# Roxby Geothermal Pty Ltd

Annual Report Licence Year 1 18<sup>th</sup> May 2011 to 17<sup>th</sup> May 2012

Geothermal Exploration Licences 563, 564 & 565

| 1   | INTRODUCTION                                     | 3 |
|-----|--------------------------------------------------|---|
| 2   | PERMIT SUMMARY                                   | 3 |
| 3   | REGULATED ACTIVITIES                             | 5 |
|     | Drilling and Related Activities                  | 5 |
|     | Seismic Data Acquisition                         | 5 |
|     | Seismic Data Processing and Reprocessing         | 5 |
|     | Geochemical, Gravity, Magnetic and other surveys | 5 |
|     | Production and Processing                        | 5 |
|     | Pipeline Construction and Operation              |   |
|     | Preliminary Survey Activities                    | 5 |
| 4   | COMPLIANCE ISSUES                                |   |
|     | Licence and Regulatory Compliance                | 6 |
|     | Management System Audits.                        | 6 |
|     | Report and Data Submissions                      | 7 |
|     | Incidents                                        | 7 |
|     | Threat Prevention                                | 8 |
|     | Future Work Program                              | 8 |
| 5   | EXPENDITURE ŠTATEMENT                            | 8 |
| APF | PENDIX 1 EXPENDITURE STATEMENT                   | 9 |

### 1 <u>Introduction</u>

Geothermal Exploration Licences (GEL's) 563, 564 and 565 were granted to Roxby Geothermal Pty Ltd on 18<sup>th</sup> May 2011. These contiguous licences are located south and west of Lake Torrens in central South Australia, and have a combined total area of approximately 8,905 km<sup>2</sup>.

This report details the work conducted during Licence Year 1 of licences GEL 563, 565 and 565 ( $18^{th}$  May 2011 –  $17^{th}$  May 2012 inclusive), in accordance with Regulation 33 of the *Petroleum and Geothermal Energy Act 2000*.

### 2 Permit Summary

For the duration of the licence year, the sole licensee for Geothermal Exploration Licences (GEL's) 563, 564 & 565 was Roxby Geothermal Pty Ltd.

The current work commitments (including all variations) associated with GEL's 563, 564 & 565 can be seen in Table 1.

| Licence Year | Licence Dates                                         | Minimum Work Program                                                                                                                       |
|--------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | 18 <sup>th</sup> May 2011 – 17 <sup>th</sup> May 2012 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> |
| Year 2       | 18 <sup>th</sup> May 2012 – 17 <sup>th</sup> May 2013 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> |
| Year 3       | 18 <sup>th</sup> May 2013 – 17 <sup>th</sup> May 2014 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> |
|              |                                                       | <ul> <li>Drill 5 shallow wells, and</li> </ul>                                                                                             |
| Year 4       | 18 <sup>th</sup> May 2014 – 17 <sup>th</sup> May 2015 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> |
|              |                                                       | <ul> <li>100 km 2D seismic, and</li> </ul>                                                                                                 |
| Year 5       | 18 <sup>th</sup> May 2015 – 17 <sup>th</sup> May 2016 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> |

| Table 1 Current work | commitments b | y licence year |
|----------------------|---------------|----------------|
|----------------------|---------------|----------------|

Licence Year 1 concluded on 18<sup>th</sup> May 2012. The following table displays the minimum work program (after all variations) and the actual work completed up until the end of the current licence period.

# Table 2Final work program and work completed (as of end of current<br/>reporting period) by licence year

| Licence Year | Minimum Work Program                                                                                                                                                               | Actual Work                                                                                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Geological and Geophysical Review of<br>Geothermal Exploration Licences 563, 564<br>and 565, South Australia – Report<br>conducted by Hot Dry Rocks Pty Ltd |
| Year 2       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Not applicable                                                                                                                                              |
| Year 3       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Not applicable                                                                                                                                              |
| Year 4       | <ul> <li>Drill 5 shallow wells, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> | Not applicable                                                                                                                                              |
| Year 5       | <ul> <li>100 km 2D seismic, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>     | Not applicable                                                                                                                                              |

### 3 <u>Regulated Activities</u>

Pursuant to Regulation 33(2)(a) under the Act, an annual report must include:

"a summary of the regulated activities conducted under the licence during the [current reporting] year."

This information is detailed below in designated sections.

### **Drilling and Related Activities**

No regulated activities undertaken in the licence reporting period

### Seismic Data Acquisition

No regulated activities undertaken in the licence reporting period

### Seismic Data Processing and Reprocessing

No regulated activities undertaken in the licence reporting period

### Geochemical, Gravity, Magnetic and other surveys

No regulated activities undertaken in the licence reporting period

### Production and Processing

No regulated activities undertaken in the licence reporting period

### Pipeline Construction and Operation

No regulated activities undertaken in the licence reporting period

### **Preliminary Survey Activities**

No regulated activities undertaken in the licence reporting period

### 4 <u>Compliance Issues</u>

### Licence and Regulatory Compliance

Pursuant to Regulations 33(2) (b) & (c), an annual report must include:

"a report for the year on compliance with the Act, these regulations, the licence and any relevant statement of environmental objectives;" and

"a statement concerning any action to rectify non compliance with obligations imposed by the Act, these regulations or the licence, and to minimise the likelihood of recurrence of any such non-compliances."

No instances of non-compliance with obligations imposed by the Act occurred during Year One.

### Management System Audits

Pursuant to Regulation 33(2) (d) under the Act, an annual report must include:

"a summary of any management system audits undertaken during the relevant licence year including information on any failure or deficiency identified by the audit and any corrective actions that has, or will be taken".

No Management System Audits where undertaken during Year One.

### **Report and Data Submissions**

Pursuant to Regulation 33(2) (e) under the Act, an annual report must include:

"a list of all reports and data relevant to the operation of the Act generated by the licensee during the licence year".

### Table 3 List of report and data submissions during current licence reporting year

| Description of Report/Data                                                                                                                          | Date Due     | Date Submitted | Compliant / Non-Compliant |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------------------|
| Geological and Geophysical Review of Geothermal Exploration Licences 563, 564 and 565, South Australia – Review undertaken by Hot Dry Rocks Pty Ltd | 17 July 2012 | 17 July 2012   |                           |
|                                                                                                                                                     |              |                |                           |
|                                                                                                                                                     |              |                |                           |
|                                                                                                                                                     |              |                |                           |
|                                                                                                                                                     |              |                |                           |
|                                                                                                                                                     |              |                |                           |

### Incidents

Pursuant to Regulation 33(2) (f), an annual report must include:

"in relation to any incidents reported to the Minister under the Act and these Regulations during the relevant licence year -

- *(i)* an overall assessment and analysis of the incidents, including the identification and analysis of any trends that have emerged; and
- (ii) an overall assessment of the effectiveness of any action taken to rectify non-compliance with obligations imposed by the Act, these regulations or the licence, or to minimise the risk of recurrence of any such non-compliance".

No reportable incidents occurred during Year One.

### Threat Prevention

Pursuant to Regulation 33(2) (g) under the Act, an annual report must include:

"a report on any reasonably foreseeable threats (other than threats previously reported on) that reasonably presents, or may present, a hazard to facilities or activities under the licence, and a report on any corrective action that has, or will be taken".

No threats to activities under the licences have been identified.

### Future Work Program

Pursuant to Regulation 33(2) (h) under the Act, an annual report must include:

*"unless the relevant licence year is the last year in which the licence is to remain in force – a statement outlining operations proposed for the ensuing year".* 

Exploration in Year 2 will continue with further geological and geophysical studies with a view to delineate areas of enhanced geothermal potential within the Roxby Geothermal Project area.

### 5 <u>Expenditure Statement</u>

Pursuant to Regulation 33(3) under the Act, an annual report must contain:

"An annual report must be accompanied by a statement of expenditure on regulated activities conducted under the licence for the relevant licence year, showing expenditure under each of the following headings:

- a) drilling activities;
- *b)* seismic activities;
- c) technical evaluation and analysis;
- d) other surveys;
- e) facility construction and modification;
- f) operating and administration expenses (not already covered under another heading)".

Please refer to Appendix 1 for the expenditure statement for the current reporting period.

# Roxby Geothermal Pty Ltd

Annual Report Licence Year 2 18<sup>th</sup> May 2012 to 17<sup>th</sup> May 2013

Geothermal Exploration Licences 563, 564 & 565

| 1   | INTRODUCTION                                     | 3 |
|-----|--------------------------------------------------|---|
| 2   | PERMIT SUMMARY                                   | 3 |
| 3   | REGULATED ACTIVITIES                             | 5 |
|     | Drilling and Related Activities                  | 5 |
|     | Seismic Data Acquisition                         | 5 |
|     | Seismic Data Processing and Reprocessing         | 5 |
|     | Geochemical, Gravity, Magnetic and other surveys | 5 |
|     | Production and Processing                        | 5 |
|     | Pipeline Construction and Operation              |   |
|     | Preliminary Survey Activities                    |   |
| 4   | COMPLIANCE ISSUES                                | 6 |
|     | Licence and Regulatory Compliance                |   |
|     | Management System Audits                         | 6 |
|     | Report and Data Submissions                      | 7 |
|     | Incidents                                        |   |
|     | Threat Prevention                                | 8 |
|     | Future Work Program                              | 8 |
| 5   | EXPENDITURE STATEMENT                            | 8 |
| APF | PENDIX 1 EXPENDITURE STATEMENT                   | 9 |

### 1 <u>Introduction</u>

Geothermal Exploration Licences (GEL's) 563, 564 and 565 were granted to Roxby Geothermal Pty Ltd on 18<sup>th</sup> May 2011. These contiguous licences are located south and west of Lake Torrens in central South Australia, and have a combined total area of approximately 8,905 km<sup>2</sup>.

This report details the work conducted during Licence Year 2 of licences GEL 563, 565 and 565 (18<sup>th</sup> May 2012 – 17<sup>th</sup> May 2013 inclusive), in accordance with Regulation 33 of the *Petroleum and Geothermal Energy Act 2000*.

### 2 Permit Summary

For the duration of the licence year, the sole licensee for Geothermal Exploration Licences (GEL's) 563, 564 & 565 was Roxby Geothermal Pty Ltd.

The current work commitments (including all variations) associated with GEL's 563, 564 & 565 can be seen in Table 1.

| Licence Year | Licence Dates                                         | Minimum Work Program                                                                                                                                                   |
|--------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | 18 <sup>th</sup> May 2011 – 17 <sup>th</sup> May 2012 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                             |
| Year 2       | 18 <sup>th</sup> May 2012 – 17 <sup>th</sup> May 2013 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                             |
| Year 3       | 18 <sup>th</sup> May 2013 – 17 <sup>th</sup> May 2014 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                             |
| Year 4       | 18 <sup>th</sup> May 2014 – 17 <sup>th</sup> May 2015 | <ul> <li>Drill 5 shallow wells, and</li> <li>Geological and geophysical review (to be conducted anywhere within the boundaries of GEL's 563, 564 &amp; 565)</li> </ul> |
| Year 5       | 18 <sup>th</sup> May 2015 – 17 <sup>th</sup> May 2016 | <ul> <li>100 km 2D seismic, and</li> <li>Geological and geophysical review (to be conducted anywhere within the boundaries of GEL's 563, 564 &amp; 565)</li> </ul>     |

### Table 1Current work commitments by licence year

Licence Year 2 concluded on 18<sup>th</sup> May 2013. The following table displays the minimum work program (after all variations) and the actual work completed up until the end of the current licence period.

# Table 2Final work program and work completed (as of end of current<br/>reporting period) by licence year

| Licence Year | Minimum Work Program                                                                                                                                                               | Actual Work                                                                                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Geological and Geophysical Review of<br>Geothermal Exploration Licences 563, 564<br>and 565, South Australia – Report<br>conducted by Hot Dry Rocks Pty Ltd |
| Year 2       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | No regulated activities undertaken.                                                                                                                         |
| Year 3       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Not applicable                                                                                                                                              |
| Year 4       | <ul> <li>Drill 5 shallow wells, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> | Not applicable                                                                                                                                              |
| Year 5       | <ul> <li>100 km 2D seismic, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>     | Not applicable                                                                                                                                              |

### 3 <u>Regulated Activities</u>

Pursuant to Regulation 33(2)(a) under the Act, an annual report must include:

"a summary of the regulated activities conducted under the licence during the [current reporting] year."

This information is detailed below in designated sections.

### Drilling and Related Activities

No regulated activities undertaken in the licence reporting period

### Seismic Data Acquisition

No regulated activities undertaken in the licence reporting period

### Seismic Data Processing and Reprocessing

No regulated activities undertaken in the licence reporting period

### Geochemical, Gravity, Magnetic and other surveys

No regulated activities undertaken in the licence reporting period

### Production and Processing

No regulated activities undertaken in the licence reporting period

### Pipeline Construction and Operation

No regulated activities undertaken in the licence reporting period

### **Preliminary Survey Activities**

No regulated activities undertaken in the licence reporting period

### 4 <u>Compliance Issues</u>

### Licence and Regulatory Compliance

Pursuant to Regulations 33(2) (b) & (c), an annual report must include:

"a report for the year on compliance with the Act, these regulations, the licence and any relevant statement of environmental objectives;" and

"a statement concerning any action to rectify non compliance with obligations imposed by the Act, these regulations or the licence, and to minimise the likelihood of recurrence of any such non-compliances."

No instances of non-compliance with obligations imposed by the Act occurred during Year Two.

### Management System Audits

Pursuant to Regulation 33(2) (d) under the Act, an annual report must include:

"a summary of any management system audits undertaken during the relevant licence year including information on any failure or deficiency identified by the audit and any corrective actions that has, or will be taken".

No Management System Audits where undertaken during Year Two.

### **Report and Data Submissions**

Pursuant to Regulation 33(2) (e) under the Act, an annual report must include:

"a list of all reports and data relevant to the operation of the Act generated by the licensee during the licence year".

### Table 3 List of report and data submissions during current licence reporting year

| Description of Report/Data                                                                                                                | Date Due                   | Date Submitted             | Compliant / Non-Compliant |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------|
| Year 1 Annual Report                                                                                                                      | 17 <sup>th</sup> July 2012 | 17 <sup>th</sup> July 2012 | Compliant                 |
| Geological and Geophysics Review of Geothermal Exploration Licences 563, 564 and 565, South Australia ( <b>Commercial in Confidence</b> ) | 17 <sup>th</sup> July 2012 | 17 <sup>th</sup> July 2012 | Compliant                 |
|                                                                                                                                           |                            |                            |                           |
|                                                                                                                                           |                            |                            |                           |
|                                                                                                                                           |                            |                            |                           |
|                                                                                                                                           |                            |                            |                           |

### Incidents

Pursuant to Regulation 33(2) (f), an annual report must include:

"in relation to any incidents reported to the Minister under the Act and these Regulations during the relevant licence year -

- (i) an overall assessment and analysis of the incidents, including the identification and analysis of any trends that have emerged; and
- (ii) an overall assessment of the effectiveness of any action taken to rectify non-compliance with obligations imposed by the Act, these regulations or the licence, or to minimise the risk of recurrence of any such non-compliance".

No reportable incidents occurred during Year Two.

### **Threat Prevention**

Pursuant to Regulation 33(2) (g) under the Act, an annual report must include:

"a report on any reasonably foreseeable threats (other than threats previously reported on) that reasonably presents, or may present, a hazard to facilities or activities under the licence, and a report on any corrective action that has, or will be taken".

Continuing financial market volatility has resulted in no regulated activities being undertaken within the GEL's in Year 2. Roxby Geothermal Pty Ltd has therefore formally requested that DMITRE allow deferment of Year 2 activities, and an amendment to the forward work program.

### Future Work Program

Pursuant to Regulation 33(2) (h) under the Act, an annual report must include:

*"unless the relevant licence year is the last year in which the licence is to remain in force – a statement outlining operations proposed for the ensuing year".* 

Exploration in Year 3 will continue with further geological and geophysical studies with a view to delineate areas of enhanced geothermal potential within the Roxby Geothermal Project area.

### 5 <u>Expenditure Statement</u>

Pursuant to Regulation 33(3) under the Act, an annual report must contain:

"An annual report must be accompanied by a statement of expenditure on regulated activities conducted under the licence for the relevant licence year, showing expenditure under each of the following headings:

- a) drilling activities;
- b) seismic activities;
- c) technical evaluation and analysis;
- d) other surveys;
- e) facility construction and modification;
- f) operating and administration expenses (not already covered under another heading)".

Please refer to Appendix 1 for the expenditure statement for the current reporting period.

# Roxby Geothermal Pty Ltd

Annual Report Licence Year 3 18<sup>th</sup> May 2013 to 17<sup>th</sup> May 2014

Geothermal Exploration Licences 563, 564 & 565

| 1   | INTRODUCTION                                                  | 3 |
|-----|---------------------------------------------------------------|---|
| 2   | PERMIT SUMMARY                                                | 3 |
| 3   | REGULATED ACTIVITIES                                          | 5 |
|     | Drilling and Related Activities                               | 5 |
|     | Seismic Data Acquisition                                      | 5 |
|     | Seismic Data Processing and Reprocessing                      |   |
|     | Geochemical, Gravity, Magnetic and other surveys              | 5 |
|     | Production and Processing                                     |   |
|     | Pipeline Construction and Operation                           |   |
|     | Preliminary Survey Activities                                 |   |
| 4   | COMPLIANCE ISSUES                                             | 6 |
|     | Licence and Regulatory Compliance                             | 6 |
|     | Management System Audits.                                     |   |
|     | Report and Data Submissions                                   |   |
|     | Incidents                                                     | 7 |
|     | Threat Prevention                                             | 8 |
|     | Future Work Program                                           | 8 |
| 5   | EXPENDITURE STATEMENT                                         | 8 |
| APF | PENDIX 1 EXPENDITURE STATEMENT                                | 9 |
| APF | PENDIX 2 REQUEST TO SUSPEND GELS 563, 564 & 565 FOR 12-MONTHS | , |
|     | 10                                                            |   |

### 1 <u>Introduction</u>

Geothermal Exploration Licences (GEL's) 563, 564 and 565 were granted to Roxby Geothermal Pty Ltd on 18<sup>th</sup> May 2011. These contiguous licences are located south and west of Lake Torrens in central South Australia, and have a combined total area of approximately 8,905 km<sup>2</sup>.

This report details the work conducted during Licence Year 3 of licences GEL 563, 565 and 565  $(18^{th} \text{ May } 2013 - 17^{th} \text{ May } 2014 \text{ inclusive})$ , in accordance with Regulation 33 of the *Petroleum and Geothermal Energy Act 2000*.

### 2 <u>Permit Summary</u>

For the duration of the licence year, the sole licensee for Geothermal Exploration Licences (GEL's) 563, 564 & 565 was Roxby Geothermal Pty Ltd.

The current work commitments (including all variations) associated with GEL's 563, 564 & 565 can be seen in Table 1.

| Licence Year | Licence Dates                                         | Minimum Work Program                                                                                                                                                                     |
|--------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | 18 <sup>th</sup> May 2011 – 17 <sup>th</sup> May 2012 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                               |
| Year 2       | 18 <sup>th</sup> May 2012 – 17 <sup>th</sup> May 2013 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                               |
| Year 3       | 18 <sup>th</sup> May 2013 – 17 <sup>th</sup> May 2014 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                               |
| Year 4       | 18 <sup>th</sup> May 2014 – 17 <sup>th</sup> May 2015 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                               |
| Year 5       | 18 <sup>th</sup> May 2015 – 17 <sup>th</sup> May 2016 | <ul> <li>Drill 5 shallow wells, and 100 km 2D seismic</li> <li>Geological and geophysical review (to be conducted anywhere within the boundaries of GEL's 563, 564 &amp; 565)</li> </ul> |

 Table 1
 Current work commitments by licence year

Licence Year 3 concluded on 18<sup>th</sup> May 2014. The following table displays the minimum work program (after all variations) and the actual work completed up until the end of the current licence period.

# Table 2Final work program and work completed (as of end of current<br/>reporting period) by licence year

| Licence Year | Minimum Work Program                                                                                                                                                               | Actual Work                                                                                                                                                                                          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 1       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | Geological and Geophysical Review of<br>Geothermal Exploration Licences 563, 564<br>and 565, South Australia – Report<br>conducted by Hot Dry Rocks Pty Ltd                                          |
| Year 2       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | No regulated activities undertaken.                                                                                                                                                                  |
| Year 3       | <ul> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                     | No regulated activities undertaken.                                                                                                                                                                  |
| Year 4       | <ul> <li>Drill 5 shallow wells, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul> | <ul> <li>Geological and geophysical review (to<br/>be conducted anywhere within the<br/>boundaries of GEL's 563, 564 &amp; 565)</li> </ul>                                                           |
| Year 5       | <ul> <li>100 km 2D seismic, and</li> <li>Geological and geophysical<br/>review (to be conducted<br/>anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>     | <ul> <li>Drill 5 shallow wells, and 100 km<br/>2D seismic</li> <li>Geological and geophysical review (to<br/>be conducted anywhere within the<br/>boundaries of GEL's 563, 564 &amp; 565)</li> </ul> |

A work program variation was submitted on 22<sup>nd</sup> August 2013. Specifically requesting that the drilling component of Year 4 be moved and amalgamated with the seismic program of Year 5.

The following summarises the variations:

| Year 4 | 18 <sup>th</sup> May 2014 – 17 <sup>th</sup> May 2015 | <ul> <li>Geological and geophysical review (to be<br/>conducted anywhere within the boundaries<br/>of GEL's 563, 564 &amp; 565)</li> </ul>                                               |
|--------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year 5 | 18 <sup>th</sup> May 2015 – 17 <sup>th</sup> May 2016 | <ul> <li>Drill 5 shallow wells, and 100 km 2D seismic</li> <li>Geological and geophysical review (to be conducted anywhere within the boundaries of GEL's 563, 564 &amp; 565)</li> </ul> |

### 3 <u>Regulated Activities</u>

Pursuant to Regulation 33(2)(a) under the Act, an annual report must include:

"a summary of the regulated activities conducted under the licence during the [current reporting] year."

This information is detailed below in designated sections.

### Drilling and Related Activities

No regulated activities undertaken in the licence reporting period

### Seismic Data Acquisition

No regulated activities undertaken in the licence reporting period

### Seismic Data Processing and Reprocessing

No regulated activities undertaken in the licence reporting period

### Geochemical, Gravity, Magnetic and other surveys

No regulated activities undertaken in the licence reporting period

### Production and Processing

No regulated activities undertaken in the licence reporting period

### Pipeline Construction and Operation

No regulated activities undertaken in the licence reporting period

### **Preliminary Survey Activities**

No regulated activities undertaken in the licence reporting period

### 4 <u>Compliance Issues</u>

### Licence and Regulatory Compliance

Pursuant to Regulations 33(2) (b) & (c), an annual report must include:

"a report for the year on compliance with the Act, these regulations, the licence and any relevant statement of environmental objectives;" and

"a statement concerning any action to rectify non compliance with obligations imposed by the Act, these regulations or the licence, and to minimise the likelihood of recurrence of any such non-compliances."

No instances of non-compliance with obligations imposed by the Act occurred during Year Three.

### Management System Audits

Pursuant to Regulation 33(2) (d) under the Act, an annual report must include:

"a summary of any management system audits undertaken during the relevant licence year including information on any failure or deficiency identified by the audit and any corrective actions that has, or will be taken".

No Management System Audits where undertaken during Year Three.

### **Report and Data Submissions**

Pursuant to Regulation 33(2) (e) under the Act, an annual report must include:

"a list of all reports and data relevant to the operation of the Act generated by the licensee during the licence year".

### Table 3 List of report and data submissions during current licence reporting year

| Description of Report/Data                                           | Date Due   | Date Submitted | Compliant / Non-Compliant |
|----------------------------------------------------------------------|------------|----------------|---------------------------|
| No regulated activities undertaken.                                  |            |                |                           |
| Request for 1-month extension for submission of Year 2 Annual Report |            | 16/07/2013     | approved                  |
| Work Program Variation application                                   |            | 20/08/2013     | approved                  |
| Year 2 Annual Report Year 2 Annual Report                            | 17/07/2013 | 20/08/2013     | Minor edits requested     |
| Re submission of Year 2 Annual Report                                |            | 30/09/2013     | accepted                  |
| Request for 1 year suspension of GELs                                |            | 16/05/2014     | approved                  |
|                                                                      |            |                |                           |
|                                                                      |            |                |                           |

### Incidents

Pursuant to Regulation 33(2) (f), an annual report must include:

"in relation to any incidents reported to the Minister under the Act and these Regulations during the relevant licence year -

- (i) an overall assessment and analysis of the incidents, including the identification and analysis of any trends that have emerged; and
- (ii) an overall assessment of the effectiveness of any action taken to rectify non-compliance with obligations imposed by the Act, these regulations or the licence, or to minimise the risk of recurrence of any such non-compliance".

No reportable incidents occurred during Year Three.

### **Threat Prevention**

Pursuant to Regulation 33(2) (g) under the Act, an annual report must include:

"a report on any reasonably foreseeable threats (other than threats previously reported on) that reasonably presents, or may present, a hazard to facilities or activities under the licence, and a report on any corrective action that has, or will be taken".

Continuing financial market volatility has resulted in no regulated activities being undertaken within the GEL's in Year 3. Roxby Geothermal Pty Ltd has therefore formally requested that DMITRE allow deferment of Year 3 activities, and an amendment to the forward work program.

### Future Work Program

Pursuant to Regulation 33(2) (h) under the Act, an annual report must include:

*"unless the relevant licence year is the last year in which the licence is to remain in force – a statement outlining operations proposed for the ensuing year".* 

Roxby Geothermal has been pursuing finance and project development partners to fund future exploration and development of the Project, however, due to a severe downturn in investor and industry interest in the Geothermal Sector in Australia, at this point the Company has been unsuccessful in our efforts to secure future funding for the project.

As such, a request for a 12-month suspension of activity within the Roxby Geothermal Project area was submitted and approved for nominal Year 4 of the project (refer Appendix 2).

### 5 <u>Expenditure Statement</u>

Pursuant to Regulation 33(3) under the Act, an annual report must contain:

"An annual report must be accompanied by a statement of expenditure on regulated activities conducted under the licence for the relevant licence year, showing expenditure under each of the following headings:

- a) drilling activities;
- b) seismic activities;
- c) technical evaluation and analysis;
- d) other surveys;
- e) facility construction and modification;
- f) operating and administration expenses (not already covered under another heading)".

Please refer to Appendix 1 for the expenditure statement for the current reporting period.

### APPENDIX 2 Request to Suspend GELs 563, 564 & 565 for 12-months

Shane Farrelly Manager Licensing and Legislation Energy Resources Division Department for Manufacturing, Innovation, Trade, Resources and Energy Level 6, 101 Grenfell Street GPO Box 1264 ADELAIDE SA 5001

Friday, May 16, 2014

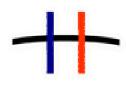
RE: ROXBY GEOTHERMAL PTY LTD request to suspend GELs 563, 564 & 565 for 12-months

Dear Shane,

Roxby Geothermal Pty Ltd ("Roxby Geothermal") holds 3 Geothermal Exploration Licenses in South Australia comprising the Roxby Geothermal Project (GELs 563, 564 & 565).

Roxby Geothermal has been pursuing finance and project development partners to fund future exploration and development of the Project, however, due to a severe downturn in investor and industry interest in the Geothermal Sector in Australia, at this point the Company has been unsuccessful in our efforts to secure future funding for the project.

As such, Roxby Geothermal requests a 12-month suspension of the three GELs for a period of 12-months under Section 90 of the Act commencing the 18<sup>th</sup> May 2014.


Please do not hesitate if contact me if you require additional information and also advise of fees applicable for this process.

Yours sincerely

Hurt Bine

Stephen Biggins Tel: 0499 000 600 Director Roxby Geothermal Pty Ltd

Roxby Geothermal Pty Ltd ACN 145 626 900 PO Box 3111 North Adelaide South Australia 5006 telephone +61 (0) 419 859 600 email <u>sbiggins@internode.on.net</u>



Hot Dry Rocks Pty Ltd Geothermal Energy Consultants

HEAD OFFICE PO Box 251 South Yarra, Vic 3141 Australia T +61 3 9827 7740 E info@hotdryrocks.com W www.hotdryrocks.com

ABN: 12 114 617 622

SERVICES Exploration Rock Property Measurements Project Development Portfolio Management Grant Applications Geological and Geophysical Review of Geothermal Exploration Licences 563, 564 and 565, South Australia

**Commercial in Confidence** 

Compiled for Roxby Geothermal Pty Ltd

7 July 2012

## **Executive Summary**

### Summary

Roxby Geothermal Pty Ltd (RG) commissioned Hot Dry Rocks Pty Ltd (HDR) to review existing data with its three geothermal exploration licences located south and west of Lake Torrens in central South Australia.

### Principle Recommendations

The principle recommendations of this data review are:

- That HDR undertake a full Geothermal Systems Assessment (GSA) to define an ongoing exploration work program for the RGP. The GSA is a desktop scoping study of an area incorporating regional data, utilising open-file data and encompassing as much existing information as possible. During the process of the GSA, gaps in available data are identified and highlighted for future studies.
- That all minerals companies with Exploration Licences (EL's) overlapping the RGP (Figure 5 and Appendix 1) be contacted to establish collaborative agreements, similar to that enacted between Southern Gold and Monax Mining. This will allow temperature data (and samples for thermal conductivity analysis) to be collected at a much reduced cost to RG. Benefits to the mineral exploration company includes a greater geological understanding of their tenement; sharing of costs for future drill holes; and any geothermal resource identified could be utilised to supply power to any mines that may be developed (cf. Beverley Uranium mine and Petratherm's Paralana Project).
- That stress tests be conducted on bores drilled within the RGP to depths greater than 700 m. Unlike the petroleum industry, mineral drilling rigs do not usually have the capability of undertaking stress measurements whilst drilling. It would therefore be necessary to undertake these tests once drilling has completed. It is also possible to undertake these tests on minerals bores drilled previously provided the bore is open to accommodate the testing equipment
- That HDR liaise with the DMITRE core library to identify core samples from well bores elsewhere in the RGP. That representative samples be collected and

subjected to thermal conductivity analysis. The results could be used to further constrain subsurface geological heat flow modelling and enable more accurate temperature prediction.

- That HDR undertake further validation of heat generation of basement rocks and sediments from hand specimen or core samples. Whole Rock Fusion analysis is a fast and relatively inexpensive means of determining heat generation. Results would reduce uncertainties in future regional heat flow and temperature modelling.
- That South Australian government agencies be contacted to ascertain water data attributes from the RGP.
- That wells that intersect deeper intervals of the stratigraphic section in the RGP be identified, and that, if possible, groundwater from these deeper intervals be obtained and analysed.

#### Authors

Jim Driscoll, Nicky Pollington and Luke Mortimer compiled this report. Graeme Beardsmore reviewed the report and approved its release in its final form.

#### Disclaimer

The information and opinions in this report have been generated to the best ability of the author, and Hot Dry Rocks Pty Ltd (HDR) hope they may be of assistance to you. However, neither the authors nor any other employee of HDR guarantees that the report is without flaw or is wholly appropriate for your particular purposes, and therefore we disclaim all liability for any error, loss or other consequence that may arise from you relying on any information in this publication.

#### Copyright

This report is protected under the Copyright Act 1968.

