# Open File Envelope No. 6089

**EL 1274** 

# **DUNN HILL**

# PROGRESS AND SURRENDER REPORTS FOR THE PERIOD 19/2/85 TO 18/5/88

Submitted by

Carpentaria Exploration Co. Pty Ltd 1988

© open file date 16/9/88

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880



# CONTENTS ENVELOPE 6089

TENEMENT: E.L. 1274 - Dunn Hill.

TENEMENT HOLDER: Carpentaria Exploration Company Pty. Ltd.

| REPORT:  | Progress Report E.L. 1274 Period Ending 18th May 1985.      | Pgs. 3-4      |
|----------|-------------------------------------------------------------|---------------|
|          | Progress Report E.L. 1274 Period Ending 18th August 1985.   | Pgs. 5-6      |
|          | Progress Report E.L. 1247 Period Ending 18th November 1985. | Pgs. 7 -8     |
|          | Progress Report E.L. 1274 Period Ending 18th February 1986. | Pgs. 9-9A     |
|          |                                                             |               |
| APPENDIX | 1: Thermoluminescene Studies Of A Uraniferous Tertiary      | Pgs. 10-61    |
|          | Palaeochannel, Eyre Peninsula, S.A.                         |               |
| APPENDIX | 2: Sample Description.                                      | Pgs. 62-123   |
|          |                                                             |               |
| REPORT:  | Progress Report E.L. 1274 Period Ending 19th May 1986.      | Pgs. 124-125  |
|          | Progress Report E.L. 1274 Period Ending 18th August 1986.   | Pgs. 126-127  |
|          | Progress Report E.L. 1274 Period Ending 18th November 1986. | Pgs. 128-129  |
|          |                                                             |               |
| APPENDIX | 1: Drilling Programme Nungikompita.                         | Pgs. 130-137  |
| APPENDIX | 2: C.E.C. Logs.                                             | Pgs. 138-143  |
| APPENDIX | 3: Results.                                                 | Pgs. 144-147  |
| •        |                                                             |               |
| REPORT:  | Progress Report E.L. 1274 Period Ending 18th February 1987. | Pgs. 148-149  |
|          |                                                             |               |
| APPENDIX | : Results.                                                  | Pgs. 150-153  |
|          |                                                             |               |
| REPORT:  | Progress Report E.L. 1274 Period Ending 18th May 1987.      | Pgs. 154-154A |
|          | Quarterly Report E.L. 1274 Period Ending 18th August 1987.  | Pgs. 155-156  |
|          | Progress Report E.L. 1274 Period Ending 18th November 1987. | Pgs. 157-158  |
|          | Progress Report E.L. 1274 Period Ending 18th February 1988. | Pgs. 159-160  |
|          | Progress Report E.L. 1274 Period Ending 18th May 1988.      | Pgs. 161-162  |
|          |                                                             |               |

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED MAY 18, 1985

# 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna.

# EXPLORATION

No field work has been carried out during this quarter. N. Burn, an honours student at Adelaide University, visited our store at Streaky Bay to collect samples of drill cuttings from the Narlaby Palaeochannel. He will use these samples to carry out a study of the thermoluminescence of quartz of pre-Tertiary basement rocks. Samples of quartz from near uranium mineralization in the Tertiary sediments will also be checked. Results of this work may assist in determining prospective areas for 'sandstone' uranium mineralization.

# EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

RECEIVED
17 JUN 1965
18 SECRETARY
6089

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED MAY 18, 1985

|                                   | \$  | \$     |
|-----------------------------------|-----|--------|
| Equipment Charges                 | 365 |        |
| Field Base Operations             | 163 |        |
| Outside Services                  | 184 |        |
| Operating Labour                  | 328 |        |
|                                   |     |        |
| TOTAL - THIS PERIOD               |     | \$1040 |
| Previously Reported               |     | -      |
|                                   |     | ·      |
| Total Project Expenditure to Date |     | \$1040 |

A.E. Covacich Administration Superintendent

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED AUGUST 18, 1985

# 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

# 2. EXPLORATION

Mr. N. Burn of Adelaide University has examined most of the samples which he collected from the drill cuttings from the Narlaby Palaeochannel for radiation damage by the thermoluminescence technique. He is still interpreting these data and will present his conclusions in due course.

#### 3. EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED AUGUST 18, 1985

|                                                                | \$<br>\$ |
|----------------------------------------------------------------|----------|
| TOTAL - THIS PERIOD                                            | NIL      |
| Previously Reported - Current Term  Quarter ended May 18, 1985 | 1040     |
|                                                                |          |
| Total Project Expenditure to Date                              | \$1040   |

A.E. Covacich Administration Superintendent

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED NOVEMBER 18, 1985

# 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

# 2. EXPLORATION

Mr. N. Burns of Adelaide University is still working on samples from the Narlaby Palaeochannel which he is studying by thermoluminescence techniques for radiation damage. A summary of his work will be submitted when he has finished this project.

# EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED NOVEMBER 12, 1985

|                                                             | \$        | \$     |
|-------------------------------------------------------------|-----------|--------|
| Field Base Operations                                       | 28        | 28     |
| TOTAL - THIS PERIOD                                         |           | \$ 28  |
| Previously Reported - Current Term                          |           |        |
| Quarter ended May 18, 1985<br>Quarter ended August 18, 1985 | 1040<br>- | \$1040 |
|                                                             |           |        |
| Total Project Expenditure to Date                           |           | \$1068 |

A.E. Covacich Administration Superintendent

#### EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED FEBRUARY 18, 1986

# 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

# 2. EXPLORATION

A report on thermoluminescence studies on samples from the Narlaby Palaeochannel is presented in Appendix 1. This work was carried out by Mr. N. Burn as part of an Honours degree at the University of Adelaide.

A total of 25 samples from carbonaceous sands and clays near "redox fronts" at the Yarranna I and Yarranna IV prospect was analysed at AMDEL for the following suite of elements: Au, Pt, Pd, Ag, As, Bi, Cd, Ce, Co, Cu, Fe, La, Mo, Nb, Ni, Pb, S, Se, Sb, Sn, Sr, Ta, Te, Th, Ti, U, V, W, Y, Zn and Zr. All results were low and uninteresting. Results are presented in Appendix 2.

# EXPENDITURE

A Statement of Expenditure is attached.

RECEIVED
17 MAR 1986
17 MAR 1986
DEPT. OF MINES
SEGURITY
SEGURITY
60 Y9
COTTLATION

for P.J. Binks



# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED FEBRUARY 18, 1986

|                                    | \$          | \$     |
|------------------------------------|-------------|--------|
| Field Base Operations              | 668         |        |
| Freight                            | 70          |        |
| Travelling Expenses                | 305         | \$1043 |
|                                    |             |        |
| TOTAL - THIS PERIOD                |             | \$1043 |
| Previously Reported - Current Term |             |        |
| Quarter ended May 18, 1985         | 1040        |        |
| Quarter ended August 18, 1985      | -           |        |
| Quarter ended November 18, 1985    | 28          | \$1068 |
|                                    | <del></del> |        |
| Total Project Expenditure to Date  |             | \$2111 |

A.E. Covacich Administration Superintendent

E,

# APPENDIX 1

# THERMOLUMINESCENCE STUDIES OF A URANIFEROUS TERTIARY PALAEOCHANNEL, EYRE PENINSULA, SOUTH AUSTRALIA.

by

Nicholas R. Burn, B.Sc.

Submitted as partial fulfilment of the Honours Degree of Bachelor of Science in Geology,

Department of Geology and Geophysics

at the University of Adelaide,

November, 1985.

National Grid Reference

SH 53-14 (1:250,000) Childara

SI 53-2 (1:250,000) Streaky

Bay

# TABLE OF CONTENTS

Page No.

| _  |    | . 7 |   | 73     |        |
|----|----|-----|---|--------|--------|
| ч. | ٦. | 1 1 | _ | Pa     | an     |
|    | 1  |     |   | _ I CI | $\sim$ |

Table of Contents

List of Figures

# ABSTRACT

| 1. | INTRODUCTION                                                     | 1   |
|----|------------------------------------------------------------------|-----|
| 2. | GEOLOGY                                                          |     |
|    | 2.1 Location                                                     | 3   |
|    | 2.2 Regional Geology                                             | 3   |
|    | 2.3 Channel Description                                          |     |
|    | 2.3.1 Morphology                                                 | 4   |
|    | 2.3.2 Stratigraphy                                               | . 5 |
|    | 2.4 Mineralization                                               | 5   |
| 3. | PREVIOUS EXPLORATION                                             | 6   |
|    |                                                                  |     |
| 4. | THEORY OF TL APPLIED TO U EXPLORATION                            | 7   |
| 5. | EXPERIMENTAL TL RESULTS                                          |     |
| э. | 5.1 Procedure and Interpretation                                 | 10  |
|    | 5.2 Results for Main Palaeochannel                               | 12  |
|    | 5.2 Results for Hain Falaeochannel 5.2.1 Cross-channel Traverses | 12  |
|    | 5.2.2 Longitudinal Traverse                                      |     |
|    | 5.3 Results for NNE-trending tributary                           | 13  |
|    | 5.3.1 Cross-channel Traverses                                    | 13  |
|    | 5.3.2 Longitudinal Traverse                                      |     |
|    | 5.4 Discussion                                                   | 15  |
|    | 5.4 Discussion                                                   | 13  |
| 6. | BASEMENT STUDY                                                   |     |
|    | 6.1 Introduction                                                 | 17  |
|    | 6.2 Results                                                      | 18  |
|    | 6.3 Microscope Analysis                                          | 19  |
|    | 6.4 Discussion                                                   | 19  |

# TABLE OF CONTENTS (cont.)

|                                  | Page No. |
|----------------------------------|----------|
| 7. GENESIS OF YARRANNA PROSPECTS | 20       |
| 8. CONCLUSIONS                   | 22       |
| ACKNOWLEDGEMENTS                 | 23       |
| ATRI TOGRADIW                    |          |

#### **BIBLIOGRAPHY**

# APPENDICES

- 1. Traverse and Drillhole Locality
- 2. Sample Description
- 3. Sample Preparation and Measurement
- 4. Glow peak intensities and ratios
- 5. Glow peak temperatures
- 6. Microscope Descriptions

# LIST OF FIGURES

| Figure 1;  | Location Map                                   |
|------------|------------------------------------------------|
| Figure 2:  | Stratigraphic column, Narlaby Palaeochannel    |
| Figure 3:  | Variations in quartz TL glow curves with       |
|            | increasing radiation                           |
| Figure 4:  | Intensity ratios vs. actual mineralization     |
| Figure 5:  | Frequency histogram for glow peak temperatures |
| Figure 6:  | Results for Traverse B-B'                      |
|            | a. Intensity and Intensity ratios              |
|            | b. Glow peak temperatures                      |
| Figure 7:  | Results for Traverse C-C'                      |
| ·          | a. Intensity and Intensity ratios              |
|            | b. Glow peak temperatures                      |
| Figure 8:  | Longitudinal Traverse for Main Palaeochannel   |
| Figure 9:  | Results for Traverse E-E'                      |
|            | a. Intensity and Intensity ratios              |
|            | b. Glow peak temperatures                      |
| Figure 10: | Results for Traverse G-G'                      |
|            | a. Intensity and Intensity ratios              |
|            | b. Glow peak temperatures                      |
| Figure 11: | Results for Traverse H-H'                      |
|            | a. Intensity and Intensity ratios              |
|            | b. Glow peak temperatures                      |
| Figure 12: | Longitudinal Traverse for Tributary            |
| Figure 13: | Typical basement glow curves                   |
| Figure 14: | Hiltaba Granite MT intensity vs. HT peak %     |
| Figure 15: | Early Proterozoic LT intensity vs. HT peak %   |
|            |                                                |

Geology of the Narlaby Palaeochannel, Eyre Peninsula, SA (in map pocket)

#### **ABSTRACT**

The uraniferous Narlaby Palaeochannel occurs along the northwestern flank of Eyre Peninsula, southwest of the Gawler Ranges. Uranium mineralization is associated with the extensive "Upper Sand" unit within the Eocene channel fill.

Artificial TL applied to 162 samples revealed all channel sediments have suffered major radiation damage due to at least 10 ppm U. Cross-channel traverses defined zones of maximum radiation damage (ie. protore movement). Longitudinal traverses down-channel toward larger orebodies showed increasing cumulative radiation effects indicative of a accretionary buildup and migration of U.

Underlying paleochannel basement shows two distinct TL glow curves; (1) radiogenic type, and (2) early Proterozoic type.

The Hiltaba Granite is known to be enriched in uranium. Microscope studies and TL results indicate the Eocene channel fill is derived from this U-rich granite, thus receiving high inherent radiation damage as well as the likely uranium source.

A genetic model where mineralization is a result of multistage U enrichment is proposed. Original uranium accumulations have been remobilised by oxidising Pliocene aquifers with precipitation occurring in suitable reducing or less permeable environments ie. along lateral margins. The relative lack of impermeable barriers and large areal extent suggest low grade concentration of uranium solutions.

# 1. INTRODUCTION

Thermoluminescence (TL) is a result of thermal untrapping of electrons captured by defects and recombination of electrons and electron-deficient sites (holes). During recombination of the electron and hole at a luminescent centre the release of stored energy causes luminescence and the emission of a quantum of light.

The study of TL kinetics and solid-state physics has been intensive since the early 1950s, but most recent work is concerned with the application of TL to dating of archaeological artifacts, palaeoclimate determination, dating of igneous and other rocks, stratigraphy and ore exploration.

Recent work by Hochman and Ypma (1984, 1985) has applied TL techniques to Tertiary sandstone-hosted uranium deposits in South Australia, ie. Beverley. TL is based on the principle that charging or filling of available traps is related to ionizing radiation, with increasing TL intensity proportional to increasing radiation dose, and the advantage that changes in the number of available traps reflects the total dose to which quartz has been subjected. ie. a record of past and present cumulative radiation which does not require the actual cause of the TL anomalies to be present. The use of this tool has allowed them to trace the movement of uranium within subsurface palaeochannels and to determine proximity to mineralization even if there is no corresponding geochemical or radiometric anomalies, or a general lack of outcrop. An increase in total radiation effects toward an orebody may be used as evidence for an accretionary mechanism similar to Colorado Plateau roll-front deposits.

The aims of this project are twofold. Firstly, to apply TL techniques to the uraniferous Narlaby Palaeochannel, compare the results to previous work and determine whether accretionary migration is a workable hypothesis. The evaluation of U potential of the Narlaby channels is complicated by disequilibrium conditions due to highly acidic and saline groundwaters which could inhibit

economic mineralization. Giblin (1985) proposes complexing by carbonaceous material and clay adsorption are the dominant mechanisms of uranium retention, notwithstanding groundwater acidity.

The second objective is a study of the granitic palaeochannel basement as being a possible source of uranium solutions and/or U deposits. These results can then be compared to geochemically similar granites within the Gawler Craton, which may be useful in determining potential for further sandstone uranium deposits.

The Narlaby Palaeochannel was discovered during a drilling program conducted by Carpentaria Exploration Company (CEC) in the period 1979-82. This site was selected because of two reasons; (1) the Hiltaba Granite had above average U values, and (2), the presence of Tertiary fluviatile sediments in the Corrobinnie Depression which were considered to have potential to host uranium. The Narlaby Palaeochannel thus exhibited some similarities to the uranium deposits within Tertiary palaeochannels of the Lake Frome Embayment, eg.Beverley (Haynes, 1975), Honeymoon (Brunt, 1978).

# 2. GEOLOGY

# 2.1 Location

The Narlaby Palaeochannel is located on the north-western side of Eyre Peninsula, along the south-west flank of the Gawler Ranges (see Fig. 1). Mineralization is concentrated in the western end of the palaeochannel, within the Yarranna Grid Area. This is an area of 1500 km² situated approximately 90 km north of Streaky Bay.

#### 2.2 Regional Geology

Eyre Peninsula forms the southern edge of the Gawler Block which has undergone Early-Mid Proterozoic orogenic evolution to terminate into a stable crystalline platform. The Gawler Range Volcanics and comagmatic Hiltaba Granite are the final stages of this Mid-Proterozoic tectonic evolution leading to consolidation of the basement. There has been little deformation since the Mid-Proterozoic (1400 Ma) with the only deformational effects being epeirogenic block faulting and jointing. Early Proterozoic sequences are represented by the metasedimentary Hutchinson Group and the igneous Lincoln Complex. Within the crystalline basement Archaen relics (ie.Sleaford Complex) have been located but Rutland et al (1981) has suggested that the majority of Archaen relics have been reworked to form the Lincoln Complex.

Inside the Yarranna Grid Area outcrops are isolated and consist mainly of non-foliated granites thought to be the same age as the Hiltaba Granite. Rare outcrops of foliated gneisses occur to the southwest of the Gawler Ranges (Blisset, 1977) and are designated part of the Lincoln Complex (Binks & Hooper, 1984).

North of the palaeochannel Gawler Range Volcanics (GRV) form a series of hills and escarpments. These acid volcanics consist of calc-alkaline assemblages ranging in composition from rhyolite to dacite with occasional basic lavas. The rocks originally erupted as ignimbrite sheets, lava flows or domes with minor airfall tuffs and volcanic breccias.

Yardea Dacite, the GRV member, outcrops along the eastern end of the palaeochannel, but within Yarranna Grid the Hiltaba Granite has intruded the western edge of the GRV and dominates outcrop lithology (see map in back pocket).

The area south of the Gawler Ranges has a cover of Quaternary and Recent aeolian sands and lacustrine clays. Following mapping by South Australian Geological Survey, Blisset (1977) and Forbes (1982) have interpreted two formations; (1) Bridgewater Fm., consisting of calcreted Quaternary aeolianites, and, (2) Moornaba Sands composed of Recent inland dune fields. Within the incised palaeochannel, infilling Eocene and Pliocene fluviatile sands and clays lie unconformably on the granitic basement.

#### 2.3 Channel Description

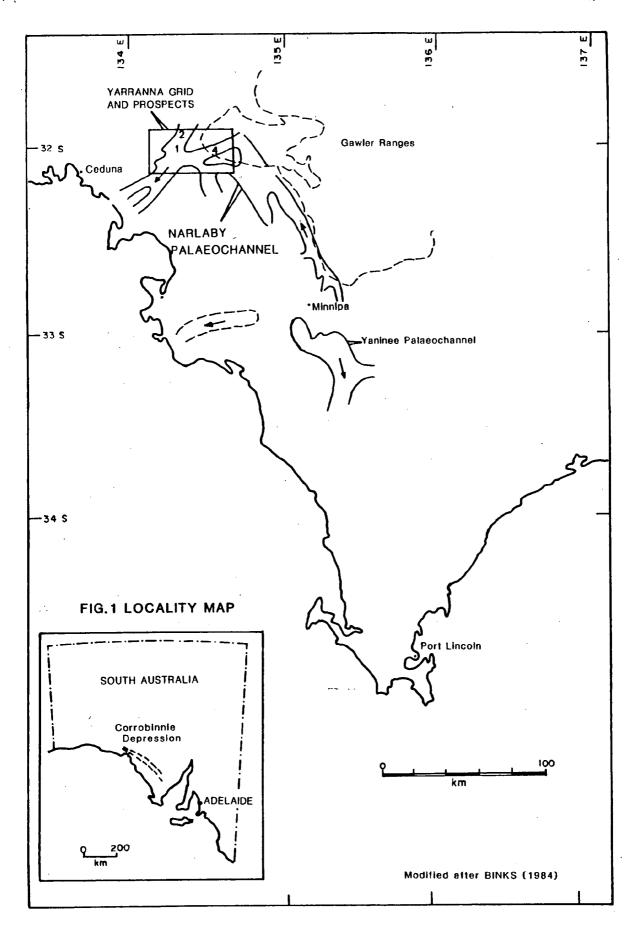
#### 2.3.1 Morphology

Narlaby Palaeochannel is a relatively linear channel of approximately 170 km in length and up to 10 km wide. Headwaters are located east of Minnipa, with channel flow in a northwesterly direction following the Corrobinnie Depression. At the western edge of the GRV there is a sudden change in channel orientation toward the southwest (see Fig.1).

Binks &Hooper (1984) propose this abrupt change in direction is due to a NNE-trending fault related to the western boundary of the GRV. The appearance of a major NNE-trending tributary at this right-angled bend is probably under fault control. Another major tributary joins the palaeochannel north of Poochera. Minor tributaries occur all along the channel and many more possibly undiscovered because of a low drilling density in certain areas. Little is known of the downstream extension in the Smoky Bay region due to sparse drilling.

#### 2.3.2 Stratigraphy

The Narlaby Palaeochannel is infilled by Lower Tertiary fluviatile sediments of varying thickness. Binks & Hooper (1984) have constructed a stratigraphic framework based on down-hole logging and petrological analysis of cuttings (see Fig.2).


At the base of the sequence reduced Eocene channel sands, up to 80 m thick, lie unconformably on a stable crystalline basement. This upward fining sequence consists of coarse to fine-grained uncemented sands with minor interbedded clay bands. Most quartz grains are angular to subrounded with a grey-black colour due to carbonaceous staining. Also included are traces of Fe-oxides, rutile, zircon, tourmaline, staurolite, andalusite, kyanite, sillimanite, pyrite, and carbonaceous material. The "Upper Sand" unit of fine to medium-grained sands is the main host for uranium mineralization. The nature of this unit will change depending on the redox conditions. When in the reduced state it is grey-black in colour with pyrite and carbonaceous material, which contrasts with the clean, pink to brown colour when oxidised.

Overlying these sands is a thin, carbonaceous clay layer which, based on palynological evidence (Binks & Hooper, 1984), defines the top of the Eocene succession. This sequence has been correlated with the Pidinga Fm. of Eucla Basin and the Eyre Fm. of Lake Frome Embayment.

Major Pliocene channels composed of oxidised, yellow to brown sands, silts and clayey silts occur throughout the region. This sequence lies unconformably upon the Eocene succession and in the Yarranna Area has incised into the underlying sands to form Eocene "mesa-like" structures. Interbedded lignitic clays which form thin, extensive horizons have been dated as Early Pliocene (Binks & Hooper, 1984).

#### 2.4 Mineralization

Uranium mineralization forms thin extensive horizons up to  $3~\rm km^2$ , ranging in grade from 0.01 to 0.03% eU,  $0_8$ . No U minerals are present with uranium probably held by ionic bonding. Th, V, Mo and base contents are low.



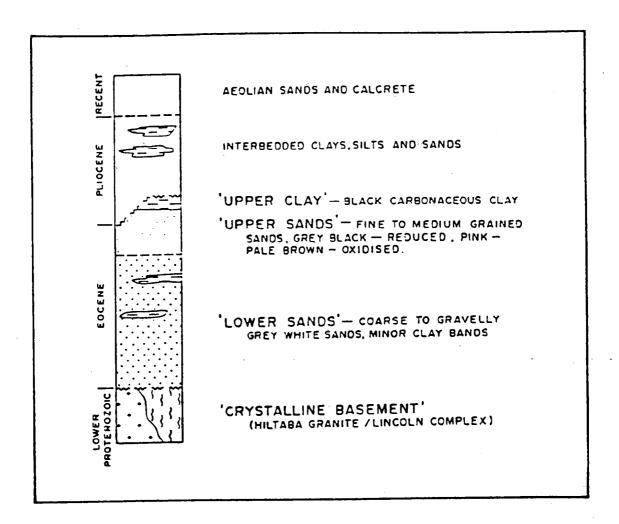



FIG.2 - Simplified stratigraphic column, Narlaby Palaeochannel.

from Binks & Hooper (1984)

# 3. PREVIOUS EXPLORATION

The search for sedimentary uranium deposits in South Australia was initiated in the late 1960's. Exploration was concentrated in the Lake Frome Embayment where Tertiary sandstone U deposits within palaeochannels are related to the U-rich Willyama and Mt. Painter Complexes. Examples include the Yarramba Channel and related Honeymoon deposit (Brunt, 1978), Billeroo and Curnamona Channels (Ellis, 1980) and the Beverley deposit (Haynes, 1976). Since there were no surface expression or radiometric anomalies, reconnaissance was carried out using resistivity and gravity techniques to define basement "lows" or palaeochannels. This was followed by rotary drilling to further delineate channel morphology and to determine stratigraphic relationships. Down-hole gamma logging was then conducted to estimate ore grades, assuming equilibrium.

Exploration work on the Narlaby Palaeochannel was conducted along similar lines. Rotary hole drilling and down-hole radiometric logging was backed by resistivity surveys to determine channel outline and stratigraphy. As with the Lake Frome Embayment, airborne and ground radiometric surveys met with little success. The major problem encountered during drilling was disequilibrium between gamma logs and the amount of U assayed.

Analysis of present-day groundwaters, Dickson et al (1984) and Giblin (1985), has shown high salinities (up to 82500 mg/litre, dissolved solids), high U content (up to 12300 ug/litre), high Ra, low pH and Eh, with high dissolved fluorine values. According to Dickson et al (1983), U and Ra are highly soluble in acidic groundwaters and there is transfer of Ra from U-rich areas of mineralization to U-poor areas, resulting in severe disequilibrium. Dickson et al (1984) have evaluated groundwater samples as an indicator of uranium mineralization. This isotopic technique, involving dissolved uranium and the four naturally occurring radium isotopes 226Ra, 224Ra, 228Ra, and 223Ra, has been applied to the Narlaby Palaeochannel and compared to previous work.

Problems due to lack of reliability of gamma logging were overcome by switching to reverse circulation "air-core" drilling and assaying of the cuttings by XRF methods.

# 4. THEORY OF TL APPLIED TO U EXPLORATION

The theory of TL and it's application to uranium exploration has been described in great detail within many recent papers by Hochman & Ypma (1982; 1984,a,b; 1985) and Ypma & Hochman (1985). In this section TL theory will be discussed briefly.

method uses the dosimetry aspect of natural TL which is the natural radiation resulting from exposure to radioactive minerals in the geological environment. The second method uses permanent radiation effects in the crystal lattice which result in altered electron trap densities. These develop from accumulated radiation over large time periods (10<sup>6</sup>'s yrs) and can be demonstrated by artificial radiation (60Co) doses. Interaction of gamma rays with the crystal lattice causes electron ionization where an electron is excited to the conduction band and leaves a vacancy in the valence band (=hole). These migrate through the lattice until they recombine or are trapped on defects.

When the radiated (natural or artificial) crystal is thermally activated the electron-hole pairs are released over a range of temperatures and may recombine at luminescent centres where the untrapped electron undergoes a series of energy level changes resulting in photo-emission. This is measured by a photo-multiplier and recorded as a glow peak. Since electron-hole pairs are trapped in quartz in different sites with varying activation energies, glow peaks will occur at separate temperatures and thus coalesce to form a glow curve. These peaks can be described in terms of total thermal untrapping kinetics (1st order kinetics) or in terms of partial (50%) retrapping kinetics (2nd order kinetics). Recent work by Levy (1984) has shown; (1) that different retrapping ratios (0-99%) are possible, and (2) that charge transfer to other traps is possible ie. interactive kinetics.

The shape and intensity of a glow curve is dependent on the number and types of traps and their relative charge occupancy, the latter a function of ionizing radiation. Natural TL acts as a dosimeter, recording the occupancy rate of traps from which the

amount of incident radiation can be calculated. Exposure to large doses can result in the formation of new defects, causing permanent changes in trap density and therefore the intensity and shape of a glow curve for a fixed artificial dose. Artificial TL can then be used to estimate the formation of new chargeable defects in the irradiated crystal. As noted in the introduction, artificial TL will reflect changes in trap density and occupancy rate with increased radiation doses, thus forming a record of the total cumulative dose.

Quartz is the most widely used mineral in TL investigations of uranium deposits. The dominant hole traps are silicon sites where Al3+ has substituted for Si4+ while electrons may be trapped on vacant oxygen sites where the  $0^2$ - charge is missing. The effect of increasing radiation dosage on quartz TL glow curves is seen in Fig. 3. In summary; Fig. 3a shows quartz, subjected to minor amounts of radiation, with three major glow peaks. At approximately 5x10 rads sensitization (stage where quartz lattice is affected) begins and LT peak intensity increases due to improved efficiency of the electron-hole trapping mechanism (Fig. 3b). When the number of electron traps equals number of hole traps (optimal ratio) further radiation will cause a drop in TL intensity as seen in Figs. 3c, d. Levy (1983) calculated this ratio at approx. 2x10<sup>8</sup> rads. Exceeding this dose results in decay of the LT and MT peaks while the HT peak continues to increase (see Figs. 3d, e). Annealing by thermal influence (Fig. 3f) may occur after major radiation damage but is geologically rare.

Irradiation effects on glow curves can also be demonstrated by dosimeter minerals such as LiF TLD-100. Fairchild et al (1978) exposed TLD-100 samples to doses ranging from 800 to  $3x10^7$  rads, from which systematic changes in the glow curves were observed. Although TLD-100 is complicated by at least nine glow peaks, an anomalous 190°C peak within the 3.01-eV emission band can be described by 1st order kinetics and used as a model for TL variations.

In the range 800 to  $3x10^5$  rads the peak intensity increases proportional to radiation dose, after which the peak decays until it disappears at  $6.7x10^6$  rads and higher temperature glow peaks dominate. They concluded that total emission increases with increasing radiation up to  $3x10^5$  rads, and gradually decreases for larger exposures.

Experimental study of LiF crystals and their systematic changes in glow peaks can then be extrapolated to quartz glow curves. This is necessary because quartz requires larger radiation doses than other dosimeter minerals, and at the present time, experimental techniques have been unable to measure TL responses for these high doses.

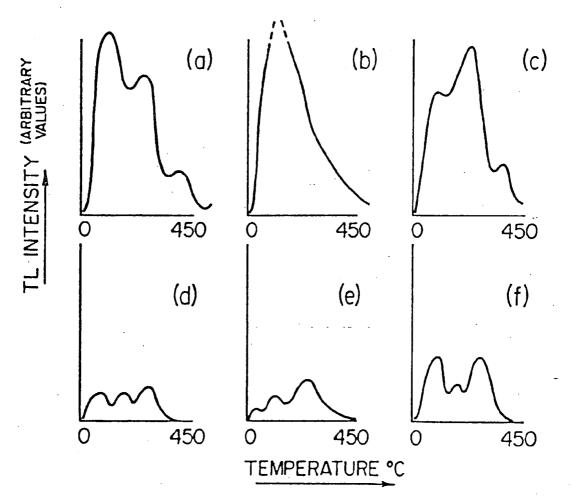



FIG.3

Variation in quartz TL glow curves with increasing radiation.

(from Hochman, 1984)

# 5. RESULTS

#### 5.1 Procedure and Interpretation

Experimental TL methods were applied to quartz grains separated from cuttings obtained at 72 different drillholes. Using gamma and lithological logs, 162 samples were collected from four distinct horizons within the Eocene succession. These are defined as; (a) mineralized horizon, (b) six metres above mineralization, (c) six metres below mineralization, and (d) basal sands. (see Appendices 1&2)

Within Yarranna Grid mineralization is concentrated in two locations; (1) the main palaeochannel (yarranna 4 prospect), and (2) the NNE-trending tributary (see Fig.1). These two channels are treated separately so as not to confuse any radiation trends and possible genetic models. Each channel has been sampled by a number of transverse sections from which areas of maximum radiation damage (interpreted as zones of uranium protore movement) are defined. This is followed by a longitudinal traverse down the channel towards the orebody, through the orebody and past it. Samples chosen for the longitudinal traverses were chosen from areas of uranium movement as deduced in the cross-sections.

All samples measured in the study were characterised by a reduced low temperature (LT) peak, a near optimal middle temperature (MT) peak which may overshadow the LT peak, and a proportionally increased high temperature (HT) peak.

Variations in peak intensites along the transverse sections are shown in Figs. 6a, 7a, 9a, 10a, 11a. Since all samples have suffered major radiation damage, reduced TL intensities show smaller variations in absolute TL values and order of magnitude. This is comparable to Westmoreland (Hochman, 1984) where reduced intensities show only small-scale variation and contrasts with the classical Tertiary deposits (eg.Beverley; Hochman & Ypma, 1985) which show large variations in absolute TL intensity.

Comparison of the three peak intensities across all traverses show relatively uniform traces with LT and HT peaks having similar absolute values while MT peaks show the greatest variation. Overall,

general trends may show a decrease in TL intensities when approaching mineralization (eg. IR1183 in Fig.7a, IR1005 in Fig.10a) but intensities alone are of doubtful use as indicators of proximity to mineralization ie. there is decrease in intensity toward IR966a, but an increase when approaching IR961, both being mineralized holes (see Fig.9a). Also the use of absolute MT intensities correlated to ore grade (ie. inversely proportional) is of no use, eg. in Fig.6a mineralized sample IR1218 has MT peak intensity in range 3900-4000 while non-mineralized sample IR1215 has MT value in range 4100-4200.

To overcome fluctuations caused by local conditions or sample variation effects on absolute TL responses, the use of intensity ratios of glow peaks may be a suitable indicator because fluctuations in intensities alone are cancelled out. HT/MT and HT/LT ratios can be used as a measure of radiation damage and have been tentatively correlated with zones of protore movement. An increase in these ratios implies decrease in LT and MT intensities and increase in HT intensity due to greater radiation damage. The validity of this approach can be demonstrated in Fig. 4 which shows an overall trend toward increasing ratios with increasing ore grade.

An apparent low temperature shift of glow curves when approaching ore bodies was noticed by Hochman as a major feature of the Westmoreland deposit. This apparent LTS of the HT glow peak may in actual fact be a high temperature shift (HTS) of charges from lower temperature traps. Levy (1984) has theorized that leakage of MT traps to higher temperatures with larger radiation doses (ie. interactive kinetics) causes an apparent LTS of the HT peak due to high electron retrapping probabilities. This decrease in HT peak temperature was observed at Westmoreland and used as a reliable indicator of mineralization. Fig.5 gives a frequency histogram showing three major peaks at 140°C, 220°C and 335°C. Development of a minor peak at 320°C was observed although this evidence for LTS of the HT peak is inconclusive because of low sample numbers.

Ypma & Hochman (1985) have suggested the emergence of a extra HT peak (over 400°C) with large radiation doses. Experimental evidence for this peak was hidden by "oven glow" and measuring equipment limits.

# 5.2 Results for Main Palaeochannel

Assessment of cross-channel traverses was based on three methods; (1) absolute peak intensity, (2) HT/MT and HT/LT ratios, and (3) HT peak temperature (°C), all plotted against geographical location. Longitudinal sections were characterised by MT intensity vs. HT peak % (of total glow curve) plots where increasing sensitization is represented by positions from upper left hand corner to the lower right hand corner.

