# CONTENTS ENVELOPE 4660

TENEMENT: E.L. 969 - Lake MacDonnell.

TENEMENT HOLDER: CSR Limited.

| REPORT: Three Monthly Report Period Ending 8th June 1982.    | Pgs. 3-5   |
|--------------------------------------------------------------|------------|
| PLANS: Test Pit Locations April 1982 Programme.              | 4660-1     |
| REPORT: Three Monthly Report Period Ending 8th Sept. 1982.   | Pgs. 6-11  |
| Three Monthly Report Period Ending 8th Dec. 1982.            | Pgs. 12-17 |
| Three Monthly Report Period Ending 8th March 1983.           | Pgs. 18-20 |
| Combined Waters Of Gypsum Samples From The Lake MacDonnell   | Pgs. 21-22 |
| Licence March 1983.                                          |            |
| Expenditure Statement Period Ending 8th June 1983.           | Pg23       |
| Three Monthly Report Period Ending 7th Sept. 1983.           | Pgs. 24-26 |
| Expenditure Statement Period Ending 8th Dec. 1983.           | Pg. 27     |
| PLANS: Grid System And Levels.                               | 4660-2     |
| REPORT: Final Report E.L. 969 Lake MacDonnell (Now Expired). | Pgs. 28-29 |
| Completion Report E.L. 969 Lake MacDonnell 31st July 1984.   | Pgs. 30-38 |
| APPENDIX: Summary Of Test Pit Logs And Sample Analyses.      | Pgs. 40-44 |
| PLANS: Locality Map E.L. 969. Plan 1.                        | Pg. 39     |
| Location Of Test Pits E.L. 969. Plan 2.                      | 4660-3     |

#### ENVELOPE 4660

E.L. 969 Lake MacDonnell. Progress reports from 8/6/82 to 8/12/83 (C.S.R. Ltd). 26 pages, 2 maps.

Authors: CSR Ltd., Adamson, C.L.

Map area: NUYTS (SI53-1 5533-4).

129 test pits were sampled and analysed using the water of crystallization method to identify economic deposits of gypsum above the water table.

Keywords: Industrial materials/Mineral exploration - SA/ Industrial minerals/Gypsum deposits/Geochemical exploration/. Pits/Bottom sampling/Chemical analysis/Kevin/Lake MacDonnell.

#### EXPLORATION LICENCE 969

#### Report for 3 Months Period Ending June 8, 1982

After research of all the available data relating to previous investigations in the area, the general site for a programme of test pit excavation and sampling was chosen.

At this stage the prime objective was to identify economic deposits of gypsum situated above the water table and on top of the bed of rock gypsum which occupies much of the area of interest.

Due to the soft nature and shallow depths of these gypsum beds, a rubber tyred excavator was used to dig pits.

Samples were collected from the top of the soft ore bed to the top of the rock gypsum or to about 100mm above the water level in the pit.

Attached is a schedule of samples taken from test pits and a plan showing pit locations. The number of pits dug was 53 and 48 were sampled for analysis which has not yet been completed.

Logs of the pits and results of the analyses will be included in a later report.

PL Fid ember

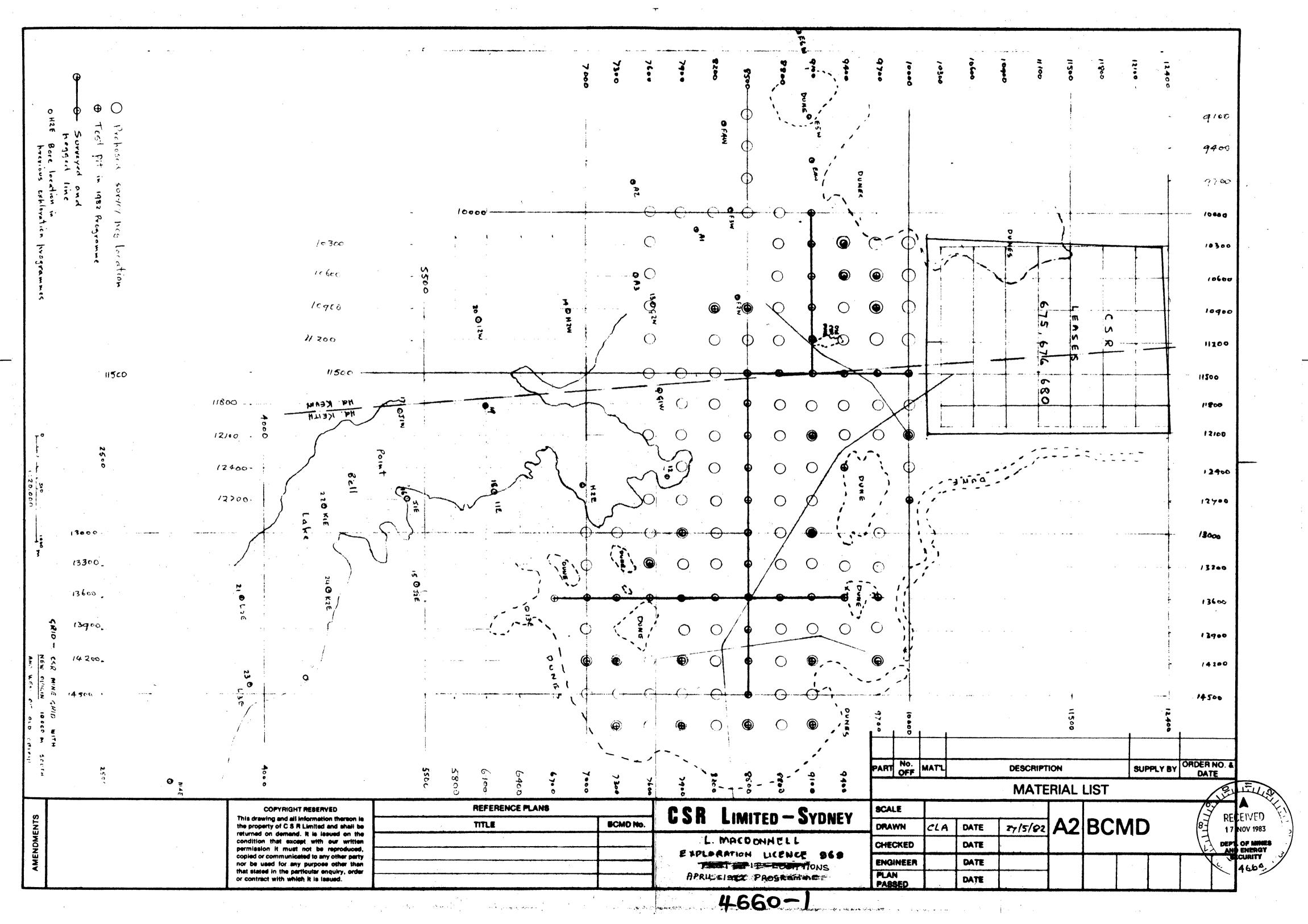
RECEIVED

6 JUL 1982

13

4660

#### SCHEDULE OF TEST PITS AND SAMPLES


#### EXPLORATION LICENCE 969

#### Held by CSR Limited at Lake Macdonnell

Locations of pits dug and sampled are shown on the accompanying plan and samples are identified by the grid references (CSR mine grid) with the easterly grid measurement listed first, eg.  $10000 \, \text{E}$ ,  $9100 \, \text{N}$  is shown as  $10000 \, \text{-} \, 9100$ .

| Test Pit      | Sample Interval - Depth from Surface |
|---------------|--------------------------------------|
| 10000 - 9100  | 0.35 - 1.00                          |
| 10300 - 9100  | 0.20 - 0.90                          |
| 10300 - 9400  | 0.20 - 0.80                          |
| 10600 - 9100  | 0.15 - 1.05                          |
| 10600 - 9400  | 0.20 - 0.85                          |
| 10600 - 9700  | 0.05 - 0.50                          |
| 10900 - 8200  | Not sampled                          |
| 10900 - 8500  | 0.05 - 1.10                          |
| 10900 - 9100  | 0.15 - 0.85                          |
| 10900 - 9700  | 0.30 - 1.15                          |
| 11200 - 9100  | 0.20 - 0.90                          |
| 11500 - 8500  | 0.15 - 1.00                          |
| 11500 - 8800  | 0.15 - 1.00                          |
| 11500 - 9100  | 0.40 - 1.20                          |
| 11500 - 9400  | 0.35 - 1.20                          |
| 11500 - 9700  | 0.35 - 1.00                          |
| 11500 - 10000 | 0.25 - 1.10                          |
| 11800 - 8500  | 0.30 - 1.15                          |
| 12100 - 8500  | 0.15 - 0.95                          |
| 12100 - 9100  | 0.20 - 1.00                          |
| 12100 - 10000 | 0.30 - 1.20                          |
| 12400 - 8500  | 0.25 - 1.00                          |
| 12400 - 9400  | 0.30 - 1.30                          |
| 12700 - 8500  | 0.25 - 1.15                          |
| 12700 - 10000 | Not sampled                          |
| 13000 - 7900  | 0.40 - 0.75                          |
| 13000 - 8500  | 0.35 - 1.10                          |
| 13000 - 9100  | 0.325- 0.90                          |
| 13300 - 7600  | 0.075- 1.15                          |
| 13300 - 8500  | 0.25 - 1.05                          |
| 13600 - 6700  | Not sampled<br>0.25 - 1.10           |
| 13600 - 7000  | 0.25 - 1.10                          |
| 13600 - 7300  | 0.45 - 1.05                          |
| 13600 - 7600  | 0.25 - 1.45 $0.40 - 1.20$            |
| 13600 - 7900  |                                      |
| 13600 - 8200  | 0.35 - 1.20                          |

| Test Pit     | Sample Interval - Depth from Surface |
|--------------|--------------------------------------|
| 13600 - 8500 | 0.30 - 1.20                          |
| 13600 - 8800 | 0.30 - 0.90                          |
| 13600 - 9100 | 0.40 - 1.20                          |
| 13600 - 9400 | Not sampled                          |
| 13600 - 9700 | Not sampled                          |
| 13900 - 8500 | 0.30 - 1.30                          |
| 14200 - 7000 | 0.15 - 1.05                          |
| 14200 - 7300 | 0.20 - 1.30                          |
| 14200 - 7900 | 0.25 - 1.20                          |
| 14200 - 8500 | 0.40 - 1.30                          |
| 14200 - 9100 | 0.45 - 1.30                          |
| 14200 - 9700 | 0.45 - 1.20                          |
| 14500 - 8500 | 0.15 - 1.15                          |
| 14800 - 7300 | 0.50 - 1.20                          |
| 14800 - 7900 | 0.15 - 1.20                          |
| 14800 - 8500 | 0.50 - 1.20                          |
| 14800 - 8500 | 0.15 - 1.40                          |
| 14800 - 9100 | 0.50 - 1.25                          |



# CSR LIMITED

# GYPSUM PRODUCTS GROUP

# EXPLORATION LICENCE 969

REPORT FOR THREE MONTHS PERIOD ENDING SEPTEMBER 8, 1982

This report records the results of the test pit excavation programme during April 1982.