# **List of Contents**

| EXECUTIVE SUMMARY                           | I  |
|---------------------------------------------|----|
| SUMMARY                                     | 1  |
| PRINCIPLE RECOMMENDATIONS                   | I  |
| 1. INTRODUCTION                             | 6  |
| 1.1. Hot Dry Rocks                          | 6  |
| 1.2. PROJECT CONCEPT                        | 6  |
| 1.2.1. LOCATION                             | 7  |
| 1.2.2. REGIONAL GEOTHERMAL DRIVERS          | 9  |
| 1.2.3. LEGISLATION AND REGULATION           | 9  |
| 1.2.4. CONCEPTUAL HEAT SOURCE               |    |
| 2. ACTIONS UNDERTAKEN IN THIS DATA REVIEW   | 11 |
| 2.1. DATASETS SOUGHT                        |    |
| 2.2. DATASETS COLLECTED                     | 11 |
| 2.3. DATA REVIEW                            | 12 |
| 2.3.1. GEOLOGICAL DATA                      | 12 |
| 2.3.1.1. Well Data                          | 12 |
| 2.3.1.2. Stress Data                        |    |
| 2.3.1.3. SURFACE MANIFESTATIONS             | 21 |
| 2.3.2. GEOPHYSICAL DATA                     | 22 |
| 2.3.2.1. HEAT FLOW DATA                     | 22 |
| 2.3.2.2. DIRECTLY MEASURED TEMPERATURE DATA | 25 |
| 2.3.2.3. GRAVITY DATA                       | 26 |
| 2.3.2.4. MAGNETICS DATA                     | 27 |
| 2.3.2.5. SEISMIC DATA                       | 28 |
| 2.3.2.6. THERMAL CONDUCTIVITY DATA          | 31 |
| 2.3.3. GEOCHEMICAL DATA                     | 33 |
| 2.3.3.1. Heat Generation Data               | 33 |
| 2.3.3.2. WATER                              | 35 |
| 2.3.3.2.1. REGULATION AND LEGISLATION       | 35 |
| 2.3.3.2.2. WATER AVAILABILITY IN THE RGP    | 37 |
| 2.3.3.2.3. WATER ANALYSIS                   |    |
| 3. GEOLOGICAL FINDINGS                      |    |
| 3.1.1. REGIONAL GEOLOGY                     |    |
| 3.1.2. STRUCTURAL STYLE OF THE RGP          |    |
| 3.1.3. Stratigraphy                         | 40 |
| 3.1.3.1. PROTEROZOIC UNITS                  | 43 |
| 3.1.3.1.1. Hutchison Group                  | 43 |
| 3.1.3.1.2. DONINGTON GRANITOID SUITE        | 44 |

|    | 3.1.3.1.3. | WALLAROO GROUP                           | 44 |
|----|------------|------------------------------------------|----|
|    | 3.1.3.1.4. | HILTABA SUITE AND GAWLER RANGE VOLCANICS | 45 |
|    | 3.1.3.1.5. | PANDURRA FORMATION                       | 45 |
|    | 3.1.3.1.6. | BEDA VOLCANICS AND GAIRDNER DOLERITE     | 45 |
|    | 3.1.3.2.   | ADELAIDEAN                               | 46 |
|    | 3.1.3.2.1. | Umberatana Group                         | 46 |
|    | TINDELPINA | A SHALE MEMBER                           | 46 |
|    | WOOCALLA   | DOLOMITE MEMBER                          | 46 |
|    | 3.1.3.2.2. | WHYALLA SANDSTONE                        | 46 |
|    | 3.1.3.2.3. | WILPENA GROUP                            | 46 |
|    |            | NA FORMATION                             |    |
|    |            | A SHALE MEMBER                           |    |
|    |            | RA SANDSTONE MEMBER                      |    |
|    |            | QUARTZITE MEMBER                         |    |
|    | 3.1.3.3.   | CAMBRIAN                                 | 47 |
|    |            | A LIMESTONE                              |    |
|    | 3.1.3.4.   | CRETACEOUS                               | 47 |
|    | MARREE S   | UBGROUP                                  | 47 |
|    |            | SURFACE GEOLOGY                          |    |
| 4. |            | IMENDATIONS                              |    |
| 5. | REFER      | ENCES                                    | 51 |

•

# List of Figures

| Figure 1. Location of the Roxby Geothermal Project (GEL's 563, 564 and 565). The seismic trace (08GA-                   |
|-------------------------------------------------------------------------------------------------------------------------|
| A1) is applicable to Figure 158                                                                                         |
| Figure 2. Broad divisions of the Australian continental crust, based on basement rock age (based on Sass                |
| & Lachenbruch, 1979)10                                                                                                  |
| Figure 3. The spatial location of all minerals, geothermal and petroleum bores drilled proximal to the                  |
| Roxby Geothermal Project (data sourced from SARIG)13                                                                    |
| Figure 4. The location of all bore holes that yield temperature data within the Roxby Geothermal Project                |
| (See Table 1 for specific data points)                                                                                  |
| Figure 5. Minerals licenses that overlap the Roxby Geothermal Project (data sourced from SARIG). Full                   |
| details are presented in Appendix 116                                                                                   |
| Figure 6. The World Stress Map stress regime classifications and their associated styles of faulting (from              |
| Heidbach <i>et al.</i> , 2008)                                                                                          |
| Figure 7: (a) Major physiographic features of south-central Australia. Note the position of the Wilkatana               |
| Fault (WF), which is located northeast of Port Augusta and provides the closest stress field                            |
| indicator to GEL 563. (b) Distribution of historical seismic activity, earthquake magnitudes and S <sub>H</sub>         |
| azimuth estimates in southern South Australia (from Quigley et al., 2006).                                              |
| Figure 8: World Stress Map maximum horizontal stress (S <sub>H</sub> ) orientation indicators (Heidbach <i>et al.</i> , |
| 2008) located within the Adelaide Geosyncline, including the method, quality ranking, and stress                        |
| regime. See Appendix 2 for specific data points                                                                         |
| Figure 9. Surface heat flow map for the 54 wells and bore holes listed in Table 2                                       |
| Figure 10. Isostatic residual Bouguer gravity (low-pass 200 km filter) of the Roxby Geothermal Project                  |
| (Source: Kilgour, 2001).                                                                                                |
| Figure 11. Magnetics image of the Roxby Geothermal Project (Source: Kilgour, 2001)                                      |
| Figure 12. Location of 2D seismic lines within and proximal to the Roxby Geothermal Project. A                          |
| summary of the data is detailed in Table 3 (data sourced from SARIG).                                                   |
| Figure 13. Geographical representation of wells and bore holes bores sampled for thermal conductivity                   |
| analysis in this report. See Appendix 3 for specific data points                                                        |
| Figure 14. Spatial distribution of estimated heat generation data proximal to the Roxby Geothermal                      |
| Project (values calculated using elemental proportions of radioactive isotopes from Geoscience                          |
| Australia's OZCHEM database and Hot Dry Rock's whole rock fusion analysis). See Table 4 and                             |
| Appendix 4 for specific data points                                                                                     |
| Figure 15. Solid geology interpretation of the Gawler Craton (from Zang, 2002). The RGP lies within the                 |
| Olympic Subdomain on the eastern margin of the Gawler Craton                                                            |
| Figure 16. Interpretation of seismic line 08GA-A1 (whole of line) showing thickening of Adelaidean                      |
| succession towards a basin bounding fault in the east (Beardsmore, 2009). Orange horizon marks a                        |
| major erosional surface (probable top of Gawler Range Craton succession) with inversion and                             |
| erosion of the hangingwall roll-over anticline. A possible older Palaeoproterozoic rift basin (blue                     |
| and green horizons) may exist at depth                                                                                  |
| Figure 17. Stratigraphic column for GEL's 563 and 564 (modified from Swain and Grant, 2009)                             |
| Figure 18. Palaeoproterozoic and Early Mesoproterozoic tectono-stratigraphic correlations between the                   |
| Eyre and Yorke Peninsulas of the southeastern margin of the Gawler Craton and the Curnamona                             |
| Craton. The geology of the Yorke Peninsula is inferred to extend along strike into GEL 563 (from                        |
| Zang, 2002)                                                                                                             |
| Figure 19. Surface geology for the Roxby Geothermal Project (data sourced from SARIG)                                   |
| - igne is some construction in the ready second man respect (and sourced nom servers), manual and                       |

# List of Tables

| Table 1. Bore holes within the Roxby Geothermal Project that yielded temperature data (data sourced                   |    |
|-----------------------------------------------------------------------------------------------------------------------|----|
| from SARIG, the South Australia Department of Water, Land and Biodiversity Conservation, and                          |    |
| Southern Gold)14                                                                                                      | ŀ  |
| Table 2. Details of the publically available surface heat flow values within and surrounding GEL's 563, 564 and 565   |    |
| Table 3. Details of all seismic lines acquired within GEL's 563, 564 and 565 (data sourced from SARIG).         29    |    |
| Table 4. Heat generation results from HDR's Whole Rock Fusion analysis for SAU. Data are plotted in         Figure 14 | \$ |
| Table 5. Subdivisions of the Wallaroo Group (from Zang, 2002)44                                                       |    |

3

## Acronyms

| / (öi öiiyii   |                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| \$             | Australian Dollars                                                                                                                  |
| CEFC           | Clean Energy Finance Corporation                                                                                                    |
| CPM            | Carbon Pricing Mechanism                                                                                                            |
| CSP            | Central Shield Province                                                                                                             |
| DfW            | Department for Water (South Australia)                                                                                              |
| DMITRE         | Department of Manufacturing, Innovation, Trade, Resources and Energy (South Australia)                                              |
| DWLBC          | Department of Water, Land and Biodiversity Conservation (South Australia) – Since July 2010: Department for Water (South Australia) |
| EGS            | Engineered Geothermal Systems                                                                                                       |
| EIR            | Environmental Impact Report                                                                                                         |
| EL             | Exploration Licence (minerals)                                                                                                      |
| GA             | Geoscience Australia                                                                                                                |
| GAP            | Groundwater Action Plan                                                                                                             |
| GEL            | Geothermal Exploration Licence                                                                                                      |
| GRK            | Green Rock Energy Limited                                                                                                           |
| GSA            | Geothermal Systems Assessment                                                                                                       |
| HDR            | Hot Dry Rocks Proprietary Limited                                                                                                   |
| HSA            | Hot Sedimentary Aquifer                                                                                                             |
| К              | Potassium                                                                                                                           |
| km             | kilometre = 1,000 metres                                                                                                            |
| m              | metre                                                                                                                               |
| Ма             | million years                                                                                                                       |
| МОХ            | Monax Mining Limited                                                                                                                |
| NRM boards     | Natural Resources Management boards (South Australia)                                                                               |
| NRMA 2004      | Natural Resources Management Act 2004 (South Australia)                                                                             |
| PA 2000        | Petroleum Act 2000 (South Australia)                                                                                                |
| PGEA 2000      | Petroleum and Geothermal Energy Act 2000 (South Australia)                                                                          |
| PGER 2000      | Petroleum and Geothermal Energy Regulations 2000 (South Australia)                                                                  |
| RG             | Roxby Geothermal Pty Ltd                                                                                                            |
| RGP            | Roxby Geothermal Project                                                                                                            |
| S <sub>h</sub> | minimum horizontal principal stress                                                                                                 |
| S <sub>H</sub> | maximum horizontal principal stress                                                                                                 |
| Sv             | vertical principal stress                                                                                                           |
|                |                                                                                                                                     |

| S <sub>1</sub> | maximum principal axes of stress      |
|----------------|---------------------------------------|
| S <sub>2</sub> | intermediate principal axes of stress |
| S <sub>3</sub> | minimum principal axes of stress      |
| SA             | South Australia                       |
| SAHFA          | South Australian Heat Flow Anomaly    |
| SEO            | Statement of Environmental Objectives |
| Th             | Thorium                               |
| U              | Uranium                               |
| WAP            | Water Allocation Plan                 |
| WCR            | Well Completion Report                |
| WSM            | World Stress Map                      |

5

## 1. Introduction

### 1.1. Hot Dry Rocks

Hot Dry Rocks Pty Ltd (HDR) is one of the world's leading geothermal consulting firms. Unique in the geothermal industry, our capabilities are in-house. From rock laboratory work to resource predictions to project development, we have over 100 man-years of industry experience.

At HDR, we provide clients with the Resource Estimates they need to secure financing. We undertake project development, drilling plans, seismicity management strategies and reservoir assessments (compliant with both the Australian and the Canadian Geothermal Reporting Codes). We help you take your tenement holding forward to a viable producing resource. Our laboratory, modelling, mapping and analysis lead to the temperature and flow estimates necessary to predict power.

HDR is the only global geothermal consultancy with the capacity to provide cutting edge 3D thermal modelling of fractured rock systems over time. With this service, we can demonstrate the degradation of heat over time during production from your fractured rock resource. Coupled with our temperature prediction models and other analyses, we provide a comprehensive geothermal systems assessment that gives you the predictions, data and maps you need to move your project forward.

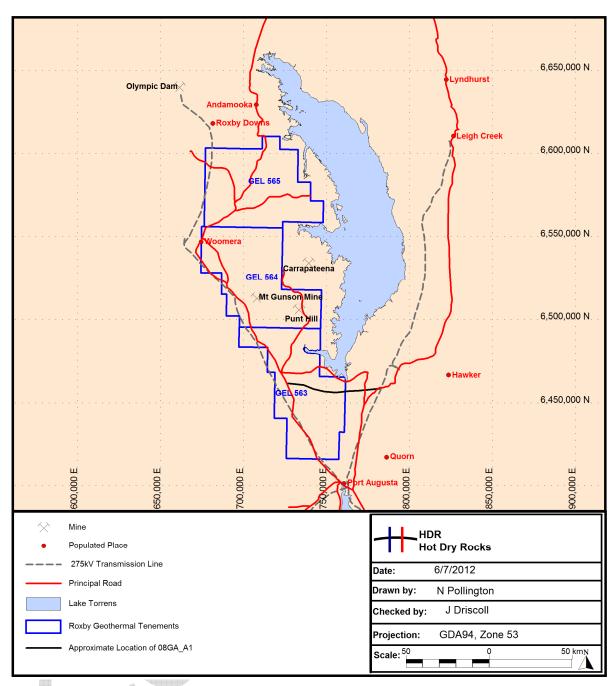
Our mapping work has set the standard and protocols for mapping global Engineered Geothermal Systems (EGS) potential.

### 1.2. Project Concept

Geothermal exploration aims to identify sites with elevated geothermal potential by assessing the likelihood of each of the main components of a geothermal system being present. Namely: the availability of water, the likelihood of *in situ* permeable aquifers or rock units susceptible to artificial permeability enhancement, and the likelihood of elevated temperatures at drillable depth.

Roxby Geothermal Pty Ltd (RG) is an Australian-based geothermal exploration company with a focus on the conversion of discovered geothermal resources to the production of commercial geothermal energy. RG is the sole licensee of Geothermal Exploration Licenses (GEL's) 563, 564 and 565 in South Australia, also referred to as the Roxby Geothermal Project (RGP). These contiguous licenses are located south and west of Lake Torrens in central South Australia. 22 smaller GEL's over the same area were previously awarded to Inferus Resources Pty Ltd (a wholly owned subsidiary of Southern Gold Limited; SAU) in two tranches on 8 August 2008 and 6 July 2009. However, SAU ultimately decided to focus on its core portfolio of gold and base metals exploration projects, and relinquished all 22 GEL's in 2010.

The Department of Manufacturing, Innovation, Trade, Resources and Energy (DMITRE) regulates geothermal resources in South Australia and, under the *Petroleum Act 2000* (PA 2000), initially limited the size of any GEL to 500 km<sup>2</sup>. Other Australian state governments subsequently enacted their own geothermal acts and stipulated much larger tenements sizes, most notably Victoria with a maximum size of 10,000 km<sup>2</sup>. Consultations with industry led to the South Australia government amending PA 2000, and in 2009 the maximum size of GEL's was increased to 10,000 km<sup>2</sup>. Smaller licence areas were amalgamated into larger GEL's.


As such, the area initially covered by 22 GEL's was consolidated into three contiguous GEL's (GEL 563, 564 and 565) and awarded to RG on 18 May 2011.

RG commissioned HDR to undertake a review of all existing geological and geophysical data within GEL's 563, 564 and 565.

### 1.2.1. Location

The RGP is located south and west of Lake Torrens in central South Australia on the eastern margin of the Gawler Craton. The project covers an area of approximately 8,905 km<sup>2</sup> (Figure 1).

The area under investigation for geothermal resources is very sparsely populated with a just a handful of pastoral stations. Just three towns are located nearby: Port Augusta (population 13,257) some 15 km south of the southernmost edge of GEL 563, Woomera (population 450) proximal to the westernmost margin of GEL 564, and Roxby Downs (population 4,055) approximately 15 km north of the northernmost margin of GEL 565. The only major sealed road network, and a rail track, traverses a restricted corridor along the western portions of the GEL's. However, some minor roads and tracks are present. The nearest airport is in Port Augusta, although several airfields are located at Andamooka, Woomera and Mount Gunson.



**Figure 1**. Location of the Roxby Geothermal Project (GEL's 563, 564 and 565). The seismic trace (08GA-A1) is applicable to Figure 15.

The area west of Lake Torrens is a proven minerals province, overlapping the Olympic Dam iron oxide copper-gold (IOCG) Province, which hosts the world class Olympic Dam Cu–U–Au–Ag resource, as well as the Prominent Hill Cu–Au and Carrapateena Cu–Au deposits.

Much of the RGP is covered by a thin veneer of Pleistocene to Quaternary alluvium and aeolian sands with limited exposures of Proterozoic to Cambrian-aged quartzite and limestone, concentrated in the northern portions of the permits. Several endorheic salt lakes are present, the largest of which is Lake Torrens; averaging approximately 200 km north–south and 30 km east–west. These salt lakes comprise red–brown clays and silts beneath a thin salt crust, and rarely fill with water (just twice in recent history: 1897 and April 1989). Topographic relief within the RGP is generally flat to low-lying, ranging from ~30 m along the shoreline of Lake Torrens to ~210 m along some of the rocky scarps and tablelands.

## 1.2.2. Regional Geothermal Drivers

The recent passing of the Clean Energy Bill by the Australian Lower (October 2011) and Upper (November 2011) House's of Parliament sees the creation of a Carbon Pricing Mechanism (CPM), beginning with a fixed-price carbon tax which came into effect on 1 July 2012 before proceeding to a floating-price Emissions Trading Scheme by July 2015. Under the CPM, the (approximately) 500 biggest polluters will be required to buy permits for each tonne of CO<sub>2</sub> emitted. The CPM acts as a catalyst for the deployment of clean energy sources such as geothermal. A further stimulus is the creation of the \$10b Clean Energy Finance Corporation (CEFC). The CEFC has been established to drive innovation through commercial investments in clean energy through loans, loan guarantees and equity investments, and will leverage private sector financing for renewable energy and clean technology projects.

The RGP lies proximal to an area that hosts growing energy markets, including the world class Olympic Dam (the proposed Olympic Dam expansion is forecast to consume close to half of SA's power supply) and Prominent Hill mines. The project area is ideally located to straddle the existing 275 kV and 132 kV power lines that connect Olympic Dam and Prominent Hill mines to the national power grid at Port Augusta (Figure 1).

Only limited mining exploration activities have been undertaken within the RGP and geological and geophysical datasets are therefore sparse.

## 1.2.3. Legislation and Regulation

South Australia was the first of the Australian state and territory governments to enact geothermal legislation and regulations. The *Petroleum Act* 2000 regulates geothermal resources in SA, subject to an amendment proclaimed in late 2009 (*Petroleum and Geothermal Energy Act* 2000 (PGEA 2000) and the *Petroleum and*  *Geothermal Energy Regulations* 2000 (PGER 2000)). DMITRE regulates the PGEA 2000. The PGEA 2000 allows for concurrent overlapping resource licences (minerals, petroleum and geothermal).

## 1.2.4. Conceptual Heat Source

The RGP lies within the Central Shield Province (CSP) of Sass & Lachenbruch (1979) (Figure 2). The CSP correlates with the approximate distribution of Proterozoic metamorphic terranes, and is associated with regions of elevated heat flow, most notably the South Australian Heat Flow Anomaly (SAHFA), which has been demonstrated to host very high temperature rocks with potential for geothermal power production. The source of these high temperatures is related to the very high elemental concentrations of uranium (U), thorium (Th) and potassium (K) within Basement rocks. A number of geothermal companies are assessing the potential to produce geothermal power within the SAHFA.

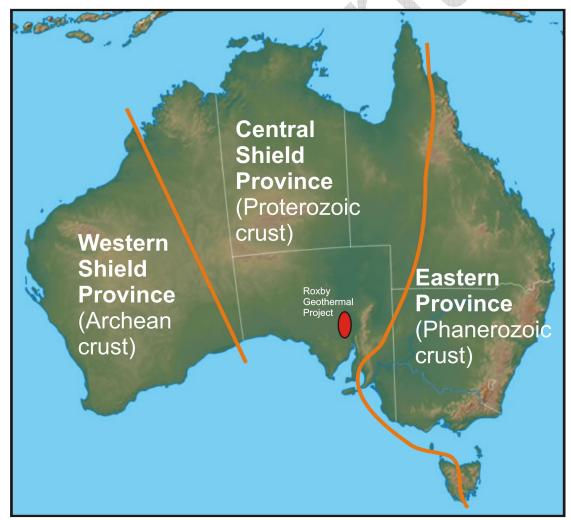



Figure 2. Broad divisions of the Australian continental crust, based on basement rock age (based on Sass & Lachenbruch, 1979).

# 2. Actions Undertaken in this Data Review

## 2.1. Datasets Sought

The key pieces of information required for geothermal exploration are a firm understanding of the 3D geological architecture of the Geothermal Play, the thermal properties and structure of the rocks, and the existing porosity and permeability distribution within the rocks. This report constitutes a data collation exercise to compile all existing data pertaining to these aims. The report also lists a series of recommendations that are designed to be framed into an ongoing work program.

Recommendation: That HDR undertake a full Geothermal Systems Assessment (GSA) to define an ongoing exploration work program for the RGP. The GSA is a desktop scoping study of an area incorporating regional data, utilising open-file data and encompassing as much existing information as possible. During the process of the GSA, gaps in available data are identified and highlighted for future studies.

## 2.2. Datasets Collected

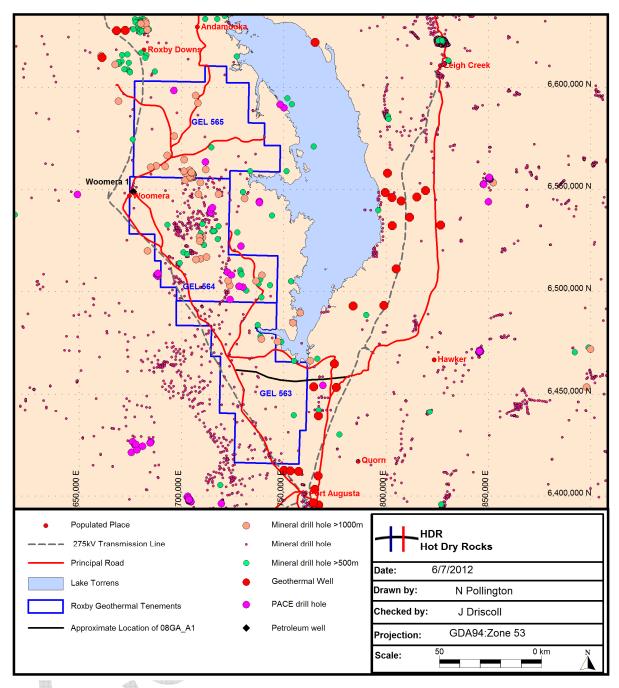
The primary data sources used in this assessment were all publicly available and included data such as local petroleum wells and their corresponding well completion reports (WCR's), both published and unpublished HDR reports and geothermal resource assessments, published geological maps, interpretations, and reports. For this document the available datasets and the manner in which they were compiled follow:

- A review of pertinent published literature and maps on the geology of the relevant portion of the Gawler Craton/Stuart Shelf.
- Assessment of minerals well data relevant to geothermal exploration.
- Compilation of heat generation data as estimated from chemical analyses in Geoscience Australia's (GA's) OZCHEM (2007) database, and from previous work undertaken by HDR.
- Collation of rock thermal conductivity data.
- Compilation of heat flow data and quality assessment from the Global Heat Flow Database and any other publications of relevance.
- Compilation of seismic data within, and proximal to the RGP.
- Review of selected borehole data and/or cross-sectional data, where suitable.

- Collation of published stress data for the area and qualitative assessment of stress, fault and other data.
- Generation of base maps for well and licence locations, heat flow and heat generation.

## 2.3. Data Review

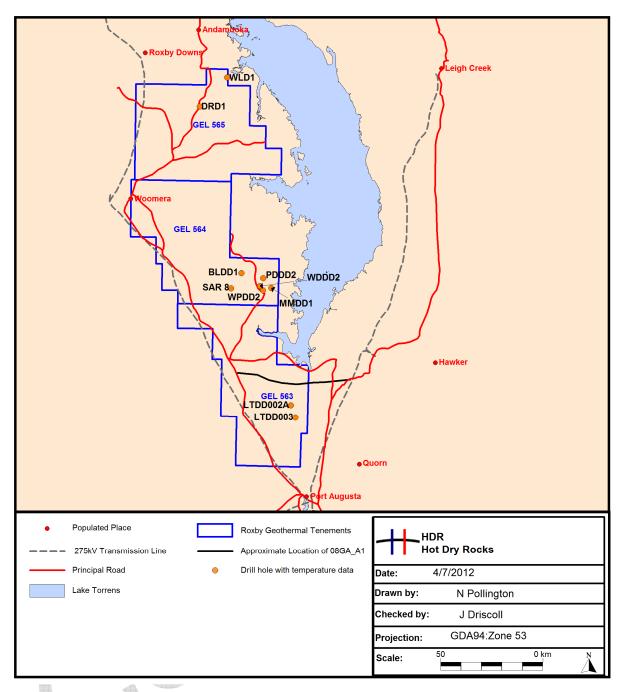
## 2.3.1. Geological Data


## 2.3.1.1. Well Data

HDR interrogated DMITRE's online interactive mapping application (SARIG) to record all minerals, petroleum and geothermal wells drilled within, and proximal to the RGP (Figure 3).

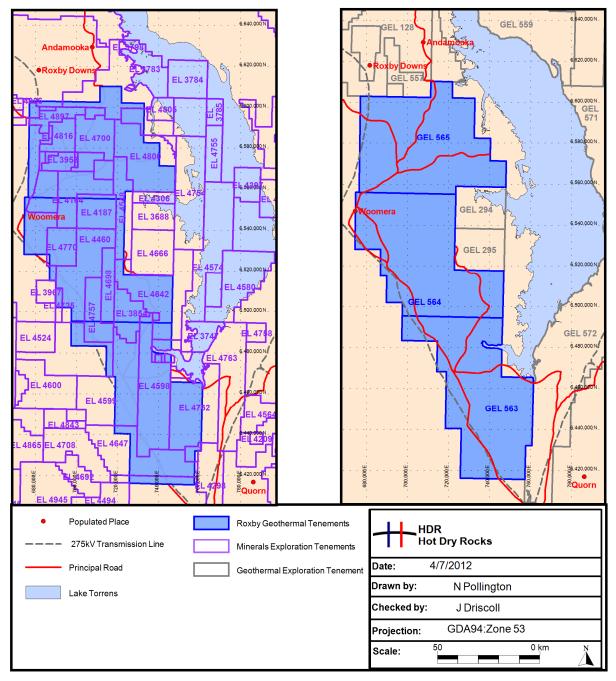
In addition, HDR interrogated several South Australian Government databases to record the location of minerals, petroleum and water bores within the RGP that contained temperature data (Table 1; Figure 4). The results indicate that much of the area is devoid of useful temperature data. In 2009, SAU established a collaborative agreement with Monax Mining Limited (MOX), to access their recently drilled minerals bores and perform geothermal exploration activities. In November 2009 HDR undertook precision temperature logging of five of these mineral bores within the area covered by SAU's GEL 300 (now incorporated into GEL 564).

One petroleum well had been drilled in the RGP (Woomera 1). However, the well was completed in 1958 and did not yield any temperature data.






**Figure 3**. The spatial location of all minerals, geothermal and petroleum bores drilled proximal to the Roxby Geothermal Project (data sourced from SARIG).


| Bore     | Tenement | Year<br>drilled | MGA<br>Easting<br>(m) | MGA<br>Northing<br>(m) | Zone | Total<br>Depth<br>(m) | Data type                    |
|----------|----------|-----------------|-----------------------|------------------------|------|-----------------------|------------------------------|
| LTDD002A | GEL 563  | 2007            | 752841                | 6446012                | 53   | 996.5                 | Precision Temperature<br>Log |
| LTDD003  | GEL 563  | 2007            | 755015                | 6439978                | 53   | 1034.3                | Precision Temperature<br>Log |
| MMDD1    | GEL 564  | 2007            | 743328                | 6503022                | 53   | 906.3                 | Precision Temperature<br>Log |
| PDDD2    | GEL 564  | 2007            | 739236                | 6508108                | 53   | 1014.2                | Precision Temperature<br>Log |
| WDDD2    | GEL 564  | 2007            | 737703                | 6503971                | 53   | 901.2                 | Precision Temperature<br>Log |
| WPDD2    | GEL 564  | 2006            | 739172                | 6501952                | 53   | 891.3                 | Precision Temperature<br>Log |
| BLDD1    | GEL 564  | 2006            | 728620                | 6510574                | 53   | 822.2                 | Precision Temperature<br>Log |
| SAR 8    | GEL 564  | 1981            | 723550                | 6502906                | 53   | 1340.0                | Bottom Hole Tempera-<br>ture |
| WLD1     | GEL 565  | 1982            | 721725                | 6606171                | 53   | 650.0                 | Precision Temperature<br>Log |
| DRD1     | GEL 565  | 1981            | 708314                | 6591966                | 53   | 1100.0                | Precision Temperature<br>Log |

**Table** 1. Bore holes within the Roxby Geothermal Project that yielded temperature data (data sourced from SARIG, the South Australia Department of Water, Land and Biodiversity Conservation, and Southern Gold).



**Figure 4**. The location of all bore holes that yield temperature data within the Roxby Geothermal Project (See Table 1 for specific data points).

Recommendation: That all minerals companies with Exploration Licences (EL's) overlapping the RGP (Figure 5 and Appendix 1) be contacted to establish collaborative agreements, similar to that enacted between Southern Gold and Monax Mining. This will allow temperature data (and samples for thermal conductivity analysis) to be collected at a much reduced cost to RG. Benefits to the mineral exploration company includes a greater geological understanding of their tenement; sharing of costs for future drill holes; and any geothermal resource identified could be utilised to supply power to any mines that may be developed (*cf.* Beverley Uranium mine and Petratherm's Paralana Project).



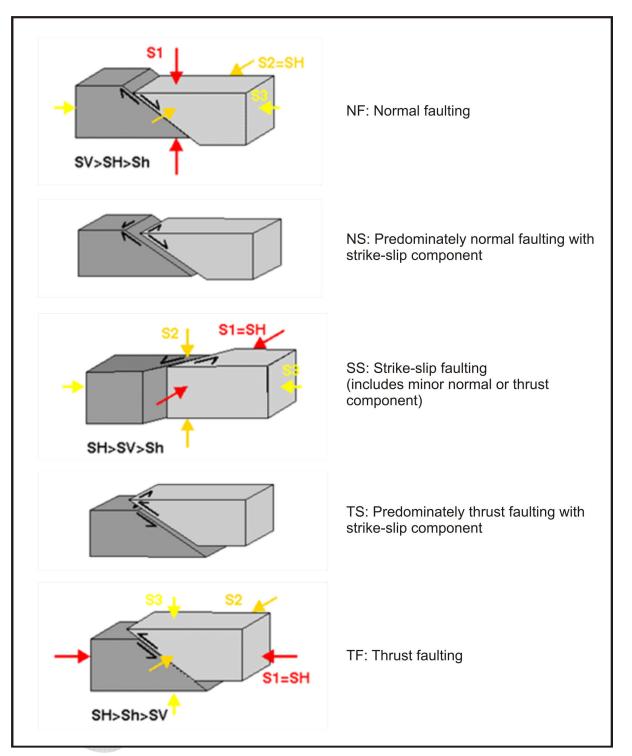
**Figure 5**. Minerals licenses that overlap the Roxby Geothermal Project (data sourced from SARIG). Full details are presented in Appendix 1.

#### 2.3.1.2. Stress Data

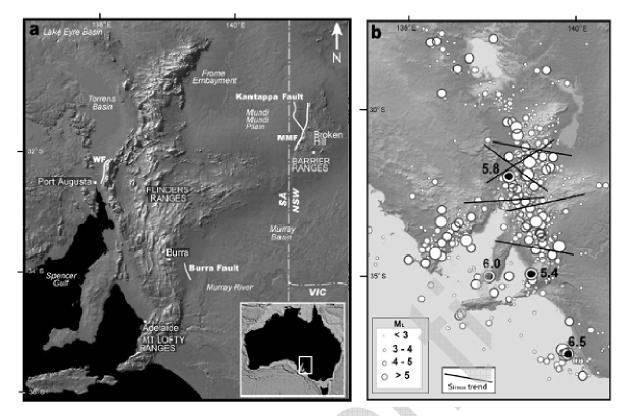
In general, stress fields are anisotropic and inhomogeneous. They are defined in simplified terms by three mutually orthogonal principal axes of stress, being the maximum ( $S_1$ ), intermediate ( $S_2$ ) and minimum ( $S_3$ ) stress axes. The determination of the local stress field is important as the theory of stress-dependent fracture permeability predicts enhanced permeability associated with critically stressed faults or fractures that are either undergoing dilation (~parallel to  $S_1$ ) or shear reactivation (<45° to  $S_1$ ) under the influence of the contemporary stress field.

In practice, the classification of far-field stress regimes is based upon the Andersonian scheme, which relates the three major styles of faulting in the crust to the three major arrangements of the principal axes of stress—the vertical principal stress ( $S_V$ ) and the maximum and minimum horizontal principal stresses ( $S_H$  and  $S_h$ , respectively) (Anderson, 1951). These three major stress regimes are: (a) the normal faulting stress regime where  $S_V > S_H > S_h$ ; (b) the strike-slip faulting stress regime where  $S_H > S_V > S_h$ ; and (c) the reverse (or thrust) faulting stress regime where  $S_H > S_h > S_V$  (Figure 6).

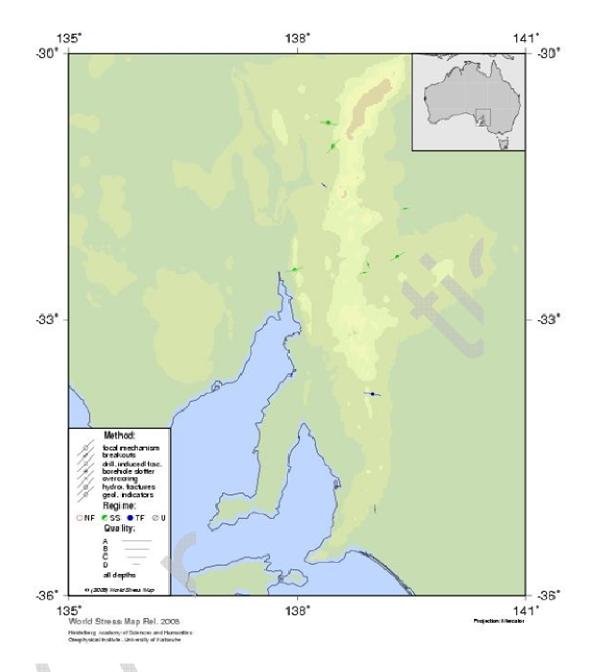
The RGP is located proximal to the Flinders Ranges of the Adelaide Geosyncline, which are currently seismically active and experiencing hundreds of earthquakes annually (Figures 7 and 8). This present-day seismic activity was initiated by coupling and/or convergence between the Pacific and Australian plates during the late Miocene period (<6 Ma) (Hillis and Reynolds, 2000; Sandiford et al., 2004). Evidence from earthquake focal mechanisms and fault kinematic analyses suggest that the regional far-field stress field within the Adelaide Geosyncline ranges from reverse fault, strike-slip fault and transitional stress regimes with an ~E–W compression direction ( $S_H$ ) of 083° ± 30° (see classifications TF. SS and TS of Figure 6; Hillis & Reynolds, 2000; Quigley et al., 2006). The closest stress field indicator in the southern portion of the RGP is the Wilkatana Fault, which is a reactivated major bounding fault of the Adelaide Geosyncline located ~35 km to the east of GEL 563 (Figure 7). Fault kinematic analyses along the Wilkatana Fault show contemporary reverse oblique-slip (transitional strike-slip?) fault displacements related to the present-day stress regime (Quigley et al., 2006). Directly north of the RGP near the Olympic Dam mine site, Green Rock Energy Limited (GRK) have conducted an *in situ* bore hole stress test in their Blanche 1 well. The results of this


www.hotdryrocks.com

test indicated a reverse fault stress regime (Green Rock Energy, 2008). In comparison, a compilation of the World Stress Map (WSM) data release (Heidbach *et al.*, 2008) for all quality ranked *in situ* stress field data for the eastern Gawler Craton/Adelaide Geosyncline region is shown in Figure 8 and Appendix 2. This dataset consists entirely of earthquake focal mechanism data, which shows a mixture of strike-slip and reverse fault stress regime indicators.


