Open File Envelope No. 2961

EL 290

PORT WAKEFIELD

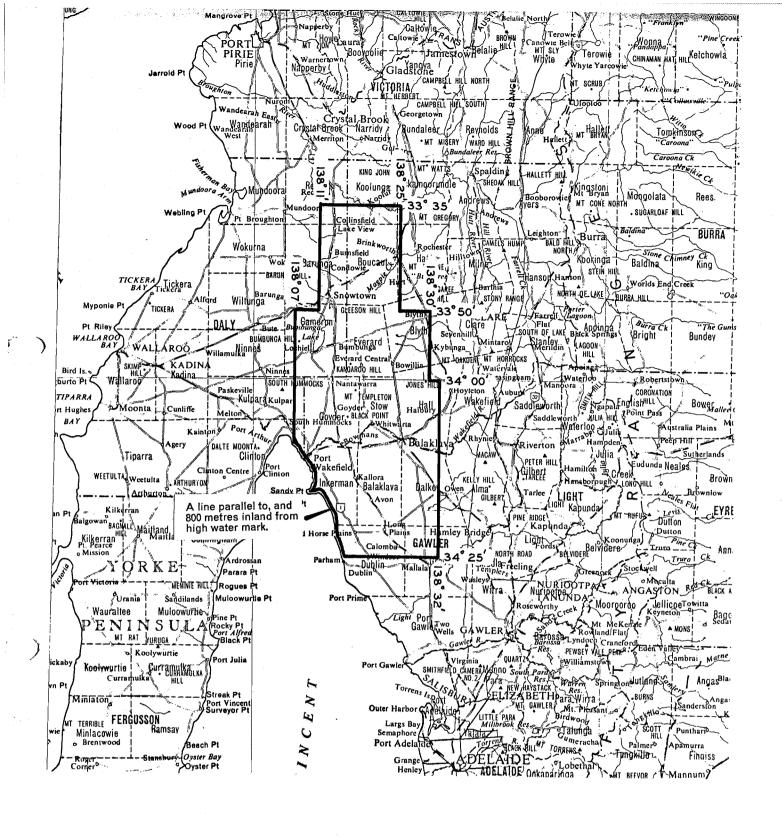
PROGRESS REPORTS TO LICENCE EXPIRY/RENEWAL FOR THE PERIOD 2/3/1977 TO 1/3/1978

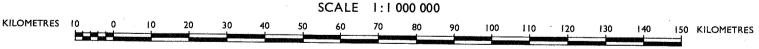
Submitted by Electricity Trust of South Australia 1978

© 13/2/1992

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Branch


Minerals and Energy Resources


7th Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

APPLICANT: THE ELECTRICITY TRUST OF SOUTH AUSTRALIA

D.M.: 479/76

AREA: 2802 Square kilometres

1:250000 PLANS:

BURRA ADELAIDE

LOCALITY: PORT WAKEFIELD AREA

EXPIRY DATE:

1.3.78

E.L. No.: 290

ENVELOPE 2961

TENEMENT:

EL 290 - Port Wakefield Area

TENEMENT HOLDER:

The Electricity Trust of South Australia

CONTENTS

The Electricity Trust of South Australia, 1977. Operations summary EL 290 -**REPORTS:** Pg. 3 Port Wakefield Area. The Electricity Trust of South Australia, 1977. EL 290 - Port Wakefield Area Pg 4 second quarterly report. **ATTACHMENT 1:** ACRIL., 1977. Coal analysis (Report no. 6404). Pgs 5-39 **ATTACHMENT 2:** Electricity Trust of South Australia X-rays of coal cores. Pgs 40-57 ACRIL., 1977. Treatment of coal from Wakefield South Australia, for removal **ATTACHMENT 3:** Pgs 58-96 of soluble salts (Report no. 6404). The Electricity Trust of South Australia, 1978. EL 290 Port Wakefield area **REPORT:** Pg. 97

operation summary third and fourth quarterly report.

END OF CONTENTS

Special note: For detailed data see Envelope 3431.

OPERATIONS SUMMARY EXPLORATION LICENCE NO. 290 PORT WAKEFIELD AREA

WORK COMPLETED

- Twenty-four holes have been completed. (seven in Blyth area, two in Whitwarta area and fifteen in Wakefield).
- Total depth drilled 2273m (1805m rotary and 468m cored).
- Where available cuttings from these holes have been lodged at the SADM Thebarton Depot.
- Core from these holes has been sent to ACIRL for chemical analyses,
 x-rays and beneficiation tests.
- Drilling contractor was the "Thompson Drilling Co." from Millicent.
- Logging of the holes was done by G. Meyer (SADM).
- Holes were drilled using a Mayhew 1000 rig and were HQ core size.

EXPENDITURE

Expenditure to date on this licence is as follows:

Drilling \$ 39 550

Administration Account not received

X-rays " " "

Chemical Analysis " < " "

Beneficiation tests \$ 25 650

TOTAL \$ 65 200

000004

PORT WAKEFIELD AREA SECOND QUARTERLY REPORT

WORK SUMMARY

- No additional drilling has commenced.
- X-rays have been received (copy attached)
- Chemical analyses by ACIRL have been received (copy attached)
- Report on "Treatment of Coal from Wakefield, Sth. Australia, for Removal of Soluble Salts" by ACIRL has been completed (copy attached)
- A re-assessment of reserves is underway and geological reports in the Blyth and Wakefield areas are being compiled.

EXPENDITURE

Expenditure to date on this licence is estimated as follows:

Drilling	\$ 39	550
Administration	\$ 4	500
X-rays	\$ 5	200
Chemical Analyses	\$ 21	8.30
TOTAL	\$ 71	080

Note: Alteration to quarterly report dated 20 June 1977. Beneficiation test for \$ 25 650 was incorrectly reported, and expenditure on this item is included in chemical analyses and x-rays.

00000 Report No.

Date 9/3/77

Egin (1987) Orientaria

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169,

Chatswood, N.S.W. 2067

Order No. 5743 D Authorisation

The Electricity Trust of South Australia Origin

Dr. M. Bogio Report to

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		A SAME SAME AND A SAME AND A SAME AND A SAME AND A SAME SAME SAME SAME SAME SAME SAME.	
	HOLE	X V 142	7
Sample Details	Section 1 72.33 - 73.56 m	Section 2 73.80 - 82.36 m	
As Received Basis Total Moisture %	40.7	48.3	
As Analysed Basis	Pag-	>< *	
Moisture %	/oo= 16.2 % §	16.4	
Ash %	9.9 48/	9.3 //-/2/	
Volatile Matter %	40.5 48.5	41.0 49.04	
Fixed Carbon %	33.4 30.86	33.3 39.94	
Sulphur %	4.42 5.27	3.53 4.22	
Chlorine %	1.06 /26	1.10 /.32/	
Phosphorus %			
Specific Energy MJ/kg. (Calorific Value)	19.770 22.59	15.750 /8.84	
Ash Fusibility Temperatures		Oxid. Red.	
Deformation °C	100	1325 1260	
Spherical °C		1370 1340	
Hemisphere °C		1380 1350	
Flow		1490 1450	
		·	

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED ACCORDANCE WITH ITS TERMS OF REGISTRATION. BY COT STALL BOT BE RETRODUCED EXCEPT IN LOCAL

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

COAL ANALYSIS

Report No

9/3/77

Order No. 5743 D **Authorisation**

The Electricity Trust of South Australia

Dr. M. Bogio Report to

Origin ...

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	HOLE	& V142	
Sample Details	Section 1	Section 2	
	72.33 - 73.56 m	73.00 - 82.36 m	
DRY Basis			
Carbon %	60.7	62.0	
Hydrogen %	4.41	4.29	
Nitrogen %	0.44	0.47	
Sulphur %	5.27	4.22	
Oxygen %	17.38	17.92	
Carbonates (CO ₂) %			
Forms of Sulphur			
Pyritic %	0.96	0.25	
Sulphate %	0.30	0.21	
Organic %	3.16	3.07	

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with

Supplied Sampled by

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS REPORT SHALL NOT BE PEPRODUCED EXCEPT IN FILE

COAL ASH AND MINERAL ANALYSIS REPORT

			0	0){)(0	0	7
_	_								

Report No. 6404

Date 9/3/77

RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

<u></u>	ZZU BISSULIT VO. CVO MOON				
Sample Details	HOLE	V 142			
	Section 1 72.33 - 73.56 m	Section 2 73.80 - 82.36 m			
Silicon as SiO ₂ %	10.48	12 .9 9			
Aluminium as Al ₂ O ₃ %	1.52	5.57			
Iron as Fe ₂ O ₃ %	10.33	3.33			
Calcium as CaO %	12.01	11.03			
Magnesium as MgO %	14.68	13.30			
Titanium as TiO ₂ %	< 0.01	< 0.01			
Sodium as Na ₂ O %	16.90	14.60			
Potassium as K ₂ O %	0.35	0.33			
Phosphorus as P ₂ O ₅ %	0.60	0.49			
Manganese as Mn ₃ O ₄ %	0.06	0.04			
Sulphur as SO ₈ %	27.0	33.2			
Loss on Ignition	4.54	6.57			

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with B51016

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THE REPORT SHALL NOT BE REPRODUCED EXCEPT IN 18.5.

Gallon

Report No.

.....

Pate 9/3/77

The Electricity Trust of South Australia

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.

2067

Authorisation Order No. 5743 D

입. 그 회문의 자시 이 경험 경기 중심했다.

Origin The Electric:
Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		HOLE	8 V-144	2.30
Sample Details	Section 1 70.80 - 71.09 m	Section 2 71.48 - 72.00 m	Section 3 72.90 - 73.82 m	Section 4 73.82 - 76.45
As Received Basis Total Moisture %	42.6	47.4	43.2	41.7
As Analysed Basis	26%	2,04	2004	JR)
Moisture %	100- 10.6: 30.40	100 - 10.5 = 89.50		
Ash %	33.2 37./4	23.8 26.59	10.8 13.59	9.9 //. 7
Volatile Matter %	32.3 35/3	38.6 43/3	41.6 43.48	41.7 49 5.
Fixed Carbon %	23.9 2573	27.1 30.28	33.4 38.93	32.6 33.7
Sulphur %	5.27 5.39	8.60 9.61	4.82 5.62	4.06 4.8
Chlorine %	1.00 /1/2	0.83 0.93	1.03 //20	1.16 //3
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)	13.940 /5.59	13.150 /4-63	19.750 23.02	• 15.210 /8.
Ash Fusibility Temperatures				Oxid. Red.
Deformation °C				1350 1250
Spherical °C				>1600 >1600
He misphere °C				> 1600 > 1600
Flow				>1600 > 1600

Copies have been sent to

had dead to the ham

Determinations carried out in Duplicate
Analysed in accordance with

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT SE RECORDANCE MADE IN ACCORDANCE.

Ballons

Report No. 6404

9/3/77

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Order No. 5743 D **Authorisation**

The Electricity Trust of South Australia

Dr. M. Boşio Report to ...

Origin.

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	ZZO GIBBULIII KO. ENZIMUUU					
	HOLE HOLE	8 V144				
Sample Details	Section 5 76.48 - 77.84 m	Section 6 77.84 - 78.28 m				
As Received Basis Total Moisture %	44.2	43.3				
As Analysed Basis	267	PRY				
Moisture %	100 - 14.7 = 85.30	100 - 11.6 = 88.40				
Ash %	14.9 17.47	38.7 43.78				
Volatile Matter %	40.2 47./3	27.4 31.00				
Fixed Carbon %	30.2 35.40	22.3 \$5.22/				
Sulphur %	3.27 5.33	2.57 2.91				
Chlorine %	1.13 /.3%	0.90 1.02				
Phosphorus %						
Specific Energy MJ/kg. (Calorific Value)	12.57 /4.74	10.760 /2/7				
Ash Fusibility Temperatures						
Deformation °C						
Spherical °C						
Hemisphere °C						
Flow °C						
		.√	· · · · · · · · · · · · · · · · · · ·			

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with

Sampled by

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS REPORT SHALL, SO SE ON AUSTRAL COLORS OF SERVICE

000010 Report No. 6404

9/3/77

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Authorisation

Order No. 5743 D

Origin

The Electricity Trust of South Australia

Report to

Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		HOLE	5 V-144	
Sample Details	Section 1 70.80 - 71.09 m	Section 2 71.48 - 72.00 m	Section 3 72.00 m - 73.82m	Section 4 73.82 - 76 45
DRY Basis				
Carbon %	44.5	52.1	60.0	61.6
Hydrogen %	2.91	3.40	4.44	4.48
Nitrogen %	0.36	0.33	0.42	0.44
Sulphur %	5.90	9.61	5.61	4.82
Oxygen %	9.23	7.96	16.93	16.86
Carbonates (CO ₂) %				
Forms of Sulphur				
Pyritic %	2.31	7.93	1.75	• 0.95
Sulphate %	0.29	0.49	0.29	0.27
Organic %	2.67	0.18	2.78	2.84

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

			4	_	• •
_			1 4 4 4	Supp	
i amo		h ,	4 1 2 2 2	Juu	
JOHN	164	LIV			

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THE RESULT SHALL NOT BE REPRODUCED EXCEPT OF STALL

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

COAL ANALYSIS

Report No	6404	*********
Date 9/3/	777	

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	HCLE	8 V 144	
Sample Details	Section 5 76.48 - 77.84 m	Section 6 77.84 - 78.28 m	
DRY Basis			
Carbon %	57.1	39.4	
Hydrogen %	4.14	2.78	
Nitrogen %	0.45	0.25	
Sulphur %	3.83	2.91	
Oxygen %	16.98	10.86	
Carbonates (CO ₂) %	* * *		
Forms of Sulphur			
Pyritic %	0.46	0.44	• • • • • • • • • • • • • • • • • • •
Sulphate %	0.18	0.16	
Organic %	2.63	1.97	
	*		

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with B51016

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT CASCAGE AS TOR LEARS CHOPEN BITTE

Ballons

COAL ASH AND MINERAL ANALYSIS REPORT

Report No.