The gypsum analyses were carried out using the water of crystallisation method.

Future survey work and sampling is proposed for the next period.

C.L. Adamson

Plan - Test Pit Locations April 1982 Programme

# LAKE MACDONNELL TEST PIT PROGRAMME

# SUMMARY OF RESULTS

27/7/82

|               |            |                       |                          | :                |                                                   |                                              |
|---------------|------------|-----------------------|--------------------------|------------------|---------------------------------------------------|----------------------------------------------|
| Pit<br>No.    | Depth<br>m | O'burd.<br>thick<br>m | Ore<br>bed<br>thick<br>m | 0'burd.<br>ratio | Ore<br>bed<br>gypsum<br>%                         | Remarks                                      |
| 10000         | 1.20       | 0.35                  | 0.65                     | 0.54             | 93.71                                             |                                              |
| 10300         | 1.10       | 0.20                  | 0.60                     | 0.33             | 94.39                                             |                                              |
| 10300<br>9400 | 0.85       | 0.20                  | 0.60                     | 0.33             | 93.04                                             |                                              |
| 10600<br>9100 | 1.05       | 0.15                  | 0.90                     | 0.17             | 793.47                                            |                                              |
| 10600<br>9400 | 0.95       | 0.20                  | 0.60                     | 0.33             | 96.00                                             |                                              |
| 10600<br>9700 | 0.50       | 0.05                  | 0.45                     | 0.11             | 96.42                                             |                                              |
| 10900<br>8200 | 1.30       | 0.45                  | 0.75                     | 0.60             | Not sam<br>Unconso<br>sand,<br>heavy p<br>contami | lidated gypsum too soft for lant. No obvious |
| 10900<br>8500 | 1.35       | 0.05                  | 1.05                     | 0.04             | 92.66                                             |                                              |
| 10900<br>9100 | 0.85       | 0.15                  | 0.70                     | 0.21             | 94.28                                             |                                              |
| 10900<br>9700 | 1.25       | 0.30                  | 0.85                     | 0.35             | 96.24                                             |                                              |
| 11200<br>9100 | 0.90       | 0.20                  | 0.70                     | 0.29             | 94.66                                             |                                              |
| 11500<br>8500 | 1.20       | 0.15                  | 0.85                     | 0.18             | 94.52                                             |                                              |
| 11500<br>8800 | 1.10       | 0.15                  | 0.85                     | 0.18             | 94.71                                             |                                              |
| 11500<br>9100 | L Company  | 0.40                  | 0.80                     | 0.50             | 95.36                                             |                                              |

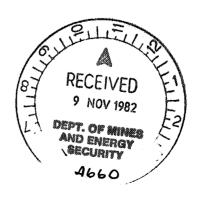
| Pit<br>No.     | Depth<br>m | O'burd.<br>thick<br>m | Ore<br>bed<br>thick | O'burd.<br>ratio       | Ore<br>bed<br>gypsum<br>% | Remarks                                            |
|----------------|------------|-----------------------|---------------------|------------------------|---------------------------|----------------------------------------------------|
| 11500<br>9400  | 1.30       | 0.35                  | 0.80                | 0.43                   | 95.28                     |                                                    |
| 11500<br>9700  | 1.10       | 0.35                  | 0.65                | 0.54                   | 93.90                     |                                                    |
| 11500<br>10000 | 1.15       | 0.25                  | 0.85                | 0.29                   | 94.26                     |                                                    |
| 11800<br>8500  | 1.25       | 0.30                  | 0.80                | 0.36                   | 95.66                     |                                                    |
| 12100<br>8500  | 1.10       | 0.15                  | 0.80                | 0.19                   | _95.43                    |                                                    |
| 12100<br>9100  | 1.05       | 0.20                  | 0.75                | 0.27                   | 94.82                     |                                                    |
| 12100<br>10000 | 1.30       | 0.30                  | 0.75                | 0.40                   | 93.90                     |                                                    |
| 12400<br>8500  | 1.20       | 0.25                  | 0.75                | 0.33                   | 95.19                     |                                                    |
| 12400<br>9400  | 1.50       | 0.30                  | 1.00                | 0.30                   | 89.90                     | Gypsum crystals cemented with carbonate in bottom. |
| 12700<br>8500  | 1.25       | 0.25                  | 0.85                | 0.29                   | 95.95                     |                                                    |
| 12700<br>10000 | 1.20       | 0.35                  | Not sar             | npled due<br>ination i | to obvi<br>in gypsum      | ous carbonate<br>bed.                              |
| 13000<br>7900  | 1.25       | 0.40                  | 0.35                | 1.14                   | 94.52                     |                                                    |
| 13000<br>8500  | 1.15       | 0.35                  | 0.75                | 0.47                   | 95.28                     |                                                    |
| 13000<br>9100  | 1.15       | 0.325                 | 0.575               | 0.57                   | 94.14                     |                                                    |
| 13300<br>7600  | 1.40       | 0.075                 | 1.075               | 0.07                   | 91.08                     |                                                    |
| 13300<br>8500  | 1.15       | 0.25                  | 0.80                | 0.31                   | 91.17                     | Carbonate band at 0.95-1.00m                       |

| Pit<br>No.    | Depth<br>m | O'burd.<br>thick<br>m | Ore<br>bed<br>thick   | O'burd.<br>ratio | Ore<br>bed<br>gypsum<br>% | Remarks                                      |
|---------------|------------|-----------------------|-----------------------|------------------|---------------------------|----------------------------------------------|
| 13600<br>6700 | 1.30       | 0.35                  | 0.45                  | 0.78             | ore be                    | pled due to thin ed and obvious te at 0.80m. |
| 13600<br>7000 | 1.30       | 0.25                  | 0.85                  | 0.29             | 92.46                     |                                              |
| 13600<br>7300 | 1.30       | 0.45                  | 0.65                  | 0.69             | 94.14                     |                                              |
| 13600<br>7600 | 1.60       | 0.25                  | 1.20                  | 0.21             | 90.22                     | Carbonate band at 1.13-1.20m.                |
| 13600<br>7900 | 1.40       | 0.40                  | 0.80                  | 0.50             | 94.52                     |                                              |
| 13600<br>8200 | 1.20       | 0.35                  | 0.85                  | 0.41             | 93.02                     |                                              |
| 13600<br>8500 | 1.40       | 0.30                  | 0.90                  | 0.33             | 95.33                     |                                              |
| 13600<br>8800 | 1.10       | 0.30                  | 0.60                  | 0.50             | 95.19                     |                                              |
| 13600<br>9100 | 1.30       | 0.40                  | 0.80                  | 0.50             | 87.97                     |                                              |
| 13600<br>9400 | 1.10       | 0.60                  | 0.30                  | 2.00             | At edge                   | of dune. Not                                 |
| 13600<br>9700 | 1.20       | Not sam               | npled due<br>ination. | to obvi          | lous cark                 | oonate                                       |
| 13900<br>8500 | 1.40       | 0.30                  | 0.95                  | 0.32             | 96.19                     |                                              |
| 14200<br>7000 | 1.20       | 0.15                  | 0.90                  | 0.17             | 91.46                     |                                              |
| 14200<br>7300 | 1.45       | 0.20                  | 1.00                  | 0.20             | 92.87                     |                                              |
| 14200<br>7900 | 1.45       | 0.45                  | 0.75                  | 0.60             | 93.18                     |                                              |
| 14200<br>8500 | 1.40       | 0.40                  | 0.90                  | 0.44             | 95.81                     |                                              |

| Pit<br>No.    | Depth<br>m | O'burd.<br>thick<br>m | Ore<br>bed<br>thick | O'burd.<br>ratio | Ore<br>bed<br>gypsum<br>% | Remarks |
|---------------|------------|-----------------------|---------------------|------------------|---------------------------|---------|
| 14200<br>9100 | 1.45       | 0.45                  | 0.85                | 0.53             | 92.73                     |         |
| 14200<br>9700 | 1.30       | 0.25                  | 0.95                | 0.26             | 91.65                     |         |
| 14500<br>8500 | 1.25       | 0.15                  | 0.95                | 0.16             | 95.47                     |         |
| 14800<br>7300 | 1.40       | 0.50                  | 0.70                | 0.71             | 91.79                     |         |
| 14800<br>7900 | 1.40       | 0.50                  | 0.70                | 0.71             | 92.99                     |         |
| 14800<br>8500 | 1.55       | 0.15                  | 1.25                | 0.12             | 94.33                     |         |
| 14800<br>9100 | 1.35       | 0.15                  | 0.75                | 0.20             | 89.12                     |         |

## Notes:

- The base of the ore bed has been determined by one of 1. three criteria:
  - 0.1m above any severe carbonate contamination. (a)
  - 0.lm above water level, if encountered. (b)
  - The level of rock or crystal gypsum which the excavator could not penetrate with reasonable ease, provided that this level was 0.1m above water level. (C)
- Overburden ratio: 2.


