Open File Envelope No. 9507

EL 2035

NUCKULLA HILL

PARTIAL SURRENDER REPORT FOR THE PERIOD 6/12/94 TO 5/12/98

Submitted by

Equinox Resources NL 1998

© open file date 11/5/99

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

"NUCKULLA HILL" EXPLORATION LICENCE EL2035 WESTERN GAWLER CRATON SOUTH AUSTRALIA

Partial Surrender Report 6th December 1994 - 5th December 1998

by

A. J. Parker (Geosurveys Australia Pty Ltd)

Head Office:

1st Floor 681 Murray Street West Perth WA 6005 Telephone: [+61 9] (08) 9322 3318 Facsimile: [+61 9] (08) 9324 1195

Adelaide Office:

Geosurveys Australia Pty Ltd 334 Glen Osmond Road Myrtle Bank SA 5064 Telephone: [+61 8] (08) 8379 8788 Facsimile: [+61 8] (08) 8379 5969

Email: geosurveys@adelaide.on.net Website: www.users.on.net/geosurveys

TABLE OF CONTENTS

SUN	MMARY	Page No.
1.0	INTRODUCTION	3
2.0	ACCESS	4
3.0	METHODS 4 3.1 Aeromagnetic Interpretation	4
	3.2 Geological Mapping3.3 Stream Sediment and Rock Chip Sampling3.4 Calcrete Sampling5	5 5
	3.5 Soil Sampling	5
4.0	RESULTS 4.1 Previous Investigations 4.2 Regional Geology 7	6
	4.3 Aeromagnetic Interpretation 4.4 Rock Chip Geochemsitry 4.5 Stream Sediment BLEG Geochemistry 4.6 Calcrete and Soil Geochemistry	8 9 9 10
5.0	CONCLUSIONS AND RECOMMENDATIONS	10
6.0	REFERENCES	11
APF	PENDIX A - Rock chip samples and assays	
APF	PENDIX B - Stream sediment samples and assays	
APF	PENDIX C - Calcrete samples and assays	
	LIST OF FIGURES	
Fig 1.	No. Location of EL 2035 and areas surrendered in November 1996 and Decer	mber 1998
2.	Geological interpretation, Childara Dam - Nuckulla Hill Project	
3.	Nuckulla Hill EL 2035, rock chip samples	
4.	Nuckulla Hill EL 2035, stream sediment samples	
5a.	Nuckulla Hill EL 2035, calcrete samples (eastern subarea)	
5b.	Nuckulla Hill EL 2035, calcrete samples (northwestern subarea)	
5c.	Nuckulla Hill EL 2035, calcrete samples (southwestern subarea)	

6.

Nuckulla Hill EL 2035, calcrete gold anomalies

SUMMARY

Exploration Licence EL 2035, Nuckulla Hill, was granted on 6 December 1995. The Nuckulla Hill region is recognised as having considerable potential for Au and Cu/Au mineralisation associated with shear zones active about the time of or immediately following emplacement of Hiltaba Suite and related granites. Significant gold mineralisation associated with the Yarlbrinda Shear Zone was discovered at Myall, Sheoak and Bimba prospects in the Childera OS area in late 1995.

During the first 6 months of tenure, Equinox Resources NL undertook compilation of previous exploration data, preliminary interpretation of aeromagnetic data, stream sediment and rock chip sampling, and regional geological mapping. Several Ernest Henry style Cu-Au targets and major structures for priority surface geochemical sampling were identified from the aeromagnetics but there were no significant gold or base metal anomalies identified by the BLEG stream sediment and rock chip sampling. Most of this sampling was in the Gawler Ranges and confirms that outcropping Gawler Range Volcanics are not generally prospective.

In mid 1995, regional calcrete sampling commenced on a 1.5km rectangular grid. Regional calcrete and soil sampling was completed during 1995-1996 within all accessible areas excluding those parts of Yellabinna Regional Reserve and Pureba Conservation Park subject to Native Title determination. Calcrete samples were assayed for Au ± Cu, base metals, Fe, Ca, Ni, Cr, and some other elements. Calcrete assays up to 7ppb Au and 29.5ppm Cu were recorded in the areas relinquished. Most anomalous assays have been followed up with infill sampling to verify original assays and/or establish the size of the anomaly but no major geochemical calcrete anomalies were identified.

Due to uncertainties in relation to NT claims on pastoral leases, no field work has been undertaken since mid-1997.

Negotiations with Aboriginal communities commenced in 1995 and continued throughout the entire reporting period. Aboriginal heritage site clearances over selected priority areas were obtained from representatives of the Kokatha people and Biringa NT claimants in 1995, 1996 and 1997.

The entire EL is subject to various NT Claims. Discussions and plenary meetings with the Native Title Tribunal, Aboriginal Legal Rights Movement, Far West Coast Native Title Working Group (FWCWG), Department of Environment and Natural Resources and local Aboriginal communities at Ceduna continued throughout most of 1997, and on October 25th 1997 an "Access Clearance and Native Title Mining Agreement" was signed by representatives of the FWCWG Native Title Claimants for Yellabinna Regional Reserve and Pureba Conservation Park. SA Mining Act Part 9B notices were prepared and advertised in June-July 1998 but agreement with Mr Ted Roberts and other NT claimants through the Eyre Peninsula Working Group is still pending.

Based on relatively poor results from regional stream sediment and calcrete sampling, it is concluded that overall prospectivity of the eastern part of EL 2035 (east of longitude 134° 54'E) is relatively low compared to areas over or immediately adjacent to the Yarlbrinda Shear Zone. The prospectivity of the region west of longitude 134° 38'E is also relatively low based on regional calcrete sampling combined with locally thick Cainozoic cover and uncertainties in relation to NT and access within the regional reserve and conservation park.

1.0 INTRODUCTION

Nuckulla Hill Exploration Licence EL 2035 is located on CHILDARA, GAIRDNER and STREAKY BAY 1:250,000 map sheets in the Lake Everard area approximately 100km north of Ceduna in western South Australia. It currently has an area of 1,282 sq. km (Fig. 1) following reductions in 1996 and 1998 from it's original size of 2,769 sq. km. EL 2035 is predominantly on Lake Everard and Kondoolka Pastoral Leases but includes parts of Yellabinna Regional Reserve and Pureba Conservation Park. The licence is bound to the north by Lake Everard salt lake which is part of Lake Gairdner National Park and which is excluded from the tenement.

The tenement straddles the western margin of the Gawler Ranges Volcanic Province (Drexel et al., 1993) and is dominated by ca. 1850-1670 Ma granite gneisses and 1595-1580 Ma Hiltaba Suite granites to the west and the comagmatic 1592 Ma Gawler Range Volcanics (GRV) and Hiltaba Suite granites to the east. These are separated by a major N-S trending shear zone, the Yarlbrinda Shear Zone (Parker, 1996; Fig. 2). Exposure of the felsic volcanics is good to excellent, but to the west a thin coverage of soil and sand masks the basement geology. Previous mineral exploration in the area prior to 1995 was minimal.

Acquisition of regional, low level aeromagnetic data by the South Australian Department of Mines and Energy (MESA; now Primary Industries and Resources SA (PIRSA)) in 1993-94 led to a spectacular increase in the understanding of the geology and structure of the western Gawler Craton. Equinox Resources recognised the significance of the new results and applied for an exploration license over the Nuckulla Hill area in early 1994. EL 2035 was granted in December 1994.

During 1995, detailed interpretation of SAEI aeromagnetics and review of existing open file information, including drillcore, were undertaken. Stream sediment and rock chip sampling and reconnaissance geological mapping were completed in the Gawler Ranges east of Childera OS and regional calcrete sampling including reconnaissance auger sampling was completed to the west (van der Stelt & Parker, 1995).

In November-December 1995, two significant calcrete gold anomalies were identified at Sheoak and Myall. These were immediately drill tested and gold mineralisation was discovered in both areas at a depth of about 40m (Parker, 1996; Parker & van der Stelt, 1997). At Sheoak, the best bottom-hole gold intercept was 7m @ 3.1g/t Au including 1m @ 9.61g/t Au at EOH. These results were announced to the Australian Stock Exchange in January 1996.

During 1996, regional calcrete and soil sampling continued and was completed during within all accessible areas excluding those parts of Yellabinna Regional Reserve and Pureba CP subject to NT determination. Most anomalous assays have been followed up with infill sampling to verify original assays and/or establish the size of the anomaly. Calcrete samples were assayed for Au ± Cu, base metals, Fe, Ca, Ni, Cr, and some other elements. Soil samples were assayed for a range of ca. 20 elements including Au, Ag, Cu, base metals and selected REEs using Deepleach partial extraction techniques successfully trialed over calcrete anomalies elsewhere in the EL.

Also during 1996, MESA undertook some calcrete sampling in Pureba Conservation Park as part of an environmental rehabilitation project. Some low order gold anomalies up to 5ppb Au were identified but no follow-up work has been undertaken in that region due to NT restrictions.

During 1995, a joint venture agreement was established with Phelps Dodge Australasia Inc. and this substantially increased Equinox's capacity to carry out extensive exploration and drilling

programs in the region. However, In September 1997, Phelps Dodge withdrew from the joint venture on the basis that Phelps Dodge is primarily a copper company whereas targets defined to date on EL 2035 have been mainly gold.

EL 2035 is subject to several Native Title claims on behalf of the Wirangu, Bungarla, Biringa and Maralinga Tjarutja people and Mr Ted Roberts. These claims have been accepted by the Native Title Tribunal and await determination. An *Access Clearance and Native Title Mining Agreement* has been established with the Wirangu and Maralinga Tjarutja people (members of the Far West Coast Working Group) and the Aboriginal Legal Rights Movement Inc. (ALRM) and was signed by representatives of those groups at the Head of the Bight on October 24th 1997. A similar agreement is currently being negotiated with the Bungarla and Biringa people, members of the Eyre Peninsula Working Group and ALRM. Aboriginal heritage site clearances have been undertaken by representatives of the Kokatha Peoples Committee Inc., Biringa Native Title claimants and Far West Coast Working Group (including Mr Roberts).

Based on relatively poor results from regional calcrete sampling in the Glyde Hill area north of Camel Dam and a small area east of Lake Everard HS, these areas were relinquished at the end of 1996. Very little work has been undertaken west of longitude 134⁰ 38'E, but based on relatively poor results from the limited regional calcrete sampling undertaken to date and/or uncertainties in relation to NT and access within Yellabinna Regional Reserve and Pureba Conservation Park, this part of EL 2035 was relinquished in December 1998.

This report has been compiled from extracts from confidential company technical reports submitted to MESA and PIRSA during the period 1994-1998 (van der Stelt & Parker, 1995; Parker & van der Stelt, 1997; Parker et al., 1998).

2.0 ACCESS

The tenement is situated on the western edge of the Gawler Ranges, approximately 500 km northwest of Adelaide, and 100 km northeast of Ceduna, the closest major regional centre. The nearest town to the tenement is Wirrulla, on the Eyre Highway, where fuel and some groceries are available.

Access across the licence varies from excellent to poor. The majority of the tenement is located on pastoral properties and there are numerous well-maintained station tracks providing good access to most areas. Off-road access varies from relatively open saltbush and bluebush covered plains with scattered patches of relatively open forest and sheoak, mallee or mulga scrub in the east and central areas, to well-vegetated (mallee) sand dunes in the west. Vehicular travel across most of these areas is relatively good with the exception of the sand dune country.

Early phase reconnaissance fieldwork required camping in the open and occasionally using shearers quarters at Lake Everard and Kondoolka Stations, however during later stages of the program a base camp was set up at the currently disused Childera Outstation.

3.0 METHODS

3.1 Aeromagnetic Interpretation

Careful evaluation of varied representations of South Australian Exploration Initiative (SAEI) and merged infill aeromagnetic data has been completed at scales from 1:250,000 to 1:100,000 to produce regional solid geology and structural maps of the area and to identify

and delineate as closely as possible, all magnetic features and structures that might be related to potential mineralisation (van der Stelt & Parker, 1995; Parker & van der Stelt, 1997). Ongoing interpretation allied to geological mapping has been undertaken to refine existing maps and targets.

3.2 Geological Mapping

Fieldwork commenced in late March 1995 and continued throughout April and May 1995 when reconnaissance geological mapping was undertaken during a detailed stream-sediment survey and whilst ground truthing aeromagnetic targets. This phase of fieldwork expanded greatly on the information obtainable from published geological maps and the structural and geological data compiled were used to refine the aeromagnetic interpretations.

3.3 Stream Sediment and Rock Chip Sampling

During the first phase field work from April to May 1995, reconnaissence rock chip sampling was undertaken in conjunction with a regional BLEG stream sediment survey. The stream sediment survey was undertaken in part to follow up minor gold anomalism reported in BLEG work by BHP, as well as to identify any unknown areas of surface mineralisation. Stream sediment samples were collected mainly from the eastern part of the tenement where exposure is good and were collected by channelling across the full width of the active portion of the stream bed. Samples were submitted to AMDEL laboratories for BLEG analysis for gold and copper at 0.05 ppb and 10 ppb detection limits respectively (scheme BLEG1B). Unfortunately AMDEL contaminated one batch with tap water, known to be elevated in Cu, so for those samples copper was analysed by scheme AA2 to 1 ppm.

Rock chip samples were collected from altered, brecciated or veined rocks as well as from unaltered, fresh lithologies as an orientation exercise to determine background elemental values. Rock chip samples were submitted for multi-element geochemical analysis by ICP-MS (scheme IC3E, mixed acid digest) at AMDEL laboratories. Initially gold was assayed to 0.01 ppm detection limit, however this proved to be too low to register any meaningful values, so all samples were re-assayed to 0.1 ppb (scheme FA3M, 50 gram fire assay). Early samples which had assayed over the previous 0.01 ppm detection limit had maximum values of 0.4 ppb on reassaying, highlighting the unreliability of assay values which are near detection limit. AMG coordinates, rock sample descriptions, magnetic susceptibilities and geochemical assays were all digitised and compiled to produce a rock chip sample database.

3.4 Calcrete Sampling

Initial regional sampling was undertaken on a 1.5km grid (viz. along E-W lines 1.5km apart with sampling at 1.5km intervals along every line). This grid was closed up to 100-500m around regional samples with anomalous Au and/or Cu. Regional samples were located by vehicle-mounted GPS.

Samples were preferentially collected from hand-dug holes down to the top of hard calcrete, where present, and approximately 1-2kg of +5mm sieved sample was bagged in calico bags and sent to Adelaide for analysis at Analabs. Where sand and soil cover were perceived to be too thick for hand sampling (viz. in the sand dune complexsouthwest of Childera OS), shallow auger drilling was undertaken and ca 500gm-1kg of +5mm sieved sample collected. All samples were pulverised in a standard mill, split and, following aqua regia digest, assayed by AAS for Au (to 1ppb), Ag (to 0.1ppm), Cu, Pb, Zn, Ni (all to 0.5ppm), Cr (to 1ppm) and Ca (to 0.01%).

3.5 Soil Sampling

Where calcrete samples could not be collected due to the depth of cover (ie generally >0.8m), soil samples were collected from shallow hand-dug holes to remove the top ca. 20cm of overburden. Small -4 to -5mm seived samples were collected, bagged in paper geochem packets and sent to Adelaide for analysis by partial extraction techniques at Amdel (Deepleach 11). There was no pulverising of samples since only a small portion of uncrushed material is required for digest and subsequent analysis by MS-ICP. The broad selection of elements assayed included Au, Pt, Pd (all to 0.01ppb), Ag (to 0.05ppb), Cu, Pb, Zn, As, Ni, U, Co, Cd, Mo, Sb, Se, Tl, Te, Ce, La, Nb, Nd, W, Y, Zr (all to 1ppb), Bi (to 0.1ppb), Ca (to 1ppm), Fe (to 100ppm) and Cr (to 2ppm).

4.0 RESULTS

4.1 Previous Mineral Exploration

To date, very little mineral exploration has taken place within the Nuckulla Hill tenement area, partly due to the lack of outcrop in the west, and partly due to the perceived lack of mineralisation in GRV to the east. A listing of abstracts of previous company exploration can be downloaded from PIRSA's SAMREF bibliographic database. That data is also summarised on the PIRSA Western Gawler Craton GIS data CD which, in addition, includes the locations of previous mineral exploration drillholes etc. The following summary of mineral exploration to date, has been reproduced and condensed from Hammond and Parker (1994).

