SOUTH AUSTRALIA

DEPARTMENT OF MINES AND ENERGY

OPEN FILE ENVELOPE NO. 8254

EL 1621, NORTHERN PEAKE AND DENISON RANGES AREA

PROGRESS REPORTS FOR THE PERIOD JULY 1989 TO DECEMBER 1990

Submitted by

J. F. Allender and Placer Exploration Limited

1991

© South Australian Department of Mines and Energy: 2/7/91

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. The Department accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of original text or drawings.

All rights reserved under the copyright. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the holder of the copyright, S.A. Department of Mines and Energy, P.O. Box 191, Eastwood, S.A. 5068.

ENVELOPE 8254

TENEMENT:EL 1621, Peake and Denison Ranges**TENEMENT HOLDER:**J Allender and Associates and Placer Exploration Limited

CONTENTS

REPORTS:	Allender, J.F. and Lebrun, A.F.G., 1990. EL 1621 - H	Report 1st qua	rter.	Pgs 3-4	
	Circosta, G., 1989. Peake and Denison Ranges. Rep Exploration.	ort on explor	ation by Placer	Pgs 5-28	
PLANS:		Scale		SADME Plan no.	
Fig. 1 Fig. 2 Fig. 3	Locality plan of ELA. Peake and Denison Ranges, regional geological setting. Locality plan of Peake and Denison Ranges.	1:500 000		Pg. 9 Pg. 10 Pg. 11	
	Previous exploration Peake and Denison Ranges. Circosta, G., 1989. Peake and Denison reconnaissance t	Pgs 28-37 Pgs 38-50	A3		
PLANS:		Scale		SADME Plan no.	
Figs 4-6	Location of sampling.			Pgs 48-50	A3
APPENDIX 3:	Peake and Denison Ranges reconnaissance samples (Cla 1194).	Pgs 51-55			
APPENDIX 4:	Peake and Denison Ranges BLEG assays. (Assay Resear AA334).	Pty Ltd. Report	Pgs 56-61		
APPENDIX 5:	Peake and Denison ranges rock chip samples (Classic Con	n lab s Ltd, Job	no. 9AD 1697).	Pgs 62-67	
PLANS:		Scale	Company Plan no.	SADME Plan no.	
Fig. 4	Reconnaissance stream and rock chip sample locations.	1:100 000	SH53.3-3293	8254-1	
REPORT:	Computer print-out of geochemical and geophysical inc SAMREF.	Pgs 68-97			
PLANS:	Aeromagnetic contours. SAMREF geological map of Peake and Denison Ranges by A.H. Blissett. Peake & Denison Ranges gold geochemistry.	Scale 1:150 000	Company Plan no. 89-451	SADME Plan no. Pg. 98 8254-2 8254-3	
	Peake & Denison Ranges geological map.	1:150 000	07-431	8254-3	

REPORT:	Allender, J.F., 1990. Peake and Denison Ranges, EL 16 periods ending June 12th and September 12th, 1990.	521. Quarterly reports for the	Pgs 99-103		
PLANS:		Scale	SADME Plan no.		
Fig. 3	Location for ground magnetic profiles.	1:100 000	Pg. 101		
Fig. 4	Ground magnetic survey. TMI profiles for Algebuckina East aeromagnetic target.	1:20 000	Pg. 102	A3	
Fig. 5	Ground magnetic survey. TMI profiles for Algebuckina North aeromagnetic target.	1:20 000	Pg. 103	A3	
REPORTS:	Circosta, G., 1991. Drilling Algebuckina magnetic anoma Circosta, G., 1991. Report on RAB drilling of a magnet	-	-		
	EL 1621.	io anomaly nour rigobuokina,	1 65 105-110		
PLANS:		Scale	SADME Plan no.		
Fig. 1 Fig. 2 Fig. 3	Location for ground magnetic profiles. Ground magnetic profile for ironstone target - line 4. Algebuckina North RAB drilling - geology - line 4. Section looking WNW.	1:100 000 1:10 000 1:500	Pg. 108 Pg. 109 Pg. 110	A3 A3	
	Drill logs - AN1 - AN10. Bedrock geochemistry. (Classic Laboratories. Report O	Pgs 111-121 Pgs 122-125			

END OF CONTENTS

•

21 Salisbury Street, Unley S.A. 5061

The Director General, South Australian Department of Mines and Energy, 191 Greenhill Road, <u>Parkside S.A. 5063</u>

13 March 1990

Dear Sir,

Exploration Licence 1621- Report 1st quarter

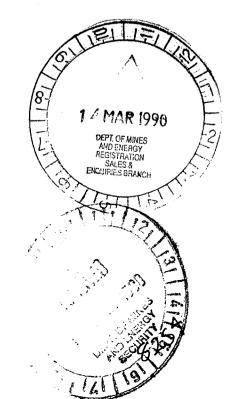
Please find attached a report entitled:

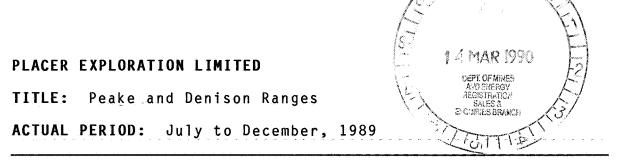
"PEAKE AND DENISON RANGES REPORT ON EXPLORATION BY PLACER EXPLORATION"

along with a statement of expenditure by Placer Exploration.

A series of mineral index overlays at a scale of 1:150 000 which correspond to the published geological map contained within SADME Bulletin 50 have been prepared. A data base of all data relating to these overlays has also been prepared. These will be supplied to the Department along with an aeromagnetic interpretation of the area being currently undertaken by Mr C. G. Anderson, during the next quarter. A detailed geological map of the Spring Hill area is also being prepared. It is anticipated that the expenditure requirements for the EL will be met on the basis of this work.

Transpare Cylinde TC 8254


Youys faithfully,


c.c. C.G. Anderson

J.F. Allender

Allen for

A.F.G.Lebrun

PERMANENT PAYROLL	7,847
TEMPORARY PAYROLL	5,952
CAMP OPERATIONS	1,115
COMMUNICATIONS	17
COMPUTER SERVICES	465
CONSULTING	1,200
DIAMOND DRILLING	_,
ENGINEERING SERVICES-VANCOUVER	
ENGINEERING SERVICES-OTHER	
GEOLOGICAL SERVICES	774
ENVIRONMENTAL ASSESSMENT	
GEOPHYSICS	
LEGAL FEES	
METALLURGICAL TESTING	
OPTION PAYMENTS	
PROPERTY EXPENSES	
ROAD BUILDING	
SAMPLING AND ASSAYING	3,196
SURVEYING	
FARES, ACCOMMODATION ETC.	3,690
HELICOPTER CHARTER	
MOTOR VEHICLE OPERATIONS	2,455
RESEARCH	
GEOLOGICAL CONTRACTORS	3,520
DEPRECIATION	
CAPITAL EXPENDITURE	
COMMUNITY ACTIVITY	
ADMINISTRATION	9,905

TOTAL

and the second

40,216

Ref: 28.72/33.34/GC/SGS

PEAKE AND DENISON RANGES REPORT ON EXPLORATION BY PLACER EXPLORATION

Di	st	r1	bu	t	101	1

2

PEL Sydney PEL Adelaide PEL Brisbane Jim Allender

Placer Exploration Limited Genesio Circosta November, 1989 Report No. SA12/89

CONTENTS

PAGE NO.

	SUMM/	AR Y		
1.	INTRO	DUCTION	ł	1
			nt History on, Access and Land Usage	1 1
2.	REGIO TARGI		DLOGICAL SETTING AND EXPLORATION	 3
			l Setting tion Targets	3 4
3.	PREV	COUS EXF	LORATION	5
4.	CURRE	ENT EXPL	ORATION	7
	4.2		issance ogramme mpling	7 7 8
			Sample Collection Discussion of Results	8 9
	4.4	Rock Ch	nip Sampling	10
			Algebuckina Area Other areas	10 10
5.	CONCL	USIONS	AND RECOMMENDATIONS	11

REFERENCES

ţ,

LIST OF FIGURES

FIGURE NO.		FOLLOWING PAGE NO.
1	LOCALITY PLAN OF ELA	1
2	PEAKE AND DENISON RANGES, REGIONAL GEOLOGICAL SETTING	1
3	LOCALITY PLAN OF PEAKE AND DENISON RANGES	1
4	STREAM AND ROCK CHIP SAMPLE LOCATIONS	B A C K P O C K E T

SUMMARY

Placer Exploration carried out preliminary exploration over the northern portion of the Peake and Denison Ranges ELA. The area was considered to be of interest for a number of reasons including:

1) The known occurrence of gold within conglomerates of Jurassic to Cretaceous age (Algebuckina Sandstone).

 The interesting sequence of Carpentarian Basement consisting of meta-sediments, rhyolites and basic volcanics.

3) The major faults bounding the eastern side of the ranges.

Exploration consisted of a regional Bulk Leach (BLEG) sampling programme over the Denison Inlier with some rock chip sampling of interesting lithologies. The Algebuckina area was rock chip sampled as all streams are contaminated by Jurassic scree.

Results were disappointing with only two BLEG samples recording greater than lppb gold. The area is considered to have little potential for sizeable gold deposits and no further work is recommended.

1. INTRODUCTION

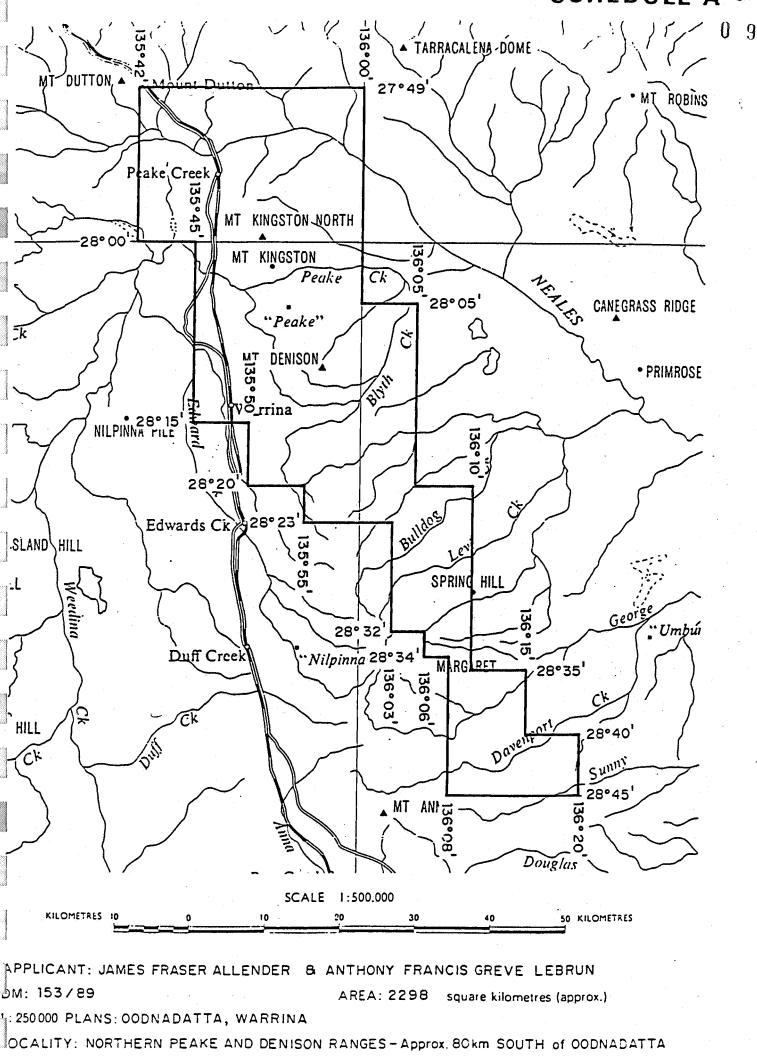
5

1.1 Tenement History

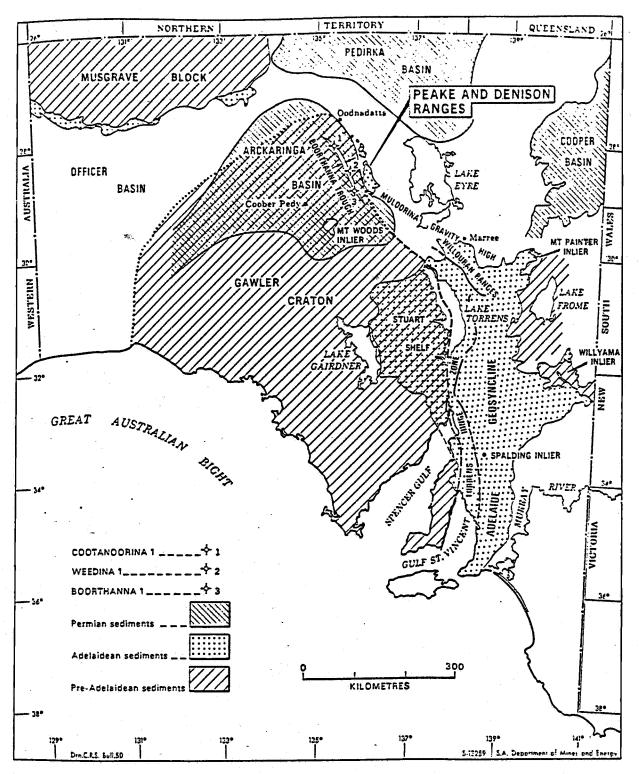
The Peake and Denison Licence Area (Application No. 153/89) is located in the far north of South Australia (Figures 1, 2 & 3). The Licence is held by J. Allender and Associates and was offered to Placer Exploration Limited as a Joint Venture. Placer undertook to carry out preliminary exploration with the aim of then formalising a full Joint Venture if interested.

1.2 Location and Access

The Peake and Denison Ranges are located approximatly 1000km north of Adelaide. They trend northerly for 130km parallel to the old narrow gauge Ghan Railway and the Marree-Oodnadatta road (Figures 1, 2 & 3).


The Peake and Denison Ranges consist of a northerly trending series of low-lying ranges with a maximum relief of 300m above undulating plains. Four Precambrian inliers constitute the Peake and Denison Ranges - the Dutton, Algebuckina, Denison and Margaret Inliers. The Dutton and Algebuckina Inliers lie to the north of, and are subordinate to, the Denison and Margaret Inliers which form the bulk of the ranges (Figure 1).

Rock exposures are good except on the western margin of the ranges where Mesozoic and Tertiary weathering, leaching, kaolinisation and peneplanation of the Precambrian has resulted in a subdued topography. Mesozoic and Permian sediments lap onto the western margin of the ranges and the weathered Precambrain rocks are often masked by a veneer of younger sediments and associated lag deposits.


SCHEDULE A UN


FIGODEL

EL Max

NATE CRANTED.

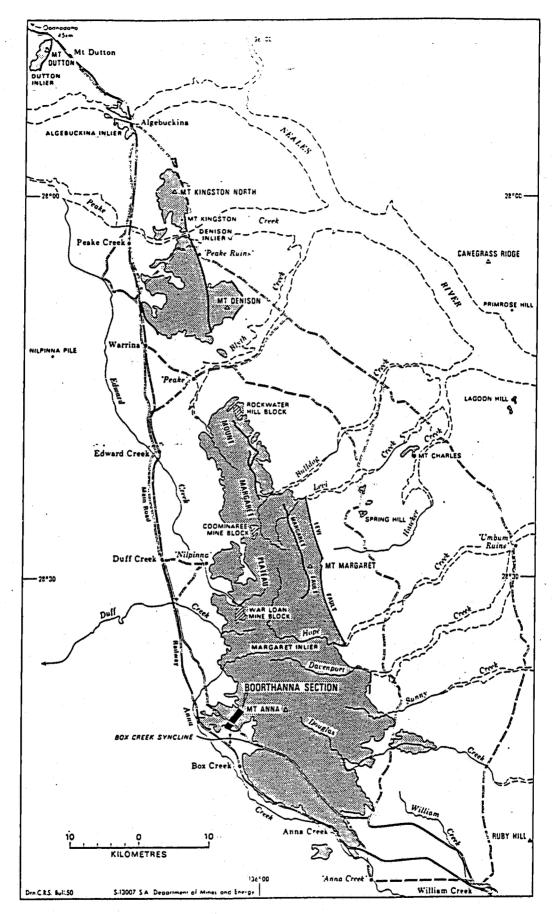


Fig. 3. Locality plan, Peake and Denison Ranges

2.

Drainage from the ranges is dominantly easterly, with creeks draining via the Peake Creek and Neales River into Lake Eyre 80km to the east. There are two permanent waterholes in the region, one near Algebuckina R.S. (Railway Siding) on the Neales River, and the other at Warrawaroona W.H. (Waterhole) on the Peake Creek. Along the faulted eastern margin of the ranges are several springs including Freeling, Edith, and Tarlton Springs. On the plains to the east of the ranges are numerous artesian springs (e.g. Hawker, Outside, and Fanny Springs) and artesian bores (e.g. Hope Creek, Birthday, and Umbum Bores).

Climate of the region is arid with a mean annual rainfall of 125mm; average annual evaporation is 3,800mm. The low rainfall results mainly from thunderstorms between October and May. The region experiences hot summers with an average summer maximum temperature of 36.5°C; minimum winter temperatures often fall below 0°C.

Although vegetation in the region is sparse, a considerable variety of species is present.

.

Because of the harsh climate the region is sparsely settled, and since the area lies north of (outside) the dingo-proof 'Dog-Fence', land use is restricted to cattle grazing. The four cattle stations are Anna Creek, Peake, Nilpinna and Allandale. A very small township is located at William Creek.

The graded Marree-Oodnadatta road provides reasonable access to the region. Through the ranges a system of rough tracks allow access, the adequacy of which varies according to weather conditions.

ET.

2. REGIONAL GEOLOGICAL SETTING AND EXPLORATION TARGETS

3.

2.1 Regional Geological Setting

The Peake and Denison Ranges are a result of northerly trending Precambrian inliers situated inthe south-western portion of the Great Artesian Basin, approximately midway between the Musgrave Block and Willouran Ranges (Figure 2.).

The Peake and Denison Ranges represent the northwestern extension of the Adelaide Geosyncline. The inlier comprises basement Peake Metamorphics and basal Adelaidean rocks - Arkoroola Subgroup, Burra and Umberatana Groups.

Basement is dominated by interfingering quartz-muscovite schist, quartzite metabasalt and metarhyolite with minor phyllite, sillimanite gneiss, marble and calc-silicates. It is intruded by syntectonic granite (1650 Ma approx.).

The Arkgroola Subgroup unconformably overlies and comprises Younghusband Conglomerate, Coominaree Dolomite and Cadlareena Volcanics.

This in turn is overlain by a metasedimentary sequence of cherts dolamites siltstones quartzites and arkoses of the Burra and Umberatana Groups.

The Peake and Denison Ranges lie on a major northwest trending gravity zone which includes the mineralisation at Olympic Dam, Mt. Gunson, Burra, Kapunda and Kanmantoo.

Major faults mark the eastern edge of the inlier.

.

The Peake and Denison Ranges represents a zone of extensional tectonism into which the basic volcanism was extruded, and was active through Willouran and Torrensian times. 4.

The Peake and Denison Ranges are flanked by two Permian basins - the Arckaringa Basin to the west and the Pedirka Basin to the north east.

Table 1 represents a summary of the Stratigraphy of the Peake and Denison Ranges and comes from Ambrose et.al., 1981.

2.2 Exploration Targets

5

The Peake and Denison Ranges was considered to be of interest for a number of reasons:

1) Gold was known to occur within conglomerates of Jurassic to Cretaceous in age. (Algebuckina Area).

2) The presence of Carpentarian Basement consisting of meta-sediments, rhyolites and basic volcanics.

 The interesting major faults that bound the ranges to the west.

From an exploration point of view past work seemed to concentrate on exploration for alluvial gold (in the Tertiary) or copper (dominantly in the Adelaidean and Peake Metamorphics). Little systematic exploration for gold had ever been carried out in the Peake and Denison Ranges.

Table 1 Stratigraphic table—Peake and Denison Ranges

Age	Stratigraphic unit: symbol and primary references	Thickness (metres)	Lithology	Remarks Intrusives are plagioclase rich and quartz poor.			
ORDOVICIAN	Bungadillina Monzonite-Odb (Reyner, 1955)		Post-Adelaidean Stratigraphy Coarse-grained porphyritic monzonites and syenites, porphyritic diorites, porphyritic white albitites.				
··· <u>····</u> ···· <u>·</u> ····			Adelaidean Stratigraphy UMBERATANA GROUP				
MARINOAN	Unnamed siltstone—Ph1 (Thomson, In Parkin, 1969)	950 (minimum)	Red-brown silty shales, grey-green shales, silty dolomites, fine sandstones and thin grey-yellow dolomites.	Records the first appearance of reddish siltstones in the Umberatana Group—hence allocated to the Willochra Subgroup.			
· . · · · · · · · · · · ·	*Thora Dolomite—P fl (Mawson and Sprigg, 1950)	30-40	Buff-weathering, grey-green and brown dolomites, minor siltstones; large festoon surfaces and algal bedding.	Characterised by a light-coloured weathering pattern which distinguishes it from adjacent units.			
	Tapley Hill Formation—Pft (Coats, 1964; Coats and Blissett, 1971)	150	Laminated grey-green silty shales and silty dolomites; basal thin sandy dolomite.	Exhibits characteristic fine lamination; records a marine transgression following the pre-existing glacial conditions.			
STURTIAN	Unnamed sandstonePu1	530	Quartzitic sandstones, arkoses, argillaceous sandstones; red porphyry granules and large-scale cross-bedding.	Fluvio-glacial; intertongues with the Calthorinna Tillite and marks the end of the glacial period.			
	*Calthorinna Tillite—Pub (Coats, 1964; Coats and Blissett, 1971; Coats and Forbes, 1977; Reyner, 1955)	650 (minimum)	Diamictites, conglomeratic dolomites, pale green shales, gritty sandstones, arkoses and quartzites.	Represents the upper phase of lower Sturtian glacial activity. Interbedded diamictites (glacial) and marine sediments indicate a glacial marine environment.			
		<u>,</u> ,	Disconformity	· · · · · · · · · · · · · · · · · · ·			
	*Kalachalpa Formation—₽bh (Fairchild, 1975; Coats, 1973)	900	BURRA GROUP Grey-green and brown siltstones and shales, gritty sandstones and quartzites, conglomeratic dolomites, stromatolitic dolomites, oolitic sediments, black cherts; quartzites and shales at the top.	Stramatolitic microflora described by Fairchild, 1975; considered to be equivalent to the Myrtle Springs Formation; gradational contact with the underlying unnamed unit.			
TORRENSIAN	Unnamed unit—Pb2 (Fairchild, 1975)	2 000 (minimum)	Gritty quartzitic sandstone, stromatolitic dolomites, conglomeratic dolomites, magnesite conglomerates, black and minor red cherts, grey shales and siltstones; mud cracks, ripple marks and cross-bedding.	Many lithological affinities with the Skillogalee Dolomite e.g. dolomite pebble conglomerates, magnesites and black cherts; this unit is probably transitional between the Kalachalpa Formation and Skillogalee Dolomite.			
	<u> </u>	— Gap in th	e sedimentary record (gradational contact suspected) ——	· · · · · · · · · · · · · · · · · · · ·			
	Skillogalee Dolomite—P bk (Mirams and Forbes, 1964; Reyner, 1955)	3 600 (minimum)	Basal member composed of quartzites, sandstones, shales and minor dolomites. The middle member consists of sandstones, dark and pale grey conglomeratio dolomites, magnesite conglomerates and blue-black cherts. The upper member is mainly dark grey conglomeratic dolomite.	Outcrops in a series of basinal synclines forming the core of Margaret Inlier; stromatolite form <i>Baicalia burra</i> is c common in the upper two members; lower contact with the Mount Margaret Quartzite is comformable although often disrupted by diapirism.			

ភ

Age	Stratigraphic unit: symbol and primary references	Thickness (metres)	Lithology	Remarks									
	*Mount Margaret Quartzite—Pbo (Reyner, 1955; Thomson and Coats, 1964)	2 500	White orthoquartzites, slaty quartzitic sandstones, dark grey sandy siltstones, green-grey silty shales, minor dolomitic siltstones near the base; thick orthoquartzites at the top; clay galls, ripple marks and cross-bedding.	Comprises Mount Margaret and also constitutes the Mount Margaret Plateau. The lower contact with the Fountain Spring Beds is gradational, the passage downwards being marked by an increased siltstone content.									
	*Fountain Spring Beds—P bl (Forbes, 1964)	1 100 (minimum)	Characteristic laminated grey dolomitic siltstones, interbedded grey quartzites with clay-gall laminations, grey-green silty shales containing salt casts, minor grey silty dolomites.	The upper contact with the Mount Margaret Quartzite is marked by an increase in the frequency of orthoquartzites; laminated dolomitic siltstones and silty dolomites are similar to lithologies in the underlying unnamed siltstone; considered to be River Wakefield Subgroup equivalent.									
	Sedimentary contact not observed—gradational contact suspected on the basis of lithological overlaps												
	Unnamed siltstone—Pb1	1 200 (minimum)	Laminated grey pyritic dolomitic siltstones, green shales,	, Dark grey laminated siltstones are typical of the Fountain Spring Beds, some of the dolomites and sandstones (salt casts) are reminiscent of the Duff Creek Beds.									
	<u> </u>		——— Gap in the sedimentary record —————										
			SEQUENCES OF UNCERTAIN AGE										
	Undifferentiated blocks in diapirs and faulted sequences—Pa	5 000 (minimum)	Lithologies from 8 blocks are described in the text. Sediments observed in diapirs often contain an abundance of salt casts.	Most of the sediments in these blocks are derived from early Adelaidean sequences, above the Cadlareena Volcanics, which have been dismembered by diapirism and faulting.									
	Gap in the sedimentary record												
	*Murrana Beds—⊵aa	2 900 (minimum)	Laminated gritty quartzitic sandstones, grey-green silty shale interbeds; arkoses, pebbly dolomites, purple and grey silty shales near the top; ripple marks, mud cracks, cross-beds, flute casts and salt casts.	This unit has lithological affinities with the Duff Creek Beds e.g. minor pale dolomites in the lower part of the unit and fine sandstones and green shales both containing salt casts.									
	Sedimentary of	ontact not obs	erved—gradational contact suspected on the basis of lithol	ogical overlaps									
/ILLOURAN OR DRRENSIAN	*Duff Creek Beds—Paf (Reyner, 1955; Thomson and Coats, 1964)	5 500 (minimum)	Laminated olive-green silty shales and thin arkose interbeds, flaggy grey and yellow dolomites, dolomitic siltstones, pyritic fine sandstones, minor quartzites; mud cracks, ripple marks, clay galls, cross-bedding; horizons with abundant salt and gypsum casts.	Pale buff, flaggy dolomites characterise the unit; deposited in lagoonal, supratidal and intertidal									
	Sedimentary c	ontact not obs	erved—gradational contact suspected on the basis of lithol	ogical overlaps									
	*Nilpinna Beds—Pan	2 100 (minimum)	Fine sandstones, grey-green silty shales, quartzites and	Blue-grey shales and fine-medium sandstones (festoon cross-beds, salt casts) near the base of the unit are simila to the War Loan Beds.									
	——————————————————————————————————————	ontact not obse	erved—gradational contact suspected on the basis of lithol										
	*War Loan Beds—Paw	600	Blue-grey shales and siltstones, dark grey silty dolomites and greenish feldspathic sandstones and arkoses.	· · · · · · · · · · · · · · · · · · ·									

Table 1 Stratigraphic table—Peake and Denison Ranges (continued)

16

910

¢,

		and the second second	—— Gap in the sedimentary record	
	*Rockwater BedsPad	200 (minimum)	grey-black pebbly dolomites, black shales and siltstones	This unit outcrops only in small blocks stratigraphically isolated by faulting and diapirism; the sequence probably lies in close proximity, stratigraphically, to the Cadlareen Volcanics.
	Gap	in the sedimen	tary record—sequence dismembered by diapirism and fau	Iting
			CALLANNA BEDS	
	*Cadlareena Volcanics—Pcc (Coats and Blissett, 1971; Thomson, 1966; Preiss, 1973)	750 (minimum)	Vesicular basalts and altered dolerites; minor andesites, dacites, and rhyolites; tuffs and lapilli tuffs; minor lenticular reddish mudstones and quartzites with red shale interbeds near the base and top of the unit.	The volcanics mark the last recognised unit of the Callanna Beds; equivalents are recognised in the Willouran Ranges and Mount Painter Province; the uppe contact is always disrupted by diapirism.
WILLOURAN	*Coominaree Dolomite—Pck (Thomson, 1966; Coats and Blissett, 1971; Preiss, 1973)	77	Interbedded buff dolomites (stromatolitic) and minor sandstones in the lower part; the upper part consists of non-stromatolitic dolomites, oolitic at the base, and an overlying stromatolitic dolomite.	Contains stromatolite forms Acaciella c.f. australica and Gymnosolen c.f. ramsayi.
	Younghusband Conglomerate (Pco) (Thomson, 1966; Preiss, 1973)	27	Basal quartzitic breccias, red-brown shales and sandstones at the top.	Basal Adelaidean unit containing clasts reworked from the underlying Peake Metamorphics.
<u></u>	<u> </u>		Angular unconformity	
			Pre-Adelaidean Stratigraphy	
MIDDLE PROTEROZOIC	*Wirriecurrie Granite—E∝w (Reyner, 1955)		Coarse-grained, porphyritic granites, augen granites, minor aplite dykes.	Intrusive, syn-orogenic granite, radiometrically dated a approximately 1 650 ma.
	Unnamed metamorphicsPd3	not known	PEAKE METAMORPHICS Amphibolites, grey quartzites, magnetite-rich epidosites, arenaceous schists, minor clinopyroxene granulites.	Lithologies (amphibolites and quartzites) are broadly similar to Baltucoodna Quartzite; all rock types are magnetite rich.
		<u></u>	Sedimentary contact not observed	
	*Baltucoodna Quartzite—Pdb (Reyner, 1955)	4 500 (minimum)	Greyish-white quartzites, porphyritic and amygdaloidal basalts, amphibolites, minor quartz + muscovite schists, grey phyllites, sillimanite gneisses and plagioclase + hornblende + epidote calc-silicates.	Unit is characterised by interlayered basalts and quartzites.
EARLY PROTEROZOIC	Unnamed schists P d2	1 000	Quartz + muscovite schists, grey quartz + chlorite phyllites, minor sandstones.	Thickest development of metamorphosed pelitic sediments.
	*Tidnamurkuna Volcanics—P dt	600 (minimum)	Flow-banded porphyritic rhyolites, amygdaloidal basalts rare epidosites and phyllites.	, Rhyolites record the only phase of acidic vulcanism in th Peake Metamorphics.
	, <u></u> , <u></u> _, <u></u> _, <u></u> , <u>_</u>		Sedimentary contact not observed	
	Unnamed metamorphicsPd1	5 500 (minimum)	Grey quartzites, quartz + biotite + muscovite schists and gneisses, garnetiferous schists, migmatites, pegmatites and diorites.	Metamorphosed to amphibolite facies, sedimentary structures have been obliterated. Stratigraphic relationship with other units is not known.

*New names: for formal definition see Appendix.

3. PREVIOUS EXPLORATION

ŝ

The first comprehensive map of the area was compiled by Reyner (1955). Detailed mapping at 1:20,000 scale during 1975-76 was compiled at 1:150,000 scale (Ambrose, Flint & Webb, 1981).

5.

The first recorded geological observations in the Peake and Denison Ranges were made by John McDowall Stuart who explored much of Central Australia in the late 1850's and early 1860's (Stuart 1860, 1862). Other early observers included Scoular (1887) and East (1889).

Government geologist H.Y.L. Brown located gold and a one carat diamond while panning on the western side of the ranges near Peake Creek in 1894.

Copper prospecting was active in the late 1890's and a smelting plant was established at Peake Homestead. Several Cu mines were active in the period 1915-20 (Winton, 1919).

Preliminary observation on the geology and hydrology of the area were conducted by Jack 1930. Regional mapping during 1953 resulted in publication of seven 1-mile sheets: Algebuckina, Nilpinna, Conway, Umbum, Bothanna, Cadlareena and Anna (Dickinson et al; 1954a,b, 1955a-e).

Exploration in recent years included search for U, Cu, Pb, Zn, Co, Ni, Cr, Mn, Ag, As and Au within the Precambrian rocks and U, Au, S, K, clay, coal and petroleum in the sedimentary basins flanking the ranges.

In the period 1966-1968, North Broken Hill carried out extensive soil and stream sediment sampling and drilled three diamond drillholes (Forwood, 1968). Australasian Mining Corp held an SML and conducted radiometric and aeromagnetic surveys. This work resulted in the drilling of three percussion and four diamond drill holes(Sergeant, 1970). Uranerz (Australia) Pty Ltd explored for Uranium and drilled two DDH, one in the Cadlareena Volcanics and the other in migmatites of the Peake Metamorphics (Iliff 1974, 1975). Western Mining Corporation Ltd. (1975) carried out extensive stream sediment surveys and soil and rock chip sampling for basemetals.