This figure is obtained by dividing the overburden thickness by the ore bed thickness.

# EL 969

#### EXPENDITURE

# THREE MONTHS ENDING 9TH SEPT 1982

|                                                                                 | \$      |
|---------------------------------------------------------------------------------|---------|
| Consultants fees:                                                               | v - *   |
| Evaluation of analyses results etc:                                             | 1421    |
| CSR personnel:                                                                  |         |
| Evaluation of geologists report and, planning next stage of exploration.        | 1100    |
| Cost of sample analyses (not received) to be included in report for 3ME 7.12.82 |         |
| Total 3ME 7.9.12                                                                | \$ 2521 |
| Estimated Expenditure 3ME 7.12.82                                               | 12000   |





# **CSR Building Materials**

**№** DE/LH

CSR LIMITED

GYPSUM PRODUCTS GROUP SOUTH AUSTRALIA STATE OFFICE 37 PLYMOUTH ROAD WINGFIELD SOUTH AUSTRALIA BOX 58 PO ROSEWATER EAST SOUTH AUSTRALIA 5013 TELEPHONE (08) 268 7855 TELEX AA82112

7th January, 1983.

The Director General, Department Mines & Energy, P.O. Box 151, EASTWOOD S.A. 5063

Dear Sir,

Re: EL 969 Lake MacDonnell - DME 466/81.

Please find enclosed our report relating to EL 969 for the three month period ending 8th December, 1982.

The prospective area defined by the investigation reported in the previous 3 monthly report was pegged and levelling by the surveyor with pegs located at 300m intervals as an extension of the existing CSR mine grid.

A programme of test pit excavations using a backhoe and a front end loader has been completed with pits located at all peg locations except one. The samples thus collected are waiting analysis and when these are complete a schedule of logs and analysis will be submitted.

The attached schedule lists the samples collected during this second programme which was completed on the 8th December, 1982. The pits dug during this programme were located within several metres of the grid pegs, however the pits dug during the first programme (report for 3ME 8th June, 1982) were, in many cases, located approximately owing to the lack of survey pegs.

and energy

SECURITY

Yours faithfully,

R.E.S. Layton State Manager.

© Plasterboard

## EXPLORATION LICENCE NO 969

# EXPENDITURE: 3 MTH ENDING 8TH DECEMBER, 1982.

#### G.J. Gibson, Surveyor.

To survey and pegrout 7km of grid lines with levels, including draughting and prints, car milage and travelling time, accommodation and materials used.

\$8175.00

#### Brambles Industrial Services

Machine hire to dig and backfill test pits (some backfilling was done after the 8th December, 1982), and hire 4 WD vehicle.

\$1438.50

#### Commercial Motors

| Hire | 4 | WD | vehicle. |
|------|---|----|----------|
|------|---|----|----------|

\$ 742.55

## C.L. Adamson, Geologist

| Office work                           | \$ 405.30 |
|---------------------------------------|-----------|
| Field work                            | \$2161.60 |
| Air fares and miscellaneous expenses. | \$ 468.60 |

#### CSR Limited

| Office work, preparation for exploration | \$3000.00 |
|------------------------------------------|-----------|
| Field work, salary                       | \$1500.00 |
| Administration costs, office staff       | \$ 500.00 |

#### Miscellaneous

| Accommodation and meals at Ceduna | \$1316.99  |
|-----------------------------------|------------|
| Tools etc                         | \$ 380.00  |
| Plastic bags                      | \$ 12.00   |
| Petrol                            | \$ 321.36  |
| Air fares, Adelaide Ceduna return | \$ 203.40  |
| Total 3M.E. 8/12/82               | \$20625.30 |

Estimated expenditure 3 M.E.  $8\sqrt{3/83}$ 

\$ 2500.00

# Schedule of Test Pits and Samples

The accompanying survey plan shows pegged grid locations which have been sampled during the two programmes of pit excavation during 1982.

The following schedule lists pits excavated and sampled during December, 1982.

| <del></del> |
|-------------|
|             |
|             |
| 1 2         |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

<del>-0</del>015

| E     | Test Pit         | N     |              | e Inter        | Surface                        |
|-------|------------------|-------|--------------|----------------|--------------------------------|
| 10900 | ; <del>-</del>   | 9400  | 0.12         | <del></del>    | 0.71                           |
| 10900 | <del>,</del>     | 10000 | 0.20         | -              | 0.95                           |
| 11200 | <del></del>      | 7600  | 0.50         | . <del>-</del> | 1.25                           |
| 11200 | 9<br><del></del> | 8200  | 0.25         | · <b></b>      | 1.00                           |
| 11200 | -                | 8500  | 0.25         | <del>-</del>   | 1.10                           |
| 11200 | -                | 8800  | 0.50         |                | 1.30                           |
| 11200 | -                | 9400  | 0.02         | -              | 0.94                           |
| 11200 | -                | 9700  | 0.20         | -              | 1.06                           |
| 11200 | -                | 10000 | 0.30<br>1.65 | -<br>-         | 1.65 Sample 1<br>2.00 Sample 2 |
| 11500 | . <del></del>    | 7600  | 0.50         |                | 1.65                           |
| 11500 | -                | 7900  | 0.40         | . <del>-</del> | 1.20                           |
| 11500 | -                | 8200  | 0.50<br>1.30 | -              | 1.30 Sample 1<br>1.45 Sample 2 |
| 11800 | -                | 7900  | 0.40         | -              | 1.25                           |
| 11800 | · <del>-</del>   | 8200  | 0.05         |                | 0.90                           |
| 11800 | -                | 8800  | 0.50         |                | 1.40                           |
| 11800 | -                | 9100  | 0.48         |                | 1.07                           |
| 11800 | -                | 9400  | 0.28         |                | 1.04                           |
| 11800 | -                | 9700  | 0.37         | · -            | 1.20                           |
| 11800 | -                | 10000 | 0.30<br>1.30 | , page         | 1.30 Sample 1 1.70 Sample 2    |
| 12100 | -                | 7900  | 0.20         |                | 1.10                           |
| 12100 | den              | 8200  | 0.40         | -              | 1.25                           |
| 12100 | <b>ao</b>        | 8800  | 0.35         | -              | 1.26                           |
| 12100 | ains             | 9400  | 0.42         |                | 1.32                           |
| 12100 | wine             | 9700  | 0.45         | 'anti-         | 1.45                           |

| E      | Test Pit     | N     |   | -            | e Interv<br>from Su<br>metres |             |                  |  |
|--------|--------------|-------|---|--------------|-------------------------------|-------------|------------------|--|
| 12400  | _            | 8200  |   | 0.30         | -                             | 1.15        |                  |  |
| 12400  | -            | 8800  |   | 0.30         | <del>-</del>                  | 1.26        |                  |  |
| 12400  | <del></del>  | 9100  |   | 0.32         | <u>.=</u>                     | 1.13        |                  |  |
| 12400  | -            | 10000 |   | No           | o Sample                      | :           |                  |  |
| 12700  |              | 7600  |   | 0.15         | -                             | 0.85        |                  |  |
| 12700  | ÷            | 7900  |   | 0.08         | <del></del>                   | 0.70        |                  |  |
| 12700  | -            | 8200  | ø | 0.40<br>1.45 | -<br>-                        |             | Sample<br>Sample |  |
| 12700  | -            | 8800  |   | 0.37         | .—                            | 1.14        |                  |  |
| 12700  | _            | 9100  |   | 0.20         | -                             | 1.19        |                  |  |
| 13000  | -            | 7000  |   | 0.40         | -                             | 1.05        |                  |  |
| 13000  | -            | 7300  |   | 0.25         | -                             | 1.50        |                  |  |
| 13000  | -            | 7600  |   | 0.20<br>1.50 | <del>-</del>                  |             | Sample<br>Sample |  |
| .13000 | · <u>-</u>   | 8200  |   | 0.30<br>1.00 | <b>-</b>                      |             | Sample<br>Sample |  |
| 13000  | <del>-</del> | 8800  |   | 0.18         | -                             | 1.02        |                  |  |
| 13000  | -            | 9700  |   | N            | o Sample                      | <b>&gt;</b> |                  |  |
| 13300  | -            | 7000  |   | 0.10<br>1.20 | <del>-</del>                  |             | Sample<br>Sample |  |
| 13300  | -            | 7900  |   | 0.45<br>1.00 | -                             |             | Sample<br>Sample |  |
| 13300  | -            | 8200  |   | 0.40         | -                             | 1.15        | •                |  |
| 13300  | <del></del>  | 8800  |   | 0.18         | -                             | 1.02        |                  |  |
| 13300  | -            | 9100  |   | 0.32         |                               | 1.27        |                  |  |
| 13300  | -            | 9400  |   | 0.43<br>1.12 |                               |             | Sample<br>Sample |  |
| 13300  |              | 9700  |   | N            | o Sample                      | 9           |                  |  |

| E     | Test Pit       | N    | Sample Intervals<br>Depths from Surface<br>metres |
|-------|----------------|------|---------------------------------------------------|
| 13900 | . <del>-</del> | 7000 | 0.40 - 1.35 Sample 1<br>1.35 - 1.90 Sample 2      |
| 13900 | <del>-</del>   | 7900 | 0.35 - 1.50                                       |
| 13900 |                | 8200 | 0.10 - 1.15                                       |
| 13900 |                | 8800 | 0.36 - 1.24                                       |
| 13900 | . <del>=</del> | 9100 | 0.40 - 1.30                                       |
| 13900 | <del></del>    | 9400 | 0.76 - 0.98                                       |
| 13900 | -              | 9700 | 0.31 - 1.31                                       |
| 14200 | -              | 7600 | 0.30 - 2.00                                       |
| 14200 |                | 8200 | 0.15 - 1.20                                       |
| 14200 | . <del></del>  | 8800 | 0.32 - 1.30                                       |
| 14500 |                | 7000 | 0.45 - 1.30                                       |
| 14500 |                | 7300 | 0.45 - 1.40                                       |
| 14500 | -              | 7600 | 0.35 - 1.40                                       |
| 14500 | -              | 7900 | 0.35 - 1.60                                       |
| 14500 | -              | 8200 | 0.08 - 1.25                                       |
| 14500 |                | 8800 | 0.40 - 1.34                                       |
| 14500 | -              | 9100 | 0.28 - 1.33                                       |
| 14800 | . <del></del>  | 7300 | No Sample                                         |
| 14800 | <del></del>    | 7600 | 0.50 - 1.20                                       |
| 14800 | -              | 8200 | 0.35 - 1.40                                       |
| 14800 |                | 8800 | 0.60 - 1.49                                       |