During 1979-1984 Carpentaria Exploration Co Pty Ltd / Mount Isa Mines Ltd undertook considerable exploration and drilling in the Narlaby Palaeochannel looking for Tertiary redox-controlled roll-front uranium mineralisation (PIRSA Open File Envelopes 3240, 3715, 4010, 6089). Intense drilling approximately 25 km southwest of Pureba Hill located four low-grade (<4500 ppm U $_3$ O $_8$) uranium prospects. Most holes were drilled to basement and some bottom hole samples were lodged with PIRSA, although little work was done on them. Assays from one bottom hole sample (IR1003B; 112-114 m, end-of-hole) record 200 ppb Au from ?granite - angular quartz, blue-grey feldspar and pyrite.

From 1980 to 1983 Afmeco Pty Ltd, and later BHP Co Ltd, undertook regional exploration including detailed aeromagnetics and radiometrics over the Lake Everard region, exploring for uranium and base metals associated with magnetic anomalies in GRV. Regional stream and rock chip geochemistry was undertaken. Based on aeromagnetics and radiometrics, detailed gravity and Sirotem were carried out on a few prospects, followed by shallow drilling (Envelope 3825). Trace gold and silver (170 ppb Au, 6.5 ppm Ag) were reported at their L3 anomaly north of Wheepool Well.

During regional diamond exploration from 1981-1982 Stockdale Prospecting Ltd located one sample with kimberlitic ilmenite about 25 km west of Lake Acraman (Envelopes 4267 and 4747). Regional BLEG sampling was also undertaken under a joint venture with The Shell Company of Australia.

BHP Gold Mines Ltd undertook regional BLEG stream sediment sampling throughout the western Gawler Ranges during 1988-1990, but did not get any substantial anomalies and no follow-up work was reported.

In 1989 CRA Exploration Pty Ltd carried out investigations, including some drilling, of the Narlaby Palaeochannel for heavy mineral sands (Envelope 8153). No significant results were reported.

National Mineral Sands (SA) NL, Swan Reach NL and Geopeko also pursued heavy mineral sands along the Narlaby Palaeochannel and the edge of the Eucla Basin during 1989-1992. Some drilling was undertaken, mainly to the west of EL 2035 but including two traverses north and southwest of Yarrana Hill, however no significant results were recorded (Envelopes 8471 and 8561).

Because drilling in the western half of the tenement area has been very sparse and dominated by exploration for Tertiary uranium and mineral sands, descriptions of basement units are generally very brief. Nevertheless, it is apparent that lithologies are more diverse than would be expected from previous mapping and include felsic volcanics, basalts, fresh granite, sericitic granite, pyritic granite, granite gneiss and amphibolite.

4.2 Regional Geology

The geology of the Nuckulla Hill region is dominated by late Palaeoproterozoic granitic gneiss and Mesoproterozoic Hiltaba Suite granite in the west, Mesoproterozoic Gawler Range Volcanics (GRV) in the east and the Yarlbrinda Shear Zone (YSZ) which trends N-S through the centre of the EL (Fig. 2; Parker, 1996; Parker & van der Stelt, 1997)

In the eastern part of the Nuckulla Hill EL (dominated by GRV), the regional structural fabric is WNW trending but is defined by many short, discontinuous segments separated by major, continuous NE-trending lineaments possibly representing original transfer faults. The regional dip of GRV units is almost universally shallow (10-30°) to the NNE.

North of Wheepool Well, Afmeco drilling of brecciated and altered volcanics yielded assays up 0.17 ppm Au, 6.5 ppm Ag and 1400 ppm Mo in vuggy quartz and fluorite-rich breccias. Aeromagnetic interpretation found the anomaly location to correspond with a distinctive northeasterly-trending structure. Outcrop at the anomaly site is of flow banded Wheepool Rhyolite with traces of partly gossanous hematite veining, in places silicified and with quartz vein stockworking. Afmeco identified these as brecciated pyroclastics, a term probably more suited to the rocks 200m northwest. Equinox sampling confirmed some of the values reported by Afmeco, but although gold was detected it was at levels too low for this to be a high priority target.

Several previously unrecorded outcrops and rocktypes were identified during the first phase of fieldwork. North of Lake Everard HS significantly more outcrop of pyroclastic breccia and (?)tuffaceous sediments has been identified. Results of geochemical sampling to date have been disappointing, but the significance of these units for mineralisation and geology of the area as a whole is encouraging. It is possible they are all equivalents of the same unit (the Waurea Pyroclastics) as they commonly occur at or near the base of the Wheepool Rhyolite. However, in some areas (eg east of Yandoolka Well) the breccias were likely formed in-situ, apparently not related to sedimentation.

The Nuyts Subdomain in the west and southwest of EL 2035 comprises large, little disrupted batholiths of Hiltaba and/or Spilsby Suite granite intruding granitoids, orthogneisses, augen gneisses and amphibolites possibly equivalent to the Palaeoproterozoic Lincoln Complex (ca 1850-1710 Ma) and/or St Peters Suite (ca 1630 Ma). There is a complex inter-relationship between linear structures and granites suggesting contemporaneous faulting and granite emplacement. The magnetic signature of the granites and gneisses varies from very high to very low and granite plutons often appear to be composite.

The Yarlbrinda Shear Zone (YSZ) was first recognised by Equinox in 1993 when SAEI aeromagnetic data were released for the central Gawler Craton. The shear zone is up to 2.5km wide in the Nuckulla Hill region and comprises a number of major N-S structures many of which appear to be truncated by ca.1585 Ma Hiltaba Suite granite of the Kondoolka Batholith (Parker, 1996). The YSZ can be traced for approximately 170km from near Streaky Bay in the south to near Yerda OS in the north where it swings around to a northwesterly orientation before merging with similar but E-W to ESE-WNW trending structures. The YSZ comprises a number of narrow sinuous demagnetized zones anastomosing around thin slithers of less deformed gneiss, granite and amphibolite. Relationships between granite and the YSZ suggest that this structure partly pre-dates the Hiltaba Suite granite but may have been active during and post granite emplacement providing not only a source for mineralising fluids and hydrothermal alteration but also potential pathways and accommodation zones.

Overlying the Precambrian basement in the western Nuckulla Hill region is a blanket of Tertiary and Quaternary sediments. Lake Everard and salt lakes immediately north of Lake Everard HS near Glyde Hill OS contain gypsiferous lacustrine mud and are often rimmed on their eastern flanks by soft white powdery gypsum lunettes. Lake sediments normally overlie deeply weathered bedrock or saprolite which is often exposed around lake margins; there are rare outcrops of relatively fresh basement granite and gneiss.

The weathering process has formed a thick, up to 40m carapace of white to mottled yellow-brown saprolite which is likely leached of all interesting minerals. Generally there is a silcrete or ferricrete caprock on the saprolite which is then overlain by variably-developed calcrete.

Overlying weathered basement in parts of the central and western Nuckulla Hill region are fluvial and alluvial sediments of possible Tertiary age and maybe equivalent to the Pidinga Formation. These comprise black to dark brown angular to rounded sand and grit and fine to medium grained orange to pale brown quartz sand.

Quaternary sediments are relatively thin throughout much of the Gawler Ranges. They comprise thin aeolian sand and soil regoliths in which calcrete is well developed.

In sand dune complexes south and west of Childara Dam, Quaternary sands can be several tens of metres in thickness. The sand occurs in aeolian seif dunes up to 10m high and approximately NW-SE trending and it is mixed with clay and soils in interdunal corridors. Soft biscuity calcrete is locally developed at depths up to several metres.

4.3 Aeromagnetic Interpretation

As well as the original SAEI 1:250,000 scale aeromagnetic images, 1:100,000 scale aeromagnetic colour contour maps of total magnetic intensity were acquired for detailed interpretation. Airborne radiometric have also been examined using various image processing algorithms.

The complex nature of the magnetic patterns over the Hiltaba Suite granites and GRV necessitated interpretation of the SAEI data at detailed (1:100,000) and semi-regional (1:250,000) scales simultaneously. This allowed the distinction of gross, large scale relationships and structures whilst at the same time allowing high levels of precision and accuracy. Preliminary findings indicate complicated geology throughout the project area and many structural features not previously recognised, and certainly not shown on published geological maps.

Major points obtained from the geophysical interpretation are outlined below:

In the eastern part of the Nuckulla Hill EL (dominated by GRV):

- The regional structural fabric is west-northwesterly trending but is defined by many short, discontinuous segments separated by major, continuous northeast-trending lineaments, possibly representing original transfer faults.
- North of Wheepool Wells a major north-easterly trending fault-like structure on the
 aeromagnetic image appears to be the locus of breccias and bleached volcanics at the
 surface and is coincident with the L3 geochemical anomaly of Afmeco. West of
 Wheepool Wells the structure coincides with a long linear valley and there is no outcrop
 along it.
- Most west-northwest-trending anomalies have sharp southern gradients suggesting shallowly north-northeast-dipping structure. This has been confirmed by field observations.
- Field magnetic susceptibility measurements indicate that the more mafic volcanics are the most magnetic. Rhyolites generally recorded susceptibilities of 10-150x10⁻⁵ SI compared to 200-2000x10⁻⁵ SI units for the average dacite and 1500-3000x10⁻⁵ SI for basalts. However there are local exceptions to this rule.
- Pyroclastics and breccias were found to be generally non magnetic.
- Well-exposed rhyolite over a prominent magnetic anomaly northwest of Wheepool Wells
 is no more magnetic than the average rhyolite suggesting that the anomaly is due to a
 magnetic unit shallowly buried beneath the rhyolite. The anomaly could represent a
 shallow WNW-trending basement ridge bound on its southern side by a steeply SSWdipping listric extensional fault.

In the western part of the Nuckulla Hill EL (dominated by the Hiltaba Suite):

- There is a complex inter-relationship between linear structures and granites suggesting contemporaneous faulting and granite emplacement.
- The magnetic signature of the granites and granite gneisses varies from very high to very low, and granite plutons often appear to be composite.
- Magnetic susceptibilities of granites are varied but good correspondence between high susceptibilities (up to 2000x10⁻⁵ SI) and granites with high regional magnetic anomalies has been recorded.
- A major north-south-trending structure, the Yarlbrinda Shear Zone, has been defined.
 Relationships suggest that this structure partly pre-dates the Hiltaba Suite granite but
 may have been active during granite emplacement. For much of it's length, the YSZ is
 characterised by a set of often intensely-demagnetised linear anomalies.

A generalised interpretation for the Nuckulla Hill project was completed and a 1:500,000 scale solid geology map was produced (Fig. 2).

4.4 Rock Chip Geochemistry

Of the rock chip samples assayed (Fig. 3), very few recorded even weakly anomalous assays. Maximum values returned include:

160 ppm Pb at Mordinyabee Hill West (breccia)
3.9 ppm Ag at Lake Everard Landing Ground (dacite)
155 ppm Zn at Lake Everard HS (dacite)

Only a couple of samples registered >2.5 ppb Au. None of the assays have been considered high enough to warrant any immediate follow-up.

4.5 Stream Sediment BLEG Geochemsitry

Results from the semi-detailed stream sediment survey were disappointing. Minor BLEG anomalies of 0.85 and 0.30ppb Au produced by BHP northeast of Lake Everard Station were not reproduced - Equinox samples from the same locations assaying at <0.05 and 0.05ppb Au respectively. No samples returned significant anomalism of either gold or copper suggesting little if any surface mineralisation is present. No follow-up work on this work appears to warranted.

All of the stream survey work was undertaken in the eastern portion of the Nuckulla Hill EL (Fig. 4) where relatively continuous outcrop and moderate relief combine to produce streams from which reasonably good BLEG samples could be expected. Further to the west where granites and not volcanics dominate the geology, subdued topography and the development of sand dune systems and soil covered plains make stream surveying ineffective.

4.6 Calcrete and Soil Geochemistry

Except in sand dune complexes, calcrete development is extensive throughout the EL and is generally very hard and massive.

Regional calcrete and soil sampling in pastoral areas was completed in 1996 and reasonable coverage of the areas relinquished was achieved (Figs 5a - 5c).. Early analysis of the data indicated that at a sample spacing of 1-1.5 km, assays as low as 4 ppb Au were worth follow-up in case they represented the margin of a more substantial anomaly. Anomalous values were initially followed up by 50 - 500 m star-pattern infill. Of the regional samples, several returned assays ≥ 3 ppb Au (Fig. 6) but the best assay in the areas relinquished was 7 ppb Au. Anomalies which were followed up returned varying assays ranging from 5 ppb to below detection limit. No follow-up work has been undertaken in the area sampled by MESA since it is within Pureba Conservation Park and Aboriginal heritage clearances have not yet been granted.

Due to difficulties involved in hand sampling calcrete at depth in sand dune covered areas, an auger drilling program was undertaken by Envirodrill Pty Ltd in early November 1995. Several holes drilled over a five day period intersected calcrete although in many cases the calcrete was only poorly developed. The technique proved most successful along the dune field margins where calcrete was consistantly intersected at depths of approximately 1-3 m. Within the dune field proper several holes were drilled to depths up to 11.5 m without intersecting calcrete.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Exploration on EL 2035 by Equinox Resources has focused on major structures such as the Yarlbrinda Shear Zone which extends for more than 170km along the western edge of the Gawler Ranges.

An extensive BLEG stream sediment and rock chip sampling program in the eastern part of the tenement failed to locate any significant gold or base metal anomalies. Most of this sampling was in areas of outcropping GRV. Although assays were generally disappointing, trace copper, gold, silver and molybdenum mineralisation was seen in association with quartz-sericite alteration in thin veins and stockworks. This indicates that suitable hydrothermal solutions have been present in the past but suitable host structures are rare.

Calcrete sampling has been very effective in locating concealed mineralisation in basement along the YSZ up to 50m below the surface (Parker, 1996). Many lower level geochemical

anomalies were identified during the program and experience has indicated that, given the wide sample spacing, calcrete values as low as 4ppb Au should be followed up. Although several low-order anomalies up to 7ppb Au were located, no major calcrete gold anomalies were identified in the areas relinquished and it is concluded that overall prospectivity of the region is relatively low compared to adjacent areas.

6.0 REFERENCES

- Drexel, J.F., Preiss, W.V. and Parker, A.J., 1993. Geology of South Australia. Volume 1, The Precambrian. South Australia. Geological Survey. Bulletin 54.
- Drexel, J.F. and Preiss, W.V., 1995. Geology of South Australia. Volume 2, The Phanerozoic. South Australia. Geological Survey. Bulletin 54.
- Parker, A.J., 1996. Shear Zone Hosted Proterozoic Gold, Nuckulla Hill. In "Resources 96" Abstracts Volume. *South Australia. Department of Mines and Energy.*
- Parker, A.J. and van der Stelt, B.J., 1997. "Nuckulla Hill" Exploration Licence 2035, Western Gawler Craton, South Australia Annual Technical Report, 6th December 1995 5th December 1996. *Equinox Resources NL. Unpublished Annual Report*, January 1997.
- van der Stelt, B.J. and Parker, A.J., 1995. "Nuckulla Hill" Exploration Licence 2035, Western Gawler Craton, South Australia Annual Technical Report, 6th December 1994 5th December 1995. *Equinox Resources NL. Unpublished Annual Report*, December 1995.