Date 9/3/77

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Authorisation

Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	***************************************	HOLE	8 V144	
Sample Details	Section 1 70,80 - 71.09 m	Section 2 71.48 - 72.00 m	Section 3 72.00 - 73.82 m	Section 4 73.82 - 76.45
Silicon as SiO ₂ %	61.6	39.1	8.30	5.69
Aluminium as Al ₂ O ₃ %	0.77	1.02	1.23	2.85
Iron as Fe ₂ O ₃ %	10.98	26.5	18.26	11.72
Calcium as CaO %	2.90	4.13	9.78	9.61
Magnesium as MgO %	3.30	4.98	12.77	12.62
Titanium as TiO ₂ %	< 0.01	< 0.01	0.32	0.49
Sodium as Na ₂ O %	4.50	6.77	14.92	15.72
Potassium as K ₂ O %	Q.17	0.14	0.35	0.31
Phosphorus as P ₂ O ₅ %	0.29	0.14	0.26	0.46
Manganese as Mn ₈ O ₄ %	0.01	0.04	0.06	0.06
Sulphur as SO ₃ %	10.89	14.42	22.98	26.22
Loss on Ignition	4.11	2.25	12.33	15.28
v v				

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THE SEATH SHALL HET LE HELM SHOWS A CANNOT IN S.

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169,

Chatswood, N.S.W.

2067

COAL ASH AND MINERAL ANALYSIS REPORT

6404 Report No.

9/3/77 Date....

Order No. 5743 D

The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chamical Engineer

220 Greenhill Rd. EASTWOOD

	·			
	HOLE	\$ V144		
Sample Details	Section 5 76.48 - 77.84 m	Section 6 77.84 - 78.28 m		
Silicon as SiO ₂ %	36.7	72.5		
Aluminium as Al ₂ O ₃ %	5.14	4.03		
Iron as Fe ₂ O ₃ %	4.26	3.26		
Calcium as CaO %	8.45	3.15		
Magnesium as MgO %	8.12	3.53		
Titanium as TiO ₂ %	1.90	2.83		
Sodium as Na ₂ O %	9.45	4.17		
Potassium as K ₂ O %	0.03	0.39		
Phosphorus as P ₂ O ₅ %	0.45	0.08		
Manganese as Mn ₃ O ₄ %	0.04	0.02		
Sulphur as SO ₈ %	20.63	7.51		•
Loss on Ignition	5.16	0.03		
				at Markey
	*	the state of the s	 	· · · · · · · · · · · · · · · · · · ·

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with B51016

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

9/3/77

FORM 3

COAL ANALYSIS

Report No.

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Authorisation Order No. 5743 D

The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		HOLE & VI4	1		
Sample Details	Saction 1 78.31 - 79.10 m	Section 2 79.77 - 88.43 m	Section 3 88.43 - 89.33 m		
As Received Basis Total Moisture %	40.4	44.7	43.8		
As Analysed Basis	ony	<i>74.7</i>	DA Y		
Moisture %	120 - 14.1 - 35.60	100 - 17.3 = 8270	100-12.6:87.40		
Ash %	15.7 /8.68	9.3 11.25	40.1 45.88		
Volatile Matter %	38.5 44.73	40.5 27.97	25.9 29.63		
Fixed Carbon %	31.7 36.50	32.9 39.78	21.4 24.49		
Sulphur %	3.39 3.35	3.68 4.45	3.35 3.83		
Chlorine %	0.86 /60	1.31 /.58	0.93 /.06		
Phosphorus %					
Specific Energy MJ/kg. (Calorific Value)	19.160 331	13.160 /644	8.160 9.34		
Ash Fusibility Temperatures		Oxid. Red.			
Deformation °C		1330 1300			
Spherical °C		1390 1380			
Hemisphere °C		1490 1500			
Flow °C		>1600 1600			

Copies have been sent to

Determinations carried out in Duplicate BS1016 Analysed in accordance with BS10

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THE REPORT STALL BY IN THE REAL PROPERTY.

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169. Chatswood, N.S.W.

2067

COAL ANALYSIS

Report	No.		6404	
···		# • · · · • •		
-				
1.0				

Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bozio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		HOLE & VIY		
Sample Details	Section 1 78.31 - 79.10 m	Section 2 79.77 - 88.43 m	Section 3 88.43 - 89.33 m	
DRY Basis			a a gizala a	
Carbon %	56.6	62.0	37.1	
Hydrogen %	4.01	4,21	2.61	
Nitrogen %	0.26	0.35	D.21	
Sulphur %	3.95	4.45	3.83	
Oxygen %	16.88	17,79	10.35	
Carbonates (CO ₂) %				
Forms of Sulphur				
Pyritic %	2.37	D ₄ 41	0.75	And the state of t
Sulphate %	0.25	0.22	0.32	
Organic %	0.77	3.05	2.28	
	·			

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with

Sampled by

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

Till the till college her the year are state a contract of

COAL ASH AND MINERAL ANALYSIS REPORT

Report No. 6404

Date 9/3/77

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bozio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	the state of the s			
		HOLE & VI	18	
Sample Details	Section 1	Section 2	Section 3	minor.
	78.31 - 79.10 m	79.77 - 88.43 m	88.43 - 89.33 m	
Silicon as SiO ₂ %	9.40	8.15	64.8	
Aluminium as Al ₂ O ₃ %	1.22	4.12	8.40	
Iron as Fe₂O ₈ %	12.15	4.96	5.39	
Calcium as CaO %	8.47	11.17	3.20	
Magnesium as MgO %	10.30	13.68	4.23	
Titanium as TiO ₂ %	0,54	0.53	2,62	
Sodium as Na ₂ O %	12.77	18,06	4,22	
Potassium as K ₂ O %	0.31	0.32	1.22	
Phosphorus as P ₂ O ₅ %	0.02	0.01	0.11	
Manganese as Mn ₃ O ₄ %	0.03	0.04	0.01	
Sulphur as SO ₃ %	24.2	25.4	6.11	
Loss on Ignition	19.43	14.54	0.94	
				e Talente

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with B51016

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS PEPRRIT SHALL NOT BE PERRODHED FYCEPT IN FILL.

galloni,

Report No. 64

Date 9/3/77

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Br. M. Bogio

Chamical Engineer

220 Greenhill Rd. EASTWOOD

<u>, and the second of the secon</u>	· · · · · · · · · · · · · · · · · · ·			
	. 40	HOLE	18 V 152	40
Sample Details	Section 1	Section 2	Section 3	Section 4
	71.35 m - 72.76 m	73.06 - 74.49 m	74.49 - 78.70 m	79.01 - 83.38
As Received Basis Total Moisture %	40.3	44.1	43.1	42.0
As Analysed Basis	2/29	Day	DAY.	Dor"
Moisture %	120 - 13.4 = 86.60	190-13.8=86.20	100-15.6= 84.4	10-13.9 × 85.
Ash %	23.4 27.02	16.2 /8.79	9.0 10.66	7.8 9.0
Volatile Matter %	34.6 38.65	38.9 45.13	41.8 49.53	41.9 20
Fixed Carbon %	28.6 33 03	31.1 36.08	33.6 39-8/	36.4 4.
Sulphur %	5.25 6.06	4.26 4.94	2.99 3.54	3.57 A.
Chlorine %	1.33 /54	1.21 /40	1.03 7.22	1.34 /
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)	17.150 /2.80	18.540 2/.5/	12.840 /5.2/	• 20.610 <i>23</i>
Ash Fusibility Temperatures			Oxid. Red.	
Deformation °C			1125 1010	
Spherical °C			1155 1020	
Hemisphere °C			1180 1030	
Flow			1240 1070	

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with B51016

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

allowing

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

COAL ANALYSIS

Report No. 6454

Date 9/3/77

Authorisation Grder No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bogia

Chemical Engineer

220 Greenhill Rd. EASTWOOD

		A ROLE	18 V152	
Sample Details	Section 1	Section 2	Section 3	Section 4
	71.35 - 72.76 m	73.06 - 74.49 m	74.49 - 78.70 m	79.01 - 83.3
DRY Basis				
Carbon %	50.7	55.9	60.5	61.9
Hydrogen %	3.59	4.03	4.35	4.36
Nitrogen %	0.31	0.41	0.37	0.34
Sulphur %	6.06	4.94	3.54	4.15
Oxygen %	12.34	16.07	20.54	20.15
Carbonates (CO ₂) %				
Forms of Sulphur				
Pyritic %	0.30	0.64	0.32	. 0.91
Sulphate %	0.21	0.19	0.24	0.20
Organic %	5.04	3.43	2.43	2.46

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

المام المام المستحدد المستحدد المام المام

gallon,

COAL ASH AND MINERAL **ANALYSIS REPORT**

Report No. 6404

Date 9/3/77

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Boşio

Chemical Engineer

		220 Greenhill	Rd. EASTWOOD	
		HOLE	18 V 152	
Sample Details	Section 1 71.35 - 72.76 m	Section 2 73.06 - 74.49 m	Section 3 74.49 - 78.70 m	Section 4 79.01 - 83.38
Silicon as SiO ₂ %	55.6	56.9	26.6	29.5
Aluminium as Al ₂ O ₃ %	7.60	7.68	5.29	0.92
Iron as Fe ₂ O ₃ %	12.17	6.54	4.23	2.26
Calcium as CaO %	3.00	4.42	5.07	5.64
Magnesium as MgO %	4.10	5.65	8.73	9.66
Titanium as TiO ₂ %	0.01	0.01	0.11	0.17
Sodium as Na ₂ O %	8.06	10.56	17.80	18.40
Potassium as K ₂ O %	0.22	0.19	0.26	0.23
Phosphorus as P ₂ O ₅ %	0.22	0.05	0.37	0.10
Manganese as Mn ₈ O ₄ %	0.01	0.01	O-G1	0.01
Sulphur as SO ₃ %	9.00	9.11	21.5	25.8
Loss on Ignition	1.03	0.60	11.45	8.47

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. JUST RESERVE SAVET BOA SE BEBRUNNEN EXCEST IN BUILT

000020 Report No.

6404

9/3/77

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 169, Chatswood, N.S.W. 2067

Authorisation Order No. 5743 D

Origin The Electricity Trust of South Austrelia

Report to

Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD

	A STATE OF THE STA	V 153	Kd. EASIWUUU	
	HOLE	14 7.22		
Sample Details	Section 1 72.13 - 74.91 m	Section 2 77.50 - 86.58 m		
As Received Basis Total Moisture %	41.1	40.7		
As Analysed Basis	DRY	DRY		
Moisture %	100 - 16.0 = 84	10.0 -15.9 = 84.10		
Ash %	8.9 10 60	9.8 11.65		
Volatile Matter %	41.0 48.80	40.1 47.68		
Fixed Carbon %	34.1 40.60	34.2 40.67		
Sulphur %,	4.00 4.76	2.39 2.84		
Chlorine %	1.28 /.52	0.86 /04		
Phosphorus %	:			
Specific Energy MJ/kg. (Calorific Value) /	19,990 23.80	20.270 24	10 64 24	
Ash Fusibility Temperatures		Oxid. Red.		
Deformation °C		1130 1110		
Spherical °C		1160 1135		
Hemisphere °C		1200 1145		
Flow °C		1220 1150		

Copies have been sent to

only wised

Determinations carried out in Duplicate Analysed in accordance with

Sampled by

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS REPORT SHALL ROT BE REPRODUCED EXCEPT IN FULL

Danar	+ Na	6404	
veho	. 140.		

S Date 9/

RESEARCH LABORATORIES LTD.
P.O. Box 169,
Chatswood, N.S.W.
2067

Azze	hori	satio	23	0	rder	No.	574	3 D
~~	1411	***	##· · ·	242425	and and and and in-		" <u></u>	

[1] 송리·이탈활동 조금은 환경하다는 [1

Origin The Electricity Trust of South Australia

Report to Dr. M. Bosio

Chemical Engineer

220 Greenhill Rd. EASTWCOD

		ZZU GIESHHALL	. no. EASIMUUD	
	HOLE	WV 153		
Sample Details	Section 1	Section 2		
	72.13 * 7 4.91 m	77.50 - 86.58 m		
DRY Basis				
Carbon %	62.1	60.9		
Hydrogen %	4.37	4.29		
Nitrogen %	0.37	0.40		
Sulphur %	4.76	2.84		
Oxygen %	17.80	19.97		
Carbonates (CO ₂) %		j desa		448
Forms of Sulphur				
Pyritic %	2.00	D.33		
Sulphate %	0.33	0.20		
Organic %	1.67	1.86		

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by Supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

Ballon

COAL ASH AND MINERAL ANALYSIS REPORT

					104	'n.,		
R	eport	N	io.	D 4	404			
••	opon	•	••••	· comme	•••••		 	•••
٠.,			0.7	2/7	y			V.

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 169,

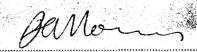
P.O. Box 169, Chatswood, N.S.W. 2067 Authorisation Order No. 5743 D

Origin The Electricity Trust of South Australia

Report to Dr. M. Bogio

Chemical Engineer

220 Greenhill Rd. EASTWOOD


	HOLE	14 V 153	
Sample Details	Section 1	Section 2	
	72.13 - 74.91 m	77.50 - 86.58 m	
Silicon as SiO ₂ %	18.7	24.2	
Aluminium as Al ₂ O ₃ %	7.97	3.87	
Iron as Fe ₂ O ₃ %	4.22	2.52	
Calcium as CaO %	5.99	5.88	
Magnesium as MgO %	10.63	9.65	
Titanium as TiO ₂ %	0.20	0.39	
Sodium as Na ₂ O %	18.70	16.70	
Potassium as K₂O %	0.31	0.25	
Phosphorus as P ₂ O ₅ %	0.24	0.08	
Manganese as Mn ₃ O ₄ %	0.01	0.01	
Sulphur as SO ₈ %	23.0	24.7	
Loss on Ignition	9.00	8.68	
			1 12

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

000023

Report No. 6356

Date 3rd June, 1977

P.O. Box 83,
North Ryde, N.S.W.
2113

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD, S.A. 5063

	V-155	WHITWARTA NO. 31	CORE	
Sample Details	Sample 1	Sample 2 , 36	Sample 3	
19 1	(39.17m to 41.19m)	(A1.24m to 47.60m)	(47,60m to 47,95m)	(47.95m to 49.46m
As Received Basis Total Moisture %	57.6	55.4	35.2	34.6
As Analysed Basis	Day	Dry	Dry	sur
Moisture %	100 - 6.1 939	10-9.5 20.5	10- 2.5 97.5	wi- 2.6 97 A
Ash %	23.4 24.9	23.1 255	72.6 74.5	76.0 78.0
Volatile Matter %	36.5 38.9	36.5 40 3		12.3 12.6
Fixed Carbon %	34.0 36.2	30.9 34.1		9.1 93
Sulphur %	5.16 5.50	4.71 5.20		
Chlorine %	1.76 1.87	1.76 195		
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)	18.130 19.308	17.280 (9.094		5.110 5246
Crucible Swelling No.				
Gray King Coke Type				

Copies have been sent to

Determinations carried out in Duplicate

Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS BEPURT SHALL HOT BE BEPRODUCED EXCEPT IN FULL.

g Gerhards

AUCTRALIAN COAL IMPLICTRY RESEARCH LARORATORIES LT

FORM 1

000024

Report No. 6356

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY ESEARCH LABORATORIES LTD. P.O. Box 83, North Ryde, N.S.W.