As a consequence of this variability, the local stress field is best determined at individual well locations. However, it is notable that the two closest stress field indicators to the RGP both record the more favourable reverse fault stress regime. With respect to EGS-style developments, in either a reverse or strike-slip fault stress regime S<sub>1</sub> is horizontally compressive. In a reverse fault stress regime hydraulic stimulation generally results in approximately horizontal fracture growth (considered optimal for EGS heat recovery). Hydrofracs in a strike-slip stress regime will form steep to vertical dipping fractures that strike <45° (commonly 30°) to the direction of S<sub>1</sub>. An additional implication of the potential transitional reverse/strike-slip stress regime is that if the magnitude of S<sub>h</sub> does approach that of S<sub>V</sub> then greater injection pressures may be required for hydraulic stimulation.

HDR notes the stress data are sparse and the question as to whether the RGP possess a favourable stress regime for reservoir development is unresolved.


Recommendation: That stress tests be conducted on bores drilled within the RGP to depths greater than 700 m. Unlike the petroleum industry, mineral drilling rigs do not usually have the capability of undertaking stress measurements whilst drilling. It would therefore be necessary to undertake these tests once drilling has completed. It is also possible to undertake these tests on minerals bores drilled previously provided the bore is open to accommodate the testing equipment



**Figure 6**. The World Stress Map stress regime classifications and their associated styles of faulting (from Heidbach *et al.*, 2008).



**Figure 7**: (a) Major physiographic features of south-central Australia. Note the position of the Wilkatana Fault (WF), which is located northeast of Port Augusta and provides the closest stress field indicator to GEL 563. (b) Distribution of historical seismic activity, earthquake magnitudes and  $S_H$  azimuth estimates in southern South Australia (from Quigley *et al.*, 2006).



**Figure 8**: World Stress Map maximum horizontal stress ( $S_H$ ) orientation indicators (Heidbach *et al.*, 2008) located within the Adelaide Geosyncline, including the method, quality ranking, and stress regime. See Appendix 2 for specific data points.

## 2.3.1.3. Surface Manifestations

HDR has uncovered no records of any springs or seeps within the RGP.

#### 2.3.2. Geophysical Data

#### 2.3.2.1. Heat Flow Data

The International Heat Flow Commission global heat flow database lists four values proximal to the RGP: Ediacara (Munro *et al.*, 1975), Iron Knob (Sass *et al.*, 1976), Carrieton (Munro *et al.*, 1975), and Mount McTaggart (Munro *et al.*, 1975).

In addition to the global heat flow data points, a number of surface heat flow values have been calculated in recent years by geothermal companies, most notably Torrens Energy, GRK and SAU (Table 2, Figure 9). These 54 datasets indicated the median surface heat flow to be 93 mW/m<sup>2</sup> in this area. The global average for Proterozoic continental basins is approximately 58.3 mW/m<sup>2</sup> (Beardsmore & Cull, 2001), thus surface heat flow in the RGP can be considered to be highly elevated.

| Bore<br>Hole/Site | Pro-<br>ject         | Lat (°) | Long<br>(°) | East-<br>ing<br>(mE) | Nor-<br>thing<br>(mN) | Zon<br>e | To-<br>tal<br>Dept<br>h<br>(m) | Heat<br>Flow<br>(mW<br>m <sup>2</sup> ) | Source                          | Tene-<br>ment |
|-------------------|----------------------|---------|-------------|----------------------|-----------------------|----------|--------------------------------|-----------------------------------------|---------------------------------|---------------|
| BLDD1             | RGP                  | 31.517  | 137.408     | 72862<br>0           | 651057<br>4           | 53       | 822.<br>2                      | 92                                      | Southern Gold                   | GEL<br>564    |
| MMDD1             | RGP                  | 31.582  | 137.564     | 74332<br>8           | 650302<br>2           | 53       | 906.<br>3                      | 87                                      | Southern Gold                   | GEL<br>564    |
| PDDD2             | RGP                  | 31.537  | 137.520     | 73923<br>6           | 650810<br>8           | 53       | 1014<br>.2                     | 85                                      | Southern Gold                   | GEL<br>564    |
| WDDD2             | RGP                  | 31.575  | 137.505     | 73770<br>3           | 650397<br>1           | 53       | 901.<br>2                      | 83                                      | Southern Gold                   | GEL<br>564    |
| WPDD2             | RGP                  | 31.593  | 137.521     | 73917<br>2           | 650195<br>2           | 53       | 891.<br>3                      | 85                                      | Southern Gold                   | GEL<br>564    |
| LTDD002A          | RGP                  | 32.094  | 137.679     | 75283<br>9           | 644601<br>4           | 53       | 997.<br>0                      | 94                                      | Southern Gold                   | GEL<br>563    |
| LTDD003           | RGP                  | 32.148  | 137.704     | 75501<br>5           | 643998<br>4           | 53       | 1118<br>.7                     | 94                                      | Southern Gold                   | GEL<br>563    |
| Blanche 1         | Olym-<br>pic<br>Dam  | 30.470  | 136.797     | 67251<br>6           | 662774<br>9           | 53       | 1935<br>.0                     | 94                                      | Blanche 1 WCR [GRK]             | GEL<br>128    |
| Balrog 1          | Para-<br>chilna      | 31.265  | 138.270     | 24007<br>5           | 653781<br>0           | 54       | 507.<br>0                      | 110                                     | TEY ASX Announcement<br>19Oct09 | GEL<br>571    |
| Faramir 1         | Port<br>Au-<br>gusta | 31.920  | 137.905     | 77471<br>7           | 646475<br>4           | 53       | 443.<br>0                      | 67                                      | TEY Annual Report 2011          | GEL<br>571    |
| Gandalf 1         | Para-<br>chilna      | 31.305  | 138.183     | 23188<br>5           | 653321<br>8           | 54       | 585.<br>0                      | 116                                     | TEY ASX Announcement<br>19Oct09 | GEL<br>571    |
| Gollum 1          | Para-<br>chilna      | 31.147  | 138.348     | 24712<br>9           | 655112<br>0           | 54       | 501.<br>0                      | 106                                     | TEY ASX Announcement<br>19Oct09 | GEL<br>571    |
| Melkor 1          | Para-<br>chilna      | 31.160  | 138.143     | 22762<br>7           | 654918<br>8           | 54       | 1007<br>.0                     | 115                                     | TEY Annual Report 2011          | GEL<br>571    |
| Nazgul 1          | Para-<br>chilna      | 31.075  | 138.151     | 22817<br>5           | 655863<br>6           | 54       | 600.<br>0                      | 120                                     | TEY ASX Announcement<br>19Oct09 | GEL<br>571    |
| Sauron 1          | Para-<br>chilna      | 31.181  | 138.178     | 23105<br>1           | 654689<br>4           | 54       | 375.<br>0                      | 120                                     | TEY ASX Announcement<br>19Oct09 | GEL<br>571    |
| Shelob 1          | Port<br>Au-<br>gusta | 32.023  | 137.919     | 77565<br>5           | 645331<br>3           | 53       | 321.<br>0                      | 61                                      | TEY ASX Announcement<br>30Jun09 | GEL<br>572    |
| Theoden 2         | Port<br>Au-<br>gusta | 32.535  | 137.816     | 76448<br>0           | 639681<br>6           | 53       | 372.<br>0                      | 101                                     | TEY ASX Announcement<br>30Jul09 | GEL<br>572    |

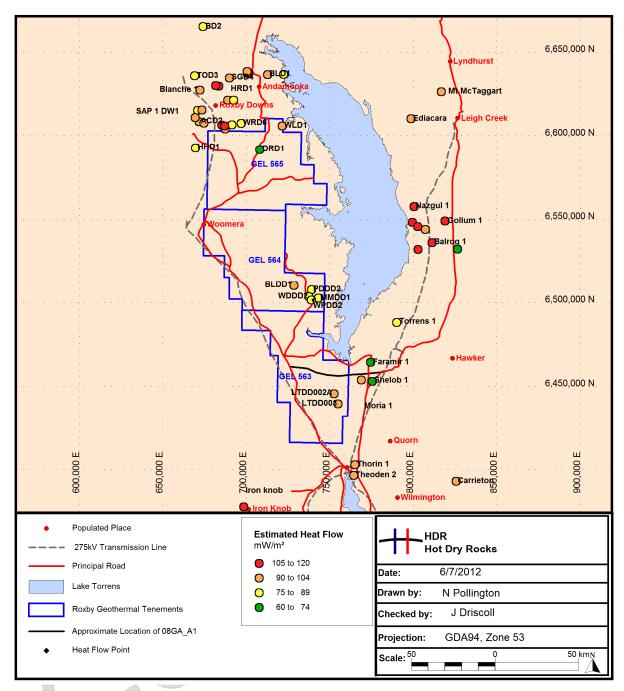
 Table 2. Details of the publically available surface heat flow values within and surrounding GEL's 563, 564 and 565.

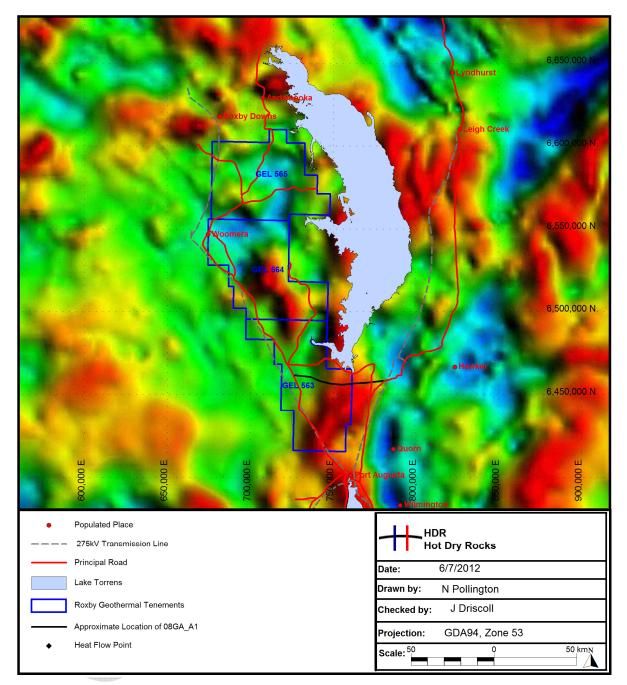
| Thorin 1              | Port<br>Au-<br>gusta | 32.476 | 137.821 | 76513<br>3 | 640333<br>3 | 53 | 363.<br>0  | 93  | TEY ASX Announcement<br>30Jun09 | GEL<br>572  |
|-----------------------|----------------------|--------|---------|------------|-------------|----|------------|-----|---------------------------------|-------------|
| Treebeard 1A          | Para-<br>chilna      | 31.195 | 138.226 | 23563<br>8 | 654542<br>2 | 54 | 1807<br>.0 | 91  | TEY ASX Announcement<br>19Oct09 | GEL<br>571  |
| Torrens 1<br>(TDH001) | Para-<br>chilna      | 31.702 | 138.062 | 22158<br>7 | 648884<br>3 | 54 | 760.<br>0  | 82  | TEY ASX Announcement 24Nov08    | GEL<br>572  |
| Edeowie 1             | Para-<br>chilna      | 31.296 | 138.431 | 25550<br>5 | 653475<br>3 | 54 | 759.<br>0  | 74  | TEY ASX Announcement<br>19Oct09 | GEL<br>571  |
| TKHD1A                | Port<br>Au-<br>gusta | 32.016 | 137.848 | 76904<br>9 | 645425<br>9 | 53 | 1002<br>.0 | 96  | TEY ASX Announcement<br>31Mar09 | GEL<br>572  |
| Carrieton             | -                    | 32.550 | 138.469 | -          | -           | -  | 376.<br>0  | 92  | Open-File Report 75-567         | -           |
| Ediacara              | -                    | 30.600 | 138.117 | -          | -           | -  | 213.<br>0  | 96  | Open-File Report 75-567         | GEL<br>576  |
| Iron Knob             | -                    | 32.717 | 137.119 | -          | -           | -  | 305.<br>0  | 109 | Open-File Report 76-250         | -           |
| Mount<br>McTaggart    | -                    | 30.450 | 138.300 | -          | -           | -  | 175.<br>0  | 101 | Open-File Report 75-567         | GEL<br>576  |
| ACD2                  | Olym-<br>pic<br>Dam  | 30.641 | 136.795 | -          | -           | -  | 915.<br>0  | 92  | Olympic Dam report 2009         | GEL<br>128  |
| ACD3                  | Olym-<br>pic<br>Dam  | 30.649 | 136.824 | -          | -           | -  | 1229<br>.0 | 95  | Olympic Dam report 2009         | GEL<br>128  |
| ACD4                  | Olym-<br>pic<br>Dam  | 30.580 | 136.785 | -          | -           | -  | 848.<br>0  | 88  | Olympic Dam report 2009         | GEL<br>128  |
| ACD5                  | Olym-<br>pic<br>Dam  | 30.578 | 136.811 | -          | -           | -  | 670.<br>0  | 99  | Olympic Dam report 2009         | GEL<br>128  |
| ACD9                  | Olym-<br>pic<br>Dam  | 30.619 | 136.769 | -          | ÷           |    | 670.<br>0  | 94  | Olympic Dam report 2009         | GEL<br>128  |
| BD2                   | Olym-<br>pic<br>Dam  | 30.127 | 136.810 | -          |             |    | 829.<br>4  | 81  | Olympic Dam report 2009         | -           |
| BLD1                  | Olym-<br>pic<br>Dam  | 30.380 | 137.216 |            |             |    | 768.<br>0  | 92  | Olympic Dam report 2009         | GEL<br>206  |
| BLD3                  | Olym-<br>pic<br>Dam  | 30.377 | 137.316 |            |             | -  | 1024<br>.0 | 75  | Olympic Dam report 2009         | -           |
| DRD1                  | Olym-<br>pic<br>Dam  | 30.787 | 137.177 | -          | - ·         | -  | 1100<br>.0 | 74  | Olympic Dam report 2009         | GEL<br>565  |
| HHD1                  | Olym-<br>pic<br>Dam  | 30.784 | 136.775 | -          | -           | -  | 1187<br>.0 | 81  | Olympic Dam report 2009         | -           |
| HRD1                  | Olym-<br>pic<br>Dam  | 30.461 | 136.978 | -          | -           | -  | 330.<br>0  | 89  | Olympic Dam report 2009         | GEL<br>557  |
| PD2                   | Olym-<br>pic<br>Dam  | 30.522 | 136.971 | -          | -           | -  | 500.<br>0  | 91  | Olympic Dam report 2009         | GEL128      |
| PD3                   | Olym-<br>pic<br>Dam  | 30.522 | 137.008 | -          | -           | -  | 442.<br>0  | 86  | Olympic Dam report 2009         | GEL<br>557  |
| RD2773                | Olym-<br>pic<br>Dam  | 30.448 | 136.913 | -          | -           | -  | 2328<br>.9 | 119 | Olympic Dam report 2009         | GELA<br>164 |
| RD2785                | Olym-<br>pic<br>Dam  | 30.445 | 136.894 | -          | -           | -  | 2323<br>.4 | 115 | Olympic Dam report 2009         | GELA<br>164 |
| SGD2                  | Olym-<br>pic<br>Dam  | 30.375 | 137.088 | -          | -           | -  | 598.<br>4  | 101 | Olympic Dam report 2009         | GEL<br>128  |
| SGD4                  | Olym-<br>pic<br>Dam  | 30.402 | 136.979 | -          | -           | -  | 800.<br>0  | 92  | Olympic Dam report 2009         | GEL<br>128  |
| SGD5                  | Olym-<br>pic<br>Dam  | 30.376 | 137.099 | -          | -           | -  | 800.<br>0  | 109 | Olympic Dam report 2009         | GEL<br>128  |

23

www.hotdryrocks.com

| SGD6  | Olym-<br>pic<br>Dam | 30.366 | 137.089 | - | - | - | 800.<br>0 | 98  | Olympic Dam report 2009 | GEL<br>128 |
|-------|---------------------|--------|---------|---|---|---|-----------|-----|-------------------------|------------|
| TOD3  | Olym-<br>pic<br>Dam | 30.393 | 136.762 | - | - | - | 850.<br>0 | 82  | Olympic Dam report 2009 | -          |
| WLD1  | Olym-<br>pic<br>Dam | 30.657 | 137.314 | - | - | - | 650.<br>0 | 95  | Olympic Dam report 2009 | GEL<br>565 |
| WRD11 | Olym-<br>pic<br>Dam | 30.652 | 136.960 | - | - | - | 695.<br>0 | 89  | Olympic Dam report 2009 | GEL<br>128 |
| WRD12 | Olym-<br>pic<br>Dam | 30.663 | 136.950 | - | - | - | 388.<br>0 | 100 | Olympic Dam report 2009 | GEL<br>128 |
| WRD2  | Olym-<br>pic<br>Dam | 30.658 | 136.937 | - | - | - | 900.<br>0 | 115 | Olympic Dam report 2009 | GEL<br>128 |
| WRD4  | Olym-<br>pic<br>Dam | 30.656 | 137.000 | - | - | - | 584.<br>8 | 82  | Olympic Dam report 2009 | GEL<br>128 |
| WRD5  | Olym-<br>pic<br>Dam | 30.679 | 136.958 | - | - | - | 628.<br>3 | 93  | Olympic Dam report 2009 | GEL<br>128 |
| WRD6  | Olym-<br>pic<br>Dam | 30.647 | 137.058 | - | - | - | 748.<br>9 | 84  | Olympic Dam report 2009 | GEL<br>128 |
| WRD9  | Olym-<br>pic<br>Dam | 30.663 | 136.954 | - | - | - | 580.<br>0 | 119 | Olympic Dam report 2009 | GEL<br>128 |





Figure 9. Surface heat flow map for the 54 wells and bore holes listed in Table 2.

## 2.3.2.2. Directly Measured Temperature Data

There are no directly measured temperature datasets deeper than 1,340 m in the RGP. This is shallower than any potential geothermal reservoir target.

## 2.3.2.3. Gravity Data

Figure 10 is an image of the regional gravity data for the RGP.



**Figure 10**. Isostatic residual Bouguer gravity (low-pass 200 km filter) of the Roxby Geothermal Project (Source: Kilgour, 2001).

## 2.3.2.4. Magnetics Data

Figure 11 is an image of the regional magnetics data for the RGP.

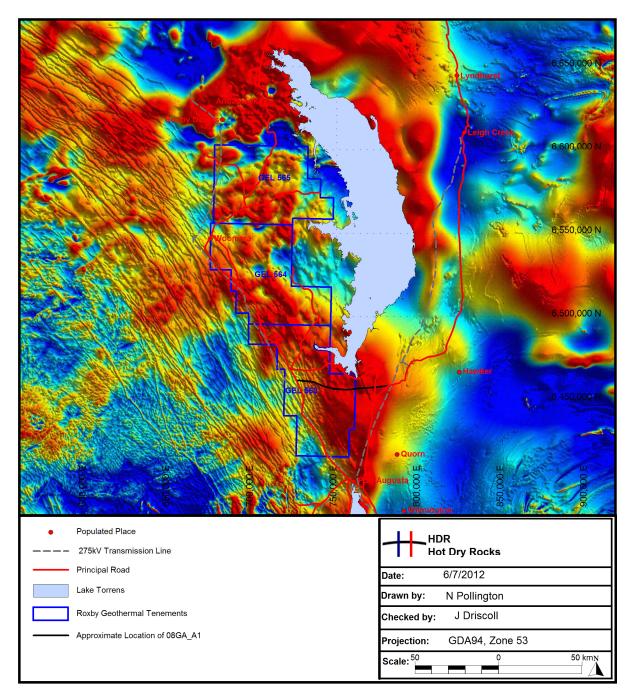
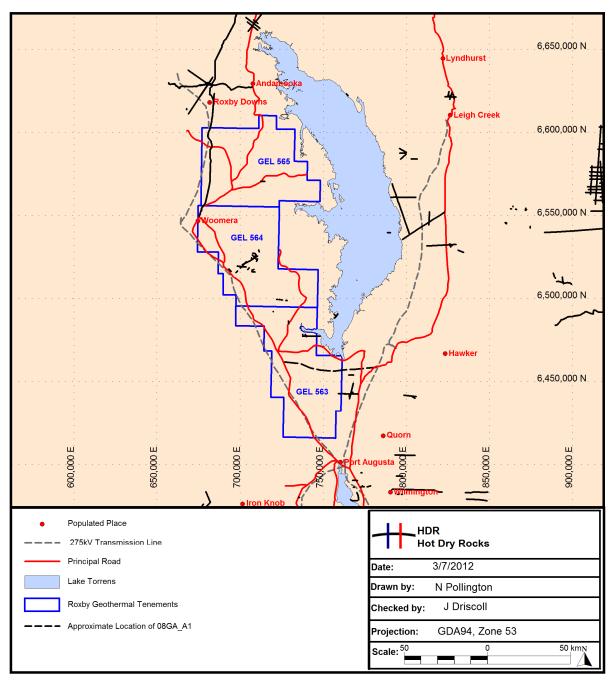




Figure 11. Magnetics image of the Roxby Geothermal Project (Source: Kilgour, 2001).

## 2.3.2.5. Seismic Data

HDR interrogated DMITRE's online mapping database, SARIG, and collated all references to seismic data in the RGP. Results indicate that most lines are of vintage quality (Figure 12, Table 3).



**Figure 12**. Location of 2D seismic lines within and proximal to the Roxby Geothermal Project. A summary of the data is detailed in Table 3 (data sourced from SARIG).

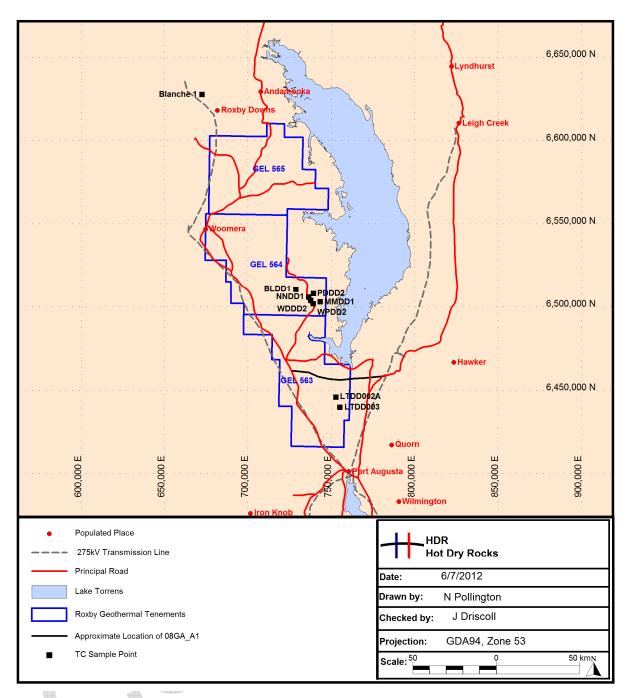
| Line           | Survey | Year<br>recorded | Name                                     | Province         | Mining<br>Tenement | Line<br>Km | Comment                                                                    | Tenement        |
|----------------|--------|------------------|------------------------------------------|------------------|--------------------|------------|----------------------------------------------------------------------------|-----------------|
| WMC81-<br>004  | 81SS01 | 1981             | Oak Dam                                  | Stuart Shelf     | EL 784             | 2.46       |                                                                            | GEL 565         |
| OD81-<br>007   | 81SS03 | 1981             | Oak Dam<br>81/07                         | Stuart Shelf     | EL 784             | 2.33       |                                                                            | GEL 565         |
| 03GA-<br>OD1   | 03GC01 | 2003             | L163 Gawler<br>Seismic Survey<br>SA 2003 | Gawler<br>Craton |                    | 250.79     |                                                                            | GEL 564,<br>565 |
| MG80-<br>EC5   | 80SS02 | 1980             | Mt Gunson<br>80/07                       | Stuart Shelf     |                    | 12.45      |                                                                            | GEL 564         |
| RL791A-<br>3   | 798802 | 1979             | Stuart Shelf                             | Stuart Shelf     | EL 226             | 2.91       | 580 m Of 600%<br>And 710 m Of<br>1200% Rl79-04-<br>1A Side By Side<br>Comp | GEL 564         |
| RL791A-<br>5   | 798802 | 1979             | Stuart Shelf                             | Stuart Shelf     | EL 226             | 2.91       | 580 m Of 600%<br>And 710 m Of<br>1200% R179-04-<br>1A Side By Side<br>Comp | GEL 564         |
| RL791A-<br>6   | 798802 | 1979             | Stuart Shelf                             | Stuart Shelf     | EL 226             | 2.91       | 580 m Of 600%<br>And 710 m Of<br>1200% R179-04-<br>1A Side By Side<br>Comp | GEL 564         |
| RL791A-<br>7   | 79SS02 | 1979             | Stuart Shelf                             | Stuart Shelf     | EL 226             | 2.91       | 580 m Of 600%<br>And 710 m Of<br>1200% Rl79-04-<br>1A Side By Side<br>Comp | GEL 564         |
| WH77-<br>006   | 77SS04 | 1977             | Whittata 77/06                           | Stuart Shelf     | EL 226             | 1.69       | Expanded Spread                                                            | GEL 563         |
| WP79-<br>014B  | 79SS08 | 1979             | Wilga Point<br>79/14                     | Stuart Shelf     | EL 390             | 6.73       |                                                                            | GEL 563         |
| WP79-<br>EXP   | 79SS08 | 1979             | Wilga Point<br>79/14                     | Stuart Shelf     | EL 390             | 6.73       |                                                                            | GEL 563         |
| WP79-<br>014A  | 79SS08 | 1979             | Wilga Point<br>79/14                     | Stuart Shelf     | EL 390             | 6.73       |                                                                            | GEL 563         |
| MG77-<br>005-1 | 77SS03 | 1977             | Mt Gunson<br>77/05                       | Stuart Shelf     |                    | 3.48       |                                                                            | GEL 564         |
| MG77-<br>005-2 | 77SS03 | 1977             | Mt Gunson<br>77/05                       | Stuart Shelf     |                    | 3.48       |                                                                            | GEL 564         |
| MG80-<br>006   | 80SS01 | 1980             | Mt Gunson<br>80/06                       | Stuart Shelf     |                    | 8.32       |                                                                            | GEL 564         |
| MG80-<br>006W  | 80SS01 | 1980             | Mt Gunson<br>80/06                       | Stuart Shelf     |                    | 8.32       |                                                                            | GEL 564         |
| MG83-<br>004-2 | 83SS01 | 1983             | Mt Gunson 83-<br>004                     | Stuart Shelf     |                    | 15.77      |                                                                            | GEL 564         |
| MG80-<br>39    | 80SS02 | 1980             | Mt Gunson<br>80/07                       | Stuart Shelf     |                    | 12.45      |                                                                            | GEL 564         |
| MG80-<br>004   | 80SS02 | 1980             | Mt Gunson<br>80/07                       | Stuart Shelf     |                    | 12.45      |                                                                            | GEL 564         |
| MG79-<br>011   | 79SS11 | 1979             | Mt Gunson<br>MG79-11                     | Stuart Shelf     |                    | 2.13       |                                                                            | GEL 564         |
| MG83-<br>004-1 | 83SS01 | 1983             | Mt Gunson 83-<br>004                     | Stuart Shelf     |                    | 15.77      |                                                                            | GEL 564         |
| MG79-<br>005   | 798803 | 1979             | Mt Gunson<br>79/05                       | Stuart Shelf     |                    | 1.23       | Expanding Spread                                                           | GEL 564         |
| MG80-<br>500   | 80SS02 | 1980             | Mt Gunson<br>80/07                       | Stuart Shelf     |                    | 12.45      |                                                                            | GEL 564         |

| Table 3. | Details of a | all seismic | lines acquired wi | ithin GEL's 56 | 3, 564 and | 565 (data | a sourced from SAR | IG). |
|----------|--------------|-------------|-------------------|----------------|------------|-----------|--------------------|------|
|          |              |             |                   |                |            |           |                    |      |

| MG79-<br>013-1 | 79SS07 | 1979 | Mt Gunson<br>79/13                                    | Stuart Shelf               |                   | 4.37  | Shot Between S/P<br>6/7 Then 18/19<br>And Then Move<br>Up Two Positions                           | GEL 564 |
|----------------|--------|------|-------------------------------------------------------|----------------------------|-------------------|-------|---------------------------------------------------------------------------------------------------|---------|
| MG80-<br>2400  | 80SS02 | 1980 | Mt Gunson<br>80/07                                    | Stuart Shelf               |                   | 12.45 |                                                                                                   | GEL 564 |
| MG80-<br>007   | 80SS02 | 1980 | Mt Gunson<br>80/07                                    | Stuart Shelf               |                   | 12.45 |                                                                                                   | GEL 564 |
| MG80-<br>EC21  | 80SS02 | 1980 | Mt Gunson<br>80/07                                    | Stuart Shelf               |                   | 12.45 |                                                                                                   | GEL 564 |
| MG80-<br>EC2   | 80SS02 | 1980 | Mt Gunson<br>80/07                                    | Stuart Shelf               |                   | 12.45 |                                                                                                   | GEL 564 |
| BA77-<br>007   | 77SS05 | 1977 | Beda Arm<br>77/07                                     | Stuart Shelf               | EL 206            | 10.47 |                                                                                                   | GEL 563 |
| BA77-A         | 778802 | 1977 | Beda Arm<br>77/04                                     | Stuart Shelf               | EL 206            | 4     | Side By Side<br>Comp On Same<br>Line                                                              | GEL 563 |
| BA77-B         | 778802 | 1977 | Beda Arm<br>77/04                                     | Stuart Shelf               | EL 206            | 4     | Side By Side<br>Comp On Same<br>Line                                                              | GEL 563 |
| BA79-<br>3A    | 79SS01 | 1979 | Beda Arm<br>79/03                                     | Stuart Shelf               |                   | 3.03  |                                                                                                   | GEL 563 |
| BA79-<br>2A    | 798801 | 1979 | Beda Arm<br>79/03                                     | Stuart Shelf               |                   | 3.03  |                                                                                                   | GEL 563 |
| BA79-<br>1A    | 79SS01 | 1979 | Beda Arm<br>79/03                                     | Stuart Shelf               |                   | 3.03  |                                                                                                   | GEL 563 |
| BA78-<br>1B    | 78SS02 | 1978 | Beda Arm<br>78/07                                     | Stuart Shelf               | EL 206            | 1.67  | 230 m Of 600%<br>And 530 m Of<br>1200%                                                            | GEL 563 |
| BA78-2         | 78SS02 | 1978 | Beda Arm<br>78/07                                     | Stuart Shelf               | EL 206            | 1.67  | 230 m Of 600%<br>And 530 m Of<br>1200%                                                            | GEL 563 |
| 08GA-<br>A1    | 08AG01 | 2008 | 2008 Adelaide<br>Geosyncline<br>Seismic Trav-<br>erse | Adelaide<br>Geosyncline    |                   | 60.38 | This line traverses<br>the Torrens hinge<br>Zone and is part of<br>a State-wide GA<br>Survey L189 | GEL 563 |
| 65-<br>WILK    | 65PT02 | 1965 | Wilkatana<br>Seismic Survey<br>1965                   | Pirie-<br>Torrens<br>Basin | OEL 20,<br>OEL 21 | 27.1  | 8 Km Refraction,<br>18 Km Reflection                                                              | GEL 563 |

DMITRE confirmed the majority of the seismic lines within the RGP were acquired over a six year period (1977–1983) as part of a seismic experiment on the Stuart Shelf. The main objective of the study was to record seismic lines using 'high resolution principles', basically using small charge sizes, high frequency, high sample rates, single geophones and downhole dynamite. Unfortunately the recording unit deployed by DMITRE only had 24 channels. The depth of penetration of the small charge sizes and limited offsets meant that DMITRE were restricted to the near surface only, and did not image the basement. Five areas were covered by this seismic project:

- Red Lake (RL prefix lines part of seismic survey 79SS02),
- Wilga Point (WP prefix lines part of seismic survey 79SS08),
- Oak Dam (WMC and OD prefix lines part of seismic surveys 81SS01 and 81SS03),


- Mount Gunson (MG prefix lines part of a number of seismic surveys), and
- Beda Arm (BA prefix lines part of a number of seismic surveys).

The lines only imaged the shallow surface and are of vintage quality; many of the lines listed were simply noise analysis. DMITRE released a brief paper regarding these activities (Nelson, 1979—Attachment 1) and has supplied all available images (Attachment 2).

## 2.3.2.6. Thermal Conductivity Data

Rock thermal conductivity is most accurately measured on core, outcrop or cuttings samples using a Divided Bar Apparatus. HDR builds and operates such equipment in the HDR Thermal Properties Laboratory in Melbourne.

HDR previously carried out measurements on a number of core specimens from the RGP and proximal localities (Beardsmore, 2005; Sewell, 2008; Antriasian, 2009, 2010). The results are tabulated in Appendix 3 and shown in Figure 13. Facies variation of formations across the RGP is poorly understood.

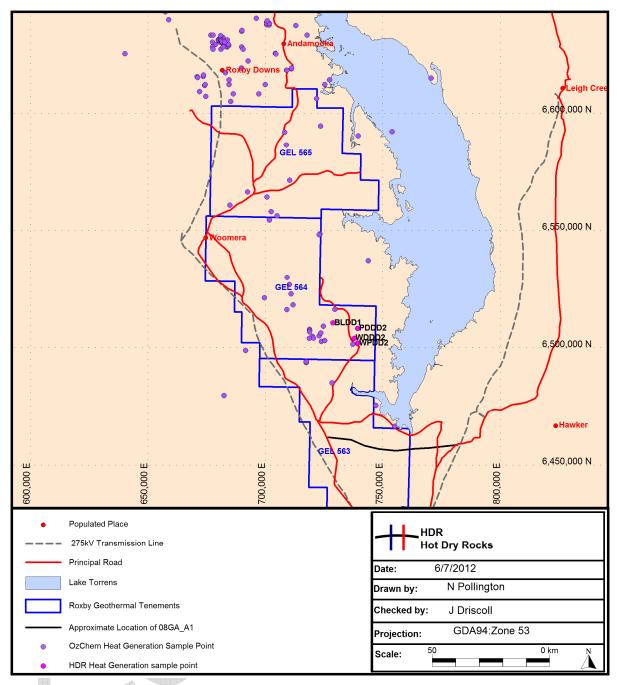


**Figure 13**. Geographical representation of wells and bore holes bores sampled for thermal conductivity analysis in this report. See Appendix 3 for specific data points.

