A preliminary investigation into the groundwater salinity of the Robinson Lens, Streaky Bay, South Australia

Keith G. Brown and Glenn A. Harrington

Resource Assessment Division Department for Water Resources

December 2001

DWR Report 2001/019

Resource Assessment Division

Department for Water Resources Level 11, 25 Grenfell Street, Adelaide GPO Box 1047, Adelaide SA 5001

Phone <u>National</u> (08) 8463 6800

International +61 8 8463 6800 National (08) 8463 6999

International +61 8 8463 6999

Website www.dwr.sa.gov.au

Disclaimer

Fax

Department for Water Resources and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department for Water Resources and its employees expressly disclaims all liability or responsibility to any person using the information or advice.

© Department for Water Resources 2001

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968* (Cwlth), no part may be reproduced by any process without prior written permission from the Department for Water Resources. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Resource Assessment Division, Department for Water Resources, GPO Box 1047, Adelaide SA 5001.

Acknowledgements

We wish to acknowledge the assistance of SA Water in particular Michael (Bruce) Taylor from the Streaky Bay office for his assistance in the field.

Preferred way to cite this publication

Brown, K.G., and Harrington, G.A., 2001. A Preliminary Investigation into the Groundwater Salinity of the Robinson Lens, Streaky Bay, South Australia. *South Australia. Department for Water Resources. Report*, DWR 2001/019.

Cover — PIRSA photo numbers 045201, T024975, 045226, 047612, 047855. Water droplet is courtesy of Adam Hart-Davis / DHD Photo Gallery.

FOREWORD

South Australia's water resources are fundamental to the economic and social wellbeing of the State. Water resources are an integral part of our natural resources. In pristine or undeveloped situations, the condition of water resources reflects the equilibrium between rainfall, vegetation and other physical parameters. Development of surface and groundwater resources changes the natural balance and causes degradation. If degradation is small, and the resource retains its utility, the community may assess these changes as being acceptable. However, significant stress will impact on the ability of a resource to continue to meet the needs of users and the environment. Degradation may also be very gradual and take some years to become apparent, imparting a false sense of security.

Management of water resources requires a sound understanding of key factors such as physical extent (quantity), quality, availability, and constraints to development. The role of the Resource Assessment Division of the Department for Water Resources is to maintain an effective knowledge base on the State's water resources, including environmental and other factors likely to influence sustainable use and development, and to provide timely and relevant management advice.

Bryan Harris
Director, Resource Assessment Division
Department for Water Resources

ABBREVIATIONS

General

AHD Australian height datum

DWR Department for Water Resources

EC electrical conductivity

yr year

Measurement

Units of measurement used in this volume are those of the International System of Units (SI) as well as units outside the SI which have been authorised for use within Australia's metric system.

cm centimetre (length; 10⁻² m) km kilometre (length; 10³ m) L litre (volume; 10⁻³ m³)

m metre (length)

mg milligram (mass; 10⁻⁶ kg)
ML megalitre (volume; 10³ m³)
mm millimetre (length; 10⁻³ m)

μS microsiemens (electrical conductance; 10⁻⁶ A².s³/kg.m²)

CONTENTS

Fore	eword	3
Abb	reviations	4
Exe	cutive summary	6
Intro	oduction	6
Арр	proach	9
Res	ults and discussion	9
Con	nclusions	10
Rec	ommendations	10
1	Depth to water and salinity readings, October 2001 Observed well salinity and depth profiles, October 2001	
FIG	URES	
1 2	Streaky Bay water supply, Robinson Lens observation network	7
	Robinson Basin	8

