Open File Envelope No. 2977

PEL 5 AND PEL 6, PEDIRKA BLOCK EROMANGA BASIN AND SIMPSON BASIN

POOLOWANNA 1 TEST REPORTS

Submitted by

SADME and Delhi International Oil Corp. 1979

© 14/9/92

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenemert in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

ENVELOPE 2977

TENEMENT: PEL 5 and PEL 6, Pedirka Block; Eromanga and Simpson Basins

TENEMENT HOLDER: Delhi International Oil Corp. (operator), Western Mining Corp. Pty Ltd, Santos Ltd,

Vamgas Ltd, Total Exploration Australia Pty Ltd and Commonwealth of Australia

(Petroleum and Minerals Authority)

CONTENTS

	COLLECTE	
REPORTS:	Brown, R.N., 1977. Results of bulk and clay mineralogy determinations on 4 selected drill core samples taken from the depth interval 84-130 metres KB in the Poolowanna 1 water bore (Amdel Ltd report no. MP 3186/77 for SADM, 2/5/77).	MESA NO. 2977 R 1 [3 pages]
	Kress, A.G., 1977. Results of a palynological examination of material from the Poolowanna 1 water <i>bore South Australia</i> . <i>Department of Mines</i> . <i>Report Book,</i> 77/64 (28/6/77).	2977 R 2 [1 page]
	Halliburton Services, 1977. Formation testing service report, DST 2 (28/8/77).	2977 R 3 [5 pages]
	Halliburton Services, 1977. Formation testing service report, DST 3 (2/9/77).	2977 R 4 [5 pages]
	Halliburton Services, 1977. Formation testing service report, DST 6 (29/9/77).	2977 R 5 [6 pages]
	Halliburton Services, 1977. Formation testing service report, DST 7 (29/9/77).	2977 R 6 [6 pages]
	Halliburton Services, 1977. Formation testing service report, DST 8 (1/10/77).	2977 R 7 [6 pages]
	Saxby, J.D., Russell, N.J., Bruen, L. and Friedrich, J., 1978. [Results and interpretation of] Source rock and oil analyses on samples from Poolowanna 1 and Macumba 1, Eromanga and Simpson Basins, South Australia (CSIRO Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report no. 927R for SADM, March 1978).	2977 R 8 [22 pages]

Russell, N.J., 1978. Vitrinite reflectance data and interpretation for 13

Poolowanna 1 (CSIRO Minerals Research Laboratories, Fuel Geoscience

selected coal samples from the depth interval 1200-8360 feet KB in

2977 R 9

[4 pages]

v	L. 1	"	 TS:

Smyth, M., 1978. Lower Jurassic coals and dispersed organic matter in Poolowanna 1 well, Eromanga Basin (CSIRO Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report no. 975R for SADM, October 1978).

MESA NO. 2977 R 10 [13 pages]

Smyth, M., 1978. Dispersed organic matter in the Triassic sediments from Poolowanna 1 well, Simpson Basin (CSIRO Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report no. 976R for SADM, October 1978).

2977 R 11 [16 pages]

Smyth, M., 1978. The petrology of some coals and dispersed organic matter from the Middle to Lower Jurassic sequence in Poolowanna 1 well, Eromanga Basin (CSIRO Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report no. 981R for SADM, November 1978).

2977 R 12 [13 pages]

Rahdon, A.E., 1978. Petrography and diagenesis of Jurassic sandstones from Poolowanna 1 (sample depth interval 8426 feet 2 inches to 8439 feet 3 inches below drilling floor), Simpson Desert, Central Australia (consultant's report for Delhi International Oil Corp., December 1978).

2977 R 13 [9 pages]

Smyth, M., 1979. The petrology of some coals and dispersed organic matter of Triassic to Cretaceous ages in Poolowanna 1 well (CSIRO Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report no. 989R for SADM, January 1979).

2977 R 14 [29 pages]

Sears, H.W., 1979. Results of the organic analysis of an oil sample taken during DST 2 over the depth interval 8216-8328 feet KB, to determine its petroleum geochemical composition, plus comparative results of analyses of some potential source rocks for this crude oil, as obtained from 11 selected sidewall core, drill cuttings and drill core samples taken over the depth interval 7755-8530 feet KB, to determine the petroleum geochemical composition of their organic extracts (Amdel Ltd contractor's report for SADM, 10/5/79).

2977 R 15 [13 pages]

Alexander, R. and Steveson, B.G., 1979. Results of carbon isotope ratio determinations for 6 selected samples of kerogen from the depth interval 2414-2601.5 metres KB (Amdel Ltd contractor's report for SADM, 28/5/79).

2977 R 16 [2 pages]

END OF CONTENTS

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA 82520 Pilot Piant: Osmond Place, Thebarton, Sth. Aust.
Phone Adelaide 43 8053
Branch Offices: Perth and Sydney
Associated with: Professional Consultants Australia Pty. Ltd.
Please address all correspondence to Frewville.
In reply quote: MP 1/13/7/0

2nd May, 1977

The Director,
Department of Mines,
PO Box 151,
EASTWOOD, SA 5063.

Attention: Mr R.A. Callen Regional Mapping

REPORT MP 3186/77

YOUR REFERENCE:

Application dated 4/4/77

MATERIAL:

Four clay samples (boxe cores)

LOCALITY:

Poolowanna Pillan 6445/3.

Poolowanna Loore, 12 m. north of Lake Peera Peera Poolanna

IDENTIFICATION:

P98 - P101/77

DATE RECEIVED:

6/4/77

WORK REQUIRED:

Bulk and -2µm (clay) mineralogy

Investigation and Report by: Dr R.N. Brown

Officer in Charge, Mineralogy/Petrology Section: Dr K.J. Henley

K.J. Henry

for F.R. Hartley Director

EXAMINATION OF FOUR CLAYS (POOLOWANNA 1 BORE)

INTRODUCTION

water

Four clays from Poolowanna 1_A bore were submitted by Mr R.A. Callen of the SA Department of Mines (Regional Mapping Section). The clay and non-clay mineralogy of the bulk samples and of the $-2\,\mu\mathrm{m}$ fractions were required (Amdel Code MC2).

PROCEDURE

X-ray diffractometer traces were recorded of powdered bulk material from each of the four samples. Weighed amounts of each were dispersed in water and sedimented to give $-2\,\mu m$ e.s.d. material by the pipette method. Oriented clay samples were prepared on ceramic plates from this, saturated with Mg⁺⁺ ions and treated with glycerol. Duplicate glycerol-free plates were prepared also in case required. The plates were examined in an X-ray diffractometer and in the case of P100/77 the glycerol-free plate was reexamined hot (approx. $130\,^{\circ}\text{C}$).

RESULTS

The results are given in Table 1, which lists the mineralogy of the bulk material and $-2\,\mu m$ fractions, giving the minerals in approximate order of decreasing abundance. It also gives the proportion of the bulk sample found to disperse into the $-2\,\mu m$ fraction.

4. SEMIQUANTITATIVE ABBREVIATIONS

The abbreviations in the table are defined as follows:-

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- CD = Co-dominant. Used for two (or more) predominating components, both or all of which are judged to be present in roughly equal amounts.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

TABLE 1

POOLOWANNA

WATER BORE

BULK AND -2 µm MINERALOGY OF FOUR CLAYS

SAMPLE	92-94 P98/77	120-130 P99/77	/00-/02 P100/77	84-86 P101/77	
Bulk Mineralogy	Dol D P A K A Q Tr	Q D K SD NA A Dol Tr	UC D Dol SD K A P? A M? A Q A	Q D K A M A F Tr Dol? Tr Cal? Tr	
-2μm Mineralogy	P D Do1 SD K SD RI A Mo A M A Q Tr	K D NA A P? A Mo Tr M? Tr Q Tr Dol Tr	K D RI SD P A M A Dol A Q Tr	M D K SD RI A-SD Mo A Q Tr	
Proportion of -2µm material	36%	32%	62%	6 3%	-
Mineral Key	Cal - Calci Dol - Dolom F - Felds K - Kaoli	ite Mo - Montm par NA - Natro nite (poss	illite RI - orillonite alunite ibly alunite) UC - orskite	Randomly-interstratification of indeterminate type Undefined clays - see for details	•

SR. 27/4/97 RB. 77/64 GS. 5892 Biostrat No. 13/77

PALYNOLOGICAL EXAMINATION OF MATERIAL FROM DELHI-SANTOS POOLOWANNA NO. 1 WATER BORE

Request submitted: R. Callen (Regional Geology) (March 1977)

Type of Sample: Cuttings

Sample No.: S4333

<u>Prepared by:</u> A.G.K. (27/6/77)

Location of Sample: Delhi-Santos Poolowanna No. 1 Water Bore

Latitude: 26°26'00"S

Longitude: 137041'30"E

Province: EROMANGA BASIN

POOLOWANNA 1:250 000 sheet (SG 53-12)

Pillan 1:100 000 sheet (6445)

Stratigraphic Information: Sample depth 140.00 - 148.00 m

(logged as EYRE FMN, EOCENE)

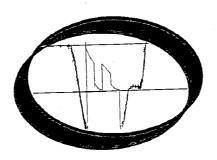
Light brown calcareous clayey sand.

(logged as grey and white carbon-

aceous silt with black carbonaceous

fragments and wood).

Results: Palynological preparation of material failed to


produce any identifiable organic residue. Therefore,

there is no palynological evidence as to age.

28/06/77

A.G. KRESS

PALAEOBOTONY SECTION

HALLIBURTON SERVICES

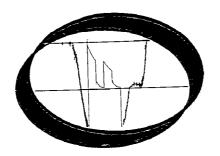
DUNCAN, OKLAHOMA

2977 R3

0/6/06-3427

016106- 4992

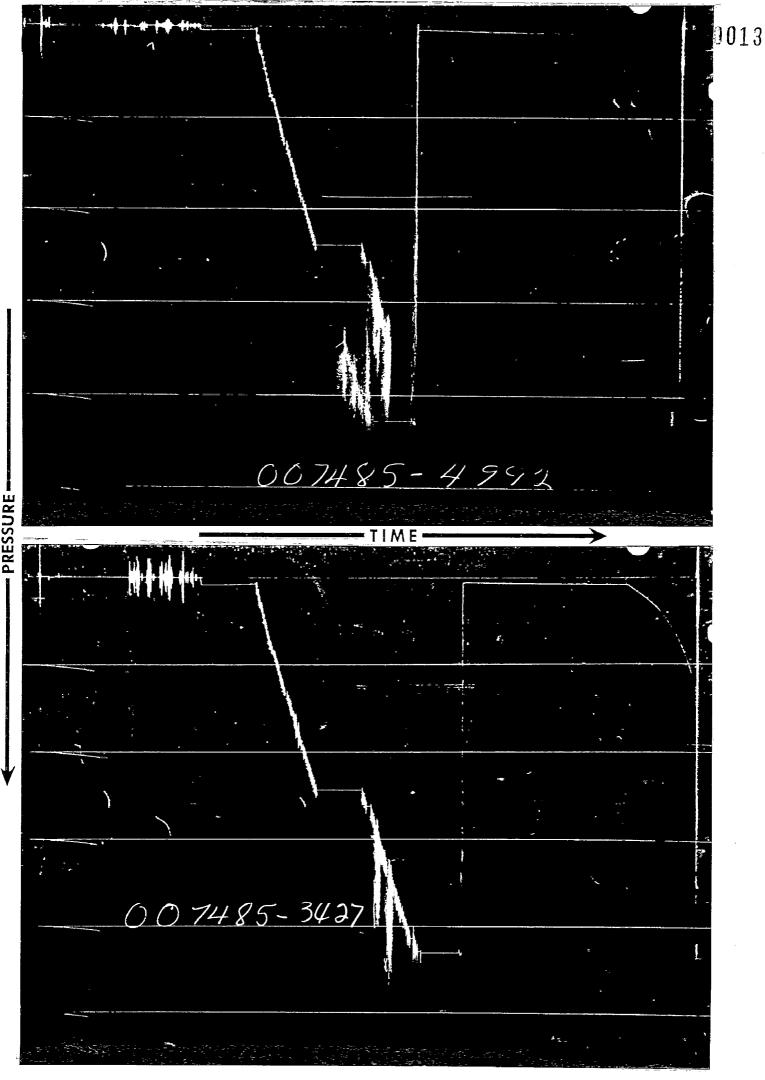
X= Lines in Etter


Each Horizontal Line Equal to 1000 p.s.i.

FLUI	ID SAMP	LE DAT	4	Date 8.	-28-77	Ticket Numbe	. מזכז	06	Lega Sec.	
Sampler Pressure		.P.S.I.G	. at Surface	Kind OF	PEN HOLE	Hallibu	0101	סט	Legal Location Sec Twp Rn	
Recovery: Cu. Ft.	. Gas			of Job F(DRMATION	TEST District		ВА	200	
cc. Oil		· · · · · · · · · · · · · · · · · · ·					_		ġ,	POOL AWANNA Lease Name
cc. Wo				Tester MF	R. LARKIN	Witness	?			Lea
cc. Mu				Drilling	ווזמת מר	NC COMPANY	D	-		S MA
Gravity	iquid cc	° API @	*F.			NG COMPANY			4	
Gravity Gas/Oil Ratio		AFI @	cu. ft./bbl.			Punni	DATA	\	4	
		ISTIVITY CH	LORIDE NTENT	Formation Teste Elevation		100'		<u> </u>	-	
		CC	NTENT	Net Productive I	nterval	8213' to 8	3281	Ft.	- [
Recovery Water		@ °F.	ppm	All Depths Meas		Kelly Bush		Ft.	-	
Recovery Mud		@	ppm	Total Depth		83281		Ft.	-	
Recovery Mud Fi		@ °F	ppm	Main Hole/Casi	ng Size	8 1/2"				
Mud Pit Sample		@°F	ppm	Drill Collar Len		540' 1.0	3.00	И	1	<
Mud Pit Sample I	Filtrate	@°F	ppm	Drill Pipe Lengt		7726' 1.0				Well No
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Packer Depth(s)_		8213'	8205	Ft.		, o
Mud Weight	· · · · · · · · · · · · · · · · · · ·	vis	sec	Depth Tester Vo	ive	8190'		Et.	_	
TYPE Cushion	THUOMA	Ft.	Depth Back Pres. Valve		Surface Choke	1/4" Bo	ttom noke 5/8"			1
_						17 1	3/0		-	7 Test No.
Recovered	360¹ Fe	et of mud-oil	cut.					Mea	Field	6
Recovered	2000 Fee	et of Oil.				,		a, From		!
								1		
Recovered	2500' Fee	et of salt wa	ter (mu	d cut)		 	·	Tester	_	
Recovered	640' Fee	et of Oil and	water (mud cut oi	٦\			r Valve	WILDCAT	
	0,0	or or and	Mucel (mud Cut Of	1/		· · · · · · · ·		DC	
Recovered	Fee	et of							AT	-
Remarks	SEE DONNIN	CTION TEST	האדא כטבי							8213' to
	JLL TRODO	STION ILUI	DATA SHE			·			-	neg
	···						÷			oto to
Charts indi	icate part	ial pluooir	og of anc	hor perfora	tions du	rina flow r	period		<u> </u>	
	To part		19 0,1 0,110	nor periora		Tring From p	- Tou.		Ç	8328
									unty	-
:		,				· F444				
	Gauge No.	2027	Gauge No.	4000	, (C) N:				1	'
TEMPERATURE		3427 8195 _{Ft.}	-	4992 8324 Ft.	Gauge No.		Т	IME		
	Depth:	8195 Ft. 12 Hour Clock	Depth:	8324 Ft. 12Hour Clock	Depth:	Ft.	- ,		4	DELHI
Est. °F.	Blanked Off	NO	Blanked Off		Blanked Off	Hour Clock	Tool . Opened	A.M.	'	I
			Didiaca Ott		Didliked Off		Opened	6:49P.M. A.M.	1 .	Z
Actual 260 °F.	Pres	ssures	Pre	essures	Pre	essures	Bypass	8:00 ^{P.M.}		
	Field	Office	Field	Office	Field	Office	Reported	Computed	1	
Initial Hydrostatic	4096	4098	4159	4165			Minutes	Minutes	<u> </u>	AT
#3 Flow	370	372-Q	451	522					State	§ [5]
Flow Final	2154	2162	2184	2241		,	71	 	6	§ ≥
Closed in					•				SO	Omp
Flow Initial									HTUOS	9 =
Flow Final									1 1	NO C
Ciosea in									AUS	8 8
Flow Final									IIS	INTERNATIONAL OIL COMPANY Lease Owner/Company Name
Closed in	-								TRAL	1
Final Hydrostatic	4096	4088	4159	4154				<u> </u>	ΛI	
, = 35.5	0 = QUES		7133	+104		<u> </u>		ļ		
	0 - 0053	TOWADE		1		1				1

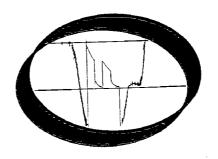
Casing	perfs		Bottom	choke	5/8"	_Surf. temp°F Ticket No016106
Gas gr	ravity	····	Oil gra Chloric	vity		_GOR
Spec.	ATE TYPE	AND SIZE	OF GAS MEA	SURING DEVICE (JSED	pm Res@20*F
Date Time	a,m, p,m.	Choke Size	Surface Pressure psi	Gas Rate MCF	Liquid Rate BPD	Remarks
	8-28-77					·
	6:49 AN	1/4		·		Opened test tool.
	6:54	tt				Weak blow at surface.
	7:49			· · · · · · · · · · · · · · · · · · ·		Attempted to close dual CIP.
			·			Drill collars above tool wall, sticking
						Drill pipe torquing up.
<u> </u>	8:00					Pulled tool loose and came out of the
					7.4	hole.
_						
		•				
····						

TICKET NO. 016106


<u> </u>		O. D.	I. D.	LENGTH	DEPTH
	Drill Pipe or Tubing	<u> </u>			
	Reversing Sub	6"	3"	12"	
136	Water Cushion Valve				
	Drill Pipe	4.50"	3.826"	7726'	
	Drill Collars	6.25"	3.00"	540'	İ
	Handling Sub & Choke Assembly	5"	5/8"	23.50'	
	Dual CIP Vaive	5"	.87"	58.98"	
	Dual CIP Sampler				
	Hydro-Spring Tester	5"	.75"	60.21"	8190'
	Multiple CIP Sampler				
	Extension Joint				
	AP Running Case	<u> 5"</u>	3.06"	49.63"	8195'
	Hydraulic Jar	5"	.87"	39.66"	
> 0	VR Safety Joint	<u>5"</u>	1."	33.40 ¹¹	
	Pressure Equalizing Crossover				
1	Packer Assembly	7.75"	1.75"	72.33"	8205'
	Distributor	5"	1.68"	24"	
	Packer Assembly	7.75"	1.75"	72.33"	8213'
	Flush Joint Anchor				
	Blanked-Off B.T. Running Case	5"	2.44"	48.71"	83241
	Drill Collars				
	Packer Assembly				
	Distributor				
	Packer Assembly				
>	Anchor Pipe Safety Joint		<u></u>		
	Side Wall Anchor				
	Drill Collars				
	Flush Joint Anchor	<u></u>			
	Blanked-Off B.T. Running Case				
	Total Depth				8328'

HALLIBURTON SERVICES

DUNCAN, OKLAHOMA



Each Horizontal Line Equal to 1000 p.s.i.

FLUI		LE DAT		Date 9-	2-77	Tick Num		185	Legal Location Sec Twp R		
Sampler Pressure Recovery: Cu. Ft.	C		. at Surface	Kind of Job OPI	EN HOLE	Halli	burton ict SING	NDODE	wp.		
cc. Oil				0,700 0,1	-IV HOLL	Distr	101 311/0	IAFURE			
cc. Wo				Tester C.	KENNEY	Witn	iess M. W	ILTSHIRE	-	- 5 -	2
cc. Mu	.d		i	Drilling				2210112112	LONG 137	Lease Name	DOOL OWANNA
Tot. Li	quid cc.			Contractor				DR	6.7		⋛
Gravity		° API @	°F.	E	QUIPM	ENT & HO	LE DAT	· A	137		2
Gas/Oil Ratio			cu. ft./bbl.	Formation Tes	ted	Wildcat S	and		765	3 5	S
	RESIS	STIVITY CH	ILORIDE NTENT	Elevation		100'		Ft.	ا كار	7	
				Net Productive		81		Ft.	<u>_</u> _ <u>4</u>	9	
Recovery Water	· —	[@] °F	ppm	All Depths Me	asured Fro	mKelly Bushi	ng		31 1	₹ .	
Recovery Mud		@ °F	ppm	Total Depth_		8642'		Ft	E	4	
Recovery Mud Fi		@°F	ppm	Main Hole/Co	sing Size_	8 1/2"					
Mud Pit Sample		@ °F	ppm	Drill Collar Le	ength	418./5	I.D. 2 13	/16"	_	€	
Mud Pit Sample I	Filtrate(@°F	ppm	Drill Pipe Len		8186.34'	I.D. 3.82	<u> </u>	.]	Well No.	_
Advid Mataba	0.6		40	Packer Depth(s	:)	8577-85851		Ft.	.	ó	
Mud Weight	9.6	vis	4Z sec	Depth Tester \	/alve	8559'		Ft.	4	'	
TYPE Cushion	THUOMA	E.	Depth Back		Surface	Bubble	Bottom	. 91		1	
Cusition		Pt,	Pres. Valve		Choke	hose	Choke 3/4	·"] [
Recovered 11	10 Fee	t of trace o	distillan	t, mud and	trace	of oil at t	he botto	om Meo.	Field Area	Test No.	
Recovered	Fee	t of			·			. From	1		J
Recovered	Fee	t of						n Tester	WILDCAT		
	_							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ΙĂΤ		
Recovered	Fee	t of	······					Valve			
Recovered	· Fee	• • •									
Recovered	ree					······································				Tes	_
Remarks	SEE PRODU	JCTION TEST	DATA SHI	FFT			. 7			Tested Interval	37,0
	OLL TROBE	3011011 1231	DATA SIII						-		ñ
										sted Interval	ν O
							7,7 11 /1		1	†	Š
											_
									County		
	·····								₹		
	Gauge No. Z	1000	Gauge No.	2427	Gauge	NI-				'	
TEMPERATURE		1992 3564 ft.	1	0.000		No.		TIME	AUSTRAI		
		3564 Ft. 2 Hour Clock	Depth:	12 Hour Clos	t. Depth:	Hour Clo	Ft.		묷		_
Est. °F.	Blanked Off		Blanked Off		Blanke			A.M.		DELHI	Ξ
1.	Didirked Off			1.03	bignike	ı Off	Opened Opened	0524 p.m. A.M.	 ⋝		
Actual 260 °F.	Dree	sures	Dec	essures		Pressures	Bypass	1003 P.M.		MYC	ξ
7.0.dd: 200 1.	Field	Office	Field	Office	Field		Reporte		-		
Initial Hydrostatic	4278	4279	<u> </u>		Field	d Office				E I AL	4
1	64		4307	4302			Minute	s Minutes	ş	\$ F	=
Flow Final	97	54 59	67	64				·	State	ner/	
Closed in	2008		101	82			181		4	Ç	
	2000	2022	CHART	1245			98		S	npa	
Flow Final	 	T	CHART		-				HThos	E IAL Lease Owner/Company Name	
Closed in	 	 	EXPIRE	J	<u> </u>				早	ig i	
t					-				AUS	6	
Flow Final	1				-				ISI		
Closed in	 				-				TRAL		
Final Hydrostatic	4278	4259			-						
	12.0	7,200		 	+				P		
	<u> </u>	J	L	<u></u>	1				1	1	

Gas gravity		Oil on	ovitv		
Spec. gravity		Chlori	des		ppm Res @ •=
INDICATE TYPE	AND SIZE	OF GAS MEA	SURING DEVICE	USED	
Date Time a.m. p.m.	Choke Size	Surface Pressure psi	Gas Rate MCF	Liquid Rate BPD	Remarks
2200					Wound clocks and loaded bt.
2330					Started making up tools and went in hol
0500					Made up control head
0522					Set packer
0524		* · · · · · · · · · · · · · · · · · · ·			Opened tool with no blow
0610					First bubble in bucket
0645		- 			Bubble off bottom of bucket
0725					Gas to surface
0825					Closed tool
T003					Unseated packer, broke off surface
					equipment and started out of hole.
1540					Out of hole with tools
			·		
			·		
			· · · · · · · · · · · · · · · · · · ·		
					
. 11					

	O. D.	I.D.	LENGTH	DEPTH
Drill Pipe or Tubing	6"	3"	1.00'	
Reversing Sub			1.00	
Water Cushion Valve				
Drill Pipe		3.826"	8186.34'	
Drill Collars		2 13/16"	388.87'	
Handling Sub & Choke Assembly	6"	2 5/8"	2.18'	•
Dual CIP Valve	- "	7.8"	4.50'	
Dual CIP Sampler		311	.62' Change	over
Hydro-Spring Tester	5"	3/4"	5.00'	8559'
·				
Multiple CIP Sampler				
Extension Joint				
AP Running Case	5"	2 1/4"	4.10	85641
_				_000+
Hydraulic.Jar	5"	1"	3.281	
VR Safety Joint	5"	71	2.36'	
Pressure Equalizing Crossover		_1	4.30	
Treasure Equalizing Crossover				
Packer Assembly	7 3/4"	1 1/2"	6.17'	8577 '
<u> </u>				
·	5"	7 77 /7 611	0.001	
Distributor		1 11/16"	2.00'	
Packer Assembly	7 3/4"	1 1/2"	6.17'	85851
rucker Assembly	1 VI =	1 1/2	0.17	<u> </u>
Flush Joint Anchor				
Pressure Equalizing Tube				
		· · · · · · · · · · · · · · · · · · ·		
Blanked-Off B.T. Running Case				
		-		
Drill Collars				
Anchor Pipe Safety Joint				
_				
Darling Assessed		•		
Packer Assembly				
Distributor				-
Packer Assembly				
·				
				<i>y</i>
A I De Contra	E.II	7 7 / 0 11	4.001	
Anchor Pipe Safety Joint	5" 5 13/16"	1 1/2"	4.00'	
		2 3/8"	.70' X over	
Side Wall Anchor				
5 (1) 6 (1)	6 1/2"	2 13/16"	29.88'	
Drill Collars	6 1/2"	2 1/2"	.63' X over	
Plat to A. A. ala	5"	4 1/4	18.00°	
Flush Joint Anchor			10.00	
Blanked-Off B.T. Running Case	5"		4.08'	86381

HALLIBURTON SERVICES

DUNCAN, OKLAHOMA

2977 R 5

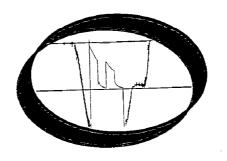
1018

16/12-3427

TIME

016/12-4992

Each Horizontal Line Equal to 1000 p.s.i.


