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Introduction
The Coompana Province is a completely buried 
Proterozoic terrane between the South Australian, 
Western Australian and North Australian cratons 
(Fig 1). As a result of the location, the province is a key 
area for understanding the Proterozoic evolution of 
Australia and has featured heavily in reconstructions 
and models. However, until recently, very little was 
known about the area due to a paucity of data, with 
only broad-scale geophysics and a few basement-
intersecting drillholes. Consequently, there have been 
very few constraints on these models. This has recently 
been addressed with the collection of a large amount 
of data from across the Coompana Province including 
the east–west-trending 13GA-EG1E seismic line 
(Pawley et al. 2018), 400 m line spacing aeromagnetic 
data (Heath et al. 2015), and drill campaigns in the 
eastern and western parts of the province (Dutch et al. 
2018; Spaggiari and Smithies 2015). 

As an outcome of these projects, we have recently 
published an open access article in Tectonics (Pawley 
et al. 2020a). Here we provide a summary of this 
paper showing how we integrated the aeromagnetic, 
seismic and drillhole data to resolve a c. 1200–1140 Ma 
tectonomagmatic event in the eastern Coompana 
Province. This event affected large areas of the 
Coompana Province and involved several stages of 
deformation and accompanying magmatism. The new 
work provides constraints and understanding of the 
Coompana Province in terms of (1) crustal architecture 
(2) c. 1200–1140 Ma structural history, and (3) 
relationship between deformation and magmatism. 

Setting of the Coompana Province
The Coompana Province is a large tract of crust in 
central southern Australia that is completely covered 
by Neoproterozoic to Cenozoic basins (Fig 1). To the 
west, it is separated from the Madura Province by the 
north-trending Mundrabilla Shear Zone (Figs 1, 2; 

Aitken et al. 2016). To the east, it is separated from the 
Gawler Craton by the arcuate, west-dipping Jindarnga 
Shear Zone (Doublier et al. 2015; Pawley et al. 2018). To 
the north, it is separated from the Musgrave Province 
by the north-dipping Everard Thrust (Major and Conor 
1993; Preiss et al. 2010). The Musgrave Province is 

Figure 1 Locality map of the Coompana Province and 
surrounding regions showing the main crustal boundaries and 
granite-rich corridor overlain on a reduced to pole aeromagnetic 
image. Seismic line 13GA-EG1E followed the railway. The inset 
shows the study area and main cratonic blocks of Australia. 
Reprinted from Pawley et al. (2020a, fig 1, p 3) under CC BY-NC 4.0.
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defined as a separate crustal block, as it was thrust up 
and exhumed from beneath the Centralian Superbasin 
during the c. 630–520 Ma Petermann Orogeny 
(Camacho and Fanning 1995; Major and Conor 1993; 
Quentin de Gromard et al. 2019; Sandiford and Hand 
1998). However, geochemistry, geochronology and 
geophysical data reveal that the Musgrave and 
Coompana provinces were likely formerly continuous 
(Dutch et al. 2016; Smits et al. 2014; Thiel et al. 2020).

The history of the basement rocks in the Coompana 
Province can be broken into 2 main stages, older than 
1500 Ma and c. 1200–1140 Ma.

Subduction and arc magmatism occurred between 
c. 1618 and 1526 Ma, consuming c. 2000–1900 Ma 
oceanic crust (Hartnady et al. 2020; Kirkland et al. 
2017). The c. 1618 Ma migmatitic orthogneisses of 
the Koomalboogurra Suite (Dutch 2018; Jagodzinski 
et al. 2019; Wingate et al. 2015) are similar in age and 
composition to the St Peter Suite in the southern 
Gawler Craton. The St Peter Suite rocks are interpreted 
to represent subduction-related granites that 
developed on the edge, or outboard of the Gawler 
Craton (Dutch et al. 2016; Reid et al. 2019; Swain et 
al. 2008). The c. 1526 Ma migmatitic orthogneisses of 
the Bunburra Suite have a juvenile isotopic character 

and primitive geochemical signatures. These indicate 
the Bunburra Suite was derived from a subduction-
enriched lithospheric mantle source (Dutch 2018; 
Pawley et al. 2020b). The c. 1505 Ma Gilgerabbie Suite 
in the eastern Coompana Province (Wade et al. 2007) 
is considered to be part of the c. 1505–1487 Ma A-type 
Undawidgi Supersuite that was recognised in the 
western Coompana Province (Wingate et al. 2015). The 
Undawidgi Supersuite is interpreted to be the product 
of intracontinental extension (Smithies et al. 2015) 
following cessation of c. 1526 Ma subduction.

