TENEMENT: E.L. 442 _ Ilkina Hill.

TENEMENT HOLDER: Carpentaria Exploration Company Pty. Ltd.

REPORT: Progress Report Quarter Ended 7th April 1979. Pgs. 3-4

Quarterly Report Period Ended 7th July 1979.

Pgs. 5-10

APPENDIX A: Drill Hole Logs. Pgs. 11-83

APPENDIX B: Assay Results.

Pgs. 84-85

PLANS: Provisional Basement Contour Plan. Drg. No. 3420(I)-1

19976.

Drill Hole Location Plan. Drg. No. 19975.

3420(I)-2

REPORT: Progress Report For Quarter Ended 7th Oct. 1979. Pgs. 86-88A

<u>PLANS</u>: Simplified Diagramatic Section Central Traverse. 3420(I)-3

Drg. No. 19982.

Simplified Diagramatic Section North Western 3420(I)-4

Traverse. Drg. No. 19983.

Simplified Diagramatic Section Eastern Traverse. 3420(I)-5

Drg. No. 19984.

Simplified Diagramatic Section South-Eastern 3420(I)-6

Traverse. Drg. No. 19985.

Major Basement Outcrops & Possible Channel 3420(I)-7

Location. Drg. No. 19987.

Isopach Map Of Channel Sand Unit. Drg. No. 3420(I)-8

19986.

REPORT: Progress Report For Quarter Ended 7th Jan. 1980. Pgs. 86-92

APPENDIX 1: Summary Report Palynology Of Selected Samples, Pgs. 93-100

E.L. 442.

APPENDIX 2: Reconnaissance Resistivity Survey At Sirrula, Pgs. 101-135

S.A.

PLANS: a. Location Plan Showing Traverses.

3420(II)-1

b. Strip Contours Of Interpreted Depth To Base

Layer 2. Plate 1.

Strip Contour Plan Of Total Conductance Per Metre 3420(II)-2

For Layers 1 & 2. Plate 2.

PLANS:	Pseudo Section. Line 1. Plate 3.	3420(II)-3
	Pseudo Section. Line 3. Plate 5.	3420(II)-4
	Pseudo Section. Line 6. (North). Plate 8.	3420(II) - 5
	Pseudo Section Line 6 South (00S-26000S).	3420(II)-6
	Plate 9.	5.120(11)
	Pseudo Section Line 6 (South) 27000S-29000S	3420(II)-7
	extension. Plate 10.	
	Resistivity Profiles Lines 1, 2, 3 & 4. Plate 15.	3420(II)-8
	Resistivity Profiles Lines 5, 6 (South) & 6	3420(II) - 9
	(North). Plate 16.	
		•
REPORT:	Progress Report For Quarter Ended 7th April 1980.	Pgs. 136-137
	Progress Report For Quarter Ended 7th July 1980.	Pgs. 138-141
APPENDI	X: Drill Hole Log.	Pgs. 142-144
DI ANG .	I'light Liver Appil 1000 Magnetemater Curvey	3420(II)-10
PLANS:	Flight Lines April 1980 Magnetometer Survey.	3420(11)-10
	Drg. No. 20426.	
REPORT:	Progress Report For Quarter Ended 7th October 1980	.Pg. 145
<u>KET OKT</u>	Flight Path Plot. Drg. No. 15717.	3420(III)-1 \
• .	Flight Path Plot. Drg. No. 15718.	3420(111)-2
	Flight Path Plot. Drg. No. 15719.	3420(III)-3
		3420(III)-3
	Profiles Of Total Magnetic Intensity. Drg. No. 15722.	3420(111)-4
	Profiles Of Total Magnetic Intensity. Drg. No.	3420(III)-5
	15723.	5120(211) 5
	Profiles Of Total Magnetic Intensit. Drg. No.	3420(III)-6
	15724.	
	Profiles Of Total Radiometric Intensity. Drg.	3420(III)-7
	No. 15732.	
	Profiles Of Total Radiometric Intensity. Drg.	3420(III)-8
	No. 15733.	
	Profiles Of Total Radiometric Intensity. Drg.	3420(III)-9
	No. 15734.	
	Profiles Of Uranium Channel Intensity. Drg.	3420(III)-10
	No. 15737.	
	Profiles Of Uranium Channel Intensity. Drg. No.	3420(III)-11
	15738.	
	Profiles Of Uranium Channel Intensity. Drg. No.	3420(III)-12
	15739.	
	Profiles Of Thorium Channel Intensity. Drg. No.	3420(III)-13
	15742.	
	Profiles Of Thorium Channel Intensity. Drg. No.	3420(III) - 14
	15743.	7420(111) 45
	Profiles Of Thorium Channel Intensity. Drg. No.	3420(III)-15
	15744.	

0(III)-17
1,,,,,
A (T I T \ 10
0(III) - 18
. 146-147
0(III)-19
0(III)-20
0(III)-21

REPORT: Analytical results for Core Library samples Not microfilmed collected by D. Tonkin in August and September, 1996 for analysis by David Tonkin & Associates.

CONTENTS - TRANSPARENCY CYLINDER NO. 3426 1

		are consequent transferred an argument
O TITLE _	SCALE	PLAN_NO.
E.L. HHZ Ilkina 1 -	·	
Simplified Diagramatic Section South-Eastern Traverse	1:5000(44)	19 985
Major Basement Outcoops & Possible Channel hocation	1:250 000	19 987
Simplified Diagramatic Section Central Traverse	1:500 (Vent)	19 982
" " North-Western Traverse	1:500 (Vert)	19 983
" " " Eastorn Traverse	1:500 (Vert)	19 984
Rosistivity - Pseudo Section Line 6 5 (270005-290005)	-)
" hine 3		
" . " Line I	_	
n " Line 6N		
" " Line 65 (005-260005)	_	
Provisional Basement Contour Plan.	1:100000	19 976.
Drill Hole Location Plan	1,100 000.	19 975
Rosistivity Profiles Lines 5, 65 & 6 N.	_	
in Lines 1,2,3 & L+		
Rosistivity: Per metre for layers 1 & 2.	1:25 000	
Rosistivity: Per metre for layers 1 & 2. Rosistivity: Per metre for layers 1 & 2. Rosistivity: (a) Location plan snowing traverses. Resistivity: (b) Strip contours of interpreted depth to base layer 2.	1:25000	
	•	
		<u> </u>
	·	
	-	
gan spekita) — maran agan 1891 ang administration nagalant sa pagamananan sa na pinan annan kanang magamanan nagaman nagam Nagaman nagaman		

I

ENVELOPE NO. 3420

CONTENTS - TRANSPARENCY CYLINDER NO. 3420 2

O TITLE	SCALE.	PLAN_NO.
Acrial geophysical survey; - Minnipa S.A:-		•
-Profiles of total radiometric interisity	1:50000	15731
- Profiles of wranium channel intensity	1.50000	15.735.
- " " total magnetic intensity	1:50000	15720.
- " thorium channel intensity	1:50000	15740
- " uranium channel intensity	1:50000	15736
- " " total radiometric intensity	1:50000	15730/
- " potassium channel intensity	1:50000	15746
- " thorium channel intensity	1:50000	15741
- " " total magnetic intensity	1:50000	15721,
" " total magnetic intensity	1:50000	15725,
	1: 50000	15726
-Flight path plot	1.50000	15715.
ELHUZ Ilkina - Drill hole location plan	1:100000	19975.
" - Flight lines, April 1980 Magnetometer	1:100'00 0	20 426.
- Profiles of potassium channel intensity	1:50000	15745,
- Flight park plot	1:50000	15716,
	·	
	. The second second	3-12-33
	:	
		<u> </u>

ENVELOPE NO. 3420

CONTENTS - TRANSPARENCY CYLINDER NO. 3420 3.

TIPLE _	SCALE	PLAN NO.
Perial geophysical survey, Minnipa Aren S.A.:-	: :	
Profiles of Uranium channel intensity	1:50000	15738,
" " " "	18	15739,
" " Total magnetic intensity	M	15722
'' '' ''		15723
n n n u		15724
Flight path plot	\ <u>\</u>	15719
" "	Ť.	15718
.0 11 11	11	15717
Profiles of Uranium channel intensity	. \	15 737
" " Potassium " "		15749
N 14 14 14	l)	15748
		15747
n "Thorium"	()	15744
		15743
	4	15742
" Total radiometric intensity	• • • • • • • • • • • • • • • • • • • •	15 733
	W.	15737
ı, ı, ı, ı, ı,	n	1573
The same of the sa	antana (r. 1900). Antana a	
And to compare the second seco		· :
e de la composition della comp	a angar 1 ng nga atau anahagahagahagaha kay dari siri bira-atau dari	
and the second s	· · · · · · · · · · · · · · · · · · ·	

ENVELOPE 3420

E.L. 442 Progress reports from 7th April 1979 to 7th January 1981. (Carpentaria Exploration Co. Pty. Ltd). 8 reports, 4 vols. 147 pages, 39 maps.

Author: Binks, P.J. Geoex Pty. Ltd.

Map area: YARDEA SI53-3 (6032, 5932, 5933-III, 5933-IV); STREAKY BAY SI53-2 (5832-1, 5833, 5733-1).

Drilling of 70 holes (t.d. 4441m) located a substantial Tertiary drainage system in excess of 8 km wide, in search for sedimentary uranium. Further drilling recommended.

Keywords: Mineral Exploration - SA/Uranium exploration/ Geophysical surveys/Aerial magnetic surveys/Total magnetic intensity maps/Aerial radioactivity surveys/Multichannel spectrometers/Ground magnetic surveys/Resistivity survey method/ Basement depth maps/Rotary drilling/Palaeochannel/Palynology Eocene/Pliocene/Tertiary/Narlaby Palaeochannel/Eyre Peninsula.

EXPLORATION LICENCE NO. 442 "ILKINA"

PROGRESS REPORT FOR QUARTER ENDED APRIL 7, 1979.

1. TERMS AND CONDITIONS

Exploration Licence No. 442 "Ilkina" covers an area of 2388 km² approximately 100 km east of Ceduna, South Australia. It was granted to Carpentaria Exploration Company Pty. Ltd. for a term of one year commencing on January 8, 1979. The expenditure requirement on the lease is \$70 000 for the full term.

2. EXPLORATION

The aim of the exploration programme is to investigate the potential of the area for sandstone-type uranium mineralization.

As an initial step, air photos of the area were obtained from the Lands Department and a 1:100 000 base plan was prepared.

The area was visited during March 1979 to establish contact with local farmers and locate sources of water suitable for a drilling programme. A programme of 4000 m to 5000 m of "open hole" drilling has been finalized and a contract let to W.L. Sides and Son Pty. Ltd. of Melbourne. Drilling is expected to commence in April 1979 and will use a Mayhew 1000 drill rig with two water trucks for support. All drillholes will be radiometrically and electrically (SP and resistivity) down-hole logged; all drill sites will be along existing tracks.

3. EXPENDITURE

A statement of expenditure for the period is appended.

RECEIVED 2 0 APR 1979

DEPT. OF MINES

SECURITY 3-410 R.E. Darlington

Administration Manager

EXPLORATION LICENCE NO. 442 "ILKINA"

STATEMENT OF EXPENDITURE FOR QUARTER ENDED APRIL 7, 1979.

	\$	\$
Administration	1916	
Consultant Fees	153	
Equipment Charges	220	
Freight	25	
Operating Labour	2022	
Stores	250	
Transport	280	
Travelling Expenses	92	
		·
Total		\$ 4958

R.E. Darlington Administration Manager

MINING TENEMENT

PROGRESS REPORT

EXPLORATION LICENCE NO.442 "ILKINA"

REPORT FOR QUARTER ENDED JULY 7, 1979

DATE: JULY, 1979.

COPY: DEPARTMENT OF MINES .

& ENERGY

EXPLORATION LICENCE NO.442 "ILKINA"

STATEMENT OF EXPENDITURE FOR 3 MONTHS ENDED JULY 7, 1979

		\$	\$	3
Administration	2	990		
Drilling	60	277		
Equipment Charges	2	818		
Freight		146		
Operating Labour	17	071	•	
Stores		744		
Transport	2	208	•	
Travelling Expenses	1	060		
Total This Period	\$87	314	\$87	314
Expenditure Already Reported - Current Term				
3 Months Ended April 7, 1979	4	958	4_	958
TOTAL EXPENDITURE - CURRENT TERM			\$92	272
Total Project Expenditure to Date			\$92 	272

R.E. Darlington

Administration Manager

EXPLORATION LICENCE NO.442 "ILKINA"

PROGRESS REPORT FOR QUARTER ENDED JULY 7, 1979

1. TERMS AND CONDITIONS

Exploration Licence No.442 "Ilkina" covers an area of 2388 km² approximately 100 km east of Ceduna, South Australia. It was granted to Carpentaria Exploration Company Pty. Ltd. for a term of 1 year commencing on January 8, 1979. The expenditure requirement on the Licence is \$70 000 for the full term.

2. EXPLORATION

2.1. Drilling

An open hole drilling programme was completed over the area by W.L. Sides & Son Pty. Ltd. of Melbourne. The aim of the programme was to locate possible channel structures, to identify the accompanying stratigraphy and establish whether it was uraniferous.

Difficult terrain, mainly of sand dunes with thick vegetation, limited the location of drill sites to existing tracks crossing the area. The drill sites were initially sited at 2 km intervals, which were later increased to 3 km.

The drilling rig used was a Mayhew 1000.

Water supplies were limited and had to be carted over long distances (up to 50 km) with 2 water trucks being used full time. A total of 4515 m was completed in 69 drill holes (see Drawing No.19 975 for location) with depth varying from 12 m to 128 m. All holes were drilled to basement except IR8 and IR9, which were abandoned due to severe caving problems. Similar

2. EXPLORATION (CONT.)

problems resulted in more than one attempt being made to complete other holes. Samples were collected every 2 m and geologically logged.

2.2. Geology

The drilling has located a substantial buried Tertiary? drainage system extending south-east - north-west, the entire length of the Exploration Licence and in excess of 8 km wide. The widespread reconnaissance nature of the drilling has prevented a detailed accurate assessment of the channel system. Drawing No.19 976 is a provisional approximate basement contour plan based on the drilling data. The contours are only approximate as the Reduced Levels of the drill collars are only known to within ±5 m. These were calculated from the 1:50 000 topographic sheets (contour interval 10 m) and partly from stratigraphic correlation between drill holes using the top of the lacustrine clays as a marker horizon.

The stratigraphic section intersected was in general as follows.

Aeolian Sands : with minor silts and clays.

Clay : black and grey-green (lacustrine).

sand : coarse grained, subangular to subrounded quartz often with black-brown humic staining and fine grained pyrite aggregates.

+ Interbedded clays generally black to brown.

Basement : granitic.

2. EXPLORATION (CONT.)

The channel sediments were invariably in a reduced state.

The thickness of the coarse sands, a potential host for uranium mineralization, varies up to a maximum of 65 m (IR31).

Diagrammatic sections are being prepared and will be submitted with the next report. Detailed drill logs are included in Appendix A.

2.3. Downhole Geophysical Logging

Where possible, downhole geophysical logs were completed using either an Austral Midilogger or S.I.E. T450E. Both instruments were used due to mechanical breakdowns.

No significant downhole radiometric readings were recorded. However, these gamma logs were useful in determining the actual depths of the various units. The sands and clays generally have a distinctly different radiometric response. The logs also enabled a more accurate basement depth to be recorded.

The logs are included in Appendix A.

Downhole electric logging (self potential and resistivity) was attempted with only very limited success, due mainly to saline ground water and drilling fluid.

2.4. Assaying

A selection of 19 samples from the coarse sands was submitted for assay for U_3O_8 . A maximum value of 9.4 p.p.m. U_3O_8 was recorded (see Appendix B for results).

3. EXPENDITURE

A statement of expenditure for the period is attached.

R.E. Darlington

Administration Manager

APPENDIX A

DRILL HOLE LOGS

- 000 -

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air 0-12m

Location

Contractor W.L. SIDES + SON

Water 12-48m

0 12

Longed by G. HOOPER Depth 48m Date 3-4-79 Geophysical Log Depth Strip Ox Lithological Log Log SAND (AFOLIAN) F. gr grange m gr white, rounded, well souted weathy comented SAND (" SAND (AEOLIAN) in gr grey, rounded, mad well sorted CLAY CLAY light gray grown whiled, a grangular gtz in a GRANTE knolinitic matrix

0 13

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

'Prospect F1 442 ILWA

AMG

Air o-6m

Location

Contractor WL SIDES +50N

Water 6-102m

ນເ	pth 102.	n	D:	to	3-4-79 Longed by G. Hooper
Γ	Goophyoi Type	oal Log	T	p Ox	
	NOT LOGGE	:D	77.7		CALCAREOUS SILT & KUNKAR
	HOLE BLOCK			4	light brown
		•		.	SAND light from Fin go well tounded.
	•	•	10 =		
	٠.			`	
		. i	=	:	
		•			
			20		" white
]]]	' <u> </u>	
	•		<u> </u>		
	• .		30].	 .	n ded prome
		·			
	÷.				
			40 = .		
		:	\$		SAND - from you gray white
	•		Ţ T		and grey
			• • = -	.	
			1	1	SAND light brown Frm en eile Ille
	•	1	7.77		SAND light brown F-m eyr sub rounded -subangular with white cream Flakey "micereous" mineral.
			60		michigan minera.
		.	ָ בַּי		
	•			 	SAND as above but grey
			70		4.7
		-			SAND light gray from go sub ancular
					SAND light grey from gr sub angular mine pyrite + flakey biotihe / Whorite.
	•	:	80 =		+ flakey biotihe /chlorite.
.			· = 1.1.		
			4.1.		
-	•				
		.		.	
			3, ,	}	
	•		=		
İ	•	. 1	100-]; ,		
			3		
			110 = 1		
]		
	•		120		

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE R.L. collar Grid co-ords roject rospect EL 442 ILKNA 0 14 Air 0 AMG Water 0-98m Contractor W.L. SIDES 4.50N ocation Longed by G. HOOPER Date 4-4-79 epth Depth Strip Ox Lithological Log Geophysical Log (m)Type AUSTRAL MINI SILTY SAMO red- light greenish SAND F gr. rounded gte CLAY gray black. miner sand (f er) lemos. SAND subrounded - sub angular grains (miner) . creamy white. SANS sets rounded - suk angular

Project

Grid co-ords

R.L. collar

0 15

Location

Prospect FL 442 ILKINA

AMG

Air ⊙~

Contractor WL. SIDES + SON

Water 0-96m

Depth 96m Longed by G. HOOPER Date 5-4-79 Coophysical Log | Dopth Strip Ox Lithological Log Type Austerl Mill (m) Log CLAYEY SILT light known SILTY SAND F-m gr rounded light brown pateles white For SAND (miner) SILT + SAND light brown a greyal minor white Fgr EPMO. SAND migr rounded greyiel (dirt) colour CLAY gray black minor sand for black. grey from, minor Far sand. ork gray clay SAND m-c go sol angular- sol rounded g/2 SANS as above with, lenses grow black clay . کموے ^ح SAND E or rounded of Z SAND M- t go sub angular g/z minor humic steering grapist HARD BASEMENT ..

120

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air Om

0 16

Location

Contractor W.L. SINES + SON

Water 0-128m

Depth	128m
-------	------

Date 5-4-79

HOLE NO. IRS GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar 0 17 Prospect AMC Air Location Contractor Water Depth 128 m Date Logged by Goophysical Log Depth Strip Ox Lithological Log (m) Log

HOLE NO IRS

0 18

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMC

Air Om

Location

Contractor W.L. SIDES & SON

Water 0-84m

Depth 84m

Date 5-4-79

Lorged by G. HOOPER

HOLE NO IR7 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar 0 19 Prospect EL 442 TLKNA AMC Air Om Location Contractor W.L. SIAES " SON Water 0-30m Depth 30m 6-4-79 Date Longed by G. HOOPER Geophysical Log | Depth Strip Ox Lithological Log Туре (m) Log SILT. Creem calcareous CLAY c que crystalline gypsum GRANITE

120

HOTE TO INS

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMC

Air O

0 20

Location

Contractor W.L. SIDES & SON Water 0-42m

Depth 42m Date 6-4-79 Longed by G. HOOPER Depth Strip Ox Geophysical Log Lithological Log Type (m) Log SILTY SAND orange from No Log Far founded well sorted light grey brown SAND (No sample return 12-42m) Hole ahendoned

HOLE NO IR 98

GEOLOGICAL AND GEOFHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKINA

AMC

Air Om

0 21

Location

Contractor W.L. SIDES 4 SON Water 0-42m

Depth 42m	Date 23-4-79 Longed by P. BINKS
Goophysical Log Type	
1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	SAND F or well rounded gte, gypeiferous 10
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	SAND c go gtz, sub counded to GRAVEL Sub angular.
	50
	70
-	60
<u></u>	100
	120

Depth

HOLE NO. IRIO GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar Prospect EL 442 ILKINA AMG 0 23 Air Om Water 0-128-Contractor WL SIDES & SON Location 128m Date 7-4-79 Longed by G. HOOPER Depth Strip Ox Geophysical Log Lithological Log Type AUSTRAL NIL (m) Log SAND V. C. gr angular gtz. AMPHIBOLITE, For

Depth

Project

Grid oo-ords

R.L. collar

0 24

Prospect FL +42 ILK		00-0148	A.L. Collar	0 24
Location	•	annton to color a color	Air Om	
Depth 60m		ractor W.L. SIBES +SON		
Geophymianl Log	Dopth Strip On	8-4-79 Litholog	Longed by G. Hoor	· · ·
Type Austern Miss	(m) Log	SAND (AEOUAN) F-m gr Silicified in part	rounded gly creamy white	
	40	CLAY grey black, mine + white grey clay		
5 100 cps	60 + +	GRANITE WHOOD angular m white knowinitic mak	-c gr g/z in a	
	90	-		
	100			•

Project

Grid co-ords

R.L. collar

0 25

Prospect FL 44Z ILKNA

AMG

Air Om

Location

Depth Strip or Lithological Log Santa (Ascorno) Santa (Asc	Location	Contractor W.1. SINES +SON Water 0-42m
Cophysical Log Type Service	Depth 42m	75
SANA (ARCHAN) C-m q. rounded y/t purth siluticaous comeshed. CLAY black curbonaceous A d d d d d d d d d d d d d d d d d d	Туре	Depth Strip Ox Lithological Log (m) Log
90 J		SAND (AEOLIAN) F-m qv rounded qtz partly silicificeous cemented. CLAY black carbonaceous GRANTE which c qv angular qtz in kaolinitic matrix
80 11 100	\frac{1}{3}	50
		90

Prospect FL 442 ILKINA

ANIG

Location

Project

Contractor W.L. SIDES & SON Water 0-94m

Depth 94m. Date 9-4-79 Longed by G. HOOPER Geophysical Log | Depth Strip Ox Lithological Log Log (m) SAND (AEOLIAN) F-mg+ rounded silicified SAND V. C. gr sub-angular qtz minor 2mm eggregate F. gr pyrite SAND Far white agrey silly + .
lenses CLAY light grey Sub angular 9/2 F or pyrite in aggregates to 2mm

120

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air Om

Location

. Contractor W.L. SIDES 4.SON Water 0-60m

0 28

Depth	60m			Dat	Э	10-4-79		Logge	d by G. H	OOPER	
G.	eophysical Type	Log	Depth (m)	Strip Log	0 _x		Lithol	ogical Lo	g ·		
THE STANDARD	Type		(m) 1111/1111/1111/1111/1111/1111/1111/11	Log		SILTY SAND SAND (AEOLIA SAND (AEOLIA	F gr on	unded gtz	iFred pale red		
12			30			CLAY Grey	•	d gtz rhonaceous It grey	patales	·	
25 20 20 20 20 20 20 20 20 20 20 20 20 20		.30	50]	7 7 4		GRANITE U kaol	.led. c. gr initic matrix	manqulom q	rey gtzin		
		c prs	70	* :		1					
			90				1		, -		
		-						·			•
			120				 -		·		

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILWNA

AMG

Air om

Inneting	0	70
Location		actor W.L. SINES 4SON Water 0-38m
Depth 38m		10-4-79 Longed by G. HOOPER
Goophysical Log Type	Depth Strip Ox (m) Log	Lithological Log
	=	SAND Far cream
		SAND (AEULIAN) figs sounded gte orange +ad.
		SANS (AFOLIAN) For rounded 9tz orange yallow.
	20	miner hard silicoous langers.
		(AFOURN) gray brown grey Far rounded.
		CLAY grey black
	30	
		massive pyritic
O cps 30		
	40	
	11 :	
	50	·
		. ;
	60	
·		
		•
·	70	
	=	
·	80	
	=	
	••	
	=	·
.		
	100	
	110	

मधान मण उर १७ GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar 0 30 Prospect EL 442 ILKINA ANIG Air On Location Contractor W.L. SIDES USON Water 0-30m Depth 30m Date 12-4-79 Longed by G. HOOPER Geophysical Log Depth Strip Ox Lithological Log Type (m) Log SAND (AFOLIAN) F go rounded gtz white CLAY GRANITE whiled kaolinitic matrix

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE HOLE NO. IR 18

Project
Prospect EL 442 ILKINA

Grid co-ords

R.L. collar

0 31

Location

AMC

Air Om

Contractor W.L. SIDES & SON Water 0-30m

Location	Contr	ractor W.L. SIDES & SON Water 0-30m
Depth 30m	Date	12-4-79 Longed by G. Hoofer
Geophysical Log Type	Depth Strip 0; (m) Log	x Lithological Log
22 CC C	20	SAND (HEOLIAN) F que sounded gtz white CLAY grey wheek pyritic CLAY grey green GRANITE wheel c grangular pyrite in creamy white Heolinitic matrix
	o o o o o o o o o o o o o o o o o o o	
	80	
	100	

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE .

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

ANG

Air 0-4m

Location

Contractor W.L. SIDES & SON

Water 4-42m

Location	Con	ntractor	W.L. SIDES & SON	Water 4-42m	J U to
Depth 42m	Da ·	to 12-4-	79	Longed by G. Hoof	PER .
Geophysical Log Type	(m) Log	0x	Lithologi	ical Log	
	- 4 +	KVVKA	F go silicified		
	10				
		SAND	for rounded wh	ike grey	
	20				
	30	CLAY	grey black		
	30	CLAY	•	rey	
M. S.	4 +	G RANI	TE whed c.g. am kaolinihic matrix	gular gtz in	
Peps :30	40 +				r
	50				
				•	
	60			•	
	70		•		
				···	·
	60				
	90				
	100		en e		•
* * * * * * * * * * * * * * * * * * * *					
	110				
-	120			,	
		:			

HOLE NO. IR 20 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE R.L. collar Project Grid co-ords 0 33 Prospect EL 442 ILYWA Air Om AMC · Contractor W.L. SIDES & GON Water O-48m Location Longed by G. HOOPER Depth 48m Date 13-4-79 Geophysical Log | Depth Strip Ox Lithological Log (m) SAND & SILT (AEOUAN) yellow brown. SAND (AEOUAN) F ge silicified. SAND (AEOLIAN) F go rounded gtz grey CLAY gray black CLAY light grey GRANTE whiled. Fig angular gtzin Kaolinitic matty 100 120

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air Om

0 34

Location Contractor W.L. SIDES & SON Water 0-48m Depth Date 13-4-79 Longed by G. HOOPER Geophysical Log | Depth Strip Ox Lithological Log (m) SILT , clayey SAND (AEOUAN) For silicified 20 SAND (ABOLIAN) F go rounded glz grey CLAY grey black. GRANITE with co. or angular of z Kaolinitic matrix

120

Project

Grid co-ords

R.L. collar

0 36

Prospect EL 442 ILKINA

AMC

Air Om

Location	Contra	ctor W.L. Sides & Sol Water 0-94m
Depth 94m		21-4-79 Longed by G. HOOPER
Geophysical Log	Depth Strip Ox Log	Lithological Log
		GAND Typsiferous.
NOT LOGGED (Logger Malfunction)		SAND. VF gr counded gtz white -grey
(20282		
'	= = = = = = = = = = = = = = = = = = = =	
		CLAY Grey
	===	- , 3 /
	20	
	1 1	•
1 - 1 - 1 - 1	===	
	30	
	7=	
		SANO V e gar sub counded - sub anouter
	40	SAND v e gr sub counded - sub angular . white - gray
	= =	
	4 . 1 1	
	3. 1	•
	50	Cours of the total of
	3	SAND a gr subsounded - sub angular mina humic chaining & lences
	====	CLAY dark clas. hom - Wack
	60 =	
	3	
	70	CLAY creamid brown +
		CLAY cramish brown + SPND cigri
	80	SAND c gr sub angular gtz
	3	
		PEANITE c grame at in comit where
] [
	90	Fragments qtz will whiled . Feldspar interproutly
	1	·
.	100=	
	4.	
]	
	"0]	
		*
.	120 -	
i		

Grid co-ords

R.L. collar

0 37

Location

AMG

Air Om

Prospect EL 442 ILKINA

Contractor W.L. SIDES & SON

Water 0-106m

Depth 106m Date 20-4-79 Longed by G. HOOPER Depth Strip Ox Geophysical Log Lithological Log (m) Log SAND F or tounded (AEOLIAN) NOT LOGGED : (Lagger Halfunction) CLAY pale green F que rounded white (REOUAN) CLAY grey trace pyrite figh SAND f-m ger sub-counded-sub-angular gtz Veger subsounded gte. SARIS SAND m-c gr sub rounded 1/2 CLAY light greyich. SAND V c que subrounded gtz brownind humic staining miner pyrite subrounded gtz white grey SAND trace pyrite SAND m-c gr subsounded gtz niner white lenses grey green CLAY GRANITE withed a grangular gtz in white matrix gtz wheel Felispor, charite intergrants. GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

1101 E 110, 2 225

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKNA

AMG

Air Om

0 38

	Location		Contr	actor W.L. SIDES & SOV Water O-42m
	Depth 42m			16-4-79 Longed by G. HOOFER
•	Geophysical Log	Depth Str	ip Ox	
	Type SS SS SS SS SS SS SS SS SS	(m) Lo	10	SILT colearcour minor KUNKAR light brown. CLAY Yed brown o light grey minor Ferruginous bands. CLAY Sandy in part pint brown , while grey sandy patcher. GRANTE F-m qu gte in a while kaolinitic Madray.
		110		

Grid co-ords

. R.L. collar

Prospect EL 442 ILKINA.

AMG

Air 0-2m

0 40

Location

Contractor W.L. SIDES +SON Water 2-64m

Denth 4

Depth 64m		Dat	е	17-4-79 Longed by G. HOOPER
Geophysical Log	Depth (m)	Strip Log	0 _X	
a ti				SANDY CLAY dark brown
	10			CLAY red brown & craum grey
				hand Ferruginous bands
				gray. clayey hands,
	20			CLAY creamy grey minor brown
e. 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	1111			
	30-			SAND m-c gr rounded yellow brown
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				CLAY creamy grey SAND M-c gr greyad CLAY black miner grey cream
	40 _			grey and grey steam
				SAND F-m qu sub rounded gray white
	50-1			miner possible lim. alteration becoming courser grained will depth
	60			The second control of
Deps loc				QUARTZOSE BAREMENT Croyish angular fragments
(Probable Faulty)	70		•	
30	; 11			
	80			
	. 1			
	90 T			
	1111			
	100			•
	110			
-	1111			
	120			
1				

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project Prospect EL 442 ILKINA Lo De

Grid co-ords

AMG

R.L. collar

hir Om

ocation opth 54m		ontr. ate	ractor W.L. SIDES - SON Water 0-54m 18-4-79 Longed by G. HOOPER
Geophysical Log Type	Depth Stri	χO q.	
NOT LOGGED (Logger NotSunction)			SILTY SAND Ferruginous cement F. gr dank red brown a grey white
	10		SAND (AEOLIAN) F-mgr sounded.
	20-		CLRY light gray o red brown
		-]	
	30	-	CLAY black . derle grey
•	40		SAND M-c or gray white subminded to miner white clay on gtz submissions
	50		SANDO gravelly in part grey CLAYM-c or sub angular gre minar sericitic assregates
	· · · · · · · · · · · · · · · · · · ·	7 1	I QUARTZOGE FELASIBITHIC RECH
	60		:
	70		
	90		
	100		
	11111		

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKINA

AMG

Air Om

0 42

Location

Contractor W.L. SIDES + SON Water 0-30m

200a CIOM	con	tractor W.L. Sides + So	v Water 0-30m
Depth 30m	Date		Longed by G. Hooper
Ccophysical Log Type	Depth Strip (m) Log	0x Lithold	prical Log
NOT LOGGED		CLAY light green grey	1
(Logger Malfunction)		Crbh . 3464	
	10 = = = =		
	20	CLAY gram gray	•
	: ====	cuty while grey	
	+	GEHVITE u Hod c que taolinitic matrix	angular gtz in a
	30		
	40		
] :		
	111		
	50		
	60		
a tot test ve			
	.70		
	777 :		
	90		Δ
	•0		
	22 22 22	·	
	100		.•
	110		
	120		

Hillia NO IR Sc.

Project

Grid co-ords

R.L. collar

0 43

Prospect EL 442 ILKNA

AMG

Air Om

Location

Contractor W. L. SINES &SON Water 0-38m

Depth	38m			Date	9	19-4-79 Longed by G. HOOPER
	physical :	Log	Depth (m)	Strip (
[(OCCE)					SAND gypsiforous car gypsum to 2cm
Logg-	Malfunction)				CLAY light green
		-				CLAY clark grey - black minor Far pyrite
			20 -		đ	
	amery					TCLAY greywhite
	•		30			possible linonihie alteration minor grayist clay colorities local of CVII ?
			40	- A -		trace pyrite in granti? Fragments QUARTE, KROUNIED FELASPAR, CHLORITE ROCK
			4111			
		ŀ	50			
			ulu			
	·		60			
	••.•	_	70		ľ	
•			80	;		
			90			
	, ,		11111			
			100			•
			in I	:		
			120-			
					1	

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air Om

Location

Contractor W.L. SIDES +SON

0 44 Water 0-108-

Donth In

Depth 102m	Date .	20-4-79 Longed by G. HOOPER
Geophysical Log Type	Depth Strip Ox	4
NOT LOGGED		SAND (AEOLIAN) F gr rounded
(Logger Malfunction)		CLAY - grey green a brown
·	10	11 11 a grey
		" grey a gray black
	20	
		II GYEN 4 CTPOMY STRY
	30 — — —	
		SAND e gr sub rounded gtz white-grey
	40]	
		SAND car sub rounded gtz humic staining
	50	SANTS m-c gr clark brownish. Sub rounded & humic *taining
	60	SAND V c gr sub rounded gtz much humic staining
-	70	SAND F-c gr pourly sorted sub angular 7 tz
		minor leners brown CLAY
	80 - P.	
	Po	CRAVEL V C pr rounded gtz V c aggregates F gr pyrite
	90 - B	4 17
. ·	D B	
	100-1+	a clayey matrix
	+ +	
	110	
	120	
	,,,,	

HOLE NO. 2233

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 JLWNA

AMG

Air O

Location

Contractor W.1. SIDES +SOV Water &-22m

Nonth 72

Longed by Paul AR

Depth 22m	Da t	ie 25-4	-79	Lo	onged by P.	einxs) 46
Goophymiuml Log Type	Depth Strip (m) Log	O _X		Lithological	L Log	
0 p 100 p	10	SAND	(А БОИЯN) • РОПГНУКУ	brown.	with purphyry	
	30 40 11 50					
	70					
	100					

HOLE NO. J. 254

Conject

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

 $\mathbf{A}\mathbf{M}\mathbf{G}$

Air 0-8m

0 47

Location

Contractor W.L. SIDES + SON Water 8-42m

Boca tron		W.L. SIDES & SON Water 8-42m
Depth 42m	Date 25-4-7	Togged by P. Bruks
Goophysical Log	Depth Strip Ox Log	Lithological Log
	CLAY .	SAND brown- red brown
M. Š	4:7:	
	CLAY	97°Y
a = 5	20	
	<u> </u>	
- 		carbonaceous
10 N	30 + CLAY	white with 9tz Fragmonts. (whited gramite?)
	40 4	E for portly which
ςρ ^ξ		•
	50	
	7177	
	60	
	70	
	90	
	100	
		·
	110	
	120	
i i		

Prospect FL 442 ILKINA

Grid co-ords

R.L. collar

0 48

AMG

Air Om

Location

Contractor W.L. SINES *SON Water 0-72m

Depth 72m		Date	26-4-79 Longed by P. BINKS
Geophymical Log Type		Strip O	Lithological Log
	20 30 40 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70		SAND for well sounded by - yellow brown CLAY green grey SAND m gr subrounded clean some silverte conort. CLAY dark grey CLAY SANDY CLAY SAND m- c grey sub angular gft a white clay on grains brace pyrite (gradationly change from saul to grante). GRANITE whead Fragmanh m-c gr gft with whead Felipar intergrante.
	80 1111111111111	:	
	20 111111111111111111111111111111111111		

Grid co-ords

R.L. collar

Prospect F1 442 T1KWA.

AMG.

Air Om

Location

Contractor W.L. SIDES & SOV

Water 0-72m

Depth 72m Coophysical Log Depth Strip Ox (m) Log Save (Assessed) Fig. will hounded beam. Save (Assessed) Fig. will hounded beam. CLBY grey great live grey CLBY grey great live grey Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands. Save fine at white park beam with silicate bands.	200a Clon	Conti	ractor w.l. sides a son water 0-72m	. 0
SAND (ABELIAN) Fig. well sounded brown. CLAY grey green - like frey SAND From gr Like - pak brown with SAND From gr Like	Depth 72m	Date	26-4-79 Longed by P. Binks	· · · · · · · · · · · · · · · · · · ·
CLBY grey green - live grey CLBY grey green - live green - live green	Geophysical Log	Depth Strip 0; (m) Log		
CLAYEY SAMD may sub counciled. SAMD Sam of white park booms with silver to be booms with silver to be booms. SAMD Sam of white park booms with silver to be booms. SAMD SAMD SAMD SAMD MAY SUBJULT TO A SAMD SAMD SAMD SAMD SAMD SAMD SAMD SA		11/11/11	SAND (AEOLIAN) F que well rounded brown.	
CLAYEY SAND may sub rounded. SAND Some of like park brown with Silvente bunds. SAND Market bunds. SAND		10	CLAY grey green - blue grey	
CLAYEY SAND may sub councied. SAND From or white pole hown with solution to sub angular solution to s		20		
SAND Fing Clay / when condict to cut anyther SAND CLAY / when GRANTE		30	CLAYEY SAND more sub counded.	
SPAN CLRY / WTHEN GRAVATE SPAN CLRY / WTHEN GRAVATE 100 100 100		40		
50				
60		50		
70 + 70 + 90 - 100		60 - 1		
90		_		
100	cps.	60 -		
100		ווווווווווווווווווווווווווווווווווווווו		
		90 -		
		100		•
		110 111		
120	***	120		·

Grid co-ords

R.L. collar

0 50

Prospect EL 442 ILKINA

AMG

Air Om

Location

Contractor W.L. SINES *SON Water 0-78m

Depth 78m	Da	ate	26-4-79 Lorged by P BINKS
Ccophymical Log Type	Depth Stri (m) Log	p Ox	Lithological Log
	10		CLAY grey - green grey - dark grey
	20		
	30		SANDY CLAY on gr glz grains subangular
	40		SAND a ger sub rounded to sub angular clean gtz gras.
	50		- brown- black humic staining.
	60		INTERMEDIATE ROCK grey green. / SAMBY CLAY
Page 100 Cps	70 4		wheel gneissic vock
, cps	80		
	100-		
	110 -		
	120		

0 51

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKWA

AMG

Air Om

Location

.Contractor W.L. SIDES 450N Water 0-82m

1)			Sides 4500 Water 0-81m	
Depth 82m	· -	te 26-4-79	Longed by P. BINKS	
Goophysical Log Type	Depth Strip (m) Log		Lithological Log	
- A	-	i ' -	IAN) Figre well counciled brown	
	===	CLAY gr	bomble duch as duck ducen grown duck	
	10 ====		Francisco de la companya del companya de la companya del companya de la companya	
	==-	,		
	20			
- ш. Ş				
3 × ×			·	
4 A	30			
13				
		SAND M	ogr sub-rounded clean gras. white chy matrix.	
A	40 = -		white chy matrix.	
\$ 3] , . · ·		trace pyrite	
	. = .	L		
	50	SANAY CLAY	initic some of a pale green	
	=== -	ROCK	some ghz pale green	
	+ -		•	
	60 - +			
	==+	F.	race proite (? contamination).	
	70	ALTERED IN		
] +	G-K	TERMEDIATE ROCK pole green gray clay with angular ofte gras.	
			1	
B	+ -06.	• • • • • • • • • • • • • • • • • • • •		
Prips 100				
chs.	= =			
	90-			
	. 1		•	
	100			•
	110			
			·	
	120			

धार्यक्षात अंद्रहरू

Project

Grid co-ords

R.L. collar

Prospect FL 442 TLKINA · Location

AMG

Air O~

0 52

Contractor WL. SIDES +SON

Water 0-90m

Dopth 90m	Date	27-4-79 Longed by P. 8/w/s.
Geophysical Log Type	Depth Strip C	
		SAULY CLAY - CLAY grey
	10	CLAY grey green grey dent grey
	20	
E VI	30	
8 2		SANDY CLAY silf-sand size of 2 gras in white clay mattry
	40	SAND M gr sub angular - sub rounded
a J	50	SAND man subanquer - sub roundel
	60	SAND car sub rounded gtz gras. SAND F-m gr sub rounded - sub angular
V Vannara	70 P	trace pyrite
		Frace mica.
SE CONTRACTOR	80	GRANTE pinh & ? biotile
Ch2 (b2)	90 +	
	100-	
	10	
	120-	

HOLE NO 2840 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE R.L. collar Project Grid co-ords Prospect FL 442 ILKINA Alvi G Air Om Contractor W.L. SIDES & SON Water 0-76m Location Longed by P BINKS Date 27-4-79 Depth 76m Depth Strip Ox Lithological Log Coophymical Log SAND (AFOLIAN) F go rounded pale brown. grey brown a blue grey SANDY CLAY CLAY green . Live grey SANDY SILTY CLAY SAND M-c gor subrounded clean the SANDY CLAY CLAY grey green will gtz Fragments grey grown acid volcanic?

