Open File Envelope No. 8103

EL 1513

NYLLOW HILL

PROGRESS AND FINAL REPORTS FOR THE PERIOD 2/9/88 TO 1/9/90

Submitted by

Helix Resources NL 1990

© open file date 17/1/91

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

ENVELOPE 8103

TENEMENT:

EL 1513 - Nyllow Hill Area.

TENEMENT HOLDER:

Helix Resources N.L.

CONTENTS

REPORT:	Martin, A., 1989. EL 1513, Tumby Bay, S A six mo September 1988-February 1989. (Technical report 205		Pgs 3-17
APPENDIX 1:	Rock chip sample analyses.	,	Pgs 18-20
APPENDIX 2:	Treatment of gravel sands.		Pgs 21-33
PLANS:		Scale	SADME Plan No.
Fig. 1 Fig. 2 Fig. 3 Fig. 4	Tumby Bay project, location map. Tumby Bay project, geology. Tumby Bay project, basement geology area - A. Tumby Bay project, sample location map.	1:500 000 1:300 000 1:10 000 1:50 000	Pg. 7 Pg. 10 8103-1 8103-2
REPORT:	Martin, A.R., 1989. EL 1513, Tumby Bay, SA, quar March 1989-May 1989. (Technical report 2058).	terly report for the period	Pgs 34-42
APPENDIX 1:	Microscopic results from stream sediment sample cond	centrates.	Pgs 43-44
APPENDIX 2:	Stream sediment sample analyses.		Pgs 45-46
PLANS		Scale	SADME Plan No.
Fig. 1 Fig. 2	Tumby Bay, location map. Tumby Bay, sample location map.	1:500 000 1:50 000	Pg. 38 8103-3
REPORT:	Martin, A.R., 1989. EL 1513, Tumby Bay, SA, quand June-August 1989. (Technical report 2062).	terly report for the period	Pgs 47-59
APPENDIX 1: APPENDIX 2: APPENDIX 3: APPENDIX 4: APPENDIX 5:	Stream sediment sample analysis (BCL). Stream sediment sample metallurgy. Soil geochemistry Line 1. Soil geochemistry Line 2 (BCL). Rock chip sample analyses.		Pgs 60-61 Pgs 62-63 Pgs 64-65 Pgs 66-67 Pgs 68-69
PLANS		Scale	SADME Plan No.
Fig. 1 Fig. 2 Fig. 3 Fig. 4	Tumby Bay, location map. Burrawing Prospect, geology. Tumby Bay, sample location map. Tumby Bay, area A, outcrop map.	1:500 000 1:20 000 1:50 000 1:10 000	Pg. 51 Pg. 53 8103-4 8103-5

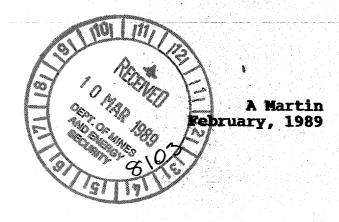
REPORT:	Martin, A.R., 1990. EL 1513, Tumby Bay, SA quarterly to November 1989, December 1989 to February 1990.	y reports September to	Pgs 70-78
APPENDIX 1:	Soil geochemistry Lines 7 and 8.		Pgs 79-80
PLANS		Scale	SADME Plan No.
Fig. 1	Tumby Bay, project, location map.	1:500 000	Pg. 74
Fig. 2 Fig. 3	Tumby Bay project, Burrawing Prospect, location. Tumby Bay, project, Burrawing Prospect soil Geochemistry.	1:20 000 1:1 000	Pg. 76 8103-6
Fig. 4	Tumby Bay project, IP survey.	1:1 250	Pgs 81-83
Fig. 5	Tumby Bay project, soil geochemistry Au contours.	1;2 500	Pg. 84
REPORT:	Martin, T., 1990. EL 1513, Tumby Bay SA quarterly re March-May 1990. (Technical report 2084).	eport for the period	Pgs 85-102
APPENDIX 1:	Interpretation of IP and magnetic survey. NB: Line 2 = 1855N. Line 1 = 2100N. Line 3 = 2400N.		Pgs 103-105
APPENDIX 2:	Rock chip sample analysis.		Pgs 106-107
APPENDIX 3:	RC drill hole logs and assay results.		Pgs 108-140
PLANS		Scale	SADME
			Plan No.
Fig. 1	Tumby Bay project, location map and tenements.	1:500 000	
Fig. 1 Fig. 2	Tumby Bay project, location map and tenements.	1:500 000 1:300 000	Pg. 90
Fig. 1 Fig. 2 Fig. 3	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and	1:500 000 1:300 000 1:20 000	
Fig. 2	Tumby Bay project, geology.	1:300 000	Pg. 90 Pg. 92
Fig. 2 Fig. 3	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted	1:300 000 1:20 000	Pg. 90 Pg. 92 Pg. 95 8103-7
Fig. 2 Fig. 3 Fig. 4 Fig. 5	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology.	1:300 000 1:20 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours.	1:300 000 1:20 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours.	1:300 000 1:20 000 1:1 000 1:2 500	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146 8103-8
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles. Tumby Bay project, drillhole locations. Tumby Bay project, drillhole geochemistry Line 1855N.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles. Tumby Bay project, drillhole locations. Tumby Bay project, drillhole geochemistry Line 1855N. Tumby Bay project, drillhole geochemistry Line 1900N.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250 1:1 000 1:1 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146 8103-8 Pgs 147-151 Pgs 152-156
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles. Tumby Bay project, drillhole locations. Tumby Bay project, drillhole geochemistry Line 1855N.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250 1:1 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146 8103-8 Pgs 147-151
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles. Tumby Bay project, drillhole locations. Tumby Bay project, drillhole geochemistry Line 1855N. Tumby Bay project, drillhole geochemistry Line 1900N. Tumby Bay project, drillhole geochemistry Line 2100N.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250 1:1 000 1:1 000 1:1 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146 8103-8 Pgs 147-151 Pgs 152-156 Pgs 157-161
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13	Tumby Bay project, geology. Tumby Bay project, Burrawing prospect geology and sample locations. Burrawing prospect soil geochemistry and interpreted geology. Tumby Bay project, soil geochemistry Au contours. Tumby Bay project, soil geochemistry 3-D Au contours. Tumby Bay project, IP survey profiles. Tumby Bay project, ground magnetic profiles. Tumby Bay project, drillhole locations. Tumby Bay project, drillhole geochemistry Line 1855N. Tumby Bay project, drillhole geochemistry Line 1900N. Tumby Bay project, drillhole geochemistry Line 2100N. British Columbia.	1:300 000 1:20 000 1:1 000 1:2 500 1:1 250 1:1 250 1:1 000 1:1 000 1:1 000 1:1 000	Pg. 90 Pg. 92 Pg. 95 8103-7 Pg. 141 Pg. 142 Pgs 143-145 Pg. 146 8103-8 Pgs 147-151 Pgs 152-156 Pgs 157-161 Pg. 162

END OF CONTENTS

SEPARATELY HELD DATA

Drill Samples (Held in SADME Core Libraries).

<u>Hole No.</u> <u>Sample Interval</u> <u>Core Library</u>


TRC1-8 Representative samples from most drill holes. Glenside.

HELIX RESOURCES NL

Technical Report 2054

EL 1513, Tumby Bay, SA

Six Monthly Report for the Period September 1988 - February 1989

Distribution

SA Department Mines and Energy S J Elliott A R Martin File Spare

CONTENTS

1.	INTRODUCTION	
2.	LOCATION AND ACCESS	
3.	TENURE	
4.	GEOLOGY	
	4.1 Regional Setting 4.2 Prospect Geology	
	4.2.1 Ultramafic Intrusives	
5.	EXPLORATION SUMMARY	
6.	EXPLORATION ACTIVITIES	
7.	RESULTS	
. .	7.1 Rockchip Sampling7.2 Stream Sediment Sampling	
8.	CONCLUSIONS AND RECOMMENDATIONS	
9.	REFERENCES	
10.	EXPENDITURE	
	APPENDICES	
1.	Rock Chip Sample Analyses.	,
2.	Treatment of Gravel Sands.	
	<u>FIGURES</u>	
No	Title	Scale
1.	Tumby Bay Project, Location Map	1:500,000
2.	Tumby Bay Project, Geology	1:300,000
3.	Tumby Bay Project, Basement Geology Area - A	1:10,000
4.	Tumby Bay Project, Sample Location Map	1:50,000

1. INTRODUCTION

Exploration Licence 1513 is located on the east coast of Eyre Peninsula, approximately 50 km north of Port Lincoln (Fig 1).

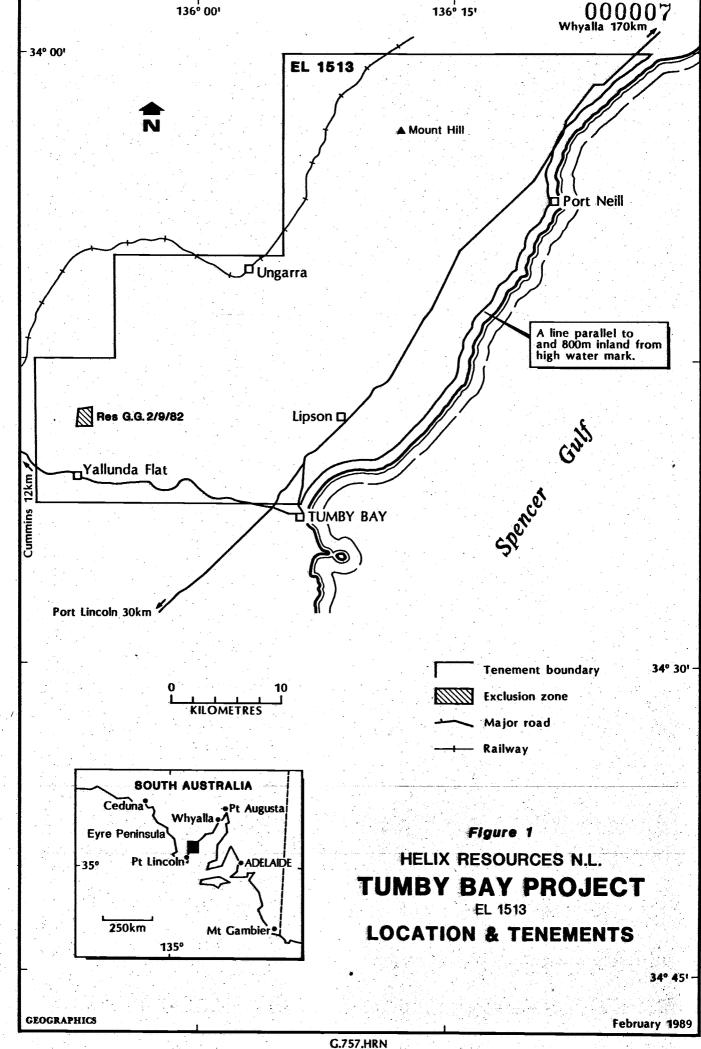
The tenement includes the northern portion of the Lincoln Uplands which contains two circular ultramafic intrusive bodies. In the past these bodies have been investigated for Ni mineralisation (Flint, 1976) but to date no exploration for platinum group metals (PGM) mineralisation has been carried out.

This report contains a summary of the exploration activities carried out in the first six months the EL was held. No significant PGM results were obtained from the ultramafic bodies, but weakly anomalous results were gained from graphitic schists within the Hutchinson Group metasediments. Also significant Au results were obtained from some of the abandoned Cu-mines within the EL.

2. LOCATION AND ACCESS

Exploration Licence 1513 is situated in south-eastern Eyre Peninsula between the towns of Tumby Bay, in the south, and Pt Neill, in the north. The townships of Ungarra, Mt Hill, Lipson and Yallunda Flat are located within the Licence (Fig 1).

Access to the area is via the Lincoln Highway which joins Pt Augusta and Pt Lincoln and passes through the eastern portion of the EL, or via the sealed road between Tumby Bay and Cummins. Numerous unsealed roads and farm tracks allow good access within the licence.


Much of the area is open undulating country used for grazing and grain crops with native scrub confined to rocky hill tops. The Lincoln Uplands protrude into the south-western portion of the EL where the terrain consists of rolling hills with more common patches of native scrub.

3. TENURE

Exploration Licence 1513 was granted to Helix Resources NL on 2 September 1988 for a period of six months and has a total area of approximately 1215 sq kms.

Exclusion zones and prior titles within the EL are as follows:

- Res. G.G.2.9.82 a 1.8 sq km reserve over the Kapinka Falls area.
- Area 800 m inland from high water mark along coast.

4. GEOLOGY

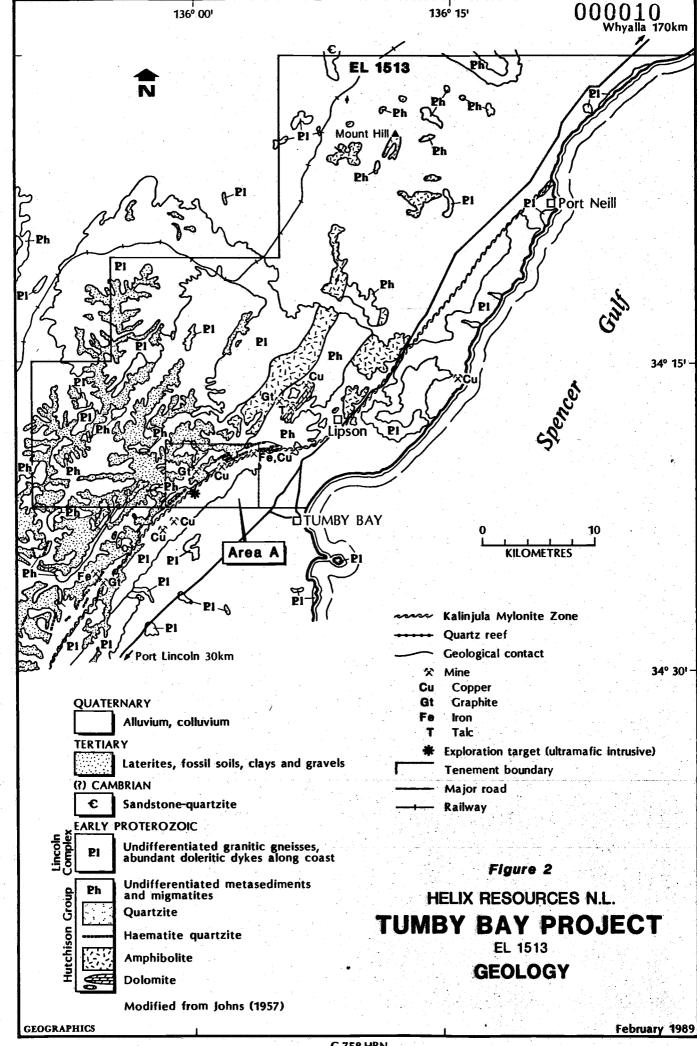
4.1 Regional Setting

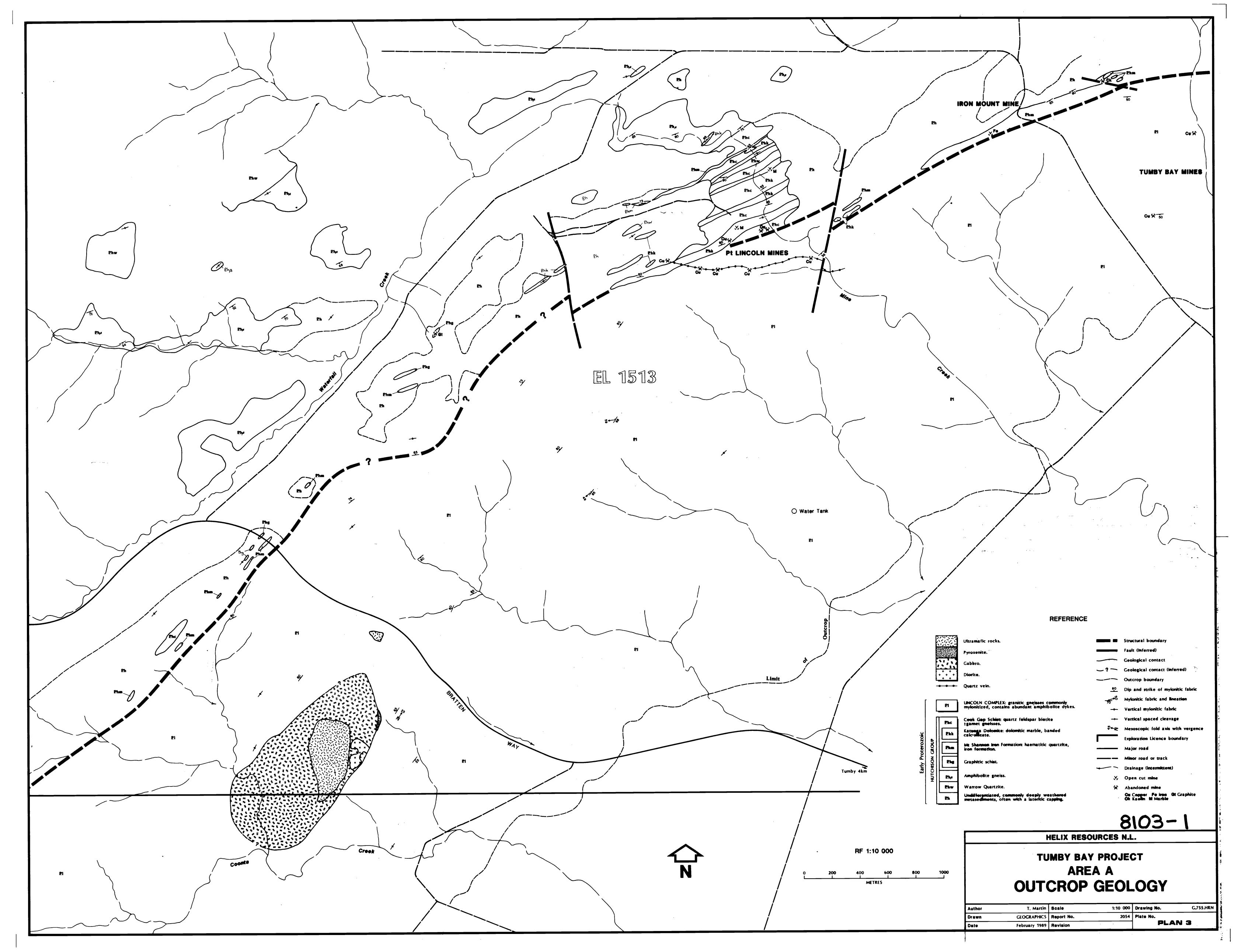
The southern Eyre Peninsula forms part of the Gawler Craton, an area consisting of a variety of Late Archaean to Middle Proterozoic basement lithologies. Southern Eyre Peninsula is comprised of three main tectonostratigraphic rock units. The oldest being a Late Archaean supracrustal sequence, the Sleaford Complex. The sequence was metamorphosed to granulite facies at about 2600 m.y. during the Sleafordian Orogeny, a deformational event which was accompanied by the intrusion of upper crustal granitoids known as the Dutton Suite.

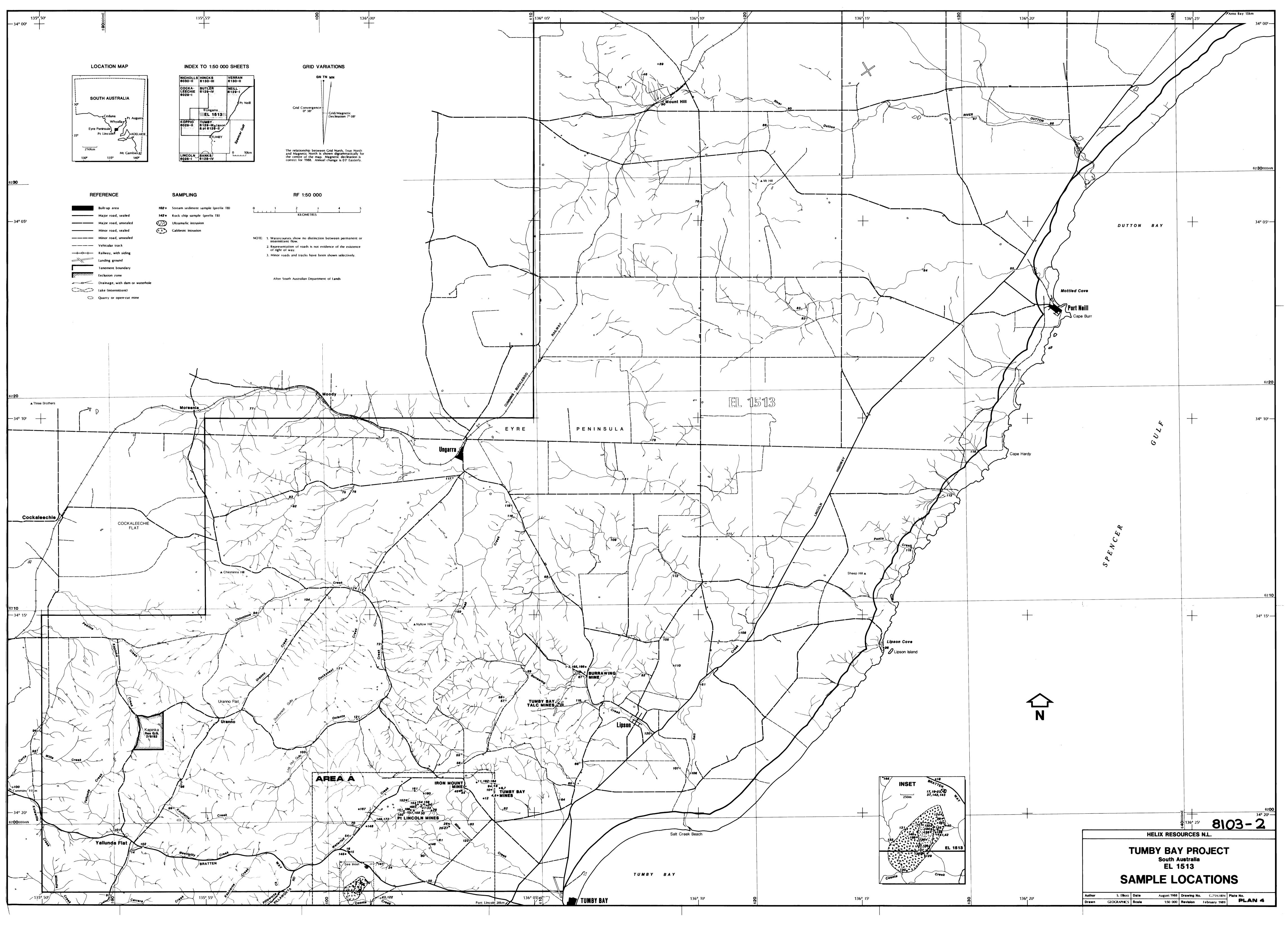
A period of crustal extension between 2100 m.y. and 1850 m.y. resulted in the deposition of a thick sedimentary sequence known as the Hutchison Group. group consists of, in ascending stratigraphic order, quartzite (with local calcsilicate), dolomitic marble, thin-bedded graphitic quartzite and banded formation, semipelitic schist, fine-grained garnetiferous gneiss, amphibolite, banded formation, and finally more schist (Parker and Lemon, 1982). Sedimentation ceased at about 1850 m.y. at the onset of the Kimban Orogeny.

The Kimban Orogeny is divided into three primary phases, termed D1, D2 and D3. D1 (1850 m.y.) was a phase of high grade metamorphism, upper amphibolite to granulite facies grade, which was accompanied by the intrusion of acid and basic igneous material comprising the Donnington Granitoid Suite. The second phase D2 (1780 m.y.), a period of isoclinal folding, imparted a pervasive layer parallel fabric on the rocks of the area and was also accompanied by high level acid The final phase of deformation, D3 (1720 intrusions. m.y.), produced a series of long, thin, intense north to north-easterly trending shear zones including the Kalinjala Mylonite Zone (KMZ). The D3 event was also accompanied by the intrusion of high level S-type granites, and resulted in upright open folding in the areas between the shear zones. All the intrusive rocks accompanying the Kimban Orogeny are loosely termed the Lincoln Complex, the third tectonostratigraphic unit seen on the southern Eyre Peninsula.

Fluviatile sands and conglomerates of the Blue Range Beds ore the only Middle Proterozoic rocks outcropping on southern Eyre Peninsular.


4.2 Prospect Geology


The distribution of basement lithologies within the Tumby Bay EL is controlled largely by Kimban Orogeny D3 structures, the most important of these being the Kalinjala Mylonite Zone. This sub-vertical zone of intense shearing is approximately 1 to 2 km wide and trends in a north-easterly direction along the eastern part of the EL broadly separating older synorogenic granitic gneisses in the east from Hutchison Group metasediments in the west. Parallel to the KMZ, to the west, are several smaller (<100 m wide) shear zones, along some of which outcrop thin thrust-slices of Lincoln Complex gneisses within the Hutchison Group.


The best exposures of Hutchison Group lithologies are seen in the Lincoln Uplands west of Tumby Bay where they abut the KMZ (Figs 2 & 3). Here the vertically dipping sequence has been sheared and is stratigraphically thinner than normal throughout the Peninsula. Because of the high degree of deformation no stratigraphic facing direction can be inferred but by analogy with other areas it is most probable that the sequence generally youngs to the west where the basal Warrow Quartzite is absent from the sequence. In addition to shearing the sequence has undergone isoclinal folding causing possible repitition of some portions and it is unlikely that a real stratigraphy is resolvable.

The Lincoln Complex gneisses to the east of the KMZ include a variety of acid granitic gneisses, the most common of these being a sheared medium-grained light pink-grey quartz feldspar biotite gneiss. Other common varieties include a grey coarsely megacrystic quartz feldspar biotite gneiss, pink-orange quartz feldspar gneiss and a grey fine-grained quartz feldspar biotite gneiss. The granitic gneisses are commonly cut by dark grey or black fine-grained dolerite dykes. These dykes show some evidence of shearing although not to the same extent as the granitic gneisses and are generally oriented sub-parallel to the dominant gneissic fabric.

On the northern boundary of the tenement, 2 kms north of Mount Hill railway siding, unmetamorphosed arenites represent the most southerly extent of outcrop of the Blue Range Beds. The sequence consists of a basal pebble bed grading up into pebbly and gritty sandstones. Also present are cross-bedded medium to very coarse grained sandstones which exhibit a pervasive mauve and white mottling with liesegang bands common. The sediments are interpreted to represent a Middle Proterozoic fluvial environment (Flint and Parker, 1981).

A period of laterite development and associated deep weathering during the Tertiary caused bleaching and kaolinization of much of the outcropping Hutchison Group metasedimentary sequence. The weathered rocks still exhibit the original gneissic fabric but the original mineralogy is completely obscured. Lateritization has cause common red mottling. As a result of more recent weathering much of the Lincoln Uplands is now covered by a veneer of small ironstone concretions.

Small outliers of ferruginous flat-lying, fluviatile Tertiary sands and conglomerates up to 3 m thick are preserved throughout the tenement.

Most of the area between the basement outliers consists of a moderately thick sequence of red, green, grey and brown, gritty to gravelly clays of Pliestocene to Recent age. Commonly developed within these clays are sheet-like and nodular calcrete horizons.

4.2.1 <u>Ultramafic Intrusives</u>

Two intrusive bodies ranging in composition from basic to ultramafic intrude the Lincoln Complex granitoids just south of the Tumby Bay - Cummins road some 9 km west of Tumby Bay.

The more northerly of the two intrusions is a small, approximately 200 m x 200 m, circular intrusion composed entirely of ultramafic lithologies. It contains a variety of fresh rock types, the most common being feldspathic peridotite and peridotite. Other less common units include biotite bearing peridotite, biotitite, pyroxenite, hornblende biotitite, serpentinized peridotite, and hornblendite with indications of chrome staining.

The second body to the south is a much larger, approximately 1600 m x 800 m, oval shaped body oriented with its main axis parallel to the fabric in the surrounding Lincoln Complex. It is a two part intrusive with a central core (600 m x 300 m) of peridotite which is generally homogeneous in composition although some float of pyroxenite was noted. This is surrounded by a zone of medium to coarse grained gabbro and minor diorite. Several thin bands of pyroxenite appear along the boundary of intrusive in contact with the Lincoln Complex.

The intrusive bodies post date the shearing associated with the KMZ but it is likely that the shape and position of the intrusion was controlled to some degree by the presence of the shear zone. No age of intrusion can be inferred although a maximum age constraint of 1700 m.y. can be placed on the intrusion.

No other basic to ultramafic intrusives of this type have been reported from the Eyre Peninsula to date.

5. EXPLORATION SUMMARY

Prior to the commencement of field work a literature survey of all open file company and government reports held at SADME relating to the EL was completed.

Some of the earliest work in the area was carried out by the SA Geological Survey during the late 1950's. A survey of all the existing and abandoned mines at the time was reported by Johns (1961) to compliment the publication of the Lincoln 4-mile map sheet (Johns, 1958).

Much of the company activity in the area prior to 1988 was related to base metal exploration.

During the period 1970 to 1971 Pacminex and Pacminex in joint venture with Pechinex held three SML's along the east coast of Eyre Peninsula between Port Lincoln and Cowell. Detailed stream sediment sampling and soil sampling defined several geochemical targets anomalous in copper but no significant mineralisation was discovered. mineralisation was believed to be associated with thin quartz veins and not of economic interest. A detailed airborne magnetometer and spectrometer survey covered much of the area now enclosed within EL 1513. Follow up ground work revealed no magnetic or radiometric features Investigations of kaolin revealed that the colour was well below the standard required for paper coating.

Australian Anglo American Limited acquired an EL in 1973 covering the area Pt Lincoln to Pt Neill to explore for stratiform sulphide mineralisation. Following an airborne EM and magnetometer survey, 75 anomalies were investigated by soil sampling, ground geophysics, geological mapping and some percussion drilling. No concentrations of sulphide mineralisation of Copperbelt or Broken Hill styles were located and the licence was relinquished after one year.

In 1976 the SA Department of Mines undertook a geological investigation of the basic to ultrabasic bodies west of Tumby Bay after a reported occurrence of nickel (Flint, 1976). The highest geochemical values reported for chromium was 2000 ppm, nickel 1500 ppm, and cobalt 150 ppm in peridotites. Values for copper, lead and zinc were generally not above background for any of the rock types. Studies of the metallic minerals revealed magnetite, pentlandite, chalcopyrite and pyrite occurred in a ratio of 6:2:2:1 and that sulphides represent less than 0.2 volume percent of the total rock. Chromite was also noted in several samples.

BHP acquired an EL along the east coast of Eyre Peninsula between Tumby Bay and Whyalla during 1976 to explore for high grade iron ore. An airborne geophysical survey delineated one linear anomaly that extends from Tumby Bay in the south to 25 km south of Cowell in the north and approximates the position of the KZM. It was felt, however, that the magnetic anomaly would probably be caused by the rock adjacent to the mylonite zone rather than the mylonite zone itself. Two holes drilled near Port Neill encountered magnetite rich gneisses, while two other holes further north encountered pyroxene granulites, magnetite rich gneisses and magnetite rich amphibolites. It was concluded that the anomaly was due to a complex of magnetite rich metamorphic rocks, and no further work was carried out.

6. EXPLORATION ACTIVITIES

Exploration Licence 1513 was acquired by Helix to investigate the potential for PGM mineralisation within ultramafic bodies first reported by Flint (1976) and to determine whether any similar intrusives occurred within this region. The area was also investigated for any regions of potential gold and/or base metal mineralisation.

Initial work on the EL involved a preliminary geological survey of the area which included reconnaissance rock chip sampling of the ultramafic bodies and abandoned Cu-mines.

A stream sediment sampling program was carried out over the entire EL. A total of 78, -3mm fraction, samples were collected in order to identify any zones of anomalous PGM's, base metal sulphides or Au and/or indicators of other mafic to ultramafic bodies within the EL.

The final phase of the program included detailed mapping at 1:10,000 scale over the area of the ultramafic bodies and the Pt Lincoln and Tumby Bay Mines (Area A - see Fig 3) and follow up detail rock chip sampling.

Rock chip and stream sediment sample locations are plotted on Figure 4.

7. RESULTS

7.1 Rockchip Sampling

A total of 89 rock chip samples were collected and assayed for Pt,Pd,Au,Cu and Ni with several samples also assayed for Pb,Zn. For complete results see Appendix 1.