More recently Britas Diamonds in JV with Stockdale carried out exploration for diamonds and also examined the Au occurrences near Mt Kingston (Robinson et al 1984).

Diamond exploration is still currently being undertaken by Metana in joint venture with Stockdale in areas to the west side of the ranges.

B.H.P./Utah have also extensively explored the Adelaidean in the southern portion of the Peake and Denison Ranges for basemetals (1984). This work also included collection of BELG samples.

Tables in Appendix I were supplied by Jim Allender and summarise the geochemistry, geophysics, drilling, and mapping that has been carried out in the Peake and Denison Ranges.

4. CURRENT EXPLORATION

4.1 Reconnaissance

A reconnaissance trip was made to the Peake and Denison Ranges between July 16th and 19th. The aim was to familiarise myself with the area and to collect a few reconnaissance samples.

Appendix II contains a copy of a memo written after this reconnaissance visit. All geochemical and sample location data is located in Appendices II And III.

4.2 Work Porgramme

It was decided that the best method of quickly assessing the potential of the area for gold mineralization would be to carry out a regional Bulk Leach (BLEG) sampling programme over areas of interest. This would be combined with rock chip sampling of any interesting zones.

The dominantly Adelaidean sequence to the south was considered to have little potential for gold mineralization with the result that little work was undertaken in this area.

Other than the Tarlton Springs area (on the Mount Margaret Inlier) all work was concentrated on the northern-most inliers of the Peake and Denison Ranges.

7.

4.3 BLEG Sampling

4.3.1 Sample Collection

Bulk Leach Extractable Gold samples were collected over all drainages, draining from the Denison Inlier. Samples were collected in the following manner:

1) drainage basins were separated and sample sites selected.

2) at each site careful note was made of size of stream and lithologies present in each drainage; special care was taken to avoid possible contamination from Mesozoic cover. If this was not possible notes were taken.

3) a 4-5 kg sample of -4mm material was collected from each site. This involved:

a) collection from the stream surface on a diagonal across the active part of the stream.

b) all lag material was avoided.

c) all plasitc pans and serves used were carefully cleaned after each sample was collected.

4) samples when collected were placed in large calico bags. Sample sites were then tagged with aluminium tags or with wooden survey pegs. Sites were then noted on the location maps or air photos.

5) samples were despatched to Assay Research Australia Pty Ltd in Perth for BLEG determination using a 0.10 ppb detection limit for Au and Ag and a 0.01 ppb detection limit for Cu.

Sample locations are shown of figure 4.

4.3.2 Discussion of Results

Results of BLEG sampling are listed in Appendix IV with samples located on Figure 4. Results are generally very disappointing with all but two values less than 1 ppb Au. These two samples (105339 and 105441) drain from the area of Mt. Denison.

The stream draining sample 105339 is only a very minor stream (3-4 metres wide) and drains schist (dominant) with some possible acid and basic volcanics.

The stream draining sample 105341 is a more major stream and drains schists with minor quartz veining. Some old copper workings have been mapped upstream, and these may contribute to the anomalism. The dominant contribution to anomalism is thought to be the Mesozoic which is extremely limonitic and contaminates the drainage here.

Results from streams draining north and south of Tarlton Springs did not record any anomalism.

9.

4.4 Rock Chip Sampling

4.4.1 Algebuckina Area

A total of 32 rock chip samples were collected from the Algebuckina Area. Samples were assayed for Cu, Pb, Zn, Sb, As, Ag, U and Au. Results appear in Appendix V and sample sites are located on figure 4.

Samples consisted of a mixture of samples of basal Algebuckina Sandstone conglomerates and Basement Peake Metamorphic quartz vein/bedrock material.

Samples of basal Algebuckina Sandstone (105413 - 416, 105431, 105442 - 105443) were collected from various areas to test the potential of fine grained palaeo-placer gold within this unit. Several samples were collected from the area of known workings with only one (105416) recording above detection limit gold at 0.09 g/t.

Other samples were collected within the Peake Metamorphics and consisted of quartz, quartz-limonite, quartz-tourmaline and quartz-limonite-malachite veins. Veins vary from N-S oriented (Quartz - limonite - highly recrystallized) to E-W oriented (quartz - tourmaline with little or no limonite). Very few samples recorded greater than 0.01 g/t Au with a maximum value of 0.06 g/t. Higher gold assays (>0.02 g/t) were associated with anomalous copper.

4.4.2 Other Areas

Rock chip samples from other areas are generally disappointing with one sample (105309) of sheared basaltic volcanic just south of Peake Ruins recording) 0.43 g/t Au. Interestingly enough two BLEG samples collected 50 mteres downstream (105307, 308) failed to record any gold anomlaism.

5. CONCLUSIONS AND RECOMMENDATIONS

The work carried out by Placer Exploration centred on the most prospective northern zone of the Peake and Denison Ranges. The presence of large cross cutting structures, basic volcanics, intrusive granites and common copper occurrences a well as recorded placer gold within the basal Algebuckina Sandstone were considered positive signs. This combined with the lack of any previous systematic work using modern exploration techniques suggested the area needed examining.

A regional BLEG survey, combined with rock chip sampling, was carried out over the area of interest. Results are disappointing and indicate that little potential gold mineralization is present in the area. No further work is warranted.

025

Ç

Coppin, R. J., Hall, J. McG. and Milton, B. E., 1971. Bouguer gravity anomaly map. In: Milton, B. E. and Morony, G. K., 1975. A regional interpretation of 1:1 000 000 gravity and aeromagnetic maps of the Great Artesian Basin in South Australia. Rep. Invest., geol. Surv. S. Aust., 46.

Coppin, R. J., Hall, J. McG. and Milton, B. E., 1972. Contours of magnetic intensity and interpreted depths to magnetic basement. *In*: Milton, B. E. and Morony, G. K., 1975. A regional interpretation of 1:1 000 000 gravity and aeromagnetic maps of the Great Artesian Basin in South Australia. *Rep. Invest., geol. Surv. S. Aust.*, 46.

Crawford, A. R., 1963. The Wooltana volcanic belt, South Australia. Trans. R. Soc. S. Aust., 87: 123-154.

Dalgarno, C. R. and Johnson, J. E., 1968. Diapiric structures in Flinders Ranges, South Australia. In: Braunstein, J. and "". O'Brien, G. D. (Eds), Diapirism and Diapirs. Mem. Am. Assoc. Pet. Geol., 8: 301-314.

Derrick, G. M., Wilson, I. H. and Hill, R. M., 1976. Revision of stratigraphic nomenclature in the Precambrian of northwestern Queensland. *Qd Gov.*-*Min. J.*, 77: 300-306.

Derrick, G. M., Wilson, I. H., Hill, R. M., Glikson, A. Y. and Mitchell, J. E., 1977. Geology of the Mary Kathleen 1:100 000 sheet area, northwest Queensland. Bull. Bur. Miner. Resour. Geol. Geophys. Aust., 193.

Dickinson, S. B., Parkin, L. W., Pitman, R. K., Reyner, M. L. and Hughes, F. E., 1954a. *Algebuckina* map sheet, *Geological Atlas of South Australia*, 1:63 000 series. Geol. Surv. S. Aust.

- Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1954b. Nilpinna map sheet, Geological Atlas of South Australia, 1:63 000 series. Geol. Surv. S. Aust.
- Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1955a. Anna map sheet, Geological Atlas of South Australia, 1:63 000 series. Geol. Surv. S. Aust.
- Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1955b. *Boorthanna* map sheet, Geological Atlas of South Australia, 1:63 000 series. Geol. Surv. S. Aust.
- Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1955c. *Umbum* map sheet *Geological Atlas of South Australia*, 1:63 000 series. Geol. Surv. S. Aust.

Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1955d. *Conway* may sheet, *Geological Atlas of South Australia*, 1:63 000 series. Geol. Surv. S. Aust.

- Dickinson, S. B., Parkin, L. W., Hughes, F. E., Reyner, M. L. and Pitman, R. K., 1955e. *Cadlareena* map sheet, *Geological Atlas of South Australia*, 1:63 000 series. Geol. Surv. S. Aust.
- East, J. J., 1889. On the geological structure and physical features of central Australia. *Trans. R. Soc. S. Aust.*, 12: 31-53.
- Ewart, A., 1971. Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, central volcanic region, New Zealand. *Mineralog. Mag.*, 38: 424-434.

Fairchild, T. R., 1975. The geological setting and palaeobiology of a late Precambrian stromatolitic microflora from South Australia. University of California Ph.D. thesis (unpublished).

- Fander, H. W., 1963. The Wooltana lavas. Trans. R. Soc. S. Aust., 87: 155-157.
- Forbes, B. G., 1961. Magnesite of the Adelaide System: a discussion of its origin. *Trans. R. Soc. S. Aust.*, 85:217-222.
- Forbes, B. G., 1964. The River Wakefield Group west of Clare. O. geol. Notes, geol. Surv. S. Aust., 11:6-7.
- Forbes, B. G. 1977. Bungaree Quartzite (new name): Lower Adelaidean, southwest of Spalding, South Australia. Q. geol. Notes, geol. Surv. S. Aust., 63:9-14.

Forwood, P. S., 1968. Final report on exploration on Special Mining Leases 125 and 134, Peake and Denison Ranges, South Australia, for North Broken Hill Pty Ltd. S. Aust. Dept. Mines and Energy open file Env. 2072 (unpublished).

REFERENCES

- Allchurch, P. D., Wopfner, H., Harris, W. K. and McGowran, B., 1973. Cootanoorinna No. 1 well. Rep. Invest., geol. Surv. S. Aust., 40.
- Badiozamani, K., 1973. The Dorag domolitization model—application to the Middle Ordovician of Wisconsin. J. sedim. Petrol., 43:965-984.
- Barclay, C. J., 1974. Relinquishment report EL 108 for Shell Development (Aust.) Pty Ltd. S. Aust. Dept. Mines and Energy open file Env. 2388 (unpublished).
- Benbow, M. C. and Flint, R. B., 1979. The Engenina Adamellite and Balta Granite of the Mount Woods Inlier. Q. geol. Notes, geol. Surv. S. Aust., 69:9-13.
- Brown, H. Y. L., 1894. Report on the Peake and Denison Ranges and adjoining country with special reference to the occurrence of gold. *Parl. Pap. S. Aust.*, 25.
- Carey, S. W. and Ahmad, N., 1960. Glacial marine sedimentation. *In: Geology of the Arctic.* Raasch, G. O. Toronto, University Toronto Press, pp. 865-894.
- Chugg, R. I., 1957. The hydrogeology of a portion of the Great Artesian Basin near the Peake and Denison Ranges. *Rep. Invest., geol. Surv. S. Aust.*, 10.
- Coats, R. P., 1964a. The geology and mineralisation of the Blinman Dome Diapir, *Rep. Invest., geol. Surv. S. Aust.*, 6.
- Coats, R. P., 1964b. Umberatana Group. Q. geol. Notes, geol. Surv. S. Aust., 9: 7-12.

Coats, R. P. (Compiler), 1973. COPLEY, South Australia. Explanatory Notes, 1:250 000 geological series. Sheet Sh/54-9. Geol. Surv. S. Aust.

- Coats, R. P. and Blissett, A. H., 1971. Regional and economic geology of the Mount Painter Province. Bull. geol. Surv. S. Aust., 43.
- Coats, R. P. and Forbes, B. G., 1977. Evidence for two Sturtian glaciations in South Australia—a reply. Q. geol. Notes, geol. Surv. S. Aust., 64: 19-20.

Cooper, P. F. and Tuckwell, K., 1971. The Upper Precambrian Adelaidean of the Barrier Ranges, a new subdivision. *Q. geol. Notes, geol. Surv. N.S.W.*, 3: 8-16.

Cooper, R., 1976. Petrographic description of twenty-five samples from the Peake and Denison Ranges. Amdel report MP365/77 (unpublished).

Cooper, R., Couppey, C., Jacque, M., Leslie, W. and Magnier, P., 1963. Mission geologique sur les bordures occidentales du Grand Bassin Artesian, for French Petroleum Company. S. Aust. Dept. Mines and Energy open file Env. 386/2 (unpublished).

- Freytag, I. B., 1966. Proposed rock units for marine lower Cretaceous sediments in the Oodnadatta region of the Great Artesian Basin. *Q. geol. Notes, geol. Surv. S. Aust.*, 18:3-7.
- Freytag, I. B., Heath, G. R. and Wopfner, H., 1967. OODNADATTA map sheet, Geological Atlas of South Australia, 1:250 000 series. Geol. Surv. S. Aust.
- Hawkes, H. E. and Webb, J. S., 1962. Geochemistry in Mineral Exploration. Harper and Row, New York.
- Heath, G. R., 1965. Permian sediments of the Mount Dutton Inlier. Q. geol. Notes, geol. Surv. S. Aust., 14:3-5.
- Holmes, D., 1970. South Australia potash project, Special Mining Lease 329, for Occidental Mins Corp. (Aust.). S. Aust. Dept. Mines and Energy open file Env. 1313 (unpublished).
- Holmes, D. A. and Rayment, P., 1970. Oxymin Boorthanna No. 1 well completion report for Occidental Mins Corp. (Aust.). S. Aust. Dept. Mines and Energy open file Env. 1241 (unpublished).
- Iliff, G., 1975. Exploration 1974 on EL 100, Peake-Denison and Mt Margaret Ranges, South Australia, for Uranerz (Aust.) Pty Ltd. S. Aust. Dept. Mines and Energy open file Env. 2381 (unpublished).
- Iliff, G. D., Robinson, P. and Johnson, J., 1974. Exploration 1973 on EL 33 Mt Margaret Range, Peake and Denison Block, South Australia, for Uranerz (Aust.) Pty Ltd. S. Aust. Dept. Mines and Energy open file Env. 2253 (unpublished).
- Jack, R. L., 1930. Geological structure and other factors in relation to underground water supply in portions of South Australia. Bull. geol. Surv. S. Aust., 14.
- Laut, P., Keig, G., Lazarides, M., Loffier, E., Margules, C., Scott, R. M. and Sullivan, M.E., 1977. Environment of South Australia—Province 8, northern arid. Division of Land Use Resea.ch, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia, pp. 152-155.
- Leeson, B., 1972. Geochemical and geophysical investigations near the Last Chance Mine. *Mineral Resour. Rev., S.* Aust., 132: 95-102.
- Le Maitre, R. W., 1976. The chemical variability of some common igneous rocks. J. Petrology, 17:589-637.
- Ludbrook, N. H., 1961. Permian to Cretaceous subsurface stratigraphy between Lake Phillipson and the Peake and Denison Ranges, South Australia. *Trans. R. Soc. S. Aust.*, 85: 67-80.
- Mawson, D., 1927. Geological notes on an area along the northwestern margin of the Willouran Range. *Trans. R. Soc. S. Aust.*, 51: 386-390.
- Mawson, D. and Sprigg, R. C., 1950. Subdivision of the Adelaide System. Aust. J. Sci., 13 (3): 69-72.
- Milnes, A. R., Compston, W. and Daily, B., 1977. Pre- to syn-tectonic emplacement of early Palaeozoic granites in southeastern South Australia. J. geol. Soc. Aust., 24:87-106.
- Mirams, R. C. and Forbes, B. G., 1964. Burra Group. Q. geol. Notes, geol. Surv. S. Aust., 9: 5-7.
- Murrell, B., 1977. The stratigraphy and tectonics across the Torrens Hinge Zone between Andamooka and Marree, South Australia. University of Adelaide Ph.D. thesis (unpublished).
- Papalia, N., 1970. Final report on Weedina No. 1 well for Pexa Oil NL. S. Aust. Dept. Mines and Energy open file Env. 1374 (unpublished).
- Pearce, J. A., 1976. Statistical analysis of major element patterns in basalts. J. Petrology, 17: 15-43.
- Preiss, W. V., 1973a. Early Willouran stromatolites from the Peake and Denison Ranges and their stratigraphic significance. S. Aust. Dept. Mines report 73/208 (unpublished).
- Preiss. W. V., 1973b. Palaeoecological interpretations of South Australian Precambrian stromatolites. J. geol. Soc. Aust., 19: 501-509.
- Preiss, W. V., 1974. The River Broughton Beds—a Willouran sequence in the Spalding Inlier. Q. geol. Notes, geol. Surv. S. Aust., 49: 2-8.

- Radke, F., 1973. Fission—track dating. Amdel Project 1/1/148, progress report No. 1 (unpublished).
- Radke, F., 1976. Examination of rocks from WARRINA 1:250 000 sheet. Amdel report MP 1580/76 (unpublished).
- Radke, F., 1977. Petrography of thirteen rocks from the WARRINA 4-mile sheet, Peake and Denison Ranges. Amdel report MP 1648/77 (unpublished).
- Reyner, M. L., 1955. The geology of the Peake and Denison region. Rep. Invest., geol. Surv. S. Aust., 6.
- Sargeant, F. J., 1970. Report on exploration during the period 15.2.70 to 15.8.70, SML 270, South Australia, for Australasian Mining Corporation Ltd. S. Aust. Dept. Mines and Energy open file Env. 1015 (unpublished).
- Schermerhorn, L. J. G., 1966. Terminology of mixed coarse-fine sediments. J. sedim. Petrol., 36: 831-835.
- Schopf, J. W. and Fairchild, T. R., 1973. Late Precambrian micro-fossils: a new stromatolitic biota from South Australia. Nature, 242: 537-538.
- Scoular, G., 1887. Sketch of the geology of the southern and western parts of the Lake Eyre Basin. Trans. R. Soc. S. Aust., 9:39-54.
- Smith, N., 1973. Gravity and magnetic analysis, Lagoon Hill area, South Australia. Company report EL 22, for Chevron Exploration Corporation. S. Aust. Dept. Mines and Energy open file Env. 2182 (unpublished).
- Spencer, A. M., 1971. Late Precambrian glaciation in Scotland. Mem. geol. Soc. Lond., 6.
- Sprigg, R. C., 1949. Thrust structures in the Witchelina area, South Australia. Trans. R. Soc. S. Aust., 73:40-47.
- Sprigg, R. C., 1952. Sedimentation in the Adelaide Geosyncline and the formation of the continental terrace.
- Sir Douglas Mawson Anniv. Vol., University of Adelaide, pp. 153-159.
- Steiger, R. H. and Jager, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. *Earth Planet. Sci. Lett.*, 36:359-362.
- Steveson, B. G., 1973. The geochronology of the eastern basement rocks. Amdel project 1/1/140, progress report No. 2 (unpublished).
- Steveson, B. G., 1976a. Examination of rocks from the Cadlareena Volcanics. Amdel report MP 224/77 (unpublished).
- Steveson, B. G., 1976b. Examination of eleven rocks from WARRINA 1:250 000 sheet. Amdel report MP 335/77 (unpublished).
- Steveson, B. G., 1976c. Examination of rocks from WARRINA 1:250 000 sheet. Amdel report MP 1553/76 (unpublished).
- Stuart, J. M., 1860. J. M. Stuart's exploration in 1860. Parl. Pap. S. Aust., 65.
- Stuart, J. M., 1862. J. M. Stuart's exploration, 1861-1862. Parl. Pap. S. Aust., 21.
- Teluk, J. A., 1974. Completion report on EL 22, Lagoon Hill area—South Australia, for Chevron Exploration Corporation. S. Aust. Dept. Mines and Energy open file Env. 2182 (unpublished).
- Thomson, B. P., 1966. The lower boundary of the Adelaide System and older basement relationships in South Australia. J. geol. Soc. Aust., 13:203-213.
- Thomson, B. P., 1969. The Adelaide System. In: Parkin, L. W., (Ed.), Handbook of South Australian Geology. Geol. Surv. S. Aust., pp. 69-71.
- Thomson, B. P., 1974. Tectonics and regional geology of Willyama, Mount Painter, and Denison Inlier areas. In: Knight, C. L. (Ed.), Economic Geology of Australia and Papua New Guinea, 1, Metals. Monograph 5, Australas. Inst. Min. Metell., Melbourne, pp. 469-475.
- Thomson, B. P. and Coats, R. P., 1964. The Callanna Beds. Q. geol. Notes, geol. Surv. S. Aust., 9:3-5.
- Townsend, I. J., 1973. A synthesis of stratigraphic drilling of the Arckaringa Basin 1969-1971. S. Aust. Dept. Mines report 73/87 (unpublished).
- Townsend, I. J. and Ludbrook, N. H., 1975. Revision of Permian and Devonian nomenclature of four formations in and below the Arckaringa Basin. *Q. geol. Notes, geol. Surv.* S. Aust., 54:1-5.

- Turekian, K. K. and Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth's crust. *Bull. geol. Soc. Am.*, 72:175-192.
- Turner, A. R., 1969a. Some aspects of the basic lavas of the Gawler Platform. Amdel report MP 809/69 (unpublished).
- Turner, A. R., 1969b. The geochronology of stratigraphically significant rocks from South Australia. Amdel Project 1/1/126, progress report No. 2 (unpublished).
- Vennum, W. R. and Eberlein, G. D., 1977. Spherulitic rhyolite dyke from Goat Island, southeastern Alaska. J. Res. U.S. geol. Surv., 5 (4): 445-451.
- Webb, A. W., 1976. Geochronology of the granitic rocks of southeastern South Australia. Amdel report No. 1138 (unpublished).
- Webb, A. W., 1977a. Geochronology of stratigraphically significant rocks from South Australia. Amdel Project 1/1/126, progress report No. 16 (unpublished).
- Webb, A. W., 1977b. Geochronology of sample P 266/76. Amdel Project 1/1/126, progress report No. 15 (unpublished).
- Webb, A. W. and Lowder, G. G., 1971. The geochronology of stratigraphically significant rocks from South Australia. Amdel Project 1/1/126, progress report No. 5 (unpublished).
- Western Mining Corporation Ltd, 1975. Exploration Licence 192, Peake and Denison Ranges. S. Aust. Dept. Mines and Energy open file Env. 2525 (unpublished).
- Whitehead, S. 1972a. Metamorphic and sedimentary rocks from Mount Kingston. Amdel report MP 1915/72 (unpublished).
- Whitehead, S., 1972b. Petrographic description of eleven rock specimens from WARRINA 1:250 000 sheet. Amdel report MP 2151/72 (unpublished).

- Williams, G. E. 1975. Late Precambrian glacial climate and the Earth's obliquity. Geol. Mag., 112: 441-465.
- Wilson, J. L., 1975. Carbonate Facies in Geological History. Springer-Verlag, New York.
- Winton, L. J., 1919. Report on the Last Chance Copper Mine and War Loan Copper Mine. *Min. Rev., Adelaide*, 29: 54-56.
- Wopfner, H., 1968. Cretaceous sediments on the Mount Margaret Plateau and evidence for neo-tectonism. Q. geol. Notes, geol. Surv. S. Aust., 28: 7-11.
- Wopfner, H., 1970. Permian palaeogeography and depositional environment of the Arckaringa Basin, South Australia. In: Second Gondwana Symposium, Natal. Witness press, Natal, pp. 273-291.
- Wopfner, H., 1972. Depositional history and tectonics of South Australian sedimentary basins. *Mineral Resour. Rev., S. Aust.*, 133: 32-50.
- Wopfner, H., Freytag, I. B. and Heath, G. R., 1970. Basal Jurassic-Cretaceous rocks of the western Great Artesian Basin, South Australia: stratigraphy and environment. Bull. Am. Ass. Petrol. Geol., 54: 383-416.
- Wopfner, H. and Heath, G. R., 1963. New observations on the basal Cretaceous-Jurassic sandstone in the Mt Anna region, South Australia. Aust. J. Sci., 26: 57-59.
- Young, G. M., 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. *Precambrian Res.*, 3: 137-158.
- Youngs, B. C., 1975a. The geology and hydrocarbon potential of the Pedirka Basin. *Rep. Invest., geol. Surv. S. Aust.*, 44.
- Youngs, B. C., 1975b. The Early Permian Purni Formation of the Pedirka Basin. *O. geol. Notes, geol. Surv. S. Aust.*, 54: 5-12.

13

APPENDIX I

PREVIOUS EXPLORATION PEAKE AND DENISON RANGES

- Geochemistry
- Geophysics
- Drilling
- Geology

BP

F Peake and Denison Ranges Area - Geochemistry

	F Peake and Denison Ranges A	rea - Geoch	nemistry			- · ·					AL		
	·	.			Stream	Soil		Core/	Hater		Objective	Other	Map
			Licence	Reference	Sequent	Sampling	Culb	Cuttings	Sampling	Geobotany	Elements	Elements	Reference
	F G.Scouler	1885		Roy Soc 9							Au		
	F S.A.D.H.	1886		RB1									
	F S.S. East	1889		Roy Soc 12							_		
	F S.A.D.H.	1893/1894		Parl Pap25							Au		
	F S.A.D.N.	1915		Bull 5									
	F S.A.D.H.	1918		MR 29									
	S.A.D.H.	1930		Bul 14									
	S.A.D.H.	1946		Bull 23					yes				
	Sprigg	1949		Roy Soc 73									
	H. Narain	1951											
	F Sprigg	1952		Marson vol									
	S.A.D.H.	1955		RI 6									
	S.A.D.H.	1957							yes				
	S.A.D.H.	1961		HR 114									-
	North Broken Hill Ltd	1966/1967		Env 694	992		15				Cu,Pb,Zn,Ni		A
1	North Broken Hill Ltd	1966/1968		Env 941	5800	5280	yes				Cu, Pb, Zn, Co, No		N3,B,C
1	Australian Mining Corp	1969/1971		Env 1015	69	30x15	25				V,Cu,Ni	Ag,Au,Bi,Sb	E,F,G,J
1	S.A.D.N.E.	1969/1970		RB70/84, MR132	490	1020				. •	Cu,Pb,Zn,Co,Pb,Ni,Sn,Mo	U,Th	D
J	C.R.A.E.	1971	SHL402/3	Env 1565	43		6	yes			Sr	Ba,U	N6
E	AOG Minerals Ltd	1972	SHL 718	Env 2142							Au		•
F	Chevron Minerals Ltd	1973	EL 22	Env 2182					yes	101	Ú	42 elements	1
	S.A.D.N.E.	1973											
F	S.W.Schoff, T.R.Fairchild	1973											
F	Uranertz	1974/1975	EL 110	Env 2253							U	Th	
	S.A.D.H.E.	1974					83						
-	RNC .	1975	EL 192	Env 2525		3489	325	yes			Au, Ni, Co, Zn, Pb, Mn, Ag, As		2,3
F	MINAD/Teton Drilling	1977/1978		Env 3080			12		6		U	Coal	N1,N2,4,5
	Cyprus Aust Coal	1985	EL 5466	Env 4909									
	Savata Pty Ltd	1979/1980		Env 3579	8	14	16				Diamonds	8 elements	N7
	Stockdale Prospecting Ltd	1987	EL 4179	Env 5288									
	Stockdale/Britas/Cons. Gold	1979/1984		Env 3562	yes	yes	yes	yes			21 elements		
	Dampier Mining	1977/1980		Env 3754		yes		yes				35 elements	
	Dampier Hining	1977/1980	EL 583	Env 3754		yes		yes				35 elements	
	S.A.D.N.E.	1980		RB 80/70	36		_				Au		
	Aberfoyle	1980/1987		Env 3771	>600	2	359	yes			Di amonda , Au	9 elements	
	Aberfoyle	1980/1987		Env 3771	>600	2	359	yes			Diamonda, Au	9 elements	
	Western Nuclear/Oilmin/Transoi			Env 4027	yes					•	Diamonds	6 elements	
	Carpentaria Exploration		EL 743	Env 4031		_	25				Au		x9
	Aberfoyle	1980/1987		Env 3771	613	2	354	yes			Diamonds, Au	9 elements	14
	Dilmin/Transoil/Petromin	1981/1982		Env 4041	3255						Diamonds	15 Elements	x10
	Oilmin/Transoil/Petromin	1981/1982		Env 4042	526						Diamonds, Cu, Co, Ni, Nb	15 Elements	Ŵ
	Genex/Western Queen	1980/1981		Env 4061							U,Coal,Diamonds		
	Gemex/Western Queen	1980/1981		Env 4061							U,Coal,Diamonds		10
	C.R.A.E.	1980.1982	EL 761	Env 4138	79	46		yes			Cu,Pb,Zn	13 elements	19
	S.A.D.H.E.	1980		Bull 50			83					20 elements	6
	Ashton	1981.1983		Env 4223	52		-				Diamonds	18 elements	9
	Carpentaria Exploration	1981/1982		Env 4496	23		53				Au		N8
	BHP Minerals	1982/1984		Env 4858/5106	yes	yes					Diamonds		
	BHP Minerals	1982/1984		Env 4909	20						Diamonds		NA 10
	Stockdale Prospecting	1983/1984		Env 4912	3						Diamonds		10
	BHP Minerals	1983/1986		Env 6282							Diamonds		
	BHP Minerals Ltd		EL 1292	Env 6791							Base Notale		
	BHP Minerals	1985/1986		Env 6542/6379							Base Metals Base Metals		
	BHP Minerals S.A.D.H.E.	1986 1988	EL 1292	Env 6541/6379							1000 UT1015		
	Newmont	- <u>1</u> 990		Env 3084									
	the second se			PNA NUMB									

F Peake and Demison Ranges Area - Geochemistry

Company F Stockdale/Britas/Cons. Gold F Stockdale/Britas/Cons. Gold F BHP Minerals F BHP Minerals F Genex F Getty Oil Development	1979/1984 EL 899 1979/1984 EL 1187 1983/1984 EL 1029 1983/1984 EL 1010 1981 EL 760	Env 3562 < 466 Env 3562 < 466 Env 4858 yes Env 4858 yes Env 4858 yes	Soil t Sampling < 19 < 19 yes yes	Rock Chip yes yes	Core/ Cuttings yes yes	Hater Sampling Geobotany	Objective Elements 21 elements 21 elements Diamonds Diamonds	Other Elements	Hap Reference 11
F Getty Oil Development F Getty Oil Development F Stockdale Prospecting 1td F Uranertz F	1980 EL 409 1980 1984 EL 1179 1974	Env 3602 Env 3804 Env 5288 1115 Env 2381		64	8	3	Diasonds U, Th		7 15,16 18

.

.

.