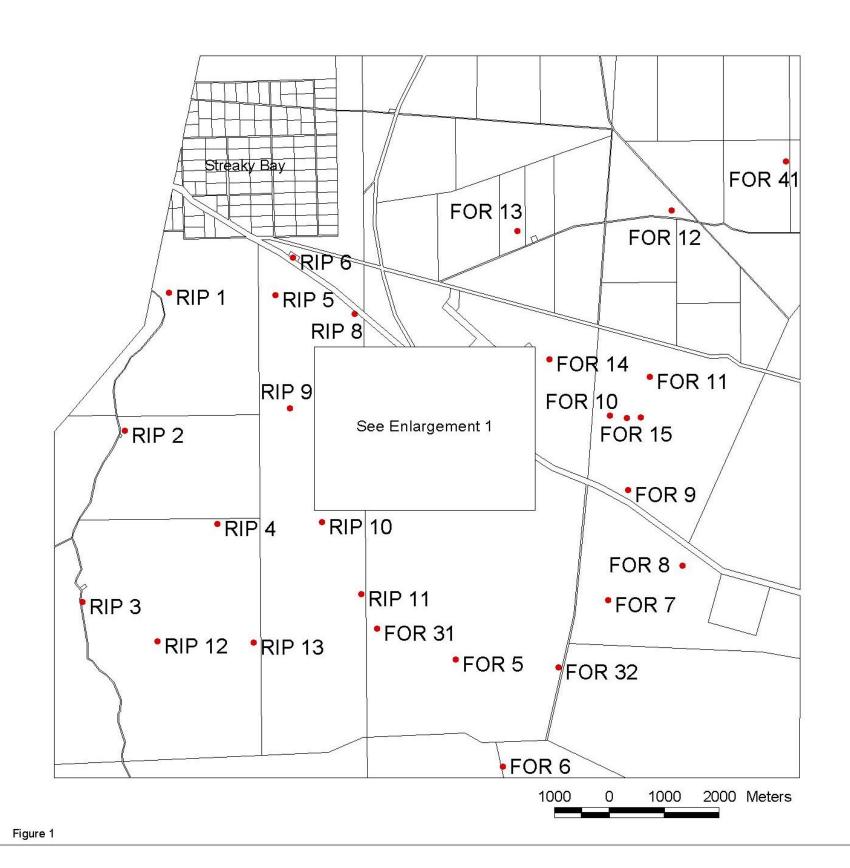
A Preliminary Investigation into the Groundwater Salinity of the Robinson Lens, Streaky Bay, South Australia

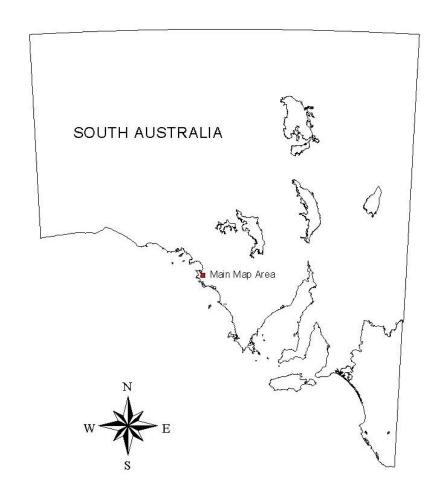
Keith G. Brown and Glenn A. Harrington

EXECUTIVE SUMMARY

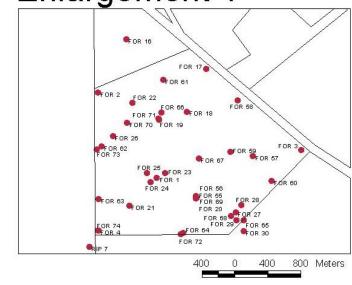
Results of a recent groundwater salinity sampling program of the Robinson Lens has revealed that the current procedure of using a bailer to obtain salinity samples is inaccurate and that the salinity in the aquifer may be much higher than previously understood.

More than half of the observation wells display an increase in borehole salinity with depth. For example a bore in close proximity to one of the supply trenches exhibits a salinity increase of more than 7000 electrical conductivity units over a 2 m interval. We are not certain whether or not the increase in borehole salinity reflects the actual groundwater salinity in the aquifer.


The monitoring wells urgently need to be purged of silt and stagnant water that has accumulated since the completion of drilling. Pumped samples from the cleared wells will provide accurate salinity distributions in the aquifer which will aid future management of the resource.