FLUI	D CA447		F A	l		T:-14		-	Ν. 1	+3
				Date 9-2	29-77	Ticket Number	016112		Legal L Sec T	
Sampler Pressure		P.S.I	.G. at Surface	Kind HOC	ו ואזיאר ו	Halliburi	on Allemanti	٨	wp.	
Recovery: Cu. Ft.	-			of Job HO(DKWALL	District	AUSTRALIA	1	39	
cc. Wa	-			Tester MR.	. LARKINS	Witness	MR. GESTE	F	۴	- -
cc. Mu					- Limitatio	TTTTTESS	race and		┨	Lease Name
	quid cc.	-		Drilling Contractor ODE	E DRILLING	COMPANY R	IG # 5 bjs			Z Z
Gravity		° API @	°F.		UIPMENT				1	a A
Gas/Oil Ratio			cu. ft./bbl.	Formation Teste	d_ -				1	NA NA
	RES	ISTIVITY	CHLORIDE CONTENT	Elevation	-			Ft.		
n			,	Net Productive I			8413'-25'Per	TA.		
Recovery Water		@°F	ppm	All Depths Meas		elly Bushi	ng			
Recovery Mud		@°F.	ppm			053'		Ft.		1
Recovery Mud Fil Mud Pit Sample	trate	@°f @°f	ppm	4	119 312E					1
Mud Pit Sample F	iltrate	@	ppm		gm	1.D.	0 0000			₹
		<u> </u>		2pc _c,.g,	··· 	360'	L. 33L	— l		Well No.
Mud Weight		vis	sec	Packer Depth(s)_ Depth Tester Vo		346		Ft.		
TYPE	AMOUNT	4-1	Depth Back		Surface		tom	Ft.	1	
Cushion		F	t. Pres. Valve	2	Choke		oke 5/8"			4
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			Test No.
Recovered ,	Fe	et of RECO	VERED 3.65	barrels of	condensat	te and 4.2	5 barrels	Mea.	Field Area	ž 6
	_							10		1
Recovered		et of Of W	ater.					From	S	ı
Recovered	P.							1 - 1	WILDCAT	
Recovered	re	et of						Tester	CA	
Recovered	Fa	et of						Valve	-	
		Et 01						— ₹		
Recovered ·	Fe	et of					•			
					· · · · · · · · · · · · · · · · · · ·	····		<u>-</u>		8360' to
Remarks SE	E PRODUCT	TION TEST I	DATA SHEET							
							· · · · · · · · · · · · · · · · · · ·			terv
Q	= QUESTIO	NABLE		·						0 0
										9
	·							ı		90
									C	053
									Count	0531
							H		County	053'
				<u> </u>	,				County	053'
TEMPERATURE	Gauge No.	3427	Gauge No.	4992	Gauge No.	· .			County	053'
TEMPERATURE	i -	8352' #	Gauge No.	4992 8370' Ft.		· Ft.	TIME		County	• • • • • • • • • • • • • • • • • • •
TEMPERATURE	Depth:	83521 F 72 Hour Clos	t. Depth:		_	Ft. Hour Clock	Tool 9-28-	A M	County	• • • • • • • • • • • • • • • • • • •
TEMPERATURE Est. °F.	i -	83521 F 72 Hour Clos	t. Depth:	8370			Tool 9-28-7	A.M. P.M.	County	• • • • • • • • • • • • • • • • • • •
Est. •F.	Depth:	83521 F 72 Hour Clos	t. Depth:	8370	Depth:		Tool 9-28-7 Opened 0600 Opened 9-29-7	A.M. P.M. A.M.	County	DELHI
Est. •F.	Depth: Blanked Off .	83521 F 72 Hour Clos	t. Depth:	8370	Depth:	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 ii	A.M. P.M. A.M. P.M.		DELHI INT
Est. °F. Actual 242 °F.	Blanked Off . Pre	8352 ' F 72 Hour Clos NO	tt. Depth: ck Blanked Off Pr Field	8370 Ft. 72 Hour Clock f YES ressures Office	Depth: Blanked Off	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7	A.M. P.M. A.M. P.M.		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic	Blanked Off . Pre Field 4029	8352 1 F 72 Hour Cloc N0 essures Office 4025	Blanked Off Pr Field 4030	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 ii	A.M. P.M. A.M. P.M. uted		9053' DELHI INTERNAT
Est. °F. Actual 242 °F. Initial Hydrostatic	Blanked Off . Pre Field 4029 50	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28- 7 Opened 0600 Opened 9-29- 7 Bypass 0600 I Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Property Initial Final	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Final Closed in	Blanked Off . Pre Field 4029 50	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28- 7 Opened 0600 Opened 9-29- 7 Bypass 0600 I Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Final Closed in	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Plow Initial Closed in Closed in Flow Initial Final Final Final	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Closed in Closed in Closed in Closed in	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Plant Initial Final Closed in Closed	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Closed in Closed in Closed in Flow Initial Final Closed in Final Final Final Final Final Final Final Final	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo	A.M. P.M. A.M. P.M. uted utes		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Closed in Closed in Closed in Flow Final Closed in Closed in Closed in Closed in Closed in Closed in	Depth: Blanked Off . Pre Field 4029 50 387 3109	8352 1 F 72 Hour Cloc N0	Pr Field 4030 64 603 3134	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo Minutes Minu ————————————————————————————————————	A.M. P.M. A.M. P.M. uted utes		DELHI INT
Est. °F. Actual 242 °F. Initial Hydrostatic Flow Initial Closed in Closed in Closed in Closed in Flow Initial Final Final Closed in Final Final Final Final Final Final Final Final Final	Blanked Off . Pre Field 4029 50 387	8352 1 F 72 Hour Cloc N0	Blanked Off Pr Field 4030 64 603	8370	Depth: Blanked Off Press	Hour Clock	Tool 9-28-7 Opened 0600 Opened 9-29-7 Bypass 0600 1 Reported Compo Minutes Minu ————————————————————————————————————	A.M. P.M. A.M. P.M. uted utes		DELHI

8394	21-981	251 Basson		E /OII	Surf. temp°F Ticket No. 016112
Gas gravity		Oil gr	ovity	<u></u> .	GOR
			des		m Res
Date 9-29-77 Time a.m. p.m.	Choke	Surface Pressure psi	Gas Rate MCF	Liquid Rate BPD	Remarks
0600	1/2				Opened tool with a good blow to mod-
					erate in 40 minutes.
0940	1/2				Gas to surface with 1 to 2' flame at
					flare line.
1355	1/2				Closed tool.
0600					Pulled tool loose. Pulled out of hole
1050					Oil and condensate in tubing. Reverse
					circulated and put fluid through sep-
					erator.
1130					Tools out of the hole.
					Recovered 3.65 barrels of oil and
				,	condensate. 4.25 barrels of water.
-		1	ı		
		,			
		•			
-		• •			
				8	
		İ	t	1	1

Gauge No.	342	7		Depth	835	2	Clock No	Clock No. 6248			Ticket No.	016112		
First Flow Period			First osed In Pressi		Seco Flow F		Cle	Second psed In Pressi		Th Flow I		Clo	Third osed In Pressu	ure
	PSIG emp. Corr.	Time Defl. .000"	$Log \frac{t+\theta}{\theta}$	PSIG Temp. Corr.	Time Defi. .000"	PSIG Temp, Corr.	Time Defl. .000"	$Log \frac{t+\theta}{\theta}$	PSIG Temp. Corr.	Time Defl. .000"	PSIG Temp, Corr.	Time Defi. .000"	$log \frac{t+\theta}{\theta}$	P51G Temp. Corr.
	2-Q	.0000		388										
	53	.0698**		1655									!	
	15	.1408	•	2089										
	58	.2117	•	2326								,		
	05	.2827	•	2477								`		
5 .4403 34		.3536		2594										
6 .5280 38	88	.4245		2682										
7		.4955		2761										<u></u>
8		.5664		2826										
9		.6374		2883										
10		.7083		2935										
11		.7792		2982										
12		.8502		3023										
13		.9211		3059										
14		.9921		3095										
15		1.0630		3124			<u> </u>		<u> </u>	ll				
Gauge No.	499	2		Depth	8370		Cłock No	o. 1166	in.	72 hour				
0 .0000 95		.0000		402	0370		CIOCK 140	1100		I TIOUT		1	I	
1 .0891* 16		.0686**		1659										ļ-
2 .1761 23		.1383	• • • • • • • • • • • • • • • • • • • •	2105						 				
	76	.2079		2340						<u> </u>				
4 .3501 32	22	.2776		2492		· · · · · · · · · · · · · · · · · · ·								
	64	.3473		2607										
	02	.4169		2697										
7		.4866		2773		.,								
8		.5563		2837										
9		.6259		2895										
10	-	.6956		2945										
11		.7653		2991										
12	<u>-</u>	.8350		3033										
13	l	.9046		3070				· · · · · · · · · · · · · · · · · · ·						
14		.9743		3103										
15		1.0440		3133										
Reading Interval	80		64		:	************					_			Minutes
REMARKS: * IN	TERVA	L = 82 M		* INTERV	AL = 63	MINUTES	Q = QUE	STIONABL	E	······································				
											-			

0022

		O. D.	I. D.	LENGTH	DEPTH
	Drill Pipe or Tubing				
	Reversing Sub				
	Water Cushion Valve	0 50"	0.0001	00071	
			2.992"	83271	
	Drill Collars				
Щ	Handling Sub & Choke Assembly Dual CIP Valve	0.7.01			
				5'	
Щ	Dual CIP Sampler	2.7/08			
	Hydro-Spring Tester	3 //8"		5'	8346
	Multiple CIP Sampler				
H					
	Extension Joint				
	15.5 · 4				8352'
	AP Running Case				0332
Π	Hydroudie Jos				
Щ	Hydraulic Jar			····	
M	VR Safety Joint	3 7/8"			
	Pressure Equalizing Crossover				
	Pressure Equalizing Crossover	· · · · · · · · · · · · · · · · · · ·			
	Packer Assembly				
	rucker resembly		· · · · · · · · · · · · · · · · · · ·	 	
		т.			
\Box	Distributor				
					
	Packer Assembly				
	•	• :	,		
-		,			
Ę.	Flush Joint Anchor		·		
e e e e e e e e e e e e e e e e e e e	Pressure Equalizing Tube				
77		٠			
Ш	Blanked-Off B.T. Running Case				
	•				r
	Drill Collars				•
 	Anchor Pipe Safety Joint				
口					•
	5				
	Packer Assembly				
	Dietzihutoz				
	Distributor			 	•
	Packer Assembly `	ı			
	Tacker / Sacrinary				
					<i>:</i>
V					
Щ	Anchor Pipe Safety Joint				-
鳥	11001/ 1101 1	7 II			00001
	Side Wall Anchor HOOK WALL	<u>7"</u>			8360'
			ممر ب		
	Drill Collars				-
					•
	Flush Joint Anchor			· • · · · · · · · · · · · · · · · · · ·	-
		3 3/Vii			8370'
	Blanked-Off B.T. Running Case	J J/#		 	
				•	9053'
10 IV	Total Depth				2033

0/6/13-3427

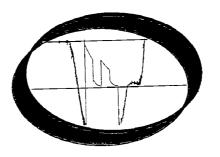
TIME

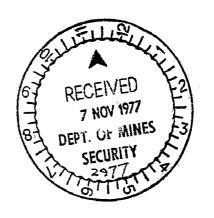
016113-4992

Each Horizontal Line Equal to 1000 p.s.i.

FLUI	D SAMPL	E DATA		9- Date	29-77	Ticket Number	016113		Legal L Sec T	
Sampler Pressure_		P.S.I.G.	at Surface	Kind HO	OK WALL	Hallibu	ton AUSTRAL	IA	Location Twp Rng.	
Recovery: Cu. Ft.	Gas			of Job		District			ang Mg	
cc. Oil cc. Wat				MF Tester	. LARKIN	S . Witness	MR. GESI	E	ľ	-
cc. Muc						VVIII ESS		 -	1	Lease
	uid cc.			Drilling Contractor ()	D F DRI	LLING COMPA	NY RIG #5	BC S		N P
Gravity		API @	• F .			NT & HOLE			1	POOLAWANNA
Gas/Oil Ratio			cu. ft./bbl.				· · · · · · · · · · · · · · · · · · ·		1	≥
· · · · · · · · · · · · · · · · · · ·	RESIST		LORIDE NTENT	Elevation				Ft.		
		COI	NTENT	Net Productive	Interval			Ft.		
Recovery Water	@		ppm	All Depths Med	sured From	Kelly Bush	ing			
Recovery Mud	@	°F	ppm	Total Depth_		9053'		Ft.		
Recovery Mud Filt			ppm	Main, Hole/Cas	ing Size	7"				1
Mud Pit Sample	@		ppm			<u> </u>)			₹-
Mud Pit Sample F	iltrate @	°F	ppm	Drill Pipe Leng	yth		2.922"			Well No.
				Packer Depth(s)	·	8438'		Ft.	1	6
Mud Weight		vis	sec	Depth Tester V	alve	84241	······································	Et.	1	
TYPE	AMOUNT		Depth Back	k	Surface		ttom			11
Cushion		Ft.	Pres. Valve	e	Choke		hoke		<u> </u>	J se 7
Recovered	3869 Feet	of Brine	filtrate	e gas cut w	ater			-	Field Area	7 Test No.
Recovered	OOOD TEEL	0, 5, 1110	. , , , , , , ,	- 345 646 7		 		Mea.	8 2	
Recovered	Feet	of						From	Σ	١,
		<u> </u>						š	WILDCAT	
Recovered	Feet	of						Tester	Įζ	
								9	=	
Recovered	Feet	of			,	•		Valva	1	84
										8438
Recovered	Feet	of								10
				,						Tested Interval
Remarks	SEE PRODU	CTION TEST	I DATA SI	HEEI.					1	100
					*				1	333
			· · · · · · · · · · · · · · · · · · ·						-	
										4
									ह	
									County	
									1	
									}	'E
	Gauge No. 3	427	Gauge No.	4992	Gauge No),		_	7	DELHI
TEMPERATURE	Depth:	430 Ft.	Depth:	8452' F	t. Depth:	Ft	TIM	E		
		2 Hour Clock		72 Hour Cloc		Hour Clock	Tool	₹. 7 7.	1	
Est. 255 °F.		No	Blanked Of	r Yes_	Blanked C	Ήf	Opened 10:	20 P.M.]	
	,		,				Opened	A.M.	7 .	R
Actual •F.	Press	ures	P	ressures		Pressures	Bypass 10:		₫	
	Field	Office	Field	Office	Field	Office	Reported	Computed		Pas
Initial Hydrostatic	4074	4091	4077	4073			Minutes	Minutes	100	ON
-9 Fig. Initial	44	44	32	45					State	wne
Flow Final	1422	1435	1309	1408			240	240	1	\(\frac{7}{2} \)
Closed in	3694	3700	3684	3684			484	484	HTTUOS	INTERNATIONAL OIL CORPORATION Lease Owner/Company Name
Flow Initial									15	¥ C
Pinol									1	
Closed In									AUSTRALIA	8 8
PB Flow Initial									15	
E Final									∐ ≊	
Closed in									11	
—										
Final Hydrostatic	4074	4091	4077	4073					-[

Casing perfs.	452' -	- 8466 l	n choke 5/	/8"	Surf, temp °F Ticket No
Gas gravity		Oil gro	vity		GOR
			des		m Res
Date Time a.m.	Choke Size	Surface Pressure -psi	Gas Rate MCF	Liquid Rate BPD	Remarks
10:20 PM					Opened tool with a strong blow for
					20 minutes, then a moderate to weak
			·		blow at surface
2:20 AM	·				Closed tool
10:24					Pulled tool loose, pulled out of hole
					
		,			
	`				
Ì					
		-			
			:		
				,	
-					


Gauge	e No.	3427	,		Depth	8430) [Clock No	6428	3	72 hour	Ticket No.	01611	3	
FI	First low Period		Cle	First osed In Press		Seco Flow	Period	CI	Second osed In Pressu		Th Flow F	ird Period	Ci	Third osed In Pressu	ıre
Time	e Defl. P	SIG imp. orr,	Time Defl. .000"	$Log \frac{t+\theta}{\theta}$	PSIG Temp. Corr.	Time Defi. .000"	PSIG Temp. Corr.	Time Defi. .000"	$log \frac{t + \theta}{\theta}$	PSIG Temp. Corr.	Time Deff. .000"	PSIG Temp. Corr.	Time Defl. .000"	$Log \frac{t + \theta}{\theta}$	PSIG Temp. Corr.
0 .00	000 44		.0000		1435						1		1		
	440 24	3	.0089		3648										
2 .08	880 46	1	.0177	,	3658								1		
3 .13	320 70	7	.0266	-	3665			 					,		
4 .17	760 96	2	.0354	•	3670		· · · · · · · · · · · · · · · · · · ·							\	
5 .22	200 12	12	.0443		3673					- · · · · · · · · · · · · · · · · · · ·			1		
		35	.0532		3675										
7			.0620		3677										
8			.0709		3678										
9			.0797		3682										
10			.0886		3683										
11			.1772		3690										
12			.2658		3695										
13		1	.3544		3697								1		
14			.4430		3698										
15			.5360		3700										
C	- 60-	499	n		D41-	84521		Clock No	o. 11660		72 hour				
Gauge					Depth 1408	0432	<u> </u>	UDER INC). I 100U	<u> </u>	72 hour		11	1	
		 	.0000					11		i	11 1		H		
		1			I ዓራስማ	11	i								
2 .08		V. II	017/		3627										
2 12	873 43	9	.0087		3641										
3 .13	310 67	2	.0174		3641 3648				1						
3 .13 4 .17	310 67 747 92	7	.0174 .0261 .0348		3641 3648 3653										
3 .13 4 .17 5 .21	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436		3641 3648 3653 3656				-						
3 .13 4 .17 5 .21 6 .26	310 67 747 92 183 11	7	.0174 .0261 .0348 .0436 .0523		3641 3648 3653 3656 3659										
3 .13 4 .17 5 .21 6 .26 7	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523		3641 3648 3653 3656 3659 3661										
3 .13 4 .17 5 .21 6 .26 7	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610		3641 3648 3653 3656 3659 3661 3663										
3 .13 4 .17 5 .21 6 .26 7	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697		3641 3648 3653 3656 3659 3661 3663 3664										
3 .13 4 .17 5 .21 6 .26 7 8	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784		3641 3648 3653 3656 3659 3661 3663 3664 3666										
3 .13 4 .17 5 .21 6 .26 7 8 9	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784 .0871		3641 3648 3653 3656 3659 3661 3663 3664 3666 3673										
3 .13 4 .17 5 .21 6 .26 7 8 9 10 11	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784 .0871 .1742		3641 3648 3653 3656 3659 3661 3663 3664 3666 3673 3678										
3 .13 4 .17 5 .21 6 .26 7	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784 .0871 .1742 .2613		3641 3648 3653 3656 3659 3661 3663 3664 3666 3673 3678 3681										
3 .13 4 .17 5 .21 6 .26 7 8 9 10 11 12 13 14	310 67 747 92 183 11	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784 .0871 .1742 .2613 .3484 .4355		3641 3648 3653 3656 3659 3661 3663 3664 3666 3673 3678 3681 3683										
3 .13 4 .17 5 .21 6 .26 7	310 67 747 92 183 11 620 14	2 7 87	.0174 .0261 .0348 .0436 .0523 .0610 .0697 .0784 .0871 .1742 .2613	*	3641 3648 3653 3656 3659 3661 3663 3664 3666 3673 3678 3681										Minute


0023

016113

TICKET NO.

0. D. I.D. LENGTH DEPTH Drill Pipe or Tubing 3.5" 2.922" 84151 Drill Pipe______ Drill Collars Handling Sub & Choke Assembly Dual CIP Valve 3 7/8" 8424 Hydro-Spring Tester Extension Joint 8430' AP Running Case Hydraulic Jar Pressure Equalizing Crossover Packer Assembly Flush Joint Anchor Pressure Equalizing Tube Blanked-Off B.T. Running Case Drill Collars Anchor Pipe Safety Joint Packer Assembly Distributor Żⁿ Packer Assembly Hook Wall 84381 Anchor Pipe Safety Joint Side Wall Anchor Drill Collars 3 3/4" 84521 Blanked-Off B.T. Running Case 9053' Total Depth

2977 R 7

Each Horizontal Line Equal to 1000 p.s.i.

					***************************************				-	4 1
FLU	ID SAMP	LE DAT	A	Date	1-10-77	Ticket Number	0161	14	Sec	
Sampler Pressure		.P.S.1.0	3. at Surface	Kind	ı	1.1.11:1			Twp	
Recovery: Cu. Ft			***	of Job	100K WALL	District	AUST	RALIA	ation Rng	
cc. Oil	**********			Tortes	LADICTNO		0505		ė	
cc. Mi	***************************************				LARKINS	Witness	GEST	<u> </u>	4:	POOLAWANNA
	iquid cc			Drilling Contractor	O D E RIO	2 # 5		NM S		° 0
Gravity		° API @	°F.		UIPMEN		DATA	NM S	-	me A
Gas/Oil Ratio			cu. ft./bbl.	Formation Teste			- DATA		-	A
,	RESIS	TIVITY C	HLORIDE ONTENT	Elevation		-		Ft.	-	NA
b			SITIENT	Net Productive	Interval	•	······································	Ft.	٠,	
Recovery Water		[@] °F	ppm	All Depths Mea	sured From		shing			
Recovery Mud Recovery Mud Fi		@•F	ppm	Total Depth		9053'		Ft.		
Mud Pit Sample		ற்°F ஐ°F	ppm ppm	Main Hole/Cas		-				1
Mud Pit Sample			ppm	Drill Collar Ler	ngth	- I.D	·	0001		<u></u> ≨:
				Drill Pipe Leng Packer Depth(s)		8810' I.D 8835'		.992"	.	Well No.
Mud Weight		vis	sec			88211		Ft.	ļ	
TYPE	AMOUNT		Depth Back		Surface		ttom	<u>Ft.</u>	1	,
Cushion N	ONE	Ft.	Pres. Valve	NONE				5/8"		4
	_	_							 	Test No.
Recovered 20	O¹ Fee	tof salt	water					Mea	Field Area	6
Recovered	Feet	L =£						o.	[-	
Kecovered	гее	ror							Σ	
Recovered	Feet	t of						1	WILDCAT	
	7 000							Tester	100	
Recovered	Feet	of						Valve	=	_
										8835
Recovered	Feet	of	•			1				
_				,			· ·			Tested Interval
Remarks	Tool or	<u>pened at l</u>	<u>0:35 PM w</u>	<u>iith a stroi</u>	ng blow -	moderate t	o a weak	blow		1 2 9
. 30 4										9053
<u>at 10:40</u>	U_PM Clos	sed tool t	or a 469	minute clos	sed in pr	<u>essure. SE</u>	E PRODUC	TION		-
TEST DV.	TA_SHEET									
ILSI DA	IA SHEEL					····	······································		ဂ္ဂ	
									County	
							·			
	T			Q-Question						
TEMPERATURE	Gauge No.	3427	Gauge No.	4992	Gauge No.		TIA	AE		1
<u> </u>	Depth:	8827 Ft.		8845 ° Ft.		Ft.		16	1	DE
Est. °F.	72	Hour Clock		72 Hour Clock		Hour Clock	Tool	A.M.		
Est. °F.	Blanked Off	NO NO	Blanked Off	YES	Blanked Off			0:35 p.m.		I I
Actual 260°F.	Press	i irac	D=/	essures	D.		Opened Bypass 2	A.M. :35 P.M.		Z
	Field	Office	Field	Office	Field	essures	Reported	Computed		
Initial Hydrostatic	4246.6	4270 0	4249.8	4245	rieid	Office	Minutes	Manda	<u> </u>	
De Initial	16.8	57	32.2	74			Minutes	Minutes	Sto	
Flow Final	100.7	101	112.6	104		+	240	244	2.0	§ 9
Closed in	3460.6	3468	3465.9	3458			473	469	State SOUTH	DELHI-INTERNATIONAL OIL CORPORATION Lease Owner/Company Name
Flow Initial	•			1					물	O G
Flow Final										침드
Closed in									ISI	₩ C
Flow Final									R	PF
Closed in				ļ					AUSTRALIA	Š
Final Hydrostatic	4246.6	4270 0	4269.8	4245					>	AT
.,	7270.0	7270 Q	7203.0	7245						0.1
	<u> </u>			<u> </u>	<u> </u>					Z

			0 - 8890'	3/8"	Surf. temp°F Ticket No016114
Cosmy peris	· · · · · · · · · · · · · · · · · · ·	1100 110	11 U IURE		COP TICKET NO.
Gas gravity		Oii gro	ovity		GOR
					m kes°F
INDICATE TYPE	AND SIZE	OF GAS MEA	SURING DEVICE I	USED	
Pate 9-29-77		- · ·		T	
Time a.m.	Choke	Surface Pressure	Gas Rate	Liquid Rate	Remarks
p.m.	Size	psi	MCF	BPD	Religies
p.m.	:				
6:45	·				Started in the hole.
10:35					Opened tool with a strong blow.
					
10:40	1				Moderate blow to a weak blow.
10.70					HOUCEAGE DION to a Wear DION.
		······································			
2:35 AM					Closed DCIP Valve for a 469 minute
L.JJ AH				 	closed in pressure.
10:28 AM					Pulled tool loose - pulled out of t
2.00 PV					hole.
3:00 PM					Out of the hole
				<u> </u>	
					
		 		<u> </u>	<u> </u>
		•			
		· · · · · · · · · · · · · · · · · · ·			
				·	
	•				
			L	<u> </u>	<u> </u>

C	iauge No.		3427		Depth	8827	7 1	Clock No) .	6248	72 hour	Ticket No.	016114		
	First Flow Per	iod		First osed In Press		Sec Flow	Period	CI	Second osed In Press		Th Flow I	ird Period	CI	Third osed In Pressi	ıre
	Time Defl. .000"	PSIG Temp. Corr.	Time Defl. .000"	$\log \frac{t+\theta}{\theta}$	PSIG Temp. Corr,	Time Defl. .000"	PSIG Temp. Corr.	Time Defl. .000"	$\log \frac{t + \theta}{\theta}$	PSIG Temp. Corr.	Time Defi. .000"	PSIG Temp. Corr.	Time Defl.	$log \frac{t+\theta}{\theta}$	PSIG Temp. Corr.
0	.000	57	.000		101								1		
1	.0531	45*	.0387		1377**										
2	.1073	59	.0729	•	2007										
3	.1616	74	.1071	•	2358								1		
4	.2158	87	.1414	•	2619										
5	.2700	101	.1756		2799								1		
6			.2099		2938										
7			.2441		3047		1								
8			.2783		3135										
9			.3126		3207								-		
10			.3468		3269										
11			.3810		3319										
12			.4153		3366										
13			.4495		3406										
14			.4838		3445					-					
15			.5180		3468										
<u>C</u>	auge No.		4992	,	Depth	8845		Clock No).	11660	hour	72			
0	.000	74	.000		104										
1	.0519	50*	.0378		956**		· · · · · · · · · · · · · · · · · · ·	<u> </u>							
2	.1050	66	.0712		1879										
3	.1580	80	.1047		2295		·								
4	.2110	91	.1381		2577										
5	.2640	104	.1715		2769								<u> </u>		
6			.2050		2912					:			1		
7			.2384		3024							······································	 		
8			.2719		3113		· · · · · · · · · · · · · · · · · · ·					<u>-</u>			
9			.3053		3194										
10			.3388		3246										·
11			.3722		3301										
12			.4057		3348										
13			.4391		3390						 				
14			.4725		3429										
15			.5060		3458								<u> </u>		
	ding Interval			31			(A) OF		·		11		<u>II</u>		Minutes
REM	ARKS:	<u> * IN</u>	FERVAL =	48 MINUT	ES. *	x INIFK/	IAL = 35	MINUTES	•						

				TICKET NO.	010114
		O, D.	1. D.	LENGTH	DEPTH
	Drill Pipe or Tubing				
	Reversing Sub				
	Water Cushion Valve		* - * * 1	-	
	Drill Pipe	3.5"	2.992"	8810'	
	Drill Collars				
	Handling Sub & Choke Assembly				
	Dural CID Value	3 7/8"		5.00'	
	Dual CIP Valve Dual CIP Sampler Hydro-Spring Tester				3
	Hydro-Spring Tester	3 7/8"		5.00'	8821
	Multiple CIP Sampler				
					3
	Extension Joint				
	AP Running Case	3 7/8"			8827 '
HH					
	Hydraulic Jar				
V.	VR Safety Joint				
0	Pressure Equalizing Crossover				
	Packer Assembly				
					1
	Distributor				
-		,			
	1				
	Packer Assembly				
•	•			 	
			•		
E. 3	Flush Joint Anchor				
	Pressure Equalizing Tube				
11					
	Blanked-Off B.T. Running Case				
Q					
	Drill Collars		<u>.</u>		
V	Anchor Pipe Safety Joint				
##					
	Packer Assembly			· · · · · · · · · · · · · · · · · · ·	
	Distributor			•	
	•				
	Packer Assembly				
	Anchor Pipe Safety Joint				
					2007
	Side Wall Anchor HO.O.k . Wa.1.1	7"			<u>8835'</u>
			همور .		
(\square)	Drill Collars		,	 	
					•
	Flush Joint Anchor				
				,	***
	Blanked-Off B.T. Running Case				<u>8845</u>
					9053'
No.	Total Depth				

RESTRICTED INVESTIGATION REPORT 927R

CSIRO

MINERALS RESEARCH LABORATORIES

FUEL GEOSCIENCE UNIT

SOURCE ROCK AND OIL ANALYSES ON SAMPLES FROM

POOLOWANNA No. 1 AND MACUMBA No. 1 EROMANSA & SIMPSON PEDIRKA BASIN, SOUTH AUSTRALIA

J.D. SAXBY, N.J. RUSSELL, L. BRUEN AND J. FRIEDRICH

P.O. Box 136 North Ryde NSW Australia 2113

MARCH 1978

TABLE OF CONTENTS

					Page
					<u></u>
1.	INTRO	DUCTION			1
2.	METHO	DS AND RESULTS			1
		Extractable Organic Matter			1
	2.2.	Carbon and Sulphur Analyses			2
	2.3.	Reflectance Measurements			2
	2.4.	Oil Analyses		•	2
3 <i>:</i>	DISCUS	SSION			3
4.	CONCL	USION		•	4
		LIST OF TAR	BLES		
Tabl		Analytical data on core and Pedirka Basin Detailed reflectance data f			
		No. 1			
Tab1	e 3.	Data on Poolowanna No. 1 of	[1	•	
		,			
		LIST OF FIG	GURES	٠	
Fig.	1.	Location of wells in the Ped	lirka Basin		ı
Fig.	2.	Gas chromatograms of aliphat		acted from	
Fig.	3.	Gas chromatograms of aliphat Poolowanna No. 1 sidewall Core 1.	tic fractions extr		onal.
Fig.	4.	Gas chromatograms of aliphat Macumba No. 1 core samples		acted from	

- Fig. 5. Gas chromatogram of aliphatic fraction separated from DST 5 in Poolowanna No. 1
- Fig. 6. Gas chromatogram of aliphatic fraction separated from DST 6 in Poolowanna No. 1
- Fig. 7. Depth/reflectance curve for Poolowanna No. 1
- Fig. 8. Depth/reflectance curve for Macumba No. 1
- Fig. 9. Log reflectance versus depth for Poolowanna No. 1 and Macumba No. 1 $\,$
- Fig. 10. Distribution of hydrocarbons in Poolowanna oils and in selected Australian crudes
- Fig. 11. Compositions and alteration pathways of various crude oils

1. INTRODUCTION

This report contains the results of analyses carried out by CSIRO on ten core samples, two sidewall core samples and some selected ditch cuttings provided by Delhi Petroleum from Poolowanna No. 1 and Macumba No. 1 in the Pedirka Basin, South Australia. The report also contains results on two oils from Poolowanna No. 1. In addition, one core sample from Poolowanna No. 1 contained obvious coaly material, so some of this coal was scraped off and analysed as a separate sample. Locations of the two wells are shown in Fig. 1.

