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Introduction
Transported cover and intensely weathered profiles 
pose a significant technological challenge for 
mineral exploration worldwide (e.g. UNCOVER 
2012; AMIRA 2017; González-Álvarez et al. 2020a 
and references therein). This is also widely the case 
in South Australia where >75% of the surface and 
subsurface is characterised by transported cover 
and/or intensely weathered profiles (e.g. Wilford et al. 
2001; Sheard et al. 2008; Krapf et al. 2012; Tiddy 
et al. 2019).

Geochemical dispersion/concentration processes 
throughout cover units can be efficient in a variety 
of geological–cover contexts. These processes can 
produce near surface geochemical anomalies in the 
landscape that may be an expression of a mineral 
system within basement rock units at depth (e.g. 
Butt et al. 2005; Anand and Butt 2010).

Basement structures in Earth’s crust are a well-
recognised conduit for fluid flow, which can result in 
the formation of a large variety of mineral deposits 
(e.g. Solomon and Groves 2000). Therefore, 
identifying basement structures that may be 
associated with mineral deposit formation has 
become an important part of exploration protocols 
and prospectivity assessments (Porwal et al. 2010).

South Australia possesses widespread basement 
structures, many of which have been reactivated by 
neotectonic activity (Clark et al. 2012; Preiss 2019). 
This may have important implications for landscape 
evolution, and also on the efficiency of vertical 
geochemical dispersion processes through the 
cover. A recent study in the Coompana region on the 
Nullarbor Plain highlighted the potential significance 
of these neotectonic features as geochemical 
‘pipelines’ that connect basement with the surface 

(González-Álvarez et al. 2018a; Noble et al. 2018; 
González-Álvarez et al. in review). Morris et al. 
(2018) discussed surface geochemical anomalies 
associated with structures and neotectonics linking 
basement and surface structures in the Ngururrpa 
area of northeastern Western Australia. They 
demonstrated that mineral systems related to the 
reactivation of structures at a large-scale can bring 
fluids to the surface from deeper basement units 
(e.g. surface fluid circulation, seismic pumping).

This article is a summary of Report Book 
2020/00029 (González-Álvarez et al. 2020b) 
and provides an overview of the workflow to link 
basement and surface structures. Kelka and 
Martinez (2019) described a computer-assisted 
lineament identification process/workflow, which 
has been applied in the Gawler Craton by Pawley 
et al. (2021), and further developed by Kelka et al. 
(accepted). In addition, in this study we explored the 
applicability of the landscape pattern recognition 
(LPR) algorithm developed at CSIRO (González-
Álvarez et al. 2018a, 2018b; Penreiter et al. 
2018; Klump et al. 2018; González-Álvarez et al. 
2020b; Albrecht et al. 2021) to map the variability 
of landscapes at a large scale in the central Gawler 
Craton, based on digital elevation model (DEM) data 
that displays the ‘raw’ variability of the landscape 
surface. We used a computer-assisted workflow 
to assist with making more objective, time efficient 
interpretations than previous maps based on 
domain expert interpretations.

This study also aimed to understand the relationship 
between the basement fabric and the cover’s 
variability in the central Gawler Craton (Fig 1), and 
to delineate areas of particular interest in mineral 
exploration for surface geochemical follow-up 
(surface and basement lineaments, landscape 
domains and definition of targets).

https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042359
https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042359
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Figure 1	 Locality map of the Gawler Craton showing the study area on a digital elevation model image (sourced from SARIG 
2020a and Geoscience Australia 2009).

Geological context

The central Gawler Craton
The Gawler Craton covers an area of 
~450,000 km2 and comprises deformed 
and metamorphosed sediments and volcanic 
and plutonic rocks from early Mesoarchean to 
Mesoproterozoic (3150–1450 Ma; Hand et al. 
2007; Fraser et al. 2010; Kositcin 2010). Due 
to thick sedimentary cover and resulting limited 
outcrops, the boundary of the Gawler Craton is 
generally interpreted based on magnetic, gravity and 
drillhole data (Kositcin 2010). Internally, the Gawler 
Craton is subdivided into several domains based on 
contrasts in magnetic, gravity, lithological, structural, 
geochronological, isotopic and geochemical 
characteristics (e.g. Ferris et al. 2002; Fairclough et 
al. 2003; Kositcin 2010).

