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Introduction
South Australia has some of the highest 
magnetotelluric (MT) station coverage worldwide 
providing a unique opportunity to understand 
lithospheric architecture of the state and ultimately 
reduce the exploration risk for mineral occurrences. 
Over the last 15 years there have been a number 
of 2D MT profiles across the state to investigate its 
tectonic evolution (Thiel, Heinson and White 2005; 
Selway et al. 2011; Thiel and Heinson 2010), 
explore its mineral potential (Thiel et al. 2016; 
Heinson et al. 2018) and to integrate with other 
datasets (Wise and Thiel 2019). While 2D modelling 
of profile data has become standard, many areas 
are prone to 3D effects and are inadequately 
modelled using a 2D approach. As a result, data 
collected in a semi-regular array and modelled in 
3D has become more common (Robertson, Heinson 
and Thiel 2016; Thiel and Heinson 2013).

The flagship Australian Lithospheric Architecture 
Magnetotelluric Project (AusLAMP) SA program 
collected ~400 long-period MT stations every half 
degree latitude and longitude across South Australia 
between 2014 and 2018 (Fig. 1). More recently, the 
Olympic Domain ultra-wide band MT survey across 
the eastern Gawler Craton margin was undertaken 
as an infill of AusLAMP sites and is an array of sites 
exceeding 300 stations across an area of 100 x 
100 km. Robust resistivity models of these arrays 
necessitate the use of new 3D inverse modelling 
codes, which are now computationally feasible 
to run with supercomputing facilities, such as the 
National Computational Infrastructure in Canberra. 
To realise the benefits of these new datasets, it is 
essential to test robustness of the resistivity models 
thus produced.

With the increased complexity of 3D modelling 
comes opportunities for the models to be influenced 

by a wider set of variables, potentially leading to 
modelling artefacts. To develop best practice for 
our 3D modelling approach, we have undertaken a 
significant study to test robustness of our modelling. 
This article presents a summary of our study, recently 
published in the open access journal Earth, Planets 
and Space (Robertson, Thiel and Meqbel 2020) 
and provides insights into testing various modelling 
parameters. We applied parameterisation tests to 
a 3D MT inversion of the AusLAMP dataset in the 
northeastern part of South Australia.

Figure 1	 Topography map showing AusLAMP sites and the 
location of transects EW1, EW2, EW3 and NS1 shown in 
later figures. Reprinted from Robertson, Thiel and Meqbel 
(2020, fig. 1 with locality map inset) under Creative 
Commons Licence CC BY 4.0.
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Magnetotelluric inversion
The geophysical inversion of MT data is a non-
unique inverse problem, meaning that there are 
many solutions or models that fit the data equally 
well. For this reason, it is critical to understand the 
range of models that can fit the data, ie to explore 
the model space and ensure the features in the 
presented model are robust. This is especially the 
case if only one model is presented; ideally the 
whole ensemble of models that can fit the data 
(preferably within petrological constraints) would 
be provided with an associated uncertainty, which 
is commonplace in 1D, available but not readily 
used in 2D, and becoming possible in 3D with 
the advance in supercomputing performance and 
inversion code development. The earth is three-
dimensional, but sometimes approximates to 1D 
(sedimentary basins) or 2D. The complexity of the 
inverse problem increases greatly as we move from 
1D, to 2D then 3D inversion, and thus it is much 
more common to present in 3D a geophysical 
model that is not as robust or as well-tested as its 
1D or 2D counterpart.

The purpose of our investigation was to understand 
the effects of changes in inversion parameters on 
the final model, the significance of incorporating 
different components of the data, and the inclusion 
of prior information in the inversion (biasing 
the model). The investigations were undertaken 
using the open-to-academia 3D inversion code, 
ModEM3DMT (Egbert and Kelbert 2012; Kelbert 
et al. 2014) on the Raijin supercomputer of the 
National Computational Infrastructure (supported 
by the National Computational Merit Allocation 
Scheme). A subset of 123 AusLAMP long-period 
MT sites from the northeast of South Australia was 
inverted for a variety of parameters that pertain to 
the geology and the data across the study area, 
as well as inversion modelling parameters. For the 
inversion parameters, we tested different model 
covariances (higher covariance results in smoother 
models), lambda values (a trade-off parameter 
between data fit and model smoothness), and the 
cell size of the model. Various representations of 
the geology and data include testing differences 
in electrical resistivities of starting models, and 
different levels of assumed prior information about 
the resistivity of the subsurface (eg bathymetry, 
sediments, phase transitions of mantle minerals 
and associated changes in resistivity), and the 
components of the data that were inverted for (MT 
or geomagnetic transfer functions). Some of the 
more important outcomes are summarised here, 
but the reader is encouraged to see Robertson, Thiel 
and Meqbel (2020) for more detail.

