

## **Hillgrove Copper Pty Ltd**

**Program for Environment Protection and** Rehabilitation **Life of Mine** 

ML6345 and ML6436

HILLGROVE **RESOURCES** 

Kanmantoo Copper Mines

6 May 2016

## **Appendices Volume 1**



In a turbulent world we provide clear thinking

# Hillgrove Copper Pty Ltd Program for Environment Protection and Rehabilitation – Life of Mine ML6345 and ML6436 Kanmantoo Copper Mines May 2016

## Appendices Volume 1

Report Reference No. ENAUDARW09119\_02\_v5

| Tenements      | ML6345 and ML6436                                                         |  |
|----------------|---------------------------------------------------------------------------|--|
| Commodity      | Copper, gold, silver and garnet (although garnet will report to tailings) |  |
| Operation Name | Kanmantoo Copper Mines                                                    |  |
| Proponent      | Hillgrove Copper Pty Ltd                                                  |  |
| Contact        | Steven McClare, General Manager                                           |  |
|                | Catherine Davis, Environment Manager                                      |  |

### Disclaimer

This document is published in accordance with and subject to an agreement between Coffey and the client for whom it has been prepared, Hillgrove Copper Pty Ltd ('Client'), and is restricted to those issues that have been raised by the client in its engagement of Coffey and prepared using the standard of skill and care ordinarily exercised by environmental scientists in the preparation of such documents.

Any person or organisation that relies on or uses the document for purposes or reasons other than those agreed by Coffey and the Client without first obtaining the prior written consent of Coffey, does so entirely at their own risk and Coffey denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence of relying on this document for any purpose other than that agreed with the Client.

© Coffey Environments Australia Pty Ltd ABN 65140765902. April 2016 2 Kahlin Avenue, Larrakeyah NT 0820

GPO Box 717, Darwin NT 0801

Report Reference No.: ENAUDARW09119\_02\_v5

| Project Director |               | Erica Col         | Erica Colley         |                  |               |  |
|------------------|---------------|-------------------|----------------------|------------------|---------------|--|
| Record of Dist   | ribution      |                   |                      |                  |               |  |
| Report Status:   | No. of copies | Format            | Distributed to       | Date             | Authorised by |  |
| V1               | 1             | PDF               | Hillgrove and DMITRE | 23 June 2014     | T. Halliday   |  |
| V2               | 1<br>3        | PDF<br>Hardcopies | Hillgrove and DSD    | 10 July 2014     | T. Halliday   |  |
| V3               | 1 3           | PDF<br>Hardcopies | Hillgrove and DSD    | 13 July 2015     | E. Colley     |  |
| V4               | 1             | PDF               | Hillgrove            | 30 November 2015 | E. Colley     |  |
| V5               | 1             | PDF               | Hillgrove            | 6 May 2016       | T. Halliday   |  |

## **Appendices**

#### 1 Approvals and Conditions

- 1A Mining Lease Conditions ML6345
- 1B Mining Lease Conditions ML6436
- 1C EPBC Act Approval Conditions

#### 2 Surface Water

- 2A Surface Water (Water Quality) Statistical Summary
- 2B Surface Water Quality Data
- 2C Surface Water (Management)
- 2D Surface Water Management Plan, 2008
- 2E Surface Water Management Plan, 2010

#### 3 Groundwater

- 3A Groundwater Monitoring and Management Plan
- 3B Responses to DEWNR

#### 4 Flora

- 4A Flora Survey
- 4B Spring Flora Survey
- 4C EPBC Act Vegetation Survey
- 4D Vegetation Assessment
- 4E LFA Monitoring

#### 5 Fauna

- 5A Fauna Survey
- 5B Spring Fauna Survey
- 5C Fauna Management Plan
- 5D Threatened Species Management Plan

#### 6 Stakeholder Engagement

6A Stakeholder and Community Engagement Plan

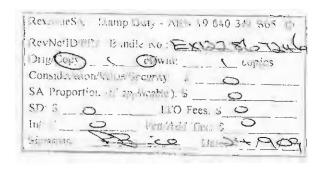
#### 7 Mine Waste (Part 1)

- 7A Cover Design and Characterisation
- 7B Non-Acid Forming Material Balance
- 7C Geochemical Characteristics of Waste Rock and Ore
- 7D Kanmantoo Waste Rock Review
- 7E Tailings Geochemical Characterisation

# **Appendix 1**

**Approvals and Conditions** 

# Appendix 1A

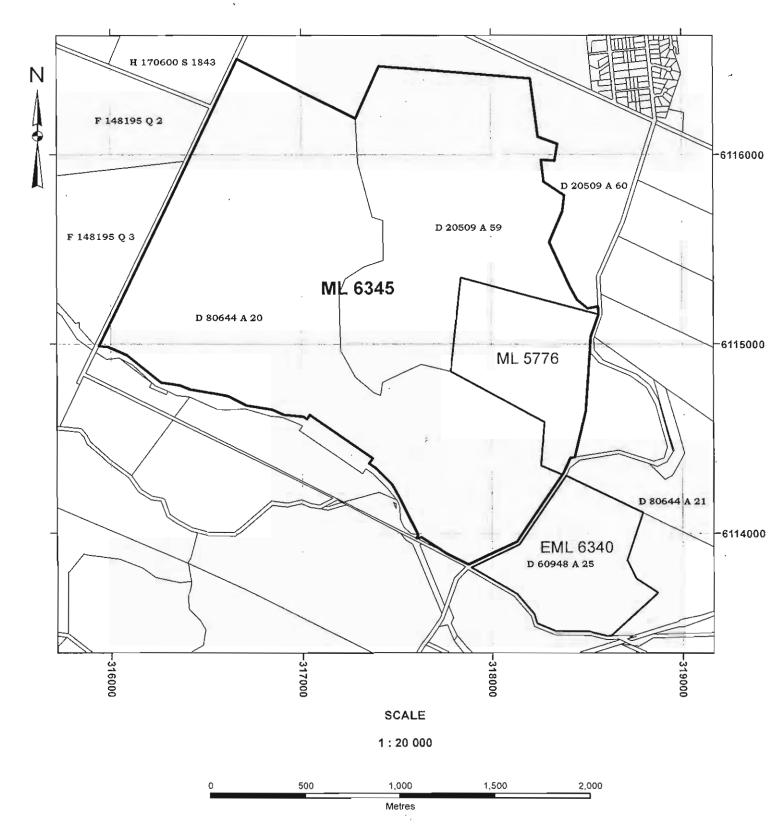

**Mining Lease Conditions ML6345** 

## MINING LEASE

#### Mineral Lease Number 6345

- 1. The Minister for Mineral Resources Development ("the Minister"), in the exercise of the powers and authorities conferred upon him by the South Australian Mining Act 1971 ("the Act") and the Regulations hereby leases to Hillgrove Copper Pty Ltd (ACN 105 074 762) ("the Lessee") of Level 41, Australian Square Tower, 264-278 George Street, Sydney in the state of New South Wales all those lands containing 436.02 hectares or thereabouts and situate Allotment 20 DP 80644 and Allotment 59 DP 20509 Hd Kanmantoo in the State of South Australia more particularly described and delineated on the plan annexed hereto and marked 'A' ("the land") and being mineral lands within the meaning of the Act.
- 2. The Lessee together with his servants and agents shall have the following rights and liberties during the continuance of this lease, namely:
  - (1) to conduct mining operations and obtain for the Lessee's own use and benefit the minerals as specified in the First Schedule hereto, in the manner described in the Second Schedule
  - (2) for or incidental to the purposes aforesaid to cut and construct races, drains, dams, reservoirs, roads and tramways;
  - (3) To sell and dispose of the minerals obtained, from the land in pursuance of this lease or to utilise any such minerals for any commercial or industrial purpose.
- 3. This lease shall be for a term of ten (10) years ("the term") commencing on the seventh day of September 2009.
- 4. The Lessee shall use the land for the purposes of mining therein and thereon for minerals as specified in the First Schedule hereto, together with the rights and liberties hereinbefore granted and for no other purpose.
- 5. The Lessee shall pay to the Minister:-
  - (1) In advance a yearly rental fee as prescribed by the Regulations for each year during the term commencing on the **seventh day of September** or such other date as agreed to by the Minister upon renewal; and,
  - (2) A further sum during the term, being a royalty on the minerals recovered under the Lease as provided for by the Act.
- 6. The Lessee hereby further covenants with the Minister as follows:
  - (1) to pay or cause to be paid to the Director of Mines ("the Director") at the offices of the Department of Primary Industries and Resources South Australia on behalf of the Minister, the rent and other sum hereby reserved at the times and in the manner hereinbefore appointed for payment thereof free and clear of all rates, taxes, impositions, outgoings and deductions whatsoever;

REF: T02757




- (2) to pay and discharge all rates, taxes, assessments, impositions and outgoings which shall become payable in respect of the land:
- (3) to maintain in position all posts, boundary indicator markers and notices required by the Regulations to be erected or placed on the land in the manner prescribed by the Act and the Regulations:
- (4) to mine the land in a fair, orderly, skilful and workmanlike manner in accordance with the First Schedule hereto and bona fide exclusively for the purpose for which it is demised so as to effect maximum recovery of the mineral resources consistent with economic practicability:
- (5) to supply the Director, forthwith upon written request, with a copy of such records kept pursuant to Section 77 of the Act:
- (6) to make a survey of the land and cause a map or plan of such survey to be sent to the Director whenever the Director so requires, and any and every such survey shall be at the Lessee's own cost and, shall be carried out in the manner required by the regulations (whether under the Act or otherwise):
- (7) at all times to keep and preserve the mines and premises in good order, repair and condition and in such good order, repair and condition at the end or other sooner determination of the term deliver peaceable possession thereof and of all and singular the land hereby leased unto the Minister or to some officer duly authorised by him to receive possession thereof:
- (8) to furnish all returns prescribed by the Act and Regulations:
- (9) to permit the pastoral lessee (if any) of the land to have free access and use at all times for domestic purposes, and for the purposes of watering stock from any surface water on the land which shall not have been provided or stored by artificial means by the Lessee:
- (10) not to use or occupy the land or permit the same to be used or occupied otherwise than for the purpose of exercising the rights and liberties hereinbefore granted without first obtaining the written consent of the Minister:
- (11) not to assign, transfer, sublet the land, or make the land the subject of any trust or other dealing, whether directly or indirectly, for the whole or any part of the term without first obtaining the written consent of the Minister:
- (12) to observe, perform and carry out the provisions of the Act and Regulations and the provisions of any other Act or regulations for the time being in force relating to the use, enjoyment or occupation of mineral lands:
- (13) to perform and comply with all of the conditions set out in the Second Schedule annexed hereto:
- (14) to permit the Minister or the Director or any person duly appointed by either of them at all proper and reasonable times without any interruption from the Lessee or the Lessee's agents or servants to enter into and upon the land to view and examine the mining operations conducted in pursuance of this lease and to use all reasonable means to achieve such purpose and to examine and take extracts from all books, accounts, vouchers or documents appertaining to the Lessee's mining operations in pursuance of this lease:
- (15) that the Minister, may at any time, require the Lessee to pay to any person an amount of compensation, stipulated by the Minister, to which that person is, in the opinion of the Minister, entitled in consequence of the conduct of mining operations in pursuance of this lease and the Lessee shall comply forthwith with such requirement:
- (16) that if the Lessee shall fail to comply with any covenant, conditions or proviso herein contained this lease shall be liable to forfeiture in the manner hereinafter provided:

- (17) that if the rent or royalty shall be in arrear and unpaid for more than three calendar months after the day on which the same is payable it shall be lawful for the Minister to cancel this lease and the Minister may thereupon insert a notice in the *Government Gazette* declaring this lease to be forfeited:
- (18) that if the Minister has reason to believe that there has been a breach of or noncompliance with any of the covenants, conditions or provisos herein contained, other than a breach of the covenant for payment of the rent or royalty, the Minister may give or cause to be given by any duly authorised officer of the Minister, written notice to the Lessee specifying the covenants, conditions or provisos which he has reason to believe are not being complied with and notifying the Lessee that this lease will be liable to forfeiture at the expiration of one month from the date of such notice unless in the meantime such covenant, conditions or provisos are duly complied with and if at the expiration of such notice such covenants, conditions or provisos are still not being complied with by the Lessee, the Minister may cancel this lease notwithstanding that the rent or royalty payable under this lease for the period during which such breach is committed may have been paid and notwithstanding any implied waiver of such breach by the Minister and the Minister shall thereupon cause to be inserted by any duly authorised officer of the Minister a notice in the Government Gazette declaring this lease to be forfeited. In case of a breach of the covenant for payment of the rent or royalty the Minister may exercise the power of cancellation without giving the written notice hereinbefore mentioned:
- (19) that a notice of forfeiture as hereinbefore mentioned in the last two preceding provisos so published in the *Government Gazette* shall be taken to be conclusive evidence that this lease has been legally cancelled and forfeited:
- 7. Any notice to be given to or demand to be made upon the Lessee by or on behalf of the Minister shall be deemed to be duly given or made if the same be left at or sent through the post in a prepaid envelope addressed to the Lessee at the address of the Lessee shown in the Mining Register and any such mode of service shall in all respects be valid and effectual and any such notice or demand if sent through the post as aforesaid shall be deemed to have been received by the Lessee within three days following the day on which the envelope containing such notice or demand is posted.
- 8. In the construction of these presents each and every word, term or expression defined in the Act shall have the same meaning where used in these presents, the masculine shall include the feminine, words importing persons shall include corporations, and the singular shall include the plural when the context or circumstances require and unless inconsistent with or repugnant to the context the following words shall have the meanings set opposite to them respectively
  - (i) "amendment" includes an addition, excision or substitution;
  - (ii) "the land" includes any part thereof;
  - (iii) "the Lessee" means and includes:
    - in the case of a natural person the executors, administrators and assigns of that person;
    - (b) in the case of a body corporate the successors, administrators or permitted assigns thereof;
  - (iv) "the Regulations" means the Regulations under the Act in force for the time being;
  - (v) "the term" includes any renewal or extension thereof.

#### **ANNEXURE 'A'**

## HUNDRED OF KANMANTOO



Data supplied by lessee Coordinates MGA Zone 54

#### FIRST SCHEDULE

- 1. Mining operations authorised by this lease must only be for the recovery of metallic mineral ores (copper, silver & gold) and garnet from the area of the Lease.
- The Lessee understands and accepts the pursuant to Section 80(2) of the Mining Act, 1971, the rights granted by this lease are modified by, and are subject to, the terms of the Consent Agreement between Hillgrove Resources Ltd and Hillgrove Copper Pty Ltd made on 20 February 2009 ("the Consent Agreement") annexed to this lease.
- 3. The Lessee must not commence or undertake any mining operations on the land until a Mining and Rehabilitation Program (MARP) has been approved by the Minister and a bond has been paid in accordance with Section 62 of the *Mining Act*, 1971.
- 4. The Lessee must prepare a MARP that complies with the requirements of guidelines approved by the Director of Mines and include environmental outcomes and criteria that are developed in consultation with relevant stakeholders.
- 5. The criteria included in the MARP must demonstrate clear and unambiguous achievement of the environmental and mine closure outcomes specified in schedule 2 by:
  - Including the specific parameters to be measured and monitored by the Lessee
  - Specifying the locations that the parameters will be measured, or how these locations will be determined
  - Clearly stating the acceptable values for demonstrating achievement of the outcome, with consideration of any inherent errors of measurement
  - Specifying the frequency of monitoring by the Lessee
  - Identifying what background or control data are to be used or specify how it will be acquired (if necessary).
- 6. The Lessee must implement and comply with the approved MARP.
- The Lessee must review the MARP on request of the Director of Mines within a time specified in the request and submit the revised MARP for approval to the Director of Mines.
- 8. The Lessee agrees to the approved MARP being made available for public inspection.
- 9. The lessee must keep accurate records of the quantity, value, manner of deposition and costs associated with selling all minerals mined, and whenever required to do so, submit the records for inspection by any person authorised by the Director of Mines. This clause is to be taken as a notice by the Director of Mines in accordance with Section 77 of the Act.

- 10. The Lessee must demonstrate upon request and to the Director of Mines, the Lessee's capability and competence to comply with the requirements of the *Mining Act, 1971*, the conditions of this Lease, and the MARP.
- 11. The Lessee must provide to the Director of Mines a Mining and Rehabilitation Compliance Report (MARCR) on operations carried out on the Lease and compliance with the approved MARP. The MARCR must be submitted every year, within 2 months after the anniversary of the date the Lease was granted, or at some other time agreed with the Director of Mines in accordance with guidelines approved by the Director of Mines. The Lessee agrees to the MARCR being made available for public inspection.
- 12. The Lessee must, if requested by the Director of Mines, undertake an independent audit of achievement of the environmental outcomes in the MARP, by an independent expert approved by the Director of Mines and submit the audit to the Director. The audit will be made available to the public, in a manner and form as determined by the Director of Mines.
- 13. At least 3 months prior to Lease relinquishment or expiry, the Lessee must provide to the Minister a Mine Completion Report prepared in consultation with the landowner and in accordance with guidelines approved by the Director of Mines, which demonstrates achievement of the closure criteria as specified in the current MARP.
- 14. The Lessee must, prior to commencing operations under this Lease and for the duration of the lease maintain public liability insurance to cover all operations under the Lease (including sudden and accidental pollution) in the name of the Lessee for a sum not less than \$ 50 million or such greater sum as specified by the Director of Mines, and make such amendments to the terms and conditions of the insurance as the Director of Mines may require.

A copy of the cover note of certificate of currency for the insurance must be provided to the Director of Mines upon request.

If requested by the Director of Mines, the Lessee must engage an independent and reputable risk assessor to prepare a risk assessment report detailing the public liability risks arising out of the conduct of operations on the Lease, and recommending the level of amount of public liability cover (in respect of any one occurrence) that should be effected and maintained by the Lessee. In preparing the risk assessment report, the assessor must consult with the landowner and the Director of Mines.

In specifying the level of insurance required, the Director of Mines accepts no liability for the completeness, adequacy of the sum insured, the limit of liability, the scoped coverage, the conditions or exclusions of the insurance in respect of how the Lessee may or may not respond to any loss, damage or liability.

- 15. The Lessee must report any non-compliance with the Act, these conditions and approved MARP to the Director of Mines. A verbal notification must be provided within 24 hours, after the Lessee becomes aware of the non-compliance. A written report must be provided within 3 days or such time period as approved by the Director of Mines.
- 16. In requesting a review of the bond required under the *Mining Act, 1971*, the Minister may request that written quotes from a third party are obtained by the Lessee for the cost of rehabilitating the site to the requirements specified in the approved MARP.

The Lessee must meet all the charges and costs in obtaining and maintaining the Bond.

#### **SECOND SCHEDULE**

#### Visual Amenity

1. The Lessee must in constructing and operating the Lease, ensure that the visual impact of the process plant from the South Eastern Freeway is minimised to the satisfaction of the Director of Mines. If any areas are visible to the public and where it is not possible to completely ameliorate visual impacts, bunding and/or vegetation should be used to improve visual impact and all external materials, colours and finishes should be non-reflective and a colour to blend in with the landscape.

#### Noise

 The Lessee must in constructing and operating the Lease, ensure that there are no public nuisance impacts from noise emanating from the operating site. Noise must at all times comply with the relevant environment protection policy under the *Environment* Protection Act, 1993.

#### Blasting

3. The Lessee must in constructing and operating the Lease, ensure that there are no adverse public health and/or nuisance impacts from airblast, flyrock and vibration caused by blasting.

#### Air Quality

4. The Lessee must in constructing and operating the Lease ensure that there are no adverse public health and nuisance impacts to local residents from air emissions, dust and odour generated by mining operations.

#### **Fire**

5. The Lessee must ensure that no uncontrolled fires caused by mining operations effect remnant vegetation on or off the mine site.

#### **Unauthorised Access**

The Lessee must in constructing and operating the Lease ensure that there are no public injuries and or deaths resulting from unauthorised entry to the site that could have been reasonably prevented.

#### Transport

7. The Lessee must, in constructing and operating the Lease, ensure that traffic movements, noise, dust and/or dragout to and from the mine site cause no adverse public impacts.

#### Community Consultation

8. The Lessee must take responsibility for developing and operating a community engagement plan, as a part of the MARP, to the satisfaction of the Director of Mines which ensures effective communication and exchange of information between the operator and stakeholders including but not restricted to landowners, Callington/Kanmantoo communities or individuals.

#### Public Complaints

9. The Lessee will be responsible for recording and addressing in manner and form specified by the Director of Mines any complaints received from the public.

#### Land Use

- 10. The Lessee must in constructing and operating the Lease, ensure that there are no adverse impacts to adjacent public roads, railway, and adjacent land use.
  - The Lessee must maintain a buffer zone of 10 meters from the Lease boundary with no workings within that zone;
  - The Lessee must ensure that the current disturbed areas are stabilized to prevent sediment from leaving the Lease area.

#### Infrastructure

11. The Lessee must, in constructing and operating the Lease, ensure that there is no unauthorised damage to adjacent public or private infrastructure.

#### Aboriginal and European Heritage

12. The Lessee must in constructing and operating the Lease, ensure that there is no disturbance to Aboriginal or European artefacts or sites of significance unless prior approval under the relevant legislation is obtained.

#### Fauna

13. The Lessee must in constructing and operating the Lease ensure that there are no net adverse impacts from the site operations on native fauna abundance or diversity in the Lease area and in adjacent areas.

#### Flora

14. The Lessee must, in constructing and operating the Lease, ensure that all clearance of native vegetation is authorised under appropriate legislation and ensure no permanent loss of abundance or diversity on or off the Lease.

#### Weeds and Pests

15. The Lessee must in constructing and operating the Lease ensure no introduction of new weeds, plant pathogens or pests (including feral animals), nor increase in abundance of existing weed or pest species in the Lease area and adjacent areas caused by mining operations.

#### Topsoil

16. The Lessee must in constructing and operating the Lease ensure that the existing soil quality and quantity is maintained.

#### Groundwater and Hydrology

- 17. The Lessee must, in constructing and operating the Lease ensure that there is no adverse impact to the quality and quantity of surface or groundwater caused by mining operations to water dependent ecosystems or existing users unless adequate alternate supplies are provided in accordance with Condition 18.
- 18. If the Lessee adversely affects the ability of other persons to take water from any watercourse, well or dam, the lessee must replace or deepen existing wells if they are substantially affected by dewatering activities, or provide alternative water sources for the affected users regardless of cessation of mining operations whereby:
  - A 'substantial affect' is determined to be the movement of physical or chemical parameters of the water in the subject well beyond normal seasonal variation. This is to be determined by the relevant authority, and;
  - An 'alternative water source' includes the potential to lower pumps, deepen wells, extend supply from one of the Lessee's wells, or connection to SA Water mains. In the case of any dispute, the final decision on an alternative water source is to be determined by PIRSA in consultation with the affected landholder and the Lessee.
- 19. The Lessee must ensure that the contaminated water within the pit does not alter groundwater systems outside of the extent of mining operation.

#### Stormwater

20. The Lessee must, in constructing and operating the Lease ensure no stormwater contaminated as a result of mining operations is to leave the Lease area or result in contamination of soil at closure within Lease area.

#### Flooding/Runoff

21. The Lessee must, in constructing and operating the Lease ensure no water runoff from the Lease results in flooding of adjacent areas, to an extent greater than that that could reasonably be expected to occur prior to mining operations being established on the Lease.

#### Waste Disposal & Hazardous Substances

- 22. The Lessee must, in constructing and operating the Lease ensure that no contamination and/or pollution of natural water drainage systems, streams and rivers, groundwater, land and soils occurs either on or off site is caused by waste products (other than mine waste and tailings) and hazardous materials used in the mine operations.
- 23. The Lessee must ensure that no demolition, industrial or solid domestic (other than treated sewage) wastes are to be disposed of within the Lease.
- 24. The Lessee must ensure that fuel and liquid chemical storage is adequately bunded to capture spillage and to prevent the migration or infiltration of any spillage or leakage to the surrounding environment in conformance with relevant Environment and Protection Authority guidelines.

#### Acid Mine Drainage (AMD)

25. The Lessee must, in constructing and operating the Lease, ensure that no contamination of natural water drainage systems, streams and creeks, and no contamination beyond approved EPA limits for groundwater, land and soils occurs either on or off site resulting from permanent disposal or temporary storage of the mine waste and tailings.

#### Backfilling of Mine Pits

26. The Lessee must backfill with waste rock into the Emily Star Pit and the O'Neil Zone to the extent it is technically feasible.

#### Rehabilitation

- 27. The Lessee must demonstrate prior to lease expiry or surrender that the following outcomes will be achieved indefinitely post mine closure to the satisfaction of the Director of Mines: -
  - The external visual amenity of the site is comparable with the surrounding areas and in accordance with the reasonable expectations of relevant stakeholders including removal of all mine related infrastructure (unless otherwise approved by the Director of Mines in consultation with relevant stakeholders);
  - The risks to the health and safety of the public and fauna are as low as reasonably practical;
  - Ecosystem and landscape function is resilient, self-sustaining and indicating that an
    ecosystem and landscape function comparable to the surrounding areas will
    ultimately be achieved;
  - No compromise of the quality and quantity of surface water to existing users and water dependent ecosystems;
  - No compromise of the quantity or quality of ground water to existing users unless adequate alternate supplies are provided in accordance with Condition 18;
  - The site is physically stable;
  - All mining waste and tailings left onsite are chemically and physically stable.

#### Leading Indicators

- 28. The MARP must include additional leading indicator criteria for the following outcomes: -
  - Groundwater and Hydrology
  - Acid Mine Drainage (AMD)
  - Topsoil
  - Stormwater
  - Public Safety
  - Infrastructure
  - Transport

#### **EXECUTED**

this

23 rd

day of September

2009

SIGNED for and on behalf of the MINISTER FOR MINERAL RESOURCES DEVELOPMENT under delegated authority

signature

Name JUNESSE MARTIN Title A/MINING REGISTRAR

#### SIGNED SEALED AND DELIVERED BY THE LESSEE/S

this

21 day of SEPTEMBER 2009

the Common seal of Hillgrove Copper Pty Ltd (ACN 105 074 762)

was hereto affixed by

DIRECTOR/SECRETARY

Hillgrove Copper Pty Limited

.C.N.105 074 762

ommon &

Common Sea

#### **INSTRUMENTS**

Rental at commencement of lease for stamp duty assessment.

\$17,767.81

# Appendix 1B

Mining Lease Conditions ML6436

Our Ref: T02971

Contact: Tracy Carpentieri Telephone: 08 8463 3462

#### ABN 83 524 915 929

 $\mu$  July 2014

Mr Steven McClare General Manager Hillgrove Copper Pty Ltd Eclair Mine Road KANMANTOO SA 5252

Dear Mr McClare

#### Offer of Mineral Lease

I refer to your application for a Mineral Lease over Mineral Claim 4365.

The Executive Director, Mineral Resources in accordance with delegated Ministerial powers and functions has approved a proposal to grant a Mineral Lease over the above mentioned Mineral Claim. The lease is offered over an area of 1.96 hectares for a term of approximately four (4) years and three (3) months, with the expiry date of the Lease to align with the expiry of surrounding leases on 6 September 2019.

The Lease will authorise the operations specified in the First Schedule and subject to the *Mining Act 1971* (the Act), the *Mining Regulations 2011* (the Regulations) thereunder and the special conditions set out in the Second Schedule. The First and Second Schedules for the Lease being offered are enclosed. By accepting this offer you are also accepting these Schedules.

Please advise within 21 days of the date of this letter, using the attached form, whether the proposal is acceptable. Please note that the acceptance is to be signed by the applicant for the Lease as indicated on the form. Pursuant to Regulation 40 of the Regulations under the Act the Minister may assume that the application has been withdrawn if the applicant fails to provide notification within 21 days.

The following annual fees in advance are now payable and should be forwarded to this office together with your acceptance form.



of South Australia

Department of State Development

| Qty   | Annual Fees                                                           | Total (GST exempt) |
|-------|-----------------------------------------------------------------------|--------------------|
| 1     | Annual Rent 1.96 ha @ \$56 /ha (or minimum rental = \$214.00) = \$214 | \$214.00           |
| 1     | Administration Component (per tenement)                               | \$143.00           |
| 1     | Regulation Component (per tenement)                                   | \$283.00           |
| TOTAL |                                                                       | \$640.00           |

This document will be a tax invoice when you make payment (Please retain a copy of this invoice for your records)

Section 70B(1) of the Act requires that you must not operate this Lease unless a Program for Environment Protection and Rehabilitation (PEPR) has been approved by the Minister and Regulation 65(10) requires that this Program be provided within 12 months of the date of grant of the lease. Regulation 35 further requires that mining operations must commence within 12 months after the PEPR has been approved in writing by the Minister. Please note that the PEPR approval is currently delegated to Greg Marshall, Director, Mining Regulation.

Please contact Mr Andrew Querzoli, Manager Mining Assessments, Department of State Development on telephone 08 8226 1928 if you need further information in preparing this Program, or if you would like to understand the current status of a previously submitted Program.

Please note that if the tenement is subject to Exempt Land under the provisions of section 9 of the Act, no mining operations are to be undertaken on Exempt Land until a Waiver of Exemption has been negotiated and a copy lodged with the Mining Registrar.

Please also note that the operations of any mining tenement are subject to other legislation. I draw your attention to the following Acts:

- Environment Protection and Biodiversity Conservation Act 1999
- Development Act 1993
- Dangerous Substances Act 1979
- National Parks and Wildlife Act 1972
- Natural Resources Management Act 2004
- River Murray Act 2003
- Public and Environmental Health Act 1987
- Radiation Protection and Control Act 1982
- Aboriginal Heritage Act 1988
- Occupational Health, Safety and Welfare Act 1986
- Environment Protection Act 1993
- Native Vegetation Act 1991 (Reprint No. 4)

The above list is intended only to bring your attention to other Acts that may impinge upon your mining operation and is not exhaustive. The onus is on you as the holder of the mining tenement to comply with any other relevant piece of legislation.

You should read these guidelines carefully before accepting this offer.

In addition to these arrangements, the Director of Mines may, in accordance with section 62 of the Act, require that a bond be entered into to ensure the satisfactory rehabilitation of land disturbed by mining operations.

Yours sincerely

Junesse Martin MINING REGISTRAR

Enc

TO: JUNESSE MARTIN, MINING REGISTRAR

RE: APPLICATION FOR MINING LEASE OVER MINERAL CLAIM 4365

\* prepared to accept a mineral lease authorising the operations described in the First Schedule and under the special conditions specified in the Second Schedule.

OR

- not prepared to accept a mineral lease under the terms and conditions set out in the Schedules. Thereby identify the conditions I have used to base my refusal of this offer.
- \* Delete whichever is inapplicable.

4 / 7 / 2014

Applicant - Hillgrove Copper Pty Ltd (ACN 105 074 764)

OFFICE USE ONLY

Rent: \$214.00 Administration: \$143.00 Regulation Component: \$283.00

Total

\$640.00

#### FIRST SCHEDULE

- Mining operations authorised by this Lease must only be for the recovery of copper, gold and silver from this Lease as outlined in the mining lease proposal document dated 4 April 2014 and subsequent response document dated 27 May 2014.
- 2. The Lessee agrees to the approved PEPR (section 70B(5)) and the Compliance report (regulation 86) and any reportable incident reports (Regulation 87) being made available for public inspection.
- 3. In accordance with Regulation 90(1) the Lessee must, prior to commencing operations under this Lease and for the duration of the Lease maintain public liability insurance to cover all operations under the Lease (including sudden and accidental pollution) in the name of the Lessee for a sum not less than \$50 million per occurrence and unlimited in annual aggregate or such greater sum as specified by the Minister, and make such amendments to the terms and conditions of the insurance as the Minister may require.
- 4. In requesting a review of the bond required under the *Mining Act 1971* the Minister may request that written quotes from an independent third party approved by the Minister are obtained by the Lessee for the cost of rehabilitating the site to the requirements specified in the approved Program under Regulation 65(2).
- 5. The Lessee must meet all the charges and costs in obtaining and maintaining the Bond.

#### SECOND SCHEDULE

#### **ENVIRONMENTAL OUTCOMES**

1. For the purposes of preparation of the Program for Environment Protection and Rehabilitation under section 70B(2) and associated Regulations of the *Mining Act 1971*, the following environmental and mine rehabilitation outcomes must be included:

#### Blasting

The Lessee must, in constructing and operating the Lease, ensure that there are no public health and/or nuisance impacts from airblast, flyrock and vibration caused by blasting.

#### Air quality

The Lessee must, in constructing and operating the Lease, ensure that there are no public health and/or nuisance impacts to local residents from air emissions, dust and odour generated by mining operations.

#### Soil

The Lessee must, in constructing and operating the Lease, ensure that the existing soil quality and quantity is maintained.

#### Stormwater

The Lessee must in constructing and operating the Lease, ensure no stormwater contaminated as a result of mining operations is to leave the Lease area or result in contamination of soil at closure within the Lease area.

#### Acid Mine Drainage (AMD)

The Lessee must in constructing and operating the Lease, ensure that no contamination of natural drainage systems, streams and creeks, and no contamination beyond approved EPA limits for groundwater, land and soils occurs either on or off the site resulting from permanent or temporary storage of the mine waste and tailings.

#### Adjacent land use

The Lessee must, in constructing and operating the Lease, ensure that there are no adverse impacts to adjacent land use.

#### Visual Amenity

The Lessee must, in constructing and operating the Lease and post completion, ensure that the form, contrasting aspects and reflective aspects of mining operations are visually softened to blend in with the surrounding landscape.

#### Other Environmental Conditions

#### 2. Backfilling of Mine Pits

The Lessee must backfill the O'Neil/Nugent pit void with waste rock, suitably rehabilitated for future industrial use, with any PAF material encapsulated to ensure achievement of the outcome specified in second schedule Environmental Outcome 1.5.

# **Appendix 1C**

**EPBC Act Approval Conditions** 



#### APPROVAL

Kanmantoo Copper Mine Expansion, Kanmantoo, South Australia (EPBC 2013/6965).

This decision is made under sections 130(1) and 133 of the *Environment Protection and Biodiversity Conservation Act 1999*.

| Pro | posed | action |
|-----|-------|--------|
|     |       |        |

| person to whom    | the |
|-------------------|-----|
| approval is grant | hed |

HILLGROVE RESOURCES LIMITED

# proponent's ACN (if applicable)

ACN: 004 297 116

#### proposed action

To expand the copper mining operations at the Kanmantoo Copper Mine, located approximately 1.5 kilometres south-west of Kanmantoo, and 44 km east of Adelaide in the southern Mount Lofty Ranges of South Australia [See EPBC Act referral 2013/6965].

#### Approval decision

| Controlling Provision                                         | Decision |
|---------------------------------------------------------------|----------|
| Listed threatened species and communities (sections 18 & 18A) | Approved |

#### conditions of approval

This approval is subject to the conditions specified below.

#### expiry date of approval

This approval has effect until 31 December 2064.

#### Decision-maker

name and position

Dr. Simon Banks Assistant Secretary

West Assessment Branch

signature

date of decision

06

May 2014

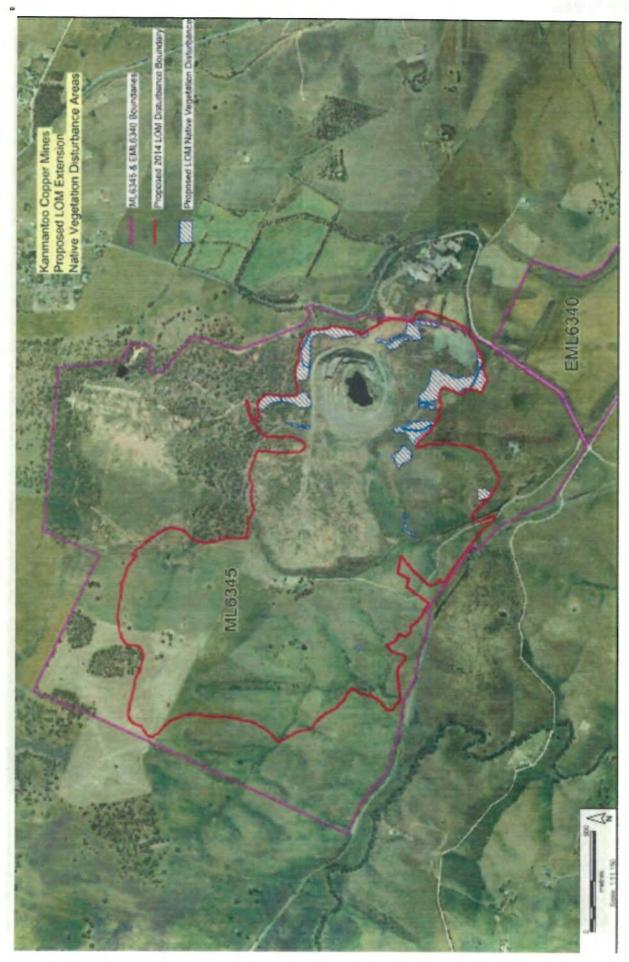
#### Conditions attached to the approval

#### Conditions attached to the approval

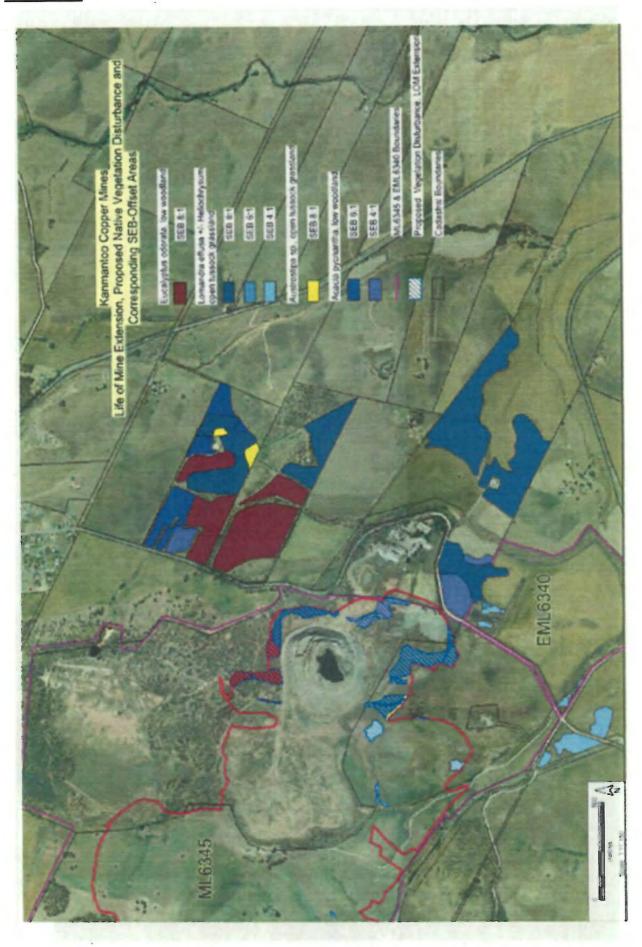
- The person taking the action must not clear more than 1.8 hectares of the ecological community Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia within Mining Lease 6345 (refer to Maps at Schedule 1 and Schedule 2).
- The person taking the action must not clear more than 3.4 hectares of the ecological community Iron-grass Natural Temperate Grassland of South Australia within Mining Lease 6345 (refer to Map at refer to Maps at Schedule 1 and Schedule 2).
- 3. To assist in mitigating the impacts of the proposal on Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia, the person taking the action must prepare and submit a Kanmantoo Copper Mines Native Vegetation Management Plan (NVMP) for the Minister's written approval prior to commencement of the action. The NVMP must be in accordance with the National Recovery Plan for the Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia 2012 and the National Recovery Plan for the Iron-grass Natural Temperate Grassland of South Australia 2012. The NVMP must include:
  - a. Management actions designed to improve the ecological quality of Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia within Mining Lease 6345 and offset lands (refer to Maps at Schedule 1 and Schedule 2) and protect it from degradation for the duration of the action.
  - b. Regeneration and revegetation strategies for Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia within the proposed 'SEB-Offset Areas' (refer to Map at Schedule 2) to improve the ecological quality of these areas.
  - c. An ecological monitoring program to monitor the success of the management actions in the NVMP and define measurable targets of management actions, performance indicators, and an adaptive management framework for the duration of the action's impact on Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia.

The action must not commence until the NVMP is approved by the Minister. The approved NVMP must be implemented.

- 4. To compensate for the loss of up to 1.8 hectares of the ecological community Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and up to 3.4 hectares of the ecological community Iron-grass Natural Temperate Grassland of South Australia the person taking the action must secure the lands identified as the 'SEB-Offset Areas' in the Map at Schedule 2 of this notice as a conservation offset.
- 5. The person taking the action must provide written evidence to the **Department** of their compliance with Condition 4, along with offset attributes, shapefiles and textual


- descriptions and maps to clearly define the location and boundaries of the offset sites, prior to the commencement of the action.
- Within 30 days after the commencement of the action, the person taking the action must advise the Department in writing of the actual date of commencement.
- 7. The person taking the action must maintain accurate records substantiating all activities associated with or relevant to these conditions of approval, including measures taken to implement the offset and NVMP, and make them available upon request to the Department. Such records may be subject to audit by the Department or an independent auditor in accordance with section 458 of the EPBC Act, or used to verify compliance with the conditions of approval. Summaries of audits will be posted on the Department's website. The results of audits may also be publicised through the general media.
- Within three months of every 12 month anniversary of the commencement of the action, the person taking the action must publish a report on their website addressing compliance with each of the conditions of this approval, including implementation of the NVMP as specified in the conditions. Documentary evidence providing proof of the date of publication must be provided to the Department at the same time as the compliance report is published. Non-compliance with any of the conditions of this approval must be reported to the Department within 2 business days of becoming aware of the non-compliance.
- 9. Upon the direction of the Minister, the person taking the action must ensure that an independent audit of compliance with the conditions of approval is conducted and a report submitted to the Minister. The independent auditor must be approved by the Minister prior to the commencement of the audit. Audit criteria must be agreed to by the Minister and the audit report must address the criteria to the satisfaction of the Minister.
- 10. If the person taking the action wishes to carry out any activity otherwise than in accordance with the NVMP as specified in the conditions, the person taking the action must submit to the Department for the Minister's written approval a revised version of that NVMP. The varied activity shall not commence until the Minister has approved the varied NVMP in writing. The Minister will not approve a varied NVMP unless the revised NVMP would result in an equivalent or improved environmental outcome over time. If the Minister approves the revised NVMP, that NVMP must be implemented in place of the NVMP originally approved.
- 11. If the Minister believes that it is necessary or convenient for the better protection of listed threatened species and ecological communities to do so, the Minister may request that the person taking the action make specified revisions to the NVMP specified in the conditions and submit the revised NVMP for the Minister's written approval. The person taking the action must comply with any such request. The revised approved NVMP must be implemented. Unless the Minister has approved the revised NVMP then the person taking the action must continue to implement the NVMP originally approved.
- 12. If, at any time after 5 years from the date of this approval, the person taking the action has not substantially commenced the action, then the person taking the action must not substantially commence the action without the written agreement of the Minister.

13. Unless otherwise agreed to in writing by the Minister, the person taking the action must publish the NVMP referred to in these conditions of approval on their website. The NVMP must be published on the website within 1 month of being approved. The NVMP must remain on their website for the life of the action.


#### Definitions

- a) Action, is the proposed expansion of copper mining operations at Kanmantoo Copper Mine within Mining Lease 6345.
- b) Clear/Clearing, is defined as the cutting down, felling, thinning, logging, removing, killing, destroying, poisoning, ringbarking, uprooting or burning of native vegetation.
- c) Commencement of the action, means any preparatory works required to be undertaken including clearing vegetation, the erection of any onsite temporary structures, tunnel enhancement works and the use of heavy duty equipment for demolition or other purposes relating to the action, including the breaking of ground.
- d) Department, the Australian Government Department administering the Environment Protection and Biodiversity Conservation Act 1999.
- e) Minister, the Minister administering the Environment Protection and Biodiversity Conservation Act 1999 and includes a delegate of the Minister.
- f) Offset attributes, means an '.xls' file capturing relevant attributes of the Offset Area, including the EPBC reference ID number, the physical address of the offset site, coordinates of the boundary points in decimal degrees, the EPBC protected matters that the offset compensates for, any additional EPBC protected matters that are benefiting from the offset, and the size of the offset in hectares.
- g) SEB-Offset Areas, Significant Environmental Benefit Offset Areas as depicted in Schedule 2, specifically Certificate of Title Reference: F160800 A61; F1636 A1; D80644 A21; D60948; D47967 A4 and D30934 Q1.
- h) Shapefiles, means an ESRI Shapefile containing '.shp', '.shx' and '.dbf' files and other files capturing attributes of the Offset Area, including the shape, EPBC reference ID number and EPBC protected matters present at the relevant site. Attributes should also be captured in '.xls' format and in accordance with Departmental Requirements.

## Schedule 1



### Schedule 2



**Appendix 2** 

**Surface Water** 

# Appendix 2A

Surface Water (Water Quality) Statistical Summary

Kanmantoo Copper Project

Table 1 Dawesley Creek and Mount Barker Creek water quality – general parameters\*

|                                                                   |                    | C C                | College    |      |
|-------------------------------------------------------------------|--------------------|--------------------|------------|------|
| orre                                                              | Ed I               | S P                | EC at 25°C | °°°  |
|                                                                   | pH unit            | mg/L               | ms/cm      | mg/L |
| ГОР                                                               | 0.1                | -                  | 1          |      |
| Dawesley Creek (upstream of confluence with Mount Barker Creek)   | of confluence with | Mount Barker Cre   | ek)        |      |
| Average                                                           | 5.5                | 1800               | 2820       | 902  |
| Count                                                             | 2                  | 2                  | 2          | 2    |
| Minimum                                                           | 5.2                | 1800               | 2800       | 630  |
| Maximum                                                           | 6.3                | 1800               | 2900       | 800  |
| 1st Quartile                                                      | 5.3                | 1800               | 2800       | 650  |
| Median                                                            | 5.4                | 1800               | 2800       | 069  |
| 3rd Quartile                                                      | 5.5                | 1800               | 2800       | 260  |
| Mount Barker Creek (upstream of confluence with Dawesley Creek)   | am of confluence   | with Dawesley Cre  |            |      |
| Average                                                           | 7.2                | 1068               | 2000       | 79   |
| Count                                                             | 2                  | 2                  | 2          | 2    |
| Minimum                                                           | 6.8                | 940                | 1900       | 64   |
| Maximum                                                           | 7.5                | 1100               | 2100       | 92   |
| 1st Quartile                                                      | 7.2                | 1100               | 1900       | 71   |
| Median                                                            | 7.3                | 1100               | 2000       | 81   |
| 3rd Quartile                                                      | 7.3                | 1100               | 2100       | 88   |
| Mount Barker Creek (downstream of confluence with Dawesley Creek) | tream of confluend | se with Dawesley ( | Creek)     |      |
| Average                                                           | 7.5                | 1309               | 2268       | 154  |
| Count                                                             | 22                 | 22                 | 22         | 22   |
| Minimum                                                           | 6.8                | 1200               | 2100       | 06   |
| Maximum                                                           | 8.2                | 1500               | 2500       | 310  |
| 1st Quartile                                                      | 7.3                | 1225               | 2200       | 94   |
| Median                                                            | 9.7                | 1300               | 2300       | 96   |
| 3rd Quartile                                                      | 7.7                | 1400               | 2300       | 270  |
| ANZECC/ARMCANZ*1                                                  | 6.2-9              | I                  | 100-2000   | ı    |
| State water quality criteria <sup>81</sup>                        |                    |                    |            |      |
| Freshwater aquatic                                                | 6.5–9              | B2                 | B2         | I    |
| Potable water                                                     | 6.5-8.5            | I                  | I          | 200  |
| Irrigation                                                        | 4.5–9              | I                  | I          | I    |
| Livestock                                                         | I                  | I                  | I          | 1000 |
|                                                                   |                    |                    |            |      |

\*Source:Burtt and Gum, 2000a.

Values in exceedence of ANZECC/ARMCANZ water quality criteria for freshwater ecosystem protection are shown in italics.

Values in exceedence of state water quality criteria are shown in bold.

<sup>\*\*</sup> ANZECC/ARMCANZ (2000). Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters (for slightly-moderately disturbed aquatic ecosystems and 95% species protection).

BI EPA (2003). Environmental Protection (Water Quality) Policy (Schedule 2).

<sup>&</sup>lt;sup>™</sup> 10% variation.

Table 2 DawesleyCreek and Mount Barker Creek water quality - metals

| Site                                            | Ι¥            | As     | Ba               | S      | ပ်      | ဝိ                        | no     | Fe   | Mn     | Mo     | Z     | Pb    | Zu    |
|-------------------------------------------------|---------------|--------|------------------|--------|---------|---------------------------|--------|------|--------|--------|-------|-------|-------|
|                                                 | mg/L          | mg/L   | mg/L             | mg/L   | mg/L    | mg/L                      | mg/L   | mg/L | mg/L   | mg/L   | mg/L  | mg/L  | mg/L  |
|                                                 |               |        |                  |        | Filtere | Filtered metals (0.45 µm) | , hm)  |      |        |        |       |       |       |
| TOD                                             | 0.002         | 0.01   | 0.001            | 0.0001 | 0.001   | 0.001                     | 0.001  | 0.05 | 0.001  | 0.001  | 0.001 | 0.001 | 0.002 |
| Dawesley Creek (upstream of confluence with Mou | am of conflue |        | nt Barker Creek) |        |         |                           |        |      |        |        |       |       |       |
| Average                                         | 0.633         | 0.0025 | 0.028            | 0.010  | 1       | 0.088                     | 0.011  | 1    | 3.50   | 0.001  | 0.10  | 0.01  | 1.25  |
| Count                                           | 2             | 2      | 2                | 2      | 1       | 2                         | 2      | ı    | 2      | -      | 2     | 4     | 2     |
| Minimum                                         | 0.46          | 0.0025 | 0.027            | 0.009  | ı       | 0.079                     | 0.008  | ı    | 3.43   | 0.001  | 0.087 | 0.004 | 1.17  |
| Maximum                                         | 0.93          | 0.0025 | 0.028            | 0.012  | ı       | 0.1                       | 0.013  | I    | 3.55   | 0.001  | 0.114 | 0.02  | 1.32  |
| 1st Quartile                                    | 0.47          | 0.0025 | 0.027            | 0.01   | 1       | 0.081                     | 0.011  | ı    | 3.49   | 0.001  | 60.0  | 0.012 | 1.22  |
| Median                                          | 0.61          | 0.0025 | 0.028            | 0.01   | ı       | 0.083                     | 0.011  | I    | 3.51   | 0.001  | 0.095 | 0.017 | 1.25  |
| 3rd Quartile                                    | 0.7           | 0.0025 | 0.028            | 0.011  | ı       | 0.095                     | 0.012  | ı    | 3.54   | 0.001  | 0.111 | 0.02  | 1.27  |
| Mount Barker Creek (upstream of confluence with | stream of con | Ω      | awesley Creek    | (      |         |                           |        |      |        |        |       |       |       |
| Average                                         | 0.0088        | 0.0025 | 0.061            | ı      | 0.0025  | ı                         | 0.002  | ı    | 0.0058 | 0.002  | 0.003 | 1     | 0.004 |
| Count                                           | 5             | 5      | 2                | 1      | 2       | 1                         | 2      | I    | 2      | 2      | 2     | 1     | 2     |
| Minimum                                         | 0.004         | 0.0025 | 0.059            | 1      | 0.0025  | 1                         | 0.002  | ı    | 0.003  | 0.002  | 0.003 | 1     | 0.003 |
| Maximum                                         | 0.014         | 0.0025 | 0.063            | 1      | 0.0025  | ı                         | 0.002  | ı    | 0.009  | 0.002  | 0.003 | 1     | 0.004 |
| 1st Quartile                                    | 0.005         | 0.0025 | 0.061            | ı      | 0.0025  | ı                         | 0.002  | I    | 0.004  | 0.002  | 0.003 | 1     | 0.003 |
| Median                                          | 0.008         | 0.0025 | 0.062            | 1      | 0.0025  | 1                         | 0.002  | ı    | 0.005  | 0.002  | 0.003 | 1     | 0.004 |
| 3rd Quartile                                    | 0.013         | 0.0025 | 0.062            | 1      | 0.0025  | ı                         | 0.002  | ı    | 0.008  | 0.002  | 0.003 | 1     | 0.004 |
| Mount Barker Creek (downstream of confluence wi | wnstream of c | -      | h Dawesley Creek | ek)    |         |                           |        |      |        |        |       |       |       |
| Average                                         | 0.050         | 0.0025 | 0.0545           | 0.0004 | 0.0025  | 0.0018                    | 0.0025 | 90.0 | 0.044  | 0.0012 | 0.007 | 0.001 | 0.015 |
| Count                                           | 22            | 22     | 22               | 17     | 22      | 9                         | 22     | -    | 22     | 20     | 22    | _     | 22    |
| Minimum                                         | 0.022         | 0.0025 | 0.049            | 0      | 0.0025  | 0.001                     | 0.002  | 90.0 | 0.004  | 0.001  | 900.0 | 0.001 | 0.004 |
| Maximum                                         | 0.000         | 0.0025 | 0.059            | 0.001  | 0.0025  | 0.004                     | 0.005  | 90.0 | 0.18   | 0.002  | 0.012 | 0.001 | 0.065 |
| 1st Quartile                                    | 0.035         | 0.0025 | 0.053            | 0      | 0.0025  | 0.001                     | 0.002  | 90.0 | 0.019  | 0.001  | 900.0 | 0.001 | 0.007 |
| Median                                          | 0.047         | 0.0025 | 0.055            | 0      | 0.0025  | 0.001                     | 0.002  | 90.0 | 0.031  | 0.001  | 900.0 | 0.001 | 0.01  |
| 3rd Quartile                                    | 0.060         | 0.0025 | 0.056            | 0.001  | 0.0025  | 0.0025                    | 0.003  | 90.0 | 0.059  | 0.001  | 0.007 | 0.001 | 0.015 |

Table 2 DawesleyCreek and Mount Barker Creek water quality - metals (cont.)

| Site                                            | ₹                 | As                                        | Ba                | පි                    | င်    | ပိ           | 3       | æ        | Mn    | ě     | Z     | g<br>Q               | Zu                  |
|-------------------------------------------------|-------------------|-------------------------------------------|-------------------|-----------------------|-------|--------------|---------|----------|-------|-------|-------|----------------------|---------------------|
|                                                 | mg/L              | mg/L                                      | mg/L              | mg/L                  | mg/L  | mg/L         | mg/L    | mg/L     | mg/L  | mg/L  | mg/L  | mg/L                 | mg/L                |
| TOD                                             | 0.02              | 0.01                                      | 0.005             | 0.0005                | 0.005 | 0.005        | 0.005   | 0.05     | 0.005 | 0.005 | 0.005 | 0.002                | 0.01                |
|                                                 |                   |                                           |                   |                       |       | Total metals |         |          |       |       |       |                      |                     |
| Dawesley Creek (upstream of confluence with Mou | am of conflu      | sence with Mount E                        | nt Barker Creek)  | _                     |       |              |         |          |       |       |       |                      |                     |
| Average                                         | 0.74              | 0.0025                                    | ļ                 | 0.011                 | 1     | 0.09         | 0.013   | 90.0     | 3.7   | 1     | 0.108 | 0.016                | 1.4                 |
| Count                                           | 2                 | 2                                         | ı                 | 2                     | ı     | 2            | 2       | -        | 2     | ı     | 2     | 4                    | 2                   |
| Minimum                                         | 0.56              | 0.0025                                    | ı                 | 0.00                  | I     | 0.09         | 0.011   | 0.05     | 3.6   | ı     | 0.097 | 0.005                | 1.3                 |
| Maximum                                         | 1.07              | 0.0025                                    | I                 | 0.012                 | I     | 0.11         | 0.014   | 0.05     | 4.0   | ı     | 0.12  | 0.022                | 1.5                 |
| 1st Quartile                                    | 0.64              | 0.0025                                    | ı                 | 0.011                 | ı     | 0.09         | 0.012   | 0.05     | 3.6   | ı     | 0.1   | 0.013                | 1.3                 |
| Median                                          | 0.65              | 0.0025                                    | ı                 | 0.011                 | I     | 0.09         | 0.013   | 0.05     | 3.7   | ı     | 0.10  | 0.019                | 1.3                 |
| 3rd Quartile                                    | 0.77              | 0.0025                                    | ı                 | 0.011                 | ı     | 0.10         | 0.014   | 0.05     | 3.8   | 1     | 0.12  | 0.022                | 4.1                 |
| Mount Barker Creek (upstream of confluence with | stream of co      |                                           | Dawesley Creek    | ()                    |       |              |         |          |       |       |       |                      |                     |
| Average                                         | 0.28              | 0.0045                                    | ļ                 | ı                     | ı     | ı            | ı       | 0.512    | 0.078 | 1     | 1     | 0.004                | 0.01                |
| Count                                           | 2                 | 2                                         | I                 | I                     | I     | I            | I       | 2        | 2     | ı     | I     | 2                    | -                   |
| Minimum                                         | 0.16              | 0.0025                                    | I                 | I                     | ı     | ı            | ı       | 0.32     | 0.066 | ı     | I     | 0.003                | 0.01                |
| Maximum                                         | 0.37              | 0.005                                     | ı                 | I                     | I     | I            | I       | 0.79     | 0.094 | ı     | I     | 0.007                | 0.01                |
| 1st Quartile                                    | 0.22              | 0.005                                     | I                 | I                     | I     | I            | I       | 0.35     | 0.072 | ı     | I     | 0.003                | 0.01                |
| Median                                          | 0.29              | 0.005                                     | ı                 | ı                     | ı     | ı            | ı       | 0.55     | 0.073 | 1     | ı     | 0.003                | 0.01                |
| 3rd Quartile                                    | 0.34              | 0.005                                     | ı                 | I                     | ı     | I            | I       | 0.55     | 0.084 | ı     | I     | 0.005                | 0.01                |
| Mount Barker Creek (downstream of confluence wi | wnstream o        |                                           | th Dawesley Creek | eek)                  |       |              |         |          |       |       |       |                      |                     |
| Average                                         | 0.55              | 0.004                                     | ı                 | 0.0013                | ı     | 0.012        | 900'0   | 0.361    | 0.56  | ı     | 0.013 | 0.005                | 0.095               |
| Count                                           | 22                | 22                                        | I                 | 18                    | ı     | 80           | 9       | 22       | 22    | ı     | 22    | 13                   | 22                  |
| Minimum                                         | 0.13              | 0.0025                                    | ı                 | 0.0005                | ı     | 900.0        | 0.005   | 0.12     | 0.18  | ı     | 0.008 | 0.002                | 0.02                |
| Maximum                                         | 1.19              | 0.01                                      | I                 | 0.0028                | I     | 0.02         | 0.008   | 0.91     | 1.35  | ı     | 0.026 | 0.009                | 0.3                 |
| 1st Quartile                                    | 0.36              | 0.0025                                    | ı                 | 0.0005                | ı     | 0.008        | 0.005   | 0.23     | 0.33  | 1     | 600.0 | 0.003                | 0.04                |
| Median                                          | 0.46              | 0.0025                                    | ı                 | 0.001                 | ı     | 0.01         | 9000    | 98.0     | 0.52  | ı     | 0.01  | 0.005                | 90.0                |
| 3rd Quartile                                    | 0.68              | 0.005                                     | _                 | 0.0018                | -     | 0.017        | 0.007   | 0.45     | 99.0  | _     | 0.016 | 900'0                | 0.13                |
| ANZECC/ARMCANZ**                                | 0.055 🕫           | 0.024 <sup>A3</sup> ; 0.012 <sup>A4</sup> | ı                 | 0.00058 <sup>AS</sup> | 0.001 | 0.003945     | 0.0039№ | ı        | 1.9   | ı     | 0.031 | 0.0157 <sup>AS</sup> | 0.022 <sup>AS</sup> |
| State water quality criteria®                   | B1                |                                           |                   |                       |       |              |         |          |       |       |       |                      |                     |
| Freshwater aquatic                              | 0.1 <sup>B2</sup> | 0.05                                      | ı                 | 0.002                 | B3    | I            | 0.01    | Ψ-       | ı     | ı     | 0.15  | 0.005                | 0.05                |
| Potable water                                   | ı                 | 0.007                                     | 0.7               | 0.002                 | B3    | ı            | 2       | ı        | 0.5   | 0.02  | 0.02  | 0.01                 | 0.05                |
| Irrigation                                      | -                 | ı                                         | ı                 | 0.01                  | _     | 0.05         | 0.2     | <b>-</b> | 2     | 0.01  | 0.2   | 0.2                  | 2                   |
| Livestock                                       | 2                 | ı                                         | ı                 | 0.01                  | _     | I            | 0.5     | ı        | ı     | 0.01  | -     | 0.1                  | 20                  |
|                                                 |                   |                                           |                   |                       |       |              |         |          |       |       |       |                      |                     |

<sup>&</sup>quot;ANZECC/ARMCANZ (2000). Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters (for slightly-moderately disturbed aquatic ecosystems and 95% species protection). As(III).

A4 As(V).

A2 If pH>6.5 insufficient data exists to establish a trigger value for waters with pH<6.5.

As Calculated for a water hardness of 100 mg CaCO<sub>3</sub>/L.

<sup>&</sup>lt;sup>B1</sup> EPA (2003). Environmental Protection (Water Quality) Policy (Schedule 2).

B2 Applies to soluble form, filterable through a 0.1 µm filter.

<sup>&</sup>lt;sup>83</sup> Cr(VI). Insufficient data exists to establish a trigger value for Cr(III).

South Australian water quality criteria apply to total metal concentrations, whereas ANZECC/ARMCANZ values apply to filterable metal concentrations.

Exceedences of ANZECC (2000) guidelines are shown in italics.

|                               | Conductivity* | TDSa   | На        | TDS <sup>a</sup> pH Temperature DO Turbidity oxidised N TKN Total N P (sol as P) | 00   | Turbidity | oxidised N | TKN    | Total N | P (sol as P) | Total P | Organic C | Hardness                |
|-------------------------------|---------------|--------|-----------|----------------------------------------------------------------------------------|------|-----------|------------|--------|---------|--------------|---------|-----------|-------------------------|
|                               | ms/cm         | mg/L   | pH units  | ့                                                                                | mg/L | NTN       | mg N/L     | mg N/L | mg/L    | mg/L         | mg P/L  | mg/L      | mg CaCO <sub>3</sub> /L |
| Highest LOD                   | ı             | 1      | ı         | ı                                                                                | 1    | >400      | <0.01      | <0.05  | 1       | <0.005       | ı       | 1         | 1                       |
| Average                       | 3188.4        | 1720.9 | 7.8       | 15.1                                                                             | 8.2  | 16.9      | 0.83       | 1.17   | 2.0     | 0.017        | 0.1     | 9.3       | 482.4                   |
| Count                         | 200           | 112    | 163       | 178                                                                              | 116  | 141       | 112        | 112    | 112     | 112          | 113     | 103       | 104                     |
| Count < DL                    | ı             | ı      | I         | ı                                                                                | ı    | ı         | 30         | _      | I       | 54           | ı       | ı         | ı                       |
| Min                           | 635           | 348.9  | 6.3       | 0                                                                                | 3.4  | 9.0       | 0.0025     | 0.025  | 0.516   | 0.0025       | 0.018   | 0.7       | 8.96                    |
| Max                           | 9280          | 5450   | 8.9       | 28.5                                                                             | 14.2 | 440       | 6.45       | 4.6    | 7.65    | 0.178        | 1.1     | 21.3      | 1040                    |
| 1st Quartile                  | 2246          | 1281.5 | 7.7       | 12                                                                               | 9.9  | 3.8       | 0.003      | 0.85   | 1.1     | 0.0025       | 0.043   | 7.6       | 384.8                   |
| Median                        | 3005          | 1627.3 | 7.81      | 14                                                                               | 8.3  | 0.9       | 0.20       | 1.07   | 1.4     | 0.0058       | 0.07    | 9.1       | 458.5                   |
| 3rd Quartile                  | 3940.3        | 2007.4 | 8.0       | 18.0                                                                             | 9.2  | 9.6       | 1.3        | 1.3    | 5.6     | 0.0173       | 0.1     | 10.7      | 565.4                   |
| ANZECC/ARMCANZ B1             | 100-2000      | I      | 6.2-9     | I                                                                                | %06  | 1-50      | 0.1        | ı      | 1       | 1            | 0.04    | ı         | 1                       |
| State water quality criteria* |               |        |           |                                                                                  |      |           |            |        |         |              |         |           |                         |
| Freshwater aquatic            | 0             | 0      | 6.5–9     | I                                                                                | ı    | 20        | 0.5        | ı      | 2       | 0.1          | 0.5     | 15        | I                       |
| Potable water                 | I             | I      | 6.5 - 8.5 | ı                                                                                | ı    | 2         | I          | ı      | ı       | I            | I       | I         | I                       |
| Irrigation                    | ı             | I      | 4.5-9     | ı                                                                                | ı    | I         | ı          | ı      | I       | I            | I       | ı         | ı                       |
| Livestock                     | ı             | I      | I         | ı                                                                                | ı    | ı         | ı          | ı      | I       | I            | I       | I         | I                       |

\*\*Source: EPA, 2006b.

\* Measurement at 25°C.

<sup>a</sup> Measured by electrical conductivity.

\* Criteria described in Schedule 2 of the Environment Protection (Water Quality Policy) 2003.

° 10% variation.

total metals\*\* Table 4 Bremer River (near Hartley site GS426533) water

| Table 4 Bremer Kiver (near Harriey Site GS426333) Water quality summary statistics - total metals | ar Hartley site GS     | 9420333) Wat   | er quanty su | mmary statis        | rics - total r | netals        |
|---------------------------------------------------------------------------------------------------|------------------------|----------------|--------------|---------------------|----------------|---------------|
|                                                                                                   | РЭ                     | Cu             | Hg           | Z                   | Pb             | Zu            |
|                                                                                                   | mg/L                   | mg/L           | mg/L         | mg/L                | mg/L           | mg/L          |
| Highest LOD                                                                                       | <0.001                 | <0.03          | <0.0005      | <0.01               | <0.005         | <0.01         |
| Average                                                                                           | 9000'0                 | 0.0078         | 0.0002       | 9900'0              | 0.0012         | 0.0844        |
| Count                                                                                             | 26                     | 106            | 22           | 26                  | 106            | 106           |
| Count < DL                                                                                        | 22                     | 40             | 22           | 2                   | 92             | 4             |
| Minimum                                                                                           | 0.00025                | 0.0005         | 0.0001       | 0.00025             | 0.00025        | 0.003         |
| Maximum                                                                                           | 0.005                  | 0.063          | 0.00025      | 0.04                | 0.026          | 0.496         |
| 1st Quartile                                                                                      | 0.00025                | 0.0025         | 0.00015      | 0.0026              | 0.0005         | 0.02          |
| Median                                                                                            | 0.00025                | 0.0049         | 0.00015      | 0.0049              | 0.0005         | 0.0598        |
| 3rd Quartile                                                                                      | 0.0005                 | 0.0139         | 0.00015      | 0.0076              | 0.0011         | 0.1218        |
| ANZECC/ARMCANZ B1                                                                                 | 0.00058 <sup>B11</sup> | $0.0039^{B11}$ | ®9000°0      | 0.031 <sup>B1</sup> | $0.0157^{B11}$ | $0.022^{B11}$ |
| State water quality criteria*                                                                     |                        |                |              |                     |                |               |
| Freshwater aquatic                                                                                | 0.002                  | 0.01           | 0.0001       | 0.15                | 0.005          | 0.02          |
| Potable water                                                                                     | 0.002                  | 7              | 0.001        | 0.02                | 0.01           | 0.02          |
| Irrigation                                                                                        | 0.01                   | 0.2            | 0.002        | 0.2                 | 0.2            | 7             |
| Livestock                                                                                         | 0.01                   | 0.5            | 0.002        | -                   | 0.1            | 20            |
|                                                                                                   |                        |                |              |                     |                |               |

\*\*Source: EPA, 2006b.
\*\*Source: EPA, 2000D. Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters (for slightly-moderately disturbed aquatic ecosystems and 95% species protection).
\*\*ANZECC/ARMCANZ (2000). Australian and New Zealand Environment and Conservation Council and the Agricultural and Resource Management Council of Australia and New Zealand. October 2000.
\*\*Criteria described in Schedule 2 of the Environment Protection (Water Quality) Policy 2003.
\*\*Exceedences of ANZECC/ARMCANZ (2000) guidelines are shown in italics.
\*\*Exceedences of state water quality criteria (Schedule 2) guidelines are shown in bold.

|                                                                                  | ŀ  |
|----------------------------------------------------------------------------------|----|
| rs**                                                                             |    |
| ë                                                                                | ŀ  |
| 鬞                                                                                | Ì  |
| par                                                                              | l  |
| ā                                                                                | ŀ  |
| š                                                                                | ľ  |
| 8                                                                                |    |
| 1                                                                                |    |
| Table 5 Lake Alexandrina water quality statistical summary – general parameters* |    |
| ca                                                                               |    |
| <u>s</u>                                                                         |    |
| ŧ                                                                                | l  |
| s                                                                                | ŀ  |
| ≣.                                                                               | l  |
| ğ                                                                                |    |
| ē                                                                                | ŀ  |
| ğ                                                                                | ŀ  |
| na                                                                               | ŀ  |
| 둳                                                                                | l  |
| ā                                                                                |    |
| <u>@</u>                                                                         | ľ  |
| Ă                                                                                | l  |
| 퐃                                                                                | l  |
| Ľ                                                                                | ļ, |
| 5                                                                                | ľ  |
| ₫                                                                                | l  |
| Ē                                                                                | ŀ  |
|                                                                                  | ľ  |
|                                                                                  | ı  |

|                               |              | Č    | Iable    | J Lake   | Mexallul | Time de  | allity statistic                                | al Sullillar | y - general p | Jai allieteis | ľ      |                                | (-) [[]         |             |
|-------------------------------|--------------|------|----------|----------|----------|----------|-------------------------------------------------|--------------|---------------|---------------|--------|--------------------------------|-----------------|-------------|
| Date                          | "" thiriting | 2 1  | HO.      | emb<br>S | 3 5      | urbidity | Hemp DO lurbidity Oxidised N IKN lotal N P(Sol) | Z Z          | lotal N       | P (SOI)       |        | Organic carbon chlorophyll (a) | cniorophyll (a) | Enterococci |
|                               | ms/srl       | mg/L | pH units | ړ        | mg/L     | OIN      | mg N/L                                          | mg N/L       | mg N/L        | mg P/L        | mg P/L | mg/L                           | hg/L            | per 100mL   |
| Poltalloch plains             |              |      |          |          |          |          |                                                 |              |               |               |        |                                |                 |             |
| Average                       | 1004         | 223  | 8.4      | 16.2     | 10.1     | 51.7     | 0.0037                                          | 1.4          | 1.4           | 0.0047        | 0.1    | 1                              | 35.2            | 125.2       |
| Count                         | 06           | 06   | 24       | 24       | 15       | 06       | 06                                              | 06           | 06            | 06            | 24     | ı                              | 88              | 24          |
| Minimum                       | 384          | 211  | 7.9      | 6        | 8.9      | 13.7     | 0.0025                                          | 0.63         | 9.0           | 0.0025        | 0.04   | ı                              | 9.27            | 0           |
| Maximum                       | 1664         | 918  | 8.8      | 22       | 11.8     | 185      | 0.0230                                          | 4.99         | 2             | 0.0721        | 0.62   | I                              | 121.7           | 800         |
| 1st quartile                  | 783          | 430  | 8.3      | 13       | 9.5      | 26.6     | 0.0025                                          | 1.03         | 1.0           | 0.0025        | 0.08   | ı                              | 23.1            | o           |
| Median                        | 1100         | 909  | 8.4      | 16       | 10.3     | 44.8     | 0.0025                                          | 1.2          | 1.2           | 0.0025        | 0.12   | ı                              | 31.1            | 43          |
| 3rd Quartile                  | 1241         | 684  | 8.6      | 19.3     | 11.2     | 69.5     | 0.0025                                          | 4.1          | 1.4           | 0.0025        | 0.16   | ı                              | 43.1            | 61          |
| Milang (GS426524)             |              |      |          |          |          |          |                                                 |              |               |               |        |                                |                 |             |
| Average                       | 746          | 406  | 8.3      | 16.4     | 9.2      | 77.0     | 0.027                                           | 1.3          | 1.3           | 0.026         | 0.2    | 7.3                            | 30.9            | 119.0       |
| Count                         | 1077         | 1025 | 1026     | 792      | 299      | 894      | 412                                             | 450          | 388           | 440           | 399    | 123                            | 93              | 23          |
| Minimum                       | 269          | 148  | 7        | 6        | 0        | 0.31     | 0.0025                                          | 0.03         | 0.04          | 0.0025        | 0.005  | 2.8                            | 6.5             | _           |
| Maximum                       | 1750         | 820  | 10       | 27       | 81       | 390      | 0.59                                            | 2.77         | 2.99          | 0.336         | 0.713  | 15                             | 244.2           | 220         |
| 1st Quartile                  | 541          | 297  | 8.1      | 13       | 8.5      | 33       | 0.008                                           | 96.0         | 0.98          | 0.0025        | 0.097  | 9                              | 17.1            | 25          |
| Median                        | 683          | 375  | 8.3      | 16       | 9.6      | 28       | 0.01                                            | 1.19         | 1.2           | 0.007         | 0.148  | 7                              | 24              | 49          |
| 3rd Quartile                  | 913          | 497  | 8.5      | 20       | 10.4     | 103      | 0.02                                            | 1.5          | 1.5           | 0.033         | 0.223  | ∞                              | 32.3            | 120         |
| Goolwa Barrage                |              |      |          |          |          |          |                                                 |              |               |               |        |                                |                 |             |
| Average                       | 2213         | 1228 | 8.6      | 16.3     | 9.0      | 18.6     | 900.0                                           | 1.1          | 1.1           | 0.0034        | 0.1    | 1                              | 22.9            | 9.4         |
| Count                         | 87           | 87   | 23       | 24       | 15       | 87       | 87                                              | 87           | 87            | 87            | 23     | ı                              | 82              | 23          |
| Minimum                       | 448          | 246  | 8.3      | 10       | 8.9      | 2.5      | 0.0                                             | 0.7          | 69.0          | 0.0025        | 0.04   | I                              | 3.3             | 0           |
| Maximum                       | 8460         | 4792 | 8.9      | 23       | 10.8     | 91.5     | 0.15                                            | 2.3          | 2.29          | 0.024         | 0.11   | I                              | 56.3            | 32          |
| 1st Quartile                  | 1386         | 292  | 8.48     | 13.8     | 8.5      | 12.0     | 0.0025                                          | 6.0          | 0.89          | 0.0025        | 0.05   | I                              | 16.4            | 3.5         |
| Median                        | 1828         | 1009 | 8.6      | 16.3     | 9.1      | 15.6     | 0.0025                                          | 1.7          | 1.06          | 0.0025        | 90.0   | I                              | 22.6            | 80          |
| 3rd Quartile                  | 2574         | 1425 | 8.7      | 18.3     | 9.7      | 20       | 0.0025                                          | 1.2          | 1.2           | 0.0025        | 0.08   | I                              | 26.2            | 10          |
| 1)                            | 300-1000     | I    | 6.2-9    | ı        | %06      | 1-100    | 0.1                                             | I            | -             | 0.01          | 0.025  | I                              | I               | I           |
| 2)                            | I            | ı    | 8-8.5    | I        | I        | 0.5-10   | 0.05                                            | I            | <b>~</b>      | 0.01          | 0.1    | I                              | I               | I           |
| State water quality criteriaa |              |      |          |          |          |          |                                                 |              |               |               |        |                                |                 |             |
| Freshwater aquatic            | 0            | 0    | 6.5 - 9  | ı        | I        | 20       | 0.5                                             | I            | 2             | 0.1           | 0.5    | 15                             | I               | ı           |
| Potable water                 | ı            | ı    | 6.5–8.5  | 1        | I        | 2        | I                                               | I            | I             | I             | I      | I                              | ı               | ı           |
| Irrigation                    | I            | I    | 4.5–9    | ı        | I        | I        | I                                               | I            | I             | I             | I      | I                              | I               | ı           |
| Livestock                     | ı            | I    | I        | ı        | I        | I        | I                                               | I            | I             | I             | I      | I                              | ı               | ı           |
| **Source: EPA, 2006b.         |              |      |          |          |          |          |                                                 |              |               |               |        |                                |                 |             |

\*At 25 °C.

 $^{*}$  By EC.  $^{3}$  Criteria described in Schedules 2 of the Environment Protection (Water Quality Policy) 2003.

o No greater than 10% variation.

1) ANZECC/ARMCANZ (2000) default trigger values for freshwater lakes and reservoirs in South Central Australia (for slightly-moderately disturbed aquatic ecosystems and 95% species protection).
2) ANZECC/ARMCANZ (2000) default trigger values for marine ecosystems in South Central Australia (for slightly-moderately disturbed aquatic ecosystems and 95% species protection).

|                 |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 6 Bremer ca | emer catc                                                                                                                                                                                                                                                                                                                  | hment bed                                                                                                                                                                                                                                                                                                   | sediment s                                                                                                                                                                                                                                             | statistical s | summary –                                                                                                                                                                                                                      | itchment bed sediment statistical summary – pH, EC and metals* | metals*   |                    |                |                                                                                                                          |                                                                              |                                          |        |
|-----------------|-----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|--------|
|                 | Hd                                      | EC        | Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | As                | Αu                                                                                                                                                                                                                                                                                                                                                                                                               | Ba                | Be                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | PS                                                                                                                                                                                                                                                     | ပ္ပ           | ပ်                                                                                                                                                                                                                             | Cn                                                             | Mn        | Mo                 | Z              | Pb                                                                                                                       | qs                                                                           | Sn                                       | Zn     |
|                 | pH unit                                 | mS/cm     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg             | mg/kg                                                                                                                                                                                                                                                                                                                      | mg/kg                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                  | mg/kg         | mg/kg                                                                                                                                                                                                                          | mg/kg                                                          | mg/kg     | mg/kg              | mg/kg          | mg/kg                                                                                                                    | mg/kg                                                                        | mg/kg                                    | mg/kg  |
| DL              | 0.01                                    | 1         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5               | 0.001                                                                                                                                                                                                                                                                                                                                                                                                            | 20                | 0.5                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                    | 0.2           | 20                                                                                                                                                                                                                             | 0.5                                                            | 20        | 0.1                | 2              | 0.5                                                                                                                      | 0.5                                                                          | 10                                       | 0.5    |
| Dawesle         | Dawesley/Mount Barker Creek             | ker Creek |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                |                                                                |           |                    |                |                                                                                                                          |                                                                              |                                          |        |
| Range           | 3.5-10.2                                |           | <dl-400< th=""><th>0.5-2350</th><th>66-2100 <dl-400 0.5-2350="" 90-4650<="" <dl-1.13="" th=""><th></th><th>0.2–9.5</th><th><dl-2.7< th=""><th><dl-<b>54</dl-<b></th><th>0.90-360</th><th><dl-270< th=""><th>2–700</th><th>100-5600</th><th>0.03-11</th><th>2<b>-320</b></th><th>2-42400 <dl-2350< th=""><th><dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<></th></dl-2350<></th></dl-270<></th></dl-2.7<></th></dl-400></th></dl-400<> | 0.5-2350          | 66-2100 <dl-400 0.5-2350="" 90-4650<="" <dl-1.13="" th=""><th></th><th>0.2–9.5</th><th><dl-2.7< th=""><th><dl-<b>54</dl-<b></th><th>0.90-360</th><th><dl-270< th=""><th>2–700</th><th>100-5600</th><th>0.03-11</th><th>2<b>-320</b></th><th>2-42400 <dl-2350< th=""><th><dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<></th></dl-2350<></th></dl-270<></th></dl-2.7<></th></dl-400> |                   | 0.2–9.5                                                                                                                                                                                                                                                                                                                    | <dl-2.7< th=""><th><dl-<b>54</dl-<b></th><th>0.90-360</th><th><dl-270< th=""><th>2–700</th><th>100-5600</th><th>0.03-11</th><th>2<b>-320</b></th><th>2-42400 <dl-2350< th=""><th><dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<></th></dl-2350<></th></dl-270<></th></dl-2.7<> | <dl-<b>54</dl-<b>                                                                                                                                                                                                                                      | 0.90-360      | <dl-270< th=""><th>2–700</th><th>100-5600</th><th>0.03-11</th><th>2<b>-320</b></th><th>2-42400 <dl-2350< th=""><th><dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<></th></dl-2350<></th></dl-270<> | 2–700                                                          | 100-5600  | 0.03-11            | 2 <b>-320</b>  | 2-42400 <dl-2350< th=""><th><dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<></th></dl-2350<> | <dl-2350< th=""><th><dl-140< th=""><th>2-5850</th></dl-140<></th></dl-2350<> | <dl-140< th=""><th>2-5850</th></dl-140<> | 2-5850 |
| Average         | 7.4                                     | 641       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.58             | 0.007                                                                                                                                                                                                                                                                                                                                                                                                            | 465               | 2.5                                                                                                                                                                                                                                                                                                                        | 0.43                                                                                                                                                                                                                                                                                                        | 4.3                                                                                                                                                                                                                                                    | 25.5          | 9.69                                                                                                                                                                                                                           | 36.3                                                           | 009       | 9.5                | 34.4           | 216.8                                                                                                                    | 10.9                                                                         | 1.5                                      | 590.2  |
| Median          | 7.4                                     | 268       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                            | 460               | 7                                                                                                                                                                                                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                         | 1.95                                                                                                                                                                                                                                                   | 13.5          | 20                                                                                                                                                                                                                             | 27.5                                                           | 2000      |                    | 24             | 35                                                                                                                       | <b>~</b>                                                                     | <dl< th=""><th>33</th></dl<>             | 33     |
| Langhorne Creek | ne Creek                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                |                                                                |           |                    |                |                                                                                                                          |                                                                              |                                          |        |
| Range           | 5.9-10.3                                | 121-1500  | <dl-0.8< th=""><th>1.0-19.5</th><th>5.9-10.3 121-1500 &lt; DL-0.8 1.0-19.5 &lt; DL-0.006 280-700</th><th></th><th><dl-5.5< th=""><th><dl-1.8< th=""><th><dl-2.1< th=""><th>2.2-27.5</th><th><dl-130< th=""><th>6.5 - 130</th><th>2000-8000</th><th>0.2-1.2</th><th><b>96–58</b></th><th>7.5–9.5</th><th><dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<></th></dl-130<></th></dl-2.1<></th></dl-1.8<></th></dl-5.5<></th></dl-0.8<>         | 1.0-19.5          | 5.9-10.3 121-1500 < DL-0.8 1.0-19.5 < DL-0.006 280-700                                                                                                                                                                                                                                                                                                                                                           |                   | <dl-5.5< th=""><th><dl-1.8< th=""><th><dl-2.1< th=""><th>2.2-27.5</th><th><dl-130< th=""><th>6.5 - 130</th><th>2000-8000</th><th>0.2-1.2</th><th><b>96–58</b></th><th>7.5–9.5</th><th><dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<></th></dl-130<></th></dl-2.1<></th></dl-1.8<></th></dl-5.5<> | <dl-1.8< th=""><th><dl-2.1< th=""><th>2.2-27.5</th><th><dl-130< th=""><th>6.5 - 130</th><th>2000-8000</th><th>0.2-1.2</th><th><b>96–58</b></th><th>7.5–9.5</th><th><dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<></th></dl-130<></th></dl-2.1<></th></dl-1.8<>                    | <dl-2.1< th=""><th>2.2-27.5</th><th><dl-130< th=""><th>6.5 - 130</th><th>2000-8000</th><th>0.2-1.2</th><th><b>96–58</b></th><th>7.5–9.5</th><th><dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<></th></dl-130<></th></dl-2.1<> | 2.2-27.5      | <dl-130< th=""><th>6.5 - 130</th><th>2000-8000</th><th>0.2-1.2</th><th><b>96–58</b></th><th>7.5–9.5</th><th><dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<></th></dl-130<>                            | 6.5 - 130                                                      | 2000-8000 | 0.2-1.2            | <b>96–58</b>   | 7.5–9.5                                                                                                                  | <dl-1.5< th=""><th><dl-25< th=""><th>18-400</th></dl-25<></th></dl-1.5<>     | <dl-25< th=""><th>18-400</th></dl-25<>   | 18-400 |
| Average         | 7.7                                     | 335       | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.4               | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                           | 426               | 1.7                                                                                                                                                                                                                                                                                                                        | 0.43                                                                                                                                                                                                                                                                                                        | 0.22                                                                                                                                                                                                                                                   | 8.41          | 41.7                                                                                                                                                                                                                           | 33.6                                                           | 3000      | 0.56               | 19.13          | 37.67                                                                                                                    | 0.21                                                                         | 0.921                                    | 79.0   |
| Median          | 7.6                                     | 276       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5               | 0.001                                                                                                                                                                                                                                                                                                                                                                                                            | 390               | 1.5                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                    | 7             | 40                                                                                                                                                                                                                             | 20.5                                                           | 300       | 0.5                | 15.5           | 16.5                                                                                                                     | <dl< td=""><td><dl< td=""><td>49.8</td></dl<></td></dl<>                     | <dl< td=""><td>49.8</td></dl<>           | 49.8   |
| Kanmantoo mine  | oo mine                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                |                                                                |           |                    |                |                                                                                                                          |                                                                              |                                          |        |
| Range           | 3.9–9.3                                 | 138-5000  | 0.1–2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0-14.5          | 4.0-14.5 0.005-0.14 190-600                                                                                                                                                                                                                                                                                                                                                                                      | 190-600           | 1–4.5                                                                                                                                                                                                                                                                                                                      | 3.5-100                                                                                                                                                                                                                                                                                                     | <dl-0.3< th=""><th>11–100</th><th>90-180</th><th>140-13500 700-2700</th><th>700–2700</th><th>0.7-2.2</th><th>16<b>–105</b></th><th>14.5–89</th><th><dl-0.5< th=""><th><dl< th=""><th>40-185</th></dl<></th></dl-0.5<></th></dl-0.3<>                   | 11–100        | 90-180                                                                                                                                                                                                                         | 140-13500 700-2700                                             | 700–2700  | 0.7-2.2            | 16 <b>–105</b> | 14.5–89                                                                                                                  | <dl-0.5< th=""><th><dl< th=""><th>40-185</th></dl<></th></dl-0.5<>           | <dl< th=""><th>40-185</th></dl<>         | 40-185 |
| Average         | 7.4                                     | 1667      | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2               | 0.0274                                                                                                                                                                                                                                                                                                                                                                                                           | 374               | 2.33                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                    | 32.5          | 147                                                                                                                                                                                                                            | 2131                                                           | 1100      | 1.3                | 40             | 38.5                                                                                                                     | 0.5                                                                          | ı                                        | 103    |
| Median          | 7.9                                     | 629       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5               | 0.011                                                                                                                                                                                                                                                                                                                                                                                                            | 310               | 2.5                                                                                                                                                                                                                                                                                                                        | 18.5                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                    | 21.5          | 150                                                                                                                                                                                                                            | 310                                                            | 006       | 1.2                | 56             | 27                                                                                                                       | 0.5                                                                          | I                                        | 78     |
| ISQG-High**     | h**                                     |           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                | ı                                                                                                                                                                                                                                                                                                                                                                                                                | ı                 | ı                                                                                                                                                                                                                                                                                                                          | ı                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                     | I             | 370                                                                                                                                                                                                                            | 270                                                            | ı         | ı                  | 25             | 220                                                                                                                      | ı                                                                            | I                                        | 410    |
| ISQG-Low**      | **^                                     |           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                | 1                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 | 1                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                    | 1             | 80                                                                                                                                                                                                                             | 65                                                             | 1         | 1                  | 21             | 20                                                                                                                       | ı                                                                            | 1                                        | 200    |
| Average         | Averade criistal abundance <sup>a</sup> | ancea     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>ر</del><br>ب | ı                                                                                                                                                                                                                                                                                                                                                                                                                | 200               | 90                                                                                                                                                                                                                                                                                                                         | I                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                      | 8             | 100                                                                                                                                                                                                                            | C,                                                             | 950       | <del>ر</del><br>بر | 08             | 4                                                                                                                        | 0.0                                                                          | 00                                       | 75     |
| 2               | ממים מסים                               |           | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>?</u> ι        |                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 9               | ; (                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             | <u>-</u>                                                                                                                                                                                                                                               | 3 5           | 3 8                                                                                                                                                                                                                            | 9 6                                                            | 0 0       | <u>?</u> ,         | ) i            | _                                                                                                                        | i                                                                            | 1 0                                      | 2 6    |
| Shallow v.      | Shallow water sediment                  | Jta       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                 | ı                                                                                                                                                                                                                                                                                                                                                                                                                | 460               | 3                                                                                                                                                                                                                                                                                                                          | ı                                                                                                                                                                                                                                                                                                           | ı                                                                                                                                                                                                                                                      | 73            | 0.9                                                                                                                                                                                                                            | 96                                                             | 850       | _                  | 35             | ı                                                                                                                        | ı                                                                            | .7                                       | 35     |

\*Source: Burting Gum, 2000b.

\* Salomons and Forstner, 1984.

\*\* Interim Sediment Quality Guideline, ANZECC/ARMCANZ, 2000.

Exceedences of ISQG-High guidelines are shown in bold.

|                                                                               |                                                                                                                                                                       |                                              |            |                        | Table 7 Kar | mantoo pro | ject area stı | eam bed se | nmantoo project area stream bed sediment results – pH, CN and metals* | s – pH, CN a | nd metals* |       |       |       |       |      |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|------------------------|-------------|------------|---------------|------------|-----------------------------------------------------------------------|--------------|------------|-------|-------|-------|-------|------|
| Site                                                                          | Date                                                                                                                                                                  | Hd                                           | CN         | As                     | PO          | c          | Co            | Cu         | Fe                                                                    | Pb           | Mn         | Hg    | Mo    | N     | Se    | Zn   |
|                                                                               |                                                                                                                                                                       | pH unit                                      | mg/kg      | mg/kg                  | mg/kg       | mg/kg      | mg/kg         | mg/kg      | mg/kg                                                                 | mg/kg        | mg/kg      | mg/kg | mg/kg | mg/kg | mg/kg | mg/k |
| PB01                                                                          | 4-Apr-06                                                                                                                                                              | 7.1                                          | 1.9        | 4.0                    | <2.0        | 47         | 13            | 22         | 28,000                                                                | 12           | 370        | 0.02  | <2.0  | 25    | <2.0  | 52   |
| Kan01                                                                         | May-00                                                                                                                                                                | 3.86                                         | I          | 12                     | 0.2         | 150        | 100           | 2200       | 96400                                                                 | 47           | 029        | 1     | 2.2   | 105   | 1.0   | 160  |
| PB02                                                                          | 4-Apr-06                                                                                                                                                              | 4.90                                         | <0.1       | 2.5                    | <2.0        | 40         | 16            | 360        | 21,000                                                                | 8.6          | 240        | 0.02  | <2.0  | 29    | <2.0  | 40   |
| Kan02                                                                         | May-00                                                                                                                                                                | 8.30                                         | ı          | 4                      | <0.1        | 180        | 15            | 260        | 20,900                                                                | 25           | 1300       | I     | 0.7   | 23    | <0.5  | 78   |
| PB03                                                                          | 4-Apr-06                                                                                                                                                              | 7.10                                         | <0.1       | 2.7                    | <2.0        | 87         | 54            | 1,200      | 62,000                                                                | 38           | 520        | 90.0  | <2.0  | 89    | 2.2   | 120  |
| Kan03                                                                         | May-00                                                                                                                                                                | 7.70                                         | I          | 8.5                    | 0.2         | 160        | 41            | 2,000      | 90,500                                                                | 88           | 800        | I     | 1.2   | 89    | <0.5  | 180  |
| PB04                                                                          | 4-Apr-06                                                                                                                                                              | 8.20                                         | <0.1       | 4.9                    | <2.0        | 100        | 54            | 1,200      | 65,000                                                                | 61           | 700        | 0.08  | <2.0  | 89    | <2.0  | 120  |
| Kan04                                                                         | May-00                                                                                                                                                                | 2.50                                         | I          | 2.0                    | 0.1         | 180        | 51            | 13,500     | 106,000                                                               | 99           | 2650       | 1     | 2     | 31    | 9     | 185  |
| PB05                                                                          | 4-Apr-06                                                                                                                                                              | 5.80                                         | <0.1       | 2.2                    | <2.0        | 29         | 32            | 5,800      | 38,000                                                                | 28           | 180        | 0.07  | <2.0  | 18    | 6.3   | 40   |
| Kan05                                                                         | May-00                                                                                                                                                                | 8.30                                         | I          | 2.5                    | <0.1        | 06         | 22            | 240        | 42,800                                                                | 22           | 006        | I     | 8.0   | 26    | <0.5  | 28   |
| PB06                                                                          | 4-Apr-06                                                                                                                                                              | 7.30                                         | <0.1       | 3.1                    | <2.0        | 43         | 13            | 190        | 31,000                                                                | 10           | 360        | <0.01 | <2.0  | 19    | <2.0  | 26   |
| Kan06                                                                         | May-00                                                                                                                                                                | 8.40                                         | I          | 2.0                    | <0.1        | 180        | 12            | 310        | 41,800                                                                | 21           | 1200       | I     | 1.0   | 16    | <0.5  | 99   |
| PB07                                                                          | 4-Apr-06                                                                                                                                                              | 7.90                                         | <0.1       | 3.0                    | <2.0        | 33         | 10            | 120        | 23,000                                                                | 13           | 280        | <0.01 | <2.0  | 15    | <2.0  | 28   |
| Kan07                                                                         | May-00                                                                                                                                                                | 9.30                                         | ı          | 4.0                    | <0.1        | 140        | 11            | 140        | 36,500                                                                | 15           | 850        | ı     | 1.4   | 22    | <0.5  | 40   |
| PB08                                                                          | 4-Apr-06                                                                                                                                                              | 8.40                                         | <0.1       | 8.2                    | <2.0        | 100        | 29            | 250        | 61,000                                                                | 29           | 640        | 0.08  | <2.0  | 58    | <2.0  | 100  |
| Kan09                                                                         | May-00                                                                                                                                                                | 06.9                                         | ı          | 9:9                    | 0.3         | 100        | 22.5          | 380        | 48,300                                                                | 27           | 850        | I     | 1.10  | 25    | <0.5  | 29   |
| PB10                                                                          | 4-Apr-06                                                                                                                                                              | 8.30                                         | <0.1       | 4.1                    | <2.0        | 42         | 12            | 92         | 25,000                                                                | 8.5          | 390        | <0.01 | <2.0  | 21    | <2.0  | 37   |
| ISQG-High**                                                                   | **                                                                                                                                                                    |                                              |            | 02                     | 10          | 370        | 1             | 270        | 1                                                                     | 220          | 1          | 1     | ı     | 52    | ı     | 410  |
| ISQG-Low                                                                      |                                                                                                                                                                       |                                              |            | 20                     | 1.5         | 80         | I             | 65         | I                                                                     | 20           | I          | 0.15  | I     | 21    | I     | 200  |
| Average cru                                                                   | Average crustal abundance <sup>a</sup>                                                                                                                                | ıce <sup>a</sup>                             |            | 1.5                    | 0.11        | 100        | 20            | 20         | 41,000                                                                | 4            | 950        | 0.05  | 1.5   | 80    | I     | 75   |
| Shallow wat                                                                   | Shallow water sedimenta                                                                                                                                               | <b></b>                                      |            | 2                      | I           | 09         | 13            | 26         | 65,000                                                                | I            | 850        | I     | -     | 35    | I     | 92   |
| *Source: PB, 2006b. ** Interim Sediment a Salomons and For Exceedences of ISC | *Source: PB, 2006b. ** Interim Sedinent Quality Guideline, ANZECC/ARMCANZ, 2000 * Salomons and Forstner, 1984. Exceedences of ISQG-High guidelines are shown in bold. | lity Guideline<br>r, 1984.<br>ligh guideline | , ANZECC/A | RMCANZ, 20<br>in bold. | 000         |            |               |            |                                                                       |              |            |       |       |       |       |      |

## **Appendix 2B**

**Surface Water Quality Data** 

Table 8 DawesleyCreek and Mount Barker Creek water quality – general parameters\*

| Site             | рН              | TDS           | EC at 25°C         | SO₄           |
|------------------|-----------------|---------------|--------------------|---------------|
|                  | pH unit         | mg/L          | μS/cm              | mg/L          |
| LOD              | 0.1             | 1             | 1                  | 1             |
| Dawesley (       | Creek (upstrear | n of confluen | ce with Mount Bar  | ker Creek)    |
| B47-1            | 5.4             | 1800          | 2800               | 650           |
| B48-3            | 5.2             | 1800          | 2800               | 800           |
| B49-3            | 5.5             | 1800          | 2800               | 690           |
| B50-1            | 5.3             | 1800          | 2800               | 760           |
| B55-1            | 6.3             | 1800          | 2900               | 630           |
| <b>Mount Bar</b> | ker Creek (upst | ream of confl | uence with Dawes   | ley Creek)    |
| B26-3            | 7.3             | 1100          | 1900               | 64            |
| B51-1            | 6.8             | 940           | 1900               | 71            |
| B52-1            | 7.2             | 1100          | 2000               | 81            |
| B53-1            | 7.3             | 1100          | 2100               | 89            |
| B54-1            | 7.5             | 1100          | 2100               | 92            |
| <b>Mount Bar</b> | ker Creek (dow  | nstream of co | onfluence with Day | vesley Creek) |
| B25-3            | 7.3             | 1400          | 2400               | 290           |
| B56-1            | 6.8             | 1300          | 2300               | 270           |
| B57-1            | 7               | 1400          | 2400               | 310           |
| B58-1            | 7               | 1400          | 2300               | 290           |
| B59-1            | 7.7             | 1400          | 2400               | 280           |
| B60-1            | 7.1             | 1500          | 2500               | 270           |
| B61-1            | 7.1             | 1300          | 2300               | 270           |
| B62-1            | 7.5             | 1200          | 2200               | 91            |
| B63-1            | 7.4             | 1200          | 2100               | 90            |
| B64-1            | 7.5             | 1300          | 2200               | 91            |
| B65-1            | 7.6             | 1200          | 2200               | 92            |
| B66-1            | 7.9             | 1200          | 2200               | 92            |
| B67-1            | 8.2             | 1200          | 2100               | 97            |
| B68-1            | 7.7             | 1200          | 2200               | 94            |
| B69-1            | 7.6             | 1300          | 2200               | 97            |
| B70-1            | 7.6             | 1400          | 2200               | 96            |
| B71-1            | 7.4             | 1300          | 2200               | 96            |
| B72-1            | 8.1             | 1300          | 2300               | 97            |
| B73-1            | 7.9             | 1300          | 2300               | 96            |
| B74-1            | 7.6             | 1300          | 2300               | 95            |
| B75-1            | 8.1             | 1400          | 2300               | 96            |
| B76-1            | 7.6             | 1300          | 2300               | 95            |

\*Siource: Burtt and Gum, 2000a.