F Peake and Denison Ranges Area - Geophysics

		• .												Мар
	Company	Date	Licence	Reference	IP	Magnetics	Radiometrics	Gravity	Resistivity	SP	VLF	EM	Seismic	Reference
	F G.Scouler	1885		Roy Soc 9										
	F S.A.D.H.	1886		RB1										
	F S.S. East	1889		Roy Soc 12										
	F S.A.D.H.	1893/1894	r	Parl Pap25										
	F S.A.D.H.	1915		Bull 5										
	F S.A.D.H.	1918		MR 29										
	F S.A.D.H.	1930		Bul 14										
	F S.A.D.H.	1946		Bull 23										
	F Sprigg	1949		Roy Soc 73										
	F H. Narain	1951						yes						
	F Sprigg	1952		Mawson vol										
	FS.A.D.H.	1955		RI 6				yes						NF,6
	F S.A.D.H.	1957		the date										
	F S.A.D.H.	1961		MR 114				yes						NE
	F North Broken Hill Ltd	1966/1967		Env 694										_
	F North Broken Hill Ltd	1966/1968		Env 941	•	G60m								N5,A,B,C
	F Australian Mining Corp	1969/1971		Env 1015	yes	A500/92,G30	A500/92,G30			yes	yes	yes		N2,1,E-L
	F S.A.D.N.E.	1969/1970		RB70/84, MR132			yes							D
	F C.R.A.E.	1971		Env 1565										
	F AOG Minerals Ltd	1972		Env 2142										
	F Chevron Minerals Ltd	1973	EL 22	Env 2182			yes		yes	yes			1 line	2
	F S.A.D.N.E.	1973												
1	F S.W.Schoff, T.R.Fairchild	1973												
- 7	F Uranertz	1974/1975	EL 110	Env 2253			A2000H, G5000							N,P
	F S.A.D.N.E.	1974												
1.7	FWHC	1975	EL 192	Env 2525										
	F MINAD/Teton Drilling	1977/1978		Env 3080			yes		yes					3,4
F	F Cyprus Aust Coal	1985	EL 5466	Env 4909		A300,80,G	A300,80							
	Savata Pty Ltd	1979/1980		Env 3579		yes	yes	yes						NH
F	Stockdale Prospecting Ltd	1987	EL 4179	Env 5288				yes						13
F	Stockdale/Britas/Cons. Gold	1979/1984		Env 3562		yes	yes	yes				yes		
F	Dampier Mining	1977/1980		Env 3754		yes		yes						
F	Dampier Mining	1977/1980	EL 583	Env 3754		yes		yes						8
F	S.A.D.H.E.	1980		RB 80/70										8
F	Aberfoyle	1980/1987	EL 571	Env 3771	yes	yes	yes				yes	yes		10,11,2
F	Aberfoyle	1980/1987	EL 968	Env 3771	yes	A125,50,G	A125,50,G				yes	yes		z, 10
F	Western Nuclear/Oilmin/Transoi	1980/1982	EL 709	Env 4027		yes		yes			-	•		
F	Carpentaria Exploration	1981	EL 743	Env 4031										
F	Aberfoyle	1980/1987		Env 3771	yes	A300,80	A300,80				yes	yes		10,11,2
F	Oilmin/Transoil/Petromin	1981/1982	EL 750	Env 4041			-				-	•		
F	Oilmin/Transoil/Petromin	1981/1982	EL 751	Env 4042										
F	Gemex/Western Queen	1980/1981	EL 763	Env 4061			•							
F	Gemex/Western Queen	1980/1981	EL 760	Env 4061										
F	C.R.A.E.	1980.1982	EL 761	Env 4138		yes	yes			yes		•		18
F	S.A.D.H.E.	1980		Bull 50		•	•			•				
F	Ashton	1981.1983	EL 787	Env 4223	•	A300,80,6200	A300.80							т,9
F	Carpentaria Exploration	1981/1982		Env 4496										-
	BHP Minerals	1982/1984		Env 4858/5106		A300,80	A300,80	yes						NB
	BHP Minerals	1982/1984		Env 4909		A300,80	A300,80	yes						NC
	Stockdale Prospecting	1983/1984		Env 4912										
	BHP Minerals	1983/1986		Env 6282		A300,80	A300,80	yes				yes		
	BHP Minerals Ltd	1986	And the second second	Env 6791				yes				100		T
	BHP Minerals	1985/1986		Env 6542/6379		A500,80,G	AROO, 80, G	yes						x
	BHP Minerals	1986		Env 6541/6379		A500,80	A500,80	yes						Ŷ
	S.A.D.H.E.	1988						1						-
	Neuront			Env 3084										
F				Env 3602										1

F Peake and Denison Ranges Area - Geophysics

r teane and benefit								Map
Company F Stockdale/Britas/Cons. Gold F Stockdale/Britas/Cons. Gold F BHP Minerals F BHP Minerals F Gemex F Getty Oil Development F Getty Oil Development	Date Licence 1979/1984 EL 899 1979/1984 EL 1187 1983/1984 EL 1029 1983/1984 EL 1010 1981 EL 760 1980 EL 409 1980	Env 4858	Magnetics yes A150,60,G A300,80 A300,80,G	Radiometrics yes A150,60,G A300,80 A300,80,G	Gravity Resistivity S yes yes yes yes yes	SP VLF yes	yes	ismic Reference 11 U NB V
F Stockdale Prospecting ltd F Uranertz	1984 EL 1179 1974				yes			13 Q,R

•

١,

F

F Peake and Denison Ranges Area - Drilling

		_			. /						Hap
	Company		Lice	ence			Dianond	Percussion	Rotary RC	Auger	Reference
	G.Scouler	1885			•	Soc 9					
	S.A.D.H.	1886			R81						
F	S.S. East	1889				Soc 12					
	S.A.D.H.	1893/1894				l Pap25					
	S.A.D.H.	1915			Bul						
	S.A.D.H.	1918			NR 1						
	S.A.D.H.	1930			Bul	-					
F	S.A.D.H.	1946			Bul.						
F	Sprigg	1949			Roy	Soc 73					
F	H. Narain	1951									
	Sprigg	1952				son vol					
	S.A.D.H.	1955			RI	5					
	S.A.D.H.	1957									
	S.A.D.H.	1961			HR -						
	North Broken Hill Ltd	1966/1967			Env						_
F	North Broken Hill Ltd	1966/1968			Env	941					4,5
F	Australian Hining Corp	1969/1971	SHL	270	Env	1015	yes	yes	yes		3
F	S.A.D.M.E.	1969/1970			RB7	0/84, MR132					
F	C.R.A.E.	1971	SHL	402/3	Env	1565					
F	AOG Minerals Ltd	1972	SHI	718	Env	2142				yes	
F	Chevron Minerals Ltd	1973	EL	22	Env	2182				yes	8,9
F	S.A.D.H.E.	1973									
F	S.W.Schoff, T.R.Fairchild	1973									
F	Uranertz	1974/1975	EL	110	Env	2253					
F	S.A.D.H.E.	1974									
F	RNC	1975	EL	192	Env	2525					4,5
F	MINAD/Teton Drilling	1977/1978	EL	336		3080					1
	Cyprus Aust Coal	1985	EL	5466	Env	4909					
	Savata Pty Ltd	1979/1980	EL	462	Env	3579					
	Stockdale Prospecting Ltd	1987	EL	4179	Env	5288					
	Stockdale/Britas/Cons. Gold	1979/1984	EL	491	Env	3562				yes	
	Dampier Mining	1977/1980	EL	369	Env	3754	yes			•	
	Dampier Mining	1977/1980			Env	3754	yes				11
	S.A.D.H.E.	1980			RB I	30/70	•				
	Aberfoyle	1980/1987	EL	571	Env	3771		yes	yes		
	Aberfoyle	1980/1987	EL	968	Env	3771		yes	yes		
	Western Nuclear/Oilmin/Transoi	1980/1982	EL	709	Env	4027		yes	yes		
	Carpentaria Exploration	1981		743	Env	4031	yes	•	•		
	Aberfoyle	1980/1987	EL	968	Env	3771	•	yes	yes		16,17
	Oilmin/Transoil/Petromin	1981/1982			Env	4041		•	•		•
	Oilmin/Transoil/Petromin	1981/1982			Env	4042					
	Genex/Western Queen	1980/1981			Env	4061		4			
	Genex/Western Queen	1980/1981			Env	4061					
	C.R.A.E.	1980.1982			Env	4138		yes	yes	yes	12
	S.A.D.H.E.	1980				1 50		1	1		
	Ashton	1981, 1983	EL	787		4223					
	Carpentaria Exploration	1981/1982				4496	•				
	BHP Minerals	1982/1984				4858/5106					
	BHP Minerals	1982/1984		1.2.2.2.2.		4909					
	Stockdale Prospecting	1983/1984				4912					
	BHP Minerals	1983/1986				6282					
	BHP Minerals Ltd	1986		1292		6791					
	BHP Minerals	1985/1986		14.1.1		6542/6379					
	BHP dinerals	1985/1986		1293		6541/6379					
	S.A.D.M.E.	1988	-58	1676	PILA	vJ11/0313					
	Netront	1300			Fnv	3084					
F	are car					3602					
					6114						· ·

÷.

N

.

F Peake and Denison Ranges Area - Drilling

Cospany	Date Licenco	Reference	Diamond Pe
company	1979/1984 EL 899	Env 3562	
F Stockdale/Britas/Cons. Gold			
F Stockdale/Britas/Cons. Gold	1979/1984 EL 11		
F BHP Minerals	1983/1984 EL 10	29 Env 4858	
F BHP Minerals	1983/1984 EL 10	10 Env 4858	
F Genex	1981 EL 76		
F Getty Oil Development	1980 EL 40) Env 3602	
F Getty Oil Development	1980	Env 3804	K
F Stockdale Prospecting ltd	1984 EL 11	79 Env 5288	
F Uranertz	1974	Env 2381	

F

F

Hap Percussion Rotary RC Auger Reference yes yes 13 14

						÷						
Peake and Denison Ranges Area	- Geology			•	.				D I	•	Di	n i a bi i a
					Geological			Remote		Trenching	•	-
Company		Licence		Search	Mapping	Petrology	Mineralogy	Sensing	Interpretation	rests	Tests	Elements
G.Scouler	1885		Roy Soc 9									Au
S.A.D.H.	1886		R81									
S.S. East	1889		Roy Soc 12									
S.A.D.N.	1893/1894		Parl Pap25	yes							yes	Au
S.A.D.H.	1915		Bull 5	•							•	
	1918		HR 29							yes		
S.A.D.H.	1930		Bul 14	Ŷ								
S.A.D.H.	1946		Bull 23									
S.A.D.H.			Roy Soc 73			1						
Sprigg	1949		ROY SOC 75									
H. Narain	1951											
Sprigg	1952		Hauson vol									
S.A.D.N.	1955		RI 6	yes	-							
S.A.D.H.	1957											
S.A.D.N.	1961		HR 114									
North Broken Hill Ltd	1966/1967	SHL125	Env 694		•							Cu,Pb,2n,Ni
North Broken Hill Ltd	1966/1968		Env 941		yes	yes						Cu,Pb,Zn,Co,No
Australian Mining Corp	1969/1971		Env 1015	yes		-	yes				yes	U,Cu,Ni
S.A.D.N.E.	1969/1970)	RB70/84, HR132		yes							Cu,Pb,Zn,Co,Pb,Ni,Sn,Ho
C.R.A.E.	1905, 1970		Env 1565		yes							Sr
AOG Minerals Ltd	1972		Env 2142		•							Au
	1973	EL 22	Env 2182	yes								U
Chevron Minerals Ltd	1973	EU 66	Ella TIOT	ica								
S.A.D.H.E.												
S.W.Schoff, T.R.Fairchild	1973											U
Uranertz	1974/1975	EL 110	Env 2253									. .
S.A.D.H.E.	1974	~ ~ ~										Au,Ni,Co,Zn,Pb,Mn,Ag,As
HHC .	1975	EL 192	Env 2525	yes								
NINAD/Teton Drilling	1977/1978	3 EL 336	Env 3080	yes	•							U
Cyprus Aust Coal	1985	EL 5466	Env 4909						9 1			
Savata Pty Ltd	1979/1980) EL 462	Env 3579						yes			Diamonds
Stockdale Prospecting Ltd	1987	EL 4179	Env 5288									
Stockdale/Britas/Cons. Gold	1979/1984		Env 3562		yes		yes		yes			21 elements
• •	1977/1980		Env 3754		100	yes			•			
Dampier Mining	1977/1980		Env 3754			yes						
Dampier Mining	•	0 EL JOJ				100						Au
S.A.D.H.E.	1980		RB 80/70							yes		Diamonda, Au
Aberfoyle	1980/1987		Env 3771	yes	yes	yes	yes		yes	-		Diamonda, Au
Aberfoyle	1980/1987		Env 3771	yes	yes	yes	yes		yes	yes		Diamonds
Western Nuclear/Oilmin/Transo	i 1980/1982	EL 709	Env 4027	yes		yes	yes					
Carpentaria Exploration	1981	EL 743	Env 4031	yes	yes	yes						Au Discordo Au
Aberfoyle	1980/1987	7 EL 968	Env 3771	yes	yes	yes	yes		yes	yes		Diamonds, Au
Oilmin/Transoil/Petromin	1981/1982		Env 4041				yes					Diamonds
Oilmin/Transoil/Petromin	1981/1982		Env 4042				yes					Diamonds, Cu, Co, Ni, Nb
Gemex/Western Queen	1980/1981		Env 4061	yes			-					U, Coal, Diamonds
Genex/Western Queen	1980/1981		Env 4061	yes								U,Coal,Diamonds
• •	1980, 1982		Env 4138	1		yes	yes					Cu, Pb , Zn
C.R.A.E.	1980 1982	5 56 /QT	Bull 50	100	VAC		·					
S.A.D.H.E.				yes	yes	yes	100					Diamonds
Ashton	1981.198		Env 4223		yes	yes	yes					Au
Carpentaria Exploration	1981/1982	z el 888	Env 4496	yes	yes	yes			yes			Diamonds
BHP Minerals			Env 4858/5106				yes					Diamonds
BHP Minerals			Env 4909				yes					
Stockdale Prospecting	1983/1984	4 EL 1030	Env 4912					yes	yes			Diamonds
BHP Minerals			Env 6282		•			yes				Diamonds
	1986		Env 6791					-				
BHP Minerals Ltd			Env 6542/6379									Base Metals
BHP Minerals												Base Metals
BHP Minerals	1986	EL 1292	Env 6541/6379		1105							
S.A.D.M.E.	1988		2004		yes							
	1988		Env 3084 Env 3602		ica.							

. .

- 1.15

F Peake and Denison Ranges Area	a – Geology								
Company F Stockdale/Britas/Cons. Gold F Stockdale/Britas/Cons. Gold F BHP Minerals F BHP Minerals F Gemex F Getty Oil Development	Date Licence 1979/1984 EL 899 1979/1984 EL 1187 1963/1984 EL 1029 1983/1984 EL 1010 1981 EL 760 1980 EL 409	Env 4858	Literature Search		Petrology yes yes	Remote Sensing yes yes	Photo Interpretation yes yes		Objective Elements 21 elements Diamonds Diamonds
F Getty Oil Development F Stockdale Prospecting ltd F Uranertz F	1980 1984 EL 1179 1974	Env 3804		,				,	Diamonds U,Th

Peake and Denison Ranges

Surveys which sampled and analyzed for gold

		LEGENI	2 The map	overlays the	
geological map as	before.				
<u>Operator</u>	<u>Year</u> <u>Map</u>	Ref	Survey Type	Ref	
AMC	1969	1	Drilling	Env1015	
Chevron	1973	2	Geobotanic	Env2182	
WMC	1975	3	Rock	Env2525	
WMC	1975	5	NBH Drilling	Env2525	
WMC	1975	6 7	NBH Drilling	Env2525	
SADME	1980		Stream Sedim.	RB70/80	
SADME	1981	8	Rock	Bull 50	
BHP	1980	9	Drilling	Env3754	
CRAE	1980	10	Drilling	Env4138	
CRAE	1980	19	St. Sed Pan C.	Env4138	
Carpentaria	1981	11	Rock Quartz re.	.Env4496	
Carpentaria	1981	12	Rock BIF	Env4496	
Carpentaria	1981	13	Rock Conglomer	Env4496	
Carpentaria	1981	14	Rock Conglomer	Env4431	
Carpentaria	1981	15	Soil Sampling	Env4496	
Oilmin	1981	16	Stream Sedim.	Env4041	
Utah	1984	17	Drilling	Env3771	
Utah	1984	18	Stream Sedim.	Env3771	
Utah	1984	18	Soil Sampling	Env3771	
Utah	1984	18	Rock chip	Env3771	

Notes: The volcanics have only been sampled in three areas. All samples have returned above backround values, both from Tuffs as well as basalt!

The BLEG sampling was undertaken bu UTAH Env 3771 and is the only BLEG work undertaken to date. The area concerned is well to the west of the EL application area. I have included a microfiche of these results.

Once again the attached map demonstrates the paucity and incidental nature of gold geochem.

brah

037

APPENDIX II

PEAKE AND DENISON RECONNAISSANCE TRIP

Ref: 32.5/GC/SGS

MEMORANDUM

CC « PS "

a1819799

T0:		Peter	Scott
	CC	Garth	Wilson

FROM: Genesio Circosta

DATE: 3 August, 1989

SUBJECT: Peake and Denison Reconnaissance

The following summarises my notes from the reconnaissance visit to the Peake and Denison Ranges undertaken July 16th to July 19th. The trip was organised by Jim Allender who has an ELA (Figure 1) over the area. We were accompanied by Russell Fountain of Nord Resources.

The Peake and Denison Rnages are approximately 1000km north of Adelaide trending northerly for 130km parallel to the old Central Australian Railway and Marree - Oodnadatta Road.

Gold has been reported in several areas of the Peake and Denison Ranges in South Australia's far north (Figures 2 and 3). Gold occurs with conglomerates of Jurassic-Cretaceous and Tertiary age exposed in areas close to Precambrian Basement Highs. Whilst several companies have carried out exploration over areas of known Au mineralisation no systematic search has been undertaken to test for new payable occurrences in the large areas covered by Jurassic-Cretaceous and Tertiary sediments. It can be assumed that the gold has a hard rock source within either the Early Proterozoic Peake Matamorphics or the Late Proterozoic Adelaidean sequence. No hard rock source to the gold mineralisation has yet been found.

The location and regional geological setting of the Peake and Denison Ranges is shown on Figure 2 and 3. Figure 4 shows the tectonic setting of the Peake and Denison Ranges.

Notes on each location visited and samples collected are summarised below. Sample locations are shown on Figures 5 and 6.

War Loan Mine

Mineralisation consists of a iron-rich quartz breccia sub-parallel to layering of the surrounding Callanna Beds shales. Mineralogy includes limonite-malachite-chalcocitesiderite in a 1-2 metres wide zone striking 130/310° (m) dipping 70° SW. Pits are over a strike length of 80-100 metres.

The host Callanna Beds consist of blue-grey-siltstones which are bleached and contorted near the mineralised zone.

Samples 105251 - quartz-rich lode material 105252 - quartz-poor malachite staines Callanna Beds.

Tonnage potential of such mineralisation is considered to be poor.

Road to Peak Ruins

A small copper mine within basaltic volcanics of the Cadlareena Volcanics (Callanna Beds) was examined. Mineralisation was observed to consist of malachite + native copper in a 30-40 cm wide siliceous zone parallel to foliation within the volcanics. Oriented at $80^{\circ}/60^{\circ}$ (m). Basalts appear altered adjacent to the lode.

Samples 105253 - lode material 105254 - sample of unmineralised balatic rock to check background levels.

Again tonnage potential is considered to be poor.

Peake Ruins - Freeling Spring Area

This is very interesting area where Middle Proterozoic Winniecurrie Granite is faulted by a major N-S trending fault.

The fault zone adjacent to the spring contains abundant quartz-specular hematite breccia in a zone >10 metres. This style of mienralisation was observed for 200 metres north and approxiamtely 500 metres south of the spring.

The Wirriecurrie Granite adjacent to the fault zone appears sheared and veined for 40-50 metres west of the fault. Common slickensides are observed. Shears in basic rocks through the granite are common striking 110/290° (m) dipping 60° north-east.

A small copper pit is observed to contain quartz-malachite mineralisation. The quartz has been brecciated and subsequently cemented by copper-bearing material.

Samples 105255 - Quartz - specular hematite fault zone material. 105256 - Quartz - malachite mineralisation within small pit.

The area examined contains the ruins of the Peake Overland Telegraph Station as is a designated Historic Reserve which limits access to exploration here.

The fault zone in question is however very extensive (>15km in this northern inlier) and could prove to be a very interesting target.

Small Copper Workings

2

Numerous small copper workings to the west of the main Peake Ruins appear to be associated with the contact between sheared Wirriecurrie Granite and basic volcanics. Most mineralisation occurs within the basic volcanics and includes malachite, atacamite and chrysacolla. Sample 105257 - sheared basic volcanic with some copper staining.

Although widespread the mineralisation is thought to have limited potential. Some potential for low-grade high tonnage material exists.

Mines in Peake Metamorhics

Some 2-300 metres south several small workings were observed within phyllites of the Peake Metamorphics. The working observed consisted of a shallow N-S trending open-cut sunk on a malachite-rich gossan. The gossan has very-well developed boxworks and contains some siderite. A 6-7 metre deep shaft with a small drive was sunk to the eastern side of the pit in an attempt to test the lode at depth.

The host phyllites are very well layered and can be sheared.

Samples 105258 - gossanous - copper-rich material 105259 - host phyllite collected to check background levels.

Algebuckinga Mine Area

This area has two varying types of mineralisation i.e.

- Sheared gossanous zones within amphibolites of the Peake Metamorhics and
- Alluvial gold within the basal Jurassic Algebuckina Sandstone.

Time did not allow us to examine the mineralisation within the Algebuckina Sandstone. This style of mineralisation is of interest in that it must have a source somewhere within the inliers of the Peake and Denison Ranges which formed a Basement High at the time of Algebuckina deposition.

A small copper prospect was examined within the Peake Metamorphics. The metamorphics here seem much higher grade than those observed near the Peake Ruins containing common pegmatites and sheared basic volcancis.

Mineraliation observed appeared to consist of copper staining within high-grade metamorphosed basic volcanics. A series of pits striking 055/235° (m) (dipping 75-80° SE) lie along one such basic unit which can be capped by a well developed limonite-specular hematite gossan.

Samples 105260 - Copper mineralisation in meta-basic rock 105261 - Hematite-limonite gossan.

Melon Spring

4

At Melon Spring an outcrop of sheared, contorted, dense, undifferentiated amphibolite of the Peake Metamorphics was observed. A sample of this unit (105262) was collected to determine background. 041

042

Edith Spring

Near Edith Spring we walked up a gorge (+ 2 1/2 km) in an attempt to reach outcrop of the Ordovician Bungadillina Monzonite. Although we did not reach outcrop of the main monzonite body extensive float and several smaller plugs were observed.

The traverse through the gorge went accross a sequence of well layered to structurally contorted Burra Group meta-dolomitic beds. This passes into contorted breccia mapped as "diapiric breccia" which is made up of clasts of Adelaidean sediments (Callanna Beds dominantly) sometimes cemented by Carbonate breccia.

Samples 105263 - med-coarse grained Monzonite from stream float.

105264 - boulder of very gossanous - limonite - specular hematite rock. Good boxworks develops.

Assay Results

The table on the following page list the assay results obtained from the fourteen samples described above.

As expected copper is anomalous and is responsible for any gold anomalies that are present.

Sample 105254 - unmineralised basaltic volcanic of the Callanna Beds has high copper (2600ppm), chromium (160ppm) and Manganese (1980ppm).

Sample 105262 - unmineralised basic amphibolites of the Peake metamorphics has high background for copper (400ppm), zinc (84ppm) and nickel (200ppm).

Conclusions and Recommendations

The area is of sufficient interest to warrant some systematic worked aimed purely at exploration for gold.

There still remain a lot of unanswered questions as to the source of the fine gold within the Algebuckina Sandstone. Where is the hard rock source?

Targets of interest are:

- 1) The basal Algebuckina Sandstone with its known gold mineralisation.
- 2) The Peake Metamorphics and associated basic volcanics especially in the Algebuckina Hill area.
- 3) The series of major faults bounding the eastern side of the ranges which at Peake Ruins are observed to contain abundant quartz + specular hematite + secondary copper mineralisation. This fault is a major structure and appears to have an offset of 5 kilometres.

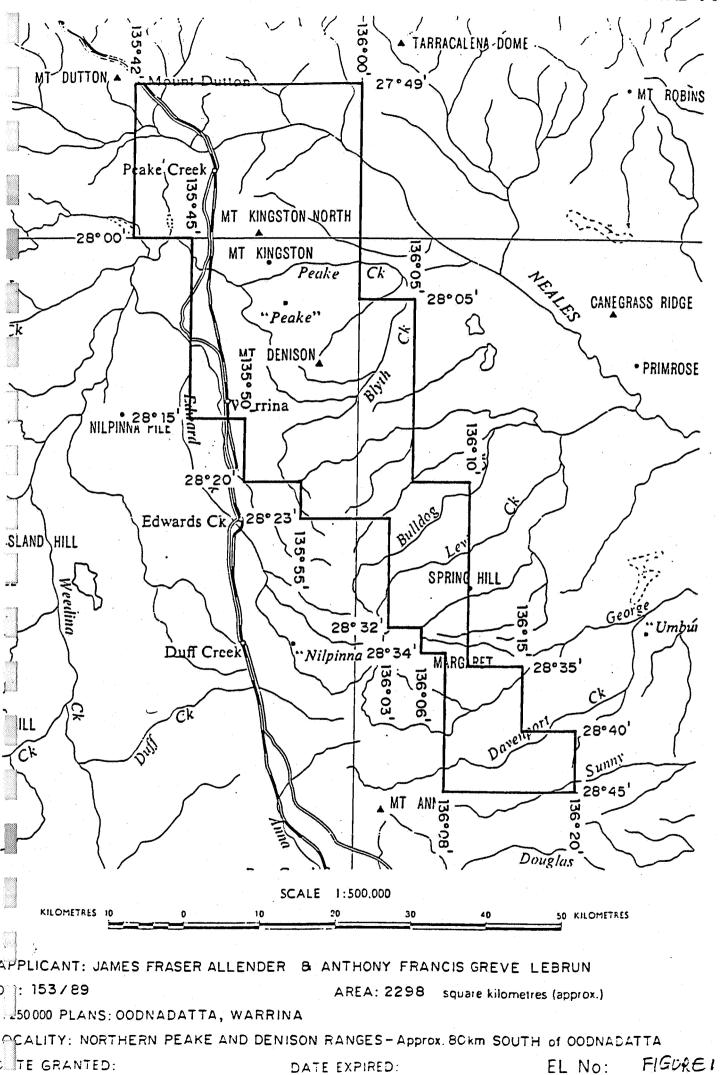
- 4 -

This Laboratory III i Association of Testing Institution of Testing accordance with at 1 document shall not be

		· · ·					Job: 9		. :		-		•			
		ANALYT	TICAL RE	PORT			0/N: F		CAL REP	ORT	٠	. AN	ALYTICA	L REPOR	т	
SAMI	PLE Cu	i Pb	Zn	Bİ	Fe	Cr	וא	As	Мо	sb	ບ	Мл	Au Avg	Au Dpi	Au Dp2	Au Dp3
a-qz 12de 1052	251 6.00	* <4	6	<10	8800	135	22	13	4	6	<4	96	0.07	0.08	0.04	0.08
Schists-Callannes 052	252 [12.6	% 15	40	<10	23.8	105	[310	28	9	-10	120	190	10.49	0.26	0.72	
locle in basalts 1052	253 1.36	\$ 260	9	(75)	4.15*	105	12	16	5	8	42	300	0.02	-	••••	
Callanna Baxilt, 1052	254 2600	5,	16	<10	4.50%	160	16	3	5	<4	<4	1980	<0.01	1 • •	· • •	
Q3-hen-lode1052	255 650	<4	13	<10	11.4*	105	<4	24	7	8	<4	100	<0.01	• =,		
Q3-malachet 1052	256 4.40	¥↓ <4	14	<10	4.90%	120	35	10	10	8	4	170	<0.01	** **	•••	
Shoened basic 1052 Volco	257 1.36	* 5	28	50	7.60%	32	18	5	9	6	<4	200	0.12	0.16	0.08	-
The -rich gastan 1052	258 3150	15	20	15	48.5%	52	<4	7	11	<4	<4	660	0.04		• •	
Feete VN/m phyllik 052	259 110	<4	19	<10	3.40%	42	22	<2	2	8	5	185	0.01	Ure U e	• •	
Metabasi - Ca 1052	60 6.80	*] 12	62	<10	12.9*	82	64	36	13	8	18	420	0.05	0.03	0.06	
hem/lim gassan 052	261 500	4	19	<10	37.0%	46	4	<2	7	4	<4	360	0.02	40 X.00	• - ••	
Parke m/m basics 1052		8	84	10	5.75%	32	200	4	<2	<4	<4	590	<0.01	· · · · · ·		
Monzonité 1052	.63 55	4	18	10	2.00%	40	18	<2	2	8	8	230	<0.01		•• ••	
hem-gosten 1052	.64 85	18	18	<10	47.38	30	4	<2	45	<4	12	220	<0.01	****	,• -	
UNI SCHE UPPER SCHE	ME AASI	AAS1	ppm AAS1	ppm AASJ	ppm AAS1 AAS1C	ppm AAS1	ppm AAS1	ppm XRF1	ppm XRF1	ppm XRF1	ppm XRF1	ppm AAS1	ppm FA1	ppm FA1	ppm FA1	ppm FA1

•

CAO A


.

It is recommended that:

- Photo coverage of the area be purchased and 1:100,000 base plans be obtained from the Mines Department. This will enable planning of any sampling programme to be undertaken.
- 2) BLEG sampling is probably the best method to assess the area as a whole. It will however run into problems in the Algebuckina Hill area where the Proterozoic is surrounded by the Jurassic Algebuckina Sandstone which is known to contain fine gold mineralisation.
- 3) Assessment of the Algebuckina Sandstone should involve:
 - a) Rock chip geochemistry.
 - b) Stream samples from streams draining it.
 - c) Outcrop seems quite good in places so it may be possible to carry out some mapping that will enable a plaaeogeograhic study of the Algebuckina Sandstone to me made. Palaeo-current data may give clues to the source direction of sediments.
- 4) Rock chip traverses over different lithologies will be a help in evaluating areas of interest.