EQUINOX RESOURCES NL Nuckulla Hill EL 2035

APPENDIX A ROCK CHIP SAMPLES AND ASSAYS

Appendix A: Rock Chip Samples

Sample	East	North	Coords	Date	Strat Unit	Lithology	Comment	Au	AuR
							Amdel Analytical Scheme	FA1	FA1
							Detection Limit (ppm)	0.01	0.01
401	515862	6488789			Mangaroongah D			1.0	
402	515862	6488789	GPS		Wheepool Rhyoli			0.7	
403	515862	6488789	GPS	21/03/95	Wheepool Rhyoli		qtz veins trending 315 upright	0.2	
407	522736	6487162	GPS	21/03/95			mapped as andesite	0.6	
408	522673	6492433	GPS		?Yantea Rhyodad			0.7	
409	523370	6494397	GPS		Yantea Rhyodaci			0.6	
410	523150	6494480	GPS	21/03/95	?Whyeela Dacite	Dacite?	v. similar to Yantea Rhyodacite	0.4	
418	528552	6505747	GPS	22/03/95	Yantea Rhyodaci	t Rhyodacite/Dacite	ave Mag Sus ~300 - ~350 SI	2.7	
419	528359	6507986	GPS	22/03/95	?Yantea Rhyodad	Rhyodacite/Dacite	flow banded Mag Sus locally ~<5 SI	0.2	
420	528723	6508801	GPS	22/03/95	?Yantea Rhyodad	: Rhyodacite/Dacite		0.2	
437	520701	6501203	GPS	23/03/95	?Waurea Pyrocla	: Arkose	?tuffaceous grades to gravelly conglomerate	-0.1	
438	520767	6501333	GPS	23/03/95	Wheepool Rhyolit	t Rhyolite	fractured & veined	-0.1	
439	518762	6502197	GPS	23/03/95	Wheepool Rhyolit	t Rhyolite		0.5	
440	516503	6503553	GPS	23/03/95	?Waurea Pyrocla	:Tuff?	altered & unaltered samples	0.9	
441	516003	6504721	GPS	23/03/95	?Waurea Pyrocla	: Breccia	massive locally vuggy siliceous matrix	0.3	
442	516225	6504607	GPS	23/03/95	?Yantea Rhyodad	Rhyodacite	highly fractured	-0.1	
443	515908	6501495	GPS	23/03/95	Waurea Pyroclas	t Conglomerate	conglom/breccia	0.6	İ
449	458584	6503821	GPS	24/03/95	Hiltaba Suite	Granite	loose blocks coarse grained	-0.1	
450	457309	6502196	GPS	24/03/95	Hiltaba Suite	Granite	medium- to coarse-grained	2.4	
451	462855	6492525	GPS	24/03/95		Schist	Geopecko EB465 cuttings	1.7	
1							Amdel Analytical Scheme	FA3M	FA3M
1 !								0.0001	0.0001
463	527440	6488475	GPS	7/04/95	Bunburn Dacite	Dacite	includes altered piece from downstream. Mag Sus : pink	0.8	0.6
465	528841	6488427	GPS	7/04/95	Wheepool Rhyolit		?in situ brecciation	-0.1	į
466	529057	6488088	GPS	7/04/95	?Wheepool Rhyo		altered & partly brecciated - float	0.2	
467	530106	6487820	GPS	7/04/95		Rhyolite/Rhyodacite	fragmental altered	-0.1	
468	529339	6488750	GPS	8/04/95	?Wheepool Rhyo		fragmental partly bleached	-0.1	
470	530205	6490840	GPS	8/04/95	Wheepool Rhyolit	t Rhyolite	?fluorite	0.1	
471	530425	6491564	GPS	8/04/95	Wheepool Rhyolit	t Rhyolite	qtz veins	1.1	
472	526492	6492627	GPS	8/04/95	?Yantea Rhyodad	: Dacite?		1.5	
473	525434	6494799	GPS	8/04/95	?Yantea Rhyodad	Porphry	Mag Sus: qtz xenos 10-30 SI dacite 30-55 SI	0.6	
474	524601	6493099	GPS	9/04/95	Yantea Rhyodacii	t Rhyodacite		0.6	
476	522880	6491745	GPS	9/04/95	Bunburn Dacite	Dacite		0.4	
477	522725	6492190	GPS	9/04/95	?Yantea Rhyodad	Rhyodacite	v. bleached/kaolinized - from creek & quarry	0.9	0.2
478	519440	6487560	GPS	9/04/95	?Mangaroongah I	I Dacite	dacite/rhyodacite	1	
487	531478	6507328	GPS	10/04/95	?Yantea Rhyodad	Rhyolite	contorted interbanded rhyolite & rhyodacite with fine qtz	0.7	

Appendix A: Rock Chip Samples

Sample	East	North	Coords	Date	Strat Unit	Lithology	Comment	Au	AuR
							Amdel Analytical Scheme	FA3M	FA3M
							Detection Limit (ppm)	0.0001	0.0001
490	531550	6507410	GPS	11/04/95	?Yantea Rhyodac I	Dacite	basal fragmental	0.4	0.3
491	532072	6507392	GPS	11/04/95	Yantea Rhyodacit F	Rhyodacite	columnar jointed	-0.1	-,-
493	530296	6508150	GPS	11/04/95	Ė	Breccia	altered & silicified GPS ESTIMATED	0.4	
494	530291	6508190	GPS	11/04/95	F	Breccia	vuggy qtz veins	0.4	
495	528264	6510746	GPS	11/04/95	E	Breccia	atz-veined	0.4	i
496	528555	6511305	GPS	11/04/95	E	Breccia	1	0.3	
497	529542	6511617	GPS	11/04/95	?Yantea Rhyodac F	Rhyolite/Rhyodacite	highly contorted flow banding	0.3	
498	527580	6511932	GPS	11/04/95	-	•	minor green mineral	0.6	ĺ
499	526351	6512543	GPS	12/04/95	Yantea Rhyodacit F	•	fractured	0.6	
608	516003	6504580	GPS	23/03/95	•	Quartz	partly gossanous qtz float GPS APPROXIMATE	0.4	

Appendix A: Rock Chip Samples

Sample	Ag	Cu	Pb	Ni	Zn	Co	Cr	As	Sb	Мо	Bì	Ca	Fe	K	Mg	Mn	Na	Р
1	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E
	0.1	2	5	2	2	0.2	2	0,5	0.5	0.1	0.1	10	100	10	10	5	10	5
401	0.1	7	5	10	155	11.0	30	4.5	0.5	0.3	0.5	3000	3.60	1.02	1.02	860	1.74	1800
402	0.2	3	10	-2	45	0.5	22	6.0	0.5	0.7	0.3	580	1.14	1.04	0.09	100	2.12	135
403	0.5	58	15	-2	44	8.0	49	3.5	-0.5	0,3	0.4	480	0.72	1.23	0.14	80	2.07	130
407	0.1	14	15	10	68	9.0	37	1.0	-0.5	0.4	0.2	3800	3.03	1.33	0.91	520	1.25	1000
408	0.2	5	40	-2	83	1.3	67	2.0	-0.5	2.8	0,2	2600	2.08	1.82	0.21	520	2.37	340
409	0.2	7	10	2	76	1.5	52	1.5	-0.5	1.3	0.2	800	2.00	1.34	0.25	420	2.16	220
410	0.2	12	15	16	95	12.5	20	1.5	-0.5	1.2	0.1	5300	3.56	1.39	1,38	920	2.70	1400
418	0.2	5	10	6	92	2.9	23	2.5	-0.5	0.9	0.2	780	2.89	1.84	0.51	520	2.14	420
419	0.2	3	20	5	57	0.7	62	2.0	-0.5	1.0	0,1	540	2,13	2.15	0.17	130	1.67	190
420	0.1	6	-5	4	99	2.8	36	-0.5	-0,5	1.1	-0.1	760	2.65	1.05	0.43	500	2.13	520
437	0.2	2	15	-2	59	0.7	50	2.0	-0.5	0,4	0.3	920	1.17	1.48	0.29	480	1.64	130
438	0.3	2	15	-2	82	1.3	31	1.5	0.5	1.4	0.1	960	1,63	1.94	0.37	720	0.81	195
439	0.2	4	10	2	47	1.3	57	1.0	-0.5	0.4	-0.1	800	1.59	1,39	0,23	360	1.23	220
440	0.4	-2	5	-2	36	0.3	31	1.0	-0.5	0.7	0.1	2600	0:53	1.25	0,15	135	1.66	35
441	0.3	3	15	2	48	0.9	55	9.0	-0.5	0.7	0.3	660	1.58	1.68	0.06	160	2.05	170
442	0.3	21	15	-2	47	1.0	32	27.5	0.5	7.0	0.1	680	2.08	1.84	0.22	2000	1.40	160
443	0,3	-2	30	-2	60	0.6	91	3.0	-0.5	0.4	0.1	900	0.79	1.78	0.19	480	2.11	85
449	0.8	3	25	6	27	1.5	120	3.0	-0;5	2.9	0.2	1700	1.24	1.61	0.05	155	2.21	95
450	0.3	9	35	4	22	1.4	150	2.5	-0.5	3.3	0.1	2300	0.93	1.61	0.04	220	2.36	25
451	0.2	13	40	16	74	9,0	54	5.5	0.5	3.4	0.2	620	4,58	1.18	0.29	220	0.96	200
	IC3M	IC3M	IC3M	IC3M	IC3E	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E
	0.1	0.5	0.5	2	2	0.2	22	0.5	0.5	0.1	0.1	10	100	10	10	5	10	5
463	-0.1	8.5	44	-2	84	1.5	17	10	-0,5	6	0.2	4000	26500	22300	2400	640	23200	240
465	-0.1	4.5	3.5	-2	40	0.8	13	18.5	0.5	2.5	0,3	360	12200	17600	1100	180	640	320
466	0.1	8.5	11.5	3	36	8.0	17	0.5	-0.5	4	0.3	1200	11300	28300	1000	280	13800	105
467	-0.1	6	10	4	41	0.9	29	13	-0.5	5.5	8.0	1100	15000	18900	3300	420	11500	200
468	0.2	5.5	7,5	-2	26	0,6	16	11.5	-0.5	3.9	0.1	760	15500	22300	2100	220	14000	135
470	-0.1	5.5	9.5	3	61	1.3	16	0.5	0,5	3.1	0.3	1100	13900	21800	3000	520	19100	150
471	0.3	11.5	25.5	3	58	8,0	24	-0.5	1	7	1.6	540	11000	20500	1300	400	2600	85
472	-0.1	5.5	4.5	-2	75	1.9	10	28,5	-0.5	3.2	-0.1	860	24000	16400	2200	580	18400	300
473	0.1	5	9	-2	22	0.7	12	27	0,5	4.2	0.2	840	26600	26600	2100	165	18500	220
474	0.2	6	33,5	-2	94	1.5	13	14.5	-0.5	3,8	0.2	3700	26200	25800	1900	740	23300	280
476	-0.1	6	9.5	-2	58	1.4	15	3	-0.5	2.3	-0,1	1600	25800	20200	4800	520	24100	400
477	-0.1	3,5	9.5	3	17	2.3	5	27.5	0.5	1.7	0.2	4700	55200	2600	1900	185	1200	50
478	3.9	23	27.5	14	100	12,5	15	-0.5	-0.5	2,3	-0.1	9400	42100	16500	11900	1100	24400	1300
487	0.1	5,5	30.5	2	83	1.6	30	14	-0.5	5	0.5	1300	28000	19300	1400	560	22100	195

Appendix A: Rock Chip Samples

Sample	Ag	Cu	Pb	Ni	Zn	Co	Cr	As	Sb	Мо	Bi	Ca	Fe	K	Mg	Mn	Na	P
	IC3M	IC3M	IC3M	IC3M	IC3E	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E	IC3E
	0.1	0.5	0.5	2	2	0.2	2	0.5	0.5	0.1	0.1	10	100	10	10	5	10	5
490	-0.1	9.5	8.5	8	93	3.7	14	14	-0.5	2.2	0.1	1500	29200	15100	3200	580	18100	440
491	0.2	6.5	8	-2	93	2.7	17	20.5	1	4	-0.1	2500	29600	37200	2200	440	20300	1000
493	0.1	9.5	39	-2	15	0.5	23	20	-0,5	4.4	0.5	1300	7000	19000	1100	105	10800	145
494	0,1	13.5	160	2	30	1	34	22	0.5	4.4	0.3	420	9700	17100	900	190	7500	90
495	0.2	8.5	50	2	56	8.0	34	12	0.5	6	0.2	440	11300	13500	940	240	11700	70
496	0.1	4	13.5	-2	38	0.7	12	7.5	-0.5	2.9	8.0	1000	12300	21600	1900	195	16400	95
497	-0.1	4.5	9.5	-2	32	1.3	14	16.5	0.5	3.4	-0.1	500	12100	37800	1600	170	16600	105
498	0.2	5,5	12.5	2	76	1.9	9	-0.5	-0,5	2.7	0.2	1200	18100	20900	3300	400	17100	340
499	0.1	7.5	17	-2	50	2	15	16	0.5	3.6	0.1	820	24800	12300	4000	260	18400	400
608	0,2	6.5	7	4	31	1.2	28	16.5	0.5	6	0,3	520	40500	3800	520	600	980	90

Appendix A: Rock Chip Samples

Sample	Ti	V	Cd	Cs	Ce	Ga	ln	La	Nb	Rb	Se	Sr	Te	Th	TI	U	w	Y
	IC3E	IC3E	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M
	10	2	0.1	0.1	0.5	0.1	0.05	0.05	0.5	0.1	0.5	0.1	0.2	0.02	0.1	0.02	0.1	0.05
401	6500	91	-0.1	2.7	81	18.0	0.05	37.5	10,0	63	1.0	200.0	-0.2	8.0	1.1	1.7	0.9	29.5
402	2200	10	-0.1	3.5	135	15.0	0.05	59.0	20.0	89	1.0	65.0	-0,2	12.0	1.1	2.6	0.9	29.0
403	2100	11	-0.1	3.8	94	16.0	0.05	51,0	18.5	110	0.5	72.0	-0.2	10.5	1.2	3.4	0.6	22.5
407	6900	08	0.1	3.2	96	16.5	0.05	61,0	13.0	75	1.0	150.0	-0.2	6.0	0.9	1.8	0.9	26.5
408	3200	6	0.2	2.0	115	23.5	0.10	58,0	20,0	110	1.0	80.0	-0.2	15.5	1.0	4.1	1.1	35.0
409	3000	7	-0.1	2.0	74	24.0	0.10	42.5	19.5	105	1.0	96.0	-0.2	9.0	0.9	3.3	0,6	22.0
410	7000	82	0.1	1.4	105	25.0	0.10	54.0	15.5	81	2.0	340.0	-0.2	8.0	0.8	2.0	0.8	32.0
418	3400	15	-0.1	1.7	66	25.5	0.10	25.5	13.5	135	1.5	67.0	-0,2	8.5	1.1	3.4	1.1	20.0
419	2000	5	0.2	2.3	155	22.5	0.10	78,0	16.5	175	1.5	79.0	-0.2	22.0	1.1	3.9	1.7	41.0
420	4100	13	-0,1	1.6	43	22.0	0.10	25.5	14.0	69	1.0	72.0	-0.2	7.0	0.9	3.3	0.9	14.5
437	1900	11	-0,1	3.6	165	23.0	0.05	78.0	19.0	170	1.5	62.0	-0.2	20.5	1.2	3.4	0.8	35.0
438	2300	11	-0.1	3.7	200	31.5	0.10	94.0	21.0	220	2.5	47.0	-0.2	30.5	1.1	4.3	1.5	61.0
439	1900	5	-0.1	2.5	105	19,5	0.05	48,0	17.0	130	1.5	55.0	-0.2	15.0	1,2	3.1	0.7	28.5
440	820	3	-0.1	2.4	60	19.0	0.05	35.0	21.5	180	1.0	31.0	-0.2	13.5	1.1	1.6	0.9	17.0
441	2000	4	-0.1	2.2	130	17.5	0.05	69.0	18,0	155	2.0	115.0	-0.2	20.0	0,9	4.4	1.0	40.5
442	2500	9	-0.1	4.8	155	28.0	0.10	85.0	22,5	190	2.0	135.0	-0.2	26.5	1.2	5 .5	2.3	48.5
443	1200	5	-0.1	3.9	125	22,0	0.05	80.0	23.0	195	1.5	57.0	-0.2	17.5	1.1	2.9	0.8	35,0
449	1600	8	-0.1	5.0	92	23.0	-0.05	47.5	18.0	220	1.5	76,0	-0.2	38.5	1.7	7.5	1.5	31.0
450	640	3	-0.1	8.0	120	23.5	-0.05	66.0	24.5	360	2.0	13.0	-0.2	40.5	2.2	8.0	3.6	56.0
451	3600	39	-0.1	19,5	140	22.0	0.05	84.0	5.5	140	2,5	52,0	-0.2	7.5	1.2	3.9	3.9	46.5
]]	IC3E	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3M	IC3E
l !	10	2	0.1	0.1	10	0.1	0.05	0.05	0.5	0.1	0.5	2	0.2	0.02	0.1	0.02	0.1	2
463	3300	8	0.2	2.7	130	25	0.15	94	20.5	320	2	96	0.9	15	1.1	4.5	1.1	40
465	2100	6	-0.1	1.7	130	13	-0.05	105	18.5	65	1.5	25	0.3	20.5	1	1.95	0.3	28
466	2200	9	-0.1	2.1	125	10	-0.05	65	18.5	140	1	82	-0.2	14	1.1	2.5	0.7	42
467	2200	9	-0.1	2.4	130	12	0.05	92	18.5	110	1,5	42	0,3	17.5	1.1	2.5	1.1	34
468	2300	8	-0.1	2	150	13	-0.05	105	19	105	1	41	-0.2	18,5	1	1.95	0.5	34
470	2700	8	-0.1	2	160	16	-0.05	140	22,5	95	1.5	43	0.5	20.5	1.3	2.8	0.6	36
471	1500	10	0.5	1.9	115	8	-0.05	33	12	87	1	31	0.2	10	1	1.9	1.7	22
472	3100	10	0.2	1.8	140	22.5	-0,05	94	18	105	1.5	43	0.5	18.5	0.9	2.1	8.0	33
473	1500	5	0.1	2.3	135	18.5	0.05	75	22,5	140	1.5	51	-0.2	24.5	1.3	2.6	1.3	30
474	3400	7	-0.1	2,5	140	24	0.1	84	18,5	200	1.5	72	0.5	22	1.3	4.4	0.9	42
476	3000	8	0.1	3.4	75	18	0.05	89	17.5	110	1.5	240	0.6	12.5	0.8	1.35	8,0	26
477	2500	48	-0.1	0,9	25	21.5	0.05	4.6	16.5	18	2,5	48	0.7	18.5	0.1	3.8	0.9	23
478	7200	81	0.1	2.5	90	18.5	0.05	86	14	82	2	300	0,7	11.5	0,7	2,4	0.9	31
487	2500	7	0.3	2.7	90	21,5	0.6	120	16.5	87	2	90	0.5	29.5	1.3	4.4	2.1	28

