16	9	<1	1.00	220	
147	8	6	9	<1	1.11	165	
33 / 148	7	<4	7	<1 -	1.02	120	
145 146 147 148 149 150	60	< 4	14	<1			
		20	18	<1	3.45		
UNITS	ppm	ррm	ррm	ррm	*	ppm	
SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AASZA

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		ANALY	ANALYTICAL REPORT			JOB COM851861 O/N : 3944/FK23/KJH/101		
SAMPLE	Cu	Рb	Zn	A g	Fe	Mn		
E \ 151	30	12	10	<1	1.19	130	0131	
- ·	7	12	10	< 1	0.82	260		
152 32 6 (153			8	<1	0.49	125		
154 40 155 156 157	3	16	<2	<1	0.58	60		
155	4	20	2	<1	0.29	24		
156	3	12	5	<1	0.34	42		
€ \157	3	20	2	<1	0.33	22		
6 (158	5	< 4	3		0.33	5 5		
159	2	6	3	< 1	0.32	26		
6 (158 159 41 (160 161 162	2 5 2 3	4	4	<1	0.34	36		
161	2	4	2	<1	0.27	26		
√ 162	3	12	2	<1	0.31	38		
€ (163	7	8	3	<1	0.48	44		
£ (163 164 165 166	6	26	2	<1	0.62	44		
165	5	8	4	<1	0.37	42		
~ (166	6	14	<2	<1	0.44	5 5		
ž (167	5	10	<2	<1	0.27	65		
168	5	6	2	<1	0.42	135		
169	4	8	2	< 1	0.43	38		
43 < 170	9	6		<1	0.35	60		
171	2	8		<1	0.27	50		
172	5	8	2	<1	0.41	65		
w \ 173	4	8	<2	<1	0.37			
167 168 169 43 \ 170 171 172 \(\sigma\) 173 \(\sigma\) 174 175	5	24	<2	<1	0.35			
175	7	22	<2	<1	0.36			
UNITS	ppm	bbw	ppm	ppm	. *	ррm		
SCHEME	AAS1	AAS1	AAS1	AAS3	AASZ AASZA	AAS2		

ASSA

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		ANA	ANALYTICAL REPORT			JOB COM851861 3944/FK23/KJH/101		
SAMPLE	Cu	Рb	Zn	Ag	Fe	Mn	0400	
176	4	10	2	< 1	0.40	42	0132	
12 \ 177 \ 178 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	8	2	<1	0.35	32		
178	. 4	. 8	2	<1	0.24	38		
w (179	5	16	2	<1	0.33	44		
£ (180	3 8	20	3	<1	0.42	40		
49 181	8	26	2	<1	0.37	20		
E (182	2	34	4	<1	0.52	75		
183	5	14	7	<1	0.72	105		
45 (184	14	14	8	<1	1.10	195		
182 183 48 184 185 186	2 5 14 6	8	2	<1	0.35	34		
v√ \ 186	10	4	2	<1	0.61	80		
187 47 188 189 ~ 190	5	8	2	<1	0.29	34		
47) 188	5	10	2	<1	0.25	34		
189	4	6	2	<1	0.29	38		
w (190	- 4	4	<2	<1	0.39	85		
w (191	3	22	<2	<1	0.27	46		
\ 192	4	22	<2	<1	0.21	30		
46 / 193	3	18	<2	<1	0.28	26		
194	4	16	<2	<1	0.30	36		
46 / 193 194 195 6 / 196	2	8	<2	<1	0.19	16		
	4	44	<2	<1	0.21	28		
w / 197	3	14	<2	<1	0.32	22		
198	4	8	<2	<1	0.38	34		
 197 198 199 200 	5	10	2	<1	0.24	6		
45 200	8	10	3	<1	0.12	4		
UNITS	ppm	ррm	ppm	ppm	*	bbw		
SCHEME	A A S 1	AAS1	AAS1	AAS3	AAS2	AAS2		

AAS2A

This Laboratory is registered by the National & Association of Testing Authorities, Australia. The lest(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

			ANALYTICAL REPORT			0/N :	JOB COM851861 3944/FK23/KJH/101		
	AMPLE	Cu	Рb	Zn	Ag	Fe	Mn	0133	
45 ,	201	8	8	<2	<1	0.42	20		
l	202	3	8	<2	<1	0.24	38		
É	203	3	4	<2	<1	0.23	22		
- 1	(/ 1) 4	~ ~	0	< 2	<1	0.36	40		
50	205	5	.16	2	<1	0.28	18		
É (. 206	3	18	< 2	<1	0.29	22		
w (207	5	14	4	<1	0.39	42		
	208	5	30	4	<1	0.37	3 2		
51 (207 208 209 210	20	16	24	<1	2.90	150		
ϵ	210	5 5 20 12	14	10	< 1	0.62	48		
l~			80	<2	<1	0.34	34		
52.	212	2	38	<2	<1	0.32	26		
	213	<2	10	2	<1	0.39	. 80		
J 2 (214	4	14	<2	<1	0.30	24	-	
	215	4 3 <2	6	< 2	<1	0.40	30		
€	216	<2	< 4	< 2	<1	0.38	24		
~ (217	7	10	3	<1	0.31	60		
	218	6	8	2	<1	0.32	48		
53	219	14	14	7	<1	0.54	65		
ć	220	14	8	4	<1	0.38	100		
€ /	/ 221	5	4	2	<1	0.36	34		
(222	4	8	18	<1	11.41	260		
	223	8	10	22	<1	2.35			
56	224	10	<4	10	<1	0.44	-		
	225	6	4	2	<1	0.34	. 36		
'	UNITS	ppm	ppm	ррm	ppm	%	, ppm		
!	SCHEME	AAS1	AAS1	AAS1	AAS3	A A S 2 A A S 2 A		•	

AAS2A

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

			ANAI	YTICAL RE	PORT	0/N :	JOB CO 3944/FK23/	M851861 KJH/101
S	AMPLE	Cu	Рb	Zn	Ag	Fe	Mn	0134
	226	2	8	2	< 1	0.32	20	
~ (227	3	16	<2	< 1	0.31	22	
w/	/ 228	4	4	<2	<1	0.34	5 5	
	229	3	12	2	< 1	0.23	36	
1	230	4	<4	<2	<1	0.35	42	
	231	3	8	2	<1	0.28	18	
55 {	232	3	6	<2	<1	0.31	22	
	233	2	10	<2	<1	0.36	26	
	234	2	14	<2	<1	0.31	28	
Ē	235	4	16	<2	· <1	0.25	28	
W	236	20	50	12	<1	1.77	42	
	237	3	4	<2	< 1	0.37	20	
54	238	. 3	6	<2	<1	0.33	26	
	239	10	6	<2	<1	0.37	22	
ϵ	240	. 3	< 4	. <2	<1	0.24	22	
ϵ	241	7	65	6	< 1	0.62	30	
	242	3	44	3	<1	0.30	26	
	243	3	48	5.	<1,	0.40	2,6	
60	244	9	30	18	<1	1.04	50	
	245	5	20	. 3	<1	0.73	38	
	246	5	18	9	<1	0.89	46	
i,	247		14	3	<1	0.52	22	
	e / 248	26	8		< 1	8.25	105	
	249	7	6	9	<1	2.75	40	
/1	250	4	6	3	<1	0.75	32	
G I	UNITS	pp m	ррm	ppm	ppm	×	ppm	

AAS2

AAS2A

AAS3

AAS1

AAS1

SCHEME

AAS1

AAS2

			ANALYT	TICAL RE	PORT	0/N : 3	JOB COM8 944/FK23/KJ	
SAMP	,r E	Cu	Рb	Zn	A g	Fe	Mn	
is! < ≥	251	4	4	4	1	0.50	32	0135
) 2	252	4	6	2	<1	0.52	40	
w (a	253	10	4	4	<1	0.91	80	
- [(2	254	3	8	<2	<1	0.33	34	
\ 2	255	2	6	<2	<1	0.42	60	
62	256	4	8	3	<1	0.62	46	
- 1	257	6	<4	4	1	1.36	38	
"/(;	258	48	26	34	1	7.85	160	
	259	22	12	44	1	1.04	185	
63 5	260	14	24	44	<1	0.95	160	
e (;	261	20	12	50	<1	1.01	95	
E	262	6	4	3	<1	0.59	38	
64	263	2	12	<2	<1	0.26	18	·
64	264	3	10	<2	<1	0.36	18	
	265	3	12	2	<1	0.36	. 38	
. w(266	4	12	2	<1	0.36	30	
w	267	6	<4			0.39		
(268	12	<4	7	<1	0.47	90	·
	269	10	4	24	<1	0.68	460	
66	270	75	<4	110	<1	1.74	7.70%	
	271	195	4	210	<1	32.7	7.15%	
	272	26	<4	32	1	9.45	1.78%	
66	273	7	<4	5	<1	0.64	440	
€ (274	50	<4	12	. <1	2.35	220	
€ (275	50	<4	12	<1	2.10	185	
′	IITS	ppm	ppm	ppm	ppm	x	ppm	
SCH	IEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	•

AAS2A

AAS2A

JOB COM851861
ANALYTICAL REPORT O/N : 3944/FK23/KJH/101

			ANA	LYTICAL	REPORT	0/N :	3944/FK23/	KJH/101
S A	MPLE	Cu	Рb	Zn	A g	Fe	Mn	
69 <	276	50	<4	12	<1	3.75	220	0136
	277	42	4	20	<1	3.70	310	
·/ (278	50 42 55	<4	14	<1	3.95	290	
E	279	95	<4	18	<1	2.55	350	
\	280	46	<4	10	<1	2.65	160	
77	281	44	< 4	20	<1	3.95	200	
	282	48	< 4	10	<1	3.90	170	
	283	5 5	< 4	14	<1	3.60	220	
· w	_284	95 46 44 48 55	<4	12	<1	3.30	175	
· ~ (285	90	6		1	0.74	14.1%	
	286	170	14	810	<1	0.97	18.6%	
72 /	287	16	6	70	<1	1.07	5650	•
/3	288	16 6	< 4	22	<1	0.35	1100	
	289	40	< 4	12	<1	1.38	440	
-	290	42	< 4	9	<1	1.29	250	
ε \	291	20	14	22	<1	1.96	200	
ξ (292	110	12	175	<1	34.0	1600	•
	293	95	8	220	<1	37.5	1300	
76	294	75	4	80	1	16.0	4500	·
	295	12	4	5	<1	1.18	230	
w (296	4	<4	2	<1	0.48	140	
- "(297	280	<4	120	<1	1.28	6.10%	
	298	750	4	280	, <1	0.25	13.6%	
78 {	298 299 300	9	<4	2	<1	0.27	690	
έ	300	6	6	16	<1	0.76	620	·
	INITS	ppm	ppm	ppm	ppm	*	ppm	
· sc	HEME	AAS1	AAS1	A A S 1	AAS3	AAS2	AAS2	

AASZA AASZA

						JOB (COM851861
		ANAL	YTICAL F	REPORT	0/N :	3944/FK23	3/KJH/101
SAMPLE	Cu	Рb	Zn	Ag	Fe	Mn	010
€ (301	8	8	12	<1	0.51	100	0137
302	9	24	18	<1	0.55	130	
59 \ 303	5	90	14	<1	0.44	80	
304	6	120	12	<1	0.81	80	
301 302 303 304 ~ 305	7	80	10	<1	0.60	170	
306	5	12	6	<1	0.41	105	
307	3	8	3	<1	0.33	70	
308	16	80	22	< 1	1.07	105	
√ (305 √ (306 307 308 308 309	12	75	28	<1	0.89	120	
$ \begin{array}{c c} \varepsilon & 309 \\ \hline \varepsilon & 310 \\ 57 & 311 \\ \hline & 312 \\ \hline & 313 \\ 57.5 & 314 \\ \hline & 315 \\ \hline & 316 \\ \hline & 317 \\ \hline & & 318 \\ \hline \end{array} $	8	70	6	<1	0.48	7 5	
57 { 311	3	16	3	<1	0.34	44	
w (312	3	22	3	<1	0.31	28	
~ (313	4	12	4	<1	0.30	75	
.5° .5 314	6	8	4	<1	0.31	55	•
٤ (315	7	6	4	<1	0.41	48	
′″ 5 316	3	4	4	<1	0.40	38	
63 (317	5	< 4	3	<1	0.37	60	
€ (318	6	6	12	<1	0.95	110	
319	9	6	24	<1	1.59	240	
320	12	6	24	<1	2.10	290	
68 321	12	< 4	6	<1	0.52	820	
322	22	<4	9	<1	0.30	6500	
323	22	4	6	<1	0.33	1.55%	
v~ \ 324	7	<4	4	<1	0.36	1350	
√ (325	55	< 4	22	<1	2.55	450	
UNITS	ppm	ppm	ppm	ppm	%	ррm	
SCHEME	AAS1	A A S 1	AAS1	AAS3	AAS2 AAS2A	AASZ AASZA	13 of 17

14 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		JOB COM851861 3944/FK23/KJH/101						
S	AMPLE	Cu	Рb	Zn	Ag	Fе	Mn	
7)	326	150	12	110	< 1	31.8	1.60%	0138
Α·λ	327	150 100	34	85	<1	21.7	2700	
71	328	7			< 1	0.53	110	
Ē	329	.80	8	22	<1	2.75	440	
74 <	328 329 330 331	80 44 44	6	24	<1	3.35	340	
w (331	44	<4	12	<1	4.05	290	
ω.(332 333 334 335 336	7	8	9	<1	0.79	120	
/	333	6	6 -	5	<1	0.54	75	
75/	334	7	12	4	<1	0.87	85	
/ /	335	8	10	22	<1	1.50	105	
	336	12	<4	2	<1	0.55	210	
	337	12	. 8	8	<1	0.41	165	
ϵ (338	12 30 32 14 14	36	400	<1	25.8	1900	
83 (339	32	14	270	<1	17.0	710	•
	340	14	8	. 40	<1	2.30	400	
w	341	14	12	175	<1	8.95	1000	
67	342	4	8	20	< 1	3.55	85	
\sim (343	250	<4	350	< 1	19.8	24.0%	
Ì	343 344 345 346 347	145	8	180	<1	24.2	8.70%	
81	345	160	8	105	<1	19.3	12.8%	
	346	18	4	26	<1	2.55	1200	
ě (347	16	4	34 .	<1	2.40	2150	·
~ (8 %)	348	9	<4	4	<1	0.44	550	
1	349	220	8	195	1	7.75	13.7%	
É	350	48	8	46	1	12.5	8850	
U	NITS	ppm	ppm	ppm	pp m	%	pp m	
SC	HEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AAS2A

AAS2A

			ANALY	YTICAL RI	EPORT	0/N : 3	JOB CO 3944/FK23/	M851 861 KJH/101
S A	MPLE	Cu	Рb	Zn	A g	Fe	Mn	
E (351	60	6	28	1	4.60	1.39%	0139
	352	270	< 4	360	< 1	25.6	18.3%	
77 {	353	370	6	320	<1	22.3	17.9%	
	354	270	26	175	<1	22.6	4.70%	
w	355	300	95	220	<1	32.8	5.60%	
~ /	356	115	95	250	<1	13.5	2.80%	
	357	380	850	230	2	2.85	6.60%	
\	358	70	36	40	<1	0.75	1.15%	
79 {	359	80	12	26	<1	0.57	8050	
	360	120	20	24	<1	0.80	1.56%	
	361	7	6	4	<1	0.57	270	
É	362	10	10	14	1	0.98	175	
W	(363	16	8	16	<1	0.81	300	
80	364	24	6	6	<1	0.69	135	
E	365	30	6	14	<1	0.71	210	
(366	135	6	160	<1	13.1	12.0%	
\	367	340	8	240	<1	18.6	23.0%	•
	368	165	6	140	<1	19.7	17.5%	
72	369	160	4	115	<1	0.94	7.80%	
w	368 369 370	40	<4	12	<1	0.44	1.25%	
	(48	12	24	<1	1.34	850	
	372	22	<4	7	<1	2.05	640	
	371 372 373 374 375	20	6	8	<1	2.30	350	
84 (374	12	4	9	1	1.75	260	
J ,	375	85	4	12	1	4.15	1000	
	UNITS	ррm	ppm	ppm	ppm	%	ppm	
:	SCHEME	A A S 1	AAS1	AAS1	AAS3	AASZ AASZA		

AASZA

- 16 -

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

•			ANA	LYTICAL F	REPORT	0/N :	JOB CO 3944/FK23/	M851861 KJH/101
., S	AMPLE	Cu	Рb	Zn	Ag	Fe	Mn	
84	376	130	8	60	<1	12.7	2.65%	0140
,	377	165	6	42	<1	7.70	3.55%	
<u> </u>		10	4	16	<1	1.24	135	
	379	18	8	44	<1	2.55	175	
\	380	12	8	42	<1	3.75	115	
	381	22	< 4	9	<1	1.50	260	
85 <	382	24	<4	14	<1	1.68	185	
	383	6	< 4	4	<1	0.45	230	
	384	380	24	140	<1	7.85	4.45%	
€	385	36	4	8	<1	1.11	350	
V	386	5	4	4	<1	0.49	170	
	387	. 7	<4	12	1	0.63	610	
	388	80	<4	105	<1 _.	0.82	2.00%	
	389	14	<4	50	<1	2.80	1650	
86 /	390	18	< 4	10	<1	1.19	850	
0.6	391	6	8	8	<1	0.58	75	
	392	12	8	16	<1	0.84	105	
	393	. 20	22	30	<1	1.35	135	
E	394	. 20	20	22	<1	1.47	120	
ε	395	65	6	16	<1	1.25	1.10%	
	396	28	6	34	1	7.95	1200	
	397	55	6	42	1	0.89	2900	
91	398	195	8	120	1	0.53	3.35%	·
	399	10	4	2	<1	0.34	260	
U	400	5	50	3	<1	0.41	105	
	UNITS	ppm	ppm	рþш	рþш	X	ppm	
·	SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AAS2A

AASZA

AAS2A

AAS2A

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

			ANA	LYTICAL F	REPORT	0/N :	JOB CO 3944/FK23	DM851861 /KJH/101
SAN	1PLE	Сu	Рb	Zn	Ag	Fe	Mn	0 1 4 1
w (401	20	6	6	<1	0.81	175	0141
87	402		6		<1	0.81	100	
ε	403	185	6				6.40%	•
E	404	32 40 18 7	<4	36	1	4.95	790	
	405	40	<4	20	<1	3.10	5750	
90 {	406	18	4	7	<1	0.59	1650	
w	407	7	5 5	3	<1	0.31	290	
w (408	24 200 18	6		<1	0.53		
	4.09	2.00	. 10	150	<1	1.07	20.2%	
	410	18	8	9	<1	2.25	1.75%	
	411	6	4	14	<1	1.96	780	
	412	20	20	34	<1	2.65	620	
89 <	413	4	6	18	<1	2.35	450	
	414	18	12	18	<1	1.56	290	
	415	7	14	18	<1	. 0.54	. 90	
	416	14	16	18	< 1	0.75	130	
E	417	. 7	10	8	1	0.42	60	
	418	6	22	2	<1	0.45	65.	
/ [419	18 6 20 4 18 7 14 7 6 4 ppm	30	2	1	0.34	26	
U	NITS	ppm	ppm	ppm	pp m	%	b b w	
s c	HEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2 AAS2A	

0142

Head Office and Central Laboratory 305 South Road, Mile End South, Sth. Aust. 5031. Tel: (08) 43 5722 Telex: AA89323

NATA REGISTERED No. 1526

OUR REF .:

YOUR REF.:

COM851967

3946/FK23/KJH/03

LM	INFO INFO	ACT	COPY
FILE	FK	23/1	204
REC'D	6/	11/85	

Mr. K. Hellsten The Shell Co. of Aust. Ltd. 66 Glen Osmond Road PARKSIDE

SA

-5063

November 5, 1985

Dear Ken

RE: JOB COM851967

Enclosed are the assays for the samples delivered to our laboratory on October 28, 1985

Yours Sincerely, COMLABS PTY LTD

per:

c.c.: Adelaide - Shell

No of copies: 1

Report Length 4 pages

		ANAL	YTICAL R	EPORT	JOB COM851967 O/N : 3946/FK23/KJH/O3		
SAMPLE	Cu	Рb	Zn	A g	Fe	Mn	0.140
419	12	8	12	<1	0.89	185	0143
420	7	<4	5	<1	0.63	130	
421	10	<4	12	<1	1.09	110	
422	18	20	14	<1	1.13	80	
423	12	<4	4	<1	0.77	230	
424	10	<4	5	<1	0.78	310	
. 425	6	4	4	<1	0.43	220	
426	18	14	16	<1	1.23	165	
427	14	<4	50	<1	2.75	390	
428	30	<4	65	<1	3.80	500	
429	6	<4	36.	<1	1.82	310	
430	8	<4	34	<1	1.71	320	
431	14	<4	. 7	<1	0.95	75	
432	16	<4	7	<1	1.07	44	
433	6	<4	5	<1	0.59	65	
434	12	<4	6	<1	1.03	230	
435	16	24	24	<1	1.22	100	
436	10	6	5 5	<1	2.65	290	
437	22	<4	60	<1	3.15	280	
438	40	<4	70	<1	3.45	380	
439	26	6	75	<1	4.10	400	
440	16	6	50	<1	2.45	300	
441	14	<4	70	<1	3.60	530	
442	18	4	70	<1	3.60	520	
443	14	6	55	<1	2.80	430	
UNITS	ppm	ppm	ppm	ррm	%	ppm	
SCHEME	AAS1	AAS1	AAS1	AAS3	AASZ AASZA	AAS2	1 04 /

COMPUTERISED ANALYTICAL LABORATORIES

This Laboratory is registered by the National Association of Testing Authorities, Australia. The testisl reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced excent in full.

3946/FK23/KJH/03

	ANALYTICAL REPORT						0/N : 3946/FK23/KJH/03		
SAMPLE	Cu	Pb	Zn	Ag	Fe	Mn	0144		
444	22	<4	65	<1	3.50	360	0.7.3.3		
445	20	4	75	<1	4.00	370			
446	22	6	75	<1	3.65	440			
447	18	10	65	<1	3.40	650			
448	8	14	6	<1	1.09	20	•		
449	10	26	8	<1	0.68	20			
450	10	16	5	<1	0.71	28			
451	14	26	10	<1	1.21	20			
452	. 7	20	2	<1	0.43	70			
453	6	10	3	<1	0.44	60			
454	4	28	8	<1	0.73	90			
455	3	16	3	<1	0.30	65			
456	3	4	6	<1	0.51	65			
457	3	10	4	<1	0.25	24 .			
458	4	28	<2	<1	0.16	24			
459	. 7	24	7	<1	0.56	44	•		
460	5	6	4	<1	0.25	18			
461	4	32	2	<1	0.21	22			
462	8	22	. 9	<1	0.73	46			
463	5	16	. 16	<1	0.74	115			
464	3	16	8	<1	0.39	34			
465	2	10	6	<1	0.47	48			
466	2	10	5	<1	0.39	34			
467	3	12	12	<1	0.87	42			
468	3	20	12	<1	0.83	75			
UNITS	ppm	ppm	ppm	ррm	%	pp m			
SCHEME	AAS1	AAS1	AAS1	AAS3	AASZ AASZA	AAS2			
							2 04 /		

		ANAL	YTICAL F	REPORT	JOB COM851967 O/N : 3946/FK23/KJH/O3		
SAMPLE	Cu	Pb	Zn	A g	Fe	Mn	
469	4	12	4	<1	0.47	5 5	0145
470	3	14	5	<1	0.50	38	
471	6	34	5	<1	0.50	32	
472	8	20	40	<1	1.80	230	
473	3	18	34	<1	1.45	185	
474	3	10	9	<1	0.72	75	
475	3	24	28	<1	1.28	145	
476	2	22	18	<1	1.00	120	
477	4	22	36	<1	1.69	270	
478	6	20	32	<1	1.41	220	
479	6	18	30	<1	1.43	230	
480	4	20	40	<1	2.05	310	
481	4	16	22	<1	1.08	150	
482	3	26	12	<1	0.96	110	
483	7	18	28	<1	1.53	210	
UNITS	pp m	ppm	ppm	ppm	%	bbw	
SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2	AAS2	

AAS2A

- 4 -

This Laboratory is registered by the National Association of Testing Authorities, Australia The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

		ANA	LYTICAL	REPORT	0/N :	JOB COM851967 O/N : 3946/FK23/KJH/O3				
SAMPLE	Cu	Pb	Zn	Ag	Fe	Mn	0146			
447B	12	26	10	<1	1.35	20				
UNITS	ррm	ррm	ppm	ppm	%	ppm				
SCHEME	AAS1	AAS1	AAS1	AAS3	AAS2 AAS2A	AAS2				

MLABS Pty. 1 COMPUTERISED ANALYTICAL LABORATORIES

0147

Head Office and Central Laboratory 305 South Road. Mile End South, Sth. Aust. 5031. Tel: (08) 43 5722 Telex: AA89323

NATA REGISTERED No. 1526

Rick

RI

OUR REF.:

YOUR REF.:

COM852030

3947

Cook assayr on rock chips from
Millahae NHh prospect

Mr. K. Hellsten The Shell Co. of Aust. Ltd. 66 Glen Osmond Road PARKSIDE

SA

5063

November 13, 1985

Dear Ken

.RE: JOB COM852030

Enclosed are the assays for the samples delivered to our laboratory on November 11, 1985

Yours Sincerely, COMLABS PTY LTD

c.c.: Shell

No. of copies:

Report Length

ANALYTICAL REPORT

JOB COM852030 O/N : 3947

SAMPLE	Au
241	<0.01
242	<0.01
243	<0.01
244	<0.01
245	0.03
246	0.03
247	<0.01
248	<0.01
249	<0.01
250	<0.01
251	<0.01
252	<0.01
25 3	<0.01
254	<0.01
255	<0.01
256	<0.01
257	<0.01
258	<0.01
259	<0.01
260	<0.01
261	<0.01
. 262	<0.01
263	<0.01
264	<0.01
265	<0.01
UNITS	ppm
SCHEME	FAS1

AT

This Laboratory is registered by the National Association of Testing Authorities. Australia The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM852030 O/N: 3947

SAMPLE	Au
266	<0.01
2 67	<0.01
268	<0.01
269	<0.01
270	<0.01
271	<0.01
272	<0.01
273	<0.01
274	<0.01
275	<0.01
276	<0.01
277	<0.01
278	<0.01
279	<0.01
280	<0.01
281	<0.01
282	<0.01
283	<0.01
284	<0.01
285	<0.01
286	<0.01
287	<0.01
288	<0.01
289	<0.01
290	<0.01
UNITS	ppm
SCHEME	FAS1

ANALYTICAL REPORT

JOB COM852030 O/N: 3947

SAMPLE	Au
291	<0.01
292	<0.01
293	<0.01
294	<0.01
295	<0.01
296	<0.01
297	<0.01
298	<0.01
299	<0.01
300	<0.01
301	<0.01
302	<0.01
303	<0.01
304	<0.01
305	<0.01
306	<0.01
307	<0.01
308	<0.01
309	<0.01
310	<0.01
311	<0.01
312	<0.01
313	<0.01
314	<0.01
315	<0.01
UNITS	ppm
SCHEME	FAS1

ANALYTICAL REPORT

JOB COM852030 O/N : 3947

SAMPLE	Au
316	<0.01
317	<0.01
318	<0.01
319	<0.01
320	<0.01
321	<0.01
322	<0.01
323	<0.01
324	<0.01
325	<0.01
326	<0.01
327	<0.01
328	<0.01
329	<0.01
330	0.05.
331	<0.01
332	<0.01
333	<0.01
334	<0.01
335	<0.01
336	<0.01
337	<0.01
338	<0.01
339	<0.01
340	<0.01
UNITS	ppm
SCHEME	FAS1

- 5 –

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM852030 O/N : 3947

SAMPLE	Au
341	<0.01
342	<0.01
343	<0.01
344	<0.01
345	<0.01
346	<0.01
347	<0.01
348	<0.01
349	0.03
350	<0.01
351	<0.01
352	<0.01
353	<0.01
354	<0.01
355	<0.01
356	<0.01
357	<0.01
358	<0.01
359	<0.01
360	<0.01
361	<0.01
362	<0.01
363	<0.01
364	<0.01
365	<0.01
UNITS	ppm
SCHEME	FAS1

÷.