INTRODUCTION

Streaky Bay is located on the west coast of Eyre Peninsula, ~700 km by road from Adelaide (Fig. 1). Mean annual rainfall is ~380 mm/yr and there are no reliable surface water resources in the region. Furthermore, the high salinity of groundwater underlying the town renders it unsuitable for domestic use. Since settlement, domestic and municipal supplies have used the relatively fresh groundwater resource of the Robinson Lens situated 10 km southeast of the town. Pumping and supply of water to the town, and routine (monthly) monitoring of groundwater levels and salinity is undertaken by SA Water. The groundwater is pumped from two trenches (Trench 1 and 2) and several bore fields (Bore 20, Bore 485, and a southern and western bore field each comprising 6 bores), then chlorinated and piped into town.


Results from monitoring groundwater resources surrounding the Robinson Lens by SA Water over the last decade indicate significant declines in water levels and increases in groundwater salinity in the production well field. Whilst the volume of groundwater extracted from the lens over the last decade is lower than the previous ten years, and annual rainfall has remained approximately constant, many hydrographs show a steep decline in water level over this period (Fig. 2). The current population of

Streaky Bay Water Supply Robinson Lens Observation Network

Enlargement 1

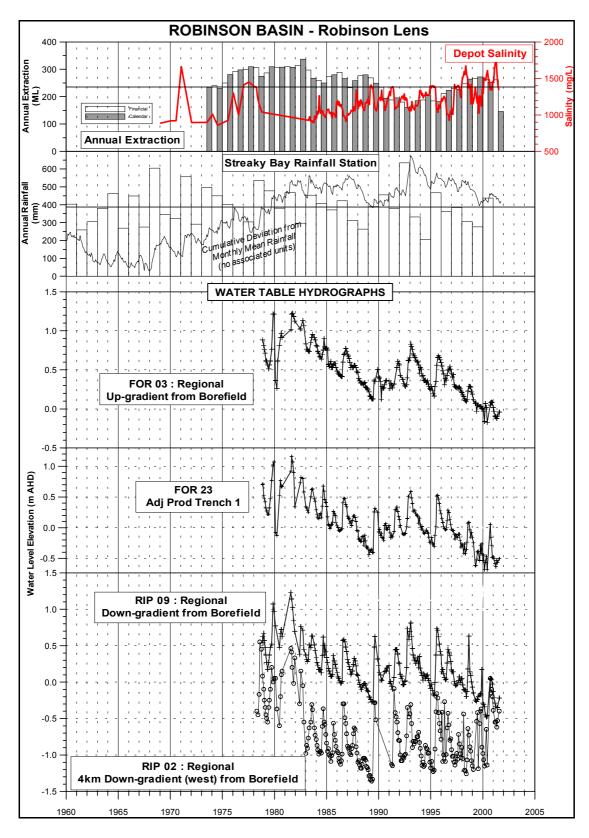


Figure 2 Annual groundwater extractions from the Robinson Lens; annual rainfall at Streaky Bay; and selected hydrographs from various parts of the Robinson Lens region

Streaky Bay is around 1300 people, and given proposed real estate developments there is growing concern as to whether or not the resource is sustainable. During October 2001 two members of the DWR Groundwater Assessment Research and Development Group undertook an investigation to determine the spatial and vertical extent of the fresh groundwater lens. This information is vital for estimating the remaining volume of groundwater available for use.