2113

Authorisation

Letter dated28.4.77 from Dr. M. Bosio,

Origin

Electricity Trust of South Australia,

Report to

Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

Samula Danila	WHITWARTA MG. 31 CORE	V- 155	
Sample Details	Semplo 5 (49.40m to 52.51m)	*	
As Received Basis Total Moisture %	41.5		
As Analysed Basis	Der		
Moisture %	100 - 2.7 97-3		
Ash %	73.3 75.3		
Volatile Matter %	13.4 13.8		
Fixed Carbon %	10.6- 10.9		
Sulphur %			
Chlorine %			
Phosphorus %			
Specific Energy MJ/kg. (Calorific Value)	6,100 6.269	·	•
Crucible Swelling No.		, , , , , , , , , , , , , , , , , , , ,	
Gray King Coke Type			

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

Sampled by

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS BEPORT SHALL BOT BE REPRODUCED EXCEPT IN FOLL

RESEARCH LABORATORIES LT

000026

COAL ANALYSIS

Report No. 6356

Date 3rd June, 1977

RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113 Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Austrelia,

Report to Dr. M. Bosio,

 $Bo imes \epsilon$, P.O.,

24 CODE 1-155

EASTWOOD. S.A. 5063

geral (1995) The Control of the Cont	WHITWARTA NO.	31 CORE V-153		
Sample Details	Semple 1	Sample 2		
	(39.17m to 41.19m)	(41.24m to 47.60m)		
DRY Basis			the second secon	
Carbon %	50.7	49.3		
Hydrogen %	3.66	3.79		***
Nitrogen %	0.18	0.20		
Sulphur %	5.50	5.20		
Oxygen %	\$ 1 T			
A. Carbonates (CO ₂) %	0.05	0.07		
A.Forms of Sulphur		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Pyritic %	0.50	0.70		
Sulphate %	0.45	0.36		
Organic %	4,21	3.65		

Copies have been sent to

Determinations carried out in Duplicate

Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

J. Gerlando

Report No. 6357

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 83,
North Ryde, N.S.W.

2113

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Вох б, Р.О.,

EASTWOOD. 5.A. 5063

			21.00	T. S. M. S. C.	
, <u></u>		V-156	WHITWARTA NO.	2 CORE	ng an angangan way na dagan Malaysiga angan at taon dipana agan agan agan da angan a
Sample Details		Sample 1 (48.10m to 49.00m)	Sample 2 (49.00m to 49.50m	Sample 3 (49.50m to 52.08m)	Sample 4 (52.08m to 53.
As Received Basis Total Moisture	%	47.1	38.9	44.1	35.1
As Analysed Basis		Dry	Dry	Dry	try
Moisture	%	132 7.2 328	100 - 3.5 86.5	50 - 4.8 PK-2	12.3.4 966
Ash	%	41.4 44.6	62.3 64.6	54.9 57.7	69.3 71.7
Volatile Matter	%	30.4 32.8		23.6 24.8	15.9 16.5
Fixed Carbon	%	21.0 226		16.7 17.5	11.4 11.8
Sulphur	%	6.90 7.44		4.47 4.70	2.96 3.0
Chlorine	%	0.80 0.86.		0.74 0.78	0.64 0.6
Phosphorus	%				
Specific Energy M. (Calorific Value)	J/kg.	12,680 3.664		10.020 10.525	5.770 5.9
Crucible Swelling					
Gray King Coke	Гуре				

Copies have been sent to

Determinations carried out in Duplicate

Analysed in accordance with BS101

Sampled by supplies

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS BEPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

000028

COAL ANALYSIS

Report No. £357

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box, 83, North Ryde, N.S.W. 2113

Latter dated 28.4.77 from Dr. M. Bosio,

Electricity Trust of South Australia. Origin

Dr. M. Bosio, Report to

Box 6, P.O.,

EASTWOOD. S.A. 5063

Sample Details	WHITWARTA NO. 32 CORE	V-156	
	Sample 5 (53.08m to 56.01m)		
As Received Basis Total Moisture %	33,4		
As Analysed Basis	2007		
Moisture %	10 - 2.8° 97.2		
Ash %	77.4 79.6		
Volatile Matter %	12.0 12.3		
Fixed Carbon %	7.8 8.0		
Sulphur %			
Chlorine %	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Phosphorus %			
Specific Energy MJ/kg. (Calorific Value)	5.030 \$.175		
Crucible Swelling No.	\$10 mg/s		
Gray King Coke Type			
	1		

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS BEPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No. 6357

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113

Authorisation Letter dated 28.4.77 from Dr. M. Basio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

	WHITWARTA NO	32 CORE V-156		
Sample Details	Sample 1	Sample 3	Sample 4	
	· ·	(49.50m to 52.08m)		
As Received Basis Total Moisture %				
As Analysed Basis				
Moisture %				
Ash %				
Volatile Matter %				
Fixed Carbon %				
Sulphur %				
Chlorine %	•			
Phosphorus %				er en er en
Specific Energy MJ/kg. (Calorific Value)				
Ash Fusibility Temperatures	OXIDI	SING ATMOSPHERE		
Deformation °C	1160	1350	1510	
Spherical °C	1360	1420	.1540	
Hemisphere °C	1400	1470	1560	
Flow °C	1440	1520	្នំ1600	

Copies have been sent to

Determinations carried out in Duplicate Analysed in accordance with B\$1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS REPORT SHALL NOT BE DEPRODUCED EXCEPT IN FULL

Report No. 6357

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113 Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

			A. Jubi	
	WHITWA	RTA NO.32 COR	V- 156	
Sample D efails	Sample 1	Sample 3	Sample 4	
	(48.10m to 49.00m)	(49.50m to 52.00m)	(52.08m to 53.08m)	
As Received Basis Total Moisture %				(7-30)
As Analysed Basis		•		
Moisture 21 %		•		
Ash %				
Volatile Matter %				
Fixed Carbon %				
Sulphur %				
Chlorine %				
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)				
Ash Fusibility Temperatures	REDUC	ING ATMOSPHER		
Deformation °C	1320	1320	1500	
Spherical °C	1360	1410	1510	
Hemisphere °C	1370	1430	1540	
Flow °C	1410	1450	1600	

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FOLL

Report No. 6357

Date 3rd June, 1977

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. 5.A. 5063

		EASTMUUL. S.A	• 5053	
	MHI	TWARTA NO. 32 C	RE V- 156	
Sample Details	Sample 1	Sample 3	Sample 4	The second of th
And the second s	(48.10m to 49.00m)	(49.50m to 52.08m)	(52.08m to 53.08m)	
DRY Basis				
Carbon %	37.1	26.4	15.40	***
Hydrogen %	2.80	2.26	1.26	
Nitrogen %	0.05	0.06		
Sulphur %	7.44	4.70	3.06	
Oxygen %				
6. Carbonates (CO ₂) %	0.07	0.06	0.06	
. Forms of Sulphur	***			• 11 × 2
Pyritic %	1.90	1.79	0.70	
Sulphate %	0.34	0.47	0.41	
Organic %	4.66	2.21	1,85	

Copies have been sent to

RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W.

2113

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION. THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 83,
North Ryde, N.S.W.
2113

COAL ANALYSIS

Report No. 5358

Date 3rd June 1977

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD, 5.A. 5063

		TVOIAGOD* 2	.A. 5003	an arrangent transcription of a section of the sect
· · · · · · · · · · · · · · · · · · ·	V- 157	BLYTH NO. 1 CORE		
Sample Details	Sample 1	Sample 2	Sample 3) or	Sample 4
	(53.08m to 53.24m)	(75.67m to 80.29m)	(80.29m to 81.31m)	(82.60m to 83.02m
As Received Basis Total Moisture %	37.5	55.3 - are = 55.0	5 53.9	41.4
As Analysed Basis	Dry	ory	Day	Dry
Moisture %	100- 3.7 96.3	100-12.7 87.3	18-8-6 31-4	in-6.2 33.8
Ash %	69.1 71.8	13.1 15.0	19.1 20.9	42.0 44.8
Volatile Matter %	14.7 15.3	44.6 51.1	45.1 49.3	32.2 34.3
Fixed Carbon %	12.5 13.0	29.6 33.9	27.2 29.8	19.6 20.9
Sulphur %		2.98 3.41	2.03 2.22	2.16 2.30
Chlorine %		0.11 043	0.13 0.14	0.10 0.13
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)	5.970 6.199	20.430 23.402	21.050 23 031	14.660 IS 629
Crucible Swelling No.			ave = 23.33	,
Gray King Coke Type		ave= 20.54		

Copies have been sent to

Determinations carried out in Duplicate

Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

eport	No.	63	5	ع

Date 3rd June, 1977

AUSTRALIAN	COAL	INDU	STRY
RESEARCH LA	BORAT	ORIES	LTD.
P.O.	Box	83,	
North R	lyde,	N.S.	W.
	113		

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

er .	EASTWOOD, 5.A. 5063						
* * * * * * * * * * * * * * * * * * *	BLYTH NO.	1 CORE V-157					
Sample Details	Sample 5	Sample 6					
	(97.40m to 98.42m	(117.25m to 11800m)		* .			
As Received Basis Total Moisture %	53.8	38.0					
As Analysed Basis	Devy	Duy					
Moisture %	100 - 8.7 91.3	to 5.0 95.0					
Ash %	17.7 19.4	59.2 62.3					
Volatile Matter %	44.4 486	21.0 22.1					
Fixed Carbon %	29.2 32.0	14.8 15.6	*				
Sulphur %	1.15 1.26		No. of the second secon				
Chlorine %	0.15 0.16		· · · · · · · · · · · · · · · · · · ·				
Phosphorus %							
Specific Energy MJ/kg. (Calorific Value)	21.07023078	9,130 9611					
Crucible Swelling No.							
Gray King Coke Type							
•			-				

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No. 6358

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113

Authorisation	Letter	dated	28.4.77	from	Dr.	М.	Bosio,
Authorisation	Letter	gated	28.4.77	trom	Dr.	М.	Posio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

			V-157	BLYTH	NO. 1	CORE	
Sample Details		Sample (75.67m to		Sample 3		Sample 4 (82.60m to 83.02m)	Sample 5
As Received Basis Total Moisture	%				01,011117	, 02, 00m (0 03, 02m)	191.4UM to 98.42M
As Analysed Basis			*				
Moisture	%						2
Ash	%	-	 				
Volatile Matter	%						
Fixed Carbon	%						
Sulphur	%						-
Chlorine	%	r .					
•	76						
Specific Energy MJ/ (Calorific Value)	kg.						
Ash Fusibility Tempera	tures			OXIDISING	ATMO	5PHERE	
De formation ^o	,c	1200		1200		1430	1230
Spherical °	C	1240		1220		1590	1250
Hemisphere °	C	1250		1230		1600	1280
Flow	C	1300		1260		> 1600	1350

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No. 6358

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113

A - B - A - A								
Authorisation	104400	£	Π	8.4	· ·			
WALLIANIA TO THE STREET		TEOM	UT.	101 -	חופחה	dated	- 2H A	77
						444444	بت و ب ب	/ a .

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

	V- 157	BLYTH NO. 1 COR	E	
Sample Details	Sample 2	Sample 3	Sample 4	Sample 5
	(75.67m to 80.29m)	(80,29m to 81.31m)		197.40m to 98.42m
As Received Basis Total Moisture %				
As Analysed Basis	·		·	
Moisture %				
Ash %				
Volatile Matter %				
Fixed Carbon %				
Sulphur %				
Chlorine %				
Phosphorus %				
Specific Energy MJ/kg. (Calorific Value)			·	
Ash Fusibility Temperatures	REDU	CING ATMOSPHERE		· · · · · · · · · · · · · · · · · · ·
Deformation °C	1200	1180	1580	1200
Spherical °C	1230	1190	1590	1230
Hemisphere °C	1240	1210	1600	1250
Flow °C	1260	1270	1600	1310

Copies have I	been	sent	to
---------------	------	------	----

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled	by	supplied
---------	----	----------

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE BEPRODUCED EXCEPT IN FOLL

Report No. 6358	Report	No. 6358	•••••••
-----------------	--------	-----------------	---------

Date 3rd June, 1977

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.

P.O. Box 83 North Ryde, N.S.W. 2113

Authorisation Letter	.dated.	28,4	77.	from.	Dr.	.M.,	Posio,	

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOD. S.A. 5063

		V-157	BLYTH NO. 1	ORE	
Sample Details		Sample 2	Sample 3	Sample 4	Sample 5
		(75.67m to 80.29m)	(80.29m to_81.31m)	(82.60m to 83.02m)	•
DRY	Basis	4.6			
Carbon	%	58.2	55.8	38.8	56.9
Hydrogen	%	5.19	4.88	3.45	4.90
Nitrogen	%	0.19	0,25		0.21
Sulphur	%	3.41	2,22	2.30	1.26
Oxygen	%				
A. Carbonates (CO ₂)	%	0.11	0.08	0.08	0.08
. Forms of Sulphur					
Pyritic	%	1.00	0.28	0.80	0.30
Sulphate	%	0.13	0.05	0.28	0.04
Organic	%	1.85	1.70	1.08	0,81
	•				
					•

Copies have been sent to

Determinations carried out in Duplicate
Analysed in accordance with BS1016

Sampled by supplied

THIS LABORATORY IS REGISTERED BY THE NATIONAL ASSOCIATION OF TESTING AUTHORITIES, AUSTRALIA. THE TESTS REPORTED HEREIN HAVE BEEN PERFORMED IN ACCORDANCE WITH ITS TERMS OF REGISTRATION.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL

AUSTRALIAN COAL INDUS

AL INDUSTRY RESEARCH LABORATORIES LTD

ANALYSIS AND TESTING Date 30th June, 1977 REPORT

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD. P.O. Box 83, North Ryde, N.S.W. 2113

Authorisation	Letter dated 28.4.77 from Dr.	M. Bosio,
Origin	Electricity Trust of South Aus	stralia,
	Dr. M. Bosio,	
en e	Box 6, P.O.,	
	EASTWOOD. S.A. 5063	

31.9

MINERAL MATTER ANALYSIS (350°C)

		WHITWARTA NO. 31	CORE VISS	
Sample Details		Sample 1 (39.17m to 41.19m)	Sample 2 (41.24m to 47.60m)	
Silicon as Si	%	21.4	16.4	
Aluminium as Al	%	6.24	6.63	
Iron as Fe	%	1.66	2.69	
Calcium as Ca	%	1.94	1.83	
Magnesium as Mg	76	1.61	1.56	
Titanium as Ti	%	0.22	0.23	
Sodium as Na	*	9.36	8.78	
Potassium as K	%	0.33	0.20	
Phosphorus as P	%	0,02	0.03	
Manganese as Mn	%	0.01	0.01	
Sulphur as S	%	5.87	5,59	

32.1

% Mineral Matter d.b.