|                                                                       | _    | _    | _                         | _      | _                        | _      | _      | _      |        |                     |                     | _      |        |        |        |        |              |        |        |        |        |        |        |        |        |                      |        |        |        |        |        |        |        |        |        |        |        |        | _      |
|-----------------------------------------------------------------------|------|------|---------------------------|--------|--------------------------|--------|--------|--------|--------|---------------------|---------------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                                       | Zn   | mg/L |                           | 0.002  |                          | 1.25   | 1.32   | 1.27   | 1.22   | 1.17                |                     | 0.004  | 0.003  | 0.004  | 0.004  | 0.003  |              | 0.017  | 0.065  | 0.058  | 0.027  | 0.015  | 0.015  | 0.026  | 0.012  | 0.01                 | 9000   | 0.01   | 0.004  | 0.005  | 0.005  | 0.008  | 0.005  | 0.008  | 0.005  | 0.008  | 0.01   | 0.009  | 0.01   |
|                                                                       | Pb   | mg/L |                           | 0.001  |                          | ı      | 0.004  | 0.02   | 0.02   | 0.014               |                     | ı      | ı      | ı      | ı      | I      |              | ı      | ı      | 0.001  | ı      | ı      | ı      | ı      | ı      | 1                    | ı      | ı      | ı      | I      | ı      | ı      | I      | 1      | ı      | 1      | ı      | ı      | 1      |
|                                                                       | Z    | mg/L |                           | 0.001  |                          | 0.114  | 0.111  | 0.095  | 60.0   | 0.087               |                     | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |              | 0.007  | 0.012  | 0.009  | 0.007  | 0.007  | 0.008  | 0.007  | 0.007  | 900.0                | 900.0  | 900.0  | 900.0  | 0.007  | 900.0  | 900.0  | 900.0  | 900.0  | 900.0  | 900.0  | 900.0  | 900.0  | 900.0  |
|                                                                       |      | mg/L |                           | 0.001  |                          | ı      | ı      | ı      | 0.001  | ı                   |                     | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |              | ı      | 0.001  | ı      | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001                | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.002  | 0.002  | 0.001  | 0.002  |
| lity – metals                                                         | Mn   | mg/L |                           | 0.001  |                          | 3.43   | 3.54   | 3.55   | 3.51   | 3.49                |                     | 0.003  | 0.004  | 0.005  | 0.009  | 0.008  |              | 0.051  | 0.131  | 0.18   | 0.025  | 0.019  | 0.023  | 0.021  | 0.054  | 0.005                | 0.007  | 0.004  | 0.007  | 0.042  | 0.037  | 0.02   | 0.017  | 0.024  | 0.064  | 0.061  | 0.049  | 90.0   | 0.066  |
| water qua                                                             | Fe   | mg/L | _                         | 0.05   |                          | ı      | ı      | ı      | ı      | ı                   |                     | ı      | ı      | ı      | ı      | ı      |              | ı      | ı      | 90.0   | ı      | ı      | ı      | ı      | ı      | 1                    | ı      | ı      | ı      | ı      | ı      | ı      | ı      | ı      | ı      | 1      | ı      | ı      | ı      |
| arker Creek                                                           | Cn   | mg/L | Filtered metals (0.45 µm) | 0.001  |                          | 0.013  | 0.012  | 0.011  | 0.011  | 0.008               |                     | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |              | 0.005  | 0.004  | 0.003  | 0.003  | 0.003  | 0.004  | 0.004  | 0.002  | 0.002                | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| and Mount E                                                           | ပ    | mg/L | iltered meta              | 0.001  |                          | 0.095  |        |        |        | 0.079               |                     | ı      | ı      | ı      | ı      | ı      |              | _      |        | 0.003  | I      | ı      | 0.001  | ı      | 0.001  | 1                    | ı      | ı      | ı      | 0.001  | ı      | ı      | ı      | 1      | ı      | 1      | ı      | ı      | I      |
| Table 9 Dawesley Creek and Mount Barker Creek water quality – metals* | ပ်   | mg/L |                           | 0.001  | ker Creek)               | ı      | ı      | ı      | ı      | <0.005 0.027 0.01 - | ley Creek)          | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | resley Creek | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005               | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 |
| able 9 Daw                                                            | рЭ   | mg/L |                           | 0.0001 | Mount Bar                | 600.0  | 0.01   | 0.012  | 0.011  | 0.01                | with Dawesley Creek | ı      | ı      | ı      | ı      | ı      | ce with Daw  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0      | 0                    | 0      | 0      | ı      | ı      | 0      | ı      | ı      | 0      | ı      | 0      | 0      | 0      | 0      |
|                                                                       |      | mg/L |                           | 0.001  | fluence with             | 0.028  | 0.028  | 0.028  | 0.027  | 0.027               | confluence          | 0.061  | 0.059  | 0.062  | 0.062  | 0.063  | confl        | .053   | .049   | .051   | .053   | .052   | .053   | .054   | .059   | 0.057                | 0.057  | 0.056  | 0.054  | 0.056  | 0.056  | 0.056  | 0.057  | 0.055  | 0.055  | 0.054  | 0.054  | 0.053  | 0.055  |
|                                                                       | As   | mg/L |                           | 0.01   | eam of con               | <0.005 | <0.005 | <0.005 | <0.005 | <0.005              | pstream of          | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | ownstream    | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005               | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 |
|                                                                       | Ι¥   | mg/L |                           | 0.002  | Dawesley Creek (upstrean |        | 0.7    | 0.458  |        |                     |                     |        | 0.005  |        |        | 0.013  | ker Creek (d | 0.048  | 0.034  | 0.072  | 0.04   | 0.034  | 0.055  | 0.039  | 60.0   | B63-1 0.047 <0.005 0 | 0.059  | 90.0   | 0.074  | 0.071  | 0.047  | 0.03   | 0.026  | 0.022  | 0.041  | 0.055  | 0.029  | 0.078  | 0.042  |
|                                                                       | Site |      |                           | TOD    | Dawesley (               | B47-1  | B48-3  | B49-3  | B50-1  | B55-1               | Mount Barker Creek  | B26-3  | B51-1  | B52-1  | B53-1  | B54-1  | Mount Bar    | B25-3  | B56-1  | B57-1  | B58-1  | B59-1  | B60-1  | B61-1  | B62-1  | B63-1                | B64-1  | B65-1  | B66-1  | B67-1  | B68-1  | B69-1  | B70-1  | B71-1  | B72-1  | B73-1  | B74-1  | B75-1  | B76-1  |

| •                        |     | -                                      |             | ole 9 Dawes          | leyCreek and | d Mount Bar   | Table 9 DawesleyCreek and Mount Barker Creek water quality – metals (cont.)* | vater qualit | y – metals (c | cont.)* | 1     | ā     | r    |
|--------------------------|-----|----------------------------------------|-------------|----------------------|--------------|---------------|------------------------------------------------------------------------------|--------------|---------------|---------|-------|-------|------|
| ቒ ፞                      |     | As.                                    | g<br>Ra     | 5 5                  | ָֿ כֿ        | 3 ີ           | 3 5                                                                          | φ 5          | s s           | o S     | Ē S   | g 5   | u ʻ  |
| mg/L                     |     | mg/L                                   |             | mg/L                 | mg/L         | mg/L<br>Tetel | mg/L                                                                         | mg/L         | mg/L          | mg/L    | mg/L  | mg/L  | mg/L |
|                          | - [ |                                        |             |                      |              | lotal         | Ĕ                                                                            | 1            | 1             |         |       |       |      |
| 0.02                     |     | 0.01                                   | 0.005       | 0.0005               | 0.005        | 0.005         | 0.005                                                                        | 0.05         | 0.005         | 0.005   | 0.005 | 0.002 | 0.01 |
| Dawesley Creek (upstream | šť  | eam of con                             | fluence wit | th Mount Ba          | rker Creek)  |               |                                                                              |              |               |         |       |       |      |
| <b>2</b> C               |     | <0.005                                 | 0.028       | 0.0093               | ı            |               | 0.014                                                                        | ı            | 3.63          | I       | 0.119 | ı     | 1.4  |
| 0.77                     |     | <0.005                                 | 0.028       | 0.011                | ı            |               | 0.014                                                                        | 0.05         | 3.6           | ı       | 0.12  | 0.005 | 1.47 |
| 0.56                     |     | <0.005                                 | 0.028       | <0.005 0.028 0.012 - | ı            | 0.09          | 0.012                                                                        | ı            | 3.66          | ı       | 0.102 | 0.022 | 1.32 |
|                          |     | <0.005                                 | 0.027       | 0.011                | ı            |               | 0.013                                                                        | ı            | 3.98          | ı       | 0.1   | 0.022 | 1.29 |
|                          |     | <0.005                                 | 0.029       | 0.011                | ı            |               | 0.011                                                                        | ı            | 3.75          | ı       | 0.097 | 0.015 | 1.29 |
| Mount Barker Creek       |     | (upstream of                           | confluence  | e with Dawesley      | sley Creek)  |               |                                                                              |              |               |         |       |       |      |
|                          | ł   | <0.01                                  | 0.071       | ı                    | 1            | ı             | ı                                                                            | 0.79         | 0.084         | ı       | ı     | 0.007 | 0.01 |
| 0.22                     |     | <0.005                                 | 0.065       | I                    | I            | ı             | I                                                                            | 0.35         | 0.066         | I       | ı     | 0.005 | I    |
| 16                       |     |                                        | 0.069       | ı                    | 1            | ı             | I                                                                            | 0.32         | 0.073         | 1       | 1     | 0.003 | ı    |
| 0.29                     |     |                                        | 0.073       | I                    | I            | I             | I                                                                            | 0.55         | 0.094         | ı       | ı     | 0.003 | ı    |
| 0.34                     |     |                                        | 0.073       | ı                    | ı            | I             | I                                                                            | 0.55         | 0.072         | ı       | ı     | 0.003 | ı    |
| reek                     | 9   | Mount Barker Creek (downstream of conf | of conflue  | nce with Day         | wesley Cree  | ίξ)           |                                                                              |              |               |         |       |       |      |
| 69.0                     | ł   | <0.01                                  | 0.064       | 0.0026               | 1            | 0.016         | 0.008                                                                        | 0.46         | 1.35          | 1       | 0.023 | 0.009 | 0.19 |
| 0.29                     |     | 0.005                                  | 0.056       | 0.0026               | ı            | 0.019         | 0.005                                                                        | 0.25         | 6.0           | ı       | 0.026 | 0.005 | 0.3  |
| 45                       |     | <0.01                                  | 0.061       | 0.0017               | ı            | 0.02          | 0.005                                                                        | 0.36         | 1.21          | ı       | 0.024 | 9000  | 0.23 |
| 17                       |     | <0.005                                 | 0.065       | 0.0028               | I            | 0.011         | 0.007                                                                        | 0.56         | 0.893         | I       | 0.019 | 0.008 | 0.2  |
| 92.0                     |     | <0.005                                 | 0.063       | 0.0018               | ı            | 0.008         | ı                                                                            | 0.4          | 0.709         | ı       | 0.016 | 0.005 | 0.13 |
| 0.87                     |     | <0.005                                 | 0.064       | 0.0018               | ı            | 0.007         | 0.005                                                                        | 0.39         | 0.639         | 1       | 0.015 | 0.005 | 0.12 |
| 1.19                     |     | <0.01                                  | 0.064       | 0.0026               | ı            | 0.009         | 900.0                                                                        | 0.61         | 99.0          | 1       | 0.016 | 9000  | 0.17 |
| 4                        |     | <0.01                                  | 690.0       | 0.0005               | ı            | ı             | ı                                                                            | 0.23         | 0.278         | 1       | 0.00  | 0.002 | 0.05 |
| 0.62                     |     | <0.01                                  | 0.068       | 0.001                | ı            | I             | I                                                                            | 0.36         | 0.323         | ı       | 0.01  | 0.003 | 0.08 |
| 33                       |     | <0.01                                  | 0.065       | 0.0005               | ı            | I             | ı                                                                            | 0.24         | 0.259         | ı       | 0.009 | I     | 0.05 |
| 35                       |     | <0.01                                  | 0.068       | 0.001                | I            | I             | I                                                                            | 0.36         | 0.319         | I       | 0.011 | 0.003 | 0.07 |
| 0.21                     |     | <0.01                                  | 0.064       | ı                    | 1            | ı             | ı                                                                            | 0.12         | 0.182         | 1       | 0.008 | ı     | 0.02 |
| 32                       |     | 0.005                                  | 0.065       | 0.0005               | I            | I             | I                                                                            | 0.22         | 0.34          | I       | 0.01  | I     | 0.05 |
| 43                       |     | <0.01                                  | 0.070       | 0.0005               | ı            | ı             | ı                                                                            | 0.26         | 0.501         | ı       | 0.01  | ı     | 0.04 |
| 0.47                     |     | <0.005                                 | 0.069       | 0.001                | ı            | ı             | ı                                                                            | 0.33         | 0.54          | ı       | 0.01  | 0.002 | 90.0 |
| 13                       |     | <0.005                                 | 0.064       | I                    | I            | ı             | I                                                                            | 0.13         | 0.218         | ı       | 0.009 | ı     | 0.02 |
| Ŋ                        |     | <0.005                                 | 0.067       | 0.0005               | ı            | ı             | ı                                                                            | 0.46         | 0.45          | ı       | 0.01  | ı     | 90.0 |
| 23                       |     | <0.005                                 | 0.065       | I                    | I            | I             | I                                                                            | 0.2          | 0.386         | I       | 0.00  | I     | 0.03 |
| 0.57                     |     | <0.005                                 | 0.068       | 0.0005               | ı            | I             | I                                                                            | 0.48         | 0.567         | 1       | 0.01  | 0.002 | 90.0 |
| 23                       |     | <0.005                                 | 0.064       | I                    | ı            | I             | ı                                                                            | 0.22         | 0.377         | ı       | 0.008 | I     | 0.02 |
| 1.03                     |     | <0.005                                 | 0.069       | 0.0011               | ı            | 900.0         | I                                                                            | 0.91         | 0.649         | 1       | 0.012 | 0.003 | 0.1  |
| 4                        |     | <0.005                                 | 0.065       | 0.0005               | 1            | ı             | I                                                                            | 0.39         | 0.578         | 1       | 0.011 | I     | 0.04 |

| _        |
|----------|
| $\alpha$ |
| ŝ        |
| Ö        |
| ດ        |
| $\sim$   |
| 2        |
| σ.       |
| _        |
| a        |
| S        |
| Œ        |
| Ф        |
| 7        |
| ~        |
| 25       |
| .≽       |
| 2        |
| €        |
| 2        |
| _        |
|          |

| Date        | Conductivity* | TDSa   | Ŧ        | Temp | 2    | Turbidity | H Temp DO Turbidity Ovidised N TKN Tetal N D (so | TKN            | Total N | D (col ac D) | Total D | Organic | Hardnoee                |
|-------------|---------------|--------|----------|------|------|-----------|--------------------------------------------------|----------------|---------|--------------|---------|---------|-------------------------|
| 2           | ns/cm         | mg/L   | pH units | ပ္   | mg/L | NTO       | mg N/L                                           | mg N/L         | mg/L    | mg/L         | mg P/L  |         | mg CaCO <sub>3</sub> /L |
| Highest LOD | 1             | 1      | 1        | ı    | 1    | >400      | <0.01                                            | <0.05          | 1       | <0.005       | 1       | 1       |                         |
| 20-10-06    | 2240          | 1200   | 9.8      | 18.6 | 9.47 | 2.8       | <0.005                                           | 0.59           | 0.595   | 900.0        | 0.034   | 7.7     | 385                     |
| 29-09-06    | 1960          | 1100   | 7.7      | 13   | 7.7  | 5.1       | 1.63                                             | 1.23           | 2.86    | <0.005       | 0.071   | 7.2     | 373                     |
| 14-08-06    | 2680          | 1500   | 7.9      | 7    | 9.7  | 4.8       | 1.33                                             | 0.98           | 2.31    | <0.005       | 0.028   | 7.9     | 430                     |
| 17-07-06    | 1410          | 777    | 7.5      | 10   | 11.6 | 99        | 2.72                                             | 1.73           | 4.45    | 0.031        | 0.213   | 8.8     | 268                     |
| 30-90-08    | 2390          | 1320   | 7.8      | ω    | 9.9  | 96.0      | 2.55                                             | 0.72           | 3.27    | <0.005       | 0.018   | 9.9     | 447                     |
| 19-02-06    | 1480          | 816    | 7.5      | 12   | 8.9  | 9.2       | 0.404                                            | 0.8            | 1.204   | 0.007        | 0.038   | 7.3     | 271                     |
| 28-04-06    | 3320          | 1840   | 7.9      | 13   | 8.6  | 5.7       | <0.005                                           | 1.03           | 1.035   | 0.009        | 0.067   | 11.3    | 530                     |
| 21-03-06    | 4370          | 2440   | 8.0      | 17   | 4.6  | 6.3       | <0.005                                           | 1.12           | 1.125   | <0.005       | 0.144   | 12.9    | 770                     |
| 20-02-06    | 3520          | 1960   | 7.9      | 19   | 3.7  | 5.4       | <0.005                                           | 1.12           | 1.125   | 0.026        | 0.106   | 12.4    | 640                     |
| 04-01-06    | 2130          | 1180   | 7.7      | 20   | 9.01 | 2         | <0.005                                           | 1.1            | 1.105   | <0.005       | 0.106   | 6.6     | 384                     |
| 07-12-05    | 2090          | 1150   | 8.5      | 21   | 12.7 | 5.7       | 0.304                                            | 2.46           | 2.764   | 0.016        | 0.098   | 10.8    | 342                     |
| 09-11-05    | 1260          | ı      | 7.4      | 19   | 4.7  | 17.1      | 0.013                                            | 2.01           | 2.023   | 0.08         | 0.164   | 21.3    | 188                     |
| 05-10-05    | 2308          | 1280   | 7.7      | 16   | 7.6  | 5.22      | 0.301                                            | 1.24           | 1.541   | <0.005       | 0.043   | 10.2    | 396                     |
| 90-60-60    | 1661          | 916    | 7.8      | 15   | 8.2  | 15.3      | 0.592                                            | <0.05          | 0.642   | 0.018        | 0.076   | 14.5    | 264                     |
| 03-08-05    | 3436          | 1910   | 8.0      | 13   | 9.2  | 3.61      | 1.317                                            | 0.97           | 2.287   | <0.005       | 0.024   | 8.9     | 547                     |
| 06-07-05    | 3133          | 1740   | 7.6      | 10   | 9.4  | 9.89      | 2.801                                            | 1.12           | 3.921   | 0.018        | 0.051   | 9.2     | 502                     |
| 08-06-05    | 4570          | 2550   | 8.0      | 12   | 5.8  | 4.09      | 900.0                                            | 0.51           | 0.516   | 0.018        | 0.072   | 8.5     | 752                     |
| 04-05-05    | 8170          | 4620   | 8.2      | 16   | 6.9  | 11.3      | <0.005                                           | 1.71           | 1.715   | <0.005       | 0.106   | 11.5    | 1040                    |
| 15-04-05    | 9580          | 5450   | 8.6      | 16   | 9.1  | 21.8      | <0.005                                           | 1.87           | 1.875   | <0.005       | 0.175   | 12.7    | 1020                    |
| 16-03-05    | 4700          | 2620   | 8.1      | 18   | 3.4  | 9.3       | 0.005                                            | 0.93           | 0.935   | 0.026        | 0.091   | 8.6     | 800                     |
| 09-02-05    | 4320          | 2410   | 8.0      | I    | ı    | 10.1      | <0.005                                           | 1.11           | 1.115   | 0.019        | 0.126   | 11.2    | 689                     |
| 05-01-05    | 4280          | 2390   | 8.1      | 18.6 | 5.64 | 13.9      | <0.005                                           | 1.41           | 1.415   | <0.005       | 0.118   | 11.9    | 622                     |
| 07-12-04    | 2365          | 1300   | 7.7      | 20.2 | 5.59 | 8.44      | 0.013                                            | 1.01           | 1.023   | <0.005       | 0.103   | 9.3     | 392.8                   |
| 03-11-04    | 3032          | 1700   | 7.9      | 17   | 6.45 | 5.45      | 0.012                                            | 1.14           | 1.152   | <0.005       | 0.035   | 9.1     | 539.1                   |
| 15-10-04    | 2854          | 1581.9 | 7.9      | 17   | 6.7  | 5.85      | 0.034                                            | 0.94           | 0.974   | <0.005       | 0.036   | 10.4    | 492.6                   |
| 08-09-04    | 2944          | 1632.3 | 8.0      | 12   | 8.6  | 4.42      | 0.306                                            | 1.08           | 1.386   | <0.005       | 0.035   | 10.9    | 493.7                   |
| 25-08-04    | 2293          | 1268.1 | 7.7      | 12   | 7    | 5.21      | 1.13                                             | 1.03           | 2.16    | <0.005       | 0.034   | 12.7    | 372.2                   |
| 07-07-04    | 1875          | 1035.2 | 7.5      | I    | I    | 14        | 2.1                                              | 1.13           | 3.23    | 0.022        | 0.071   | I       | 376.1                   |
| 23-06-04    | 266           | 548.5  | 7.4      | 10.6 | 7.7  | 110       | 1.22                                             | 1.13           | 2.35    | 0.039        | 0.168   | 8.9     | 199.2                   |
| 05-05-04    | 3481          | 1934.2 | 7.7      | 16   | 80   | 6.17      | <0.005                                           | 1.42           | 1.425   | <0.005       | 0.088   | 12.4    | 590.2                   |
| 03-03-04    | 3650          | 2029.4 | 7.7      | 24   | 4.6  | 5.04      | <0.005                                           | 1.22           | 1.225   | 0.01         | 0.059   | 12      | 558.5                   |
| 04-02-04    | 3920          | 2181.8 | 7.9      | 20   | 5.1  | 5.98      | 0.008                                            | 1.26           | 1.268   | 0.016        | 0.08    | 10.8    | 929                     |
| 14-01-04    | 3082          | 1709.8 | 8.1      | 25   | 6.2  | 8.27      | <0.005                                           | <del>.</del> . | 1.105   | 9000         | 90.0    | I       | 512.7                   |
| 27-11-03    | 2930          | 1624.5 | 7.7      | 21.3 | 6.7  | 5.34      | <0.005                                           | 1.05           | 1.055   | <0.01        | 0.036   | 8.6     | 468.1                   |
| 22-10-03    | 2625          | 1453.6 | 8.0      | 16   | 10.2 | 60.9      | 0.11                                             | 1.11           | 1.22    | 0.008        | 0.05    | 10      | 461.8                   |
| 10-09-03    | 2103          | 1162.2 | 7.9      | 13   | 8.2  | 6.81      | 0.68                                             | 0.94           | 1.62    | 0.011        | 0.049   | 11.7    | 356.5                   |
| 13-08-03    | 2564          | 1419.5 | 7.7      | 13   | 8.4  | 17        | 1.43                                             | 1.09           | 2.52    | 0.029        | 0.085   | 10.2    | 435.9                   |
| 23-07-03    | 8380          | 4745.5 | 8.1      | 10   | 7.4  | 2.2       | 0.005                                            | 1.04           | 1.045   | 0.033        | 0.068   | 11.3    | 777.1                   |
| 12-06-03    | 1398          | 770.4  | 7.5      | 7    | 6.1  | 38.15     | 1.14                                             | 1.15           | 2.29    | 0.042        | 0.141   | 8.4     | 244.9                   |
| 14-05-03    | 3956          | 2202.2 | 7.9      | 16   | 99.9 | 8.71      | <0.005                                           | 1.21           | 1.215   | 0.008        | 0.119   | 7.5     | 683                     |
| 08-01-03    | 2900          | 1607.7 | 8.1      | 23   | 8.4  | 15.9      | <0.005                                           | 1.14           | 1.145   | 0.007        | 0.11    | 8.6     | 512.2                   |
| 04-12-02    | 2675          | 1481.6 | 7.8      | 19   | 8.9  | 9.01      | <0.005                                           | 1.24           | 1.245   | <0.005       | 0.074   | 12      | 449                     |
| 16-10-02    | 2363          | 1307.2 | 8.0      | 18   | 6.7  | 6.3       | <0.005                                           | 0.84           | 0.845   | <0.005       | 0.042   | 9.2     | 410.3                   |
| 11-09-02    | 2138          | 1181.7 | 8.1      | 4    | 9.5  | 5.58      | <0.005                                           | 0.79           | 0.795   | <0.005       | 0.026   | 7.5     | 419.4                   |
| 14-08-02    | 2322          | 1284.3 | 8.5      | 12   | 12.3 | 9.815     | 0.133                                            | 1.88           | 2.013   | 0.0055       | 0.135   | 8.4     | 412.4                   |

| _        |
|----------|
| $\alpha$ |
| ŝ        |
| Ö        |
| ດ        |
| $\sim$   |
| 2        |
| σ.       |
| _        |
| a        |
| S        |
| Œ        |
| Ф        |
| 7        |
| ~        |
| 25       |
| .≽       |
| 2        |
| €        |
| 2        |
| _        |
|          |

| Date     | Conductivity* | TDSa   | Hd       | Temp           | 00   | Turbidity | Oxidised N | TKN    | Total N | P (sol as P) | Total P | Organic C | Hardness                |
|----------|---------------|--------|----------|----------------|------|-----------|------------|--------|---------|--------------|---------|-----------|-------------------------|
|          | ms/cm         | mg/L   | pH units | ပွ             | mg/L | NTO       | mg N/L     | mg N/L | mg/L    | mg/L         | mg P/L  | mg/L      | mg CaCO <sub>3</sub> /L |
| 10-07-02 | 1419          | 782    | 7.4      | 10             | 6    | 54.3      | 1.701      | 1.27   | 2.971   | 0.0237       | 0.116   | 6.7       | 281.5                   |
| 12-06-02 | 2735          | 1515.2 | 7.8      | I              | I    | 5.61      | 0.0054     | 0.95   | 0.9554  | <0.005       | 0.064   | 8.7       | 457.8                   |
| 16-05-02 | 4310          | 2402.6 | 8.0      | 16             | 8.2  | 8.44      | <0.005     | 6.0    | 0.905   | 0.0118       | 0.08    | 10.5      | 690.1                   |
| 13-02-02 | 2940          | 1630.1 | 7.7      | 17             | 4.5  | 4.7       | <0.005     | 0.72   | 0.725   | <0.005       | 0.027   | 8.1       | 344.5                   |
| 24-10-01 | 2193          | 1212.3 | 7.9      | 17             | 8.4  | 5.48      | 0.122      | 0.87   | 0.992   | 0.005        | 0.045   | 10        | 420.8                   |
| 19-09-01 | 1916          | 1058   | 7.7      | 16             | 8.5  | 9.28      | 0.964      | 1.55   | 2.514   | 0.009        | 0.069   | 11.9      | 309.2                   |
| 15-08-01 | 3935          | 2190.3 | 7.9      | 12             | 9.5  | 5.74      | 2.12       | 0.85   | 2.97    | <0.005       | 0.032   | 6.4       | 286                     |
| 18-07-01 | 2318          | 1282.1 | 9.7      | I              | I    | 3.15      | 0.811      | 0.67   | 1.481   | <0.005       | 0.022   | 6.7       | 9'209                   |
| 07-06-01 | 1841          | 1016.3 | 7.7      | 12.1           | 8.6  | 6.74      | 0.4831     | 0.78   | 1.2631  | 0.0055       | 0.057   | 6.9       | 350.1                   |
| 30-05-01 | 1917          | 1058.6 | 7.6      | 12             | 6.5  | 6.84      | 0.5539     | 0.82   | 1.3739  | 0.022        | 0.094   | 6.9       | 373.1                   |
| 17-01-01 | 4150          | 2311.9 | 8.3      | 22             | 1    | 10.2      | 0.0054     | 0.98   | 0.9854  | <0.005       | 0.08    | 10.2      | 269                     |
| 06-12-00 | 3110          | 1725.5 | 8.0      | 25             | 4.4  | 8.06      | 0.0273     | 1.36   | 1.3873  | <0.005       | 0.059   | 8.1       | 543.3                   |
| 06-11-00 | 2690          | 1490   | 7.9      | 0              | 6.1  | 8.5       | 0.0094     | 0.76   | 0.7694  | <0.005       | 0.045   | 0.7       | 447.2                   |
| 11-10-00 | 2780          | 1540.4 | 8.1      | 15             | 6.3  | 96.9      | 0.0067     | 1.1    | 1.1067  | 0.0085       | 0.068   | 8.7       | 455.5                   |
| 00-60-90 | 1381          | 761    | 7.7      | 13             | 6.8  | 19.5      | 0.5148     | 1.39   | 1.9048  | 0.0392       | 0.15    | 14        | 219.3                   |
| 02-08-00 | 2330          | 1288.8 | 7.8      | 10             | 9.4  | 6.03      | 0.777      | 0.92   | 1.697   | 0.0067       | 0.047   | o         | 382.6                   |
| 03-07-00 | 3210          | 1781.7 | 7.8      | 7              | 8.3  | 44.8      | 1.18       | 1.     | 2.28    | 0.041        | 0.171   | 7.4       | 417                     |
| 00-90-90 | 2186          | 1208.4 | 2.6      | ; <del>[</del> | 10.1 | 3.77      | 2.62       | 0.75   | 3.37    | <0.005       | 0.036   | 4.1       | 388.1                   |
| 01-05-00 | 3180          | 1764.8 | 6.7      | 16             |      | 5.51      | <0.005     | 0.85   | 0.855   | <0.005       | 0.043   | 8.4       | 495.6                   |
| 03-04-00 | 3690          | 2052   | 7.7      | 17             | 9    | 14.2      | 600.0      | 1.09   | 1.099   | <0.005       | 0.072   | 1.1       | 599.1                   |
| 15-03-00 | 3550          | 1973   | 7.4      | 18             | 1    | 10.8      | 0.023      | 0.65   | 0.673   | 0.007        | 0.116   | 11.7      | 521.9                   |
| 22-12-99 | 2686          | 1487.8 | 7.8      | 19             | 3.8  | 69.9      | 0.031      | 1.71   | 1.741   | 0.01         | 0.122   | 9.2       | 480.3                   |
| 15-11-99 | 2950          | 1635.7 | 7.6      | ı              | I    | 12.4      | 0.121      | 0.85   | 0.971   | 0.005        | 0.065   | 7.6       | 429.9                   |
| 20-10-99 | 2700          | 1495.6 | 7.8      | 17             | 5.9  | 63.2      | 0.539      | 2.02   | 2.559   | 0.015        | 0.126   | 8.6       | 387.6                   |
| 04-10-99 | 2920          | 1618.9 | 7.8      | 17             | 7.7  | 9.04      | 0.265      | 1.06   | 1.325   | <0.005       | 0.052   | 9.1       | 438.5                   |
| 02-08-99 | 2870          | 1590.8 | 9.7      | 13             | 7.3  | 12.2      | 1.94       | 0.98   | 2.92    | <0.005       | 0.072   | 5.9       | 540.6                   |
| 07-07-99 | 2140          | 1182.8 | 7.7      | 13             | I    | 9.53      | 3.78       | 0.85   | 4.63    | 0.012        | 0.054   | 6.4       | 342.1                   |
| 13-05-99 | I             | ı      | I        | 15             | 5.6  | I         | I          | I      | I       | I            | I       | ı         | I                       |
| 19-11-98 | 3180          | 1764.8 | 7.9      | 19             | 4.9  | 3.67      | 900'0      | 0.72   | 0.726   | <0.005       | 0.032   | 7.6       | 500.3                   |
| 24-09-98 | 2620          | 1450.8 | 7.9      | 16             | 10.6 | 2.7       | 2.92       | 1.28   | 4.2     | <0.005       | 0.07    | 7.9       | 445.4                   |
| 13-08-98 | 2890          | 1602   | 7.7      | 13             | 6.1  | 8.79      | 1.89       | 1.1    | 2.99    | <0.005       | 0.04    | 8.8       | 443.8                   |
| 23-07-98 | 3430          | 1905.4 | 8.0      | 10             | 11.9 | 9         | 2.52       | 0.67   | 3.19    | <0.005       | 0.028   | 5.5       | 494.4                   |
| 25-06-98 | 2470          | 1400   | 7.8      | 10             | 8.3  | 6.4       | 2.13       | 0.45   | 2.58    | 0.019        | 0.048   | 2.7       | 438                     |
| 06-05-98 | 2580          | 1400   | 7.7      | 13             | 8.9  | 5.8       | 0.43       | 0.7    | 1.13    | <0.005       | 0.223   | 6.9       | 374                     |
| 29-04-98 | 2960          | 1600   | 8.4      | 4              | 6.7  | 7.4       | 2.12       | 2.02   | 4.14    | <0.005       | 0.097   | 6.6       | 440                     |
| 17-12-97 | 4070          | 2300   | 7.9      | 22             | 7.4  | 9.4       | 900'0      | 1.22   | 1.226   | 0.012        | 0.084   | 10.5      | 601                     |
| 20-11-97 | 3100          | 1719.9 | 7.8      | 19             | 7    | 6.1       | 0.007      | 0.95   | 0.957   | <0.005       | 0.054   | 11.5      | 463.4                   |
| 23-10-97 | 4010          | 2200   | 7.7      | ı              | I    | 5.6       | 0.026      | 1.35   | 1.376   | 0.009        | 0.099   | 6.6       | 909                     |
| 17-09-97 | 3490          | 1900   | 7.8      | 13             | 12.7 | 6.5       | 1.88       | 0.99   | 2.87    | <0.005       | 0.051   | 7.2       | 497                     |
| 11-08-97 | 2150          | 1200   | 7.5      | 1              | 9.2  | 24        | 4.73       | 2.92   | 7.65    | 0.082        | 0.203   | 6.7       | 320                     |
| 24-07-97 | 3480          | 1900   | 7.9      | 7              | 4.11 | 2.5       | 6.45       | 0.98   | 7.43    | 0.015        | 0.059   | 7.2       | 493                     |
| 16-06-97 | 3730          | 2100   | 8.0      | 12             | 8.2  | ო         | 3.32       | 1.61   | 4.93    | <0.005       | 0.105   | 6.8       | 202                     |
| 22-05-97 | 2900          | 3300   | 8.0      | 13             | 6.4  | 3.8       | 0.013      | 1.19   | 1.203   | <0.005       | 0.062   | 12.3      | 810                     |
| 12-02-97 | 4630          | 2600   | 7.8      | 24             | 5.4  | 4         | 0.01       | 1.28   | 1.29    | 0.015        | 0.094   | 8.6       | 742                     |
| 12-12-96 | 3880          | 2200   | 7.9      | 23             | 9    | 2.5       | <0.005     | 0.86   | 0.865   | 0.009        | 0.033   | 8.6       | 604                     |
| 07-11-96 | 3560          | 2000   | 8.1      | 15             | 7.2  | 3.1       | <0.005     | 0.0    | 0.905   | <0.005       | 0.043   | .60       | 503                     |

| _        |
|----------|
| æ        |
| χ̈       |
| Ö        |
| ດ        |
| $\sim$   |
| 2        |
| ח        |
| _        |
| Ф        |
| S        |
| $\sigma$ |
| a        |
| J        |
| ~        |
| 20       |
| .5       |
| ~        |
| æ        |
| $\geq$   |
| _        |
|          |

| 24-10-96<br>12-09-96<br>22-08-96<br>11-07-96<br>27-06-96<br>23-05-96 |      | /~~    | PH<br>In In | Temp<br>د                                           | 2 7      | Turbidity | Oxidised N | TKN          | Total N | P (sol as P)    | Total P | Organic C | Hardness     |
|----------------------------------------------------------------------|------|--------|-------------|-----------------------------------------------------|----------|-----------|------------|--------------|---------|-----------------|---------|-----------|--------------|
| 12-09-96<br>22-08-96<br>11-07-96<br>27-06-96<br>23-05-96             | 2890 | 1600   | 8.2         | ו                                                   | 9/L      | 2 2 9     | 0.024      | 1 54<br>1 54 | 1.564   | -0 00<br>-0 005 | 0.093   | 9.4       | 1119 CaCO3/L |
| 22-08-96<br>11-07-96<br>27-06-96<br>23-05-96                         | 2700 | 1500   | 8<br>i 0    | 13                                                  | . «      | ; ıc      | 1 14       | 2 4          | 2.18    | 0.033           | 0.035   | 96        | 456          |
| 11-07-96<br>27-06-96<br>23-05-96                                     | 1360 | 750    | i 2<br>8:7  | <del>-</del> <del>-</del> <del>-</del> <del>-</del> | - o      | 3.5       | 0.6        | 1.49         | 2.09    | 0.034           | 0.191   | 11.8      | 210          |
| 27-06-96<br>23-05-96                                                 | 3160 | 1800   | 7.6         | 1                                                   | 0        | 7         | 2.7        | 1.24         | 3.94    | 0.046           | 0.106   | 6.4       | 476          |
| 23-05-96                                                             | 1150 | 630    | 7.4         | 10                                                  | 8.4      | 440       | 2.07       | 4.6          | 6.67    | 0.103           | 1.11    | 7.1       | 1            |
| 11 10 01                                                             | 3700 | 2100   | 8.0         | ı                                                   | 8.2      | 4.1       | <0.01      | 0.64         | 0.65    | <0.005          | 0.025   | 9.1       | 1            |
| 07-12-95                                                             | 3840 | 2100   | 7.4         | I                                                   | 4.2      | 2.3       | 0.01       | 1.17         | 1.18    | <0.005          | 0.086   | 8.4       | ı            |
| 16-11-95                                                             | 3380 | 1900   | 7.8         | ı                                                   | 9.2      | 3.2       | <0.01      | 1.45         | 1.46    | 0.178           | 0.297   | 8.4       | ı            |
| 19-10-95                                                             | 3620 | 2000   | 8.4         | 19                                                  | 5.7      | 4.6       | 0.03       | 0.88         | 0.91    | <0.005          | 0.102   | 7.3       | 1            |
| 07-09-95                                                             | 3470 | 1900   | 8.2         | I                                                   | 11.3     | 4         | 0.31       | 0.77         | 1.08    | <0.005          | 0.026   | 6.5       | 1            |
| 31-08-95                                                             | 3190 | 1800   | 8.2         | 13                                                  | 10.6     | 2         | 2.06       | 0.79         | 2.85    | <0.005          | 0.038   | 8.1       | ı            |
| 22-06-95                                                             | ı    | ı      | I           | ı                                                   | 9.4      | 2         | ı          | I            | ı       | ı               | I       | ı         | ı            |
| 01-06-95                                                             | 3380 | 1900   | 7.9         | 11                                                  | ı        | 1.5       | 0.45       | 0.83         | 1.28    | 0.166           | 0.242   | 8.4       | ı            |
| 26-07-94                                                             | 4020 | ı      | 8.2         | 12                                                  | ı        | 2.8       | ı          | I            | ı       | 1               | ı       | ı         | 1            |
| 09-11-93                                                             | 3470 | ı      | 9.9         | 15                                                  | ı        | 2.0       | ı          | I            | I       | ı               | I       | ı         | ı            |
| 01-07-93                                                             | 4030 | ı      | 7.8         | 12                                                  | ı        | 5.3       | ı          | I            | I       | ı               | I       | I         | ı            |
| 18-03-93                                                             | 5480 | ı      | ı           | ı                                                   | ı        | 9         | ı          | ı            | ı       | ı               | ı       | ı         | ı            |
| 15-12-92                                                             | 2430 | ı      | 7.5         | 18                                                  | ı        | 2         | ı          | I            | ı       | ı               | ı       | ı         | 1            |
| 04-09-92                                                             | 292  | ı      | 9.9         | 12                                                  | ı        | 29        | I          | I            | ı       | ı               | I       | ı         | 1            |
| 05-06-92                                                             | 3300 | 1      | 7.6         | 10                                                  | 1        | 0.8       | ı          | I            | ı       | 1               | ı       | 1         | 1            |
| 28-08-91                                                             | 1087 | ı      | 8.9         | 12                                                  | ı        | 240       | ı          | I            | I       | ı               | I       | ı         | ı            |
| 11-12-90                                                             | 4970 | ı      | 8.1         | 22                                                  | ı        | 6.5       | ı          | I            | I       | ı               | ı       | ı         | ı            |
| 20-07-90                                                             | 3030 | ı      | 8.0         | 13                                                  | ı        | 3.2       | ı          | I            | ı       | 1               | ı       | ı         | 1            |
| 13-12-89                                                             | 2860 | I      | 7.7         | I                                                   | I        | 3.1       | I          | I            | I       | ı               | I       | I         | ı            |
| 13-09-89                                                             | 1059 | ı      | 7.3         | 15                                                  | ı        | 34        | I          | I            | I       | 1               | I       | I         | ı            |
| 02-06-89                                                             | 3560 | 1      | 8.9         | 12                                                  | 1        | 4.1       | ı          | I            | ı       | ı               | ı       | ı         | I            |
| 12-12-88                                                             | 4190 | ı      | 8.1         | 23                                                  | ı        | 9.0       | I          | I            | I       | ı               | I       | ı         | ı            |
| 88-60-80                                                             | 2430 | ı      | 8.5         | 15                                                  | ı        | 2.5       | I          | I            | I       | 1               | I       | I         | ı            |
| 22-06-88                                                             | 2190 | ı      | 9.7         | 12.5                                                | I        | 7.7       | I          | I            | I       | ı               | I       | I         | ı            |
| 24-05-88                                                             | 820  | I      | 7.1         | 13                                                  | I        | >400      | I          | I            | I       | ı               | I       | I         | ı            |
| 30-11-87                                                             | 3750 | I      | 8.3         | 28                                                  | I        | 2.1       | I          | I            | I       | I               | I       | I         | ı            |
| 04-09-87                                                             | 2200 | I      | L           | 12.5                                                | 11.7     | 1 )       | I          | I            | I       | ı               | I       | I         | ı            |
| 03-09-87                                                             | 2160 | I      | 8.3         | 17                                                  | I        | 5.3       | I          | I            | I       | I               | I       | I         | I            |
| 03-07-87                                                             | 2340 | 1 :    | 7.5         | 1                                                   | I        | 3.3       | 1 9        | 1            | 1 .     | 1               | 1       | 1 (       | 1            |
| 24-06-87                                                             | 808  | 444.2  | χ. (c)      | Ι,                                                  | I        | ۱ ,       | 1.34       | 7.66         | 4       | 0.032           | 0.574   | ა<br>ე:   | 124.9        |
| 16-12-86                                                             | 1/95 | I      | 2.5         | <u>ε</u> ;                                          | I        | 8.O.      | I          | I            | I       | I               | I       | I         | I            |
| 22-09-86                                                             | 1695 | 1 0 0  | × 1<br>xi 0 | 15.5                                                | I        | 9.<br>9.  | 1 0        | 1 7          | 1 6     | 1 7             | 1 0     | I         | ı            |
| 04-07-86                                                             | 3000 | 1003.7 | 0.7         | 1 (                                                 | I        | ۱ (       | 3.20       | 1.7.1        | 4.97    | 0.144           | 0.335   | ı         | ı            |
| 13-06-86                                                             | 5400 | ı      | ∞<br>•      | 13.5<br>7.0                                         | 1 0      | 7.6       | I          | ı            | I       | I               | I       | I         | I            |
| 14 00 01                                                             | 000  | I      | <br>1 c     | 0.0                                                 | 7.0      | 1 8       | ı          | I            | I       | ı               | I       | ı         | ı            |
| 11-09-85                                                             | 1550 | I      | 1.7         | 12.4                                                | 9.0      | 57.       | I          | I            | I       | I               | I       | I         | I            |
| 20-08-85                                                             | 2610 | I      | 4.7         | 10.2                                                | χ<br>Σ   | 4.        | I          | I            | I       | I               | I       | I         | I            |
| 09-08-85                                                             | 1810 | ı      | / v<br>vi o | 10.6                                                | 0 2      | 46<br>7   | I          | ı            | I       | I               | I       | I         | I            |
| 03-06-65                                                             | 4000 | 24000  | 0.7         | o.<br>-                                             | 0.<br>0. | V 7       | 1 5        | 1 0          | 1 0     | 1 O             | - 000   | - '       | 0 629        |

| _        |
|----------|
| $\alpha$ |
| ŝ        |
| Ö        |
| ດ        |
| $\sim$   |
| 2        |
| σ.       |
| _        |
| a        |
| S        |
| Œ        |
| Ф        |
| 7        |
| ~        |
| 25       |
| .≽       |
| 2        |
| €        |
| 2        |
| _        |
|          |

| Date     | Conductivity*<br>us/cm | TDS <sup>a</sup><br>mg/L | pH<br>pH units | Temp<br>°C | DO<br>mg/L | Turbidity<br>NTU | Oxidised N<br>mg N/L | TKN<br>mg N/L | Total N<br>mg/L | P (sol as P)<br>mq/L | Total P<br>mq P/L | Organic C<br>mq/L | Hardness<br>mg CaCO <sub>4</sub> /L |
|----------|------------------------|--------------------------|----------------|------------|------------|------------------|----------------------|---------------|-----------------|----------------------|-------------------|-------------------|-------------------------------------|
| 27-03-85 | 7205                   | ۱ (                      | 8.1            | 23.8       | ^          | 7                | ١                    | 1             | b I             | ı                    | 1                 | ı                 | ,<br>1                              |
| 5-10-84  | 3230                   | 1                        | 7.7            | 18         | 6.4        | 4                | ı                    | I             | ı               | ı                    | ı                 | ı                 | ı                                   |
| 14-08-84 | 2500                   | 1383.7                   | 7.6            | 1          | 9.3        | 10               | 0.5                  | 0.98          | 1.48            | 0.017                | 0.04              | I                 | 392.0                               |
| 27-06-84 | 4170                   | ı                        | 7.8            | 7          | 10.2       | I                | ı                    | ı             | I               | ı                    | I                 | ı                 | ı                                   |
| 13-01-84 | 3700                   | ı                        | 7.7            | 25         | 8.8        | ı                | ı                    | ı             | I               | 1                    | I                 | ı                 | ı                                   |
| 16-11-83 | 3502                   | ı                        | 8.5            | 17         | 9.2        | I                | ı                    | ı             | I               | ı                    | I                 | ı                 | ı                                   |
| 07-09-83 | 1104                   | 611                      | 7.5            | 4          | 8.6        | 37               | 0.3                  | 2.36          | 2.66            | 0.05                 | 0.333             | 16.5              | 176.2                               |
| 13-07-83 | 4305                   | 2425.3                   | 8.0            | 6          | 11.4       | _                | 0.93                 | 0.99          | 1.92            | 0.011                | 0.036             | I                 | 655.7                               |
| 02-06-83 | 3583                   | 1                        | 8.1            | 11         | 12.2       | I                | ı                    | ı             | I               | 1                    | I                 | ı                 | ı                                   |
| 07-10-82 | 5126                   | 1                        | 8.1            | 18         | I          | I                | ı                    | I             | I               | ı                    | I                 | I                 | ı                                   |
| 24-08-82 | 5210                   | 2914.5                   | 7.9            | 1          | ı          | 1.9              | 0.84                 | 0.89          | 1.73            | <0.005               | 0.021             | ı                 | 777.5                               |
| 08-06-82 | 4687                   | 2510.4                   | 7.9            | 5.5        | 11.2       | 1.3              | <0.01                | 0.67          | 0.68            | <0.005               | 0.025             | ı                 | 722.1                               |
| 16-06-81 | 4166                   | 2450.2                   | 8.1            | 10.5       | 14.2       | 0.64             | 2.4                  | 2.37          | 4.77            | <0.005               | 0.045             | ı                 | 620.8                               |
| 20-11-80 | 4000                   | ı                        | 8.7            | 24         | 14.2       | ı                | ı                    | ı             | ı               | ı                    | ı                 | ı                 | ı                                   |
| 22-10-80 | 2397                   | ı                        | 8.7            | 20.6       | 13.5       | ı                | ı                    | ı             | ı               | ı                    | I                 | ı                 | ı                                   |
| 16-09-80 | 4186                   | ı                        | 8.0            | 16.8       | 9.2        | I                | ı                    | ı             | I               | ı                    | I                 | ı                 | ı                                   |
| 30-07-80 | 3453                   | ı                        | 7.9            | 1          | 10.8       | ı                | ı                    | ı             | ı               | ı                    | ı                 | ı                 | ı                                   |
| 25-06-80 | 4736                   | ı                        | 8.1            | 12.8       | ı          | ı                | ı                    | ı             | I               | ı                    | I                 | ı                 | ı                                   |
| 19-12-79 | 4456                   | ı                        | 8.3            | 21         | 8.3        | I                | ı                    | ı             | ı               | ı                    | I                 | ı                 | ı                                   |
| 20-11-79 | 3673                   | 1                        | 8.2            | 24         | ı          | 1                | ı                    | 1             | ı               | 1                    | I                 | 1                 | 1                                   |
| 04-10-79 | ı                      | 1                        | 7.6            | 15.5       | ı          | ı                | 1                    | ı             | ı               | 1                    | I                 | 1                 | I                                   |
| 23-08-79 | 3010                   | 1669.4                   | 8.1            | 1          | ı          | က                | 4.1                  | 0.4           | 4.5             | 0.011                | 0.053             | ı                 | 459.1                               |
| 19-07-79 | 5428                   | ı                        | 8.2            | 9.5        | I          | I                | ı                    | I             | I               | 1                    | I                 | ı                 | ı                                   |
| 11-06-79 | 5291                   | I                        | 7.7            | 11.5       | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 14-12-78 | 6756                   | I                        | 7.8            | 19         | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 21-11-78 | 4888                   | I                        | I              | 19.5       | I          | I                | ı                    | I             | I               | 1                    | I                 | I                 | I                                   |
| 24-10-78 | 4105                   | I                        | 8.0            | 22         | I          | I                | ı                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 28-09-78 | 1890                   | I                        | 7.8            | 16.5       | I          | I                | I                    | I             | I               | I                    | I                 | I                 | I                                   |
| 22-08-78 | 1856                   | ı                        | 2.9            | 12.5       | I          | I                | ı                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 17-07-78 | 3194                   | I                        | 7.5            | 10.7       | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 03-07-78 | 3513                   | I                        | I              | 7          | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 25-05-78 | 2297                   | 1                        | 9.7            | 15         | I          | 1                | 1                    | ı             | ı               | ı                    | I                 | ı                 | ı                                   |
| 14-12-77 | 6415                   | I                        | I              | 28.5       | I          | I                | I                    | I             | I               | I                    | I                 | I                 | I                                   |
| 12-10-77 | 4687                   | I                        | I              | 21         | I          | I                | I                    | I             | I               | I                    | I                 | I                 | I                                   |
| 04-08-77 | 3684                   | ı                        | I              | 11.8       | I          | ı                | ı                    | ı             | I               | ı                    | I                 | I                 | ı                                   |
| 17-05-77 | 7582                   | I                        | ı              | 15.2       | I          | ı                | ı                    | I             | I               | ı                    | I                 | ı                 | I                                   |
| 06-12-76 | 5294                   | ı                        | ı              | 24         | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 25-10-76 | 2965                   | ı                        | ı              | 17.5       | I          | I                | ı                    | I             | I               | 1                    | I                 | ı                 | ı                                   |
| 15-09-76 | 2060                   | I                        | ı              | 15.8       | I          | ı                | ı                    | I             | I               | ı                    | I                 | ı                 | I                                   |
| 26-08-76 | 3974                   | ı                        | ı              | 13.5       | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | ı                                   |
| 28-07-76 | 5223                   | ı                        | I              | 12.8       | I          | I                | I                    | I             | I               | ı                    | I                 | I                 | I                                   |
| 15-07-76 | 4605                   | ı                        | 1              | 7          | I          | ı                | ı                    | I             | ı               | ı                    | I                 | ı                 | ı                                   |
| 17-06-76 | 2250                   | 1                        | I              | 13         | ı          | ı                | ı                    | ı             | 1               | 1                    | ı                 | ı                 | ı                                   |
| 25-10-75 | 825                    | ı                        | ı              | 4          | ı          | ı                | ı                    | I             | 1               | ı                    | ı                 | ı                 | ı                                   |
| 24-10-75 | 635                    | 348.9                    | 6.3            | ı          | ı          | 66               | ı                    | ı             | ı               | ı                    | 0000              |                   | 0 00                                |

\*\*Source: EPA, 2006b.

Note that "-" indicates that an analytical result could not be obtained on that occasion.

\* Measurement at 25°C.

\* Measured by electrical conductivity.

Table 11 Bremer River (near Hartley GS426533) water quality - total metals\*\*

| Date        | Cd                   | Cu                  | Hg           | Ni                 | Pb                  | Zn                 |
|-------------|----------------------|---------------------|--------------|--------------------|---------------------|--------------------|
| Date        | mg/L                 | mg/L                | mg/L         | mg/L               | mg/L                | mg/L               |
| Highest LOD | <0.001               | <0.03               | <0.0005      | <0.01              | <0.005              | <0.01              |
| Ω LOD       | 0.00058 <sup>a</sup> | 0.0039 <sup>a</sup> | 0.0006       | 0.031 <sup>a</sup> | 0.0157 <sup>a</sup> | 0.022 <sup>a</sup> |
| 20/10/06    | <0.0005              | <0.001              | <0.0003      | 0.0021             | <0.0005             | 0.006              |
| 29/09/06    | <0.0005              | 0.0019              | <0.0003      | 0.0048             | <0.0005             | 0.015              |
| 14/08/06    | <0.0005              | 0.0013              | <0.0005      | 0.003              | <0.0005             | 0.013              |
| 17/07/06    | 0.0014               | 0.0068              | <0.0005      | 0.0066             | 0.005               | 0.022              |
| 30/06/06    | < 0.0014             | <0.001              | <0.0005      | 0.0042             | <0.005              | 0.114              |
| 19/05/06    | <0.0005              | 0.0017              | <0.0003      | 0.0042             | 0.0006              | 0.013              |
| 28/04/06    | <0.0005              | 0.0017              | <0.0003      | 0.0023             | <0.0005             | 0.010              |
| 21/03/06    |                      | < 0.0021            |              | 0.0063             |                     | 0.032              |
| 20/02/06    | <0.0005              |                     | < 0.0003     | 0.0021             | <0.0005<br><0.0005  |                    |
|             | <0.0005              | <0.001              | <0.0003      |                    |                     | <0.003             |
| 04/01/06    | <0.0005              | 0.001<br>0.002      | < 0.0003     | <0.0005            | < 0.0005            | 0.012<br>0.017     |
| 07/12/05    | < 0.0005             |                     | < 0.0003     | 0.0039             | <0.0005             |                    |
| 09/11/05    | <0.0005              | 0.0066              | <0.0003      | 0.0076             | 0.0015              | 0.01               |
| 05/10/05    | <0.0005              | 0.0035              | <0.0003      | 0.0061             | <0.0005             | 0.0231             |
| 09/09/05    | <0.0005              | 0.0049              | < 0.0003     | 0.0074             | 0.0011              | 0.0434             |
| 03/08/05    | <0.0005              | 0.0027              | <0.0003      | 0.0038             | < 0.0005            | 0.03               |
| 06/07/05    | 0.0017               | 0.0039              | <0.0003      | 0.0098             | <0.0005             | 0.1888             |
| 08/06/05    | <0.0005              | 0.0015              | <0.0003      | <0.0005            | < 0.0005            | 0.0066             |
| 04/05/05    | < 0.0005             | 0.0041              | < 0.0003     | 0.0011             | <0.0005             | 0.0135             |
| 15/04/05    | < 0.0005             | 0.0069              | < 0.0003     | 0.0032             | 0.0014              | 0.0253             |
| 16/03/05    | < 0.0005             | 0.0018              | < 0.0003     | 0.0138             | < 0.0005            | 0.0097             |
| 09/02/05    | 0.0011               | 0.0016              | < 0.0003     | 0.0084             | <0.0005             | 0.0084             |
| 05/01/05    | _                    | 0.0034              | _            | _                  | 0.0012              | 0.0201             |
| 07/12/04    | _                    | 0.003               | _            | _                  | < 0.0005            | 0.0133             |
| 03/11/04    | _                    | 0.005               | _            | _                  | 0.001               | 0.0165             |
| 15/10/04    | _                    | 0.0052              | _            | _                  | 0.0009              | 0.0292             |
| 08/09/04    | _                    | 0.0032              | _            | _                  | < 0.0005            | 0.0425             |
| 25/08/04    | _                    | 0.0048              | _            | _                  | 0.0007              | 0.1027             |
| 23/06/04    | _                    | 0.0085              | _            | _                  | 0.0034              | 0.047              |
| 05/05/04    | _                    | 0.0127              | _            | _                  | 0.0011              | 0.0183             |
| 03/03/04    | _                    | 0.0047              | _            | _                  | 0.0007              | 0.0087             |
| 04/02/04    | _                    | 0.0049              | _            | _                  | 0.0031              | 0.0249             |
| 27/11/03    | _                    | 0.0024              | _            | _                  | < 0.0005            | 0.0106             |
| 22/10/03    | _                    | 0.0022              | _            | _                  | 0.0006              | 0.0266             |
| 10/09/03    | _                    | 0.0035              | _            | _                  | 0.0011              | 0.1061             |
| 13/08/03    | _                    | 0.0021              | _            | _                  | 0.001               | 0.145              |
| 23/07/03    | _                    | 0.004               | _            | _                  | < 0.0005            | 0.0064             |
| 12/06/03    | _                    | 0.0047              | _            | _                  | 0.0027              | 0.0509             |
| 14/05/03    | _                    | < 0.001             | _            | _                  | 0.0005              | 0.0107             |
| 08/01/03    | _                    | 0.0046              | _            | _                  | 0.001               | 0.0241             |
| 04/12/02    | _                    | 0.013               | _            | _                  | 0.0016              | 0.0422             |
| 16/10/02    | _                    | 0.0042              | _            | _                  | < 0.0005            | 0.0296             |
| 11/09/02    | _                    | 0.0012              | _            | _                  | 0.001               | 0.0199             |
| 14/08/02    | _                    | 0.0051              | _            | _                  | < 0.0005            | 0.0625             |
| 10/07/02    | _                    | 0.0045              | _            | _                  | 0.0025              | 0.121              |
| 12/06/02    | _                    | 0.0017              | _            | _                  | < 0.0005            | 0.0335             |
| 16/05/02    | _                    | 0.0031              | _            | _                  | < 0.0005            | 0.0165             |
| 13/02/02    | _                    | 0.0051              | _            | _                  | 0.0011              | 0.0104             |
| 24/10/01    | _                    | 0.004               | _            | _                  | 0.001               | 0.0554             |
| 19/09/01    | _                    | 0.0142              | _            | _                  | 0.0016              | 0.167              |
| 15/08/01    | _                    | 0.0065              | _            | _                  | 0.0007              | 0.286              |
| 18/07/01    | _                    | 0.0054              | _            | _                  | 0.0019              | 0.496              |
| 07/06/01    | _                    | 0.0182              | _            | _                  | 0.0013              | 0.430              |
| 30/05/01    | _                    | 0.0102              | _            | _                  | 0.002               | 0.296              |
| 17/01/01    | _                    | < 0.03              | _            | _                  | 0.002               | 0.1522             |
| 06/12/00    | _                    | < 0.03              | _            | _                  | 0.001               | 0.1322             |
| 06/11/00    | _                    | < 0.03              | _            | _                  | 0.0009              | 0.1462             |
| 11/10/00    | _                    | < 0.03              | _            | _                  | <0.001              | 0.0963             |
| 06/09/00    | _                    | < 0.03              | _            | _                  | 0.001               | 0.077              |
| 07/08/00    | _                    | < 0.03              | _            | _                  | 0.002               | 0.138              |
| 01/00/00    |                      | \U.U3               | <del>-</del> | <del>_</del>       | 0.001               | 0.1303             |

Table 11 Bremer River (near Hartley GS426533) water quality - total metals (cont.)\*\*

| Date     | Cd     | Cu      | Hg       | Ni     | Pb      | Zn     |
|----------|--------|---------|----------|--------|---------|--------|
|          | mg/L   | mg/L    | mg/L     | mg/L   | mg/L    | mg/L   |
| 03/07/00 |        | <0.03   |          |        | <0.001  | 0.1239 |
| 06/06/00 | _      | < 0.03  | _        | _      | < 0.001 | 0.1195 |
| 01/05/00 | _      | < 0.03  | _        | _      | <0.001  | 0.0277 |
| 03/04/00 | _      | < 0.03  | _        | _      | <0.001  | <0.01  |
| 15/03/00 | _      | < 0.03  | _        | _      | <0.001  | 0.0968 |
| 22/12/99 | _      | < 0.03  | _        | _      | <0.001  | 0.0424 |
| 15/11/99 | _      | < 0.03  | _        | _      | <0.001  | 0.0509 |
| 20/10/99 | _      | <0.03   | _        | _      | <0.001  | <0.01  |
| 04/10/99 | _      | < 0.03  | _        | _      | <0.001  | 0.0105 |
| 02/08/99 | _      | < 0.03  | _        | _      | <0.001  | <0.01  |
| 07/07/99 | _      | < 0.03  | _        | _      | <0.001  | 0.063  |
| 13/05/99 | _      | < 0.03  | _        | _      | <0.001  | 0.1056 |
| 19/11/98 | _      | <0.005  | _        | _      | <0.001  | 0.1    |
| 24/09/98 | _      | <0.005  | _        | _      | <0.001  | 0.157  |
| 13/08/98 | _      | 0.005   | _        | _      | <0.001  | 0.246  |
| 23/07/98 |        | <0.005  | _        | _      | <0.001  | 0.247  |
| 25/06/98 |        | 0.006   | _        | _      | <0.001  | 0.247  |
| 06/05/98 |        | <0.005  | _        |        | <0.001  | 0.104  |
| 29/04/98 |        | 0.01    | _        | _      | 0.003   | 0.104  |
| 17/12/97 | _      | 0.006   | _        | _      | <0.001  | 0.122  |
| 20/11/97 | _      | <0.005  |          | _      | <0.001  | 0.081  |
| 23/10/97 | _      | 0.016   | _        | _      | <0.001  | 0.000  |
| 17/09/97 | _      | <0.005  | _        | _      | <0.001  | 0.123  |
|          | _      |         |          | _      |         |        |
| 11/08/97 | _      | 0.009   | _        | _      | 0.002   | 0.164  |
| 24/07/97 | _      | < 0.005 | _        | _      | <0.001  | 0.141  |
| 16/06/97 | _      | 0.007   | _        | _      | <0.001  | 0.112  |
| 22/05/97 | _      | < 0.005 | _        | _      | <0.001  | 0.122  |
| 12/02/97 | _      | 0.005   | _        | _      | <0.001  | 0.057  |
| 12/12/96 | _      | < 0.005 | _        | _      | <0.001  | 0.043  |
| 07/11/96 | _      | < 0.005 | _        | _      | <0.001  | 0.041  |
| 24/10/96 | _      | < 0.005 | _        | _      | <0.001  | 0.037  |
| 12/09/96 | _      | 0.063   | _        | _      | <0.001  | 0.154  |
| 22/08/96 | _      | 0.01    | _        | _      | 0.004   | 0.122  |
| 11/07/96 | _      | < 0.005 | _        | _      | <0.001  | 0.299  |
| 27/06/96 | _      | 0.018   | _        | _      | 0.015   | 0.23   |
| 23/05/96 | _      | < 0.005 | _        | _      | 0.001   | 0.071  |
| 07/12/95 | _      | 0.012   | _        | _      | < 0.001 | 0.064  |
| 16/11/95 | _      | 0.02    | _        | _      | < 0.001 | 0.076  |
| 19/10/95 | _      | 0.01    | _        | _      | < 0.001 | 0.077  |
| 07/09/95 | _      | 0.011   | _        | _      | <0.001  | 0.179  |
| 31/08/95 | _      | 0.017   | _        | _      | < 0.001 | 0.108  |
| 01/06/95 | _      | 0.01    | _        | _      | <0.001  | 0.074  |
| 03/06/85 | 0.005  | 0.006   | < 0.0001 | <0.01  | 0.026   | 0.075  |
| 07/09/83 | <0.001 | 0.009   | _        | 0.014  | < 0.005 | 0.12   |
| 14/10/81 | <0.001 | 0.024   | _        | 0.01   | < 0.005 | 0.04   |
| 19/08/81 | <0.001 | 0.015   | _        | 0.04   | < 0.005 | 0.33   |
| 23/08/79 | <0.001 | 0.009   | <u> </u> | < 0.01 | < 0.005 | 0.12   |

\*\*Source: EPA, 2006b.

ANZECC/ARMCANZ (2000)

aValues calculated using a hardness of 100 mg CaCO₃/L.

Note that "-" indicates that an analytical result could not be obtained on that occasion.

|          |               |         | Tak      | le 12 Lake | Alexandrin | a (Poltalloch <sub>I</sub> | Table 12 Lake Alexandrina (Poltalloch plains) water quality – general parameters** | llity – general | parameters | ***     |         |               |             |
|----------|---------------|---------|----------|------------|------------|----------------------------|------------------------------------------------------------------------------------|-----------------|------------|---------|---------|---------------|-------------|
| Date     | Conductivitya | *<br>00 | 핊        | Temp       | 0          | Turbidity                  | Oxidised N                                                                         | Z<br>Y<br>Y     | Total N    | P (sol) | Total P | chlorophyll a | Enterococci |
|          | ms/srl        | mg/L    | pH units | ၀          | mg/L       | NTO                        | mg N/L                                                                             | mg N/L          | mg/L       | mg P/L  | mg P/L  | ng/L          | per 100mL   |
| 17-01-07 | 1530          | 840.0   | 9.8      | 22         | 8.9        | 20                         | 0.007                                                                              | 1.33            | 1.337      | <0.005  | 0.125   | 20.0          | 280         |
| 20-12-06 | 1430          | 790.0   | 80       | 21         | 0          | 16                         | <0.005                                                                             | 1.22            | 1.225      | <0.005  | 0.104   | 14.2          | 10          |
| 15-11-06 | 1300          | 720.0   | 8.5      | 16         | 9.4        | 66                         | <0.005                                                                             | 1.74            | 1.745      | <0.005  | 0.19    | 63.1          | 34          |
| 18-10-06 | 1120          | 620.0   | 8.2      | 16         | 8.8        | 22                         | 900.0                                                                              | 1.28            | 1.286      | <0.005  | 0.146   | 23.0          | 64          |
| 27-09-06 | 1160          | 640.0   | 8.4      | 13         | 11.6       | 54                         | <0.005                                                                             | 1.16            | 1.165      | <0.005  | 0.124   | 35.3          | 46          |
| 16-08-06 | 206           | 500.0   | 8.3      | 7          | 10.1       | 120                        | <0.005                                                                             | 2.4             | 2.405      | <0.005  | 0.348   | 46.6          | 44          |
| 20-07-06 | 1230          | 677.0   | 8.3      | တ          | 10.8       | 15                         | <0.005                                                                             | 0.73            | 0.735      | <0.005  | 0.05    | 19.2          | 12          |
| 23-06-06 | 1070          | 589.0   | 7.9      | 7          | I          | 53                         | 0.007                                                                              | 1.41            | 1.417      | <0.005  | 0.123   | 23.8          | 09          |
| 17-05-06 | 1140          | 628.0   | 8.3      | 4          | I          | 13.7                       | <0.005                                                                             | 0.75            | 0.755      | 0.005   | 0.04    | 16.3          | 9           |
| 27-04-06 | 1130          | 622.0   | 8.4      | 13         | I          | 33.3                       | <0.005                                                                             | 1.69            | 1.695      | 900.0   | 0.092   | 22.9          | 42          |
| 22-03-06 | 1120          | 617.0   | 8.4      | 19         | I          | 18.1                       | 0.008                                                                              | 1.35            | 1.358      | <0.005  | 0.055   | 16.3          | 32          |
| 16-02-06 | 1110          | 611.0   | 8.3      | 20         | I          | 19.7                       | <0.005                                                                             | 1.33            | 1.335      | 0.008   | 0.063   | 20.4          | 09          |
| 03-01-06 | 1190          | 655.0   | 8.4      | 20         | I          | 35.5                       | <0.005                                                                             | 0.92            | 0.925      | <0.005  | 0.095   | 30.1          | ဇ           |
| 07-12-05 | 1090          | 0.009   | 80       | 22         | I          | 105                        | <0.005                                                                             | 1.83            | 1.835      | <0.005  | 0.242   | 51.9          | 800         |
| 09-11-05 | 1260          | 694.0   | 8.3      | ı          | I          | 55.1                       | <0.005                                                                             | 1.85            | 1.855      | <0.005  | 0.166   | 39.1          | 46          |
| 05-10-05 | 1376          | 758.0   | 89.8     | 17         | 8.4        | 41.1                       | <0.005                                                                             | 1.28            | 1.285      | <0.005  | 0.126   | 41.9          | 28          |
| 14-09-05 | 1243          | 685.0   | 8.72     | 16         | 10.3       | 54.6                       | 9000                                                                               | 4.99            | 4.996      | <0.005  | 0.619   | 52.9          | 440         |
| 10-08-05 | 1664          | 918.0   | 8.38     | 7          | 11.3       | 79.2                       | <0.005                                                                             | 1.8             | 1.805      | <0.005  | 0.16    | 48.0          | 720         |
| 13-07-05 | 1139          | 627.0   | 8.41     | 10         | 11.8       | 43.7                       | <0.005                                                                             | 1.05            | 1.055      | <0.005  | 0.132   | 37.0          | 39          |
| 22-06-05 | 1134          | 624.0   | 8.26     | 13         | 1.1        | 102                        | <0.005                                                                             | 1.81            | 1.815      | <0.005  | 0.208   | 26.0          | 200         |
| 11-05-05 | 1487          | 820.0   | 8.6      | 16         | 1.1        | 16.8                       | <0.005                                                                             | 0.87            | 0.875      | <0.005  | 0.059   | 19.7          | 4           |
| 13-04-05 | 1109          | 610.0   | 8.78     | 21         | 11.7       | 18.1                       | <0.005                                                                             | 0.63            | 0.635      | <0.005  | 0.055   | 25.1          | 0           |
| 23-03-05 | 1322          | 728.0   | 8.55     | 19         | I          | 19                         | <0.005                                                                             | 1.07            | 1.075      | <0.005  | 0.08    | 30.2          | _           |
| 16-02-05 | 1376          | 758.0   | 8.8      | 19         | 9.5        | 23.1                       | <0.005                                                                             | 1.07            | 1.075      | <0.005  | 0.083   | 44.9          | က           |
| 12-01-05 | 1297          | 714.0   | I        | ı          | I          | 48.9                       | <0.005                                                                             | 1.17            | 1.175      | <0.005  | I       | 41.2          | I           |
| 15-12-04 | 1309          | 720.0   | I        | I          | I          | 24.6                       | <0.005                                                                             | 96.0            | 0.965      | <0.005  | I       | 18.0          | I           |
| 10-11-04 | 1161          | 640.0   | I        | I          | I          | 29.2                       | <0.005                                                                             | 1.28            | 1.285      | 0.014   | I       | 38.0          | I           |
| 20-10-04 | 1150          | 633.1   | I        | I          | I          | 42.7                       | <0.005                                                                             | 1.06            | 1.065      | 0.005   | ı       | 25.0          | ı           |
| 22-09-04 | 1288          | 709.5   | I        | I          | I          | 16.2                       | <0.005                                                                             | 1.09            | 1.095      | <0.005  | I       | 34.0          | I           |
| 11-08-04 | 1380          | 760.4   | I        | I          | I          | 48                         | <0.005                                                                             | 1.69            | 1.695      | <0.005  | ı       | 32.0          | ı           |
| 21-07-04 | 1365          | 752.1   | I        | I          | I          | 40.3                       | <0.005                                                                             | 1.33            | 1.335      | <0.005  | I       | 29.8          | I           |
| 16-06-04 | 1248          | 687.3   | I        | I          | I          | 51.9                       | <0.005                                                                             | 1.37            | 1.375      | <0.005  | I       | 45.0          | I           |
| 12-05-04 | 1190          | 655.2   | I        | I          | I          | 56                         | <0.005                                                                             | 1.19            | 1.195      | <0.005  | I       | 22.8          | I           |
| 14-04-04 | 1249          | 687.9   | ı        | 1          | ı          | 36.8                       | <0.005                                                                             | 1.37            | 1.375      | <0.005  | I       | 49.8          | 1           |
| 10-03-04 | 1270          | 699.5   | I        | I          | I          | 19.6                       | <0.005                                                                             | 0.91            | 0.915      | <0.005  | I       | 32.0          | I           |
| 14-01-04 | 1235          | 680.1   | I        | ı          | I          | 26.4                       | <0.005                                                                             | 1.21            | 1.215      | <0.005  | I       | 24.0          | I           |
| 12-11-03 | 1160          | 638.6   | I        | I          | I          | 29.6                       | <0.005                                                                             | 1.08            | 1.085      | 0.015   | I       | 22.8          | I           |
| 15-10-03 | 1212          | 667.4   | I        | I          | I          | 47.6                       | 0.023                                                                              | 1.47            | 1.493      | <0.005  | I       | 34.2          | ı           |
| 17-09-03 | 1340          | 738.3   | I        | ı          | I          | 19                         | <0.005                                                                             | 2.76            | 2.765      | <0.005  | I       | 53.3          | I           |
| 13-08-03 | 1174          | 646.4   | I        | ı          | ı          | 34.6                       | <0.005                                                                             | 1.01            | 1.015      | <0.005  | ı       | 21.4          | 1           |

| Date     | Conductivitya | *00   | ЬH       | I Temp DO | DO   | Turbidity | Turbidity Oxidised N TKN Total N P (s | TKN    | Total N | P (sol) | Total P | chlorophyll | a         |
|----------|---------------|-------|----------|-----------|------|-----------|---------------------------------------|--------|---------|---------|---------|-------------|-----------|
|          | ms/cm         | mg/L  | pH units | ၁         | mg/L | NTO       | mg N/L                                | mg N/L | mg/L    | mg P/L  | mg P/L  | ng/L        | per 100mL |
| 16-07-03 | 1196          | 9:859 | I        | ı         | ı    | 32.6      | <0.005                                | 1.13   | 1.135   | <0.005  | I       | 27.6        | I         |
| 11-06-03 | 1280          | 705.0 | ı        | ı         | I    | 62.8      | <0.005                                | 1.42   | 1.425   | <0.005  | ı       | 42.6        | ı         |
| 14-05-03 | 1028          | 565.7 | I        | ı         | I    | 23.5      | <0.005                                | 1.13   | 1.135   | <0.005  | I       | 29.2        | I         |
| 16-04-03 | 1371          | 755.4 | 1        | 1         | 1    | 27.1      | 0.016                                 | 1.46   | 1.476   | <0.005  | 1       | 32.7        | I         |
| 12-03-03 | 1331          | 733.3 | I        | ı         | I    | 15.5      | <0.005                                | 1.15   | 1.155   | <0.005  | I       | 25.7        | I         |
| 12-02-03 | 1269          | 0.669 | I        | ı         | I    | 23.7      | <0.005                                | 1.046  | 1.051   | <0.005  | I       | 22.9        | ı         |
| 15-01-03 | 1152          | 634.2 | I        | ı         | I    | 34.4      | <0.005                                | 1.26   | 1.265   | <0.005  | I       | 37.0        | ı         |
| 11-12-02 | 1213          | 0.899 | I        | ı         | I    | 55.8      | 0.015                                 | 1.71   | 1.725   | <0.005  | I       | 39.0        | ı         |
| 13-11-02 | 1109          | 610.4 | I        | ı         | I    | 84.4      | <0.005                                | 2.23   | 2.235   | <0.005  | I       | 0.09        | ı         |
| 16-10-02 | 1017          | 559.6 | I        | ı         | I    | 61.8      | <0.005                                | 1.42   | 1.425   | <0.005  | I       | 63.6        | ı         |
| 17-09-02 | 1062          | 584.5 | I        | ı         | I    | 114       | <0.005                                | 2.85   | 2.855   | 0.0058  | I       | 121.7       | ı         |
| 14-08-02 | 918           | 504.9 | I        | ı         | I    | 33.7      | 0.0168                                | 1.06   | 1.0768  | <0.005  | I       | 44.7        | ı         |
| 10-07-02 | 1003          | 551.9 | ı        | ı         | ı    | 61.4      | <0.005                                | 1.46   | 1.465   | <0.005  | I       | 52.0        | ı         |
| 13-06-02 | 891           | 490.0 | I        | ı         | I    | 103       | <0.005                                | 1.96   | 1.965   | <0.005  | I       | 65.5        | ı         |
| 15-05-02 | 865           | 475.7 | I        | ı         | I    | 6.06      | <0.005                                | 2.66   | 2.665   | <0.005  | I       | 70.5        | ı         |
| 10-04-02 | 865           | 475.7 | I        | I         | I    | 17.2      | <0.005                                | 0.79   | 0.795   | <0.005  | I       | 23.1        | I         |
| 12-03-02 | 884           | 486.1 | I        | ı         | I    | 27.1      | <0.005                                | 1.02   | 1.025   | <0.005  | I       | 29.4        | I         |
| 13-02-02 | 810           | 445.3 | I        | ı         | I    | 24.3      | <0.005                                | 1.02   | 1.025   | <0.005  | I       | 24.0        | I         |
| 16-01-02 | 841           | 462.4 | 1        | ı         | I    | 38.3      | <0.005                                | 1.14   | 1.145   | <0.005  | I       | 27.1        | ı         |
| 12-12-01 | 299           | 366.5 | ı        | I         | I    | 30.35     | <0.005                                | 1.35   | 1.355   | 0.0721  | I       | 15.2        | ı         |
| 14-11-01 | 678           | 372.6 | I        | ı         | I    | 19.5      | <0.005                                | 0.7    | 0.705   | <0.005  | I       | 9.3         | I         |
| 10-10-01 | 661           | 363.2 | 1        | ı         | I    | 137       | <0.005                                | 2.26   | 2.265   | <0.005  | I       | 81.1        | ı         |
| 14-09-01 | 826           | 470.7 | 1        | ı         | I    | 78.3      | <0.005                                | 1.37   | 1.375   | <0.005  | I       | 33.0        | ı         |
| 15-08-01 | 540           | 296.6 | 1        | ı         | I    | 82.2      | <0.005                                | 1.19   | 1.195   | <0.005  | I       | 38.9        | ı         |
| 11-07-01 | 556           | 305.4 | 1        | ı         | I    | 67.5      | <0.005                                | 1.24   | 1.245   | 0.011   | I       | 37.7        | ı         |
| 13-06-01 | 537           | 294.9 | I        | ı         | I    | 89.3      | 0.0073                                | 1.34   | 1.3473  | 0.0087  | I       | 37.3        | ı         |
| 22-05-01 | 601           | 330.1 | ı        | I         | I    | 46        | <0.005                                | 0.85   | 0.855   | <0.005  | I       | 14.4        | ı         |
| 11-04-01 | 603           | 331.2 | I        | 19        | I    | 88.3      | <0.005                                | 1.4    | 1.415   | 0.016   | I       | 28.6        | ı         |
| 14-03-01 | 547           | 300.4 | ı        | I         | I    | 38.1      | <0.005                                | 0.89   | 0.895   | <0.005  | I       | 13.0        | ı         |
| 14-02-01 | 510           | 280.1 | ı        | ı         | I    | 45.8      | <0.005                                | 1.15   | 1.155   | <0.005  | I       | 21.8        | ı         |
| 10-01-01 | 384           | 210.8 | ı        | I         | I    | 73.6      | <0.005                                | 1.12   | 1.125   | 0.0063  | I       | 17.6        | ı         |
| 13-12-00 | 424           | 232.7 | ı        | ı         | ı    | 75.9      | <0.005                                | 1.05   | 1.055   | <0.005  | ı       | 24.2        | ı         |
| 15-11-00 | 429           | 235.5 | ı        | ı         | ı    | 72.2      | <0.005                                | 0.84   | 0.845   | <0.005  | ı       | 17.7        | ı         |
| 12-10-00 | 715           | 392.9 | 1        | 1         | 1    | 70.1      | <0.005                                | 1.02   | 1.025   | <0.005  | 1       | 28.8        | I         |
| 13-09-00 | 807           | 443.7 | ı        | ı         | I    | 57.3      | <0.005                                | 1.23   | 1.235   | <0.005  | I       | 35.3        | ı         |
| 16-08-00 | 848           | 466.3 | ı        | ı         | ı    | 47.9      | <0.005                                | 1.16   | 1.165   | <0.005  | ı       | 29.3        | ı         |
| 12-07-00 | 789           | 433.7 | ı        | I         | I    | 47.7      | 900.0                                 | 1.03   | 1.036   | <0.005  | I       | 24.6        | ı         |
| 14-06-00 | 888           | 488.4 | I        | I         | I    | 47.4      | <0.005                                | 1.64   | 1.645   | <0.005  | I       | 35.9        | ı         |
| 10-02-00 | 857           | 471.3 | I        | I         | I    | 27.6      | <0.005                                | 96.0   | 0.965   | <0.005  | I       | 23.6        | ı         |
| 12-04-00 | 799           | 439.3 | ı        | ı         | ı    | 40.3      | <0.005                                | 1.03   | 1.035   | <0.005  | I       | 36.1        | ı         |

|          |               |         | Table    | Table 12 Lake Alexandr |          | Poltalloch pla | na (Poltalloch plains) water quality – general parameters (cont.)** | - general pa | rameters (c | ont.)** |         |               |             |
|----------|---------------|---------|----------|------------------------|----------|----------------|---------------------------------------------------------------------|--------------|-------------|---------|---------|---------------|-------------|
| Date     | Conductivitya | *<br>00 | Hd       | Temp                   | OO<br>DO | Turbidity      | Oxidised N                                                          | TKN          | Total N     | P (sol) | Total P | chlorophyll a | Enterococci |
|          | ms/cm         | mg/L    | pH units | ပွ                     | mg/L     | DTN            | mg N/L                                                              | mg N/L       | mg/L        | mg P/L  | mg P/L  | ng/L          | per 100mL   |
| 15-03-00 | 779           | 428.2   | I        | ı                      | ı        | 16.8           | <0.005                                                              | 62'0         | 0.795       | <0.005  | I       | 24.8          | ı           |
| 16-02-00 | 828           | 471.8   | ı        | ı                      | ı        | 19             | 0.014                                                               | 0.8          | 0.814       | <0.005  | I       | 23.4          | ı           |
| 12-01-00 | 781           | 429.3   | I        | I                      | I        | 120            | 0.005                                                               | 2.48         | 2.485       | <0.005  | I       | 70.1          | ı           |
| 15-12-99 | 722           | 396.8   | ı        | ı                      | ı        | 94.5           | <0.005                                                              | 1.45         | 1.455       | <0.005  | I       | 47.0          | ı           |
| 10-11-99 | 683           | 375.3   | I        | I                      | I        | 37.4           | <0.005                                                              | 0.88         | 0.885       | 0.011   | I       | 14.0          | ı           |
| 14-10-99 | 609           | 334.5   | ı        | ı                      | ı        | 40             | <0.005                                                              | 0.75         | 0.755       | <0.005  | ı       | 15.4          | ı           |
| 16-09-99 | 869           | 383.6   | ı        | ı                      | ı        | 185            | 0.007                                                               | 2.27         | 2.277       | 0.049   | I       | 76.0          | ı           |
| 12-08-99 | 626           | 343.9   | ı        | ı                      | ı        | 105            | <0.005                                                              | 1.08         | 1.085       | <0.005  | I       | ı             | ı           |
| 15-07-99 | 527           | 289.4   | I        | ı                      | ı        | 48             | <0.005                                                              | 0.74         | 0.745       | 0.007   | I       | ı             | ı           |
| 01-07-99 | 653           | 358.8   | ı        | ı                      | ı        | 94             | <0.005                                                              | 1.38         | 1.385       | 0.005   | ı       | 37.1          | ı           |

\*\*Source: EPA, 2006b. \* At 25 °C. \* By EC.

## **Appendix 2C**

**Surface Water (Management)** 



Ground Floor, 15 Bentham Street Adelaide, South Australia, 5000

Tel: (08) 8410 4000 Fax: (08) 8410 6321

# Memo

To: Marty Adams Company: Hillgrove Resources

From: Glenn Passfield / Matt Driver Job No: A48/B2

**Date:** 08/08/07 **Doc No**: 026

Subject: Kanmantoo Preliminary Stormwater Management Conceptual Design

Following our letter dated 26 June 2007, and the teleconference held on 24 July 2007, Aquaterra is pleased to present the conceptual stormwater management plan for Kanmantoo Copper Gold Project MLA.

#### 1 SITE VISIT

Glenn Passfield and Matthew Driver from the Aquaterra Adelaide office visited the Kanmantoo site on 30 July 2007. The weather was fine and dry during the visit. The Aquaterra personnel were accompanied by Marty Adams, project manager from Hillgrove Resources.

The purpose of the visit was to inspect the existing and proposed site of the Kanmantoo Copper-Gold project to confirm on-ground surface water management principles.

#### 2 POTENTIAL IMPACTS OF THE PROPOSED MINING WORKS

Potential impacts relating to surface water runoff are outlined below, with management measures outlined in Section 7:

- Soil erosion due to increases in flow velocities around the infrastructure footprint
- Changes to flow volumes and the interruption of the ephemeral streams by the mining infrastructure footprint
- Potential contamination from sediments and chemicals

#### 2.1 Soil Erosion

Surface water runoff in the development area is predominately by gully discharge in defined drainage paths.

Additional surface runoff and the diversion of runoff from its normal flow path may result in a localised increase in flow velocities as the flood waters are concentrated in constructed diversion channels, or along side flood bunds or raised pads.

Diversion channels will be designed to compensate for the increase in flow velocities due to elevated nature of the site and the increase in flow concentrations. Hence the potential impact from soil erosion from the development can be managed with appropriately designed flow diversions.

#### 2.2 Changes in Flow Volumes

Flow diversions often result in a decrease of natural flow patterns downstream of a proposed development due to the re-diversion of water into alternative waterways or storages. For the proposed Kanmantoo development, all up-gradient runoff will be diverted around the infrastructure and back into the existing drainage path. This will minimise the potential to disturb downstream aquatic ecosystems due to decreased natural flow regimes.



#### 2.3 Contamination

Both the Tailings Storage Facility (TSF) outer banks and the Waste Rock Storage (WRS) have the potential to discharge sediment laden water into the natural environment. In addition, the Run of Mine (ROM) pad and associated stockpiles, the process plant, laydown areas, and other mining related infrastructure, all have the potential to contaminate stormwater with chemicals, including hydrocarbons.

Section 7 proposes water management measures to mitigate the potential impacts on downstream runoff water quality.

#### **3 STORMWATER DEFINITIONS**

Definitions of runoff sources for the Kanmantoo Copper-Gold Project are outlined below:

- Clean Runoff: Runoff generated from undisturbed areas, typical of baseline water quality.
- Sediment Runoff: runoff generated from disturbed areas but not containing any process or waste rock runoff, i.e. haul roads, vehicle tracks, borrow pits, with a higher sediment load than baseline water quality.
- Waste Rock Runoff: runoff generated from the WRS and outer embankment of the TSF, with a higher than baseline quality sediment loads and the potential for acid and metalliferous drainage (AMD) to develop from the interaction of reactive waste rock (PAF) with air and/or water.
- *Process Runoff*: runoff and water generated from the processing plant areas, ROM pad, associated stockpiles, mine lay-down areas, and workshop areas with high sediment loads and elevated chemical concentrations when compared to baseline water quality samples.

TSF decant and underdrainage water, any water from the existing open-pit are dealt with separately to this report.

#### **4 STORMWATER MANAGEMENT PRINCIPLES**

The plan is based on the following principles:

- Capture of 'clean runoff' and diversion water around disturbed mining areas using channels or bunds.
- Capture of 'sediment runoff' from haul roads, vehicle tracks, borrow pits, rehabilitated areas etc. for sediment load reduction before discharging off-site or re-use.
- Capture of 'waste rock runoff' from the outer batters of the TSF and the unrehabilitated WRS, to enable sediment load reduction before diversion to the decant water storage or process water storage for re-use in the mine processing plant, or to constructed wetlands for treatment and disposal.
- Capture and treatment of 'process runoff' from the processing plant areas, ROM pad, associated stockpiles, mine lay-down areas, and workshop areas for treatment and management near the source.

#### **5 FEATURES OF ON-SITE SURFACE WATER MANAGEMENT**

The main features of the on-site surface water management plan as indicated in Figure 2 and explained in more detail in Section 7 are:

- The use of bunding and diversion channels around the toe of the WRS and TSF to prevent the 'clean runoff' coming into contact with either the 'waste rock runoff' and/or the 'process runoff'.
- Diversion of 'clean runoff' entering from the creek line to the west of the site around the TSF.
- The use of sediment basins, wetlands and silt traps to maximise the capture and treatment of 'sediment runoff' and 'waste rock runoff' prior to reuse in processing plant or discharge.
- Management and treatment of runoff from disturbed areas at the source through the use of contour banks, bunding and progressive rehabilitation.
- Management of 'process runoff' through the use of bunding and diversions.

F:\Jobs\A48\B2\600\r026.doc Page 2



#### **6 DESIGN STORMS**

The daily rainfall record and intensity frequency-duration (IFD) data for Kanmantoo weather station was used to calculate the runoff volumes for the Kanmantoo Copper-Gold Project. Rainfall for events of 24 hours and 72 hours duration, for 5 to 100 year Average Recurrence Interval (ARI) is presented in Table 1.

Table 1: Kanmantoo Station Rainfall for Selected Storms (mm), (BOM, 1987)

| Duration |        | Average Recu<br>(A | rrence Interval<br>RI) |          |
|----------|--------|--------------------|------------------------|----------|
|          | 5 Year | 20 Year            | 50 Year                | 100 Year |
| 24 hours | 57.8   | 77.5               | 94.1                   | 107.5    |
| 72 hours | 72.0   | 95.0               | 113.8                  | 129.6    |

#### 7 CONCEPTUAL STORMWATER MANAGEMENT STRATEGY

The conceptual stormwater management strategies outlined below are designed to address the above potential impacts. Figure 1 presents the breakdown of each infrastructure area into average recurrence interval (ARI) runoff volumes, assuming no initial loss and no continuing loss for the purposes of conceptual design (conservative).

#### 7.1 Proposed Runoff Storages

#### 7.1.1 Decant Water Storage

A storage will be constructed on the tributary of the Dawesley/Nairne Creek up-gradient of the railway embankment culvert. The storage will be sized to TSF decant water, process water and the 1 in 100 year ARI design storm runoff volume collected in the southern drainage channels from the slopes of the WRS and TSF. The runoff volume is estimated to be 23.5ML The storage will be lined for the purposes of containing potentially contaminated decant water from the TSF (refer elsewhere for further details of the proposed lining system). There is also capacity for storage of water from the pre-existing open pit.

#### 7.1.2 Process Area Sediment Basin

A sediment basin will be installed on the drainage line adjacent to the processing plant. This basin will have the capacity to contain runoff from the ROM pad, process plant area and the south-eastern batter of the WRS. It is estimated that basin will need to contain approximately 19.5 ML of runoff during a 1 in 100 year ARI 72 hour design storm. This basin would need to be emptied within 14 days of a storm event with the water used in the process plant.

#### 7.1.3 Northern Sediment Basin/Wetland

A series of sedimentation basins will be installed near the north eastern toe of the TSF to treat runoff from the northern banks of the WRS and outer TSF banks. The sedimentation basins will be designed to remove sediment down to a particles size of 0.01 mm for a 1 in 5 year, 24 hour design storm. This basin will be designed to operate wet, i.e. it does not need to be emptied between storm events. The sedimentation basins will also have a higher level capacity to cope with the excess runoff from a 1 in 100 year 72 hour design storm which is estimated to be 32ML.

Overflow from this basin will then be discharged into the existing evaporation pond for disposal.

#### 7.2 Infrastructure Stormwater Management

#### 7.2.1 Tailings Storage Facility Outer Batters

The proposed TSF will produce increased runoff from its outer batters. This runoff has the potential to contain elevated sediment loads from the outer TSF batters.

To calculate total runoff potential from the TSF during a 1 in 100 year ARI 72 hr storm event, the TSF was divided into two areas based on potential runoff paths as per Figure 1. Runoff from Area G will head towards

F:\Jobs\A48\B2\600\r026.doc Page 3



the Northern Sediment Basin/Wetland, whilst runoff from Area F will drain towards the Decant Water Storage where it will be collected.

Estimated runoff volumes for these two areas are shown in Table 2.

Table 2: Runoff Volumes for the outer batters of the TSF

| Area              | Area<br>Identifier | Area Runoff<br>Coefficient | Area<br>(ha) | Total Discharge (ML)<br>1: 100yr ARI<br>72hr Design Storm |
|-------------------|--------------------|----------------------------|--------------|-----------------------------------------------------------|
| Tailings Disposal | F                  | 1                          | 12           | 16                                                        |
| Facility Batters  | G                  | 1                          | 10           | 13                                                        |

The proposed TSF footprint will intercept a tributary of the Dawesley/Nairne Creek. A diversion channel will be constructed to enable 'clean runoff' to flow around the toe of the TSF, bypassing the Decant Water Storage to reunite with the Dawesley/Nairne Creek tributary immediately up-gradient of the railway culvert on the southern boundary of the site.

A diversion bund will be located at the base of the TSF outer toe to separate 'sediment runoff' from the 'clean runoff' diversion channel. The channel behind the bund will be sized so that runoff will be channelled at non-scouring velocities to the Decant Water Storage or the Northern Sediment Basin/Wetland. To reduce the sediment load in this runoff, contour banks will be located on the batter of the TSF.

#### 7.2.2 Waste Rock Storage

The former WRS from past mining activity at Kanmantoo is located on top of the ridgeline central to the site, and little in the way of runoff is intercepted by the storage. Surface runoff from the trafficked waste rock storage surface currently spills to the side of the waste rock storage.

The current mining proposal includes increasing the height and footprint of the existing waste rock storage, extending to the south-west towards existing drainage lines.

Prior to and during rehabilitation, runoff from the WRS will contain sediment. Runoff will be collected in a series of contour banks around the batters of the WRS to reduce sediment load. Runoff volume calculations from the exposed surface of the WRS have been estimated as presented in Figure 1.

Table 3
Potential 1 in 100 year ARI runoff from the Waste Rock Storage

| Area               | Area<br>Identifier | Area Runoff<br>Coefficient | Area<br>(ha) | Total Discharge<br>(ML)<br>1: 100yr ARI<br>72hr Design Storm |
|--------------------|--------------------|----------------------------|--------------|--------------------------------------------------------------|
| Waste Rock Storage | Α                  | 0.45                       | 11           | 6                                                            |
|                    | В                  | 0.45                       | 17           | 10                                                           |
|                    | С                  | 0.45                       | 13           | 8                                                            |
|                    | D                  | 0.45                       | 14           | 8                                                            |
|                    | E                  | 0.45                       | 5            | 3                                                            |

As for the TSF batters, a diversion bund will be located at the base of the WRS outer toe to separate 'sediment runoff' from the 'clean runoff' diversion channel. The channel behind the bund will be sized so that runoff will be channelled at non-scouring velocities to the Decant Water Storage, Process Area Sediment Basin or the Northern Sediment Basin/Wetland. Around the process areas, runoff will be directed towards these channels so that both 'process runoff' and 'waste rock' runoff are separated from any 'clean' water.

F:\Jobs\A48\B2\600\r026.doc Page 4



Progressive rehabilitation of the exposed waste rock storage slopes will reduce the surface area exposed to rainfall and production of acid drainage (refer elsewhere for further information on management of PAF material). Rehabilitation will reduce the total volume of 'waste rock' runoff but may increase the volume of 'sediment runoff' due to the increased slope lengths caused by the flattening of these slopes in the rehabilitation process.

#### 7.2.3 ROM Pad

Similar to the WRS, the ROM pad will produce sediment laden surface water runoff. This runoff may also contain trace elements from the ore stock piles. Bunding and small scale sediment traps will be used to treat the stormwater at the ROM pad. Overflow will be directed into the Process Area Sediment Basin located on the drainage line southeast of the main processing plant as shown conceptually on Figure 2. The eastern end of the ROM pad will be raised to minimise surface water runoff from upgradient entering the ROM pad.

Calculated runoff from the ROM pad from a 1 in 100 year ARI design storm is approximately 4 ML.

#### 7.2.4 Processing Plant and Mining Services

The processing plant and mining services area includes all areas which have the potential to create contaminated runoff. The majority of these areas are situated upstream of the identifiable drainage lines, minimising the requirement to divert up-gradient surface flow. Surface runoff generated from these areas will be directed to the Decant Water Storage for re-use in the process plant or the Process Area Sediment Basin.

To protect the downstream environment from potential contamination, bunding and chemical containment/treatment will be included (where required) as close as possible to the source of the potentially contaminating activity. Diversion drains will also be incorporated around the processing plant and mining services to minimise the entry of 'clean water' into these areas. Raising haul roads and service roads around the processing plant will enable water streams to be kept separate, reducing the risk of cross contamination and benefit access around the site during wet periods.

The runoff volume estimated for the processing plant is 4 ML from a 1 in 100 year ARI design storm whilst runoff from the mining services area is estimated to be 3 ML. It is proposed that at least 1.5 ML of this runoff will be directed towards the Decant Water Storage and the remaining 5.5 ML will be directed towards the Process Area Sediment Basin.

Where possible, roofed areas will be connected to rainwater tanks for use in garden beds etc.

#### 7.2.5 Haul Roads and Access Tracks

Runoff from haul roads and access tracks will contain high sediment loads. It is proposed that a series of interconnecting drains and culverts will enable this water to be directed to a number of small sediment traps located around the site. These sediment traps will be designed to remove particles down to 0.01 mm for the 1 in 5 year ARI 24hr storm discharge. Roads across identifiable drainage lines will have culverts installed to allow through flow of surface water, limiting the need for remediation work after rainfall events.

Once the sediment load in this runoff is reduced the clean water will be discharged into the pre-existing drainage paths.

#### 7.3 Flood Defence

As the current planned location of pits are situated in elevated locations, the ability of a 1 in 100 year ARI flood to pose a risk to pit operations is limited, but may require further investigation.

Considering the layout of the site and the orientation of the mining associated infrastructure, the consequences of a flood will be limited to the localised disruption of mining services. The installation of diversion banks around the site, to limit the contamination of the different runoff streams, should ensure protection from a 1 in 100 year ARI flood. All bunding installed should be designed to limit the extent of flooding. Designing this bunding with a free board of approximately 0.5m would suitably control the potential for flooding and minimise the risk to life and property.

### **8 MINE CLOSURE**

Mine closure will involve extensive reshaping and rehabilitation of disturbed areas to a natural condition. The implementation of leading practice techniques will enhance the long term sustainability of the rehabilitation works.

F:\Jobs\A48\B2\600\r026.doc Page 5



At closure, the TSF and WRS will be shaped for natural surface drainage and erosion rates similar to those of natural landforms in the area. Most of the preparatory work required to protect the environment is being undertaken as part of the Mining and Rehabilitation Plan (MARP) and will be implemented throughout the operations phase.

The closure phase will consist largely of the last stages of decommissioning, including demolition of infrastructure, final land-forming, revegetation and commencement of a post-closure monitoring program.

Rock filled gullies on the outer slopes of the waste rock storage should be constructed to handle excessive rainfall runoff as other drainage lines in the region show signs of significant erosion. Concave slope profiles, which mimic natural slopes, limit the loss of sediment from the slope. The Decant Water Storage liner will be removed and existing storages modified to operate as permanent sediment basins. Natural drainage paths will be reinstated, where possible.

#### 9 CONCLUSIONS AND RECOMMENDATIONS

The conceptual surface water management plan for the Kanmantoo Copper Gold Project is to:

- Maintain discharge from site of clean runoff
- Capture sediment runoff for treatment in silt traps prior to discharge
- Capture waste rock runoff and reuse the water in the processing circuit or treatment in sediment basins/wetlands
- Capture and treat *process runoff* at the source, diversion to sediment basin for treatment prior to discharge or storage in lined storage facilities and reuse in the processing circuit.

Regards, Aquaterra

Matt Driver Water Resources Engineer Glenn Passfield Senior Water Resources Engineer

F:\Jobs\A48\B2\600\r026.doc Page 6





Kanmantoo proposed site drainage plan Figure 2

aquaterra

F:\Jobs\A48\B2\600\Figure2\_026.doc

# **Appendix 2D**

**Surface Water Management Plan** 



Ground Floor, 15 Bentham Street Adelaide, South Australia, 5000 Tel: (08) 8410 4000

Tel: (08) 8410 4000 Fax: (08) 8410 6321

# Memo

To: Victoria Alivanoglou Company: Coffey Natural Systems

From: Glenn Passfield Job No: A48

**Date:** 15/04/2008 **Doc No:** 008c

Subject: Kanmantoo Copper Ore Project – Topsoil Stockpile and Road Surface Water Management

Victoria,

We refer to our recent proposal regarding the provision of further surface water information relating to the Kanmantoo Copper Project Mining Lease Proposal. This memo presents and discusses the results of our investigations.

#### 1. Background

In July 2007, Aquaterra was commissioned by Hillgrove Resources to provide a preliminary stormwater management conceptual design for input to the Kanmantoo Copper Project Mining Lease Proposal. This design was presented to Hillgrove resources in August 2007 (Doc. Ref. 026, 08/08/2007).

At that time, the location of haul roads and topsoil stockpiles was not known. This information is now available, and Aquaterra have now been commissioned to provide further detail with regard to the design and location of silt traps pertaining to the haul roads and topsoil stockpiles. These nominal design arrangements are presented in the section below.

#### 2. Topsoil Stockpile Silt Traps

It is proposed that each of the individual topsoil stockpiles (6 No.) will have an associated silt trap. The primary purpose of these silt traps is to:

- a) Reduce the sediment load arriving at the larger sediment ponds and reduce the maintenance requirements on these sediment ponds; or
- b) In the case that the stockpile drains directly into an existing watercourse, to reduce the sediment load arriving at the watercourses to an acceptable level.

Effective sediment removal is largely a function of surface area, and as the proportion of sediment required to be removed increases, the required surface area increases also. The proposed level of sediment removal for this project is 100% of 0.01mm size particles for a 1 in 5 year, 24 hour rainfall event. It should be noted that this will also remove approximately 25% of 0.005mm size particles.

The required surface area for the above design is approximately 16,000 m<sup>2</sup> per m<sup>3</sup>/s of inflow. The inflow rates (and hence the size of each trap) will vary depending on the surface area of the proposed stockpiles.

The estimated total rainfall for the 1 in 5 year, 24 hour rainfall event is 57.8mm (average 2.5 mm/hr), as presented in the above mentioned Aquaterra Report. Assuming a runoff coefficient of 60% (conservative) the following table (Table 1) summarises the required silt trap dimensions. It is generally recommended that the length to width ratio of the trap should be at least 3:1. Our calculations below assume a length to width ratio of 4:1. It should also be noted that the dimensions below include the additional space required for the inner batter, crest and outer batter, which adds an approximate 20m to both the length and the width of the

F:\Jobs\A48\C1\008c.doc



silt trap (assuming inner and outer slope batters of 1:3, and a crest width of 3m, for an internal height of 1.1m). It should also be noted that the above assumes a relatively level ground surface – the dimensions are likely to increase in steep locations.

**Table 1: Kanmantoo Topsoil Stockpile Silt Trap Dimensions** 

| Topsoil Stockpile | Surface Area<br>(km²) | Estimated Runoff (m³/s) | Silt Trap Dimensions<br>(m x m) |
|-------------------|-----------------------|-------------------------|---------------------------------|
| 1a                | 0.0118                | 0.0049                  | 37.8 x 24.5                     |
| 1b                | 0.0393                | 0.0164                  | 52.4 x 28.1                     |
| 2                 | 0.0244                | 0.0102                  | 26.4 x 45.5                     |
| 3                 | 0.0031                | 0.0013                  | 22.3 x 29.1                     |
| 4                 | 0.0068                | 0.0028                  | 23.4 x 33.3                     |
| 5                 | 0.0137                | 0.0057                  | 24.8 x 39.0                     |
| 6                 | 0.0179                | 0.0074                  | 25.5 x 41.8                     |

It should be noted that Stockpile No.1 straddles a catchment divide, and all runoff cannot be brought to a single silt trap. As such, two silt traps will be required for this stockpile.

The attached figure (Figure 2 revised from previous Aquaterra report) details the locations of the stockpiles and associated silt traps, and also indicates the proposed flow paths upon leaving the silt trap.

All the silt traps will have a rock lined overflow weir which will allow water to escape the trap in the event of rainfall events larger than a 1 in 5 year, 24 hour event.

The attached figure (A48-SK-001) show typical designs and details for typical drain cross sections, entrance and exit details and location of rip rap around overflow/inlet weirs.

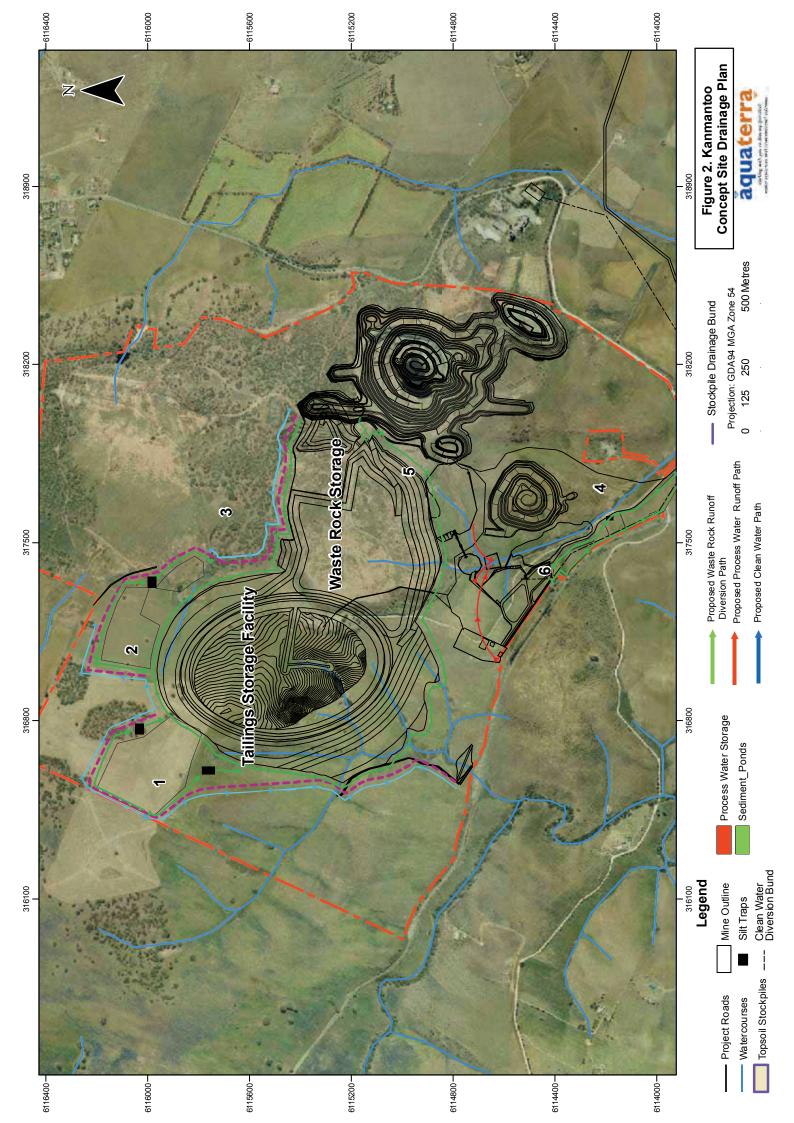
#### 3. Haul Road/Access Road Stormwater Management

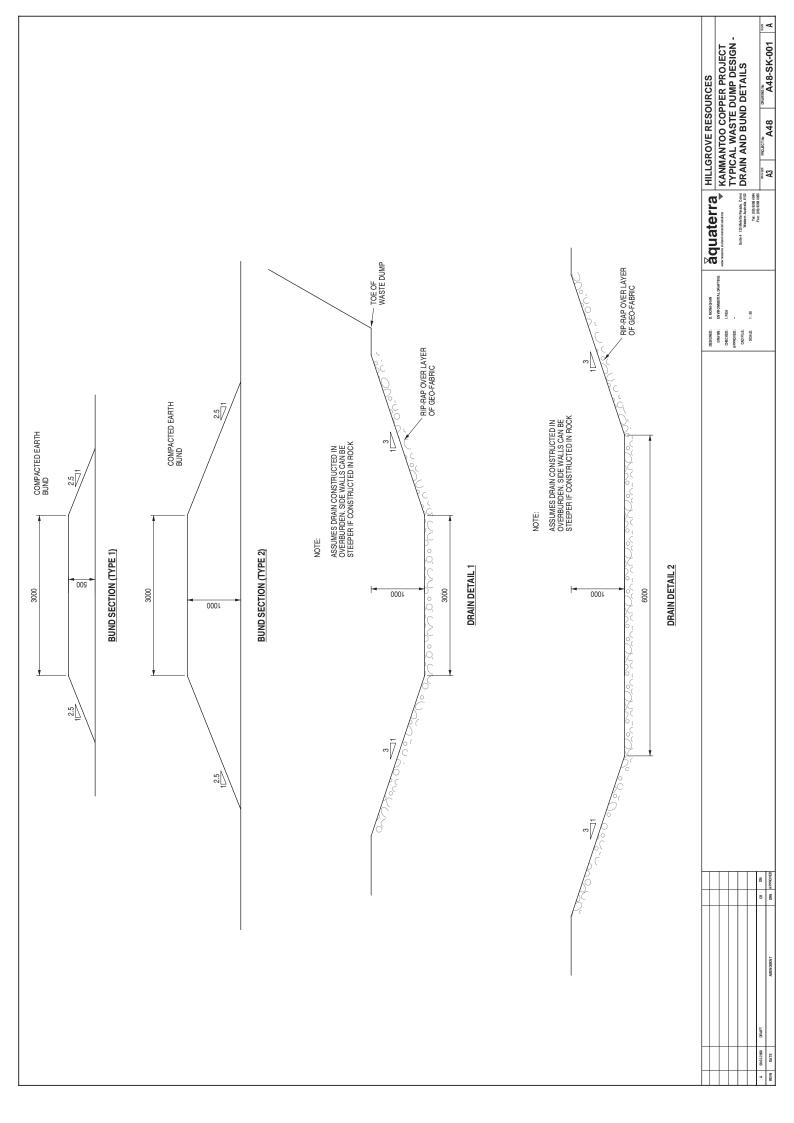
Typically, the management of stormwater from haul roads and access roads would form part of the road design, and would normally involve the construction of 'turn-offs' – a cutting into the side of the road at certain intervals which diverts surface water runoff away from the road and into the adjacent bushland areas, whereby the velocities are suddenly decreased, and the majority of the sediment load drops out of the runoff in very close proximity to the source, i.e. the road. The intervals at which these turn-offs are constructed is largely dependent on the gradient of the road, i.e. steeper sections would require the turn-offs at closer intervals than for less steep roads. Generally, sedimentation ponds and silt traps would not be used in haul road stormwater management.

At this stage, it is not possible to show the locations of the 'turn-offs', however, as described above, it is anticipated that rainfall runoff arising from the haul roads would be contained within the general haul road corridors.

We trust this design memo is sufficient for your needs, but should you have any queries, please do not hesitate to contact the undersigned to discuss.

Regards, Aquaterra


Daragh


Daragh Monaghan
Senior Water Resources Engineer

Glenn

Glenn Passfield
Senior Water Resources Engineer

F:\Jobs\A48\C1\008c.doc Page 2





# **Appendix 2E**

Surface Water Management Plan, 2010

| Kanmantoo Copper Project      |                  |                          |  |  |  |
|-------------------------------|------------------|--------------------------|--|--|--|
| Surface Water Management Plan |                  |                          |  |  |  |
|                               | Issue: Version 4 | <b>Date:</b> 9 July 2010 |  |  |  |
| HILLGROVE<br>RESOURCES        | Authorised by:   | Signature:               |  |  |  |

# 1. Background

The rivers and catchments of South Australia are governed by its largely semi-arid climate, resulting in some of the most variable rainfall and surface water flows (runoff) in the world. Annual rainfall in the area averages 424 mm, most of which falls in the winter months. Local drainage systems in the region of the mining lease are ephemeral, flowing only after large rainfall events.

Drainage in the ML area is ephemeral, with streams only flowing after high rainfall events. The annual average flow rate of the ML area (based on a catchment area of 4.4 km²) is estimated to be 4.7 L/s . Drainage from the ML area reports eventually to the Bremer River, either via Dawesley Creek and Mount Barker Creek or via an unnamed ephemeral stream (Figure 1). The Bremer River has distinct annual high (winter and spring) and low (summer) flows, and runs south for about 40 km through Hartley and Langhorne Creek before discharging to Lake Alexandrina. Lake Alexandrina forms part of the Ramsar-listed Coorong, Lake Alexandrina and Lake Albert Wetland (see Figures 1 and 2).

#### 1.1 Uses and Environmental Values

The *Natural Resources Management Act 2004* requires that regional Natural Resource Management Boards prepare a water allocation plan for each of the prescribed water resource regions. The mining lease is located within the Eastern Mount Lofty Ranges prescribed water resource region. A Water Allocation Plan is in the process of being prepared and will be a statutory instrument that will be used to guide the granting of licenses to take water, as well as the process for transferring of water licences and/or water allocations as well as providing environmental flows.

Generally, surface waters in South Australia are protected to provide maintenance of aquatic systems, recreational and aesthetic values, potable water uses, and agricultural and industrial uses. Specifically, the environmental values for the Bremer River include the maintenance of ecosystems, potable water, livestock drinking water and irrigation.

#### 1.2 Water Quality

The major water quality concerns in the Mount Lofty Ranges watershed are generally the result of a number of small influences (diffuse pollution) combining to produce a major effect on water quality. The major pollutants include faeces, parasites (*Cryptosporidium* and *Giardia*), nutrients, sediment and pesticides. Specifically, water quality problems in the Bremer River catchment are most likely to include elevated turbidity, heavy metal, and nutrient levels are the most likely water

#### Surface Water Management Plan Kanmantoo Copper Project

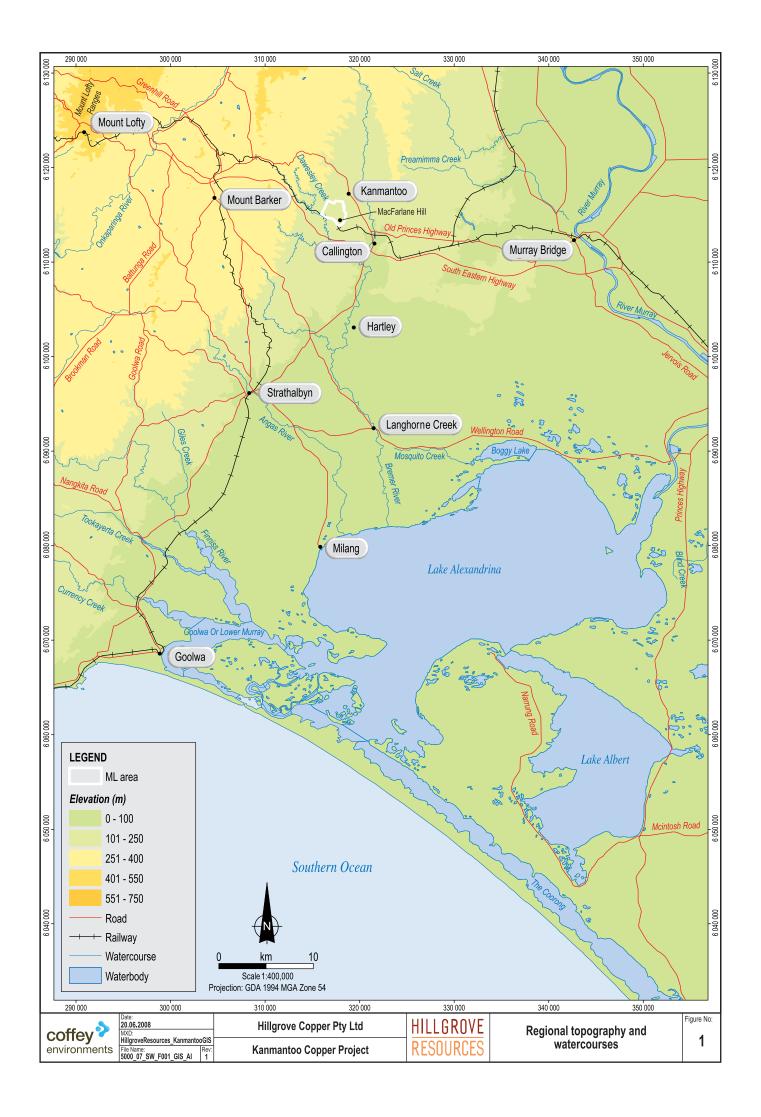
quality problems. Within the mining lease, stored water in the old pit and old tailings dam are known to be acidic, have high electrical conductivity and a chemical composition typical of minerelated acid rock drainage.

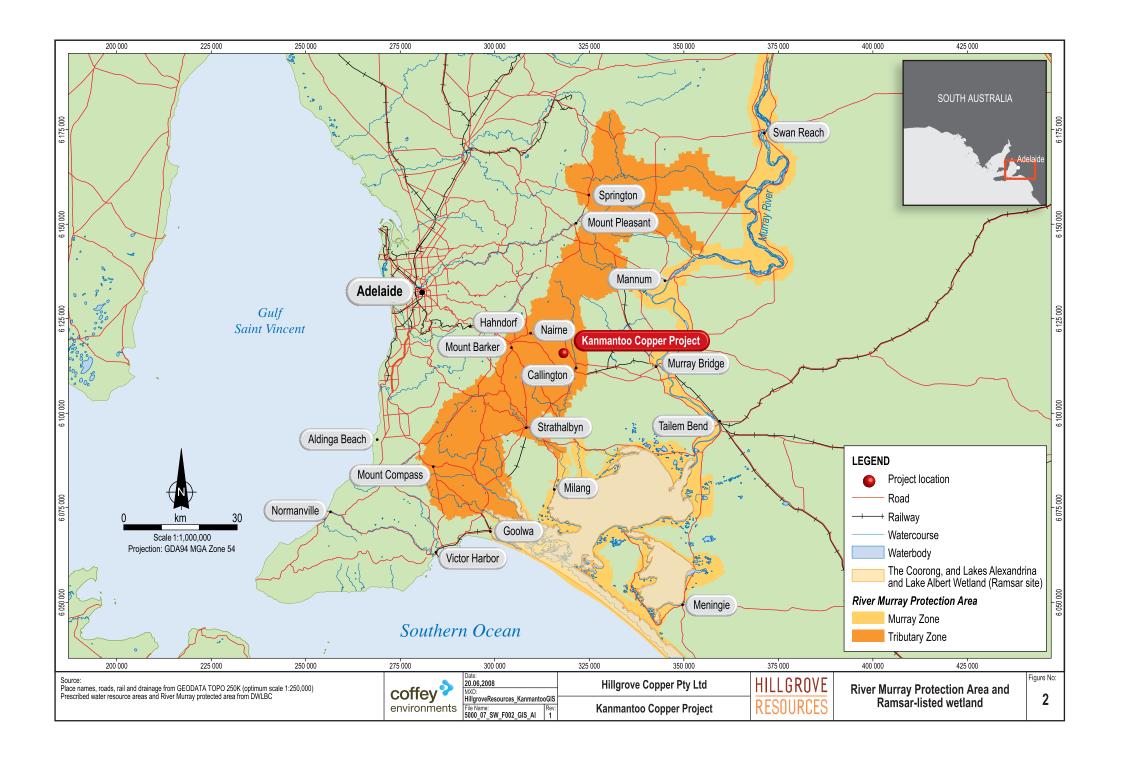
The mining lease and surrounds contains mineralisation and hence the soil, rock and stream sediments contain high concentrations of some metals.

# 2. Relevant Legislation

A Water Allocation Plan for the region is in the process of being prepared in accordance with the *Natural Resources Management Act 2004* and will be a statutory instrument that will be used to guide the granting of licenses to take water, as well as the process for transferring of water licences and/or water allocations.

Relevant legislation includes:


#### State:


- Environment Protection Act 1993.
  - Environment Protection (Water Quality) Policy 2003.
- Water Resources Act 1997.
- Natural Resources Management Act 2004.
- River Murray Act 2003.
- Mining Act 1971.

#### Commonwealth:

· None.

Surface water resources are protected at the State level however, the National Water Initiative to which the Commonwealth and South Australian governments are signatories, provides a platform for water reform in Australia. The National Water Initiative contains a number of performance indicators for surface water management.





# 3. Statutory Responsibilities

### 3.1 Mining Lease Conditions

A mining lease for operations at the Kanmantoo Copper Project has been issued (ML 6345), subject to conditions, under the Mining Act. These conditions must be complied with during all phases of the mining operation. Specifically, the following conditions must be adhered to in relation to surface water management:

- Condition 17: If the Lessee must in constructing and operating the Lease ensure that there is
  no adverse impact to the quality and quantity of surface or groundwater caused by mining
  operations to water dependent ecosystems or existing users unless adequate alternate
  supplies are provided in accordance with Condition 18 (below).
- Condition 18: If the Lessee adversely affects the ability of other persons to take water from any
  watercourse, well or dam, the lessee must replace or deepen existing wells if they are
  substantially affected by dewatering activities, or provide alternative water sources for the
  affected users regardless of cessation of mining operations whereby:
  - A 'substantial affect' is determined by the movement of physical or chemical parameters of the water in the subject well beyond normal seasonal variation. This is to be determined by the relevant authority, and;
  - An 'alternative water source' includes the potential to lower pumps, deepened weeks, extend supply form one of the Lessee's well, or connection to the SA Water mains. In the case of any dispute, the final decision on an alternative water source is to be determined by PIRSA in consultation with the affected landholder and the Lessee.
- Condition 20: The Lessee must in constructing and operating the Lease ensure no stormwater contaminated as a result of mining operations is to leave the Lease area or result in contamination of soil at closure within the Lease area.
- Condition 21: The Lessee must in constructing and operating the Lease ensure no water runoff from the Lease results in flooding of adjacent areas, to an extent greater than that could reasonably be expected to occur prior to mining operations being established on the Lease.
- Condition 22: The Lessee must in constructing and operating the Lease ensure that no
  contamination and/or pollution of natural water drainage systems, streams and rivers,
  groundwater, land and soils occurs either on or off site is caused by waste products (other
  than mine waste and tailings) and hazardous materials used in mine operations.
- Condition 25: The Lessee must in constructing and operating the Lease ensure that no
  contamination of natural drainage systems, streams and creeks, and no contamination beyond
  approved EPA limits for groundwater, land and soils occurs either on or off the site resulting
  from permanent or temporary storage of the mine waste and tailings.
- Condition 27.4: No compromise of the quality and quantity of surface water to existing users and water dependent ecosystems.

## 3.2 MARP Commitments

A Mining and Rehabilitation Program (MARP) for the Kanmantoo Copper Project has been approved under the Mining Act for use during all phases of the mining operation. The MARP includes detailed and specific information on environmental control measures and establishes outcome-based performance criteria for the mining operation, presented in the table below. This management plan incorporates commitments made in the MARP that relate to surface water management.