# 5.2.1 Cross-channel Traverses

The main palaeochannel within the Yarranna Grid has been traversed by three sections (Appendix 1). Results and relative trends found within sections B-B' and C-C' are discussed in the following.

a. Traverse B-B' (Fig.6a,b)

This cuts the palaeochannel where a minor tributary joins the SW-trending channel. Variations in absolute TL intensities show two zones of decreased values ie. IR1239-1215 and IR1217-1219. Corresponding with IR1239-40 is a sudden increase in both ratios and decrease in HT peak temperature. This zone of high radiation damage could be explained as actual mineralization at redox interfaces within the tributary (current values are 0.01% eU<sub>3</sub>O<sub>8</sub>). Similarly, a rapid decrease in absolute intensity at IR1217 accompanied by HT peak temp. decrease indicates high cumulated radiation damage (0.01%eU308). Between IR1215 and IR1217 high absolute values and ratios, implying a lesser degree of sensitization, which may be explained by the close proximity of incised Pliocene channels or the anomalous Hiltaba Granite forming a basement 'high' at the tributary-channel junction. These may have inhibited solution/protore movement.

b. Traverse C-C' (Fig. 7a,b)

Section C-C' cuts the Yarranna 4 prospect at the junction of the palaeochannel and a minor tributary. Absolute MT intensities show three zones where sudden decreases can be geographically correlated to actual mineralization

(ie.IR391,1183,1171). Variations in intensity ratios reveal four peaks of high cumulated radiation effects at IR391-1167,IR1183-1169,IR1184 and IR1265. This coincides with sudden decreases in the HT temperature. High ratios and temperatures at IR1167,1169,1184 and 1265 suggest regions of protore movement with lateral migration to IR391,1183 resulting in actual mineralization. These high ratio values can be related to the incised Pliocene channels.

In general, results obtained from HT/MT and HT/LT ratios are more consistent than either absolute intensity or HT peak temperature plots for the reasons discussed previously.

#### 5.2.2 Longitudinal Traverse (Fig. 8)

Following the determination of zones of protore movement, a longitudinal section down channel toward the main orebody will show if there is any increase in cumulated radiation effects due to accretionary migration.

Traverse results show an increase in sensitization effects toward the Yarranna 4 prospect. This is consistent with the hypothesis of an accretionary buildup of uranium solutions and a rapid decrease in cumulated radiation damage past the orebody (ie.IR388,1080). Complications in this trend are due to small bodies of mineralization within the upper reaches of the channel eg.IR1240. These orebodies are probably related to clay adsorption or lateral migration away from zones of protore movement into marginal, less permeable sands.

# 5.3 Results for NNE-trending tributary

A total of four traverses were conducted and results for three sections (E-E',G-G') and H-H' are discussed.

#### 5.3.1 Cross-channel Traverses

a. Traverse E-E' (Fig. 9a, b)

This cuts across the headwaters of the tributary where minor streams form a deep incised channel. Fig. 9a

indicates two zones where absolute intensities decrease (ie.IR973-970 and IR966a-964). Increased absolute values at IR976 and IR961 suggest local fluctuations due to less sensitization within minor tributaries. Intensity ratios forming peaks at IR972 and IR964 support the decreased absolute values. Samples found within these highly damaged zones are characterised by actual mineralization. HT temperature trends reveal sudden drops in temperature (eg. to 315°C at IR967a) along the margin of IR970-973 which could be mineralization caused by lateral migration of oxidising solutions. Therefore, data indicates two zones of protore movemment related to the incised Pliocene channels.

b. Traverse G-G' (Fig. 10a, b)

This traverse cuts across the Yarranna 1 prospect where uranium ore grade is largest. Decreases in absolute peak values at IR1021,633,1005 seem to correspond with actual mineralization while larger MT values at IR655 and IR1001 suggest relatively less sensitized zones. Intensity ratios show two regions of high radiation damage at IR633-1005 and IR1021 related to actual mineralization  $(0.02\%eU_3O_8)$ . HT temperature trends for those two regions are consistent with zones of protore movement. Generally low HT temperatures (T<340°C) imply close proximity to an extensive ore horizon.

c. Traverse H-H' (Fig.11a,b)

This cuts the NNE-trending tributary between Yarranna 1 and 4 prospects. In cross-section, Pliocene channels have incised into the underlying Eocene sequence to form a "mesa" (ie. between IR504-507). Variation in absolute intensities show three major reduced TL zones at IR402a, 403-506 and 404. The increase in both HT/MT and HT/LT ratios in the zone IR505-403, corresponding decrease in HT temperature toward IR506a and actual mineralization at IR403 confirms maximum radiation damage. IR402a shows greatly reduced total TL intensity and resultant high ratios, thus suggesting maximum radiation damage due to past uranium concentration.

Inconsistent data for IR521 may be the result of a differing stage of sensitization found within a minor tributary running parallel to the channel.

# 5.3.2 Longitudinal Traverse (Fig. 12)

Fig. 12 shows a discernable trend toward increasing radiation damage when approaching the orebodies. Complications arise due to the extensive nature of mineralization within the channel, clay adsorption and lateral migration away from oxidised zones, eg. mineralized sample IR967a shows increased sensitization similar to samples in Yarranna 1 prospect. When the traverse has past the oreodies samples show a rapid return to background TL values ie. IR350,351,352.

#### 5.4 Discussion

The application of TL to Tertiary sandstone-hosted uranium deposits was first developed as an exploration tool, but a recent study by Hochman & Ypma(1985) has produced evidence for the accretionary migration of uranium protore. Their work at Beverley has shown a progressive increase in cumulated radiation effects when approaching the orebody. Since total radiation dose is a function of residence time and uranium concentration, the increase in damage is related to an increase in uranium concentration if we assume travel time down the channel is relatively constant. Such an increase in uranium is consistent with the accretionary mechanism of uranium movement proposed for some Western USA deposits.

Data from Beverley recognized three types of TL signals; (1) background TL with very little radiation effects, (2) marginal TL with reduced LT and MT intensity, and (3) ore-type TL with further reduced LT and MT peaks and an increasing HT intensity indicative of uranium mineralization. From this, they proposed a genetic model of accretionary migration by oxygenated groundwater within a semi-confined aquifer of thin sandstone bands, resulting in mineralization at a redox interface ie. clay adsorption.

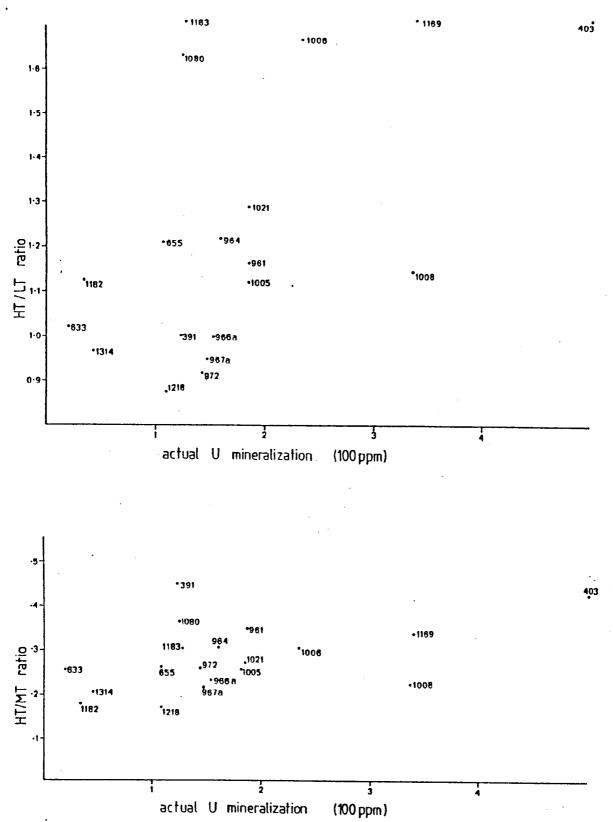
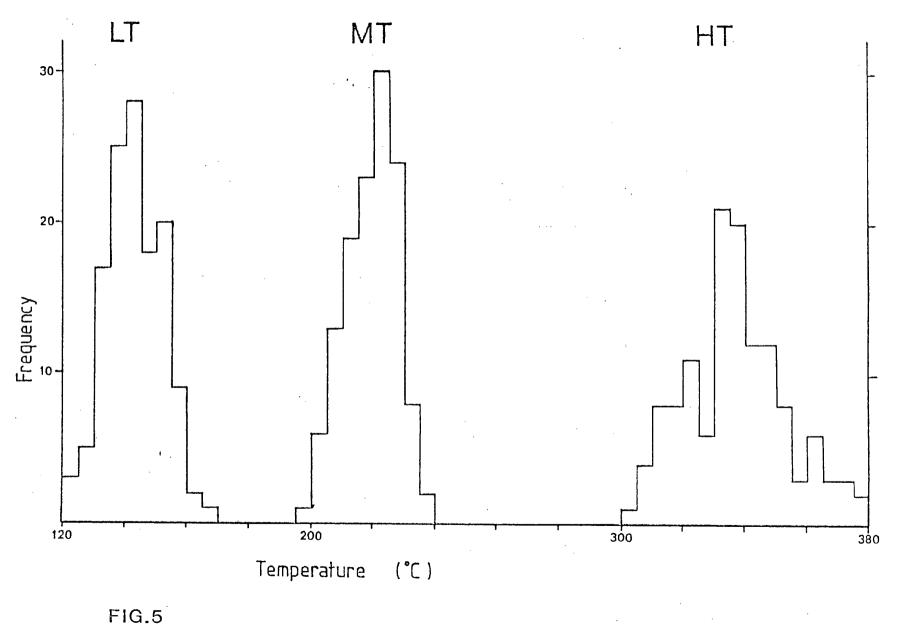
Analysis and comparison of data obtained from the Narlaby Palaeochannel with the Beverley model show several areas where

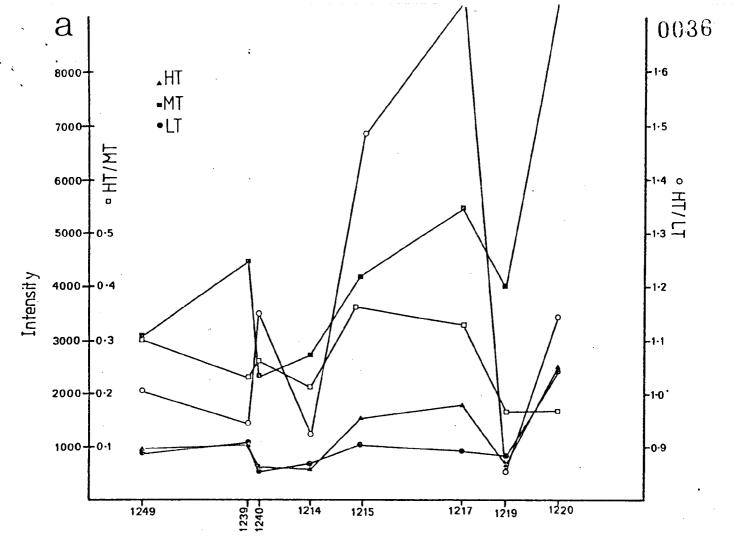
the two differ.

All samples within the Narlaby channels have undergone major radiation damage similar to the marginal TL type of Beverley. Binks & Hooper(1984) have examined these channel sediments and concluded that they are all derived from the Hiltaba Granite (up to 20 ppm U), with little or no input from the Gawler Range Volcanics (GRV). Possible loss of any GRV-derived quartz during sample preparation (Gostin, pers.com.) was checked. TL measurements were taken on the v.fine-grained quartz fraction (-150 +240 #mesh) of random samples located within the upper reaches of the two palaeochannels. Resultant glow curves showed major radiation damage similar to the coarser fraction, with a slightly reduced MT intensity. However, work by Hochman (pers.com.) on the GRV has shown the TL signature for Childara Dacite has a similar glow curve to the Hiltaba Granite, which leads to the possibility of an obscured minor GRV component. Also the location of Childara Dacite outcropping above the NNE-trending tributary headwaters could be used as evidence for a small volume input. This aside, the dominant provenance of channel sediments seems to be the Hiltaba Granite.

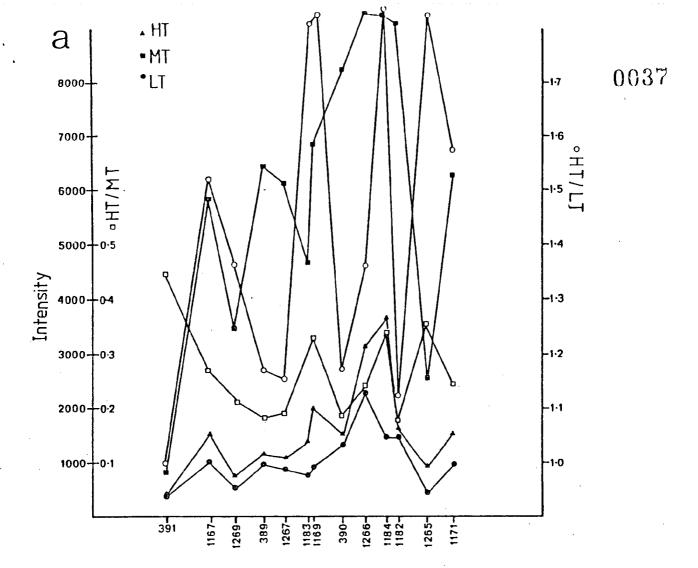
High inherent radiation damage within Hiltaba-derived sands has complicated any sensitization trends and differs from Beverley where the host rock has undergone little or no radiation damage and any increases in sensitization are relatively clear. Another difference between the two deposits is the vertical homogenization within the Narlaby channels. Possible reasons include this high inherent radiation damage which has obscured any vertical trends or the relatively unconfined nature of the separate Pliocene aguifer.

Although application of the Beverley accretion model to the Narlaby Palaeochannel uranium mineralization is complicated by ites extensive, low grade nature and host rock provenance, results for the two longitudinal traverses, especially down the main palaeochannel, show an accretionary buildup of uranium solutions at the larger orebodies.



FIG.4


Intensity ratios vs. actual mineralization



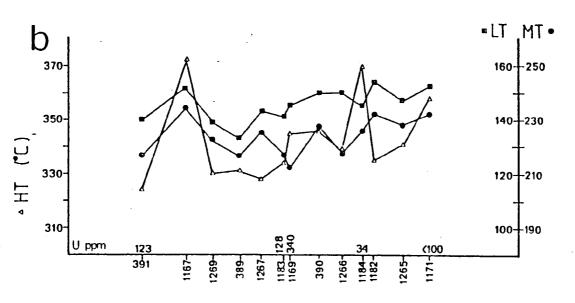
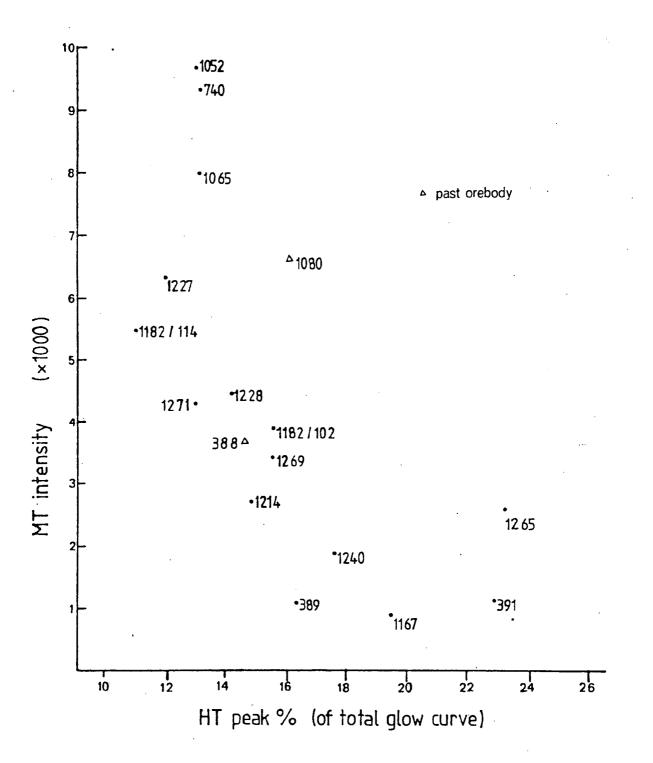
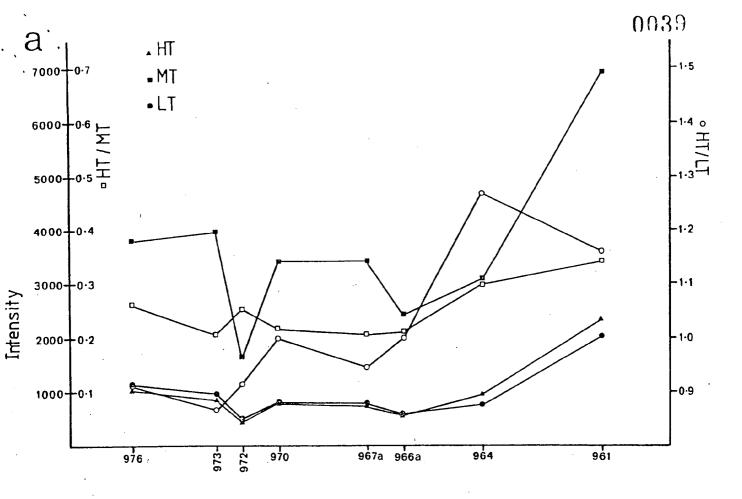
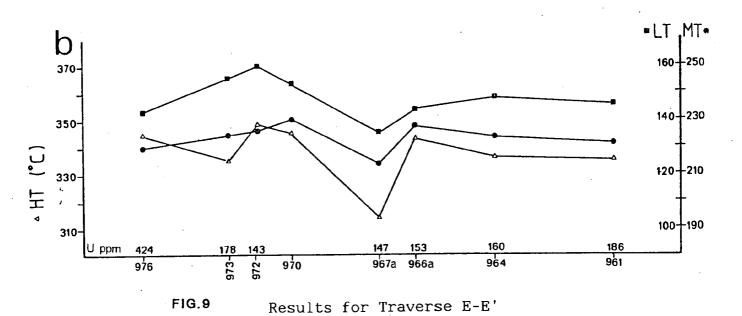

G.5

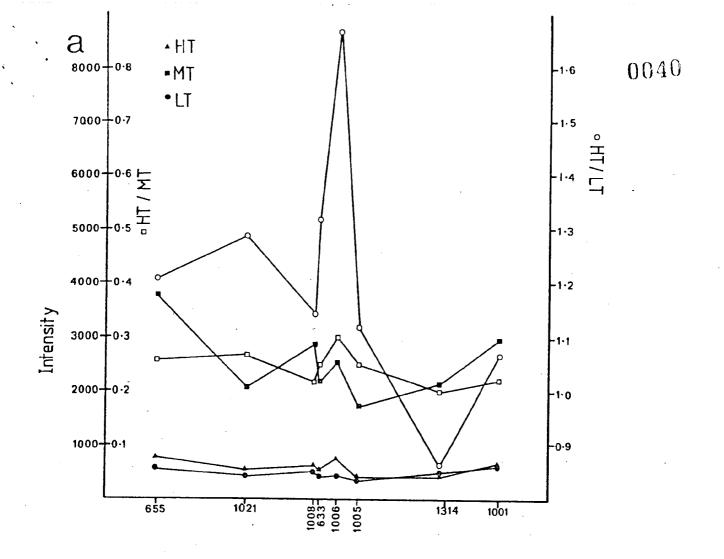
Frequency histogram for Eocene channel sands

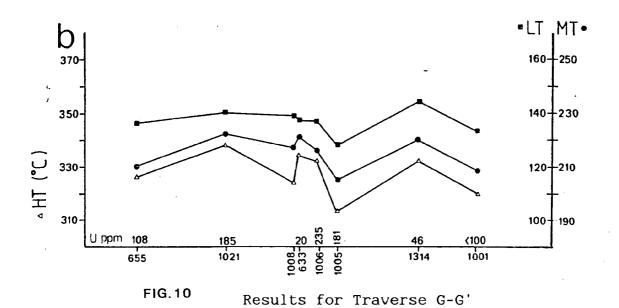


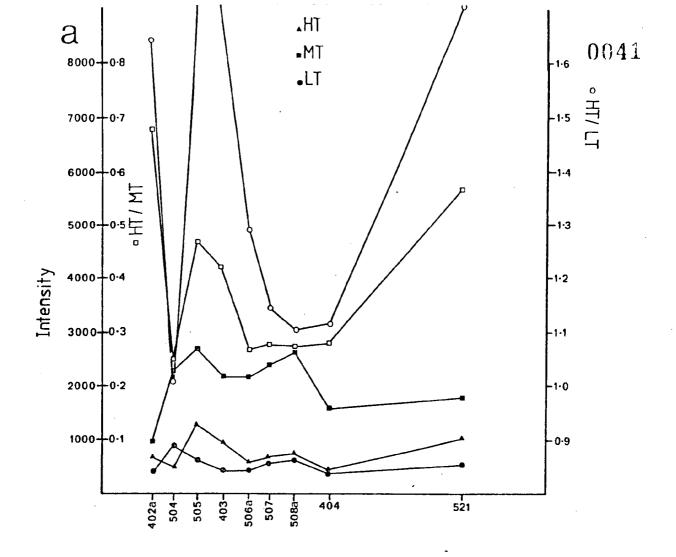






FIG.7 Results for Traverse C-C'


FIG.8 Longitudinal Traverse for Main Palaeochannel













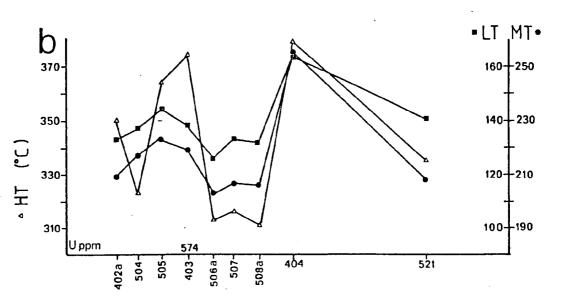
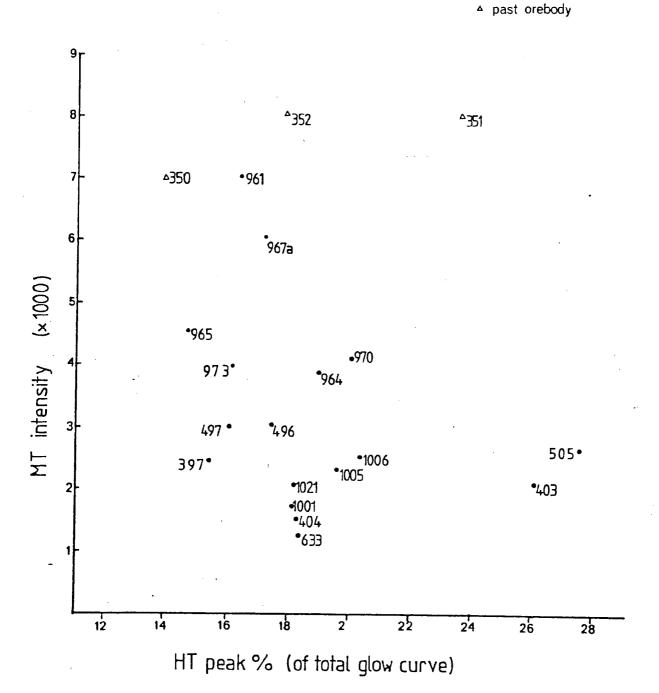





FIG.11 Results for Traverse H-H'

FIG.12 Longitudinal Traverse for NNE-trending tributary



# 6. BASEMENT STUDY

# 6.1 Introduction

The use of TL is not confined to exploration and targeting of uranium mineralization. Application of TL to stratigraphic and palaeogeographic studies (Charlet, 1971) has greatly enhanced delineation of subsurface geology and aids provenance determination Another important application concerns geothermal energy systems and the possible extraction of geothermal heat from anomalous high heat flows for electricity generation. Following a proposal by Ypma & Hochman (1984), study of abnormal heat flows within South Australia was instigated. This work has important ramifications for coal and hydrocarbon maturation in the Cooper Basin.

Classification of abnormal heat flows can be divided into two source types; (1) magmatic heating due to recent intrusive activity, and (2) radiogenic heating by U-rich granites. The location of a anomalous high-heat production zone (ranging from 3.3-19.5 HGU) near Wudinna (Sass et al,1976) and lack of recent magmatic activity on Eyre Peninsula implies a possible radiogenic heat source. Additional factors such as the known occurrence of the radiogenic Hiltaba Granite in this region and a general lack of basement data suggest the need for a detailed study by TL techniques.

Previous geological investigations of the Archaen-Proterozoic basement southwest of the Gawler Ranges have been hindered by an extensive cover of Quaternary-Recent alluvium. Interpretation was based on a small number of isolated outcrops and correlations with the well exposed eastern side of Eyre Peninsula. Blisset (1977) proposed large areas were underlain by Hiltaba Granite. Petrological analysis (Binks & Hooper, 1984) revealed non-foliated granites thought to be Hiltaba Granite, with foliated granitic gneisses of the Lincoln Complex forming the palaeochannel basement. This led to their suggestion that the palaeochannel was preferentially developed in the less competent gneissic basement.

Experimental TL methods were applied to 41 basement samples collected along the previously noted traverses (see Appendix 1).

#### 6.2 Results

TL measurement of samples resolved two distinct glow curves. These can be classified as:

- (1) radiogenic type, with large MT intensity and proportionally increased HT intensity typical of major radiation damage (see Fig. 13a).
- (2) early Proterozoic type, dominated by a LT peak indicating little or no radiation damage (see fig.13b).

When the radiogenic type samples are plotted on MT intensity vs. HT peak % graphs, the variable intensity of cumulated sensitization within the Hiltaba granite can be observed (Fig.14).

Samples that exhibited increased sensitization (ie. decreased MT and LT intensities with high HT peak %) were studied to determine their relative position to uraniferous channels. Results were mixed with samples IR1206,401,420,1168,349 and 498 all related to basement 'highs' within channels or channel sides, while IR353 and IR1072 are located in shallow tributaries. One feature of these samples is their exposure or close proximity to oxidising conditions found within Pliocene sands. The exception (IR403) occurs at deeper levels in the NNE-trending tributary between early Proterozoic samples.

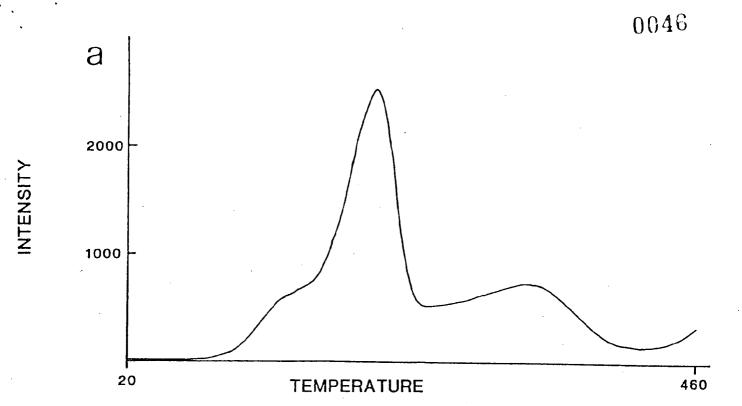
Overall there seems to be no geographical correlation between these anomalous Hiltaba Granite samples and the Yarranna prospects. Possible reasons for increased sensitization may be either higher uranium concentrations and/or longer residence time, the accumulation of uranium near granite margins by hydrothermal activity or that some parts of the Hiltaba Granite have had higher uranium concentrations.

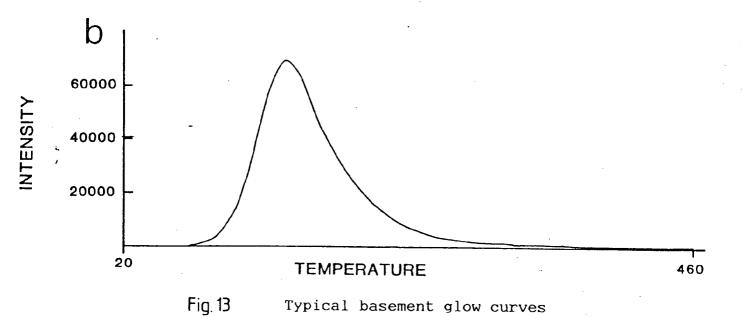
Early Proterozoic TL responses show a lack of radiation damage with resultant large LT intensities overshadowing all other peaks (Fig.15). Exceptions (IR497,1167) show a relatively larger HT intensity which may be due to differences in lithology within the Lincoln Complex, the migration of uranium from bottom channel sands, or metamorphic effects that occurred during granite intrusion. All early Proterozoic samples are located within deeper sections of the palaeochannels but there was not enough data to corroborate Binks & Hooper'(1984) suggestion of preferential development within these rock types.

# 6.3 Microscope Investigation (Appendix 6)

Microscope study of basement samples has identified five major quartz types; (1) monocrystalline or clear, (2) saccharoidal (3) milky, (4) smoky grey-yellow, and (5) iron stained.

Subdivision of basement results into two separate classes dominated by either monocrystalline or polycrystalline quartz was analogous to TL glow curves ie. radiogenic type is characterised by monocrystalline (unstressed) quartz while early Proterozoic samples have a high percentage of saccharoidal quartz. The presence of iron-stained quartz is probably due to drillhole contamination but seems to have no effect on TL responses.


#### 6.4 Discussion


Results show the Hiltaba Granite has suffered major radiation damage. According to Durrani et al(1977b) total radiation dose needed to cause this damage is in the order of  $2x10^8-10^9$  rads. This total dose can be calibrated to the equivalent ppm U by the equation; total dose ( $\alpha+\beta+1$ )= age x dose rate/yr x ppm U

The age of the Hiltaba Granite has been set at 1478±38 Ma (Webb et al,1982). If 1 ppm U contributes 0.312 rads/yr to the environment then the equivalent U content of the granitoid is approximately 2 ppm. But under geological conditions annealing takes place at low temperatures and a U content of 10 ppm or more is needed to overcome the radiation damage threshold and activate the HT peak (Shekhmametev,1973). Therefore minimum U concentration for the granitoid is 12 ppm. However, if we take into account the less penetrative nature of alpha radiation and only assume gamma radiation, a dose rate of 0.1 rads/yr implies U content greater than 16ppm.

This value compares favourably with previous work on the U content of the Hiltaba Granite. Within Yarranna Grid, Binks & Hooper (1984) obtained an average value of 7 ppm, ranging up to 15 ppm U. Ypma & Hochman(1985) found U contents up to 50 ppm within Hiltaba Granite bedrock.

Early Proterozoic TL responses show very little radiation damage, consistent with a low U content. Earlier work by Hochman (pers.com.) on the Donington Granitoid Suite (2ppm U) within the Lincoln Complex produced a similar response to that in Fig.13b.





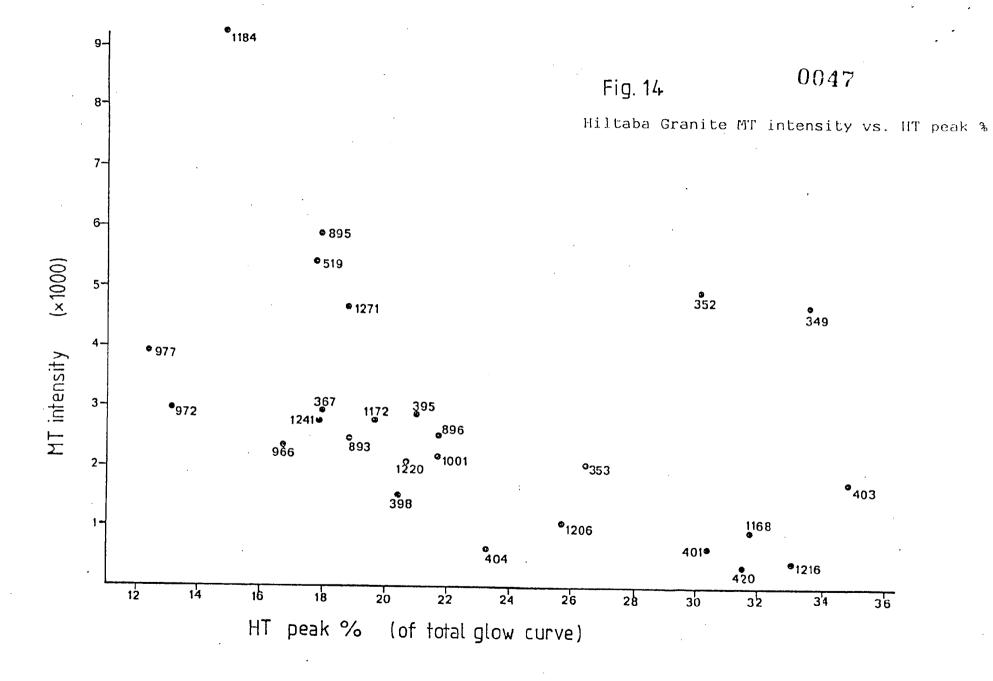
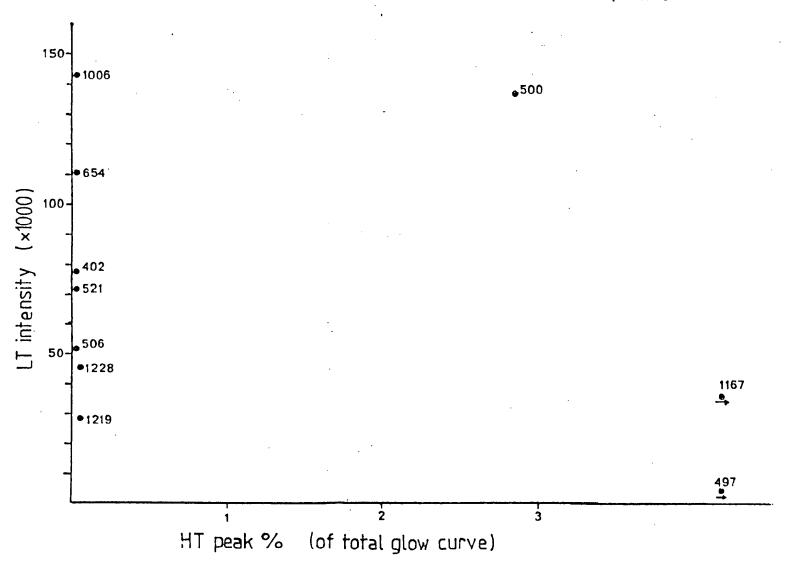




Fig.15 Early Proterozoic LT intensity vs. HT peak %



# 7. GENESIS OF YARRANNA PROSPECTS

All Eocene sediments within the Narlaby Palaeochannel show TL glow curves consistent with major radiation damage (ie > 10 ppm). Microscope analysis of channel sediments (Binks & Hooper, 1984) and TL measurements of both channel and basement samples imply this high radiation damage value may be attributed to high inherent uranium concentrations within the source rock provenance. It is unlikely that this radiation damage is due to Tertiary uranium concentrations since the small volume and low grade of mineralization would be unable to initiate the radiation threshold or achieve vertical homogenization throughout the channel. Studies of the Hlitaba Granite and GRV (Giles, 1980; Ypma & Hochman, 1985) show abnormally high U concentrations, and when accompanying previous TL results, indicate the probability that uranium is derived by leaching of the Hiltaba Granite.