SCHEDULE A 045

转导性

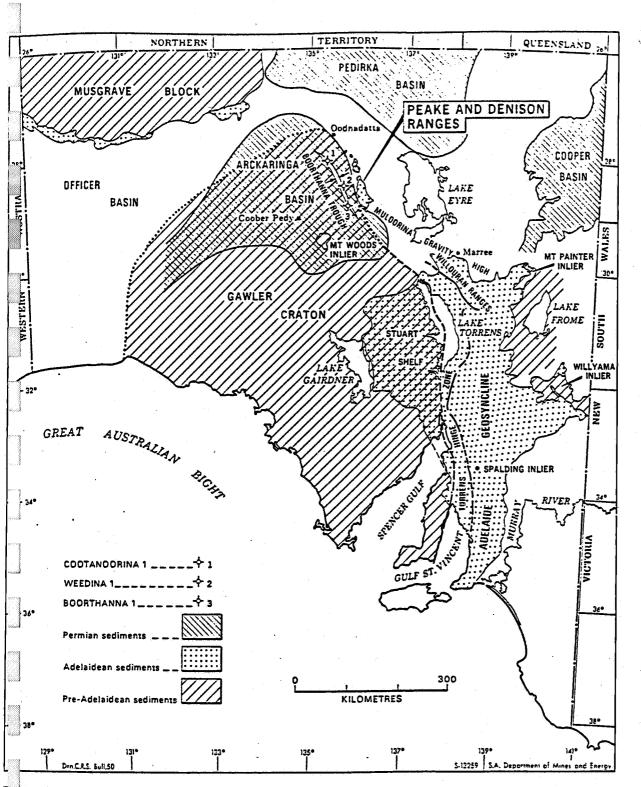
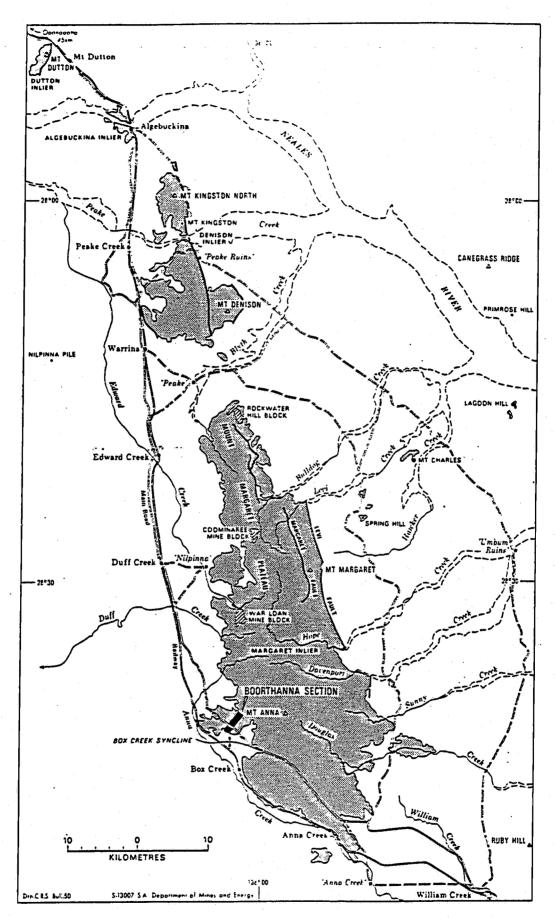
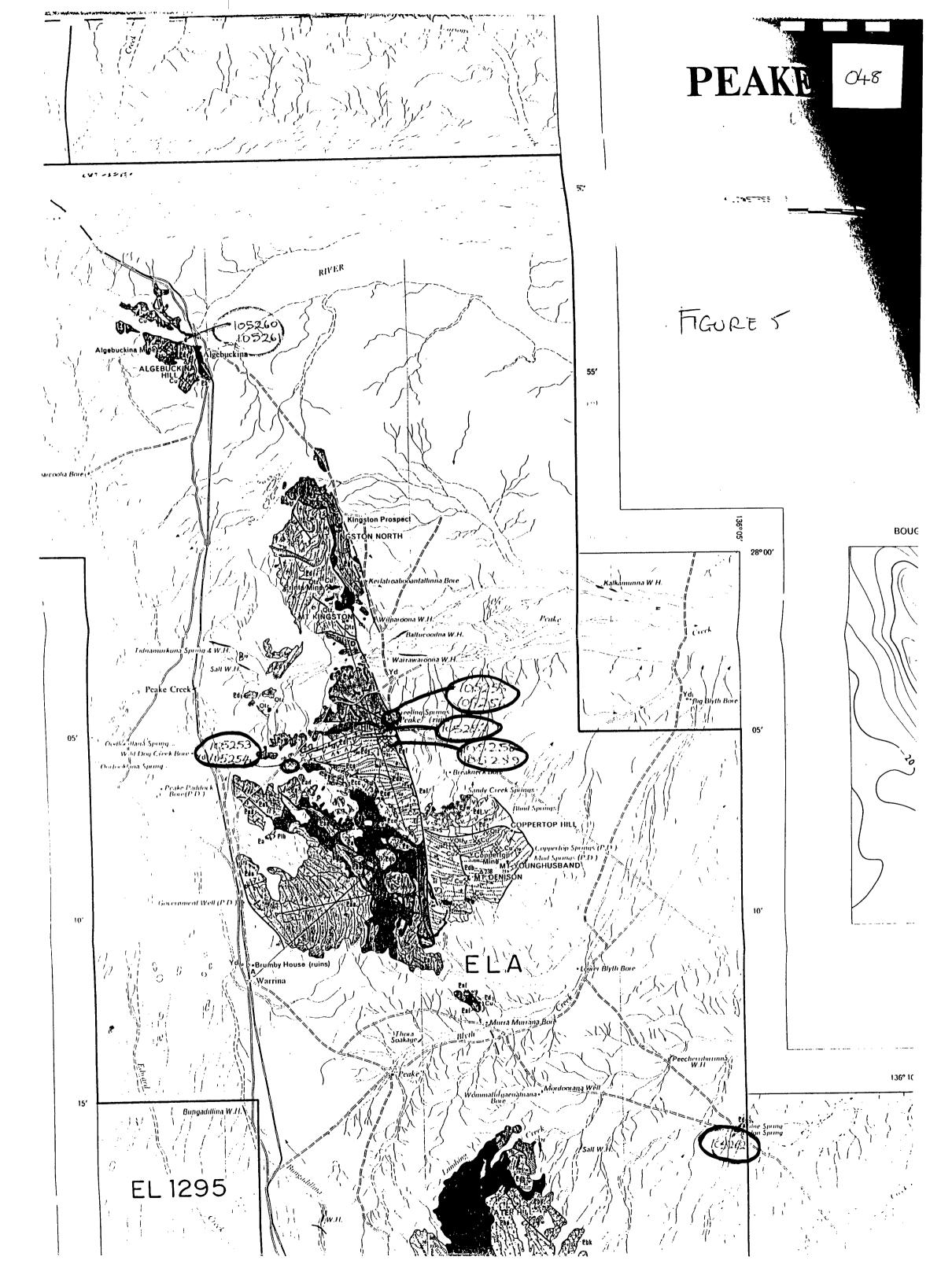
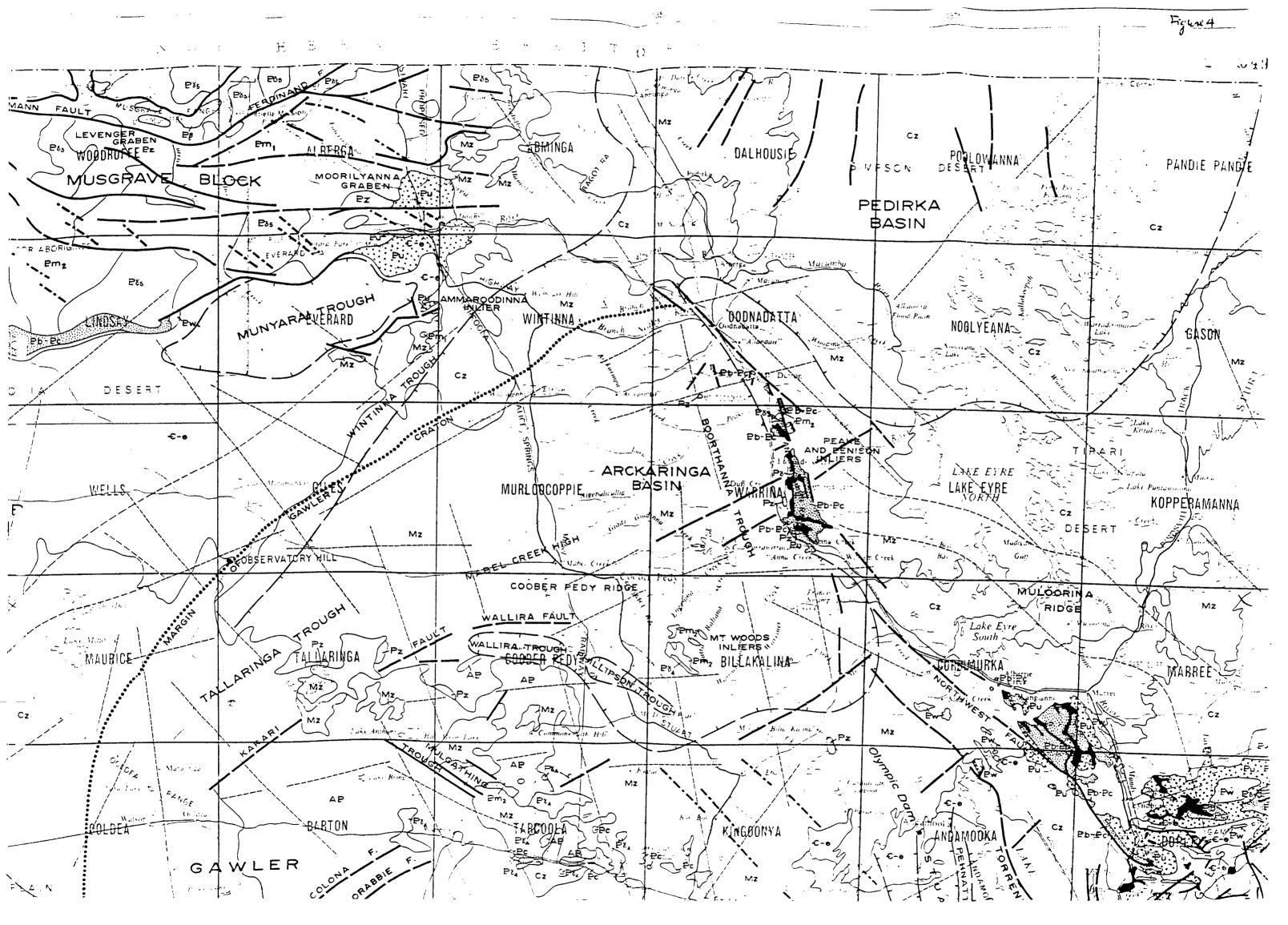
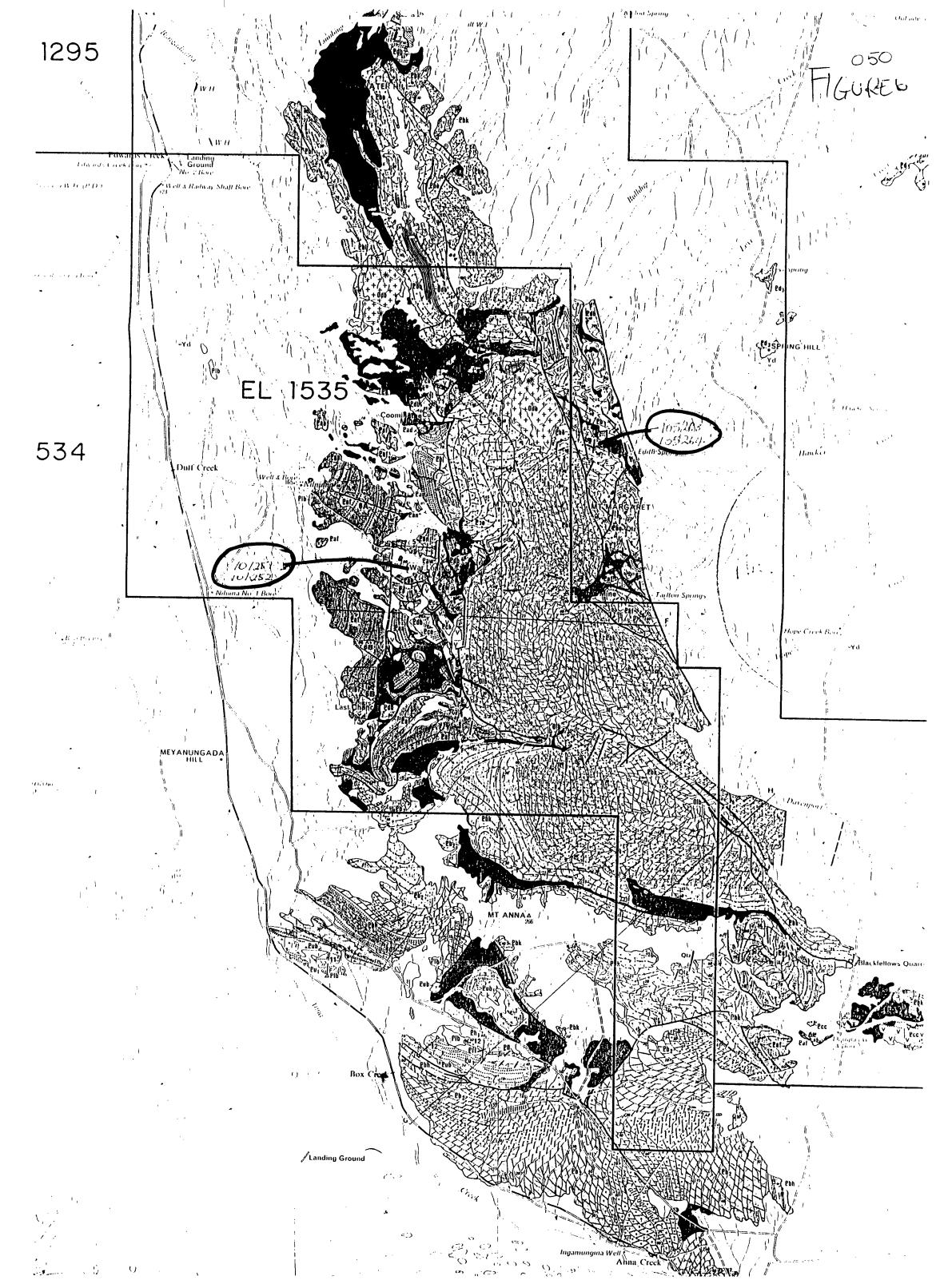



Fig. 2. Peake and Denison Ranges, regional geological setting


046


5 1 3



⁶047

Fig. 3. Locality plan, Peake and Denison Ranges

APPENDIX III

PEAKE AND DENISON RANGES RECONNAISSANCE SAMPLES

Comlabs Job 9AD 1194

4

J

This Laboratory is registered by the National Association of Testing Authorities Australia. The test(s) reported herein have been performed in $0.5\,2$ accordance with its terms of registration. This document shall not be reproduced except in full

00.

305 South Road, Mile End South, South Australia, 5031 Telephone: (08) 43 5722 Fax: (08) 234 0321 Telex: LABCOM AA89323

ASSIC COMLABS LTD

Mr Genesio Circosta Placer Exploration Limited 69 King William Street Kent Town SA 5067 AUSTRALIA

Analytical Laboratories and in was

Job Number: 9AD1194

Your Reference: PEL 1249 Number of Samples: 14 Extra Samples : 0 Date Received: 20-JUL-1989 Date Reported: 25-JUL-1989

This report comprises a cover sheet and pages 1 to 3

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source. Please address any enquiries to Mr. Trevor Francis.

Approved Signature:

for

Dr. John Kikkert General Manager - Adelaide. CLASSIC COMLABS LTD

Report	Analyte Codes:	Di
N.Ā.	- Not Analysed.	CC
L.N.R.	- Listed But Not Received.	EM
I.S.	- Insufficent Sample for	MM
τ.	Analysis.	

Distribution Codes:

C - Carbon Copy

- 4 Electronic Media
- 4 Magnetic Media

Head Office Ferth Branches in Adelaide, Townsville, Kalgoorlie, Meckatharra, Temora, PNG, Indonesia

CLASSIC COMLABS LTI)
Applytical Laboratories and assures	

Analytical Laboratories (INC.IN WA.)

			÷.
ιn		``	
ľ	А		
	Ν.	Т	~
		⊾.	AI
· · ·			-

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

053

ing in ing Ng

Job:	9AD1	L194
0/N:	PEL	1249
• • • •		

	SAMPLE	Cu	Pb	Zn	Bi	Fe	Cr	Ni	
	105251	6.00%	<4	6	<10	8800	135	22	
	105252	12.6%	15	40	<10	23.8%	105	310	
	105253	1.36%	260	9	75	4.15%	105	12	
	105254	2600	5	16	<10	4.50%	160	16	
	105255	<u>6</u> 50	<4	13	<10	11.4%	105	<4	
	105256	4.40%	<4	14	<10	4.90%	120	35	
	105257	1.36%	5	28	50	7.60%	32	18	
	105258	3150	15	20	15	48.5%	52	<4	
	105259	110	<4	19	<10	3.40%	42	22	
. ^	105260	6.80%	12	62	<10	12.9%	82	64	
	105261	500	4	19	<10	37.0%	46	4	
	105262	400	8	84	10	5.75%	32	200	
	105263	55	4	18	10	2.00%	40	18	
	105264	85	18	18	<10	47.3%	30	4	
UPPER	UNITS SCHEME SCHEME	ppm AAS1 AAS1C	ppm AAS1	ppm AAS1	ppm AAS1	ppm AAS1 AAS1C	ppm AAS1	ppm AAS1	

443

ANALYTICAL REPORT

55

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration This document shall not be reproduced except in full. Job: 9AD1194 O/N: PEL 1249

ANALYTICAL REPOR	RT .
------------------	------

SAMPLE	Mn	Au Avg	Au Dp1	Au Dp2	Au Dp3
105251	96	0.07	0.08	0.04	0.08
105252	190	0.49	0.26	0.72	
105253	300	0.02			
105254	1980	<0.01	-,		
105255	100	<0.01		. <u></u> .	
105256	170	<0.01			<u></u>
105257	200	0.12	0.16	0.08	
105258	660	0.04			
105259	185	0.01	. 		
105260	420	0.05	0.03	0.06	-
105261	360	0.02			
105262	590	<0.01			о.
105263	230	<0.01			
105264	220	<0.01	<u></u>	-	,
UNITS SCHEME	ppm AAS1	ppm FA1	ppm FA1	ppm FA1	ppm FA1

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in tull. Job: 9AD1194 O/N: PEL 1249

\$ 3 A

ANALYTICAL REPORT

CLASSIC COMLABS LTD A .alytical Laboratories (INC. IN WA.)

SAMPLE	As	Мо	Sb	U
105251	13	4	· <u>6</u>	<4
105252	28	9	10	20
105253	16	5	8	42
105254	3	5	<4	<4
105255	24	7	8	<4
105256	10	10	8	4
105257	5	9	6	<4
105258	7	11	<4	<4
105259	<2	2	8	5
105260	36	13	8	18
105261	<2	7	4	<4
105262	4	<2	<4	<4
105263	<2	2	8	8
105264	<2	45	<4	12
UNITS SCHEME	ppm XRF1	ppm XRF1	ppm XRF1	ppm XRF1

APPENDIX IV

PEAKE AND DENISON RANGES BLEG ASSAYS

Assay Research Australia Pty Ltd Report AA334

ANALYSIS REPORT

ria.

Assay Research Australia 2/15A Kirke Street BALCATTA W.A. 6021 Phone (09) 344 4566 Fax (09) 345 3023

05

PLACER EXPLORATION LIMITED

REPORT	: AA	334	4 Pages	Date : 15	5/09/89	
lient ref	erence : PE	L 1250	· · · · · ·			
lost code	1					
opies to		CIRIOSTA SCOTT				
				به ۱۹۰۰ ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰		
amples eceived :	: T 11/09/89 -	ype		Preparati	ion code	
а.		·				
			•			·
					,	
nalysis	Code	Quality Para	ameter Detec	tion Units	5	
				بد شده بینه سه خو خو ماید منه ماه بینه بینه بینه بینه بینه ب	-	
Au Ag	Au-BLEG	Prec. 10				
Ag	Ag-BLEG	Prec. 10				
Cu	Cu-BLEG	Prec. 10	% 0.0	1 ppm		
		•				-

		R	EPOR	T NO.	. 663	534		Res Aus	earch stralia	058
•	а - н	5kg B		CYANJ NO.F		LE 12		Pt	y. Ltd.	
4		·				i I F	Assay F 2/15A F BALCATT Phone (Fax (09	(irke S [A W.A. (09) 34	Street 6021 4 4566 3023	5
	SAMPLE NUMBER	Au ppb DL 0-1	Ag ppb DL 0.1	Cu ppm DL 0.01						
	105301	0.1	0.9	. 1.1			•			
	105302	0.1	0.6	0.99						
	105303	0.1	0.5	1.1						
e e	105304	0.1	0.3	2.5						
	10530 5	0.1	0.7	2.0			·		<i>i</i>	
	105306	0.1	0.8	2.2	· .			· · · · · · · · · · · · · · · · · · ·		
	105307	0.1	2.1	1.0		a.				
	105308	<0.1	1.0	0.68					1. A.	
	105310	<0.1	1.9	1.6						
	105311	0.1	1.8	0.67				•		
	105312	0.1	1.5	0.58					-	
	105313	0.3	1.8	0.73				·		
	105314	0.7	1.5	0.62						
· .	105315	0.2	2.1	0.75			•			-
•	105316	0.1	0.5	0.43				· .		
1	105317	0.3	0.5	0.38			i <u>n ne di secono di secono</u>	, , , , , , , , , , , , , , , , ,		
	105318	0.6	0.8	0.68						
	105323	<0.1	0.3	0.27						
	105326	0.1	0.4	0.42				•		
	105327	0.1	0.3	0.32						
	105328	0.4	0.6	0.74		<u></u>				· · · · ·
	105330	0.2	0.3	0.43						
5 K 9	105331	0.2	0.4	0.52						
	105333	0.3	0.3	0.70						
	105335	0.3	0.5	0.86						
			·····					· · · · · · · · · · · · · · · ·	and the state of the second	

No.

AA334

				Page 2 OF 4
SAMPLE NUMBER	Au ppb DL 0.1	Ag ppb DL 0.1	Cu ppm DL 0.01	
105337	0.2	0.4	0.32	
105338	0.2	0.8	0.73	
105339	4.8	1.4	0.90	
105340	0.2	0.3	0.33	
105341	27.6	1.4	0.28	
105342	<0.1	0.2	0.14	
105343	<0.1	0.2	0.14	
105344	<0.1	0.4	0.14	
105345	<0.1	0.6	0.32	
105346	0.1	1.0	0.60	
105347	<0.1	0.5	0.19	ni national faith ann an ann an thair ann an ann an ann an ann an thair ann an thairte ann ann ann ann ann ann
105348	<0.1	0.8	0.29	
105349	<0.1	1.0	0.25	
105350	<0.1	0.7	0.23	
105351	<0.1	0.2	0.29	
105352	<0.1	0.1	0.09	a an ann an taraichte ann an ann ann ann ann ann ann ann ann
105353	<0.1	0.2	0.23	
105354	<0.1	0.2	0.21	
105355	<0.1	0.1	0.20	
105356	<0.1	0.3	0.23	
105357	<0.1	0.9	0.56	
105358	<0.1	0.2	0.31	
) 105359	0.3	0.5	0.39	
105360	<0.1	0.2	0.26	
105361	<0.1	0.2	0.18	
	* · · · · · · · · · · · · · · · · · · ·			

\$ 2

059 J

Research Australia Pty. Ltd. AA334

Research	060
Australia	6
Pty. Ltd.	

() W

Page 3 OF 4

	SAMPLE NUMBER	Auppb DL 0.1	Ag ppb DL 0.1	Cu ppm DL 0.01	
	105362	<0.1	0.2	0.06	
	105363	<0.1	1.0	0.24	
	105364	0.6	1.0	0.31	
	105365	0.1	1.6	0.72	
	105366	0.1	0.8	0.53	
	105367	0.4	0.4	0.49	
	105376	SNR	SNR	SNR	
Sec.	105377	<0.1	0.8	0.21	
	105378	0.1	1.2	0.90	
	105401	0.2	1.1	0.21	· · · · · · · · · · · · · · · · · · ·
· · ·	105402	<0.1	1.3	0.29	
	105403	<0.1	0.8	0.37	
	105404	<0.1	0.6	0.26	
	105405	<0.1	0.7	0.25	
	105406	<0.1	0.7	0.16	
	105407	SNR	SNR	SNR	
	105408	0.1	0.7	0.38	
	105409	<0.1	0.9	0.30	
	105410	0.1	0.7	0.32	
	105411	0.1	0.3	0.21	
	105412	0.1	0.5	0.21	
	105445	0.1	0.7	0.33	
<u>_</u>	105446	<0.1	1.0	0.30	
	105447	<0.1	0.8	0.22	
	105448	<0.1	1.6	0.38	
)		<u> </u>	

Assay Research 061 Australia AA334 Pty. Ltd. Page 4 OF 4 Au ppb DL 0.1 Ag ppb Cu ppm DL 0.1 DL 0.01 SAMPLE NUMBER 105323A 0.1 0.7 0.33 TE. ****** Result 100ppb or greater. SNR denotes sample not received. DTF denotes ata to follow. DL denotes detection limit. Senior Chemist : Brian Givens Sec. Sec. 5)

APPENDIX V

PEAKE AND DENISON RANGES ROCK CHIP SAMPLES

Comlabs Job No. 9AD 1697

ASSIC COMLABS LTD

Analytical Laboratories (INC IN WA)

This Laboratory is registered by the National Association of Testing Authorities, Australia The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

063

305 South Road, Mile End South, South Australia, 5031 Telephone: (08) 43 5722 Fax: (08) 234 0321 Telex: LABCOM AA89323

Mr Genesio Circosta Placer Exploration Limited 69 King William Street Kent Town SA 5067

Job Number: 9AD1679

20 S

Your Reference: 1263 Number of Samples: 53 Extra Samples 0 :

Date Received: Date Reported:

06-SEP-1989 27-SEP-1989

This report comprises a cover sheet and pages 1 to 4

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source. Please address any enquiries to Mr. Trevor Francis.

Approved Signature:

for

Dr. John Kikkert General Manager - Adelaide.

Report Analyte Codes: - Not Analysed. N.A. L.N.R. - Listed But Not Received. I.S. - Insufficent Sample for Analysis.

Dist	ribu	tion Codes:
CC		Carbon Copy
EM		Electronic Media
MM	. 	Magnetic Media

CLASSIC COMLABS LTD Analytical Laboratories (INC. IN WA)

с. Э

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This 0.6 %

Analytical Laboratories	(INC. IN WA.)							not be reproduced except in full. V V *
• • • • • • • • • • • • • • • • • • • •	••••			•		Job: 9A		
	ANAL	YTICAL F	REPORT		(D/N: 12	63	
() -	C 11	Dh	7-	ch	20		۸.,	
Sample	Cu	Pb	Zn	Sb	As	U	Au	
105309	35	24	48	4	4	<4	0.43	Sheared, basadtic rock.
105319	14	15	30	4	3	5	0.01	Siliceous, 93 veined schist.
105320	20	18	40	6	3	<4	0.01	Basaltic rock
105321	14	22	50	5	3	<4	<0.01	Bacaltic rock
105322	5300	26	52	4	<2	6	0.02	Cuin sheared basalt. Quarry.
105324	74	8	13	4	. 3	6	<0.01	Gravite -
105325	20	5	7	8	3	4	<0.01	Silicous, veined, rhyolite
105329	20	16	36	8	10	8	0.01	Bosal, Algebettina congiomerate
105332	11	10	16	6	5	4	0.01	Schipose bacaltic rock
105334	22	6	24	8	<2	<4	0.01	Praizscree - faultzone.
105336	5	<4	11	4	2	15	<0.01	Qz-limonite - fault gone.
105368	54	12	17	<4	<2	8	0.01	
105369	200	18	45	<4	9	8	<0.01	
105370	9200	<4	12	6	14	<4	<0.01	
105371	9600	10	30	5	14	8	0.01	
105372	620	10	30	8	3	<4	<0.01	
105373	48	4	6	6	2	<4	0.02	
105374	24	<4	4	8	<2	<4	<0.01	
105375	11	<4	7	<4	2	<4	<0.01	
105413	12	<4	20	6	4	<4	<0.01	- Q3-conglomerate. Au mine?
105414	9	<4	12	6	2	<4	<0.01	
105415	7	8	8	8	<2	4	<0.01	Algebucking Sandstone
105416	14	<4	62	6	22	4	0.09	- conglomerate
Abebucting 105417	12	<4	8	8	<2	<4	0.01	puarz-fevens - Barement
ANCA. 105418	20	6	12	4	6	<4	<0.01	
105419	18	<4	170	12	19	<4	<0.01	
105420	11	<4	26	8	4	<4	<0.01	×.
105421	7	12	6	· 8	6	6	0.01	
105422	7	10	5	6	7	<4	0.01	
105423	6	6	4	8	<2	<4	<0.01	
105424	710	16	13	4	4	<4	0.02	P3-tem-lim-malchile vou
105425	44	15	9	5	4	8	0.01	Sheared g 3-mica schrist
105426	290	8	38	6	6	<4	<0.01	Q3 e g3 kh loise/ clay
105427	14	6	9	6	<2	<4	0.01	QB-feld - vein
105428	10	16	17	10	3	<4	0.01	Q3 - hematite vein . Brec
105429	10	8	15	5	2	<4	<0.01	Mesozoic - silic - conglom
105430	8	14	30	4	7	<4	0.01	As above - mullock dump
105431	15	12	12	6	7	<4	0.01	Basal Algebuckina SS.
105432	9	<4	10	6	<2	<4	0.01	Quats veining - Bacement
105433	13	6	14	6	7	<4	0.01	prasts - to strawine vers
105434	9	<4	10	5	3	<4	0.01*	az vein
105435	12	<4	8	8	2	<4	0.01	t i a lituain
105436	800	35	58	4	5	10	0.06	\$3-hem-malacliterei-
105437	3000	18	98	5	8	<4	0.03	Host schistz - no mirculiation
105438	5100	34	115	<4	<2	10	0.02	Host - baerc velcanic.
105439	72	8	38	5	<2	<4	0.01	\$3-limonite vein
105440	390	14	38	4	<2	4	0.02	93-tour maline vein
105441	26	14	17	.6	5	<4	0.01	Dz-limovite
105442	20	16	13	8	2	<4	0.01	Basal Ligebucking SS
105443	14	28	11	5	З	4	0.01	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Detn Limit	2	4	2	4	2	4	0.01	
Scheme	AAS1	AAS1	AAS1	XRF1	XRF1	XRF1	FA1	
							5 C C	

Pade Z UL 4	Page	2	of	4
-------------	------	---	----	---

This Laboratory is registered by the National Association of Testing Authorities, Australia The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

065

CLASSIC COMLABS LTD Analytical Laboratories (INC IN WA)

	ANAL	YTICAL	REPORT			Job: 9A O/N: 12		
Sample	Cu	Pb	Zn	Sb	As	U	Au	
105444	.9	12	13	8	2	<4	0.01	03-feld-tournal-mice pogmatite
105376	13	6	4	<4	<2	<4	0.01	-
- 105407	20	20	68	4	12	4	0.01	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Detn Limit	2	4	2	4	2	4	0.01	
Scheme	AAS1	AAS1	AAS1	XRF1	XRF1	XRF1	FA1	

1.80

5

Sample

λg

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1 <1

<1

<1

<1

<1

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job: 9AD1679 O/N: 1263

	105515
	105320
	105321
and the second	105322
	105324
	105325
	105329
	105332
	105334
	105334
	105368
	105369
	105370
	105371
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	105372
	105373
	105374
	105375
	105413
	105414*
	105415
	105416
	105417
	105418
	105419
	105419
	105421
	105422
	105423
	105424
	105425
	105426
	105427
	105428
	105429
	105430
	105431
	105432
	105433
1. 195 2 (2 ¹)	105434
S. S	105435
	105436
·	105437
	105437
	105438
	105440
	105441
	105442
	105443

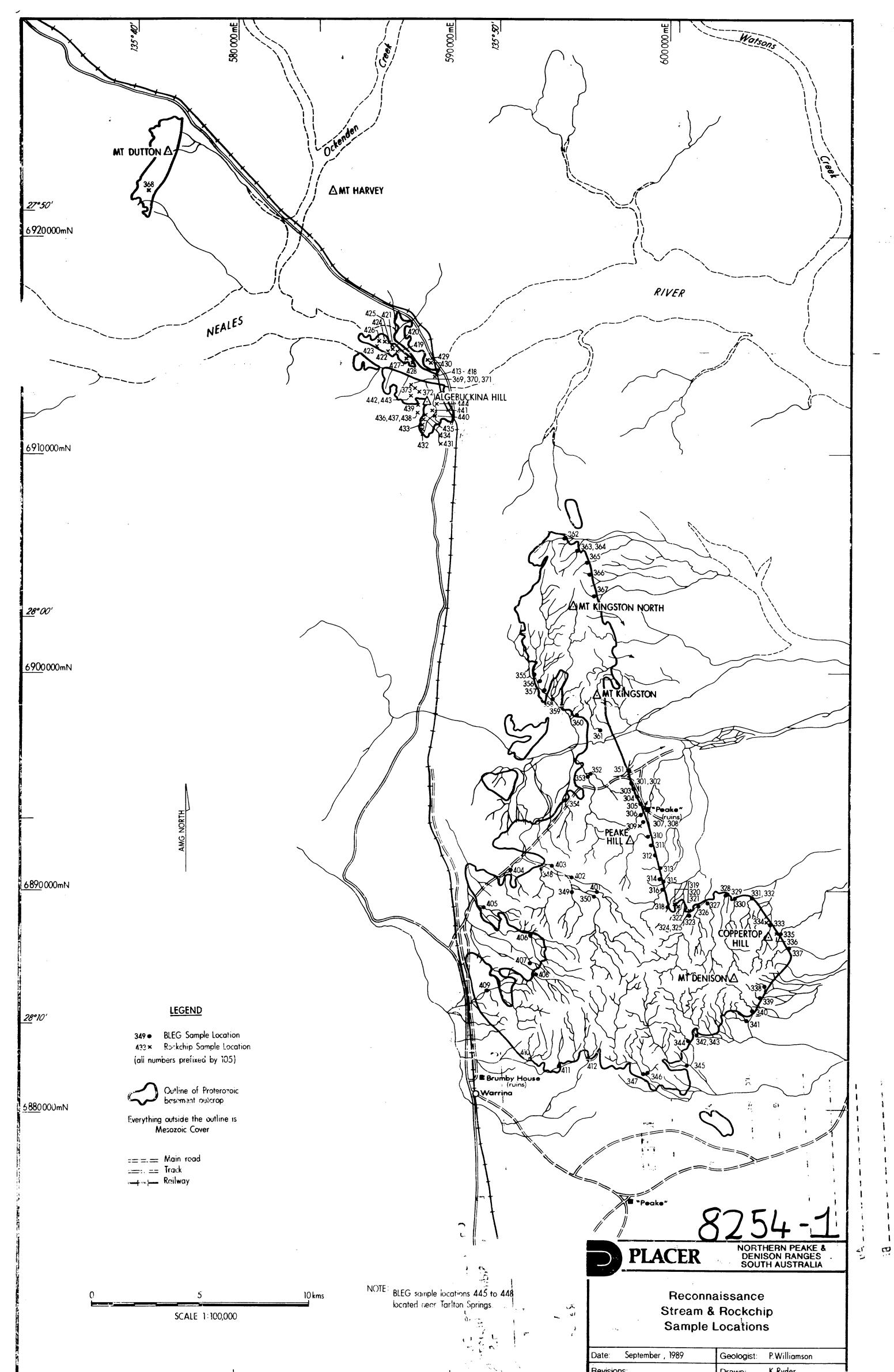
Units	ppm
Detn Limit	1
Scheme	AAS2

Page	3	of	4

a ingg

ţ

ANALYTICAL REPORT


Sample	Ag
105444	1
105376	<1
105407	1
Units	ppm
Detn Limit	1
Scheme	AAS2

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full. 0.6 ¹⁷/₇

Job: 9AD1679 O/N: 1263

CB₽

	F Peake and Denison Ranges A	rea - Geoc	hemistry										
						Soil		Core/	Water		Objective	Other	Мар
	• •		Licence	Reference	Sediment	Sampling	Chip	Cuttings	Sampling	Geobotany		Elements	Reference
	F G.Scouler	1885		Roy Soc 9							Au		
	F S.A.D.M.	1886		RB1									
	F S.S. East	1889		Roy Soc 12									
	F S.A.D.M.	1893/1894		Parl Pap25							Au		
	F S.A.D.M.	1915		Bull 5									
	F S.A.D.M.	1918		MR 29									
	F S.A.D.M.	1930		Bul 14									
	F S.A.D.M.	1946		Bull 23					yes				
	F Sprigg	1949		Roy Soc 73									
	F H. Narain	1951											
	F Sprigg	1952		Mawson vol									
	F S.A.D.H.	1955		RI 6									
	F S.A.D.M.	1957							yes				
	F S.A.D.M.	1961	متعام المراجع	MR 114									_
	F North Broken Hill Ltd	1966/1967		Env 694	992		15				Cu,Pb,Zn,Ni		A
	F North Broken Hill Ltd	1966/1968		Env 941	5800	5280	yes				Cu,Pb,Zn,Co,Mo		N3,B,C
	F Australian Mining Corp	1969/1971		Env 1015	69	30x15	25				U,Cu,Ni	Ag, Au, Bi, Sb	E,F,G,J
	F S.A.D.M.E.	1969/1970		RB70/84, MR132	490	1020					Cu,Pb,Zn,Co,Pb,Ni,Sn,Mo	U, Th	D
	F C.R.A.E.	1971		Env 1565	43		6	yes			Sr	Ba,U	NG
	F AOG Minerals Ltd	1972		Env 2142							Au		
	F Chevron Minerals Ltd	1973	EL 22	Env 2182					yes	101	Ŭ	42 elements	1
	F S.A.D.M.E.	1973											
	F S.W.Schoff, T.R.Fairchild	1973										-1	
	FUranertz	1974/1975	EL 110	Env 2253			-				U	Th	
	F S.A.D.M.E.	1974		- 2505			83						* *
	FANC	1975	EL 192	Env 2525		3489	325	yes			Au, Ni, Co, Zn, Pb, Mn, Ag, As	a: 1	2,3
	F MINAD/Teton Drilling	1977/1978		Env 3080			12		6		U	Coal	N1,N2,4,5
	F Cyprus Aust Coal	1985	EL 5466	Env 4909	0						oʻ 1	0.1	
	F Savata Pty Ltd	1979/1980		Env 3579	8	14	16				Diamonds	8 elements	N7
	F Stockdale Prospecting Ltd	1987	EL 4179	Env 5288									
	Stockdale/Britas/Cons. Gold	1979/1984		Env 3562	yes	yes	Yes	yes			21 elements		
	Dampier Mining	1977/1980		Env 3754		yes		yes				35 elements	
	F Dampier Mining	1977/1980	EL 583	Env 3754	26	yes		yes				35 elements	
	FS.A.D.M.E.	1980	Pr (73	RB 80/70	36	•	200				Au	0 1	
	F Aberfoyle	1980/1987		Env 3771	>600	2	359	yes			Diamonda, Au	9 elements	
	F Aberfoyle	1980/1987		Env 3771	»600	2	359	yes			Diamonda, Au	9 elements	
	Hestern Nuclear/Oilmin/Transoi			Env 4027	yes		25				Diamonds	6 elements	N9
	Carpentaria Exploration	1981	EL 743	Env 4031	(1)	`	25	·			Au Simme la bu	9 elements	14
	Aberfoyle	1980/1987		Env 3771	613	2	354	yes			Diamonds, Au		14 N10
	Oilmin/Transoil/Petromin	1981/1982		Env 4041	3255						Diamonds	15 Elements	
	Oilmin/Transoil/Petromin	1981/1982		Env 4042	526						Diamonds, Cu, Co, Ni, Nb	15 Elements	Ŵ
	Gemex/Western Queen	1980/1981		Env 4061							U,Coal,Diamonds		
	Gemex/Western Queen	1980/1981		Env 4061	70	**					U,Coal,Diamonds	17 · 1	19
	C.R.A.E.	1980.1982	EL /61	Env 4138	79	46	-	yes			Cu,Pb,Zn	13 elements	
	S.A.D.H.E.	1980	Pr 707	Bull 50	52		83				D'an ala	20 elements	6
	Ashton	1981.1983		Env 4223			6.0				Diamonds	18 elements	9 N8
	Carpentaria Exploration	1981/1982		Env 4496	23		53				Au		NO
	BHP Minerals	1982/1984		Env 4858/5106	yes	yes					Diamonds		118
	BHP Minerals	1982/1984		Env 4909	20						Diamonds		NA 10
	Stockdale Prospecting	1983/1984		Env 4912	3						Diamonds		10
	F BHP Minerals	1983/1986		Env 6282							Diamonds		
	BHP Minerals Ltd	1986	EL 1292	Env 6791							Pico Notale		
	BHP Minerals	1985/1986	EL 1293	Env 6542/6379							Base Metals		
	F BHP Minerals F S.A.D.M.E.	1986	GG 1292	Env 6541/6379							Base Metals		
	Newmont	1.700		Env 3084									
j				Env 3602									
4				wite 1002									