AUSTRALIAN COAL INDUSTRY RESEARCH LABORATORIES LTD.
P.O. Box 83,
North Ryde, N.S.W.
2113

VALUE

osi.

ANALYSIS AND TESTING REPORT

Report No. 6357

Date 30th June, 1977

13a 2

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

Box 6, P.O.,

EASTWOOD. S.A. 5063

MINERAL MATTER ANALYSIS (350°C)

WHITWARTA NO. 32 CORE V 156

Sample Details		Sample 1 (48.10m to 49.00m)	Sample 3 (49.50m to 52.08m)	Sample 4 (52.08m to 53.08m)
•				33,00m/
Silicon as Si	\$	29.5	34.0	30.0
Aluminium as Al	*	5.60	4.72	6.12
Iron as Fe	8	6.65	3.71	1.75
Calcium as Ca	%	0.53	0.24	0.25
Magnesium as Mg	%	0.54	0.39	0.35
T _{itanium} as Ti	*	0.19	0.17	0.16
Sodium as Na	%	2.50	1.88	1.20
Potassium as K	% .	0.19	0.40	0.45
Phosphorus as P	%	0.04	0.02	0.02
Manganese as Mn	%	0.01	0.01	0.01
Sulphur as S	*	2.56	1.49	1.04
% Mineral Matter	d.b.	44.9	57 . 7	74 . 8

Jalo rois

AUSTRALIAN COAL INDUSTRY
RESEARCH LABORATORIES LTD.
P.O. Box 83,
North Ryde, N.S.W.
2113

ANALYSIS AND TESTING REPORT

Report No. 6358

Date 30th June, 1977

Authorisation Letter dated 28.4.77 from Dr. M. Bosio,

Origin Electricity Trust of South Australia,

Report to Dr. M. Bosio,

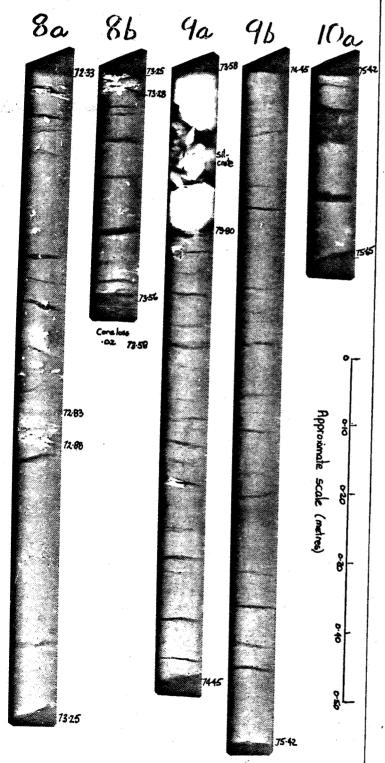
Box 6, P.O.,

EASTWOOD. S.A. 5063

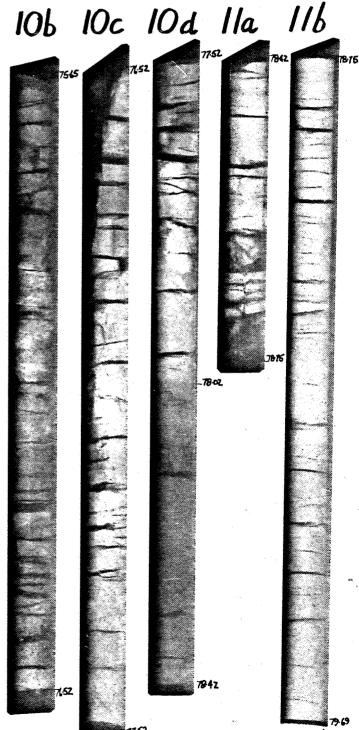
V-157

MINERAL MATTER ANALYSIS (350°C)

BLYTH NO. 1 CORE

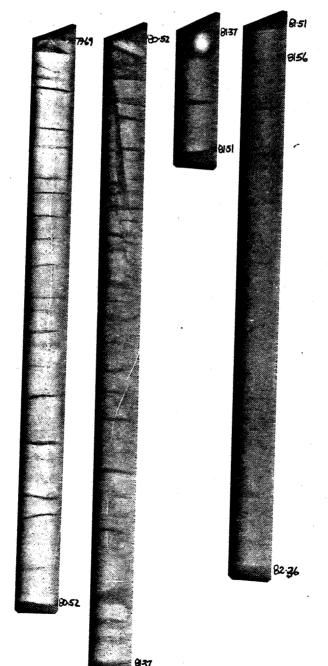

Sample Details	****	Sample (75.67m 80.29m)		Sample 4 (82.60m to 83.02m)	Sample 5 (97.40m to 98.42m)
Silicon as Si	% .	13.7	25.0	38.6	23.9
Aluminium as Al	%	8.36	6.46	1.57	5.42
Iron as Fe	%	6.21	1.81	2.27	0.21
Calcium as Ca	*	8.09	5.75	1.47	5.03
Magnesium as Mg	%	4.61	3.66	1.09	3.65
^T itanium as Ti	%	0.24	0.22	0.17	0.57
Sodium as Na	*	2.83	2.524 1.14	0.58	1.92
Potassium as K	%	0.42	0.91	0.07	0.29
Phosphorus as P	%	0.17	6.07	0.02	0.09
Manganese as Mn	*	0.05	0.04	0.01	0.02
Sulphur as S	%	8.72	5.48	1.80	3.82
% Mineral Matter	d.b.	18.8	24.6	47.0	21.7