Original deposition of fluvial sediments occurred as a response to early Tertiary uplift of the Gawler Block and contemporaneous change to a subtropical palaeoclimate (Wopfner et al,1974). Channel incision and rapid erosion of large volumes of source rock in a originally high energy environment resulted in the release of uranium from refractory minerals (eg.allanite,zircon) A gradual decrease in hydrological gradient caused the deposition of an upward fining sequence with abundant plant material in a swamp-like environment (Giblin,1985). Decay of this plant material produced reducing conditions and the precipitation of diagenetic pyrite.

Transport of uranyl complexes by acidic groundwaters during this fluvial cycle is thought to be by fluorine or hydroxide complexes (Langmuir, 1978; Giblin, 1985). Retention of original uranium concentrations within the Eocene sequence is by carbonaceous complexing or clay adsorption (Binks & Hooper, 1984; Giblin, 1985)

Remobilization of uranium occurred as a result of oxygenated Pliocene channels incising the underlying Eocene sequence. These meteoric waters contained a small %U in solution leached from the hinterland but most uranium is likely to be dissolved from the host Eocene sands. Movement of oxidising solutions through the

uraniferous Eocene sands resulted in accretionary build up of uranium concentrations as seen by TL sensitization trends.

Precipitation of uranium from oxidised solutions occurs at reducing interfaces (eg.clay bands) or by lateral migration into less permeable, marginal sands.

Narlaby Palaeochannel mineralization can be characterised by a two stage U enrichment process; (1) original U accumulation by mechanical stream processes and carbonaceous complexing, and (2) remobilisation of U by oxidised Pliocene solutions (ie. causing accretionary migration).

The relatively low grade of mineralization at Yarranna prospects, as compared to Beverley, Honeymoon etc., could be due to the large areal extent of the permeable "Upper Sand" unit with a lack of impermeable barriers to restrict lateral movement. Dissolution by acidic groundwaters (Giblin, 1985) is another feature that may have inhibited deposition of economic ore grades.

#### 8. CONCLUSIONS

- (1) TL has detected increasing radiation effects down the Narlaby palaeochannels toward Yarranna Grid and it prospects.
- (2) This trend is indicative of accretionary buildup and migration of uranium.
- (3) Accretionary mechanism controlled by Pliocene channel location ie. zones of maximum radiation damage.
- (4) All channel sands have undergone major radiation effects due to high inherent damage within source rock ie.

  Hiltaba Granite, not as a result of Tertiary mineralization.
- (5) High inherent damage has obscured both radiation damage due to uranium accumulation and any vertical trends within the Eocene sequence.
- (6) Differences in sensitization found within the Hiltaba Granite indicate the variable U content within the granitoid.
- (7) Multi-stage U enrichment within the Narlaby Palaeochannel a. Original U deposition by stream processes and fixation by carbonaceous complexing.
  - b. Remobilization by oxidising Pliocene solutions.
- (8) Low grade mineralization is a result of the large areal extent of Eocene sands, lack of impermeable barriers and possible dissolution by acidic groundwaters.

# ACKNOWLEDGEMENTS

I wish to thank my supervisor, Prof.P.Ypma for initiating this project and guidance through the year. Special credit and thanks must go to Mr.M.Hochman for his assistance and encouragement through all stages of the project and for proof-reading this thesis.

I would like to recognize and thank Carpentaria Exploration for support and backing throughout the year, as well as the advice given by Peter Binks, all of which was greatly appreciated.

The assistance of the technical staff of the Geology Department is gratefully acknowledged, especially Mr.E.Bleys for his help with laboratory equipment.

Finally, I would like to thank my father for his support throughout my university career.

- Binks,P.J. and Hooper,G.J. 1984
  Uranium in Tertiary palaeochannels "West Coast Area"
  South Australia.
  Proc. Australas. Inst. Min. Metall. No.289 p.271-275
- Blisset,H. 1977 SA Geological Survey Atlas Sheet SH 53-14 Childara (1:250,000)
- Bourne, J.A., Twidale, C.R., and Smith, D.M. 1974
  The Corrobinnie Depression, Eyre Peninsula,
  South Australia.
  Trans. Roy. Soc. South Aust. 98(3) p.139-153
- Brunt.D.A. 1978
  Uraniun in Tertiary Stream Channels, Lake Frome
  Area, South Australia
  Proc. Australas. Inst. Min. Metall. No 266 p.79-91
- Campbell, J.A. (ed.) 1977
  Short Papers of the U.S. Geological Survey
  Uranium-Thorium Symposium
  U.S. Geol. Surv. Circular 753
- Charlet, J.M. 1971
  Thermoluminescence of Detrital Rocks Used in Palaeogeographical Problems
  Modern Geol. Vol.2. p.265-274
- Cheney, E.S. and Trammell, J.W. 1973

  Isotopic Evidence for Inorganic Precipitation of Uranium Roll Ore Bodies

  AAPG Bulletin. Vol.57 No.7 p.1297-1304
- Dhana,R.R., Venkataraman,B. and Anantharaman,K.B. 1984
  Natural thermoluminescence of whole-rock samples as an aid in uranium exploration: A Case Study from Singbhum Shear Zone, Bihar, India.
  Uranium, Geology, Exploration, Mining and Milling, and Environmental Aspects. Vol. 1(3)
- Dickson, B.L., Meakins, R.L. and Bland, C.J. 1983
  Evaluation of Radioactive Anomalies Using Radium
  Isotopes in Groundwater.
  J. Geochem. Explor., 19. p. 195-205
- Dickson, B.L. Meakins, R.L. and Giblin, A.M. 1984
  Radium Isotopic Measurements in the Search for
  Uranium in Palaeodrainage Channels.
  J. Geochem. Explor., 22. p.363-365

- Doi,K., Hirono,S. and Sakamaki,Y. 1975
  Uranium Mineralization by Ground Water in
  Sedimentary Rocks, Japan.
  Econ. Geol. 70(4), p.628
- Durrani, S.A., Groom, P.J., Khaza, K.A.R. and McKeever, S.W.S.

  1977a
  The Dependence of Thermoluminescence Sensitivity
  Upon the Temperature of Irradiation in Quartz.

  J.Phys.D: Applied Phys., 10 p.1351-1361
- Durrani,S.A., Khazal,K.A.R., McKeever,S.W.S. and Riley,R.J.
  1977b
  Studies of changes in the thermoluminescence
  sensitivity in quartz induced by proton and gamma
  radiation.
  Radiation effects. 33 p.237-244
- Dyck,W. 1979
  Application of Hydrogeochemistry to the Search for Uranium. in Geophysics and Geochemistry in the Search for Metallic Ores; P.J.Hood (ed.)
  Geol.Surv.Canada., Economic Geol. Report 31
- Ellis,G.K. 1980
  Distribution and Genesis of Sedimentary Uranium near Curnamona, Lake Frome Region, South Australia.

  AAPG Bulletin Vol. 64(10) p.1643-1657
- Fairchild, R.G., Mattern, P, L., Lengweiler, K. and Levy, P.W. 1978

Thermoluminescence of LiF TLD-100:

- (a) Emission spectra measurements
  <u>J.Appl.Phys.</u>, Vol.49(8) p.4512-4522
- (b) Glow curve kinetics J.Appl.Phys., Vol.49(8) p.4523-4533
- Fehn, U., Cathles, L.M. and Holland, H.D. 1978

  Hydrothermal Convection and Uranium Deposits in Abnormally Radioactive Plutons.

  Econ. Geol. Vol. 73 p. 1556-1566
- Forbes, B.G. 1982
  Geological Map of South Australia (1:2,000,000)
  SA Dept. Mines and Energy
- Fuller, G.E. and Levy, P.W. 1978
  Thermoluminescence of natural quartz.
  Bull. Amer. Phys. Soc., 23, p.324
- Germanov, A.I. and Panteleyev, V.M. 1967
  Behaviour of Organic matter in groundwater during infiltrational epigenesis.
  Internat. Geology Rev. Vol. 10 No.7 p.826

- Giblin, A.M. and Dickson, B.L. 1984
  Hydrogeochemical Interpretations of Apparent Anomalies
  in Base Metals and Radium in Groundwater near Lake
  Maurice in the Great Victoria Desert
  J.Geochem. Explor., 22. p.361-362
- Giblin, A.M. 1985
  Applications of Groundwater Geochemistry to Genesis
  Theories and Exploration Methods for Early Tertiary
  Sediment Hosted Uranium Deposits in Australia.
  CSIRO (unpubl.)
- Giles, C.W. 1980
  A Study of PreCambrian Felsic Volcamism in Southern Australia.
  Univ. of Adel. Ph.D.thesis (unpubl.)
- Granger, H.C, and Warren, C.G. 1969
  Unstable Sulfur Compounds and the Origin of Roll-type
  Uranium Deposits.
  Econ. Geol. Vol. 64. p. 160-171
- Haji-Vassiliov, A. and Kerr, P.F. 1973
  Analytic Data on Nature of Urano-organic Deposits
  AAPG Bulletin Vol.57 No.7 p.1291-1296
- Hochman, M.B.M. 1982

  Report on thermoluminescence studies at Westmoreland.

  Report to UGA, March 1982. (unpubl.)
- Hochman, M.B.M. and Ypma, P.J.M. 1984a

  Thermoluminescence applied to uranium exploration and genesis of the Westmoreland uranium deposits, NW Qld.

  Aust.Inst.Min.Metall., Conference Vol., 1984 p.215-224

### and 1984b

Thermoluminescence as a tool in uranium exploration J.Geochem.Explor., 22(1-3) p.315-333

Hochman, M.B.M. 1984a

A Comparison of the Thermoluminescence Characteristics of Units 1, 2 and 3 of the Westmoreland Conglomerate with those of Upper and Lower Unit 4

Report to UGA (unpubl.)

#### 19846

The Application of Thermoluminescence to Uranium exploration and ore genesis, in particular at the Westmoreland uranium deposit, NW Qld.
Univ. of Adel. Ph.D. thesis (unpubl.)

and Ypma, P.J.M. 1985
The Accretionary Migration of Uranium in Tertiary
Sandstones - Thermoluminescence Evidence from the
Beverley Deposit, SA. (unpubl.) (in press)

Hornyak, W.F. 1984

CaF
2:Mn Thermoluminescence : A single Glow Peak Not
Described by 1st. or 2nd. Order Kinetics.

Proc.4th.Int. Seminar on TL and ESR Dating

Kaul, I.K., Ganguli, D.K. and Hess, B.F.H. 1972 Influencing parameters in thermoluminescence of quartz Modern Geol., 3, p.201-207

Langmuir,D. 1978
Uranium Solution - Mineral Equilibria at Low
Temperatures with Applications to Sedimentary Ore
Deposits.
Geochimica et Cosmochimica Acta, 42. p.547-569

Levy.P.W. 1978
Thermoluminescence studies having application to geology and archaeometry.
Brookhaven National Lab. Report No.BNL 24606, 21pp.

1982

Thermoluminescence and optical bleaching in minerals exhibiting second order kinetics and other charge retrapping characteristics.

PACT No.6 p.224-242

1983

Characteristics of thermoluminescence glow curves for exhibiting more than one glow peak.

PACT No.9 p.109-122

1984

Recent Developments in Thermoluminescence Kinetics Proc.1984 Nat.Sym. on Thermally Stimulated Luminescence and Related Phenomena, Ahmedabad, India.

Pauli,F.W. 1975
Heavy Metal Humates and their Behaviour Against
Hydrogen Sulfide
Soil Science Vol.119 No.1 p.98-105

Robinson, C.S. and Rosholt Jr., J.N. 1961
Uranium Migration and Grochemistry of Uranium Deposits
in Sandstone above, at, and below the water table.
Part II. Relationship of Uranium Migration Dates,
Geology, and Chemistry of the Uranium Deposits

# Econ. Geol., 56 p.1404-1420

- Rosholt Jr., J.N. 1961
  Uranium Migration and Geochemistry of Uranium Deposits in Sandstone above, at, and below the water table.
  Part I. Calculation of Apparent Dates of Uranium Migration in Deposits above and at the water table.
  Econ. Geol., 56 p.1392-1403
- Rutland, R.W.R., Parker, A.J., Pitt, G.M., Preiss, W.V. and Murrell, B.

  The Precambrian of South Australia

  in Hunter, D.R., (ed.) Precambrian of the Southern Hemisphere.

  Developments in Precambrian Geology 2 Elsevier 1981
- Sass, J.H., Jaeger, J.C, and Munroe, R.J, 1976
  Heat Flow and Near-Surface Radioactivity in the
  Australian Continental Crust
  US Geological Survey Open-File Report 76-250
- Schwartzman,R.G. 1981
  Thermoluminescence of the Major Mineral Components in Climax Stock Granite.
  State Univ. of New York. Masters thesis (unpubl.)
- Shekhmametev,R.I. (1973)

  Effect of radiation from radioactive material on natural quartz thermoluminescence.

  Trans.: Opt. Spectrosc.34 p.288-290
- Skinner, V.L. 1982
  Thermoluminescence Study of Gamma-Ray Irradiated
  Synthetic and Natural Rock Salt.
  State Univ. of New York. Masters thesis (unpubl.)
- Thomson, B.P. 1976
  Gawler Craton regional geology
  in Knight, C.L. (ed.)
  Economic Geology of Australia and Papua New Guinea
  Vol 1. p.461-466
  Australas. Inst. Min. Metall.
- Twidale, C.R., Bourne, J.A. and Smith, D.M. 1976
  Age and Origin of Palaeosurfaces on Eyre Peninsula and the Southern Gawler Ranges, South Australia.

  Zeitschrift für Geomorphologie 20(1) p.28-56
- Webb, A.W., Thomson, B.P., Blissett, A.H., Daly, S.J., Flint, R.B. and Parker, A.J. 1982
  Geochronology of the Gawler Craton, South Aust. Geol. Surv. South Australia. Report Book No. 82/86
- Wopfner, H. 1970

Early Cambrian Palaeogeography, Frome Embayment, 0058 South Australia. AAPG Bulletin Vol.54 No.12 p.2395-2409

Wopfner, H., Callen, R. and Harris, W.K. 1974
The Lower Tertiary Eyre Formation
J.Geol.Soc.Aust. Vol 21(1) p.17-51

Ypma, P.J. and Hochman, M.B.M. 1980
Preliminary report on thermoluminescence studies of quartz from uraniferous host rock formations at Westmoreland, Qld.
Report to UGA (unpubl.)

and

1984

Proposal to investigate geothermal energy potential of South Australia. (unpubl.)

and

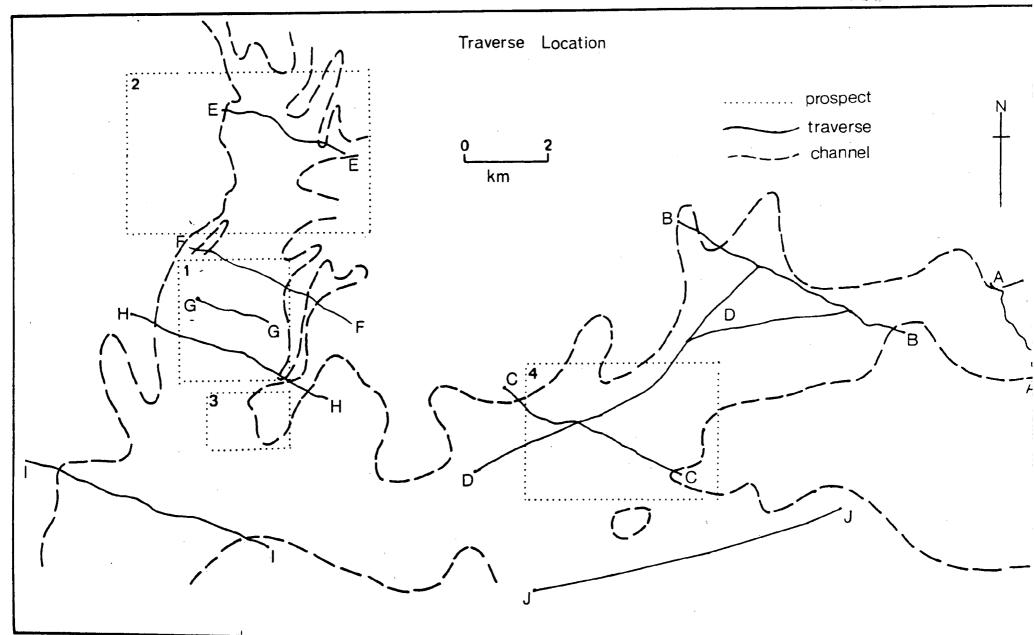
1985

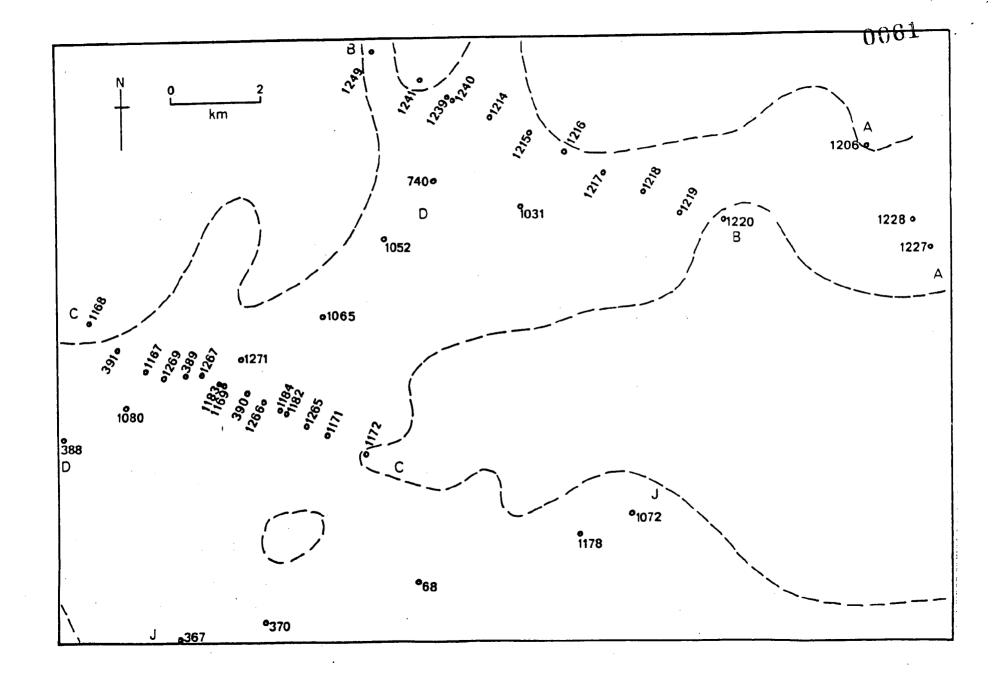
A Thermoluminescence Study of the Role of a Middle Proterozoic unconformity in controlling uranium mineralization, as shown at Eyre Peninsula, South Australia.

(unpubl.) (in press)

# Addendum

Haynes, R.W. 1975
Beverley sedimentary uranium orebody, Frome Embayment, SA.


in Economic Geology of Australia and Papua New Guinea.


1. Metals.

Australas.Inst.Min.Metall.,Monogr.5. C.L.Knight (ed) p.343-347

# APPENDIX 1

Traverse and Drillhole Locality





APPENDIX 2

Sample Description

|           |                                    | Traverse A-A'                  |            |             |                  |
|-----------|------------------------------------|--------------------------------|------------|-------------|------------------|
| Drillhole | Interval                           | Description                    | Ох         | Red '       | Mineral<br>(ppm) |
| 1227      | 70-72<br>94-96                     | E.sand<br>basal E.             |            | *           | ( pp )           |
| 1228 .    | 66-68<br>114-116                   | E.sand<br>granite              |            | *           |                  |
| 1206      | 10-12                              | granite                        |            |             |                  |
|           |                                    | Traverse B-B'                  |            |             |                  |
| Drillhole | Interval                           | Description                    | Ox         | Red         | Mineral<br>(ppm) |
| 1249      | 60-62                              | E.sand                         | *          |             | (PP,             |
| 1241      | 60-62                              | granite                        |            |             |                  |
| 1239      | 54-56                              | E.sand                         | *          |             |                  |
| 1240      | 58-60<br>64-66<br>70-72            | +6 above mineral.<br>-6 below  | *<br>redox | *           | <100             |
| 1214      | 60-62<br>94-96                     | E.sand<br>basal E.             | *          | *           |                  |
| 1215      | 66-68                              | E.sand                         |            | *           |                  |
| 1216      | 78-80                              | granite                        |            |             |                  |
| 1217      | 82-84                              | E.sand                         | *          |             |                  |
| 1218      | 72-74<br>84-86<br>90-92<br>114-116 | E.sand mineral6 below basal E. | *          | *<br>*<br>* | 109              |
| 1219      | 76 <b>-</b> 78<br>88 <b>-</b> 90   | E.sand<br>granite              | *          |             |                  |
| 1220      | 14-16                              | granite                        |            |             |                  |

Traverse C-C'

| D 1231 3  | T 4                                      | Danawintian                                  | 0         | Dod          | Minopol          |
|-----------|------------------------------------------|----------------------------------------------|-----------|--------------|------------------|
| Drillhole | Interval                                 | Description                                  | Оx        | Red          | Mineral<br>(ppm) |
| 1172      | 90-92                                    | granite                                      |           |              |                  |
| 1171      | 108-110<br>114-116<br>120-122<br>158-160 | +6 above<br>mineral.<br>-6 below<br>basal E. |           | *<br>*<br>*  | <100             |
| 1265      | 94-96<br>150-162                         | E.sand<br>basal E.                           |           | *            |                  |
| 1182      | 102-104<br>108-110<br>114-116<br>124-126 | +6 above mineral6 below basal E.             | *<br>redo | X<br>*<br>*  | 34               |
| 1184      | 106-108<br>136-138                       | E.sand<br>granite                            | *         |              |                  |
| 1266      | 108-110                                  | E.sand                                       | *         |              |                  |
| 390       | 98-100<br>110-112<br>124-126             | +6 above<br>-6 below<br>basal E.             | *         | *            |                  |
| 1169      | 88-90<br>94-96<br>100-102                | +6 above mineral6 below                      | *<br>rede | ox           | 340<br>115       |
| 1183      | 90-92<br>96-98<br>124-126                | mineral.<br>-6 below<br>basal E.             |           | *<br>*<br>*  | 128              |
| 1267      | 84-86<br>92-94<br>98-100                 | E.sand<br>E.sand<br>mineral.(ba              | redosal)  | οx           | <100             |
| 389       | 84-86<br>98-100                          | E.sand<br>basal E.                           |           | *            |                  |
| 1269      | 82-84                                    | E.sand                                       |           | *            |                  |
| 1167      | 68-70<br>98-100<br>112-114               | E.sand<br>E.sand<br>granite                  | *         | *            |                  |
| 391       | 80-82<br>86-88<br>92-94<br>94-96         | +6 above<br>mineral.<br>-6 below<br>basal E. | *<br>red  | OX<br>*<br>* | 123              |

**-**58 **-**62 granite granite

| T   | ra | v   | 6 | r | s | e | D | _1 | D | ŧ |
|-----|----|-----|---|---|---|---|---|----|---|---|
| 1 1 | a  | V 1 | _ |   | o | _ | v | _  | _ |   |

| Drillhole | Interval                     | Description                      | Ox Red      | Mineral |
|-----------|------------------------------|----------------------------------|-------------|---------|
| 388       | 76-78<br>88-90<br>116-118    | E.sand<br>E.sand<br>granite      | *           |         |
| 1080      | 60-62<br>66-68<br>86-88      | +6 above<br>mineral.<br>basal E. | * redox *   | 125     |
| 1267      | done in tra                  | verse C-C'.                      |             |         |
| 1271      | 84-86<br>108-110             | E.sand<br>granite                | *           |         |
| 1065      | 98-100<br>104-106<br>124-126 | E.sand<br>E.sand<br>granite      | *           |         |
| 1052      | 74-76<br>84-86<br>124-126    | E.sand E.sand basal E.           | *<br>*<br>* |         |
| 740/1166  | 66-68<br>72-74<br>78-80      | +6 above mineral6 below          | * redox *   | 228     |
| 1214      | as done in                   | traverse B-B'.                   |             |         |
| 1031      | 78-80<br>124-126             | E.sand<br>basal E.               | *           |         |
| 1218      | as done in                   | traverse B-B'.                   |             |         |

Traverse E-E'

| Drillhole | Interval<br>(m)                             | Description                                  | Ox Red           | Mineral.<br>(gamma log) |
|-----------|---------------------------------------------|----------------------------------------------|------------------|-------------------------|
|           |                                             |                                              |                  | (ppm)                   |
| 977       | 82-84                                       | granite                                      |                  |                         |
| 976       | 76-78<br>82-84<br>88-90                     | +6 above mineral6 below                      | * *              | 424                     |
|           | 96-98                                       | basal E.                                     |                  |                         |
| 973       | 82-84<br>88-90<br>94-96<br>124-126          | +6 above<br>mineral.<br>-6 below<br>basal E. | *<br>*<br>*      | 178                     |
|           | 124-120                                     | Dasar L.                                     |                  |                         |
| 972       | 108-110<br>114-116                          | +6 above<br>mineral.<br>-6 below             | *<br>*           | 143                     |
| ·         | 120-122<br>130-132<br>138-140               | basal E. granite                             | *                | 103                     |
| 970       | 96-98<br>102-104<br>108-110                 | +6 above mineral.<br>-6 below                | *<br>*<br>redox  | 544                     |
|           | 138-140                                     | basal E.                                     | *                |                         |
| 968       | 124-126                                     | basal E.                                     | *                |                         |
| 967 A     | 90-92<br>96-98<br>102-104                   | +6 above<br>mineral.<br>-6 below             | *<br>*<br>*      | 147                     |
| 966 A     | 62-64<br>68-70<br>74-76<br>96-98<br>130-132 | +6 above mineral6 below E.sand granite       | *<br>*<br>*<br>* |                         |
| 965       | 98-100                                      | E.sand                                       | *                |                         |
| 964       | 72-74<br>78-80<br>84-86                     | +6 above<br>mineral<br>-6 below              | *<br>redox<br>*  | 160                     |
| 961       | 66-68<br>72-74<br>78-80<br>92-94            | +6 above mineral6 below basal E.             | * * *            | 186                     |
|           |                                             |                                              |                  |                         |

| Traverse | F-F' |  |
|----------|------|--|
|----------|------|--|

| Drillhole | Interval                    | Description                   | Ох  | Red    | Mineral |
|-----------|-----------------------------|-------------------------------|-----|--------|---------|
| 896       | 96-98<br>106-108<br>108-110 | E.sand<br>basal E.<br>granite | *   | *      |         |
| 895       | 98-100                      | granite                       |     |        |         |
| 894       | 94-96<br>120-122            | E.sand<br>basal E.            |     | *      |         |
| 893       | 96-98<br>112-114            | E.sand<br>granite             |     | *      |         |
| 398       | 98-100                      | granite                       |     |        |         |
| 496       | 88-90<br>94-96<br>128-130   | E.sand<br>E.sand<br>basal E.  |     | *<br>* |         |
| 497       | 68-70<br>86-88<br>92-94     | E.sand<br>E.sand<br>granite   | *   |        |         |
| 397       | 78-80<br>92-94              | E.sand<br>basal E.            |     | *      |         |
| 498       | 68-70<br>80-82              | E.sand<br>granite             | *   |        |         |
| 500       | 66-68                       | granite                       |     |        | •       |
| 395       | 40-42                       | granite                       |     |        |         |
|           |                             | Traverse G-G'                 |     |        |         |
| Drillhole | Interval                    | Description                   | Ox  | Red    | Mineral |
| 655       | 68-70                       | E.sand                        | *   |        |         |
| 654       | 124-126<br>132-134          | basal E.<br>granite           |     | *      |         |
| 1021      | 60-62<br>66-68<br>72-74     | +6 above mineral.<br>-6 below | * * |        | 185     |
| 1008      | 78-80<br>124-126            | E.sand<br>basal E.            | *   |        |         |
| 633       | 64-66                       | +6 above                      | *   |        |         |

|      | 70 <b>-</b> 72<br>76-78                       | mineral.<br>-6 below                     | *           | 20 |
|------|-----------------------------------------------|------------------------------------------|-------------|----|
| 1006 | 72-74<br>130-132                              | E.sand<br>granite                        | *           |    |
| 1005 | 66-68<br>72-74<br>78-80                       | +6 above mineral.<br>-6 below            |             |    |
| 1314 | 77-78                                         | E.sand                                   | *           | 46 |
| 1001 | 74-76<br>80-82<br>86-88<br>114-116<br>118-120 | +6 above mineral6 below basal E. granite | *<br>*<br>* |    |

Traverse H-H'

| Drillhole | Interval                                      | Description                              | Ох     | Red         | Mineral |
|-----------|-----------------------------------------------|------------------------------------------|--------|-------------|---------|
| 401       | 80-82                                         | granite                                  |        |             |         |
| 402a      | 84-86<br>98-100                               | E.sand<br>granite                        |        | *           |         |
| 504       | 64-66<br>78-80                                | E.sand<br>E.sand                         | *<br>* |             |         |
| 505       | 64-66<br>82-84                                | E.sand<br>E.sand                         | *      | *           |         |
| 403       | 68-70<br>74-76<br>80-82<br>106-108<br>114-116 | +6 above mineral6 below basal E. granite |        | *<br>*<br>* | 574     |
| 506a      | 78-80<br>134-136<br>140-142                   | E.sand<br>basal E.<br>granite            |        | *           |         |
| 507       | 90-92<br>126-128                              | E.sand<br>basal E.                       |        | *           |         |
| 508a      | 88-90                                         | E.sand                                   |        | *           | ·       |
| 404       | 80-82<br>96-98<br>106-108                     | E.sand<br>basal E.<br>granite            |        | *           |         |
| 519       | 50-52                                         | granite                                  |        |             |         |
| 521       | 70 <b>-</b> 72<br>80-82                       | E.sand<br>granite                        |        | *           |         |

Traverse I-I'

| Drillhole | Interval                          | Description                     | Ох | Red         | Mineral |
|-----------|-----------------------------------|---------------------------------|----|-------------|---------|
| 420       | 60-62                             | w.granite                       |    |             | (ppm)   |
| 353       | 80-82<br>86-88<br>92-94<br>98-100 | +6 above mineral6 below granite | *  | *           | <100    |
| 352       | 100-102<br>124-126                | E.sand<br>granite               |    | *           |         |
| 351       | 80-82<br>100-102<br>138-140       | E.sand<br>E.sand<br>basal E.    |    | *<br>*<br>* |         |
| 350       | 98-100                            | basal E.                        |    | *           |         |
| 349       | 72-74                             | granite                         |    |             |         |
|           |                                   | Traverse J-J'                   |    |             |         |
| Drillhole | Interval                          | Description                     | Ох | Red         | Mineral |
| 367       | 72-74<br>80-82                    | basal E.<br>granite             |    | *           |         |
| 370       | 78-80                             | E.sand                          |    | *           |         |
| 68        | 64-66<br>90-92                    | E.sand<br>basal E.              |    | *           |         |
| 1178      | 58-60                             | E.sand                          |    | *           |         |
| 1072      | 80-82                             | granite                         |    |             |         |

E.sand = 'Upper' Eocene sand unit

basal E = basal Eocene sand

+6 above = sample six metres above mineralization

mineral. = mineralized sample

-6 below = sample six metres below mineralization

# APPENDIX 3

Sample Preparation and Measurement

#### Appendix 3

### Sample Preparation and Measurement

#### a. PREPARATION

- 1. Collect approx. 5g from selected drill cuttings.
- 2. Crush grains, using disc grinder, to less than 1mm.
- 3. Sieve to collect mesh size # -30+150.
- 4. Wash sample in distilled water, using ultrasonic cleaner to remove dust and clean grains.
- 5. Wash with acetone and dry in fume cupboard for 20 minutes.
- 6. Use Frantz No.1 isodynamic magnetic separator to remove any impurities and separate quartz (due to it's diamagnetic properties).
- 7. Cover to prevent further bleaching by UV light.

Since all drill cuttings have been exposed to natural light, artificial TL has to be applied.

#### b. MEASUREMENT

- 1. Place 2g in gelatin capsule.
- 2. Irradiate in 60 Co source for 140 minutes (total radiation dose of 5  $\times$  105 rads).
- 3. Remove and cover with aluminium foil to prevent bleaching by UV light.
- 4. Leave for 24-72 hours to allow phosphorescence to decay.
- 5. Place 10-16mg on stainless steel disc and spray with silicone lubricant.
- 6. Place in thermomultiplier.
- 7. Use standard TL equipment (calibrated to heating rate = 1.23°C/sec) with high-purity nitrogen to prevent chemiluminescence.
- 8. Measure of total glow curve by integrator (model used was Hewlett-Packard 3380-A).