F Peake and Denison Ranges Area	- Geochemistry	Stream Soi	1 Rock Co	ore/		Objective Elements	Other Elements	Map Reference
	Date Licence Reference 1979/1984 EL 899 Env 3562 1979/1984 EL 1187 Env 3562 1983/1984 EL 1029 Env 4858	< 466 < < 466 < yes ye	mpling Chip Cu 19 19 es yes es yes	ittings : yes yes	Sampling Geobotany	21 elements 21 elements Diamonds Diamonds		11
F BHP Hinerals F Gemex F Getty Oil Development F Getty Oil Development F Stockdale Prospecting Itd F Uramertz	1983/1984 EL 1010 Env 4858 1981 EL 760 Env 4061 1980 EL 409 Env 3602 1980 EL 409 Env 3602 1980 EL 1179 Env 3804 1984 EL 1179 Env 5288 1974 Env 2381	1115	64	8	3	Diamonds U, Th		7 15,16 18

ï

F Uranertz

F

F Peake and Denison Ranges Area - Geophysics

	Company	Date	Licence	Reference	IP	Magnetics	Radiometrics	Grauitú	Decictivity	CD	VLF	EM		Hap Reference
	F G.Scouler	1885		Roy Soc 9	-	nagneeroo	100200001103	organcy	RESISCIVICY	əc	A PL	60	Sersarc	Reference
	F S.A.D.H.	1886		RB1										
	F S.S. East	1889		Roy Soc 12										
	F S.A.D.M.	1893/1894	1 ×	Parl Pap25										
	F S.A.D.M.	1915	•	Bull 5										
	F S.A.D.M.	1918		MR 29										
	F S.A.D.N.	1930		Bul 14										
	F S.A.D.M.	1946		Bull 23										
	F Sprigg	1949		Roy Soc 73										
	F H. Narain	1951		107 000 70				1100						
	F Sprigg	1952		Nawson vol				yes						
	F S.A.D.H.	1955		RI 6				une						Nr. C
	F S.A.D.H.	1957		NI U				yes						NF,6
	F S.A.D.H.	1961		NR 114										20
	F North Broken Hill Ltd	1966/1967	SHL125	Env 694				yes						NE
	F North Broken Hill Ltd	1966/1968		Env 941	yes	G60m								
	F Australian Mining Corp	1969/1971		Env 1015	yes	Same a series of the	A500/92,G30							N5,A,B,C
	F S.A.D.M.E.	1969/1970		R870/84.MR132	yes	NJ00/32,030	•			yes	yes	yes		N2,1,E-L
	F C.R.A.E.	1971		Env 1565			yes							D
	F AOG Minerals Ltd	1972		Env 7303										
	F Chevron Minerals Ltd	1973	EL 22	Env 2182										~
	F S.A.D.M.E.	1973	60 66	611V 2102			yes		yes	yes			1 line	2
	F S.W.Schoff, T.R.Fairchild	1973												
	F Uranertz	1974/1975	Fr 110	Env 2253			*2000w #E000							
	F S.A.D.H.E.	1974	66 110	EIN 7723			A2000N,G5000							H,P
	FWHC	1975	EL 192	Env 2525										
	F MINAD/Teton Drilling	1975		Env 2020 Env 3080										
	F Cyprus Aust Coal						yes		yes					3,4
	F Savata Pty Ltd	1985	EL 5466	Env 4909		A300,80,G	A300,80							
	F Stockdale Prospecting Ltd	1979/1980		Env 3579		yes	yes	yes						NH
	F Stockdale/Britas/Cons. Gold	1987	EL 4179	Env 5288				yes						13
	F Dampier Mining	1979/1984		Env 3562		yes	yes	yes				yes		
		1977/1980		Env 3754		yes		yes						
	F Dampier Mining F S.A.D.M.E.	1977/1980	EL 583	Env 3754		yes		yes						8
	F Aberfoyle	1980	DF C 74	RB 80/70										8
	F Aberfoyle	1980/1987		Env 3771	-	yes	yes				yes	yes		10,11,Z
		1980/1987		Env 3771	yes	A125,50,G	A125,50,G				yes	yes		2,10
	F Western Nuclear/Oilmin/Transoi			Env 4027		yes		yes						
	F Carpentaria Exploration	1981	EL 743	Env 4031			- 200 00							
	F Aberfoyle F Gilmin/Transpil/Detronin	1980/1987		Env 3771	yes	A300,80	A300,80				yes	yes		10,11,2
	F Oilmin/Transoil/Petromin	1981/1982		Env 4041										
	F Oilmin/Transoil/Petromin	1981/1982		Env 4042										
	F Gemex/Western Queen	1980/1981		Env 4061									•	
	F Gemex/Western Queen F C.R.A.E.	1980/1981		Env 4061										
		1980.1982	EL 761	Env 4138		yes	yes			yes				18
	F S.A.D.M.E.	1980	000	Bull 50										
	Ashton	1981.1983		Env 4223		A300,80,G200	A300,80							т,9
	F Carpentaria Exploration	1981/1982		Env 4496										
	BHP Minerals	1982/1984		Env 4858/5106		A300,80	A300,80	yes						NB
	BHP Minerals	1982/1984		Env 4909		A300,80	A300,80	yes						NC
	Stockdale Prospecting	1983/1984		Env 4912										
	BHP Minerals	1983/1986		Env 6282		A300,80	A300,80	yes				yes		
	BHP Minerals Ltd	1986	EL 1292	Env 6791				yes						T
	BHP Minerals	1985/1986		Env 6542/6379		A500,80,G	AROO,80,G	yes						X
	F BHP Minerals	1986	EL 1292	Env 6541/6379		A500,80	A500,80	yes						Y
	S.A.D.H.E.	1988												
ŀ	Newmont			Env 3084										

•

•

•

Env 3084 Env 3602

F

F Peake and Denison Ranges Area - Geophysics

							Map
Company	Date Licence	Reference IP	Magnetics	Radiometrics Gravi	ty Resistivity SP VLF	EM Seismic	Reference
F Stockdale/Britas/Cons. Gold	1979/1984 EL 899	Env 3562	yes	yes yes		yes	11
F Stockdale/Britas/Cons. Gold	1979/1984 EL 1187	7 Env 3562	A150,60,G	A150,60,G yes	yes	-	U
F BHP Minerals	1983/1984 EL 1029	9 Env 4858	A300,80	A300,80 yes			NB
F BHP Minerals	1983/1984 EL 1010) Env 4858	A300,80,G	A300,80,G yes			٧
F Gemex	1981 EL 760	Env 4061					
F Getty Oil Development	1980 EL 409	Env 3602					
F Getty Oil Development	1980	Env 3804					
F Stockdale Prospecting 1td	1984 EL 1179	Env 5288		yes			13
FUranertz	1974	Env 2381		-		2	Q,R
2							-

F

F Peake and Denison Ranges Area - Drilling

Company	Date	Licence	Reference	Diamond	Percussion	Rotary	RC Auger	Map Reference
F G.Scouler	1885		Roy Soc 9					
F S.A.D.N.	1886		RB1				•	
F S.S. East	1889		Roy Soc 12					
F S.A.D.H.	1893/1894		Parl Pap25					
F S.A.D.M.	1915		Bull 5					
F S.A.D.N.	1918		NR 29					
F S.A.D.M.	1930		Bul 14					
F S.A.D.M.	1946		Bull 23					
F Sprigg	1949		Roy Soc 73					
F H. Narain	1951							
F Sprigg	1952		Mauson vol					
F S.A.D.M.	1955		RI 6					
F S.A.D.M.	1957							
F S.A.D.M.	1961		NR 114					
F North Broken Hill Ltd	1966/1967	SHL125	Env 694					
F North Broken Hill Ltd	1966/1968	SHL 134	Env 941					4,5
F Australian Mining Corp	1969/1971		Env 1015	yes	yes	yes		3
F S.A.D.M.E.	1969/1970		RB70/84, MR132					
F C.R.A.E.	1971		8 Env 1565					
F AOG Minerals Ltd	1972	SML 718	Env 2142				yes	
F Chevron Minerals Ltd	1973	EL 22	Env 2182				yes	8,9
F S.A.D.H.E.	1973							
F S.W.Schoff, T.R.Fairchild	1973							
F Uranertz	1974/1975	EL 110	Env 2253					
F S.A.D.M.E.	1974							
FWNC	1975	EL 192	Env 2525					4,5
F MINAD/Teton Drilling	1977/1978	el 336	Env 3080					1
F Cyprus Aust Coal	1985	EL 5466	Env 4909					
F Savata Pty Ltd	1979/1980	EL 462	Env 3579					
F Stockdale Prospecting Ltd	1987	EL 4179	Env 5288					
F Stockdale/Britas/Cons. Gold	1979/1984	EL 491	Env 3562				yes	
F Dampier Mining	1977/1980	el 369	Env 3754	yes			-	
F Dampier Mining	1977/1980	EL 583	Env 3754	yes				11
F S.A.D.M.E.	1980		RB 80/70	-				
F Aberfoyle	1980/1987	EL 571	Env 3771		yes	yes		
F Aberfoyle	1980/1987		Env 3771		yes	yes		
F Western Nuclear/Oilmin/Transo			Env 4027		yes	yes		
F Carpentaria Exploration	1981	EL 743	Env 4031	yes	-	-		
F Aberfoyle	1980/1987		Env 3771	-	yes	yes		16,17
F Oilmin/Transoil/Petromin	1981/1982		Env 4041		•	-		
F Oilmin/Transoil/Petromin	1981/1982		Env 4042					
F Gemex/Western Queen	1980/1981		Env 4061					
F Gemex/Western Queen	1980/1981		Env 4061					
F C.R.A.E.	1980.1982		Env 4138		yes	yes	yes	12
F S.A.D.N.E.	1980		Bull 50				• • •	
FAshton	1981.1983	EL 787	Env 4223					
F Carpentaria Exploration	1981/1982	Contraction of the second	Env 4496					
F BHP Minerals	1982/1984		Env 4858/5106					-
F BHP Minerals	1982/1984		Env 4909					
F Stockdale Prospecting	1983/1984		Env 4912					
F BHP Minerals	1983/1986		Env 6282					
F BHP Minerals Ltd	1986	EL 1292	Env 6791					
F BHP Minerals	1985/1986		Env 6542/6379					
F BHP Minerals	1986	EL 1292						
F S.A.D.N.E.	1988	44 16 <i>3</i> 6	ant 0041/0019					
F NewRont	1000		Env 3084					
F			Env 3602					
•			500Z					

F Peake and Denison Ranges Area - Drilling

.

				Map
Company	Date Licence	Reference	Diamond Percussion Rotary RC	Auger Reference
F Stockdale/Britas/Cons. Gold	1979/1984 EL 899	Env 3562		yes
F Stockdale/Britas/Cons. Gold	1979/1984 EL 1187	Env 3562		yes 13
F BHP Minerals	1983/1984 EL 1029	Env 4858		-
F BHP Minerals	1983/1984 EL 1010	Env 4858		14
F Gemex	1981 EL 760	Env 4061		
F Getty Oil Development	1980 EL 409	Env 3602		
F Getty Oil Development	1980	Env 3804		
F Stockdale Prospecting 1td	1984 EL 1179	Env 5288		
F Uranertz	1974	Env 2381		
F				

F

ť

t

÷.,

F Peake and Denison Ranges Area - Geology

F Peake and Denison Ranges Area					e Geological			Remote				Objective
Company	Date	Licence		Search	Mapping	Petrology	Mineralogy	Sensing	Interpretation	Tests	Tests	Elements
F G.Scouler	1885		Roy Soc 9									Au
F S.A.D.M.	1886		R81									
F S.S. East	1889		Roy Soc 12									
F S.A.D.H.	1893/189	4	Parl Pap25	yes							yes	Au
F S.A.D.N.	1915		Bull 5									
F S.A.D.H.	1918		MR 29							yes		
F S.A.D.H.	1930		Bul 14									
F S.A.D.M.	1946		Bull 23									
F Sprigg	1949		Roy Soc 73									
F H. Narain	1951											
F Sprigg	1952		Nawson vol									
F S.A.D.N.	1955		RI 6	yes								
F S.A.D.M.	1957			1								
F S.A.D.M.	1961		HR 114									
F North Broken Hill Ltd	1966/196	7 CHI 125	Env 694									Cu,Pb,Zn,Ni
F North Broken Hill Ltd		8 SHL 134	Env 941		yes	yes						Cu, Pb, Zn, Co, Ho
	1969/190		Env 1015	1100	yes	yes	yes				yes	U,Cu,Ni
F Australian Mining Corp	1969/197		RB70/84, MR132	yes			yes				Yes	Cu,Pb,Zn,Co,Pb,Ni,Sn,Mc
F S.A.D.H.E.					yes							Sr
F C.R.A.E.	1971		3 Env 1565		yes							Au
F AOG Minerals Ltd	1972		Env 2142									NU .
F Chevron Minerals Ltd	1973	el 22	Env 2182	yes					*			U .
F S.A.D.M.E.	1973											
F S.W.Schoff, T.R.Fairchild	1973											
F Uranertz		5 EL 110	Env 2253									U
F S.A.D.H.E.	1974											
FWHC	1975	EL 192	Env 2525	yes								Au,Ni,Co,Zn,Pb,Mn,Ag,A
F MINAD/Teton Drilling	1977/197	8 EL 336	Env 3080	yes								U
F Cyprus Aust Coal	1985	EL 5466	Env 4909									
F Savata Pty Ltd	1979/198	0 EL 462	Env 3579						yes			Diamonds
F Stockdale Prospecting Ltd	1987	EL 4179	Env 5288									
F Stockdale/Britas/Cons. Gold	1979/198	4 EL 491	Env 3562		yes		yes		yes			21 elements
F Dampier Mining		O EL 369	Env 3754		•	yes	•		-			
F Dampier Hining		0 EL 583	Env 3754			yes						•
F S.A.D.N.E.	1980		RB 80/70			1.00						Au
F Aberfoyle		7 EL 571	Env 3771	yes	yes	yes	yes		yes	yes		Diamonda, Au
F Aberfoyle		7 EL 968	Env 3771	yes	yes	yes	yes		yes	yes		Diamonda, Au
F Western Nuclear/Oilmin/Transo			Env 4027	yes	Jes	yes	yes		Ica	100		Diamonds
	1981	EL 743	Env 4027	-	1100	yes	yes					Au
F Carpentaria Exploration			Env 3771	yes	yes	•			100	yes		Diamonds, Au
F Aberfoyle		17 EL 968		yes	yes	yes	yes		yes	yes		Diamonds
F Gilmin/Transoil/Petromin		12 EL 750	Env 4041				yes					Diamonds, Cu, Co, Ni, Nb
F Oilmin/Transoil/Petromin		2 EL 751	Env 4042				yes					U.Coal,Diamonds
F Gemex/Western Queen		81 EL 763	Env 4061	yes								
F Gemex/Western Queen		1 EL 760	Env 4061	yes								U,Coal,Diamonds
F C.R.A.E.		32 EL 761	Env 4138			yes	yes					Cu, Pb, Zn
F S.A.D.M.E.	1980		Bull 50	yes	yes	yes						- 1
F Ashton		13 EL 787	Env 4223		yes	yes	yes					Diamonds
F Carpentaria Exploration	1981/198	32 EL 888	Env 4496	yes	yes	yes			yes			Au
F BHP Minerals	1982/198	84 EL 1133	Env 4858/5106				yes					Diamonds
F BHP Minerals	1982/198	4 EL 1202	Env 4909				yes					Diamonds
F Stockdale Prospecting	1983/198	34 EL 1030	Env 4912					yes	yes			Diamonds
F BHP Minerals		6 EL 1290						yes				Diamonds
F BHP Minerals Ltd	1986	EL 1292						-				
F BHP Minerals		36 EL 1293										Base Metals
F BHP Minerals	1986	EL 1293										Base Hetals
F S.A.D.N.E.	1988	68 16JL	314 0341/03/3		yes							
F Sevent	1300		Env 3084		Yes							
F			Env 3602									
£												
e .			ה הזר ה									

-

۰.

.

F Peake and Denison Ranges Area - Geology

				Literature	Geological			Remote	Photo	Trenching	Panning	Objective
Company	Date	Licence	Reference	Search	Mapping	Petrology			Interpretation		Tests	Elements
F Stockdale/Britas/Cons. Gold	1979/1984	EL 899	Env 3562		yes		ves	ochorny	ves	10303	leats	21 elements
F Stockdale/Britas/Cons. Gold	1979/1984	EL 1187	Env 3562		yes		yes		•			21 elements
F BHP Minerals	1983/1984				100	yes	les	1100	yes			
F BHP Minerals	1983/1984					yes		yes				Diamonds
F Genex		EL 760	Env 4061			Yes		yes				Diamonds
F Getty Oil Development		EL 409	Env 3602									
F Getty Oil Development	1980		Env 3804									
F Stockdale Prospecting 1td		EL 1179	Env 5288									
F Uranertz	1974	60 1175	Env 2381									Diamonds
	1974		Ella 7201									U,Th
•												

.

.

2

Peake and Denison Ranges

Surveys which sampled and analyzed for gold

geological map as	before.	LEGEN	D The map	overlays the
<u>Operator</u>	Year Map	Ref	Survey Type	Ref
AMC	1969	1	Drilling	Env1015
Chevron	1973	2	Geobotanic	Env2182
WMC	1975	3	Rock	Env2525
WMC	1975	5	NBH Drilling	Env2525
WMC	1975	6	NBH Drilling	Env2525
SADME	1980	7	Stream Sedim.	RB70/80
SADME	1981	8	Rock	Bull 50
BHP	1980	9	Drilling	Env3754
CRAE	1980	10	Drilling	Env4138
CRAE	1980	19	St. Sed Pan C.	Env4138
Carpentaria	1981	11	Rock Quartz re.	.Env4496
Carpentaria	1981	12	Rock BIF	Env4496
Carpentaria	1981	13	Rock Conglomer	Env4496
Carpentaria	1981	14	Rock Conglomer	Env4431
Carpentaria	1981	15	Soil Sampling	Env4496
Oilmin	1981	16	Stream Sedim.	Env4041
Utah	1984	17	Drilling	Env3771
Utah	1984	18	Stream Sedim.	Env3771
Utah	1984	18	Soil Sampling	Env3771
Utah	1984	18	Rock chip	Env3771

Notes: The volcanics have only been sampled in three areas. All samples have returned above backround values, both from Tuffs as well as basalt!

The BLEG sampling was undertaken bu UTAH Env 3771 and is the only BLEG work undertaken to date. The area concerned is well to the west of the EL application area. I have included a microfiche of these results.

Once again the attached map demonstrates the paucity and incidental nature of gold geochem.

- 100

PEAKE AND DENISON RANGES AREA

REFERENCE ABSTRACTS

•

	#CNO=0000217 DOCTYPE: Company rep #DOE=24:09:85
m T	#DOE=24:09:00 Algebuckina. Progress and final reports from 18.7.83 to
TI	18.4.84.
TN	#TN=EL1133;
co	Broken Hill Pty Co Ltd; (Code: BHP)
AU	Dorodata McPhar Ptv Ltd: (Code: AED-1)
so	SADME:open:file, #RE2=(Env 5106); 2 fiche, 19 pages, 1 map;
	2 fig, 4
	reps, #DATE=1984
AB	No potential kimberlites indicated.
SU	#BR=1545, $#BR=1200$; $Diamond$ $Orpioidelet, P$
	exploration; TMI maps; Aerial magnetic surveys; #TECT=(Adelaide Geosyncline);
	<pre>#TECT=(Denison Inlier); #TECT=(Algebuckina Inlier);</pre>
	#TECT=(Denison infler), #1201 (gozzonia infler)
	Bacin)
LO	#AMAG=(Algebuckina Aerial Mag. Svy); Peake and Denison
	Ranges:
MA	#250=SG5315 #250N=OODNADATTA; #100=6042II;
	#CNO=0000279 DOCTYPE: Company rep
	#CNO=0000279 DOCTYPE: Company rep #DOE=24:09:85
TI	Mount Kingston area. Progress and final reports from
11	10.10.79 to March
	1984.
TN	#TN=EL0491; #TN=EL0899; #TN=EL1187;
co	Stockdale Prospecting Ltd; Britas Diamonds NL; Consolidated
	Gold Mining Areas NL; (Code: STD, BDN, CGA)
AU	Pacific Exploration Consultants Pty Ltd; Geoex Pty Ltd; Gem
	Exploration and Minerals Ltd; Robinson, H R; Podolsky, M H; Exploration B: Beckett, T S: Burton, P E: (Code: PEX, GOX,
	Emsile, D.F. Beckett, I.D. Bulton, I. I. (Internet and
-	GEX) SADME:open:file, #RE2=(Env 3562); 13 fiche, 400 pages, 19
so	
	plans; 11 appx, 39 fig, 6 plates, 12 ref, 20 reps, 4 vol, #DATE=1984
AB	Work included 2400 line km low level aerial survey, and 452
лD	reconnaissance geochemical samples. High magnesium
	picro-ilmenite province. Bungadillina Creek, was downgraded
	by follow up sampling. Follow up of 14 potential kimberlite
	targets was ineffective due to overlying Cainozoic
	sediments. Stockdale drilled 2 kimberlite targets from 19
	potential sources in surrounding Mesozoic cover. 5 holes
	disseminated sulphide in lens of guartzite clay from 20 -
	30 metres and the other was due to ferruginized gravels at shallow depth.
	Subeconomic alluvial gold deposit was delineated within thin
	conglomerate bed in the Mount Kingston Peake area. 2 uranium
	anomalies in basalts of the Willouran Cadlareena Volcanics
	were associated with low grade mineralization attributed

077

2

11.1

3

to secondary alteration products derived from primary uranium phosphate minerals. Third anomaly was associated with carnotite mineralization in calcrete travertine deposit derived from leaching of the adjacent primary 'hot' Wirriecurrie Granite.

- #BR=1345; #BR=1230; #BR=1090; #BR=1190; Diamond exploration; SU Uranium exploration; Stream sediment Gold exploration; sampling; Soil sampling; Rock chip sampling; Aerial magnetic Aerial radioactivity Ground magnetic surveys; surveys; surveys; Ground radioactivity surveys; Gravity surveys; EM surveys; Rotary drilling; Auger drilling; Drill cuttings analysis; Multielement analysis; Heavy media separation; Magnetic susceptibility; Geological mapping; Photogeology; value; Mineralogy; Assay logs; Landsat; Geological #TECT=(Adelaide and Denison Inliers); #TECT=(Peake Geosyncline); #BASIN=(Eromanga Basin);
- AS Cr; Si; Mg; Mn; Ca; Al; Fe; Ti; Cu; Pb; Zn; Ni; Co; Ag; Sr; Mo; As; Ba; U; Nb; Ce;
- LO #AMAG=(Mount Kingston Aerial Mag. Svy); #ARAD=(Mount Kingston Aerial Rad. Svy); Peake Creek; Peake and Denison Ranges; Blyth Creek;
- MA #250=SH5303 #250N=WARRINA; #100=60411;
- AD Cyl. 3562/1; Aeromagnetic and radiometric profile data held in Geophs.

#CNO=0000280 DOCTYPE: Company rep

#DOE=24:09:85

TI Interpretation of airborne geophysical data.

- TN #TN=EL0491;
- CO Britas Diamonds NL; (Code: BDN)
- AU Ashley, J;
- SO SADME:open:file, #RE2=(Env 3562); vol 1, fiche: 4, p: 184-194, 1 plan; #DATE=1981
- AB 14 kimberlite targets were delineated, 6 meriting ground investigation, 3 in favourable structural setting associated with major NNW fault. Kimberlite targets may have been missed over high magnetic relief Peake Metamorphics and Wirricurrie Granite. 3 uranium anomalies including 1 of excellent potential just to the north of outcropping Wirricurrie Granite which is possibly related to uranium concentration in spring.
- SU #BR=1230; #BR=1345; Diamond exploration; Uranium exploration; Magnetic interpretation; Radiometric interpretation; #TECT=(Peake and Denison Inliers);
- LO #AMAG=(Mount Kingston Aerial Mag. Svy); #ARAD=(Mount Kingston Aerial Rad. Svy); Peake and Denison Ranges;
- MA #250=SH5303 #250N=WARRINA; #100=60411;

#CNO=0000281 DOCTYPE: Company rep #DOE=24:09:85

4

 \mathbf{i}_{-1}

TI	Alluvial gold testing programme.
TN	#TN=EL0491;
CO	Britas Diamonds NL; (Code: BDN) Mackay and Schnellmann Pty Ltd; Watts, J A; (Code: MKS)
AU	Mackay and Schnellmann Pty Ltd; watts, 0 A, (odd: his) SADME:open:file, #RE2=(Env 3562); vol 4, fiche: 6, p:
SO	SADME:open:file, #RE2=(Env 3502), vol 4, inclusion of the
	368-394; 3 fig, 6 plates, 12 ref, #DATE=1984 August
AB	Sampling in this gently dipping quartz pebble conglomerate
	in the Mount Kingston ~ Peake area (13 samples totalling 3
	400 kg) gave values ranging from $0 - 0.036$ g/t (mean value
	0.015 g/t). 5 samples from 2 other areas did not contain
	gold. There is no concentration in particular sections of
	the conglomerate profile. Tertiary age is suggested (basal
	Jurassic - Cretaceous Algebuckina Sandstone. Recommends
	concentrates be examined from diamond exploration viewpoint.
	#BR=1345; Gold exploration; Stratigraphy; Heavy mineral
SU	#BR=1345; Gold exploration; Schartgraph, her deposits; sampling; Magnetic separation; Gold placer deposits;
	<pre>sampling; Magnetic separation; Got piece asin); #TECT=(Adelaide Geosyncline); #BASIN=(Eromanga Basin);</pre>
	#TECT=(Adelaide Geosyncrine), #Dabits(Licomung Vounghusband; Peake and Denison Ranges; Brumby House; Mount Younghusband;
LO	#250=SH5303 #250N=WARRINA; #100=60411;
MA	#250=SH5505 #250N=WARRINA; #100×00110,
	#CNO=0000641 DOCTYPE: Company rep
	WDOR-15-10-85
ΤI	Mount Kingston. Progress and relinquishment reports from
• •	6.12.82 to September 1984.
TN	#mN=FT.1030:
CO	Stockdale Prospecting Ltd; (Code: STD)
AU	
SO	SADME:open:file, #RE2=(Env 4912); 2 fiche, 33 pages, 2 maps,
	A f = 4 - f R - rong #DATE=1984
AB	wintenlitin minorals were present in Small quantities in
	and at A bulk camples Remote sensing study mapped out
	the extent of the Cadna-owie Formation where it might occur
	as inliers within Bulldog Shale. The thickness of Cretaceous
	sediments and the lack of surface expressions of kimberlite
	indicates area has little diamond potential.
SU	#BR=1345; Diamond exploration; Heavy mineral sampling; #DR=1345; Diamond exploration; Interpretive maps;
	#TECT=(Peake and Denison Inliers); #BASIN=(Eromanga Basin);
LO	Mount Kingston;
MA	#250=SG5315 #250N=OODNADATTA; #250=SH5303 #250N=WARRINA;
	#100=6142; #100=6141; #100=60421; #100=6042III; #100=6042I;
	#100=6141; #100=60421; #100=60122==; "
	#100=6042IV;
	#CNO=0001086 DOCTYPE: Company rep
	NDDD 00.10.85
TI	Algebuckina. Progress and final reports from 27.12.81 to

21.7.82. TN #TN=EL0888;

- 2000

со	Carpentaria Exploration Co Pty Ltd; (Code: CEX)
AU	Owen, P; Lucas, M D; Binks, P J;
so	SADME:open:file, #RE2=(Env 4496); 2 fiche, 50 pages, 2 maps; 1 fig, 12 ref, #DATE=1982
AB	No significant gold values from sampling of basal
ΛD	conglomerate of Algebuckina Sandstone, quartz reefs and an
~	iron formation.
SU	<pre>#BR=1345; #BR=1190; Gold exploration; Base metal</pre>
	exploration; Rock chip sampling; Stream sediment sampling;
	Geological mapping; Photointerpretation; Petrology; Early Proterozoic; Jurassic; Cretaceous; Banded iron formation;
	Assay value; #TECT=(Peake and Denison Inlier);
	#BASIN=(Eromanga Basin);
ST	Algebuckina Sandstone;
AS	Au; Cu; Pb; Zn; Ni; Co; Bi; Cd; Fe; Mn; Ag; Ce; La; Yt; As;
	Ba; V; Sb; Cr; Mo; Sn;
MI	Algebuckina mine;
LO	Algebuckina Siding; Neales River;
MA	#250=SG5315 #250N=OODNADATTA; #100=6042II;
AD	#SADMEB=014111;
	#CNO=0001544 DOCTYPE: Company rep
	#DOE=19:08:86
TI	Kurillina. Progress and final reports from 29.7.85 to March
	1986.
TN	#TN=EL1297;
CO	BHP Minerals Ltd; (Code: BHI)
AU	Taylor, R J;
SO	SADME:open:file, #RE2=(Env 6380); 1 fiche, 20 pages; 3 fig, 3 reps, #DATE=1986
CM	Data tapes unavailable until termination of EL 1292.
AB	Target was Olympic Dam type mineralization. An aeromagnetic
	survey was flown over the whole area by Geoterrex. Follow up
	of broad magnetic anomaly by gravity indicates anomaly is
	due to buried metamorphic basement. The regional gravity
SU	gradient sloping to the east is confirmed. #BR=1345; #BR=1230; Base metal exploration; Aerial magnetic
50	surveys; Gravity surveys; Bouguer gravity maps; TMI maps;
	<pre>#TECT=(Peake and Denison Inliers);</pre>
LÒ	#AMAG=(Kurillina Aerial Mag. Svy);
MA	#250=SG5315 #250N=OODNADATTA; #100=6142II; #100=6142III;
	#250=SH5303 #250N=WARRINA; #100=61411; #100=61411V;
AD	Cyl.6378/1. Data tapes held in Geophs.
	#CNO=0001545 DOCTYPE: Company rep
	#DOE=19:08:86
TI	Woodmurra. Progress and final reports from 29.7.85 to March
	1986.
TN	#TN=EL1290; BHP Minerals Ltd; (Code: BHI)
CO	