Table 1 Control measures and performance criteria for surface water management

| Outcome                                                                                                                                                                                                                                             | Leading Indicator Criteria/<br>Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Summary of Control Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No adverse impact to the quality and quantity of surface water caused by mining operations to water dependant ecosystems or existing users unless adequate alternate supplies are provided in accordance with Condition 18 of the lease conditions. | Photo monitoring of selected surface water management structures (see Figure 3) shows no erosion issues, structures are maintained as per design and operating as per design during/after rainfall. Monitoring will be conducted opportunistically during/after significant rainfall or quarterly if no rain.  Assessment Criteria:  Opportunistic water quality monitoring (i.e., after rainfall events which generate streamflow) of the two drainage lines downstream of the mine at or near the lease boundary (SW1 and SW2)#. Samples to be analysed for pH, turbidity, conductivity, hydrocarbons and water level taken, results not to exceed the ANZECC/ARMCANZ (2000) guidelines for mining (pH 6.5 to 9; turbidity 50 NTU; hydrocarbons 0 mg/L and EC not to exceed range <sup>a</sup> (100 to 5,000 µS/cm). (1) | Construction, and regular inspection, of surface water drainage/diversion system and sediment controls.  Diversion of clean up-gradient runoff around infrastructure and back into the existing drainage path using channels and bunds.  No off-site discharge of mine-contaminated water.  Re-use or treatment of contaminated water.  Integrated waste landform designed and constructed to avoid formation of ARD from waste rock (by encapsulating PAF material and implementing a cover on closure).  HDPE liner on TSF floor and underdrainage system to collect seepage.  Ensuring areas to be disturbed are minimised and clearing complies with relevant requirements.  Progressively rehabilitating cleared land.  Maintenance of freeboards on water storage facility. |

| Outcome                                                                                                                                                     | Leading Indicator Criteria/<br>Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Summary of Control Measures                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No stormwater contaminated as a result of mining operations is to leave the lease area or result in contamination of soil at closure within the lease area. | Photo monitoring of surface water management structures shows no erosion issues, structures are maintained as per design and operating effectively as per design during/after rainfall. Monitoring will be conducted opportunistically after a significant rainfall event or quarterly if no significant rain. Water quality monitoring of selected sediment traps (containing stormwater) for pH, conductivity and turbidity. Monitoring will be conducted opportunistically during/after a significant rainfall event. Selected samples (average two per year for each sediment trap also analysed for metals, major ions, nutrients and hydrocarbons).  Assessment Criteria:  Opportunistic water quality monitoring (i.e., after rainfall events which generate streamflow) of the two drainage lines downstream of the mine at or near the lease boundary (SW1 and SW2)#. | Construction, and regular inspection, of surface water drainage/diversion system and sediment controls.  Diversion of clean up-gradient runoff around infrastructure and back into the existing drainage path using channels and bunds. |

# 4. Issues

The Environment Protection (Water Quality) Policy 2003 aims to protect a range of environmental values. The maintenance of aquatic ecosystems generally requires the most stringent water quality of all protected environmental values. Kanmantoo Copper Project will aim to ensure that all construction and operational mining activities do not negatively impact on aquatic ecosystems in the region.

Key issues of concern to surface water are:

- Changes in water quality (due to increased concentrations of total suspended solids and associated contaminants) and physical effects on aquatic fauna.
- Physical alteration of stream habitat (in-stream deposition).
- Chemical contamination of watercourses.
- · Altered flow regimes.

# 5. Objectives

The objective of this management plan is:

 No long-term adverse effects on aquatic fauna and habitats due to the generation of fugitive sediment, chemical contamination or altered flow regime.

# 6. Associated Plans

- Waste Management Plan.
- Groundwater Management Plan.
- Potentially Acid Forming Rock Management Plan.
- · Mine Closure and Rehabilitation Plan.

# 7. Standard Operating Procedures

- Surface Water and Stream Sampling.
- · Spill Response.

#### 8. Forms

· Post-rainfall Event Inspection Checklist.

# 9. Responsibilities

### 9.1 General Manager

The general manager will:

• Provide resources to implement the surface water management plan.

#### 9.2 Environmental Coordinator

The environmental coordinator will:

- Implement the surface water management plan.
- · Coordinate monitoring activities.
- · Report monitoring results to government agencies.
- Review monitoring results, assess management action efficiency against results and either revise this management plan or implement corrective actions as applicable.
- Train and induct all employees on the requirements of the surface water management plan.

# 9.3 Department Managers

The department managers will:

- Support and promote the importance of minimisation impact on the environment.
- Ensure that personnel implement requirements of the surface water management plan.

#### 9.4 All Personnel

All personnel will:

- · Comply with requirements of the surface water management plan.
- Undertake an environmental induction.

# 10. Surface Water Quality Management

General surface water quality management procedures are covered in the Surface Water Quality Management Standard Operating Procedure and include:

#### 10.1 Sediment

- Implementation and operation of the surface water management structures as designed to ensure that no significant sediment from disturbed areas is transported off-site.
- Installation of a diversion channel to ensure a Dawesley Creek ephemeral tributary is not hindered by the interception of the integrated waste landform. The diversion channel will allow water to flow around the toe of the integrated waste landform, and join with the creek on the southern boundary of the site (Figure 3).
- Construction of diversion bunds at the base of the integrated waste landform to separate sediment runoff form the clean runoff diversion channel. The diversion bund will direct sediment-laden runoff to either the TSF return water storage or to the northern sediment diversion and pond (Figure 3).
- Installation of a series of silt traps associated with each individual topsoil stockpile to reduce the sediment load arriving at the larger sediment ponds and at the watercourses (Figure 3).
- Placement of bunding and small scale sediment traps around the ROM stockpile. Overflow will be directed to the run-off collection pond. Clean water will be directed to the clean run-off collection pond adjacent to the processing plant (Figure 3).
- Construction of drains and culverts along haul roads and access track to direct runoff to a number of small sediment traps (Figure 3).
- The quality of water in sediment basins will be routinely monitored.
- Sediment accumulated in sediment basins will be removed periodically and disposed of to the active section of the integrated waste landform.

#### 10.2 Chemical Contamination

- Miscellaneous chemicals will be purchased in small volumes and stored in accordance with Australian Standards and EPA guidelines.
- Installation of hyrdrocarbon interceptors and chemical containment areas (where required) to protect the downstream environment from potential contamination.
- If a chemical spill occurs Hillgrove's Spill Response SOP will be followed to ensure contamination is minimised and spills are cleaned up properly.
- The Laratinga wastewater will be treated to at least Class A guidelines and approved by the Department of Health for use on the site.

# 11. Monitoring Procedures

Ongoing surface water monitoring will be conducted to allow identification of any impacts of mine construction and operations on surface water. Monitoring will be conducted at stream gauging stations, including sites upstream and downstream of the mining lease on Dawesley Creek, Mount Barker Creek and the Bremer River (Figure 3). Opportunistic sampling in the ephemeral creeks surrounding the mining lease will occur during high rainfall events. Potential sources of mine water discharge to the surrounding environment will also be monitored.

# 11.1 Parameters and Frequency

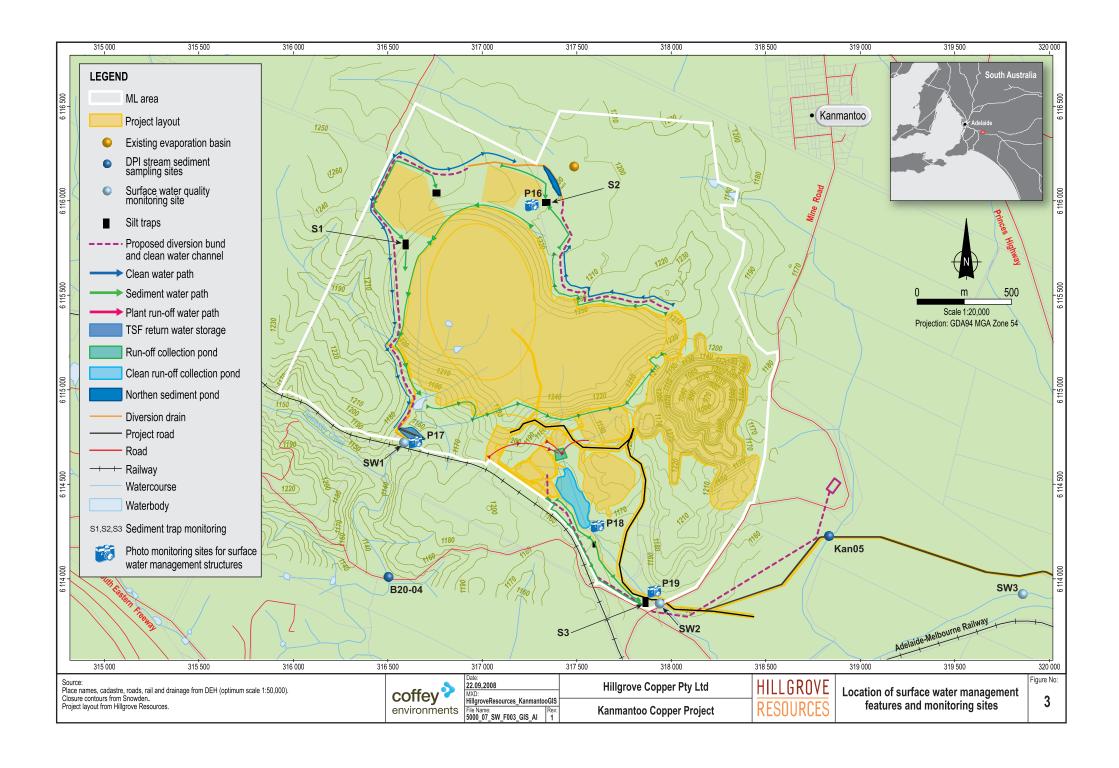

Monitoring stations have been installed within and adjacent to the mining lease (Figure 3). These stations will be monitored in accordance with the following table.

Table 2 Surface Water Monitoring Schedule and Parameters

| Aspect                                 | Method                                                                                                                                                                                                                                                                                                                                               | Location                                                                                                                       | Frequency                                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Sediment                               | Photo monitoring of selected surface water management structures                                                                                                                                                                                                                                                                                     | P16 - P19 (Figure 3)                                                                                                           | Opportunistically during/after significant rainfall or quarterly if no rain.      |
| Stormwater<br>contamination of<br>soil | <ul> <li>Soil sampling and analysis:</li> <li>Metals - Al, As, Cd, Cr, Cu, Fe, Mn, Hg, Ni, Pb, Zn.</li> <li>Nutrients.</li> <li>Hydrocarbons.</li> <li>Analysis will be conducted by an external/independent laboratory and the results will be accurate to standard detection limits.</li> </ul>                                                    | Sites down gradient of major mine infrastructure and sediment traps (exact sites to be determined by contamination consultant) | At mine closure<br>(baseline taken prior to<br>disturbance of particular<br>area) |
| Water quality                          | <ul> <li>Water sampling and analysis:</li> <li>pH, conductivity, TSS.</li> <li>Hydrocarbons.</li> <li>Analysis will be conducted by an external/independent laboratory and the results will be accurate to standard detection limits.</li> <li>Water level will also be recorded.</li> </ul>                                                         | SW1 and SW2 (Figure 3)                                                                                                         | Opportunistically during/after a significant rainfall event.                      |
|                                        | Water sampling and analysis:  • pH, conductivity, turbidity, TSS.  • Metals: Al, As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Hg, Ni, Se, Zn (filtered and unfiltered) (selected samples).  • Major ions: Ca, Mg, SO <sub>4</sub> (selected samples).  • Alkalinity, DOC, nutrients (selected samples).  • Nutrients and hydrocarbons (selected samples). | Selected sediment<br>traps (containing<br>stormwater) (S1-S3,<br>Figure 3).                                                    | Opportunistically during/after a significant rainfall event.                      |

# Surface Water Management Plan Kanmantoo Copper Project

| Aspect      | Method                                                                                                                                                   | Location                                                                                               | Frequency                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|             | Water depth.                                                                                                                                             |                                                                                                        |                                                                                                       |
|             | Two selected samples per year for each sediment trap will have the full analysis.                                                                        |                                                                                                        |                                                                                                       |
|             | Water sampling and analysis:  • pH, conductivity, turbidity, TSS.  • Metals: Al, As, Ba, Cd, Cr, Co,                                                     | Surface water<br>monitoring sites<br>(Figure 3):<br>• Drainage lines near<br>ML boundary (SW1          | Opportunistically during/after rainfall events that generate stream flow on average every six months. |
|             | Cu, Fe, Pb, Mn, Mo, Hg, Ni, Se, Zn (filtered and unfiltered).  • Major ions: Ca, Mg, SO <sub>4</sub> .  • Alkalinity, DOC, nutrients (selected samples). | and SW2).  • Dawesely River upstream of SW1 at B24-05.                                                 | ·                                                                                                     |
|             | Water level.  Analysis will be conducted by an                                                                                                           | Dawesely River<br>downstream of SW1 at<br>B20-04.                                                      |                                                                                                       |
|             | external/independent laboratory and the results will be accurate to standard detection limits.                                                           | Unnamed drainage<br>line upstream of SW2<br>discharge at Kan 05.                                       |                                                                                                       |
|             |                                                                                                                                                          | Unnamed drainage<br>line downstream of<br>SW2 at SW3.                                                  |                                                                                                       |
| Flooding    | Visual inspection – freeboard.                                                                                                                           | Water storage facilities                                                                               | Weekly                                                                                                |
| TSF decant  | Water sampling and analysis:                                                                                                                             | TSF decant structure.                                                                                  | Monthly                                                                                               |
|             | pH, conductivity, TDS.                                                                                                                                   |                                                                                                        |                                                                                                       |
|             | Decant rate.                                                                                                                                             |                                                                                                        |                                                                                                       |
|             | Water sampling and analysis:                                                                                                                             | TSF decant structure.                                                                                  | Quarterly                                                                                             |
|             | Metals: Al, As, Be, Ba, Cd, Co, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, V, Zn.                                                                                   |                                                                                                        |                                                                                                       |
|             | • Major ions: Ca, Mg, Na, K, Cl, SO <sub>4</sub> , CO <sub>3</sub> , HCO <sub>3</sub> .                                                                  |                                                                                                        |                                                                                                       |
| TSF seepage | Water sampling and analysis:  • pH, conductivity, TDS.                                                                                                   | Water sampling and analysis:                                                                           | Monthly.                                                                                              |
|             | Seepage rate.                                                                                                                                            | • Metals: Al, As, Be,<br>Ba, Cd, Co, Cr, Cu,<br>Fe, Pb, Mn, Hg, Ni,<br>Se, V, Zn.                      |                                                                                                       |
|             |                                                                                                                                                          | • Major ions: Ca, Mg,<br>Na, K, Cl, SO <sub>4</sub> , CO <sub>3</sub> ,<br>HCO <sub>3</sub> .          |                                                                                                       |
|             | Water sampling and analysis:  • Metals: Al, As, Be, Ba, Cd, Co, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, V, Zn.  • Major ions: Ca, Mg, Na, K, Cl,                 | Water sampling and analysis:  • Metals: Al, As, Be, Ba, Cd, Co, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, V, Zn. | Quarterly                                                                                             |
|             | SO <sub>4</sub> , CO <sub>3</sub> , HCO <sub>3</sub> .                                                                                                   | • Major ions: Ca, Mg,<br>Na, K, Cl, SO <sub>4</sub> , CO <sub>3</sub> ,<br>HCO <sub>3</sub> .          |                                                                                                       |



## 12. Compliance Criteria

Monitoring demonstrates:

- No project-specific changes in the health of remnant native riparian vegetation, where present, in Dawesley and Mount Barker creeks (as determined by vegetation survey carried out as part of vegetation monitoring).
- Photo monitoring of selected surface water management structures shows no erosion issues, structures are maintained as per design and operating effectively as per design during/after rainfall.
- Water quality samples to be analysed for pH, turbidity, conductivity, hydrocarbons and water level taken, results not to exceed the ANZECC/ARMCANZ (2000) guidelines for mining (pH 6.5 to 9; turbidity 50 NTU; hydrocarbons 0 mg/L and EC not to exceed range (100 to 5,000 µS/cm).
- At mine closure, soil sampling of stockpiles will be conducted to ensure no contamination as defined by Natural Environmental Protection Measures (NEPM) Standard Residential Health and Interim Urban Ecological investigation levels or a statistically significant difference in soil quality from baseline (which will be taken prior to disturbance on particular area). The number of soil samples will be consistent with the number of baseline soil samples taken. Soil will be analysed for metals (Al, As, Cd, Cr, Cu, Fe, Mn, Hg, Ni, Pb, Zn), nutrients and hydrocarbons.

# 13. Review and Reporting

The surface water monitoring results will be reviewed regularly, with the results assessed against management action efficiency. Depending on the results of this review, the management plan will either be revised or corrective actions will be implemented as applicable.

Additionally, the surface water management structures will be regularly inspected for competency and to ensure they are operating efficiently. Their design and operation will be adapted as required where these inspections identify inefficiencies.

Reporting requirements include as a minimum:

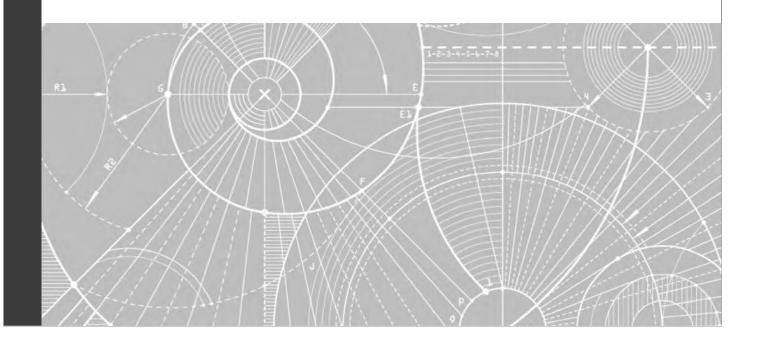
- Hillgrove must provide to the Director Mines an annual Mining and Rehabilitation Compliance Report (MARCR) on operations carried out on the Lease and compliance with the approved MARP.
- Hillgrove must report any non-compliance with the Act, Lease Conditions and approved MARP
  to the Director of Mines. A verbal notification must be provided within 24 hours, after Hillgrove
  becomes aware of the non-compliance. A written report must be provided within 3 days of
  such time period as approved by the Director of Mines.
- Hillgrove must report to the Environment Protection Authority (EPA) (on EPA emergency phone number 1800 100 833) all incidents causing or threatening serious or material environmental harm (as defined in section 5 of the Environment Protection Act), upon becoming aware of the incident, in accordance with section 83 of the EP Act.

**Appendix 3** 

Groundwater

# Appendix 3A

**Groundwater Monitoring and Management Plan** 


# Kanmantoo Copper Mine

HILLGROVE RESOURCES

Groundwater Monitoring and Management Plan

Revision 8

16 May 2014







### Kanmantoo Copper Mine

Project no: VE23832

Document title: Groundwater Monitoring and Management Plan

Document no: VE23832\_GMMP\_Rev8

Revision: 8

Date: 16 May 2014

Client name: Hillgrove Resources

Client no:

Project manager: Michael Cowin

Author: Jennifer Whelan / Michael Cowin

File name: I:\VESA\Projects\VE23832\Deliverables\Reports\GMMP Update\Kanmantoo Copper Mine

GMMP 2013\_Revision 8\_FINAL.docx

Sinclair Knight Merz Pty Ltd (Jacobs) ABN 37 001 024 095 Level 5, 33 King William Street Adelaide SA 5000 Australia PO Box 8291 T +61 8 8424 3800 F +61 8 8424 3810

COPYRIGHT: The concepts and information contained in this document are the property of Sinclair Knight Merz Pty Ltd (Jacobs). Use or copying of this document in whole or in part without the written permission of Jacobs SKM constitutes an infringement of copyright. Jacobs® is a trademark of Jacobs Engineering Group Inc.

### Document history and status

www.jacobsskm.com

| Revision | Date       | Description                                             | Ву                     | Review     | Approved      |
|----------|------------|---------------------------------------------------------|------------------------|------------|---------------|
| 6B       | 30/07/2009 | 2009 revision for review                                | E. Picken              | D McCarthy | D<br>McCarthy |
| 7A       | 08/02/2013 | 2013 revision for review                                | J. Whelan /<br>M.Cowin | J Robinson | J<br>Robinson |
| 7B       | 17/06/2013 | Updated 2013 revision                                   | J. Whelan /<br>M.Cowin | P Howe     | P Howe        |
| 7        | 18/06/2013 | Final (2013)                                            | J. Whelan /<br>M.Cowin | P Howe     | M Cowin       |
| 8        | 16/06/2014 | Updated 2014 revision to address issues raised by DEWNR | J. Whelan /<br>M.Cowin | P. Howe    | P. Howe       |
|          |            |                                                         |                        |            |               |

VE23832\_GMMP\_Rev8

# Groundwater Monitoring and Management Plan



# Contents

| Import | tant note about your report                                         | 1  |
|--------|---------------------------------------------------------------------|----|
| 1.     | Introduction                                                        | 2  |
| 1.1    | Scope                                                               | 2  |
| 1.2    | Site description and mining operations                              | 2  |
| 1.3    | Summary of hydrogeology investigations completed                    | 3  |
| 1.4    | Existing groundwater conditions                                     | 4  |
| 1.4.1  | Background groundwater quality                                      | 6  |
| 1.5    | Groundwater impacts and management issues                           | 6  |
| 1.5.1  | Overview                                                            | 6  |
| 1.5.2  | Potential risks associated with the tailings storage facility (TSF) | 7  |
| 1.5.3  | Potential contaminants of concern                                   | 8  |
| 1.5.4  | Summary                                                             | 8  |
| 2.     | Groundwater management objectives and approach                      | 10 |
| 2.1    | Groundwater management objectives                                   | 10 |
| 2.2    | Groundwater management approach                                     | 11 |
| 2.3    | Responsible parties                                                 | 12 |
| 2.4    | Environmental, health and safety protocols                          | 12 |
| 3.     | Groundwater monitoring                                              | 13 |
| 3.1    | Monitoring schedule                                                 | 13 |
| 3.2    | Groundwater monitoring methodology                                  | 13 |
| 3.2.1  | Groundwater levels                                                  | 13 |
| 3.2.2  | Groundwater usage                                                   | 14 |
| 3.2.3  | Groundwater quality                                                 | 14 |
| 3.3    | Replacement and / or renewal of monitoring wells                    | 15 |
| 4.     | Proposed changes to groundwater monitoring schedule                 | 16 |
| 4.1    | Monitoring frequency                                                | 16 |
| 4.2    | Targeted monitoring wells                                           | 16 |
| 4.3    | Analytical suite                                                    | 16 |
| 4.4    | Summary of proposed changes to monitoring schedule                  | 16 |
| 5.     | Contingency measures                                                | 18 |
| 6.     | Plan review and monitoring review submissions                       | 20 |
| 7      | References                                                          | 21 |



# List of figures

| Figure 1 | Site Location and Disturbed Areas from Previous Mining           |
|----------|------------------------------------------------------------------|
| Figure 2 | Groundwater Well Location Plan                                   |
| Figure 3 | Inferred Groundwater Contours and Flow Direction – November 2011 |

# List of tables (in-text)

| Table 2-1 | Groundwater management objectives        |
|-----------|------------------------------------------|
| Table 3-1 | Groundwater monitoring schedule          |
| Table 4-1 | Proposed groundwater monitoring schedule |
| Table 5-1 | Groundwater management contingencies     |

# **Appendices**

Appendix A. Summary of all current and historical groundwater monitoring infrastructure

Appendix B. Groundwater quality analytical results

VE23832\_GMMP\_Rev8 iii



# Important note about your report

The sole purpose of this report and the associated services performed by Jacobs SKM is to provide a groundwater monitoring and management plan for the Kanmantoo Copper Mine in accordance with the scope of services set out in the contract between Jacobs SKM and the Client. That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs SKM has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs SKM has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs SKM derived the data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report. Jacobs SKM has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs SKM for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs SKM's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs SKM and the Client. Jacobs SKM accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

VE23832\_GMMP\_Rev8 1



# 1. Introduction

#### 1.1 Preamble

Hillgrove Resources Ltd (Hillgrove) is currently updating the Life of Mine Program for Environment Protection and Rehabilitation (LOM PEPR) document for the Kanmantoo Copper Mine. This document describes the mining activities and associated environmental protection and rehabilitation objectives that have been developed for the mining operations. The document is being updated to cover the proposed extension and deepening of the main pit, and increased capacity of the tailings storage facility (TSF). This document will supersede the current approved Mining and Rehabilitation Program (MARP, now referred to as the PEPR) prepared by Coffey Natural Systems Pty Ltd (Coffey) in 2011 (Coffey, 2011). The LOM PEPR is due to be finalised in mid-2014.

During an agency meeting held on 19 March 2014 to discuss the updated LOM PEPR, the South Australian Department of Environment, Water and Natural Resources (DEWNR) raised a number of hydrogeological issues relating to the Kanmantoo Copper Mine project. These issues were discussed further during two subsequent meetings between Hillgrove, DEWNR and Jacobs SKM on 27 March and 14 April 2014. Jacobs SKM provided a response to DEWNRs issues in a letter report dated 14 May 2014 (Jacobs SKM, 2014).

This revised Groundwater Monitoring and Management Plan (GMMP) has been prepared by Jacobs SKM in response to the recommendations made to DEWNR. Once approved this GMMP will supersede the GMMP prepared by SKM in 2013 (SKM, 2013).

# 1.2 Scope

This Groundwater Monitoring and Management Plan (GMMP) describes the activities and commitments that Hillgrove will undertake to monitor and manage potential groundwater impacts associated with the Kanmantoo Copper Mine project. The GMMP forms part of Hillgrove's updated LOM PEPR.

#### The GMMP provides:

- A brief Site description and summary of the hydrogeological investigations undertaken to date
- A summary of potential groundwater impacts and issues identified
- An explanation of groundwater management objectives and approaches
- A detailed groundwater monitoring plan, inclusive of monitoring methodologies, threshold criteria and monitoring frequencies
- Contingency measures for any exceedances to threshold criteria measured during the monitoring
- An outline of the proposed process for future reviews of the GMMP and submission of monitoring reviews to regulatory agencies

A summary of all current and historical groundwater monitoring infrastructure that has been installed and monitored at the site and in the surrounding area is included as Appendix A. The summary table provides the rationale for installation of the infrastructure and serves to provide a record of all operational, decommissioned, and replacement monitoring wells. It is intended that this table be updated throughout the life of the site GMMP.

#### 1.3 Site description and mining operations

The Kanmantoo Copper Mine is located about 40 km southeast of Adelaide in the Eastern Mount Lofty Ranges and is surrounded by cleared land which is used for agriculture and pastoral activities (Figure 1). The nearest towns are Kanmantoo (about 2 km to the north-northeast of the main pit) and Callington (about 4 km to the south-east).

VE23832\_GMMP\_Rev8 2



3

Mining and ore processing has previously been undertaken on-site, with small-scale mining and ore crushing having commenced as early as 1846. From 1971 to 1976, open-pit mining and ore processing (to produce a sulphide ore concentrate for further processing off-site) was undertaken by a joint venture company formed by North and South Broken Hill Metals. During this period the mine produced a total of 4.05 million tonnes of ore grading 1.1% copper. Figure 1 shows the disturbed site areas from previous mining activities.

Hillgrove undertook resource drilling of the Kanmantoo copper ore-body between 2004 and 2011, and on the back of encouraging results, concluded a Definitive Feasibility Study (DFS) and Mining Lease Proposal (MLP) for an open-pit mining and 250 tonne/hr processing operation. The projected mine life is currently estimated at 10 years and includes lateral and vertical extension of the existing open pit (to approximately 300m below ground surface) and mining of multiple satellite pits. The approximate locations and extent of the open pit operations are depicted on Figure 2. Mining operations commenced at the Site in late 2011.

In terms of project water supply, Hillgrove have approval from Mount Barker Council to obtain treated effluent water for ore processing water and dust suppression requirements, which form the majority of the project water supplies.

Future mine operation involves a proposed expansion and deepening of the Cavanagh Pit.

The project site is identified as Mining Lease (ML) 6345 with respect to the site's PEPR.

#### 1.4 Summary of hydrogeology investigations completed

During the course of the DFS and MLP studies, Hillgrove commissioned several hydrogeological investigations to better understand the groundwater resources of the Site and surrounding area and the potential impacts upon them from the (at the time of the investigations) proposed operations. These contributions resulted in an improved understanding of:

- groundwater quality and levels of usage (primarily for stock purposes) in surrounding landholdings
- impacts upon the local groundwater system from previous mining activities in the 1970s
- baseline groundwater conditions across the project site prior to the commencement of mining activities
- mine dewatering and post-mining water balances for mine voids
- the potential for on-site groundwater resources to contribute to process water supply demand
- the potential impact upon existing groundwater users and beneficial uses of surrounding water resources from proposed operations, notably from mine dewatering and potential seepage from the proposed Tailings Storage Facility (TSF)

These investigations are documented in several stand-alone reports that have been incorporated within, and appended to, the issued MLP (Enesar, 2007) and MARP (Coffey, 2010) documents:

- Parsons Brinckerhoff, 2006. *Kanmantoo Mine Background Groundwater Quality Investigation*. Report prepared for Hillgrove Resources. July 2006
- REM. 2006. *Initial Groundwater Assessment of Old Kanmantoo Mine, Callington, South Australia.* 22 December 2006. Report prepared for Hillgrove Resources Limited
- REM. 2007a. *Kanmantoo Copper Project Water Resources Investigation*. 5 June 2007. Report prepared for Hillgrove Resources Limited
- REM. 2007b. Background Groundwater Quality Investigation of Regional Bores Kanmantoo Copper Project, South Australia. 29 June 2007. Report prepared for Hillgrove Resources Limited
- REM. 2007c. *Kanmantoo Copper Project Groundwater Impact Assessment.* 31 August 2007. Report prepared for Hillgrove Resources Limited
- REM. 2008. Kanmantoo Copper Project Groundwater Impacts of Potential Seepage from Tailings Storage Facility. 25 February 2008. Report prepared for Hillgrove Resources Limited

VE23832 GMMP Rev8



- SKM. 2008a. Addendum to Final Report Groundwater Impacts of Potential Seepage from Tailings Storage Facility (dated 25 February 2008). Prepared 5 August 2008
- SKM. 2008b. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 5 September 2008
- SKM. 2008c. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 9 September 2008
- SKM. 2008d. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 15 September 2008
- SKM. 2008e. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 16 September 2008
- SKM. 2008f. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 18 September 2008
- SKM. 2008g. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 23 September 2008
- SKM. 2008h. Letter Report Baseline Assessment of Landholders Bores (October 2008), Kanmantoo Copper Project. Prepared 6 November 2008
- SKM. 2009. Letter Report Summary of Tailings Storage Facility Redesign and Review of Groundwater Monitoring and Management Requirements, Kanmantoo Copper Project. 20 March 2009

In accordance with the Site GMMP groundwater monitoring was undertaken to establish baseline conditions prior to the commencement of mining operations. These investigations are documented in several stand-alone reports as follows:

- SKM. 2010. Pre-Mining Assessment of Landholders Bores (October 2010) Kanmantoo Copper Project.
   November 2010
- SKM. 2010. Groundwater Monitoring Program, Kanmantoo Copper Project, October 2010. December 2010
- SKM. 2011. Groundwater Monitoring Program January 2011, Kanmantoo Copper Project. March 2011
- SKM. 2011. Pre-Mining Assessment of Landholders Bores (May 2011) Kanmantoo Copper Project. June 2011
- SKM. 2011a. Groundwater Monitoring Event Summary May 2011. September 2011
- SKM. 2012. Groundwater Monitoring Event Compliance Summary August 2011. March 2012
- SKM. 2012a. Final Groundwater Monitoring Program November 2011, Kanmantoo Cooper Project.
   March 2012
- SKM. 2012b. Pre-Mining Assessment of Landholder Bores (November 2011), Kanmantoo Copper Project.
   December 2011

#### 1.5 Existing groundwater conditions

A total of 26 groundwater investigation and monitoring wells (KMB001 – KMB026) have been installed by Hillgrove within and adjacent to the site. The locations of these wells are shown on Figure 2. As shown on Figure 2, only 15 of the 26 monitoring wells are currently (as of January 2013) operational. Only one monitoring well is believed to have been installed on-site during or since the previous mining operations (well unit number 6627-07954) prior to Hillgrove's studies.

Figure 2 also shows surrounding landholders bores that have been identified and sampled as current (ie operational) and former (ie not in use) groundwater supply bores. Groundwater quality data from these bores has been used to assist in determining background groundwater concentrations of potential contaminants of concern.



Most of the Hillgrove monitoring wells have been sampled several times and detailed hydrochemical analyses completed. Combined with other aquifer testing, site visits and desk-based analyses, a conceptual hydrogeological model has been developed for the site and surrounding area. Key aspects of the conceptual model in relation to the GMMP include:

- Brackish to saline groundwater (typically about 1,000 to 10,000 mg/L Total Dissolved Solids [TDS]) occurs
  within fracture zones of weathered and fresh bedrock
- Groundwater levels indicate that groundwater flow paths across the site are typically to the south-east with potential recharge zones in elevated areas (north-west parts of the site) and possible discharge to deeply incised drainage lines such as Dawesley Creek. Figure 3 presents the inferred groundwater contours and flow direction from the November 2011 groundwater monitoring event (GME). Locally, groundwater flow paths are likely to be strongly controlled by fracture zone intensity and orientation. However, on a larger scale, there is probably a tendency for fracture zones to be somewhat interconnected and for the fractured rock aquifer to show some characteristics of a semi-isotropic and homogenous aquifer system.
- Groundwater levels around the existing open-pit show that it acts as a groundwater sink (refer Figure 3), and has probably acted this way for the most of the period since open-pit mining commenced in 1971. The groundwater sink conditions provide hydraulic containment of the contaminated water currently present within and immediately adjacent to the open-pit.
- Groundwater use from surrounding supply wells (equipped as windmills or with small electric-submersible pumps) is relatively sparse, but does form an important water supply for stock, domestic and irrigation purposes. Groundwater salinity in these surrounding wells is typically brackish (about 1,200 – 8,000 mg/L TDS).
- Groundwater sampled from some surrounding landholders supply wells has concentrations of several metals and ions that exceed SA Environment Protection Authority (EPA) water quality criteria for various beneficial uses. Cadmium, cobalt, copper, iron, nickel, selenium, and zinc were found to be above freshwater aquatic ecosystem criteria in several wells. Cobalt, iron, and zinc were also found to be above irrigation water criteria in one or more wells. The elevated metal levels are considered to be naturally occurring and reflect the relatively high levels of sulphide minerals present in the rocks of the region. Whilst metal levels were typically below livestock criteria, fluoride concentrations in groundwater from most wells sampled exceeded the livestock criteria.
- Previous mining activities have had an impact on local groundwater resources. Elevated trace metal
  concentrations have historically been observed in groundwater sampled from several wells close to
  previous infrastructure. Metal concentrations above all SA EPA (2003) water quality criteria were identified
  in wells close (and down gradient) to the old tailings dam (KMB011), waste rock dump (KMB004) and pit
  (KMB001 and 002). However, groundwater quality further down-gradient of these monitoring sites was
  typically of higher quality and typically below SA EPA (2003) criteria for freshwater ecosystem, irrigation
  and livestock purposes.
- Detailed assessments of the hydrogeology undertaken as part of the water resource study (REM, 2007a) found that very few significant groundwater intersections have been made during RC drilling for copper resource definition in the vicinity of the then proposed TSF. Mr John Treloar (previous Mine Manager) confirmed the dry nature of previous mining, with very minor rates of dewatering required from sumps at the base of the active pit floor. Significant volumes were only pumped in response to high rainfall events. No dewatering records from past mining were available for review.
- Six groundwater supply investigation wells have been drilled at the Site in locations where faults / shears
  and lithological contacts have been identified following the review of past geological and hydrogeological
  studies and investigation drilling undertaken by Hillgrove Resources. Figure 2 details these geological
  structures. The following information was obtained from the installation of these six groundwater supply
  wells:
  - groundwater typically occurs within fracture zone intervals at relatively deep levels below the limit of any bedrock weathering
  - conversely, little or no groundwater occurs in the weathered and relatively thin bedrock zone or shallow sequence of alluvial/colluvial sediments present along drainage lines



- the individual fracture zones appear to be relatively narrow
- the predominantly quartz-biotite schists between fracture zones appears to be highly impermeable and of limited porosity
- the nature of these groundwater occurrences suggest that individual aquifer zones, if pumped for water supply or dewatering purposes, will respond as confined aquifers (and probably as bounded or strip aquifers) that have a strongly heterogeneous pattern of drawdown

It should be noted that elevated trace metal concentrations have been observed in surface water sampled from several monitoring stations in nearby reaches of Dawesley Creek (Figure 2). Levels of aluminium, cadmium, chromium, copper, iron and zinc have occasionally exceeded criteria for most beneficial uses. This contamination is believed to be largely a result of Acid Rock Drainage associated with the abandoned Brukunga pyrite mine, which is located about 11 km to the north-west of the Kanmantoo site.

#### 1.5.1 Background groundwater quality

For the purposes of baseline assessment several groundwater monitoring wells have been selected which are considered to represent background groundwater quality conditions pre-mining. The selected background wells are:

- KMB006, KMB016, KMB017, KMB018 and KMB020 located adjacent to the up hydraulic gradient boundary of the mine
- KMB024 and KMB025 located at a distance from the mine site which is considered not to have been affected by pre-mining or historical mining activities
- All landholders bores

Elevated concentrations of metals above the SA EPA (2003) water quality criteria in background groundwater are likely to be natural, due to the mineralised nature of the geology.

Elevated nutrient concentrations have been recorded in bores across the area. It is considered that the range of nitrate concentrations indicates a naturally (background) high nitrate level due to regional land use (broad acre agricultural practises) with potentially some localised impact (eg KMB021 and KMB026) from the fertiliser factory adjacent to the eastern site boundary.

As nutrients appear to be reasonably consistent with background and ambient (fertiliser factory) conditions, they are not considered to be present as a direct result of contamination associated with practises at the Site. Note wells that may have potentially been impacted from any influence of the fertiliser factory have not been included in the assessment of background water quality.

#### 1.6 Groundwater impacts and management issues

#### 1.6.1 Overview

The hydrogeological studies undertaken to date, in consultation with the local community and regulatory agencies, have identified that the key potential groundwater impacts associated with the proposed mining operation comprise the following:

- Reduced groundwater levels in surrounding areas as a result of open-pit dewatering and minor (backup) supply well abstraction may impact existing groundwater users in terms of groundwater levels and available yields from supply wells
- Reduced groundwater levels and an associated reduction in potential groundwater discharge to Dawesley Creek
- Potential for groundwater contamination (in the form of elevated trace metal concentrations) to enter the local aquifer system from potential seepage through the floor of the TSF and subsequent migration off-site



with potential deterioration of groundwater quality for various beneficial uses (freshwater aquatic ecosystems [Dawesley Creek] and livestock or irrigation uses [surrounding groundwater supply wells])

In addition to the impacts identified above, there is the potential that impacts to groundwater quality may occur within the deeper portions of the Kanmantoo Group Aquifer associated with the proposed deepening of the existing main pit to approximately 300m below the surrounding ground surface elevation<sup>1</sup> [which is in the order of 160 m to 170 m relative to the Australian Height Datum (AHD)] post mine closure (ie when pit dewatering ceases).

An understanding of groundwater contamination from previous mining activities has been achieved in order to understand the true site baseline conditions with respect to the potential impacts of new mining operations undertaken by Hillgrove. The elevated metal concentrations in groundwater near the historic open-pit and waste rock dump (refer Appendix B) occur within the footprint of new mining and waste rock storage activities. Consequently, the monitoring and management of groundwater in these site areas by Hillgrove will effectively consider the effects of past mining along with any impacts of current and future mining.

Any groundwater contamination associated with the historic tailings dam (Figure 1) has not been targeted as a direct component of this GMMP given our understanding that Hillgrove are not responsible for this issue. However, groundwater monitoring of wells near the existing tailings dam is proposed as part of the assessment of the potential impacts from pit dewatering or seepage from the new TSF.

#### 1.6.2 Potential risks associated with the tailings storage facility (TSF)

Part of the DFS and MLP for the re-establishment of mining and ore-processing at the site included the design of the new TSF to store the process tailings once copper has been extracted from the ore. The TSF has been designed by Coffey to be encapsulated within the waste rock storage which together form an Integrated Waste Landform (IWL).

Both the Department of Manufacturing, Innovation, Trade, Resources and Energy (DMITRE – formerly Primary Industries and Resources SA (PIRSA)) and the EPA have given consideration to the management and mitigation measures that are to be committed by Hillgrove in order to satisfy the requirement for net positive benefits from the mining operation.

The management and mitigation measures in relation to groundwater are detailed in this GMMP document and will be incorporated into any updates to the PEPR document which forms a set of binding operating and post-closure conditions for Hillgrove as part of their approval to undertake mining and processing at the site.

Potential impacts associated with seepage from the new TSF include:

- Groundwater level rises (mounding) beneath the TSF and changes to the groundwater flow regime
- Potential seepage of leachate with elevated concentrations of heavy metals and / or nutrients (associated with use of effluent water for processing) to migrate through the TSF liner and into the underlying groundwater system beneath and down hydraulic gradient of the site

It should be noted that the TSF has been designed with a full HDPE liner (of double-thickness in parts) with seepage modelling undertaken by Coffey (February 2009) predicting zero seepage. Coffey noted that the absence of any seepage cannot be practically achieved even with HDPE liners, however based on current technologies HDPE liners provide the best option for minimising seepage to the underlying groundwater system.

The ongoing monitoring of water levels in the vicinity of the TSF will identify any significant variations in a timely manner. It is expected that an almost simultaneous water level response in nearby wells will be observed if leakage of the TSF occurs.

<sup>&</sup>lt;sup>1</sup> Information supplied by Hillgrove's Environment Manager, Catherine Davis, via email correspondence dated 30 May 2013 and 6 June 2013.



An assessment made by Jacobs SKM (2014) predicts that it is reasonable to expect that the future mine operation (which involves a proposed extension and deepening of the Cavanagh Pit) and mine closure could alter the flowpaths beneath the TSF such that they become controlled by the mine pit, due to dewatering during mining and evaporative losses post-mining.

#### 1.6.3 Potential contaminants of concern

Based on the assessments of existing site conditions and the potential impacts associated with the current and future mining operations including the TSF, the principal contaminants of concern for the GMMP comprise:

- Aluminium
- Cadmium
- Copper
- Cobalt
- Iron
- Lead
- Manganese
- Mercury
- Nickel
- Selenium
- Zinc
- Nutrients (ammonia as N, total nitrogen as N, nitrite+nitrate as N (NOx) and phosphorus)

Historical water analyses completed to date both on-site and on surrounding landholdings are summarised in the tables provided in Appendix B.

#### 1.6.4 Summary

Beneath the proposed TSF, preferential groundwater flow paths may occur along (1) discrete north-south structure zones associated with a main fault / shear identified from the desktop geological study in which groundwater wells KMB020 and KMB023 were installed and (2) the major structural features running north-east to south-west in which existing monitoring wells KMB005b, KMB008b and KMB010 are located.

To assess groundwater level rise and seepage of potentially contaminating leachate from the TSF, two groundwater monitoring wells (KMB020 and KMB023) were installed on major lithological contacts up and down hydraulic gradient of the TSF to detect any potential risks to the beneficial use of groundwater beneath and down hydraulic gradient. A third well (KMB022) was installed immediately down topographic gradient of the southern TSF wall where an almost simultaneous water level response would be expected if leakage of the TSF occurs. Groundwater wells KMB005b, KMB008b and KMB010 will also assist in detecting any potential impacts emanating from the TSF along this other preferential flow path.

Monitoring wells KMB020 and KMB023 have been installed 150 m north and 200 m south respectively, of the current (Stage 1) and proposed (Stage 2) TSF. Based on the estimated average linear groundwater velocity (~16.4 m/yr) these wells, in addition to monitoring well KMB022, have been positioned to identify any potential anticipated response associated with seepage and subsequent watertable rise, change in groundwater flow conditions, and / or migration of contaminants through the TSF liner and into the underlying groundwater system. The ultimate flowpath post-closure may be toward the pit but it is not presently and so it is considered the siting of these wells is appropriate for the current mine operation. However, it is reasonable to expect that the future mine operation (which involves a proposed expansion and deepening of the Cavanagh Pit) and mine closure could alter the flowpaths beneath the TSF such that they become controlled by the mine pit, due to dewatering during mining and evaporative losses post-mining. A groundwater monitoring well will be sited



between the TSF and Cavanagh pit to assist with ongoing evaluation of groundwater flow paths during operation, and to provide data to assist in assessing mine closure strategies. Hillgrove has identified a small number of mineral exploration drill holes located on the northwest wall of Cavanagh pit that may be suitable for conversion to a monitoring well. A nominal location of this 'Upstream' monitoring well is presented on Figure 2.

The current proposed extension and deepening of the main pit may have implications for groundwater quality within the deeper portions of the Kanmantoo Group Aquifer, particularly post mine closure when dewatering activities cease and a pit lake may form. In order to assess the potential for groundwater quality impact following closure, it is considered necessary to undertake baseline monitoring of groundwater gradients and groundwater quality near to the main pit by constructing a monitoring well with screen interval set at or around the proposed future depth of the pit (approximately 300 m below the surrounding ground surface or -130 m to -140 m AHD). The collection of groundwater quality data at depth will provide a baseline for comparison post mine closure, and groundwater potentiometric data can be used to assess the potential for movement of water away from the pit after closure and possible pit lake recovery. The existing groundwater monitoring infrastructure is not sufficient to allow monitoring at this depth. A suitable location for construction of a deep monitoring well is shown on Figure 2.

Furthermore, given that the lateral extension of the pit will likely result in the decommissioning (or inadequacy) of current monitoring infrastructure on the eastern site boundary (located between existing pit operations and down pre-mining hydraulic gradient landholders bores), a sentinel well will be installed off site and down pre-mining hydraulic gradient of the southern portion of the proposed main pit extension. A suitable location for the sentinel well is shown on Figure 2.

Monitoring well KMB009 is to be replaced as this well will be decommissioned during the proposed extension of O'Neil pit to the east. Furthermore, an additional monitoring well is to be installed to the southeast of the Emily Star pit to address an existing gap in the groundwater monitoring infrastructure. Proposed locations for the replacement monitoring well and Emily Star monitoring well are shown on Figure 2.

The timing for the installation of the additional monitoring wells is subject to the timing of mining operations and pit extension activities. The wells will be installed prior to the deepening of the existing main pit, and prior to the southern extension of pit operations that will render adjacent monitoring well infrastructure inadequate. It is envisaged (based on current mining activity) that the wells will be installed before the end of 2014, at which time baseline data will be collected and the wells will be included in the monitoring program outlined in Section 3. A summary of the proposed construction of the wells is provided in Table 4.1

Table 1.1: Additional groundwater monitoring wells to be installed

| Well ID | Rationale                                                                                                                                                                                                                                                                           | Estimated Depth (m bgl) |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| KMB027  | Deep Well - located immediately down-gradient of the Cavanagh pit and will essentially be paired with the existing shallower KMB026 monitoring well. To assist in assessing fractured rock aquifer permeability at the final depth of Cavanagh pit and vertical hydraulic gradients | 300                     |
| KMB028  | Replacement for KMB009 which will likely go out of service due to the proposed extension of O'Neils pit to the east                                                                                                                                                                 | 70                      |
| KMB029  | Sentinel Well - located off site and down-gradient of O'Neils and Cavanagh pits, and is planned as a shallow completion (intersecting the top 20 m or so of the fractured rock aquifer).                                                                                            | 50                      |
| KMB030  | Monitoring for Emily Star pit to address an existing gap in monitoring infrastructure                                                                                                                                                                                               | 100                     |
| KMB031  | 'Upstream' well to be sited between the TSF and Cavanagh pit to assist with ongoing evaluation of groundwater flow paths during operation, and to provide data to assist in assessing mine closure strategies                                                                       | 100                     |



### 2. Groundwater management objectives and approach

#### 2.1 Groundwater management objectives

The groundwater management objectives for the Kanmantoo Copper Mine are summarised in Table 2-1. The basis of these objectives is to protect the surrounding water resources and existing groundwater users by:

- Ensuring that groundwater discharging across the site boundary meets the SA EPA water quality criteria for freshwater aquatic ecosystems or existing baseline conditions, whichever is higher
- Maintaining the supply capacity of existing groundwater wells in surrounding areas that may be adversely affected by pit dewatering or well abstraction for process water supplies

It should be noted that 'supply capacity' of existing supply wells is not readily known and that such capacity may be reduced at a future time by other external influences besides the Hillgrove mining operations, such as a potentially reduced allocation when a finalised Western Mount Lofty Water Allocation Plan (WAP) is introduced, or reduced groundwater levels due to natural groundwater recharge variation.

Management objectives for groundwater quality are to be applied to groundwater monitoring wells located on and adjacent to the southern and eastern site boundaries as these wells are located down hydraulic gradient (and pre-mining hydraulic gradient) of mining activities and will indicate if impacted groundwater is discharging across the Site boundary. Management objectives should be applied to the following groundwater monitoring wells<sup>2</sup>:

KMB003

KMB023

KMB005b

KMB024

KMB008b

KMB025

KMB010

KMB026

KMB021

Any new wells installed down gradient of mining operations

KMB022

Note groundwater monitoring well KMB009 located on the eastern site boundary has not been included as the construction of this well is not considered suitable for reliable measurements of groundwater quality at discrete aquifer intervals. This well has a drill rod and hammer present beneath the piezometer that was lost in the base of the bore following collapse during drilling (refer REM, 2007a). The well is however considered suitable for groundwater level monitoring.



Table 2.1 : Groundwater management objectives

| Category                | Contaminants of Concern                              | Aquatic<br>Ecosystems<br>Fresh Waters | Background Ground          | water Quality (mg/L)       | Adopted<br>Groundwater<br>Quality Objectives |
|-------------------------|------------------------------------------------------|---------------------------------------|----------------------------|----------------------------|----------------------------------------------|
|                         | Concorn                                              | Criteria (mg/L)                       | Min                        | Max                        | (mg/L)                                       |
|                         | Aluminium                                            | 0.1                                   | <0.01                      | 0.13                       | 0.13                                         |
|                         | Cadmium                                              | 0.002                                 | <0.001                     | 0.009                      | 0.009                                        |
|                         | Cobalt                                               | -                                     | <0.001                     | 0.14                       | 0.14                                         |
|                         | Copper                                               | 0.01                                  | 0.001                      | 0.031                      | 0.031                                        |
|                         | Iron                                                 | 1                                     | <0.01                      | 11                         | 11                                           |
|                         | Lead                                                 | 0.005                                 | <0.001                     | 0.03                       | 0.03                                         |
|                         | Manganese                                            | -                                     | 0.002                      | 3.7                        | 3.7                                          |
| 0                       | Mercury                                              | 0.0001                                | <0.0001                    | 0.0003                     | 0.0003                                       |
| Groundwater<br>Quality  | Nickel                                               | 0.15                                  | <0.001                     | 0.1                        | 0.1                                          |
| ,                       | Selenium                                             | 0.005                                 | <0.01                      | 0.1                        | 0.1                                          |
|                         | Zinc                                                 | 0.05                                  | <0.05                      | 0.94                       | 0.94                                         |
|                         | Ammonia as N                                         | 0.5                                   | <0.01                      | 0.53                       | 0.53                                         |
|                         | Nitrite + Nitrate as N<br>(NOx)                      | 0.5                                   | <0.01                      | 20.7                       | 20.7                                         |
|                         | Total Nitrogen as N                                  | 5                                     | <0.1                       | 21.8                       | 21.8                                         |
|                         | Phosphorous                                          | 0.5                                   | <0.01                      | 3.82                       | 3.82                                         |
|                         | рН                                                   | Between 6.5- 9.0                      | 6.03                       | 8.17                       | Between 6.0-8.5                              |
| Groundwater<br>Supplies | To not adversely affect the a result of the proposed |                                       | acity of existing groundwa | ater supply wells on surro | unding landholdings as                       |

The adoption of water quality objectives that are in excess of SA EPA aquatic ecosystems criteria is based on an assessment of water quality measured in surrounding monitoring wells and groundwater supply wells that are considered to be representative of natural background hydrogeological conditions (and not from any possible impacts of previous mining activities at Kanmantoo). Appendix B provides a summary of the baseline groundwater quality analyses completed to November 2011.

While concentrations below the management objective can be considered to be within the background range, the groundwater monitoring data should be assessed for any changes (ie any apparent increasing trend) which may indicate that groundwater quality is being impacted.

Leachate collection (and laboratory analysis) from the tailings dam has previously been undertaken by SKM and Hillgrove and will be used in conjunction with ongoing groundwater monitoring to assist in assessing the potential impact and ongoing risks to groundwater. In addition, ongoing monitoring of the surface water and groundwater discharged through the French drains installed beneath the TSF liners will be undertaken to assist in the assessment of any potential breach of the TSF liners.

#### 2.2 Groundwater management approach

Groundwater management requirements for the Kanmantoo Copper Mine will be achieved by adopting the following approach:

- Frequent monitoring of groundwater levels, quality and abstraction
- Implementing appropriate contingency measures (if required)



- Regular provision of monitoring data and analyses to regulatory agencies
- Undertaking annual management reviews of the GMMP, including a review of the frequency of monitoring, analytical program and number of wells included in the monitoring program

#### 2.3 Responsible parties

The party responsible for implementation of, and adherence to, the GMMP will be Hillgrove Resources Ltd or their appointed representatives.

Regular monitoring data reviews and management reviews of the GMMP will be forwarded to DMITRE, and also the Department of Environment, Water and Natural Resources (DEWNR) if such a requirement accompanies any authorisation to extract groundwater during the project.

#### 2.4 Environmental, health and safety protocols

All groundwater monitoring fieldwork conducted as part of the GMMP will be completed in accordance with a site-specific Environmental, Health and Safety (EHS) Plan. The purpose of the EHS Plan is to establish personal protection standards and mandatory safe working practises to minimise health and safety risks to employees and the general public during groundwater monitoring activities.



### 3. Groundwater monitoring

#### 3.1 Monitoring schedule

Table 3-1 depicts the types and frequency of groundwater monitoring for the active-mining phase and post mine closure phase of the project.

The frequency of the monitoring program presented in Table 3-1 is by no means limiting and annual reviews will be undertaken during mining to assess whether this frequency needs to be increased or decreased and the wells included in the monitoring program increased or decreased.

Table 3.1: Groundwater monitoring schedule

| Well Category           | Monitoring<br>Category | Monitoring Parameters                                                                | Frequency | Targeted Wells                                               |
|-------------------------|------------------------|--------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------|
| During Mining           |                        |                                                                                      |           |                                                              |
| Hillgrove               | Level                  | Groundwater level (as m AHD)                                                         | Monthly   | All operational wells                                        |
| Monitoring              | Quality                | Field EC, pH                                                                         | Monthly   | KMB020 – 026                                                 |
|                         | Level                  | Water level (as m AHD)                                                               | Annual    | Pit void water bodies                                        |
|                         | Quality                | Laboratory EC, pH, metals suite1, nutrients <sup>2</sup> , major ions <sup>3</sup>   | Annual    | All operational wells plus each pit void water body          |
| Hillgrove               | Usage                  | Volume pumped and from individual sources                                            | Monthly   | Back up supply wells KMB005b,                                |
| production              | Quality                | EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup> | Annual    | KMB008b                                                      |
| Landholders             | Level                  | Groundwater level (as m TOC)                                                         | 6-monthly | 6727-02909, 6272-00673, 6727-                                |
|                         | Quality                | EC, pH                                                                               | 6-monthly | 00670, 6727-03091, 6727-03038,<br>6727-00736, 6727-02459 and |
|                         | Quality                | EC, pH, metals suite1, nutrients <sup>2</sup> , major ions <sup>3</sup>              | Annual    | Mitchell's Bore.                                             |
|                         | Usage                  | Estimated volume pumped                                                              | 6-monthly |                                                              |
| Post Closure of         | Mine                   |                                                                                      |           |                                                              |
| Hillgrove<br>Monitoring | Level                  | Groundwater level (as m AHD)                                                         | 6-monthly | All operational wells plus pit void water bodies             |
|                         | Quality                | EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup> | Annual    | All operational wells plus each pit void water body          |

Note 1: Metals suite comprises aluminium, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, vanadium, zinc

In addition to the monitoring schedule outlined above the five new monitoring wells should be sampled for the full suite of analytes a minimum of one week following installation.

#### 3.2 Groundwater monitoring methodology

Key aspects of the methodologies that will be adopted as part of the groundwater monitoring program are summarised below.

#### 3.2.1 Groundwater levels

The following principles and quality assurance procedures will be adhered to when measuring groundwater levels:

Note 2: Nutrients: Ammonia as N, total nitrogen as N, nitrite + nitrate as N (NOx), and total phosphorous

Note 3: Major Ions: sodium, magnesium, potassium, calcium, chloride, sulphate, bicarbonate, and carbonate



- Groundwater levels will be recorded as depths to groundwater (metres below reference point (m BRP) and
  in reduced terms relative to the Australian height Datum (m AHD). Existing Hillgrove monitoring wells are
  surveyed to m AHD.
- The reference point from which groundwater levels are measured shall be noted
- Groundwater levels will be measured using either calibrated pressure transducers (data loggers) and / or manually with a calibrated water level probe with an accuracy level of not less than +/- 0.02 m
- Groundwater levels will be measured as close as practicable to the nominated frequencies. Six monthly
  measurements should be recorded in the months of November and May to capture the likely maximum
  seasonal variation and be consistent with previous monitoring events. Once a year levels should be
  measured in November.
- Where possible, groundwater levels measured in either Hillgrove or adjacent landholder supply wells should only be recorded after the well has been inactive for a minimum of 12 hours, preferably 24 hours. A note should be made regarding the pumping status of the well at the time of water level measurement.
- Where possible and practical to do so, pit void water levels should be measured to within +/- 0.1 m accuracy

Fifteen landholders bores (including 6727-02909, 6272-00673, 6727-00672, 6727-00671, 6727-00670, 6727-03091, 6727-03038, 6727-00736, 6727-00737, 6727-00738, 6727-00739, 6727-00792, 6727-03043, 6727-02459 and 6627-05849) were previously identified by the former Department of Water Land Biodiversity Conservation (DWLBC, now DEWNR) Senior Hydrogeologist (Martin Stokes) that had the potential to be impacted by drawdown effects from pit dewatering or well abstraction for process water supplies. The well locations are presented in Figure 2.

The status of these monitoring wells was investigated in October 2008 (SKM, 2008h) to establish background groundwater quality prior to the recommencement of mining by Hillgrove at the Kanmantoo Copper Mine. An additional landholder bore was identified by SKM during the field investigation program and is referred to as Mitchell's Bore.

Of the sixteen identified bores, six were found to have been destroyed, five were not in use and five were found to be operational and used for either irrigation, domestic and/or stock purposes (SKM, 6 November 2008). Of the five identified as not in use, only three were able to have a water level obtained. The landholder bores identified to be operational and to be present but not currently in use will be targeted for ongoing monitoring during mining (refer Table 3-1).

#### 3.2.2 Groundwater usage

The following principles and quality assurance procedures will be adhered to when measuring groundwater usage:

- Groundwater abstractions from Hillgrove supply wells or dewatering pumps will be measured with suitably calibrated usage meters. Usage meters will be fitted to each individual abstraction source (ie each production / dewatering well and each open-pit)
- Usage information from surrounding landholder supply wells will be sought at each groundwater level monitoring event. However, this information may not be recorded or provided by landholders

#### 3.2.3 Groundwater quality

The following principles and quality assurance procedures will be adhered to when sampling groundwater wells and analysing water samples:

 Well Purging and Sampling Process - All groundwater monitoring wells will be purged using the low flow sampling technique (micro purge bladder pump), dedicated disposable bailer or stainless steel submersible pump (full purge), consistent with previous monitoring events. Measurement of field hydrochemical



### 4. Proposed changes to groundwater monitoring schedule

This section outlines the proposed changes to the groundwater monitoring schedule following an indication from DEWNR (during discussions with Hillgrove and Jacobs SKM in early 2014) that the current monitoring schedule could be reassessed given that sufficient baseline hydrogeological data, and during mining hydrogeological data, has been obtained.

#### 4.1 Monitoring frequency

Monthly monitoring of groundwater levels in all operational monitoring wells and sampling for field EC and pH in selected wells is currently undertaken monthly. The results of the monthly monitoring since commencement of mining in 2011 have generally been consistent and have indicated no adverse impacts to groundwater quality during the mining phase. If the monitoring results for the remainder of 2014 continue to show no significant change in groundwater quality it is recommended that the frequency of monthly monitoring can be reduced to quarterly following the 2014 annual monitoring event (scheduled for November 2014). Quarterly events would be undertaken in February, May, August and November of each year during mining.

#### 4.2 Targeted monitoring wells

Monitoring well KMB009 is to be removed from the monitoring schedule as this well is likely to be abandoned during the proposed extension of O'Neil pit and will be replaced by KMB028.

Monitoring well KMB003 is to be removed from the monitoring schedule. Due to effects of dewatering the most recent monitoring events have recorded a minimal volume of water in this well and therefore it is unlikely that there will be sufficient groundwater for sampling during future monitoring events. A replacement well for KMB003 is not considered necessary due to the proximity of monitoring well KMB026.

Monitoring wells KMB011 and KMB012 are located down gradient of the old TSF and groundwater is known to be impacted in this area from previous mining operations. The monitoring results for the two wells have been generally consistent during recent groundwater monitoring events and groundwater in this area is considered unlikely to be impacted by current mining activities. Therefore it is recommended that KMB011 and KMB012 are no longer included in the monitoring schedule.

Monitoring well KMB030 will be included in the quarterly sampling of field EC and pH. The remaining four new wells, KMB027, KMB028, KMB029 and KMB031 will be sampled during the annual monitoring events only.

The new monitoring wells KMB027 to KMB031 will be included in the schedule of targeted wells.

#### 4.3 Analytical suite

A review of baseline groundwater analytical data and monitoring results from the 2012 and 2013 annual GMEs has indicated that concentrations of lead, mercury and selenium in groundwater are consistently below the laboratory LOR and / or the adopted groundwater management objectives in groundwater sampled from all monitoring wells. It is proposed that these metals be removed from the analytical suite for the annual monitoring events.

#### 4.4 Summary of proposed changes to monitoring schedule

Table 4-1 depicts the proposed changes to the frequency of groundwater monitoring for the active-mining phase and post mine closure phase of the project.

The frequency of the monitoring program presented in Table 4-1 is by no means limiting and annual reviews will be undertaken during mining to assess whether this frequency needs to be increased or decreased and the wells included in the monitoring program increased or decreased.



Table 4.1 : Proposed groundwater monitoring schedule

| Well Category           | Monitoring<br>Category | Monitoring Parameters                                                                           | Frequency                      | Targeted Wells                                      |
|-------------------------|------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------|
| During Mining           |                        |                                                                                                 |                                |                                                     |
| Hillgrove               | Level                  | Groundwater level (as m AHD)                                                                    | Quarterly                      | KMB010, KMB020 - 031                                |
| Monitoring              | Quality                | Field EC, pH                                                                                    | Quarterly                      | KMB020 – 026, KMB030                                |
|                         | Level                  | Water level (as m AHD)                                                                          | Annual                         | Pit void water bodies                               |
|                         | Quality                | Laboratory EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup> | Annual                         | KMB010, KMB020 - 031 plus each pit void water body  |
| lillgrove               | Usage                  | Volume pumped and from individual sources                                                       | Quarterly                      | Back up supply wells KMB005b,                       |
| production              | Quality                | EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup>            | Annual                         | KMB008b                                             |
| Landholders             | Level                  | Groundwater level (as m TOC)                                                                    | 6-monthly                      | 6727-02909, 6272-00673, 6727-                       |
|                         | Quality                | EC, pH                                                                                          | 00670, 6727-03091, 6727-03038, |                                                     |
|                         | Quality                | EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup>            | Annual                         | 6727-00736, 6727-02459 and Mitchell's Bore.         |
|                         | Usage                  | Estimated volume pumped                                                                         | 6-monthly                      |                                                     |
| Post Closure of         | f Mine                 |                                                                                                 |                                |                                                     |
| Hillgrove<br>Monitoring | Level                  | Groundwater level (as m AHD)                                                                    | 6-monthly                      | All operational wells plus pit void water bodies    |
|                         | Quality                | EC, pH, metals suite <sup>1</sup> , nutrients <sup>2</sup> , major ions <sup>3</sup>            | Annual                         | All operational wells plus each pit void water body |

Note 1: Metals suite comprises aluminium, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, manganese, nickel, vanadium, zinc

Note 2: Nutrients: Ammonia as N, total nitrogen as N, nitrite + nitrate as N (NOx), and total phosphorous

Note 3: Major Ions: sodium, magnesium, potassium, calcium, chloride, sulphate, bicarbonate, and carbonate



### 5. Contingency measures

Table 5-1 summarises possible events and contingency measures that are to be implemented if the adopted groundwater management objectives for the Kanmantoo Copper Mine are exceeded or breached.

Table 5.1 : Groundwater management objectives

| Event                                                                                                                                                                                                                                                                     | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwater level drawdown (near the project boundaries) due to mine dewatering and / or supply well abstraction significantly decline in excess of those predicted.                                                                                                      | <ol> <li>All Hillgrove monitoring wells will be monitored at 2 weekly intervals for a period of 8 weeks to provide additional information for discerning the influence of mining activities versus possible non-mining influences.</li> <li>If the drawdown trends are confirmed as largely being a result of mining, then re-modelling of predicted drawdown and impacts will be undertaken within a 3 month period.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Groundwater levels in neighbouring landholders supply wells considered adversely impacted.                                                                                                                                                                                | <ol> <li>Initiate weekly monitoring of groundwater levels in affected wells (and relevant Hillgrove monitoring wells), as well as detailed monitoring of abstraction rates and timing from affected supply wells.</li> <li>If apparent (from an independent hydrogeological assessment of monitoring data) that the supply capacity of landholders well has been adversely impacted by mining activities, then the landholders water supply will be made good by:         <ul> <li>Lowering the pump within the affected well</li> <li>Deepening or replacing the well</li> </ul> </li> <li>Supplying an alternative water supply of similar quality to affected well</li> </ol>                                                                                                                                                                                                                                                         |
| Groundwater quality objectives exceeded in monitoring wells KMB003, 005b, 008b, 010, 021, 022, 023, 024, 025, 026, and / or any wells installed down pre-mining hydraulic gradient of current mining operations (until the destruction or mining through of such a well). | <ol> <li>Undertake a confirmatory round of groundwater sampling and analyses within four weeks of the event that recorded the exceedance(s).</li> <li>If the exceedance(s) is confirmed, then:         <ul> <li>undertake more frequent sampling and analyses</li> <li>consider installation of additional monitoring wells</li> <li>confirm actual threshold criteria and beneficial uses in the area of concern</li> <li>model the predicted fate of contaminants of concern focusing on protection of environmental values at down hydraulic gradient receptors</li> </ul> </li> <li>If step 2 shows that impacts are unacceptable in terms of EPA water quality criteria, then remedial options will be considered and submitted to DMITRE and the EPA for comment and approval. Such options are likely to include:         <ul> <li>Natural attenuation (and associated monitoring)</li> <li>Pump and treat</li> </ul> </li> </ol> |



#### **Event** Action Breach of the TSF clay liner occurs 1. Undertake a confirmatory round of groundwater sampling and analyses within four weeks of the and nutrients or heavy metal event that recorded the exceedance(s). concentrations are identified above 2. If the exceedance(s) is confirmed, then: the adopted Groundwater Quality undertake more frequent sampling and analyses Objectives in monitoring wells consider installation of additional monitoring wells strategically placed down hydraulic confirm actual threshold criteria and beneficial uses in the area of concern gradient of the TSF. undertake a water balance assessment of water usage in mine operations including what's been placed in the TSF to assess the potential volume of leachate being lost to the underlying fractured rock system 3. If step 2 shows that impacts are unacceptable in terms of EPA water quality criteria, then remedial options will be considered and submitted to DMITRE and the EPA for comment and approval. The remedial option is likely to include pump and treat, with extracted water retained on-site and used in processing. Monitoring wells down hydraulic gradient of the TSF have been strategically placed along potential

monitoring wells KMB005b, KMB008b and KMB010 are located.

preferential flow paths including (1) the north-south structural zone associated with the main fault / shear and (2) the major structural features running northeast to southwest in which existing



### 6. Plan review and monitoring review submissions

Every two years an independent review of the requirements of the GMMP should be undertaken by an experienced and suitably qualified groundwater practitioner. This review should include an assessment of whether modifications to the monitoring program, including a change in the frequency of sampling and number of monitoring wells can occur whilst still achieving the objectives of the GMMP.



#### 7. References

Coffey, 2011., *Mining and Rehabilitation Program, Kanmantoo Copper Project ML 6345*, CR 5000\_9\_v7, Prepared for Hillgrove Copper Pty Ltd, Coffey Natural Systems, February 2011.

Enesar, 2007. Kanmantoo Copper Project Mining Lease Proposal. October 2007.

Jacobs SKM, 2014. Kanmantoo Copper Mine – Response to DEWNR issues regarding groundwater management. 14 May 2014

Parsons Brinckerhoff, 2006. Kanmantoo Mine – Background Groundwater Quality Investigation. Report prepared for Hillgrove Resources. July 2006 plan by the PIRSA.

REM. 2006. Initial Groundwater Assessment of Old Kanmantoo Mine, Callington, South Australia. 22 December 2006. Report prepared for Hillgrove Resources Limited.

REM. 2007a. Kanmantoo Copper Project – Water Resources Investigation. 5 June 2007. Report prepared for Hillgrove Resources Limited.

REM. 2007b. Background Groundwater Quality Investigation of Regional Bores – Kanmantoo Copper Project, South Australia. 29 June 2007. Report prepared for Hillgrove Resources Limited.

REM. 2007c. Kanmantoo Copper Project – Groundwater Impact Assessment. 31 August 2007. Report prepared for Hillgrove Resources Limited.

REM. 2008. Kanmantoo Copper Project – Groundwater Impacts of Potential Seepage from Tailings Storage Facility. 25 February 2008. Report prepared for Hillgrove Resources Limited

SKM. 2008a. Addendum to Final Report – Groundwater Impacts of Potential Seepage from Tailings Storage Facility (dated 25 February 2008). Prepared 5 August 2008.

SKM. 2008b. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 5 September 2008.

SKM. 2008c. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 9 September 2008.

SKM. 2008d. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 15 September 2008.

SKM. 2008e. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 16 September 2008.

SKM. 2008f. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 18 September 2008.

SKM. 2008g. Letter Response to the EPA Comments for Exemption Application by Hillgrove Copper Pty Ltd. Prepared 23 September 2008.

SKM. 2008h. Letter Report – Baseline Assessment of Landholders Bores (October 2008), Kanmantoo Copper Project. Prepared 6 November 2008.

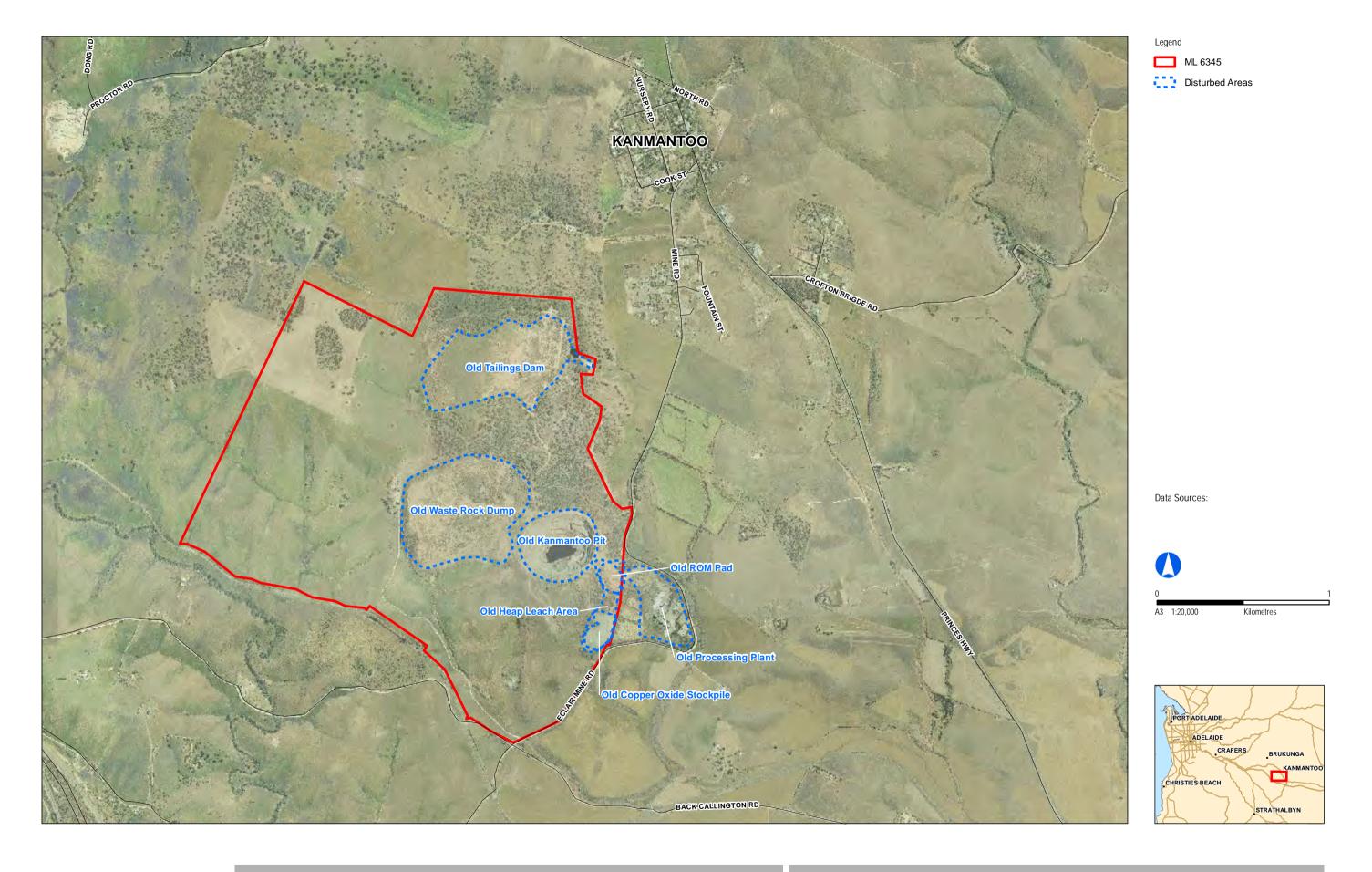
SKM. 2009. Letter Report – Summary of Tailings Storage Facility Redesign and Review of Groundwater Monitoring and Management Requirements, Kanmantoo Copper Project. 20 March 2009.



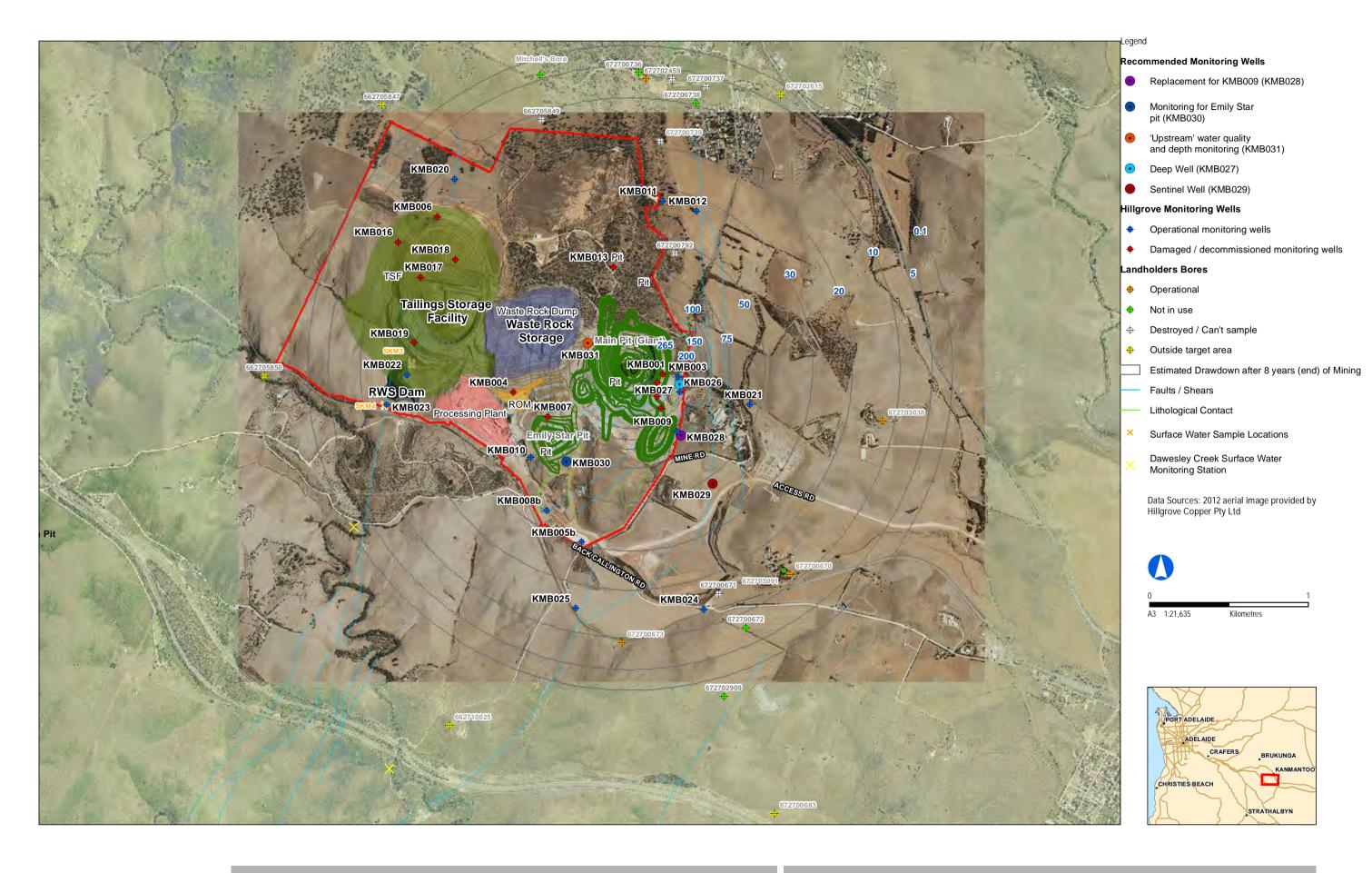
SKM. 2009a. Groundwater Monitoring and Management Plan. 30 July 2009.

SKM. 2010. Final, Kanmantoo Project Water Supply – Drilling, Well Construction and Aquifer Testing Completion Report. 29 March 2010.

SKM. 2012a. Final Groundwater Monitoring Program – November 2011, Kanmantoo Cooper Project. March 2012.


SKM. 2012b. Pre-Mining Assessment of Landholder Bores (November 2011), Kanmantoo Copper Project. December 2011.

SKM, 2013. Annual Groundwater Monitoring Compliance Report – 2012, Kanmantoo Copper Project. January 2013.


SKM, 2014. Annual Groundwater Monitoring Compliance Report – 2013, Kanmantoo Copper Project. January 2014.

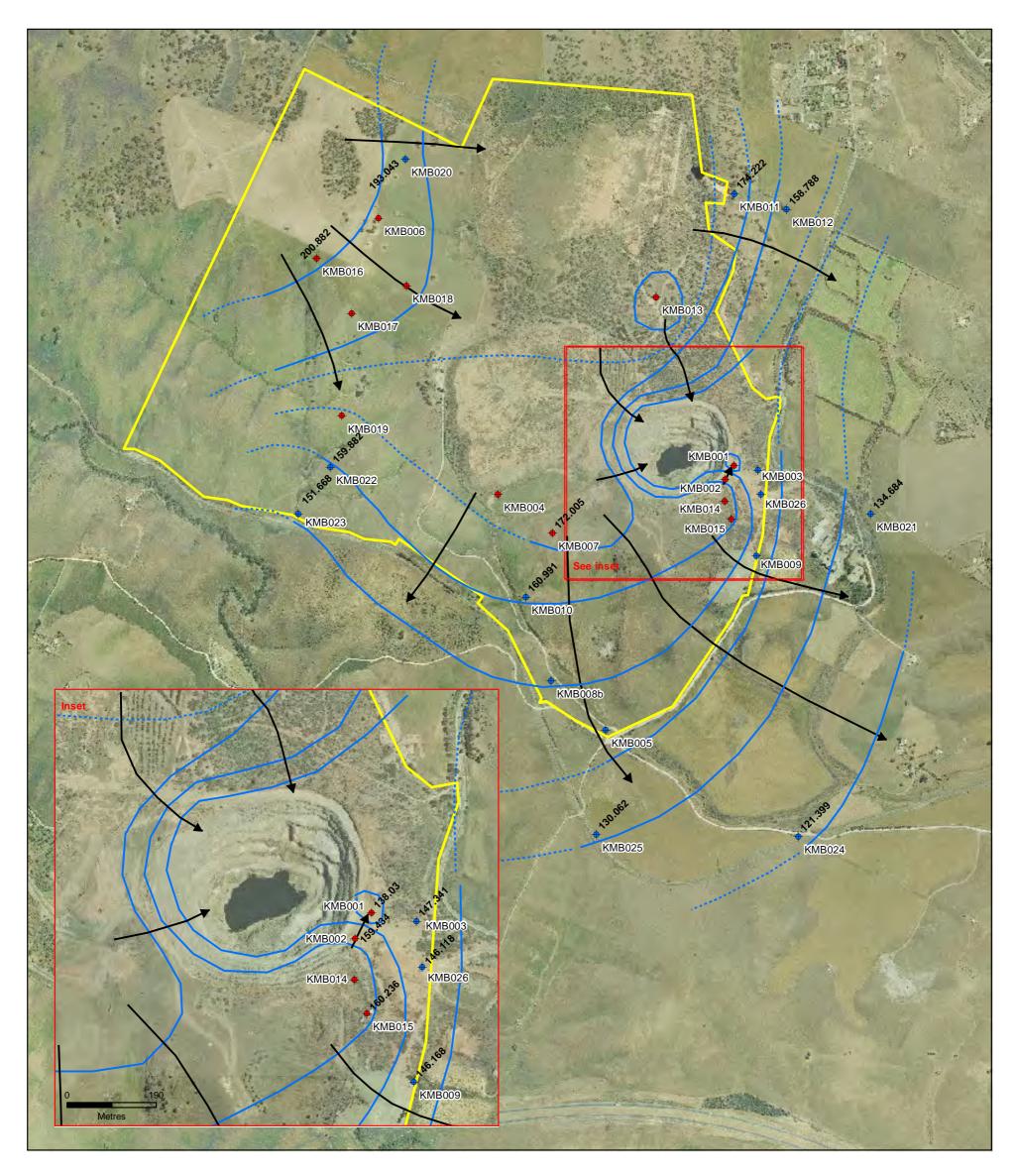


### **Figures**



JACOBS\* SKM Hillgrove Resources




**JACOBS** SKM

Hillgrove Resources

Figure 2. Groundwater Well Location Plan and Proposed Pit Extents

UTM GDA 94, Zone 54H

V3 - May 2014



- Operating monitoring wells
- Damaged / decommissioned monitoring wells
- Interpreted Groundwater Elevation (mAHD)Inferred Groundwater Elevation (mAHD)
- → Groundwater Flow Direction
- Site area

Jacobs SKM does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.



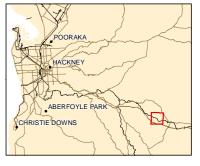



Figure 2. Inferred Groundwater Contours (mAHD) and Flow Direction - November 2011

GDA 1994, MGA Zone 54





# Appendix A. Summary of all current and historical groundwater monitoring infrastructure

## Appendix A. Summary of all current and historical groundwater monitoring infrastructure Hillgrove Resources - Kanmantoo Copper Project

| Well    | Purpose         | Rationale for Installation                                                                                                                                                                                             | Date Installed | Depth of Well<br>(m bgl) | First Water<br>Cut<br>(m bgl) | Depth of<br>Casing<br>(m bgl) | Screen<br>Interval<br>(m bgl) | Eastings   | Northings   | Reduced Level<br>m AHD<br>(top of PVC) | Current Status         | Notes                                                                                                                           |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-------------------------------|-------------------------------|-------------------------------|------------|-------------|----------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| KMB001  | Monitoring Well | To provide an initial baseline assessment of the groundwater flow conditions and any groundwater quality impacts from historical mining activities                                                                     | 9/11/2006      | 57                       | 55                            | -                             | 47 to 57                      | 318378.334 | 6114920.623 | 170.324                                | Destroyed              | Identified as destroyed during the July 2012 monthly groundwater monitoring round                                               |
| KMB002  | Monitoring Well | To provide an initial baseline assessment of the groundwater flow conditions and any groundwater quality impacts from historical mining activities                                                                     | 8/11/2006      | 33.8                     | 17                            | •                             | 23.8 to 33.8                  | 318343.319 | 6114865.801 | 169.667                                | Destroyed              | Identified as destroyed during the January 2012 monthly groundwater monitoring round                                            |
| KMB003  | Monitoring Well | To provide an initial baseline assessment of the groundwater flow conditions and any groundwater quality impacts from historical mining activities                                                                     | 8/11/2006      | 30                       | 23                            | -                             | 20 to 30                      | 318473.823 | 6114903.458 | 167.054                                | Operational            |                                                                                                                                 |
| KMB004  | Monitoring Well | To provide an initial baseline assessment of the groundwater flow conditions and any groundwater quality impacts from historical mining activities                                                                     | 10/11/2006     | 15.8                     | 8                             | -                             | 5.8 to 15.8                   | 317435.026 | 6114805.44  | 177.715                                | Destroyed              | Identified as destroyed during the October 2010 GME                                                                             |
| KMB005  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply                                                                                              | 8/03/2007      | 120                      | 8                             | 18                            | Open hole                     | 317865.277 | 6113863.304 | 151.748                                | Collapsed /<br>damaged | Originally proposed for completion as a production well but could not accommodate suitable submersible pump                     |
| KMB005b | Water Supply    | Replacement production well for KMB005                                                                                                                                                                                 |                | 175                      | 6                             | 48                            |                               | 317862     | 6113860     | -                                      | Operational            |                                                                                                                                 |
| KMB006  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply. This well was also positioned to allow assessment of background groundwater quality.        | 10/03/2007     | 96                       | 15                            | 6.5                           | Open hole                     | 316957.307 | 6115911.231 | 211.33                                 | Decommissioned         | Decommissioned in September 2011 to accommodate future TSF construction                                                         |
| KMB007  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply. This well was also positioned to allow assessment of background groundwater quality.        | 14/03/2007     | 138                      | 54                            | 6.5                           | Open hole                     | 317653.206 | 6114651.134 | 189.981                                | Destroyed              | Identified as destroyed during the May 2012 monthly groundwater monitoring round                                                |
| KMB008  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply. This well was also positioned to allow assessment of background groundwater quality.        | 15/03/2007     | 120                      | 60                            | 10                            | Open hole                     | 317647.21  | 6114060.999 | 159.985                                | Collapsed /<br>damaged | Originally proposed for completion as a production well but could not accommodate suitable submersible pump                     |
| KMB008b | Water Supply    | Replacement production well for KMB008                                                                                                                                                                                 |                | 169                      | 4                             | 51.5                          |                               | 317640     | 6114059     |                                        | Operational            |                                                                                                                                 |
| KMB009  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply                                                                                              | 22/03/2007     | 66                       | -                             | 53.5                          | 47.5 to 53.5                  | 318467.979 | 6114559.949 | 167.215                                | Operational            | Suitable for groundwater level monitoring only due to construction                                                              |
| KMB010  | Water Supply    | To explore and measure fractured rock aquifer groundwater yields and quality, and provide potential well for water supply                                                                                              | 27/03/2007     | 126                      | 21                            | 6                             | Open hole                     | 317547.619 | 6114400.684 | 166.795                                | Operational            |                                                                                                                                 |
| KMB011  | Monitoring Well | To assess potential impacts to groundwater quality down hydraulic gradient (east) of the old tailings dam                                                                                                              | 14/05/2007     | 11                       | 6                             | -                             | 5 to 11                       | 318379.084 | 6116010.55  | 179.347                                | Operational            |                                                                                                                                 |
| KMB012  | Monitoring Well | To assess potential impacts to groundwater quality down hydraulic gradient (east) of the old tailings dam                                                                                                              | 14/05/2007     | 17.6                     | 16                            | -                             | 5.6 to 17.6                   | 318591.965 | 6115937.616 | 174.508                                | Operational            |                                                                                                                                 |
| KMB013  | Monitoring Well | To assess potential impacts to groundwater quality down hydraulic gradient (southeast) of the old tailings dam and to assist in the assessment of groundwater flow patterns                                            | 15/05/2007     | 33                       | 31                            | -                             | 21 to 33                      | 318068.488 | 6115581.485 | 231.039                                | Operational            | Well is typically dry. Steel standpipe and PVC standpipe are damaged, well is capped level with surrounding ground surface now. |
| KMB014  | Monitoring Well | To assist in delination of heavy metal impacts from historical mining activities                                                                                                                                       | 16/05/2007     | 24                       | 18                            | -                             | 15 to 24                      | 318335.971 | 6114790.554 | 177.921                                | Destroyed              | Identified as destroyed during the November 2011 GME                                                                            |
| KMB015  | Monitoring Well | To assist in delination of heavy metal impacts from historical mining activities                                                                                                                                       | 17/05/2007     | 27                       | 24                            | -                             | 15 to 27                      | 318367.306 | 6114708.151 | 173.272                                | Destroyed              | Identified as destroyed during the January 2012 monthly groundwater monitoring round                                            |
| KMB016* | RC Holes        | Installed in the proposed footprint (as of 2007) of the TSF and waste rock storage facility and utilised to provide properties for input into analytical groundwater flow and contaminant fate and transport modelling | June 2007      | 60                       | -                             | -                             | Open hole                     | 316718     | 6115752     | 223.75                                 | Destroyed              | Identified as destroyed during the November 2013  GME                                                                           |
| KMB017* | RC Holes        | Installed in the proposed footprint (as of 2007) of the TSF and waste rock storage facility and utilised to provide properties for input into analytical groundwater flow and contaminant fate and transport modelling | June 2007      | 60                       | -                             | -                             | Open hole                     | 316864     | 6115540     | 220.25                                 | Decommissioned         | Decommissioned in September 2011 to accommodate future TSF construction                                                         |
| KMB018* | RC Holes        | Installed in the proposed footprint (as of 2007) of the TSF and waste rock storage facility and utilised to provide properties for input into analytical groundwater flow and contaminant fate and transport modelling | June 2007      | 60                       | -                             | -                             | Open hole                     | 317074     | 6115639     | 213.4                                  | Decommissioned         | Decommissioned in September 2011 to accommodate future TSF construction                                                         |
| KMB019* | RC Holes        | Installed in the proposed footprint (as of 2007) of the TSF and waste rock storage facility and utilised to provide properties for input into analytical groundwater flow and contaminant fate and transport modelling | June 2007      | 50                       | -                             | -                             | Open hole                     | -          | -           | 180.13                                 | Destroyed              | Identified as destroyed during the May 2011 GME                                                                                 |
| KMB020  | Monitoring Well | To assess potential groundwater level rise and seepage of potentially contaminating leachate resulting from any potential future breach of the TSF liners                                                              | 3/08/2011      | 31                       | 22                            | -                             | 16 to 31                      | 317064.524 | 6116147.653 | 212.477                                | Operational            |                                                                                                                                 |



# Appendix A. Summary of all current and historical groundwater monitoring infrastructure Hillgrove Resources - Kanmantoo Copper Project

| Well   | Purpose         | Rationale for Installation                                                                                                                                                                                                                                                                                                     | Date Installed | Depth of Well<br>(m bgl) | First Water<br>Cut<br>(m bgl) | Depth of<br>Casing<br>(m bgl) | Screen<br>Interval<br>(m bgl) | Eastings   | Northings   | Reduced Level<br>m AHD<br>(top of PVC) | Current Status | Notes                                |
|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-------------------------------|-------------------------------|-------------------------------|------------|-------------|----------------------------------------|----------------|--------------------------------------|
| KMB021 | Monitoring Well | To assess any impatcs to groundwater quality down pre-mining hydraulic gradient of the main pit (off site) and to provide data relating to groundwater level drawdown from future pit dewatering activities                                                                                                                    | 2/09/2011      | 36                       | 29.5                          | -                             | 18 to 36                      | 318901.469 | 6114747.793 | 150.926                                | Operational    |                                      |
| KMB022 | Monitoring Well | To assess potential groundwater level rise and seepage of potentially contaminating leachate resulting from any potential future breach of the TSF liners                                                                                                                                                                      | 4/08/2011      | 26                       | 17                            | -                             | 11 to 26                      | 316765.625 | 6114914.231 | 168.474                                | Operational    |                                      |
| KMB023 | Monitoring Well | To assess potential groundwater level rise and seepage of potentially contaminating leachate resulting from any potential future breach of the TSF liners                                                                                                                                                                      | 2/09/2011      | 15                       | 9.5                           | -                             | 6 to 15                       | 316630.598 | 6114723.114 | 157.048                                | Operational    |                                      |
| KMB024 | Monitoring Well | To assess any impates to groundwater quality down hydraulic gradient of mining activities (off site), and to provide data relating to groundwater level drawdown from future pit dewatering activities and production well water use                                                                                           | 2/09/2011      | 30                       | 23.5                          | -                             | 15 to 30                      | 318618.796 | 6113430.466 | 138.756                                | Operational    |                                      |
| KMB025 | Monitoring Well | To assess any impatcs to groundwater quality down hydraulic gradient of mining activities (off site), and to provide data relating to groundwater level drawdown from future pit dewatering activities and production well water use                                                                                           | 1/09/2011      | 36                       | 30                            | -                             | 21 to 36                      | 317817.984 | 6113458.283 | 154.486                                | Operational    |                                      |
| KMB026 | Monitoring Well | To provide further information regarding the extent of groundwater quality impacts associated with former heap leach operations (SAMR area) undertaken at the site, and to provide data for use in a Detailed Risk Assessment undertaken to assess the potential risks associated with a localised area of groundwater impacts | 2/08/2011      | 51                       | 34                            | -                             | 27 to 47                      | 318499.663 | 6114814.23  | 170.739                                | Operational    | Collapse in bore from 47m to 51m bgl |

Note:

<sup>\*</sup> RC wells installed in June 2007 by Hillgrove Resources



### Appendix B. Groundwater quality analytical results

Table 1. Monitoring Well Construction Details and Groundwater Elevation Data Hillgrove Resources - Kanmantoo Copper Project

| Well      | Purpose         | Eastings     | Northings     | Depth of Well<br>(m PVC) | Watertable<br>Intersected<br>(m bgl) | Depth of<br>Casing<br>(m bgl) | Reduced Level<br>m AHD<br>(top of PVC) | Water Levels<br>(m PVC)<br>20 Nov 2006 | Reduced Water<br>Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>21 Nov 2006 | Reduced Water<br>Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>14 Dec 2006 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>30 Mar 2007 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>18 May 2007 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>5 June 2007 | Reduced<br>Water Levels<br>(m AHD) |
|-----------|-----------------|--------------|---------------|--------------------------|--------------------------------------|-------------------------------|----------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|
| KMB001    | Monitoring Well | 318378.334   | 6114920.623   | 57.73                    | 55                                   | -                             | 170.324                                | 55.177                                 | 115.147                            | 54.831                                 | 115.493                            | 51.203                                 | 119.121                            | 39.970                                 | 130.354                            | 38.558                                 | 131.766                            | 37.325                                 | 132.999                            |
| KMB002    | Monitoring Well | 318343.319   | 6114865.801   | 34.43                    | 17                                   | -                             | 169.667                                | 17.224                                 | 152.443                            | 17.099                                 | 152.568                            | 17.312                                 | 152.355                            | 17.330                                 | 152.337                            | 5.742                                  | 163.925                            | 6.630                                  | 163.037                            |
| KMB003    | Monitoring Well | 318473.823   | 6114903.458   | 30.83                    | 23                                   | -                             | 167.054                                | 23.564                                 | 143.490                            | 23.556                                 | 143.498                            | 23.567                                 | 143.487                            | 23.705                                 | 143.349                            | 23.774                                 | 143.280                            | 23.815                                 | 143.239                            |
| KMB004    | Monitoring Well | 317435.026   | 6114805.44    | 16.52                    | 8                                    | -                             | 177.715                                | 8.423                                  | 169.292                            | 8.421                                  | 169.294                            | 8.526                                  | 169.189                            | 9.320                                  | 168.395                            | -                                      | -                                  | 9.240                                  | 168.475                            |
| KMB005    | Water Supply    | 317865.277   | 6113863.304   | 120                      | 8                                    | 18                            | 151.748                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 5.390                                  | 146.358                            | -                                      | -                                  | -                                      | -                                  |
| KMB005b   | Water Supply    | 317862       | 6113860       | 175                      | 6                                    | 48                            | -                                      | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB006    | Water Supply    | 316957.307   | 6115911.231   | 96                       | 15                                   | 6                             | 211.33                                 | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 12.435                                 | 198.895                            | -                                      | -                                  | -                                      | -                                  |
| KMB007*   | Water Supply    | 317653.206   | 6114651.134   | 138                      | 54                                   | 6                             | 189.981                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 19.010                                 | 170.971                            | -                                      | -                                  | 20.153                                 | 169.828                            |
| KMB008*   | Water Supply    | 317647.21    | 6114060.999   | 120                      | 60                                   | 10                            | 159.985                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 5.885                                  | 154.100                            | -                                      | -                                  | -                                      | -                                  |
| KMB008b   | Water Supply    | 317640       | 6114059       | 169                      | 4                                    | 51.5                          | -                                      | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB009    | Water Supply    | 318467.979   | 6114559.949   | 66                       | -                                    | 54                            | 167.215                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 23.315                                 | 143.900                            | -                                      | -                                  | 23.290                                 | 143.925                            |
| KMB010    | Water Supply    | 317546 - GPS | 6114396 - GPS | 120                      | 21                                   | 6                             | 166.795                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 4.970                                  | 161.825                            | -                                      | -                                  | 3.745                                  | 163.050                            |
| KMB011**  | Monitoring Well | 318388       | 6116001       | 11.04                    | 6                                    | -                             | 179.347                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 5.712                                  | 173.635                            | 5.640                                  | 173.707                            |
| KMB012**  | Monitoring Well | 318589       | 6115955       | 17.6                     | 16                                   | -                             | 174.508                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 16.179                                 | 158.329                            | 16.220                                 | 158.288                            |
| KMB013**  | Monitoring Well | 318071       | 3115583       | 33.92                    | 31                                   | -                             | 231.039                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 30.452                                 | 200.587                            | 30.600                                 | 200.439                            |
| KMB014**  | Monitoring Well | 318330       | 6114792       | 24.93                    | 18                                   | -                             | 177.921                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 18.324                                 | 159.597                            | 18.330                                 | 159.591                            |
| KMB015**  | Monitoring Well | 318367       | 6114710       | 27.92                    | 24                                   | -                             | 173.272                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 24.013                                 | 149.259                            | 21.565                                 | 151.707                            |
| KMB016*** | RC Holes        | 316718       | 6115752       | 60                       | -                                    | -                             | 223.75                                 | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 25.395                                 | 198.355                            |
| KMB017*** | RC Holes        | 316864       | 6115540       | 60                       | -                                    | -                             | 220.25                                 | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB018*** | RC Holes        | 317074       | 6115639       | 60                       | -                                    | -                             | 213.4                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 21.396                                 | 192.004                            |
| KMB019*** | RC Holes        | -            | -             | 50                       | -                                    | -                             | 180.13                                 | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | 15.100                                 | 165.030                            |
| KMB020    | Monitoring Well | 317064.524   | 6116147.653   | 31.76                    | 22                                   | -                             | 212.477                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB021    | Monitoring Well | 318901.469   | 6114747.793   | 35.58                    | 29.5                                 | -                             | 150.926                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB022    | Monitoring Well | 316765.625   | 6114914.231   | 26                       | 17                                   | -                             | 168.474                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB023    | Monitoring Well | 316630.598   | 6114723.114   | 15.76                    | 9.5                                  | -                             | 157.048                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB024    | Monitoring Well | 318618.796   | 6113430.466   | 30.78                    | 23.5                                 | -                             | 138.756                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB025    | Monitoring Well | 317817.984   | 6113458.283   | 36.61                    | 30                                   | -                             | 154.486                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |
| KMB026    | Monitoring Well | 318499.663   | 6114814.23    | 51                       | 34                                   | -                             | 170.739                                | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  | -                                      | -                                  |

Water level in pit was approximately 105 m AHD on the 6 December 2006 (data provided to REM by Hillgrove Resources).

\* Only water supply wells which have not been cased over the watertable.

\*\* Wells drilled in May 2007 by REM

<sup>\*\*\*</sup>RC wells installed in June 2007 by Hillgrove Resources

† Water levels gauged on 14 September 2011

Table 1. Monitoring Well Construction Details and Groundwater Elevation Data Hillgrove Resources - Kanmantoo Copper Project

| Well      | Purpose         | Eastings     | Northings     | Depth of Well<br>(m PVC) | Watertable<br>Intersected<br>(m bgl) | Depth of<br>Casing<br>(m bgl) | Reduced Level<br>m AHD<br>(top of PVC) | Water Levels<br>(m PVC)<br>7 July 2007 | Reduced Water<br>Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>11 October 2010 | Reduced Water<br>Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>21 January 2011 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>16 May 2011 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>15 August 2011 | Reduced<br>Water Levels<br>(m AHD) | Water Levels<br>(m PVC)<br>7 November 2011 | Reduced<br>Water Levels<br>(m AHD) |
|-----------|-----------------|--------------|---------------|--------------------------|--------------------------------------|-------------------------------|----------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------|------------------------------------|--------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------|------------------------------------|
| KMB001    | Monitoring Well | 318378.334   | 6114920.623   | 57.73                    | 55                                   | -                             | 170.324                                | 35.470                                 | 134.854                            | 31.886                                     | 138.438                            | 32.369                                     | 137.955                            | 33.493                                 | 136.831                            | 31.845                                    | 138.479                            | 32.294                                     | 138.030                            |
| KMB002    | Monitoring Well | 318343.319   | 6114865.801   | 34.43                    | 17                                   | -                             | 169.667                                | 4.608                                  | 165.059                            | 5.678                                      | 163.989                            | 7.367                                      | 162.300                            | 11.628                                 | 158.039                            | 5.902                                     | 163.765                            | 10.233                                     | 159.434                            |
| KMB003    | Monitoring Well | 318473.823   | 6114903.458   | 30.83                    | 23                                   | -                             | 167.054                                | 23.824                                 | 143.230                            | 20.975                                     | 146.079                            | 19.895                                     | 147.159                            | 19.609                                 | 147.445                            | 19.102                                    | 147.952                            | 19.713                                     | 147.341                            |
| KMB004    | Monitoring Well | 317435.026   | 6114805.44    | 16.52                    | 8                                    | -                             | 177.715                                | 9.401                                  | 168.314                            | DESTR                                      | OYED                               | DESTRO                                     | DYED                               | DESTR                                  | OYED                               | DESTRO                                    | OYED                               | DESTRO                                     | OYED                               |
| KMB005    | Water Supply    | 317865.277   | 6113863.304   | 120                      | 8                                    | 18                            | 151.748                                | 5.374                                  | 146.374                            | 14.463                                     | 137.285                            | 21.835                                     | 129.913                            | 22.271                                 | 129.477                            | 7.713                                     | 144.035                            | -                                          | -                                  |
| KMB005b   | Water Supply    | 317862       | 6113860       | 175                      | 6                                    | 48                            | -                                      | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | -                                         | -                                  | -                                          | -                                  |
| KMB006    | Water Supply    | 316957.307   | 6115911.231   | 96                       | 15                                   | 6                             | 211.33                                 | 12.978                                 | 198.352                            | 15.595                                     | 195.735                            | 11.859                                     | 199.471                            | 11.801                                 | 199.529                            | 11.609                                    | 199.721                            | -                                          | -                                  |
| KMB007*   | Water Supply    | 317653.206   | 6114651.134   | 138                      | 54                                   | 6                             | 189.981                                | 20.211                                 | 169.770                            | 17.704                                     | 172.277                            | 17.186                                     | 172.795                            | 17.321                                 | 172.660                            | 17.625                                    | 172.356                            | 17.976                                     | 172.005                            |
| KMB008*   | Water Supply    | 317647.21    | 6114060.999   | 120                      | 60                                   | 10                            | 159.985                                | 3.786                                  | 156.199                            | 9.835                                      | 150.150                            | 4.360                                      | 155.625                            | 8.070                                  | 151.915                            | -                                         | -                                  | -                                          | -                                  |
| KMB008b   | Water Supply    | 317640       | 6114059       | 169                      | 4                                    | 51.5                          | -                                      | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | -                                         | -                                  | -                                          | -                                  |
| KMB009    | Water Supply    | 318467.979   | 6114559.949   | 66                       | -                                    | 54                            | 167.215                                | 23.522                                 | 143.693                            | 22.826                                     | 144.389                            | 20.780                                     | 146.435                            | 20.727                                 | 146.488                            | 20.817                                    | 146.398                            | 21.047                                     | 146.168                            |
| KMB010    | Water Supply    | 317546 - GPS | 6114396 - GPS | 120                      | 21                                   | 6                             | 166.795                                | 3.754                                  | 163.041                            | 3.659                                      | 163.136                            | 4.134                                      | 162.661                            | 4.124                                  | 162.671                            | 4.290                                     | 162.505                            | 5.804                                      | 160.991                            |
| KMB011**  | Monitoring Well | 318388       | 6116001       | 11.04                    | 6                                    | -                             | 179.347                                | 5.407                                  | 173.940                            | 4.891                                      | 174.456                            | 4.865                                      | 174.482                            | 5.195                                  | 174.152                            | 4.933                                     | 174.414                            | 5.125                                      | 174.222                            |
| KMB012**  | Monitoring Well | 318589       | 6115955       | 17.6                     | 16                                   | -                             | 174.508                                | 16.201                                 | 158.307                            | 16.279                                     | 158.229                            | 16.101                                     | 158.407                            | 15.950                                 | 158.558                            | 15.800                                    | 158.708                            | 15.720                                     | 158.788                            |
| KMB013**  | Monitoring Well | 318071       | 3115583       | 33.92                    | 31                                   | -                             | 231.039                                | 30.690                                 | 200.349                            | 33.564                                     | 197.475                            | 33.792                                     | 197.247                            | 33.818                                 | 197.221                            | 33.940                                    | 197.099                            | -                                          | -                                  |
| KMB014**  | Monitoring Well | 318330       | 6114792       | 24.93                    | 18                                   | -                             | 177.921                                | 17.972                                 | 159.949                            | 17.814                                     | 160.107                            | 14.158                                     | 163.763                            | 13.622                                 | 164.299                            | 14.811                                    | 163.110                            | -                                          | -                                  |
| KMB015**  | Monitoring Well | 318367       | 6114710       | 27.92                    | 24                                   | -                             | 173.272                                | 20.958                                 | 152.314                            | 7.684                                      | 165.588                            | 8.035                                      | 165.237                            | 9.112                                  | 164.160                            | 9.645                                     | 163.627                            | 13.036                                     | 160.236                            |
| KMB016*** | RC Holes        | 316718       | 6115752       | 60                       | -                                    | -                             | 223.75                                 | 25.442                                 | 198.308                            | 21.044                                     | 202.706                            | 21.560                                     | 202.190                            | 22.228                                 | 201.522                            | 22.614                                    | 201.136                            | 22.868                                     | 200.882                            |
| KMB017*** | RC Holes        | 316864       | 6115540       | 60                       | -                                    | -                             | 220.25                                 | 27.146                                 | 193.104                            | 24.367                                     | 195.883                            | 24.825                                     | 195.425                            | 26.930                                 | 193.320                            | -                                         | -                                  | -                                          | -                                  |
| KMB018*** | RC Holes        | 317074       | 6115639       | 60                       | -                                    | -                             | 213.4                                  | 21.473                                 | 191.927                            | 20.086                                     | 193.314                            | 19.609                                     | 193.791                            | 19.714                                 | 193.686                            | 19.634                                    | 193.766                            | -                                          | -                                  |
| KMB019*** | RC Holes        | -            | -             | 50                       | -                                    | -                             | 180.13                                 | 15.640                                 | 164.490                            | 10.882                                     | 169.248                            | 13.719                                     | 166.411                            | DESTR                                  | OYED                               | DESTRO                                    | OYED                               | DESTRO                                     | OYED                               |
| KMB020    | Monitoring Well | 317064.524   | 6116147.653   | 31.76                    | 22                                   | -                             | 212.477                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 19.389                                    | 193.088                            | 19.434                                     | 193.043                            |
| KMB021    | Monitoring Well | 318901.469   | 6114747.793   | 35.58                    | 29.5                                 | -                             | 150.926                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 16.24 <sup>†</sup>                        | 134.686                            | 16.242                                     | 134.684                            |
| KMB022    | Monitoring Well | 316765.625   | 6114914.231   | 26                       | 17                                   | -                             | 168.474                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 8.311                                     | 160.163                            | 8.592                                      | 159.882                            |
| KMB023    | Monitoring Well | 316630.598   | 6114723.114   | 15.76                    | 9.5                                  | -                             | 157.048                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 5.522 <sup>†</sup>                        | 151.526                            | 5.380                                      | 151.668                            |
| KMB024    | Monitoring Well | 318618.796   | 6113430.466   | 30.78                    | 23.5                                 | -                             | 138.756                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 17.42 <sup>†</sup>                        | 121.336                            | 17.357                                     | 121.399                            |
| KMB025    | Monitoring Well | 317817.984   | 6113458.283   | 36.61                    | 30                                   | -                             | 154.486                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 24.35 <sup>†</sup>                        | 130.136                            | 24.424                                     | 130.062                            |
| KMB026    | Monitoring Well | 318499.663   | 6114814.23    | 51                       | 34                                   | -                             | 170.739                                | -                                      | -                                  | -                                          | -                                  | -                                          | -                                  | -                                      | -                                  | 24.334                                    | 146.405                            | 24.621                                     | 146.118                            |

Water level in pit was approximately 105 m AHD on the 6 December 2006 (data provided to REM by Hillgrove Resources).

\* Only water supply wells which have not been cased over the watertable.