APPENDIX 4
Absolute Intensity and Intensity Ratios

Intensity Values for Traverse A-A'

|      |          |                                   |                    |              |                   | 1                    |                       |              |                                  |
|------|----------|-----------------------------------|--------------------|--------------|-------------------|----------------------|-----------------------|--------------|----------------------------------|
| Dri  | llhole   | Interva                           | 1 LT               | MT           | нт                | HT/MT                | HT/LT                 | LT/MT        | НТ%                              |
| 12   | 227      | 70-72<br>94-96                    | 991<br>1291        |              |                   |                      | 1<br>1.375            |              | 11.9<br>18.33                    |
| 12   |          | 66-68<br>114-116                  | 925<br>45014       |              | 876<br>2165       | .198<br>-            | .974<br>.048          | .209         | 14.06<br>.046                    |
| 12   | 206      | 10-12                             | 717                | 1055         | 612               | .58                  | .854                  | .68          | 25.67                            |
|      |          | Inte                              | nsity              | Values       | for :             | Travers              | e B-B'                |              |                                  |
| Dril | llhole   | Interva                           | 1 LT               | MT           | НТ                | HT/MT                | HT/LT                 | LT/MT        | HT%                              |
| 12   | 249      | 60-62                             | 882                | 3085         | 937               | .304                 | 1.062                 | .286         | 19.11                            |
| 12   | 241      | 60-62                             | 798                | 2761         | 777               | .281                 | .974                  | .289         | 17.92                            |
| 12   | 239      | 54-56                             | 1098               | 4457         | 1034              | .232                 | .942                  | .246         | 15.69                            |
| 12   | 240      | 58-60<br>64-66<br>70-72           | 1916<br>529<br>547 |              | 891<br>608<br>513 | .375<br>.261<br>.275 | .465<br>1.149<br>.938 | .227         | 17.19<br>17.55<br>17.55          |
| 12   | 214      | 60-62<br>94-96                    | 629<br>681         | 2717<br>3784 | 579<br>761        | .213<br>.201         | .921<br>1.117         | .232<br>.18  | 14.75<br>14.56                   |
| 12   | 215      | 66-68                             | 1019               | 4167         | 1512              | .363                 | 1.484                 | .245         | 22.57                            |
| 12   | 216      | 78-80                             | 302                | 431          | 362               | .84                  | 1.198                 | .7           | 33.06                            |
| 12   | 217      | 82-84                             | 894                | 5451         | 1787              | .328                 | 1.999                 | .164         | 21.97                            |
| 12   | ?18<br>1 | 72-74<br>84-86<br>90-92<br>14-116 | 808<br>971         | 4121         | 687<br>1060       | .167<br>.2           | .85                   | .196<br>.183 | 15.14<br>12.23<br>14.46<br>13.16 |
| 12   | 219      | 76-78<br>88-90                    | 2500<br>28219      |              | 2857<br>1512      | .167<br>-            | 1.143                 | .146<br>-    | 12.7<br>.051                     |
| 12   | 220      | 14-16                             | 636                | 2066         | 706               | .342                 | 1.11                  | .308         | 20.72                            |

| Drillhole | Interva                                  | 1 LT                       | мт                           | нт                          | HT/MT        | HT/LT                           | LT/MT        | HT%                              |
|-----------|------------------------------------------|----------------------------|------------------------------|-----------------------------|--------------|---------------------------------|--------------|----------------------------------|
| 1172      | 90-92                                    | 921                        | 2763                         | 899                         | .325         | .976                            | •333         | 19.62                            |
| •         | 108-110<br>114-116<br>120-122            | 761<br>974<br>1141         | 2763<br>6263<br>6930         |                             | .244         | 1.526<br>1.572<br>1.286         | .156         | 24.78<br>17.46<br>15.38          |
|           | 94-96<br>150-152                         | 454<br>1123                | 2558<br>5099                 | 908<br>1076                 | .355<br>.211 | 2.958                           | .177<br>.22  | 23.16<br>14.74                   |
|           | 102-104<br>108-110<br>114-116<br>124-126 | 825<br>1458<br>866<br>1001 | 9260                         | 865<br>1629<br>776<br>910   | .176<br>.142 | 1.048<br>1.117<br>.896<br>.909  | .157<br>.158 | 15.5<br>13.19<br>10.9<br>11.63   |
|           | 106-108<br>136-138                       |                            | 10733<br>9252                | 3661<br>2041                |              | 2.444                           |              | 23.04<br>14.85                   |
| 1266      | 108-110                                  | 2286                       | 12986                        | 3109                        | .239         | 1.36                            | .176         | 16.91                            |
|           | 98-100<br>110-112<br>124-126             | 1325<br>1324<br>870        | 8212<br>7803<br>5289         | 1545<br>1543<br>870         |              | 1.166<br>1.165<br>1             | .17          | 13.94<br>14.46<br>12.38          |
| -         | 88-90<br>94-96<br>100-102                | 936<br>1095<br>1186        | 5618<br>6834<br>7193         | 2135<br>2243<br>1607        | .328         | 2.28<br>2.048<br>1.355          | .16          | 24.57<br>22.05<br>16.09          |
| 1183      | 84-86<br>90-92<br>96-98<br>124-126       | 485<br>764<br>927<br>690   | 3040<br>4671<br>6049<br>2714 | 858<br>1401<br>1214<br>1143 | •3<br>•201   | 1.769<br>1.834<br>1.31<br>1.657 | .164<br>.153 | 19.58<br>20.49<br>14.82<br>25.14 |
| 1267      | 84-86<br>92-94<br>98-100                 | 1240<br>1186<br>874        | 7188                         | 1427<br>1366<br>1103        | .19          | 1.151<br>1.151<br>1.262         | .165         | 14.73<br>14.02<br>13.63          |
| 389       | 84-86<br>98-100                          | 982<br>469                 | _                            | 1152<br>304                 |              | 1.173                           |              | 13.43<br>16.31                   |
| 1269      | 82-84                                    | 533                        | 3437                         | 726                         | .211         | 1.362                           | .155         | 15.46                            |
| 1167      | 68-70<br>98-100<br>112-114               | 339                        | 881                          | 1565<br>294<br>5212         |              | 1.521<br>.867<br>.145           | .385         | 18.58<br>19.42<br>9.88           |

| 391       | 80-82<br>86-88<br>92-94          |                      | 819<br>807<br>1122    | 353<br>361<br>454           | .447                 | 1.076<br>1<br>1.113     | .4 23.53<br>.447 23.61<br>.364 22.88   |
|-----------|----------------------------------|----------------------|-----------------------|-----------------------------|----------------------|-------------------------|----------------------------------------|
| 1168      | 56-58<br>60-62<br>94-96          |                      | 940<br>371<br>3279    | 542<br>313<br>666           | .844                 | 2.409<br>2.566<br>1.286 | .239 31.75<br>.329 38.83<br>.158 14.92 |
|           |                                  |                      | Traver                | se D-I                      | ) !                  |                         |                                        |
| Drillhole | e Interva                        | 1 LT                 | MT                    | нт                          | HT/MT                | HT/LT                   | LT/MT HT%                              |
| 388       | 76-78<br>88-90<br>114-116        |                      | 5910<br>3691<br>16290 | 2198<br>738<br>4511         | .372<br>.2<br>.277   | 2.047<br>1.142<br>1.2   | .182 23.94<br>.175 14.54<br>.231 18.37 |
| 1080.     | 60-62<br>66-68<br>72-74<br>86-88 |                      |                       | 1468<br>2597<br>1468<br>406 |                      | 1.347<br>1.625<br>2.341 | .221 22.71                             |
| 1267      | as do                            | ne in                | traver                | se C                        |                      |                         |                                        |
| 1271      | 84-86<br>108-110                 | 748<br>590           | 4283<br>4680          | 748<br>1219                 | .175<br>.26          | 1<br>2.066              | .175 12.94<br>.126 18.79               |
| 1065      | 98-100<br>104-106<br>124-126     |                      | 7985<br>6873<br>11118 | 1374<br>1237<br>2499        |                      | 1.143<br>.871<br>1.381  | .151 13.01<br>.207 12.98<br>.163 16.2  |
| 1052      | 74-76<br>84-86<br>124-126        | 1490<br>1645<br>2014 | 9689<br>6840<br>7194  | 1656<br>4589<br>1247        | .671                 | 1.111<br>2.79<br>.619   | .24 35.1                               |
| 740/1166  | 66-68<br>72-74<br>78-80          | 983                  | 5085                  | 1239                        | .174<br>.244<br>.382 | 1.26                    | .193 16.96                             |
| 1214      | as do                            | ne in                | traver                | se B                        |                      |                         |                                        |
| 1031      | 78-80<br>124-126                 | 1244<br>1196         | .5985<br>6600         | 1126<br>1426                | .188                 | .905<br>1.222           | .208 13.48<br>.181 15.79               |

as done in traverse B

| Drillhole | Interval                                            | LT                                | MT                                   | нт                              | HT/MT HT/LT                                                 | LT/MT                      | HT%                                       |
|-----------|-----------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------|-------------------------------------------------------------|----------------------------|-------------------------------------------|
| 977       | 82-84                                               | 964                               | 3912                                 | 689                             | .176 .715                                                   | .246                       | 12.4                                      |
| 976       | 76-78<br>82-84<br>88-90<br>96-98                    | 607<br>1136<br>231<br>1363        | 2978<br>3802<br>1137<br>6582         | 825<br>1037<br>323<br>1693      | .277 1.36<br>.273 .913<br>.284 1.398<br>.257 1.242          | .203                       | 18.7<br>17.36<br>19.1<br>17.57            |
| 973       | 82-84<br>88-90<br>94-96<br>124-126                  | 833<br>979<br>1744<br>1144        | 3521<br>3968<br>3846<br>4378         | 892<br>847<br>1321<br>1045      | .253 1.071<br>.213 .865<br>.343 .757<br>.239 .913           | .247                       | 17<br>16.15<br>19.19<br>15.9              |
|           | 108-110<br>114-116<br>120-122<br>130-132<br>138-140 | 537<br>458<br>644<br>1118<br>1349 | 1790<br>1647<br>1997<br>3289<br>2976 | 492<br>418<br>612<br>965<br>655 | .275 .916<br>.254 .913<br>.306 .95<br>.293 .863<br>.22 .486 | .278<br>.322<br>.34        | 17.45<br>16.57<br>18.81<br>17.96<br>13.15 |
| •         | 96-98<br>102-104<br>108-110<br>138-140              | 931<br>802<br>1152<br>892         | 5392<br>3436<br>4115<br>4459         | 1520<br>802<br>1317<br>981      | .282 1.633<br>.236 1<br>.32 1.143<br>.22 1.1                | .236<br>.28                | 19.38<br>15.91<br>20.<br>15.49            |
| 968       | 124-126                                             | 1012                              | 4004                                 | 968                             | .242 .956                                                   | .253                       | 16.18                                     |
| 967 A     | 90-92<br>96-98<br>102-104                           | 1455<br>779<br>696                | 6061<br>3434<br>2899                 | 1556<br>736<br>676              | .257 1.069<br>.214 .945<br>.233 .971                        | .227                       | 17.15<br>14.87<br>15.83                   |
| . 966 A   | 62-64<br>68-70<br>74-76<br>96-98<br>130-132         | 836<br>550<br>726<br>602<br>537   | 3762<br>2420<br>2673<br>2384<br>2334 | 794<br>550<br>693<br>972<br>578 | .211 .95<br>.227 1<br>.259 .955<br>.408 1.615<br>.248 1.076 | .227<br>.272<br>.253       | 14.73<br>15.63<br>16.94<br>24.56<br>16.76 |
| 965       | 98-100                                              | 899                               | 4532                                 | 936                             | .207 1.041                                                  | .198                       | 14.7                                      |
| 964       |                                                     | 704<br>756<br>1034                | 3195                                 | 1080<br>958<br>1139             | .277 1.534<br>.3 1.267<br>.36 1.102                         | .181<br>.237<br>.327       | 19.52                                     |
| 961       | 72-74<br>78-80                                      | 1408<br>2009<br>589<br>735        | 6849<br>3155                         | 1643<br>2329<br>589<br>858      |                                                             | .2<br>.293<br>.187<br>.248 | 13.59                                     |

|           |                             | •                  |                      |                    |                     |                       |              |                         |
|-----------|-----------------------------|--------------------|----------------------|--------------------|---------------------|-----------------------|--------------|-------------------------|
| Drillhole | Interval                    | LT                 | MT                   | HT                 | HT/MT               | HT/LT                 | LT/MT        | HT%                     |
| 1         | 96-98<br>106-108<br>108-110 | 664<br>828<br>580  | 3195<br>3947<br>2560 | 747<br>1316<br>870 | .234<br>.333<br>.34 | 1.125<br>1.589<br>1.5 | .21          | 16.22<br>21.61<br>21.7  |
| 895       | 98-100                      | 903                | 5896                 | 1487               | .252                | 1.647                 | .153         | 17.95                   |
|           | 94-96<br>120-122            | 1175<br>657        | 6167<br>2879         | 2154<br>884        |                     | 1.833                 | .191<br>.228 | 27.68<br>20             |
|           | 96-98<br>112 <b>-1</b> 14   | 629<br>554         | 3014<br>2455         | 1730<br>698        |                     | 2.75<br>1.26          |              | 32.2<br>18.83           |
| 398       | 98-100                      | 459                | 1508                 | 503                | .334                | 1.096                 | .304         | 20.36                   |
| •         | 88-90<br>94-96<br>128-130   | 541<br>572<br>1021 | 2204<br>3052<br>3810 | 541<br>763<br>864  | .25                 | 1<br>1.334<br>.846    | .187         | 16.46<br>17.39<br>15.17 |
| 497       | 68-70<br>86-88<br>92-94     | 745<br>709<br>3889 | 3056<br>3012<br>-    | 727<br>709<br>641  | .238                | .976<br>1<br>.165     |              | 16.06<br>16<br>14.15    |
| 397       | 78-80<br>92-94              | 987<br>618         | 2346<br>2452         | 466<br>556         | .199<br>.227        | .472<br>.9            |              | 12.27<br>15.33          |
| 498       | 68-70<br>80-82              | 585<br>118         | 3353<br>148          | 663<br>207         | .198<br>1.4         | 1.133<br>1.754        |              | 14.41<br>43.76          |
| 500       | 66-68 13                    | 86341              | -                    | 4010               | -                   | .029                  | -            | 2.86                    |
| 395       | 40-42                       | 734                | 2893                 | 964                | .333                | 1.313                 | .254         | 21                      |

| Intensity Values fo | r Traverse | G– G † |
|---------------------|------------|--------|
|---------------------|------------|--------|

|   |           | Inte                                          | ensity '                        | Values                               | for T                            | raverse             | 9 G-G'                                   |               | 0020                                      |
|---|-----------|-----------------------------------------------|---------------------------------|--------------------------------------|----------------------------------|---------------------|------------------------------------------|---------------|-------------------------------------------|
|   | Drillhole | e Interva                                     | al LT                           | MT                                   | HT                               | HT/MT               | HT/LT                                    | LT/MT         | 0.079                                     |
|   | 655       | 68-70                                         | 571                             | 2663                                 | 689                              | .259                | 1.207                                    | .214          | 17.56                                     |
|   | 654       | 124-126<br>132-134                            | 690<br>110125                   | 3780                                 | 792<br>. 1820                    | .21                 | 1.148                                    | .183          | 15.05<br>.016                             |
|   | 1021      | 60-62<br>66-68<br>72-74                       | 756<br>428<br>491               | 3368<br>2058<br>2415                 | 871<br>550<br>573                | .267                | 1.152<br>1.285<br>1.167                  | .208          | 17.44<br>18.12<br>16.47                   |
|   | 1008      | 78-80<br>124-126                              | 549<br>2888                     | 2863<br>2861                         | 627<br>567                       | .219                | 1.142                                    | .192<br>1.009 | 15.52<br>8.98                             |
| ٠ | 633       | 64-66<br>70-72<br>75-78                       | 288<br>579<br>415               | 1276<br>2274<br>2186                 | 350<br>537<br>546                | .236                | 1.215<br>.927<br>1.316                   |               | 18.29<br>15.84<br>17.35                   |
|   | 1006      | 72-74<br>130-132                              | 455<br>143559                   | 2529<br>-                            | 759<br>2950                      | •3                  | 1.668                                    | .18           | 20.28                                     |
|   | 1005      | 66-68<br>72-74<br>78-80                       | 542<br>358<br>496               | 2349<br>1703<br>2329                 | 703<br>426<br>544                | .25                 | 1.297<br>1.19<br>1.097                   | .21           | 19.56<br>17.13<br>16.15                   |
|   | 1314      | 77-78                                         | 497                             | 2147                                 | 429                              | .2                  | .863                                     | .231          | 13.96                                     |
|   | 1001      | 74-76<br>80-82<br>86-88<br>114-116<br>118-120 | 573<br>614<br>414<br>734<br>475 | 2726<br>2971<br>1735<br>3412<br>2183 | 962<br>654<br>474<br>1042<br>735 | .22<br>.273<br>.305 | 1.679<br>1.065<br>1.145<br>1.42<br>1.547 | .239<br>.215  | 22.58<br>15.43<br>18.07<br>20.08<br>21.66 |

•

|           | Inte                                          | ensity            | Values              | for                | Traverse H-H'                        |                      | Duoc                                   |
|-----------|-----------------------------------------------|-------------------|---------------------|--------------------|--------------------------------------|----------------------|----------------------------------------|
| Drillhole | Interva                                       | al LT             | MT                  | НТ                 | HT/MT HT/LT                          | LT/MT                | HT%                                    |
| 401       | 80-82                                         | 195               | 643                 | 366                | .569 1.877                           | .303                 | 30.4                                   |
| 402A      | 84-86<br>98-100                               |                   | 965<br>-            | 652<br>1664        |                                      | .411                 | 32.37                                  |
| 504       | 64-66<br>78-80                                | 480<br>886        |                     | 499<br>930         |                                      |                      | 15.26<br>16.66                         |
| 505       | 64-66<br>82-84                                | 627<br>525        |                     | 1254<br>630        |                                      |                      | 27.52<br>17.65                         |
|           | 68-70<br>74-75<br>80-82<br>106-108<br>114-116 | 524               | 2676                | 525<br>545         | .242 1.159<br>.203 1.04<br>.224 1.04 | .209<br>.195<br>.216 | 26<br>16.68<br>14.53<br>15.57<br>34.89 |
|           | 78-80<br>134-136<br>140-142                   | 954               | 2151<br>5060<br>-   | 575<br>1078<br>850 | .213 1.13                            | .189                 | 18.12<br>15.2<br>.016                  |
|           | 90 <b>-</b> 92<br>126 <b>-</b> 128            | 578<br>569        |                     | 661<br>650         |                                      |                      | 18.29<br>15.23                         |
| 508A      | 88-90                                         | 640               | 2608                | 713                | .273 1.114                           | .245                 | 18                                     |
| 404       | 80-82<br>96-98<br>106-108                     | 386<br>895<br>385 | 1570<br>3706<br>628 |                    | .253 1.047                           | .242                 | 18.19<br>16.92<br>23.08                |
| 519       | 50-52                                         | 1502              | 5439                | 1502               | .276 1                               | .276                 | 17.79                                  |
| 521       | 70 <b>-</b> 72<br>80-82                       |                   | 1769<br>165156      |                    | .567 1.955<br>.015 0.033             | .289<br>.439         | 30.5<br>0.01                           |

|           | Inten                   | sity                 | Values               | for :                | Travers  | e I-I'                 |              | 800                     |
|-----------|-------------------------|----------------------|----------------------|----------------------|----------|------------------------|--------------|-------------------------|
| Drillhole | Interval                | LT                   | MT                   | нт                   | HT/MT    | HT/LT                  | LT/MT        | HT%                     |
| 420       | 60-62                   | 134                  | 363                  | 229                  | .631     | 1.709                  | .369         | 31.54                   |
| 353       | 80-82<br>86-88<br>92-94 | 2501<br>599          | 6721<br>2940         | 2501<br>1027         |          | 1<br>1.715             |              | 21.33<br>22.49          |
|           | 98-100                  | 468                  | 2027                 | 897                  | .442     | 1.917                  | .231         | 26.44                   |
|           |                         | 1254<br>968          | 8025<br>4928         | 2006<br>2552         | _        | 1.6<br>2.636           | .156<br>.196 | 17.78<br>30.21          |
| 1         | 100-102                 | 1882<br>1459<br>3831 | 8575<br>8026<br>7264 | 2876<br>2736<br>1990 |          | 1.528<br>1.875<br>.519 | .182         | 19.14<br>23.53<br>15.21 |
| 350       | 98-100                  | 1750                 | 7000                 | 1417                 | .202     | .81                    | .25          | 13.94                   |
| 349       | 72-74                   | 1104                 | 4671                 | 2930                 | .627     | 2.654                  | .236         | 33.66                   |
|           | Inten                   | sity                 | Values               | for T                | Traverse | J-J'                   |              |                         |
| Drillhole | Interval                | LT                   | MT                   | HT                   | HT/MT    | HT/LT                  | LT/MT        | HT%                     |
| 367       | 72-74<br>80-82          | 466<br>454           | 3059<br>2928         | 565<br>742           |          | 1.212<br>1.634         |              | 13.81<br>17.99          |
| 370       | 78-80                   | 1018                 | 7495                 | 1480                 | .197     | 1.454                  | .136         | 14.81                   |
| 68        | 64-66<br>90-92          | 577<br>135           | 3175<br>-            | 818<br>146           | .258     | 1.418<br>1.081         | .182         | 17.9                    |
| 1178      | 58-60                   | 248                  | 1019                 | 331                  | .325     | 1.335                  | .243         | 20.71                   |
| 1072      | 80-82                   | 297                  | 1413                 | 1165                 | .824     | 3.923                  | .21          | 40.52                   |

Glow Curve Temperatures (oc)

| Λ | $\cap$ | O | Q |
|---|--------|---|---|
| u | 0      | 8 | υ |

| Traverse A-A'. |                                    |                          |                          |                          |
|----------------|------------------------------------|--------------------------|--------------------------|--------------------------|
| Drillhole      | Interval                           | LT                       | MT                       | нт                       |
| 1227           | 70-72<br>94-96                     | 149<br>148               | 226<br>225               | 322<br>344               |
| 1228           | 66-68<br>114-116                   | 154<br>150               | 236                      | 355<br>-                 |
| 1206           | 10-12                              | 144                      | 199                      | 340                      |
| Tṛaverse B-B'. |                                    |                          |                          |                          |
| Drillhole      | Interval                           | LT                       | MT                       | нт                       |
| 1249           | 60-62                              | 154                      | 222                      | 342                      |
| 1241           | 60-62                              | 150                      | 226                      | 348                      |
| 1239           | 54-56                              | 147                      | 221                      | 336                      |
| 1240           | 58-60<br>64-66<br>70-72            | 153<br>150<br>143        | 226<br>230<br>215        | 351<br>343<br>321        |
| 1214           | 60-62<br>94-96                     | 144<br>151               | 224<br>223               | 345<br>341               |
| 1215           | 66-68                              | 141                      | 215                      | 350                      |
| 1216           | 78-80                              | 134                      | 223                      | 314                      |
| 1217           | 82-84                              | 141                      | 222                      | 364                      |
| 1218           | 72-74<br>84-86<br>90-92<br>114-116 | 148<br>148<br>146<br>138 | 229<br>226<br>228<br>226 | 338<br>344<br>347<br>338 |
| 1219           | 76-78<br>88-90                     | 140<br>147               | 210                      | 311                      |
| 1220           | 14-16                              | 152                      | 208                      | 316                      |

| Traverse C-C'. |          |     |     | 0084 |
|----------------|----------|-----|-----|------|
| Drillhole      | Interval | LT  | MT  | HT   |
| 1172           | 90-92    | 157 | 223 | 340  |
| 1171           | 108-110  | 155 | 226 | 369  |
|                | 114-116  | 152 | 232 | 358  |
|                | 120-122  | 152 | 234 | 358  |
|                | 158-160  | 134 | 213 | 329  |
| 1265           | 94-96    | 147 | 228 | 365  |
|                | 150-152  | 142 | 219 | 334  |
| 1182           | 102-104  | 151 | 225 | 341  |
|                | 108-110  | 154 | 232 | 335  |
|                | 114-116  | 142 | 220 | 330  |
|                | 124-126  | 133 | 212 | 325  |
| 1184           | 106-108  | 145 | 226 | 370  |
|                | 136-138  | 142 | 210 | 315  |
| 1266           | 108-110  | 150 | 218 | 339  |
| 390            | 98-100   | 132 | 211 | 320  |
|                | 110-112  | 150 | 227 | 346  |
|                | 124-126  | 144 | 225 | 324  |
| 1169           | 88-90    | 145 | 212 | 345  |
|                | 94-96    | 135 | 212 | 341  |
|                | 100-102  | 153 | 228 | 348  |
| 1183           | 84-86    | 136 | 208 | 330  |
|                | 90-92    | 132 | 213 | 336  |
|                | 96-98    | 141 | 217 | 334  |
|                | 124-126  | 147 | 228 | 364  |
| 1267           | 84-86    | 144 | 224 | 346  |
|                | 92-94    | 139 | 215 | 338  |
|                | 98-100   | 143 | 225 | 328  |
| 389            | 84-86    | 133 | 216 | 331  |
|                | 98-100   | 141 | 211 | 316  |
| 1269           | 82-84    | 139 | 222 | 330  |
| 1167           | 68-70    | 151 | 234 | 372  |
|                | 98-100   | 138 | 207 | 308  |
|                | 112-114  | 140 | 216 | 317  |

| 391            | 80-82    | 140 | 217 | 324 |
|----------------|----------|-----|-----|-----|
|                | 86-88    | 153 | 211 | 312 |
|                | 92-94    | 157 | 226 | 340 |
|                | 94-96    | 152 | 238 | 352 |
| 1168           | 56-58    | 146 | 236 | 359 |
|                | 60-62    | 136 | 209 | 326 |
| Traverse D-D'. |          |     |     |     |
| Drillhole      | Interval | LT  | MT  | HT  |
| 388            | 76-78    | 136 | 212 | 354 |
|                | 88-90    | 129 | 204 | 316 |
|                | 114-116  | 148 | 216 | 338 |
| 1080           | 60-62    | 151 | 230 | 362 |
|                | 66-68    | 156 | 221 | 362 |
|                | 72-74    | 149 | 229 | 377 |
|                | 86-88    | 157 | 238 | 354 |
| 1267           | done     |     |     |     |
| 1271           | 84-86    | 134 | 207 | 318 |
|                | 108-110  | 135 | 208 | 294 |
| 1065           | 98-100   | 137 | 206 | 303 |
|                | 104 106  | 148 | 225 | 338 |
|                | 124-126  | 152 | 224 | 359 |
| 1052           | 74-76    | 136 | 214 | 326 |
|                | 84-86    | 144 | 215 | 362 |
|                | 124-126  | 159 | 225 | 343 |
| 740/1166       | 66-68    | 145 | 218 | 318 |
|                | 72-74    | 157 | 235 | 367 |
|                | 78-80    | 141 | 220 | 352 |
| 1214           | done     |     |     |     |
| 1031           | 78-80    | 143 | 214 | 325 |
|                | 124-126  | 147 | 224 | 332 |
| 1218           | done     |     |     |     |

Traverse E-E'.

|              | •        |     |     |     |
|--------------|----------|-----|-----|-----|
| Drillhole    | Interval | LT  | MT  | HT  |
| 9 <b>7</b> 7 | 82-84    | 148 | 220 | 323 |
| 976          | 76-78    | 135 | 224 | 343 |
|              | 82-84    | 143 | 220 | 344 |
|              | 88-90    | 131 | 216 | 336 |
|              | 96-98    | 143 | 216 | 338 |
| 973          | 82-84    | 123 | 197 | 309 |
|              | 88-90    | 155 | 224 | 335 |
|              | 94-96    | 166 | 228 | 345 |
|              | 124-126  | 145 | 212 | 330 |
| 972          | 108-110  | 141 | 214 | 324 |
|              | 114-116  | 160 | 226 | 348 |
|              | 120-122  | 157 | 228 | 350 |
|              | 130-132  | 148 | 212 | 323 |
|              | 138-140  | 164 | 223 | 348 |
| 970          | 96-98    | 137 | 216 | 331 |
|              | 102-104  | 154 | 230 | 345 |
|              | 108-110  | 153 | 222 | 341 |
|              | 138-140  | 133 | 211 | 322 |
| 968          | 124-126  | 132 | 210 | 304 |
| 967A         | 90-92    | 155 | 223 | 337 |
|              | 96-98    | 135 | 214 | 314 |
|              | 102-104  | 152 | 226 | 334 |
| 966 A        | 62-64    | 134 | 215 | 332 |
|              | 68-70    | 144 | 228 | 343 |
|              | 74-76    | 140 | 223 | 334 |
|              | 96-98    | 144 | 222 | 349 |
|              | 120-122  | 137 | 208 | 313 |
|              | 130-132  | 132 | 206 | 317 |
| 965          | 98-100   | 149 | 229 | 369 |
| 964          | 72-74    | 128 | 220 | 337 |
|              | 78-80    | 148 | 223 | 336 |
|              | 84-86    | 156 | 221 | 336 |
| 961          | 66-68    | 152 | 231 | 347 |
|              | 72-74    | 146 | 221 | 335 |
|              | 78-80    | 142 | 212 | 321 |
|              | 92-94    | 153 | 232 | 346 |
|              |          |     |     |     |

Traverse F-F:.

| Drillhole | Interval | LT  | MT  | HT  |
|-----------|----------|-----|-----|-----|
| 896       | 96-98    | 142 | 221 | 330 |
|           | 106-108  | 143 | 206 | 309 |
|           | 108-110  | 141 | 219 | 344 |
| 895       | 98-100   | 128 | 206 | 316 |
| 894       | 94-96    | 147 | 222 | 341 |
|           | 120-122  | 145 | 211 | 360 |
| 893       | 96-98    | 148 | 216 | 364 |
|           | 112-114  | 135 | 208 | 328 |
| 398       | 98-100   | 139 | 219 | 322 |
| 496       | 88-90    | 140 | 219 | 329 |
|           | 94-96    | 134 | 217 | 332 |
|           | 128-130  | 128 | 202 | 307 |
| 497       | 68-70    | 134 | 211 | 316 |
|           | 86-88    | 138 | 215 | 330 |
|           | 92-94    | 162 | -   | 316 |
| 397       | 78-80    | 149 | 221 | 338 |
|           | 92-94    | 144 | 203 | 313 |
| 498       | 68-70    | 131 | 218 | 329 |
|           | 80-82    | 135 | 213 | 319 |
| 500       | 66-68    | 138 | -   | 316 |
| 395       | 40-42    | 134 | 209 | 315 |

| 7 | r 20 | _ | ٠, | 6 | r  | c | 0  | G-  | CI  |  |
|---|------|---|----|---|----|---|----|-----|-----|--|
|   | ir.  | - | ν  | μ | r. |   | ₽- | 11- | 11. |  |

| Drillhole | Interval                                      | LT                              | MT                              | HT                              |
|-----------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 655       | 68-70                                         | 136                             | 210                             | 326                             |
| 654       | 124-126<br>132-134                            | 127<br>157                      | 205<br>-                        | 3 <b>1</b> 5                    |
| 1021      | 60-62<br>66-68<br>72-74                       | 137<br>140<br>139               | 208<br>222<br>220               | 323<br>338<br>334               |
| 1008      | 78-80<br>124-126                              | 139<br>140                      | 217<br>190                      | 323<br>306                      |
| 633       | 64-66<br>70-72<br>76-78                       | 137<br>144<br>136               | 219<br>213<br>221               | 334<br>316<br>333               |
| 1006      | 72-74<br>130-132                              | 137<br>151                      | 216<br>-                        | 332                             |
| 1005      | 66-68<br>72-74<br>78-80                       | 129<br>128<br>139               | 204<br>205<br>219               | 313<br>312<br>338               |
| 1314      | 77-78                                         | 144                             | 220                             | 332                             |
| 1001      | 74-76<br>80-82<br>86-88<br>114-116<br>118-120 | 133<br>133<br>124<br>147<br>139 | 208<br>206<br>204<br>225<br>221 | 320<br>312<br>318<br>341<br>346 |

| Drillhole | Interval         | LT         | MT         | HT  |
|-----------|------------------|------------|------------|-----|
| 401       | 80-82            | 133        | 211        | 318 |
| 402a      | 84-86            | 133        | 209        | 350 |
|           | 98-100           | 141        | -          | -   |
| 504       | 64-66            | 137        | 217        | 323 |
|           | 78-80            | 130        | 201        | 309 |
| 505       | 64-66            | 144        | 223        | 364 |
|           | 82-84            | 140        | 218        | 330 |
| 403       | 68-70            | 138        | 219        | 374 |
|           | 74-76            | 147        | 222        | 331 |
|           | 80-82            | 134        | 212        | 319 |
|           | 106-108          | 150        | 220        | 337 |
|           | 114-116          | 138        | 208        | 340 |
| 506 a     | 78-80            | 126        | 203        | 313 |
|           | 134-136          | 131        | 206        | 316 |
|           | 140-142          | 147        | -          | -   |
| 507       | 90-92            | 133        | 207        | 316 |
|           | 126 <b>-</b> 128 | 139        | 220        | 335 |
| 508a      | 88-90            | 132        | 206        | 311 |
| 404       | 80-82            | 164        | 255        | 379 |
|           | 96-98            | 146        | 223        | 346 |
|           | 106-108          | 135        | 205        | 314 |
| 519       | 50-52            | 150        | 222        | 326 |
| 521       | 70-72<br>80-82   | 141<br>117 | 208<br>156 | 335 |

| Tr | `a | ν | e | r | S | e | I- | Ι | ١. |
|----|----|---|---|---|---|---|----|---|----|
|    |    |   |   |   |   |   |    |   |    |

| Drillhole      | Interval                    | LT                | MT                | нт                |
|----------------|-----------------------------|-------------------|-------------------|-------------------|
| 420            | 60-62                       | 141               | 224               | 334               |
| 353            | 80-82<br>86-88<br>98-100    | 145<br>136<br>149 | 212<br>214<br>222 | 336<br>333<br>355 |
| 352            | 100-102<br>124-126          | 136<br>148        | 226<br>233        | 348<br>386        |
| 351            | 80-82<br>100-102<br>138-140 | 156<br>153<br>156 | 225<br>227<br>216 | 343<br>354<br>330 |
| 350            | 98-100                      | 142               | 208               | 324               |
| 349            | 72-74                       | 158               | 234               | 381               |
| Traverse J-J'. |                             |                   |                   |                   |
| Drillhole      | Interval                    | LT                | MT                | HT                |
| 367            | 72-74<br>80-82              | 126<br>143        | 207<br>220        | 326<br>335        |
| 370            | 78-80                       | 138               | 220               | 336               |
| 68             | 64-66<br>90-92              | 122<br>144        | 203<br>230        | 321<br>334        |
| 1178           | 58-60                       | 134               | 211               | 332               |
| 1072           | 80-82                       | 140               | 206               | 349               |
|                |                             |                   |                   |                   |

Microscope Description

## Microscope Description

# 1.Early Proterozoic basement

| SAMPLE | MONOCRY.(%) | POLYCRY.(% |                                                                                 |
|--------|-------------|------------|---------------------------------------------------------------------------------|
| 1228   | rare        | 100        | colourless, milky, smoky yellow with humic staining                             |
| 1219   | rare        | 100        | colourless, milky; minor f/spar                                                 |
| 1167   | 40          | 60         | <pre>milky,smoke ; minor iron staining (contamination?)</pre>                   |
| 497    | 10          | 90         | <pre>milky,smoky(minor); inclusions within some crystals</pre>                  |
| 500    | rare        | 98         | milky; minor carbonaceous and f/spar, rounded citrine?                          |
| 654    | 10          | 90         | <pre>colourless,milky,minor smoky; rare citrine</pre>                           |
| 1006   | 25          | 75         | smoky,minor milky,monocry. are colourless; with humic staining and rare citrine |
| 402a   | 10          | 90         | milky,minor smoky,monocry, are colourless; some humic and iron staining         |
| 506 a  | 5           | 95         | colourless, minor smoky; with iron staining, rare rounded citrine               |
| 521    | rare        | 100        | colourless(60%),milky(40%)                                                      |