# **CSR Building Materials**

**CSR LIMITED** 

GYPSUM PRODUCTS GROUP SA STATE OFFICE

37 PLYMOUTH ROAD WINGFIELD SOUTH AUSTRALIA BOX 58 PO ROSEWATER EAST SOUTH AUSTRALIA 5013 TELEPHONE (08) 268 7855 ORDER DEPT (08) 45 4751 TELEX AA82112

DME/eq

19th April, 1983

The Director General, Department of Mines & Energy S.A., P.O. Box 151, EASTWOOD S.A. 5063

Dear Sir,

RE: EL 969 Lake MacDonnell - Report for 3 months ending 8th March, 1983

As requested please find enclosed a further copy of our report relating to EL 969 for the three months ending 8th March, 1983.

Attached are the results of the first thirty samples to be analysed. Results of the outstanding forty six samples will be submitted in our next report.

Yours faithfully,

R.E.S. Layton STATE MANAGER

Encl.



# EXPLORATION LICENCE NO 969

# EXPENDITURE: 3 MONTHS ENDING 8TH MARCH, 1983

| C.L. Adamson, Geologist             |                    |
|-------------------------------------|--------------------|
| Office work, geological consulting  | \$800.95           |
| CSR Limited                         |                    |
| Administration costs, office staff  | 500.00             |
| Analytical Costs                    | 600.00             |
| TOTAL 3 M.E. 8/3/83                 | \$1900 <b>.</b> 95 |
| Estimated expenditure 3 M.E. 8/6/83 | \$2500.00          |

96.0

96.5

94.9

95.7

94.8

96.7

95.0

95.2

95.0

# COMBINED WATERS OF SPECIAL LAKE McDONNELL

# SAMPLES SUBMITTED JANUARY 1983

Carloy. 840 Purity Combined Water of Dried Samples Sample Sample Co-ordinates No. (%) Average (%) Results (%) 85.6 17.92 8500 17.97 17.86 9100 1 19.22 19.17 91.6 19.12 2 8500 \* 9400 7.73 36.9 7.89 7.56 # 9400 8500 18.31 87.5 18.34 18.27 4 8500 10000 87.4 18.30 8800 18.48 18.12 5 10000 19.10 90.8 18.90 19.00 6 8800 10300 20.04 95.7 19.84 20.24 7 10300 10000 92.0 19.05 19.25 19.45 8 10600 8800 96.0 20.10 20.10 20.09 10000 9 10600 87.2 18.23 18.26 18.29 7600 10 10900 95.2 19.92 19.92 19.92 11 10900 8800 19.96 19.98 95.5 12 9400 20.00 10900 97.3 20.42 20.30 20.36 10900 10000 13 94.0 19.72 19.68 19.64 14 11200 8200 19.86 94.9 19.81 19.91 15 11200 8500 20.07 95.9 20.10 9400 20.03 11200 16 93.0 19.48 19.47 19.46 17 11200 9700 20.02 95.7 20.03 20.01 18 11200 10000 90.6 18.96 18.97 18.97 11500 7600 19 20.05 95.8 20.07 20.03 11500 8200 20 . 19.93 19.89 19.91 95.1 7900 21 11800

20.14

20.23

19.98

20.07

19.92

20.25

20.12

20.00

19.92

20.05

20.16

19.76

20.00

19.76

20.19

20.06

19.83

19.85

20.10

20.20

19.87

20.04

19.84

20.22

20.09

19.92

19.89

22.

23

24

25

26

27

28

30

29 .

11800

11800

11800

11800

11800

11800

12100

12100

12100

8200

8800

9100

9400

9700

8800

9400

9700

10000

<sup>\* 1</sup>st Sample

<sup># 2</sup>nd Sample

# COMBINED WATERS OF GYPSUM SAMPLES

# FROM THE LAKE McDONNELL EXPLORATION LICENCE MARCH 1983

| Sample<br>Co-ordinates                                               |                                                              | Core<br>Depth                           | Combined Water of<br>Dried Samples                                                                                           |                                                                      | Purity                                                       | Comments                            |
|----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
|                                                                      |                                                              | (m )                                    | Results<br>(%)                                                                                                               | Average<br>(%)                                                       | (%)                                                          | No:                                 |
| 11200<br>11500<br>12100<br>12100<br>12400<br>12400<br>12400<br>12700 | 7600<br>7900<br>7900<br>8200<br>8200<br>8800<br>9100<br>7600 | -                                       | 18.91, 18.92<br>19.67, 19.72<br>20.19, 20.20<br>20.09, 20.07<br>19.97, 20.00<br>19.81, 19.82<br>19.77, 19.84<br>19.90, 20.03 | 18.92<br>19.70<br>20.20<br>20.08<br>19.99<br>19.82<br>19.80<br>19.97 | 90.5<br>94.3<br>96.7<br>96.1<br>95.6<br>94.8<br>94.7         | 1<br>1<br>1<br>1<br>1<br>1<br>1     |
| 12700<br>12700<br>12700<br>12700<br>12700<br>13000<br>13000<br>13000 | 7900<br>8200<br>8200<br>8800<br>9100<br>7000<br>7300<br>7600 | -<br>1.45-1.7<br>-<br>-<br>-<br>-       | 19.95, 19.92<br>19.64, 19.63<br>20.12, 20.10<br>19.78, 19.75<br>19.55, 19.62<br>19.51, 19.50<br>18.49, 18.61<br>19.52, 19.55 | 19.94<br>19.64<br>20.11<br>19.77<br>19.59<br>19.51<br>18.55<br>19.54 | 95.4<br>94.0<br>96.2<br>94.6<br>93.7<br>93.3<br>88.8<br>93.5 | 1<br>3,7<br>1<br>1<br>1<br>5,8<br>5 |
| 13000<br>13000<br>13000<br>13000<br>13300<br>13300<br>13300<br>13300 | 7600<br>8200<br>8200<br>8800<br>7000<br>7900<br>8200<br>8800 | 1.5-2.6<br>-<br>1.0-1.4<br>-<br>1.2-1.7 | 19.82, 19.78<br>20.22, 20.23<br>19.53, 19.23<br>20.02, 19.81<br>18.59, 18.74<br>19.65, 19.78<br>19.62, 19.65<br>19.93, 19.66 | 19.80<br>20.23<br>19.38<br>19.92<br>18.67<br>19.72<br>19.64<br>19.80 | 94.7<br>96.8<br>92.7<br>95.3<br>89.3<br>94.4<br>94.0         | 4,7<br>1<br>2,7<br>2,7<br>1,7<br>1  |
| 13300<br>13300<br>13900<br>13900<br>13900<br>13900<br>13900          | 9100<br>9400<br>7000<br>7000<br>7900<br>8200<br>8800<br>9100 | 1.35-1.4                                | 19.04, 19.23<br>16.97, 17.03<br>19.59, 19.75<br>18.61, 18.84<br>20.23, 20.11<br>20.05, 20.15<br>19.86, 19.82<br>19.15, 19.09 | 19.14<br>17.00<br>19.67<br>18.73<br>20.17<br>20.10<br>19.84<br>19.12 | 91.6<br>81.3<br>94.1<br>89.6<br>96.5<br>96.2<br>94.9         | 2<br>2,9<br>2<br>3<br>4,8<br>1<br>1 |

| Sample<br>Co-ordinates                                               |                                                              | Core<br>Depth              | Combined Wa<br>Dried San                                                                                                     | Purity                                                               | Comments                                                     |                                     |
|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
|                                                                      |                                                              | (mm)                       | Results<br>(%)                                                                                                               | Average<br>(%)                                                       | (%)                                                          | No:                                 |
| 13900<br>14200<br>14200<br>14200<br>14500<br>14500<br>14500<br>14500 | 9700<br>7600<br>8200<br>8800<br>7000<br>7300<br>7600<br>7900 | -<br>-<br>-<br>-<br>-<br>- | 18.63, 18.64<br>19.59, 19.72<br>19.84, 19.98<br>19.81, 20.05<br>19.32, 19.31<br>20.05, 20.22<br>20.18, 20.20<br>20.07, 20.04 | 18.64<br>19.66<br>19.91<br>19.93<br>19.32<br>20.14<br>20.19<br>20.06 | 89.2<br>94.1<br>95.3<br>95.4<br>92.4<br>96.4<br>96.6<br>96.0 | 4<br>2,7<br>1<br>1<br>4<br>4<br>4,7 |
| 14500<br>14500<br>14500<br>14800<br>14800<br>14800                   | 8200<br>8800<br>9100<br>7600<br>8200<br>8800                 | -                          | 20.23, 20.23<br>20.09, 20.15<br>12.59, 12.00<br>19.76, 19.81<br>20.30, 20.26<br>20.38, 20.28                                 | 20.23<br>20.12<br>12.30<br>19.79<br>20.28<br>20.33                   | 96.8<br>96.3<br>58.9<br>94.7<br>97.0<br>97.3                 | 1<br>1<br>6,10<br>4<br>4            |