Ultramafic Bodies - No significant platinum or palladium values were obtained from either ultramafic body, the highest being 31 ppb Pt and 26 ppb Pd and the majority below 5 ppb for both Pt and Pd. All Au values were low though copper had a maximum of 312 ppm and nickel 1642 ppm.

Hutchison Group - Sampling of the various Hutchison Group units revealed that the graphitic schists are slightly anomalous in palladium (up to 38 ppb) and gold (up to .324 ppm). No other significant results were obtained.

Lincoln Complex - All values for Pt,Pd,Au,Ni and Cu were low for the basic intrusives within the Lincoln Complex.

Burrawing Mine - The mine area consists of a series of small abandoned shafts and prospecting pits over a 300 m strike length within Hutchison Group quartzite and schist. Copper associated with a thin quartz vein (less than 1 m) was mined during the 1870's. Five rock chip samples from the area were assayed, four returning significant gold values between 1.9 and 4.5 ppm the fifth 0.13 ppm. The highest Cu value was 6.3% from malachite and azurite mineralised ironstone. No other significant values were obtained.

Port Lincoln Mines - The Port Lincoln Mines consist of a series of abandoned copper mines along a single 1 m wide quartz vein which can be traced for approximately 1 km. The quartz vein is oblique to the main mylonitic fabric in the area and crosses the contact between the Hutchison Group and Lincoln Complex. Cu values from the Pt Lincoln Mines and several other shafts some 200 m north were as high as 9.7%. One sample assayed 0.15 ppm Au but no other significant results were obtained.

Tumby Bay Mines - Another area of abandoned Cu-mines similar to Pt Lincoln Mines. The lode again comprises malachite (azurite) bearing quartz, with Cu values up to 10.3% and Au values up to 0.86 ppm.

7.2 Stream Sediment Sampling

The samples collected during the exploration program have be dried, screened at 2.0 mm and a heavy mineral concentrate obtained. They now await further panning, microscopic examination and geochemical analyses. For a more complete summary of the sample preparation procedure see Appendix 2.

8. CONCLUSIONS AND RECOMMENDATIONS

Rock chip sampling of the ultramafic bodies revealed low values for platinum and palladium and no significant Au, Cu or Ni values. There appears to be little potential for any mineralisation and no further work is recommended.

Although slightly anomalous palladium and gold values were obtained from the graphitic schist within the Hutchison Group there appears to be little possibility of any significant mineralisation and the thickness of the unit, generally less than 2 m, negates the possibility of larger low grade deposits. No further work is recommended.

Significant gold and copper values were obtained from four of the five rock chip samples from Burrawing Mine. The gold and copper is associated with a thin (<1 m) quartz vein within Hutchison Group schists and quartzite. Further geological reconnaissance, including detail geological mapping, rock chip sampling and soil sampling is warranted in an attempt to delineate the extent of gold mineralisation.

9. REFERENCES

- Aust. Anglo American Ltd, 1974. EL 106 Port Lincoln Tumby Bay area. SA Department Mines and Energy open file Envelope 2378. Unpublished.
- BHP Co Ltd, 1977. EL 266 Tumby Bay Whyalla area SA Department of Mines and Energy open file Envelope 3154. Unpublished.
- Flint D.J., 1976. Geological investigations of a nickel occurrence in basic to ultrabasic rocks west of Tumby Bay. SA Department Mines and Energy. Rept Bk 76/9. Unpublished.
- Flint R.B. and Parker A.J., 1980. The Blue Range Beds, central Eyre Peninsula. Q. geol. Notes, geol. Surv. South Australia, 80: 12-15
- Johns, R.K. 1958. Lincoln 1:250,000 Geological Map. Geological Survey of SA.
- Johns, R.K., 1961. Geology and mineral resources of southern Eyre Peninsula. Geological Survey of SA Bulletin No 37.
- Pacminex Pty Ltd, 1970. SML 381 Port Neill Arno Bay area. SA Department Mines and Energy open file Envelope 1353. Unpublished.
- Parker, A.J. and Lemon N.M., 1982. Reconstruction of the Early Proterozoic stratigraphy of the Gawler Craton, South Australia. Geological Society Australia J. 29, 221-238.
- Pechiney (Aust) Expl. Pty Ltd, 1969. Report by Pacminex Pty Ltd SML 354. SA Department Mines and Energy open file Envelope 1264. Unpublished.

10. EXPENDITURE

The following expenditure details are for the period ended 31 January 1989.

<u>Item</u>	<u>\$</u>
Salary & Wages	9,990
Travel & Accommodation	9,704
Aerial Photo/Maps	777
Assay	14,255
Data Acquisition	768
Drafting	1,313
Freight	1,420
Fuel/Oil	571
Vehicle Rental	3,275
Tenement Acquisition	4
Mines Department Rents	2,795
Field Equipment	1,053
Field Expenses	129
	 ' : . ,
TOTAL	\$46,054

APPENDIX 1

Rock Chip Sample Analyses

Sample No	(<u>Au</u> (ppb)	<u>Pt</u> (ppb)	Pd (ppb)	(<u>Ni</u> (ppm)	(<u>Cu</u> (ppm)	(ppm)	(<u>Zn</u> (ppm)
TB-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -15 -16 -17 -18 -19 -20 -21 -22 -23 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -37 -38 -39 -40 -41 -42 -44 -45 -47 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -137	(PP) 2.26 4.52* 126 867 72 10 867 72 86		(p) 312124112146685111111111111110000000000000000000000				
-138	< 5	12	1	250	35	-	

^{*} Data in ppm

Sample No	Au (ppb)	(<u>Pt</u> (ppb)	Pd (ppb)	(<u>PP</u> m)	(<u>Cu</u> (ppm)	(Pb (ppm)	$\frac{Zn}{ppm}$
-139	<5	<5	<1	110	10	_	-
-140	<5	11	7	235	35	_	
-141	<5	<5	1	1490	50		-
-142	<5	<5	6	1380	4.5	-	-
-143	<5	7	10	1430	55	-	-
-144	<5	<5	<1	35	160	-	***
-145	38	<5	12	25	40	-	-
-147	6	<5	14	60	75		-
-148	20	<5	33	5	20	<u> </u>	_
-149	324	<5	29	5	35	-	***
-151	8	<5	\ <1	280	15	_	
-152	<5	<5	`< 1	85	80	***	
-153	<5	<5	<1	5	10	<5	140
-154	<5	<5	<1	25	10	<5	110
-156	<5	<5	<1	10	7500	, 1000	-
-157	<5	<5	<1	40	2435	-	_
-158	54	<5	3	15	2.01%		-
-159	<5	<5	<1	25	465	-	-
-160	<5	<5	<1	<5	25	<5	<5
-161	10	<5	15	15	200	-	-
-162	<5	<5	<1	5	35	-	-
-163	<5	<5	1	25	65	-	
-165	1.9*	<5	4	50	1.47%	-	_
-166	3.46*	7	2	460	2.92%	÷	-
-167	31	10	2	30	190	-	-
-172	24	<5	3	5	. 25	_	

^{*} Data in ppm

APPENDIX II
Treatment of Gravel Sands

AUSTRALIAN METALLURGICAL AND MINERAL TESTING CONSULTANTS PTY. LTD.

TREATMENT OF GRAVEL SANDS

FOR

HELIX RESOURCES NL

JANUARY 1989

PAGE NO.

TABLE OF CONTENTS

	,			
1.	INTRO	DUCTION	1	
2.	SAMPL	ES	1	
3.	SAMPL	E PREPARATION	\$ 1	
4.	TABLI	NG	1	
	4.1. 4.2.	Procedure Results	1 2	
FIGU	RE		3	
FIGU	RE 1	FLOWSHEET FOR TREATMENT OF GRAVEL SAMPLES	4	
TABL	<u>ES</u>		5	
TABL TABL		SAMPLE DATA SHEET SCREENING AND TABLING RESULTS	6 8	

1. <u>INTRODUCTION</u>

Mr Steve Elliott of Helix Resources NL requested that approximately 100 gravel samples be screened and tabled to produce a concentrate for return to Helix Resources.

The flowsheet for the work is shown in Figure 1.

2. SAMPLES

In all, 73 samples were received for treatment. The details of these samples are given in Table 1.

3. SAMPLE PREPARATION

Each sample was air dried, weighed and screened at 2.0mm using a vibrating Russell screen. The +2.0mm material was discarded and the -2.0mm material, weighed and put aside for tabling. The weights of the material produced from screening are included in Table 2.

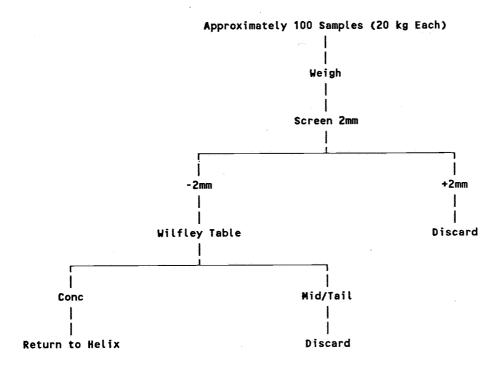
4. TABLING

4.1. Procedure

Each sample in turn was processed over a laboratory Wilfley Table, by dry addition of the gravel to a hopper, where adjustable water flow introduced the sample slurry to the table. The concentrate product was collected, filtered and dried. The middling and tailing products were discarded.

Due to the presence of fine clayey and sandy particles in the initial concentrate, a clean-up tabling was necessary to produce a concentrate having reasonable heavy mineral content.

All concentrates were then dried, weighed and packaged for return to Helix Resources.


4.2. Results

The weight of the final concentrates are included in Table 2.

- 3 -

FIGURE

FIGURE 1
FLOWSHEET FOR TREATMENT OF GRAVEL SAMPLES

- 5 -

TARLES

TABLE 1 SAMPLE DATA SHEET

Sample No.	,	Location			Description
TB-50		NB946972		- 3mm	sand silt gravel
TB-51		PC075061		- 3mm	sand strt gravet
TB-52		PC049067		- 3mm	sand gravet
TB-54		NB911993		-3mm	
TB-55		NC963032		-3mm	sand gravel silty sand gravel
TB-56		NC963026		-3mm	
TB-57		NC984056		-3mm	silty sand gravel silty sand boulder
TB-58		NC983057		-3mm	silty sand gravel
TB-59		NC993068		-3mm	silty sand gravet
TB-60		NC946984		-3mm	clayey sand gravet
TB-61		NB951992		-3mm	silty sand gravel
TB-62		NC982005		- 3mm	sand gravel
TB-63		NC966998		-3mm	clayey gravel
TB-64		PC008009		-3mm	silty sandy gravel
TB-65		PC015018	*	-3mm	clayey sandy gravel
TB-66		PC018026		- 3mm	silty sandy gravel
TB-67		PC020066		- 3mm	clayey gravelly sand
TB-68		PC005113		-3mm	clayey sand
TB-69		NC962097		- 3mm	granule sand
TB-70		NC912998		-3mm	sandy gravel
TB-71		NC904072		Unsieved	
TB-72		NC926083		-3mm	sandy gravel
TB-73		NC916018		Unsieved	
TB-74		NC913019		-3mm	sandy gravel
TB-75		NC908155		Unsieved	
TB-76		NC912154	4	Unsieved	
TB-77		NC868194	•	-3mm	gravelly sand
TB-78		PC053177		Unsieved	
TB-79	•	PC077289		-3mm	silty sand
TB-80		PC119330		-3mm	clayey sand
TB-81		PC040159		- 3mm	clayey sand
TB-82		PC126233		-3mm	sand
TB-83		PC124237		-3mm	gravelly sand
TB-84		PC181256		-3mm	sand
TB-85		PC223255		-3mm	granule sand
TB-86		PC109323		-3mm	sand
TB-87		PC205327		-3mm	sand
TB-88		PC240323		-3mm	granule sand
TB-89		PC058352		-3mm	
TB-90		PC061336		-3mm	gravel sand gravel sand
TB-91		PC039342		-3mm	clayey sand
TB-92		NC894148		-3mm	sand
TB-93		NC893152		- 3mm	sand sand
TB-94		NC868098		-3mm	
				- Jilili	sand

TABLE 1 - Continued

Sample No.	Location		Description	
тв-95	NC767032	-3mm	granule sand	
TB-96	NC764044	-3mm	gravelly sand	
TB-97	NB798966	-3mm	sandy gravel	
TB-98	NC831017	-3mm	gravelly sand	
TB-99	NC827007	-3mm	clayey gravel	
TB-100	NC753017	-3mm	sandy gravel	
TB-101	NB802996	Unsieved	clayey soil	
TB-102	NB813999	Unsieved	gravelly sand	
TB-103	NC890033	-3mm	gravel	
TB-104	NC894106	-3mm	sandy gravel	
TB-105	PC057085	-3mm	silty gravel	
TB-106	PC069021	-3mm	gravelly sand	
TB-107	PC064023	-3mm	gravelly sand	
TB-108	PC093085	-3mm	gravelly sand	
TB-109	PC033132	-3mm	pebbly gravel	
TB-110	PC062072	-3mm	silty gravel	
TB-111	PC089132	~3mm	silty sand	
TB-112	PC063115	-3mm	pebbly gravel	
TB-113	PC194150	-3mm	pebbly sand	
TB-114	PC205171	- 3 mm	silty gravel	
TB-115	PC174125	-3mm	pebbly sand	
TB-116	NC989142	-3 mm	pebbly sand	
TB-117	NC960160	-3mm	pebbly gravel	
TB-118	NC988147	- 3mm	pebbly gravel	
TB-119	PC019054	-3mm	gravelly sand	
TB-120	PC051040	-3mm	silty gravel	
TB-121	NC913048	-3mm	pebbly gravel	
TB-122	NB924964	-3mm	silty gravel	
TB-123	NB966991	-3mm	silty gravel	

TABLE 2
SCREENING AND TABLING RESULTS

Sample No.	Location	De	scription	Wt	-2mm Wt	Conc Vt
				(kg)	(Kg)	(g)
TB-50	NB946972	-3MM	sand silt gravel	31.7	31.6	388.8
TB-51	PC075061	-3mm	sand gravel	41.7	37.3	671.2
TB-52	PC049067	-3mm	sand silt gravel	32.5	32.0	182.4
TB-54	NB911993	-3mm	sand gravel	36.5	35.1	473.1
TB-55	NC963032	- 3mm	silty sand gravel	36.5	35.5	196.8
TB-56	NC963026	- 3mm	silty sand gravel	30.5	29.5	92.9
TB-57	NC984056	-3mm	silty sand boulder	32.3	30.7	157.9
TB-58	NC983057	- 3mm	silty sand gravel	33.8	33.2	313.9
TB-59	NC993068	-3mm	silty sand gravel	36.8	34.5	311.1
TB-60	NC946984	-3mm	clayey sand gravel	34.5	32.7	663.2
TB-61	NB951992	- 3mm	silty sand gravel	34.0	33.5	627.9
TB-62	NC982005	-3mm	sand gravel	33.8	32.4	192.3
TB-63	NC966998	-3mm	clayey gravel	30.3	28.9	392.9
TB-64	PC008009	-3mm	silty sandy gravel	37.0	36.2	128.1
TB-65	PC015018	-3mm	clayey sandy gravel	30.5	29.7	63.8
TB-66	PC018026	- 3mm	silty sandy gravel	37.5	36.1	197.1
TB-67	PC020066	- 3mm	clayey gravelly sand	31.5	30.5	258.5
TB-68	PC005113	-3mm	clayey sand	43.5	41.6	317.9
TB-69	NC962097	-3mm	granule sand	35.7	35.3	383.8
TB-70	NC912998	- 3mm	sandy gravel	34.9	32.7	731.9
TB-71	NC904072	Unsieved	(30kg) gravelly sand	63.3	42.9	462.5
TB-72	NC926083	-3mm	sandy gravel	37.3	35.5	581.7
TB-72	NC916018	Uns i eved	(30kg) gravelly sand	59.3	46.9	157.6
TB-73	NC913019	-3mm	sandy gravel	41.1	39.4	195.9
TB-75	NC908155	Unsieved	sandy gravel (40kg)	81.9	58.4	315.5
TB-76	NC912154	Unsieved	sand (30kg)	58.25	47.6	804.6
	NC868194	-3mm	gravelly sand	39.8	38.3	359.3
TB-77	PC053177	Unsieved		59.6	53.4	618.3
TB-78 TB-79	PC077289	-3mm	sand (30kg) silty sand	32.1	31.8	326.7
TB-80	PC119330	- 3mm	clayey sand	42.7	41.9	794.4
	PC040159	- 3mm		36.8	35.3	166.7
TB-81	PC126233	- 3mm	clayey sand sand	38.4	37.6	182.3
TB-82	PC124237	- 3 mm		39.0	37.8 37.8	91.7
TB-83			gravelly sand			643.1
TB-84	PC181256	-3mm	sand	40.6	40.2	
TB-85	PC223255	-3mm	granule sand	32.9	32.5 36.1	141.8
TB-86	PC109323	-3mm	sand	36.5		582.9
TB-87	PC205327	-3mm	sand	35.3	35.3	257.8
TB-88	PC240323	- 3mm	granule sand	40.6	39.6	149.2
TB-89	PC058352	-3mm	gravel sand	36.8	36.2	149.6
TB-90	PC061336	-3mm -3mm	gravel sand	37.9	36.8	899.8
TB-91	PC039342	-3mm -3mm	clayey sand	35.4	34.8	1023.9
TB-92	NC894148	-3mm -3mm	sand	32.9	32.3	328.4
TB-93	NC893152	-3mm -3	sand	39.1	37.5	484.5
TB-94	NC868098	- 3mm	sand	34.2	33.5	441.9

TABLE 2 - Continued

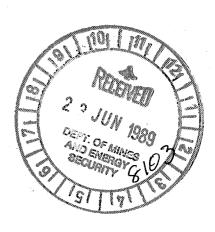
Sample No.	ample No. Location Descript		Description Wt -2mm Wt		Description Wt		Description Wt				
TB-95	NC767032	- 3mm	granule sand	 38.2	 36.85	 282.1					
TB-96	NC764044	-3mm	gravelly sand	31.3	30.1	147.3					
TB-97	NB798966	- 3mm	sandy gravel	36.4	34.9	659.6					
TB-98	NC831017	-3mm	gravelly sand	34.8	33.8	199.7					
TB-99	NC827007	- 3mm	clayey gravel	38.6	36.6	552.2					
TB-100	NC753017	- 3mm	sandy gravel	31.4	30.6	136.6					
TB-101	NB802996	Unsieved	clayey soil	48.9	41.8	173.7					
TB-102	NB813999	Unsieved	gravelly sand	48.2	25.7	737.5					
TB-103	NC890033	-3mm	gravel	40.0	34.4	602.9					
TB-104	NC894106	-3mm	sandy gravel	35.5	34.0	953.4					
TB-105	PC057085	- 3mm	silty gravel	27.9	26.7	500.8					
TB-106	PC069021	-3mm	gravelly sand	34.6	34.1	464.3					
TB-107	PC064023	~3mm	gravelly sand	40.7	40.2	182.9					
TB-108	PC093085	-3mm	gravelly sand	31.7	30.7	345.1					
TB-109	PC033132	-3mm	pebbly gravel	36.5	33.7	803.1					
TB-110	PC062072	- 3mm	silty gravel	31.6	29.6	168.4					
TB-111	PC089132	- 3mm	silty sand	32.5	32.2	75.0					
TB-112	PC063115	~3mm	pebbly gravel	35.1	32.6	368.9					
TB-113	PC194150	-3 mm	pebbly sand	38.3	37.8	170.9					
TB-114	PC205171	- 3mm	silty gravel	35.3	34.9	139.1					
TB-115	PC174125	-3mm	pebbly sand	37.7	36.5	601.4					
TB-116	NC989142	-3mm	pebbly sand	35.3	34.7	125.1					
TB-117	NC960160	-3mm	pebbly gravel	36.7	32.7	958.6					
TB-118	NC988147	- 3mm	pebbly gravel	32.6	30.2	560.2					
TB-119	PC019054	- 3mm	gravelly sand	39.6	39.3	318.0					
TB-120	PC051040	-3mm	silty gravel	35.2	33.7	209.6					
TB-121	NC913048	-3mm	pebbly gravel	38.5	34.2	724.3					
TB-122	NB924964	-3mm	silty gravel	30.3	29.6	993.4					
TB-123	NB966991	- 3mm	silty gravel	32.7	32.1	229.6					

AUSTRALIAN METALLURGICAL AND MINERAL TESTING CONSULTANTS PTY LTD.

6 MacAdam Place, Balcatta, Western Australia 6021 Telephone: (09) 344 2416, (09) 344 2418 Telex: AA96177. Fax: (09) 349 7688

J.E. ANGOVE SENIOR METALLURGIST

G.W. LLOYD


MANAGING DIRECTOR

HELIX RESOURCES NL

TECHNICAL REPORT 2058

EL 1513, TUMBY BAY, SA

QUARTERLY REPORT FOR THE PERIOD March 1989 - May 1989

A R Martin

Distribution

SA Department Mines and Energy S J Elliott A R Martin File Spare

CONTENTS

- 1. INTRODUCTION
- 2. LOCATION AND ACCESS
- 3. TENURE
- 4. GEOLOGY
- 5. EXPLORATION SUMMARY
- 6. EXPLORATION ACTIVITIES
- 7. RESULTS
 - 7.1 Stream Sediment Sampling
- 8. CONCLUSIONS AND RECOMMENDATIONS
- 9. REFERENCES
- 10. EXPENDITURE

APPENDICES

- 1. Microscopic results from stream sediment sample concentrates.
- 2. Stream Sediment Sample Analysis.

FIGURES

No	Title	Scale
1	Tumby Bay, Location Map	1:500,000
2	Tumby Bay, Sample Location Map	1.50 000

1. INTRODUCTION

Exploration Licence 1513 is located on the east coast of Eyre Peninsula, approximately 50 km north of Port Lincoln (Fig 1).

The tenement includes the northern portion of the Lincoln Uplands which contains two circular ultramafic intrusive bodies. In the past these bodies have been investigated for nickel mineralisation (Flint, 1976) but no exploration for platinum group metals (PGM) mineralisation has been carried out.

Microscopic investigation and assays of heavy mineral concentrates from stream sediment samples collected during the previous quarter indicate several areas anomalous in gold, but no follow up exploration was carried out during the period of this report.

2. LOCATION AND ACCESS

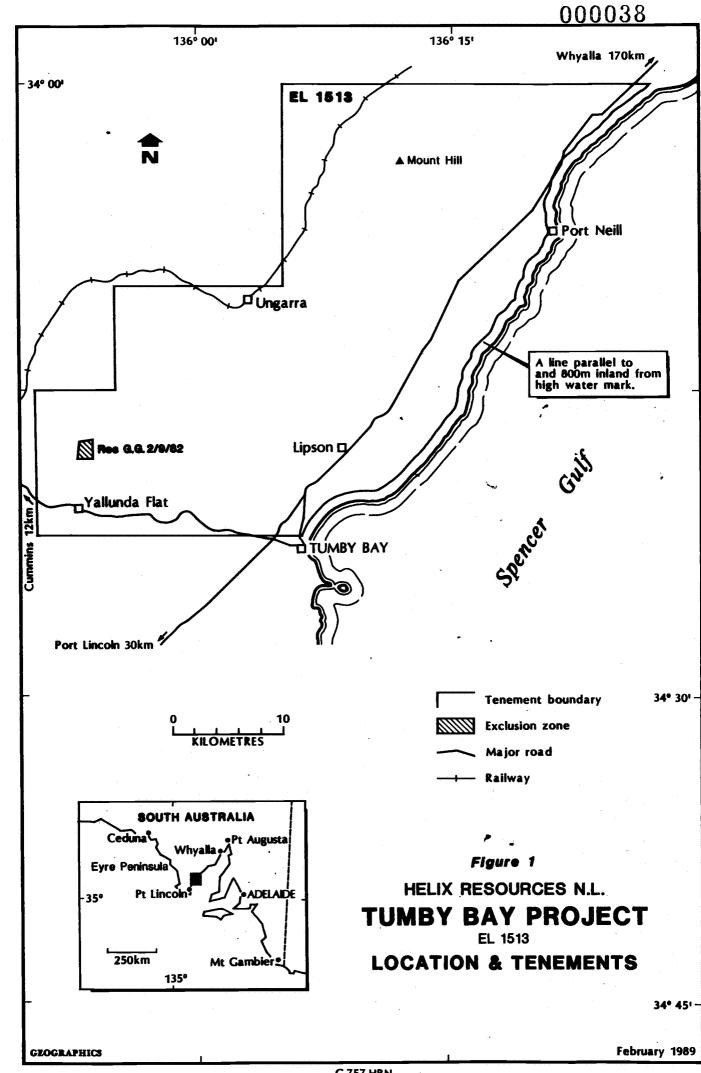
Exploration Licence 1513 is situated in south-eastern Eyre Peninsula between the towns of Tumby Bay, in the south, and Pt Neill, in the north. The townships of Ungarra, Mt Hill, Lipson and Yallunda Flat are located within the licence (Fig 1).

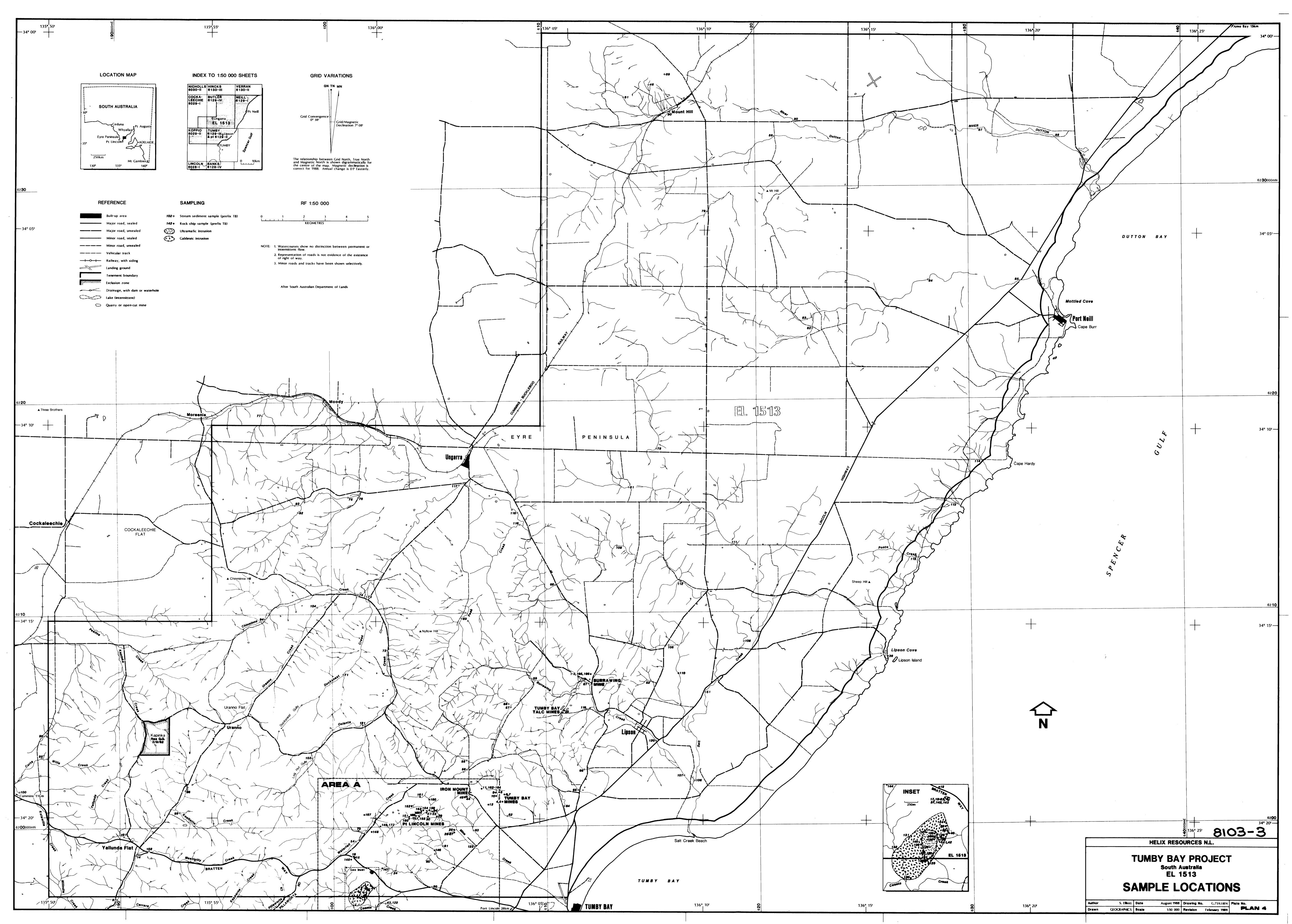
Access to the area is via the Lincoln Highway which joins Pt Augusta and Pt Lincoln and passes through the eastern portion of the EL, or via the sealed road between Tumby Bay and Cummins. Numerous unsealed roads and farm tracks allow good access within the licence.

Much of the area is open undulating country used for grazing and grain crops with native scrub confined to rocky hill tops. The Lincoln Uplands protrude into the south-western portion of the EL where the terrain consists of rolling hills with more common patches of native scrub.

3. TENURE

Exploration Licence 1513 was initially granted for a six month period from 1 September 1988 has now been extended to a one year period due to expire on 1 September 1989. The licence has a total area of approximately 1215 sq kms.


Exclusion zones within the EL are as follows:


*Res. G.G. 2.9.82 a 1.8 sq km reserve over the Kapinka Falls area.

*Area 800 m inland from high water mark along coast.

4. GEOLOGY

A complete summary of regional geology and detailed prospect geology was reported in the previous quarterly report, Technical Report 2054 (Martin, 1989).

5. EXPLORATION SUMMARY

A precis of literature of open file data held at SADME was reported in the previous quarterly report (Martin, 1989).

During the first six months the EL was held by Helix, rock chip sampling and geological mapping indicated that there was anomalous Au associated with several of the abandoned copper mines. The most significant of these were values up to 4.5 ppm Au at Burrawing Mine. Investigations of the ultramafic bodies failed to delineate any zones of anomalous PGM.

A programme of stream sediment sampling, consisting of a total of 78 samples, was also carried out over the entire EL. The samples were screened at -2mm and tabled, with the heavy mineral concentrates retained for microscopic investigation and assay.

6. EXPLORATION ACTIVITIES

The only work carried out by Helix during this quarter involved further panning, by hand, and microscopic investigations of 50 of the stream sediment samples.

7. RESULTS

7.1 Stream Sediment Sampling

Fifty of the concentrates received from AMMTEC were screened at 40 mesh and the -40 mesh portion was then panned to give a final sample weight of approximately 50 g. The final sample was then microscopically investigated for Au, Pt and sulphides. The weight of -40 mesh material and final weight of pan concentrate are included in Appendix 1.

During microscopic investigations Au was detected in 21 of the samples, sulphide in two of the samples but no Pt was detected. The number of grains of Au and sulphide detected are also included in Appendix 1.

In four of the samples more than 20 grains of gold were detected; TB-50, TB-63, TB-111 and TB-123 (Fig 2).

Assays of the panned concentrates from selected stream samples between TB-50 and TB-97 confirmed the presence of anomolous gold in samples TB-50 and TB-63. No anomalous Pt was detected in any of the stream samples assayed (see Appendix 2).

Anomalous gold was also detected in sample TB-67 from the Burrawing Mine area.

8. <u>CONCLUSIONS AND RECOMMENDATIONS</u>

During the next quarter a continued programme of steam sediment sampling and soil sampling will be carried out in an attempt to trace the source of the anomalous Au in samples TB-50, 63, 111 and 123 and to define the extent of Au mineralisation associated with the Burrawing Mine.

9. REFERENCES

- Flint D.J., 1976: Geological investigations of a nickel occurrence in basic to ultrabasic rocks west of Tumby Bay. SA Department Mines and Energy. Rept Bk 76/9. Unpublished.
- Martin A.R., 1989: EL 1513, Tumby Bay SA Six Monthly Report for the period September 1988 - February 1989. Unpublished report 2054 Helix Resources NL, Perth.

10. EXPENDITURE

The following expenditure details are for the three month period ended 31 May 1989.