2. METHODS AND RESULTS

2.1. Extractable Organic Matter

Part of each sample was crushed and ground to approximately 75% below 70 µm and extracted in a Soxhlet with purified chloroform for 8 hours or until extraction was complete. Evaporation of the solvent under a stream of nitrogen gave the total extract. That part of the total extract soluble in petroleum ether was then transferred to a 5 x 1 cm column of florisil and eluted with petroleum ether to give the aliphatic fraction. Benzene was added to the residue of the total extract and the resulting solution poured onto the florisil column. Elution with benzene gave the aromatic fraction. Similarly, methanol was added to the residue of the total extract and the resulting solution added to the florisil column. Elution with methanol gave the polar fraction. The total extract and each of these fractions are expressed as parts per million of the original core in Table 1. Any of the total extract not redissolving in petroleum ether, benzene or methanol is shown in Table 1 as "residue". Thus:

total = aliphatic fraction + aromatic fraction + polar fraction extract (ppm) (ppm) (ppm)

+ residue + losses and material remaining on the column (ppm)

The probable error in each of these values is difficult to estimate and depends on the weight of core extracted and the nature of the

extract. However, the following ranges should cover virtually all samples:

total extract \pm 30 ppm aliphatic fraction \pm 5 ppm aromatic fraction \pm 10 ppm polar fraction \pm 10 ppm residue \pm 5 ppm

The aliphatic fraction was analysed by gas chromatography for hydrocarbons in the $n-C_{15}$ to $n-C_{35}$ boiling range. The resulting chromatograms are shown in Figs. 2-4.

2.2. Carbon and Sulphur Analyses

Total carbon and sulphur were determined on a sample of ground core using a Leco analyzer. Organic carbon was determined on a sample which had previously been treated with dilute HCl to remove carbonates. The probable error in all these values is \pm 0.05%.

2.3. Reflectance Measurements

In the case of cores, part of each sample was crushed to -0.7 mm and the carbonaceous material was concentrated by froth flotation. The Black shale and/or coal was handpicked from ditch cuttings. In each case the carbonaceous material was mounted in cold setting resin, ground and polished. Reflectance measurements were made on vitrinite and sporinite particles having diameters 5 μm or larger. Mean values for vitrinite in the cores at 546 nm with oil (refractive index 1.515) are listed in Table 1. A probable error of \pm 0.05% corresponding to twice the standard error of the mean is applicable in most cases. More detailed reflectance data and values for sporinite are given in Table 2.

2.4. Oil Analyses

The two oils were separated into fractions in the same manner as the extracts (Table 3) and gas chromatograms were run on the aliphatic fractions (Figs. 5 and 6).

3. DISCUSSION

- In most cases the total extracts are approximately proportional to the organic carbon content. Furthermore the aliphatic fractions form only a small proportion of the total extract which is predominantly aromatic. This would be consistent with most of the soluble matter coming from coaly material with a minimal contribution from migration. The complexity of the situation is illustrated by the variations in results and chromatograms even from the same core.
- 2. The alkane distributions most resembling crude oils come from Core 3 in Poolowanna and Core 1 in Macumba.
- 3. The most reliable reflectance values are those for the coal partings in sandstone in the Poolowanna No. 1 well (L.N. 59760 and L.N. 59761). Although the samples rich in black shale should yield reliable results, there is evidence to suggest that dark (resinous) vitrinite may dominate the in situ vitrinite population in some samples, e.g. L.N. 59763.
- 4. Poolowanna No. 1 and Macumba No. 1 appear to exhibit similar depth/ reflectance relationships between 2350 and 2530 metres (Figs. 7-9). Towards the base of Poolowanna No. 1 the reflectance data are less certain. Sidewall core samples (L.N. 59990 and L.N. 59991) and the lowest ditch cuttings samples (L.N. 60088) suggest a possible discontinuity in the depth/reflectance curve. This remains to be confirmed.
- 5. Data from the gas chromatograms of the oils are plotted in Fig. 10 and 11. This method of crude oil comparison has been described in Geochim. Cosmochim. Acta, 1978, 42, 215-217. Both oils are similar and have undergone very little, if any, bacterial alteration. It is possible that the original oil formed from the source rock has undergone disproportionation to give the present waxy crude and a lighter fraction that may have been lost.
- 6. A moderately high geothermal gradient (3.5°C/100 m in Poolowanna and 3.2°C/100 m in Macumba) usually assists generation provided much higher temperatures have not been reached in the past.

. 4. CONCLUSION

- 1. Reflectance and other data suggest that all the core samples examined from Poolowanna and Macumba are relatively immature and are unlikely to have acted as the source of the discovered (or any yet to be found) crude oils.
- 2. The presence of sporinite and resinous vitrinite in a number of the samples examined suggest that these are good potential source rocks. In other parts of the basin the geothermal temperatures may already have been somewhat higher resulting in the breakdown of such material into hydrocarbons.
- 3. The two oils analyzed from Poolowanna are similar and likely to have been generated at least in part from waxy, land plant material.
 It is likely that the initial oil formed has lost an appreciable amount of lower molecular weight hydrocarbons by some type of disproportionation either during migration or since being trapped in the reservoir.

TABLE 1. ANALYTICAL DATA ON CORE AND SIDEWALL CORE SAMPLES FROM THE PEDIRKA BASIN

CSIRO Lab. No.	Well	Core	Depth (m)	Total Extract (ppm)	Aliphatic Fraction (ppm)	Aromatic Fraction (ppm)	Folar Fraction (ppm)	Residue (ppm)	Reflect- ance (%)	Total Sulphur (%)	Carbonate Carbon (%)	Organic Carbon (%)	
59760	Poolowanna No. 1	1	2355.8	1040	70	280	400	81	0.76	0.03	0.05	0.75	
59761	Poolowanna No. 1	` 1	2363.1	1150	50	410	160	99	0.74	0.02	0.05	0.85	
59762	Poolowanna No. 1	3	2572.8	3200	71	1400	380	760	0.76	0.05	0.05	3.00	
5 97 6 3	Poolowanna No. 1	3	2569.5	6300	220	3900	280	61	-	0.09	0.75	5.60	
59764	Poolowanna No. 1	4	2799.9	23	0	5	. 38	0	0.92	<0.01	0.00	<0.05	
59861	Macumba No. 1	1	2344.8-2344.	9 2800	120	1200	300	420	0.74	0.04	0.15	4.60	
59862	Macumba No. 1	1	2353.5-2353.	6 1600	50	910	180	13	0.79	0.03	0.25	2.55	
59863 ·	Macumba No. 1	2	2535.1-2535.	2 40	6	5	55	0	0.83	0.01	0.05	0.05	
59864	Macumba No. 1	2	2542.3	190	6	13	74	2	-	0.26	0.95	0.15	
59865	Macumba No. 1	. 3	2601.2	180	2	0	73	0	-	<0.01	0.25 .	<0.05	
59990	Poolowanna No. 1	S.W.C.	2601.5	3900	280	2300	740	35	0.85	0.07	0.05	6.20	
59991	Poolowanna No. 1	S.W.C.	2596.9	4000	810	1800	530	78	0.74	0.07	0.00	5.70	
59831	Coal from L.N. 59760 Poolowanna No. 1	***	2355.8	300000	1500	16000	10300	180000	n.d.	n.d.	n.d.	n.d.	

^{- =} insufficient material

n.d. = not determined

TABLE 2. DETAILED REFLECTANCE DATA FOR POOLOWANNA NO. 1 AND MACUMBA NO. 1

Depth (metres)	Laboratory Number	Sample Type** (Lithology)	Vitrinite R _o Max. %*	Sporinite R _o Max. %*
	POOLOWANI	NA NO. 1		
2011.7-2023.9	59767- 59770 COMPOSITE	DC	0.66(100)	0.19(18)
2112.3- 2127.5	59800- 59804 COMPOSITE	DC	<u>0.69</u> (110)	0.25(11)
2234.2- 2237.2	59878	DC	0.49(8) [†] , <u>0.73</u> (72)	0.27(11)
2313.4 2316.5	59904	DC	0.68(110)	0.28(25)
2355.8	59760	CC (Ss + C)	0.60(28) [‡] , <u>0.76</u> (114)	0.23(2)
2363.1	59761	CC (Ss + C)	0.51(11) [‡] , _ <u>0.74</u> (127)	0.35(3)
2417.1	59938	DC	0.81(66)	0.31(30)
2502.4- 2505.5	59967	DC	0.66(74), 0.86(45)	0.29(11), 0.49(5)
2569.5	59763	CC (BkSh)	0.66(101)	0.23(22), 0.44(10)
2572.8	59762	CC (Ss + Bsh)	0.60(37), <u>0.76</u> (58)	0.29(40)
2596.9	59991	SWC	0.74(3), 1.01(14), 1.35(63)	0.31(2), 0.61(4)
2596.9 - 2599.9	60016	DC	0.62(19), 0.83(23)	0.22(9), 0.41(28)
2601.5	59990	SWC	0.85(3), 1.04(11), 1.49(48)	0.25(7), 0.40(10)
2761.5- 2764.5	60076	DC	0.83(113)	0.37(13), 0.53(10)
2799.9	59764	CC (Sst)	0.60(1), 0.92(17)	0.27(7)

TABLE 2 (Cont)

Depth (metres)	Laboratory Sample Type** Number (Lithology)		Vitrinite Ro Max. %*	Sporinite R _o Max. %*							
	POOLOWANNA NO. 1 (Cont)										
2800.5- 2804.2	60088	DC .	0.46(27) [†] , 0.80(40), 1.09(59)	0.36(5)							
MACUMBA NO. 1											
2344.8	59861	CC (BkSh)	0.74(11)	0.16(13)							
2353.4	59862	CC (Ss + BSh)	0.79(127)	0.12(6)							
2531.4- 2535.3	59863	CC (Lmst)	0.83(1), 1.13(1)	0.31(2)							
2542.3	59864	CC (Ss/BSh)	0.74(3)								
2601.2	59865	CC (Imst)	0.74(1)	0.29(2)							

^{*} Numbers in parenthesis refer to the number of readings leading to the given mean. The underlined values probably represent in situ vitrinite populations.

**	DC	=	Ditch cuttings
	CC	=	Conventional core
	SWC	=	Sidewall core
	Ss + C =		Sandstone + coal
	Ss + BSh	==	Sandstone + black shale
	Sst	=	Sandstone
	BkSh	=	Black shale
	Ss/BSh	=	Finely laminated sandstone/black shale
	Lmst	=	Limestone
	†	=	Contamination (drilling mud additive)
	*	==	Dark (resinous) vitrinite

TABLE 3. DATA ON POOLOWANNA NO. 1 OIL

CSIRO Lab. No.	Test	Depth (m)	Aliphatic Fraction (%)	Aromatic Fraction (%)	Polar Fraction (%)	Low-boiling Material* (%)
59 832	DST 5	2506.3-2517.6	62.3	6.1	1.2	30.4
59833	DST 6	2557.9-2567.9	81.2	7.3	1.9	9.6

^{*}Represents material lost during evaporation of aliphatic, aromatic and polar fractions (together with a small amount of material not eluted from the florisil column).

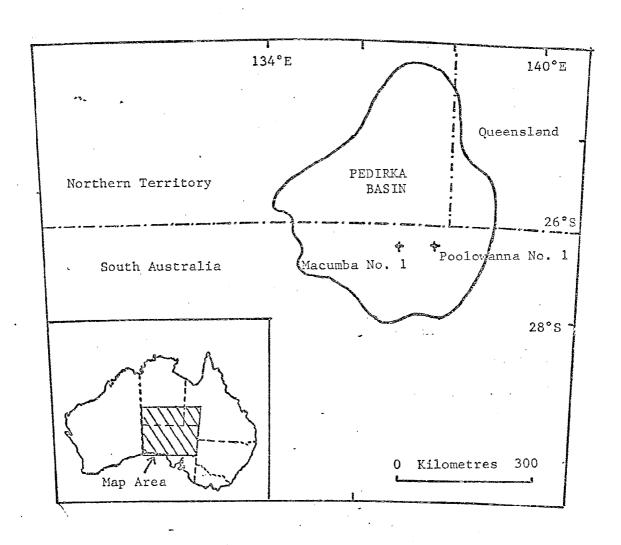
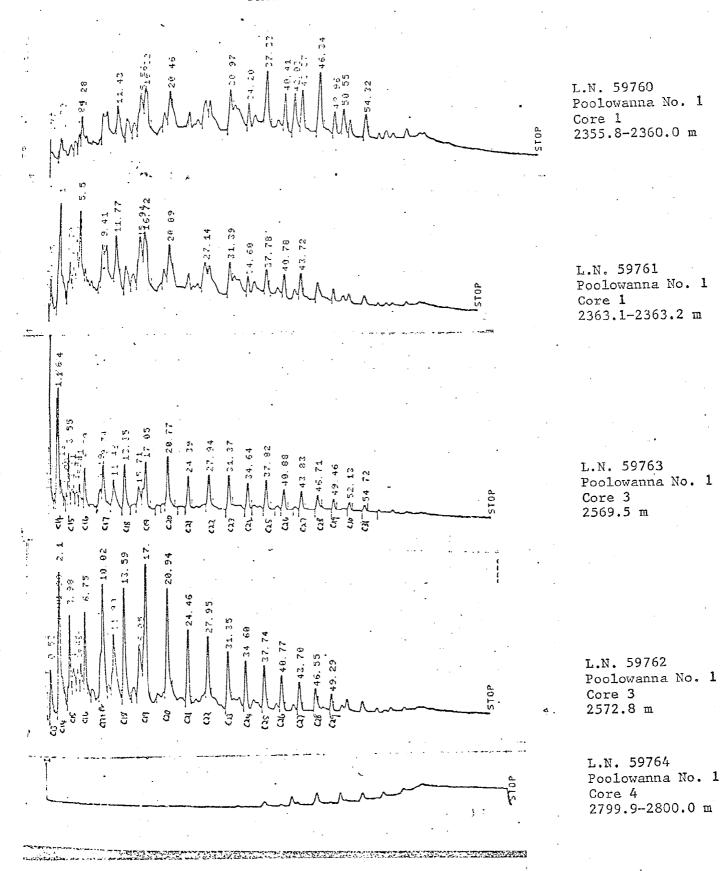
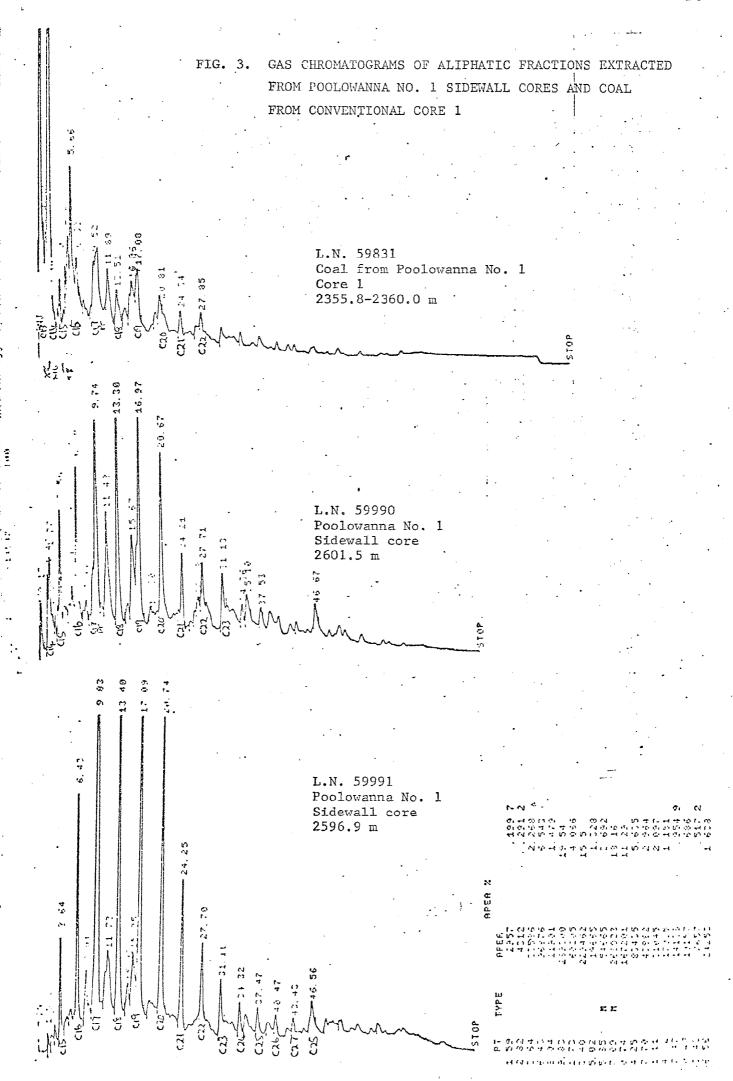




FIG. 1. LOCATION OF POOLOWANNA AND MACUMBA WELLS
IN THE PEDIRKA BASIN

FIG. 2. GAS CHROMA GRAMS OF ALIPHATIC FRACTIONS EXTRACTED FROM POOLOWANNA NO. 1 CORE SAMPLES

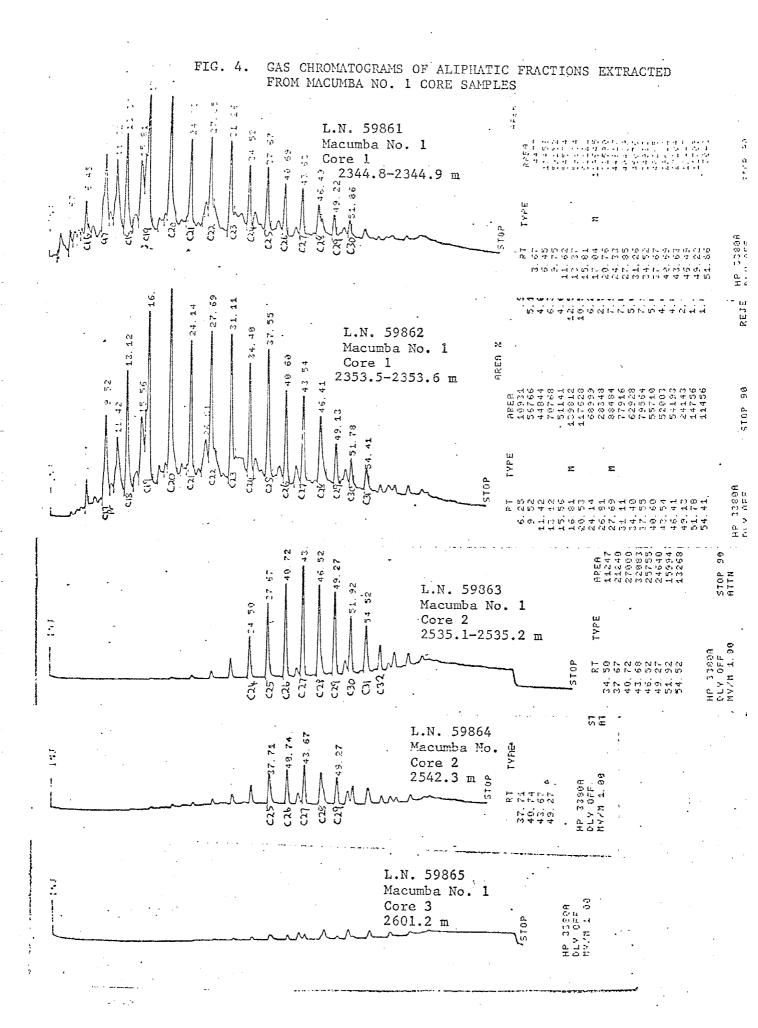


FIG. 5. GAS CHROMATOGRAM OF ALIPHATIC FRACTION SEPARATED FROM DST 5
IN POOLOWANNA NO. 1

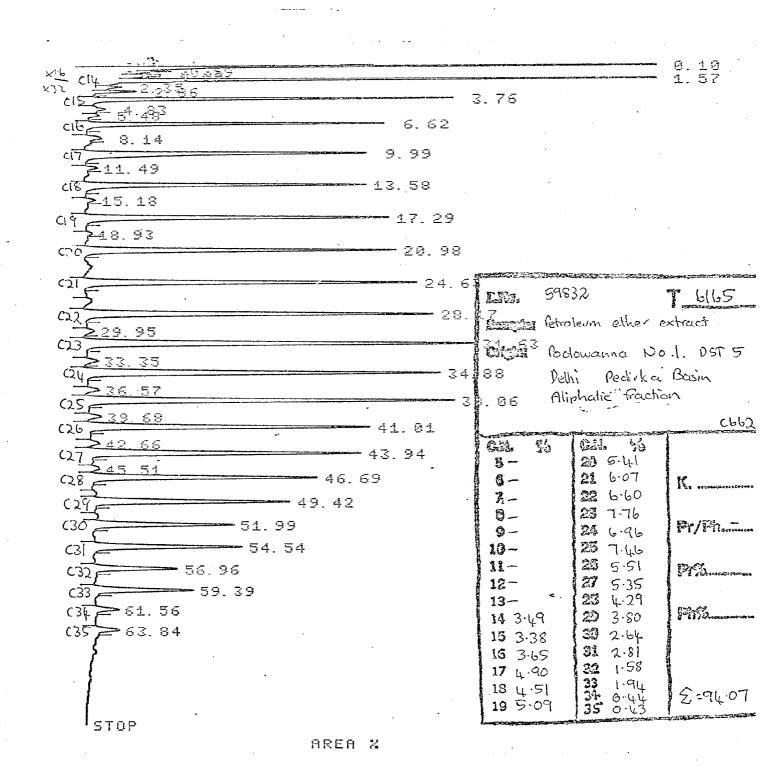
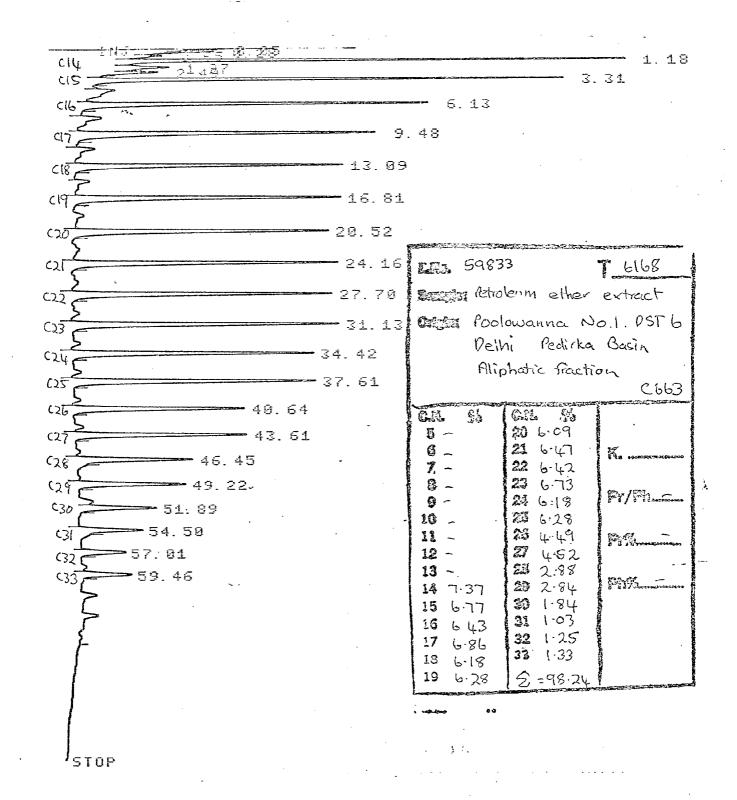



FIG. 6. GAS CHROMATOGRAM OF ALIPHATIC FRACTION SEPARATED FROM DST 6

IN POOLOWANNA NO. 1

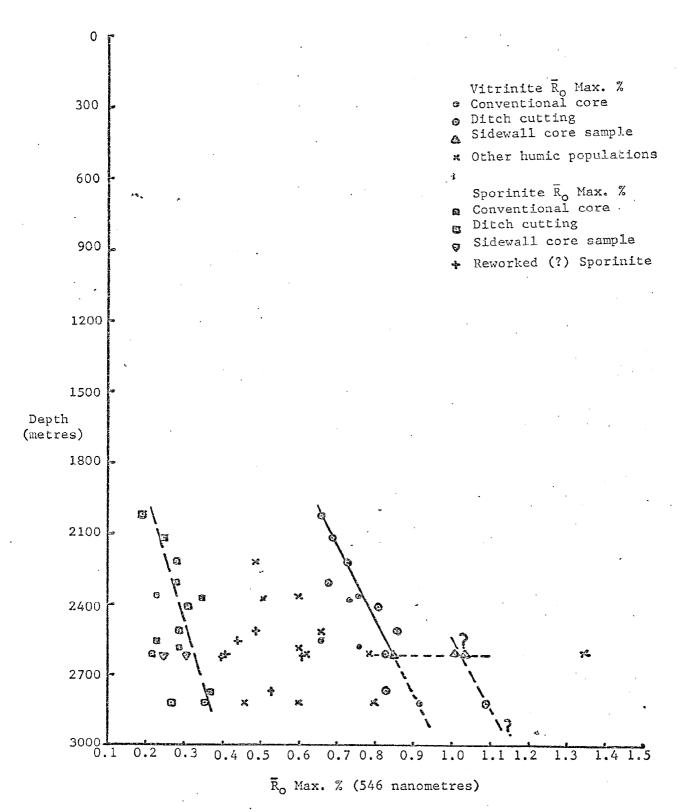


FIG. 7. REFLECTANCE CURVE FOR POOLOWANNA NO. 1

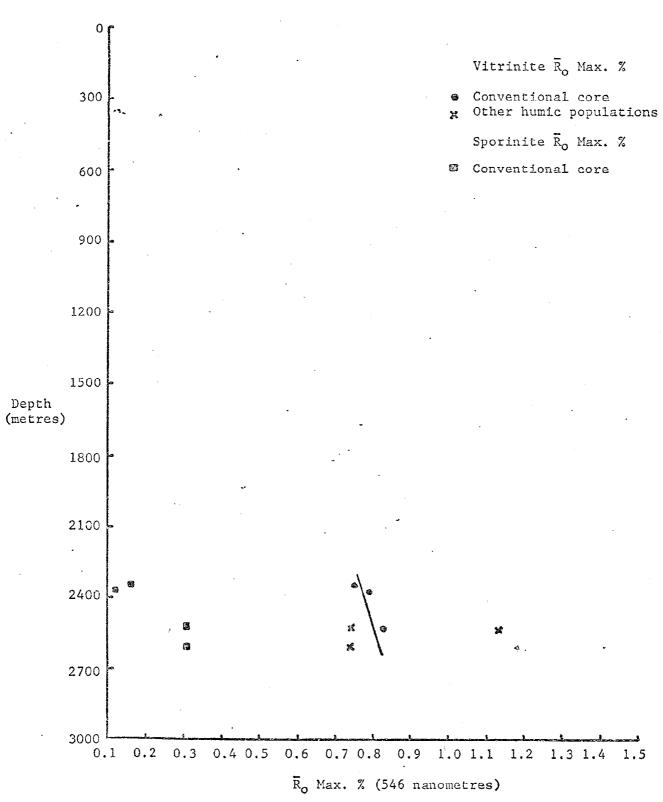
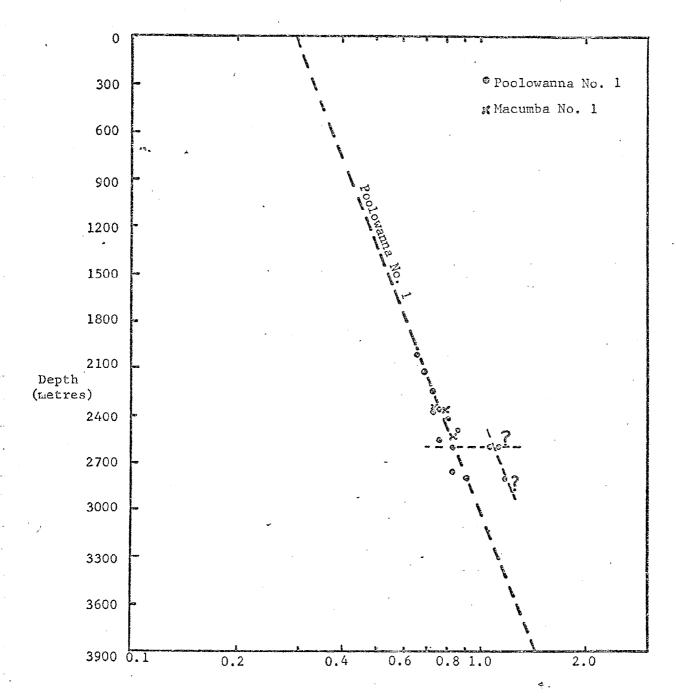



FIG. 8. REFLECTANCE CURVE FOR MACUMBA NO. 1

LOG REFLECTANCE VERSUS DEPTH FOR POOLOWANNA NO. 1 AND MACUMBA NO. 1

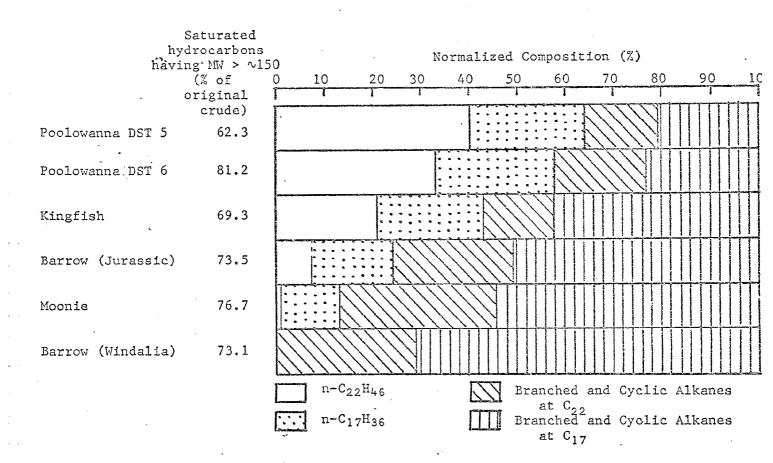


FIG. 10. DISTRIBUTION OF HYDROCARBONS IN POOLOWANNA OILS AND IN SELECTED AUSTRALIAN CRUDES (ARRANGED IN APPROXIMATE ORDER OF DECREASING WAX CONTENT)

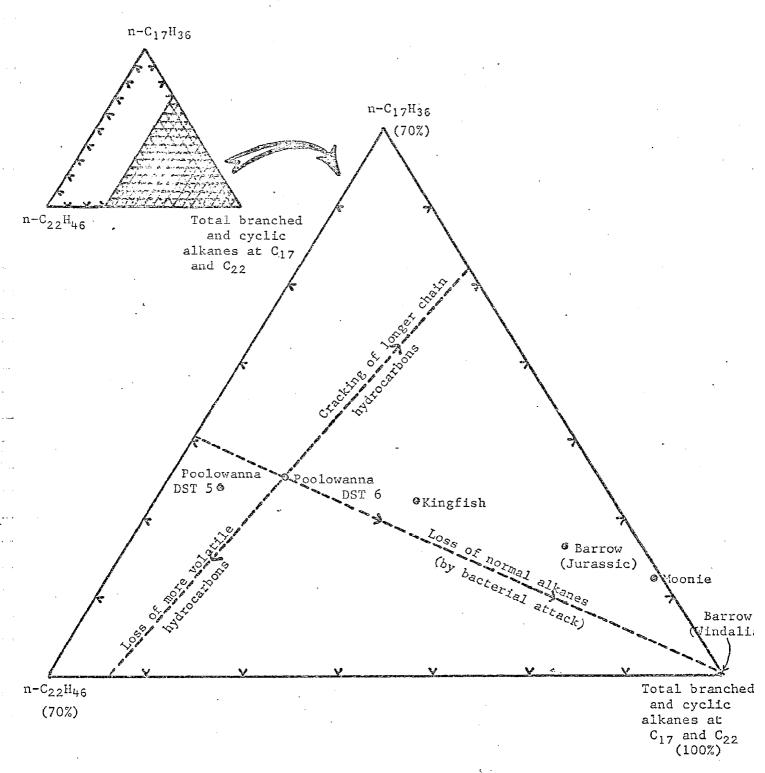


FIG. 11. COMPOSITIONS AND ALTERATION PATHWAYS OF VARIOUS CRUDE OILS

HCW

CSIRO

MINERALS RESEARCH LABORATORIES

P.O. BOX 136, NORTH RYDE, N.S.W., AUSTRALIA 2113 • DELHI ROAD, NORTH RYDE. NJR.jcm

TELEPHONE 888 1666
TELEGRAMS MINRES NORTH RYDE
TELEX MINRE AA25817

5th May, 1978

Mr N.J. Hamilton
Delhi International Oil Corporation
GPO Box 2364
ADELAIDE S.A. 5001

Dear Norrie,

I enclose the preliminary vitrinite reflectivity data for hand-picked coal samples from the interval 1200-8360 feet (365-2548 metres) in the Poolowanna No.1 well.