Three geological domains lie in the study area. The 
Wilgena Domain covers most of the study area and 
comprises the Mulgathing Complex that has been 
intruded by Paleoproterozoic to Mesoproterozoic 
magmatic rocks, overlain by sedimentary and 
volcanic rocks. The Christie Domain is located 
to the northwest of the Coorabie Shear Zone in 
the northwest corner of the study area (Fig 2). 
The Christie Domain is primarily composed of 
metasedimentary rocks of the Mulgathing Complex, 
intruded by minor felsic to mafic intrusions. The 
Nuyts Domain is located in the southwestern 
part of the study area, and largely comprises 
Paleoproterozoic to Mesoproterozoic magmatic rocks.

Major deposit
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Basement lithology of the study area
The oldest basement units are part of the late 
Archean Mulgathing Complex, representing a 
time span from 2555 to 2410 Ma (Reid et al. 
2014; Williams and Reid 2021), and comprise 
metasediments, banded iron formations, 
carbonates, and siliceous rocks, as well as felsic 
and mafic to ultramafic igneous rocks. The Christie 
Gneiss (c. 2480 Ma; Reid et al. 2014), Glenloth 
Granite (2507 Ma; Reid et al. 2014) and Kenella 
Gneiss (c. 2535 Ma; Swain et al. 2005) are 
exposed in the northwestern and central part of the 
study area, enclosed by the major shear zones (Fig 2).

Figure 2	 Interpreted solid geological map of the study area (sourced from SARIG 2020b).

205585-005Interpreted basement geology
NEOPROTEROZOIC – CAMBRIAN

Hawker Group

Wilpena Group

Gairdner Dolerite

MIDDLE MESOPROTEROZOIC
Pandurra Formation

ARCHEAN – EARLY MESOPROTEROZOIC
Munjeela Suite

Hiltaba Suite (felsic)

Hilbata Suite (mafic)

Gawler Range Volcanics (undif.)

Gawler Range Volcanics (upper)

Gawler Range Volcanics (lower)

St Peter and St Francis suites

Tunkillia Suite

Engenina Adamellite and Symons Granite

Mount Wood Complex

Former Lincoln Complex,
includes Middle Camp and Paxton granites

Tarcoola and Labyrinth granites

Wilgena Hill Jaspilite

Muckanippie Suite

Mulgathing Complex

Kychering Formation, Lake Harris Komatiite

Study area

Geological structure line

Road

Track

Structural framework
The structural framework of parts of the central 
Gawler Craton has recently been reinterpreted 
based on the new Gawler Craton Airborne Survey 
(GCAS) aeromagnetic data (Pawley and Wilson 
2019). The Wilgena Domain contains northwest-
trending faults that are particularly prominent as 
narrow demagnetised zones in the magnetic Hiltaba 
pluton granites. Some faults are relatively straight to 
curviplanar, and can be traced for >80 km, whereas 
others are shorter, and form anastomosing to 
bifurcating structures (Fig 2). The northwest-trending 
faults typically show apparent dextral offset, and 
usually cut the major shear zones. An exception to 
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this trend is the north-northeast-trending Tarcoola 
Fault that appears to propagate from the Finke Shear 
Zone to the south (Fig 2). Tectonically, the core 
of the Gawler Craton became relatively stable by 
c.  1400 Ma. After this time, only minor near-surface 
movements are recorded within the study area 
(Sheard et al. 2008).

Mineral systems in the central 
Gawler Craton
The Gawler Craton is host to several iron oxide – 
copper–gold (IOGC) ore deposits including Olympic 
Dam, Prominent Hill, Carrapateena and Oak Dam 
(Reid 2019). IOCG mineralisation occurs within 
the Olympic Cu–Au province: a 100–200 km wide 
north–south trending belt at the eastern margin of 
the Gawler Craton (Skirrow et al. 2007; Fig 1).