<u>Item</u>	<u>\$</u>
Salary & Wages	2,050
Travel & Accommodation	661
Aerial Photo/Maps	-
Assay	1,792
Data Acquisition	-,
Drafting	1,120
Freight	- <i>y</i>
Fuel/Oil	. 91
Vehicle Rental	866
Tenement Acquisition	7
Mines Department Rents	***
Field Equipment	68
Field Expenses	-
	
TOTAL	6,655
	-

APPENDIX I

Microscopic results from stream sediment sample concentrates

Sample	Weight of panned conc. (g)	No. of visible grains of Au (& Sulphide)
TB-13	36	2
TB-36	67	.5
TB-43/122	52	10
TB-46	53	8 Fine grains
TB-50	69	+30
TB-51	58	1
TB-52	51	·
TB-54	51	(Trace Sulphide)
TB-55	55	-
TB-57	65	1
TB-58	49	-
TB-59	56	
TB-60	54	≔
TB-61	50	2
TB-62	57	-
TB-63	46	+30
TB-64	60	
TB-65	56	<u>4</u>
TB-67	55	+10
TB-70	68	3
TB-71	65	, 6
TB-72	52	-
TB-73	53	-
TB-74	50	-
TB-75	52	-
TB-76 TB-77	54	
TB-77	56	· <u>-</u>
TB-80	50 61	5
TB-81	64	-
TB-82	59	-
TB-83	5 7	
TB-85	67	<u>-</u>
TB-87	60	-
TB-88	52	-
TB-89	125	- ,
TB-90	52	<u>~</u> <u>~</u>
TB-91	65	
TB-92	57	_ 1
TB-94	57	<u> </u>
TB-97	60	<u> </u>
TB-98	52	1
TB-100	53	† 1
TB-103	55	• • • • • • • • • • • • • • • • • • •
TB-109	49	
TB-111	65	+20
TB-114	52	2
TB-115	51	1
TB-120	55	(1 Grain Sulphide)
TB-123	68	+20

APPENDIX II

Stream Sediment Sample Analysis

Sample	No.	Pt (ppm)		Au (ppm)
TB-50		<0.005	· · · · · · · · · · · · · · · · · · ·	2.190
TB-51		<0.005		0.367
TB-52		<0.005		0.118
TB-54		<0.005		0.139
TB-56		<0.005		0.029
TB-57		<0.005		0.020
TB-58		<0.005		0.170
TB-59		<0.005		0.492
TB-60		<0.005		0.125
TB-61		<0.005		0.372
TB-63		<0.005		2.300
TB-64		<0.005		0.137
TB-65		<0.005		0.949
TB-70	-	<0.005		0.224
TB-71		<0.005		0.279
TB-72		<0.005		0.109
TB-73		<0.005	*	0.096
TB-75		<0.005		0.016
TB-76		<0.005		0.041
TB-79		<0.005		0.977
TB-80		<0.005		0.050
TB-81		<0.005		0.100
TB-82		<0.005		0.037
TB-85		<0.005		0.040
TB-87		<0.005		0.005
TB-88		<0.005		0.014
TB-91		<0.005		0.029
TB-92		<0.005		0.052
TB-94		<0.005		0.351
TB-97	•	<0.005		0.127

HELIX RESOURCES NL

TECHNICAL REPORT 2062

EL 1513, TUMBY BAY, SA

Quarterly Report for the Period June - August 1989

A R MARTIN

DISTRIBUTION:

S A Department Mines & Energy S J Elliott A R Martin File

CONTENTS

- INTRODUCTION
 LOCATION AND ACCESS
 TENURE
- 4. GEOLOGY
 - 4.1 Regional Setting
 4.2 Prospect Geology
 4.2.1 Mitshan East Prospect
 4.2.2 Burrawing Prospect
- 5. EXPLORATION SUMMARY
- 6. EXPLORATION ACTIVITIES
- 7. RESULTS
 - 7.1 Stream Sediment Sampling7.2 Soil Geochemistry
- 8. CONCLUSIONS AND RECOMMENDATIONS
- 9. REFERENCES
- 10. EXPENDITURE

APPENDICES

Stream Sediment Sample Analysis
 Stream Sediment Sample Metallurgy
 Soil Geochemistry Line 1
 Soil Geochemistry Line 2
 Rock Chip Sample Analysis

FIGURES

NO.	TITLE	SCALE
1	Tumby Bay, Location Map	1:500,000
2. 3.	Burrawing Prospect, Geology	1:20,000
4.	Tumby Bay, Sample Location Map Tumby Bay, Area A, Outcrop Map	1:50,000
 •	Tumby bay, Area A, Outcrop map	1:10,000

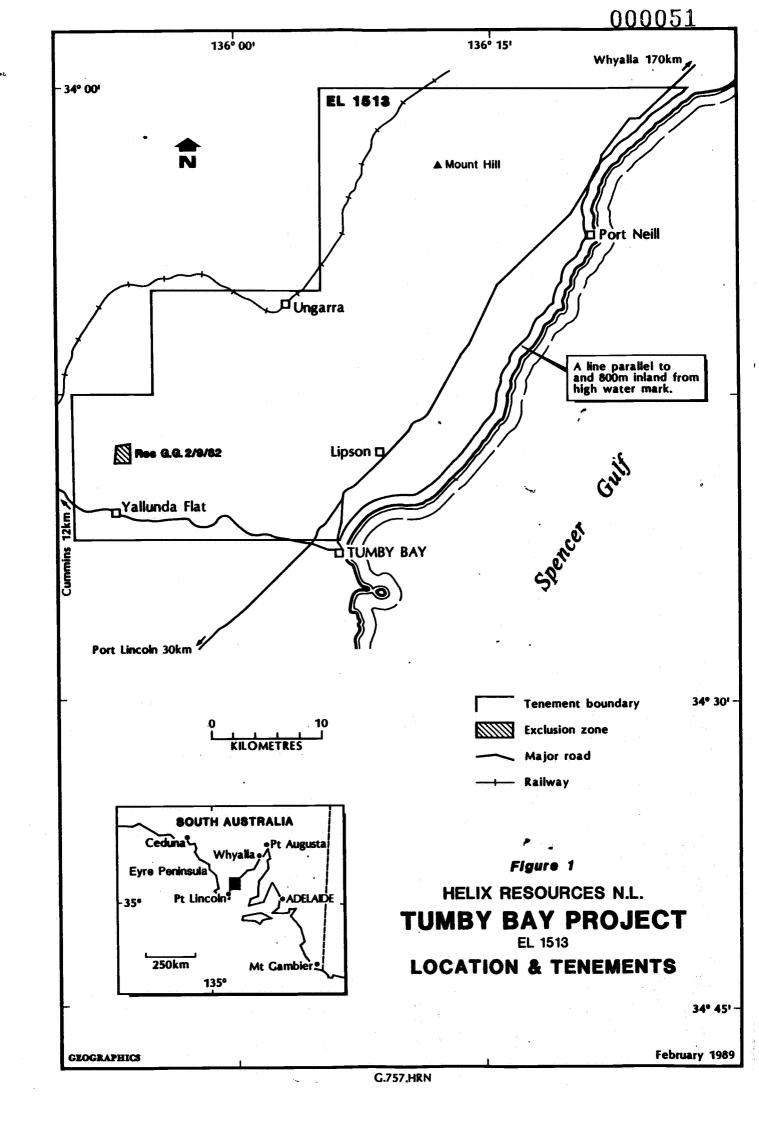
1. INTRODUCTION

Exploration Licence 1513 is located on the east coast of Eyre Peninsula approximately 50 km north of Port Lincoln (Fig 1).

The tenement includes the northern portion of the Lincoln Uplands which contains two circular ultramafic intrusive bodies. In the past these bodies have been investigated for nickel mineralisation (Flint, 1976) but no exploration for platinum group metals (PGM) was carried out. During the first 6 months the EL was held by Helix extensive rock chip sampling and detailed mapping of the bodies failed to delineate any PGM anomalies. During a detailed mapping programme weakly anomalous PGM results were obtained from graphitic schist within the Hutchison Group metasediments and anomalous Au values from several of the abandoned Copper mines.

A stream sediment sampling programme covering the entire EL failed to reveal any detectable PGM but four areas of anomalous Au were delineated.

Detailed summaries of the above exploration programmes by Helix can be obtained from Martin 1989a and b.


During the period covered by this report two of the anomalous Au areas were followed up, the Mitshan East Prospect and the Burrawing Prospect, but due to wet weather no work could be carried out on the other areas. The anomalous Au in the Mitshan East Prospect appears to be due to Cainozoic re-working along the eastern flank of the Lincoln Uplands while the anomalism in the Burrawing Prospect is due to primary Au mineralisation associated with Cu mineralisation along a vertical fault plane.

2. LOCATION AND ACCESS

Exploration Licence 1513 is situated in south-eastern Eyre Peninsula between the towns of Tumby Bay, in the south, and Pt Neill, in the north. The townships of Ungarra, Mt Hill, Lipson and Yallunda Flat are located within the licence (Fig 1).

Access to the area is via the Lincoln Highway which joins Pt Augusta and Pt Lincoln and passes through the eastern portion of the EL, or via the sealed road between Tumby Bay and Cummins. Numerous unsealed roads and farm tracks allow good access within the licence.

Much of the area is open undulating country used for grazing and grain crops with native scrub confined to rocky hill tops. The Lincoln Uplands protrude into the south-western portion of the EL where the terrain consists of rolling hills with more common patches of native scrub.

3. TENURE

Exploration Licence 1513 was initially granted for a six month period from 1 September 1988 has now been extended to a one year period due to expire on 1 September 1989. The licence has a total area of approximately 1215 sq kms.

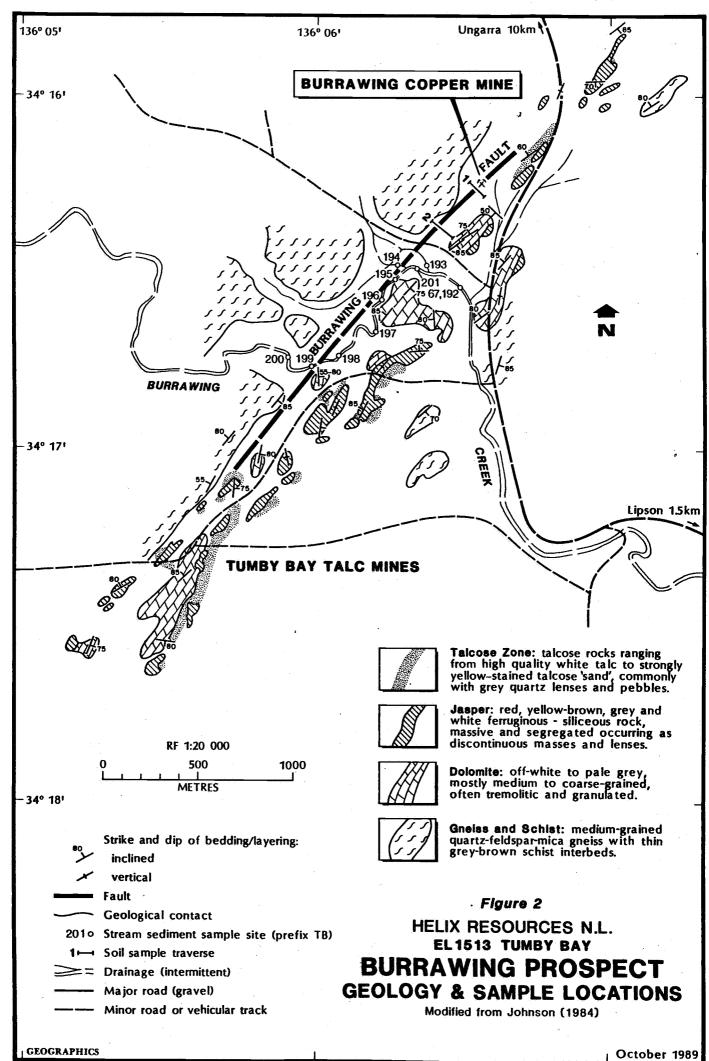
Exclusion zones within the EL are as follows:

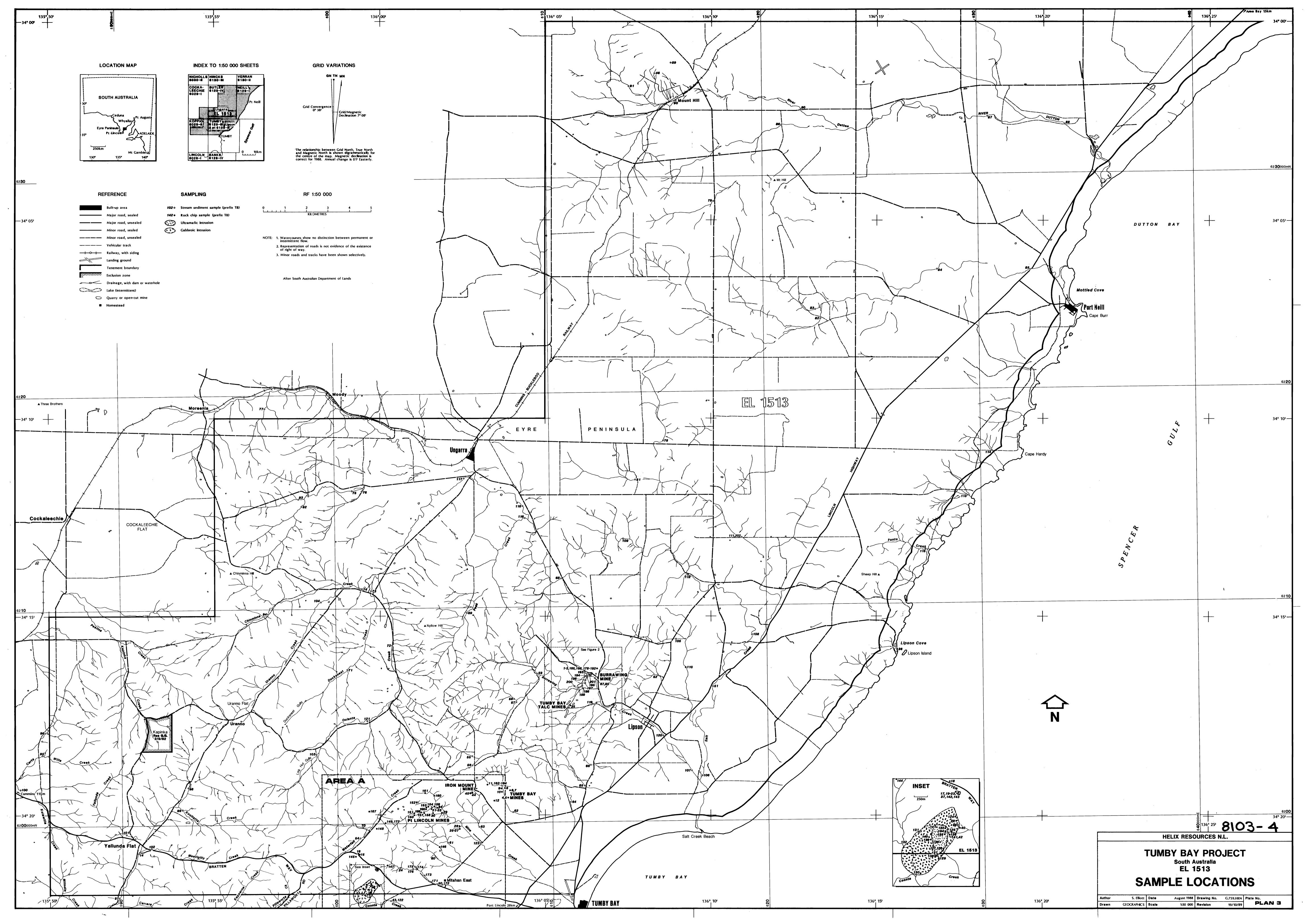
- * Res. G. G. 2.9.82 a 1.8 sq km reserve over the Kapinka Falls area.
- * Area 800 m inland from high water mark along coast.

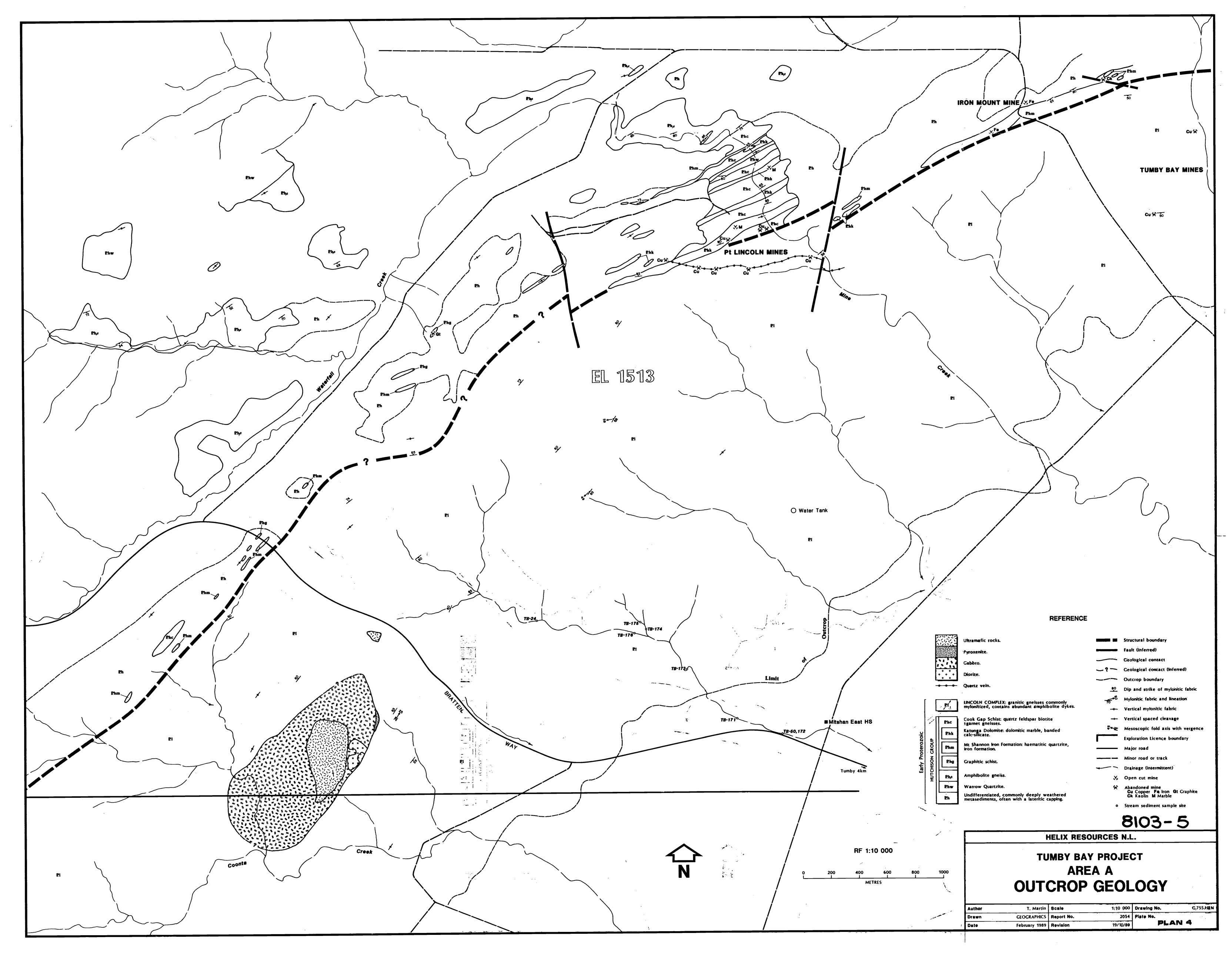
4. GEOLOGY

4.2.1 <u>Mitshan East Prospect</u>

The Mitshan East Prospect lies in the south portion of Area A which was mapped in detail, during the first six months the EL was held (Martin, 1989a). It occurs at the boundary between uplifted Lincoln Complex Gneisses to the west and a flat area of Tertiary to Recent sediments to the east. Uplift of the gneisses occurred along a northeast trending upright fault during the Cainozoic. The fault itself is now covered by Recent sediments but probably runs parallel to the southeastern extent of the outcrop of Lincoln Complex Gneisses (Fig 4).


4.2.2 Burrawing Prospect


The Burrawing Prospect occurs at the faulted boundary separating Early Proterozoic pelitic schists to the north-west from a 500-700 m wide white dolomitic unit which includes zones of talc and jasper (Fig 2). All the units are steeply dipping and strike southwest-northeast. The faulted contact is assumed subparallel to the fabric of the rocks and poorly exposed, this faulted contact is termed the Burrawing Fault.


In the past Cu has been mined from the Burrawing Mine which lies on the faulted contact of the two units. Talc has also been mined from within the dolomite unit in the southwestern portion of the area.

5. EXPLORATION SUMMARY

A complete summary of all exploration activity carried out over the tenemented area is given in the two previous reports, Technical Report 2054 (Martin, 1989a) and Technical Report 2058 (Martin, 1989b).

6. EXPLORATION ACTIVITIES

Work carried out by Helix involved more detailed stream sediment sampling, at approximately 200-300 m intervals, up stream from samples TB-50, Mishan East and TB-67 Burrawing. A total of 6 samples were collected from the Mitshan East Prospect and 11 samples from the Burrawing Prospect. In addition, a soil sampling traverse was carried out across the Burrawing Fault approximately 250 m south-west of the main Burrawing Mine, while a second trial soil sampling traverse was completed in the immediate vicinity of Burrawing Mine. Rock chip sampling from the Burrawing Mine area still continued.

7. RESULTS

7.1 Stream Sediment Sampling

Stream sediment sampling involved the collection of approximately 10 kg of -6 mm gravels. The samples were then assayed by Australian Laboratory Services for Au using Bulk Cyanide Leaching (BCL) which has a lower detection limit of 50 ppt, see Appendix 1.

Mitshan East Prospect - Because of extensive flooding in May 1989 much of the stream gravels previously deposited in the channel, and originally sampled at site TB-50, were washed away leaving only a thin 20-30 cm thick sand and gravel layer on the stream bed. A conventional 20 kg, -2 mm, sample (TB-172) of these recent gravels was taken from the same site as TB-50 this was tabled to produce a heavy concentrate. The concentrate was subsequently sieved and the -40 mesh portion panned by hand. The sample contained a total of 6 visible grains of gold compared with +30 grains obtained in TB-50. Although the total amount of gold in the two samples differed significantly the latter sample still contained anomalous Au, much higher than the background for this region.

Anomalous gold was also detected in sample TB-171 using BCL but no gold was detected in any samples further upstream. Both samples TB-171 and 172 were collected from a region where the stream is deeply incised into a thick sequence of flat lying Cainozoic alluvial gravels which form low slopes flanking the eastern edge of the Lincoln Uplands. The other samples were all from where the stream is shallowly incised into thin Quaternary alluvial cover in the base of deep valleys within the Lincoln Uplands.

It is therefore inferred that the source of the gold is most likely the alluvial gravels flanking the Lincoln Uplands. The gold was probably sourced from the Lincoln Uplands, where it is known to be anomalous within quartz veins associated with copper mineralisation. It was eroded and then concentrated within gravels proximal to the line of uplift of the Protozoic basement during the Cainozoic.

This likely scenario would also account for the anomalous Au detected in samples TB-63 and TB-123 which were also taken from the low slopes flanking the Lincoln Uplands in this area.

Burrawing Prospect - Anomalous Au up to 4.5 ppm has been detected at Burrawing Mine. Stream sediment sample TB-67 collected in Burrawing Creek approximately 500 m south of Burrawing Mine contained 20 grains of gold. A large east-west ridge separates Burrawing Mine from Burrawing Creek hence the Burrawing Mines is not the direct source of the gold in at TB-67.

Sampling at approximately 200 m intervals up from TB-67, samples TB-192 to TB-201, revealed anomalous Au in three samples TB-194, 195 & 196 (Fig 2). The source for the Au is most likely southwesterly extension of the Burrawing Fault which contained Au mineralisation at Burrawing Mine.

The Burrawing Fault crosses Burrawing Creek upstream from sample location TB-198. All samples in which gold was detected were collected from within 50 m of the Burrawing Fault as depicted by Johnson (1984).

The stream sediment sampling programme indicates that primary Au mineralisation occurs associated with Burrawing Fault of over a strike length of at least 1 km.

Sunny-Brae Prospect - A single sample was also collected from the sample locality as TB-111 and assayed by Bulk Cyanide Leaching, TB 202. The sample indicated anomalous Au in the stream but no further upstream sampling was possible because the creek still remained flooded.

7.2 Soil Geochemistry

Burrawing Prospect - Two trial soil sampling traverses were carried out across the Burrawing Fault the first Line 1 in the immediate vicinity of the Burrawing Mine the second on the southern flank of the ridge separating Burrawing Creek from the Burrawing Mine area (Fig 2).

Sampling along Line 1 was at 10 m intervals over 50 m in a northwest-southern direction all samples were split 3 times the first assayed unsieved the second -40 mesh portion assayed and the third the -80 mesh portion assayed. All were assayed for Au by conventional 50 g fire assay method with a lower detection limit of 2 ppb. Results for all samples were below .015 ppm. Although Au was detected in the -40 mesh split for 3 samples the results are too low to allow any meaningful conclusions regarding mineralisation to be drawn from this type of sampling.

Line 2 samples were collected at 12.5 m spacing along a northwest-southeast line which crossed the Burrawing Fault at between 40 SE and 80 SE. A total of 16 samples were collected along the 187.5 m line. The samples approximately 1-2 kg in weight were assayed by bulk cyanide leaching, with a lower detection limit of 50 ppt. The results indicate two distinct anomalies one between 40 and 80 SE of 3550 ppt and second between 140 and 160 SE of 9450 ppt. The first and smaller of the anomalies corresponds to the Burrawing Fault while the second corresponds to an as yet undefined zone of mineralisation.

7.3 Rock Chip Geochemistry

Burrawing Prospect - 15 further samples were collected from the immediate vicinity of the Burrawing Mine. With the exception of those which were brecciated all showed relatively low Au values.

Sample TB-178 was a channel sample across a 1 m wide vertical fault breccia outcropping at Burrawing Mine. The breccia assayed 1.83 ppm, channel samples of the footwall and hanging wall (TB-179, 180) pelitic schist assayed 0.15 ppm and 0.067 ppm indicating a significant drop in the degree of Au mineralisation out side the fault. It was also noticed that most of the visible Cu mineralisation actually occurred within both the footwall and hanging wall, and not within the fault zone.

Outcrop in the mine area is very poor and it is presumed that the outcropping 1 m wide fault breccia froms part, if not the whole, of the Burrawing Fault.

Sample TB-184 was also of highly becciated and ferruginised material, but it was not collected insitu.

8. CONCLUSIONS AND RECOMMENDATIONS

Mitshan East Prospect - Au anomalism in this area is a result of Pliestocene reworking of lower Proterozoic basement. The Au is most likely concentrated in fluviatile gravels in close proximity to the Lincoln Uplands, but it is highly unlikely to be of grade high enough to be of any economic interest. The primary source of gold in the Lincoln Uplands is vein type Cu - Au mineralisation previously mined at the Port Lincoln Mines. Earlier rock chip sampling has indicated that the mineralisation is not of economic significance. It is therefore recommended that no further work be carried out in this area.

Burrawing Prospect - Significant Au mineralisation up to 4.5 ppm is known from the Burrawing Mine, formerly mined for Cu. The mineralisation at surface is primarily contained within a 1 to 1.5 m wide beccia zone which presumably forms part of the northeasterly trending poorly outcropping Burrawing Fault. Stream Sediment sampling indicates that Au mineralisation may be significant along the fault over a strike length of up to 1000 m southwest from the main mine. No geochemical data is available along the fault northeast of the ming.

The soil geochemistry also indicates a southwestern extension of Au mineralisation associated with the Burrawing Fault. A second more significant Au anomaly of unknown extent was also defined approximately 80 m southwest of the Burrawing Fault along Line 2.

It is recommended that a detailed soil geochemistry programme be carried out over the Burrawing area to delineate the strike length of Au mineralisation along the Burrawing Fault both northeast and southwest of the Burrawing Mine and also to delineate any other anomalous zones such as that delineated along soil sampling Line 2. This should be followed by drilling of any significant targets that are delineated by the programme.

9. REFERENCES

- Flint D. J., 1976: Geological investigations of a nickel occurrence in basic to ultrabasic rocks west of Tumby Bay. SA Department Mines & Energy. Rep Bk 76/9. Unpublished.
- Johnson P. D., 1984: Talc deposits near Tumby Bay. Mineral Resources Review, South Australia, 154:60-68.
- Martin A. R., 1989a: EL 1513, Tumby Bay SA Six Monthly Report for period September 1988 - February 1989. Unpublished report 2054 Helix Resources NL, Perth.
- Martin A. R., 1989b: El 1513 Tumby Bay SA Report for period February - May 1989. Unpublished report 2058 Helix Resources NL, Perth.

10. EXPENDITURE

The following expenditure details include the three month period ended 31 August 1989 and the total for the first 12 months of the EL term.

ITEM	CURRENT PERIOD \$	ANNUAL \$
Salary and Wages Travel & Accommodation Aerial Phot/Maps Assay Metallurgy Technical Services Drafting Freight Fuel/Oil Vehicle Rental Tenement Acquisition Mines Department Rents Field Equipment Field Expenses	2,038 1,159 - 371 250 145 13 284 - 561	14,078 11,564 777 3,213 13,455 145 2,446 1,704 662 4,802 11 2,795 129
TOTAL	4,894	57,324 =====

APPENDIX 1

Stream Sediment Sample Analysis (BCL)

Sample No.	Weight (kg)	Au (ppt)
TB-171	9.91	150
TB-173	10.4	<50
TB-174	12.5	<50
TB-175	10.4	<50
TB-176	9.99	<50
TB-192	9.22	<50
TB-193	9.63	<50
TB-194	9.63	200
TB-195	9.59	<50
TB-196	8.90	200
TB-197	7.79	<50
TB-198	9.23	<50
TB-199	8.49	<50
TB-200	8.02	<50
TB-201	8.41	<50
TB-202	9.54	150

APPRENDIX 2

Stream Sediment Sample Metallurgy

SAMPLE TB-177

Total Dry Weight : 51.7 kg +2mm Weight : 33.2 kg -2mm Weight : 18.5 kg Table Concentrate Weight : 2114 g Panned Concentrate : 44 g

Total No Au Grains : 6

APPRENDIX 3

Soil Geochemistry Line 1

Sample	Location	Mesh Size	Au (ppm)
TBS-1	000 ww	unseived	<0.008
TBS-1	WM 000	-40 #	<0.008
TBS-1	000 NW	-80 #	<0.008
TBS-2	010 NW	unseived	<0.008
TBS-2	010 NW	-40 #	0.012
TBS-2	010 NW	-80 #	<0.008
TBS-3	020 NW	unseived	<0.008
TBS-3	020 NW	-40 #	<0.008
TBS-3	020 NW	-80 #	<0.008
TBS-4	030 NW	unseived	<0.008
TBS-4	030 NW	-40 #	0.011
TBS-4	030 NW	-80 #	<0.008
TBS-5	040 NW	unseived	<0.008
TBS-5	040 NW	-40 #	0.010
TBS-5	040 NW	-80 #	<0.008

APPENDIX 4

Soil Geochemistry - Line 2 (BCL)

Weight (kg)	Au(ppt)
1.87	150
1.40	50
1.89	50
2.19	300
1.71	1200
2.26	3550
1.94	800
1.85	300
1.40	200
1.06	450
1.53	700
1.93	2850
1.17	9450
1.92	2650
	1.87 1.40 1.89 2.19 1.71 2.26 1.94 1.85 1.40 1.06 1.53 1.93 1.17

APPENDIX 5

Rock Chip Sample Analyses

Sample	Au(ppm)
TB-178	1.830
TB-179	0.150
TB-180	0.067
TB-181	<0.008
TB-182	0.011
TB-183	<0.008
TB-184	1.600
TB-185	0.036
TB-186	0.008
TB-187	0.024
TB-188	<0.008
TB-189	<0.008
TB-190	0.010
TB-191	0.014
TB-192	0.009

TECHNICAL REPORT 2084

EL 1513, TUMBY BAY, SA

Quarterly Reports September to November 1989 December 1989 to February 1990

DISTRIBUTION:

S A Department Mines & Energy A R Martin File

CONTENTS

- 1. INTRODUCTION
- 2. TENURE
- 3. EXPLORATION ACTIVITIES
 - 3.1 Soil Geochemistry
- 4. RESULTS
 - 4.1 Soil Geochemistry
 - 4.2 IP Survey
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. EXPENDITURE
- 7. REFERENCES

APPENDICES

1. Soil Geochemistry, Lines 7 and 8.

FIGURES

NO.	TITLE	SCALE
1	Tumby Bay Project, Location Map	1:500,000
2.	Tumby Bay Project, Burrawing Prospect Location	1:20,000
3.	Tumby Bay Project, Burrawing Prospect Soil Geochemistry	1:1,000
4.	Tumby Bay Project, IP Survey	1:1,250
5.	Tumby Bay Project, Soil Geochemistry Au Contours	1:2,500

1. INTRODUCTION

This report covers work on EL 1513 for the period December 1989 to February 1990 and includes work on the Burrawing Prospect during September to November 1989. During December 1989 much of the original EL 1513 was relinquished, the remaining portion retains only the Burrawing Prospect area as reported in previous quarterly reports.