Grid co-ords

R.L. collar

0 55

* Frospect EL 442 ILKINA

AMG.

Air Om

Location

Contractor W.L. SIDES & SON Water 0-94m

Depth 94m	Da	te	27-4-79 Longed by P. BINKS
Geophysical Log Type	Depth Strip	0 _X	Lithological Log
			SAND (AEOLIAN) F que counded yellow known reel. CLAYEY-SAND
	10		CLAY blue grey a grey green
	20		
	30		
			SANAY CLAY M gor subrounded ghz grey
	40		SAND in ger sub rounded - sub angular brown black humic staining trace pyrite
	50 P		SAND a CLAY brown grey clay matrix with small Fragments cambon accous track + pyrite
	60 7 6.		The grains m-c gr. SANS m-c eyr angular-sub angular
	70		trace humic staining + pyrite
	60		V. C. Gr. grovelly. SILTY SANDY CLAY grey F. m or subangular ofte in gray silly day
Peps 100	90	ļ	GRANITE
	100		
	110		
	11/11/1		

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMC

Air O-

Location

Contractor W.L. SIDES 450N

Water 0-94m

Depth 94m	Date	28-4-79 Longed by P BINKS.
 Coophysical Log Type		
		SAND F or rounded rod brown (AEOUAN) SANDY CLAY grey grown a red
	10	
	==:-	" " drad dason.
	20	CLAY blue grey a grey green.
		SAND F-m qr sub angular - sub rounded clear gtz grants.
8	30	SANDY CLAY blue gray
	40 1	SAMO mar anyther sul a subservice to
	P.	SAND m gr angular-sub angular clear ghe trace pyrote SANAY CLAY
	50	SAND m-c gr sub angular- sub rounded clear gte grains trace pyrite CLAYEY SAND
	Э. P.	SAND V c g+ gravelly angular subangular gtz. brown black humic staining trace pyrite.
	60	
	70 J P	
	00 = 0	trace ourhangerous track
) co		minor gody clay muteix.
,	+ + +	GERNAE
	100	
The street of th	10 -	
All de la company de la compan	120	

HOLE NO. 1844 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Grid co-ords R.L. collar Prospect EL 442 ILKINA AMG Air On 0 57 Contractor W.L. SIDES + SON Water 0-68m 29-4-79. Date Longed by P. BINKS. Goophysical Log Depth Strip Ox Lithological Log (m) Log Far rounded pale brown - rod frown 5900 (AGOLIAN) slightly femicreted esilierated. ISANDY CLAY dreen duch - bouble duch SAMB F-m gr rounded purple brown (RECLIEN) CLAY green grey strub on gr sub angular - sub rounded elear gtz grains with grey day matrix. SANDY & SILTY CLAY pule grey - off white SAMY CLAY SILTY " CLAYEY SAND M-c qr. sub angular gtz. mina white elay trace pyrite GRANTIC ROCK

Project

Location

Depth

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMC

Air o

Location

Contractor W.L. SINES + SOV

Water 0-64m

	G. HOOPER
Goophysical Log Dopth Strip Ox Type (m) Log	
CLAY Yellow from For white founded,	
CLAN arey more article limentic	mange yellow clay
:10	. , ,
CLAY clark gray green	•
20	
SAND Fic or subrounded white -	L. c.
SILTY CLAY white - creamy white	•
SAND F-c go minor F qu pyrike minor	smay azy
SANDY CLAY gray bean, crown brown clark brown carbonaccous made	esaly
SILTY CLAY cream.	
SILTY CLAYEY SAND Crrom - grey	
BASEMENT, hard, foliated a lie cour mack	
	į
	; }
	£
	*. •
186	· .
120	منطقه والمراكبة المراكبة المرا

عديد عديد المالك GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar 0 59 Prospect EL 442 ILKINA AMG Air Om Location Contractor W.L. SIDES &SON Water 0-52m Depth Date 1-5-79 52m Longed by G. HOOPER Depth Starty Ox Coophysical Log Lithological Log Log SILTY CLAY light grown from n. SAND (REDLIAN) F or rounded light brown. CLAY grey green · dark grey miner ghz Fram boild pyrite SANDY MAY CLAYEY SAND & & glz grey SHOWY LEAKE F. To The. TOLAY crosm. w light bown whence grey green, streky CLAYEY SAMS creamy chy miting GRANITE - 9/2 Follsp. biolite Fragments

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air On

0 60

Location

Contractor W.L. SIDES & SON

Water o-Lom

Location	Co	ontra	ictor W.L. Sides 4 son Water, 0-66m
Depth 66m		1.0	1-5-79 Longed by G. HOOPER
Coophynical Lor Type	Depth Stri (m) Log	xO æ	Lithologianl Log
Coophynical Log Type	Depth Stri Log		SAND F or rounded comm SILTY CLAY red brown SILTY SAND VF- for gts OTHING brown CLAY cream grey - brown SAND F or rounded white - light brown (ARRIGAN SAND-SANDY CLAY dark grey black. F or gte Will white clay matrix. CLAY cream white sericitic Shicky
) or 100	70	⊣ ;	SCHILTONE CHIONTE BIOTITE SERVITE ROCK QUARTZ BOTITE Rock

14 Marie 14.40 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE R.L. collar Grid co-ordo Project Trospect EL 442 ILKINA AMG Air O 0 61 Contractor W.L. SIDES & SON Water 0-66m Location Longed by G. Hooper Date 1-5-79 66 m Depth Depth Strip Ox Lithologianl Log Goophysical Log (m) SAND SLITY CLAY " CLAY gray black - Wack m-c gr gtz sub rounded white they maknow in part. sowny casy frequently white-any chy making. SANSY CLAY WHEO GRANITE white clay matrix green chloriste RICTITE GRANITE

GEOLOGICAL AND GEOFHYSICAL LOG - ROTARY DRILLHOLE HOLE NO. - - 49

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKNA

AMC

Air Om

Location

Contractor W.L. SIDES & SON

Water 0-18m

Type (m) Log SANG (ASOUAN) F	range red.
NOT LOGGED SPING (AEGUAN) F ON GRAVITE WHED 20	range red.
GRAVITE WHed	
CRAVITE WHed	
CRAVITE WHed	
20	
30	
\$0	
40	
•••	
40	
30 =	
	A Charles
60 -	
	•
70=	
•••	
1 1	
•0	
	•
	•
100	
	•
:110	
	•
120	

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE HOLE NO. 2000 Project Grid co-ords R.L. collar Prospect EL 442 ILKINA AMG 0 63 Air 0. Location Contractor W.L. SINES SON Water O-12m Depth Longed by G. HOOPER Date 2-5-79 Dopth Strip Ox Gnophysical Log Lithological Log Type (m) Log rounded SILTY SAND NOT LOGGED GRANITE · hadinsed Feldspar intergrowths.

Grid co-ords

R.L. collar

Prospect EL442 ILKINA

AMG

Air

Location

Contractor W.I. SIDES + SON

Water 0-30m

Onophysical Log Typo Met Logeth 10 10 10 10 10 10 10 10 10 1	Depth 30m	Da t.e	5-5-79 Longed by G. Hocper
SETY SOUTH (RESERT) & Granded Tight could become 10	Ganphysical Log	Dapth Strip Ox	, *
SRAWITE (whird) is an angular the wild wild wild hashible nature.	i	1 2 2 2	SILTY SAND (AGUIAN) F for rounded light reddial brown.
		10	
		20	GRANTE (whied) can angular gtz will
			white kaplinitic metrics
		40]	
		111/111	
		80	
		60	
		.70	
		60	
		ווןוווו	
		907	
		98	•
120		110	
		120	

HULL 110, IX 54 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

0 67

Prospect EL 442 ILKINA

AMG

۸ir

Location

Location	Cont	ractor W.L. Siges Sow Water 0-24m
Depth 24m	Date	5-5-79 Longed by G. Hooper
Coophysical Log Type	Depth Strip C	
NOT LOCKED		SAND (AEOLIAN) For rounded gray brown
	10	SAND (AFOLIAN) F g. noweled orange.
	20	
		Crosm chalcednic me frix
	80-	HOLE ARD. NO PENETRATION.
	40	
	50	
	7	
	-	
	70	
	80	
	•0	
	100	
	110	
	7	
	120-	

Depth

HULLING IS 56 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar 0 69 Prospect EL 442 ILLINA AMG Air Om Contractor W.L. SIDES . SON Water 0-36m Location Longed by G. Hooper Depth 36m Date 7-5-79 Depth Strip Ox Gauphysical Log Lithologianl Log (m) SANDY SILT calcareous gream from. CLAY cream gray e and. - CLAY . gray green . red purple. SAND (REDUAN) F go rounded CLAY grey brown. pyrite qta biolite. GRANITE

Project

Grid co-ords

R.L. collar

* Frospect EL 442 TLKINA

AMC

Air O~

Location

Contractor W. L. SINES & SON Water 0-76m 0 70

76m Depth Date 7-5-79 Longed by G. Hooser Ocophysical Log Dopth Strip Ox Lithological Log Log (m) SAND (AEOLIAN) & gr rounded orange CLAY grey green savor cran durates ned ofs SILTY SAND V. F qu. grey Minor yelbuillances SILTY SAND chart brown liquitie CLAYEY SAND C or sol rounded gtz derk brown brown CLAY brown lket lignitic SAND c que sub rounded. V. c gr (up to ossui) GRANITE

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air

0 71

Location

Contractor W.L. SIDES . SOV

Water 0 - 92m

Depth 92m

Date 8-5-79

Logged by G. HOOPER

Ĺ	lepth 92m	Date	э (8-5-79	Longed by G. Hooper
	Coophysical Log Type	Dopth Strip (m) Log	1		Lithological Log
				SILTY SAND	For nounaled arouge brown
		10	'	CLAYEY SILTY	SAND brown F qu.
		20			white cream Ferroginans, CLAY red.
				SILTY CLAY	
		30		CLAY black.	VF gr gtz grey grean. I dank brown. For gta rounded dank brown.
		40		SAMBY CLAY	
		80		CLAY lenses	black carhonaceurs. brown- black carbonaceurs.
			-	SANBY CLAY	For rounded of a dark brown H Fine movele like mineral.
		60	<u>س</u>	_	carhonaccous a needle like min.
		70		• • • • • • • • • • • • • • • • • • • •	F-c go glz clark hown-black or substanded-sub engular
				hun	nic staining
		1 4		GRANITE WI	lad gtz + servicitie chy cream gray
	ه درم درم	•0-		glz biol	the intergrowths.
		100 d			
	en Postantia	100			
		The state of the s		•	
		150-		٠.	*

HOLE NO. IR 59 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar Prospect EL 442 TILINA AMG Air Om. 0.72Location Contractor W.L. SIDES + SON Water 0-104m Depth 104m Date Longed by G. HOOPER 8-5-79 Coophy pical Log Depth Strip Ox Lithological Log Log (m) SILTY SAND F or orange brown NO CHART RECORD ALL < 100 cps. CLAYEY SHLTY SAND . VF qu gte, SILTY SAND V For the grey green CLAYEY SAND F or rounded gots CLAY clark brown a black carbonacrous SANDY CLAY F-c or glz brown clay matrix CLAY-SANNY CLAY black corbonaceous will needle like xystate. SAND F-c gr g/z sch rounded. Lenson CLAY frommil SAND . E-c du ale enprovedect SAND M-c or glz sub rounded.

minor pyothe humic staining leases CLAY black brown. SANDY CLAY WITHER GRAMITE m-cq gtz will white tradinitie matrix ine pyrite (iontam?) GRANITE

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Location

AMG

Air o

,

Prospect EL 442 ILKINA

Contractor W.L. SIDES+SON

Water o-62m

0 73

Depth 62m

Date 8-5-79

Logged by G. HOOPER

pth 62m			_	8-5-79 Longed by G. HOOPER
Coophysical Log Type	Depth (m)	Strip Log		
				SANDY GILT GOWN
VO CHART RECORD		- :		SILTY SAMO F go orange brown
ALL < 100 cps.				
	:10 =			
	=			
		- +		SILTY CLAY UF que gtz quer green adout red
	20-			grey green adort red
	-			
	;] - [SANDY CLAY & Creen gray
	-			CLAY grey, green.
	=			
	80-	/ _ ·		SANAY CLAY a grey green
	=]		
	-) <u> </u>		
	-			CLAY black carbonacoux
	40-	11		11 grown
	: =			
	=	+		
				CRIAN CLAN and canadad - he
	=	\		SANDY CLAY can tak tounded ghz cream brown clay metrix
	80-			Cream from Clay metry
		14.2		
	-	4		GRANITE
	80 -	1 +		
	=	1 + 1		Λ
A Comment	. <u>-</u>]		
	=			
	_ =	1		
	.70-]		
	80 -			
]		
	_			
	=	1 1 .		
	90 -	1		
	=	1.1		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	=			
	100-	:		
		.		
	110			[17] 我就就是你一点一点的人。
			- 1	
]			
	120			
		'	- 1	

HOLE NO. IRGI GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Grid co-ords R.L. collar Project 0 74 AMG Air Or Prospect EL 442 ILkivA. Contractor W.L. SIDES 4500 Water 0-34m Location Longed by G. HOOPER 9-5-79 Date Depth 34m. Geophysical Log | Depth Strip Ox Lithological Log (m) Log Type SAND grey brown Frm qu. NO CHART RECORD BLL < 1000ps. SANDY SILT CLAYEY SAND clark rod Fenryginous. LATERITE : orange yellow SANDY CLAY F or its with white cream oby m GRANITIC ROCK 90 100 120

GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKINA

AMG

iAir o

Location

Contractor W.L. SIDES 4501

Water 0-60m 0 75

Lorged by G HOOPER

_ 1	Depth 60m		Dat	te	9-5-79 Longed by G. HOOPER.
•	Geophysical Log Type	Depth (m)	Strip Log	Οx	Lithological Log
			7.5.		SILTY SAND F-M gr rounded light orange from.
	and the same of				light orange brown.
		=			
	NO CHART RECORD	10 -	·		
	ALL < bock	: <u>-</u>		٠.	
		: =		}	
]]. =			
		20-		İ	
		=			SANDY SILT red brown.
		-			
		80-	-4		
] 3			
•					
		-			
		40-	<u> </u>		SAND F-m or nounded
					SANS F-m or vounded
			- -·		
•			- :		SAND yellow brown f-m gr rounded.
		80-		٠.	
			1		GRANITE wheel can angular of
	A Company		1 4 4		with tradinitio matrix. minor
•]	1	matic intergrowth in ete
		60 -	+	l	
]		
		<u> </u>		Ì.	
			1	'	
		70-			
]		
				}	
] ! :	l	
		80-]		
]		
		-			
		90 -			
		-].:		
		100-			
				i	
i					
		110 ~			
- {			1	1	
		120		1	
		, , , ,	'''		
اب		-		البيح	

HOLE NO. 1863 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE R.L. collar Project Grid co-ords Prospect EL 442 ILKINA AMG Water 0-16m Location Contractor W.L. SIDES a SON Longed by G. HOOPER 16m. Date 9-5-79 Depth Geophysical Log | Depth Strip Ox Lithological Log Log SILTY SAND light brown. NOT LOGGETS. CLAYEY GANG & F. G. Francy hous GRANTE: et angular g/2 sill w.H. Celdepar intergrowths

HOLE NO. IR64 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

Project

Grid co-ords

R.L. collar

Prospect FL 442 ILKINA

AMG

Air On

Contractor W.L. SIDES & SON

Water 0-24m

9-5-79 Date Depth 24m

Location Longed by G. HOOPER Geophysical Log | Depth Strip Ox Lithological Log (m)Log KUNKAR & CALLARGOUS SILT NOT LOGGED SANS . (LAY black carbonacoous, GEANTE gray glz Felds intergrowths 120GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE

HOLE NO. IR65

.Project

Grid co-ords

R.L. collar

Prospect FL 442 ILLINA

AMG

Air Om

0 78

Location

Contractor W.L. SIDES & SON Water 0-16m

pth 16m				10-5-79 Longed by G. Hooper
Geophysical Log Type	Depth (m)	Strip Log	0 <u>x</u>	Lithological Log
1. 人名英格兰	li =			PLINKAR + CALCARBONS SILT
			 	SILTY SAND GOWA.
	10-	- 1		GRANTE WHO!
		+		
		#		1. 15 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·
	20 -			
	E			
	80-		:	
	=]	•	
	-			
	_ =			
	40-			
] [
	=	1		
	80-			
		1		
]] =			
	60 -			
	1 =			
			•	
	70-		•	
]		
]			
	60-]		
	90			
	-			
	-	; .		
	100-			
			:	
	110			
	1		•	
	120-	[- 1	

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air O

Location

Contractor W.L. SIDES & SON Water 0-90m Date 10-5-79 Longed by G. HOOPER Depth 90 m

pth 90 _m		Da	LO	10-5-79 Longed by G. Hoover
Geophysical Log Type	Depth (m)	Strip Log	Оx	· Lithological Log
	1 -			SILTY SAND F-m qu ted
VO CHART RECORD	3		•	
	-	-:+:]	SILTY SAND light from
ALL & 130 cps.	;			
	1.10 -	- : - : - : -		
	: =	<u> -}-:-</u> -	ł	SILTY CLAYEY CAND F or rounded ofte
	=	- .	1	red inner gray greened
	=	→ • −	1	
	. =		· .	
	20 -	· ‡ :		
	=	-1-1-1	1	
			1	
	-	寸. 二		CLAYEY SAND grey green.
		<u>- </u>		
	80-	1	1	CLAY white - cream
	: =	1	İ	
3,5	=	#	1	
			l	
			1	CLAY a white
	40-			SILT. light brown
10 V 5.				
		11		
				SAND F-m on rounded
	80-			CLAY longe black carrionaceous.
		1.	-	
	1			SAMS c gr gtz Sub angular
A STATE OF		- 7		Miner & gr pyrite
	1			
	60-	4		
	\exists			
	.70			
e, 6				CORALTE AND IL
			- 1	can any orz
	. =			" white clayby matrix
	-	4		
	80			
		<u>.</u>		
		1	-	
	}]	4		
	\exists	· 7		
	90	+ -		
			ĺ	
Mar.				
一 智利,在1201	100		J	
	E			
	\exists			
	1 1		-	
		1	- 1	
	110 -	1 1	-	
	\exists	F	1	
	E	- ;	- 1	
	! =		- 1	
		- } - 1	1	
	120		. 1	

HOLE NO IR 6 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar Prospect EL 442 ILKINA AMG Air Om Contractor W.L. SIDES -SOA Water 0-12 1 80 Location Longed by G. Hoopen Depth 126m 10-5-79 Date Geophysical Log Depth Strip Ox Lithological Log Log (m) cokeneous light brown : SILT NO CHART RECORD SILTY SAND light and brown ALL < 100 Ups FERRULINOUS BOND SILTY SAND red from CLAY-SANAY CLAY PINT CLAY white - grey brown CLAYEY SAND a F or glz pink SANDY CLAY limonitic yellow CLAYESANOYCLAY black from F qu qte SAND

HOLE NO. IR 67 GEOLOGICAL AND GEOPHYSICAL LOG - ROTARY DRILLHOLE Project Grid co-ords R.L. collar AMG 0 81 Prospect Air Water Location Contractor Depth Longed by 126 Date Geophysical Log Depth Strip Ox
Type (m) Log Lithological Log

Project

Grid co-ords

R.L. collar

Prospect EL 442 ILKINA

AMG

Air O

Location

Contractor W.L. SIDES Sow Water 0-120m

88 0

Denth

Lorged by G. HOOPER

_ 1	Depth 120m	Da	te	11-5-79 Longed by G. Hooper
	Geophysical Log Type	Depth Strip	0x	Lithological Log
•	,			SANDY SOIL & SILCRETE
. •	NOT LOGGED			
			1	SILTY STAND F on light ned brown
:		= :		SICI SHOP TO THE SECOND
		10	Ì	
				SILCRETE & SAND
			1	SAND F-m gr rounded orange
		20-		(REOLIAN)
•				
•				
]		CLAY-SANDY CLAY gray green a brown grey
		80-		
٠.]	CLAY grey brown
				SANDY CLAY CLAY F go ghe.
]]]		
		40		Low
		1-1		
;:			ļ · ·	SAND CLAY F T 9/2
		3+		varicoloured gray white limpgitiz yellow white
:		80		limpythe yellow
		. TE		Will to the second of the seco
			1	
]]•		
		60	1	SAND M- C PC
•			l	SAND m- c gr. humic staming
			ŀ	
			ł	
		70-]	CLAY bown black, carbonaceous.
			┨	
:				
:			1	
:		80-1		
		<u> </u>	1	SANDY CLAY - SAND M-c of groyal gla
į		-		miner pyrite
		P		
		90 -		
}				
		P) gradetimal change From codinoat
		00		to hodrock
				GRAMTE! M-G gr. angular g/z in a
.1		- E		tradinitie matrix
		110-		
		1 4 +		
		1		
		3 -		
		120		
	,		i i	

Project

Grid co-ords

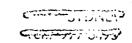
R.L. collar

Prospect FL 442 ILWNA

AMG

Air

0 83


Prospect FL 442 IL	LEJN/A AMG	Air 6 U 83
Location	Contr	actor W.L. SINES & SON Water 0-66m
Depth 66m	Date	11-5-79 Logged by G. Hoopen
Goophysical Log Type	Depth Strip Or (m) Log	Lithological Log
NOT LOGGED		SAND light brown.
(lagger Halfmetion)		SAND For red brown.
6.084	10-1	(4E011AN)
		CLAY light grey brown SAND (AEOUAN) = gr yellow from
	20	SAND & For Armaich (ACOURD)
		cury hard grey brown
	30	SAND For white
	=====	
		SANDY CLAY For ghe white-grey
	40	SAND, SILTY SAND F or pale yellow drown
		SANDY CLAY / WITHER GRANITE
	80- +	SANDY CLAY / WINED GRAMITE white-yellow-red F-m gr gtz
	00	Consess
	= +	GRAMTE
	70 =	
	AO	
		lante de la cartita de la carta de la calenda de la carta de la carta de la carta de la carta de la carta de l Resenta de la carta de la c
	Ē	
	isa:	
	mo==	
	3	
	120-	
1		•

APPENDIX B

ASSAY RESULTS

- 000 -

ADELAIDE Tel.: 272 5733

A.C.S. Enboratorius Ply. Li Committee and the same المراجعة المراجعة المراجعة المراجعة

50 Mary Street, (P.O. Box 3), UNLEY. 5061.

F.NALYTICAL RESULTS

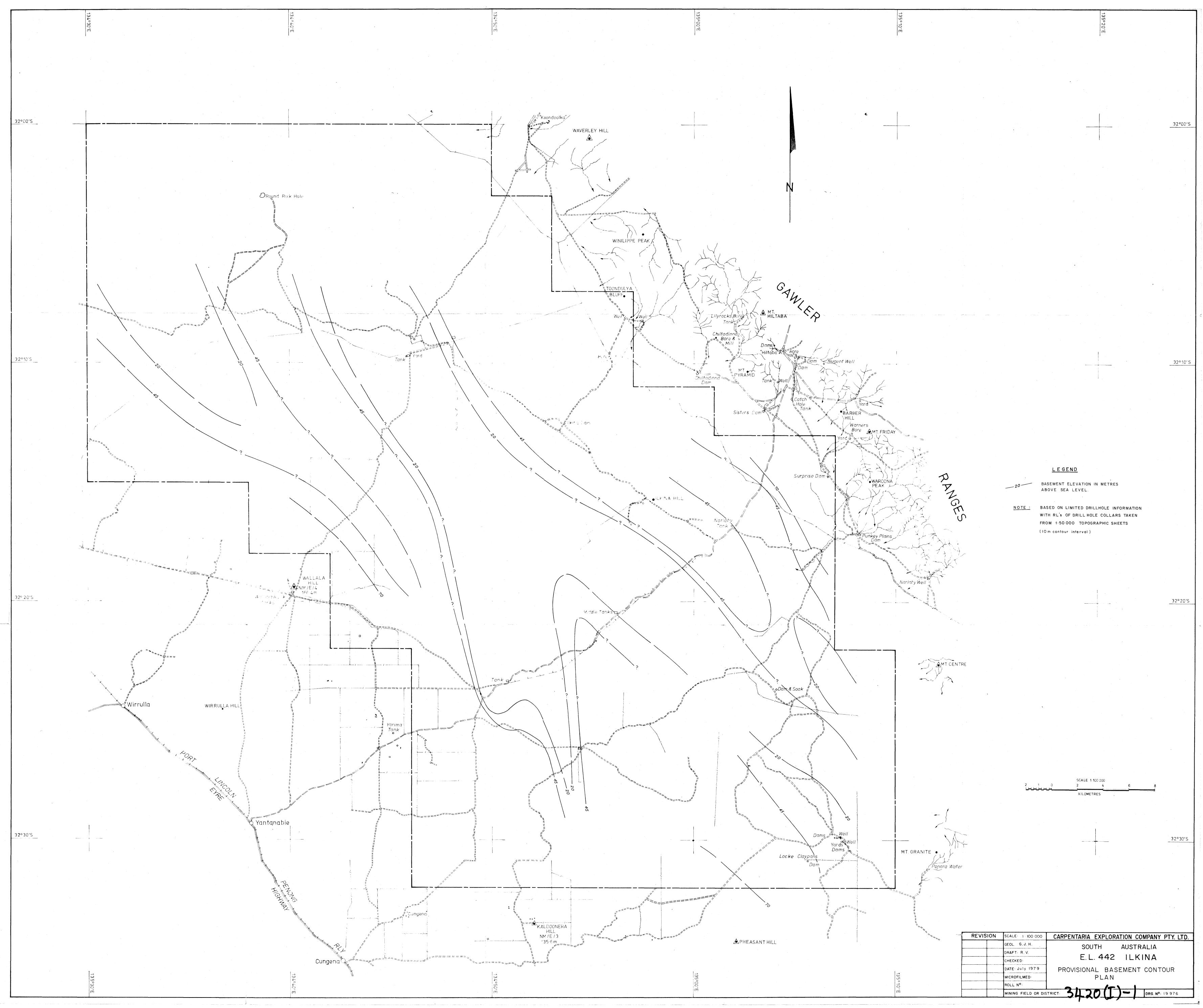
Samples from: Carpentaria Exploration Co.Pty.Ltd.

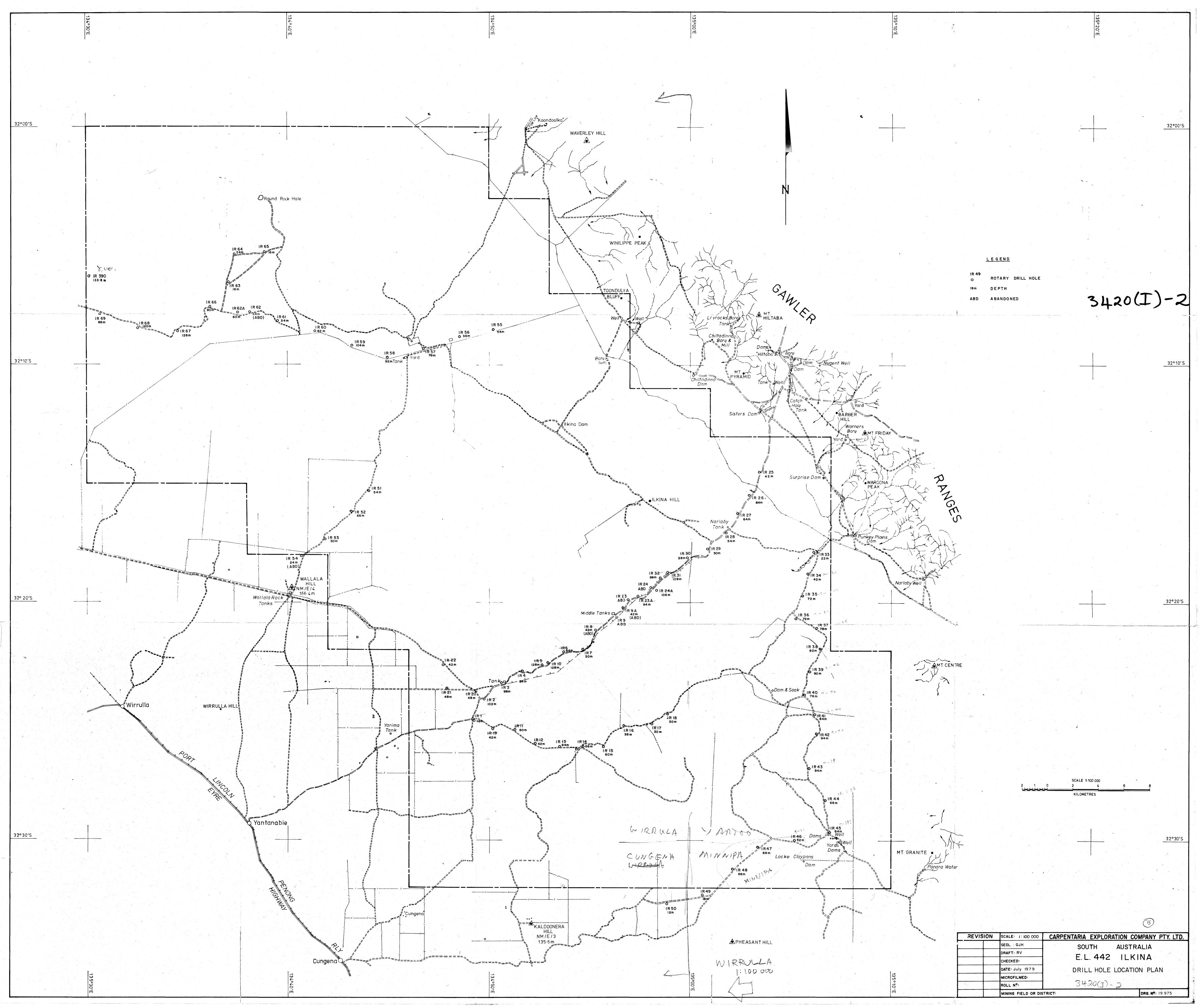
Area:

Samples of: Rock Chip.

Preparation: Crush and pulverize.

Batch No.: S_{XA} 2920.


0 85


Sheet No.: 1.

Date: 30/5/79

428343 362 4.0 369 2.7 374 2.7 388 1.9 391 2.4 392 394 2.9 420 1.7 425 425 428 1.1 435 443 472 2.5 481 492 515 517 428545 Repeat and check - 428420 1.5 1.6 1.6 1.7 1.6 1.7 1.7 1.7 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9		Sample Description	U308 ppm					
		362 369 374 388 391 392 394 420 425 428 435 443 472 481 492 515 517	4.0 2.7 2.7 1.9 2.4 9.4 2.9 1.7 2.2 1.1 0.4 2.5 1.9 2.4 7	IR 24A IR 23A IR 9A	32-34m 46-48m 56-58m 90-92m 92-94m 96-98m 40-42m 56-58m 76-88m 76-88m 38-40m 56-58m 38-36m 30-32m 34-36m			
420420			, ,			•		
		428420	1.5		· .			
						.·		

ANALYTICAL METHODS: U. by Fluorimetry.

CARPENTARIA EXPLORATION COMPANY PTY. LTD.

EXPLORATION LICENCE NO. 442 "ILKINA"

PROGRESS REPORT FOR QUARTER ENDED OCTOBER 7, 1979.

1. TERMS AND CONDITIONS

The Exploration Licence covers an area of $2388\,\mathrm{km}^2$ approximately $100\,\mathrm{km}$ east of Ceduna. It was granted for a term of one year commencing on January 8, 1979. The expenditure requirement on the licence is \$70 000 for the full term.

2. EXPLORATION

Drilling Results

A map showing a possible channel outline based on the results of the drilling programme has been compiled. (Drawing number 19987)

This channel appears to be tending north-west - south-east possibly greater than 10 km wide. Two tributary channels have been located on the southern side of the main channel (IR 2, IR 13) which may converge into one before joining the main channel. The Ilkina Hill basement high resulted in a branch of the main channel flowing on the north-eastern side of the high. To the north-west the channel has been divided by a prominent basement high which outcrops west of IR 65.

At present not enough data is available to positively identify the direction of flow. However, the more likely direction is to the north-west into the then active Eucla Basin. To the south-east of the area, widespread granitic highs would tend to favour the development of a series of narrow channels joining to form a main channel flowing to the north-west.

The stratigraphy outlined by the drilling was summarized in the last quarterly report and has been compiled into a series of provisional

RECEIVED
2 9 OCT 1979
DEPT. OF MINES
AND ENERGY
SECURITY
3 420

sections which are appended to this report. (Drawing numbers 19982 - 19985)

The holes were drilled to basement where possible which was generally of granitic composition and frequently pyritic. The extent of weathering varied from virtually unweathered fresh granite underlying some of the channel areas to more frequently a highly weathered kaolinite-coarse grained angular quartz rock.

Overlying the basement and in-filling the channels was a major sand unit which ranged up to a maximum thickness of 65 m in drill hole IR 31 (tracing 19982). This sand was invariable composed of very coarse grained, subrounded to subangular poorly sorted quartz grains. Apart from the sands in drill holes IR 26 and 27 all were in a completely reduced state with abundant humic staining and widespread minor fine grained pyrite either as individual grains or coarse aggregates. Within the sand unit are minor interbedded clay bands which are usually brown to black and often lignitic.

The sand intersected in IR 26 and 27 differs in that no humic staining or pyrite is present and the grains are coated with ? hematite which would indicate an oxidising state. It is not known if this is part of the main channel or a tributary channel but it does occur at a higher stratigraphic level than the main channel. Further work is required to fully determine the significance of this sand.

Much of the area is then overlain by a major accumulation of lacustrine? clays which vary from grey to grey green to black. These are best developed in the central and south-eastern part of the area while to the north significant silty deposits occur.

A typical aeolian sand deposit, fine grained well rounded and sorted quartz grains, overlies the clays and silts forming the uppermost lithological unit. This sand varies up to maximum thickness of 43 m (IR 10).

Resistivity Survey

Preliminary results have been received for the resistivity survey carried out along the north-eastern side of the area. The main purpose of this was to locate any possible tributary channels coming off of the Hiltaba Granite. No tributary channels were located.

A possible channel feature was located along the fence east of IR 55. The results suggest that oxidized sediments infill in the channel and this would indicate that the channel is a continuation of the one located to the south-east in IR 26 and 27.

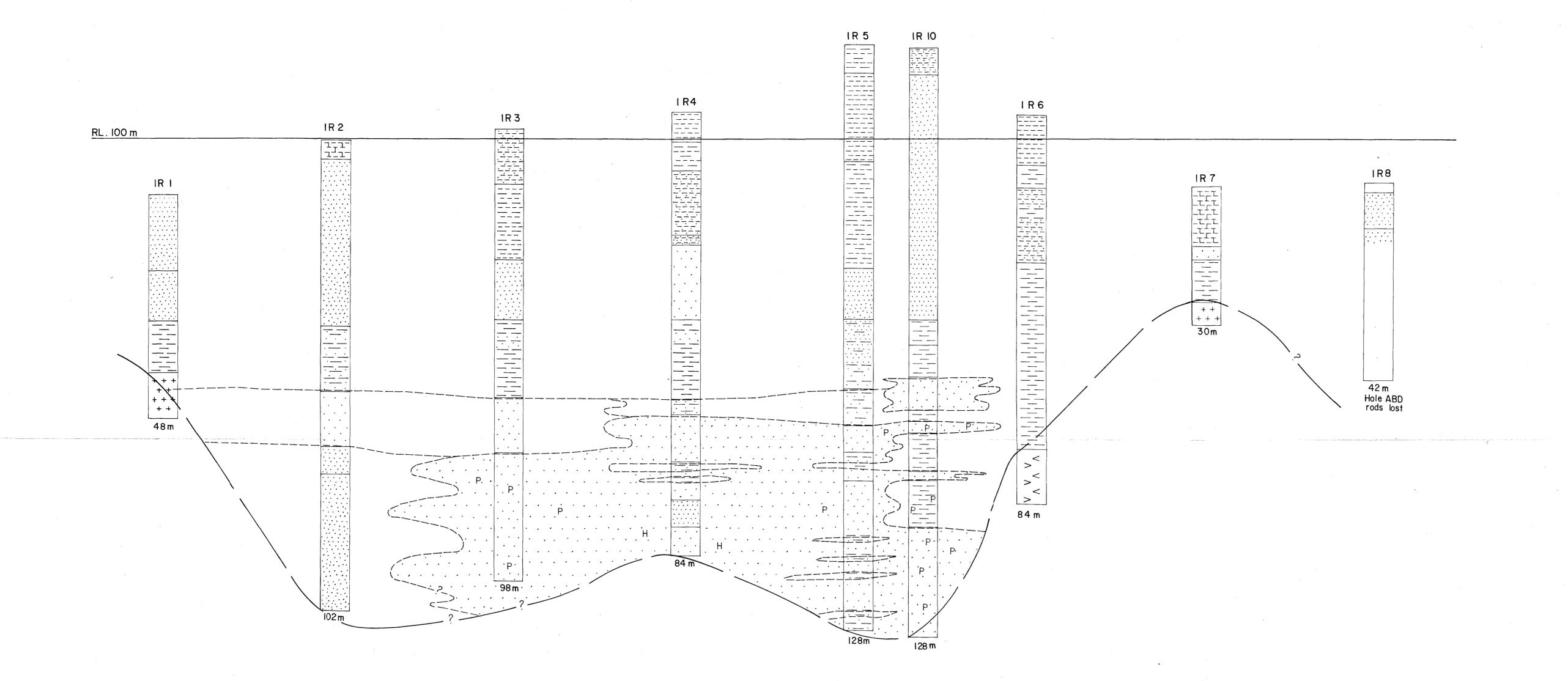
A traverse was also completed over the drilled area from IR 1 to IR 7 to check the effectiveness of the resistivity method. The results compared fairly well with the known depths to basement.

A complete set of final results will be submitted with the next quarterly report.

R.E. Darlington

Administration Manager

EXPLORATION LICENCE NO. 442 "ILKINA"


STATEMENT OF EXPENDITURE FOR QUARTER ENDED OCTOBER 7, 1979

	\$	\$
Administration	1 154	
Assaying	107	
Consultant Fees	15 485	•
Drilling	110	
Equipment Charges	412	
Operating Labour	6 140	
Stores	103	
Transport	604	•
Travelling Expenses	106	
Total This Period	24 221	24 221
Expenditure Already Reported - Current	Term	
Quarter Ended April 7, 1979	4 958	
Quarter Ended July 7, 1979	87 314	
TOTAL EXPENDITURE - CURRENT TERM	92 272	92 272
Total Project Expenditure to Date		\$116 493

Malington

R.E. Darlington

Administration Manager

SAND f-m grained

SAND c grained

GRAVEL

CLAY

SILT

CALCAREOUS SILT minor KUNKAR

H+++

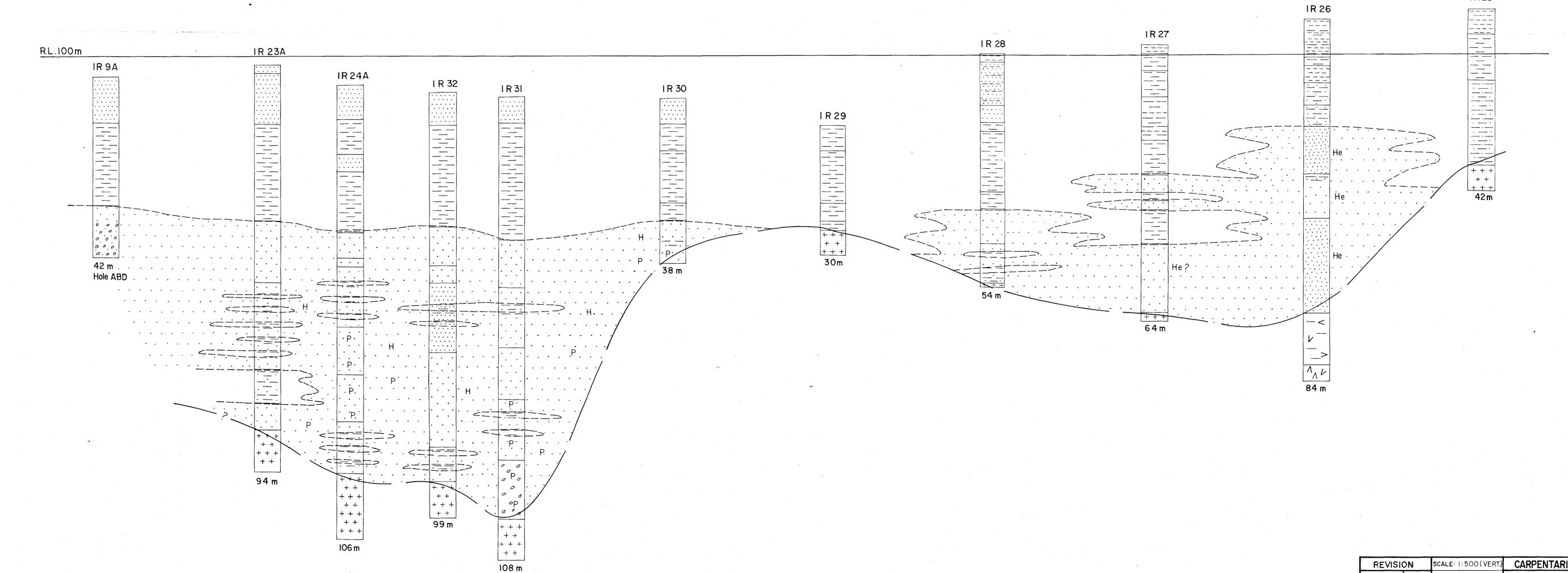
GRANITIC BASEMENT

ACID VOLCANIC?