are Na = 2.524/16.1 = 0.157are: Na/ash = 0.0252

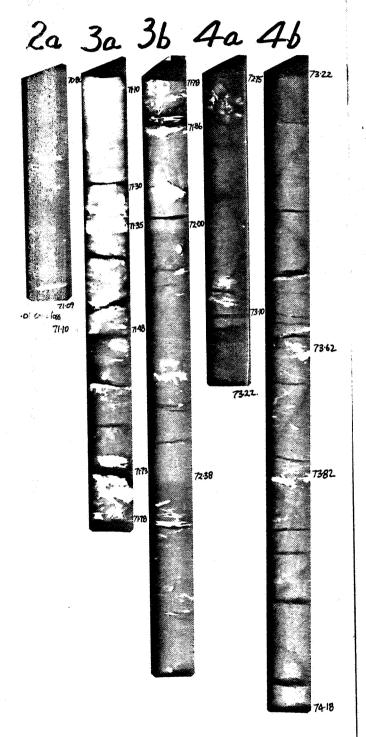

ore Nozo =

fallo un

E.T.S.A. No. 2 HOLE

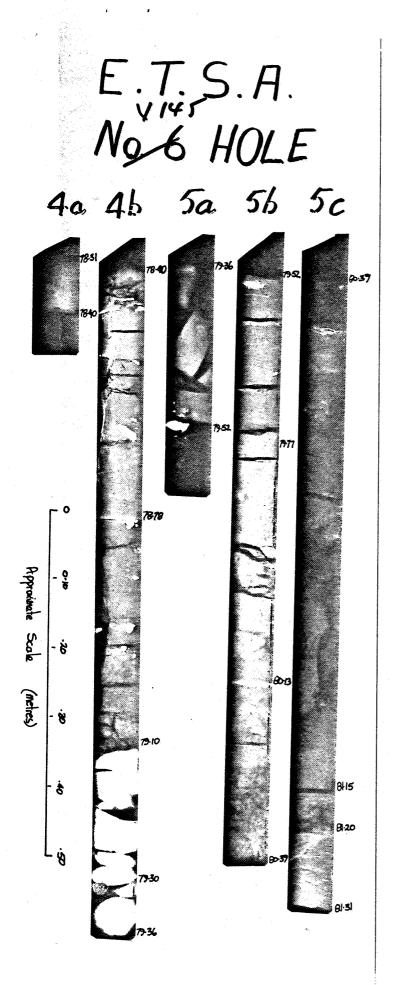


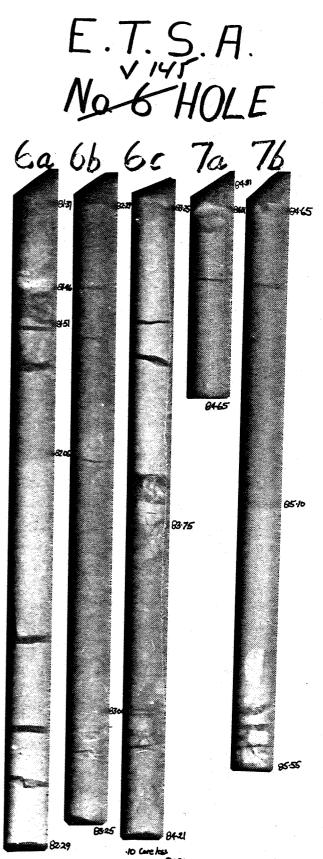
E.T.S.A. No. 2 HOLE

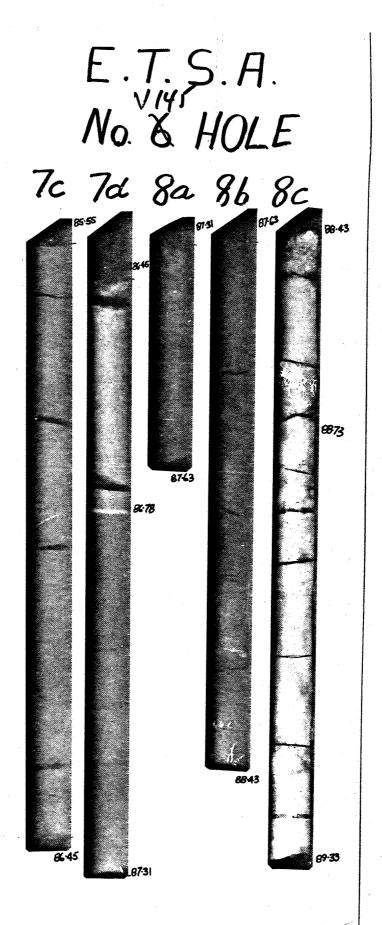


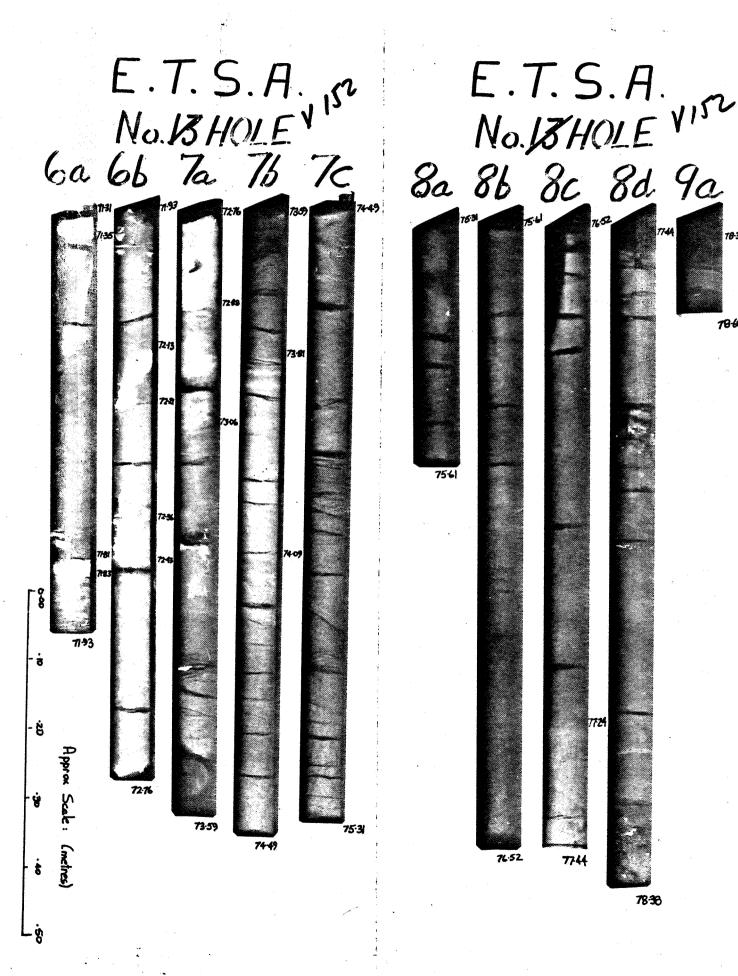
E.T.S.A. No. 2 HOLE

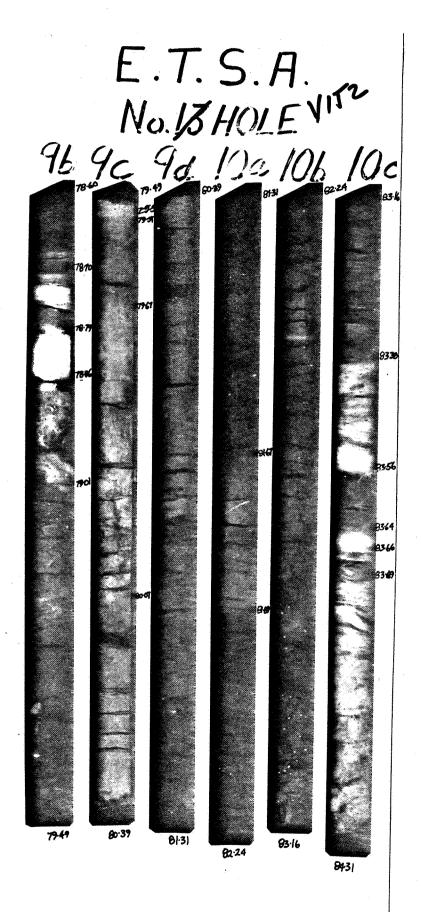

11c 11d 12a 12b

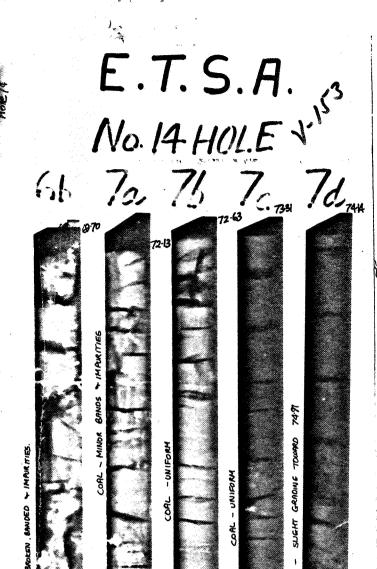

E.T.S.A. No,8 HOLE V. 144 2a 3a 3b 4a 4b

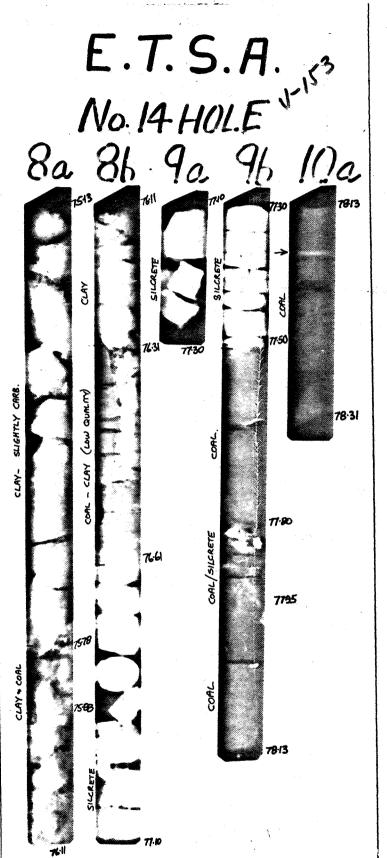


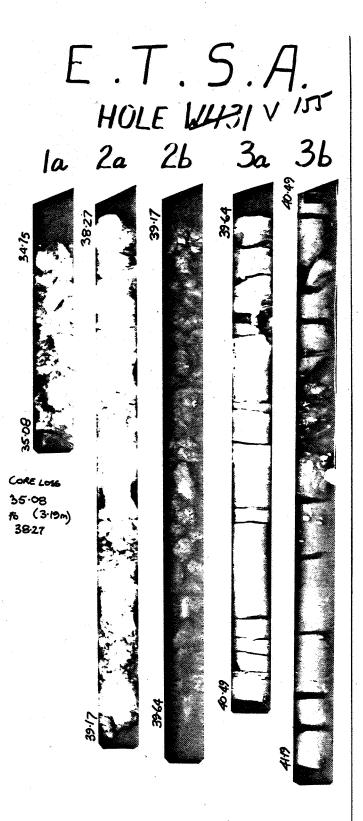

E.T.S.A.

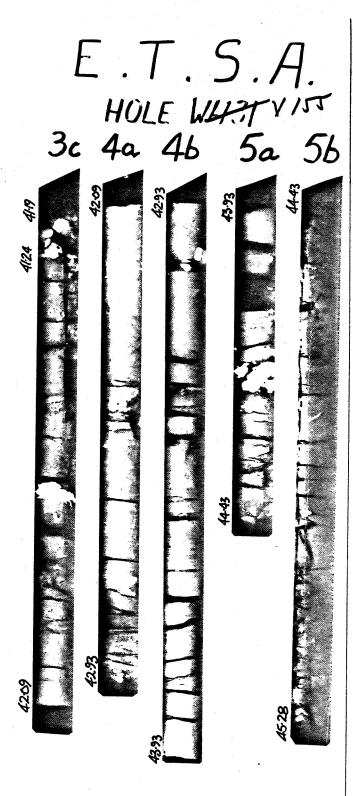



. --

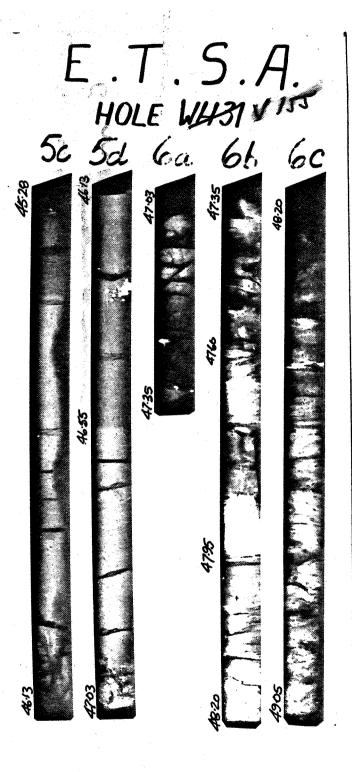






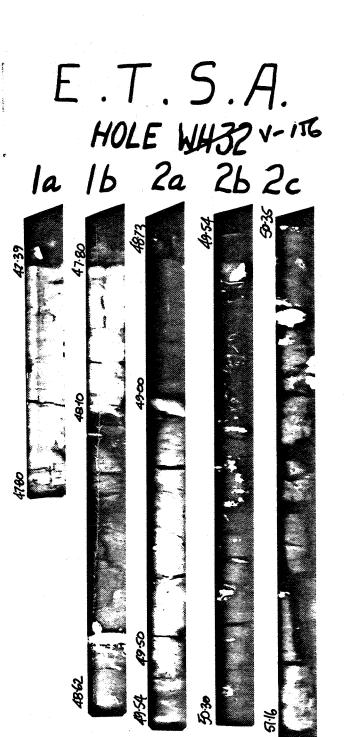

. ..

E.T.S.A. E.T.S.A. 10b 10c 10d 11a 11b 110 11d 120 126 126


E.T.S.A. No. 14 HOLE 1153 130, 136 13c 9673 87.67 87:2**8** 87.46

CORE LOSS

CORE LOSS

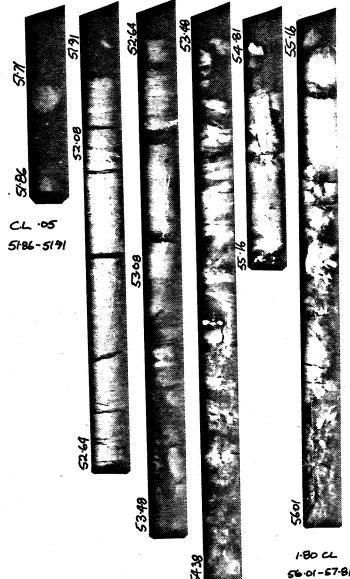


CORE LOSS

CORE LOSS

.08 CORE WSS 4995 - 50.03

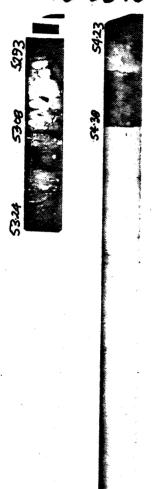
·((Core coss 4962 -48·73


0.55 C.L. 51.16 - 51.71

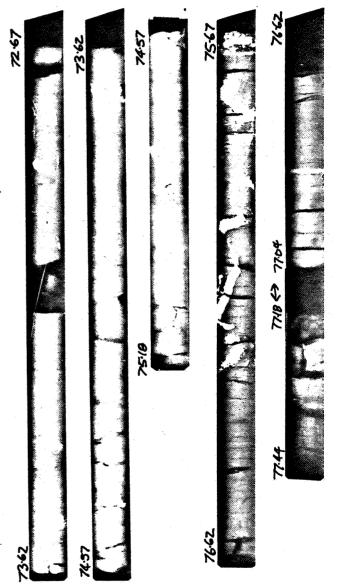
CORE LOSS

E.T.S.A.

HOLE WH32^{V-156}


4a 5a 5b 5c 6a 6b

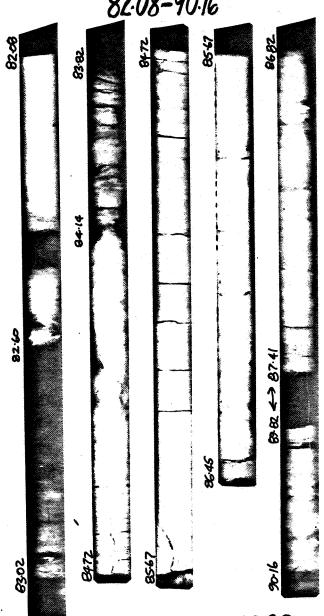
CORE LOSS 54-38-54-91


E.T.S.A.

HOLE BL14-157
52.93-55.18

CORE LOSS 53.24 - 54.23

E.T.S.A.
HOLE BLY V-157
72:67-77:44



CORE LOSS 75.18-75.67 77.04-77.18 E.T.S.A. HOLE BL14-157 77:44-82:08

CORE LOSS

E.T.S.A.
HOLE BLT V-157
82:08-90:16

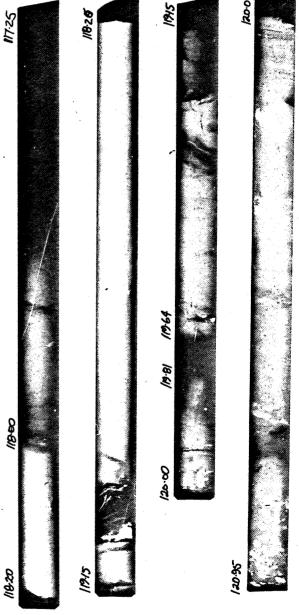
CORE LOSS 83.02-83.82 86.45-86.82 87.41-89.82

E.T.S.A. HOLE BLY V-187 91.72-96.58 CORE LOSS

22.15

90:16-91:72 93:74-93:84

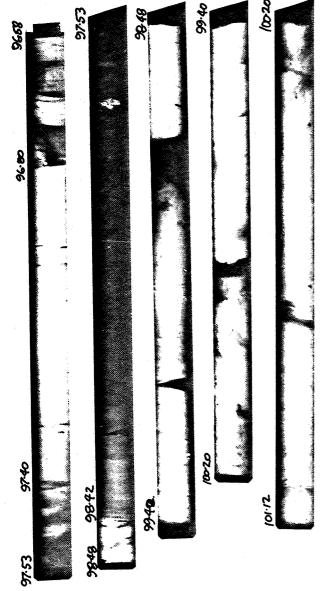
E.T.S.A. HOLE BLY-157


111.33-117.52

CORE LOSS

111·14-1/1.33 112·55-1/3·83 116·15-1/6·72

E.T.S.A. HOLE BL1 V-157


117.25-121.95

CORE LOSS

119.64-119.81

E.T.S.A. HOLE BL1 V-157 96.58-101-12

CORE LOSS

E.T.S.A.

10283-111.14

CORE 6.055 101-12-102-83 104-94-105-83 109-37-109-83

Address all Mail to:-P.O. Box 83,

North Ryde, N.S.W. 2113 Telegraphic Address:

AUSTCOAL, Sydney

P/bd

88 5087, 888 5341

251

Australian Coal Industry Kesearch S Laboratories Ltd.

22-30 Delhi-Road, North Ryde, N.S.W.

REPORT ON

Treatment of Coal from Wakefield, South

Australia, for Removal of Soluble Sa

REPORT TO

The Electricity Trust of South Australia,

220 Greenhill Road,

EASTWOOD .. SOUTH AUSTRALIA .. 5063

For the attention of Dr. M. Bosio, Chemical

Engineer.

REPORT NO

6404

REFERENCE

Order No.5744D

REPORT

PREPARED BY

F. Pollard

DATE

April 29, 1977

TREATMENT OF COAL FROM WAKEFIELD, SOUTH AUSTRALIA, FOR REMOVAL
OF SOLUBLE SALTS

SUMMARY

ACIRL has been commissioned to carry out experiments to study the reduction of soluble salts, mainly sodium chloride, in Wakefield coal by a process of water leaching. The work was authorised by The Electricity Trust of South Australia under Order No.5744D. The samples used were obtained from a combined sample of 6 borecores from Wakefield and were separated into a number of sub-samples over a range of different top particle size grades. Water leaching tests were carried out which showed that sodium chloride was removed from the coal substance as an aqueous solution which reached a salinity of about 2000 mg/litre of sodium chloride. The amount of water necessary to reach this scale of sodium chloride reduction was about 6 times the mass of coal treated.

It was found that potassium, calcium and magnesium, chlorides and/or sulphates were also leached from the coal but in much smaller quantities than sodium chloride. During the leaching operation the coal was affected by the water and there was size degradation of particles making a quantity of fines which were difficult to remove subsequently.

TREATMENT OF COAL FROM WAKEFIELD, SOUTH AUSTRALIA, FOR REMOVAL OF SOLUBLE SALTS

CONCLUSIONS

- Wakefield coal contains water soluble salts, mainly sodium chloride but also smaller amounts of sodium, magnesium, calcium and potassium chlorides, sulphates and bicarbonates. The mineral matter also includes quartz, possibly kyanite and unidentified minerals containing sodium and calcium.
- 2. Practically all of the sodium chloride may be removed from the coal by leaching with water. The leaching process applied to the coal was a laboratory process which included step by step replacement of the leaching solution and which included agitation.
- 3. There is notable particle size degradation of the coal on contact with water, although no information has been obtained as to the influence of agitation on the amount of degradation. The net result of the particle degradation was to increase the amount of fines less than 0.5 mm particle size with a corresponding reduction in the proportion of the largest particles.
- 4. The fines which were evident in the samples after leaching proved difficult to remove by filtration and on the commercial scale would require a water clarification plant. Although flocculation could not be applied indiscriminately to the fine suspensions in the laboratory to improve the capabilities of filtration it is anticipated that they would respond adequately if commercial flocculation were carried out.
- 5. The extent of removal of salts from the coal by leaching depended on the particle sizes of the respective coal samples, which ranged from 38 mm to 3 mm top particle size. In the case of 38 mm top particle sized samples there is good evidence that leaching of elements was not completed despite the particle breakdown that took place. In the case of the 3 mm top particle size sample the material leached out in the 5th and final stage was about 20% of that in the 1st stage.
- 6. It required a mass of water 6 times that of the raw coal and 12 times that of the dry coal to reach the stated levels of leaching.