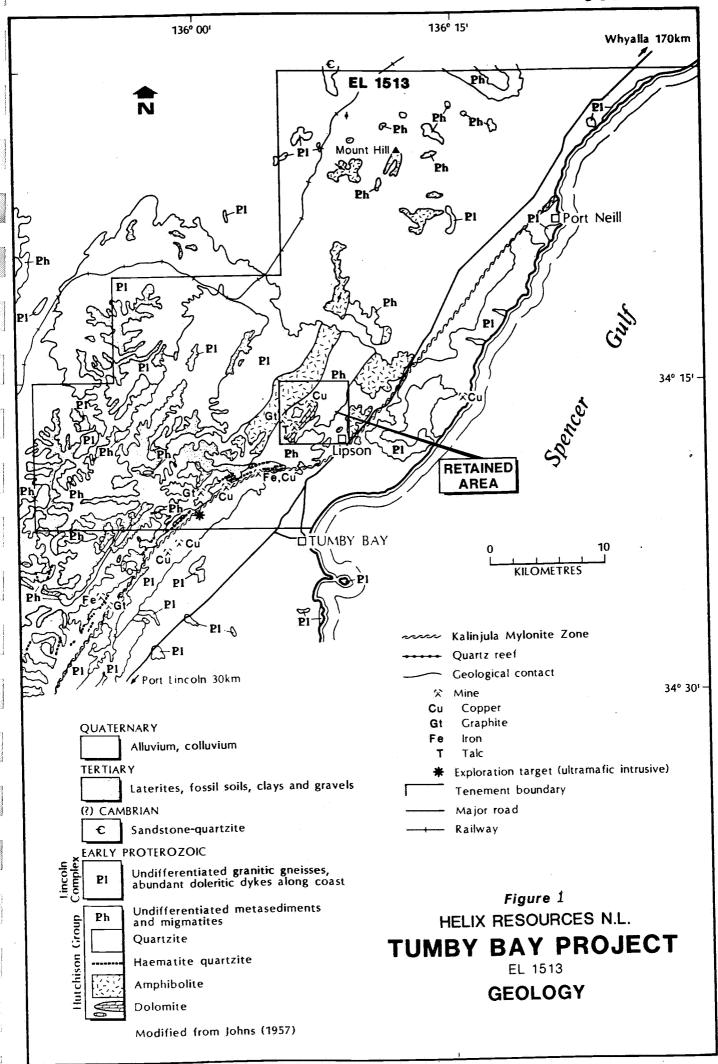
All work carried out by Helix was in the Burrawing Prospect area and included surveying and gridding and two surface geochemical surveys.

Other work carried out on EL 1513 outside the Burrawing Prospect is reported in Martin, 1989.

2. TENURE

During the report period the EL was reduced from the original size of 1215 sq km to an area of approximately 34.2 sq km surrounding the Burrawing Prospect (Fig 1).

3. EXPLORATION ACTIVITIES


Two soil geochemistry surveys were completed over the Burrawing Mine area. Both surveys were completed using Bulk Cyanide Leach followed by AAS to determine Au with a 50 ppt detection limited. All samples were collected from the top 30 cm of soil and dry sieved, the -2mm material collected and assayed at Australian Laboratory Services.

A grid with grid north parallel to 040 MN was surveyed over the old mine site after the first of the soil geochemistry surveys.

An IP survey consisting of three 150 metre lines with a 25 m dipole spacing was also carried out. The first line was completed along 2100N centred at 1045E, the second along 1855N centred at 1070E and the third along 2400N centred at 1025. The survey was carried out by Search Exploration Services Pty Ltd (Fig 3).

3.1 Soil Geochemistry

During the first survey seven traverses were completed across the Burrawing Fault trending approximately 130° MN in addition Line 2 was extended by 60 m to the southeast. Five of the lines, 3, 4, 5, 6 and 9 were completed within the surveyed grid (Fig 3) and two lines 7 and 8 southwest of the gridded area (Fig 2). All results except lines 7 and 8 are shown on Fig 3. Results for lines 7 and 8 are included in Appendix 1. Sampling along each line was carried out at 15 m intervals.

The second survey was carried out wholly within the surveyed area. A total of seven lines were sampled, 1800N, 1900N, 2000N, 2100N, 2200N, 2300N and 2400N. Samples were again collected at 15 m intervals. All results are included on Fig 3.

4. RESULTS

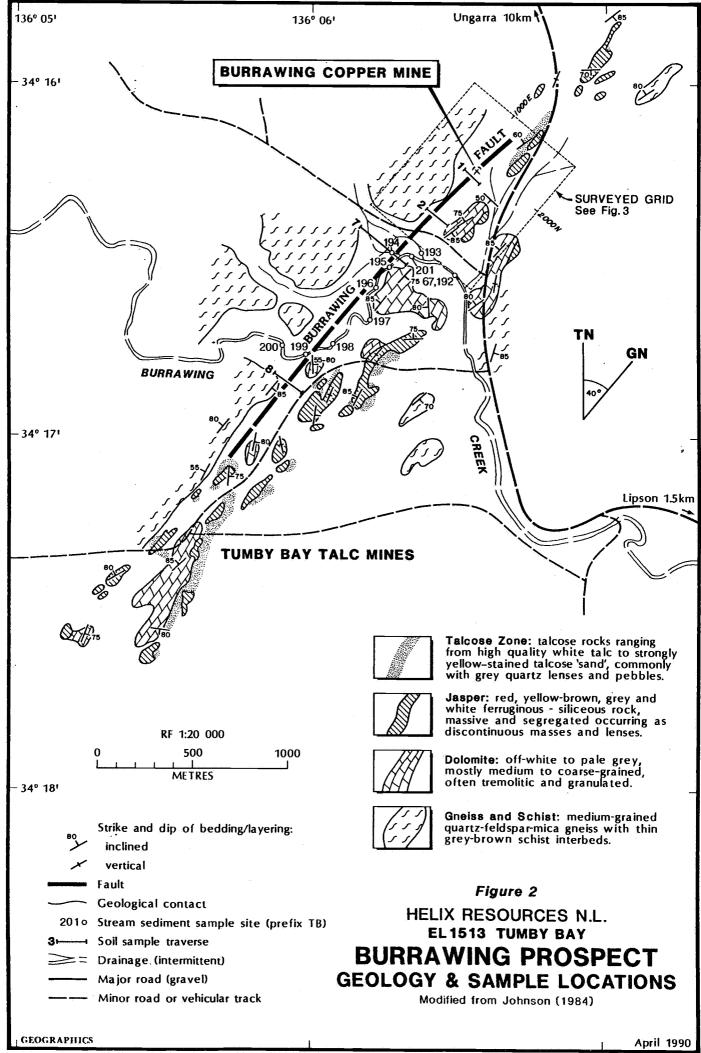
4.1 Soil Geochemistry

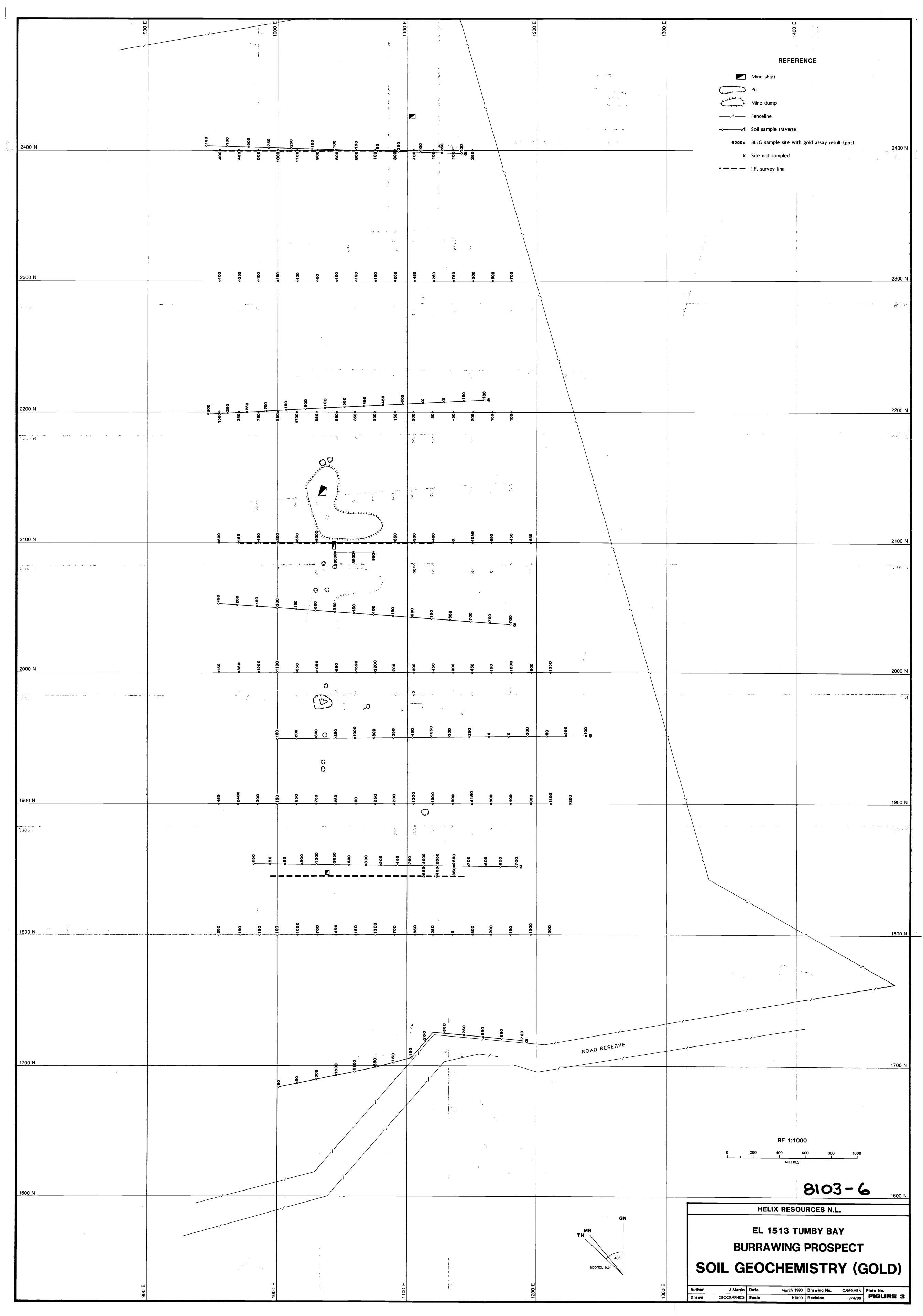
Results of the two soil geochemistry surveys have delineated two zones of anomalous Au greater than 3 ppb (Fig 5). The first an elongate zone corresponding to the direction of strike of the Burrawing Fault lies approximately parallel to grid north. The anomaly reaches a peak of 26 ppb adjacent to the old copper workings. The second anomaly is parallel to the first and located some 70-90 m to the east. This anomaly reaches a peak of 9.5 ppb in the southwestern portion of the area.

The first anomaly is most likely associated with hydrothermal vein quartz mineralisation within pelitic schists along the subvertical breccia zone.

The second anomaly corresponds to the contact between the pelitic schists and overlying interlayered finely banded jaspilitic quartzite and dolomitic marbles and may represent skarn-type mineralisation.

No significant anomalies were encountered on Lines 7 and 8.


4.2 IP Survey


The IP survey delineated weak anomalies possibly indicating a low grade dissiminated sulphide zone immediately west of the Burrawing Fault Au anomaly on each of the three lines (Figs 4a,b,c).

A second larger anomaly possibly indicating a zone of more massive sulphides was delineated immediately west of the second Au anomaly at 1855N 1115E (Fig 4a).

5. CONCLUSIONS AND RECOMMENDATIONS

Soil geochemistry and the IP survey have delineated two zones of anomalous gold in the Burrawing Mine area and possible complementary zones of disseminated sulphide mineralisation at depth. It is recommended that a programme of angled percussion holes be devised to test both the Au anomalies and IP anomalies along lines 2100N and 1850N and the Au anomaly along line 1900N. It is envisaged that a programme of between 500 and 1000 m should adequately test the target to depths of 100 m.

6. EXPENDITURE

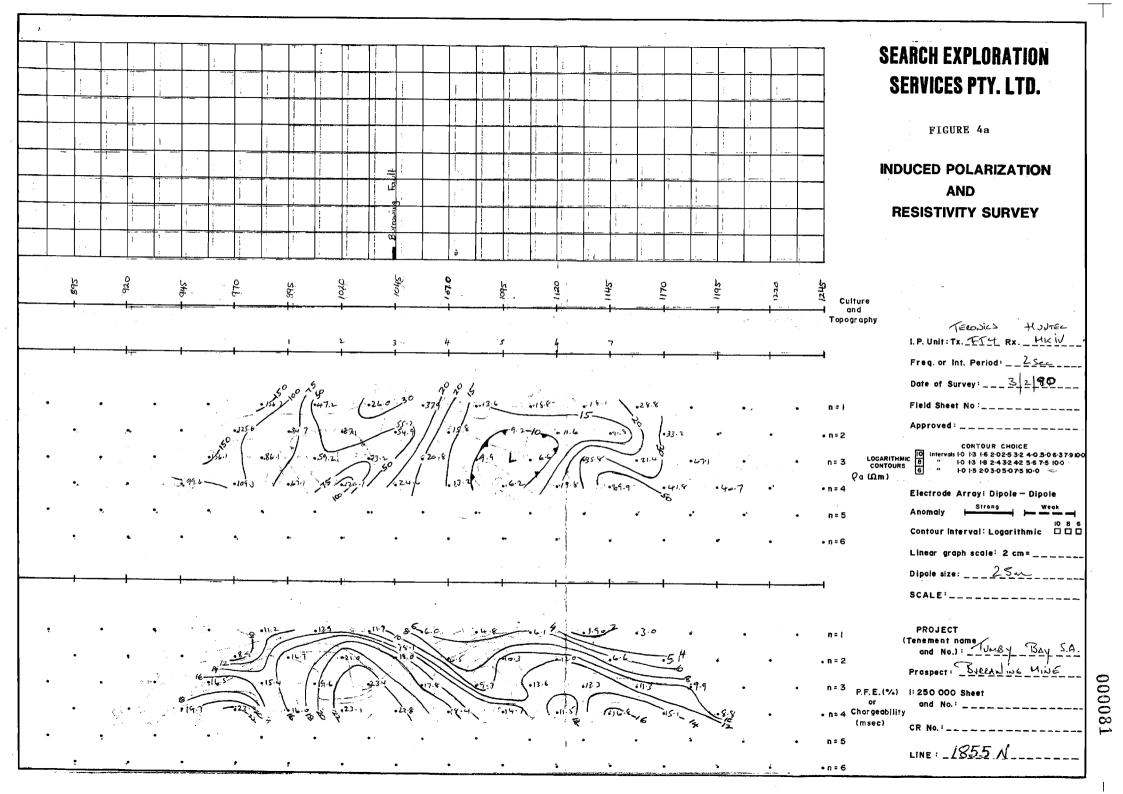
The following are expenditure details for the periods September to November 1989, also see Martin, 1989, December to February 1989.

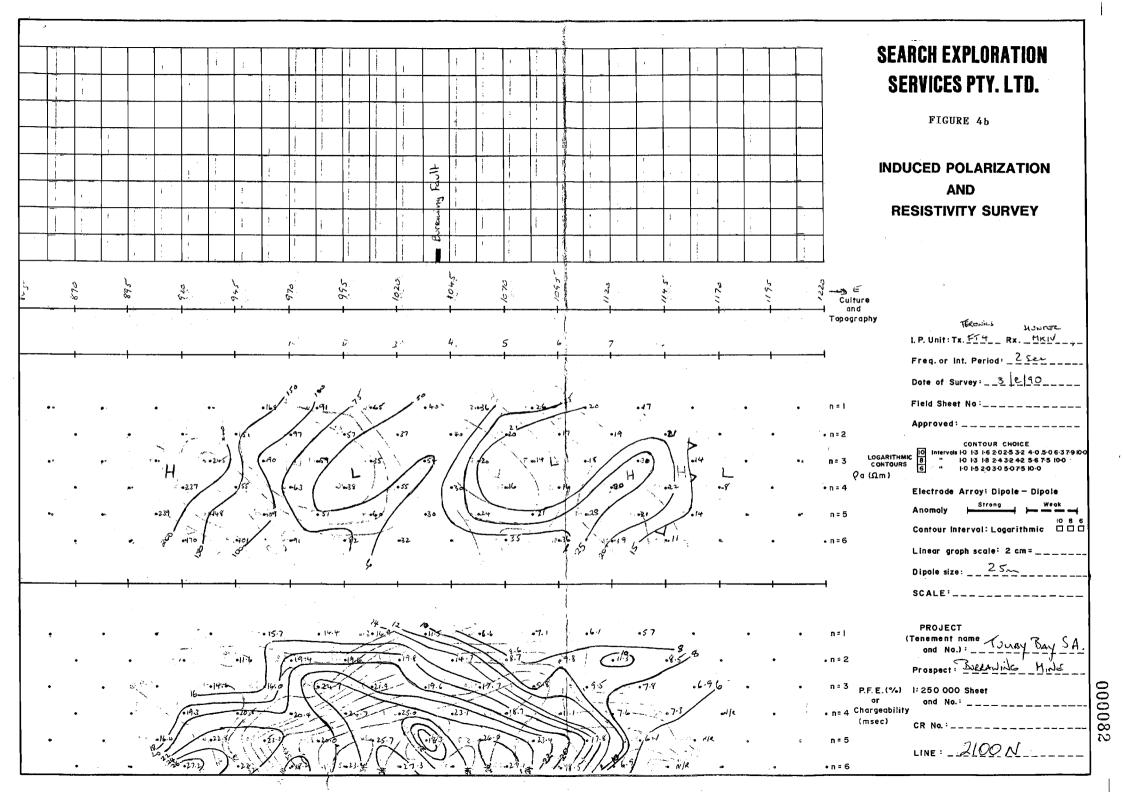
Item	\$	\$	
		Sep-Nov	Dec-Feb
Salaries		2,780	8,836
Travel and Accommodation		1,785	3,592
Assay		2,737	2,698
Drafting		263	494
Freight		1,455	241
Fuel/Oil			240
Surveying/Gridding		* Colonia	2,584
Geophysical Surveying		-	3,240
Wehicle Rental		275	1,012
Mines Dept Rent		2,923	÷-
Field Equipment		ince	599
		 	
Sub-total		12,218	23,536
Plus 15% Administration		1,832	3,530
		-	
TOTAL		14,050	37,066
		Main Wiles wides with with a dealer.	

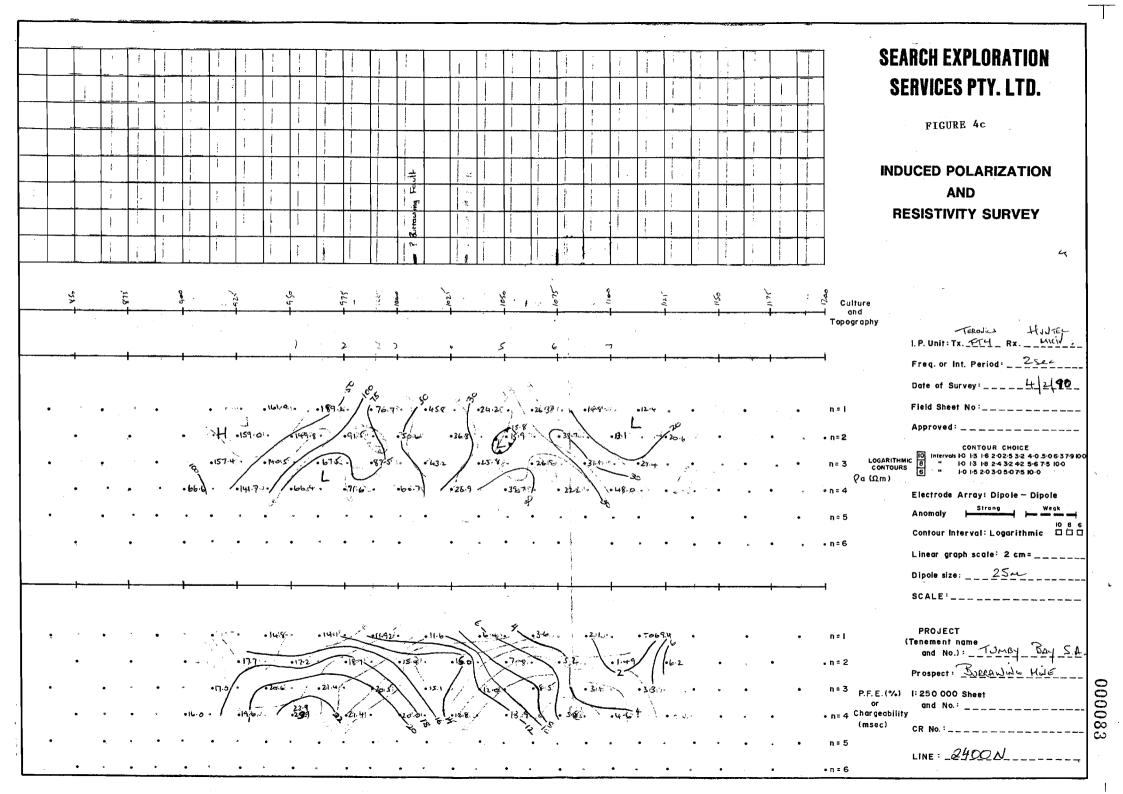
7. REFERENCES

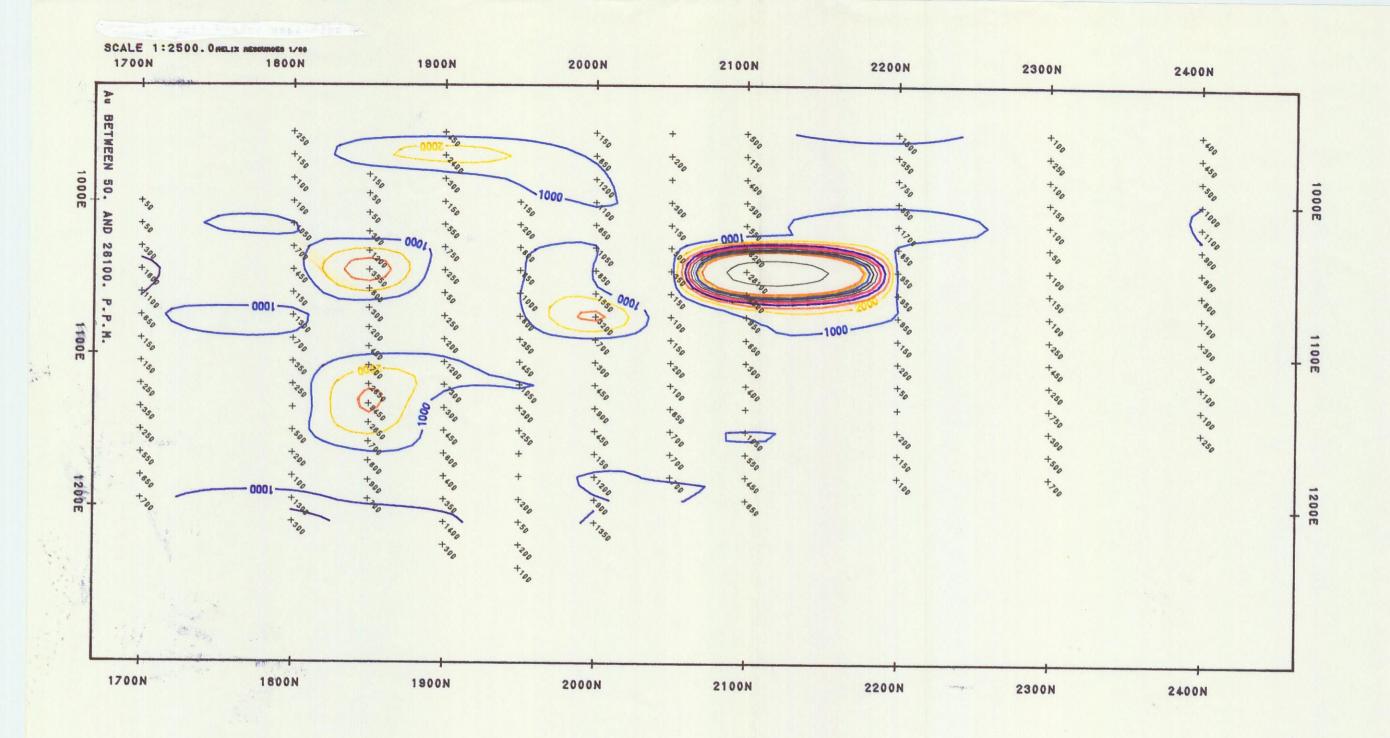
Martin, A.R., 1989, Partial Relinquishment Report December 1989, EL 1513. Helix Resources NL Technical Report 2078. Unpub.

APPENDIX 1


Soil Geochemistry Lines 7 and 8


Li	ne	7


Location	(<u>ppt</u>)
000E	150
015E	100
030E	100
045E	100
060E	150
075E	100
090E	200
105E	100
120E	100
135E	50
150E	150
165E	50
180E	150
195E	250
210E	200
225E	150
300E	150
315E	500
330E	200
345E	400


Line 8

Location	<u>Au</u> (<u>ppt</u>)
000E 015E 030E 045E 060E 075E 090E 105E 120E 135E 150E 165E	100 100 50 200 100 150 50 100 <50 50
TOOL	50

भा	ELIX RESOURCES N	I.L.
TUI	BY BAY PRO	DJECT
50	IL GEOCH	HEM
A	U CONTO	JRS
	U IN P.P.TRILLI	ON
Author: A.M.	Seale 1:2500	Report:
Drawn: C.M.	Date: 6.3.90	Plan: 5

HELIX RESOURCES NL

TECHNICAL REPORT 2084

EL 1513, Tumby Bay, SA

QUARTERLY REPORT FOR THE PERIOD MARCH - MAY 1990

DISTRIBUTION

S A Department of Mines Helix Resources NL File

CONTENT

- 1. INTRODUCTION
- 2. LOCATION AND ACCESS
- 3. TENURE
- 4. GEOLOGY
 - 4.1 Regional Setting
 - 4.2 Prospect Geology
 - 4.2.1 Burrawing Prospect
 - 4.2.2 Tumby Bay Talc Mines
- 5. PREVIOUS EXPLORATION
- 6. EXPLORATION ACTIVITIES
 - 6.1 Geophysics
 - 6.2 Drilling
- 7. CONCLUSIONS AND RECOMMENDATIONS
- 8. REFERENCES
- 9. EXPENDITURE

APPENDICES

- 1. Interpretation of IP and Magnetic Survey
- 2. Rock Chip Sample Analysis
- 3. RC Drillhole Logs and Assay Results

FIGURES

No.	Title	Scale
1.	Tumby Bay Project, Location Map and Tenements	1:500,000
2.	Tumby Bay Project, Geology	1:300,000
3.	Tumby Bay Project, Burrawing Prospect Geology and Sample Locations	1:20,000
4.	Burrawing Prospect Soil Geochemistry and Interpreted Geology	1:1,000
5.	Tumby Bay Project, Soil Geochemistry Au Contours	1:2,500
6.	Tumby Bay Project, Soil Geochemistry 3-D Au Contours	
7.	Tumby Bay Project, IP Survey Profiles	1:1,250
8.	Tumby Bay Project, Groundmagnetic Profiles	1:1,250
9.	Tumby Bay Project, Drillhole Locations	1:1,000
10.	Tumby Bay Project, Drillhole Geochemistry Line 1855N	1:1,000
11.	Tumby Bay Project, Drillhole Geochemistry Line 1900N	1:1,000
12.	Tumby Bay Project, Drillhole Geochemistry Line 2100N	1:1,000
13.	British Columbia	. _

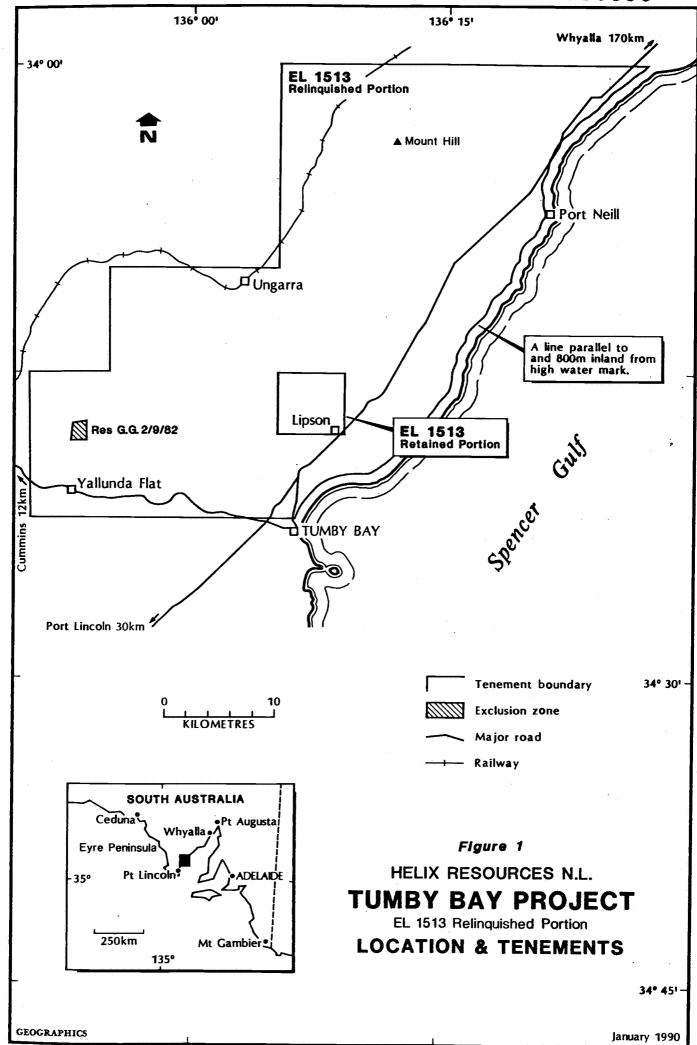
1. INTRODUCTION

A total of eight RC drillholes in the vicinity of the Burrawing Mine, an abandoned copper mine operated in the late 19th Century, have delineated low level Au + Cu + Bi and Au mineralisation. Two types of mineralisation were intersected, the first Cu + Au + Bi associated with mesothermal veins along with vertical brittle faults in pelitic metasediments and the second disseminated Au within finely laminated chalcedonic and jasperoidal units.

Mineralisation and alteration is most closely akin to the vein deposits in deeper parts of epithermal systems such as those in British Columbia with the jasperoidal Au mineralisation possibly representing skarn-type or Carlin-type mineralisation associated with silicification of adjacent chemically deposited sediments (dolomites and iron formation).

Best intersections of vein-type mineralisation were from holes TRC-7 (28-32m) and TRC-6 (64-66m) returning values of 4 m 0 .39 g/t Au + .26% Cu and 2 m 0 .18 g/t Au + 1.1% Cu respectively, while TRC-4 (8-44m) returned 36 m 0 .07 g/t Au within jasperoidal units.