PORPHYRY

SERICITE, CHLORITE, BIOTITE, SILICEOUS SCHIST

H Humic staining occassional carbonaceous trash


BASIC VOLCANIC

He Hematite staining

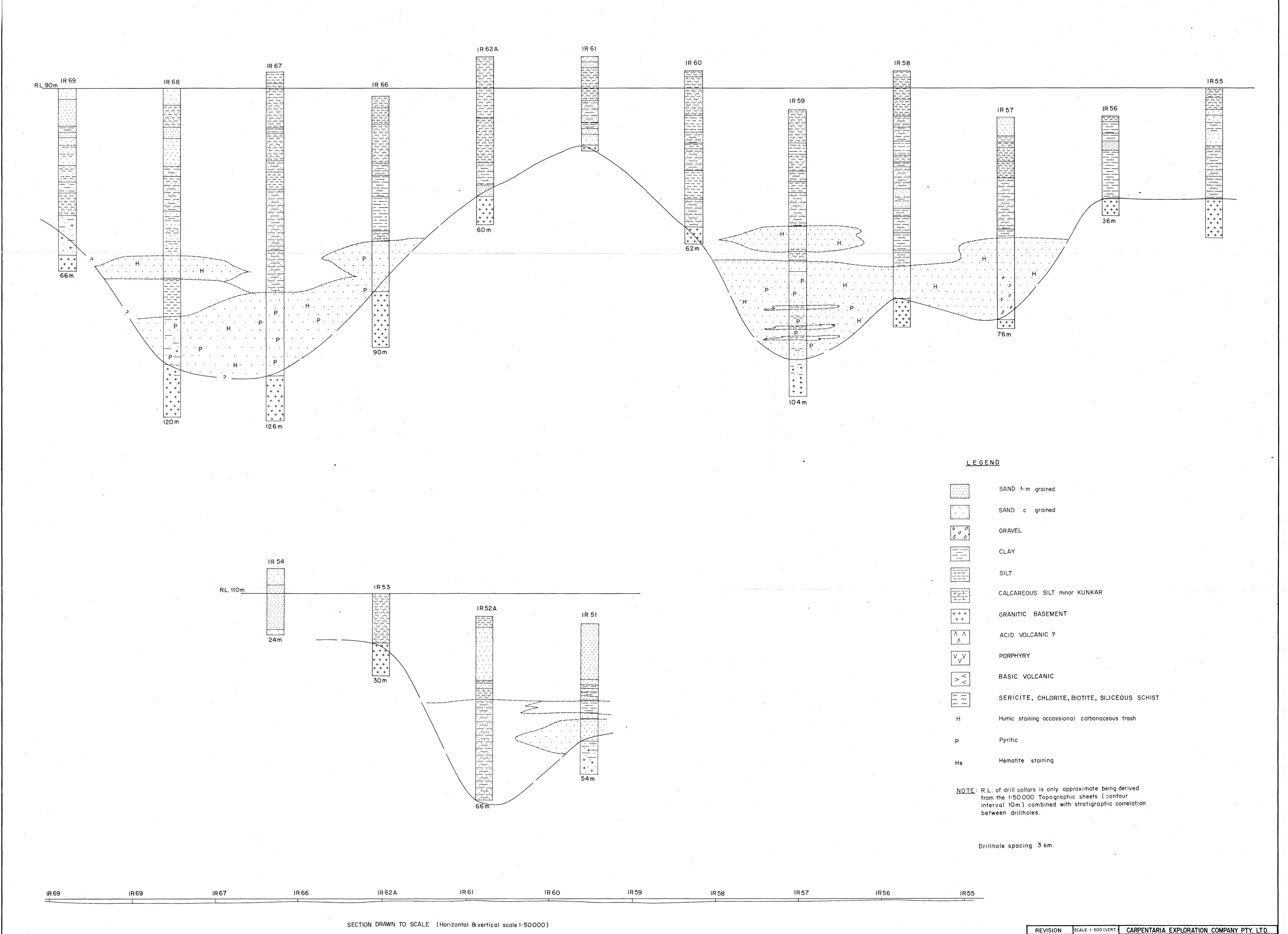
LEGEND

Note: R.L. of drill collars is only approximate being derived from the 1:50,000 Topographic sheets (contour interval IOm) combined with stratigraphic correlation between drillholes.

Drillhole spacing 2 km

REVISION SCALE: 1:500 (VERT) CARPENTARIA EXPLORATION COMPANY PTY. LTD.

GEO G.J.H.


DRAFT:

CHECKED:

DATE:

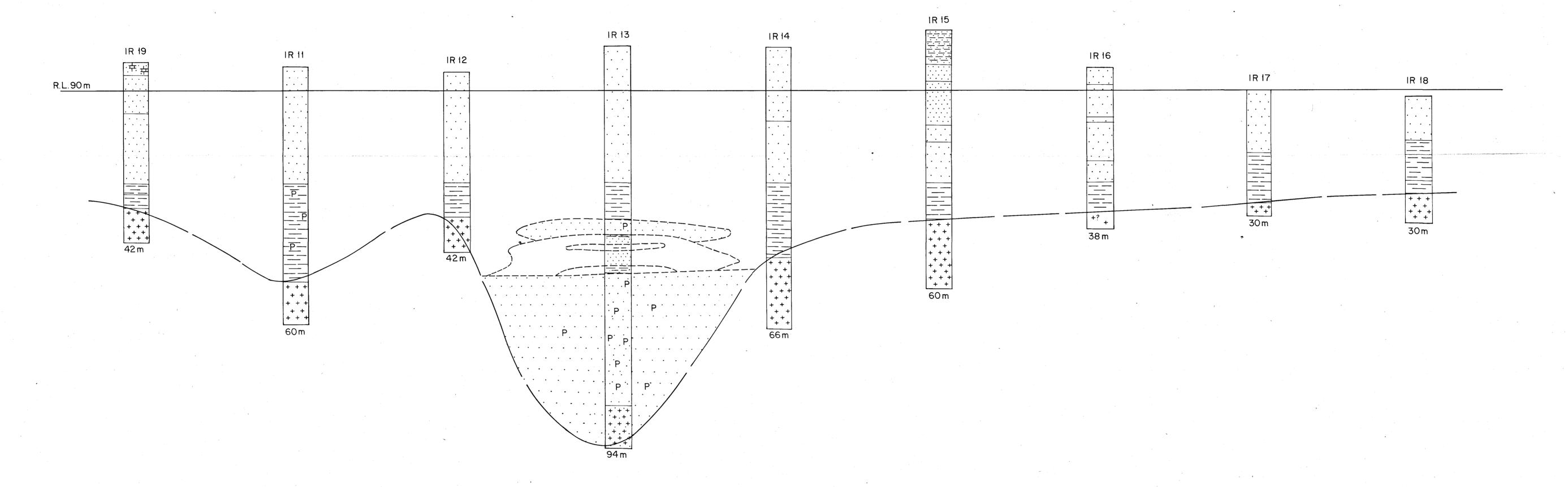
MICROFILMED:

ROLL Nº:

GEO G.J.H.

DRAFT: R.V.

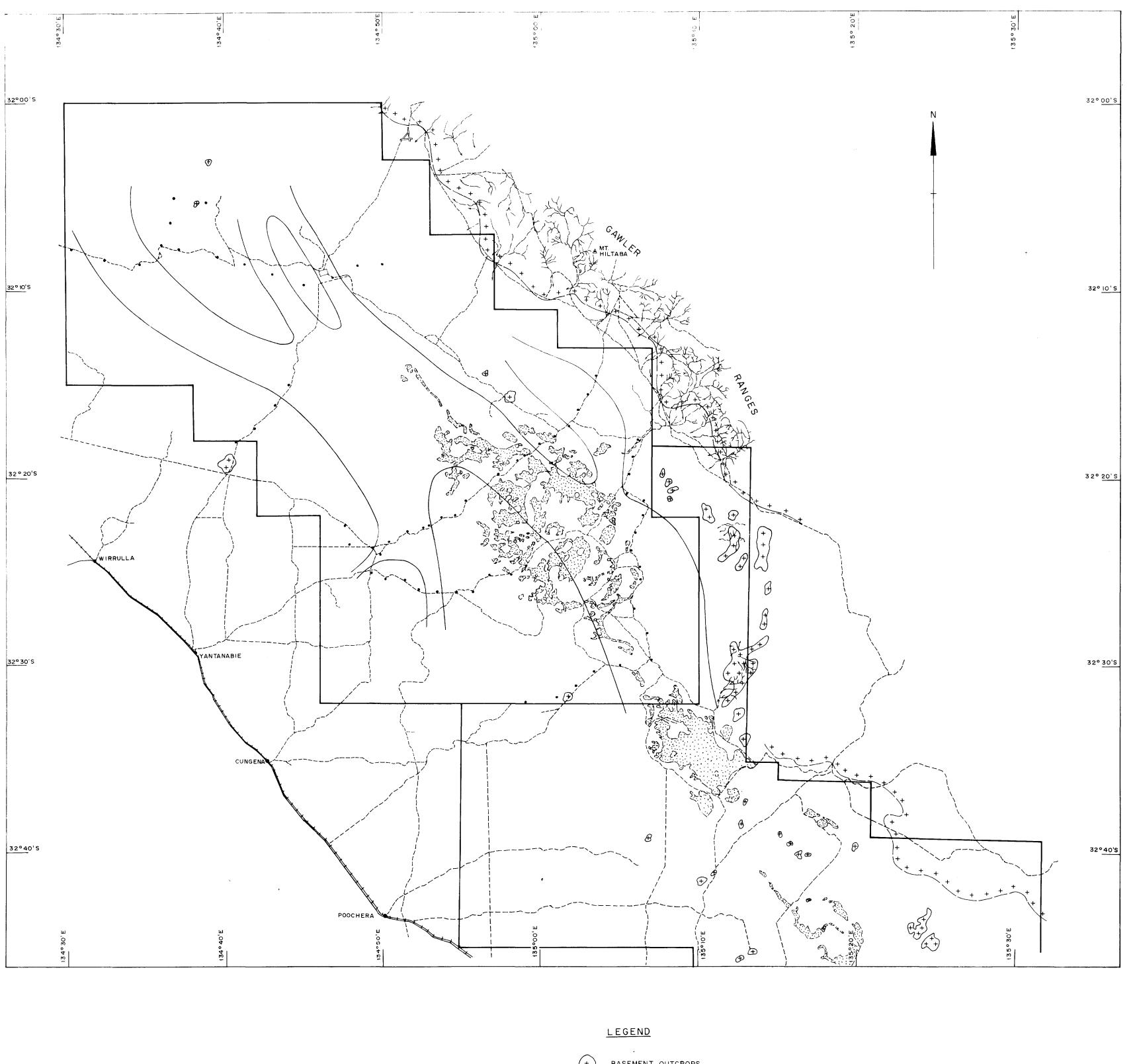
CHECKED:

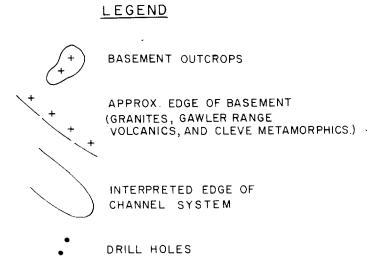

DATE: August 1979

MICROFILMED:

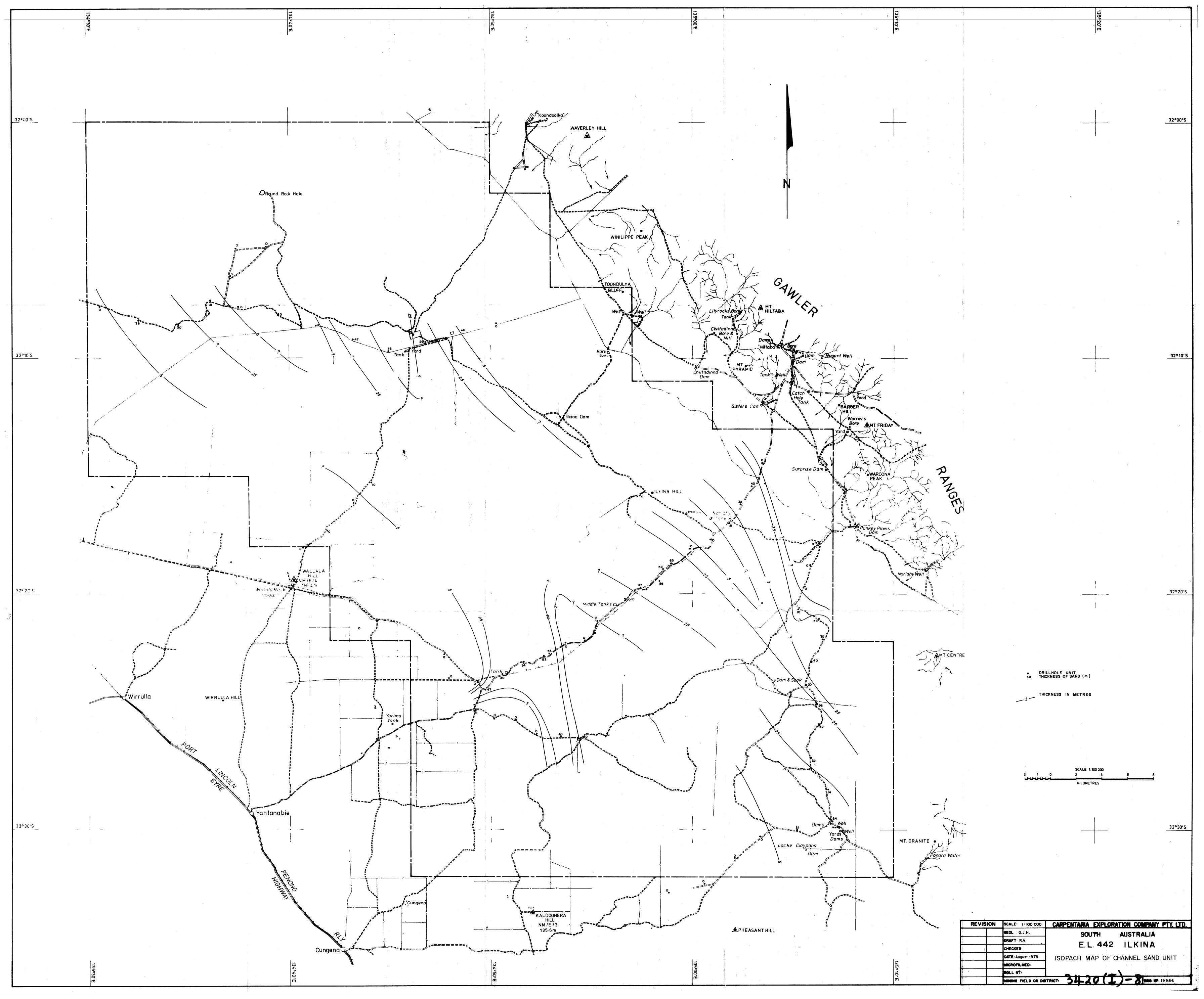
ROLL Nº:

MINING FIELD OR DISTRICT


LEGEND


	SAND f-m grained
	SAND c grained
0 0	GRAVEL
	CLAY
	SILT
	CALCAREOUS SILT minor KUNKAR
+++	GRANITIC BASEMENT
$\begin{bmatrix} \Lambda & \Lambda \\ \Lambda & \end{bmatrix}$	ACID VOLCANIC ?
$\bigvee_{V}V$	PORPHYRY
> <	BASIC VOLCANIC
~~~	SERICITE, CHLORITE, BIOTITE, SILICEOUS SCHIST
Н	Humic staining occassional carbonaceous trash
P	Pyritic
He	Hematite staining

NOTE: R.L. of drill collars is only approximate being derived from the 1:50000 Topographic sheets (contour interval 10m) combined with stratigraphic correlation between drillholes.


Drillhole spacing 2 km.

REVISION	SCALE: 1:500 (VERT.)	CARPENTARIA EXPLORATION COMPANY PTY. LTD.
	GEO G. J. H.	51 440 H KINA
	DRAFT: R.V.	E.L. 442 ILKINA
	CHECKED:	
	DATE: August 1979	SIMPLIFIED DIAGRAMATIC SECTION
	MICROFILMED:	SOUTH-EASTERN TRAVERSE
	ROLL Nº:	
	MINING FIELD OF DIST	PICT: 3/1 30 / 1 - 6 DRG Nº: 19 985





REVISION	SCALE: 1: 250 000	CARPENTARIA EXPLORATION COMPANY PTY. LTD.
	GEO G.J.H.	EL AAO U KINA
	DRAFT: R.V.	E.L. 442 ILKINA
	CHECKED:	SOUTH AUSTRALIA
	DATE: August 1979	MAJOR BASEMENT OUTCROPS
	MICROFILMED	& POSSIBLE CHANNEL LOCATION
	ROLL Nº:	<b>(-)</b>
	MINING FIELD OR DIS	TRICT: 342 0 DRG.Nº: 19 987



# CARPENTARIA EXPLORATION COMPANY PTY. LTD.

0 89

MINING TENEMENT

PROGRESS REPORT

EXPLORATION LICENCE NO.442 "ILKINA"

PROGRESS REPORT FOR QUARTER ENDED JANUARY 7, 1980



DATE: Janu

January, 1980

COPY:

Department of Mines &

Energy S.A.

## EXPLORATION LICENCE NO.442 "ILKINA"

## STATEMENT OF EXPENDITURE FOR QUARTER ENDED JANUARY 7, 1980

	\$	\$
Administration	2 495	
Consultant Fees	<b>(</b> 583)	
Operating Labour	4 243	
Stores	28	,
Transport	25	
Total This Period	6 208	6 208
Already Reported - Current Term		
Quarter Ended April 7, 1979	4 958	
Quarter Ended July 7, 1979	87 314	
Quarter Ended October 7, 1979	24 221	
	116 493	116 493
TOTAL EXPENDITURE - CURRENT TERM	-	\$ 122 701

R.E. Darlington, Administration Manager

RECEIVED

1 4 FEB 1980

DEPT. OF MINES

AND ENERGY

SECURITY

74 20-1

#### CARPENTARIA EXPLORATION COMPANY PTY. LTD.

## EXPLORATION LICENCE NO.442 "ILKINA"

## PROGRESS REPORT FOR QUARTER ENDED JANUARY 7, 1980

0 91

## 1. TERMS AND CONDITIONS

The Exploration Licence covers an area of 2388 km², approximately 100 km east of Ceduna. It was granted for a term of one year commencing on January 8, 1979. The expenditure requirement on the Licence is \$70 000 for the full term.

An application to extend the term for a further one year was granted by the Department of Mines and Energy. The expenditure requirement is now \$140 000 for the 2 year term.

## 2. EXPLORATION

## 2.1 Palynology

A selection of 18 samples was submitted to the South Australian Department of Mines and Energy for palynological age dating, the results of which are appended. The samples fall into 2 distinct age groups. The channel sediments are of Mid to Late Eocene age while the overlying lacustrine clays are Mid Pliocene in age indicating the presence of a major disconformity at the top of the Ilkina channel.

## 2.2 Resistivity

The results of the resistivity traverses previously reported are included as Appendix 2.

## 3.

A statement of expenditure for the period is attached.

R.E. Darlington, Administration Manager

## APPENDIX 1

Rept.Bk.No. 812

PALYNOLOGY OF SELECTED SAMPLES, E.L. 442 FOR CARPENTARIA EXPLORATION COMPANY PTY LTD.

SUMMARY REPORT.

GEOLOGICAL SURVEY

by

W.K. HARRIS BIOSTRATIGRAPHY SECTION RECEIVED
2 NOV 1979
DEPT. OF MINES
AND ENERGY
SECURITY
3.4.20

November, 1979

E.L. No. 442 Biost.No. 10/9

CONTENTS	PAGE
INTRODUCTION	1
RESULTS	1
DISCUSSION	3
REFERENCES	5

# DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

Rept.Bk.No. 812 E.L. No. 442 Biost. No. 10/9

PALYNOLOGY OF SELECTED SAMPLES, E.L. 442 FOR CARPENTARIA EXPLORATION COMPANY PTY LTD.

#### SUMMARY REPORT

#### INTRODUCTION

E.L. 442 is situated on western Eyre Peninsula north east of Streaky Bay and has been actively drilled by the Company in an attempt to define palaeodrainage channels. There is no surface expression of these except that the Corrobinnie Depression (Bourne et al., 1974) would appear to be a south easterly extension of the surface sand covered feature being investigated. The drill holes examined are representative of this feature both lengthwise and across it. All samples are cuttings and are thus subject to down hole contamination. No detailed palynology is presented in this report. The area lies between the Eucla Basin and Polda Basin where both Eocene and Late Tertiary assemblages have been recorded or described (Harris and Foster, 1974; Lindsay and Harris, 1975). More recently (Harris, 1979) an Eocene assemblage has been reported from the Streaky Bay town water supply bore.

#### RESULTS

Table 1 lists the bore number, depth and sample number and age determined by palynology, No palynological age determination is provided for barren samples.

TABLE 1

Bore hole	Depth in metres	Sample No.	Age
IR6	34-36	S4795	Mid-Pliocene
IR10	62-65	S4805	Mid-Pliocene
IR10	89.5- 91.5	S4806	?Mid-Pliocene
IR10	95.5- 97.5	S4807	?Eocene
IR31	20-22	S4796	Mid-Pliocene
IR31	48-49.5	S4808	Indeterminate
IR42	60-62	S4809	Mid to Late Eocene
IR48	21-23	S4810	Mid-Pliocene
IR57	41-44	S4797	Mid to Late Eocene*
IR58	32.5- 34.0	S4811	Mid-Pliocene
IR58	50.5-52.0	S4812	?Late Eocene
IR58	58-60	S4813	Mid to Late Eocene
IR59	28-30	S4814	Barren
IR59	40-42	S4815	?Late Eocene
IR59	52-54	S4816	Mid to Late Eocene*
IR59	74-76	S4798	Mid to Late Eocene
IR60	36-38	S4817	Mid Pliocene
IR68	70-72	S4818	Mid to Late Eocene*

#### DISCUSSION

The assemblages fall into two distinct ages, one in the Eocene and the other in the late Tertiary. The Eocene assemblages are more or less typical of those in the lower part of the Pidinga Formation in the Eucla Basin and marginal areas and the Poelpena Formation of the Polda Basin. Nothofagidites spp. dominate the assemblages and marine microplankton (dinoflagellates) are recorded from three samples albeit in small numbers and low diversity. Samples asterisked indicate the presence of these marine indicators. In two other samples (IR58, 50.5-52.0 m and IR59, 40-42m) that are tentatively regarded as Eocene, sponge spicules have been recorded. These siliceous microfossils were recorded by the company on their logging sheets as "fine needle like mineral(s)".

From this brief study of the Eocene in this area it is apparent that initial sedimentation was in a fluvial valley or channel which was later subjected to marine influence by tidal effects such as might be expected on the upper delta plain environment. However, the regime was still dominantly under the influence of fluvial processes. The presence of sponge spicules is equivocal. Non-marine sponges are known to produce spicules and may be associated with diatomites, however the presence of marine dinoflagellates in the sections would favour a marine origin. A search for other marine indicators would confirm this opinion. Sponge spicules are widespread in marine sediments of this age (and occasionally in this facies) throughout southern Australia.

The younger group of sediments probably represents quite a different facies. The assemblage is entirely non-marine and of low diversity and algal debris is common. The lithotypes and palynology would suggest deposition in a low energy lacustrine regime. Similar age sediments occur in the Robinson Basin,

the Polda Basin, Western Australia (near the western margin of 99 the Eucla Basin) and in the Gippsland Basin. The age determination suggested here is by comparison with the latter province and from evidence kindly supplied by A.D. Partridge (Esso Australia Pty Ltd).

Thus this channel feature has been active since the middle Eocene when it was initiated along with many other palaeodrainage features bordering the emerging Southern Ocean. Its rejuvenation in the Pliocene during an apparent pluvial phase as indicated by the large proportion of cool and wet loving conifers in the assemblage, is of significance and has implications for the stratigraphy of late Tertiary sediments in central Australia.

WKH: GU

W.K. HARRIS

- Bourne, J.A., Twidale, C.R. and Smith, D.M., 1974. The

  Corrobinnie Depression, Eyre Peninsula, South Australia.

  Trans. R. Soc. S. Aust., 98: 139-152.
- Harris, W.K., and Foster, C.B., 1974. Stratigraphy and palynology of the Polda Basin, Eyre Peninsula.

  Mineral Resour. Rev. S. Aust., 136: 56-78.
- Harris, W.K., 1979. Streaky Bay town water supply. Palynology of carbonaceous clay from FOR 20A. S. Aust. Dept.

  Mines and Energy Rept. 79/91 (unpubl.).
- Lindsay, J.M., and Harris, W.K., 1975. Fossiliferous marine and non-marine Cainozoic rocks from the eastern Eucla Basin, South Australia. <a href="Mineral Resour. Rev. S. Aust.">Mineral Resour. Rev. S. Aust.</a>, 138: 29-42.

APPENDIX 2

# A RECONNAISSANCE RESISTIVITY SURVEY AT WIRRULA,

# SOUTH AUSTRALIA FOR CARPENTARIA EXPLORATION COMPANY

Report by: R. Murdoch,

Murdoch Geophysics (Australia) Pty.Ltd.

21 Parker Street,

Maroochydore, Qld. 4558

Phone: (071) 43 3178

(071) 42 1229 After Hours

REPORT 349
OCTOBER 1979

# CONTENTS

	PAGE
Summary	1
Introduction	2
Field Procedures	2
Presentation of Results	4
Interpretation Background	6
Quantitative Interpretation	8
Qualitative Interpretation	12
Plates 1 & 2	19
Recommendations	20
Appendix I	

# PLATES

	PLATE
Location and Strip Contour Plan of Depth to	
Base of Layer 2	1
Strip Contour Plan of Total Conductance Per Metre	2
Pseudo-Sections	3-14
Profiles	15-17
Soundings	•



#### SUMMARY

- 1. A reconnaissance resistivity survey has been carried out over a wide area north of the Eyre Highway, between Wirrula and Kyancutta in South Australia.
- 2. The work involved both soundings and profiles carried out over a number of nominated traverses. The aim of the survey was to locate areas where Tertiary channels may be incised into Precambrian basement.
- 3. Traverses were run over known channels (Lines 1 and 3) for correlation purposes and a close comparison between the sounding interpretation and the drillhole data was established.
- 4. On the other lines, the most likely channel anomalies were located on Line 7 near the southern end of Line 6; on Lines 5 and 9. A lower priority anomaly was located on Line 4. No worthwhile anomalies were located on Lines 2, 8 or 9A.
- whether the depth to basement is likely to be more or less than the quantitatively interpreted depth to the base of geo-electric Layer 2. Some prediction is also made on the possible chemical state of the bulk of the Tertiary sediments. However, the prediction should be treated with great caution. It is only made so that we can obtain feedback information to progressively improve that aspect of the interpretation and may not be of great value at this stage.
- 6. Eight preliminary drillholes are recommended on the five anomalies mentioned above. Predicted depths to basement vary from 70 120 metres. Following completion of these holes, and any additional step-out holes, the drilling results should be used to up-grade the interpretation. Later on, additional soundings could be used to follow prospective channels in much more detail.

#### 1. INTRODUCTION

- 1.1 A reconnaissance resistivity survey has been carried out in a wide area north of the Eyre Highway, between Wirrula and Kyancutta, west of Port Augusta in South Australia. The survey was conducted on behalf of Carpentaria Exploration Pty. Ltd.
- 1.2 The survey was conducted along traverses Line 1 to Line 9 and 9a at positions as shown on Plate 1. The traverse lines were a considerable distance apart and as can be seen on Plate 1, the survey covered several different E.L.'s.
- 1.3 Geologically, the area consists of Tertiary sediments, chiefly sands and clays overlying Precambrian igneous basement. As a result of previous drilling, it is known that Tertiary channels exist in the area. The sediments within the channels could be prospective for secondary uranium deposition.
- 1.4 The object of the survey was to locate areas where Tertiary channels incised into basement may exist, in areas where no drilling has previously been carried out. To provide some orientational information, traverse Lines 1 and 3 were run over known channels in areas that had been previously drilled. A second aim of the survey was to make some estimate of the likely chemical state of the material within the channel anomalies located.