<sup>\*\*</sup> Wells drilled in May 2007 by REM

<sup>\*\*\*</sup>RC wells installed in June 2007 by Hillgrove Resources

† Water levels gauged on 14 September 2011

### Table 2. Summary of Groundwater and Surface Water Field Parameters Hillgrove Resources - Kanmantoo Copper Project

| Well                | Sampling                 | Sampling                 | Sampling                     | Sampling                     | Sampling<br>Depth (Aug / Sept |          |          |          | рН       | 1        |          |                    |          |          |          | E        | Electrical Cond | uctivity (mS/c | m)        |                    |          |          |          | To       | al Dissolved | Solids (mg | /L)       |                    |          |
|---------------------|--------------------------|--------------------------|------------------------------|------------------------------|-------------------------------|----------|----------|----------|----------|----------|----------|--------------------|----------|----------|----------|----------|-----------------|----------------|-----------|--------------------|----------|----------|----------|----------|--------------|------------|-----------|--------------------|----------|
|                     | Depth (2007)<br>(m bPVC) | Depth (2010)<br>(m bPVC) | Depth (Jan 2011)<br>(m bPVC) | Depth (May 2011)<br>(m bPVC) | 2011) (m<br>bPVC)             | Nov-2006 | Apr-2007 | Jun-2007 | Oct-2010 | Jan-2011 | May-2011 | Aug / Sept<br>2011 | Nov-2011 | Nov-2006 | Apr-2007 | Jun-2007 | Oct-2010        | Jan-2011       | May-2011  | Aug / Sept<br>2011 | Nov-2011 | Nov-2006 | Apr-2007 | Jun-2007 | Oct-2010     | Jan-2011   | May-2011  | Aug / Sept<br>2011 | Nov-2011 |
| KMB001              | 40                       | watertable               | watertable                   | watertable                   | watertable                    | 4.94     | 5.15     | -        | 6.67     | 5.03     | 5.07     | 4.50               | 3.25     | 5.96     | 5.98     | -        | 4.25            | 5.61           | 5.22      | 5.41               | 1.86     | 3,874    | 3,887    | -        | 2,763        | 3,647      | 3,393     | 3,517              | 1,210    |
| KMB002              | 24                       | watertable - 26          | 26                           | 26                           | 26                            | 3.94     | 4.17     | -        | 4.08     | 3.57     | 3.88     | 3.49               | 3.30     | 3.98     | 1.98     | -        | 7.00            | 2.86           | 2.73      | 19.73              | 17.93    | 2,587    | 1,287    | -        | 4,550        | 1,859      | 1,775     | 12,825             | 11,655   |
| KMB003              | 24                       | watertable - 24          | 24                           | 24                           | 24                            | 6.71     | 7.51     | -        | 6.76     | 6.90     | 6.60     | 6.50               | 6.37     | 3.61     | 3.35     | -        | 3.48            | 3.78           | 3.78      | 4.12               | 4.15     | 2,347    | 2,178    | -        | 2,262        | 2,457      | 2,457     | 2,678              | 2,698    |
| KMB004              | 10                       | Destroyed                | Destroyed                    | Destroyed                    | Destroyed                     | 6.8      | 7.97     | -        |          | •        | Destroye | d                  | •        | 5.92     | 6.11     | -        |                 |                | Destroyed | •                  |          | 3,848    | 3,972    | -        |              |            | Destroyed |                    |          |
| KMB005              | 54                       | -                        | -                            | -                            | -                             | -        | 7.35     | -        | -        | -        | -        | -                  | -        | -        | 5.39     | -        | -               | -              | -         | -                  | -        | -        | 3,504    | -        | -            | -          | -         | -                  | -        |
| KMB005b             | -                        | unknown*                 | unknown*                     | unknown*                     | unknown*                      | -        | -        | -        | 7.13     | 7.14     | 6.83     | 7.07               | 6.49     | -        | -        | -        | 5.50            | 5.91           | 5.63      | 6.16               | 5.89     | -        | -        | -        | 3,575        | 3,842      | 3,660     | 4,004              | 3,829    |
| KMB006 - watertable | 13                       |                          | -                            | -                            | -                             | -        | 7.55     | -        | -        | -        | -        | -                  | -        | -        | 12.94    | -        | -               | -              | -         | -                  | -        | -        | 8,411    | -        | -            | -          | -         | -                  | -        |
| KMB006 - at depth   | 48                       | 48                       | 48                           | 36                           | 36                            | -        | 7.89     | -        | 6.73     | 7.37     | 6.65     | 6.65               | -        | -        | 13.05    | -        | 12.23           | 13.23          | 13.34     | 13.43              | -        | -        | 8,483    | -        | 7,950        | 8,600      | 8,671     | 8,730              | -        |
| KMB007 - watertable | 20                       | 54                       | -                            | -                            | -                             | -        | 7.96     | -        | -        | -        | -        | -                  | -        | -        | 2.74     | -        | -               | -              | -         | -                  | -        | -        | 1,781    | -        | -            | -          | -         | -                  | -        |
| KMB007 - at depth   | 54                       | 54                       | 54                           | 54                           | 54                            | -        | 7.57     | -        | 6.62     | 6.49     | 6.53     | 6.40               | 6.38     | -        | 4.23     | -        | 4.09            | 4.97           | 5.66      | 5.59               | 5.41     | -        | 2,750    | -        | 2,659        | 3,231      | 3,679     | 3,634              | 3,517    |
| KMB008              | 60                       |                          | -                            | -                            | -                             | -        | 7.12     | -        | -        | -        | -        | -                  | -        | -        | 5.83     | -        | -               | -              | -         | -                  | -        | -        | 3,790    | -        | -            | -          | -         | -                  | -        |
| KMB008b             | -                        | unknown*                 | unknown*                     | unknown*                     | unknown*                      | -        |          | -        | 6.67     | 7.04     | 6.49     | 6.78               | 6.72     | -        | -        | -        | 6.09            | 5.90           | 5.96      | 6.86               | 45.00    | -        | -        | -        | 3,959        | 3,835      | 3,874     | 4,459              | 29,250   |
| KMB009              | -                        | watertable               | watertable                   | watertable                   | watertable                    | -        |          | -        | 6.07     | 6.89     | 6.90     | 6.46               | 7.09     | -        | -        | -        | 5.22            | 5.24           | 5.25      | 5.61               | 1.80     | -        | -        | -        | 3,393        | 3,406      | 3,413     | 3,647              | 1,167    |
| KMB010              | -                        | 34.5                     | 34.5                         | 35.0                         | 34.5                          | -        | -        | -        | 6.82     | 6.79     | 6.75     | 6.73               | 6.52     | -        | -        | -        | 5.96            | 2.91           | 7.09      | 3.91               | 3.49     | -        | -        | -        | 3,874        | 1,892      | 4,609     | 2,542              | 2,269    |
| KMB011              | 7                        | watertable               | watertable                   | watertable                   | watertable                    | -        | -        | 6.34     | 5.21     | 5.63     | 4.12**   | 5.45               | 5.58     | -        | -        | 9.27     | 9.60            | 9.92           | 9.30      | 10.10              | 9.34     | -        | -        | 6,026    | 6,240        | 6,448      | 6,045     | 6,565              | 6,071    |
| KMB012              | 17                       | watertable               | watertable                   | watertable                   | watertable                    | -        |          | 8.32     | 7.51     | 7.50     | 5.83**   | 7.53               | 7.20     | -        | -        | 7.69     | 6.72            | 7.19           | 6.72      | 7.05               | 6.67     | -        | -        | 4,999    | 4,368        | 4,674      | 4,368     | 4,583              | 4,336    |
| KMB013              | 32                       | watertable               | -                            | -                            | -                             | -        |          | 7.87     | 6.58     | -        | -        | -                  | -        | -        | -        | 24.86    | 24.90           | -              | -         | -                  | -        | -        | -        | 16,159   | 16,185       | -          | -         |                    | -        |
| KMB014              | 20                       | watertable               | watertable                   | watertable                   | watertable                    | -        |          | 6.99     | 5.70     | 5.09     | 6.03     | 5.49               | -        | -        | -        | 2.27     | 3.36            | 3.73           | 3.71      | 3.60               | -        | -        | -        | 1,473    | 2,184        | 2,425      | 2,412     | 2,340              | -        |
| KMB015              | 23                       | watertable               | watertable                   | watertable                   | watertable                    | -        |          | 6.87     | 3.84     | 4.16     | 3.94     | 3.92               | 4.08     | -        | -        | 3.12     | 3.34            | 3.55           | 4.04      | 3.24               | 2.57     | -        | -        | 2,028    | 2,168        | 2,308      | 2,626     | 2,106              | 1,671    |
| KMB016              | 27                       | watertable - 23          | 23                           | 24                           | 24                            | -        |          | 7.81     | 7.03     | 7.83     | 6.92     | 6.95               | 6.84     | -        | -        | 6.69     | 1.41            | 1.56           | 1.47      | 1.42               | 1.68     | -        | -        | 4,349    | 917          | 1,011      | 956       | 923                | 1,090    |
| KMB017              | 28                       | watertable - 27          | 27                           | -                            | -                             | -        |          | 7.63     | 7.00     | 7.56     | -        | -                  | -        | -        | -        | 16.39    | 5.19            | 5.34           | -         | -                  | -        | -        | -        | 10,654   | 3,374        | 3,471      | -         | -                  | -        |
| KMB018              | 23                       | watertable - 22          | 22                           | 22                           | 22                            | -        |          | 7.78     | 7.20     | 7.64     | 6.90     | 6.88               | -        | -        | -        | 10.64    | 8.25            | 9.12           | 9.16      | 8.77               | -        | -        | -        | 6,916    | 5,363        | 5,928      | 5,954     | 5,701              | -        |
| KMB019              | 16                       | watertable - 13          | 16                           | Destroyed                    | Destroyed                     | -        |          | 7.35     | 6.82     | 7.82     |          | Destroyed          | •        | -        | -        | 9.46     | 2.41            | 2.57           |           | Destroyed          | •        | -        | -        | 6,149    | 1,567        | 1,671      |           | Destroyed          |          |
| KMB020              | -                        |                          | -                            |                              | 23                            | -        |          | -        | -        | -        | -        | 7.31               | 7.08     | -        | -        | -        | -               | -              | -         | 6.92               | 6.72     | -        | -        | -        | -            | -          | -         | 4,498              | 4,368    |
| KMB021              | -                        |                          | -                            | -                            | 30.5                          | -        |          | -        | -        | -        | -        | 6.85               | 6.51     | -        | -        | -        | -               | -              | -         | 5.45               | 5.38     | -        | -        | -        | -            | -          | -         | 3,543              | 3,497    |
| KMB022              | -                        |                          | -                            | -                            | 18                            | -        |          | -        | -        | -        | -        | 7.03               | 6.68     | -        | -        | -        | -               | -              | -         | 11.24              | 12.00    | -        | -        | -        | -            | -          | -         | 7,306              | 7,800    |
| KMB023              | -                        |                          | -                            | -                            | 10.5                          | -        | -        | -        | -        | -        | -        | 6.81               | 6.76     | -        | -        | -        | -               | -              | -         | 6.66               | 5.72     | -        | -        | -        | -            | -          | -         | 4,329              | 3,718    |
| KMB024              | -                        |                          | -                            | -                            | 27                            | -        | -        | -        | -        | -        | -        | 7.30               | 6.98     | -        | -        | -        | -               | -              | -         | 2.55               | 2.51     | -        | -        | -        | -            | -          | -         | 1,658              | 1,632    |
| KMB025              | -                        |                          | -                            | -                            | 31.5                          | -        | -        | -        | -        | -        | -        | 6.60               | 6.03     | -        | -        | -        | -               | -              | -         | 10.23              | 9.42     | -        | -        | -        | -            | -          | -         | 6,650              | 6,123    |
| KMB026              | -                        |                          | -                            | -                            | 35                            | -        | -        | -        | -        | -        | -        | 6.52               | 6.44     | -        | -        | -        | -               | -              | -         | 5.32               | 4.94     | -        | -        | -        | -            | -          | -         | 3,458              | 3,211    |
| Pit Void            | -                        |                          |                              | -                            | -                             | -        | -        | -        | 2.85     | -        | 2.74     | 2.45               | 2.52     | -        | -        | -        | 9.61            | -              | 12.18     | 14.54              | 8.24     | -        | -        | -        | 6,247        | -          | 7,917     | 9,451              | 5,356    |
| Spring 1 (SW1)      | -                        |                          |                              | -                            | -                             | -        | -        | -        | 7.88     | -        | 8.21     | -                  | -        | -        | -        | -        | 15.56           | -              | 9.75      | -                  | -        | -        | -        | -        | 10,114       | -          | 6,338     | -                  | -        |
| Spring 2 (SW2)      | -                        |                          | -                            | -                            | -                             | -        | -        | -        | -        | -        | 8.07     | -                  | -        | -        | -        | -        | -               | -              | 8.51      | -                  | -        | -        | -        | -        | -            | -          | 5,532     | -                  | -        |
| SW3 (spring)        | -                        |                          | -                            | -                            | -                             | -        | -        | -        | -        | -        | -        | 7.86               | 8.40     | -        | -        | -        | -               | -              | -         | 9.45               | 2.93     | -        | -        | -        | -            | -          | -         | 6,143              | 1,905    |
| SW4 (surface water) | -                        |                          | -                            |                              |                               | -        | -        | -        | -        | -        | -        | 7.88               | 7.35     | -        | -        | -        | -               | -              | -         | 0.30               | 0.48     | -        | -        | -        | -            | -          | -         | 193                | 314      |

Note:
TDS calculated by multiplying EC by a factor of 650

\* These wells were equipped with an electric well pump by a contractor.

\*\* These pH values recorded in the May 2011 sampling event are believed to be spurious. The pH probe was found to be faulty shortly after sampling these wells.

#### Table 1: Summary of Lanholder Bore Details and Status

Client: Hillgrove Resources

Project Name: November 2011 Groundwater Monitoring Event

Project Number: VE23468

|                   | SWL (m TOC) SWL (m TOC)  Well ID Property Owner Parcel Details Phone Well Status Purpose Easting Northing Drill Date Drill Permit Depth (m) May 2011 Nov 2011 Pump Depth (m) Yield (L/sec) Comments/Sampling Details Sampled 30/10/08 Sampled 30/10/08 Sampled October 2010 Sampled May 2011 Sampled November 2011 |                 |                              |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|--------------|-----------------------|------------------------|-------------------------|---------------------------|-----------------------|----------------------|----------|----------|---------------------|---------------------|------------------------------------------------------------------|------------------|------------------|----------------------|------------------|-----------------------|
| Well ID           | Property Owner                                                                                                                                                                                                                                                                                                     | Parcel Details  | Phone                        | Well Status  | Purpose               | Easting                | Northing                | Drill Date                | Drill Permit          | Depth (m)            | May 2011 | Nov 2011 | Pump Depth (m)      | Yield (L/sec)       | Comments/Sampling Details                                        | Sampled 20/10/08 | Sampled 30/10/08 | Sampled October 2010 | Sampled May 2011 | Sampled November 2011 |
| 672702909         | George Fule                                                                                                                                                                                                                                                                                                        | D60948 A29      | 0409 520 990                 | Not in use   |                       | 0318785                | 6112840                 | 17/04/2002 <sup>[2]</sup> | 58111 <sup>[2]</sup>  | 91 <sup>[2]</sup>    | 28.515   | 28.175   | 83 <sup>[1]</sup>   | 2.25 <sup>[2]</sup> | Need generator to sample (silenced 2kva is sufficient).          | No               | Yes              | Yes                  | Yes              | Yes                   |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | Geoff                        |              |                       |                        |                         |                           |                       | l                    |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | 0438 400 096                 |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     | Windmill driven pump, take grab sample from adjacent concrete    |                  |                  |                      |                  |                       |
| 672700673         | Geoff & Sue Aubert                                                                                                                                                                                                                                                                                                 | D47967 A3       | 08 8388 6822                 | Operational  | Stock                 | 0318119                | 6113235                 |                           |                       | 43 <sup>[1]</sup>    | 23.76    | 23.305   | 30 <sup>[1]</sup>   | 0.5 <sup>[1]</sup>  | water tank (can't sample from poly-pipe)                         | Yes              | No               | Yes                  | Yes              | Yes                   |
|                   |                                                                                                                                                                                                                                                                                                                    |                 |                              |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     | Not on Filmer's property, AJ & RM Phillips? Old windmill, out of |                  |                  |                      |                  |                       |
|                   |                                                                                                                                                                                                                                                                                                                    |                 |                              |              |                       | [9]                    | [2]                     |                           |                       |                      |          |          |                     |                     | service, bore drilled inside old large diameter well, cannot get |                  |                  |                      |                  |                       |
| 672700672         | Bill & Sarah Filmer                                                                                                                                                                                                                                                                                                | D60948 A25      | 0439 464 473                 | Not in use   |                       | 0318982 <sup>[2]</sup> | 6113334 <sup>[2]</sup>  |                           |                       | ~ 60                 | 34.145   | -        | -                   | -                   | bailer down to sample                                            | No               | No               | No                   | No               | No                    |
| 672700671         | Bill & Sarah Filmer                                                                                                                                                                                                                                                                                                | D60948 Q26, Q27 | 0439 464 473                 | Destroyed    |                       | 0318729 <sup>[2]</sup> | 6113539 <sup>[2]</sup>  |                           |                       | 9.1 <sup>[2]</sup>   |          | -        | -                   | -                   | Destroyed                                                        | No               | No               | No                   | No               | No                    |
|                   |                                                                                                                                                                                                                                                                                                                    |                 |                              |              |                       |                        |                         | [1]                       |                       |                      |          |          | [1]                 | [9]                 |                                                                  |                  |                  |                      |                  |                       |
| 672700670         | Bill & Sarah Filmer                                                                                                                                                                                                                                                                                                | D60948 Q26, Q27 | 0439 464 473                 | Not in use   | Irrigation            | 0319196                | 6113655                 | Pre 1950's <sup>[1]</sup> |                       | 15.91                | 11.115   | 10.895   | ≈ 15 <sup>[1]</sup> | 0.5 <sup>[2]</sup>  | Old bore, not used . Pump has seized and cannot be sampled.      | No               | Yes              | No                   | No               | Yes                   |
|                   |                                                                                                                                                                                                                                                                                                                    |                 |                              |              | Domestic &            |                        |                         | a . / /a a a = [2]        |                       | 400[1]               |          |          | 72 <sup>[1]</sup>   | 0.75 <sup>[2]</sup> | Bore pump has broken down, to be replaced by property owner by   | 1                |                  |                      |                  |                       |
| 672703091         | Bill & Sarah Filmer                                                                                                                                                                                                                                                                                                | D60948 Q26, Q27 | 0439 464 473<br>08 8538 5339 | Not in Use   | Irrigation Domestic & | 0319131                | 6113699                 | 21/11/2005 <sup>[2]</sup> | 107260 <sup>[2]</sup> | 133 <sup>[1]</sup>   | 13.68    | 13.41    | /2(-)               | 0.75                | end of 2011.                                                     | No               | Yes              | No                   | No               | Yes                   |
| 672703038         | Keith & Barbara Wilkinson                                                                                                                                                                                                                                                                                          | F1636 A3        | Call after 6pm               | Operational  | Stock                 | 0319767                | 6114639                 | ≈ 1980 <sup>[1]</sup>     |                       | 40 <sup>[1]</sup>    | 18.26    | 17.8     | ≈ 30 <sup>[1]</sup> | 1.25 <sup>[1]</sup> | Has electric pump to sample.                                     | Yes              | No               | Yes                  | Yes              | Yes                   |
| 072703036         | Keitii & Baibaia Wiikiiisoii                                                                                                                                                                                                                                                                                       | F1030 A3        | 08 8538 5001                 | Operational  | SLUCK                 | 0319707                | 0114039                 | ~ 1900                    |                       | 40                   | 10.20    | 17.0     | ~ 30                | 1.25                | has electric pump to sample.                                     | Tes              | INU              | res                  | Tes              | res                   |
| 672700736         | Alex Wells                                                                                                                                                                                                                                                                                                         | F16808 A69      | 0407 600 438                 | Not in use   |                       | 0318226                | 6116815                 | 1952 <sup>[1]</sup>       |                       | 72 <sup>[1]</sup>    | 16.23    | 14.115   | _                   | Ι.                  | Old bore not in use, sample by bailer.                           | No               | Yes              | Yes                  | Yes              | Yes                   |
| 072700730         | AICX WCIIS                                                                                                                                                                                                                                                                                                         | 1 10000 A03     | Steve                        | Not in use   |                       | 0310220                | 0110013                 | 1552                      |                       | ,,,                  | 10.23    | 14.115   |                     |                     | old bole not in due, sumple by builti.                           | INO              | 163              | 103                  | 163              | 163                   |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | 0400 565 731,                |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
| 672700737         | Steve & Wendy Kurtis                                                                                                                                                                                                                                                                                               | F212360 A107    | 8538 5586                    | Destroyed    |                       | 0318650 <sup>[2]</sup> | 6116729 <sup>[2]</sup>  |                           |                       | 12.2 <sup>[2]</sup>  |          | -        | -                   | -                   | Destroyed                                                        | No               | No               | No                   | No               | No                    |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | Wendy                        | ,            |                       |                        |                         |                           |                       |                      |          |          |                     |                     | Windmill driven pump, not in use, well has been capped. Property |                  |                  |                      |                  |                       |
| 672700738         | Steve & Wendy Kurtis                                                                                                                                                                                                                                                                                               | F212360 A107    | 0400 565 732                 | Not in use   |                       | 0318585 <sup>[2]</sup> | 6116626 <sup>2</sup>    |                           |                       | 8.595                | Dry      | -        | -                   | -                   | owner potentially looking to reinstate well.                     | No               | No               | No                   | No               | No                    |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | 08 8538 5001                 |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
| 672700739         | Alex Wells                                                                                                                                                                                                                                                                                                         | D20509 A60      | 0407 600 438                 | Destroyed    |                       | 0318361 <sup>[2]</sup> | 6116388 <sup>[2]</sup>  |                           |                       | 64 <sup>[2]</sup>    |          | -        | -                   | 1.8 <sup>[2]</sup>  | Destroyed                                                        | No               | No               | No                   | No               | No                    |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | 08 8538 5001                 |              |                       |                        |                         |                           |                       |                      |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
| 672700792         | Alex Wells                                                                                                                                                                                                                                                                                                         | D20509 A60      | 0407 600 438                 | Destroyed    |                       | 0318455 <sup>[2]</sup> | 6115679 <sup>[2]</sup>  |                           |                       | Unknown              |          | -        | -                   | -                   | Destroyed                                                        | No               | No               | No                   | No               | No                    |
|                   |                                                                                                                                                                                                                                                                                                                    |                 | 08 8538 5001                 |              |                       | [2]                    | [2]                     | [2]                       |                       | [2]                  |          |          |                     |                     |                                                                  |                  |                  |                      |                  |                       |
| 672703043         | Alex Wells                                                                                                                                                                                                                                                                                                         | F16808 A69      | 0407 600 438                 | Destroyed    |                       | 0318436 <sup>[2]</sup> | 6116778 <sup>[2]</sup>  | 13/04/1994 <sup>[2]</sup> |                       | 187.2 <sup>[2]</sup> |          | -        | -                   | -                   | Destroyed                                                        | No               | No               | No                   | No               | No                    |
| 1                 |                                                                                                                                                                                                                                                                                                                    |                 | 08 8538 5001                 |              | Domestic &            |                        | l                       | 191                       | [2]                   | [1]                  |          |          | [1]                 | [1]                 | L                                                                | l                |                  |                      |                  |                       |
| 672702459         | Alex Wells                                                                                                                                                                                                                                                                                                         | F16808 A69      | 0407 600 438                 | Operational  | Stock                 | 0318242                | 6116800                 | 22/04/1994 <sup>[2]</sup> | 31701 <sup>[2]</sup>  | 104[1]               | 14.825   | 12.5     | ≈ 92 <sup>[1]</sup> | 1.25 <sup>[1]</sup> | Has electric pump to sample                                      | Yes              | No               | Yes                  | Yes              | Yes                   |
| 662705040         | AL. MAZILL                                                                                                                                                                                                                                                                                                         | D20500 466      | 08 8538 5001                 | D            |                       | 0247644[2]             | C44 CE22 <sup>[2]</sup> | 20/44/4070[2]             |                       | 71.1 <sup>[2]</sup>  |          |          |                     |                     | Post const                                                       | N.               |                  |                      |                  | N.                    |
| 662705849         | Alex Wells                                                                                                                                                                                                                                                                                                         | D20509 A60      | 0407 600 438<br>08 8538 5001 | Destroyed    |                       | 0317614 <sup>[2]</sup> | 6116522 <sup>[2]</sup>  | 28/11/1973 <sup>[2]</sup> |                       | /1.1                 |          | -        | -                   | -                   | Destroyed                                                        | No               | No               | No                   | No               | No                    |
| Mitchell's Bore   | Alex Wells                                                                                                                                                                                                                                                                                                         | F16808 A69      | 0407 600 438                 | Not in use   |                       | 0317600                | 6116792                 | Pre 1950's <sup>[1]</sup> |                       | 72 <sup>[1]</sup>    | 28.69    | 28.65    |                     | I                   | Old bore not in use, sample by bailer.                           | No               | Yes              | Yes                  | Yes              | Yes                   |
| iviitcheil's Bore | Alex Wells                                                                                                                                                                                                                                                                                                         | F10808 A69      | 0407 000 438                 | ivor ili use |                       | 031/600                | 0110/92                 | LIG 1920 2.               |                       | 12                   | 28.69    | 28.65    |                     |                     | Old bore flot in use, sample by baller.                          | NO NO            | res              | res                  | res              | res                   |

Note:

<sup>1</sup> Information provided by Landholder

<sup>2</sup> Information sourced from DWLBC Drillhole Enquiry System

<sup>3</sup> Electronic Dip Meter used to gauge standing water level (SWL)

Can't be sampled

Table 2. Monitoring Well Construction Details and Groundwater Elevation Data Hillgrove Resources - Kanmantoo Copper Project

| Well            | Purpose               | Eastings   | Northings  | Depth of Well<br>(m PVC) | Water Levels<br>(m PVC)<br>May 2011 | Water Levels<br>(m PVC)<br>Nov 2011 |
|-----------------|-----------------------|------------|------------|--------------------------|-------------------------------------|-------------------------------------|
| 672702909       |                       | 0318785    | 6112840    | 91[2]                    | 28.515                              | 28.175                              |
| 672700673       | Stock                 | 0318119    | 6113235    | 43[1]                    | 23.760                              | 23.305                              |
| 672700672       |                       | 0318982[2] | 6113334[2] | ~ 60                     | 34.145                              | -                                   |
| 672700671       |                       | 0318729[2] | 6113539[2] | 9.1[2]                   | -                                   | -                                   |
| 672700670       | Irrigation            | 0319196    | 6113655    | 15.91                    | 11.115                              | 10.895                              |
| 672703091       | Domestic & Irrigation | 0319131    | 6113699    | 133[1]                   | 13.680                              | 13.410                              |
| 672703038       | Domestic & Stock      | 0319767    | 6114639    | 40[1]                    | 18.260                              | 17.800                              |
| 672700736       |                       | 0318226    | 6116815    | 72[1]                    | 16.230                              | 14.115                              |
| 672700737       |                       | 0318650[2] | 6116729[2] | 12.2[2]                  | -                                   | -                                   |
| 672700738       |                       | 0318585[2] | 61166262   | 8.595                    | Dry                                 | -                                   |
| 672700739       |                       | 0318361[2] | 6116388[2] | 64[2]                    | -                                   | -                                   |
| 672700792       |                       | 0318455[2] | 6115679[2] | Unknown                  | -                                   | -                                   |
| 672703043       |                       | 0318436[2] | 6116778[2] | 187.2[2]                 | -                                   | -                                   |
| 672702459       | Domestic & Stock      | 0318242    | 6116800    | 104[1]                   | 14.825                              | 12.500                              |
| 662705849       |                       | 0317614[2] | 6116522[2] | 71.1[2]                  | -                                   | -                                   |
| Mitchell's Bore |                       | 0317600    | 6116792    | 72[1]                    | 28.690                              | 28.650                              |

Water level in pit was approximately 105 m AHD on the 6 December 2006 (data provided to REM by Hillgrove Resources).

\* Only water supply wells which have not been cased over the watertable.

\*\* Wells drilled in May 2007 by REM

\*\*\*RC wells installed in June 2007 by Hillgrove Resources

† Water levels gauged on 14 September 2011



Table 3. Summary of Groundwater and Surface Water Field Parameters Hillgrove Resources - Kanmantoo Copper Project

| Well            | Sampling<br>Depth (May 2011) | Sampling<br>Depth (Nov 2011) | pH       |          | Electrical Conductivity (mS/cm) |          | Total Dissolved Solids (mg/L) |          | Redox ( mV) |          | Temperature (°C) |          |
|-----------------|------------------------------|------------------------------|----------|----------|---------------------------------|----------|-------------------------------|----------|-------------|----------|------------------|----------|
|                 | (m bPVC)                     | (m bPVC)                     | May-2011 | Nov-2011 | May-2011                        | Nov-2011 | May-2011                      | Nov-2011 | May-2011    | Nov-2011 | May-2011         | Nov-2011 |
| 672702909       |                              |                              | 7.80     | 8.17     | 3.90                            | 3.57     | 2,535                         | 2,321    | 5.9         | 47.2     | 20.6             | 19.5     |
| 672700673       |                              |                              | 7.04     | 7.53     | 6.40                            | 6.56     | 4,160                         | 4,264    | 230.6       | 167.9    | 14.5             | 17.5     |
| 672700672       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672700671       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672700670       |                              |                              | -        | 7.67     | -                               | 3.94     | -                             | 2,561    | -           | 159.9    | -                | 16.9     |
| 672703091       |                              |                              | -        | 7.15     | -                               | 5.23     | -                             | 3,400    | -           | 133.4    | -                | 18.0     |
| 672703038       |                              |                              | 6.85     | 7.34     | 4.21                            | 3.67     | 2,737                         | 2,386    | 36.8        | 65.8     | 18.8             | 19.5     |
| 672700736       |                              |                              | 6.54     | 6.87     | 8.15                            | 6.55     | 5,298                         | 4,258    | 9.2         | -16.7    | 18.1             | 17.3     |
| 672700737       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672700738       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672700739       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672700792       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672703043       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| 672702459       |                              |                              | 6.53     | 6.72     | 8.58                            | 7.59     | 5,577                         | 4,934    | 9.3         | 22.7     | 19.3             | 17.8     |
| 662705849       |                              |                              | -        | -        | -                               | -        | -                             | -        | -           | -        | -                | -        |
| Mitchell's Bore |                              |                              | 6.73     | 7.08     | 9.59                            | 8.63     | 6,234                         | 5,610    | -44.1       | -75.4    | 16.7             | 17.0     |

Note:

TDS calculated by multiplying EC by a factor of 650

Page 2 of 2

Summary of Groundwater Analytical Results, Major Ion, Heavy Metals and Nutrient Analysis Hillgrove Resources - Kanmantoo Copper Project

| Location | KMB001     |
|----------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 21/11/2006 | 3/04/2007  | 18/10/2010 | 24/01/2011 | 19/05/2011 | 16/08/2011 | 7/11/2011  |
| Depth    | Watertable |
| V        | MGT        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        |

|                                 |              |         | ,       | 11101   | , LEO   |          |          |          |          |          |
|---------------------------------|--------------|---------|---------|---------|---------|----------|----------|----------|----------|----------|
| Chemical                        | ALS LOR      | MGT LOR | Units   |         |         |          |          |          |          |          |
| pH                              | 0.01         | 0.1     | pH unit | _       | _       | 5.96     | 6.00     | 5.12     | 4.45     | 4.15     |
| Electrical Conductivity         | 1            | 10      | uS/cm   | -       | -       | 5430     | 2360     | 5430     | 5270     | 6750     |
| MAJOR IONS                      | <del></del>  | -10     | долен   |         |         | 0.00     | 2000     | 0.00     | 3270     | 0/30     |
| Calcium                         | 1            | 0.5     | ma/L    | 520     | 487     | 323      | 351      | 325      | 246      | 226      |
| Magnesium                       | 1            | 0.5     | mg/L    | 410     | 445     | 374      | 475      | 411      | 359      | 386      |
| Potassium                       | <del> </del> | 0.5     | mg/L    | 140     | 75      | 64       | 86       | 89       | 57       | 32       |
| Sodium                          | 1            | 0.5     | mg/L    | 420     | 403     | 361      | 402      | 368      | 328      | 213      |
| Chloride                        | 1            | 1       | mg/L    | 220     | 376     | 356      | 801      | 300      | 316      | 343      |
| Sulphate as SO4 2-              | 1            | 5       | mg/L    | 1300    | 3910    | 2650     | 2360     | 3200     | 2600     | 3770     |
| Hydroxide Alkalinity as CaCO3   | 1            |         | mg/L    | -       | <1      | <1       | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1            | 20      | mg/L    | <0.5    | <1      | 308      | 77       | 2        | <1       | <1       |
| Carbonate Alkalinity as CaCO3   | 1            | 10      | mg/L    | <0.5    | <1      | <1       | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1            | 20      | mg/L    | -       | <1      | 308      | 77       | 2        | <1       | <1       |
| Total Cyanide                   | 0.005        | 0.01    | mg/L    | <0.01   | 0.014   | -        | -        |          |          |          |
| Total Anions                    | 0.01         |         | meq/L   | -       | 92      | 71.3     | 73.3     | 75.1     | 63       | 88.2     |
| Total Cations                   | 0.01         |         | meq/L   | -       | 80.4    | 64.2     | 76.3     | 68.3     | 57.6     | 53.1     |
| Ionic Balance                   | 0.01         |         | %       | -       | 6.77    | 5.25     | 1.98     | 4.78     | 4.57     | -        |
| HEAVY METALS (Dissolved)        |              |         |         |         |         |          |          |          |          |          |
| Aluminium                       | 0.01         | 0.005   | mg/L    | 15      | -       | 0.12     | 10.9     | 21       | 41       | 178      |
| Arsenic                         | 0.001        | 0.001   | ma/L    | 0.041   | 0.004   | 0.012    | 0.003    | 0.037    | 0.011    | 0.008    |
| Bervllium                       | 0.001        | 0.001   | mg/L    | -       | 0.056   | 0.002    | 0.04     | 0.084    | 0.091    | 0.237    |
| Barium                          | 0.001        | 0.02    | ma/L    | -       | 0.036   | 0.062    | 0.032    | 0.025    | 0.02     | 0.02     |
| Cadmium                         | 0.0001       | 0.0002  | ma/L    | 0.051   | 0.126   | 0.0003   | 0.001    | 0.0086   | 0.0042   | 0.0553   |
| Chromium                        | 0.001        | 0.001   | mg/L    | < 0.001 | 0.001   | < 0.001  | 0.002    | < 0.001  | 0.004    | 0.017    |
| Cobalt                          | 0.001        | 0.001   | mg/L    | 9.4     | 14.7    | 0.074    | 1.52     | 6.58     | 5.75     | 15.4     |
| Copper                          | 0.001        | 0.001   | mg/L    | 14      | 14.8    | 0.001    | 0.007    | 0.014    | 0.033    | 10.2     |
| Iron                            | 0.01         | 0.05    | mg/L    | 120     | -       | 5.55     | 114      | 120      | 277      | 379      |
| Lead                            | 0.001        | 0.001   | mg/L    | 0.06    | 0.449   | < 0.001  | 0.006    | 0.026    | 0.007    | 0.092    |
| Manganese                       | 0.001        | 0.005   | mg/L    | 21      | 25.8    | 22.1     | 94.2     | 102      | 78.6     | 115      |
| Mercury                         | 0.0001       | 0.0001  | mg/L    | 0.0003  | 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Nickel                          | 0.001        | 0.001   | mg/L    | 3       | 4.94    | 0.037    | 0.324    | 1.88     | 1.53     | 4.64     |
| Selenium                        | 0.01         | 0.001   | mg/L    | 0.24    | -       | < 0.01   | <0.01    | < 0.01   | < 0.01   | 0.02     |
| Vanadium                        | 0.01         | 0.005   | mg/L    | -       | < 0.01  | <0.01    | < 0.01   | <0.01    | 0.01     | 0.01     |
| Zinc                            | 0.005        | 0.001   | mg/L    | 8.1     | 16.4    | 0.01     | 0.461    | 4.17     | 3.12     | 13.2     |
| NUTRIENTS                       |              |         |         |         |         |          |          |          |          |          |
| Ammonia as N                    | 0.01         | 0.01    | mg/L    | -       | -       | 0.37     | <0.01    | <0.01    | < 0.01   | 0.29     |
| Nitrite as N                    | 0.01         |         | mg/L    | -       | -       | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Nitrate as N                    | 0.01         | 0.02    | mg/L    | 0.2     | < 0.010 | 0.02     | 0.41     | 0.11     | 0.15     | 0.1      |
| NOx (Nitrite + Nitrate as N)    | 0.01         | 0.05    | mg/L    | -       | -       | 0.02     | 0.41     | 0.11     | 0.15     | 0.1      |
| Total Kjeldahl Nitrogen (TKN)   | 0.1          | 0.2     | mg/L    | -       | -       | 0.9      | <0.1     | 2.5      | 1.2      | 1.5      |
| Total Nitrogen as N             | 0.1          | 0.2     | mg/L    | -       | -       | 0.9      | 0.4      | 2.6      | 1.4      | 1.6      |
| Total Phosphorus as P           | 0.01         | 0.05    | mg/L    | -       | -       | 0.07     | 0.13     | 0.61     | 0.17     | 0.23     |

LOR - Limits of Reporting



#### Summary of Groundwater Analytical Results, Major Ion, Heavy Metals Hillgrove Resources - Kanmantoo Copper Project

| Location | KMB002     |
|----------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 21/11/2006 | 3/04/2007  | 14/10/2010 | 25/01/2011 | 19/05/2011 | 17/08/2011 | 9/11/2011  |
| Depth    | Watertable |
| V        | MGT        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALS LOR | MGT LOR | Units   |          |          |          |          |        |          |          |
|---------------------------------|---------|---------|---------|----------|----------|----------|----------|--------|----------|----------|
|                                 |         |         |         |          |          |          |          |        |          |          |
|                                 |         |         |         |          |          |          |          |        |          |          |
| pH                              | 0.01    | 0.1     | pH unit | _        | _        | 3.87     | 3.67     | 3.89   | 3.82     | 3.7      |
| Electrical Conductivity         | 1       | 10      | μS/cm   | _        | -        | 6810     | 3150     | 3030   | 24000    | 17500    |
| MAJOR IONS                      | · ·     | - 10    | μο/σπ   |          |          | 0010     | 0.00     | 0000   | 24000    | 17300    |
| Calcium                         | 1       | 0.5     | ma/L    | 240      | 188      | 233      | 198      | 155    | 346      | 280      |
| Magnesium                       | 1       | 0.5     | mg/L    | 230      | 168      | 294      | 147      | 133    | 1500     | 1140     |
| Potassium                       | 1       | 0.5     | mg/L    | 52       | 34       | 41       | 36       | 30     | 27       | 14       |
| Sodium                          | 1       | 0.5     | mg/L    | 280      | 143      | 102      | 70       | 62     | 111      | 72       |
| Chloride                        | 1       | 1       | mg/L    | 150      | 285      | 155      | 82       | 86     | 204      | 192      |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 870      | 1750     | 5400     | 1050     | 1000   | 26500    | 14400    |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L    | -        | <1       | <1       | <1       | <1     | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | <0.5     | <1       | <1       | <1       | <1     | <1       | <1       |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | <0.5     | <1       | <1       | <1       | <1     | <1       | <1       |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | -        | <1       | <1       | <1       | <1     | <1       | <1       |
| Total Cyanide                   | 0.005   | 0.01    | mg/L    | <0.01    | <0.005   | -        | -        |        |          |          |
| Total Anions                    | 0.01    | 0.01    | meq/L   |          | 44.4     | 117      | 24.2     | 23.2   | 557      | 305      |
| Total Cations                   | 0.01    |         | meq/L   |          | 35.5     | 126      | 26.0     | 22.2   | 146      | 111      |
| Ionic Balance                   | 0.01    |         | %       |          | 11.2     | 3.83     | 3.58     | 2.35   | 58.4     |          |
| HEAVY METALS (Dissolved)        |         |         | ,,,     |          | 11.2     |          |          |        | 00.1     |          |
| Aluminium                       | 0.01    | 0.005   | mg/L    | 91       | -        | 391      | 98.9     | 122    | 1320     | 1150     |
| Arsenic                         | 0.001   | 0.001   | mg/L    | 0.006    | 0.003    | 0.015    | 0.003    | 0.003  | <0.100   | 0.027    |
| Beryllium                       | 0.001   | 0.001   | mg/L    | -        | 0.051    | 0.176    | 0.042    | 0.056  | 0.256    | 0.232    |
| Barium                          | 0.001   | 0.02    | mg/L    | -        | 0.016    | 0.016    | 0.017    | 0.021  | <0.100   | 0.024    |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | 0.024    | 4.16     | 0.0321   | 0.0161   | 0.0215 | 0.0417   | 0.0462   |
| Chromium                        | 0.001   | 0.001   | mg/L    | <0.001   | 0.004    | 0.036    | 0.008    | 0.008  | 0.4      | 0.304    |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 3.6      | 4.4      | 42.1     | 6.27     | 8.39   | 58.2     | 59       |
| Copper                          | 0.001   | 0.001   | mg/L    | 10       | 118      | 495      | 128      | 146    | 581      | 526      |
| Iron                            | 0.01    | 0.05    | mg/L    | 1.2      | -        | 108      | 0.54     | 0.56   | 5860     | 4730     |
| Lead                            | 0.001   | 0.001   | mg/L    | 0.23     | 0.045    | 0.027    | 0.016    | 0.059  | <0.100   | 0.006    |
| Manganese                       | 0.001   | 0.005   | mg/L    | 17       | 20.5     | 263      | 37.5     | 42.7   | 490      | 451      |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | < 0.0005 | < 0.0001 | < 0.0001 | < 0.0001 | 0.0013 | < 0.0001 | < 0.0001 |
| Nickel                          | 0.001   | 0.001   | mg/L    | 2.5      | 1.91     | 7.21     | 3.03     | 6.37   | 18       | 16       |
| Selenium                        | 0.01    | 0.001   | mg/L    | 0.039    | -        | 0.04     | 0.01     | 0.01   | <1.00    | 0.1      |
| Vanadium                        | 0.01    | 0.005   | mg/L    | -        | <0.01    | <0.01    | <0.01    | <0.01  | <1.00    | 0.3      |
| Zinc                            | 0.005   | 0.001   | mg/L    | 1.3      | 1.8      | 26.2     | 4.13     | 5.84   | 116      | 111      |
| NUTRIENTS                       |         |         |         |          |          |          |          |        |          |          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | -        | -        | 0.08     | 0.17     | <0.01  | 4.22     | <0.01    |
| Nitrite as N                    | 0.01    |         | mg/L    | -        | -        | 0.02     | -        | <0.01  | 0.02     | 0.04     |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | 9.6      | 14.4     | 7.19     | -        | 9.74   | < 0.01   | 0.62     |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | -        | -        | 7.21     | 8.69     | 9.74   | < 0.01   | 0.66     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | -        | -        | 0.5      | <0.1     | 0.5    | 4.4      | 3.6      |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | -        | -        | 7.7      | 8.7      | 10.2   | 4.4      | 4.3      |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | -        | -        | 0.36     | 0.25     | 0.55   | 9.05     | 4.78     |

LOR - Limits of Reporting



#### Summary of Groundwater Analytical Results, Major Ion, Heavy Metals Hillgrove Resources - Kanmantoo Copper Project

| Location | KMB003     | KMB004     | KMB004     |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 21/11/2006 | 3/04/2007  | 14/10/2010 | 24/01/2011 | 19/05/2011 | 16/08/2011 | 8/11/2011  | 21/11/2006 | 2/04/2007  |
| Depth    | Watertable |
| V        | MGT        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        | MGT        | ALS        |

|                                 |         |         | ,            |         | 7120           |               |         |                  |                |                |                 |                |
|---------------------------------|---------|---------|--------------|---------|----------------|---------------|---------|------------------|----------------|----------------|-----------------|----------------|
| Chemical                        | ALS LOR | MGT LOR | Units        |         |                |               |         |                  |                |                |                 |                |
| pH                              | 0.01    | 0.1     | pH unit      | -       | -              | 7.01          | 6.08    | 6.84             | 7.68           | 6.78           | -               | -              |
| Electrical Conductivity         | 1       | 10      | μS/cm        |         | -              | 3690          | 4010    | 3780             | 3960           | 4010           | -               | -              |
| MAJOR IONS                      |         |         |              |         |                |               |         |                  |                |                |                 |                |
| Calcium                         | 1       | 0.5     | mg/L         | 150     | 139            | 148           | 137     | 141              | 165            | 160            | 400             | 395            |
| Magnesium                       | 1       | 0.5     | mg/L         | 140     | 144            | 140           | 157     | 145              | 172            | 169            | 430             | 417            |
| Potassium                       | 1       | 0.5     | mg/L         | 48      | 38             | 45            | 42      | 41               | 42             | 30             | 66              | 50             |
| Sodium                          | 1       | 0.5     | mg/L         | 470     | 492            | 501           | 544     | 516              | 555            | 532            | 740             | 768            |
| Chloride                        | 1       | 1       | mg/L         | 590     | 712            | 628           | 750     | 550              | 528            | 577            | 310             | 441            |
| Sulphate as SO4 2-              | 1       | 5       | mg/L         | 340     | 948            | 1060          | 823     | 980              | 1200           | 1090           | 1100            | 3090           |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L         | -       | <1             | <1            | <1      | <1               | <1             | <1             | -               | <1             |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L         | 240     | 226            | 165           | 163     | 142              | 154            | 160            | 430             | 374            |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L         | <0.5    | <1             | <1            | <1      | <1               | <1             | <1             | <0.5            | <1             |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L         | -       | 226            | 165           | 163     | 142              | 154            | 160            | -               | 374            |
| Total Cyanide                   | 0.005   | 0.01    | mg/L         | <0.01   | < 0.005        | -             | -       | -                | -              | -              | <0.01           | 0.017          |
| Total Anions                    | 0.01    |         | meq/L        | -       | 44.3           | 43.2          | 41.6    | 38.8             | 43             | -              | -               | 84.2           |
| Total Cations                   | 0.01    |         | meq/L        | -       | 41.2           | 41.8          | 44.5    | 42.5             | 47.6           | -              | -               | 88.7           |
| Ionic Balance                   | 0.01    |         | %            | -       | 3.65           | 1.6           | 3.37    | 4.59             | 5.12           | -              | -               | 2.59           |
| HEAVY METALS (Dissolved)        |         |         |              |         |                |               |         |                  |                |                |                 |                |
| Aluminium                       | 0.01    | 0.005   | mg/L         | <0.005  | -              | 0.02          | <0.01   | <0.01            | <0.01          | <0.01          | <0.005          | -              |
| Arsenic                         | 0.001   | 0.001   | mg/L         | 0.009   | 0.01           | <0.001        | 0.001   | <0.001           | <0.001         | <0.001         | 0.008           | 0.003          |
| Beryllium                       | 0.001   | 0.001   | mg/L         | -       | <0.001         | <0.001        | <0.001  | <0.001           | <0.001         | <0.001         | -               | 0.001          |
| Barium                          | 0.001   | 0.02    | mg/L         | -       | 0.039          | 0.012         | 0.014   | 0.013            | 0.013          | 0.014          | -               | 0.039          |
| Cadmium                         | 0.0001  | 0.0002  | mg/L         | <0.0002 | 0.0003         | 0.0004        | 0.0003  | 0.0003           | 0.0003         | 0.0003         | 0.0057          | 0.0058         |
| Chromium                        | 0.001   | 0.001   | mg/L         | <0.001  | <0.001         | <0.001        | 0.002   | <0.001           | <0.001         | <0.001         | <0.001          | <0.001         |
| Cobalt                          | 0.001   | 0.001   | mg/L         | 0.096   | 0.011          | 0.004         | 0.001   | 0.002            | 0.002          | 0.001          | 0.29            | 0.101          |
| Copper                          | 0.001   | 0.001   | mg/L         | 0.09    | 0.01           | 0.037         | 0.006   | 0.014            | 0.006          | 0.008          | 0.14            | 0.039          |
| Iron                            | 0.01    | 0.05    | mg/L         | 1.7     | -              | < 0.05        | <0.05   | <0.05            | <0.05          | <0.05          | 3.8             | -              |
| Lead                            | 0.001   | 0.001   | mg/L         | <0.001  | <0.001         | 0.001         | 0.002   | <0.001           | 0.001          | 0.002          | <0.001          | 0.002          |
| Manganese                       | 0.001   | 0.005   | mg/L         | 0.71    | 0.219          | 0.022         | 0.036   | 0.004            | 0.003          | 0.003          | 1.8             | 1.01           |
| Mercury                         | 0.0001  | 0.0001  | mg/L         | <0.0001 | <0.0001        | <0.0001       | <0.0001 | <0.0001<br>0.009 | <0.0001        | <0.0001        | <0.0001<br>0.27 | <0.0001        |
| Nickel                          | 0.001   | 0.001   | mg/L         | 0.023   | 0.026          | 0.019<br>0.01 | 0.014   | 0.009            | 0.011          | 0.01           |                 | 0.158          |
| Selenium<br>Vanadium            | 0.01    | 0.001   | mg/L         | 0.063   | -              | <0.01         | <0.02   | <0.02            | 0.01           | 0.01           | 0.074           | - 0.04         |
| Zinc                            | 0.005   | 0.005   | mg/L<br>mg/L | 0.013   | <0.01<br>0.009 | 0.045         | 0.045   | 0.036            | <0.01<br>0.056 | <0.01<br>0.056 | 0.066           | <0.01<br>0.053 |
| NUTRIENTS                       | 0.005   | 0.001   | mg/L         | 0.013   | 0.009          | 0.045         | 0.045   | 0.036            | 0.056          | 0.056          | 0.066           | 0.053          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L         | _       |                | 0.02          | 0.03    | <0.01            | <0.01          | 0.02           |                 |                |
| Nitrite as N                    | 0.01    | 0.01    | mg/L<br>mg/L | -       | -              | <0.01         | <0.03   | <0.01            | <0.01          | <0.02          | -               | <del></del>    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L         | 2.4     | 10.2           | 11.8          | 14.5    | 14.4             | 10.9           | 11.2           | 6.3             | 5.82           |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.02    | mg/L         | - 2.4   | 10.2           | 11.8          | 14.5    | 14.4             | 10.9           | 11.2           | - 0.3           | 5.02           |
| Total Kjeldahl Nitrogen (TKN)   | 0.01    | 0.05    | mg/L<br>mg/L | -       | -              | <0.1          | <0.1    | 0.3              | <0.1           | 0.3            |                 | -              |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L         | -       | -              | 11.8          | 14.5    | 14.7             | 10.9           | 11.5           | -               | -              |
| Total Phosphorus as P           | 0.01    | 0.05    |              |         | -              | 0.05          | 0.25    | 0.14             | 0.1            | 0.41           |                 |                |
| Total Ellospilorus as P         | 0.01    | 0.05    | mg/L         |         |                | 0.05          | 0.25    | 0.14             | U.T            | 0.41           | -               |                |

LOR - Limits of Reporting

| Location | KMB005b    | KMB005b    | KMB005b    | KMB005b    | KMB005b   |
|----------|------------|------------|------------|------------|-----------|
| Sampled  | 13/10/2010 | 21/01/2011 | 17/05/2011 | 17/08/2011 | 9/11/2011 |
| Depth    | -          | -          | -          |            | -         |
| v        | ALS        | ALS        | ALS        | ALS        | ALS       |

|                                 |         | '-      |         |         |          |          |          |          |
|---------------------------------|---------|---------|---------|---------|----------|----------|----------|----------|
| Chemical                        | ALS LOR | MGT LOR | Units   |         |          |          |          |          |
| рH                              | 0.01    | 0.1     | pH unit | 7.37    | 7.22     | 7.2      | 7.82     | 7.08     |
| Electrical Conductivity         | 1       | 10      | цS/cm   | 6130    | 6300     | 6380     | 6420     | 5790     |
| MAJOR IONS                      |         |         |         |         |          |          |          |          |
| Calcium                         | 1       | 0.5     | ma/L    | 52      | 56       | 52       | 61       | 52       |
| Magnesium                       | 1       | 0.5     | mg/L    | 93      | 120      | 116      | 119      | 101      |
| Potassium                       | 1       | 0.5     | mg/L    | 62      | 78       | 65       | 60       | 41       |
| Sodium                          | 1       | 0.5     | ma/L    | 1060    | 1120     | 1260     | 1040     | 870      |
| Chloride                        | 1       | 1       | mg/L    | 1530    | 1610     | 1650     | 1320     | 1440     |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 430     | 687      | 573      | 715      | 443      |
| Hydroxide Alkalinity as CaCO3   | 1       |         | ma/L    | <1      | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | 351     | 337      | 331      | 341      | 322      |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | <1      | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | 351     | 337      | 331      | 341      | 322      |
| Total Cyanide                   | 0.005   | 0.01    | mg/L    | -       | -        | -        |          |          |
| Total Anions                    | 0.01    |         | meg/L   | 59.2    | 66.4     | 65.1     | 58.9     | 56.3     |
| Total Cations                   | 0.01    |         | meq/L   | 59.2    | 63.4     | 68.6     | 59.6     | 49.8     |
| Ionic Balance                   | 0.01    |         | %       | 0.08    | 2.34     | 2.57     | 0.55     | 6.13     |
| HEAVY METALS (Dissolved)        |         |         |         |         |          |          |          |          |
| Aluminium                       | 0.01    | 0.005   | mg/L    | <0.01   | <0.01    | <0.01    | <0.01    | 0.01     |
| Arsenic                         | 0.001   | 0.001   | mg/L    | 0.001   | 0.001    | < 0.001  | 0.001    | < 0.001  |
| Beryllium                       | 0.001   | 0.001   | mg/L    | 0.003   | 0.003    | 0.002    | < 0.001  | 0.004    |
| Barium                          | 0.001   | 0.02    | mg/L    | 0.016   | 0.018    | 0.018    | 0.016    | 0.021    |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | <0.0001 | < 0.0001 | 0.0001   | <0.0001  | < 0.0001 |
| Chromium                        | 0.001   | 0.001   | mg/L    | < 0.001 | 0.003    | < 0.001  | < 0.001  | < 0.001  |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 0.01    | 0.007    | 0.005    | 0.002    | 0.003    |
| Copper                          | 0.001   | 0.001   | mg/L    | 0.008   | 0.02     | 0.003    | 0.003    | 0.013    |
| Iron                            | 0.01    | 0.05    | mg/L    | 1.45    | 1.38     | 1.3      | 0.08     | 1.38     |
| Lead                            | 0.001   | 0.001   | mg/L    | < 0.001 | <0.001   | < 0.001  | < 0.001  | < 0.001  |
| Manganese                       | 0.001   | 0.005   | mg/L    | 0.338   | 0.233    | 0.277    | 0.181    | 0.187    |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | <0.0001 | <0.0001  | < 0.0001 | < 0.0001 | <0.0001  |
| Nickel                          | 0.001   | 0.001   | mg/L    | 0.002   | 0.004    | 0.001    | < 0.001  | 0.001    |
| Selenium                        | 0.01    | 0.001   | mg/L    | <0.01   | <0.01    | <0.01    | <0.01    | <0.01    |
| Vanadium                        | 0.01    | 0.005   | mg/L    | <0.01   | 0.01     | <0.01    | <0.01    | <0.01    |
| Zinc                            | 0.005   | 0.001   | mg/L    | 0.019   | 0.032    | 0.021    | 0.006    | 0.025    |
| NUTRIENTS                       |         |         |         |         |          |          |          |          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | 0.09    | 0.07     | 0.06     | 0.05     | 0.07     |
| Nitrite as N                    | 0.01    |         | mg/L    | <0.01   | <0.01    | <0.01    | <0.01    | <0.01    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | 0.02    | 0.04     | 0.04     | <0.01    | 0.04     |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | 0.02    | 0.04     | 0.04     | <0.01    | 0.04     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | <0.1    | <0.1     | 0.5      | 0.3      | <0.1     |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | <0.1    | <0.1     | 0.5      | 0.3      | <0.1     |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | <0.01   | 0.64     | 0.04     | 0.23     | 0.13     |



## Table 2. Summary of Groundwater and Surface Water Field Parameters Hillgrove Resources - Kanmantoo Copper Project

| Well                | Sampling                 | Sampling                 | Sampling                     | Sampling                     | Sampling                               |          |          |          | Redox    | ( mV)    |          |                    |          |        |        |        | Temp     | perature (°C | )         |                    |          |
|---------------------|--------------------------|--------------------------|------------------------------|------------------------------|----------------------------------------|----------|----------|----------|----------|----------|----------|--------------------|----------|--------|--------|--------|----------|--------------|-----------|--------------------|----------|
|                     | Depth (2007)<br>(m bPVC) | Depth (2010)<br>(m bPVC) | Depth (Jan 2011)<br>(m bPVC) | Depth (May 2011)<br>(m bPVC) | Depth (Aug / Sept<br>2011) (m<br>bPVC) | Nov-2006 | Apr-2007 | Jun-2007 | Oct-2010 | Jan-2011 | May-2011 | Aug / Sept<br>2011 | Nov-2011 | Nov-06 | Apr-07 | Jun-07 | Oct-2010 | Jan-2011     | May-2011  | Aug / Sept<br>2011 | Nov-2011 |
| KMB001              | 40                       | watertable               | watertable                   | watertable                   | watertable                             | 193      | 188      | -        | 188      | 110.0    | 125.4    | 159.0              | 293.0    | 14.0   | 18.5   | -      | 22.1     | 20.7         | 21.1      | 17.0               | 29.8     |
| KMB002              | 24                       | watertable - 26          | 26                           | 26                           | 26                                     | 396      | 252      | -        | 283      | 472.4    | 395.8    | 239.0              | 277.0    | 17.1   | 21.3   | -      | 20.7     | 22.0         | 21.6      | 15.9               | 26.0     |
| KMB003              | 24                       | watertable - 24          | 24                           | 24                           | 24                                     | 42       | 18       | -        | 183      | 48.7     | 101.6    | 194.0              | 164.0    | 13.7   | 21.3   | -      | 20.7     | 22.0         | 20.9      | 17.5               | 24.4     |
| KMB004              | 10                       | Destroyed                | Destroyed                    | Destroyed                    | Destroyed                              | 86       | 15       | -        |          |          | Destroye | d                  |          | 13.7   | 19.1   | -      |          |              | Destroyed |                    |          |
| KMB005              | 54                       | -                        | -                            | -                            | -                                      | -        | -24      | -        | -        | -        | -        | -                  | -        | -      | 22.0   | -      | -        | -            | -         | -                  | -        |
| KMB005b             | -                        | unknown*                 | unknown*                     | unknown*                     | unknown*                               | -        | -        | -        | 32.70    | -0.6     | -5.4     | -25.0              | 135.0    | -      | -      | -      | 20.8     | 22.9         | 19.7      | 18.5               | 25.9     |
| KMB006 - watertable | 13                       | -                        |                              | -                            | -                                      | -        | 50       | -        | -        | -        | -        | -                  | -        | -      | 19.3   | -      | -        | -            | -         | -                  | -        |
| KMB006 - at depth   | 48                       | 48                       | 48                           | 36                           | 36                                     | -        | -41      | -        | 248      | 74.2     | 8.7      | 22.0               | -        | -      | 19.8   | -      | 19.2     | 25.7         | 20.1      | 18.4               | -        |
| KMB007 - watertable | 20                       | 54                       | -                            | -                            | -                                      | -        | 37       | -        | -        | -        | -        | -                  | -        | -      | 21.6   | -      | -        | -            | -         | -                  | -        |
| KMB007 - at depth   | 54                       | 54                       | 54                           | 54                           | 54                                     | -        | 14       | -        | 249      | 92.1     | 25.4     | 27.0               | 67.0     | -      | 19.3   | -      | 20.2     | 21.0         | 20.3      | 17.8               | 23.2     |
| KMB008              | 60                       | -                        | -                            | -                            | -                                      | -        | -55      | -        | -        | -        | -        | -                  | -        | -      | 21.6   | -      | -        | -            |           | -                  | -        |
| KMB008b             | -                        | unknown*                 | unknown*                     | unknown*                     | unknown*                               | -        | -        | -        | 48       | 11.9     | -27.2    | -20.0              | 6.5      | -      | -      | -      | 20.8     | 23.5         | 19.4      | 19.1               | 23.6     |
| KMB009              | -                        | watertable               | watertable                   | watertable                   | watertable                             | -        | -        | -        | 350.00   | 31.1     | -93.7    | -25.0              | 50.0     | -      | -      | -      | 20.2     | 22.6         | 20.7      | 17.6               | 27.0     |
| KMB010              | -                        | 34.5                     | 34.5                         | 35.0                         | 34.5                                   | -        | -        | -        | 243.00   | 148.7    | 126.9    | 109.0              | 126.0    | -      | -      | -      | 19.7     | 23.8         | 20.3      | 17.9               | 25.0     |
| KMB011              | 7                        | watertable               | watertable                   | watertable                   | watertable                             | -        | -        | 14       | 77       | 75.3     | 68.8     | 69.0               | 99.6     | -      | -      | 15.7   | 18.9     | 22.4         | 18.7      | 16.2               | 17.2     |
| KMB012              | 17                       | watertable               | watertable                   | watertable                   | watertable                             | -        | -        | 131      | 111      | 234.7    | 98.6     | 171.0              | 142.7    | -      | -      | 15.7   | 19.4     | 22.7         | 18.3      | 17.2               | 18.9     |
| KMB013              | 32                       | watertable               | -                            | -                            | -                                      | -        | -        | -64      | 291      | -        | -        | -                  | -        | -      | -      | 15.9   | 20.2     | -            | -         | -                  | -        |
| KMB014              | 20                       | watertable               | watertable                   | watertable                   | watertable                             | -        | -        | 52       | 269      | 219.1    | 226.1    | 214.0              | -        | -      | -      | 15.7   | 18.9     | 19.6         | 20.5      | 17.1               | -        |
| KMB015              | 23                       | watertable               | watertable                   | watertable                   | watertable                             | -        | -        | 115      | 304      | 278.9    | 303.8    | 265.0              | 296.4    | -      | -      | 15.6   | 19.6     | 19.6         | 21.0      | 16.8               | 16.7     |
| KMB016              | 27                       | watertable - 23          | 23                           | 24                           | 24                                     | -        | -        | 56       | 236      | 118.3    | 176.0    | 138.0              | 44.0     | -      | -      | 15.2   | 19.4     | 22.1         | 19.9      | 16.5               | 31.6     |
| KMB017              | 28                       | watertable - 27          | 27                           | -                            | -                                      | -        | -        | 144      | 255      | 152.2    | -        | -                  | -        | -      | -      | 14.4   | 19.3     | 22.2         | -         | -                  | -        |
| KMB018              | 23                       | watertable - 22          | 22                           | 22                           | 22                                     | -        | -        | 20       | 246      | 166.8    | 184.4    | 18.0               | -        | -      | -      | 14.6   | 19.3     | 21.4         | 19.8      | 16.7               | -        |
| KMB019              | 16                       | watertable - 13          | 16                           | Destroved                    | Destroved                              | -        | -        | 73       | 184      | 143.0    |          | Destroved          |          | -      | -      | 16.0   | 20.0     | 20.9         |           | Destroved          |          |
| KMB020              | -                        | -                        | -                            | -                            | 23                                     | -        | -        | -        | -        | -        | -        | -55.00             | -182.00  | -      | -      | -      | -        | -            | -         | 17.70              | 23.50    |
| KMB021              | -                        | -                        | -                            | -                            | 30.5                                   | -        | -        | -        | -        | -        | -        | 63.80              | -126.00  | -      | -      | -      | -        | -            | -         | 19.10              | 24.40    |
| KMB022              | -                        | -                        | -                            | -                            | 18                                     | -        | -        | -        | -        | -        | -        | 80.00              | -32.00   | -      | -      | -      | -        | -            | -         | 16.70              | 27.80    |
| KMB023              | -                        | -                        | -                            | -                            | 10.5                                   | -        | -        | -        | -        | -        | -        | 35.80              | 110.00   | -      | -      | -      | -        | -            | -         | 20.00              | 21.20    |
| KMB024              | -                        |                          |                              | -                            | 27                                     | -        | -        | -        | -        | -        | -        | 46.30              | -144.00  | -      | -      | -      | -        | -            | -         | 20.30              | 23.80    |
| KMB025              | -                        | -                        |                              |                              | 31.5                                   | -        | -        | -        | -        | -        | -        | 89.10              | 105.00   | -      | -      | -      | -        | -            | -         | 21.40              | 25.00    |
| KMB026              | -                        | -                        |                              | -                            | 35                                     | -        | -        | -        | -        | -        | -        | 142.00             | 204.00   | -      | -      | -      | -        | -            | -         | 17.10              | 24.20    |
| Pit Void            | -                        | -                        | -                            |                              | -                                      | -        | -        | -        | 496.30   | -        | 498.0    | 420.0              | 512.0    | -      | -      | -      | 15.5     |              | 17.2      | 14.4               | 28.3     |
| Spring 1 (SW1)      | -                        |                          | -                            | -                            | -                                      | -        | -        | -        | 216.00   | -        | 182.9    | -                  | -        | -      | -      | -      | 18.3     | -            | 18.2      | -                  | -        |
| Spring 2 (SW2)      | -                        | -                        | -                            | -                            | -                                      | -        | -        | -        | -        | -        | 170.0    | -                  | -        | -      | -      | -      | -        | -            | 18.9      | -                  | -        |
| SW3 (spring)        | -                        | -                        | -                            | -                            | -                                      | -        | -        | -        | -        | -        | -        | 118.0              | 15.0     | -      | -      | -      | -        | -            | -         | 12.5               | 33.2     |
| SW4 (surface water) | -                        |                          | -                            |                              | -                                      | -        | -        | -        | -        | -        | -        | 93.0               | 64.0     | -      | -      | -      | -        | -            | -         | 12.3               | 26.5     |

Note:
TDS calculated by multiplying EC by a factor of 650
These wells were equipped with an electric well pump by a contractor.
These pH values recorded in the May 2011 sampling event are believed to be spurious. The pH probe was found to be faulty shortly after sampling the

| Location | KMB006S    | KMB006D   | KMB006     | KMB006     | KMB006     | KMB006     |
|----------|------------|-----------|------------|------------|------------|------------|
| Sampled  | 2/04/2007  | 2/04/2007 | 18/10/2010 | 25/01/2011 | 19/05/2011 | 18/08/2011 |
| Depth    | Watertable | 48 m bgl  | 48 m bgl   | 48 m bgl   | 36 m bgl   | 36 m bgl   |
| V        | ΔIS        | ALS       | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALS LOR | MGT LOR | Units        |                  |                  |                  |                  |                  |                   |
|---------------------------------|---------|---------|--------------|------------------|------------------|------------------|------------------|------------------|-------------------|
|                                 |         |         |              |                  |                  |                  |                  |                  |                   |
| pH                              | 0.01    | 0.1     | pH unit      | -                | -                | -                | 6.93             | 6.84             | 7.09              |
| Electrical Conductivity         | 1       | 10      | μS/cm        | -                | -                | -                | 13700            | 13400            | 15200             |
| MAJOR IONS                      |         |         |              |                  |                  |                  |                  |                  |                   |
| Calcium                         | 1       | 0.5     | mg/L         | 142              | 143              | -                | 168              | 147              | 138               |
| Magnesium                       | 1       | 0.5     | mg/L         | 355              | 360              | -                | 382              | 340              | 330               |
| Potassium                       | 1       | 0.5     | mg/L         | 134              | 135              | -                | 168              | 140              | 114               |
| Sodium                          | 1       | 0.5     | mg/L         | 2430             | 2440             | -                | 530              | 2660             | 2290              |
| Chloride                        | 1       | 1       | mg/L         | 4010             | 3850             | -                | 4400             | 4230             | 4320              |
| Sulphate as SO4 2-              | 1       | 5       | mg/L         | 612              | 624              | 527              | 530              | 516              | 631               |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L         | <1               | <1               | <1               | <1               | <1               | <1                |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L         | 717              | 732              | 846              | 791              | 734              | 844               |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L         | 6                | 4                | <1               | <1               | <1               | <1                |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L         | 723              | 736              | 846              | 791              | 734              | 844               |
| Total Cyanide                   | 0.005   | 0.01    | mg/L         | <0.005           | 0.006            | -                | -                | -                | -                 |
| Total Anions                    | 0.01    |         | meq/L        | 140              | 136              | 143              | 151              | 145              | 152               |
| Total Cations                   | 0.01    |         | meq/L        | 146              | 147              | 124              | 166              | 155              | 136               |
| Ionic Balance                   | 0.01    |         | %            | 1.87             | 3.69             | 7.02             | 4.7              | 3.35             | 5.32              |
| HEAVY METALS (Dissolved)        |         |         |              |                  |                  | 0.04             |                  |                  |                   |
| Aluminium                       | 0.01    | 0.005   | mg/L         | -                | -                | 0.01             | 0.02             | <0.01            | <0.01             |
| Arsenic                         | 0.001   | 0.001   | mg/L         | 0.005            | 0.005            | <0.001           | <0.001           | 0.002            | 0.003             |
| Beryllium                       | 0.001   | 0.001   | mg/L         | 0.003            | 0.004            | <0.001<br>0.049  | 0.004            | 0.005            | 0.001             |
| Barium                          | 0.001   |         | mg/L         | 0.042            | 0.044            |                  | 0.038            | 0.036<br><0.0001 | 0.03              |
| Cadmium                         | 0.0001  | 0.0002  | mg/L         | 0.0014<br><0.001 | 0.0014<br><0.001 | 0.0003<br><0.001 | 0.0001<br><0.001 | <0.0001          | <0.0001<br><0.001 |
| Chromium<br>Cobalt              | 0.001   | 0.001   | mg/L         |                  |                  | <0.001<br>0.002  | <0.001<br>0.002  | <0.001<br>0.001  |                   |
| Copper                          | 0.001   | 0.001   | mg/L         | 0.014<br>0.186   | 0.008            | 0.002            | 0.002            | 0.001            | <0.001            |
| Iron                            | 0.001   | 0.001   | mg/L<br>mg/L | 0.186            | 0.02             | <0.05            | 1.72             | 1.2              | <0.05             |
| Lead                            | 0.001   | 0.001   | mg/L         | <0.001           | <0.001           | <0.05            | 0.002            | <0.001           | <0.001            |
| Manganese                       | 0.001   | 0.001   |              | 0.21             | 0.208            | 0.301            | 0.239            | 0.2              | 0.166             |
| Mercury                         | 0.001   | 0.005   | mg/L<br>mg/L | <0.001           | <0.0001          | <0.001           | <0.0001          | <0.0001          | <0.0001           |
| Nickel                          | 0.0001  | 0.0001  | mg/L         | 0.049            | 0.02             | 0.022            | 0.005            | 0.019            | 0.004             |
| Selenium                        | 0.001   | 0.001   | mg/L         | 0.049            | 0.02             | <0.01            | <0.01            | <0.019           | <0.004            |
| Vanadium                        | 0.01    | 0.001   | mg/L         | <0.01            | <0.01            | <0.01            | <0.01            | <0.01            | <0.01             |
| Zinc                            | 0.005   | 0.003   | mg/L         | 0.014            | 0.021            | 0.493            | 0.028            | 0.013            | 0.01              |
| NUTRIENTS                       | 0.000   | 0.001   | mg/L         | 0.014            | 0.021            | 0.433            | 0.020            | 0.013            | 0.01              |
| Ammonia as N                    | 0.01    | 0.01    | mg/L         | -                | _                | <0.01            | 0.05             | 0.06             | 0.03              |
| Nitrite as N                    | 0.01    | 0.0.    | mg/L         |                  | -                | 0.06             | -                | <0.01            | <0.01             |
| Nitrate as N                    | 0.01    | 0.02    | mg/L         | <0.010           | <0.010           | 0.65             | -                | 0.06             | <0.01             |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L         |                  |                  | 0.72             | 0.04             | 0.06             | <0.01             |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.03    | mg/L         |                  | -                | 0.72             | <0.1             | 0.00             | <0.1              |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L         | -                | -                | 0.9              | <0.1             | 0.3              | <0.1              |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L         |                  | -                | 0.04             | 0.03             | 0.26             | 0.37              |
| Approved to 1                   |         |         | gr-          |                  |                  |                  |                  |                  | 0.07              |



| Location | KMB007S    | KMB007D   | KMB007     | KMB007     | KMB007     | KMB007     | KMB007     |
|----------|------------|-----------|------------|------------|------------|------------|------------|
| Sampled  | 3/04/2007  | 3/04/2007 | 18/10/2010 | 27/01/2011 | 17/05/2011 | 18/08/2011 | 10/11/2011 |
| Depth    | Watertable | 54 m bgl  | 54 m bgl   | 54 m bgl   | 54 m bgl   | 54 m bgl   | 54 m bgl   |
| ٧        | ALS        | ALS       | ALS        | ALS        | ALS        | ALS        | ALS        |

|                                 |         |         | ,       | ALO      | ALO      | , LEO    | , LEO    | , LEO    | 7120     | , illo   |
|---------------------------------|---------|---------|---------|----------|----------|----------|----------|----------|----------|----------|
| Chemical                        | ALS LOR | MGT LOR | Units   |          |          |          |          |          |          |          |
| pH                              | 0.01    | 0.1     | pH unit |          | _        | 6.74     | 6.88     | 6.71     | 6.96     | 6.61     |
| Electrical Conductivity         | 1       | 10      | μS/cm   | -        | _        | 4350     | 5160     | 5900     | 5820     | 5670     |
| MAJOR IONS                      | · ·     | 10      | долен   |          |          | 1000     | 0.00     | 0000     | 3020     | 3070     |
| Calcium                         | 1       | 0.5     | mg/L    | 35       | 45       | 58       | 70       | 69       | 72       | 72       |
| Magnesium                       | 1       | 0.5     | mg/L    | 68       | 99       | 108      | 145      | 158      | 150      | 153      |
| Potassium                       | 1       | 0.5     | mg/L    | 45       | 52       | 56       | 76       | 82       | 62       | 61       |
| Sodium                          | 1       | 0.5     | mg/L    | 441      | 679      | 679      | 926      | 1020     | 895      | 895      |
| Chloride                        | 1       | 1       | mg/L    | 690      | 1170     | 1000     | 1250     | 1450     | 1210     | 1360     |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 315      | 403      | 450      | 539      | 552      | 663      | 625      |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L    | <1       | <1       | <1       | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | 239      | 301      | 280      | 284      | 314      | 313      | 289      |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | 24       | 35       | <1       | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | 262      | 336      | 280      | 284      | 314      | 313      | 289      |
| Total Cyanide                   | 0.005   | 0.01    | mg/L    | 0.008    | < 0.005  |          |          | -        | -        | -        |
| Total Anions                    | 0.01    |         | meg/L   | 31.3     | 48.1     | 43.2     | 52.2     | 58.7     | 54.2     | 57.2     |
| Total Cations                   | 0.01    |         | meg/L   | 27.6     | 41.2     | 42.8     | 57.6     | 62.7     | 56.4     | 56.7     |
| Ionic Balance                   | 0.01    |         | %       | 6.2      | 7.67     | 0.5      | 4.95     | 3.3      | 2.03     | 0.43     |
| HEAVY METALS (Dissolved)        |         |         | - / -   |          |          |          |          |          |          | *****    |
| Aluminium                       | 0.01    | 0.005   | mg/L    | -        | -        | 0.01     | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Arsenic                         | 0.001   | 0.001   | ma/L    | <0.001   | 0.005    | < 0.001  | 0.002    | 0.004    | < 0.001  | 0.003    |
| Beryllium                       | 0.001   | 0.001   | mg/L    | <0.001   | 0.003    | 0.002    | 0.003    | 0.004    | 0.001    | 0.004    |
| Barium                          | 0.001   | 0.02    | mg/L    | 0.033    | 0.044    | 0.038    | 0.05     | 0.058    | 0.048    | 0.059    |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | < 0.0001 | < 0.0001 | 0.0001   | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Chromium                        | 0.001   | 0.001   | mg/L    | <0.001   | < 0.001  | < 0.001  | 0.002    | < 0.001  | < 0.001  | < 0.001  |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 0.005    | 0.013    | 0.004    | 0.005    | 0.007    | 0.005    | 0.007    |
| Copper                          | 0.001   | 0.001   | mg/L    | 0.002    | < 0.001  | 0.003    | 0.006    | 0.002    | 0.002    | 0.004    |
| Iron                            | 0.01    | 0.05    | mg/L    | -        | -        | < 0.05   | 1.35     | 1.75     | < 0.05   | 1.61     |
| Lead                            | 0.001   | 0.001   | mg/L    | <0.001   | < 0.001  | < 0.001  | < 0.001  | <0.001   | < 0.001  | < 0.001  |
| Manganese                       | 0.001   | 0.005   | mg/L    | 0.654    | 0.312    | 0.292    | 0.335    | 0.465    | 0.359    | 0.436    |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | <0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Nickel                          | 0.001   | 0.001   | mg/L    | 0.012    | 0.036    | 0.012    | 0.004    | 0.014    | 0.017    | 0.016    |
| Selenium                        | 0.01    | 0.001   | mg/L    | -        | -        | < 0.01   | <0.01    | <0.01    | < 0.01   | <0.01    |
| Vanadium                        | 0.01    | 0.005   | mg/L    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Zinc                            | 0.005   | 0.001   | mg/L    | 0.011    | 0.018    | 0.011    | 0.009    | 0.026    | 0.013    | 0.047    |
| NUTRIENTS                       |         |         |         |          |          |          |          |          |          |          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | -        | -        | <0.01    | 0.08     | <0.01    | 0.03     | 0.04     |
| Nitrite as N                    | 0.01    |         | mg/L    | -        | -        | 0.05     | -        | <0.01    | <0.01    | <0.01    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | 5.36     | <0.010   | 0.42     | -        | 0.01     | < 0.01   | 0.02     |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | -        | -        | 0.48     | 0.01     | 0.01     | < 0.01   | 0.02     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | -        | -        | 0.3      | <0.1     | 0.4      | <0.1     | 0.1      |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | -        | -        | 0.8      | <0.1     | 0.4      | <0.1     | 0.1      |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | -        | -        | 0.86     | 0.29     | 0.39     | 1        | 0.32     |



| Location | KMB008    | KMB008b    | KMB008b    | KMB008b    | KMB008b    | KMB008b    |
|----------|-----------|------------|------------|------------|------------|------------|
| Sampled  | 2/04/2007 | 13/10/2010 | 21/01/2011 | 17/05/2011 | 17/08/2011 | 10/11/2011 |
| Depth    | 60 m bgl  | -          | -          | -          | -          |            |
| V        | ΔIS       | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALSLOP  | MGT LOR  | Units        |         |                |               |               |                |                |
|---------------------------------|---------|----------|--------------|---------|----------------|---------------|---------------|----------------|----------------|
| Chemical                        | ALO LON | mo i Lok | Ointo        |         |                |               |               |                |                |
|                                 |         |          |              |         |                |               |               |                |                |
|                                 |         |          |              |         |                |               |               |                |                |
| pH                              | 0.01    | 0.1      | pH unit      | -       | 7.27           | 7.06          | 6.97          | 7.18           | 7.07           |
| Electrical Conductivity         | 1       | 10       | μS/cm        | -       | 6760           | 6400          | 6750          | 6860           | 6880           |
| MAJOR IONS                      |         |          |              |         |                |               |               |                |                |
| Calcium                         | 1       | 0.5      | mg/L         | 56      | 80             | 62            | 68            | 81             | 81             |
| Magnesium                       | 1       | 0.5      | mg/L         | 115     | 125            | 122           | 146           | 156            | 153            |
| Potassium                       | 1       | 0.5      | mg/L         | 50      | 60             | 59            | 68            | 59             | 62             |
| Sodium                          | 1       | 0.5      | mg/L         | 1020    | 1140           | 1030          | 1270          | 1190           | 1300           |
| Chloride                        | 1       | 1        | mg/L         | 1890    | 1680           | 1550          | 1700          | 1520           | 1950           |
| Sulphate as SO4 2-              | 1       | 5        | mg/L         | 299     | 435            | 158           | 504           | 674            | 286            |
| Hydroxide Alkalinity as CaCO3   | 1       |          | mg/L         | <1      | <1             | <1            | <1            | <1             | <1             |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20       | mg/L         | 371     | 412            | 357           | 396           | 427            | 378            |
| Carbonate Alkalinity as CaCO3   | 1       | 10       | mg/L         | 52      | <1             | <1            | <1            | <1             | <1             |
| Total Alkalinity as CaCO3       | 1       | 20       | mg/L         | 423     | 412            | 357           | 396           | 427            | 378            |
| Total Cyanide                   | 0.005   | 0.01     | mg/L         | 0.009   |                | -             |               | -              | -              |
| Total Anions                    | 0.01    |          | meq/L        | 68.1    | 64.8           | 54.2          | 66.4          | 65.4           | 68.5           |
| Total Cations                   | 0.01    |          | meq/L        | 58      | 61.8           | 59.3          | 72.4          | 70.2           | 74.8           |
| Ionic Balance                   | 0.01    |          | %            | 8       | 2.35           | 4.46          | 4.31          | 3.45           | 4.35           |
| HEAVY METALS (Dissolved)        |         |          |              |         |                |               |               |                |                |
| Aluminium                       | 0.01    | 0.005    | mg/L         | -       | <0.01          | <0.01         | <0.01         | < 0.01         | < 0.01         |
| Arsenic                         | 0.001   | 0.001    | mg/L         | 0.002   | <0.001         | <0.001        | <0.001        | < 0.001        | 0.001          |
| Beryllium                       | 0.001   | 0.001    | mg/L         | 0.003   | 0.004          | 0.003         | 0.004         | <0.001         | 0.004          |
| Barium                          | 0.001   | 0.02     | mg/L         | 0.042   | 0.038          | 0.038         | 0.038         | 0.033          | 0.044          |
| Cadmium                         | 0.0001  | 0.0002   | mg/L         | 0.0003  | 0.0001         | 0.0002        | <0.0001       | <0.0001        | <0.0001        |
| Chromium                        | 0.001   | 0.001    | mg/L         | <0.001  | <0.001         | 0.003         | <0.001        | <0.001         | <0.001         |
| Cobalt                          | 0.001   | 0.001    | mg/L         | 0.007   | 0.007          | 0.008         | 0.004         | 0.002          | 0.005          |
| Copper                          | 0.001   | 0.001    | mg/L         | 0.001   | 0.002          | 0.002         | 0.003         | 0.002          | 0.005          |
| Iron                            | 0.01    | 0.05     | mg/L         | -       | 1.7            | 1.24          | 2.71          | < 0.05         | 2.78           |
| Lead                            | 0.001   | 0.001    | mg/L         | <0.001  | <0.001         | <0.001        | <0.001        | <0.001         | <0.001         |
| Manganese                       | 0.001   | 0.005    | mg/L         | 0.119   | 0.163          | 0.17          | 0.167         | 0.108          | 0.161          |
| Mercury                         | 0.0001  | 0.0001   | mg/L         | <0.0001 | <0.0001        | <0.0001       | <0.0001       | <0.0001        | <0.0001        |
| Nickel                          | 0.001   | 0.001    | mg/L         | 0.011   | 0.003          | 0.003         | 0.003         | 0.001          | 0.002          |
| Selenium                        | 0.01    | 0.001    | mg/L         | -       | <0.01<br><0.01 | <0.01         | <0.01         | <0.01          | <0.01          |
| Vanadium                        | 0.01    | 0.005    | mg/L         | <0.01   |                | 0.01          | <0.01         | <0.01          | <0.01          |
| Zinc                            | 0.005   | 0.001    | mg/L         | 0.022   | 0.015          | 0.012         | 0.016         | <0.005         | 0.037          |
| NUTRIENTS<br>Ammonia as N       | 0.01    | 0.01     |              |         | 0.09           | 0.04          | 0.05          | 0.05           | 0.00           |
| Nitrite as N                    | 0.01    | 0.01     | mg/L<br>mg/L | -       | <0.09          | <0.04         | <0.05         | 0.05<br><0.01  | 0.06<br><0.01  |
| Nitrite as N                    | 0.01    | 0.02     |              |         | <0.01<br><0.01 | <0.01<br>0.12 | <0.01<br>0.04 |                | <0.01<br><0.01 |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.02     | mg/L         | <0.010  | <0.01          | 0.12          | 0.04          | <0.01<br><0.01 | <0.01          |
| Total Kieldahl Nitrogen (TKN)   | 0.01    | 0.05     | mg/L<br>mg/L | -       | <0.01          | 0.12<br><0.1  | 0.04          | <0.01<br><0.1  | <0.01<br><0.1  |
| Total Nitrogen as N             | 0.1     | 0.2      |              | -       | <0.1           | <0.1<br>0.1   | 0.3           | <0.1           | <0.1           |
| Total Phosphorus as P           | 0.1     | 0.2      | mg/L<br>mg/L | -       | <0.1           | 0.1           | 0.3           | 0.11           | 0.09           |
| Total i nospriorus as F         | 0.01    | 0.00     | mg/L         | -       | ₹0.01          | 0.00          | 0.12          | 0.11           | 0.09           |



| Location | KMB009     | KMB009     | KMB009     | KMB009     | KMB009     |
|----------|------------|------------|------------|------------|------------|
| Sampled  | 18/10/2010 | 24/01/2011 | 19/05/2011 | 16/08/2011 | 9/11/2011  |
| Depth    | Watertable | Watertable | Watertable | Watertable | Watertable |
| V        | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALS LOR | MGT LOR | Units        |                |                |                 |               |                |
|---------------------------------|---------|---------|--------------|----------------|----------------|-----------------|---------------|----------------|
|                                 |         |         |              |                |                |                 |               |                |
| pH                              | 0.01    | 0.1     | pH unit      | 6.75           | 6.16           | 6.82            | 6.49          | 6.63           |
| Electrical Conductivity         | 1       | 10      | μS/cm        | 5290           | 5510           | 5240            | 5360          | 5110           |
| MAJOR IONS                      |         |         |              |                |                |                 |               |                |
| Calcium                         | 1       | 0.5     | mg/L         | 71             | 60             | 64              | 54            | 65             |
| Magnesium                       | 1       | 0.5     | mg/L         | 67             | 65             | 84              | 88            | 70             |
| Potassium                       | 1       | 0.5     | mg/L         | 64             | 50             | 92              | 65            | 44             |
| Sodium                          | 1       | 0.5     | mg/L         | 899            | 700            | 1170            | 983           | 715            |
| Chloride                        | 1       | 1       | mg/L         | 1130           | 1100           | 1500            | 1130          | 1100           |
| Sulphate as SO4 2-              | 1       | 5       | mg/L         | 683            | 352            | 538             | 582           | 524            |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L         | <1             | <1             | <1              | <1            | <1             |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L         | 294            | 208            | 235             | 206           | 207            |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L         | <1             | <1             | <1              | <1            | <1             |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L         | 294            | 208            | 235             | 206           | 207            |
| Total Cyanide                   | 0.005   | 0.01    | mg/L         | -              | -              | -               | -             | <del>-</del>   |
| Total Anions                    | 0.01    |         | meq/L        | 52             | 42.5           | 58.2            | 48.1          | 46.1           |
| Total Cations                   | 0.01    |         | meq/L        | 49.8           | 40.1           | 63.3            | 54.4          | 41.2           |
| Ionic Balance                   | 0.01    |         | %            | 2.11           | 2.94           | 4.15            | 6.08          | 5.56           |
| HEAVY METALS (Dissolved)        |         |         |              |                |                |                 |               |                |
| Aluminium                       | 0.01    | 0.005   | mg/L         | <0.01          | <0.01          | <0.01           | 0.02          | 0.08           |
| Arsenic                         | 0.001   | 0.001   | mg/L         | 0.021          | 0.026          | 0.022           | 0.024         | 0.013          |
| Beryllium                       | 0.001   | 0.001   | mg/L         | <0.001         | <0.001         | <0.001          | <0.001        | <0.001         |
| Barium                          | 0.001   | 0.02    | mg/L         | 0.042          | 0.045          | 0.041           | 0.041         | 0.05           |
| Cadmium                         | 0.0001  | 0.0002  | mg/L         | <0.0001        | <0.0001        | <0.0001         | <0.0001       | <0.0001        |
| Chromium                        | 0.001   | 0.001   | mg/L         | <0.001         | 0.002          | <0.001          | <0.001        | <0.001         |
| Cobalt                          | 0.001   | 0.001   | mg/L         | 0.013          | 0.014          | 0.008           | 0.012         | 0.024          |
| Copper                          | 0.001   | 0.001   | mg/L         | <0.001         | 0.002          | 0.002           | 0.002         | 0.034          |
| Iron                            | 0.01    | 0.05    | mg/L         | 23             | 30.7           | 27.7            | 33.4          | 20             |
| Lead                            | 0.001   | 0.001   | mg/L         | <0.001         | <0.001         | <0.001          | <0.001        | <0.001         |
| Manganese                       | 0.001   | 0.005   | mg/L         | 1.47           | 1.48           | 1.24            | 1.26          | 1.64           |
| Mercury                         | 0.0001  | 0.0001  | mg/L         | <0.0001        | <0.0001        | <0.0001         | <0.0001       | <0.0001        |
| Nickel                          | 0.001   | 0.001   | mg/L         | 0.004          | 0.005<br><0.01 | 0.002           | 0.004         | 0.02           |
| Selenium                        | 0.01    | 0.001   | mg/L         | <0.01          |                | <0.01           | <0.01         | <0.01          |
| Vanadium<br>Zinc                | 0.01    | 0.005   | mg/L         | <0.01<br>0.012 | <0.01<br>0.006 | <0.01<br><0.005 | <0.01<br>0.02 | <0.01<br>0.034 |
| NUTRIENTS                       | 0.005   | 0.001   | mg/L         | 0.012          | 0.006          | <0.005          | 0.02          | 0.034          |
| Ammonia as N                    | 0.01    | 0.01    |              | 0.08           | 0.03           | 0.12            | 0.00          | 0.04           |
| Nitrite as N                    | 0.01    | 0.01    | mg/L         | <0.08          | <0.03          | <0.12           | 0.02<br><0.01 | <0.01<br><0.01 |
| Nitrate as N                    | 0.01    | 0.02    | mg/L         | 0.01           | <0.01<br>0.1   | 0.01            | <0.01<br>0.01 | <0.01<br>0.15  |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.02    | mg/L         | 0.02           | 0.1            | 0.01            | 0.01          | 0.15           |
| Total Kjeldahl Nitrogen (TKN)   | 0.01    | 0.05    | mg/L         | 0.02           | <0.1           | 0.01            | 0.01<br><0.1  | 0.15<br>5.2    |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L<br>mg/L | 0.3            | <0.1<br>0.1    | 0.2             | <0.1          | 5.2            |
| Total Phosphorus as P           | 0.1     | 0.2     | mg/L<br>mg/L | 0.3            | 0.1            | 0.2             | 0.32          | 9.16           |
| Total Thosphorus as F           | 0.01    | 0.00    | mg/L         | 0.24           | 0.04           | 0.32            | 0.32          | 9.10           |



| Location | KMB010     | KMB010     | KMB010     | KMB010     | KMB010     |
|----------|------------|------------|------------|------------|------------|
| Sampled  | 18/10/2010 | 27/01/2011 | 17/05/2011 | 18/08/2011 | 10/11/2011 |
| Depth    | 34.5 m bgl | 34.5 m bgl | 34.5m bgl  | 34.5m bgl  | 34.5m bgl  |
| V        | ALS        | ALS        | ALS        | ALS        | ALS        |

|                                 |         |         | ,       |          |          |          |          |          |
|---------------------------------|---------|---------|---------|----------|----------|----------|----------|----------|
| Chemical                        | ALS LOR | MGT LOR | Units   |          |          |          |          |          |
| pH                              | 0.01    | 0.1     | pH unit | 7.23     | 7.15     | 6.84     | 7.08     | 6.81     |
| Electrical Conductivity         | 1       | 10      | μS/cm   | 6250     | 5900     | 7340     | 4000     | 3920     |
| MAJOR IONS                      |         | -10     | дологи  |          |          |          | 1000     | 0020     |
| Calcium                         | 1       | 0.5     | mg/L    | 47       | 51       | 54       | 36       | 35       |
| Magnesium                       | 1       | 0.5     | mg/L    | 101      | 121      | 141      | 73       | 65       |
| Potassium                       | 1       | 0.5     | mg/L    | 52       | 73       | 73       | 37       | 30       |
| Sodium                          | 1       | 0.5     | mg/L    | 1130     | 1120     | 1520     | 677      | 595      |
| Chloride                        | 1       | 1       | mg/L    | 1620     | 1350     | 1950     | 904      | 985      |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 389      | 705      | 518      | 345      | 228      |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L    | <1       | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | 382      | 354      | 432      | 269      | 236      |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | <1       | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | 382      | 354      | 432      | 269      | 236      |
| Total Cyanide                   | 0.005   | 0.01    | ma/L    | -        | -        | -        | -        | -        |
| Total Anions                    | 0.01    |         | meg/L   | 61.4     | 59.9     | 74.4     | 38.1     | 37.2     |
| Total Cations                   | 0.01    |         | meg/L   | 61       | 63.2     | 82.4     | 38.2     | 33.7     |
| Ionic Balance                   | 0.01    |         | %       | 0.35     | 2.65     | 5.09     | 0.16     | 4.95     |
| HEAVY METALS (Dissolved)        |         |         |         |          |          |          | *****    |          |
| Aluminium                       | 0.01    | 0.005   | mg/L    | 0.01     | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Arsenic                         | 0.001   | 0.001   | ma/L    | 0.001    | < 0.001  | < 0.001  | < 0.001  | < 0.001  |
| Beryllium                       | 0.001   | 0.001   | mg/L    | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  |
| Barium                          | 0.001   | 0.02    | mg/L    | 0.021    | 0.018    | 0.022    | 0.004    | 0.004    |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | 0.0011   | 0.0011   | 0.0021   | < 0.0001 | 0.0002   |
| Chromium                        | 0.001   | 0.001   | mg/L    | < 0.001  | 0.002    | < 0.001  | < 0.001  | < 0.001  |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 0.009    | 0.012    | 0.013    | < 0.001  | < 0.001  |
| Copper                          | 0.001   | 0.001   | mg/L    | 0.006    | 0.012    | 0.015    | 0.005    | 0.023    |
| Iron                            | 0.01    | 0.05    | mg/L    | 0.37     | < 0.05   | < 0.05   | < 0.05   | < 0.05   |
| Lead                            | 0.001   | 0.001   | mg/L    | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  |
| Manganese                       | 0.001   | 0.005   | mg/L    | 0.195    | 0.214    | 0.28     | 0.002    | 0.004    |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Nickel                          | 0.001   | 0.001   | mg/L    | 0.007    | 0.007    | 0.009    | 0.003    | 0.002    |
| Selenium                        | 0.01    | 0.001   | mg/L    | <0.01    | < 0.01   | <0.01    | < 0.01   | < 0.01   |
| Vanadium                        | 0.01    | 0.005   | mg/L    | <0.01    | < 0.01   | <0.01    | < 0.01   | <0.01    |
| Zinc                            | 0.005   | 0.001   | mg/L    | 0.03     | 0.025    | 0.053    | 0.008    | 0.034    |
| NUTRIENTS                       |         |         |         |          |          |          |          |          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | 0.03     | 0.06     | <0.01    | <0.01    | <0.01    |
| Nitrite as N                    | 0.01    |         | mg/L    | <0.01    | -        | <0.01    | <0.01    | <0.01    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | 0.02     | -        | 0.05     | 3.49     | 3.75     |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | 0.02     | 1.02     | 0.05     | 3.49     | 3.75     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | <0.1     | 0.2      | 0.3      | <0.1     | <0.1     |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | <0.1     | 1.2      | 0.4      | 3.5      | 3.8      |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | 1.14     | 0.11     | 0.15     | 0.25     | 0.22     |



| Location | KMB011     | KMB011     | KMB011     | KMB011     | KMB011     | KMB011     |
|----------|------------|------------|------------|------------|------------|------------|
| Sampled  | 4/06/2007  | 13/10/2010 | 21/01/2011 | 17/05/2011 | 16/08/2011 | 7/11/2011  |
| Depth    | Watertable | Watertable | Watertable | Watertable | Watertable | Watertable |
| V        | AI S       | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALS LOR     | MGT LOR | Units   |         |         |         |         |         |         |
|---------------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|
|                                 |             |         |         |         |         |         |         |         |         |
| pH                              | 0.01        | 0.1     | pH unit | -       | 4.96    | 4.86    | 4.87    | 5.05    | 4.3     |
| Electrical Conductivity         | 1           | 10      | μS/cm   | -       | 11000   | 10800   | 10800   | 10800   | 11200   |
| MAJOR IONS                      |             |         |         |         |         |         |         |         |         |
| Calcium                         | 1           | 0.5     | mg/L    | 440     | 516     | 411     | 443     | 457     | 467     |
| Magnesium                       | 1           | 0.5     | mg/L    | 1080    | 1200    | 1130    | 1220    | 1310    | 1340    |
| Potassium                       | 1           | 0.5     | mg/L    | 114     | 130     | 146     | 119     | 136     | 85      |
| Sodium                          | 1           | 0.5     | mg/L    | 707     | 600     | 538     | 533     | 622     | 440     |
| Chloride                        | 1           | 1       | mg/L    | 602     | 568     | 565     | 558     | 543     | 567     |
| Sulphate as SO4 2-              | 1           | 5       | mg/L    | 7050    | 8540    | 6710    | 8800    | 9110    | 7680    |
| Hydroxide Alkalinity as CaCO3   | 1           |         | mg/L    | <1      | <1      | <1      | <1      | <1      | <1      |
| Bicarbonate Alkalinity as CaCO3 | 1           | 20      | mg/L    | 71      | 4       | <1      | <1      | <1      | <1      |
| Carbonate Alkalinity as CaCO3   | 1           | 10      | mg/L    | <1      | <1      | <1      | <1      | <1      | <1      |
| Total Alkalinity as CaCO3       | 1           | 20      | mg/L    | 71      | 4       | <1      | <1      | <1      | <1      |
| Total Cyanide                   | 0.005       | 0.01    | mg/L    | 0.0263  | -       | -       |         | -       | 1       |
| Total Anions                    | 0.01        |         | meq/L   | 165     | 194     | 156     | 199     | 205     | ,       |
| Total Cations                   | 0.01        |         | meg/L   | 165     | 216     | 141     | 179     | 393     | -       |
| Ionic Balance                   | 0.01        |         | %       | 0.07    | 5.43    | 4.92    | 5.37    | 4.72    | 1       |
| HEAVY METALS (Dissolved)        |             |         |         |         |         |         |         |         |         |
| Aluminium                       | 0.01        | 0.005   | mg/L    | 0.12    | 0.46    | 0.23    | 0.31    | 0.54    | 0.53    |
| Arsenic                         | 0.001       | 0.001   | mg/L    | 0.002   | 0.006   | 0.005   | 0.006   | 0.005   | 0.005   |
| Beryllium                       | 0.001       | 0.001   | mg/L    | -       | 0.002   | < 0.001 | <0.001  | 0.002   | 0.001   |
| Barium                          | 0.001       | 0.02    | mg/L    | -       | 0.021   | 0.022   | 0.02    | 0.021   | 0.02    |
| Cadmium                         | 0.0001      | 0.0002  | mg/L    | 0.0036  | 0.0092  | 0.009   | 0.0078  | 0.0102  | 0.0086  |
| Chromium                        | 0.001       | 0.001   | mg/L    | <0.001  | <0.001  | <0.001  | <0.001  | <0.001  | <0.001  |
| Cobalt                          | 0.001       | 0.001   | mg/L    | 7.49    | 23.4    | 23.9    | 22.9    | 20.6    | 24.2    |
| Copper                          | 0.001       | 0.001   | mg/L    | 0.016   | 0.89    | 0.602   | 0.762   | 1.41    | 1.29    |
| Iron                            | 0.01        | 0.05    | mg/L    | 149     | 937     | 799     | 706     | 752     | 805     |
| Lead                            | 0.001       | 0.001   | mg/L    | < 0.001 | 0.001   | <0.001  | <0.001  | <0.001  | <0.001  |
| Manganese                       | 0.001       | 0.005   | mg/L    | 171     | 135     | 117     | 130     | 109     | 136     |
| Mercury                         | 0.0001      | 0.0001  | mg/L    | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
| Nickel                          | 0.001       | 0.001   | mg/L    | 1.5     | 4.98    | 4.82    | 4.57    | 5.57    | 4.18    |
| Selenium                        | 0.01        | 0.001   | mg/L    | <0.010  | 0.01    | <0.01   | 0.01    | <0.01   | <0.01   |
| Vanadium                        | 0.01        | 0.005   | mg/L    | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
| Zinc                            | 0.005       | 0.001   | mg/L    | 0.312   | 1.59    | 1.49    | 1.23    | 1.58    | 1.24    |
| NUTRIENTS                       |             |         |         |         |         |         |         |         |         |
| Ammonia as N                    | 0.01        | 0.01    | mg/L    | -       | 0.5     | 2.18    | 2.79    | 2.6     | <0.01   |
| Nitrite as N                    | 0.01        | 0.00    | mg/L    | -       | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
| Nitrate as N                    |             | 0.02    | mg/L    | -       | <0.01   | <0.01   | <0.01   | <0.01   | 0.02    |
| NOx (Nitrite + Nitrate as N)    | 0.01        | 0.05    | mg/L    | -       | <0.01   | <0.01   | <0.01   | <0.01   | 0.02    |
| Total Kjeldahl Nitrogen (TKN)   | 0.1         | 0.2     | mg/L    | -       | 3.7     | 2.9     | 4.6     | 2.7     | 5.4     |
| Total Nitrogen as N             | 0.1<br>0.01 | 0.2     | mg/L    | -       | 3.7     | 2.9     | 4.6     | 2.7     | 5.4     |
| Total Phosphorus as P           | 0.01        | 0.05    | mg/L    | -       | 0.03    | 0.13    | 0.26    | <0.10   | 0.25    |



| Location | KMB012     | KMB012     | KMB012     | KMB012     | KMB012     | KMB012     |
|----------|------------|------------|------------|------------|------------|------------|
| Sampled  | 4/06/2007  | 12/10/2010 | 21/01/2011 | 17/05/2011 | 16/08/2011 | 7/11/2011  |
| Depth    | Watertable | Watertable | Watertable | Watertable | Watertable | Watertable |
| V        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALS LOR | MGT LOR | Units   |         |          |          |          |          |          |
|---------------------------------|---------|---------|---------|---------|----------|----------|----------|----------|----------|
|                                 |         |         |         |         |          |          |          |          |          |
|                                 |         |         |         |         |          |          |          |          |          |
|                                 |         |         |         |         |          | •        | •        |          |          |
| pH                              | 0.01    | 0.1     | pH unit | -       | 7.55     | 6.12     | 7.22     | 7.6      | 7.19     |
| Electrical Conductivity         | 1       | 10      | μS/cm   | -       | 7,570    | 7,660    | 7,760    | 7350     | 7260     |
| MAJOR IONS                      |         |         |         |         |          |          |          |          |          |
| Calcium                         | 1       | 0.5     | mg/L    | 93      | 140      | 143      | 109      | 136      | 122      |
| Magnesium                       | 1       | 0.5     | mg/L    | 99      | 120      | 158      | 132      | 145      | 132      |
| Potassium                       | 1       | 0.5     | mg/L    | 44      | 43       | 55       | 44       | 50       | 30       |
| Sodium                          | 1       | 0.5     | mg/L    | 1440    | 1500     | 1560     | 1830     | 1690     | 1850     |
| Chloride                        | 1       | 1       | mg/L    | 682     | 688      | 1400     | 672      | 632      | 1200     |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 2520    | 2960     | 1620     | 2640     | 2830     | 2340     |
| Hydroxide Alkalinity as CaCO3   | 1       |         | mg/L    | <1      | <1       | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | 475     | 472      | 432      | 461      | 457      | 440      |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | <1      | <1       | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | 475     | 472      | 432      | 461      | 457      | 440      |
| Total Cyanide                   | 0.005   | 0.01    | mg/L    | 0.0064  | -        | -        | -        | -        | -        |
| Total Anions                    | 0.01    |         | meq/L   | 81.1    | 90.6     | 81.8     | 83.1     | 85.9     | 91.4     |
| Total Cations                   | 0.01    |         | meq/L   | 76.6    | 84.8     | 89.4     | 97       | 93.5     | 98.2     |
| Ionic Balance                   | 0.01    |         | %       | 2.92    | 3.33     | 4.45     | 7.64     | 4.22     | 3.57     |
| HEAVY METALS (Dissolved)        |         |         |         |         |          |          |          |          |          |
| Aluminium                       | 0.01    | 0.005   | mg/L    | 0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Arsenic                         | 0.001   | 0.001   | mg/L    | 0.002   | 0.002    | 0.002    | 0.002    | < 0.001  | 0.001    |
| Beryllium                       | 0.001   | 0.001   | mg/L    | -       | <0.001   | <0.001   | <0.001   | < 0.001  | <0.001   |
| Barium                          | 0.001   | 0.02    | mg/L    | -       | 0.028    | 0.009    | 0.008    | 0.012    | 0.016    |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Chromium                        | 0.001   | 0.001   | mg/L    | <0.001  | <0.001   | 0.002    | <0.001   | < 0.001  | <0.001   |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 0.003   | 0.003    | 0.009    | 0.032    | 0.004    | 0.002    |
| Copper                          | 0.001   | 0.001   | mg/L    | 0.006   | 0.004    | 0.006    | 0.01     | 0.007    | 0.008    |
| Iron                            | 0.01    | 0.05    | mg/L    | 0.08    | 0.06     | 0.29     | 0.97     | 0.07     | < 0.05   |
| Lead                            | 0.001   | 0.001   | mg/L    | <0.001  | <0.001   | <0.001   | <0.001   | <0.001   | <0.001   |
| Manganese                       | 0.001   | 0.005   | mg/L    | 0.291   | 0.077    | 0.067    | 0.215    | 0.035    | 0.024    |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | <0.0001 | < 0.0001 | <0.0001  | <0.0001  | < 0.0001 | <0.0001  |
| Nickel                          | 0.001   | 0.001   | mg/L    | 0.002   | 0.006    | 0.002    | 0.006    | <0.001   | 0.001    |
| Selenium                        | 0.01    | 0.001   | mg/L    | <0.010  | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Vanadium                        | 0.01    | 0.005   | mg/L    | <0.01   | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Zinc                            | 0.005   | 0.001   | mg/L    | 0.011   | 0.02     | 0.006    | 0.018    | 0.02     | 0.024    |
| NUTRIENTS                       |         |         |         |         |          |          |          |          |          |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | -       | 0.03     | 0.02     | <0.01    | < 0.01   | 0.02     |
| Nitrite as N                    | 0.01    |         | mg/L    | -       | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | -       | 1.37     | 1.41     | 1.8      | 1.34     | 1.06     |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | -       | 1.37     | 1.41     | 1.8      | 1.34     | 1.06     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | -       | 0.4      | <0.1     | 0.4      | 0.2      | 0.2      |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | -       | 1.8      | 1.4      | 2.2      | 1.5      | 1.3      |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | -       | 0.25     | 0.16     | 0.15     | 0.33     | 0.22     |



| Location | KMB013     | KMB013     | KMB013     | KMB013     | KMB014     | KMB014     | KMB014     | KMB014     | KMB014     |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 4/06/2007  | 18/10/2010 | 21/01/2011 | 16/05/2011 | 4/06/2007  | 18/10/2010 | 24/01/2011 | 19/05/2011 | 16/08/2011 |
| Depth    | Watertable |
| V        | ALS        |

| Chemical                        | ALS LOR | MGT LOR | Units   |          |          |          |          |          |         |         |         |         |
|---------------------------------|---------|---------|---------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| На                              | 0.01    | 0.1     | pH unit | -        | 6.87     | -        | -        | -        | 6.04    | 6.3     | 6.14    | 6.08    |
| Electrical Conductivity         | 1       | 10      | цS/cm   |          | 27800    | -        | -        | -        | 3400    | 3880    | 3730    | 3850    |
| MAJOR IONS                      |         |         | p.e. e  |          |          |          |          |          |         |         |         |         |
| Calcium                         | 1       | 0.5     | ma/L    | 120      | 183      | -        | -        | 71       | 92      | 94      | 108     | 110     |
| Magnesium                       | 1       | 0.5     | mg/L    | 448      | 476      | -        | -        | 48       | 113     | 136     | 134     | 137     |
| Potassium                       | 1       | 0.5     | mg/L    | 211      | 216      | -        | -        | 41       | 46      | 37      | 54      | 49      |
| Sodium                          | 1       | 0.5     | mg/L    | 5350     | 5880     | -        | -        | 286      | 527     | 478     | 622     | 606     |
| Chloride                        | 1       | 1       | mg/L    | 8560     | 9420     | -        | -        | 367      | 592     | 487     | 704     | 651     |
| Sulphate as SO4 2-              | 1       | 5       | mg/L    | 1960     | 845      | -        | -        | 380      | 983     | 988     | 1030    | 1070    |
| Hydroxide Alkalinity as CaCO3   | 1       |         | ma/L    | <1       | <1       | -        | -        | <1       | <1      | <1      | <1      | <1      |
| Bicarbonate Alkalinity as CaCO3 | 1       | 20      | mg/L    | 253      | 594      | -        | -        | 162      | <1      | 55      | 30      | 64      |
| Carbonate Alkalinity as CaCO3   | 1       | 10      | mg/L    | <1       | <1       | -        | -        | <1       | <1      | <1      | <1      | <1      |
| Total Alkalinity as CaCO3       | 1       | 20      | mg/L    | 253      | 594      | -        | -        | 162      | <1      | 55      | 30      | 64      |
| Total Cyanide                   | 0.005   | 0.01    | ma/L    | 0.0051   | -        | -        | -        | < 0.0050 | -       | -       | -       | -       |
| Total Anions                    | 0.01    |         | meg/L   | 287      | 295      | -        | -        | 21.5     | 37.2    | 35.4    | 42      | 41.9    |
| Total Cations                   | 0.01    |         | meg/L   | 281      | 310      | -        | -        | 20.9     | 38      | 37.5    | 44.8    | 44.4    |
| Ionic Balance                   | 0.01    |         | %       | 1.11     | 2.41     | -        | -        | 1.33     | 1.14    | 2.9     | 3.28    | 2.83    |
| HEAVY METALS (Dissolved)        |         |         |         |          |          |          |          |          |         |         |         |         |
| Aluminium                       | 0.01    | 0.005   | mg/L    | 0.01     | 0.01     | < 0.01   | < 0.01   | 0.02     | 0.55    | 0.1     | 0.09    | 0.08    |
| Arsenic                         | 0.001   | 0.001   | mg/L    | 0.004    | 0.006    | < 0.001  | 0.006    | 0.003    | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| Beryllium                       | 0.001   | 0.001   | mg/L    | -        | < 0.001  | < 0.001  | < 0.001  | -        | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| Barium                          | 0.001   | 0.02    | mg/L    | -        | 0.259    | 0.25     | 0.254    | -        | 0.01    | 0.01    | 0.009   | 0.008   |
| Cadmium                         | 0.0001  | 0.0002  | mg/L    | 0.0441   | 0.0003   | < 0.0001 | < 0.0001 | 0.0001   | 0.0056  | 0.0005  | 0.0005  | 0.0004  |
| Chromium                        | 0.001   | 0.001   | mg/L    | < 0.001  | < 0.001  | 0.002    | <0.001   | < 0.001  | < 0.001 | 0.002   | < 0.001 | < 0.001 |
| Cobalt                          | 0.001   | 0.001   | mg/L    | 0.005    | < 0.001  | 0.001    | < 0.001  | 0.015    | 0.183   | 0.026   | 0.027   | 0.022   |
| Copper                          | 0.001   | 0.001   | mg/L    | 0.01     | 0.001    | 0.003    | 0.002    | 0.004    | 0.561   | 0.968   | 0.759   | 0.494   |
| Iron                            | 0.01    | 0.05    | mg/L    | 5.65     | 11.8     | 19,6     | 12.6     | 6.27     | 0.11    | 0.1     | < 0.05  | < 0.05  |
| Lead                            | 0.001   | 0.001   | mg/L    | 0.004    | < 0.001  | <0.001   | < 0.001  | 0.008    | < 0.001 | 0.001   | 0.002   | < 0.001 |
| Manganese                       | 0.001   | 0.005   | mg/L    | 2.54     | 2.74     | 3.41     | 3.32     | 0.625    | 0.574   | 0.099   | 0.086   | 0.097   |
| Mercury                         | 0.0001  | 0.0001  | mg/L    | < 0.0001 | < 0.0001 | < 0.0001 | <0.0001  | < 0.0001 | 0.0002  | 0.0006  | 0.0004  | 0.0005  |
| Nickel                          | 0.001   | 0.001   | mg/L    | 0.009    | < 0.001  | < 0.001  | 0.001    | 0.013    | 0.147   | 0.033   | 0.03    | 0.021   |
| Selenium                        | 0.01    | 0.001   | mg/L    | <0.010   | <0.01    | <0.01    | <0.01    | <0.010   | <0.01   | <0.01   | <0.01   | <0.01   |
| Vanadium                        | 0.01    | 0.005   | mg/L    | <0.01    | < 0.01   | 0.02     | 0.01     | < 0.01   | < 0.01  | <0.01   | <0.01   | <0.01   |
| Zinc                            | 0.005   | 0.001   | mg/L    | 0.014    | 0.009    | 0.013    | 0.008    | 0.01     | 0.085   | 0.033   | 0.029   | 0.054   |
| NUTRIENTS                       |         |         |         |          |          |          |          |          |         |         |         |         |
| Ammonia as N                    | 0.01    | 0.01    | mg/L    | -        | 0.35     | -        | -        | -        | 0.02    | 0.05    | 0.02    | 0.03    |
| Nitrite as N                    | 0.01    |         | mg/L    | -        | <0.01    | -        | -        | -        | 0.06    | 0.05    | 0.09    | 0.08    |
| Nitrate as N                    | 0.01    | 0.02    | mg/L    | -        | 0.02     | -        | -        | -        | 9.14    | 12.8    | 26      | 24.3    |
| NOx (Nitrite + Nitrate as N)    | 0.01    | 0.05    | mg/L    | -        | 0.02     | -        | -        | -        | 9.2     | 12.8    | 26.1    | 24.4    |
| Total Kjeldahl Nitrogen (TKN)   | 0.1     | 0.2     | mg/L    | -        | 7.2      | -        | -        | -        | 0.5     | <0.1    | 0.5     | 0.2     |
| Total Nitrogen as N             | 0.1     | 0.2     | mg/L    | -        | 7.2      | -        | -        | -        | 9.7     | 12.8    | 26.6    | 24.6    |
| Total Phosphorus as P           | 0.01    | 0.05    | mg/L    | -        | 23.6     | -        | -        | -        | 1.47    | 0.16    | 0.05    | <0.01   |