# COMMENT CODE:

| 1  | Sample colour is off-white                          |
|----|-----------------------------------------------------|
| 2  | " " light grey                                      |
| 3  | " " grey                                            |
| 4  | " " light orange                                    |
| 5  | " " light caramel                                   |
| 6  | " " " light brown                                   |
| 7  | Large Gypsum crystals present in the sample         |
| 8  | All very fine material - less than 5mm              |
| 9  | All very small crystals and lumps of small crystals |
| 10 | All small granules. Suspected high acid-insoluble   |

# EXPLORATION LICENCE 969

# EXPENDITURE: 3 MONTHS ENDING 8TH JUNE, 1983.

| DAT BADETOND                        |           |
|-------------------------------------|-----------|
| C.L. Adamson, Geologist             |           |
| Office work, geological consulting  | \$1215.90 |
|                                     |           |
| CSR Limited                         |           |
| Administration costs, office staff  | \$ 500.00 |
| Analytical costs                    | \$1000.00 |
| Total 3 M.E. 8/6/83                 | \$2715.90 |
|                                     |           |
| Estimated expenditure 3 M.E. 8/9/83 | \$1000.00 |





# **CSR Building Materials**

DE/eq

CSR LIMITED

GYPSUM PRODUCTS GROUP SA STATE OFFICE

37 PLYMOUTH ROAD WINGFIELD SOUTH AUSTRALIA BOX 58 PO ROSEWATER EAST SOUTH AUSTRALIA 5013 TELEPHONE (08) 268 7855 ORDER DEPT (08) 45 4751 TELEX AA82112

13 October 1983

The Director General,
Department of Mines and Energy S.A.,
P.O. Box 151,
EASTWOOD S.A. 5063

Dear Sir,

RE: EL 969 LAKE MACDONNELL - REPORT FOR THREE MONTHS ENDING 7TH SEPTEMBER, 1983

Please find enclosed our report relating to EL 969 for the three months ending 7th September, 1983.

The samples obtained during our December 1982 exploration programme, were despatched to the Core Library on the 7th October, 1983. For your convenience we have enclosed a sample receipt sheet and a complete list of three samples.

A further field trip was conducted by CSR staff and our consultant geologist, Mr. C. Adamson. Twenty one pits were dug and samples taken. The preliminary results of these samples are attached.

Yours failthfully,

R.E.S. Layton STATE MANAGER

Encl.



# EXPLORATION LICENCE 969

# EXPENDITURE : 3 MONTHS ENDING 7TH SEPTEMBER 1983

| C.L. Adamson, Consultant Geologist                                                     |                    |
|----------------------------------------------------------------------------------------|--------------------|
| Office work, geological consulting Field work, geological consulting                   | \$ 772<br>1290     |
| CSR Limited                                                                            |                    |
| Administration costs, office work Field trip, expenditure Sundry equipment, hand anger | 500<br>4189<br>174 |
| <u>Amdel</u>                                                                           |                    |
| Analytical costs                                                                       | 670 ·              |
| Finlayson & Co., Solicitors                                                            |                    |
| Search of owners, Notice of Entry                                                      | 5.00               |
| Total 3ME 7/9/83                                                                       | \$8045             |
| Estimated expenditure 3 ME 7/12/83                                                     | \$5000             |

# EXPLORATION LICENCE 969

# SAMPLE RESULTS: 3 MONTHS ENDING 7th SEPTEMBER 1983

| COMBINED<br>WATER AS<br>GYPSUM<br>CaSO <sub>4</sub> 2H <sub>2</sub> 0 |
|-----------------------------------------------------------------------|
| 94.0                                                                  |
| 93.2                                                                  |
| 95.8                                                                  |
| 96.6                                                                  |
| 94.0                                                                  |
| 93.2                                                                  |
| 91.2                                                                  |
| 94.3                                                                  |
| 96.0                                                                  |
| 93.5                                                                  |
| 95.4                                                                  |
| 94.2                                                                  |
| 94.0                                                                  |
| 92.6                                                                  |
| 93.4                                                                  |
| 93.8                                                                  |
| 94.5                                                                  |
| 94.0                                                                  |
|                                                                       |

#### EXPLORATION LICENCE 969

# EXPENDITURE: 3 MONTHS ENDING 8TH DECEMBER, 1983.

| C.L. ADAMSON, CONSULTANT GEOLOGIST                                   |                |
|----------------------------------------------------------------------|----------------|
| Office work, geological consulting Field work, geological consulting | \$2,111<br>NIL |
| CSR LIMITED                                                          |                |
| Office work, administration costs Field work, expenditure            | 1,200<br>1,200 |
|                                                                      |                |
| AMDEL                                                                |                |
| Analytical costs                                                     | 480            |
| FINLAYSON & CO. SOLICITORS                                           |                |
| Mineral Claim preparations                                           | 200            |
| TOTAL 3 ME 8/12/83                                                   | \$5,191        |
| Estimated expenditure 3 ME 8/3/84                                    | \$6,000        |
| Total expenditure to-date                                            | \$58,311       |

No further work or results.

Final rept. not required

Expenditure for 3 M.E. 7/3/84 ~ \$6,000

(Advised by I. Downie 12/2/84

On 2/2/84

RECEIVED EN

21 FER 100.

LAKE MACDONNELL S A GYPSUM A DIVISION OF CSR LIMITED GRID SYSTEM AND LEVELS SCALE 1: 10 000 4660-2 10 300 10000 9 700 9 400 8 800 8 500 7900 7600 7300 7 000 Certified Correct





CSR LIMITED

GYPSUM PRODUCTS GROUP SOUTH AUSTRALIA STATE OFFICE 37 PLYMOUTH ROAD WINGFIELD SOUTH AUSTRALIA BOX 58 PO ROSEWATER EAST SOUTH AUSTRALIA 5013 TELEPHONE (08) 268 7855 TELEX AA82112

3 January 1985

The Director General,
Department of Mines & Energy S.A.,
P.O. Box 151,
EASTWOOD S.A. 5063

Dear Sir,

RE: EL 969 LAKE MACDONNELL (NOW EXPIRED)
FINAL REPORT

Please find enclosed our final report relating to EL 969. As you would be aware this EL has lapsed and parts of it have been converted into Mineral Claims.

Yours faithfully,

R.E.S. LAYTON State Manager

ATTACH.

to.



# EXPLORATION LICENCE 969

# EXPENDITURE: 3 MONTHS ENDING 8TH MARCH 1984 & BEYOND

# C.L. Adamson, Consultant Geologist, Sydney

| Office work 8.12.83 to 8.3.84<br>After 8.3.84 | \$<br>\$<br> | 2190.00<br>2702.35 |
|-----------------------------------------------|--------------|--------------------|
|                                               | \$           | 4892.25            |
|                                               |              |                    |
| CSR Limited, Adelaide                         |              |                    |
| Office work                                   | \$           | 1200.00            |
|                                               |              |                    |
| Expenditure for Period                        | \$           | 6092.25            |
|                                               | -=           |                    |
|                                               |              |                    |
| TOTAL EXPENDITURE:                            | \$           | 64403.25           |

# CSR LIMITED BUILDING MATERIALS DIVISION GYPSUM PRODUCTS GROUP

# EXPLORATION LICENCE 969 LAKE MACDONNELL . COMPLETION REPORT

To be submitted to South Australia Department of Minerals and Energy

#### CONTENTS

| 1. | SUMMARY |
|----|---------|
|----|---------|

- 2. INTRODUCTION
- 3. INVESTIGATION
- 4. RESULTS OF INVESTIGATION
- 5. QUALITY
- 6. REFERENCE

# APPENDIX

SUMMARY OF TEST PIT DATA

# **PLANS**

Map of Exploration Licence area
 Location of test pits
 1:100,000
 1: 10,000

## 1. SUMMARY

#### 1.1 Location

Charra 1:100,000 Map Sheet 5533 See Plan 1 of this report

### 1.2 Keywords

Gypsum, exploration, test pits, analyses

# 2. INTRODUCTION

The CSR mining operations on Mining Leases 675, 676 and 680 have been confined to mining the surface gypsum which overlies the main ore body of massive selenite (rock gypsum).

From previous minor mining operations and the evidence of numerous drill holes from past investigations it was obvious that area south of the existing Mining Leases most probably contained large reserves of surface gypsum.

In order to investigate this resource CSR was granted Exploration Licence 969 on 8 March 1982.

See Plan 1 for the limits of the area.

The whole of the programme was confined to establishing reserves of surface gypsum. No investigation of underlying rock gypsum was undertaken. This report consolidates information contained in various reports written during the term of the Exploration Licence.

#### 3. INVESTIGATION

# 3.1 Selection of area for detailed sampling

From a study of the literature on previous exploration (see Reference) the most promising areas were identified. With this data and a study of the aerial photographs the 300m mine grid was extended and selected grid lines surveyed and pegged. This provided the basis for first pit excavation programme during April 1982 which established that a full exploration programme could be justified.

With the data acquired during the preliminary investigation the areas of prime interest were fairly well established and the area was surveyed and pegged on the 300m grid. During December 1982 the pit excavation programme was completed.

See Plan 2.

### 3.2 Collection of samples

A front-end loader from the CSR mine contractors, Brambles and a smaller back-hoe were used for excavation of pits. As the rock gypsum surface is, in summer, just above the water table the pits were excavated to rock gypsum or to the water table.

Channel samples were collected to represent the whole of the surface gypsum bed which is overlain by a layer of kopi forming the ground surface.

Mostly pit locations are within 2-3m of a grid peg, but in the first sampling programme, prior to the complete grid pegging some pits were located approximately. As a result some pits might be located up to 20-30m from the grid location, which was located and pegged during the final survey. No attempt was made to allocate the accurate grid references to these pits which have retained the original numbers based on the 300m grid.