The study area also encompasses the central 
portion of the Central Gawler Gold Province (Budd 
and Fraser 2004). This was originally classified as 
a single Mesoproterozoic mineral system, but may 
consist of several mineral systems ranging from 
Archean to Mesoproterozoic in age (Gum 2019). 
Mineralisation of the region mainly consists of shear-
hosted gold systems, which are Cu-poor (Budd and 
Fraser 2005, and references therein). Ongoing 
exploration targets in the central Gawler Craton 
are Au, Cu–Au, Pb–Zn, Fe and Ni in the crystalline 
basement rocks (Sheard et al. 2008; Gum 2019; 
Williams and Reid 2021).

Tarcoola
The geology of the Tarcoola goldfield comprises the 
c. 1715 Ma Paxton Granite that is nonconformably 
overlain by fluvial to marine sedimentary rocks of 
the c. 1657 Ma Tarcoola Formation (Budd and 
Fraser 2004; Daly 1993; Hein et al. 1994). These 
rocks were subsequently intruded by dykes of the 
c. 1582 Ma Lady Jane Diorite (Budd and Fraser 
2004). Mineralisation at Tarcoola is variable, and 
thought to be related to the Paxton Granite (Daly 
1981) or Lady Jane Diorite (Budd and Skirrow 
2007). However, recent work suggests that 
mineralisation in the Perseverance open pit is 
younger than the magmatism, the latter of which 
occurred at c. 1564 Ma (Bockmann et al. 2020).

There is a strong structural control on gold 
distribution with deformation and mineralisation 
resulting from north-northwest to south-southeast-
directed shortening (Budd and Skirrow 2007; 
Hughes 1998). The underground workings at the 
Tarcoola Blocks mine targeted conjugate north-
northwest- to north-northeast-trending quartz 
veins, up to 5 m wide, which are hosted within the 
interbedded siltstone and quartzite of the Tarcoola 
Formation (Daly et al. 1990; Hein et al. 1994). 
Deformation, fluid-flow and disseminated to vein-
hosted gold mineralisation occurs in all lithologies in 
the Perseverance open pit (Wilson et al. 2018).

Landscape and cover context

General landscape setting
The Tarcoola region is climatically arid, with a mean 
temperature in summer >30 °C, annual precipitation 
of ~175 mm, an evaporation rate >3,000 mm/
year, and is dominated by storm rainfall (Bureau 
of Meteorology). The >20,000 ka groundwater 
in the Kingoonya Paleovalley is slightly acidic and 
oxidising, and comparable in salinity to seawater 
(Figs 3, 4; deeper confined paleovalley thalweg 
aquifer; Lewis et al. 2013 and references therein).

The surface geology in the study area displays 
4 different major regions: (1) southwest and 
northwest dominated by Quaternary deposits with 
longitudinal dune fields; (2) southeast dominated 
by Mesoproterozoic outcrops, and Quaternary 
lacustrine and sandplain sediments; (3) northeast 
dominated by the Cretaceous Bulldog Shale, and 
minor Early Cambrian, Cenozoic and Quaternary 
deposits; and (4) central–north-central dominated by 
the Jurassic–Cretaceous Algebuckina Sandstone, 
with minor outcrops of Archean and Cenozoic 
deposits (Fig 3; Geoscience Australia 2012; 
Raymond et al. 2012; Krapf et al. 2012 and 2020).

The topography in the study area ranges from ~80 
to ~340 m above sea level, with playa lakes and dry 
river beds occurring between ~80 and ~125 m, in 
a total area of ~250 km by ~180 km (Geoscience 
Australia 2009). The terrain across most of the 
study area is relatively flat to moderately undulating. 
Prominent topographic highs are localised 
around dissected rocky outcrops. The surface is 
characterised by aeolian sand covering deeply 
weathered bedrock, mostly in elevated parts of the 
landscape, or saline playa lakes and drainage tracing 
topographic lows. A distinct feature is a 120 km 
longitudinal dune field that occupies an extensive 
area in the southwestern and southern part of 
the study area (Fig 3). This area is comprised of 
individual longitudinal dunes over several kilometres 
in length, and dune crests mainly trending west–
east.