| Location | KMB015     | KMB015     | KMB015     | KMB015     | KMB015     | KMB015     |
|----------|------------|------------|------------|------------|------------|------------|
| Sampled  | 4/06/2007  | 18/10/2010 | 24/01/2011 | 19/05/2011 | 16/08/2011 | 7/11/2011  |
| Depth    | Watertable | Watertable | Watertable | Watertable | Watertable | Watertable |
| V        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        |

| Chemical                        | ALSTOR    | MGT LOR | Units        |                 |               |                |                 |                |                 |
|---------------------------------|-----------|---------|--------------|-----------------|---------------|----------------|-----------------|----------------|-----------------|
| - Chichingan                    | 7120 2011 |         | 00           |                 |               |                |                 |                |                 |
|                                 |           |         |              |                 |               |                |                 |                |                 |
|                                 |           |         |              |                 |               |                |                 |                |                 |
| pH                              | 0.01      | 0.1     | pH unit      | -               | 3.87          | 4.62           | 3.88            | 4.09           | 3.99            |
| Electrical Conductivity         | 1         | 10      | μS/cm        | -               | 3700          | 3760           | 4110            | 3410           | 2820            |
| MAJOR IONS                      |           |         |              |                 |               |                |                 |                |                 |
| Calcium                         | 1         | 0.5     | mg/L         | 196             | 89            | 154            | 249             | 202            | 141             |
| Magnesium                       | 1         | 0.5     | mg/L         | 134             | 138           | 163            | 199             | 157            | 109             |
| Potassium                       | 1         | 0.5     | mg/L         | 67              | 19            | 19             | 30              | 26             | 14              |
| Sodium                          | 1         | 0.5     | mg/L         | 297             | 214           | 212            | 214             | 198            | 158             |
| Chloride                        | 1         | 1       | mg/L         | 361             | 312           | 721            | 266             | 258            | 254             |
| Sulphate as SO4 2-              | 1         | 5       | mg/L         | 1120            | 851           | 370            | 1700            | 1350           | 1190            |
| Hydroxide Alkalinity as CaCO3   | 1         |         | mg/L         | <1              | <1            | <1             | <1              | <1             | <1              |
| Bicarbonate Alkalinity as CaCO3 | 1         | 20      | mg/L         | 150             | 46            | <1             | <1              | <1             | <1              |
| Carbonate Alkalinity as CaCO3   | 1         | 10      | mg/L         | <1              | <1            | <1             | <1              | <1             | <1              |
| Total Alkalinity as CaCO3       | 1         | 20      | mg/L         | 150             | 46            | <1             | <1              | <1             | <1              |
| Total Cyanide                   | 0.005     | 0.01    | mg/L         | < 0.0050        | -             | -              | -               | -              | -               |
| Total Anions                    | 0.01      |         | meq/L        | 36.5            | 27.4          | 28             | 42.9            | 35.4           | -               |
| Total Cations                   | 0.01      |         | meq/L        | 35.4            | 25.7          | 30.8           | 38.9            | 32.3           | -               |
| Ionic Balance                   | 0.01      |         | %            | 1.42            | 3.34          | 4.71           | 4.9             | 4.59           | -               |
| HEAVY METALS (Dissolved)        |           |         |              |                 |               |                |                 |                |                 |
| Aluminium                       | 0.01      | 0.005   | mg/L         | 0.18            | 45            | 31             | 33.2            | 24.1           | 14.9            |
| Arsenic                         | 0.001     | 0.001   | mg/L         | 0.002           | 0.003         | 0.002          | 0.002           | 0.002          | 0.001           |
| Beryllium                       | 0.001     | 0.001   | mg/L         | -               | 0.012         | 0.01           | 0.016           | 0.009          | 0.007           |
| Barium                          | 0.001     | 0.02    | mg/L         | -               | 0.013         | 0.016          | 0.012           | 0.01           | 0.012           |
| Cadmium                         | 0.0001    | 0.0002  | mg/L         | 0.0114          | 0.0072        | 0.0088         | 0.0146          | 0.0105         | 0.0087          |
| Chromium                        | 0.001     | 0.001   | mg/L         | <0.001          | 0.001         | 0.001          | <0.001          | <0.001         | <0.001          |
| Cobalt                          | 0.001     | 0.001   | mg/L         | 2.31            | 4.45          | 3.78           | 6.69            | 5.31           | 3.14            |
| Copper                          | 0.001     | 0.001   | mg/L         | 9.95            | 219           | 200            | 374             | 243            | 1.56            |
| Iron                            | 0.01      | 0.05    | mg/L         | 0.24            | 162           | 37.5           | 15.1            | 6.71           | 2.77            |
| Lead                            | 0.001     | 0.001   | mg/L         | 0.025           | 0.009         | 0.008          | 0.008           | 0.002          | 0.012           |
| Manganese<br>Mercury            | 0.001     | 0.005   | mg/L         | 10.1<br><0.0001 | 34<br><0.0001 | 19.5<br>0.0004 | 17.8<br><0.0001 | 14.9<br>0.0004 | 9.68            |
| Nickel                          | 0.0001    | 0.0001  | mg/L<br>mg/L | 0.69            | 1.38          | 0.0004         | 1.42            | 1.07           | 0.0002<br>0.681 |
| Selenium                        | 0.001     | 0.001   |              | <0.010          | 0.02          | 0.974          | 0.03            | 0.02           | 0.681           |
| Vanadium                        | 0.01      | 0.001   | mg/L         | <0.010          | <0.02         | <0.02          | <0.03           | <0.02          | <0.01           |
| Zinc                            | 0.005     | 0.005   | mg/L<br>mg/L | 1.63            | 6.83          | 2.92           | 3.41            | 2.37           | 1.59            |
| NUTRIENTS                       | 0.005     | 0.001   | IIIg/L       | 1.03            | 0.03          | 2.92           | 3.41            | 2.31           | 1.59            |
| Ammonia as N                    | 0.01      | 0.01    | ma/L         | _               | <0.01         | 0.11           | 0.44            | 0.46           | <0.01           |
| Nitrite as N                    | 0.01      | 0.01    | ma/L         | -               | 0.02          | 0.02           | 0.02            | 0.46           | 0.05            |
| Nitrate as N                    | 0.01      | 0.02    | mg/L         |                 | 11.3          | 14             | 10.2            | 5.25           | 4.59            |
| NOx (Nitrite + Nitrate as N)    | 0.01      | 0.02    | mg/L         | -               | 11.3          | 14             | 10.2            | 5.27           | 4.64            |
| Total Kjeldahl Nitrogen (TKN)   | 0.01      | 0.03    | mg/L         |                 | 1.0           | <0.1           | 1.1             | 0.7            | 0.7             |
| Total Nitrogen as N             | 0.1       | 0.2     | mg/L         | -               | 12.3          | 14             | 11.3            | 6              | 5.3             |
| Total Phosphorus as P           | 0.01      | 0.05    | ma/L         | -               | 2.21          | <0.01          | <0.01           | <0.01          | 0.59            |
| soprioras as i                  | 0.0.      | 0.00    | mg/L         |                 |               | 30.01          | 10.01           | NO.01          | 0.00            |



| Location | KMB016     | KMB016     | KMB016     | KMB016     | KMB016     | KMB016     | KMB017     | KMB017     | KMB017     |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 7/06/2007  | 19/10/2010 | 25/01/2011 | 19/05/2011 | 17/08/2011 | 8/11/2011  | 7/06/2007  | 19/10/2010 | 25/01/2011 |
| Depth    | Watertable |
| V        | ALS        |

|                                 |             |         | /       | 7120     |          |          |          |          |          | 7120     |          |          |
|---------------------------------|-------------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Chemical                        | ALS LOR     | MGT LOR | Units   |          |          |          |          |          |          |          |          |          |
| pH                              | 0.01        | 0.1     | pH unit | -        | 6.62     | 7.29     | 7.09     | 7.28     | 7.12     | -        | 7.15     | 7.11     |
| Electrical Conductivity         | 1           | 10      | uS/cm   | -        | 1500     | 1550     | 1470     | 1480     | 1540     | -        | 5450     | 5460     |
| MAJOR IONS                      | <del></del> | -10     | долен   |          | 1000     | 1000     |          | 1400     | 1340     | 1        | 0.00     | 0.00     |
| Calcium                         | 1           | 0.5     | mg/L    | 52       | 37       | 38       | 36       | 30       | 19       | 98       | 67       | 91       |
| Magnesium                       | 1           | 0.5     | mg/L    | 97       | 21       | 26       | 27       | 24       | 21       | 321      | 94       | 113      |
| Potassium                       | 1           | 0.5     | mg/L    | 70       | 15       | 19       | 23       | 16       | 16       | 159      | 63       | 80       |
| Sodium                          | 1           | 0.5     | mg/L    | 1130     | 238      | 281      | 301      | 226      | 277      | 3250     | 897      | 930      |
| Chloride                        | 1           | 1       | mg/L    | 1360     | 285      | 351      | 350      | 258      | 269      | 4910     | 1440     | 1450     |
| Sulphate as SO4 2-              | 1           | 5       | mg/L    | 286      | 127      | 60       | 72       | 88       | 63       | 703      | 210      | 233      |
| Hydroxide Alkalinity as CaCO3   | 1           | -       | mg/L    | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       |
| Bicarbonate Alkalinity as CaCO3 | 1           | 20      | mg/L    | 668      | 180      | 271      | 244      | 296      | 291      | 569      | 304      | 317      |
| Carbonate Alkalinity as CaCO3   | 1           | 10      | mg/L    | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       |
| Total Alkalinity as CaCO3       | 1           | 20      | mg/L    | 668      | 180      | 271      | 244      | 296      | 291      | 569      | 304      | 317      |
| Total Cyanide                   | 0.005       | 0.01    | mg/L    | 0.0144   |          | -        |          |          |          | 0.007    | -        | -        |
| Total Anions                    | 0.01        |         | meq/L   | 57.6     | 14.3     | 16.5     | 16.2     | 15       | -        | 164      | 51.2     | 52.1     |
| Total Cations                   | 0.01        | i e     | meq/L   | 61.4     | 14.3     | 16.7     | 17.7     | 13.7     | -        | 177      | 51.7     | 56.4     |
| Ionic Balance                   | 0.01        | i e     | %       | 3.15     | 0.03     | 0.51     | 4.29     | 4.59     | -        | 3.59     | 0.54     | 3.94     |
| HEAVY METALS (Dissolved)        |             |         | - , -   | 0.10     |          |          |          |          |          |          |          |          |
| Aluminium                       | 0.01        | 0.005   | mg/L    | 0.02     | 0.11     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | 0.01     | < 0.01   | < 0.01   |
| Arsenic                         | 0.001       | 0.001   | mg/L    | 0.002    | < 0.001  | < 0.001  | < 0.001  | 0.001    | 0.001    | < 0.001  | < 0.001  | 0.001    |
| Beryllium                       | 0.001       | 0.001   | mg/L    | -        | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | -        | < 0.001  | < 0.001  |
| Barium                          | 0.001       | 0.02    | mg/L    | -        | 0.013    | 0.011    | 0.01     | 0.007    | 0.008    | -        | 0.026    | 0.071    |
| Cadmium                         | 0.0001      | 0.0002  | ma/L    | 0.0001   | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | 0.0001   | 0.0088   | 0.0016   | 0.0002   |
| Chromium                        | 0.001       | 0.001   | mg/L    | < 0.001  | < 0.001  | 0.002    | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | 0.002    |
| Cobalt                          | 0.001       | 0.001   | mg/L    | 0.004    | < 0.001  | < 0.001  | < 0.001  | < 0.001  | 0.001    | 0.013    | 0.007    | 0.005    |
| Copper                          | 0.001       | 0.001   | mg/L    | 0.001    | 0.011    | 0.005    | 0.006    | 0.002    | 0.005    | 0.003    | 0.031    | 0.028    |
| Iron                            | 0.01        | 0.05    | mg/L    | 0.01     | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.01   | < 0.05   | < 0.05   |
| Lead                            | 0.001       | 0.001   | mg/L    | < 0.001  | 0.001    | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  |
| Manganese                       | 0.001       | 0.005   | mg/L    | 0.105    | 0.005    | 0.002    | 0.014    | 0.006    | 0.025    | 0.8      | 0.233    | 0.148    |
| Mercury                         | 0.0001      | 0.0001  | mg/L    | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |
| Nickel                          | 0.001       | 0.001   | mg/L    | 0.019    | 0.002    | 0.002    | 0.003    | 0.011    | 0.003    | 0.02     | 0.014    | 0.008    |
| Selenium                        | 0.01        | 0.001   | mg/L    | 0.038    | 0.02     | 0.02     | 0.01     | 0.01     | 0.01     | < 0.010  | 0.01     | 0.02     |
| Vanadium                        | 0.01        | 0.005   | mg/L    | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Zinc                            | 0.005       | 0.001   | mg/L    | 0.008    | 0.04     | < 0.005  | 0.014    | 0.006    | 0.034    | 0.091    | 0.027    | < 0.005  |
| NUTRIENTS                       |             |         |         |          |          |          |          |          |          |          |          |          |
| Ammonia as N                    | 0.01        | 0.01    | mg/L    | -        | <0.01    | 0.02     | <0.01    | 0.07     | 0.04     | -        | <0.01    | 0.15     |
| Nitrite as N                    | 0.01        |         | mg/L    | -        | <0.01    | -        | 0.02     | <0.01    | <0.01    | -        | <0.01    | -        |
| Nitrate as N                    | 0.01        | 0.02    | mg/L    | -        | 8.8      | -        | 10.4     | 7.73     | 8.61     | -        | 12.2     | -        |
| NOx (Nitrite + Nitrate as N)    | 0.01        | 0.05    | mg/L    | -        | 8.8      | 11.6     | 10.4     | 7.73     | 8.61     | -        | 12.2     | 20.7     |
| Total Kjeldahl Nitrogen (TKN)   | 0.1         | 0.2     | mg/L    | -        | 0.5      | 0.2      | 0.7      | <0.1     | 0.2      | -        | 1.9      | 1.1      |
| Total Nitrogen as N             | 0.1         | 0.2     | mg/L    | -        | 9.3      | 11.8     | 11.1     | 7.7      | 8.8      | -        | 14.1     | 21.8     |
| Total Phosphorus as P           | 0.01        | 0.05    | mg/L    | -        | 1.24     | < 0.01   | 0.06     | 0.16     | 0.16     | -        | 0.73     | 0.03     |



| Location | KMB018     | KMB018     | KMB018     | KMB018     | KMB018     | KMB019     | KMB019     | KMB019     |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|
| Sampled  | 7/06/2007  | 19/10/2010 | 25/01/2011 | 19/05/2011 | 17/08/2011 | 7/06/2007  | 14/10/2010 | 25/01/2011 |
| Depth    | Watertable |
| V        | ALS        |

| Chemical                        |             | MGT LOR | Units          |           |             | 7.07        | 7.05        |           |           |           |           |
|---------------------------------|-------------|---------|----------------|-----------|-------------|-------------|-------------|-----------|-----------|-----------|-----------|
| pН                              | 0.01        | 0.1     | pH unit        | -         | 7.2         | 7.27        | 7.35        | 7.65      | -         | 7.34      | 7.17      |
| Electrical Conductivity         | 1           | 10      | μS/cm          | -         | 8800        | 9150        | 9120        | 9400      | -         | 2410      | 2610      |
| MAJOR IONS                      | <del></del> |         |                |           |             |             |             |           |           |           |           |
| Calcium                         | 1           | 0.5     | mg/L           | 61        | 71          | 73          | 57          | 64        | 129       | 37        | 41        |
| Magnesium                       | 1           | 0.5     | mg/L           | 176       | 136         | 170         | 143         | 159       | 214       | 32        | 37        |
| Potassium                       | 1           | 0.5     | mg/L           | 92        | 88          | 133         | 103         | 91        | 75        | 20        | 18        |
| Sodium                          | 1           | 0.5     | mg/L           | 2030      | 1490        | 1670        | 2170        | 1760      | 1510      | 476       | 497       |
| Chloride<br>Sulphate as SO4 2-  | 1           | 1<br>5  | mg/L           | 2680      | 2530<br>332 | 2560<br>587 | 2850<br>333 | 2030      | 2510      | 659       | 750       |
| Hydroxide Alkalinity as CaCO3   | 1           | 0       | mg/L           | 438       | 332<br><1   | 587<br><1   | 333<br><1   | 439       | 419       | 139       | 82        |
| Bicarbonate Alkalinity as CaCO3 | 1           | 20      | mg/L           | <1<br>746 | <1<br>841   | <1<br>804   | 743         | <1<br>827 | <1<br>524 | <1<br>189 | <1<br>165 |
| Carbonate Alkalinity as CaCO3   | 1           | 10      | mg/L           | /46<br><1 | 841<br><1   | 804<br><1   | /43<br><1   |           | 524<br><1 | 189       | <1        |
| Total Alkalinity as CaCO3       | 1           | 20      | mg/L           | 746       | 841         | 804         | 743         | <1<br>827 | 524       | 189       | 165       |
| Total Cyanide                   | 0.005       | 0.01    | mg/L           | 0.0086    | - 041       | - 004       | - 143       | 827       | 0.0098    | 189       | 165       |
| Total Anions                    | 0.005       | 0.01    | mg/L           | 99.5      | 95.1        | 100         | 102         | 82.9      | 89.9      | 25.3      | 26.2      |
| Total Cations                   | 0.01        |         | meq/L<br>meq/L | 108       | 81.9        | 93.7        | 112         | 95.2      | 91.7      | 25.7      | 27.2      |
| Ionic Balance                   | 0.01        |         | %              | 4.08      | 7.45        | 3.52        | 4.51        | 6.84      | 1.01      | 0.78      | 1.84      |
| HEAVY METALS (Dissolved)        | 0.01        |         | /0             | 4.00      | 7.40        | 3.3Z        | 4.51        | 0.04      | 1.01      | 0.76      | 1.04      |
| Aluminium                       | 0.01        | 0.005   | mg/L           | 0.02      | < 0.01      | < 0.01      | < 0.01      | <0.01     | <0.01     | <0.01     | <0.01     |
| Arsenic                         | 0.001       | 0.001   | mg/L           | 0.001     | 0.004       | 0.002       | 0.004       | 0.004     | <0.001    | <0.001    | <0.001    |
| Beryllium                       | 0.001       | 0.001   | mg/L           | - 0.001   | <0.001      | <0.001      | <0.001      | <0.001    | -         | <0.001    | <0.001    |
| Barium                          | 0.001       | 0.02    | mg/L           | -         | 0.048       | 0.041       | 0.032       | 0.025     | -         | 0.022     | 0.018     |
| Cadmium                         | 0.0001      | 0.0002  | mg/L           | 0.0004    | 0.0002      | <0.0001     | <0.0001     | <0.0001   | 0.0021    | <0.0001   | <0.0001   |
| Chromium                        | 0.001       | 0.001   | mg/L           | <0.001    | < 0.001     | 0.003       | <0.001      | <0.001    | <0.001    | <0.001    | 0.002     |
| Cobalt                          | 0.001       | 0.001   | mg/L           | 0.005     | 0.004       | 0.002       | 0.003       | 0.001     | 0.008     | 0.001     | < 0.001   |
| Copper                          | 0.001       | 0.001   | mg/L           | 0.004     | 0.007       | 0.008       | 0.006       | 0.01      | 0.024     | 0.049     | 0.048     |
| Iron                            | 0.01        | 0.05    | mg/L           | 0.02      | < 0.05      | < 0.05      | < 0.05      | < 0.05    | <0.01     | < 0.05    | < 0.05    |
| Lead                            | 0.001       | 0.001   | mg/L           | < 0.001   | < 0.001     | < 0.001     | < 0.001     | < 0.001   | < 0.001   | < 0.001   | < 0.001   |
| Manganese                       | 0.001       | 0.005   | mg/L           | 0.507     | 0.142       | 0.068       | 0.06        | 0.032     | 0.17      | 0.003     | < 0.001   |
| Mercury                         | 0.0001      | 0.0001  | mg/L           | < 0.0001  | 0.0001      | < 0.0001    | < 0.0001    | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  |
| Nickel                          | 0.001       | 0.001   | mg/L           | 0.008     | 0.002       | 0.002       | 0.005       | 0.021     | 0.008     | 0.004     | 0.003     |
| Selenium                        | 0.01        | 0.001   | mg/L           | 0.011     | <0.01       | 0.01        | 0.01        | 0.02      | < 0.010   | < 0.01    | < 0.01    |
| Vanadium                        | 0.01        | 0.005   | mg/L           | < 0.01    | <0.01       | <0.01       | <0.01       | < 0.01    | <0.01     | <0.01     | <0.01     |
| Zinc                            | 0.005       | 0.001   | mg/L           | 0.005     | 0.015       | < 0.005     | 0.01        | 0.016     | 0.034     | 0.026     | < 0.005   |
| NUTRIENTS                       |             |         |                |           |             |             |             |           |           |           |           |
| Ammonia as N                    | 0.01        | 0.01    | mg/L           | -         | 0.14        | 0.02        | <0.01       | <0.01     | -         | 0.05      | <0.01     |
| Nitrite as N                    | 0.01        |         | mg/L           | -         | 0.05        | -           | 0.01        | <0.01     | -         | <0.01     | -         |
| Nitrate as N                    | 0.01        | 0.02    | mg/L           | -         | 2.11        | -           | 4.64        | 4.19      | -         | 4.26      | -         |
| NOx (Nitrite + Nitrate as N)    | 0.01        | 0.05    | mg/L           | -         | 2.16        | 5.04        | 4.66        | 4.19      | -         | 4.26      | 5.71      |
| Total Kjeldahl Nitrogen (TKN)   | 0.1         | 0.2     | mg/L           | -         | 1.0         | 0.1         | 0.6         | <0.1      | -         | 0.4       | 0.6       |
| Total Nitrogen as N             | 0.1         | 0.2     | mg/L           | -         | 3.2         | 5.1         | 5.3         | 4.2       | -         | 4.7       | 6.3       |
| Total Phosphorus as P           | 0.01        | 0.05    | mg/L           | -         | 1.24        | <0.01       | <0.01       | 0.07      | -         | < 0.01    | < 0.01    |



| Location | KMB020     | KMB020     | KMB021     | KMB021     | KMB022     | KMB022     |
|----------|------------|------------|------------|------------|------------|------------|
| Sampled  | 18/08/2011 | 8/11/2011  | 14/09/2011 | 10/11/2011 | 17/08/2011 | 8/11/2011  |
| Depth    | Watertable | Watertable | Watertable | Watertable | Watertable | Watertable |
| V        | ALS        | ALS        | ALS        | ALS        | ALS        | ALS        |

|                                           |              |         | ,       | , LLO          | , LEO      | 7120        | , LLO         | , LEO    | / LEO        |
|-------------------------------------------|--------------|---------|---------|----------------|------------|-------------|---------------|----------|--------------|
| Chemical                                  | ALS LOR      | MGT LOR | Units   |                |            |             |               |          |              |
| pH                                        | 0.01         | 0.1     | pH unit | 7.45           | 7.31       | 7.06        | 6.88          | 7.45     | 7.33         |
| Electrical Conductivity                   | 1            | 10      | μS/cm   | 7200           | 7150       | 5450        | 5640          | 12200    | 11800        |
| MAJOR IONS                                | <del>-</del> | - 10    | долен   | 7200           | 7130       | 3430        | 3040          | 12200    | 11000        |
| Calcium                                   | 1            | 0.5     | ma/L    | 50             | 44         | 120         | 107           | 184      | 20           |
| Magnesium                                 | 1            | 0.5     | mg/L    | 92             | 93         | 122         | 114           | 308      | 36           |
| Potassium                                 | 1            | 0.5     | mg/L    | 45             | 33         | 36          | 28            | 92       | 8            |
| Sodium                                    | 1            | 0.5     | ma/L    | 1360           | 1380       | 827         | 839           | 1890     | 222          |
| Chloride                                  | 1            | 1       | ma/L    | 1460           | 1660       | 1350        | 1460          | 3790     | 3960         |
| Sulphate as SO4 2-                        | 1            | 5       | mg/L    | 384            | 151        | 536         | 236           | 568      | 449          |
| Hydroxide Alkalinity as CaCO3             | 1            |         | ma/L    | <1             | <1         | <1          | <1            | <1       | <1           |
| Bicarbonate Alkalinity as CaCO3           | 1            | 20      | mg/L    | 768            | 872        | 406         | 429           | 671      | 636          |
| Carbonate Alkalinity as CaCO3             | 1            | 10      | mg/L    | <1             | <1         | <1          | <1            | <1       | <1           |
| Total Alkalinity as CaCO3                 | 1            | 20      | mg/L    | 768            | 872        | 406         | 429           | 671      | 636          |
| Total Cyanide                             | 0.005        | 0.01    | mg/L    | -              | -          | -           | -             | -        | -            |
| Total Anions                              | 0.01         |         | meg/L   | 64.5           | -          | 57.4        | 54.7          | 132      | -            |
| Total Cations                             | 0.01         |         | meg/L   | 70.4           | -          | 52.9        | 51.9          | 119      | -            |
| Ionic Balance                             | 0.01         |         | %       | 4.31           | -          | 4.03        | 2.58          | 5.21     | -            |
| HEAVY METALS (Dissolved)                  |              |         |         |                |            |             |               |          |              |
| Aluminium                                 | 0.01         | 0.005   | mg/L    | < 0.01         | < 0.01     | < 0.01      | < 0.01        | < 0.01   | <0.01        |
| Arsenic                                   | 0.001        | 0.001   | mg/L    | < 0.001        | 0.013      | < 0.001     | 0.008         | 0.002    | 0.002        |
| Beryllium                                 | 0.001        | 0.001   | mg/L    | < 0.001        | < 0.001    | < 0.001     | < 0.001       | < 0.001  | < 0.001      |
| Barium                                    | 0.001        | 0.02    | mg/L    | 0.059          | 0.094      | 0.088       | 0.04          | 0.062    | 0.066        |
| Cadmium                                   | 0.0001       | 0.0002  | mg/L    | < 0.0001       | < 0.0001   | 0.0001      | < 0.0001      | < 0.0001 | 0.0001       |
| Chromium                                  | 0.001        | 0.001   | mg/L    | < 0.001        | < 0.001    | < 0.001     | < 0.001       | < 0.001  | < 0.001      |
| Cobalt                                    | 0.001        | 0.001   | mg/L    | 0.006          | 0.001      | 0.003       | 0.002         | 0.002    | 0.002        |
| Copper                                    | 0.001        | 0.001   | mg/L    | 0.001          | 0.007      | 0.002       | 0.003         | 0.002    | 0.006        |
| Iron                                      | 0.01         | 0.05    | mg/L    | 0.34           | 0.34       | <0.05       | 1.7           | < 0.05   | 0.17         |
| Lead                                      | 0.001        | 0.001   | mg/L    | <0.001         | < 0.001    | 0.007       | < 0.001       | <0.001   | < 0.001      |
| Manganese                                 | 0.001        | 0.005   | mg/L    | 1.21           | 3.69       | 0.904       | 1.26          | 0.035    | 0.031        |
| Mercury                                   | 0.0001       | 0.0001  | mg/L    | <0.0001        | <0.0001    | <0.0001     | <0.0001       | <0.0001  | 0.0004       |
| Nickel                                    | 0.001        | 0.001   | mg/L    | 0.002          | 0.005      | 0.008       | 0.026         | 0.019    | 0.009        |
| Selenium                                  | 0.01         | 0.001   | mg/L    | <0.01          | <0.01      | <0.01       | <0.01         | 0.01     | <0.01        |
| Vanadium                                  | 0.01         | 0.005   | mg/L    | <0.01          | <0.01      | <0.01       | <0.01         | <0.01    | <0.01        |
| Zinc                                      | 0.005        | 0.001   | mg/L    | 0.006          | 0.016      | 0.012       | 0.02          | <0.005   | 0.035        |
| NUTRIENTS                                 | 0.04         | 0.04    |         |                |            |             |               |          |              |
| Ammonia as N                              | 0.01         | 0.01    | mg/L    | 0.02<br><0.01  | 0.1        | 0.18        | 0.1<br><0.01  | 0.02     | 0.05<br>0.14 |
| Nitrite as N<br>Nitrate as N              | 0.01         | 0.02    | mg/L    | <0.01<br><0.01 | 0.03       | -           | <0.01<br>0.07 | <0.03    | 0.14         |
| NOx (Nitrite + Nitrate as N)              | 0.01         | 0.02    | mg/L    |                |            | - 0.04      |               |          |              |
|                                           | 0.01         | 0.05    | mg/L    | <0.01<br><0.1  | 0.08       | <0.01       | 0.07          | 0.02     | 0.16<br>0.3  |
| Total Kjeldahl Nitrogen (TKN)             | 0.1          | 0.2     | mg/L    |                | 0.6<br>0.7 | 1.6         |               | 0.2      | 0.3          |
| Total Nitrogen as N Total Phosphorus as P | 0.1          | 0.2     | mg/L    | <0.1           | 0.7        | 1.6<br>5.98 | 2.1<br>5.27   | 0.2      | 0.5          |
| Total Filosphorus as P                    | 0.01         | 0.05    | mg/L    | 0.31           | 0.47       | 5.90        | 5.21          | 0.93     | 0.19         |



Appendix 3B

Responses to DEWNR

Sinclair Knight Merz (Jacobs SKM)

Level 5, 33 King William Street Adelaide SA 5000 Australia PO Box 8291 Station Arcade SA 5000 Australia T: +61 8 8424 3800 F: +61 8 8424 3810 www.jacobsskm.com



Catherine Davis
Hillgrove Resourses
Éclair Mine Rd (cnr Back Callington Rd),
Kanmantoo
SA 5252

30 April 2014

VE23758.500

Dear Catherine,

## Kanmantoo Copper Mine – Response to DEWNR issues regarding re: groundwater management

## 1. Background

Hillgrove Resources Limited (Hillgrove) has engaged Jacobs SKM to provide a response to hydrogeological issues raised by the South Australian Department of Environment, Water and Natural Recourses (DEWNR). Attachment 1 presents the issues as raised by DEWNR on the 19<sup>th</sup> of March 2014.

The following presents discussion (including data analysis and mapping, and advice in regards to monitoring infrastructure) in response to the hydrogeological issues raised by DEWNR.

### 2. Response to DEWNR issues

## Issue 1 Additional groundwater monitoring infrastructure down-hydraulic gradient of the TSF

#### Analysis

Refer to Comment No. 1 (attachment 1) for details of DEWNR's issue.

Existing monitoring wells KMB020, 022 and 023 are located along an inferred groundwater flowpath from beneath the tailings storage facility (TSF), as shown on Figure 1. The ultimate flowpath post-closure may be toward the pit but it is not presently and so it is considered the siting of these wells is appropriate for the current mine operation.

However, it is reasonable to expect that the future mine operation (which involves a proposed expansion and deepening of the Cavanagh Pit) and mine closure could alter the flowpaths beneath the TSF such that they become controlled by the mine pit, due to dewatering during mining and evaporative losses post-mining.

Sinclair Knight Merz Pty Limited (Jacobs SKM)

ABN: 37 001 024 095

Jacobs® is a trademark of Jacobs Engineering Group Inc.

Filename: VE23832-0100-NGW-LE-002 Document no.: VE23832-0100-NGW-LE-002

#### Recommendations

• It is recommended that a groundwater monitoring well be sited between the TSF and Cavanagh pit to assist with ongoing evaluation of groundwater flow paths during operation, and to provide data to assist in assessing mine closure strategies. Hillgrove has identified a small number of mineral exploration drill holes located on the northwest wall of Cavanagh pit that may be suitable for conversion to a monitoring well. A nominal location of a single monitoring well is presented on Figure 1.

#### Issue 2 Proposed deep and sentinel wells

#### Analysis

Refer to Comment No. 2 (attachment 1) for details of DEWNR's issue.

The proposed 'deep' well (see Figure 1) is located immediately down-gradient of the Cavanagh pit and will essentially be paired with the existing shallower KMB026 monitoring well. The purpose of the 'deep well' is to assist in assessing fractured rock aquifer permeability at the final depth of Cavanagh pit and vertical hydraulic gradients. It is considered that the identified position of the 'deep' well is appropriate for this purpose.

The proposed 'sentinel' well (also shown on Figure 1) is located off site and down-gradient of O'Neils and Cavanagh pits, and is planned as a shallow completion (intersecting the top 20 m or so of the fractured rock aquifer). In addition, KMB009 will likely go out of service due to the proposed extension of O'Neils pit to the east and will possibly need to be replaced by another well of suitable depth completion (based on existing and predicted future depth to water table).

There is an existing gap in monitoring infrastructure coverage to the southeast of Emily Star pit.

#### Recommendations

- It is recommended that a replacement monitoring well for KMB009 be located to the southeast of KMB009. Figure 1 presents a nominal location for this new well.
- It is recommended that a new monitoring well be drilled and constructed to the southeast of Emily Star pit. Figure 1 presents a nominal location for this new well.

#### Issue 3 Updating the mine Groundwater monitoring and management plan

#### **Analysis**

Refer to Comment No. 3 (attachment 1) for details of DEWNR's issue.

New monitoring infrastructure will provide additional water quality and level data that will provide greater understanding of mine site groundwater conditions, and will assist in informing the development of mine closure management strategies.

#### Recommendations

 It is recommended that the mine GMMP be updated with all new information arising from installation of new groundwater monitoring infrastructure.

Kanmantoo Copper Mine – Response to DEWNR issues regarding re: groundwater management 30 April 2014

It is recommended that the existing groundwater monitoring and analytical commitments
outlined in the GMMP be reviewed and, where appropriate, optimised and agreed with
DEWNR (eg. in the situation where a good baseline has been established there may be
opportunity to reduce the number of monitoring events required and reduce the suite of
parameters measured / analysed).

#### Issue 4 Final mine pit influence on fractured rock groundwater system

#### **Analysis**

Refer to Comment No. 4 (attachment 1) for details of DEWNR's issue.

The proposed deepening and extension of the mine pit(s) has the potential to alter groundwater flow paths beneath the mine site and off the mine site. Hillgrove proposes backfilling of the Emily Star and O'Neils pits (refer Figure 1) once mining of the ore in those pits is completed, which will reduce the evaporative losses of water from mine site groundwater system after closure and the zone of influence the mine pit(s) have on the regional groundwater system.

The results of modeling post-mine pit water body recovery at Kanmantoo (REM, 2007) indicates the pit water body in Cavanagh pit is likely to recover to around 50 m below the pre-mine water table elevation. Factors controlling pit water body recovery include groundwater inflow and incident rainfall (inputs) and evaporation (output).

Analytical modeling has been undertaken to calculate the zone of influence of the closed pit(s) on regional water table elevations, and to predict the drawdown surface away from the pit. Analytical solutions used in the analyses have been sourced from Armstrong (1996), and Marinelli and Nicocoli (2000) – see Attachment 2:

- Marinelli and Niccoli (2000) allows calculation of the steady state zone of influence of the closed mine pit
- Armstrong (1996) allows calculation of the drawdown surface

The analytical model assumes that the fractured rock aquifer is both isotropic and homogeneous. Refer to Attachment 2 for the values of various parameters used in the analysis.

Water table elevation contours for the pre-mine condition were inferred from available groundwater level data and a digital elevation model of the mine site and surrounding area. Figure 2 presents the inferred pre-mine water table elevation contours.

The inferred pre-mine water table elevation contours were digitised and converted to a potentiometric surface, from which the predicted post mine drawdown surface was subtracted to provide an inferred post-mine water table surface. Figure 3 presents the predicted water table elevation contours for the mine post-closure in steady state, and Figures 4 and 5 show the water table surface (in profile) along each of the cross-sections shown on Figure 1 (Emily Star - southwest to northeast; O'Neil's – northwest to southeast, respectively).

The following conclusions are drawn from the analysis:

- The Cavanagh mine pit will act as a permanent groundwater sink following mine closure
- Some of the seepage from the back-filled Emily Star and O'Neils pits will likely be captured
  by the Cavanagh open pit, but some may move down-gradient and off-site
- The extent to which Cavanagh pit will capture seepage emanating from the backfilled Emily Star and O'Neils pits is very much determined by the level to which the Cavanagh pit water body recovers following mine closure – the lower the elevation of the pit water body the greater the potential for the pit to capture seepage from the other backfilled pits and vice versa.
- The implications for a case where seepage from the backfilled pits moves off-site will be
  reliant on the quality of the seepage water, i.e. if the seepage is not impacted by acidic
  metalliferous drainage (AMD) the implications are unlikely to have adverse outcomes,
  whereas AMD impacted seepage has the potential to have some adverse effects.

#### Recommendations

- As the predicted pit water body recovery analysis is based on preliminary-level water balance modeling it is recommended that a more detailed assessment be undertaken.
- The complexity and, indeed, the need for the assessment should be predicated by the risk posed to potential environmental and third party groundwater users.

#### Issue 5 Pre-existing contaminated groundwater

#### Analysis

Refer to Comment No. 5 (attachment 1) for details of DEWNR's issue.

Metal contaminated groundwater has been sampled from wells KMB001 and KMB002 historically (now decommissioned due to mining activities, but were located southeast of Cavanagh pit, ). The source of the contamination has been identified as the former heap leach operation at the Kanmantoo mine (prior to Hillgrove's involvement), which used pit water as supply. The heap leach operation has since been decommissioned.

#### Recommendations

None.

#### 3. References

Armstrong, D. 1996. Mine dewatering. Unpublished.

Marinelli, F. and Niccoli, W.L. 2000. Simple analytical equation for estimating ground water inflow to a mine pit. Ground Water. Vol. 38, No. 2.

REM. 2007. Kanmantoo Copper Project groundwater impact assessment. Prepared for Hillgrove Resources Limited by Resource & Environmental Management Pty Limited. August 2007.

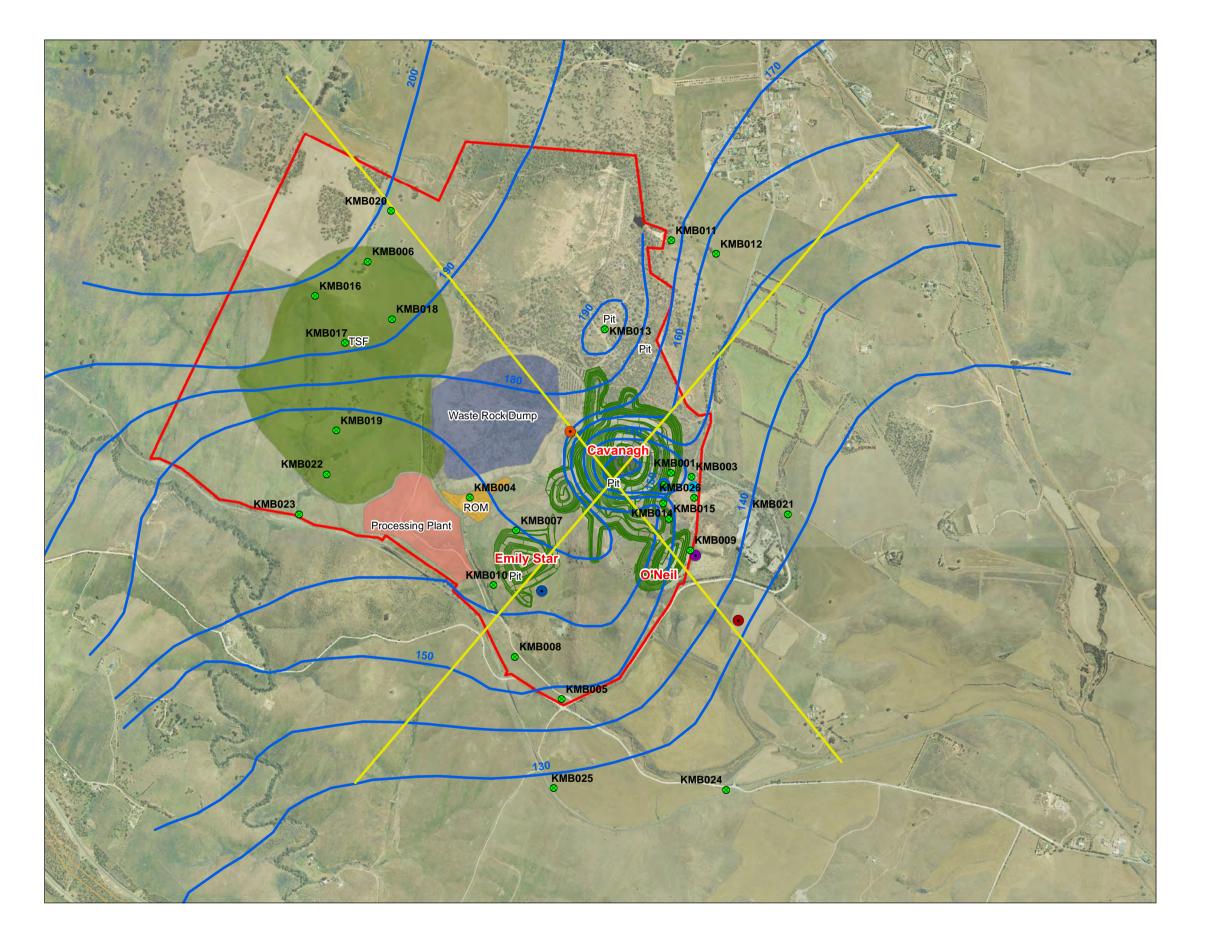
Hillgrove Resourses

Kanmantoo Copper Mine – Response to DEWNR issues regarding re: groundwater management

We trust the information presented in this letter report meets your expectations. Please do not hesitate to call if you have any questions.

Yours sincerely

Leighton Randell Hydrogelogist +61 8 8424 3870 leighton.randdell@jacobs.com Paul Howe Principal Hydrogeologist +61 8 8245 5343 paul.howe@jacobs.com


Hillgrove Resourses

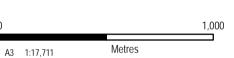
Kanmantoo Copper Mine – Response to DEWNR issues regarding re: groundwater management 30 April 2014

## **FIGURES**

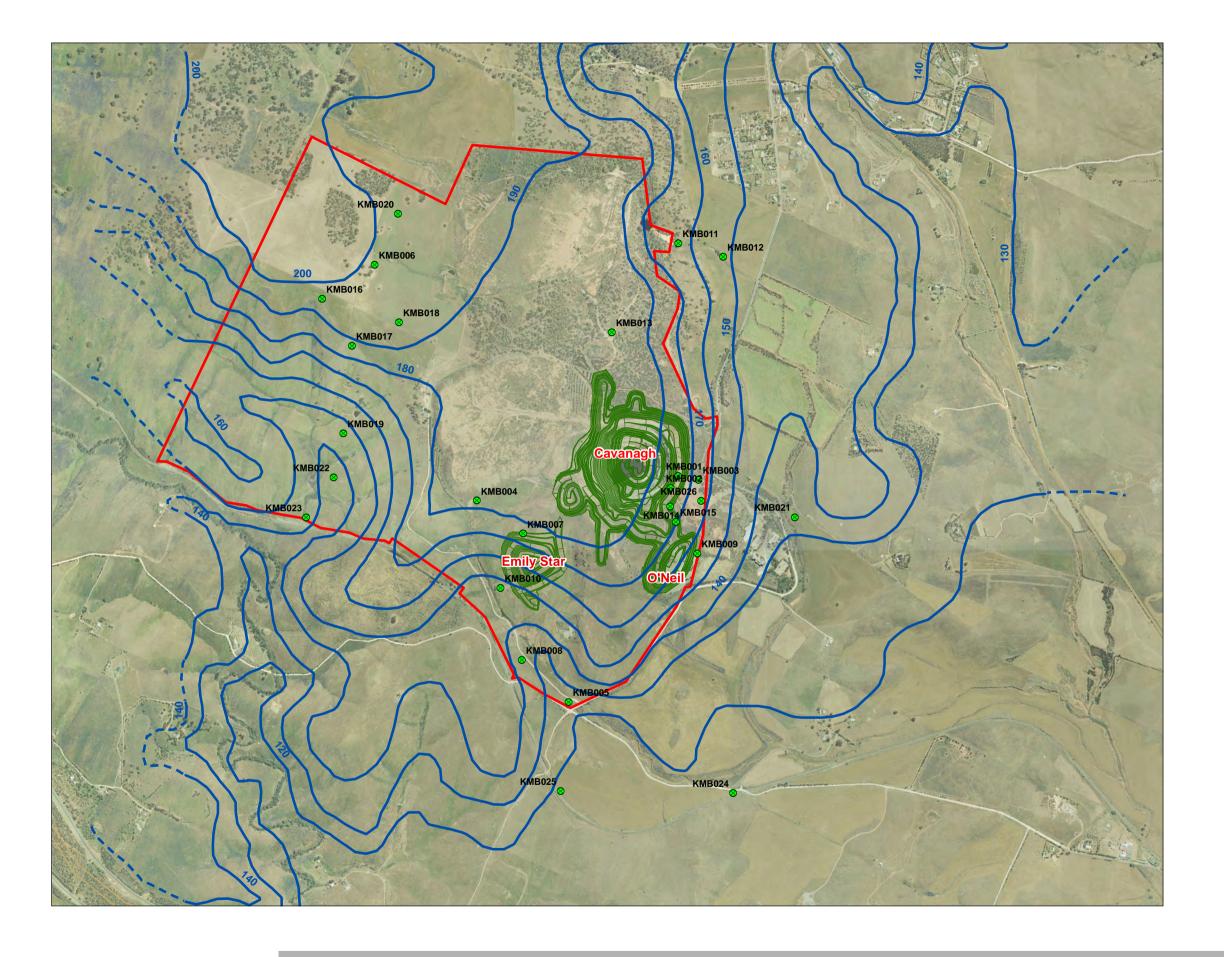
Filename: VE23832-0100-NGW-LE-002

Document no.: VE23832-0100-NGW-LE-002



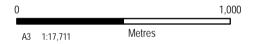

On-site monitoring wells

### Recommended monitoring wells


- 'Upstream' water quality and depth monitoring
- Monitoring for Emily Star pit
- Replacement for KMB009
- Deep Well
- Sentinel Well
- Approximate location of cross-sections
- Existing groundwater level (mAHD)
- Extent of mine pit development
- Site Boundary Area

#### **Proposed infrastructure**

- Tailings Storage Facility
- Processing Plant
- ROM
- Waste Rock Dump








- On-site monitoring wells
- Pre-mining groundwater contours (mAHD)
- - Inferred pre-mining contours
- Extent of mine pit development
- Site Boundary Area









- On-site monitoring wells
- Post-mining groundwater contours (mAHD)
- Inferred post-mining contours
- Extent of mine pit development
- Site Boundary Area







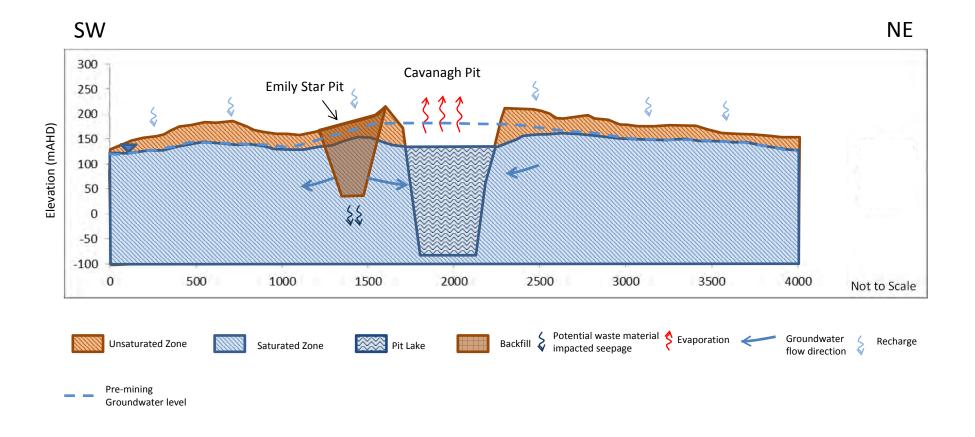



Figure 4: SW-NE cross-section with predicted drawdown post mining

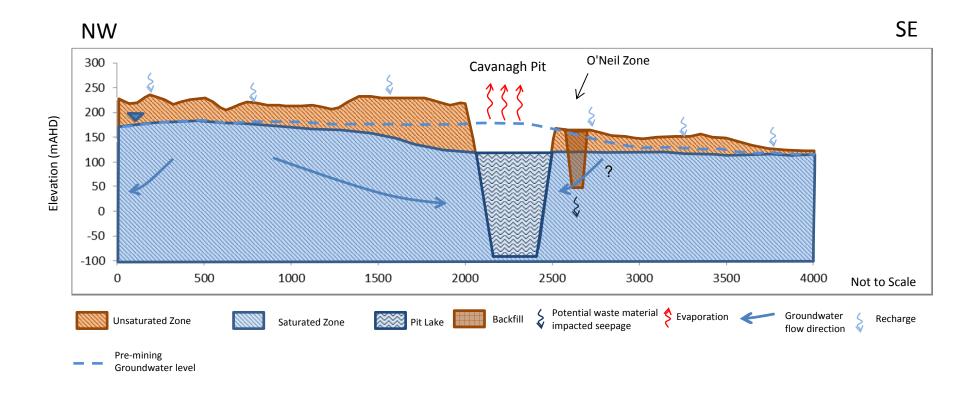


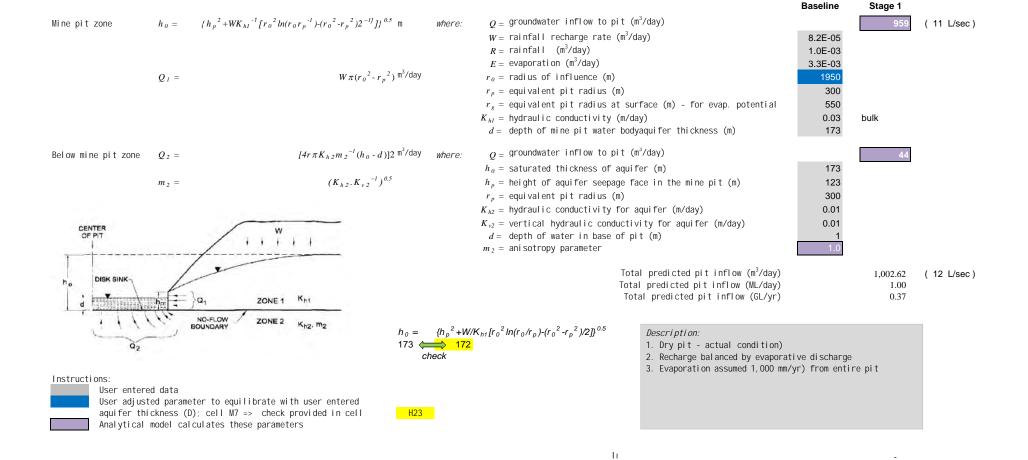

Figure 5: NW-SE cross-section with predicted drawdown post mining

# ATTACHMENT 1 Tabulation of DEWNR hydrogeological issues

| Comment<br>No | DEWNR Comment (to identify relevant section / paragraph and consider required actions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | SKM 2013 - Pg 9: Monitoring wells KMB020, 022 and 023 were installed to monitor the TSF, but both are located perpendicular to the flow direction which is towards the main pit. A well located close and downgradient of the TSF, in a similar location to former wells KMB 004 and KMB 007, is recommended for effective for monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2             | SKM 2013 - Figure 2: The proposed Deep and Sentinel wells will be useful additions to the monitoring network. However, there is a general lack of monitoring wells located close to the pits on their downgradient side. Wells located downgradient with screen depths corresponding to the maximum pit depth and the zone of fluctuating water level following backfilling for each of the Emily Star and O'Neil Zone pits are requested. Particular attention should be given to the potential for any contaminated water from the backfilled O'Neil Zone to move beyond the boundary of the mining lease, as the hydraulic gradient in Figure 3 indicates that groundwater flowing into these backfilled smaller pits may flow south or south-east. See also point 7 below. |
| 3             | SKM 2013 - Pg 14: Table 3-1: Hillgrove Monitoring during mining: The new wells 'Deep Well' and 'Sentinel Well', plus any other new wells, should be added to the water quality sampling list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4             | SKM 2013/Coffey 2013: There is no indication of any increased drawdown impacts resulting from the pit extension. What is the area of the increased drawdown compared to the existing drawdown extent? This would be easiest for us to interpret if presented as a topographic figure and cross-section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5             | SKM 2013/Coffey 2013: Contaminated pit water was found in KMB001 and KMB002.Was the source of this contamination identified? What was it?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Filename: VE23832-0100-NGW-LE-002

Document no.: VE23832-0100-NGW-LE-002


Hillgrove Resourses

Kanmantoo Copper Mine – Response to DEWNR issues regarding re: groundwater management
30 April 2014

## ATTACHMENT 2 Analytical models

Filename: VE23832-0100-NGW-LE-002

Document no.: VE23832-0100-NGW-LE-002



Kanmantoo Mine Hillgrove Resources

# ESTIMATING DRAWDOWN OUTSIDE THE PIT - circular pit

Reference:

Armstrong, D. 1996. Mine dewatering. Unpublished

This sheet can be used to assess various pit dimensions (eg. pit floor area or depths), or a series of pits in an area

 $s_r = h_0 - \{h_0^2[(\ln r/r_{pit}) / (\ln r_0/r_{pit})]\}^{0.5}$ 

where: r = distance from pit

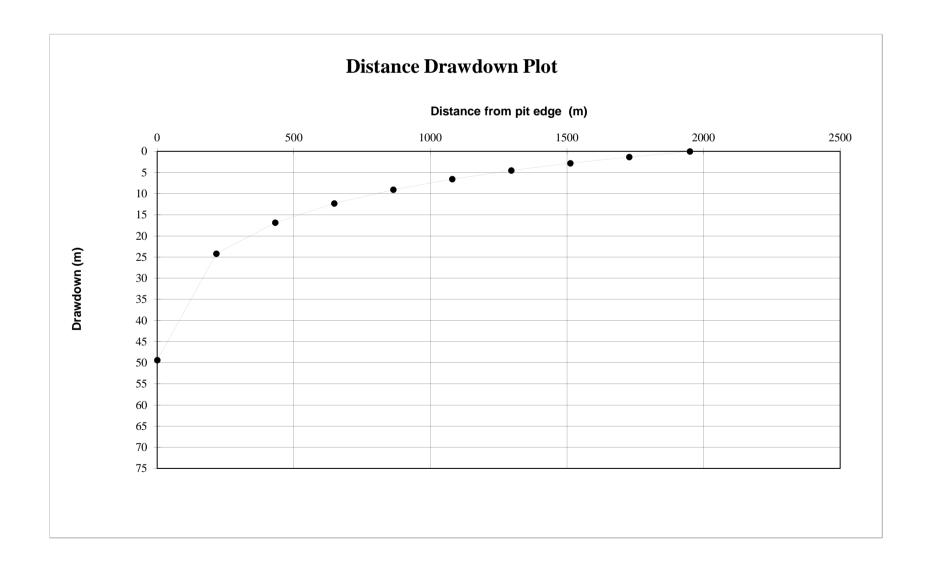
 $r_0\!=\!\!\!\!$  extent of drawdown for time elapsed

 $r_{pit} = radius pit$ 

 $h_0 = \text{ difference b/n water table and pit lake elevation(m)}$ 

Description Scenario 1:

Low K


[refer worksheet "circular pit (r and Q)" for values r<sub>0</sub>, r<sub>pit</sub>, h<sub>0</sub>]

| $r_0 =$     | 1950 |
|-------------|------|
| $r_{pit} =$ | 310  |
| $h_0 =$     | 50   |

 $h_0^2 = 2500$   $ln(r_0/r_{pit}) = 1.986604$ 

|                       | D      | Dist. from pit edge |  |  |
|-----------------------|--------|---------------------|--|--|
| $r_{(i)} =$           | 310.1  | 0.1                 |  |  |
| $r_{(ii)} =$          | 526.1  | 216.1               |  |  |
| $r_{(iii)} =$         | 742.1  | 432.1               |  |  |
| $r_{(iv)} =$          | 958.1  | 648.1               |  |  |
| $r_{(v)} =$           | 1174.1 | 864.1               |  |  |
| $r_{(vi)} =$          | 1390.1 | 1080.1              |  |  |
| $r_{(vii)} =$         | 1606.1 | 1296.1              |  |  |
| $r_{\text{(viii)}} =$ | 1822.1 | 1512.1              |  |  |
| $r_{(ix)} =$          | 2038.1 | 1728.1              |  |  |
| $r_{(x)} =$           | 2260   | 1950.0              |  |  |

| ln(r/r <sub>pit</sub> ) | $[(\ln r/r_{pit}) / (\ln r_0/r_{pit})$ | $\mathbf{s_r}$ |
|-------------------------|----------------------------------------|----------------|
| 0.00032255              | 0.0                                    | 49.3629        |
| 0.52894564              | 0.3                                    | 24.2000        |
| 0.872949455             | 0.4                                    | 16.8557        |
| 1.128423711             | 0.6                                    | 12.3166        |
| 1.331732589             | 0.7                                    | 9.0624         |
| 1.500609039             | 0.8                                    | 6.5442         |
| 1.645044176             | 0.8                                    | 4.5009         |
| 1.771226462             | 0.9                                    | 2.7881         |
| 1.88325595              | 0.9                                    | 1.3179         |
| 1.98660373              | 1.0                                    | 0.0000         |



**Appendix 4** 

Flora

Appendix 4A

Flora Survey

# Final Report Kanmantoo Copper Project Flora Assessment

Coffey Natural Systems Pty Ltd

Level 1, 2-3 Greenhill Rd Wayville SA 5034

May 2007

ECOLOGICAL ASSOCIATES DE005-C

# Contents

| 1 | Introd                          | duction                                                                                                                                        | 1-1                      |
|---|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   | 1.1<br>1.2<br>1.3               | Introduction Scope of Work Background to the Project                                                                                           | 1-1<br>1-1<br>1-1        |
| 2 | Backg                           | round                                                                                                                                          | 2-1                      |
|   | 2.1<br>2.2<br>2.3               | Landform Known Vegetation Values Mine Proposal                                                                                                 | 2-1<br>2-1<br>2-2        |
|   | 2.4<br>2.5                      | Legislative Framework Existing Information                                                                                                     | 2-3<br>2-5               |
| 3 | Surve                           | y                                                                                                                                              | 3-´                      |
|   | 3.1<br>3.2<br>3.3               | Method<br>Results<br>Pest Plants                                                                                                               | 3-1<br>3-2<br>3-18       |
| 4 | Impac                           | ct Assessment                                                                                                                                  | 4-´                      |
|   | 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | Clearance of Native Vegetation Incidental Impacts on Native Vegetation Dust Acid Mine Leachate Altered Groundwater and Surface Water Hydrology | 4-3<br>4-3<br>4-4<br>4-4 |
| 5 | Recor                           | mmendations                                                                                                                                    | 5-1                      |
|   | 5.1<br>5.2<br>5.3               | Options to Mitigate the Impacts of Vegetation Clearance<br>Limitations of this Study<br>Recommendations for Further Investigations             | 5-1<br>5-2<br>5-3        |
| 6 | Refer                           | ences                                                                                                                                          |                          |

# Figures, Tables and Appendices

Appendix C. Combined Species List for All Surveys

Appendix D. Data for Scattered Trees within the Proposed Project Footprint

| Figures                                                                                                     |      |
|-------------------------------------------------------------------------------------------------------------|------|
| Figure 1. Location of proposed Kanmantoo Copper Project.                                                    | 1-2  |
| Figure 2. Proposed project footprint of Kanmantoo Copper Project                                            |      |
| Figure 3. Eucalyptus odorata Low woodland with condition score of SEB 8:1                                   |      |
| Figure 4. Vegetation map of the study area with proposed project footprint overlaid                         |      |
| Figure 5. Eucalyptus odorata Low woodland with condition score of SEB 4:1                                   |      |
| Figure 6. Eucalyptus odorata Low woodland with condition score of SEB 2:1 (right of fence)                  |      |
| Figure 7. Lomandra effusa +/- Heliochrysum leucopsideum Open tussock grassland with condition sc            |      |
| of SEB 8:1                                                                                                  |      |
| Figure 8. Lomandra effusa +/- Heliochrysum leucopsideum Open tussock grassland with condition sc of SEB 4:1 |      |
| Figure 9. Austrostipa sp. Open tussock grassland with condition score of SEB 8:1.                           |      |
| Figure 10. Austrostipa sp. Open tussock grassland with condition score of SEB 6:1.                          |      |
| Figure 11. Acacia pycnantha Low woodland with condition score of SEB 6:1                                    |      |
| Figure 12. Eucalyptus gracilis ± E. oleosa Open mallee with condition score of SEB 8:1.                     |      |
| Figure 13. Allocasuarina verticillata ± Callitris gracilis ± Lomandra effusa Low woodland with              | 3-10 |
| condition score SEB 8:1                                                                                     | 3-11 |
| Figure 14. Location of threatened species (source indicated) within study area.                             |      |
| Figure 15. Sections of Back Callington Road (yellow line) assessed for conservation significance            |      |
| Figure 16. Example of roadside vegetation, Back Callington Road; southern side within Section 1             |      |
| Table 1. Conservation significance of previously reported species and vegetation communities                | 3-12 |
| Table 3. Vegetation requiring clearance and SEB offset calculation                                          |      |
| Table 4. Surveyed species of conservation significance.                                                     | 3-13 |
| Table 5. Summary of data collected for each section of Back Callington Road                                 | 3-18 |
| Table 7. Summary of unavoidable vegetation clearance impacts                                                | 4-1  |
| Appendices                                                                                                  |      |
| Appendix A. Surveyed Flora and Location<br>Appendix B. Biological Survey Quadrat Data                       |      |

### **Scope of Work**

Ecological Associates was engaged by Coffey Natural Systems on behalf of Hillgrove Resources Ltd to:

- survey the flora of the Kanmantoo Copper Project Area and the road between the site and Callington;
- assess potential impacts to flora associated with the project;
- identify opportunities to avoid, minimise or mitigate impacts;
- · establish a foundation for ongoing monitoring; and
- · recommend further investigations, if required.

#### **Methods**

A review was conducted of reports and surveys describing the plant species and vegetation associations of the study area and the region.

A survey of the project area, based on the methods of the Biological Survey of South Australia, was conducted in February 2007. The survey involved four quadrats in the main vegetation types, descriptions of all vegetation types, assessments of scattered trees and assessment of roadside vegetation.

# **Findings**

A total of 113 ha of native vegetation was identified in the study area. Eight vegetation communities were identified with vegetation condition ranging from "very good" to "poor".

Eucalyptus odorata Low woodland is the most extensive vegetation community and occupies 54.1 ha. This vegetation community is listed as a critically endangered ecological community under the *EPBC Act* 1999. It is also of conservation significance at the state level (Neagle 1995) and at the regional level (Kahrimanis *et al.* 2001). At the local level, the remnants on the site include some of the best preserved examples in the western slopes of the Southern Mount Lofty Ranges (Ecological Associates 2007).

Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland occupies 23.3 ha of the study area. This vegetation community is also listed as a critically endangered ecological community under the EPBC Act 1999. It is of conservation significance at the state level (Neagle 1995), and at the regional level (Kahrimanis et al. 2001). At the local level, the remnants on the site include some of the best preserved examples in the western slopes of the Southern Mount Lofty Ranges (Ecological Associates 2007).

Remnant patches of *Austrostipa* sp. Open tussock grassland occupies 17 ha. This community is of regional conservation significance (Kahrimanis *et al.* 2001).

Other plant associations observed on the site were:

• Acacia pycnantha Low woodland (11.2 ha)

- Eucalyptus gracilis  $\pm$  E. oleosa Open mallee (4 ha)
- Allocasuarina verticillata ± Callitris gracilis ± Lomandra effusa Low woodland (1.8 ha)
- Eucalyptus leucoxylon ssp. leucoxylon ± Lomandra effusa Open woodland (1.3 ha)
- Callitris gracilis Low woodland (0.2 ha).

The highest level of conservation significance for plant species recorded during the survey was regional. Four species listed as rare in the Murray botanical region were recorded:

- Eucalyptus leucoxylon ssp. leucoxylon;
- Elymus scaber var. scaber;
- Aristida contorta; and
- Aristida behriana.

However, from previous investigations it is known that the site also supports two species of conservation significance at the state level:

- Diuris behrii (Behr's cowslip orchid) rare; and
- Ptilotus erubescens (hairy tails) rare;

and a further 19 species of regional conservation significance.

Fifty six scattered trees were documented in the area defined by the proposed project footprint. Fifty five of these trees were *Eucalyptus odorata* and one was *Allocasuarina verticillata*.

Roadside vegetation between the project area and Callington was assessed. The vegetation is predominantly degraded  $Lomandra\ effusa\ \pm\ Heliochrysum\ leucopsideum\ Open\ tussock\ grassland.$ 

## **Potential Impacts**

The condition of native vegetation, and the proportion impacted by the proposed project footprint is presented in the table below. Coffey Natural Systems provided calculations of areas to be cleared.

| Vegetation<br>Community           | Condition | Area (ha) to be<br>cleared | Area (ha)<br>within project<br>area | % of project<br>area to be<br>cleared |  |
|-----------------------------------|-----------|----------------------------|-------------------------------------|---------------------------------------|--|
| Eucalyptus odorata Low woodland   | Very good | 1.23                       | 14.90                               | 8.28%                                 |  |
| Low woodiand                      | Good      | 2.02                       | 9.70                                | 20.85%                                |  |
|                                   | Moderate  | 0.32                       | 28.50                               | 1.12%                                 |  |
|                                   | Poor 0.34 |                            | 1.00                                | 35.45%                                |  |
| Lomandra effusa ±                 | Very good | 9.59                       | 17.80                               | 53.90%                                |  |
| Heliochrysum<br>leucopsideum Open | Good      | 0.00                       | 2.05                                | 0.00%                                 |  |

| Vegetation<br>Community                     | Condition | Area (ha) to be<br>cleared | Area (ha)<br>within project<br>area | % of project<br>area to be<br>cleared |  |
|---------------------------------------------|-----------|----------------------------|-------------------------------------|---------------------------------------|--|
| tussock grassland                           | Moderate  | 2.54                       | 3.50                                | 72.44%                                |  |
| Austrostipa sp. Open tussock grassland      | Very good | 0.21                       | 11.60                               | 1.80%                                 |  |
| tussock grassianu                           | Good      | 0.00                       | 4.70                                | 0.00%                                 |  |
|                                             | Moderate  | 0.61                       | 0.70                                | 86.67%                                |  |
| Eucalyptus gracilis ± E. oleosa Open mallee | Very good | 2.79                       | 4.00                                | 69.76%                                |  |
| Acacia pycnantha Low woodland               | Good      | 4.26                       | 7.70                                | 55.29%                                |  |
| Low woodiand                                | Moderate  | 2.57                       | 3.50                                | 73.34%                                |  |
| Scattered Trees                             |           |                            | 56 trees                            |                                       |  |

The project footprint impacts on some of the known individuals of *Diuris behrii* but not on known individuals of *Ptilotus erubescens*.

In addition to vegetation clearance, the project potentially impacts upon flora and vegetation by:

- habitat fragmentation;
- an increased risk of pest plant invasion due to increased soil disturbance and the importation of weed propagules on vehicles and machinery;
- · acid leachate;
- reduced vegetation health arising from altered surface- and groundwater hydrology; and
- impacts arising from the accumulation of dust from mining operations upon vegetation and the soil surface.

## **Measures to Mitigate and Minimise Risks**

Measures to minimise these risks a proposed. In particular, measures to minimise and mitigate the impacts of vegetation clearance include enhancement of vegetation on the site by connecting remnants with revegetation, improving the quality of remnant vegetation and contributing to regional programs that restore or enhance remnant vegetation.

# **Limitations of this Study**

The survey was conducted in autumn following a 12 month period of particularly low rainfall. Under these dry conditions, and at this time of year, it is likely that many plant species were absent or dormant

| as seeds or propagules and cour<br>in spring when annual weeds ar |                        | Similarly, condition | n would be more a | ccurately assessed |
|-------------------------------------------------------------------|------------------------|----------------------|-------------------|--------------------|
| It is recommended that the surv                                   | vey is repeated in spi | ring.                |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |
|                                                                   |                        |                      |                   |                    |

#### 1.1 Introduction

Ecological Associates Pty Ltd was engaged by Coffey Natural Systems Pty Ltd on behalf of Hillgrove Resources Limited (HRL) to assess the potential impacts of the proposed redevelopment and expansion of the Kanmantoo Copper Mine ('the project') on vegetation and plant species in the project area. For the purposes of this report, the study area corresponds to the project area.

## 1.2 Scope of Work

The overall objective of this project was to survey and report on the potential impacts of the proposed project on vegetation and plant species. The scope of work was to:

- provide a comprehensive list of all flora species and vegetation communities;
- report the conservation significance or pest status of all species and vegetation communities present;
- report data in accordance with the Draft Guidelines for a Native Vegetation Significant Environmental Benefit Policy for the Clearance of Native Vegetation Associated with the Minerals and Petroleum Industry;
- establish a foundation for ongoing monitoring;
- describe the potential impacts of the proposed development on plant species and vegetation communities;
- identify opportunities to avoid, minimise or mitigate impacts;
- describe potential residual impacts of the project following implementation of mitigation measures; and
- report uncertainties associated with the assessment.

# 1.3 Background to the Project

The Kanmantoo Copper Project is located between the townships of Kanmantoo (1.5 km to the north east) and Callington (1.5 km to the south east), 44 km east of Adelaide in South Australia (Figure 1). The project area comprises approximately of 439 ha, including the property on which the mine is to be developed. Options for the transport of concentrate are currently being investigated, however the option via the Back Callington Road between the site and Callington was investigated as this may involve impacts to flora.

The project area has been subject to intermittent mining operations from the mid 1800s to the 1970s (Hibbird 2004). The original Kanmantoo mine was first worked in 1848 and activities continued, with several breaks, over the next century. An open pit resource was defined in 1969 and Kanmantoo Mines Pty Ltd worked this from 1971 to 1976. The site now contains a decommissioned open cut, tailings dam and waste rock dump. The granted mining lease ML5776 covers the Kanmantoo Mine and copper-gold

resource. The areas to the immediate south and north of ML5776 are covered by EL application no. 736/2004. A prefeasibility study for this project was completed in June 2006.



Figure 1. Location of proposed Kanmantoo Copper Project.

Some of the vegetation remnants and plant species in the study area are considered a high priority for conservation; these areas are generally located close to the existing mine pit (Playfair 2004; Ecological Associates 2007). To the west of the existing mine pit, on the 'Paringa' property, the land is currently utilized for grazing and has largely been cleared of native vegetation, although some scattered trees and small remnants exist.

#### 2.1 Landform

The study area is located in the catchment of the Bremer River (a tributary of the River Murray) on the eastern slopes of the Mount Lofty Block. A north – south trending range, reaching a height of approximately 120 m above the surrounding terrain, dominates the immediate physical environment of the study area. The slopes of these hills are steep and dissected by several gullies but the area on the top of the hills is gently undulating (Hibbird 2004).

All watercourses in the area of the mine are first order streams and flow intermittently. They contain salt tolerant vegetation, particularly the introduced sedge *Juncus acutus* (Sharp Rush), suggesting they receive saline groundwater discharge.

# 2.2 Known Vegetation Values

The study area falls within the region covered by the Biodiversity Plan for the South Australian Murray-Darling Basin and, more specifically, is within the Eastern Mount Lofty Ranges Regional Ecological Area (REA) (Kahrimanis *et al.* 2001). The clearance of native vegetation within the Eastern Mount Lofty Ranges REA has been extensive, with only 6% of the original vegetation cover remaining (Kahrimanis *et al.* 2001).

Two ecological communities listed as critically endangered under the *EPBC Act 1999* occur within the study area; Peppermint Box (*Eucalyptus odorata*) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia. Both listings are effective from 21 June 2007. DEH vegetation mapping of the region that includes the study area refers to these two ecological communities as *Eucalyptus odorata* woodland and *Lomandra effusa* +/- *L. multiflora* ssp. *dura* (open) tussock grassland respectively.

An index of conservation prioritisation for plant associations has been devised for South Australia. (Neagle 1995). This prioritisation provides the widely accepted list of vegetation communities of conservation significance. Under this index, *Lomandra effusa* +/- *L. multiflora* ssp. *dura* (open) tussock grassland has a Priority 1 conservation rating (very rare and endangered in SA), the highest conservation significance possible for a vegetation community in the state. This vegetation community occurs to the immediate south of the existing mine pit on the summit and slopes of a feature known as MacFarlane Hill (Playfair 2004; Ecological Associates 2007). Although MacFarlane Hill has reportedly been grazed by stock (Hibbird 2004; Playfair 2004; Parsons Brinckerhoff 2006), approximately 5.8 ha of this remnant is of high quality (Ecological Associates 2007). This 5.8 ha area represents a small proportion (approximately 0.4%) of the high quality remnants of the vegetation community in the eastern slopes of the Southern Mount Lofty Ranges (Ecological Associates 2007).

An area of *Eucalyptus odorata* woodland occurs to the north of the existing pit (Playfair 2004; Ecological Associates 2007). This vegetation has a conservation rating of Priority 3 (Neagle 1995), being poorly conserved in South Australia with most remnants being small and/or degraded and/or atypical. Within the study area a long history of grazing has depleted the understorey of some of this vegetation. However the area closest to the mine pit and extending along the eastern boundary of the property is in better condition

than elsewhere (Playfair 2004) and has an intact understorey of native grasses and shrubs (Ecological Associates 2007). The *E. odorata* woodland within the study area is one of the largest remnants in the eastern slopes of the Southern Mount Lofty Ranges and includes approximately one third of the high quality vegetation of this type in the region (Ecological Associates 2007).

A waste-rock dump from past open pit mining operations is located immediately west of the mine pit. It consists of approximately 25 million tonnes of rock and covers an area of approximately 0.36 km<sup>2</sup> (Hibbird 2004). This feature has very steep sides and a level upper surface on to which soil has been placed. A revegetation area has been established on the eastern side and Golden Wattle, (*Acacia pycnantha*) and grass species are present. Bare ground is typical elsewhere.

To the north of the waste-rock dump is the old tailings retention area, covering approximately 0.35 km<sup>2</sup> (Hibbird 2004). This area has also been capped with soil and partially revegetated. It features grassy areas and unvegetated areas. In a gully to the east of the tailings retention area are two dams retaining acid leachate from the tailings. A small area of *Eucalyptus leucoxylon* ssp. *leucoxylon* woodland is located adjacent to these dams. A sedgeland dominated by introduced Sharp Rush (*Juncus acutus*) has formed to the west of the tailings area.

## 2.3 Mine Proposal

Hillgrove propose to redevelop and expand the existing Kanmantoo mine to extract copper ore and process the ore on site. The proposal involves extending the existing pit to the north and south and excavating additional satellite pits to the north, south and south-west (Figure 2). An integrated waste landform will be constructed involving an extension to the existing waste rock stockpile and construction of a new tailings storage facility to the west. An area for plant and equipment will also be required (Figure 2). The project 'footprint' is the sum of these features. In addition to the project footprint, vehicle tracks throughout the area will be utilised.

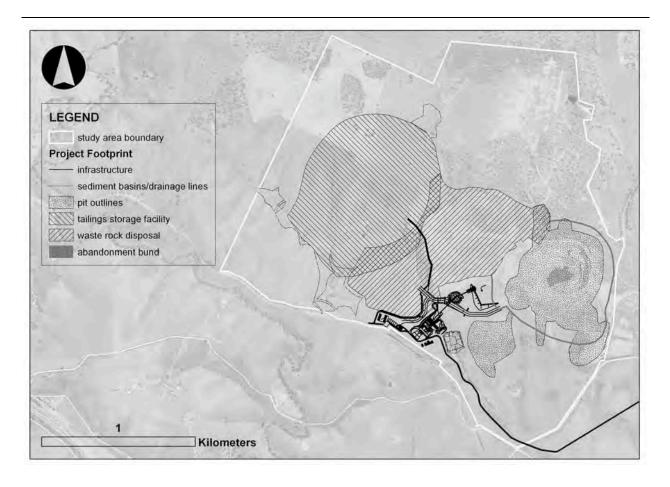



Figure 2. Proposed project footprint of Kanmantoo Copper Project.

# 2.4 Legislative Framework

### Environment Protection and Biodiversity Conservation Act 1999

Under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act 1999)* an action requires approval from the Commonwealth Minister for the Environment and Water Resources if it is likely to have a significant impact on a matter of national conservation significance. Matters of national environmental significance relevant to this project are threatened species and ecological communities, migratory species and Wetlands of International Importance (Ramsar sites) listed under the *EPBC Act 1999*.

Assessment of the study area requires consideration of whether the site supports, or is likely to support, any matters of national environmental significance and risks to those matters. Where the proposal poses a significant risk, it is recommended that the matter be referred to the Minister for Environment and Water Resources. The project was referred on 26 February 2007, and the DEWR determined on 30 March 2007 that the project was not a controlled action. No further assessment under the EPBC Act is therefore required for the project.

### Native Vegetation Act 1991

The *Native Vegetation Act 1991* regulates the clearance of native vegetation in South Australia. Under the Act, native vegetation includes vegetation that has never been cleared or has been cleared but has regenerated naturally. Planted vegetation is not considered native vegetation unless it's planting was undertaken in compliance with a condition imposed by the Native Vegetation Council.

The Native Vegetation Council has delegated Primary Industries and Resources South Australia (PIRSA) to administer the *Native Vegetation Act 1991* as it applies to mining. PIRSA applies the policies of the Native Vegetation Council on clearance and revegetation through the use of Mining and Rehabilitation Programs (MARPs) under Regulation 42 of the Mining Act.

In seeking approval to clear native vegetation it is necessary for a MARP to demonstrate that:

- the work cannot be established without the clearance of some native vegetation and that native vegetation is avoided or impacts minimised wherever possible;
- the site chosen contains the least significant native vegetation, provided that works can occur at that site; and
- intact strata of native vegetation are avoided.

It is also necessary for the MARP to demonstrate that in clearing native vegetation, a Significant Environmental Benefit (SEB) will be achieved elsewhere. Works to revegetate, restore, regenerate or enhance native vegetation may achieve SEB.

So that SEB can be calculated, MARPs must report the nature and extent of impacts on native vegetation. This involves a detailed assessment of the plant species and plant communities present, their conservation significance and habitat value for fauna.

#### National Parks and Wildlife (NPW) Act 1972

The *NPW Act* 1972 provides for the protection of flora and fauna species listed under the Schedules of the Act. There are penalties for taking these protected species without a permit issued by the Department for Environment and Heritage (DEH). For plants, 'taking' includes removal of the plant or part of the plant from where it is growing, or damaging the plant.

#### Development Act 1993

The District Council of Mount Barker has prepared a development plan as per the requirements of the *Development Act 1993*. This plan contains rules, policies and objectives to guide development on land within the council area. Of particular relevance to exploration activities is an area designated as 'Policy Area 16' in the Development Plan. This is an area of remnant vegetation to the north of the mining lease. The objectives of the plan for this area are to protect and enhance all native species and revegetate degraded vegetation.

# 2.5 Existing Information

The most comprehensive existing information on the flora and vegetation of the study area is provided by Playfair (2004). Playfair's report, commissioned by Hillgrove, presents information from a survey of a part of the study area (Mining Lease 5776) in July 2004 and also a collation of pre-existing information. Playfair lists 91 native and 12 introduced plant species including one species listed as threatened in South Australia (*Diuris behrii*, Behr's cowslip orchid) and an additional nine species considered rare or threatened in the region. Playfair mapped part of the *Eucalyptus odorata* woodland, describing the area extending north of the open pit along the eastern boundary of the property as in better condition and less invaded by introduced species than areas to the north-west and along the northern boundary of the property. Part of the *Lomandra effusa* grassland was also mapped.

In 2006 Hillgrove commissioned Ecological Associates to investigate the extent and condition of remnants of *Eucalyptus odorata* woodland and *Lomandra effusa* grassland in the Kanmantoo area (Ecological Associates 2007). The purpose of this investigation was to enable a more accurate assessment of the significance of any potential development by Hillgrove on the two plant associations, both of which have been nominated for listing as threatened ecological communities under the *EPBC Act 1999*. The investigation found that the area of *Eucalyptus odorata* woodland within the study area comprises approximately one third of the high quality remnant vegetation of this type in the eastern slopes of the Southern Mount Lofty Ranges and is one of the largest remnants. *Lomandra effusa* grassland of 5.8 ha within the study area was also considered high quality, however this represented only 0.4% of the high quality remnants in the eastern slopes of the Southern Mount Lofty Ranges.

The Department for Environment and Heritage (DEH) manages the Biological Database of South Australia (BDBSA). An extract from the BDBSA revealed three locations within the study area for which flora records were available. These records consisted of a total of 75 native plant species, including one species listed as threatened in South Australia, *Ptilotus erubescens* (Hairy-tails). Records of 21 introduced species were also present. For this study, the BDBSA extract was extended to a 6 km radius from the study area boundary. This provided additional records of two species listed as threatened under the *EPBC Act 1991*; *Acacia menzelii* (Menzel's wattle) and *Olearia pannosa* ssp. *pannosa* (silver daisy-bush). Additionally, eight species listed as threatened within South Australia occur within this extended area. These ten species have not been recorded within the study area, however their presence within the vicinity of the study area suggests they may be present but have not yet been detected.

In 2006 the Kanmantoo-Callington Landcare Group, with support from Hillgrove, undertook a study of the significant vegetation within the study area. This work reported plant species not previously recorded for the area. Management recommendations were made for particular patches of vegetation within the study area. Referring to the area of *Eucalyptus odorata* woodland immediately north of the existing pit, the authors concluded "It is the least disturbed or weed invaded area of this ... vegetation association known to exist in SA ..." (Simon and Seager 2006).

The Kanmantoo-Callington Landcare Group, again in 2006 and with support from Hillgrove, prepared an Interim Weed Control Strategy for the Kanmantoo mine site (Seager 2006). This report addressed the highest priority weed issues in the area. Weed species not previously recorded for the study area were identified in this report.

In spring 2006 Ecological Associates undertook a targeted survey within the study area for the two plant species listed as threatened in South Australia known to occur within the study area; *Diuris behrii* (Behr's cowslip orchid) and *Ptilotus erubescens* (Hairy-tails) (Ecological Associates 2006). This survey recorded *Diuris behrii* at two locations within *Eucalyptus odorata* woodland. *Ptilotus erubescens* was not detected.

Native vegetation within the study area has been mapped by DEH (Kahrimanis *et al.* 2001). This mapping indicates 53 ha of native vegetation within the study area. It should be noted that this mapping was undertaken at a relatively coarse scale by interpretation of 1:40 000 aerial photography and has not been ground-truthed.

A summary of plant species and vegetation communities of conservation significance previously reported for the area is provided in Table 1.

Table 1. Conservation significance of previously reported species and vegetation communities.

| Species or Vegetation Community       | Level of Significance |                    |                       |  |  |
|---------------------------------------|-----------------------|--------------------|-----------------------|--|--|
|                                       | National <sup>1</sup> | State <sup>2</sup> | Regional <sup>3</sup> |  |  |
| Eucalyptus odorata woodland           | <b>✓</b>              | ✓                  | ✓                     |  |  |
| Lomandra effusa grassland             | <b>✓</b>              | <b>√</b>           | <b>√</b>              |  |  |
| Ptilotis erubescens (Hairy-tails)     |                       | <b>√</b>           | <b>√</b>              |  |  |
| Diuris behrii (Behr's cowslip orchid) |                       | <b>√</b>           | <b>√</b>              |  |  |
| 11 additional species                 |                       |                    | <b>√</b>              |  |  |

<sup>1.</sup> Listed as threatened under the EPBC Act 1999.

<sup>2.</sup> Listed as rare or threatened in Neagle (1995) (vegetation communities) or under the NPW Act 1972 (species).

<sup>3.</sup> Listed as threatened in the SA Murray-Darling Basin in Kahrimanis et al. (2001).

#### 3.1 Method

#### Vegetation Community Mapping

On 12, 13 and 27 February and 8 March 2007 the entire study area was surveyed by vehicle and on foot. Native vegetation remnants were located and the vegetation communities comprising them were identified. ArcMap<sup>®</sup> was used to map all remnants based on the field survey and extrapolation of orthorectified aerial photography. Terminology follows the regional floristic mapping for the western Murray flats (Kahrimanis *et al.* 2001).

A list of all plant species observed was compiled for each vegetation community, except two communities that comprised a very minor component of the vegetation within the study area.

## Vegetation Condition Mapping

Vegetation condition was also mapped. The condition of native vegetation remnants was assessed using the methodology outlined in *Draft Guidelines for Native Vegetation Significant Environmental Benefit Under the Native Vegetation Act 1991 and Regulations 2003 for the Mineral and Petroleum Resources Industry* (DWLBC 2005). Using this methodology, vegetation condition was reported as a significant environmental benefit (SEB) ratio. These ratios represent the area to be offset in compensation for impacted areas of native vegetation. The SEB ratios that can be assigned are 10:1 (highest quality vegetation), 8:1, 6:1, 4:1 and 2:1 (lowest quality vegetation).

#### Quadrat Survey

The vegetation survey method outlined in the *Guide to a native vegetation survey using the Biological Survey of South Australia* (Heard and Channon 1997) was used to prepare detailed quadrat descriptions of the four major vegetation associations present in the study area. One quadrat was surveyed within each of the following vegetation associations:

- Austrostipa sp. Open tussock grassland;
- Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland;
- Eucalyptus odorata Low woodland; and
- Eucalyptus gracilis ± Eucalyptus oleosa Open mallee.

#### Scattered Tree Assessment

Scattered trees within the study area that are located within the project footprint were assessed using a datasheet provided by PIRSA based on the methodology outlined in *Scattered Tree Habitat Value Ready Reckoner* (Cutten and Hodder 2002). This methodology requires a photograph of each tree and a record of its location, species, height, trunk diameter at breast height, proportion of canopy dieback, canopy

Survey Section 3

diameter, proportion of canopy mistletoe, number of individual mistletoe infections and number of small (<5 cm), medium (5 – 15 cm) and large (>15 cm) diameter hollows. Subsequently, suitability as habitat for threatened fauna, density of scattered trees in the vicinity and proximity to remnant native vegetation was scored for each tree using a scoring system provided by PIRSA based on the principles outlined by Cutten and Hodder (2002). Spatial data for scattered tree density and proximity to remnant native vegetation were obtained using ArcMap<sup>©</sup>. The total SEB for all scattered trees within the proposed project footprint was calculated using the NV\_Points19.xls spreadsheet provided by the Native Vegetation Group within DWLBC.

#### Roadside Vegetation Assessment

An assessment of the roadside vegetation of Back Callington Road between Mine Road and the township of Callington was made. The road was divided into four sections, each with relatively homogeneous vegetation on both sides (north and south). For each section, both sides of the road were surveyed at several locations and a plant species list was compiled for each side. The flora survey was not comprehensive but recorded dominant and notable species. Planted trees were not assessed but there presence was noted. The vegetation community comprising the roadside vegetation was identified and its condition was scored using the approach described above for vegetation within the study area. Based on the information obtained, the side of Back Callington Road (north or south) of lower conservation significance was identified, providing guidance for potential clearance of roadside vegetation for road widening.

#### 3.2 Results

#### Vegetation Communities

A total of 113 ha of native vegetation was identified and mapped within the study area. Eight vegetation communities were identified with vegetation condition ranging from SEB 8:1 to SEB 2:1 (Figure 4).

Eucalyptus odorata Low woodland is the most extensive vegetation community within the study area, occupying 54.1 ha. This vegetation community has been nominated for listing as a threatened ecological community (as Peppermint Box (E. odorata) Grassy Woodland) under the EPBC Act 1999. It is also of significance at the state level, listed as Priority 3 for conservation in Neagle (1995), and at the regional level, listed as threatened within the South Australian Murray-Darling Basin (Kahrimanis et al. 2001). A complete list of the plant species recorded for this vegetation community within the study area is provided in Appendix A. Quadrat survey data are provided in Appendix B. The best examples of this vegetation occurred to the north and north-west of the existing open pit (Figure 4) and had a condition of SEB 8:1. These areas have all vegetation strata intact, low cover of weeds, evidence of recent regeneration of overstorey trees and some old, hollow bearing trees (Figure 3). Areas with condition of SEB 6:1 are located immediately north of the open pit and a short distance further north (Figure 4). These areas have an intact overstorey and some evidence of regeneration of overstorey trees but an understorey with considerable weed infestation. Considerable physical disturbance, mainly vehicular tracks, is apparent at some locations within this area. Adjacent to the above areas, the northern boundary of the study area and

the north-west corner of the study area are areas where condition was SEB 4:1 (Figure 4). The understorey of these areas is either very heavily invaded by weeds or largely absent with bare ground apparent (Figure 5). An intact overstorey is present but recent regeneration of overstorey trees is not apparent. These areas appear to have been subjected to extended periods of stock grazing. Two small areas, both of which fall within the footprint of the proposed tailings storage facility, have a condition of SEB 2:1 with the understorey completely absent and considerable soil disturbance and trampling from intensive stock grazing (Figure 6).



Figure 3. Eucalyptus odorata Low woodland with condition score of SEB 8:1.

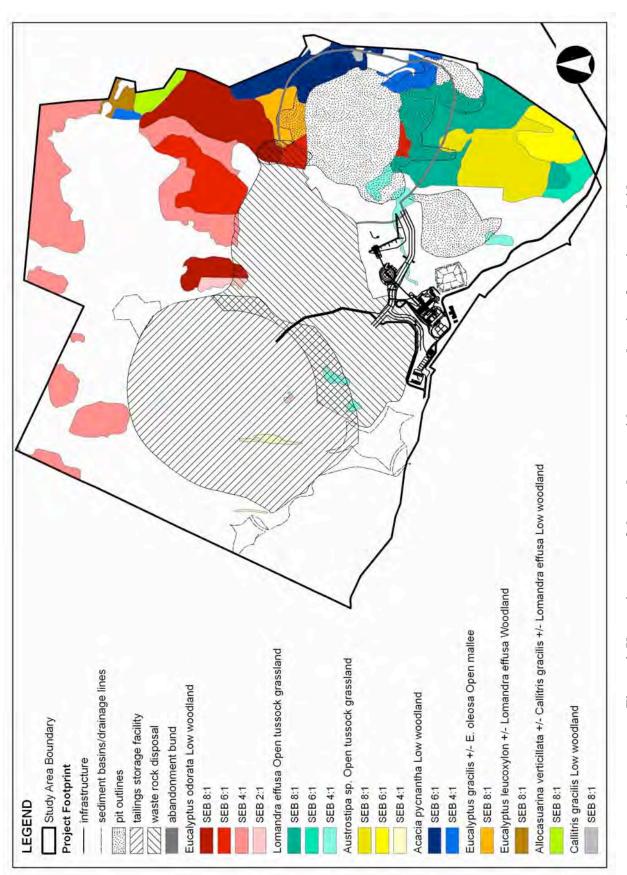



Figure 4. Vegetation map of the study area with proposed project footprint overlaid.



Figure 5. Eucalyptus odorata Low woodland with condition score of SEB 4:1.



Figure 6. Eucalyptus odorata Low woodland with condition score of SEB 2:1 (right of fence).

Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland occupies 23.3 ha of the study area. This vegetation community has been nominated for listing as a threatened ecological community (as Iron Grass (L. effusa - L. multiflora ssp. dura) Tussock Grassland) under the EPBC Act 1999. It is significant at the state level, listed as Priority 1 for conservation in South Australia (Neagle 1995), and at the regional level, listed as threatened within the SA Murray-Darling Basin (Kahrimanis et al. 2001). The community occurs predominantly to the south of the existing open pit on the crest and slopes of MacFarlane Hill. A list of the plant species recorded within the study area for this vegetation community is provided in Appendix A. The quadrat survey data are provided in Appendix B. The best examples featured an intact structure of dense L. effusa interspersed with native grasses and few weeds (Figure 7). These areas have been assigned a condition score of SEB 8:1. Emergent trees, typically Allocasuarina verticillata, are present in some areas. At the extreme south of the study area is a remnant patch with intact structure and featuring dense L. effusa, but with considerable weed invasion, predominantly the grass Avena barbata (Bearded Oat). This area has been assigned a condition score of SEB 6:1. Smaller remnants are present immediately south-west of the open pit and further west. These areas are more degraded, with sparse L. effusa, few native grasses and considerable soil disturbance, and have been assigned a condition score of SEB 4:1 (Figure 8).



Figure 7. Lomandra effusa +/- Heliochrysum leucopsideum Open tussock grassland with condition score of SEB 8:1.



Figure 8. Lomandra effusa +/- Heliochrysum leucopsideum Open tussock grassland with condition score of SEB 4:1.

Remnant patches of Austrostipa sp. Open tussock grassland occupies 17 ha. This community is of regional conservation significance, listed as threatened within the SA Murray-Darling Basin (Kahrimanis et al. 2001). The community is floristically quite similar to Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland, however L. effusa is absent and the dominant species is the native grass Austrostipa sp. (the species was not able to be identified due to the absence of flowers or seed). A complete species list for this community within the study area is provided in Appendix A. Quadrat survey data are provided in Appendix B. Austrostipa sp. Open tussock grassland occurs predominantly on the southern crest and slopes of MacFarlane Hill. Small remnants also occur amongst outcropping ridgelines on the former 'Paringa' grazing property (Figure 4). The best example occurs on the western slope of MacFarlane Hill. In this area the vegetation has a low cover and diversity of weeds and a relatively high diversity of native grasses and herbs, a relatively high density of grass tussocks, and has been assigned a condition score of SEB 8:1 (Figure 9). On the southern slope of MacFarlane Hill the vegetation is intact but with a greater proportion of weeds (Figure 10) and has been assigned a condition score of SEB 6:1. The small remnants on the former 'Paringa' property have been subject to extended grazing and feature stock tracks, bare ground and considerable weed invasion. These areas have been assigned a condition score of SEB 4:1.

Survey Section 3



Figure 9. Austrostipa sp. Open tussock grassland with condition score of SEB 8:1.



Figure 10. Austrostipa sp. Open tussock grassland with condition score of SEB 6:1.

To the immediate east and north-east of the existing pit, divided by the work area for the existing mine, is an area of 11.2 ha of *Acacia pycnantha* Low woodland (Figure 4). This vegetation community was not

mapped by DEH for the Western Murray Flats vegetation mapping project (Kahrimanis *et al.* 2001). Anecdotal reports and the absence of overstorey *Eucalyptus* species suggest that this community has been subject to past disturbance or clearance and has regenerated naturally. It is likely that, if left undisturbed, this community would in time develop into one of the adjoining vegetation communities, i.e. either *Eucalyptus odorata* Low woodland, *Eucalyptus gracilis*  $\pm$  *E. oleosa* Open mallee or a combination of both. To the north east of the existing pit this vegetation community is dominated by an overstorey of low *Acacia pycnantha*, has an intact understorey dominated by native grasses, particularly *Austrostipa* sp., and low shrubs and has a low cover of weeds (Figure 11). The condition of the vegetation in this vicinity was scored as SEB 6:1. Further to the south, at the base of the eastern side of MacFarlane Hill, the vegetation appears to have been more recently disturbed and partially cleared. At this location a condition score of SEB 4:1 was assigned. Another small patch of this community, in the same condition, is located south of the tailings retention dam in the north-east of the study area. A complete species list for *Acacia pycnantha* Low woodland is provided in Appendix A.



Figure 11. Acacia pycnantha Low woodland with condition score of SEB 6:1.

A small area (4 hectares) of *Eucalyptus gracilis*  $\pm$  *E. oleosa* Open mallee is located to the immediate north of the existing open pit. There is evidence of past timber gathering in this area, however the vegetation is relatively intact with a diverse native understorey and low weed cover (Figure 12). This vegetation was assigned a condition score of SEB 8:1. A list of the plant species identified for this community is provided in Appendix A. Quadrat survey data are provided in Appendix B.



Figure 12. Eucalyptus gracilis ± E. oleosa Open mallee with condition score of SEB 8:1.

A 1.8 ha remnant of *Allocasuarina verticillata* ± *Callitris gracilis* ± *Lomandra effusa* Low woodland is located in steep, rocky terrain to the south of the tailings retention dam in the north-east of the study area (Figure 13). The vegetation structure is intact in this area, with overstorey trees and understorey shrubs, grasses and herbs all present at apparently natural densities. Some weedy grass species are present but weed cover is low. A condition score of SEB 8:1 was assigned to this vegetation. Appendix A lists the plant species present.



Figure 13. Allocasuarina verticillata ± Callitris gracilis ± Lomandra effusa Low woodland with condition score SEB 8:1.

To the immediate south of the tailings retention dam near the north-east corner of the study area is a remnant patch of *Eucalyptus leucoxylon* ssp. *leucoxylon* ± *Lomandra effusa* Open woodland of 1.3 ha. The vegetation appears to be in good condition with all strata intact and was assigned a condition score of SEB 8:1. The remnant is small and located a considerable distance from the proposed project footprint, therefore a plant species list was not compiled. This community is of conservation significance at the regional level, listed as threatened within the SA Murray-Darling Basin (Kahrimanis *et al.* 2001).

A very small (0.2 ha) area of *Callitris gracilis* Low woodland is located east of the existing open pit adjacent to the mine entrance gate. The vegetation at this location appears relatively intact with overstorey trees and understorey shrubs, grasses and herbs all present and weed cover low. A condition score of SEB 8:1 has been assigned. Due to its small size a species list was not compiled, however plant species likely to be present are those listed for the adjacent *Acacia pycnantha* Low woodland (Appendix A), with the addition of *Callitris gracilis*. This community is of conservation significance at the regional level, listed as threatened within the SA Murray-Darling Basin (Kahrimanis *et al.* 2001).

A summary of the vegetation communities identified and mapped, their condition, area and conservation significance is provided (Table 2).

Table 2. Area and conservation significance of surveyed vegetation communities.

| Vegetation Community                                                           | SEB Ratio | Area (ha) | Conserv  | ation Sign | ificance |
|--------------------------------------------------------------------------------|-----------|-----------|----------|------------|----------|
|                                                                                |           |           | National | State      | Regional |
| Eucalyptus odorata Low woodland                                                | 8:1       | 14.9      | <b>√</b> | ✓          | <b>√</b> |
|                                                                                | 6:1       | 9.7       |          |            |          |
|                                                                                | 4:1       | 28.5      |          |            |          |
|                                                                                | 2:1       | 1.0       |          |            |          |
| Lomandra effusa ± Heliochrysum                                                 | 8:1       | 17.8      | ✓        | ✓          | <b>√</b> |
| leucopsideum Open tussock grassland                                            | 6:1       | 2.1       |          |            |          |
|                                                                                | 4:1       | 3.5       |          |            |          |
| Austrostipa sp. Open tussock grassland                                         | 8:1       | 11.6      |          |            | <b>√</b> |
|                                                                                | 6:1       | 4.7       |          |            |          |
|                                                                                | 4:1       | 0.7       |          |            |          |
| Acacia pycnantha Low woodland                                                  | 6:1       | 7.7       |          |            |          |
|                                                                                | 4:1       | 3.5       |          |            |          |
| Eucalyptus gracilis ± E. oleosa Open mallee                                    | 8:1       | 4.0       |          |            |          |
| Allocasuarina verticillata ± Callitris gracilis ± Lomandra effusa Low woodland | 6:1       | 1.8       |          |            |          |
| Eucalyptus leucoxylon ssp. leucoxylon ±<br>Lomandra effusa Open woodland       | 6:1       | 1.3       |          |            | <b>*</b> |
| Callitris gracilis Low woodland                                                | 8:1       | 0.2       |          |            | <b>√</b> |

Overlaying the proposed project footprint upon the mapped vegetation reveals the location and extent of vegetation that will require clearance under the proposal (Figure 4). Four vegetation communities, with condition ranging from SEB 8:1 to SEB 2:1, will be partially cleared. Table 3 provides a summary of the vegetation clearance and the offset areas required for each community to achieve significant environmental benefit.

Table 3. Vegetation requiring clearance and SEB offset calculation. Coffey Natural Systems provided calculations of areas to be cleared.

| Vegetation Community                                                     | Area (ha) of each condition level<br>(SEB ratio) to be cleared |      |      |      | Total area to be cleared | SEB offset required (ha) |
|--------------------------------------------------------------------------|----------------------------------------------------------------|------|------|------|--------------------------|--------------------------|
|                                                                          | 8:1                                                            | 6:1  | 4:1  | 2:1  | (ha)                     |                          |
| Eucalyptus odorata Low woodland                                          | 1.23                                                           | 2.02 | 0.32 | 0.34 | 3.92                     | 23.92                    |
| Lomandra effusa ± Heliochrysum<br>leucopsideum Open tussock<br>grassland | 9.59                                                           |      | 2.54 |      | 12.13                    | 86.88                    |
| Austrostipa sp. Open tussock grassland                                   | 0.21                                                           |      | 0.61 |      | 0.82                     | 4.12                     |
| Eucalyptus gracilis ± E. oleosa Open mallee                              | 2.79                                                           |      |      |      | 2.79                     | 22.32                    |
| Acacia pycnantha Low woodland                                            |                                                                | 4.26 | 2.57 |      | 6.82                     | 35.84                    |
| Scattered Trees                                                          | 56 trees (see below)                                           |      |      |      | <u>'</u>                 | 17.8                     |
|                                                                          | TO                                                             | ΓAL  |      |      |                          | 190.88                   |

## Species of Conservation Significance

The highest level of conservation significance for plant species recorded during the survey was regional. Four species listed as rare in the Murray botanical region were recorded (Table 4).

Table 4. Surveyed species of conservation significance.

| Species                                  | Common Name               | Conserv  | Conservation Signif |                |
|------------------------------------------|---------------------------|----------|---------------------|----------------|
|                                          |                           | National | State               | Regional       |
| Eucalyptus leucoxylon ssp.<br>leucoxylon | South Australian Blue Gum |          |                     | R <sup>1</sup> |
| Elymus scaber var. scaber                | Native Wheat-grass        |          |                     | R              |
| Aristida contorta                        | Curly Wire-grass          |          |                     | R              |
| Aristida behriana                        | Brush Wire-grass          |          |                     | R              |

<sup>1.</sup> R = Rare; having a low overall frequency, confined to a restricted range or scattered sparsely over a wider area.

The shrub *Acacia iteaphylla*, listed as rare in SA, was also recorded within the study area. However, this species was growing outside of its natural range and can be considered introduced. The species is commonly planted for revegetation projects.

Although relatively few species of conservation significance were recorded for the current survey, an additional two species of state significance and 19 species of regional significance have been recorded in the study area by previous surveys. A complete list of plant species, both native and introduced, recorded for the study area by this and previous surveys is provided in Appendix C.

Survey Section 3

The two species of conservation significance at the state level that have been recorded previously within the study area are *Diuris behrii* (Behr's cowslip orchid), which is listed as vulnerable, and *Ptilotus erubescens* (hairy tails), listed as rare. The known locations of *Diuris behrii* were recorded by Ecological Associates (2006) and by the Kanmantoo-Callington Landcare Group (KCLG) in the significant vegetation study in 2006. The single location of *Ptilotus erubescens* was obtained from the BDBSA extract provided by DEH. An additional 53 species are also listed at the same location, indicating that the BDBSA record location may represent an amalgamation of records for a wider area. Thus the spatial confidence of the BDBSA *Ptilotus erubescens* record is lower than that for the *Diuris behrii* records.

The known locations of species of conservation significance at the state level within the study area are shown in Figure 14. This figure indicates that some of the known *Diuris behrii* sites fall within the proposed project footprint.

#### Scattered Trees

Fifty-six scattered trees were documented within the area defined by the proposed project footprint plus a ten metre buffer to allow for small scale spatial error. Fifty-five of these trees were *Eucalyptus odorata* and there was one *Allocasuarina verticillata*. Twenty-four trees had hollows. Tree height ranged from 4 to 13 metres and canopy diameter from 2 to 17 metres. Diameter at breast height ranged from 8 to 120 cm. Mistletoe was not noted on any tree. Dieback ranged from 0 to 90%. All scattered trees scored one point (the lowest score) for suitability for threatened fauna species. All scattered trees were located a considerable distance from vegetation of high quality and there were no threatened fauna species observations or previous records in the immediate vicinity of the trees. Data for all fifty-six scattered trees assessed is provided in Appendix D.

The total offset required to achieve SEB for the clearance of the fifty-six scattered trees within the project footprint (plus ten metre buffer) is 17.8 hectares.



Figure 14. Location of threatened species (source indicated) within study area.

#### Roadside Vegetation

For the purpose of assessment, Back Callington Road was divided into four sections of approximately equal length within which the roadside vegetation was relatively homogeneous (Figure 15). The roadside reserve varies in width from approximately 1 to 5 m.

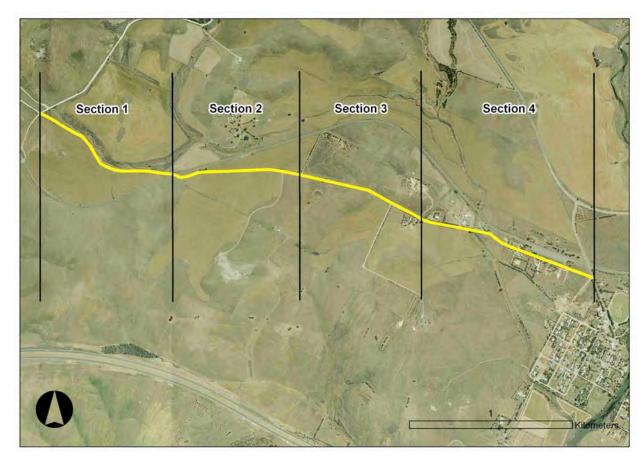



Figure 15. Sections of Back Callington Road (yellow line) assessed for conservation significance.

Vegetation on both sides of Section 1 is classified as *Lomandra effusa ± Heliochrysum leucopsideum*Open tussock grassland. However, because the tussocks are typically sparse and the vegetation is dominated by weeds, a condition score of SEB 2:1 was assigned to both sides. One species of conservation significance was observed on both side of the road, the regionally rare grass *Aristida contorta*. Some of the trees (e.g. *Acacia pycnantha*) appear to have been planted and therefore do not constitute native vegetation. The overall conservation significance of the vegetation is very similar on both sides of the road. However the northern side is, in some areas, contiguous with native vegetation immediately north of the roadside reserve. In contrast, the southern side borders cropped paddock with no native vegetation. Given this difference, the southern side of Back Callington Road in Section 1 is considered to have lower conservation significance than the northern side.



Figure 16. Example of roadside vegetation, Back Callington Road; southern side within Section 1.

Section 2 also features *Lomandra effusa ± Heliochrysum leucopsideum* Open tussock grassland on both sides. The *Lomandra effusa* tussocks are very sparse in places and the vegetation is dominated by weeds, with a condition score of SEB 2:1. There is very little difference in conservation significance of the vegetation on either side of the road. On both sides the roadside reserve adjoins cropped land. Trees have been planted on the northern side. These trees are not native vegetation as such but may provide habitat for fauna. Given the presence of planted trees on the northern side and the absence of any other differences between the north and south side, the southern side of Back Callington Road in Section 2 is considered to have lower conservation significance than the northern side.

In Section 3 both sides of the road again feature Lomandra effusa  $\pm$  Heliochrysum leucopsideum Open tussock grassland. The vegetation is typically weed dominated, with a condition score of SEB 2:1 on both sides. However, on the northern side there are some small patches of L. effusa of greater density. The northern side also features some planted trees, that may have value as discussed above. Therefore, the southern side of Back Callington Road is considered to have lower conservation significance than the northern side in Section 3.

Section 4 was not surveyed for flora because native vegetation appears to be absent from this section. The roadside vegetation consists exclusively of weeds and planted trees. The road passes through a residential area in Section 4. The conservation significance of the roadside vegetation in this section appears to be very low on both sides of the road. Both sides have been planted with a similar number of trees. Neither side appears to have a higher conservation significance than the other.

| Section | Length<br>(m) | Vegetation Community                                                  |           | onservati<br>ignifican |           | Side o      | f Road         |
|---------|---------------|-----------------------------------------------------------------------|-----------|------------------------|-----------|-------------|----------------|
| 1       | 960           | Lomandra effusa ± Heliochrysum<br>leucopsideum Open tussock grassland | Nat.<br>✓ | State<br>✓             | Reg.<br>✓ | north<br>✓  | south<br>✓     |
|         |               | Vegetation Condition (SEB ratio)                                      |           |                        |           | 2:1         | 2:1            |
|         |               | Lower Significance (preference for clearance)                         |           |                        |           |             | ✓              |
| 2       | 770           | Lomandra effusa ± Heliochrysum<br>leucopsideum Open tussock grassland | <b>✓</b>  | <b>√</b>               | ✓         | <b>√</b>    | ✓              |
|         |               | Vegetation Condition (SEB ratio)                                      |           |                        |           | 2:1         | 2:1            |
|         |               | Lower Significance (preference for clearance)                         |           |                        |           |             | ✓              |
| 3       | 800           | Lomandra effusa ± Heliochrysum<br>leucopsideum Open tussock grassland | ✓         | <b>√</b>               | <b>√</b>  | <b>√</b>    | ✓              |
|         |               | Vegetation Condition (SEB ratio)                                      |           |                        |           | 2:1         | 2:1            |
|         |               | Lower Significance (preference for clearance)                         |           |                        |           |             | ✓              |
| 4       | 1100          | No native vegetation – planted trees                                  |           |                        |           | <b>√</b>    | <b>√</b>       |
|         |               | Vegetation Condition (SEB ratio)                                      |           |                        |           | n.a.        | n.a.           |
|         |               | Lower Significance (preference for clearance)                         |           |                        |           | N<br>recomm | lo<br>endation |

#### 3.3 Pest Plants

Twenty-four introduced plant species were recorded for the survey (Appendix A). The total number of introduced species documented for the study area by all known surveys is 47 (Appendix C). The pest status of introduced species, i.e. the capacity to cause ecological degradation, varies between species.

#### Grasses

Several introduced grasses are present within the study area but Wild Oats (*Avena barbata*) is the most abundant. This species is very common throughout the agricultural regions of South Australia. Within the study area it was most abundant within the *Austrostipa* sp. open tussock grassland and *Lomandra effusa*  $\pm$  *Heliochrysum leucopsideum* open tussock grassland. Native grassland vegetation may benefit from

Survey

intermittent controlled grazing, which may assist in the control of introduced grasses such as wild oats. Burning is another management tool used to promote native grasses and disadvantage introduced grasses.

#### Herbs

Bridal creeper (*Asparagus asparagoides*) has been recorded within the *Eucalyptus odorata* Low woodland vegetation community, particularly beneath the canopies of old, large trees (Ecological Associates 2006). The species is proclaimed in South Australia. The spread of Bridal Creeper is facilitated by physical disturbance.

Disa bracteata (South African Weed Orchid) has been recorded within Eucalyptus gracilis  $\pm E$ . oleosa Open mallee and Acacia pycnantha Low woodland vegetation communities within the study area (Ecological Associates 2006). It may also be present in other communities. Although it is not a proclaimed species it has the potential to degrade understorey vegetation and displace native orchid species.