Appendix A: Rock Chip Samples

Sample	Ti	٧	Cd	Cs	Ce	Ga	ln	La	Nb	Rb	Se	Sr	Te	Th	TI	U	W	Υ
	IC3E	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3M	IC3M	IC3E
	10	2	0.1	0.1	10	0.1	0.05	0.05	0.5	0.1	0.5	2	0.2	0.02	0.1	0.02	0.1	2
490	3300	20	-0.1	3	90	21	0.05	100	17	82	2	115	0.4	19.5	0.9	3.7	7	36
491	3700	15	0.2	4.6	125	24.5	0.1	110	21	200	2	200	0.2	20.5	0.9	3	0.6	45
493	1000	3	-0.1	2.5	75	8,5	-0.05	48	16	125	1	35	-0.2	17.5	1.1	3.5	0.9	32
494	840	3	-0.1	1.8	80	7.5	-0.05	78	13.5	98	1	22	0.3	23.5	1.2	3.6	1	19
495	1100	5	-0.1	5	75	9	-0.05	75	15	115	1	77	0.2	23	2.1	2,1	1	23
496	1100	4	-0.1	3.7	145	17	0.05	55	17	92	0.5	45	0.2	25,5	1.9	5	1	37
497	1000	6	0.1	4.5	95	16.5	-0.05	95	18.5	240	1.5	32	-0.2	29	0,9	2.2	0.6	27
498	2700	10	0.1	3.5	105	14	-0.05	35.5	13	96	0.5	84	0.2	15	1.1	3,6	8.0	26
499	3000	12	-0.1	3.1	60	19.5	0,05	88	16	80	1.5	90	0.5	13	0.7	1.85	8.0	15
608	260	15	0.1	3,4	25	3.7	0.05	8	2	21	-0.5	17	-0.2	2.1	0.2	3,3	1.1	8

EQUINOX RESOURCES NL Nuckulla Hill EL 2035

APPENDIX B STREAM SEDIMENT SAMPLES AND ASSAYS

Appendix B: Stream Sediment Samples

Sample #	Easting	Northing	Co-ord	Date	Sample Method	Sieve	Remarks	Au (ppb)	Cu (ppb)
501	522795	6487059	GPS	7/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.20	4000
502	526763	6488712	GPS	7/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	<1000
503	526772	6488659	GPS	7/04/95	active channel	-2mm	GPS approximate. Cu to 1ppm due to cont	0.10	<1000
504	527974	6488238	GPS	7/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	3000
505	527974	6488250	GPS	7/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	2000
506	530080	6487740	GPS	7/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	3000
507	530141	6489116	GPS	8/04/95	active channel	-2mm	Downstream from claypans. Cu to 1ppm du	< 0.05	<1000
508	530107	6489907	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.15	2000
509	530144	6490053	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	3000
510	530360	6490846	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	<1000
511	530425	6491564	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	3000
512	530354	6491752	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.20	3000
513	530451	6492001	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	<1000
514	529765	6492612	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	<1000
515	529496	6493165	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	1000
516	527214	6492442	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	2000
517	526805	6492496	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	<1000
518	526562	6492643	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.20	<1000
519	526060	6493502	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.35	<1000
520	525943	6493632	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.15	<1000
521	525387	6494140	GPS	8/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.15	<1000
522	524300	6495085	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.20	<1000
523	524090	6493660	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	6000
524	523670	6493055	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	4000
525	522910	6491860	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	8000
526	522310	6491120	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	5000
527	521710	6491645	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.25	9000
528	522725	6492190	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.25	11000
529	521340	6491265	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	7000
530	521090	6490485	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.15	8000
531	520220	6490585	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	9000
532	520230	6490560	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	4000
533	520610	6486975	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	7000
534	519590	6487455	GPS	9/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	6000
544	531593	6503937	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	9000
545	530643	6504223	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	5000

Appendix B: Stream Sediment Samples

Sample #	Easting	Northing	Co-ord	Date	Sample Method	Sieve	Remarks	Au (ppb)	Cu (ppb)
546	530509	6504392	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	13000
547	531067	6505402	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	12000
548	531146	6505762	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	10000
549	531081	6506288	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	12000
550	531318	6507025	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	13000
551	531478	6507328	GPS	10/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	7000
552	531552	6508556	GPS	11/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	9000
553	530291	6508165	GPS	11/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	12000
554	530334	6508061	GPS	11/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.10	16000
555	527570	6513305	GPS	11/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	9000
556	526138	6507283	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	8000
557	526012	6505440	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	6000
558	525880	6504853	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	5000
560	525766	6501964	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	<0.05	10000
561	525703	6501871	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	13000
562	524620	6500981	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	5000
563	523451	6500224	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	5000
564	526136	6500108	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	8000
565	526728	6499384	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	< 0.05	7000
567	534565	6496456	GPS	12/04/95	active channel	-2mm	Cu to 1ppm due to contamination	0.05	5000
568	522375	6493700	GPS	3/05/95	active channel	-2mm		<0.1	590
569	522090	6493890	GPS	3/05/95	active channel	-2mm		<0.1	1000
570	521960	6494440	GPS	3/05/95	active channel	-2mm		<0.1	750
571	522515	6495915	GPS	3/05/95	active channel	-2mm		<0.1	350
572	521290	6495380	GPS	3/05/95	active channel	-2mm		<0.1	750
573	520660	6495640	GPS	3/05/95	active channel	-2mm		<0.1	490
574	520140	6495860	GPS	3/05/95	active channel	-2mm		<0.1	410
575	519775	6496050	GPS	3/05/95	active channel	-2mm		<0.1	610
576	515760	6491900	GPS	4/05/95	active channel	-2mm		<0.1	1100
577	515780	6491930	GPS	4/05/95	active channel	-2mm		<0.1	590
578	516075	6492260	GPS	4/05/95	active channel	-2mm		<0.1	380
579	516640	6493360	GPS	4/05/95	active channel	-2mm		<0.1	750
580	517445	6494030	GPS	4/05/95	active channel	-2mm		0.10	1100
581	517845	6494235	GPS	4/05/95	active channel	-2mm		<0.1	430
582	518195	6496015	GPS	4/05/95	active channel	-2mm		<0.1	450
583	517525	6495895	GPS	4/05/95	active channel	-2mm		<0.1	640
584	517105	6497105	GPS	4/05/95	active channel	-2mm		<0.1	370

Appendix B: Stream Sediment Samples

Sample #	Easting	Northing	Co-ord	Date	Sample Method	Sieve	Remarks	Au (ppb)	Cu (ppb)
585	516385	6498890	GPS	4/05/95	active channel	-2mm		<0.1	190
586	515745	6499640	GPS	4/05/95	active channel	-2mm		<0.1	1000
587	514400	6495980	GPS	5/05/95	active channel	-2mm		<0.1	490
588	514790	6497185	GPS	5/05/95	active channel	-2mm		<0.1	930
589	514595	6498675	GPS	5/05/95	active channel	-2mm		<0.1	640
590	513655	6498500	GPS	5/05/95	active channel	-2mm		<0.1	670
591	515485	6501100	GPS	5/05/95	active channel	-2mm		<0.1	400
592	515615	6500580	GPS	5/05/95	active channel	-2mm		<0.1	280
593	515385	6501305	GPS	5/05/95	active channel	-2mm		<0.1	230
594	517810	6502020	GPS	5/05/95	active channel	-2mm		<0.1	620
595	517965	6502210	GPS	5/05/95	active channel	-2mm		<0.1	880
596	518140	6501970	GPS	5/05/95	active channel	-2mm	wet sieved	<0.1	320
597	522185	6502385	GPS	6/05/95	active channel	-2mm		<0.1	120
598	521565	6501910	GPS	6/05/95	active channel	-2mm		<0.1	190
599	520030	6501485	GPS	6/05/95	active channel	-2mm		<0.1	500
600	518480	6501630	GPS	6/05/95	active channel	-2mm		<0.1	740
701	519850	6503340	GPS	6/05/95	active channel	-2mm		<0.1	130
702	518705	6503855	GPS	6/05/95	active channel	-2mm		<0.1	410
703	518135	6503840	GPS	6/05/95	active channel	-2mm		<0.1	400
704	518005	6503940	GPS	6/05/95	active channel	-2mm		<0.1	600
705	517490	6504150	GPS	6/05/95	active channel	-2mm		<0.1	400
706	517505	6504040	GPS	6/05/95	active channel	-2mm		<0.1	490
707	518165	6504670	GPS	6/05/95	active channel	-2mm		<0.1	710
708	519715	6505030	GPS	6/05/95	active channel	-2mm		<0.1	590
709	519410	6505600	GPS	6/05/95	active channel	-2mm		<0.1	430
710	519425	6505785	GPS	6/05/95	active channel	-2mm		<0.1	560
711	520550	6506800	GPS	6/05/95	active channel	-2mm		<0.1	630
712	520770	6507560	GPS	6/05/95	active channel	-2mm		<0.1	340
713	520070	6507710	GPS	6/05/95	active channel	-2mm		<0.1	340
714	519925	6508310	GPS	6/05/95	active channel	-2mm		<0.1	420
715	519960	6508500	GPS	6/05/95	active channel	-2mm		<0.1	310
716	519110	6510350	GPS	6/05/95	active channel	-2mm		<0.1	590
717	518670	6510290	GPS	6/05/95	active channel	-2mm		<0.1	390
718	518065	6511005	GPS	6/05/95	active channel	-2mm		<0.1	430
719	517820	6511995	GPS	7/05/95	active channel	-2mm		<0.1	440
720	516915	6513480	GPS	7/05/95	active channel	-2mm		<0.1	310
721	518340	6516280	GPS	7/05/95	active channel	-2mm		<0.1	210

Appendix B: Stream Sediment Samples

Sample #	Easting	Northing	Co-ord	Date	Sample Method	Sieve	Remarks	Au (ppb)	Cu (ppb)
722	510260	6506975	GPS	7/05/95	active channel	-2mm		<0.1	760
723	509500	6505370	GPS	7/05/95	active channel	-2mm		<0.1	360
724	509795	6501625	GPS	7/05/95	active channel	-2mm		<0.1	550
725	507110	6504595	GPS	7/05/95	active channel	-2mm		<0.1	1100
726	506245	6506780	GPS	7/05/95	active channel	-2mm		<0.1	210
727	506045	6508860	GPS	7/05/95	active channel	-2mm		<0.1	570
728	506800	6509195	GPS	7/05/95	active channel	-2mm		<0.1	400
729	506090	6509845	GPS	7/05/95	active channel	-2mm		<0.1	1000
730	506240	6510275	GPS	8/05/95	active channel	-2mm		<0.1	590
731	506440	6510585	GPS	8/05/95	active channel	-2mm		<0.1	940
732	507100	6511350	GPS	8/05/95	active channel	-2mm		<0.1	810
733	508160	6512475	GPS	8/05/95	active channel	-2mm		<0.1	370
734	508645	6513645	GPS	8/05/95	active channel	-2mm	wet sieved	<0.1	290
735	508025	6514115	GPS	8/05/95	active channel	-2mm		<0.1	340
736	507370	6513920	GPS	8/05/95	active channel	-2mm		<0.1	220

EQUINOX RESOURCES NL NUCKULLA HILL PROJECT EL 2035

APPENDIX C CALCRETE SAMPLES AND ASSAYS

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete	Seive		Au (ppm)	Au:ℝ (ppm)	Au:S (ppm)
	ļ				Туре	(mm)	Analytical Scheme			······································
	<u> </u>						Detection Limit (ppm)	0.001	0.001	0.001
351	525900	6505600	GPS	20/02/96	М	#+4	edge of volcanic/saltbush wash	0,005	0.004	
352	525900	6505700	GPS_	20/02/96	F	#+4	edge of volcanic/saltbush wash	0.001		
353	525900	6505900	GPS	20/02/96		#+4	crest of volcanics	0.004	0.004	
354	525900	6506000	GPS	20/02/96		#+4	edge of volcanics/saltbush was	0.002		
355	525500	6505800	GPS	20/02/96	M	#+4	contained within patchy blue b	0.002		
356	526000	6505800	GPS	20/02/96		#+4	clay	<0.001		
357	526100	6505750	GPS	20/02/96		#+4	clay	<0.001		
2021	464700	6470300	GPS	1995		#+4		< 0.001		
2022	463700	6471300	GPS	1995		#+4		0.001		
2023	464580	6469650	GPS	1995		#+4		0.002		
2024	464520	6468980	GPS	1995		#+4		0.001		
2084	458020	6500450	GPS	1995		#+4		<0.001		
2085	457775	6501380	GPS	1995		#+4		0.001		
2086	457970	6501960	GPS	1995		#+4		0.004		
2087	458050	6511930	GPS	1995		#+4		0.001		
2088	458080	6512540	GPS	1995		#+4		0.001		
2089	457975	6516930	GPS	1995		#+4		0.002		
2090	458050	6517120	GPS	1995		#+4		0.004		
2091	459520	6516160	GPS	1995		#+4		0.005		
2092	459445	6515530	GPS	1995		#+4		0.003		
2093	459475	6513960	GPS	1995		#+4		0.001		
2094	459500	6512510	GPS	1995		#+4		0.004		
2095	458040	6503490	GPS	1995		#+4		0.001		
2096	458020	6504990	GPS	1995		#+4		0.001		
2097	459520	6510990	GPS	1995		#+4		0.001		
2098	459230	6503640	GPS	1995		#+4	*	< 0.001		
2099	459570	6502060	GPS	1995		#+4		< 0.001		
2100	459690	6499020	GPS	1995		#+4		0.002		
2101	461040	6496380	GPS	1995		#+4		0.002		
2102	461070	6499535	GPS	1995		#+4		0.001		
2103	461100	6500425	GPS	1995		#+4		< 0.001		
2104	461030	6501970	GPS	1995		#+4		0.004		
2105	461010	6503325	GPS	1995		#+4		<0.001		
2106	462530	6503480	GPS	1995		#+4		0.001		