## 4. RESULTS OF INVESTIGATION

# 4.1 General features of the area

The present Lake MacDonnell and Point Bell Lake saline lakes are the remnants of a very much larger saline lake formed in an irregular depression in ancient calcareous sand dunes. This depression became inundated when the sea level rose to its present position at the end of the last ice age.

Very pure rock gypsum (massive selenite) formed in the deeper parts of the lake system where contamination from the surrounding land was restricted. In shallower parts of the system and in the shallower margins of the deeper areas contamination by calcium carbonate was common and less pure gypsum occurs in these areas.

In the latter stages of gypsum formation small crystals (seed gypsum) formed at the lake surface. Climatic variations produced numerous successive shorelines and associated dune systems.

At the present, most of the old lake surface is composed of a fairly flat kopi surface (now vegetated) with dunes of seed gypsum and kopi distributed irregularly on the perimeter of the plain, and to some extent on the plain.

# 4.2 The gypsum deposit

Table 1 summarises the sequence of beds in the deposit.

#### TABLE 1

| BED               | THICKNESS<br>m     | MATERIAL                                                              | REMARKS                                                                                                                                                                        |
|-------------------|--------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Over-<br>burden   | 0.05<br>to<br>0.76 | Gypseous<br>soil, kopi<br>(gypsite)                                   | Very loosely compacted, generally light brown                                                                                                                                  |
| Surface<br>gypsum | 0.22<br>to<br>1.25 | Sand sized<br>gypsum<br>(gypsarenite)<br>with some larger<br>crystals | Mostly sand sized with crystals to 25mm and above not uncommon but forming a minor percentage. Generally well compacted, but not well cemented. Generally cream to light grey. |
| Rock<br>gypsum    | 0.00<br>to<br>4.9* | Massive<br>selenite                                                   | Not sampled during this investigation. Top close to water table and must be ripped or blasted to excavate.                                                                     |

<sup>\*</sup> Not determined in this investigation, but this thickness recorded in the south end of ML 675 adjacent to the investigation area.

The overburden over the surface gypsum bed is mostly gypsite (kopi) with varying amounts of vegetable matter from the low, salt tolerant shrubs. Mostly the gypsite layer is light brown in colour and generally has a fairly distinct interface with the gypsum ore bed which is light cream to various shades of grey.

The surface gypsum bed, which in the past has been referred to as seed gypsum, is in reality a variable deposit with generally sand sized gypsum with few larger crystals in its upper zones and increasing amounts of larger crystals in the lower zones.

Where solid rock gypsum underlies the fairly loose surface gypsum the interface is distinct and sharp. Towards the margins of the thick rock gypsum its character changes and it becomes less massive and composed of a less coherent deposit of large crystals which can be dug by the front-end loader. In some such areas masses of crystals locally termed "cabbage gypsum" are present.

In the shallower parts of the deposit the surface gypsum is underlain by less consolidated selenite crystals, in places fairly loose, while at other locations the crystals may be cemented by a secondary calcium carbonate cement deposited in the crystal interstices. In some marginal areas calcareous sand and cemented calcareous sand (calcarenite) underlie the surface gypsum bed.

#### 5. QUALITY

# 5.1 Gypsum content

The range of gypsum purities of the surface gypsum (see Appendix) is similar to that encountered in the present mining area in ML's 675, 767 and 680. All the figures for gypsum purity in this report are based on samples which contain original salt contents and thus are not directly comparable to purities of gypsum shipments which are leached gypsum with low salt contents.

All samples were analysed for gypsum contents which are recorded in the Appendix. A group of selected samples were more fully analysed with the results shown in Table 2. These results show an appreciable salt content and confirm that calcium carbonate is the principal impurity. In the exploration area pits with low gypsum quality were quite visibly contaminated by calcium carbonate.

TABLE 2

ANALYSES OF SELECTED SAMPLES

|                                                                                                                                     |                                                                                                                               |                                                                                                                      | ·                                                                                                                           |                                                                                           |                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE<br>E,                                                                                                                        | CO-ORDS<br>N                                                                                                                  | GYPSUM<br>PURITY<br>%                                                                                                | ACID<br>INSOL.<br>(%)                                                                                                       | CHLORIDE<br>(% AS<br>NaCl)                                                                | CARB<br>(%, AS<br>CaCO <sub>3</sub> )                                                                        | MgCO <sub>3</sub>                                                  | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9700<br>10000<br>10000<br>10000<br>10300                                                                                            | 8500<br>7600<br>7900<br>8200<br>7600                                                                                          | 91.4<br>92.5<br>86.4<br>83.8<br>87.5                                                                                 | -<br>-<br>-<br>-                                                                                                            | 0.81<br>2.54<br>2.10<br>1.35<br>2.61                                                      | -<br>-<br>-                                                                                                  |                                                                    | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10300<br>10600<br>10900<br>11200<br>11500<br>12100<br>12400<br>12700<br>13000<br>13000<br>13000<br>13900<br>14200<br>14200<br>14800 | 9400<br>10000<br>8800<br>7600<br>8500<br>9400<br>8200<br>9100<br>7000<br>8800<br>9100<br>7600<br>7900<br>7600<br>8200<br>8500 | 93.0<br>96.0<br>95.2<br>90.5<br>94.5<br>95.2<br>95.6<br>93.7<br>93.3<br>94.1<br>91.1<br>96.5<br>94.1<br>95.3<br>94.3 | 0.53<br>0.14<br>0.22<br>0.12<br>0.42<br>0.31<br>0.26<br>0.38<br>0.53<br>1.87<br>0.41<br>0.25<br>2.0<br>0.32<br>0.44<br>0.48 | 0.34<br>0.44<br>1.0<br>-<br>1.1<br>1.2<br>0.63<br>1.4<br>0.58<br>-<br>0.85<br>1.2<br>0.95 | 5.0<br>3.1<br>4.7<br>9.1<br>4.7<br>2.1<br>2.8<br>5.2<br>3.6<br>3.2<br>6.1<br>5.7<br>1.7<br>3.4<br>1.9<br>3.6 | 0.30<br>-<br>-<br>0.25<br>-<br>-<br>0.20<br>0.25<br>-<br>-<br>0.38 | 2<br>3<br>3<br>3<br>2<br>3<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |
| Av of all<br>below dash                                                                                                             |                                                                                                                               | 94.2                                                                                                                 | 0.43                                                                                                                        | 0.88                                                                                      | 4.1                                                                                                          | 0.28                                                               | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Av of samp<br>92.6% gyps                                                                                                            |                                                                                                                               | 94.7                                                                                                                 |                                                                                                                             |                                                                                           | 3.7                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Notes

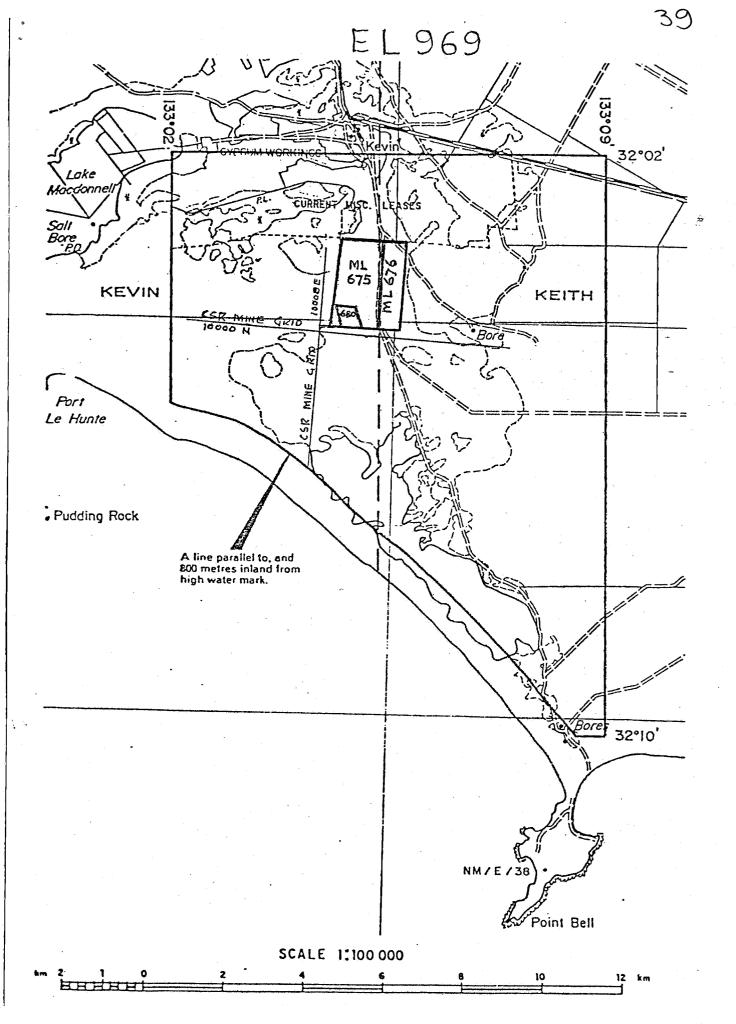
- Samples analysed by AMDEL July-August 1983. Methods ASTM. CW for gypsum. Not included in averages, as these samples were collected in a marginal zone of the deposit.
- Samples analysed by Central Laboratory, CSR Ref. 465/4528 11 June 1982. Gypsum by CW at 300°C.

CO<sub>2</sub> by gas absorption and CaCO<sub>3</sub> by calculation

 ${\rm Mg}$  by  ${\rm Atomic}$   ${\rm Absorption}$  and then  ${\rm MgCO_3}$  by calculation

Acid insol. by Concord Plaster Gravimetric Method V

3. Samples analysed by Concord Laboratory Ref GP 807 11 August 1983 Gypsum by CW at 300°C


NaCl calculated from Cl

CaCO3 calculated from CO2

# 6. REFERENCE

Warren, JK 1980

Reappraisal of gypsum reserves, Lake MacDonnell,
Hundreds Keith and Kevin, County Kintore
Department of Mines and Energy South Australia
Unpub, report (open file) DM No 76/80 Dept. Bk. No. 80/88
Published as a review of gypsum reserves, Lake MacDonnell, Eyre Peninsula. Mineral Resources Review No. 152, 1980 Department of Mines and Energy.
Note: This paper contains a full list of references to published and unpublished reports.