Artichoke Thistle (*Cynara cardunculus ssp. flavescens*) was recorded within the *Austrostipa* sp. open tussock grassland, although it is probably not restricted to this vegetation community. This species has the potential to degrade native grassland communities and should be controlled.

Salvation Jane (*Echium plantagineum*) does not currently appear to be abundant within the study area. However, this species has great potential to spread and degrade native vegetation, particularly grassland communities.

#### Shrubs

Red-head Cotton-bush (*Asclepias curassavica*) was recorded within the *Austrostipa* sp. open tussock grassland and *Lomandra effusa ± Heliochrysum leucopsideum* open tussock grassland. Flinders Ranges Wattle (*Acacia iteaphylla*) was recorded within the *Eucalyptus gracilis ± E. oleosa* Open mallee and *Acacia pycnantha* Low woodland vegetation communities, where it may have been intentionally planted. Western Coastal Wattle (*Acacia cyclops*) and Boneseed (*Chrysanthemoides monilifera ssp. monilifera*) have also been recorded within the study area. All of these species are a high priority for control.

#### Woody Weeds

Woody weeds recorded within the study area include Olive (*Olea europaea ssp. europaea*), Aleppo Pine (*Pinus halepensis*) and African Boxthorn (*Lycium ferocissimum*). All of these species are a priority for control.

# 4.1 Clearance of Native Vegetation

The proposed development involves structures and excavations which require the clearance of native vegetation. The composition, area and quality of vegetation to be impacted is presented in Table 6.

Table 6. Summary of unavoidable vegetation clearance impacts. Coffey Natural Systems provided calculations of areas to be cleared.

| Vegetation<br>Community                          | Condition (SEB ratio) | Condition Description                                                                                                                                                                                                                                                                              | Area (ha) to be<br>cleared | Area (ha)<br>within project<br>area | % of project<br>area to be<br>cleared |
|--------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|---------------------------------------|
| Eucalyptus odorata<br>Low woodland               | 8:1                   | Very good condition: little disturbance, all strata present, evidence of overstorey recruitment, large old trees present, high understorey diversity, low weed cover, litter and woody debris cover high.                                                                                          | 1.23                       | 14.9                                | 8.26%                                 |
|                                                  | 6:1                   | Good condition: some disturbance (grazing, weed invasion, tracks, timber getting), at least strata depleted in cover, limited overstorey recruitment, large old trees present, high to moderate understorey diversity, low to moderate weed cover, litter and woody debris cover high to moderate. | 2.02                       | 9.7                                 | 20.82%                                |
|                                                  | 4:1                   | Moderate condition: considerable disturbance (extended grazing), at least one strata absent, no evidence of overstorey recruitment, moderate to low understorey diversity, moderate to high weed cover, litter and woody debris cover moderate to low.                                             | 0.32                       | 28.5                                | 1.12%                                 |
|                                                  | 2:1                   | Poor condition: high disturbance (extended grazing), at least one strata absent, no evidence of overstorey recruitment, very low understorey diversity, high weed cover, litter and woody debris cover low to absent.                                                                              | 0.34                       | 1.0                                 | 34%                                   |
| Lomandra effusa ± Heliochrysum leucopsideum Open | 8:1                   | Very good condition: little disturbance, all strata present, native diversity high, weed cover low, litter cover high.                                                                                                                                                                             | 9.59                       | 17.8                                | 53.88%                                |
| tussock grassland                                | 4:1                   | Moderate condition: considerable disturbance (extended grazing, tracks, weed invasion), one strata depleted, native diversity moderate to low, weed cover moderate to high, litter cover moderate to low.                                                                                          | 2.54                       | 3.5                                 | 72.57%                                |
| Austrostipa sp. Open tussock grassland           | 8:1                   | Very good condition: little disturbance, all strata intact, high density of tussocks, native diversity high, weed cover low, litter cover high to moderate.                                                                                                                                        | 0.21                       | 11.6                                | 1.81%                                 |

| Vegetation<br>Community                     | Condition (SEB ratio) | Condition Description                                                                                                                                                                                                                                       | Area (ha) to be<br>cleared | Area (ha)<br>within project<br>area | % of project<br>area to be<br>cleared |
|---------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|---------------------------------------|
|                                             | 4:1                   | Moderate condition: considerable disturbance (extended grazing, weed invasion), all strata present but depleted in cover, moderate to low density of tussocks, native diversity moderate to low, weed cover moderate to high, litter cover moderate to low. | 0.61                       | 0.7                                 | 87.14%                                |
| Eucalyptus gracilis ± E. oleosa Open mallee | 8:1                   | Very good condition: little disturbance, all strata intact, evidence of overstorey recruitment, high understorey diversity, weed cover low, litter and woody debris cover high.                                                                             | 2.79                       | 4.0                                 | 69.75%                                |
| Acacia pycnantha<br>Low woodland            | 6:1                   | Good condition: some disturbance (past clearance, weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to moderate.                                                      | 4.26                       | 7.7                                 | 55.32%                                |
|                                             | 4:1                   | Moderate condition: considerable disturbance (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.                                            | 2.57                       | 3.5                                 | 73.43%                                |
| Scattered Trees                             | n/a                   | See Appendix D                                                                                                                                                                                                                                              | 56<br>trees                | not ass                             | sessed                                |

Under the Native Vegetation Act, the Native Vegetation Council has developed a framework to calculate the significance of vegetation clearance and the mitigation required to compensate for them. The mitigation requirements are based entirely on the quality of the vegetation and are presented in Table 6.

Based on this framework, impacts are most effectively reduced by minimising the area of high quality vegetation to be cleared.

The framework does not take into account the conservation significance of different vegetation types. This survey has determined that the plant communities with the highest conservation significance at a state or regional level are:

- Eucalyptus odorata Low woodland;
- Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland; and
- Austrostipa sp. open tussock grassland

Impacts on the conservation values of the site will be best be minimised by minimising the clearance of these plant associations.

Impacts on roadside vegetation can be minimised by limiting clearance to the southern side of the Back Callington Road.

### 4.2 Incidental Impacts on Native Vegetation

The project has the potential to impact on vegetation through the normal operation of the site. These impacts may result from track construction, vehicle movement and earthmoving.

These activities potentially impact on native vegetation in the following ways.

- Track construction can fragment native vegetation, increasing the perimeter to area ratio and
  making vegetation remnants more vulnerable to weed invasion. Pruning involved in track
  construction can also expose trees to disease such as Mundulla Yellows.
- Stockpiling earth can smother native vegetation and spread weed propagules.
- Earth and debris on vehicles can spread weed propagules.

These risks can be minimised by:

- locating tracks outside vegetation remnants where possible;
- minimising the length and number of tracks in vegetation remnants;
- maintaining proper hygiene procedures when pruning or removing vegetation;
- · identifying stockpile sites for earth where they will not contaminate native vegetation; and
- establishing standards for these risk minimisation measures and assessing performance against them.

These risk minimisation measures can be incorporated in an Environmental Management Plan. This may involve clearly delimiting protected vegetation on the ground with fencing or flagging tape, clearly identifying roads and access-ways, developing procedures for vehicle traffic and clearly identifying areas not considered as native vegetation where vehicle movements, ground disturbance, equipment laydown or other disturbances are acceptable.

The highest priorities for protection are sites in the best condition and vegetation communities with conservation significance at the state or regional level, namely:

- Eucalyptus odorata Low woodland;
- Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland; and
- Austrostipa sp. open tussock grassland.

### 4.3 Dust

Dust generated by mine operations is a potential risk to native vegetation. Dust may affect vegetation chemically, through the minerals they contain, or physically by deposits on leaves and flowers. Activities that create dust include vehicle movement, quarrying and crushing of rock, conveyance of ore and waste rock and stockpiles.

Dust particles form a crust on leaves, stems and flowers. This may eventually block stomata inhibiting gas exchange or reduce the light available for photosynthesis (Murray 2005). Reductions in photosynthesis and respiration may result in poor growth and flowering. Plants with leaf hairs may be

affected to a greater extent as the leaf hairs trap dust on the leaf surface. Reactive dust particles include alkaline and acidic particles. These particles may have more severe impacts and symptoms include yellow spots on leaves, leaf curling and interveinal necrosis (Murray 2005). In severe cases there may be abscission of leaves, reduced seed or fruit set or plant death.

The risks to vegetation associated with dust are uncertain. The risk would be better defined if the composition and load of dust were known.

Nevertheless, the risk of dust to vegetation can be minimised by:

- controlling dust generation in blasting, excavations, earthmoving and ore treatment;
- maintaining roads to reduce potential for dust generation; and
- minimising vehicle movements.

### 4.4 Acid Mine Leachate

The mine has the potential to generate acidic leachates which can impact on native vegetation. Acid leachates form where minerals rich in reduced sulphur are oxidised and may therefore be associated with the mine pit and waste rock storage. If they escape to the environment they may degrade native vegetation, particularly in watercourses.

It is understood that the management of acid leachate is being considered in detail in other components of the mine development project. Risks to native vegetation will be minimised by preventing acid leachate from affecting to the soil or soil water in which native vegetation occurs.

### 4.5 Altered Groundwater and Surface Water Hydrology

The mine proposal involves the development of waste-rock stockpiles and excavations which may alter the runoff and drainage characteristics of the site. Vegetation condition is potentially affected by these works if they result in changes in the soil water regime, such as through waterlogging or the diversion of runoff. These activities may promote weed invasion, reduce tree health and may degrade the habitat for existing native plants.

Any impacts on the soil water regime of remnant vegetation or the flow regime in watercourses should be avoided.

The risk of altered groundwater and surface water hydrology to native vegetation can be minimised by:

- locating fill and excavations away from drainage lines;
- planning fill and excavations to avoid detaining or diverting runoff; and
- minimising drawdown on aquifers that discharge to wetlands and watercourses.

### 5.1 Options to Mitigate the Impacts of Vegetation Clearance

### Introduction

The Significant Environmental Benefit required to mitigate the impacts on vegetation communities and scattered tree removal can be achieved in a number of ways. The offsets should be determined when the footprint of the mine development is finalised and offset strategies are negotiated with PIRSA. The costs and SEB return of each offset strategy will vary and must be planned to provide the most appropriate outcome for the project. However, the following strategies have been identified for consideration by Hillgrove for the Kanmantoo Copper Mine project.

These strategies may be undertaken on the Kanmantoo Coper Mine site or in the local area in cooperation with natural resource management agencies, research organizations, community groups, local government or government conservation agencies. Research recently by State Flora commissioned by Hillgrove Resources into propagation of *Lomandra effusa* may be considered as a contribution to SEB requirements.

### Habitat Rehabilitation

Vegetation may be rehabilitated by controlling stock access. Grazing is currently mainly associated with SEB 2:1 and SEB 4:1 areas, but also with some SEB 6:1 and 8:1 areas. Grazing by stock can degrade native vegetation in a variety of ways including reducing plant biodiversity (by preferentially grazing more palatable species), preventing plant recruitment (by grazing seedlings), reducing habitat value by reducing overall plant cover, contributing to soil erosion by damaging soil crusts and promoting weeds by increased soil disturbance and reduced competition from native plants. Stock should be excluded from the project area to promote understorey vegetation diversity, overstorey species recruitment, reduce erosion risks and control weed risks.

Vegetation may also be rehabilitated by controlling weeds in vegetation remnants across the project area. The site supports a range of weed species such as exotic grasses (Wild Oats), herbaceous weeds (Bridal Creeper), shrubby weeds (Boneseed), woody weeds (African Boxthorn) and exotic trees (Olive and Aleppo Pine). These weeds are located within and adjacent to vegetation remnants. Control of these weeds will promote native species diversity and will promote the recruitment of overstorey vegetation.

Vegetation may be rehabilitated by controlling pest animals which degrade native vegetation and reduce habitat value for native fauna. Pest fauna known to, or likely to, occur at the site include Cat, Rabbit, European Hare and Fox. Pest fauna control would involve a program of baiting, burrow ripping and monitoring.

### Habitat Consolidation

Revegetation can be used to consolidate isolated remnants and increase their overall habitat value. The property includes a number of vegetation patches which are potentially linked by revegetation to provide

fewer, larger remnants with greater overall habitat diversity and reduced edge effects. Linkages can be highly effective in enhancing the resilience of populations of native flora and fauna because they facilitate the migration of biota across the landscape. This can help overcome genetic isolation (leading to problems such as inbreeding) and boost overall population numbers.

### Habitat Protection

Significant Environmental Benefit can be achieved by preserving, in perpetuity, vegetation remnants under Heritage Agreements. Heritage Agreements formally dedicate an area of high-quality remnant vegetation exclusively for the purpose of conservation. The agreement is identified on the title of the property and persists when the property changes hands.

High value remnants on the property (SEB 8:1), protected from clearing during the project and nominated for Heritage Agreements, would be inspected by staff from the Department for Environment and Heritage. The department would provide species lists and access to grants for ongoing management (e.g. weed control and fencing) of the area to ensure a Significant Environmental Benefit.

Hillgrove could also identify and purchase high value remnants elsewhere in the district and place them under Heritage Agreements to further ensure the project results in a Significant Environmental Benefit, should other methods listed above not be feasible.

### Payment to Native Vegetation Fund

The impacts associated with the project may be offset by payment to the Native Vegetation Fund. Determination of the amount to be paid to ensure Significant Environmental Benefit is as follows (DWLBC 2005):

- a) Determine area to be cleared (in hectares);
- b) Determine offset required (in hectares);
- c) Determine land value (\$/hectare based on Valuer General determination for equivalent land purchase within region);
- d) Native Vegetation Fund payment =  $[(a) \times \$800] + [(b) \times (c)]$

### 5.2 Limitations of this Study

The timing of this flora survey, in late summer following an extended dry period, was not optimal. Some annual and ephemeral herbaceous species are likely to be present only as below-ground seeds or tubers at this time. Some species lacked flowers or fruits and could not able to be identified.

Previous vegetation investigations (listed in Section 2.5) provide some information about the site at other times of year. However, the scope of this study was to provide a comprehensive assessment of the potential impacts of the proposal across the site, which the previous studies do not address.

### 5.3 Recommendations for Further Investigations

### Spring Survey

Due to the limitations of the survey timing, it is recommended that elements of this survey are repeated in spring 2007. The following tasks should be repeated:

- survey of the quadrats; and
- species lists of the major vegetation communities.

### Native Vegetation Management Plan

A Native Vegetation Management Plan should be prepared providing detailed information on the nature of vegetation rehabilitation and restoration works to be undertaken at the site. The plan would specify:

- the location and nature of revegetation, and a schedule for establishment maintenance tasks;
- the location and nature of pest plant control, and a schedule for maintenance tasks;
- a schedule for pest animal control activities and monitoring; and
- grazing management and a monitoring schedule.

### References

Cutten, J. L. and M. W. Hodder (2002). *Scattered Tree Habitat Value Ready Reckoner (Test Copy)*. (Department of Water, Land and Biodiversity Conservation: Adelaide, South Australia).

DWLBC (2005). Draft Guidelines for Native Vegetation Significant Environmental Benefit Under the Native Vegetation Act 1991 and Regulations 2003 for the Mineral and Petroleum Resources Industry. (Department of Water, Land and Biodiversity Conservation: Adelaide, South Australia).

Ecological Associates (2006). *Targeted survey for threatened species and weed species at Kanmantoo Mine*. (Ecological Associates Pty Ltd: Adelaide, South Australia).

Ecological Associates (2007). Survey of remnant Eucalyptus odorata woodland and Lomandra effusa grassland in the Kanmantoo region. (Ecological Associates Pty Ltd: Adelaide, South Australia).

Heard, L. and B. Channon (1997). *Guide to a native vegetation survey using the Biological Survey of South Australia*. (Geographic Analysis and Research Unit, Information and Data Analysis Branch, Department of Housing and Urban Development: Adelaide, Australia).

Hibbird, S. (2004). *Kanmantoo Project Declaration of Environmental Factors*. (Hillgrove Resources Ltd: Perth, Western Australia).

Kahrimanis, M. J., S. Carruthers, A. Oppermann and R. Inns (2001). *Biodiversity Plan for the South Australian Murray-Darling Basin*. (Department for Environment and Heritage: Adelaide, South Australia).

Murray, F. (2005). A review of the impacts of atmospheric emissions from the Kalgoorlie and Olympic Dam Operation on the surrounding vegetation. Report prepared for WMC Resources by Associate Professor Frank Murray. (Murdoch University: Perth, Western Australia).

Neagle, N. (1995). An update of the conservation of the major plant associations of South Australia. (Department of Environment and Natural Resources: Adelaide, South Australia).

Parsons Brinckerhoff (2006). *Kanmantoo Fauna Desktop Assessment*. (Parsons Brinckerhoff Australia Pty Ltd: Adelaide, South Australia).

Playfair, R. (2004). *Native Vegetation Management Recommendations for Kanmantoo Mine Site*. (RMP Environmental Pty Ltd: Adelaide, South Australia).

Seager, H. (2006). *Interim Weed Control Strategy, Kanmantoo Mine Site*. (Kanmantoo-Callington Landcare Group: Callington, South Australia).

Simon, B. and H. Seager (2006). *Significant Vegetation Areas. Kanmantoo Mine Site Hillgrove Resources Exploration Area*. (Kanmantoo-Callington Landcare Group: Callington, South Australia).

| Significance Species Species Common Name Wreath wattle Acada approach and every finite and  |                                             |                      | Cor  | Conservation | uc   |        | Veg                      | etation ( | Johnmuo | ><br>=   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|------|--------------|------|--------|--------------------------|-----------|---------|----------|---|
| ea wordlight a bush wattle and and wattle and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                      | SiS  | gnificano    | 9    |        |                          |           |         | <u> </u> |   |
| ea         Wreath Wattle         Nat.         State         Reg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S O                                         | _                    |      |              | 1    | əəlleM | A. pycnantha<br>woodland |           |         |          |   |
| abrillage         Umbrella Bush         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ia acinacea                                 | Wreath Wattle        | Nat. | State        | Yeg. |        |                          |           |         |          |   |
| sarpa         Manna Wattle         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acacia ligulata                             |                      |      |              |      |        |                          |           |         | >        |   |
| ntha         Golden Wattle         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acacia microcarpa                           | Manna Wattle         |      |              |      |        |                          |           |         | >        |   |
| verticillata         Drooping Sheoak         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         ' </td <td>Acacia pycnantha</td> <td>Golden Wattle</td> <td></td> <td></td> <td></td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td></td> <td>&gt;</td> <td>&gt;</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acacia pycnantha                            | Golden Wattle        |      |              |      | >      | >                        | >         |         | >        | > |
| sp.         Grey-beard Grass         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Allocasuarina verticillata                  |                      |      |              |      | >      |                          | >         |         | >        | > |
| uellit         Box Mistletoe         R         /         /         /           ana         Brush Wire-grass         R         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Amphipogon sp.                              | Grey-beard Grass     |      |              |      |        |                          |           | >       | >        |   |
| ana         Brush Wire-grass         R         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amyema miquelii                             | Box Mistletoe        |      |              |      |        |                          |           |         | >        |   |
| orta         Curly Wire-grass         R         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aristida behriana                           |                      |      |              | 22   |        |                          | >         |         |          |   |
| baccata         Berry Saltbush         4         4           Inia sp.         Feather Spear-grass         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 </td <td>Aristida contorta</td> <td>Curly Wire-grass</td> <td></td> <td></td> <td>œ</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aristida contorta                           | Curly Wire-grass     |      |              | œ    | >      | >                        | >         | >       | >        | > |
| nnia sp.         Feather Spear-grass         Feather Spear-grass <th< td=""><td>Atriplex semibaccata</td><td>Berry Saltbush</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                    | Atriplex semibaccata                        | Berry Saltbush       |      |              |      |        |                          |           |         | >        |   |
| legantissima         Feather Spear-grass         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         ' <th< td=""><td>Austrodanthonia sp.</td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td><td>&gt;</td><td>&gt;</td><td>&gt;</td><td>&gt;</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Austrodanthonia sp.                         |                      |      |              |      | >      |                          | >         | >       | >        | > |
| p.         Spear-grass         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y <t< td=""><td>Austrostipa elegantissima</td><td>Feather Spear-grass</td><td></td><td></td><td></td><td>&gt;</td><td></td><td></td><td></td><td>&gt;</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Austrostipa elegantissima                   | Feather Spear-grass  |      |              |      | >      |                          |           |         | >        |   |
| Osa ssp. lasiophylla         Brome           osa ssp. lasiophylla         Downy Bursaria           lis         Southern Cypress Pine           purpureum         Pink Garland-Ilily           drummondii         Small-leaf Goosefoot           sp.         Bindweed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Austrostipa sp.                             | Spear-grass          |      |              |      | >      | >                        | >         | >       | >        | > |
| osa ssp. lasiophylla Downy Bursaria lis Southern Cypress Pine purpureum purpureum drummondii n desertorum ssp. Small-leaf Goosefoot sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromus sp.                                  | Brome                |      |              |      |        |                          |           |         |          |   |
| lis         Southern Cypress Pine         Pink Garland-lily         Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bursaria spinosa ssp. lasiophylla           | Downy Bursaria       |      |              |      |        |                          |           |         |          | > |
| purpureum         Pink Garland-Iily         Pink Garland-IIII         Pink Garland-IIIII         Pink Garland-IIII         Pink Garland-IIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Callitris gracilis                          |                      |      |              |      |        |                          |           |         |          | > |
| drummondii  I desertorum ssp.  Small-leaf Goosefoot  sp.  Bindweed  ' ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calostemma purpureum                        | Pink Garland-Iily    |      |              |      |        |                          |           |         |          |   |
| n desertorum ssp. Small-leaf Goosefoot Sp. Small-leaf Sp. Small-leaf Goosefoot Sp. Small-leaf Sp. Sma | Chamaesyce drummondii                       |                      |      |              |      |        |                          |           |         |          |   |
| Bindweed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chenopodium desertorum ssp.<br>microphyllum | Small-leaf Goosefoot |      |              |      |        |                          |           |         | >        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Convolvulus sp.                             | Bindweed             |      |              |      | >      | >                        |           | >       |          |   |

|                                       |                           | Conse | Conservation<br>Significance |            | Ve           | Vegetation Community   | Commur                  | iity                   |                             |
|---------------------------------------|---------------------------|-------|------------------------------|------------|--------------|------------------------|-------------------------|------------------------|-----------------------------|
| Species                               | Common Name               |       |                              | Vallee     | A. pycnantha | L. effusa<br>bnsssland | Austrostipa<br>bnalsang | E. odorata<br>woodland | A. verticillata<br>bnalboow |
| Dianella revoluta var. revoluta       | Black-anther Flax-lily    | Nat.  | State                        | Reg.       |              |                        |                         |                        | , >                         |
| Dodonaea viscosa ssp. cuneata         | Wedge-leaf Hop-bush       |       |                              | >          | >            | >                      |                         |                        | >                           |
| Einadia nutans ssp. nutans            | Climbing Saltbush         |       |                              |            |              |                        |                         | >                      |                             |
| Elymus scaber var. scaber             | Native Wheat-grass        |       |                              | ٠<br>٢     |              | >                      | >                       | >                      |                             |
| Enchylaena tomentosa var. tomentosa   | Ruby Saltbush             |       |                              | `          | >            | >                      |                         | >                      | >                           |
| Enneapogon nigricans                  | Black-head Grass          |       |                              |            |              |                        | >                       |                        |                             |
| Enneapogon sp.                        | Bottle-washers/Nineawn    |       |                              |            |              | >                      | >                       |                        | >                           |
| Epilobium billardierianum             | Robust Willow-herb        |       |                              |            |              |                        |                         |                        |                             |
| Eucalyptus gracilis                   | Yorrell                   |       |                              | `          | >            |                        |                         | >                      |                             |
| Eucalyptus leucoxylon ssp. leucoxylon | South Australian Blue Gum |       |                              | <u>~</u>   |              |                        |                         | >                      |                             |
| Eucalyptus odorata                    | Peppermint Box            |       |                              |            |              |                        |                         | >                      |                             |
| Eutaxia microphylla                   | Common Eutaxia            |       |                              | >          | >            |                        |                         | >                      | >                           |
| Gonocarpus tetragynus                 | Small-leaf Raspwort       |       |                              | ` <u> </u> | >            |                        |                         |                        | >                           |
| Goodenia robusta                      | Woolly Goodenia           |       |                              | `          |              |                        |                         |                        | >                           |
| Gramineae sp.                         | Grass Family              |       |                              |            |              | >                      | >                       |                        |                             |
| Hardenbergia violacea                 | Native Lilac              |       |                              |            | >            |                        |                         |                        |                             |
| Juncus pallidus                       | Pale Rush                 |       |                              |            |              |                        |                         |                        |                             |
| Juncus subsecundus                    | Finger Rush               |       |                              |            |              |                        |                         |                        |                             |
| Kennedia prostrata                    | Scarlet Runner            |       |                              | `          | >            |                        |                         |                        |                             |
| Lepidosperma viscidum                 | Sticky Sword-sedge        |       |                              |            |              | >                      |                         | >                      |                             |
| Lomandra effusa                       | Scented Mat-rush          |       |                              | `          | `>           | `                      | >                       | `>                     |                             |
|                                       |                           |       |                              |            |              |                        |                         |                        |                             |

|                                     |                        | Cons | Conservation<br>Significance | C 0         |        | Vege                  | etation ( | Vegetation Community     | ity                    |                             |
|-------------------------------------|------------------------|------|------------------------------|-------------|--------|-----------------------|-----------|--------------------------|------------------------|-----------------------------|
| Species                             | Common Name            | t e  | State                        | 0<br>0<br>2 | Aallee | A. positina binalboow | grassland | Austrostipa<br>bnslssang | E. odorata<br>bnalboow | A. verticillata<br>woodland |
| Wahlenbergia luteola                | Yellow-wash Bluebell   |      |                              |             |        |                       | >         | >                        |                        |                             |
| *Acacia iteaphylla                  | Flinders Ranges Wattle |      | 2                            |             | >      | >                     |           |                          |                        |                             |
| *Aira sp.                           | Hair-grass             |      |                              |             | >      |                       |           |                          |                        |                             |
| *Asclepias curassavica              | Red-head Cotton-bush   |      |                              |             |        |                       | >         | >                        |                        |                             |
| *Avena barbata                      | Bearded Oat            |      |                              |             |        |                       | >         | >                        | >                      | >                           |
| *Briza maxima                       | Large Quaking-grass    |      |                              |             | >      | >                     | >         | >                        | >                      | >                           |
| *Chenopodium album                  | Fat Hen                |      |                              |             |        |                       |           |                          |                        |                             |
| *Chondrilla juncea                  | Skeleton Weed          |      |                              |             |        |                       |           | >                        |                        |                             |
| *Cynara cardunculus ssp. flavescens | Artichoke Thistle      |      |                              |             |        |                       |           | >                        |                        |                             |
| *Cynodon dactylon var. dactylon     | Couch                  |      |                              |             |        |                       |           |                          |                        |                             |
| *Hirschfeldia incana                | Hoary Mustard          |      |                              |             |        |                       |           |                          |                        |                             |
| *Juncus acutus                      | Sharp Rush             |      |                              |             |        |                       |           |                          |                        |                             |
| *Lycium ferocissimum                | African Boxthorn       |      |                              |             |        |                       |           |                          | >                      |                             |
| *Marrubium vulgare                  | Horehound              |      |                              |             |        |                       |           | >                        |                        |                             |
| *Nicotiana glauca                   | Tree Tobacco           |      |                              |             |        |                       |           |                          |                        |                             |
| *Panicum hillmanii                  | Witch-grass            |      |                              |             |        |                       |           | >                        |                        |                             |
| *Polypogon monspeliensis            | Annual Beard-grass     |      |                              |             |        |                       |           |                          |                        |                             |
| *Romulea rosea var. australis       | Common Onion-grass     |      |                              |             |        |                       |           | >                        |                        |                             |
| *Salvia verbenaca form              | Wild Sage              |      |                              |             |        |                       |           | >                        |                        |                             |
| *Scabiosa atropurpurea              | Pincushion             |      |                              |             |        |                       |           |                          |                        |                             |
| *Senecio pterophorus                | African Daisy          |      |                              |             |        |                       |           |                          | >                      |                             |
|                                     |                        |      |                              |             |        |                       |           |                          |                        |                             |

|                              | A. verticillata<br>bnslboow |                  |                                 |                |                |
|------------------------------|-----------------------------|------------------|---------------------------------|----------------|----------------|
| nity                         | E. odorata<br>woodland      |                  | >                               |                |                |
| Vegetation Community         | Austrostipa<br>grassland    | `                |                                 |                | >              |
| etation                      | brassland<br>Grassland      |                  |                                 |                |                |
| Veg                          | A. pycnantha<br>bnalboow    |                  |                                 |                |                |
|                              | Mallee                      |                  |                                 |                |                |
| on<br>ce                     | Reg.                        |                  |                                 |                |                |
| Sonservation<br>Significance | State                       |                  |                                 |                |                |
| Co                           | Z<br>Sat.                   |                  |                                 |                |                |
|                              | Common Name                 | Black Nightshade | Hare's-foot Clover              | Clover         | Fescue         |
|                              | Species                     | *Solanum nigrum  | *Trifolium arvense var. arvense | *Trifolium sp. | *Vulpia myuros |

Biological Survey Quadrat – Austrostipa sp. Open tussock grassland

SITE DESCRIPTION

Northing: 6114410 Easting: 318028 Quadrat: Quadrat 1

Observer: Ben Taylor Date: 13/2/07

Note: This position is the north-west corner of the quadrat.

MGA Zone: 54

PHYSICAL DESCRIPTION

Site Slope: 10 Landform Pattern: Hill

Site Aspect: 225° Landform Element: Hill slope

Outcrop Lithology: Not identifie d

Surface Strew Cover:

Plant Litter: 65%

Salt Crystals: 0% Bare Earth: 3% Fire Scars: No

Surface Strew Lithology:

Outcrop Cover: <10%

Surface Strew Size:

DISTURBANCE

Disturbance Impacts (within 30m radius of quadrat): None

VERTEBRATE PRESENCE

**Evidence Type** Dung **Animals Present** 

Sheep Rabbit

Comments: Although evidence of sheep is present the area appears to have been stock free for a considerable time.

Dung

Surface Soil Texture Class: silty loam

| VEGETATION DESCRIPTION  |                          |             |          |              |
|-------------------------|--------------------------|-------------|----------|--------------|
| Quadrat Size: 30x30m    | Climatic Conditions: Dry |             |          |              |
| Species                 | AD                       | LF          | CA       | ΓS           |
| Austrostipa sp.         | dominant overstorey      | grass <0.5m | 2        | dead/dormant |
| Moss                    |                          | mosses      | 2        | dead/dormant |
| Austrodanthonia sp.     |                          | grass <0.5m | <b>~</b> | dead/dormant |
| Avena barbata*          |                          | grass <0.5m | <b>~</b> | dead/dormant |
| Gramineae sp.           |                          | grass <0.5m | <b>~</b> | dead/dormant |
| Elymus scaber           |                          | grass <0.5m | ⊢        | dead/dormant |
| Romulea rosea*          |                          | herbaceous  | ⊢        | dead/dormant |
| Vittadinia cuneata      |                          | herbaceous  | ⊢        | flowering    |
| Aristeda behriana       |                          | grass <0.5m | Z        | vegetative   |
| Convolvulus sp.         |                          | herbaceous  | Z        | vegetative   |
| Maireana enchylaenoides |                          | herbaceous  | Z        | flowering    |
| Wahlenbergia luteola    |                          | herbaceous  | Z        | flowering    |
|                         |                          |             |          |              |

# VEGETATION ASSOCIATION DESCRIPTION

Canopy Cover Life Form/Height Class Grass < 0.5m

sparse

Structural Description: Open (tussock) grassland

Upper Stratum Age Classes Present: n/a

## OVERSTOREY MEASUREMENTS

Canopy Type: n/a

Overstorey Height (m): n/a Canopy Depth (m): n/a

Canopy Diameter (m): n/a

Gap (m): n/a

Biological Survey Quadrat - Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland

SITE DESCRIPTION

Easting: 318139 Quadrat: Quadrat 2

Date: 13/2/07

Observer: Ben Taylor

Northing: 6114550 MGA Zone: 54 Note: This position is the north-west corner of the quadrat.

PHYSICAL DESCRIPTION

Site Slope: 15° Landform Pattern: Hill

Outcrop Lithology: n/a Site Aspect: 90° Landform Element: Hill slope

Surface Strew Cover: <10% Surface Strew Size: cobble (51-250mm)

Outcrop Cover: nil

Surface Strew Lithology: Not identified

Salt Crystals: 0% Plant Litter: 40% Bare Earth: 5% Fire Scars: No

### DISTURBANCE

Disturbance Impacts (within 30m radius of quadrat): Access tracks, gully erosion

VERTEBRATE PRESENCE

**Evidence Type Animals Present** 

rabbit

Comments:

### SOILS

Surface Soil Texture Class: silty loam

| VEGETATION DESCRIPTION       |                          |                |          |                 |
|------------------------------|--------------------------|----------------|----------|-----------------|
| Quadrat Size: 30x30m         | Climatic Conditions: Dry |                |          |                 |
| Species                      | AD                       | LF             | CA       | ΓS              |
| Lomandra effusa              | Dominant overstorey      | Sedge <0.5m    | 8        | vegetative      |
| Austrodanthonia sp.          |                          | Grass < 0.5m   | <b>~</b> | Dead/dormant    |
| Austrostipa sp.              |                          | Grass < 0.5m   | <b>~</b> | Dead/dormant    |
| Avena barbata*               |                          | Grass < 0.5m   | <b>~</b> | Dead/dormant    |
| Briza maxima*                |                          | Grass <0.5m    | ⊢        | Dead/dormant    |
| Elymus scaber                |                          | Grass < 0.5m   | ⊢        | Dead/dormant    |
| Enchyleana tomentosa         |                          | Shrub <0.5m    | ⊢        | vegetative      |
| Enneapogon sp.               |                          | Grass <0.5m    | ⊢        | Dead/dormant    |
| Gramineae sp.                |                          | Grass >0.5m    | ⊢        | Dead/dormant    |
| Themeda triandra             |                          | Grass >0.5m    | ⊢        | Dead/dormant    |
| Acacia pycnantha             | emergent                 | Tree <0.5m     | Z        | vegetative      |
| Aristida behriana            |                          | Grass < 0.5m   | Z        | Dead/dormant    |
| Dodonea viscosa ssp. cuneata |                          | Shrub >2m      | Z        | vegetative      |
| Lepidosperma viscidum        |                          | Sedge <0.5m    | Z        | vegetative      |
| Maireana enchylaenoides      |                          | Shrub <0.5m    | Z        | immature fruits |
| Maireana georgei             |                          | shrub 0.5-1.0m | Z        | Mature fruits   |

# VEGETATION ASSOCIATION DESCRIPTION

Canopy Cover mid dense Life Form/Height Class Sedges < 0.5m

Upper Stratum Age Classes Present: n/a Structural Description: Sedgeland

## OVERSTOREY MEASUREMENTS

Canopy Type: n/a

Overstorey Height (m): n/a Canopy Depth (m): n/a

Canopy Diameter (m): n/a

Biological Survey Quadrat - Eucalyptus gracilis ± E. oleosa Open mallee

SITE DESCRIPTION

Easting: 318152 Quadrat: Quadrat 3

Date: 13/2/07

Northing: 6115240

MGA Zone: 54 Observer: Ben Taylor Note: This position is the north-west corner of the quadrat.

PHYSICAL DESCRIPTION

Site Slope: 5° Landform Pattern: Hill

Site Aspect: 180° Landform Element: Hill slope

Outcrop Cover: nil

Outcrop Lithology: n/a

Surface Strew Cover: <10% Surface Strew Size: cobble (51-250mm)

Surface Strew Lithology: Not identified

Plant Litter: 35%

Bare Earth: 10%

Fire Scars: No

Salt Crystals: 0%

### DISTURBANCE

Disturbance Impacts (within 30m radius of quadrat): Access tracks, borrow/quarry pit, coppice regrowth, fence lines

### VERTEBRATE PRESENCE

**Evidence Type Animals Present** 

Comments:

### SOILS

Surface Soil Texture Class: loam

### Appendix B Biological Survey Quadrat Data

|                          |                          | CA LS   | 3 Mature fruits     | 1 vegetative        | N vegetative                          | N vegetative               | 1 Dead/dormant | 1 Dead/dormant        | 1 Dead/dormant | 1 Dead/dormant      | T vegetative    | N vegetative                    | 2 Dead/dormant | T Dead/dormant  | T Dead/dormant | T Dead/dormant    | T vegetative              | T Dead/dormant        | 1 Dead/dormant | T Dead/dormant   | 1 Dead/dormant      | N vegetative         |                                    |                        |            |                |             |             |                |
|--------------------------|--------------------------|---------|---------------------|---------------------|---------------------------------------|----------------------------|----------------|-----------------------|----------------|---------------------|-----------------|---------------------------------|----------------|-----------------|----------------|-------------------|---------------------------|-----------------------|----------------|------------------|---------------------|----------------------|------------------------------------|------------------------|------------|----------------|-------------|-------------|----------------|
|                          |                          |         |                     | _                   |                                       |                            | _              | ٦                     |                | ر                   | ۲               | ٤                               |                | _               | _              | ٦                 | _                         |                       |                |                  | _                   | ۵                    |                                    |                        |            |                |             |             |                |
|                          |                          | LF      | mallee              | Tree <0.5m          | Tree 5-15m                            | Tree 5-15m                 | Grass <0.5m    | Shrub <0.5m           | herbaceous     | Grass <0.5m         | Sedge <0.5m     | Sedge >0.5m                     | moss           | Grass >0.5m     | Grass <0.5m    | Shrub <0.5m       | Grass >0.5m               | vine                  | herbaceous     | herbaceous       | Grass <0.5m         | Shrub <0.5m          |                                    |                        |            |                |             |             |                |
|                          | Climatic Conditions: Dry | AD      | Overstorey species  | Understorey species |                                       |                            |                | Understorey species   |                |                     |                 |                                 |                |                 |                |                   |                           |                       |                |                  | Understorey species |                      | NOIL                               | Canopy Cover           | mid dense  | very sparse    | very sparse | sparse      | very sparse    |
| VEGETATI ON DESCRIPTI ON | Quadrat Size: 30x30m     | Species | Eucalyptus gracilis | Acacia pycnantha    | Eucalyptus leucoxylon ssp. leucoxylon | Allocasuarina verticillata | Briza maxima   | Gonocarpus tetragynus | Senecio sp.    | Austrodanthonia sp. | Lomandra effusa | Dianella revoluta var. revoluta | Moss           | Austrostipa sp. | Aira sp.       | Olearia axillaris | Austrostipa elegantissima | Thysanotus patersonii | Romulea rosa   | Goodenia robusta | Austrostipa sp.     | Enchyleana tomentosa | VEGETATION ASSOCIATION DESCRIPTION | Life Form/Height Class | Mallee >3m | Sedges < 0.5 m | Trees 5-15m | Grass <0.5m | Herbaceous spp |

Structural Description: Mallee

Upper Stratum Age Classes Present: mature, hollows

## OVERSTOREY MEASUREMENTS

Canopy Type: 50%

Overstorey Height (m): 4, 3, 8, 9, 5, 10, 8, 9, 7, 5 Canopy Depth (m): 1, 0.5, 2, 1, 0.5, 1, 1.5, 0.5, 0.5, 1 Canopy Diameter (m): 1.5, 5, 4, 7, 1, 6, 2, 3, 6, 2 Gap (m): 0, 10, 2, 1, 8, 6, 0, 0, 2, 5

Biological Survey Quadrat - Eucalyptus odorata Low woodland

SITE DESCRIPTION

Easting: 318106 Quadrat: Quadrat 4

Observer: Ben Taylor Date: 13/2/07

Northing: 6115523

MGA Zone: 54

Note: This position is the south-west corner of the quadrat.

PHYSICAL DESCRIPTION

Site Slope: 15° Landform Pattern: Hill

Site Aspect: 360° Landform Element: Hill slope Outcrop Lithology: n/a

Outcrop Cover: nil

Surface Strew Cover: <10% Surface Strew Size: cobble (51-250mm)

Surface Strew Lithology: Not identified

Plant Litter: 40% Salt Crystals: 0% Bare Earth: 1% Fire Scars: No

DISTURBANCE

Disturbance Impacts (within 30m radius of quadrat): Access tracks

VERTEBRATE PRESENCE

**Evidence Type** Dung, sightings **Animals Present** 

macropod

Comments:

SOILS

Surface Soil Texture Class: loam

### Appendix B Biological Survey Quadrat Data

# VEGETATION ASSOCIATION DESCRIPTION

| Life Form/Height Class               | Canopy Cover |
|--------------------------------------|--------------|
| Trees 5-15m                          | sparse       |
| Shrubs 0-0.5m                        | sparse       |
| Grass < 0.5m                         | mid dense    |
| Structural Description: Low Woodland |              |

Upper Stratum Age Classes Present: sapling, mature, senescent, hollows, dead trees

## **OVERSTOREY MEASUREMENTS**

 $^{\circ}$ Canopy Type: 45% Overstorey Height (m): 10, 10, 8, 14, 6, 10 Canopy Depth (m): 1, 5, 3, 4, 2, 3, 2, 4, 5 Canopy Diameter (m): 18, 4, 10, 6, 4, 10, 3, 6, 8, Gap (m): 1, 0, 0, 0, 5, 3, 4, 0, 0

| Acadia acinacea         Wreath Wattle         Regional           Acadia balliana         Acadia balliana         State         Regional           Acadia balliana         Halis Wattle         2           Acadia balliana         Inhibit Bash         4           Acadia balliana         Inhibit Bash         4           Acadia microstrea         Inhibit Bash         4           Acadia Microstrea         Golden Wattle         6           Acadia pyciantha         Droping Sheak         1           Acadia pyciantha         Droping Sheak         1           Amphipogon carcinus var. carcinus         Colden Wattle         6           Amphipogon sp.         Amphipogon sp.         Recomment Grass         1           Aristide controrta         Box Mistlene         R.         1           Aristide controrta         Curry Wire-grass         R.         1           Artitropodium imbriatum         Nocding Vamila-lify         R.         1           Artitropodium imbriatum         Common Vandila-lify         R.         1           Artitropodium imbriatum         Common Vandila-lify         R.         1           Artitropodium imbriatum         Common Vandila-lify         R.         1           Artitropodium | Species                             | Common Name                | Conservation Significance <sup>a</sup> | icance <sup>a</sup> | Source <sup>b</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|----------------------------------------|---------------------|---------------------|
| Wreath Wattle         Wreath Wattle           Umbrish         Particle           Umbrish         Proposing Start           Sheep's Burr         Proposing Start           Dropoling Streeth Grass         RR           Grey-beard Grass         RR           Brox Mistletoe         RR           Brox Mistletoe         RR           Brox Mistletoe         RR           Corn Watsletoe         RR           Courly Wire-grass         R           Common Wooding-Hilly         R           Common Wooding-Hilly         R           Common Watsletoe         R                                                                                                                                               |                                     |                            |                                        | Regional            |                     |
| Hall's Wattle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acacia acinacea                     | Wreath Wattle              |                                        |                     | 1                   |
| Umbrella Bush         Manna Wattle           Goden Wattle         6 Geb S Burr           Cooping Shead         6 Grey-beard Grass           Bory Burr         6 Grey-beard Grass           Box Misteroe         R           Borus Wire-grass         R           Curly Wire-grass         R           Curly Wire-grass         R           Nodding Vanilla-illy         R           Common Woodruff         C           Common Woodruff         K           Common Woodruff         C           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Feather Spear-grass         Rusty Spear-grass           Rusty Spear-grass         Sear-grass           Dwarf Button-flower         B           Brome         Button-flower           Brome         B           Bushine-illy         R           Bushine-illy         R           Bushine-illy         R           Bushine-illy         R                                                                                                                                                                                                                                                                           | Acacia halliana                     | Hall's Wattle              |                                        |                     | 2                   |
| Manna Wattle         Golden Wattle           Golden Wattle         Sheep's Band           Drooping Sheak         R           Long Grey-beard Grass         Grey-beard Grass           Grey-beard Grass         R           Curly Wite-grass         R           Curly Wite-grass         R           Common Vanilla-Iliy         R           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Velvet Wallaby-grass         T           Crasted Spear-grass         T           Rusis Spear-grass         Faether Spear-grass           Spear-grass         Faether Spear-grass           Dwarf Button-flower         R           Burnaria         R           Downty Bursaria         R           Downty Bursaria         R                                                                                                                                                                                                                                                                                                                                    | Acacia ligulata                     | Umbrella Bush              |                                        |                     | 4                   |
| Golden Wattle         Sheep's Burr           Drooping Sheoak         6           Long Grey-beard Grass         6           Grey-beard Grass         R           Box Mistletoe         R           Brush Wire-grass         R           Curly Wire-grass         R           Nodding Vanilla-Ilily         R           Common Vanilla-Ilily         R           Common Woodruff         C           Cranberry Heath         R           Berry Saltbush         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Crested Spear-grass         Faltare Spear-grass           Rusty Spear-grass         Falcater-awn Spear-grass           Brower         Burseria           Burseria         R           Downty Bursaria         R           Downty Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                      | Acacia microcarpa                   | Manna Wattle               |                                        |                     | 4                   |
| Sheep's Burr         Drooping Sheoak         ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acacia pycnantha                    | Golden Wattle              |                                        |                     | 1                   |
| Drooping Sheoak         Corey-beard Grass           Long Grey-beard Grass         R           Box Mistletce         R           Bursh Wire-grass         R           Curly Wire-grass         R           Common Vanilla-lily         R           Common Wallabush         R           Common Wallaby-grass         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         K           Feather Spear-grass         Father Spear-grass           Rusty Spear-grass         Father Spear-grass           Busty Spear-grass         Father Grass           Busty Spear-grass         Father Shear-grass           Busty Broar-grass         Father Button-flower           Busty Broar-grass         Father Button-flower           Burne         Burne           Burne         Busty Broar-grass           Burne         Busty Broar-grass           Burne         Busty Broar-grass           Burne         Busty Broar-grass                                                                                                                                                                                                     | Acaena echinata                     | Sheep's Burr               |                                        |                     | 5                   |
| Long Grey-beard Grass         Grey-beard Grass           Grey-beard Grass         R           Box Mistletoe         R           Brank Wire-grass         R           Curly Wire-grass         R           Nodding Vanilla-lily         R           Common Vanilla-lily         R           Common Wallaby-grass         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         K           Feather Spear-grass         F           Rusty Spear-grass         F           Brower Brome         B           Bursaria         R           Downy Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Allocasuarina verticillata          | Drooping Sheoak            |                                        |                     | 1                   |
| Grey-beard Grass         R           Box Mistletoe         R           Brush Wire-grass         R           Curly Wire-grass         R           Nodding Vanilia-lily         R           Common Vanilia-lily         R           Common Wallaby-grass         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Feather Spear-grass         T           Rusty Spear-grass         T           Brower Button-flower         R           Bursaria         R           Downy Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amphipogon caricinus var. caricinus | Long Grey-beard Grass      |                                        |                     | 1                   |
| Box Mistletoe         R           Brush Wire-grass         R           Curly Wire-grass         R           Nodding Vanilla-Iliy         R           Common Vanilla-Iliy         R           Common Wallably-grass         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Feather Spear-grass         T           Feather Spear-grass         T           Bushin-Iliy         R           Bushin-Iliy         R           Bushin-Iliy         R           Bushin-Iliy         R           Downy Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amphipogon sp.                      | Grey-beard Grass           |                                        |                     | 4                   |
| Brush Wire-grass         R           Curly Wire-grass         R           Nodding Vanilla-lily         R           Common Vanilla-lily         R           Common Woodruff         R           Cranberty Heath         R           Berry Saltbush         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Eather Spear-grass         T           Rusty Spear-grass         T           Elacte-awn Spear-grass         T           Brower Button-flower         R           Burone-grass         R           Burone-lily         R           Bursaria         R           Downy Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amyema miquelii                     | Box Mistletoe              |                                        |                     | 4                   |
| Curly Wire-grass         R           Nodding Vanilla-lily         R           Common Vanilla-lily         R           Common Woodruff         R           Cranberry Heath         R           Berry Saltbush         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         K           Small-flower Wallaby-grass         T           Eather Spear-grass         T           Eather Spear-grass         T           Eather Spear-grass         T           Bush Spear-grass         R           Bush Spear-grass         R           Bush Brower         R           Bush Bursaria         R           Downy Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aristida behriana                   | Brush Wire-grass           |                                        | 2                   | 1                   |
| Nodding Vanilla-lily         Common Vanilla-lily           Common Wanilla-lily         Common Wallaby           Cranberry Heath         Rery Saltbush           Common Wallaby-grass         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Crested Spear-grass         T           Rusty Spear-grass         T           Broate-ayrass         Rusty Spear-grass           Dwarf Button-flower         R           Brome         Bulbine-lily           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aristida contorta                   | Curly Wire-grass           |                                        | 2                   | 4                   |
| Common Vanilla-lily         Common Vanilla-lily           Common Woodruff         Cranberry Heath           Cranberry Heath         K           Berry Saltbush         K           Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Crested Spear-grass         T           Rusty Spear-grass         T           Falcate-awn Spear-grass         R           Spear-grass         K           Brower         Brome           Bubline-lily         R           Bursaria         Downy Bursaria           Downy Bursaria         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arthropodium fimbriatum             | Nodding Vanilla-lily       |                                        |                     | 1                   |
| Common Woodruff         Cranberry Heath         Cranberry Heath         Cranberry Heath         Cranberry Heath         K           Berry Saltbush         Common Wallaby-grass         K         K           Common Wallaby-grass         K         K           Small-flower Wallaby-grass         K         T           Crested Spear-grass         T         T           Feather Spear-grass         Falcate-awn Spear-grass         K           Brower         Brome         K           Brower         Bulbine-lily         K           Bulbine-lily         Bulbine-lily         K           Bursaria         Downy Bursaria         K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arthropodium strictum               | Common Vanilla-lily        |                                        |                     | 1                   |
| Cramberry Heath         Cramberry Heath         Cramberry Heath         Common Wallaby-grass         K         Common Wallaby-grass         K         Common Wallaby-grass         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K <td>Asperula conferta</td> <td>  Common Woodruff</td> <td></td> <td></td> <td>1</td>         | Asperula conferta                   | Common Woodruff            |                                        |                     | 1                   |
| Berry Saltbush         Common Wallaby-grass           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         K           Crested Spear-grass         T           Eather Spear-grass         T           Rusty Spear-grass         Falcate-awn Spear-grass           Spear-grass         Falcate-awn Spear-grass           Spear-grass         Spear-grass           Dwarf Button-flower         R           Brome         Bulbine-lily           Bursaria         Downy Bursaria           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Astroloma humifusum                 | Cranberry Heath            |                                        |                     | 2                   |
| Common Wallaby-grass         K           Velvet Wallaby-grass         K           Small-flower Wallaby-grass         T           Crested Spear-grass         T           Rusty Spear-grass         T           Rusty Spear-grass         Falcate-awn Spear-grass           Spear-grass         Spear-grass           Dwarf Button-flower         R           Brome         Bubline-lily           Bursaria         Downy Bursaria           Downy Bursaria         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atriplex semibaccata                | Berry Saltbush             |                                        |                     | _                   |
| Velvet Wallaby-grass         K           Small-flower Wallaby-grass         Feather Spear-grass           Crested Spear-grass         T           Rusty Spear-grass         Falcate-awn Spear-grass           Falcate-awn Spear-grass         Spear-grass           Dwarf Button-flower         Rome           Brome         Bubline-lily           Bursaria         Downy Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Austrodanthonia caespitosa          | Common Wallaby-grass       |                                        |                     | 5                   |
| Small-flower Wallaby-grass         T           Crested Spear-grass         T           Feather Spear-grass         Rusty Spear-grass           Falcate-awn Spear-grass         Spear-grass           Dwarf Button-flower         Rusty Spear-grass           Brome         Bulbine-lily           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Austrodanthonia pilosa              | Velvet Wallaby-grass       |                                        | ~                   | 5                   |
| Crested Spear-grass         T           Feather Spear-grass         Rusty Spear-grass           Falcate-awn Spear-grass         Spear-grass           Dwarf Button-flower         Rubine-lily           Bulbine-lily         R           Bursaria         Downy Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Austrodanthonia setacea             | Small-flower Wallaby-grass |                                        |                     | 5                   |
| Crested Spear-grass         T           Feather Spear-grass         Rusty Spear-grass           Rusty Spear-grass         Falcate-awn Spear-grass           Spear-grass         Dwarf Button-flower           Brome         Brome           Bulbine-lily         R           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Austrodanthonia sp.                 |                            |                                        |                     | _                   |
| Feather Spear-grass         Rusty Spear-grass           Rusty Spear-grass         Falcate-awn Spear-grass           Spear-grass         Dwarf Button-flower           Brome         Bulbine-lily           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Austrostipa blackii                 | Crested Spear-grass        |                                        | ⊥                   | 2                   |
| Rusty Spear-grass         Falcate-awn Spear-grass           Spear-grass         Powarf Button-flower           Brome         Bulbine-lily           Bursaria         Rowny Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Austrostipa elegantissima           | Feather Spear-grass        |                                        |                     | 1                   |
| Falcate-awn Spear-grass         Falcate-awn Spear-grass           Spear-grass         Dwarf Button-flower           Brome         Bulbine-IIIy           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Austrostipa eremophila              | Rusty Spear-grass          |                                        |                     | 5                   |
| Spear-grass         Spear-grass           Dwarf Button-flower         Rome           Brome         Bulbine-lily           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Austrostipa scabra group            | Falcate-awn Spear-grass    |                                        |                     | 5                   |
| Dwarf Button-flower         Downy Bursaria         R           Brome         R         R           Bulbine-lily         R         R           Downy Bursaria         R         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Austrostipa sp.                     | Spear-grass                |                                        |                     | 1                   |
| Brome         Bulbine-lily         R           Bursaria         R           Downy Bursaria         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blennospora drummondii              | Dwarf Button-flower        |                                        |                     | 5                   |
| Bulbine-Iily         R           Bursaria         Powny Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromus sp.                          | Brome                      |                                        |                     | 4                   |
| Bursaria Downy Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bulbine bulbosa                     | Bulbine-Iily               |                                        | œ                   | _                   |
| Downy Bursaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bursaria spinosa                    | Bursaria                   |                                        |                     | _                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bursaria spinosa ssp. lasiophylla   | Downy Bursaria             |                                        |                     | 4                   |

| a rpureum tata ummondii trotenuifolia esertorum esertorum sertorum sertorum sertorum baxteri n apiculatum n baxteri n semipapposum thescens complex ana complex ana complex sa avar. revoluta sa ssp. cuneata sa ssp. spatulata tricans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Species                                  | Common Name            | Conservation Significance <sup>a</sup> | gnificance <sup>a</sup> | Source   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------|----------------------------------------|-------------------------|----------|
| and         Blue Grass-lily         R           pourtern         Pink Garland-lily         R           pourtern         Pink Garland-lily         K           protein         Pink Garland-lily         K           protein         Pink Garland-lily         K           protein         Pointed Centrolepis         K           protein         Pointed Centrolepis         K           protein         Pointed Centrolepis         K           protein         Pointed Centrolepis         K           protein         Pointed Coselloct         K           packed         Common Everlasting         R           packed         Common Everlasting         R           packed         Common Everlasting         R           packed         Common Everlasting         R           packed         Pointered Everlasting         R           packed         Constitution         R           packed         Australiar         R           packed         Australiar         R           packed         Protein         V         V           packed         Protein         Protein         Protein           packed         Protein         P                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                        |                                        |                         |          |
| Pourthern Cypress Pine         Southern Cypress Pine           Intracted         Pointed Cantrolleyis         K           Intracted         Pointed Cantrolleyis         K           Introcentificilis         Annual Rock-ferr         K           sesertorum         Desert Goosefoot         K           sesertorum         Common Everlasting         K           nestrorum         Australian Stonecrop         K         K           nestrorum         Australian Stonecrop         K         V         V           devenitor         R         R         R         R           start         R         R         R         R <t< td=""><td>Caesia calliantha</td><td>Blue Grass-lily</td><td></td><td>R</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                        | Caesia calliantha                        | Blue Grass-lily        |                                        | R                       | 2        |
| Punk Garland-lily state         Pink Garland-lily state         K           Italia         Pointed Centrolepis         K           Inmonodia         Annual Rock-fern         K           esertorum         Desert Goosefoot         C           paylical turn         Common Everlasting         C           nearticulaturn         White Everlasting         C           nebaxeri         Common Everlasting         C           nebaxeri         White Everlasting         C           nebaxeri         White Everlasting         C           nebaxeri         Common Everlasting         C           nebaxeri         Common Everlasting         C           nebaxeri         Common Everlasting         C           nebaxeri         Common Everlasting         C           nebaxeri         Composition         C           and complex         Dense Crassula         C           and complex         Augustial Sourcerop         C           step.         Dense Crassula         C           and complex         Cyptande         C           step.         Dense Crassula         C           and complex         Cyptande         C           step.         Dense C                                                                                                                                                                                                                                                                                                                                                                                             | Callitris gracilis                       | Southern Cypress Pine  |                                        |                         | 1        |
| telat         Pointed Centrolepis         K           Indication         Annual Rock-ferr         K           esertorum         Desert Goosefoot         C           esertorum         Common Everlasting         C           pakiculatum         Common Everlasting         C           n sepiculatum         White Everlasting         C           n semigaposum         Clustered Everlasting         C           n semigaposum         Australian Stonecrop         C           and complex         Australian Stonecrop         R           avar. revoluta         Baker, anther Flax-lily         R           sa sp. cuneata         Kidney Weed         V           sa sp. panchonii         Climbing Sandew         R           sa sp. panchonii         Climbing Sandew         R           sa sp. panchonii         Climbing Sandew         R           sa sp. patulata                                                                                                                                                                                                                                                                                                                                                          | Calostemma purpureum                     | Pink Garland-lily      |                                        |                         | 1        |
| unmondilit         Annual Rock-fern         Commondilit           seefcroum         Small-leaf Goosefoot         Common Everlasting           seefcroum ssp. microphyllum         Small-leaf Goosefoot         Common Everlasting           n apiculatum         Common Everlasting         Common Everlasting           n baxieri         White Everlasting         Common Everlasting           n baxieri         White Everlasting         Common Everlasting           n baxieri         Common Everlasting         Common Everlasting           n baxieri         Common Everlasting         Common Everlasting           n baxieri         Dones Crassula         Common Everlasting           n and complex         Complex         Common Everlasting           and complex         Cryptandra         R           and complex         Cryptandra         R           and complex         Cryptandra         R           and complex         Cryptandra         R           and complex         Native Carrier         R           Avar. revoluta         Black-anther Flax-lily         V           sa sp. cuneata         Sicky Hop-bush         V           sa sp. cuneata         Sicky Hop-bush         R           rath sasp. midran         R                                                                                                                                                                                                                                                                                                               | Centrolepis aristata                     | Pointed Centrolepis    |                                        | ¥                       | 2        |
| trotenuffolia         Annual Rock-fern           seratrorum         Desert Coosefoot         Common Everlasting           bestertorum sp. microphyllum         Small-leef Goosefoot         Common Everlasting           beakleri         White Everlasting         Common Everlasting           n semipapposum         Common Everlasting         Common Everlasting           n semipapposum         Clustered Everlasting         RR           n semipapposum         Curpating Everlasting         RR           n semipapposum         Stock Hound's-tongue         RR           n sa var. revoluta         Ridney Weed Flax-IIIV         V           n sa sp. spatulata         Sticky Hop-bush         V           n sa sp. spatulata         Climbing Satituesh         RR           n sa sp. spatulata         Climbing Satituesh         RR           n sa sp. spatulata         Ruby Satitush         RR           n sa sp. tandenchosis         Ruby Satitush                                                                                                                                                                                                                                                           | Chamaesyce drummondii                    |                        |                                        |                         | 4        |
| esertorum         Desert Goosefoot         Comment           esertorum ssp. microphyllum         Small-leaf Goosefoot         Conselloat           n apiculatum         Conselleaf Goosefoot         Conselloat           n baxteri         White Everlasting         Conselloat           n baxteri         White Everlasting         Conselloat           an expense complex         Bronse Crassula         Conselloat           an expense complex         Bronse Crassula         Conselloat           an expense         Australian Stonecrop         Rostribeat           an expense         Cryptandra         Rostribeat           avar. revoluta         Sucurt-pea         Rostribeat           avar. revoluta         Black-anther Flax-lily         Rostribeat           as ssp. cuneata         Black-anther Flax-lily         V           as ssp. cuneata         Wedge-leaf Hop-bush         V           as ssp. cuneata         Sitick Hop-bush         Rostribeat           as sp. patulata         Climbing Sattursh         Rostribeat           as sp. patulata         Climbing Sattursh         Rostribeat           as sp. utans         Ruthy Sattursh         Rostribeat Grass           Black-head Grass         Rostribeat Grass         Rostribeat Grass <td>Cheilanthes austrotenuifolia</td> <td>Annual Rock-fern</td> <td></td> <td></td> <td>1</td>                                                                                                                                                                                       | Cheilanthes austrotenuifolia             | Annual Rock-fern       |                                        |                         | 1        |
| esertorum ssp. microphyllum         Small-leaf Goosefoot         Common Everlasting         Common Everlasting | Chenopodium desertorum                   | Desert Goosefoot       |                                        |                         | 1        |
| n abiculatum         Common Everlasting         Possible Common Everlasting           n baxtering         White Everlasting         Possibabeles           n semipapposum         Clustered Everlasting         Possibabeles           dastering         Clustered Everlasting         Possibabeles           dastering         Bindweed         Possibabeles           dana complex         Crystadia         Possibabeles           dastering         Native Wheat-grass         Possibabeles           dastering         Climbing Saltbush         Possibabeles           dastering         Rottle-washers/Mineawn         Rottle-washers/Mineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chenopodium desertorum ssp. microphyllum | Small-leaf Goosefoot   |                                        |                         | 4        |
| n baxteri         White Everlasting         Perilasting           n semipaposum         Clustered Everlasting         Perilasting           thescens complex         Bindweed         Perilasting           ana complex         Australian Stonecrop         Perilasting           ana complex         Cryptandra         Perilasting           ana complex         Cryptandra         Perilasting           sicum         Sweet Hound's-tongue         Perilasting           suavoelens         Native Carrot         Perilasting           sa var. revoluta         Black-anther Flax-lily         Perilasting           ns         Kidney Weed         V         V           Nonkey Orchid         V         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         Perilasting         Perilasting           sa ssp. planchonii         Climbing Sundew         Siticky Hop-bush         R           sas. natans         Native Wheat-grass         R           sentosa         Implied Saltbush         R           sentosa         Implied Saltbush         R           sentosa         Impleed Grass         R           sentosa         R         R           sentosa         R         R                                                                                                                                                                                                                                                                                                                                                       | Chrysocephalum apiculatum                | Common Everlasting     |                                        |                         | 2        |
| n semipapposum         Clustered Everlasting         Permipapposum         Clustered Everlasting         Permipapposum                                                                             | Chrysocephalum baxteri                   | White Everlasting      |                                        |                         | 2        |
| reason complex         Bindweed         Complex         Bindweed           an a complex         Dense Crassula         R           an a complex         Cryptandra         R           an a complex         Cryptandra         R           gloum         Tall Scurf-pea         R           a var. complex         Native Carrot         R           a var. revoluta         Native Carrot         R           b Back-anther Flax-Ilily         N         V           b Behr's cowsilp Orchid         V         V           b Behr's cowsilp Orchid         V         V           b Behr's cowsilp Orchid         V         V           c Sa Ssp. cuneata         Sticky Hop-bush         R           c Sa Ssp. spatulata         Sticky Hop-bush         R           c Climbing Sundew         Sas Sticky Hop-bush         R           c Archer         R         R           c Saber         Native Wheat-grass         R           c Saber         Back-head Grass         R           c Saber         Back-head Grass         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chrysocephalum semipapposum              | Clustered Everlasting  |                                        |                         | _        |
| and complex         Bindweed           and complex         Dense Crassula           and complex         Australian Stonecrop           cryptandra         Cryptandra           icum         Tall Scurf-pea           taveolens         Sweet Hound's-tongue           at var. revoluta         Native Carrot           sat v. revoluta         Black-anther Flax-Illy           read v. revoluta         Black-anther Flax-Illy           read v. revoluta         Behr's Cowsilp Orchid           sa ssp. cuneata         Wedge-leaf Hop-bush           sa ssp. spatulata         Sticky Hop-bush           sa ssp. planchonii         Climbing Sundew           ssp. nutans         Climbing Saltbush           var. scaber         Native Wheat-grass           rentrosa var. tomentosa         Ruby Saltbush           pricans         Black-head Grass           pricans         Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Convolvulus erubescens complex           |                        |                                        |                         | _        |
| and complex         Dense Crassula           and complex         Australian Stonecrop           clidum         Cryptandra           taveolens         Sweet Hound's-tongue           atus         Native Carrot           atus         Black-anther Flax-Iliy           atus         Black-anther Flax-Iliy           sa var. revoluta         Kidney Weed           Behr's Cowsilp Orchid         V           sa ssp. cuneata         Wedge-leaf Hop-bush           sa ssp. spatulata         Sticky Hop-bush           sa ssp. planchonii         Climbing Sundew           ssp. nutans         Climbing Saltbush           var. scaber         Ruby Saltbush           pentosa var. tomentosa         Ruby Saltbush           pricans         Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Convolvulus sp.                          | Bindweed               |                                        |                         | 4        |
| and complex         Australian Stonecrop         Australian Stonecrop           clicum         Cryptandra         R           latus         Tall Scurf-pea         R           latus         Sweet Hound's-tongue         R           a var. revoluta         Native Carrot         R           la a var. revoluta         Black-anther Flax-illy         V           la sa ser. coneata         Kidney Weed         V           la behr's Cowsilp Orchid         V         V           la sa ssp. cuneata         Wedge-leaf Hop-bush         R           sa ssp. cuneata         Sticky Hop-bush         R           sa ssp. planchonii         Climbing Sandew         R           ssp. nutans         Climbing Sattbush         R           pentosa var. tomentosa         Ruby Saltbush         R           prican         Bottle-washers/Nineawn         R         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Crassula colorata                        | Dense Crassula         |                                        |                         | 1        |
| cryptandra         Cryptandra           Laveolens         Tall Scurf-pea           stus         Sweet Hound's-tongue         R           at var. revoluta         Native Carrot         R           ns         Ridney Weed         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         R         R           sa ssp. planchonii         Climbing Saltbush         R         R           sasp. nutans         Climbing Saltbush         R         R           sasp. nutans         Ruby Saltbush         R         R           pentosa var. tomentosa         Ruby Saltbush         R         R           pricans         Back-head Grass         R         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Crassula sieberiana complex              | Australian Stonecrop   |                                        |                         | _        |
| icum         Tall Scurf-pea         R           lauseolens         Sweet Hound's-tongue         R           atus         Native Carrot         R           a var. revoluta         Black-anther Flax-lily         V           ns         Kidney Weed         V           Behr's Cowslip Orchid         V         V           Donkey Orchid         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         C           sa ssp. planchonii         Climbing Suldow         R           sas sp. planchonii         Climbing Saltbush         R           var. scaber         Native Wheat-grass         R           lentosa var. tomentosa         Ruby Saltbush         R           pricans         Bottle-washers/Nineawn         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cryptandra sp.                           | Cryptandra             |                                        |                         | _        |
| Laveolens         Sweet Hound's-tongue         R           atus         Native Carrot         R           a var. revoluta         Black-anther Flax-lily         N           ns         Kidney Weed         V         V           Rehr's Cowslip Orchid         V         V         V           Donkey Orchid         V         V         V           Ses ssp. cuneata         Wedge-leaf Hop-bush         C         C           sa ssp. spatulata         Sticky Hop-bush         C         C           sthat ssp. planchonii         Climbing Sundew         R         R           ssp. nutans         Native Wheat-grass         R         R           rentosa var. tomentosa         Ruby Saltbush         R         R           pricans         Buttle-washers/Nineawn         R         R         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cullen australasicum                     | Tall Scurf-pea         |                                        |                         | 2        |
| atus Native Carrot avar. revoluta Black-anther Flax-lily bs Kidney Weed Behr's Cowslip Orchid bas ssp. cuneata Sap. spatulata Climbing Sandew ssp. nutans Climbing Saltbush Climbing Saltbush Climbing Saltbush Saber Ruby Saltbush Black-head Grass Behrtosa var. tomentosa by Bottle-washers/Nineawn Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cynoglossum suaveolens                   | Sweet Hound's-tongue   |                                        | 22                      | _        |
| a var. revoluta         Black-anther Flax-lily         A vidney Weed         A vidney Orchid         A vidney Orch                                         | Daucus glochidiatus                      | Native Carrot          |                                        |                         | 2        |
| ns         Kidney Weed         V         V           Behr's Cowslip Orchid         V         V           sa ssp. cuneata         Donkey Orchid         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         C         C           sa ssp. spatulata         Sticky Hop-bush         C         C           sa ssp. planchonii         Climbing Sundew         C         C           ssp. nutans         Native Wheat-grass         R         R           rentosa var. tomentosa         Ruby Saltbush         R         R           gricans         Bottle-washers/Nineawn         Bottle-washers/Nineawn         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dianella revoluta var. revoluta          | Black-anther Flax-lily |                                        |                         | _        |
| sa ssp. cuneata         Donkey Orchid         V         V           sa ssp. cuneata         Wedge-leaf Hop-bush         P         V           sa ssp. cuneata         Wedge-leaf Hop-bush         P         P           sa ssp. spatulata         Sticky Hop-bush         P         P           sticky Hop-bush         Climbing Sundew         P         P           ssp. nutans         Climbing Saltbush         R         R           var. scaber         Ruby Saltbush         R         R           lentosa var. tomentosa         Ruby Saltbush         R         R           pricans         Bottle-washers/Nineawn         R         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dichondra repens                         | Kidney Weed            |                                        |                         | _        |
| sa ssp. cuneataDonkey Orchidsa ssp. cuneataWedge-leaf Hop-bushsa ssp. spatulataSticky Hop-bushItha ssp. planchoniiClimbing Sundewssp. nutansClimbing Saltbushvar. scaberNative Wheat-grasslentosa var. tomentosaRuby SaltbushBlack-head GrassBottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diuris behrii                            | Behr's Cowslip Orchid  | >                                      | >                       | _        |
| sa ssp. cuneataWedge-leaf Hop-bushsa ssp. spatulataSticky Hop-bushitha ssp. planchoniiClimbing Sundewssp. nutansClimbing Saltbushvar. scaberNative Wheat-grasslentosa var. tomentosaRuby SaltbushBlack-head GrassBottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diuris sp.                               | Donkey Orchid          |                                        |                         | _        |
| sa ssp. spatulataSticky Hop-bushAnd the sept planchoniiClimbing Sundewtha ssp. planchoniiClimbing SultdewRssp. nutansClimbing SaltbushRvar. scaberNative Wheat-grassRlentosa var. tomentosaRuby SaltbushRgricansBottle-washers/NineawnB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dodonaea viscosa ssp. cuneata            | Wedge-leaf Hop-bush    |                                        |                         | 4        |
| trha ssp. planchoniiClimbing SaltbushRssp. nutansClimbing SaltbushR/ar. scaberNative Wheat-grassRlentosa var. tomentosaRuby SaltbushRgricansBlack-head GrassBottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dodonaea viscosa ssp. spatulata          | Sticky Hop-bush        |                                        |                         | _        |
| Ssp. nutans         Climbing Saltbush         R           /ar. scaber         Native Wheat-grass         R           lentosa var. tomentosa         Ruby Saltbush         R           gricans         Black-head Grass         R           Bottle-washers/Nineawn         Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drosera macrantha ssp. planchonii        | Climbing Sundew        |                                        |                         | 2        |
| Var. scaberNative Wheat-grassRlentosa var. tomentosaRuby SaltbushRgricansBlack-head GrassBlack-head GrassBottle-washers/NineawnBottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Einadia nutans ssp. nutans               | Climbing Saltbush      |                                        |                         | _        |
| lentosa var. tomentosa Ruby Saltbush Black-head Grass Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Elymus scaber var. scaber                | Native Wheat-grass     |                                        | 22                      | _        |
| gricans Black-head Grass Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enchylaena tomentosa var. tomentosa      | Ruby Saltbush          |                                        |                         | _        |
| Bottle-washers/Nineawn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enneapogon nigricans                     | Black-head Grass       |                                        |                         | <b>~</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enneapogon sp.                           | Bottle-washers/Nineawn |                                        |                         | 4        |

| Socional                               | Nommon Nome               | School Superior Signature | Ficanca  | q        |
|----------------------------------------|---------------------------|---------------------------|----------|----------|
|                                        |                           | National State            | Regional | )        |
| Epilobium billardierianum              | Robust Willow-herb        |                           | )        | 4        |
| Eucalyptus calycogona ssp. calycogona  | Square-fruit Mallee       |                           |          | _        |
| Eucalyptus gracilis                    | Yorrell                   |                           |          | 4        |
| Eucalyptus leucoxylon ssp. leucoxylon  | South Australian Blue Gum |                           | ~        | 1        |
| Eucalyptus odorata                     | Peppermint Box            |                           |          | 1        |
| Eucalyptus oleosa ssp. oleosa          | Red Mallee                |                           |          | 1        |
| Eucalyptus phenax ssp. phenax          | White Mallee              |                           |          | 1        |
| Eucalyptus porosa                      | Mallee Box                |                           |          | 1        |
| Eucalyptus rugosa                      | Coastal White Mallee      |                           |          | 2        |
| Eucalyptus socialis                    |                           |                           |          | 1        |
| Eutaxia microphylla                    | Common Eutaxia            |                           |          | 1        |
| Glycine rubiginosa                     | Twining Glycine           |                           |          | 1        |
| Gonocarpus elatus                      | Hill Raspwort             |                           |          | 1        |
| Gonocarpus tetragynus                  | Small-leaf Raspwort       |                           |          | 4        |
| Goodenia pinnatifida                   | Cut-leaf Goodenia         |                           |          | _        |
| Goodenia pusilliflora                  | Small-flower Goodenia     |                           |          | 1        |
| Goodenia robusta                       | Woolly Goodenia           |                           |          | -        |
| Gramineae sp.                          | Grass Family              |                           |          | _        |
| Halgania cyanea                        | Rough Blue-flower         |                           |          | _        |
| Hardenbergia violacea                  | Native Lilac              |                           |          | -        |
| Helichrysum leucopsideum               | Satin Everlasting         |                           |          | -        |
| Hibbertia crinita                      |                           |                           | O        | 2        |
| Hydrocotyle callicarpa                 | Tiny Pennywort            |                           |          | 5        |
| Hypoxis glabella var. glabella         | Tiny Star                 |                           |          | _        |
| Juncus bufonius                        | Toad Rush                 |                           |          | 2        |
| Juncus pallidus                        | Pale Rush                 |                           |          | 4        |
| Juncus subsecundus                     | Finger Rush               |                           |          | 4        |
| Kennedia prostrata                     | Scarlet Runner            |                           |          | -        |
| Lagenophora huegelii                   | Coarse Bottle-daisy       |                           |          | <b>-</b> |
| Lepidosperma viscidum                  | Sticky Sword-sedge        |                           |          | <b>-</b> |
| Leptorhynchos squamatus ssp. squamatus | Scaly Buttons             |                           | ~        | <b>-</b> |

| ssp. micrantha sp. dura exocarpi des dea dea . gracilis . gracilis a ssp. paniculosa a | Species                               | Common Name            | Conservation Significance <sup>a</sup> | on Signific | canceª   | Sourceb |
|----------------------------------------------------------------------------------------|---------------------------------------|------------------------|----------------------------------------|-------------|----------|---------|
| unicrantha dura ocarpi s racilis sp. paniculosa                                        |                                       |                        |                                        | State       | Regional |         |
| . micrantha dura ocarpi s fusum racilis sp. paniculosa                                 | Levenhookia dubia                     | Hairy Stylewort        |                                        |             | 2        | _       |
| dura dura dura carpi s racilis racilis                                                 | Lomandra densiflora                   | Soft Tussock Mat-rush  |                                        |             |          |         |
| dura dura dura ccarpi s fusum racilis racilis                                          | Lomandra effusa                       | Scented Mat-rush       |                                        |             |          | 1       |
| dura ocarpi s fusum fusum sp. paniculosa                                               | Lomandra micrantha ssp. micrantha     | Small-flower Mat-rush  |                                        |             |          | 4       |
| ocarpi serilis sp. paniculosa                                                          | Lomandra multiflora ssp. dura         | Hard Mat-rush          |                                        |             |          | 1       |
| ocarpi fusum fusum sp. paniculosa                                                      | Lomandra nana                         | Small Mat-rush         |                                        |             | æ        | 2       |
| ocarpi  fusum fusum sp. paniculosa                                                     | Lotus australis                       | Austral Trefoil        |                                        |             |          | 2       |
| racilis                                                                                | Lysiana exocarpi ssp. exocarpi        | Harlequin Mistletoe    |                                        |             |          | 4       |
| racilis sp. paniculosa                                                                 | Maireana brevifolia                   | Short-leaf Bluebush    |                                        |             |          | 1       |
| racilis sp. paniculosa                                                                 | Maireana enchylaenoides               | Wingless Fissure-plant |                                        |             |          | 1       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Maireana georgei                      | Satiny Bluebush        |                                        |             |          | 4       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Maireana sp.                          | Bluebush/Fissure-plant |                                        |             |          | 4       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Microtis unifolia complex             | Onion-orchid           |                                        |             |          | _       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Millotia myosotidifolia               | Broad-leaf Millotia    |                                        |             |          | 1       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Neurachne alopecuroidea               | Fox-tail Mulga-grass   |                                        |             |          | _       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Olearia axillaris                     | Coast Daisy-bush       |                                        |             |          | 4       |
| fusum<br>racilis<br>sp. paniculosa                                                     | Olearia ramulosa                      | Twiggy Daisy-bush      |                                        |             | œ        | _       |
| fusum<br>racilis                                                                       | Oxalis perennans                      | Native Sorrel          |                                        |             |          | _       |
| racilis<br>sp. paniculosa                                                              | Panicum effusum var. effusum          | Hairy Panic            |                                        |             |          | 2       |
| racilis<br>sp. paniculosa                                                              | Persicaria prostrata                  | Creeping Knotweed      |                                        |             |          | 4       |
| racilis<br>sp. paniculosa                                                              | Pheladenia deformis                   | Bluebeard Orchid       |                                        |             |          | _       |
| racilis                                                                                | Phyllangium divergens                 | Wiry Mitrewort         |                                        |             |          | 2       |
| sp. paniculosa                                                                         | Pimelea curviflora var. gracilis      | Curved Riceflower      |                                        |             |          | _       |
| sp. paniculosa                                                                         | Pimelea micrantha                     | Silky Riceflower       |                                        |             |          | 2       |
| sp. paniculosa                                                                         | Plantago gaudichaudii                 | Narrow-leaf Plantain   |                                        |             |          | _       |
| sp. paniculosa                                                                         | Plantago sp.                          | Plantain               |                                        |             |          | 4       |
| sp. paniculosa                                                                         | Plantago varia                        | Variable Plantain      |                                        |             |          | 2       |
| ssp. paniculosa                                                                        | Pogonolepis muelleriana               | Stiff Cup-flower       |                                        |             |          | _       |
|                                                                                        | Pomaderris paniculosa ssp. paniculosa | Mallee Pomaderris      |                                        |             |          | 2       |
|                                                                                        | Poranthera microphylla                | Small Poranthera       |                                        |             |          | 2       |
|                                                                                        | Pteridium esculentum                  | Bracken Fern           |                                        |             | 22       | 4       |

| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    |                               |          | 31 2 2 2 2 4 7 1 7        | 6000      | q     |
|--------------------------------------------|-------------------------------|----------|---------------------------|-----------|-------|
| Species                                    |                               | National | conservation significance | Pegional  | annoc |
|                                            |                               | National | State                     | hegioliai | 7     |
| Pterostylis sp.                            | Greennood                     |          |                           |           |       |
| Ptilotus erubescens                        | Hairy-tails                   |          | 22                        | ~         | 2     |
| Ptilotus spathulatus f. spathulatus        | Pussy-tails                   |          |                           |           | _     |
| Rhamnaceae sp.                             |                               |          |                           |           | 4     |
| Salsola kali                               | Buckbush                      |          |                           |           | 4     |
| Scaevola albida                            | Pale Fanflower                |          |                           |           | 1     |
| Scaevola sp.                               | Fanflower                     |          |                           |           | 4     |
| Sebaea ovata                               | Yellow Sebaea                 |          |                           |           | 2     |
| Senecio picridioides                       | Purple-leaf Groundsel         |          |                           | ~         | 2     |
| Senecio pinnatifolius                      | Variable Groundsel            |          |                           |           | 1     |
| Senecio quadridentatus                     | Cotton Groundsel              |          |                           |           | 1     |
| Senecio sp.                                | Groundsel                     |          |                           |           | 4     |
| Senna artemisioides                        | Desert Senna                  |          |                           |           | 1     |
| Solenogyne dominii                         | Smooth Solenogyne             |          |                           | ~         | 1     |
| Stackhousia monogyna                       | Creamy Candles                |          |                           |           | _     |
| Swainsona sp.                              | Swainson-pea                  |          |                           |           | _     |
| Themeda triandra                           | Kangaroo Grass                |          |                           |           | 4     |
| Thysanotus patersonii                      | Twining Fringe-Iily           |          |                           |           | 1     |
| Tricoryne elatior                          | Yellow Rush-Iily              |          |                           |           | 2     |
| Triptilodiscus pygmaeus                    | Small Yellow-heads            |          |                           |           |       |
| Velleia arguta                             | Toothed Velleia               |          |                           |           | _     |
| Velleia paradoxa                           | Spur Velleia                  |          |                           |           | 5     |
| Velleia sp.                                | Velleia                       |          |                           |           | 4     |
| Vittadinia blackii                         | Narrow-leaf New Holland Daisy |          |                           |           | 4     |
| Vittadinia cervicularis var. cervicularis  | Waisted New Holland Daisy     |          |                           |           | 2     |
| Vittadinia cuneata var. cuneata f. cuneata | Fuzzy New Holland Daisy       |          |                           |           | _     |
| Vittadinia gracilis                        | Woolly New Holland Daisy      |          |                           |           | 1     |
| Vittadinia megacephala                     | Giant New Holland Daisy       |          |                           |           | _     |
| Vittadinia sp.                             | New Holland Daisy             |          |                           |           | 4     |
| Wahlenbergia luteola                       | Yellow-wash Bluebell          |          |                           |           | _     |
| Wahlenbergia stricta ssp. stricta          | Tall Bluebell                 |          |                           |           | _     |

| C C C C C C C C C C C C C C C C C C C        |                           |                | 00000000000000000000000000000000000000 | 9 |
|----------------------------------------------|---------------------------|----------------|----------------------------------------|---|
|                                              |                           | National State | Regional                               | 5 |
| Wurmbea sp.                                  | Nancy                     |                | )                                      | 2 |
| *Acacia cyclops                              | Western Coastal Wattle    |                |                                        | _ |
| *Acacia iteaphylla                           | Flinders Ranges Wattle    | ~              |                                        | 4 |
| *Aira elegantissima                          | Delicate Hair-grass       |                |                                        | 5 |
| *Aira sp.                                    | Hair-grass                |                |                                        | 4 |
| *Anagallis arvensis                          | Pimpernel                 |                |                                        | 5 |
| *Asclepias curassavica                       | Red-head Cotton-bush      |                |                                        | 4 |
| *Asparagus asparagoides                      | Bridal Creeper            |                |                                        | 3 |
| *Asphodelus fistulosus                       | Onion Weed                |                |                                        | _ |
| *Avena barbata                               | Bearded Oat               |                |                                        | 1 |
| *Briza maxima                                | Large Quaking-grass       |                |                                        | 4 |
| *Briza minor                                 | Lesser Quaking-grass      |                |                                        | 1 |
| *Bromus hordeaceus ssp. hordeaceus           | Soft Brome                |                |                                        | 5 |
| *Carduus pycnocephalus                       | Shore Thistle             |                |                                        | 5 |
| *Centaurea melitensis                        | Malta Thistle             |                |                                        | 5 |
| *Centaurium erythraea                        | Common Centaury           |                |                                        | 5 |
| *Chenopodium album                           | Fat Hen                   |                |                                        | 4 |
| *Chondrilla juncea                           | Skeleton Weed             |                |                                        | 4 |
| *Chrysanthemoides monilifera ssp. monilifera | Boneseed                  |                |                                        | 3 |
| *Cynara cardunculus ssp. flavescens          | Artichoke Thistle         |                |                                        |   |
| *Disa brachteata                             | South African Weed Orchid |                |                                        | 9 |
| *Echium plantagineum                         | Salvation Jane            |                |                                        | _ |
| *Galium murale                               | Small Bedstraw            |                |                                        | 5 |
| *Gomphocarpus cancellatus                    | Broad-leaf Cotton-bush    |                |                                        | _ |
| *Juncus acutus                               | Sharp Rush                |                |                                        | 4 |
| *Lycium ferocissimum                         | African Boxthorn          |                |                                        | 4 |
| *Marrubium vulgare                           | Horehound                 |                |                                        | _ |
| *Nicotiana glauca                            | Tree Tobacco              |                |                                        | 5 |
| *Olea europaea ssp. europaea                 | Olive                     |                |                                        | 3 |
| *Oxalis pes-caprae                           | Soursob                   |                |                                        | _ |
| *Panicum hillmanii                           | Witch-grass               |                |                                        | 4 |

## Combined Species List for all Surveys Appendix C

| Species                         | Common Name              | Conserv  | Conservation Significance <sup>a</sup> | ficance <sup>a</sup> | Source |
|---------------------------------|--------------------------|----------|----------------------------------------|----------------------|--------|
|                                 |                          | National | State                                  | Regional             |        |
| *Parentucellia latifolia        | Red Bartsia              |          |                                        |                      | 1      |
| *Pentaschistis pallida          | Pussy Tail               |          |                                        |                      | 2      |
| *Petrorhagia dubia              | Velvet Pink              |          |                                        |                      | 2      |
| *Pinus halepensis               | Aleppo Pine              |          |                                        |                      | 3      |
| *Polypogon monspeliensis        | Annual Beard-grass       |          |                                        |                      | 4      |
| *Romulea minutiflora            | Small-flower Onion-grass |          |                                        |                      | 2      |
| *Romulea rosea var. australis   | Common Onion-grass       |          |                                        |                      | 4      |
| *Salvia verbenaca form          | Wild Sage                |          |                                        |                      | 1      |
| *Scabiosa atropurpurea          | Pincushion               |          |                                        |                      | 1      |
| *Senecio pterophorus            | African Daisy            |          |                                        |                      | 1      |
| *Silene gallica var. gallica    | French Catchfly          |          |                                        |                      | 2      |
| *Solanum nigrum                 | Black Nightshade         |          |                                        |                      | 4      |
| *Spergularia sp.                | Sand-spurrey             |          |                                        |                      | 1      |
| *Tolpis barbata                 | Yellow Hawkweed          |          |                                        |                      | 2      |
| *Trifolium angustifolium        | Narrow-leaf Clover       |          |                                        |                      | _      |
| *Trifolium arvense var. arvense | Hare's-foot Clover       |          |                                        |                      | 4      |
| *Trifolium sp.                  | Clover                   |          |                                        |                      | 4      |
| *Vulpia ciliata                 | Fringed Fescue           |          |                                        |                      | 2      |
| *Vulpia mvuros                  | Fescue                   |          |                                        |                      | 4      |

\*Introduced species

<sup>a</sup>Conservation Significance Codes:

V = Vulnerable; rare and at risk from potential threats in the long term T = Threatened; rare and likely to become either endangered or vulnerable R = Rare; having a low overall frequency, confined to a restricted range or scattered sparsely over a wide area

K = Uncertain; either threatened or rare but insufficient data for a more precise assessment

bSources:

I = Playfair (2004)

 $2 = not\ I$  but Kanmantoo-Callington Landcare Group Significant Vegetation Study (2006)  $3 = not\ I$  or 2 but Kanmantoo-Callington Landcare Group Interim Weed Control Strategy (2006)

4 = not 1, 2 or 3 but the survey undertaken for this report 5 = not 1, 2, 3 or 4 but Biological Database of South Australia (DEH) 6 = not 1, 2, 3, 4 or 5 but Ecological Associates (2006)

Appendix D Data for Scattered Trees within Proposed Project Footprint

|         | Photo File<br>(DSCN)        | 2461               | 2462               | 2462               | 2462               | 2463               | 2463               | 2464               | 2464               | 2465               | 2465               | 2466               | 2467               | 2467               |
|---------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|         | SEBWF                       | ω                  | 10                 | 10                 | 9                  | 9                  | 9                  | ω                  | 9                  | 9                  | ω                  | 10                 | 9                  | ω                  |
|         | Tree Score                  | 43.84              | 90.69              | 66.45              | 39.13              | 33.94              | 37.35              | 40.97              | 33.94              | 28.86              | 56.07              | 90.69              | 28.86              | 51.59              |
| ore     | Proximity Sco               | -                  | 7                  | 2                  | 2                  | 2                  | 2                  | 2                  | 7                  | 7                  | 7                  | 7                  | 7                  | 2                  |
| е       | Density Score               | -                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  |
| е       | Threatened<br>Species Score | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  |
| S.      | large                       | 8                  | -                  | 2                  |                    |                    |                    |                    |                    |                    | -                  | -                  |                    |                    |
| hollows | muibəm                      | 8                  | -                  |                    | <b>—</b>           |                    |                    |                    | -                  |                    |                    |                    |                    |                    |
| حَ      | Ilsma                       |                    | -                  |                    |                    |                    |                    | 2                  |                    |                    |                    |                    |                    | _                  |
|         | % Dieback                   | 10                 | 0                  | 2                  | D                  | 10                 | 0                  | 0                  | 20                 | 0                  | 0                  | 0                  | 0                  | 0                  |
|         | Canopy Area<br>(m²)         | 113.1              | 113.1              | 78.5               | 95.0               | 113.1              | 153.9              | 113.1              | 50.3               | 50.3               | 28.3               | 227.0              | 132.7              | 132.7              |
| sr      | Canopy Radiu<br>(m)         | 9                  | 9                  | Ŋ                  | 5.5                | 9                  | 7                  | 9                  | 4                  | 4                  | က                  | 8.5                | 6.5                | 6.5                |
|         | DBH (cw)                    | 75                 | 92                 | 09                 | 09                 | 75                 | 40                 | 20                 | 40                 | 20                 | 45                 | 06                 | 20                 | 40                 |
|         | (m) †dgiəH                  | 6                  | 12                 | -                  | ω                  | 12                 | -                  | 6                  | 9                  | 6                  | 6                  | -                  | 6                  | 10                 |
|         | Species                     | Eucalyptus odorata |
|         | Latitude                    | -35.08341939190    | -35.08267491120    | -35.08295863870    | -35.08301999420    | -35.08289845660    | -35.08289845660    | -35.08317589760    | -35.08324747910    | -35.08340639990    | -35.08340639990    | -35.08302669970    | -35.08324529980    | -35.08332828060    |
|         | Longitude                   | 138.98798044800    | 138.99052921700    | 138.99081621300    | 138.99075376800    | 138.99153563200    | 138.99153563200    | 138.99123799100    | 138.99127545800    | 138.99160453100    | 138.99160453100    | 138.99188021200    | 138.99197107200    | 138.99201432200    |
|         | Tree #                      | 10                 | 7                  | 12                 | 13                 | 14                 | 15                 | 16                 | 17                 | 8                  | 19                 | 20                 | 21                 | 22                 |

Appendix D Data for Scattered Trees within Proposed Project Footprint

|         | Photo File<br>(DSCN)        | 2467               | 2467               | 2468               | 2469               | 2470               | 2470               | 2471               | 2472               | 2473               | 2474               | 2475               | 2485               | 2486               |
|---------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|         | SEBWF                       | 10                 | ω                  | 9                  | 9                  | ω                  | 9                  | 9                  | 9                  | 9                  | 9                  | ω                  | 9                  | 9                  |
|         | Tree Score                  | 90.69              | 49.44              | 34.35              | 31.14              | 47.87              | 34.35              | 21.16              | 29.60              | 29.60              | 37.79              | 43.84              | 27.05              | 22.38              |
| ore     | Proximity Sco               | 2                  | 2                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  |
| E       | Density Score               | 2                  | 2                  | -                  | -                  | 2                  | 2                  | ~                  | -                  | -                  | 2                  | 2                  | -                  | ~                  |
| E       | Threatened<br>Species Score | -                  | -                  | -                  | -                  | -                  | -                  | -                  | -                  | _                  | _                  | -                  | -                  | -                  |
| s/      | large                       | -                  |                    |                    |                    |                    |                    |                    |                    |                    |                    | ~                  |                    |                    |
| hollows | mnipəm                      | _                  | -                  | -                  |                    | 7                  |                    |                    |                    |                    | -                  | -                  |                    |                    |
|         | lleme                       |                    |                    |                    |                    | <b>—</b>           |                    |                    |                    |                    | -                  |                    | 7                  |                    |
|         | % Dieback                   | 0                  | Ŋ                  | 0                  | 0                  | 0                  | 0                  | 10                 | വ                  | വ                  | 0                  | 20                 | 20                 | 2                  |
|         | Canopy Area (m²)            | 113.1              | 176.7              | 113.1              | 95.0               | 176.7              | 176.7              | 78.5               | 63.6               | 153.9              | 113.1              | 78.5               | 38.5               | 38.5               |
| sr      | Canopy Radiu<br>(m)         | 9                  | 7.5                | 9                  | 5.5                | 7.5                | 7.5                | D                  | 4.5                | 7                  | 9                  | വ                  | 3.5                | 3.5                |
|         | DBH (cm)                    | 09                 | 45                 | 82                 | 40                 | 80                 | 40                 | 55                 | 55                 | 120                | 80                 | 55                 | 09                 | 40                 |
|         | (m) †AgiəH                  | 13                 | -                  | ω                  | 10                 | 12                 | -                  | 6                  | 12                 |                    | 6                  | 7                  | 12                 | 6                  |
|         | Species                     | Eucalyptus odorata |
|         | Latitude                    | -35.08337941020    | -35.08342953400    | -35.08392104880    | -35.08401073520    | -35.08505076170    | -35.08520448580    | -35.08630167690    | -35.08629815650    | -35.08221415800    | -35.08158417420    | -35.08160043510    | -35.08801644670    | -35.08812909950    |
|         | Longitude                   | 138.99183947600    | 138.99179345900    | 138.99165096700    | 138.99244297300    | 138.99447499800    | 138.99451682300    | 138.99522174100    | 138.99502367700    | 138.99391299100    | 138.99231791500    | 138.99257188700    | 138.99410963100    | 138.99416713000    |
|         | Tree #                      | 23                 | 24                 | 25                 | 26                 | 27                 | 28                 | 29                 | 30                 | 31                 | 32                 | 33                 | 4                  | 42                 |

Appendix D Data for Scattered Trees within Proposed Project Footprint

|         | (DSCN)                     | 2488               | 2488               | 2488               | 2489               | 2492               | 2493               | 2493               | 2494               | 2494               | 2494               | 2494               | 2494               | 2495               |
|---------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|         | SEBWE                      | ω                  | 9                  | 9                  | 10                 | 9                  | 9                  | 9                  | 9                  | 4                  | 9                  | 9                  | 9                  | 9                  |
|         | Tree Score                 | 43.84              | 31.14              | 30.75              | 61.42              | 30.36              | 27.05              | 38.68              | 23.33              | 14.49              | 28.86              | 26.00              | 30.36              | 30.75              |
| ore     | os ytimixon9               | <b>~</b>           | -                  | -                  | 2                  | 8                  | 8                  | 8                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  |
|         | Density Scon               | 3                  | 8                  | က                  | -                  | -                  | -                  | _                  | m                  | က                  | က                  | m                  | м                  | <b>-</b>           |
| Ә.      | Threatened<br>Species Scor | -                  | -                  | ~                  | ~                  | ~                  | ~                  | ~                  | ~                  | _                  | -                  | _                  | ~                  | -                  |
| NS N    | large                      | -                  |                    |                    | ~                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| hollows | muibəm                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|         | Ileme                      |                    |                    | _                  |                    |                    |                    | _                  |                    |                    |                    |                    |                    | _                  |
|         | % Dieback                  | 30                 | 20                 | 2                  | 2                  | 20                 | വ                  | വ                  | 30                 | 70                 | 10                 | 20                 | വ                  | 20                 |
|         | Canopy Area<br>(m²)        | 19.6               | 78.5               | 12.6               | 38.5               | 78.5               | 50.3               | 38.5               | 12.6               | 50.3               | 12.6               | 12.6               | 28.3               | 38.5               |
| sn      | Canopy Radi<br>(m)         | 2.5                | D                  | 2                  | 3.5                | വ                  | 4                  | 3.5                | 2                  | 4                  | 2                  | 2                  | n                  | 3.5                |
|         | DBH (cm)                   | 25                 | 20                 | 20                 | 40                 | 35                 | 40                 | 45                 | 20                 | 45                 | 20                 | 30                 | 40                 | 35                 |
|         | (m) †dgiəH                 | 9                  | =                  | 4                  | 10                 | 10                 | 6                  | വ                  | 7                  | ω                  | സ                  | 9                  | 7                  | ω                  |
|         | Species                    | Eucalyptus odorata |
|         | Latitude                   | -35.08796364070    | -35.08796364070    | -35.08796364070    | -35.08845331150    | -35.08825868370    | -35.08893879130    | -35.08893879130    | -35.08781109010    | -35.08781109010    | -35.08781109010    | -35.08781109010    | -35.08781109010    | -35.08720165960    |
|         | Longitude                  | 138.99359833400    | 138.99359833400    | 138.99359833400    | 138.99288126300    | 138.99118250200    | 138.99106356300    | 138.99106356300    | 138.99122181300    | 138.99122181300    | 138.99122181300    | 138.99122181300    | 138.99122181300    | 138.99098093800    |
|         | Tree #                     | 43                 | 44                 | 45                 | 46                 | 47                 | 48                 | 49                 | 20                 | 21                 | 52                 | 53                 | 54                 | 55                 |

Appendix D Data for Scattered Trees within Proposed Project Footprint

|         |                            |                    | Τ_                 | T                  | Τ_                 |                    | Τ                  |                    | T_0.               | T                  | Τ                  | T.,                | Τ_                 | T                  |
|---------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|         | (DSCN)                     | 2496               | 2497               | 2498               | 2499               | 2500               | 2501               | 2502               | 2502               | 2503               | 2504               | 2505               | 2506               | 2508               |
|         | SEBWF                      | 9                  | 4                  | 9                  | 4                  | ω                  | 9                  | 9                  | 9                  | ω                  | 4                  | 9                  | 9                  | 9                  |
|         | Tree Score                 | 26.00              | 9.58               | 23.33              | 14.49              | 43.35              | 26.00              | 27.40              | 21.76              | 40.51              | 12.49              | 29.98              | 25.65              | 36.91              |
| ore     | Proximity Sc               | 7                  | 7                  | 2                  | 2                  | 2                  | 2                  | 7                  | 7                  | м                  | м                  | m                  | m                  | m                  |
| Э       | Density Scor               | 7                  | 7                  | 7                  | 2                  | 2                  | 2                  | 7                  | 7                  | 7                  | 7                  | 7                  | 7                  | 7                  |
| Э       | Threatened<br>Species Scor | ~                  | ~                  | ~                  | ~                  | -                  | ~                  | -                  | -                  | -                  | _                  | ~                  | ~                  | -                  |
| S/      | large                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| hollows | wnipəw                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | -                  |
| ے       | Ilems                      |                    |                    |                    |                    | -                  |                    |                    |                    |                    |                    |                    |                    |                    |
|         | % Dieback                  | 10                 | 06                 | 20                 | 09                 | 20                 | 10                 | 2                  | 0                  | 0                  | 80                 | Ω                  | 20                 | 20                 |
|         | Canopy Area<br>(m²)        | 38.5               | 28.3               | 38.5               | 19.6               | 78.5               | 19.6               | 63.6               | 3.1                | 78.5               | 7.1                | 63.6               | 63.6               | 38.5               |
| sr      | Canopy Radiu<br>(m)        | 3.5                | m                  | 3.5                | 2.5                | Ŋ                  | 2.5                | 4.5                | -                  | D                  | 7.7                | 4.5                | 4.5                | 3.5                |
|         | DBH (cw)                   | 20                 | 25                 | 45                 | 25                 | 20                 | 35                 | 40                 | ω                  | 80                 | 30                 | 30                 | 35                 | 70                 |
|         | (m) theiaH                 | Ω                  | 7                  | 7                  | 9                  | 10                 | 6                  | 7                  | 4                  | 1                  | 7                  | ω                  | ∞                  | 6                  |
|         | Species                    | Eucalyptus odorata |
|         | Latitude                   | -35.08765319900    | -35.08737405760    | -35.08743088690    | -35.08779784660    | -35.08856881410    | -35.08888598530    | -35.08908547460    | -35.08908547460    | -35.08945796640    | -35.08945796640    | -35.08889369670    | -35.08863721040    | -35.08814636620    |
|         | Longitude                  | 138.99122264900    | 138.99054464000    | 138.99021456000    | 138.99027801100    | 138.99013526700    | 138.98985983800    | 138.98985883200    | 138.98985883200    | 138.98913790500    | 138.98913790500    | 138.98905442100    | 138.98911703400    | 138.98896683000    |
|         | # 991 <u>T</u>             | 26                 | 57                 | 28                 | 26                 | 09                 | 61                 | 62                 | 63                 | 64                 | 65                 | 99                 | 67                 | 89                 |
|         |                            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |

# Data for Scattered Trees within Proposed Project Footprint Appendix D

|         | (DSCN)                     | 2509                          | 2533               | 2536               | 2536               |
|---------|----------------------------|-------------------------------|--------------------|--------------------|--------------------|
|         | SEBWF                      | ∞                             | 10                 | 4                  | 4                  |
|         | Tree Score                 | 40.51                         | 63.90              | 18.56              | 18.56              |
| ore     | Proximity Sc               | ю                             | 2                  | 2                  | 2                  |
| Э       | Density Scor               | 2                             | 2                  | 2                  | -                  |
| Э       | Threatened<br>Species Scor | _                             | -                  | -                  | _                  |
| s w     | large                      |                               | -                  |                    |                    |
| hollows | muibəm                     |                               | _                  |                    |                    |
|         | Ileme                      | _                             |                    |                    |                    |
|         | % Dieback                  | 0                             | 10                 | 40                 | 30                 |
|         | Canopy Area                | 28.3                          | 19.6               | 12.6               | 50.3               |
| sr      | Canopy Radiu<br>(m)        | ю                             | 2.5                | 2                  | 4                  |
|         | DBH (cm)                   | 30                            | 40                 | 25                 | 45                 |
|         | (m) 14giəH                 | ∞                             | 10                 | 7                  | 7                  |
|         | Species                    | Allocasuarina<br>verticillata | Eucalyptus odorata | Eucalyptus odorata | Eucalyptus odorata |
|         | Latitude                   | -35.08794771510               | -35.09059616730    | -35.09166660920    | -35.09166660920    |
|         | Longitude                  | 138.98932985000               | 138.99037438000    | 138.99356257900    | 138.99356257900    |
|         | Tree #                     | 69                            | 73                 | 74                 | 75                 |
|         |                            |                               |                    |                    |                    |

**Appendix 4B** 

**Spring Flora Survey** 

## Final Report Kanmantoo Copper Project Spring Flora Assessment

**Coffey Natural Systems Pty Ltd** 

Level 1, 2-3 Greenhill Rd Wayville SA 5034

November 2007

ECOLOGICAL ASSOCIATES DE008-B

## Contents

| 1 | Introduction                        | 1-1              |
|---|-------------------------------------|------------------|
|   | 1.1 Introduction                    | 1-1              |
|   | 1.2 Scope of Work                   | 1-1              |
| 2 | Methods                             | 2-1              |
|   | 2.1 Quadrat Survey                  | 2-1              |
|   | 2.2 Vegetation Community Assessment | 2-1              |
|   | 2.3 Orchid Flagging                 | 2-1              |
| 3 | Results                             | 3-1              |
|   | 3.1 Summary                         | 3-1              |
|   | 3.2 Quadrat Survey                  | 3-1              |
|   | 3.3 Vegetation Community Assessment | 3-2              |
|   | 3.4 Threatened Species              | 3-3              |
| 4 | Conclusions                         | 4-1              |
| 5 | References                          | 5 <sub>-</sub> 1 |

## Figures, Tables and Appendices

| _ |    |     |         |
|---|----|-----|---------|
| ᆫ | iα | III | 20      |
|   | IU | ur  | $C_{2}$ |
|   |    |     |         |

| Figure 1. Cumulative species richness for the four survey quadrats in February and September 2007 3 | 3-1 |
|-----------------------------------------------------------------------------------------------------|-----|
| Figure 2. Bulbine bolbosa (yellow flowers) in Eucalyptus odorata low woodland (left) and Scaevola   |     |
| albida (white flowers, foreground) and Goodenia robusta (yellow flowers, mid-                       |     |
| ground) in Acacia pycnantha low woodland                                                            | 3-2 |
| Figure 3. Known locations of plant species of state conservation significance in the study area     | 3-3 |
| Figure 4. Diuris behrii plants in the vicinity of waypoint 028, 13 September 2007                   | 3-4 |

## **Appendices**

Appendix A. Surveyed Flora and Location Appendix B. Biological Survey Quadrat Data Appendix C. Biological Survey Quadrat Photographs Appendix D. Combined Species List for All Surveys

#### 1.1 Introduction

Ecological Associates (2007) conducted a review of existing floristic information and a field investigation of the vegetation of the Kanmantoo Copper Project area (the study area) in February 2007. The outcome of that study was comprehensive vegetation mapping, plants species lists and scattered tree mapping for the study area. However, a limitation of the study was the likelihood that ephemeral and herbaceous plant species present in the study area had not been recorded due to the timing of the field investigation, in late summer following a particularly dry period. Therefore, a second flora survey was undertaken in spring 2007.

#### 1.2 Scope of Work

The scope of work for this project was to:

- resurvey the four vegetation survey quadrats established in February 2007;
- · search all remnant vegetation on the property for flora species not previously recorded; and
- flag the locations of threatened orchids potentially impacted by the project to enable their subsequent translocation if necessary.

### 2.1 Quadrat Survey

The four vegetation survey quadrats that were established and surveyed in February 2007 (Ecological Associates 2007) were re-surveyed on 13-14 September 2007.

As per the February 2007 survey, the method outlined in the *Guide to a native vegetation survey using the Biological Survey of South Australia* (Heard and Channon 1997) was used to prepare detailed quadrat descriptions. Quadrats were located within each of the following vegetation associations:

- Austrostipa sp. Open tussock grassland;
- Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland;
- Eucalyptus gracilis ± Eucalyptus oleosa Open mallee; and
- Eucalyptus odorata Low woodland.

Cumulative species richness was determined for each survey quadrat for February and September. Cumulative species richness is the total number of species that have been recorded in the quadrat, taking into account both surveys.

### 2.2 Vegetation Community Assessment

In addition to the survey quadrats, all vegetation associations present in the study area were searched for additional species not previously recorded. A GPS was used to note the locations of species or features of interest, enabling them to be assigned to one of the previously mapped vegetation associations.

## 2.3 Orchid Flagging

The locations of individual *Diuris behrii* plants potentially impacted by the project were flagged. This species is listed as threatened in South Australia. Flagged orchids occur in the vicinity of waypoints 028 and 029 (Figure 3). Flagging consisted of the placement of a 70 cm bamboo stake into the ground 10 cm due north of individual *D. behrii* plants. A length of pink flagging tape was attached near the top of each stake. Approximately 80 individual *D. behrii* plants were flagged.

A second orchid species, *Microtis parviflora*, was recorded in the vicinity of waypoints 028 and 029. This species has regional conservation significance. This species occurs in distinct clumps of several plants growing in 1m<sup>2</sup> of each other. Four to five bamboo stakes were placed around the perimeter of each clump. Pink flagging tape was attached near the top of all stakes around each clump in the manner of a fence.

## 3.1 Summary

A total of 14 native and 22 introduced species were recorded during the survey that had not been previously recorded for the study area. These species are highlighted with shading in Appendix D, which provides a plant species list for the study area using the combined records of all known surveys. The complete plant list for the study area consists of 243 species, of which 172 (71%) are native and 71 (29%) are introduced.

## 3.2 Quadrat Survey

The complete data for all resurveyed quadrats is provided in Appendix B and photographs of each quadrat are provided in Appendix C. In all four survey quadrats, native and introduced plant species that were not observed in February 2007 were observed in September 2007. A small number of species recorded in February 2007 were absent in September 2007. The cumulative species richness in each quadrat at the two survey times is illustrated in Figure 1.

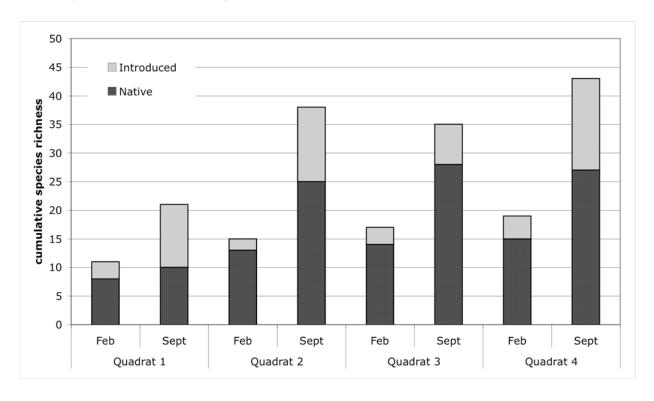



Figure 1. Cumulative species richness for the four survey quadrats in February and September 2007.

The total species richness was markedly higher for all quadrats in September. Species richness increased by 45% in quadrat 1, by 113% in quadrat 2, by 63% in quadrat 3 and 122% in quadrat 4 between February and September. The species richness of native species was also markedly higher in quadrats 2, 3

Results Section 3

and 4 in September than in February. Much greater numbers of species were observable and identifiable in September than in February.

The highest cumulative native species richness (28 species) was recorded in quadrat 3, located in the *Eucalyptus gracilis* ± *Eucalyptus oleosa* Open mallee vegetation. Quadrat 4 (*Eucalyptus odorata* Low woodland) had 27 native species, quadrat 2 (*Lomandra effusa* ± *Heliochrysum leucopsideum* Open tussock grassland) 25 native species and quadrat 1 (*Austrostipa blackii* Open tussock grassland) 10 native species.

Cumulative introduced species richness was lowest in quadrat 3 (7 species). Quadrat 1 had 11 introduced species, quadrat 2 had 13 introduced species and quadrat 4 had 16 introduced species.

## 3.3 Vegetation Community Assessment

A number of species not previously recorded for the study area were recorded in September 2007. Additionally, species that were known to occur in the study area but had not been assigned to a particular vegetation community were located, identified and assigned to vegetation communities during the spring survey. The revised list of species occurring in each vegetation community is provided in Appendix A. Many native species were in flower during the survey (Figure 2).





Figure 2. Bulbine bolbosa (yellow flowers) in Eucalyptus odorata low woodland (left) and Scaevola albida (white flowers, foreground) and Goodenia robusta (yellow flowers, mid-ground) in Acacia pycnantha low woodland.

Results Section 3

### 3.4 Threatened Species

Previous surveys of the study area have recorded two plant species of state conservation significance; *Ptilotus erubescens* (Hairy Tails, state rare) and *Diuris behrii* (Behr's Cowslip Orchid, state vulnerable). No additional species of state conservation significance were recorded in September 2007. The locations of *Diuris behrii* plants were accurately mapped. The majority of *Diuris behrii* plants (approximately 80 plants) were located in the vicinity of waypoints 028 and 029 (Figure 3), corresponding with *D. behrii* locations recorded in a previous survey (Ecological Associates 2006). Single *D. behrii* plants were recorded at waypoints 031 and 049 (Figure 3).