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete Seive	Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
2107	462480	6501460	GPS	1995	#+4		0.002		
2108	462510	6499990	GP\$	1995	#+4		< 0.001		
2109	462490	6499020	GPS	1995	#+4		0.001		
2110	462440	6497560	GPS	. 1995.	#+4		0.001		
2111	462460	6496300	GPS	1995	#+4		0.002		
2112	461620	6494930	GP\$	1995	#+4		0.001		
2113	463960	6494360	GPS	1995	#+4	,	< 0.001		
2114	463780	6496000	GPS	1995	#+4		0.001		
2115	463970	6497520	GPS	1995	#+4		< 0.001		
2116	463950	6499085	GPS	1995	#+4		< 0.001		
2117	463850	6500500	GPS	1995	#+4		0.001		
2118	463960	6501975	GPS	1995	#+4		0.004		
2119	463970	6503450	GPS	1995	#+4		0.001	0.001	
2188	461020	6508200	GPS	1995	#+4		0.003		
2189	461050	6509420	GPS	1995	#+4		0.001		
2190	460970	6511090	GPS	1995	#+4		0.002		
2191	460955	6512470	GPS	1995	#+4		0.002		
2192	460900	6513650	GPS	1995	#+4		< 0.001		
2193	461260	6514150	GPS	1995	#+4		0.002		
2194	462500	6512470	GPS	1995	#+4		0.003		
2195	462440	6511080	GPS	1995	#+4		0.002		
2196	462530	6509400	GPS	1995	#+4		<0.001		
2197	462415	6506610	GPS	1995	#+4		<0.001		
2198	462460	6505525	GPS	1995	#+4		0,001		
2199	463970	6505025	GPS	1995	#+4		0.002		
2200	463940	6506770	GPS	1995	#+4		0.003		
2350	461500	6515500	GPS	1995	#+4		0.004		
2351	464000	6508420	GPS	1995	#+4		<0.001		
2352	463970	6509770	GPS	1995	#+4		0.002		
2353	463970	6511340	GPS	1995	#+4		< 0.001		
2354	464150	6514070	GPS	1995	#+4		0.002		
2385	465020	6518740	GPS	1995	#+4		0.001		
2386	464000	6518400	GPS	1995	#+4		0.001		0.001
2387	462470	6518400	GPS	1995	#+4		0.002		
2388	462540	6516910	GPS	1995	#+4		0.001		
2389	464000	6517025	GPS	1995	#+4		0.002		

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co∗ords	Date	Calcret	e Seiv	Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
2448	505950	6498630	GPS	1995	M	#+4	Beside Track	0.002		
2449	505970	6499600	GPS	1995	M	#+4	Beside Track	0.002		
2450	505900	6500920	GPS	1995	M	#+4	Beside Track	0.001		
2701	505480	6498530	GPS	1995	M	#+4	pt	0.004		
2702	504040	6498440	GPS	1995	F	#+4		0.003		
2703	500950	6500060	GPS	1995	М	#+4		0.001		
2704	501750	6500000	GPS	1995	F	#+4		0.002		
2705	502520	6499950	GPS	1995	M	#+4		0.002		
2706	504030	6499940	GPS	1995	M	#+4		0.002		
2707	505410	6500020	GPS	1995	Ν	#+4		0.002		
2708	507080	6499970	GPS	1995		#+4	Clay	0.001		
2709	508590	6500150	GPS	1995		#+4	Clay	< 0.001		
2710	510120	6499960	GPS	1995	Ν	#+4	•	0.003		
2711	511400	6500000	GPS	1995	Ν	#+4		0.003		
2712	512900	6498520	GPS	1995		#+4	Clay	0.001		
2713	511530	6498450	GPS	1995		#+4	Clay Near Granite	0.002	0.002	
2714	508470	6498550	GPS	1995	M	#+4	•	0.002		
2715	505360	6501420	GPS	1995	M	#+4		0.001		
2716	503600	6501350	GPS	1995	Ν	#+4		0.001		
2717	502480	6501500	GPS	1995	Ν	#+4		0.001		0.001
2718	501070	6501545	GPS	1995	N	#+4		0.001		
2719	506960	6501470	GPS	1995	М	#+4		0.002		
2720	508630	6501560	GPS	1995	M	#+4		0.001		
2721	510075	6501520	GPS	1995	M	#+4		0,002		
2722	511470	6501510	GPS	1995		#+4	Clay	0.001		
2723	512990	6501490	GPS	1995	М	#+4	•	0.001		
2724	510000	6502900	GPS	1995	М	#+4		0.001		
2725	508590	6503000	GPS	1995	F	#+4	Clay	0.002		
2726	507030	6503070	GPS	1995		#+4	Clay	0,001		
	505470	6503020	GPS	1995	F	#+4	•	0.002		
2728	502390	6502810	GPS	1995		#+4	Poop9.5 Clay	0.001		
	500870	6503050	GPS	1995	M	#+4	•	0.003		
	500070	6503020	GPS	1995	M	#+4		<0.001		
2731	501020	6504470	GPS	1995	M	#+4		0.001	0.001	
	502490	6504420	GPS	1995	М	#+4		0.002		
	503300	6504450	GPS	1995	M	#+4		0,001		ļ

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete	Seive	Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
2734	504810	6504510	GPS	1995	М	#+4		0.002		
2735	505550	6504580	GPS	1995	M	#+4		0.002		
2736	507160	6504700	GPS	1995	M	#+4		0.001		
2737	508520	6504520	GPS	1995	M	#+4		0.002		0.003
2738	513120	6503070	GPS	1995	N	#+4		0.001		
2739	514530	6504520	GPS	1995	G	#+4		0.001		
2740	513120	6504480	GPS	1995	N	#+4		0.001	0.001	
2741	511570	6504490	GPS	1995	N	#+4		0.003		
2742	510000	6504480	GPS	1995	M	#+4		0.001		
2743	514330	6505980	GPS	1995	N	#+4		0.001		
2744	512100	6506170	GPS	1995	М	#+4		0.001		
2745	510170	6505900	GPS	1995	M	#+4		0.001		
2746	508520	6506000	GPS	1995	M	#+4		0.004		
2747	506880	6506030	GPS	1995	М	#+4		0.002		i
2748	505470	6506070	GPS	1995	M	#+4		0.001		
2749	504010	6506100	GPS	1995	M	#+4		0.003		
2750	502370	6506100	GPS	1995	M	#+4		0.001		
2901	464270	6515060	GPS	1995		#+4		0.004		ļ
4191	461030	6501920	GPS	1996	M	#+4	50m south of sasmple 2104	0.001		
4192	461130	6501970	GPS	1996	M	#+4	100m east of sample 2104	0.001		
4193	460955	6501970	GPS	1996	M	#+4	75m west of sample 2104	< 0.001		
4194	463960	6502025	GPS	1996	M	#+4	50m north of sample 2118	0.003		1
4195	463960	6501925	GPS	1996	M	#+4	50m south of sample 2118	0,002		
4196	464010	6501975	GPS	1996		#+4	50m east of sample 2118	< 0.001		
	463910	6501975	GPS	1996	M	#+4	50m west of sample 2118	0.002		
	503100	6507660	GPS	1996	M	#+4		0.002	0.002	
	503800	6507420	GPS	1996	M	#+4		0.001		
1	505520	6507350	GPS	1996	M	#+4		0.003		
1 1	506940	6507450	GPS	1996	M	#+4		0,001		
	507330	6509040	GPS	1996	M	#+4		0.001		
	506680	6509020	GPS	1996	Ν	#+4		0.001		
1		6509160	GPS	1996	Ν	#+4		0.001		
1		6508955	GPS	1996	N	#+4		0.002		
	503390	6510330	GPS	1996	M	#+4		0.002	0.002	
		6510620	GPS	1996	N	#+4		< 0.001		
4411	505430	6510660	GPS	1996	M	#+4		0.001		İ

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcret	e Seive	Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
4412	503800	6511820	GPS	1996	N	#+4		0.001		
4413	503730	6513120	GPS	1996	M	#+4		0.002		
4414	505530	6513320	GPS	1996		#+4	Clay	0.001		
4415	505800	6513350	GPS	1996	M	#+4	Partially Weathered Surficial	0.002		
4416	506430	6513500	GPS	1996	M	#+4		0.002		
4417	507225	6513280	GPS	1996	M	#+4	Near Fence Cnr	0.002		
4418	515600	6507600	GPS	1996	M	#+4		0.002		0.001
4419	514470	6507470	GPS	1996	M	#+4		0.004		
4420	512130	6507380	GPS	1996	М	#+4	•	0.004		
4421	510070	6507390	GPS	1996	N	#+4		0.001		
4422	510030	6509080	GPS	1996	M	#+4		0.001		
4423	511570	6509060	GPS	1996	M	#+4		0,001		
4424	512840	6510700	GPS	1996	M	#+4		< 0.001		
4425	511640	6510560	GPS	1996	M	#+4		0.002		
4426	510000	6510540	GPS	1996	N	#+4		0.001		
4427	509815	6511680	GP\$	1996	N	#+4		0.001		
4428	511800	6511600	GPS	1996	N	#+4		0.001		
4429	512800	6513540	GPS	1996	N	#+4		0.003		
4430	511900	6513490	GPS	1996	M	#+4	volcanics-sand contact	0.001		
4431	514660	6513350	GPS	1996	M	#+4	beside wash way/creek	0,002		
4432	516100	6510400	GPS	1996	N	#+4	·	0.001		:
4433	514860	6510750	GPS	1996	M	#+4		0.002		
4434	516180	6508910	GPS	1996	М	#+4		0.001		
4435	514720	6509020	GPS	1996	М	#+4		0.002		
4436	517160	6512780	GPS	1996	М	#+4	200m south of lake Everard	0.002		
4437	523530	6499640	GPS	1996		#+4	clay	0,002		
4438	522080	6501140	GPS	1996	M	#+4	beside track	0.003		
4439	523490	6500930	GPS	1996	N	#+4		< 0.001		
4440	524800	6501050	GPS	1996	M	#+4		0.002		
4441	524560	6502200	GPS	1996	M	#+4		0.003		
4442	525460	6503920	GPS	1996	M	#+4	gully	0.002	0.002	
4443	525900	6505800	GPS	1996	M	#+4	· · · -	0.007		
4444	525180	6505360	GPS	1996	N	#+4		< 0.001		
4445	523630	6506700	GPS	1996	М	#+4		0.002		
4446	524520	6506670	GPS	1996	М	#+4		0.003		
4447	527460	6511180	GPS	1996	М	#+4		0.002		

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete	Seive Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
28661	465010	6514520	grìd	1996	MN	+5mm nv	0.002		(
28662	464520	6514510	grid	1996	F	+5mm nv	0.002	0.002	
28663	463970	6514550	grid	1996	Ν	+5mm nv	< 0.001		
28664	463530	6514490	grid	1996	NF	+5mm nv	0.002	0.001	
28665	461500	6514520	grid	1996	F	+5mm nv	0.001	.,	
28666	460990	6514590	grid	1996	MF	+5mm nv, weathered	0.005		
28667	460530	6514450	grid	1996	MF	+5mm nv weathered	0.003		
28668	460375	6515045	grid	1996	MN	+5mm nv	< 0.001		
28669	460990	6515000	grid	1996	М	+5mm nv	0.002		
28670	463310	6514980	grid	1996	N	+5mm nv	0.003		
28671	464550	6515030	grid	1996	MF	+5mm nv	0.002		
28672	464820	6515010	grid	1996	MF	+5mm nv	0.003		
28673	463540	6515480	grid	1996	F	+5mm nv	0.001		
28674	461540	6515500	grid	1996	N	+5mm nv	0.001		
R185464	439989	6450178	GPS	27/11/96	MN	MESA samples	< 0.001		
R185465	439569	6450358	GPS	27/11/96	MN	MESA samples	0.004		
R185466	439073	6450592	GPS	27/11/96	MN	MESA samples	0.001		
R185467	438673	6450764	GPS	27/11/96	MN	MESA samples	< 0.001		
R185484	440342	6450802	GPS	27/11/96	MN	MESA samples	0.001		
	440750	6450551	GPS	27/11/96	MN	MESA samples	0.001		
	438122	6451339	GPS	27/11/96	MN	MESA samples	< 0.001		
R185491	439080	6452774	GPS	27/11/96	MN	MESA samples	0.001		
B 1	439621	6452678	GPS	27/11/96	MN	MESA samples	0.002	0.002	
R185493	441470	6452019	GPS	27/11/96	MN	MESA samples	< 0.001		
	441926	6451863	GPS	27/11/96	MN	MESA samples	< 0.001		
	442407	6451685	GPS	27/11/96	MN	MESA samples	<0.001		
)	443111	6452223	GPS	27/11/96	MN	MESA samples	0.003		
	442729	6452589	GPS	27/11/96	MN	MESA samples	< 0.001		
R185499	442424	6452977	GPS	27/11/96	MN	MESA samples	<0.001		
R185500	442160	6453374	GPS	27/11/96	MN	MESA samples	< 0.001		
		6453666	GPS	27/11/96	MN	MESA samples	0.002		
		6454621	GPS	27/11/96	MN	MESA samples	0.002		
R185535	440173	6454408	GPS	27/11/96	MN	MESA samples	0.003		
R185536	440984	6453914	GPS	27/11/96	MN	MESA samples	0.002		
R185537	445522	6453874	GPS	27/11/96	MN	MESA samples	0,002		
R185538	445075	6454023	GPS	27/11/96	MN	MESA samples	0,002		

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete		Au (ppm)	Au:R (ppm)	Au:S (ppm)
R185539	444660	6454066	GPS	27/11/96	MN	MESA samples	0.001		
R185540	442766	6454663	GPS	27/11/96	MN	MESA samples	<0.001		
R185541	442242	6454795	GPS	27/11/96	MN	MESA samples	0.004	0.004	
R185542	441812	6454956	GPS	27/11/96	MN.	MESA samples	0.002		
R185543	441329	6455043	GPS	27/11/96	MN	MESA samples	0.003		
R185544	440880	6455205	GPS	27/11/96	MN	MESA samples	0.003		
R185547	438700	6456038	GPS	27/11/96	MN	MESA samples	0.002		
R185548	440016	6455421	GPS	27/11/96	MN	MESA samples	0.002		
R185549	440488	6455283	GPS	27/11/96	MN	MESA samples	0.002		
R185552	438780	6456967	GPS	27/11/96	MN	MESA samples	0.005	0.004	
R185554	440220	6456733	GPS	27/11/96	MN	MESA samples	< 0.001	.,	
R185556	441153	6456447	GPS	27/11/96	MN	MESA samples	< 0.001		
R185557	450008	6454569	GPS	27/11/96	MN	MESA samples	0.002		
R185558	449511	6454664	GPS	27/11/96	MN	MESA samples	0.001		
R185559	449038	6454804	GPS	27/11/96	MN	MESA samples	0.002		
R185560	448624	6454987	GPS	27/11/96	MN	MESA samples	< 0.001		
R185561	448155	6455157	GPS	27/11/96	MN	MESA samples	0.002		
R185562	447724	6455276	GPS	27/11/96	MN	MESA samples	< 0.001		
R185563	446722	6455460	GPS	27/11/96	MN	MESA samples	< 0.001		
R185564	446195	6455535	GPS	27/11/96	MN	MESA samples	< 0.001		
R185565	444238	6455166	GPS	27/11/96	MN	MESA samples	< 0.001		
R185567	443408	6455750	GPS	27/11/96	MN	MESA samples	0,001		
R185568	442956	6455848	GPS	27/11/96	MN	MESA samples	0.003		
R185569	441309	6456398	GPS	27/11/96	MN	MESA samples	0,001		
R185570	441900	6456181	GPS	27/11/96	MN	MESA samples	< 0.001		
R185571	441473	6456339	GPS	27/11/96	MN	MESA samples	<0.001		
R185576	439732	6457710	GPS	27/11/96	MN	MESA samples	<0.001		
R185577	440221	6457605	GPS	27/11/96	MN	MESA samples	< 0.001		
R185578	440666	6457495	GPS	27/11/96	MN	MESA samples	<0.001		
R185582	438718	6458654	GPS	27/11/96	MN	MESA samples	<0.001		
R185583	439177	6458519	GPS	27/11/96	MN	MESA samples	<0.001		
R185584	440099	6458212	GPS	27/11/96	MN	MESA samples	0.002		
R185585	440564	6458255	GPS	27/11/96	MN	MESA samples	0.002		
R185586	441054	6458176	GPS	27/11/96	MN	MESA samples	<0.001		
R185587	441538	6458114	GPS	27/11/96	MN	MESA samples	<0.001		•
R185606	440628	6464829	GPS	27/11/96	MN	MESA samples	<0.001		