#### 2. Hiltaba Granite basement

# SAMPLE MONOCRY.(%) POLYCRY(%) COMMENTS (saccharoidal)

| 1206          | 100        | rare      | colourless; minor f/spar and iron staining                                                                                   |
|---------------|------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
| 1241          | 100        | -         | <pre>colourless,smoky yellow;minor f/spar,iron staining(5%)</pre>                                                            |
| 1216          | 100        |           | colourless; "clean", conchoidal, rough surface due to grinding                                                               |
| 1220          | 100        | -         | <pre>colourless; minor f/spar(2%), iron staining present</pre>                                                               |
| 1172 .        | 100        | -         | colourless, smoky yellow; minor f/spar and humic material, with iron stains                                                  |
| 1184          | 100        | -         | colourless, rare smoky yellow; minor f/spar, iron stain and pyrite                                                           |
| 1168 a.<br>b. | 100<br>100 | -<br>rare | colourless, rare smoky yellow; colourless, minor smoky; haem. staining, weathered f/spar(1%) rough surface texture, citrine? |
| 388           | 98         | 2         | "clean",colourless,rare milky; due to grinding?                                                                              |
| 1271          | 98         | 2         | colourless,minor smoky grey; rare humic and iron stains                                                                      |
| 1065          | 100        | -         | <pre>colourless,rare smoky yellow;<br/>conchoidal,citrine?</pre>                                                             |
| 977           | 100        | -         | <pre>colourless,smoky yellow(10%) minor iron staining</pre>                                                                  |
| 972           | 100        | -         | colourless, rare smoky yellow; "clean",                                                                                      |
| 966a          | 100        | -         | colourless, smoky grey; with iron staining, minor f/spar and rare humic material                                             |
| 896           | 100        | -         | <pre>colourless,minor smoky yellow; with rare milky (due to grind -ing),carbonaceous material,</pre>                         |

|      |        |            | minor f/spar and iron stains                                                                    |
|------|--------|------------|-------------------------------------------------------------------------------------------------|
| 895  | 100    | -          | <pre>colourless;minor f/spar, iron staining</pre>                                               |
| 893  | 100    | -          | <pre>colourless,smoky yellow,rare milky(grinding?);minor humic and iron staining;f/spar</pre>   |
| 398  | same a | as 893     |                                                                                                 |
| 498  | 75     | 25         | colourless; humic material and minor f/spar                                                     |
| 395  | 100    | · <u>-</u> | colourless,milky;minor f/spar<br>large component (25%) is iron<br>stained                       |
| 1001 | 80     | 20         | <pre>colourless,milky(polycry.), minor smoky grey;weathered f/spar,rare iron stain,pyrite</pre> |
| 401  | 95     | 5          | <pre>colourless,rare smoky yellow, milky component; minor f/spar and iron staining</pre>        |
| 403  | 100    | -          | <pre>colourless,milky,minor smoky; iron staining, citrine?</pre>                                |
| 404  | 100    | -          | colourless;"clean",conchoidal                                                                   |
| 519  | 100    | -          | colourless, rare smoky yellow; minor f/spar and iron. stains                                    |
| 420  | 100    | -          | <pre>colourless,smoky yellow(10%); conchoidal, iron staining</pre>                              |
| 353  | 90     | 10         | colourless, large smoky yellow component; minor carbonaceous                                    |
| 352  | 100    | -          | <pre>colourless,minor smoky yellow;<br/>iron staining,feldspar(2%)</pre>                        |
| 349  | 100    | -          | colourless, smoky yellow; 50% are rounded, iron stained (due to contamination)                  |
| 367  | 70     | 30         | <pre>colourless,smoky yell.(mono.) milky (polycry.);rare humic and iron staining</pre>          |
| 1072 | 80     | 20         | <pre>colourless,smoky grey,milky (polycry.); conchoidal,rare iron staining,citrine?</pre>       |

ANALYSIS g/tonne

|        | • • • • • • • • • • • • • • • • • • • • |            |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |
|--------|-----------------------------------------|------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|        | SAMPLE<br>MARK                          | GOLD<br>Au | PLATINUM<br>Pt | PALLADIUM<br>Pd |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| :      | 657765                                  | <0.05      | <0.005         | 0.010           | IR 1313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64-6Cm         |
|        | 657766                                  | <0.05      | <0.005         | <0.005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66- <b>6</b> 8 |
|        | 657769                                  | <0.05      | <0.005         | <0.005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68-70          |
|        | 658369                                  | <0.05      | <0.005         | ⊲.005           | IR 1329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68-69 m        |
|        | 658369a                                 | 0.50       | <0.005         | 0.040           | SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , .            |
|        | 658370                                  | <0.05      | <0.005         | <0.005          | APPLICATION OF THE PROPERTY OF | 69-70          |
|        | 658371                                  | <0.05      | <0.005         | <0.005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70-71          |
|        | 658372                                  | <0.05      | <0.005         | <0.005          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71-72          |
| -      | 659958                                  | <0.05      | <0.005         | <0.005          | IR 1378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68-69 m        |
|        | 659959                                  | <0.05      | <0.005         | 0.030           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69-70          |
|        | 727277                                  | ⊲0.05      | <0.005         | 0.015           | IR1449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82-832         |
|        | 727278                                  | <0.05      | <0.005         | 0.005           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83-84          |
|        | 727279                                  | <0.05      | <0.005         | <0.005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84-85          |
|        | 727519                                  | <0.05      | <0.005         | 0.015           | IR 1421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94-95n         |
|        | 727520                                  | <0.05      | <0.005         | 0.025           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9546           |
|        | <sub>-</sub> 727521                     | <0.05      | <0.005         | 0.010           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96-97          |
| <br>سب | 727532                                  | <0.05      | <0.005         | 0.015           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107-108        |
| _      | 727561                                  | <0.05      | <0.005         | 0.025           | JR 1422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93-94n         |
|        | 727562                                  | <0.05      | <0.005         | 0.020           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94-95          |
|        | 727563                                  | <0.05      | <0.005         | <0.005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.46          |

ANALYSIS g/tonne

| SAMPLE<br>MARK | GOLD<br>Au | PLATINUM<br>Pt | PALLADI UM<br>Pd |         |           |
|----------------|------------|----------------|------------------|---------|-----------|
| 727581         | <0.05      | <0.005         | <0.005           | JR 1422 | 113-114 m |
| 727581a        | 1.34       | <0.005         | 0.060            | Std.    |           |
| 727780         | <0.05      | <0.005         | <0.005           | IR1427  | 91-92n    |
| 727781         | <0.05      | <0.005         | 0.015            |         | 92-93     |
| 727782         | <0.05      | <0.005         | <0.010           |         | 93-94     |
| 727872         | <0.05      | ⊲.005          | 0.015            | FR 1429 | 9293 n    |
| 727873         | <0.05      | <0.005         | 0.010            | ·       | 93 94     |
| 727874         | ⊲0.05      | <0.005         | 0.005            |         | 94.95     |
|                |            |                |                  |         |           |



| Analysis cod | ie X3 |      | Report | . AC 27 | 76/86 |       | Pin     | ge X1  |
|--------------|-------|------|--------|---------|-------|-------|---------|--------|
| NATA Certifi | icate |      |        |         |       |       | Results | in ppm |
| Sample       | Th    | fs a | Cω     | Иb      | Se    | Ĩа    | Te      | U      |
| 657765       | < 4   | < 4  | 6.0    | 1.6     | 10    | < 1.0 | < 10    | 2.8    |
| 657766       | < 4   | ₹4   | 120    | < 4     | 4     | < 1.0 | < 1.0   | 20     |
| 657769       | 12    | < 4  | 60     | 4 6     | 2     | <10   | < 10    | . 8    |
| 658369       | < 4   | < 4  | 30     | 4       | < 2   | 1.0   | < 1.0   | 8      |
| 658369a      | < 4   | 6    | 50     | 8       | 6     | < 1.0 | < 10    | < 4    |
| 658370       | 18    | < 4  | 90     | 56      | 68    | < 1.0 | < 1.0   | 180    |
| 658371       | 16    | < 4  | 65     | 34      | 3 1   | < 10  | < 1.0   | 160    |
| 658372       | 6     | < 4  | 50     | 46      | 52    | < 10  | <10     | 375    |
| 659958       | 8     | 4    | 30     | 28      | 16    | < 10  | <10     | 105    |
| 659959       | 26    | < 4  | 150    | 40      | 175   | < 10  | < 10    | 1340   |
| 727277       | 10    | < 4  | 40     | 1 4     | 3     | < 10  | < 10    | < 4    |
| 727278       | < 4   | < 4  | < 20   | < 4     |       | . <10 | <10     | 4      |
| 727279       | < 4   | 8    | 20     | 4       | . `2  | < 10  | <10     | 4      |
| 727519       | < 4   | < 4  | < 20   | < 4     | < 2   | <10   | <10     | 8      |
| 727520       | < 4   | < 4  | < 20   | < 4     | <2    | <10   | <10     | 1 4    |
| 727521       | < 4   | < 4  | 20     | < 4     | < 2   | <10   | <10     | 1 4    |
| 727532       | < 4   | < 4  | 50     | 6       | 6     | <10   | < 10    | < 4    |
| 727561       | < 4   | < 4  | 3 0    | 6       | 2     | <10   | < 1 D   | 24     |
| 727562       | 4     | < 4  | < 20   | 12      | 3     | <10   | <10     | 8 4    |
| 727563       | < 4   | < 4  | 30     | < 4     | < 2   | 10    | < 10    | 28     |
| 727581       | - 12  | < 4  | 60     | 16      | < 2   | < 10  | < 1 D   | 4      |
| 727581a      | 4     | < 4  | 25     | < 4     | < 2   | < 10  | < 10    | < 4    |
| 727780       | < 4   | < 4  | 30     | < 4     | < 2   | < 10  | < 10    | < 4    |
| 727781       | < 4   | < 4  | < 20   | < 4     | < 2   | < 10  | < 10    | 6      |
| 727782       | < 4   | < 4  | < 20   | < 4     | < 2   | < 1.0 | < 10    | 4      |
| 727872       | 8     | < 4  | 5 5    | 2 4     | < 2   | < 10  | < 10    | < 4    |
| 727873       | 6     | < 4  | 25     | 16      | < 2   | < 10  | < 10    | < 4    |
| 727874       | < 4   | < 4  | 3 0    | 1 4     | < 2   | < 10  | < 10    | 10     |
| Detn limit   | (4)   | (4)  | (20)   | (4)     | (2)   | (10)  | (10)    | (4)    |

727874

Detn limit

18

(4)

| _        | acida V3 |   | Pupart   | ۸۲   | 2776/8 | r.           | ני      | age | X 2  |
|----------|----------|---|----------|------|--------|--------------|---------|-----|------|
| Analysis | code va  |   | Kirpor c | /\\. | 711070 | ()           | •       | a 9 | /\ L |
| NATA Cer | tificate |   |          |      |        | <del>-</del> | Results | ın  | ppm  |
| Sample   | Y        |   |          |      |        |              |         |     |      |
| 657765   | 3 0      |   |          |      |        |              |         |     |      |
| 657766   | 8 6      |   |          |      |        |              |         |     |      |
| 657769   | 4 4      |   |          |      |        |              |         |     |      |
| 658369   | 4        |   |          |      |        |              |         |     |      |
| 658369a  | 12       |   |          |      |        |              |         |     |      |
| 658370   | 4 4      |   |          |      |        |              |         |     |      |
| 658371   | 36       |   |          |      |        |              |         |     |      |
| 658372   | 36       |   |          |      |        |              |         |     |      |
| 659958   | 20       |   |          |      |        |              |         |     |      |
| 659959   | 68       | • |          |      |        |              |         |     |      |
| 727277   | . 14     |   |          |      |        |              |         |     |      |
| 727278   | 8        |   |          |      |        |              |         |     |      |
| 727279   | 10       |   |          |      |        |              |         |     |      |
| 727519   | 6        |   |          |      |        |              |         |     |      |
| 727520   | 6        | • |          |      |        | ,            |         |     |      |
| 727521   | 6        |   |          |      |        |              |         |     |      |
| 727532   | 2 4      |   |          |      |        |              |         |     |      |
| 727561   | 8        |   |          |      |        |              |         |     |      |
| 727562   | 1 4      |   |          |      |        |              |         |     |      |
| 727563   | 6        |   |          |      |        |              |         |     |      |
| 727581   | 28       |   |          |      |        |              |         |     |      |
| 727581a  | . < 4    |   |          |      |        |              |         |     |      |
| 727780   | . 8      |   |          |      |        |              |         |     | •    |
| 727781   | 6        |   |          |      |        |              |         |     |      |
| 727782   | 6        |   |          |      |        |              |         |     |      |
| 727872   | 18       |   |          |      |        |              |         |     |      |
| 727873   | 18       |   |          |      |        |              |         |     |      |



| analysis C        | ode I1 S             | PLCIAL        | Report        | AC 27 | 76/86 |       | Page       | · I1  |
|-------------------|----------------------|---------------|---------------|-------|-------|-------|------------|-------|
| NATA Certi        | ficate               |               |               |       |       |       | Results in | n ppm |
| Sample            | Αg                   | Αs            | Cd            | Co    | Cu    | Fe    | La         | Мо    |
|                   | < 1                  | 5             | < 5           | <5    | 15    | 2500  | 10         | 5     |
| 657765            | < 1                  | 5             | < 5           | 120   | 5     | 2500  | 3 ()       | < 5   |
| 657766            | 1                    | <b>&lt;</b> 5 | 5             | 5     | 15    | 4000  | 5          | 5     |
| 657769            | ,<br>< 1             | 5             | < 5           | < 5   | 15    | 6000  | < 5        | 5     |
| 658369            | < 1                  | 15            | < 5           | 10    | 4450  | 2.40% | 5          | 50    |
| 658369a           | 6                    | 25            | < 5           | 5     | 4.0   | 3500  | 5          | 10    |
| 658370            | 2                    | < 5           | √ < 5         | < 5   | 20    | 2800  | 5          | < 5   |
| 658371            | 2                    | 5             | < 5           | < 5   | 95    | 2700  | < 5        | <5    |
| 658372            | <1                   | 5             | < 5           | < 5   | 25    | 2900  | < 5        | 10    |
| 659958            | . 4                  | 30            | < 5           | < 5   | 55    | 1600  | 50         | 5     |
| 659959            | . <del>1</del><br><1 | 5             | < 5           | < 5   | 15    | 2200  | < 5        | 20    |
| 727277            | <1                   | < 5           | < 5           | < 5   | . 5   | 2900  | < 5        | 10    |
| 727278            | <1                   | 5             | ₹5            | < 5   | 10    | 2000  | . < 5      | 10    |
| 727279            | <1                   | < 5           | < 5           | 5     | - 5   | 2900  | < 5        | < 5   |
| 727519            | <1                   | < 5           | <b>&lt;</b> 5 | 5     | 10    | 6400  | < 5        | < 5   |
| 727520            | <1                   | < 5           | < 5           | 5     | 15    | 8000  | < 5        | 5     |
| 727521            | < 1                  | 15            | ₹5            | 10    | 30    | 2.75% | 10         | 5     |
| 727532            | <1                   | 5             | < 5           | < 5   | 10    | 5500  | < 5        | 5     |
| 727561            | 2                    | 20            | ₹5            | 15    | 25    | 2.05% | 5          | 5     |
| 727562            | < 1                  | 20            | 5             | 20    | 35    | 3.80% | 10         | 5     |
| 727563            | < 1                  | 25            | <5            | 5     | 35    | 3.15% | 15         | 5     |
| 727581<br>727581a | 6                    | 110           | 10            | 5     | 280   | 2.65% | 10         | 10    |
| 727780            | < 1                  | 5             | ₹5            | < 5   | 5     | 2600  | < 5        | 5     |
| 727781            | < 1                  | < 5           | <5            | < 5   | 5     | 2700  | < 5        | < 5   |
| 727782            | < 1                  | <b>&lt;</b> 5 | ₹5            | ₹5    | 5     | 2800  | < 5        | 5     |
|                   | 2                    | 10            | < 5           | 15    | 30    | 2.30% | 5          | 10    |
| 727872<br>727873  | < 1                  | <5            | ₹5            | < 5   | 10    | 8600  | < 5        | < 5   |
|                   | 1                    | <5            | <5            | 5     | 15    | 6400  | < 5        | 5     |
| 727874            | 1                    | \3            | - •           | -     |       |       | ,          |       |
| Detn limi         | t (1)                | (5)           | (5)           | (5)   | (5)   | (100) | (5)        | (5)   |

| -lucis          | code I1 SP | ECIAL      | Report     | AC 2776       | 6 / 8 6    |               | Pag      | ge 12  |
|-----------------|------------|------------|------------|---------------|------------|---------------|----------|--------|
|                 |            |            |            |               |            | Re            | esults : | in ppm |
| NATA Cert       | 1f1Cate    |            |            |               | •          |               |          |        |
| Sample          | Nı         | ₽b         | S          | Sp            | Sin        | Sr            | Τi       | ٧      |
|                 | _          | 10         | .1150      | 10            | < 5        | 10            | 1350     | 5 5    |
| 657765          | 5          | 15         | 1.10%      | 10            | < 5        | 10            | 390      | 190    |
| 657766          | 130        | 25         | 5000       | < 5           | < 5        | < 5           | 4300     | 100    |
| 657769          | 10         |            | 1750       | <b>&lt;</b> 5 | < 5        | < 5           | 380      | 5      |
| 658369          | 5          | < 5<br>< 5 | 1.18%      | 30            | 10         | 250           | 0 3 8    | 200    |
| 658369a         | 15         |            | 1750       | 70            | 15         | 15            | 5500     | 160    |
| 658370          | 1 0        | 30         | 1550       | 5             | 5          | 5             | 2550     | 120    |
| 658371          | < 5        | 20         | 3150       | 5             | < 5        | < 5           | 4300     | 100    |
| 65 <b>83</b> 72 | 5          | 25         | 470        | 5             | < 5        | 10            | 2650     | 130    |
| 659958          | 5          | 15         | 4500       | 10            | 5          | 25            | 3650     | 640    |
| 659959          | 10         | 25         | 220        | < 5           | < 5        | 5             | 1750     | 45     |
| 727277          | 5          | < 5        |            | <b>&lt;</b> 5 | < 5        | < 5           | 500      | 15     |
| 727278          | 5          | < 5<br>    | 110<br>110 | 10            | < 5        | < 5           | 740      | 15     |
| 727279          | 5          | < 5        | 800        | < 5           | < 5        | < 5           | 240      | < 5    |
| 727519          | 10         | < 5        | 1.500      | < 5           | < 5        | < 5           | 260      | 5      |
| 727520          | 1 0        | ₹5         |            | < 5           | < 5        | < 5           | 170      | 5      |
| 727521          | 10         | < 5        | 1750       | 30            | 5          | 55            | 1400     | 60     |
| 727532          | 15         | 10         | 2.96%      | 10            | 5          | < 5           | 840      | 35     |
| 727561          | 1 0        | 5          | 2350       | 10            | 5          | < 5           | 1150     | 50     |
| 727562          | 3 0        | 20         | 8200       | 20            | 5          | < 5           | 350      | 25     |
| 727563          | 30         | 20         | 1.30%      | 55            | 10         | 10            | 3000     | 50     |
| 727581          | 15         | 20         | 1.60%      | 90            | 10         | 20            | 420      | 8 5    |
| 727581a         | 25         | 4900       | 1.64%      | 3 U<br>< 5    | < <b>5</b> | < 5           | 280      | 110    |
| 727780          | 5          | 5          | 2850       | 5             | < 5        | < 5           | 130      | 20     |
| 727781          | < 5        | < 5        | 560        |               | <5         | <b>&lt;</b> 5 | 120      | 10     |
| 727782          | 5          | < 5        | 340        | 10            | 5          | 5             | 3200     | 4 0    |
| 727872          | 20         | 15         | 6600       | 5             | 5<br>5     | 10            | 2150     | 4 0    |
| 727873          | < 5        | 10         | 4650       | <b>&lt;</b> 5 | < 5 · ·    | 20            | 2150     | 6.0    |
| 727874          | 10         | 10         | 9400       | < 5           | (3         | 20            | 2.55     |        |
| Detn lin        | nit (5)    | (5)        | (10)       | (5)           | (5)        | (5)           | (5)      | (5)    |

|             | •       |         |        |    | 0226 / 66 | p)      | age   | 13  |
|-------------|---------|---------|--------|----|-----------|---------|-------|-----|
| Analysis co | de I1 S | SPECIAL | Report | AC | 2776/86   | ,       | n g c | 13  |
| NATA Certif | icate   |         |        |    |           | Results | in    | ppm |
|             |         |         |        |    |           |         |       |     |
| Sample      | W       | Zn      | Zr     |    |           |         |       |     |
| 657765      | 20      | 15      | 150    |    |           |         |       |     |
| 057766      | 15      | 5       | 6.0    |    |           |         |       |     |
| 657769      | 2 0     | 180     | 240    |    |           |         |       |     |
| 658369      | 15      | 5       | 65     |    |           |         |       |     |
| 658369a     | 25      | 35      | ₹5     |    |           |         |       |     |
| 658370      | 5       | 20      | 390    |    |           |         |       |     |
| 658371      | 10      | 25      | 430    |    |           |         |       |     |
| 658372      | 15      | 10      | 360    |    |           | •       |       |     |
| 659958      | 20      | < 5     | 190    |    |           |         |       |     |
| 659959      | 15      | 5       | 370    |    |           |         |       |     |
| 727277      | 20      | 5       | 230    |    |           |         |       |     |
| 727278      | 15      | < 5     | 75     |    |           |         |       |     |
| 727279      | 20      | < 5     | 150    |    |           |         |       |     |
| 727519      | 5       | < 5     | 70     |    |           |         |       |     |
| 727520      | 15      | 5       | 85     |    |           |         |       |     |
| 727521      | 2 5     | < 5     | 50     |    |           |         |       |     |
| 727532      | 15      | 75      | 4 O    |    |           |         |       |     |
| 727561      | 20      | 10      | 150    |    |           |         |       |     |
| 727562      | 20      | 5       | 260    |    |           |         |       |     |
| 727563      | 15      | 5       | 100    |    |           |         |       |     |
| 727581      | 5       | 35      | 60     |    |           |         |       |     |
| 727581a     | 100     | 780     | 10     |    |           |         |       |     |
| 727780      | 3.0     | 10      | 8 O    | ;  |           |         |       |     |
| 727781      | 10      | < 5     | 35     |    |           |         |       |     |
| 727782      | 15      | < 5     | 25     |    |           |         |       |     |
| 727872      | 3 0     | 25      | 440    |    |           |         |       |     |
| 727873      | 10      | 1.5     | 370    |    |           |         |       |     |
| 727874      | 3 0     | . 15    | 380    |    |           |         |       |     |
|             |         |         |        |    |           |         |       |     |
| Detn limit  | (5)     | (5)     | (5)    |    |           |         |       |     |

ANALYSIS g/tonne

|   |                |                    |                |                 |                                                            | •                                     |
|---|----------------|--------------------|----------------|-----------------|------------------------------------------------------------|---------------------------------------|
|   | SAMPLE<br>MARK | GOLD<br>Au         | PLATINUM<br>Pt | PALLADIUM<br>Pd |                                                            |                                       |
| : | 657765         | <0.05              | <0.005         | 0.010           | IR 1313                                                    | 64-66m                                |
|   | 657766         | 40.05              | <0.005         | <0.005          |                                                            | 66- <b>6</b> 8                        |
|   | 657769         | <0.05              | <0.005         | <0.005          |                                                            | 68-70                                 |
|   | 658369         | <0.05              | <0.005         | <0.005          | IR 1329                                                    | 68-69 m                               |
|   | 658369a        | 0.50               | <0.005         | 0.040           | SId                                                        | · · · · · · · · · · · · · · · · · · · |
|   | 658370         | <0.05              | <0.005         | <0.005          | aman kerana dan ana ara-ara-ara-ara-ara-ara-ara-ara-ara-ar | 69-70                                 |
|   | 658371         | <0.05              | <0.005         | <0.005          |                                                            | 70-71                                 |
|   | 658372         | <0.05              | <0.005         | <0.005          |                                                            | 71-72                                 |
| - | 659958         | <0.05              | <0.005         | <0.005          | IR 1378                                                    | 68-69 N                               |
|   | 659959         | <0.05              | <0.005         | 0.030           |                                                            | 69-70                                 |
|   | 727277         | <0.05              | <0.005         | 0.015           | IR1449                                                     | 82-832                                |
|   | 727278         | <0.05              | <0.005         | 0.005           |                                                            | 83-84                                 |
|   | 727279         | <0.05              | <0.005         | <0.005          |                                                            | 84-85                                 |
|   | 727519         | <0.05              | <0.005         | 0.015           | IR 1421                                                    | 94-95n                                |
|   | 727520         | <0.05              | <0.005         | 0.025           |                                                            | 9546                                  |
|   | - 727521       | <0.05              | <0.005         | 0.010           |                                                            | 96-97                                 |
|   | 727532         | ⊲.05               | <0.005         | 0.015           | -                                                          | 107-108                               |
|   | 727561         | <0.05              | <0.005         | 0.025           | TR 1422                                                    | 93-94n                                |
|   | 727562         | . <b>&lt;0.</b> 05 | <0.005         | 0.020           |                                                            | 94-95                                 |
|   | 727563         | <0.05              | <0.005         | <0.005          |                                                            | 9596                                  |

ANALYSIS g/tonne

| SAMPLE<br>MARK | GOLD<br>Au | PLATINUM<br>Pt | PALLADIUM<br>Pd |               |          |
|----------------|------------|----------------|-----------------|---------------|----------|
| 727581         | <0.05      | <0.005         | <0.005          | IR 1422       | 113-114m |
| 727581a        | 1.34       | <0.005         | 0.060           | Std           |          |
| 727780         | <0.05      | <0.005         | <0.005          | IR1427        | 91-92n   |
| 727781         | <0.05      | <0.005         | 0.015           | 7 1 - 1 1 - 7 | 92-93    |
| 727782         | <0.05      | <0.005         | <0.010          |               | 93-94    |
| 727872         | <0.05      | <0.005         | 0.015           | FR 1429       | 9293 n   |
| 727873         | <0.05      | <0.005         | 0.010           |               | 93-94    |
| 727874         | <0.05      | <0.005         | 0.005           |               | 94-95.   |
|                |            |                |                 |               |          |



| Analysis co | de X3 |     | Repor | t AC 27 | 76/86 |       | Pa      | ige X1 |
|-------------|-------|-----|-------|---------|-------|-------|---------|--------|
| NATA Certif | icate |     |       |         |       |       | Results | in ppm |
|             |       |     |       |         |       |       |         |        |
| Sample      | Th    | Bi  | Ce    | Ир      | Se    | Ta    | Te      | U      |
| 657765      | < 4   | < 4 | 60    | 16      | 10    | < 1.0 | <10     | 28     |
| 657766      | < 4   | < 4 | 120   | < 4     | 4     | < 10  | < 10    | 2.0    |
| 657769      | 12    | < 4 | 60    | 46      | 2     | < 10  | < 10    | 8      |
| 658369      | < 4   | < 4 | 3 0   | 4       | < 2   | 10    | < 10    | 8      |
| 658369a     | < 4   | 6   | 50    | 8       | 6     | < 10  | < 10    | < 4    |
| 658370      | 18    | < 4 | 9 0   | 56      | 8 8   | < 10  | < 10    | 180    |
| 658371      | 16    | < 4 | 6 5   | 3 4     | 3 1   | < 10  | < 10    | 160    |
| 658372      | 6     | < 4 | 50    | 4 6     | 52    | < 10  | < 10    | 375    |
| 659958      | 8     | 4   | 3 0   | 28      | 16    | < 10  | < 10    | 105    |
| 659959      | 26    | < 4 | 150   | 4 0     | 175   | < 10  | < 10    | 1340   |
| 727277      | 10    | < 4 | 4 D   | 1 4     | 3     | < 10  | < 10    | < 4    |
| 727278      | < 4   | < 4 | < 20  | < 4     | ₹2    | < 10  | < 10    | 4      |
| 727279      | < 4   | 6   | 20    | 4       | 3     | < 10  | < 10    | 4      |
| 727519      | < 4   | < 4 | < 20  | < 4     | < 2   | < 1.0 | < 10    | 8      |
| 727520      | < 4   | < 4 | < 2 0 | < 4     | < 2   | < 10  | < 10    | 1 4    |
| 727521      | < 4   | < 4 | 20    | < 4     | < 2   | < 10  | < 10    | 1 4    |
| 727532      | < 4   | < 4 | 50    | 6       | 6     | < 10  | < 10    | < 4    |
| 727561      | < 4   | < 4 | 30    | 6       | 2     | < 10  | < 10    | 2 4    |
| 727562      | 4     | < 4 | < 20  | 12      | 3     | < 10  | < 10    | 8 4    |
| 727563      | < 4   | < 4 | 30    | < 4     | < 2   | 10    | < 10    | 28     |
| 727581      | - 12  | < 4 | 6.0   | 16      | < 2   | < 10  | < 10    | 4      |
| 727581a     | 4     | < 4 | 25    | < 4     | <2 .  | < 10  | < 10    | < 4    |
| 727780      | < 4   | < 4 | 30    | < 4     | < 2   | < 10  | < 10    | < 4    |
| 727781      | < 4   | < 4 | < 20  | < 4     | < 2   | < 10  | < 10    | 6      |
| 727782      | < 4   | < 4 | < 20  | < 4     | < 2   | < 10  | < 10    | 4      |
| 727872      | 8     | < 4 | 55    | 24      | < 2   | < 10  | < 10    | < 4    |
| 727873      | 6     | < 4 | 25    | 16      | < 2   | < 10  | < 10    | < 4    |
| 727874      | < 4   | < 4 | 3 0   | 1 4     | < 2   | < 10  | < 10    | 10     |
| Detn limit  | (4)   | (4) | (20)  | (4)     | (2)   | (10)  | (10)    | (4)    |



| Analysis cod | de X3 | Report | AC 2776/86 | P       | age X2 |
|--------------|-------|--------|------------|---------|--------|
| NATA Certif  | icate |        |            | Results | ın ppm |
| Sample       | Y     | •      |            |         |        |
| 657765       | 30    |        |            |         |        |
| 657766       | 86    |        |            |         |        |
| 657769       | 4 4   |        |            |         |        |
| 658369       | 4     |        |            |         |        |
| 658369a      | 12    |        |            |         |        |
| 658370       | 4 4   |        |            |         |        |
| 658371       | 36    |        |            |         |        |
| 658372       | 36    |        |            |         |        |
| 659958       | 20    |        |            |         | •      |
| 659959       | 6 8   |        |            |         |        |
| 727277       | . 14  |        |            |         |        |
| 727278       | 8     |        |            |         |        |
| 727279       | 1 0   |        | •          |         |        |
| 727519       | 6     |        |            |         |        |
| 727520       | 6     |        |            |         |        |
| 727521       | 6     |        |            |         |        |
| 727532       | 2 4   |        |            |         |        |
| 727561       | 8     |        |            |         |        |
| 727562       | 1 4   |        |            |         | •      |
| 727563       | 6     |        |            |         |        |
| 727581       | 28    |        |            |         |        |
| 727581a      | < 4   | •      |            |         |        |
| 727780       | 8     |        | •          |         |        |
| 727781       | 6     |        |            |         |        |
| 727782       | 6     |        |            |         |        |
| 727872       | 18    |        |            |         | 1      |
| 727873       | 18    |        |            | •       |        |
| 727874       | 18    |        |            |         |        |
| Detn limit   | (4)   |        |            |         |        |
|              | • • / |        |            |         |        |



| analysis o | ode I1 | SPECIAL | Report | AC 27 | 76/86 |               | Pag              | ge I1  |
|------------|--------|---------|--------|-------|-------|---------------|------------------|--------|
| NATA Certi | ficate |         |        |       |       |               | Results :        | in ppm |
| _          |        | ٨٠      | Cd     | Co    | Ču    | Fe            | La               | Mo     |
| Sample     | Ag     | As      | Cu     | C ()  | Cu    |               |                  |        |
| 657765     | < 1    | 5       | < 5    | < 5   | 15    | 2500          | 10               | 5      |
| 657766     | < 1    | 5       | < 5    | 120   | 5     | 2600          | 3 0              | < 5    |
| 657769     | 1      | < 5     | 5      | 5     | 15    | 4000          | 5                | 5      |
| 658369     | < 1    | 5       | < 5    | < 5   | 15    | 6000          | < 5              | 5      |
| 658369a    | < 1    | 15      | < 5    | 10    | 4450  | 2.40%         |                  | 50     |
| 658370     | 6      | 25      | < 5    | 5     | 4 0   | 3500          | 5                | 10     |
| 658371     | 2      | < 5     | < 5    | < 5   | 20    | 2800          | 5                | < 5    |
| 658372     | . 2    | 5       | < 5    | < 5   | 95    | 27 <b>0</b> 0 | < 5              | < 5    |
| 659958     | < 1    | 5       | < 5    | < 5   | 25    | 2900          | < 5              | 1'0    |
| 659959     | 4      | 30      | < 5    | < 5   | 55    | 1600          | 50               | 5      |
| 727277     | < 1    | 5       | < 5    | < 5   | 15    | 2 2 0 0       | < 5              | 20     |
| 727278     | < 1    | < 5     | < 5    | < 5   | 5     | 2900          | < 5              | 10     |
| 727279     | < 1    | 5       | < 5    | < 5   | 10    | 2000          | < 5              | . 10   |
| 727519     | < 1    | < 5     | < 5    | 5     | 5     | 2900          | < 5              | < 5    |
| 727520     | < 1    | < 5     | < 5    | 5     | 10    | 6400          | < 5              | < 5    |
| 727521     | . <1   | < 5     | < 5    | 5     | 15    | 8000          | < 5              | 5      |
| 727532     | < 1    | 15      | < 5    | 10    | 3 0   | 2.75%         | 10               | 5      |
| 727561     | < 1    | 5       | < 5    | < 5   | 10    | 5500          | < 5              | 5      |
| 727562     | . 2    | 20      | < 5    | 15    | 25    | 2.05%         | <u> </u>         | 5      |
| 727563     | <1     | 20      | 5      | 20    | 35    | 3.80%         | 10               | 5      |
| 727581     | · <1   | 25      | ₹5     | 5     | 35    | 3.15%         | . 15             | 5      |
| 727581a    | 6      | 110     | 10     | 5     | 280   | 2.65%         | . 10             | 10     |
| 727780     | < 1    | 5       | < 5    | < 5   | 5     | 2600          | < 5              | 5      |
| 727781 -   | < 1    | < 5     | < 5    | < 5   | 5     | 2700          | · <5             | < 5    |
| 727782     | < 1    | < 5     | <5     | < 5   | 5     | 2800          | < 5              | 5      |
| 727872     | 2      | 10      | < 5    | 15    | 30    | 2.30%         | <u> </u>         | 10     |
| 727873     | <1     | < 5     | <5     | < 5   | 10    | 8600          | <sub>,</sub> < 5 | < 5    |
| 727874     | 1      | < 5     | < 5    | 5     | 15    | 6400          | < 5              | 5      |
| Detn limi  | t (1   | ) (5)   | (5)    | (5)   | (5)   | (100)         | ) (5)            | (5)    |



|                 | code I1 SP    | ECIAL | Report | AC 2778 | 6/86          |     | Pag     | je I2      |
|-----------------|---------------|-------|--------|---------|---------------|-----|---------|------------|
|                 |               |       |        |         |               | Re  | sults i | n ppm      |
| NATA Cert       | ificate       |       |        |         | •             |     |         |            |
| Sample          | Nι            | Pb    | S      | d 2     | Sn            | Sr  | Ti      | ٧          |
|                 |               | 10    | 1150   | 10      | <b>&lt;</b> 5 | 10  | 1350    | 55         |
| 657765          | 5             | 15    | 1.10%  | 10      | <b>&lt;</b> 5 | 10  | 390     | 190        |
| 657766          | 130           | 25    | 5000   | < 5     | < 5           | < 5 | 4300    | 100        |
| 657769          | 10            |       | 1750   | < 5     | ₹5            | < 5 | 380     | 5          |
| 658369          | 5             | < 5   | 1.18%  | 30      | 10            | 250 | 860     | 200        |
| 658369a         | * 15          | < 5   | 1750   | 70      | 15            | 15  | 5500    | 160        |
| 658 <b>3</b> 70 | 10            | 3.0   | 1550   | 5       | 5             | 5   | 2550    | 120        |
| 658371          | <b>&lt;</b> 5 | 20    | 3150   | 5       | < 5           | < 5 | 4300    | 100        |
| 658 <b>3</b> 72 | 5             | 25    | 470    | 5       | < 5           | 10  | 2650    | 130        |
| 659958          | 5             | 15    | 4500   | 10      | 5             | 25  | 3650    | 640        |
| 659959          | 10            | 25    | 220    | < 5     | < 5           | 5   | 1750    | 45         |
| 727277          | 5             | < 5   | 110    | <5      | < 5           | < 5 | 500     | 15         |
| 727278          | 5             | < 5   | 110    | 10      | < 5           | < 5 | 740     | 15         |
| 727279          | 5             | < 5   | 800    | < 5     | < 5           | < 5 | 240     | < 5        |
| 727519          | 10            | < 5   | 1500   | < 5     | < 5           | < 5 | 260     | 5          |
| 727520          | 10            | < 5   |        | <5      | <b>&lt;</b> 5 | < 5 | 170     | 5          |
| 727521          | 10            | < 5   | 1750   | 30      | 5             | 55  | 1400    | 60         |
| 727532          | 15            | 10    | 2.96%  | 10      | 5             | < 5 | 840     | 35         |
| 727561          | 10            | 5     | 2350   | 10      | 5             | < 5 | 1150.   | 50         |
| 727562          | . 30          | 20    | 8200   | 20      | 5             | < 5 | 350     | 25         |
| 727563          | 3.0           | 20    | 1.30%  | 55      | 10            | 10  | 3000    | 5 <b>0</b> |
| 727581          | . 15          | 20    | 1.60%  | 90      | 10            | 20  | 420     | 85         |
| 727581a         | 25            | 4900  | 1.64%  | < 5     | < 5           | < 5 | 280     | 110        |
| 727780          | 5             | 5     | 2850   | 5       | < 5           | < 5 | 130     | 20         |
| 727781          | < 5           | < 5   | 560    | 10      | < 5           | < 5 | 120     | 10         |
| 727782          | 5             | < 5   | 340    | 5       | 5             | 5   | 3200    | 40         |
| 727872          | 20            | 15    | 6600   | < 5     | 5             | 10  | 2150    | 40         |
| 727873          | < 5           | 10    | 4650   | < 5     | <5 ·          | 20  | 2150    | 6.0        |
| 727874          | 1 0           | 10    | 9400   | ( )     | \ 3           |     | -       |            |
|                 |               | ·     |        |         |               |     |         | 15         |
| Detn lim        | it (5)        | (5)   | (10)   | (5)     | (5)           | (5) | (5)     | (5)        |



| Analysis  | code I1  | SPECIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Report     | AC 2776/86 | Pa      | ge | Ι3  |  |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------|----|-----|--|
| NATA Cert | tificate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | Results | in | ppm |  |
| o-mple    | W        | Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zr         |            |         |    |     |  |
| Sample    | **       | <b></b> / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |         |    |     |  |
| 657765    | 20       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150        |            |         |    |     |  |
| 657766    | 15       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60         |            |         |    |     |  |
| 657769    | 20       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240        |            |         |    |     |  |
| 658369    | 15       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 5        |            |         |    |     |  |
| 658369a   | 25       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 5        |            |         |    |     |  |
| 658370    | 5        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 390        |            |         |    |     |  |
| 658371    | 10       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 430        |            |         |    |     |  |
| 658372    | 15       | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360        |            |         |    |     |  |
| 659958    | 2 0      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190        |            |         |    |     |  |
| 659959    | 15       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 370        |            |         |    |     |  |
| 727277    | 2 0      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 230        |            |         |    |     |  |
| 727278    | 15       | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75         |            |         |    |     |  |
| 727279    | 20       | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150        |            |         |    |     |  |
| 727519    | 5        | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70         |            |         |    |     |  |
| 727520    | 15       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85         |            |         |    |     |  |
| 727521    | 2 5      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50         |            |         |    |     |  |
| 727532    | 15       | 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>4</b> O |            |         |    |     |  |
| 727561    | 20       | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150        |            |         |    |     |  |
| 727562    | 20       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260        |            |         |    |     |  |
| 727563    | 15       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100        |            |         |    |     |  |
| 727581    | 5        | 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0        |            |         |    |     |  |
| 727581a   | 100      | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10         |            |         |    |     |  |
| 727780    | 3 0      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 0        |            |         |    |     |  |
| 727781    | 1 0      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         |            |         |    |     |  |
| 727782    | 1,5      | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25         |            |         |    |     |  |
| 727872    | 3 0      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 440        |            |         |    |     |  |
| 727873    | 10       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 370        |            | •       |    |     |  |
| 727874    | 3 0      | - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 380        |            | •       |    |     |  |
|           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |         |    |     |  |
| Detn lim  | it (5    | ) (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)        |            |         |    |     |  |
|           |          | and the second s |            |            |         |    |     |  |