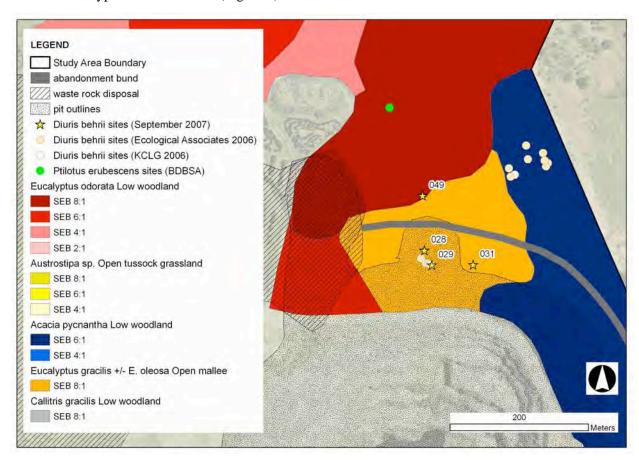



Figure 3. Known locations of plant species of state conservation significance in the study area.

The *D. behrii* plants recorded in spring 2006 (Ecological Associates 2006) in the *Acacia pycnantha* woodland (Figure 3) were not recorded in September 2007. No *Ptilotus erubescens* plants were recorded in September 2007.

Results SECTION 3



Figure 4. Diuris behrii plants in the vicinity of waypoint 028, 13 September 2007.

Of the 14 native species recorded in the study area for the first time in September 2007, two have regional conservation significance; *Austrodanthonia auriculata* (Lobed Wallaby Grass, regionally uncommmon) and *Microtis parviflora* (Slender Onion-orchid, status uncertain but likely to be rare or threatened).

Conclusions SECTION 4

The results of this spring survey do not affect the conclusions of the previous vegetation assessment.

This survey confirms the importance of conducting vegetation surveys in spring when plants are most readily observed and identified.

References

Ecological Associates (2006). *Targeted survey for threatened species and weed species at Kanmantoo Mine*. (Ecological Associates Pty Ltd: Adelaide, South Australia).

Ecological Associates (2007). *Final Report - Kanmantoo Copper Project Flora Assessment*. (Ecological Associates: Adelaide, South Australia).

Heard, L. and Channon, B. (1997). *Guide to a native vegetation survey using the Biological Survey of South Australia*. (Geographic Analysis and Research Unit, Information and Data Analysis Branch, Department of Housing and Urban Development: Adelaide, Australia).

|                                             |                      | ე <u>დ</u> | Significance | r oo |        |             | etation bu           |                     |                     |                     |
|---------------------------------------------|----------------------|------------|--------------|------|--------|-------------|----------------------|---------------------|---------------------|---------------------|
| <u> </u>                                    | Common Name          | Nat.       | State        | Reg. | əəlleM | A. pycn     | L. effus<br>grasslai | eorteuA<br>Selasiai | E. odora<br>woodlai | itrəv .A<br>Moodlai |
| 5                                           | Wreath Wattle        |            |              |      |        |             |                      |                     | >                   |                     |
| <u></u>                                     | Umbrella Bush        |            |              |      |        |             |                      |                     | >                   |                     |
| 2                                           | Manna Wattle         |            |              |      |        |             |                      |                     | >                   |                     |
|                                             | Kangaroo Thorn       |            |              |      | >      |             |                      |                     | >                   |                     |
| G                                           | Golden Wattle        |            |              |      | >      | >           | >                    |                     | >                   | >                   |
| S                                           | Sheep's Burr         |            |              |      |        |             |                      | `^                  |                     |                     |
| Ajuga australis f. A (A.G.Spooner 9058)   A | Australian Bugle     |            |              | z    | `^     |             |                      |                     | `^                  |                     |
|                                             | Drooping Sheoak      |            |              |      | >      |             | `^                   |                     | `                   | >                   |
| 9                                           | Grey-beard Grass     |            |              |      |        |             |                      | <b>,</b>            | <b>&gt;</b>         |                     |
| В                                           | Box Mistletoe        |            |              |      |        |             |                      |                     | `                   |                     |
| В                                           | Brush Wire-grass     |            |              | 22   |        |             | `>                   |                     |                     | >                   |
| O                                           | Curly Wire-grass     |            |              | R    | >      | >           | `                    | `                   | `                   | >                   |
|                                             | Nodding Vanilla-Iily |            |              |      |        |             |                      |                     | `                   |                     |
|                                             | Common Vanilla-lily  |            |              |      | `      |             |                      |                     |                     |                     |
| O                                           | Common Woodruff      |            |              |      |        |             |                      |                     | `                   |                     |
| В                                           | Berry Saltbush       |            |              |      |        |             |                      |                     | >                   |                     |
|                                             | Lobed Wallaby-grass  |            |              | D    |        |             |                      | `                   |                     |                     |
|                                             | Common Wallaby-grass |            |              |      |        | <b>&gt;</b> |                      | <b>,</b>            | <b>&gt;</b>         |                     |
| <u>&gt;</u>                                 | Wallaby-grass        |            |              |      | `^     |             | <b>`</b>             | <b>,</b>            | `                   | `                   |
| O                                           | Crested Spear-grass  |            |              | Τ    |        |             | `^                   | `^                  |                     |                     |
| Ľ.                                          | Feather Spear-grass  |            |              |      | >      |             |                      |                     | `                   |                     |
| _                                           | Tall Spear-grass     |            |              |      |        |             | `                    |                     | >                   |                     |
|                                             | Choor arous          |            |              |      | >      | >           |                      |                     | >                   |                     |
| ~                                           | Rougii speal-grass   |            |              |      |        |             |                      |                     |                     |                     |

|                                             |                        | Cor  | Conservation<br>Significance | on<br>Se |        | Veg                      | etation (              | Vegetation Community     | ity                    |                             |
|---------------------------------------------|------------------------|------|------------------------------|----------|--------|--------------------------|------------------------|--------------------------|------------------------|-----------------------------|
| Species                                     | Common Name            | Nat. | State                        | Reg.     | Mallee | edinencyq .A<br>bnelboow | ل. effusa<br>grassland | Austrostipa<br>grassland | E. odorata<br>woodland | A. verticillata<br>bnalboow |
| Blennospora drummondii                      | Dwarf Button-flower    |      |                              |          |        |                          |                        |                          | >                      |                             |
| Bulbine bulbosa                             | Bulbine-Iily           |      |                              | ~        | >      |                          |                        |                          | >                      |                             |
| Bursaria spinosa ssp. lasiophylla           | Downy Bursaria         |      |                              |          |        |                          | >                      |                          |                        | >                           |
| Calandrinia eremaea                         | Dryland Purslane       |      |                              |          |        |                          | >                      |                          | >                      |                             |
| Callitris gracilis                          | Southern Cypress Pine  |      |                              |          | >      |                          |                        |                          |                        | >                           |
| Calostemma purpureum                        | Pink Garland-Iily      |      |                              |          |        |                          |                        |                          | >                      |                             |
| Cheilanthes austrotenuifolia                | Annual Rock-fern       |      |                              |          | >      |                          |                        | >                        |                        | >                           |
| Chenopodium desertorum ssp.<br>microphyllum | Small-leaf Goosefoot   |      |                              |          |        |                          | >                      |                          | >                      |                             |
| Clematis micrphylla var. microphylla        | Old Man's Beard        |      |                              |          | >      |                          |                        |                          |                        | >                           |
| Convolvulus angustissimus                   |                        |      |                              |          | >      |                          | `>                     |                          | `>                     |                             |
| Convolvulus sp.                             | Bindweed               |      |                              |          | >      | >                        |                        | >                        |                        |                             |
| Crassula sp.                                |                        |      |                              |          |        |                          |                        | `                        | `                      |                             |
| Cryptandra tomentosa                        | Heath Cryptandra       |      |                              |          |        |                          |                        |                          | `>                     |                             |
| Cynoglossum suaveolens                      | Sweet Hound's-tongue   |      |                              | 2        | ^      |                          |                        |                          |                        |                             |
| Dampiera rosmarinifolia                     | Rosemary Dampiera      |      |                              |          |        |                          | >                      |                          |                        |                             |
| Dianella revoluta var. revoluta             | Black-anther Flax-lily |      |                              |          | >      |                          | >                      |                          | `>                     | >                           |
| Dichondra repens                            | Kidney Weed            |      |                              |          |        |                          |                        | >                        | >                      |                             |
| Diuris behrii                               | Behr's Cowslip Orchid  |      | >                            | >        | >      |                          |                        |                          | >                      |                             |
| Dodonaea viscosa ssp. cuneata               | Wedge-leaf Hop-bush    |      |                              |          | >      | >                        | >                      |                          |                        | >                           |
| Einadia nutans ssp. nutans                  | Climbing Saltbush      |      |                              |          | >      |                          |                        |                          | `>                     |                             |
| Elymus scaber var. scaber                   | Native Wheat-grass     |      |                              | 2        | ^      |                          | `^                     | `^                       | `^                     |                             |
| Enchylaena tomentosa var. tomentosa         | Ruby Saltbush          |      |                              |          | ^      | <b>&gt;</b>              | <b>\</b>               |                          | `                      | <b>&gt;</b>                 |
| Enneapogon nigricans                        | Black-head Grass       |      |                              |          |        | >                        |                        | >                        |                        |                             |
|                                             |                        |      |                              |          |        |                          |                        |                          |                        |                             |

|                              | A. verticillata bnaboow  | >                      | >                      |                                       |                     |                                       |                    |                               | >                   |                    | >                 | >                     |                      |                       | >                |               |                       | >                  |                       |                                        |                  | >                     |                                   |  |
|------------------------------|--------------------------|------------------------|------------------------|---------------------------------------|---------------------|---------------------------------------|--------------------|-------------------------------|---------------------|--------------------|-------------------|-----------------------|----------------------|-----------------------|------------------|---------------|-----------------------|--------------------|-----------------------|----------------------------------------|------------------|-----------------------|-----------------------------------|--|
|                              | E. odorata<br>woodland   | >                      |                        | >                                     | `                   | >                                     | >                  | >                             | >                   |                    |                   |                       | >                    | >                     |                  |               |                       |                    | >                     | >                                      | >                | >                     | >                                 |  |
| Vegetation Community         | Austrostipa<br>grassland |                        | >                      |                                       |                     |                                       |                    |                               |                     |                    | >                 |                       |                      |                       |                  | >             |                       | >                  |                       |                                        | >                |                       |                                   |  |
| jetation                     | brassland<br>grassland   |                        | >                      |                                       |                     |                                       |                    |                               |                     |                    | >                 |                       |                      | >                     |                  | >             |                       |                    | >                     |                                        | >                | >                     | >                                 |  |
| )<br>Nec                     | A. pycnantha<br>bnalboow |                        |                        |                                       | >                   |                                       |                    |                               | >                   |                    |                   | >                     |                      |                       | >                |               | >                     | >                  |                       |                                        | >                |                       |                                   |  |
|                              | Mallee                   |                        |                        |                                       | >                   | >                                     | >                  |                               | >                   | >                  | >                 | >                     |                      |                       | >                |               | >                     | >                  |                       |                                        | >                |                       |                                   |  |
| on                           | Reg.                     |                        |                        |                                       |                     | ~                                     |                    |                               |                     |                    |                   |                       |                      |                       |                  |               |                       |                    |                       | œ                                      |                  |                       |                                   |  |
| Conservation<br>Significance | State                    |                        |                        |                                       |                     |                                       |                    |                               |                     |                    |                   |                       |                      |                       |                  |               |                       |                    |                       |                                        |                  |                       |                                   |  |
| 0)<br>                       | Nat.                     |                        |                        |                                       |                     |                                       |                    |                               |                     |                    |                   |                       |                      |                       |                  |               |                       |                    |                       |                                        |                  |                       |                                   |  |
|                              | Common Name              | Leafy Bottle-washers   | Bottle-washers/Nineawn | Square-fruit Mallee                   | Yorrell             | South Australian Blue Gum             | Peppermint Box     | White Mallee                  | Common Eutaxia      | Twining Glycine    |                   | Small-leaf Raspwort   | Cut-leaf Goodenia    | Small-flower Goodenia | Woolly Goodenia  | Grass Family  | Native Lilac          | Scarlet Runner     | Sticky Sword-sedge    | Scaly Buttons                          | Scented Mat-rush | Soft Tussock Mat-rush | Small-flower Mat-rush             |  |
|                              | Species                  | Enneapogon polyphyllus | Enneapogon sp.         | Eucalyptus calycogona ssp. calycogona | Eucalyptus gracilis | Eucalyptus leucoxylon ssp. leucoxylon | Eucalyptus odorata | Eucalyptus phenax ssp. phenax | Eutaxia microphylla | Glycine rubiginosa | Gonocarpus elatus | Gonocarpus tetragynus | Goodenia pinnatifida | Goodenia pusilliflora | Goodenia robusta | Gramineae sp. | Hardenbergia violacea | Kennedia prostrata | Lepidosperma viscidum | Leptorhynchos squamatus ssp. squamatus | Lomandra effusa  | Lomandra densiflora   | Lomandra micrantha ssp. micrantha |  |

|                                       |                            | Cons | Conservation | <u> </u> |        | Vege                     | etation (              | Vegetation Community     | ity                    |                             |
|---------------------------------------|----------------------------|------|--------------|----------|--------|--------------------------|------------------------|--------------------------|------------------------|-----------------------------|
|                                       |                            |      |              | )        |        | -                        | -                      | -                        |                        |                             |
| Species                               | Common Name                | Nat. | State        | Reg.     | Mallee | A. pycnantha<br>woodland | drassland<br>Grassland | Austrostipa<br>grassland | E. odorata<br>woodland | A. verticillata<br>bnslboow |
| Maireana brevifolia                   | Short-leaf Bluebush        |      |              |          |        |                          |                        |                          | >                      |                             |
| Maireana enchylaenoides               | Wingless Fissure-plant     |      |              |          |        |                          | >                      | >                        | >                      |                             |
| Maireana georgei                      | Satiny Bluebush            |      |              |          |        |                          | `                      |                          |                        |                             |
| Millotia myosotidifolia               | Broad-leaf Millotia        |      |              |          | >      |                          | >                      |                          |                        | >                           |
| Neurachne alopecuroidea               | Fox-tail Mulga-grass       |      |              |          |        |                          |                        |                          | >                      |                             |
| Olearia axillaris                     | Coast Daisy-bush           |      |              |          | >      | >                        |                        |                          |                        |                             |
| Oxalis perennans                      | Native Sorrel              |      |              |          | >      |                          | >                      | >                        |                        | >                           |
| Pimelea curviflora var. gracilis      | Curved Riceflower          |      |              |          |        |                          | >                      |                          |                        |                             |
| Plantago gaudichaudii                 | Narrow-leaf Plantain       |      |              | _        |        |                          |                        |                          | >                      |                             |
| Plantago sp.                          | Plantain                   |      |              |          |        |                          |                        |                          | >                      |                             |
| Podolepis tepperi                     | Delicate Copper-wire Daisy |      |              |          |        |                          | >                      |                          |                        |                             |
| Pogonolepis muelleriana               | Stiff Cup-flower           |      |              |          |        |                          | `                      |                          |                        |                             |
| Pomaderris paniculosa ssp. paniculosa | Mallee Pomaderris          |      |              |          |        |                          | >                      |                          |                        |                             |
| Ptilotus spathulatus f. spathulatus   | Pussy-tails                |      |              |          |        | >                        | >                      | >                        | >                      | >                           |
| Rhamnaceae sp.                        |                            |      |              |          |        |                          |                        | >                        | >                      |                             |
| Rhodanthe microglossa                 | Clustered Everlasting      |      |              |          |        |                          |                        |                          | >                      |                             |
| Salsola kali                          | Buckbush                   |      |              |          |        | >                        |                        |                          |                        |                             |
| Scaevola albida                       | Pale Fanflower             |      |              |          | >      | >                        | >                      |                          |                        |                             |
| Scaevola sp.                          | Fanflower                  |      |              |          | >      | >                        | >                      |                          |                        |                             |
| Senecio quadridentatus                | Cotton Groundsel           |      |              |          |        |                          |                        |                          | >                      |                             |
| Senecio sp.                           | Groundsel                  |      |              |          | >      |                          |                        |                          | >                      |                             |
| Senecio spanomerus                    |                            |      |              |          | >      |                          |                        |                          | >                      |                             |
| Stackhousia monogyna                  | Creamy Candles             |      |              |          | >      |                          |                        | >                        | <b>,</b>               |                             |
| Themeda triandra                      | Kangaroo Grass             |      |              |          |        |                          | `                      |                          |                        |                             |
|                                       |                            |      |              |          |        |                          |                        |                          |                        |                             |

| Species  Common Name  Trysandus patersonii   |       |                               | S is | Conservation<br>Significance | on   |       | Veg                    | Jetation | Vegetation Community | iity        |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|------|------------------------------|------|-------|------------------------|----------|----------------------|-------------|------------------------|
| Twining Fringe-Iliy   State   Reg.   Nat.   State   Reg.   Nat.   State   Reg.   Nat.   State   Nat.   State   Nat.   State   Nat.   State   Nat.   Nat.   State   Nat.    |       |                               | :    |                              |      | әәјјі | bycnantha<br>pycnantha |          |                      |             | verticillata<br>odland |
| Spur Velleia         0         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         ' <t< td=""><td></td><td>n .</td><td>Nat.</td><td>State</td><td>Reg.</td><td>sM &gt;</td><td>.A<br/>ow</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | n .                           | Nat. | State                        | Reg. | sM >  | .A<br>ow               |          |                      |             |                        |
| Vellein         Vellein           Narrow-leaf New Holland Daisy         * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Spir Velleia                  |      |                              | C    | >     |                        |          |                      |             |                        |
| Narrow-leaf New Holland Daisy Walsted New Holland Daisy Fuzzy New Holland Daisy Woolly New Holland Daisy Woolly New Holland Daisy New Holl |       | Velleia                       |      |                              |      | >     | >                      |          |                      |             |                        |
| Waisted New Holland Daisy         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Narrow-leaf New Holland Daisy |      |                              |      |       |                        |          |                      | >           |                        |
| Fuzzy New Holland Daisy Woolly New Holland Daisy | laris | Waisted New Holland Daisy     |      |                              |      |       |                        |          |                      | >           |                        |
| New Holland Daisy         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Fuzzy New Holland Daisy       |      |                              |      |       | >                      | >        | >                    | >           |                        |
| Illand Daisy         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td><td>&gt;</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                               |      |                              |      |       |                        |          | >                    |             | >                      |
| wash Bluebell         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | New Holland Daisy             |      |                              |      | >     | >                      |          | >                    | >           |                        |
| ancy         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Yellow-wash Bluebell          |      |                              |      | `     |                        | `        | >                    |             |                        |
| Ranges Wattle         R         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Early Nancy                   |      |                              |      | `     |                        |          |                      |             |                        |
| Hair-grass       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Flinders Ranges Wattle        |      | ~                            |      | `     | >                      |          |                      |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Silvery Hair-grass            |      |                              |      |       |                        | `        |                      | >           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Hair-grass                    |      |                              |      | >     |                        |          |                      |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Pimpernel                     |      |                              |      | `     |                        |          |                      | >           | >                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Cape Weed                     |      |                              |      | >     |                        | >        | >                    | >           | >                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Red-head Cotton-bush          |      |                              |      |       |                        | ^        | >                    | <b>&gt;</b> |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Bridal Creeper                |      |                              |      |       |                        |          |                      |             | >                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Onion Weed                    |      |                              |      |       |                        | `        |                      | >           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Bearded Oat                   |      |                              |      |       |                        | >        | >                    | >           | >                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Wild Turnip                   |      |                              |      |       |                        |          |                      | >           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Large Quaking-grass           |      |                              |      | >     | >                      | >        | >                    | >           | >                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Lesser Quaking-grass          |      |                              |      |       |                        | `        |                      |             |                        |
| `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Compact Brome                 |      |                              |      | `     |                        |          |                      |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Red Brome                     |      |                              |      |       |                        | >        | >                    | >           |                        |

| Species  Common Name Conservation Significance Common Name Common Name Common Name Common Name Common Name Skelling Jacca Common Name Skelling Jacca Common Function Shelling Jacca Shelli |                                       |                          |       |                   | -    |        |      |           |        |     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|-------|-------------------|------|--------|------|-----------|--------|-----|---|
| Common Name  Common Name  Skeleton Weed  Annual Velot Grass Shariton Jane Annual Velot Grass Shariton Jane Annual Velot Grass Shariton Jane Annual Velot Grass Annual Velot Grass Shariton Jane Annual Velot Grass Annual Velot Grass Shariton Jane Annual Velot Grass Annual Velot Grass Annual Velot Grass Source Willmmera Ryegrass African Boxthorn Thead Iris Source Willchaptana  Willchaptana  Weed Bartial  Yeeke Bartial  Yeeke Bartial  Bulbous Meadow-grass Common Onion-grass Common Onion-grass Common Onion-grass Mild Sage Will Sate Will Sage Will Sage Will Sate Will Sage Will Sage Will Sage Will Sage Will Sage Will Sate Will Sage Will |                                       |                          | Conse | rvatior<br>icance |      |        | Vege | etation ( | Sommun | ity |   |
| ns         Artichoke Thistle         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Species                               |                          |       |                   | Reg. | Mallee |      |           |        |     |   |
| ns         Artichoke Thistle         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *Chondrilla juncea                    | Skeleton Weed            |       |                   |      |        |      |           | >      |     |   |
| Salvation Jane         Salvation Jane           Annual Veldt Grass         * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Cynara cardunculus ssp. flavescens   | Artichoke Thistle        |       |                   |      |        |      |           | >      |     |   |
| Annual Veldt Grass Short-fruit Heron's-bill Freesla Common Fumitory  Smooth Cat's Ear Wilmmera Ryegrass African Boxthorn Horehound Thread Iris Soursob Witch grass Red Bartsia Velvet Pink Hairy Plantain Bulbous Meadow-grass Common Onion-grass Common Onion-grass Common Onion-grass Mild Sage Mild S | *Echium plantagineum                  | Salvation Jane           |       |                   |      |        |      |           | >      | >   |   |
| Short-fruit Heron's-bill         ' ' ' ' '           Freesia         ' ' ' '           Common Fumitory         ' ' ' '           Common Fumitory         ' ' ' '           Smooth Cat's Ear         ' ' ' '           Winmera Ryegrass         ' ' ' '           African Boxthorn         ' ' ' '           Horehound         ' ' ' '           Thread Iris         ' ' ' '           Soursob         ' ' ' '           Witch-grass         Red Bartsia         ' ' '           Velvet Pink         ' ' '           Hairy Plantain         ' ' '           Bulbous Meadow-grass         ' ' '           Common Onion-grass         ' ' '           Wild Sage         ' ' '           African Daisy         ' ' '           French Catchfily         ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *Ehrharta longiflora                  | Annual Veldt Grass       |       |                   |      |        |      |           |        | >   |   |
| Freesia         Common Fumitory         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Erodium brachycarpum                 | Short-fruit Heron's-bill |       |                   |      |        |      | >         | >      | >   | > |
| Common Fumitory         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *Freesia cultivar                     | Freesia                  |       |                   |      |        |      |           |        | >   |   |
| Smooth Cat's Ear         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *Fumaria officinalis ssp. officinalis | Common Fumitory          |       |                   |      | >      |      | >         |        |     | > |
| Smooth Cat's Ear         Wimmera Ryegrass         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y <t< td=""><td>*Hordeum hystrix</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td><td>&gt;</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *Hordeum hystrix                      |                          |       |                   |      |        |      |           | >      |     | > |
| Wimmera Ryegrass         Wimmera Ryegrass           African Boxthorn         " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *Hypochaeris glabra                   | _                        |       |                   |      |        | >    |           |        |     | > |
| African Boxthorn         Coursob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Lolium rigidum                       | Wimmera Ryegrass         |       |                   |      |        |      | >         |        |     |   |
| Horehound         /         /           Thread Iris         Soursob         /           Witch-grass         /         /           Red Bartsia         /         /           Velvet Pink         /         /           Hairy Plantain         /         /           Bulbous Meadow-grass         /         /           Bulls         Common Onion-grass         /         /           Wild Sage         /         /         /           Wild Sage         /         /         /           African Daisy         /         /         /           French Catchfly         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *Lycium ferocissimum                  | _                        |       |                   |      |        |      |           |        | >   |   |
| Thread Iris         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         * <th< td=""><td>*Marrubium vulgare</td><td>Horehound</td><td></td><td></td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *Marrubium vulgare                    | Horehound                |       |                   |      |        |      |           | >      |     |   |
| Soursob         Witch-grass         Witch-grass         Witch-grass         Witch-grass         Witch-grass         Witch-grass         Witch-grass         Wild Sage         Wild Sage <td>*Moraea setifolia</td> <td>_</td> <td></td> <td></td> <td></td> <td>&gt;</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *Moraea setifolia                     | _                        |       |                   |      | >      |      |           |        |     |   |
| Witch-grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Oxalis pes-caprae                    | Soursob                  |       |                   |      |        |      |           |        | >   |   |
| Red Bartsia         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         * <th< td=""><td>*Panicum hillmanii</td><td>Witch-grass</td><td></td><td></td><td></td><td></td><td></td><td></td><td>&gt;</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Panicum hillmanii                    | Witch-grass              |       |                   |      |        |      |           | >      |     |   |
| Velvet Pink         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         ' <th< td=""><td>*Parentucellia latifolia</td><td>Red Bartsia</td><td></td><td></td><td></td><td>&gt;</td><td></td><td>&gt;</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *Parentucellia latifolia              | Red Bartsia              |       |                   |      | >      |      | >         |        |     |   |
| Hairy Plantain         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Petrorhagia dubia                    | Velvet Pink              |       |                   |      |        |      |           | >      | >   |   |
| alis         Common Onion-grass         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '         '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Plantago bellardii                   | Hairy Plantain           |       |                   |      |        |      | >         | >      |     |   |
| ralis         Common Onion-grass         ' ' ' ' '           Dock         ' ' ' '           Wild Sage         ' ' '           African Daisy         ' ' '           French Catchfly         ' ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *Poa bulbosa                          | Bulbous Meadow-grass     |       |                   |      | >      |      |           |        |     |   |
| Dock         *           Wild Sage         *           African Daisy         *           French Catchfly         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *Romulea rosea var. australis         | Common Onion-grass       |       |                   |      | >      |      | >         | >      | >   | > |
| Wild Sage African Daisy French Catchfly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *Rumex sp.                            | Dock                     |       |                   |      |        |      |           | >      |     |   |
| African Daisy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *Salvia verbenaca form                | Wild Sage                |       |                   |      |        |      |           | >      |     |   |
| French (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *Senecio pterophorus                  | African Daisy            |       |                   |      |        |      |           |        | >   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Silene gallica var. gallica          | French Catchfly          |       |                   |      |        |      |           | >      |     |   |

|                                 |                       | S is | Conservation<br>Significance | on<br>Se |        | Vege                     | etation (            | Vegetation Community     | nity                   |                             |
|---------------------------------|-----------------------|------|------------------------------|----------|--------|--------------------------|----------------------|--------------------------|------------------------|-----------------------------|
| Species                         | Common Name           | Nat. | State                        | Reg.     | Mallee | entnencyq .A<br>bnelboow | bnslssa<br>grassland | Austrostipa<br>grassland | E. odorata<br>woodland | A. verticillata<br>bnalboow |
| *Silene sp.                     |                       |      |                              |          |        |                          |                      |                          | >                      |                             |
| *Solanum nigrum                 | Black Nightshade      |      |                              |          |        |                          |                      | >                        |                        |                             |
| *Sonchus oleraceus              | Common Sow-thistle    |      |                              |          | >      |                          | >                    |                          | >                      |                             |
| *Trifolium arvense var. arvense | Hare's-foot Clover    |      |                              |          | >      |                          | >                    |                          | >                      |                             |
| *Trifolium campestre            | Hop Clover            |      |                              |          |        |                          | `                    | >                        | >                      |                             |
| *Trifolium subterraneum         | Subterranean Clover   |      |                              |          |        |                          |                      | >                        |                        |                             |
| *Vicia sativa ssp. nigra        | Narrow-leaf Vetch     |      |                              |          | >      |                          |                      |                          |                        |                             |
| *Vulpia myuros                  | Fescue                |      |                              |          | >      |                          |                      | >                        |                        |                             |
| *Zaluzianskya divaricata        | Spreading Night-phlox |      |                              |          | `>     |                          |                      |                          | >                      |                             |

# **Biological Survey Quadrat Data** Appendix B

Biological Survey Quadrat - Austrostipa blackii Open tussock grassland

SITE DESCRIPTION

Northing: 6114410 Easting: 318028 Quadrat: Quadrat 1

Observer: Ben Taylor Date: 13/9/07

MGA Zone: 54

Note: This position is the north-west corner of the quadrat. It is marked with a star dropper with a metal tag that reads "10050 N, 9650 E" .

PHYSICAL DESCRIPTION

Site Slope: 10 Landform Element: Hill slope Landform Pattern: Hill

Outcrop Lithology: Not identified Site Aspect: 225° Outcrop Cover: <10%

Surface Strew Cover:

Surface Strew Lithology:

Surface Strew Size:

Salt Crystals: 0% Plant Litter: 2% Bare Earth: 3% Fire Scars: No

**DI STURBANCE** 

Disturbance Impacts (within 30m radius of quadrat): None

VERTEBRATE PRESENCE

**Evidence Type Animals Present** 

Dung Rabbit

Comments: Although evidence of sheep is present the area appears to have been stock free for a considerable time. Dung Sheep

SOILS

Surface Soil Texture Class: silty loam

| VEGETATION DESCRIPTION     |                          |             |    |            |
|----------------------------|--------------------------|-------------|----|------------|
| Quadrat Size: 30x30m       | Climatic Conditions: Wet |             |    |            |
| Species                    | AD                       | LF          | CA | ΓS         |
| Austrostipa blackii        | dominant overstorey      | grass <0.5m | က  | flowering  |
| Romulea rosea*             | dominant overstorey      | herbaceous  | က  | budding    |
| Arctotheca calendula*      | dominant understorey     | herbaceous  | 2  | flowering  |
| Moss                       |                          | mosses      | 2  | vegetative |
| Trifolium campestre*       | dominant understorey     | herbaceous  | 2  | budding    |
| Avena barbata*             |                          | grass <0.5m | _  | flowering  |
| Erodium brachycarpum*      |                          | herbaceous  | _  | flowering  |
| Bromus rubens*             |                          | grass <0.5m | _  | flowering  |
| Convolvulus sp.            |                          | herbaceous  | _  | vegetative |
| Crassula sp.               |                          | herbaceous  | _  | budding    |
| Hordeum hystrix*           |                          | grass <0.5m | _  | flowering  |
| Plantago bellardii*        |                          | herbaceous  | _  | flowering  |
| Trifolium subterraneum*    |                          | herbaceous  | _  | vegetative |
| Acaena echinata            |                          | herbaceous  | Z  | budding    |
| Austrodanthonia auriculata |                          | grass <0.5m | Z  | budding    |
| Echium plantagineum*       |                          | herbaceous  | Z  | vegetative |
| Ptilotus spathulatus       |                          | herbaceous  | Z  | flowering  |

# VEGETATION ASSOCIATION DESCRIPTION

Life Form/Height Class Canopy Cover Grass < 0.5m

Structural Description: Open (tussock) grassland

Upper Stratum Age Classes Present: n/a

# Biological Survey Quadrat Data Appendix B

OVERSTOREY MEASUREMENTS

Canopy Type: n/a Overstorey Height (m): n/a Canopy Depth (m): n/a Canopy Diameter (m): n/a Gap (m): n/a

# **Biological Survey Quadrat Data** Appendix B

Biological Survey Quadrat - Lomandra effusa ± Heliochrysum leucopsideum Open tussock grassland

SITE DESCRIPTION

Easting: 318139 Quadrat: Quadrat 2

Northing: 6114550 Date: 13/9/07

MGA Zone: 54 Observer: Ben Taylor Note: This position is the north-west corner of the quadrat.

PHYSICAL DESCRIPTION

Site Slope: 15° Landform Pattern: Hill

Site Aspect: 90° Landform Element: Hill slope Outcrop Lithology: n/a

Outcrop Cover: nil

Surface Strew Cover: <10% Surface Strew Size: cobble (51-250mm)

Plant Litter: 15% Surface Strew Lithology: Not identified

Bare Earth: 5% Fire Scars: No

Salt Crystals: 0%

## **DI STURBANCE**

Disturbance Impacts (within 30m radius of quadrat): Access tracks, gully erosion

## VERTEBRATE PRESENCE

**Evidence Type Animals Present** 

dung

Comments:

Surface Soil Texture Class: silty loam

| Quadrat Size: 30x30m         Climatic Conditions: Wet LF         LF         CA         LS           Species         Species         3         vegetative LS           Austrostipa blackii         Dominant overstorey         Grass < 0.5m         2         vegetative vegetative constructions and constructions are constructed and constructions and constructions are constructed and constructions ano                                                                                                                                                                               | VEGETATI ON DESCRIPTION               |                          |              |          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--------------|----------|-----------------|
| AD Dominant overstorey Sedge <0.5m 3 Dominant overstorey Grass <0.5m 2 Dominant understorey Grass <0.5m 2 Dominant understorey Grass <0.5m 11 Herbaceous 11  | Duadrat Size: 30x30m                  | Climatic Conditions: Wet |              |          |                 |
| Dominant overstorey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Species                               | AD                       | LF           | CA       | ΓS              |
| Dominant overstorey Grass < 0.5m Dominant understorey herbaceous 2 Grass < 0.5m Herbaceous 1 Her | omandra effusa                        | Dominant overstorey      | Sedge <0.5m  | n        | vegetative      |
| Ss co.5m herbaceous 2 Grass co.5m herbaceous 1 herbaceous 1 herbaceous 1 herbaceous 1 lichens 1 herbaceous 1 lichens 2 herbaceous 1 lichens 2 lichens 3 herbaceous 1 lichens 6 Grass co.5m 1 herbaceous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Austrostipa blackii                   | Dominant overstorey      | Grass < 0.5m | 2        | vegetative      |
| Grass < 0.5m herbaceous herbaceous licinalis* herbaceous herbaceous lichens Shrub < 0.5m mosses Grass < 0.5m herbaceous T Grass < 0.5m Grass < 0.5m T Grass < 0.5m T Herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Romulea rosa*                         | Dominant understorey     | herbaceous   | 2        | flowering       |
| herbaceous 1 herbaceous 1 herbaceous 1 herbaceous 1 herbaceous 1 lichens 1 l | Avena barbata*                        |                          | Grass <0.5m  | _        | flowering       |
| herbaceous 1 herbaceous 1 herbaceous 1 herbaceous 1 lichens 1 lich | Salandrinia eremaea                   |                          | herbaceous   | _        | flowering       |
| icinalis*         1           herbaceous         1           herbaceous         1           herbaceous         1           lichens         1           Shrub < 0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Convolvulus angustissimus             |                          | herbaceous   | _        | flowering       |
| icinalis* herbaceous 1 herbaceous 1 lichens 3 lichens 1 mosses 1 lichens 7 mosses 1 lichens 1 mosses 1 lichens 60.5m 7 licherbaceous 1 licherbaceous 1 lichens 1 liche | Erodium brachycarpum*                 |                          | herbaceous   | _        | flowering       |
| herbaceous         1           herbaceous         1           lichens         1           mosses         1           Grass < 0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -umaria officinalis ssp. officinalis* |                          | herbaceous   | _        | flowering       |
| lichens  Shrub <0.5m  mosses  Grass <0.5m  herbaceous  Grass <0.5m  Grass <0.5m  Grass <0.5m  Herbaceous  Shrub <0.5m  herbaceous  Therbaceous  Therbaceous  herbaceous  herbaceous  therbaceous  therbaceous  herbaceous  therbaceous  therbaceous  therbaceous  therbaceous  therbaceous  therbaceous  therbaceous  therbaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sonocarpus elatus                     |                          | herbaceous   | _        | budding         |
| lichens Shrub < 0.5m mosses Grass < 0.5m herbaceous Grass < 0.5m Grass < 0.5m Grass < 0.5m Grass < 0.5m Herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soodenia pusilliflora                 |                          | herbaceous   | _        | flowering       |
| Shrub < 0.5m 1  mosses 1  Grass < 0.5m T  Herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ichen                                 |                          | lichens      | _        |                 |
| mosses 1  Grass < 0.5m     herbaceous T     Grass < 0.5m     Grass < 0.5m     Grass < 0.5m     Grass < 0.5m     herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aaireana enchylaenoides               |                          | Shrub <0.5m  | _        | immature fruits |
| Grass < 0.5m T herbaceous T Grass < 0.5m T Grass < 0.5m T Grass < 0.5m T Grass < 0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aoss                                  |                          | mosses       | _        |                 |
| herbaceous T Grass < 0.5m Grass < 0.5m Grass < 0.5m T Grass < 0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ∖ira caryophyllea*                    |                          | Grass <0.5m  | <b>-</b> | flowering       |
| Grass < 0.5m T Grass < 0.5m T Grass < 0.5m T herbaceous T Shrub < 0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arctotheca calendula*                 |                          | herbaceous   | <b>—</b> | flowering       |
| Grass < 0.5m T Grass < 0.5m T herbaceous T Shrub < 0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kristida behriana                     |                          | Grass <0.5m  | <b>-</b> | flowering       |
| Grass < 0.5m T herbaceous T Shrub < 0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3riza maxima*                         |                          | Grass <0.5m  | _        | flowering       |
| herbaceous T Shrub <0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sromus rubens*                        |                          | Grass <0.5m  | <b>—</b> | flowering       |
| shrub <0.5m T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | thenopodium desertorum                |                          | herbaceous   | ⊢        | vegetative      |
| herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inchyleana tomentosa                  |                          | Shrub <0.5m  | <b>-</b> | immature fruits |
| olia*  la var. gracilis  therbaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aillotia myosotidifolia               |                          | herbaceous   | _        | flowering       |
| herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oxalis perennans                      |                          | herbaceous   | <b>-</b> | flowering       |
| herbaceous T herbaceous T herbaceous T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parentucellia latifolia*              |                          | herbaceous   | <b>-</b> | flowering       |
| herbaceous T<br>herbaceous T<br>herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | limelea curviflora var. gracilis      |                          | herbaceous   | ⊢        | vegetative      |
| herbaceous T herbaceous T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Plantago bellardii*                   |                          | herbaceous   | <b>—</b> | flowering       |
| herbaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ogonolepis muelleriana                |                          | herbaceous   | <b>-</b> | vegetative      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tilotus spathulatus                   |                          | herbaceous   | <b>—</b> | flowering       |

| Sonchus oleraceus*           |          | herbaceous     | ⊢        | flowering     |
|------------------------------|----------|----------------|----------|---------------|
| Themeda triandra             |          | Grass >0.5m    | <b>—</b> | flowering     |
| Trifolium campestre*         |          | herbaceous     | <b>-</b> | flowering     |
| Wahlenbergia luteola         |          | herbaceous     | <b>-</b> | budding       |
| Acacia pycnantha             | emergent | Tree <0.5m     | Z        | vegetative    |
| Briza minor*                 |          | Grass <0.5m    | Z        | flowering     |
| Dodonea viscosa ssp. cuneata |          | Shrub >2m      | Z        | recently shed |
| Lomandra densiflora          |          | Sedge <0.5m    | Z        | vegetative    |
| Maireana georgei             |          | shrub 0.5-1.0m | Z        | vegetative    |
|                              |          |                |          |               |

# VEGETATION ASSOCIATION DESCRIPTION

Life Form/Height Class
Sedges < 0.5m
Structural Description: Sedgeland
Upper Stratum Age Classes Present: n/a

# OVERSTOREY MEASUREMENTS

Canopy Type: n/a Overstorey Height (m): n/a Canopy Depth (m): n/a Canopy Diameter (m): n/a

Gap (m): n/a

# **Biological Survey Quadrat Data** Appendix B

Biological Survey Quadrat - Eucalyptus gracilis ± E. oleosa Open mallee

SITE DESCRIPTION

Easting: 318152 Quadrat: Quadrat 3

Date: 13/9/07

Northing: 6115240 MGA Zone: 54

Observer: Ben Taylor

Note: This position is the north-west corner of the quadrat.

PHYSICAL DESCRIPTION

Site Aspect: 180° Site Slope: 5° Landform Element: Hill slope Landform Pattern: Hill

Outcrop Cover: nil

Outcrop Lithology: n/a

Surface Strew Cover: <10% Surface Strew Size: cobble (51-250mm)

Surface Strew Lithology: Not identified

Plant Litter: 20%

Fire Scars: No

Bare Earth: 5%

Salt Crystals: 0%

## **DI STURBANCE**

Disturbance Impacts (within 30m radius of quadrat): Access tracks, borrow/quarry pit, coppice regrowth, fence lines

# VERTEBRATE PRESENCE

**Evidence Type Animals Present** 

Comments:

## SOILS

Surface Soil Texture Class: loam

| Quadrat Size: 30x30m         Climatic Conditions: Wet Appeles         LF         CA         LS           Species         Austrostipa scabra ssp. scabra         Overstorey species         Grass < 0.5m         2         recently shed Millotla mysostidifoila           Millota mysostidifoila         Understorey species         Tree < 0.5m         1         recently shed Millotla mysostidifoila           Acacia pycnantha         Understorey species         Tree < 0.5m         1         recently shed Millotla mysostidifoila           Acacia pycnantha         Understorey species         Tree < 0.5m         1         recently shed Millotla mysostidifoila           Artorbodium strictum         Understorey species         Tree < 0.5m         1         lowering           Artorbodium strictum         Understorey species         Tree < 0.5m         1         lowering           Artorbodium strictum         Understorey species         Tree < 0.5m         1         lowering           Actorbodiam strictum         Understorey species         Tree < 0.5m         1         lowering           Murmbaa diolica         Murmbaa diolica         Artorbocous         1         lowering           Bribtine bulbosa         Bulbine bulbosa         Tree < 0.5m         1         lowering           Bribtine bulbosa         Coanvolvulus a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VEGETATION DESCRIPTION                |                         |              |             |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------|-------------|---------------|
| AD  Overstorey species  Scabra  Overstorey species  Overstorey species  Understorey species  Understorey species  Understorey species  Understorey species  Shrub < 0.5m  Ilchens  Herbaceous  If chas  Merbaceous  If chas  Merbaceous  If herbaceous  If herbaceous | Quadrat Size: 30x30m                  | Climatic Conditions: We | <del></del>  |             |               |
| Overstorey species mallee 3 Crass < 0.5m 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Species                               | AD                      | LF           | CA          | ΓS            |
| herbaceous 2 herbaceous 2 moss 2 Understorey species Tree <0.5m 1 herbaceous 1 lichens herbaceous 1 herbaceou | Eucalyptus gracilis                   | Overstorey species      | mallee       | က           | Mature fruits |
| herbaceous         2           moss         2           understorey species         Tree <0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Austrostipa scabra ssp. scabra        |                         | Grass < 0.5m | 2           | recently shed |
| moss Understorey species Tree <0.5m 1 herbaceous 1 lichens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Millotia myosotidifolia               |                         | herbaceous   | 2           | flowering     |
| Understorey species Tree < 0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moss                                  |                         | moss         | 2           |               |
| herbaceous 1  Understorey species Shrub <0.5m 1  lichens 1  lichens 1  herbaceous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acacia pycnantha                      | Understorey species     | Tree <0.5m   | <del></del> | vegetative    |
| s Understorey species Shrub < 0.5m 1 lichens lichens 1 herbaceous 1 he | Arthropodium strictum                 |                         | herbaceous   | <b>—</b>    | flowering     |
| lichens         1           herbaceous         1           herbaceous         1           herbaceous         1           herbaceous         1           herbaceous         1           ferns         1           imus         herbaceous         1           imus         herbaceous         1           imus         herbaceous         1           itans         Shrub < 0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gonocarpus tetragynus                 | Understorey species     | Shrub <0.5m  | <del></del> | budding       |
| herbaceous 1 herbaceous 1 Grass < 0.5m 1 herbaceous 1 her | Lichen                                |                         | lichens      | _           |               |
| herbaceous Grass < 0.5m herbaceous 1 herbaceous 1 ferns imus imus itans itans  a herbaceous berbaceous 1 herbaceous 1 herb | Romulea rosa*                         |                         | herbaceous   | _           | budding       |
| Grass < 0.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scaevola albida                       |                         | herbaceous   | _           | flowering     |
| herbaceous 1 herbaceous T Grass < 0.5m T herbaceous T ferns ferns T herbaceous T ta vine N herbaceous N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vulpia myuros*                        |                         | Grass <0.5m  | _           | budding       |
| herbaceous T Grass < 0.5m     herbaceous T     herbaceous T     ferns     herbaceous T     herbaceous N     ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wurmbea dioica                        |                         | herbaceous   | _           | flowering     |
| Grass < 0.5m T herbaceous T ferns T ferns T herbaceous T Therbaceous N T rice 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arctotheca calendula*                 |                         | herbaceous   | ⊢           | flowering     |
| herbaceous T ferns herbaceous T herbaceous T Shrub <0.5m herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T T vine herbaceous N Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Briza maxima*                         |                         | Grass < 0.5m | ⊢           | flowering     |
| ferns T herbaceous T herbaceous T Shrub <0.5m T herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T T vine herbaceous N T Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bulbine bulbosa                       |                         | herbaceous   | ⊢           | flowering     |
| ferns T herbaceous T Shrub <0.5m T herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T T vine herbaceous N T Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calandrinia eremaea                   |                         | herbaceous   | ⊢           | budding       |
| herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T vine herbaceous T T vine T Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cheilanthes austrotenuifolia          |                         | ferns        | ⊢           | vegetative    |
| herbaceous T herbaceous T herbaceous T herbaceous T herbaceous T vine herbaceous N Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Convolvulus angustissimus             |                         | herbaceous   | ⊢           | vegetative    |
| Shrub <0.5m T herbaceous T herbaceous T herbaceous T vine herbaceous T T vine T Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diuris behrii                         |                         | herbaceous   | ⊢           | flowering     |
| herbaceous T herbaceous T herbaceous T vine T vine T Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Einadia nutans ssp. nutans            |                         | Shrub <0.5m  | ⊢           | budding       |
| herbaceous T herbaceous T herbaceous T vine herbaceous N Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fumaria officinalis ssp. officinalis* |                         | herbaceous   | ⊢           | flowering     |
| herbaceous T herbaceous T vine T herbaceous N Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxalis perennans                      |                         | herbaceous   | ⊢           | flowering     |
| herbaceous T vine T herbaceous N Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sonchus oleraceus*                    |                         | herbaceous   | ⊢           | flowering     |
| ersonii vine T<br>herbaceous N<br>erticillata N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stackhousia monogyna                  |                         | herbaceous   | ⊢           | flowering     |
| herbaceous N<br>Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thysanotus patersonii                 |                         | vine         | ⊢           | flowering     |
| Tree 5-15m N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ajuga australis                       |                         | herbaceous   | Z           | vegetative    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Allocasuarina verticillata            |                         | Tree 5-15m   | Z           | recently shed |

# Biological Survey Quadrat Data Appendix B

| Austrostina elegantissima             | ms 0 < ssens | Z   | paippind        |
|---------------------------------------|--------------|-----|-----------------|
| Cynoglossum suaveolens                | herbaceous   | 2 Z | flowering       |
| Enchyleana tomentosa                  | Shrub <0.5m  | Z   | immature fruits |
| Eucalyptus leucoxylon ssp. leucoxylon | Tree 5-15m   | Z   | vegetative      |
| Goodenia robusta                      | herbaceous   | Z   | budding         |
| Senecio spanomerus                    | Shrub <0.5m  | Z   | flowering       |

# VEGETATION ASSOCIATION DESCRIPTION

| Canopy Cover           | mid dense  | very sparse   | very sparse | sparse      | very sparse    |
|------------------------|------------|---------------|-------------|-------------|----------------|
| Life Form/Height Class | Mallee >3m | Sedges < 0.5m | Trees 5-15m | Grass <0.5m | Herbaceous spp |

Structural Description: Mallee

Upper Stratum Age Classes Present: mature, hollows

# OVERSTOREY MEASUREMENTS

Canopy Type: 50%

Overstorey Height (m): 4, 3, 8, 9, 5, 10, 8, 9, 7, 5 Canopy Depth (m): 1, 0.5, 2, 1, 0.5, 1, 1.5, 0.5, 0.5, 1 Canopy Diameter (m): 1.5, 5, 4, 7, 1, 6, 2, 3, 6, 2 Gap (m): 0, 10, 2, 1, 8, 6, 0, 0, 2, 5

Biological Survey Quadrat - Eucalyptus odorata Low woodland

SI TE DESCRI PTI ON

Quadrat: Quadrat 4 Easting: 31810 6

Date: 13/9/07
Observer: Ben Taylor
MGA Zone: 54

Note: This position is the south-west corner of the quadrat.

PHYSICAL DESCRIPTION

Landform Pattern: Hill Site Slope: 15°

Landform Element: Hill slope Site Aspect: 360°

Outcrop Lithology: n/a

Outcrop Cover: nil

Surface Strew Size: cobble (51-250mm) Surface Strew Cover: <10%

Surface Strew Lithology: Not identified Fire Scars: No

Salt Crystals: 0%

## **DI STURBANCE**

Fire Scars: No Bare Earth: 1% Disturbance Impacts (within 30m radius of quadrat): Access tracks

# VERTEBRATE PRESENCE

Animals Present Evidence Type macropod

Comments:

## SOILS

Surface Soil Texture Class: loam

| Silene sp. *                      | herbaceous   | ⊢ | guldding      |
|-----------------------------------|--------------|---|---------------|
| Sonchus oleraceus*                | herbaceous   | ⊢ | flowering     |
| Zaluzianskya divaricata*          | herbaceous   | ⊢ | seedling      |
| Acacia pycnantha                  | Tree <0.5m   | Z | vegetative    |
| Aira caryophyllea*                | Grass < 0.5m | Z | flowering     |
| Ajuga australis                   | herbaceous   | Z | vegetative    |
| Amyema miquelii                   | mistletoe    | Z | recently shed |
| Arthropodium fimbriatum           | herbaceous   | Z | mature fruits |
| Asphodelus fistulosus*            | herbaceous   | Z | flowering     |
| Austrostipa nodosa                | Grass < 0.5m | Z | flowering     |
| Goodenia pinnatifida              | herbaceous   | Z | vegetative    |
| Lomandra effusa                   | Sedge <0.5m  | Z | vegetative    |
| Lomandra micrantha ssp. micrantha | Sedge <0.5m  | Z | vegetative    |
| Senecio spanomerus                | herbaceous   | Z | flowering     |

# VEGETATION ASSOCIATION DESCRIPTION

Life Form/Height Class Canopy Cover
Trees 5-15m
Shrubs 0-0.5m
Grass < 0.5m
mid dense

Structural Description: Low Woodland

Upper Stratum Age Classes Present: sapling, mature, senescent, hollows, dead tree s

# OVERSTOREY MEASUREMENTS

Canopy Type: 45%

Overstorey Height (m): 10, 10, 8, 14, 6, 10

Canopy Depth (m): 1, 5, 3, 4, 2, 3, 2, 4, 5

Canopy Diameter (m): 18, 4, 10, 6, 4, 10, 3, 6, 8, 3

Gap (m): 1, 0, 0, 0, 5, 3, 4, 0, 0

## Appendix C Biological Survey Quadrat Photographs



Quadrat 1, *Austrostipa blackii* Open tussock grassland, 13 September 2007.



Quadrat 2, *Lomandra effusa* ± *Heliochrysum leucopsideum* Open tussock grassland, 13 September 2007.



Quadrat 3, *Eucalyptus gracilis* ± *Eucalyptus oleosa* Open mallee, 14 September 2007.



Quadrat 4, *Eucalyptus odorata* Low woodland, 13 September 2007.

| Species                                                          | Common Name                |      | onservati<br>gnificano |      | Source |
|------------------------------------------------------------------|----------------------------|------|------------------------|------|--------|
|                                                                  |                            | Nat. | State                  | Reg. |        |
| Acacia acinacea                                                  | Wreath Wattle              |      |                        |      | 1      |
| Acacia halliana                                                  | Hall's Wattle              |      |                        |      | 2      |
| Acacia ligulata                                                  | Umbrella Bush              |      |                        |      | 4      |
| Acacia microcarpa                                                | Manna Wattle               |      |                        |      | 4      |
| Acacia paradoxa                                                  | Kangaroo Thorn             |      |                        |      | 7      |
| Acacia pycnantha                                                 | Golden Wattle              |      |                        |      | 1      |
| Acaena echinata                                                  | Sheep's Burr               |      |                        |      | 5      |
| Ajuga australis f. A (A.G.Spooner 9058)                          | Australian Bugle           |      |                        |      | 7      |
| Allocasuarina verticillata                                       | Drooping Sheoak            |      |                        |      | 1      |
| Amphipogon caricinus var. caricinus                              | Long Grey-beard Grass      |      |                        |      | 1      |
| Amphipogon sp.                                                   | Grey-beard Grass           |      |                        |      | 4      |
| Amyema miquelii                                                  | Box Mistletoe              |      |                        |      | 4      |
| Aristida behriana                                                | Brush Wire-grass           |      |                        | R    | 1      |
| Aristida contorta                                                | Curly Wire-grass           |      |                        | R    | 4      |
| Arthropodium fimbriatum                                          | Nodding Vanilla-lily       |      |                        | - 1  | 1      |
| Arthropodium strictum                                            | Common Vanilla-lily        |      |                        |      | 1      |
| Asperula conferta                                                | Common Woodruff            |      |                        |      | 1      |
| Astroloma humifusum                                              | Cranberry Heath            |      |                        |      | 2      |
| Atriplex semibaccata                                             | Berry Saltbush             |      |                        |      | 1      |
| Austrodanthonia auriculata                                       | Lobed Wallaby-grass        |      |                        | U    | 7      |
| Austrodanthonia caespitosa                                       | Common Wallaby-grass       |      |                        |      | 5      |
| Austrodanthonia caespitosa  Austrodanthonia pilosa               | Velvet Wallaby-grass       |      |                        | K    | 5      |
| Austrodanthonia setacea                                          |                            |      |                        |      | 5      |
|                                                                  | Small-flower Wallaby-grass |      |                        |      |        |
| Austrodanthonia sp.                                              | Created Crear grees        |      |                        | т    | 1      |
| Austrostipa blackii                                              | Crested Spear-grass        |      |                        | Т    | 5      |
| Austrostina anamanhila                                           | Feather Spear-grass        |      |                        |      | 1      |
| Austrostipa eremophila                                           | Rusty Spear-grass          |      |                        |      | 5      |
| Austrostipa nodosa                                               | Tall Spear-grass           |      |                        |      | 7      |
| Austrostipa scabra group                                         | Falcate-awn Spear-grass    |      |                        |      | 5      |
| Austrostipa scabra ssp. scabra                                   | Rough Spear-grass          |      |                        |      | 7      |
| Austrostipa sp.                                                  | Spear-grass                |      |                        |      | 1 -    |
| Blennospora drummondii                                           | Dwarf Button-flower        |      |                        |      | 5      |
| Bromus sp.                                                       | Brome                      |      |                        | _    | 4      |
| Bulbine bulbosa                                                  | Bulbine-lily               |      |                        | R    | 1      |
| Bursaria spinosa                                                 | Bursaria                   |      |                        |      | 1      |
| Bursaria spinosa ssp. lasiophylla                                | Downy Bursaria             |      |                        |      | 4      |
| Caesia calliantha                                                | Blue Grass-lily            |      |                        | R    | 2      |
| Calandrinia eremaea                                              | Dryland Purslane           |      |                        |      | 7      |
| Callitris gracilis                                               | Southern Cypress Pine      |      |                        |      | 1      |
| Calostemma purpureum                                             | Pink Garland-lily          |      |                        |      | 1      |
| Centrolepis aristata                                             | Pointed Centrolepis        |      |                        | K    | 5      |
| Chamaesyce drummondii                                            |                            |      |                        |      | 4      |
| Cheilanthes austrotenuifolia                                     | Annual Rock-fern           |      |                        |      | 1      |
| Chenopodium desertorum                                           | Desert Goosefoot           |      |                        |      | 1      |
| Chenopodium desertorum ssp.                                      |                            |      |                        |      |        |
| microphyllum                                                     | Small-leaf Goosefoot       |      |                        |      | 4      |
| Chrysocephalum apiculatum                                        | Common Everlasting         |      |                        |      | 2      |
| Chrysocephalum baxteri                                           | White Everlasting          |      |                        |      | 2      |
| Chrysocephalum semipapposum Clematis micrphylla var. microphylla | Clustered Everlasting      |      |                        |      | 7      |

| Species                               | Common Name                |      | onservati<br>gnificano |          | Source |
|---------------------------------------|----------------------------|------|------------------------|----------|--------|
|                                       |                            | Nat. | State                  | Reg.     |        |
| Convolvulus angustissimus             |                            |      |                        |          | 7      |
| Convolvulus erubescens complex        |                            |      |                        |          | 1      |
| Convolvulus sp.                       | Bindweed                   |      |                        |          | 4      |
| Crassula colorata                     | Dense Crassula             |      |                        |          | 1      |
| Crassula sieberiana complex           | Australian Stonecrop       |      |                        |          | 1      |
| Cryptandra sp.                        | Cryptandra                 |      |                        |          | 1      |
| Cryptandra tomentosa                  | Heath Cryptandra           |      |                        |          | 7      |
| Cullen australasicum                  | Tall Scurf-pea             |      |                        |          | 5      |
| Cynoglossum suaveolens                | Sweet Hound's-tongue       |      |                        | R        | 1      |
| Dampiera rosmarinifolia               | Rosemary Dampiera          |      |                        |          | 7      |
| Daucus glochidiatus                   | Native Carrot              |      |                        |          | 5      |
| Dianella revoluta var. revoluta       | Black-anther Flax-lily     |      |                        |          | 1      |
| Dichondra repens                      | Kidney Weed                |      |                        |          | 1      |
| Diuris behrii                         | Behr's Cowslip Orchid      |      | V                      | V        | 1      |
| Diuris sp.                            | Donkey Orchid              |      |                        |          | 1      |
| Dodonaea viscosa ssp. cuneata         | Wedge-leaf Hop-bush        |      |                        |          | 4      |
| Dodonaea viscosa ssp. spatulata       | Sticky Hop-bush            |      |                        |          | 1      |
| Drosera macrantha ssp. planchonii     | Climbing Sundew            |      |                        |          | 2      |
| Einadia nutans ssp. nutans            | Climbing Saltbush          |      |                        |          | 1      |
| Elymus scaber var. scaber             | Native Wheat-grass         |      |                        | R        | 1      |
| Enchylaena tomentosa var. tomentosa   | Ruby Saltbush              |      |                        |          | 1      |
| Enneapogon nigricans                  | Black-head Grass           |      |                        |          | 1      |
| Enneapogon polyphyllus                | Leafy Bottle-washers       |      |                        |          | 7      |
| Enneapogon sp.                        | Bottle-washers/Nineawn     |      |                        |          | 4      |
| Epilobium billardierianum             | Robust Willow-herb         |      |                        |          | 4      |
| Eucalyptus calycogona ssp. calycogona | Square-fruit Mallee        |      |                        |          | 1      |
| Eucalyptus gracilis                   | Yorrell                    |      |                        |          | 4      |
| Eucalyptus leucoxylon ssp. leucoxylon | South Australian Blue Gum  |      |                        | R        | 1      |
| Eucalyptus odorata                    | Peppermint Box             |      |                        |          | 1      |
| Eucalyptus oleosa ssp. oleosa         | Red Mallee                 |      |                        |          | 1      |
| Eucalyptus phenax ssp. phenax         | White Mallee               |      |                        |          | 1      |
| Eucalyptus porosa                     | Mallee Box                 |      |                        |          | 1      |
| Eucalyptus rugosa                     | Coastal White Mallee       |      |                        |          | 2      |
| Eucalyptus socialis                   | Codstal Willie Malice      |      |                        |          | 1      |
| Eutaxia microphylla                   | Common Eutaxia             |      |                        |          | 1      |
| Glycine rubiginosa                    | Twining Glycine            |      |                        |          | 1      |
| Gonocarpus elatus                     | Hill Raspwort              |      |                        |          | 1      |
| Gonocarpus tetragynus                 | Small-leaf Raspwort        |      |                        |          | 4      |
| Goodenia pinnatifida                  | Cut-leaf Goodenia          |      |                        |          | 1      |
| Goodenia pusilliflora                 | Small-flower Goodenia      |      |                        |          | 1      |
| Goodenia robusta                      | Woolly Goodenia            |      |                        |          | 1      |
| Gramineae sp.                         | Grass Family               |      |                        |          | 1      |
| Halgania cyanea                       | Rough Blue-flower          |      |                        |          | 1      |
| Hardenbergia violacea                 | Native Lilac               |      |                        |          | 1      |
| Helichrysum leucopsideum              | Satin Everlasting          |      |                        |          | 1      |
| Hibbertia crinita                     | Satir Everiasting          |      |                        | Q        | 5      |
| Hydrocotyle callicarpa                | Tiny Pennywort             |      |                        | <u> </u> | 5      |
| Hypoxis glabella var. glabella        | Tiny Star                  |      |                        |          | 1      |
| Juncus bufonius                       | Toad Rush                  |      |                        |          | 5      |
| Juncus pallidus                       | Pale Rush                  |      |                        |          | 4      |
| Juncus pailidus<br>Juncus subsecundus |                            |      |                        |          | 4      |
| Kennedia prostrata                    | Finger Rush Scarlet Runner |      |                        |          | 1      |

| Species                               | Common Name                |      | onservati<br>gnificano |      | Source |
|---------------------------------------|----------------------------|------|------------------------|------|--------|
| •                                     |                            | Nat. | State                  | Reg. |        |
| Lagenophora huegelii                  | Coarse Bottle-daisy        |      |                        |      | 1      |
| Lepidosperma viscidum                 | Sticky Sword-sedge         |      |                        |      | 1      |
| Leptorhynchos squamatus ssp.          |                            |      |                        |      |        |
| squamatus                             | Scaly Buttons              |      |                        | R    | 1      |
| Levenhookia dubia                     | Hairy Stylewort            |      |                        | R    | 1      |
| Lomandra densiflora                   | Soft Tussock Mat-rush      |      |                        |      | 1      |
| Lomandra effusa                       | Scented Mat-rush           |      |                        |      | 1      |
| Lomandra micrantha ssp. micrantha     | Small-flower Mat-rush      |      |                        |      | 4      |
| Lomandra multiflora ssp. dura         | Hard Mat-rush              |      |                        |      | 1      |
| Lomandra nana                         | Small Mat-rush             |      |                        | R    | 2      |
| Lotus australis                       | Austral Trefoil            |      |                        |      | 5      |
| Lysiana exocarpi ssp. exocarpi        | Harlequin Mistletoe        |      |                        |      | 4      |
| Maireana brevifolia                   | Short-leaf Bluebush        |      |                        |      | 1      |
| Maireana enchylaenoides               | Wingless Fissure-plant     |      |                        |      | 1      |
| Maireana georgei                      | Satiny Bluebush            |      |                        |      | 4      |
| Maireana sp.                          | Bluebush/Fissure-plant     |      |                        |      | 4      |
| Microtis parviflora                   | Slender Onion-orchid       |      |                        | K    | 7      |
| Microtis unifolia complex             | Onion-orchid               |      |                        |      | 1      |
| Millotia myosotidifolia               | Broad-leaf Millotia        |      |                        |      | 1      |
| Neurachne alopecuroidea               | Fox-tail Mulga-grass       |      |                        |      | 1      |
| Olearia axillaris                     | Coast Daisy-bush           |      |                        |      | 4      |
| Olearia ramulosa                      | Twiggy Daisy-bush          |      |                        | R    | 1      |
| Oxalis perennans                      | Native Sorrel              |      |                        |      | 1      |
| Panicum effusum var. effusum          | Hairy Panic                |      |                        |      | 5      |
| Persicaria prostrata                  | Creeping Knotweed          |      |                        |      | 4      |
| Pheladenia deformis                   | Bluebeard Orchid           |      |                        |      | 1      |
| Phyllangium divergens                 | Wiry Mitrewort             |      |                        |      | 5      |
| Pimelea curviflora var. gracilis      | Curved Riceflower          |      |                        |      | 1      |
| Pimelea micrantha                     | Silky Riceflower           |      |                        |      | 5      |
| Plantago gaudichaudii                 | Narrow-leaf Plantain       |      |                        | T    | 1      |
| Plantago sp.                          | Plantain                   |      |                        |      | 4      |
| Plantago varia                        | Variable Plantain          |      |                        |      | 5      |
| Podolepis tepperi                     | Delicate Copper-wire Daisy |      |                        |      | 7      |
| Pogonolepis muelleriana               | Stiff Cup-flower           |      |                        |      | 1      |
| Pomaderris paniculosa ssp. paniculosa | Mallee Pomaderris          |      |                        |      | 2      |
| Poranthera microphylla                | Small Poranthera           |      |                        |      | 5      |
| Pteridium esculentum                  | Bracken Fern               |      |                        | R    | 4      |
| Pterostylis sp.                       | Greenhood                  |      |                        | K    | 1      |
| Ptilotus erubescens                   | Hairy-tails                |      | R                      | R    | 5      |
| Ptilotus spathulatus f. spathulatus   | Pussy-tails                |      | K                      | K    | 1      |
| Rhamnaceae sp.                        | Fussy-talls                |      |                        |      | 4      |
| Rhodanthe microglossa                 | Clustered Everlasting      |      |                        |      | 7      |
| Salsola kali                          | Buckbush                   |      |                        |      | 4      |
|                                       | Pale Fanflower             |      |                        |      |        |
| Scaevola albida                       |                            |      |                        |      | 1      |
| Scaevola sp.                          | Fanflower Vallow Sabasa    |      |                        |      | 4      |
| Sebaea ovata                          | Yellow Sebaea              |      |                        |      | 5      |
| Senecio picridioides                  | Purple-leaf Groundsel      |      |                        | R    | 5      |
| Senecio pinnatifolius                 | Variable Groundsel         |      |                        |      | 1      |
| Senecio quadridentatus                | Cotton Groundsel           |      |                        |      | 1      |
| Senecio sp.                           | Groundsel                  |      |                        |      | 4      |
| Senecio spanomerus                    |                            |      |                        |      | 7      |

| Species                                         | Common Name                      |      | onservati<br>gnificand |      | Source |
|-------------------------------------------------|----------------------------------|------|------------------------|------|--------|
|                                                 |                                  | Nat. | State                  | Reg. |        |
| Solenogyne dominii                              | Smooth Solenogyne                |      |                        | R    | 1      |
| Stackhousia monogyna                            | Creamy Candles                   |      |                        |      | 1      |
| Swainsona sp.                                   | Swainson-pea                     |      |                        |      | 1      |
| Themeda triandra                                | Kangaroo Grass                   |      |                        |      | 4      |
| Thysanotus patersonii                           | Twining Fringe-lily              |      |                        |      | 1      |
| Tricoryne elatior                               | Yellow Rush-lily                 |      |                        |      | 5      |
| Triptilodiscus pygmaeus                         | Small Yellow-heads               |      |                        |      | 1      |
| Velleia arguta                                  | Toothed Velleia                  |      |                        |      | 1      |
| Velleia paradoxa                                | Spur Velleia                     |      |                        | Q    | 5      |
| Velleia sp.                                     | Velleia                          |      |                        |      | 4      |
| Vittadinia blackii                              | Narrow-leaf New Holland<br>Daisy |      |                        |      | 4      |
| Vittadinia cervicularis var. cervicularis       | Waisted New Holland Daisy        |      |                        |      | 5      |
| Vittadinia cuneata var. cuneata f.<br>cuneata   | Fuzzy New Holland Daisy          |      |                        |      | 1      |
| Vittadinia gracilis                             | Woolly New Holland Daisy         |      |                        |      | 1      |
| Vittadinia megacephala                          | Giant New Holland Daisy          |      |                        |      | 1      |
| Vittadinia sp.                                  | New Holland Daisy                |      |                        |      | 4      |
| Wahlenbergia luteola                            | Yellow-wash Bluebell             |      |                        |      | 1      |
| Wahlenbergia stricta ssp. stricta               | Tall Bluebell                    |      |                        |      | 1      |
| Wurmbea dioica                                  | Early Nancy                      |      |                        |      | 7      |
| Wurmbea sp.                                     | Nancy                            |      |                        |      | 2      |
| *Acacia cyclops                                 | Western Coastal Wattle           |      |                        |      | 1      |
| *Acacia iteaphylla                              | Flinders Ranges Wattle           |      | R                      |      | 4      |
| *Aira caryophyllea                              | Silvery Hair-grass               |      |                        |      | 7      |
| *Aira elegantissima                             | Delicate Hair-grass              |      |                        |      | 5      |
| *Aira sp.                                       | Hair-grass                       |      |                        |      | 4      |
| *Anagallis arvensis                             | Pimpernel                        |      |                        |      | 5      |
| *Arctotheca calendula                           | Cape Weed                        |      |                        |      | 7      |
| *Asclepias curassavica                          | Red-head Cotton-bush             |      |                        |      | 4      |
| *Asparagus asparagoides                         | Bridal Creeper                   |      |                        |      | 3      |
| *Asphodelus fistulosus                          | Onion Weed                       |      |                        |      | 1      |
| *Avena barbata                                  | Bearded Oat                      |      |                        |      | 1      |
| *Brassica tournefortii                          | Wild Turnip                      |      |                        |      | 7      |
| *Briza maxima                                   | Large Quaking-grass              |      |                        |      | 4      |
| *Briza minor                                    | Lesser Quaking-grass             |      |                        |      | 1      |
| *Bromus hordeaceus ssp. hordeaceus              | Soft Brome                       |      |                        |      | 5      |
| *Bromus madritensis                             | Compact Brome                    |      |                        |      | 7      |
| *Bromus rubens                                  | Red Brome                        |      |                        |      | 7      |
| *Carduus pycnocephalus                          | Shore Thistle                    |      |                        |      | 5      |
| *Centaurea melitensis                           | Malta Thistle                    |      |                        |      | 5      |
| *Centaurium erythraea                           | Common Centaury                  |      |                        |      | 5      |
| *Chenopodium album                              | Fat Hen                          |      |                        |      | 4      |
| *Chondrilla juncea                              | Skeleton Weed                    |      |                        |      | 4      |
| *Chrysanthemoides monilifera ssp.<br>monilifera | Boneseed                         |      |                        |      | 3      |
| *Cynara cardunculus ssp. flavescens             | Artichoke Thistle                |      |                        |      | 1      |
| *Disa brachteata                                | South African Weed Orchid        |      |                        |      | 6      |
| *Echium plantagineum                            | Salvation Jane                   |      |                        |      | 1      |
| *Ehrharta longiflora                            | Annual Veldt Grass               |      |                        |      | 7      |
| *Erodium brachycarpum                           | Short-fruit Heron's-bill         |      |                        |      | 7      |
| *Freesia cultivar                               | Freesia                          |      |                        |      | 7      |
| *Fumaria officinalis ssp. officinalis           | Common Fumitory                  |      |                        |      | 7      |

| Species                         | Common Name              |      | onservati<br>ignificand |      | Source |
|---------------------------------|--------------------------|------|-------------------------|------|--------|
| •                               |                          | Nat. | State                   | Reg. |        |
| *Galium murale                  | Small Bedstraw           |      |                         | - 3  | 5      |
| *Gomphocarpus cancellatus       | Broad-leaf Cotton-bush   |      |                         |      | 1      |
| *Hordeum hystrix                |                          |      |                         |      | 7      |
| *Hypochaeris glabra             | Smooth Cat's Ear         |      |                         |      | 7      |
| *Juncus acutus                  | Sharp Rush               |      |                         |      | 4      |
| *Lolium rigidum                 | Wimmera Ryegrass         |      |                         |      | 7      |
| *Lycium ferocissimum            | African Boxthorn         |      |                         |      | 4      |
| *Marrubium vulgare              | Horehound                |      |                         |      | 1      |
| *Medicago minima var. minima    | Little Medic             |      |                         |      | 7      |
| *Moraea setifolia               | Thread Iris              |      |                         |      | 7      |
| *Nicotiana glauca               | Tree Tobacco             |      |                         |      | 5      |
| *Olea europaea ssp. europaea    | Olive                    |      |                         |      | 3      |
| *Oxalis pes-caprae              | Soursob                  |      |                         |      | 1      |
| *Panicum hillmanii              | Witch-grass              |      |                         |      | 4      |
| *Parentucellia latifolia        | Red Bartsia              |      |                         |      | 1      |
| *Pentaschistis pallida          | Pussy Tail               |      |                         |      | 5      |
| *Petrorhagia dubia              | Velvet Pink              |      |                         |      | 5      |
| *Pinus halepensis               | Aleppo Pine              |      |                         |      | 3      |
| *Plantago bellardii             | Hairy Plantain           |      |                         |      | 7      |
| *Poa bulbosa                    | Bulbous Meadow-grass     |      |                         |      | 7      |
| *Polypogon monspeliensis        | Annual Beard-grass       |      |                         |      | 4      |
| *Romulea minutiflora            | Small-flower Onion-grass |      |                         |      | 5      |
| *Romulea rosea var. australis   | Common Onion-grass       |      |                         |      | 4      |
| *Rumex sp.                      | Dock                     |      |                         |      | 7      |
| *Salvia verbenaca form          | Wild Sage                |      |                         |      | 1      |
| *Scabiosa atropurpurea          | Pincushion               |      |                         |      | 1      |
| *Senecio pterophorus            | African Daisy            |      |                         |      | 1      |
| *Silene gallica var. gallica    | French Catchfly          |      |                         |      | 5      |
| *Solanum nigrum                 | Black Nightshade         |      |                         |      | 4      |
| *Sonchus oleraceus              | Common Sow-thistle       |      |                         |      | 7      |
| *Spergularia sp.                | Sand-spurrey             |      |                         |      | 1      |
| *Tolpis barbata                 | Yellow Hawkweed          |      |                         |      | 5      |
| *Trifolium angustifolium        | Narrow-leaf Clover       |      |                         |      | 1      |
| *Trifolium arvense var. arvense | Hare's-foot Clover       |      |                         |      | 4      |
| *Trifolium campestre            | Hop Clover               |      |                         |      | 7      |
| *Trifolium sp.                  | Clover                   |      |                         |      | 4      |
| *Trifolium subterraneum         | Subterranean Clover      |      |                         |      | 7      |
| *Vicia sativa ssp. nigra        | Narrow-leaf Vetch        |      |                         |      | 7      |
| *Vulpia ciliata                 | Fringed Fescue           |      |                         |      | 5      |
| *Vulpia myuros                  | Fescue                   |      |                         |      | 4      |
| *Zaluzianskya divaricata        | Spreading Night-phlox    |      |                         |      | 7      |

<sup>\*</sup>Introduced species

- V = Vulnerable; rare and at risk from potential threats in the long term
- T = Threatened; rare and likely to become either endangered or vulnerable
- R = Rare; having a low overall frequency, confined to a restricted range or scattered sparsely over a wide area
- U = Uncommon; less common species but not rare
- K = Uncertain; either threatened or rare but insufficient data for a more precise assessment
- $Q = Not \ yet \ assessed \ but \ flagged \ as \ being \ of \ possible \ significance$

## <sup>b</sup>Sources:

- 1 = Play fair (2004)
- 2 = not 1 but Kanmantoo-Callington Landcare Group Significant Vegetation Study (2006)

<sup>&</sup>lt;sup>a</sup>Conservation Significance Codes:

# Appendix D Combined Species List for all Surveys

Shaded species were new records in September 2007.

<sup>3 =</sup> not 1 or 2 but Kanmantoo-Callington Landcare Group Interim Weed Control Strategy (2006)

<sup>4 =</sup> not 1, 2 or 3 but Ecological Associates (2007)

<sup>5 =</sup> not 1, 2, 3 or 4 but Biological Database of South Australia (DEH)

<sup>6 =</sup> not 1, 2, 3, 4 or 5 but Ecological Associates (2006)

<sup>7 =</sup> not 1, 2, 3, 4, 5 or 6 but the survey undertaken for this report

# **Appendix 4C**

**EPBC Act Vegetation Survey** 



Monday, 5 August 2013

3/107 Hayward Ave Torrensville SA 5031

T: 08 7127 5607

F: 08 8354 2403

E: info@ebsecology.com.au W: www.ebsecology.com.au

Re: Vegetation Survey of Peppermint Box and Irongrass communities at Kanmantoo Copper Mine

Hillgrove Resources engaged EBS Ecology to undertake an assessment of the Peppermint Box Woodland and Irongrass Tussock Grassland communities mapped within the Hillgrove Resources Kanmantoo mining lease. Primarily this was to determine whether these remnant patches meet the criteria of the nationally threatened ecological communities (TEC), set out in the DEWHA document 'EPBC Act Policy Statement 3.7 Peppermint Box (*Eucalyptus odorata*) Grassy Woodland of South Australia and Iron-grass Natural Temperate Grassland of South Australia' (2007). A particular focus was placed on the relevant communities located within the proposed Life of Mine (LOM) disturbance increase area and these were assessed against the policy statement criteria.

### Methodology

Field Survey

The field survey was undertaken by EBS Ecology staff on the 25<sup>th</sup> June, 2013.

Floristic Mapping

Previous floristic mapping was provided prior to the survey. The vegetation associations and boundaries were checked and corrected where necessary.

Extent of communities

The extent of *Lomandra* grassland patches and Peppermint Box Woodland were recorded using hand held Garmin GPS (Accuracy +/- 15m) units which are carried around the extent of the communities present. The track log was saved with the relevant patch number and entered into Arc GIS software to enable the total area to be calculated.

#### Species diversity

Species diversity totals were obtained from a 50 x 50m quadrat for each representative area. All species observed within the quadrats were recorded with totals compared against benchmark criteria outlined in the *Commonwealth Listing Advice on Iron-grass Natural Temperate Grassland of South* Australia (Table 1) (TSSC 2007) and the Commonwealth Listing Advice on Peppermint Box (*Eucalyptus odorata*) Grassy Woodland of South Australia (Table 1) (TSSC 2007).

Table 1. Condition classes for Iron-Grass Natural Temperate Grassland of South Australia.

| Condition<br>Class | Minimum<br>Size | Diversity<br>of Native<br>Species <sup>1</sup> | No. of Broad-leaved<br>Herbaceous Species <sup>1</sup><br>in addition to<br>identified<br>disturbance resistant<br>species <sup>2</sup> | No. of<br>Perennial<br>Grass Species <sup>1</sup> | Tussock<br>Count <sup>3</sup> |
|--------------------|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|
| Listed ecolo       | gical comm      | unity                                          |                                                                                                                                         |                                                   |                               |
| Α                  | 0.1 ha          | > 30                                           | +10                                                                                                                                     | ≥5                                                | 1/m                           |
| В                  | 0.25 ha         | > 15                                           | +3                                                                                                                                      | >4                                                | 1/m                           |
| Degraded pa        | atches amen     | able to rehab                                  | ilitation                                                                                                                               |                                                   |                               |
| С                  |                 | > 5                                            | No minimum                                                                                                                              | ≥1                                                | No minimum                    |

As measured in a 50m X 50m quadrat;

Table 2. Condition classes for Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia.

| Condition<br>Class | Minimum<br>Size | Diversity<br>of Native<br>Species <sup>1</sup> | No. of Broad-leaved<br>Herbaceous Species <sup>1</sup><br>in addition to<br>identified<br>disturbance resistant<br>species <sup>2</sup> | No. of<br>Perennial<br>Grass Species <sup>1</sup> |
|--------------------|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Listed ecole       | ogical comm     | unity                                          |                                                                                                                                         |                                                   |
| Α                  | 0.1 ha          | > 30                                           | +10                                                                                                                                     | ≥5                                                |
| В                  | 1 ha            | > 15                                           | +3                                                                                                                                      | ≥2                                                |
| Degraded p         | atches ame      | nable to rehak                                 | oilitation                                                                                                                              |                                                   |
| C                  |                 | > 5                                            | No minimum                                                                                                                              | ≥1                                                |

As measured in a 50m X 50m quadrat;

Tussock Density

The following species are identified as disturbance resistant species: *Ptilotus spathulatus* forma *spathulatus*; *Sida corrugata*; *Oxalis perennans*; *Convolvulus erubescens*; *Euphorbia drummondii*; and, *Maireana enchylaenoides*; and,

As measured along a 50m transect.

The following species are identified as disturbance resistant species: *Ptilotus spathulatus* forma *spathulatus*; *Sida corrugata*; *Oxalis perennans*; *Convolvulus erubescens*; *Euphorbia drummondii*; and, *Maireana enchylaenoides* 

Tussock density was calculated by using a 50m transect through the centre of the 50m x 50m quadrat. This is used to quickly and accurately establish whether the density of tussocks meets the minimum criteria for the TEC which is  $1/m^2$ . Tussocks bases or aerial parts of the plants need to be intersected by the tape to be recorded.

#### Survey Limitations

The survey was undertaken at a time of year which <u>did not</u> allow for the highest potential species diversity, which coincides with the emergence of annual herbaceous species and bulbous species from families such as Liliaceae (*Bulbine bulbosa, Wurmbea dioica,* and *Arthropodium* spp.), Stackhousiaceae (*Stackhousia monogyna*) and Orchidaceae.

#### Results

Thirteen sites were assessed in the Peppermint Box (*Eucalyptus odorata*) Woodland remnants across the mine site, whilst four sites were assessed in the Irongrass (*Lomandra* spp.) Grassland remnants. Seven Peppermint Box (*Eucalyptus odorata*) Woodland sites qualified as the TEC condition class B, whilst four qualified as condition class C which are regarded as degraded patches amenable to rehabilitation. *Eucalyptus odorata* patch 11, which falls within the proposed impact area, was not assessed due the low quality woodland community present. This patch had a very low density of Peppermint Box trees in the overstorey with an understorey dominated by *Austrostipa scabra*, forming a dense climax community with low diversity of indigenous herbaceous and grass species. This does not subsequently form part of the Threatened Ecological Community.

Of the four Irongrass (*Lomandra* spp.) Grassland sites assessed, two qualified as the TEC condition class B, and two qualified as condition class C which are regarded as degraded patches amenable to rehabilitation. Table 3 shows the species recorded for each of the sites. Table 4 and 5 displays the results of the assessment against the EPBC listing criteria for each site. Figure 1 shows locations of each site and condition rating assigned as assessed against the EPBC listing criteria. In addition, the mapping also displays the amendments to the vegetation mapping across the mine site.

Table 2. Species lists for Peppermint Box (Eucalyptus odorata) Woodland sites and Irongrass (Lomandra spp.) Grassland sites.

| TYPE | Scientific Name                            | Common Name                | Comm.<br>Status | SA<br>Status | OD1      | OD2      | OD3 | OD4      | OD5      | 9DO      | OD7      | OD8      | 6Q0      | OD10     | OD11 | OD12 | OD13 | LOM1     | LOM2     | LOM3     | LOM4     |
|------|--------------------------------------------|----------------------------|-----------------|--------------|----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|------|------|------|----------|----------|----------|----------|
| G    | Lomandra effusa                            | Scented Mat-rush           |                 |              | <b>✓</b> | <b>✓</b> |     | <b>✓</b> | <b>✓</b> |          |          | <b>✓</b> |          |          |      |      |      | <b>✓</b> | <b>√</b> | <b>✓</b> | <b>✓</b> |
| Н    | Enchylaena tomentosa var.                  | Ruby Saltbush              |                 |              | ✓        | <b>√</b> | ✓   | ✓        | ✓        | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> | ✓    |      | ✓    | ✓        | ✓        |          |          |
|      | Acacia pycnantha                           | Golden Wattle              |                 |              | ✓        | ✓        | ✓   | ✓        | ✓        | ✓        | ✓        | ✓        |          | ✓        | ✓    |      |      |          | ✓        | ✓        |          |
| G    | Austrostipa scabra ssp. scabra             | Rough Spear-grass          |                 |              | ✓        | ✓        | ✓   | ✓        | ✓        | ✓        |          | ✓        | ✓        | ✓        | ✓    | ✓    | ✓    | ✓        | ✓        | ✓        | ✓        |
| G    | Austrostipa sp. 2                          | Spear-grass                |                 |              |          |          |     |          |          |          |          |          |          | ✓        | ✓    |      |      |          | ✓        |          |          |
| G    | Austrostipa sp. 3                          | Spear-grass                |                 |              |          |          |     |          | ✓        |          | <b>√</b> |          |          |          |      |      | ✓    | ✓        |          |          |          |
| Н    | Vittadinia cuneata var. cuneata f. cuneata | Fuzzy New Holland Daisy    |                 |              | <b>✓</b> | <b>√</b> | ✓   | ✓        | <b>√</b> | <b>√</b> |          |          |          | <b>√</b> |      |      |      | <b>✓</b> | <b>√</b> |          | <b>✓</b> |
| Н    | Maireana enchylaenoides                    | Wingless Fissure-plant     |                 |              | ✓        | <b>√</b> | ✓   | ✓        | ✓        | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> |          | ✓    |      |      | ✓        |          |          |          |
| Н    | Liliaceae sp.                              | Lily Family                |                 |              | ✓        | <b>√</b> | ✓   | ✓        | ✓        | <b>√</b> |          |          |          | <b>√</b> |      |      |      |          |          |          | ✓        |
| G    | Austrodanthonia setacea                    | Small-flower Wallaby-grass |                 |              | ✓        | <b>√</b> | ✓   | ✓        | ✓        | <b>√</b> |          |          |          |          |      |      |      |          |          |          |          |
| G    | Austrodanthonia caespitosa                 | Common Wallaby-grass       |                 |              |          |          |     |          |          |          |          |          |          | <b>√</b> |      |      |      | ✓        | <b>√</b> |          | ✓        |
| G    | Austrodanthonia sp.                        | Wallaby-grass              |                 |              |          |          |     |          |          |          | <b>√</b> |          |          |          |      |      |      |          |          |          |          |
| G    | Elymus scaber var. scaber                  | Native Wheat-grass         |                 |              | ✓        |          | ✓   | ✓        | ✓        | <b>√</b> | <b>√</b> | <b>√</b> | ✓        |          | ✓    | ✓    | ✓    | ✓        | ✓        |          |          |
| Н    | Oxalis perennans                           | Native Sorrel              |                 |              | ✓        | <b>√</b> |     |          |          |          |          |          |          |          |      |      |      | ✓        | ✓        | <b>√</b> | ✓        |
| Н    | Gonocarpus tetragynus                      | Small-leaf Raspwort        |                 |              | ✓        | ✓        | ✓   |          | ✓        | ✓        |          |          |          | <b>√</b> |      |      |      |          | ✓        |          | ✓        |
| Н    | Thysanotus patersonii                      | Twining Fringe-lily        |                 |              | ✓        | ✓        | ✓   |          |          | ✓        |          |          |          | ✓        |      |      |      |          | ✓        |          |          |
| Н    | Einadia nutans ssp.                        | Climbing Saltbush          |                 |              | ✓        |          | ✓   |          | ✓        | ✓        | ✓        | ✓        | ✓        |          |      |      |      |          |          |          |          |
| Н    | Senecio spanomerus                         |                            |                 |              | ✓        | ✓        | ✓   |          | ✓        | ✓        |          | ✓        |          |          |      |      |      |          |          |          | ✓        |
|      | Atriplex semibaccata                       | Berry Saltbush             |                 |              |          |          |     |          |          |          | ✓        | ✓        |          |          |      |      |      |          |          |          |          |
|      | Allocasuarina verticillata                 | Drooping Sheoak            |                 |              | ✓        | ✓        |     |          | ✓        |          |          |          |          | <b>√</b> | ✓    |      |      |          |          |          |          |
| Н    | Cheilanthes austrotenuifolia               | Annual Rock-fern           |                 |              |          | ✓        | ✓   |          |          | ✓        |          | ✓        |          | <b>√</b> |      |      |      |          | ✓        |          | ✓        |
| Н    | Dianella revoluta var. revoluta            | Black-anther Flax-lily     |                 |              |          | ✓        |     |          |          |          |          |          |          |          |      |      |      |          | ✓        |          |          |
|      | Senecio quadridentatus                     | Cotton Groundsel           |                 |              |          |          | ✓   |          |          |          |          |          |          |          |      |      |      |          |          |          |          |
|      | Eutaxia microphylla                        | Common Eutaxia             |                 |              |          | ✓        | ✓   |          | ✓        | ✓        |          |          |          | ✓        |      |      |      |          |          |          | <b>✓</b> |
| Н    | Dichondra repens                           | Kidney Weed                |                 |              |          |          | ✓   | ✓        |          | ✓        |          |          |          |          |      |      |      |          |          |          |          |

| TYPE | Scientific Name                       | Common Name                   | Comm.<br>Status | SA<br>Status | OD1 | OD2 | ОДЗ      | 0D4 | OD5 | 9D0      | OD7 | OD8      | 600 | OD10     | OD11 | OD12 | OD13 | LOM1     | LOM2 | LOM3     | LOM4     |
|------|---------------------------------------|-------------------------------|-----------------|--------------|-----|-----|----------|-----|-----|----------|-----|----------|-----|----------|------|------|------|----------|------|----------|----------|
| Н    | Plantago drummondii                   | Dark Plantain                 |                 |              |     |     | <b>√</b> |     |     |          |     |          |     |          |      |      |      | <b>√</b> |      |          |          |
|      | Acacia microcarpa                     | Manna Wattle                  |                 |              |     |     | ✓        |     |     | <b>√</b> | ✓   |          |     |          |      |      |      |          |      |          |          |
| Н    | Vittadinia blackii                    | Narrow-leaf New Holland Daisy |                 |              |     |     | <b>✓</b> |     | ✓   |          |     |          |     |          |      |      |      | ✓        |      |          |          |
| Н    | Chenopodium desertorum ssp.           | Desert Goosefoot              |                 |              |     |     |          |     | ✓   |          | ✓   |          |     |          |      |      |      | ✓        |      |          |          |
|      | Maireana brevifolia                   | Short-leaf Bluebush           |                 |              |     |     |          |     | ✓   |          | ✓   | ✓        |     |          |      | ✓    |      |          |      |          |          |
|      | Rhagodia candolleana ssp. candolleana | Sea-berry Saltbush            |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Lepidosperma viscidum                 | Sticky Sword-sedge            |                 |              |     |     |          |     |     | <b>√</b> |     |          |     | ✓        |      |      |      |          |      |          |          |
|      | Pittosporum angustifolium             | Native Apricot                |                 |              |     |     |          |     | ✓   |          |     |          |     |          |      |      |      |          |      |          |          |
| G    | Lomandra multiflora ssp. dura         | Hard Mat-rush                 |                 |              |     |     |          |     | ✓   | <b>√</b> |     | ✓        |     | <b>√</b> |      |      |      |          | ✓    |          |          |
| G    | Lomandra densiflora                   | Soft Tussock Mat-rush         |                 |              |     |     |          |     |     | <b>√</b> |     |          |     | ✓        |      |      |      |          | ✓    |          |          |
| G    | Lomandra micrantha ssp. micrantha     | Small-flower Mat-rush         |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Goodenia robusta                      | Woolly Goodenia               |                 |              |     |     |          |     | ✓   |          |     |          |     |          |      |      |      |          | ✓    |          |          |
| G    | Austrostipa elegantissima             | Feather Spear-grass           |                 |              |     |     |          |     |     | ✓        |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Burchardia umbellata                  | Milkmaids                     |                 |              |     |     |          |     |     | ✓        |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Goodenia pinnatifida                  | Cut-leaf Goodenia             |                 |              |     |     |          |     |     | ✓        |     |          |     |          |      |      |      |          | ✓    |          |          |
| Н    | Prasophyllum sp.                      | Leek-orchid                   |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Lagenophora sp.                       | Bottle-daisy                  |                 |              |     |     |          |     |     | ✓        |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Compositae sp.                        | Daisy Family                  |                 |              |     |     |          |     |     | ✓        |     |          |     |          |      |      |      |          |      |          |          |
| G    | Austrodanthonia sp.                   |                               |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          |      |          |          |
| Н    | Wahlenbergia stricta ssp. stricta     | Tall Bluebell                 |                 |              |     |     |          |     |     |          |     | ✓        | ✓   |          |      |      |      | ✓        |      |          | <b>✓</b> |
|      | Dodonaea viscosa ssp. spatulata       | Sticky Hop-bush               |                 |              |     |     |          |     |     |          |     | <b>✓</b> |     | ✓        |      |      |      |          | ✓    |          |          |
| Н    | Calostemma purpureum                  | Pink Garland-lily             |                 |              |     |     |          |     |     | <b>√</b> |     | <b>✓</b> |     |          |      |      |      |          |      |          |          |
|      | Cryptandra amara var.                 | Cryptandra                    |                 |              |     |     |          |     |     |          |     |          |     | ✓        |      |      |      |          | ✓    |          |          |
| Н    | Erodium sp.                           | Heron's-bill/Crowfoot         |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      | ✓        |      |          | ✓        |
| Н    | Acaena echinata                       | Sheep's Burr                  |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          | ✓    | <b>✓</b> | <b>✓</b> |
| G    | Themeda triandra                      | Kangaroo Grass                |                 |              |     |     |          |     |     |          |     |          |     |          |      |      |      |          | ✓    |          | ✓        |

| TYPE | Scientific Name            | Common Name                | Comm.<br>Status | SA<br>Status | OD1 | OD2 | OD3 | OD4 | OD5 | 9 <b>Q</b> O | OD7 | 0D8 | 6 <b>0</b> 0 | OD10 | OD11 | OD12 | OD13 | LOM1 | LOM2          | LOM3 | LOM4     |
|------|----------------------------|----------------------------|-----------------|--------------|-----|-----|-----|-----|-----|--------------|-----|-----|--------------|------|------|------|------|------|---------------|------|----------|
|      | Pomaderris paniculosa ssp. |                            |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | <b>-</b><br>✓ |      |          |
| Н    |                            | Dough Doonwort             |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | <b>√</b>      |      | V        |
| G    | Haloragis aspera           | Rough Raspwort             |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      |               |      |          |
| 0    | Amphipogon strictus        | Spreading Grey-beard Grass |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | ✓             |      | <b>√</b> |
|      | Scaevola aemula            | Fairy Fanflower            |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | ✓             |      |          |
|      | Bursaria spinosa ssp.      | Bursaria                   |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | ✓             |      |          |
| Н    | Asperula sp.               | Woodruff                   |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      | ✓             |      |          |
| G    | Enneapogon nigricans       | Black-head Grass           |                 |              |     |     |     |     |     |              |     |     |              |      |      |      |      |      |               |      | <b>✓</b> |
| Н    | Diuris behrii              | Behr's Cowslip Orchid      |                 | V            | ✓   |     |     |     |     | ✓            |     |     |              |      |      |      |      |      |               |      |          |
| Н    | Ptilotus erubescens        | Hairy-tails                |                 | R            |     |     | ✓   |     |     |              |     |     |              |      |      |      |      |      |               |      |          |
| Н    | Stackhousia monogyna       | Creamy Candles             |                 |              | ✓   |     |     |     |     |              |     |     |              |      |      |      |      |      |               |      |          |
| Н    | Wurmbea dioica ssp.        |                            |                 |              | ✓   |     |     |     |     |              |     |     |              |      |      |      |      |      |               |      |          |
| Н    | Arthropodium strictum      | Common Vanilla-lily        |                 |              | ✓   |     |     |     |     |              |     | ✓   |              |      |      |      |      |      |               |      |          |
| Н    | Cynoglossum suaveolens     | Sweet Hound's-tongue       |                 |              | ✓   |     |     |     |     | ✓            |     |     |              |      |      |      |      |      |               |      |          |
| Н    | Ptilotus spathulatus       | Pussy-tails                |                 |              |     |     |     | ✓   |     |              |     |     |              |      |      |      |      |      |               |      |          |

Vegetation type, G = Grass, H = Broadleaf Herbaceous species (count excludes disturbance resistance species listed in Tables 1 & 2.)

Table 3. EPBC assessment against the criteria results.

| Pepper | Peppermint Box sites |          |        |                |                                                        |               |               |       |  |  |
|--------|----------------------|----------|--------|----------------|--------------------------------------------------------|---------------|---------------|-------|--|--|
| Site   | Easting              | Northing | Size   | Native species | Herbaceous species additional to disturbance resistant | Grass species | TEC?<br>(ABC) | Patch |  |  |
| Α      |                      |          | 0.1ha  | >30            | 10                                                     | ≥5            |               |       |  |  |
| В      |                      |          | 1ha    | >15            | 3                                                      | ≥2            |               |       |  |  |
| С      |                      |          |        | >5             | no minimum                                             | ≥1            |               |       |  |  |
| OD1    | 318098               | 6115279  | 17.454 | 20             | 12                                                     | 4             | В             | 10    |  |  |
| OD2    | 318020               | 6115236  | 17.454 | 16             | 8                                                      | 3             | В             | 10    |  |  |
| OD3    | 318060               | 6115367  | 17.454 | 20             | 12                                                     | 3             | В             | 10    |  |  |
| OD4    | 318142               | 6115473  | 17.454 | 11             | 4                                                      | 4             | С             | 10    |  |  |
| OD5    | 318025               | 6115659  | 7.657  | 21             | 9                                                      | 6             | В             | 12    |  |  |
| OD6    | 318246               | 6115323  | 17.454 | 27             | 17                                                     | 6             | В             | 10    |  |  |
| OD7    | 317505               | 6115534  | 2.83   | 11             | 3                                                      | 3             | С             | 14    |  |  |
| OD8    | 317882               | 6115668  | 7.657  | 16             | 7                                                      | 4             | В             | 12    |  |  |
| OD9    | 317710               | 6115563  | 5.331  | 6              | 3                                                      | 2             | С             | 13    |  |  |
| OD10   | 318226               | 6115846  | 17.454 | 17             | 7                                                      | 5             | В             | 10    |  |  |
| OD11   | 317954               | 6116352  | 11.137 | 7              | 1                                                      | 3             | С             | 6     |  |  |
| OD12   | 316597               | 6116330  | 1.22   | 3              | 0                                                      | 2             | NO            | 1     |  |  |
| OD13   | 316816               | 6116033  | 3.541  | 4              | 1                                                      | 3             | NO            | 2     |  |  |

Table 4. EPBC assessment against the criteria results.

| Irongra | ss Grassl | and sites |        |                |                                                        |               |               |       |                                |
|---------|-----------|-----------|--------|----------------|--------------------------------------------------------|---------------|---------------|-------|--------------------------------|
| Site    | Easting   | Northing  | Size   | Native species | Herbaceous species additional to disturbance resistant | Grass species | TEC?<br>(ABC) | Patch | Tussocks<br>per m <sup>2</sup> |
| Α       |           |           | 0.1ha  | >30            | 10                                                     | ≥5            |               |       | >1                             |
| В       |           |           | 1ha    | >15            | 3                                                      | >4            |               |       | >1                             |
| С       |           |           |        | >5             | no minimum                                             | ≥1            |               |       | >1                             |
| LOM1    | 318155    | 6114317   | 14.542 | 14             | 7                                                      | 5             | С             | 22    | >1                             |
| LOM2    | 317930    | 6114029   | 0.98   | 27             | 10                                                     | 9             | В             | 28    | >1                             |
| LOM3    | 317919    | 6114045   | 0.98   | 5              | 1                                                      | 2             | С             | 28    | >1                             |
| LOM4    | 317932    | 6114303   | 0.337  | 17             | 8                                                      | 6             | В             | 30    | >1                             |

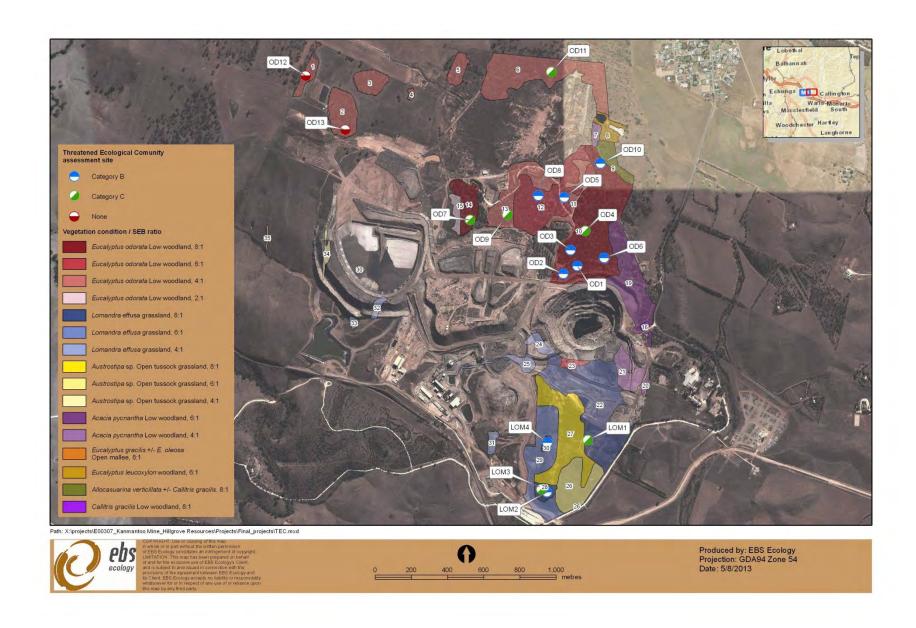



Figure 1. Vegetation mapping and EPBC assessment sites.

#### References

- Department of the Environment and Water Resources (2007) EPBC Act Policy Statement 3.7

  Peppermint Box (Eucalyptus odorata) Grassy Woodland of South Australia and Iron-grass Natural

  Temperate Grassland of South Australia'
- Threatened Species Scientific Committee (2007) Commonwealth Listing Advice on Iron-grass Natural Temperate Grassland of South Australia [Listing Advice].
- Threatened Species Scientific Committee (TSSC) (2007) Commonwealth Listing Advice on Iron-grass Natural Temperate Grassland of South Australia [Listing Advice].

**Appendix 4D** 

**Vegetation Assessment** 





January 10, 2014

Catherine Davis Hillgrove Resources Ltd Éclair Mine Road Kanmantoo, SA 5252

**RE: Vegetation Assessment** 

Dear Catherine,

Following on from our meeting this morning, I subsequently had a look over the buffer area highlighted as being potentially required for clearance. I have attached a map which shows the tracks and clearance buffer assessed. The following is a summary of what I observed.

**General Observations**; The entire site assessed is highly disturbed from its original state. This site has had changes in land use from mining to pastoral and agricultural. Soils are not consistent with surrounding areas with no evidence of clay loams present within the clearance buffer.

Boundary areas have been planted with amenity species in some areas (*Eucalyptus torquata*, *Acacia iteaphylla*) and other sections have volunteer weeds (*Acacia cyclops*) and exotic species (See below for a full species list). The open sections of the buffer have been used for agricultural purposes however currently consist entirely of exotic herbaceous and grass species.

There were signs of pest animal activity in the area with active rabbit burrows present in the southern extent of the buffer.

There were high numbers of New Holland and White-plumed Honey-eaters present foraging on the Eucalypts observed at the time of the survey. It is possible that some fauna species of conservation significance may use this area periodically for some habitat resources. These are expected however, to be transient visits only, due to the level of fragmentation. Such species may include Brush-tailed Possum, Diamond Fire-tail, Elegant parrot, White-winged Chough, Jacky winter and Hooded Robin.



Native vegetation; Very little native vegetation was present in the area. Small patches of regenerated Austrostipa sp. (Spear Grass), Themeda triandra (Kangaroo Grass), Aristida behriana (Brush Wire-grass) Enchylaena tomentosa (Ruby Saltbush) and Enneapogon nigricans (Black heads) were observed along the fence lines where disturbance was lowest. Individual Dodonaea viscosa ssp. spathulata (Sticky Hop-bush), Lomandra effusa (Scented Mat-rush) and Acacia pycnantha (Golden Wattle) were also sparsely present. The individual occurrences are not at a density that constitutes native vegetation and a clearance application and subsequent offset requirement is not necessary in this instance. No species of conservation significance



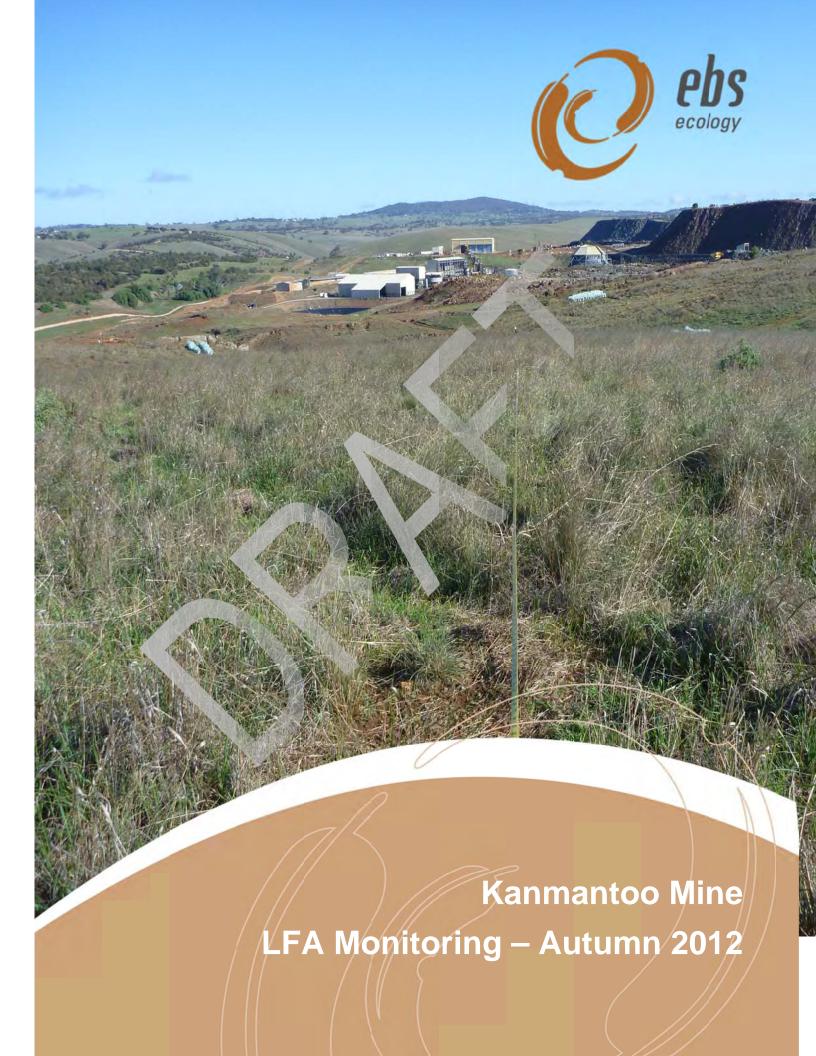
were recorded other than *Acacia iteaphylla* (Flinders Ranges Wattle, Rare SA), which has been planted as an amenity species and therefore discounted.

A list of the weed species recorded onsite is provided below. It is a requirement of the landowner under the *Natural Resources Management Act 2004* to control outbreaks of declared species.

| Family         | Species                            | Common                 | Declared |
|----------------|------------------------------------|------------------------|----------|
| LEGUMINOSAE    | Acacia cyclops                     | Western Coastal Wattle |          |
| LILIACEAE      | Asphodelus fistulosus              | Onion Weed             | ✓        |
| GRAMINEAE      | Avena barbata                      | Bearded Oat            |          |
| CHENOPODIACEAE | Chenopodium album                  | Fat Hen                |          |
| CUCURBITACEAE  | Citrullus lanatus                  | Bitter Melon           |          |
| COMPOSITAE     | Cynara cardunculus ssp. flavescens | Artichoke Thistle      |          |
| GRAMINEAE      | Cynodon dactylon var. dactylon     | Couch                  |          |
| BORAGINACEAE   | Echium plantagineum                | Salvation Jane         | ✓        |
| AIZOACEAE      | Galenia sp.                        | Galenia                |          |
| ASCLEPIADACEAE | Gomphocarpus cancellatus           | Broad-leaf Cotton-bush |          |
| BORAGINACEAE   | Heliotropium europaeum             | Common Heliotrope      |          |
| LABIATAE       | Marrubium vulgare                  | Horehound              | ✓        |
| POLYGONACEAE   | Polygonum aviculare                | Wireweed               |          |
| DIPSACACEAE    | Scabiosa atropurpurea              | Pincushion             |          |
| GRAMINEAE      | Vulpia myuros                      | Fescue                 |          |

Yours sincerely,

Andrew Sinel


**Ecologist** 

**EBS** Ecology



**Appendix 4E** 

**LFA Monitoring** 



# Kanmantoo Mine LFA Monitoring – Autumn 2012 20 July 2012

#### Version 1

### Prepared by EBS Ecology for Hillgrove Resources

| Document Control |             |          |             |               |               |  |  |
|------------------|-------------|----------|-------------|---------------|---------------|--|--|
| Revision No.     | Date issued | Authors  | Reviewed by | Date Reviewed | Revision type |  |  |
| 1                | 25/07/2012  | T. Brown | A. Sinel    | 25/07/2012    | Draft         |  |  |

| Distribution of Copies |             |            |                                 |  |  |  |  |
|------------------------|-------------|------------|---------------------------------|--|--|--|--|
| Revision No.           | Date issued | Media      | Issued to                       |  |  |  |  |
| 1                      | 25/07/2012  | Electronic | J. Crocker, Hillgrove Resources |  |  |  |  |

COPYRIGHT: Use or copying of this document in whole or in part (including photographs) without the written permission of EBS Ecology constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of EBS Ecology's Client, and is subject to and issued in connection with the provisions of the agreement between EBS Ecology and its Client. EBS Ecology accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

CITATION: EBS Ecology (2011) *Kanmantoo Mine LFA Monitoring – Autumn 2012*. Report to Hillgrove Resources. EBS Ecology, Adelaide.

Front cover photo: Typical *Eucalyptus odorata* (Peppermint Box) Woodland in good condition.



# **GLOSSARY AND ABBREVIATION OF TERMS**

EPBC Act Environment Protection and Biodiversity Conservation Act 1999

LFA Landscape Function Analysis

MARP Mining and Rehabilitation Program

SSA Soil Surface Assessment

TPC Threshold of Potential Concern



#### **EXECUTIVE SUMMARY**

A Landscape Function Analysis (LFA) monitoring program has been implemented into the ongoing environmental management, restoration and SEB offset program components of the Kanmantoo Mine.

2012 is the second year of monitoring the three vegetation communities, which include two nationally threatened ecological communities listed as critically endangered under the *Environment Protection and Biodiversity Conservation Act 1999* (the EPBC Act); *Eucalyptus odorata* (Peppermint Box) Open Woodland and *Lomandra effusa* (Scented Mat-rush) +/- *Lomandra multiflora* subsp. *dura* (Stiff Mat-rush) Open Tussock Grassland. The third vegetation association is *Austrostipa scabra* (Spear grass) Tussock Grassland.

Analysis of the data has demonstrated that the analogue sites are in very good condition and are consistent with the previous year's datasets. They are still yielding the higher end of the target values, due to exceptional seasonal condition over the past three years and it will be important to monitor the analogue sites annually for several more years to capture the lower end of a 'target range' of values.

The rehabilitation sites established in *Eucalyptus odorata* (Peppermint Box) Open Woodland areas are generally in poor condition, however there are small variations in the data which indicate that the removal of grazing and the favourable seasonal conditions are benefiting the vegetation community. It is anticipated that the LFA indices values will begin to improve further, once active restoration of the sites is commence.

Rehabilitation sites for the other two vegetation types will need to be established as soon as they are identified and restorative activities have been initiated.