- 1.5 The field work was undertaken between the 15th July and the 9th September 1979 by Mr. R. Godden aided by two field assistants.
- 1.6 This report assumes that the reader has a fundamental knowledge of the electrical resistivity technique. If any section is not clearly understood, the reader is advised to contact the author.

## 2. FIELD PROCEDURES

2.1 The field procedure adopted was designed to provide information on the approximate shape of the basement topography and to provide sufficient data to allow a quantitative interpretation, of the possible depth to basement and resistivity of the Lower Tertiary sediments.

../3

0106

- 2.2 The work involved both resistivity profiling and soundings along the various traverses nominated. Profiling involves the gathering of data at the same current electrode separation but at different positions along the traverse. Soundings involve the gathering of data at gradually increasing electrode separations but at the same traverse position. Soundings were used to locate the depth to, and the resistivity of, the various geo-electric layers present. Profiling was used to delineate the edges of the channel anomalies.
- 2.3 Traverses conducted during the recent survey were Lines 1 to 9 and to 9a as marked on Plate 1. The lines were extended where the end of the line programmed coincided with what appeared to be the channel anomaly (viz: Line 6, 3 kms south and Line 9, 4 kms west). Soundings were conducted at a frequency of one every kilometre along the traverses and they were expanded outwards from a half current electrode separation of 10 metres to a maximum of 250 metres. The expansion was in accordance with the Schlumberger Array with an average of twenty individual readings being recorded on each sounding completed. The position of each sounding was marked with a labelled peg. On Lines 1 to 6, the distance between soundings was measured using the 250 metres profile wire, while on the other lines it was measured using the vehicle speedometer.
- 2.4 Resistivity profiling was initially carried out over the total length of Lines 1 to 6. From Line 7 to 9a, profiling was restricted to those areas, which appeared from the initial interpretation, to be areas of relatively deeper basement. The reading station interval on all the profile lines was 250 metres. Three measurements were taken between each sounding.

The profiling was carried out with a half current electrode separation (r) of 250 metres and a half potential electrode separation of 20 metres.

2.5 The quantity read at each individual profile or sounding station is called apparent resistivity. Apparent resistivity at any particular r separation is the sum effect that all the true resistivities of all the various sub-surface geo-electric layers present, have on the measuring electrode. At narrow r separations, near surface resistivities dominate

the result. However, as the r separation increases, the near surface resistivities have progressively less effect on the result and the deeper resistivities have a progressively greater effect.

# 3. PRESENTATION OF RESULTS

# 3.1 Soundings

Copies of all the individual sounding curves are presented at the end of this report. Individual field readings of apparent resistivity are shown by either a cross or dot. The sounding curve is an imaginary line of best fit passing through as many of the individual field readings as possible.

The sounding curves can be integrated into a number of horizontal geo-electric layers for which values of thickness and resistivity can be assigned. However, the thickness and resistivity interpreted for any particular layer are dependent variables and hence the solution derived is not necessarily unique. All solutions that will generate a theoretical curve that almost exactly fits the smoothed sounding curve are called "equivalent solutions". The "optimum equivalent solution", or the equivalent solution that appears to best fit the current geological knowledge of the area, at this stage of exploration, is shown on each sounding graph by the dashed line. The "optimum equivalent solution" selected fits the imaginary field curve very closely, the only exceptions being in those areas where some distortion of the curve has resulted from local inhomogenuities near the measuring electrode.

# 3.2 Profiles

The results of profiling are plotted as log-linear graphs of apparent resistivity (vertical axis) against line position (horizontal axis). The vertical scale is 1 cycle equals 6.25 cms. The horizontal scale is 1 cm equals 250 metres. The field data is denoted by a cross and is joined by a dashed line. Short, sharp (high frequency) variations on the profile are likely to result from near surface inhomogenuities close to the measuring electrode. The broader or low frequency changes in the apparent resistivity are more likely to reflect the deeper variations in the geo-electrical properties of interest to us.

../5

## 3.3 Pseudo-Sections

Pseudo-sections have been constructed from the sounding data along each of the traverse lines conducted. Pseudo-sections are two-dimensional displays of the data along any given traverse line. Apparent resistivity results are plotted at their respective r separation vertically below their sounding position. The vertical scale is 1 cm equals 20 metres of r separation, and the horizontal scale is 1 cm equals 250 metres. The apparent resistivities recorded at each point are represented by the typewritten numbers. These have been contoured using a logarithmic scale. The ultimate equivalent solution selected has been plotted over the top to show variations in the topography of the various geo-electrical layers resolveable. The boundaries between the geo-electrical layers resolveable are shown as dashed lines. It will be shown later that the geo-electric contact along the base of the minima is of particular interest and consequently it has been shown as a heavy line.

# 3.4 Location and Interpretation Plan (Plates 1 & 2) - Scale 1:2,500,000

Plate 1 shows the location of the traverses relative to the various small villages situated along the Eyre Highway and relative to the various E.L. boundaries and to each other. The interpreted depth to base of geo-electric Layer 2 has been strip contoured and the various depth ranges occurring have been separately coloured. The contour interval is 20 metres.

Plate 2 is a second base plan, on which the total horizontal conductance per metre (in Seimons per metre) for Layers 1 and 2 combined have been strip contoured. The total conductance for Layers 1 and 2 combined is equal to the sum of the interpreted thicknesses of each of the individual layers occurring above the Layer 2/3 interface, divided by their interpreted resistivities. The total conductance per metre is the total conductance calculated above, divided by the interpreted depth to the Layer 2/3 interface. A plan of this type has a dual role. It gives us some idea of the likely chemical nature of the Tertiary sediments, but more importantly, it will also tell us whether the actual depth to basement is likely to be shallower or deeper than the depth interpreted to the Layer 2/3 interface.

.../6

## 4. INTERPRETATION BACKGROUND

- 4.1 The interpretation of soundings can be -
  - (a) Qualitative The identification of particular layers relative to other layers, their approximate lateral and vertical continuity as well as the overall integration of the quantitative interpretation with other known exploration information.
  - (b) Quantitative The division of the sub-surface into distinct horizontal layers having a particular resistivity and thickness.
- 4.2 The interpretation of the profiles is purely qualitative. They provide closer spaced information on the likely edges of the channel anomalies and other geo-electrical features of interest.
- 4.3 In any resistivity interpretation it is necessary for the quantitative interpretation to be guided by the qualitative interpretation and not vice-versa. The main reason for this is the problem of equivalence, or equivalent solutions mentioned previously. As a result of this inherent problem, the quantitative interpretation generates precise information about an inprecise situation, and hence there is danger in using the quantitative solutions alone. However, used in conjunction with the qualitative interpretation they become a useful guide and provide a rough idea of the depth to particular layers that might be of interest and also their likely thickness and possible variations in resistivity of that layer from place to place.
- 4.4 The procedure used to generate an equivalent solution for each sounding was as follows:
  - (a) Initial manual interpretation using partial curve matching techniques.
  - (b) Test solution by generating a theoretical sounding curve on a small computer for the solution interpreted.
  - (c) If the first theoretical curve does not fit the field curve satisfactorily, then the solution is progressively modified until ultimately a fit is obtained.

- (d) In generating a curve fit, allowances have to be made for curve distortions and data offset at positions where potential electrode positions are altered.
- (e) However, in curve matching, particular emphasis is placed on as clearly matching as possible the curve interfaces that qualitatively are considered of primary importance.
- (f) The theoretical curve that provides a satisfactory fit is called an "equivalent solution".
- 4.5 Where drilldata is available near a sounding position, we can use the known thickness of a particular geological layer to see if we can generate an equivalent solution that can be correlated with the known geology. Hence, at this location we remove one of the unknowns (thickness) and the true resistivities can be calculated. This resistivity can then be used wherever possible, out along the pseudo-sections to see if an equivalent solution exists that fits that resistivity value.
- 4.6 Where no drillholes exist, then the initial equivalent solutions of each sounding are compared and generally some pattern of layering will emerge. Solutions that do not fit the pattern are tested to see if there is any equivalent solution that does fit the pattern. If there is, then it is used and the pattern gradually extended. However, previous experience in similar environments plays a large part in layer patterning recognition.
- 4.7 In the South Australian Tertiary areas, the majority of sounding curves can generally be quantitatively resolved into four layers as follows -
  - Layer 1 Usually resistive: Superficial layer above the water table.
  - Layer 2 Conductive: Tertiary sediments.
  - Layer 3 Slightly more resistive than Layer 2 (often partially suppressed): First basement layer.
  - Layer 4 Resistive: Usually deep basement.

Often other layers are present, particularly in the intra-basinal section. Typical of those to watch for are -

- (a) A resistive layer between Layers 1 and 2, generally reflecting either depressed water table or a thicker section of Quaternary sands (considered as part of Layer 1 in this report).
- (b) A layer of intermediate resistivity between Layers 2 and 3, usually partially, and at times totally, suppressed. This layer can reflect a thick sand sequence at the base of Tertiary, particularly when the top part of the Tertiary is very argillaceous. In particular, this layer can be suspected to be of significance where the resistivity of Layer 2 is very low (say less than 1 ohm metre). Elsewhere, it is likely to be suppressed (i.e. very thin).

## 5. QUANTITATIVE INTERPRETATION

- 5.1 The sounding curves at Wirrula are generally resolveable into the four main layer groupings as described above. However, where basement is very shallow, Layers 1 and 2 may combine to form one layer. On a number of soundings, Layer 3 has not been interpreted. It probably exists but is suppressed between Layer 2 and Layer 4.
- 5.2 It has been found in similar surveys elsewhere in South Australia, that it is the Layer 2/3 interface that most closely reflects the position of the basement topography. This is confirmed when we compare soundings on Lines 1 and 3 with existing drill results as follows:-

<u>.</u>			LAYER NUMBER	RESISTIVITY (OHM METRES)	DEPTH INTERVAL (METRES)	•
IR1			Line <b>10</b> 0	)	,	
0 -	27	Sand (Aoelian)	1	12	0 - 8.5	
27 -	38	Clay	2(1)	5	8.5 - 23	
38 +		Granite	2(2)	0.6	23 - 43	
•			3	2.5	43 - 73	
		*	4	High	73 +	

IR2	•	Line 1 200	00	
0 - 54	(	1	13	0 - 11