Teichmüller (1971) states that oil deposits occur in sediments containing vitrinite with reflectivity values of 0.3% to 1.0% and that economic gas deposits occur in sediments containing vitrinite with reflectivity values of 0.7% to 2.0%. Hood $et\ al.$ (1975) suggest the following correlation between the thermal maturity of organic matter and vitrinite reflectivity values:-

Level of Thermal Maturity	Vitrinite Reflectivity (R _o)			
Immature, i.e. early (diagenetic) methane	< 0.50			
Onset of maturity with respect to oil generation	0.50-0.7			
Mature (principal zone of oil generation)	0.7-1.3			
Condensate and wet gas (Transition to post maturity)	1.3-2.0			
Post mature; generation of high- temperature (katagenetic) methane	ে বিজ্ঞানতেইবাৰ্ট্রেই 2.0 প্রাকৃতিকালের করেছ বিজ্ঞানতে কিছিল প্রাকৃতিকালের বিজ্ঞান			

If this correlation between vitrinite reflectivity values and the level of thermal maturity are correct, the onset of oil generation from suitable organic matter should occur at a depth of about 1320 metres in the Poolowanna No.1 well. The principal zone of oil generation should be encountered at a depth of 2000 metres. Below 2720 metres, high °API gravity oils, condensate and wet gas should be generated from suitable organic matter.

Tissot et al. (1974) have discussed the importance of the nature of the organic matter on the type of hydrocarbon generated at a given level of thermal maturity. Kerogens with the highest atomic H/C and lowest atomic O/C values, e.g. algal kerogen, marine sapropel, are likely to yield the greatest quantity of liquid hydrocarbons in the zone of thermal maturity. Kerogens with low atomic H/C and high atomic O/C values, e.g. humic matter, are unlikely to constitute a

2 3 MAY 1978

DEPT. OF MINES
AND ENERGY
SECURITY

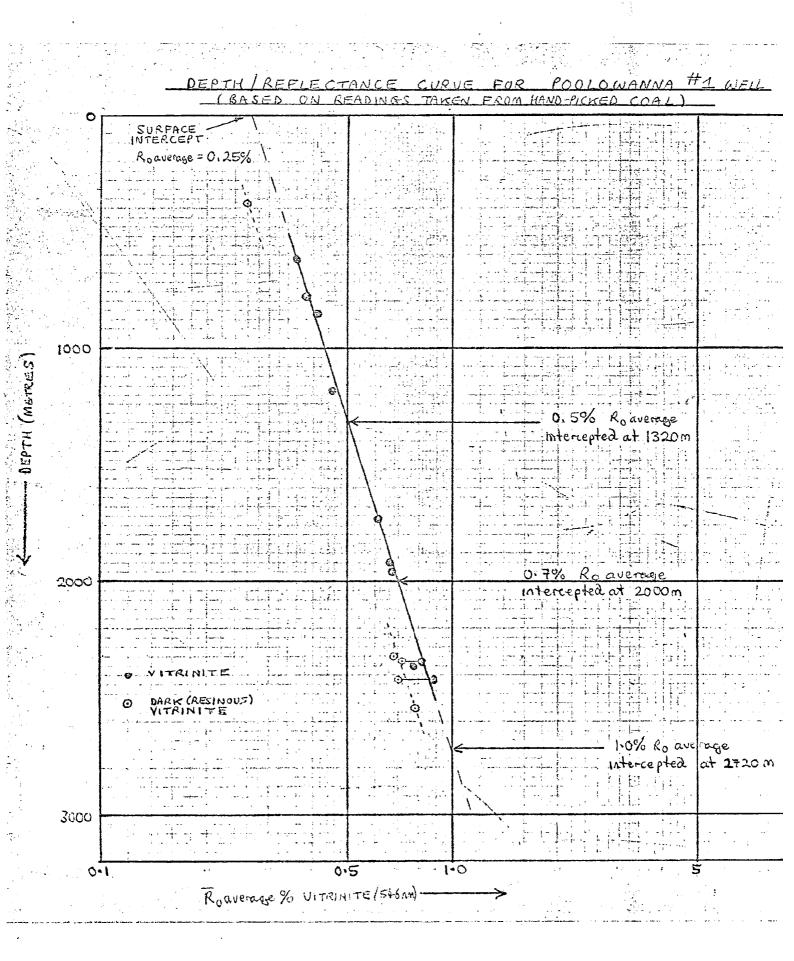
RECEIVED

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION, AUSTRALIA

major source of liquid hydrocarbons, but they should be capable of generating gas at a level of thermal maturity above that of the "oil generation window". Kerogens with intermediate atomic H/C and O/C values, corresponding to exinite, i.e. plant lipids, are capable of sourcing liquid hydrocarbons, possibly with a high wax content (high pour point) (Hedberg, 1963; Reed, 1969).

I would like to obtain a suite of coal samples from the Macumba No.l well, if this is at all possible, in order to compare their reflectivity values with the reflectivity data for the Poolowanna No.1 well.

Yours sincerely,


N.J. Russell Fuel Geoscience Unit

- 1) Hedberg, H.D. (1963). Bull. Amer. Assoc. Pet. Geol., 52(5), 736-750.
- 2) Hood, A., Gutjahr, C.C.M., and Heacock, R.L. (1975), Bull. Amer. Assoc. Pet. Geol., <u>59</u>(6), 986-996.
- 3) Reed, K.J. (1969), Bull. Amer. Assoc. Pet. Geol., <u>53</u>(7), 1502-1506.
- 4) Teichmüller (1971), Erdöl u. Kohle, 24(2) 69-76.
- 5) Tissot, B., Durand, B., Espitalié, J., and Combaz, A. (1974), Bull. Amer. Assoc. Pet. Geol., <u>58</u>(3), 499-506.

REFLECTIVITY DATA FOR HAND-PICKED COAL SAMPLES FROM POOLOWANNA #1 WELL:

Laboratory Number	Petrographic Number	Depth (feet)	Depth (metres)	R _o average Vitrinite (546 nm)
60441	29968	1200 - 1300	366-396	* 0.26 (50)
60442	29969	2000- 2100	610-640	0.36 (80)
60443	29970	2500 - 2600	762-793	0.38 (78)
60444	29971	2800	854	0.41 (78)
60445	29972	3950	1204	0.45 (80)
60446	29973	5650	1722	0.61 (60)
60447	29974	6300	1920	0.66 (80)
60448	29975	6400	1951	0.67 (80)
60449	29976	7595	2315	* 0.68 (80)
60595	29879	7729	2356	* 0.72 (69); 0.82 (51)
60596	29880	7753	2363	0.77 (99)
60450	29977	7920	2414	* 0.70 (32); 0.86 (88)
60451	29978	8350 - 8360	2545-2548	* 0.78 (100)

^{*} Possible dark (resinous) vitrinite

OPEN FILE

Date

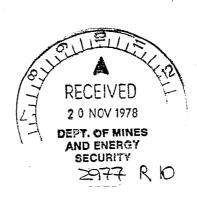
Initials

Released

RESTRICTED INVESTIGATION REPORT 975R

LOWER JURASSIC COALS AND DISPERSED ORGANIC MATTER IN EROMANCA POOLOWANNA NO 1 WELL, PEDIRKA BASIN

MICHELLE SMYTH


Fuel Geoscience Unit

P.O. Box 136

North Ryde, N.S.W.

Australia 2113

OCTOBER 1978

TABLE OF CONTENTS

	Page
INTRODUCTION	1
ANALYSES	1
RESULTS	1
DISCUSSION	2
CONCLUSIONS	3
REFERENCES	3

- TABLE 1. Pedirka Basin: Poolowanna No 1 Maceral Analyses of Lower Jurassic Coals and Dispersed Organic Matter.
- TABLE 2. Pedirka Basin: Poolowanna No 1 Microlithotype Analyses of Lower Jurassic Coals and Dispersed Organic Matter.

CAPTIONS TO FIGURES

- Fig. 1 Location of Poolowanna No 1 well in the Pedirka Basin, central Australia.
- Fig. 2 Maceral compositions of coals and dispersed organic matter of Lower Jurassic age in Poolowanna No 1 well.
- Fig. 3 Constituents of the exinite group in coals and dispersed organic matter of Lower Jurassic age in Poolowanna No 1 well.
- Fig. 4 Constituents of the inertinite maceral group in coals and dispersed organic matter of Lower Jurassic age in Poolowanna No 1 well.
- Fig. 5 Microlithotype compositions of coals of Lower Jurassic age in Poolowanna No 1 well.
- Fig. 6 Generalised plan of various coal-forming environments, related to a river system.

زشه

Introduction

Oil has been discovered in the Poolowanna No 1 well, in Lower
Jurassic reservoirs, opening up a potential new hydrocarbon province in
the Pedirka Basin (Fig. 1). Samples of ditch cuttings, sidewall cores
and conventional cores from this well, of Triassic to Cretaceous age, were
supplied to CSTRO Fuel Geoscience Unit by Delhi International Oil
Corporation, who were the drillers. All samples which appeared to contain
organic matter, either coal or carbonaceous shale, have been microscopically
examined to determine the nature and quantities of this material.

Reports on coals and dispersed organic matter of Triassic, Middle to Lower Jurassic, Upper Middle Jurassic and Cretaceous ages, are being prepared.

Analyses

The Lower Jurassic in Poolowanna No 1 extends from 8211 feet (2502.7 metres) to 8506 feet (2592.6 metres) and overlies Triassic sediments. Intervals from which oil was recovered are 8233-8260 feet (2509.4-2517.6 metres), 8214-8328 feet (2503.6-2538.4 metres) and 8392-8425 feet (2557.9-2567.9 metres).

Fourteen samples of ditch cuttings and two conventional cores were selected on the basis of their organic matter content. These were hand picked or froth floated where necessary, and the organic-rich fractions made into grain mounts for petrographic analyses.

The reflectivity of the vitrinite over this interval (Lower Jurassic) lies between 0.85% at 8200 feet (2499.4 metres) and 0.88% at 8500 feet (2590.8 metres). (Russell, pers. comm.).

Results

Maceral analyses are listed in Table 1 and microlithotypes in Table 2. Many samples contain sufficient coaly fragments for both types of analyses to be carried out, except near the bottom of the Lower Jurassic, into the Triassic, where the sediments contain dispersed organic matter (d.o.m.) rather than solid coal.

The maceral compositions are plotted in Fig. 2. The coals have generally moderate to high vitrinite contents and eximite in the usual range for Australian Permian and Triassic coals, of 0-10%. The d.o.m. has a lower vitrinite component, higher eximite (10-15%) and inertinite than the coals. Most of the d.o.m. analysed occurs near the base of the Lower Jurassic, into the Triassic, where the d.o.m. is inertinite-rich. (IR ?). The decrease in vitrinite content in the d.o.m. may be due to either its occurrence in sediments, rather than coal, or to the continuation of Triassic depositional conditions into the Lower Jurassic.

Fig. 3 shows the constituents of the eximite present in the coals and d.o.m. Resinite is most often the dominant eximite maceral, but some samples contain abundant cutinite or sporinite.

The inertinite macerals (Fig. 4) form two groups — one where inertodetrinite; semifusinite is about 60:40, and the other where inertodetrinite; semifusinite is 40:60. Coals near the base of the Lower Jurassic tend to be in the first group, and coals near the top in the second group.

The coals nearly all have high vitrite-plus-clarite contents (\geqslant 50%), with low intermediates (\leqslant 25%). (Fig. 5).

Discussion

The d.o.m. is similar in maceral composition to that found in the underlying Triassic sediments. However the maceral composition of the coals is different, the vitrinite content being higher in the Lower Jurassic coals, than in the one coal sampled from the Triassic. There is a difference in the exinite group constituents also, with resinite being dominant in the Lower Jurassic coals and in some of the d.o.m., whilst cutinite is markedly dominant in the d.o.m. from the Triassic. Inertodetrinite is dominant near the Triassic, but upwards through the Lower Jurassic more of the samples have semifusinite in excess of inertodetrinite.

زتند

The coal seam from the Triassic may have formed in a lacustrine environment. The Lower Jurassic coals, on the basis of their microlithotype composition, plot in an area (Fig. 5) which is considered to be indicative of fluvial conditions (Britten et. al., 1973). In the case of the two coals lowest in vitrite-plus-clarite, the environment could be upper deltaic. A generalised plan of these environments is drawn in Fig. 6.

If these interpretations of environment, which are based largely on Permian coal measure sequences from the Sydney Basin, can be applied to the Pedirka Basin, then depositional conditions changed there after the Triassic. The Triassic sediments were deposited in relatively low energy lacustrine environments. Conditions altered in the Lower Jurassic so that coals and sediments accumulated in a relatively high energy fluvial environment.

Conclusions

The Lower Jurassic coals have moderate to high vitrinite contents and low exinite contents, similar in range to other Australian Permian and Triassic coals. The type of exinite in the coals is predominantly resinite, which is not so in Permian and Triassic coals. In the lower part of the Lower Jurassic the inertinite macerals tend to consist more of inertodetrinite than semifusinite, but this tendency is reversed in the upper part of the sequence.

The d.o.m. (dispersed organic matter) has lower vitrinite and higher exinite and inertinite contents than the coals. This may be due to Triassic depositional conditions continuing into the Lower Jurassic, where the d.o.m. has been sampled.

The coals appear to have accumulated in a fluvial environment, or rarely, upper deltaic. This is in contrast to a lacustrine environment postulated for the Triassic coal.

References

Britten, R.A., Smyth, M., Bennett, A.J.R. and Shibaoka, M., 1973:

Environmental Interpretations of Gondwana Coal Measure Sequences in the Sydney Basin of New South Wales. Third Gondwana Symposium, Canberra, Australia.

TABLE 1. PEDIRKA BASIN: Poolowanna No 1 Maceral Analyses of Lower Jurassic Coals and Dispersed Organic Matter (Results are given as percentages by volume unless otherwise stated)

Lab. No. Depth (ft)	Depth (m)	Vitrinite	Resinous Vitrinite	Sporinite		Resinite	Micrinite	Inertodet-	Semifus- inite	Fusinite	Minerals	No.of coal counts
59967 8210-8220	2502.4-2505.5 mmf	33 39	41 48	2 3	1 1	1 1	-	3 3	4 5	-	15	204
59975 8290-8300	2526.8-2529.8	49	7	2	2	12	. 3	13	11	1	n.c.	263 d.o.m.
59980 8328.5-834	2538.5-2542.0 0	56	14	1	3	1	tr	4	20	1	n.c.	172
59981 8340 - 8350	2542.0-2545.1 mmf	48 57	12 14	1 1	2 3	4	2 -2	6 7	10 12	tr tr	15	449
59982 8350-8360	2545.1-2548.1 mmf	53 · 56	3 4	2 2	tr	2 2	-	13 14	19 . 21	1 1	7	479
60451 8350-8360	2545.1-2548.1 mmf	47 50	4 5	2 2	tr tr	4	1 1	13 · 13	21 23	1 2 .	7 -	585
59983 8360-8370	2548.1-2551.2 mmf	58 63	3 3	2 2	tr tr	2 2	2 2	9 10	15 16	2 2	7 -	314
59984 8370-8380	2551.2-2554.2 mmf	63 69	. 3 . 4	2 2	tr tr	2 2	3	9 10	9 9	1 1	8 -	583
59985 8380-8390	2554.2-2557.3 mm£	46 50	9 10	2 2	1	4	5 5	14 15	10 12	1 1	8 \	418
59986 8390-8400	2557.3-2560.3 mmf	60 65	5 6	1 2	-	1 2	2 2	12 12	10 11	-	9	447
60002 8400-8410	2560.3-2563.4 mmf	56 63	6 7	l tr	tr tr	2 2	1 1	16 . 18	. 8 9	tr tr	10	242
600 03 8410-8420	2563.4-2566.4 mmf	38 44	2 ′	2 2	3 4	2 3	2 3	15 17	19 22	2 2	15	292
60004 8420-8430	2566.4-2569.5	18	13	1	3	4	3	32	25	1	n.c.	146 d.o.m
59763 8430(core)	2569.5	25	-	7	8	13	<u> </u>	37	7	3	n.c.	84 d.o.m
60597 8430(core)	2569.5			Not enough	coaly parti	cles for o	counting					d.o.m
59762 8441(core)	2572.8	34	-	7	3	10	1	28	17	-	n.c.	151 d.o.m
60598 8441(core)	2572.8	40	2	_	14	12	1	13	17	1	n.c.	164 d.o.m
60008 8443-8450	2573.4~2575.6 mmf	45 53	2 2	1 2	9 10	1 1	1 2	9 10	16 19	<u>i</u> 1	15	370
8500-8510 (+ Triassi	2590.8 - 2593.8	30	5	1	10	2	1	30	, 19	2	π.c.	167

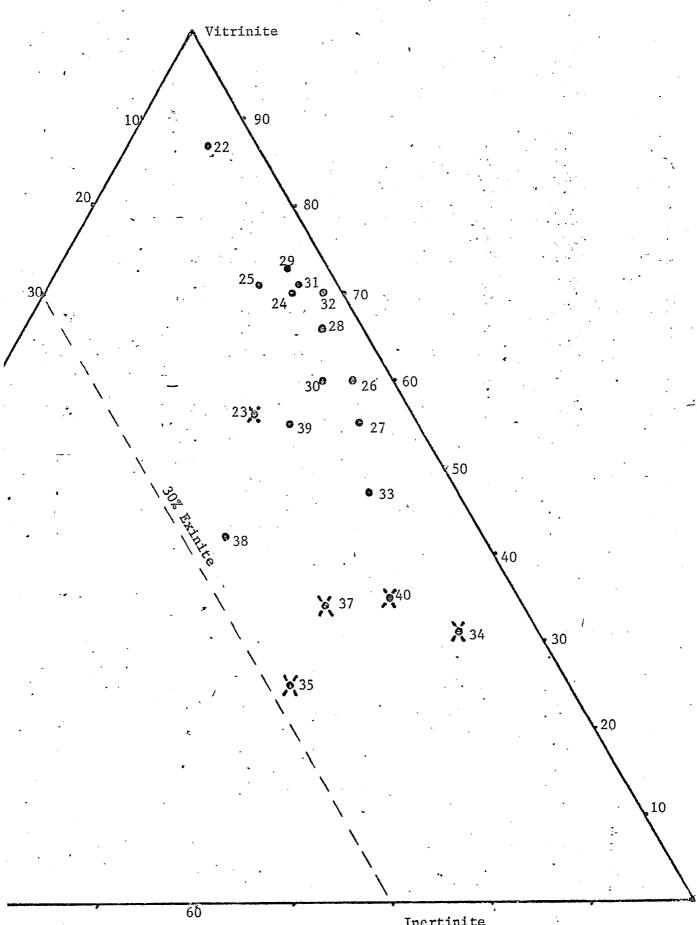
d.o.m. = dispersed organic matter
mmf = mineral matter free

n.c. = not counted

tr = trace

TABLE 2. Pedirka Basin: Poolowanna No 1 Microlithotype Analyses of Lower Jurassic Coals and Dispersed Organic Matter (Results are given as percentages by volume unless otherwise stated)

Lab. No. Depth(ft)	Depth (m)	Vitrite	Clarite	Intermed- iates	Durite	Fusite	Shaly coal	Mineral Matter	No. of coal counts
59967 8210-8220	2502.4-2505.5 mmf	77 83	3 3	6 7	1	· 6	2	5	278
59975 8290-8300	2526.8-2529.8		NOT	ENOUGH MAT	rerial f	OR MICROL	ITHOTYPES	-	
59980 8328 . 5-8340	2538.5-2542.0 mmf	54 57 -	9 10	7 7	4 5	20 21	6	n.c.	146
59981 8340-8350	2542.0-2545.1 mmf	51 58	8 9	20 22	4 5	5 6	. 12	n.c.	426
59982 8350-8360	2545.1-2548.1 mmf	49 51	3 3	23 24	3 4	17 18	5 -	n.c.	601
60451 8350-8360	2545.1-2548.1	44	4	23	4	25	n.c.	n.c.	508
. 59983 8360-8370	2548.1-2551.2 mmf	51 54	10 10	18 19	2 3	13 14	6 -	n.c.	305 .
. 59984 8370-8380	2551.2-2554.2 mmf	57 ' 60	5 6	21 22	6 6	6 6	5 -	n.c.	532
59985 8380-8390	2554.2-2557.3 mmf	46 50	5 5	23 25	11 12	7 8	8 -	n.c.	357
59986 8390-8400	2557.3-2560.3 mmf	61 64	5 5	14 15	5 5	10 11	5 -	n.c.	402
60002 8400-84 10	2560.3-2563.4 mmf	48 53	4 4	16 17	16 17	7 9	9	n.c.	204
60003 8410-8420	2563.4-2566.4. mmf	36 39	5 6	21 23	10 12	19 20	9 -	n.c.	279
60004 8420-8430	2566,4-2569,5		NO	T ENOUGH M	ATERIAL :	FOR MICRO	LITHOTYPES		
59763 8430(core)	2569,5		NO	T ENOUGH MA	ATERIAL :	FOR MICROI	LITHOTYPES		
60597 8430(core)	2569.5		NO	T ENOUGH MA	ATERIAL :	FOR MICROI	LITHOTYPES		
59762 8441(core)	2572.8		NO	T ENOUGH MA	ATERIAL 1	FOR MICRO	LITHOTYPES	,	•
60598 8441(core)	2572.8		NO	T ENOUGH MA	ATERIAL :	FOR MICRO	LITHOTYPES		
8443-8450	2573.4-2575.6 mmf	31 34	20 21	21 23	4 4	16 18	8	n.c.	367
8500-8510 (+ Triass.)	2590.8-2593.8	•	NO	T ENOUGH MA	ATERIAL 1	FOR MICRO	LITHOTYPES		
	mmf = mineral	matter free		n _t c. = r	ot coun	ted			•


LEGEND FOR DIAGRAMS; FIGS 2 to 5

No. of counts on:

Feet	Metres	macerals	exinite	inertinite	micro- lithotypes	Point on diagram
8210-8220	2502,4-2505,5	204	9*	18*	278	1.
8290-8300	2526.8-2529.8	263	42	73	₩	2.
8328.5-8340	2538,5-2542.0	172	8*	44	146	3.
8340-8350	2542.0-2545.1	449	37	93	426	4.
8350-8360(a)	2545.1-2548.1	479	19*	170	601	5.
8350-8360(b)	2545,1-2548,1	585	39	225	508	6.
8360-8370	2548.1-2551.2	314	14*	92	305	7.
8370-8380	2551.2-2554.2	583	27	135	532	8.
8380-8390	2554.2-2557.3	418	31	135	357	9.
8390-8400	2557,3-2560.3	447	14*	114	402	10.
8400-8410	2560.3-2563.4	242	6*	69	204	,11.
8410-8420	2563,4-2566.4	292	26	129	279	12.
6420-8430	2566.4-2569.5	146	13*	87	-	13.
8430(a)	2569.5(a)	84	24	39	-	14.
8430(b)	2569,5(b)	₩.	-	 `		15.
8441(a)	2572.8(a)	151	30	69	-	16.
8441(b)	2572.8(Ъ)	164	42	52	-	17.
8443-8450	2573.4-2575.6	370	48	118	367	18.
8500-8510	2590.8-2593.8	167	21	86	-	19.

^{*} not sufficient points counted for reliable results

FIG. 2 Maceral compositions of coals and dispersed organic matter of Lower Jurassiage in Poolowanna No 1 well.

Inertinite
(Micrinite + Inertodetrinite +
Semifusinite + Fusinite)
o d.o.m.

FIG. 3. Constituents of the eximite maceral group in coals and dispersed organic matter of Lower Jurassic age in Poolowanna No 1 well.

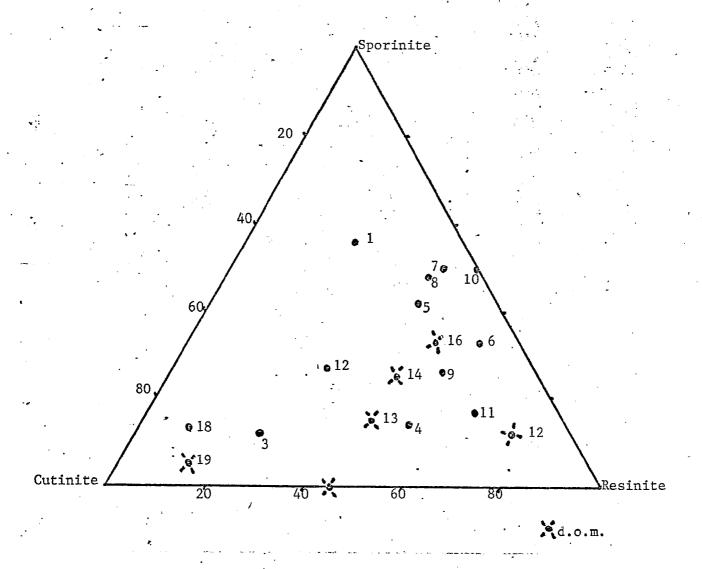


FIG. 4. Constituents of the inertinite maceral group in coals and dispersed organic matter of Lower Jurassic age in Poolowanna No 1 well.

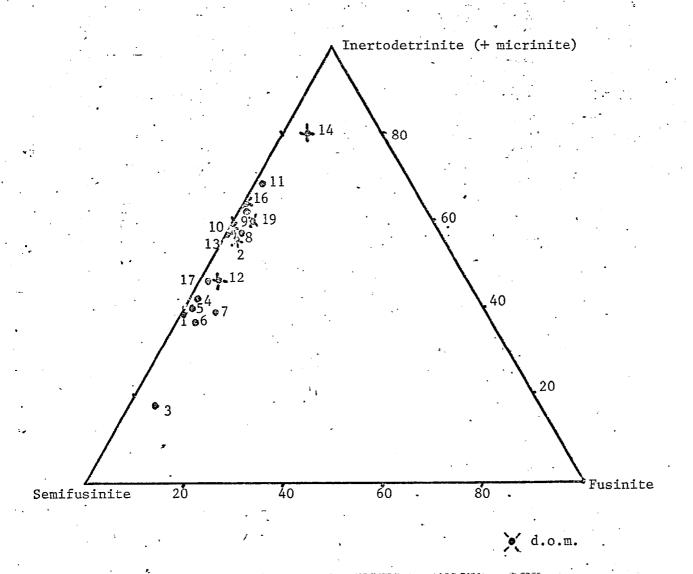


FIG. 5. Microlithotype compositions of coals of Lower Jurassic age in Poolowanna No 1 well.