2. LOCATION AND ACCESS


Exploration Licence 1513 is situated in south-eastern Eyre Peninsula between the towns of Tumby Bay, in the south, and Pt Neill, in the north. The townships of Ungarra, Mt Hill, Lipson and Yallunda Flat are located with the Licence (Fig 1).

Access to the area is either via the Lincoln Highway which joins Pt Augusta and Pt Lincoln and passes through the eastern portion of the EL, or via the sealed road between Tumby Bay and Cummins. Numerous unsealed roads and farm tracks allow good access within the Licence.

Much of the area is open undulating country used for grazing and grain crops with native scrub confined to rocky hill tops. The Lincoln Uplands protrude into the south-western portion of the EL where the terrain consists of rolling hills with more common patches of native scrub.

3. TENURE

Exploration Licence 1513 was granted to Helix Resources NL on 2 September 1988 and comprised a total area of 1215 sq kms. During December 1989 much of the area was relinquished except an area of 35 sq kms in the Burrawing area (Fig 2). The Licence is current until 1 September 1990 with an annual expenditure commitment of \$85,000.

4. GEOLOGY

4.1 Regional Setting

The southern Eyre Peninsula forms part of the Gawler Craton, an area consisting of a variety of Late Archaean to Middle Proterozoic basement lithologies. Southern Eyre Peninsula is comprised of three main tectonostratigraphic rock units, the oldest being a Late Archaean supracrustal sequence, the Sleaford Complex. The sequence was metamorphosed to granulite facies at about 2600 m.y. during the Sleafordian Orogeny, a deformational event which was accompanied by the intrusion of upper crustal granitoids known as the Dutton Suite.

A period of crustal extension between 2100 m.y. and 1850 m.y. resulted in the deposition of a thick sedimentary sequence known as the Hutchison Group. The group consists of, in ascending stratigraphic order, quartzite (with local calcsilicate), dolomitic marble, thin-bedded graphitic quartzite and banded iron formation, semipelitic schist, fine-grained garnetiferous gneiss, amphibolite, banded iron formation, and finally more schist (Parker and Lemon, 1982). Sedimentation ceased at about 1850 m.y. at the onset of the Kimban Orogeny.

The Kimban Orogeny is divided into three primary phases, termed D1, D2 and D3. D1 (1850 m.y.) was a phase of high grade metamorphism, upper amphibolite to granulite facies grade, which was accompanied by the intrusion of acid and basic igneous material comprising the Donnington Granitoid Suite. The second phase D2 (1780 m.y.), a period of isoclinal folding, imparted a pervasive layer-parallel fabric on the rocks of the area and was also accompanied by high level acid The final phase of deformation, D3 (1720 intrusions. m.y.), produced a series of long, thin, intense north to north-easterly trending shear zones including the Kalinjala Mylonite Zone (KMZ). The D3 event was also accompanied by the intrusion of high level S-type granites, and resulted in upright open folding in the areas between the shear zones. All the intrusive rocks accompanying the Kimban Orogeny are loosely termed the Lincoln Complex, the third tectonostratigraphic rock unit seen on southern Eyre Peninsula.

The distribution of basement lithologies in the Tumby Bay area is controlled largely by Kimban Orogeny D3 structures, the most important of these being the Kalinjala Mylonite Zone, This sub-vertical zone of intense shearing is approximately 1 to 2 km wide and trends in a north-easterly direction east of the EL, broadly separating early synorogenic granitic gneisses in the east from Hutchison Group metasediments in the west. Parallel to the KMZ, to the west, are several smaller (<100 m wide) shear zones, along some of which outcrop thin thrust-slices of Lincoln Complex gneisses within the Hutchison Group.

The best exposures of Hutchison Group lithologies are seen in the Lincoln Uplands west of Tumby Bay where they abut the KMZ (Fig 2). Here the vertically dipping sequence has been sheared and is stratigraphically thinner than normal throughout the Peninsula. Because of the high degree of deformation no stratigraphic facing direction can be inferred but by analogy with other areas it is most probable that the sequence generally youngs to the west where the basal Warrow Quartzite is absent from the sequence. In addition to shearing the sequence has undergone isoclinal folding causing possible repetition of some portions, and it is unlikely that a real stratigraphy is resolvable.

Lincoln Complex gneisses to the east of the KMZ include a variety of acid granitic gneisses, the most common of these being a sheared medium-grained light pink-grey quartz feldspar biotite gneiss. Other common varieties include a grey coarsely megacrystic quartz feldspar biotite gneiss, pink-orange quartz feldspar gneiss and a grey fine-grained quartz feldspar biotite gneiss.

The granitic gneisses are commonly cut by dark grey or black fine-grained dolerite dykes. These dykes show some evidence of shearing although not to the same extent as the granitic gneisses. They are generally oriented sub-parallel to the dominant gneissic fabric.

A period of laterite development and associated deep weathering during the Tertiary caused bleaching and kaolinization of much of the outcropping Hutchison Group metasedimentary sequence. The weathered rocks still exhibit the original gneissic fabric but the original mineralogy is completely obscured. Lateritization has caused common red mottling. As a result of the weathering much of the outcropping basement area is now covered by a veneer of small ironstone concretions.

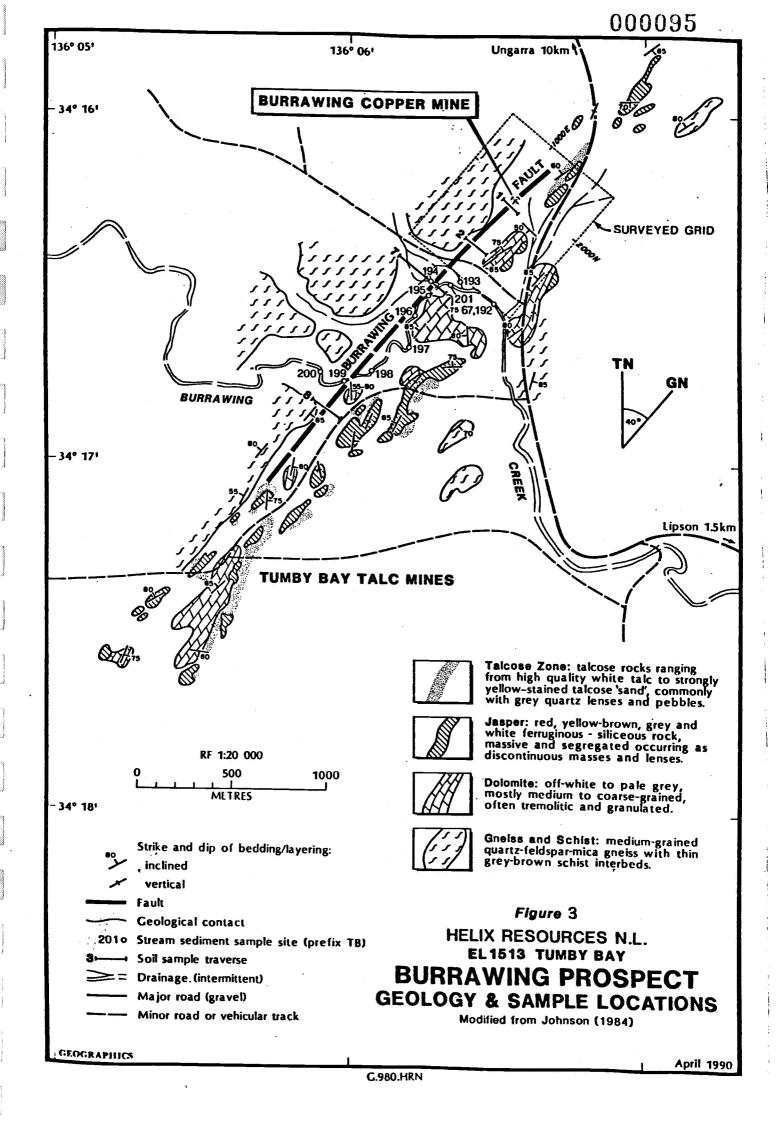
Small outliers of ferruginous flat-lying, fluviatile Tertiary sands and conglomerates up to 3 m thick are preserved throughout the region.

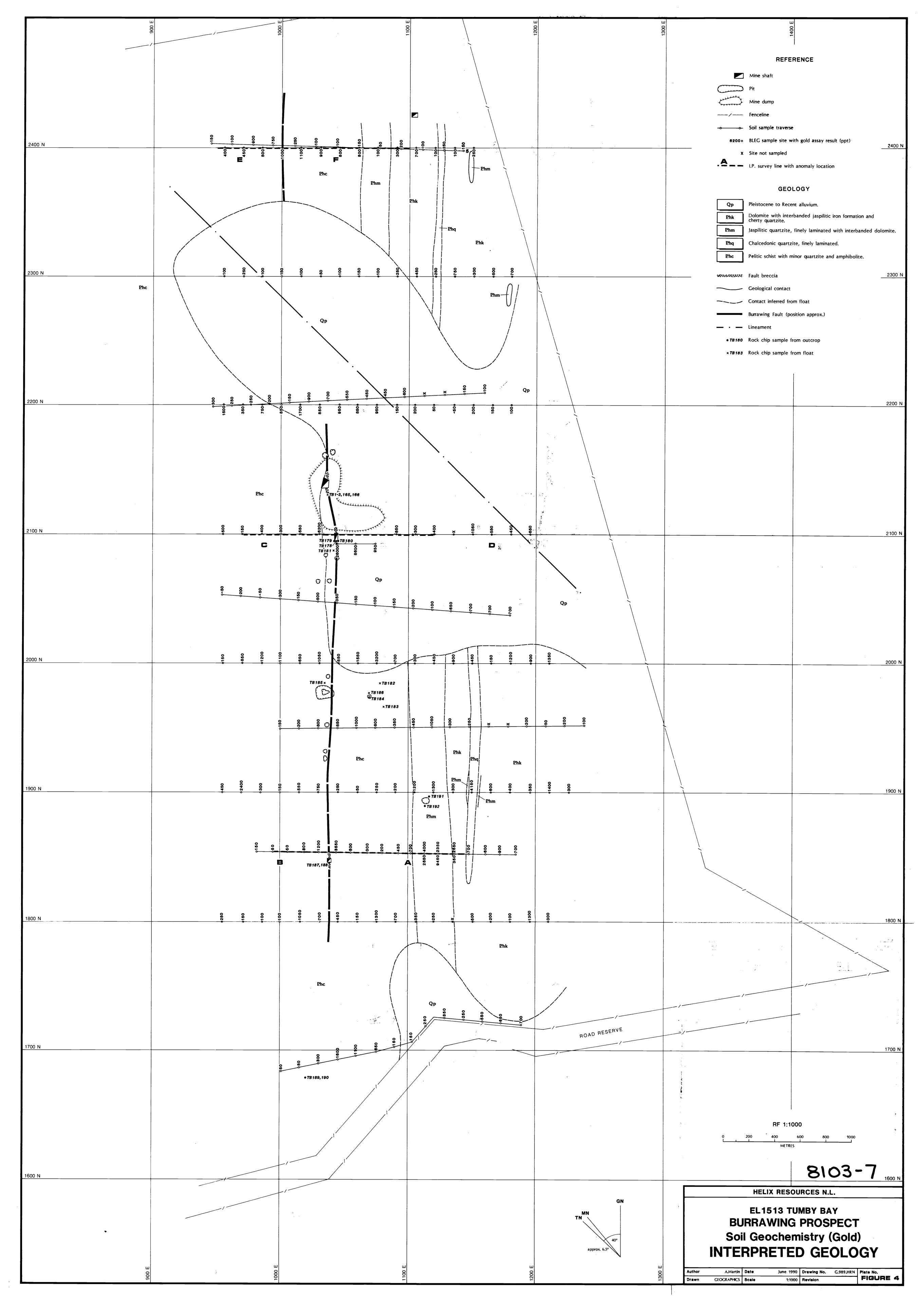
Much of the area between the basement outliers consists of a moderately thick sequence of red, green, grey and brown, gritty to gravelly clays, the result of Pliestocene to Recent weathering. Commonly developed within these clays are sheet-like and nodular calcrete horizons.

4.2 Prospect Geology

4.2.1 Burrawing Prospect

The Burrawing Prospect (Fig 3) lies in an area comprised of steeply dipping northeasterly striking Hutchison Group metasediments. From the northeast the sequence consists of a thick (>1000 m) unit of pelitic schists with minor interbanded quartzite and amphibolite units. This is overlain to the east by a 500 m thick sequence of chemically deposited units of interbanded dolomitic marble, jaspilitic quartzite and chalcedonic quartzite. All the units have a pervasive S foliation and


have been metamorphosed to upper amphibolite facies grade.


Within the pelitic schist, subparallel to the regional S foliation is a post-tectonic

cataclastic fault zone termed the Burrawing Fault (Johnson, 1984). Along this fault are a series of shafts and diggings of the Burrawing Mine, operated during the latter part of the 19th century. The copper-bearing lode which is 0.75 m wide at surface was worked over a length of 200m, the main shaft being 85 m deep.

4.2.2 Tumby Bay Talc Mines

The interlayered jaspilite and dolomite units south of the Burrawing Mine contain a series of concordant talc-kaolin-quartz lodes (Fig 3). These lodes occur along the contacts between dolomite and jaspilite probably as the result of siliceous alteration of a schistose unit. The lodes vary in size from 100 m x 50 m to less than 30 m x 10 m.

Alteration that resulted in the formation post-dated the main structural and metamorphic events in the area. Evidence for this is seen in the form of pseudomorphs after metamorphic minerals within the talc. Other associated alteration features include chloritic alteration of schists along the nonthweatern boundary of the chemical sadiments. It is also possible that finely laminated chalcedonic quartzite and chert units just south of Burrawing Mine are the result of the same alteration phase and represent subjudified carbonates, although it should be noted that some of these siliceous units are more likely to represent 'silicate facies' iron formations.

The degree of alteration resulting in the development of talc in this area is unusual for the Eyre Peninsula. By comparison, talc development within iron formations further north is relatively minor. This would indicate that a unique hydrothermal system was active either late syntectonically or more likely some time after the Kimban Orogeny ceased.

5. PREVIOUS EXPLORATION

Previous precious and base metals exploration in the tenemented area has been restricted to regional surveys including stream geochemistry and airborne geophysics. Prior to Helix's involvement in the area no detailed exploration of the Burrawing Mine area had been undertaken. No records of production from the mine are obtainable but it is known that the mine operated from 1869 to 1874, yielding ore to the value of £6,300 with copper assays up to 37% copper and about 1½ bismuth (Johns, 1951).

Exploration of the Tumby Bay Talc Mines area was carried out by the SA Department of Mines and Energy during the period 1979-1980 (Johnson, 1982). Work included geological mapping, petrographic investigation, drilling and bulk sampling. The results indicated that the main lode contained a yield of 2-3000 tonnes of talc per vertical metre but that further work would need to be carried out on the separation of grey quartz contaminant before bulk mining could proceed economically. Johnson also concluded that the smaller lode could supply small amounts of high quality talc.

Three holes TRC 5, 6 & 7 were drilled along 2100N in the immediate vicinity of the old workings and IP anomaly 'C' drilling indicated two thin (1-5 m) steep westerly dipping zones of low grade mineralisation up to 1.1% Cu and 0.4 ppm Au (Fig 12). The mineralisation is closely associated with zones of thin (<.5 m wide) quartz veins controlled by normal brittle faulting. Alteration around the mineralisation is characterised by pervasive silicification and minor retrograde mineral (epidote and ?chlorite) development. The veins appear to vary from massive to vuggy with saw tooth textures. Finely disseminated sulphide, dominantly pyrite, is found throughout the alteration zone with patchy massive development within the vein systems. The disseminated pyrite within the alteration zone west of the mineralised fault is probably responsible for IP anomaly 'C'. This would imply that there is little or no disseminated pyrite within the alteration halo east the mineralised zone or the pyrite is responsible for the observed anomaly.

The holes drilled on line 1855N, TRC 1, 2, 3, and 8 failed to intersect any zones of Au or Cu mineralisation (Fig 10). Minor Cu anomalism up to 1890 ppm was intersected in TRC-1 between 58 and 61 m. Anomalous Au (0.03 ppm) was also intersected in the vicinity of the Burrawing Fault. No anomalous Au zones were intersected in subsurface below the soil anomaly at 1120-1135 E.

A single hole on line 1900 N to test a soil geochem anomaly at 1150E intersected anomalous gold within chalcedonic quartzite (jaspilitic in part), and minor interlayered dolomite (Fig 11). Au values between 0.06 and 0.09 ppm were detected from throughout most of the length of the hole (8-48.5 m). No Cu anomalism was associated with the Au anomaly.

Lead and Zinc are generally low throughout the area but there appears to be some enrichment within the oxidized zone; this is probably enrichment as a result of lateritic weathering processes.

Silver values are very low in all the drill holes while Bi is anomalous only within the higher grade Cu + Au mineralised zones directly associated with vein quartz.

7. CONCLUSIONS AND RECOMMENDATIONS

Characteristics of the Burrawing Mine mineralisation viz :-

- 1. Two types of mineralisation a) Thin vein type Cu + Au and b) Disseminated Au within jasperoidal lithologies.
- Pervasive SiO alteration and minor epidote + chlorite
 2
 + sericite alteration.
- 3. Disseminated very fine pyrite throughout the alteration zone.
- 4. Low temperature of formation, ie precipitation of Cu and Au- bearing SiO along a brittle fault indicates 2 temperatures below those at the brittle-ductile transition.
- Association with normal faulting.

are most similar to deeper epithermal to mesothermal deposits such as those found in British Columbia. Deposits of this type eg. Rossland area and Scottie deposits, are described by Panteleyer (1986) as representing deposits of intermediate depth between the more common high level epithermal deposits of British Columbia and deeper Cu-Mo porphyry systems (see Fig 13). The disseminated Au within the jasperoidal units has characteristics similar to Carlintype deposits ie. epithermal to mesothermal deposits in silicified carbonate and dolomite horizons in Nevada USA.

The heat source for this type of system may have been provided by the intrusion of the Yunta Well Leucogranite, a large batholith composed essentially of adamellite which intruded along a major antiformal axis some 7-10 km wide. The outcrop of the leucogranite can be found some 2 km north-west of the Burrawing Mine.

results obtained during the first Anomalous drilling programme indicate the area warrants further exploration to fully evaluate the potential for economic mineralisation. Exploration should be directed towards three types of primary mineralisation. The first, Carlin-style mineralisation, would include more detailed work in the interlayered siliceous and dolomitic units in particular to gain a better understanding of the anomalism in TRC-4 and to find the Au source which was not intersected The second would be evaluation of the area for drilling. deeper porphry-type deposits as predicted by the British Columbia epithermal model. The final type would be skarntype base metal mineralisation within the dolomitic sequence associated with a porphyry body or some other igneous intrusion.

All anomalous Au results from rock chip sampling were obtained from samples which originated above the base of oxidation, inferred from drilling to be between 30 and 35 m. None of the mineralisation intersected during the drilling programme was from the oxidized zone. This implies there remains an untested source of secondary mineralisation associated with veining along the Burrawing Fault zone of depth less than 35 metres.

It is recommended that the following work be carried out:

- Petrological investigation to more fully understand the alteration features associated with mineralisation, it is important that these are distinguishable from a syntectonic alteration that has taken place previously.
- 2. Expansion of the surface geochemistry, in particular Au soil geochemistry within the dolomites and layered chalcedonic and jaspilitic quartzites.
- 3. Continued drilling in the region of TRC-4 to define the source and any higher grade zones of Au mineralisation.
- 4. Deep drilling to define the source of hydrothermal fluids and investigate potential for porphyry-style mineralisation and possible related skarn mineralisation.
- 5. Test the potential for high grade secondary mineralisation associated with the Burrawang Fault by shallow drilling. Prior to this being carried out more information about the old underground workings would need to be obtained.

8. REFERENCES

- Johns, R. K., 1958. Lincoln 1:250,000 Geological Map. Geological Survey of SA.
- Johns, R. K., 1961. Geology and Mineral Resources of Southern Eyre Peninsula. <u>Geological Survey of SA Bulletin No 37</u>.
- Johnson, P. D., 1984. Talc Deposits near Tumby Bay.

 <u>Mineral Resources Review South Australia</u>, 154:60-68.
- Parker, A. J. and Lemon N. M., 1982. Reconstruction of the Early Proterozoic stratigraphy of the Gawler Craton, South Australia. Geological Society Australia J. 29:221-238.
- Panteleyev, A., 1986. A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits. Geoscience Canada 13(2):101-111

9. EXPENDITURE

The following are expenditure details for the period March-May 1990.

<u>Item</u>	Cost (\$)
Salaries and Wages Consultants Travel and Accommodation Assay Other Geochemical Drafting Survey and Gridding Freight and Cartage Motor Vehicles Expenses Compensation Agreement Costs Reverse Circulation Drilling Field Equipment	5,636 900 1,979 4,752 330 2,584 24 397 400 16,362 671
Administration 15%	5,105
TOTAL	\$39,140

APPENDIX 1

Interpretation of IP and Magnetic Survey

NB:

Line 2 = 1855N Line 1 = 2100N Line 3 = 2400N

SEARCH EXPLORATION SERVICES PTY. LTD.

17 Grandview Avenue, Urrbrae 5064 South Australia

Telephone: (08) 79 3305 Fax: (08) 79 6351 Telex: AA 88713

Mr. Tony Martin, Helix Resources N.L.. P.O. Box 825, West Perth, W.A.. 6005

9th February, 1990.

Dear Tony, Re: Interpretation IP Survey, Tumby Bay.

There are a couple of anomalies of note on each line. The western most anomaly appears to be mainly due to a source within the schists. Probably pyrite as the magnetics is not enhanced tending to rule out magnetite or pyrrhotite. There may be some contribution from sulphides in the breccia zone for lines 1 and 3 but not 2. This may be a positive indication because of the workings near line 1,

The anomaly in the east appears to be related to the BIF. Its source is also conductive and may represent base metal sulphide mineralisation. The base metals on the Eyre Peninsula have associated low tenor gold as do some of the BIF's.

I have classified the anomalies from A-F although these are two basic features which can be traced from line to line.

Line 2: A: This is the most promising anomaly. It has a coincident low resistivity and moderate chargeability centred on about 1095E. It most likely represents the downdip extension of the BIF, supported by the magnetics. A massive sulphide source(Pb-Zn bearing?) is a strong possibility in this setting.

B: A stronger chargeability anomaly than A but probably represents a pyritic schist unit, and possibly the downdip extension of the breccia zone if it is west dipping?

Line 1: C: Similar to B on line 2 but more complicated. It probably represents the combined response of sulphides in the breccia zone a possibly a pyritic source in the schists.

D: This is similar in character to anomaly A on line 2 but is not as well defined. It may also represent massive sulphides associated with the BIF. It appears tob be more to the base of the BIF than A.

Line 3: E: Similar to anomaly C on line 1 and probably due to multiple sources. The weaker of which is probably the breccia zone.

F: Anomaly similar to A on line2 but much weaker.

SEARCH EXPLORATION SERVICES PTY. LTD.

17 Grandview Avenue, Urrbrae 5064 South Australia

2.

Telephone: (08) 79 3305

Fax: (08) 79 6351 Telex: AA 88713

I hope this has been of some assistance to you Tony. If wish to have a properly drafted report and diagrams please get back to me.

Cheers,

eter Elliot

Manager- geophysicist.

APPENDIX 2

Rock Chip Sample Analysis

Sample	Au (ppm)	Cu (ppm)	Pt (ppm)	Pd (p p m)	Ni (ppm)	Zn (ppm)
				<u>.</u>		
TB-1	2.23	6.3%	3	3	281	130
TB-2	0.13	450	<1	<1	52	4
TB-3	4.52	5500	2	2	116	78
TB-165	1.9	1.5%	<5	4	50	_
TB-166	3.46	2.9%	7	2	460	_
TB-178	1.83					
TB-179	0.15					
TB-180	0.067					
TB-181	<0.008					
TB-182	0.011					
TB-183	<0.008					
TB-184	1.60					
TB-185	0.036					
TB-186	0.008					
TB-187	0.024					
TB-188	<0.008					
TB-189	<0.008					
TB-190	0.010					
TB-191	0.014					
TB-192	0.009					

APPENDIX 3

RC Drillhole Logs and Assay Results

HELIX RESOURCES N.L.

DRILL LOG

HOLE	NO: 7	RC-	<u> </u>
------	-------	-----	----------

PROJECT/AREA: Tumby Buy El 15/3 PROSPECT: Bur	rawing CO-ORDINATES: 1855 N	/000 E COLLAR R.L.:
BEARING: 130 M/T/G INCLINATION: -60° TOTA	AL DEPTH: 103m COMMENCED: 20-3-	-90 COMPLETED: 21-3-90 .
RAB: HAMMER: R.C. <u>0->103</u>	ANALYSED BY: Analabs	LOGGED BY: ARM .

FROM	ТО	LEN- GTH	DESCRIPTION	SAMPLE			ANALY	SES	
(m)	(m)	(m)		NO.	Au	Pb	·Zn	Bi Ag	a
0	1		Weathered white micaceous quartzite + dk brown chaystone	TB-350	<.0≥	20	45	10	25
1	2		weathered white micacoous govertsofeldspathic greiss						
2	3		realhored clayer It yellow micacenus gneiss	351	<.02	15	75	20 1·5	25
3	4		It yellow brown micaceous clay						
4	5		It yellow brown micaceous clay	352	<·02	<u> </u>	90	<u>ن</u> 6	20.
5	6		as above						
6	7		as above	353	4.02	15	70	(D)	15
7	8		as alsowe			· · · · · · · · · · · · · · · · · · ·	· ·		وسمسم
8	9		as above	354	<.02	10	l∞	10	25.
9	10		as above						
10	11		95% It yellow brown day, 5% weathered 9/3+feld + biof greiss	· 355	4.02	5	80	10	40.
11	12								<u></u>
12	13		as drive	35%	<·02	5	90	20 10	20.
13	14								
14	15		as above	357	4.02	۶	95	1.5	<i>2</i> 0

Page .2. of .6.
HOLE NO: TRC-1

	-	LEN-	DESCRIPTION	SAMPLE			ANALY	SES	
FROM (m)	TO (m)	GTH (m)	PESCRIF I ION	NO.	Au	Pb	Zn	Rê	a
15	16							(0	
16	17		weathered dayey It gellow brown 9/2+feld+biot graisi	TB - 358	4.02	15	100	•3	25
17	18		90% clay 10% gress (7-8% qtz, 2% biot, 1% feld)			-	-	<u>الم</u>	
18	19		as above	359	<.62	35	185	1.0	35
19	80		ao above				-	10	ļ
20	21		fine grained gtz+feld+ biot greiss (Qso Fe 30 Bi 20)	360	<-02	25	Ko	•5	65
21	22		with feldsper grains commenty weathered to red oxidized day					410	
22	23		greiss as above	361	<.02	10	110	1.0	120
23	24					-		<10	
24	25		fine grained grey erange 9/3 + feld + mica greiss	362	4.02	15	100	1-0	65
25	<i>a</i> 6		mica composed 50% silver mica 50% black brotite					10	ļ
26	27		as above	<i>3</i> 63	<·02	5	90	•5	65
27	28						ļ	<(0	
28	29		as above	364	<.02	≺ 5	100	•5	30
29	30							10	
<i>3</i> 0	3:1		fine grained grey orange 95+ feld + mica greiss as above	365	<.02	<5	180	٠,5	so
31	32							10	
32	<i>3</i> 3		fine graned gray Q40 F30 Bizon schist & miner excide	366	۲۰ 02	10	100	•5	8
33	34	1	skining			i i			

Page 3. of 6.

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE			ANAL)		
(m)	(m)	(m)	6	NO.	Au	Pb	Zn	Bi Ag	a
34	35		fine to med grained grey Q40 F20 Bi 30 schist	TB-367	<-02	5 i4 0	140	1.0	55.
35	36						100	<10	60
36	37		as above s minor all grey veinless of chalcedonic quarts	368	<-02	< S	100	•5	8
37 38	38 39		fine to medium granised gray quantza feldspathic grains & 45% mica	369	<.02	< 5	70	<10	60.
39	40		& commen gardy winders // to Colistion				10-	<10	65
40	41		grey fine grained quarkite	370	4.02	5	125	.2	62
41	42		grey Q to F20 Bi 10 gness	371	<.01	<5	115	•2	60.
43	44							<10	
44	45		as above with 10-20% vein quartz.	372	<-02	45	205	۷۰5	70.
45	46 47		as alove	373	4.02	< S	65	٠ <u>۲</u>	so.
47	48							< 10	
48	49		ok grey Ozo Fro Bi w greiss vein quartz still common	374	4-02	<u> </u>	70	1.0	65.
49 50	30 51		as above	375	<.02	۷5	45	<10 <-5	75
51	52	 	ausoc						<u> </u>
52	53			376	<.02	45	45	<10 <-5	60

Page 4. of .6.
HOLE NO: TRC-1.

FROM	то	LEN-	DESCRIPTION	SAMPLE			ANAL	(SES	
(m)	(m)	(m)		NO.	Au	Pb	22	Pi Ag	Cu
53	54		Course grained pegmatile & 1-2% tournaline			ļ			
54	55			TB-377	<.07	5	80	<.2 <0	30
55	56		It grey Miccoexx greiss					10	-
56	57			378	<-02	5	105		60
57	58		as alone					10	ļ
58	59			379	<.07	45	40	₹.5	910
59	60	,	as alore			ļ		410	ļ
60	61		While med-coarse pegmatete	380	۷-02	5	40	<.2	1890
61	62		silver-grey micaceous schiet	381	<.02	4 5	55	<10 <-2	130
62	63		as above with trace sulphicle (pyrite)	382	<-02	< 5	60	<10 -2	150
63	64		as abar	383	4.02	< 5	55	<·S	70
64	65		schist as above no sulphide	384	4.02	45	50	<·S	70
65	66		as above & trace V.f. grained Plakey sulphide	385	<.02	<u> ۲۶</u>	60	4·5 20	105
66	67		as above	386	4.02	2	65	•5	60.
67	68		amphibele boaring schist no visible sulphide	387	<.02	45	55	<·S	so.
68	69		30% schist 40% Cormaline bearing pagnatete 30% vein 9/3 truce	388	<-02	< 5	85	40	65
69	70		sulptide (pyrite)	389	<.02	45	70	<·S	&¢
70	71		qualz bearing schut	390	402	45	60	(0	50 F
71	72		med to dk grey amphibele bearing schiet truck suphicle 20% cerngly	391	∜ 0≥	\$	85	(° <-2	40

Page. 5. of. 6.
HOLE NO: TRC-1.

EDOM	TO	LEN-	DESCRIPTION	SAMPLE		i	ANAL	SES_	
FROM (m)	TO (m)	(m)	PELONII IION	NO.	Au	Pb	Zn	Ri	Cu
	73		as obve	TB-392	<.02	5	70	20	
73	74		as above	393	4.02	< 5	50	10	60
74	75		60% pegmatile 40% silve grey schist trace pyrite	394	<.02	45	So	<10	55
75	76		50% silve grey solist 50% milky gtz miner epidote alteration.	395	<.07	ю	60	<-2 <-2	50
76	77		as above s minor sulphude	396	٠٥3	5	65		22
77	78		as above	397	<.02	5	45	<10 <15	22
78	79		No Sample					410	
79	80		90% Tournaline bearing region tile 10% silver grey schief	399	<.02	5	30	410 -2 <10	35
80	81		as above s mind apidote attachion	400	<-02	5	30	.5	.30
81	82		80% pagmatite + vein quartz 20% silver grow Q+F+B greiss	401	<.02	<5	30	·5	35
82	83		90% vein goarts 10% grais	402	<-02	<5	40	,2	45
83	84		10% gress, with mines epidete attention + 20% vein goods	403	<-02		70		60
84	82		as above	404	402	5	95	4.5	8
85	86		greis; s 20% vein guards trace sulphide	405	•03	<5	75	•5 40	365
86	87		gruis s 30% vein quartz trace sulphide	406	•03	45	40	<10 <10	90
87	88		as above	407	<-02	۷ S	50	10	100
88	89		gneiss 540% vein gwartz	408	4-02	< 5	65	<10 <->5	80
89	90		as above true Hakey soldie	409	۲۰02	4 5	65	<10 <10	100
90	91		grey greiss & 10% milky 9t3 trace Finally disseminated sulphide	410	<.02	45	50	45	-55

000113

Page.6.of.6.
HOLE NO: TRC-1.