	clay below 40 metres	2(1)	6	11 - 29
54 - 102	Sand	2(2)	0.5	29 - 52
	· .	2(3)	1	52 - 102
		3	2.5	102 - 137
		4	High	137 +
IR3	,	Line 1 400	00	
0 - 58	Silty sand, silt and	1	8	0 - 25
	clay, clay and aeolian sand sections	2(1)	0.6	25 - 55
58 - 100	Sand Sections	2(2)	1.0	55 - 100
36 - 100	Sand	3	1.5	100 - 150
		4	High	150 +
	•		_	
IR4	•	Line 1 600	00	
0 - 65	Silt, clay, sand and	1	12	0 - 7.5
	silty sand	2(1)	5.5	7.5 - 32
65 - 96	Sand	2(2)	0.5	32 - 98
96 +	Basement .	3	0.9	98 - 178
		4	High	178 +
			-	
IR5		Line 1 775	50	
0 - 73	Clayey silt, silt, sand	1(1)	-11	0 - 5
, .		1(2)	16	5 - 30
73 - 128	Sand and clay	2	1	30 - 125
128 +	Basement	3	1.3	125 - 195
		4	High	195 +
IR10		Line 1 875	50	
0 - 58	Sand (aeolian)	1	11.5	0 - 42
58 - 128	Sand and clay	2(1)	0.5	42 - 62
128 +	Amphibolite	2(2)	1.0	62 - 127
		3	1.2	127 - 207
, •		4	High	207 +

IR6			Line 1	9750		
0 -	70	Silt and clay	1	13	0 -	10 .
70 +		Weathered volcanics	2(1)	3	10 -	20
			2(2)	0.5	20 -	40
			2(3)	0.7	40 -	70
			4 .	1.2	70 -	115
			5	High	115 +	
IR7			Line 1	11750	<u>.</u>	
0 -	25	Silt, sand and clay	1	12.5	0 -	2.8
•	•		2	0.4	2.8 -	27
			3	1.0	27 -	58
			4	High	58 +	
IR58			Line 3	00		
0 -	32	Clayey silt	1	9	· 0. –	20
32 -	82	Clay, sand and	2	0.45	20 -	85
		sandy clay	3	2.5	85 -	135
82 +		Granite	4	High	135 +	
IR57			Line 3	3000		•
0 -	22	Sand, silty sand, clay	1	28	0 -	4
		and sandy clay	2	0.6	4 -	58 .
22 –	73	Clayey sand, clay and sand.	3	2.5	58 -	120
73 +		Granite	4	High	. 120 +	•
***						
IR56		•	Line 3			
0 -	30	Sandy silt, clay sand	1	7.5		2.8
30 +		Granite	2	1.5	2.8 -	
			3	2.5	33 –	58
			4	High	58 +	
IR55			Line 3	8000		
0 -	40	Sand, silt, clay,	1	19	0 -	5.3
	•	sandy clay	2(1)	3.9	5.3 -	32
40 +		Granite	2(2)	2	32 -	
						/11/

IR55 (Continued)

**3 5 40 - 95** 

4 High

95 +

The above results show that a satisfactory correlation between the depth to the base of Layer 2 and the interpreted depth to basement, can be generated. The interpreted resistivity of the lower Tertiary section (either Layer 2 or 2(2)) is in the range 0.4 - 1.0 ohm metre on Line 1 and 0.4 - 2.0 ohm metres on Line 3.

- 5.3 The rest of the soundings interpreted are listed in Appendix I.
  Obviously, without the nearby drill data, the correlation between the base of Layer 2 and the depth to basement will not necessarily be as accurate.
  A lot will depend upon the resistivity value of Layer 2. In a reduced environment, such as exists on Lines 1 and 3, we do not expect the resistivity of the Tertiary sediments to rise much above 2 ohm metres.
  However, in an oxidised environment they are more likely to be in the order of 5 ohm metres.
- 5.4 Hence, a sounding with a Layer 2 interpreted resistivity of 5 ohm metres in Appendix I may reflect an oxidised environment within the Tertiary or alternatively the true resistivity of Layer 2 may well be less than interpreted, and hence the depth to basement will then be shallower than the depth interpreted to base of Layer 2.
- 5.5 Where the interpreted resistivity of Layer 2 is in the order of 10 ohm metres, the overstatement of depth to basement is likely to be maximised. In fact where the values are so high, most, if not all, of Layer 2 may well be weathered basement. Hence, interpreted lows in such area are of low priority as drilling targets.
- 5.6 Conversally, where the interpreted resistivity of Layer 2 is very low (i.e. less than 1 ohm metre), the true resistivity of the Tertiary may well be higher and hence the depth to basement will be greater than the interpreted depth.
- 5.7 However, we have to have some starting point, and the quantitative solutions offered in Appendix I are considered to be the best interpretations at this stage of exploration knowledge. However, as new drill data becomes

available, that information can be used to determine more accurately the true resistivity of Layer 2 and hence place the shape of the Layer 2/3 interface closer to that of the basement topography.

## 6. QUALITATIVE INTERPRETATION

- 6.1 The contours of apparent resistivity on the pseudo-sections reflect three features -
  - (a) Shallow contours variations in the resistivity and thickness of the Layer 1 superficial layer.
  - (b) Low resistivity semi-horizontal zone through about the middle of the pseudo-section (best example of this zone see Plate 3) reflects variations in the resistivity and thickness of Layer 2, and perhaps changes in the resistivity of Layer 3.
  - (c) Deep contours, whilst obviously influenced by the snallower geoelectric changes, do also reflect changes in basement resistivities (vertical contour gradients show approximate position of contacts).
- 6.2 Increases in the conductivity of Layers 2 and 3 are reflected by circular lows occurring at or below the position of the interpreted Layer 2/3 interface. Basement conductors do not have closure of the contours at the bottom of the pseudo-section. Superficial conductors do not have closures of contours at the surface.
- · 6.3 The soundings indicate that the profile readings will be -
  - High Where Layer 3 is shallow and Layers 1 and 2 relatively resistive (low S per metre).
  - Low Where Layer 3 is deep, Layers 2, 3 and/or 4 relatively conductive (high S per metre).
  - 6.4 We are interested therefore in the profile lows (deep Layer 3). However, to determine the cause of the low we have to look at the pseudo-sections and the quantitative interpretation. We discuss the integration of the qualitative and quantitative interpretation, line by line, below.

## 6.5 Line 1 -

- (a) Pseudo-sections The sub-horizontal low in the middle lower part of the section reflects the shape of the basement topography. Interpreted depth to base of Layer 2 is much shallower than the low, because of the relatively resistive near-surface sediments.
- (b) Profiles The profile also roughly shows the shape of the basement. The low from 5000N and 8750N is due to deep basement (northern part) and Layer 3 conductor (southern part).
- (c) Quantitative The deepest basement is interpreted from 7000N to 8750N. Drillholes show its depth to be in the order of 120 130 metres. The total conductance per metre of the Tertiary sediments in the channel area is 0.7 0.8 seimons/metre, increasing to well over 1.0 seimon/metre on the banks. The total section is likely to be reduced.

## 6.7 Line 3 -

- (a) Pseudo-sections The sub-horizontal low is near the top of the section over most of the line, but dips to be near the middle of the section west of 3000E.
- (b) Profiles Lowest values occur west from 2750E reflecting the deeper sediments. The high amplitude, high frequency data between 500E and 1500E is largely noise and should be filtered out when considering the profile.

In the eastern part of the pseudo-sections, lowest values occur from 8250E to 10000E.

(c) Quantitative - Interpreted depths to basement are greatest at 00E - 2000E and are in the order of 80 - 90 metres. The total conductance per metre is in the range of 1.3 - 1.7 seimons per metre. Drill evidence confirms the interpretation and the section is likely to be reduced.

Drill evidence shows that the eastern low on the profile is due to thick Layer 3 and hence of little interest. Greatest interpreted depth to base of Layer 2 on the eastern part of the line occurs at 12000E. However, we estimate that the depth to basement at that point may be in the order of 20 - 30 metres less than interpreted depth to base of Layer 2. The low is unlikely to be of significant interest at this stage of exploration.

There is a progressive change in the total conductance per metre of the sediments between 4000E and 6000E, which may reflect a change in their chemical state. (cf IR56 and IR55 with other holes on Line 3).

6.10 Line 6 (North) -

(a) Pseudo-sections - The sub-horizontal low is very close to the

/16(///

surface over most of the section. A one sounding low occurs at 6000N.

Other lows to the north are deeper and are likely to reflect conductive basement.

- (b) Profiles Apparent resistivities are fairly high on this line, reflecting the shallow basement. Lowest values occur between 8000N and 11250N and from 17750N to 18750N.
- (c) Quantitative The interpreted low at 6000N is likely to be mainly basement. The depth to basement in this low may be up to 40 metres less than the depth interpreted to base of Layer 2. The S per metre along the line is very low, indicating that what sediments do occur are likely to be oxidised. The profile low from 8000N 11250N appears to reflect thick conductive basement (resistivities of 5 10 ohm metres).

A local low centred on 18000N has interpreted depths to base of Layer 2 in the order of 70 - 80 metres. We anticipate that the depth to basement here may be up to 20 metres less than the depth to base of Layer 2.

# 6.11 Line 6 (South) -

- (a) Pseudo-sections Again the sub-horizontal low is not necessarily continuous and occurs near the top to middle part of the section.
- (b) Profiles Only OOS 18000S available. The profile is fairly flat with lowest values from 250S 3000S and from 17000S 18000S+. South of 18000S, the r = 250 metres readings taken on the soundings have been plotted and show a low south of 23000S.
- (c) Quantitative Interpreted depths to base of Layer 2 are greatest at the southern end of the line, where the S per metre is also slightly higher. However, depth to basement may be uniformly 20 30 metres shallower than the interpreted base of Layer 2. The greatest depth to basement is likely to be at 26000S (in the order of 90 100 metres).

Most of the section along Line 6 South is likely to be oxidised? However, from 23000S, values rise and hence some of the section may be reduced?

The interpreted depths to base of Layer 2 in the order of 90 metres also occur from 1000S - 2000S. Depths to basement may be up to 20 - 30 metres shallower than the interpreted depth to base of Layer 2. The S per metre is 0.16 and the section is likely to be oxidised.

# 6.12 Line 6 (South) Extended -

- (a) Pseudo-sections To adequately cover the possible basement deep at 26000S on Line 6 South, the line was later extended to 29000S and the results shown on a separate pseudo-section.
- (b) Quantitative The interpreted depth to base of Layer 2 is about 90 metres at 27000S, decreasing to 80 metres to the south (estimated depth 100 metres). The section may be either oxidised or reduced as the S per metre value is intermediate in value?

# APPENDIX I - QUANTITATIVE SOUNDING INTERPRETATION

	Layer Number	Resistivity (ohm metres)	Depth Interval (metres)
1/0000	1	12	0 - 8.5
	2(1)	5	8.5 - 23
	2(2)	0.6	23 - 43
	3	·~ 2.5	43 - 73
	4	High	73 +
,	S per metre	= 0.85	
1/1000	1	16	0 - 15
	2(1)	0.5	15 - 30
	2(2)	1.2	30 - 80
	3 & 4	High	80 +
	S per metre	= 0.91	
1/2000	1 .	13	0 - 11
	2(1)	6	11 - 29
	2(2)	0.5	29 - 52
	2(3)	1.0	52 - 102
	. 3	2.5	102 - 137
	4	High	137 +
	S per metre	_	
1/3000	1	10	. 0 - 23
	2(1)	0.5	23 - 48
•	2(2)	0.9	48 - 98
,	3	<b>2</b> ·	98 - 138
	4	High	138 +
	S per metre	_	·
1/4000	. 1	8	0 - 25
	2(1)	0.6	25 - 55
	2(2)	1.0	55 - 100
	3	1.5	100 - 150
	4	High	150 +
. <del>-</del>	S per metre		

../2

1/5000

1/6000

1/7000

1/7750

1/8750

		0123
	•	3.
1	13	0 - 10
2(1)	3	10 - 20
2(2)	0.5	20 - 40
2(3)	0.7	40 - 70
4	1.2	70 - 115
5	High	115 +
S per metre	= 1.24	
•	·	
1	28	0 - 5
2 *	0.5	5 - 48
3	1.0	48 - 88
4	High	88 +
S per metre	= 1.80	
1	12.5	0 2.8

0.4

1.0

High

S per metre = 2.25

2.8 -

27 -

58 +

27

58

1/9750

1/10750

1/11750

•		•				c
LINE 3						6.
3/0000	1R58		1	9	0 - 20	
•	•		2	0.45	20 - 85	٠.
			3	2.5	85 - 135	
			4	High	135 +	
			S per metre	= 1.72		
3/1000			Poor data.	Sounding not int	erpreted.	
3/2000			1	23	0 - 3.6	
			2	0.7	3.6 - 79	
		•	3	1.5	79 - 180	
			4	High	180 +	
		·	S per metre	= 1.35		
,	057		·			
3/3000 f	R57		1	28	0 - 4	
			2	0.6	4 - 58	
		•	3 .	2.5	58 - 120	
	·		4	High	120 +	
		•	S per metre	= 1.55	·	
3/4000			1	4.2	0 - 2.8	
· 		•	2	0.85	2.8 - 55	
			3	5	55 - 102	
÷			4	High	102 +	
			S per metre	= 1.12		
3/5000			1 & 2	1.15	0 - 18	
			3	5	18 - 50	
			4	High	50 <b>+</b>	
			S per metre	-		
٠.						
3/6000	1R 58		1	7.5	0 - 2.8	
			2	1.5	2.8 - 33	
			3	2.5	. 33 – 58	
			4	High	58 +	
		•	S per metre	= 0.62		
	. <del>-</del>				,	کم · ۳

../7

			$0125_{7}$ .
3/7000	1	7	0 - 2.7
	2	3.8	2.7 - 23
	3 & 4	High	23 +
	S per metre	= 0.24	•
3/8000 1RS5	1	19	0 - 5.3
	2(1)	3.9	5.3 - 32
	2(2)	2	32 - 40
	3	5	40 - 97
	4 *	High	97 +
	S per metre	= 0.28	
3/3000	1	14.5	0 - 30
	2	2.5	30 - 65
·	3	5	65 - 140
	4	High	140 +
	S per metre		·
3/10000	1(1)	23	