- The salinity of the water after leaching was over 2000 mg/l of sodium chloride which would require treatment before discharge into a watercourse of fresh water, if other special arrangements could not be made.
- Treatment of the coal after leaching by centrifuge is an important step in removing dissolved salts from the coal and there is evidence that salinity is adsorbed by the coal and the energy applied by the centrifuge is necessary to make a separation. The total moisture content of the coal after leaching and centrifuging was nearly 60%.
- The agreement between sodium removed from the coal as calculated from analysis of the coal substance and that obtained by analysing the aqueous solutions after leaching did not agree and in all cases of the cations the analysis of the coal suggested that more element was removed than was in fact obtained. On the other hand the agreement in the case of the anion chlorine by the same two methods of approach was very good. No explanation can be given for this finding.
- 10. There was no significant improvement in the amount of sodium chloride removed from the coal by leaching after attempted ion exchange by magnesium.
- 11. No removal of water or of a saline solution could be brought about by centrifuging the coal before leaching.
- 12. A commercial operation based on scaling up of these laboratory experiments on reduction of salts content in the coal by leaching would need to overcome several considerable difficulties including a supply of water of low salinity of at least 6 times the mass of coal to be treated, and means to dispose of this volume of saline water or effluent would need to be devised. Another main difficulty to overcome is the technique to deal with the increase in fines brought about by the degrading action of the water on coal particles.

TREATMENT OF COAL FROM WAKEFIELD, SOUTH AUSTRALIA, FOR REMOVAL OF SOLUBLE SALTS

BACKGROUND

This report describes work carried out on material from five drill holes taken of coal seams in the Wakefield area. It follows the aims and technique which were described in ACIRL Proposal on this subject dated 6 August 1976, presented to Dr. M. Bosio. The cores were also used for conventional type analyses, and before separating into convenient sections, an X-ray radiograph was taken and submitted to Dr. Bosio and the actual sections which were analysed were selected using the radiograph pictures. These were detailed to AC IRL in a letter dated 8 December 1976.. This letter also contained certain additions and alterations in methods of the original Proposal.

The radiographs were taken at the Bellambi laboratory and all other work was carried out at the Central Laboratory. The core sectional analyses were reported on 9 March 1977, under Report No.6404.

2. SAMPLES

The cores were received at Bellambi laboratory for x-ray examination after which they were forwarded to Central laboratory for the further work. The depths of cover for each hole were marked on the cores as appropriate and when instructions were received from ETSA, sections were separated accordingly. The samples were then treated as described below in accordance with the amended Proposal.

The following is the list of samples which have been received and used for

WAKEFIELD SAMPLES

HOLE NO.	SECTION NO.	DEPTHS	OF COVER	THICKNESS
		Upper	Lower	
		, m	, n m 1993, n 1 <u>114 j</u> an	m
2		72,33	73,56	1.23
	2	73.80	82.36	8.56
5		7 0.80	71.09	0 . 29
	2	71.48	72.00	0,52
		72.00	73.82	1.82
	4	73.82	76.45	2,63
	5 1 1 2	76.48	77.84	1.36
	6	77.84	78,28	0.44
6	1	78.31	79.10	0.79
**************************************	2	79.77	88.43	8.66
	. 3	88.43	89.33	0,90
13	1	71.35	72.76	1.41
	, i 2	73.06	74.49	1.43
10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (3	74.49	78.70	4.21
	4	79.01	83,38	4.37
14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72.13	74.91	2.78
	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77. 50	86.58	9.08

3. METHOD OF TESTING AND EXAMINATION CONTROL

The Wakefield coal is of low rank and has the normal property associated with such coals of high moisture content. Because of unknown factors involved in the possible drying of the coal which would upset material balances it was decided that the best way to control the situation during the investigation was to delay any drying of the samples as long as possible. Consequently all operations carried out up to the stage of leaching, after which the matter would no longer apply, were deformed in a cellar which is underground and of comparatively even temperature with poor ventilation. The atmosphere was kept as humid as possible by water lowing continuously in the drains and by keeping bags soaked in water at suitable pots in the cellar. The humidity was recorded for this period and remained at 185% relative humidity; which was about 15% higher than the daytime sample preparation room atmospheric conditions.

The samples were weighed as they were taken out of their polythene covers in which they had been kept for X-ray work and transport. They were weighed progressively during the treatment of crushing and subdivision and also after storage over the Christmas period so as to keep a check on the moisture losses.

The records of mass measurements made for this purpose are given in

4. **DUTLINE OF METHOD**

The object of the work was to determine means to reduce the sodium content of the coal, probably present as sodium chloride. This was to be done by leaching with water to get the sodium chloride into solution followed by centrifuging to separate as much of the solution as possible. In addition centrifuging was to be carried out on the coal as received to attempt to remove sodium chloride solution present intrinsically in the coal.

Samples to be leached and/or centrifuged were to be at the following top particle sizes:

38.1 mm

25.4 mm

12.7 mm

6.3 mm

3.2 mm

Reference to these sizes in the following text rounds them off to the respective units. This is for brevity only and the screen sizes used were correctly as stated above.

A sample at each top particle size was leached with distilled water under closely similar conditions of quantities of coal and water, and other experimental details. The method is described in greater detail below, and produced 6 separate samples of solution from each leaching experiment, namely 5 leaching solutions and centrate, which analysed for the following ions — Na, K, Ca, Mg and Cl.

The coal samples were analysed for the same elements before and after leaching.

An experiment was carried out to test ion exchange possibilities by treatment with a magnesium salt in an attempt to exchange the sodium ion in the coal substance for magnesium.

Details of these investigations are given below.

SAMPLE TREATMENT FOR PARTICLE SIZE ADJUSTMENT

On receipt at Central laboratory and after radiography, the cores were correlated with the radiographs. At this stage all cores were in the sealed plastic covers in which they had been placed before despatch to ACIRL. Some moisture had condensed on the inner surface of the plastic.

The sections as detailed in the instructions (Dr. M. Bosio, 8 December 1976) were weighed in the bags. After removal of the cores from the bags, some of the plastic covers were dried and the loss of mass of condensed moisture was determined. This amounted to only a few grams in each case and may be neglected.

The procedure of the investigation required leaching tests to be carried out on one sample combined from all of the sections, the sample being prepared successively through the range of top particle sizes. However, in addition to this a chemical analysis was required of the material in each defined section and consequently it was necessary to separate out an analysis sample from each section before combining them together for the leaching tests. At this stage it became clear that a constraint applied to these requirements because certain of the sections were of insufficient mass for appropriate precision for the separation of an analysis sample at the larger top particle sizes (38 mm and 25 mm). There would not be sufficient particles present for confidence in the sample mass subdivision. Consequently it was decided to take certain of the larger sections only for combination at 38 mm and 25 mm respectively and to include the smaller sections in the combined sample at 12 mm and less. In this way analysis samples could be separated with reasonable confidence in their accuracy.

The sections which were large enough in mass to be crushed to 38 mm top particle size and to allow the analysis sample to be separated, and those which were crushed to 12 mm top particle size were as follows:

Initial	111	crushed	ŧο	38 mm
			00	~ C

Hole 2 Section 2
Hole 5 Section 4
Hole 6 Section 2
Hole 13 Section 3
Hole 13 Section 4
Hole 14 Section 1
Hole 14 Section 2

Initially crushed to 12 mm

Hole 2 Section 1
Hole 5 Section 2
Hole 5 Section 3
Hole 5 Section 5
Hole 5 Section 6
Hole 6 Section 1
Hole 6 Section 3
Hole 13 Section 1
Hole 13 Section 2
plus the available amount of the coal originally crushed to 38 mm.

The cores were weighed as received and also after separating into the sections delineated in the instructions. The core material, which was excluded from the sections to be leached and which was largely stone and clearly of high ash material, was weighed separately and has been termed "reject" in the mass balance below.

Each section to be crushed to 38 mm was crushed manually in the humid cellar as described in Section 3. The sample subdivision was then carried out to separate the analysis sample from that required for the leaching tests. For convenience the residue of the section samples after separating the analysis subsamples and which were used to prepare the combined samples for leaching work, are referred to as bulk samples.

The mass balance of the separation of the sections into respective analysis and bulk samples is given in Table 1 and the losses of moisture brought about during storage of the samples over the Christmas break period are given in Table 2.

TABLE 1
SEPARATION OF SECTIONS INTO WORKING SAMPLES

HOLE NO.	SECTION	MASS OF	MASS OF	MASS OF	<u>TOTÁL</u>
		ANALYSIS	BULK	REJECT	MASS
		SAMPLE	<u>SAMPLE</u>		
		9	9	g	g
2	1 2	1512 9617	2466) 17594)	1204	32393
5	1 2 3 4 5 6	292 542 2062 3215 1318 576	574) 1088) 3450) 5344) 3227) 1057)	2025	24760
6	1 2 3	1121 95 1 2 1486	1451) 17406) 2355)	2823	36154
13.	1 2 3 4	1916 1879 4741 5003	2677) 3229) 9031) 9398)	6332	44206
14	1 2	3181 9421	5738) 18261)	23160	59761

TABLE 2

MOISTURE LOSSES DURING STORAGE

HOLE NO.	SECTION	ANALY	<u>YSIS SAMPL</u>	£	BULK	SAMPLE	
		<u>Mass</u> 24/12/76	<u>Mass</u> 4/1/77	Loss	<u>Mass</u> 24/12/76	<u>Mass</u> 4/1/77	Loss
		· 9	9	%	9.	9	Я
2	1	1512	1479	2.2	2466	2478	0.2(gain)
	2	9617	9612	o . 1	17594	17444	1.0
5	1	292	255	12.6	574	573	
	2	542	532	1.8	1088	1075	1.2
	3	2062	2029	1.6	3450	3459	0.3(gain)
	4	3215	3147.	2.1	5334	5244	1.7
	5	1318	1309	0.7	3227	3220	0.2
•	6	576	51 9	9•9	1075	1042	3.1
6	1	1121	1085	3.2	1451	1409	2.9
	2	9512	9531	0 . 2(ga	in)17406	17302	0.6
	3 A 1	1486	1467	1.3	2355	2313	1.8
_13	1.	1916	1851	3.4	2677	2631	1.8
	2	1879	1813	3.5	3229	3159	2.1
	3	4741	4659	1.7	903 1	8900	1.5
	4	5003	4933	1.4	9398	9383	0.2
14	. 1	3181	3177	0.1	5738	5642	1.7
	2	942 1	9405	0.2	18261	18160	0.6

The bulk sample from the Sections which are listed above as included in the total leaching sample for examination at 38 mm and 25 mm top particle size as first subsampled for a screen analysis (Table 3) which was then added back to the bulk. Two subsamples of 10 kg were then separated for leaching tests and the remainder crushed to 25 mm top particle size.

A screen analysis was made of the sample at this top particle size (Table 3)

Before crushing to 12 mm, the remainder of the sections which had been excluded from the 38 and 25 mm top particle size testing for the reasons described above, were added to the residue of sample after separating the 25 mm subsamples. The process of crushing, screening and separating subsamples for leaching tests were then continued at 12 mm, 6 mm and 3 mm top particle sizes respectively.

The screen analysis of these samples (all before leaching) together with screen analyses made on the coal samples after leaching are given in Table 3.

The samples were now ready for water leaching tests and at this stage were stored over the Christmas holidays.

SIEVE ANALYSES OF SAMPLES BEFORE AND AFTER LEACHING

Top	Mass % (air dried)							
icle Screen Size	Before L	_eaching	After Le	After Leaching				
(mm)	Fractional	Cumulative	Fractional	Cumulative				
+ 25.4	29.5	29.5	19.8	19.8				
-25.4 + 12.6	32.7	62.2	35.6	55.4				
-12.6 + 6.3	18.7	80.9	21.2	76.6				
- 6.3 + 3.2	7.6	88.5	7.0	83.6				
- 3.2 + 0.5	9.2	97.7	9.6	93.2				
- 0.5	2.3	100.0	6.8	100.0				
+ 12.6	33.3	33.3	16.4	16.4				
-12.6 + 6.3	27.0	60.3	32.8	49.2				
- 6.3 + 3.2	11.2	71.5	15.5	64.7				
- 3.2 + 0.5	20.0	91.5	22.0	86.7				
- 0.5	8.5	100.0	13.3	100.0				
+ 6.3	35.1	35.1	22.9	22.9				
- 6.3 + 3.2	18.7	53.8	26.2	49.1				
- 3.2 + 0.5	32.9	86.7	31.4	80.5				
- 0.5	13.3	100.0	19.5	100.0				
+ 3.2	34.9	34.9	29.1	29.1				
- 3.2 + 0.5	47.8	82.7	46.4	75.5				
- 0.5	17.3	100.0	24.5	100.0				
+ 0.5	29.7	29.7	21.5	21.5				
- 0.5	70.3	100.0	78.5	100.0				

6. APPEARANCE OF THE COAL IN THE BORECORES

It was observed during the first crushing of the core material that moisture had concentrated in the outside layers of the cores and had appeared to have migrated outward from the central axis. However this was by appearance only, the cores could not have been described as wet nor was free water visible other than that condensed inside the plastic covers of the cores, which was shown by weighing to have been small in mass.

Apart from friable brown coal there were several other entities which could be identified, i.e.

- (a) a considerable quantity of woody material where the fibre strength was still strong.
- (b) in several of the sections there were appreciable occurrences of pyrite (or marcasite).

7. CENTRIFUGE TESTING

One series of samples at each top particle size from 38 mm to 3 mm was tested in the centrifuge to check any liquid water that could be separated. No centrate was obtained at all at this stage and no further tests were carried out on centrifuging unleached samples.

The centrifuge used for all of the tests was constructed specially for the work and was modelled on commercial coal preparation centrifuges regarding acceleration forces. The common "g" value applying to these centrifuges is about 100 at the mid point of the basket. The actual "g" value calculated at the mid point of the basket is 111.6.

B. WATER LEACHING TESTS

The leaching of each sample with distilled water was performed by a multistage batch process to approximate continuous action whereby after each minute of agitation time of the coal and water one half of the aqueous solution was withdrawn and replaced with distilled water.

An initial mass of about 2 kg of sample was taken and placed with 4 litres of water in an aspirator bottle and shaken for one minute on a laboratory sieve shaker. After a short period for settling solids in suspension half of the water

was decanted off and replaced with an equal volume of distilled water. This was carried out 5 times. After the final leaching stage the solids and remaining solution were centrifuged until all liquid had ceased to flow.