Results and discussion
Inclusion of known information into 
starting models
Inversion codes require the input of a starting 
model, from which the inversion code moves away 
from and toward a solution to the inverse problem. 
Depending on the code, some benefit from more 
or less structure input to the starting model. A prior 
model may also be an input into inversions – this is 
similar to a starting model, except the inversion code 
penalises against this model, ie the code wants to 
find a model that both fits the data and is close to 
the prior. For the case of ModEM3DMT, if no prior 
model is provided, the starting model is used as 
the prior model. We tested the influence of adding 
progressively more information to the starting or 
prior models first by a standard half-space inversion 
of 100 Ωm then one by one adding seawater as a 
fixed parameter at 0.3 Ωm, a conductive mantle 
beneath 410 km at 10 Ωm, and a conductive 
mantle beneath 660 km of 1 Ωm, following known 
mineral transitions from olivine to wadsleyite, and 
ringwoodite to bridgmanite and periclase. All of this 
prior information was included as fixed parameters 
in the model. While 410 km and 660 km are 
beyond the depth of investigation of the AusLAMP 
data (period range 10–10,000 s), deep structure 
can affect the areas we can resolve.

The results are summarised in Table 1. As this survey 
region is several hundred kilometres from the ocean, 
bathymetry did not have a large impact on the 
final model, but this would be more significant in a 
survey region closer to the ocean. The addition of a 
conductive layer beneath 410 km served to decrease 
the overall root mean square fit (RMS – a summation 
of the difference between the model response and 
the observed data, weighted by the error), but 
required significantly longer computational time 
than the models that do not include this layer. A 
further addition of another conductive layer beneath 
660 km produced another decrease in RMS.

It should be stated here that the RMS is not a 
sufficient method for analysing the fit of the model, 
it is important that this RMS is relatively evenly 
distributed amongst each of the MT sites, and across 
the frequency range of the data. This result and 
all other modelling results are analysed further in 
Robertson, Thiel and Meqbel (2020).

Visually, these models have similar appearance, with 
structures remaining mostly consistent for each of 
the four models. Some representative cross-sections 
and depth slices for model 1 (half-space) and model 
4 (bathymetry, 410 and 660 km conductive layers) 
are shown in Figure 2. The models that contain 
the deep conductivity layers as prior information 
(models 3 and 4) show very good agreement at 
crustal depths where the data sensitivity is high, but 
some of the deeper features are more conductive for 
these two models.
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Figure 2	 Comparison of models with prior information included in the starting model. (a) Three east–west cross-sections 
taken through model 1 (top row) and 4 (bottom row) outlined in Table 1. The cross-sections are located as grey dashed 
lines in the depth slices below. (b) Left to right: a NS slice; EW slice 3 down to a depth of 800 km to show the deep mantle 
conductivity; depth slice at 42 km; depth slice at 172 km. Reprinted from Robertson, Thiel and Meqbel (2020, fig. 5 selection) 
under Creative Commons Licence CC BY 4.0.

Resistivity of the starting model
As previously explained, a starting model is a 
required input, and here we test the resistivity 
value of that starting model. For each of these 
tests, bathymetry (fixed parameter) and a rough 
representation of underlying ocean sediments (free 
parameter) were included. The resistivity values 
tested were 3, 10, 31, 100, 312, 1,000 Ωm (evenly 
spaced on log scale). In addition, a further value of 
69 Ωm was tested representing the average of the 
apparent resistivity of the data across all periods 
and all sites.

Table 1	 Results of four inversions with various starting or 
prior models

Model 
number

Bathymetry 410 km 660 km RMS Number of 
iterations

1 1.82 162

2 P 1.98 152

3 P P 1.81 182

4 P P P 1.71 181

Notes:	 The models are numbered for convenience. 
The overall RMS and the number of iterations for each inversion to 
converge are provided. 
The columns refer to models that include bathymetry (row 2), and 
mantle discontinuities at 410 km (column 3) and 660 km (column 4) 
due to mineral phase transitions and reduction in resistivity.



15MESA Journal 92   2020 – Issue 1

Magnetotelluric inversions

the range of models that can fit the data, and find 
the model most representative of the data and of the 
geology. Petrological constraints ideally should be 
used to help constrain the limits of the resistivity.

Figure 3	 Resistivity depth slices for 42 and 172 km and a cross-section through the model for three of the models, with 
starting resistivity of 10, 31 and 312 Ωm. Reprinted from Robertson, Thiel and Meqbel (2020, figs 9 and 10 selection) under 
Creative Commons Licence CC BY 4.0.

Results from the 10, 31 and 312 Ωm model are 
shown in Figure 3. These are three of the best-
fit models as can be seen in Table 2. They show 
large variation in the magnitude of the resistivity 
anomaly. The resistivity and geometry of resistivity 
structures are visually quite similar for crustal depths, 
but there is greater difference at mantle depths 
as can be seen in the standard deviation of the 
models at 172 km (Fig. 4). Resistivity models are 
often interpreted qualitatively; the results show that 
at crustal depths where the data is most sensitive 
the models show good agreement in mapping 
structures. At greater depths, however, the changes 
between models are more pronounced, with a major 
conductive feature labelled C on the 10 Ωm model 
in Figure 3 that is not evident in the 312 Ωm model. 
This could have large consequences for quantitative 
(and even qualitative) interpretations of these 
features, with resistivities varying more than an order 
of magnitude in some parts between models. Thus 
it is important to understand the model space, and 
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Table 2	 Overall RMS per starting model 

Starting resistivity (Ωm) Overall RMS

3.1 1.76

10 1.66

31 1.75

69 1.84

100 1.98

312 1.94

1,000 2.06
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Covariance testing
The model covariance is a parameter that controls 
the inversion codes tendency toward fitting the data, 
or providing a smooth model. For ModEM3DMT, a 
high covariance provides a much smoother model, 
but tends to decrease the data fit, which can be seen 
in the RMS in Table 3.