ANALYSIS g/tonne

|   |                |            |                |                 |         | •              |
|---|----------------|------------|----------------|-----------------|---------|----------------|
|   | SAMPLE<br>MARK | COLD<br>Au | PLATINUM<br>Pt | PALLADIUM<br>Pd |         |                |
| : | 657765         | <0.05      | <0.005         | 0.010           | IR 1313 | 64-6Cm         |
|   | 657766         | <0.05      | <0.005         | <0.005          |         | 66- <b>6</b> 8 |
|   | 657769         | <0.05      | ∢.005          | <0.005          |         | 68-70          |
| - | 658369         | ◆.05       | <0.005         | ⊲.005           | TR 1329 | 68-69 m        |
|   | 658369a        | 0.50       | <0.005         | 0.040           | 51d     | *              |
|   | 658370         | <0.05      | <0.005         | <0.005          |         | 69-70          |
|   | 658371         | <0.05      | <0.005         | <0.005          |         | 70-71          |
|   | 658372         | <0.05      | <0.005         | <0.005          |         | 71-72          |
| _ | 659958         | <0.05      | <0.005         | <0.005          | IR 1378 | 68-69 ~        |
|   | 659959         | <0.05      | <0.005         | 0.030           |         | 69-70          |
|   | 727277         | <0.05      | <0.005         | 0.015           | TR1449  | 82-83.         |
|   | 727278         | <0.05      | <0.005         | 0.005           |         | 83-84          |
|   | 727279         | <0.05      | <0.005         | <0.005          |         | 84-85          |
|   | 727519         | <0.05      | <0.005         | 0.015           | IR 1421 | 94-95n         |
|   | 727520         | <0.05      | <0.005         | 0.025           |         | 9546           |
|   | 727521         | <0.05      | <0.005         | 0.010           |         | 96-97          |
| - | 727532         | <0.05      | <0.005         | 0.015           |         | 107-108        |
|   | 727561         | <0.05      | <0.005         | 0.025           | JR 1422 | 93-94n         |
|   | 727562         | <0.05      | <0.005         | 0.020           |         | 94-95          |
|   | 727563         | <0.05      | <0.005         | ⊲.005           |         | 95.46          |
|   |                |            |                |                 |         |                |

Method: A7/3

Report AC 2776/86 Page 2

ANALYSIS g/tonne

| SAMPLE<br>MARK | GOLD<br>Au | PLATINUM<br>Pt | PALLADI UM<br>Pd |          |          |
|----------------|------------|----------------|------------------|----------|----------|
| 727581         | <0.05      | <0.005         | <0.005           | TR 1422  | 113-114m |
| 727581a        | 1.34       | <0.005         | 0.060            | Std      |          |
| 727780         | <0.05      | <0.005         | <0.005           | IR1427   | 91-92n   |
| 727781         | <0.05      | <0.005         | 0.015            | 121-11-1 | 92-93    |
| 727782         | <0.05      | <0.005         | <0.010           |          | 93-94    |
| 727872         | <0.05      | ∢.005          | 0.015            | FR 1429  | 92932    |
| 727873         | <0.05      | <0.005         | 0.010            |          | 93.94    |
| 727874         | <0.05      | <0.005         | 0.005            |          | 94.95    |
|                |            |                |                  |          |          |

Method: A7/3



| Analysis coo | ie X3 |      | Report | AC 27 | 76/86 |       | F a     | ge X1      |
|--------------|-------|------|--------|-------|-------|-------|---------|------------|
| NATA Certifi | .cate |      |        |       |       |       | Results | ın ppm     |
| Sample       | Th    | ßa . | Сe     | Nb    | Se    | ï a   | Эľ      | U          |
| n57765       | < 4   | < 4  | 6.0    | 1.6   | 10    | < 1.0 | <10     | 28         |
| 657766       | < 4   | < 4  | 120    | < 4   | 4     | < 10  | < 10    | 20         |
| 657769       | 12    | < 4  | 6.0    | 46    | 2     | < 1.0 | < 1.0   | 8          |
| 658369       | < 4   | < 4  | 3 0    | 4     | <2    | 10    | < 10    | ' 8        |
| 658369a      | < 4   | 6    | 50     | 8     | 6     | < 10  | < 10    | < 4        |
| 658370       | 18    | < 4  | .9 0   | 56    | 6.8   | < 1.0 | < 1.0   | 180        |
| 658371       | 16    | < 4  | 6.5    | 3 4   | 3 1   | < 10  | < 10    | 160        |
| 658372       | 6     | < 4  | 5 0    | 4 6   | 52    | <10   | < 10    | 375        |
| 659958       | 8     | 4    | 3 0    | 28    | 16    | < 10  | < 10    | 105        |
| 659959       | 26    | < 4  | 150    | 4 0   | 175   | < 10  | < 10    | 1340       |
| 727277       | 10    | < 4  | 4 0    | 1 4   | 3     | < 10  | < 10    | < 4        |
| 727278       | < 4   | < 4  | < 2 0  | < 4   | < 2   | <10   | < 10    | . 4        |
| 727279       | < 4   | 6    | 20     | 4     | 3     | < 10  | < 10    | 4          |
| 727519       | < 4   | < 4  | < 20   | < 4   | < 2   | < 1,0 | < 10    | 8          |
| 727520       | < 4   | < 4  | < 20   | < 4   | < 2   | < 10  | < 10    | 14         |
| 727521       | < 4   | < 4  | 20     | < 4   | < 2   | < 10  | < 10    | 14         |
| 727532       | < 4   | < 4  | 50     | 6     | 6     | < 10  | < 10    | < 4        |
| 727561       | < 4   | < 4  | 30     | 6     | 2     | < 10  | < 10    | 2 4        |
| 727562       | 4     | < 4  | < 20   | 12    | 3     | < 10  | < 10    | 8 4        |
| 727563       | < 4   | < 4  | 30     | < 4   | < 2   | 10    | < 10    | 2 <b>8</b> |
| 727581       | 1 2   | < 4  | 6 0    | 16    | < 2   | < 10  | < 10    | 4          |
| 727581a      | 4     | < 4  | 25     | < 4   | < 2   | < 10  | < 10    | < 4        |
| 727780       | < 4   | < 4  | 3 0    | · < 4 | < 2   | < 10  | < 10    | < 4        |
| 727781       | < 4   | < 4  | < 20   | < 4   | < 2   | < 10  | < 10    | 6          |
| 727782       | < 4   | < 4  | < 20   | < 4   | < 2   | < 10  | < 10    | 4          |
| 727872       | 8     | < 4  | 5 5    | 2 4   | < 2   | < 10  | < 10    | < 4        |
| 727873       | 6     | < 4  | 25     | 16    | < 2   | < 10  | < 10    | < 4        |
| 727874       | < 4   | < 4  | 3 0    | 1 4   | <2    | < 10  | < 10    | 10         |
| Detn limit   | (4)   | (4)  | (20)   | (4)   | (2)   | (10)  | (10)    | (4)        |

 $\left( \frac{g(s)}{s} \right) = \frac{1}{\left( \frac{g(s)}{s} \right) \left( \frac{g(s)}{s}$ 

Detn limit

(4)

| Analysis | code X3  |   | Roport | AC 2776, | /86 |    | Fa    | ge | X 2 |
|----------|----------|---|--------|----------|-----|----|-------|----|-----|
| Vuaria   |          |   | •      |          |     |    |       |    |     |
| NATA Cer | tificate |   |        |          |     | ₽e | sults | ın | bbw |
| Sample   | Y        |   |        | ٠        |     |    |       |    |     |
| 657765   | 3 0      |   |        |          |     |    |       |    |     |
| 657766   | 8 6      |   | •      |          |     |    |       |    |     |
| 657769   | . 44     |   |        |          |     |    |       |    |     |
| 658369   | 4        |   |        |          |     |    |       |    |     |
| 658369a  | 12       |   |        |          |     |    |       |    |     |
| 658370   | 44       |   |        |          |     |    |       |    |     |
| 658371   | 3 6      |   |        |          |     |    |       |    |     |
| 658372   | 3 6      |   |        |          |     |    |       |    |     |
| 659958   | 20       |   |        |          |     |    |       |    |     |
| 659959   | 6.8      |   |        |          |     |    |       |    |     |
| 727277   | 14       |   |        |          |     |    |       |    |     |
| 727278   | 8        |   |        |          |     |    |       |    |     |
| 727279   | 10       |   |        |          |     |    |       |    |     |
| 727519   | . 6      |   |        |          |     |    |       |    |     |
| 727520   | 6        |   |        |          |     |    |       |    |     |
| 727521   | 6        |   |        |          |     |    |       |    |     |
| 727532   | 2 4      |   |        |          |     |    |       |    |     |
| 727561   | 8        |   |        |          |     |    |       |    |     |
| 727562   | 1 4      |   |        |          |     |    |       | •  |     |
| 727563   | 6        |   |        |          |     |    |       |    |     |
| 727581   | 2.8      |   |        |          |     |    |       |    |     |
| 727581a  | < 4      | - |        |          |     |    |       |    |     |
| 727780   | 8        | • |        |          |     |    |       |    |     |
| 727781   | . 6      |   |        |          |     |    |       |    |     |
| 727782   | 6        |   |        |          |     |    |       |    |     |
| 727872   | 18       |   |        |          |     |    |       |    |     |



| analysis  | code I1 S | PICIAL           | Report     | . AC 27    | 76/86 |              | Page          | J 1            |
|-----------|-----------|------------------|------------|------------|-------|--------------|---------------|----------------|
| NATA Cert | ificate   |                  |            |            |       | Ŗ            | Results in    | ppm            |
| IVD I I   |           |                  | -          |            |       |              |               |                |
| •         | •         |                  |            |            |       |              |               |                |
| Sample    | Ag        | 2 A              | Cd         | Co         | Cu    | Fψ           | La            | Мо             |
|           | < 1       | 5                | < 5        | < 5        | 15    | 2500         | 1.0           | 5              |
| 657765    |           | 5<br>5           | < 5        | 120        | 5     | 2600         | 3.0           | < 5            |
| 657766    | <1 .<br>1 | < 5              | 5          | 5          | 15    | 400D         | 5             | 5              |
| 657769    | •         | 5                | < 5        | < <b>5</b> | 15    | 6000         | < 5           | 5              |
| 658369    | < 1       | 5<br>15          | < 5        | 10         | 4450  | 2.40%        | 5             | 50             |
| 658369a   | < 1       |                  | < 5        | 5          | 4 0   | 3500         | 5             | 10             |
| 658370    | 6         | 25               | < 5        | < <b>5</b> | 20    | 2800         | 5             | < 5            |
| 658371    | 2         | < 5              |            | < 5        | 95    | 2700         | < 5           | < 5            |
| 658372    | , 2       | 5                | < 5        | < 5        | 25    | 2900         | < 5           | 10             |
| 659958    | < 1       | 5                | < 5        | < 5        | 5 5   | 1600         | 50            | 5              |
| 659959    | 4         | 30               | < 5        | < 5        | 15    | 2200         | <b>₹</b> 5    | 20             |
| 727277    | < 1       | 5                | <b>₹</b> 5 |            | 5     | 2900         | <b>&lt;</b> 5 | 10             |
| 727278    | < 1       | <b>&lt;</b> 5    | < 5        | < 5        | 10    | 2000         | <b>₹</b> 5    | 10             |
| 727279    | < 1       | 5                | < 5        | < 5        |       |              | < 5           | < 5            |
| 727519    | < 1       | < 5<br>-         | < 5        | 5          | 5     | 2900<br>6400 | < 5           | < 5            |
| 727520    | < 1       | < 5              | <b>₹</b> 5 | 5          | 10    |              | < 5           | 5              |
| 727521    | < 1       | < 5              | < 5        | 5          | 15    | 8000         | 10            | 5<br>5         |
| 727532    | < 1       | 15               | < 5        | 10         | 30    | 2.75%        |               | 5              |
| 727561    | < 1       | 5                | < 5        | < 5        | 10    | 5500         | < 5<br>5      | 5<br>5         |
| 727562    | 2         | 20               | < 5        | 15         | 25    | 2.05%        |               |                |
| 727563    | < 1       | 20               | 5          | 20         | 35    | 3.80%        | 10            | 5 .            |
| 727581    | · < 1     | 25               | < 5        | 5          | 35    | 3.15%        | 15            | 5              |
| 727581a   | 6         | 110              | 10         | 5          | 280   | 2.65%        | 1.0           | 10             |
| 727780    | < 1 .     | 5,               | < 5        | < 5        | 5     | 2600         | < 5           | 5              |
| 727781    | < 1       | < 5              | < 5        | · < 5      | 5     | 2700         | < 5           | < 5            |
| 727782    | < 1       | < 5              | < 5        | < 5        | 5     | 2800         | < 5           | 5              |
| 727872    | 2         | 10               | < 5        | 15         | 30    | 2.30%        | 5             | 10             |
| 727873    | < 1       | <sub>.</sub> < 5 | < 5        | < 5        | 10    | 8600         | < 5           | < 5            |
| 727874    | 1         | < 5              | < 5        | 5          | 15    | 6400         | < 5           | <sup>*</sup> 5 |
|           |           | (5)              | / = 1      | (5)        | (5)   | (100)        | (5)           | (5)            |
| Detn limi | it (1)    | (5)              | (5)        | (5)        | (5)   | (100/        | (3)           | ( ) )          |

··· (()) continuited

| Analysis code   | e I1 SP  | ECIAL | Report                | AC 2770       | 5/86          |      | Pag      | e 12  |
|-----------------|----------|-------|-----------------------|---------------|---------------|------|----------|-------|
|                 |          |       |                       |               | -             | Re   | esults i | n ppm |
| NATA Certifi    | cate     |       |                       |               | -             |      |          |       |
| Sample          | Nı       | f'b   | S                     | Sb            | Sn            | Sr   | Ti       | V     |
|                 | _        | 10    | 1150                  | 10            | < 5           | 10   | 1350     | 5.5   |
| 657765          | 5        |       | 1.10%                 | 10            | < 5           | 10   | 390      | 190   |
| .657766         | 130      | 15    | 5000                  | < 5           | < 5           | < 5  | 4300     | 100   |
| 657769          | . 10     | 25    | 1750                  | < 5           | < 5           | < 5  | 380      | 5     |
| 658369          | 5        | < 5   | 1.18%                 | 30            | 10            | 250  | 0 9 8    | 200   |
| 658369a         | ,15      | < 5   | 1750                  | 70            | 15            | 15   | 5500     | 160   |
| 658370          | 10       | 30    | 1550                  | 5             | 5             | 5    | 2550     | 120   |
| 658371          | < 5<br>- | 20    | 3150                  | 5             | < 5           | < 5  | 4300     | 100   |
| 658 <b>3</b> 72 | 5        | 25    | 470                   | 5             | < 5           | 10   | 2650     | 130   |
| 659958          | 5        | 15    | 4500                  | 10            | 5             | 25   | 3650     | 640   |
| 659959          | 10       | 25    | 220                   | < 5           | < 5           | 5    | 1750     | 4 5   |
| 727277          | 5        | < 5   | 110                   | <b>&lt;</b> 5 | < 5           | < 5  | 500      | 15    |
| 727278          | 5        | < 5   | 110                   | 10            | < 5           | < 5  | 740      | 15    |
| 727279          | 5        | < 5   | 800                   | < 5           | < 5           | < 5  | 240      | < 5   |
| 727519          | 10       | < 5   | 1500                  | < 5           | < 5           | < 5  | 260      | 5     |
| 727520          | 10       | < 5   | 1750                  | < 5           | ₹5            | < 5  | 170      | 5 ·   |
| 727521          | 10       | < 5   | 2.96%                 | 30            | 5             | 55   | 1400     | 60    |
| 727532          | 15       | 10    |                       | 10            | 5             | < 5  | 840      | 35    |
| 727561          | 10       | 5     | 2350<br>8200          | 10            | 5             | < 5  | 1150 -   | 50    |
| 727562          | . 30     | 20    |                       | 20            | 5             | < 5  | 350      | 25    |
| 727563          | 3 0      | 20    | 1.30%                 | 5 5           | 10            | 10   | 3000     | 50    |
| 727581          | 15       | 20    | 1.60%                 | 90            | 10            | 20   | 420      | 85    |
| 727581a         | 25       | 4900  | 1.64%<br>2850         | < 5           | < 5           | < 5⁻ | 280      | 110   |
| 727780          | 5        | 5     |                       | 5             | < 5           | < 5  | 130      | 20    |
| 727781          | < 5      | < 5   | 560<br>340            | 10            | <b>&lt;</b> 5 | < 5  | 120      | 10    |
| 727782          | 5        | < 5   |                       | 5             | 5             | 5 -  | 3200     | 4 0   |
| 727872          | 20       | 15    | 6600                  | < 5           | 5             | 10   | 2150     | 40    |
| 727873          | < 5      | 10    | 4650<br>94 <b>0</b> 0 | <5            | <5 ·          | 20   | 2150     | 6.0   |
| 727874          | 10       | 10    | 9400                  | \             |               |      |          |       |
| Detn limit      | (5)      | (5)   | (10)                  | (5)           | (5)           | (5)  | (5)      | (5)   |



| Analysis   | code I1 | SPECIAL | Report       | Α( | 2776/86                                 | P :     | ag e | 13  |
|------------|---------|---------|--------------|----|-----------------------------------------|---------|------|-----|
| NATA Cert  | ificate |         |              |    |                                         | Results | in   | ppm |
| Sample     | W       | 7 n     | Zr           |    |                                         |         |      |     |
| 657765     | 20      | 15      | 150          |    |                                         |         |      |     |
| o57766     | 15      | 5       | 0            |    | * · · · · · · · · · · · · · · · · · · · |         |      |     |
| 657769     | 2 0     | 180     | 240          |    |                                         |         |      |     |
| 658369     | 15      | 5       | 65           |    |                                         |         |      |     |
| 658369a    | 25      | 35      | < 5          |    |                                         |         |      |     |
| 658370     | 5       | 20      | 390          |    |                                         |         |      |     |
| 658371     | 10      | 25      | 430          |    |                                         | •       |      |     |
| 658372     | 15      | 10      | 360          |    |                                         |         |      |     |
| 659958     | 20      | < 5     | 190          |    |                                         |         |      |     |
| 659959     | 15      | 5       | 370          |    |                                         |         |      |     |
| 727277     | 2 0     | 5       | 230          |    |                                         |         |      |     |
| 727278     | 15      | < 5     | 75           |    |                                         |         |      |     |
| 727279     | 20      | < 5     | 150          |    |                                         |         |      |     |
| 727519     | 5       | < 5     | 70           |    |                                         |         |      |     |
| 727520     | 15      | 5       | 85           |    | •                                       |         |      |     |
| 727521     | 25      | < 5     | 50           |    |                                         |         |      |     |
| 727532     | 15      | 75      | 4 D          |    |                                         |         |      |     |
| 727561     | 20      | 10      | 150          |    |                                         |         |      |     |
| 727562     | 20      | 5       | 260          |    |                                         |         |      |     |
| 727563     | 15      | 5       | 1 0 <b>0</b> |    |                                         |         |      |     |
| 727581     | 5       | 35      | 6 D          |    |                                         |         |      |     |
| 727581a    | 100     | 780     | 10           |    |                                         |         |      |     |
| 727780     | 3 0     | 10      | 80           |    |                                         |         |      |     |
| 727781     | 10      | < 5     | 35           |    |                                         |         |      |     |
| 727782     | 15      | < 5     | 25           | •  |                                         |         |      |     |
| 727872     | 30      | 25      | 440          |    |                                         |         |      |     |
| 727873     | 10      | 1.51    | 370          |    |                                         |         |      |     |
| 727874     | 3 0     | 15      | 380          |    |                                         |         |      |     |
| Detn limit | . /=:   | ,       |              |    |                                         |         |      |     |
| nech TIWIT | (5)     | (5)     | (5)          |    |                                         |         |      |     |

ANALYSIS g/tonne

|   |                |                    |                |                 |         | •              |
|---|----------------|--------------------|----------------|-----------------|---------|----------------|
|   | SAMPLE<br>MARK | COLD<br>Au         | PLATINUM<br>Pt | PALLADIUM<br>Pd |         |                |
| : | 657765         | <0.05              | ◆0.005         | 0.010           | IR 1313 | 64-6(m         |
|   | 657766         | <0.05              | <0.005         | ◆0.005          |         | 66- <b>6</b> 8 |
|   | 657769         | <0.05              | ∢0.005         | <0.005          |         | 68-70          |
|   | 658369         | ◆0.05              | <0.005         | <0.005          | IR 1329 | 68-69 m        |
|   | 658369a        | 0.50               | <0.005         | 0.040           | SIN     |                |
|   | 658370         | <0.05              | <0.005         | <0.005          |         | 69-70          |
|   | 658371         | <0.05              | <0.005         | <0.005          |         | 70-71          |
| _ | 658372         | <0.05              | <0.005         | <0.005          |         | 71-72          |
| _ | 659958         | <0.05              | <0.005         | <0.005          | IR 1378 | 68-69 ,        |
|   | 659959         | <0.05              | <0.005         | 0.030           |         | 69-70          |
|   | 727277         | 40.05              | <0.005         | 0.015           | IR1449  | 82-832         |
|   | 727278         | <0.05              | <0.005         | 0.005           |         | 83-84          |
|   | 727279         | <0.05              | <0.005         | <0.005          | ·       | 84-85          |
|   | 727519         | <0.05              | <0.005         | 0.015           | IR 1421 | 94-95 n        |
|   | 727520         | <0.05              | <0.005         | 0.025           |         | 9546           |
|   | - 727521       | <0.05              | <0.005         | 0.010           |         | 96-97          |
|   | 727532         | ∢0.05              | <0.005         | 0.015           |         | 107-108        |
| - | 727561         | <0.05              | <0.005         | 0.025           | TR 1422 | 93-94n         |
|   | 727562         | . <b>&lt;0.</b> 05 | <0.005         | 0.020           |         | 94-95          |
|   | 727563         | <0.05              | <0.005         | <0.005          |         | 95-96          |


Method: A7/3

Report AC 2776/86 Page 2

ANALYSIS g/tonne

| SAMPLE<br>MARK | GOLD<br>Au | PLATINUM<br>Pt | PALLADI UM<br>Pd |         |           |
|----------------|------------|----------------|------------------|---------|-----------|
| 727581         | 40.05      | <0.005         | <0.005           | JR 1422 | 113-114 m |
| 727581a        | 1.34       | <0.005         | 0.060            | Std     |           |
| 727780         | <0.05      | <0.005         | <0.005           | IR1427  | 91-92n    |
| 727781         | <0.05      | <0.005         | 0.015            | 2 7 7 7 | 92-93     |
| 727782         | <0.05      | <0.005         | <0.010           |         | 93-94     |
| 727872         | <0.05      | <0.005         | 0.015            | FR 1429 | 9293 n    |
| 727873         | <0.05      | <0.005         | 0.010            | ·       | 93 94     |
| 727874         | <0.05      | <0.005         | 0.005            |         | 94.95     |
|                |            |                |                  |         |           |

Method: A7/3



| Analysis cod     | Report AC 2776/86 |     |       |     | G Page X1 |       |         |        |
|------------------|-------------------|-----|-------|-----|-----------|-------|---------|--------|
| NATA Certifi     | icate             |     |       |     |           |       | Results | ın ppm |
| Sample           | Th                | Ba. | Ce    | Иb  | Se        | Ta    | 1 e     | U      |
| 657765           | < 4               | < 4 | 6.0   | 16  | 10        | < 1.0 | <10     | 28     |
| 657766           | < 4               | < 4 | 120   | < 4 | 4         | < 10  | < 1.0   | 20     |
| 657769           | 12                | < 4 | 6.0   | 46  | 2         | < 1.0 | < 1.0   | ម      |
| 658369           | < 4               | < 4 | 3.0   | 4   | <b>42</b> | 10    | < 10    | 8      |
| 658369a          | < 4               | 6   | 50    | 8   | 6         | < 10  | < 10    | < 4    |
| 658370           | 18                | < 4 | 90    | 56  | 8 3       | < 10  | < 10    | 180    |
| 658371           | 16                | < 4 | 65    | 3 4 | 3 1       | <10   | < 10    | 160    |
| 658372           | 6                 | < 4 | 50    | 46  | 52        | < 10  | <10     | 375    |
| 659958           | 8                 | 4   | 3 0   | 28  | 16        | < 10  | < 10    | 105    |
| 659959           | 26                | < 4 | 150   | 4 0 | 175       | < 10  | < 10    | 1340   |
| 727277           | 10                | < 4 | 40    | 1 4 | 3         | < 10  | < 10    | < 4    |
| 727278           | < 4               | < 4 | < 20  | < 4 | < 2       | < 10  | < 10    | 4      |
| 727279           | < 4               | 6   | 20    | 4   | 3         | < 10  | < 10    | 4      |
| 727519           | < 4               | < 4 | < 20  | < 4 | < 2       | < 10  | < 10    | 8      |
| 727520           | < 4               | < 4 | < 2 0 | < 4 | < 2       | < 10  | < 10    | 1 4    |
| 727521           | < 4               | < 4 | 20    | < 4 | < 2       | < 10  | < 10    | 14     |
| 727532           | < 4               | < 4 | 50    | 6   | 6         | < 10  | < 10    | < 4    |
| 727561           | < 4               | < 4 | 3 0   | 6   | 2         | < 10  | , <10   | 2 4    |
| 727562           | 4                 | < 4 | < 20  | 12  | 3         | < 10  | < 10    | 8 4    |
| 727563           | < 4               | < 4 | 3 0   | < 4 | < 2       | 10    | < 10    | 28     |
| 727581           | - 12              | < 4 | 60    | 16  | , <2      | < 10  | < 10    | 4      |
| 7275 <b>8</b> 1a | 4                 | < 4 | 25    | < 4 | < 2       | < 1.0 | < 10    | < 4    |
| 727780           | < 4               | < 4 | 3 0   | < 4 | < 2       | < 1.0 | < 10    | < 4    |
| 727781           | < 4               | < 4 | < 20  | < 4 | < 2       | < 10  | < 10    | 6      |
| 727782           | < 4               | < 4 | < 20  | < 4 | < 2       | < 10  | < 10    | 4      |
| 727872           | 8                 | < 4 | 5 5   | 2 4 | < 2       | < 10  | < 10    | < 4    |
| 727873           | 6                 | < 4 | 25    | 16  | < 2       | < 10  | < 10    | < 4    |
| 727874           | < 4               | < 4 | 3 0   | 1 4 | < 2       | < 10  | < 10    | 10     |
| Detn limit       | (4)               | (4) | (20)  | (4) | (2)       | (10)  | (10)    | (4)    |

| Analysis code    | X3     | Report AC | 2776/86 | f ag      | e X2  |
|------------------|--------|-----------|---------|-----------|-------|
| NATA Certific    | ate    |           |         | Results i | n ppm |
| _                |        |           |         |           |       |
| Sample           | Υ      |           |         |           |       |
| 657765           | 30     |           |         |           |       |
| 657766           | 86     |           |         |           |       |
| 657769           | 4 4    |           |         |           |       |
| 658369           | 4      |           |         |           |       |
| 658369a          | 12     |           |         |           |       |
| 658370           | 4 4    |           |         |           |       |
| 658371           | 36     |           |         |           |       |
| 658372           | 3 6    |           |         |           |       |
| 659958           | 20     |           |         |           |       |
| 659959           | 6 8    |           |         |           |       |
| 727277           | 1 4    |           |         |           |       |
| 727278           | 8      |           |         |           |       |
| 727279           | 1 0    |           | ,       |           |       |
| 727519           | 6      |           |         |           |       |
| 727520           | 6      |           |         |           |       |
| 727521           | 6      |           |         |           |       |
| 727532           | 2 4    |           |         |           |       |
| 727561           | 8      |           |         |           |       |
| 727562           | 1 4    |           |         |           |       |
| 727563           | 6      |           |         |           |       |
| 727581           | 28     |           |         |           |       |
| 727581a          | < 4    |           |         |           |       |
| 727780           | 8      |           |         |           |       |
| 727781           | 6<br>6 |           |         |           |       |
| 727782<br>727872 | 18     |           |         | •         |       |
| 727873           | 18     |           |         |           |       |
| 727874           | 18     |           |         |           |       |
|                  | 10     |           | •       |           |       |

(4)