FROM	то	LEN- CTH	DESCRIPTION	SAMPLE			ANALY	SES	
(m)	(m)	(m)	PELORIT TON	NO.	Au	Po	Zn	Bi Ag	Cu
91	92		greiss sminer epidets altaction s 30% milky cein quarts	78-411	•03	45	50		60
92	93		as above = 10% vein greatz	-412	.03	< 5	40		65
93	94		silver grey OFB strist + 10% vin guerts	413	<.02	< 5	65		82
94	95		as above	414	<·02	4 5	ŀ	<10 <15	ఱ
95	96		grey fire grained schist & 10% vein quests	415	<-02	<5	110	40 •5	45
96	97		os alave	416	<.01	5	70	<10 <10	50
97	98		10% silve grey schist 30% vein quarts	417	4.02	5	70	10 <:5	65
98	99		as above	418	<· 102	5	100	•5	22
99	(00		as above & trace disseminated sulphale	419	4.02	4 S	60		ग्र
100	101		dk grey fine grained gt + fell + biot gress mines dissen sulphide	420_	<.02	5	100		35
101	102		afz veian 101.0-101.5	421	<-O2_	5	80	₹-5	80
102	103		grey-green fine grained schist	422	K-02	10	95	20 20	55

·									
						11			

HELIX RESOURCES N.L.

DRILL LOG

HOLE NO: TRC-2.

PROJECT/AREA: Timby Bay EL 193 PROSPECT: Burrawing	CO-ORDINATES: 1855 N /070 E COLLAR R.L.:
BEARING: 690 H/T/G INCLINATION: 60 TOTAL DEPTH: 70	COMMENCED: 21-3-90 COMPLETED: 21-3-90.
RAB: HAMMER: R.C. O-70 ANALYSED BY:	: Anglala LOGGED BY: ARM .

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE			ANALY	SES	
(m)	(m)	(m)		NO.	Au	Pb	·Zn	Bi Ag	·Cu
0	1		highly weatherd brown schiet	<i>18-42</i> 3	<-0≥	10	155	<10 <.5	55
1	2		as above	424	<.02	10	182	10	25
2	3								
3	4		overige brown weathered 9/3 +feld+ mica schiet	1 425	<.07	15	100	<.2	25
4	5		J *					<10	
5	6		as above	426	<-02	5	85	<.2	40
6	7							10	
7	8		as above	427	<.07	< 5	75	4.2	35
8	9							<10	
9	10		crange brown oxiclized schist	428	<-02	\$	90	•5	45
10	11					ļ		10	
/1	12		as above	429	<.02	5	65	٠٤	45
12	/3							10	
13	14		as above	430	<.07	5	60		60
14	15					11			· ·

Page.2.of.4.
HOLE NO: TRC-2

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE	ANALYSES					
(m)	(m)	(m)		NO.	Au	Pb	Zn	Ag	au.	
. 15	16		erange brown exized weathered schist	TB-431	<.0∑	25	80	20 <-5	20	
. 16	17							20		
. (7	18		os above	432	4.02	25	80	<.5	. 02	
. 18	19						ļ	10		
.19	20		as above	433	<.05	ω	100	4.5	45.	
.20	21							<10		
. 21	22		weathered existized schist as above	434	<.02	25	112	•5	22.	
. 22	23							10		
. <i>2</i> 3	24		as alsove	435	<.02	10	115	<.≥	65 .	
. 24	25						,	<10		
. 25	26		as above	436	<-02	20	70	<.2	45.	
. 26	27					******		< 10	<u></u>	
. 27	28		as above	437	4.02	_5_	20	<.2	25.	
. 28	29							10		
. 29	30			438	402	5	85	۲۰۶	35 .	
. 30_	31		brown crange exidized Ob + feld + biot schiet fine grained					10	22 '	
31	32_			439	√.0 2	10	100	۲۰ ۶	1	
<i>. 3</i> 2	<i>3</i> 3		schist becomes more of rich					10		
33	34		70% dk grey siliceous iron formation 30% schist as above	440	<·02	P	135	<*5	35	

Page 3. of 4. HOLE NO: TRC-2.

		LEN-	DESCRIPTION	SAMPLE			ANAL	'SES	
FROM (m)	TO (m)	GTH (m)	PERCEITION	NO.	Au	Pb	Zn	18:	a
34	35		highly weathered and oxiclized schist					1	ļ
35	36		partly oxidized grey fine grained micageous a feldspathic quartzite	18 441	<.07	10	75	(5 (5	55
36	37		grey fire grained laminated quartzite						
37	38		partly oxidized micarfeld quartite	442	<.07	5	45	<.2	22
38	39		blue-grey fine growned micacous grentzite			ļ		<10	
39	40		Vifine grained black finely laminated chart	443	<-02	5	60	<.5	25
40	41	<u> </u>	as above					<10	:
4(42			444	<·02	8	30	≺·S	20
42	43		as above V. poor recovery				-	<10	
43	44		11	445	<.02	≺ 5	5	4.5	15
44	45	_	blue-grey fine grained questite "					410	
45	46		11	446	4.02	45	5	<·s	20
46	47		grey fine grained quertzite finely lammated					<10	
47	48		as above	447	402	5	30	4.5	25
48	49		dk grey his graned 9/2 + kld + biof gress (slicified)					<10	<u> </u>
49	కర		grey for grained offile - miner flaky sulphide	448	4.07	< 5	45	₹ •5	25
50	51		as above	1.00		سور ا	1-	40	50
51	52		as above	449	4.02	<5	<5	<.2	30
52	53		as above	l			<u></u>		

Page. 4. of. 4. HOLE NO: TRC-2.

70.01	m o	LEN-	DESCRIPTION	SAMPLE		i	ANALY	'SES	
FROM (m)	TO (m)	GTH (m)	DESCRIPTION	NO.	Au	B	Zn	Bi Ag	Cu
53	54		green grey finely laminated highly silicified rock may represent	113-450	4.02	<5	15	<10 <.2] ,
54	55		a silicified carbonate miner sulphide				-	<10	
55	56			451	₹02	15	5	<.2	45
56	57		as above & suphicle (pyrile) to 2mm					<10	
57	58			452	4.02	<5	25	₹ 5	20
. 28	59		as above + miner dolomite = trace sulphide				-	<10	
59	60		as above no dolonile miner supphide	453	<.07	< S	ح ک	.5	40
60	61		80% grangray siliceous rock + 20% delanite miner suffice				-	20	
61	62		green grey siliceous rock no visible sulphicle	454	<.07	۷ 5	45	۷۰5	15
62	63		as above					<10	ļ
63	64		as above	455	<-02	2	30	4. S	20
64	62		50% siliceous rock as above + 50% amphibolite 1-2% sulphide				ļ	K10	
62	66		green grey silireous rock mina disseminated sulphide	456	4.02	<u>ح</u> ک	40	.2	کا
66	67		50% greengrey silicas rock + 40% dolomile + 5-10% pyrite		,			< (0	
67	68		as above <5% sulphicle	457	402	5	10	4.5	O
68	69		90% domite + 10% siliceous rock mina sulphice	:				410	
69	70		as above	458	くって	≺ 5	4 5	4.5	5
						i			

HELIX RESOURCES N.L.

DRILL LOG

HOLE NO: TRC-3.

PROJECT/AREA:	Tumby Bay EL 1573	PROSPECT: Burne	wing CO-OR	dinates: <u>/855</u> n <u>//0</u>	O E COLLAR R.L.:
BEARING: 090	_ M/T /G INCLINATI	on: <u>-60°</u> tota	L DEPTH: 71m	COMMENCED: 22-3-90	COMPLETED: 22-3-90
RAB:	HAMMER:	R.C. 0-71	ANALYSED BY: Anala	bs Lock	ged by: ARM

FROM	ТО	LEN- GTH	DESCRIPTION	SAMPLE		ANALYSES				
(m)	(m)	(m)		NO.	An	Pb	·Zn	Bi Aq	·Cu	
0	.1.		light grey highly weathered finely laminated chalcedonic quarties partly	TB 459	<.02	10	30	<10 <-5	35	
1	2		existing of the exister along fractures							
2	3		as above	460	<.02	10	15	•2 <10	35	
3	4									
4	5		90% grey clay + 10% questible as above	461	<.02	.0	70	10 र •ऽ	<i>5</i> 0	
5	6		partly oxidized wathord micacous atzteld gnew mostly day							
6	7		as above	462	<-02	9	70	< <u>22</u>	40	
7	8			·						
8	9		as above	463	<-02	10	90	₹10 •5	40	
9	10					-				
w	11 _		as above	464	<.07	เอ	55	√2	35	
11	12									
12	/3			465	くつユ	45	45	410 45	25	
/3	14		weathered finely laminated blue gray gtz & thin bands of Fe oxile							
14	15		as above	466	402	5	85	<10 <10	55	

Page.2.of.4.
HOLE NO: TRC-3

nnov	70	LEN- GTH	DESCRIPTION	SAMPLE		i	ANALY	SES	
FROM (m)	TO (m)	(m)	DESCRIPTION	NO.	Au	Pb	Zn	Bí Ag	Cu
15	16							410	
16	17		yellow brown clay & fragments of It grey fine grained quartzet	TB-467	4.02	5	85	<.2	55
17	18.		with thin < 1 mm hands of orange Fe-ourde					10	
18	19		probably a jaspilitie quartzite	468	4.07	40	345	45	50
19	20		as above				<u> </u>	10	
20	al		It grey finely bounded jaspilitic quartite	469	4.02	55	120	۲۰5	20
21	22		as above					410	
22	23		as above	470	<-02	2	215	.5	3 0
23	24		as above	-				<10	
24	25		paspilite quartile increase in Fe exide to 10%	471	<.05	< 5	45	.2	0
25	26		as above					410	
26	27		as above	472	<-02	<u> </u>	5	<∙2	12
27	28		dork grey plastic clay a minor to oxide particles					40	
28	29	ļ	gray clay & minor frages of limestone + mine jaspiliticalité	473	<-OZ	<u> </u>	20		20
29	30_	ļ	as above					40	
30	31		Khaki gray day a frags of while comborate	474	<-07	<u> </u>	65		12
31	32		as above					410	
32	<i>3</i> 3		as above	475	<.02	45	70	•5	کار
33	34		dk khaki grey clay & Gags of white covarange combande			i i	L		<u>. i</u>

FROM	то	LEN-										
(m)	(m)	(m)	· ·	NO.	Au	Plo	Zn	BiAs	Cu.			
.34	35		grey green clay & frags of fine buninated aboute	TB-476	<.02	45	20	٠,٧	15			
.35	36							<10	-			
. 36	37		as above a minor frags of dolomike	477	<.02	< 5	40	<.2	10.			
.37	38		green grey clay & frags of weakly jospiliha quartzite					K10	<u> </u>			
.38	39		as above	478	<.02	< 5	120	•5	12.			
.39	40		dark grey day with frags of dk grey siliceous rock (? silici-					<(0	<u> </u>			
<u>. 40</u>	41		fied calculicate)	479	4.02	45	150	.5	20.			
. 44	42		as above					40				
. 42	43		as above + miner to 30 3% sulphide	480	<.07	45	122	<.5	25.			
. 43	44		as above, no visible sulphide			<u> </u>		410	<u> </u>			
. 44	45		or above, minor disseminated supplied	481	∠ •∞	<u> ۲۶</u>	80	<.2	20.			
. 45	46		os above					₹90				
. 46	47		as above	482	<-02	2	10	<•5	15			
. 47	48		as above					<10				
. 48	49		a share	(१८)	<-a2	<u> </u>	20	۷۰5	15.			
. 49	50		as above					<10				
. 50	51		as above 5-10	484	4.02	<u> </u>	10	<∙5	55.			
<u>. 51</u>	52		en above higher sulphide content say \$5-10.	,			2-	410	2-			
52	S 3		as above trace sulphide	485	4.02	45	25	۲۰۲	20			

Page.4.of.4.
HOLE NO: TRC-3

Ency	то	LEN- GTH	DESCRIPTION	SAMPLE	e analyse				es .		
FROM (m)	(m)	(m)	PERMIT TOW	NO.	Au	Pb	Zn	Bi Ag	Cu		
53	54										
54	55		No Sample					<10	<u> </u>		
55	56		green grey highly silveous rock with finely disseminated	TB 486	<.02	<5	15	<.2	5		
56	57		sulphide (? ex calcsilicate)	487	<.07	45	5	<10 <-5	5		
57	58		as above				<u> </u>	4.0			
5 8	59		as above	488	4.02	< 5	45	<.2 <10	5		
59	60		as above & 5% sulphide					40	222		
60	61		as above & 1% sulphide	489	<.07	۲5	45	4.2	5		
61	62		on above					10			
62	63		as alove	490	<.02	5	<5	4.5	5		
હ	64		as above					<10			
64	6.5		50% grey green siliceous rock 50% brown dolomite	491	くっつと	5	45	4.5	10		
65	66		as above minor sulphide		 			<10	·		
66	67		50% fig grey populitic quartite 50% brown dolomite	492	< 02	<5	5	<.5	15		
67	68		as above					<10			
68	69		as above	493	<:0 <u>\</u>	45	5	.5	45		
69	70		70% boun ddanite 30% jaspilita quartzete					<10			
70	71		as above	494	くらと	45	5	<.2	<5		
						11					

HELIX RESOURCES N.L.

- - - III we ke fai the fair and the fair the fa

DRILL LOG

HOLE NO: TRC-4.

FROM	то	LEN-	DESCRIPTION	SAMPLE	ANALYSES						
(m)	(m)	(m)		NO.	Au	A	·Zn	Bi Ag	Cu		
0	1		brown clayey soil	TB- 495	407	4 5	45	<10 <10	30		
	2_						}				
2	3		while talk rich day	496	<.07	5	45	10 <-5	15		
3	4										
4	5		as above	497	<.02	· <5	<5	<.2 <10	5		
5	6		It yellow brown clay & 5% Grags of dk grey fine grained offsite								
6	7		atzile is finally laminated with miner te avoide bounds	498	<02	≺ S	ح ح	<10 <-S	5		
7	8		as above								
8	9		as above	499	.09	5	<5	<10 <15	< \$		
9	10		as above & minor frags of axidized arrange metresodiments						-		
10	11		as above	-500	.06	<5	<5	<10	45		
11	12		juspilite & approx 10% Fe oxide								
12	13		It grey clay frags of dark grey challedonic quartite	501	٥٥٠	45	4 5	<10 <15	< 5		
13	14		orange brown oxidized motosodinant probably and a walkered								
14	15		japilite	502	٠٥6	45	<5	<10 <∙5	< 5		

Page.2.of...

EDC)4	700	LEN-	DESCRIPTION	SAMPLE	AMPLE AN		ANAL	NALYSES		
FROM (m)	TO (m)	(m)	PEDARTI TOV	NO.	Au	Po	Zn	31 Ag	Cu	
. 15	16							<10		
. 16	17		50% dk grey chalkodonic quartiste 50% purtly Fe occidinal carbonale	TB-503	•03	<5	45	4.5	<5	
. 17	18		Cobonate with orange to exact staining				_	10		
. 18	19		as above	504	.06	₹ 5	<5	<.5	<5	
. <i>1</i> 7 . 20	20		continuate as above a minor block draketonic quarks	505	•09	< 5	<5	<10 <-5	45	
. 21	22							<10	45	
. 22 . 23	23		It grey quartzite + minor black chakedonic quartz	506	•09	5	< 5	<.2	73	
24	25		It grey Firely laminated quartites & fine Fe axide bands	507	-09	5	45	<·2	<u> حح</u>	
26	26		as above	805	۵٥٠	2	45	<.2 <.2	< 5	
. 27	28			209	•09	15	45	40 < •\$	45	
29	30		If and alk grey quartit = 2-3% fine to orde temporations	86-1				<v>></v>		
30	31		as appue	SIO	•09	<5	45	<.2	20	
. <u>31</u> 32	32 33		It grey fine grained dolomite	511	ڼې	5	45	40 45	≺ \$	
33	34									

Page.3.of...

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE	ANALYSES			rses_	
(m)	(m)	(m)	PEDSKII IIOV	NO.	Au	Pb	2n	1B1	a
34	35		It grey fine growned delomite	TB-512	•09	< 5	< 5	<10 <-2	45
	36		11 grey fine greenes seespine						
35 36	37		domite + dork grey fine grained sticeous calculicate	513	٠ <i>0</i> 6	< 5	< 5	<10 <.5	≺ 5
37	34		grey fine grouved silicoous saksilicate						
<i>3</i> %	39		grey the grained sinces consiners	<u>\$14</u>	•06	45	<5	<10	<5
39	40		as above			<u> </u>			
40	41			515	ى.	5	45	<10 <10	<5
41	42		as obove					40	
42_	43		dk green laminated chalcedonic quartists with miner to ande land	216	•06	<5	45	<.2	<5
43	44		as above						<u> </u>
CH	45			517	4.02	4 5	< 5	10	<5
45	46		as above a Fe and content upto 5% in papilite quartite						
46	47		as above	518	۲۰ 0۷	45	45	<1.2 <1.2	15
	48		•						
47	48.5		as done	519	ؽ	5	<5	<10 <.2	< 5
48	40.5		as above						
				·					
·	·								i
		1				ii			

HELIX RESOURCES N.L.

Page. . of . . .

DRILL LOG

HOLE NO: TRC-5

PROJECT/AREA: Jumby Bay FL |513 PROSPECT: Burrowing CO-ORDINATES: 2100 N 970 E COLLAR R.L.:

BEARING: 070 -M-T/G INCLINATION: -60° TOTAL DEPTH: 50 m COMMENCED: 23-3-90 COMPLETED: 23-3-90.

RAB: HAMMER: R.C. 0-50 ANALYSED BY: Analogs LOGGED BY: ARM

LEN-FROM GTH TO DESCRIPTION SAMPLE ANALYSES (m) (m) (m) NO. Br Ag Cu Au ·Zn weathered charge schist 13-520 03 5 <·5 20 2 Khaki-grey micacoous cky + weathered schrist 4.02 <5 15 521 3 **410** 45 <5 as above 522 402 .5 35 5 40 cu above 523 6.02 60 20 <10 weathered grey of still biot schiet & thin band ~ Imm 65 524 1002 5 10 of milky glz parallel to Coliation 10 <10 school with small patches of oxide desining may represent 10 15 525 <.02 5 70 watered goingt 12 11 90 potchy grey and moroon fine grains schist & thin 15 12 526/402/45 <·5 /3 14 ats stringer porallel to Chation. 15 15 22 14 4.5 527 <-02

Page . . . of . . . HOLE NO: TRC-S .

FROM	TO	LEN-	DESCRIPTION	SAMPLE		<u></u>	<u>ANAL Y</u>	SES		
(m)	(m)	(m)	to the state of th	NO.	Au	Pb	Zn	Bi Ay	Cu	٠
15	16		as above						ļ	-
. 16	17		as above	TB-528	۲۰02	5	135	<.2 <10	15	4
. 17	18							<10		
18	19		os ahove	529	4.02	45	60	~5	40	4
19	20						-	10		늬
20	21		as above	530	4·07	2	62	<.5	35	
2	22							410	15	4
22	23		weathered group schist only minor oxide staining	231	<-02	<5	65	<.2	1-9	-
23	24		1	532		5	25	10	10	•
24	25		a above	332	≺ ∙02	3		2,2		†
25	26		,	\$33	4.07	5	20	۲۱0	5	1
26 27	27		as above							•
28	29		50% partly existing somet 50% while milky quartz	534	40Z	5	<2	<10 <-5	<u> </u>	
29	30		3018 (41.19) 52.51							
30	21		schiet becomes more silicified a corresponding	235	<.e)_	2	45	<10 <5	5	- 0
31	32		color change to green-grey Fe axide							ᅫ
<i>3</i> 2	<i>3</i> 3		skaining still evident	536	C-07	5	20	<10 <:5	25	-
33	34					11				

Page. 3. of ...

FROM	то	LEN-	DESCRIPTION	SAMPLE			ANALY	(SES_	
(m)	(m)	(m)		NO.	Au	Pb	Zn	Bi.	Cu.
34	35		as above	TB-537		5	<5	40 (-S	<5
35 36	36 37		silicified achiet as above + Common coarse quarks frags.	538	<.02	45	25	<10 <5	20.
37	38		minor Fe oxide still evident					<10	
38 39	39 40		as above	539	<-02	<5	5	<5	15
40	41		as above	540	4.0L	5	20	<10 <10	5.
41 42	42		as above	541	4.02	5	20	<10 •5	15
43	44			SH2	<·02_	5	45	<.2 <10	15
44 45	45 46		as above	247				√10	
46	47		as above	543	۷.02	5	22	<u> </u>	≀∑.
47 48	49		as doce	544	<·02	5	ତ	4.2 410	Зo .
49	\$0_								
						ii			

Page. .. of ...

HELIX RESOURCES N.L.

DRILL LOG

HOLE N	10: TRC-6
--------	-----------

,	Υ	LEN-		SAMPLE	·	A	NALYS	ES	
FROM	TO (m)	GTH (m)	DESCRIPTION	NO.	Au	Pb	· 2n	Bi Ag	a
(m)	(m)			TB-545	(.02	45	210	45	20
0	1		weathered grey schist			1			
(2			546	4-02	15	125	<10 <-S	45
2	3		as doore					İ.,	
3	4			547	٠٥3	15	55	(O	38
4	5		Cine to med grained at 3+feld+ biol schist & minor thin						
5	6		glz stringers parallel to Coliahan	-uz	4.02	20	55	10	75
6	7		Tour maline bearing pegemante	910					
7	8		weathered partly ocidized grey schist	549	4.02	20	10	40 4.5	35
8	9		80% vein greats 20% weathered schist	1 9 1					
9	10		40% vein quarty 60% weathered grey schist	550	4.07	35	100	10	75
lo	11		90% weathered partly oxidized grey schist 10% vein quartz	330	-				
11	12		as along	 	4.03	40	40	25	3:
12	13		60% toormaline bearing pegmatite 30% vein avorts	331	122				
13	14		10% weathered partly exidined schist	552	4-02	25	140	<10	4
14	15			1 352		1			

		LEN-	DESCRIPTION	SAMPLE			ANAL	(SES	· · · · · · · · · · · · · · · · · · ·
FROM (m)	TO (m)	GTH (m)	DESCRIPTION	NO.	Au	Pb	20	Bi	û
15	16		70% grey schist 30% vien quart					<(3	
16	17			TB-553	1.02	10	100	•5	50
17	18		grey partly exidized schist					(10	
18	17			554	4.02	5	105	45	55
19	20		85% grey schist 15% vein quarty				-	<10	
20	21			222	4.02	10	130	•5	55
21	22		grey partly exidered schist = < 10% f.g. milky 9/3			 		10	
22_	23			\$56	4.02	2	125	· <5	22
23	24		a alove					10	
24	25				4.02	5	145	45	55
25	26		as above				 	<10	
26	27			822	くらア	2	135	<:5	55
27	28		as about				1,,,,,	<10	
28	29			559	<u> ২০</u> ১	2	115	`.≺.ऽ	55
29	30		as above			10	120	10	22
30	31			\$60	4.67	(0	120	<u> </u>	-03
31	32		as above		, _ ,	5	125	<.2 <10	75
32 33	33 34			561	4.02	11	,-3	7.3	(5)

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE			ANAL	(SES	
(m)	(m)	(m)	PEDORII RION	NO.	Au	Pb	Zn	Ro	Cu
34	35		dk grey fine grained at a feld biot greiss	TB-562	<-02	5	75	<:5	35
35	36						-	10	
36	37		as above	563	407	5	125	45	65
37	38							7.00	<u> </u>
<i>3</i> %	39		dk grey gness more schiclose than previous 4m	564	4-02	10	75	<10 <->S	40
39	40							7.0	ļ
40	41		grey to dork grey at feld biol grein	565	<-ত্য	ιο	90	<10 <10	45
41	42						-	<10	
42	43		50% grey grains + 50% fine grained grantzets	566	4.02	5	105	32	65.
43	44					<u> </u>		≺io	ļ
44	45		dark grey fine gented grantile with miner scriphide	567	4.07	5	45	62	75
45	46		quartitle may represent a sticifical grees as above						
46	47_		dark gran gray siliceous greiss	2% &	4.02	2	120	10	55.
47	48								·
48	५०		silicasos grais: s v minos solphich mineralization along	569	<.02	७	105	40	45.
49	50		Clickian planes						
50	5		as above with minor soldande mineralization	570	4.0L	5	125	<10 <: 5	62
51	52		as above + 20% tournation basing pagnatite						
52	<i>5</i> 3		Partly micaceous tournaline bearing pagmatite	571	<02	10	حک	- 4c	135

Page ... tof. ...

		LEN-	DESCRIPTION	SAMPLE			ANALY	'SES	
FROM (m)	TO (m)	GTH (m)	PESCRIPTION	NO.	Au	Pb	Zn	B:	a
. 53	54		tormaline boaring pagmobile					<10	
.54	55		dk green grey fine grained silicitied of 3+ feld+ biot grows & trace siles	TB-572	∠.02	5	25	<u></u>	125
. 55	56							<10	
. 56	57		as above	573	4.02	15	130	<u>≺.</u> S	50
. 57	58						<u> </u>	410	ļ
. 58	59	-	dk goongren highly silicited grows a minor sulphide	574	4.02	10	130	4.5	55
. 59	60								
. 60	61		as above	575	4.02	10	100	10	75
G	62						ļ		
62	63		an above	576	4.02	5	75	<10 <-S	80
63	64					<u> </u>		100	
64	62		as above & ~10% vein quartz	577	•18	15	\$.2	1.1%
65	66		Poor recovery	·				20	
66	67		60% silices are so 40% vein quarty 5 doutouth tenture	s 78	90،	5	10	ۍ ۲ <u>۰</u>	5100
67	68		s high sulphide could 10%-15% mostly pyrile + minor chalco						·
68	69		siliceous aprils 5 1-2% sulphide	579	104	5	25	·2	1940
69	70								
70	71		as about	580	•03	د ۲	25	10 45	ष्ठाड
71	72	<u>.</u>	large sulphase grains (pyrite) assoc with vein quarty			i i		_	

mov	700	LEN-	DESCRIPTION	SAMPLE		:	ANAL	YSES		
FROM (m)	TO (m)	GTH (m)	(NO.	Au	Pb	Zn	Bi Ag	Cu	
72	.73.		80% granging silicans gress 20% ranguary <1% sulphide	581	くっと	45	30	<10 <1.5	- 55	•
73	74						ļ	12-	-	1
74	75		95% siliceous grains 5% vein quartz : house sulphied	582	(-0)	4 S	35	20 <:5	135	1
75	76		80% situas greiss 20% vein at 1 ~ 1% sulphate					20	 	4
76	77			583	4.07	< 5	25	<u>~</u> <≤	25	4
77	78		90% siliceous graiss 10% kingtz trace sulphole				-	lo	<u> </u>	
78	719		95% " " 5% " " " "	584	ぐのと	ς	90	45	170	
79	80		as above					20		
80	81		It gray solicified grains & 2-3 % sulphicle (chalco + print)	585	014	5	100	<.5	9790	-
81	82		70% It gray silicified grains + 30% vein of 3 + sulphate (20%. 10%)				-	10	}	
82	% 3		95% grangicy silkeous greiss + 3% vein aby + 2% sulphiele (chalce + py)	286	•03	ح ح	40	4.5	2910	1
প্ত	84		90% grangey silicarous grains +10% rein of = disseminated sulphide					410		+
84	85		grey gren siliceous gueus & minor dissemnded sulphole	547	くっつン	<2	25	~ Z·S	880.	
85	86					,				-
86_	87		as doove	28.8	4.02	<u> </u>	25	40.5	140	
87	88							10		4
88	89		as alone	589	<u>ر-رهـ</u>	5	20	٠٢	1300	٦
81	90		5% vein quarty & minor to 1% solphicle (chalcor pyrit)					10	1,	
90	91		as above	590	个のア	بنج	30_	ری ۱۶	480	J

Page . S. of . S. HOLE NO: TRC-6.

EDC14	-	LEN- GTH	DESCRIPTION	SAMPLE			ANAL	(SES	
FROM (m)	TO (m)	(m)	PESCRIPTION	NO.	Au	Pb	Zn	Bi	a
91	92		gren grey silkous greis: = frace sulphide					<10	
92	93		as door	TB 591	4.02	45	25	<.2	220
93	94		as above					≺ (0	
94	95		as above	592	4-02	5	20	<.5	495
95	96		95% silicasos graiss 5% vem quartz trace sulphide				<u> </u>	20	ļ
96	97		as alone	593	4.02	5	15	•5	980
97	98		green grey grees in visible wan sports or sulphide			 		ю	ļ
98	99		95% silicous grain 5% vom operty trace sulphide	594	4.07	10	85	4.5	355
99	100		as about				ļ	10	<u> </u>
100	101		as above	595	₹.62	5	סר	4.2	960
lol	102		grows more highly aftered to It grey siliceous rock					20	
(0)	103		ou above	596	•03	5	25	.5	1610
103	104		dk good grey silicons grains = 10% vein atz + minor cpy					<10	
104	105		very hard green grey silineous giveis: trace sulphide	597	<.e>	5	70		280
los	106		as above					410	
106	107		as above	<u>598</u>	<-07	45	45	3	328
107	108		as above grew very hard drilling rate					<10	
108	109		as above 2-3 m per hour.	599	2.02	5	30	خ٠ 5	205
		1				ii			

HELIX RESOURCES N.L.

DRILL LOG

HOLE NO: TRC-7.

PROJECT/AREA: Tomby Bay EL 1513 PROSPECT: Burrawing CO-ORDINATES: \$\frac{100}{100} \text{N} \frac{1020}{1020} \text{E} \text{COMPLETED: 25-3-90}.

BEARING: \$\frac{100}{100} \text{HMMER:} \text{R.C. \$0-71} \text{ANALYSED BY: }\text{Analysed BY: }\

FROM	то	LEN- GTH	DESCRIPTION	SAMPLE			ANALY		***
(m)	(m)	(推)		NO.	Au	P6	·Zn	Bi Acu	Cu
0	. 1		weathered clayey micageous schist	TB-600	۲.07	15	70	*5	75
1	2								
2	3		weathered gray brown fine growned schrist (9t3+feld+ biot)	601	<.07	ιο	90	·5	65
3	4								
4	5		portly weathered year achist & common orange brown oxide	602	<.62	10	90	<100 <-5	75
5	6		Staining						
6	7		as above	603	<-02	15	70	4.5	75
7	8								-
8	9		80% conthored schist + 20% nein grantz	604	<.07	20	70	₹.2	65
9	Ю							<u></u>	
lo	11		milky white vein quarty	605	۷.07	10	75	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	30
1)	12		partly reathered fine grained schiet						
12	13		as alrave	606	く・ロア	15	135	۲.2 حات	22
13	14								
14	12		as above + 5% vein quartz	607	402	15	145	<10 <:2	60

Page.2.of.4.
HOLE NO: TRC-7.

	-	LEN-	DESCRIPTION	SAMPLE		. 4	ANALY	SES	
FROM (m)	TO (m)	GTH (m)	PESCRIPTION	NO.	Au	Pb	Zn	B.	a
15	16				1			<10	
16	17		partly exclised excelhered fire to maxim grained schist	TB-608	<.0≻	10	185	<-5	55
17	18	<u> </u>						⟨10	
18	19	-	as alsone	609	<-02	10	120	₹ •\$	75
P	20	ت سند برزوری			<.07	25	185	<10	145
20	21		as above = 5% vein quels	610	7.02	25	163	<-5	
21 .	22			61)	4-02	5	105	<10 <-S	155
22	23		as above & 5% voin quarty	0(1_					
23 24	24 25		as above = <1% vein quarty	612	<.02	5	Ğ	<10 <+5	410
25	26		a) alone						
26	27		clark gray fine grained at feld biot grains some	613	<.07	<5	20	<10 <-5	465
27	28		Miner oxidation					260	
28	29		portly oridized and weathered grey schist	614	٠43	10	22	<-5	3140
29	30		oranne orichart iron boring quetails					310	
<u>30</u>	31		arange oxidized iran bearing quartite	<u>61</u> 5_	.34	<u>S</u>	45	310	2000
31	32		grey schot = ninor quartzite		.1.0		õ	40	3080
32 33	<i>3</i> 3		grey brown weathered thist + 10% grey v.fine growing	616.	10	10	10	<.5	3080

HELIX RESOURCES N.L. DRILL LOG

Page.3.of.4.
HOLE NO: TRC-7.