A significant variety of regolith data is available for 
the central Gawler Craton (e.g. Craig et al. 1999; 
Lintern and Sheard 1999; Lintern et al. 2000; 
Wilford et al. 2001; Lintern et al. 2002a, 2002b; 
Keeling 2004; Lintern and Rhodes 2005; Lintern 
et al. 2006; Sheard 2008; Sheard et al. 2008; 
Tiddy et al. 2019). Existing regolith map data for 
the study area includes the Geological Survey of 
South Australia’s statewide regolith layer (Krapf 
et al. 2012), and the 4 CRC LEME regolith maps 
(Bon Bon – Eba, Half Moon Lake, Eldoah Tank and 
Tunkillia). As part of this study, a detailed new regolith 
map for the greater Tarcoola area was compiled 
(Krapf et al. 2020).

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://crcleme.org.au/Pubs/regmaps.html
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Figure 3	 Interpreted surface geological map of the study area (after Geoscience Australia 2012; Raymond et al. 2012).
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Phanerozoic sedimentary cover
In the study area, the cover comprises Paleozoic, 
Mesozoic and Cenozoic sedimentary sequences 
and deeply weathered profiles within the basement 
rocks. The cover thickness varies throughout the 
study area, reaching its greatest depth of ~1,400 m 
in the northeast (e.g. Hibburt 1995; Hou et al. 
2003a; Hou et al. 2008; Foss et al. 2019; Cowley 
et al. 2021; Fig 4).

The oldest preserved cover is the Early Permian 
to Late Carboniferous post-glacial sediments 
that reside within the Mulgathing Trough in the 
northwestern corner of the study area, just south of 
Mulgathing (Fig 4; Nelson 1976; Hibburt 1995). 
This >80 km long, northwest-trending trough is 
filled with Permian glacial sediments that affect the 
magnetic response (Foss et al. 2019). However, 
magnetic source depth analysis reveals that the 
trough is >600 m deep in places, with maximum 
depths likely not yet detected (Foss et al. 2019).
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The Permo-Carboniferous Arckaringa Basin is 
the oldest cover that unconformably overlies the 
basement in the study area. Subsidence from the 
Jurassic to Cretaceous led to the formation of the 
Eromanga Basin and deposition of fluvial and marine 
sediments (Algebuckina Sandstone and Bulldog 
Shale; Figs 2, 3; e.g. Daly et al. 1998; Tiddy et al. 
2019; Baudet et al. 2020). Cenozoic sediments 
unconformably overly sediments of the Eromanga 
Basin. During the Late Cretaceous to Early 
Paleogene, a network of large rivers discharged 
sediment into the marine Eucla Basin to the 
southwest, filling it with fluvial-estuarine sediments 
(Alley 1985; Hou 2004). The thickness of the 
deposits in the paleochannels ranges from a few 
metres to ~150 m (e.g. Hou 2004). Drier conditions 
throughout the Pleistocene produced widespread 
siliceous dunes, dune fields and calcareous sand 

plains that cover much of the earlier landscape and 
are up to tens of metres thick (Sheard 2008; Sheard 
et al. 2008). The modern drainage system is mostly 
intermittent and discontinuous, or flows into saline 
playa lakes (e.g. Lewis et al. 2013).

Paleovalley evolution
In the Cenozoic, paleovalley evolution in the Gawler 
Craton was significantly affected by the effects of 
mantle convection, which drew Australia vertically 
downwards by up to 300 m (Sandiford 2007). This 
was coupled with differential vertical movement, 
expressed as a west-side up, east-side down 
tilting of ~100–200 m (Hou et al. 2003a, 2003b 
and references therein; Sandiford 2007). The 
above resulted in significant sedimentary dynamic 
changes in the Gawler Craton spanning from the 
Paleocene – Early Eocene (c. 65–50 Ma) to the 

Figure 4	 Interpreted thickness of the cover (after Cowley et al.2021) showing main geological features and domains (after 
Geoscience Australia 2012). The scale is logarithmic to highlight the spatially distinct shallow and deep areas of cover, and 
to enhance the perception of cover gradient thicknesses. This image was produced using a histogram equalised ArcGIS 
stretch. 
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Pliocene–Quaternary (c. 5–2.5 Ma). Eustatic sea-
level changes resulted in flooding of paleovalleys up 
to 400 km inland of the present coastline (Hou et al. 
2008 and references therein; Fig 5).