Recommendation: That HDR liaise with the DMITRE core library to identify core samples from well bores elsewhere in the RGP. That representative samples be collected and subjected to thermal conductivity analysis. The results could be used to further constrain subsurface geological heat flow modelling and enable more accurate temperature prediction.

## 2.3.3. Geochemical Data

## 2.3.3.1. Heat Generation Data


Heat generation is a physical property of rocks related to the elemental concentrations of uranium (U), thorium (Th) and potassium (K), and rock density. It is reported in micro-Watts per cubic metre ( $\mu$ W/m<sup>3</sup>). Heat generation needs to be incorporated into a heat flow model to accurately predict temperature.

Heat generation is best determined from the analytical measurement of U, Th and K concentrations within rock samples. HDR assessed the heat generation of rocks proximal to the RGP using data from GA's geochemical database (OZCHEM, 2007; Appendix 4). In addition, HDR commissioned Whole Rock Fusion analysis for SAU to assess the heat generation of rocks proximal to the RGP (Table 4). Both sets of data have been turned into heat generation estimates following the method described in Beardsmore & Cull (2001), and the locations of these data points are detailed in Figure 14.

| Sample | Drillhole | Density<br>(g/cm3) | ±    | U<br>(ppm) | Th<br>(ppm) | K<br>(%) | Heat<br>generation<br>(µW/m3) | $\pm^1$ | Formation               | Lithology                                                                                                                       |
|--------|-----------|--------------------|------|------------|-------------|----------|-------------------------------|---------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| SAU093 | BLDD1     | 2.818              | 0.01 | 6.70       | 5.50        | 2.87     | 2.52                          | 0.03    | Gairdner Dyke           | Dark red fine-grained basalt                                                                                                    |
| SAU063 | PDDD2     | 2.588              | 0.01 | 8.40       | 36.40       | 10.10    | 5.49                          | 0.07    | Gawler Range Volcanics  | Blood red to brown/grey rhyolite, haematite                                                                                     |
| SAU064 | PDDD2     | 2.519              | 0.01 | 14.70      | 4.00        | 5.53     | 4.33                          | 0.06    | Gawler Range Volcanics  | Red-brown rhyolite                                                                                                              |
| SAU075 | WDDD2     | 2.438              | 0.00 | 1.20       | 1.70        | 1.35     | 0.51                          | 0.01    | Gawler Range Volcanics  | Pale pink rhyolite                                                                                                              |
| SAU092 | BLDD1     | 2.946              | 0.01 | 6.50       | 3.40        | 0.04     | 2.12                          | 0.03    | Gawler Range Volcanics  | Red fine-grained basalt, friable                                                                                                |
| SAU094 | BLDD1     | 2.651              | 0.01 | 4.28       | 20.90       | 5.80     | 3.09                          | 0.04    | Donington Suite Granite | Granite, haematite and chlorite alteration                                                                                      |
| SAU095 | BLDD1     | 2.665              | 0.01 | 3.20       | 19.30       | 5.42     | 2.68                          | 0.03    | Donington Suite Granite | Granite, haematite alteration                                                                                                   |
| SAU066 | PDDD2     | 2.861              | 0.01 | 5.10       | 6.90        | 2.91     | 2.22                          | 0.03    | Wallaroo Group          | Altered sediment, bleached pale pink/cream to grey,<br>fractured, sulphides, carbonate, siderite, chlorite, remnant<br>bedding? |
| SAU077 | WDDD2     | 2.978              | 0.01 | 4.80       | 17.60       | 9.05     | 3.70                          | 0.05    | Wallaroo Group          | Altered sediment, grey-dark green, chlorite, carbonate, haematite, healed fractures                                             |
| SAU085 | WPDD2     | 3.181              | 0.01 | 5.80       | 11.90       | 0.56     | 2.84                          | 0.04    | Wallaroo Group          | Altered sediment, red, haematite, carbonate                                                                                     |
| SAU086 | WPDD2     | 3.189              | 0.01 | 26.60      | 21.70       | 1.18     | 10.15                         | 0.14    | Wallaroo Group          | Altered sediment, purple-grey, fluorite, chlorite, haematite, carbonate, ?quartz, remnant bedding                               |
| SAU087 | WPDD2     | 3.540              | 0.02 | 6.20       | 3.40        | 0.04     | 2.44                          | 0.04    | Wallaroo Group          | Altered sediment, dark grey, haematite, carbonate, chlorite                                                                     |

**Table 4**. Heat generation results from HDR's Whole Rock Fusion analysis for SAU. Data are plotted in Figure 14.

The range of 0.43–431  $\mu$ W/m<sup>3</sup> (median value of 5.93  $\mu$ W/m<sup>3</sup>) for the 83 granitic samples is elevated. However, it is not as high as values reported from the Big Lake Suite Granodiorite beneath the Cooper Basin in South Australia (~10  $\mu$ W/m<sup>3</sup>, McLaren *et al.*, 2003).



**Figure 14**. Spatial distribution of estimated heat generation data proximal to the Roxby Geothermal Project (values calculated using elemental proportions of radioactive isotopes from Geoscience Australia's OZCHEM database and Hot Dry Rock's whole rock fusion analysis). See Table 4 and Appendix 4 for specific data points.

Recommendation: That HDR undertake further validation of heat generation of basement rocks and sediments from hand specimen or core samples. Whole Rock Fusion analysis is a fast and relatively inexpensive means of determining heat generation. Results would reduce uncertainties in future regional heat flow and temperature modelling.

## 2.3.3.2. Water

Geothermal projects require access to water during several stages of exploration, development and operation. Water is needed firstly for basic drinking and washing purposes for exploration, drilling, construction, operations and maintenance crews. Water is needed in larger amounts during the drilling process at all stages of exploration and production drilling.

For an EGS project, water is needed to carry out the hydraulic stimulation program, to 'charge' the artificial reservoir, and possibly to provide 'make up' fluid during the life of the production. If water is present in sufficient quantities it can be used to cool the surface plant, maximising generation efficiency and minimising plant costs.

HSA projects rely on the presence of *in situ* hot water in the underground reservoir. In order to commercially exploit an HSA resource, detailed data on the temperature and water-flow characteristics of the aquifer need to be obtained.

Water is the medium through which heat is extracted from the subsurface and brought to surface, otherwise referred to as the 'working fluid' or 'heat transmission fluid'.

## 2.3.3.2.1. Regulation and Legislation

In South Australia, water resources (groundwater, surface water and watercourses) and licensing/permitting requirements are administered by the South Australian Department for Water (DfW) under the *Natural Resources Management Act* (2004). The main method of managing water allocation and use is the process of prescription, which is administrated by the DfW, and results in the development of a Water Allocation Plan (WAP) by one of the eight Natural Resources Management boards (NRM boards) operating in South Australia. For instance, the WAP for the Far North Prescribed Wells Area (South Australian Arid Lands Natural Resources Management Board, 2009) covers a large part (but not all) of the arid north-eastern quarter of South Australia, including the South Australian component of the Great Artesian Basin and the Cooper Basin, areas of significant geothermal prospectivity. The northern and southern portions of the RGP are administered by the Kingoonya and Gawler Range Natural Resources Management Groups respectively.

The WAP sets the principles or rules under which consumptive pools, entitlements and allocations are created, and details how water is allocated to new licensed water users and how licences or entitlements can be traded. The DfW assists NRM boards in the preparation of WAPs by providing data (hydrogeological and hydrological) and advice about licensing, permits, legislation, policy and intergovernmental agreements. Once an NRM board has prepared a draft WAP, the community is consulted. Once community consultation has been completed, WAP's are adopted by the relevant Minister and become state government policy.

The PGEA 2000 does not authorise water take outside the provisions of the NRMA 2004. The PGEA 2000 stipulates that a geothermal company must prepare and submit an Environmental Impact Report (EIR) and a Statement of Environmental Objectives (SEO), or demonstrate the geothermal project can achieve the objectives of an existing SEO. As part of the development of the SEO and EIR, potential water sources for operations must be identified, including consulting with all relevant stakeholders (including government agencies) to identify their concerns and offer mitigation strategies. Once this process is completed the geothermal company must apply for specific activity approvals pursuant to the PGER 2000 Regulation 18 or 19, where the Regulator is informed of the source of water. Whilst the SEO covers most water requirements for exploratory geothermal drilling and field operations, activities that may involve substantial water volumes (e.g. extended fracture stimulation activities, or make-up water to offset water losses from an operational system), then a specific water licence would be required under the terms of the relevant WAP.

Proponents must obtain a well construction permit from DfW for a specified geothermal well-casing design that is designed for aquifer resource protection (e.g. through engineering measures to isolate aquifer units).

In terms of water allocation and licensing, some parts of South Australia are not prescribed under the NRMA 2004, and thus any development in these areas would not require a water allocation (i.e. if an adequate water supply can be identified in a non-prescribed area, then a licence or allocation is not required). It is unclear whether the area covered by the RGP would require water allocation, and thus the South Australian government should be consulted in this regard.

With regards to discharge of water (i.e. not involving reinjection) for geothermal operations falling under PGER 2000, the key issue for the Regulator is whether discharge is sustainable. It is understood that the option preferred by the Regulator

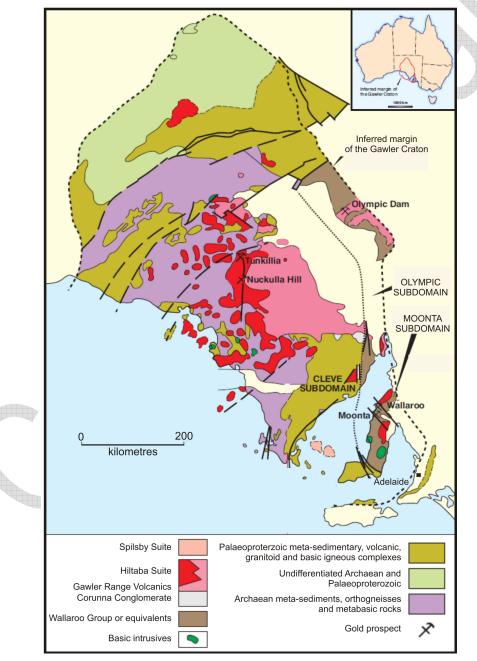
would be that water used in geothermal operations is reinjected to the same aquifer to maintain pressure and support sustainability; however, the Regulator will consider alternatives if the geothermal operator can demonstrate the system will be more sustainable via discharging by other methods. In any case, a licence for water take and discharge would be required under the NRMA 2004.

## 2.3.3.2.2. Water Availability in the RGP

The area west of Lake Torrens experiences an arid climate with hot summers and mild winters. Three Bureau of Meteorology recording stations are within or proximal to the RGP (Andamooka, Woomera Aerodrome and Yudnapinna). Annual rainfall is approximately 200 mm, and this is generally evenly distributed through the year. Rainfall variability is moderate to high, and evaporation rates typically exceed rainfall rates by an order of magnitude.

## 2.3.3.2.3. Water Analysis

As yet, HDR has been unable to source subsurface water data from the RGP.


Recommendation: That South Australian government agencies be contacted to ascertain water data attributes from the RGP.

Recommendation: That wells that intersect deeper intervals of the stratigraphic section in the RGP be identified, and that, if possible, groundwater from these deeper intervals be obtained and analysed.

## 3. Geological Findings

## 3.1.1. Regional Geology

The RGP is sited on the eastern margin of the Gawler Craton (Figure 15), an extensive region of Archaean to Mesoproterozoic crystalline basement, comprising metasediments, volcanic and igneous intrusive rocks, that underlies approximately 440,000 km<sup>2</sup> of central South Australia. The Gawler Craton is subdivided into a number of tectonic subdomains with the RGP restricted to the Olympic Subdomain, a north–south orientated feature.



**Figure 15**. Solid geology interpretation of the Gawler Craton (from Zang, 2002). The RGP lies within the Olympic Subdomain on the eastern margin of the Gawler Craton.

The oldest basement rocks in the Olympic Subdomain are the Palaeoproterozoic Hutchison Group metasediments and Donington Granitoid Suite, and the Late Palaeoproterozoic Wallaroo Group metasediments and volcanics. These rocks are intruded by early Mesoproterozoic Hiltaba Suite felsic granitoids and locally overlain by the comagmatic extrusive Gawler Range Volcanics. Arenaceous Mesoproterozoic redbed sediments of the Pandurra Formation unconformably overlie these volcanics, and are in turn both intruded and overlain by the Gairdner Dolerite dyke swarm and its extrusive equivalent, the Beda Volcanics. Proterozoic to Cambrian flat-lying sedimentary rocks of the Stuart Shelf—the Umberatana and Wilpena Groups unconformably overlie the Beda Volcanics. The youngest deposits are a thin veneer of Recent to Quaternary sediments.

## 3.1.2. Structural style of the RGP

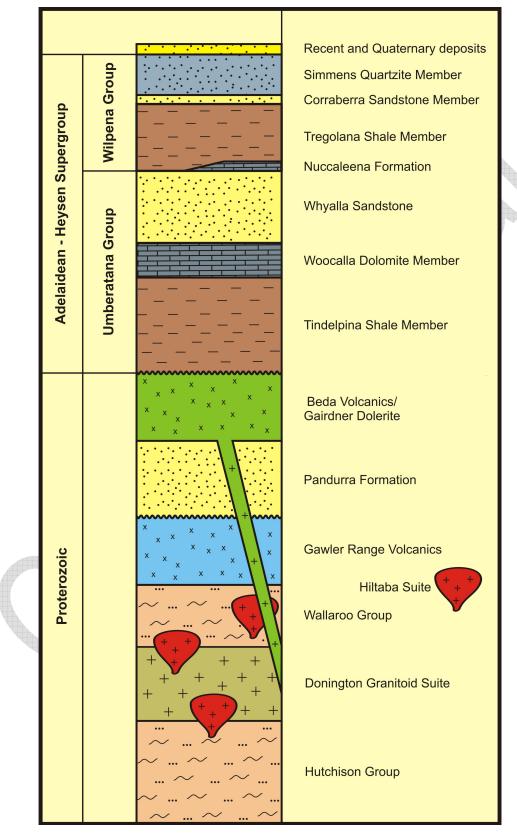
Deep seismic data within the RGP are limited to the southern portion of GEL 563 where GA acquired Seismic Line 08GA-A1 (the surface trace of this is shown in Figure 2). The seismic line trends almost east–west and is approximately perpendicular to the structural grain of the Olympic Subdomain. HDR feels that in the absence of other seismic data, Line 08GA-A1 might be used as a proxy for structural relationships in the wider RGP.

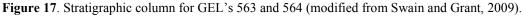
HDR independently interpreted GA's Seismic Line 08GA-A1 as part of the GEL 302 Geothermal Resource statement (Beardsmore, 2009), and for ease of reference, the following section has been reproduced from this Geothermal Resource Statement. Note that since the statement was issued, the underlying metasedimentary unit has been interpreted as the Wallaroo Group rather than the Hutchison Group.

Seismic Line 08GA-A1 traverses the northern section of GEL 563 (Figure 2). An interpretation of this line by HDR suggests that the Adelaidean–Cambrian succession thickens towards the east, controlled by a major west-dipping extensional fault (Figure 16). This fault controls a regional, hanging-wall, rollover structure that HDR believes dominates much of the structural development of GEL 563 and surrounding areas. The axis of the half-graben defined by this fault forms the 'Pirie-Torrens Basin', with the eastern footwall probably representing a transition to the 'Torrens Hinge-line'.

**Figure 16.** Interpretation of seismic line 08GA-A1 (whole of line) showing thickening of Adelaidean succession towards a basin bounding fault in the east (Beardsmore, 2009). Orange horizon marks a major erosional surface (probable top of Gawler Range Craton succession) with inversion and erosion of the hangingwall roll-over anticline. A possible older Palaeoproterozoic rift basin (blue and green horizons) may exist at depth.

A marked angular unconformity denotes the probable top of the Gawler Range Craton succession. This unconformity suggests kilometre-scale inversion and erosion along the eastern boundary fault sometime prior to the Adelaidean. Although of unknown provenance, these reflections may represent an earlier rift succession with the change in dip representing the eastern and western limbs of a roll-over anticline.


It is possible that this older rift succession was controlled by a fault identified on the western margin of GEL 563 and that basin extension 'flipped' polarity to the eastern fault during the later Adelaidean extensional event.

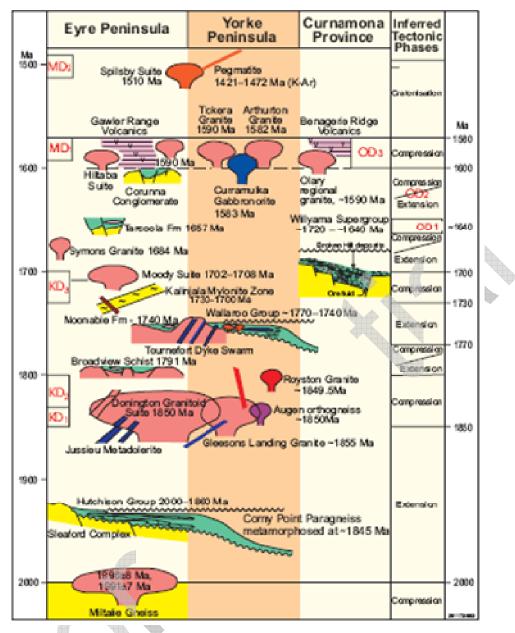

The lithological explanation of seismic reflections deeper than one kilometre is currently unproven by drilling. The Basement of this region is classically referred to as 'Gawler Range Volcanics', and it is possible that some of these deeper reflections may represent layered volcanics. However, the seismic character seems to be more characteristic of rocks of a sedimentary origin. It is possible that the deeper rift succession may represent the Palaeoproterozoic Wallaroo Group (interbedded metasediments). Reflections beneath this package are more chaotic and may reflect crystalline Basement.

## 3.1.3. Stratigraphy

Stratigraphic control in the RGP is provided by a series of minerals bores drilled by MOX in 2006–2007—as well as four other minerals bores drilled by other operators between 1977 and 1980—and these are used to indicate the stratigraphic intervals likely over the wider RGP. These bores provide good control of the subsurface stratigraphic succession to a depth of approximately 1,000 m. A generalised

stratigraphic column is shown in Figure 17. The regional stratigraphic framework of the RGP is almost entirely derived from subsurface minerals datasets as most of the area is covered by a thin Cainozoic veneer.






www.hotdryrocks.com

# HDR recommends all deep bores within and surrounding the RGP be examined for stratigraphic data and incorporated into a study.

The shallowest succession comprises a Neoproterozoic- to Cambrian-aged Adelaidean sequence (the Umberatana and Wilpena Groups).

Underlying this is the sequence actively being targeted by MOX for Olympic Dam style Cu–U–Au mineralisation. The main lithological successions are detailed in Figure 18. The Palaeoproterozoic units include the Hutchison Group metasediments (Orosirian); Donington Granitoid Suite (Orosirian); and the Late Palaeoproterozoic (Statherian) Wallaroo Group metasediments and volcanics. These units underwent deformation during the 1,730–1,700 Ma Kimban Orogeny, and were intruded by Early Mesoproterozoic (Calymmian) Hiltaba Suite granitoids and comagmatic Gawler Range Volcanics. The Palaeoproterozoic and Early Mesoproterozoic rocks are unconformably overlain by arenaceous redbed sediments of the Mesoproterozoic Pandurra Formation.



**Figure 18**. Palaeoproterozoic and Early Mesoproterozoic tectono-stratigraphic correlations between the Eyre and Yorke Peninsulas of the southeastern margin of the Gawler Craton and the Curnamona Craton. The geology of the Yorke Peninsula is inferred to extend along strike into GEL 563 (from Zang, 2002).

## 3.1.3.1. Proterozoic Units

## 3.1.3.1.1. Hutchison Group

The Hutchison Group (~1,964–1,850 Ma) comprises a diverse sequence of quartzitic, pelitic and calcsilicate metasediments with occasional iron formations, marble, dolomite and amphibolite units (*cf.* Parker & Lemon, 1982; Vassallo & Wilson, 2001).

## 3.1.3.1.2. Donington Granitoid Suite

The Donington Granitoid Suite (~1,855–1,846 Ma) is described by Reid & Hand (2008) as a linear batholith approximately 60 km wide and up to 600 km in the north– south orientation, emplaced during the Cornian Orogeny. The unit forms the basement to the Olympic Dam mine (Drummond *et al.*, 2006) and the Carrapateena deposit (Jagodzinski *et al.* 2007). The Donington Suite is dominated by granodiorite gneiss, but includes a wide range of other lithologies such as pyroxene-bearing charnockite, megacrystic alkali-feldspar granite and gabbronorite along with comagmatic mafic units (Mortimer *et al.*, 1988).

#### 3.1.3.1.3. Wallaroo Group

The Wallaroo Group (~1,790–1,738 Ma) is a sedimentary and bimodal volcanic basin rift succession that formed along the eastern and southeastern margin of the Gawler Craton; described by Wang (2002) and Cowley *et al.* (2003). The sedimentary basin has a general east-deepening depositional regime with shallow water arenaceous and arkosic successions in the south and southwest whilst the east and northeast is dominated by relatively deep water laminated argillites, carbonates and chemical sediments. The Wallaroo Group is dominated by metasediments of the Wandearah Formation, intercalated with felsic and mafic volcanics of the Weeltulta and Matta Formations, respectively, and is extensively intruded by Early Mesoproterozoic-age Hiltaba Suite granitoids (Table 5). Table 5. Subdivisions of the Wallaroo Group (from Zang, 2002).

|                                     | Wallaroo                         | Group                                                       |  |  |  |
|-------------------------------------|----------------------------------|-------------------------------------------------------------|--|--|--|
| Formation                           | Member                           | Description                                                 |  |  |  |
|                                     | Aagot Member                     | Mainly sandstone and argillite                              |  |  |  |
|                                     | Doora Member                     | Mainly biotite schist, minor calc-silicate                  |  |  |  |
| Wandearah Forma-<br>tion (metasedi- | New Cornwall Member              | Carbonate, graphitic siltstone and calc-silicate            |  |  |  |
|                                     | Wokurna Member                   | Red-brown siltstone, calc-silicate and albitic rocks        |  |  |  |
| ments)                              | Ninnes Member                    | Interlayered albitite, siltstone, sandstone, carbon-<br>ate |  |  |  |
| Weetulta Forma-                     | Moona Porphyry Member            | Porphyritic rhyolite to rhyodacite                          |  |  |  |
| tion (A-type felsic                 | Wardang Volcanics Member         | Rhyolite, rhyodacite, dacite                                |  |  |  |
| volcanics)                          | Mona Volcanics Member            | Felsics in the Bute area                                    |  |  |  |
| Matta Formation                     | Willamulka Volcanics Mem-<br>ber | Amygdaloidal mafics                                         |  |  |  |
| (mafic volcanics, tholeiites)       | Renowden Metabasalt Mem-<br>ber  | Fine-grained extrusive and shallow intrusive                |  |  |  |

## 3.1.3.1.4. Hiltaba Suite and Gawler Range Volcanics

The Hiltaba Suite and coeval Gawler Range Volcanics (~1,595–1,585 Ma) are the result of a large mantle plume that developed in the early Mesoproterozoic (Flint, 1993). The Hiltaba Suite granitoids intrude the underlying sequences and comprise a bimodal magmatic suite. The Gawler Range Volcanics are a regionally extensive diverse suite of mafic and felsic extrusives including rhyodacite, rhyolite, dacite, basalt, tuff, siltstone, sandstone, mudstone, granitic and volcanic breccia.

# 3.1.3.1.5. Pandurra Formation

Preiss (1987) describes the Pandurra Formation (~1,424 ± 51 Ma) as a widespread dominantly arenaceous red bed sequence which unconformably overlies Mesoproterozoic metasediments and volcanics. The formation is cross-bedded, poorly sorted, dominantly medium- to coarse-grained, lithic and feldspathic with abundant haematitic and kaolinitic matrix. Sedimentary features are common and include pebble imbrication, ripple marks, mudcracks and grit bands with reverse grading.

# 3.1.3.1.6. Beda Volcanics and Gairdner Dolerite

The Beda Volcanics and Gairdner Dolerite form part of a large Late Proterozoic mantle plume event which resulted in the onset of flood basalt volcanism (Zhao *et al.*, 1994) and is thought to be associated with the break-up of Rodinia (Powell *et al.*, 1994). The subsequent thermal sag stage initiated the formation of a series of intracratonic basins including the Adelaide Geosyncline, part of the Centralian Superbasin (Walter *et al.*, 1992).

The Beda Volcanics are a series of dominantly spilitic pyroxene basalts (Mason *et al.*, 1978) composed of albite-oligoclase, clinopyroxene, chlorite, haematite and carbonate (Coats & Preiss, 1987a). The Beda Volcanics penetrated by the MOX drill holes are composed of grey-green-purple amygdaloidal basalt (the amygdules are cream to white coloured). Multiple volcanic flows have been recognised.

The Gairdner Dolerite comprises a mafic dyke swarm that intrudes the underlying units, and is regarded as the intrusive equivalent of the Beda Volcanics. The

dykes typically register as long, sub-parallel linear magnetic anomalies. Ages recorded including Sm–Nd 867  $\pm$  47 Ma and 802  $\pm$  35 Ma; U–Pb 827  $\pm$  6 Ma.

## 3.1.3.2. Adelaidean

# 3.1.3.2.1. Umberatana Group

# Tindelpina Shale Member

Coats & Preiss (1987b) describe the Tindelpina Shale as dark grey to black, very finely laminated, carbonaceous, dolomitic or calcareous silty shale. The shale has up to 1.11% total organic content (McKirdy *et al.*, 1975).

## Woocalla Dolomite Member

The Woocalla Dolomite Member penetrated in the MOX bores comprises two distinct lithologies. The first is a purple brown to grey finely laminated silty shale sequence. The laminations are commonly convoluted and often discontinuous, deformed and wavy (slumps?), an indication of soft sediment deformation. In some sections there are partially healed fractures filled with carbonate.

# 3.1.3.2.2. Whyalla Sandstone

The Whyalla Sandstone is dominantly a coarse-grained, poorly cemented sandstone with extremely well rounded, spherical, frosted quartz grains commonly 1–2 mm in size (Coats & Preiss, 1987b). A minor component of finer, more angular interstitial quartz sand with minor feldspar and lithic fragments is also described. Core from the MOX drill holes indicates a deep pink-purple colouration, low angle stratification and pin stripe laminations. Williams (1998) identifies a number of periglacial features within the Whyalla Sandstone. These sedimentological characteristics suggest the succession was deposited in a cold, arid, aeolian environment.

# 3.1.3.2.3. Wilpena Group

# Nuccaleena Formation

The Nuccaleena Formation is a thin pinkish or yellowish laminated dolomite, deposited in a very shallow marine environment (Forbes & Preiss, 1987).

#### Tregolana Shale Member

Forbes & Preiss (1987) report that a specific type section has yet to be established for the Tregolana Shale Member. The best outcrop totals 55 m of section comprising a 18 m lower section of chocolate shale and siltstone with green shale laminations and rare red sandstone laminae, overlain by 37 m of chocolate siltstone and shale with 10% fine-grained red sandstone laminae. The Tregolana Shale Member is synonymous with the Woomera Shale Member.

#### Corraberra Sandstone Member

The Corraberra Sandstone Member is a micaceous and shaley sandstone with common interbedded bands of chocolate brown shale (Miles, 1955). The sandstone is flaggy, well laminated, displays common sedimentary structures (cross beds and ripples), with a few massive blocky units towards the top of the sequence.

#### Simmens Quartzite Member

The quartzites of the Simmens Quartzite Member are described by Forbes & Preiss (1987) as flaggy, fine- to medium-grained, medium bedded with a partly clayey component, and common thin reddish and reworked layers of shale. In addition, Crawford (1964) refers to the unit as dense current-bedded massive white and pale brown quartzites with occasional thin bedded quartzite and intraformational breccias.

#### 3.1.3.3. Cambrian

#### Andamooka Limestone

The Early Cambrian Andamooka Limestone is a recrystallised, often dolomitised, unit deposited within a subtidal to peritidal setting.

#### 3.1.3.4. Cretaceous

#### Marree Subgroup

The Marree Subgroup forms a thin veneer of sediment cover over portions of RGP, comprising various siliciclastics of the Bulldog Shale, Coorikiana Sandstone and Oodnadatta Formation.

#### 3.1.4. Surface Geology

Surface geology is a key dataset since subsurface geological interpretations can be tied into the known outcrop distribution. However, since much of the RGP is covered by a thin veneer of cover sequences, this process is somewhat limited in this area. The surface outcrop with the RGP (Figure 19) is mostly limited to flat-lying Cambrian, Cretaceous and Pleistocene/Quaternary alluvial/aeolian deposits with occasional outcrops of Proterozoic to Adelaidean units, especially in the northern portions of the project area. HDR utilised the 1:100k scale South Australian GIS dataset to delineate surface geology.

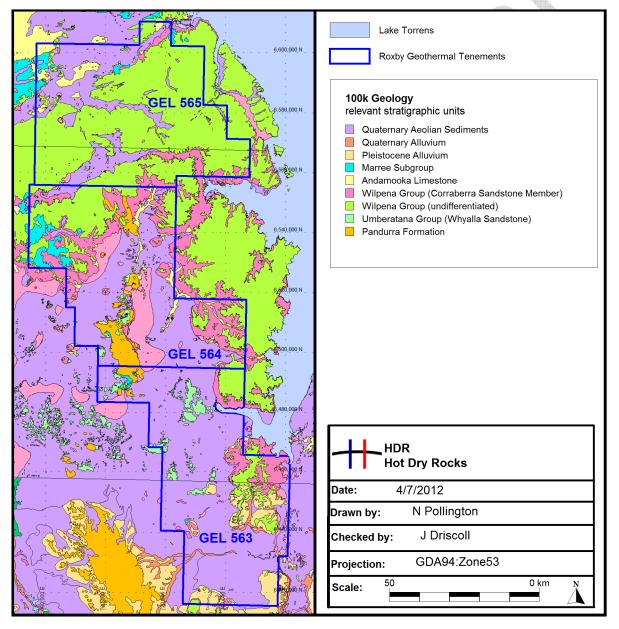



Figure 19. Surface geology for the Roxby Geothermal Project (data sourced from SARIG).

# 4. Recommendations

The principle recommendations of this data review are:

- That HDR undertake a full Geothermal Systems Assessment (GSA) to define an ongoing exploration work program for the RGP. The GSA is a desktop scoping study of an area incorporating regional data, utilising open-file data and encompassing as much existing information as possible. During the process of the GSA, gaps in available data are identified and highlighted for future studies.
- That all minerals companies with Exploration Licences (EL's) overlapping the RGP (Figure 5 and Appendix 1) be contacted to establish collaborative agreements, similar to that enacted between Southern Gold and Monax Mining. This will allow temperature data (and samples for thermal conductivity analysis) to be collected at a much reduced cost to RG. Benefits to the mineral exploration company includes a greater geological understanding of their tenement; sharing of costs for future drill holes; and any geothermal resource identified could be utilised to supply power to any mines that may be developed (cf. Beverley Uranium mine and Petratherm's Paralana Project).
- That stress tests be conducted on bores drilled within the RGP to depths greater than 700 m. Unlike the petroleum industry, mineral drilling rigs do not usually have the capability of undertaking stress measurements whilst drilling. It would therefore be necessary to undertake these tests once drilling has completed. It is also possible to undertake these tests on minerals bores drilled previously provided the bore is open to accommodate the testing equipment
- That HDR liaise with the DMITRE core library to identify core samples from well bores elsewhere in the RGP. That representative samples be collected and subjected to thermal conductivity analysis. The results could be used to further constrain subsurface geological heat flow modelling and enable more accurate temperature prediction.
- That HDR undertake further validation of heat generation of basement rocks and sediments from hand specimen or core samples. Whole Rock Fusion analysis is a fast and relatively inexpensive means of determining heat

generation. Results would reduce uncertainties in future regional heat flow and temperature modelling.

- That South Australian government agencies be contacted to ascertain water data attributes from the RGP.
- That wells that intersect deeper intervals of the stratigraphic section in the RGP be identified, and that, if possible, groundwater from these deeper intervals be obtained and analysed.

# 5. References

ANDERSON, E. M., 1951. The dynamics of faulting and dyke formation with application to Britain, Edinburgh, Oliver and Boyd.

ANTRIASIAN, A., 2009. *Thermal conductivity of core samples SAU021–SAU029*, unpublished, 11pp.

ANTRIASIAN, A., 2010. *Thermal conductivity of core samples SAU030–SAU096*, unpublished, 15pp.

BEARDSMORE, G., 2005. Thermal conductivity, density, magnetic susceptibility and sonic velocity of drill core samples from the vicinity of Olympic Dam, South Australia, unpublished, 17pp.

BEARDSMORE, G.R., 2009. GEL 302 Geothermal Play: Statement of Estimated Geothermal Resources. unpublished.

BEARDSMORE, G.R., AND CULL, J.P., 2001. Crustal Heat Flow: A Guide to Measurement and Modelling. Cambridge University Press, Cambridge, UK, 321pp.

COATS, R.P. AND PREISS, W.V., 1987a. Stratigraphy of the Callanna Group. In W.V. Preiss (ed.) The Adelaide Geosyncline – Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geological Survey of South Australia Bulletin 53.

COATS, R.P. AND PREISS, W.V., 1987b. Stratigraphy of the Umberatana Group. In W.V. Preiss (ed.) The Adelaide Geosyncline – Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geological Survey of South Australia Bulletin 53.