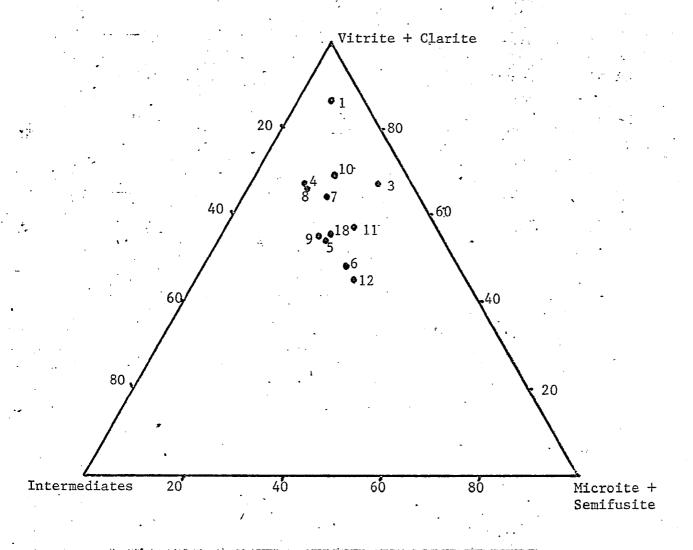
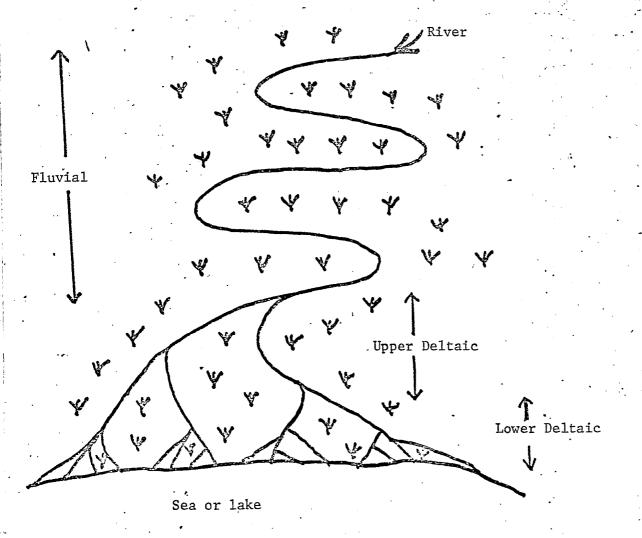



FIG. 6. Generalised plan of various coal-forming environments, related to a river system.

= coal forming environment

RESTRICTED INVESTIGATION REPORT 976R

OPEN FILE

14|9|92 #B

Date Initials

Released

DISPERSED ORGANIC MATTER IN THE TRIASSIC SEDIMENTS FROM SIMPSON
POOLOWANNA NO.1 WELL, PEDERKA BASIN

MICHELLE SMYTH

CSIRO Fuel Geoscience Unit, P.O. Box 136 North Ryde, NSW Australia, 2113

OCTOBER, 1978

TABLE OF CONTENTS

·	Page
INTRODUCTION	1
ANALYSES	. 1
RESULTS	2
DISCUSSION	2
CONCLUSIONS	3
REFERENCES	4

- TABLE 1. Pedirka Basin: Poolowanna No.1 well Maceral analyses of the dispersed organic matter of Triassic age.
- TABLE 2. Pedirka Basin: Poolowanna No.1 well Microlithotype analyses of the Triassic coals.
- TABLE 3. Pedirka Basin: Poolowanna No.1 well Approximate maceral composition of Triassic dispersed organic matter.

CAPTIONS TO FIGURES

- Fig. 1 Location of Poolowanna No.1 well in the Pedirka Basin, central Australia.
- Fig. 2 Maceral compositions of the dispersed organic matter and coals from the Triassic in the Poolowanna No.1 well, Pedirka Basin.
- Fig. 3 Approximate proportions of dispersed organic matter in the Triassic sediments, with subdivisions into the three maceral groups.
- Fig. 4 Distribution of eximite types in Triassic sediments.
- Fig. 5 Distribution of inertinite types in Triassic sediments.
- Fig. 6 Microlithotype compositions of the Triassic coals from Poolowanna No.1 well, Pedirka Basin.

زتند

Introduction

Ditch cuttings and cores of the rocks from 570 feet (173.7 metres) through to 10,074 feet (3070.6 metres) in Poolowanna No.1 well, Pedirka Basin (Fig.1), have been supplied to the Fuel Geoscience Unit, CSIRO, by Delhi International Oil Corporation. These sediments are Cretaceous to Triassic in age. Many intervals contain abundant coaly material, representing coal seams and carbonaceous shales.

Triassic sediments occur below 8506 feet (2592.6 metres) to the base of the well. There are few occurrences of substantial coal seams, but many sediments contain dispersed organic matter. The nature and abundance of this carbonaceous material have been investigated.

Further reports, covering the coals and dispersed organic matter of Lower Jurassic, Middle to Lower Jurassic, Upper Middle Jurassic and Cretaceous ages, are being prepared.

Analyses

Twenty-one samples of ditch cuttings with visible coaly fragments and/or dark shaly particles were selected from the interval 8500 feet (2590.8 metres) to 10,060 feet (3066.3 metres). Each sample is of a ten foot thickness (3 metres) and all were froth floated to concentrate the organic material. Two sidewall cores were also froth floated. Coal was hand picked from a conventional core at 9181 to 9188 feet (2798.4 to 2800.5 metres), and material from the core at 9186'3" to 5" (2800.0 metres) was also used.

These twenty-five samples were made into grain mounts and microscopically analysed in reflected light using the point-counting technique. Maceral analyses were carried out on all samples and microlithotype analyses were done when there were sufficient coaly fragments greater than 50 micrometres.

The reflectivity of the vitrinite in the above sediments range from 0.88% ($\bar{R}_{0~max}$) at 8500 feet (2590.8 metres) to an extrapolated 1.06% at 10,000 feet (3048 metres). (Russell, pers. comm.).

Results

Results of the maceral analyses are given in Table 1, and microlithotypes in Table 2. Most of the counts have been made on dispersed organic matter (d.o.m.) rather than whole coal fragments, except where indicated in Table 1. The maceral compositions of the d.o.m. and coals are shown in Fig.2. The approximate proportions of d.o.m. in the samples have been plotted in Fig.3, including subdivisions into the three maceral groups. As these samples have been concentrated by froth flotation the values of d.o.m. content are higher than in the original samples. The d.o.m. may be spread over the 3 metre interval of each of the ditch cuttings, or concentrated into thinner layers within the 3 metres. Table 3 gives the approximate absolute percentage of each maceral group in the ditch cuttings and cores.

Fig. 4 shows the distribution of the constituents of the eximite group - sporinite, cutinite and resinite. Cutinite is the dominant (>50%) eximite maceral in most of the ditch cuttings, but not in the two sidewall cores, the hand-picked coal from the conventional core or the coal seam from the ditch cuttings.

The constituents of the inertinite group - micrinite, inertodetrinite, semifusinite and fusinite are plotted in Fig. 5. The dominant inertinite maceral is inertodetrinite, except in some samples where the total inertinite content is relatively low.

The microlithotype analyses are plotted in Fig.6, showing a scatter from dull (high microite plus semifusite) to bright (high vitrite plus clarite) coal.

Discussion

The d.o.m. in the ditch cuttings is predominantly inertinite-rich (Fig.2), with exinite about 10-20%, which is high compared with most Australian coals where the exinite content is generally 0-10%. Coal from the conventional core has the highest vitrinite content and high resinite. This represents only a few centimetres of hand-picked coal, and may not be typical of thicker seams from the Triassic. In fact, the coal from 8980 to 8990 feet (2737.1 to 2740.2 metres) has a composition similar to that of the d.o.m.

Cook (1975) has found that cutinite is the dominant eximite maceral in Australian Triassic coals. In Poolowanna No.1, this trend is very

marked in the d.o.m. rather than the actual coals. In many samples cutinite appears to be the only eximite maceral present in the shaly layers. Inertodetrinite is the dominant inertinite maceral in both d.o.m. and coals.

The d.o.m. in sediments is considered to be a source material for the generation of hydrocarbons, and in particular eximitic and vitrinitic d.o.m. Eximitic d.o.m. is more suited to the generation of liquid hydrocarbons than is vitrinitic (Tissot et al., 1974), which is likely to generate more gaseous than liquid hydrocarbons at the same degree of diagenesis. The absolute amount of eximitic d.o.m. in sediments is thus of particular interest in the search for oil source rocks.

In these Triassic sediments, the quantity of eximitic d.o.m. in the ditch cuttings (froth floated) varies between a trace and 4%, averaging about 2%. This amount would be considerably reduced in the original sample, but may still be sufficiently high for these rocks to be potential source rocks for liquid hydrocarbons. If the vitrinitic d.o.m. is included, the total d.o.m. suitable for generating liquid and gaseous hydrocarbons is increased to about 7% in the ditch cuttings.

<u>Conclusions</u>

The dispersed organic matter (d.o.m.) in the Triassic sediments is inertinite-rich. One coal seam has been analysed, and has a maceral composition similar to that of the d.o.m.

There is an average eximitic d.o.m. content of about 2% in the (froth floated) ditch cuttings, and an average of 5% vitrinitic d.o.m. These quantities would be considerably less in the original samples, but may still be sufficiently high to provide source material suitable for the generation of hydrocarbons.

The dominant eximite maceral in the d.o.m. is cutinite, and the dominant inertinite maceral is inertodetrinite.

References

- Cook, A.C., 1975: The spatial and temporal variation of the type and rank of Australian coals. Australian Black Coal Symposium, Wollongong, Australia.
- Tissot, B., Durand, B., Espitalié, J. and Combaz, A., 1974: Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum. The American Association of Petroleum Geologists
 Bulletin V58, No.3 p 499-506.

TABLE 1: PEDIRKA BASIN - Poolowanna No.1 well maceral analyses of the dispersed organic matter of Triassic age (Results are given as percentages by volume unless otherwise stated)

				,								
.ab. No. Depth (ft)	Depth (m)	Vitrinite	Resinous Vitrinite	Sporinite .		Resinite	Micrinite	Inertodet- rinite	Semifus- inite	Fusinite	Minerals	No.of coal count
60014 8500-8510	2590.8 -2593.8	30	5	1	10	2	. 1	30	19	2	n.c.	167
60015 8510-8520	2593.8 -2596.9	15		1	8 ·	-	· <u>-</u>	54	22	-	n.c.	97
59991 8520	2596.9	9	-	3	3		-	66	13	1	n.c.	98
60016 8520-8530	2596.9 -2599.9	18	-	- .	18			48	11	2	n.c.	73
60017 8530-8540	2599.9 -2693.0	9	-		11	1		52	24	3	n.c.	104
59990 8535	2601,5	15	•	6	5	4		54	14	2	n.c.	124
60018 8540-8550	2603.0 -2606.0	28	<u> </u>		18	_	_	28	24	2	n.c.	76
60019 8550-8560	2606.0 -2609.1	12			13	_	_	43	31	1·	n.c.	107
60020 8560-8570	2609.1 -2612.1	26	2		.9	2		41	20		n.c.	130
60021 8570-8580	2612.1 -2615.2	14		2	13	2	3	43	21		n.c.	106
60022 8580-8590	2615.2 -2618.2		. 2	2	14	-		12	30	4	n.c.	66
60030	2639.6			· · · · · · · · · · · · ·		·						
8660-8670 60034	-2642.6 2651.8	59			73	. 2		11	23	2	n.c.	64
8700-8710 60035 8710-8720	-2654.8 -2654.8 -2657.9	51 11		-	10	-		17	17	5	n.c.	63
60042	2676,1				15	-		63	11		n.c.	85 Partly C
8780-8790 60068	-2679.2 2737.1	25	1	1	5	2	5	38	7	2 tr	n.c.	270
8980-8990 60069	-2740.2 2740.2	30	1	1	. 6	2	6	45	9	tr	maf	454 Coal
8990-9000 60076	-2743.2 2761.5	23	-	. 1	5	. 3	2 '	47	19	-	n.c.	89
9060-9070	-2764.5 2798.4	33	3		. 8 .	2	tr	26	26	2	n.c.	172
9181-9188	-2800.5 2880.4	67		1	1	.,4	=	17 .	8	2	n.c.	Coal 160
9450-9460	-2883.4	38	7	2	4	4	2	36	7	-	n.c.	45
60130 9540-9550	2907.8 -2910.8	55 Not en	ough d.o.m.	for meaningfu	l count	-	-	45	-		n.c.	11
60154 9780-9790	2980.9 -2984.0	50 Not en	ough d.o.m.	for meaningfu	l count	-	-	16	34	-	n.c.	32
60175 9990-10000	3045.0 -3048.0	30 Not en	ough d.o.m.	- for meaningfu	L count	_	_	40	25	5	n.c.	20
60181 10050-10060	3063.2 -3066.3	26	_	-	10	6	_	24	30	4	n.c.	50
400 041	spersed o	reenia matta	_					*				

d.o.m. = dispersed organic matter

n.c. = not counted

mmf = mineral matter free

tr = trace

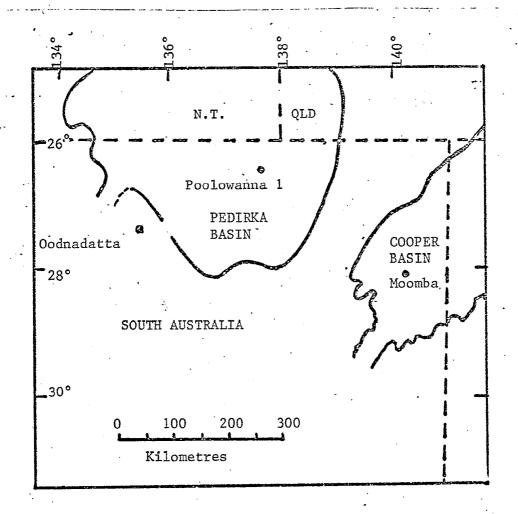
TABLE 2: PEDIRKA BASIN Poolowanna No.1 well Microlithotype analyses of the Triassic coals (Results are given as percentages by volume unless otherwise stated)

Lab. No. Depth (ft)	Depth (m)	Vitrite	Clarite	Intermed- iates	Microite + Durite	Semifusite + Fusite	Shaly coal	Mineral Matter	No. of coal counts
60042 8780-8790	2676.1 -2679.2	33 37	6 7	17 19	14 16	18 21	12	n.c. mmf	217
60068 8980–8990	2737.1 \ -2740.2	15 . 17	4 5	16 17	49 53	7 8	9 -	n.c. mmf	429
60088 9181–9188	2798.4 -2800.5	70	2	16	6	6	n.c.	n.c.	128

n.c. = not counted

mmf = mineral matter free

TABLE 3: PEDIRKA Basin Poolowanna No.1 well
Approximate Maceral composition of Triassic dispersed organic matter
(Results are given as percentages by volume unless otherwise stated)


Lab. No. Depth(ft)	Depth (m)	Vitrinite	Exinite	Inertinit	e Total
50014 3500-8510	2590.8 - 2593.8	7	3	10	20
50015 8510-8520	2593.8 -2596.9	1	1	8	10
59991 8520	2596.9	1	2	12	15
60016 8520-8530	2596.9 -2599.9	4	4	12	20
60017 8530-8540	2599.9 -2603.0	1	2	12	15
59990 8535	2601.5	3	3	14	20
60018 8540-8550	2603.0 -2606.0	3	2	5	10
60019 8550-8560	2606.0 -2609.1	2	2	11	15
60020 8560-8570	2609.1 -2612.1	6	. 2	12	20
60021 8450-8580	2612.1 -2615.2	1	2	7	10
60022 8580-8590	2615.2 -2618.2	4	2	4	10
60030 8660-8670	2639.6 -2642.6	6	tr	. 4	10
60034 8700-8710	2651.8 -2654.8	5	1	4	10
60035 8710-8720	2654.8 -2657.9	2	3	15	10
60042 8780-8790	2676.1 -2679.2	19	2	19	40
60068 8080-8990	2737.1 -2740.2	COAL			
60069 8990–9000	2640.2 -2743.2	2	1	7	10
60076 9060–9070	2761.5 -2764.5	7	2	11	20
60088 9181-9188	2798.4 -2800.5	20	2	8	30
60121 9450~9460	2880.4 -2883.4	2	tr	3	5
60130 9540 - 9550	2907.8 -2910.8	1.5 Not enough o	- 1.o.m. for	1.5 meaningful	3 results
60143 9780–9790	2980.9 -2984.0	1.5 Not enough o	_ 1.o.m. for	1.5 meaningful	3 results
60175 9990–10000	3045.0 -3048.0	1 Not enough (i.o.m. for	1.5 meaningful	2.5 results
60181 10050-10060	3063.2 -3066.3	1	· 1	3	5

d.o.m. = dispersed organic matter

LEGEND FOR FIGURES 2 TO 6

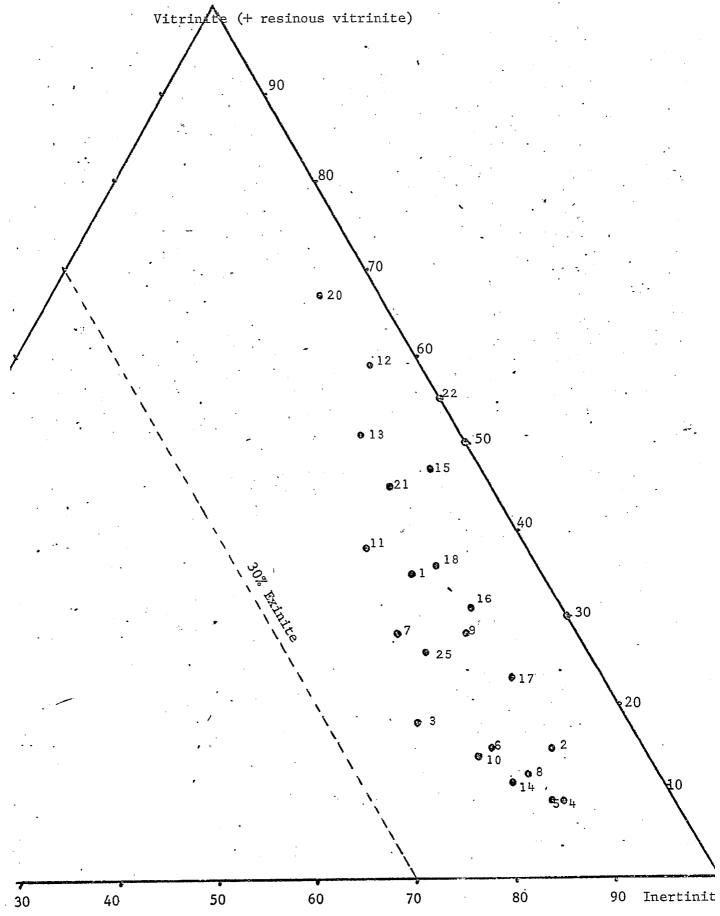

Depth of	Depth of samples			No. of	maceral count	s on:	
Feet	Metres	Type of Sample	Form of organic matter	All organic matter	exinite	inertinite	Point on figure
8500-8510	2590.8-2593.8	ditch cuttings	d.o.m.	167	21	86	1
8510-8520	2593.8-2596.9	11	n	97	9	73	2
8520-8530	2596.9-2599.9	· ·	11	98	15	45	3
8520	2596.9	sidewall core	11	73	11	78	4
8530-8540	2599.9-2603.0	ditch cuttings	11	104	13	82	· 5
8535	2601.5	sidewall core		124	19	86	6
8540-8550	2603.0-2606.0	ditch cuttings	II .	76	14	41	7
8550-8560	2606.0-2609.1	" -	11	107	14	80	8
8560-8570	2609.1-2612.1	11	11	130	15	78	9
8570-8580	2612.1-2615.2	11	***	106	18	73	10
8580-8590	2615.2-2618.2	FT	· 11	66	10	31	11
8660-8670	2639.6-2642.6	*1	11	64	3	23	12
8700-8710	2651.8-2654.8	**	11	63	6	25	13
8710-8720	2654.8-2657.9	PT .	11	85	13	63	14
8780-8790	2676.1-2679.2	**	partly coal	270	15	129	15
8980-8990	2737.1-2740.2	***	coal	454	40	276	16
8990-9000	2740.2-2743.2	**	d.o.m.	89	8	61	17
9060-9070	2761.5-2764.5	11	II .	172	16	93	18
9186'3"to5"	2800.0	core	none visible	0 -	0	0	19
9181-9188	2798.4-2800.5	core	coal	160	10	43	20
9450-9460	2880.4-2883.4	ditch cuttings	d.o.m.	45	5	20	21
9540-9550	2907.8-2910.8	11	11	11	. 0	5	22
9780-9790	2980.9-2984.0	11	H	32	0	16	23
9990-10,000	3045.0-3048.0	**	**	20	o	14	24
10050-10060	3063.2-3066.3	11	tt	50	, 8	29	25

FIG. 1. Location of Poolowanna No 1 well in the Pedirka Basin, central Australia

•

FIGURE 2: Maceral compositions of the dispersed organic matter and coals from the Triassic in the Poolowanna No.1 well, Pedirka Basin

(micrinite + inertodetrinite +
 semifusinite + fusinite)

FIGURE 3. Approximate proportions of dispersed organic matter in the Triassic sediments, with subdivisions into the three maceral groups

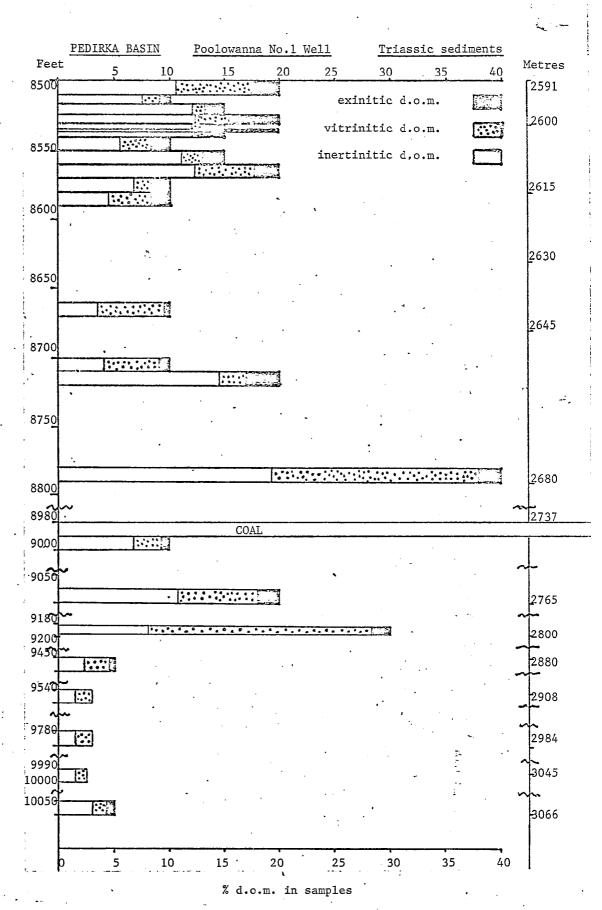


FIGURE 4: Distribution of eximite types in Triassic sediments

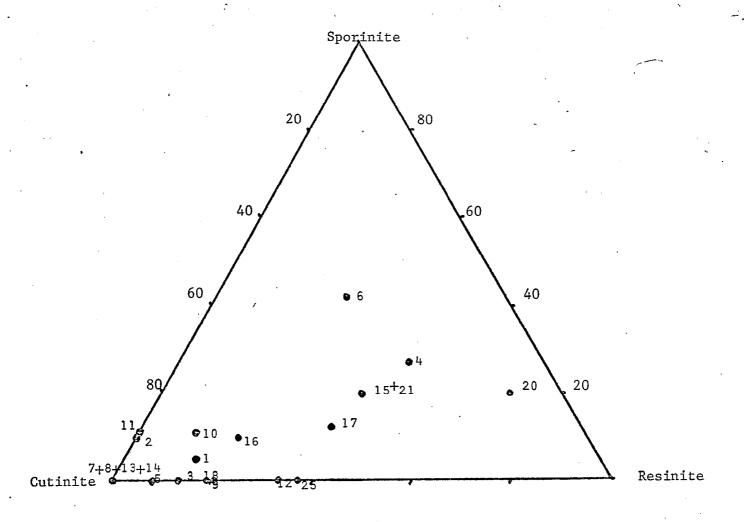


FIGURE 5: Distribution of inertinite types in Triassic sediments.

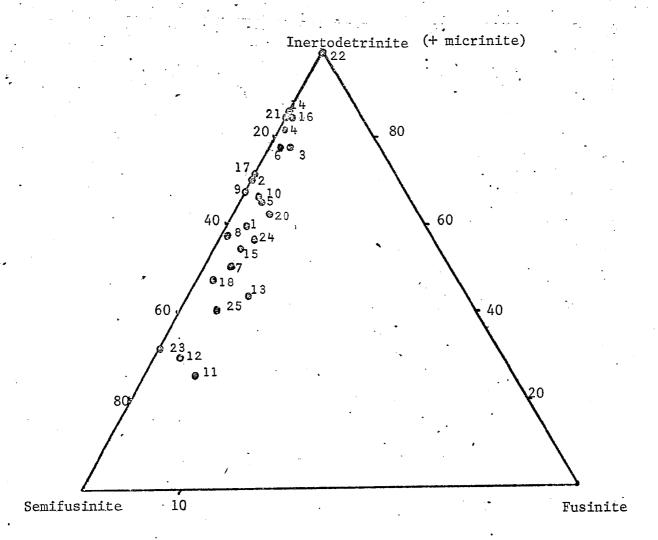
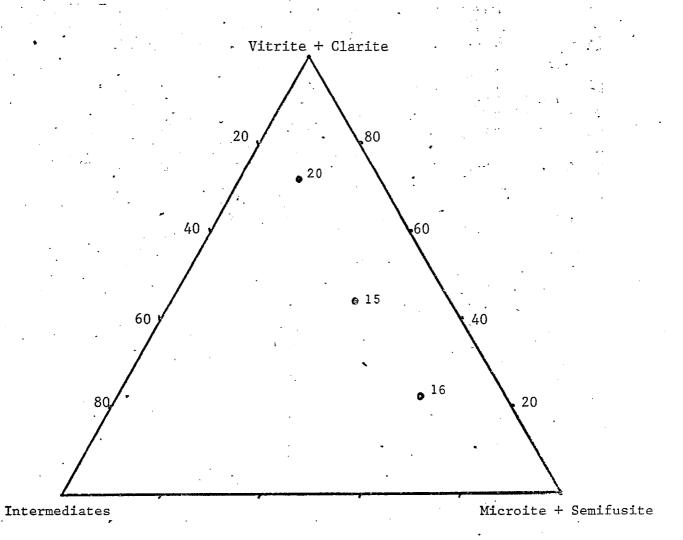



FIGURE 6: Microlithotype compositions of the Triassic coals from Poolowanna No.1 well, Perdika Basin.

RESTRICTED INVESTIGATION REPORT 981R

MINERALS RESEARCH LABORATORIES

THE PETROLOGY OF SOME COALS AND DISPERSED ORGANIC MATTER FROM
THE MIDDLE TO LOWER JURASSIC SEQUENCE IN POOLOWANNA NO 1 WELL,
PEDIRKA BASIN

MICHELLE SMYTH

FUEL GEOSCIENCE UNIT P.O. Box 136 NORTH RYDE, NSW AUSTRALIA, 2113

TABLE OF CONTENTS

	Page
INTRODUCTION	1
ANALYSES	1
RESULTS	1
DISCUSSION	2
CONCLUSIONS	2
REFERENCES	3

LIST OF FIGURES

- Fig. 1. Location of Poolowanna No.1 well in the Pedirka Basin, Central Australia.
- Fig. 2. Maceral compositions of coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.
- Fig. 3. Constituents of the eximite maceral group in coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.
- Fig. 4. Constituents of the inertinite maceral group in coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.
- Fig. 5. Microlithotype compositions of coals of Middle to Upper Jurassic age in Poolowanna No.1 well.

Introduction

Samples of the sediments from Poolowanna No 1 well, Pedirka Basin, (Fig. 1), of Cretaceous to Triassic ages, have been supplied to CSIRO Fuel Geoscience Unit by Delhi International Oil Corporation. The petrology of the coals and dispersed organic matter, of Triassic and Lower Jurassic ages, has already been reported. (Reports RIR 976R and RIR 975R respectively).

The Middle to Lower Jurassic sediments extend from 7832 feet (2387.2 metres) to 8211 feet (2502.7 metres). Selected samples from this sequence have been analysed petrographically.

Analyses

Twenty ditch cuttings, each covering 10 feet (3 metres) intervals, and containing fragments of coal and/or carbonaceous shale, plus one coal sample, were hand-picked or froth floated to concentrate the organic matter. These organic-rich fractions were made into grain mounts and analysed for their maceral and microlithotype contents. Most of the samples had a high proportion of coal fragments in them, probably representing coal seams within the 3 metre interval.

The reflectance of vitrinite in these Middle to Lower Jurassic samples ranges from 0.80% (\overline{Ro}_{max}) at 7900 feet (2407.9 metres) to 0.85% at 8200 feet (2499.4 metres). (Russell, pers. comm.).