Over the interval c. 1200–1070 Ma, the Coompana 
Province underwent 2 stages of intraplate magmatism, 
which resulted in 2 compositionally distinct magmatic 
suites. The first stage includes the mafic–intermediate 
c. 1174 Ma Merdayerrah and Bottle Corner shoshonites 
and felsic c. 1150–1140 Ma Koonalda Suite (Dutch 
2018; Jagodzinski et al. 2019; Pawley et al. 2020b; 
Smithies et al. 2015; Wise et al. 2018a). These 2 
units have relatively juvenile εHf1174–1140 Ma values, 
suggesting they were the product of mantle input and 
the assimilation of crust similar to the Bunburra and 
Koomalboogurra suites (Dutch 2018). 

The second stage of intraplate magmatism 
produced the mafic c. 1074 Ma Giants Head and 
Warbla suites (Dutch 2018; Jagodzinski et al. 2019; 
Pawley et al. 2020b; Wise et al. 2018a). These 2 units 
are compositionally distinct, and are the result of 
melting heterogeneous lithospheric mantle (Dutch 
2018). The Giants Head Suite has evolved (strongly 
negative) εHf1074 Ma values, indicating the magmas 
were contaminated by >1900 Ma crust (Dutch 2018). 
A highly reflective lower crustal unit in the seismic 
section is interpreted to be an extension of the older 
Gawler Craton crust beneath the Coompana Province 
that locally contaminated the ascending mantle melts 
(Pawley et al. 2018; Wise et al. 2018a).

Crustal architecture of the 
Coompana Province
The aeromagnetic, seismic and drillhole data reveal 
4 crustal domains in the Coompana Province (Fig 2). 
These domains have distinct crustal architecture 
and geological histories. The main observations are 
presented in Figure 3.

Southeast domain
The southeast domain is located between the 
Jindarnga and Palinar shear zones and the coast (Fig 2). 
The domain is characterised by 3-layer crust in the 
seismic profile. The upper crust has 2 main magnetic 
patterns. To the west, the domain has a northeast-
trending planar magnetic grain, aligned subparallel to 
the adjacent Palinar Shear Zone. This grain corresponds 
to the migmatitic Koomalboogurra Suite. This suite 
has c. 1618 Ma protoliths that were generated in a 
proximal back-arc (Dutch 2018; Jagodzinski et al. 
2019), and was metamorphosed between c. 1163 and 
1140 Ma (Jagodzinski et al. 2019). The migmatitic 
rocks have a shallowly dipping compositional layering, 
which has been folded into recumbent folds that 

Figure 2 Interpreted basement map of the Coompana Province 
(modified from Wise et al. 2018b). Reprinted from Pawley et al. 
(2020a, fig 2, p 4) under CC BY-NC 4.0.
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plunge shallowly to the north and south (Fig 4b). 
The migmatitic layering is locally offset by west-
dipping reverse shears, which are filled with melt that 
is texturally continuous with the shallowly dipping 
leucosomes. The central and eastern parts of the 
domain are characterised by arcuate to concentric long 
wavelength, moderate to highly magnetic anomalies 
that reach up to 40 km across. These anomalies 
correspond to granitic gneisses with protoliths 
generated in an extensional setting at c. 1505 Ma 
(Wade et al. 2007).

Northeast-trending corridor
To the east is a northeast-trending corridor bound 
by the Palinar and Border shear zones (Fig 2). This 
corridor is up to 80 km wide at the surface and can 
be traced along strike for about 800 km, from the 
coast in Western Australia to the northern margin 
of the Gawler Craton. On the seismic profile, this 

Figure 3 Summary of core, seismic and aeromagnetic observations and time constraints, eastern Coompana Province. Modified from 
Pawley et al. (2020a, fig 9, p 20) under CC BY-NC 4.0; ‘Hughes domain’ replaced with ‘pluton-rich domain’.
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corridor corresponds to a zone of thinned crust 
with 2 distinct layers. On aeromagnetic images, the 
corridor is prominent as a series of overlapping, 
elongate magnetic plutons. The magnetic plutons 
within the corridor were targeted during the drill 
campaign and found to comprise massive porphyritic 
syenogranite to monzogranite dated at c. 1149 Ma 
(Jagodzinski et al. 2019). The basement rocks hosting 
the granites in the western part of the corridor are 
diatexites with a pervasive migmatitic layering. The 
protolith was emplaced at 1526 ± 5 Ma and is part of 
the Bunburra Suite, with metamorphism and partial 
melting occurring at 1197 ± 12 Ma (Jagodzinski et 
al. 2019). The diatexites also contain sheets of the 
1174 ± 9 Ma Merdayerrah Shoshonite (Jagodzinski et 
al. 2019), which are foliated and aligned subparallel to 
the migmatitic layering. The migmatitic layering and 
foliated shoshonite are both folded into mesoscopic 
recumbent folds that plunge shallowly to moderately 
to the south.
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Central Coompana Province
The central Coompana Province is a triangular crustal 
domain northwest of the Border Shear Zone that is 
bound to the east by the Border Shear Zone, west 
by the Mulyawara Shear Zone and north by the 
Everard Thrust. (Fig 2). The seismic profile indicates 
there is 2-layer crust in this area. The upper crust 
contains abundant evidence for west-dipping 
extensional faulting with syndeformational magma 
emplacement. The aeromagnetic images show a 
series of approximately north-trending, discontinuous, 
broad-wavelength magnetic highs that are truncated 
to the north and south by the Mulyawara and Border 
shear zones, respectively. The basement rocks in this 
area include c. 1613–1604 Ma arc-related rocks of the 
Toolgana Supersuite (Smithies et al. 2015; Wingate et 
al. 2015). These rocks underwent high-temperature 
metamorphism and anatexis at c. 1179–1150 Ma 
(Neumann and Korsch 2014; Wingate et al. 2015). 