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM852030 O/N : 3947

SAMPLE	Au
366	<0.01
367	<0.01
368	<0.01
369	0.01
370	0 ,/03
371	<0.01
372	<0.01
373	<0.01
374	<0.01
375	<0.01
376	<0.01
377	0.02
378	<0.01
379	0.02
380	<0.01
381	<0.01
382	<0.01
383	<0.01
384	<0.01
385	<0.01
386	<0.01
387	<0.01
388	<0.01
389	<0.01
390	<0.01
UNITS	ppm
SCHEME	FAS1

ANALYTICAL REPORT

JOB COM852030 O/N : 3947

SAMPLE	Au
391	<0.01
392	<0.01
393	<0.01
394	<0.01
395	<0.01
396	<0.01
397	<0.01
398	<0.01
399	<0.01
400	<0.01
401	<0.01
402	<0.01
403	0.04
404	<0.01
405	<0.01
406	<0.01
407	<0.01
408	<0.01
409	<0.01
410	<0.01
411	<0.01
412	<0.01
413	<0.01
414	<0.01
415	<0.01
UNITS	ppm
SCHEME	FAS1

COMLABS Pty. Ltd. COMPUTERISED ANALYTICAL LABORATORIES

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

JOB COM852030

0/N : 3947

Au	SAMPLE
<0.01	416
<0.01	417
ppm	UNITS
FAS1	SCHEME

APPENDIX III:

RAB LOGS WITH ANALYTICAL RESULTS

PROJECT SHEOAK HILL

		Depth		Mag.	
Hole	<u>Co-ordinates</u>	Total	To bedrock	Susc.	Bedrock description
12-11 <u>RSH</u>	1 44/1720E	6		_	Nodular calcrete - hate callapsing
	2 44/1760E	2			" "
	3 44/1800E	2			" "
	4 45/900E	33	_		Fine running sands, hole abandoned.
	5 45/1100E	12		-	11
	6 45/1780E	40	32	40	Pale green clays, ? dolerite no amplibalite
	7 45/1850E	42	32		Pale - DR green fine - red grained gle delerite
8	67 SOOE	8.5	6		Pa Granite Zquire
9	67/600€	21	8	·	Pw-rel fresh gtz felder bist granitaid.
/	0 67/650E	25	78 (27)		Hard, course grained micro poor granitoid
	1 67 /700E	30	16	40	Even med-fine girained bist gto, his granite
	2 67/750E	27	710	15	11 14 14
	3 67/800E	36	24	10	n ii k
	1 67/900E	42	35	. 15	ts ts t
	5 13/700E	13	10	40	Qta mica schiet
/	6 13 800E	14	10	12	11 11 11
	13/860E	12	. 6	15	Camicaled cheds a ser epid solvist
	8 13/890E	12	6	40	At mica schirt.
	9 13/950E	12	8	200	Fire granded marine felipathic amphibolite
2	0 13/1100€	9	4	25	Pak green see. ? c/s + mica schiet.
	13 /1300€	2	1	60	
2.	2 13 / 1450E	8	5-5		De grun grun mice sch + anyshib.
2		,	5	40	Dk gree green chloritic mica schirt
2.		8	4	150 30	
	1	6			Dk gray green amphible bearing ? chart.
		6			River snads
27	7.	12	6	20	
28			3	35	W. ferraginous gtz mica schist.
29	',	<u>6</u> 4		/5	Dk green fine gr. All amph. orchist
_ 30	//	4			7) // // //
31	7,	4	!		Du green od restre ell schiet
7:		6	2		De gran all set a poler gte see och
	7	12	7		Oto mice pohist . ver. gtz schiet
		- 12			Kelling green ser , cht bromble rock

SUMMARY DRILL LOGS

PROJECT SHEORK HILL

· — —	Depth		Mag.	1	
Hole	Co-ordinates	Total	To bedrock	Susc.	Bedrock description
RS4 34	68/350€	9	6		Dk grew ohl, biot seh + epidolo
35	6.8 / 400E	,	0.5		Massive Mon rich pronstone
36	68/450E	2	-1		Biotite which + vein oftz
37	18/500€	2			Otz biotife schist
38	68/600E	6	2		Ferruginous qtz mica + felspar schist
;39	68/650E	8	3		Chlorite amphibole schirt and Fe stone
40	68/ 700E	8	3		Massive siliceous Mn sich ironstone
41	68 / 725E	3	2		Otz mica schist.
42	36/00 W	7	4	850	Dk grey green ch! amptile schiet a man
43_	36/75W.	5	4	200	Kellow brown ferry mich schiet an c/s
44	36/150W	12	8 .	250	Pured fresh gtz mica schiot niver all.
45	71/250W	7			Tacky class + sand
.46_	36/1000W	7	6		Massive at clean offite
47_	36/ 1100W.	4	2		Rd fresh gtz mica schiet
48	36/1170W	2: .	1		Massive fine gr: felop amphibalita
49	76/1250W	7	ı		Otz mica schiet a granite gaire
500	36/1330W	2 .	1		Qtz mica schist - aplitic granified
51	36/1400W.	3			Pu, med grained birt granite
52	36/1500W	5	2		Massiva quartz: Le
	,				/
		·			
					·
			,		
	_				·
			_		

FK 25/500

- outry forty good the of the of the

	TXB((;	RAB DB1441	NG SUMMORY		
			: LINE 44 GA	LINE 45.	
		·	PEPTH OF		
DATE	1926 110	LOCATION	Beornes And		sample no's (2 m
13/11	RSH 4"	145/900E		sand, abandard.	
12/11	. 5 **	1100 %		sand, Abardonad.	
12/11	6*	1780 E	32/40 m		126529-548
13/11	7*	1850 =	32/42 m		126549-569
27/11	53	1800=	64/71 m	amphibolife	35101->136
27/11	54	19003	* ,	contam. amphibilite	35137-167
28/11	55	20002		Contan Quaetric	35168-9 208
28/11	56	2/108 .	60/70m	· · · · · · · · · · · · · · · · · · ·	35209-> 243
29/11	57	22008 :	-156 m		35244-2 271
29/11	58		62/72m		35972-> 307
39/11	59	15005	, , , , , , , , , , , , , , , , , , ,	the applicable	35308, 332
				· · · · · · · · · · · · · · · · · · ·	
14/11	RSHIT	144/17208	- fon	sand Abandunor	126501-1503
30/11	RSH NA	17205	26/42m	wer Heart granite	3 5333-9 353
12/11	RSH2*	17602	-/2m	sad, Abgudoned	126504-
30/11	15H 2A.	1760 €	- 40/58m	werthordgernte	35371 - 399
13/11	R54 3 **	1800E	-/2m	sand, Abandoned	126505.
1/12	60	1850E	· 50/73 m	werthered grants }	35400 - 35419
2/12	61	21508	- 66/760		35420-1 457
3/12	. 62	27255	54/63 ,	musc gkante	35458-9 489
3/12	63	16505	. 50/60 m	puk genike	35490-2519
	- 4				
	NOTE S MAP.	netic susceptibilit	lies nee allowy for	w (K: 20 x 10-5), except	the annhability
riterration and the states of spacetimes as the c	·/ RS	SN 53 (K. 350	×10 - 5		
	- UNDER	DALE BRILLING	ETOTAL DEIKE	92: 835m	
		ERN DRILLING.			
			NAME AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS OF TH		······································
					
					;

RAB / PERCUSSION DRILL LOG

COMLABS Pty. Ltd.

TANK TO THE TANK T

ANALYTICAL REPORT

Assertion of Testing Automotives Automotives and testing at Testing Automotives action and testing at the second and testing at the second at

R5H1 - 46 JOB COM 852126 O/N: 3948/FK23/KJH/RAB

DEI	PTH	DESCRIPTION OF RETURNS	SAMPLE	RESULTS IN PPM
FROM	то	DESCRIPTION OF RETURNS	NUMBER	Webself W. A. W.
0	2	Kat lower bown for sandy soil - calcrete nodales.	126 501	
	4	il Il grading to fine out brown silly classe.	02	
	۲	Tight od-boom clays with his road court got grains	03	
		Hole absorbered due to collegeing ground in collegete bank	L	
		and fine coming sands down take		
			·	
SH 2	11/1760E		1,2	
0		Hard woduler colorete . fine sandy soil	126504	
		Hole continually collapsing - abandored	, 3:	
S# 3	44/1800E			
0	2	Pink born fix sent a redular colorate,	126505	
		Hole collapsing chardened.	<u> </u>	· ·
	ļ			
SH +	45/1,05			
	1	Fire over, brown clays and clay rich soils	126506	
	4	Brown - yellow brown for randy clay + remi comented silverte	07_	
	4	Orange - brown free carry clays	08	
	8	Yellow born dock brown v. tight clays	09	·
	10	Red-burne-marson tight clays o fine sand SICCATE. Crean for randed sands with mine clays substanted of successes.	126510	
		Crean free coverded sends with mine chery subsciented of .		
	- 12	tel course 500 - angular gtz grane with less time femerale, + 912	· · · · · · · · ·	
	16	AA	13	
		Fire ye gray ever clay rich storate with lower feriante	14	
	20	A A	15	
	20	A A A tel source angular gravels	15	

Sheetof ...

COMPUTATION AL AND HALL

MATA ATA

Section 2 of the second process of the second section sect

ANALYTICAL REPORT

JOB COM 852126 ON/3948/FK23/KJH/RAB

PROJECT: Surger Mis. CONTRACTOR: COLLAR CO ORDS:
LOCALITY : Contractor: AS: RIG TYPE: AZIMUTH: S.D.O.NO:
HOLE NO RSH. 1. (cod.).
DATE: 12-11-15

2.2	то	DESCRIPTION OF RETURNS	SAMPLE	1				RESU	LTS II	N PPM
			NUMBER	Cu	Pb	2n	Ag	Fe	Mn	
	24	Pel. fine gr grew bown - creent silvede variable course gts grains.	126517							
24	26	A A rounded for glo grains - running counts	18							
 -	28	A A Unescribblek surving sands.	19							
 -	30	A	126520	8	20	8	(1	1.39	36	
32.	32	A A	21	10	16	12	(1	2.05	22	<u> </u>
$-\!\!\!\!\!+$		Ran compressor for 5 pinutes to clear hole but	22	9	32	12	(1	2.25	32	
		continued collegeing of fine ranning rants - abandon is					 		J2	
\rightarrow		<u> </u>								
H 5 .	45 /1100E						 			
0	_2	Tight red brown clay grading to his yellow-brown send	126523		<u> </u>	<u> </u>				
	4	bring and boxen tight bell chairs.	24						 	
	6	Eine and brown light bell chairs.	25				1			
<u> </u>	8	A A	26			<u> </u>				
	10	Cream - macron fire ge moning rands.	2.7	5	6	7	(1	1.68	20	
		A A	28.	3	(4	5	(1	0.61	22	
			·	,		<u> </u>				
16 4	15/1780E	the collected som south of line		 -			 			
0	2	Pink brown - brown sandy soil and nodular calcrote.	10.500				 	·		
	4	Piak hower light clays with fine, angular gle genies.	1265 29				-			
	6	By course with the single for freeze.	30							
	P	Rel coans acquier gto preins in fine hight clays.	31							
	10	Tield will be	32							
	12	Tight red brown - cross clays	33							
	14	A A grading to fice everye bourn sands.	34							
_	-17	Cream parallement classe and red bown fine rands - famicale	<u></u>							
	18	Cream Eastinitie clays with miner marrier Fe staining.	36							3

RAB/PERCUSSION DRILL LOG PROJECT: SHEOAK HULL... CONTRACTOR COLLAR CO ORDS.......

HOLE NO . RSH . F. (ANT) LOGGED BY K. T. HELLITEAN . DECLINATION : . . LABORATORY :

DATE: . 12.51.1.5. 8.5.

TAN ATAN	This paint includes power assert ration of Teating Against transcription to the control of the c	 4	•
	The property of the control of the c	 * * * * *	•

ANALYTICAL REPORT

JOB com 852126 0/N: 3948/FK23/KJH/RAB

		(15)	,							
DEF		DESCRIPTION OF RETURNS	SAMPLE							N PPM
FROM	то		NUMBER	Cu	Pb	Zn	Ag	Fe	Mh	
18	20	A A, 25 % acquiter gray she grains & five gr. For siture	126538					<u> </u>		•
	22	A A sample becoming dange	39_							
		Grey- Gerson, publick clays, verily knowing a secretic,	40							
	24		41							
		Red-bours - gory fice go, ball clays.	42							
	70	Commence and Andrews	43	70	60	110	(1	4.75	5950	
	32	Gray-coear pulled clays. Tellow bown - brown fine sand a clays	44	70	20	210	(1	7.35	750	
	. 34	Maries olice green fire go chays, since dk green emphibilite	45	120	115	270	(1	8.20	540	
	36	A A, some feldegar? met. go dolorite		105	36	195	(1	6.85	1050	
	38	A A dominantly clays	47	60	46	170	{1	4.90	2300	
	40	A A, Bit blacked with damp, troky clays		80	60	220	(1	5.85	2350	
		exiter in hole Hole stopped pending results in								
		adjecut holes		,						
		44.			1:					
		·	·		†	·	1			
		73.								
	~~	·	·	·		1				
						1			 	
					 	 	 	 	1	
					<u> </u>	 	<u> </u>	<u> </u>	1	
					1	 		<u> </u>	†	
					†		1 -			
1					 	†	†	†		
				——			†	 	 	

1.	<u>"</u>

4 Mg 1 1 14

RAB / PERCUSSION DRILL LOG

", 🤔 COMLABS Ptg. Ltd.

LAN	Association of Jesting Authorities	4 . 5.55 4
∠ τ <u>ν</u>	The district of a property of Asymptotics of Besting Authorists of Section Authorises of Section 1999 of the control of the Co	وهواهين څ در اورونو درونونو

ANALYTICAL REPORT

JOB COM 852125 O/N 3948|FK23|KJH|RAB

LUCALITY , TENERY	##C CONTRACTOR: COLLAR CO ORDS: :	S.D.O.No.	
DEPTH			

	DEF	тн	(1)	T					0		
	FROM	то	DESCRIPTION OF RETURNS Hole collocal approx 300 Sth of Line	SAMPLE NUMBER	Cu	Pb	2n	[Ag	Fe	Mh	N PPM
	0	2	Light brown carry soil + calcool grading to tradt clays	10.1740	04	10		7.5	. , €	1 144	
		4	Tight red bours - brown days.	126549		 	 			 	
		6	A A	50					,	<u> </u>	
				51	ļ	-				ļ	<u> </u>
		10	Course gray fine gtz sach wanteh with pulled gray ser clays	52	ļ					 	
			P / //	53			-			 	
上			Poorly conted, immediate gravel, subongular gts, Fe ofen with Fe clays	54	 	-	 	· ·		ļ <u></u>	
		74	Green hastistic powder chips of crean, hard chayther, got . + Fe show	55						ļ	•
r			Green hasticitic powder chips of crean hard claythre of a + Fe stone	57	 	ļ	ļ				
H		18	A A	5-7		ļ				ļ	
<u> </u>		20	AA	2.2			_			ļ <u></u>	
┢		22	A A	59				<u> </u>		ļ	
\vdash		21	Cream - dk brown sagralytic ball claye	126560		ļ		ļ			
\vdash		26	Α Α.	61		ļ					
\vdash		28	Cream - yellow bown damy, palled clays.	62							
-		30	AA	63	95	14	110	(1	10.0	85	
-		32	A A Ving 11,0 from Ilm	64	110	200	125	(1	7.60	5750	
11-	H-85 ,	34	W- Pro dk gran - dive green fire ground glz delevit or ale.	65	95	90	125	(1	7.45	2000	
Ŀ		36	A A make intruire - delegate 10% contamination	66	1 0 0	36	135	(1	7.35	410	
-		38	A A 15% up-hole conformation	67	75	26	125	(1	7.35	300	7
<u> </u>		40	А	68	90	16	145	(1	8.60	130	
-		42	A 17 sample 12-50% up-tole contamination	69	65	120	120	(1	5.50	260	
L											
		<u>.</u>					1				
L											
			N- 24			1					,
1_								<u> </u>			
1										نس ا	سونية ويست يتمام والأم والأمور الأراب

C COMLABS Pty. Ltd.

ANALYTICAL REPORT

JOB COM

RAB/PERCUSSION DRILL LOG

PROJECT: SHEPAR MILL CONTRACTOR: COLLAR CO ORDS: 67/500E] LOGGED BY: K. J. HELIGITY... DECLINATION:.....LABORATORY:.....

HOLE No . R.S.H. . 8. . . . DATE: . .!3. -!!. -. 85.

DE	PTH	OFFICE OF THE PARTY OF THE PART	SAMPLE	Ι	RESULTS IN PPM							
FROM	то	DESCRIPTION OF RETURNS	NUMBER	cu	Pb	2n	Ag	Fe	Mn	N TFI		
	2	Red brown sandy soil a modular calente.	126570	10	14	16	(1		95			
	4	Cream gary, clay sich circute : giase ferient.	71	5	6	14	<1	2.45	44	i.		
	6	A A	72	5	16	9	(1	0.87	50			
	. 8	Hard, pres - col. bruk Keper, play, oft, nica poor granik -	73	24	4	9	(1	1.75	40			
8	8:5	grande grains	74	9	14	14	3	0.95	65			
RSH 9	67/6005		1									
0	- 2	Orange brown fire sand + calcade nodules.	126575									
	4	Brown- yellow brown for send - clay river calcute.	76									
-	6	AA	27									
	8	A`	78									
	10	Orange brown, w gt, felder, biotic rehist - vein gta Pu ned, even grained gto, felder, bioti granitoid ? govier	77	44	16	42	(1	4.40	85			
	12	Pu ned ever graved gts, felding birt granitoid ? juice	80	30	34	60	(1	3.50	140			
	11	A	91	28	20	30	(1	2.55	100	· .		
		rl A	82	30	26	60	(1	2.45	95			
	18	A A	93	30	22	75	〈1	3.00	145			
	20	A A	8.4.		12	44	〈1	2.60	110			
<u> </u>	21	A A	85 -	42	30	42	〈1	2.90	90			
 												
										·		
					ļ							
												
	•											
 					ļ							
 					 	ļ						
									Į			

RAB/PERCUSSION DRILL LOG

COMPLETES Pty. Ltd.

The arrest of the spring authors	The The Market	
Assets after at Teating Authors to the control of t	ence gas filenag legistration it legistration it a	•

PROJECT: SHEDAK, HUL CONTRACTOR:	COLLAR CO ORDS: 67/650E
LOGGED BY: K. T. H.	AZIMUTH:S.D.O.N°;
DATE: 13:1/-25	OECLINATION : LABORATORY :

		(69)								
	РТН	DESCRIPTION OF RETURNS	SAMPLE					RESI	JLTS	IN PPM
FROM	то		NUMBER	Cu	Pb	Zn	Ag		Mn	
0	2.	Orange brown fine and + colorate	1265 86					· ·		
<u> </u>	4	A A.	47							
<u> </u>	٤	Crean-nerves fire rand + somi-correl silerale	8.8							
	ક	A	89						1	<u> </u>
	10	Cream - moros has powder , chips of w silvaled ? grante	90		<u> </u>				1	
	12	A A	71							
<u> </u>	. 14	A A							 -	***
ļ	16	A A	92	_					ļ	
	18	Cream yellow brown fin 1 powder, engular of a x w? gravite	94	4	40	6	(1	1.05	30	7
	20	AA	95	4	95	22	(1	1.09	20	
	27	A	96	8	70	16	(1	1.14	44	
	24	A A	97	2	40	6	(1	0.41	14	
	20	Α Α	98	3	40	12	(1	0.76	38	
,	28	A A, Hard, fresh, and - come grained.	99	3	36	10	(1	0.64	20	
		mica pour granitoid			·			-		
					•					
·										
			,							·
					1					
										
									_	

RAB / PERCUSSION DRILL LOG

COMLABS Pty. Ltd.

$\nabla_{\mathbf{A}}$	Association of 1	esten 4 and	 4	
A72	For charge in the position of the charge and the ch		 34.45	

LOCALITY RIG TYPE	COLLAR CO ORDS: 67/700E AZIMUTH:
HOLE NO RSH II LOGGED BY: KTH DATE: 17-11- PS	DECLINATION : LABORATORY :

		(99)										
DEPTH		DESCRIPTION OF RETURNS	SAMPLE	RESULTS IN PPM								
FROM	то		NUMBER	Cy	1ºb	Zn	Ag		Mn			
0	. 2	Orange brown fire sand with miner colorete	126500									
	4	A A	01			 						
	6	Cream - magas - bourn tight ball clays	02.		 							
	8	A 1) ferrent chips + fragments	07			 	<u> </u>	 	 			
	10	A A becomes more sometime like a low of	04	- -			1	 	 			
_	1.2	A A becoming more powder-like sterr clay	os			 	l		ļ			
	14	Marron - crem fine powder + claye with miner ferricult chips	06	14	75	9	(1	5.35	22			
	16	A A months to a sile of 2 1/2	0.7	18	110	9	(1	 	 			
		Light brown - yellow brown pender, track gt a 2 grante	07				!		. 14			
	20	A P has over flates		- 8	105	8	(1	1.15	20			
	2.7		09	7	100	9	1	1.08	18			
	24		10	14	105	30	(1	2.80	65			
	26	A A fire granite cond.		32	115	50	(1	4.25	100	:		
		A A	17	- 22	28	30	(1	3.25	65			
	28	Δ ,2	13	_22	40	44	(1	3.40	70			
	30	A 1) non magnetic, (40 x 10 -5)	14	22	50	50	(1	3.50	85			
			· .									
		·										
	<u>·</u> _											
				1								
								+				
			1						- 1	· -		

RAB / PERCUSSION DRILL LOG

💲 COMLABS Ptg. Ltd. COMPRIENSED ANALYTICAL LABORAT .

LOCALITY : A OFRE 47 RIG TYPE: AZIMUTH: S.D.O.NO: DATE ... 13:11: 85.....

DEPTH			SAMPLE	r				0-0		201
ROM	то	DESCRIPTION OF RETURNS	NUMBER	lu	Pb	2n		RESUL Fe	TS IN	PPM
0	2	Fire oringe brown cardy soil i sand	126615		113	211	1,1,3	116	1 111	
	4	A A	16				 		 	
	6	Maron - yellow brown formaginery, and grained starete	17	h			 	 	 	· · · · · · · · · · · · · · · · · · ·
	6	A A	18		 	<u> </u>	 -	1	1	·
	_ 10	А	17			 		 		
	12	Marson yellow brown fine powder + clay, ? w bedrock	7.0				<u> </u>	 	 	
	14	AAA	21		 -	 		†		3
	16.	A A	22			1		1	1	
_		A A	27					<u> </u>	1	
_	20	A A	24	28	440;	16	(1	4.10	32	
_	22	Mostock for paider, course trans! angelor, at histite + Kesticities beligner		55	50	80	(1	4.25	195	
_	24	A A w. goarste	26	55	38	.115	(1	4.55	260	
_	26	A A	27	44	38	105	(1	4.20	210	
_	27	$A \qquad \qquad A \qquad \qquad (15)$	28	38	30	120	(1	4.85	250	
_					÷					-
				-						
\perp					·					
_										.for
	<u>.</u>									
_										
\dashv		·								
Ì										

(112)

RAB/PERCUSSION DRILL LOG

PROJECT: Suggesting. Contractor: COLLAR CO ORDS: 67/2006

LOCALITY: PROJECT 52. RIG. TYPE: AZIMUTH: S.D.O.NO:

HOLE NO. RSH. 13. DATE: 17-11-25.

COMPUTERISED ANALYTICAL LABORAT

DEPTH		DESCRIPTION OF RETURNS	SAMPLE	RESULTS IN PPM							
FROM	ТО		NUMBER	Cu	Pb	Zn	Ag		Mn	T	
		Fire orange brown read	126629								
_		A A with hard silenet band @ 3 m	30								
	٤	Grean-brown charge gooding to crean kestinitie powder - gh	31								
	8	AA									
	. 10	A A	37						1		
	12	A A grating to regited parter. Mederd fire, knownitie (? Georg) parter, some vilueted ? gonit. A A Ahd bown fire knownite porder - gts.	34								
)#	Modera fire, bastaitie (? Georg) parter, some silveted ? gonit.	35								
	16	A A	36								
	18	And born for keylinke pouder - gtz	37								
	20	Α Α	32].					
-:	72	Α Α.	37	-							
	24	A A	40					i —			
	24	Musterly fine kestindic possible a chipi of in fin or granite	4/	18	36	70	(1	4.30	145		
	28	W. fire go glz kpor plag bist misso ourse granite.		14	36	75	(1	3.60	145		
—— <u> </u>	30	A A	43	18	46	90	(1	3.35	195		
]z	A A		12	55	85	(1	3.00	170		
	· 34	Α Α	45	10	44	105	(1	3.35	200		
	76	A (10)	40	10	40	85	(1	3.10	190		
										·	
 ∤-											
										·	

Sheetof .

RAB/PERCUSSION DRILL LOG

COMPLETES Pty. Ltd.

This will distinct to region of point that a destriction of desting Authorities (Authorities of the last important floring Authorities (part) money or other and the storm of the properties are the control of the storm of

LOCALITY:	COLLAR © ORDS: 67./900€ AZIMUTH:
HOLE NO . P.S.H 14 DATE:	DECLINATION : LABORATORY :

			(204)								
Į.	FROM	то	DESCRIPTION OF RETURNS					IN PPM			
Γ					Cn	Pb	Zn	Ao	Fe	Mn	
•	<u> </u>	. 2	Fire wrongs brown eard, ming vilaret bands	126647	ļ						
		4	Tight bown at born ball clays.	48				ļ		<u> </u>	
!		6	W. hard, creen yellow breve silvente grit , harmer 6-2m	49		ļ					
		8	A A	50				ļ <u>.</u>			
[10	A A gooding to exceen kartinitic product	51_		ļ <u>.</u>	ļ				
i		12	Cream kasticitis, fine powder with miner angular gtz grains	. 52							
ſ		11		57	<u></u>						
			A A	54		ļ <u>.</u> .					
		18	A A	<u> 55</u>							
		20	Α Α	56							
L.	<u> </u>	22	AA	57				L			
ا ا		24	A A	58							
- 1		26	A A	. 51							
[28	A A	60	6	26	10	(1	0.39	36	
ן ָ		30	A A	61	6	22	10	(1	0.36	26	
l.		32	. A A	62	6	50	14	(1	0.34	30	;
, i		34	A A, mine is granite	63	18	10	16	(1	2.05	26	
L,		. 36	W, even, mil. grained birt, gts, feldip gravitoid	64	70	14	120	(1	5.70	140	
ſ,		38	A A Miner muser, h	65	42	44	100	(1	3.50	140	av.
<u> </u>		40	A A	66	55	22	130	(1	4.95	175	
		42	A A non regards (40 x10-5)	67	46	20	140	(1	4.90	190	
ار											·
١,											٧
										 	
•											

Sheetof

COMPUTERISCO ANALYTICAL LABORAT

0169 **©**

ANALYTICAL REPORT

RAB/PERCUSSION DRILL LOG

PROJECT: SHOOK HILL CONTRACTOR: COLLAR COORDS: 13 720 5

LOCALITY: PROJECT 13 RIG TYPE: AZIMUTH: S.D.O.NO:

HOLE NO RSH 15 DATE: 13-11-85

DEPTH		DESCRIPTION OF RETURNS							
FROM	то	DESCRIPTION OF RETURNS	SAMPLI NUMBE						
D	2	Crean exterete a rel brown soil	126668						
	4	silerete cream pint brown with red course angular of frage	(9						
	6	Fire yellow burn - siran gtz sand with clay count - Silente.	70						
		Coane silerets.	71						
	10	Merron formy clays a contr with frage of marries line king which	72						
	12	W. rat brown formaginess gtz mica schiet.	73						
	13	Pet beck dk green boom gts, biotit, muse = comphile school (40)	74						
`.									
SH 16	13/800€								
0	2	Pink how over sorty soil & colorate	126675						
	4	Orange horn - cream claye + silente	76						
	6	A: A grading to kaolicitic clays	77						
	8	Coren kashaita i purulmour clay, coone ingular gt + ghirt tregs	78						
	10	A	79						
$- \downarrow$	12	W red bown forming of mica schief + minor vein after clay Pw- ed. fresh of biolish, maics schief with 7 th milky vein ofte	80						
-	. 14	Pw-rd. fresh gt, biolit, maic-schiel with 7 16 milky vein gtz	8/						
··									
	·								
		N.C.							

		,		RESU	LTS I	N PPM
Cu	Рb	Zn	Ag	Fe	Mn	
6	6	8	(1	0.49	75	
4	8	6	(1	0.52	48	
4	8	5	(1	0.72	28	
4	10	5	(1	0.52	18	
10	10	18	(1	4.80	90	
16	4	24	(1	5.60	130	
22	6	36	(1	4.90	550	
				ļ	<u> </u>	
	<u> </u>				<u></u>	
5	16	В	(1	1.04	38	
3	14	5	(1	0.73	44	
6	24	10	(1	0.65	24	
16	12	18	(1	1.33	50	
22	6	24	(1	2.25	60	·
32	10	24	,(1	2.30	55	
	<u>.</u>					
		ŀ				
	 '-				·'	

COMLABS Pty. Ltd.

RAB / PERCUSSION DRILL LOG

HOLE No . PSH . . 17. . .