Appendix C: Calcrete Samples

Sample No	Easting	Northing		Date	Calcrete	Seive Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
R185607	441093	6464779	GPS	27/11/96	MN	MESA samples	<0.001		VI-1/
R185608	441566	6464595	GP\$	27/11/96	MN	MESA samples	0.002		
R185609	442051	6464389	GPS	27/11/96	MN	MESA samples	0,002		
R185610	442932	6464193	GPS	27/11/96	MN	MESA samples	< 0.001		
R185611	443391	6463963	GPS	27/11/96	MN	MESA samples	< 0.001		
R185612	443857	6463732	GPS	27/11/96	MN	MESA samples	0.002		
R185613	444294	6463554	GPS	27/11/96	MN	MESA samples	0.002		
R185614	444702	6463321	GPS	27/11/96	MN	MESA samples	0.002		
R185615	445553	6462947	GPS	27/11/96	MN	MESA samples	< 0.001		
R185616	446149	6462496	GPS	27/11/96	MN	MESA samples	< 0.001		
R185617	446579	6462269	GPS	27/11/96	MN	MESA samples	<0,001		
R185618	447081	6462103	GPS	27/11/96	MN	MESA samples	0.001		
R185621	448965	6461443	GPS	27/11/96	MN	MESA samples	0.005	0.006	
R185623	449937	6461551	GPS	27/11/96	MN	MESA samples	0.001		
R185466	•		GPS	27/11/96	MN	MESA samples	0.001		
R185624	450377	6461353	GPS	27/11/96	MN	MESA samples	0.001		
R185625	451189	6460796	GPS	27/11/96	MN	MESA samples	<0.001		
R185626	451662	6460622	GPS	27/11/96	MN	MESA samples	0.001		
R185627	452139	6460473	GPS	27/11/96	MN	MESA samples	0.004	0.004	
R185628	452630	6460389	GPS	27/11/96	MN	MESA samples	0.001		
R185629	453025	6460287	GPS	27/11/96	MN	MESA samples	0.001		
R185630	454811	6459518	GPS	27/11/96	MN	MESA samples	< 0.001		
R185631	456492	6458560	GPS	27/11/96	MN	MESA samples	0.001		
R185632	456851	6458187	GPS	27/11/96	MN	MESA samples	0.005		
R185633	457176	6457843	GPS	27/11/96	MN	MESA samples	0.004	0.005	
R185663	457245	6455315	GPS	27/11/96	MN	MESA samples	<0.001		
R185664	NO	DATA	GPS	27/11/96	MN	MESA samples	0.002		
R185665	450581	6454395	GP\$	27/11/96	MN	MESA samples	0.006		
R185666	450989	6454251	GPS	27/11/96	MN	MESA samples	0.005	0.004	
R185667	451500	6454257	GPS	27/11/96	MN	MESA samples	<0.001		
R185668	451957	6454094	GPS	27/11/96	MN	MESA samples	0.002		•
R185669	452836	6453893	GPS	27/11/96	MN	MESA samples	0.003		
R185670	452836	6453700	GPS	27/11/96	MN	MESA samples	<0.001		
R185671	453384	6453501	GPS	27/11/96	MN	MESA samples	<0.001	0,001	
R185672	453852	6453550	GPS	27/11/96	MN	MESA samples	<0.001		
R185673	454333	6453583	GPS	27/11/96	MN	MESA samples	0.002		

Appendix C: Calcrete Samples

Sample No	Easting	Northing	Co-ords	Date	Calcrete Se	eive Remarks	Au (ppm)	Au:R (ppm)	Au:S (ppm)
R185674	454823	6453496	GPS	27/11/96	MN	MESA samples	0.002		Tidio (ppin)
R185675	454575	6452094	GPS	27/11/96	MN	MESA samples	0.002		
R185677	456452	6451673	GPS	27/11/96	MN	MESA samples	0.001		
R185678	456962	6451534	GPS	27/11/96	MN.	MESA samples	0.002		
R185679	457465	6451411	GPS	27/11/96	MN	MESA samples	< 0.001		
R185700	457071	6448254	GPS	27/11/96	MN	MESA samples	0.003		
R185701	456611	6448430	GPS	27/11/96	MN	MESA samples	0.003		
R185702	456024	6449161	GPS	27/11/96	MN	MESA samples	< 0.001		
R185703	453087	6450694	GPS	27/11/96	MN	MESA samples	< 0.001		
R185704	453091	6451083	GPS	27/11/96	MN	MESA samples	0.002		
R185705	452140	6451415	GPS	27/11/96	MN	MESA samples	0.002		
R185706	450768	6451723	GPS	27/11/96	MN	MESA samples	0.003		
R185707	449485	6452035	GPS	27/11/96	MN	MESA samples	< 0.001		
R185708	448646	6452415	GPS	27/11/96	MN	MESA samples	0.004	0.004	
R185709	448143	6452639	GPS	27/11/96	MN	MESA samples	0.003		
R185710	445782	6453751	GPS	27/11/96	MN	MESA samples	0.002	0.001	
R185711	443369	6452563	GPS	27/11/96	MN	MESA samples	0.002		
R185712	443859	6452336	GPS	27/11/96	MN	MESA samples	0.002		
R185713	444344	6452267	GPS	27/11/96	MN	MESA samples	< 0.001		
R185714	445193	6451856	GPS	27/11/96	MN	MESA samples	<0.001		
R185715	446990	6451055	GPS	27/11/96	MN	MESA samples	< 0.001		
	NB Calcre	ete Type: M	= massive, N	= nodular, F	= fragmental,	P = pisolitic			

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
	0.1	0.5	0.01	0.5	0.5	0.5	0.5	5	1	
351			37.32	6.3						
352			27.76	7.3						
353			36,46	7.6						
354			25.06	7.0						
355			27.18	10.1						
356	ļ		7.82	4.9		***				
357			10.21	5.6						
2021	<0.1	5.5	31.60	16.5	4.5	3.0	5.0			
2022	<0.1	4.5	18.10	11.0	5.0	3,5	5.5			
2023	<0.1	3.0	20.70	8.5	4.5	2.5	3.5			
2024	<0.1	3.0	18.80	9.5	4.5	2.5	4.0			
2084	<0.1	3.0	12.51	7.0	6.0	3.0	6.0			
2085	<0.1	3.5	28,24	6.5	3.5	5.0	4.0			
2086	<0.1	4.5	33.55	9.5	3.5	2.0	4.0			
2087	<0.1	4.5	35,06	13.0	4.5	1.5	2.5			
2088	<0.1	5.0	38.24	6.0	3.5	2.0	3.5			
2089	<0.1	5.5	30.79	7.0	4.5	1.5	4.0			
2090	<0.1	2.0	34.52	8.0	3.5	1.0	2.0			
2091	<0.1	6.0	30.97	10.5	6.0	1.5	3,5			
2092	<0.1	2.5	26.97	17.0	3.5	1,5	10.0			
2093	<0.1	5.0	35.58	8.0	4.0	1.5	4.5			
2094	<0.1	3,5	36,22	7.5	4.0	2.5	2.0			
2095	<0.1	2.5	23.28	6,0	3.5	2.0	3.0			
2096	<0.1	4.5	31.45	10.5	5.0	1.5	3.5			
2097	<0.1	3.5	34.44	6.0	3.5	1.5	3.5			
2098	<0.1	3.0	19.40	11.0	6.5	3.0	4.0			
2099	<0.1	2.5	21.50	9.0	4.5	2.0	2.5			
2100	<0.1	1.0	24.42	15.5	3.5	1.5	1.0			
2101	<0.1	3,5	22.85	12.5	3.5	1.5	2.0			
2102	<0.1	5.5	32.60	8.5	4,5	2.0	4.5			1
2103	<0.1	5.5	7.06	15,5	8.5	5.0	15.0	*		Ī
2104	<0.1	5.0	33.10	14.0	7.0	1.0	4,0		•	Ì
2105	<0.1	7.0	36.27	7.0	4,5	2.5	4.5			ľ
2106	<0.1	5.0	27.68	6.5	3.5	2.0	4.0			!

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
2107	<0.1	4.5	20.93	19.0	7.0	2.5	6.5			
2108	<0.1	5.5	10.37	18.0	9.0	5.0	13.0			
2109	<0.1	5.0	14.76	17.5	7.0	4.0	10.0			
2110	<0.1	5,5	32,99	11.0	6.5	1.5	. 3.5			
2111	<0.1	4.5	30.34	12.0	4.0	1.5	2.0			
2112	<0.1	3.0	19.41	4.5	3.0	2.0	1.5			
2113	<0.1	5.0	29.41	5.5	3.5	2,5	3.0			
2114	<0.1	6.0	35.29	5.5	4.5	2.0	3.0			
2115	<0.1	5.0	31.05	7.0	3.5	2.0	5.0			
2116	<0.1	4.5	32.50	7.0	4.0	3.0	4,0			
2117	<0.1	4.0	20.06	7.0	4.0	3.0	8.5			
2118	<0.1	3.5	32.05	6.0	3.5	2.0	2.0			
2119	<0.1	4.0	28.44	5.0	2.5	2,0	2.0			
2188	<0.1	3.0	20.74	9.5	4.5	2.0	4.0			
2189	<0.1	5.5	32.52	, 12.0	6.5	2.5	5.0			
2190	<0.1	4.5	34.44	8.0	4.5	1.0	3,5			
2191	<0.1	2.5	26.73	9.5	4.0	1.5	4.5			
2192	<0.1	2.5	27.76	5.0	3.5	2.0	4.5			
2193	<0.1	6.0	33.96	6.5	3.5	1.0	2.5			
2194	<0.1	3.5	28.26	17.0	5.5	1.0	3.5			
2195	<0.1	5.5	33.82	7.5	4.0	2.0	4.0			
2196	<0.1	6.5	29,28	11.5	6.5	2.5	7.0			
2197	<0.1	6.5	33,71	9.5	5.0	2.0	2,5			
2198	<0.1	4.0	34.01	5.0	3.0	1.5	3.0			
2199	<0.1	5.5	40.20	6.5	5.0	4.0	3.0	5	7	104
2200	<0.1	3.0	35.60	7.5	4.0	3.5	3.0	<5	5	52
2350	<0.1	3.5	32.90	8.5	4.0	3.5	2,5	<5	4	46
2351	<0.1	3.0	33.00	6.0	3.5	4.0	3.5	<5	3	47
2352	<0.1	4.0	30.00	14.5	6.5	3.5	5.5	5	8	69
2353	<0.1	3.5	34.90	6.5	4.0	4.0	3.0	<5	8	71
2354	<0.1	3.5	29.70	12.5	9.5	4.0	3.5	10	8	68
2385	<0.1	4.0	31.00	6.0	3.0	3.0	2,0	<5	5	68
2386	<0.1	3.0	11.50	4.5	3.0	2.5	3.0	<5	5	46
2387	<0.1	4.5	24.30	6.0	3.0	3.0	2.0	5	5	37
2388	<0.1	2.5	12.80	4.5	3.0	2.5	3.0	<5	12	31
2389	<0.1	2.5	22.00	4.0	2.0	2.0	1.5	<5	2	27

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
2448			23.30		1				······································	
2449			23.70							i
2450			21.90							
2701	<0.1	4.5 .	37.90	8.0	4.5	2.0	6.5		-	
2702	<0.1	4.0	31.30	17.0	5.5	3.0	7.5			
2703	<0.1	3.0	22.70	7.0	4.0	1.5	5.5			1
2704	<0.1	4.5	32.40	6.0	3,5	15.5	4.0			1
2705	<0.1	3.5	25.60	13.0	6.0	3.0	7.0			
2706	≪0.1	4.0	30.10	10.5	6.0	2.5	7.0			
2707	<0.1	6.5	18.80	11.5	6.5	5.0	11.5			
2708	<0.1	4.5	3.57	8.0	7.0	8.0	18.0			
2709	<0.1	3.5	2.00	6,0	5.5	4.5	13.5			į
2710	<0.1	4.5	28.60	10.0	6.5	3.5	9.5			Ì
2711	<0.1	4.5	29,10	29.5	8.0	2.5	10.0			i
2712	<0.1	4.5	6.06	7.0	7.0	5.0	20.5			1
2713	<0.1	6.5	3.29	14.0	11.5	9.5	20.0			[
2714	<0.1	3.5	19.50	5.5	3.0	4.0	5.0			
2715	<0.1	4.5	29.70	11.5	8.0	2,5	8.0			ļ
2716	<0.1	5.5	9.68	10.0	9.0	4.5	13.5			
2717	<0.1	3.0	17.20	6.5	5.0	13.0	9.0			İ
2718	<0.1	5.0	29.10	9.5	4.5	3.5	8.0			
2719	<0.1	4.0	29.00	6,5	3.0	2.0	5.0			
2720	<0.1	3.0	20.50	6.0	4.0	1.5	10.0			
2721	<0.1	5.0	23.70	14.5	7.0	4.0	11.0			!
2722	<0.1	6,0	1.88	10,5	10.0	8.5	29.5			
2723	<0.1	3.0	24.90	5.5	3.0	1.5	14,5			
2724	<0.1	4.5	11.20	7.5	4.0	4.0	19.5			
2725	<0.1	5.0	19.90	14.5	7.0	3.5	11.0			Į
2726	<0.1	5.0	7.82	7.5	6.5	6.5	18.0			1
2727	<0.1	4.5	25.80	6.5	4.0	2.0	6.0			
2728	<0.1	4.5	9.46	8.0	7.0	9.5	18.0			
2729	<0.1	4.0	37.60	5.5	3.5	1.0	6.5			1
2730	<0.1	5.0	20.10	5.5	5.5	2,5	21.5			
2731	<0.1	2.5	13.10	4.0	5.0	1.5	26.5			
2732	<0.1	2,5	16.50	4.0	2.5	2.5	7.5			1
2733	<0.1	3.5	14.80	6.5	6.0	2.5	43.0			-

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
2734	<0.1	3,5	14.40	16.5	7.5	3.0	16.0	The state of the s		
2735	<0.1	4.0	23,30	6.0	4.5	2.5	17.5			
2736	<0.1	3.0	19.90	7.0	3,5	2.5	25.5			
2737	<0.1	4.0	38.70	7.5	3.0	<0.5	6.5		· ·	
2738	<0.1	5.0	18,50	13.0	6.5	5.0	13.5			
2739	<0.1	3.5	24.90	6.0	5.5	3.5	18.5			
2740	<0.1	3.5	34.80	5.0	2.5	1.5	10.0			
2741	<0.1	3,0	27.70	6.5	2.5	1.5	11.5			
2742	<0.1	2.0	29.50	5.5	3,0	1.5	10.0			
2743	<0.1	5.5	8.40	6.5	6.0	5.5	21.5			
2744	<0.1	3.5	29.30	4.5	3.0	2.0	9.0			
2745	<0.1	5.0	28.70	8.5	5,0	2.0	9.5			
2746	<0.1	4.5	28.80	10.0	5.0	3.0	10.5			
2747	<0.1	4.0	29.90	11.5	6.0	1.5	6.0			
2748	<0.1	5.0	9.85	11.0	8.5	5.0	16.0			
2749	<0.1	3.5	32.60	5.5	3.5	1.0	5.0			
2750	<0.1	4.0	25.10	7.5	3.5	2.0	6,5			
2901	<0.1	2.5	23,30	10.5	3.5	1.5	3.5			
4191	<0.1	5,0	14.00	21.9	6.5	2.0	6.0			
4192	<0.1	4.0	19.50	15.8	9.5	3.0	8.0			
4193	<0.1	3.5	22.50	25.1	6.5	1.5	4.5			
4194			30.95							:
4195			32.82							
4196			35.48							
4197			31.18							
4401	<0.1	4.5	26.70	22.0	11.0	2.0	12.0			
4402	<0.1	3.5	20.50	5.5	4.0	2.5	12.0			
4403	<0.1	4.5	27.90	5.0	3.5	2.0	10.5			
4404	<0.1	3.0	26.10	5.0	3.0	0.5	18.0			
4405	<0.1	4.0	29.40	4.5	3.0	2.0	13.0			
4406	<0.1	2.0	34.80	3.5	1.5	0,5	7.5			
4407	<0.1	5.0	25.40	9.0	6,5	2.0	12.5			
4408	<0.1	4.5	30.20	7.0	3.0	1.5	6.0			
4409	<0.1	3.0	31.10	4.5	3,0	1.5	13,5			
4410	<0.1	4.5	22.20	6,5	4.0	3.5	17.0			
4411	<0.1	2.5	22.60	4.0	3,5	2.0	24.5			