APPROACH

A YSI® down-hole sonde that enables vertical profiling of chemical parameters (electrical conductivity (EC), pH, temperature and dissolved oxygen) in wells was used to measure EC variations in wells of the Streaky Bay Monitoring Network (Fig. 1). Ideally this technique of measuring vertical groundwater salinity profiles is best suited to wells that are open to the aquifer. The majority of wells sampled in this study are only open over a small (i.e. 1–2 m) interval. Water samples were also taken from windmills and shallow pumping wells for salinity measurement on a WTW® field kit

RESULTS AND DISCUSSION

Two trenches and a total of 33 wells including monitoring and production bores were measured for EC using either the down-hole sonde or manual sampling approach. Not all of the wells in the monitoring network were sampled because of access difficulties and results of previous monitoring which revealed that many of the wells in the network were dry (App. 1). Groundwater salinities in four monitoring wells were not measured as they were equipped with windmills and had been sampled recently as part of the SA Water monitoring program. Profiling the open section of most wells was unsuccessful because sediment has accumulated at the bottom of the wells and subsequently decreased their total depths significantly.

Because the wells were not purged prior to sampling, it became apparent after testing a small number of wells that salinity in the well column was highly variable, even in sections of the wells that were not open to the aquifer. The results of the sampling show that the groundwater salinity generally increases down the well column and is highest at the bottom of the open section of the well (Appendix B). Surprisingly high salinities were measured in previously identified areas of fresh water. For example well FOR 27 which is located no more than 50 m from Trench 2 (where groundwater is regularly pumped for town supply) has a groundwater salinity that increases from 1875 $\mu\text{S/cm}$ up to 9300 $\mu\text{S/cm}$ over an interval of 1.2 m. Whilst this was the most dramatic variation observed, more than half of the wells exhibited the same trend.

Our results of individual well EC measurements showed major discrepancies with those taken previously by SA Water. We believe this is because the method used by SA Water for sampling groundwater EC involves taking a bailed sample from the watertable in the well column. Generally the sonde data from the uppermost section of the well correlated to the bailed sample data.

A number of the observation wells in the monitoring network are unsuitable for this purpose. They are either open, hand-dug wells or boreholes with poor surface completion, both of which enable surface water to be funnelled into the wells during intense rainfall.

CONCLUSIONS

From our initial study we conclude the following:

- 1. Groundwater salinity can increase dramatically with depth.
- 2. The bailed samples taken by SA Water are not representative of the aquifer. Therefore all previous data should be treated as trends only and not absolute variations in groundwater salinity.
- 3. From our initial investigation if our assumption that borehole profiling over the open section of the well is reflecting actual groundwater salinity, then the condition of the aquifer is much worse than previously understood.

RECOMMENDATIONS

- 1. All wells in the monitoring network should be purged and redeveloped as a matter of priority.
- 2. Salinity samples should also be taken (by pumping) for the purpose of mapping the true spatial extent of the freshwater lens.
- 3. The existence of fresh groundwater lenses such as the Robinson Lens in semiarid environments is uncommon. The origin and hydrodynamic behaviour of such resources are poorly understood and require further investigation. We suggest a study be undertaken using environmental tracers which will enable recharge rates and the long-term sustainability of the resource to be determined.
- 4. A review of the suitability of individual monitoring wells in the network should be undertaken to ensure that future monitoring will provide adequate information on the state of the resource.
- 5. There should be no further development of the aquifer until a more thorough investigation into the resource is undertaken.
- 6. The monitoring network should be expanded to include the deeper aquifer system.
- 7. Bailed samples should not be used for salinity monitoring in any part of the State.