LOGGED BY: K. T. Heurov... OECLINATION:.....LABORATORY:.... DATE: .. 14 - 11-. 85

DEP	1 H	DESCRIPTION OF RETURNS	SAMPLE					RESU	TS II	N PPM
ROM	то	DESCRIPTION OF RETURNS	NUMBER	Cu	Pb	Zn	Ag	Fe	Mn	
0	2	Fire pick brown condy seil a calcrete	126682	14	6	12	(1		125	
	4	Red brown - cream id pulled change with silvede bands	8.3	10	8	9	(1	4.05	36	
	. 6	A A. greding to her days and - clays	84	8	10	12	(1	3.65	65	
	8	W and brown forms mica schief and passive fig. poligren, see good son	. 85	38	6	44	(1	8.90	36	
	10	A A	. 86	38	4	40	(1	6.15	32	
	12	Laminated cheets and at notice pak gran epidole, certaile rock, calcificate	87	44	(4	44	(1	4.85	44	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>	ļ			<u> </u>	4
0	13/890€	1.41	126688	16	10	22	(i	2.30	165	
_	4	Light bown - arrange brown fine sanky soil + colorete		10	10	 	 		 	
$\neg \uparrow$		Tight and bourn - ween charge "	89	7	4	16	(1	3.00	85	
$\neg \dagger$	- 0	Fire area of a racks gooding to rad brown clays with corps oft	. 90	9	 	8	(1	1.25	28	
7		Commonwe about, a wear for which and not how wice which.	91	34	6	14	(1	1.73	46	
7	- ,,	W. farmer at mich schief with 5th course enougher vin gh brage	92	48	(4	28	(1	5.30	105	
	- '2	Pow- rel. fresh gto mice robiet variety temperar. (40)	73	48	(4	28	(1	4.95	80	
12	13/950E					1				
0	2	Orange boun , brown fire sandy wil + adverte .	126694		<u> </u>					
	4	Tight and bown grilly clay with wheat bands	75	12	6	16	(1	1.92	140	
4	6	Rel tight pelled creen chang with ilente backs - coorse gle longs		14	6	9	(1	2.15	28	co-t
_	8 .	$\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$	17	55	10	24	(1	7.65	42	
	10	W. Pu and bown mice schiel . Zenalish (200)	78	40	6	20	(1	5.20	38	; ;
-	12	Por - fresh dk goes grey for grained massive felegathic amplishedit	99	50	4	42	(1	4.55	120	
_					ļ					
				<u> </u>	<u> </u>		ļ			

COMLABS Pty. Ltd.

\square	79 . S . S . S . S . S . S . S . S . S .		٠.	٠
MAN AZA	Annie raterie al Banarig a gerra Problem test sest marain marie (1) 13 an in the transport		34.0	
_		,	era ar.	41.1

PROJEC	T: SHEGAK	#44 CONTRACTOR:	H
		RIG TYPE: AZIMUTH: S.D.O.Nº: LOGGED BY: K.T.H. DECLINATION: LABORATORY: DATE: 14-11-85	
DE	PTH		T
FROM	то	DESCRIPTION OF RETURNS	SAMPLE NUMBER

	PTH	DESCRIPTION OF RETURNS	SAMPLE					RESU	ITS I	N PPM
FROM	ТО		NUMBER	Cu	Pb	Zn	Aq		Mn	
	2	light brove pickish bown here said soil + colorels	126700.	12	(4	12	(1		155	1
	1	Tight hown githe change with head ideath bands.	01	36	4	18	(1	4.40	110	
	6	Yellow brown fine each a pole given going for schiet an vice solist	oz	90	(4	28	<1	4.85	115	
	8	Por cel fish dk gran you, stigging vice schiet	03	105	16	24	(1	4.65	135	
	9	Pale gover-gray consist of apostat, and massive school - ? cale-illicate (25)	04	140	4	34	(1	4.55	95	
RS 4 21	13/17001				ļ		<u> </u>			
0		From 1 a (60)	126705	60	(4	14	1	1.89	155	-
		progr. 1 or (60)				ļ	-			
RSH 22	13/1450E				 			<u> </u>		
0	2	Fire array bown looky coil, wiver calorele	126706	14	6	12	(1	1.10	220	
	4	Tight red brown class		18	14	32	〈1	2.80	250	
	6		- 80	60	8	46	(1	3.80	200	
	&	Dort green grey chladie, mice school of gts pour mines ser gle.	09_	70	6	32	(1	3.60	100	
RSH 23	13/1500€									
_ 0	2	Fire average brown could, miner colorele.	126710	14	6	16	(1	1.52	210	
		Tight, damp red brown class in stone boiling in today clays		26	14	22	(1	3.65	150	·
	6	A A grading to dk green all whist p 5 m	12	55	12	80	<1	5.45	115	
RSH 24										
_ 0	ı	Orenze brown - berry live real , wine calcula	126713		<u>-</u>		_			
	4	Tight, damp tacky och brown class, mine sileret boards	14	14	10	24	(1	1.97	200	
	- 6	Dock my good her grand on while being glade takent.	15	20	8	24	1	1.21	300	
	ε	Dock gong gow his ground asylich bearing ofterte lehat.	16	90	(4	30	(1	3.00	370	

Sheet of

RAB / PERCUSSION DRILL LOG

COMPANS Pty. Ltd.

And the second s		
The service of the se	*****	

PROJECT: SHEPAK, HILL.	. CONTRACTOR :	. COLLAR CO ORDS : / 3.	116506
LOCALITY :	. RIG TYPE:	. AZIMUTH :	S.D.O.Nº:
HOLE No 85H . 25	DATE: JATU- 85	. DECLINATION :	LABORATORY :

DEP	'1 H	DESCRIPTION OF RETURNS	SAMPLE					RESU	LTS I	N PPM
ROM	то	DESCRIPTION OF RETORNS	NUMBER	Cu	Pb	Zn	Ao	Fe	Mn	
0	2	Fine sticky pronge brown sands , niver souls	126717							
	4	A A becoming tamper	18							
	6	A A giver which subject	,19							
		Hole abandoned in wet sticky rivers sands								
			ļ <u> </u>							
4 26	13/1850€		ļ							
<u> </u>		Orange boson fire river sands . gravels	126720							任.
	4	A A kate collegued white changing rods - abandoned + ods blacked with rands.	21							
	6	A A kole collapsed white changing	:22_		ļ	ļ				
		rods - abandoned + ords blocked with rands.								
_	·									·
4 27	13/1000E					٠				
0	_ 2	Pick born for sandy soil - calcute	126723	16	18	20	1	1.67	175	
	4	A A grading to tight red brown clays a silerete	24	14	8	16	1	1.75	105	
	6	Pick bown fine sands, soil - colorete A A grading to tight red brown class + silerete Red. Light, cream - brown grilly class with silerete bands	25	48	12	16	(1	7.50	28	
	8	A with Fe store + ferry mich sich frage	26	40	14	22	(1	6.60	32	
	10	A A	27	55	26	18	(1	5.30	24	
	12	W from gtz mica schiet (15)	2.8	65 .	6	50	(1	5.75	40	
			 _			ļ. <u>.</u>				
_										
						ļ				
						<u> </u>	ļ			·
\dashv	· ·					 _				Lac
_						<u> </u>				L
- 1						1		1		

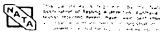
ို COMLABS Pty. Ltd

10

ANALYTICAL REPORT

PROJECT: SHEPAK HILL CONTRACTOR: COLLAR COORDS: 69 LOCALITY: RIG TYPE: AZIMUTH: HOLE NO RSH 28 DATE: 14-11-25	
---	--

	PTH	DESCRIPTION OF RETURNS	SAMPLE					RESI	ITC '	N PPM
FROM	то		NUMBER	Cu	Pb	2n	Ag	Fe	Mn	N PPM
		Fire brown , ground from county will grading to high clays .	126729	26	8	24	(1	2.70	560	
	4	Grey brown rely tight charge with micro pute green in all retient.	30	70	6	32	(1	4.95	165	
	6	Pak green spidsk sich - dk green role fresh, his ge, chil angeh schirt	31	70	6	32	(1	4-40	120	
RSH 29	68/80€			ļ	ļ					
0		Light boxes arrange brown wil + colorete well at 200	126732	28	6	20	(1	2.15	410	
	4	Ex-fish dk green, ed onessive chl schiet.	37	60	4	20	(1	3.25	320	
C5H 30			· · · · · ·		-					
KSH 30	68/1105					ļ				
0		Brown fre early wil, por all such 1-2m. Rel fresh dhe green ahl subjet	126734	26	8	18	(1	2.00	710	
	4	let fresh d'e gover cht schiet	35_	55	8	20	(1	3.05	320	:
25H 31	68/17se							<u></u>		
		Brown - light brown with a calcaste, with sets.	126736	26	10	20	(1	1.35	420	
	4	Pur fresh de green après green che, revisit ghe relient	32	44	14	28	(1	2.35	105	
RS11 32	68/250€									
0	2	Grey bown . dk hown day sil - colonte	126738	26	10	50	(1	2.50	950	
		W. rica ich i ch schiet	39	28	6	95	(1	4.05	250	
	- 6	late your core at sock - dt from gto mice soliet	to	55	4	110	(1	4.40	220	
			[
						<u> </u>				
			 }							


Sheetof ...

- -

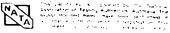
Sheet of

VIET.

COMPLABS Ply. Ltd.

RAB / PERCUSSION DRILL LOG

PROJECT: CONTRACTOR: COLLAR CO ORDS: 68/ 7006


| DOGGED BY: DECLINATION : LABORATORY : DATE: /#=//==85

DEF	PTH	DESCRIPTION OF RETURNS	SAMPLE				~	RESU	LTS I	IN PPM
ROM	то	DESCRIPTION OF RETURNS	NUMBER	Cu	Pb	Zn	Ag	Fe	Mn	15
0	2_	Brom - dk brown -lay rich soil	126741	30	8	34	〈1	2.85	2500	
	4	Marion e yellow brown clays, ordans yellow be For the chips	+2	20	6	34	<1	10.B	410	
	6	A A	₹ 7	22	(4	95	(1	5.95	130	
	_ ^	A A, chips of pole grow spilet rich see, chl sch	44	30	-6	150	〈1	4.75	160	
	v	Por- red fresh pok gran- yellow sor, chil, translite mach	45	55	22	185	(1	5.40	250	
	12	A A	46	70	10	160	(1	3.90	230	
c11.74	68/35P.E				-	<u> </u>		, .		
0	2	Ad how 14 land with the	126747	40	10	36	(1	3.20	9200	
	4	And brown - dk brown clay + soil, minor caderate. And brown - gullow brown od. hight, ferragiones clays.	120141	145	6	110	(1	6.45	1550	
	6.	A A	49	160	(4	95	(1	7.35	460	
	. 8	Paral fresh the green group cht, listite schiet a meerine pole grown spilete		165	(4	220	(1	6.60	220	
	9	A A	5/	120	(4	185	(1	6.70	230	
				<u> </u>		ļ	 	<u> </u>	Y	
0	68/400E	Dk boom clay & marive Mon ironstone	126752	90	8	80	(1	7.95	2.85%	
Ť		The Vision cold a marries The Transfer	126/32		- -	1		 	,	
CH 36	64/450€									
0	. 2	The - red fresh bishik gla which a marrie win gte	126753	22	4	32	(1	2.85	1750	-
			·					ļ	 	
0	68/500E		7		6	20	(1	2.80	520	
-		Per al forch of a biotik schiet	126754	-: <i> </i>	+-	1	 			
					+	 		 		
\neg					1	 	 	 		

+ 811.

RAB / PERCUSSION DRILL LOG

COMPRESS Pty. Ltd.

ANALYTICAL REPORT

	PROJECT: SHOOME HILL	CONTRACTOR :	COLLAR CO OROS:	8/600€
	LOCALITY :	RIG TYPE:	AZIMUTH :	.S.D.O.Nº:
ľ	HOLEAN PEH TE	LOGGED BY: K. TH.	DECLINATION :	.LABORATORY :
Į.	MOLE No 6271	DATE: 14-11-25		

DEF	/ I H	DESCRIPTION OF RETURNS	SAMPLE:									
ROM	TO		NUMBER	M	Pb	Zh	As	Fe	Mn			
0	2	Di bour for centy wil a colorele	126755	16	6	22	(1	2.05	1650			
	4	Pur al fresh var ferrug gle mig schied - forper	56	42	14	105	(1	6.10	780			
	6	1 ⁴ A	57	40	16	175	(1	7.80	670			
			· · · · · ·	·		ļ						
SH 39	68/650E	,	 		ļ		 	ļ				
0	2	Red brum fire condy soil & colorete	126758		-	-	 					
	4	Dk brown clay + sand + massive Ma nich For whom	<u>59</u>	18	(4	20	(1-	1.89	1450			
	6	Fire yellow brown send a clay with nesses feet a put green soapy, see no	60	28	8	50	(1	6.85	430			
	- &	Yellow have w - de green; at necesse, Al, another schief	61	38	8	50	(1	7.90	410	<u> </u>		
CII AO	68/700E			<u> </u>	 -		1					
0	,	from the pour for such - calcrate	126762	28	4	26	(1	2.45	2400			
	4	A P. with messive the workfree	63	125	22	170	(1	+	2150			
	6	Dh brywn penter , sand w inica schiet.	69	320:	(4	300 :	(1	13.7	9.45%			
	8	Mark fine grained messive Ma ironston, - items.	65	<u> </u>			1			, in the second		
R <i>SH 41</i> .	68/725¢											
0	2	Design from five sandy soil	126766	14	4	18	(1	1.39	610 :			
	3	Prenge from five sandy coil	67	20	(4	28	(1	1.76	870 ;			
					<u> </u>	ļ	<u> </u>			·		
	1			<u> </u>		ļ	ļ	 				
			 .				-					
	•		 	-					 			
			<u>`</u>	<u> </u>	<u> </u>	4		 	 			

Sheet

 (x_1, x_2, x_3)

RAB / PERCUSSION DRILL LOG

COMLABS Pty. Ltd.

<u></u>	The course of a region of the	****	
("A")	Assert server of Testing Authorities	4.,5**4-4	1
TAN ATAN	Acution important fleters imper have to the enough to the same of any	part ement	
_		es est es	

ANALYTICAL REPORT

ı			
f	ROJECT: SHERRE HALL CONTRACTOR:	COLLAR, CO ORDS 36	1000
ļ	OCALITY POFICE SE RIG TYPE	AZIMUTH	S D.O.Nº:
lſ	HOLE No. RSH. 42 LOGGED BY: K.T. HELLION DATE: 15-11- 85	DECLINATION :	LABORATORY:
Įι	DATE: 15-11-85		(1)

		DATE: 1.73. 777. 43								
FROM	PTH	DESCRIPTION OF RETURNS	SAMPLE NUMBER						LTS	IN PPM
FRUM	то		NOMBER	Ch	Pb	Zn	Ag	Fe	Mn	
0	_ 2	Fire orange brown sent , clay	126768	18	4	18	(1	2.00	580	
	4	led bonn - de bonn tight clays	69	30	6	26	₹1	4.00	460	
	(+	W- pro dh brom-red brown gh mica school - vein gt	70	90	(4	44	(1	6.65	140	;.
	Z	The green gray cht, arphibite schiet, role require, 2 magne (850)	7۱	95	(4	42	(1	6.60	170	
										·
RSH 43	36/75W									
		Fire ange brown randy soil a calcule	126772	14	4	· 14	₹1	1.76	370	
		Oceany born - dk brien tight clays	73	20	6	20	(1	3.00	230	
	5	Hard, ach bonn, forming at a rich mica schiet and w c/r (200)		16	(4	18	(1	3.00	80	
		, , , , , , , , , , , , , , , , , , , ,								
RSH 44	76/150m					<u> </u>				
0		Fire orange brown said with mine coloreto	126775	14	6	16	(1	1.75	270	
		Tight arouge brown - Mk brown clays	7/	16	(4	18	(1	2.05	270	
	,	0 B	76	22	(4	22	(1	2.80	135	
	8	Clay sich , red brown rands with mangelow gte . tithic frage, v. show dilling	77 78	22	4	22	(1	3.25	120	
				48	(4	32	(1	4.20	125	
		Power al. fresh gly never for birt when with 5 h all amphile sch , 10 % gts		140	4	50	(1	5.85	120	
	<u>'.'.</u>	A A rea M. roh. (250)	80	<u> </u>	 	 				
	/				 	 				
	36/250W			ļ	 -	 			l	
0	2_	Fire grange brown sandy soil.	126781		 	 	-			
	4	Orrage brown - dk from Eght clays	82		-	 				
	٠ ،	A P	83		 	 	<u> </u>	<u> </u>		
	7.	A A extremely backy charge tooled to get	84	<u> </u>						
		return with backing association after continued creasing		<u></u>	 	_		<u> </u>		
		Hole headowd		_	 		 	<u> </u>		
				L		_	L		l <u> </u>	

Sheet of ..

 ϵ_{2}

COMLABS Pty. Ltd.

Sheet of

PROJECT: SHEPAK HILL	CONTRACTOR:	COLLAR CO ORDS 36	11000W	
LOCALITY . Programs . J.M	RIG TYPE	AZIMUTH :	S.D.O.Nº	
HOLENO RSH 46	LOGGED BY: K. T. Helen	DECLINATION	LABORATORY :	
	DATE: .1511-85.	DECLINATION	()	

		(55)		ļ						
<u> </u>	PTH	DESCRIPTION OF RETURNS	SAMPLE					RES	ULTS	IN PPM
FROM	то		NUMBER	Cu	Pb	Zn	Ag	Fe	Mn	
0_	2	Orange born for jande	126785	14	10	22	(1	1.58	120	
	4	Tight and bound - dk Lower along	86	12	8	20	(1	2.40	90	
	6	A A	87	12	6	18	(1	3.05	70	
	7	V. hard messive cream gray glade, mines all gray dust.	88	6	4	9	(1	1.24	28	
RSH 47	36/1100m			ļ						
0	2	hight books fine sonly seil mines colorates	126789	12	<4	14	(1	1.34	95	
	4:	Per - al. fresh grow gray gto mice schiet	90	20	4	34	(1	2.60	100	
K5H 48	7/ /UZOW	·			 			<u> </u>		
0	'	Sandy soil a de green fin gre nassire, felig emphilolite	126791	7	(4	10	(1	0.81	105	
R5H 49	36/1250W			·			-			
	2	Fire enody wil, por al fresh mice schiel a grante grown.	126 792	12	(4	18	(1	1.79	140	
RSH 50	26/1330W						 			
0		Fire saily soil + pro pto mica relact - pink aplitic granitoid	121793	12	4	18	〈1	1.19	160	
KSH SI	3/140011	<u> </u>		· · · · · ·	· -	 	 	<u> </u>		•
i I	'	Fire cooly will - calcut, " Ive gla bid felly acres	126799	6	8	12	(1	1.28	95	
?	3 .	For early will - calcul, In gle hit filly grant	95	5	12	14	(1	1.85	115	
RSH 52	76/1500W				<u> </u>		 			,
0	2_	Fin orange bono soul	126 796	4	(4.	7	(1	0.54	48	
	<u>+</u>	to -ret fresh had never area glade, ver faring	97	7	4	10	(1	0.99	95	
	5	ρ /!	95	8	12	8	<1	1.43	32	

S COMLABS Ply. Lid. RAB / PERCUSSION DRILL LOG JOB COM 852204 ANALYTICAL REPORT PROJECT: SHEONE HILL CONTRACTOR: UNDERDALE .. COLLAR CO ORDS: 145 / 1800E 0/N 07353/FK23/RB LOCALITY: RIG TYPE: \$41500 AZIMUTH: S.D.O.NO:

HOLE NO RSH 53 LOGGED BY R.CB DECLINATION: LABORATORY:

DATE: 27/1/05 FOR RSHISS - RSH63 DEPTH SAMPLE RESULTS IN PPM DESCRIPTION OF RETURNS FROM TO deled 30 m south of line - 13.00 pr. NUMBER K= 545C=10-5 35101 orange hounn, chy, mixon cake to KIYO 102 103 104 106 108 110 1/2 K=90 120 121 12 Z 123 124 Sardy green and light from clay. 125

FROM

50

DEPTH/m)

то

22

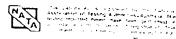
Sheet 2 of 2

RAB / PERCUSSION DRILL LOG

PROJECT: Sheak Hill CONTRACTOR: COLLAR COORDS 45/1800 E
LOCALITY: RIG TYPE: GRIFFIN AZIMUTH: S.D.O.Nº HOLE NO CHELLES ST. LOGGED BY R.C.B.
DATE: 27/11/85

ESCRIPTION OF RETURNS	SAMPLE NUMBER
	35/2/
	12.7
	128
4 4	129
	130
	/3/
K=4	
caphibale K:35	
k massive amplibale; dalogte K + 20	134
155 WE AMPHOOF; dolerife K. 250	/35
" " ; dolenite : F.O. H . K= 120	35136
4.45 HR coly BLASE DELLING	
deiled 30 m sould of live.	
ite, with colcrete, soil	35137
ile calcare	138
	139
greened, clay	140
e, in layers	14/
	42
	143
	· 1
na day	144
na day	144
	144

COMPUTERISCO ANALYTICAL LABORAT

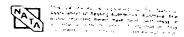

			RES	ULTS	IN PPM	1		
Cy	Pb	Zn	Ag	Ni	Fe	Mn	Au	
						1	†	
				1			Ì	
			1				†	
				1	<u> </u>	 		
36	20	115	<1	185	8.10	1750	<u> </u>	
80	24	100	<1	155	5.60	2450	∤ ├──	
60	12	85	<1	120	6.70	1000	 -	
50	12	70	<1	115	6.50	1600		
55	14	55	<1	110	5.55			TS-meladolerite
		<u> </u>	 	 -				13 - metadoleRite
			 	<u> </u>	-			
		 -						
	:		 	 				
			 	 -				
								
	<u> </u>		 					
		<u> </u>	 					
			 	ļ				
		<u> </u>						
			 					
				<u> </u>	J			

|--|

	1 1 111	· - · · ·	
PROJECT:	Sheak Hill CONTRACTOR:	0011.00	1 1.5/1000
LOCALITY		CULLAR CO ORDS	L YJJIYOUE
		AZIMUTH :	S.D.O.Nº
HOLENO	CONT RS MS/ LOGGED BY:	DECLINATION	1 ADODATODA

	- n	PTH		
	FROM	то	DESCRIPTION OF RETURNS	SAMPLE
	22	24	light brown and mesos whole clay	35148
	 	26	" "	1
	ļ. ——	20	brown clay	149
		30	н 11	150
S. Walin	r	3>	grey brown chy	15/
	l	34	brown chy	/52
	I	36	•	153
		38	while and brown clay	154
		40	light green and brown day	155
21, 2	l H	42	light grave clay with analities	156
	1	44	" ungrum	
		46	" " and grash	158
. ""	l	48	" well oune 12	159
	Lede	50	light green brown clay with quarte care suppliebelite	160
	لـــــا	52	light brown chay with wark unlarunded maphibite	161
		54	1//	162
]	50		163
	<u> </u>	حړي	() at 1 () at his	164
		60		165
l.	60	62		166
			. E. D.H. / Beaus only	167
	l:	_ · T		
[
[]				

COMLABS Pty. Ltd.



4	Pb	Zn	Ag	Ni	IN PPI	Mn	Au	 	_
	+15-		- - /3 /	+''-	15	1 11/1	+ Tu		_
	 					<u> </u>	<u> </u>	<u> </u>	
							1		_
	<u> </u>			+		 	 -	**	_
	 	 	- -	 	+	 			
	 			+	-		<u> </u>		٠
					<u>L</u> .				
								f.	_
				—		1			
				 	 	 			_
	 -	- 		 	 	 			_
	 			·	ļ				
	<u> </u>				1				
									-
				† — —					
105	38	360	<1	130	6.90	1550	1		
65	38	220	<1		L		J		
46		 -		90	6.05	1850			
	16	90	<1	46	3.65	690		:	_
34	16	90	<1	46	3.10	570			-
50	14	130	<1	50	3.50	400	-		_
50	18	165	<1	70					_
70	20	ļ			5.75	520			
	20	230	< 1	95	6.85	480	(0 ∙05		_
									_
							- 1		_
		 	 			+			
		 	 						_
		ļ	-						
	ŀ	1					- 1	,	

PROJECT: CONTRACTOR		
OCALITY RIG TYPE:		
HOLE NO KS Y 57 COTA LOGGED BY	ă.	

COLLAR CO ORDS :	*****************
	S.D.O.Nº;
OFCI MATION .	

COMPLASS Pty. Ltd.

DEPTH B			
ROM TO	DESCRIPTION OF RETURNS	SAMPLE NUMBER	RESULTS IN PPM
50 52	Tight bown , by well Bloke I contemporated	35162	
5/4	desert freen the will about modelle	163	
156	Land Mary by Mary delarte		
58	Ran dolerto	165	
58 60	Continuedate Oreal Dans of Linds	166	
1 62	" Great & Vary delank COH K=	1167	
	COH ROOK Chiny 17 wo HR rewills	/	
0 2	145/2000 28/11 8.00 40.		
0 2	occupe Sand and caloreis	35/612	
	verge carr chy sand	169	
6 8	orange they lift soul	170	
10	cream chy, sand	/7/	
. /2	and brown chy want	172	
14	- Acres		
16	sed clay, sand, and men s Monde	174	
.18	white silvelle and from clay, send	125	·
20	Cream clay sand (grack)	<u> 176</u>	
22	examy warm clay work said	137	
24	crary while cry goods	178	
2.6	reddlich white they with mil	<u>179</u> 180	
28	propositional def , seed	187	
30	reduction the chy read	/62	
32	tight gry cin	183	

|--|

PROJECT:	CONTRACTOR		145/2000E
	RIG TYPE:	AZIMUTH :	,S.D.O.Nº .

DATE 28/11/85

COMPUTERISED ANALYTICAL LABORAL

DEF	PTH DESCRIPTION OF RETURNS		SAMPLE	RESULTS IN PPM								
FROM	то	RSH 55 confil		Cu	Pb	Zn	Ag	Ni	Fe	Mn	Au	
32	34	light prey day	35184									
	36	dark brown chy	185									
	38	bourn dry and whole thy	186						-		 	
	40	light from and while chy									-	
40 -	42	yellow brown clay	187								1	
	44	sardy bears "	180				<u> </u>				-	· · · · · · · · · · · · · · · · · · ·
	46	sundy brown "	190	-							1	
	48	gellow pren "	191								<u> </u>	
	50	lyll green	192									<u> </u>
	52	opany brown "	193									
5 ⁻ 2 -	54	water ! Brown clay , Quartz, sobenyele , got contraction	194									,
	56	· ·	195								1	
	58	" some lowerful queto	196								1	
	60	И	197									
	62		198		;							
	64		199									
	66		200							-		
	68	, , , , , , , , , , , , , , , , , , ,	201									
	70	2)	202									9 1
	72	het blucked and, brown clay quarte, goth continued	203									
	74		204	26	34	30	<1	14	1.69	150		
	76	. , ,	205	24	36	34	<1	18	1.91	150	-	
	78		206	28	40	42	<1	20	2.55	195		
	80	11 11 11	207	28	40	44	<1	20	2.75	210		
PO-	\$2	. quarhide .	35200	28	42	50	<1	22	3.10	195	4005	*

.. CONTRACTOR COLLAR CO ORDS ... 45/2100E LOCALITY :..... HOLE NO . RS4.5.6.

RIG TYPE: AZIMUTH: S.O.O.N°.

LOGGED BY: S.C.B. OECLINATION: LABORATORY:

DATE: 29/11/85

The Decide Englished Section 1995 Section 1995

Sheetof

COMLABS Pty. Ltd.

0183

[
FROM	то	DESCRIPTION OF RETURNS ARifed 30 m such of line	SAMPLE NUMBER	RESULTS IN PPM
0	2	light been my deed white colorete	35209	
[]	4	mange bown chy, with	2/0	
r. L.	6	, ,	3//	
F	P	light many "	2/2	
<u>. ـــــــا</u> ر	10	verge from	213	
¹ L	/2	light from " "	214	
I	14	light brown	2/5	·
<u>, </u>	16	peoplish brown and white clay self	216	
 	18	" "	2/7	
, L	20	. 4 9	210	
	22	jey and while clay	219	
l [.] L	24		220	
<u> </u>	26	while self and innerest	22/	
[<u> </u>	20	my while stiffsaul	222	
,	30	· · · · · · · · · · · · · · · · · · ·	223	
t [32		Z2 <u>ý</u>	
ı	34	while karhade day, will fore questo resemin	225	·
ł. J .	36	, ,,	726	
l. L	3,2	,, ,,	23.2	
1	40	n y	228	
	12	" " " " " " " " " " " " " " " " " " "	239	
1 L	44	, a de la companya de	230	
	46	u P A	23/	
1	. 48		293	
	ن د		233	
1				

COMPLABS Ptg. Ltd.