COWLEY, W.M., CONOR, C.H.H. AND ZANG, W., 2003. New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. *MESA Journal* **29** 46–58.

CRAWFORD, A.R., 1964. Cultana map sheet. Geological Atlas of South Australia, 1:63 360 series. Geol. Surv. S. Aust.

DRUMMOND, B., LYONS, P., GOLEBY, B. AND JONES, L., 2006. Constraining models of the tectonic setting of the giant Olympic Dam iron oxide–copper–gold deposit, South Australia, using deep seismic reflection data. *Tectonophysics* **420** 91–103.

FLINT, R.B., 1993. Mesoproterozoic. In J.F. Drexel, W.V. Preiss and A.J. Parker (eds) The Geology of South Australia. Vol. 1, the Precambrian. South Australia Geological Survey, Bulletin 54, 107–170.

FORBES, B.G. AND PREISS, W.V., 1987. Stratigraphy of the Wilpena Group. In W.V. Preiss (ed.) The Adelaide Geosyncline – Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geological Survey of South Australia Bulletin 53.

GREEN ROCK ENERGY LIMITED, 2008. Quarterly activities report for the three months ending 31 March 2008. Green Rock Energy Ltd Company Report.

HEIDBACH, O., TINGAY, M., BARTH, A., REINECKER, J., KURFEß, D., AND MÜLLER, B., 2008. The release 2008 of the World Stress Map. doi:10.1594/GFZ.WSM.Rel2008 (www.world-stress-map.org).

JAGODZINSKI, E.A., REID, A.J., CHALMERS, N.C., SWAIN, S., FREW, R.A. AND FOUDOULIS, C., 2007. Compilation of SHRIMP U-Pb geochronological data for the Gawler Craton,

South Australia, 2007, Report Book 2007/21. Department of Primary Industries and Resources South Australia, Adelaide.

KILGOUR, B., 2001. *Gravity Anomaly Images of the Australian Region*. Geoscience Australia dataset.

MASON, M.G., THOMSON, B.P. AND TONKIN, D.G., 1978. Regional stratigraphy of the Beda Volcanics, Backy Point Beds and Pandurra Formation on the southern Stuart Shelf, South Australia. *Q. Geol. Notes, Geol. Surv. South Aust.*, **66** 2–9.

MCKIRDY, D.M., SUMARTOJO, J., TUCKER, D.H. AND GOSTIN, V., 1975. Organic, mineralogic and magnetic indications metamorphism in the Tapley Hill Formation, Adelaide Geosyncline. *Precambrian Research* **2**, 345–373.

McLaren, S., Sandiford, M., Hand, M., NEUMANN, N, WYBORN, L. AND BASTRAKOVA, I., 2003. The hot southern continent: heat flow and heat production in Australian Proterozoic terranes. *Geological Society of Australia Special Publication* **22**, 151–161.

MILES, K.R., 1955. The geology and iron ore resources of the Middleback Range area. Bull. Geol. Surv. S. Aust., 33.

MORTIMER, G.E., COOPER, J.A. AND OLIVER, R.L., 1988. The geochemical evolution of Proterozoic granitoids near Port Lincoln in the Gawler orogenic domain of South Australia. *Precambrian Research* **40/41**, 387–406.

MUNROE, R.J., SASS, J.H., MILBURN, G.T., JAEGER, J.C. AND TAMMEMAGI, H.Y., 1975. Basic Data for Some Recent Australian Heat-Flow Measurements. *Open-File Report* - U. S. Geological Survey **86**, 54–60.

NELSON, R.G., 1979. High resolution seismic reflection experiments in regions of Precambrian sediments. *Bull. Aust. Soc. Explor. Geophys.* **10**(3) 218–220.

OZCHEM, 2007. National Whole Rock Geochemistry Interim Data Release. (available online at <u>www.ga.gov.au/gda/</u>).

PARKER, A.J. AND LEMON, N.M., 1982. Reconstruction of the early Proterozoic stratigraphy of the Gawler Craton, South Australia. *Australian Journal of Earth Sciences* **29**(1), 221–238.

POWELL, C. MCA., PREISS, W.V., GATEHOUSE, C.G., KRAPEZ, B. AND LI, Z.X., 1994. South Australian record of a Rodinian epicontinental basin and its mid-Neoproterozoic breakup (~700 Ma) to form the Palaeo-Pacific Ocean. *Tectonophysics* **237**, 113–140.

PREISS, W.V., 1987. Basement to the Adelaide Geosyncline. In W.V. Preiss (ed.) The Adelaide Geosyncline – Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geological Survey of South Australia Bulletin 53.

QUIGLEY, M., CUPPER, M. AND SANDIFORD, M., 2006. Quaternary faults of south-central Australia: palaeoseismicity, slip rates and origin. *Australian Journal of Earth Sciences* **53**, 285–301.

REID, A.J. AND HAND, M.P., 2008. Aspects of Palaeoproterozoic orogenesis in the Gawler Craton: the c. 1850 Ma Cornian Orogeny. *MESA Journal* **50** 26–31.

SASS, J.H. AND LACHENBRUCH, A.H., 1979. The thermal regime of the Australian continental crust. *In*: McElhinny, M.W. (Ed) *The Earth – Its Origin, Structure and Evolution*. 301–352.

SASS, J.H., JAEGER, J.C. AND MUNROE, R.J., 1976. Heat flow and near-surface radioactivity in the Australian continental crust. *Open-File Report - U. S. Geological Survey* **78**, 36–37

SOUTH AUSTRALIAN ARID LANDS NATURAL RESOURCES MANAGEMENT BOARD, 2009. *Water Allocation Plan for the Far North Prescribed Wells Area*. Government of South Australia. February 2009.

SWAIN, G. AND GRANT, C., 2009. Annual Technical Report EL 3457 Punt Hill: For the period 29 November 2007–28 November 2008. Unpublished.

VASSALLO, J.J. AND WILSON, J.L., 2001 Structural repetition of the Hutchison Group metasediments, Eyre Peninsula, South Australia. *Australian Journal of Earth Sciences* **48**(2), 331–345.

WALTER, M.R., VEEVERS, J.J., CALVER, C.R., GREY, K. AND HILYARD, D., 1992. The Proterozoic Centralian Superbasin: a frontier petroleum province, *AAPG Bull.* **76**, 1132.

WILLIAMS, G.E., 1998. Late Neoproterozoic periglacial aeolian sand sheet, Stuart Shelf, South Australia. *Australian Journal of Earth Sciences* **45**(5), 733–741.

ZANG, W., 2002. Late Palaeoproterozoic Wallaroo Group and early Mesoproterozoic mineralisation in the Moonta Subdomain, eastern Gawler Craton, South Australia. South Australia. Department of Primary Industries and Resources. Report Book, 2002/001.

ZHAO, J., MCCULLOCH, M.T. AND KORSCH, R.J., 1994. Characterisation of a plumerelated ~800 Ma magmatic event and its implications for basin formation in central southern Australia. *Earth and Planetary Science Letters* **121**, 349–367.

# **Appendix 1**: Mineral Exploration Licences that overlap the Roxby Geothermal Project.

| Licence    | Expiry<br>Date | Licensee(s)                                                         | Operator(s)                                          | Commodity                                            |
|------------|----------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| EL<br>4460 | 21/03/2013     | Gunson Resources Limited<br>(49%); Noranda Pacific Pty Ltd<br>(51%) | Gunson Resources Limited;<br>Noranda Pacific Pty Ltd | Copper                                               |
| EL<br>3603 | 16/07/2011     | Uranium West Limited (100%)                                         | Uranium West Limited                                 | Uranium; Gold; Copper                                |
| EL<br>4911 | 6/07/2014      | Endeavour Copper Gold Pty<br>Ltd (100%)                             | Endeavour Copper Gold Pty<br>Ltd                     | Gold; Copper                                         |
| EL<br>4906 | 6/07/2014      | Sturt Exploration Pty Ltd<br>(100%)                                 | Sturt Exploration Pty Ltd                            | Copper                                               |
| EL<br>4816 | 20/12/2013     | Sturt Exploration Pty Ltd<br>(100%)                                 | Sturt Exploration Pty Ltd                            | Copper                                               |
| EL<br>4800 | 14/11/2013     | UXA Resources Limited (100%)                                        | UXA Resources Limited                                | Uranium; Silver; Gold;<br>Zinc; Copper; Lead         |
| EL<br>4805 | 7/06/2013      | BHP Billiton Nickel West Pty<br>Ltd (100%)                          | BHP Billiton Nickel West Pty<br>Ltd                  | Copper                                               |
| EL<br>4941 | 28/06/2014     | UXA Resources Limited (100%)                                        | UXA Resources Limited                                | Uranium                                              |
| EL<br>4356 | 28/01/2012     | BHP Billiton Nickel West Pty<br>Ltd (100%)                          | BHP Billiton Nickel West Pty<br>Ltd                  | Copper                                               |
| EL<br>4700 | 20/03/2013     | UXA Resources Limited (100%)                                        | UXA Resources Limited                                | Uranium; Silver; Gold;<br>Zinc; Copper; Lead         |
| EL<br>4754 | 20/06/2012     | Copper Range (SA) Pty Ltd<br>(100%)                                 | Copper Range (SA) Pty Ltd                            | Silver; Gold; Copper                                 |
| EL<br>4698 | 10/03/2013     | Copper Range (SA) Pty Ltd<br>(100%)                                 | Copper Range (SA) Pty Ltd                            | Copper                                               |
| EL<br>3807 | 17/06/2012     | Copper Range (SA) Pty Ltd<br>(100%)                                 | Copper Range (SA) Pty Ltd                            | Copper                                               |
| EL<br>3959 | 21/10/2012     | Copper Range (SA) Pty Ltd<br>(100%)                                 | Copper Range (SA) Pty Ltd                            | Gold; Copper                                         |
| EL<br>4548 | 29/08/2012     | Monax Mining Limited (100%)                                         | Monax Mining Limited                                 | Gold; Copper                                         |
| EL<br>3713 | 21/02/2012     | BHP Billiton Nickel West Pty<br>Ltd (100%)                          | BHP Billiton Nickel West Pty<br>Ltd                  | Copper                                               |
| EL<br>4164 | 14/07/2013     | Athena Mines Pty Ltd (100%)                                         | Athena Mines Pty Ltd                                 | Uranium; Silver; Cobalt;<br>Gold; Zinc; Copper; Lead |

|            | I          | 1                                                                                                      | 1                                                                                              |                       |
|------------|------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| EL<br>4764 | 30/06/2013 | UXA Resources Limited (100%)                                                                           | UXA Resources Limited                                                                          | Uranium               |
| EL<br>4306 |            | OZ Minerals Carrapateena Pty<br>Ltd (34%); RMG Services Pty<br>Ltd (66%)                               | RMG Services Pty Ltd; OZ<br>Minerals Carrapateena Pty Ltd                                      | Gold; Copper          |
| EL<br>4187 | 6/10/2012  | Gunson Resources Limited<br>(49%); Noranda Pacific Pty Ltd<br>(51%)                                    | Gunson Resources Limited;<br>Noranda Pacific Pty Ltd                                           | Copper                |
| EL<br>3688 |            | OZ Minerals Carrapateena Pty<br>Ltd (34%); RMG Services Pty<br>Ltd (66%)                               | OZ Minerals Carrapateena Pty<br>Ltd                                                            | Cobalt; Gold; Copper  |
| EL<br>4666 | 13/02/2013 | OZ Minerals Carrapateena Pty<br>Ltd (34%); RMG Services Pty<br>Ltd (66%)                               | RMG Services Pty Ltd; OZ<br>Minerals Carrapateena Pty Ltd                                      | Gold; Copper          |
| EL<br>4770 | 31/07/2013 | Tasman Resources Limited (100%)                                                                        | Tasman Resources Limited                                                                       | Copper                |
| EL<br>4580 | 17/10/2012 | South East Energy Limited (100%)                                                                       | South East Energy Limited                                                                      | Uranium               |
| EL<br>4642 | 6/01/2013  | Monax Mining Limited (100%)                                                                            | Monax Mining Limited                                                                           | Gold; Copper          |
| EL<br>4757 | 21/06/2013 | Daktyloi Metals Pty Ltd<br>(100%)                                                                      | Daktyloi Metals Pty Ltd                                                                        | Manganese; Copper     |
| EL<br>3854 | 22/07/2012 | Havilah Resources NL (30%);<br>Red Metal Limited (70%)                                                 | Havilah Resources NL; Red<br>Metal Limited                                                     | Uranium; Gold; Copper |
| EL<br>3967 | 28/10/2012 | Gunson Resources Limited<br>(49%); Noranda Pacific Pty Ltd<br>(51%)                                    | Gunson Resources Limited;<br>Noranda Pacific Pty Ltd;<br>Xstrata Copper Exploration Pty<br>Ltd | Copper                |
| EL<br>4725 | 19/04/2013 | Gunson Resources Limited<br>(49%); Noranda Pacific Pty Ltd<br>(51%)                                    | Gunson Resources Limited;<br>Noranda Pacific Pty Ltd                                           | Copper                |
| EL<br>4598 | 7/11/2012  | Uranium One Australia Pty Ltd<br>(50 1/10%); Mitsui & Co. Ura-<br>nium Australia Pty Ltd (49<br>9/10%) | Uranium One Australia Pty<br>Ltd; Mitsui & Co. Uranium<br>Australia Pty Ltd                    | Uranium               |
| EL<br>4599 | 7/11/2012  | Uranium One Australia Pty Ltd<br>(50 1/10%); Mitsui & Co. Ura-<br>nium Australia Pty Ltd (49<br>9/10%) | Uranium One Australia Pty<br>Ltd; Mitsui & Co. Uranium<br>Australia Pty Ltd                    | Uranium               |
| EL<br>3747 | 18/04/2012 | OZ Minerals Carrapateena Pty<br>Ltd (34%); RMG Services Pty<br>Ltd (66%)                               | OZ Minerals Carrapateena Pty<br>Ltd                                                            | All Minerals          |

| EL<br>4762 | 26/06/2013 | Minotaur Operations Pty Ltd<br>(100%)             | Minofaur (Inerations Pty 1 to                             | Uranium; Industrial Miner-<br>als; Gold; Copper |
|------------|------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| EL<br>4647 | 17/01/2013 | AFMECO Mining and Explora-<br>tion Pty Ltd (100%) | AFMECO Mining and Explo-<br>ration Pty Ltd                | Uranium                                         |
| EL<br>4298 | 18/08/2012 | Torrens Energy Limited (100%)                     | Torrens Energy Limited                                    | Coal                                            |
| EL<br>4903 |            |                                                   | RMG Services Pty Ltd; OZ<br>Minerals Carrapateena Pty Ltd | Gold; Copper                                    |
| EL<br>4897 | 3/05/2014  | Minotaur Operations Pty Ltd<br>(100%)             | Minotaur Operations Pty Ltd                               | Uranium; Gold; Copper                           |

#### Appendix 2: World Stress Map data points in close proximity to Roxby Geothermal Project (abbreviations for 'type' and 'quality' listed below; abbreviations for 'regime' detailed in Figure 6).

| Latitude (°) | Longitude (°) | S <sub>H</sub> azimuth (°) | Туре | Quality | Regime | Depth (km) |
|--------------|---------------|----------------------------|------|---------|--------|------------|
| -35.07       | 139.02        | 173                        | OC   | D       | U      | 0.058      |
| -30.794      | 138.405       | 97                         | FMS  | С       | SS     | 20         |
| -32.476      | 138.878       | 76                         | FMS  | D       | SS     | 6.8        |
| -32.389      | 138.923       | 153                        | FMS  | D       | SS     | 16.4       |
| -32.3        | 139.31        | 59                         | FMS  | С       | SS     | 15         |
| -31.06       | 138.47        | 41                         | FMS  | С       | SS     | 10         |
| -32.44       | 137.96        | 74                         | FMS  | С       | SS     | 5          |
| -31.76       | 139.42        | 86                         | FMS  | D       | SS     | 5          |
| -33.816      | 138.984       | 100                        | FMS  | С       | TF     | 20.4       |
| -35.845      | 135.687       | 147                        | BO   | C       | U      | 2.593      |
| -35.591      | 135.35        | 99                         | BO   | Α       | U      | 2.594      |
| -35.604      | 135.817       | 130                        | BO   | D       | U      | 2.556      |
| -31.5        | 138.35        | 130                        | FMA  | D       | TF     | 3          |

BO = Individual Borehole Breakout

FMA = Single focal mechanism

FMS = Composite focal mechanism average

OC = Overcoring

Quality Rank = A (best) to E (unreliable)

**Appendix 3**: Thermal conductivity data yielded from wells and bore holes within and proximal to the Roxby Geothermal Project.

| Client | Bore Hole    | Formation                | Depth<br>from<br>(m) | Depth<br>to (m) | Lithology                                                                                                                                                         | Sample<br>Number | Conductivity<br>(W/mK) | St.<br>Dev. | Com-<br>ment                              |
|--------|--------------|--------------------------|----------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------|-------------------------------------------|
| SAU    | LTDD002<br>A | Tapley Hill<br>Formation | 448.29               | 448.58          | Grey-green, very finely<br>laminated interbedded<br>siltstone/mudstone with<br>minor cross bedding and<br>high angle carbonate-filled<br>fractures                | SAU001           | 2.43                   | 0.10        |                                           |
| SAU    | LTDD002<br>A | Tapley Hill<br>Formation | 483.24               | 483.43          | Grey-green, very finely<br>laminated interbedded<br>siltstone/mudstone with<br>minor cross bedding                                                                | SAU002           | 2.44                   | 0.10        |                                           |
| SAU    | LTDD002<br>A | Tapley Hill<br>Formation | 550.56               | 550.72          | Grey-green, very finely<br>laminated interbedded<br>siltstone/mudstone with<br>minor cross bedding and<br>high angle carbonate-filled<br>fractures                | SAU003           | 2.24                   | 0.39        |                                           |
| SAU    | LTDD002<br>A | Tapley Hill<br>Formation | 517.00               | 517.18          | Grey-green, very finely<br>laminated interbedded<br>siltstone/mudstone                                                                                            | SAU004           | 3.03                   | 0.25        |                                           |
| SAU    | LTDD002<br>A | Beda Vol-<br>canics      | 704.43               | 704.58          | Red-green, fine- to me-<br>dium-grained vesicular<br>basalt. Vesicles infilled<br>with calcite and lesser<br>chlorite                                             | SAU005           | 2.48                   | 0.13        |                                           |
| SAU    | LTDD002<br>A | Beda Vol-<br>canics      | 657.28               | 657.40          | Red-green brecciated<br>amygdoidal basalt. Frac-<br>tured very large and filled<br>with pink/red dolomitic<br>material NOT<br>REPRESENTATIVE OF<br>BEDA VOLCANICS | SAU006           | 4.86                   | 0.34        |                                           |
| SAU    | LTDD002<br>A | Beda Vol-<br>canics      | 775.58               | 775.73          | Red-green, fine- to me-<br>dium-grained vesicular<br>basalt. Vesicles infilled<br>with chlorite and lesser<br>carbonate                                           | SAU007           | 2.30                   | 0.09        |                                           |
| SAU    | LTDD002<br>A | Beda Vol-<br>canics      | 786.80               | 786.96          | Red-green, mainly me-<br>dium-grained massive<br>basalt with local coarse-<br>grained amygdules                                                                   | SAU008           | 2.41                   | 0.14        |                                           |
| SAU    | LTDD003      | Tapley Hill<br>Formation | 647.29               | 647.50          | Grey-black, very finely<br>laminated interbedded<br>siltstone/mudstone                                                                                            | SAU009           | 2.89                   | 0.26        |                                           |
| SAU    | LTDD003      | Angepena<br>Formation    | 462.70               | 462.91          | Purple-grey, finely lami-<br>nated siltstone with abun-<br>dant rip-up clasts, local<br>micro-faulting (mm-scale)                                                 | SAU010           | 2.73                   | 0.38        |                                           |
| SAU    | LTDD003      | Tapley Hill<br>Formation | 520.90               | 521.19          | Grey-black, very finely<br>laminated interbedded<br>siltstone/mudstone, rip-up<br>clasts                                                                          | SAU011           | 3.26                   | 0.24        | only use<br>higher<br>value as<br>per GRB |
| SAU    | LTDD003      | Tapley Hill<br>Formation | 614.60               | 614.83          | Grey-black, very finely<br>laminated interbedded<br>siltstone/mudstone                                                                                            | SAU012           | 2.53                   | 0.13        |                                           |
| SAU    | LTDD003      | Angepena<br>Formation    | 433.74               | 434.17          | Purple-grey, siltstone to<br>medium-grained sandstone,<br>finely laminated, cross<br>bedded, local micro-<br>faulting (mm-scale), healed<br>fractures             | SAU013           | 3.80                   | 0.28        |                                           |
| SAU    | LTDD002<br>A | Tapley Hill<br>Formation | 449.94               | 450.13          | Grey-black, very finely<br>laminated interbedded<br>siltstone/mudstone                                                                                            | SAU014           | 2.45                   | 0.13        |                                           |
| SAU    | LTDD003      | Beda Vol-<br>canics      | 853.30               | 853.50          | Purple-grey, fine-grained basalt                                                                                                                                  | SAU015           | 2.50                   | 0.26        |                                           |
| SAU    | LTDD003      | Beda Vol-<br>canics      | 779.52               | 779.67          | Mainly grey (purple tinge),<br>fine-grained basalt                                                                                                                | SAU016           | 2.39                   | 0.22        |                                           |

| SAU | LTDD002<br>A | Tapley Hill<br>Formation      | 555.25 | 555.40 | Grey-green, very finely<br>laminated interbedded<br>siltstone/mudstone with<br>minor cross bedding and<br>high angle carbonate-filled<br>fractures                                                                    | SAU017 | 2.66 | 0.27 |   |
|-----|--------------|-------------------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|---|
| SAU | LTDD003      | Tregolana<br>Shale<br>Member  | 246.22 | 246.47 | Purple to green/grey<br>shale/siltstone, thinly lami-<br>nated with wavy cross<br>bedding, slump structures                                                                                                           | SAU018 | 3.04 | 0.14 |   |
| SAU | LTDD003      | Angepena<br>Formation         | 406.83 | 407.10 | Purple-grey, siltstone to<br>medium-grained sandstone,<br>finely laminated with<br>thicker coarse-grained<br>interbeds (slump features),<br>cross bedded, local micro-<br>faulting (mm-scale)                         | SAU019 | 2.80 | 0.48 |   |
| SAU | LTDD003      | Backy<br>Point For-<br>mation | 749.18 | 749.34 | Red siltstone to fine-<br>/medium-grained sand-<br>stone, flaser bedding,<br>slump structures, rip-up<br>clasts                                                                                                       | SAU020 | 2.69 | 0.12 | • |
| SAU | NNDD1        | Pandurra<br>Formation         | 552.88 | 553.08 | Mainly fg-mg grey-red to<br>purple quartz sandstone<br>with mottled bleaching and<br>minor lithic fragments.                                                                                                          | SAU021 | 5.25 | 0.04 |   |
| SAU | NNDD1        | Pandurra<br>Formation         | 650.90 | 651.20 | Fg red-brown<br>shale/siltstone with subor-<br>dinate sandstone, lithic<br>fragment (and shale intra-<br>clasts) interbeds. The sand-<br>stone beds grade up into<br>siltstone. Strong hematite<br>altered (?) matix. | SAU022 | 5.03 | 0.03 |   |
| SAU | NNDD1        | Pandurra<br>Formation         | 725.01 | 725.24 | Mainly fg-mg grey-red to<br>purple quartz sandstone<br>with mottled bleaching and<br>minor lithic fragments.                                                                                                          | SAU023 | 2.83 | 0.13 |   |
| SAU | NNDD1        | Donington<br>Granite          | 822.20 | 822.46 | Grey-cream/pink, cg feld-<br>spar-quartz-<br>horn-<br>blende/biotite±plagioclase<br>granite. Local sericite<br>alteration and hematite<br>dusting of feldspars.                                                       | SAU024 | 3.49 | 0.13 |   |
| SAU | NNDD1        | Donington<br>Granite          | 855.97 | 856.30 | Grey-cream/pink, cg feld-<br>spar-quartz-<br>horn-<br>blende/biotite±plagioclase<br>granite. Local sericite<br>alteration and hematite<br>dusting of feldspars.                                                       | SAU025 | 3.24 | 0.01 |   |
| SAU | NNDD1        | Donington<br>Granite          | 885.63 | 885.85 | Grey-cream/pink, cg feld-<br>spar-quartz-<br>horn-<br>blende/biotite±plagioclase<br>granite. Local sericite<br>alteration and hematite<br>dusting of feldspars.                                                       | SAU026 | 3.36 | 0.12 |   |
| SAU | WDDD1        | Gawler<br>Range<br>Volcanics  | 604.65 | 604.95 | Porphyritic dacite compris-<br>ing plagioclase phenocryts<br>set within a fg red-brown<br>microgranular hematite-<br>chlorite-felsic matrix.                                                                          | SAU027 | 2.93 | 0.11 |   |
| SAU | WDDD1        | Gawler<br>Range<br>Volcanics  | 677.42 | 677.73 | Porphyritic dacite compris-<br>ing plagioclase phenocryts<br>set within a fg red-brown<br>microgranular hematite-<br>chlorite-felsic matrix.                                                                          | SAU028 | 2.60 | 0.15 |   |
| SAU | WDDD1        | Gawler<br>Range<br>Volcanics  | 737.00 | 737.20 | Porphyritic dacite compris-<br>ing plagioclase phenocryts<br>set within a fg red-brown<br>microgranular hematite-<br>chlorite-felsic matrix.<br>Minor lithic fragments.                                               | SAU029 | 2.76 | 0.11 |   |

| SAU | MMDD1 | Whyalla<br>Sandstone           | 307.40 | 307.57 | Purple medium-grained<br>sandstone, low-angle strati-<br>fication, pin stripe lamina-<br>tions, occasional thin dark<br>grey fines                                                                                        | SAU030 | 5.39 | 0.13 | Transi-<br>tion Beda<br>to Pan-<br>durra<br>(740.5-<br>744.8 m) |
|-----|-------|--------------------------------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------------------------------------------------------------|
| SAU | MMDD1 | Whyalla<br>Sandstone           | 328.20 | 328.36 | Purple coarse-grained<br>sandstone to grit, low-<br>angle stratification, pin<br>stripe laminations                                                                                                                       | SAU031 | 4.39 | 0.25 |                                                                 |
| SAU | MMDD1 | Whyalla<br>Sandstone           | 359.25 | 359.40 | Purple-pink siltstone to<br>fine-grained sandstone,<br>low-angle stratification,<br>pin stripe laminations                                                                                                                | SAU032 | 3.98 | 0.04 |                                                                 |
| SAU | MMDD1 | Woocalla<br>Dolomite<br>Member | 382.52 | 382.73 | Purple brown to grey fine<br>laminated silty shale se-<br>quence; convoluted lami-<br>nations - discontinuous,<br>deformed and wavy<br>(slumps?); soft sediment<br>deformation; carbonate<br>partially infilled fractures | SAU033 | 2.46 | 0.10 |                                                                 |
| SAU | MMDD1 | Woocalla<br>Dolomite<br>Member | 400.90 | 401.08 | Purple brown to grey fine<br>laminated silty shale se-<br>quence; convoluted lami-<br>nations - partially de-<br>formed and wavy<br>(slumps?)                                                                             | SAU034 | 2.54 | 0.41 |                                                                 |
| SAU | MMDD1 | Woocalla<br>Dolomite<br>Member | 409.80 | 410.00 | Purple brown to grey fine<br>laminated silty shale se-<br>quence; laminations occa-<br>sionally deformed and<br>wavy (slumps?). Some<br>coarser-grained intervals;<br>rip-up clasts                                       | SAU035 | 3.29 | 0.23 |                                                                 |
| SAU | MMDD1 | Woocalla<br>Dolomite<br>Member | 413.61 | 413.77 | Grey contorted vuggy dolomite                                                                                                                                                                                             | SAU036 | 3.55 | 0.28 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 424.19 | 424.38 | Light grey-dark grey/black<br>fine laminated carbona-<br>ceous silty shale; whispy<br>appearance; concretions<br>and veining?                                                                                             | SAU037 | 3.86 | 0.14 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 462.91 | 463.16 | Dark grey-black fine lami-<br>nated carbonaceous silty<br>shale (rhythmite?)                                                                                                                                              | SAU038 | 2.34 | 0.10 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 527.83 | 528.01 | Light grey-black fine lami-<br>nated carbonaceous silty<br>shale (bundles of rhyth-<br>mites?)                                                                                                                            | SAU039 | 2.70 | 0.19 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 569.05 | 569.25 | Light grey-black fine lami-<br>nated carbonaceous silty<br>shale (rhythmite?)                                                                                                                                             | SAU040 | 3.27 | 0.33 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 579.99 | 580.19 | Grey to dark grey pebbly<br>grit (angular clasts), matrix<br>supported, massive                                                                                                                                           | SAU041 | 3.12 | 0.09 |                                                                 |
| SAU | MMDD1 | Tindelpina<br>Shale<br>Member  | 596.98 | 597.22 | Light grey-black fine lami-<br>nated silty shale; some<br>coarser-grained intervals;<br>rip-up clasts                                                                                                                     | SAU042 | 4.52 | 0.24 |                                                                 |
| SAU | MMDD1 | Beda Vol-<br>canics            | 614.25 | 614.49 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured)                                                                                                                                         | SAU043 | 3.08 | 0.26 |                                                                 |
| SAU | MMDD1 | Beda Vol-<br>canics            | 819.79 | 819.93 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured)                                                                                                                                         | SAU044 | 2.37 | 0.01 |                                                                 |
| SAU | MMDD1 | Beda Vol-<br>canics            | 911.71 | 912.10 | Grey-green-purple basalt                                                                                                                                                                                                  | SAU045 | 2.43 | 0.02 |                                                                 |
| SAU | PDDD2 | Whyalla<br>Sandstone           | 300.97 | 301.14 | Purple medium-grained sandstone, grit lenses                                                                                                                                                                              | SAU046 | 4.73 | 0.04 |                                                                 |

| SAU | PDDD2 | Woocalla<br>Dolomite<br>Member | 305.80 | 305.90 | Purple brown to grey fine<br>laminated silty shale se-<br>quence; convoluted lami-<br>nations - discontinuous,<br>deformed and wavy<br>(slumps?); soft sediment<br>deformation | SAU047 | 2.50 | 0.16 |                         |
|-----|-------|--------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|-------------------------|
| SAU | PDDD2 | Woocalla<br>Dolomite<br>Member | 324.29 | 324.35 | Light grey to black fine<br>laminated silty dolomite(?)<br>sequence; laminations<br>deformed and wavy, some<br>vugs                                                            | SAU048 | 3.57 | 0.16 |                         |
| SAU | PDDD2 | Tindelpina<br>Shale<br>Member  | 341.11 | 341.31 | Light grey to black silty<br>shale sequence; discon-<br>tinuous, deformed sausage<br>shaped sedimentary fea-<br>tures (rip up clasts?), ce-<br>mented                          | SAU049 | 3.55 | 0.03 |                         |
| SAU | PDDD2 | Tindelpina<br>Shale<br>Member  | 341.31 | 341.44 | Dark grey to black silty<br>shale. Almost massive -<br>very feint fine laminated?                                                                                              | SAU050 | 2.78 | 0.14 |                         |
| SAU | PDDD2 | Tindelpina<br>Shale<br>Member  | 390.26 | 390.48 | Dark grey to black fine<br>laminated silty shale se-<br>quence                                                                                                                 | SAU051 | 2.25 | 0.07 | A                       |
| SAU | PDDD2 | Tindelpina<br>Shale<br>Member  | 456.80 | 456.97 | Medium grey to black fine<br>to moderate laminated<br>carbonaceous silty shale<br>(zebra style/rhythmite?),<br>occassional convoluted<br>strata                                | SAU052 | 2.88 | 0.08 |                         |
| SAU | PDDD2 | Tindelpina<br>Shale<br>Member  | 428.18 | 428.32 | Dark grey to black silty<br>shale, very feint fine lami-<br>nated                                                                                                              | SAU053 | 2.15 | 0.03 |                         |
| SAU | PDDD2 | Beda Vol-<br>canics            | 470.89 | 471.04 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured),<br>healed thin fractures                                                                    | SAU054 | 2.93 | 0.07 |                         |
| SAU | PDDD2 | Beda Vol-<br>canics            | 480.04 | 480.17 | Grey-green-purple basalt                                                                                                                                                       | SAU055 | 2.86 | 0.05 | not tested<br>- friable |
| SAU | PDDD2 | Beda Vol-<br>canics            | 566.81 | 566.94 | Light grey-green basalt                                                                                                                                                        | SAU056 | 2.37 | 0.02 |                         |
| SAU | PDDD2 | Beda Vol-<br>canics            | 666.71 | 666.87 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured)                                                                                              | SAU057 | 2.16 | 0.01 |                         |
| SAU | PDDD2 | Beda Vol-<br>canics            | 735.33 | 735.50 | Grey-green-purple basalt,<br>healed fractures                                                                                                                                  | SAU058 | 2.49 | 0.05 |                         |
| SAU | PDDD2 | Pandurra<br>Formation          | 741.32 | 741.48 | Red beds, silty fraction<br>through to grit, convoluted<br>bedding? Grey laminations<br>infrequent                                                                             | SAU059 | 5.28 | 0.14 |                         |
| SAU | PDDD2 | Pandurra<br>Formation          | 750.18 | 750.38 | Purple-red coarse-grained sandstone to grit, massive                                                                                                                           | SAU060 | 5.14 | 0.09 |                         |
| SAU | PDDD2 | Pandurra<br>Formation          | 781.12 | 781.24 | Purple-red coarse-grained sandstone to grit, massive                                                                                                                           | SAU061 | 6.29 | 0.06 |                         |
| SAU | PDDD2 | Pandurra<br>Formation          | 816.54 | 816.73 | Purple-red coarse-grained sandstone to grit, massive                                                                                                                           | SAU062 | 5.13 | 0.06 |                         |
| SAU | PDDD2 | Gawler<br>Range<br>Volcanics   | 841.23 | 841.51 | Blood red to brown/grey rhyolite, haematite                                                                                                                                    | SAU063 | 1.87 | 0.08 |                         |
| SAU | PDDD2 | Gawler<br>Range<br>Volcanics   | 856.65 | 856.83 | Red-brown rhyolite                                                                                                                                                             | SAU064 | 1.77 | 0.06 | not tested<br>- friable |
| SAU | PDDD2 | Wallaroo<br>Group              | 867.50 | 867.71 | Altered sediment, purple-<br>red, carbonate, magnetite,<br>haematite, remnant vesi-<br>cles?                                                                                   | SAU065 | 2.40 | 0.17 |                         |
| SAU | PDDD2 | Wallaroo<br>Group              | 931.80 | 932.06 | Altered sediment, bleached<br>pale pink/cream to grey,<br>fractured, sulphides, car-<br>bonate, siderite, chlorite,<br>remnant bedding?                                        | SAU066 | 2.52 | 0.07 |                         |