٠.,

	0
AU	Taylor, R J;
SO	SADME:open:file, #RE2=(Env 6282); 2 fiche, 20 pages, 3
	plans; 1 fig, 3 reps, #DATE=1986
AB	Target was Olympic Dam type mineralization. An aeromagnetic
	survey was flown over the whole area by Geoterrey. Follow up
	Nork over 8 magnetic anomalies were inconclusive
SU	#BR=1345; #BR=1230; Base metal exploration: Ground magnetic
	surveys; Gravity surveys; Bouguer gravity maps; TMI maps;
	#TECT=(Adelaide Geosyncline);
LO MA	#AMAG=(Woodmurra Aerial Mag. Svy);
МА	#250-SG5315 #250N-OODNADATTA; #100-6142; #100-6143II;
AD	#100=5143III; #100=5042I; #100=5043II; Cyl.5282/1. Data tapes held in Geophs.
	Cyr. 0202/1. Data tapes held in Geophs.
	#CNO=0001299 DOCTYPE: Company rep
	#DOE=01:02:86
TI	Nilpinna Springs. Progress and final reports from 12.7,82 to
	11.1.85.
TN	#TN=EL1010; #TN=EL1029; #TN=EL1133;
CO	BHP Minerals Ltd; (Code: BHI)
AU	Aerodata McPhar Pty Ltd; Taylor, R J; Davies, M; Forwood, K;
	(Code: AED)
SO	SADME:open:file, #RE2=(Env 4858); 3 fiche, 75 pages, 1 plan;
AB	3 appx, 6 fig, 10 reps, #DATE=1985
AD	Follow up of 3 low order anomalies downgraded them as
	potential kimberlite targets. 3 drill holes (276.4 metres)
	over Roxby Downs type anomaly show source of gravity anomaly to be shallow Early Proterozoic basement and magnetic
	anomaly to be chlorite rich schist containing disseminated
	magnetite grains.
SU	#BR=1345; #BR=1230; #BR=1190; #BR=1090; Diamond exploration;
	Base metal exploration; Aerial magnetic surveys; Aerial
	radioactivity surveys; Ground magnetic surveys: Gravity
	surveys; Stream sediment sampling; Soil sampling; Rotary
	drilling; Geological logs; Drill core analysis; Drill
	cuttings analysis; Magnetic susceptibility; TMT maps;
	Petrology; #TECT=(Peake and Denison Inlier);
LO	#AMAG=(Nilpinna Springs Aerial Mag. S)vy); #ARAD=(Nilpinna
ма	Springs Aerial Rad.) Svy); Nilpinna Creek;
мл	#250=SH5303 #250N=WARRINA; #100=604111; #100=6041111;
	#100=60411V; #250=SG5315 #250N=OODNADATTA; #100=604211; #100=6042111;
AD	Tapes held in Geophs.
	tapes nera in deopns.
	#CNO=0001698 DOCTYPE: Company rep
	#DOE=01:07:83
TI	Umbum. Progress and final reports from 12.2.81 to 11.8.83.
TN	#TN=EL0787;
CO	Aberfoyle Exploration Pty Ltd; Ashton Mining Ltd; (Code:
	AEP, AMN-1)
AU	Geometrics International Corporation; (Code: GIC)

ŚŬ #BR=1345; #BR=1230; Diamond exploration; Heavy mineral sampling; Multielement analysis; Petrology; Assay value; **#TECT=(Peake and Denison** Inlier); LO #AMAG=(Umbum Aerial Mag. Svy); Lagoon Hill; #250=SH5303 #250N=WARRINA; #100=61401; #100=61411V; MA AD Cyl.3771/5. Tapes held in Geophs. #SADMEB=015429 #CNO=0002253 DOCTYPE: Company rep #DOE=01:03:87 ΤÌ Nilpinna; Edward Creek; Progress and final reports from 16.1.80 to 22.5.84 and 22.11.85 to 6.4.87. TN #TN=EL0968; #TN=EL0571; CO Aberfoyle Exploration Pty Ltd; Ashton Mining Ltd; Utah Development Co; Stockdale Prospecting Ltd; (Code: AEP, AMN-1, UDC, STD) I B; Jarvis, D M; Brady, S A; AU Geometrics Ltd; Freytag, Dugmore, M A; Newell, B H; Stracke, K J; Robison, H R; Mann, S T; (Code: GOM) SADME:open:file, #RE2=(Env 3771); 14 fiche, 300 pages, 47 80 plans; 6 appx, 28 fig, 33 reps, #DATE=1984 Diamond exploration in the Peake and Denison Ranges included AB aerial magnetic, radiometric and VLF EM surveys, ground magnetic and Sirotem surveys, gravel, loam and bulk sampling and 6 drill holes (totalling 236 metres). Numerous including kimberlitic indicator minerals pyrope, and chromite and 8 diamonds from 3 samples picroilmenite from the Edward Creek area were recovered. Base metal exploration comprised extensive sediment and rock chip sampling, geological mapping and 1 drill hole (180 metres). Low order gold, copper and zinc anomalies were recorded from geochemical sampling. #BR=1345; #BR=1230; #BR=1090; #BR=1190; Diamond exploration; SU Base metal exploration; Heavy mineral sampling; Geological

SADME:open:file, #RE2=(Env 4223); 3 fiche, 75 pages, 3 maps;

Exploration for kimberlite pipes east of the Proterozoic

banded iron formations or hematite /

Margaret Inlier in the Peake and Denison Ranges, consisted of gravel sampling and aerial and ground magnetic surveys. Magnetic highs in the Spring Hill area appear to be related

5 appx, 7 fig, 7 reps, #DATE=1983

to dolerite dykes, magnetic blocks.

- logs; TMI maps; Geochemical maps; Drill cuttings analysis; Petrology; Microprobe analysis; Stratigraphic section; Diapirs; Assay value; #TECT=(Adelaide Geosyncline); #TECT=(Margaret Inlier);
- ST Duff Creek Beds; Murrana Beds; Coominaree Dolomite; Fountain Spring Beds; Mount Margaret Quartzite; Skillogalee Dolomite; Burra Group; Callanna Beds;
- AS Cu; Pb; Zn; Ag; Au; As; Ba;

SO

AB

MI Coominaree mine; Hope Creek asbestos workings;

8

LO	#AMAG=(Nilpinna Aerial Mag. Svy); #ARAD=(Nilpinna Aerial Rad. Svy); #AEM=(Nilpinna Aerial EM Svy); Spring Hill; Levi Creek; Box Creek;
MA	#250-SH5303 #250N-WARRINA; #100-6041II; #100-6141III; #100-6040I; #100-6040II; #100-6040III; #100-6140IV;
AD	Cyl.3771/1, 3771/5. Tapes held in Geophs.
	#CNO=0001556 DOCTYPE: Company rep #DOE=19:08:86
TI	Umbum. Partial relingishment report, April 1986.
TN	#TN=EL1292;
CO	BHP Minerals Ltd; (Code: BHI)
AU SO	Geoterrex Pty Ltd; Taylor, R J; (Code: GEL-1)
	SADME:open:file, #RE2=(Env 6541); 2 fiche, 9 pages, 2 plans; 1 fig, #DATE=1986
CM	Data tapes unavailable until termination of EL 1292.
AB	Exploration for Olympic Dam type mineralization west of Lake Eyre comprised an aeromagnetic survey and follow up optical gravity surveys. No significant gravity anomalies were encountered.
SU	<pre>#BR=1345; #BR=1230; Base metal exploration; TMI maps; Bouguer gravity maps; #TECT=(Adelaide Geosyncline);</pre>
LO	#AMAG=(Umbum Aerial Mag. Svy);
MA	#250=SH5304 #250N=(LAKE EYRE); #100=6241; #100=6240IV; #250=SH5303 #250N=WARRINA; #100=6141;
AD -	Cyl.6378/1. Tapes held in Geophs.
	#CNO=0001557 DOCTYPE: Company rep #DOE=01:02:87
TI	Piarooka. Progress and final reports from 29.7.85 to 20.8.86.
TN	#TN=EL1293;
CO	BHP Minerals Ltd; (Code: BHI)
AU	Geoterrex Pty Ltd; Taylor, R J; (Code: GEL-1)
SO	SADME:open:file, #RE2=(Env 6542); 2 fiche, 17 pages, 2 plans; 4 fig, #DATE=1986
CM	Data tapes unavailable until termination of EL 1292.
AB	Exploration for Olympic Dam type mineralization west of Lake Eyre comprised an aeromagnetic survey and follow up optical gravity survey of magnetic anomalies and ground magnetic survey over 'Bullseye' anomaly. Detailed follow up of a significant gravity low anomaly gave negative results.
SU	#BR=1345; #BR=1230; Base metal exploration; TMI maps:
	Bouguer gravity maps; #TECT=(Adelaide Geosyncline);
LO	Bouguer gravity maps; #TECT=(Adelaide Geosyncline); #AMAG=(Piarooka Aerial Mag. Svy);
LO MA	Bouguer gravity maps; #TECT=(Adelaide Geosyncline); #AMAG=(Piarooka Aerial Mag. Svy); #250=SH5304 #250N=(LAKE EYRE); #100=624111; #100=6241111;
	Bouguer gravity maps; #TECT=(Adelaide Geosyncline); #AMAG=(Piarooka Aerial Mag. Svy); #250=SH5304 #250N=(LAKE EYRE); #100=624111; #100=6241111; #100=62401; #100=62401V; #250=SH5303 #250N=WARRINA:
	Bouguer gravity maps; #TECT=(Adelaide Geosyncline); #AMAG=(Piarooka Aerial Mag. Svy); #250=SH5304 #250N=(LAKE EYRE); #100=624111; #100=6241111;

1988

66 1434 60V 0341/03/3

#CNO=1014670 DOCTYPE: Company rep #DOE=31:12:83 El 761 ruby hill South Australia. progress & final reports TI from 24-3-81 to 2-6-82 (6 reps, 4 vols). TN #TN=EL761; CO C.r.a. explor; AU Andrews, D L; SADME:open:file, #RE2=(Env 4138); 53 pages; maps, #DATE=1982 SO 1982 #BR=1250; Metalliferous minerals; Non-metalliferous mins; SU Mineral exploration; Diamonds; Geochemistry; Stream sediment sampling; Geophysics; Aerial magnetic surveyys; Assay value; Multielement analysis; Aerial radioactivity; Survey; Magnetic anomalies; Soil sampling; Indicator minerals; Heavy mineral analysis; Ground magnetic surveys; Aerial magnetic maps; Residual magnetic maps; Auger Percussion drilling; Volcanic rocks; Geophysical drilling; susceptibility; Oil logs; Magnetic logs; Geological analysis; Radioactivity logs; Neutron logs; Gamma gamma logs; Caliper logs; Native copper; Banded Iron Formation; Cadlareena Volcanics; Bulldog Shale; ST Ruby hill; Peake and denison range; LO #250=SH5303 #250N=WARRINA; #100=6140; MA AD Tapes held in Geophs. #CNO=1003345 DOCTYPE: Company rep #DOE=31:12:83 SML492 Peake and Denison Ranges area SA. Report on TI exploration three monthly period to 5-2-71. #TN=SML492; TN AU Clarke, D B; SADME:open:file, #RE2=(Env 1015); 4 pages; maps, #DATE=1971 SO #BR=1230; Geophysics; Metalliferous minerals; Mineral SU deposits; Ground magnetic Mines: exploration; Copper surveys; Radioactivity surveys; IP surveys; Time domain; SP surveys; Electrical surveys; Copper; Last Chance mine: MI Peake and Denison Range; LO MA #250=SH5303 #250N=WARRINA; #100=6040; #CNO=1003346 DOCTYPE: Company rep #DOE=31:12:83 Report on airborne magnetic survey of the Peake and Denison TI Range area. #TN=SML270; TN Australasian Mining Corp Ltd; (Code: AAS) CO AU Webb, J E; SADME:open:file, #RE2=(Env 1015); 9 pages; maps, #DATE=1969 SO #BR=1230; Geophysics; Metalliferous minerals; Mineral SU exploration; Aerial surveys; Aerial magnetic surveys; Aerial

9

à

10

	radioactivity spectrometer survey; Magnetic interpretation; Total magnetic intensity; Uranium; Peake and Denison Range;
LO MA	#250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA; #100=6040; #100=6041; #100=6042; #100=6140; #100=6141;
	#CNO=1003347 DOCTYPE: Company rep #DOE=31:12:83
TI	SML270 Peake and Denison Ranges six monthly report to 19-2-71.
TN	#TN=SML270;
AU	Clarke, D B;
SO	SADME:open:file, #RE2=(Env 1015); 11pages; maps, #DATE=1971
SÜ	<pre>#BR=1345; Metalliferous minerals; Mineral exploration; Mines; Copper deposits; Geological maps; Geophysics; Ground magnetic surveys; EM surveys; Vlf EM surveys; SP surveys; Electrical surveys; Copper; Asbestos;</pre>
MI	Coominaree mine; War Loan mine; Printa mine; Enrico mine;
LO	Peake and Denison Range; Algebuckina;
MA	#250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA;
мл	#100=6040; #100=6140; #100=6041; #100=6042;
TI TN CO AU SO SU	<pre>#CNO=1003348 DOCTYPE: Company rep #DOE=31:12:83 Progress reports SML270 Peake and Denison Ranges SA. #TN=SML270; Australasian Mining Corp Ltd; (Code: AAS) Hillwood, E R; Westoff, J B; SADME:open:file, #RE2=(Env 1015); maps, #DATE=1971 #BR=1345; Metalliferous minerals; Mineral exploration; Uranium; Copper; Mines; Copper deposits; Geological surveys; Geophysics; Radiometric anomalies; Gold; Diamonds;</pre>
	Radioactivity surveys; Chemical analysis; Uranium; Thorium; Copper; Nickel; Nuclear radiation; Pre-Adelaidean;
ST	Peake Metamorphics;
LO MA	Peake and Denison range; #250=sH5303 #250N=WARRINA; #250=sG5315 #250N=OODNADATTA;
МА	#250=56505 #2500=4041; #100=6042; #100=6140; #100=6141;
	#CNO=1003349 DOCTYPE: Company rep #DOE=31:12:83
TI	Report on exploration during period 15-2-70 to 15-8-70 SML270 Peake and Denison Ranges SA.
TN	#TN=SML270;
CO	Australasian Mining Corp Ltd; (Code: AAS)
AU	Sargeant, F J:
SO	SADME:open:file, #RE2=(Env 1015); 25 pages; maps, #DATE=1970
SU	<pre>#BR=1345; Metalliferous minerals; Mineral exploration;</pre>

a.

F DAT ALLELAIS F S.A.D.M.E.	1988	EL 1292 E	nv 6541/6 <i>31</i> 9	
C Normanh				

i

11

Drilling; Percussion drilling; Radiometric anomalies; IP anomalies; Diamond drilling; Geological logs; Geochemical logs; Chemical analysis; Copper; Uranium; Silver; Bismuth; Antimony; Mines; Copper deposits; Petrology; Mineralogy; Diamonds; Sapphire; Metamorphic rocks; MI Copper Top mine; Printa mine; LO Peake and Denison Range; Algebuckina; Mount Kingston; MA #250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA; #100=6041; #100=6042; #CNO=1003350 DOCTYPE: Company rep #DOE=31:12:83 TI Report on induced polarization surveys at the Oodnadatta area. ŤΝ #TN=SML270; CO Australasian Mining Corp Ltd; AU Webb, J E; Iredale, J A; SO SADME:open:file, #RE2=(Env 1015); 9 pages; maps, #DATE=1970 SU #BR=1230; Geophysics; Mineral exploration; Metalliferous minerals; Electrical surveys; IP surveys; Dipole dipole array; Drilling proposals; Printa mine; Copper Top mine; MI LO Peake and Denison Range; Algebuckina; Mount Kingston; Oodnadatta: MA #250=SG5315 #250N=OODNADATTA; #250=SH5303 #250N=WARRINA; #100=6042; #100=6041; #CNO=1003916 DOCTYPE: Company rep #DOE=31:12:83 TI Final report on exploration of SML12K, SML134 Peake and Denison Ranges northern SA. TN #TN=SML134: CO North Broken Hill Ltd; (Code: NBH) AU Forwood, P S: SO SADME:open:file, #RE2=(Env 941); 17 pages; maps, #DATE=1968 SU #BR=1345; Metalliferous minerals; Mineral exploration; Geological mapping; Plane table mapping; Geological maps; geology; Regional Pre-Adelaidean; Geochemistry; Stream sediment sampling; Soil sampling; Rock (chip) sampling; Chemical analysis; Copper; Lead; Zinc; Nickel; Geophysics; Ground magnetic surveys; Electrical surveys; IP surveys; Frequency domain; IP anomalies; Drilling; Diamond drilling; Core logs; Pyrite; Mines; Copper deposits; MI Peake mines; Coominaree mine; War Loan mine; Last Chance mine: LO Peake and Denison Range; Mount Kingston; MA #250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA; #100=6040; #100=5041; #100=6042; #100=6140; #100=6141;

080

12

#CNO=1003917 DOCTYPE: Company rep #DOE=31:12:83 TT. Report on visit to Peake and Denison Range (rep.1958/5) rocks from the Peake and Denison Range (rep 1968/10). TN #TN=SML134; AU Whittle, A W G; SADME:open:file, #RE2=(Env 941); 8 pages; illust, #DATE=1968 SO SU #BR=1345; Metalliferous minerals; Mineral exploration; Rock (chip) sampling: Petrology; Mineralization; Mineral deposits; Mineralogy; 1.0 Peake and Denison Range; #250=SH5303 #250N=WARRINA; MA #250=SG5315 #250N=OODNADATTA: #100=6040; #100=6041; #100=6042; #100=6140; #100=6141; #CNO=1000743 DOCTYPE: Company rep #DOE=31:12:83 ТÌ Progress reports exploration licence 192 peake-denison Ranges South Australia (3 vols). TN #TN=EL192: CO Western mining; AU Western-mining; SO SADME:open:file, #RE2=(Env 2525); maps, #DATE=1975 SU #BR=1345; Metalliferous minerals; Mineral exploration; Literature reviews; Gold: Copper; Geological surveys; Geochemistry; Drill core; Rock (chip) sampling; Stream sediment sampling; Soil sampling; Atomic absorption spectroscopy; Nickel; Copper; Cobalt; Chromium; Silver: Manganese; Lead; Zinc; Arsenic; Adelaidean; Geochemical exploration; Pre-adelaidean; Geological mapping; Drill core analysis; Gold: ST Peake Metamorphics; Duff Creek Beds; LO Peake and denison range: MA #250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA; #100=6042: #CNO=1000459 DOCTYPE: Company rep #DOE=31:12:83 ŤΙ Progress and completion reports lagoon hill area, South Australia, exploration licence 22 (3 vols.). TN **#TN=EL22;** CO Chevron exploration; AU Teluk, J A; so Sadme unpublished report #RE2=(Env 2182); 44 pages; maps, illust, #DATE=1974 SU #BR=1345; Metalliferous minerals; Mineral exploration; Uranium exploration; Literature reviews; Geological survey Geological Stratigraphy; mapping; Structural geology; Geobotany; Auger drilling; Geochemistry; Water analysis; Uranium; Rotary drilling; Geophysical logs; Radioactivity logs; Sp logs; Chemical analysis; Mesozoic; Mesozoic; Isopach maps; Basement depth; Assay value;

1900

#BASIN=(Great Artesian Basin); #BASIN=(Cadlareena Basin); #BASIN=(Lake Eyre Basin); ST Algebuckina Sandstone; Cadna-owie Formation; Bulldog Shale; MI Last chance mine; LO Lagoon hill; Peake and denison range; MA #250=SH5303 #250N=WARRINA; #100=6141; #100=6140; #CNO=1000474 DOCTYPE: Company rep #DOE=31:12:83 TI Final report s.m.l. 718 -oodnadatta area, South Australia. TN #TN=SML718; CO A.o.g.minerals; AU Boyd, B R; SO Sadme unpublished report #RE2=(Env 2142); maps, #DATE=1972 SU #BR=1345; Metalliferous minerals; Mineral exploration; Gold; Geological surveys; Jurassic; Mesozoic; MI Algebuckina prospect; LO Oodnadatta; Peake and denison range; Neales river; MA #250=SH5303 #250N=WARRINA; #250=SG5315 #250N=OODNADATTA; #100=6041; #100=6042; #CNO=1001377 DOCTYPE: Company rep #DOE=31:12:83 TI Final report e.1.110 peake-denison and Mt kingston Ranges South Australia + progress reps (formerly el 33). TN #TN=EL110; CO Uranerz; AU Iliff, G D; SO SADME:open:file, #RE2=(Env 2381); maps, #DATE=1975 SU #BR=1345; Metalliferous minerals; Mineral exploration; Uranium; Geophysics; Radiometric anomalies; Trenching; Diamond drilling; Drilling; Radioactivity surveys; Core logs; Geochemistry; Petrology; Rock (chip) sampling; Geochemical logs; Chemical analysis; Uranium; Thorium; Geological maps; Pre-adelaidean: Granite; Adelaidean; Mesozoic; Jurassic; Migmatite; ST Peake Metamorphics; Duff Creek Beds; LO Mount kingston; Peake and denison range; MA #250=SG5315 #250N=00DNADATTA; #250=SH5303 #250N=WARRINA; #100=6042; #100=6041 ; #CNO=1001968 DOCTYPE: Company rep #DOE=31:12:83 TΙ Strontium investigations in toolebuc-wooldridge limestone S.A. s.m.l.402 Fossil Creek & s.m.l.403 Mt arthur cyl 1565/1 transparencies. TN #TN=SML402; CO C.r.a. explor; AU Rudd, P I; SADME:open:file, #RE2=(Env 1565); 17 pages; maps, #DATE=1971 SO

(i) sty

14

	1971
SU	
50	#BR=1190; Geochemistry; Geochemical sampling; Mineral
	CAPIOLACION, SCIONCIUM, CALAStito, Monomola, Church St.
	sampling; Size screening; Drilling; Percussion drilling; Ground water sempling; Networks and the second states
	Ground water sampling: Water analyzic, Ground villing;
ST	Wooldridge Limestone Member, Toolebug Members
LO	Fossil creek; Mount arthur; Oodnadatta;
MA	#250 ggf24t Hount arthur; Uodnadatta;
	#250=SG5315 #250N=OODNADATTA; #100=5942; #100=5943;
	#100=6042;
	#CNO=1002196 DOCTYPE: Company rep
	#CNO=1002196 DOCTYPE: Company rep
TI	#DOE=31:12:83
TI	Progress notes (4) s.m.l. 125 algebuckina-peake area peake
	and Denison Ranges S.A.
TN	#TN=SML125;
CO	Nth broken hill;
so	
	SADME:open:file, #RE2=(Env 694); maps, #DATE=1967
SU	TPATIJU GROCDADIStry, Minawal analysist and a
	sampling; Mines; Copper deposits; Chemical analysis; Copper; Lead: Zinc: Nickel: Park (this)
	Lead; Zinc; Nickel; Rock (chip) sampling; Grab sample;
	Pre-adelaidean; Metalliferous minerals;
MI	declargean; metalliferous minerals;
MI	Coominaree mine; Copper top mine; Peake mines; War loan
LO	Peake and denison range;
MA	#250=SH5303 #250N=WARRINA; #100=6041; #100=6040;
	" " " " " " " " " " " " " " " " " " "
	#CNO=1006082 DOCTYPE: Company rep
	#DOE=31:12:83
TI	Progress reports el 336 warrina S.A. (4 reps)(mines admin &
	teton expln.drilling) 2 figs.
TN	#TN=EL336;
CO	Mines admin;
AU	
	Ellis, G K; Wecker, R;
so	SADME:open:file, #RE2=(Env 3080); 6 pages; maps, #DATE=1978
SU	#BR=1345; Metalliferous minerals; Mineral exploration;
	Uranium exploration; Coalt Grading Mineral exploration;
	Uranium exploration; Coal; Coal exploration; Ground water
	Wange and Valar and Valar Conner Venedium, Malaka
	CAMINE DITITING: ROTARY drilling: Downions T
	Tonorne (Great Artesian Basini:
ST	Algebuckina Sandstone;
LO	Warrina:
MA	
	#250=SG5315 #250N=OODNADATTA; #250=SH5303 #250N=WARRINA;
	#100=6042; #100=6041; #100=6040;
	-
	#CNO=1006086 DOCTYPE: Company rep
	#CNO=1006086 DOCTYPE: Company rep #DOE=31:12:83
TI	
* *	A resistivity survey at warrina, S.A., fore mines

•

Env 3084

0.40

15

.

TN	administration(3 figs). #TN=EL336;
co	Mines admin;
AU	Murdoch, R;
so	SADME:open:file, #RE2=(Env 3080); 12 pages; maps, #DATE=1977
	1977
SU	#BR=1230; Geophysics; Resistivity sounding; Schlumberger array; Geophysical interpretation; Metalliferous minerals; Mineral exploration; Coal exploration; Permian; Mesozoic; Coal; Resistivity profiling; #BASIN=(Great Artesian Basin);
LO	Warrina;
МА	#250=SG5315 #250N=OODNADATTA; #250=SH5303 #250N=WARRINA; #100=6042; #100=6041; #100=6040;
	#CNO=1008896 DOCTYPE: Company rep #DOE=31:12:83
TI	EI 583 West Lake Eyre S.A. report for the quarter ended 25th April 1980.
CO	Dampier;
AU	Bhp;
SO	SADME:open:file, #RE2=(Env 3754); 4 pages; maps, #DATE=1980
	1980
SU	#BR=1345; Metalliferous minerals; Mineral exploration;
	Drilling; Rotary drilling; Geological logs; Geophysical
	logs; Radioactivity logs; Electrical well logs; Metamorphic petrology; Multielement analysis; Sulphide minerals;
	Chalcopyrite; Basement;
LO	Lake evre: Umbum:
MA	#250=SH5303 #250N=WARRINA; #250=SH5304 #250N=(LAKE EYRE);
MA	#250=SH5505 #250N=WARRINA; #250=SH5504 #250N=(LARE EIRE); #100=6140; #100=6241 ;
	#CNO=1011276 DOCTYPE: Company rep
	#DOE=31:12:83
TI	Progress and final reports e.l.no 462 algebuckina area S.A
co	Savata;
AU	Layton-assoc;
SO	SADME:open:file, #RE2=(Env 3579); 37 pages; maps, #DATE=1980 1980
SU	#BR=1250; Non-metalliferous mins; Metalliferous minerals; Mineral exploration; Diamonds; Geophysics; Ground magnetic
	surveys; Magnetic anomalies; Radioactivity surveys;
	Photointerpretation; Lineaments; Geochemistry; Soil sampling; Stream sediment sampling; Geochemical anomaly;
	Chemical analysis; Chromium; Copper; Nickel; Niobium;
	Magnesium; Strontium;
LO	Algebuckina;
MA	#250=SG5315 #250N=OODNADATTA; #100=6042;
	#CNO=1011379 DOCTYPE: Company rep

#DOE=31:12:83

	16
TI	Progress and final reports el 469 ruby hill South
11	Australia(3 reps).
TN	#TN=EL469:
CO	Newmont :
AU	Dow, J A S; getty-oil;
so	SADME:open:file, #RE2=(Env 3602); 6 pages; maps, #DATE=1980 1980
SU	<pre>#BR=1345; Metalliferous minerals; Mineral exploration; Satellite imagery; #TECT=(Stuart Shelf);</pre>
LO	Ruby hill; Torrens hinge zone:
MA	#250=SH5303 #250N=WARRINA; #250=SH5304 #250N=(LAKE EYRE); #100=6140; #100=6240 ;
	#CNO=1011389 DOCTYPE: Company rep #DOE=31:12:83
TI	Progress reports e.1.341 william Creek, South Australia.(7
	reps., later el 564, env. 3804) newmont-dampier-getty venture
CO	Newmont;
AU	Wright, R G; Clarke, N G; Dow, J A S;
SO	SADME:open:file, #RE2=(Env 3092); 22 pages; maps, #DATE=1979 1979
SU	<pre>#BR=1345; Metalliferous minerals; Mineral exploration;</pre>
	Geophysics; Gravity surveys; Gravity anomalies; Ground magnetic surveys; Gravity data; Diamond drilling; Geological logs; Mound springs; Geochemistry; Water analysis; Sodium carbonates; Copper; Uranium; Molybdenum; Fluorine; #TECT=(Stuart Shelf);
LO	William creek; Anna creek; Boorthanna trough;
MA	#250=SH5307 #250N=BILLAKALINA; #250=SH5303 #250N=WARRINA; #100=6139; #100=6140 ;
	#CNO=1013554 DOCTYPE: Company rep
·	#DOE=31:12:83
TI	E.1.760(canegrass) and e.1.763(nilpinna)sth Aust. progress & final reports. for gem exploration & minerals ltd & Western queen(sa)p.1.
TN	ducen(sa)p.1. #TN=EL760;
CO	Gem explor+mins;
AU	Sas, Z; Gates, A H; pacific-expln-consultant; s;
so	SADME:open:file, #RE2=(Env 4061); 22 pages; #DATE=1981 1981
su	#BR=1250; Non-metalliferous mins; Mineral exploration;
	Diamonds; Coal exploration; Uranium exploration; Literature
	reviews; #BASIN=(Great Artesian Basin); #BASIN=(Arckaringa
	Basin); #BASIN=(Pedirka Basin);
ST	Oil Shale;
LO	Boorthanna trough; Nilpinna; Canegrass lobe;
MA	#250=SH5303 #250N=WARRINA; #100=6041; #100=6141;

#CNO=1013656 DOCTYPE: Company rep

a y conserva-

#DOE=31:12:83 Ps). TI. #TN=EL743; TN Carpentaria; Lucas, M D; Simpson, P G; Boyer, D D; SADME:open:file, #RE2=(Env 4031); 13 pages; maps, #DATE=1981 CO AU #BR=1345; Metalliferous minerals; Mineral exploration; Gold; SO Volcanic rocks; Trachyte; Geological mapping; Chemical #TECT= (Mount Dutton SU Conglomerate; analysis; Petrology; Algebuckina Sandstone; Duff Creek Beds; Murrana Beds; ST Peake and denison range; #250=SG5315 #250N=OODNADATTA; #100=6042; LO MA DOCTYPE: Company rep #CNO=1014920 Gravity and magnetic analysis lagoon hill area, South #DOE=31:12:83 TI Australia. #TN=EL22; TN Chevron exploration; SADME:open:file, #RE2=(Env 2182); 4 pages; #DATE=1973 1973 CO Geophysics; Mineral exploration; Uranium; AU Geophysical interpretation; Gravity interpretation; Magnetic so interpretation; Density; Permian; Adelaidean; #BASIN=(Great SU Bulldog Shale; Cadna-owie Formation; Algebuckina Sandstone; ST Peake Metamorphics; Lagoon hill; Peake and denison range; #250=SH5303 #250N=WARRINA; #100=6140; #100=6141; LO MA DOCTYPE: Company rep #CNO=1014937 Combined gravity and optical levelling survey nilpinna. TI #TN=EL924; TN C.r.a. explor; SADME:open:file, #RE2=(Env 4562); 69 pages; maps, #DATE=1981 CO AU #BR=1230; Geophysics; Gravity surveys; Gravity data; Coal SO 1981 exploration; #BASIN=(Arckaringa Basin); SU #250=SH5303 #250N=WARRINA; #100=5940; #100=5941; Nilpinna; LO AM. DOCTYPE: Company rep #CNO=1015174 El 750, hanns hill, sa. progress reports from 19-1-81 to #DOE=31:12:83 6-12 -82.(139 p.data,4 maps). TI #TN=EL750; TN Oilmin; CO

17

10

....

exploration; Metalliferous minerals; Mineralogy; sediment sampling; Geochemical exploration; Heavy mineral analysis; Assay value; Multielement analysis; Niobium: Cobalt; Chromium; Sampling; Nickel; Geochemical anomaly; Photointerpretation; Mount toodla; Hanns hill; #250=SG5315 #250N=OODNADATTA; #100=6042; #100=6043; #CNO=1015175 DOCTYPE: Company rep #DOE=31:12:83 El 751 Mt.Robinson,S.A. progress reports from 19-1-81 to 6-12-82(65p.data, 3 maps). #TN=EL751; Oilmin: Youles, I P; Duncan, N; SADME:open:file, #RE2=(Env 4042); 25 pages; maps, #DATE=1982 1982 #BR=1250; Non-metalliferous mins; Mineral exploration; Diamond exploration; Heavy mineral sampling; Geochemical exploration; Stream sediment sampling; Gold exploration; Multielement analysis; Mineralogy; Assay value; Niobium; Cobalt; Chromium; Nickel; Geochemical anomaly; Sampling; Metalliferous minerals; Heavy mineral analysis; Mount robinson; #250=SG5315 #250N=OODNADATTA; #100=6042; #100=6142; #CNO=1009259 DOCTYPE: SADME rep #DOE=16:03:88 Geochemical exploration for gold, Peake and Denison Ranges. Martins, J J; SADME: Unpublished: Report, #RE1=(RB 80/070); 2 fiche. 15 pages, 2 plans; 1 appx, 1 fig, references, #DATE=1980 September Reconnaissance stream sediment sampling of the creeks on the western side of the Peake and Denison Ranges aimed to locate old reported alluvial gold occurrences and to test the creeks for significant distribution of gold eroding out of Jurassic the sandstones (Algebuckina Sandstone?). anomalous base metal or gold values were detected. #BR=1345; #BR=1190; Gold exploration; Multielement analysis; Jurassic; #BASIN=(Eromanga Basin); Au; Pb; Cu; Zn; As; Mo; Co; Mn; Ni; Ba;