There was notable particle breakdown during the leaching tests which is displayed by the difference in sieve analyses of samples before and after leaching given in Table 3. The general effect was a reduction in mass % of the top sieve sizes and a corresponding increase in the fines, with the middle mass % values remaining roughly constant. This is common in coal degradation occurrence where mass % is transferred from top particle sizes to the fines. Although time was allowed for the solids to settle after each minute of leaching before drawing off the half of the water solution the fine coal particles which were dark brown in colour, displayed no signs of settling and had to be filtered from the suspension of each leaching stage and returned to the solids before carrying out the next stage. Great difficulty was experienced in filtering as the solids readily passed through coarse filter paper while the rate of filtering through fine filter paper, under vacuum was impracticably slow. It was necessary to allow each suspension to make its own filter bed in the filter paper before a clear filtrate could be obtained.

The difficulty in obtaining a clear filtrate was also experienced in the process of centrifuging, where despite lining the basket with filter paper, it proved impossible to obtain a clear centrate. After each centrifuge run the fine solids, deep brown in colour, were separated by filtration and added back to the bulk in the centrifuge basket.

Filtration was improved somewhat by flocculation of the fine suspensions which were involved with the laboratory work. The flocculant was chosen so as to contain a minimum of any ions which were concerned with the test work. The flocculant used was a proprietary brand which contained chlorine in combination. The concentration of flocculant used was 40 mg/l which was too low to affect significantly any analyses later carried out.

The quantity of leach solution removed at each stage was analysed as described in the next section. It was important that moisture contents were determined at all stages where mass was required or analyses to be carried out because of the high moisture content of the coal. The total moisture contents of the samples over the range of different top particle sizes were determined by the standard method of air drying after a preliminary crushing process to 6 mm

top particle size and after determining the moisture loss at this stage the sample was crushed for laboratory analysis and re-exposed for 24 hours, weighing before and after to determine the moisture loss followed by a final moisture determination in the laboratory nitrogen atmosphere oven.

The total moisture is calculated from the three stage moisture contents which were determined as above. A moisture content balance of the full process is given as follows:

Pre Leach Samples

T						
Top Particle Size		38 mm	25 mm	12 mm	6 mm	3 mm
Crush to 6 mm wet mass	g	1256	1000	1000	1000	
After exposure	g	662	512			1000
Moisture loss				572	582	604
Moisture loss %	g	594	488	425	418	396
		47.5	48.8	42.8	41.8	39.6
Mass after crushing for analysis						
	- 9	630	483	541	553	575
Crushing loss (dust)	9	32	29	31	29	29
Mass after exposure	g	604	468	527		
Moisture loss	g	26			525	537
Moisture loss %			15	14	28	38
Moisture determined in		4.1	3.1	2.6	5.1	6.6
the analysis sample %						
Total moisture %		7.8	8.5	8.9	8.0	8.4
forer morardie %		53.4	54.6	49.3	49.2	48.3
				Carlotte and the said		

Post Leach Samples

Top Particle Size	<u>38 mm</u>	<u>25 mm</u>	<u>12 mm</u>	<u>6 mm</u>	<u>3 mm</u>
Mass of wet coal g	2059	2076	2220	2174	2199
Mass of wet coal after air drying g	1019	937	1015	1027	1031
Moisture loss %	50.5	54.9	54.3	52.8	53.1
Moisture determined in the analysis sample %	10.6	10.6	9.3	11.2	10.5
Total moisture %	55.7	59.7	58.9	58.1	58.0

This data is given in full because the results given in this report are of a second leaching run which was carried out on the reserve samples. The first series of tests could not be made to balance because it was not appreciated how greatly the high moisture content of this coal would affect the results and not sufficient moisture determinations were made.

9. RESULTS OF THE LEACHING TESTS

9.1 Analyses of Leach Solutions

The leaching of each separate top particle size of sample provided 5 separate leach solution samples of 2 litre quantity each and one sample of centrate. Each of these has been analysed for the cations, Na, K, Ca and Mg and also the anion C1.

Some analyses were also made for sulphate and carbonate ions.

The volumes of solutions which were drawn off at each stage of the leaching tests are given in Table 31 which gives a water balance of the whole leaching process.

The analyses of the leach solutions are given in Tables 4 to 28. In these tables the following key applies to the table columns.

- Column 1 : Concentration of the ion concerned in the 2 litres removed at that leaching stage, by analysis in g/1.
- Column 2 : Mass of that ion removed out of the system at that stage (i.e. Column 1 multiplied by the solution volume)
- Column 3 : Concentration of that ion in g/l in the centrate removed after the 5th leaching stage solution has been withdrawn by analysis.
- Column 4 : The total mass of that ion in the centrate.

TABLES 4 TO 8

SODIUM - Na

TABLE 4	TOP PARTICLE SIZE 38 mm				
Leaching Stage	Column 1 g/l	Column 2	Column 3 g/l	Column 4	
	0.549	1.065			
	0.727	1,437			
	0 . 69 7	1.379		보고 있는 경기를 받는 이번 수 있다. 기계를 받는 기계를 하는 것이 되었다.	
4	0.608	1.193			
5	0.445	0.897			
Centrate			0.616	1,127	
			TOTAL Na REM	10VED 7.098 g	
TABLE 5		Ţţ	OP PARTICLE S	[ZE 25 mm	
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g	
1	1,425	2.829			
2 · · · · · · · · · · · · · · · · · · ·	1.647	3,228			
3	1.261	2.509			
4	0.920	1.831			
5	0.542	1.087	international designation of the second designation of the second designation of the second designation of the	i kanang panggalangan sa	
Centrate			0.646	1.085	
			TOTAL Na RE	MOVED 12.569 g	
			OP PARTICLE S	T7F 10 mm	
TABLE 6	C_1 1			Column 4	
Leaching Stage	g/l	Column 2 g	g/1	gi elia tina	
1	1.721	3.373			
2	1.372	2.730			
3	1.113	2.215			
940. (1971) 1. (1971)	o .7 79	1.546			
5	0.534	1.052		다는 사용을 가용하는 이번. 건강한 1명 1명 - 1일 1명 1 - 1일 1	
Centrate			0.690	1.090	

TOTAL Na REMOVED 12.006 g

Leaching Stage	Column 1	TOP PARTICLE SIZE 6 mm Column 2 Column 3 Column 4	
	<u>g/1</u>	g g/1 g	
	2.063	4.043	
2	1,573	3.146	
3	0.890	1.753	
4	0.594	1.182	
[4] (1) (5) [4] (1) (1)	0.423	0.854	
Centrate		0.519 0.721	

TOTAL Na REMOVED 11.699 q

_eaching• Stage	Column 1 g/l	Column 2 g	Column 3 g/l	3 mm Column 4 g
	2.167	4.204		
2	1.373	2.677		
3	1.120	2.229		
4	0.787	1.566		
5 11 2 1 2 2 2 2 2 3	0.601	1.214		
Centrate		e de la constantina de la compansión de la La compansión de la compa	0.519	0.753

TOTAL Na REMOVED 12.643 q

TABLES 9 TO 13

POTASSIUM K

TABLE 9	TOP PARTICLE SIZE 38 mm			
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4
	0.010	0.020		
	0.012	0.024		
	0.012	0.024		
4	0.010	0.020		얼마 바로이의 중에 하게 함께 보고 불고 물이 불고 있으므었다
	0.007	0.014		
Centrate			0.012	0.017
		TOTAL	K REMOVED O.	119 д
TABLE 10		TOP PA	ARTICLE SIZE	25 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4
1	0.021	0.042		
2	0.022	0.043		
3 3 3	0.018	0.036		
4	0.012	0.024		
5	0.008	0.016		
Centrate			0.011	0.018
		TOTAL	K REMOVED O.	17 g
TABLE 11		TOP P	ARTICLE SIZE	12 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
1.	0.023	0.045		
2	0.019	0.038		
3	0.015	0.030		
4	0.012	0.024		
5	0.007	0.014		
Centrate			0.011	0.039

TABLE 12	TOP PARTICLE SIZE 6 mm			
Leaching Stage	Column 1	Column 2	Column 3	Column 4
	0.027	0.053		
2	0.021	0.042		
3	0.013	0.026		
	0.008	0.016		
5	0.006	0.012		
Centrate			0.008	0.011
		TOTA	AL K REMOVED	0.160 g
TABLE 13		TOP	PARTICLE SIZ	E 3 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
1	0.029	0.056		
2	0.019	0.037		
3	0.017	0.034		
4	0.012	0.024		
5	0.008	0.016		
Centrate			0.009	0.013

TOTAL K REMOVED 0.180 g

TABLES 14 to 18

CALCIUM Ca

TABLE 14		TOP PARTICLE SIZE 38 mm				
Leaching Stage	Column 1 g/l	Column 2	Column 3 g/l	Column 4 g		
1	0.007	0.013				
2	~0 . 012	0.024				
3 (1) (4) (3) (4) (5) (5) (4) (5) (5)	0.010	0.020				
4 (1) (2)	0.009	0.018				
50 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /	0.004	0.008				
Centrate			0.003	0.005		
		TOTAL	Ca REMOVED	O.088 g		
TABLE 15			ARTICLE SIZE			
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g		
	0.006	0.012				
2	0.014	0.027				
J. 3 4 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10	0.012	0.024				
<u> </u>	0.006	0.012				
5 j., j. 19 je 11.	0.007	0.014				
Centrate			0.008	0.013		
		TOTAL	Ca REMOVED (3 .1 02 g		
TABLE 16		TOP PA	ARTICLE SIZE	12 mm		
Leaching Stage	Column 1	Column 2	Column 3	Column 4		
Leadning Juage	g/1	g g	g/1	g		
	0.059	0.116				
2	0.049	0.090				
3	0.030	0.060				
4	0.019	0.038				
5	0.008	0.016				
Centrate			0.012	0.019		

TOTAL CO REMOVED O 339 d

ABLE 17	rang garangan s	TOP PARTICLE SIZE 6 mm
Leaching Stage	Column 1 g/l	Column 2 Column 3 Column 4 g g/l g
	0.080	0.167
	0.051	0,102
교통하다 경기 기계 시간 기계	0.023	0.045
	0.010	0.020
1 - 177 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.004	0.008
Centrate		0.012 0.017

TOTAL Ca REMOVED 0.359 q

TABLE 18	•		TOP PARTICLE SIZE 3 mm
Leaching	Stage	Column 1 g/l	Column 2 Column 3 Column 4 g g/1 g
	1	0.075	0.146
	2	0.047	0,091
	3	0.033	0.066
	4	0.018	0.036
	5	0.008	0.010
Cent	rate		0.007 0.010

TOTAL Ca REMOVED 0.365 g

TABLES 19 TO 23

MAGNESIUM - Mq

TABLE 19	TOP PARTICLE SIZE 38 mm /				
Leaching Stage ^	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g	
	0.003	0.006			
	0.004	0.008			
3	0.004	0.008			
4	0.008	0.016			
5	0.016	0.032			
Centrate			0.010	0.018	
		<u>TOT</u> 4	NL Mg REMOVED	0.088 q	
TABLE 20		TC	P PARTICLE S	IZE 25 mm	
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/1	Column 4 g	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.115	0.228			
2	0.160	0.314			
3	0.101	0.202			
4	0.054	0.108		er in de formatier en de la service de l La service de la service d La service de la service d	
5	0.025	0.050			
Centrate			0.029	0.049	
		<u>, 10</u>	TAL Mg REMOVE	D 0.951 g	
TABLE 21		T	OP PARTICLE S	SIZE 12 mm	
Leaching Stage	Column 1 g/l	Column 2	Column 3 g/l	Column 4 g	
10.40	0.168	0.329			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.148	0.296			
	0.095	0.190			
4	0.060	0.119			
	0.075	0.150			
Centrate			0.043	0.068	

TOTAL Mg REMOVED 1.152 g

TABLE 22		TOP	PARTICLE SIZE	6 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
	0.218	0.427		
2	0.148	0.296		
3	0.072	0.142		
4	0.036	0.072		
	0.019	0.038		
Centrate			0.023	0.032
		<u>r</u> (TAL Mg REMOV	ED 1.007 g
TABLE 23		TOP	PARTICLE SIZ	E3 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
, 1	0.205	0.398		
2 2	0.142	0.277		
3	0.100	0.200		
4	0.056	0.112		
5	0.033	0.066		
Centrate			0.027	0.039

TOTAL Mg REMOVED 1.092 g

38 mm

TABLES 24 TO 28

TABLE 24

CHLORIDES as Cl

TOTAL C1 REMOVED 15.226 q

Leaching Stage	Column 1 g/l	Column 2	Column 3	Column 4
	0.757	1.469		
2	1.010	1.997		
3	0.941	1.861		
4 12 2 2 3 3	0.787	1.544		
5	0.524	1.056		
Centrate			0.858	1.570
		TOTA	L C1 REMOVED	9.497 q
TABLE 25			TOP PARTICL	E SIZE 25 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
the state of the s	2.025	4.020		
2	2.370	4.645		
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.671	3.325		
4	1.109	2.207		
5	0.666	1.335		
Centrate			0.753	1.265
		<u>TOTA</u>	L C1 REMOVED	16.797 g
TABLE 26			TOP PARTICL	E SIZE 12 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 g
1	2.396	4.696		
2	1.832	3.646		
y 1941. 3 14 12 2	1.275	2.537		
4 3 3	0.972	1.929	가는 하시다는 하시다. 보통하기 남편, 연구를	
5	0.581	1.145		
Centrate			0.806	1.273

TABLE 27			TOP PARTICLE S	IZE 6 mm
Leaching Stage	Column 1 g/l	Column 2	Column 3 g/l	Column 4
	2.897	5.678		
2	2.040	4.080		
3	1.128	2.222		
4	0.707	1.407		
5	0.470	0.949		
Centrate			0.560	0.778
		<u>I</u> O	TAL C1 REMOVED	15.114 <u>a</u>
TABLE 28			TOP PARTICLE S	SIZE 3 mm
Leaching Stage	Column 1 g/l	Column 2 g	Column 3 g/l	Column 4 9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.064	5.944		
2 14 15 15 15 15 15 15 15	1.796	3.502		
3	1.440	2.866		
4	0.987	1.964		
5	0.648	1.309		
Centrate			0.700	1.015

TOTAL C1 REMOVED 16.600 g

9.2 Analysis of Coal Samples

The samples of coal of each top particle size were analysed before and after leaching for sodium, potassium, calcium, magnesium and chlorine. Results are as follows:

TABLE 29

BEFORE LEACHING						
TOP PARTICLE SIZE	%	IN COAL	(AS ANA	LYSED)		
	Na	K	Ca	Mg	Cl	
38	2.77	0.07	1.49	1.71	1.04	······································
25	2.95	0.07	1.47	1.82	1.61	
, 12	2,52	0.15	1.52	1.77	1,50	
6	3.06	0.13	1.57	1.86	1.50	
3	3.00	0.14	·1 . 60	1.84	1.59	
AFTER LEACHING						
38	1.15	0.04	1. 48	1.66	0.07	
<u>, 25</u>	0.99	0.04	1.45	1.62	0.07	
12	0.89	0.06	1.34	1.40	0.10	
6	0.80	0.05	1.23	1.39	0.03	
3	0.84	0.07	1.33	1,42	0.07	
						and the

9.3 Analysis for Sulphates and Bicarbonates

The centrate from the centrifuge tests of each top particle size were analysed for sulphates and bicarbonates because there was more sodium in the leach solutions than the correct proportion of Na to Cl in Na Cl, i.e. that other sodium salts were present. The following results were obtained.