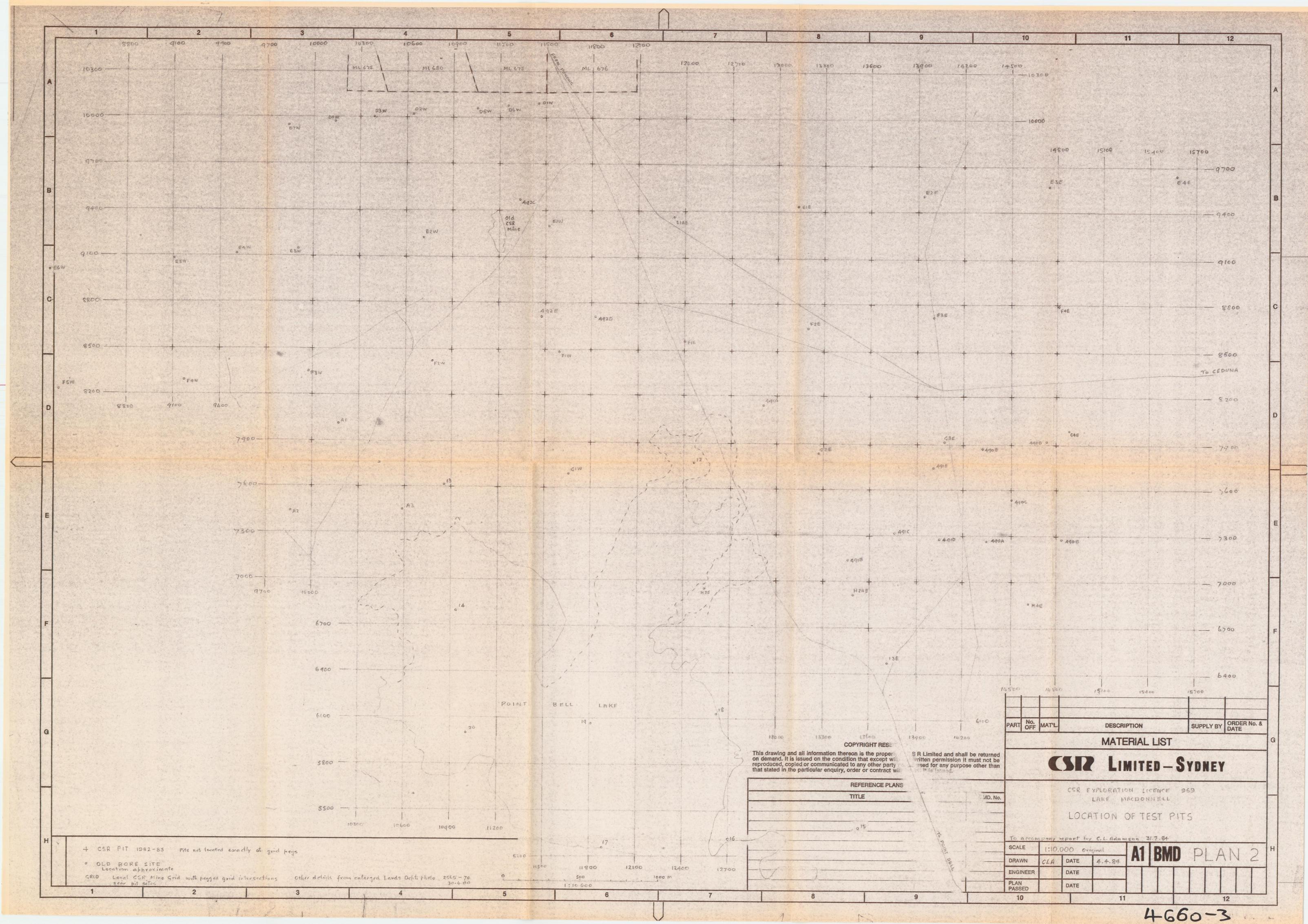
#### APPENDIX

# SUMMARY OF TEST PIT LOGS

#### AND SAMPLE ANALYSES

Exploration Licence 969

As dictated by the practicality of mining, the base of the ore bed was accepted as 100mm above ground water level even though economic gypsum was proven below the ground water level. This programme was designed to evaluate the surface gypsum which could be mined by dry earth moving methods.


| PIT NO                                                                                                                                                                          | DEPTH                                                                                        | O'BURDEN<br>THICK.<br>m                                                                              | ORE BED<br>THICK.<br>m                                                               | O'BURDEN<br>RATIO                                                                                    | ORE BED<br>GYPSUM<br>%                                                                                  | REMARKS                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 9100-8500<br>9400-8500<br>9700-8500<br>10000-7600<br>10000-8200<br>10000-8500<br>10000-8800<br>10000-9100<br>10300-7600<br>10300-8800<br>10300-9100<br>10300-9400<br>10300-9700 | 1.17<br>1.20<br>1.60<br>0.95<br>1.50<br>1.25<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.45 | 0.20<br>0.14<br>0.22<br>0.30<br>0.40<br>0.35<br>0.20<br>0.25<br>0.35<br>0.25<br>0.30<br>0.20<br>0.37 | 0.73<br>0.44<br>0.31<br>0.40<br>0.50<br>0.55<br>0.65<br>0.65<br>0.65<br>0.75<br>0.60 | 0.27<br>0.32<br>0.71<br>0.75<br>0.80<br>0.64<br>0.40<br>0.38<br>0.54<br>0.45<br>0.40<br>0.33<br>0.33 | 85.6<br>91.6<br>91.4<br>92.5<br>86.8<br>83.4<br>87.5<br>87.4<br>93.71<br>87.5<br>90.8<br>94.39<br>93.04 | Not sampled                                                                                         |
| 10300-9700<br>10300-10000<br>10600-7600<br>10600-9100<br>10600-9400<br>10600-9700<br>10600-10000<br>10900-7600<br>10900-8200                                                    | 1.58<br>1.70<br>1.35<br>1.05<br>0.95<br>0.50<br>1.10<br>1.80<br>1.30                         | 0.60<br>0.60<br>0.35<br>0.15<br>0.20<br>0.05<br>0.35<br>0.70<br>0.45                                 | 0.80<br>0.10<br>0.60<br>0.90<br>0.65<br>0.45<br>0.65<br>0.35<br>0.65                 | 0.75<br>6.00<br>0.58<br>0.17<br>0.31<br>0.11<br>0.54<br>2.00<br>0.70                                 | 95.7<br>92.0<br>93.47<br>96.00<br>96.42<br>96.0<br>87.2                                                 | Not sampled due to obvious carbonate contamination  Sampled but missing  Not sampled unconsolidated |
| 10900-8500<br>10900-8800<br>10900-9100<br>10900-9400<br>10900-10000<br>11200-7600<br>11200-8200<br>11200-8500<br>11200-8800                                                     | 1.35<br>1.50<br>0.85<br>0.80<br>1.25<br>1.07<br>1.45<br>1.80<br>2.00<br>1.40                 | 0.05<br>0.35<br>0.15<br>0.12<br>0.30<br>0.20<br>0.50<br>0.25<br>0.25<br>0.50                         | 1.05<br>1.03<br>0.70<br>0.59<br>0.85<br>0.65<br>0.55<br>0.70<br>0.75<br>0.80         | 0.05<br>0.34<br>0.21<br>0.20<br>0.35<br>0.31<br>0.91<br>0.36<br>0.33<br>0.63                         | 92.66<br>95.2<br>94.28<br>95.5<br>96.24<br>97.3<br>90.5<br>94.0                                         | Sampled but missing                                                                                 |
| 11200-9400<br>11200-9700<br>11200-10000<br>11500-7600<br>11500-8200<br>11500-8500                                                                                               | 1.05<br>1.16<br>2.30<br>1.90<br>2.50<br>1.45<br>1.20                                         | 0.20<br>0.20<br>0.30<br>0.50<br>0.40<br>0.50<br>0.15                                                 | 0.92<br>0.86<br>1.25<br>0.75<br>0.75<br>0.70                                         | 0.02<br>0.23<br>0.24<br>0.67<br>0.53<br>0.71<br>0.18                                                 | 95.9<br>93.0<br>95.7<br>90.6<br>94.3<br>95.8<br>94.52                                                   |                                                                                                     |