APPENDIXES

1 DEPTH TO WATER AND SALINITY READINGS, OCTOBER 2001 Streaky Bay Monitoring Network — December 2001

Water level			Salinity				
Observation well*	Date	Depth to watertable (m)	Comments	Observation well*	Date	EC (μS/cm)	Comments
FOR 2	3.10.01	7.27		FOR 1	3.10.01	3 460	
FOR 3	3.10.01	8.55		FOR 2	3.10.01	2 170	
FOR 4	3.10.01	2.49		FOR 3	3.10.01	2 810	
FOR 5	2.10.01	2.14		FOR 4	3.10.01	2 130	
FOR 6	2.10.01	2.02		FOR 5	2.10.01	7 240	
FOR 7			dry	FOR 6	2.10.01	8 450	
FOR 8	2.10.01	11.98		FOR 7			dry
FOR 9			dry	FOR 8	2.10.01	11 440	-
FOR 10	2.10.01	13.46	•	FOR 9			dry
FOR 11			no access	FOR 10	2.10.01	924	,
FOR 14	2.10.01	10.07		FOR 11			no access
FOR 15			no access	FOR 14	2.10.01	680	
FOR 16	2.10.01	4.97		FOR 15			no access
FOR 17	2.10.01	9.67		FOR 16	2.10.01	3 920	
FOR 18	3.10.01	3.88		FOR 17	2.10.01	11 630	
FOR 19	3.10.01	4.94		FOR 18	3.10.01	1 790	
FOR 20	3.10.01	4.57		FOR 19	3.10.01	4 450	
FOR 21	3.10.01	3.93		FOR 20	3.10.01	2 800	
FOR 22	3.10.01	3.99		FOR 21	3.10.01	1 970	
FOR 23	3.10.01	4.64		FOR 22	3.10.01	1 945	
FOR 24	3.10.01	4.06		FOR 23	3.10.01	2 810	
FOR 25	3.10.01	3.92		FOR 24	3.10.01	1 840	
FOR 26	3.10.01	3.92		FOR 25	3.10.01	1 020	
FOR 27	3.10.01	5.04		FOR 26	3.10.01	3 280	
FOR 28		5.44		FOR 20 FOR 27	3.10.01	1 587	
FOR 29	3.10.01 3.10.01	4.89		FOR 27 FOR 28	3.10.01	2 200	
FOR 30	3.10.01	4.09	dm	FOR 20 FOR 29			
	0.40.04	4.40	dry		3.10.01	2 410	م الم
FOR 31	2.10.01	1.19		FOR 30	0.40.04	44.000	dry
FOR 32	2.10.01	6.53		FOR 31	2.10.01	11 390	
FOR 55	3.10.01	4.71		FOR 32	2.10.01	25 800	
FOR 57	2.10.01	7.16		FOR 55	3.10.01	8 200	
FOR 58	0.40.04	= 00	dry	FOR 57	2.10.01	20 200	
FOR 59	2.10.01	5.23		FOR 58			dry
FOR 60	3.10.01	8.28		FOR 59	2.10.01	7 230	
FOR 61	3.10.01	7.02		FOR 60	3.10.01	9 140	
FOR 62	3.10.01	4.29		FOR 61	3.10.01	6 670	
FOR 63			dry	FOR 62	3.10.01	1 505	
FOR 64	3.10.01	4.17		FOR 63			dry
FOR 65	3.10.01	5.15		FOR 64	3.10.01	920	
FOR 66	3.10.01	3.42		FOR 65	3.10.01	3 250	
FOR 67	3.10.01	5.65		FOR 66	3.10.01	4 560	
RIP 1	2.10.01	1.94		FOR 67	3.10.01	3 180	
RIP 2	2.10.01	1.1		FOR 68	3.10.01	2 910	
RIP 3	2.10.01	2.36		FOR 69	3.10.01	3 240	
RIP 4	2.10.01	2.69		FOR 70	3.10.01	2 750	

Water level				Salinity			
Observation well*	Date	Depth to watertable (m)	Comments	Observation well*	Date	EC (μS/cm)	Comments
RIP 5			dry	FOR 72	3.10.01	1 310	
RIP 6	2.10.01	3.25		FOR 73	3.10.01	2 750	
RIP 7	2.10.01	2.32		RIP 1	2.10.01	13 050	
RIP 8	2.10.01	4.82		RIP 2	2.10.01	7 820	
RIP 9	2.10.01	3.03		RIP 3	2.10.01	10 200	
RIP 10	2.10.01	5.36		RIP 4	2.10.01	4 680	
RIP 11	2.10.01	1.75		RIP 5			dry
RIP 12	2.10.01	3.55		RIP 6	2.10.01	4 510	
RIP 13	2.10.01	9.88		RIP 7	2.10.01	2 580	
				RIP 8	2.10.01	2 530	
				RIP 9	2.10.01	2 720	
				RIP 10	2.10.01	3 360	
				RIP 11	2.10.01	10 210	
				RIP 12	2.10.01	45 600	
				RIP 13	2.10.01	47 100	

^{*} No SA_Geodata unit numbers have been assigned to these wells.