Hou et al. (2003a) suggested that the incision of 
the paleovalleys in the region commenced in the 
Late Cretaceous – Middle Eocene (c. 100–50 Ma), 
after the subsidence of the Eucla Basin. During 
the Middle Eocene this incision appears to have 
accelerated, which continued into the Late Eocene 
(c. 40 Ma), resulting in the most extensive marine 
influence on the paleovalleys. In the Late Miocene 
– Early Pliocene (10–3.5 Ma), the paleovalleys 
were fragmented into chains of saline lakes. Large 
volumes of clay were deposited, and along with 
the lack of sand-sized sediment in the fluvial facies 
indicates that the landscape was characterised 
by low relief and low-energy water flows (Hou et al. 
2003a).

Contextualisation of results and 
interpretations
To evaluate if there are links between basement 
and surface structures present in the central Gawler 
Craton, a variety of datasets have been compiled 
and investigated using different methods, including 
some developed as part of this project. These are 
summarised in detail in González-Álvarez et al. 
(2020b).

Surface and basement lineament 
identification
Surface lineaments are linear elements that 
are individual and composite alignments at the 
Earth’s surface (e.g. topography, surface drainage, 
landforms, natural vegetation). Surface lineaments 
display pattern breaks that the human eye can 
depict (Boucher 1997). This is dependent on the 
datasets selected, the accuracy and visual display, 
as well as on the person’s visual ability and technical 
experience. Hence the ability to accurately map the 
presence and location of surface lineaments can 
vary significantly between individuals (e.g. Andrews 
et al. 2020; Shipton et al. 2020). However, direct 
observation based surface lineament mapping has 
been widely applied in geoscience (e.g. Wise 1982; 
Boucher 1997; Koch and Mather 1997; Sahoo et 
al. 2000; Tiren 2010; Clark et al. 2012; Elmahdy 
et al. 2012; Elmahdy and Mohamed 2014). The 
identification of lineaments has been improved by 
the increasing availability of high-resolution satellite 
images, as well as DEM datasets (Fig 6).

Many surface lineaments are surficial manifestations 
of basement geological structures, such as fractures 
and faults. Morris et al. (2018) reported that one 
regional-scale fault was efficient at vertically 
dispersing the buried geochemical footprint of 
a sedimentary exhalative deposit (Ngururrpa 
area, northeastern Western Australia). Several 
researchers have described neotectonic activity 
and its implications on landscape and DEM surface 
features (e.g. Tokarev et al. 1999; Sandiford 2003; 
Sandiford et al. 2009; Clark 2010; Quigley et al. 
2010; Clark et al. 2011; Clark et al. 2012).

Figure 5	 Interpreted paleovalleys and Cenozoic sediment distribution in the Gawler Craton region (after Hou et al. 2000). 
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Numerous linear fault scarps that cut the Nullarbor 
Plain have been mapped from DEM data (Sandiford 
2007; Sandiford and Quigley 2009; Clark et 
al. 2012). These fault scarps are interpreted to 
preserve a neotectonic record (Clark et al. 2012). 
Krapf and Irvine (2018) compiled 2 linear surface 
feature datasets for the Coompana area based on 
direct DEM observations. These surface lineaments 
mirror the fabric of the underlying magnetic 
basement through several hundred metres of cover 
(Foss et al. 2017; Krapf and González-Álvarez 
2018; González-Álvarez et al. 2018b; Noble et 
al. 2018). These lineaments may represent the 
surface expression of neotectonic movements 
that have reactivated deep-seated structural 
features. Importantly, these fault networks may 
provide pathways for fluids to vertically disperse 
through the overlying cover and create geochemical 
footprints at surface if mineralisation is present 
below in the basement. Therefore, in regions with 
extensive and highly variable cover, the mapping of 
surface lineaments can be a useful tool for mineral 
exploration (González-Álvarez et al. 2020b, 2020c).

To compare manually interpreted lineaments with 
computer-assisted lineaments for the subsurface 
and surface, we developed a computer-assisted 
workflow as presented in Kelka and Martinez 
(2019). Applying linear analysis to manually 
identified faults by Pawley and Wilson (2019) 
supported the computer-identified features. These 
fault patterns display a natural fault or fracture 
networks (Manzocchi 2002; Sanderson et al. 2018; 
Fig 7).