Detn limit



| analysis  | code I1 | SPLCIAL        | Report     | AC 27    | 76/86   |              | Page          | e <b>I</b> 1 |
|-----------|---------|----------------|------------|----------|---------|--------------|---------------|--------------|
|           |         |                |            |          |         | F            | Results in    | n ppm        |
| NATA Cert | 1ficate |                |            |          |         |              |               |              |
| 4         |         |                |            |          | •       |              |               |              |
| Sample    | Ag      | As             | Cd         | Co       | Cu      | Fe           | La            | Мо           |
| Sampre    |         |                | _          |          | 4.5     | 2500         | 10            | 5            |
| 657765    | < 1     |                | < 5        | < 5      | 15      | 2600         | 3.0           | < 5          |
| 657766    | < 1     | . 5            | < <u>5</u> | 120      | 5<br>15 | 4000         | 5             | 5            |
| 657769    | 1       |                | 5          | 5 .      |         | 6000         | < 5           | 5            |
| 658369    | < 1     |                | < 5        | < 5      | 15      | 2.40%        | 5             | 50           |
| 658369a   | < 1     |                | < 5        | 10       | 4 4 5 0 |              | 5             | . 10         |
| 658370    | . 6     |                | < 5        | 5        | 4 0     | 3500         | 5             | < 5          |
| 658371    | . 2     |                | < 5        | < 5<br>- | 20      | 2800         | 5<br>< 5      | < 5          |
| 658372    | 2       |                | < 5        | < 5      | 95      | 2700         | < 5<br>< 5    | 10           |
| 659958    | < 1     |                | < 5        | < 5      | 25      | 2900         |               | 5            |
| 659959    | 4       |                | < 5        | < 5      | 5 5     | 1600         | 50            |              |
| 727277    | < 1     |                | < 5        | < 5      | 15      | 2200         | <b>&lt;</b> 5 | 20           |
| 727278    | < 1     | < 5            | < 5        | < 5      | 5       | 2900         | < 5           | 10           |
| 727279    | < 1     | 5              | < 5        | < 5      | 10      | 2000         | < 5<br>-      | 10           |
| 727519    | < 1     | < 5            | < 5        | 5        | 5       | 2900         | <b>&lt;</b> 5 | < 5          |
| 727520    | < 1     | < 5            | < 5        | 5        | 10      | 6400         | < 5           | < 5          |
| 727521    | < 1     | < 5            | < 5        | 5        | 15      | 8000         | < 5           | 5            |
| 727532    | < 1     | 15             | < 5        | 10       | 3 0     | 2.75%        | 10            | 5            |
| 727561    | < 1     | 5              | < 5        | < 5      | 10      | 5500         | < 5           | 5            |
| 727562    | . 2     | 2 20           | < 5        | 15       | 2 5     | 2.05%        | 5             | 5            |
| 727563    | < 1     | 20             | 5          | 20       | 35      | 3.80%        | 10            | 5            |
| 727581    | < 1     |                | < 5        | 5        | 35      | 3.15%        | 15            | 5            |
| 727581a   | E       |                | 10         | 5        | 280     | 2.65%        | 10            | 10           |
| 727780    | < 1     |                | √ < 5      | < 5      | 5       | 260 <b>0</b> | < 5           | 5            |
| 727781    | < 1     |                | < 5        | < 5      | 5       | 2,700        | < 5           | < 5          |
| 727782    | < .     | 1 <5           | < 5        | < 5      | 5       | 2800         | < 5           | 5            |
| 727872    | 2       |                | < 5        | 15       | 3 0     | 2.30%        | 5             | 10           |
| 727873    | < .     | =              | < 5        | < 5      | 10      | 8600         | < 5           | < 5          |
| 727874    |         | 1 < 5          | < 5        | 5        | 15      | 6400         | < 5           | 5            |
| 121017    |         | , , , <b>,</b> |            |          |         |              |               |              |
| Detn lim  | it (    | 1) (5)         | (5)        | (5)      | (5)     | (100)        | (5)           | (5)          |

| 3         | code I1 SP | ECIAL      | Report       | AC 2776       | 5 <b>/</b> 8 G | ,   | l'ag    | e 12         |
|-----------|------------|------------|--------------|---------------|----------------|-----|---------|--------------|
|           |            |            |              |               |                | Re  | sults i | n ppm        |
| NATA Cert | ificate    |            |              |               | •              |     |         |              |
| Sample    | N1         | Pb         | S            | S b           | Sin            | Sr  | Ti      | ٧            |
| Sampa     |            | 4.6        | 1150         | 10            | < 5            | 10  | 1350    | 5 <b>5</b>   |
| 657765    | 5          | 10         | 1.10%        | 10            | < 5            | 10  | 390     | 190          |
| 657766    | 130        | 15         | 5000         | <b>&lt;</b> 5 | < 5            | < 5 | 4300    | 100          |
| 657769    | 10         | 25         | 1750         | < 5           | < 5            | ₹5  | 380     | 5            |
| 658369    | 5          | . <5       | 1.18%        | 30            | 10             | 250 | 860     | 200          |
| 658369a   | 15         | < 5        | 1750         | 70            | 15             | 15  | 5500    | 160          |
| 658370    | 10         | 30         | 1550         | 5             | 5              | 5   | 2550    | 120          |
| 658371    | < 5        | 20         | 3150         | 5             | < 5            | < 5 | 4300    | 100          |
| 658372    | 5          | 25         | .470         | 5             | < 5            | 10  | 2650    | 130          |
| 659958    | 5          | 15         | 4500         | 10            | 5              | 25  | 3650    | 6 <b>4 0</b> |
| 659959    | 10         | 25         | 220          | < 5           | < 5            | 5   | 1750    | 45           |
| 727277    | 5          | < 5        | 110          | <b>1</b> <5   | < 5            | < 5 | 500     | 15           |
| 727278    | . 5        | < 5        | 110          | 10            | ₹5             | < 5 | 740     | 1 5          |
| 727279    | 5          | < 5        | 800          | < 5           | <5             | < 5 | 240     | < 5          |
| 727519    | 10         | < 5        | 1500         | < 5           | < 5            | < 5 | 260     | 5            |
| 727520    | 10         | < 5<br>    | 1750         | < 5           | <5             | < 5 | 170     | 5            |
| 727521    | . 10       | < 5<br>4.0 | 2.96%        | 30            | 5              | 55  | 1400    | 6.0          |
| 727532    | 15         | 10         | 2.50%        | 10            | 5              | < 5 | 840     | 35           |
| 727561    | 10         | 5          | 8200         | 10            | 5              | < 5 | 1150 -  | 50           |
| 727562    | 3 0        | 20         | 1.30%        | 20            | 5              | < 5 | 350     | 25           |
| 727563    | 30         | 20         | 1.60%        | 55            | 10             | 10  | 3000    | 50           |
| 727581    | 15         | 20         | 1.64%        | 90            | 10             | 20  | 420     | 85           |
| 727581a   | 2 5        | 4900       | 2850         | < 5           | < 5            | <5  | 280     | 110          |
| 727780    | 5          | 5          | 560          | 5             | < 5            | < 5 | 130     | 20           |
| 727781    | < 5        | < 5        | 340          | 10            | < 5            | < 5 | 120     | 10           |
| 727782    | 5          | < 5        |              | 5             | 5              | 5   | 3200    | 4 0          |
| 727872    | 20         | 15         | 6600<br>4650 | < 5           | 5              | 10  | 2150    | 40           |
| 727873    | < 5        | 10         | 9400         | < 5           | < 5            | 20  | 2150    | 60           |
| 727874    | 10         | 10         | 9400         | ζ 3           | ( )            | . — |         |              |
| Dotn lis  | nit (5)    | (5)        | (10)         | (5)           | (5)            | (5) | (5)     | (5)          |

< 5

< 5

callinare le 1

(5) (5) Detn limit (5)

727581a

Page

Results in ppm

#### EXPLORATION LICENCE NO.1274 "DUNN HILL"

## PROGRESS REPORT FOR QUARTER ENDED MAY 18, 1986

#### 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

## 2. EXPLORATION

A series of reverse circulation holes will be drilled within the next few weeks to collect samples of kaolinite from an area approximately 30 km north of Nunjikompita. White clay had been found in this area several years ago during the search for sandstone type uranium mineralization. It is planned to drill five shallow holes and test the clay for its suitability as a paper coating clay.

#### 3. EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED MAY 18, 1986

|                                 | \$   | \$                    |
|---------------------------------|------|-----------------------|
| Administration                  | 497  |                       |
| Assaying                        | 879  |                       |
| Field Base Operations           | 940  |                       |
| Outside Services                | 300  |                       |
| Operating Labour                | 503  |                       |
| Rents - Mining Tenements        | 4053 | \$7172                |
| TOTAL - THIS PERIOD             |      | <del></del><br>\$7172 |
| Previously Reported             |      | \$2111                |
|                                 |      | <del></del>           |
| Total Project Expenditure to Da | te   | \$9283                |

A.E. Covacich Administration Superintendent

#### EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED AUGUST 18, 1986

## 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

# 2. EXPLORATION

Three reverse circulation drill holes were drilled in mid-July, approximately 30 km north of Nunjikompita, to collect samples of kaolinite. These samples have been submitted to AMDEL for sizing and brightness tests. Drilling was carried out by SADME and the project was supervised by consultant I. Youles.

Geological logs of these holes have not been completed yet. These logs, together with a location plan and results of AMDEL's testing, will be included with the next quarterly report.

#### EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDING AUGUST 18, 1986

|                                    | \$   | \$       |
|------------------------------------|------|----------|
| Outside Services                   | 1171 | \$ 1 171 |
| TOTAL - THIS PERIOD                |      | \$ 1 171 |
| Previously Reported - Current Term |      |          |
| Quarter ended May 18, 1986         | 7172 | \$ 7 172 |
| TOTAL - CURRENT TERM               |      | \$ 8 343 |
| Previously Reported                |      | \$ 2 111 |
| Total Project Expenditure to Date  |      | \$10 454 |
|                                    |      |          |

A.E. Covacich Administration Superintendent

#### EXPLORATION LICENCE NO.1274 "DUNN HILL"

#### PROGRESS REPORT FOR QUARTER ENDED NOVEMBER 18, 1986

#### 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

#### 2. EXPLORATION

Drill logs of five shallow reverse circulation holes drilled in July to collect samples of kaolinite for testing for paper coating are presented in Appendix 1. These logs were prepared by the consultant geologist I. Youles who supervised the drilling. Data from these logs have been used to prepare standard C.E.C. logs which are given in Appendix 2. The holes are located approximately 30 km north of Nunjikompita and a plan showing their location in relation to holes drilled earlier for uranium is included in Appendix 1. Accurate locations of these uranium holes are shown on a plan (Drawing No.15 906) previously submitted to SADME.

A total of nineteen of the whitest clay samples was sent to AMDEL for testing for brightness, yellowness, chloride content and sizing. Results of this testing are given in Appendix 3 and a discussion of the results by I. Youles is included in Appendix 1. Samples of the two brightest clays (QS 17298 and QS 17970) have recently been sent to the CSIRO Minerals and Geochemistry Division in Perth for viscosity testing of the -2 micron fraction. No results have been received yet.

# 3. EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binks

APPENDIX 1

#### lan P. Youles Consulting Geologist Burgar Road, Middleton, S.A.5213 Tel: 085-554046

Mr.P. Binks, Exploration Manager, Carpentaria Exploration Co. Pty. Ltd., 80 Leader Street, Forestville 5035.

22nd July, 1986

Dear Peter,

# DRILLING PROGRAMME NUNGIKOMPITA

Summary

5 holes were drilled for a total of 92 metres. 3 holes, Nos. C-1, C-2 & C-5 penetrated kaolin thicknessess of  $12\pm m$ ., 8m. and 12m., with overburdens of 18m., 11m. and 17.5m. respectively. C-3 & C-4 were abandoned due to hole collapse in calcrete. The kaolin was white to cream with occassional minor iron staining.

General

Drilling & Engineering Services of the South Australian Mines Department carried out a reverse circulation airdrilling programme, 15th-16th July, 1986, on the llkina E.L., north of Nungikompita. Holes were drilled to a maximum depth of 30m. or to hard basement. Drillhole geological logs are attached, together with a plan showing locations relative to your previous drilling.

Sampling & Testing

At kaolin intersections, the drill penetrated up to 0.5m. to clean the drillpipe to obtain uncontaminated samples. Kaolin samples were collected over one metre intervals and all the returns were bagged. All samples were ultimately despatched to Adelaide.

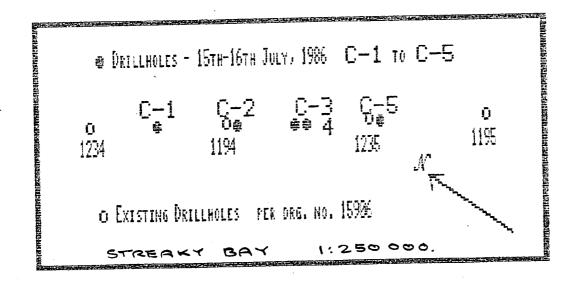
In Adelaide, the samples will be split and 5 kg portions forwarded to Amdel for yield and brightness determinations of the -2micron fraction.

Yours sincerely.

Ian Youles Consulting Geologist

# DRILLHOLE LOGS

| <u>C-1</u>  | 0-0.5    | Topusia                                                          |
|-------------|----------|------------------------------------------------------------------|
| <del></del> | 0.5-1.5  | Topsoil                                                          |
| TD 30m.     | 1.5-3    | Calcrete & calcareous sand                                       |
|             | 2.5 5    | Sandstone, fine to medium ,                                      |
|             |          | partly silicified, white to                                      |
|             | 3-4.5    | pink.                                                            |
|             |          | As above, but yellow to brown to red-brown.                      |
|             | 4.5-6.5  | Sandstone, fine ,minor siltstone,                                |
|             |          | red-brown to brown.                                              |
|             | 6.5-7.5  | Sandstone, fine, heavily ferruginized.                           |
|             | 7.5-10   | Sandstone, very fine , lesser siltstone,                         |
|             |          | slightly kaolinitic, white.                                      |
|             | 10-14    | Sandstone, fine to very fine, minor                              |
|             |          | siltstone, partly silicified,                                    |
| ٠           |          | light to dark brown, red-                                        |
|             | 4.6.4.   | brown.                                                           |
|             | 14-15    | Sandstone, fine , kaolinitic, light to                           |
|             | 15-18    | dark brown.                                                      |
|             | 15.16    | Sandstone, very fine, kaolinitic,                                |
|             |          | ferruginized, 10% thin kaolin<br>bands.                          |
|             |          | Dailus.                                                          |
|             | 18-19    | KAOLIN - C1/1, white, trace light brown                          |
|             |          | minor fine quartz grains                                         |
|             |          | throughout kaolin interval.                                      |
|             | 19-20    | KAOLIN - C1/2, white, mr. qtz.                                   |
|             | 20-21    | KADLIN - C1/3, white, light brown,                               |
|             | 54. 54   | light mauve.                                                     |
|             | 21-26    | KAOLIN - C1/4 to C1/8, mainly white with                         |
|             | 26-27    | very light brown.                                                |
|             | 27-30    | KAOLIN - C1/9, cream.                                            |
|             | 17 30    | KAOLIN - C1/10, cream with minor light                           |
|             |          | brown.                                                           |
| C-2         | 0-2      | 0-1                                                              |
|             | 2-4.5    | Calcrete - nodular.                                              |
| TD 19m.     |          | Sandstone, fine, hard, ferruginous,                              |
|             | 4.5-6    | yellow to dark brown.<br>Sandstone, sand, fine, yellow to white. |
|             | 6-9.5    | Sandstone, fine, partly silicified,                              |
|             |          | becoming ferruginous, kaolinitic.                                |
|             | •        | Samuel American                                                  |
|             | 9.5-10.7 | KAOLIN, very ferruginous, not sampled.                           |
|             | 10.7-11  | KAOLIN, cream to white.                                          |
|             | 44 45    | MACHINA AND AND AND AND AND AND AND AND AND A                    |
|             | 11-12    | KAOLIN, C2/1, white with minor light                             |
|             | 12-13    | brown.                                                           |
|             | 13-14    | KADLIN, C2/2, white.                                             |
|             | 14-15    | KAOLIN, C2/3, white, minor light brown.<br>KAOLIN, C2/4, cream.  |
|             | 15-16    | KAOLIN, C2/5, white, trace light brown.                          |
|             | 16-17    | KAOLIN, C2/6, cream.                                             |
|             | 17-18    | KAOLIN, C2/7, cream to very light grey.                          |
|             | 18-19    | KAOLIN, C2/8, cream, weathered granite                           |
|             |          | at 18.7.                                                         |


| C-3<br>TD 3m. | 0-2<br>2-3<br>Hole aba | Calcrete, nodular. Sandstone, fine, silicified in part, yellow to cream. andoned due to collapse of calcrete zone. |
|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------|
| <u>C-4</u>    | 0-0.5<br>0.5-2         | Topsoil<br>Calcrete, nodular.                                                                                      |
| TD 10m.       | 2-4<br>4-10            | Sandstone, fine, brown to white.  Sandstone, fine, kaolinitic, silicified in part. vellow to brown.                |
|               | Hole ab                | andoned due to collapse of calcrete zone.                                                                          |
| <u>C-5</u>    | 0-4.5                  | Sand, very fine, minor calcrete nodules, very light brown.                                                         |
| TD 30m.       | 4.5-7                  | Sandstone, fine, silicified, white to light yellow brown.                                                          |
|               | 7-11                   | Sandstone, fine, slightly kaolinitic, siltstone, kaolinitic, white to very light brown.                            |
|               | 11-12                  | Sandstone, medium to coarse, light brown.                                                                          |
|               | 12-13                  | Sandstone, fine, kaolinitic, light brown<br>to light red-brown.                                                    |
|               | 13-17.5                | Sandstone, fine, kaolinitic, brown to red-brown.                                                                   |
|               | 17.5-18                | KAOLIN, off-white.                                                                                                 |
|               | 18-23                  | KAOLIN, C3/1 to C3/5, white,<br>minor quartz grains throughout<br>kaolin interval.                                 |
|               | 23-24                  | KAOLIN, C3/6, white to light brown.                                                                                |
|               | 24-26                  | κΔΠΙΤΝ, C3/7 to C3/9, white.                                                                                       |
|               | 26-29                  | KAOLIN, C3/10 to C3/12, white with light                                                                           |

29-30

Note: - very hard drilling from 24m.to TD.

KAOLIN, C3/13, white, with weathered granite from 29.7m.

red-brown.



0133

# Ian P. Youles Consulting Geologist Burgar Road, Middleton, S.A. 5213 Tel: 085-554046

0134

Mr. F. Binks, Exploration Manager, Carpentaria Exploration Co. Ltd., 80 Leader Street, Forestville, S.A. 5035

27th August, 1986

Dear Feter,

#### REPORT ON TESTING OF KAOLIN

DUNN HILL, E.L. 1274

#### Summary

Kaolin in drill hole no. PD 5, between 18 - 22 metres, averaged 85 brightness and yielded 30% -2micron fraction; brightness increased as yellowness and chloride content decreased. Further testing for paper-coating properties is recommended for this interval.

In drill holes PD 1 & 2, only one sample had a high brightness and a moderate yield; further testing might be warranted if the results from PD 5 are positive.

#### Results

The kaolin test results, figure 1 & Appendix A, clearly show that drillhole no. PD 5 has kaolin with the highest brightness, B1.6-B8.6 averaging 85, and the best -2micron yield, 22 - 24% averaging 30%. PD 1 & 2 have -2micron yields that are generally too low for profitable extraction, although some of the brightness values are encouraging.

Figures 2 & 3 show the PD 5 results in more detail and demonstrate that, at brightnesses over 80, the brightness values increase as the chloride and yellowness decrease. This strongly suggests that upgrading of the brightness to 86, for paper-coating requirements, would be achieved by washing to remove the (average 1%) chlorides and bleaching to remove secondary iron staining.

As PD 5 is located 1 km. east-south-east of PD2, there is good potential for a large deposit of high brightness kaolin. It is worth noting that no calcrete was intersected in PD 5, but was present in PD 1 & 2. This may be a significant surface indication of the best quality kaolin.

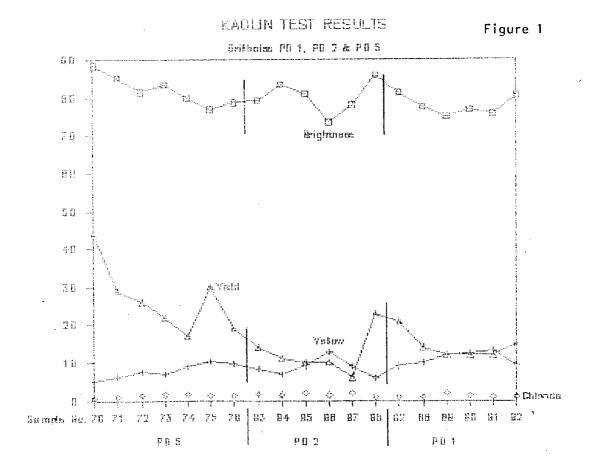
Viscosity Testing Facilities.

The next stage is to determine whether the kaolin has the right viscosity properties for coatng paper. In Australia, the only independant testing facilities available are at CSIRO, Perth. The officer concerned is Mr. Peter Darragh, telephone 09-3874233, and he has advised that they would be willing to test one sample at no charge. This would determine whether the viscosity properties were likely to be suitable for paper-coating, and is part of CSIRO's service to assist in locating high quality kaolin deposits. If the results were satisfactory, CSIRO would expect to contract out to you one of their officers; he/she would carry out a detailed investigation on a suite of samples to determine whether a satisfactory product could be achieved. The annual cost for an officer is \$50,000, and contracts are usually on two to three monthly intervals.

Some of the major kaolin users will test samples for suitability in their own plants, such as Australian Fulp and Paper Manufacturers, Australian China Clays...

The nearest commercial laboratory is New Zealand China Clays Limited, which has a turn-around time of about 4 weeks on sample testing. Costs are about \$A500 per raw sample and about 2.5kg of sample is required (Appendix B).

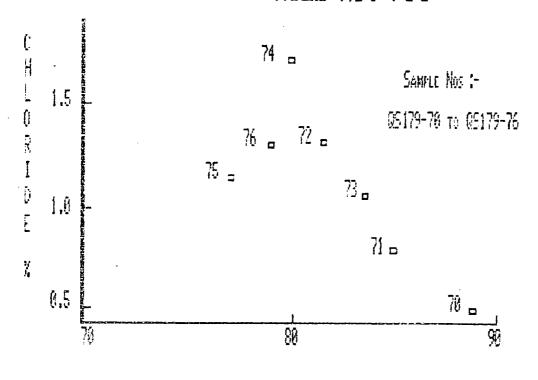
#### Recommendations


I strongly recommend that kaolin from drillhole no. PD 5, 18-20m. sample nos. QS17970 & QS17971, be tested for viscosity to determine paper-coating qualities. If the results are satisfactory, further drilling would be required to delineate the extent and quality of the deposit; in addition, viscosity testing of sample no. QS17298, FD 2 16-17m., should be undertaken to determine whether the PD 1 - PD 2 area would be prospective.

Ian F. Youles

Consulting Geologist

Extract From Popult M7525787


|   | twomple            | Hole | Depth    | Brig! tness  | Yellowness | Chioride<br>% | Yield<br>Z —imicros | 013 |
|---|--------------------|------|----------|--------------|------------|---------------|---------------------|-----|
| X | ' 0817 <b>97</b> 0 | FΩ   | 5 18-19m | . 66. 6      | (ii) _ 2.  | 0.48          | <b>4</b> -4-        |     |
| _ | 0817971            |      | 19-20    | 85.2         | 6.3        | 0.8           | 200                 |     |
|   | QS17972            |      | 20-21    | · 81.6       | 7.7        | 1.31          | 2 / 3<br>4 / 3      |     |
|   | QS17973            |      | 23 - 22  | 83.6         | 7          | 1.48          |                     |     |
|   | 0817974            |      | 22-23    | 79, P        | T 3.9      | 1.71          | 1.7                 |     |
|   | US17975            |      | 23-24    | 7.7          | 10.3       | 1.15          | 78 A                |     |
|   | QS17976            |      | 24-25    | 78.8         | 9.6        | 1.29          | 15                  |     |
|   | QS17293            | PD   | 2 11-12  | / 7 . A      | 812        | 1.52          | 4.44                |     |
|   | as17294            |      | 12-13    | 83.6         | 6.8        | i.4i          | 3 4<br>3 2          |     |
|   | 0817295            |      | 13-14    | 31.1         | 9.2        | 2.05          | ± ()                |     |
|   | 0817296            |      | 14-15    | 73.5         | 12.8       | 1.41          | 10                  |     |
|   | 0617297            |      | 15-16    | 78           | Ģ          | 1.87          | ć,                  |     |
| Y | / QS17298          |      | 16-17    | 85.9         | 5.7        | 0.76          | 23                  |     |
|   | 0817282            | PD   | 1 19-20  | 81.3         | 9.2        | 0.88          | 24                  |     |
|   | us17286            |      | 23-24    | 77.6         | 10.1       | 0.82          | 14                  |     |
|   | QS17289            |      | 26-27    | 75.1         | 12         | 1.99          | 1.2                 |     |
|   | QS17290            |      | 27-28    | 76.8         | 12.5       | 1.22          | 11                  |     |
|   | 0917291            |      | 28-29    | 75 <b>.9</b> | 13         | 0.89          | 12                  |     |
|   | 0517271            |      | 29-30    | 80.5         | 9.4        | 1.04          | 4 27                |     |



# TEST RESULTS

0137

HOLE No. PD5



BRIGHTNESS

Figure 2

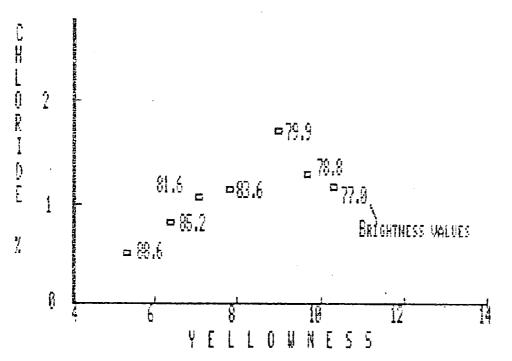



Figure 3

BRIGHTNESS INCREASES AS CHLORIDE CONTENT AND YELLOWNESS DECREASE

APPENDIX 2

| PROSPEC    | 7 : D    | inn Hi       | ://      |          |                | TARIA     |               | LORATIO      |                                                 | . HOL        | ENº PD I                               |          |
|------------|----------|--------------|----------|----------|----------------|-----------|---------------|--------------|-------------------------------------------------|--------------|----------------------------------------|----------|
| LOCATION   | _        | - 12         | .14      | RO       | TAR!<br>Kompil | ! -       |               | SSION        | •                                               | RL. COLL     | QΛ                                     | .m.      |
| CO-ORDS    |          |              |          |          |                | RI        |               |              | 50                                              | INCL INAT    | N:                                     | •.       |
| SAMPLE     |          |              |          | p.p.m /  |                | DEPTH     |               | ,            |                                                 |              | REMARKS                                | 2.2      |
| No.        |          |              |          |          |                | METRES    | LOĞ           |              | DESCRIPTION                                     |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3        |
|            |          |              |          |          |                |           |               | . Topse      | • 11<br>• = 4 c                                 |              | 0139                                   |          |
| [          |          |              |          |          |                | -         | <u> </u>      |              | - fine to mad gr partly                         | silicited    |                                        |          |
| -          |          |              |          |          |                |           | <del></del>   |              | while to pinh.                                  | •            |                                        |          |
|            |          |              | :        | 1        |                | - 5       | •             | Sand         | - yellowby to red br fine gr minor silt         |              |                                        | 1 1      |
| _          |          |              |          |          |                | -         | <u> </u>      |              | red by to br.                                   |              |                                        |          |
| - · .      |          |              |          |          |                | <u> </u>  | · Fe          | Sand.        | - time gr, heavily fer                          | ruginised    |                                        |          |
|            |          |              |          |          |                |           | =             | Sand         | - Viline gr. lesse 51<br>slightly kaolinitic. I | uhite        |                                        |          |
| Ĺ l        |          |              | -        |          |                | - 10      |               | Sand         | - fine to V fine 51.                            |              |                                        |          |
| -          |          |              |          |          |                | -         |               | Sansi        | silicified light to d                           | k br.t       |                                        |          |
| -          |          |              |          |          |                |           |               |              | red br.                                         |              |                                        |          |
| - !        |          |              |          |          |                | -         |               | Sand         | 1 - V. fine gr, Wadin                           | tic light    | hodlebr.                               |          |
|            |          |              | i        |          |                | - 15      |               | Sand         | - V. finegr, kaolinit                           | ic ferru     | nired.                                 |          |
| <u> </u>   |          |              |          |          |                | [         |               |              | 10% thin Kaolin ba                              | inds.        |                                        |          |
| ac Irrai   |          |              |          |          | <u> </u>       | -         | <u></u>       | Clan         | - kaalin, white, to                             | u light      | br. minor                              |          |
| OS 17281   |          |              | -        |          |                | , ,       |               | ر            | fine gr grz gn                                  | מחייז צייוני | igrom clay.                            |          |
| 85         |          |              |          |          |                | 10        |               |              | - while to light b                              | r 4 Mau      | /<                                     |          |
| 84         |          |              |          | <u> </u> |                | -         |               |              | - mainly white w                                | الل لمحد     | i light br.                            | 1 1      |
| 85<br>86   | <u> </u> |              |          |          |                | -         | ===           |              | *                                               | ,            | •                                      |          |
| 87         |          |              |          |          |                | 25        | 三三            |              |                                                 |              |                                        |          |
| 88         | <u> </u> |              |          | <u> </u> |                | ~         |               | -            | - Cream                                         |              |                                        | •        |
| 89<br>90   |          | <del> </del> |          |          |                | t         |               |              | - cream with tan                                | u light      | bi                                     |          |
| 91         |          |              |          |          |                | Ţ         |               |              | •                                               | J            |                                        |          |
| 92         |          |              |          | ļ        |                | 30        | ==            | FOIT         |                                                 |              |                                        | $\dashv$ |
| ŀ          |          |              |          |          |                | -         |               |              |                                                 | ·            |                                        |          |
| t          | ļ        |              |          |          |                |           |               | 1            |                                                 |              |                                        |          |
| -          |          |              |          |          |                | }         |               |              |                                                 |              |                                        | 1        |
| <u> </u> - |          |              | 1        | 1        |                | t         |               |              |                                                 |              |                                        |          |
| Ţ.         |          |              |          |          |                | [         |               |              |                                                 | •            |                                        |          |
| }          |          |              | 1        |          |                | ŀ         |               | j            | •                                               |              |                                        |          |
| ł          |          |              |          |          |                | L         | •             | 1            |                                                 |              |                                        | 1 1      |
|            |          |              |          |          |                | -         |               |              |                                                 |              |                                        |          |
| F          |          |              |          |          | 1              | ŀ         | 1             |              |                                                 |              |                                        |          |
|            |          |              |          | 1        |                |           |               |              |                                                 |              |                                        |          |
| L          |          |              |          |          |                | <b> -</b> |               | <b> </b> -   |                                                 |              |                                        |          |
| ŀ          |          |              | 1        |          |                | ł         |               |              |                                                 |              |                                        |          |
| t          |          |              |          |          |                |           |               |              |                                                 |              |                                        |          |
| Į.         | }        |              |          |          |                | 1         |               |              |                                                 |              |                                        |          |
| <b>-</b>   |          |              |          | 1        |                | H         |               |              |                                                 |              |                                        |          |
| į.         |          |              |          |          |                | Ţ         |               |              |                                                 |              | •                                      |          |
| -          |          |              |          |          |                | }         |               |              |                                                 |              |                                        |          |
|            |          |              |          |          | 1              | ŀ         |               |              |                                                 |              |                                        |          |
|            |          | '            |          | 1        |                | Ţ         |               |              | •                                               |              |                                        |          |
| 1          |          |              |          |          | 1.             | +         |               |              | ·                                               |              |                                        |          |
| F          |          |              |          |          |                | t         |               |              |                                                 |              |                                        |          |
| L          |          |              |          |          |                |           | <u> </u>      |              |                                                 |              |                                        |          |
|            |          | 1            | <u> </u> | 1 -      | 1/0-1-         | 50        | de el         |              | DRILL TYPE: Investigatu                         | Mb LOGGE     | DBY: I. Youl                           | es       |
| REASO      |          |              |          | 10 C     | White          | da        | رب سر.<br>الا | -            | DRILLER: SADMZ                                  | DATE         | DRILLED: 15 - 7                        | -86      |
| OTHER      | DET      | AILS         | :        |          |                |           | <i>)</i> .    | SCALE: 1:250 | DRG/                                            | CODE No:     |                                        |          |

|                   | <u> </u>                                                                                                                 | unn Hi | //    | CAF    | PEN'  | TARIA           | EXP        | LORATION | COMPAN             | Y PTY. LT   | D. HOL     | ENº. P  | 02.         |       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|-----------------|------------|----------|--------------------|-------------|------------|---------|-------------|-------|
| PROSPEC           | PROSPECT: Dunn Hill CARPENTARIA EXPLORATION COMPANY PTY. LTD. HOLE IN PUX.  LOCATION: 30 km N Nunjikampita  ROTARY: FROM |        |       |        |       |                 |            |          |                    |             |            |         |             |       |
| CO-ORDS           | 146                                                                                                                      | 800    | E 6   | 4582   | 450 M | , RO            | // M/11/   |          | to!                |             |            | N:      | V           | ·     |
| SAMPLE<br>No.     |                                                                                                                          | ANAL   | rSES  | p.p.m/ | %     | DEPTH<br>METRES | LOG        | ,        | DESCRI             | PTION       |            | REMAI   | 7 <i>KS</i> | WATER |
|                   |                                                                                                                          |        |       |        |       | ,               | 101        | Calcre   | re - nodu          | ular        |            |         | . 0         | П     |
| _                 |                                                                                                                          |        |       |        |       | [               |            |          | fine gr,           |             | iruginous  | 01      | 40          |       |
| -                 |                                                                                                                          |        |       |        |       | -               |            |          |                    |             |            |         |             |       |
| <del>-</del><br>- | ·                                                                                                                        |        |       |        |       | F 3             |            |          | tine gr            |             |            |         |             |       |
| - `.              |                                                                                                                          | •      |       |        |       | <b> </b>        | Fr.        |          | 4 ferry            | nyinised, k | Caplinitie |         |             |       |
| -                 |                                                                                                                          |        | -     |        | 9.5   | - 10            | <br>       | Clan     | - kaalin           | - v. Ferra  | ginous     |         |             |       |
| os 17293          |                                                                                                                          |        |       |        | 10.7  |                 |            |          | - while            | WITH Frame  |            | !       |             |       |
| 94-<br>95         |                                                                                                                          |        |       |        |       |                 |            | ٠        | - white<br>- white | with true   | a light br |         |             |       |
| 96<br>91          |                                                                                                                          |        |       |        |       | - 15            | 를          |          | - erean            | with trace  | light br   | ·       |             |       |
| 98<br>99          |                                                                                                                          |        |       |        |       |                 | = =<br>=== |          | - cream            | to vligh    | t aren     | 1       |             |       |
| 17300             |                                                                                                                          |        |       |        |       | ļ               | ===        | EOH 19   | - cream            | weather     | al granite | प 18·   | 7           |       |
| _                 |                                                                                                                          |        |       |        |       | -20             |            |          |                    | ٠           |            |         |             |       |
|                   | ļ                                                                                                                        |        |       |        |       | -               |            |          | Ž.                 |             | •          |         |             |       |
|                   |                                                                                                                          |        |       |        |       | _               |            |          |                    |             |            |         |             |       |
| -                 |                                                                                                                          |        |       |        |       | ŀ               |            |          |                    |             |            |         | •           |       |
| -                 |                                                                                                                          |        |       |        |       | }               |            |          |                    | •           | ,          |         |             |       |
| _                 |                                                                                                                          |        |       |        |       | F               |            |          |                    |             |            | 4       |             |       |
| -<br>- ·          |                                                                                                                          |        | ļ     |        |       | F               |            |          |                    |             |            |         | •           |       |
| <u> </u>          |                                                                                                                          |        | ١.    |        |       | ļ               |            |          |                    |             | -          |         |             |       |
| -                 |                                                                                                                          |        |       |        |       | -               |            |          |                    |             |            |         |             | •     |
| L                 |                                                                                                                          |        |       |        |       |                 |            |          |                    |             |            |         |             |       |
| <u>L</u>          |                                                                                                                          |        |       |        |       | L               |            |          |                    |             |            |         |             |       |
|                   |                                                                                                                          |        |       |        |       | E               | '          |          |                    |             |            |         |             |       |
| F                 |                                                                                                                          |        |       |        | ł     | -               |            |          |                    |             |            |         |             |       |
| -                 |                                                                                                                          |        |       |        |       | <u>-</u> -      |            | ·        |                    |             |            |         |             |       |
| <u> </u>          |                                                                                                                          |        |       |        |       | -               |            |          |                    |             |            |         |             |       |
| <u> </u>          |                                                                                                                          |        |       |        |       | <u>-</u>        |            |          |                    | į           |            |         |             |       |
| <u> </u>          |                                                                                                                          |        |       |        |       | <b> </b>        |            |          |                    |             |            |         |             |       |
| <u> </u>          |                                                                                                                          |        |       |        |       | +               |            |          |                    |             |            |         |             |       |
| Ł                 |                                                                                                                          |        |       |        |       | <u>}</u>        |            |          |                    |             |            |         |             |       |
|                   |                                                                                                                          |        |       |        |       | E               |            |          |                    |             |            |         |             |       |
| F                 |                                                                                                                          |        |       |        |       | F               |            |          |                    |             |            | ,       |             |       |
| <b>F</b>          |                                                                                                                          |        |       |        |       | E               |            |          |                    |             |            |         |             |       |
| REASO             | ON FO                                                                                                                    | OR HO  | OLE : | 100    | ollec | 1 54            | reples     | of !     | DRILL TYPE         | Investigate | ~ LOGG     | ED BY I | Youles      | 01    |