2 OBSERVED WELL SALINITY AND DEPTH PROFILES, OCTOBER 2001

Observation well	Electrical of	conductivity	Depth of well (m)	Production zone (m)	
Observation wen	Depth (m)	EC (μS/cm)	(field measurement)	(from SA_Geodata)	
FOR 2	7.5	2 310	9	unknown	
	8	2 310			
	8.5	2 315			
	9	2 315			
FOR 3	8.7	1 950	9.9	3.35-12.19	
	9.5	2 950			
FOR 4	2.5	2 240	6.8	5–7	
	3	2 250			
	5	2 255			
	5.5	2 255			
	6	2 255			
	6.5	2 255			
FOR 8	no sample			unknown	
FOR 10	24	4 400	24	32–34	
FOR 16	no sample			unknown	
FOR 17	9.5	9 875	12.3	12–13	
	10.5	15 626			
	11.5	21 620			
	12	23 050			
FOR 18	4	1 030	5.15	4-5.25	
	5	5 180			
FOR 19	5	4 695	7.02	6-7.02	
	6	4 700			
	6.5	4 700			
FOR 20	5	2 915	5.9	4-5.47	
	5.9	2 915			
FOR 21	4.5	2 070	7.4	6-7.52	
	5	2 070			
	6	2 070			
FOR 22	4	1 230	5.1	4-5.25	
	5	6 043			
FOR 23	4.5	2 968	6.3	5.3-6.38	
	5	2 955			
	5.5	2 950			
	6	2 950			
FOR 24	4.5	1 913	5.2	3.5–5	
	5	1 913			
FOR 25	4	1 248	4.7	2.5–5	
FOR 26	3.5	3 360	5.5	4.5-5.6	
	4	3 360			
	4.5	3 360			
	5	3 375			
FOR 27	5	1 770	7.2	6–7.2	
	5.5	1 775			
	6	1 875			
	6.5	4 200			
	7	8 900			
	7.2	9 300			

Observation well	Electrical conductivity		Depth of well (m)	Production zone (m)	
Observation wen	Depth (m)	EC (μS/cm)	(field measurement)	(from SA_Geodata)	
FOR 28	5.5	2 285	8	4–5.25	
	6	2 280			
	6.5	2 280			
	7	2 280			
	7.5	2 280			
	8	2 495			
FOR 29	5	2 050	6.1	5–6.1	
	5.5	2 450			
	6	2 950			
FOR 55	5	6 980	5.5	23–24	
FOR 57	7.5	17 700	23.5	18.9–41	
	9	22 350			
	10	22 930			
	13	23 050			
	15	23 050			
	18	23 060			
	19	23 065			
	20	23 090			
	22	39 150			
FOR 59	5.5	5600	6.9	5–7.5	
	6.5	10 730			
	6.9	10 800			
FOR 60	8.5	9 415	11.5	4–6.5	
	9.5	9 600			
	10	9 740			
	11	10 425			
	11.5	11 200			
FOR 61	7.5	7 200	7.5	5–12.2	
FOR 62	4.5	1 555	6.5	3–6.4	
	5	1 550			
	6	1 545			
	6.5	1 550			
FOR 64	4.5	800	5.5	3.5–6.1	
	5	1 010			
	5.5	1 215			
FOR 65	5.5	3 430	6.5	2.5-4.5	
	6	3 390			
	6.5	3 375			
FOR 66	3.5	3 645	4.1	3–5	
	4	5 175			
FOR 67	6	2 995	7.5	5–7	
	7	3 510			
RIP 6	3.25	4500-4800		unknown	
RIP 8	5	2 530		0-9.14	
	8.5	4 910			