When computer-assisted lineament extraction from 
basement datasets is compared with the structural 
interpretation by Pawley and Wilson (2019) using a 
density map, both lineament populations become 
discernible (Fig 7). In the density map, red denotes 
areas of high numbers of extracted basement 
lineaments (Fig 7). This supports the geological 
significance of the basement lineaments extracted 
using the computer-assisted methodology.

Figures 6 and 7 display 3 main areas where high 
density of lineaments coincides with a high density 
of mapped geological structures, though many 
other red domains appear not to be related to the 
Pawley and Wilson (2019) interpretation. Some 
areas have a pervasive magnetic signature that 
likely represents several things: (1) a primary feature 
related to rock formation, such as interlayered 
lithologies (e.g. bedding); (2) a feature that was 
imposed on the rock during metamorphism or 
deformation; or (3) the structures could separate the 
high-density areas of basement features. Further 
study is required to identify if these areas are the 
result of artefacts of the methodology, or undetected 
high-density areas of basement features that have 
not yet been identified. A caveat is that the area with 
less person-interpreted structure is under deeper 
cover, therefore, there is less confidence in marking 
individual faults. However, the computer is analysing 
gradient changes which can still be visually 
recognised, but are just not as visibly sharp as those 
in the less buried regions.

Landscape variability and the fabric of 
the basement in the central 
Gawler Craton
One of the most challenging aspects of landscape 
study is determining the geographic extent 
of features that can differentiate landscapes 
into different domains (e.g. Ollier 1978). Field 
observations have been relied upon to understand 
landscape diversity at regional scale (González-
Álvarez et al. 2016; Albrecht et al. 2021). However, 
a constraint on this approach is the uncertainty 
in the extrapolation of individual, small-scale or 
site-specific field observations, especially when 
attempting to extrapolate these to regional scales. 
Such extrapolation suffers due to the complexity and 
variability of landforms, and the difficulty in defining 
quantitative criteria that discriminates diverse 
landscape types from one another. However, there 

Figure 6	 Lineament density maps showing interpreted structures from 
Pawley and Wilson (2019) as black lines. Red corresponds to a greater 
number of lineaments and blue corresponds to fewer lineaments. (a) Surface 
lineament density (based on manual interpretation). (b) Basement lineament 
density (based on computer-assisted interpretation).

(a) Surface Lineaments and structures

(b) Basement Lineaments and structures

205585-009
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Figure 7	 (a) GCAS Region 9A in the vicinity of Tarcoola. (b) Lineaments extracted from gravity data and TMI RTP (total magnetic intensity 
reduced to pole) grouped by topographic gradient across segment centres, respectively. (c) Grouping analysis performed on the collage of 
the lineaments shown in (a) and (b). (d) Mesoproterozoic fault set (solid geology; from Pawley and Wilson 2019) with the TMI dataset in the 
background (sourced from SARIG 2020a).

are a wide variety of existing quantitative methods 
in geomorphology developed for small scales 
(~10 km). Modern data analytics technology and 
the advances in satellite imaging provide access 
to large datasets that can assist in characterising 
landscape features and their distribution at regional 
scales (e.g. Wilford et al. 2016; Jasiewicz et al. 
2014, 2015; de Caritat et al. 2017; Caruso et al. 
2018; Albrecht et al. 2021).

The display of DEMs can be enhanced for the 
visualisation of various surface features, gradients, 
and other variability, by choosing a different 
spectrum of colours (Fig 8a). In addition, DEM 
data can be processed by algorithms to highlight 
specific features within the data, such as the surface 
expression of valley and paleovalley bottoms, 
which generates the multiresolution valley bottom 
flatness (MrVBF) referred here as a ‘flatness’ map 
(Gallant and Dowling 2003). The MrVBF algorithm 
visualises the distinction between hillslopes and 
valley bottoms, essentially separating erosional 
and depositional areas, which is a fundamental 
element for sedimentary dynamics assessment of 
landscapes (Fig 8b). Likewise, the LPR algorithm 
uses the same DEM data as the flatness map, 
and groups the landscape into classes based 
on a domain expert initial visual input from the 
flatness and/or DEM maps. These land classes 
are sufficiently uniform within a class, and distinct 
between classes – not only visually, but also in a 