OTHER DETAILS: While clay

DRILL TYPE: Investigator LOGGED BY I Voules

DRILLER: SADME DATE DRILLED: 15-7-86

SCALE: 1:250 DRG/CODE No.

| PROSPEC<br>LOCATIOI       |      |          | 274      | RO        | TAR      | Y PE            | RCUS     | SSION L | COMPANY PTY. LTD.  ORILL HOLE LOG  TO 3 4 | RL. COLL     | TION: 90        | .m.  |
|---------------------------|------|----------|----------|-----------|----------|-----------------|----------|---------|-------------------------------------------|--------------|-----------------|------|
| CO-ORDS                   | , 46 | ومدا     | £ . 6    | 458       | 150 AM   | N HA            | MMER     | FROM    | 270 <u>3</u><br>70                        | DIRECTIO     | DN:             | .•.  |
| SAMPLE<br>N <sup>O.</sup> |      | ANAL     | YSES     | p.p.m /   | %        | DEPTH<br>METRES |          | •       | DESCRIPTION                               |              | REMARKS         | WATE |
|                           |      |          |          | -         |          | _               | 01 -1 U  | Calcre  | te - nodular<br>- time ar, silicities     | i<br>I nello | w ho cream      |      |
|                           |      | <u> </u> |          |           |          |                 | <u> </u> | Aband   | oned at 3m due                            | to coll      | apre 0141       |      |
| -                         |      |          |          |           |          | -               |          | 0       | oned at 3m due<br>calciete zone           |              | () 1. 1.        |      |
|                           |      | •        |          |           |          | }               |          |         |                                           |              |                 |      |
| -<br>                     | •    |          |          |           | Ę        | L               |          |         | ~ .                                       |              |                 |      |
| <u>-</u>                  |      |          |          |           |          | <b>}</b>        | ļ        |         |                                           | •            | i               |      |
| <b>-</b>                  |      |          |          |           |          | <u> </u>        | ,        |         |                                           |              | • .             |      |
| <del>-</del> .<br>-       |      |          |          |           |          | -               |          | · ·     | •                                         |              |                 |      |
| -<br>-                    |      |          |          |           |          | <u> </u>        |          |         |                                           |              |                 |      |
| -<br>                     |      |          |          |           |          | -               |          |         |                                           |              |                 |      |
| -                         |      |          |          |           |          | }               |          |         |                                           |              |                 |      |
| -                         |      |          |          |           |          | F               |          |         | •                                         | *            |                 |      |
| -                         |      |          |          |           |          |                 |          |         | •••                                       |              |                 | '    |
| -                         |      |          |          |           |          | -               |          |         | •                                         |              |                 |      |
| _                         |      |          |          |           |          | _               |          |         |                                           |              |                 |      |
|                           |      |          | ļ        |           |          | -               |          |         |                                           |              |                 |      |
| [                         |      |          |          |           |          | <u> </u>        |          |         |                                           | ٠            |                 |      |
| <u> </u>                  |      |          |          |           |          | }               | ·        |         |                                           |              |                 |      |
|                           |      |          |          |           |          | -               |          |         |                                           |              |                 |      |
| -                         |      |          |          |           |          | -               |          |         |                                           |              |                 |      |
| ‡                         |      |          |          |           |          | ţ               |          |         | •                                         |              |                 |      |
| <u>-</u>                  |      |          |          |           |          | <u>-</u> -      |          | ļ.<br>  |                                           |              |                 |      |
| ļ                         |      |          |          |           |          | F               |          |         |                                           |              |                 |      |
| -                         |      |          |          |           |          | E               |          |         |                                           | •            |                 |      |
| F                         |      |          |          |           |          | ŧ               |          |         |                                           |              |                 |      |
| F                         |      |          |          |           |          | L               |          |         |                                           | -            |                 |      |
| -                         |      |          |          |           |          | -               | -        |         | •                                         |              |                 |      |
| <b>F</b>                  |      |          |          |           |          | }               |          |         |                                           |              |                 |      |
| Ł                         |      |          |          |           |          | -               |          |         |                                           |              |                 |      |
| 854                       |      |          | <u> </u> | <u>-1</u> | <u> </u> | ect 5           | amoles   | of      | DRILL TYPE: Investiga                     | tor LOG      | GED BY : I Youl | 125  |

REASON FOR HOLE: To collect samples of OTHER DETAILS: White clay

DRILL TYPE: Investigator LOGGED BY: I You!

DRILLER: SAOME DATE DRILLED: 15-7

SCALE: 1:250 DRG/CODE NO:

| PROSPEC       |               |                |           | RO      | TAR  | YPE             | RCUS           | SSION   | DRILL HO   | LE LOG    | RL.COLL   | ENº. P                                  |                                         | m.       |
|---------------|---------------|----------------|-----------|---------|------|-----------------|----------------|---------|------------|-----------|-----------|-----------------------------------------|-----------------------------------------|----------|
| LOCATION      | v: ~ .<br>, 4 | 30. 4<br>61.20 | ~ N<br>∞Æ | 645     | 8150 | N RO            | TARY<br>MMER   | FROM    | TO         | 10 m.     | INCL INAT | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ······                                  | •.<br>•. |
| SAMPLE<br>No. |               |                |           | p.p.m / |      | OCPTH<br>METRES | 100            | ,       | DESCRI     |           |           | REMAR                                   | rks                                     | WATER    |
| -             |               |                |           | ,       |      | -               | o  -           | Topsoil | te - nod   | ular      | .`.       |                                         | 01/                                     |          |
| -             |               |                |           |         |      | -               |                |         | - fine gr  |           | •         |                                         | 014                                     | Α.       |
| _             |               |                |           |         |      | - 5<br>-        | <u> </u>       | Sand    |            | - Silicif | , yellow  |                                         |                                         |          |
| -<br>-        |               |                |           |         |      | -               |                |         | to br.     |           |           |                                         |                                         |          |
| - ,           |               |                |           |         |      | 10              | <u>- ' - '</u> | 1401- 0 | bandoned a | 1 10m d   | lue to    |                                         |                                         |          |
| -<br>-        |               |                |           |         |      |                 | ,              |         | ollapse of |           |           |                                         |                                         |          |
|               |               |                |           |         |      | -               |                |         |            | -         |           | • ,                                     |                                         |          |
| -             |               |                |           |         |      | -               |                |         |            |           |           |                                         |                                         |          |
| -             |               |                |           |         |      |                 | ]<br>]         |         |            |           |           |                                         |                                         |          |
|               |               |                |           |         |      |                 |                |         | _          |           |           |                                         |                                         |          |
|               |               |                |           |         |      | <u> </u>        |                |         | <b>\</b>   |           |           |                                         |                                         |          |
| -<br> -       |               |                |           |         |      | +               | ,              |         |            |           |           | <u> </u><br>                            |                                         |          |
| •             |               |                |           |         |      |                 |                |         |            |           |           |                                         |                                         |          |
|               |               |                |           |         |      | -               |                |         |            |           |           | . ,                                     |                                         |          |
| <u>.</u>      |               |                |           |         |      | }               |                |         |            |           |           |                                         |                                         |          |
| -             |               |                |           |         |      | Ė               | ·              |         |            |           |           |                                         |                                         |          |
| Ė             |               |                |           |         |      | [               |                |         |            |           |           |                                         |                                         |          |
| Ŀ             |               |                |           |         |      | -               |                |         |            |           |           |                                         | ·                                       |          |
| }             |               |                |           |         |      | <u> </u>        |                |         |            |           |           |                                         |                                         | İ        |
|               |               |                |           |         |      | -               |                |         | ,          |           |           |                                         |                                         |          |
| F             |               |                |           |         |      | -               |                |         |            |           |           |                                         | •                                       |          |
| -             |               |                |           |         |      | }               |                |         |            |           |           |                                         |                                         |          |
|               |               |                |           |         |      | -               |                |         |            |           |           |                                         |                                         |          |
| •             |               |                |           |         |      |                 |                |         |            |           | ·         |                                         |                                         |          |
| -             |               |                |           |         |      | -               | .              |         |            |           |           | -                                       |                                         |          |
| <b> </b>      |               |                |           |         |      | }               |                |         |            |           |           | •                                       |                                         |          |
|               |               |                |           |         |      | L               |                |         |            |           | ,         | 50.0%: 7                                | Vaila                                   | _        |
| REAS          | ON F          | OR H           | 01 F :    | 10      | coll | ect s           | ارسه           | les of  | DRILL TYPE | Investiga | tos 1066  | EU BI · J                               | . , , , , , , , , , , , , , , , , , , , | 01       |

OTHER DETAILS:

DRILL TYPE: Investigator LOGGED BY: I Youles

DRILLER: SADME DATE DRILLED: 16-7-84

SCALE: 1:250 DRG/CODE NO:

| PROSPECT: Dunn      CARPENTARIA EXPLORATION COMPANY PTY. LTD. HOLE No. PD 3 |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        |        |
|-----------------------------------------------------------------------------|-------------------------------------|-------|------|---------|--------|-----------------|-----------------------|--------|-----------|-------------|-------------------------------|------------|--------|--------|
| LOCATIO                                                                     | ML. CULLAN: ML. CULLAN: ML. CULLAN: |       |      |         |        |                 |                       |        |           |             |                               |            |        |        |
| CO-ORDS: 461600 E 6457800 N ROTARY: FROM TO 30 M INCLINATION: 90 .          |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        |        |
| SAMPLE<br>Nº                                                                |                                     |       |      | p p.m./ |        | DEPTH<br>METRES | 106                   | •      |           | CRIPTION    |                               | REMAI      |        | WATER  |
|                                                                             |                                     |       |      |         |        |                 |                       | Sand   | - V. jine | gr, min     | or calcret                    |            | 1112   |        |
| _                                                                           |                                     |       |      |         |        | -               | 0.0                   |        | nodule    | s . V. ligh | nt br.                        | '          | 1143   |        |
| t i                                                                         |                                     |       |      |         |        | t               | 0.0                   |        |           |             |                               |            |        |        |
| _                                                                           | ٠                                   |       |      |         |        | - 5             | <u> </u>              | Sand - | line g    | , silici    | fied, white                   |            | !      |        |
| <b>-</b> .                                                                  |                                     | ]     | 1    | ļ       |        | }               |                       |        |           |             |                               |            |        |        |
| ļ ·                                                                         |                                     | ١.    |      |         |        | [               | . ,                   | Sand.  | - finr g  | 1, Slight   | ly kaolinities ht br.         | ۲,         |        |        |
| -                                                                           |                                     |       |      |         |        | }               |                       |        | white     | ho V. lig   | ht br.                        |            |        | İ      |
| _                                                                           |                                     |       |      | ļ.      |        | - 10            |                       | _ ,    |           | ·           | l l'h. l .                    |            |        |        |
| -                                                                           |                                     |       |      |         |        | -               |                       | Sand   | - med.    | no waise    | gr, light br<br>linitic, ligh | who to pal | - 425  |        |
| <b>†</b>                                                                    |                                     |       |      |         |        | <u> </u>        | •                     |        |           |             | linitic , brow                |            |        |        |
| <u> </u>                                                                    |                                     |       |      |         |        | - 15            | — <u> </u>            | - 0    | ) - :     |             |                               | (0 (0      |        |        |
| -                                                                           |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        |        |
| 00 17707                                                                    |                                     |       |      |         | 17.5.  | [               | $\stackrel{\cdot}{=}$ | Clan   | - Kaoli   |             |                               |            |        |        |
| as 17970<br>71                                                              |                                     |       |      |         |        | -               |                       |        |           |             | ate grain                     | <b>~</b>   |        |        |
| 72                                                                          |                                     |       |      |         |        | - 20            | 11                    |        | Mo        | aghout «    | دامس.                         |            |        |        |
| 73<br>74                                                                    |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        |        |
| 75                                                                          |                                     |       |      |         |        |                 | = =                   |        | - while   | . to lie    | jhr br.                       |            |        |        |
| 77                                                                          |                                     |       |      |         |        | - 25            | = -                   | -      | - while   |             | •                             |            |        |        |
| 78                                                                          |                                     |       |      |         |        |                 |                       | -      | - white   | with        | trace light                   | red-61.    |        | -1     |
| 79                                                                          |                                     |       |      |         |        |                 |                       |        |           | •           |                               |            | ]      | ł      |
| 80                                                                          |                                     |       |      | -       | 29.7.  | _ ,             |                       | _      | white,    | weather     | ed granita                    | W-29.7     |        |        |
| -                                                                           |                                     |       |      |         |        | - 30<br>-       |                       |        |           |             |                               | ,          |        |        |
| - ·                                                                         |                                     |       |      |         |        | -               |                       |        |           |             |                               |            | İ      | İ      |
|                                                                             |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        | ı      |
| -                                                                           |                                     |       |      |         |        | - 1             |                       |        |           |             |                               | 1          |        |        |
| [                                                                           |                                     |       |      | ĺ       |        |                 |                       |        |           |             |                               |            |        |        |
| -                                                                           |                                     |       |      |         |        | -               |                       |        |           |             |                               |            |        | İ      |
|                                                                             | ,                                   |       |      |         |        |                 |                       |        |           |             |                               |            | 1      | ı      |
| -                                                                           |                                     |       |      |         | į      | -               |                       |        |           |             |                               |            | }      |        |
|                                                                             |                                     |       |      |         |        |                 |                       |        |           |             |                               |            |        | ı      |
| }                                                                           |                                     |       |      |         |        | -               |                       |        |           |             |                               |            | ſ      | 1      |
|                                                                             |                                     |       |      |         |        | <u> </u>        |                       |        |           |             |                               | 1          |        | - 1    |
| - 1                                                                         |                                     |       |      |         |        | -               |                       |        |           |             |                               |            |        |        |
|                                                                             |                                     |       |      |         |        |                 |                       |        |           |             |                               | 1          | 1      | ١      |
| -                                                                           |                                     |       |      |         |        | _               |                       |        |           |             |                               |            | ļ      |        |
| t . I                                                                       |                                     |       | ٠    |         |        |                 | . ]                   |        |           |             |                               |            | ĺ      |        |
| -                                                                           | .                                   |       |      |         |        | - ]             | į                     |        |           |             |                               |            |        |        |
| լ                                                                           |                                     |       |      |         |        | _               |                       |        |           |             |                               |            |        | Ì      |
| -                                                                           |                                     |       |      |         |        | -               | - [                   |        |           | •           |                               |            |        |        |
| t 1                                                                         |                                     |       | .    |         | .      | -               |                       |        |           |             |                               |            |        |        |
| [                                                                           |                                     |       |      |         |        | -               |                       | •      |           |             |                               |            | ]      | I      |
| <u> </u>                                                                    |                                     |       |      |         |        |                 |                       |        |           | ·           |                               | <u></u>    |        |        |
| REASO                                                                       | V FO                                | R HOL | E: 1 | 10 co   | ollect | San             | ples                  | 0/- 0  | RILL TYPE | : Invest    | igator LOGG                   | ED BY : I. | Voules | $\Box$ |

White clay. OTHER DETAILS:

DATE DRILLED: 16-7-86 DRG/CODE NO: DRILLER: SADME SCALE: 1:250

APPENDIX 3

.

·



The Australian **Mineral Development** Laboratories

0145

**Head Office** Flemington Street, Frewville, South Australia 5063

Phone Adelaide (08) 79 1662 Telex AA82520

> Please address all correspondence to P.O. Box 114 Eastwood SA 5063 In reply quote:

8 August 1986

3/3/2/0 - M7525/87

Carpentaria Exploration Company Pty Ltd

PO Box 3

GOODWOOD SA 5034

Attention Mr P Binks

REPORT M7525/87

YOUR REFERENCE

Request - Mr I Youles.

TITLE

Testing of Kaolin.

WORK REQUIRED

Brightness and Yield, Chloride Content.

Investigation and Report by:

Lyn J Day.

Manager, Materials Services:

Philip J Parry.

Branches: Operations Division: Thebarton, S.A. (08) 43 5733 Telex: Amdel AA82725 Melbourne, Vic. (03) 645 3211 Perth, W.A. (09) 325 7311 Sydney, N.S.W. (02) 428 5033 Telex: Amdel AA20053

Telex: Amdel AA94893 Darwin, N.T. (089) 84 3637 Telex: Amdel AA85987 Townsville, Qld. (077) 75 1377 Telex: Amdel AA47363 Wivenhoe, Tas. (004) 31 7799 Brisbane, Qld. (07) 262 8522 anberra, A.C.T. (062) 48 0157

for Dr William G Spencer General Manager Applied Sciences Group

Copy to

Carpentaria Exploration Company Pty Ltd

GPO Box 1042

4001 BRISBANE Qld

Administration Superintendent Attention

1. INTRODUCTION 0146

Nineteen samples of kaolin were submitted for testing to determine their brightness and yield, and chloride content, with respect to potential usage as paper coating clays.

#### PROCEDURES

Representative portions of the samples were wet-screened on a 300 mesh (53  $\mu$ m) screen to separate out their grit fractions. The undersized material was placed in 2 litre measuring cylinders and the amount of minus 2 micron material determined using the sedimentation technique.

The minus 2 micron fractions were siphoned off, dried and milled using a high speed air mill to give finely dispersed powders. Brightness determinations were performed on these fractions using a Zeiss Elrepho electric reflectance photometer. The brightness was determined at 457 nm using the R457 filter. The yellowness was determined using the R57 filter.

The minus 2 micron fractions were tested using standard analytical techniques to determine their chloride contents.

#### RESULTS

See Table 1.

#### 4. DISCUSSION

Paper coating clays require a minimum brightness of 86.0 and paper filling clays a minimum value of 80.0. Of the nineteen samples tested only nine have a brightness value in excess of 80.0. Some samples are promising while others are too low even to consider upgrading. The amount of minus 2 micron material is quite variable with some of the yields being fairly low. The chloride levels are high and the clay would require washing at some stage to remove this contamination were it to be considered for paper coating purposes.

TABLE 1: TEST RESULTS

|    | Sample | +53 µm (%) | -2 μm (%) | Brightness<br>(R457) | Yellowness<br>(R57-R457) | Chloride<br>(%) |   |
|----|--------|------------|-----------|----------------------|--------------------------|-----------------|---|
| QS | 17282  | 34         | 21        | 81.3                 | 9.2                      | 0.88            |   |
|    | 17286  | 43         | 14        | 77.6                 | 10.1                     | 0.82            |   |
|    | 17289  | 39         | 12        | 75.1                 | 12.0                     | 1.99            |   |
|    | 17290  | 43         | 12        | 76.8                 | 12.5                     | 1.22            |   |
|    | 17291  | -50        | 12        | 75.9                 | 13.0                     | 0.89            |   |
|    | 17292  | 54         | 15        | 80.5                 | 9.4                      | 1.04            |   |
|    | 17293  | 61         | 14        | 79.4                 | 8.2                      | 1.52            |   |
|    | 17294  | 66         | 11        | 83.6                 | 6.8                      | 1.41            |   |
|    | 17295  | 65         | 10        | 81.1                 | 9.2                      | 2.03            |   |
|    | 17296  | 70         | 10        | 73.5                 | 12.8                     | 1.41            |   |
|    | 17297  | 72         | 6         | 78.0                 | 9.0                      | 1.87            |   |
|    | 17298  | 61         | 23        | <b>85.9</b>          | 5.7                      | 0.76 ×          |   |
|    | 17970  | 30         | 44        | 88.6                 | 5.2                      | 0.48 *          |   |
|    | 17971  | 43         | 29        | 85.2                 | 6.3                      | 0.80            |   |
|    | 17972  | 45         | 26        | 81.6                 | 7.7                      | 1.31            | , |
|    | 17973  | 44         | 22        | 83.6                 | 7.0                      | 1.08            |   |
|    | 17974  | 52         | 17        | 79.9                 | 8.9                      | 1.71            |   |
|    | 17975  | 35         | 30        | 77.0                 | 10.3                     | 1.15            |   |
|    | 17976  | 52         | 19        | 78.8                 | 9.6                      | 1.29            |   |

View in the second 1471. 5001 Alacha Amaky.

1, 1 2

. . . .



### EXPLORATION LICENCE NO.1274 "DUNN HILL"

## PROGRESS REPORT FOR QUARTER ENDED FEBRUARY 18, 1987

### 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

### 2. EXPLORATION

Results of testing by CSIRO on two clay samples from holes drilled approximately 30 km north of Nunjikompita are not encouraging (see Appendix). The viscosity of both samples is far too high for paper coating and the brightness is not high enough for high quality porcelain. Details of the samples submitted for testing were given in the previous Progress Report.

#### 3. EXPENDITURE

A Statement of Expenditure is attached.

or P.J. Binks

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

## STATEMENT OF EXPENDITURE FOR QUARTER ENDED FEBRUARY 18, 1987

|                                                                  | \$           | \$       |
|------------------------------------------------------------------|--------------|----------|
| Assaying                                                         | 150          |          |
| Field Base Operations                                            | 74           |          |
| Rents - Mining Tenements                                         | 4388         | 4 612    |
|                                                                  | <del></del>  |          |
| TOTAL - THIS PERIOD                                              |              | 4 612    |
| Previously Reported - Current Term                               |              |          |
| Quarter ended May 18, 1986                                       | 7172         |          |
| Quarter ended August 18, 1986<br>Quarter ended November 18, 1986 | 1171<br>5424 | 13 767   |
|                                                                  |              |          |
| TOTAL - CURRENT TERM                                             |              | \$18 379 |
| Previously Reported                                              |              | \$ 2 111 |
|                                                                  |              |          |
| Total Project Expenditure to Date                                |              | \$20 490 |

A.E. Covacich

Administration Superintendents

RECEIVED

ADMAR 1987.

DEET. OF WINE

6089

APPENDIX

Undérwood Avenue, Florent Park, WA, Aostralia

A Division of the Institute of Energy and Earth Resources

Private Bag, PO, Wembley, WA, Australia 6014 Telephone (09) 387 4233 Telex AA 92178

0151

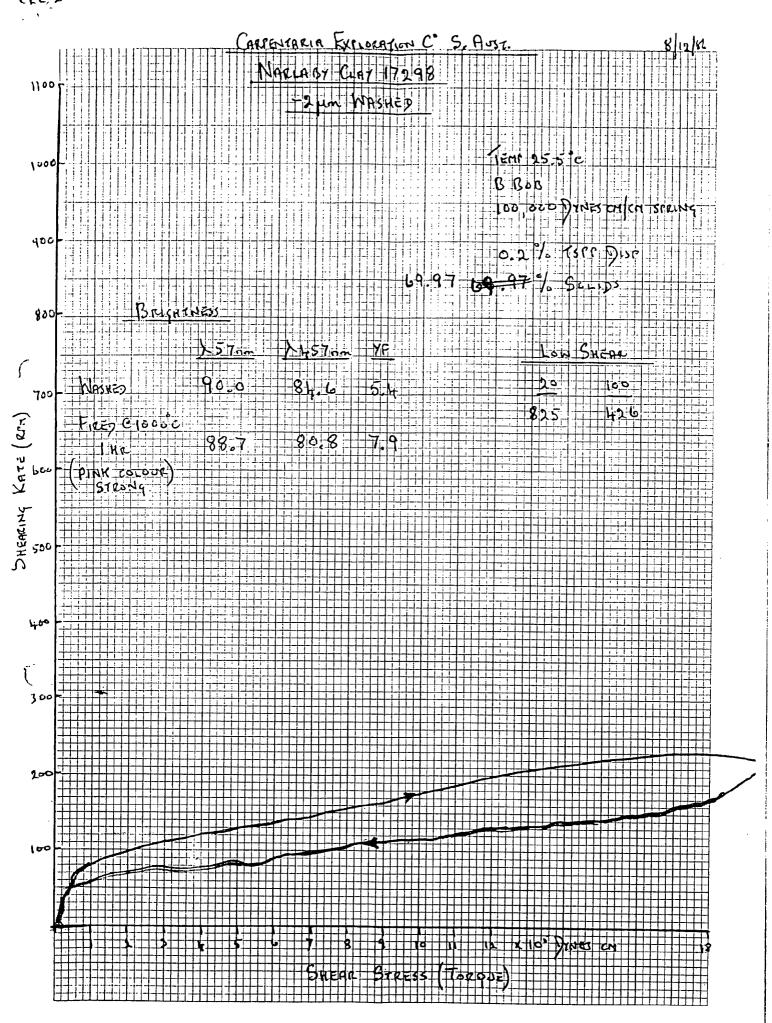
12 December 1986

Mr P Binks Carpentaria Exploration Co Pty Ltd PO Box 3 GOODWOOD SA 5034

Dear Peter

Enclosed are rheograms for the samples submitted. Unfortunately neither sample is any where near the low viscosity requirement for a paper coating kaolin even after considerable washing. Currently there is a demand for extremely white firing kaolins for high grade table ware so we measured the colour of powder samples after firing to  $1000^{\circ}$ C.

Clay 17970 showed the highest brightness but the fired colour is distinctly pink so this end use is not applicable.


Altogether the results are not encouraging.

Yours sincerely

Pela Parroy

P J DARRAGH

enc



#### EXPLORATION LICENCE NO.1274 "DUNN HILL"

## PROGRESS REPORT FOR QUARTER ENDED MAY 18, 1987

## 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

## 2. EXPLORATION

No work has been carried out on this Licence during the last quarter.

#### 3. EXPENDITURE

A Statement of Expenditure is attached.

for J.J. Binks

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR THREE MONTHS ENDED MAY 18, 1987

|                                   | \$          | \$       |
|-----------------------------------|-------------|----------|
| Field Base Operations             | 28          | 28       |
| TOTAL - THIS PERIOD               | <del></del> | \$ 28    |
| Previously Reported               |             | \$20 490 |
|                                   |             | ******   |
| Total Project Expenditure to Date |             | \$20 518 |

A.E. Covacich Administration Superintendent





Carpentaria Exploration Company Pty. Ltd.

INCORPORATED IN QUEENSLAND (A MEMBER OF THE M.I.M. HOLDINGS LIMITED GROUP OF COMPANIES)

SUITE 7, "ROCKTON", CNR. MALLON & JEAYS STREETS, BOWEN HILLS, Q. 4006. POSTAL ADDRESS: G.P.O. BOX 1042, BRISBANE, Q. 4001

TELEX: AA 145466 "CECBNE"

TELEPHONE: (07) 228 1122

DIRECT ENQUIRIES: (07) ......228-1422...

AEC:SF:Tenement

September 8, 1987.

The Director-General, Department of Mines and Energy, P.O. Box 151, EASTWOOD. S.A. 5063.

Dear Sir,

EXPLORATION LICENCE NO.1274 "DUNN HILL" REPORT FOR QUARTER ENDED AUGUST 18, 1987

No exploration has been carried out on this Licence during the last quarter.

A Statement of Expenditure is attached.

Yours faithfully, CARPENTARIA EXPLORATION COMPANY PTY. LTD.

A.E. Covacich



# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED AUGUST 18, 1987

|                                    | \$  |             | \$  |
|------------------------------------|-----|-------------|-----|
| Administration                     | 95  |             |     |
| Field Base Operations              | 204 |             |     |
| Operating Labour                   | 238 | \$          | 537 |
| TOTAL - THIS PERIOD                |     | \$          | 537 |
| Previously Reported - Current Term |     |             |     |
| Six Months ended May 18, 1987      |     | \$          | 28  |
| TOTAL - CURRENT TERM               |     | \$          | 565 |
| Previously Reported                |     | <b>\$20</b> | 490 |
| Total Project Expenditure to Date  |     | \$21        | 055 |

A.E. Covacich

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

## PROGRESS REPORT FOR QUARTER ENDED NOVEMBER 18, 1987

## 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. Exploration is carried out by Carpentaria Exploration Company Pty. Ltd. on behalf of Mount Isa Mines Limited. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

## 2. EXPLORATION

Dr. D. Lock of the A.N.U. has collected a suite of samples from pyriterich sections of drill core collected from the Narlaby palaeochannel. He is interested in alunite in these samples and has carried out sulphur isotope studies on them. He is currently preparing a report on this work and a copy will be forwarded to the Department with the next quarterly report.

### EXPENDITURE

A Statement of Expenditure is attached.

for P.J. Binke

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED NOVEMBER 18, 1987

|                                                             | \$        | \$           |
|-------------------------------------------------------------|-----------|--------------|
| TOTAL - THIS PERIOD                                         |           | N11          |
| Previously Reported - Current Term                          |           |              |
| Quarter ended May 18, 1987<br>Quarter ended August 18, 1987 | 28<br>537 | \$ 565       |
|                                                             |           | ************ |
| TOTAL - CURRENT TERM                                        |           | \$ 565       |
| Previously Reported                                         |           | \$20 490     |
|                                                             |           | <del></del>  |
| Total Project Expenditure to Date                           |           | \$21 055     |

A.E. Covacich Administration Superintendent





### CARPENTARIA EXPLORATION COMPANY PTY. LTD.

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

### PROGRESS REPORT FOR QUARTER ENDED FEBRUARY 18, 1988

## 1. TERMS AND CONDITIONS

Exploration Licence No.1274 "Dunn Hill" was granted to Carpentaria Exploration Company Pty. Ltd. on February 19, 1985, for a period of two years. It was extended for a further year on December 21, 1987. The Licence is located approximately 30 km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel. Previous work by Carpentaria Exploration Company Pty. Ltd. revealed extensive zones of low grade uranium mineralization in Eocene sands within this palaeochannel.

## 2. EXPLORATION

Discussions have been held with Dr. D. Lock of the ANU about carrying out a programme of sampling of drill core and cuttings from the Narlaby Palaeochannel. These cuttings were to be assayed for trace metals and checked for the presence of alunite and/or jarosite to determine the presence of metallic ores in pre-Eocene basement rocks. Unfortunately, it has been decided not to proceed with this programme because of the low prospectivity of the basement rocks in this area.

All drill cuttings from holes drilled during the search for uranium in the Narlaby Palaeochannel have been brought back from storage at Streaky Bay and submitted to the Core Library of SADME.

3. EXPENDITURE

A Statement of Expenditure is attached.

2 4 MAR 1988

DEPT. OF MINES AND ENERGY SECURITY

for P.J. Binks



# CARPENTARIA EXPLORATION COMPANY PTY. LTD.

## EXPLORATION LICENCE NO.1274 "DUNN HILL"

# PROGRESS REPORT FOR QUARTER ENDED FEBRUARY 18, 1988

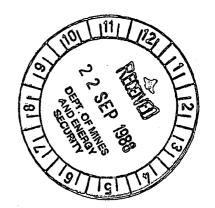
|                                   | \$   | \$               |
|-----------------------------------|------|------------------|
| Administration                    | 107  |                  |
| Field Base Operations             | 450  |                  |
| Freight                           | 1201 |                  |
| Outside Services                  | 24   |                  |
| Operating Labour                  | 615  |                  |
| Rents - Mining Tenements          | 4827 | 7 224            |
| TOTAL - THIS PERIOD               |      | \$ 7 224         |
| Previously Reported               |      | \$21 <b>0</b> 55 |
| Total Project Expenditure to Date |      | \$28 279         |

A.E. Covacich

## EXPLORATION LICENCE NO. 1274 "DUNN HILL"

### PROGRESS REPORT FOR QUARTER ENDED MAY 18, 1988

Exploration Licence No. 1274 "Dunn Hill" was granted to Mount Isa Mines Limited on February 19, 1985, for a period of two years. It was extended for a further year on December 21, 1987. Exploration is carried out by Carpentaria Exploration Company Pty Ltd on behalf of Mount Isa Mines Limited. The Licence is located approximately 30km east of Ceduna and covers the most prospective portion of the Narlaby Palaeochannel.


The Dunn Hill Licence is the last of a group of Exploration Licences which were held over the Narlaby Palaeochannel to search for "sandstone" uranium mineralisation. Intensive drilling over several years in the early 1980s revealed a major Tertiary palaeochannel system. Interesting uranium mineralisation was found in the Yaranna area, approximately 30km north of Nunjikompita, and this was followed up by core and air-core drilling. A summary of the exploration, geology and uranium mineralisation of the area was presented in a paper in the Proceedings of the AIMM in 1984 (Uranium in Tertiary Palaeochannels "West Coast Area" South Australia, Proceedings AIMM No 289: pp 271-275 by Binks and Hooper).

Because of the low grades of uranium mineralisation intersected in the Yaranna area and the probability that higher grades may not exist because of the extremely acidic groundwater, it has been decided to surrender this Licence.

Consideration has been given on several occasions to exploring for base and precious metals in the basement rocks beneath the younger sediments. Unfortunately, existing aeromagnetic cover of the area was not good enough to allow detailed interpretation and subsequent recognition of possible mineralised environments. Also, the depth of Cainozoic cover (30 to 120m) precludes cheap reconnaissance RAB drilling.

A statement of expenditure is attached.

P J BINKS Senior Geologist



## CARPENTARIA EXPLORATION COMPANY PTY. LTD.

# EXPLORATION LICENCE NO.1274 "DUNN HILL"

# STATEMENT OF EXPENDITURE FOR QUARTER ENDED MAY 18, 1988

|                                    |      | \$         |     |
|------------------------------------|------|------------|-----|
| TOTAL - THIS PERIOD                | ]    | N <b>1</b> | 1   |
| Previously Reported - Current Term |      |            |     |
| Quarter ended February 18, 1988    | \$   | 7 2        | 224 |
|                                    |      |            |     |
| TOTAL - CURRENT TERM               | \$   | 7 2        | 224 |
| Previously Reported                | \$2  | 1 (        | 055 |
|                                    |      |            |     |
| Total Project Expenditure to Date  | \$28 | 3 2        | 279 |

A.E. Covacich