0184

ı		21122 200
i r	PROJECT:	CONTRACTOR COLLAR CO ORDS 45/2/20 RIG TYPE: AZIMUTH: S.D O.NO:
	HOLE NO CONTRS!	LOGGED BY: DECLINATION: LABORATORY:
Г		
ł	DEBTH	

DEPTH DESCRIPTION OF RETURNS	SAMPLE				
Thom To	NUMBER	Cu	Pb	Zn	F
50 52 while las linke day, fore Quick, rans min	35234				
54 11 11	235				
56 , ,	236				
58 11 11	237				
60 "	238	,			1
60- 62 water puretile small laye this K=10	239	8	42	5	<
69 "	200	6	100	6	~
66 "	241	5	60	5	<
68 "	242	10	55	5	~
68 70 ", E.OH 16.30 AR No parliens	243	6	44	6	<
(440gethepers worker land from BP Kimba - \$10/1mg	/				
PSH 57 645/2200 F shel 1734/ 28/11/85					
0 2 brown soil, clay	35244				
2 4 light from silt, sikepoke	245		:		
6 light horn sell, clay	246				
P u n	247				
/0 " "	248				
12 orange from sell menor Quarte	249				
14	250				
16	251		,		
18 red brown silt,	252				
20 white cream clay, sili	253				-
22 mance day, self, miner france (works (hool puplish)	254				
2 24	255				
					

			RES	ULTS	IN PP			
Cu	Pb	Zn	Ag	Ni	Fe	Mn	na	
						 	 	
			 			+	 	
	 		 		 	<u> </u>	ļ	
	<u> </u>			<u> </u>	ļ	ļ		
			ļ					
8	42	5	<1	6	0.49	46		
6	100	6	<1	8	0.62	70	 -	
5	60	5	<1	8	0.61	60		
10	55	5	<1	10	0.64	55		··
6	 -	6	<1	8	l			·
	44			- °	0.62	48	(0.05	TS sell-Q-gneiss
						<u> </u>		
	:							
		-						
								
				ļ 				
								* .
					·			
		 	`					
		+					<u> </u>	
		 						
		 						
_		l]		7				
			3					

|--|

11/4/90

HOLE No . CONTRACT.

RAB/PERCUSSION DRILL LOG

PROJECT:	 	CONTRACTOR	٠.
LOCALITY:	 	RIG TYPE:.	

COLLAR CO ORDS: 4.5/22006

LOGGED BY: DECLINATION LABORATORY

Sheet of

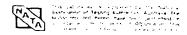
0185

COMLABS Ply. Ltd.

Γ													
•		PTH	DESCRIPTION OF RETURNS	SAMPLE			•			IN PP			
$\lceil floor$		то		NUMBER	Cn	Pb	Zn	Fg	Ni	Fe	Mn	Au	
<u>.</u>	24	26	prince self, chy, much for percel, givente	35256									
$[\ \]$		28	" " " "	257					<u> </u>				
ᆛ		30		258									
┖┟		32	creamy white sitticing	257									
ı L		34	creamy white silicity	260									
'		36.	while lavlente clay	. 261									
		3 P	,	202									
.		40	4 11	263									
		42	gransh white ,	264	·								
į		44	present white " and 11.30	205									
┖┃		16	start 29/1 exota. Ocean white itey	266									
┡		48	opan white day	267									
``L		50	open white day	268									
╽╽		. 52	water ! white relay , here you to grown mis	2.69	5	65	5	<1	8	0.31	65	1. 1. 1.	
ı		54	water whate relay, free you & grain, more min	269 270	4	105	<2	<1	6	0.35	65		
╏		56	1 clay, said 1 6041	271	7	145	2	<1	6	0.31	50	<0.05	
i L			6.01/2 BUTTOM HOLE COLLAPSIO. G. SOHA.							L			
		<u> </u>	the start of the s										
Ļ													
L			·	·	`								
				`·							<u> </u>		
١.													
											<u></u>		
L													
						1							

RAB / PERCUSSION	DRILL	LO

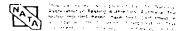
PROJECT: CONTRACTOR COLLAR CO ORDS 4 5/1700 E


LOCALITY: RIG TYPE: AZIMUTH: S.D.O.N°:

HOLE Nº RS#1.58. LOGGED BY: 158 DECLINATION: LABORATORY:

DATE: 29/11/05

い。注意に


COMLABS Ply. Lid.

·	000711			
FROM	EPTH TO	DESCRIPTION OF RETURNS	SAMPLE NUMBER	RESULTS IN PPM
PROM	- 	while colorede		
·	+	,	35272	
	4_	huron and which sand	2/3	
	- 8	red brown ely, pavel	274	
	8	4 . 11 . 4	275	
·	10		276	
·	/2	V 0	272	
	14	reddich white alliclay	278	
	16	7 17	279	
, .	18	hell hown , - n	280	
	20	bounn a	281	
	22	,,	282	
	24	. , ,	283	
	26	gray brown "	284	
	28	cream	285	
	30	craan	286	
	3 2	11 gld brown	287	
	34	u .	288	
	36		289	
	3 00	proxo	290	
	40	pend brown chy, sell,		
40		- half rea will weestherfeldelinke chins	241 242	
	44	light per will extended following chess only for ounts	293	
	46	" weathered completelet?	294	
	40	<i>u</i>	295	
85		*/	296	,

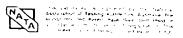
PROJECT:	CONTRACTOR:	. COLLAR CO ORDS:	= 45/1700E
HOLE Nº 854.58 cal	LOGGED BY: 2 8/u/s	DECLINATION :	LABORATORY:

COMLABS Ptg. Ltd.

ANALYTICAL REPORT

DEPTH TO		DESCRIPTION OF RETURNS	SAMPLE		RESULTS IN PPM				N PPM			
FROM	то		NUMBER	Cu	Pb	Zn	Ag	Ni	Fe	Mn	Mu	
50	52	green silt , on heps, watered enableds?	35707					i	:			
	54	graen silt	298									
	56	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 ′									
	50	browned green is	299				····	1				
	60	1	300									
	62	brownsh order . "	30/		 	 						
62	611	the greenesh brown silt, with emphibilite type, for Quark	302	85	22	135	<1	75	7.05	700		
64	66	The year of the start of the start of the starts	303	LNR	LNR	LNR	LNR	LNR		390		
66	62	Law amphibility goder (polesperity small) \$620 anythibility goder (polesperity small) \$620	304	LNR	LNR	LNR	LNR	 	LNR	LNR		· · · · · · · · · · · · · · · · · · ·
68	70	NAW amphibility goden (polaryenty small) K-20	305		LNR	 		LNR	LNR	LNR		
} :	70	amphibile, green, contamended (60%) F.20 amphibiles, green, contamended (60%) . E. O.H 24/11/85 17.00 HR (8 m temmer)	306	LNR	 	LNR	LNR	LNR	LNR	LNR		
70	72 m	amphibility, open, continuated (60%) . E.OH	35307	LNK	LNR	LNR	LNR	LNR	LNR	LNR	LNK	
 		4/11/85 17.00 HR (8 m homes)	<u> </u>		 	-			· ·	.		· · · · · · · · · · · · · · · · · · ·
		<u> </u>							<u> </u>	······		
				ļ ————	ļ.,					ļ		
		i e e e e e e e e e e e e e e e e e e e			<u> </u>	ļ						
					<u> </u>							
										ļ <u>.</u>		
· ·	<u> </u>		-									
			,									
									<u> </u>			
							 					
	. 7						 					
	<u> </u>						 			 -		
						ļ						
												,

Salar Salar


Sheetof ...

|--|

, ,	
PROJECT: CONTRACTOR MORPHIC COLLAR CO ORDS 4 15/150	OF
LOCALITY RIG TYPE: FRIFTIN AZIMUTH S.D.O.NO	

LOCALITY: RIG TYPE: SMETIN AZIMUTH: S.D.O.NO:
HOLE NO ASH.59 DATE: DECLINATION: LABORATORY

COMLABS Ptg. Ltd.

	тн	DESCRIPTION OF RETURNS	SAMPLE			····	RF	SULTS	IN PP	М		
ROM	то	DESCRIPTION OF RETURNS Shot 18.00 29/11/8: While socrate soil people horn clau	NUMBER	Cu	Pb	Zn	Ag			Mn	pu	
0	2	while solome soil	35308									
	4	people horn clay	30g									
	/	orange brown self sent	310									
	P	crown send	3//									
	10	red known clay, ferricrate	3/2									
	/2	rugal brown clay, ferrurale	313									
	14	cream clay.	314									
	16	orange horn clay, formerate	3/5									٠
\dashv	18	orean brown clay ,	316		ļ	ļ						Fund A et
	20	oream brown clay "	3/7.									
	Z.≥	hall known clay self	318		ļ			ļ				
	≥4	N 11 2 11 1	319		ļ							:
	26	11 11 11 11	320		ļ		ļ			· ·	<u> </u>	
	28	granst hour self.	32/		ļ					<u> </u>		
_	30		322		<u> </u>		ļ					
-+	3≥	nearth from	323			ļ				ļ		
-	34		324		ļ			ļ		ļ		
 	36	30/11 8.14ha light gran	325	ļ			<u> </u>					· · · · · · · · · · · · · · · · · · ·
	30	Refl Grown	326		ļ		ļ		ļ	ļ		
=+	42	ngh bunn	322		ļ	ļ	ļ	ļ 	·			
		1981 Krown	328	-			ļ			ļ 	 	
	431	hyll pres from sill	329		 							
			330	20	6	100	<1	42	4.70	195		
- ا		green sill contaminated gill anglikelle (delikel (seech)	33/ 35332	16 LNR	8 LNR	48 LNR	<1 LNR	22 LNR	2.75 LNR	ļ :	LNK	THE STATE OF THE PERSON OF THE

7" "

HOLE No . R.SH. J.A.

PROJECT: CONTRACTOR :

LOCALITY RIG TYPE

RAB / PERCUSSION DRILL LOG

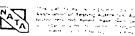
CONTRACTOR	
. RIG TYPE:	
DATE 34/11/85	
DATE 34/11/85	·

COLLAR	CO OROS	1	44/1720
AZIMUTH			S. 0. 0. Nº;
DECLINAT	ION		LABORATORY

COMLABS Pty. Ltd.

ANALYTICAL REPORT

, DE	PTH	DESCRIPTION OF DETURNS	SAMPLE			Reci						
FROM	то	DESCRIPTION OF RETURNS	NUMBER					Mn	Ay			
RSHIA	44/172	05			10		1.75		-:-	1111	MY	
0	2	- cean white colorer	35333			-				 		
r _ Ł	y	" " ned the				 					<u> </u>	
	6	red brown clay	334	ļ. <u></u>			<u> </u>	 		-		
r	P	oranje brown sand	335			 					<u> </u>	
L	10	creen brown clay	336	<u> </u>		 						
f [12	red brown one class	33.5			 						
`	14	red brown grey clay	338			 -						
	16	sed while when a while	339	<u> </u>				 		-		
	18	sed while silvete, quark (sugary) white silvete puzzli hrevn firey clay	360				<u> </u>	ļ <u>.</u>	ļ	-		
	20	much bour dest	341	<u> </u>		<u> </u>			<u> </u>	·		<u> </u>
	27	mark h. det	392					ļ				· · · · · · · · · · · · · · · · · · ·
1.	24	perale brown det gray clay	343					ļ		ļ	ļ	
	26	dell h	344	<u> </u>	***	ļ				· · ·		
` 	Z.J	Strik stuck sind pixa. granified	345									
	- 1-	Blade stuck sinel & 182A: "pranchad	346	LNR	LNR	LNR	LNR	LNR	LNR	LNR	ļ <u>.</u>	
	30	granhed	347	LNR	LNR	LNR	LNR	LNR	LNR	LNR		
╎ ╴──┼	32	· <u></u>	348	LNR	LNR	LNR	LNR	LNR	LNR	LNR	<u> </u>	
r !	34	3	349	16	14	9	<1	24	2.70	140		
ŀ. 	36	grandry	350	24	16	12	<1	44	4.85	210	L	
[]	387	guneto: d	351	16	10	9	<1,	26	2.45	170		
	-40	muched K=10.	352	14	18	7	<1	18	. 2.20	240		,
	44	grande Concocratio Quel felder mia 504	353	10	12	7	<1	4	1.40	105	<005	
ļ ——		18.15 604.										
-				_								
						•		·		I—		
<u> </u>												


Sheet of

PROJECT: CONTRACTOR: COLLAR CO ORDS: 11/17/605

LOCALITY: RIG TYPE: 941110 AZIMUTH: S.D.O.NO:

HOLE NO RSH 2A LOGGED BY: RCB DECLINATION: LABORATORY:

COMPLETES Pty. Ltd.

		, , , , , , , , , , , , , , , , , , ,	·								
	PTH	DESCRIPTION OF RETURNS	SAMPLE				RE	ŞULTS	IN PPI	<u>4</u>	
FROM	ТО	15.30 He	NUMBER	CU	Pb	Zn	Ag	Ni	Fe	Mn	
	2	while calorate, oil	35371								
2.	4		372								
	6	brown chy, sift	1 ' '					†			
	P.	oream sage	37.3		 			 			
	10	hyll trans sand	37.4			 	 	 	L		
	/2	hall bours	375		 		<u> </u>				
	14	hight brown send	376	<u> </u>			 	 			
:	16	orenze houn	377	-	 		ļ	 			,
·	حور ا	grange River	378				ļ	ļ			
-		7 7 200 2 7 200	379		ļ		ļ		·	L	
-	20	red while silvert, ferricrete	380		ļ		· .	ļ			
- 1 - 2	22.	gregorela clas (with red dust)	381								
1 1 100	25	is level from mark send self	212								
	26	cream send (black stack du to choy - 2 Ma)	343								
	28	and yespes . Quark feldepar sand	384					<u> </u>			<u> </u>
	30	, , , , , ,	3.2		· -	 -		<u> </u>	<u> </u>		
30	32	milky white energy quark (1 12) Ill	201		ļ	 	<u> </u>	 			
	34	(i /hoch ?) player	340	<u> </u>	 	 	 	ļ			
	. 36	and Programmed I was a	587		 	 -	<u> </u>	 			
	38	(C / (PRODITOR) Quark (Alexander)	387		 	 	 -	<u> </u>			
		Red ferniciale, 9, foldypan	389		 -	ļ <u>.</u>		<u> </u>			
	42	red ferricede (polotypan granter), fellypan red ferricede (polotypan "" "" "" "" "" "" "" "" ""	390	10	55	4	<1	16	6.00	20	
-	- 42	white of years felogier granitud, fine ground	391	6	18	4	<1	14	3.85	12	
		equitar " " "	392	LNR	LNR	LNR	LNR	LNR	LNR	LNR	-
 	4.6		393	4	8	3	<1	4	0.95	10	
	48	,	394	5	12	4	<1	4	0.79	12	
	50		395	6	18	5	<1	<4	0.78	12	

PROJECT:	. CONTRACTOR	COLLAR CO ORDS 44/1760 E	
50.44	LACCED DE PLA	M21m0111	
HOLE Nº 254.2.A	DATE: 1/13/86	AZIMUTH	

COMLABS Pty. Ltd.

Assert rathers of Eastern Automotive Automotive States of the States of Stat

ANALYTICAL REPORT

1	DEF		DESCRIPTION OF RETURNS	SAMPLE				RES	ULTS	IN PPM		·	
	FROM	TO .	•	NUMBER	Cy	Pb	Zn	Ąg	Ni	Fe	Mn	Юu	
,	50	52	white quark feligran granbord (felig Q?)	396	6	16	. 6	<1	4	1.02	20		
1		54	y		6	18	6	<1	4	0.99	18		
r		56	" K=10.	397 398	5	24	8	<1	4	0.93	26		
`	56	58	" E.UH 11.30 HR 1/2/25	399	5	22	7	<1	4	,0 . 81	24	<0.05	
$\{\}$			never angular quark, floper press, very rarely quark klesper Rock							<u> </u>			
,			reversemble or general		·		 						
¹							ļ					.	
ŀ				 			 		ļ				
<u>`</u>					-								
	:						ļ <u>.</u>						
ı				<u> </u>		····	ļ						
1									ļ		_		
l				-									
													
												· · · · · · · · · · · · · · · · · · ·	
							 						
					 								
							 		! -				
L												· · · · ·	
L											-		
L				· · · · · · · · · · · · · · · · · · ·									
L					_								
							· · · · · · · · · · · · · · · · · · ·						
L				ι									

Sheet 2 of 2

19.5				
	RAB / PER	CUSSION	DRILL	LOG

....

COMLABS Pty. Ltd.

M.XJ	They was the explosion processing the state of the state
MATA ATA	enables imported these mass takes pain among a control of the properties of the
	the state of the second section of the second section of

ANALYTICAL REPORT

Т	LOCALITY RIG TYPE	COLLAR CO ORDS 141 1850E AZIMUTH: S.D.O.Nº: DECLINATION: LABORATORY:
---	-------------------	--

DE	PTH	DESCRIPTION OF RETURNS	SAMPLE	RESULTS IN PPM
ROM	то	5TART 13.40 49	NUMBER	
0	2	calcrete white	35354	
	y	while calorate, gray clay	355	
	6	calirate, quark sand silt, everye from	356	
	ص	manye sand/silf	352	
	10	· manye from synd/xit	358	THE PROPERTY OF THE PROPERTY O
	/2	grant while and brown clay	359	· · · · · · · · · · · · · · · · · · ·
	14	moun day, sell	360	<u></u>
	. 16	redborn send, silt	361	
	18	while steerete, name anythe mily while	362	
	20	"	363	
	22	redard preant prey clay	364	
	24	, , , , , , , , , , , , , , , , , , ,	365	
	26	howo day	366	
196	. 28	had sheet start with worm , Willem clay rend	367	
	20	entangular fra quark, famurik	361	
	32 34	, , , , , , , , , , , , , , , , , , ,	369	
	36	for quests smoot itect (inter lav to mila!), forwarde	320	· · · · · · · · · · · · · · · · · · ·
	30 3P	anophi silvek/calerde for work, forminds	35400	
	40	parted printing	401	•
	12	* v 9	402	· · · · · · · · · · · · · · · · · · ·
	44	red instone / sensite (brook?), be grant, sampli dua 3 clay	404	
	46	while chy, mily while Quarte, glary for grank	405	
	48	11 11	406	
	50	11 1 h	407	

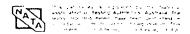
Sheetof

PROJECT:	CONTRACTOR		644/1850
LOCALITY	RIG TYPE:	AZIMUTH :	.S.D.O.Nº
		DECLINATION :	

COMLABS Ply. Ltd.

Association of Testing Automatics, automatical testing and testing at the state of the state of

ANALYTICAL REPORT


DE	PTH			SAMPLE RESULTS IN PPM								
FROM	то	DESCRIPTION OF RETURNS	SAMPLE NUMBER	Cu	Pb	Zn	Ag	Ni	Fe Fe	Mn	pu	
50	52	greened while eley, for exerced mily while glory goods	35400	1		1	P3	101		 		
ح ک	54	such while fire ours, plury quests from mathery mobile is ent?	409					 		<u> </u>		
	56	greensh while they milly white, fary for praved Overty, sift	410			1	<u> </u>	 	<u> </u>	 		
	نه ی	" miles white and always he much housed with	411			†						
	60	few large a felgan ches Bacocoche grante (ne leography)	412	9	10	10	<1	8	1.33	46	:	
	62	has while alway ownh (tolker)	413	8	10	8	<1	4	1.11	28		
	64	free great, fellow, dry rold murbed ver men	414	10	14	16	<1	8	1.35	44	1	
	64	" "	415	14	14	18	<1	12	1.57	50	:	
	68		416	12	16	20	<1	10	1.49	50		
68	70	21	417	12	14	20	<1	10	1.39	55		
	72	for much, feller, day "[PETRO]	418	12	12	16	<1	10	1.31	60	-	TS Leucopeanite
_Z\c2	73	free Overh Keldson de henen granste El 11 12 17 1.	419	14	18	20	<1	12	1.60	65	⟨0.05	
		1/2/85 Orthault hole, wy reft clayer all the war have been bety to be benegarish - shough weathered (alternation, walking profil)										
		lay likely to be burgande - shough weathered										
		(allanahir; walley yepte)			:							
<u> </u>												
	·											
ļ							<u> </u>		 			
	· ·					ļ		 				l
							<u> </u>					
					ļ							
			· · · · · · · · · · · · · · · · · · ·				ļ					
			·				<u> </u>					

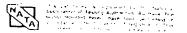
Sheetof

|--|

ROJECT:	CONTRACTOR :	COLLAR	co ords : .4.4.4	1/2150E
HOLE NO R 5H 61	LOGGED BY MCB DATE MC 2/12/85	DECLINAT	TION	LABORATORY :

COMLABS Pty. Ltd.

<i>[</i>			·	
FROM	EPTH TO	DESCRIPTION OF RETURNS	SAMPLE NUMBER	RESULTS IN PPM
0	- -	while calonel	35420	
	4	brown clay and calcrede	421	
·	6	orenze send, quark	422	
0.00	8	prown mud and sand	423	
	10	light from sand, soll	424	
, in the second	/2	greened whole clay sand	425	·
	14	red brown and granul white clay	426	5 -
ř	16	cul brown don't and greent white chy	427	
<u> </u>	18	oxam white alt, clay	428	
[22	red whole colt, they	429	
	24	pungle how dust, greened white clay	430	
	26	bary che gear	432	
	28		433	
1 200	30	very to 0. left book and, preved while-clay rose greek, ferriorate	434	
	32	, W 11 11 15 15 15 15 15 15 15 15 15 15 15	435	
	34	creen med " " "	436	
·	. 36	creen and n " (ve remote chp?)	437	
<u>.</u> -	3,2	oresa must	438	
 	40	orean med, fore gunts, empopolic you should	439	
·	—		140	
l_	46	11 - 11 - 11	442	
SAlty	60	417 WATER omy brown multbudge, for angular sugate, silenete	143	
710009	50		444	
		many silvake (we filips dep?)	177	ye s


人。以强00

Sheet ...

RAB/PERCUSSION DRILL LOG

PROJECT: CONTRACTOR:	COLLAR CO ORDS: 444/21507
HOLE NO R.SH. B. 1 (a) DATE: 2/12.	AZIMUTH :
HOLE NO R. S.H. 6. 1 W DATE: 2/12	DECLINATION:LABORATORY:

COMLABS Pty. Ltd.

Th			7													
``\		PTH	DESCRIPTION OF RETURNS	SAMPLE		•	· · · <u> </u>	RES	ULTS	IN PP	<u></u>					
ͺΓͰ	FROM	TO		NUMBER -	Cu	Pb	Zn	Ag	Ni	Fe		Au				
`.\-	٥٤	52	creen studge, light gray backy clay retrate (411), fire guests	35445						 						
		54	" " o fine quick	946				· · · · · · · · · · · · · · · · · · ·			·					
,		56	" "				†									
$\ \ $		500	, fine agula questo, light my day.	417	<u> </u>				<u> </u>							
r L		60	" free angular grants, one anythin gran!); day	668			 		ļ		 					
1	bo	62		419			-				 					
ı۲		64	" fee subenjular quark, half ory clay memily	450	·			<u></u>			ļ					
1		66	, tyle my and grow chis Quark	451			ļ		<u> </u>		<u> </u>					
ιŀ			must part, before, a clay	452			ļ	ļ			<u> </u>					
'	* .	682,	" Cosase anula work, rule work, hy	453	6	8	3	<1	8	1.76	16					
11	+	70	" chy	454	8	8	7	<1	12	1.84	20					
` -	+	72	markery cream "; angular quark, concer white feldrace clay	155	7	14	6	<1	8	1.59	18					
1	1	74	ceners anular quark phopen, chy goverts	456	7	10	6	<1 .	10	1.42	22		<i>T</i> .S	1	•.	
-	+	76	marked gray , free queste white felines are manchete, push	457	7	6	7	<1	6	0.64	16	(0:05		Leuco	PRANK	<u>*</u>
			E.O.H 13.30 HR REYED OBANIEL V 10													
, L			FASIER CHATTING they preven hole, duth more makes			: -		_ ·		·						
	•		The process now , which more water								-					
,							1									
				``											•	
rt																
┖┢																
1				·								,			-	
 																-
H																
 							1									
L																
Ľ							 		<u></u>							
				}			 	l 	l		·					
L				Į												

|--|

PROJECT:	CONTRACTOR:	COLLAR CO ORDS: 444/.	2725.E
HOLE NO . 8.5 4.6.2.	DATE: 44 2/12/85	DECLINATIONLAB	ORATORY :

COMLABS Ptg. Ltd.

<u>0196</u>

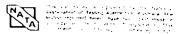
ANALYTICAL REPORT

DEPT		DESCRIPTION OF RETURNS	SAMPLE	RESULTS IN PPM
пом	то	money 1/2 he (putie the withing) what 16.30he	NUMBER	
٥	2	while calorely	35458	
	y	and many from send	459	
	. 6	light bisson send	460	
	2	vience brown send	461	
	10	4 , , , , ,	462	
	12	sed brown sand, formoring ounts		
	14		463 464 465	
	16	while sardy silf red berin finingle, somete	6/5	
	10	" " " " "	466	
	20	h 12 12 12 12 12 12 12 12 12 12 12 12 12	467	
	22	purale hour dust free while clay	468	
•	5.0	luck hour shile, greens shile clay		
	26	orean shuly hore Querk	469	
	20	in the sum	121	
	T		471 472 473 474	
_	32	"	1,72	
		y	475	
	-34	n	1	
- `	-3/-	· n ·	475	
_ †	38	"	476	
		0	477	
	-1/2			
-	44	light ocean shafe, sift greened while alwards fire anote	479	
	46		480	· ·
	98	<i>y</i>	481	
10	50	11	35482	

Sheetof .

PROJECT: CONTRACTOR: COLLAR CO ORDS: 44 2725 E

LOCALITY: RIG TYPE: AZIMUTH: S.D.O.NO:


HDLE NO ASHITZ COLL

LOGGED BY: DECLINATION LABORATORY

DATE: 11/2 2/12/63

DEPTH SAMPLE DESCRIPTION OF RETURNS FROM то NUMBER 35483 1 K=10 63.0m 19.00 /a. 2/12/85 2 3. 17 312 10

c COMLABS Ply. Ltd.

		 ,		<u> </u>				
	1 0			SULTS	IN PPI			
Cn	Pb	2n	An	Ni	Fc	Mn	Au	
				i				
								·
2	4	<2	<1	4	0.65	14		
4	10	3	<1	8	1.27	18	<u>:</u>	
3	6	3	<1	6	0.64	14	-	
2	4	2	<1	6	0.89	16	1	
2	4	2	<1	<4	0.49	<u> </u>	<0.05	
				1	0.47	- 0	:00:05	
				 -		ļ 		
						<u> </u>		
					<u></u>			
			7-11-					
		 		ļ··				· · · · · · · · · · · · · · · · · · ·
				 				
				 				·
						ļ		
				ļ			· .	· · · · · · · · · · · · · · · · · · ·
				ļ		ļ		
						ļ		
,						ļ	,	
		·		·		ا. ــــ ا	·	

PROJECT: Shepakill CONTRACTOR MADERIASIA COLLAR CO ORDS 1.44 1.50.

LOCALITY: RIG TYPE: QENTA AZIMUTH: S.D.O.NO:

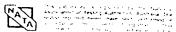
HOLE NO R.S.H. 6.3. LOGGED BY: R.C.B. DECLINATION: LABORATORY

DATE: This, 3/12/45

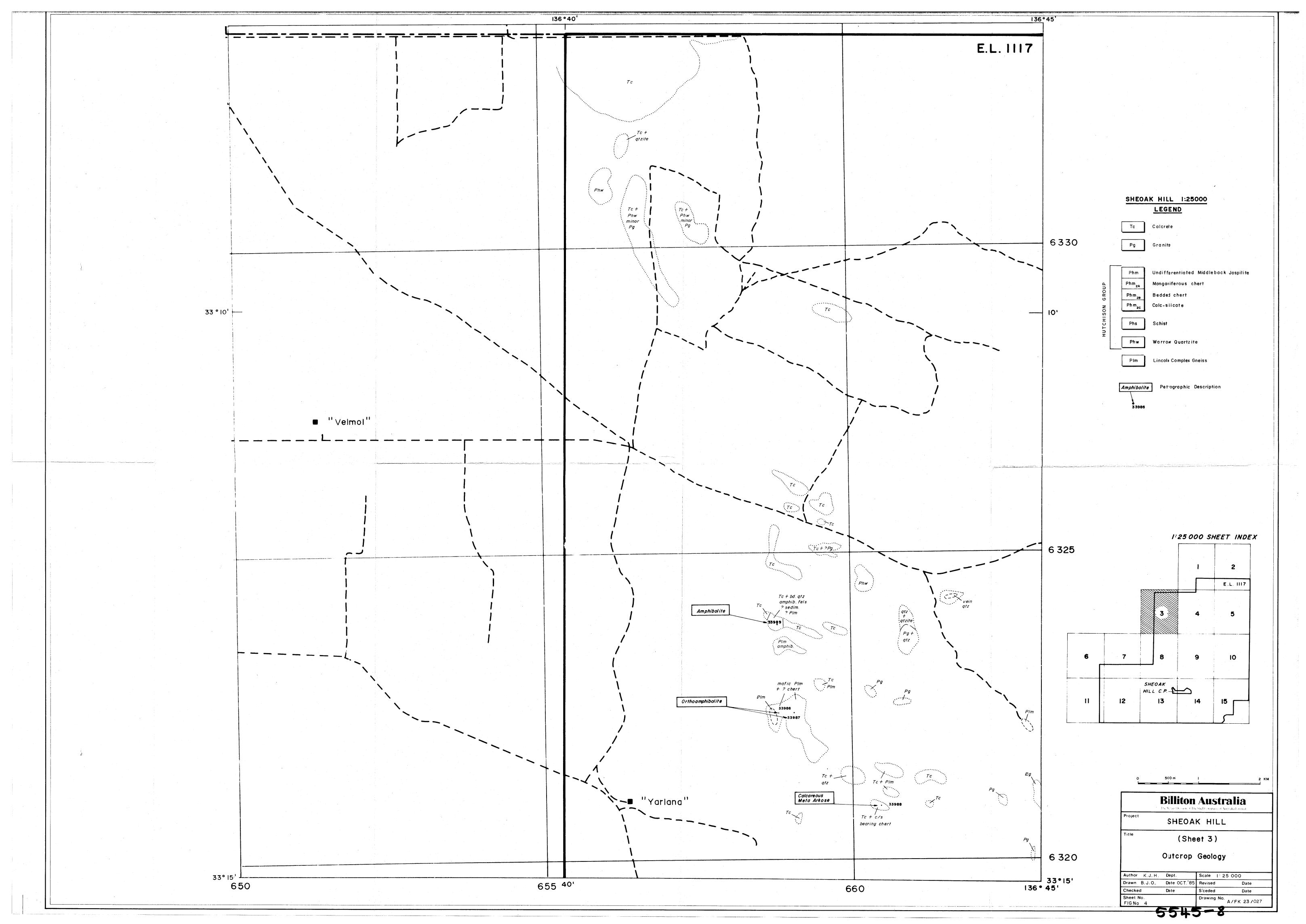
COMLABS Pty. Ltd.