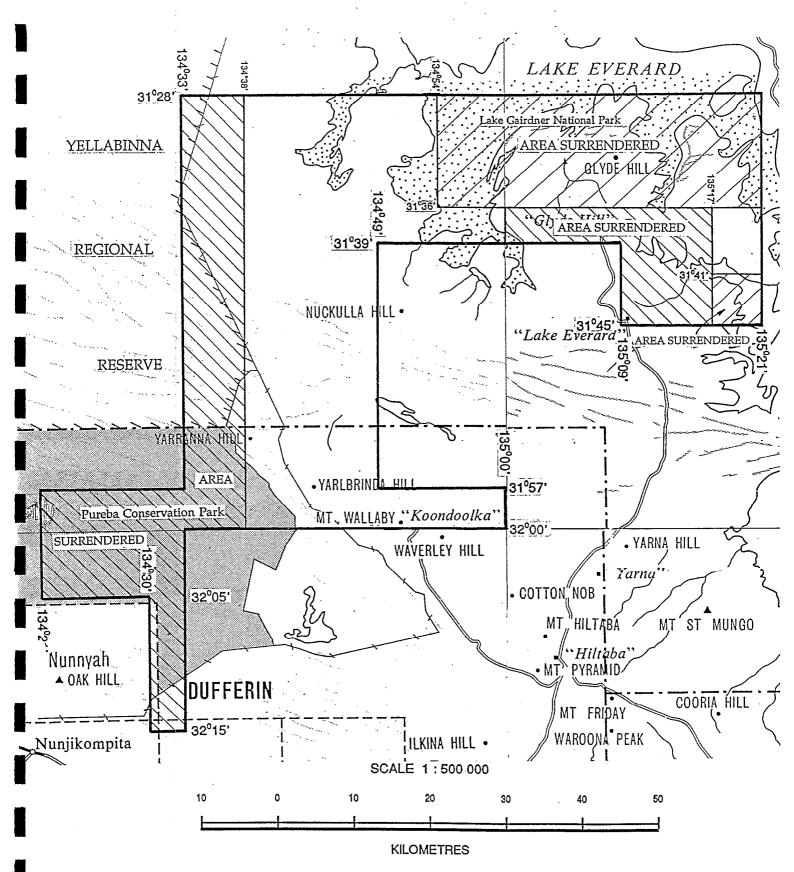
Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cir (ppm)	Mn (ppm)
4412	<0.1	3,5	27.90	6.5	4.0	1.5	12.0			
4413	<0.1	4.0	28.30	4.0	2.5	2.0	10.5			
4414	<0.1	4.0	7.53	7.0	8.0	5.0	25.5			
4415	<0.1	2.0	36.60	4,5	2.5	<0.5	6.0			
4416	<0.1	4.0	33.10	4.5	3.5	1.0	12.5			
4417	<0.1	3.0	24.70	4.5	3.0	1.0	30.0			
4418	<0.1	4.5	30,30	9.5	5.5	2.5	9.5			
4419	<0.1	2.5	34.90	7.5	3.0	1.0	7.5			
4420	<0.1	3.0	37.80	6.5	2.5	1.0	6.0			
4421	<0.1	5.0	34.10	6.0	4.0	2.0	8.0			
4422	<0.1	0,8	27.90	5.0	3.0	1.5	13.5			
4423	<0.1	2.5	31.30	8.0	3.5	1.5	8.5			
4424	<0.1	3,5	26.60	4.5	3.0	1.5	25.0			
4425	<0.1	2.5	26.30	16.5	5.5	1.5	9.0			
4426	<0.1	5.0	36.70	5. 5	2.5	1.5	7.5			
4427	<0,1	3,0	32.00	9.0	4.0	2.5	7.5			
4428	<0.1	2.5	35.10	7.0	3.5	1.5	7.0			
4429	<0.1	2.5	34.10	6.0	3. 5	1.0	4.5			
4430	<0.1	2.5	29.80	5.0	3.0	1.0	15.5			
4431	<0.1	2,5	25.70	11.5	4.5	1.5	8.0			
4432	<0.1	4.0	27.90	5.5	4.0	2.0	8.5			
4433	<0.1	2.5	31.40	6.0	2.5	<0.5	7.5			
4434	<0.1	4.0	26.50	5.5	4.5	1.5	12,0			
4435	<0.1	3.0	31.20	11.5	4.5	1.0	9.0			
4436	<0.1	3.0	22.50	4.5	3.5	1.0	20.5			
4437	<0.1	3.5	1.09	8.5	6.5	7.0	18.0			
4438	<0.1	3.5	36.10	8.0	3.5	1.0	5.0			
4439	<0.1	2,5	13.10	7.0	4.5	4.0	24.0			
4440	<0.1	5.0	24.90	11.0	4.5	3.0	11.0			
4441	<0.1	3.5	38.30	7.0	3.0	1.0	5.5			
4442	<0.1	4.0	25.80	6,0	4.0	2.0	9.5			
4443	<0.1	3.0	33.80	7.0	2.5	1.0	8.0			
4444	<0.1	3.0	32.70	6,0	2.5	1.5	10.5			
4445	<0.1	2.5	26.60	7.0	3.0	1.5	4.5			
4446	<0.1	2.5	24.00	6.0	2,5	1.5	6.0			
4447	<0.1	4.0	31,50	6.0	2.0	2.0	10.0			

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
28661	0.2		39.46	7.4	9.5	<0.5	2.0		12	
28662	0.2		25,50	7.0	9.7	0.9	1.4		9	
28663	0.2		17.78	6.6	9.9	0.7	2.1		11	
28664	0,1		17.68	6.7	7.2	<0.5	1.5		15	
28665	<0.1		11.17	6.3	7.2	<0.5	4.1		18	
28666	<0.1		22.75	6,9	6.4	<0.5	<0.5		6	
28667	0.2		23.92	7.8	6.8	<0.5	2.2		11	
28668	0.3		28.47	6.7	8.3	<0.5	0,9		9	
28669	0.2		9.64	5.6	7.9	0.8	2.7		39	
28670	0.2		16.68	8.2	8.3	<0.5	0.9		9	
28671	0.1		10.40	6.0	7.8	0,8	1.7		18	
28672	0.2		13,94	5.4	6.2	< 0.5	1.2		13	
28673	0.1		8,50	5.5	7.3	8.0	1.9		34	
28674	0.2		18.65	6.8	7.8	0.5	8.0		9	
R185464			26.70	8.0	7.0	8.0	6.0	<1		
R185465			21.60	8.0	7.0	4.0	5.0	3		
R185466			28.10	10.0	7.0	12.0	5.0	<1		
R185467			19.60	10.0	7.0	12.0	6.0	2		
R185484			28.80	0,8	9.0	<3	8.0	<1		
R185485			27.20	10.0	10.0	4.0	10.0	1		
R185489			25.50	9.0	11.0	<3	7.0	<1		
R185491			19.30	10.0	8.0	12.0	5.0	2		
R185492			30.00	12.0	10.0	<3	6.0	2 2 3		
R185493			31.10	15.0	14.0	<3	7.0	3		
R185494			21.70	8.0	9.0	<3	4.0	2		
R185495			28.30	9.0	8.0	<3	5,0	<1		
R185497			18.00	16.0	10.0	<3	6.0	2		
R185498			28,70	12.0	12.0	6.0	6.0	<1		
R185499			28,50	11.0	9.0	8.0	9.0	<1		
R185500			28.90	9.0	13.0	10.0	10.0	1		
R185501			29.10	9.0	10.0	10.0	8.0	<1		
R185534			16.40	16.0	12.0	<3	9.0	<1		İ
R185535			21.30	11.0	10,0	<3	7.0	<1		
R185536			22.20	9,0	11.0	<3	6.0	1		
R185537			27.60	12.0	9.0	<3 .	6,0	2		ļ
R185538			26.00	14.0	12.0	<3	9.0	2	-	

Appendix C: Calcrete Samples


Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cı (ppnn)	Mn (ppm)
R185539			28.50	14.0	16.0	<3	8.0	<1		
R185540			29.70	10.0	10.0	<3	6.0	<1		
R185541			28.30	15.0	10.0	<3	6.0	1		
R185542			26.30	14.0	.10.0	.<3	7.0	1.		
R185543			22.20	6.0	7.0	<3	4.0	<1		
R185544			27.40	15.0	10.0	<3	6.0	1		
R185547			27.70	11.0	12.0	<3	5.0	<1		
R185548			27.20	10.0	9.0 _.	<3	3.0	<1		
R185549			28.20	11.0	10.0	<3	6.0	<1		
R185552			20.30	14.0	12.0	<3	8.0	<1		
R185554			18.30	12.0	15,0	<3	9.0	<1		
R185556			25,10	12.0	15.0	<3	8.0	<1		
R185557			12.30	18.0	22,0	<3	5.0	3		i
R185558			19.80	12.0	13.0	<3	8.0	<1		
R185559			24.70	11.0	12.0	<3	8.0	<1		
R185560			20.00	20.0	13.0	<3	9.0	<1		
R185561										j
R185562			27.20	11.0	8.0	<3	8.0	<1		j
R185563			30.80	17.0	13.0	<3	7.0	<1		i
R185564			29.10	13.0	9.0	<3	7.0	<1		
R185565			30.00	10.0	10.0	<3	9.0	<1		
R185567			19.30	13.0	13.0	<3	11.0	<1]
R185568			21.30	19.0	11.0	<3	8,0	<1		l
R185569			31.70	12.0	10.0	<3	4.0	<1		İ
R185570			22.90	15,0	11.0	<3	9.0	<1		
R185571			23.00	10.0	11.0	<3	8.0	<1		i
R185576			20,70	20.0	13.0	<3	9.0	<1		
R185577			18.00	24.0	10.0	<3	9.0	<1		
R185578			24.70	10.0	8.0	<3	7.0	<1		1
R185582			25.40	20.0	15.0	<3	9.0	<1		Į
R185583			20,70	12.0	13.0	6.0	8.0	<1		ĺ
R185584			20.20	15.0	14.0	<3	8.0	<1		
R185585			23.60	12.0	8.0	<3	8.0	<1		
R185586			26,40	11.0	9,0	6.0	12.0	<1		ĺ
R185587			23.60	11.0	9,0	4.0	8.0	<1		j
R185606			21.00	11.0	7.0	<3	3.0	2		

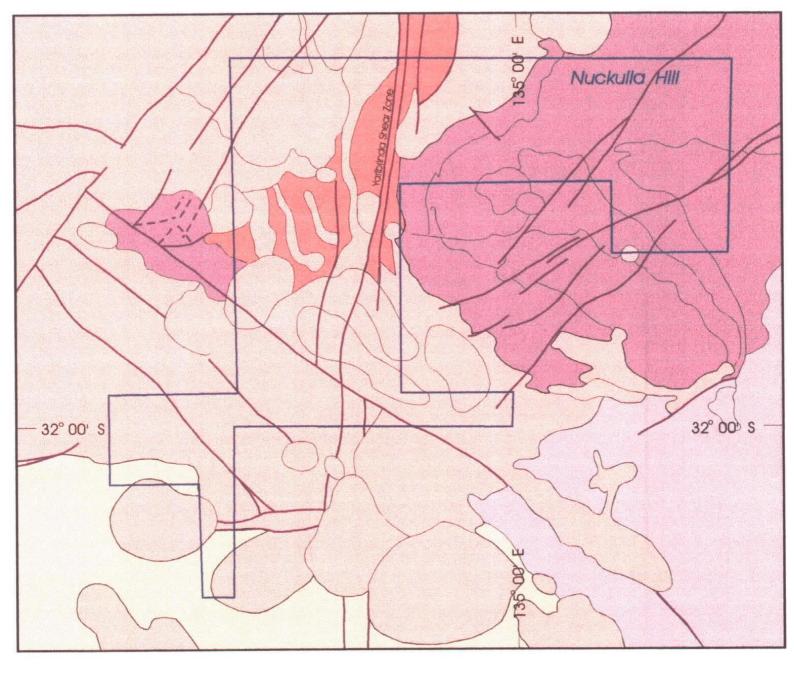
Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
R185607			25.40	9.0	9.0	<3	5.0	3		
R185608			26.50	11.0	8.0	<3	11.0	<1		
R185609			26.50	13.0	9.0	<3	6.0	1		
R185610			28.50	10.0	9,0	<3	7.0	1		
R185611			19.60	6.0	6.0	<3	5.0	2		
R185612			19.00	16.0	9.0	4.0	12.0	1		
R185613			8.92	21.0	9.0	<3	10.0	11		
R185614			25.20	10.0	3.0	12.0	10,0	4		
R185615			19.20	12.0	8.0	10.0	16.0	4		
R185616			23.40	10.0	5.0	8.0	9.0	3		
R185617			8.22	9,0	9.0	<3	8.0	5		
R185618			21.90	10.0	6.0	<3	3.0	2		
R185621			21.60	12.0	10.0	<3	10.0	<1		
R185623			23.20	13.0	9.0	8.0	8.0	1		
R185466			28.10	10.0	7.0	12.0	5.0	<1		
R185624			16.00	9.0	4.0	<3	1.0	<1		
R185625	0.5		20.60	9.0	6.0	<3	5.0	<1		
R185626			21.50	15.0	6.0	<3	2,0	" <1		
R185627			12,20	19.0	4.0	<3	<1	<1		
R185628			27.60	10.0	4.0	0.01	7.0	· 5		
R185629			26.50	10.0	8.0	<3	5.0	<1		
R185630			15.9 0	16,0	11.0	<3	6.0	<1		
R185631			32.90	11.0	8.0	63.0	19.0	1		
R185632			28.30	13,0	8.0	53,0	16.0	<1		
R185633			31.30	13.0	8.0	66.0	14.0	2		
R185663			32.30	12.0	11.0	70.0	21.0	<1		
R185664			31.70	12.0	9.0	60.0	15.0	2		
R185665			19.70	21.0	15.0	30.0	13.0	2		
R185666			30.90	13.0	12.0	53,0	18.0	<1		
R185667			31.90	12.0	14.0	63,0	16,0	<1		
R185668			30.00	17.0	10.0	57.0	13.0	3		
R185669			22.80	15.0	14.0	44,0	13.0	3		
R185670			33.70	12.0	13.0	68,0	15.0	<1		
R185671			27.60	12.0	13.0	61.0	18.0	<1		
R185672			29.50	10.0	13.0	56.0	16,0	<1		
R185673			28,80	14.0	11.0	57,0	13.0	3		·

Appendix C: Calcrete Samples

Sample No	Ag (ppm)	Co (ppm)	Ca (%)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cr (ppm)	Mn (ppm)
R185674			29.70	13.0	9.0	57.0	13.0	1	······································	
R185675			32.80	17.0	9.0	61.0	15.0	<1		
R185677			27.00	11.0	11.0	56,0	12.0	<1		
R185678			27.40	11.0	8.0	52.0	13.0	<1		
R185679			30.20	8.0	10.0	63.0	15.0	<1		
R185700			16.20	9.0	11.0	22.0	12,0	<1		
R185701			16.10	12,0	10,0	26.0	11.0	2		
R185702			24.50	12.0	10.0	46.0	13.0	<1		
R185703			23,90	14.0	7.0	46.0	14.0	<1		
R185704			21.60	10.0	10.0	44.0	14.0	2		
R185705			22.60	10.0	6.0	42.0	11.0	<1		
R185706			17.70	14.0	11.0	12.0	14.0	5		
R185707	•		25.10	11.0	10.0	48.0	12.0	<1		
R185708			22.40	12.0	9.0	34.0	13.0	2		
R185709			21.90	13.0	9.0	50.0	17.0	<1		
R185710			26.50	9.0	11.0	10.0	4.0	5		
R185711			24.10	17.0	9,0	57.0	14.0	<1		
R185712			26.10	10.0	7.0	46.0	15.0	<1		
R185713			22.20	13.0	9.0	50.0	24.0	<1		
R185714			23.50	19.0	9.0	10.0	9.0	4		
R185715			16,80	13.0	10,0	38.0	14.0	<1		
					.,-		,•	•		

APPLICANT: EQUINOX RESOURCES N.L.