EDOM	TO (m)	*	DESCRIPTION	SAMPLE			(SES	ES .	
FROM (m)				NO.	Au	Pb	Zn	Bi Ag	a.
. 34	35		more siliceous grey abortable biol grouss	18-617	-10	10	5.	320 4.5	1220
. 35	36							510	
. 36	37		grey 9/3+f+biol schiel & thin quartz stringer parallel	618	<.07	45	is	<•৪	960.
. 37	38		to schistosity				ļ	40	
. 38	39		great schiet as above = miner ven quarts	619	<-02	<5	40	<.5	360
. 39	40						<u> </u>	<10	<u> </u>
.40	41		no siliceous green grown greis: = trace viene grained	620	2.02	<5	50	4.5	270.
. 41	42		sulphide				<u> </u>	<10	<u> </u>
. 42	43		green grey silicenous groiss + 5% voin growty no visible sighted	621.	7.0x	15	22	۲۰5	165
. 43	44							410	2-
44	45		as above	622	<-02	5	75	<10 <-5	230.
. 45	46							<10	1
. 46	47		silicens greiss as above with minor flakey sulphride	623	<.07	0	80	4.5	405.
47	48							Ø(>	
48	49		as above no visible sulphide	624	4.07	10	115	<. 5	175
49	50							<10	
\$0	51		It grey green schist a sulphide visible in very quartz	ద్రక	.02	_2_	120	.2	7520.
51	52							<10	
52	53		green grey siliceous grains s trace sulphride	626	<.02	Ş	65_	<10 <5	390

HELIX RESOURCES N.L. DRILL LOG

Page. 4. of. 4.
HOLE NO: TRC-7.

FRON	TO	TO CTH DESCRIPTION (m)	DESCRIPTION	SAMPLE NO.	ANALYSES				
FROM (m)	(m)		/		Au	Po	Zn.	B Ay	a.
. 5 3	54							Kio	ļ
باك.	55		as above	13-627	<.02	10	105	<0.5	105
55	56					<u> </u>		20	
. 56	57		as above trace sulphite along Coliation planes	678	4.01	10	125	<0.5	310
. 57	58					ļ		16	ļ
. 58	59		50% greengry siliceous greiss 50% vein quartz with dog tooth	629	<.02	15	135	10 <0-5	290.
. 59	60		texture marine printe assoc with vein quantz						ļ
. 6ව	61		siliceous grows with very fire grained disseminated sulphide	630	<-02	5	22	0 <0.5	40
. 61	62							10	<u> </u>
. 62	63		silians greis no visble sulphate	631	4.02	25	105	<0.5	55 .
. 63	64							2 0	
. 64	65		It grey green silicens grees or quartiste	632	<-07	10	70	<u> </u>	90.
. 65	66								
. 66	67		dk gren grey highly silvens groise miner dissen sulphide	633	<-02	\$	110	10 50.5	175.
67	68								
68	G		as above	634	٧٠٥٦	5	22	(10 (0.5	90.
(G)	70								
. 70	71		Fine ground ab+ Ad + biot schist	હક	<-02	5	45	0.5	235
•				[[11			المحاسمانيات موج

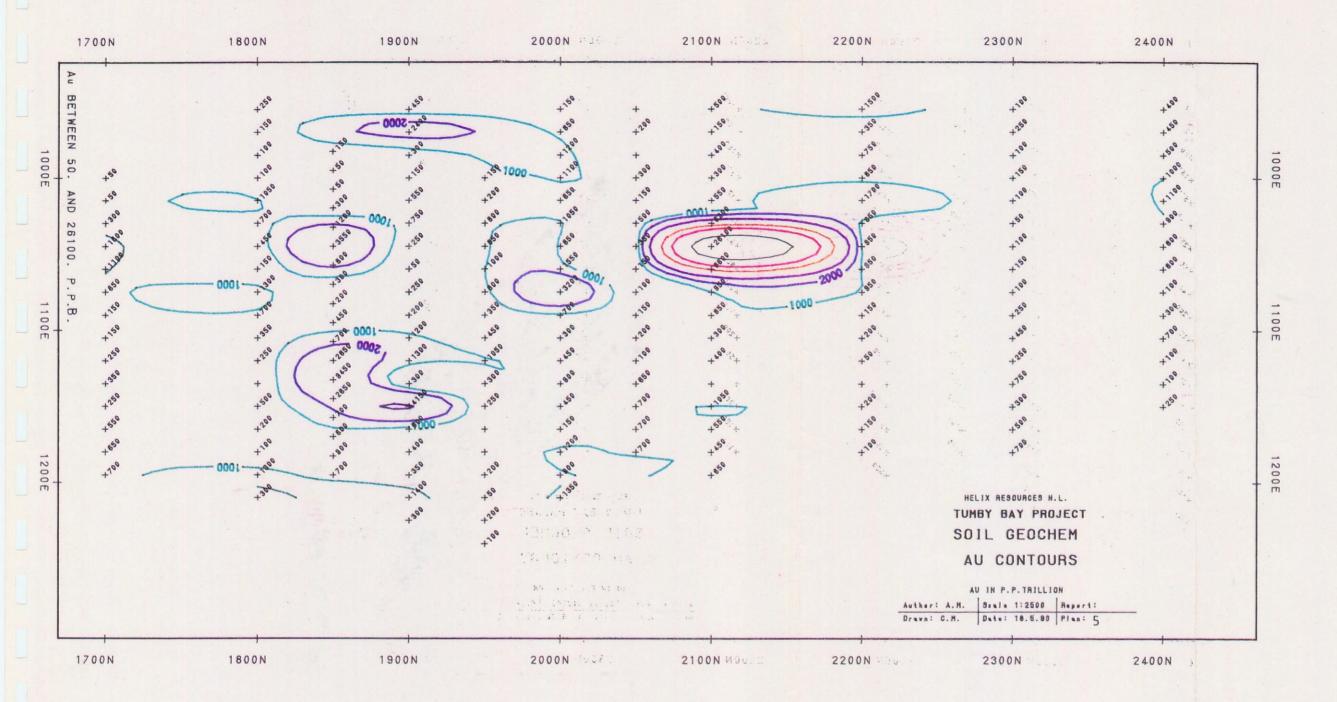
Page...of...

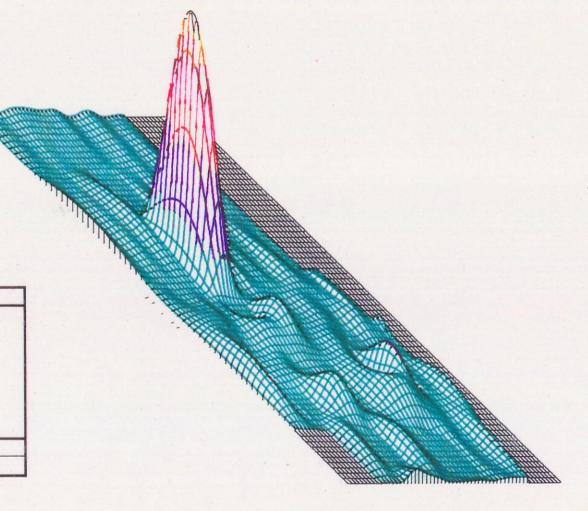
HELIX RESOURCES N.L.

DRILL LOG

HOLE NO: TRC-8.

PROJECT/AREA: Tumby Bay EL 1513 PROSPECT: Burrawing	CO-ORDINATES: 1855 N 1135 E COLLAR R.L.:
BEARING: 090 M/T/G INCLINATION: -60 TOTAL DEPTH: 30w	COMMENCED: 26-3-90 COMPLETED: 26-3-90 .
RAB: HAMMER: R.C. 0-30 ANALYSED BY:	Analaba LOGGED BY: ARM

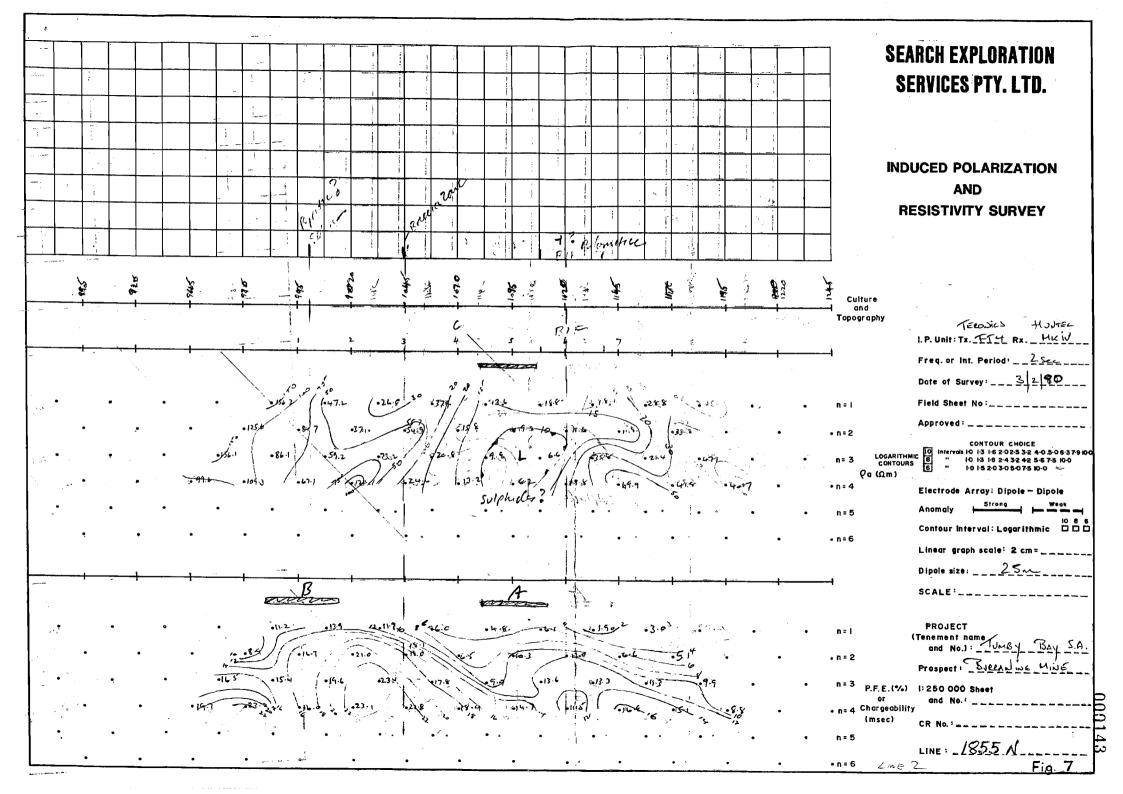

FROM	TO (m)		SAMPLE	ANALYSES .					
(m)				NO.	Acr	Pb	·Zn	Bi As	·Cu
0	1		chuzy rubbley soil	TB-636	<.62	5	15	10	45
)	2		highly weathered silverfied calculated + dolomite						<u></u>
2	3		weathered the grey silicified relasilicate + dolomite	637	4.07	45	5	4.2	30
3	4		weathered grey dayey addinate + mines silicitized calcializate						
4	5_		blue gray silicified calc-silicate & minor jaspilitée quantitée	638	く・ロア	45	10	<10 <-S	30
5	6		bonded the grey joughite quality		ļ				
6	7		highly weathered adomile + calculicate	639	くのア	45	45	<10 <-5	20
7	8		weathered exection joupilite (70% chest 30% to onide)						
8	9		as above	८५०	<·02	< 5	< 5	·2	15
9	10		gray jaspilitic quantitle (<10% Fe exide) v. fine grained and laiminated	-			و المارية ا		
10	1)		as drove		くらと	5	≺ 5	<.2 <10	٤.
11	12		very fine grained jospilite						
12	13		dark gray businated jaspilitic quantite & factores	642	407	45	15	くらく くっち	15
13	14		commonly infilled with carbon at						L
14	15		as drove	643	۲۰۰۶	4 \$	10	10 <.5	10

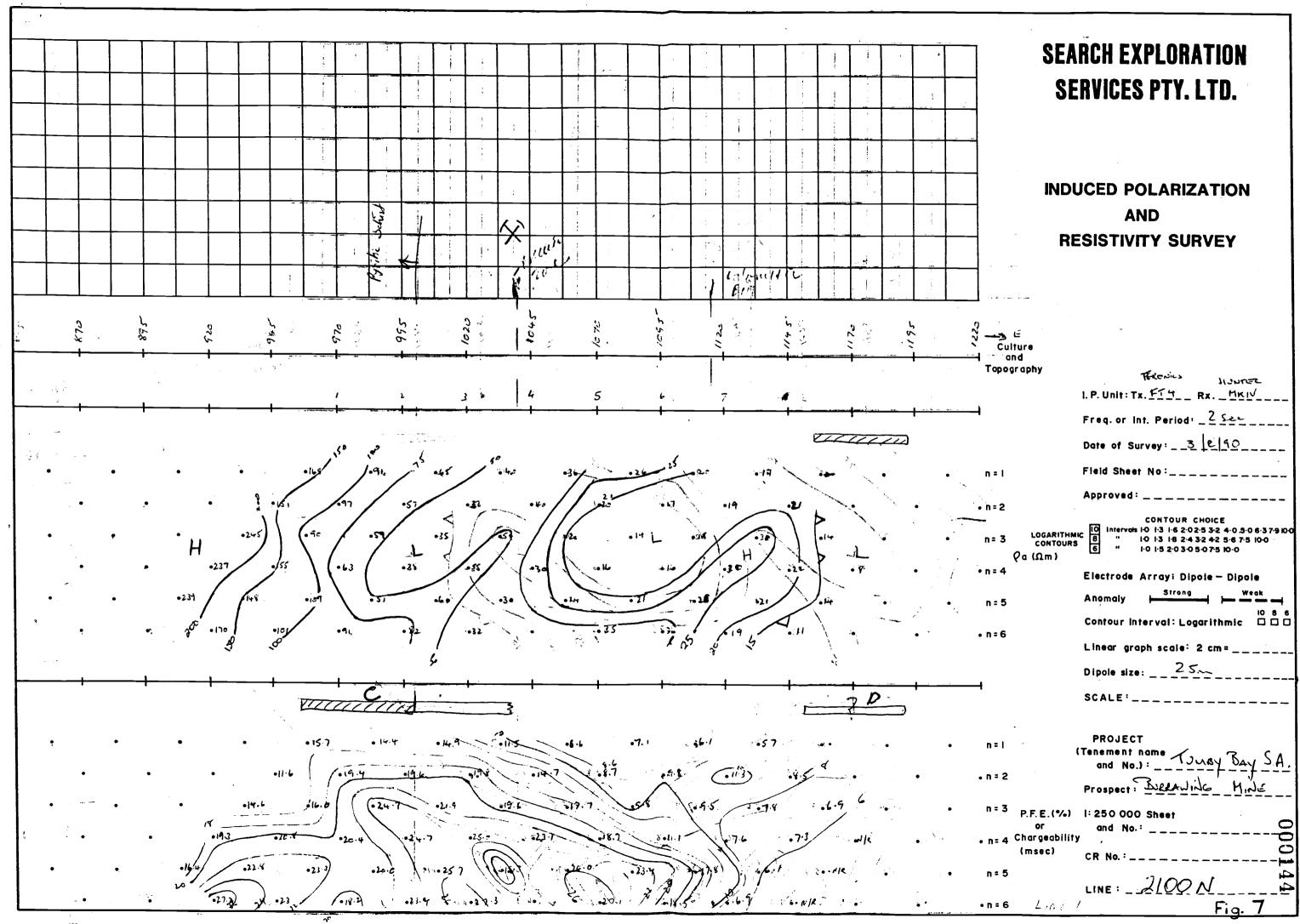

HELIX RESOURCES N.L. DRILL LOG

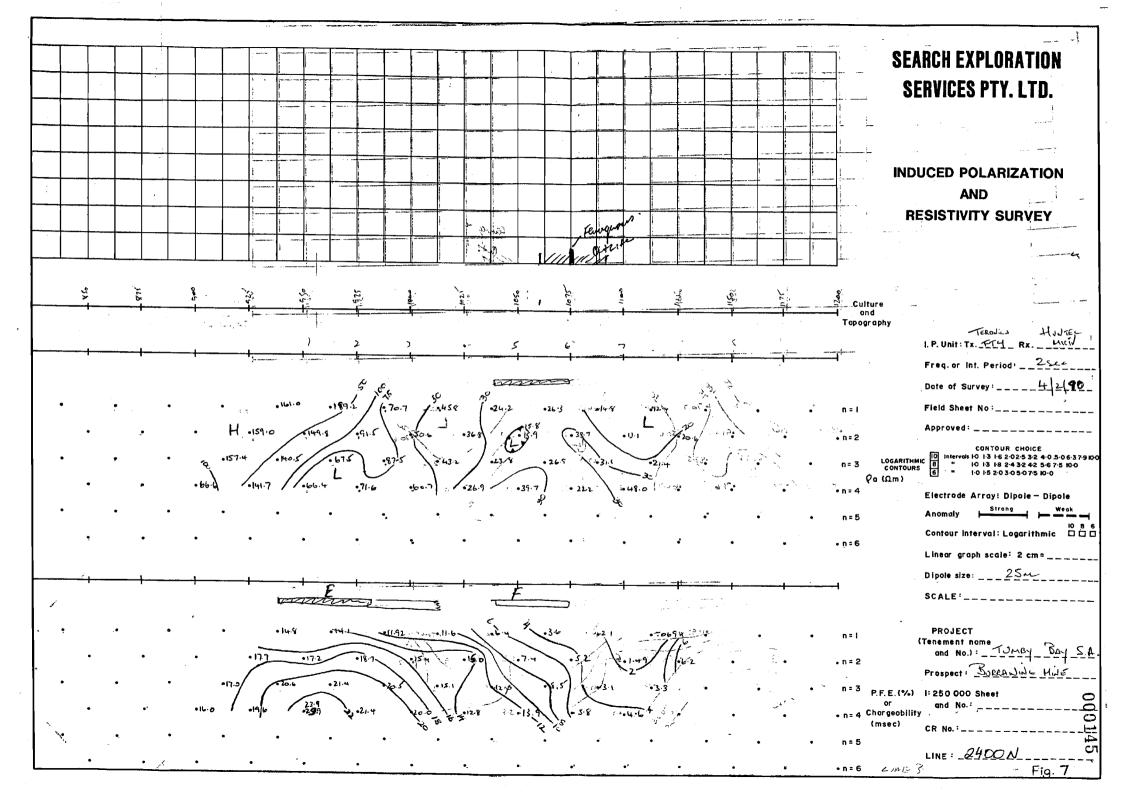
Page.2.of...

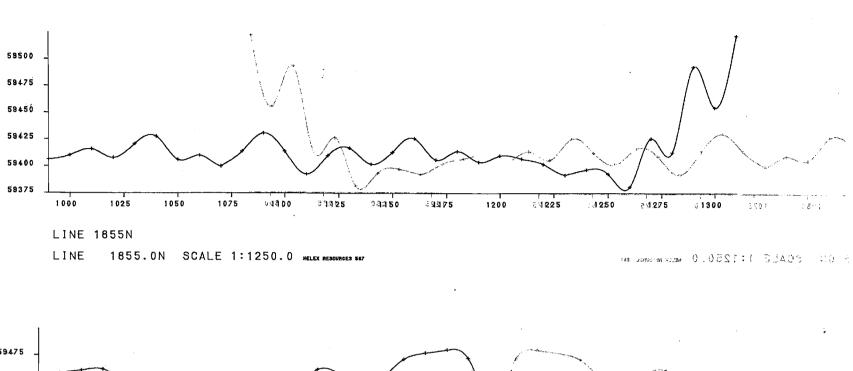
	TO (m)	LEN-	TH DESCRIPTION	SAMPLE		1	ANALYSES			
FROM (m)				NO.	Au	Pb	Zn	Bi	Cu	
15	16		as above			ļ	-	10	ļ	
16	17		increase te content la 10% : Jaspilite	TB-644	4.02	5	10	2.5	15	
n	18		U. Gine gained dk grey laminded atsite no Fe anich carbonate					<10	ļ	
18	19		filled fractures common	645	<.02	<5	30	4.5	20	
19	20		laminated jaspilite auadzite					10		
20_	21		Finely lawrooked grey partzile	646	<-07	25	90	4.5	85	
21	82		any miasoulting quartaite					<10		
22	23		green grey day + 50% jasyilihi quartzila.	647	402	15	315	<.2	20	
23	24		clayer combonate + jaspititàc quantzute.					KIO		
24	25		Whati upllows clay & Fogs 60% quartib 40% carbonale	648	4.02	5	115	٠٤	<5	
25	26		as above					<10		
26	27		While Carbonate	649	<-02	25	20	~5	<5	
27	28		siliceous rock - grey quartite + brown chalcedonic rock					<10		
28	29		white carbonale	<i>(20</i>	<-O7	5	45	··S	4 5	
29	30		white carbonate	:					••••••••••••••••••••••••••••••••••••••	

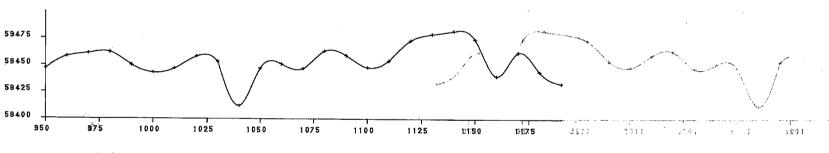
00140

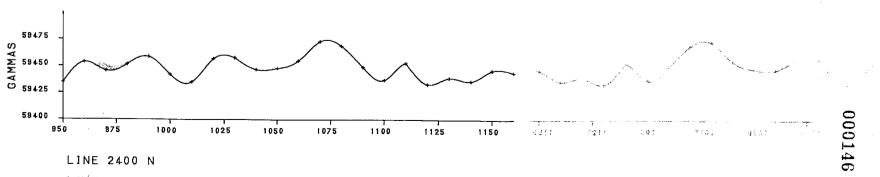


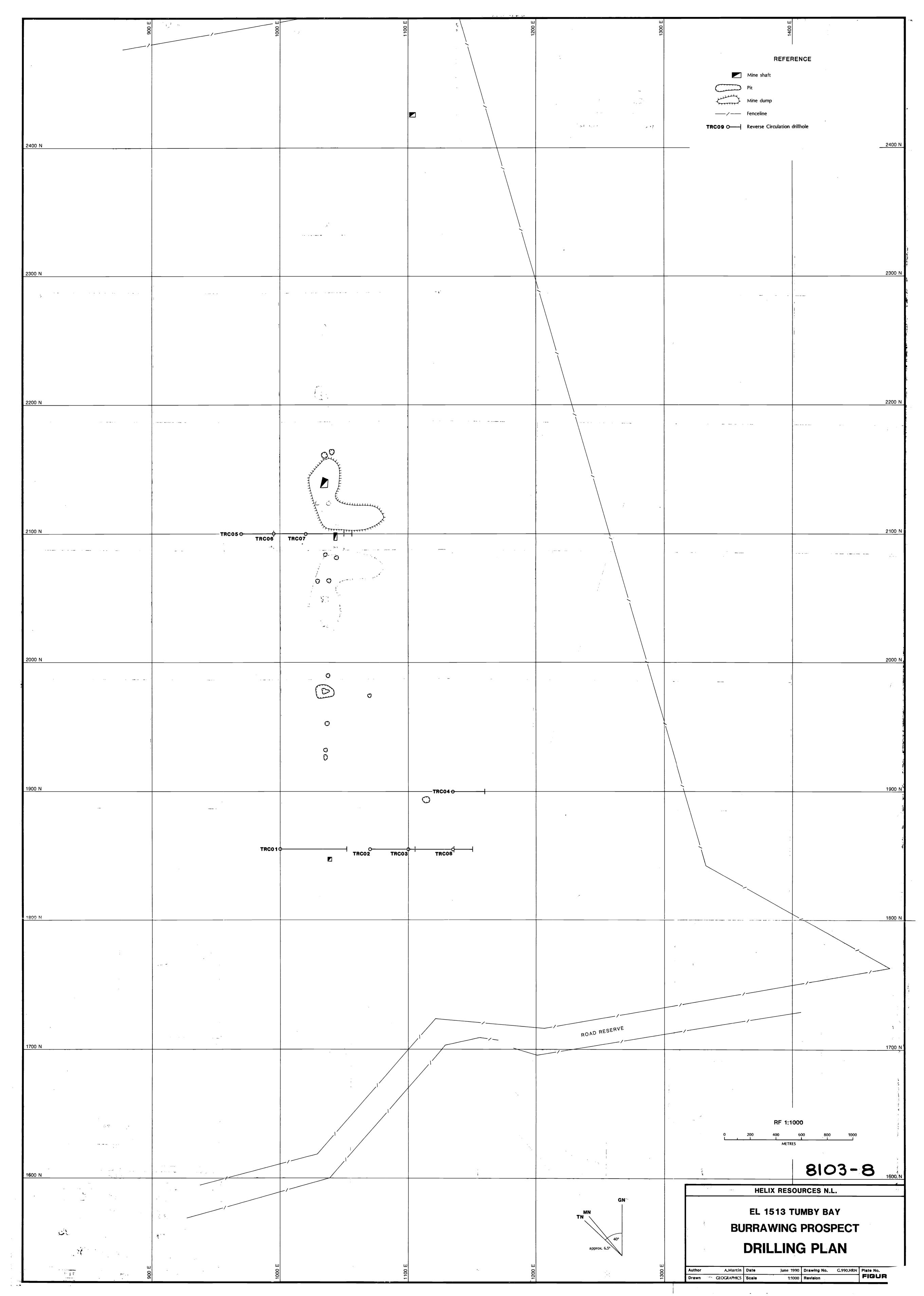

HELIX RESOURCES N.L.

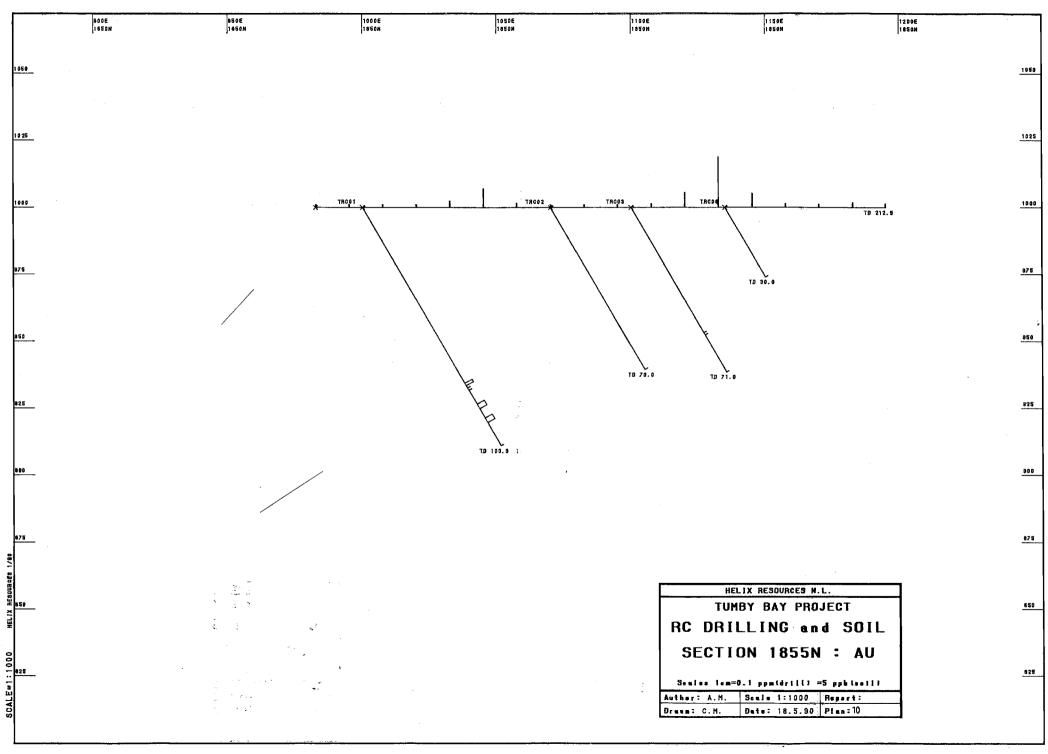

TUMBY BAY PROJECT
SOIL GEOCHEM
3-D AU CONTOURS

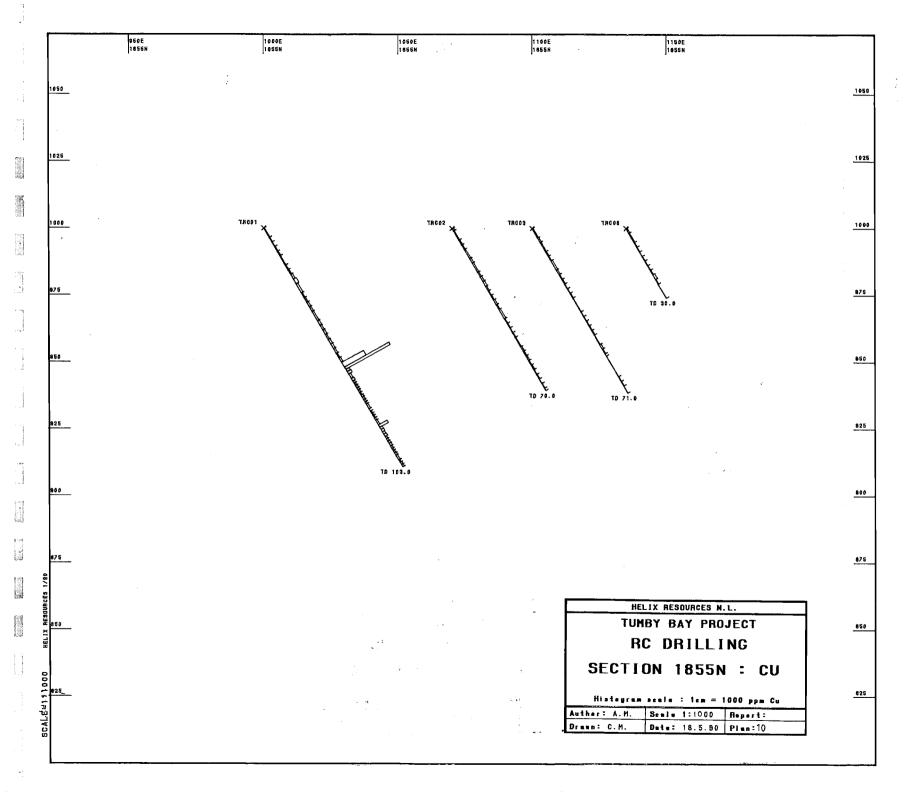

(ARBRITRARY SCALE)