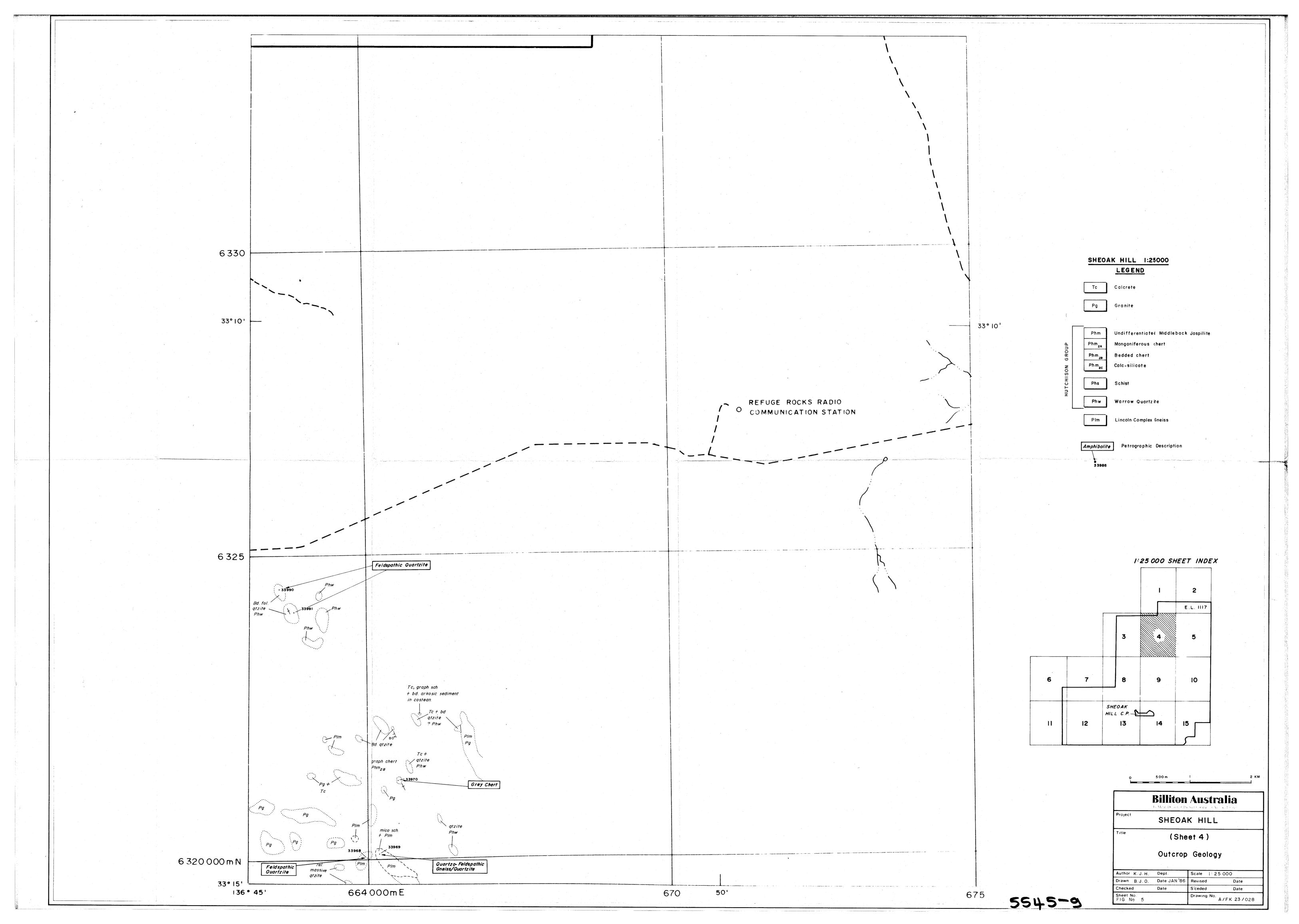
ANALYTICAL REPORT

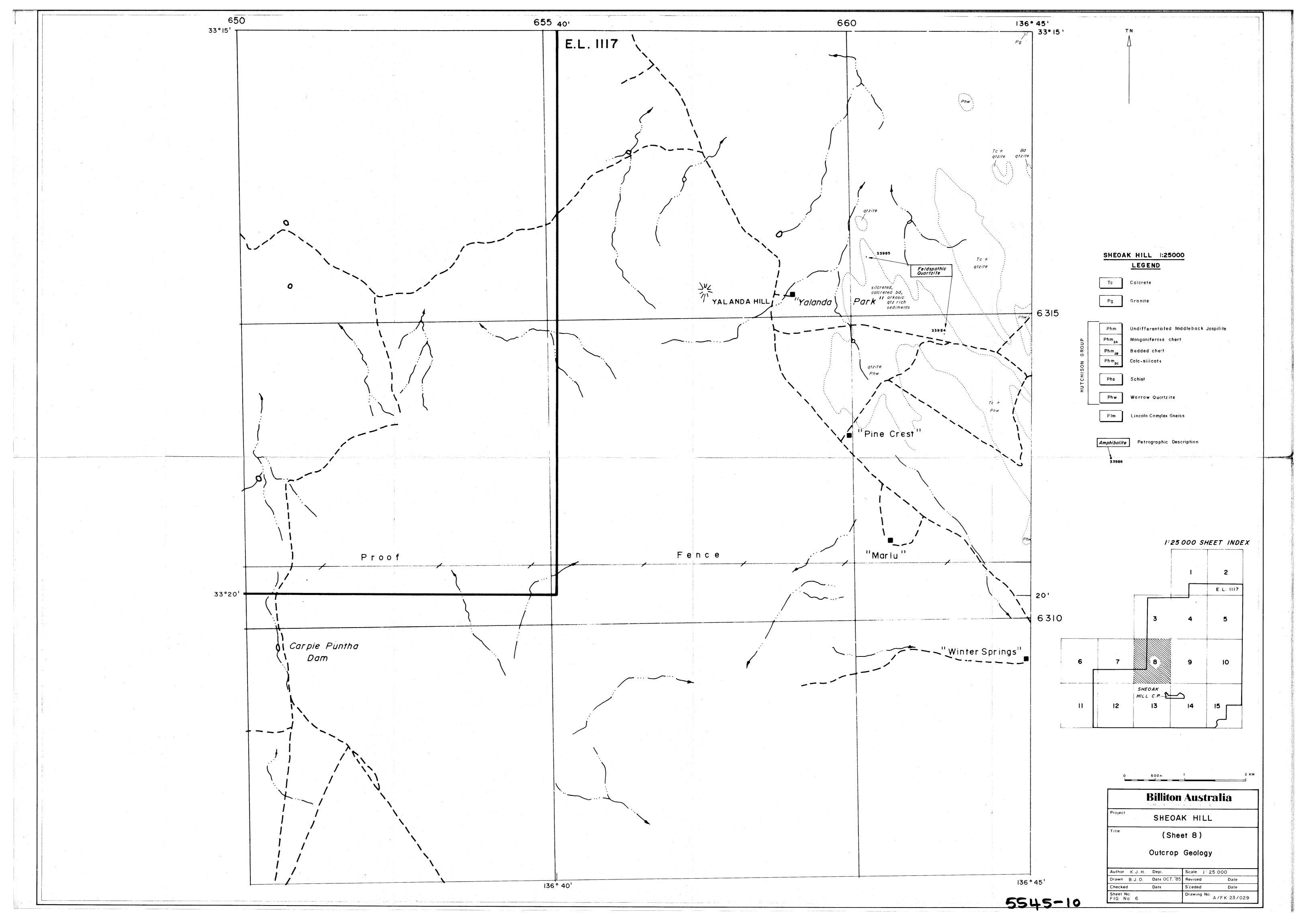
DEF		DESCRIPTION OF RETURNS					Re	SULTS	IN PF	M				
FROM	то		NUMBER	Cu	Pb	25	Ag	Ni	He	Mh				
. 0	2	while coloret , said	35490											
	4	" " sand reduly	491										· · · · · · · · · · · · · · · · · · ·	
	6	· · red clay	492											_
	<i>F'</i>	cruye grand sent	493											_
	10	brown sand and by	494											
	/2	red pour clay and send	495											_
	14	while quark send, wherebe	496	,		1			<u> </u>				33	
	16	1 1 h 1 1	497					1						_
	10	purple while serd, ferrurale, ground white clay	498					1					11.1	_
	20	puelle " "', "	499				<u> </u>	1						_
	22		500											
	<u> </u>	granish while clay, pupilish while dust, mino quark, ferrierete	501						1	1				_
	26	grand while relied, grant, more greened with chy furious				<u> </u>			<u> </u>					_
	28	red a t oreun dust, free quarks alcrete	503											_
	. ¿'u	red dust, fre wave work silvede	504	-				1	 					_
	32	orange from dust, for equile greats, presed while very which	505					1						_
	34	11 11 11	506			1.		<u> </u>		1		·		_
	3/	musland &	502			1	—	 -					-	_
	38	murlared .	SOP					†		-11			2	-
	40	ourge and for firmy and Quents, subreplan.	509				<u> </u>		†					_
ں	42	orean "	35510			 	 .		 		····			_
	44		511			1	1							_
	46		512			1		1	<u> </u>	+		······································		_
	40	" '	5-13			T								
	_50	und water, ferry now work, wear dut	514	8	30	7	<1	8	1.67	28	1			_

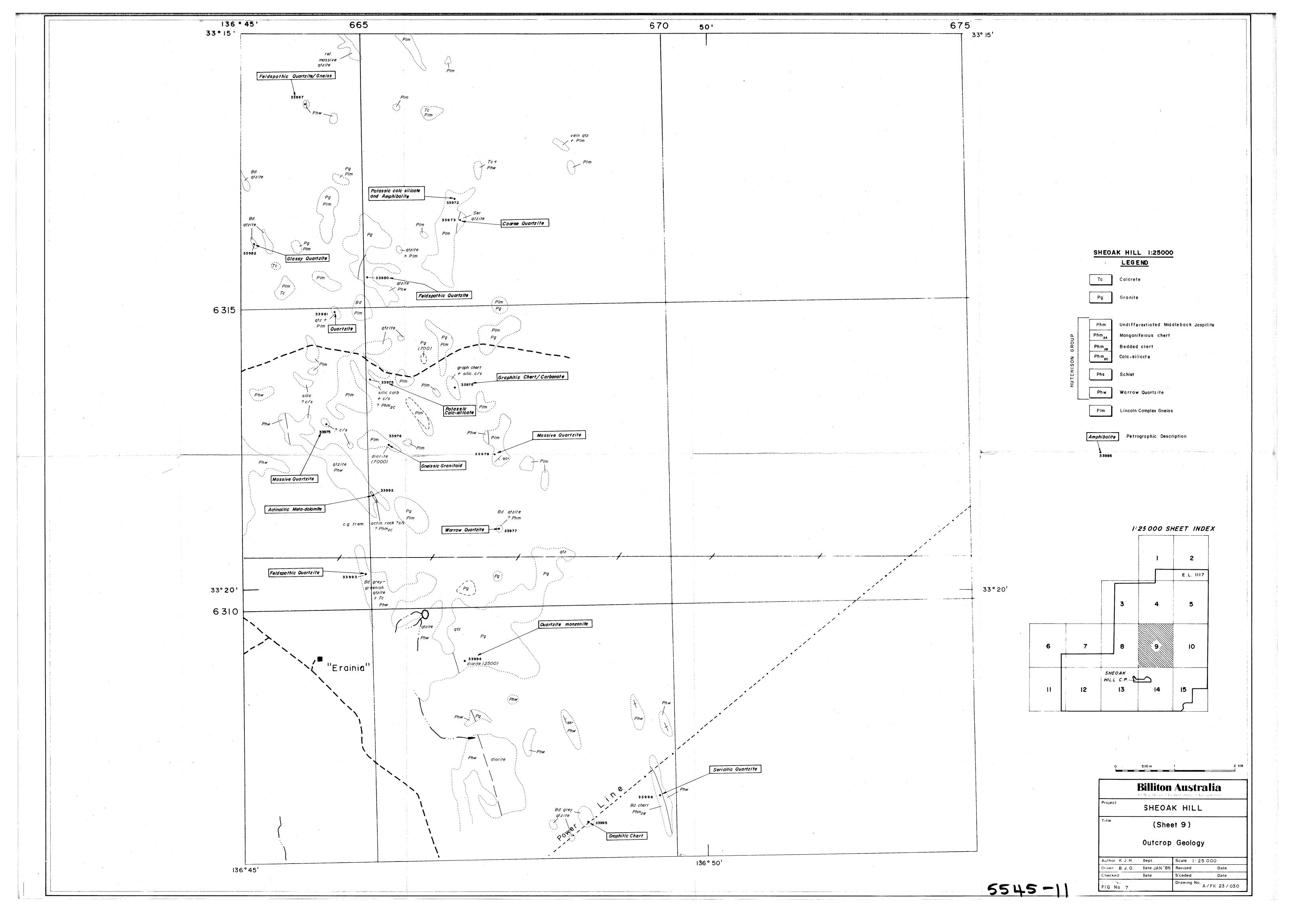

Sheet of ..

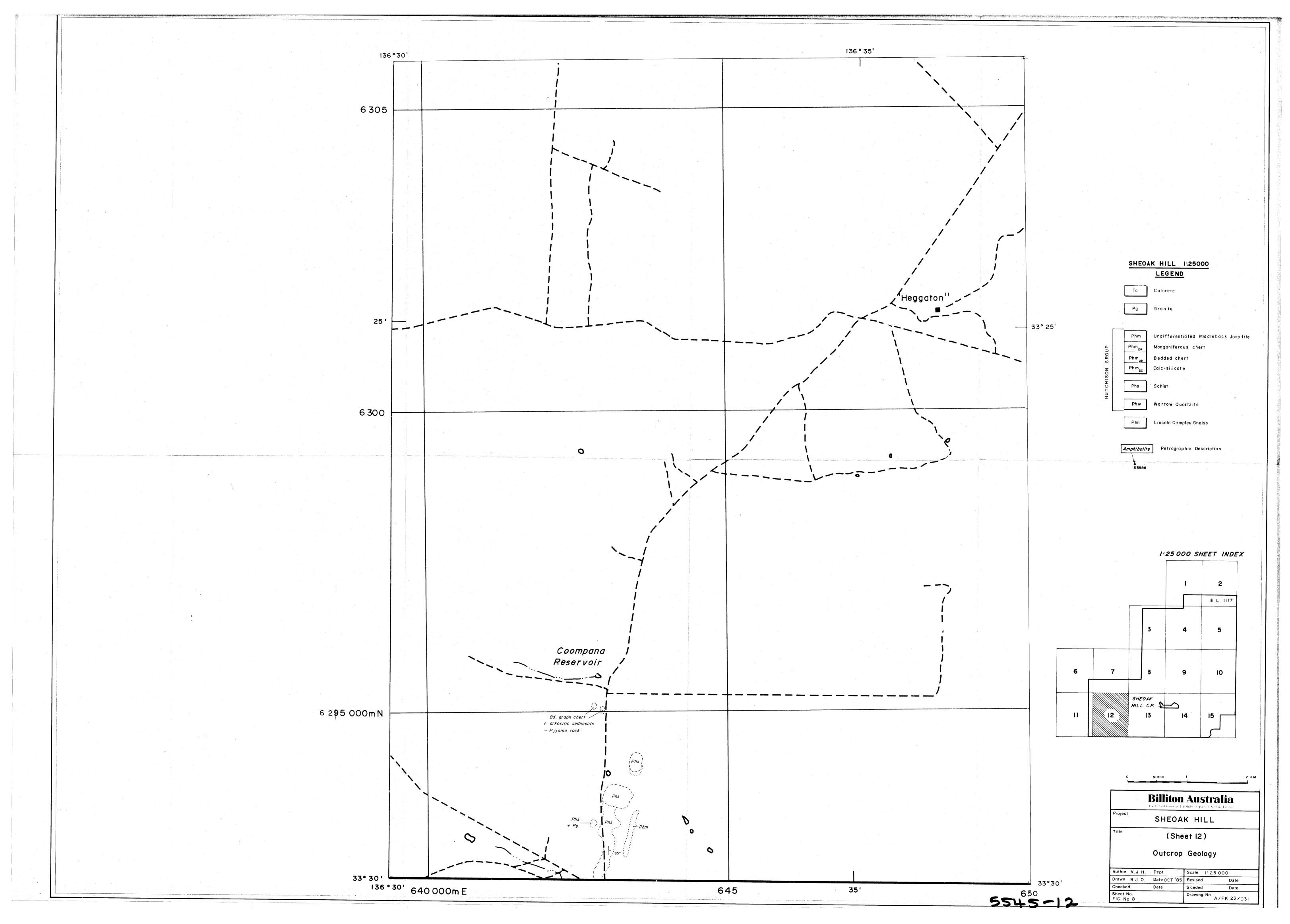
Sheet ... 2 of 2

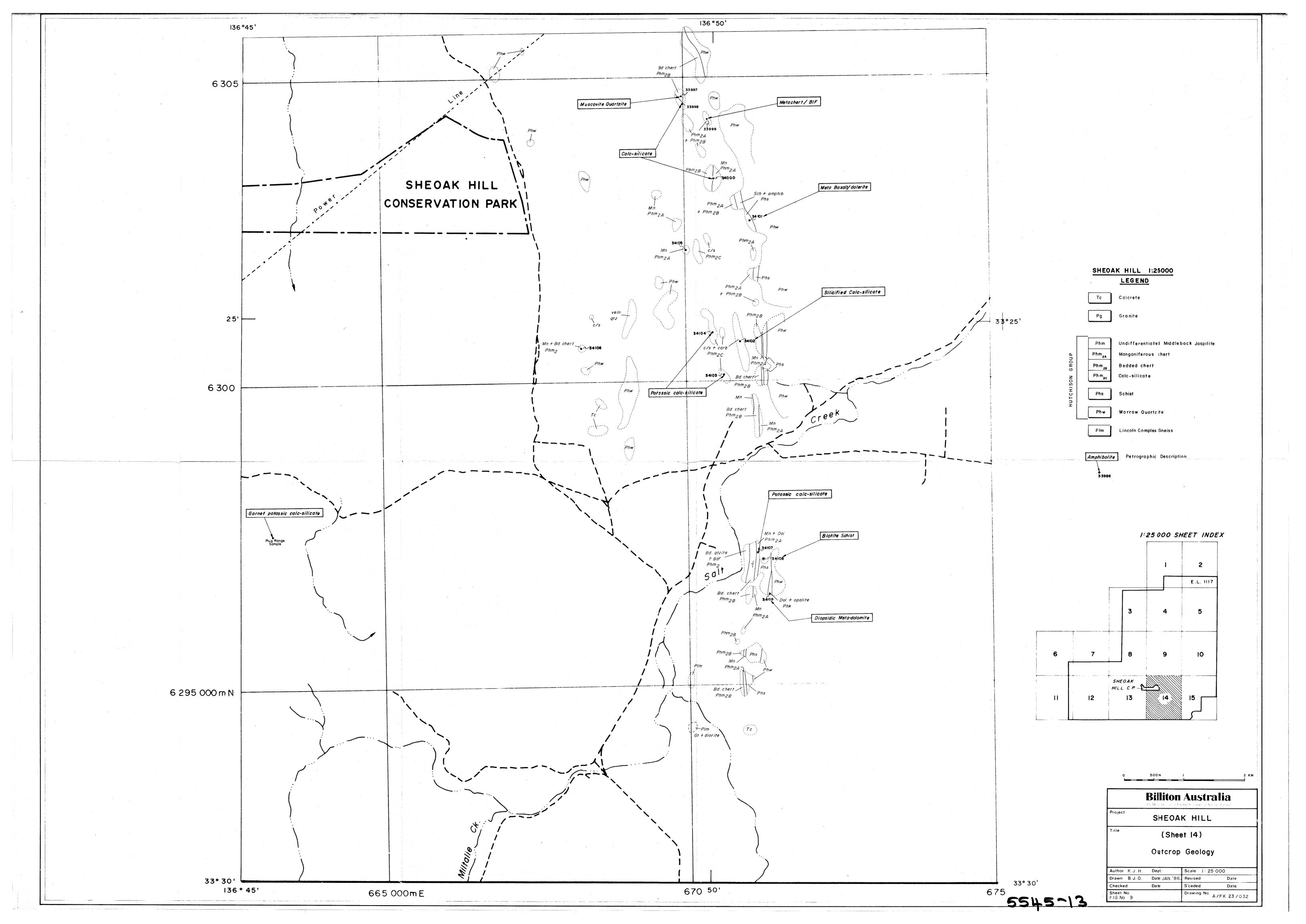

RAB / PERCUSSION DRILL LOG

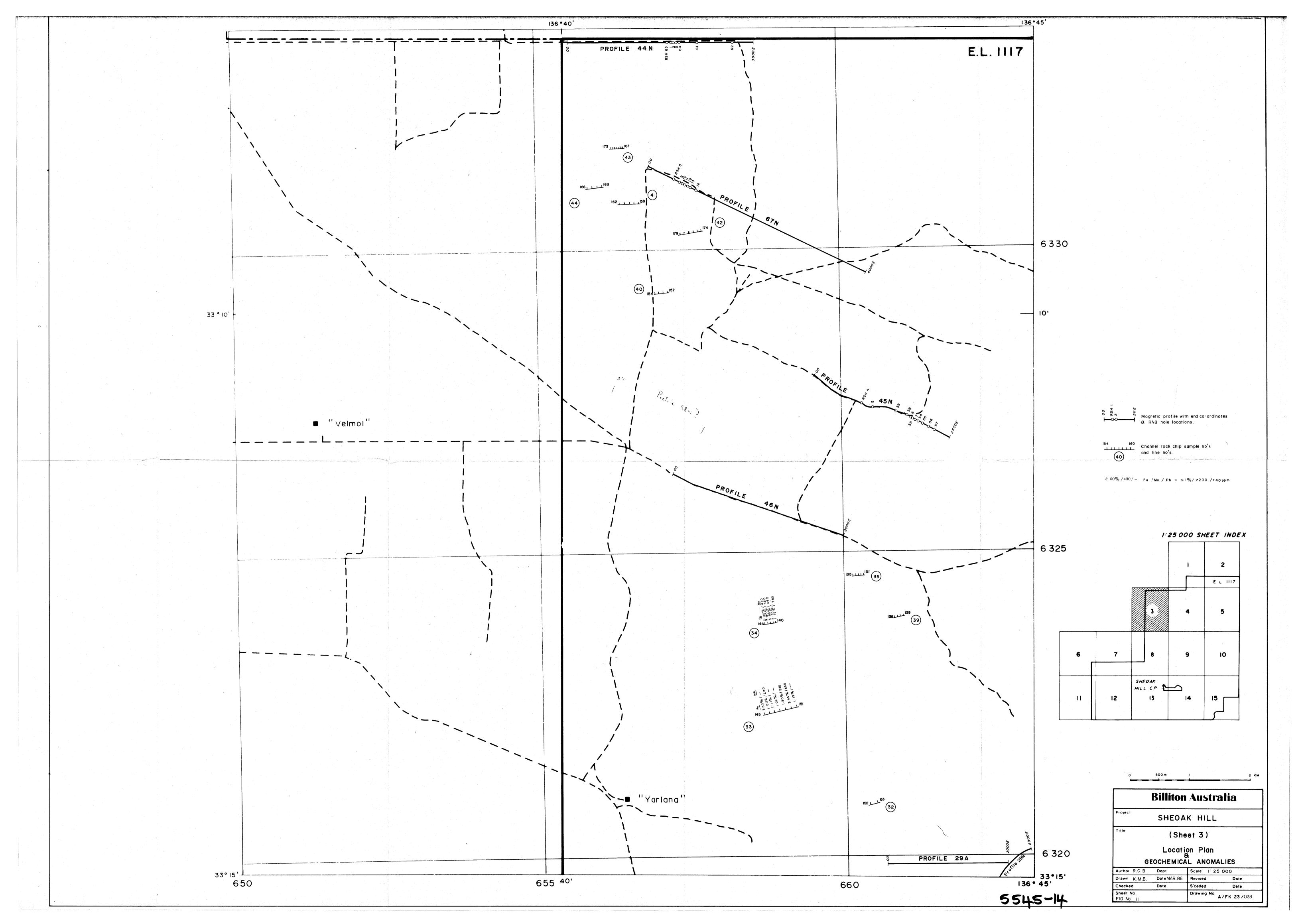

PROJECT:	CONTRACTOR :	COLLAR CO ORDS: 144/1556E AZIMUTH: S.O.O.Nº: OECLINATION: LABORATORY:	
HOLE NO #5! 1. 63 Con!	LOGGEO BY: P.C.B DATE: . T.A 3/12/85.	OECLINATION : LABORATORY :	

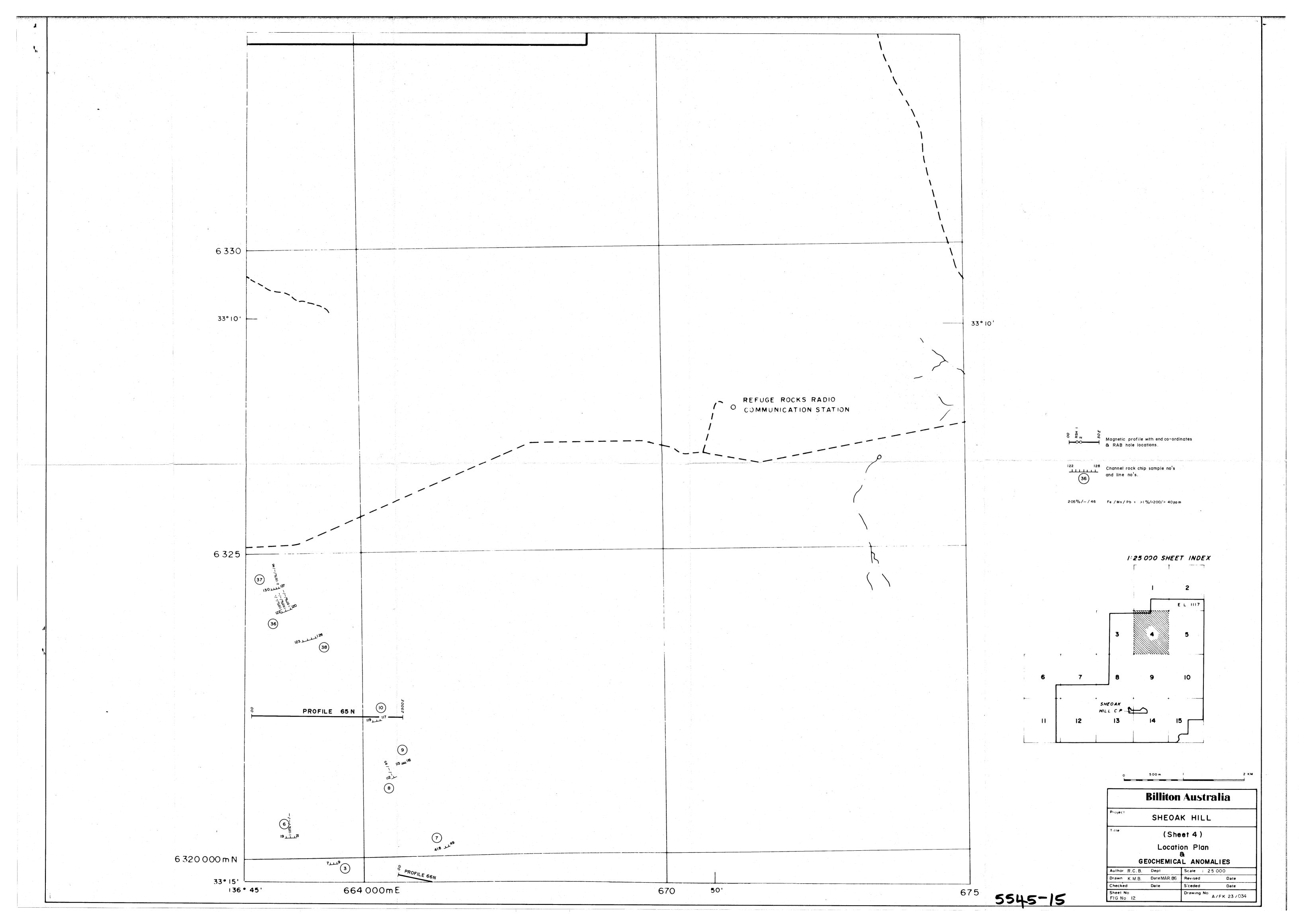

COMLABS Pty. Ltd.