mathematical sense. The aggregation methodology 
preserves those properties and produces clustered 
data (Fig 8c). One of the advantages of defining 
landscape variability domains based on surface 
geometrical features is to avoid human bias. 
Human observation implies visual definition or 
characterisation of different components in a 
landscape. This bias can be amplified by the format 
employed to visualise data. Therefore, landscape 
classifications and maps contain a significant 
component of the author’s biases.

Given the landscape context, the LPR results 
can be interpreted as landscape variability, which 
is expressed by the dominant identification of 
a specific surface geometrical pattern. This 
geometrical variability was explored in this study 
to test if it could be related to the fabric of the 
basement rocks at depth, themselves associated 
with variability in structural orientation, to surface 
lineaments, and to the location of known mineral 
deposits.

The LPR domain map indicates that 5 different 
landscape patterns are present in the central 
Gawler Craton (Fig 8c). Each of these landscape 
domains is not characterised by the presence of 
specific landforms or regolith units, but by the way 
the different geometrical features (e.g. features 
associated to individual and groups of landforms) 
are related to one another.
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Figure 8	 (a) Digital elevation model of the study area (after Geoscience Australia 2009). (b) Flatness map (after Gallant and 
Dowling 2003). (c) Landscape pattern recognition map (this study).
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Figure 9	 Landscape pattern recognition domain map. (a) Total magnetic intensity (sourced from SARIG 2011). (b) Geology (sourced from 
SARIG 2020b). (c) Regolith map (after Krapf and Irvine 2016). (d) Paleogeographic reconstruction (after Hou 2004).

regolith units mapped is substantial, yet the LPR 
map displays a single domain. Hence the depth of 
cover is not correlated with the LPR domain map, 
nor with the regolith map (Figs 4, 8, 9).

The regolith mapping methodology applied by Krapf 
and Irvine (2016) has an important influence on 
landform types and regolith material associated 
with regolith domains (RTMAP [database], Pain et 
al. 2007; Pain 2008). Landforms are bounded 
segments of a land surface that are possibly 
discontinuous (Evans 2011 and references therein). 
Individual landforms are separated from their 
surroundings. In contrast, the LPR domain map 
detects all geometrical elements of the landscape 
surface and their spatial relationships, and groups 
them into landscape pattern domains. In addition, 
an uncertainty that remains when mapping regolith 
using landforms is due to DEM density data, and the 
surface associated with each landform. This results 
in areas that may not be mapped, or are mapped 
based on a dominant landform (Evans 2011 and 
references therein).

We visually compared the LPR domain map with 
surface and basement lineaments identified 
manually and using computer-assisted methods 
as described above. The aim was to assess if the 
lineament variability was different for any of the 5 
different landscape domains that were identified. 
The results suggest that the lineament fabric of the 
basement and the surface are independent of the 
classification applied by the LPR algorithm, and the 
information they provide is dissimilar (Figs 9a, b). 
A similar conclusion was drawn when comparing 
the landscape domain classes with magnetics, 
basement geology and gravity.

Differences between the LPR domains map and the 
regional regolith map based on landform-material 
classification (Krapf and Irvine 2016) are significant 
(Fig 9c). The dune system in the southwestern area 
of the regolith map is classified as monotonous and 
continuous with little variability. It is composed of the 
same regolith material and landform (Fig 9c). The 
DEM and the flatness map detect diversity within 
the dune system (Fig 8). The LPR domain map also 
displays variability, with up to 4 different landscape 
domains. Conversely, for the regolith map in the 
northern portion of study area, the variability of the 
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The trends and distribution of the LPR domain 
map has some resemblance to a sedimentary 
system footprint and evolution of the Kingoonya 
Paleochannel System (Fig 9d). However, the LPR 
domain does not perfectly correspond to the outline 
of the Kingoonya paleochannels. DEMs do not 
record/display the specific distribution of Cenozoic 
channels and landforms as they are dominantly 
under cover/overlain by younger sediments. Still, it 
records modern geometrical associations, and the 
ancient relief attributes are linked, which the LPR 
algorithm could be grouping as domains (e.g. many 
Cenozoic paleochannels are mirrored in today’s 
landscape by networks of salt pans and playas; 
Sheard 2008). Further work on the LPR map-
paleographic domain is required, hence, studying 
the stratigraphy of the cover and sedimentary 
evolution of each of the mapped landscape domains 
is crucial to further assess this potential link.