3/10000	1(2)	5.7	0 - 3 3 - 18.5
	1(3)	15	18.5 - 40
	2	1.7	40 - 75
	3	5	75 - 115
	4	High	115 +
	S per metre		
	•	,	
3/11000	1(1)	3.8	0 - 2.5
	1(2)	11.5	2.5 - 16
	2	3.5	16 - 48
	3	7.5	48 - 76
	4	High	76 +
	S per metre	= 0.23	
3/12000	1 & 2	5	0 - 75
	3 & 4	High	. 75 +
	S per metre		

.../8

	,			012	6 8.
3/13000	1		12	0 - 8	3
	2	,	6	8 - 60	)
	3		7.5	60 - 114	
	4		High	114 +	
	S per	metre = 0	.15		
	,				
3/14000	1	£	90	0 3	3.8
	2	•	7.5	3.8 - 40	)
	3		15	40 - 130	)
•	4		High	130 +	
	S per	metre = 0	.12		
					•
3/15000	1		10 .	0 - 30	)
	2		3.5	30 - 70	) ·
e.	3 .	•	7.5	70 - 106	j
	4		High	106 +	
	S per	metre = 0	.20		

		•		
LINE 6 NORTH	•			
6/1000N	1	10	0 -	5
	2	6	5 -	50
	3	10	50 -	89
	4	High	89 +	
	S per metre	= 0.16		
			••	
6/2000N	1	14	0 -	3.4
	2(1)	4.6	3.4 -	17
	2(2)	6	17 -	37
	3	10	37 -	87
	5	High	87 +	
	S per metre	= 0.18	•	
		•		
6/300 <b>0</b> N	1	16.5	0 -	3
	<b>2</b> ·	6.6	3 -	18
•	3(1)	10	18 -	26
	3(2)	20	26 -	49
	5	High	49 +	
	S per metre	= 0.14		
a transvē				
6/4000N	1	18	0 -	3.8
	2	9	3.8 -	
	3(1)	10	15 -	26
	3(2)	20	26 -	
	3(3)	40	82 -	112
	4	High	112 +	
	S per metre	= 0.09		

./17

7 77

·			0128	
			1	7.
6/5000N	1	20	0 - 4.6	
	2	13	4.6 - 32.2	
	3(1)	15	32.2 - 64	
	3(2)	30	64 - 99	•
	4	High	99 +	
	S per metr	re = 0.07		
6/6000N	1	42	0 - 4.8	
	2	8	4.8 - 75	
	3	15	75 - 125	
	4	High	125 +	
	S per metr	e = 0.15		
6/7000N	1	42	0 - 4.2	
	2	9	4.2 - 29	
	3(1)	15	29 - 109	•
	3(2)	30	109 - 149	٠.
	4 .	High	149 +	
·	S per metr	re = 0.10		
6/8000N	1(1)	18.5	0 - 4.2	
	2	9	4.2 - 20	
	3(1)	15	20 - 50	
	3(2)	5	50 - 80	
	3(3)	30	80 - 100	•
	4 ·	High	100 +	
	S per metr	re = 0.10		
6/9000N	1	35	0 - 4	
· :	2	8.5	4 - 39	
	3(1)	10	39 - 109	
·	3(2)	12	109 - 199	
	4	High	199 +	
	S per metr	e = 0.11		•
			•	
6/10000 N	· <b>1</b>	25	0 - 4	
	2	7.5	4 - 26	

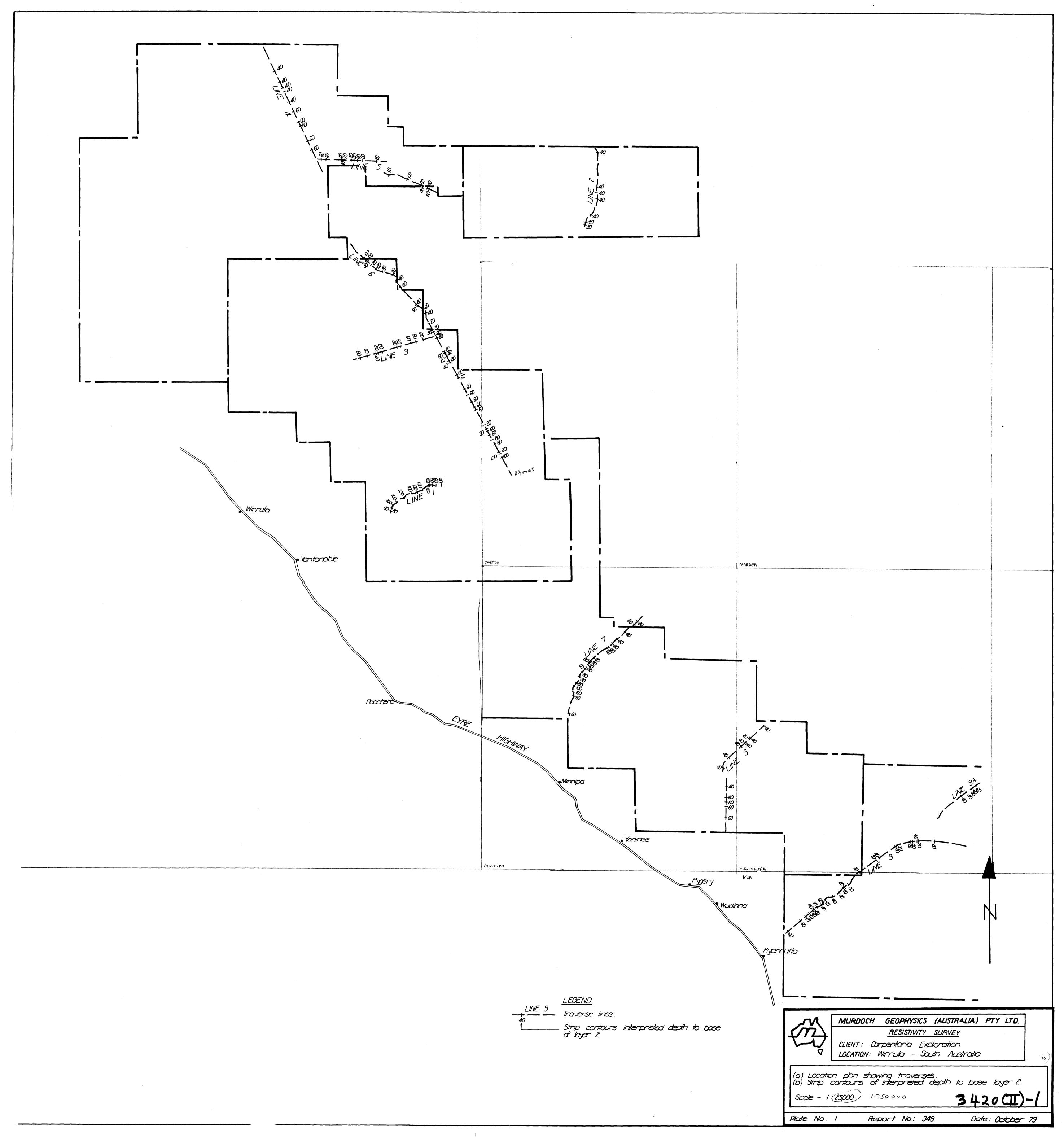
2(1) 2 30 - 3 2(2) 6 36 - 6 3 8.2 60 - 14 4 High 140 + S per metre = 0.16  6/12000N	129	0.3		<del></del>	•			
6/11000N  1(1)  1(2)  12  30 - 3  2(2)  6  3	±0•	F ·	6 +	26	20	& 4	ntinued) 3	6/10000N(Continued
1(2) 12 6.5 - 3 2(1) 2 30 - 3 2(2) 6 36 - 6 3 8.2 60 - 14 4 High 140 + 5 per metre = 0.16  6/12000N			•		= 0.12	per metre	S 1	
1(2) 12 6.5 - 3 2(1) 2 30 - 3 2(2) 6 36 - 6 3 8.2 60 - 14 4 High 140 + S per metre = 0.16  6/12000N 1 14 0 - 2 8.5 9 - 2 3 15 25 - 6 4 High 65 + S per metre = 0.10  6/13000N 1 18 0 - 2 8.5 9 - 1 3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N 1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N 1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N 1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N 1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	6.5	- 6	0 -	0	15	(1)	1(:	6/11000N
2(2) 6 36 - 6 3 8.2 60 - 14 4 High 140 + 5 per metre = 0.16  6/12000N 1 14 0 - 2 8.5 9 - 2 3 15 25 - 6 4 High 65 + 5 per metre = 0.10  6/13000N 1 18 0 - 2 8.5 9 - 1 3 6.4 120 19 - 3 4 25 36 + 5 per metre = 0.09  6/14000N 1 6 2 24 0 - 1 3 6 4 High 15 + 5 per metre = 0.04  6/15000N 1 6 2 9.5 0 - 2 3 6 4 High 29 + 5 per metre = 0.11  6/16000N 1 6 2 15.5 0 - 1 3 6 4 High 17 + 5 per metre = 0.06		- 30	5 -	6.5	12	(2)	1(2	
3 8.2 60 - 14 4 High 140 + S per metre = 0.16  6/12000N 1 14 0 - 2 8.5 9 - 2 3 15 25 - 6 4 High 65 + S per metre = 0.10  6/13000N 1 18 0 - 2 8.5 9 - 1 3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N 1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N 1 & 2 24 0 - 1 3 & 4 High 29 + S per metre = 0.11  6/16000N 1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N 1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	36				2	-		
4 High S per metre = 0.16  6/12000N  1 14 0 - 2 8.5 9 - 2 3 15 25 - 6 4 High 65 + 3 5 9 - 1 3 6.4 120 19 - 3 4 25 36 + 3 5 5 9 - 1 3 6.4 High 15 + 5 per metre = 0.09  6/14000N  1 6 2 24 0 - 1 3 6.4 High 15 + 5 per metre = 0.04  6/15000N  1 6 2 9.5 0 - 2 3 6.4 High 29 + 5 per metre = 0.11  6/16000N  1 6 2 15.5 0 - 1 3 6.4 High 29 + 5 per metre = 0.11		- 60	6 -	36	6	(2)	2(:	
S per metre = 0.16  6/12000N  1	10	- 140	0 -	. 60	8.2		3	
6/12000N  1 14 0 - 2 8.5 9 - 2 3 15 25 - 6 4 High 65 + S per metre = 0.10  6/13000N  1 18 0 - 2 8.5 9 - 1 3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N  1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N  1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	•	F	0 +	140	High		4	
2 8.5 9-2 3 15 25-6 4 High 65+ S per metre = 0.10  6/13000N					= 0.16	per metre	SI	
2 8.5 9-2 3 15 25-6 4 High 65+ S per metre = 0.10  6/13000N	a .	- 9	Λ <b>-</b>	0	1.1		1	6/12000N
3 15 25 - 6 4 High 65 + S per metre = 0.10  6/13000N								
4 High 65 + S per metre = 0.10  6/13000N  1 18 0 - 2 8.5 9 - 1 3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N  1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N  1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06							_	
S per metre = 0.10  1 18 0 - 2 8.5 9 - 1 3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N 1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N 1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N 1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06								
2 8.5 9-1 3 & 4 120 19-3 4 25 36+ S per metre = 0.09  6/14000N 1 & 2 24 0-1 3 & 4 High 15+ S per metre = 0.04  6/15000N 1 & 2 9.5 0-2 3 & 4 High 29+ S per metre = 0.11  6/16000N 1 & 2 15.5 0-1 3 & 4 High 17+ S per metre = 0.06			- T	30		per metre		
2 8.5 9-1 3 & 4 120 19-3 4 25 36+ S per metre = 0.09  6/14000N 1 & 2 24 0-1 3 & 4 High 15+ S per metre = 0.04  6/15000N 1 & 2 9.5 0-2 3 & 4 High 29+ S per metre = 0.11  6/16000N 1 & 2 15.5 0-1 3 & 4 High 17+ S per metre = 0.06								
3 & 4 120 19 - 3 4 25 36 + S per metre = 0.09  6/14000N 1 & 2 24 0 - 1 3 & 4 High 15 + S per metre = 0.04  6/15000N 1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N 1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	9	· 9	0	. 0	18		1	6/13000N
4 25 36 + S per metre = 0.09  6/14000N	.9	- 19	9 -	9	8.5		2	
S per metre = 0.09  6/14000N  1 & 2 24 0-1 3 & 4 High 15 + S per metre = 0.04  6/15000N  1 & 2 9.5 0-2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0-1 3 & 4 High 17 + S per metre = 0.06	6.	- 36	9 –	19	120	.& 4	3 8	
6/14000N		-	6 +	36	25	•	4	
3 & 4 High 15 + S per metre = 0.04  6/15000N  1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06					= 0.09	per metre	Sr	
3 & 4 High 15 + S per metre = 0.04  6/15000N  1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06								•
S per metre = 0.04  6/15000N  1 & 2 9.5 0 - 2 3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	.5							6/14000N
6/15000N		•	5 +	15	_		•	
3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	. [				= 0.04	per metre	S r	
3 & 4 High 29 + S per metre = 0.11  6/16000N  1 & 2 15.5 0 - 1 3 & 4 High 17 + S per metre = 0.06	9	- 20	0 -	n	9.5	& 2	. 1 8	6/15000N
S per metre = 0.11  6/16000N  1 & 2  15.5  0 - 1  3 & 4  High  17 +  S per metre = 0.06				٠.			:	
6/16000N			- Т		_		•	
3 & 4 High 17 + S per metre = 0.06					•		· · · · · · · · · · · · · · · · · · ·	
S per metre = 0.06	7	. 17	) <b>–</b>	0	15.5	& 2	1 8	6/16000N
		• ,	7 +	17	High	& 4	3 8	· · · · · · · · · · · · · · · · · · ·
					= 0.06	per metre	. S p	
					•		•	
	8							6/17000 N
3 & 4 High 28 +			3 +	28				
S per metre = 0.09	/19			·	= 0.09	per metre	S p	
	T'A				-			

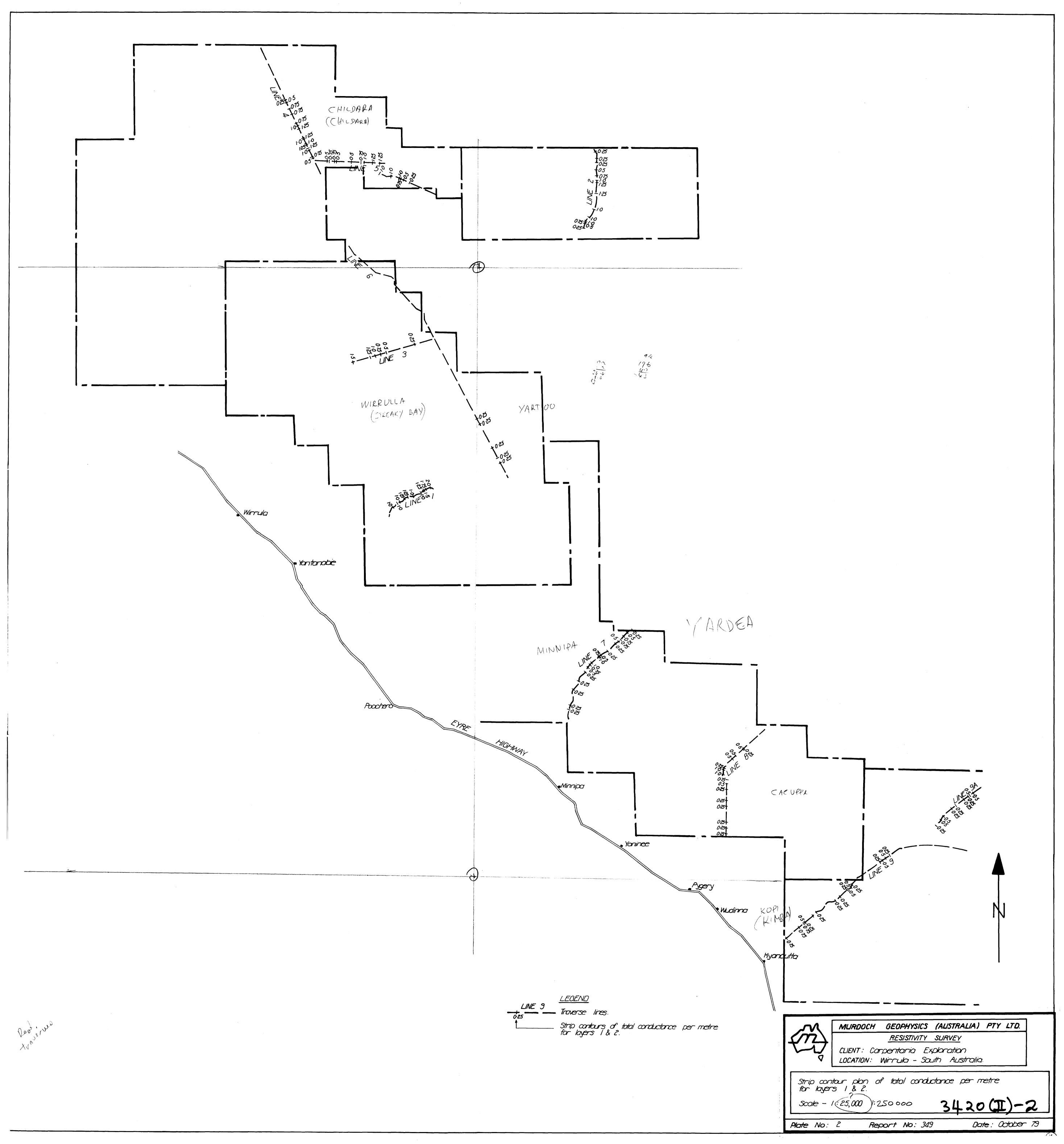
	. ,		0130	19.
6/18000N	1(1)	15	0 - 4.2	
	1(2)	9.7	4.2 - 34	
	2	3	34 - 79	
	3(1)	5	79 - 115	
	3(2)	10	115 - 145	
	4	High	145 +	
	S per metre = 0	.23		
6/19000N	1	11	0 - 30	
	2	8	30 - 55	
	3(1)	10	55 - 130	
	3(2)	20	130 - 180	•
	4	High	180 +	
	S per metre = 0	.11	· . :	٠
6 /2000N	4	.10		
6/20000N	1	10	0 - 8	
	2	8.5	8 - 58	
., .,	3	20	58 <b>-</b> 146	
	4	High	146 +	
	S per metre = 0.	. 12		
LINE 6 SOUTH			5	
6/0000S	1	9	0 - 7	
	2	5.6	7 - 59	
	3	10	59 - 94	
	4	High	94 +	
	S per metre = 0.	.17		
C /1000S				
6/1000S	1	10.5	0 - 28	
	2	5.5	28 - 93	
	3	10	93 - 138	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	4	High	138 +	
•	S per metre = 0.	. 10		٠
6/2000S	1	12	0 - 4	i i
	2	6	4 - 89	
· · · · · · · · · · · · · · · · · · ·	3	10	89 - 139	_
-			/	77مر <u>20</u>

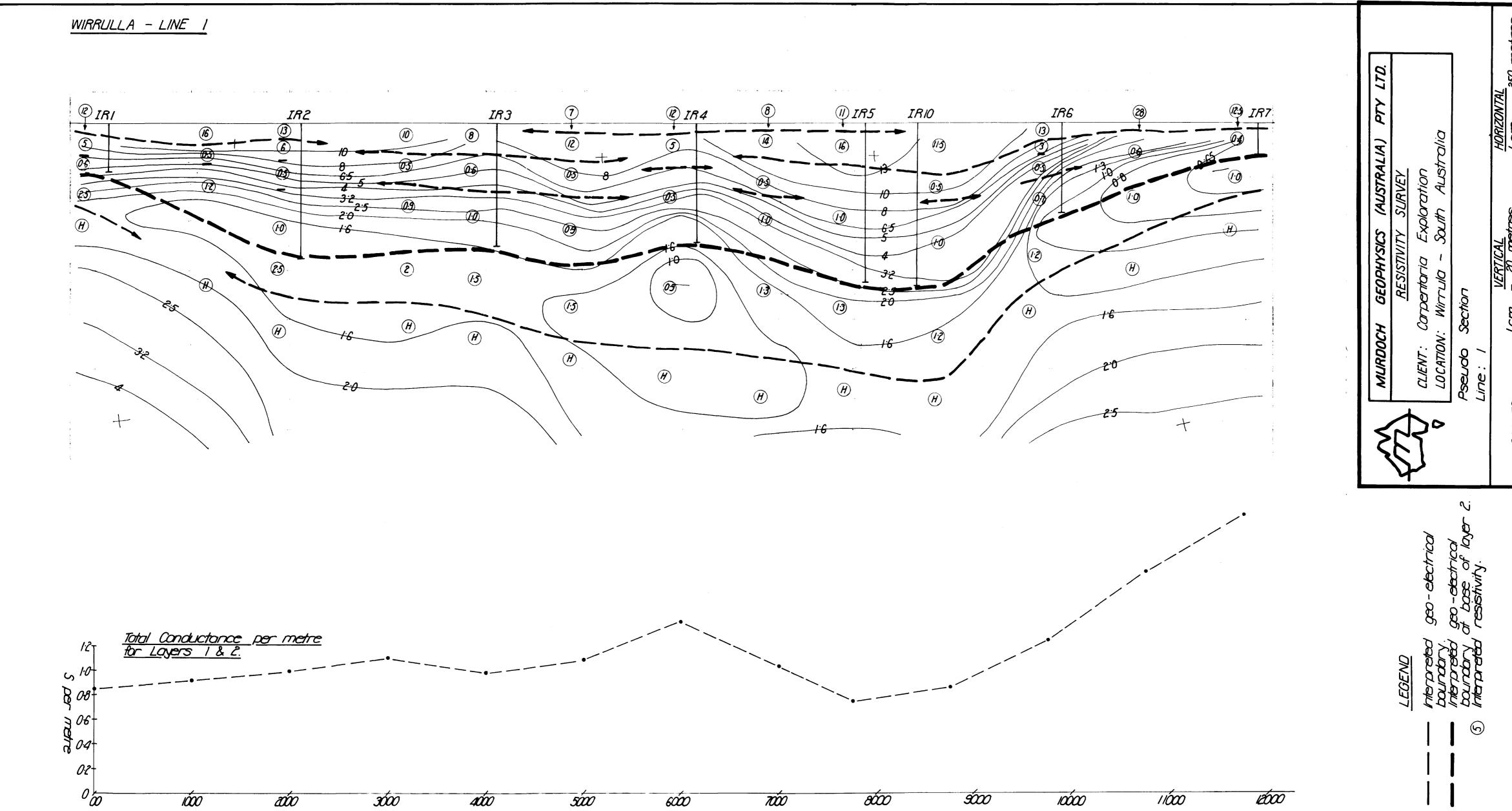
			0131	20.
6/2000s(Continued)	4	High	139 +	
	S per metre	= 0.16		
		•		
6/3000S	1(1)	10	0 - 15	
× .	1(2)	32	15 - 36	
	2	4	36 - 81	
	3	10	81 - 116	
	4	High	116 +	
	S per metre	= 0.17		
6/4000S	1	26	0 - 4.6	•
	2	10	4.6 - 40	•
	3 & 4	High	40 +	
	S per metre =	= 0.09		
6/5000S	1 & 2	7.5	0 - 7	
	3 & 4	High	7 +	
	S per metre =	= 0.13		
6/6000S	1(1)	9	0 - 3.4	
	1(2)	40	3.4 - 23	
	2 .	7	23 - 48	
	3	18	48 - 88	
	4	High	88 +	
	S per metre =	= 0.09		
	•			
6/7000S	1	48	0 - 3.6	
·	2	7.2	3.6 - 46.8	
	3	15	46.8 - 71	
	4	High	71 +	
	S per metre =	= 0.13		
6/8000S	1	18	0 - 4.4	
	2	7.2	4.4 - 54	
•	3	15	54 - 114	
	4	High	114 +	
· · · · · · · · · · · · · · · · · · ·	S per metre =	0.13		

• . . .

0132

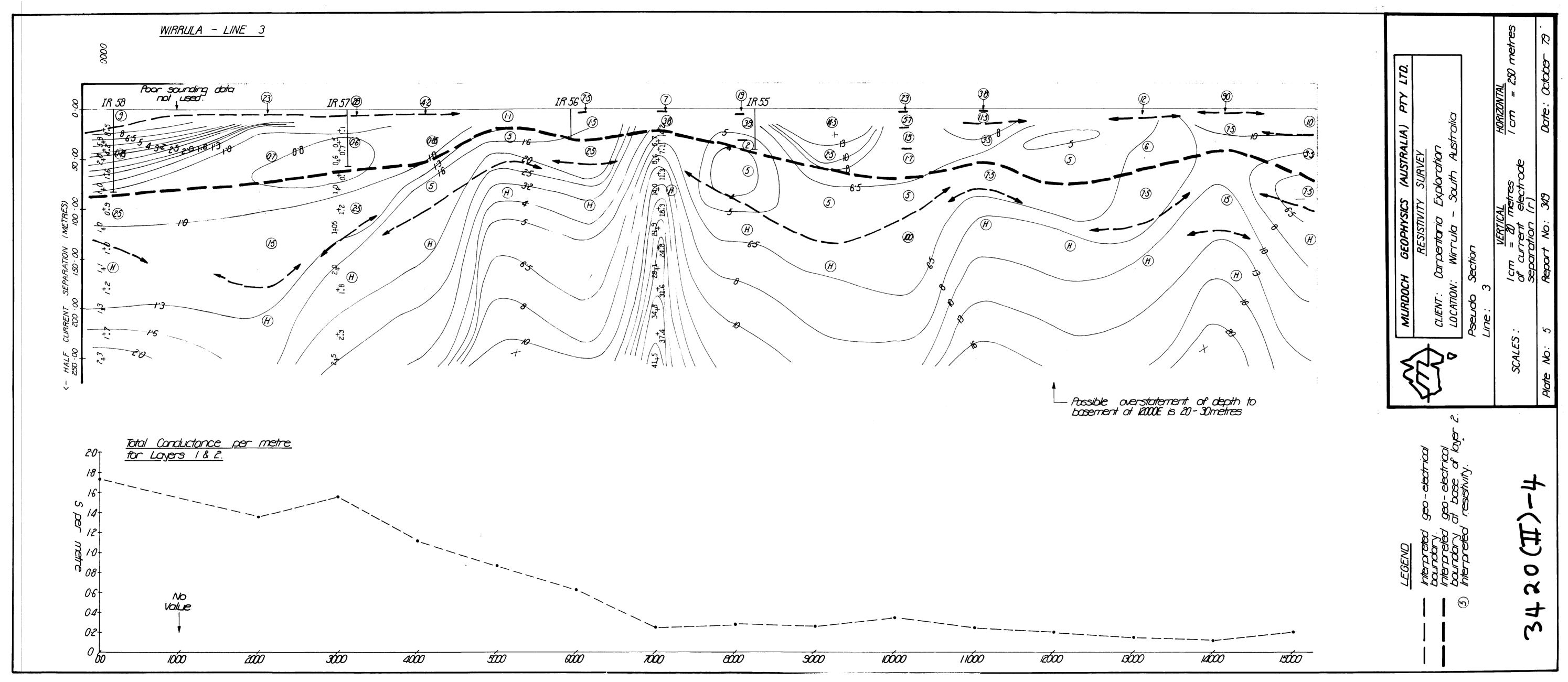

				21.
6/9000 S	1(1)	. 12	0 - 5	.*
	1(2)	24	5 - 32	
	2	5	32 - 62	
	3	15	62 - 124	
	4	High	124 +	•
	S per metre	= 0.12	•	
6/10000 S	1(1)	10	0 - 12	·
	2(2)	20	12 - 44	
•	2,	5	44 - 54	
	3	15	54 - 94	
	4	High	94 +	•
	S per metre	= 0.09		
6/11000 S	1(1)	40 .	0 - 4	
	1(2)	12	4 - 24	
	2	5	24 - 54	
	3	10	54 - 84	
	4	High	84 +	
	S per metre	= 0.14	. · · ·	
•		•		
6/12000 S	1	38	0 – 6	•
•	2	5.7	6 - 61	
·	3	10	61 - 101	•
	4	High	101 +	
	S per metre	= 0.16		
6 (4 5000 6		<u>_</u>		
6/13000_S	1	17	0 - 15	
	2(1)	4.5	15 - 47	
	2(2)	6.6	47 - 60	
	3	10	60 - 125	
	4 S per metre :	High	125 +	•
	s per metre	= 0.17		
6/14000 S	i	. 22	0 - 12	
5/ <b>-</b> 1000	2	6.6	12 - 54	
• •	3	10	54 - 118	
	,	10		

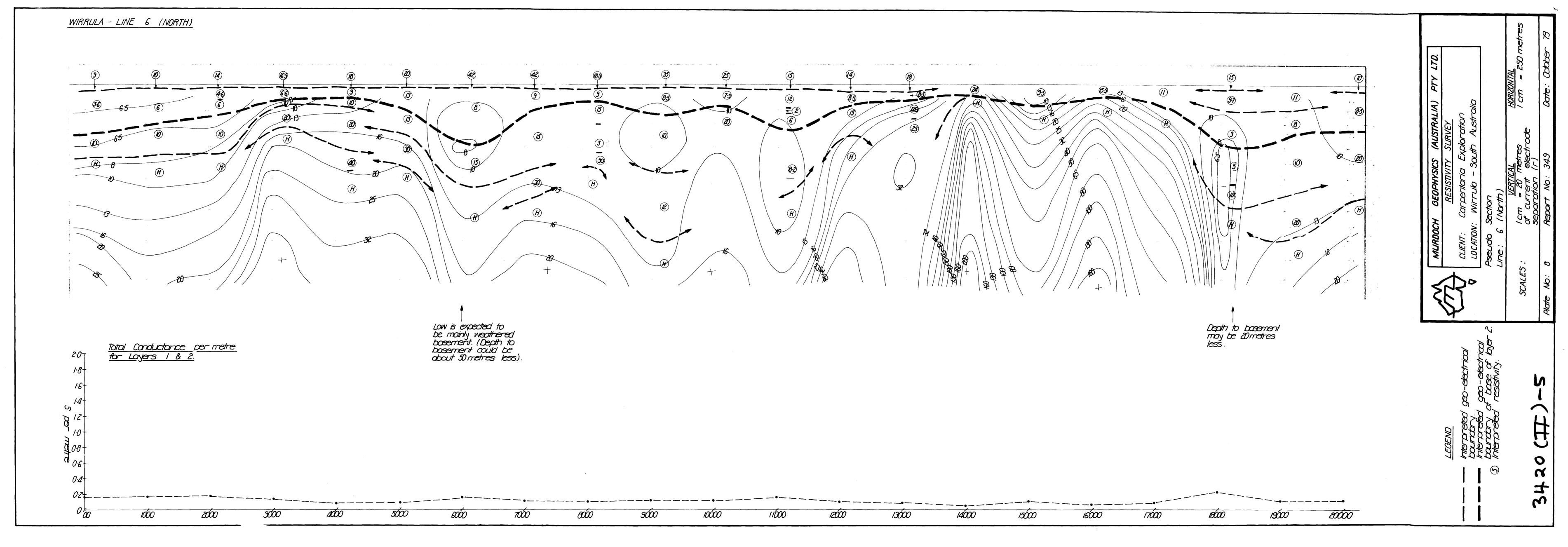

.

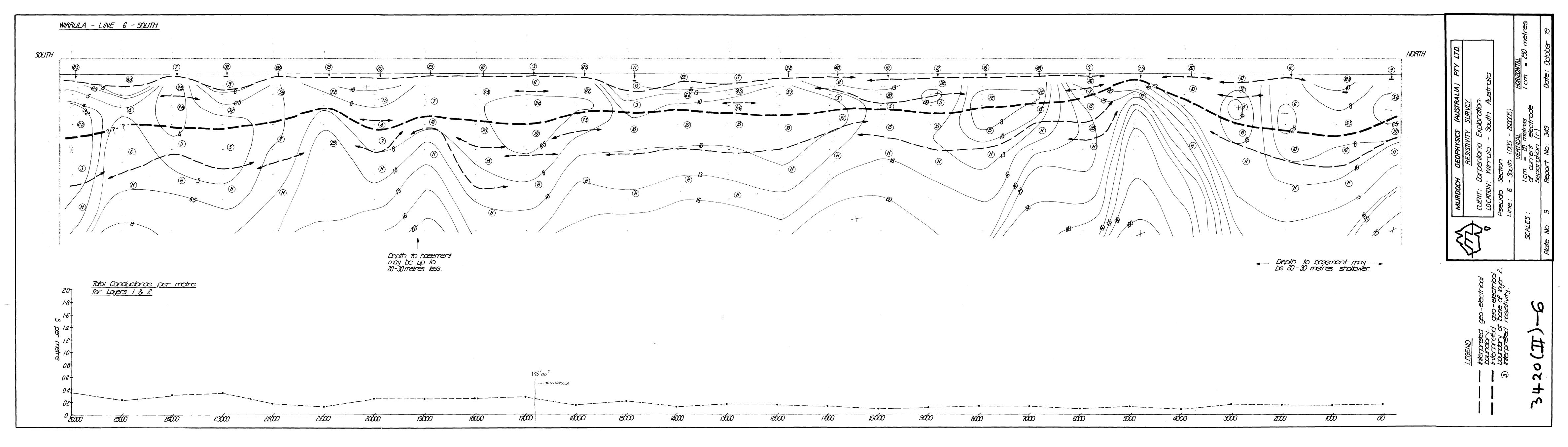

			$0133_{22}$	· ·
6/14000S(Continued)	4	High	118 +	
	S per metr			
6/15000S	1(1)	11	0 - 12	
	1(2)	15	12 - 30	
	2	3	30 - 65	
	3	10	65 - 132	
	4	High	132 +	
	S per metr	e = 0.21		
•				
6/16000S	1	12.5	0 - 4.4	
	2	6.2	4.4 - 59	•
	3	7.5	59 - 91	
	4	High	91 +	
	S per metr	e = 0.16		٠
			* · · · · · · · · · · · · · · · · · · ·	
6/17000S	1	13	0 - 5.4	
	2(1)	6	5.4 - 32	
	2(2)	3.4	32 - 77	
	3	10	77 - 132	
	4	100	132 +	,
	S per metr	e = 0.28		
	•			
6/18000S	1	10	0 - 4	
	2	6.5	4 - 74	
•	3(1)	7.5	74 - 114	
?	3(2)	1.5	114 - 179	
<del></del> -	4	High	179 +	
	S per metre	e = 0.15		
6/19000S	1	23	0 - 2.8	
	2	7	2.8 - 66	,
	3	15	66 – 86	
	4	High	36 +	
	S per metre	e = 0.14	•	

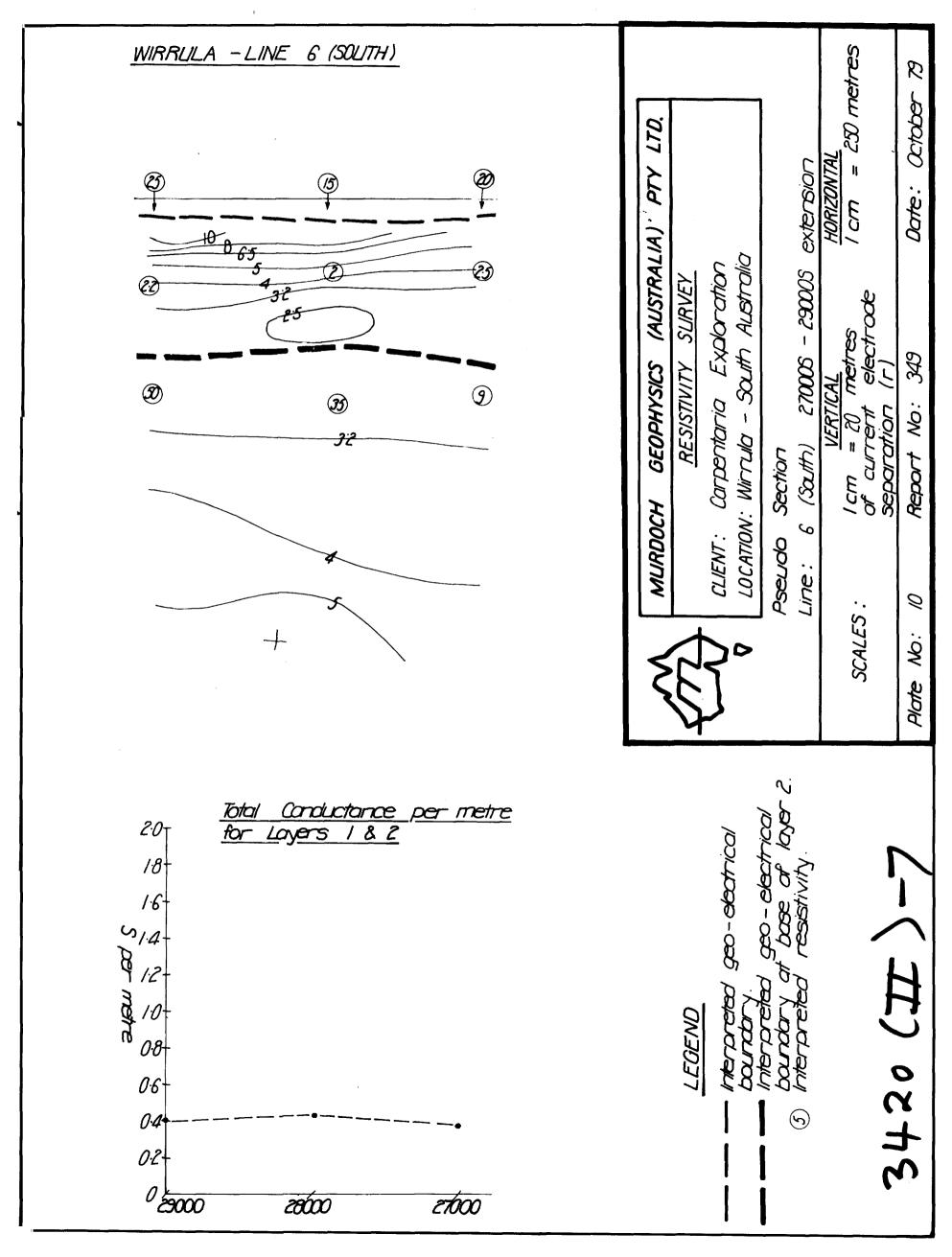
			*		23
6/20000S		1(1)	20	0 - 5	
		1(2)	7.5	5 - 75	
		2	4	75 - 90	•
		3	7	90 - 125	
		4	100	125 +	
6		S per metre =	= 0.15	•	
			•		
6/21000S		1	. 75	0 - 4.2	
•		2	7.2	4.2 - 51	
	·.	3 & 4	25	51 +	
		S per metre =	= 0.13		
6/22000S		1	120	0 - 3	
	ė	2	5.3	3 - 73	
		3	7	73 - 143	•
		4	High	143 +	
	, ·	S per metre =	= 0.18		
6/23000S		1	32	0 - 3.5	
		2(1)	9	3.5 - 26	
		2(2)	3.2	26 - 86	
		3	5	86 - 154	
		4	High	154 +	
		S per metre =	0.35		
6/24000S		1	7	0 - 3.2	•
•		2(1)	3.5	3.2 - 34	
<del>_</del>		2(2)	2.8	34 - 79	
		3	5	79 - 119	
		4	High	119 +	
•		S per metre =	0.32		
•					
6/25000S		1	7	0 - 20	
		2	. 4	20 - 70	
		3	6	70 - 155	٠
	•	4	High	155 +	
•		S per metre =	0.22		

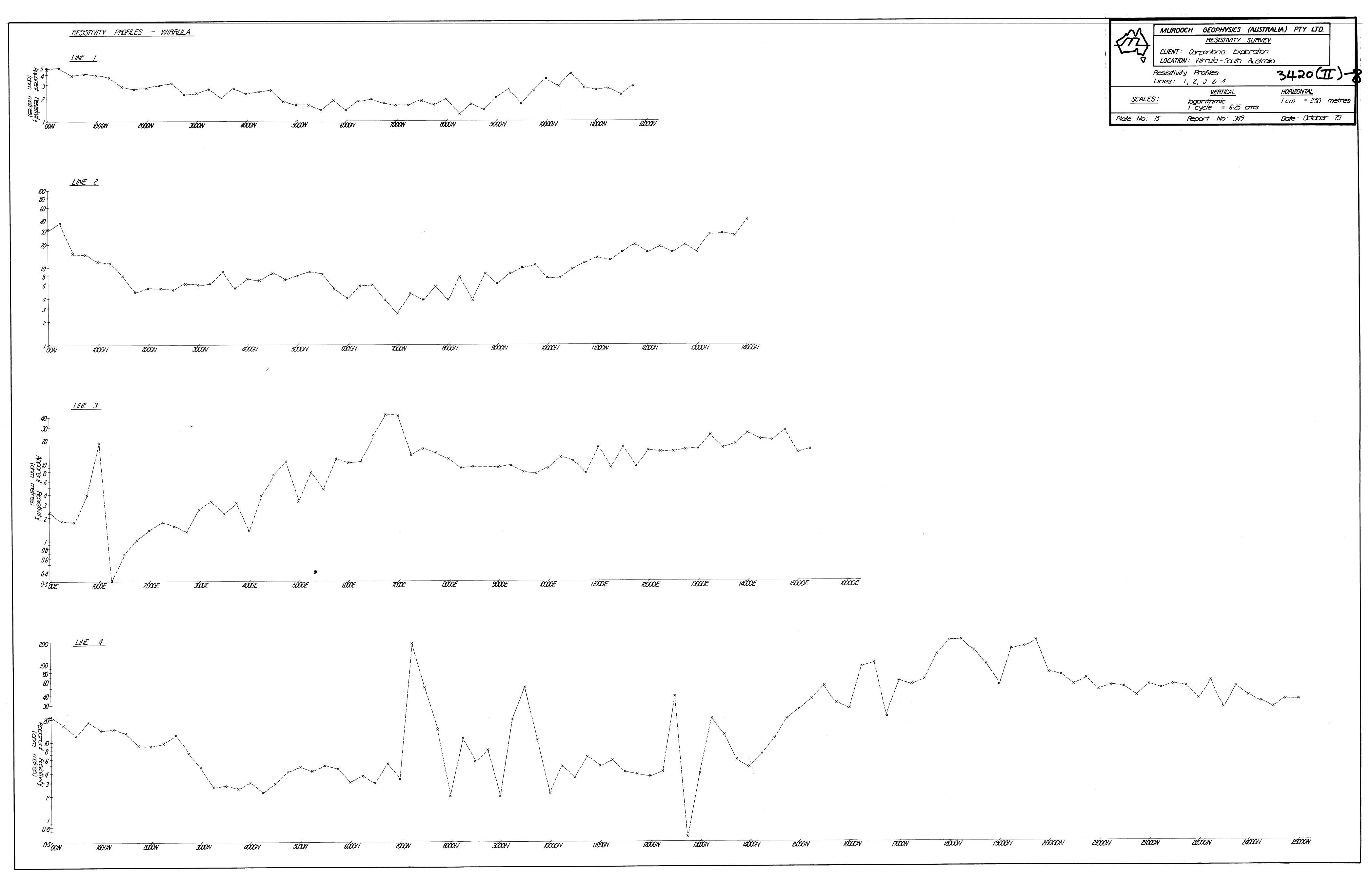
6/26000S	1	··· 8.5	0 - 11
	2	2.5	11 - 100
	3	3	100 - 176
	4	High	176 +
	S per metre	= 0.37	•
6/27000S	1	20	0 - 6.5
	2	2.7	6.5 - 90
•	3	9	90 +
	S per metre	= 0.35	
6/28000S	. 1	15	0 - 11
,	2	2	11 - 80
	3 & 4	35	80 +
	S per metre	= 0.44	
6/29000S	1	25	0 - 9.5
	2	2.2	9.5 - 85
•	3 & 4	50	85 ÷
	S per metre	= 0.40	

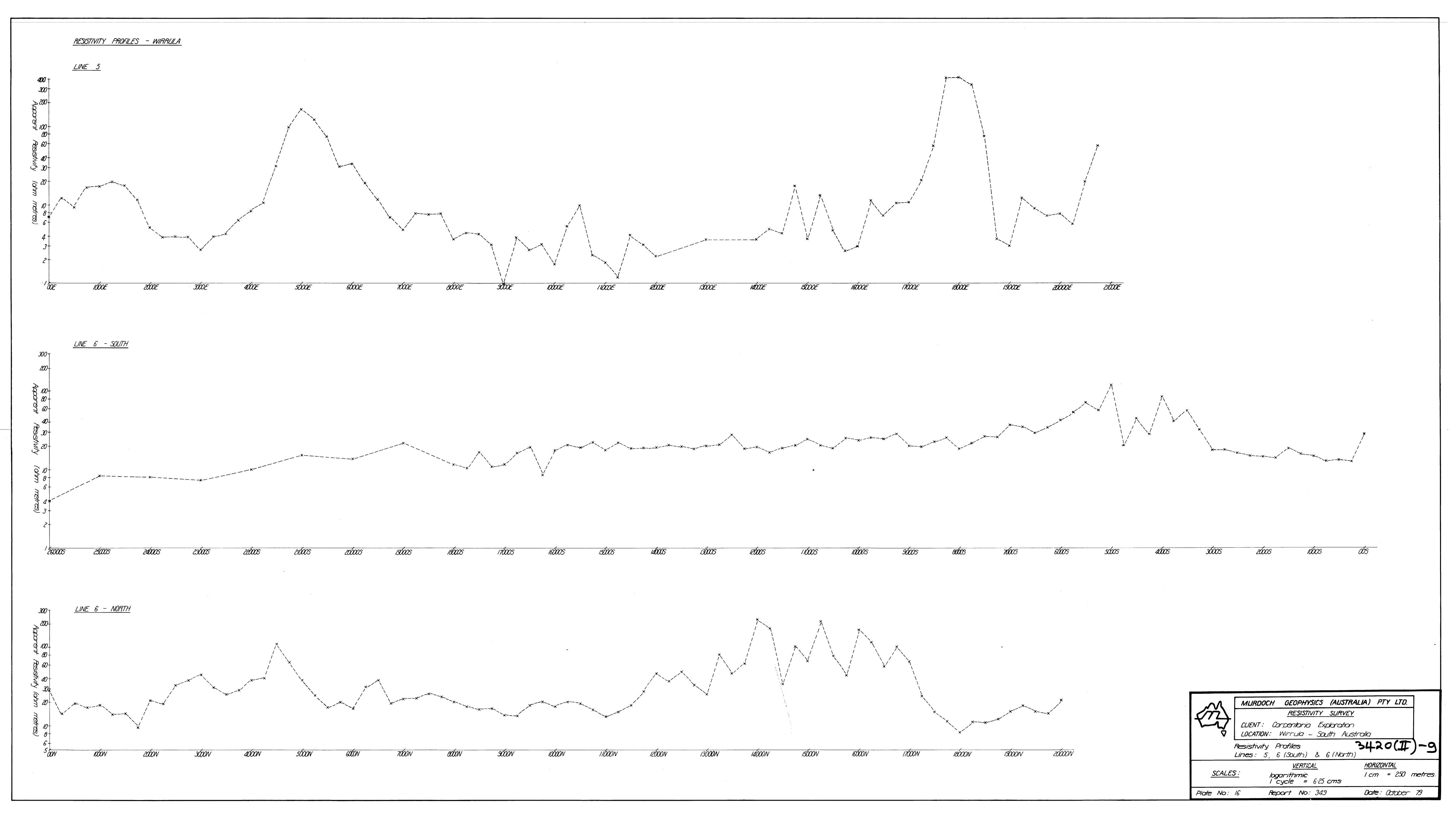




W (世。


34
















#### EXPLORATION LICENCE NO. 442 "ILKINA"

#### PROGRESS REPORT FOR QUARTER ENDED APRIL 7, 1980

#### 1. TERMS AND CONDITIONS

The Exploration Licence covers an area of 2  $388 \text{ km}^2$  and lies approximately 100 km east of Ceduna. It was granted on January 8, 1979 for a term of one year. This term was subsequently extended for a further year.

The amended expenditure requirement is \$140 000 for the twoyear term.

#### EXPLORATION

No field work has been carried out during the quarter. A major drilling programme is underway on adjoining licences. Information gained from this, combined with a reappraisal of previous work, will be used to plan future drilling programmes in the area.

#### 3. EXPENDITURE

A statement of expenditure for the period is attached.

G.J. Hooper

Project Geologist

RECEIVED

10 APR 1980

DEPT. OF MINES

AND ENERGY

SECURITY

3 420-11

## EXPLORATION LICENCE NO. 442 "ILKINA"

## STATEMENT OF EXPENDITURE FOR QUARTER ENDED APRIL 7, 1980

•	\$	\$
Administration	333	
Assaying	216	
Total This Period	\$799	799
TOTAL - CURRENT TERM		799
Previously Reported		122 701
Total Project Expenditure to Date		\$123 500