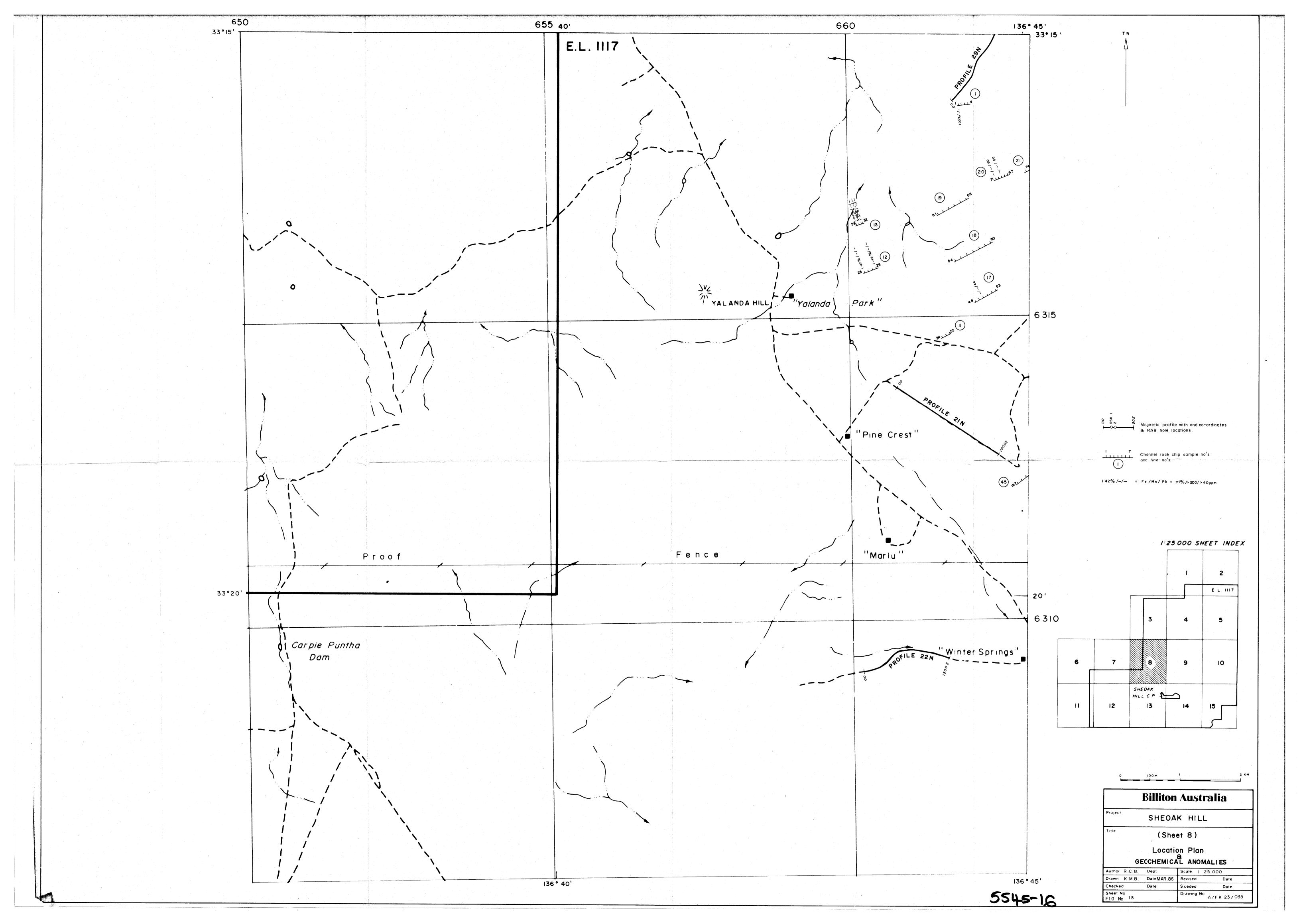


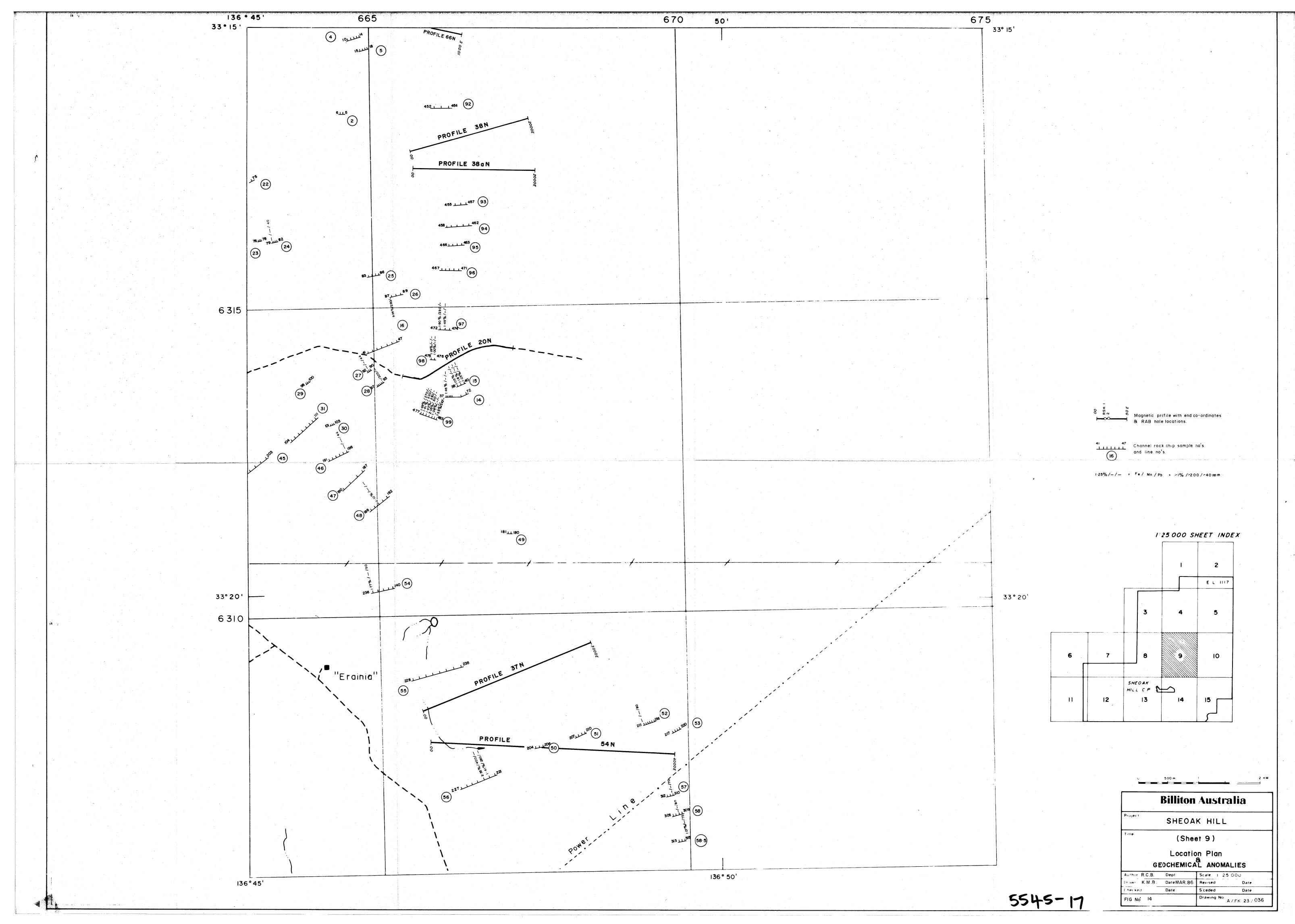

DEPTH														
FROM	то	DESCRIPTION OF RETURNS	SAMPLE		RESULTS IN PPM									
			NUMBER	Cu	Pb	Zn	Ag	Ni	Fe	Mn	Ay			
50		red Quet- follows, very fre print cream dust	35515	3	10	5	<1	4	0.61	20	j			
	54 56	li li	516	4	12	7	<1	4	0.77	24				
			200	4	8	5	<1	<4	0.51	18				
	58	K=10	517 518	1 4	6	4	<1	<4	0.52	18				
50	60	mak prapile surregulite rank	35510	1 6	14	5	<1	6	0.71		<o·05< td=""><td>TC / · /</td><td></td></o·05<>	TC / · /		
	<u>. </u>	EDIS 11.40 ha 1/12/25	133/9					 		-	1000	TS: Lencogainte		
		1112112	<u> </u>	┤├ ──		 								
			 	┨┝		-		ļ	<u> </u>					
				∤										
			 	{										
			 	 										
				[ļ						L		
	-			 								<u></u>		
			ļ			ļ								
					:									
	<u>.</u>													
						1							\dashv	
						 - 							\dashv	
						 							\dashv	
				 							·			
				 										