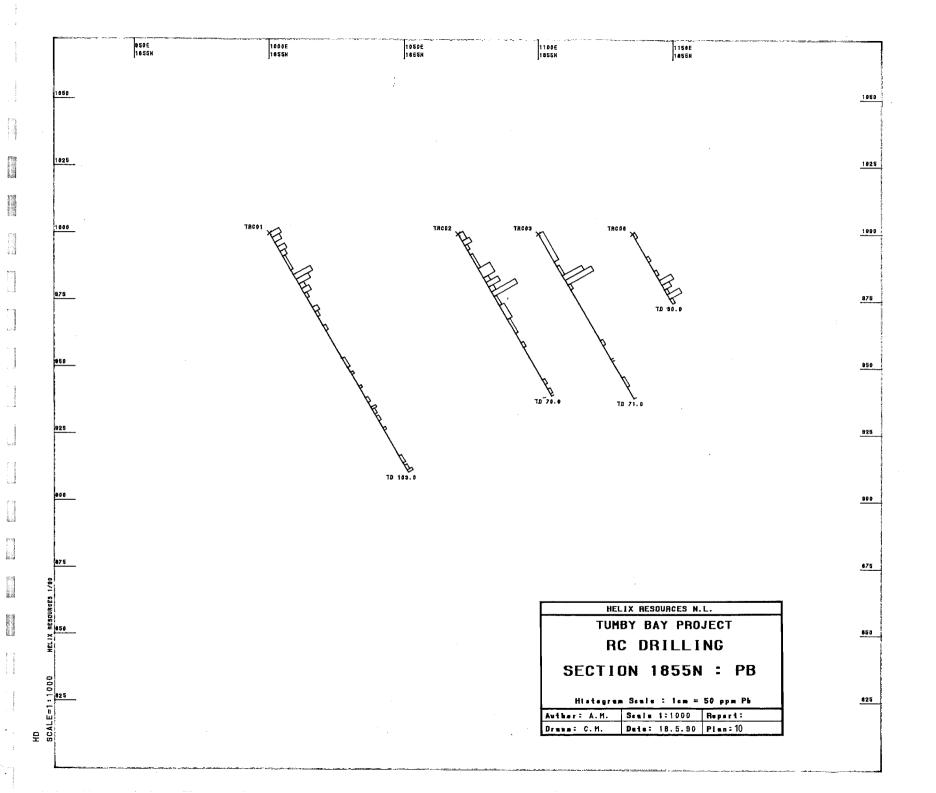

Author: A.M.	Scale 1:	Report:
Drawn: C.M.	Date: 18.5.90	Plan: 6

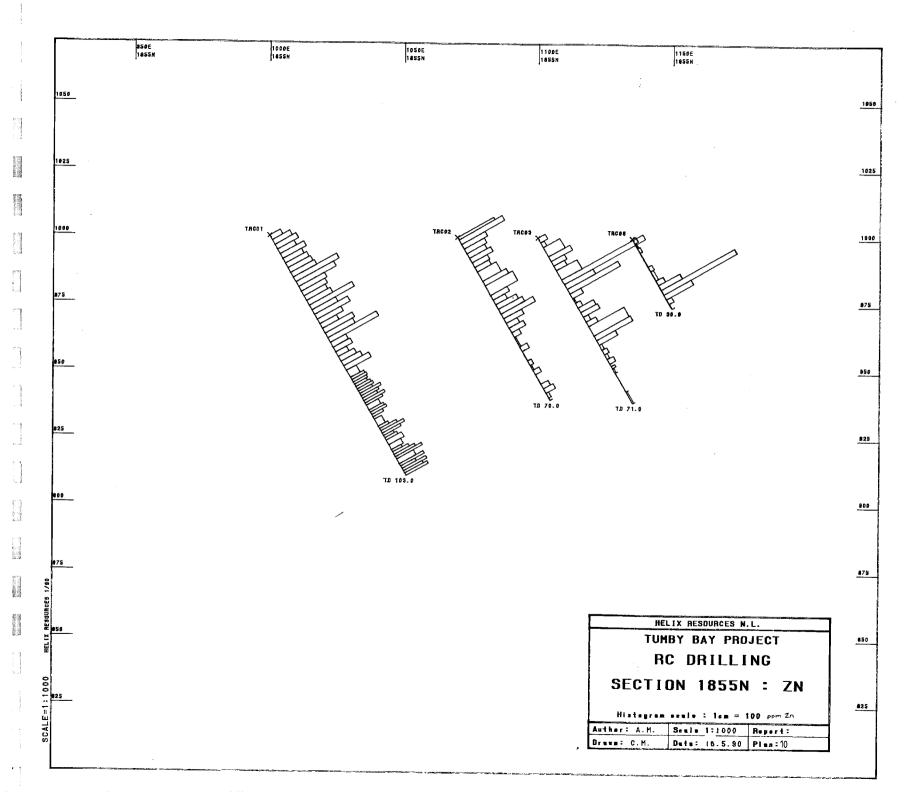


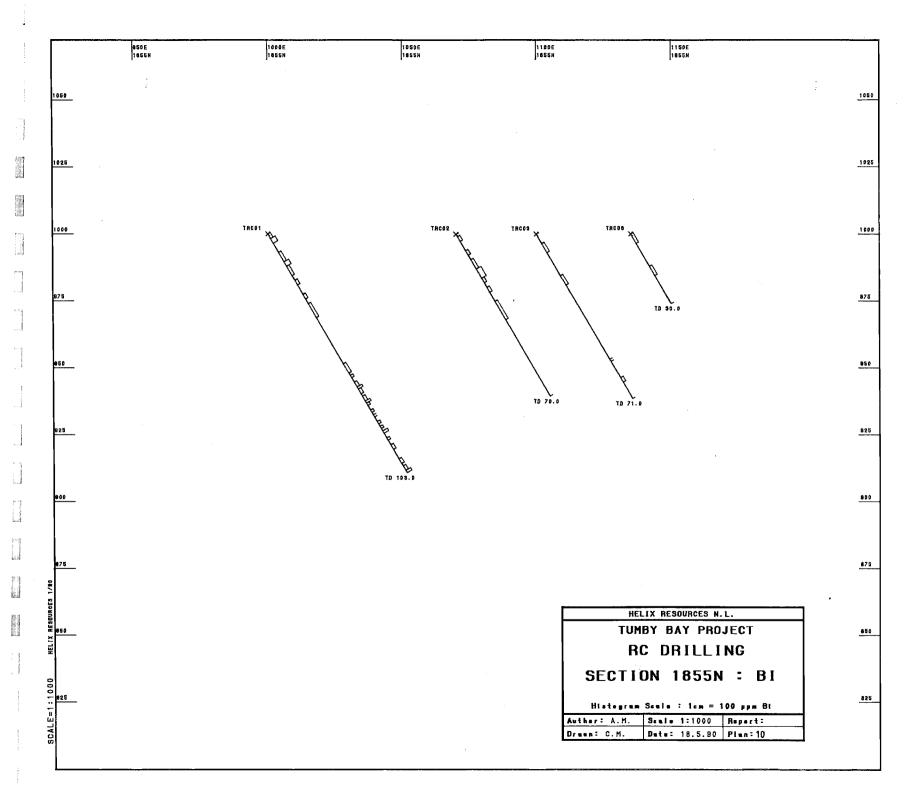


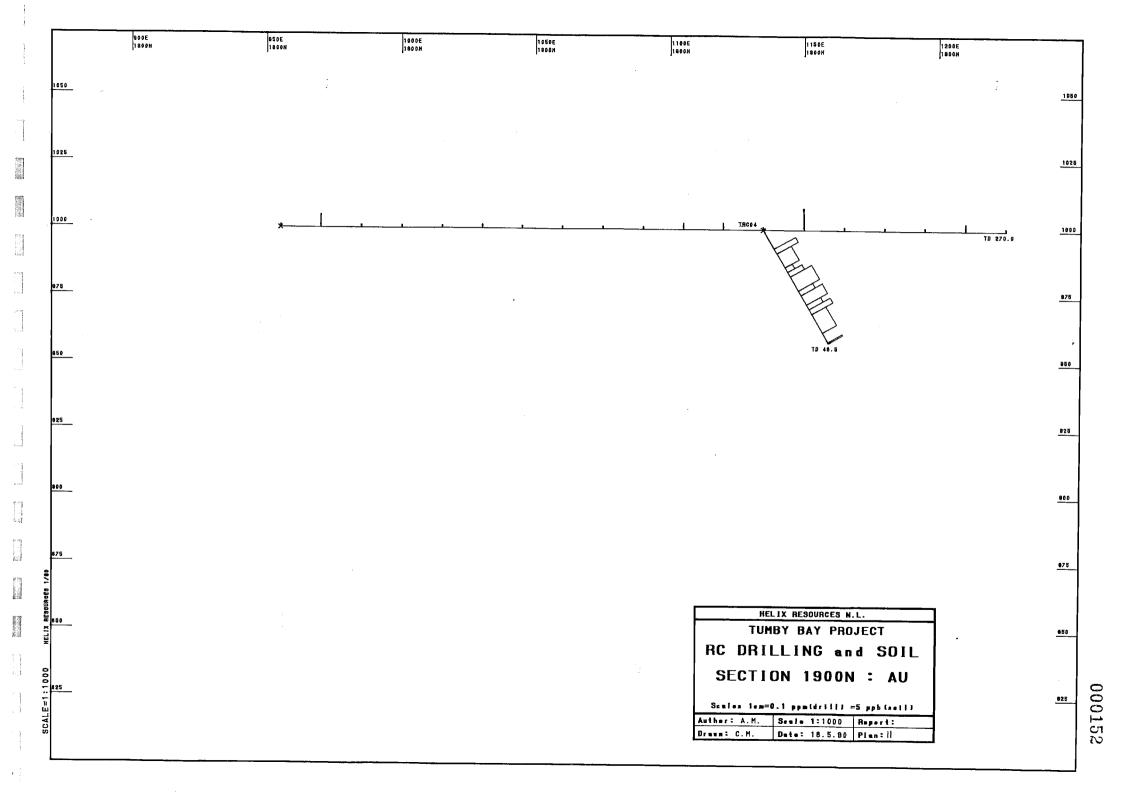

LINE 2100.0N SCALE 1:1250.0 HELEX RESOURCES SAY

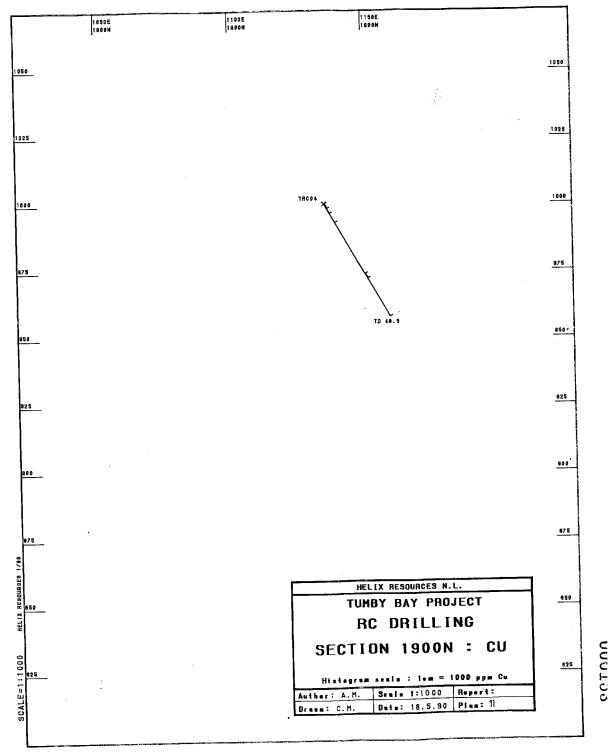

36 1 1:1250.0 mous securior sec

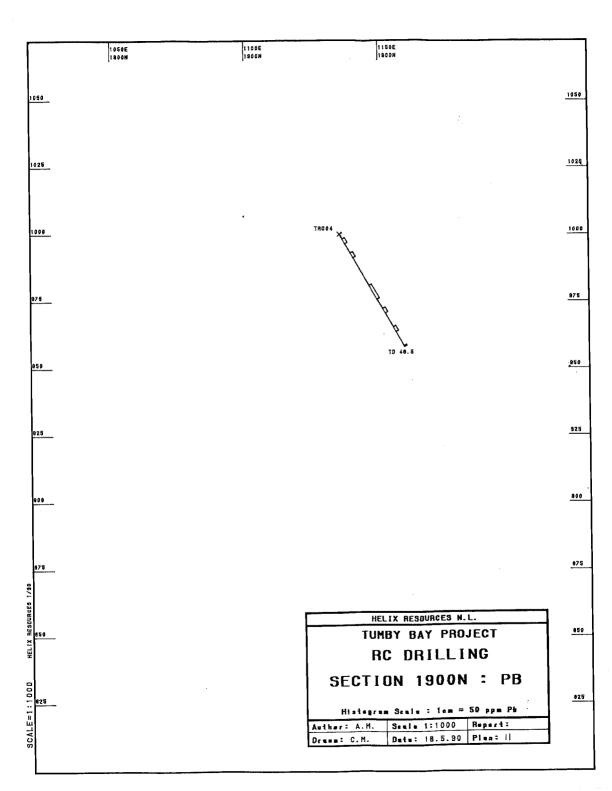


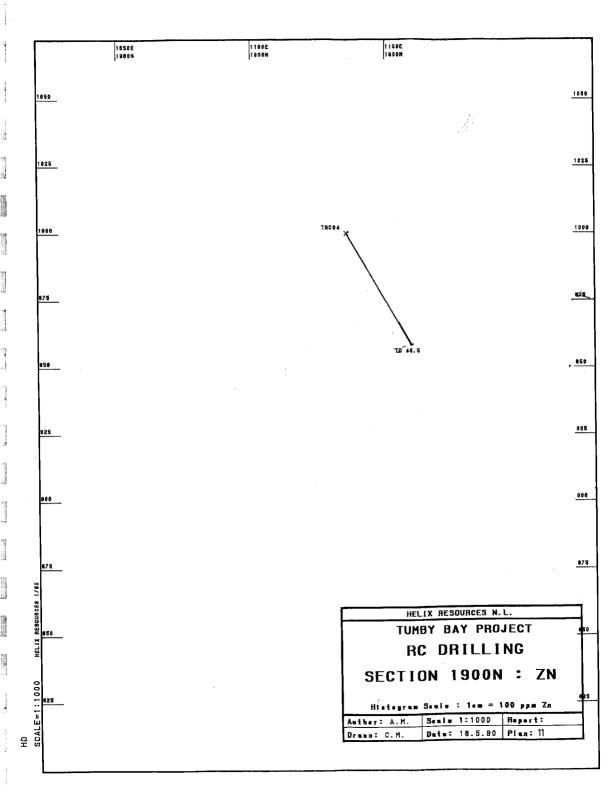

LINE 2400.0N SCALE 1:1250.0 MELEX ACRONNOCES 867
PRINTED RACRET OF THE PRINTED RACRET STATES OF THE PRI

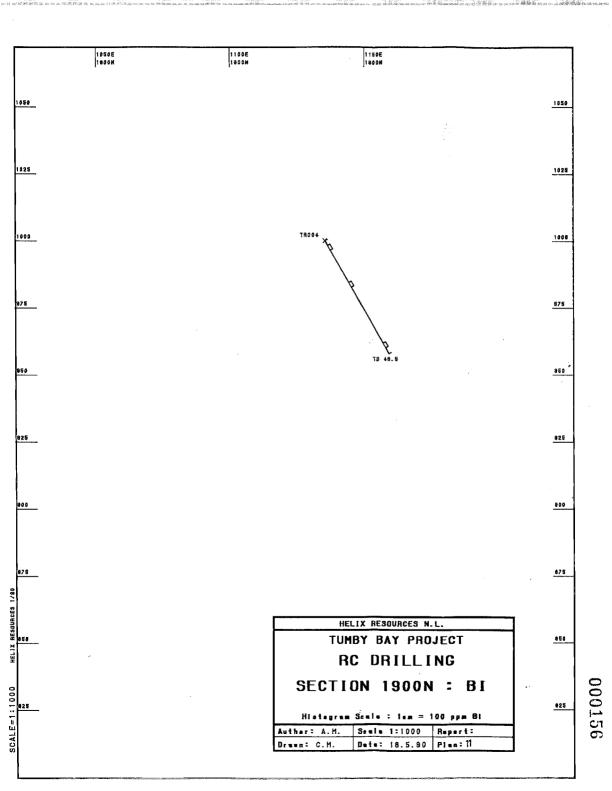


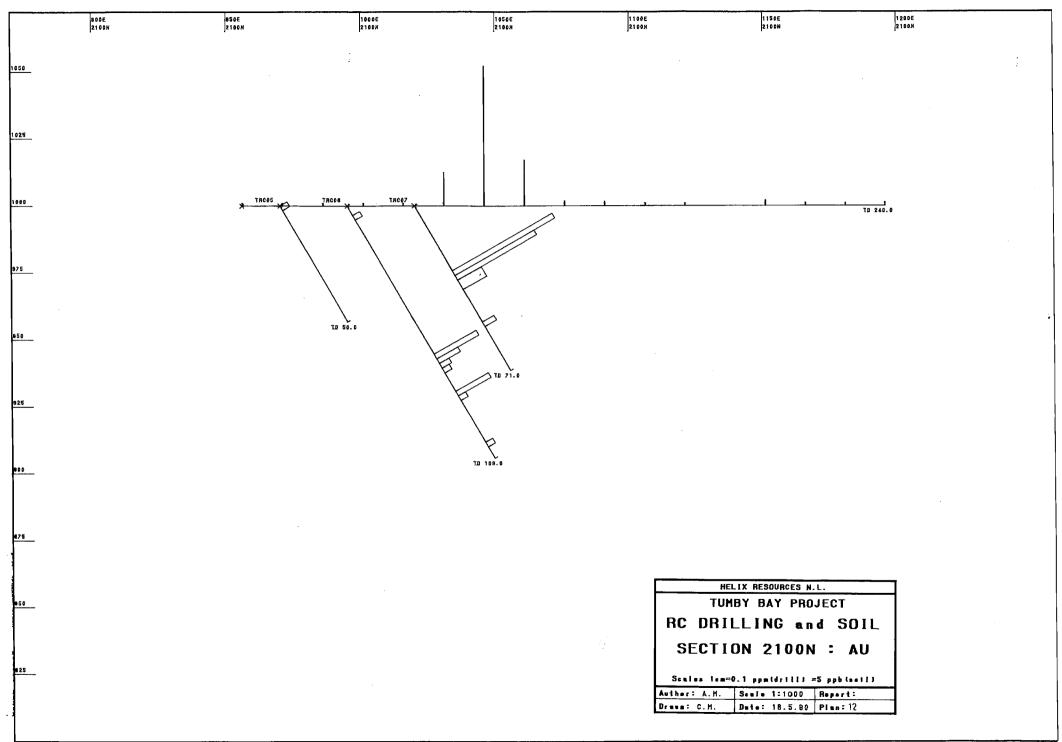


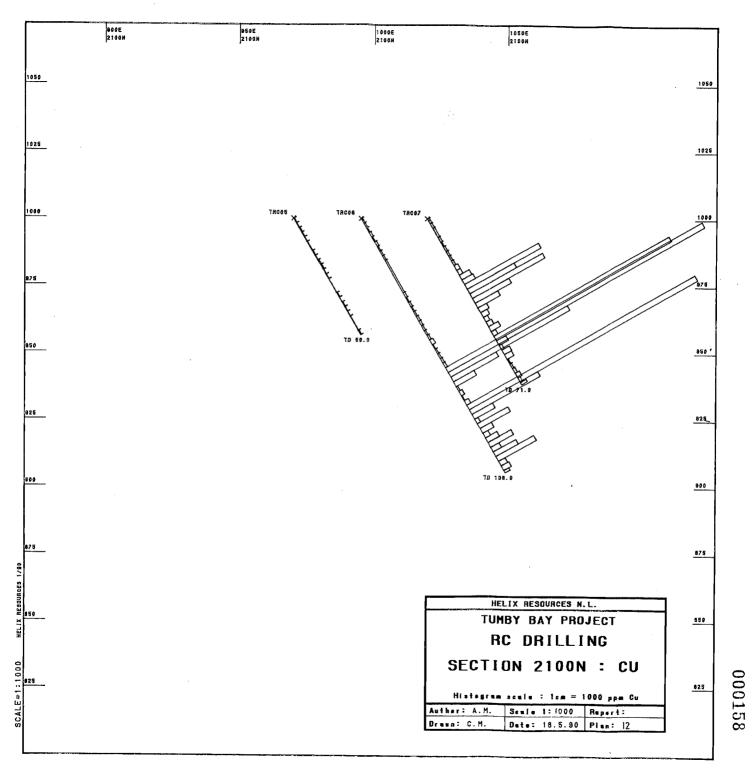


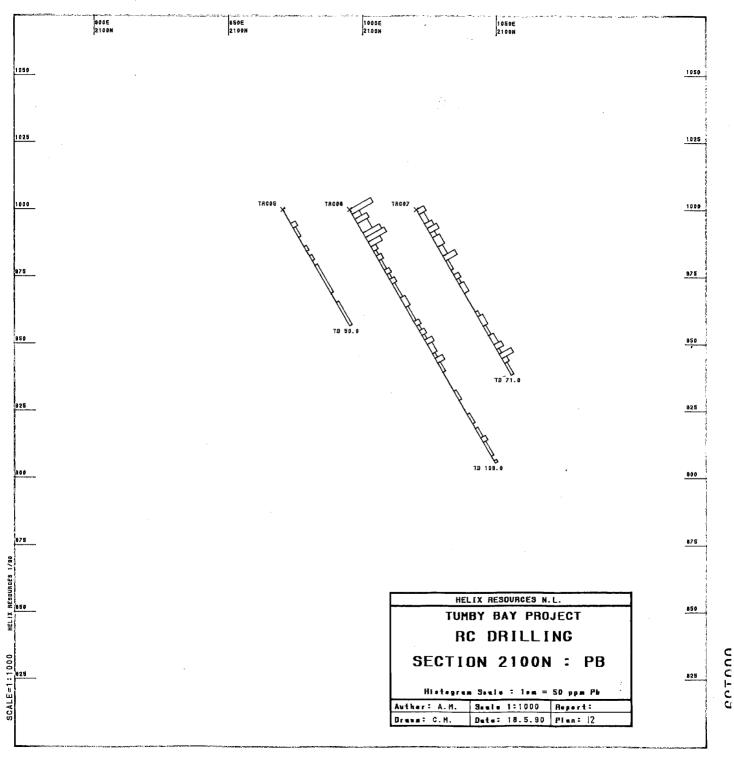


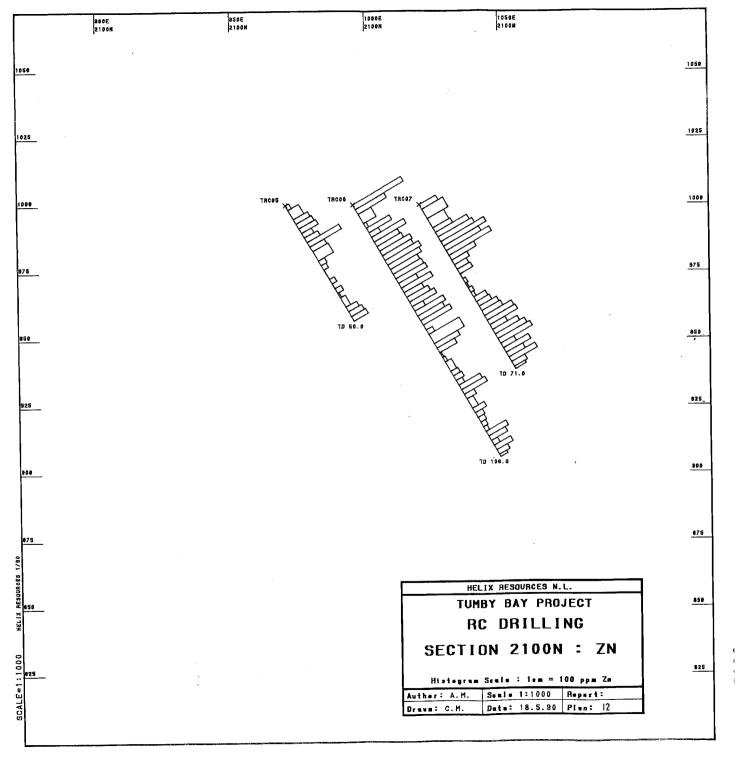












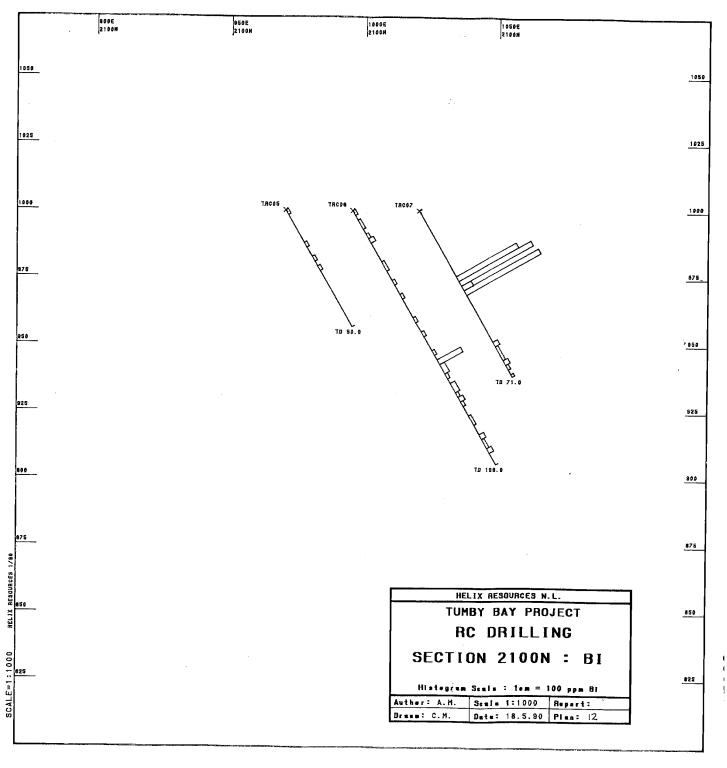


Figure 5 British Columbia epithermal model. The model is based on studies of epithermal deposits in the Toodoggone area by T.G. Schroeter and A. Panteleyev. End comparisons with deposits elsewhere. The model inters a continuum exists from porphyry copper and skarn through transitional deposits, to epithermal veins, and hot spring discharge deposits.

(From Panteleyer, 1986)

TECHNICAL REPORT 2088

EL 1513, TUMBY BAY, SA

Final Report September, 1990

CONTENTS

7	TRITTI	ODIT	~~~
.	TINIK	ODU	CTION

- 2. LOCATION AND ACCESS
- 3. TENURE
- 4. PREVIOUS EXPLORATION
- 5. CONCLUSIONS
- 6. REFERENCES
- 7. EXPENDITURE

FIGURES

No. Title Scale

1. Tumby Bay Project, Location Map 1:500,000 and Tenements.

1. INTRODUCTION:

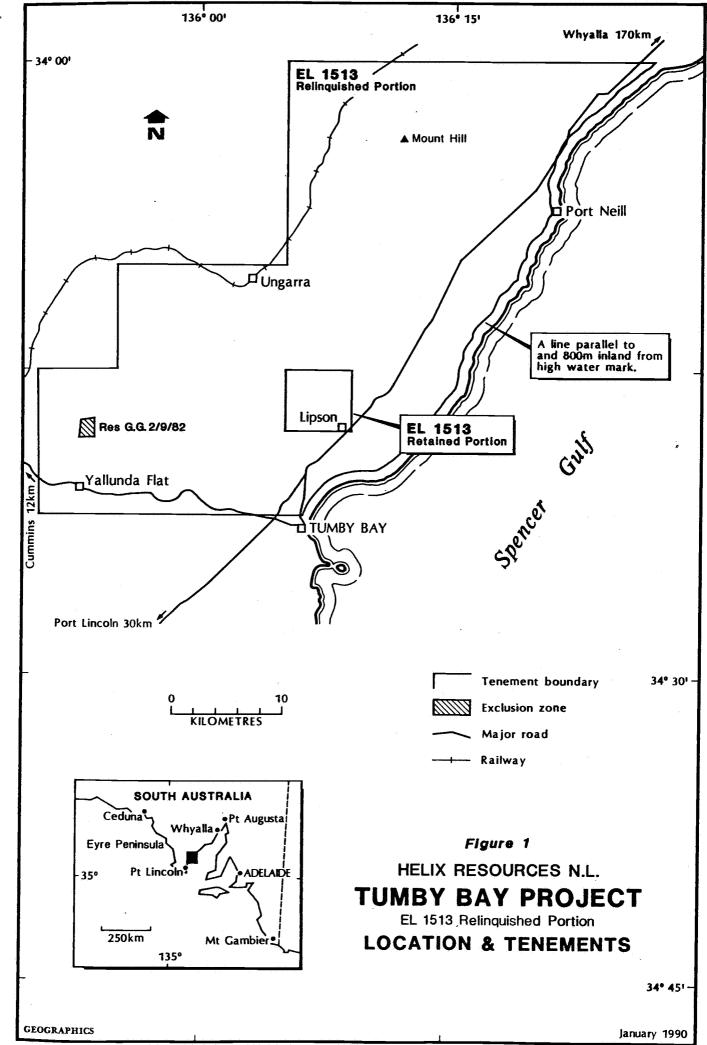
During the period of this report no field work was carried out on EL 1513. With continued assessment of work carried out previously (Martin 1990) it has been concluded that any mineralisation outside that already defined would be of a grade too low to be economic and thus, the licence was relinquished on 7 August, 1990. All technical data relevant to the work carried out by Helix is contained in reports Martin 1989 a,b,c and 1990 a,b.

2. LOCATION AND ACCESS:

Exploration Licence 1513 is situated in south-eastern Eyre Peninsula between the towns of Tumby Bay, in the south, and Pt Neill, in the north. The townships of Ungarra, Mt Hill, Lipson and Yallunda Flat are located with the Licence (Fig 1).

Access to the area is either via the Lincoln Highway which joins Pt Augusta and Pt Lincoln and passes through the eastern portion of the EL, or via the sealed road between Tumby Bay and Cummins. Numerous unsealed roads and farm tracks allow good access within the Licence.

Much of the area is open undulating country used for grazing and grain crops with native scrub confined to rocky hill tops. The Lincoln Uplands protrude into the south-western portion of the EL where the terrain consists of rolling hills with more common patches of native scrub.


3. TENURE:

Exploration Licence 1513 was granted to Helix Resources NL on 2 September 1988 and comprised a total area of 1215 sq kms. During December 1989 much of the area was relinquished except an area of 35 sq kms in the Burrawing area (Fig 1).

4. PREVIOUS EXPLORATION:

A complete summary of work carried over the entire Exploration Licence excluding the Burrawing Prospect is contained in report, Martin 1989d.

Martin 1990b, contained a complete summary of all work carried out on the Burrawing Prospect.

5. CONCLUSIONS:

As indicated in previous reports there exists potential for further Au ± Cu mineralisation in the Burrawing area associated with hydrothermal activity. It is most likely that any near surface mineralisation ie. lateritic or skarn type would be of a grade too low and size too small to be a potential target of economic significance. It is also likely that deeper drilling to investigate the source of the mineralising fluids would be extremely expensive and there would be little chance of intersecting economic mineralisation. It is therefore concluded that EL 1513 be relinquished.

6. <u>REFERENCES</u>:

- Martin A. R., 1989a: EL 1513, Tumby Bay SA Six Monthly Report for Period September 1988 - February 1989. Unpublished report 2054 Helix Resources NL, Perth.
- Martin A. R., 1989b: EL 1513 Tumby Bay SA Report for Period February May 1989. Unpublished report 2058 Helix Resources NL, Perth.
- Martin A. R., 1989c: EL 1513 Tumby Bay SA Report for Period June - August 1989. Unpublished report 2062 Helix Resources NL, Perth.
- Martin A. R., 1989d: Partial Relinquishment Report December 1989, EL 1513. Unpublished report 2078 Helix Resources NL, Perth.
- Martin A. R., 1990a: EL 1513 Tumby Bay SA Report for Period September 1989 - February 1990. Unpublished report 2084 Helix Resources NL, Perth.
- Martin A. R., 1990b: El 1513 Tumby Bay SA Report for Period March May 1990. Unpublished report 2084 Helix Resources NL, Perth.

7. <u>EXPENDITURE</u>:

The following are expenditure details for the period June - August 1990 and total for the period September 1988 - August 1990.

	JUNE TO AUGUST	PROJECT TO DATE
Salaries and Wages	<u>_</u>	17,294
Salary Allocation	600	6,475
Consultants	_	900
Travel and Accommodation	. ****	15,564
Helix Salary Allocation	<u> </u>	6,800
Aerial Photo/Mapping	<u></u>	777
Assay Other Geochemical		14,360
Data Acquisition		768
Geophysical	=	3,240
Metallurgical	_	13,455
Technical Services - Other	-	145
Drafting	345	3,680
Survey and Gridding	***	2,584
Freight and Cartage	: -	2,949
Fuel Oil Service Tyres	_	902
Vehicle Rental	959	7,048
Tenement Acquisition Costs	-	11
Mines Department Rents	· •	5,718
Compensation Agreement Costs	· -	400
Reverse Circulation Drilling	_	16,362
Field Equipment		1,248
Field Expenses	<u>-</u>	129
		
33-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1,094	120,809
Administration 15 %	164	18,121
TOTAL	\$1,258	\$138,930
		====