Results

Maceral analyses are listed in Table 1, and microlithotypes in Table 2. The maceral compositions of the coals are plotted in Fig. 2. They have moderate to high vitrinite contents, and eximite contents generally 5 to 10%, which is similar to the Lower Jurassic coals from Poolowanna No 1 (RIR 975R). Three samples containing mostly dispersed organic matter (d.o.m.) have lower vitrinite contents than the coals; two samples of d.o.m. have compositions similar to the coals.

The predominant constituent of the eximite maceral group is most often resinite (Fig. 3), but with several samples having dominant sporinite or cutinite. Again this is similar to the occurrences in the

Lower Jurassic coals. Inertodetrinite and semifusinite of the inertinite group are dominant in approximately the same number of samples, (Fig. 4), with a trend for inertodetrinite to be associated with those coals having the lower vitrinite values.

The coals have moderate to high vitrite-plus-clarite contents (Fig. 5) and generally low intermediates except for three coals which are similar in petrographic composition to Greta Coal Measures coals from the Sydney Basin (Area C of Fig. 5).

Discussion

These coals are very similar in their maceral and microlithotype compositions to the underlying Lower Jurassic coals. The only coals which are different are the three with the high intermediates content. Such coals have been interpreted as accumulating in brackish conditions in the Sydney Basin, perhaps in large lagoons. The other coals have petrographic compositions which have been ascribed to a fluvial environment, or upper deltaic for the coals between 7940 and 7960 feet (2420.1 to 2426.2 metres). (Britten et al, 1973). It is not yet certain whether the same petrographic compositions in coals of different ages represent the same geological conditions or not. The alternative explanation is that flora from different geological ages can produce the same petrographic compositions in different geological environments. The latter explanation is almost certainly true for Tertiary coals, but for Jurassic coals there are insufficient data to be sure of either.

Conclusions

The Middle to Lower Jurassic coals have moderate to high vitrinite contents and low eximite contents. The dominant eximite constituent is most often resimite.

The coals may have accumulated in a fluvial environment, or rarely upper deltaic and brackish lagoonal.

They are very similar petrographically to the underlying Lower Jurassic coals and should be grouped with them.

References

Britten, R.A., Smyth, M., Bennett, A.J.R. and Shibaoka, M., 1973: Environmental Interpretations of Gondwana Coal Measure Sequences in the Sydney Basin of New South Wales. Third Gondwana Symposium, Canberra, Australia.

TABLE 1 - PEDIRKA BASIN: Poolowanna No.1 well Maceral analyses of Middle to Lower Jurassic coals and dispersed organic matter (Results are given as percentages by volume unless otherwise stated)

		· .	J	•	•			,					
	Depth · (ft.)	Depth (M)	Vitrinite	Resinous vitrinite	Sporinite	Cutinite	Resinite	Micrinite	Inertod- etrinite	Semi- fusinite	Fusinite	Minerals	No. of coal counts
	59936 7910-20	2411.0- 2414.0	68 71	1 2	2 2	tr tr	tr tr	<u>1</u> 1	9 9	14 15	tr tr	5 mm£	479
	60450 7920	2414.0	69 72	1	2 2	1	5 5	I 1	8 8	10 10	tr tr	4 mm£	418
	59937 7920–30	2414.0- 2417.1	70 73	2 2	2 2	tr tr	tr tr	1	9 9	11 12	1	4 mm£	641
	59938 7930-40	2417.1- 2420.1	62 65	-	4	1 1	1 2	-	9 9	18 19	tr tr	5 _. mm£	366
•	7940-50	2420.1- 2423.2	52 55	tr tr	2 2	1 1	-	tr tr	22 23	18 18	i 1	4 mm£	463
	7950–60	2423.2- 2426.2	40 42	4 5	1	3 3	2 2	-	21 23	23 24	-	6 mm£	161 Coal
;	7960-70	2426.2 - 2429.3	50	-	5	2	5		18	18	2	n.c.	40 d.o.
•	7980-90	2432.3- 2435.4	71	3	-	4	1	_	10	8	3	n.c.	151 d.o.
:	7990-8000	2435.4- 2438.4	68	5	~	1	3	tr	6	16	1	n.c.	309 Coal
	59945 8000 - 07	2438.4- 2440.5	48	3	1	2	13	-	15	17	1	n.c.	110 d.o.
	59946 3007 - 10	2440.5- 2441.4	41 60	2 2	1	1 2	4 6	tr 1	9 12	11 16	tr tr	31 mm£	361
	59947 3010-20	2441.4- 2444.5	59 78	2 2	1	tr tr	2 3	tr tr	8 10	4 6	<u> </u>	24 tim£	398
	59948 3020–30	2444.5 2447.5	38 57	2 2	tr tr	2 3	5 7	-	10 15	10 15	1	32 mm£	341
	59949 3030-40	2447.5- 2450.6	53	6	5	1	5	-	15	14	1 '	n.c.	291
	59950 3040–5 0	2450.6- 2453.6	63	3	2	1	5	-	9	17	-	n.c.	369
	59955 3090-8100	2465.8- 2468.9	52 60	1	2 2	1	2 2	1 2	14 16	13 14	1 2	13 mmf	550
	59956 3100-8110	2468.9 2471.9	35 61	-	3 4	tr tr	1 3	1	11 18	6 11	1 2	42 mmf	303
	59962 3160-8170	2487.2- 2490.2	23 65	1	tr tr	2 6	1 4	-	3 9	5 13	-	63 mmf	202
	59963 3170-8180	2490.2- 2493.3	54 61	1 1	1	4 4	5 6	- -	10 11	11 13	2 3	12 1121	139 d.o.m
	59965 3190-8200	2496.3 2499.4	53 60	6 6	6 6	2 2	8 9		5 6	9 10	1	10 mmf	412
	59966 3200-8210	2499.4 2502.4	65 71	4 5	2 2	1	8 9	tr tr	4 4	8 8	tr tr	8 mmf	385

mmf = mineral matter free

n.c. = not counted

d.o.m. = dispersed organic matter

TABLE 2 - PEDIRKA BASIN : Poolowanna No.1 well Microlithotype analyses of the Middle to Lower Jurassic coals (Results are given as percentages by volume unless otherwise stated)

Depth (ft.)	Depth (M)	Vitrinite	Clarite	Intermediates	Microite + Durite	Semifusite + Fusite	Shaly Coal	Mineral Matter	No. of coal counts
59936 7910 - 7920	2411.0- 2414.0	65 67	1	16 17	2 2	13 13	3 mmf	n.c.	485
60450 · 7920	2414.0	63	5	19	2	11	n.c.	n.c.	416
5993 7 7920 -3 0	2414.0- 2417.1	62 63	3 3	19 19	2 2	13 13	1 mmf	n.c.	685
59938 7930-40	2417.1- 2420.1	51 53	9 9	19 20	3 3	14 · 15	2 mmf	2	541
7940-50	2420.1- 2423.2	39 41	4 4	25 26	11 11	18 18	3 mm£	n.c.	449
7950-60	2423.2 ~ 2426.2	33 39	7 9	17 20	10 11	17 21	16 rmf	n.c.	124
7960-70	2426.2- 2429.3	Not enou	ugh materi	al for microlis	hotypes			,	
7980-90	2432.3- 2435.4	61 66	4	6 6	3 3¹	19 21	7 mm£	n.c.	121
7990-8000	2435.4 - 2438.4	59 66	5 5	6 6	2 2	18 21	10	n.c.	277
59945 8000 -07	2438.4 - 2440.5	Not eno	ugh materi	al for microli	hotypes				-
59946 8007 -10	2440.5- 2441.4	34 52	2 3	12 17	8 12	10 16	7	27	332
59947 8010 -20	2441.4- 2444.5	56 73	4 5	10 13	3 4	4 5	6 mm£	17	412
59948 8020 - 30	2444.5- 2447.5	27 51	3 6	6 11	5 10	12 22	5 mmf	42	269 =
59949 8030 - 4 0	2447 .5- 2450.6	24 36	7 11	24 37	3 5	7 11	6 mm£	29	254
59950 8040 -50	2450.6- 2453.6	39 56	6 8	9 13	5 7	11 16	6 11111£	24	393-
5995 5 8090 - 8100	2465.8- 2468.9	49 5 0	4	32 32	3 3	11 11	1 mm£	n.c.	517
59956 8100-8110	2468.9- 2471.9	55 56	3 3	28 28	6 6	7 7	1 mmf	п.с.	243
59962 8160 - 81 70	· 2487.2- 2490.2	49 59	5 7	13 15	5 6	11 13	17 mmf	n.c.	154
59963 8170-8180	2490.2- 2493.3	Not eno	ugh materi	ial for microli	thotypes				-
59965 8190 - 8200	2496.3- 2499.4	38 46	26 31	8 9	2 2	10 12	9 mm£	7	364
59966 8200-8210	2499.4- 2502.4	49 5 5	24 27	10 10	.tr tr	8 8	9 mm£	n.c.	350

mmf = mineral matter free

n.c. = not counted

Middle to Lower Jurassic coals from Poolowanna No.1 well, Pedirka Basin

Legend for Figures 2 to 5

1	Depth		o. of counts		Point	
Feet	Metres	All macerals	exinite	inertinite	micro- lithotypes	on diagrams
7910-7 920	2411.0-2414.0	479	12*	118	485	1
7920	2414.0	418	32 `	82	416	2
7920 -7930	2414.0-2417.1	641	16*	147	685	3
7930- 7940	2417.1-2420.1	366	24	104	541	4
7940- 7950	2420.1-2423.2	463	11*	199	449	5
7950-7960	2423.2-2426.2	161	10*	76	124	6
7960-7 970	2426.2-2429.3	40*	5*	15*		7
7980- 7990	2432.3-2435.4	151	8*	31	121	8
7990- 8000	2435.4-2438.4	309	14*	71	277	9
8000-8007	2438.4-2440.5	110	17*	37	. -	10
8007-8010	2440.5-2441.4	361	33	105	332	11
8010-8020	2441.4-2444.5	398	18*	63	412	12
8020-8030	2444.5-2447.5	341	36	. 104	269	13
8030-8040	2447.5-2450.6	291	33	85	254	14
8040-8050	2450.6-2453.6	369	31	95	393	15
8090-8100	2465.8-2468.9	550	31	185	517	16
8100-8110	2468.9-2471.9	303	23	96	243	17
8160-8170	2487.2-2490.2	202	21	44	154	18
8170-8180	2490.2-2493.3	. 139	16*	37	-	19
8190-8200	2496.3-2499.4	412	72	. 68	364	20
8200- 8210	2499.4-2502.4	385	45	50	350	21

 $[\]ensuremath{\bigstar}$ Not enough points counted for reliable results

FIGURE 1 - Location of Poolowanna No.1 well in the Pedirka Basin.

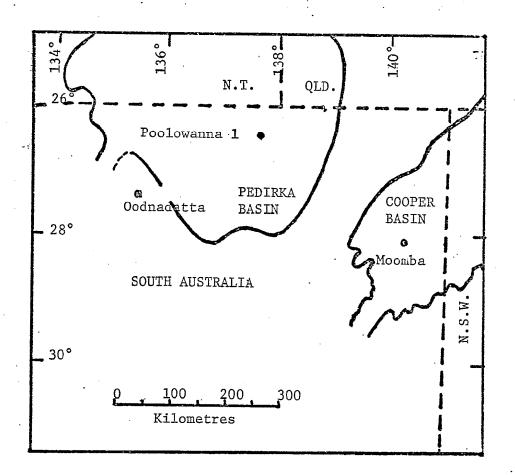


FIGURE 2 - Maceral compositions of coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.

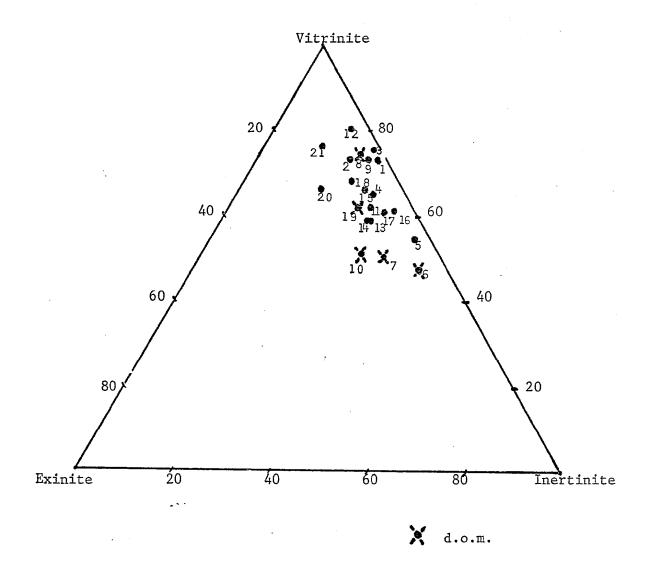


FIGURE 3 - Constituents of the eximite maceral group in coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.

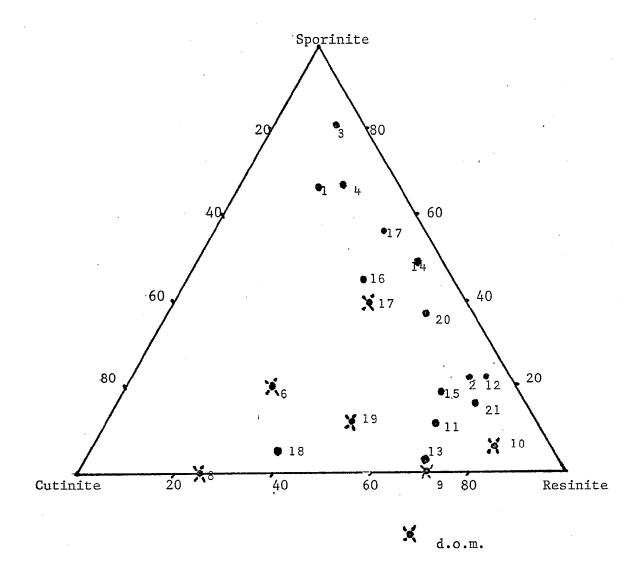
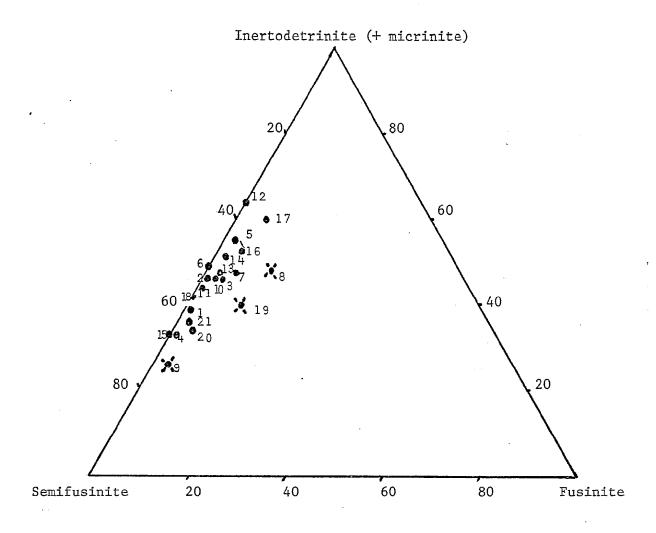
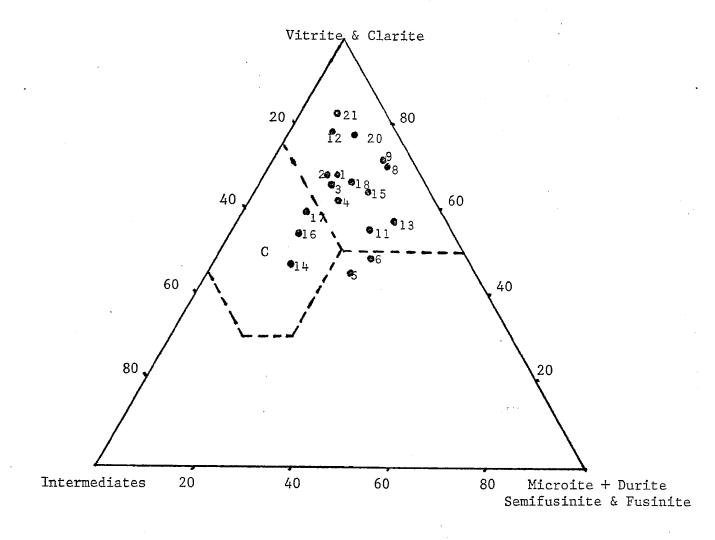
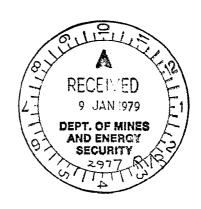




FIGURE 4 - Constituents of the inertinite maceral group in coals and dispersed organic matter of Middle to Lower Jurassic age in Poolowanna No.1 well.

d.o.m.

FIGURE 5 - Microlithotype compositions of coals of Middle to Lower Jurassic age in Poolowanna No.1 well.

PETROGRAPHY AND DIAGENESIS OF


JURASSIC SANDSTONES FROM

POOLOWANNA-1(8426'2"-8439'3" bdf)

SIMPSON DESERT, CENTRAL AUSTRALIA

ΒY

A.E. RAHDON

CONTENTS

		Page
1.	Introduction	1
2.	Megascopic Features of Samples	1
3.	Composition of Sandstones	. 2
	3.1 Framework minerals	2
	3.2 Matrix	3
	3.3 Carbonaceous layers	4
4.	Diagenesis .	4

APPENDIX

Petrographic description of samples.

Text Figure: Location map of Poolowanna-1

1.

At the request of I.D. Bruce several samples of Jurassic sandstones from Poolowanna-1, interval 8426'2" - 8439'3" were examined for preliminary identification of compositional, textural and diagenetic characteristics. The investigation was carried out using reflection and transmitted light microscopes.

The well Poolowanna-1 was drilled in the Simpson Desert, Central Australia (26°25'34"S and 137°40'31"E) by a consortium headed by Delhi International Oil Corp. in 1977. The DST at depth 8216'-8328' bdf recovered 15 bbls of oil and water from the Jurassic sandstones; the gravity of the oil was reported as 36.9°API (MPR Sept. 1978). According to geological literature the subcropping Permian and Triassic sediments in this part of Australia are considered to belong to the "Pedirka Basin" whereas the overlying Jurassic/Cretaceous sediments are assigned to the "Eromanga Basin". This was the first bona fide oil occurrence in the Simpson Desert.

2. Megascopic Features of Samples

The samples examined were small fragments ca. 200 grams (in weight) each, taken from one core. Their more important visual characteristics are as follows:

Sample 8426'2" Sandstone, brown, fine to medium (av. diameter 200 microns)

(2570m) well sorted. Contains patches of carbonaceous shale and a laminae of carbonaceous matter. A stylolite is present.

Sample 8427'1" Sandstone grey, fine (av. 150 microns), well sorted, hard (2570.2m) and tough, some dark streaks and rare fractures parallel to bedding.

Sample 8430'10" Sandstone grey, fine to medium, well sorted, very hard;

(2571.2m) carbonaceous laminae and stylolites present. Some fractures parallel to bedding.

Sample 8438'6" Sandstone, brownish grey, fine to coarse poorly sorted,

(2573.7m) laminated. Carbonaceous shale and carbonaceous matter

forms thin beds, layers and stylolites. The sample

seems to be hydrocarbon bearing.

Sample 8439'3" Sandstones in contact with coal. Sandstone grey, medium

2574m to coarse, moderately sorted, relatively friable.

Numerous white patches of kaolinite. The sandstone is

in contact with a coal layer, black shiny.

From the above it can be seen that the first three samples are fine grained and the lower two medium to coarse grained. The grey samples (8427'1" and 8430'10") are very hard, the others are hard to semifriable.

3. Composition of Sandstones

As seen under the microscope the framework of the sandstones is composed of quartz, polycrystalline quartz, kaolinite grains, occasional grains of coal, heavy minerals and flakes of mica. Only in the coarse grained sandstone (8439'3") could feldspar be identified. Quartz is by far the most common constituent.

Intergranular matter, composed of phyllosilicates (clay and micas) is common in samples 8426'2" and 8438'6" but is rare in the grey, hard sandstones. On the whole the grains are well sorted in the upper three samples and vary in angularity from semi-rounded to semi-angular.

3.1 Framework minerals

Quartz which forms 90-95% of the framework minerals in the fine and medium sandstones occurs with straight or with undulating extinction. The quartz grains in the grey sandstone invariably have advanced authigenic overgrowths.

Polycrystalline quartz, occurs as chert, as vein quartz, and as detrital grains derived from gneiss, quartzites and pre-existent quartzose sandstones. Some varieties have the appearance of quartz derived from silcretes (detrital grains with healed fractures).

Feldspars occur mainly in the coarse grained sandstone (sample 8439'3"). They are of an untwinned variety and only the presence of cleavage permits their identification.

Micas are predominantly of muscovite composition and occur as flakes up to 1 cm long, mostly deformed and contorted to a varying degree. Some micas seem to form part of matrix and are stained by hydrocarbons (in 8426'2" and 8438'6").

Heavy Minerals are not common constituents. Of those present, zircon and blue tourmaline are the most representative. In the sample 8438'6" a minute amount of pyrite is present.

<u>Lithoclasts</u> are composed of shale, carbonaceous shale, coal and some composite grains (kaolinite/quartz, mica/quartz).

Alteration Minerals form grain-size patches composed of kaolinite. They are common in the coarse sandstone (8439'3") and most likely are alteration products of some unstable mineral (?microcline?).

3.2 Matrix

The intergranular matrix is abundant in the samples 8926'2" and 8438'6". In these two samples several substances such as strongly deformed contorted micas, squeezed soft lithoclasts, weakly birefringent fibrous brown clay; kaolinite and structureless brown semitranslucent matter (probably a heavy hydrocarbon) are present.

In the grey sandstones (8427'1" and 8430'10") the matrix is not abundant and is composed of kaolinite, whereas in the coarse sandstone (8439'3") it is composed almost exclusively of a diagenetic kaolinite.

3.3 Carbonaceous layers

Part of the sample 3438'6" consists of black shale. Under the microscrope this shale appears to be composed of a dark carbonaceous mass with mica flakes well aligned within. Very thin laminae of carbonaceous matter branch off from the main shale body and laterally pass into stylolites.

In other samples carbonaceous matter forms lenses, fills stylolites or forms very narrow laminae. The nature of the carbonaceous matter could not be established but it is thought to be rich in heavy hydrocarbon.

Part of the sample 8439'3" is composed of a coal.

4. Diagenesis

The grey sandstones (8427'1" and 8430'10") are tight, hard and strongly consolidated. The main post-depositional changes that affected these sandstones are compaction and the growth of authigenic quartz. The authigenic quartz overgrowth are particularly well advanced imparting to the sandstones a mozaic texture.

The other sandstones are more friable than the above and contain depositional and diagenetic phyllosilicates (micas and clay minerals). In these sandstones the authigenic quartz overgrowth are less developed and portions of the intergranular space are occupied by clay and micaceous minerals. The main diagenetic pore reducing processes in these sandstones are compaction and pore-filling by phyllosilicate minerals. In the coarse sandstone (8439'3") the quartz diagenesis has been strongly advanced but the authigenic kaolinite is also abundant and occupies the intergranular space.

Petrographic Description of Samples

Sample 8426'2"

Sandstone, medium grained, well sorted, composed of quartz and subordinate amounts of polycrystalline quartz, lithoclasts, tourmaline, mica and other phyllosilicates.

Alignment of grains is parallel to bedding. Sutured contacts are present. Argillaceous and plastically deformed components occupy much of the intergranular space.

Sample 8427'1"

Sandstone, fine grained, very well sorted, composed of quartz (ca. 93%), polycrystalline quartz, micas, zircon and kaolinized grains.

The diagenetic minerals are authigenic quartz overgrowths and some phyllosilicates (? illite) that form a coating around the detrital grains.

Dissolution of quartz grains is very pronounced in the vicinity of stylolites.

Sample 8430'10"

Sandstone, fine to medium grained, very well sorted; composed of quartz (ca. 90%), muscovite, volcanic lithoclasts, sericitized and kaolinized grains.

The diagenetic minerals are authigenic quartz overgrowths.

Sample 8438'6"

Sandstone, medium grained, poorly sorted, carbonaceous, argillaceous; the framework composed of quartz (dominant), lithoclasts, micas and opaque constituents (coal and other carbonized matter, mainly plant remains).

The diagenetic minerals are authigenic quartz overgrowths (minor amount) and phyllosilicates. The presence of sutured contacts indicates some dissolution of framework minerals.

Sample 8439'3"

Sandstone, fine to very coarse grained, poorly sorted; composed of quartz,

(?) orthoclase, polycrystalline grains and patches of kaolinite.

The diagenetic minerals are authigenic quartz and kaolinite.

RESTRICTED INVESTIGATION REPORT 989R

CSIRO

MINERALS RESEARCH LABORATORIES
FUEL GEOSCIENCE UNIT

THE PETROLOGY OF SOME COALS AND DISPERSED ORGANIC MATTER OF
TRIASSIC TO CRETACEOUS AGES IN POOLOWANNA NO 1 WELL
PEDIRKA BASIN

MICHELLE SMYTH

2977 R 14

P.O. Box 136 North Ryde, NSW Australia, 2113

JANUARY 1979

TABLE OF CONTENTS

		Page
INTRODUCTI	ON	1
ANALYSES		1
RESULTS		1
DISCUSSION		2
Disperse	d organic matter (d.o.m.)	2
Coals	•	3
CONCLUSION	S	4
REFERENCES		4
	LIST OF TABLES	•
Table 1	Poolowanna No.1 well, Pedirka Basin Upper Middle Jurassic Coals and Dispersed Organic Matter Maceral Analyses	
Table 2	Approximate maceral composition of the dispersed organic matter in the Upper Middle Jurassic sediments	
Table 3	Poolowanna No.1 well - Cretaceous, Pedirka Basin Maceral analysis of the subsections	
Table 4	Upper Middle Jurassic coals from Poolowanna No.1 well, Pedirka Basin Microlithotype analyses	
Table 5	Pedirka Basin, Poolowanna No.1 well Microlithotype analyses of coals and d.o.m. of cretaceous age	
	LIST OF FIGURES	, "
Fig.1	Maceral compositions of the Upper Middle Jurassic coals and dispersed organic matter	
Fig.2	Maceral compositions of the Cretaceous coals and dispersed organic matter	
Fig.3	Constituents of the exinite maceral group in Upper Middle Jurassic coals and dispersed organic matter	
Fig.4	Constituents of the eximite maceral group in Cretaceous coals and dispersed organic matter	er
Fig.5	Constituents of the inertinite maceral group in Upper Middle Jurassic coals and dispersed organic matter	1
Fig.6	Constituents of the inertinite maceral Group in Cretaceous coals and dispersed organic matter	1
Fig.7	Microlithotype compositions of the Upper Middle Jurassic coals	2

Fig.8	Microlithotype compositions of the Cretaceous coals
Fig.9	Maceral compositions of dispersed organic matter of Triassic to Cretaceous ages
Fig.10	Constituents of the eximite maceral group in dispersed organic matter of Triassic to Cretaceous ages
Fig.11	Constituents of the inertinite maceral group in dispersed organic matter of Triassic to Cretaceous ages
Fig.12	Maceral compositions of coals of Triassic to Cretaceous ages
Fig.13	Constituents of the inertinite maceral group in coals of Triassic to Cretaceous ages
Fig.14	Constituents of the inertinite maceral group in coals of Triassic to Cretaceous ages
Fig.15	Stratigraphy in Poolowanna No.1 well and proposed sedimentary environments of the coals

INTRODUCTION

This is the fourth report on the organic sediments from Poolowanna No 1 well. It deals specifically with those sediments from the Upper Middle Jurassic and Cretaceous successions. Also, as this is the last report, a comparison has been made of the petrography of all of the coals and dispersed organic matter from the Triassic to the Cretaceous. The three reports covering the Triassic, Lower Jurassic and Middle to Lower Jurassic sediments are Restricted Reports 976R, 975R and 981R, respectively.

All of the samples used have been supplied by Delhi International Oil Corporation to CSIRO Fuel Geoscience Unit. The microscope study of these samples has been undertaken in an attempt to define the nature of the source rocks for hydrocarbons in this basin.

ANALYSES

Samples of coals and carbonaceous shales were selected from ditch cuttings of the Upper Middle Jurassic and Cretaceous sediments.

These were froth floated if necessary to concentrate the organic fraction.

Fourteen ditch cuttings and two cores from the Upper Middle Jurassic and thirteen ditch cuttings from the Cretaceous have been analysed for their maceral contents, and also microlithotypes where possible.

RESULTS

Results of the maceral analyses are in Tables 1 and 3, and Figs 1 and 2. Many of the <u>Upper Middle Jurassic</u> samples contained d.o.m. rather than coal (Table 1) and the proportions of the three maceral groups comprising this d.o.m. are given in Table 2.

The coals are generally vitrinite-rich, as in the d.o.n; except for the coal between 7590 and 7600 feet (2313.4 to 2316.5 metres), which has a moderate vitrinite content and high eximite content.

The <u>Cretaceous</u> coals and d.o.m. also have high vitrinite contents, (Table 3) but less than the Upper Middle Jurassic ones. The eximite

content of the Cretaceous d.o.m. is higher, particularly in one sample where the eximite content is 50% (Fig. 2).