	-+			ļ										
														
												<u> </u>		
		·							,					
				ļ					1			<u> </u>		

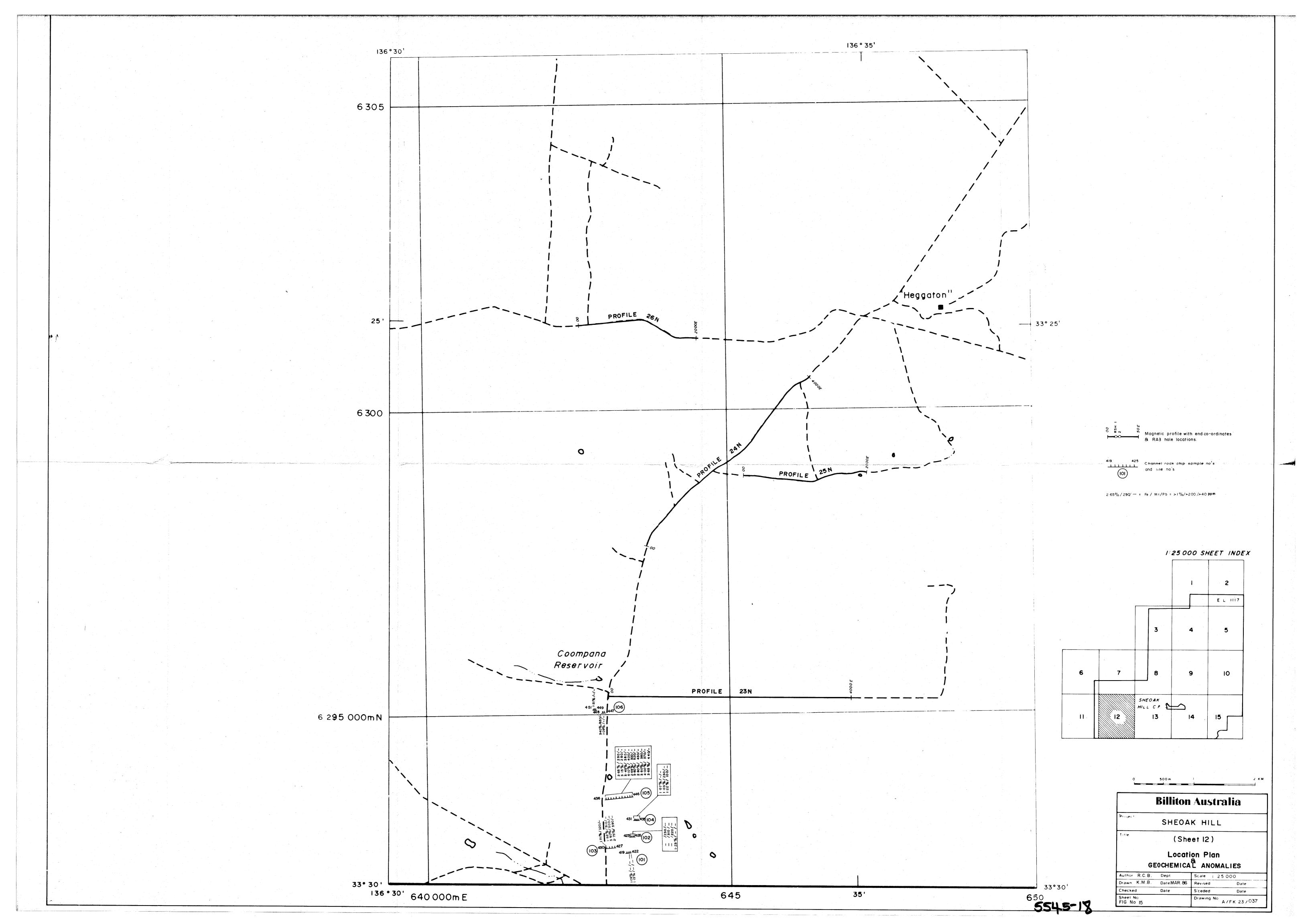


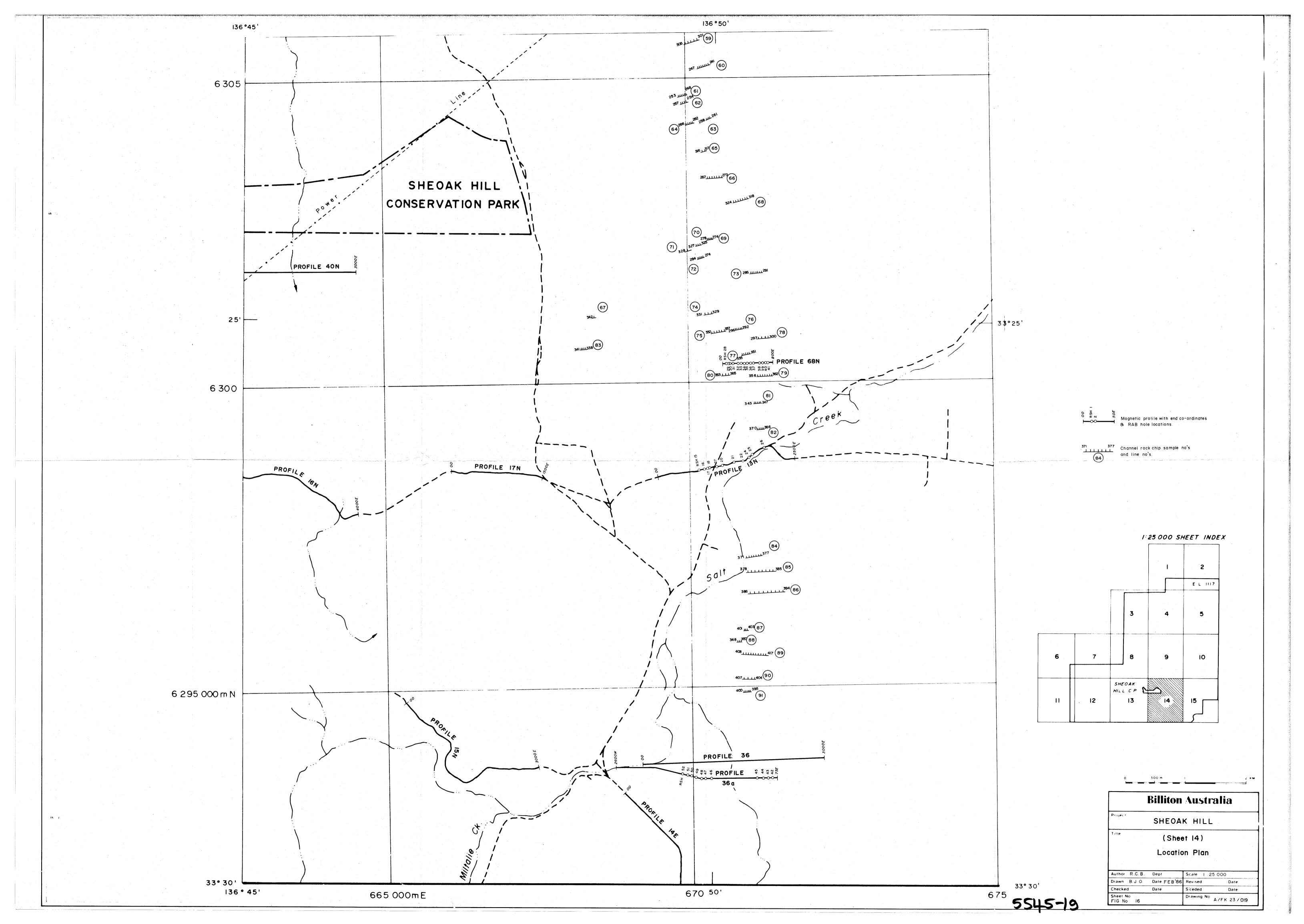


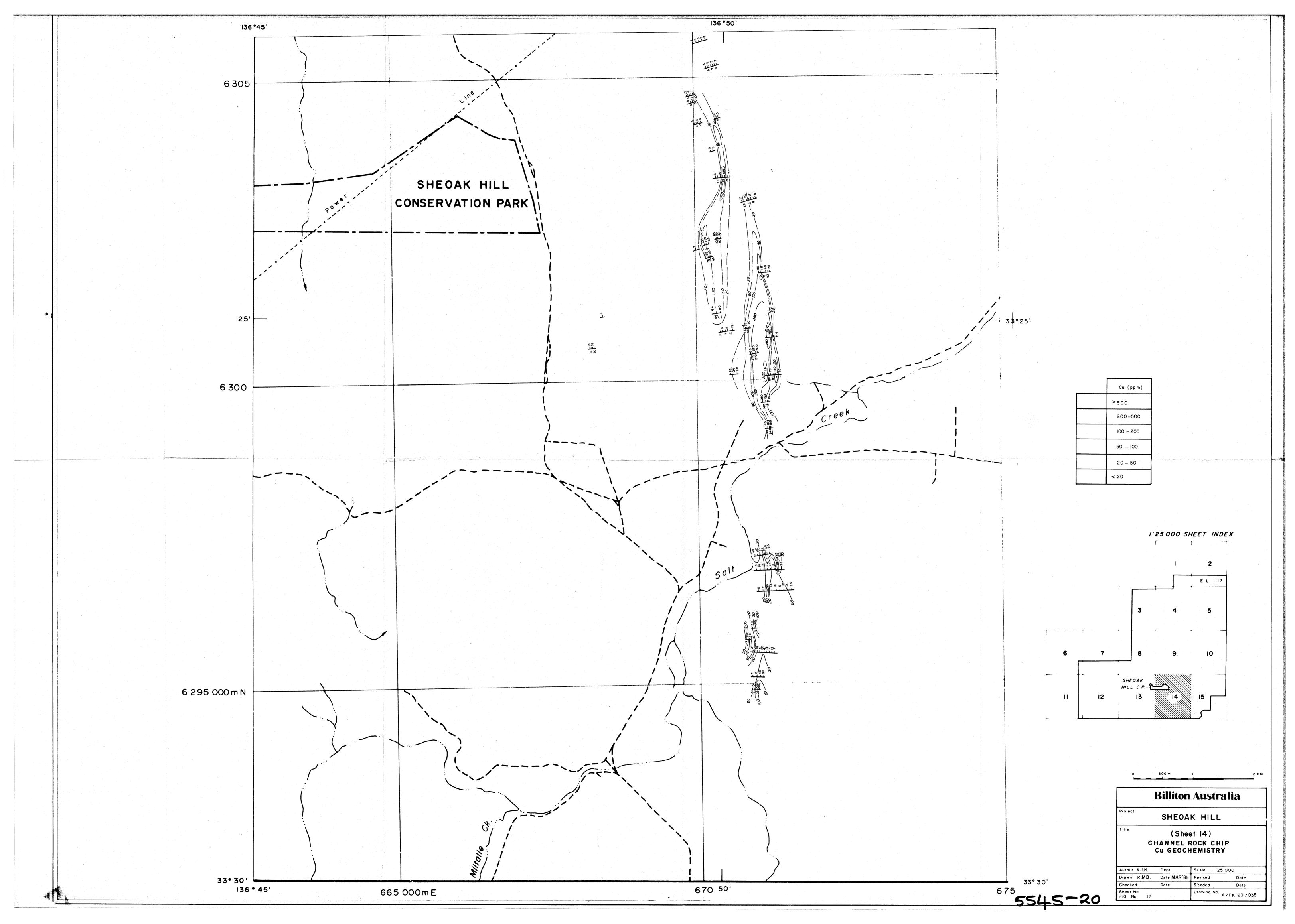


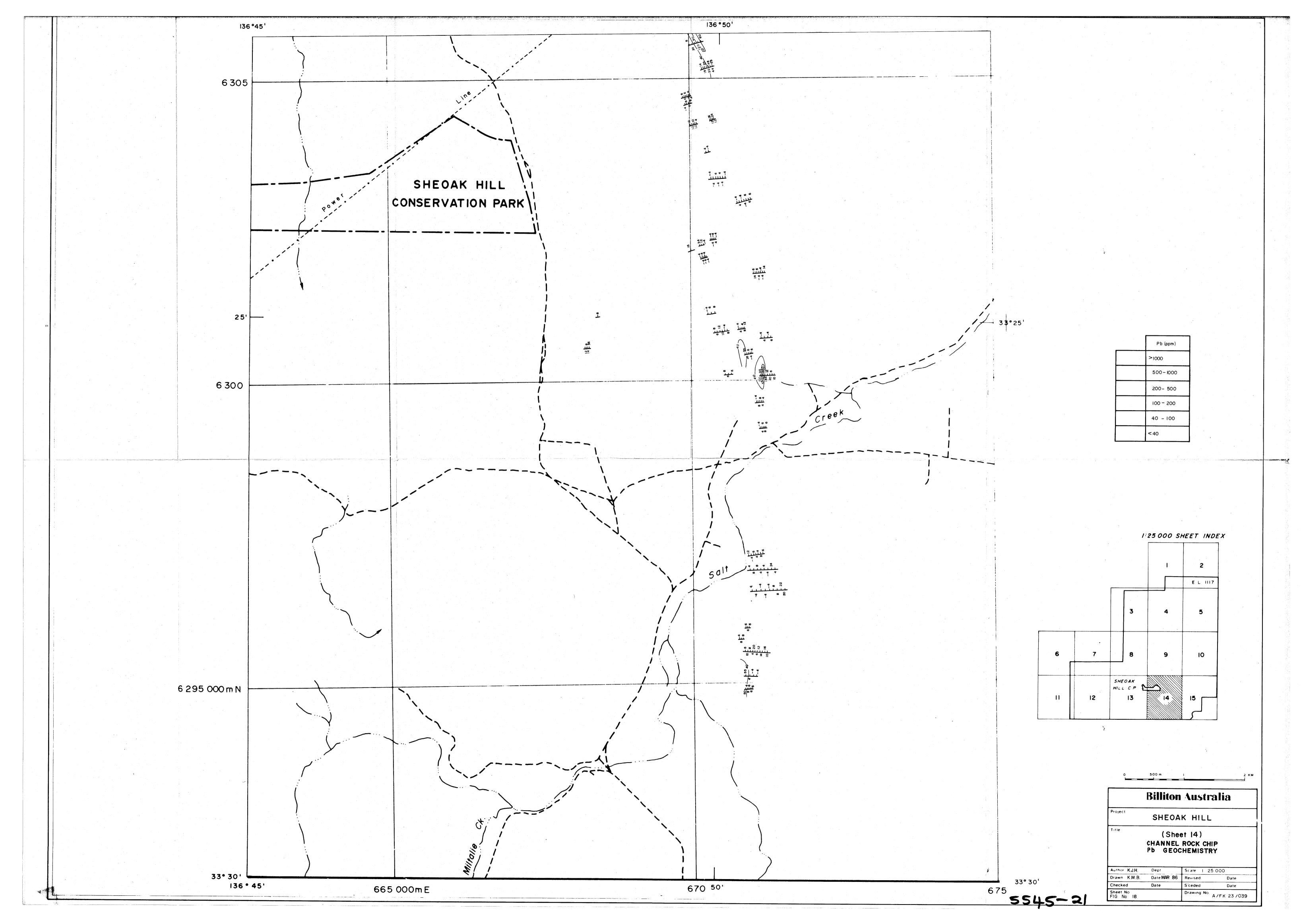


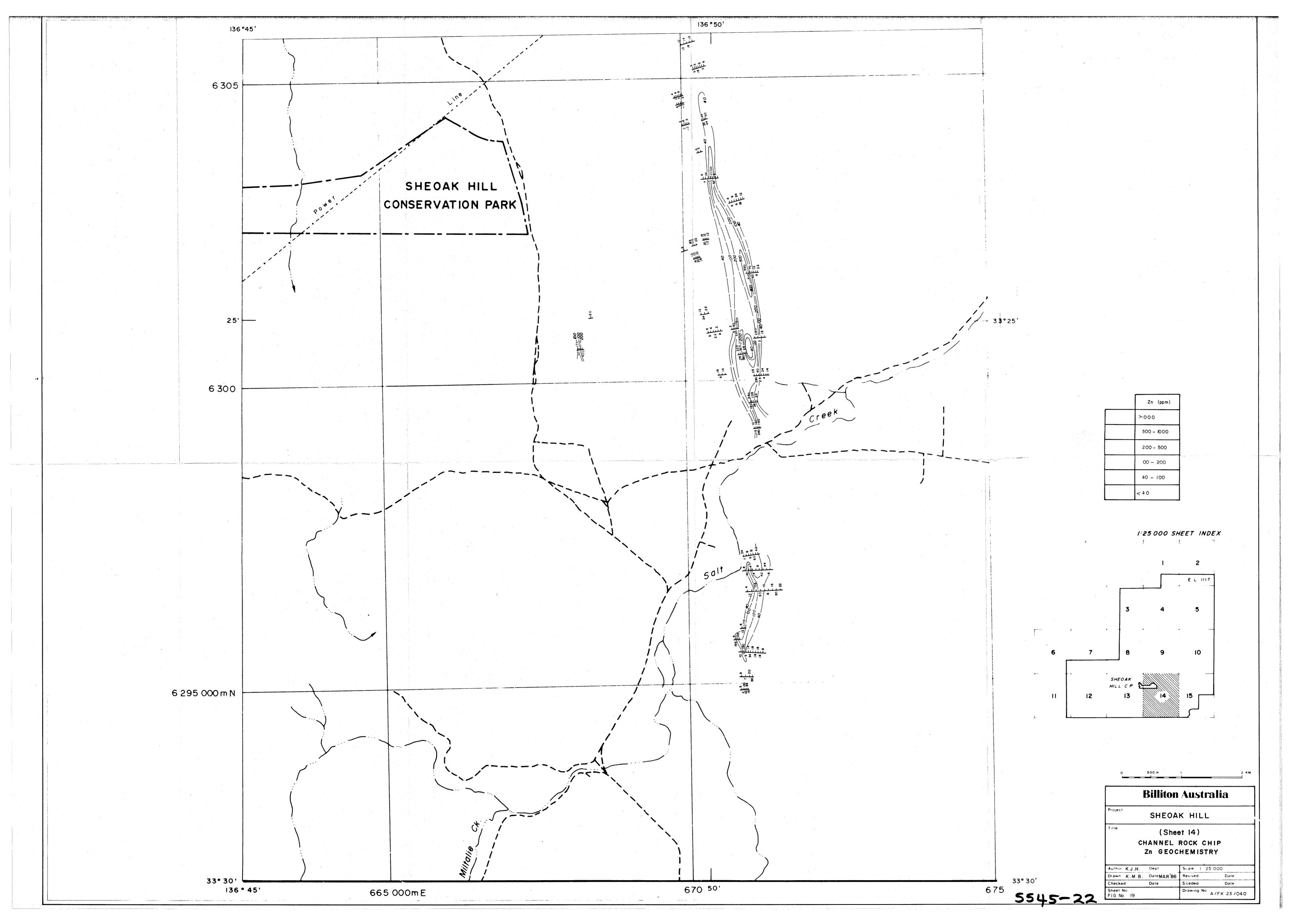


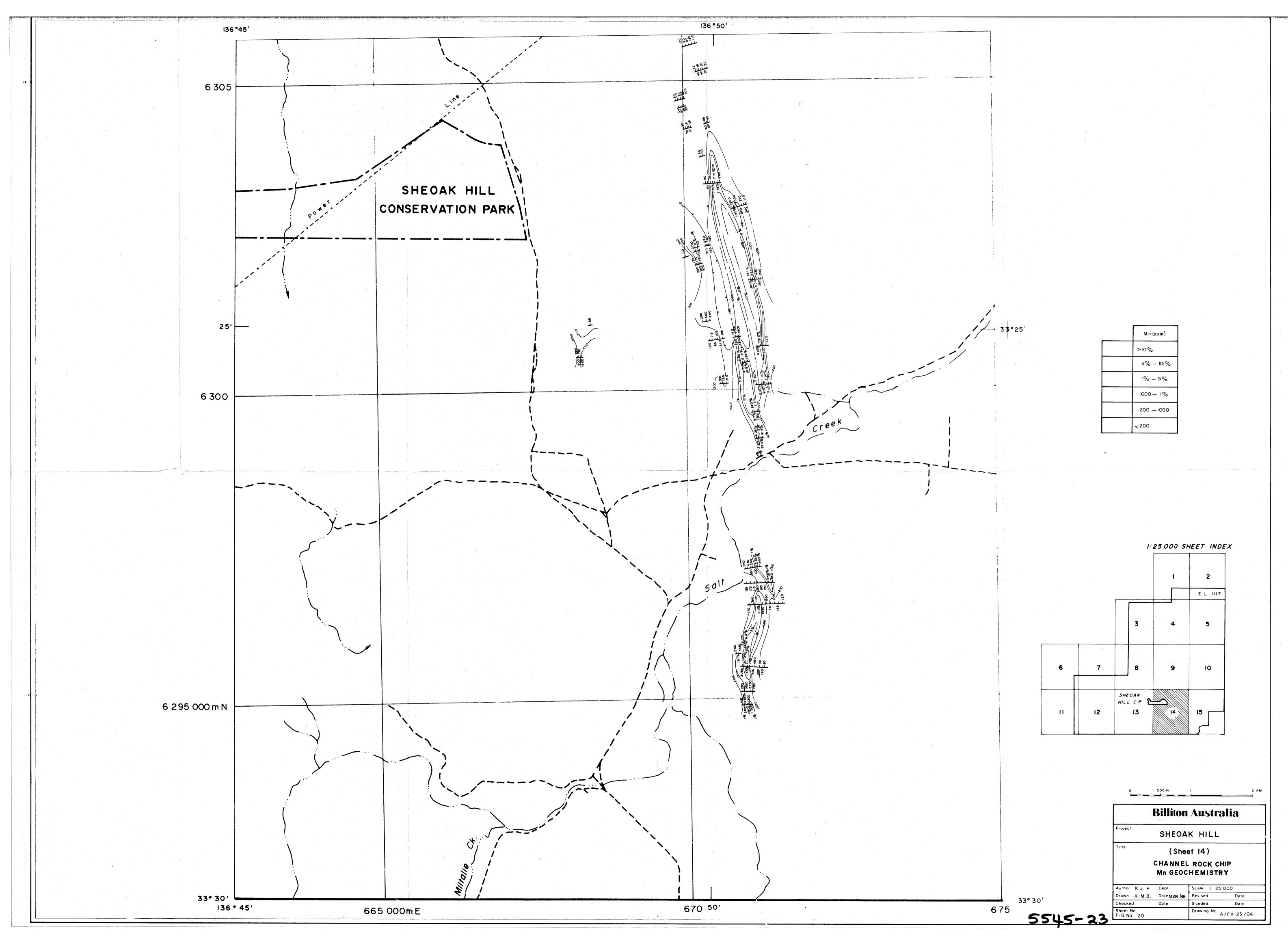


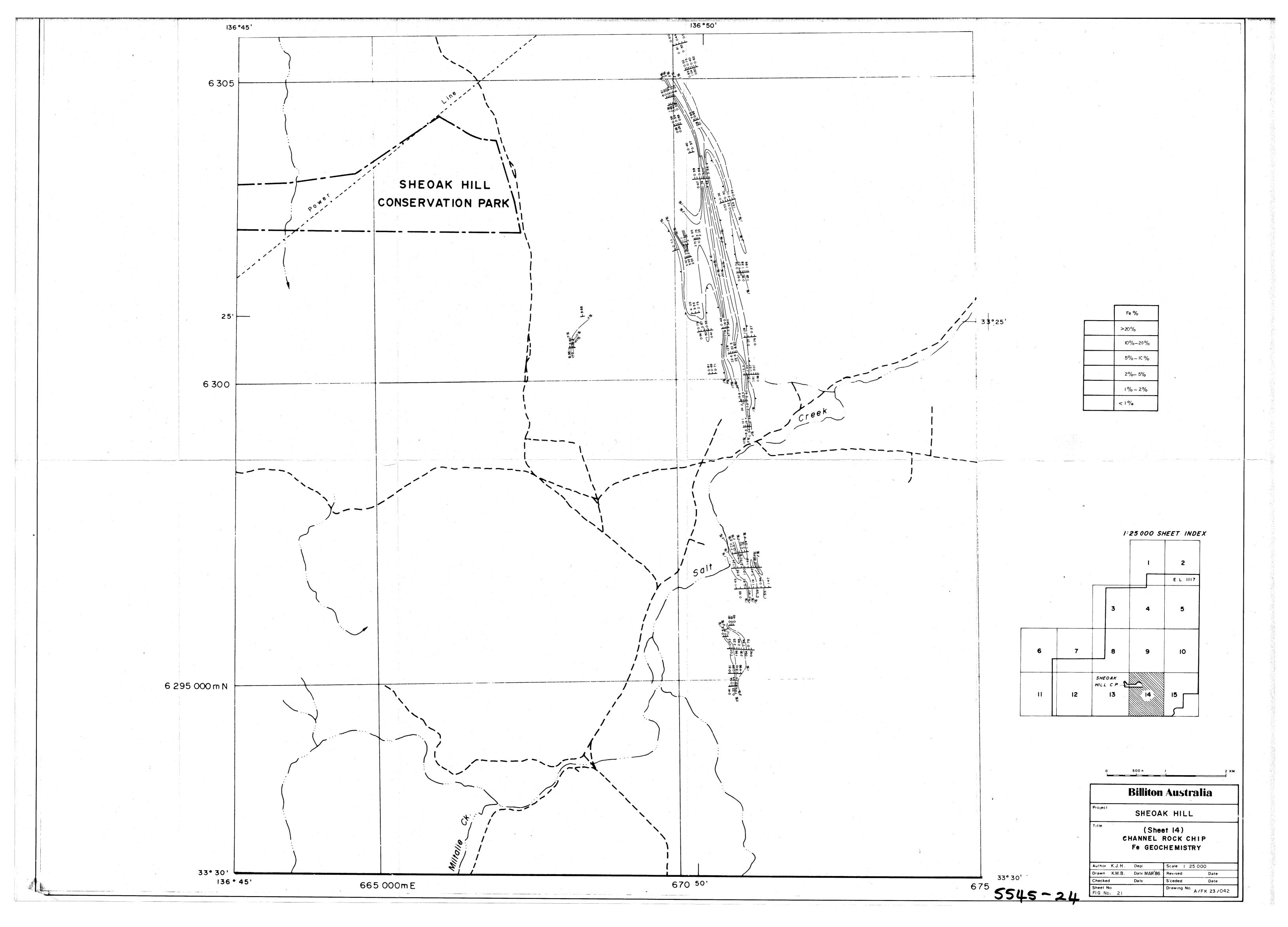


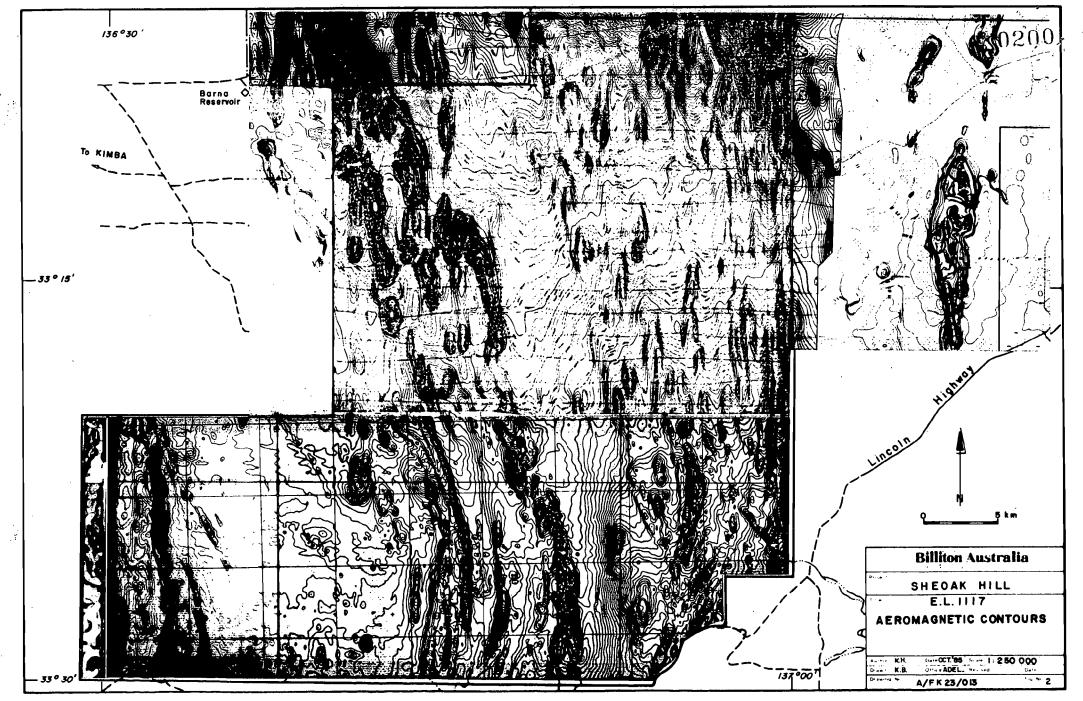












VV

1.000.ppm = 10% 2.00%

SHEOAK HALL

THE MALTALIE NORTH

MILTALIE NORTH

MILTALIE NORTH

Author Date Scale

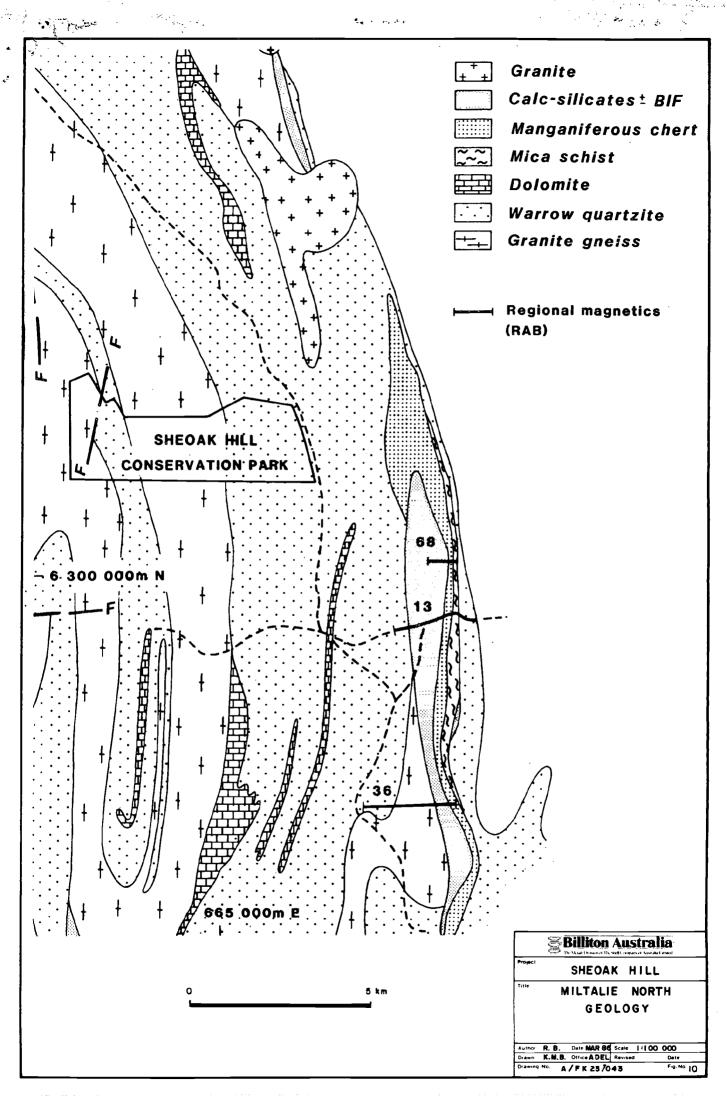
Drawn Office Revised Date

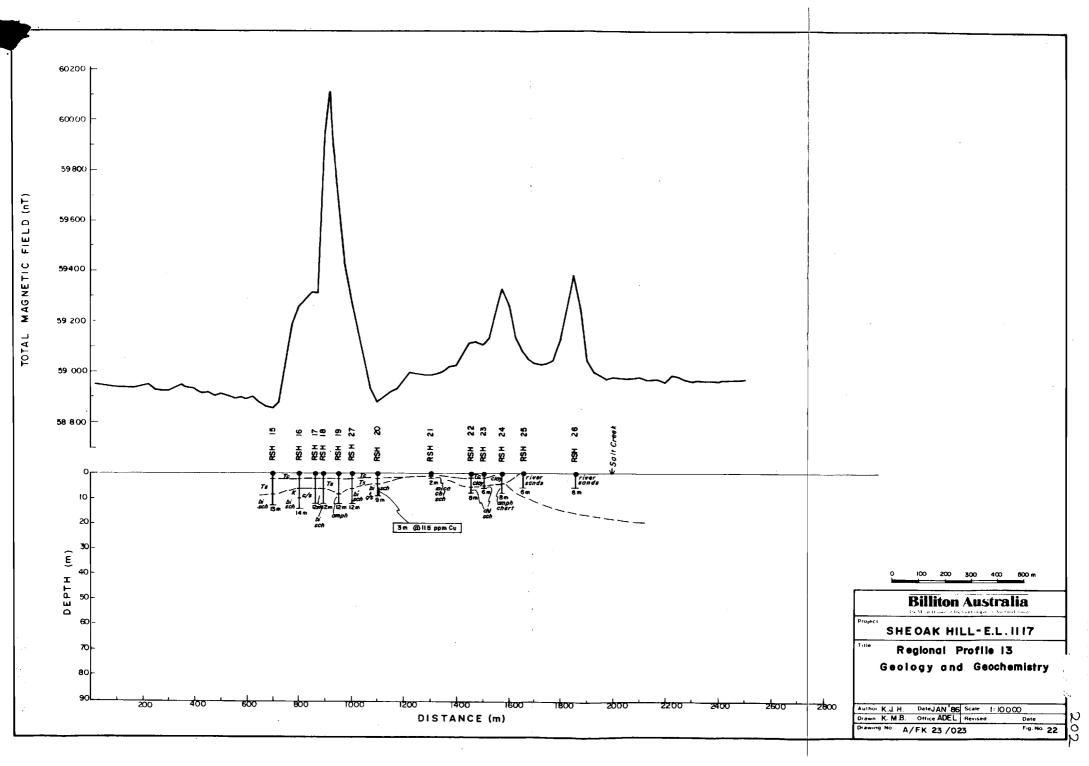
(Overlay to DRGNo A/FK 23/043)

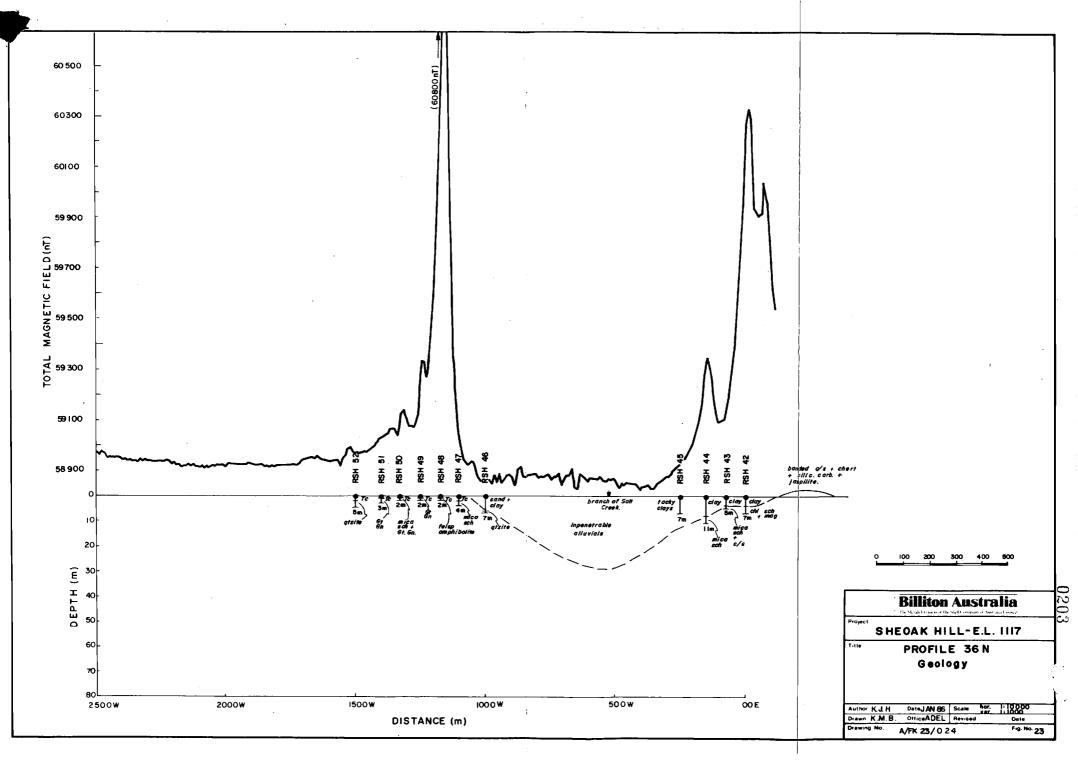
© 100−1000 gpm Zn ‱ 1000 gpm Zn

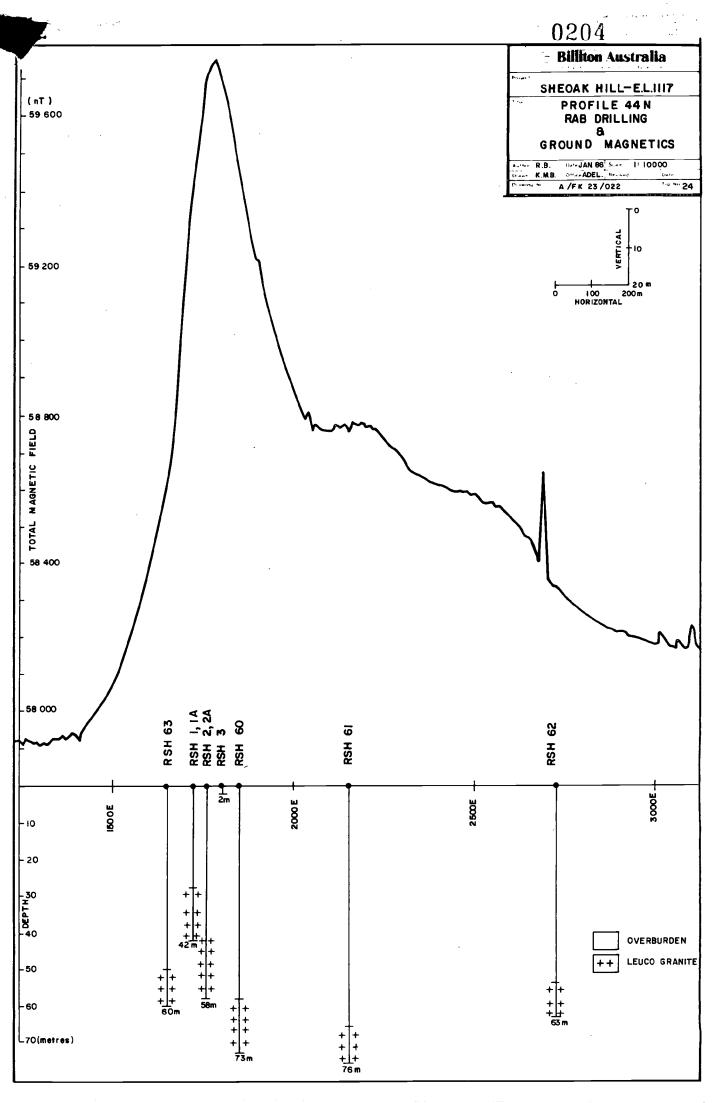
Billiton Australia

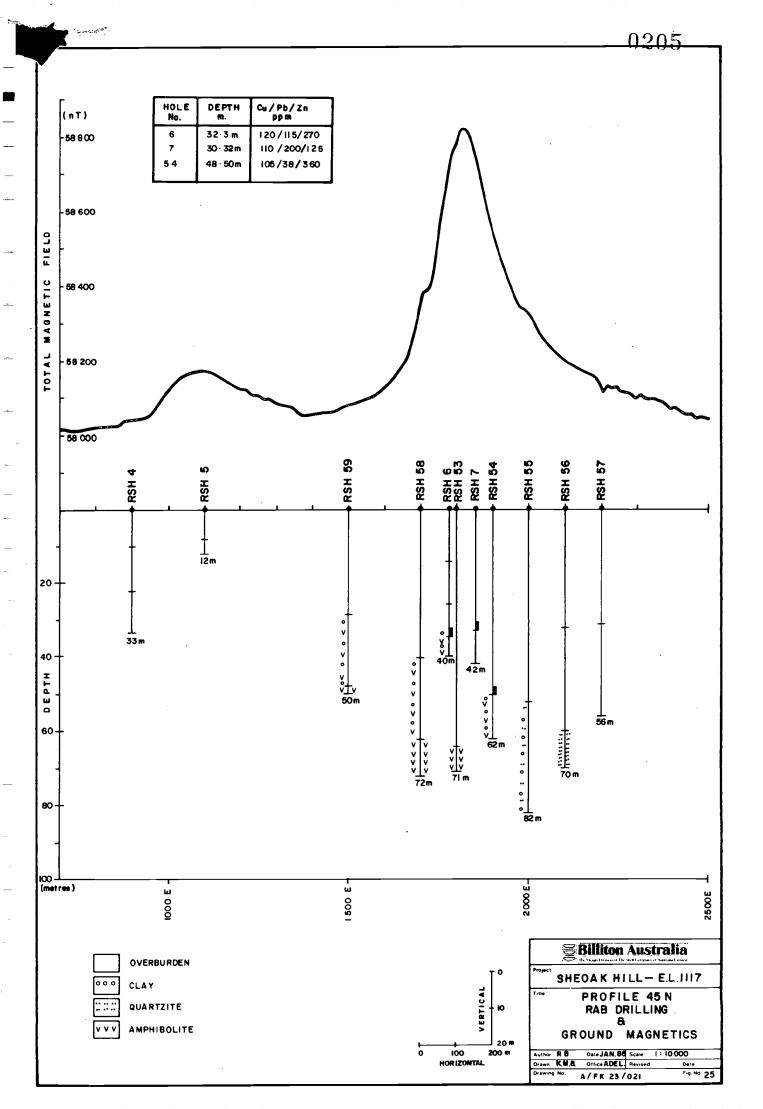
SHEOAK HILL

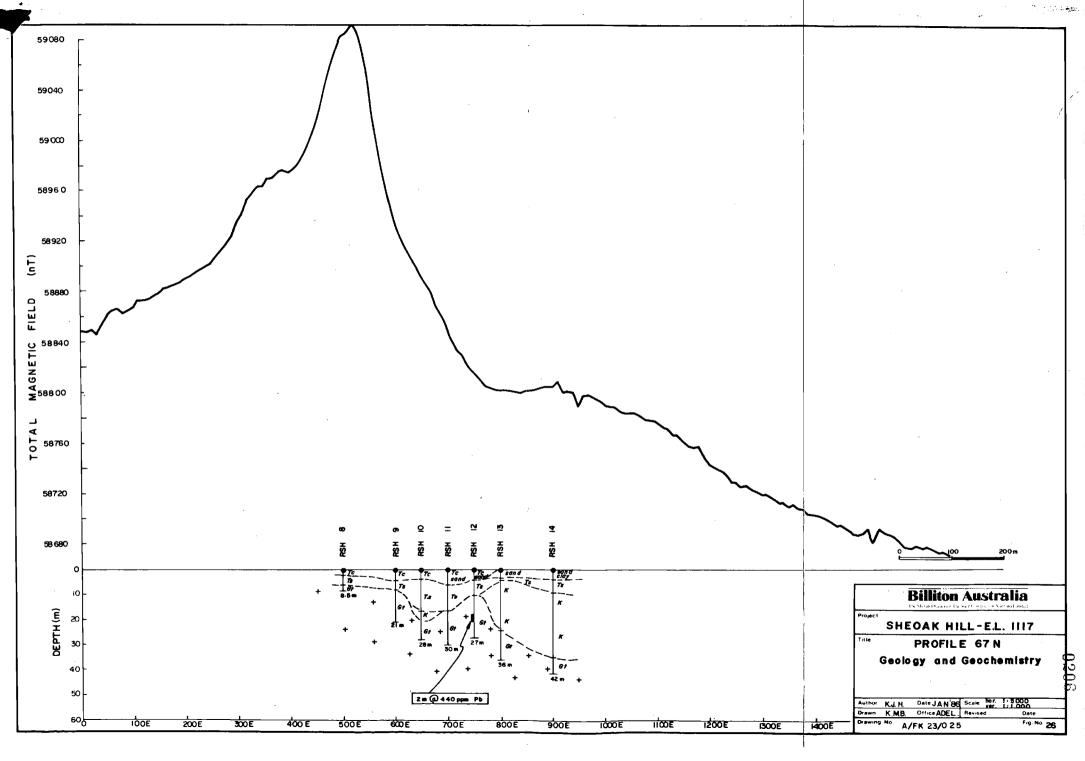

MILTALIE NORTH

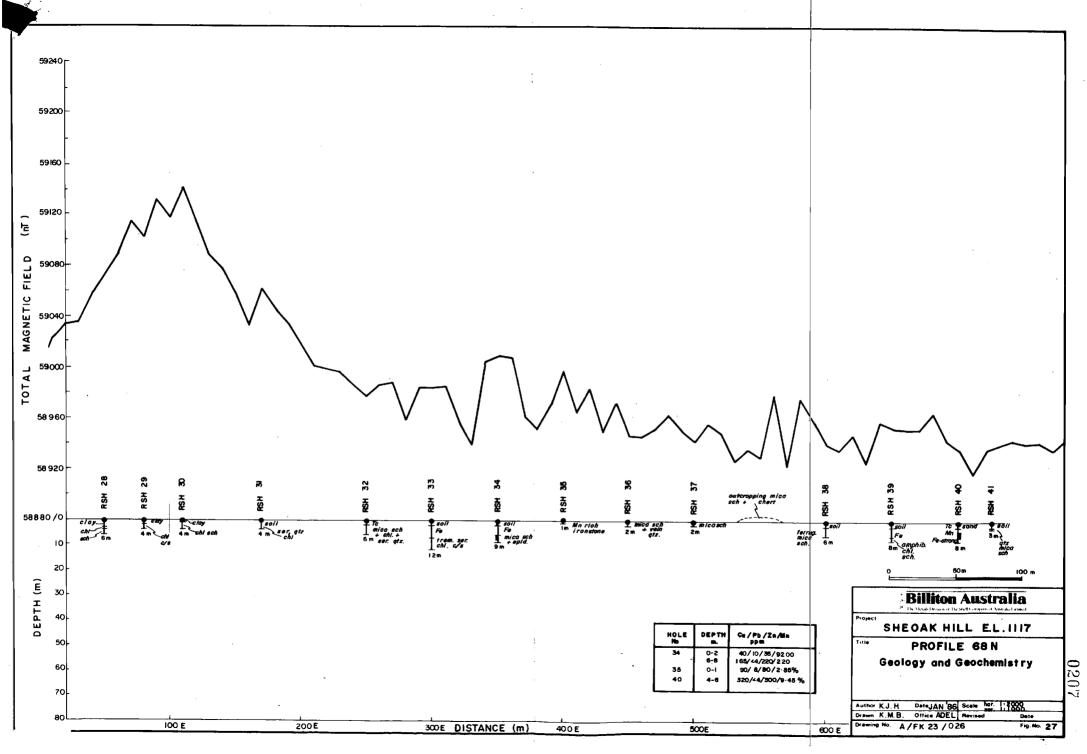

<u> Zn (ppm</u>)


Author Date Scale


Drawn Office Revised Strawns No.


(Overlay to DRG No A/FK 23 / 0.43)





BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LIMITED

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH JUNE 1986

AUTHOR: R. C. BERG DATE: JUNE 1986

REPORT NO: 08.3332

DISTRIBUTION

· Copy 1: Department of Mines & Energy, S.A.

Copy 2: Billiton/Melbourne Copy 3: Billiton/Adelaide

CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	EXPENDITURE STATEMENT	2

LIST OF FIGURES

Figure No.	<u>Title</u>	Scale	Drawing No.
1	Sheoak Hill Interpreted Geology	1:250 000	A/FK23/020
2 .	Sheoak Hill Magnetic Profiles and Trends	1:125 000	A/FK23/012

1.0 INTRODUCTION

Exploration Licence EL 1117, Sheoak Hill, was granted in 1983 and is current until 15/3/87.

No fieldwork was undertaken during this period.