SADME:open:file, #RE2=(Env 4041); 63 pages; maps, #DATE=1982

mineral

Heavy

LO Peake Creek; Neales River; MA

#250=SG5315 #250N=OODNADATTA; #100=604211; #250=SH5303 #250N=WARRINA; #100=60411; AD

#DOCKET=263/77

AU

80

SÜ

LO

MA

TI

TN

CO

AU

SO

SU

LO

MA

TI AU

SO

AB

SU

AS

1982

Diamond

Youles, I P; Duncan, N:

#BR=1250; Non-metalliferous

exploration;

Env 3084 P 1000

Gold

No

Stream

mins; Mineral exploration;

sampling;

1.4.1

	#CNO=1009259 DOCTYPE: SADME rep #DOE=31:12:83
M T	Geochemical exploration for gold peake and denison Ranges.
TI AU	Martins, J J;
	SADME:Unpublished:Report, #RE1=(RB 80/070); 5 pages; maps,
SO	#DATE=1980
SU	#BR=1190; Geochemistry; Mineral exploration; Gold; Jurassic;
	Multielement analysis; Stream sediment sampling;
	#BASIN=(Great Artesian Basin);
ST	Algebuckina Sandstone;
LO	Peake and denison range; Peake creek; Neales river;
MA	#250=SG5315 #250N=OODNADATTA; #250=SH5303 #250N=WARRINA;
	#100=6042; #100=6041 ;
	#CNO=1014937 DOCTYPE: Company rep
	#DOE=31:12:83
TI	Combined gravity and optical levelling survey nilpinna.
TN	#TN=EL924;
CO	C.r.a. explor;
AU	Solo-geophysics;
SO	SADME:open:file, #RE2=(Env 4562); 69 pages; maps, #DATE=1981
	1981
SU	#BR=1230; Geophysics; Gravity surveys; Gravity data; Coal
	exploration; #BASIN=(Arckaringa Basin);
LO	Nilpinna;
MA	#250=SH5303 #250N=WARRINA; #100=5940; #100=5941;
	#CNO=1015174 DOCTYPE: Company rep
	#DOE=31:12:83
TI	El 750, hanns hill, sa. progress reports from 19-1-81 to
	6-12 - 82.(139 p.data, 4 maps).
TN	#TN=EL750;
co	Oilmin;
AU	Youles, I P; Duncan, N;
so	SADME:open:file, #RE2=(Env 4041); 63 pages; maps, #DATE=1982
	1982
SU	#BR=1250; Non-metalliferous mins; Mineral exploration;
50	Diamond exploration; Heavy mineral sampling; Gold
	exploration; Metalliferous minerals; Mineralogy; Stream
	sediment sampling; Geochemical exploration;
	Heavy mineral analysis; Assay value; Multielement analysis;
	Niobium; Cobalt; Chromium; Sampling; Nickel; Geochemical
	anomaly; Photointerpretation;
LO	Mount toodla; Hanns hill;
MA	#250=SG5315 #250N=OODNADATTA; #100=6042; #100=6043;
MA	π^{20}
	#CNO=1015175 DOCTYPE: Company rep
	Tender 1010 1010 Desirer company rep

•

÷

,

#DOE=31:12:83 El 751 Mt.Robinson,S.A. progress reports from 19-1-81 to TI

SADME:open:file, #RE2=(Env 4042); 25 pages; maps, #DATE=1982 1982 #BR=1250: Non-metalliferous mins; Mineral exploration; Diamond exploration; Heavy mineral sampling; Geochemical exploration; Stream sediment sampling; Gold exploration; Multielement analysis; Mineralogy; Assay value; Niobium; Cobalt; Chromium; Nickel; Geochemical anomaly; Sampling; Metalliferous minerals; Heavy mineral analysis; Mount robinson: #250=SG5315 #250N=OODNADATTA; #100=6042; #100=6142; #CNO=1009259 DOCTYPE: SADME rep #DOE=16:03:88 Geochemical exploration for gold, Peake and Denison Ranges. Martins, J J; SADME:Unpublished:Report, #RE1=(RB 80/070); 2 fiche, 15 pages, 2 plans; 1 appx, 1 fig, references, #DATE=1980 September Reconnaissance stream sediment sampling of the creeks on the western side of the Peake and Denison Ranges aimed to locate old reported alluvial gold occurrences and to test the creeks for significant distribution of gold eroding out of the Jurassic sandstones (Algebuckina Sandstone?). No anomalous base metal or gold values were detected. #BR=1345; #BR=1190; Gold exploration; Multielement analysis; Jurassic; #BASIN=(Eromanga Basin); Au; Pb; Cu; Zn; As; Mo; Co; Mn; Ni; Ba; Peake Creek; Neales River: #250=SG5315 #250N=OODNADATTA; #100=6042II; #250=SH5303 #250N=WARRINA; #100=60411; #DOCKET=263/77 #CNO=1009259 DOCTYPE: SADME rep #DOE=31:12:83 Geochemical exploration for gold peake and denison Ranges. Martins, J J: SADME: Unpublished: Report, #RE1=(RB 80/070); 5 pages; maps, #DATE=1980 #BR=1190; Geochemistry; Mineral exploration; Gold; Jurassic; Multielement analysis; Stream sediment sampling: #BASIN=(Great Artesian Basin); Algebuckina Sandstone; Peake and denison range; Peake creek; Neales river; #250=SG5315 #250N=00DNADATTA; #250=SH5303 #250N=WARRINA; #100=6042; #100=6041 .

6-12-82(65p.data, 3 maps).

Youles, I P; Duncan, N;

#TN=EL751:

Oilmin:

TN

CO

AU

SO

SU

LO

MA

TI

AU

SO

AB

SU

AS

LO

MA

AD

TI

AU

SO

SU

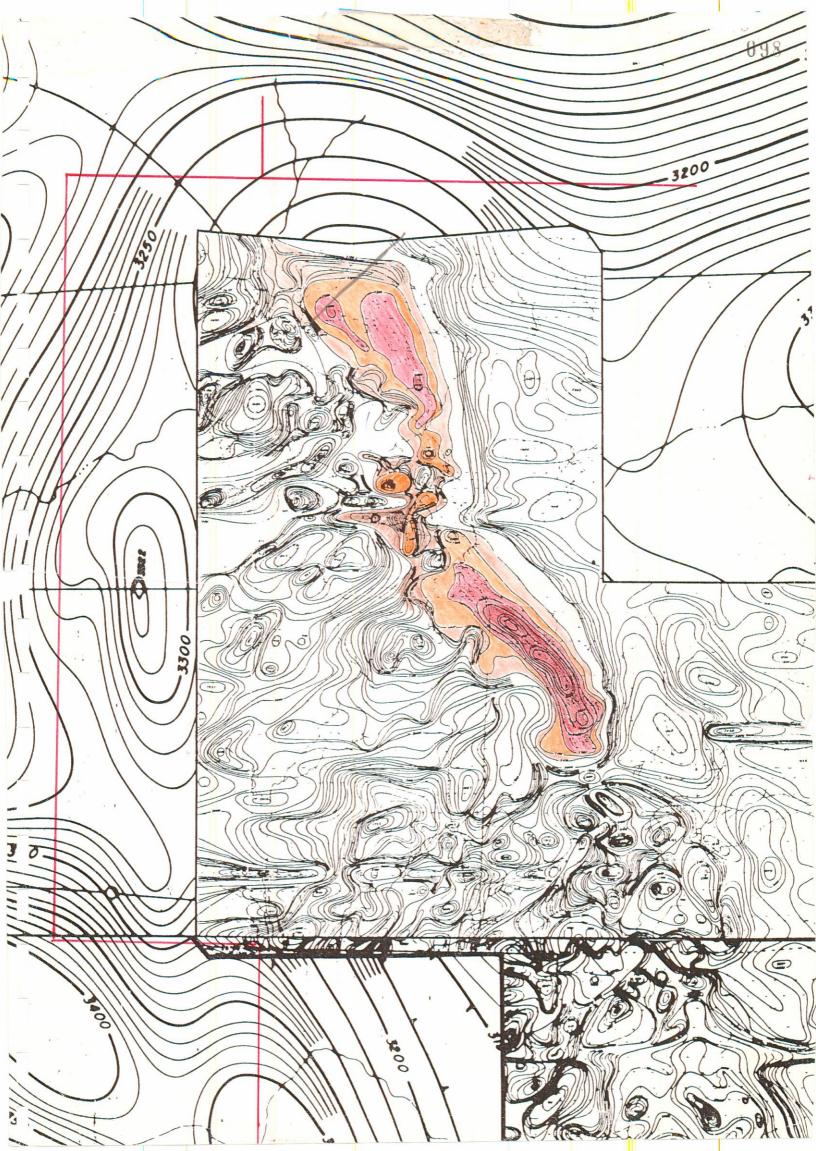
ST

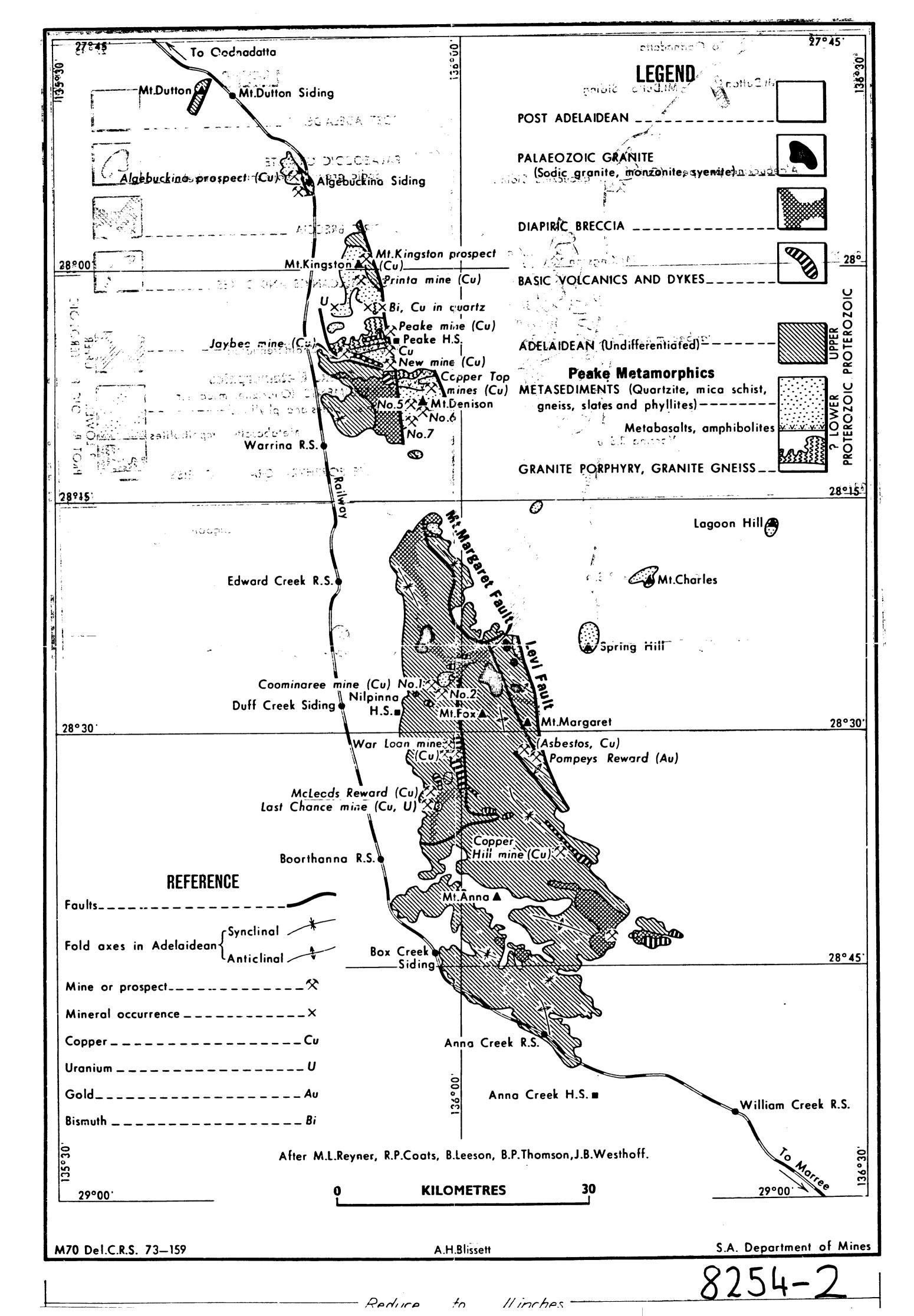
LO MA

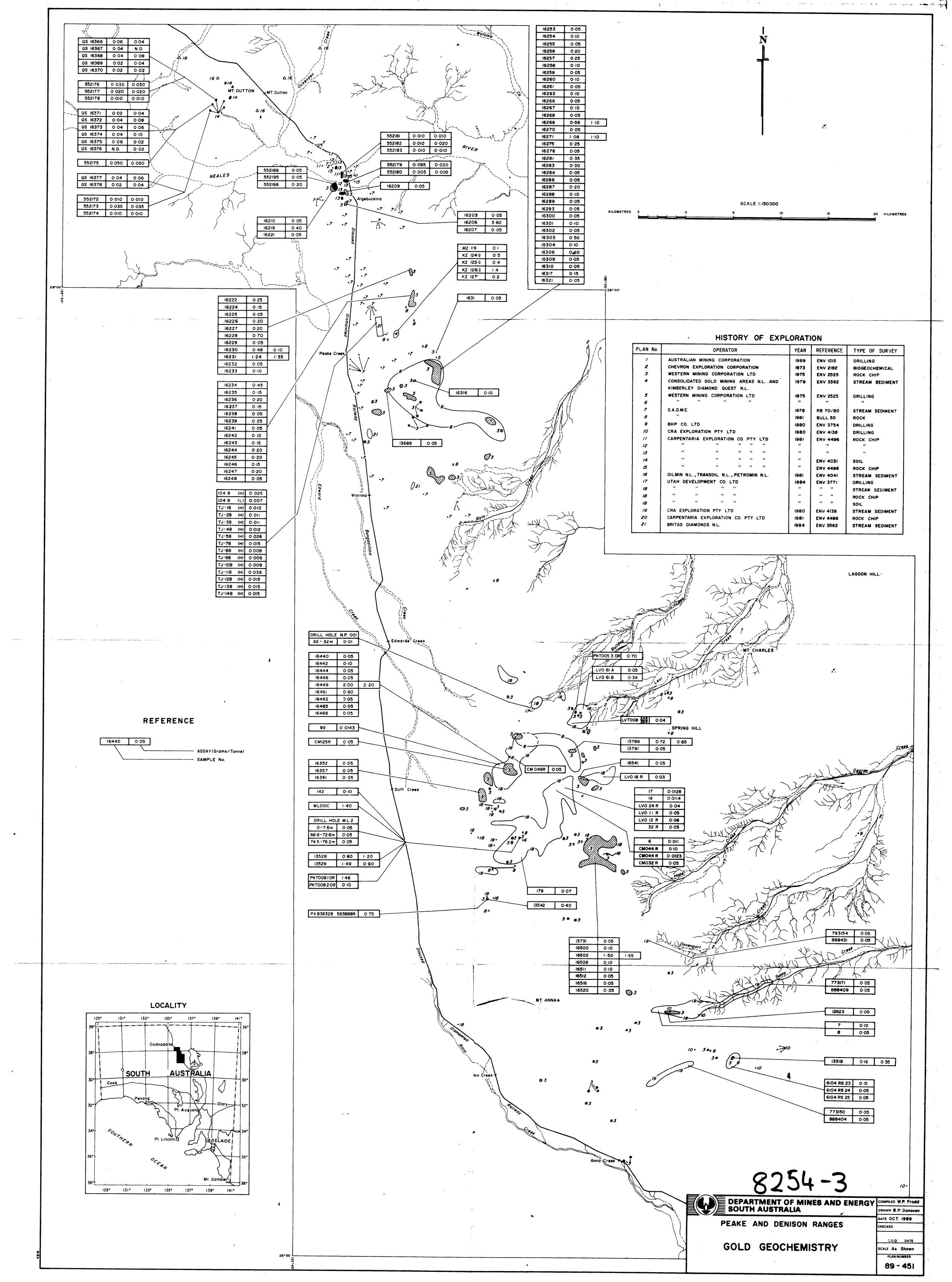
. . .

Env 3084

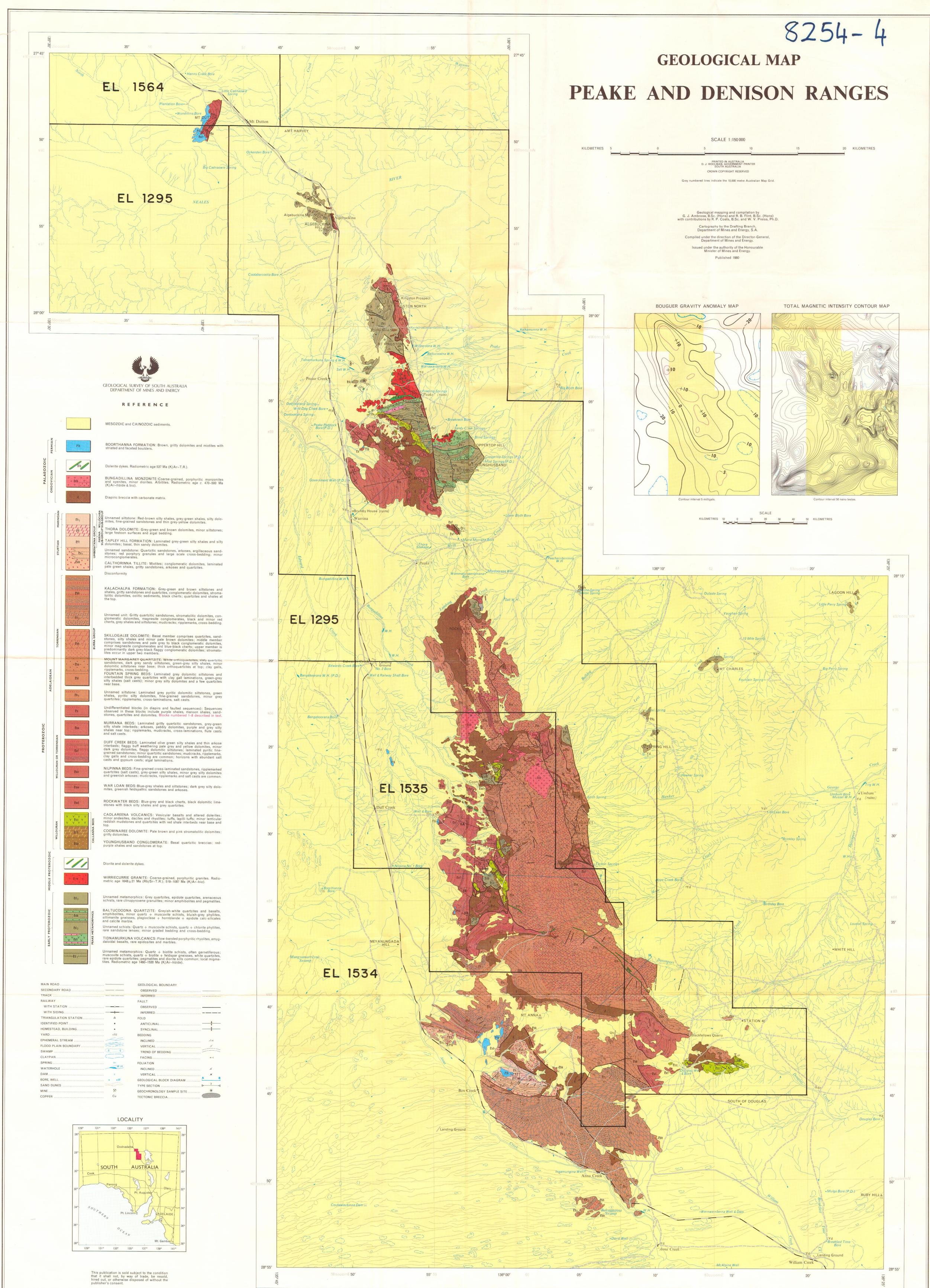
20

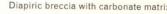

Peake and Denison

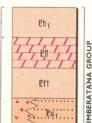

Sample No.Au Assav Top assav = fire assav, lower assav = AAS 13518 0.16/0.35 Jasper rich vein within m.g. basic rock 13523 0.05 Massive haematite lode, trending NS with quartz veining 13528 0.80/1.20 War Loan Mine open cut; ferruginous, siliceous malachite lode up to 2 m wide 13529 1.49/0.9 Ferruginous, siliceous malachite lode 13542 0.40 Malachite rich ore after C.C.? 13687 0.05 Malachite in oxidised ferruginous zones with calcite/siderite patches 13688 0.05 Disseminated malachite in m.g. semi or basic volcanics 13731 0.05 Quartz-calcite vein, transgressive in Duff Creek dolomite 13789 0.72/0.65 Ferruginous quartz vein wiyh fresh pyrite, haematite present, Floater in creek 13791 0.05 Ferruginous guartz vein, floater in creek 16203 0.05 100m east of workings, oxidised quartz vein with malachite 16206 3.60 Quartz with malachite from dump 16207 0.05 Quartz with gossanous material from dump 16209 0.05 Ferruginous breccia with abundant vesicular ironstone 16210 0.05 Disseminated malachite in biotite schist from small pit nr. DH 16219 0.40 Ouartz with malachite from 3 small pits 16221 0.05 Quartz with malachite from small pit 16222 0.25 Quartz-haematite vein 5m along strike from shaft 16224 0.15 **Ouartz** with malachite 16225 0.05 Gossanous material in guartz blow 16226 0.20 Haematitic gossan with malachite 16227 0.20 Haematitic gossan with malachite and chalcopyrite 16228 0.70 Haematitic gossan with malachite 16229 0.05 Quartz with malachite and pyrite 15230 0.48/0.10 Haematitic gossan with malachite from shale 16231 1.24/1.35 Quartz with malachite, calcite and chrysocolla from small pit 16232 0.05 Malachite (stained oxidised dolerite?) from base of cliff 16233 0.10 Malachite (stained oxidised dolerite?) from base of cliff 16234 0.45 Quartz with malachite, tenovite, cuprite and chalcocite from pits at Printa Mine 16235 0.15 Quartz with malachite from dump at shafts 16236 0.20 Quartz with malachite from small pit 16237 0.15 Quartz with malachite from 2 small pits 16238 0.05 Pegmatite with quartz and malachite and chrysocolla from 2 small pits 16239 0.25 Quartz with malachite in pegmatite in small pit 16241 0.05 Quartz with malachite, tenorite and chrvsocolla 16242 0.10 Quartz with malachite from pits 16243 0.15 Quartz with malachite and tenorite from pit 16244 0.20 Pegmatite and malachite from small pit 16245 0.20 Quartz and malachite in pegmatite 16246 0.15 Malachite and haematite in pegmatite 16247 0.20 Quartz with malachite and cuprite 16248 0.05 Haematite quartz veins with malachite and chalcopyrite 16253 0.05 Haematite quartz gossan from deep shaft 16254 0.10 Haematite quartz gossan with malachite and colloform quartz in pit 16255 0.05 Haematite guartz gossan float with malachite 16256 0.25 Haematite quartz gossan float with chrysocolla in pit 16258 0.10 Jasper quartz with chrysocolla from above pit 16259 0.05 Haematite quartz gossan from small pit Haematite quartz gossan with chalcopyrite 16260 0.10 16261 0.05 Haematite quartz gossan with malachite from pit 16263 0.10 Haematite quartz calcite vein with malachite from small pits 16266 0.05 Haematite guartz vein with malachite


U95 7

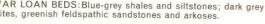
Haematite quartz vein with malachite from shaft 16267 0.10 Haematite quartz with malachite from small pit 16268 0.05 16269 0.56/1.10 Haematite quartz gossan Haematite quartz gossan with malachite from shaft 16270 0.05 16271 1.08/1.10 Haematite guartz vein with malachite from pit Haematite quartz vein with malachite from pit 16275 0.25 Calcite quartz haematite vein with malachite from small quarries 16276 0.05 Quartz with malachite and chalcopyrite from 3 pits 16281 0.35 Quartz veins with malachite and chalcopyrite in shallow shaft 16283 0.30 Quartz haematite vein with malachite from long shallow trench 16284 0.05 Haematite gossan from small pit 16286 0.05 Quartz vein with malachite, pyrite and chalcopyrite. Deep shaft 16287 0.20 Quartz haematite vein with malachite and tenorite 16288 0.10 Quartz slate malachite breccia with veinlets in slate from small pit 16289 0.05 Quartz vein with abundant malachite in slate from pit 16293 0.05 Quartz slate breccia with malachite 16300 0.05 Quartz haematite vein in oxidised slate with minor malachite 16301 0.10 Quartz and malachite in crenulated schists from small cutting 16302 0.05 Quartz with malachite , covellite and chalcopyrite in schists 16303 0.50 Ferruginous quartz with malachite and bright red mineral. deep shaft 16304 0.10 Ferruginous quartz with pyrite, chalcopyrite, covellite, bornite, malachite etc. deep shaft 16306 0.20 Quartz heamatite veins in crenulated schists in small cuttings 16309 0.05 Haematite quartz vein with malachite from small pit 16310 0.05 Quartz vein with chlorite and siderite 16316 0.10 16317 0.15 Jasper guartz vein with malachite Quartz haematite veins in granite gneiss 16319 0.05 Quartz haematite veins in granite gneiss 16321 0.05 Oxidised vesicular ironstone 16352 0.05 16357 0.05 Pyritic black shale breccia Pyritic black shale breccia with quartz veining 16361 0.05 Siderite malachite with minor quartz from small pits 16440 0.05 Malachite siderite with minor quartz from small shaft 16442 0.10 Siliceous (shale?) with abundant malachite 16444 0.05 Siliceous (cherty) dolomite with abundant malachite and ferruginous quartz vein 16446 0.05 Strongly ferruginous quartz vein with abundant malachite 16449 2.0/2.2 Siliceous ironstone with malachite from pits 16461 0.60 Well bedded ferruginous sediments 16462 0.05 Quartz vein with oxidised pyrite structure 16465 0.05 transgressive quartz carbonate vein 0.5 m wide 16466 0.05 Brecciated quartz ironstone vein 16500 0.10 Quartz ironstone vein in spotted shales and dolomites 16502 1.50/1.55 Quartz ironstone with malachite from small pit 16509 0.10 Quartz vesicular ironstone vein uphill from main workings 16511 0.10 Green amphibole rich rock with cube of enclosed pyrite . Host rock ? 16512 0.05 Abundant gossanous haematite float in creek 16516 0.05 Quartz vesicular ironstone vein with pyrite 16520 0.05 Quartz pyrite gossan vein in silicified quartzite 16541 0.05

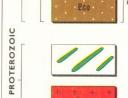

Ŭ97

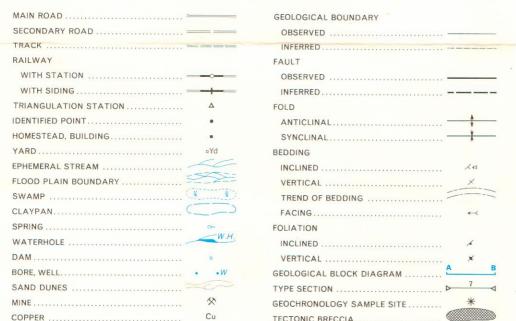




and the second
•••







· · · ·

24 Salisbury Street, Unley SA 5061

31 October, 1990

Ref: 36.4/CGA/SGS

Director-General, Department of Mines & Energy, P.O. Box 151, Eastwood S.A. 5063

Dear Sir,

Re: Peake and Denison Ranges, E.L. 1621 Quarterly Reports for Periods Ending June 12th and September 12th, 1990

Exploration Licence No. 1621, in the Peake and Denison Range area, was granted to Messrs. Allender and Le Brun on December 12th, 1989 for a six month term, and subsequently renewed to December 12th, 1990.

In the first term of the licence, an agreement was reached with Placer Exploration Limited, whereby Placer undertook a regional stream sediment sampling programme, with cyanide leach analysis for gold, within the area of EL 1621 and results of this survey have been presented to the Department. Based on these results, Placer concluded that potential for economic gold mineralisation within the area of outcropping Proterozoic sequences in the licence was low, and the company elected not to proceed with any further assessment.

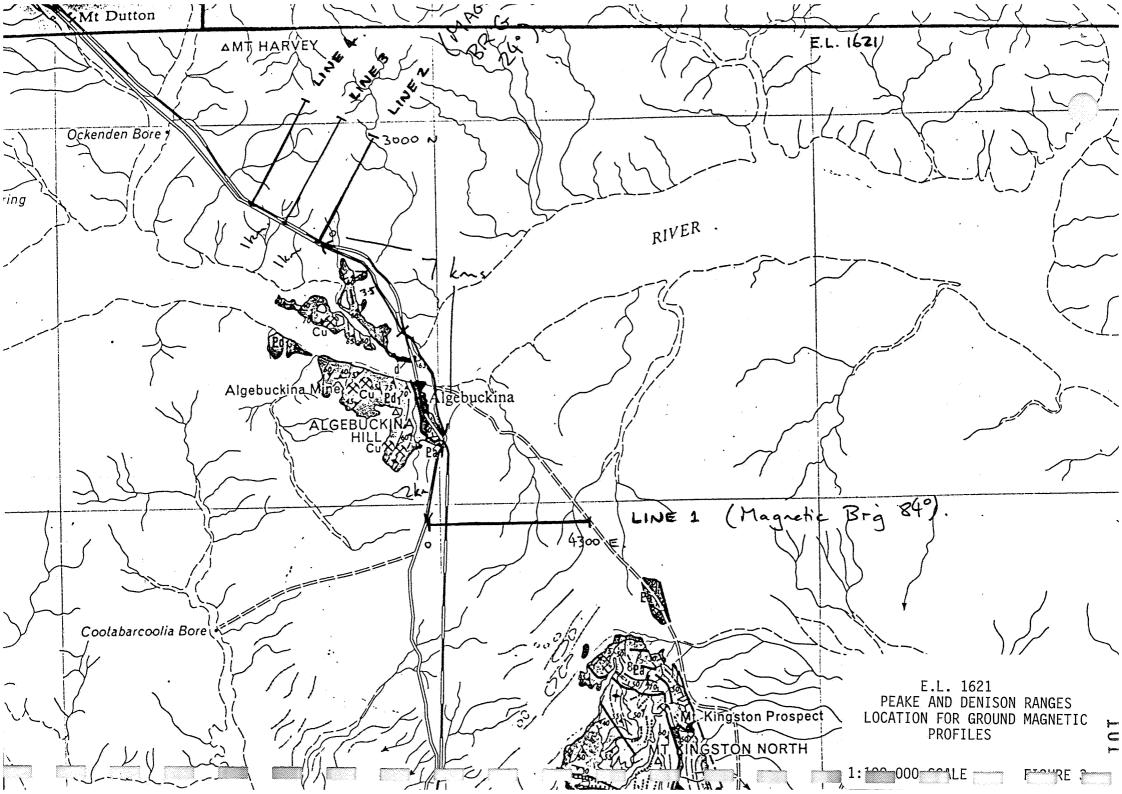
During the present report periods, attention has therefore been directed towards evaluating the possiblity of mineralisation within areas of concealed Proterozoic, relying primarily on existing (open-file) aeromagnetic data.