Western Coompana Province
The westernmost Coompana Province is a triangular 
crustal domain, bound by the Mulyawara Shear Zone to 
the east, the Mundrabilla Shear Zone to the west, and 
the Everard Thrust to the north (Fig 2). The seismic data 
shows 3-layer crust. The upper crust contains a series 
of interfingering east- and west-dipping extensional 
faults with syndeformational magma emplacement. 

Petrological constraints indicate the upper crust of 
the western Coompana Province underwent several 
episodes of extension. The upper crust is dominated 
by the c. 1505–1487 Ma Undawidgi Supersuite and 
c. 1192–1175 Ma Moodini Supersuite (Smithies et al. 
2015; Wingate et al. 2015). The Undawidgi Supersuite 
represents recycling of the c. 1600 Ma arc crust with 
additional juvenile mantle input during extension 
(Kirkland et al. 2017; Smithies et al. 2015). The Moodini 
Supersuite includes the Bottle Corner Shoshonite, 
which represents melting of subduction-enriched 
lithosphere during extension and mantle upwelling 
(Smithies et al. 2015).

Deformation in the Coompana 
Province
The c. 1200–1140 Ma deformation history of the 
eastern Coompana Province can be divided into 
2 main stages (Fig 3). Early deformation (i.e. ≥c. 
1174 Ma) involved widespread east–west-directed 
extension that produced flat-lying to shallowly dipping 
leucosomes that were recumbently folded. This stage 
of deformation was associated with volumetrically 
minor shoshonitic magmatism. Later deformation (i.e. 
≤1163 Ma) was localised and largely partitioned into 
an oblique, northeast-trending extensional corridor 
between the Palinar and Border shear zones. This 
corridor focused crustal thinning and the voluminous 

Figure 4 Structural evolution of the eastern Coompana Province between c. 1200 and 1150 Ma, with c–d showing the 3 possible 
scenarios. (a) Pre-1200 Ma configuration showing the approximately north-northeast-striking zones of >1490 Ma magmatic arc 
and extension-related igneous rocks, and the curved boundary with the Gawler Craton. (b) Pervasive extension between c. 1200 and 
1160 Ma results in partial melting, the development of a shallowly dipping layering that is recumbently folded, extensional shearing 
(including reactivation of earlier structures), and shoshonitic magmatism. The shoshonite plutons are controlled by the extensional shear 
zones. (c) Continuation of extension until 1150 Ma results in strike-slip shear near the margin of the Gawler Craton, forming a tear that 
propagates to the southwest, with east–west extension partitioned into this zone. (d) A switch to shortening at c. 1150 Ma causes strike-
slip shearing near the Gawler Craton contact, which propagates to the southwest, with deformation focused into this zone. This requires 
north–south extension to create the zone of thinner crust. (e) Minor rotation in the region results in extension across the southeastern 
Coompana Province when east–west-directed shortening is occurring across the Musgrave Province to the north. Reprinted from Pawley 
et al. (2020a, fig 10, p 22) under CC BY-NC 4.0.
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c. 1150–1140 Ma A-type, high K–Fe granites (Dutch 
2018; Jagodzinski et al. 2019; Kirkland et al. 2011). 
The A-type magmas represent melting of felsic crust 
during extension with the significant contribution 
of mafic to intermediate material (e.g. Dutch 2018; 
Smithies et al. 2011; Vaughan and Scarrow 2003). 
The 2 stages of extension appear to be separated by 
minor shortening that resulted in local reverse faulting 
and upright folding. This process suggests there was 
a transition from pervasive to locally partitioned 
deformation in the Coompana Province during the 
late Mesoproterozoic. The transition in deformation 
implies a change in the way the crust is responding 
to extension. During the early extension, the crust 
behaved in a more ductile manner with widespread 
deformation pervasively distributed throughout the 
crust. In contrast, the crust behaved in a more brittle 
manner during the second stage of extension, with 
strain largely focused into a discrete corridor.