| SAU | PDDD2 | Wallaroo<br>Group             | 993.71 | 993.97 | Altered sediment, pale<br>grey-green, blotchy con-<br>cretions, chlorite, carbon-<br>ate, haematite                | SAU067 | 2.92 | 0.08 |  |
|-----|-------|-------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------|--------|------|------|--|
| SAU | WDDD2 | Tindelpina<br>Shale<br>Member | 314.62 | 314.78 | Light grey to black fine<br>laminated silty shale se-<br>quence; laminations occas-<br>sionally wavy               | SAU068 | 2.49 | 0.02 |  |
| SAU | WDDD2 | Tindelpina<br>Shale<br>Member | 370.74 | 370.86 | Medium grey to black fine<br>laminated silty shale se-<br>quence; healed fractures                                 | SAU069 | 2.32 | 0.16 |  |
| SAU | WDDD2 | Beda Vol-<br>canics           | 389.60 | 389.74 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured)                                  | SAU070 | 2.65 | 0.06 |  |
| SAU | WDDD2 | Beda Vol-<br>canics           | 501.56 | 501.74 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured),<br>healed thin fractures        | SAU071 | 2.48 | 0.03 |  |
| SAU | WDDD2 | Pandurra<br>Formation         | 530.88 | 531.05 | Purple-red coarse-grained<br>to small pebble sandstone,<br>massive                                                 | SAU072 | 5.03 | 0.06 |  |
| SAU | WDDD2 | Pandurra<br>Formation         | 587.09 | 587.25 | Purple-red coarse-grained sandstone to grit, massive                                                               | SAU073 | 5.11 | 0.02 |  |
| SAU | WDDD2 | Pandurra<br>Formation         | 646.76 | 646.94 | Purple-red fine-grained<br>sandstone, possilby silt-<br>stone, few floating small<br>pebbles?                      | SAU074 | 4.17 | 0.04 |  |
| SAU | WDDD2 | Gawler<br>Range<br>Volcanics  | 688.86 | 689.01 | Pale pink rhyolite                                                                                                 | SAU075 | 2.56 | 0.06 |  |
| SAU | WDDD2 | Wallaroo<br>Group             | 797.09 | 797.20 | Altered sediment, grey-<br>green, chlorite, carbonate,<br>haematite, remnant bed-<br>ding?                         | SAU076 | 2.46 | 0.17 |  |
| SAU | WDDD2 | Wallaroo<br>Group             | 882.34 | 882.49 | Altered sediment, grey-<br>dark green, chlorite, car-<br>bonate, haematite, healed<br>fractures                    | SAU077 | 2.12 | 0.07 |  |
| SAU | WPDD2 | Tindelpina<br>Shale<br>Member | 304.77 | 304.90 | Dark grey to black silty<br>shale, very feint fine con-<br>voluted laminations                                     | SAU078 | 2.67 | 0.37 |  |
| SAU | WPDD2 | Tindelpina<br>Shale<br>Member | 362.64 | 362.78 | Dark grey to black silty<br>shale, fine convoluted<br>laminations, healed frac-<br>tures                           | SAU079 | 2.25 | 0.04 |  |
| SAU | WPDD2 | Tindelpina<br>Shale<br>Member | 437.49 | 437.63 | Medium grey to black silty<br>shale, fine convoluted<br>laminations                                                | SAU080 | 2.59 | 0.22 |  |
| SAU | WPDD2 | Beda Vol-<br>canics           | 449.61 | 449.75 | Grey-green-purple basalt                                                                                           | SAU081 | 2.54 | 0.02 |  |
| SAU | WPDD2 | Beda Vol-<br>canics           | 516.13 | 516.33 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured),<br>healed thick fractures       | SAU082 | 1.77 | 0.01 |  |
| SAU | WPDD2 | Beda Vol-<br>canics           | 642.05 | 642.20 | Grey-green-purple amyg-<br>daloidal basalt (amygdules<br>cream to white coloured)                                  | SAU083 | 2.47 | 0.03 |  |
| SAU | WPDD2 | Wallaroo<br>Group             | 678.95 | 679.13 | Altered sediment, dark<br>purple, haematite, highly<br>fractured                                                   | SAU084 | -    | -    |  |
| SAU | WPDD2 | Wallaroo<br>Group             | 695.61 | 695.81 | Altered sediment, red,<br>haematite, carbonate                                                                     | SAU085 | 3.83 | 0.14 |  |
| SAU | WPDD2 | Wallaroo<br>Group             | 765.63 | 765.77 | Altered sediment, purple-<br>grey, fluorite, chlorite,<br>haematite, carbon-<br>ate, ?quartz, remnant bed-<br>ding | SAU086 | 3.92 | 0.05 |  |
| SAU | WPDD2 | Wallaroo<br>Group             | 830.82 | 830.97 | Altered sediment, dark<br>grey, haematite, carbonate,<br>chlorite                                                  | SAU087 | 3.98 | 0.08 |  |
| SAU | WPDD2 | Wallaroo<br>Group             | 890.80 | 891.00 | Altered sediment, grey-<br>green, chlorite, carbontae,<br>fluorite                                                 | SAU088 | 3.23 | 0.01 |  |

| SAU | BLDD1     | Tindelpina<br>Shale<br>Member     | 301.36      | 301.51   | Dark grey to black silty shale, fine convoluted laminations                                                                                                                                           | SAU096 | 2.18 | 0.13 |   |
|-----|-----------|-----------------------------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|---|
| SAU | BLDD1     | Tindelpina<br>Shale<br>Member     | 406.13      | 406.28   | Dark grey to black silty<br>shale, fine convoluted<br>laminations, healed frac-<br>tures                                                                                                              | SAU089 | 2.89 | 0.06 |   |
| SAU | BLDD1     | Tindelpina<br>Shale<br>Member     | 459.01      | 459.15   | Cream-pale pink fine- to medium-grained sandstone, massive                                                                                                                                            | SAU090 | 5.05 | 0.06 |   |
| SAU | BLDD1     | Pandurra<br>Formation             | 508.53      | 508.65   | Purple-red coarse-grained<br>to small pebble sandstone,<br>massive                                                                                                                                    | SAU091 | 3.91 | 0.09 |   |
| SAU | BLDD1     | Gawler<br>Range<br>Volcanics      | 540.97      | 541.11   | Red fine-grained basalt, friable                                                                                                                                                                      | SAU092 | -    | -    |   |
| SAU | BLDD1     | Gairdner<br>Dyke                  | 618.94      | 619.08   | Dark red fine-grained<br>basalt                                                                                                                                                                       | SAU093 | 3.04 | 0.05 |   |
| SAU | BLDD1     | Donington<br>Suite Gran-<br>ite   | 695.95      | 696.14   | Granite, haematite and chlorite alteration                                                                                                                                                            | SAU094 | 3.89 | 0.07 |   |
| SAU | BLDD1     | Donington<br>Suite Gran-<br>ite   | 821.43      | 821.54   | Granite, haematite altera-<br>tion                                                                                                                                                                    | SAU095 | 4.16 | 0.30 | ~ |
| GRK | Blanche 1 | Corraberra<br>Sandstone<br>Member | 298.70      |          | finer sandstone, red mud-<br>stone, quartz sandstone,<br>medium-grained green<br>(chlorite) cross lamina-<br>tions, well laminated                                                                    |        | 3.34 | 0.08 |   |
| GRK | Blanche 1 | Tregolana<br>Shale<br>Member      | 335.00      |          | mudstone-shale, Fe, qtz                                                                                                                                                                               | 2      | 3.00 | 0.07 |   |
| GRK | Blanche 1 | Tregolana<br>Shale<br>Member      | 426.60      |          | shale-mudstone, minor<br>blue-white lenses, green-<br>cream-pale brown blue<br>mudstone-shale, fine-<br>grained, well laminated,<br>cross bedding                                                     | 3      | 1.85 | 0.05 |   |
| GRK | Blanche 1 | Tregolana<br>Shale<br>Member      | 542.80      |          | mudstone, brown shale,<br>minor green layers, not<br>mottled, fine-grained, Fe,<br>qtz, well laminated                                                                                                | 4      | 2.46 | 0.06 |   |
| GRK | Blanche 1 | Tapley Hill<br>Formation          | 572.30      |          | grey mudstone-shale, well<br>laminated, fine-grained,<br>minor shear zone, Fe, qtz,<br>no dolomite, occasional<br>coarse sandy lenses                                                                 | 19     | 2.31 | 0.06 |   |
| GRK | Blanche 1 | Pandurra<br>Formation             | 642.00      | <b>*</b> | quartzite-sandstone,<br>coarse-grained, local<br>congl., horizontal joints,<br>Fe, qtz, coarse, poorly<br>sorted poorly rounded,<br>bedding laminations, x-<br>bedding                                | 5      | 4.50 | 0.11 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite     | 756.00      |          | granite, pale green feldspar<br>+ quartz, mica, minor<br>shears                                                                                                                                       | 6      | 3.53 | 0.09 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite     | 894.70      |          | fresh granite, feldspar qtz,<br>minor veins & fractures,<br>red-brown, orange, occa-<br>sional veins at low angle to<br>core axis, occasional shears<br>at low angle to core axis,<br>only minor mica | 7      | 3.20 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite     | 1005.6<br>0 |          | fresh granite, feldspar qtz,<br>minor veins & fractures,<br>red-brown, orange, occa-<br>sional veins at low angle to<br>core axis, occasional shears<br>at low angle to core axis,<br>only minor mica | 8      | 3.36 | 0.08 |   |

| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1101.0<br>0 | fresh granite orange colour,<br>qtz, feldspar, mica, no<br>fabric, few discontonities,<br>iron-rich, with mica,<br>coarse-grained              | 9  | 3.37 | 0.08 |   |
|-----|-----------|-------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|---|
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1207.0<br>0 | iron rich, coarse-grained<br>siliceous igneous rock,<br>(granite - no mica), no<br>fabric, magnetite                                           | 10 | 3.28 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1322.0<br>0 | iron rich, coarse-grained<br>siliceous igneous rock,<br>(granite - no mica), no<br>fabric, magnetite                                           | 11 | 3.19 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1460.0<br>0 | coarse-grained granite,<br>magnetite, biotite, quartz,<br>feldspar                                                                             | 12 | 2.93 | 0.07 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1500.6<br>0 | granitoid, feldspar, qtz,<br>magnetite, coarse-grained,<br>no foliation, few fractures                                                         | 13 | 3.17 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1601.6<br>0 | granite ortho, quartz, feld-<br>spar, magnetite, abundant<br>subhorizontal fractures                                                           | 14 | 3.15 | 0.08 | A |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1701.0<br>0 | granite, qtz, feldspar, mag-<br>netite, strong subhorizontal<br>fractures, rare quartz veins<br>and fractures at low angle<br>to core axis     | 15 | 3.27 | 0.11 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1714.5<br>0 | granite ortho, quartz, feld-<br>spar, magnetite, coarse-<br>grained                                                                            | 16 | 3.42 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1801.1<br>4 | coarse ortho granite, strong<br>fracturing (discing), Fe,<br>feldspar, qtz, magnetite,<br>minor shallow angled<br>natural joints with chlorite | 17 | 3.11 | 0.08 |   |
| GRK | Blanche 1 | Hiltaba<br>Suite Gran-<br>ite | 1903.3<br>0 | medium-grained<br>red/orange granite qtz,<br>feldspar, biotite (magnet-<br>ite), natural fractures with<br>chlorite                            | 18 | 3.46 | 0.09 |   |

**Appendix 4**: Estimated heat generation for rocks in the vicinity of the Roxby Geothermal Project (values calculated using elemental proportions of the radioactive isotopes K<sub>2</sub>O, U and Th extracted from Geoscience Australia's OZCHEM database, 2007).

| Region           | Province         | OZCH<br>EM<br>uID | OZCHEM<br>site ID | Lati-<br>tude<br>(°) | Longi-<br>tude<br>(°) | Lithname    | K2O<br>by<br>weigh<br>t % | K<br>(pp<br>m) | U<br>(pp<br>m) | Th<br>(pp<br>m) | Ave.<br>as-<br>sume<br>d<br>den-<br>sity<br>(g/cm<br><sup>3</sup> ) | Heat<br>Gen.<br>from<br>iso-<br>topic<br>abun-<br>dance<br>ratios<br>(µW/m<br><sup>3</sup> ) |
|------------------|------------------|-------------------|-------------------|----------------------|-----------------------|-------------|---------------------------|----------------|----------------|-----------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Gawler<br>Region | Gawler<br>Craton | 44408             | 200036600<br>7    | 30.36<br>8           | 137.08<br>7           | amphibolite | 2.28                      | 189<br>27      | 0.9            | 2.8             | 2.65                                                                | 0.61                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 46006             | WMC               | 30.83<br>7           | 137.18<br>4           | amphibolite | 4.42                      | 366<br>92      | 14.5           | 9.0             | 2.65                                                                | 4.68                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45798             | WMC/WR<br>D-3     | 30.60<br>6           | 137.08<br>5           | aplite      | 8.48                      | 703<br>96      | 3.6            | 58.<br>0        | 2.65                                                                | 5.62                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45817             | WMC/TW<br>N-1     | 30.56<br>4           | 136.90<br>8           | aplite      | 5.78                      | 479<br>82      | 11.4           | 70.<br>0        | 2.65                                                                | 8.24                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45819             | WMC/RD<br>307A    | 30.44<br>8           | 136.84<br>8           | aplite      | 4.79                      | 397<br>64      | 37.5           | 73.<br>0        | 2.65                                                                | 15.07                                                                                        |
| Stuart<br>Region | Stuart Shelf     | 45825             | WMC/SG<br>D-4     | 30.40<br>1           | 136.97<br>8           | aplite      | 0.77                      | 639<br>2       | 10.8           | 74.<br>0        | 2.65                                                                | 7.98                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45828             | WMC/RD-<br>575    | 30.47<br>5           | 136.85<br>2           | aplite      | 6.01                      | 498<br>92      | 34.5           | 63.<br>0        | 2.65                                                                | 13.69                                                                                        |
| Stuart<br>Region | Stuart Shelf     | 45837             | WMC/RD-<br>161    | 30.46<br>5           | 136.91<br>3           | aplite      | 5.12                      | 425<br>03      | 48.0           | 54.<br>0        | 2.65                                                                | 16.46                                                                                        |
| Stuart<br>Region | Stuart Shelf     | 45846             | WMC/OF<br>D-2     | 30.54<br>1           | 137.20<br>1           | aplite      | 5.17                      | 429<br>19      | 23.5           | 106<br>.0       | 2.65                                                                | 13.81                                                                                        |
| Stuart<br>Region | Stuart Shelf     | 45848             | WMC/OF<br>D-3     | 30.55<br>1           | 137.18<br>0           | aplite      | 5.31                      | 440<br>81      | 15.0           | 105<br>.0       | 2.65                                                                | 11.57                                                                                        |
| Stuart<br>Region | Stuart Shelf     | 45856             | WMC/SG<br>D-5     | 30.37<br>2           | 137.09<br>9           | aplite      | 0.31                      | 257<br>3       | 5.0            | 28.<br>0        | 2.65                                                                | 3.26                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45441             | 200036610<br>9    | 31.11<br>1           | 137.14<br>9           | argillite   | 7.2                       | 597<br>70      | 4.0            | 22.<br>5        | 2.65                                                                | 3.16                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45435             | 200036610<br>2    | 31.02<br>2           | 137.01<br>6           | arkose      | 3.17                      | 263<br>16      | 5.0            | 18.<br>6        | 2.65                                                                | 2.82                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45440             | 200036610<br>8    | 31.12<br>7           | 137.11<br>6           | arkose      | 0.63                      | 523<br>0       | 5.4            | 15.<br>5        | 2.65                                                                | 2.51                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45442             | 200036611<br>0    | 31.11<br>0           | 137.14<br>9           | arkose      | 3.29                      | 273<br>12      | 3.0            | 7.8             | 2.65                                                                | 1.57                                                                                         |
| Gawler<br>Region |                  | 45504             | 200036613<br>3    | 31.09<br>5           | 137.12<br>3           | arkose      | 9.67                      | 802<br>75      | 5.0            | 24.<br>9        | 2.65                                                                | 3.76                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44402             | 200036600         | 30.35<br>3           | 137.04                | basalt      | 4.29                      | 356<br>13      | 3.3            | 10.<br>3        | 2.65                                                                | 1.89                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44403             | 200036600<br>2    | 30.35<br>3           | 137.04                | basalt      | 4.63                      | 384<br>36      | 2.8            | 10.<br>3        | 2.65                                                                | 1.79                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44412             | 200036601<br>6    | 30.36<br>8           | 137.08<br>7           | basalt      | 4                         | 332<br>06      | 2.7            | 10.<br>2        | 2.65                                                                | 1.71                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44413             | 200036601<br>7    | 30.36<br>8           | 137.08<br>7           | basalt      | 1.81                      | 150<br>26      | 3.1            | 10.<br>1        | 2.65                                                                | 1.64                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44414             | 200036601<br>8    | 30.36<br>8           | 137.08<br>7           | basalt      | 1.5                       | 124<br>52      | 2.5            | 9.3             | 2.65                                                                | 1.41                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 44415             | 200036601<br>9    | 30.35<br>3           | 137.04                | basalt      | 4.14                      | 343<br>68      | 0.6            | 1.6             | 2.65                                                                | 0.59                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45439             | 200036610<br>6    | 30.12<br>9           | 136.80<br>8           | basalt      | 2.63                      | 218<br>33      | 1.5            | 2.2             | 2.65                                                                | 0.75                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45446             | 200036611<br>8    | 31.82<br>8           | 137.60<br>9           | basalt      | 2.13                      | 176<br>82      | 0.4            | 1.5             | 2.65                                                                | 0.37                                                                                         |
| Gawler<br>Region | Gawler<br>Craton | 45447             | 200036612<br>0    | 31.82<br>8           | 137.60<br>9           | basalt      | 0.7                       | 581<br>1       | 0.2            | 1.0             | 2.65                                                                | 0.18                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45883             | WMC/PY-           | 31.47<br>0           | 137.20<br>1           | basalt      | 2.45                      | 203<br>39      | 1.8            | 8.8             | 2.65                                                                | 1.26                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45884             | WMC/PY-           | 31.47<br>0           | 137.20<br>1           | basalt      | 2.81                      | 233<br>27      | 1.6            | 7.8             | 2.65                                                                | 1.17                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45885             | WMC/PY-           | 31.47<br>0           | 137.20<br>1           | basalt      | 2.28                      | 189<br>27      | 1.2            | 7.6             | 2.65                                                                | 1.01                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 45980             | WMC/PY-           | 31.45<br>2           | 137.22<br>9           | basalt      | 4.96                      | 411<br>75      | 5.0            | 30.<br>5        | 2.65                                                                | 3.79                                                                                         |
| Stuart<br>Region | Stuart Shelf     | 46598             | BK2               | 31.74<br>7           | 9<br>137.41<br>0      | basalt      | 0.44                      | 365<br>3       | 4.0            | 6.0             | 2.65                                                                | 1.48                                                                                         |
| Stuart           | Gawler           | 46707             | PY3               | 31.53                | 137.36                | basalt      | 11.5                      | 954            | 8.0            | 30.             | 2.65                                                                | 5.03                                                                                         |

|                    |                  | 1     | I                 |            | 1           |         | ı    |           | 1          |           | 1        |        |
|--------------------|------------------|-------|-------------------|------------|-------------|---------|------|-----------|------------|-----------|----------|--------|
| Region             | Craton           |       |                   | 1          | 6           |         |      | 67        |            | 0         |          |        |
| Stuart<br>Region   | Gawler<br>Craton | 46708 | PY3               | 31.53<br>1 | 137.36<br>6 | basalt  | 4.24 | 351<br>98 | 6.0        | 32.<br>0  | 2.65     | 4.09   |
| Stuart<br>Region   | Gawler<br>Craton | 46709 | PY3               | 31.53      | 137.36<br>6 | basalt  | 4.74 | 393<br>49 | 0.0        | 26.<br>0  | 2.65     | 2.18   |
| Stuart             | Gawler           | 46710 | PY3               | 31.53      | 137.36      | basalt  | 9.55 | 792       | 8.0        | 26.       | 2.65     | 4.60   |
| Region<br>Stuart   | Craton<br>Gawler | 46711 | PY3               | 1<br>31.53 | 6<br>137.36 | basalt  | 8.45 | 79<br>701 | 0.0        | 0<br>34.  | 2.65     | 3.02   |
| Region<br>Stuart   | Craton<br>Gawler |       |                   | 1<br>31.53 | 6<br>137.36 |         |      | 47<br>689 |            | 0<br>42.  |          |        |
| Region             | Craton           | 46712 | PY3               | 1          | 6           | basalt  | 8.3  | 02        | 6.0        | 0         | 2.65     | 5.10   |
| Stuart<br>Region   | Gawler<br>Craton | 46713 | PY3               | 31.53<br>1 | 137.36<br>6 | basalt  | 10.9 | 904<br>86 | 4.0        | 40.<br>0  | 2.65     | 4.65   |
| Stuart<br>Region   | Gawler<br>Craton | 46714 | PY3               | 31.53      | 137.36<br>6 | basalt  | 8.6  | 713<br>93 | 6.0        | 40.<br>0  | 2.65     | 4.99   |
| Stuart             | Gawler<br>Craton | 46715 | PY3               | 31.53      | 137.36<br>6 | basalt  | 7.85 | 651<br>66 | 4.0        | 44.<br>0  | 2.65     | 4.70   |
| Region<br>Stuart   | Gawler           | 46716 | PY3               | 31.53      | 137.36      | basalt  | 9.3  | 772       | 6.0        | 30.       | 2.65     | 4.34   |
| Region<br>Stuart   | Craton<br>Gawler |       |                   | 1<br>31.53 | 6<br>137.36 |         |      | 04<br>680 |            | 0<br>60.  | <b>.</b> |        |
| Region<br>Stuart   | Craton<br>Gawler | 46717 | PY3               | 1<br>31.53 | 6<br>137.36 | basalt  | 8.2  | 72<br>618 | 12.0       | 0<br>70.  | 2.65     | 7.89   |
| Region             | Craton           | 46718 | PY3               | 1          | 6           | basalt  | 7.45 | 46        | 12.0       | 0         | 2.65     | 8.53   |
| Stuart<br>Region   | Gawler<br>Craton | 46719 | PY3               | 31.53<br>1 | 137.36<br>6 | basalt  | 7.85 | 651<br>66 | 4.0        | 42.<br>0  | 2.65     | 4.56   |
| Stuart<br>Region   | Gawler<br>Craton | 46720 | PY1               | 31.59<br>7 | 137.50<br>0 | basalt  | 2.44 | 202<br>56 | 0.0        | 16.<br>0  | 2.65     | 1.30   |
| Eromanga           | Stuart Shelf     | 45898 | 33MK56W           | 30.43      | 136.88      | breccia | 0.04 | 332       | 95.0       | 10.       | 2.65     | 25.04  |
| Region<br>Eromanga | Stuart Shelf     | 45899 | Dr<br>32MJ53      | 9<br>30.44 | 6<br>136.88 | breccia | 0.04 | 332       | 45.0       | 0<br>-2.0 | 2.65     | 11.40  |
| Region<br>Adelaide |                  |       | Stck.<br>32MJ54 S | 2<br>30.44 | 6<br>136.88 |         |      |           |            |           |          |        |
| Region<br>Adelaide | Stuart Shelf     | 45900 | Dc<br>Grzly       | 3<br>30.44 | 7<br>136.88 | breccia | 0    | 0         | 27.0       | 0.0       | 2.65     | 6.92   |
| Region             | Stuart Shelf     | 45901 | Acc.Inc.          | 4          | 8           | breccia | 0.04 | 332       | 23.0       | 7.0       | 2.65     | 6.38   |
| Eromanga<br>Region | Stuart Shelf     | 45902 | 26NB56<br>C.Ac    | 30.43<br>8 | 136.88<br>8 | breccia | 0.11 | 913       | 51.0       | 29.<br>0  | 2.65     | 15.10  |
| Eromanga<br>Region | Stuart Shelf     | 45903 | RD44              | 30.43<br>7 | 136.88<br>6 | breccia | 0.02 | 166       | 181.<br>5  | 12.<br>0  | 2.65     | 47.35  |
| Eromanga<br>Region | Stuart Shelf     | 45904 | RD44              | 30.43<br>7 | 136.88<br>6 | breccia | 0.14 | 116<br>2  | 46.0       | 19.<br>0  | 2.65     | 13.12  |
| Adelaide           | Stuart Shelf     | 45905 | RD501             | 30.43<br>8 | 136.87<br>5 | breccia | 1.49 | 123<br>69 | 565.<br>5  | 16.<br>0  | 2.65     | 146.14 |
| Region<br>Adelaide | Stuart Shelf     | 45906 | RD501             | 30.43      | 136.87      | breccia | 0.67 | 556       | 47.5       | 19.       | 2.65     | 13.55  |
| Region<br>Adelaide | Stuart Shelf     | 45907 | RU2314            | 8<br>30.43 | 5<br>136.87 | breccia | 0.29 | 2<br>240  | 149.       | 0<br>39.  | 2.65     | 40.92  |
| Region<br>Eromanga |                  |       |                   | 8<br>30.43 | 5<br>136.88 |         |      | 7<br>481  | 0<br>245   | 0<br>16.  |          |        |
| Region<br>Eromanga | Stuart Shelf     | 45908 | RU3 653           | 7 30.43    | 6<br>136.88 | breccia | 0.58 | 5<br>846  | 5.0<br>101 | 0 21.     | 2.65     | 630.27 |
| Region             | Stuart Shelf     | 45909 | RU3-653           | 7          | 6           | breccia | 1.02 | 7         | 4.0        | 0         | 2.65     | 261.38 |
| Adelaide<br>Region | Stuart Shelf     | 45910 | RU3307            | 30.43<br>9 | 136.87<br>5 | breccia | 0.16 | 132<br>8  | 816.<br>5  | 72.<br>0  | 2.65     | 214.26 |
| Adelaide<br>Region | Stuart Shelf     | 45914 | RD829             | 30.45<br>0 | 136.89<br>1 | breccia | 0.02 | 166       | 98.0       | 23.<br>0  | 2.65     | 26.72  |
| Adelaide<br>Region | Stuart Shelf     | 45917 | RD602             | 30.44<br>7 | 136.88<br>3 | breccia | 0    | 0         | 20.0       | 34.<br>0  | 2.65     | 7.49   |
| Adelaide           | Stuart Shelf     | 45918 | RD602             | 30.44      | 136.88      | breccia | 0.41 | 340       | 11.0       | 22.       | 2.65     | 4.38   |
| Region<br>Adelaide | Stuart Shelf     | 45919 | RD781             | 7<br>30.44 | 3<br>136.88 | breccia | 0.03 | 4<br>249  | 7.0        | 0<br>26.  | 2.65     | 3.61   |
| Region<br>Adelaide | Stuart Shelf     | 45922 | RD602             | 6<br>30.44 | 2<br>136.88 | breccia | 1.47 | 122       | 35.0       | 0<br>99.  | 2.65     | 15.98  |
| Region<br>Adelaide |                  |       |                   | 7 30.44    | 3<br>136.88 |         |      | 03        |            | 0<br>23.  |          |        |
| Region             | Stuart Shelf     | 45925 | RD77A             | 4          | 8           | breccia | 0    | 0         | 44.5       | 0         | 2.65     | 13.01  |
| Adelaide<br>Region | Stuart Shelf     | 45926 | RD16W1            | 30.44<br>4 | 136.88<br>6 | breccia | 0    | 0         | 127.<br>0  | 13.<br>0  | 2.65     | 33.45  |
| Adelaide<br>Region | Stuart Shelf     | 45928 | RD96W1            | 30.43<br>8 | 136.87<br>6 | breccia | 0    | 0         | 378.<br>0  | 37.<br>0  | 2.65     | 99.44  |
| Eromanga<br>Region | Stuart Shelf     | 45931 | RU33-59           | 30.44<br>0 | 136.88<br>7 | breccia | 0.02 | 166       | 202.<br>5  | 14.<br>0  | 2.65     | 52.87  |
| Eromanga<br>Region | Stuart Shelf     | 45932 | RU33-59           | 30.44<br>0 | 136.88<br>7 | breccia | 0.2  | 166<br>0  | 230.<br>0  | 8.0       | 2.65     | 59.51  |
| Eromanga           | Stuart Shelf     | 45933 | 38NG52            | 30.44      | 136.89      | breccia | 0    | 0         | 484.       | 5.0       | 2.65     | 124.38 |
| Region<br>Eromanga | Stuart Shelf     | 45934 | S.Dc<br>38NG52    | 1<br>30.44 | 5<br>136.89 | breccia | 0.16 | 132       | 0<br>467.  | 18.       | 2.65     | 120.94 |
| Region             | Staart Silen     | FUT   | S.Dc              | 1          | 5           | 5100010 | 0.10 | 8         | 0          | 0         | 2.03     | 120.74 |