Few of the samples contained sufficient eximite for meaningful subdivisions of this group into the constituents sporinite, cutinite and resimite. In both the Upper Middle Jurassic (Fig. 3) and the Cretaceous (Fig. 4), there is a trend for resimite, then cutinite to be the dominant eximite maceral, particularly in the Cretaceous samples.

Semifusinite is the dominant inertinite group constituent (Figs 5 and 6), with fusinite more than usually plentiful in the Cretaceous coals.

Microlithotype analyses of the coals are given in Tables 4 and 5 and Figs 7 and 8. Most of the coals have high vitrite plus clarite contents and low intermediates, except for the two samples of coal from the 7590 - 7600 feet (2313.4 to 2316.5 metres) interval, which have relatively high intermediates (Table 4).

The reflectance of the vitrinite (R_o max) in the Upper Middle Jurassic varies from 0.60% at 5560 feet (1694.7 metres to 0.80% at 7900 feet (2407.9 metres). The reflectance of the vitrinite in the Cretaceous is 0.35% at 910 feet (277.4 metres) to 0.59% at 5450 feet (1661.2 metres). (Russell, pers. comm.).

DISCUSSION

Dispersed organic matter (d.o.m.)

The <u>vitrinite</u> content of the d.o.m. tends to increase from the Triassic, where it is generally low at <50%, to the Upper Middle Jurassic where it is high, at 75% (Fig. 9). The vitrinite content of the Cretaceous d.o.m. is lower than that of the Upper Middle Jurassic, <70%.

The <u>exinite</u> content of the d.o.m. does not vary greatly in amount, ranging between 0 and 30% generally, and being lowest in the Upper Middle Jurassic (Fig. 10). Cutinite is the dominant exinite constituent in the Triassic sediments, and both cutinite and resinite are well represented in the younger sediments.

The <u>inertinite</u> content of the d.o.m. varies inversely with the vitrinite (Fig. 11). It is highest in the Triassic sediments, generally >50%, and lowest in Upper Middle Jurassic, <20%. The dominant inertinite constituent in the Triassic d.o.m. is inertodetrinite, and then the proportion of semifusinite increases in the younger sediments to the Upper Middle Jurassic and Cretaceous, where semifusinite is dominant.

Coals

In the coals there is the same tendency for the vitrinite content to increase from the Triassic to the Upper Middle Jurassic, but the vitrinite in coals is higher than in the d.o.m. of the same age (Fig. 12).

Most of the coals have exinite contents between 0 and 15% (Fig. 13). Coals with exinite >15% are Upper Middle Jurassic and Cretaceous. The exinite constituents of the coals differs from that in the d.o.m. Both cutinite and resinite are well represented in the Triassic and the Lower Jurassic; from the Lower Jurassic onwards sporinite increases and to the Upper Middle Jurassic sporinite and resinite occur in the coals; resinite is dominant in the Cretaceous.

The inertinite content of the coals follows similar trends to that in the d.o.m. (Fig. 14). Inertodetrinite is the dominant constituent in Triassic coals, with the proportion of semifusinite increasing from the Lower Jurassic onwards, semifusinite being dominant in Middle to Lower Jurassic and younger coals. The proportion of fusinite is highest in the Cretaceous coals.

Fig. 15 shows the stratigraphy in Poolowanna No 1 well. If it is accepted that exinitic d.o.m. is the most suitable source material for oil (Tissot et al, 1974), most of the sediments could be likely sources. The most promising sediments would be those from the Middle to Lower Jurassic, which combine a high exinite content with a sufficiently high degree of maturity.

If vitrinitic d.o.m. is suitable for generating gaseous hydrocarbons, more than liquid ones, all of the Jurassic sediments could be likely source rocks, limited only by their maturity.

Based on the microlithotype compositions of the coals, depositional environments have been proposed for them. (Fig. 15). The inertinite-rich

coals of the Triassic may have accumulated in deltaic and lacustrine environments; the Middle to Lower Jurassic coals in deltaic and fluvial invironments, with occasionally lagoonal; and most of the Upper Middle Jurassic, plus the Cretaceous, in a fluvial environment.

CONCLUSIONS

The Upper Middle Jurassic and Cretaceous coals and dispersed organic matter have high vitrinite contents, being highest in the Upper Middle Jurassic. The dominant eximite constituent is resimite, then cutinite; and semifusinite is the dominant inertinite constituent.

Most of the coals have high vitrite plus clarite and low intermediates contents.

The vitrinite content of both coals and d.o.m. increases from the Triassic to the Upper Middle Jurassic. The vitrinite content of the coals tends to be higher than that in the d.o.m. of the same age.

Exinite in the d.o.m. is mostly cutinite and resinite, with resinite increasing from the Triassic to the younger sediments. Coals generally contain more sporinite than the d.o.m. of the same age.

Inertinite is dominantly inertodetrinite in the Triassic, with the proportion of semifusinite increasing in the younger sediments.

The interval most suitable for potential source rocks of liquid hydrocarbons is the Middle to Lower Jurassic, which combines a relatively high exinite content with a sufficiently high degree of maturity.

Sediments all through the Jurassic could be suitable source rocks for gaseous hydrocarbons, provided they are sufficiently mature.

REFERENCES

Tissot, B., Durand, B., Espitalie, J., and Combaz, A; 1974: Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum, AAPG Bull $\underline{58}$, No 3 pp 499 - 506.

TABLE 1 POOLOWANNA NO 1 WELL, PEDIRKA BASIN

Upper Middle Jurassic Coals and Dispersed Organic Matter Maceral Analyses

(Results are given as percentages by volume unless otherwise stated)

	Lab. No. Depth (feet)	Depth (metres)	Vitrinite	Resinous vitrinite	Sporinite	Cutinite	Resinite	Micrinite	Inerto- detrinite	Semi- fusinite	Fusinite	Minerals	No of coal	
1.	60487 5560-70	1694.7 to 1697.7	87 90	7 7	-	3	tr tr	-		-	_	3 mmf	212	
2.	60446 5650	1722.1	85 86	12 12	-	<u>-</u>	-	-	-	2 2	-	1 mmf	67	- d.o.m.
3.	60514 – 5830–40	1777.0 to 1780.0	80	3	_	-	3	-	3	. 11	' 	n.c.	.35	d.o.m.
4.	60541 6100-10	1859.3 to 1862.3	79	_	-	5	3	_	-	13	-	n.c.	60	d.o.m.
5.	60447 6300	1920.2	92 93	7 7	-	_	_	-		-	-	1 mmf	95	d.o.m.
6.	6390 - 6400	1947.7 to 1950.7	90 98	tr	-	-	-	-	1	tr 1		9 mmf	206	_
7.	60448 6400	1950.7	98	2	_	<u>.</u>	_	_	-	5.0		~	66	d.o.m.
8.	59767-70 6600-40	2011.7 to 2023.9	40 81	3 7	2 4	1 2	2 3	-	tr 1	1 2		51 mmf	249	_
9.	59800-04 6930-80	2112.3 to 2127.5	19 89	-	-	·1 7	1 2	-	 -	1 2	-	78 mmf	92	d.o.m.
10.	59878 7330–40	2234.2 to 2237.2	65 90	2 4	<u>-</u>	-	1 1	-	3 4	1 1	-	28 mmf	113	d.o.m.
11.	59904 7590- 7600	2313.4 to 2316.5	49 54	-	6 6	1	17 19	-	8 8	11 12	_	8 mmf	376	_

TABLE 1 POOLOWANNA NO 1 WELL, PEDIRKA BASIN

Upper Middle Jurassic Coals and Dispersed Organic Matter Maceral Analyses

(Results are given as percentages by volume unless otherwise stated)

	Lab. No. Depth (feet)	Depth (metres)	Vitrinite	Resinous vitrinite	Sporinite	Cutinite	Resinite	Micrinite	Inerto- detrinite	Semi- fusinite	Fusinite	Minerals	No of coal counts
12.	60449 7 595	2315.0	49 51	10 10	3	tr tr	14 15	2 2	11 12	6 7	-	5 mmf	453
13.	60595 7 729	2355.8	64	34	-	-	2	_		-	_	n.c.	271
14.	59760 7729.25 to 7729.50	2355.9 to 2356.0	60 81	6 9	-	-	3 . 4	_	2 3	2	-	27 mmf	127 d.o.n
15.	59761 7753.17 to 7753.42	2363.2 to 2363.3	49 78	_		· -	4 7		1	9	-	37 mmf	139 d.o.m
16.	60596 7758	2364.6	96 98	1	-	-	1	-		-	- .	2 mmf	227

tr - trace

mmf - mineral-matter-free

n.c. - not counted

d.o.m. - dispersed organic matter

TABLE 2 APPROXIMATE MACERAL COMPOSITIONS OF THE DISPERSED ORGANIC MATTER
IN THE UPPER MIDDLE JURASSIC SEDIMENTS

(Results are given as percentages by volume unless otherwise stated)

Sample No.	Lab. No. Depth (feet)	Depth (metres)	Vitrinite	Exinite	Inertinite	Total d.o.m.
2.	60446 5650	1722,1	5	-	tr	5
3.	60514 5830 - 40	1777.0- 1780.0	4	tr	1	5
4.	60541 6100-10	1859.3 to 1862.3	4	0.5	0.5	5
5.	60447 6300	1920.2	10	-	~	10
7.	60448 6400	1950.7	5	~	-	5
9.	59800 - 04 6930-80	2112.3 to 2127.5	19	1	tr	20
10.	59878 7330-40	2234.2 to 2237.2	24	tr	1	25
14.	7729.25 to .50	2355.9 to 2356.0	9	tr	1	10
15.	7753.17 to .42	2363.2 to 2363.3	8.5	0.5	1	10

tr - trace

d.o.m. - dispersed organic matter

TABLE 3 POOLOWANNA NO 1 WELL - CRETACEOUS, PEDIRKA BASIN

Maceral Analysis of the Subsections

mmf = mineral matter free

d.o.m. = dispersed organic matter

tr = trace

TABLE 4 UPPER MIDDLE JURASSIC COALS FROM POOLOWANNA NO 1 WELL, PEDIRKA BASIN Microlithotype analyses

(Results are given as percentages by volume unless otherwise stated)

	Lab No. Depth (feet)	Depth (metres)	Vitr- ite	Clar- ite	Inter- med iates	Microite & Durite	Semi- fusite & Fusite	Shaly Coal	Mineral Matter	No. of Counts
8.	59767-70 6600-40	2011.7 -2023.9	36 77	10 22	tr 1	-	<u>-</u>	6	48 mmf	150
11.	59904 7590–7600	2313.4 -2316.5	32 40	11 13	24 30	9	5 6	11	8 mmf	466
12.	60449 7 595	2315.0	37 39	9 10	29 32	13 14	5 5	. 7	n.c.	402
14.	59760 7729.25.50	2355.9 -2356.0	74 96	1	-		2 3	2	21 mmf	117
15.	59761 7753.17.42	2363.2 -2363.3	82	2	2		14	n.	c	134

mmf = mineral-matter free

n.c. = not counted

tr = trace

TABLE 5 PEDIRKA BASIN, POOLOWANNA NO.1 WELL

Microlithotype analyses of coals and d.o.m. of Cretaceous age

(Results are given as percentages by volume unless otherwise stated)

	Lab No. Depth (feet)	Depth (metres)	Vitr- ite	Clar- ite	Inter- med- iates	Microite & Durite	Semi- fusite & Fusite	Shaly Coal	Mineral Matter	No. of Counts
1.	60312 910-940	277.4 -286.5	83 85	6 6	tr tr	tr tr	9 9	2 -	tr mmf	288
2.	60441 1200-1300	365.8 -396.2	100	-	_		_	- · .	mmf	132
3.	60442 2000–2100	609.6 -640.1	97	-		-	3	-	mmf	355
4.	60349 2020–2050	615.7 -624.8	65 69	13 14	6 7	2 2	8 8	1	n.c. mmf	243
5.	60359 2320–2350	707.1 -716.3	74 79	11 12	1	1 1	7 7	6 -	n.c. mmf	314
6.	60443 2500 – 2600	762.0 - 792.5	. 87	8	- /	3	2	n.c.	n.c.	111
7.	60368 2770–2800	844.3 -853.4	61 63	15 16	13 14	4 4	3 3	3 -	1 mmf	482
8.	60444 2800	853.4	4.8	22 .	20	4	6	n.c.	n.c.	485
10.	60445 3950	1204.0	94 99	1 1	_	-	tr tr	1 _	4 mmf	402

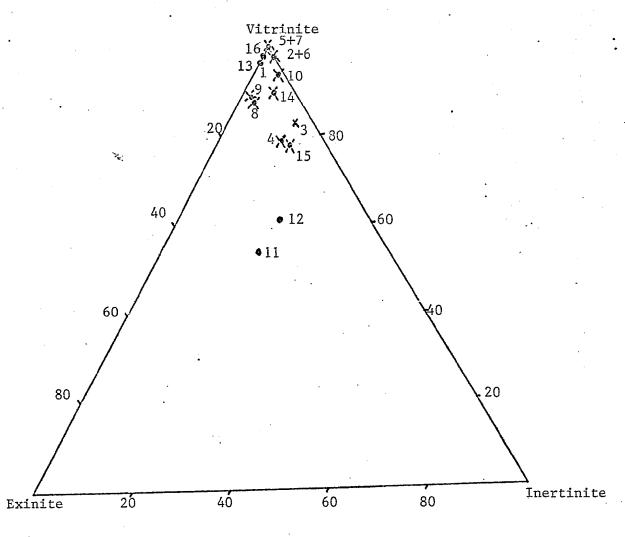
mmf = mineral matter free

n.c. = not counted

tr = trace

Legend for Figs 1, 3, 5, 7

Donth of ac	mn1.ca	No. of counts on:								
Depth of sa	mpres	all		iner-	micro-	Point on				
Feet	Metres	macerals	exinite	tinite	lithotypes	diagrams				
5560-70	1694.7-1697.7	212	7*	-	_	1.				
5650	1722.1	67	- .	1*	-	2.				
5830-40	1777.0-1780.0	35*	1*	5*	_	3.				
6100-10	1859.3-1862.3	60	5*	8*	-	4.				
6300	1920.2	95	-	-	-	5.				
6390-6400	1947.7-1950.7	206	_	3*	-	6.				
6400	1950.7	66		-	-	7.				
6600-40	2011.7-2023.9	249	24	7*	150	8.				
6930-80	2112.3-2127.5	92	8*	2*	- ' .	9.				
7330-40	2234.2-2237.2	113	1*	6*	-	10.				
7590-7600	2313.4-2316.5	376	97	78	466	11.				
7595	2315.0	453	83	92	402	12.				
7729	2355.8	271	4*	-	-	13.				
7729.25 to .50	2355.9-2356.0	127	5*	8*	117	14.				
(core)										
7753.17 to .42	2363.2-2363.3	139	9*	21	134	15.				
(core)										
7758	2364.6	227	3*	- '		16.				

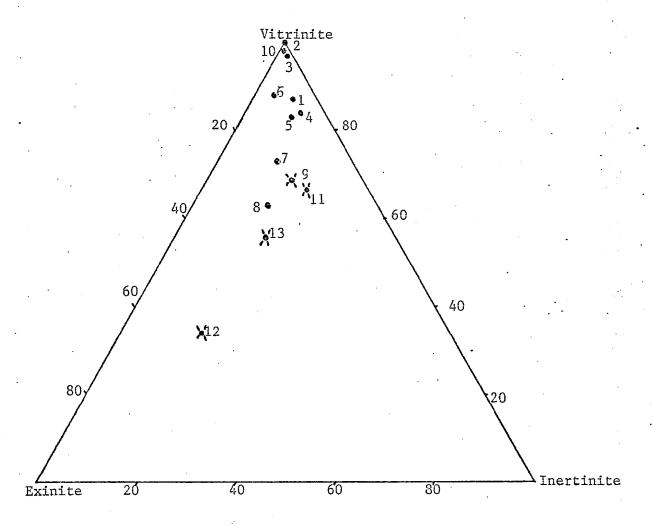

*not sufficient points for meaningful results
Upper Middle Jurassic coals and d.o.m. from Poolowanna No 1 well, Pedirka Basin

Legend for Figs 2, 4, 6, 8

Depth of	samples	a11		iner-	mico-	Point on
Feet	Metres	macerals	exinite	tinite	lithotypes	diagrams
910-940	277.4-286.5	292	15*	23	288	1.
1200-1300	365.8-396.2	132	-	-	_	2.
2000-2100	609.6-640.1	325	1*	7*	355	3.
2020-2050	615.7-624.8	237	13*	27	243	4.
2320-2350	707.1-716.3	330	23	31	314	5.
2500-2600	762.0-792.5	234	18*	9*	111	6.
2770-2800	844.3-853.4	524	77	63	482	7.
2800	853.4	576	125	85	485	8.
3400-3430	1036.3-1045.6	65	9*	11*		9.
3950	1204.0	372	3*	5*	402	10.
4060-4090	1237.5-1246.6	82	9*	17*	-	11.
4600-4630	1402.1-1411.2	85	42	14*	-	12.
5140-5170	1566.7-1575.8	73	19*	13*	-	13.

^{*} not sufficient points for meaningful results Cretaceous coals and d.o.m. from Poolowanna No 1 well, Pedirka Basin

FIG. 1 MACERAL COMPOSITIONS OF THE UPPER MIDDLE JURASSIC COALS AND DISPERSED ORGANIC MATTER



• Upper Middle Jurassic coals

▼ d.o.m.

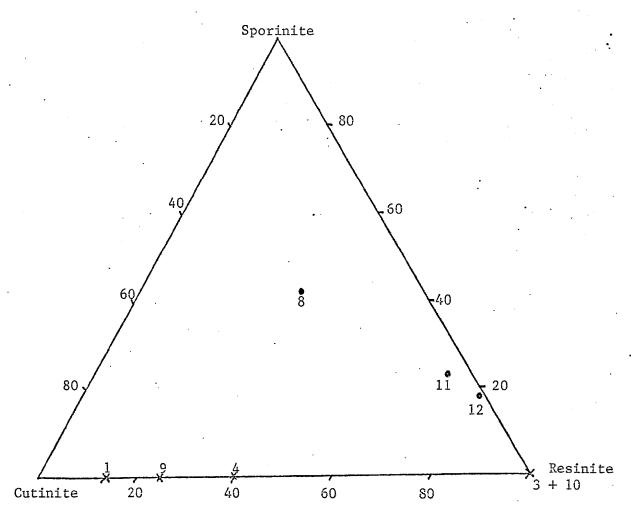

x not sufficient points counted for reliable results

FIG. 2 MACERAL COMPOSITIONS OF THE CRETACEOUS COALS AND DISPERSED ORGANIC MATTER

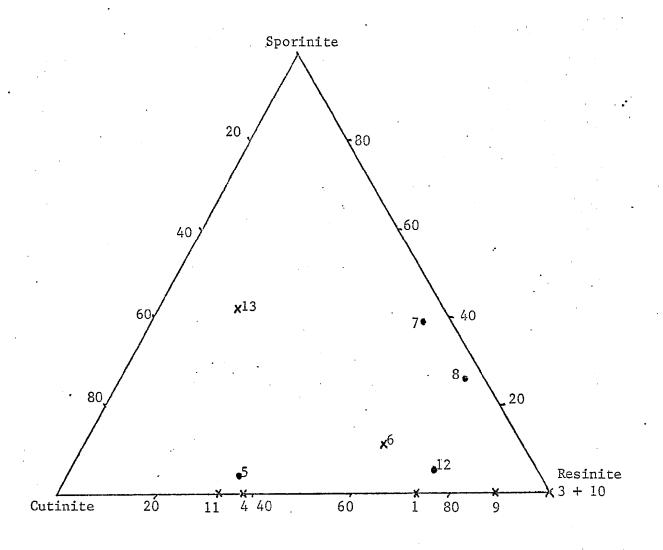
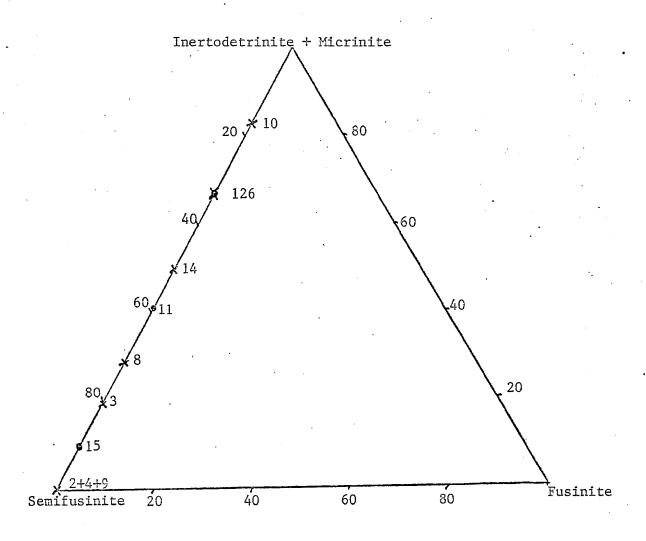

• Cretaceous coals
• d.o.m.

FIG. 3 CONSTITUENTS OF THE EXINITE MACERAL GROUP IN UPPER MIDDLE JURASSIC COALS AND DISPERSED ORGANIC MATTER

- Upper Middle Jurassic coals
- x not sufficient points counted
 for reliable result


FIG. 4 CONSTITUTENTS OF THE EXINITE MACERAL GROUP IN CRETACEOUS COALS AND DISPERSED ORGANIC MATTER

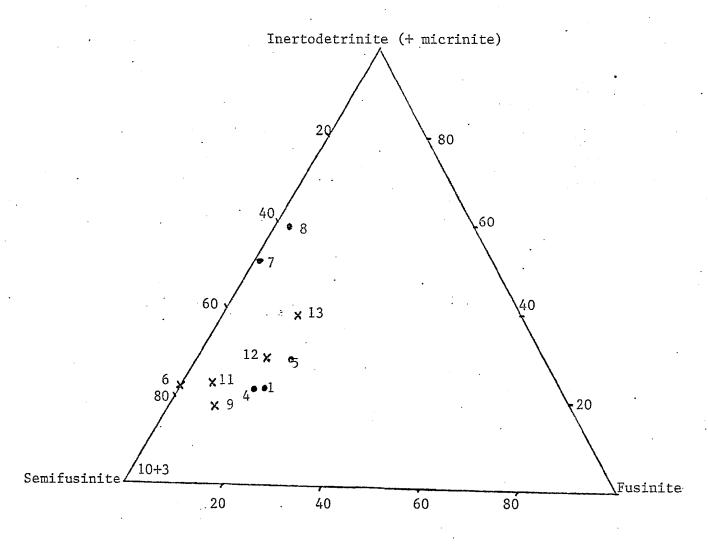
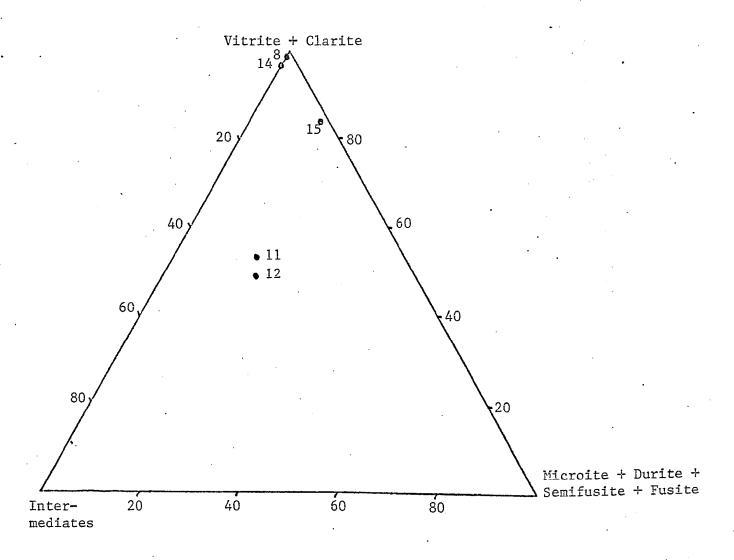
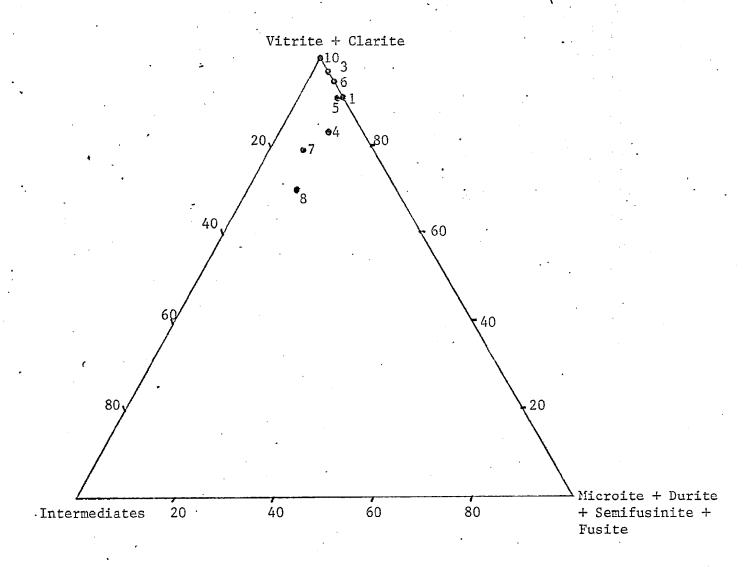
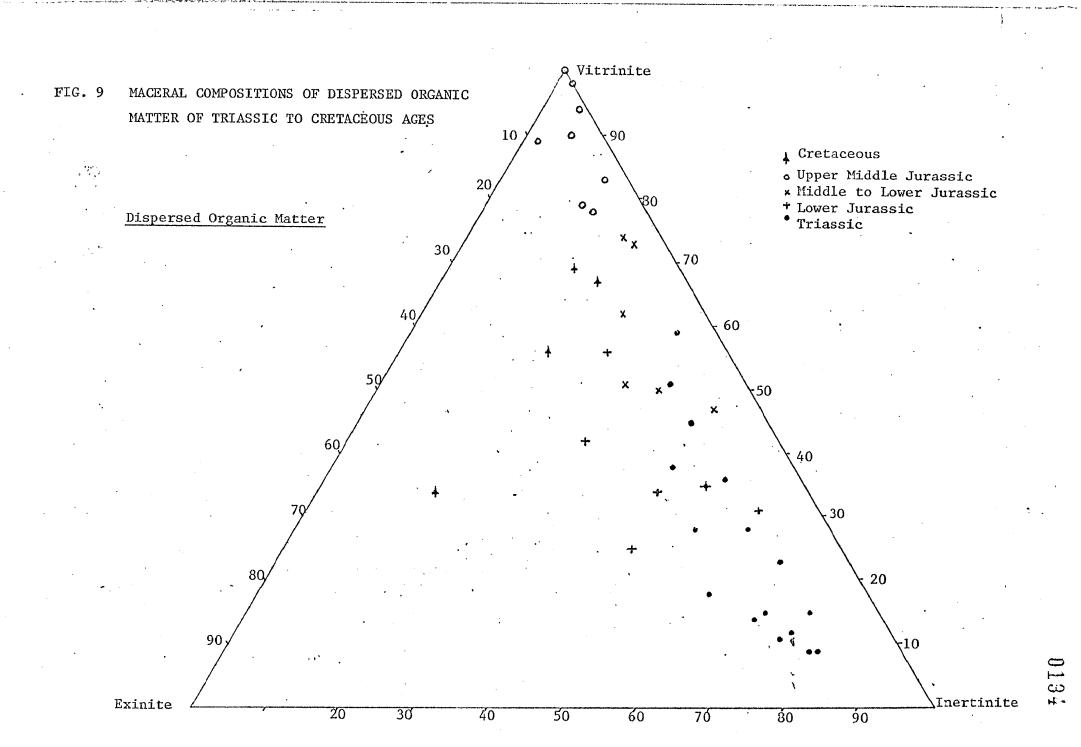

- Cretaceous coals
- x not sufficient points counted for reliable results

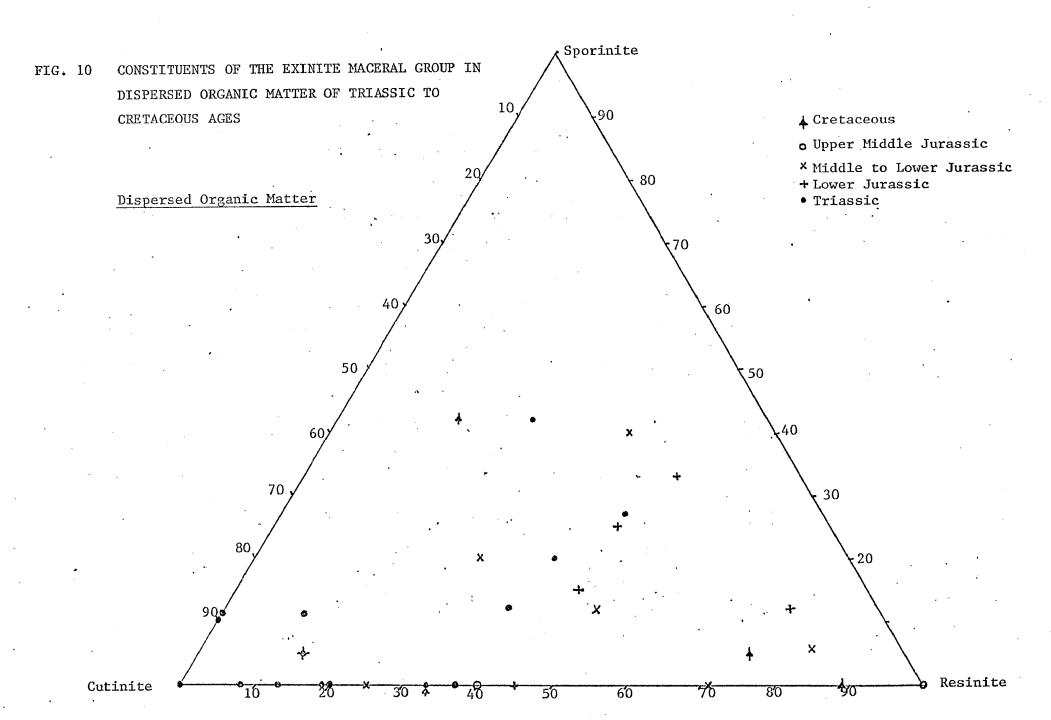
FIG. 5 CONSTITUENTS OF THE INERTINITE MACERAL GROUP IN UPPER MIDDLE JURASSIC COALS AND DISPERSED ORGANIC MATTER