2.0 EXPENDITURE STATEMENT - SHEOAK HILL

	re for the Quarter g 31/3/86	Project to Date
Staffing/Support	2 497	76 103
Concession Payments	3 008	11 374
Analyses/Assays	(182)	5 966
Drilling		10 697
Site Preparation/Payments to Landholders & Consultants	773	8 464
Geology, geophysics, drawing research & computer	577	8 018
Overheads	400	7 829
\$	7 073	\$ 128 451

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LTD

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH SEPTEMBER 1986

AUTHOR:

R. C. BERG

REPORT NO. 08.3344

DATE:

SEPTEMBER 1986

Distribution:

Copy 1: Dept of Mines & Energy SA

Copy 2: Billiton/Melbourne Copy 3: Billiton/Adelaide

LIST OF CONTENTS

		Page	
1.0	INTRODUCTION	1	
2.0	EXPENDITURE STATEMENT	2	

LIST OF FIGURES

Figure No.	Title	Scale	Drawing No.
1	Sheoak Hill Interpreted Geology	1:250 000	A/FK23/020
2	Sheoak Hill Magnetic Profiles and Trends	1:125 000	A/FK23/012

1.0 INTRODUCTION

Exploration Licence EL 1117, Sheoak Hill, was granted in 1983 and is current until 15/3/87.

No fieldwork was undertaken during this period.

A brief review of all data is planned.

2.0 EXPENDITURE STATEMENT - SHEOAK HILL

	Expenditure for Quarter Ending 30/6/86	Project to Date
Staffing/Support	1 088	48 635
Concession Payments	·	6 092
Analyses/Assays	·	5 966
Drilling		10 697
Site Preparation/Payment to Landholders & Consultants	ts	7 5.79
Geology, Geophysics, Drawing, Research and Computer		5 943
Overheads		5 272
TOTALS	\$ 1 088	\$ 90 184

BILLITON AUSTRALIA

THE METALS DIVISION OF THE SHELL COMPANY OF AUSTRALIA LTD

SHEOAK HILL EL 1117, SOUTH AUSTRALIA

PROGRESS REPORT

FOR QUARTER ENDING 14TH DECEMBER 1986

AUTHOR:

R. C. BERG

REPORT NO. 08.3476

DATE:

DECEMBER 1986

Distribution:

Copy 1: Dept of Mines & Energy SA

Copy 2: Billiton/Melbourne Copy 3: Billiton/Adelaide

LIST OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	EXPENDITURE STATEMENT	2

LIST OF FIGURES

Figure No.	Title	Scale	Drawing No.
1	Sheoak Hill Interpreted Geology	1:250 000	A/FK23/020
2	Sheoak Hill Magnetic Profiles and Trends	1:125 000	A/FK23/012

1.0 INTRODUCTION

Exploration Licence EL 1117, Sheoak Hill, was granted in 1983 and is current until 15/3/87.

Currently, negotiations are pending with prospective joint venture partners, and the future exploration programme will depend on the outcome of these negotiations.

A regional bulk leach Au stream sediment sampling programme has been completed in the current reporting period from 15 September to 14 December 1986.

Results are not yet available and will be presented in the next quarterly report.

2.0 EXPENDITURE STATEMENT - SHEOAK HILL

ţ	Expenditure for Quarter Ending 30/9/86	Project to Date
Staffing/Support	687	77 879
Concession Payments		11 374
Analyses/Assays	·	5 966
Drilling		10 697
Site Preparation/ Consultants and Other Costs		8 464
Geology, Geophysics, Drawing, Research and Computer	447	8 465
Overheads	146	7 975
TOTALS	\$ 1 280	\$ 130 820


WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

PROGRESS REPORT

FOR

EXPLORATION LICENCE 1117 - SHEOAK HILL

FOR QUARTER ENDING 14TH MARCH, 1987

MAY, 1987

H. L. PATERSON
OFFICER-IN-CHARGE - SOUTH AUSTRALIA

CONTENTS

		Page
1.	INTRODUCTION	1
2.	WORK COMPLETED	1
3.	FUTURE PROGRAM	1
4.	EXPENDITURE REPORT	1

ATTACHMENTS

Sample Records - Bulk Leach Au stream sediment survey

LIST OF PLANS

A/FB01/112

Sheet 6231 Barna 1:100,000
Regional Stream Sediment Sampling - Bulk Leach Au

1. INTRODUCTION

Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia on 15th March, 1983 and was current to 14th March, 1987. Ministerial consent for an extension of term to 14th March, 1988, was given on 11th February, 1987.

During the quarter, a joint venture was negotiated between Billiton Australia and Western Mining Corporation Limited to explore this and other Exploration Licences on the Eyre Peninsula, with W.M.C. assuming management of the project. The Joint Venture commenced on 1st February, 1987.

2. WORK COMPLETED

There has been no fieldwork during the quarter. Project activity has been limited to Joint Venture negotiations and to examination and assessment of the Billiton data by W.M.C.

Results are now available for bulk leach Au stream sediment sampling conducted during the previous quarter. Sample records and location plans are attached.

FUTURE PROGRAM

Work in the next quarter will include assessment of all existing results and selection of targets for further exploration where warranted.

4. EXPENDITURE REPORT

•	Six Months ending 30th March, 1987	Project to Date
Staffing/Support Concession Payments	2,405 3,258	80,284 14,632
Analysis Drilling	0 0	5,966 10,697
Site Preparation/Consultants etc. Geology/Geophysics/Drafting	0	8,464
Research/Computing	122 1,609	8,587 9,584
Overheads		
TOTALS	\$7,394 =====	\$138,214 ======

These figures represent the last significant expenditure by Billiton Australia on this Licence. Future reports will be based on W.M.C. expenditures.

She	еt	 	.of	

0223

SAMPLE RECORD

PROJECT: Regional CONTRACTOR	COLLAR CO ORDS:
HOLE No DATE: 5/2/87	'AZIMUTH :
LOGGED BY: RCB	DECLINATION : LABORATORY : 1/2.5
DATE: 5/2/87	SAMPLE TYPE: BUKLEACH FILE: FBO 1/602

INTERVAL			
	LOCATION Sheet	DESCRIPTION	Au po
77708	Middleback; Black Dam	selfy gully in Short plain (fe, vole, shoke)	0.75
Zog	" ; Uplands	end of creek in flored place	0.65
t. Olinthus 7/0	Covell; MI Miller	E side creek In dich type gally	0.4
" 711	"; MI hiller	W nice, 2 m will, shafton	0.2
sheoalHill 7/2		send self orch im, flat phin	0.1
" 713		W man orek, sandy, ralt plain	0.1
714	BLANK BULK L	EACH.	0.05
(048	the area)	·	;
		<u> </u>	
		·	
		100000	
·			
			1

FRUI/ 606, the factor of the factor of factor

SAMPLE RECORD

PROJECT: GYAL PENASUA CONTRACTOR: COLLAR CO ORDS: LOCALITY RIG TYPE: AZIMUTH S.O.O.NO.

LOGGED BY DECLINATION LABORATORY A.L.S. BRIDGE

HOLE NO. DATE: 12/86 SAMPLE TYPE STREAM STO FILE: F.B.O.I. ANALYTICAL REPORT

			BUIK LEACH AL		,		0,2,2,
	RVAL	LOCATION	DESCRIPTION	SAMPLE NUMBER	Au	S.Wt.	RESULTS IN PPM
l i	Map None	· · · · · · · · · · · · · · · · · · ·	5/26	HOMBER	PPT PM 216	<u> 59</u>	
77501	Roofera		10m Sand /clav	ļ	400	6.57	
502	Roofena		4m Sand - Suit		50	5.23	
503	Ronfera		10m silikla) (50,1 2,		100	4.47	
	Roofena		75- Flat - inwichenes Sand /chay		100	6.92	·
505	Roofena		Sm - Fauth movements Silt /clay		150	6.10	
506	Roofena		30 Sund /s/t		100	5.26	
	RooRena		10m Sanjle,1-		350	5.96	
	Roofena		Small channe (12) Sill Sound		400	5.96	
	Poolera		7- Sand/Silt		450	5.42	
	Rookena		Doplicate of 77509		50	5.55	
	Roofena		2m soil? eittleten	1	3∞	6.31	
	Roofena		Im sound /si/T	1	150	5.63	
	Roofera		20m Sand/silt - Salt virl.		0.0 5 0	5.81	
	Raofena		15m gard/s.1+		250	4.59	
	Roolera		3n Sand /silt		200	4.67	
	Rodena		2. Hajor Early Hovemin's Soud/clay		100	5.69	
	Poofera		201 Sand/Est		(50	5.48	
	Uno		Flut Dramuer Poten sult / kg (soll)	1:	50	6.15	
	Uno		I had I range in - in sittlelay (soil)	1	\(50\)	5.94	
r	Uno		2n Early movement Sand fish		300	5.60	
	Uno		20m Sand/s,/+		150	5.89	
	Uno		15m Sand/Silt		(50	5.88	
	Uno		Sim Siered / Eit		50	5.28	
	Uno		1/2 m Sun 1 / .		100	6.20	•
	Uno		Plat Francis Large Sell Legy	•	100	6.∞	
	Uno		Maria Landa Cara Maria		100	5.68	

SAMPLE RECORD

PROJECT: CONTRACTOR: COLLAR CO ORDS: LOCALITY RIG TYPE AZIMUTH S.D.O.Nº........ LOGGED BY:..... DECLINATION ;... LABORATORY

0225

INTER\	VAL	LOCATION	DESCRIPTION	SAMPLE
art 16. 16	P. Name	LOCATION	ozsakii ilok	NUMBER
77 527 B	ustiloa		Sm in WHEAT FIELD Sand/Silt	
<i>528</i> B	chelo		Im Envil movement - chan I sit	
529 B.	xklebao.		Flat Basin With a Number of Sma Stances	
530 Bu	xKlebac		Im Silt/Sunl	
53 ₁ B	vcKlcboa		Or Sundy /silt	
532 B.	vcKlehoa		Duplicate of 77531	
533 6	lno		3m S.1+ / sand	
534 6	lno		Im Silt/sand	
-535 B	ukleboo		20 Silt/clay vor off from lieles.	
536 B	e Kleboo		You sand/silt	
537B	t Kleboo		2m - Sand/4,1/2	
538 B	ucKleboo	-	2m Silt lelar	
539 E	Barna		Son - Earthmount Siltlelay isol	
540 13	Borna		- Soil sample WHEAT Freis	
SAH K	cimba		Flat Evan - Willest Field Sand 1800	ļ
542 14	Cemba		In Regimenta rock - Bango	
543 H	leaber		Facto movement Taken From	
544 K	lenba		Im Sand Sit - WEER For a	
SAS E	Barna		Im WHEA! Field - Soilsanyie	
546		Bhank.		
547		STANDARD ISPPB		
548		STANDAR DAPPB		
549 1	Barna		Farth movement - Little Set -Soil	ļ
550 [Zorna	· _		
	Borna		Im Silt lagged	
562/	Barra		Duffrate OF 77551	1

Au	S.Wt.	RESULTS IN PPM
PM 216	Ka	
50	5.78	Buchleboo EC
50	5.58	11
(50	4.92	11
50	6.08	,,
50	6.01	11
150	5.70	11
400	5.68	
150	5.35	
200	5·5 1	Buchleboo EC
150	6.23	11
300	4-85	Wilchury Hill EL Buckleboo EZ
⟨50	5:74	Bushleboo EL
800~	5.34	Regional (near Sheoah Hill E()
100	5.80	Regional (near Sheach Hill EC) Regional (near Sheach Hill EC)
50	6.20	
50	5.42	
50	6.33	
50	4:30	
(50 -	5.49	Regional (nem Sheoah Hill EL)
(50	5.33	
8750	4.89	
7150	4.87	
100 🗸	5:47	Regional (nem Sheath Hill EL)
100	5.83	Sleoch Hill
3650	5.54	11
3400	5 16	"

ANALYTICAL REPORT

PROJECT.

LOCALITY .

SAMPLE RECORD

CONTRACTOR . RIG TYPE". LOGGED BY:

DATE:

COLLAR CO ORDS

AZIMUTH

5. D. O Nº.

DECLINATION . SAMPLE TYPE LABORATORY

ANALYTICAL REPORT

		United to the second	Vanice 1116 11 1116 111111111111111111111111		:		: '
INTER	RVAL	LOCATION	DESCRIPTION	SAMPLE	Au	S.Wt.	RESULTS IN PPM
souple Ab 1	Map Nand	LOCATION	DESCRIPTION	NUMBER	PPF PM 24	Kg	
77.553	·		2m Sand/3,14		1400	5.95	Shook Hill
	Bayea		2n Sundy /Silt		50 ′	5.74	11
	Borna		4- Sandy cv/s,/+		(50°	5.58	В
556	Borna	,	sm small sand, cu		50 ~	5.71	
557	Barner		1/2 Sand /5,/+		450∽	5.41	Regional (new Sheart Hill EL)
1	Barna		s. Sit /sand		50~	6.13	11
	Воска		In - Some Contain notion - When The &	-	50~	5.75	Sheat Hill
	Barna		20cm Flat war sand /sit		50 ′	562	"
T T	Baina		10m sand/sult		50	672	11
	Borra		10m WHEAT Field Sund Iclay		150	575	19
	Barna		Flat WHOLE Firely Continues on Sandy		100	5.86	11
	Barra		That Without For . Jours & recorde		100	5 53	11
565	Borna		Yan sitt/sand		150∨	5 70	Regional (man Sheonth Hill EZ)
	Borna		the Word Froli Frances		150 ~	4 94	
	Bana		Im Sand/SI-		200	5 89	Shearh Hill
	Barna		San . Soul 10. 7		100	6.48	n .
	Barner		6m - Wet Scanfie Some (Tanton)		5250	5.40	1)
	Barna		100 Sand 1515		50	8.97	11
	Cowell		3m culting Wet counts		200	5-82	Mt Olinthus
	Cowell		10 - Sulce - Wet sund As -		600	5.40	Mt Olinthus
	Cowell		20m " Sand/s, -		650	6.25	Mt Olinthus
	Cowell		Duplicate of 77573		150	5.70	Mt Obrilio
	Cowell		150 Welsople sousker-		150	5.53	Mt Olinthro
I - I	Cowell		2. WHEAT FOR TO YOUR TIME TO		750	4 86	Mt Olinthus
	Borna		30m 147 CV, Wel Southert	•	250	5:67	Sheart Hill
			· ' '		200	456	,
518	Barna		Mark Day of the Comment	1]	<u> </u>	

SAMPLE RECORD

LOCALITY: RIG TYPE: AZIMUTH: S.D.O.Nº: ANALYTICAL REPORT

Souple Ab May Above	LOCATION	DESCRIPTION	SAMPLE NUMBER
77579 Barna		30- Sultcy- Wet word/sift	
580 Barna	···	In WHEAT Field sand Est	
S81 Borna		ia Wet Soul/17	
582 Barna	<u> </u>	4m Not Soud/E, H	
583 Baina	- п	Sm sand /silt - Wet.	
584 Barra	•	On Sand Kelt	
ses Cowell		10n Flat Plan - Not sult Crust	
586 Cowell		Sm Earth Hovement sult/said	
587 Bains		7m Het - Sand Kit	
588 Barra		Sm Wet Sand/Sit sult	
589 Cowell		10 m Sand /51/1	
590 Cowell	· · · · · · · · · · · · · · · ·	Duplicate of 77589	
59 Cowell		15m Sand Isit	
St Cowell		In Sand 15.17	
593 Cowell	7	In silt /sad 1 Higgs	
594 Cowell		2m Fauth movement : H /said	
Sp Cowell		15m - WHIAT FRA - STURY / FILL,	
5% Cowell		250 - Het Sound for	
sp lowell		100 - Legatory I'm Soul same Son	
597 Cowell		Im foresconilar	
77600 Cowell		15m 51/4 / Sand	
60/ Helliab		10m Sand / -	
602 Meddeloop		Early moving 1 19 1 Toil 15	
603 Meddebal		Le Sul ser ser nomen.	
		Fredhamma 1 1 god/ 5	
604Middlad		13/2 1/1 -	

Ач	S. Wi	RESULTS IN PPM
PH216	Kg	
150	5.72	Shead Hill
250	5.04	11
100	6.16	ч
200	5.11	4
200	5.21	1
450	3.38	ч
150	6-10	Mt Olinthus
150	5.38	P
50	6.79	Shepah Hill
<50	6.86	
50	4.39	Mt Olinthus
450	5.00	,,
<50	4.55	Regional (near Mr Olinthus EL)
100	4.72	Ragional (near Mr Olinthus EL) Mt Olinthus
50	4.53	11
50	4.68	ı)
50	5.05	
<50	4.63	11
100	4.71	Regional (near Mt Olinthus EL)
50	4.70	,,
Iω	5.04	11
50	4.66	VI.
350	571	
<50	5.38	
50	5.88	
(50	6.41	

Sheet 5 of 7 COMPUTERISCO ANALYTICAL LABORATORIE

ANALYTICAL REPORT

0558

ple Ab May Above.	LOCATION	DESCRIPTION	SAMPLE NUMBER
7605 Millelook		Sad/silt	
606 Hillebad		Zon Fruit mount Crear Even Grants.	
607 Hiddlebox		Flat Ford Sond/Sit	
608 Middle last	·	Flat Feel - Soil - French 1977	
609 Villetal		In Red Francis Said al	
610 lableback		roncolong Track indice	
611 Hellehod		Granitic source	
6/2 Barner		?	
613 Barna		Drawing Fra Jude 11/200	
614 Barna		WAEAT BEG Continual	ļ
615 Kimba		Earth more at some suffered	
616 Kimba			·
6/7 Cacappa		150 - Hulto -CH. rotto Sel in Carake	
618 Cacuffa		Dufficate of 77617	
619 Cautta		The Man Commage Down and The	
620 Cocuppa		Kur Hot Ward P. L. Brew Sout Fred	
62 Cocupps	W-1804	Feefer Change Red- From Swdy	
622 Couppa		10m Drouge Contacted	
623 Capuffer		15 1 161 310 11. 612 11 11 11 14	
624 Cocuppa		Newporth at Tell Buff. of	<u> </u>
65 Venan		2m Loute See Land Park	
625 Veran		Driver inc Wet Elidar with Edy.	
628 Veuan		Orange to the star approximate	
629 Levan	· · · · · · · · · · · · · · · · · · ·	Not That France I was a fine of the	
- I was		SW 5 11/2 - 11 1/2 1 - 1	—

SAMPLE RECORD

PROJECT: CONTRACTOR: CDLLAR CO ORDS

LOGGED BY DECLINATION :LABORATORY :.....

Au	s.Wł.	RESULTS IN PPM
PP 216	Kg	
₹50	6 48	
4800	6.18	•
<50	6.25	
450	5.28	
350	6.16	
100	5.19	
450	6.54	
50	6.36	Regional (near Shedah Hill EC)
50	4.67	11
150	5.21	11
450	5:54	
100	4.09	
450	4.74	MT Not EL
50	5.18	·
50	5.34	11
750	5.49	u
450	S-90	,
50	5.35	11
50	5.23	11
450	4.53	11
150	5.34	
50	5.64	
50	4.14	
50	4.54	·
.<50	6.09	
450	5.42	
L	ı	

ANALYTICAL REPORT

PROJECT: CONTRACTOR COLLAR CO ORDS LOCALITY RIG TYPE: AZIMUTH S.D.O.Nº: LOGGED BY: DECLINATION : LABORATORY : OATE: SAMPLE TYPE FILE:

SAMPLE RECORD

	No Alema	LOCATION	DESCRIPTION	SAMPLE NUMBER
	Veran		10- 3md/5/17	
	Veran		bu sad/sit	
<i>[33</i>]	Vevan		Duplicate OF 77632	
634	Veuan	***	3m tarth noving - Sund /5,	
635	Vewan		2m Silt/Soul ASH Present.	
636	Versan		Orange Brow sed soil.	
637	Verson	· · · · · · · · · · · · · · · · · · ·	10- Sand /5, -	
638	Versan		Sand 15,17	
	Veron		Sitty - Soil road contamuation	
640	Vecan		the sand Sit	
641	Versay		In said /silt	
	Veron		3m Pink sade / Sur (Granta)	
	Veran		Zn Pint Sandy/ Sit (5-ramite)	
	Veran		Im Pink - Grey Sand f. 17	
	Versan		In Pork - bvey Four Sand Fish	
	Veron		120 Pinh ind/s,	
	Veccan		That brange and to	
	Versan			
	Kimba		Earth movement Grey Pink Sand/SI/+	
	Cowell	~.	En Earth movement 5.17/clay	
	Cowell		In Forting out - Wel Sandfort Forty	
	Cowell	· · · · · · · · · · · · · · · · · · ·	12 motorcyphe sitt/sad (fine	
	Cowell		10m Port Swamps Souther	
	Cowell		2n Silt/sul youth	-
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2m Minto may be chay	
656	Cowell		Duplicate of 77655	

Au	5. Wł.	RESULTS IN PPM
PM216	Kq	
. 50	5.75	
<50	5.56	•
50	5·55	
<50	7.18	
50	5.82	
300	6.36	
50	5.87	
200	6.19	
50	6.87	
50	693	
50	6.31	
100	6.32	
<50	6.72	
(50	7-96 .	
(50	6 99	
100	600	
100	6.82	
<50	7.25	
⟨5⊘	6.43	
< 50	5.86	Mt Olinthus
<50	5.55	.1
(50	538	1,
(50	5.60	,,
50	5.87	1
(50	5.21	P
50	5.61	19

SAMPLE RECORD

CONTRACTOR COLLAR CO ORDS LOGGED BY: DECLINATION LABORATORY HOLE Nº ANALYTICAL REPORT

INTER	RVAL	,	1	SAMPLE	Au	5.WI.	RESULTS IN PPM
Sample 16	to stone	LOCATION	DESCRIPTION	NUMBER	64131P	Kg	
77657	owell		3. What Field Silt /clay		. <50	5.72	Mt Olinthus
658	owell		3. Pink sond/solt (Granitic orgin		(50	575	P. Committee of the com
659	Cowell		Phich. When overther Ede sand fort		50	591	1.
660	Cowell		Som Conllavial (4146) Granitic said/sit		50	648	•
661	owell		Em Pink-Grey Sand /51/7		<i>4</i> 50	5.29	t ₃
662 (pwell		Im WHEat Field & Cars, ALete		3∞	6.52	ii
663 (owell		on Earth movement brane / - Soil		600	6.88	n
664	Sowell)		3m Vea. or (v. Sitt/clay (soil)	· · · · · ·	1750	6.70	it
165	swelf		4. Grantie Redrock Sund/Elt		900	6.10	V
7.7	owell		S. Cranitic sand /silt		۷50	6.96	,,
6670	ovell	·	10m Co. Cultivoied sall Drain sittlelay		100	7.70	. 11'
	owell.		2m Pink Sund/SIT		<50	6.61	11
669	owell		10. Grantic Redrock sand Soft		IOO	6.73	11
	Cowell	· ·	10m Sund/Eilt		50	7.10	Regional (nem Mt Obinthus E L)
671	Cowell		All Dramage Fine Led - Soil		50	6.25	,,
672		STANDARD IS APB			20.8ppt	4.94	
673	Beklehoo		Red From South	·	500	7.79	Mt Nort El
674	Bukleboo		Sand fair		350	7.57	"
675	Buckleboa		Ear de, li		150	6.93	18
	Uno		15m Porphyer Try with se		(50 °	8.05	
	Uno		Sand Brake		<50	6.98	
678	Uno	·	bo Relacife - ling a con		Iω	6.16	
679	Uno	•	, , , , , , , , , , , , , , , , , , , ,		50	6.71	
680	Uno		Red - moved on the November of the		50	7.27	
	i		,	•			
							* * * * * * * * * * * * * * * * * * * *
			l	L	L	!	

PROGRESS REPORT

FOR

EXPLORATION LICENCE 1117 - SHEOAK HILL

FOR QUARTER ENDING 14TH JUNE, 1987

AUGUST, 1987

H. L. PATERSON OFFICER-IN-CHARGE - SOUTH AUSTRALIA

Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia on 15th March, 1983 and was current to 14th March, 1987. Ministerial consent for an extension of term to 14th March, 1988, was given on 11th February, 1987.

A joint venture was negotiated in February, 1987 between Billiton Australia and Western Mining Corporation Limited to explore this and other Exploration Licences on the Eyre Peninsula, with W.M.C. assuming management of the project. The Joint Venture commenced on 1st February, 1987.

2. WORK COMPLETED

There has been no fieldwork during the quarter. Project activity has been limited to examination and assessment of the Billiton data by W.M.C.

3. FUTURE PROGRAM

Work in the next quarter will include assessment of all existing results and selection of targets for further exploration where warranted.

4. EXPENDITURE REPORT

	Quarter ending	Cumulative to June 30, 1987	
	June 30, 1987	<u>\$</u>	<u>%</u>
Geology	965	965	20.8
Geophysics	1,638	1,638	35.4
Geochemistry	73	73	1.6
Drafting	873	873	18.8 '
Leasing	67	67	1.5
Administration	1,016		21.9
TOTAL	\$4,632	\$4,632	100.0%
		======	======

PROGRESS REPORT

FOR

EXPLORATION LICENCE 1117 - SHEOAK HILL FOR QUARTER ENDING 14TH SEPTEMBER, 1987

NOVEMBER, 1987

H. L. PATERSON OFFICER-IN-CHARGE - SOUTH AUSTRALIA

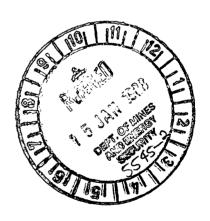
Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia on 15th March, 1983 and was current to 14th March, 1987. Ministerial consent for an extension of term to 14th March, 1988, was given on 11th February, 1987.

A joint venture was negotiated in February, 1987 between Billiton Australia and Western Mining Corporation Limited to explore this and other Exploration Licences on the Eyre Peninsula, with W.M.C. assuming management of the project. The Joint Venture commenced on 1st February, 1987.

2. WORK COMPLETED

There has been no fieldwork during the quarter. Project activity has been limited to examination and assessment of the Billiton data by W.M.C.

3. FUTURE PROGRAM


Work in the next quarter will include assessment of all existing results and selection of targets for further exploration where warranted.

4. EXPENDITURE REPORT

	Quarter ending	Cumulative to Se	ptember 22, 1987
	September 22, 1987	\$	<u>%</u>
Geology	-	965	20.6
Geophysics	-	1,638	35.0
Geochemistry	-	73	1.6
Drafting	-	873	18.6
Leasing	-	67	1.4
Administration	51	1,067	22.8
TOTAL	\$51 	\$4,683	100.0%
			=

PROGRESS REPORT FOR

EXPLORATION LICENCE 1117 - SHEOAK HILL FOR QUARTER ENDING 14TH DECEMBER, 1987

DECEMBER, 1987

H. L. PATERSON OFFICER-IN-CHARGE - SOUTH AUSTRALIA

Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia on 15th March, 1983 and was current to 14th March, 1987. Ministerial consent for an extension of term to 14th March, 1988, was given on 11th February, 1987.

A joint venture was negotiated in February, 1987 between Billiton Australia and Western Mining Corporation Limited to explore this and other Exploration Licences on the Eyre Peninsula, with W.M.C. assuming management of the project. The Joint Venture commenced on 1st February, 1987.

2. WORK COMPLETED

There has been no fieldwork during the quarter. Project activity has been limited to examination and assessment of the Billiton data by W.M.C.

3. FUTURE PROGRAM

Work in the next quarter will include assessment of all existing results and selection of targets for further exploration where warranted.

4. EXPENDITURE REPORT

	Quarter ending	Cumulative to September 17, 1987	
	November 17, 1987	<u>\$</u>	<u>%</u>
Geology	-	965	20.6
Geophysics	-	1,638	35.0
Geochemistry	-	73	1.6
Drafting	-	873	18.6
Leasing	-	67	1.4
Administration	-	1,067	22.8
TOTAL	\$ -	\$4,683	100.0%
	===	======	======

PROGRESS REPORT

FOR

EXPLORATION LICENCE 1117 - SHEOAK HILL .

FOR QUARTER ENDING 14TH MARCH, 1988

MARCH, 1988

H. L. PATERSON SENIOR SUPERVISING GEOLOGIST - SOUTH AUSTRALIA

Exploration Licence 1117, Sheoak Hill, was granted to The Shell Company of Australia on 15th March, 1983 and was current to 14th March, 1987. Ministerial consent for an extension of term to 14th March, 1988, was given on 11th February, 1987.

A joint venture was negotiated in February, 1987 between Billiton Australia and Western Mining Corporation Limited to explore this and other Exploration Licences on the Eyre Peninsula, with W.M.C. assuming management of the project. The Joint Venture commenced on 1st February, 1987. At the end of the first J.V. year, WMC advised Billiton that it would continue the J.V. only with respect to the Wilcherry Hill E.L., so that administration of the remaining E.L.'s would revert to Billiton as of that date. This report therefore finalises WMC's involvement with the licence, and future reports will be submitted by Billiton.

2. WORK COMPLETED

There has been no fieldwork during the quarter.

3. FUTURE PROGRAM

Work in the next quarter will be reported separately by Billiton.

4. EXPENDITURE REPORT

	Quarter ending	Cumulative to February 9, 198	
	February 9, 1988		<u>\$</u> <u>%</u>
Geology	405	1,370	26.5
Geophysics	53	1,691	32.7
Geochemistry	1	74	1.4
Drafting	11	884	17.1
Leasing	7	· 74	1.4
Administration	17	1,084	20.9
TOTAL	\$494 ====	\$5,177	100.0%