| Eromanga           | 1                      | 1     | 39NH51S          | 30.44      | 136.89      |             | I    | I         | 156         | I             | I    | I      |
|--------------------|------------------------|-------|------------------|------------|-------------|-------------|------|-----------|-------------|---------------|------|--------|
| Region             | Stuart Shelf           | 45937 | E.Dc             | 1          | 5           | breccia     | 0.02 | 166       | 5.0         | 9.0           | 2.65 | 401.67 |
| Eromanga<br>Region | Stuart Shelf           | 45938 | 39NH51S<br>E.Dc  | 30.44<br>1 | 136.89<br>5 | breccia     | 0.02 | 166       | 905.<br>5   | 8.0           | 2.65 | 232.60 |
| Eromanga<br>Region | Stuart Shelf           | 45944 | RD545            | 30.43<br>8 | 136.88<br>6 | breccia     | 0.04 | 332       | 126<br>0.0  | 9.0           | 2.65 | 323.51 |
| Adelaide<br>Region | Stuart Shelf           | 45945 | RU4-144          | 30.44<br>9 | 136.89<br>3 | breccia     | 0.03 | 249       | 36.5        | 43.<br>0      | 2.65 | 12.35  |
| Eromanga<br>Region | Stuart Shelf           | 45949 | RU3-401          | 30.44<br>5 | 136.88<br>9 | breccia     | 0.7  | 581<br>1  | 156.<br>0   | 60.<br>0      | 2.65 | 44.21  |
| Adelaide<br>Region | Stuart Shelf           | 45950 | RU3-401          | 30.44<br>5 | 136.88<br>9 | breccia     | 0.83 | 689<br>0  | 110.<br>5   | 96.<br>0      | 2.65 | 35.07  |
| Eromanga<br>Region | Stuart Shelf           | 45951 | RU3-402          | 30.44<br>5 | 136.89<br>0 | breccia     | 0.02 | 166       | 92.5        | 60.<br>0      | 2.65 | 27.89  |
| Adelaide           | Stuart Shelf           | 45953 | RU3-751          | 30.43      | 136.87      | breccia     | 0.81 | 672       | 180.        | 13.           | 2.65 | 47.22  |
| Region<br>Eromanga | Stuart Shelf           | 45954 | RU3-898          | 8<br>30.44 | 5<br>136.88 | breccia     | 0.76 | 4<br>630  | 5<br>33.5   | 0<br>20.      | 2.65 | 10.04  |
| Region<br>Adelaide | Stuart Shelf           | 45956 | RU3-769          | 0<br>30.43 | 8<br>136.87 | breccia     | 0.71 | 9<br>589  | 142         | 0<br>3.0      | 2.65 | 364.66 |
| Region<br>Adelaide | Stuart Shelf           | 45957 | RU3-321          | 7<br>30.43 | 5<br>136.87 | breccia     | 0.1  | 4<br>830  | 2.0<br>969. | 60.           | 2.65 | 252.50 |
| Region<br>Stuart   | Gawler                 |       |                  | 8<br>31.53 | 5<br>137.36 |             |      | 443       | 0           | 0<br>50.      | 2.65 |        |
| Region<br>Gawler   | Craton<br>Gawler       | 46726 | PY3<br>200036600 | 1<br>30.36 | 6<br>137.08 | carbonatite | 5.34 | 30<br>392 |             | 0<br>18.      |      | 3.90   |
| Region<br>Gawler   | Craton<br>Gawler       | 44409 | 8<br>200036601   | 8<br>30.36 | 7           | dacite      | 4.73 | 66<br>321 | 4.0         | 1<br>1<br>19. | 2.65 | 2.65   |
| Region             | Craton                 | 44411 | 0                | 8          | 7           | dacite      | 3.87 | 27        | 7.7         | 6             | 2.65 | 3.64   |
| Gawler<br>Region   | Gawler<br>Craton       | 44458 | 200036604<br>8   | 30.58<br>1 | 136.78<br>3 | dacite      | 5.69 | 472<br>35 | 14.4        | 38.<br>9      | 2.65 | 6.84   |
| Gawler<br>Region   | Gawler<br>Craton       | 44459 | 200036604<br>9   | 30.58<br>1 | 136.78<br>3 | dacite      | 6.66 | 552<br>88 | 18.8        | 34.<br>0      | 2.65 | 7.70   |
| Gawler<br>Region   | Gawler<br>Craton       | 44460 | 200036605<br>0   | 30.57<br>9 | 136.81<br>0 | dacite      | 6.49 | 538<br>76 | 11.2        | 48.<br>3      | 2.65 | 6.74   |
| Gawler<br>Region   | Gawler<br>Craton       | 45448 | 200036612<br>1   | 31.07<br>3 | 136.93      | dacite      | 8.82 | 732<br>19 | 18.2        | 63.<br>8      | 2.65 | 9.78   |
| Gawler<br>Region   | Gawler<br>Craton       | 45449 | 200036612<br>5   | 31.41<br>0 | 137.21      | dacite      | 6.76 | 561<br>18 | 6.5         | 40.<br>3      | 2.65 | 5.01   |
| Gawler             | Gawler<br>Craton       | 45451 | 200036612<br>6   | 31.41      | 137.21      | dacite      | 7.2  | 597<br>70 | 6.8         | 39.<br>6      | 2.65 | 5.06   |
| Region<br>Eromanga | Gawler                 | 46364 | 884EU4           | 0<br>30.33 | 136.63      | dacite      | 5.49 | 455       | 7.0         | 33.           | 2.65 | 4.52   |
| Region<br>Gawler   | Craton<br>Gawler       | 44406 | 200036600        | 5<br>30.40 | 8<br>136.97 | diorite     | 2.83 | 75<br>234 | 1.3         | 0<br>1.6      | 2.65 | 0.67   |
| Region<br>Gawler   | Craton<br>Gawler       | 44422 | 5<br>200036602   | 4<br>30.76 | 7 137.33    | dolerite    | 1.81 | 93<br>150 | 1.6         | 5.2           | 2.65 | 0.92   |
| Region<br>Gawler   | Craton<br>Gawler       | 44427 | 1<br>200036602   | 2<br>30.76 | 4<br>137.33 |             | 4.91 | 26<br>407 | 1.6         | 6.0           |      |        |
| Region<br>Gawler   | Craton<br>Gawler       |       | 6<br>200036603   | 2<br>30.61 | 4 136.81    | dolerite    |      | 60<br>200 |             |               | 2.65 | 1.21   |
| Region<br>Gawler   | Craton<br>Gawler       | 44435 | 0<br>200036603   | 4<br>30.79 | 7<br>137.50 | dolerite    | 2.41 | 07<br>146 | 0.2         | 0.5           | 2.65 | 0.27   |
| Region<br>Gawler   | Craton<br>Gawler       | 44436 | 1<br>200036603   | 7          | 2 136.97    | dolerite    | 1.76 | 11        | 1.3         | 4.9           | 2.65 | 0.82   |
| Region             | Craton                 | 44445 | 5                | 30.54      | 8           | dolerite    | 3.16 | 262<br>33 | 0.4         | 0.1           | 2.65 | 0.36   |
| Gawler<br>Region   | Gawler<br>Craton       | 45433 | 200036610<br>0   | 31.02<br>2 | 137.01<br>6 | dolerite    | 1.86 | 154<br>41 | 0.6         | 2.5           | 2.65 | 0.48   |
| Gawler<br>Region   | Gawler<br>Craton       | 45437 | 200036610<br>4   | 30.12<br>9 | 136.80<br>8 | dolerite    | 2.54 | 210<br>86 | 0.8         | 0.6           | 2.65 | 0.44   |
| Stuart<br>Region   | Stuart Shelf           | 45852 | WMC/BL<br>D-1    | 30.37<br>9 | 137.21<br>6 | dolerite    | 3.64 | 302<br>17 | 10.6        | 41.<br>5      | 2.65 | 5.89   |
| Eromanga<br>Region | Stuart Shelf           | 45915 | RD160            | 30.44<br>2 | 136.89<br>2 | dolerite    | 0.38 | 315<br>5  | 0.5         | 4.0           | 2.65 | 0.44   |
| Eromanga<br>Region | Stuart Shelf           | 45916 | RD160            | 30.44<br>2 | 136.89<br>3 | dolerite    | 0    | 0         | 0.0         | 0.0           | 2.65 | 0.00   |
| Eromanga<br>Region | Stuart Shelf           | 45929 | RD160            | 30.44<br>2 | 136.89<br>3 | dolerite    | 0    | 0         | 0.0         | 0.0           | 2.65 | 0.00   |
| Eromanga<br>Region | Stuart Shelf           | 45946 | RD222            | 30.46<br>0 | 136.92      | dolerite    | 0.51 | 423<br>4  | 1.0         | -2.0          | 2.65 | 0.16   |
| Eromanga           | Stuart Shelf           | 45948 | RD271            | 30.44<br>2 | 136.89<br>3 | dolerite    | 0.7  | 581       | 1.5         | -2.0          | 2.65 | 0.30   |
| Region<br>Stuart   | Stuart Shelf           | 45979 | WMC/RD-          | 30.45      | 136.92      | dolerite    | 0.5  | 1<br>415  | 1.0         | 2.8           | 2.65 | 0.49   |
| Region<br>Stuart   | Stuart Shelf           | 46264 | 222<br>91-565    | 6<br>31.42 | 0 137.10    | dolerite    | 0.05 | 1<br>415  | 0.3         | 1.3           | 2.65 | 0.16   |
| Region<br>Stuart   | Gawler                 | 46721 | EC40             | 7<br>31.46 | 0 137.41    | dolerite    | 1.67 | 138       | 4.0         | 14.           | 2.65 | 2.13   |
| Region<br>Stuart   | Craton<br>Stuart Shelf | 46522 | GY14             | 6<br>31.54 | 6<br>137.30 | dolostone   | 0.14 | 63<br>116 | 4.0         | 0<br>4.0      | 2.65 | 1.31   |
| Region             | Studit Shell           | 40322 | 0114             | 5          | 5           | doiostone   | 0.14 | 2         | 4.0         | 4.0           | 2.03 | 1.51   |

67

| Stuart<br>Region | Stuart Shelf          | 46524 | GY14           | 31.54<br>5 | 137.30<br>5 | dolostone | 1.46 | 121<br>20 | 4.0       | 8.0      | 2.65 | 1.69  |
|------------------|-----------------------|-------|----------------|------------|-------------|-----------|------|-----------|-----------|----------|------|-------|
| Stuart<br>Region | Stuart Shelf          | 46525 | GY14           | 31.54<br>5 | 137.30<br>5 | dolostone | 2.41 | 200<br>07 | -4.0      | 16.<br>0 | 2.65 | 0.28  |
| Stuart<br>Region | Stuart Shelf          | 46533 | MG81           | 31.57      | 137.31<br>8 | dolostone | 1.47 | 122<br>03 | 6.0       | 10.<br>0 | 2.65 | 2.35  |
| Stuart           | Stuart Shelf          | 46534 | MG81           | 31.57      | 137.31      | dolostone | 3.39 | 281       | 12.0      | 18.      | 2.65 | 4.59  |
| Region<br>Stuart | Stuart Shelf          | 46535 | MG81           | 1<br>31.57 | 8<br>137.31 | dolostone | 0.44 | 42<br>365 | 4.0       | 0<br>8.0 | 2.65 | 1.62  |
| Region<br>Stuart | Stuart Shelf          | 46538 | MG81           | 1<br>31.57 | 8<br>137.31 | dolostone | 2.04 | 3<br>169  | 8.0       | 10.      | 2.65 | 2.90  |
| Region<br>Stuart |                       |       |                | 1<br>31.57 | 8<br>137.32 |           |      | 35<br>246 |           | 0        |      |       |
| Region<br>Stuart | Stuart Shelf          | 46541 | MG62           | 7 31.57    | 3<br>137.32 | dolostone | 2.97 | 55<br>987 | 10.0      | 0<br>10. | 2.65 | 3.77  |
| Region           | Stuart Shelf          | 46542 | MG62           | 7          | 3           | dolostone | 1.19 | 9         | 26.0      | 0        | 2.65 | 7.45  |
| Stuart<br>Region | Stuart Shelf          | 46543 | MG62           | 31.57<br>7 | 137.32<br>3 | dolostone | 0.52 | 431<br>7  | 12.0      | 6.0      | 2.65 | 3.53  |
| Stuart<br>Region | Stuart Shelf          | 46544 | MG62           | 31.57<br>7 | 137.32<br>3 | dolostone | 1.77 | 146<br>94 | 280.<br>0 | 10.<br>0 | 2.65 | 72.58 |
| Stuart<br>Region | Stuart Shelf          | 46545 | MG62           | 31.57<br>7 | 137.32<br>3 | dolostone | 0.88 | 730<br>5  | 4.0       | 8.0      | 2.65 | 1.65  |
| Stuart<br>Region | Stuart Shelf          | 46546 | MG62           | 31.57<br>7 | 137.32<br>3 | dolostone | 1.13 | 938<br>1  | 6.0       | 6.0      | 2.65 | 2.04  |
| Stuart<br>Region | Stuart Shelf          | 46559 | GY05           | 31.55<br>4 | 137.30<br>5 | dolostone | 1.73 | 143<br>62 | 6.0       | 6.0      | 2.65 | 2.09  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46568 | LD23           | 31.63<br>0 | 137.02<br>0 | dolostone | 2.6  | 215<br>84 | 4.0       | 12.<br>0 | 2.65 | 2.06  |
| Stuart           | Adelaide              | 46571 | LD23           | 31.63      | 137.02      | dolostone | 1.74 | 144       | 4.0       | 10.      | 2.65 | 1.86  |
| Region<br>Stuart | Fold Belt<br>Adelaide | 46573 | LD23           | 0 31.63    | 0 137.02    | dolostone | 0.14 | 45<br>116 | 4.0       | 0<br>6.0 | 2.65 | 1.45  |
| Region<br>Stuart | Fold Belt<br>Adelaide | 46574 | LD23           | 0 31.63    | 0 137.02    | dolostone | 0.26 | 2<br>215  | 4.0       | 8.0      | 2.65 | 1.60  |
| Region<br>Stuart | Fold Belt<br>Adelaide |       |                | 0 31.80    | 0 136.92    |           |      | 8<br>219  |           | 16.      |      |       |
| Region<br>Stuart | Fold Belt<br>Adelaide | 46584 | LD25           | 3<br>31.80 | 7 136.92    | dolostone | 2.64 | 16<br>237 | 4.0       | 0<br>18. | 2.65 | 2.34  |
| Region           | Fold Belt<br>Adelaide | 46585 | LD25           | 3          | 7           | dolostone | 2.86 | 42<br>224 | 4.0       | 0<br>18. | 2.65 | 2.50  |
| Stuart<br>Region | Fold Belt             | 46587 | LD25           | 3          | 7           | dolostone | 2.71 | 97        | 4.0       | 0        | 2.65 | 2.49  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46589 | LD25           | 31.80<br>3 | 136.92<br>7 | dolostone | 2.29 | 190<br>10 | 4.0       | 14.<br>0 | 2.65 | 2.18  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46592 | BK2            | 31.74<br>7 | 137.41<br>0 | dolostone | 2.47 | 205<br>05 | -4.0      | 14.<br>0 | 2.65 | 0.14  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46593 | BK2            | 31.74<br>7 | 137.41<br>0 | dolostone | 2.22 | 184<br>29 | 6.0       | 10.<br>0 | 2.65 | 2.41  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46594 | BK2            | 31.74<br>7 | 137.41<br>0 | dolostone | 3.15 | 261<br>50 | 6.0       | 14.<br>0 | 2.65 | 2.76  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46595 | BK2            | 31.74      | 137.41<br>0 | dolostone | 2.21 | 183<br>46 | -4.0      | 14.<br>0 | 2.65 | 0.12  |
| Stuart<br>Region | Adelaide<br>Fold Belt | 46596 | BK2            | 31.74<br>7 | 137.41<br>0 | dolostone | 2.03 | 168<br>52 | 4.0       | 12.<br>0 | 2.65 | 2.02  |
| Stuart           | Adelaide              | 46657 | PL32           | 31.66      | 137.29      | dolostone | 2.07 | 171       | 6.0       | 16.      | 2.65 | 2.81  |
| Region<br>Stuart | Fold Belt<br>Adelaide | 46658 | PL32           | 8<br>31.66 | 3<br>137.29 | dolostone | 1.58 | 84<br>131 | 6.0       | 0<br>16. | 2.65 | 2.77  |
| Region<br>Stuart | Fold Belt<br>Adelaide | 46659 | PL32           | 8<br>31.66 | 3<br>137.29 | dolostone | 0.74 | 16<br>614 | -4.0      | 0<br>18. | 2.65 | 0.29  |
| Region<br>Gawler | Fold Belt<br>Gawler   | 45436 | 200036610      | 8<br>30.18 | 3<br>136.99 |           |      | 3<br>317  |           | 0<br>28. |      |       |
| Region<br>Gawler | Craton<br>Gawler      |       | 3<br>200036611 | 6<br>30.78 | 9<br>137.17 | gneiss    | 3.83 | 95<br>521 | 4.8       | 5<br>17. | 2.65 | 3.51  |
| Region<br>Gawler | Craton<br>Gawler      | 45445 | 7<br>200036600 | 9<br>30.37 | 5           | gneiss    | 6.28 | 33<br>369 | 3.2       | 8<br>27. | 2.65 | 2.54  |
| Region           | Craton                | 44404 | 3              | 7<br>30.40 | 7           | granite   | 4.45 | 41        | 5.8       | 0<br>24. | 2.65 | 3.72  |
| Gawler<br>Region | Gawler<br>Craton      | 44405 | 200036600<br>4 | 4          | 7           | granite   | 3.14 | 260<br>67 | 5.7       | 4        | 2.65 | 3.41  |
| Gawler<br>Region | Gawler<br>Craton      | 44407 | 200036600<br>6 | 30.37<br>8 | 137.09<br>8 | granite   | 0.2  | 166<br>0  | 8.4       | 25.<br>5 | 2.65 | 3.93  |
| Gawler<br>Region | Gawler<br>Craton      | 44416 | 200036602<br>0 | 30.76<br>2 | 137.33<br>4 | granite   | 3.17 | 263<br>16 | 1.9       | 4.7      | 2.65 | 1.05  |
| Gawler<br>Region | Gawler<br>Craton      | 44417 | 200036602<br>0 | 30.76<br>2 | 137.33<br>4 | granite   | 2.17 | 180<br>14 | 0.7       | 5.0      | 2.65 | 0.69  |
| Gawler<br>Region | Gawler<br>Craton      | 44418 | 200036602<br>0 | 30.76<br>2 | 137.33<br>4 | granite   | 2.4  | 199<br>23 | 1.1       | 4.0      | 2.65 | 0.75  |
| Gawler           | Gawler                | 44419 | 200036602      | 30.76      | 137.33      | granite   | 2.78 | 230       | 2.2       | 4.3      | 2.65 | 1.08  |
| Region<br>Gawler | Craton<br>Gawler      | 44420 | 0 200036602    | 2<br>30.76 | 4 137.33    | granite   | 3.5  | 78<br>290 | 0.7       | 6.5      | 2.65 | 0.91  |
| Region           | Craton                | 14420 | 0              | 2          | 4           | Diama     | 5.5  | 55        | 5.7       | 0.5      | 2.05 | 0.71  |

| Gawler           | Gawler                 | 44421 | 200036602      | 30.76      | 137.33      | granite | 2.9  | 240       | 0.8    | 3.9      | 2.65 | 0.71     |
|------------------|------------------------|-------|----------------|------------|-------------|---------|------|-----------|--------|----------|------|----------|
| Region<br>Gawler | Craton<br>Gawler       |       | 0<br>200036602 | 2<br>30.76 | 4 137.33    |         |      | 74<br>332 |        | 17.      |      |          |
| Region           | Craton                 | 44423 | 2              | 2          | 4           | granite | 4.01 | 89        | 2.5    | 1        | 2.65 | 2.13     |
| Gawler<br>Region | Gawler<br>Craton       | 44424 | 200036602<br>3 | 30.76<br>2 | 137.33<br>4 | granite | 3.83 | 317<br>95 | 3.7    | 18.<br>6 | 2.65 | 2.54     |
| Gawler<br>Region | Gawler<br>Craton       | 44425 | 200036602<br>4 | 30.76<br>2 | 137.33<br>4 | granite | 3.65 | 303<br>00 | 3.7    | 18.<br>6 | 2.65 | 2.53     |
| Gawler           | Gawler                 | 44426 | 200036602      | 30.76      | 137.33      | granite | 4.1  | 340       | 12.1   | 73.      | 2.65 | 8.52     |
| Region<br>Gawler | Craton<br>Gawler       | 44420 | 5<br>200036602 | 2<br>30.65 | 4<br>136.82 | granne  | 4.1  | 36<br>620 | 12.1   | 2<br>94. | 2.05 | 8.52     |
| Region           | Craton                 | 44428 | 7              | 6          | 3           | granite | 7.48 | 95        | 20.6   | 2        | 2.65 | 12.42    |
| Gawler<br>Region | Gawler<br>Craton       | 44429 | 200036602<br>8 | 30.65<br>6 | 136.82<br>3 | granite | 6.79 | 563<br>67 | 10.8   | 2.2      | 2.65 | 3.44     |
| Gawler           | Gawler                 | 44430 | 200036602      | 30.61      | 136.81      | granite | 2.75 | 228       | 1.0    | 0.9      | 2.65 | 0.54     |
| Region<br>Gawler | Craton<br>Gawler       | 44421 | 9<br>200036602 | 4 30.61    | 7<br>136.81 |         | 2 71 | 29<br>307 | 0.4    | 0.5      | 2.65 | 0.42     |
| Region           | Craton                 | 44431 | 9              | 4          | 7<br>136.81 | granite | 3.71 | 98<br>332 | 0.4    | 0.5      | 2.65 | 0.43     |
| Gawler<br>Region | Gawler<br>Craton       | 44432 | 200036602<br>9 | 30.61<br>4 | 136.81      | granite | 4.01 | 332<br>89 | 1.2    | 1.9      | 2.65 | 0.75     |
| Gawler<br>Region | Gawler<br>Craton       | 44433 | 200036602<br>9 | 30.61<br>4 | 136.81<br>7 | granite | 4.67 | 387<br>68 | 0.9    | 1.7      | 2.65 | 0.70     |
| Gawler           | Gawler                 | 44434 | 200036602      | 30.61      | 136.81      | granite | 2.47 | 205       | 1.5    | 14.      | 2.65 | 1.54     |
| Region<br>Gawler | Craton<br>Gawler       |       | 9<br>200036603 | 4 30.79    | 7<br>137.50 | granite | - V  | 05<br>494 |        | 1<br>22. |      | <i>y</i> |
| Region           | Craton                 | 44437 | 2              | 7          | 2           | granite | 5.96 | 77        | 4.2    | 5        | 2.65 | 3.09     |
| Gawler<br>Region | Gawler<br>Craton       | 44438 | 200036603<br>2 | 30.79<br>7 | 137.50<br>2 | granite | 6.7  | 556<br>20 | 1.5    | 14.<br>3 | 2.65 | 1.89     |
| Gawler           | Gawler                 | 44439 | 200036603<br>2 | 30.79      | 137.50      | granite | 6.03 | 500       | 3.0    | 24.      | 2.65 | 2.93     |
| Region<br>Gawler | Craton<br>Gawler       | 44440 | 200036603      | 7<br>30.79 | 2<br>137.50 | granite | 6.03 | 58<br>500 | 1.4    | 6<br>8.2 | 2.65 | 1.39     |
| Region<br>Gawler | Craton<br>Gawler       |       | 2<br>200036603 | 7<br>30.79 | 2<br>137.50 | grainte | 0.05 | 58<br>533 | ettre. | 20.      |      |          |
| Region           | Craton                 | 44441 | 2              | 7          | 2           | granite | 6.43 | 78        | 2.2    | 3        | 2.65 | 2.48     |
| Gawler<br>Region | Gawler<br>Craton       | 44442 | 200036603<br>4 | 30.67<br>3 | 136.93      | granite | 8.09 | 671<br>59 | 5.1    | 20.<br>8 | 2.65 | 3.37     |
| Gawler           | Gawler                 | 44443 | 200036603      | 30.67      | 136.93      | granite | 6.41 | 532       | 7.4    | 35.      | 2.65 | 4.85     |
| Region<br>Gawler | Craton<br>Gawler       | 44444 | 4<br>200036603 | 3<br>30.67 | 4<br>136.93 | granite | 5.14 | 12<br>426 | 5.6    | 3<br>16. | 2.65 | 3.01     |
| Region<br>Gawler | Craton<br>Gawler       |       | 4 200036603    | 3<br>30.54 | 4 136.97    | grainte |      | 69<br>274 |        | 9        |      |          |
| Region           | Craton                 | 44446 | 6              | 5          | 8           | granite | 3.31 | 78        | 0.9    | 1.6      | 2.65 | 0.59     |
| Gawler<br>Region | Gawler<br>Craton       | 44447 | 200036603<br>7 | 30.54      | 136.97<br>8 | granite | 6.3  | 522<br>99 | 0.8    | 2.0      | 2.65 | 0.84     |
| Gawler<br>Region | Gawler<br>Craton       | 44448 | 200036603<br>8 | 30.48<br>7 | 137.12<br>8 | granite | 0.44 | 365<br>3  | 5.0    | 55.<br>4 | 2.65 | 5.18     |
| Gawler           | Gawler                 | 44449 | 200036603      | 30.48      | 137.12      | granite | 4.82 | 400       | 3.7    | 15.      | 2.65 | 2.37     |
| Region<br>Gawler | Craton<br>Gawler       |       | 9<br>200036604 | 7 30.54    | 8<br>137.20 | -       |      | 13<br>449 |        | 0<br>76. |      |          |
| Region           | Craton                 | 44452 | 2              | 5          | 0           | granite | 5.41 | 11        | 18.8   | 2        | 2.65 | 10.54    |
| Gawler<br>Region | Gawler<br>Craton       | 44453 | 200036604<br>3 | 30.54<br>5 | 137.20<br>0 | granite | 4.57 | 379<br>38 | 14.6   | 40.<br>9 | 2.65 | 6.94     |
| Gawler<br>Region | Gawler<br>Craton       | 44454 | 200036604<br>4 | 30.55<br>0 | 137.17<br>9 | granite | 4.97 | 412<br>58 | 15.2   | 44.<br>8 | 2.65 | 7.40     |
| Gawler           | Gawler                 | 44455 | 200036604      | 30.55      | 137.17      | granite | 6.18 | 513       | 6.5    | 33.      | 2.65 | 4.48     |
| Region<br>Gawler | Craton<br>Gawler       |       | 5<br>200036604 | 0 30.55    | 9<br>137.17 | -       |      | 03<br>323 |        | 5<br>45. |      |          |
| Region           | Craton                 | 44456 | 6              | 0          | 9           | granite | 3.9  | 76        | 14.3   | 9        | 2.65 | 7.16     |
| Gawler<br>Region | Gawler<br>Craton       | 44457 | 200036604<br>7 | 30.55<br>0 | 137.17<br>9 | granite | 3.59 | 298<br>02 | 7.9    | 28.<br>9 | 2.65 | 4.32     |
| Gawler           | Gawler                 | 45444 | 200036611<br>6 | 31.27      | 137.56<br>0 | granite | 5.44 | 451<br>60 | 1.5    | 38.<br>6 | 2.65 | 3.50     |
| Region<br>Stuart | Craton<br>Stuart Shelf | 45803 | WMC/SH         | 6<br>30.18 | 137.00      | granite | 7.23 | 600       | 1.2    | 2.0      | 2.65 | 1.00     |
| Region<br>Stuart |                        |       | D-1<br>WMC/RD- | 4 30.47    | 0 136.88    | -       |      | 20<br>470 |        | 63.      |      |          |
| Region           | Stuart Shelf           | 45807 | 23             | 4          | 6           | granite | 5.67 | 69        | 14.8   | 0        | 2.65 | 8.62     |
| Stuart<br>Region | Stuart Shelf           | 45808 | WMC/RD-<br>23  | 30.47<br>4 | 136.88<br>6 | granite | 6.65 | 552<br>05 | 29.5   | 67.<br>0 | 2.65 | 12.74    |
| Stuart           | Stuart Shelf           | 45809 | WMC/RD-<br>126 | 30.42<br>1 | 136.85<br>0 | granite | 7.39 | 613<br>48 | 13.4   | 68.<br>0 | 2.65 | 8.74     |
| Region<br>Stuart | Stuart Shelf           | 45810 | WMC/RD-        | 30.45      | 136.92      | granite | 8.11 | 673       | 4.8    | 70.      | 2.65 | 6.73     |
| Region<br>Stuart |                        |       | 221A<br>WMC/TW | 6<br>30.59 | 0 136.92    | -       |      | 25<br>686 |        | 0        |      |          |
| Region           | Stuart Shelf           | 45811 | N-2            | 1          | 5           | granite | 8.27 | 53        | 2.6    | 8.6      | 2.65 | 1.90     |
| Stuart<br>Region | Stuart Shelf           | 45813 | WMC/TW<br>N-2  | 30.59<br>1 | 136.92<br>5 | granite | 5.73 | 475<br>67 | 1.6    | 2.6      | 2.65 | 1.03     |
| Stuart           | Stuart Shelf           | 45814 | WMC/RD-        | 30.43      | 136.91      | granite | 6.63 | 550<br>39 | 6.2    | 55.      | 2.65 | 5.93     |
| Region           |                        | L     | 219            | 8          | 4           | -       |      | - 39      |        | 0        |      |          |

| Stuart<br>Region           | Stuart Shelf | 45815 | WMC/RD-<br>219  | 30.43<br>8 | 136.91<br>4      | granite      | 7.53 | 625<br>10       | 16.4       | 69.<br>0   | 2.65 | 9.59   |
|----------------------------|--------------|-------|-----------------|------------|------------------|--------------|------|-----------------|------------|------------|------|--------|
| Stuart<br>Region           | Stuart Shelf | 45816 | WMC/TW<br>N-1   | 30.56<br>4 | 136.90<br>8      | granite      | 5.28 | 438<br>32       | 7.8        | 67.<br>0   | 2.65 | 7.07   |
| Stuart<br>Region           | Stuart Shelf | 45820 | WMC/RD<br>307A  | 30.44<br>8 | 136.84<br>8      | granite      | 8.26 | 685<br>70       | 19.2       | 64.<br>0   | 2.65 | 10.02  |
| Stuart<br>Region           | Stuart Shelf | 45821 | WMC/RD-<br>526  | 30.45<br>6 | 136.86<br>2      | granite      | 8.42 | 698<br>98       | 15.0       | 63.<br>0   | 2.65 | 8.88   |
| Stuart<br>Region           | Stuart Shelf | 45822 | WMC/RD-<br>454  | 30.46<br>5 | 136.89<br>6      | granite      | 5.48 | 454<br>92       | 14.4       | 61.<br>0   | 2.65 | 8.36   |
| Stuart                     | Stuart Shelf | 45823 | WMC/RD-         | 30.42<br>9 | 136.89           | granite      | 7.62 | 632             | 13.8       | 56.<br>0   | 2.65 | 8.03   |
| Region<br>Stuart           | Stuart Shelf | 45826 | 142<br>WMC/RD-  | 30.46      | 4<br>136.84<br>9 | granite      | 5.65 | 57<br>469<br>03 | 23.5       | 80.<br>0   | 2.65 | 12.03  |
| Region<br>Stuart           | Stuart Shelf | 45827 | 576<br>WMC/RD-  | 6<br>30.47 | 136.85           | granite      | 5.51 | 457             | 21.5       | 67.        | 2.65 | 10.60  |
| Region<br>Stuart           | Stuart Shelf | 45829 | 575<br>WMC/RD-  | 5<br>30.47 | 2<br>136.85      | granite      | 6    | 41<br>498       | 9.2        | 0<br>57.   | 2.65 | 6.79   |
| Region<br>Stuart           | Stuart Shelf | 45830 | 575<br>WMC/RD-  | 5<br>30.42 | 2<br>136.84      | granite      | 5.71 | 09<br>474       | 13.4       | 0<br>60.   | 2.65 | 8.06   |
| Region<br>Stuart           | Stuart Shelf | 45831 | 516<br>WMC/RD-  | 1<br>30.46 | 0<br>136.91      | granite      | 5.55 | 01<br>460       | 15.4       | 0<br>64.   | 2.65 | 8.83   |
| Region<br>Stuart           | Stuart Shelf | 45832 | 161<br>WMC/RD-  | 5<br>30.46 | 3<br>136.91      | granite      | 5.49 | 73<br>455       | 15.8       | 0<br>67.   | 2.65 | 9.14   |
| Region<br>Stuart           | Stuart Shelf | 45833 | 161<br>WMC/RD-  | 5<br>30.46 | 3<br>136.91      | granite      | 5.29 | 75<br>439       | 13.8       | 0<br>65.   | 2.65 | 8.47   |
| Region<br>Stuart           | Stuart Shelf | 45836 | 161<br>WMC/RD-  | 5<br>30.46 | 3<br>136.91      | granite      | 5.42 | 15<br>449       | 14.2       | 0<br>60.   | 2.65 | 8.24   |
| Region<br>Stuart           |              |       | 161<br>WMC/RD-  | 5<br>30.46 | 3<br>136.91      |              | -44  | 94<br>453       | 14.2       | 0<br>59.   |      |        |
| Region<br>Stuart           | Stuart Shelf | 45840 | 161<br>WMC/SG   | 5<br>30.37 | 3<br>137.08      | granite      | 5.46 | 26<br>425       | 7.4        | 0<br>31.   | 2.65 | 8.53   |
| Region<br>Stuart           | Stuart Shelf | 45855 | D-2<br>WMC/RE   | 2<br>30.58 | 8<br>137.37      | granite      | 5.12 | 03<br>599       |            | 0<br>33.   | 2.65 | 4.45   |
| Region<br>Stuart           | Stuart Shelf | 45859 | D-2<br>WMC/WR   | 3<br>30.60 | 0 137.08         | granite      | 7.22 | 37<br>456       | 5.0        | 0<br>78.   | 2.65 | 4.14   |
| Region<br>Stuart           | Stuart Shelf | 45864 | D-3<br>WMC/AC   | 6<br>30.61 | 5<br>136.81      | granite      | 5.5  | 58<br>391       | 11.4       | 0          | 2.65 | 8.78   |
| Region<br>Eromanga         | Stuart Shelf | 45867 | D-6             | 0 30.46    | 9<br>136.91      | granite      | 4.71 | 00<br>455       | 1.6        | 1.8<br>49. | 2.65 | 0.90   |
| Region<br>Eromanga         | Stuart Shelf | 45920 | RD161           | 2          | 2                | granite      | 5.49 | 75              | 13.5       | 0<br>37.   | 2.65 | 7.30   |
| Region<br>Eromanga         | Stuart Shelf | 45921 | RD161           | 2<br>30.40 | 2<br>136.88      | granite      | 5.32 | 64<br>608       | 11.5       | 0<br>80.   | 2.65 | 5.94   |
| Region                     | Stuart Shelf | 45923 | RD478           | 3          | 4                | granite      | 7.33 | 50              | 17.5       | 0          | 2.65 | 10.62  |
| Eromanga<br>Region         | Stuart Shelf | 45924 | RD478           | 30.42      | 136.88<br>4      | granite      | 6.79 | 563<br>67       | 24.5       | 51.<br>0   | 2.65 | 10.36  |
| Adelaide<br>Region         | Stuart Shelf | 45930 | RU2-275         | 30.44<br>5 | 136.89<br>0      | granite      | 4.39 | 364<br>43       | 13.5       | 59.<br>0   | 2.65 | 7.91   |
| Eromanga<br>Region         | Stuart Shelf | 45936 | 39NH51S<br>E.Dc | 30.44<br>1 | 136.88<br>5      | granite      | 3.3  | 273<br>95       | 116.<br>5  | 76.<br>0   | 2.65 | 35.40  |
| Adelaide<br>Region         | Stuart Shelf | 45952 | RU3-751         | 30.43<br>7 | 136.87<br>5      | granite      | 4.82 | 400<br>13       | 166<br>4.0 | 65.<br>0   | 2.65 | 431.31 |
| Adelaide<br>Region         | Stuart Shelf | 45960 | 32LK58N<br>W D  | 30.43<br>7 | 136.87<br>5      | granite      | 4.15 | 344<br>51       | 60.0       | 38.<br>0   | 2.65 | 18.34  |
| Eromanga<br>Region         | Stuart Shelf | 45961 | 39NH51S<br>E Dc | 30.44<br>1 | 136.89<br>5      | granite      | 2.99 | 248<br>21       | 220.<br>5  | 64.<br>0   | 2.65 | 61.19  |
| Adelaide<br>Region         | Stuart Shelf | 45962 | 40LJ57<br>L.Lp  | 30.44<br>0 | 136.87<br>5      | granite      | 3.52 | 292<br>21       | 28.0       | 29.<br>0   | 2.65 | 9.47   |
| Adelaide<br>Region         | Stuart Shelf | 45963 | 36DC Blue<br>Ex | 30.44<br>1 | 136.87<br>8      | granite      | 8.47 | 703<br>13       | 84.5       | 55.<br>0   | 2.65 | 26.14  |
| Eromanga<br>Region         | Stuart Shelf | 45964 | 29NB49S<br>Dr   | 30.44<br>5 | 136.89<br>1      | granite      | 3.97 | 329<br>57       | 8.0        | 73.<br>0   | 2.65 | 7.44   |
| Stuart<br>Region           | Stuart Shelf | 45975 | WMC/RD-<br>454  | 30.46<br>5 | 136.89<br>6      | granite      | 7.71 | 640<br>04       | 25.0       | 125<br>.0  | 2.65 | 15.71  |
| Stuart<br>Region           | Stuart Shelf | 45976 | WMC/RD-<br>161  | 30.46<br>5 | 136.91<br>3      | granite      | 5.53 | 459<br>07       | 9.6        | 60.<br>0   | 2.65 | 7.07   |
| Stuart<br>Region           | Stuart Shelf | 46004 | WMC/WR<br>D-3   | 30.60<br>6 | 137.08<br>5      | granite      | 5.63 | 467<br>37       | 12.2       | 76.<br>0   | 2.65 | 8.86   |
| Stuart<br>Region           | Stuart Shelf | 45797 | WMC/SG<br>D-4   | 30.40<br>1 | 136.97<br>8      | granodiorite | 2.9  | 240<br>74       | 4.0        | 20.<br>0   | 2.65 | 2.64   |
| Stuart<br>Region           | Stuart Shelf | 45801 | WMC/AS<br>D-1   | 31.03<br>9 | 137.10<br>3      | granodiorite | 3.55 | 294<br>70       | 3.4        | 30.<br>0   | 2.65 | 3.24   |
| Stuart                     | Stuart Shelf | 45812 | WMC/TW          | 30.59      | 136.92           | granodiorite | 4.1  | 340             | 1.4        | 1.8        | 2.65 | 0.80   |
| Region<br>Stuart<br>Region | Stuart Shelf | 45805 | N-2<br>WMC/HU   | 31.17      | 5<br>137.33      | latite       | 4.87 | 36<br>404<br>28 | 6.8        | 42.        | 2.65 | 5.08   |
| Region<br>Stuart           | Stuart Shelf | 45872 | D-1<br>WMC/WR   | 9<br>30.64 | 8<br>136.94      | latite       | 7.46 | 28<br>619<br>20 | 11.6       | 5<br>40.   | 2.65 | 6.37   |
| Region                     |              |       | D-1             | 5          | 5                |              |      | 29              |            | 5          |      |        |