Much work is still pending to fine-tune and better 
understand how best to apply the LPR algorithm for 
landscape mapping. However, we are confident that 
the LPR technology has the potential to delineate 
physiographic features, and that in combination 
with other geophysical approaches, it could track 
the influence of the geomorphological extension 
of sedimentary systems on the surface/within 
the modern-day landscape in the central Gawler 
Craton, as well as in other cover-dominated regions 
with intense weathering and gentle landscape 
gradients. We also note that in a milestone report 
for Geoscience Australia, Pain et al. (2011) 
classified and summarised the previous work on 
the physiographic regions in Australia. However, 
the descriptions in that report were necessarily 
broadly defined and qualitative. We suggest the 
LPR algorithm could be a step towards quantifying 
physiographic regions and be widely applicable 
across the continent.

Regolith, surface lineaments, 
landscape, geological structures, 
deposits and minerals systems: 
targeting areas of interest to follow up
Mineral deposits are generally associated with 
specific geological structures, the mapping of which 
is key to identifying the footprint of a mineral system 
in general, and specifically for the gold deposits in 
the Gawler Craton (J Gum, personal communication, 
2019; Fig 10). Known deposits and prospects are 
mostly correlated with specific areas of erosional 
landscape regimes, which are at the edge of 
the topographic gradients (Fig 11 deposits and 
prospects). Still, the Gawler Craton geographical 
variability seems to be associated with specific 
landscape features or regimes (Figs 10, 11). In 
addition, the density of surface lineaments in a 
landscape can be linked to the expression of 
neotectonic activity and could geochemically link the 
basement through the cover to the surface.

Based on the above, and integrating the outputs 
of this research, multiple areas of interest have 
been identified in the study area within the central 
Gawler Craton, based on 5 proxies: (1) high surface 
lineament density; (2) known regional geological 
structures; (3) presence of key (geological) 
structures associated with mineral systems; (4) 
areas with historical discoveries of ore deposits; 
and (5) areas associated with gradients in erosional 
landscape regimes (Figs 10, 11).

Conclusion
	● A new computer-assisted workflow to detect 

lineaments in diverse datasets (e.g. SRTM DEM, 
magnetics, gravity) has been developed (Kelka 
and Martinez 2019; Kelka et al. accepted) and 
applied to the central Gawler Craton region.

	● The resulting lineaments identified using a 
computer-assisted protocol display consistent 
natural patterns that can be used to complement 
manual geological interpretations.

	● The manual interpretation supports the 
computer-derived one, but the computer-derived 
one extends the manual one to areas where there 
is less certainty in the linear features evident to 
the eye – such as under cover.

	● The fabric of the basement in the central Gawler 
Craton is mirrored by or through the cover for 
surface lineaments identified manually. Some of 
the major basement structures correspond to 
the termination of, or gaps between, areas with 
higher density of surface lineaments.

	● The LPR algorithm has mapped 5 different 
landscape domains in the central Gawler Craton 
based on geometrical variability of surface 
features detected in the DEM.

	● The LPR domain map most closely resembles 
the different environments of the sedimentary 
system footprint of the Kingoonya Paleochannel 
System. This suggests the LPR algorithm may 
have the potential to map, or be further developed 
to map, physio(geo)graphic units.

	● Eight follow-up areas for future analysis and 
follow-up surface sampling have been identified 
in the central Gawler Craton, based on the 
convergence of 5 proxies: (1) surface lineament 
density areas; (2) regional geological structures; 
(3) key structures associated with mineral 
systems; (4) areas with historical discoveries 
of mineral deposits; and (5) areas related to 
gradients in erosional landscape regimes.
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