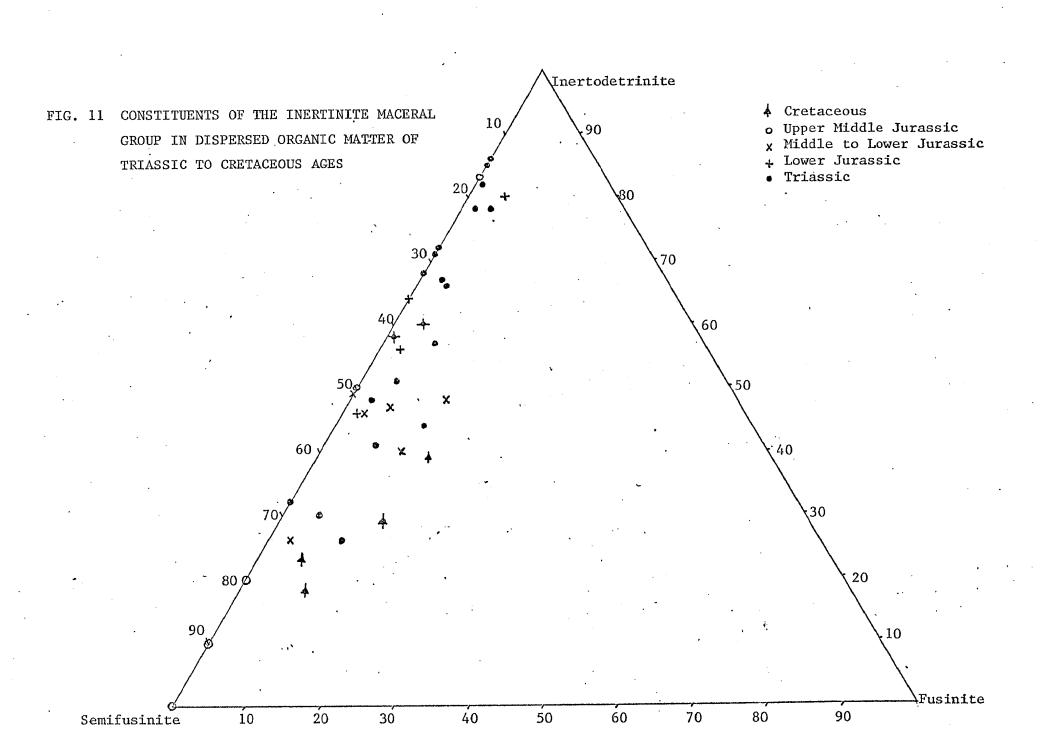
Poolowanna No 1 well Pedirka Basin

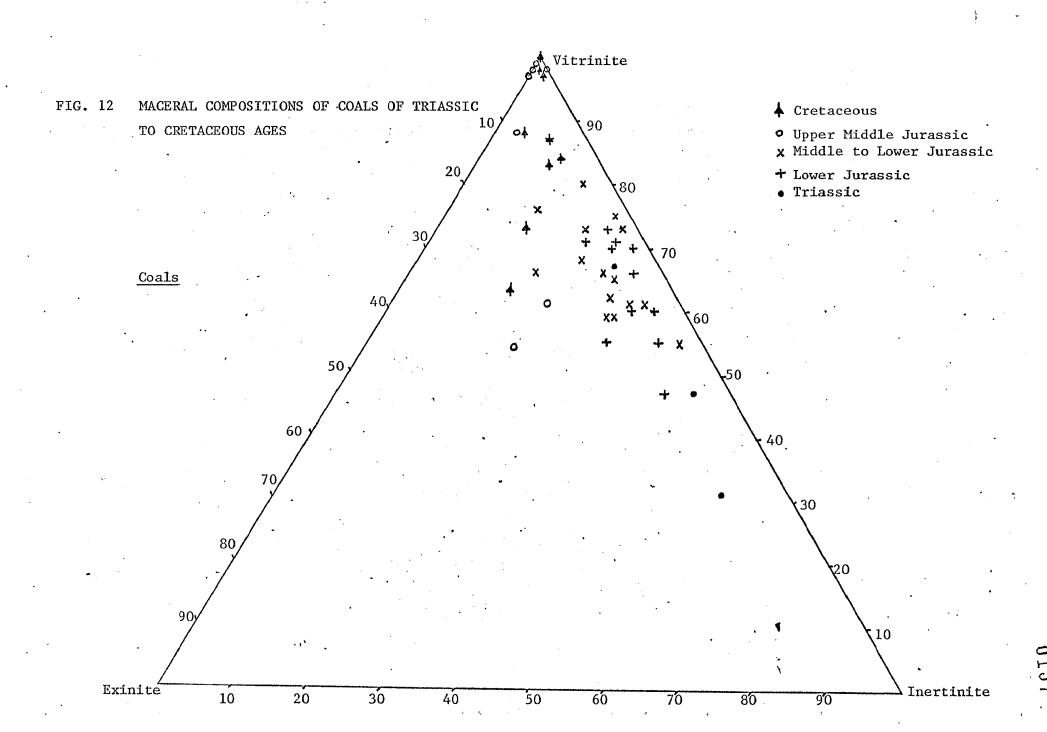

- Upper Middle Jurassic coals
- x not sufficient points counted for reliable results

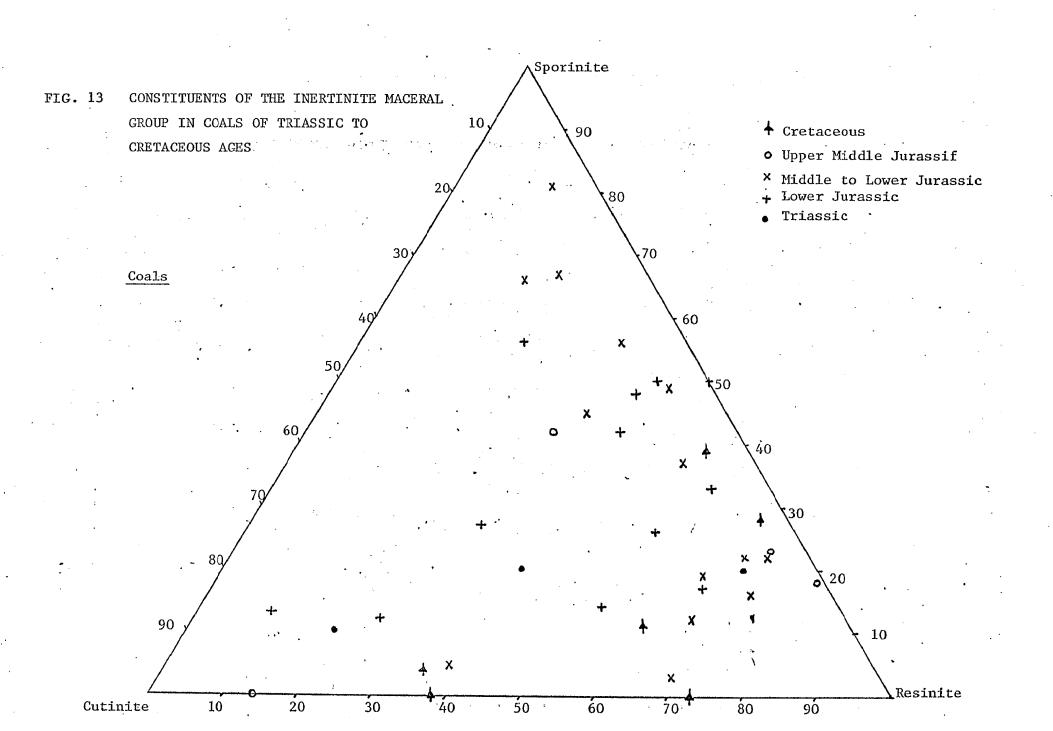

Cretaceous coals
 xnot sufficient points
 counted for reliable
 results


FIG. 7 MICROLITHOTYPE COMPOSITIONS OF THE UPPER MIDDLE JURASSIC COALS


Poolowanna No 1 Well Pedirka Basin




• Upper Middle Jurassic coals



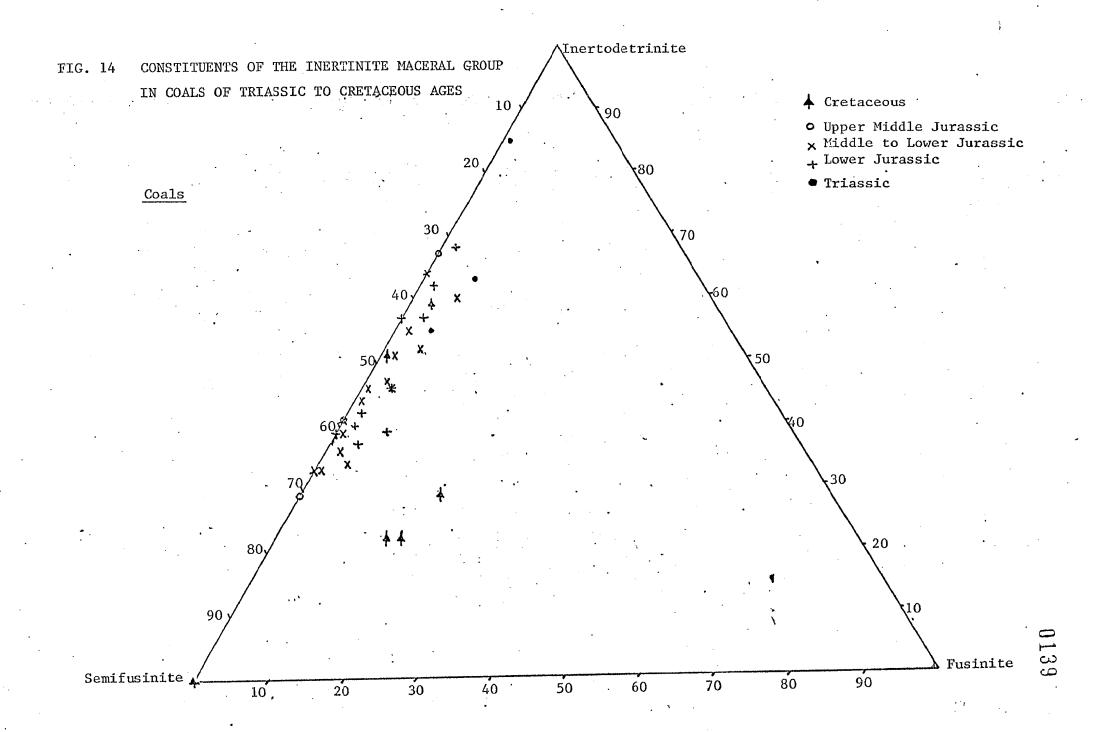
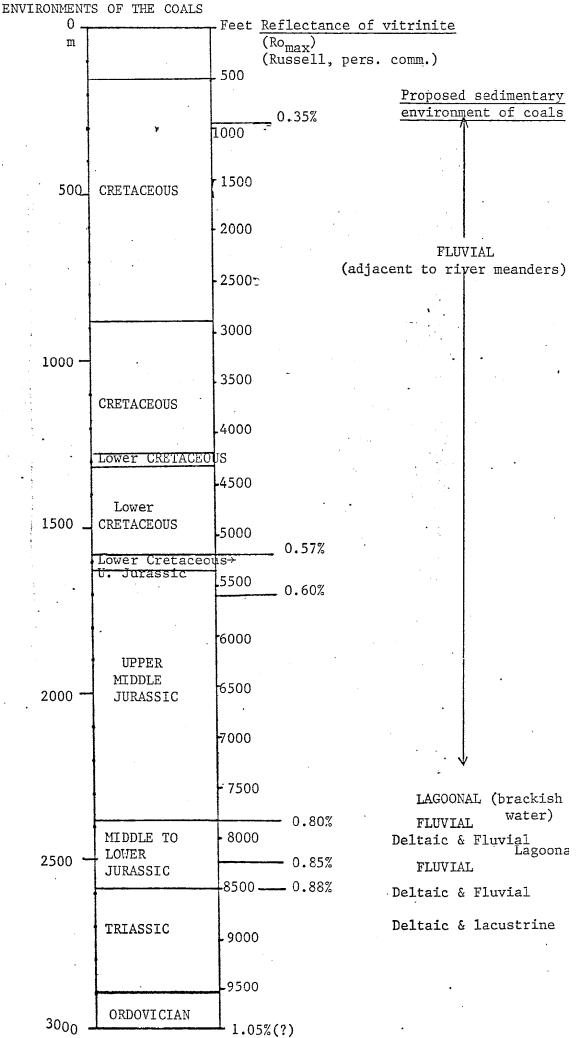
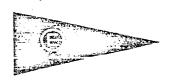




FIG. 15 STRATIGRAPHY IN POOLONANNA NO 1 WELL AND PROPOSED SEDIMENTARY

attings/fuc/core/Oil

Winner of Award for Outstanding Export Achievement, 1975

The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA 82520

Your ref: 11.06.368

Pilot Plant. Osman Place, Thebarton, Sth. Aust Phone Adelaide 43 8053 Branch Offices. Perth and Sydney Associated with. Professional Consultants Australia Pty. Ltd

Please address all correspondence to Frewville. In reply quote: GS 1/1/231

10 May 1979

Director-General,
Department of Mines & Energy,
EASTWOOD, SA

Attention: Dr D. McKirdy

SOURCE ROCK STUDIES -

S.A. SEDIMENTARY BASINS

PROGRESS REPORT NO. 7

Investigation and Report by: H. Sears

Manager, Geological Services Division: Dr Keith J. Henley

for Norton Jackson,
 Managing Director.

OILS

SAMPLE .NO:

A832/79 - A835/79

WELL:

Poolowanna 1.

SAMPLE IDENTIFICATION:

Drill Stem Test No. 2

DEPTH:

TYPE OF SAMPLE:

0i1

Analysis of fraction boiling above 250° C

Asphaltenes		0,3	% (wt)
Saturates	••	77,2	ş
Aromatics		18.3	%
Resins	•	4.2	8
Loss on column		**	ş

n-Alkane distribution of saturates:-

n-Alkane											
Rel abundance											
n-Alkane	C2,4	.C25	C26	C ₂₇	C ₂₈	C ₂₉	.C30	C31	C32	Сээ	C34
Rel abundance	6.7	7,3	5,8	5,8	4,6	.4.8	3,7	3.6	2,6	2.6	6.6

Pristane/phytane ratio 4.6

Pristane/C17 ratio 0.22

Carbon isotope ratio $(\delta^{13}C_{\rm PDB})$ for asphaltenes: -26.60

SOURCE ROCK

SAMPLE NO.

A 837/79

WELL:

Poolowanna 1.

SAMPLE IDENTIFICATION: SWC 15, Gun 3

DEPTH:

7837'

TYPE OF SAMPLE:

Side Wall Core

Total organic carbon (TOC)	•	1,22	8
Weight of sample extracted	•	7.6	gm
Extracted organic matter (EOM)		7460	ppm
EOM as fraction of TOC		612	mg/g
Analysis of extracted organic matter:-	•	46.0	ક (wt)
Asphaltenes Saturates	18.	20.6	8
Aromatics	, .	5.1	8
Resins	٠.	9.7	8
Loss on column		18.6	&

n-Alkane distribution of saturates:-

Rel abund, 1.7 1.6 1.3 1.3

n-Alkane	С13.	C14	C ₁₅	Cıe	C17	Cıs	C,,9	C20	C ₂₁ .	C ₂₂	C ₂₃
Rel abund,	· •••	2.4	8.3	13,2	15,8	15.1	14.3	11,1	6.1	3,6	2.4
n-Alkane	Cza	C_{25}	C°°	C ₂₇	C ₂₈	Cze	Cso	Csa	C ₃₂	s s	C
				**							

0.9

0,6

Pristane/phytane ratio 6.4

Pristane/C1, ratio 0,70

SAMPLE NO.

A 838/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

SWC 10, Gun 3

DEPTH:

7936'

TYPE OF SAMPLE:

Side Wall Core

Total organic carbon (TOC)					1.89	%	
Weight of sample extracted			•		25.7	gr	n
Extracted organic matter (EQM)			•		2537	p	om
EOM as fraction of TOC				. •	134	m	g/g
Analysis of extracted organic matter:-			•		22,5	ę	(wt)
Asphaltenes Saturates					28.7	ę	ı
Aromatics			*		15.2	ç	,
Resins		•		•	28,1	ę b	
Loss on column	***			•	5.5	용	

n-Alkane	distribution	of	saturates:-
----------	--------------	----	-------------

n-Alkane	Cis	C14	C_{15}	C_{16}	C17	Cie	C19	C20	C ₂₁	C22	С23
Rel abund,	0.7	4.8	10.7	14.6	16.0	15 , 5	13,9	10,3	5.3	2.7	1.7
n-Alkane	C _{2.4}	C _{zs} :	C26	C ₂₇	C ₂₈	C ₂₉	Cso	C	C 32	C	C 34
Rel abund		v •						•.			

Pristane/phytane ratio 6.2

Pristane/C₁₇ ratio 0.71

SOURCE	ROCK

SAMPLE NO.

A 839/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION: SWC 23, Gun 2

DEPTH:

8.2151

TYPE OF SAMPLE:

Side Wall Core

Total organic carbon (TOC)		2,30	ş
Weight of sample extracted	•	12.7	gm
Extracted organic matter (ECM)		5291	ppm
EOM as fraction of TOC	•	230	mg/g
Analysis of extracted organic matter:- Asphaltenes Saturates Aromatics Resins	•	34.8 13.8 11.5 10.0	8 (wt) 8 8
Loss on column		29,9	; %

n-Alkane distribution of saturates:-

. 7 7 1		• :	
TO*/ T	0,5 5.7	3.7	2.5
0.3	0.1		
	C _{30,}	C C C C S2	C ₃₀ C ₃₁ C ₃₂ C ₃₃ 0,3 0,1

Pristane/phytane ratio 5.5

Pristane/C1, ratio 0,71

SAMPLE NO.

A 840/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

DEPTH:

79201 - 79301

TYPE OF SAMPLE:

Cuttings

g
wt)
,

n-Alkane distribution of saturates:-

n-Alkane	С ₁₃ .	C14	C15	C ₁₆	C17	. C18	Cia	C20	Cai	C22	C ₂₃
Rel abund,	1.2	3,4	5,2	6,3	7.1	. 7.6	7.9	0,8	7.7	7.9	7.9
n-Alkane											
Rel abund	7.7	7,3	5.7	4,8	2,1	0,6	0,5	0.4	0.3	~-	

Pristane/phytane ratio 4.2

Pristane/C1, ratio

0.32

SAMPLE NO.

A 841/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

DEPTH:

8130 - 8140 +

TYPE OF SAMPLE:

Cuttings ·

Total organic carbon (TOC)		• •	1.36	8 ·
Weight of sample extracted	•		33,5	gm
Extracted organic matter (ECM)		·	1761	ppm
EOM as fraction of TOC			129	mg/g
Analysis of extracted organic matter:-			36,6	% (wt)
Asphaltenes Saturates	•		17.8	ર્જ
Aromatics			14.9	8
Resins	. ,		26,4	¥
Joss on column			4.3	, %

n-Alkane distribution of saturates:-

n-Alkane	C ₁₃	C14	C ₁₅	C_{26}	C17	Cre	C19	Czo	C ₂₁	C_{22}	C ₂₃
•		•	٠							,	••
Rel abund,	0.7	4.8	10,7	12,7	12,2	11,5	10.7	817	5,9	4,6	3.7
n-Alkane	C24	C ₂₅ .	Czs	C ₂₇	C _{ze}	C ₂₉	Cso	C _{s1}	. C	C	C 34
					,-				•		
Rel abund	3,7	2,9	2.7	2,0	1,3	0.8	0.4	~~	~~		* *

Pristane/phytane ratio 6

Pristane/C₁₇ ratio 0,77

SOURCE	ROCK

SAPLE NO.

A 842/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

DEPTH:

85201-85301

TYPE OF SAMPLE:

Cuttings

Total organic carbon (TOC)		6,40	8
Weight of sample extracted		30.7	gm
Extracted organic matter (ECM)		3394	ppm
EOM as fraction of TOC	•	53	mg/g
Analysis of extracted organic matter Asphaltenes	•	35,4	% (wt)
Saturates	· · · · · · · · · · · · · · · · · · ·	13.0 19.9	0
Aromatics		19.2	ž S
Resins Loss on column	1	2.5	e,

n-Alkane distribution of saturates:-

n-Alkane	Cış	C14	Cis	C16	C ₁₇	Ств	C19	C20	C ₂₁	C _{2 2}	C23
Rel abund,	2.9	6,6	12.5	13,1	13,2	12.7	11.6	9,1	5,3	3.8	2.2
n-Alkane	C ₂₄	C ₂₅	C ₂₆	C ₂₇	C ₂₈	C _{2,9}	Cse	C _{si}	C,32	Css	C *4
Rei abund	2,7	1.4	1,6	0,7	0,3	0,1	~~	egy, ess.		, , ,	• •

Pristane/phytane ratio 5.1

Pristane/C₁, ratio 0.53

		<u>s</u> (OURCE	ROCK	-	, ,		•		•	
SAMPLE NO.	4	•	A 843/	79			i e		,		
WELL:		1	Poolow	anna 1	. ,	٠		,		•	
SAMPLE IDENTI	FICAȚI	ON:					÷		•		
DEPTH:			85301	- 8540) t						
TYPE OF SAMPL	E:	· ·	Cuttin	gs	, •					-	
Total organic	carbo	on (TC	C)				•	5,25	5	6	
Weight of sam	ple e	xtract	ed		,			31.2	25 2	gm	
Extracted org	ganic 1	natter	(EOA))		•	٠	2147	7]	ppm	
EOM as fracti					*			41	1	mg/g ·	
Analysis of e Asphaltenes Saturates Aromatics Resins	extrac	ted on	rganic	matte	r:-	•		22,2 14.6 24.4 22,1	5 I .	% (wt) % %	
Loss on colu	inn.			•		•				Q	
		ion o	f cotu	rates	• -		• •				
n-Alkane dis				_	C ₁₇	C ₁₈	C19	C20	C_{21}	C ₂₂	C₂
Rel abund,					14.7	13.9	12,2	9,1	5,0	3,5	2.0
n-Alkane	C ₂₄	C25	Cze	C ₂₇	C ₂₈	C ₂₉	C	C	Csa	C	C
Rel abund					•.			₩ ₩	ad. 45 ₄	~~	
			•		· · · ›			,		•	
Pristane/phy	ytane	ratio	5,0	٠	•	•	•				

. "

0,51

Pristane/C₁₇ ratio

SAMPLE NO.

A 844/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

Core 1

DEPTH:

7755 10"

TYPE OF SAMPLE:

Drill Core

Total organic carbon (TOC)	13,5	ક્ર
Weight of sample extracted	104,0	gm
Extracted organic matter (ECV)	24310	ppm
EOM as fraction of TOC	180	mg/g
Analysis of extracted organic matter:-		
Asphaltenes	45.3	% (wt)
Saturates	6,3	Ş
Aromatics	12.1	8
Resins	12,9	8
Loss on column	23,4	· &

n-Alkane distribution of saturates:-

n-Alkane	Cis	C14	C ₁₅	C_{16}	Ċ ₁₇	C ₁₈	C19	C ₂₀	C ₂₁	C ₂₂	С23
Rel abund,	1.6	4.8	5,4	5,2	6.1	6,1	6.8	7,2	7,6	7.9	8.0
n-Alkane							•			,	
Rel abund	7.8	7,3	6,3	5,2	3,0	1.5	0.7	0,8	0.7		

Pristane/phytane ratio 5.3

Pristane/C₁₇ ratio

1.4

Note: sample extracted 96 hrs.

SAMPLE NO.

' A 845/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION: Core 1

DEPTH:

7757 ' 7"

TYPE OF SAMPLE:

Drill Core

Total organic carbon (TOC)	Ť	•	•		6,2	₹
Weight of sample extracted					95.9	gm
Extracted organic matter (EOM)			•		11545	ppm
EOM as fraction of TOC	•		•	**	186	mg/g
Analysis of extracted organic management of Asphaltenes Saturates Aromatics Resins Loss on column	natter:-			• •	59.8 5.0 11.7 12.1 11.4	% (wt) % % %

n-Alkane distribution of saturates:-

n-Alkane	C_{13} , C_{14}	C_{15}	C16	C ₁₇	Cıs	C19	C20	C_{21}	C_{22}	Czs
•										• •
Rel abund,	1,9	4 4	6,0	6,0	6,2	6,9	6, 9.	7,6	8.5	9.3
	C ₂₄ C ₂₅									
				•			•	•		
Rel abund	10.9 10.6	8.7	4.7	1.1	0.3				***	

Pristane/phytane ratio 3.8

Pristane/C₁₇ ratio

0,89

Note: sample extracted 96 hrs

SOURCE	ROCK

SAMPLE NO.

A 846/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

Core 3

DEPTH:

8435 3"

TYPE OF SAMPLE:

Drill Core

Total organic carbon (TOC)	5,15	8
Weight of sample extracted	71.5	gm
Extracted organic matter (ECM)	3186	ppm
EOM as fraction of TOC	. 62	mg/g
Analysis of extracted organic matter:- Asphaltenes Saturates Aromatics Resins	44.7 17.6 19.9 12.8	% (wt) % %
Loss on column	5.0	8

n-Alkane distribution of saturates:-

n-Alkane	Сіз	C14	C_{15}	C_{16}	C ₁₇	Cıs	Cı,	C20	C ₂₁	C ₂₂	Czs
		•			•				٠		•
Rel abund,	3.0.	4:9	5.7	6,7	7.7	8.5	8,6	7.9	6,7	6.0	5.9
n-Alkane	C24	C ₂₅	C ₂₆	C ₂₇	€ ₂₈	C 29	Csc	Csı	C 3 2	C	Csu
					ē			•	•		
Rel abund	5.7	5.7	5,2	4,8	3,5	2,0	0,8	0.4			

Pristane/phytane ratio 3.9

Pristane/C₁₇ ratio 0.36

Note: sample extracted 48 hrs

SAMPLE NO.

A 847/79

WELL:

Poolowanna 1

SAMPLE IDENTIFICATION:

Core 3

DEPTH:

84381

TYPE OF SAMPLE:

Drill Core

Total organic carbon (TOC)	7,95	Ş
Weight of sample extracted	54.3	gm
Extracted organic matter (EOM)	3960	ppm
EOM as fraction of TOC	50	mg/g
Analysis of extracted organic matter:-		
Asphaltenes	22.9	% (wt)
Saturates	14.0	8
Aromatics	26.1	8
Resins	21.2	6
Loss on column .	15.8	9

n-Alkane distribution of saturates:-

n-Alkane							C19				
Rel abund,			s 2			.• .	. •		5	•	•
Rel abund,	5.1	8.3	8,8	9,7	9,5	9,2	8.7	7,6	6.2	5.3	4.7
n-Alkane	C3*	C ₂₅ .	$C_{z\epsilon}$	C ₂₇	C ^{s 8}	C ^s	. C ²⁰	C	Csz	C	C
Rel abund	4.1	3,6	3,0	3,1	1,3	0.2	**	an; ap.	•		••

Pristane/phytane ratio 3,0

Pristane/C₁₇ ratio 0.23

PROCOWATINA # CARBON HOTOLES

The Australian Mineral Development Laboratories

Winner of Award for Outstanding Export Achievement, 1975

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA 82520

Your ref: 11.06.368

Pilot Plant: Osman Place, Thebarton Sth. Aust. Phone Adelaide 43 8053 Branch Offices Perth and Sydney Associated with. Professional Consultants Australia Pty Ltd

Please address all correspondence to Frewville. In reply quote: $\mbox{GS}\ 1/1/231$

28 May 1979

Director-General, Department of Mines & Energy, EASTWOOD, 5063.

Attention: Dr D.M. McKirdy

SOURCE ROCK STUDIES
S.A. SEDIMENTARY BASINS

PROGRESS REPORT NO.13

Investigation and Report by: R. Alexander (WAIT) and Dr B.G. Steveson

Manager, Geological Services Division: Dr Keith J. Henley

jeth Heur

for Norton Jackson, Managing Director.

CARBON ISOTOPE RATIOS - POOLOWANNA NO. 1

Stable carbon isotope ratios were measured on kerogens from Poolowanna No. 1 with the following results:

Sample		δ ¹³ C _{PDB}
A6051/78	2414 m	-24.7
A6052/78	2445.1 m	-24.4
A6053/78	2478 m	-25.0
A6054/78	2569.5 m	-25.9
A6055/78	2596.9 m	-26.8
A6056/78	2601.5 m	-27.2