DM: 550/93 AREA: 2769 square kilometres (approx.)

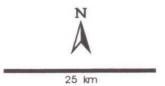
1:250 000 PLANS: GAIRDNER, CHILDARA, STREAKY BAY

LOCALITY: NUCKULLA HILL AREA - Approximately 120 km northeast of Ceduna

DATE GRANTED : 06/12/1994 DATE EXPIRED : EL No : 2035

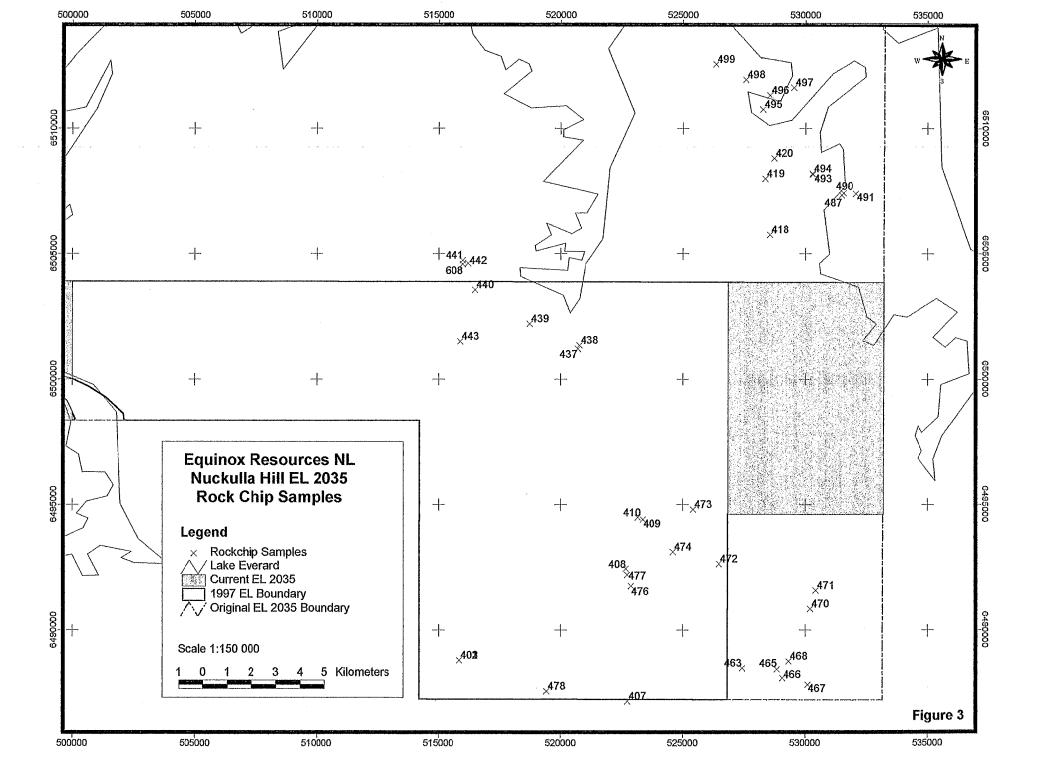
Figure 1

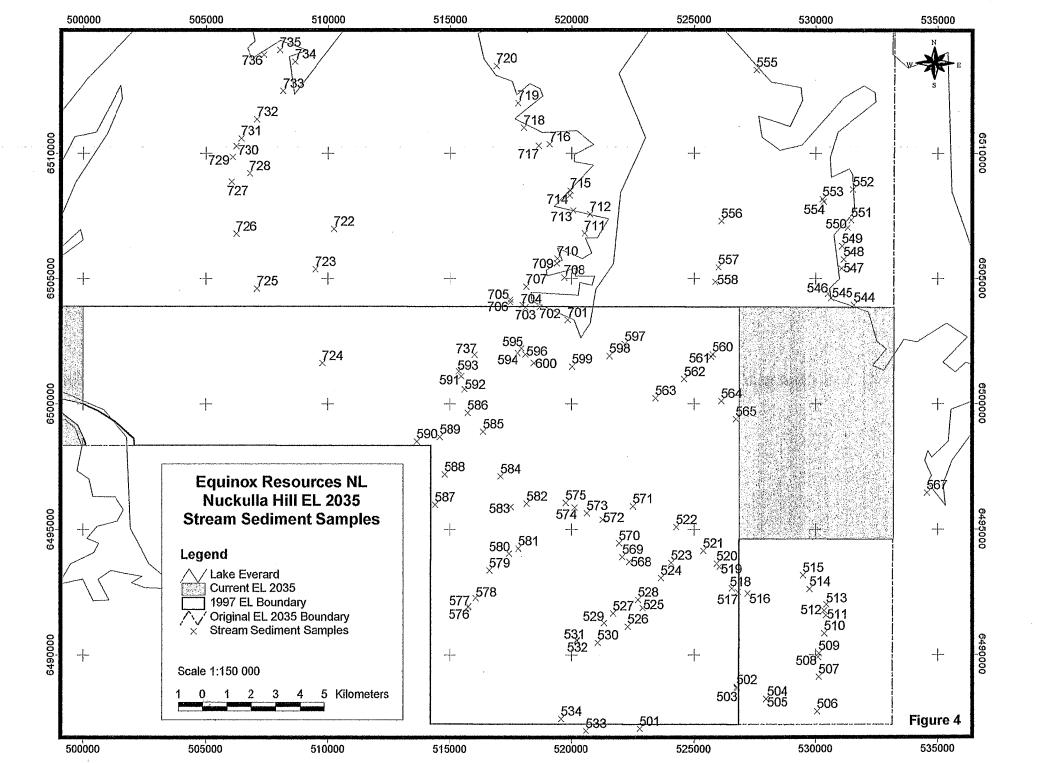
REFERENCE

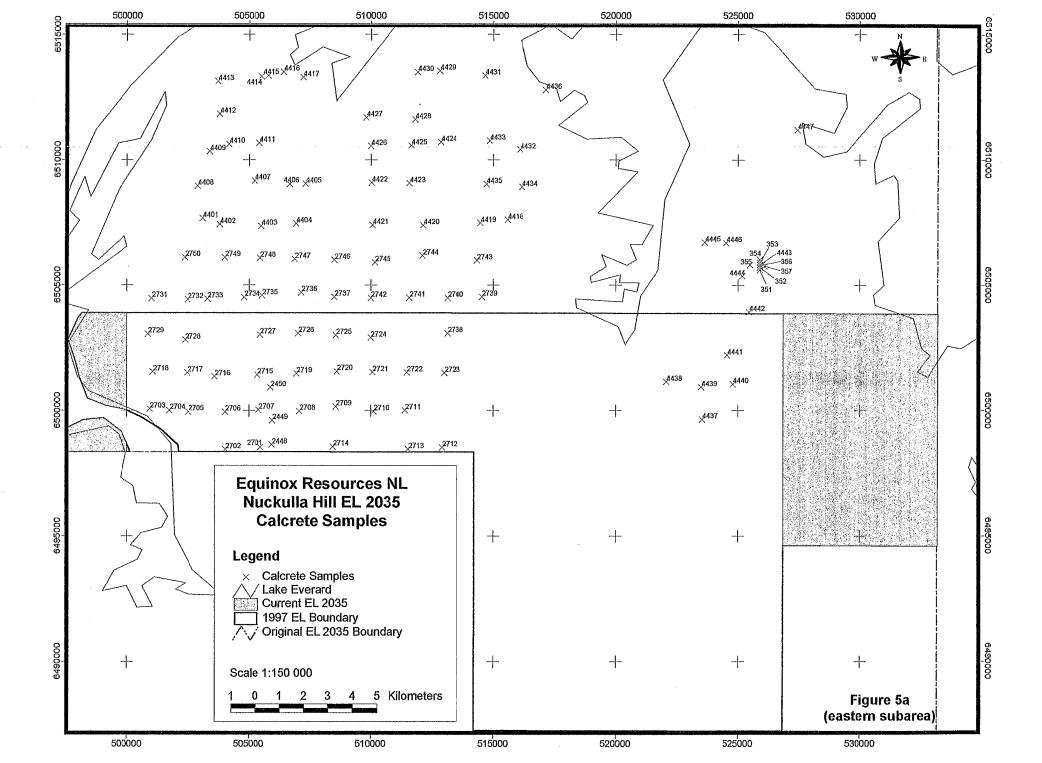

Shear or Fault Zone Yardea Dacite Volcanic Breccia Gawler Range Volcanics

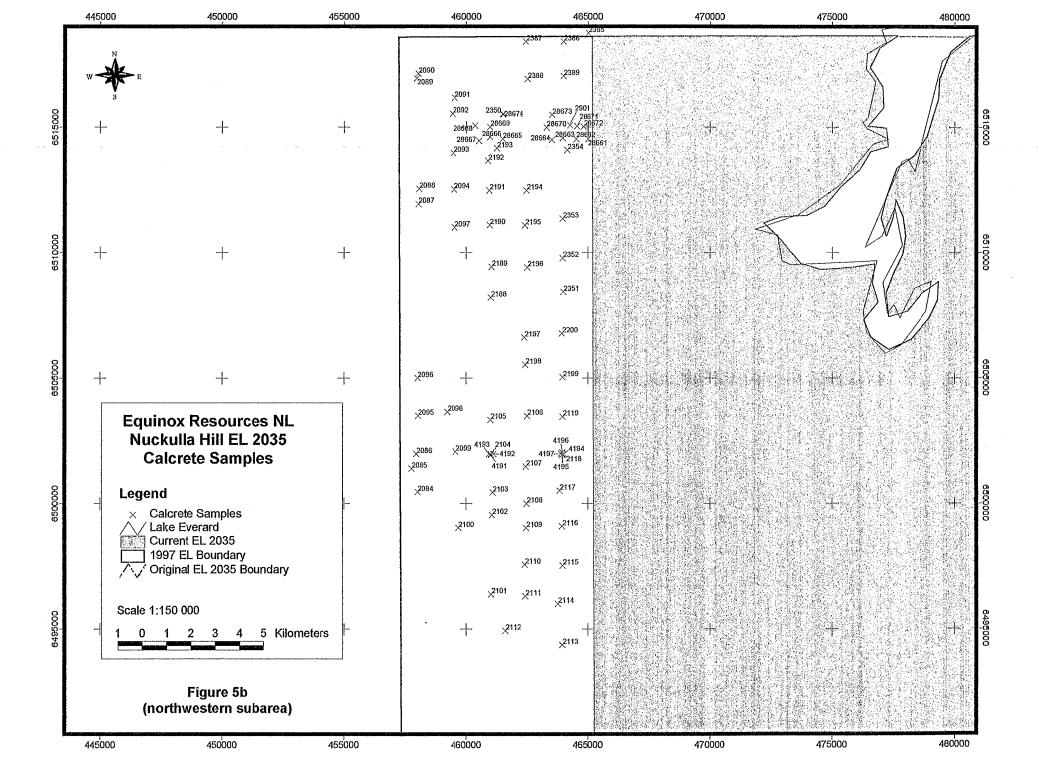
Hiltaba Suite Granite

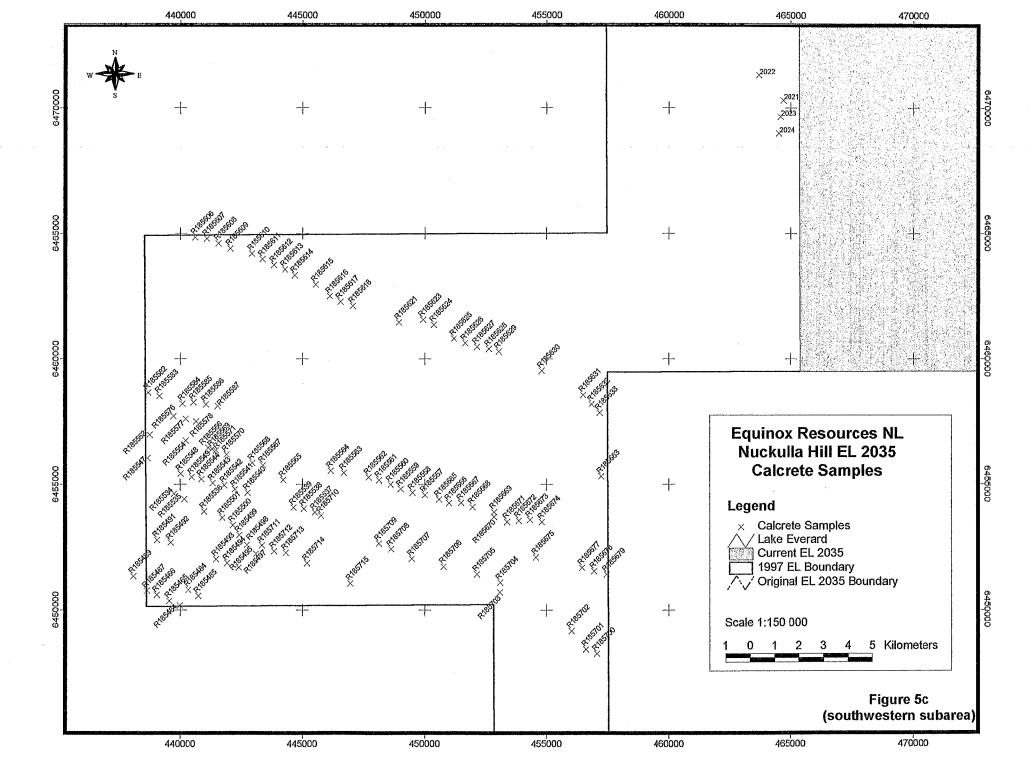
Quartzo Feldspathic Gneiss


Augen Gneiss


Equinox Resources N.L. Tenement Boundary






CHILDARA DAM - NUCKULLA HILL GEOLOGICAL INTERPRETATION

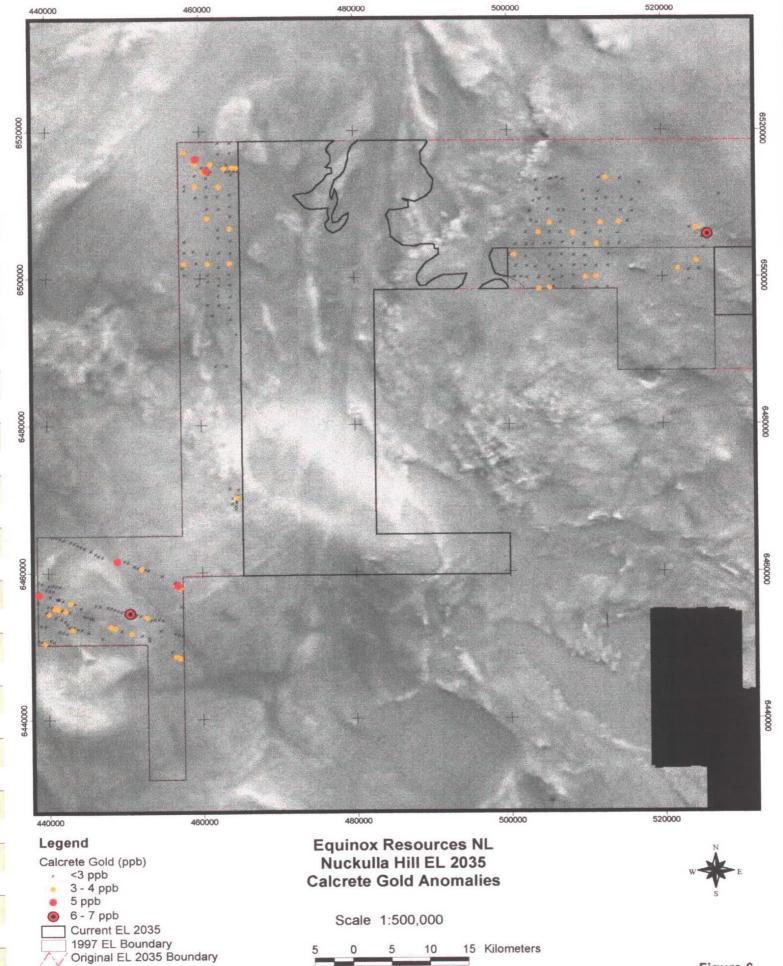


Image = SAEI TMI greyscale

15 Kilometers 10 Figure 6