There are 3 possible mechanism for the focused 
extension that occurred at c. 1163–1140 Ma.

First, east–west-directed extension continued in the 
Coompana Province until c. 1140 Ma, causing listric 
shearing and thinning of the crust and intrusion of the 
A-type granites (Fig 4c). The change from pervasive 
strain to localised shearing and extension would 
represent a change in the behaviour of the crust 
under the same stress field. One problem with this 
model is that the Musgrave Province was undergoing 
approximately east–west-directed shortening at 
c. 1150–1140 Ma (Pawley et al. 2016), when the 
Coompana Province would be undergoing extension 
in the same direction. This may be possible if these 
2 provinces were decoupled along an east–west-
trending structure, but the >1200 Ma tectonic grain 
can be traced continuously across both provinces 
(Thiel et al. 2020), suggesting there is no significant 
structural discontinuity between them.

Second, the Coompana Province underwent east-
southeast- to west-northwest-directed shortening, 
similar to the Musgrave Province between c. 1160 and 
1138 Ma (Fig 4d). The shortening strain would have 
been taken up by south-directed extension across the 
oblique Palinar and Border shear zones. This would 
produce a dextral transtensional zone represented 
by the zone of thinner crust that focused the A-type 
magmatism. This model is also consistent with the 
switch in stress fields observed in the Musgrave 
Province at c. 1160 Ma from east–west-directed 
extension to east-southeast- to west-northwest-
directed shortening.

A third option is a rotational component of movement 
rather than uniform east- or south-oriented extension 
(Fig 4e). Minor counterclockwise rotation around a 
point of rotation to the northeast of the Gawler Craton 
may have created a shear-bounded dilational opening 
in the Coompana Province. This opening would have 
developed along the northwestern margin of the 
Gawler Craton and propagated to the southwest, 
creating the zone of thinner crust and focusing the 
A-type magmatism.

It is unclear exactly which mechanism caused the 
change in stress that produced the northeast-
trending corridor filled with A-type granites. However, 
considering the observations from the Musgrave 
Province and geophysical datasets, the first option is 
considered unlikely. Based on current knowledge, it is 
difficult to determine which of the other 2 models is 
most appropriate.

Deformation, crustal behaviour and 
magmatism
The change from pervasive to localised deformation 
in the Coompana Province coincides with the change 
from widespread anatexis and volumetrically minor 
magmatism to volumetrically major magmatism 
focused within a shear-bounded corridor. This 
coincidence suggests there is a relationship between 
deformation and magmatic processes. Deformation 
can promote the migration of melt through the 
crust (e.g. Rosenberg and Handy 2005; Sawyer et al. 
2011; Vielzeuf et al. 1990), driving melt migration by 
promoting permeability and creating structures that 
act as pathways for magma transfer and emplacement 
(e.g. Brown 1994; Brown and Rushmer 1997; Brown and 
Solar 1998; Collins and Sawyer 1996; Weinberg et al. 
2015). Partial melting itself can also actively influence 
deformation by introducing a liquid phase that locally 
reduces the viscosity, concentrating deformation (e.g. 
Davidson et al. 1994; Vanderhaege and Teyssier 2001). 
Consequently, deformation, and the accompanying 
changes in strain, can lead to the generation of new 
pathways and the reorganisation of melt and magma 
within the crustal column. 

We propose a 2-stage model for the changing style 
of deformation and magmatism in the Coompana 
Province. Early magmatism during extensional 
deformation was relatively steady state. Pervasive 
deformation caused small batches of magma to 
continually migrate from their deeper crustal sources 
to form the volumetrically minor shoshonite sheets 
within the migmatitic layering (Fig 5a). The brief change 
to shortening would have triggered changes in strain 
within the crust. The restriction of upright folding and 
reverse faulting to the vicinity of the northeast-trending 
shear-bounded corridor suggests that shortening was 
initially focused in the eastern Coompana Province. 
The localisation of deformation would have created 
pathways that focused and facilitated melt extraction 
and transfer (Fig 5b). Once shearing had commenced, 
the structures became the sites where strain was 
greatest, leading to increased magma transfer and 
further partitioning of deformation. Based on the 
composition of the c. 1150–1140 Ma granite plutons 
in the corridor, it is proposed that the crustal-scale 
shearing disrupted the lower crustal MASH (melting, 
assimilation, storage and homogenisation) zones and 
formed a conduit that focused magma ascent into the 
upper crust (Fig 5c). The concentration of the high-
temperature magmas within the northeast-trending 
corridor would also introduce heat and soften the 
crust, promoting continued failure, leading to feedback 
between partitioned deformation and magmatism.
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