|                           |                |                    |              |                   |                   | 42             |
|---------------------------|----------------|--------------------|--------------|-------------------|-------------------|----------------|
|                           |                |                    |              |                   | ••                | A3             |
| PIT NO                    | DEPTH          | O'BURDEN<br>THICK. | ORE BED      | O'BURDEN<br>RATIO | ORE BED<br>GYPSUM |                |
|                           | m<br>          | m                  | m            |                   | 8                 |                |
| 11500-8800                | 1.10           | 0.15               | 0.85         | 0.18              | 94.71             |                |
| 11500-9100<br>11500-9400  | 1.30<br>1.30   | 0.40<br>0.35       | 0.80<br>0.80 | 0.50              | 95.36             |                |
| 11500-9700                | 1.10           | 0.35               | 0.65         | 0.44<br>0.54      | 95.28<br>93.90    |                |
| 11500-10000               | 1.15           | 0.25               | 0.85         | 0.29              | 94.26             |                |
| 11800-7900                | 1.75           | 0.40               | 0.80         | 0.50              | 95.1              |                |
| 11800-8200                | 1.00           | 0.05               | 0.70         | 0.07              | 96.0              |                |
| 11800-8500                | 1.25           | 0.30               | 0.80         | 0.37              | 95.66             |                |
| 11800-8800<br>11800-9100  | $1.50 \\ 1.20$ | 0.50<br>0.48       | 0.90<br>0.59 | 0.56<br>0.81      | 96.5<br>94.9      |                |
| 11800-9400                | 1.04           | 0.28               | 0.76         | 0.37              | 95.7              |                |
| 11800-9700                | 1.40           | 0.37               | 0.81         | 0.46              | 94.8              |                |
| 11800-10000               | 2.90           | 0.30               | 0.90         | 0.33              | 96.7              |                |
| 12100-7900                | 1.20           | 0.20               | 0.80         | 0.25              | 96.7              |                |
| 12100-8200<br>12100-8500  | 1.40<br>1.00   | 0.40<br>0.15       | 0.75<br>0.80 | 0.53<br>0.19      | 96.1<br>95.43     |                |
| 12100-8800                | 1.35           | 0.35               | 0.91         | 0.19              | 96.0              |                |
| 12100-9100                | 1.05           | 0.20               | 0.75         | 0.27              | 94.82             |                |
| 12100-9400                | 1.45           | 0.42               | 0.90         | 0.47              | 95.2              |                |
| 12100-9700<br>12100-10000 | 1.90<br>1.30   | 0.45               | 0.90         | 0.50              | 95.0              |                |
| 12400-7900                | 1.30           | 0.30               | 0.80         | 0.38              | 93.90             | Pit not dug    |
|                           |                |                    |              |                   |                   | too swampy     |
| 12400-8200                | 2.50           | 0.30               | 0.80         | 0.38              | 95.6              | * *            |
| 12400-8500                | 1.20           | 0.25               | 0.75         | 0.33              | 95.19             | •              |
| 12400-8800<br>12400-9100  | 1.26<br>1.28   | 0.30<br>0.32       | 0.96<br>0.78 | 0.31<br>0.41      | 94.8<br>94.7      | •              |
| 12400-9400                | 1.50           | 0.30               | 1.00         | 0.30              | 89.90             | Gypsum         |
|                           |                |                    |              |                   |                   | crystals       |
|                           |                |                    |              |                   |                   | cemented with  |
|                           |                |                    |              |                   | •                 | carbonate at   |
|                           |                |                    |              |                   |                   | bottom         |
| 12400-10000               | 1.40           | 0.40               |              |                   |                   | Not sampled    |
|                           |                |                    |              |                   |                   | due to obvious |
|                           |                |                    |              |                   |                   | carbonate      |
| 12700-7600                | 0.85           | 0.15               | 0.60         | 0.25              | 95.6              | contamination  |
| 12700-7900                | 1.30           | 0.08               | 0.53         | 0.15              | 95.4              |                |
| 12700-8200                | 2.60           | 0.40               | 0.95         | 0.42              | 94.0              |                |
| 12700-8500                | 1.25           | 0.25               | 0.85         | 0.29              | 95.95             |                |
| 12700-8800<br>12700-9100  | 1.26<br>1.35   | 0.37<br>0.20       | 0.77<br>0.99 | 0.48              | 94.6              |                |
| 12700-3100                | 1.33           | 0.20               | ∪●フフ⊸        | 0.20              | 93.7              | Not sampled    |
| _,_, _0000                |                | 0.00               |              |                   |                   | due to obvious |
|                           |                |                    |              |                   |                   | carbonate      |
|                           |                |                    |              |                   |                   | contamination  |
|                           |                |                    |              |                   |                   |                |

| PIT NO                                                                                                                     | DEPTH<br>m                                                   | O'BURDEN<br>THICK.<br>m                                              | ORE BED<br>THICK.<br>m                                               | O'BURDEN<br>RATIO                                            | ORE BED<br>GYPSUM<br>%                                          | REMARKS                                                                    |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| 13000-7000<br>13000-7300<br>13000-7600<br>13000-7900<br>13000-8200<br>13000-8500<br>13000-8800<br>13000-9700               | 1.25<br>2.10<br>2.60<br>1.25<br>1.65<br>1.15<br>1.02<br>1.15 | 0.40<br>0.25<br>0.20<br>0.40<br>0.30<br>0.35<br>0.18<br>0.33<br>0.32 | 0.55<br>1.15<br>1.10<br>0.75<br>0.70<br>0.70<br>0.81<br>0.57<br>0.77 | 0.73<br>0.22<br>0.28<br>0.53<br>0.43<br>0.50<br>0.22         | 93.3<br>88.8<br>93.5<br>94.52<br>96.8<br>95.28<br>95.3<br>94.14 | Not sampled<br>dozer bogged<br>in clay under                               |
| 13300-7000<br>13300-7600<br>13300-7900<br>13300-8200<br>13300-8500<br>13300-8800<br>13300-9100<br>13300-9400<br>13300-9700 | 2.00<br>1.40<br>1.30<br>2.00<br>1.15<br>1.45<br>1.40<br>1.30 | 0.10<br>0.08<br>0.45<br>0.40<br>0.25<br>0.45<br>0.32<br>0.43         | 1.10<br>1.07<br>0.45<br>0.65<br>0.80<br>0.50<br>0.85<br>0.69         | 0.09<br>0.07<br>1.00<br>0.62<br>0.31<br>0.90<br>0.38<br>0.62 | X<br>91.08<br>94.4<br>94.0<br>91.17<br>94.7<br>91.6<br>81.3     | Sample missing  Not ore Not sampled due to obvious carbonate contamination |
| 13600-6700                                                                                                                 | 1.30                                                         | 0.35                                                                 | 0.35                                                                 | 1.00                                                         |                                                                 | Not sampled due to thin ore bed and obvious carbonate at 0.8m              |
| 13600-7000<br>13600-7300<br>13600-7600                                                                                     | 1.30<br>1.30<br>1.60                                         | 0.25<br>0.45<br>0.25                                                 | 0.85<br>0.60<br>1.20                                                 | 0.29<br>0.75<br>0.21                                         | 92.46<br>94.14<br>90.22                                         | Includes sandy carbonate band                                              |
| 13600-7900<br>13600-8200<br>13600-8500<br>13600-8800<br>13600-9100<br>13600-9400                                           | 1.40<br>1.35<br>1.40<br>1.10<br>1.30<br>1.10                 | 0.40<br>0.35<br>0.30<br>0.30<br>0.40<br>0.60                         | 0.80<br>0.85<br>0.90<br>0.60<br>0.80<br>0.30                         | 0.50<br>0.41<br>0.33<br>0.50<br>0.50<br>2.00                 | 94.52<br>93.02<br>95.33<br>95.19<br>87.97                       | 70mm thick  At edge of dune, not sampled.                                  |
| 13600-9700                                                                                                                 | 1.20                                                         |                                                                      |                                                                      |                                                              |                                                                 | Not sampled due to obvious carbonate contamination                         |

X Sample 0.10 - 1.20 lost Sample 1.20 - 1.70 89.3%

| PIT NO                                                                                                                                                                                                                                                                                                                                                     | DEPTH<br>m                                                                                                                                                           | O'BURDEN<br>THICK.<br>m                                                                                                                                                              | ORE BED THICK.                                                                                                                                                       | O'BURDEN<br>RATIO                                                                                                                                                                                                                    | ORE BED<br>GYPSUM<br>%                                                                                                                                                                         | REMARKŚ                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 13900-7000<br>13900-7900<br>13900-8200<br>13900-8500<br>13900-8800<br>13900-9100<br>13900-9400                                                                                                                                                                                                                                                             | 2.20<br>1.60<br>1.40<br>1.40<br>1.50<br>1.40                                                                                                                         | 0.40<br>0.35<br>0.10<br>0.30<br>0.36<br>0.40<br>0.76                                                                                                                                 | 0.85<br>1.00<br>1.00<br>0.95<br>0.88<br>0.85<br>0.22                                                                                                                 | 0.47<br>0.35<br>0.10<br>0.32<br>0.41<br>0.47<br>3.45                                                                                                                                                                                 | 94.1<br>96.5<br>96.2<br>96.19<br>94.9<br>91.5                                                                                                                                                  | Not sampled due to thin bed |
| 13900-9700<br>14200-7000<br>14200-7300<br>14200-7600<br>14200-8200<br>14200-8500<br>14200-9100<br>14200-9700<br>14200-9700<br>14500-7000<br>14500-7600<br>14500-8200<br>14500-8500<br>14500-8500<br>14500-9100<br>14800-7600<br>14800-7900<br>14800-8200<br>14800-8500<br>14800-8500<br>14800-8500<br>14800-8500<br>14800-8500<br>14800-8500<br>14800-8500 | 1.50<br>1.20<br>1.45<br>2.30<br>1.45<br>1.40<br>1.50<br>1.45<br>1.30<br>2.10<br>1.90<br>1.60<br>1.85<br>1.75<br>1.25<br>1.40<br>1.80<br>1.80<br>1.55<br>1.80<br>1.35 | 0.31<br>0.15<br>0.20<br>0.30<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.15<br>0.40<br>0.15 | 1.00<br>0.90<br>1.00<br>1.20<br>0.75<br>0.95<br>0.98<br>0.85<br>0.95<br>0.85<br>1.15<br>1.07<br>0.95<br>0.95<br>0.95<br>0.95<br>0.70<br>0.96<br>0.70<br>0.95<br>0.70 | 0.31<br>0.17<br>0.20<br>0.25<br>0.60<br>0.16<br>0.44<br>0.33<br>0.53<br>0.26<br>0.60<br>0.53<br>0.41<br>0.30<br>0.07<br>0.16<br>0.43<br>0.27<br>0.71<br>0.83<br>0.71<br>0.83<br>0.71<br>0.83<br>0.71<br>0.37<br>0.12<br>0.67<br>0.20 | 89.2<br>91.46<br>92.87<br>94.1<br>93.18<br>95.3<br>95.4<br>92.73<br>91.65<br>92.4<br>96.6<br>96.0<br>96.8<br>95.47<br>96.3<br>58.9<br>91.79<br>94.7<br>92.99<br>97.0<br>94.33<br>97.3<br>89.12 | Deu                         |