As can be seen in Figure 5, adjusting the covariance 
has a large influence on the final model. The 
models with a small covariance (0.1) and a large 
covariance (0.75) have the highest RMS. Further 
investigation into which is the best model is provided 
in Robertson, Thiel and Meqbel (2020), but we 
chose 0.4 as the preferred covariance for this 
model. It shows a suitable level of detail expected 
for our survey design, no structural artefacts at the 
near surface due to lack of sensitivity in between the 
large site spacing, and a good overall RMS (albeit 
14% larger than the lowest RMS of 1.53 for the 0.2 
model), that is reasonably well distributed across the 
full period range of the modelled data.
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Figure 4	 Average and standard deviation of ModEM inversions with prior resistivities of 10, 31.6, 69, 100, 316 and 
1000 Ωm. Black triangles are locations of MT sites. A standard deviation of 0.2 at a certain point in the model means that 
68% of the data lie within 0.2 log resistivity of the average value of that cell (averaged across all starting models). For 
example, average value at a point = 100 Ωm (or 2log Ωm), standard deviation = 0.2log Ωm, and then 68% of values lie 
within ± 0.2log Ωm or between 1.8 and 2.2log Ωm or between 65 and 160 Ωm. The top row shows the average resistivity 
values (with 0.5 Ωm contours), and the bottom row shows the standard deviation (with 0.2 contours). Reprinted from 
Robertson, Thiel and Meqbel (2020, fig. 11) under Creative Commons Licence CC BY 4.0.

Table 3	 Overall RMS and number of iterations for 
convergence for selected models 

Covariance* RMS Number of iterations

0.1 2.17 137

0.2 1.53 196

0.3 1.6 192

0.4 1.75 147

0.5 1.97 162

0.75 3.86 184
*	The larger the number, the larger the volume over which the smoothing of 

the model occurs.
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Conclusion
While vast improvements have been made in 
recent years, 3D inversion of MT datasets is still 
computationally expensive. As a result, it can be 
difficult to explore the impact of varying modelling 
parameters on the final 3D resistivity model. 

Our detailed investigation determined the effects 
of varying modelling parameters using the 
ModEM3DMT inversion code on a subset of the 
AusLAMP dataset in northeast South Australia.

The impact of incrementally including prior 
information to the starting or prior model 
(bathymetry), then increased conductivity beneath 
410 km (10 Ωm), and finally further increased 
conductivity (1 Ωm) beneath 660 km were tested. 
The appearance of the final model did not vary 
too greatly, although the deeper mantle features 
near the lithosphere–asthenosphere boundary 
became more conductive for models that included 
the enhanced conductivity at depth. The ocean is 
expected to have a bigger impact for a survey region 
closer to the ocean.

The second test was to vary the starting resistivity 
(the model was a half-space plus ocean fixed to 
0.3 Ωm). Resistivity values of 3, 10, 31, 69, 100, 
310 and 1,000 Ωm were tested. Varying the starting 
resistivity was found to have a large effect on the 
model, with a more conductive starting model 
leading to a more conductive final model and 
vice versa. This test highlights the importance of 
completing many inversions for a given dataset. We 
used the average and standard deviation of the final 
models from the three models that best represented 
the data and plotted these values at two depths 
within the model (Fig. 4). This information is useful 
to explore the model space and understand whether 
the geometry or magnitude of the resistivity (or both) 
are constrained by the data.

The last test presented here was varying the model 
covariance, where a larger covariance produces a 
smoother model, and a smaller covariance produces 
a rougher model and a better fit to the data. It is 
imperative to test a range of model covariances that 
finds an optimal fit to the data without introducing 
near-surface ‘speckled’ features. We also found 
that a larger covariance introduced deep mantle 
conductors not present with lower covariance, and 
warrants further investigation.
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Figure 5	 Depth slices and cross-section showing models with model covariances of 0.2, 0.4 and 0.75. The test highlights 
the bias of high model covariance of 0.75 to produce exceedingly strong conductors in the deep mantle. Reprinted from 
Robertson, Thiel and Meqbel (2020, figs 12 and 13 selection) under Creative Commons Licence CC BY 4.0.
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Despite the difficulties in the practicalities of 
3D inversion (access to high-performance 
computational facilities, queue times to run models, 
and the time and/or cost associated with these 
models), these results highlight that it is still critical 
to test parameters controlling the model space. We 
show the critical parameters for this dataset to be 
the starting resistivity of the model and the model 
covariance. This work presents a guide to inverting 
MT array data, which is set to become more 
commonplace with the expansion of surveys such as 
AusLAMP array and infill MT surveys.
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