R.E. Darlington Administration Manager

MINING TENEMENT

PROGRESS REPORT

EXPLORATION LICENCE NO.442 "ILKINA"

PROGRESS REPORT FOR QUARTER ENDED JULY 7, 1980

DATE: July 30, 1980.

COPY: DEPARTMENT OF MINES

& ENERGY





# EXPLORATION LICENCE NO.442 "ILKINA"

# STATEMENT OF EXPENDITURE FOR 3 MONTHS ENDED JULY 7, 1980

	\$	\$
Administration	289	
Aerial Surveys	466	
Operating Labour	174	•
Total This Period	\$929	929
Already Reported - Current Term		
Quarter Ended April 7, 1980	\$799	<b>7</b> 99
TOTAL - CURRENT TERM		\$ 1 728
Previously Reported		\$122 701
Total Project Expenditure to Date		
- Table to bate	•	\$124 429
·		

R.E. Darlington

Administration Manager

#### EXPLORATION LICENCE NO. 442 "ILKINA"

#### PROGRESS REPORT FOR QUARTER ENDED JULY 7, 1980

#### 1. TERMS AND CONDITIONS

The Exploration Licence covers an area of 2  $388 \text{ km}^2$  and lies approximately 100 km east of Ceduna. It was granted on January 8, 1979 for a term of one year. This term was subsequently extended for a further year.

The amended expenditure requirement is \$140 000 for the twoyear term.

#### 2. EXPLORATION

Three airborne magnetometer-spectrometer lines have been flown over the area to determine if the Narlaby Palaeo-channel could be detected beneath younger sediments. The survey was carried out by Geoex in April of this year. Final results have not been delivered yet. Locations of the flight lines are shown on Drawing No. 20 426,

A ground magnetometer survey over sections of the palaeo-channel was also carried out in April. A vehicle borne ceasium-vapour magnetometer, leased and operated by the Geophysical Research Institute of the University of New England, was used for this survey. Results have not yet been received.

One rotary-mud hole was drilled in the west of the area in May. This hole, IR 390, was part of a series of holes which were drilled on our adjacent licence (E.L. 539) to test for uranium mineralisation

in the western part of the Narlaby Palaeo-channel. The geological log, together with the reduced wire-line log, is presented in the Appendix and the position of the hole is shown on Drawing No. 19975.

#### 3. EXPENDITURE

A statement of expenditure for the quarter is attached.

P.J. Binks

Senior Geologist

## E.L. NO. 442..."ILKINA"

### APPENDIX

<del>-</del> 000 -

PROSPECT: YARRANNA HIEARPENTARIA EXPLORATION COMPANY PTY. LTD. HOLE NO IR 390 ROTARY DRILL HOLE LOG LOCATION: 24km NE Nunjikompita AIR: FROM.....TO... CO-ORDS: ..... A.M.G:52800E,47900N. . . WATER: FROM ... 0. 10. 132m Geophysical Log Depth Strip Lithological Log 0143Log Metres SANDY CLAY red brown, yellow brown fine grained, rounded, with calcrete CLAYEY SAND orangy brown, fine grained, sand pinky red SAND fine grained, rounded quartz, pinky red, reddy orange SILTY CLAY pinky red and white CLAY grey green SILT yellow brown with minor medium grained, rounded quartz, fractions and clay SAND fine grained, rounded quartz, pinky red deepening in colour towards base SILTY CLAY yellow brown and white SAND CLAY purply red CLAYEY SILTY SAND medium grained, sub angular sand, clean sand, overall brown colour with matrix of silt and clay SAND sub rounded medium grained, clean, oxidised quartz, grey white 100 coarse grained medium grained, white CLAY black brown, humic CLAY brown humic medium grained, sub rounded, pyritic, SAND humic stained SAND & CLAY sand with grey brown clay lenses pyritic SAMPLE NOS: DRILL TYPE: REASON FOR HOLE: LOGGED BY DRILLER: DATE DRILLED: OTHER DETAILS: SCALE: 1:500 DRG. / CODE No:

HOLE Nº IR 390 CARPENTARIA EXPLORATION COMPANY PTY. LTD. ROTARY DRILL HOLE LOG (Cont) Depth Strlp Geophysical Log Lithological Log Ox Metres Log SAND medium grained, sub rounded, pyritic, humic stained, clay lense (brown) GRANITE white clay and angular sand and pyrite

> SAMPLE NOS: 581901-581966

DRILL TYPE: MAYHEW 1000 LOGGED BY: P.OWEN DRILLER: W.L. SIDES DATE DRILLED14/5/80

REASON FOR HOLE:





#### EXPLORATION LICENCE NO. 442 "ILKINA"

#### PROGRESS REPORT FOR QUARTER ENDED OCTOBER 7,



#### 1. TERMS AND CONDITIONS

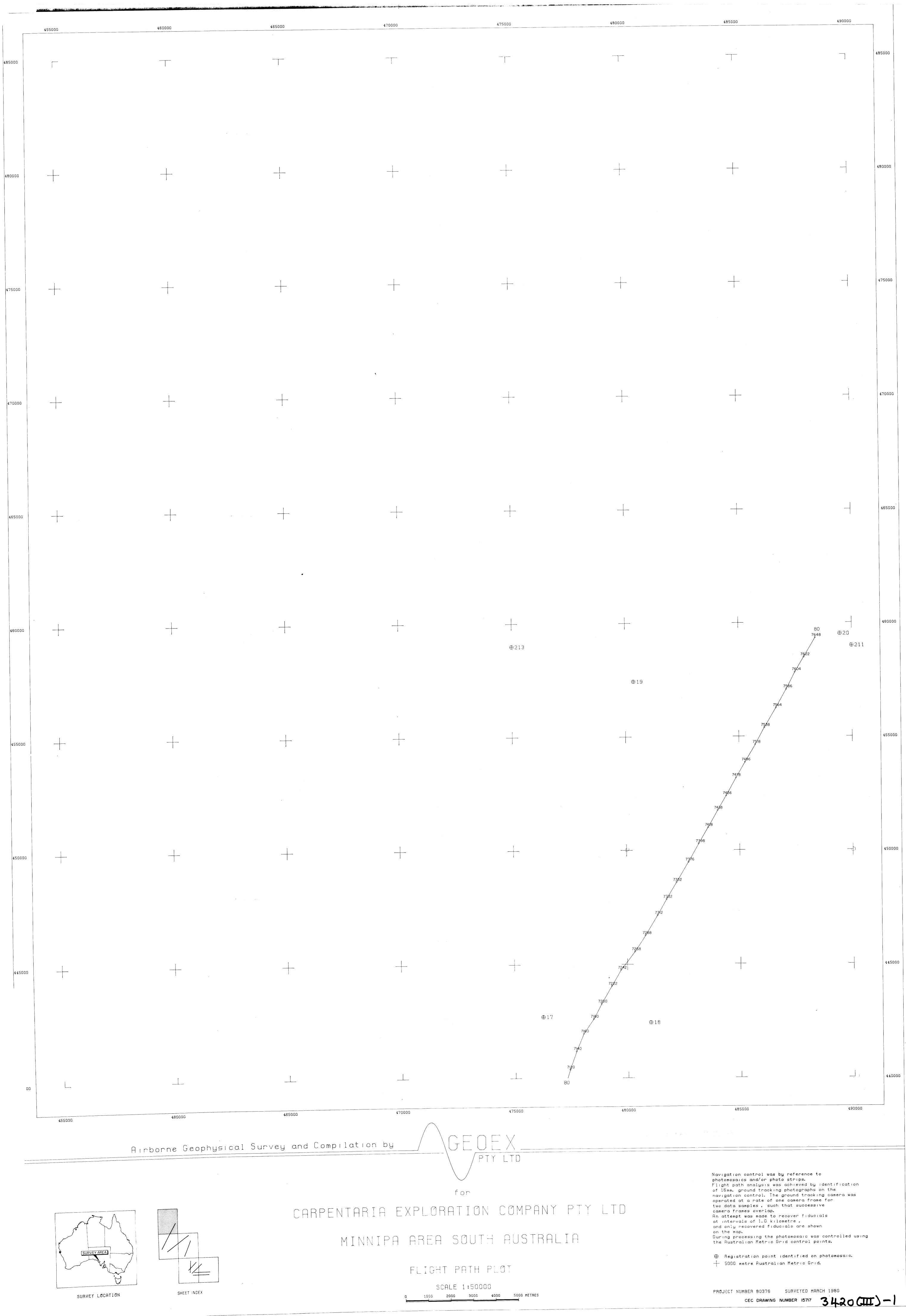
The Exploration Licence covers an area of 2  $388 \text{ km}^2$  and lies approximately 100 km east of Ceduna. It was granted on January 8, 1979 for a term of one year. This term was subsequently extended for a further year.

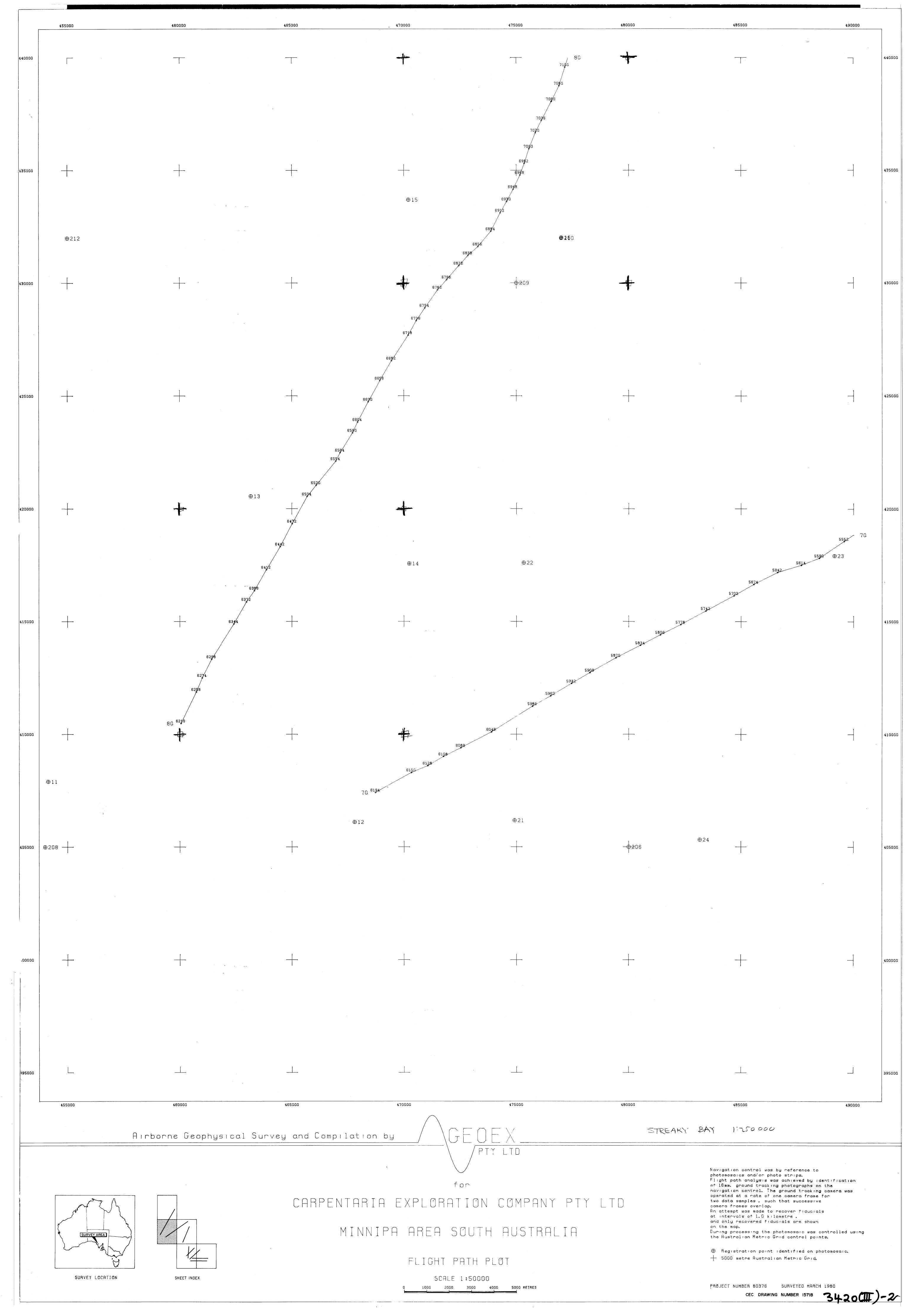
The amended expenditure requirement is \$140 000 for the two year term.

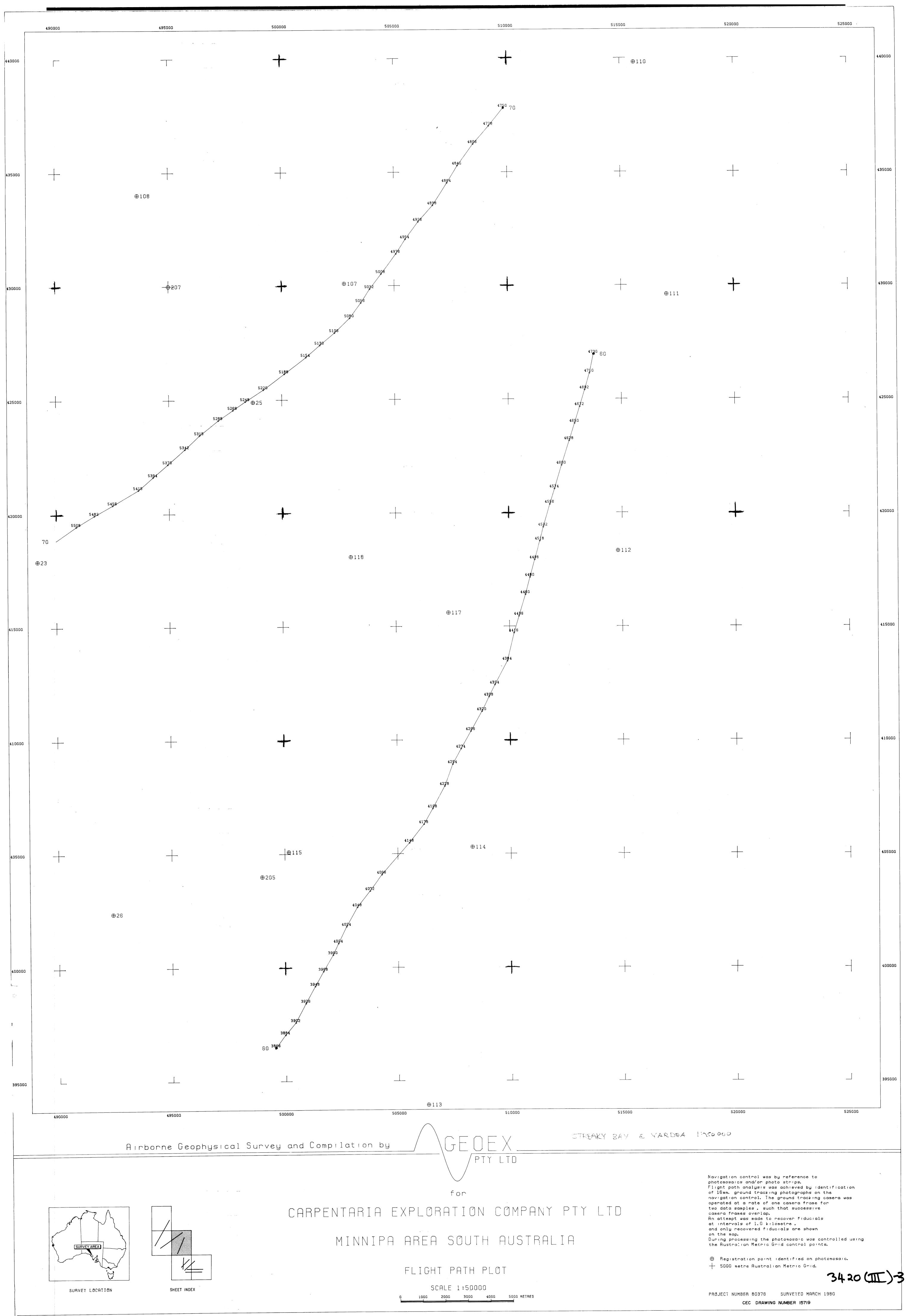
#### 2. EXPLORATION

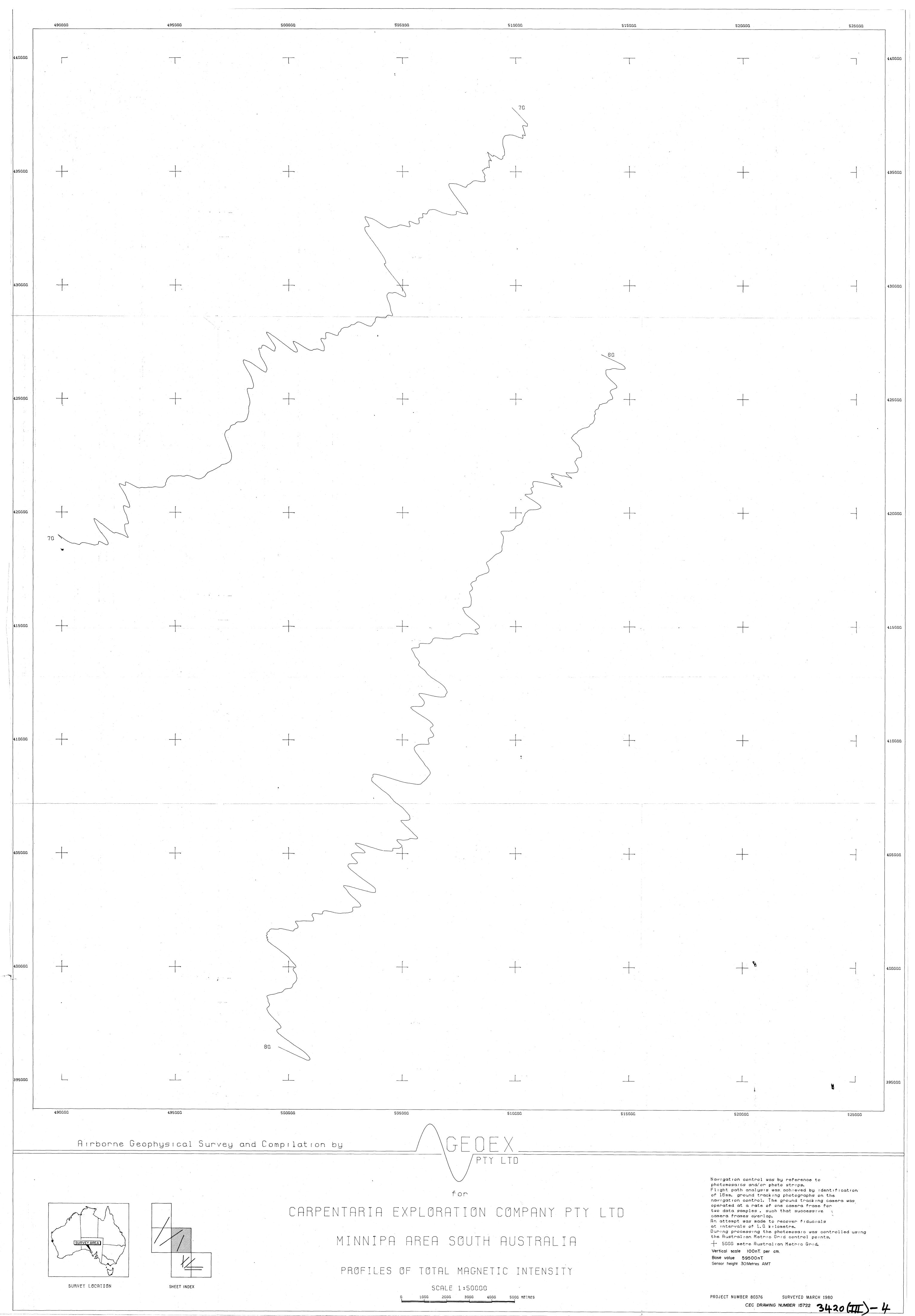
Results have been received for the airborne magnetometer-spectrometer survey flown earlier this year. The flight line locations, aeromagnetic profiles and radiometric profiles are presented on Drawing Nos. 15717-15719, 15722-15724, 15732-15734, 15737-15739, 15742-15744 and 15747-15749. Company geophysicists are currently evaluating these results.

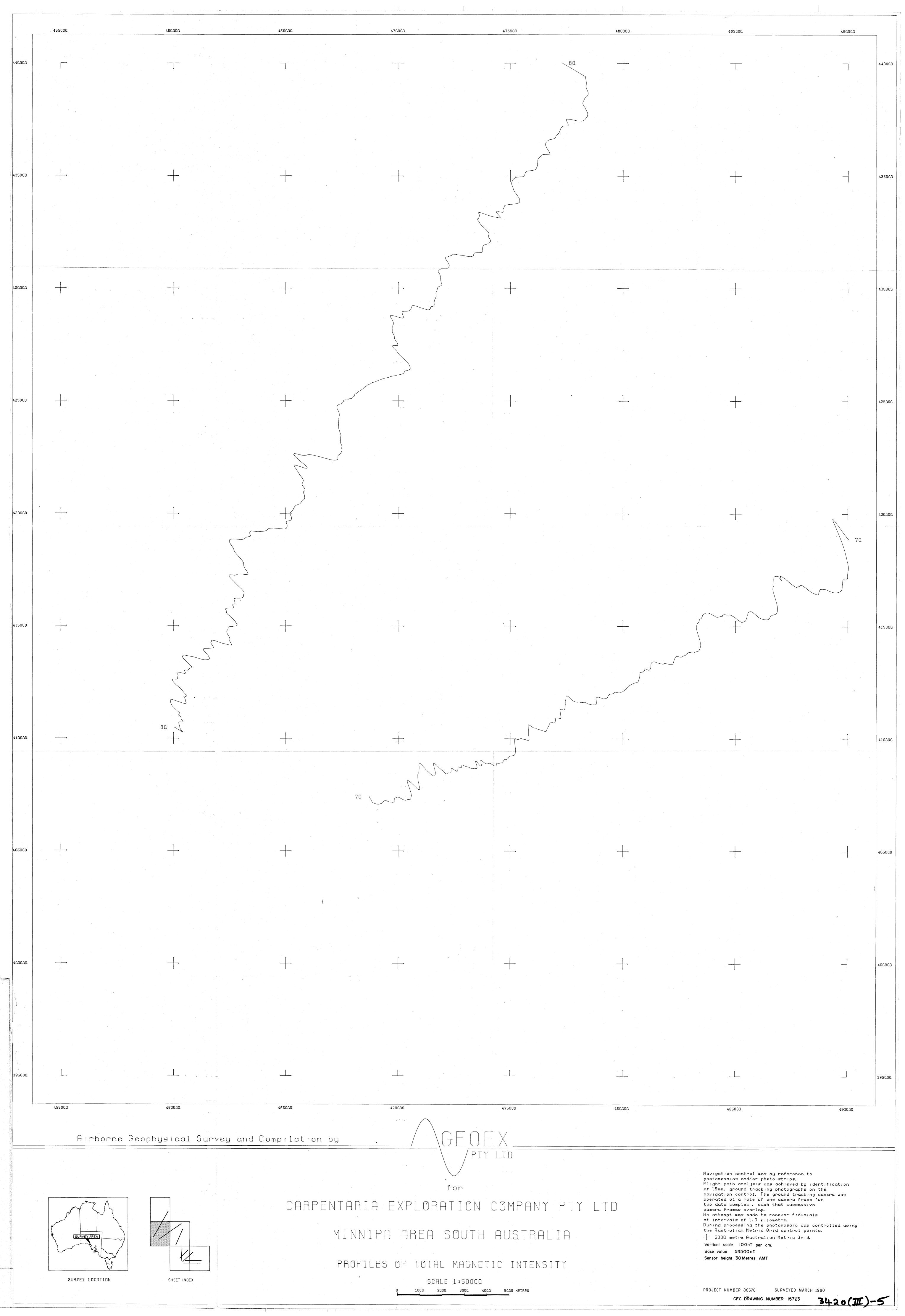
No results have been received yet from the vehicle borne ceasium-vapour magnetometer survey.

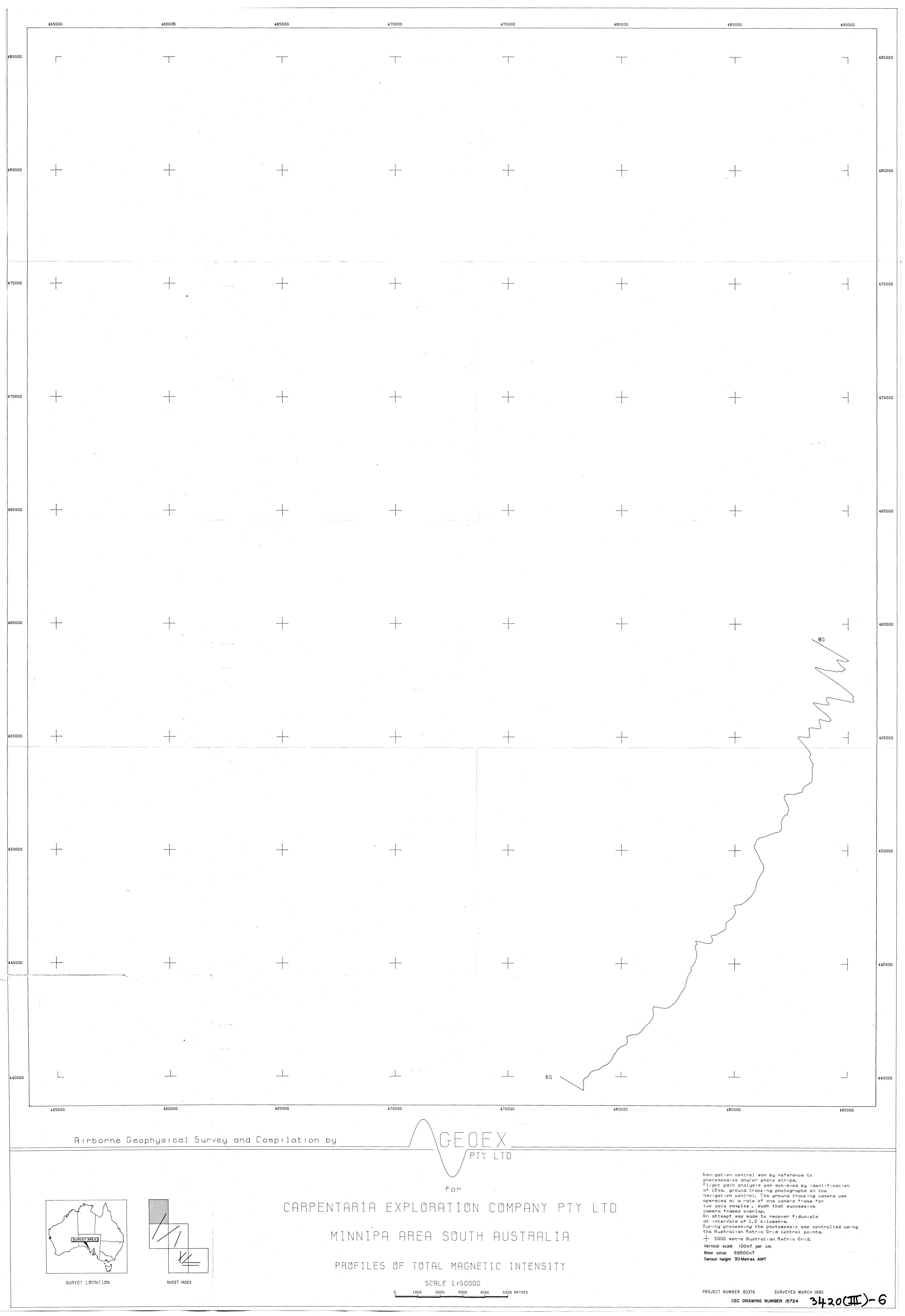

Dozing of access tracks will commence early next quarter. This will be followed by 4 000-5 000 m of open hole rotary mud drilling

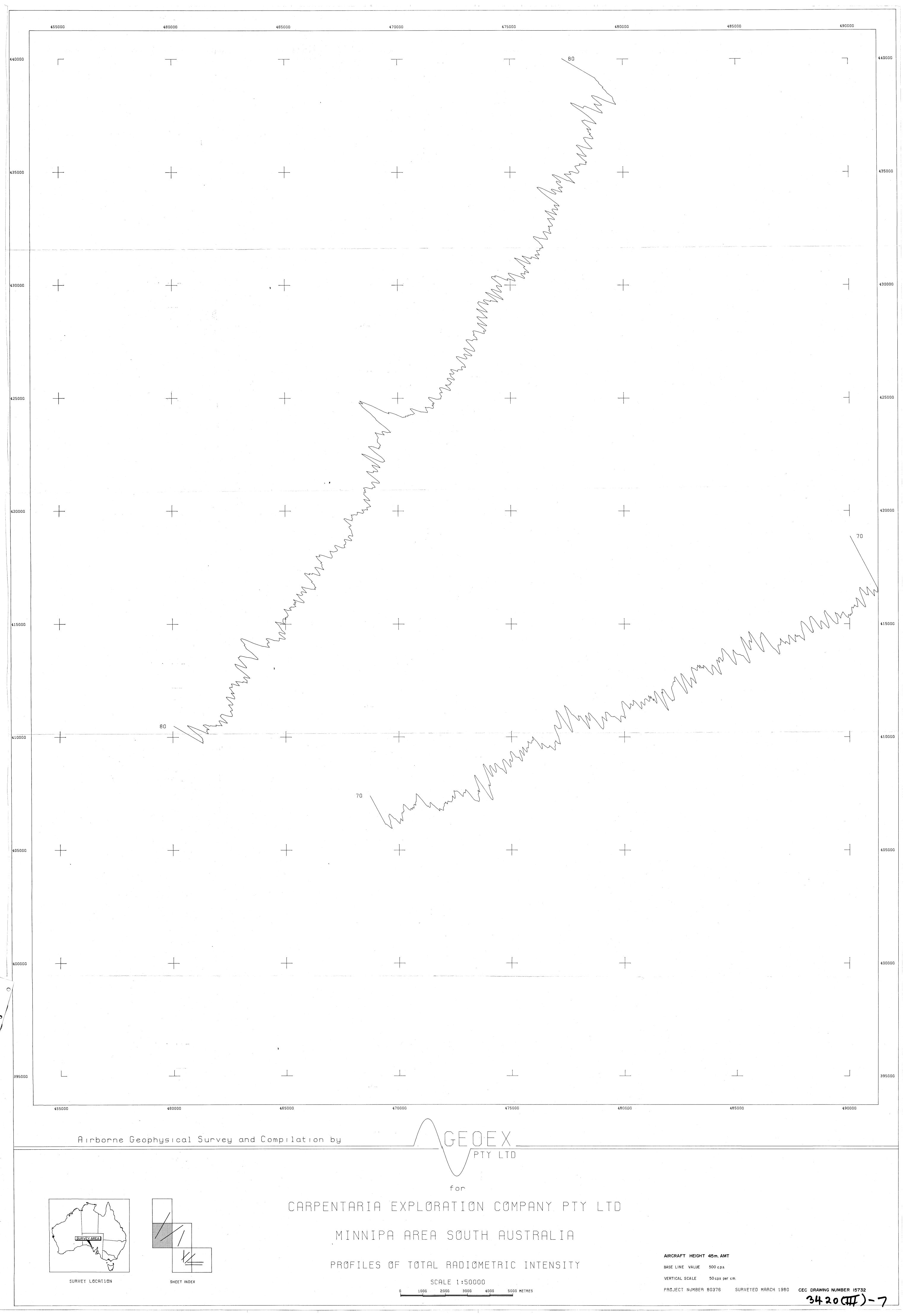

#### 3. EXPENDITURE

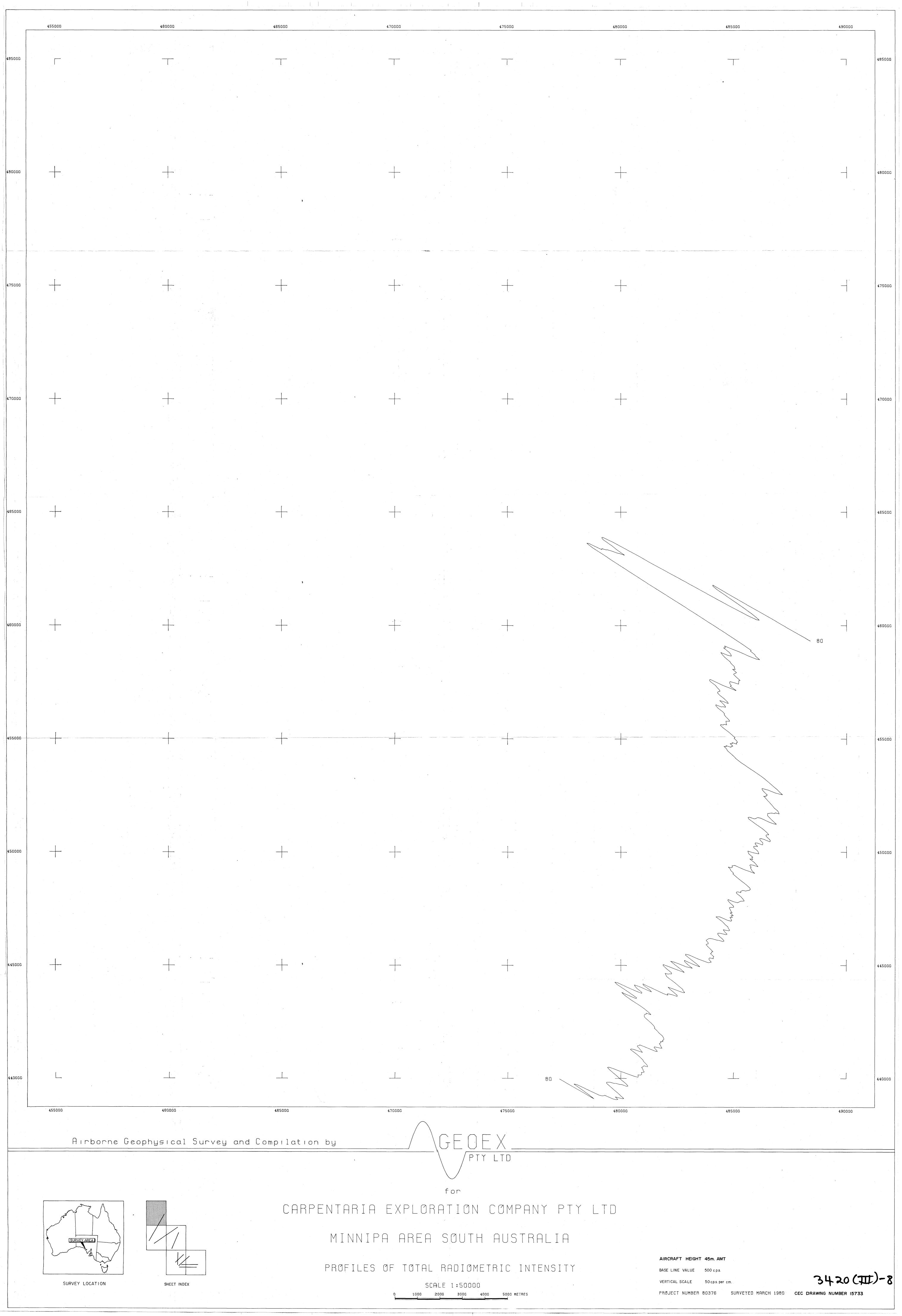

A statement of expenditure for the quarter is attached.


for G.J. Hooper

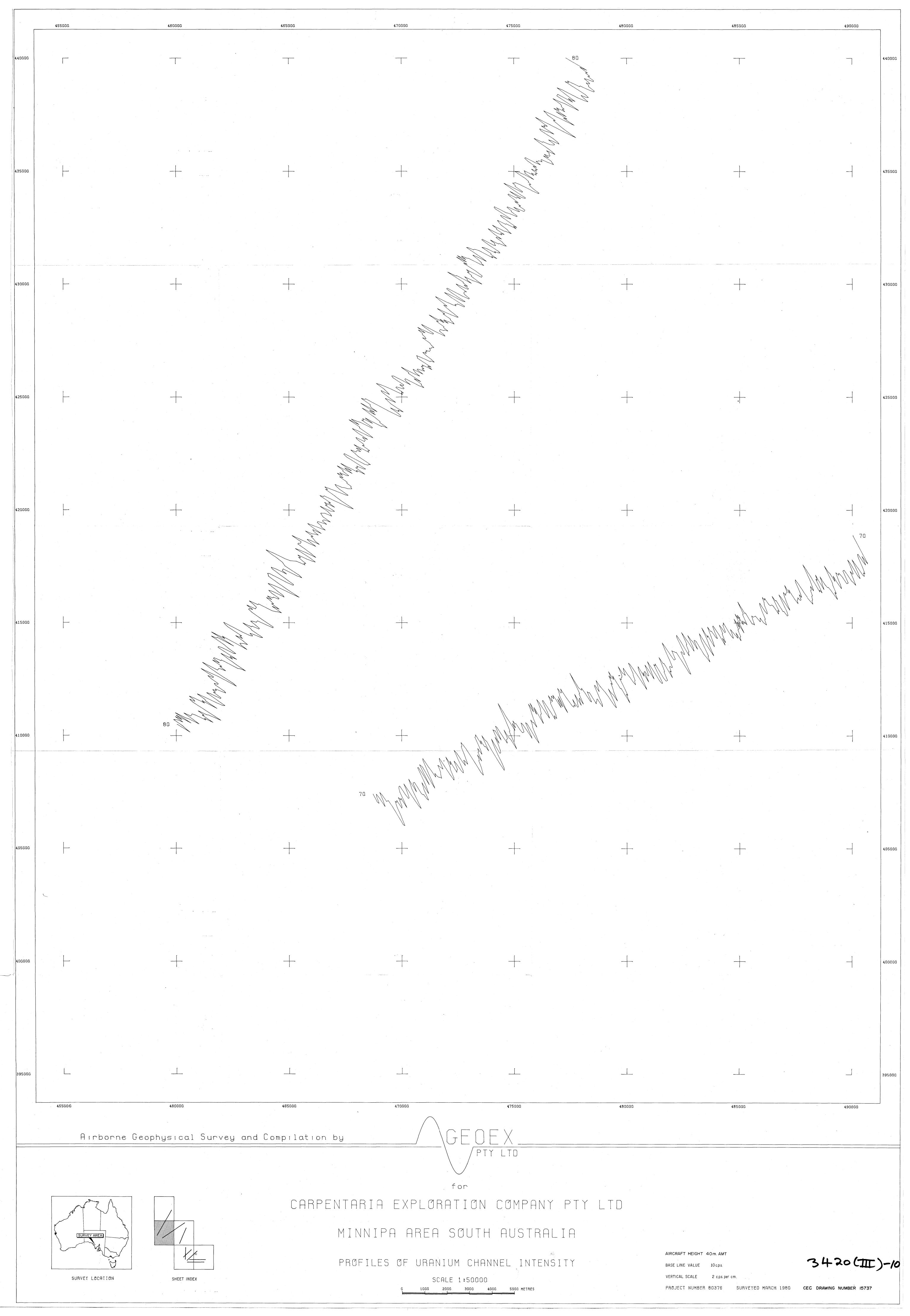

Project Geologist

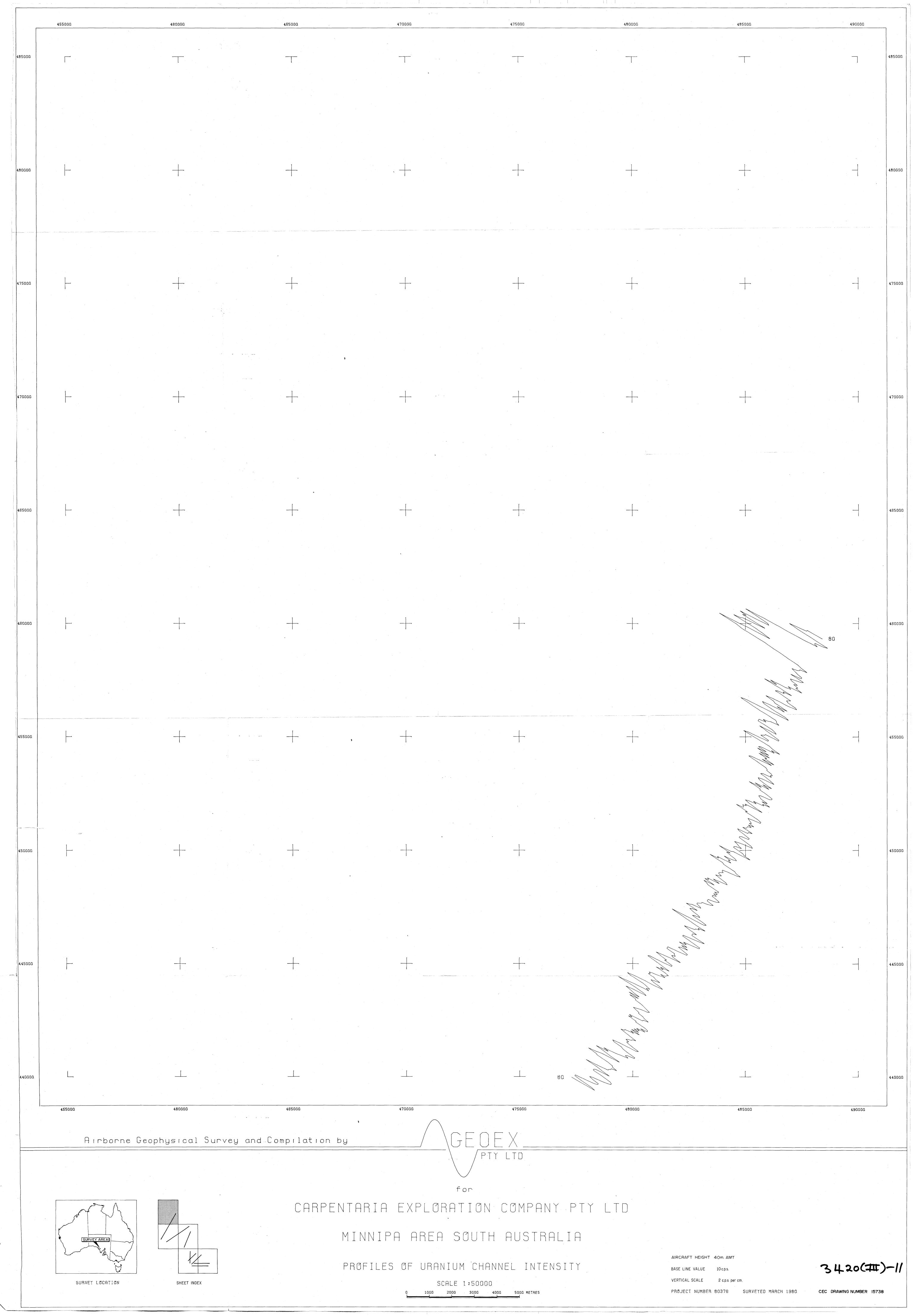


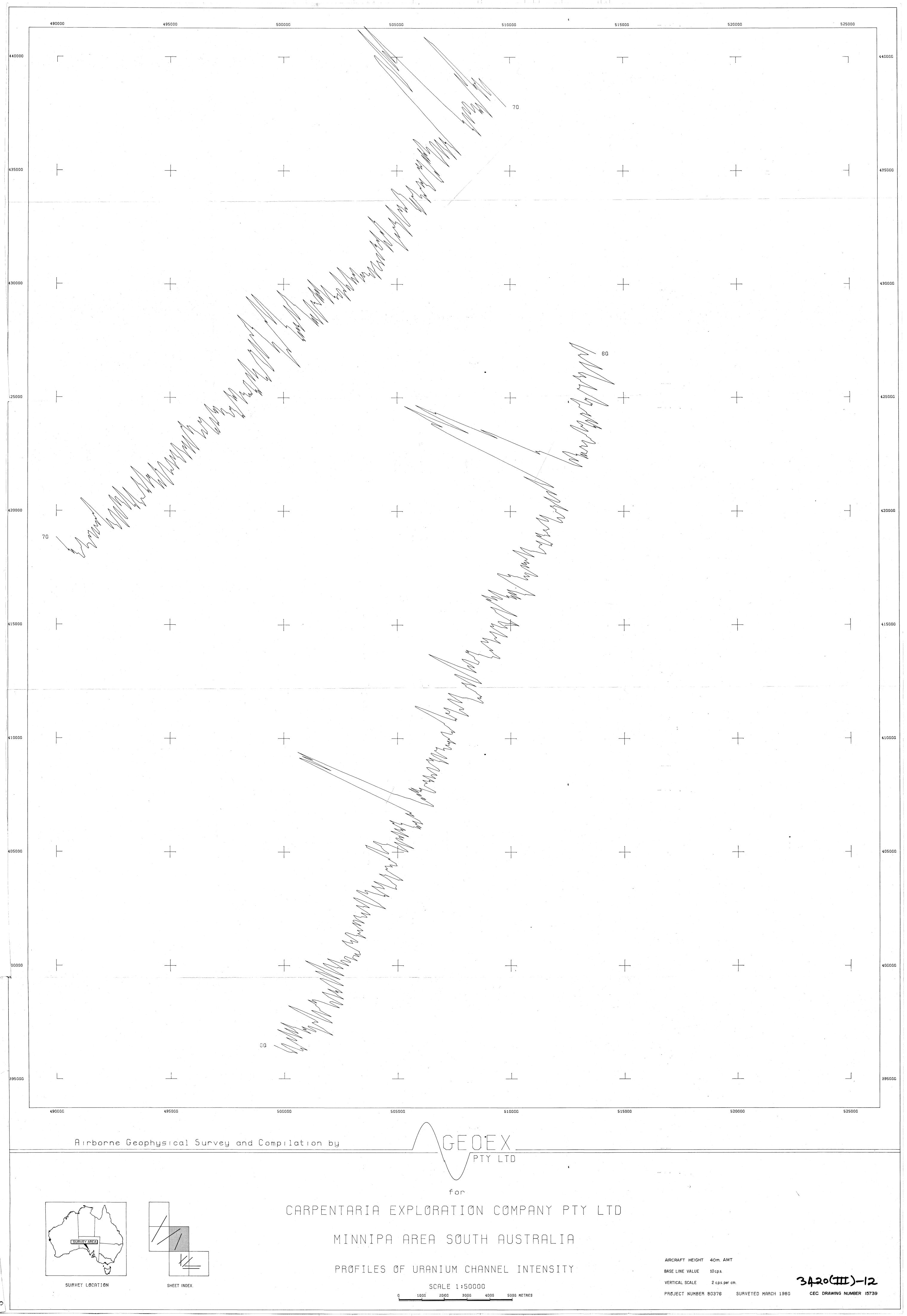



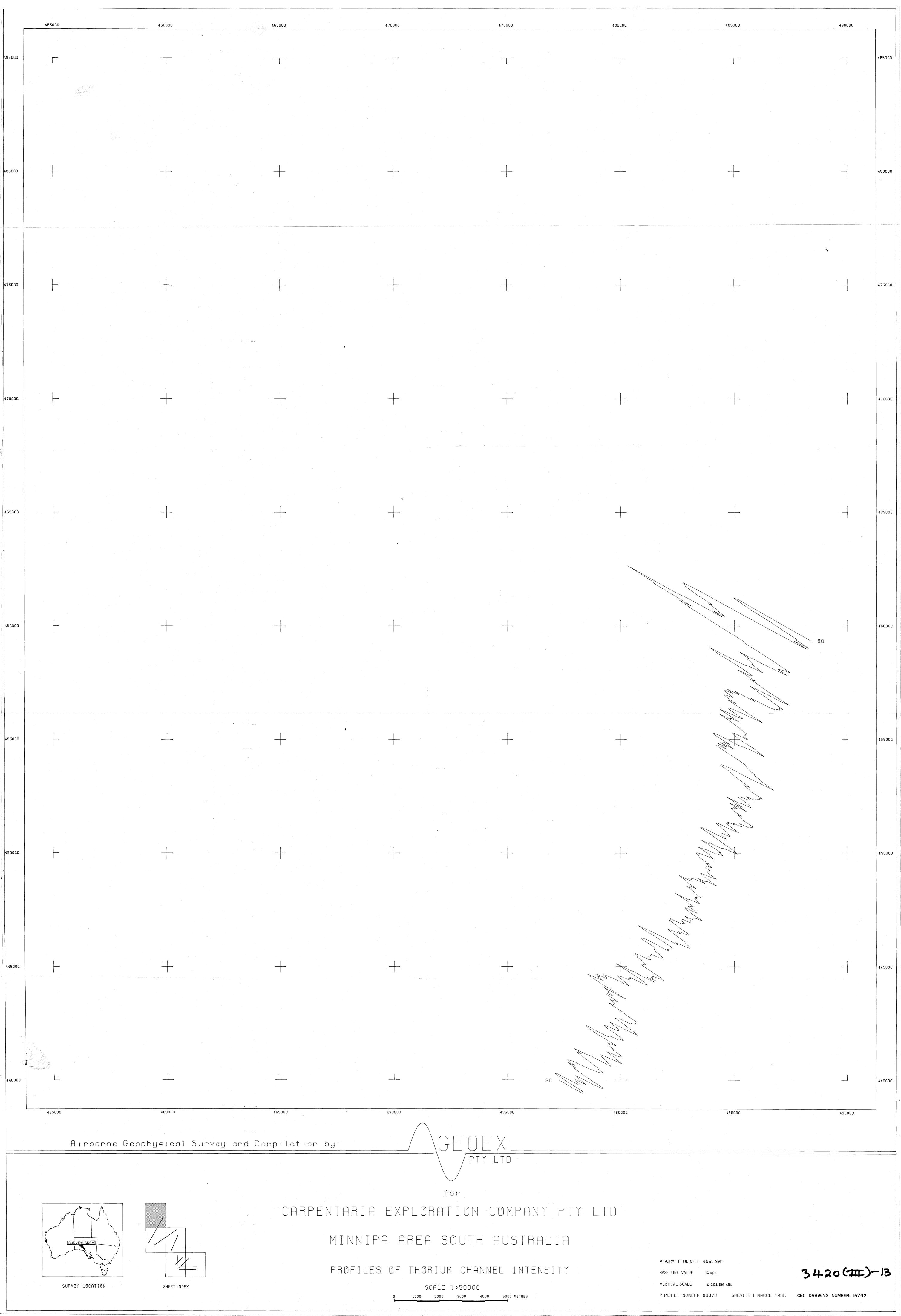



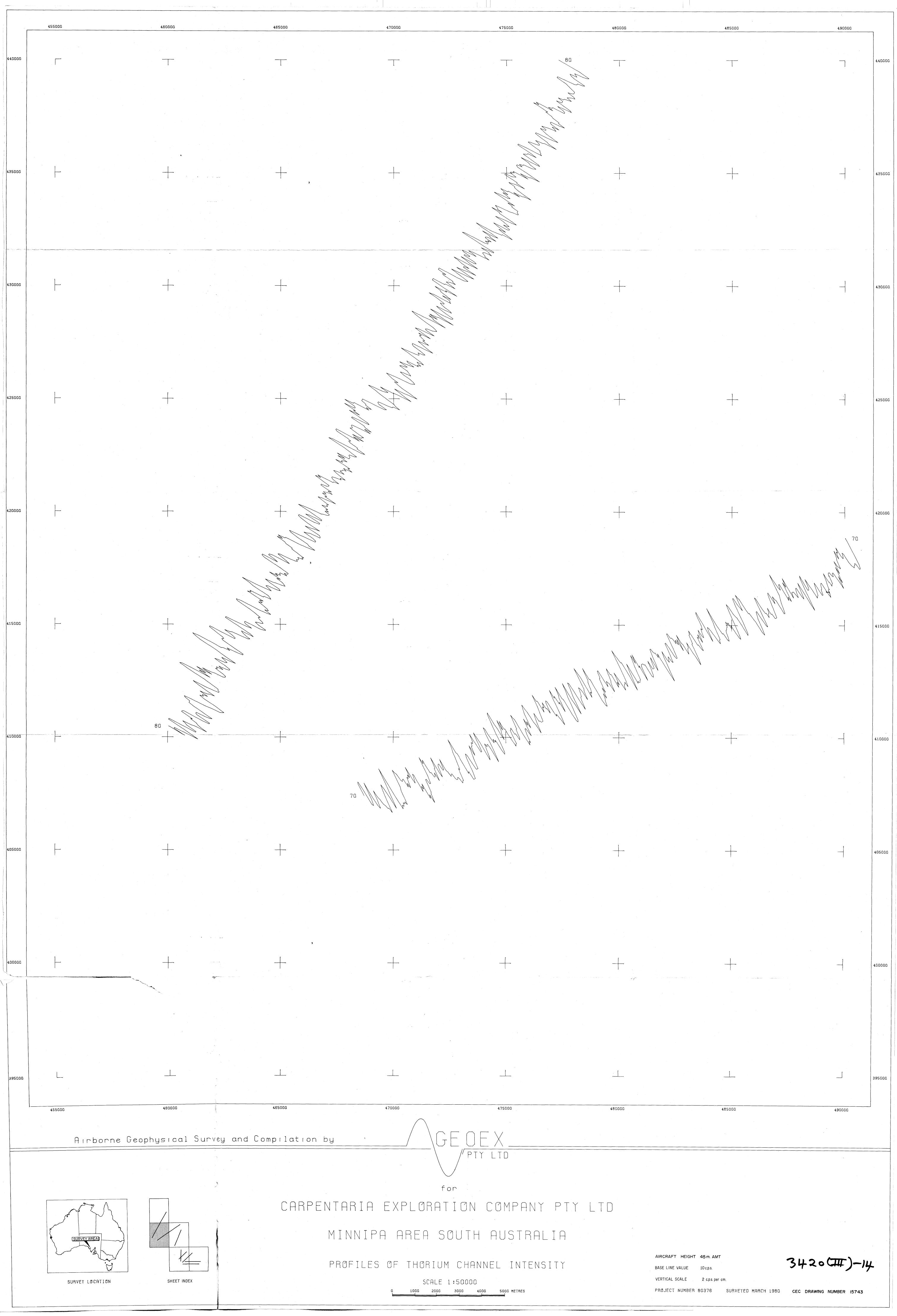


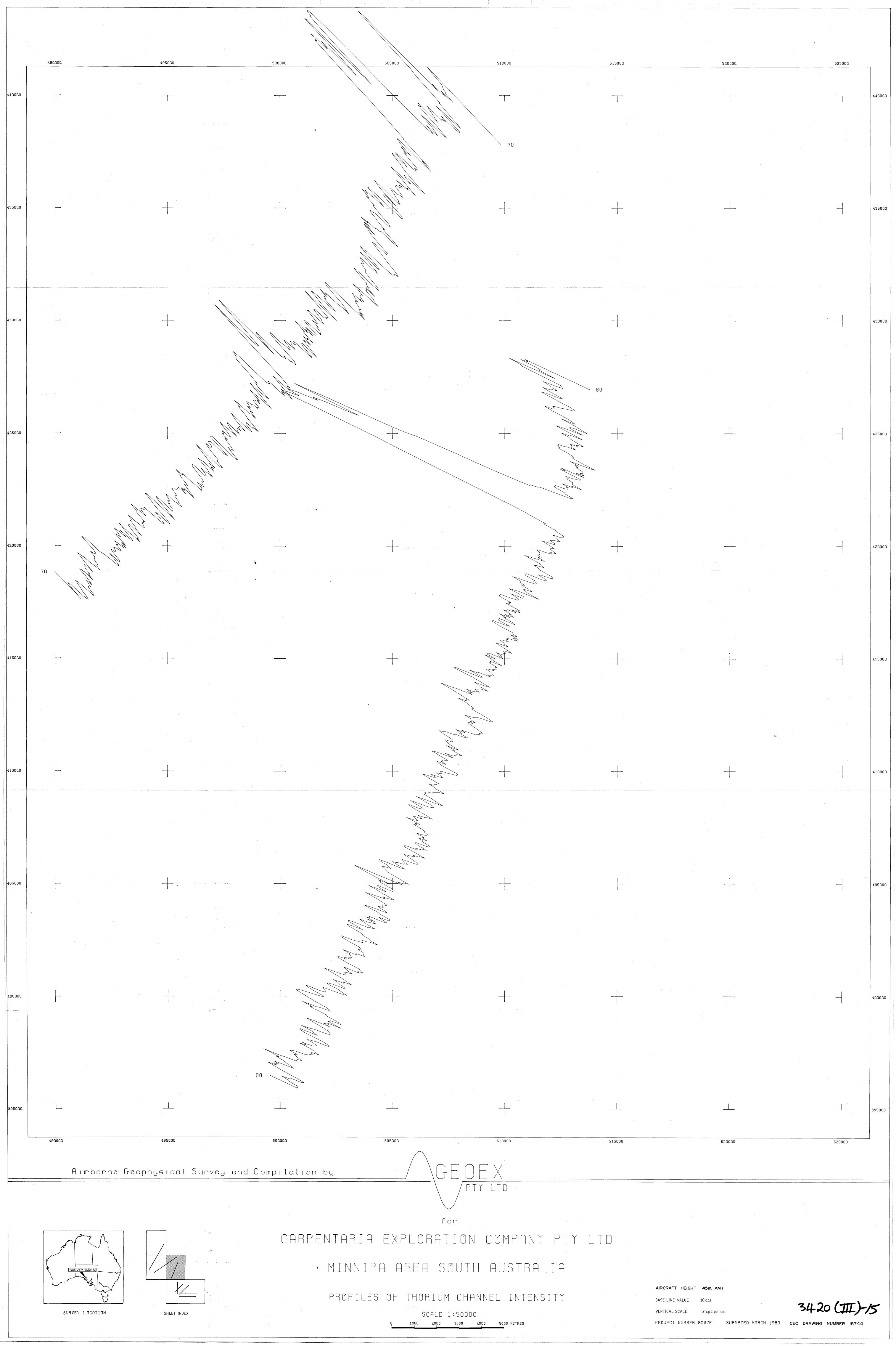



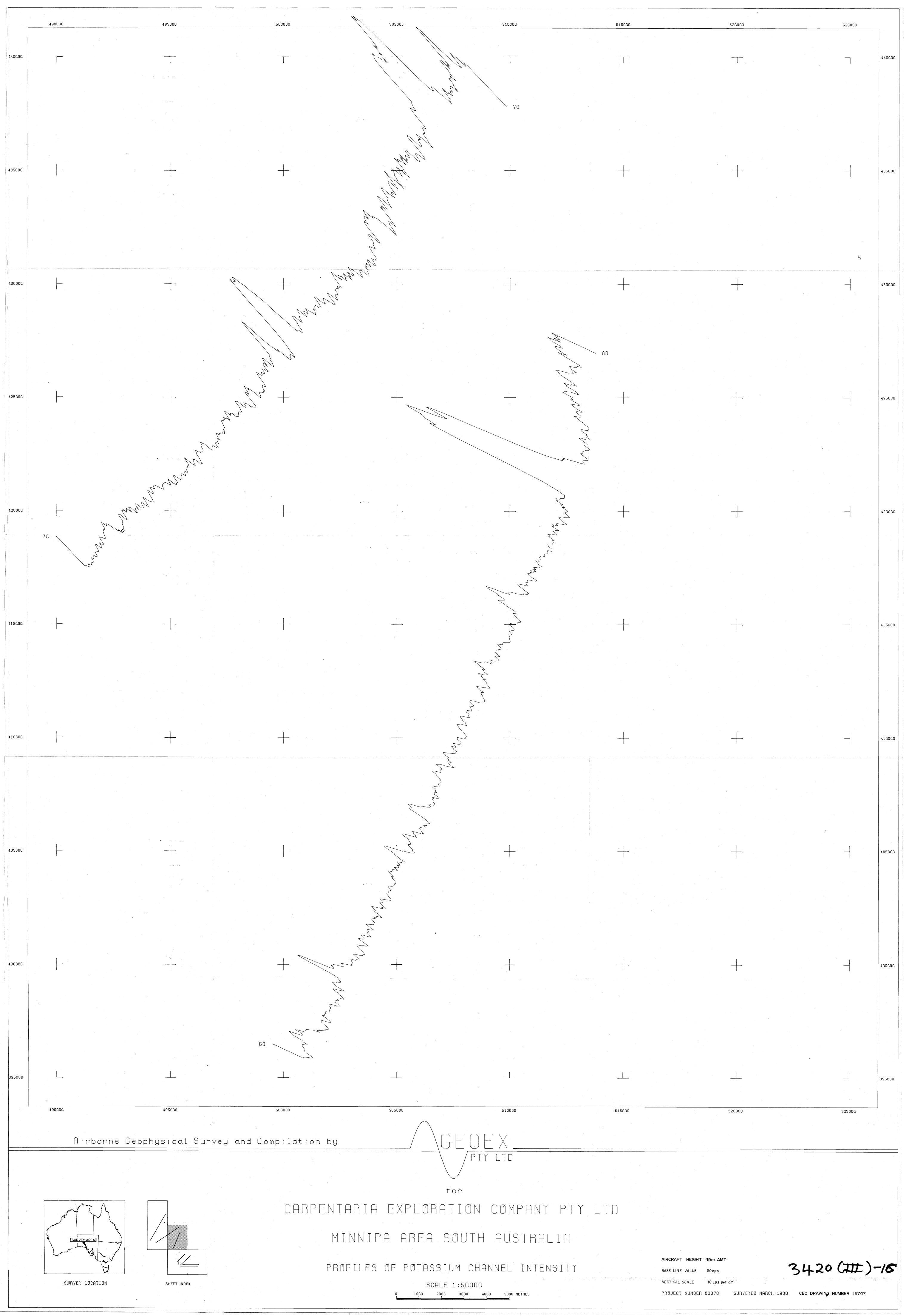



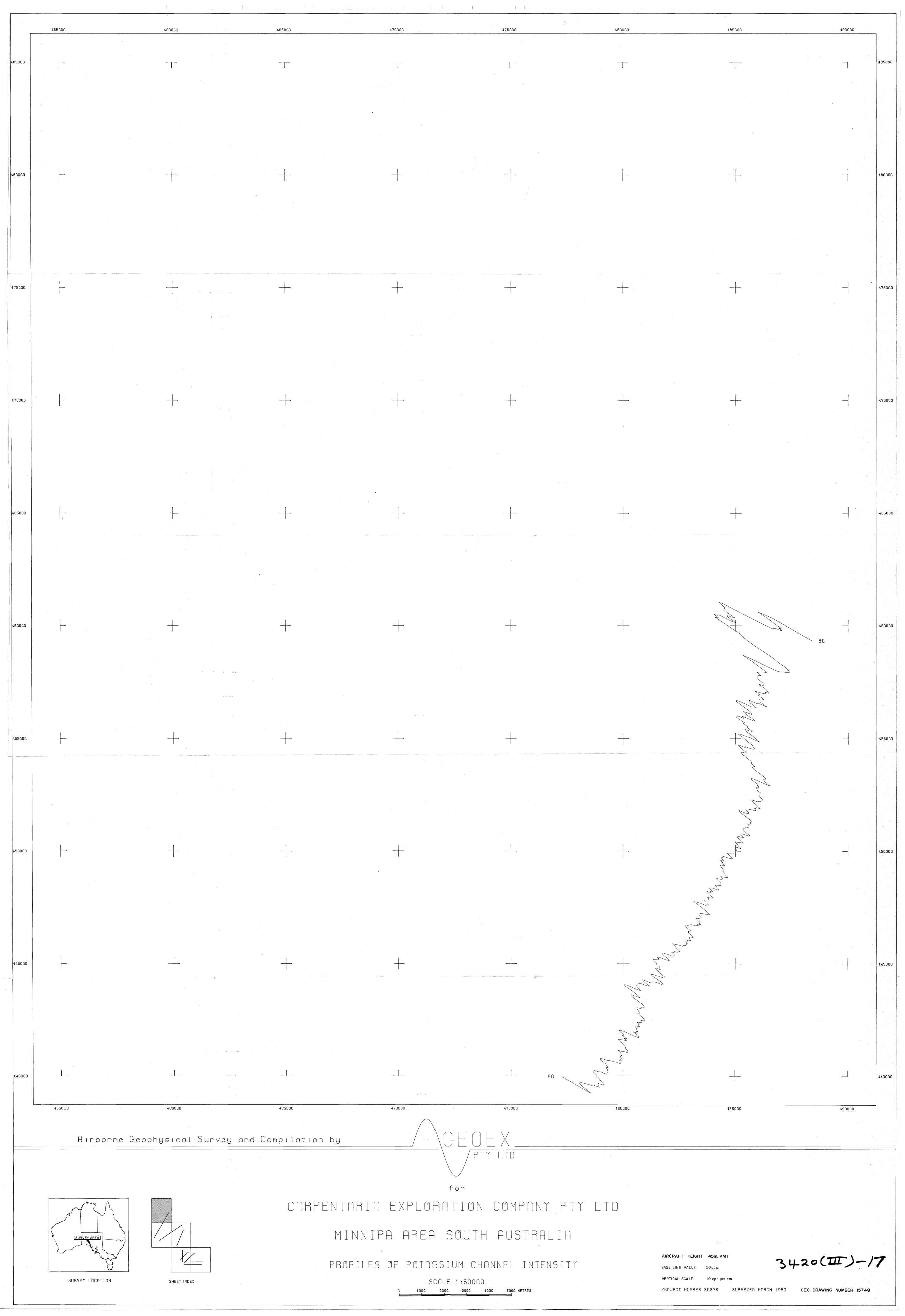



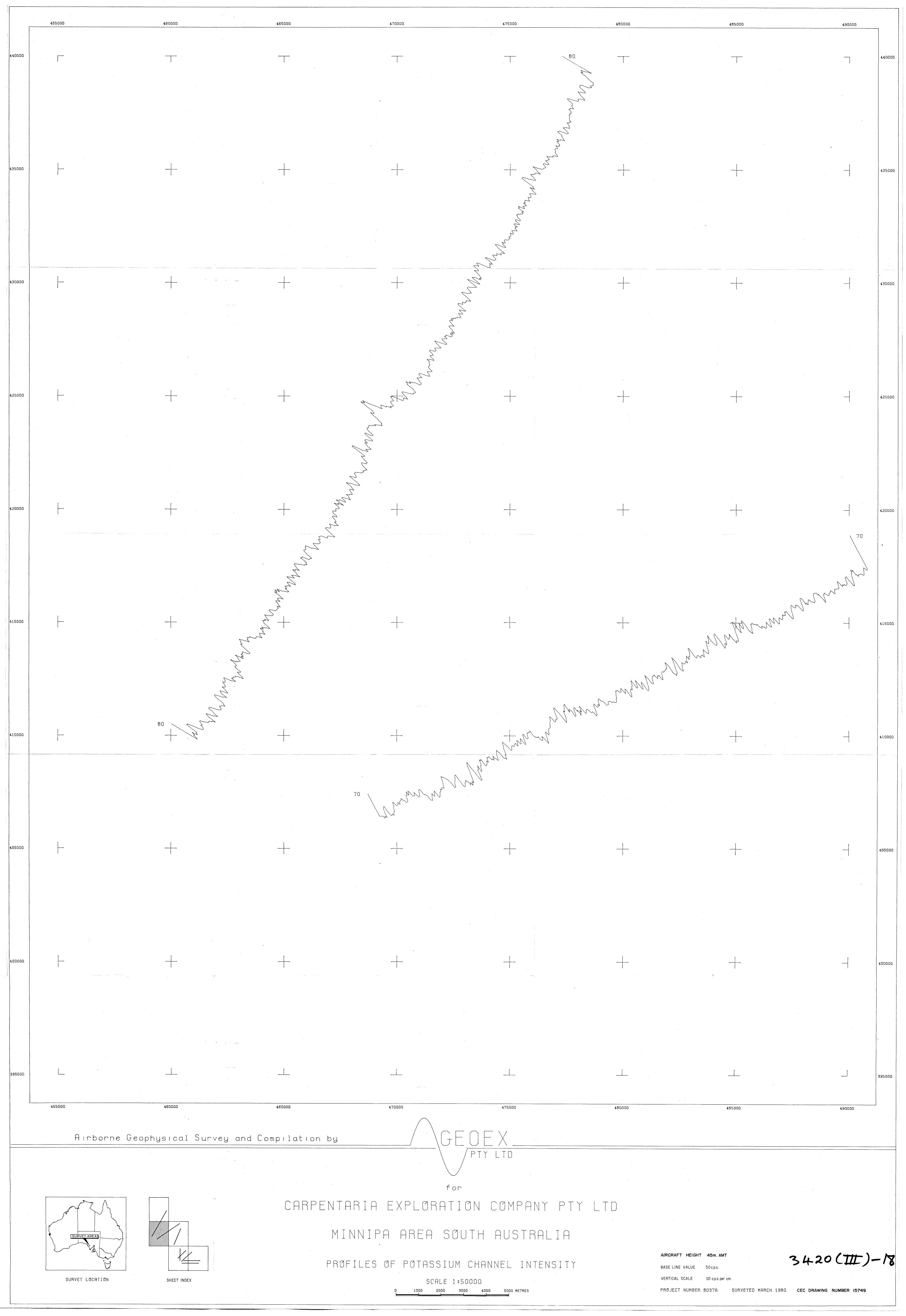














### CARPENTARIA EXPLORATION COMPANY PTY. LTD.

### EXPLORATION LICENCE NO. 442 "ILKINA"

### PROGRESS REPORT FOR QUARTER ENDED JANUARY 7, 1981

### 1. TERMS AND CONDITIONS

The Exploration Licence covers an area of 2 388 km² and lies approximately 100 km east of Ceduna. It was granted on January 8, 1979 for a term of one year. This term was subsequently extended for a further year.

The amended expenditure requirement is  $$140\ 000$ for the two year term.$ 

An application for a new Exploration Licence over the same area was made on October 13, 1980.

### 2. EXPLORATION

Access tracks for further rotary-mud drilling have been completed in the west of the licence area. Drilling is scheduled to commence in March/April 1981.

Results have still not been received from the vehicle borne caesium-vapour magnetometer survey which was carried out in April 1980.

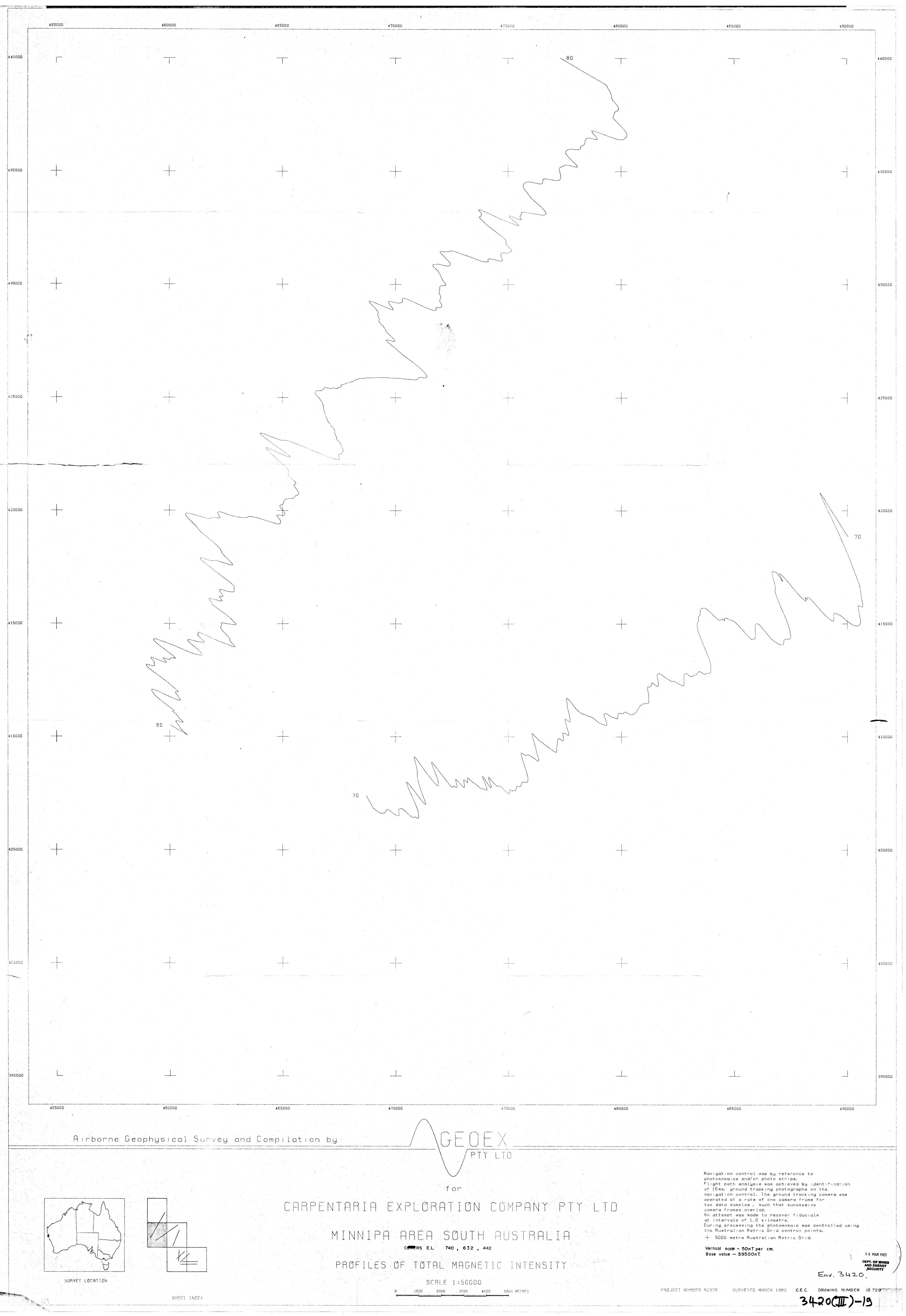
### 3. EXPENDITURE

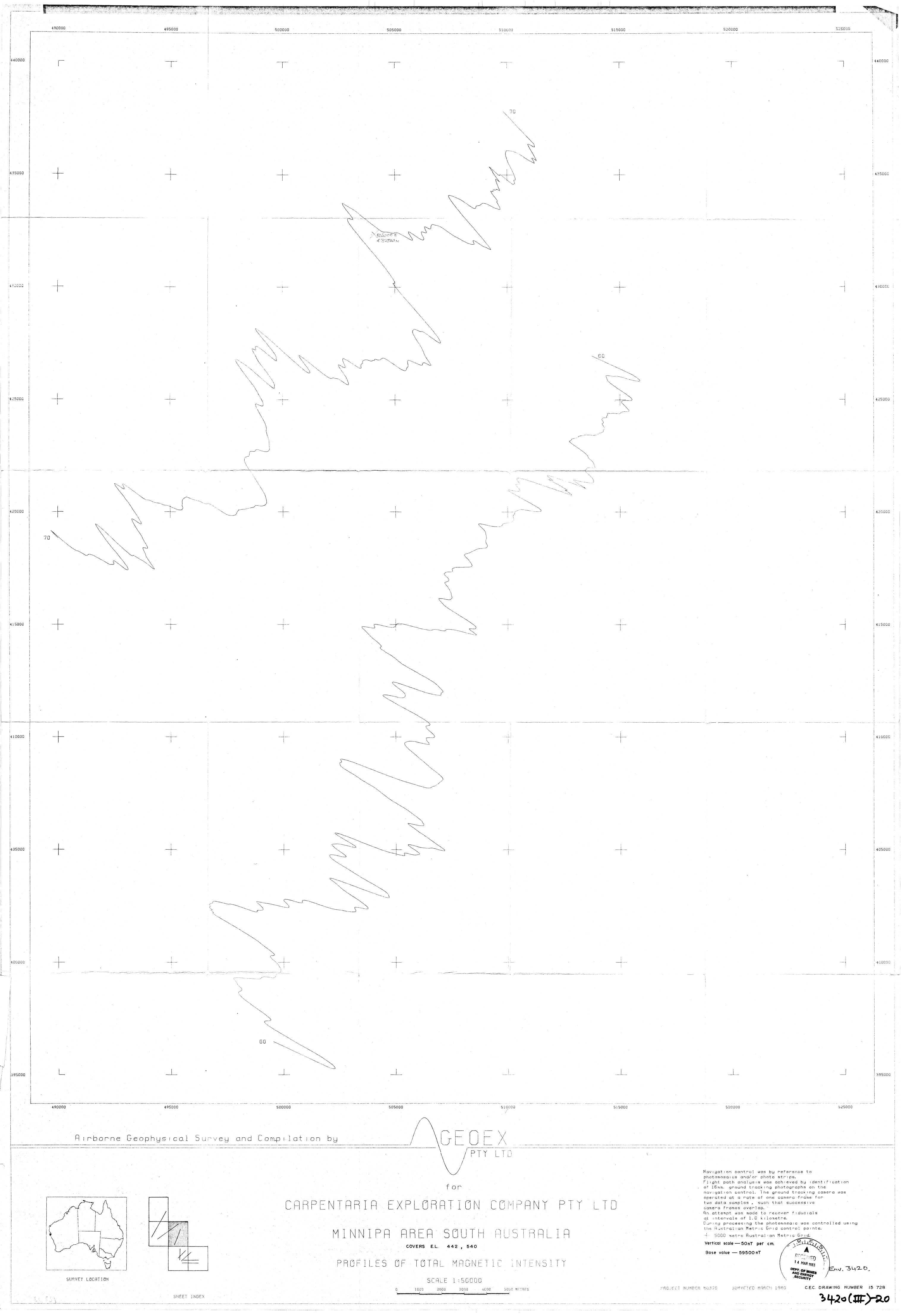
An expenditure statement is attached.

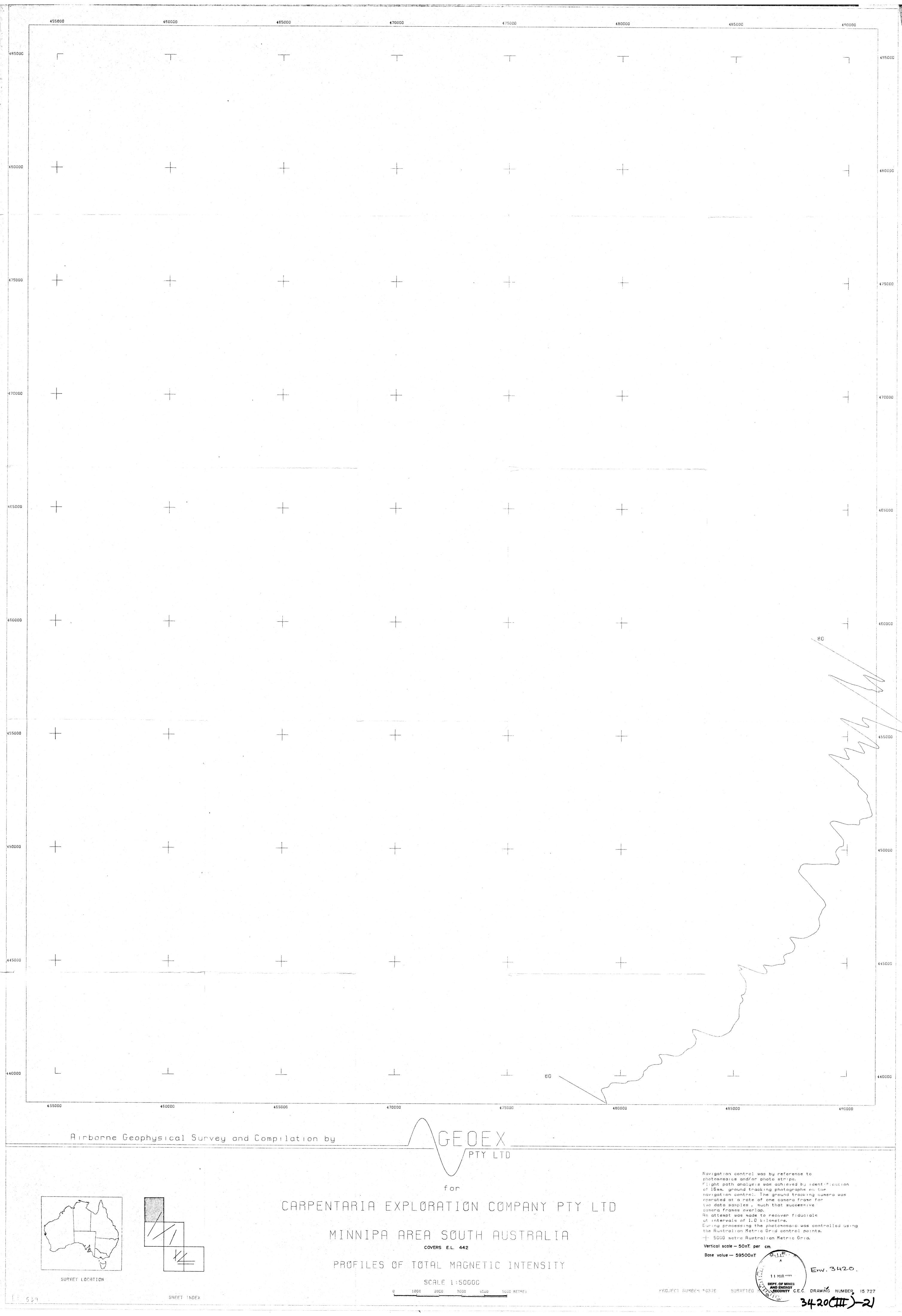
RECEIVED
12 FEB 1981
DEPT. OF MINES
AND ENERGY
SECURITY
7420-IV

P.J. Binks

Senior Geologist


# CARPENTARIA EXPLORATION COMPANY PTY. LTD.


## EXPLORATION LICENCE NO. 442 "ILKINA"


## STATEMENT OF EXPENDITURE FOR QUARTER ENDED JANUARY 7, 1981

	\$	\$
Administration	4 218	
Freight	25	•
Outside Services	. 95	
Operating Labour	3 473	
Stores	109	
	<u>·</u>	
Total This Period	7 920	7 920
Already Reported - Current Term		
Quarter ended April 7, 1980	799	
Quarter ended July 7, 1980	929	
Quarter ended October 7, 1980	2 · 521	4 249
TOTAL - CURRENT TERM		12 169
Previously Reported		122 701
Total Project Expenditure to Date	·	\$134 870

R.G. Darlington Administration Manager









# **DAVID TONKIN & ASSOCIATES**

25 Palmerston Road, Unley, S.A. 5061

**Telephone (08) 272 0999** Facsimile (08) 8271 9671

27 August, 1997

Mr Brian Logan MESA Core Library 63 Conyngham Street GLENSIDE SA 5065

Dear Brian

# Analytical Results for Core Library Samples

Results are appended for the following four batches of samples, collected by me on behalf of Homestake Gold of Australia Limited in August and September 1996:

Cuttings from drill holes EB 483 to EB 505, drilled by Geopeko – 23 assays for gold

Cuttings from drill holes EB 512 to EB 530, drilled by Geopeko – 19 assays for gold

Cuttings from drill holes RC89 DH 4 to RC89DH 13, drilled by CRAE – 10 assays for gold, arsenic, calcium, copper, nickel, lead and zinc

Cuttings from drill holes IR 55 to IR 58, drilled by CEC – 6 assays for gold, copper, lead, zinc and arsenic.

David Tonkin

With best wishes,

DMC 1

'.O. Box 151, Eastwood, S.A. 5063.

The following samples have		•		
Name:			72 0999	
Company/Section:	J HOMESTAKE GOLD OF A	עדא , דוער		
Address: 27 Palme	RSTUN RS UNKEY	5061		
This removal of samples wa	as approved by:			
DRILL HOLE NAME AND NUMBER	DRILLING SPONSOR	DEPTH AND	TYPE OF SAMPLE	OFFICE USE
1R55-429263	CEC	38-40 429245	cullings	
1857-429325	11	72-74		,
IRS7 - 429 326	ч	74 - 76		
1R58-429369	Na	82-84		
IR58 - 429370	t ₁	84-86		
IR58 - 429371	<b>14</b>	86-88		
	•			
				,
Nature of work to be undert	raken on sample: Geochemical	analysis for	gold & base	metals
CONDITIONS	•			
CONDITIONS:  1. The above samples are sup	plied on condition that copies of results of all Mines and Energy, P.O. Box 151, Eastwood,	work on these sampl	es must be forwarded	to the Core-Library
Any residue material remain and Energy Core-Library, 23	Mines and Energy, P.O. Box 151, Eastwood, ning after testing must be clearly labelled and 3 Conyngham Street, Glenside, S.A. 5065. nation supplied is left to the discretion of the	returned to the Core	-Library Supervisor, De	partment of wines
I acknowledge receipt of the al	bove samples and agree to meet the above of	onditions.	10	
SIGNATURE:	1. Land.	WITNESS:	4/1/2	
DATE:	S-96	DATE:O	19196	



Analabs Pty. Ltd. ACN 004 591 664 16 Sunbeam Road, Glynde South Australia 5070 Telephone: (08) 336 5099

## **ANALYSIS REPORT**

Mr David Tonkin
Homestake Gold of Australia Ltd
P.O. Box 7189
Cloisters Square
Perth
W.A. 6850

Job : AD015401

Client Reference : 74806

Page(s) : 1
Date : 26/11/96

Date Received : 11/09/96

Number of Samples : 6

Copies to

Comments

CEC Drilling

TR-55 - 1150

C. Hings

The results in the following analytical report pertain to samples as received at this laboratory for preparation and/or analysis as requested by the client.

Approved Signatory:

Geoff McLean





Our reference Your reference Project code Report date Report status Page

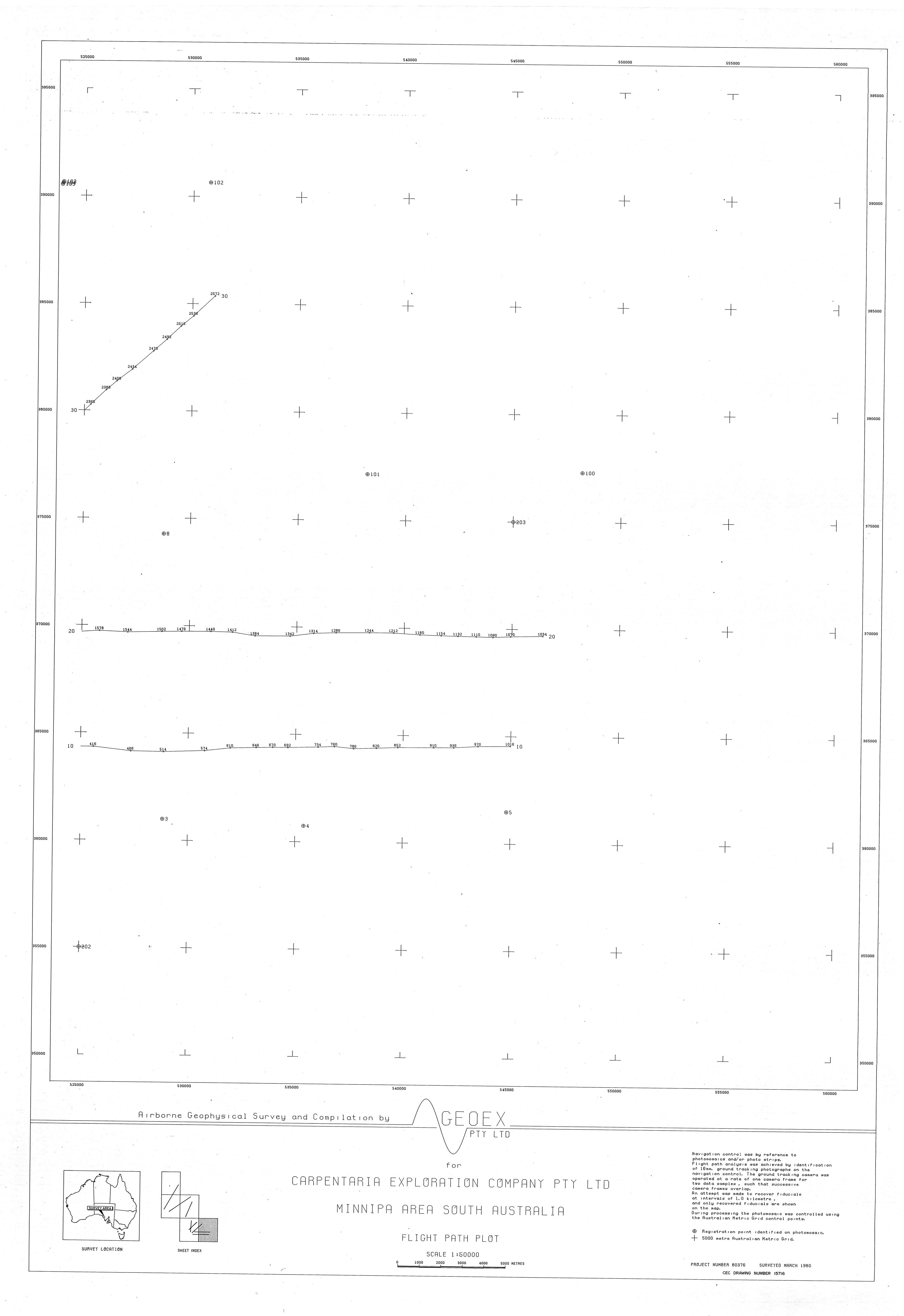
AD015401 **74806** 

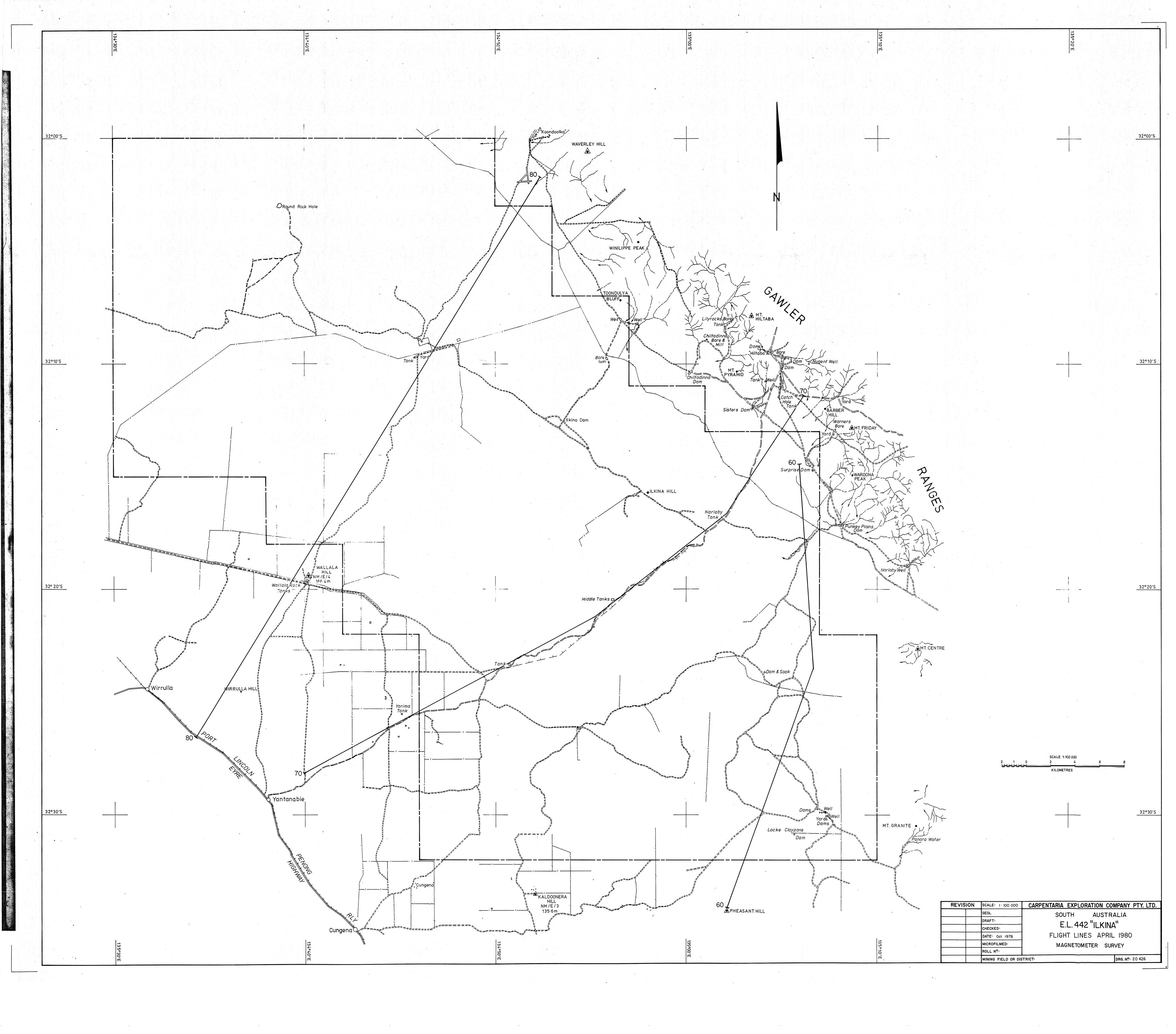
26/11/96 Final

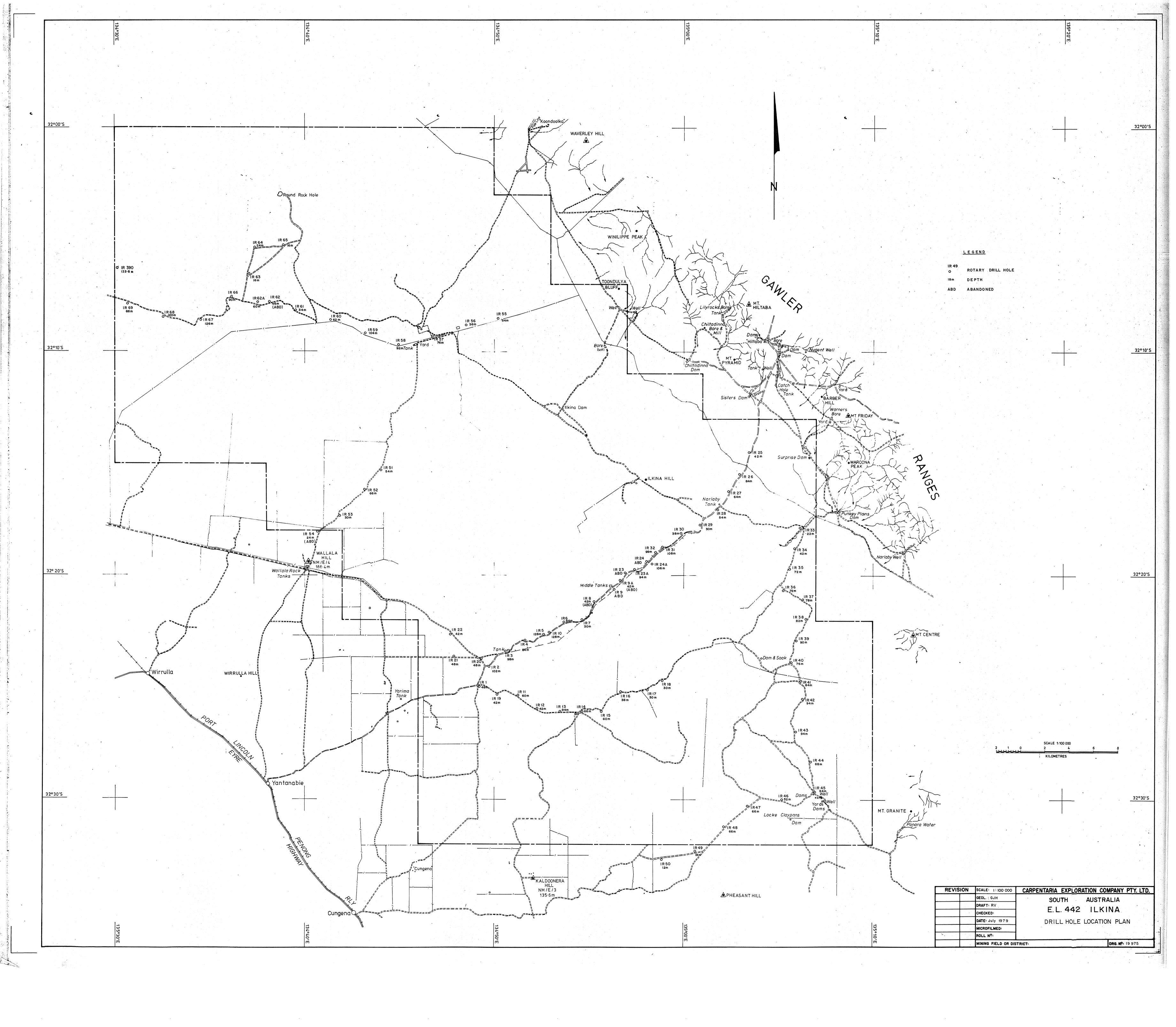
1 of 1 Analabs Pty. Ltd. ACN 004 591 664 16 Sunbeam Road, Glynde South Australia 5070

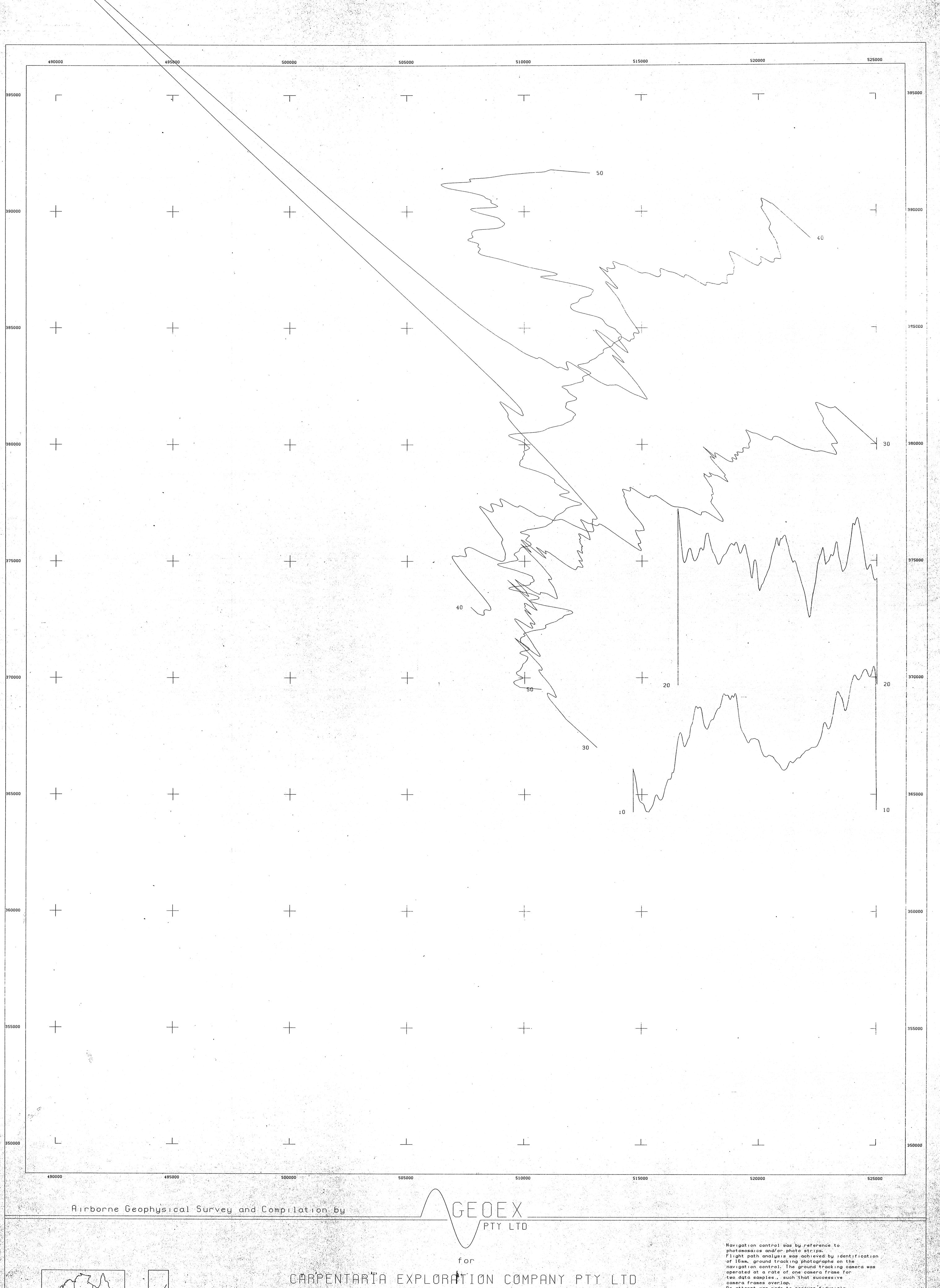
Telephone : (61 8) 336 5099 Facsimilie : (61 8) 336 5564

## **ANALYTICAL DATA**


Sample	Au	Cu	Рь	Zn	As
429263	0.006	63.8	5.8	54.0	26
429325	0.004	23.4	12.5	30.5	34
429326	0.003	30.6	9.2	68.0	24
429369	< 0.001	29.2	4.0	20.1	33
429370	<0.001	21.8	2.2	19.4	34
429371	0.002	18.0	13.0	27.0	<5


Method	GG334	GA115	GA115	GA115	GA115
Units	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.001	0.5	0.5	0.5	5
The control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t		1.5			


Notes:


= not analysed N.A.

= element not determined = insufficient sample I.S. = listed not received L.N.R.







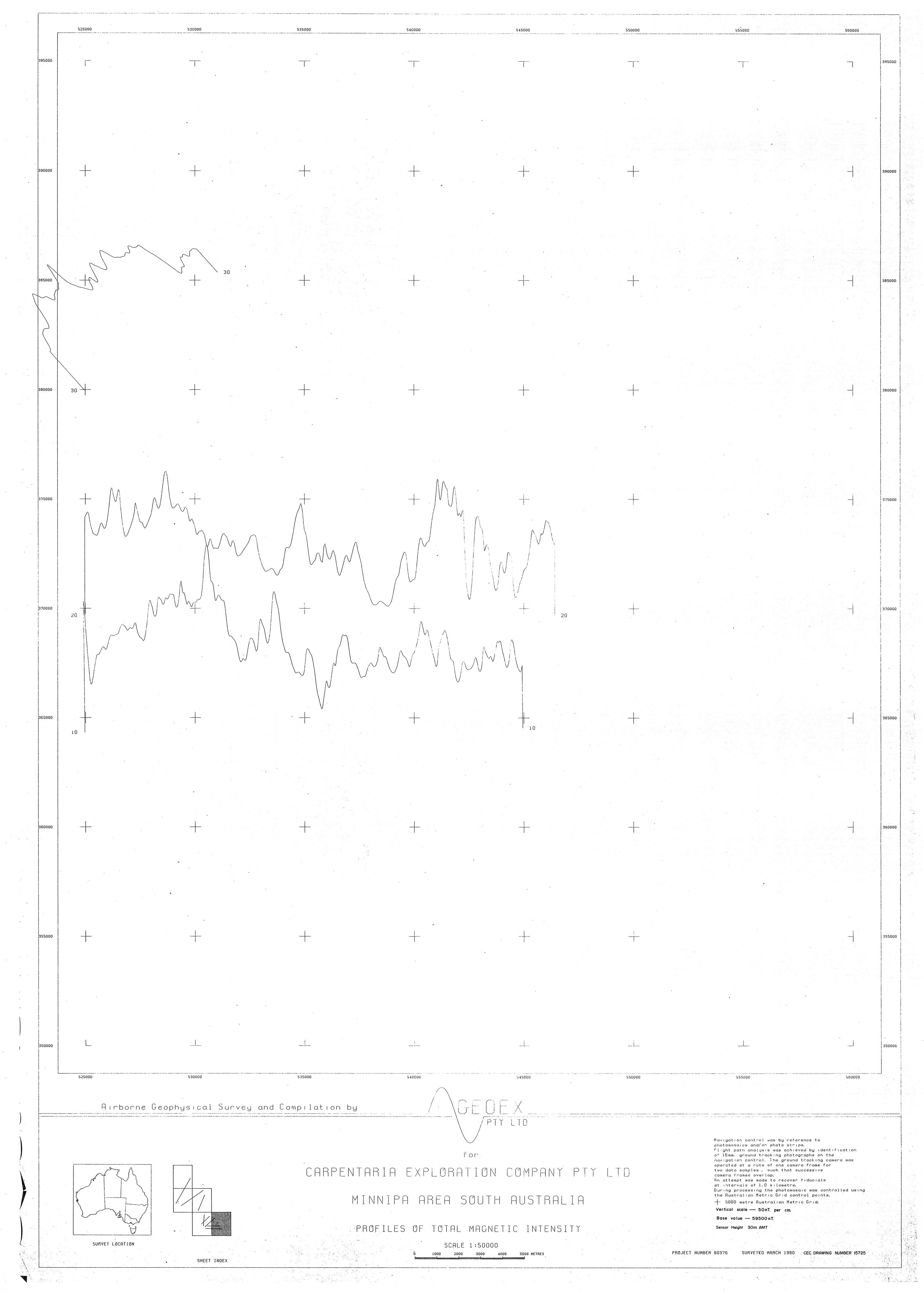


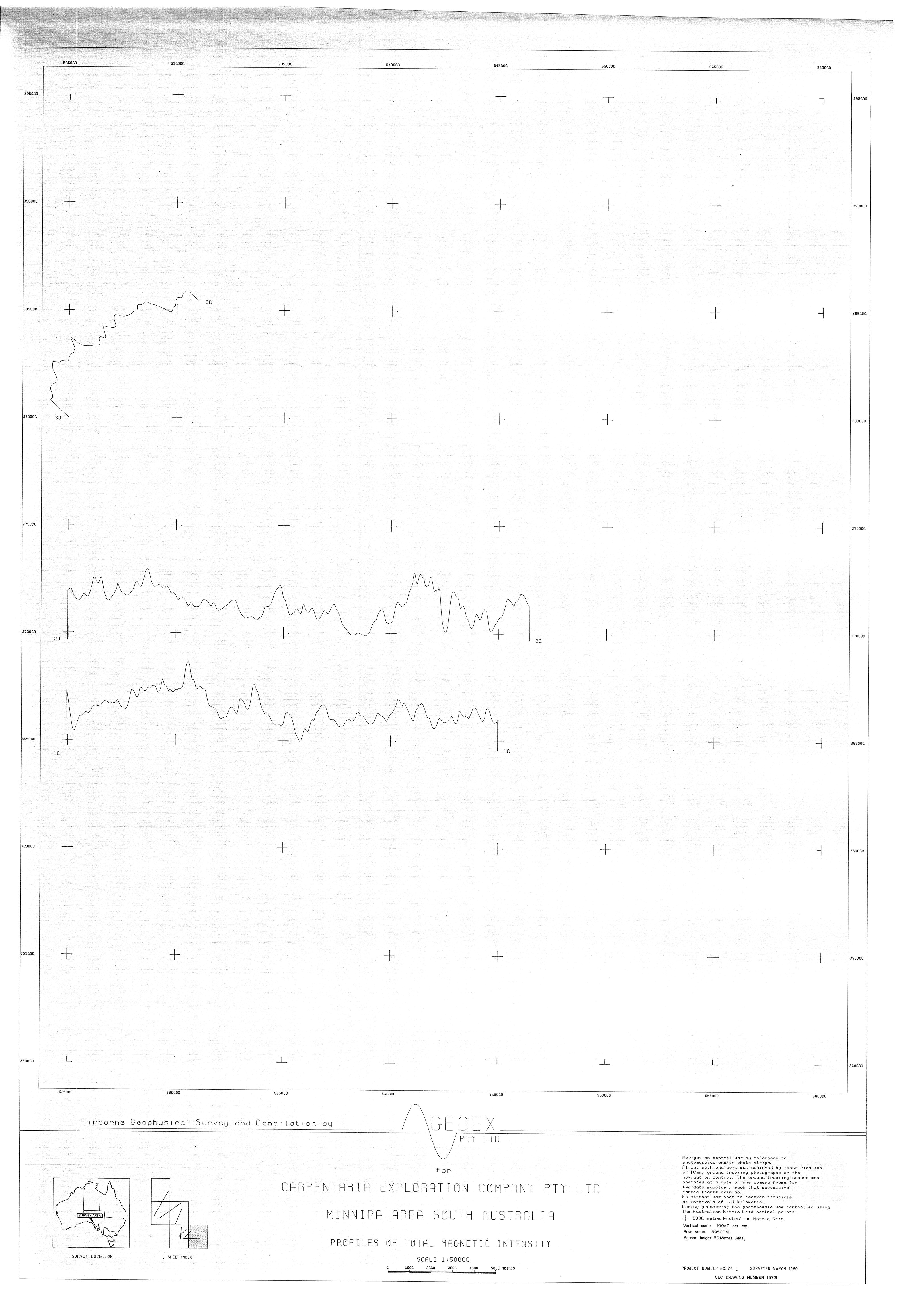
MINNIPA AREA SOUTH AUSTRALIA

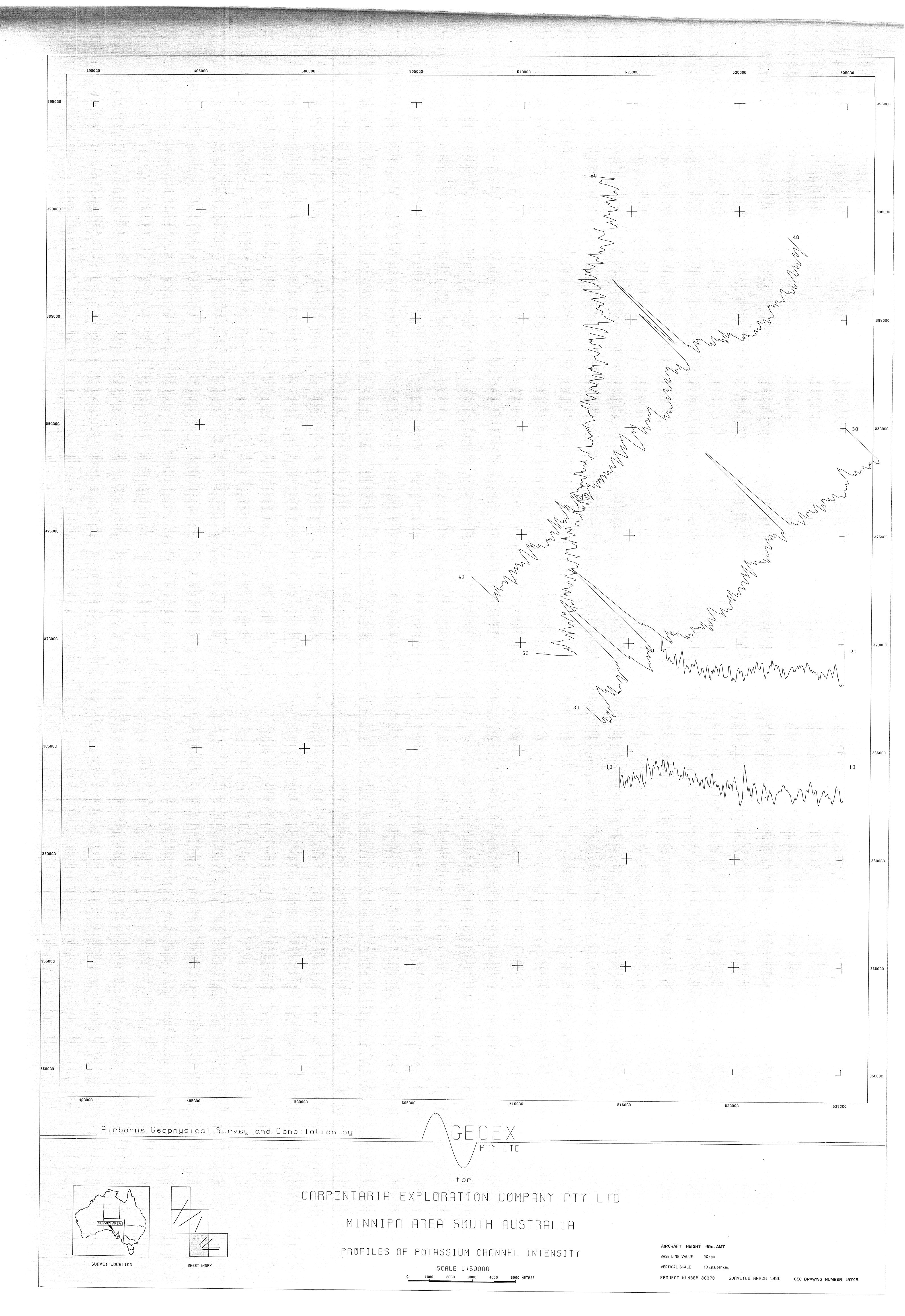
PROFILES OF TOTAL MAGNETIC INTENSIT

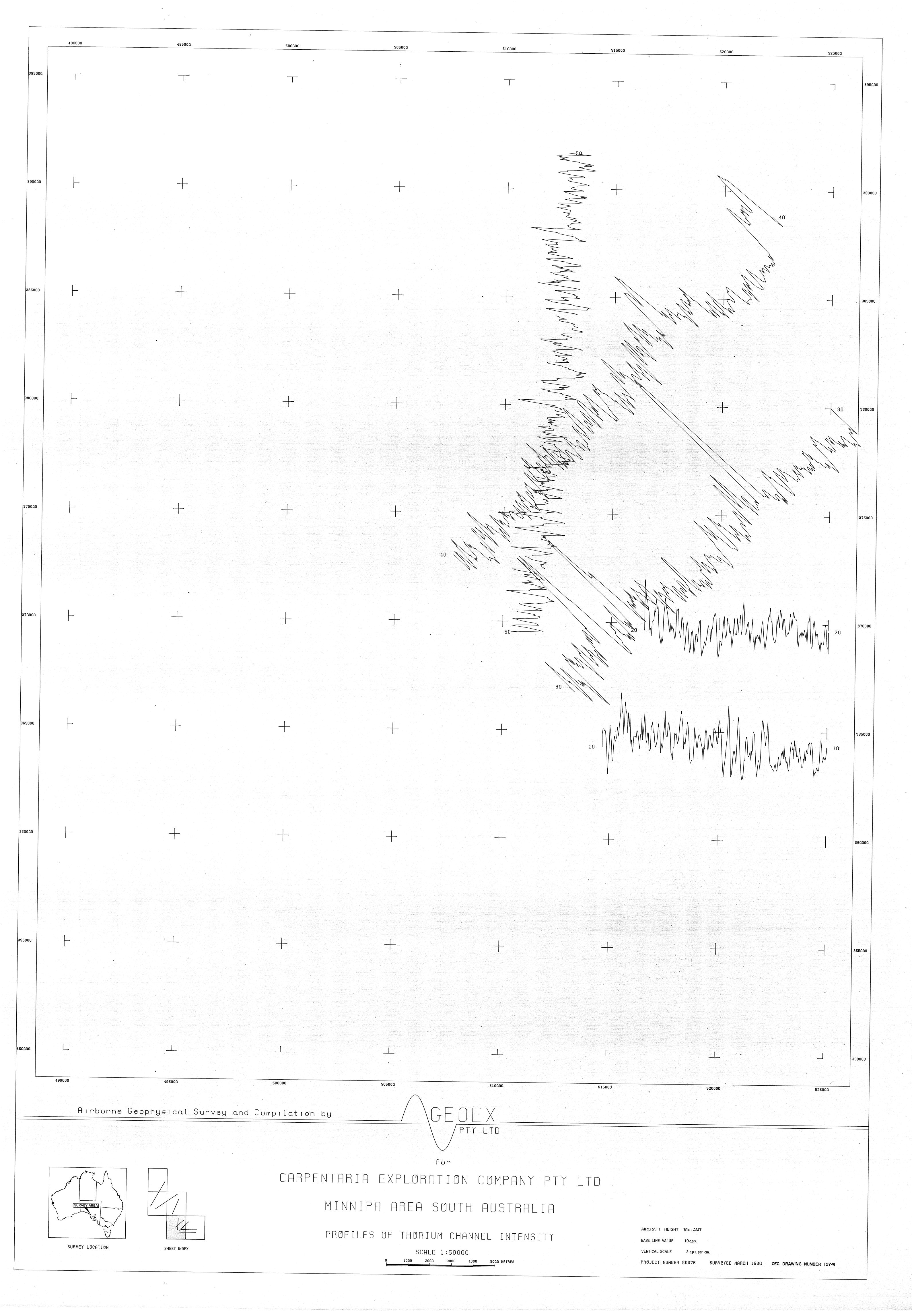
1000 2000 3000 4000 5000 MÉTRES

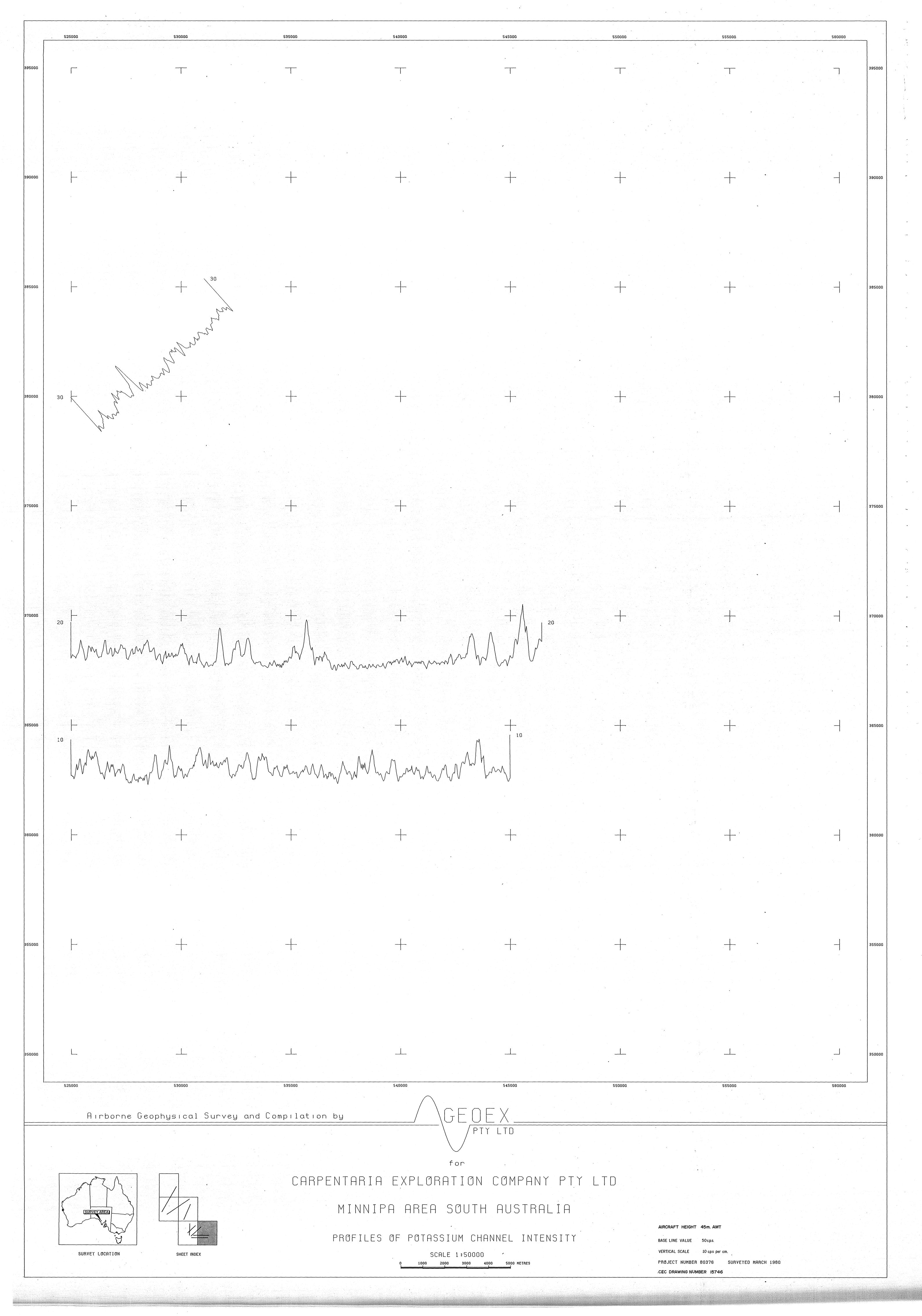
of 16mm, ground tracking photographs on the navigation control. The ground tracking camera was operated at a rate of one camera frame for two data samples, such that successive camera frames overlap.

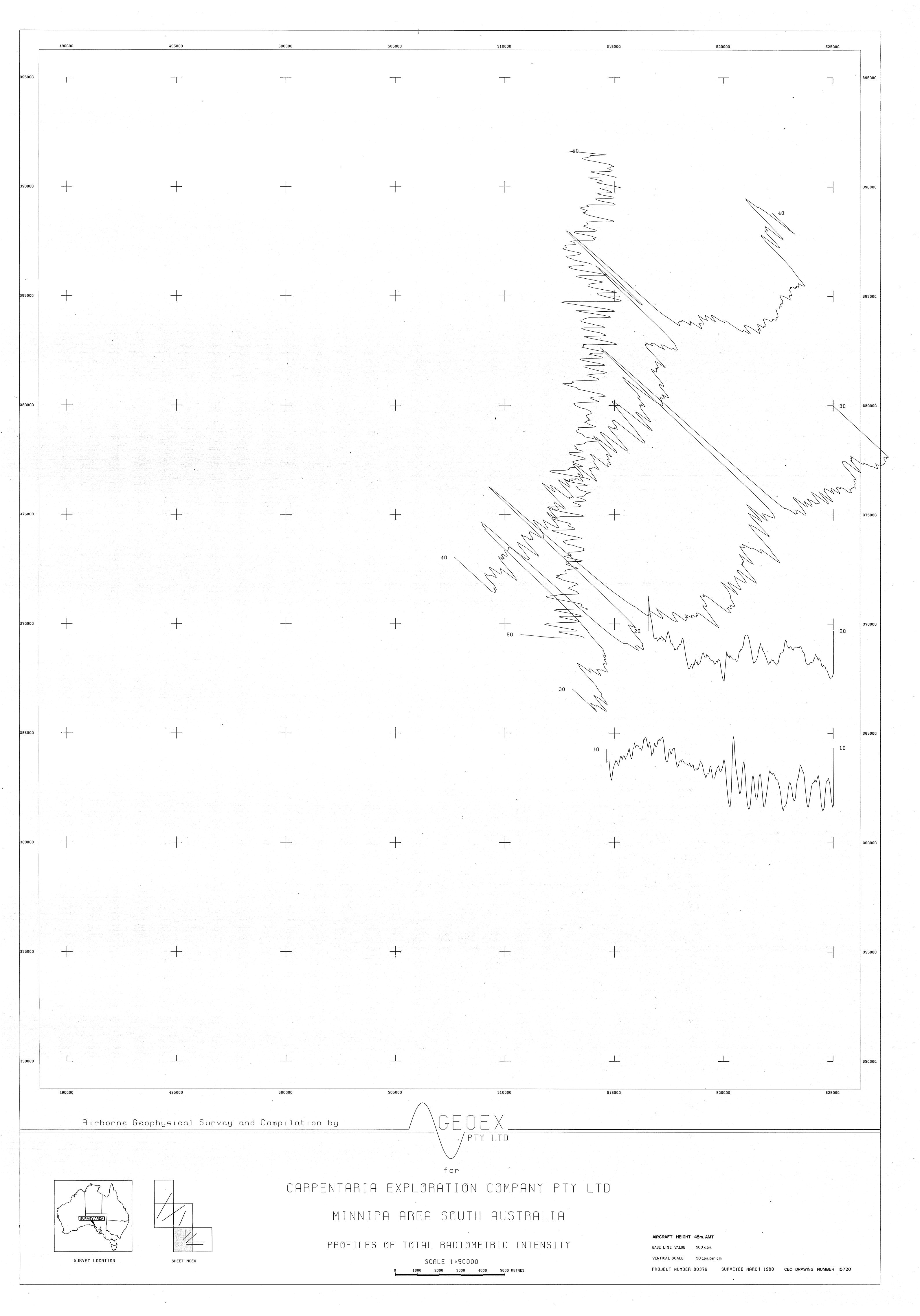

An attempt was made to recover fiducials at intervals of 1.0 kilometre.

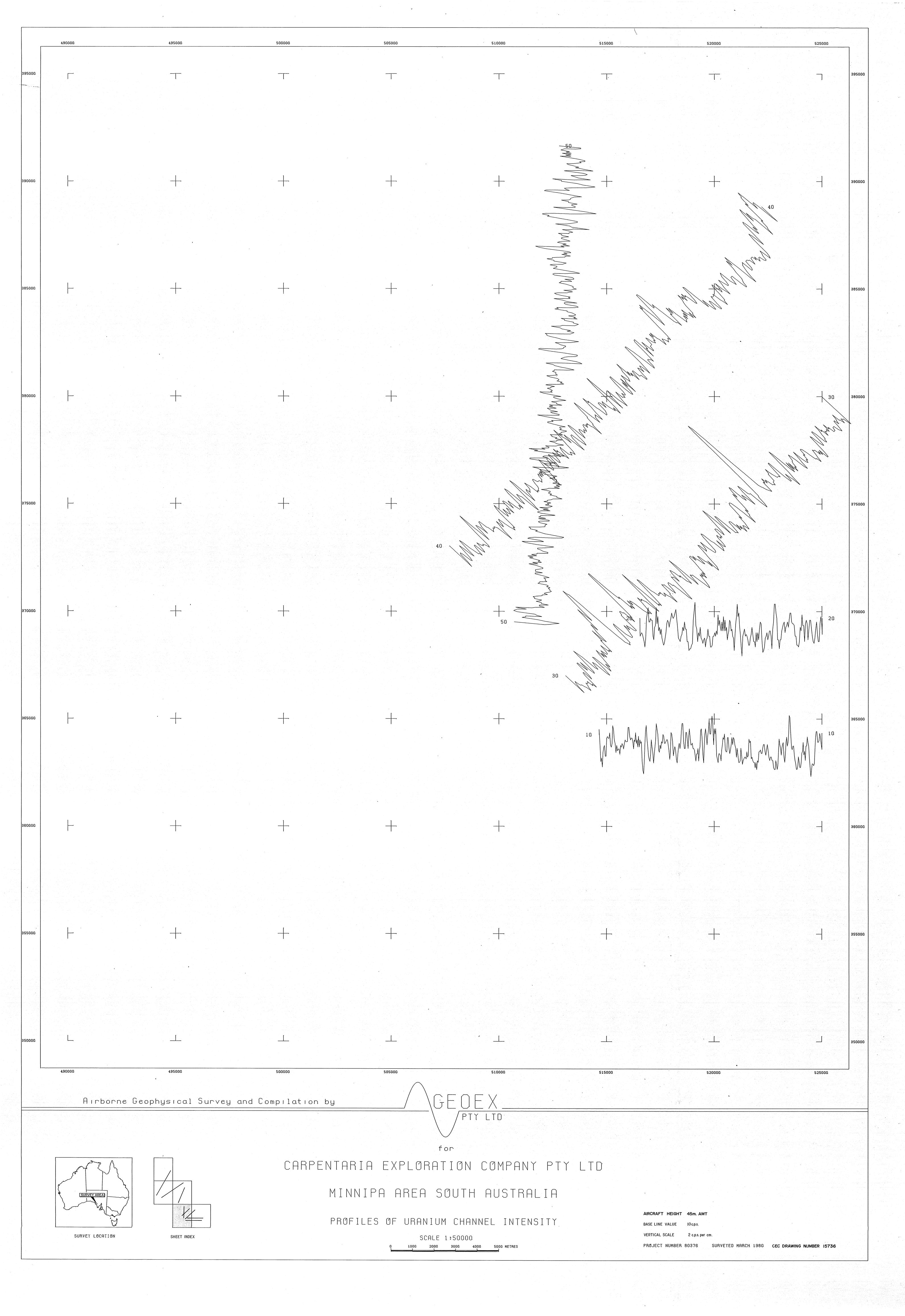

During processing the photomosaic was controlled using the Australian Metric Grid control points.

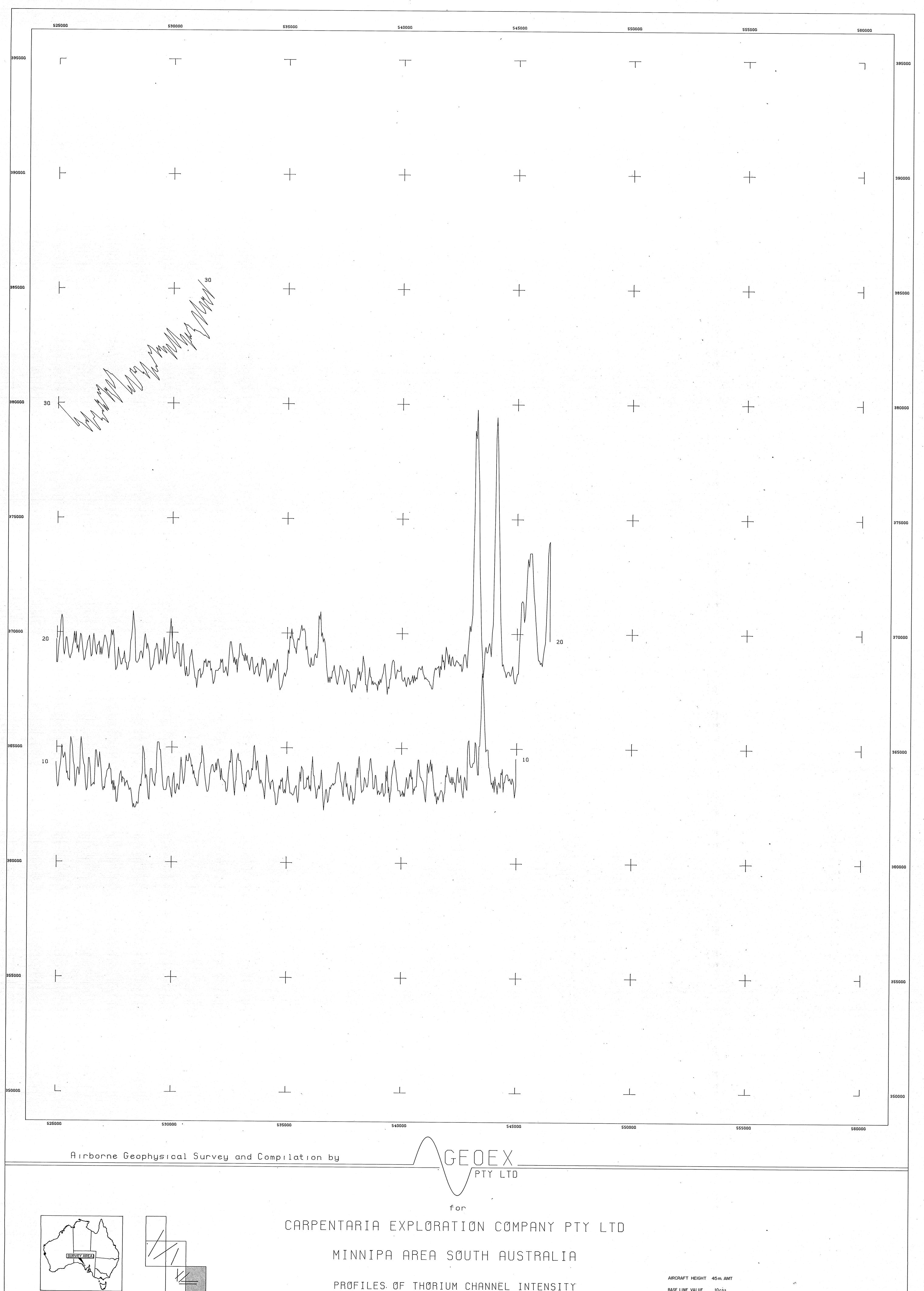

+ 5000 metre Australian Metric Grid.


Vertical scale — 50nT. per cm.

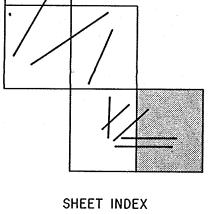

PROJECT NUMBER 80376 SUBVEYED MARCH 1980 CEC DRAWING NUMBER 15726



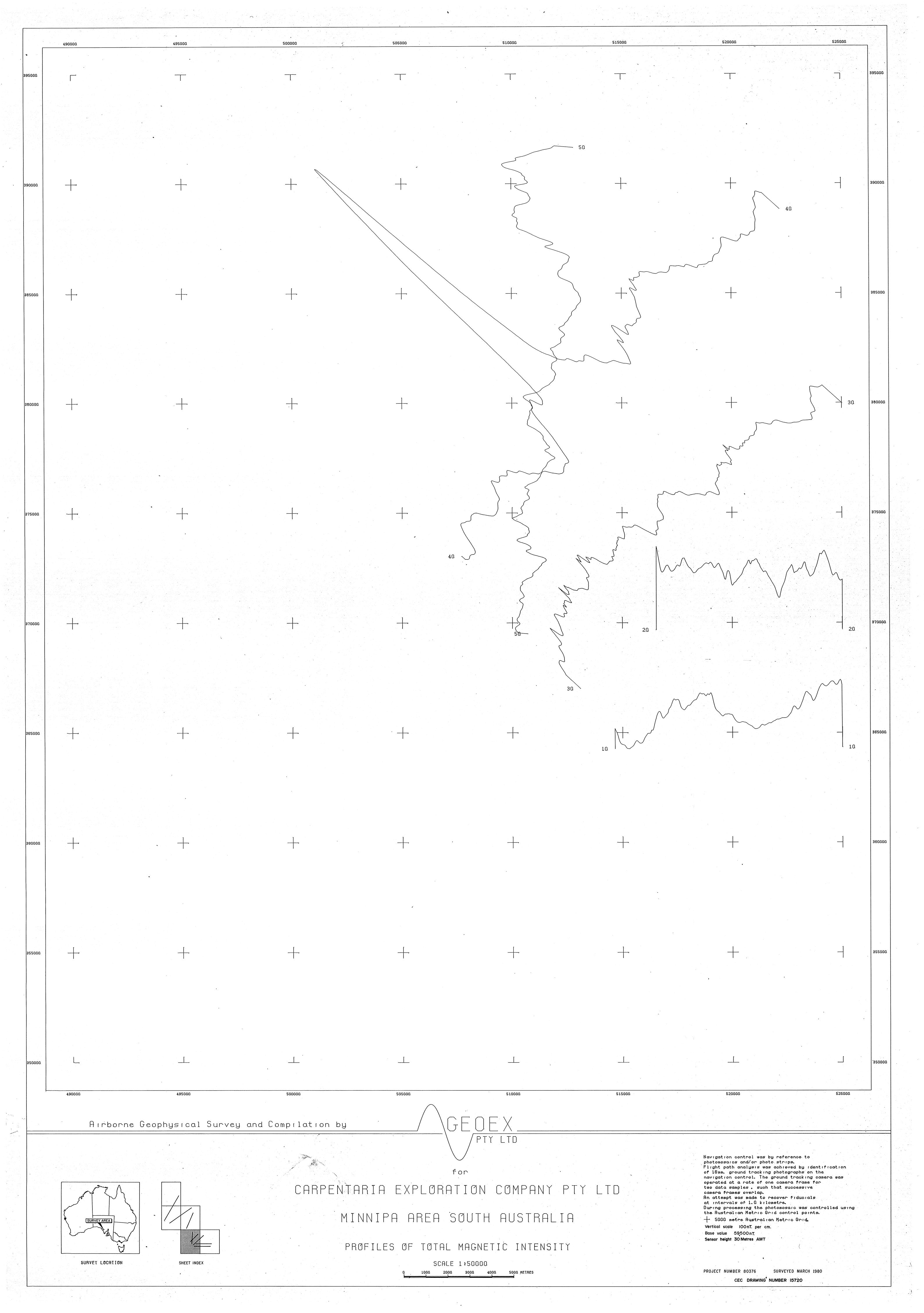



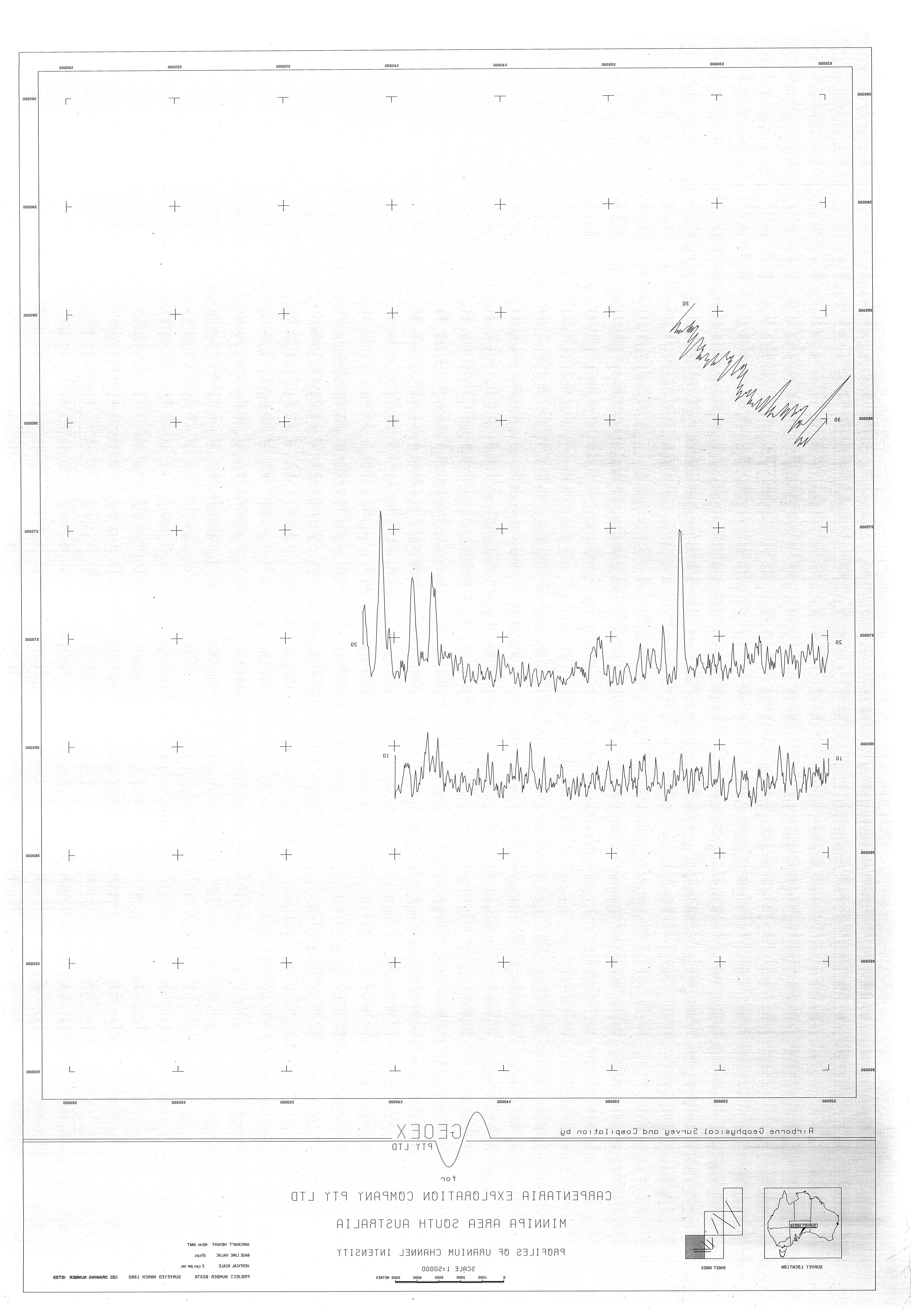


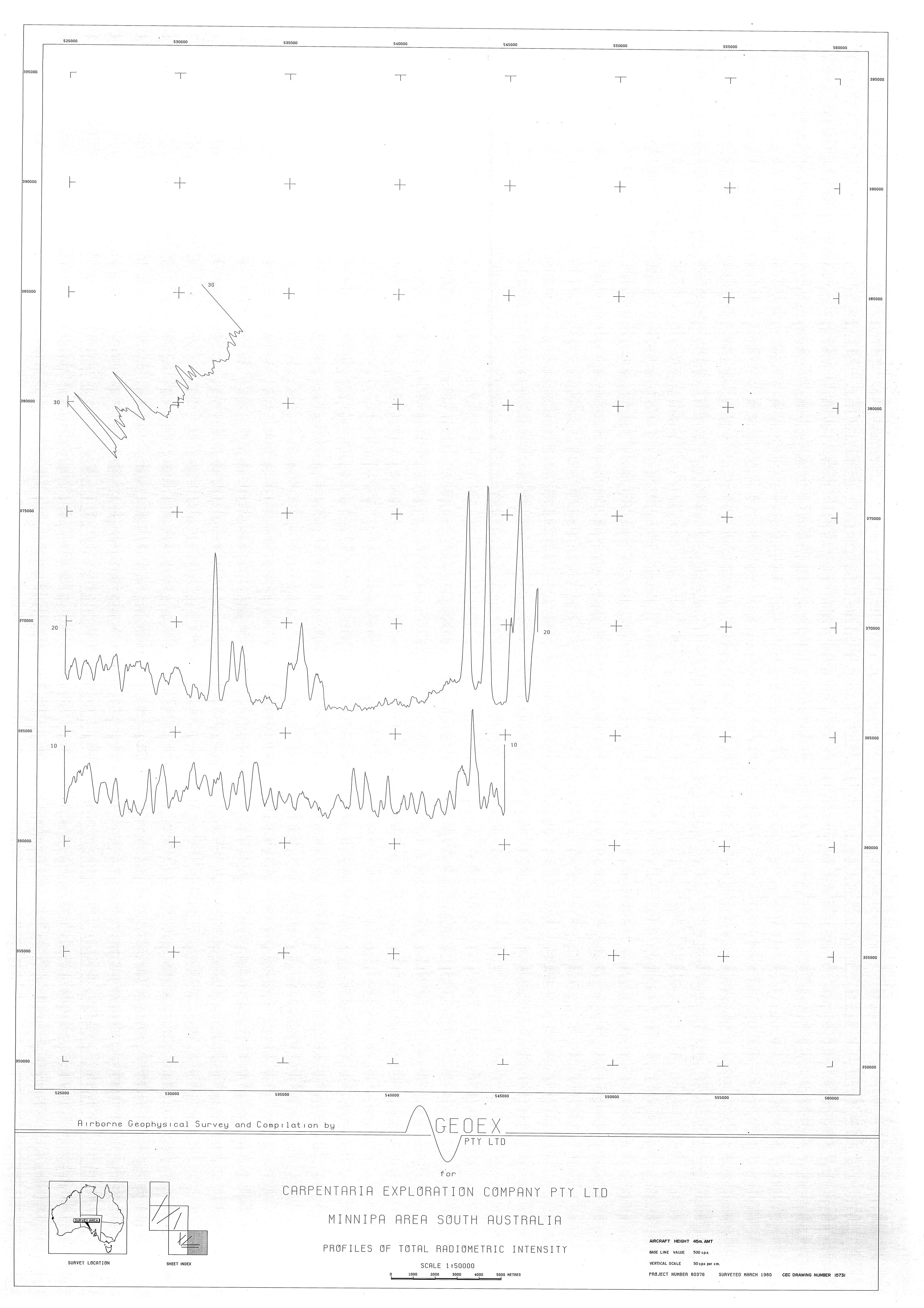



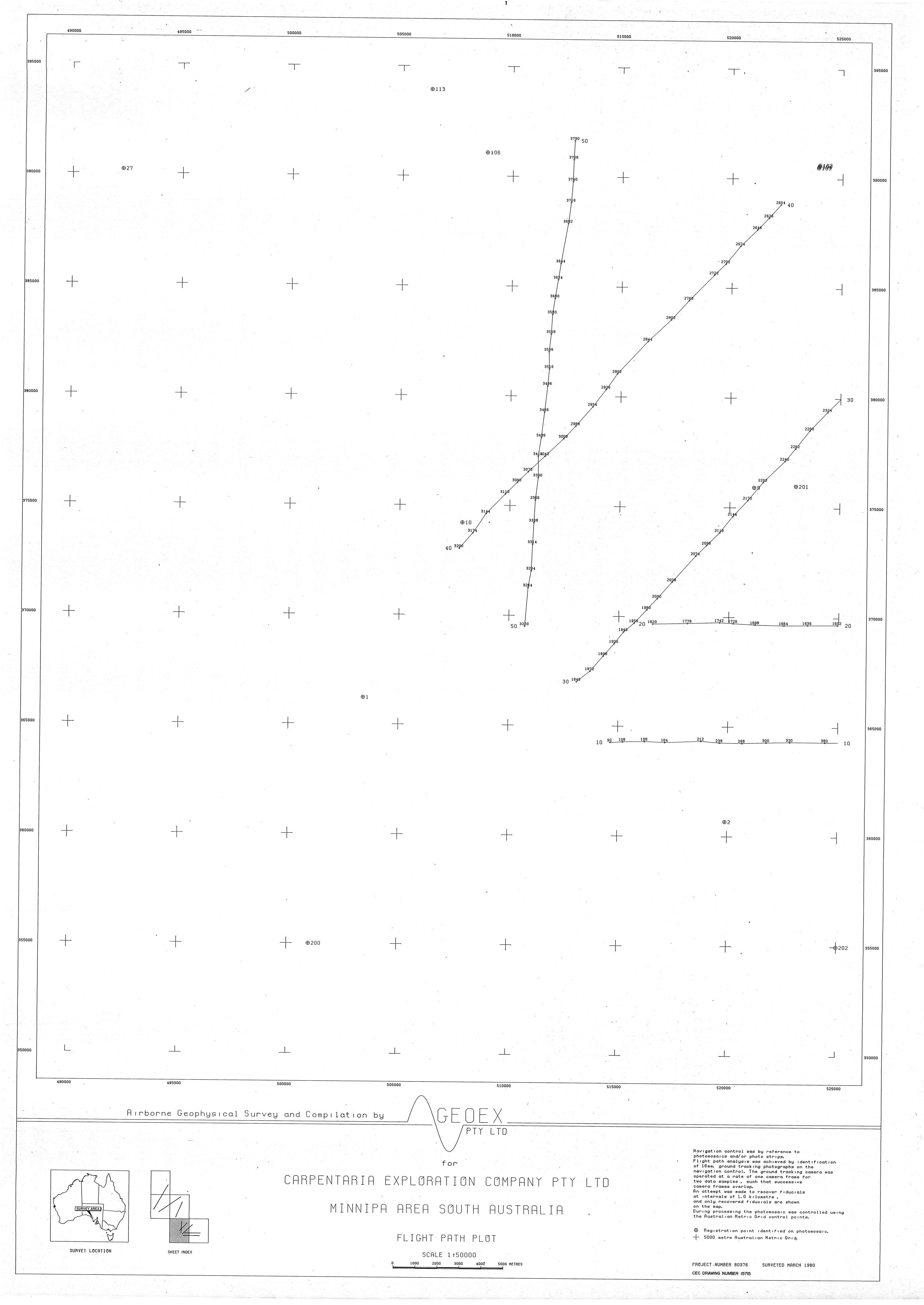






SURVEY LOCATION





PROFILES OF THORIUM CHANNEL INTENSITY

SCALE 1:50000