TABLE 30

TOP PARTICLE SIZE	ANALYSIS OF CENTRA	TE IN mg/l
	Alkalinity as S Bicarbonates	00 ₄ ion
38 25	20 21	100 97
12	13	97 109
	26	88
3	21	100

This shows that the sodium, as well as potassium, calcium and magnesium are present collectively as chloride, sulphate or bicarbonate.

10. ASSESSMENT OF RESULTS

A balance of the coal mass as it passed through the various stages of leaching is given below which shows the losses or gains which were recorded over the operation. These ranged from a loss of 3.2% dry coal to a gain of 4.1%

TABLE 31

COAL MASS BALANCE DATA

TOP PARTICLE SIZE		38 mm	25 mm	12 mm	6 mm	3 mm
Coal used for leaching tests Total moisture % Dry coal used	g	1985 53.4 925	1988 54•6 903	1994 49.3 1011	2001 49.2 1017	1999 48.3 1033
Mass of coal from centrifuge at atmospheric equilibrium Fines in centrate Total coal Moisture content % Dry coal after centrifuging	a a a	1019 36 1055 10.6 945	937 49 986 10•6 883	1015 40 1055 9.3 957	1027 62 1089 11.2 967	1031 86 1117 10.5 1000
Coal recovered from centrifuge filter paper Total dry coal recovered Loss or gain %	g ,	18 963 + 4.1	36 919 + 1.8	21 978 - 3.2	17 984 3.2	25 1025 - 0.8

A water balance is given as follows.
All data in grams or millilitres.

TABLE 32
WATER BALANCE

TOP PARTICLE SIZE	38 mm	25 mm	12 mm	6 mm	3 mm
Water into System					
Moisture in coal	1060	1085	983	984	966
Water added 1st stage of leach	3988	4002	3971	3977	3977
Water added 2nd stage of leach	1995	1990	2010	1980	1970
Water added 3rd stage of leach	2000	1985	1990	1990	2010
Water added 4th stage of leach	1980	1990	1990	1980	2000
Water added 5th stage of leach	2000	2000	1990	1990	2000
Total water into system	13023	13052	12934	12901	12923
		# .: 			
Water out of System					
Water removed after 1st leach	1940	1985	1960	1960	1940
Water removed after 2nd leach	1977	1960	1990	2000	1950
Water removed after 3rd leach	1978	1990	1990	1970	1990
Water removed after 4th leach	1962	1990	1,985	1990	1990
Water removed after 5th leach	2015	2005	1970	2020	2020
Moisture in centrifuge coal	1209	1346	1381	1394	1473
Moisture losses in filter paper	98	8.5	90	92	81
Centrate solution volume	1830	1680	1580	1390	1450
Total water out of system	13009	13041	13044	12816	12894

Balances may be drawn for the elements sodium, potassium, calcium, magnesium and chlorine for the leaching process using the calculated masses of each element extracted from the leaching stages as given in Tables 4 to 28 and the loss in mass % of the elements analysed in the coal (Table 29).

The following basic data has been used in all of the material balance calculations whereby the mass of the coal taken for leaching is obtained at the "as analysed" moisture. These masses can then be applied to the mass % of the appropriate element obtained by analysis of the coal to calculate the mass of each element in the coal before and after leaching.

TABLE 33

PARTICLE IZE	1		EACHING ES	AFTER LEACHING SAMPLES		
1	TESTS g	As analysed moisture %	Mass of coal at as analysed moisture g	As analysed moisture %	Mass of coal at as analysed moisture g	
38	925	7.8	1003	10.6	1035	
25	903	8.5	987	10.6	. 1010	
12	1011	8.9	1109	9.3	1115	
6	1017	8.0	1105	11.2	1145	
3	1033	8.4	1128	10.5	1154	

SODIUM BALANCE		TABLE 3		
Top Particle Size	Mass of Na in coal before leaching g	Mass of Na in coal after leaching g	Mass of Na removed by difference	Mass of Na removed by analysis of leaching solutions
38	27.8	11.9	15.9	7.1
25	29.1	10.0	19.1	12.6
12	28.0	9.9	18.1	12.0
6	33.8	9.2	24.6	11.7
3	33.8	9.7	24.1	12.6
POTASSIUM BALANC	DE	TABLE 3	5	
Top Particle Size	Mass of K in coal before leaching	Mass of K in coal after leaching	Mass of K removed by difference	Mass of K removed by analysis of leaching solutions
	g	g	· g	g g
38	0.70	0.41	0.29	0.12
25	0.69	0.40	0.29	0.18
12	1.67	0.67	1.00	0.19
6	1.66	0.57	1.09	0.16
3	1.58	0.81	0.77	0.18
CALCIUM BALANCE		TABLE 3	6	
Top Particle Size	Mass of Ca in coal before leaching	Mass of Ca in coal after leaching	Mass of Ca removed by difference	Mass of Ca removed by analysis of leaching solutions
· ·	g	g	g 	g
38	15.4	15.3	0.1	0.09
.* - 25	14.5	14.6	Nil	0.4
6	17.3	14.1	3.2	0.4
3	18.0	15.3	2.7	0.4

MAGNESIUM BALANG	CE	TABLE 37		
Top Particle Size	Mass of Mg in coal before leaching g	Mass of Mg in coal after leaching g	Mass of Mg removed by difference	Mass of Mg removed by analysis of leaching solutions
38	17.2	17.2	Nil	
25	18.0	16.4	1.6	0.09
12	19.6	15.6	4.0	0.9
6	20.6	15.9		1.1
3		4	4.7	1.0
	20.8	16.4	4.4	1.1
CHLORINE BALANCE		TABLE 38		
Top Particle Size	Mass of Cl in coal before leaching g	Mass of Cl in coal after leaching g	Mass of Cl removed by difference	Mass of Cl removed by analysis of leaching solutions
38	10.4	0.7	9.7	
25	15.9	0.7	15.2	9.5
12	16.6	1.1		16.8
6			15.5	15.2
	16.6	0.3	16.3	15.1
3	17.9	0.8	17.1	16.6

11. ION EXCHANGE TESTS

Advice had been received that the ions of sodium and magnesium could be exchanged. If this could be carried out the magnesium would offer no complications to the combustion of Wakefield coal as would apply to the sodium. A test was carried out by agitating some 3 mm top particle size samples for about 5 hours in a 1% solution of magnesium sulphate. After agitation the sample was filtered, with no washing of the coal residue in the filter, and the filtrate analysed for Na. K. Mg and Ca ions.

A sample of the same - 3 mm coal was similarly agitated with distilled water and filtered in an identical fashion. An analysis of the filtrate in this case was carried out as previously.

The results were as follows:

	mg/1						
			Mg	Κ	Са	Na	
$Mg SO_4$ test solution			1883	0.5	9 -	2	
Filtrate after Mg SO ₄							
treatment	Run	(1)	1883	44	479	3168	
en e	Run	(2)	1815	43	456	3114	
Filtrate after water							
treatment	Run	(1)	563	40	196	2945	
	Run	(2)	548	40	194	2980	

It is considered that the increase in sodium content in the leaching water was not significant in respect of the total amount of sodium chloride present, in consideration of the period of time which the contact was made and of the cost of magnesium salts, which would largely have been wasted in the effluent.

12. X-RAY DIFFRACTION EXAMINATION

Two subsamples of the coal samples were supplied to the A.C.I. Technical Centre for X-ray diffraction examination. Their report and comments are given below:

"We have examined by X-ray diffraction two samples of powdered coal received from you on Order Nos.1549 and 1578 dated 15/3/77 and 24/3/77 respectively.

X-Ray diffraction results are as follows:

1st Sample (Low-rank coal)

Moderate quartz, SiO₂

Low gypsom CaSO₄2H₂O

2nd Sample

Moderate quartz, SiO₂

Low gypsom 2CaSO₄H₂O

Low Sodium chloride NaCl

3 - 5%

<1%

Enclosed is an X-ray diffraction chart on the <u>ashed</u> product of the 2nd coal sample.

As noted SiO $_2$ predominates followed by NaCl and CaSO $_4$ (the hydrated varieties would have been converted to CaSO $_4$ anhydrous in the ashing process). Some Fe $_2$ O $_3$ is present and some major peaks could not be defined. One (d spacing at 1.37A $^{\circ}$) could be kyanite but no supporting kyanite peaks appear.

An emission spectrograph run on ash was also done. Results are -

SiO ₂	20-40%
Na ₂ O	10-20%
CaO	5-10%
MgO	5-10%
Fe ₂ 0 ₃	5-10%
A1 ₂ 0 ₃	0.5 - 1%
K ₂ 0	0.5 - 1%
B ₂ O ₃	0.3%
CuO	0.03%
MnO	0.02%
Cr ₂ ⁰ 3	0.01%
NiO	trace

13. DISCUSSION

The object of the leaching tests was to examine the possibility of removing sodium chloride from the coal by water solution and to obtain some parameters which would appear to govern the extent by which this could be accomplished. There was a considerable reduction in sodium chloride content of the coal by the leaching and, depending on particle size, most of the sodium chloride was dissolved out after treatment by 6 times the mass of the coal at about 50% moisture content.

There is evidence that there are sodium containing minerals occurring in the coal which are not soluble in water. However the chlorides are reduced close to zero by leaching and this can be taken as good evidence that the sodium chloride is almost completely removed by water at a 6:1 ratio of water:coal.

The ratio of sodium to chlorine in the leaching water is of the order of 0.8, whereas that of Na to Cl in NaCl is 0.65. This shows that sodium is also removed by leaching as other soluble salts probably as sulphate.

There was poor agreement between the sodium removed by leaching expressed as a difference of the contents of the element in the coal before and after leaching compared with the amount actually removed and analysed in the leaching water. There is no evidence in the results which explains this finding. The best agreement between these two methods of assessing the effect of leaching was obtained with the chlorides, which suggests that the chlorine occurs in the coal practically all as sodium chloride and is almost completely removed by leaching. Since there is reasonable agreement between the proportions of sodium, chlorides, sulphates and carbonates and other elements which were removed in the leaching water it can be assumed that sodium in particular occurs in the coal as insoluble minerals which may be difficult to analyse correctly, and which may contribute to the discrepancy in the sodium balance.

The influence of particle size on the ability to leach salts from the coal is somewhat obscured by the physical breakdown of the coal in agitated water. However there is clear evidence that smaller particles allow leaching to take place more readily than in the case of larger particles. Thus the concentration of chlorides in the solution removed after leaching stages is reduced to half in 3 stages in the case of the 3 mm top particle size coal but requires 5 stages in

the case of the 38 mm top particle size sample to be halved. Also in the case of the 38 mm top particle size leaching test runs, the 2nd leaching stage removes more of each element than the 1st stage leach, showing that physical breakdown of the particles releases more of the salts concerned to be removed in the leaching water.

The breakdown of the particles in water would be an important factor in a commercial operation and would require a water clarification section involving flocculation and filtration of the fines. Since the fines proved difficult to filter in the laboratory they would probably not be easy to treat on the commercial scale.

The salinity of the water was increased by about 2000 mg/l of sodium chloride in the full leaching process. Since a commercial operation would be using water which might originally contain some sodium chloride in solution it is likely that disposal of the effluent might raise some problems.

Calcium sulphate was detected in the coal by X-ray diffraction. Very little of this was removed by leaching as might be expected. Similarly magnesium was leached out only to a small extent. Potassium occurs to such a small extent that it could cause no problems.

It was notable that in every case the centrate obtained by the centrifuging of the leached solids was of greater salinity than the water drawn off after the last stage of leaching, although the expectation would be that this last stage solution and the centrate would be equal in salts concentration. A conclusion is that salts, including sodium chloride are adsorbed into the coal surface and are not readily released unless by the application of energy in this case by the gravity effects of the centrifuge. The centrifuge thus represents an important stage in salts removal.

should we i leach centrifoge leach exity

A Collins

Australian Coal Industry Research Laboratories Ltd.

To conserve water

EXPLORATION LICENSE 290

PORT WAKEFIELD AREA

OPERATIONS SUMMARY

THIRD AND FOURTH QUARTERLY REPORTS

- 103 holes have been completed for a total of 8830 metres.
- Hole numbers are chronological from V165-V267.
- Drilling contractor was "Thompson Drilling Company" of Millicent, South Australia.
- Surveying of holes is still under way by ETSA Survey Branch.
- Technical supervision of the programme was under the control of G. Mayer of the SADME.
- Geological logging was by :
 - C. Windsor student working for SADME
 Vicki Golin Geologist, ETSA now with SADME
 Gavin Springbett Geologist, ETSA
- All holes were drilled using a Mayhew 1000 rig and were HQ core size.
- Core samples are at present stored at SADME Core Depot and are being logged in detail by G. Meyer. These will eventually be chemically analysed by AMDEL.

EXPENDITURE

Expenditure	for	the	third	and	fourth	quarter	is	as	foll	Lows	:
Drilling	and	Geor	physica	al Lo	gging			¢	129	639	
Administ	ratio	חכ							7	000	
Chemical	Ana]	Lyses	3						19	254	
								9	155	893	

SUMMARY

e de la companya de l					/
Total for year					\$226 973
Plus	third	&	fourth	quarter	155 893
Expenditure for	first	&	second	quarter	\$ 71 080