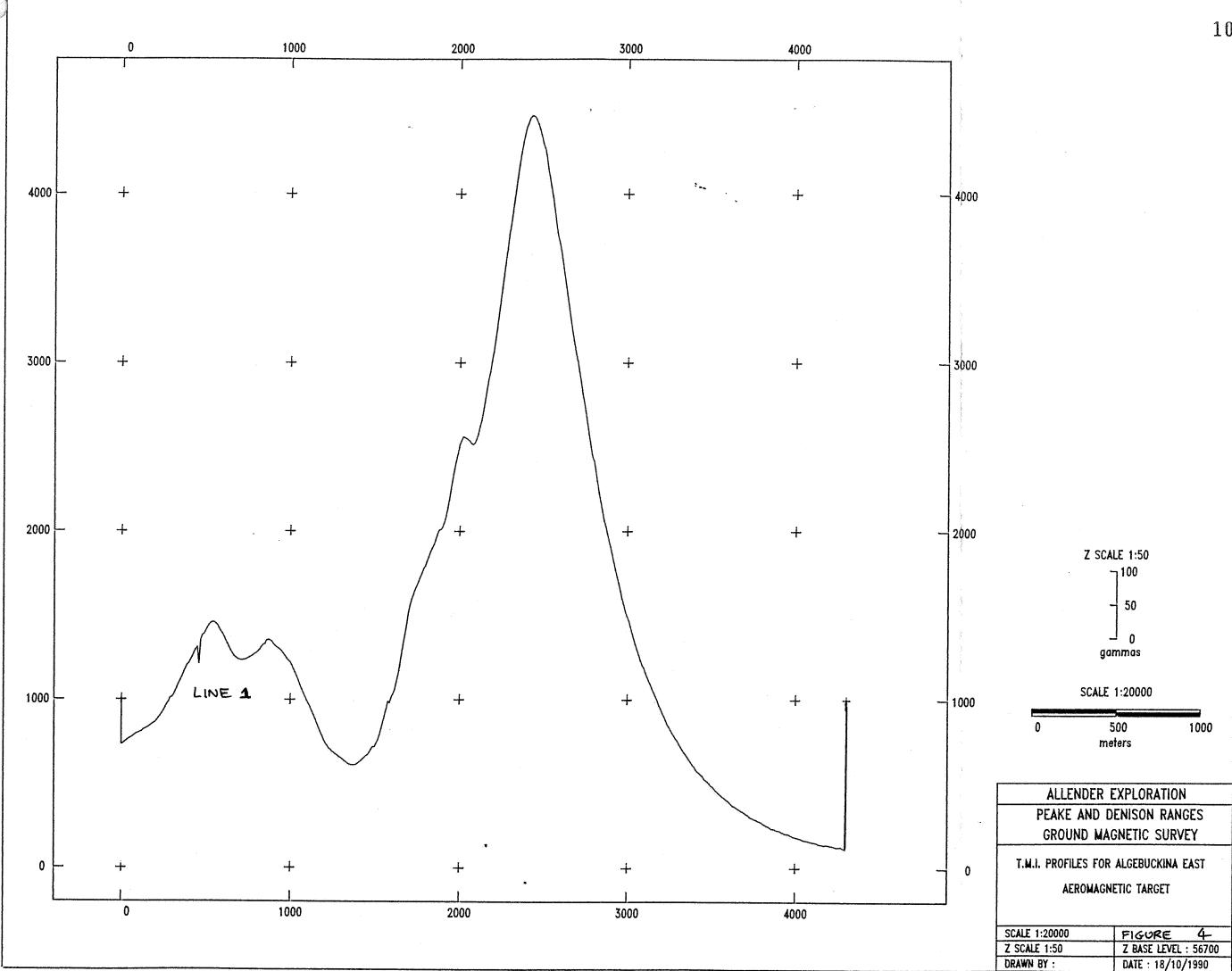
Contour plans of total magnetic intensity for a number of surveys within and surrounding EL 1621 have been photographically compiled to 1:150,000 scale (Figure 1) to overlay the SADME geological publication for the Peake and Denison ranges. These data were qualitatively reviewed by geophysical consultants Chris Anderson and Associates, and their summary interpretation plan is shown in <u>Figure 2</u>.

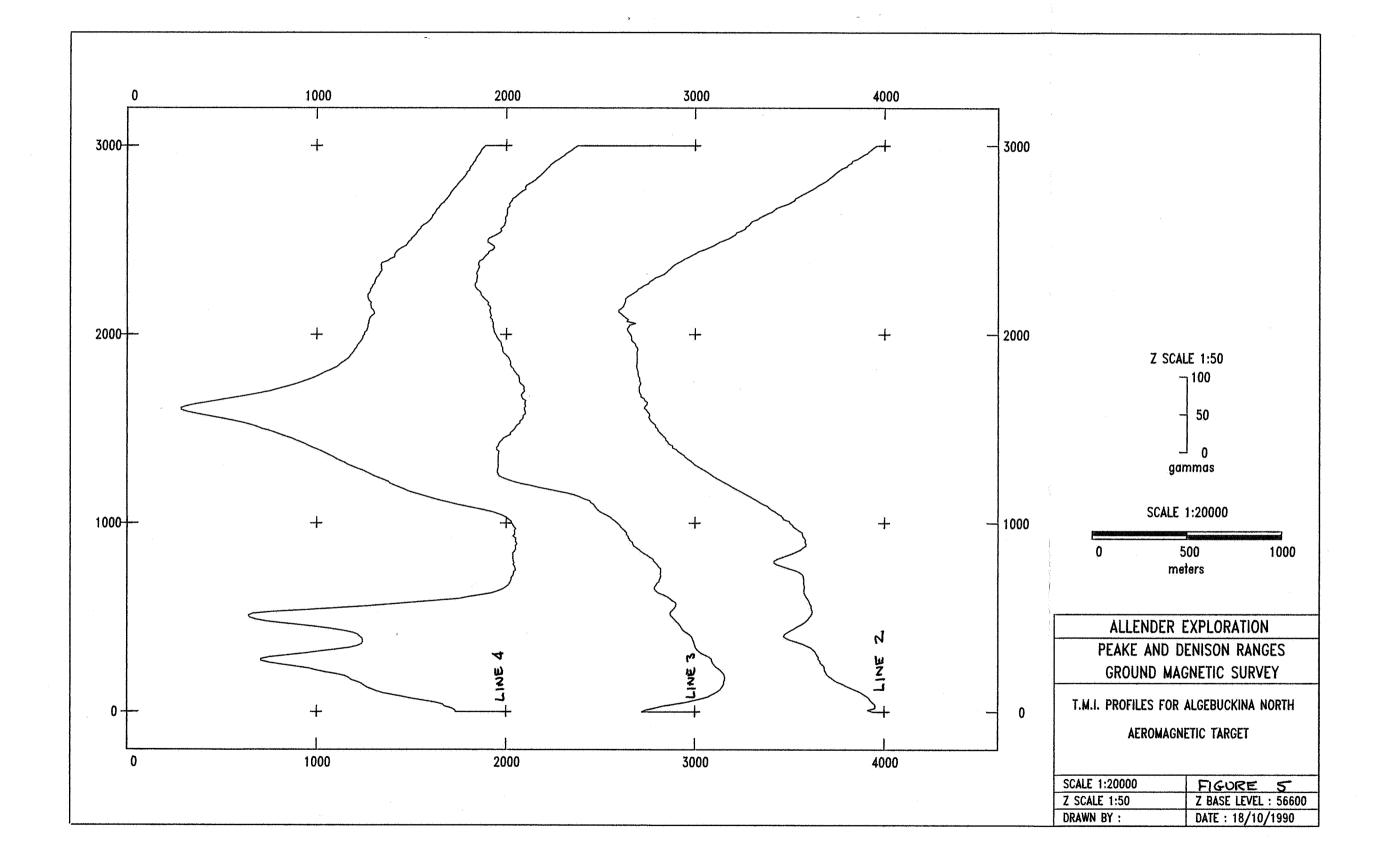
It is apparent from this work that magnetic relief within the area can be attritubed to a relatively small number of source lithologies, with relief over much of the atea of EL 1621 being relatively featureless. This is particularly true for the majority of Adelaidean age meta-sediments. Two possible target areas for mineralisation were however indicated in the magnetic assessment -

- i) Possible Cu mineralisation associated with "bulls-eye" magnetic highs within Adelaidean sediments and/or intrusives, in the area & ast of Warrina railway siding (Figure 2).
- ii) Possible Au/Cu mineralisation associated with linear magnetic highs (ironstones within meta-sediments?) in the Algebuckina area.

Of these two possiblities, the latter target area was considered to be more viable, and reconnaissance ground magnetic traveres were consequently established to check locations and probable depths of cover for these magnetic source positions. Locations for four traverses are shown in Figure 3 - "Line 1" covering the "Algebuckina East" target and Lines 2, 3 and 4 covering the "Algebucking North" target (total 13.3 line kilometres). Total field magnetic intensity readings were recorded along these lines at 10 metre intervals and profiles for each area are included in Figures 4 and 5 respectively.


Expenditure during the report periods totalled \$6,675, as detailed below:


Geophysical data compilation 2 1/2 days at \$350.00 per day	\$	875.00
Interpretation (consultant)	\$1,	,500.00
Drafting and plan printing	\$	650.00
Ground magnetic survey (contractor)	\$3	,300.00
Data processing	\$	350.00


We are currently seeking funds and/or a JV partner to test the delineated magnetic features with shallow RAB drilling.

Yours faithfully,

J. Allender

103

~ ~

PLACER EXPLORATION LIMITED

25 February 1991

J.F. Allender Exploration 21 Salisbury Street UNLEY SA 5061

Dear Jim,

Re: Drilling Algebuckina Magnetic Anomaly Peake and Denison Ranges

The attached data relates to the short bedrock drilling programme completed in the Algebuckina North area during December, 1990.

The results say it all. Better luck next time.

Yours sincerely,

<u>Genesio Circosta</u> Senior Geologist

69 KING WILLIAM STREET KENT TOWN 5067 ADELAIDE TELEPHONE: (08) 363 1414 FACSIMILE: (08) 363 1654 3

1. **INTRODUCTION**

Following the definition of a double-peak anomaly from a ground magnetic survey, described elsewhere, a brief drilling program to determine the source of the anomaly was proposed. The drilling site is located at the southern end of Line 4 of the magnetic survey which is approximately 40km south of Oodnadatta, some 7km north of the Neales River near the disused Oodnadatta to Maree railway (Figure 1).

2. TARGET

The anomaly lies along strike to the north of the mineralised Early Proterozoic Algebuckina Inlier. The magnetics suggest the target may be two parallel iron-rich units or mafic dykes with potential to host gold/copper mineralisation occurring under shallow Mesozoic cover (Figure 2).

3. DRILLING

Thompson Drilling of Adelaide was contracted to carry out a short program of ten vertical RAB holes using a rig with water/mud injection capacity.

Drilling commenced on 12th December, and was completed on 15th December, 1990 for a total of 348m at an average of 35m per hole.

All holes were drilled a few metres into fresh basement and 2m sample intervals collected in a bucket and bagged for geochemical analysis of copper, lead, zinc, manganese, iron, silver and gold by Classic Laboratories of Adelaide.

Lithological logs are attached (Appendix 1).

4. **RESULTS** (FIGURE 3)

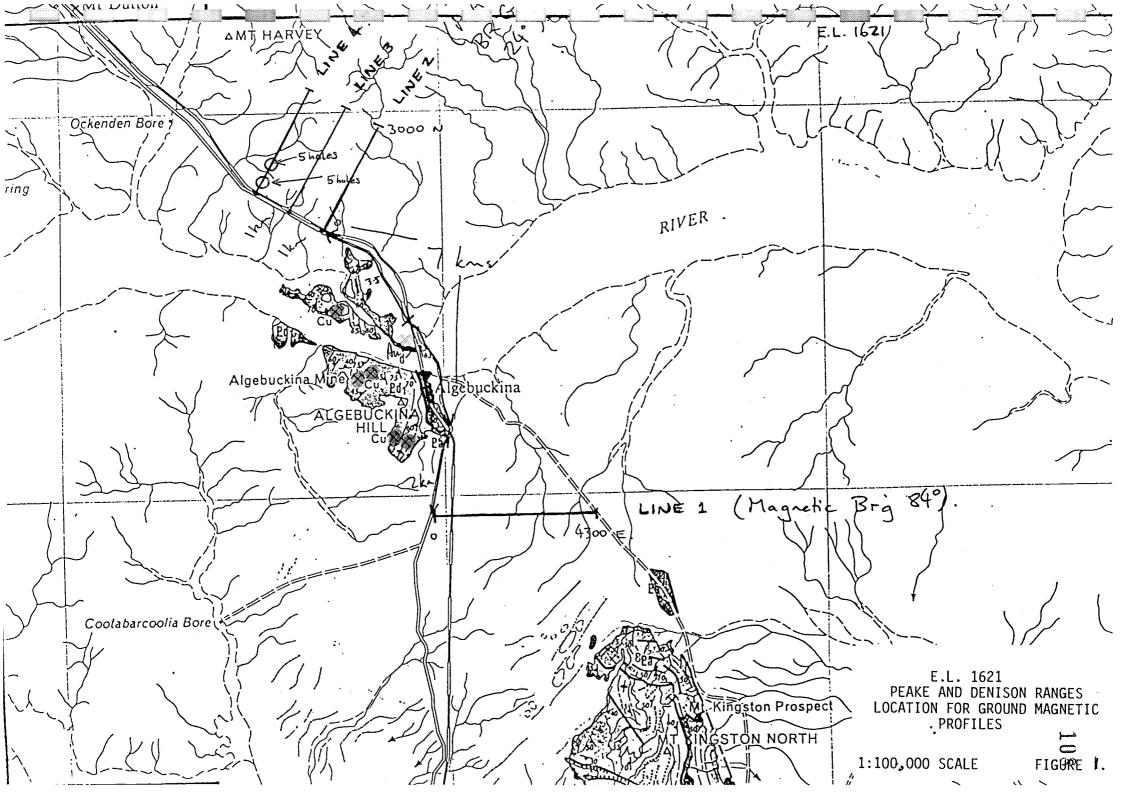
4.1 Stratigraphy

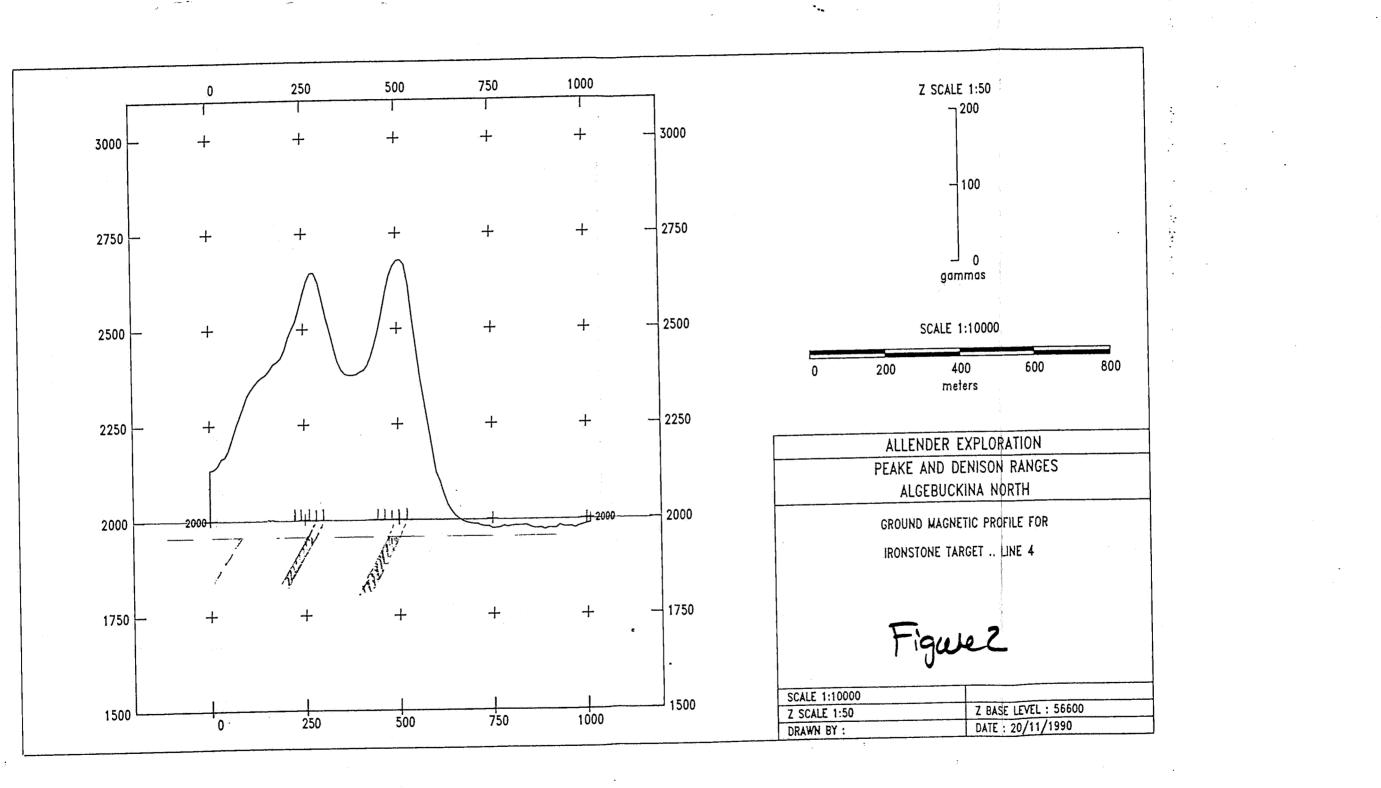
As holes were drilled on 20m centres, the lithologies encountered are repetitive.

The upper stratigraphy comprises essentially a fine grained grey sandstone with clay-rich bands and occasional traces of lignite and opaques with a basal unit of clean sands and medium grained grits. The occurrence of a zone of spheres of aggregated quartz grains and fresh interstitial pyrite about 12-13m below surface is noteworthy. These units are interpreted as belonging to the Cadna-owie Formation.

The basement is a biotite-rich granite or granodiorite with up to 10m of slightly weathered material overlying it. Traces of haematite vughs possibly after magnetite were noted. The granite is correlated with the mid-Proterozoic Wirriecurrie Granite.

4.2 Geochemistry

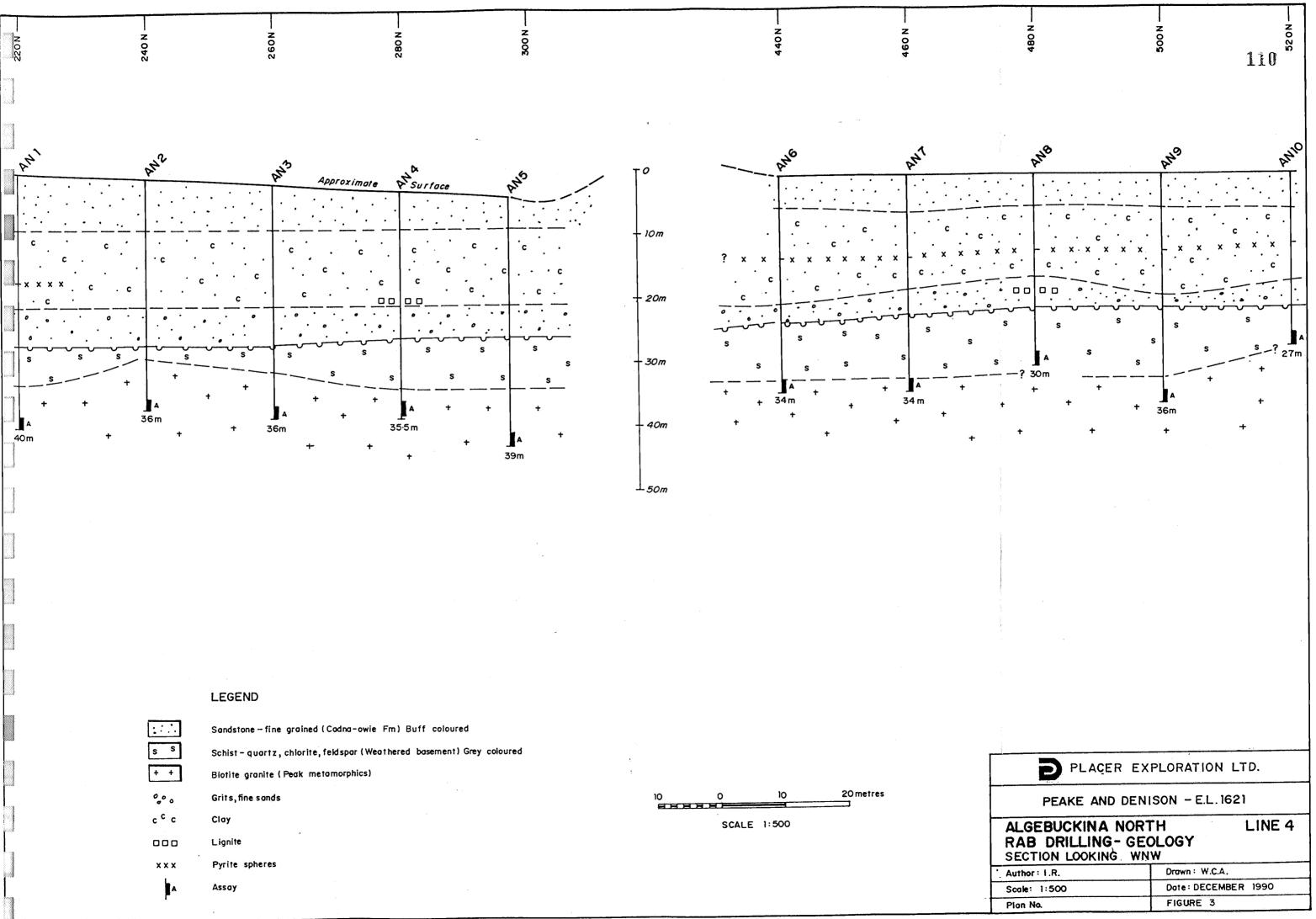

Assays of basement samples showed a lack of anomalism in all elements analysed (Appendix 2). The pyritic spheres were not assayed.


4.3 Water

At approximately 6m, the clay-rich zone was damp and caused drilling problems until water began to flow at 20-22m in the gritty sand unit. The water reached a static level of about 11m R.L. (hole AN1). A sample was collected from AN4 and submitted with a plan to the Hydrological section of the SADME. All holes were back-filled and cemented.

5. <u>CONCLUSIONS</u>

While not intersecting the proposed target lithologies, the presence of possible former magnetite and traces of weak magnetism are concluded to be the source of the subtle ground magnetic expression. The very low geochemical signature of the basement samples negates any potential for mineralisation.



____.

-

109

.

:::.	Sandstone—fine grained (Cadna-owie Fm) Buff coloured				
s s	Schist-quartz, chlorite, feldspar (Weathered basement) Grey coloured	•			
+ +	Biotite granite (Peak metamorphics)	:			
000	Grits, fine sands	10	0	10	20 metres
c ^c c	Clay			1:500	
			OUNCE		
000	Lignite		UUNEL		
000 x x x	Lignite Pyrite spheres				

APPENDIX 1

Drill Logs - AN1 - AN10

HOLE No. ATV 1 ACER EXPLORATION LIMITED - DRILL LOG PAGE / OF / TYPE OF DRILL: # 4 PROJECT: REGIONAL DATE STARTED: COORDINATES: HOLE SIZE: 4±" 112 AREA: PEAKE + DENISON LOCATION: ALGEBUCKINA STARTED: 14/12/90 DRILLER: R. BARNETT ELEVATION: 0 m COMPLETED: 14/12/9.0. DEPTH: 40 M LOGGED BY: I. ROARK Assay Length ASSAYS SAMPLE DESCRIPTION Metres No. 0 - 9buff Sandstone. Faum grain 9-27 101 aques) at 17-18m natural flow at 23 m. ar git grain 27-33 quests feldspan quartz 33-40 QG/ fistite 38-40. 2m muscovito and free gt 29167 E.O.H. CSR/0035

AN 2 HOLE No. ACER EXPLORATION LIMITED - DRILL LOG PAGE / OF PROJECT: REGIONAL TYPE OF DRILL: DATE STARTED: coordinates: AREA: PEAKE Y DENISON 240 N CONTRACTOR: THOMPSON LOCATION: ALGEBUCKINA STARTED: 14 . 12 . 90 DRILLER: R. BARNETT ELEVATION: -1 m COMPLETED: 14/12/90 LOGGED BY: J. ROARK ASSAYS SAMPLE Assay Metres DESCRIPTION No. Length 0-8 arained 8-20 5 First water at 12m Sendaton disty 20-26 26-28 Weathered zone of a free quartz. gtz chloriko 28-36 Fresh 9+2 biste 129168 Im 34-36 9+2 E. O. H. CSR/0035

HOLE NO. AN3 ACER EXPLORATION LIMITED - DRILL LOG PAGE OF PROJECT: REGIONAL TYPE OF DRILL: #4 DATE STARTED: 114 COORDINATES: HOLE SIZE: 45" AREA: PEAKE & DENISON · # 260 N LOCATION: ALGEBUCKINA CONTRACTOR: THOMPSON STARTED: 14/12/90 DRILLER: R. BARNETT. LOGGED BY: I. ROARK ASSAYS SAMPLE Assay DESCRIPTION Metres No. Length grai 0-7 7-19 Sand stone grey - attantzite b 19-25 clay grey mi 25-28 Inteathered zone of + vein quantz + cm Ota/chlorita feldopar. 29-36 Fres 0+2 129169 2m Minon 9+2 34-36m chlorite after 30 m E.O.H. (chloritic)zone 34-35m ble trace magnetite 35-36m Proba CSR/0035

HOLE No. AN 4 ACER EXPLORATION LIMITED - DRILL LOG PAGE OF PHOJECT: REGIONAL TYPE OF DRILL: #4 DATE STARTED: COORDINATES: AREA: PEAKE + DENISON · 280 N LOCATION: ALGEBUCKING CONTRACTOR: THOMPSON DRILLER: R. BARNETT COMPLETED: 15112/90 DEPTH: 35-5m LOGGED BY: I. ROARK SAMPLE Assay No. Length ASSAYS DESCRIPTION Metres Length 0-6 re grained Sendston 6-18 grey) 18-23 a grained d <u>Ugrey</u> layer 20-21 Sandy fito 23-31 = Chlorito plus 30%. spin Dominantly free gt 2 Q+2 /Bistite / Fellipa 31-35 35-35.5 Conteminated sample due to hole come in just below collor 129170 2m 33-35m E,<u>O.H</u> CSR/0035

HOLE No. ANS ACER EXPLORATION LIMITED - DRILL LOG PAGE OF PROJECT: REGIONAL DATE STARTED: TYPE OF DRILL: #4 coordinates: \$ 292 N 116 AREA: PEAKE + DENISON LOCATION: ALGEBUCKINA CONTRACTOR: THOMPSON STARTED: 15/12/90. ELEVATION: -4m DRILLER: R. BARNETT COMPLETED: 15/12/99. DEPTH: 39 m. LOGGED BY: I. ROARK ASSAYS SAMPLE Assay DESCRIPTION Metres No. Length 0-5 Fine grained Sendatore e fine grained y clay content: 6-6.3 m 5-17 grey dirty fine grained 17-22 18-20 m Sandy 3one bistite + chlorite + feldspa -30 research faily soft Some red bistite / con + go faldapa 30-39 1291712m 1.00 37-39 . Soun holo Red wugh inne to 36 m than do EOH CSR/0035

HOLE No. HN 6 ACER EXPLORATION LIMITED - DRILL LOG PAGE OF I TYPE OF DRILL: #4 PROJECT: REGIONAL DATE STARTED: COORDINATES: , HOLE SIZE: 45" 117 AREA: PEAKE + DENISON 6440N LOCATION: ALGEBUCKING. CONTRACTOR: THOMP.J.O.N. STARTED: 14/12/90 DRILLER: R. BARNETT ELEVATION: -1m LOGGED BY: J. ROARK ASSAYS SAMPLE Assay DESCRIPTION Metres No. Length fine gra 0-5 5-11 plus clay Water at 10-11. metro 11-20 13-14 m 14 m 20-23 meare yeld y clea mediupa graines 23-32 We sement with chips QFSMi plus free gtz grains f 45. dulling Rillo Rit at 32m Fresh ment of 32-34 129172 2m Bank - Al QM: 32-34 m EOH CSR/0035

HOLE No. AN7 ACER EXPLORATION LIMITED - DRILL LOG PAGE / OF PROJECT: REGIONAL TYPE OF DRILL: DATE STARTED: COORDINATES: AREA: PETRE + PENISON 118- 460 N LOCATION ALGEBUCKINA CONTRACTOR: THOMPSON ELEVATION: - 1.m DRILLER: R. BARNETT. COMPLETED: 13/12/90 LOGGED BY: T. ROARK ASSAYS SAMPLE Metres Assay DESCRIPTION No. Length 0-6 Sendstone, fine grained to buff 6-13 Sandstone, fine grained + grey 13-18 fain to grey dirty Sand stone 18-22 Sardy grit. Jandy grit & chips basement. 22-75 QMilse 25-32 Das obably 32-34 129173 2m 32-34m nagnet EOH CSR/0035

HOLE No. HN & ACER EXPLORATION LIMITED - DRILL LOG PAGE / OF / PROJECT: REGIONAL TYPE OF DRILL: #4 DATE STARTED: COORDINATES: AREA: PEAKE + DENISON 119LOCATION ALGEBUCKINA - 480 N CONTRACTOR: THOMPSON ELEVATION: -1.m DRILLER: R. PARNETT. COMPLETED: 13/12/90 LOGGED BY: T. ROARK Assay Lengt ASSAYS SAMPLE Metres DESCRIPTION No. 0 - 1dston mia 1-2 2-3 tone Å 3-5 5-6 tone wer San) 6-12 Grey scens 12-16 Ó ith ? lay are 10 An 16-21 00 ne lignite feldspar 21-30 Quo biotite 129174 2m nagneti 28-30 EO.H. CSR/0035

MULE NO. MTV 4 ACER EXPLORATION LIMITED - DRILL LOG PAGE / OF / TYPE OF DRILL: # 4 120 HOLE SIZE: 4 120 PROJECT: REGIONAL DATE STARTED: AREA: PEAKE + DENISON · 500 N LOCATION: ALGEBUCKINA CONTRACTOR: THOMPSON DRILLER: R. BARNETT ELEVATION: ____/ m COMPLETED: 13/12/90 LOGGED BY: I. ROARK DEPTH: 2.7. m ASSAYS SAMPLE Assay Length Metres DESCRIPTION No. 0-5 stone Oridised yellow to Sypsism & quanty rear Dun lac 5-12 ndstone 12-13 First appendance of pyrite podules. quartz-13-19 andstone fere er dirty and Ďa 's physicavit Conre Frey day m hti 19-21 tito textures gneisser pale yellows 19-21 1 grit o hike 0 y clam 21-30 Mix Chlorite and Sta red 3 one. te - feldspar 30-36 129175 2m 10 men gneissia textures. Occasional 34-36 . E.D.H. CSR/0035

PLACER EXPLORATION LIMITED - DRILL LOG HOLE NO. MN IU PAGE OF 1 PROJECT REGIONAL TYPE OF DRILL: #4 COORDINATES: AREA: PEAKE + DENISON. 121 LOCATION: ALGEBUCKINA · 520 N CONTRACTOR: THOMPSON A. STARTED: 13/12/90 ELEVATION: - 1m DRILLER: R. BARNETT COMPLETED: 13/12/90 LOGGED BY: I ROARK Assay Length ASSAYS SAMPLE DESCRIPTION Metres No. fann to 0-55 Osci inol Sun 5.5-11 ? Co 11 - 17+ part oscidis 17-21 ever yellow. 21-27 Qr. Bistle 129176 2m 1B And weigh (? after magnetite 25-27m E.O.H. 100 for roller + kin Contaminat 3. m. . . CSR/0035

APPENDIX 2

Bedrock Geochemistry Classic Laboratories Report OAD4613

23

Mr Genesio Circosta Placer Exploration Limited 69 King William Street KENT TOWN SA 5067

FINAL ANALYSIS REPORT

Your Order No: PEL 2900 Our Job Number : 0AD4613 Samples received : 19-DEC-1990 Results reported : 31-DEC-1990 No. of samples : 10 Report comprises a cover sheet and pages 1 to 2

This report relates specifically to the samples tested in so far as that the samples as supplied are truly representative of the sample source.

<u>Note:</u> If you have any enquiries please contact Miss Anne Reed quoting the above job number.

Approved Signatory:

Lela-~ 26

John Waters Technical Manager - Adelaide

Report	Codes:	Distribution Codes:				
N.A.	- Not Analysed.	CC	-	Carbon Copy		
L.N.R.	- Listed But Not Received.	EM		Electronic Media		
I.S.	- Insufficent Sample.	MM	-	Magnetic Media		

"RELIABLE ANALYSES AT COMPETITIVE COST"

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Job:	0AD4613		
0/N:	PEL	2900	

	. 'a								
	Sample	Cu		Pb	Zn		Fe	-	Mn
							~	? 0	
	129167	3		10	18		(4)	U	260
	129168	7		12	17	!	5.25%		440
	129169	2		10	13	4	4.05%		240
	129170	19		14	13	!	5.65%		360
	129171	7		10	19	4	4.50%		220
	129172	6		6	14		4.35%		370
	129173	13		12	17		4.65%		310
	129174	10		16	16	4	4.00%		260
	129175	9		10	13	:	3.80%		220
	129176	6		8	6	:	1.81%		140
	Units	ppm		ppm	ppm		ppm		ppm
	DL	2		4	2		4		4
	Scheme	AAS1	A	AS1	AAS1		AAS1	A	AS1
Upper	Scheme					A	AS1C		

ANALYTICAL REPORT

ANALYTICAL REPORT

TOUR VELO			0/11.
Au Avg	Au	Au Rp1	Au SS1
<0.01	0.01	·	<0.01
<0.01	<0.01		
<0.01	<0.01		
<0.01	<0.01		
<0.01	<0.01	· 	
<0.01	<0.01	·	
<0.01	<0.01		
<0.01	<0.01		
<0.01	<0.01		
<0.01	<0.01		
ppm	ppm	ppm	ppm
0.01	0.01	0.01	0.01
FA1	FA1	FA1	FA1
	Au Avg <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ppm 0.01	Au Avg Au <0.01	<pre><0.01 0.01 <0.01 <p>ppm ppm ppm 0.01 0.01</p></pre>

This Laboratory is registered by the National Association of Testing Authorities. Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full Job: 0AD4613

O/N: PEL 2900

Page 2 of 2