| Stuart<br>Region           | Stuart Shelf           | 45874 | WMC/AC<br>D-5        | 30.57<br>4 | 136.81<br>1      | latite       | 7.58 | 629<br>25       | 12.0 | 63.<br>0      | 2.65 | 8.05  |
|----------------------------|------------------------|-------|----------------------|------------|------------------|--------------|------|-----------------|------|---------------|------|-------|
| Stuart<br>Region           | Stuart Shelf           | 45875 | WMC/AC<br>D-4        | 30.58<br>4 | 136.78<br>5      | latite       | 9.61 | 797<br>77       | 14.2 | 48.<br>0      | 2.65 | 7.72  |
| Stuart<br>Region           | Stuart Shelf           | 45876 | WMC/AC<br>D-4        | 30.58<br>4 | 136.78<br>5      | latite       | 5.6  | 464<br>88       | 14.6 | 48.<br>5      | 2.65 | 7.55  |
| Stuart<br>Region           | Stuart Shelf           | 45878 | WMC/RD-<br>693       | 30.44<br>7 | 136.90<br>2      | latite       | 4.44 | 368<br>58       | 13.8 | 57.<br>0      | 2.65 | 7.85  |
| Stuart<br>Region           | Stuart Shelf           | 45978 | WMC/AC<br>D-2        | 30.63<br>8 | 136.79<br>5      | latite       | 6.53 | 542<br>09       | 14.2 | 55.<br>0      | 2.65 | 7.97  |
| Eromanga<br>Region         | Stuart Shelf           | 46005 | WMC/RD-<br>693       | 30.44<br>7 | 136.90<br>2      | latite       | 4.12 | 342<br>02       | 40.0 | 35.<br>0      | 2.65 | 13.01 |
| Stuart<br>Region           | Stuart Shelf           | 45834 | WMC/RD-<br>161       | 30.46<br>5 | 136.91<br>3      | mafic rock   | 1.7  | 141<br>12       | 11.4 | 40.<br>5      | 2.65 | 5.87  |
| Stuart<br>Region           | Stuart Shelf           | 45835 | WMC/RD-<br>161       | 30.46<br>5 | 136.91<br>3      | mafic rock   | 1.78 | 147<br>77       | 15.0 | 44.<br>0      | 2.65 | 7.05  |
| Stuart<br>Region           | Stuart Shelf           | 45838 | WMC/RD-<br>161       | 30.46<br>5 | 136.91<br>3      | mafic rock   | 2.84 | 235<br>76       | 6.0  | 25.<br>5      | 2.65 | 3.53  |
| Stuart<br>Region           | Stuart Shelf           | 45839 | WMC/RD-<br>161       | 30.46<br>5 | 136.91<br>3      | mafic rock   | 1.08 | 896<br>6        | 13.6 | 88.<br>0      | 2.65 | 9.70  |
| Stuart                     | Stuart Shelf           | 45854 | WMC/SG<br>D-2        | 30.37<br>2 | 137.08<br>8      | mafic rock   | 1.11 | 921<br>5        | 1.4  | 22.<br>5      | 2.65 | 2.01  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45860 | WMC/RE<br>D-2        | 30.58<br>3 | 137.37<br>0      | mafic rock   | 4.17 | 346<br>17       | 14.0 | 36.<br>0      | 2.65 | 6.42  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45863 | WMC/WR<br>D-6        | 30.64<br>3 | 137.05<br>8      | mafic rock   | 1.15 | 954<br>7        | 9.4  | 30.<br>0      | 2.65 | 4.59  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45866 | WMC/WR<br>D-3        | 30.60<br>6 | 137.08<br>5      | mafic rock   | 5.2  | 431<br>68       | 3.2  | 17.<br>2      | 2.65 | 2.42  |
| Gawler                     | Gawler<br>Craton       | 45443 | 200036611            | 31.58<br>9 | 137.35<br>9      | metasomatite | 0.13 | 107<br>9        | 3.5  | 13.<br>8      | 2.65 | 1.88  |
| Region<br>Gawler<br>Region | Gawler<br>Craton       | 44450 | 200036604            | 30.48<br>7 | 137.12<br>8      | monzodiorite | 2.4  | 199<br>23       | 2.6  | 12.<br>9      | 2.65 | 1.76  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45794 | WMC/PD-              | 30.51<br>7 | 137.00<br>8      | monzodiorite | 3.04 | 252<br>36       | 4.4  | 9<br>19.<br>6 | 2.65 | 2.73  |
| Stuart<br>Region           | Stuart Shelf           | 45800 | WMC/OF<br>D-1        | 30.48<br>8 | 137.13           | monzodiorite | 3.89 | 322<br>93       | 5.6  | 16.<br>4      | 2.65 | 2.88  |
| Stuart                     | Stuart Shelf           | 45850 | WMC/HR<br>D-2        | 30.47<br>3 | 136.98<br>4      | monzodiorite | 3.97 | 329<br>57       | 7.4  | 28.<br>0      | 2.65 | 4.15  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45857 | WMC/OF               | 30.48      | 137.13           | monzodiorite | 4.43 | 367             | 4.2  | 16.           | 2.65 | 2.56  |
| Region<br>Stuart           | Stuart Shelf           | 45865 | D-1<br>WMC/WR<br>D-3 | 8<br>30.60 | 0<br>137.08<br>5 | monzodiorite | 3.47 | 75<br>288<br>06 | 4.0  | 4<br>24.<br>5 | 2.65 | 3.00  |
| Region<br>Stuart           | Stuart Shelf           | 45877 | WMC/OF<br>D-2        | 6<br>30.54 | 137.20           | monzodiorite | 2.56 | 212<br>52       | 9.0  | 26.<br>0      | 2.65 | 4.32  |
| Region<br>Stuart<br>Region | Stuart Shelf           | 45879 | WMC/OF<br>D-3        | 30.55      | 137.18<br>0      | monzodiorite | 3.74 | 310<br>47       | 8.6  | 32.<br>5      | 2.65 | 4.76  |
| Stuart<br>Region           | Stuart Shelf           | 45880 | WMC/OF<br>D-3        | 30.55      | 137.18<br>0      | monzodiorite | 3.34 | 277<br>27       | 5.8  | 35.<br>0      | 2.65 | 4.18  |
| Stuart                     | Stuart Shelf           | 45881 | WMC/WR               | 30.60      | 137.08           | monzodiorite | 3.69 | 306             | 5.2  | 24.           | 2.65 | 3.29  |
| Region<br>Stuart           | Stuart Shelf           | 45977 | D-3<br>WMC/HR        | 6<br>30.47 | 5<br>136.98      | monzodiorite | 3.29 | 32<br>273       | 6.0  | 0<br>23.      | 2.65 | 3.43  |
| Region<br>Gawler           | Gawler                 | 44451 | D-2<br>200036604     | 3<br>30.54 | 4 137.20         | monzonite    | 4.19 | 12<br>347       | 7.5  | 5<br>41.<br>0 | 2.65 | 5.10  |
| Region<br>Stuart           | Craton<br>Stuart Shelf | 45795 | WMC/BL<br>D-2        | 5<br>30.41 | 0<br>137.26      | monzonite    | 3.63 | 83<br>301<br>34 | 3.8  | 59.<br>0      | 2.65 | 5.37  |
| Region<br>Stuart           | Stuart Shelf           | 45796 | WMC/HR               | 4 30.46    | 7<br>136.97      | monzonite    | 5.4  | 448             | 9.2  | 28.           | 2.65 | 4.76  |
| Region<br>Stuart           | Stuart Shelf           | 45799 | D-1<br>WMC/OF        | 4<br>30.48 | 8<br>137.13      | monzonite    | 5.58 | 28<br>463       | 17.0 | 5<br>78.      | 2.65 | 10.22 |
| Region<br>Stuart           | Stuart Shelf           | 45802 | D-1<br>WMC/WR        | 8<br>30.60 | 0<br>137.08      | monzonite    | 6.28 | 22<br>521       | 7.0  | 0<br>26.      | 2.65 | 4.12  |
| Region<br>Stuart           | Stuart Shelf           | 45806 | D-3<br>WMC/RE        | 6<br>30.60 | 5<br>137.34      | monzonite    | 5.33 | 33<br>442       | 11.8 | 5<br>41.      | 2.65 | 6.33  |
| Region<br>Stuart           | Stuart Shelf           | 45847 | D-1<br>WMC/OF        | 2<br>30.54 | 9<br>137.20      | monzonite    | 4.67 | 47<br>387       | 11.4 | 5<br>50.      | 2.65 | 6.77  |
| Region<br>Stuart           | Stuart Shelf           | 45849 | D-2<br>WMC/OF        | 1<br>30.55 | 1<br>137.18      | monzonite    | 6.16 | 68<br>511       | 8.0  | 0<br>31.      | 2.65 | 4.72  |
| Region<br>Stuart           | Stuart Shelf           | 45851 | D-3<br>WMC/BL        | 1<br>30.41 | 0<br>137.26      | monzonite    | 1.19 | 37<br>987       | 11.0 | 5<br>40.      | 2.65 | 5.70  |
| Region<br>Stuart           | Stuart Shelf           | 45853 | D-2<br>WMC/BL        | 4 30.37    | 7 137.21         | monzonite    | 3.98 | 9<br>330        | 2.6  | 0             | 2.65 | 1.75  |
| Region<br>Stuart           | Stuart Shelf           | 45858 | D-1<br>WMC/RE        | 9<br>30.58 | 6<br>137.37      | monzonite    | 5.78 | 40<br>479       | 11.2 | 2<br>44.      | 2.65 | 6.42  |
| Region<br>Stuart           | Stuart Shelf           | 45861 | D-2<br>WMC/WR        | 3<br>30.64 | 0 137.05         | monzonite    | 5.41 | 82<br>449       | 6.8  | 5<br>29.      | 2.65 | 4.18  |
| Region<br>Stuart           | Stuart Shelf           | 45862 | D-6<br>WMC/WR        | 3<br>30.64 | 8<br>137.05      | monzonite    | 4.73 | 11<br>392       | 7.4  | 0<br>29.      | 2.65 | 4.32  |
| Region                     | Staart Silvii          |       | D-6                  | 3          | 8                |              | 1.75 | 66              | /.T  | 5             | 2.00 | 1.54  |

| Gawler             | Gawler                   | 45438 | 200036610         | 30.12      | 136.80      | phyllite         | 5.18 | 430       | 2.9  | 0.9        | 2.65 | 1.20  |
|--------------------|--------------------------|-------|-------------------|------------|-------------|------------------|------|-----------|------|------------|------|-------|
| Region<br>Stuart   | Craton<br>Stuart Shelf   | 45974 | 5<br>WMC/RD-      | 9<br>30.42 | 8<br>136.85 | quartz monzonite | 6.75 | 02<br>560 | 14.6 | 79.        | 2.65 | 9.77  |
| Region<br>Eromanga | Gawler                   |       | 126<br>884N1      | 1<br>30.36 | 0<br>136.65 | *                |      | 35<br>479 | 4.5  | 0<br>38.   | 2.65 | 4.25  |
| Region<br>Eromanga | Craton<br>Gawler         | 46375 |                   | 4<br>30.49 | 3<br>136.46 | rhyodacite       | 5.78 | 82<br>469 |      | 0<br>41.   |      |       |
| Region<br>Stuart   | Craton                   | 46378 | 884YAN4<br>WMC/WR | 6<br>30.64 | 2<br>136.94 | rhyodacite       | 5.65 | 03<br>571 | 8.0  | 0<br>41.   | 2.65 | 5.34  |
| Region             | Stuart Shelf             | 45873 | D-1               | 5          | 5           | rhyolite         | 6.89 | 97        | 9.4  | 0          | 2.65 | 5.80  |
| Stuart<br>Region   | Gawler<br>Craton         | 46727 | PY3               | 31.53<br>1 | 137.36<br>6 | rhyolite         | 9.96 | 826<br>83 | 0.0  | 50.<br>0   | 2.65 | 4.25  |
| Stuart<br>Region   | Gawler<br>Craton         | 45700 | PY1               | 31.34<br>7 | 137.20<br>0 | rock, undefined  | 7.7  | 639<br>21 | 6.0  | 0.0        | 2.65 | 2.13  |
| Stuart<br>Region   | Gawler<br>Craton         | 45701 | PY1               | 31.34<br>7 | 137.20<br>0 | rock, undefined  | 1.26 | 104<br>60 | 10.0 | 0.0        | 2.65 | 2.66  |
| Stuart<br>Region   | Gawler<br>Craton         | 45702 | PY2               | 31.34<br>7 | 137.20<br>0 | rock, undefined  | 6.2  | 514<br>69 | 4.0  | 0.0        | 2.65 | 1.50  |
| Stuart<br>Region   | Gawler<br>Craton         | 45704 | PY2               | 31.34<br>7 | 137.20<br>0 | rock, undefined  | 6.4  | 531<br>29 | 8.0  | 0.0        | 2.65 | 2.54  |
| Stuart             | Gawler                   | 45705 | PY2               | 31.34      | 137.20      | rock, undefined  | 8.23 | 683       | 6.0  | 0.0        | 2.65 | 2.17  |
| Region<br>Stuart   | Craton<br>Gawler         | 45706 | PY2               | 7<br>31.34 | 0<br>137.20 | rock, undefined  | 0    | 21<br>0   | 6.0  | 0.0        | 2.65 | 1.54  |
| Region<br>Stuart   | Craton<br>Gawler         | 45707 | PY2               | 7<br>31.34 | 0<br>137.20 | rock, undefined  | 9.1  | 755       | 6.0  | 0.0        | 2.65 | 2.24  |
| Region<br>Stuart   | Craton<br>Gawler         |       |                   | 7 31.34    | 0 137.20    | · ·              |      | 43<br>647 |      |            |      |       |
| Region<br>Eromanga | Craton                   | 45708 | PY2<br>38NG52     | 7<br>30.44 | 0 136.89    | rock, undefined  | 7.8  | 51<br>564 | 6.0  | 0.0<br>26. | 2.65 | 2.14  |
| Region             | Stuart Shelf             | 45935 | S.Dc<br>33MK56W   | 1          | 5           | rock, undefined  | 6.8  | 50<br>416 | 48.0 | 0<br>34.   | 2.65 | 14.64 |
| Eromanga<br>Region | Stuart Shelf             | 45939 | Dr                | 30.43<br>9 | 6           | rock, undefined  | 5.02 | 73        | 68.5 | 0          | 2.65 | 20.31 |
| Eromanga<br>Region | Stuart Shelf             | 45941 | 33NB53W<br>Dr     | 30.44<br>0 | 136.88<br>6 | rock, undefined  | 4.49 | 372<br>74 | 8.0  | 20.<br>0   | 2.65 | 3.79  |
| Eromanga<br>Region | Stuart Shelf             | 45942 | 33MK56W<br>Dr     | 30.43<br>9 | 136.88      | rock, undefined  | 8.06 | 669<br>10 | 48.0 | 42.<br>0   | 2.65 | 15.85 |
| Eromanga<br>Region | Stuart Shelf             | 45943 | RU3-739           | 30.43<br>9 | 136.88<br>5 | rock, undefined  | 1.22 | 101<br>28 | 37.0 | 24.<br>0   | 2.65 | 11.25 |
| Eromanga<br>Region | Stuart Shelf             | 45955 | 32MJ54S<br>Dc.    | 30.44<br>2 | 136.88<br>7 | rock, undefined  | 8.08 | 670<br>76 | 36.0 | 41.<br>0   | 2.65 | 12.70 |
| Adelaide<br>Region | Stuart Shelf             | 45958 | RD32              | 30.45      | 136.89<br>2 | rock, undefined  | 4.29 | 356<br>13 | 26.5 | 58.<br>0   | 2.65 | 11.16 |
| Eromanga           | Stuart Shelf             | 45959 | RD647             | 30.45      | 136.90      | rock, undefined  | 4.29 | 356       | 25.5 | 51.        | 2.65 | 10.42 |
| Region<br>Gawler   | Gawler                   | 45452 | 200036612         | 0<br>31.07 | 2<br>136.93 | sandstone        | 9.55 | 13<br>792 | 6.7  | 0<br>26.   | 2.65 | 4.31  |
| Region<br>Stuart   | Craton<br>Stuart Shelf   | 45967 | 7<br>WMC          | 3<br>30.97 | 8<br>137.20 | sandstone        | 2.67 | 79<br>221 | 7.0  | 7<br>15.   | 2.65 | 3.04  |
| Region<br>Torrens  |                          |       |                   | 3<br>30.56 | 2<br>137.82 |                  |      | 65<br>572 |      | 0          |      |       |
| Region<br>Stuart   | Stuart Shelf<br>Adelaide | 45968 | WMC               | 8<br>31.54 | 0 137.30    | sandstone        | 0.69 | 8<br>172  | 2.0  | 8.0<br>16. | 2.65 | 1.12  |
| Region<br>Stuart   | Fold Belt                | 46530 | GY14              | 5<br>31.57 | 5           | sandstone        | 2.08 | 67<br>788 | -4.0 | 0          | 2.65 | 0.25  |
| Region             | Stuart Shelf             | 46531 | MG81              | 1          | 8           | sandstone        | 0.95 | 6         | 6.0  | 8.0        | 2.65 | 2.17  |
| Stuart<br>Region   | Stuart Shelf             | 46532 | MG81              | 31.57<br>1 | 137.31<br>8 | sandstone        | 1.39 | 115<br>39 | -4.0 | 14.<br>0   | 2.65 | 0.06  |
| Stuart<br>Region   | Stuart Shelf             | 46539 | MG62              | 31.57<br>7 | 137.32<br>3 | sandstone        | 0.6  | 498<br>1  | 4.0  | 4.0        | 2.65 | 1.35  |
| Stuart<br>Region   | Stuart Shelf             | 46540 | MG62              | 31.57<br>7 | 137.32<br>3 | sandstone        | 0.71 | 589<br>4  | 4.0  | 6.0        | 2.65 | 1.50  |
| Stuart<br>Region   | Adelaide<br>Fold Belt    | 46549 | MG62              | 31.57<br>7 | 137.32<br>3 | sandstone        | 2.46 | 204<br>22 | 6.0  | 26.<br>0   | 2.65 | 3.54  |
| Stuart<br>Region   | Stuart Shelf             | 46556 | GY05              | 31.55<br>4 | 137.30<br>5 | sandstone        | 0.68 | 564<br>5  | 6.0  | 10.<br>0   | 2.65 | 2.29  |
| Stuart             | Stuart Shelf             | 46561 | GY05              | 31.55      | 137.30      | sandstone        | 1.66 | 137       | -4.0 | 14.        | 2.65 | 0.08  |
| Region<br>Stuart   | Stuart Shelf             | 46562 | N150/150          | 4 31.57    | 5<br>137.30 | sandstone        | 0.19 | 80<br>157 | 4.0  | 0<br>22.   | 2.65 | 2.57  |
| Region<br>Stuart   | Stuart Shelf             | 46564 | M150/450          | 9<br>31.55 | 4 137.35    | sandstone        | 0.09 | 7<br>747  | -4.0 | 0<br>30.   | 2.65 | 1.07  |
| Region<br>Stuart   |                          |       |                   | 7 31.63    | 6<br>137.02 |                  |      | 747       |      | 0<br>14.   |      |       |
| Region<br>Stuart   | Stuart Shelf<br>Adelaide | 46576 | LD23              | 0 31.80    | 0 136.92    | sandstone        | 0.95 | 6<br>307  | -4.0 | 0<br>22.   | 2.65 | 0.02  |
| Region             | Fold Belt                | 46588 | LD25              | 3          | 7           | sandstone        | 3.7  | 15        | 6.0  | 0          | 2.65 | 3.36  |
| Stuart<br>Region   | Stuart Shelf             | 46590 | LD25              | 31.80      | 136.92<br>7 | sandstone        | 2.25 | 186<br>78 | 4.0  | 14.<br>0   | 2.65 | 2.17  |
| Stuart<br>Region   | Stuart Shelf             | 46591 | LD25              | 31.80<br>3 | 136.92<br>7 | sandstone        | 2.2  | 182<br>63 | -4.0 | 14.<br>0   | 2.65 | 0.12  |

| Gawler<br>Region   | Gawler<br>Craton          | 44410          | 200036600<br>9 | 30.36<br>8 | 137.08<br>7 | schist                        | 2.5          | 207<br>54 | 8.4  | 16.<br>5   | 2.65 | 3.50  |
|--------------------|---------------------------|----------------|----------------|------------|-------------|-------------------------------|--------------|-----------|------|------------|------|-------|
| Gawler             | Gawler                    | 44461          | 200036601      | 30.36      | 137.08      | schist                        | 3.84         | 318       | 14.2 | 13.        | 2.65 | 4.88  |
| Region<br>Gawler   | Craton<br>Gawler          | 45434          | 1<br>200036610 | 8<br>31.02 | 7<br>137.01 | schist                        | 3.12         | 78<br>259 | 4.0  | 5<br>17.   | 2.65 | 2.47  |
| Region<br>Stuart   | Craton<br>Adelaide        |                | 1              | 2<br>31.67 | 6<br>137.29 | sediment, un-                 |              | 01 352    |      | 4          |      |       |
| Region             | Fold Belt                 | 46249          | 78420031J      | 1          | 3<br>137.29 | known origin                  | 4.25         | 81        | 4.0  | .0         | 2.65 | 8.32  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46250          | 78420031<br>C  | 31.67<br>1 | 3           | sediment, un-<br>known origin | 2.67         | 221<br>65 | 6.0  | 14.<br>0   | 2.65 | 2.72  |
| Stuart<br>Region   | Stuart Shelf              | 46613          | LW60           | 31.58<br>6 | 137.37<br>4 | sediment, un-<br>known origin | 2.74         | 227<br>46 | 6.0  | 20.<br>0   | 2.65 | 3.14  |
| Gawler<br>Region   |                           | 45505          | 200036613<br>1 | 31.09<br>5 | 137.12<br>3 | siltstone                     | 6.04         | 501<br>41 | 2.4  | 15.<br>2   | 2.65 | 2.13  |
| Gawler             |                           | 45506          | 200036613<br>4 | 31.56      | 137.34<br>8 | siltstone                     | 4.98         | 413       | 3.2  | 14.<br>8   | 2.65 | 2.25  |
| Region<br>Adelaide | Stuart Shelf              | 45911          | 4<br>RD32      | 8 30.45    | 136.89      | siltstone                     | 0.62         | 41<br>514 | 29.5 | 19.        | 2.65 | 8.93  |
| Region<br>Adelaide | Stuart Shelf              | 45912          | RD32           | 1<br>30.45 | 2<br>136.89 | siltstone                     | 2.07         | 7<br>171  | 38.5 | 0<br>38.   | 2.65 | 12.67 |
| Region<br>Adelaide |                           |                |                | 1<br>30.45 | 2<br>136.89 |                               |              | 84<br>597 |      | 0<br>26.   |      |       |
| Region<br>Stuart   | Stuart Shelf<br>Adelaide  | 45913          | RD829          | 0 31.67    | 1<br>137.29 | siltstone                     | 0.72         | 7<br>705  | 31.0 | 0<br>16.   | 2.65 | 9.81  |
| Region             | Fold Belt                 | 46248          | 78420023J      | 1          | 3           | siltstone                     | 0.85         | 6         | 10.0 | 0          | 2.65 | 3.74  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46251          | 78420028       | 31.67<br>1 | 137.29<br>3 | siltstone                     | 1.22         | 101<br>28 | 8.0  | 10.<br>0   | 2.65 | 2.84  |
| Stuart<br>Region   | Stuart Shelf              | 46527          | GY14           | 31.54<br>5 | 137.30<br>5 | siltstone                     | 5.21         | 432<br>51 | 10.0 | 24.<br>0   | 2.65 | 4.64  |
| Stuart<br>Region   | Stuart Shelf              | 46528          | GY14           | 31.54<br>5 | 137.30<br>5 | siltstone                     | 4.91         | 407<br>60 | 8.0  | 28.<br>0   | 2.65 | 4.38  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46529          | GY14           | 31.54<br>5 | 137.30<br>5 | siltstone                     | 5.65         | 469<br>03 | 8.0  | 26.<br>0   | 2.65 | 4.30  |
| Stuart<br>Region   | Stuart Shelf              | 46536          | MG81           | 31.57      | 137.31<br>8 | siltstone                     | 4.39         | 364<br>43 | 8.0  | 18.<br>0   | 2.65 | 3.64  |
| Stuart             | Adelaide<br>Fold Belt     | 46548          | MG62           | 31.57      | 137.32      | siltstone                     | 4.28         | 355       | 4.0  | 20.        | 2.65 | 2.75  |
| Region<br>Stuart   | Stuart Shelf              | 46553          | GY09           | 7 31.54    | 3<br>137.30 | siltstone                     | 4.1          | 30<br>340 | 6.0  | 0 18.      | 2.65 | 3.11  |
| Region<br>Stuart   | Stuart Shelf              | 46554          | GY09           | 8<br>31.54 | 5<br>137.30 | siltstone                     | 5.25         | 36<br>435 | 6.0  | 0<br>26.   | 2.65 | 3.75  |
| Region<br>Stuart   | Adelaide                  | 46555          | GY09           | 8<br>31.54 | 5<br>137.30 | siltstone                     | 4.36         | 83<br>361 | 4.0  | 0<br>22.   | 2.65 | 2.89  |
| Region<br>Stuart   | Fold Belt<br>Stuart Shelf | 46560          | GY05           | 8<br>31.55 | 5<br>137.30 | siltstone                     |              | 94<br>440 | 4.0  | 0<br>26.   | 2.65 | 3.25  |
| Region<br>Stuart   | Adelaide                  |                |                | 4 31.63    | 5<br>137.02 |                               | 5.31         | 81<br>264 |      | 0<br>16.   |      |       |
| Region<br>Stuart   | Fold Belt<br>Adelaide     | 46565          | LD23           | 0<br>31.63 | 0 137.02    | siltstone                     | 3.19         | 82<br>263 | 6.0  | 0<br>20.   | 2.65 | 2.90  |
| Region             | Fold Belt                 | 46566          | LD23           | 0          | 0           | siltstone                     | 3.17         | 16        | 6.0  | 0          | 2.65 | 3.18  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46570          | LD23           | 31.63<br>0 | 137.02<br>0 | siltstone                     | 3.58         | 297<br>19 | 8.0  | 18.<br>0   | 2.65 | 3.58  |
| Stuart<br>Region   | Stuart Shelf              | 46578          | LD23           | 31.63<br>0 | 137.02<br>0 | siltstone                     | 4.42         | 366<br>92 | 0.0  | 32.<br>0   | 2.65 | 2.57  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46580          | LD25           | 31.80<br>3 | 136.92<br>7 | siltstone                     | 3.53         | 293<br>04 | 8.0  | 16.<br>0   | 2.65 | 3.44  |
| Stuart<br>Region   | Adelaide<br>Fold Belt     | 46581          | LD25           | 31.80<br>3 | 136.92<br>7 | siltstone                     | 2.58         | 214<br>18 | 8.0  | 16.<br>0   | 2.65 | 3.36  |
| Stuart             | Adelaide                  | 46583          | LD25           | 31.80      | 136.92      | siltstone                     | 3.18         | 263<br>99 | 4.0  | 18.<br>0   | 2.65 | 2.52  |
| Region<br>Stuart   | Fold Belt<br>Adelaide     | 46586          | LD25           | 3<br>31.80 | 7<br>136.92 | siltstone                     | 4.48         | 371       | 4.0  | 20.        | 2.65 | 2.76  |
| Region<br>Stuart   | Fold Belt<br>Adelaide     | 46656          | PL32           | 3<br>31.66 | 7<br>137.29 | siltstone                     | 4.32         | 91<br>358 | 10.0 | 0<br>20.   | 2.65 | 4.29  |
| Region<br>Stuart   | Fold Belt<br>Stuart Shelf | 45804          | WMC/WL         | 8<br>30.65 | 3<br>137.31 | syenite                       | 6.41         | 62<br>532 | 1.6  | 0<br>9.2   | 2.65 | 1.54  |
| Region<br>Stuart   |                           |                | D-1<br>WMC/RE  | 7<br>30.58 | 4 137.37    | -                             |              | 12<br>521 |      | 9.2<br>41. |      |       |
| Region<br>Stuart   | Stuart Shelf              | 45868          | D-2<br>WMC/WR  | 3<br>30.60 | 0 137.08    | syenite                       | 6.28         | 33<br>525 | 11.4 | 0<br>70.   | 2.65 | 6.26  |
| Region             | Stuart Shelf              | 45882          | D-3            | 6          | 5           | syenite                       | 6.33         | 48        | 14.2 | 70.<br>0   | 2.65 | 9.00  |
| Stuart<br>Region   | Stuart Shelf              | 45818          | WMC/TW<br>N-3  | 30.60<br>9 | 136.92<br>5 | tonalite                      | 2.33         | 193<br>42 | 1.0  | 7.8        | 2.65 | 0.98  |
| Stuart             | Gawler<br>Craton          | 46722          | EC21           | 31.34<br>7 | 137.20<br>0 | trachyte                      | 7.56         | 627<br>59 | 4.0  | 20.<br>0   | 2.65 | 3.00  |
| Region             |                           |                |                | 31.53      | 137.36      |                               |              | 634       | 0.0  | 45.        | 0.05 | 2 72  |
| Stuart             | Gawler<br>Craton          | 46723          | PY3            | 1          | 6           | trachyte                      | 7.64         | 23        | 0.0  | 0          | 2.65 | 3.72  |
|                    |                           | 46723<br>46724 | РҮ3<br>РҮ3     |            |             | trachyte trachyte             | 7.64<br>6.72 |           | 0.0  |            | 2.65 | 3.65  |

| Stuart<br>Region   | Gawler<br>Craton | 46728 | PY3            | 31.53<br>1 | 137.36<br>6 | trachyte      | 8.34 | 692<br>34 | 0.0        | 25.<br>0 | 2.65 | 2.38   |
|--------------------|------------------|-------|----------------|------------|-------------|---------------|------|-----------|------------|----------|------|--------|
| Stuart<br>Region   | Gawler<br>Craton | 46730 | PY3            | 31.53<br>1 | 137.36<br>6 | trachyte      | 9.24 | 767<br>05 | 0.0        | 35.<br>0 | 2.65 | 3.15   |
| Stuart<br>Region   | Gawler<br>Craton | 46731 | PY3            | 31.53<br>1 | 137.36<br>6 | trachyte      | 6.6  | 547<br>90 | 0.0        | 25.<br>0 | 2.65 | 2.25   |
| Stuart<br>Region   | Gawler<br>Craton | 46732 | PY3            | 31.53<br>1 | 137.36<br>6 | trachyte      | 3.18 | 263<br>99 | 0.0        | 10.<br>0 | 2.65 | 0.94   |
| Eromanga<br>Region | Stuart Shelf     | 45940 | 33NB53W<br>Dr  | 30.44<br>0 | 136.88<br>6 | tuff          | 5.95 | 493<br>94 | 54.5       | 18.<br>0 | 2.65 | 15.68  |
| Stuart<br>Region   | Gawler<br>Craton | 46729 | PY3            | 31.53<br>1 | 137.36<br>6 | tuff          | 8.14 | 675<br>74 | 0.0        | 50.<br>0 | 2.65 | 4.11   |
| Gawler<br>Region   |                  | 45457 | 200136000<br>1 | 31.90<br>9 | 137.69<br>6 | unknown       | 6.43 | 533<br>78 | 1.6        | 8.4      | 2.65 | 1.48   |
| Gawler<br>Region   |                  | 45458 | 200136000<br>1 | 31.90<br>9 | 137.69<br>6 | unknown       | 1.8  | 149<br>43 | 0.9        | 2.1      | 2.65 | 0.51   |
| Gawler<br>Region   |                  | 45459 | 200136000<br>2 | 30.77<br>8 | 137.65<br>3 | unknown       | 0.15 | 124<br>5  | 18.3       | 19.<br>8 | 2.65 | 6.09   |
| Gawler<br>Region   |                  | 45460 | 200136000<br>2 | 30.77<br>8 | 137.65<br>3 | unknown       | 0.04 | 332       | 4.5        | 0.5      | 2.65 | 1.20   |
| Gawler<br>Region   |                  | 45461 | 200136802<br>6 | 31.17<br>6 | 137.34<br>2 | unknown       | 5.44 | 451<br>60 | 6.7        | 37.<br>0 | 2.65 | 4.71   |
| Gawler<br>Region   |                  | 45462 | 200136802<br>7 | 31.37<br>5 | 137.21<br>0 | unknown       | 4.73 | 392<br>66 | 1.7        | 8.3      | 2.65 | 1.37   |
| Gawler<br>Region   |                  | 45463 | 200136802<br>7 | 31.37<br>5 | 137.21<br>0 | unknown       | 7.04 | 584<br>42 | 4.8        | 26.<br>2 | 2.65 | 3.60   |
| Adelaide<br>Region | Stuart Shelf     | 45927 | RD16W1         | 30.44<br>4 | 136.88<br>6 | unknown       | 0.23 | 190<br>9  | 253<br>0.0 | -2.0     | 2.65 | 648.20 |
| Stuart<br>Region   | Stuart Shelf     | 45869 | WMC/SG<br>D-6  | 30.36<br>3 | 137.08<br>9 | volcanic rock | 3.53 | 293<br>04 | 6.4        | 23.<br>0 | 2.65 | 3.51   |