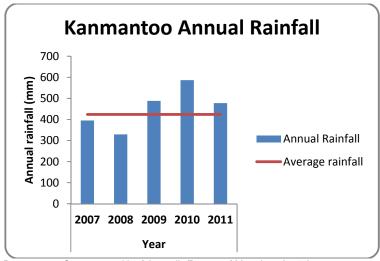
# **Contents**

| 1    | INTRODUCTION                                                                                                                                                  | 6  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | 1.1 Seasonal conditions                                                                                                                                       | 6  |
| 2    | RESULTS                                                                                                                                                       | 7  |
| _    |                                                                                                                                                               |    |
|      | 2.1 LFA                                                                                                                                                       | 9  |
| 3    | DISCUSSION                                                                                                                                                    | 16 |
| 4    | REFERENCES                                                                                                                                                    | 18 |
| 5    | APPENDICES                                                                                                                                                    | 19 |
|      | Appendix 1. Potential question for repeat visits                                                                                                              | 19 |
| Li   | st of Tables                                                                                                                                                  |    |
| Tab  | ole 1. SSA results                                                                                                                                            | 10 |
| Tab  | ole 2. Summary of the landscape organisation data for KANODO analogue and rehabilitation sites                                                                | 13 |
| Tab  | ole 3. Summary of the landscape organisation data for KANLOM analogue sites                                                                                   | 14 |
|      | ole 4. Summary of the landscape organisation data for KANSTI analogue sites                                                                                   |    |
| Li   | st of Figures                                                                                                                                                 |    |
| Fig  | ure 1. Kanmantoo annual rainfall 2007-2011                                                                                                                    | 6  |
| Fig  | ure 2. Analogue site - Eucalyptus odorata (Peppermint Box) Open Woodland 2012                                                                                 | 7  |
| Fig  | ure 3. Analogue site - Lomandra effusa (Scented Scented Mat-rush) +/- Lomandra multiflora ssp. dura  (Hard Mat-rush) Grassland, 2012                          | 0  |
| Fia  | ure 4. Analogue site - <i>Austrostipa</i> spp. (Spear Grass) Grassland, 2012                                                                                  |    |
|      | ure 5. Rehabilitation site - Eucalyptus odorata (Peppermint Box) Open Woodland 2012                                                                           |    |
|      | ure 6. Eucalyptus odorata Woodland SSA individual zones contribution to the whole of the landscape                                                            |    |
|      | site comparison                                                                                                                                               |    |
| _    | ure 7. Eucalyptus odorata Woodland SSA individual zones contribution to Stability                                                                             |    |
|      | ure 8. Eucalyptus odorata Woodland SSA individual zones contribution to Infiltration.                                                                         |    |
|      | ure 9. Eucalyptus odorata Woodland SSA individual zones contribution to Nutrient Cyclingure 10. Eucalyptus odorata Woodland Landscape organisation data       |    |
|      | ure 10. Eucalyptus odorata vvoodiand Landscape organisation dataure11. Lomandra ssp. Grassland analogue site - SSA contribution to the whole of the landscape |    |
| _    | ure 12. Lomandra ssp. Grassland SSA individual zones                                                                                                          |    |
| _    | ure 13. Austrostipa spp. (Spear Grass) Grassland analogue site - SSA contribution to the whole of the                                                         | 14 |
| . 19 | landscapelandscape                                                                                                                                            | 15 |
| Fig  | ure 14. Austrostipa spp. (Spear Grass) Grassland analogue site SSA individual zones                                                                           |    |





#### 1 INTRODUCTION


For Hillgrove Resources to meet its objectives and obligations under the MARP, the nominated offset areas will require annual monitoring to determine the overall success of the ongoing restoration programs. EBS Ecology has been commissioned by Hillgrove Resources to undertake a Landscape Function Analysis (LFA) (Tongway and Hindley, 2005) land condition monitoring program across the Kanmantoo Copper Mine project site. Details of the monitoring program and associated methodologies are detailed in *Kanmantoo Mine Vegetation Monitoring – Landscape Function Analysis.* (EBS Ecology, 2011). It is the intent that data collection be repeated over time to achieve a time series trajectory for the different land types across the mine site, enabling critical indicators to be identified, their values analysed and used to adapt future management activities if required.

This primary aims of this report are to:

- provide the second year of LFA monitoring data for the existing sites across the Kanmantoo Mine site
- provide discussion and analysis of data for relevant critical indicators
- · provide recommendations for future LFA monitoring.

#### 1.1 Seasonal conditions

The long-term average annual rainfall for the district is 424 mm. 2011 was another above average rainfall season contributing to the 'pulse' event (Figure 1). It is important to note that a natural decline may be experienced in the data index values following this period of above average precipitation. It is necessary that during and after this period, to collect a series of 'target values' for the analogue sites which will become the 'target range' the rehabilitation sites are aiming for.



Data source: Commonwealth of Australia/Bureau of Metrology (2012)

Figure 1. Kanmantoo annual rainfall 2007-2011.



# 2 RESULTS

Data was collected at the analogue sites for a second year during May 2012 and will be used in association with one or two additional datasets to determine what the 'target range' of values are for each vegetation association.

Vegetation communities have responded well to above average seasonal conditions over the past few years, with good cover of native perennial and annual species. Some juvenile grass and other native herb recruitment is evident mainly throughout *Eucalyptus odorata* Open Woodland and *Lomandra effusa* / *Lomandra multiflora* spp. *dura* Grassland associations. Mosses and lichens have also responded well and appear to be much more prevalent than in 2011. Local disturbance to the soil surface brought about by high mouse numbers in 2011, appear to have declined significantly and the subsequent damage is recovering.

Site photos for 2012 are displayed in Figures 2 - 5.



Figure 2. Analogue site - Eucalyptus odorata (Peppermint Box) Open Woodland 2012.





Figure 3. Analogue site - *Lomandra effusa* (Scented Scented Mat-rush) +/- *Lomandra multiflora* ssp. dura (Hard Mat-rush) Grassland, 2012.



Figure 4. Analogue site - Austrostipa spp. (Spear Grass) Grassland, 2012.





Figure 5. Rehabilitation site - Eucalyptus odorata (Peppermint Box) Open Woodland 2012.

#### 2.1 LFA

Results for Soil Surface Assessments for individual zones and contribution to whole of site values are provided in Table 1. Data from each of the three replicate sites within the same vegetation associations have been combined to obtain average values. For example KANODO 1, 2 and 3 have a single set of values for each indices.

Year 2 results (2012) have been added to the table, with subsequent years also to be included following each monitoring event. As new rehabilitation sites are established, more datasets will be included within the annual reports.



Table 1. SSA results.

|                      |                    |                    | Stability (%)      |                  | Infiltration (%)   |                  | Nutrients (%)      |                  |
|----------------------|--------------------|--------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|
| Site name            | Zones              |                    | 2011<br>(baseline) | 2012<br>(Year 2) | 2011<br>(baseline) | 2012<br>(Year 2) | 2011<br>(baseline) | 2012<br>(Year 2) |
|                      | Whole of landscape |                    | 61.26              | 60.56            | 37.4               | 44.3             | 26.6               | 31.76            |
| KANODO Analogue site | Individual zones   | Bare Ground        | 60.2               | 57.7             | 28.36              | 30.3             | 20.8               | 19.36            |
| (8:1)                |                    | Grass Sward        | 64.6               | 62               | 34.46              | 39.4             | 27.7               | 26.9             |
|                      |                    | Tree Patch         | 61.2               | 62.46            | 45.8               | 57.96            | 31.46              | 44.4             |
|                      | lne                | Shrub Patch        | 62.45              | 62.5             | 36.7               | 49.53            | 24.5               | 35.26            |
| KANODO               | Whole of landscape |                    | 69.66              | 61.3             | 54.4               | 54.8             | 47.3               | 40.9             |
| Rehabilitation       | ones               | Bare Ground        | -                  | 61.3             | -                  | 51.6             | -                  | 34.05            |
| site (4:1)           | Individual zones   | Exotic Grass Sward | 70.1               | 62.3             | 48.26              | 53.9             | 41.36              | 38.1             |
|                      | Indiv              | Tree Patch         | 69.6               | 60.4             | 59.93              | 56.1             | 52.7               | 44.16            |
| KANLOM               | Whole of landscape |                    | 62.5               | 61.5             | 27.1               | 30.03            | 21.6               | 21.9             |
| Analogue site        | Individual zones   | Grass Sward        | 64.1               | 63.4             | 29.2               | 32.5             | 23.6               | 25.2             |
| (8:1)                |                    | Bare Stony Ground  | 56.3               | 58.6             | 20.1               | 25.6             | 14.8               | 15.9             |
|                      |                    | Shrub Patch        | 69.4               | 68.1             | 31.1               | 51.5             | 27.7               | 50               |
| KANSTI               | Whole of landscape |                    | 64.9               | 60.6             | 36                 | 39.3             | 29.5               | 25.2             |
| Analogue site (8:1)  | Individual         | Grass Sward        | 66.4               | 63               | 37.43              | 42.3             | 30.9               | 27.8             |
|                      |                    | Bare Ground        | 55.1               | 56.36            | 20.5               | 34.26            | 14.9               | 20.6             |

A number of graphs display data for each of the vegetation associations. Data has only been compared between *Eucalyptus odorata* analogue and rehabilitation sites where sites were both assessed (see Figures 6 - 10). *Lomandra* and *Austrostipa* Grassland sites have data displayed only for analogue sites as the rehabilitation sites are yet to be established. Site comparison will become possible for these associations as further sites are selected for restoration.



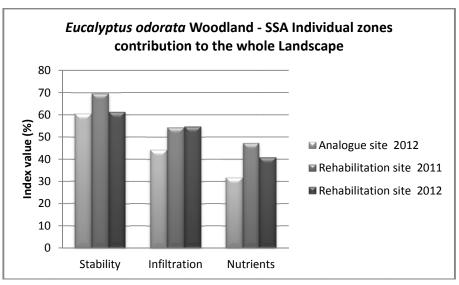



Figure 6. Eucalyptus odorata Woodland SSA individual zones contribution to the whole of the landscape site comparison

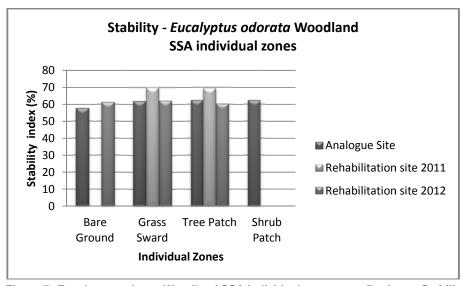



Figure 7. Eucalyptus odorata Woodland SSA individual zones contribution to Stability



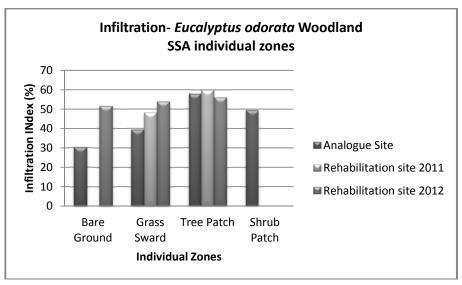



Figure 8. Eucalyptus odorata Woodland SSA individual zones contribution to Infiltration.

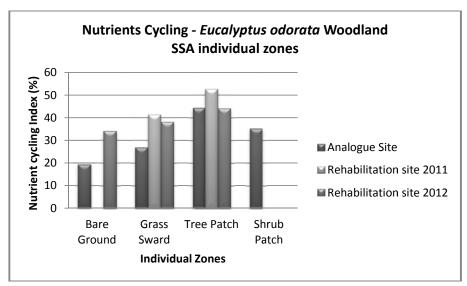



Figure 9. Eucalyptus odorata Woodland SSA individual zones contribution to Nutrient Cycling.

A summary of the landscape organization data is provided in Table 5. This includes the averaged values between the three replicate sites for number of landscape patches per 10 m, Total patch area (m²), average inter-patch length and Landscape Organisational Index. The landscape organization index is the proportion of the length of patch to the total length of the transect i.e. a totally bare transect would have an index of zero or if it was all patch (e.g. a sward) the index would be 1. These values can be compared from year to year to measure changes in the landscape. For example, patch sizes and/or number of patches are increasing and by extension, inter-patch lengths are decreasing.



Table 2. Summary of the landscape organisation data for KANODO analogue and rehabilitation sites.

| Site Type           | No. of patch<br>zones per<br>10m | Total patch area (m²) | Average<br>inter-patch<br>length (m) | Landscape<br>Organisation<br>al Index* |
|---------------------|----------------------------------|-----------------------|--------------------------------------|----------------------------------------|
| Analogue 2011       | 2.6                              | 242.4                 | 1.94                                 | 0.59                                   |
| Analogue 2012       | 2.9                              | 327.5                 | 1.6                                  | 0.75                                   |
| Rehabilitation 2011 | 0.96                             | 520.46                | 0                                    | 1                                      |
| Rehabilitation 2012 | 1.16                             | 476.2                 | 1.2                                  | 0.97                                   |

<sup>\*</sup>length of patches/length of transect

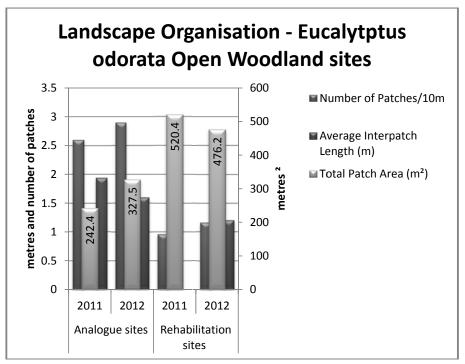



Figure 101. Eucalyptus odorata Woodland Landscape organisation data

Collated data for Lomandra ssp. Grassland sites is presented in Figures 11 and 12. Note that only two replicates of the shrub patch type were recorded when five are required for statistical reliability. This may increase over time if shrub cover increases within the transect monitoring zones. The existing data is probably not overly robust with only two replicates.



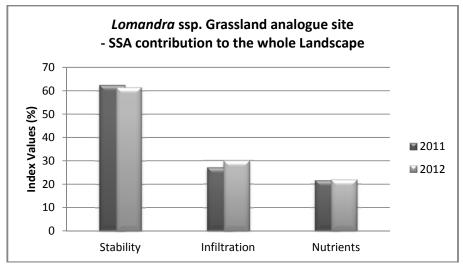



Figure 11. Lomandra ssp. Grassland analogue site - SSA contribution to the whole of the landscape.

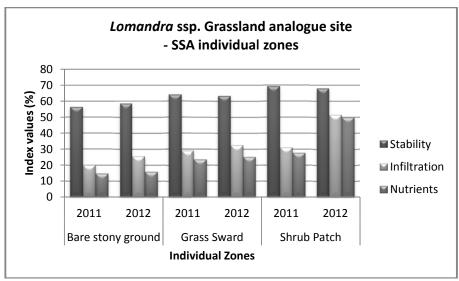



Figure 12. Lomandra ssp. Grassland SSA individual zones.

A summary of the landscape organization data is provided in Table 6.

 $\label{thm:continuous} \textbf{Table 3. Summary of the landscape organisation data for KANLOM analogue sites.}$ 

| Site type     | No. of patch<br>zones per<br>10m | Total patch area (m²) | Average<br>inter-patch<br>length (m) | Landscape<br>Organisation<br>al Index* |
|---------------|----------------------------------|-----------------------|--------------------------------------|----------------------------------------|
| Analogue 2011 | 4.4                              | 92.9                  | 0.76                                 | 0.64                                   |
| Analogue 2012 | 5.4                              | 95.1                  | 0.71                                 | 0.56                                   |

<sup>\*</sup>length of patches/length of transect

Collated data for Austrostipa ssp. Grassland sites is presented in Figures 13 and 14.



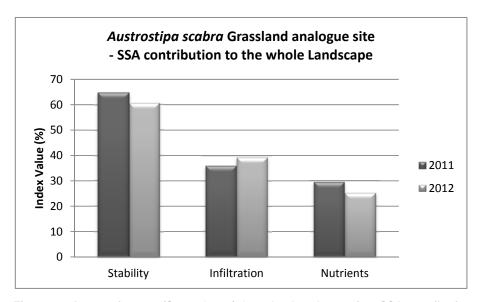



Figure 13. Austrostipa spp. (Spear Grass) Grassland analogue site - SSA contribution to the whole of the landscape.

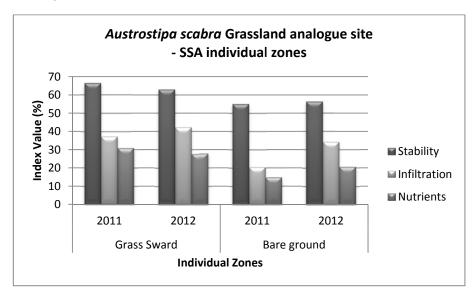



Figure 14. Austrostipa spp. (Spear Grass) Grassland analogue site SSA individual zones.

A summary of the landscape organization data is provided in Table 4.

Table 4. Summary of the landscape organisation data for KANSTI analogue sites.

| Site Type     | No. of patch zones per 10 m | Total patch area (m²) | Average<br>inter-patch<br>length (m) | Landscape<br>Organisational<br>Index* |  |
|---------------|-----------------------------|-----------------------|--------------------------------------|---------------------------------------|--|
| Analogue 2011 | 2.5                         | 215.5                 | 20.18                                | 0.85                                  |  |
| Analogue 2012 | 6.9                         | 122                   | 0.58                                 | 0.61                                  |  |

<sup>\*</sup>length of patches/length of transect



#### 3 DISCUSSION

#### Eucalyptus odorata (Peppermint Box) Open Woodland

As expected the indices values obtained from the analogue sites are consistent with those collected in 2011, indicating that the community is in a highly functional and stable state. Another year of above average rainfall has again inflated the values somewhat and it will be important in the following few years to collect annual data from the analogue sites to obtain more realistic values and the development of a 'target range' of values in which the rehabilitation sites can aspire to.

The whole of landscape values obtained from the rehabilitation sites are higher than the analogue sites for infiltration and nutrient cycling, primarily due to the exceptional season and the continuous dense cover of annual grasses. This has led to the retention of soil moisture, enhanced infiltration due to high volumes of below-ground biomass, and nutrients in the soil from the breakdown of the annual biomass in the previous two years. Stability has stabilised and in 2012 is more in line with the analogue sites (Figure 6) and is probably also due to the high cover of grasses and exotic herbs. The values of the individual zones show that there is significant variation in the indices between analogue and rehabilitation sites within the bare ground and areas dominated by grass, whereas the tree patches yield very similar values for stability, infiltration and nutrient levels. The influence of the trees appears to have a consistent effect upon the soil function. An important feature of the woodland landscapes are that they tend to be more resilient to degradation through weed invasion because the trees groves are scarcely impacted and continue to cycle nutrients in spite of bare patches between the tree groves (in summer months), which tend to be prey to wind and water erosion when their surfaces are disturbed. Future analysis aimed at detecting genuine degradation of a site, will need to focus on the data between tree patches in the interpatch areas, and use any of the bare soil inter-patch values as indicators of soil degradation, augmented by the inter-patch length, rather than the whole of site indices, which will always be buffered by good tree patch values. These may not be available until the continuous annual grass cover has died off.

Some of the general observations made during the 2012 monitoring survey included a higher incidence of mosses and cryptograms, higher levels of litter and softer ground due to the exceptional high rainfall in May. Infiltration rates in particular appear to have been influenced by these factors and exhibit elevated levels, particularly within the analogue sites. Increases in moss cover appear to be influencing native grass recruitment within the *Eucalyptus odorata* (Peppermint Box) Open Woodland rehabilitation sites. Despite only occurring in small localised areas, it is suggesting the early stages of recovery following the removal of grazing and favourable seasonal conditions.

Once future targeted management activities are initiated (outlined in *Kanmantoo Mine Vegetation Monitoring – Landscape Function Analysis* (EBS Ecology, 2011)), it is anticipated that the LFA indices values will gradually begin to improve, that is, infiltration and nutrient cycling levels will begin reducing and stability remaining consistent with the Analogue site value..

The landscape organisational data shows that the rehabilitation sites are behaving very differently in



terms of patch/interpatch variation. Much of the community is dominated by grassy exotics forming a 'continuous' homogenous patch in the understorey. Some small areas of bare ground were evident during the 2012 survey, as well as small areas dominated by the moss / native grass combination. This may be the emergence of a more heterogeneous landscape structure now that the primary degrading factor has been removed (grazing), coupled with good seasonal conditions. The proposed management activities (understorey restoration) will aim to accelerate this process by mimicking landscape patch arrangement observed in the analogue sites.

# Lomandra effusa (Scented Scented Mat-rush) +/- Lomandra multiflora ssp. dura (Hard Mat-rush) Grassland

The overall condition of the analogue sites from a biodiversity perspective is excellent. There are very few weeds, a high cover of native vegetation and high species diversity for the vegetation community. The LFA values obtained from the indices demonstrate that the sites are highly functional and in a stable state, however they are likely to be higher than normal for the same reason that the woodland sites have inflated values. Very little has changed overall since 2011. Some small increases in infiltration and nutrient cycling were noted within the patch and interpatch zones, and may be attributed to the increase in cryptograms, particularly within the interpatch zones. The soils were also relatively moist given the above average rainfall in the months of March and May 2012. It is recommended that additional datasets are collected in the next few years to obtain more realistic target values.

#### Austrostipa spp. (Spear Grass) Grassland

The overall condition of the *Austrostipa* spp. analogue sites is very good and LFA values have remained fairly consistent with 2011. There are few weeds and a high cover of native grasses, however many of the plants are old and some senescing, with elevated levels of surface litter, mainly made up of native grass thatch. The LFA values obtained from the sites demonstrate that the sites are highly functional and in a stable state.

Landscape organisational data has yielded significant variation from 2011 data, where the patchiness has increased due to an overall decrease in surface litter. The litter appeared in 2011 to be creating 'land bridges' between the tussocks and led to larger areas being measured as grass swards. The decrease in dry grass litter levels may be a result of the widespread disturbance to soil surface due to mouse activity throughout 2011, subsequently breaking up the thick thatch layer.

For the same reasons as the other land types, the SSA values obtained are likely to be higher than would normally be expected due to exceptional seasonal conditions. It is therefore recommended that additional datasets are collected in the next few years to obtain more realistic target values.



## 4 REFERENCES

EBS Ecology (2011) Kanmantoo Mine Vegetation Monitoring – Landscape Function Analysis. Report to Hillgrove Resources. EBS Ecology, Adelaide.

Commonwealth of Australia (2012) Bureau of Meteorology – Climate data, Kanmantoo.

Tongway, D.J., and Hindley, N.L. (2005) Landscape Function Analysis: Procedures for monitoring and assessing landscapes. With special reference to Minesites and Rangelands. CSIRO Sustainable Ecosystems, Canberra.

Tongway, D.J (2005) Landscape Function Analysis: Field Procedures CSIRO Sustainable Ecosystems, Canberra.



## 5 APPENDICES

#### Appendix 1. Potential question for repeat visits

#### **Landscape Organisation**

- Is Landscape Organisation due to biological or physical/engineering features? If a mixture of biological and physical, what is the balance between them?
- Has physical patchiness declined since the last monitoring period? If so, is there cause for concern? Specify threatening processes (e.g. sedimentation, rill or gully initiation).
- Is biological patchiness increasing; is the rate significant?
- Has patch width increased or decreased since the previous monitoring? If decreasing, can the
  cause be identified (e.g. banks cut by rills, vegetation patches no longer linked by "litter
  bridges"). If increasing, what is the cause? (e.g. plant litter build-up between adjacent grass
  plants?)
- Are patches increasing or decreasing in length (ie. up and down slope)?
- Is the patch area increasing or decreasing?
- Has biological patch quality compensated for loss of physical patchiness, or not? Note that
  'whole transect' LFA indices (bottom line in last table on Summary page) are comprised of both
  'quality' and 'proportion' values. Comment should be made on the make-up of the final number.
- Does patchiness change with season? E.g. massive annual plant growth that 'hays off" in the non-growing season?
- Is a stony surface a significant inter-patch type? Is the stone embedded or resting on the surface?
- Is stone cover of such significance that a soil crust has not formed between stones?
- If patches are due to applied mulch, is the density and spacing of mulch having an effect on runoff and erosion/sedimentation processes? Can check rill density to confirm. Look also for sediment trapped in upslope edges of mulch. Comment on whether too much or too little mulch appears to have been used, giving reasons.
- What are the major differences between the analogue site and the rehabilitation sites? (E.g. patch type and size).
- Are any of the assessed sites approaching the Landscape Organisation of the analogue sites?
- Is a rill assessment necessary? If so, observe the nature of the rill floor and note if it is rock or is unstable (loose alluvium, slaking soil)
- Are rills increasing or decreasing in number or cross-section; are live plant or litter obstructions becoming established?
- Is sediment noticeably being captured in developing patches? If so, watch these areas in future for plant germination. If no sediment is being trapped, consider an intervention to supply more



- resource flow "obstructions"
- Are patch/inter-patch types changing in character; are new names necessary? The need to do
  so should be explained, as both beneficial and detrimental changes can occur: explain in terms
  of resource regulation (patches may now be more complex: grass-shrub clumps forming? shrubs
  colonising? troughs growing plants? troughs becoming flats? Banks becoming slopes?)

#### Soil Surface Assessment

- Is rainsplash protection due to physical or biological factors? Is the protection threatened by disturbance? If so, specify and discuss. Is rainsplash protection likely to increase over time (vegetation growth) or remain the same (rock)
- Is litter accumulating noticeably? Is decomposition becoming a more conspicuous process? What is the balance between litter derived from perennial vs. annual plants?
- Is annual litter robust enough to be considered perennial (e.g. from biennial plants)? Is litter decomposition being reflected in soil darkening (look at the boundary between the litter and the mineral soil colour)?
- Is the surface crust becoming more or less pronounced? Is the sub-crust soil coherent (hard or weakly aggregated or single-grain) Are there any bio-aggregates (e.g. worm pellets, termite carton) present?
- Is all the litter accumulated subject to consumption by fire? (some landscapes have highly
  discontinuous litter beds, reducing the potential for complete loss in fire; grasslands are likely to
  lose all litter in a fire)
- Is plant litter (or applied mulch) sufficiently dense as to effectively filter out all particulate matter during overland flow? Look for deposited materials (physical or biological) near the upslope edge of the litter or mulch patch.
- Does the architecture of plant foliage tend to trap or accumulate resources at ground level, or is
  there a "gap" between the soil surface and the plant canopy? Can this be used to infer litter
  accumulation potential? Consider deploying the full vegetation function procedure in EFA.
- Are there some indicators that do not alter across the function/dysfunction continuum? (e.g. soil texture, surface roughness) If so, comment on this and concentrate on the more informative dynamic indicators.
- What are the threatening processes for the patch types assessed? (e.g. trampling, weeds, vehicular traffic, erosion, burial under sediment, fire)
- Do the indicators of cryptogam cover, surface condition and slake test "match" each other, or can a mis-match be interpreted in functional terms?
- If evidence of current erosion is rarely observed, is this because potentially available material is held in a "safe" location in the landscape, or because there is no erodible material present, or remaining?



- Is alluvium frequently or infrequently encountered? If infrequent, is this due to its rapid outflow
  from the landscape, or is little soil available for transport: look for clues off the line transect for
  guidance. Look for alluvial fans at the foot of the slope to confirm.
- How strongly differentiated are the index values for patches and inter-patches? If differences are small, discuss the significance. If marked, discuss whether patches are vulnerable to disturbance or robust. Good discrimination implies that the L/O task has been done well.
- Are any indicators reaching their maximum score? If so, identify and comment on as having reached a significant 'milestone' in rehabilitation.

#### Interpretational Framework

- This step involves examining both the whole-of-site LFA values and the respective patch inter
  patch LFA values so as to effectively summarize the findings of successive monitoring episodes,
  looking for trend over time. A sigmoidal or 'S' shaped curve with time should be expected.
- Are LFA indices increasing, implying that rehabilitation is progressing satisfactorily?
- Is there a particular factor which is restraining improved function? Is additional management
  intervention necessary? What recommendations for action can be specified from the data? Is the
  increase expressed at the whole site level or just within a single patch type? Discuss.
- Has there been a significant increase in LFA values from the initial value?
- Can a critical threshold be discerned in the index values (ie. LFA values about midway between
  initial and reference site values)? Discuss in terms of consequences for management actions (no
  problem; monitor at infrequent intervals; potential problem close to critical threshold, monitor
  more frequently; current problem, design intervention actions based on LFA indices. Devise
  target values and rehabilitation success and failure criteria for future monitoring.
- Expect the stability index to reach its plateau value before the infiltration index does. The nutrient cycling index will be the slowest as, for its plateau value, a mature vegetation stand, providing substantial litter fall and decomposition is necessary. A site may be concluded to be self-sustaining well before this however, if the stability and infiltration indices have progressed well and the nutrient cycling index is on an upward plane.





EBS Ecology 3/107 Hayward Avenue, Torrensville, SA 5031 www.ebsecology.com.au t. 08 7127 5607

f. 08 8297 3768



**Appendix 5** 

Fauna

Appendix 5A

Fauna Survey



# Final Report

Kanmantoo Copper Project: Fauna Baseline Survey and Impact Assessment



# **Coffey Natural Systems**

2-3 Greenhill Rd Wayville SA 5034

August 2007

ECOLOGICAL ASSOCIATES REPORT DE006-C3

# Contents

| 1 | 1 Introduction                                                                                                                                                                                                                                                                                                | 1-1                      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|   | <ul><li>1.1 Introduction</li><li>1.2 Objectives</li><li>1.3 Background</li></ul>                                                                                                                                                                                                                              | 1-1<br>1-1<br>1-1        |
| 2 | 2 Background                                                                                                                                                                                                                                                                                                  | 2-1                      |
|   | <ul> <li>2.1 Site Description</li> <li>2.2 Nature and Extent of Mine Project</li> <li>2.3 Legislative Framework</li> <li>2.4 Existing Data</li> </ul>                                                                                                                                                         | 2-1<br>2-3<br>2-4<br>2-4 |
| 3 | 3 Fauna Survey                                                                                                                                                                                                                                                                                                | 3-1                      |
|   | <ul><li>3.1 Introduction</li><li>3.2 Methods</li><li>3.3 Results</li></ul>                                                                                                                                                                                                                                    | 3-1<br>3-1<br>3-4        |
| 4 | 4 Discussion of Results                                                                                                                                                                                                                                                                                       | 4-1                      |
|   | <ul><li>4.1 Regional Perspective</li><li>4.2 Species of Management Concern</li></ul>                                                                                                                                                                                                                          | 4-1<br>4-2               |
| 5 | 5 Threat Assessment                                                                                                                                                                                                                                                                                           | 5-1                      |
|   | <ul> <li>5.1 Approach to Threat Assessment</li> <li>5.2 Vegetation Clearance</li> <li>5.3 Noise and Vibration</li> <li>5.4 Dust</li> <li>5.5 Traffic and Activity</li> <li>5.6 Attraction of Water Birds to Contaminated Water</li> <li>5.7 Summary of Threats to Species of Conservation Signific</li> </ul> |                          |
| 6 | 5 Further Investigations                                                                                                                                                                                                                                                                                      | 6-1                      |
|   | <ul><li>6.1 Diamond Firetail Investigations</li><li>6.2 Spring Survey</li></ul>                                                                                                                                                                                                                               | 6-1<br>6-1               |
| _ | 7. D. C                                                                                                                                                                                                                                                                                                       | 7.1                      |

# Figures, Tables & Appendices

| Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|
| Figure 1: Kanma                                                                                                                                                                                                                                                                                                                                                                                                                                               | antoo Copper Project study area (white line), native vegetation communities (coloure | ed),  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and vegetation survey quadrats (black squares).                                      | 2-2   |
| Figure 2: Kanma                                                                                                                                                                                                                                                                                                                                                                                                                                               | antoo Copper Project footprint (black-hatched or dappled areas), and Significant     |       |
| Environmental Benefit (SEB) assessment for each native vegetation community  Figure 3: Sites of trap-lines A. Eucalyptus odorata woodland B. Austrostipa grassland C. Lomandra effusa grassland.  Tables  Table 1: Weather during survey period. Weather station located on Kanmantoo Project Area, MacFarla Hill  Table 2: Trapline Survey (Pitfall Traps, Elliot Traps, and Cage Traps)  Table 3: Roaming Survey – Mammals  Table 4: Roaming Survey – Birds |                                                                                      |       |
| rigure 3: Sites of                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      | 2-2   |
| Tables Table 1: Weather during survey period. Weather station located on Kanmantoo Project Area, MacFarlane Hill                                                                                                                                                                                                                                                                                                                                              | 3-3                                                                                  |       |
| Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |       |
| Table 1: Weather                                                                                                                                                                                                                                                                                                                                                                                                                                              | er during survey period. Weather station located on Kanmantoo Project Area, MacFa    | rlane |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |       |
| Table 2: Trapline                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Survey (Pitfall Traps, Elliot Traps, and Cage Traps)                               | 3-5   |
| Table 3: Roamin                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng Survey – Mammals.                                                                 | 3-6   |
| Table 4: Roamin                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng Survey – Birds                                                                    | 3-7   |
| Table 5: Physica                                                                                                                                                                                                                                                                                                                                                                                                                                              | al Search – Reptiles and Amphibians                                                  | 3-10  |
| Table 6: Bats ide                                                                                                                                                                                                                                                                                                                                                                                                                                             | entified from Anabat Recordings (27/02/06 – 02/03/07)                                | 3-12  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |       |
| Table 8: Bird spe                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecies observed in survey compared with number in DEH records within a 7 km radiu     | ıs of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the Kanmantoo Copper Mine.                                                           | 4-2   |
| Table 9: Area an                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kanmantoo Copper Project. Vegetation condition was reported as a significant         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | environmental benefit (SEB) ratio (DWLBC 2005). Higher SEB ratios indicate b         | etter |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quality habitat                                                                      | 5-2   |
| Appendices                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |       |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEH records of birds within 6 km of the Kanmantoo Copper Mine area boundary          | V     |
| Appendix B                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bat species call identification graphs                                               |       |
| Appendix C                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mammals                                                                              |       |
| Appendix D                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reptiles                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                    |       |

# **Executive Summary**

## **Scope of Work**

Ecological Associates was engaged by Coffey Natural Systems on behalf of Hillgrove Resources to:

- · survey the fauna of the Kanmantoo Copper Project Area
- identify potential impacts to fauna associated with the project; and
- identify opportunities to avoid, minimise or mitigate impacts;
- · recommend further investigations, if required; and
- recommend a program to monitor the effects of mine on fauna in the future.

#### **Methods**

Records of fauna previously observed in the region were extracted from the Biological Survey of South Australia to assess the fauna likely to be present in the area.

A survey of the site, based on the methods of the Biological Survey of South Australia, was conducted over one week in February 2007. The survey involved trapping, bird searches, active searches for vertebrate fauna in litter, debris, hollows and bark, spotlighting and bat recordings. The survey assessed the fauna of the main habitat types of the site (*Eucalyptus odorata* woodland, *Lomandra effusa* tussock grassland and *Austrostipa* sp. grassland) and the general landscape.

### **Findings**

The overall diversity of fauna found at the site was low in comparison to records of fauna previously observed in the area. The abundances of fauna were also low in comparison to values expected from surveys in similar habitats. The low diversity and abundances are believed to partly reflect the low rainfall experienced in the region in the 12 months prior to the survey and the timing of the survey in late summer, when many species may not be active.

The greatest diversity and abundance of fauna was found in the *E. odorata* woodland. This vegetation provided relatively complex habitat components such as hollows, understorey vegetation, logs and deep debris.

Species diversity and abundances were lower in the *L. effusa* tussock grassland. However, this habitat type supports specialist grassland species that are unlikely to be found in other vegetation types.

Two bird species of conservation significance listed under the South Australian National Parks and Wildlife Act 1972 were observed. Diamond Firetail *Stagonopleura guttata* is recognised as vulnerable. It was mainly associated with the *E. odorata* woodland. Peregrine Falcon *Falco peregrinus* is recognised as rare. A pair is resident at the site and nests annually in the cliff face of the existing open cut.

One migratory bird species that is protected under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) was observed. The Rainbow Bee-eater *Merops ornatus* 

# **Executive Summary**

is subject to the Japan Australia Migratory Bird Agreement (JAMBA) and is therefore protected under the EPBC Act.

The Brushtail Possum *Trichosurus vulpecula* was observed. This species has been proposed for listing as rare under the schedules of the National Parks and Wildlife Act (NPWC & DEH 2003). This species is dependent on tree hollows and was observed in the *E. odorata* woodland.

## **Potential Impacts**

The proposed mine development potentially impacts on the fauna of the site. The potential impacts and measures to address these impacts are identified in Table ES-1.

**Table ES-1. Potential Impacts and Impact Minimisation Measures** 

| Potential Impact                                                                                                                                                                    | Possible Minimisation Measures                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clearing vegetation and therefore reducing fauna habitat in <i>E. odorata</i> woodland, <i>L. effusa</i> tussock grassland, <i>Austrostipa</i> sp. grassland, mallee vegetation and | Reduce impacts by planning excavations, roadways and other infrastructure by avoiding remnant vegetation, where possible.                                    |
| scattered trees.                                                                                                                                                                    | Minimise impacts by avoiding high quality habitat, where possible.                                                                                           |
| Disturbing fauna from the noise of blasting, traffic, excavations, ore processing and other activities                                                                              | Locate noisy activities as far as possible from high value habitat.                                                                                          |
|                                                                                                                                                                                     | Take measures to minimise noise generation.                                                                                                                  |
| Disturbing fauna from vibrations associated with blasting, traffic, excavations, ore processing and other activities                                                                | Locate disturbing activities as far as possible from high value habitat.                                                                                     |
|                                                                                                                                                                                     | Take measures to minimise vibration generation.                                                                                                              |
| Degrading habitat quality by dust generated from the mine and roadways                                                                                                              | Minimise dust creation in excavations, vehicle movement and ore processing. Maintain roads to minimise dust creation.                                        |
| Degrading habitat quality by weed invasion associated with increased traffic                                                                                                        | Control movement of weed-contaminated vehicles and soil and ensure vehicles remain free of soil and weeds.  Implement a weed monitoring and control program. |

# **Significance of Impacts**

The mine development may significantly impact on Diamond Firetails, which have conservation significance at the state level. This species is closely associated with grassy woodlands such as the *E. odorata* woodland on the site. Their significant decline in South Australia is associated with habitat loss and predation. In order to clarify the significance of any impacts on this species, further investigations are required to assess the size of the population on the site and the distribution of the species in the region. It may be possible to mitigate the impacts of the mine by rehabilitating or protecting similar habitat elsewhere.

The potential impact on Rainbow Bee-eater is not expected to be significant at the national level. The regional and national population of this species is not threatened. Mitigation measures associated with the Significant Environmental Benefit for vegetation are likely to provide alternative habitat for this species.

# **Executive Summary**

The potential impact on Brushtail Possum may be significant at the local, regional and state level. This species depends on tree hollows and productive habitat associated with grassy woodlands. It may be possible to mitigate impacts on this species by protecting and rehabilitating other grassy woodland habitat elsewhere.

The potential impact on Peregrine Falcon is not expected to be significant at the local, regional, state or national level. The breeding pair may leave the site when the mine is redeveloped, but this is not likely to significantly affect the security of this species in the region.

Impacts on other fauna affected by the mine are expected to be mitigated by habitat rehabilitation under the Significant Environmental Benefit framework. They are not expected to be significant.

#### Recommendations

Further investigations are recommended to assess:

- Diamond Firetail distribution and numbers in grassy woodland remnants within the region;
   and
- the size and nature of the Diamond Firetail population on the site.

It is recommended that, where possible, activities involving vegetation clearance, excavations, traffic, noise and other disturbances be located to avoid remnant vegetation. In order of priority, protection should be given to: 1. *Eucalyptus odorata* woodland and mallee; 2. *Lomandra effusa* grassland; and 3. *Austrostipa* sp grassland.

Impact on fauna habitat can be mitigated to some extent by the preservation, restoration or creation of similar habitat elsewhere. Mitigation processes are not relevant to the Peregrine Falcons that presently use the site. Alternative habitat could be preserved or rehabilitated to mitigate expected impacts on Diamond Firetail, Rainbow Bee-eaters and Brushtail Possum.

Introduction

**SECTION 1** 

#### 1.1 Introduction

Coffey Natural Systems, on behalf of Hillgrove Resources Limited (HRL), engaged ecological Associates to carry out a fauna baseline survey to assess the potential impacts of the proposed redevelopment and expansion of the Kanmantoo Copper Mine ('the project') on local fauna, habitats, and associated ecological communities.

# 1.2 Objectives

The purpose of the survey and impact assessment was to provide information on fauna for the Kanmantoo Copper Project Mining Lease Proposal (MLP). The scope of work was as follows.

#### 1. Baseline Survey

- Survey the study area to describe the fauna species (including introduced species) and habitat types with a particular focus on species and communities of conservation significance (ie local, regional, state or national).
- Place the species and habitats present in the study area in a regional context.

#### 2. Impact Assessment

- Describe the potential impact of the project (including construction, operations, decommissioning, post-decommissioning) on species, communities and habitats of local, regional, state or national significance. Placing this within local, regional, state and national context as appropriate.
- Describe any impact of the project to introduced fauna species.
- Describe the ability of communities or individual species to recover from habitat disturbance associated with the project.
- Discuss ways in which impacts on species, communities and habitats can be minimised or mitigated, including possible methods for protecting areas that will not be disturbed.
- Discuss the regional context for fauna and habitats of conservation significance, and the relative importance of the study area within this context.
- Describe potential residual impacts of the project following implementation of mitigation measures and rehabilitation.
- Identify uncertainties with respect to the fauna impact assessment.

# 1.3 Background

The Kanmantoo Copper Project is located between the townships of Kanmantoo (1.5 km to the north east) and Callington (3.5 km to the south east), 44 km east of Adelaide in South Australia.

The project area has been subject to intermittent mining operations from the mid 1800's to the 1970's. The original Kanmantoo mine was first worked in 1848 and activities continued, with numerous breaks,

Introduction SECTION 1

over the next century. An open pit resource was defined in 1969 and Kanmantoo Mines Pty Ltd worked this from 1971 to 1976. The site now contains a decommissioned open cut, tailings storage and waste rock dump. The granted mining lease ML5776 covers the Kanmantoo Mine and copper-gold resource. The areas to the immediate south and north of ML5776 are covered by EL 3298 which is surrounded by the larger EL3277 which covers 498 km². A prefeasibility study for this project was completed in June 2006, which returned a positive result.

# 2.1 Site Description

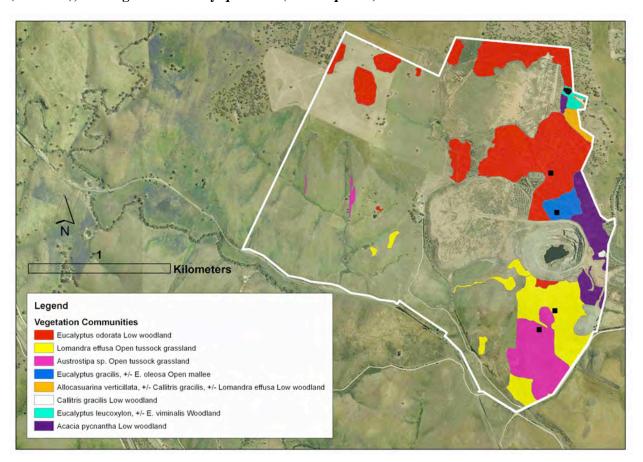
The Kanmantoo Copper Mine Project is located in the Eastern Mount Lofty Ranges Ecological Area near the western boundary of the South Australian Murray Darling Basin (Kahrimanis et al. 2001). The project is to be developed within an area of 439 ha (Figure 1).

A north – south trending range, reaching a height of about 120 m above the surrounding area, dominates the immediate physical environment of the Kanmantoo Copper Mine area. The slopes of these hills are steep and dissected by several gullies but the area on the top of the hills is gently undulating.

All watercourses in the area of the mine are first order streams and flow intermittently. They contain salt tolerant vegetation (\*\(^1\)*Juncus acutus*) suggesting they receive saline groundwater discharge.

The existing open cut is about 470 m across at its widest point. It is roughly circular and about 120 m deep from the western, highest pit wall. The 1971-76 mine plant and administration buildings were all located to the southeast of the pit, in the area now occupied by Neutrog Australia, a fertilizer manufacturer. An acid leaching mineral extraction plant is presently operating directly to the east of the pit and MacFarlane Hill.

Much of western part of the project area has been cleared for grazing and was previously part of the Paringa Station. A waste-rock dump, from the previous open pit mining operations, is located immediately west of the open pit. It consists of approximately 25 million tonnes of rock and covers an area of approximately 0.36 km². This waste-rock dump has a level upper surface and very steep sides. Soil has been placed on the top of the waste dump and revegetated with a variety of local and non-local native trees species. High-density plantations are found on the eastern side. Most of the dump surface is covered by Golden Wattle (*Acacia pycnantha*) bare ground, and grass covers.


To the north of the waste-rock dump is located the old tailings retention area, covering about 0.35 km<sup>2</sup>. This site has also been capped with soil and revegetated with a variety of tree species. It has extensive areas of bare ground and grass across it. In a gully to the east of this tailings area are two dams that retain acid leachate from the tailings. Remnant *Eucalyptus leucoxylon* woodland is found on the slopes around these dams. A \**J. acutus* wetland has formed to the west of the tailings area.

A variety of remnant native vegetation communities are found across the eastern half of the site (Figure 1). These habitat types consist of *Eucalyptus odorata* woodlands, *Eucalyptus leucoxylon* woodlands, *Allocasuarina verticillata* woodlands, *Callitris gracilis* woodlands, and mallee woodlands, which extend from the north face of the open pit to the north and west. All habitat remnants vary in quality across the site (Figure 2). To the west between the waste rock dump and the old tailings storage area is a very healthy mature remnant of the *Eucalyptus odorata* woodland. The understorey of other nearby remnants has been heavily grazed and is in poorer condition. The *Eucalyptus odorata* woodland continues to the north of the old tailings storage area, on to a gently rising ridge and to the west of the Kanmantoo township. This area has been grazed and the understorey predominantly comprises introduced grass

<sup>&</sup>lt;sup>1</sup> Designates introduced flora or fauna throughout the text.

species. The Peppermint Box (*Eucalyptus odorata*) Grassy Woodland is listed as a Critically Endangered Ecological Community under the EPBC Act. *Eucalyptus odorata* Woodland is also recognized as a plant association of high conservation significance in South Australia (Neagle 1995). This plant association occurs only in South Australia (DEH 2005b, a) and is listed as a critically endangered ecosystems of South Australia's agricultural region. The community is of significance in the Kanmantoo region as only 6% of native vegetation remains and only 8% of the Eastern Mount Lofty Ranges Regional Ecological Area is formally protected in NPWSA reserves and Heritage Agreements (Kahrimanis et al. 2001). The largest *Eucalyptus odorata* Woodland remnants occur in the Kanmantoo area between the Princes Highway and the Back Callington Road, west of Mine Road. This includes the remnants within the Kanmantoo mine lease. A third of the *E. odorata* woodlands of high quality within the study region occur within the mine lease (Ecological Associates 2007b).

Figure 1: Kanmantoo Copper Project study area (white line), native vegetation communities (coloured), and vegetation survey quadrats (black squares).



To the south of the open pit, the area is dominated by MacFarlane Hill. MacFarlane Hill extends about 800 m south from the southern rim of the open pit. The hill is quite flat on top but has very steep sides. It has been cleared of trees and shrubs, although Drooping Sheoaks (*Allocasuarina verticillata*) are scattered in places and a number of introduced eucalyptus trees have been planted near the summit. The area has been used for stock grazing. Over parts of this area, generally on the east slope of MacFarlane Hill, there is a community of *Lomandra effusa*, which forms dense tussocks. The Iron Grass (*Lomandra* 

effusa) Natural Temperate Grassland is listed as a Critically Endangered Ecological Community under the EPBC Act. The area of *Lomandra effusa* grassland within the site represents only a small proportion of the high quality *Lomandra* grasslands in the study region (Ecological Associates 2007b). It is of significance as it is one of the few patches that are not grazed. To the west of the saddle there is an *Austrostipa* grassland community.

# 2.2 Nature and Extent of Mine Project

The proposed works and the quality of vegetation are presented in Figure 2. The quality of vegetation is expressed as Significant Environmental Benefit (SEB) ratios, which represent the area of vegetation that is required to compensate any vegetation clearance. High SEB ratios (e.g. 8:1) reflect high quality vegetation.

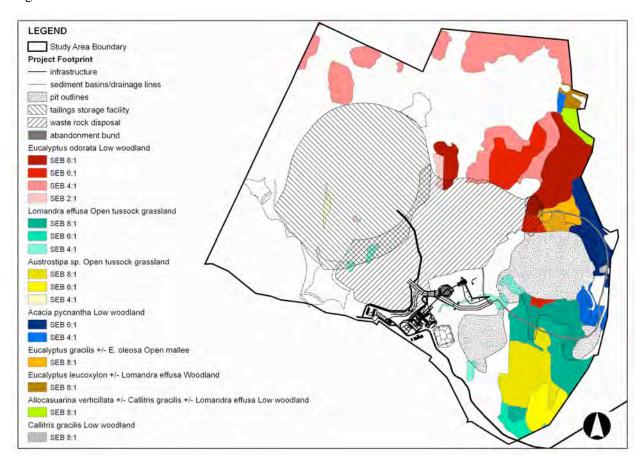



Figure 2: Kanmantoo Copper Project footprint (black-hatched or dappled areas), and Significant Environmental Benefit (SEB) assessment for each native vegetation community.

The project extends the existing open cut mainly to the south and slightly to the north. Two satellite pits may be developed to the north of the existing pit and two to the southwest. The existing waste rock dump will be extended and raised by 20 m and combined with a new tailings storage facility (approximately 1 km external diameter) to the west of the waste rock dump on the Paringa farmland. A new processing

plant and equipment area (200 m x 200 m) will be constructed to the south of the existing rock dump on the Paringa farmland.

## 2.3 Legislative Framework

Primary Industries and Resources South Australia (PIRSA) will assess the Kanmantoo Copper Project (KCP) under the *Mining Act 1971*. The key assessment document under the Mining Act is the Mining Lease Proposal (MLP). The MLP will be placed on public exhibition and referred to relevant State Government agencies for comment. PIRSA will consider available information including the Mining Lease application, the MLP, and submissions on the MLP in making the decision to approve the project, and the establishment of appropriate mining lease conditions. The MLP must identify the potential impacts of a mine development on fauna and identify measures to avoid, minimise or mitigate impacts. The MLP must identify how impacts will be monitored and measures to rehabilitate the mine after closure.

Matters of National Environmental Significance (NES) are identified in the schedules of the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). Actions that will have, or are likely to have a significant impact on a matter of NES must be referred to the Commonwealth Minister for the Environment.

The South Australian National Parks and Wildlife Act 1972 (NP&W Act) prohibits the taking or disturbance of native animals. The Act provides particular protection to endangered, vulnerable and rare species, which are listed in the schedules of the Act. A permit may be sought from the Minister for the Environment through the Department of Environment and Heritage (DEH) for actions, which affect protected species. The Act does not specify the requirements of a permit, but it is necessary to inform the Department of the species to be affected, how they will be affected, what measures have been taken to avoid disturbance and what amelioration measures have been proposed.

A referral was lodged under the EPBC Act on 26 February 2007 and the DEWR determined on 30 March 2007 that the project is not a controlled action. No further assessment under the EPBC Act is therefore required for the project.

# 2.4 Existing Data

No fauna survey work has previously been conducted at the site.

Existing records of flora and fauna relevant to the site have previously been reviewed (Parsons Brinckerhoff 2006). This study involved a desktop assessment of potential impacts of the mine on species of state and national conservation significance.

Records of fauna previously observed in the region were extracted from the Biological Survey of South Australia in February 2007. Records for an area of 6 km radius from the site boundary were reviewed to assess the fauna likely to be present in the area. Bird data from this search are presented in Appendix A.

#### 3.1 Introduction

This survey applied the methods of the Biological Survey of South Australia (National Parks and Wildlife SA 2000). The survey was carried out under:

- The Wildlife Ethics Committee Approval of a Project Involving Animals Application Number 7/2007;
- Permit to Undertake Scientific Research Permit Number W25407 1; and
- Licence to Use Animals for Teaching, Research or Experimental Purposes Licence No 202.

#### 3.2 Methods

#### Trap Lines

One set of traplines was installed within three of the existing flora survey quadrats (Ecological Associates 2007b) (Figure 3):

- 1. Eucalyptus odorata woodland (SW corner: GDA 94 54H 0318112E 6115517S),
- 2. Lomandra effusa grassland (NW corner: GDA 94 54H 0318140E 6114548S), and
- 3. *Austrostipa* Grassland (NW corner: GDA 94 54H 0318029E 6114414S) previously identified within the Kanmantoo Copper Project area.

Each trap-line consisted of a pit-line (six pitfalls 10 m apart), one Elliot trap-line (15 traps 10 m apart), and two Sherman traps at either end of the line. Traps were installed and opened on Monday 26 February 2007; they were finally cleared, closed and removed on Friday 02 March 2007. Traps were checked in the evening and morning each day.

#### Roaming Surveys

Two observers carried out roaming surveys for birds of at least two hours total duration each day over three days. Each of the key habitat types was surveyed each day. In addition walks were made through all other habitat types at least once.

#### Physical Search

Physical searches were conducted on each day with particular emphasis within the three key habitat types and during roaming surveys throughout the area. Physical searches involved the lifting of rocks and logs, looking under bark on tree trunks, digging up burrows and raking of leaf litter. Observations were made of animals active at the time, or for signs of animals, including tracks, scats, scratchings, burrows, and skulls. Active animals were, where possible, hand caught and identified.

#### Anabat Survey

Two Anabat bat detectors and recorders were installed at the site during the survey. Each recorded bat calls over 4 nights (detectors and recorders were switched off during the day). The first detector was placed for two nights on the saddle between the *Lomandra effusa* grassland and the *Austrostipa* Grassland (GDA 94 54H 0318147E 6114260S). It was then shifted to western edge of the *Austrostipa* Grassland along the rocky outcrop (GDA 94 54H 0317932E 6114338S) for the remaining two nights. A second detector was placed in a flyway within the *Eucalyptus odorata* woodland quadrat (GDA 94 54H 0318116E 6115497S) on all four nights.

## Spotlighting

Spotlighting for nocturnal mammals, birds and reptiles was carried out on a warm humid evening (Wed 28/02) between 20:00 and 22:30. Using a portable spotlight, two observers walked a predetermined route along existing tracks. The route followed north from the pit past regrowth areas to the west, through *Eucalyptus odorata* and *Eucalyptus leucoxylon* woodlands, along the eastern edge of the site through *Allocasuarina verticillata* woodlands and *Callitris gracilis* woodlands, and west parallel to the pit through mallee woodlands (Figure 1). All sightings, audible movement and calls were investigated and identified.



Figure 3: Sites of trap-lines A. *Eucalyptus odorata* woodland B. *Austrostipa* grassland C. *Lomandra* effusa grassland.

#### 3.3 Results

#### Weather

Surveys were carried out over five days (four nights) 26/02/2007 to 02/03/2007. Weather conditions during this period were warm to hot and dry, with overnight dew and fog on Monday 26 February and Wednesday 28 February (Table 1). All days were generally fine and sunny. All traps were checked and cleared each morning between 07:00 and 09:00 and late each afternoon between 17:00 and 19:00. On hot days traps were also checked and cleared in the early afternoon.

Mean annual rainfall at Murray Bridge is 342.4 mm (N = 122 years - 1885-2007 BOM 2007). Total rainfall on site in the previous 11-month (23/04/06 - 15/03/07) period was 196 mm. Thus rainfall at the Kanmantoo Copper Mine site was significantly below average over the last year. In the three months prior to the baseline survey total rainfall was 49 mm, well below the rate of evaporative loss. As a consequence of this long, dry period the floral understorey across the survey area had very few annual plants or grasses growing or flowering. Limited flowering was observed in a mallee species and the Harlequin Mistletoe (*Lysiana exocarpi*) was flowering.

Table 1: Weather during survey period. Weather station located on Kanmantoo Project Area,

MacFarlane Hill

| Date               | Daily Temp        | erature (°C) | Maximum      | Dew Point (°C) |  |
|--------------------|-------------------|--------------|--------------|----------------|--|
|                    | Maximum Minimum I |              | Humidity (%) | Dew Tollie (C) |  |
| Monday 26/02/07    | 24.8              | 11.2         | 90           | 10.9           |  |
| Tuesday 27/02/07   | 29.8              | 12.9         | 94           | 12.9           |  |
| Wednesday 28/02/07 | 32.8              | 17.2         | 66           | 10.6           |  |
| Thursday 01/03/07  | 28.9              | 15.5         | 90           | 13.8           |  |
| Friday 02/03/07    | 37.9              | 17.7         | 79           | 11.9           |  |

## Trap Lines

No native mammals were caught in the trap-lines (Table 2). The House Mouse (\*Mus musculus) was trapped throughout the study area, but was particularly associated with the Lomandra effusa grassland. Signs of active burrows beneath Lomandra tussocks were evident throughout the Lomandra habitat type. Five species of skink entered traps.

Table 2: Trapline Survey (Pitfall Traps, Elliot Traps, and Cage Traps)

|                          |                     | На                             | abitat Ty <sub>l</sub>       | Conservation<br>Status              |     |    |
|--------------------------|---------------------|--------------------------------|------------------------------|-------------------------------------|-----|----|
| Common Name              | Scientific Name     | Eucalyptus<br>odorata woodland | Lomandra effusa<br>grassland | <i>Austrostipa</i> sp.<br>grassland | AUS | 88 |
| House Mouse              | *Mus musculus       | 1                              | 9                            | 3                                   |     |    |
| Eastern Spotted Ctenotus | Ctenotus orientalis |                                | 2                            |                                     |     |    |
| Eastern Striped Skink    | Ctenotus robustus   | 4                              |                              |                                     |     |    |
| Dwarf Skink              | Menetia greyii      | 1                              | 1                            |                                     |     |    |
| Sleepy Lizard            | Tiliqua rugosa      |                                |                              | 2                                   |     |    |
| Eastern Bluetongue       | Tiliqua scincoides  |                                | 1                            |                                     |     |    |

## Roaming Survey

Two species of Kangaroo were observed across the project area (Table 3). The Western Grey Kangaroo (*Macropus fuliginosus*) was relatively common. Females were all observed with young at feet, but no pouch young were evident. The Euro (*Macropus robustus*) was observed in small numbers. Foxes (\*Vulpes vulpes) and European (Brown) Hares (\*Lepus capensis) were active throughout the day. Signs and observations suggest foxes are relatively common, but European Hares were in low numbers. A number of apparently active, large rabbit warrens were found in the *Austrostipa* grassland, but no rabbits were observed to be associated with these warrens.

Thirty-two bird species were recorded during the survey (Table 4). The highest species diversity was observed in the *Eucalyptus odorata* woodlands (69% of birds observed). This is most likely a product of the relative large area of the woodlands compared with other habitat types surveyed, and the relative high diversity of microhabitats present within this habitat type. The diversity of birds in all other habitat types was markedly lower (Table 4).

Only two introduced bird species were observed. Three separate large flocks (> 100 birds) of the Common Starling (\*Sturnus vulgaris) were associated with the feeding lot near the Paringa farm homestead. A small flock of European Goldfinch were observed foraging on the cones of Allocasuarina verticillata.

**Table 3: Roaming Survey – Mammals.** 

|                          |                         | Habitat Type                |                                     |                              |                 |                                  | Conservation<br>Status    |              |                   |          |     |        |
|--------------------------|-------------------------|-----------------------------|-------------------------------------|------------------------------|-----------------|----------------------------------|---------------------------|--------------|-------------------|----------|-----|--------|
| Common Name              | Scientific Name         | Eucalyptus odorata woodland | <i>Lomandra effusa</i><br>grassland | Austrostipa sp.<br>grassland | Mallee Woodland | <i>Allocasuarina</i><br>Woodland | Golden wattle<br>Woodland | Rock Outcrop | Riparian NE Gully | Regrowth | AUS | 8<br>V |
| Western Grey<br>Kangaroo | Macropus<br>fuliginosus | 5,<br>>10                   |                                     |                              |                 |                                  |                           |              |                   | 2        |     |        |
| Euro                     | Macropus robustus       |                             | 1                                   |                              | 2               |                                  |                           |              |                   |          |     |        |
| Fox                      | *Vulpes vulpes          | 2,1                         |                                     |                              | 1               |                                  |                           |              |                   |          |     |        |
| Brown Hare               | *Lepus capensis         | 1                           |                                     |                              |                 |                                  |                           |              | 1                 | 1        |     |        |

Three of the observed bird species have a significant conservation status. Flocks of up to nine Rainbow Bee-eaters (*Merops ornatus*) were observed feeding and roosting in the *Eucalyptus odorata* woodlands throughout the survey period. These birds are listed as Marine Migratory species under the Japan Australia Migratory Bird Agreement (JAMBA) and are therefore protected under the EPBC Act. A pair of Peregrine Falcons (*Falco peregrinus*) is permanently resident in the area, and nest annually on the rock face of the open cut (pers. com: J. Popow, Hillgrove Resources Ltd. 12/02/2007). These birds are classified as rare species within South Australia under the NP&W Act. Diamond Firetail (*Stagonopleura guttata*. Shaw, 1796) was observed in at least one flock (probably more) on four occasions, feeding on the ground in the *Eucalyptus odorata* woodlands. These birds are classified as vulnerable threatened species within South Australia under the NP&W Act.

No snakes or amphibians were detected. The Eastern Brown Snake (*Pseudonaja textiles*) is reported to be common across the site, and one Red-bellied Black Snake (*Pseudochis porphyriacus*) has been observed within the last year (pers. com: Kanmantoo mine site employees, Hillgrove Resources Ltd. 02/03/2007).

# Fauna Survey

Table 4: Roaming Survey - Birds

| Common Name Scientific Name  Crested Pigeon Ocyphaps lophotes  Dusky Woodswallow Artamus cyanopterus  Australian Magpie Gymnorhina tibicen  Little Raven Corvus mellori  White-winged Corcorax melanorhamphos  Chough Grallina cyanoleuca  Willie Wagtail Rhipidura leucophrys  Welcome Swallow Hirundo neoxena  White-plumed Lichenostomus penicillatus  Singing Honeyeater Lichenostomus virescens | Eucalyptus<br>bnelboow atsrobo |                     |                              |                              |                               |          |                           |              |                   |          |                     |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------------|------------------------------|-------------------------------|----------|---------------------------|--------------|-------------------|----------|---------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                | Farmla<br>L omendre | Lomandra effusa<br>grassland | .qs sqipsonteuA<br>bnslassng | Mallee woodland Allocasuarina | pusiboow | Golden wattle<br>woodland | Rock Outcrop | Riparian NE Gully | Regrowth | AUS                 | SA<br>A |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                     |                              | 2                            |                               |          | _                         |              |                   | _        | ,                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 4                              |                     |                              |                              |                               |          |                           |              |                   |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 7,<br>>10,5                    |                     | 4                            | 2                            |                               |          | 2                         | 8            | ဗ                 | 4        |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | >20                            | >20                 |                              |                              |                               |          | 2                         | 2            |                   |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 8, H                           |                     |                              |                              |                               |          | ェ                         |              |                   |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 1                   |                              |                              |                               |          |                           |              |                   |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | _                              |                     | _                            |                              |                               |          |                           | 2            | _                 |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 2                              |                     |                              |                              |                               |          | 2                         | _            |                   |          |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,2                          |                     |                              |                              | 2,1                           |          |                           |              | _                 | _        |                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                      | S                              |                     | 2,2                          |                              | _                             |          | 3                         |              | 7                 |          |                     |         |
| Ivoloy ivillies                                                                                                                                                                                                                                                                                                                                                                                      | a                              |                     |                              |                              |                               |          |                           |              | 3                 |          |                     |         |
| Brown-headed Melithreptus brevirostris<br>Honeyeater                                                                                                                                                                                                                                                                                                                                                 | 1,2                            |                     |                              |                              |                               |          |                           |              |                   | _        |                     |         |
| New Holland <i>Phylidonyris</i><br>Honeyeater <i>novaehollandiae</i>                                                                                                                                                                                                                                                                                                                                 | 2,1                            |                     | _                            |                              |                               |          |                           |              | 7                 |          |                     |         |
| Rainbow Bee-eater Merops ornatus                                                                                                                                                                                                                                                                                                                                                                     | 9,6                            |                     |                              |                              | က                             |          |                           |              |                   |          | Marine<br>Migratory |         |

# Fauna Survey

|                            |                                      |                                |                                                                     |                              | I                            | Habitat Type    | ype                       |                             |              |                   |          | Conservation<br>Status | ration<br>JS |
|----------------------------|--------------------------------------|--------------------------------|---------------------------------------------------------------------|------------------------------|------------------------------|-----------------|---------------------------|-----------------------------|--------------|-------------------|----------|------------------------|--------------|
| Common Name                | Scientific Name                      | Eucalyptus<br>odorata woodland | Farmland                                                            | Lomandra effusa<br>grassland | .qs sqitsottsuA<br>bnslssstg | Mallee woodland | enineuseoollA<br>bnelboow | Golden wattle<br>balandwoow | Rock Outerop | Riparian ME Gully | Regrowth | AUS                    | SA           |
|                            |                                      |                                |                                                                     |                              |                              |                 |                           |                             |              |                   |          | (JAMBA)                |              |
| Grey Shrike-thrush         | Colluricincla harmonica              | ,2                             |                                                                     |                              | _                            | 7               |                           |                             |              |                   |          |                        |              |
| Rufous Whistler            | Pachycephala rufiventris             |                                |                                                                     |                              |                              |                 | _                         |                             |              |                   |          |                        |              |
| Striated Pardalote         | Pardalotus striatus                  | 1,1,1                          |                                                                     |                              |                              |                 |                           |                             |              |                   |          |                        |              |
| Galah                      | Cacatua roseicapilla                 |                                |                                                                     |                              |                              |                 |                           |                             |              |                   |          |                        |              |
| Purple-crowned<br>Lorikeet | Glossopsitta<br>porphyrocephala      | 2                              |                                                                     |                              |                              |                 |                           |                             |              |                   |          |                        |              |
| Adelaide Rosella           | Platycercus elegans Race<br>adelaide | 2,2,2,<br>2,2,2                |                                                                     |                              | 2                            | _               |                           |                             |              | 4,2,<br>2         |          |                        |              |
| Diamond Firetail           | Stagonopleura guttata                | 2,2,7.                         |                                                                     |                              |                              |                 |                           |                             |              |                   |          |                        | >            |
| Yellow-rumped<br>Thornbill | Acanthiza chrysorrhoa                | >10,5                          |                                                                     |                              |                              | >10             |                           |                             |              |                   | 2        |                        |              |
| Yellow Thornbill           | Acanthiza nana                       | 2                              |                                                                     |                              |                              | _               |                           |                             |              |                   |          |                        |              |
| Southern Whiteface         | Aphelocephala leucopsis              |                                |                                                                     |                              |                              | _               |                           |                             |              |                   |          |                        |              |
| Weebill                    | Smicrornis brevirostris              | ×10,1<br>,1                    |                                                                     |                              |                              | 1,1             |                           |                             |              |                   | _        |                        |              |
| European Goldfinch         | *Carduelis carduelis                 |                                |                                                                     |                              |                              |                 | 5                         |                             |              |                   |          |                        |              |
| Common Starling            | *Stumus vulgaris                     |                                | 2, v<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,0 |                              |                              |                 |                           |                             |              |                   |          |                        |              |
| Wedge-tailed Eagle         | Aquila audax                         | 2,2                            |                                                                     |                              |                              |                 |                           |                             |              |                   |          |                        |              |

# Fauna Survey

|                                                          |                                                      |                                |          |                              |                              | Habitat Type    | Type                      |                           |              |                   |          | Conservation<br>Status | vation<br>us |
|----------------------------------------------------------|------------------------------------------------------|--------------------------------|----------|------------------------------|------------------------------|-----------------|---------------------------|---------------------------|--------------|-------------------|----------|------------------------|--------------|
| Common Name                                              | Scientific Name                                      | Eucalyptus<br>odorata woodland | Farmland | Lomandra effusa<br>grassland | .qs sqitsortsuA<br>bnslsssrg | Mallee woodland | enirensesollA<br>bnelboow | Golden wattle<br>woodland | Rock Outerop | Riparian ME Gully | Regrowth | AUS                    | SA           |
| Black-shouldered<br>Kite                                 | Elanus axillaris                                     |                                |          |                              |                              |                 |                           |                           |              |                   |          |                        |              |
| Nankeen Kestrel                                          | Falco cenchroides                                    | _                              |          |                              |                              |                 |                           |                           |              |                   | _        |                        |              |
| Peregrine Falcon                                         | Falco peregrinus                                     | 2                              |          |                              |                              |                 |                           |                           |              |                   |          |                        | ~            |
| Australian Owlet-<br>nightjar                            | Aegotheles cristatus                                 | _                              |          |                              |                              |                 |                           |                           |              |                   |          |                        |              |
| Percentage of all observed species for each habitat type | f all observed species found in<br>each habitat type | 69                             | 6        | 13                           | 13                           | 78              | 9                         | 19                        | 13           | 22                | 22       |                        |              |
| THE STATE                                                | A Dardy                                              |                                |          |                              |                              |                 |                           |                           |              |                   |          |                        |              |

Critically Endangered threatened species rating – species facing an extremely high risk of extinction in the wild in the immediate future. Endangered threatened species rating – species not critically endangered but facing an extremely high risk of extinction in the wild in the immediate future. South Australian Rare Species (Schedule 9). National Parks and Wildlife Act 1972.

V: Vulnerable threatened species rating; species not critically endangered or endangered but facing a high risk of extinction in the wild in the medium-term future.

Marine: Listed – over-fly marine area – EPBC Act

Migratory: Protected migratory species under the EPBC Act

H: Heard AUS: National Conservation rating (EPBC Act)
SA: State Conservation rating (NPW Act)
CE: Critically Endangered threatened species ratin
E: Endangered threatened species rating – specie
R: South Australian Rare Species (Schedule 9). N

### Physical Search

Eight species of lizards were observed across the area during the physical searches (Table 5). No vertebrate species were located during the litter-raking, log rolling or under bark on trees. No amphibians were detected during the survey. Given the relatively warm and dry conditions this is not unexpected.

The Tawny Dragon (*Ctenophorus decressii*) was common and active, being found associated with rocks, rock falls and rock faces throughout the site.

The four species of skink found all appeared to be relatively common across the site. The Sleepy Lizards (*Tiliqua rugosa*) are generally inactive at this time of the year. Despite this many animals, including both young of the year and juveniles (individuals between 1 and 3 years) were observed. The Sleepy Lizards were in relatively high density in the grassland habitats. The Dwarf Skink (*Menetia greyii*) was relatively common and active throughout the study area. Adults and juveniles of both the Eastern Spotted Ctenotus (*Ctenotus orientalis*) and the Eastern Striped Skink (*Ctenotus robustus*) were observed. The Eastern Spotted Ctenotus was strongly associated with the *Lomandra effusa* Grassland. The Eastern Striped Skink was most frequently observed in the *Eucalyptus odorata* woodlands, but was found in other habitat types.

**Table 5: Physical Search – Reptiles and Amphibians** 

|                                |                                                          |                                               |                                     |                                     | На              | bitat Ty                         | pe                        |              |                   |          |     | rvation<br>tus |
|--------------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|-----------------|----------------------------------|---------------------------|--------------|-------------------|----------|-----|----------------|
| Common<br>Name                 | Scientific<br>Name                                       | <i>Eucalyptus</i><br>o <i>dorata</i> woodland | <i>Lomandra effusa</i><br>grassland | <i>Austrostipa</i> sp.<br>grassland | Mallee Woodland | <i>Allocasuarina</i><br>Woodland | Golden wattle<br>Woodland | Rock Outcrop | Riparian NE Gully | Regrowth | AUS | SA             |
| Tawny<br>Dragon                | Ctenophorus<br>decressii                                 | 3                                             |                                     |                                     |                 | 1                                | 3                         | >5           |                   |          |     |                |
| Eastern<br>Spotted<br>Ctenotus | Ctenotus<br>orientalis                                   |                                               | 2                                   |                                     |                 |                                  |                           |              |                   |          |     |                |
| Eastern<br>Striped<br>Skink    | Ctenotus<br>robustus                                     | 2                                             | 1                                   |                                     |                 |                                  |                           |              |                   |          |     |                |
| Dwarf Skink                    | Menetia greyii                                           | 3                                             |                                     | 2                                   |                 |                                  |                           |              |                   |          |     |                |
| Sleepy<br>Lizard               | Tiliqua rugosa                                           | 1                                             |                                     | 6                                   |                 |                                  |                           |              | 1                 |          |     |                |
| Adelaide<br>Snake-lizard       | Delma molleri?<br>(Possibly D.<br>inornata) <sup>1</sup> |                                               |                                     | 1                                   |                 |                                  |                           |              |                   |          |     |                |
| Thick-tailed<br>Gecko          | Nephrurus milii                                          |                                               | 1                                   |                                     |                 |                                  | 1                         |              |                   |          |     |                |
| Southern<br>Rock Dtella        | <i>Gehyra</i> sp.<br>'2n=44'                             |                                               |                                     |                                     |                 |                                  |                           | 2            |                   |          |     |                |

AUS: National Conservation rating (EPBC Act) SA: State Conservation rating (NPW Act) The skin of a Pygoponid or legless lizard was found under a rock in the *Austrostipa* grassland. This animal was from the *Delma* genus (M. Hutchinson, Pers. Com. 02/03/07), and based on locality probably the Adelaide Snake Lizard (*Delma molleri*), but *D. inornata* could not be excluded.

Both the Thick-tailed Gecko (*Nephrurus milii*) and the Southern Rock Della (*Gehyra* sp. '2n=44') were widespread across the area.

#### Anabat

Anabat detectors recorded seven (possibly eight) bat species over the four nights surveyed (Table 6). Weather conditions during the survey were good for bat activity. Time versus frequency graphs of each of the seven species identified are included in this report under Australasian Bat Society Inc. reporting standards for insectivorous bat surveys using bat detectors (Appendix B). Species composition in the area was typical for the Mount Lofty Ranges, but overall the number of calls recorded per night was low for the region (pers. com. Terry Reardon SA Museum March 2007). None of the species recorded merit a conservation status, as all are common and widespread. The highest diversity of bat species, and largest number of each species recorded, were associated with the *Eucalyptus odorata* woodland. Species known to forage above tree canopies, or in the open (*Tadarida australis, Chalinolobus gouldii*, and *Nyctophilus geoffroyi*) were recorded above the *Lomandra effusa* and *Austrostipa* grasslands. Three species (*Chalinolobus morio, Vespadelus darlingtoni* and *V. regulus*) that forage in, around, or on tree foliage, or above the shrub layer were only associated with the *Eucalyptus odorata* woodlands. *Mormopterus planiceps* a species that forages high above tree canopies was also recorded in the *Eucalyptus odorata* woodlands. The Little Forest Bat (*Vespadelus vulturnus*) may also be in the area although the analysis was not definitive. All species recorded roost in tree hollows or under bark (Reardon and Bourne 2006).

Table 6: Bats identified from Anabat Recordings (27/02/06 – 02/03/07)

|                               |                               |                                |       |       | Habitat |       |                                                                  |       | Conse<br>Sta                                          | rvatioi<br>tus |     |    |
|-------------------------------|-------------------------------|--------------------------------|-------|-------|---------|-------|------------------------------------------------------------------|-------|-------------------------------------------------------|----------------|-----|----|
| Common Name                   | Scientific Name               | Eucalyptus<br>odorata woodland |       |       |         |       | between  Lomandra Rock face west ucalyptus effusa of Austrostina |       | Lomandra<br>effusa<br>grassland<br>and<br>Austrostipa |                | AUS | SA |
|                               |                               | 27/02                          | 28/02 | 01/03 | 26/02   | 27/02 | 28/02                                                            | 01/03 |                                                       |                |     |    |
| White-striped<br>Freetail-bat | Tadarida australis            | 8                              | 3     | 9     | 4       | 7     | 6                                                                | 6     |                                                       |                |     |    |
| Southern Freetail-<br>bat     | Mormopterus planiceps         | 2                              | 6     | 1     | -       | -     | 1                                                                | -     |                                                       |                |     |    |
| Gould's Wattled<br>Bat        | Chalinolobus<br>gouldii       | 4                              | 1     | 1     | -       | 1     | 1                                                                | 2     |                                                       |                |     |    |
|                               | Mp or Cg?                     | 8                              | 9     | 14    | 1       | 2     | 10                                                               | 5     |                                                       |                |     |    |
| Lesser Long-eared<br>Bat      | Nyctophilus<br>geoffroyi      | 2                              | 5     | 1     | -       | 1     | 3                                                                | 1     |                                                       |                |     |    |
| Chocolate Wattled<br>Bat      | Chalinolobus<br>morio         | 2                              | 2     | 1     | -       | -     | -                                                                | -     |                                                       |                |     |    |
| Large Forest Bat              | Vespadelus<br>darlingtoni     | 1                              | -     | 1     | -       | -     | -                                                                | -     |                                                       |                |     |    |
| Southern Forest<br>Bat        | Vespadelus<br>regulus         | ?                              | -     | -     | -       | -     | 1                                                                | -     |                                                       |                |     |    |
|                               | Vd or Vr                      | 1                              | -     | -     | -       | -     | -                                                                | -     |                                                       |                |     |    |
| Little Forest Bat             | Vespadelus<br>vulturnus or Vd | -                              | -     | 1     | -       | -     | -                                                                | -     |                                                       |                |     |    |
|                               | Bat call not identifiable     | 1                              | 3     | 3     | -       | -     | 4                                                                | 3     |                                                       |                |     |    |
|                               | Total calls per night         | 29                             | 29    | 32    | 5       | 11    | 26                                                               | 17    |                                                       |                |     |    |

AUS: National Conservation rating (EPBC Act)
SA: State Conservation rating (NPW Act)

### Spotlighting

On the evening when spotlighting was carried out, conditions for nocturnal animal activity were good, being warm and relatively humid. This needs to be placed in the background context of a dry autumn following a severe drought. Animal activity was relatively low and only four species were recorded (Table 7). No nocturnal birds were heard calling or observed. Some nocturnal lizards were active and heard moving through leaf litter. Two species were caught: the Thick-tailed Gecko and the Southern Rock Dtella. One Rabbit was observed, they were not common across the site. Three Brushtail Possums (*Trichosurus vulpecula*) were each observed foraging in different tree types in the Woodland area. These

possums have no national conservation status. Within South Australia Brushtail Possums currently have no conservation rating but have been nominated for listing as rare under the National Parks and Wildlife Act (National Parks and Wildlife Council and Department of Environment and Heritage 2003).

**Table 7: Spotlighting Survey** 

|                            |                        |                                | Habita          | Conservation<br>Status           |                           |     |    |
|----------------------------|------------------------|--------------------------------|-----------------|----------------------------------|---------------------------|-----|----|
| Common Name                | Scientific Name        | Eucalyptus<br>odorata woodland | Mallee Woodland | <i>Allocasuarina</i><br>Woodland | Golden wattle<br>Woodland | AUS | S, |
| Common Brushtail<br>Possum | Trichosurus vulpecula  | 1                              | 1               | 1                                |                           |     | R* |
| Rabbit                     | *Oryctolagus cuniculus | 1                              |                 |                                  |                           |     |    |
| Thick-tailed Gecko         | Nephrurus milii        |                                |                 | 1                                | 1                         |     |    |
| Southern Rock<br>Dtella    | Gehyra sp. '2n=44'     | 1                              |                 |                                  |                           |     |    |

AUS: National Conservation rating (EPBC Act)

SA: State Conservation rating (NPW Act)

CE: Critically Endangered threatened species rating – species facing an extremely high risk of extinction in the wild in the immediate future

E: Endangered threatened species rating – species not critically endangered but facing an extremely high risk of extinction in the wild in the immediate future

V: Vulnerable threatened species rating; species not critically endangered or endangered but facing a high risk of extinction in the wild in the medium-term future

 $R{:}\quad South\ Australian\ Rare\ Species\ (Schedule\ 9).\ National\ Parks\ and\ Wildlife\ Act\ 1972.$ 

<sup>\*</sup> considered potentially vulnerable in Australia (Foulkes and Gillen 2000) and endangered in the Murray Mallee/ Murray Plains Regional Ecological Area (Barratt et al. 1991).

### 4.1 Regional Perspective

Compared with existing records for the region, the survey reported low species diversity of mammals (15 species - Appendix C), birds (32 species - Appendix C), amphibians and reptiles (no amphibians, nine species of reptile - Appendix D), and low numbers for each species. This would partly reflect that this was a one-off survey, and that more species would be reported from longer-term monitoring. It probably also reflects the low availability of food (seeds, flowers, forage, prey) at the end of summer and the unusually dry period leading up to the survey. A survey in spring would likely report a broader range of fauna.

Neither can the existing DEH fauna records of reptiles, amphibians, and mammals (in particular) within 6 km of the study site be considered as a complete and representative fauna list. All 15 mammals recorded in this survey, excepting the House Mouse (*Mus musculus*), are new records for the area.

Of the mammals observed in this survey, four species were introduced (House Mouse, Fox, Brown Hare and Rabbit). Of these species only the House Mice were present in any significant numbers. Their numbers were moderately high in the *Lomandra effusa* grasslands. Bat species composition in the area was typical for the Mount Lofty Ranges, but overall the number of calls recorded per night was low for the region (pers. com. Terry Reardon, SA Museum, March 2007). One mammal of nominated conservation significance within South Australia – the Brushtail Possum *Trichosurus vulpecula* – was found during this survey.

Of the nine species of reptiles recorded during the survey, only two had been previously recorded in the area (*Ctenotus robustus* and *Gehyra* sp "2n=44"). Five species previously recorded and common to the area were not found (*Christinus marmoratus*, *Hemiergis decresiensis*, *Pogona barbarta*, *Pseudonaja textiles* and *Morethia boulengeri*). A rare species, the carpet python (*Morelia spilota*) is probably locally extinct and was not found. A number of regionally common skinks (eg *Lampropholis guichenoti* and *Lerista bougainvillii*) were not recorded in the area. For a habitat fragment of this size in the southern Mount Lofty Ranges the species count of reptiles in this survey was moderate (Sacchi 2003). Given the dry conditions it is not unexpected that no amphibians were found during this study; a survey during spring would be required to detect these species. No reptiles of conservation significance were found in the Kanmantoo Project Area during this survey.

A comparison between the DEH records of birds within 6 km of the Kanmantoo Project Area boundary and birds detected in this survey (Appendix 3) showed 31 species recorded in the survey out of 109 species previously recorded in the locality, with one new record for the area (Australian Owlet-nightjar, *Aegotheles cristatus*). Of the locally abundant species only 45% (ie 13 out of 29 species) were found on site in the survey (Table 8). Species not observed were mostly insectivorous (10 species), or nectivorous (4 species) in feeding habit. In late summer / autumn most nectivorous birds are highly nomadic, moving to habitats associated with highly productive soils in the Mount Lofty region (Paton et al. 2004).

The DEH database records 13 species of water birds locally. Water quality on site, in the two water bodies presently holding water was, due to low pH, not suitable for water birds. The dry swamp in the NW corner of the study area, and the ephemeral creeks on the farmland may provide suitable habitat for

water birds during periods with higher rainfall in winter and spring. Of the locally uncommon species, 27% were observed in the study area.

Table 8: Bird species observed in survey compared with number in DEH records within a 7 km radius of the Kanmantoo Copper Mine.

| DEH records                | Bird Species       |                        |  |  |  |  |  |  |
|----------------------------|--------------------|------------------------|--|--|--|--|--|--|
| DETTTECOTOS                | Observed in Survey | Not Observed in Survey |  |  |  |  |  |  |
| Locally "abundant" species | 40                 | 16                     |  |  |  |  |  |  |
| (≥ 1% of records*)         | 13                 | 16                     |  |  |  |  |  |  |
| Locally "uncommon" species | 18                 | 48                     |  |  |  |  |  |  |
| (< 1% of records)          | 10                 | 40                     |  |  |  |  |  |  |
| Not Recorded               | 1                  | Not Applicable         |  |  |  |  |  |  |
| Water Birds                | 0                  | 13                     |  |  |  |  |  |  |

<sup>\*</sup> Species recorded in ≥ 1% of 2202 records of bird species in DEH records.

The survey reported two birds of conservation significance at the state level:

- a population of Diamond Firetail.
- a breeding pair of Peregrine Falcon.

One species of national conservation significance was also reported: Rainbow Bee-eaters were present in significant numbers.

### 4.2 Species of Management Concern

# Diamond Firetail (Stagonopleura guttata) – Vulnerable in South Australia

### Reasons for listing as vulnerable in SA

The Diamond Firetail is classified as vulnerable because the best available evidence, based on direct observation, indicates there has been a reduction in population size of greater than 50% over the last 10 years or three generations (National Parks and Wildlife Council and Department of Environment and Heritage 2003). The species is therefore considered to be facing a high risk of extinction in the wild.

This species has declined over most of its historical range across south eastern and eastern Australia in both extent and density and is considered to be near-threatened nationally (Garnett and Crawley 2000). In South Australia, where it is classified as vulnerable under the NPW Act, a significant reduction in distribution was recorded between 1974-1975 and 1984-1985 (Paton et al. 1994). This decline has continued and Diamond Firetails are now rarely reported in the western, central and southern Mount Lofty Ranges (Paton et al. 2004). Declines have also been recorded in the Strathalbyn area on the eastern side of the ranges (Eckert 2000).

Factors implicated in the decline of Diamond Firetails include clearing of habitat, nest predation by birds (McGuire and Kleindorfer 2007), predation by cats (Read 1987), and trapping by man (Blakers et al.

1984). Foraging behaviour in general and the loss of native seed species is not considered to be a factor in the decline of Diamond Firetails in the Mount Lofty Ranges in South Australia (Read 1994, Antos and Bennett 2006). Diamond Firetails are sensitive to patch size and quality, with minimum threshold plains grassy woodland patch size being estimated at around 20 ha (Robinson and Howell 2003).

#### Relevant behavioural ecology

The Diamond Firetail is a type of finch. They live in a wide range of *Eucalyptus* dominated vegetation communities that have a grassy understorey, including woodland, forest and mallee (Antos and Bennett 2006, Higgins et al. 2006). Diamond Firetails are known to use large revegetation patches (eg the Monarto plantations) where they successfully breed and have achieved densities comparable to those using remnant native vegetation patches (Paton et al. 2004).

Diamond Firetails are mainly resident or sedentary throughout their range. Regular short-distance migratory movements are known in western Victoria (O'Gorman 1981) and in South Australia seasonal movements occur (O'Gorman 1981, Higgins et al. 2006). The longest recorded distance moved by an individual bird in the Mount Lofty ranges is 5 km (Paton et al. 2004). Movements away from breeding areas, to over-wintering sites, tend to occur in autumn. In non-breeding season they can form large flocks, usually of up to c. 40 individuals, with many juveniles in the groups (O'Gorman 1981, Higgins et al. 2006). These groups disperse in late winter and early spring, and birds appear singly or in pairs during the breeding season (Higgins et al. 2006).

The diet of Diamond Firetails in the Mount Lofty Ranges consists of predominantly grass seeds (up to 73% of crops, (Read 1994)), but the grass species seed composition changes with season. Diamond Firetails now forage extensively on the seeds of many introduced plants that have colonised much of the range of the finches, and potentially replaced much of the native seed plants (Read 1994). No arthropods were found in their crops. Foraging takes place exclusively on the ground and generally in flocks (Antos and Bennett 2006). Seeds are taken by gleaning from bare ground and foraging in grassy understorey and in ground litter (Antos and Bennett 2006).

Access to free standing water is very important to finches to aid digestion and prevent dehydration as a consequence of the low water content of many seeds. Consumption of green vegetation apparently allows survival for short periods without freestanding water (Read 1994, Higgins et al. 2006).

The monogamous Diamond Firetails breed in simple pairs. Home ranges for a pair vary in size from 2 to 20 ha (Paton et al. 2004). Nesting usually occurs in small loose colonies with multiple nests in one tree (Higgins et al. 2006). Nest site selection varies between areas (McGuire and Kleindorfer 2007), but in some areas a preference is shown for nesting in mistletoe (O'Gorman 1981, Cooney 2005, Cooney et al. 2006). Egg laying occurs between the months of October and November in South Australia (Higgins et al. 2006). Time from egg laying to fledging is approximately 47 days (Higgins et al. 2006).

### Peregrine Falcon (Falco peregrinus) – Rare in South Australia

#### **Reasons for listing**

The Peregrine Falcon has a worldwide distribution. It has declined significantly in most countries other than Australia. In Australian the population is substantial, widespread and viable (Olsen and Olsen

1988b). In South Australia it is classified as rare because the resident population is small, with the total population estimated at less than 3000 mature individuals (National Parks and Wildlife Council and Department of Environment and Heritage 2003).

The Peregrine Falcon appears to be a species that has benefited from changes such as partial clearing of woodlands and forests and the building of farm dams (Olsen and Olsen 1988b). Nevertheless, in South Australia the level of pesticide contamination detected in the Peregrine Falcon and the consequent thinning of egg shells was considered sufficient to interfere with this species' reproduction (Olsen and Olsen 1979, Falkenberg et al. 1994).

#### Relevant behavioural ecology

The Peregrine Falcon uses a traditional nest site or territory, frequently one that has been used over several generations (Olsen and Olsen 1988a). The spacing between these traditional nests is often regular.

In general, for Peregrine Falcon to breed successfully, the minimum basic requirements of adequate prey and suitable nest sites must be present. Populations of most native birds on which the falcon preys have probably declined because of clearing. However this impact is compensated by the availability of suitable introduced bird species (Falkenberg et al. 1994). The main prey species of Peregrine Falcons are the Rock Dove (*Columba livia*), Common Starling (*Sturnus vulgaris*), Silver Gulls (*Larus novaehollandiae*) and Galah (*Cacatua roseicapilla*) (Falkenberg et al. 1994, Emison et al. 1997) which constitute50-75% of their diet.

In a long-term study in Victoria it was found that over half of Peregrine Falcon eyries are on cliffs (51%), 37% are in trees, and the rest (12%) are on human-made structures and quarry faces (Emison et al. 1997). Over half of the quarries with eyries were actively operated when birds were present, often forcing the Peregrine Falcons to select another site in the quarry when a previous eyrie was destroyed (Emison et al. 1997). This suggests that the bird tolerates a degree of noise, vibration and activity associated with quarrying.

Rainbow Bee-eater (Merops ornatus) - EPBC migratory species JAMBA

#### **Reasons for listing**

Rainbow Bee-eaters are listed under the Japan-Australia Migratory Bird Agreement (JAMBA) as they migrate over marine waters during their northern movements in autumn. Inclusion of a species under JAMBA automatically resulted in its listing under the EPBC Act. Despite this automatic listing, at present the Rainbow Bee-eater is not listed as a threatened species within Australia, nor is it considered rare or threatened within South Australia. There is evidence of a five-year decline in numbers in the wheat-sheep belt of New South Wales and Queensland (Olsen et al. 2003).

Impacts on EPBC migratory species are considered significant if they:

- Substantially modify, destroy or isolate an area of important habitat for a migratory species;
- result in an invasive species that is harmful to the migratory species becoming established in an area of important habitat for the migratory species; or

• seriously disrupt the lifecycle (breeding, feeding, migration or resting behaviour) of an ecologically significant proportion of the population of a migratory species.

### Relevant behavioural ecology

Rainbow Bee-eaters (*Merops ornatus*) are migratory both within Australia and overseas to islands north of Australia. In the autumn months the Bee-eaters depart southern Australia and are only found in the northern States in the winter months. They migrate annually between Australia and New Guinea (Blakers et al. 1984). During spring and summer they have an Australian wide distribution, but are predominantly found breeding in southern Australia between September and February (Barrett et al. 2003). They are burrow breeders, with nests generally located in vertical banks of soil.

Brushtail Possum (Trichosurus vulpecula) – Nominated for Listing as Rare in South Australia

#### Reasons for nomination for listing as rare in SA

The Brushtail Possum has the widest distribution of any Australian mammal, being found across southern, eastern, and northern Australia. Within this distribution it occurs in most areas where there are trees, especially open forests and woodlands (How 1983). Their abundance has declined dramatically throughout much of their range, and they are now considered rare in the arid zone, although in some localities they are very common (Kerle et al. 1992).

Within South Australia Brushtail Possums currently have no conservation rating under the National Parks and Wildlife Act 1972 (Schedule 9) but have been nominated for listing as rare (National Parks and Wildlife Council and Department of Environment and Heritage 2003). They are classified as endangered in the Murray Mallee/ Murray Plains Regional Ecological Area (Barratt et al. 1991). They have no national conservation status, but are considered potentially vulnerable in Australia (Foulkes and Gillen 2000).

Within South Australia they have disappeared from greater than 50% of their former area of occupancy and it is believed that further decline in area is continuing. The have also experienced a greater than 50% reduction in abundance and it is believed this decline is also continuing (NPWC & DEH 2003).

Population decline has been attributed to habitat loss (Kahrimanis et al. 2001), cycles of resource-poor seasons and predation (Kerle et al. 1992). It has been hypothesised that the decline in abundance and distribution arises as a consequence of disturbance of refuge habitat patches critical for the survival of the species. This occurred at the same time as areas of southern Australia experienced below average rainfall. Once the populations were reduced, they fell into a 'predator-pit' through depredation by dingoes and introduced predators (eg cats and foxes), and have been unable to increase in numbers even with the advent of improved conditions (Kerle et al. 1992).

### Relevant behavioural ecology

Brushtail Possums are nocturnal arboreal marsupials. Home range size varies from 0.7 to 11.3 ha, with the extent of home range overlap being highly variable; some populations are apparently territorial, while others show no evidence of territoriality (Kerle 1998). Brushtail Possum density is typically in the range of 0.4 to 1.4 animals / ha (How 1983).

Brushtail Possums generally live up to 11 years (How 1983). Their major breeding period is in autumn, but they may also breed in spring. The young spend four to five months in the pouch and a further one to two months suckling and on their mother's back prior to dispersal. Dispersal occurs between six and 18 months of age, during which time there is high mortality, particularly in males (How 1983).

In the Mt Lofty Ranges Brushtail Possums prefer habitat dominated by smooth-barked eucalypts (Armstrong et al. 2003). They tend to live in habitat associated with more fertile soils, which produce a variety of more nutritious plant species, and the larger trees (Braithwaite et al. 1984) that provide the large hollows they require for shelter (How and Hillcox 2000, Harper 2005). This preference for woodland vegetation remnants based on more fertile soils, means they are associated with a much-reduced habitat type in the Mount Lofty Ranges (Armstrong et al. 2003).

Brushtail Possums feed mainly on *Eucalyptus* leaves (Dearing and Cork 1999). They can detoxify poisons in the leaves to some extent but cannot cope with an exclusively *Eucalyptus* diet. Compared to other possums the Brushtail Possum has higher nutritional needs, requiring a wider variety of plant species (How 1983). Ground vegetation particularly grasses comprises about 25% of their diet (Kerle 1984).

Brushtail Possums are susceptible to predation from foxes, cats and dingoes when they come to the ground to feed (Jones and Coman 1981, Kerle et al. 1992, Pickett et al. 2005). In areas with high fox density possums reduce the distance travelled on ground and change their foraging habits relative to areas with low fox density (Pickett et al. 2005). Predation of dispersing sub-adults appears to be a major threat (Kahrimanis et al. 2001).

### 5.1 Approach to Threat Assessment

The threats to fauna associated with the Project are considered in five main categories:

- vegetation clearance;
- noise and vibration;
- dust;
- traffic and activity;
- · contaminated surface water storage;

The degree to which these threats do or do not affect the fauna values identified in this report is discussed. Opportunities to minimise these threats are identified.

### 5.2 Vegetation Clearance

The proposed project involves the clearance of areas of native vegetation in *Eucalyptus odorata* woodland and open mallee, *Lomandra effusa* grassland, *Austrostipa* sp. grassland, *Eucalyptus gracilis* +/- Open mallee and *Acacia pycnantha* Low woodland. The area of vegetation to be cleared on the site is presented in Table 9.

The fauna values of the site are most sensitive to clearance of woodland vegetation. Woodland vegetation supported the highest numbers of species and the highest numbers of individuals. Two species of conservation significance were associated with woodland habitat.

Woodland vegetation also supported the vulnerable (SA) Diamond Firetail. The value of woodland for this species was related to the size, integrity and quality of the habitat component (Table 9). This species depends on grassy woodland vegetation, and this site is one of the largest and best-preserved habitat remnants in the region (Ecological Associates 2007b). The species is vulnerable to a decline in woodland area; with 20 ha reported as the minimum required for species presence.

Brushtail Possum, nominated for listing under the NP&W Act as rare, depends on the diversity of species and habitat complexity in woodlands for sheltering hollows and for food in the form of leaves, flowers invertebrates and carrion. This site is one of the largest and best-preserved habitat remnants in a region where less than 8% of natural habitat remains. Many of the remaining habitat fragments in the region constitute poor habitat because of small size, isolation, shape and understorey grazing.

The project involves the clearance of approximately 13% of *Eucalyptus odorata* Low woodland in either 'very good' or 'good' condition (Table 9) and will reduce the area of good quality vegetation (or better) to 21.5 ha.

The project involves the clearance of 48% of the 'good' quality *Lomandra effusa* grassland habitat. No species of conservation significance were associated with grassland habitat. The cleared area would effectively divide the existing large remnant into two fragments to the east and west of the pit.

Vegetation clearance threatens the fauna values of the site by potentially:

- reducing the extent of good quality habitat below the threshold required to sustain the Diamond Firetail population at the site; and
- reducing the habitat available to Brushtail Possum.

Vegetation clearance will also reduce the availability of habitat for non-threatened fauna but these values are not specifically protected under legislation.

Table 9: Area and conservation significance of surveyed woodland vegetation communities in the Kanmantoo Copper Project. Vegetation condition was reported as a significant environmental benefit (SEB) ratio (DWLBC 2005). Higher SEB ratios indicate better quality habitat.

| Vegetation<br>Community                          | Condition<br>(SEB ratio) | Condition Description                                                                                                                                                                                                                                                                              | Area (ha) to be<br>cleared* | Area (ha)<br>within project<br>area | % of project<br>area to be<br>cleared |
|--------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|---------------------------------------|
| Eucalyptus odorata<br>Low woodland               | 8:1                      | Very good condition: little disturbance, all strata present, evidence of overstorey recruitment, large old trees present, high understorey diversity, low weed cover, litter and woody debris cover high.                                                                                          | 1.2                         | 14.9                                | 8.3%                                  |
|                                                  | 6:1                      | Good condition: some disturbance (grazing, weed invasion, tracks, timber getting), at least strata depleted in cover, limited overstorey recruitment, large old trees present, high to moderate understorey diversity, low to moderate weed cover, litter and woody debris cover high to moderate. | 2.0                         | 9.7                                 | 20.9%                                 |
|                                                  | 4:1                      | Moderate condition: considerable disturbance (extended grazing), at least one strata absent, no evidence of overstorey recruitment, moderate to low understorey diversity, moderate to high weed cover, litter and woody debris cover moderate to low.                                             | 0.3                         | 28.5                                | 1.1%                                  |
|                                                  | 2:1                      | Poor condition: high disturbance (extended grazing), at least one strata absent, no evidence of overstorey recruitment, very low understorey diversity, high weed cover, litter and woody debris cover low to absent.                                                                              | 0.3                         | 1.0                                 | 35.5%                                 |
| Lomandra effusa ± Heliochrysum leucopsideum Open | 8:1                      | Very good condition: little disturbance, all strata present, native diversity high, weed cover low, litter cover high.                                                                                                                                                                             | 9.6                         | 17.8                                | 53.9%                                 |
| tussock grassland                                | 6:1                      | Good condition: some disturbance (grazing, weed invasion), all strata present, high to moderate density of tussocks, native diversity high to moderate, weed cover moderate, litter cover variable.                                                                                                | 0.0                         | 2.1                                 | 0.0%                                  |

| 4:1 Moderate condition: considerable disturbance (extended grazing, tracks, weed invasion), one strata depleted, native diversity moderate to low, weed cover moderate to low.  Austrostipa sp. Open tussock grassland  8:1 Very good condition: little disturbance, all strata intact, high density of tussocks, native diversity high, weed cover low, litter cover high to moderate.  6:1 Good condition: some disturbance (grazing, weed invasion), all strata present, high to moderate density of tussocks, native diversity moderate to low density of tussocks, native diversity dive |                 |                          |                                                                                                                                                                                               |                             |                                     |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|---------------------------------|
| (extended grazing, tracks, weed invasion), one strata depleted, native diversity moderate to low, weed cover moderate to low.    Austrostipa sp.   Sill   Very good condition: little disturbance, all strata intact, high density of tussocks, native diversity high, weed cover low, litter cover high to moderate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _               | Condition<br>(SEB ratio) | Condition Description                                                                                                                                                                         | Area (ha) to be<br>cleared* | Area (ha)<br>within project<br>area | % of project area to be cleared |
| Intact, high density of tussocks, native diversity high, weed cover low, litter cover high to moderate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 4:1                      | (extended grazing, tracks, weed invasion), one strata depleted, native diversity moderate to low, weed cover moderate to high, litter cover                                                   | 2.5                         | 3.5                                 | 72.4%                           |
| invasion), all strata present, high to moderate density of tussocks, native diversity high to moderate, weed cover moderate, litter cover variable.  4:1 Moderate condition: considerable disturbance (extended grazing, weed invasion), all strata present but depleted in cover, moderate to low density of tussocks, native diversity moderate to low density of tussocks, native diversity moderate to low, weed cover moderate to high, litter cover moderate to low.  Eucalyptus gracilis ± E. oleosa Open mallee  Eucalyptus gracilis ± E. oleosa Open mallee  Acacia pycnantha Low woodland  6:1 Good condition: some disturbance (past clearance, weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to moderate.  4:1 Moderate condition: considerable disturbance (past clearance, (past clearance, weed invasion, tracks), overstorey depleted, moderate, litter and woody debris cover high to moderate.  4:1 Moderate condition: considerable disturbance (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.  Scattered Trees  n/a See Appendix D  56 not assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Open tussock    | 8:1                      | intact, high density of tussocks, native diversity high, weed cover low, litter cover high to                                                                                                 | 0.2                         | 11.6                                | 1.8%                            |
| (extended grazing, weed invasion), all strata present but depleted in cover, moderate to low density of tussocks, native diversity moderate to low.    Eucalyptus gracilis ±   8:1   Very good condition: little disturbance, all strata intact, evidence of overstorey recruitment, high understorey diversity, weed cover low, litter and woody debris cover high.    Acacia pycnantha   6:1   Good condition: some disturbance (past clearance, weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to moderate.    4:1   Moderate condition: considerable disturbance (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.    Scattered Trees   n/a   See Appendix D   56   not assessed   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 6:1                      | invasion), all strata present, high to moderate density of tussocks, native diversity high to moderate, weed cover moderate, litter cover                                                     | 0.0                         | 4.7                                 | 0.0%                            |
| E. oleosa Open mallee intact, evidence of overstorey recruitment, high understorey diversity, weed cover low, litter and woody debris cover high.  Acacia pycnantha Low woodland  6:1 Good condition: some disturbance (past clearance, weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to moderate.  4:1 Moderate condition: considerable disturbance (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.  Scattered Trees n/a See Appendix D 56 not assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 4:1                      | (extended grazing, weed invasion), all strata present but depleted in cover, moderate to low density of tussocks, native diversity moderate to low, weed cover moderate to high, litter cover | 0.6                         | 0.7                                 | 86.7%                           |
| Low woodland  weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to moderate.  4:1 Moderate condition: considerable disturbance (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.  Scattered Trees n/a See Appendix D 56 not assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E. oleosa Open  | 8:1                      | intact, evidence of overstorey recruitment, high understorey diversity, weed cover low, litter and                                                                                            | 2.8                         | 4.0                                 | 69.8%                           |
| (past clearance, weed invasion, tracks), overstorey depleted, moderate understorey diversity, weed cover moderate to high, litter and woody debris moderate to low.  Scattered Trees  n/a  See Appendix D  56  not assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 6:1                      | weed invasion, tracks), overstorey depleted, high understorey diversity, weed cover low to moderate, litter and woody debris cover high to                                                    | 4.3                         | 7.7                                 | 55.3%                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 4:1                      | (past clearance, weed invasion, tracks),<br>overstorey depleted, moderate understorey<br>diversity, weed cover moderate to high, litter and                                                   | 2.6                         | 3.5                                 | 73.3%                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scattered Trees | n/a                      | See Appendix D                                                                                                                                                                                |                             | not as                              | sessed                          |

<sup>\*</sup> Calculations of areas to be cleared provided by Coffee Natural Systems

Threats associated with vegetation clearance may be minimised by:

• minimising where possible the extent of clearance in woodland vegetation, particularly in 'good' and 'very good' quality vegetation; and

 consolidating areas to be cleared so that large blocks, rather than small fragments, are preserved.

It may be possible to mitigate the impacts on fauna by providing or protecting alternative habitat elsewhere. This could include improving the quality of remnants in 'moderate' or 'poor' quality elsewhere on the site so that they are equivalent, or better, than the quality and extent of habitat that is cleared. This could involve:

- · weed control;
- · stock removal; and
- revegetation to enhance, extend and connect remnants.

However, it is possible that the habitat improvements associated with these measures will develop after the impacts of the project take place, so it is recommended that work of this type start as early as possible.

### 5.3 Noise and Vibration

Noise and vibrations generated by the project present a threat to fauna values on the site. Vehicle traffic, blasting and excavations, and ore processing may generate the noise and vibrations.

High noise levels are known to decrease species diversity, numbers, and breeding success in the vicinity of the noise, in both mammals and birds (Forman and Alexander 1998, Habib et al. 2007). The noise level at which population densities of all woodland birds begin to decline is around 42 decibels on average (Forman and Alexander 1998). Many possible reasons are proposed for the effects of traffic noise on birds. Likely hypotheses include hearing loss, increase in stress hormones, altered behaviours, interference with communication during breeding activities, differential sensitivity to different frequencies, deleterious effects on food supply or other habitat parameters (Forman and Alexander 1998), and predator avoidance communication during nesting and fledging phase (Forman et al. 2002). Birds with higher pitched songs are less susceptible to the effect of noise pollution than those with lower pitched songs (Rheindt 2003), suggesting that acoustic masking is one of the mechanisms by which noise negatively affects passerine density. The impact of vibrations and noise can be subtle to the extent that vibrations associated with traffic effect the emergence of earth worms from soil and in turn reduce the abundance of birds found feeding on them (Forman and Alexander 1998).

As noise levels within a habitat component increase above critical minimums, both the number of species and the population of each species present in the fragment will decrease. The louder the noise, and the longer the duration of the noise, the greater the impact on species present in the area. For a social species like the Diamond Firetail, which uses a variety of contact and predator avoidance calls, research indicates that the consequences of prolonged and loud noise (to the extent that it prevents effective communication among group members) are reduced breeding success and higher predation levels (Forman and Alexander 1998). Both of these outcomes would reduce population levels of the Diamond Firetail within the Project Area.

The threat associated with noise and vibration is therefore difficult to define without information on the noise and vibrations generated and the tolerance of species on the site. The literature suggests that the Diamond Firetail could be affected if noise interferes with their calls.

Measures to minimise this threat can be incorporated into the project design. These include:

- minimising noise levels within all high quality habitat;
- locating excavations as far from high-value habitat as possible;
- locating roadways as far from high-value habitat as possible;
- · limiting the number and extent of roads constructed; and
- regulating traffic volume.

### 5.4 Dust

Excavations and traffic will potentially increase dust loads to native vegetation. Dust can contaminate forage and reduce rates of photosynthesis with negative consequences for productivity and biomass in the area affected.

Dust impacts can be minimised by:

- · controlling dust production in the excavation works; and
- controlling dust during processing and transportation of material.

### 5.5 Traffic and Activity

Roads function as barriers for the movement and dispersal of many species, with roads as narrow as 2.5 m acting as barriers for insects and spiders (Forman and Alexander 1998). Roads and associated traffic impact on fauna through roadkill, vehicle disturbance and road avoidance, barrier effects and habitat fragmentation. For bird populations exposed to traffic, numbers may be lower, animal density may be lower, and the extent of breeding may be reduced (Forman et al. 2002). The effect increases with increased traffic volume (Forman et al. 2002). The barrier effect tends to create metapopulations, where large populations are split into smaller, partially isolated populations. Small populations fluctuate more widely over time and have a higher probability of extinction than do larger populations.

Raptor behaviour is impacted by traffic levels on roads (Bautista et al. 2004) with birds decreasing activity in the area of roads as traffic activity increases.

Depending on intensity, traffic and activity may disrupt fauna directly, indirectly or not at all. Direct impacts may occur where intense activity and noise disrupts feeding, calling and other activities and where fauna are discouraged from using otherwise suitable habitat. Indirect impacts may result from declining food availability. This threat potentially significantly affects fauna, particularly Diamond Firetail, and should be minimised.

The threat to fauna associated with roads and traffic can be minimised by:

- locating roads as far from high-value habitat as possible;
- minimising noise levels within all high quality habitat;
- · limiting the extent of roads within the site; and

• monitoring and managing weed threats.

### 5.6 Attraction of Water Birds to Contaminated Water

The project potentially involves the storage of contaminated surface water on the site in a tailings storage facility. The expected chemical composition of the water is not known, but may present a threat to fauna if it has high concentrations of heavy metals, low or high pH or other contaminants. Waterbirds, which are attracted to open water, are particularly at risk.

Low or high pH can have immediate effects on the mucosal membranes, skin or feathers of the birds. Exposure to heavy metals such as copper can have short-term toxic effects on the individual animal or longer term effects on the individual and its progeny (Kertesz et al. 2006) resulting in premature mortality or teratogenicity.

The site is not an important waterbird habitat and the risk associated with this threat is expected to be low. However, the site is located near the Lower Lakes and Coorong Ramsar Site, which supports high numbers of waterbirds. Furthermore, many waterbirds visit waterbodies opportunistically and the possibility of exposure remains even in isolated sites. The level of risk also depends on the nature of the contamination and this is not known at this stage.

The threat associated with contaminated surface water can be minimised by:

- minimising the area of any uncovered contaminated water storage;
- minimising the concentration of hazardous chemicals in a contaminated water storage;
- placing passive deterrent devices (eg raptor silhouettes, plastic models of birds taking of)
   over or near to the water body; and
- periodic broadcast of taped alarm calls.

### 5.7 Summary of Threats to Species of Conservation Significance

#### Diamond Firetail

As a consequence of the dry conditions over the last year, the Diamond Firetail population has declined to low levels in the Mount Lofty Region (pers. com. Dr David Paton, The University of Adelaide, March 2007). Diamond Firetail presence, under such conditions, suggests the grassy woodlands at Kanmantoo Copper Project Area constitute a refuge for the species. This species depends on grassy woodlands, of which the *Eucalyptus odorata* at the site is one of the best-preserved remnants in the region (Ecological Associates 2007b). The proposed mining development may significantly impact on this population at the local and possibly regional level.

### Peregrine Falcon

The Peregrine Falcon is naturally found in low densities throughout its distribution. The birds tolerance of mining activity, ability to shift to new prey species and the low number of individuals directly impacted

on, suggests that it is unlikely that the mine development will significantly affect the size or population viability of this species nationally or at the state level. At the local level it may result in the pair relocating their nest site within the open cut or to a new locality.

### Rainbow Bee-eater

Given the status of the population in South Australia, this project cannot be predicted to significantly affect the size or viability of the Rainbow Bee-eater population in South Australia or nationally. However, it may impact on species presence and habitat use at the local level. Rainbow Bee-eaters may breed in sandy banks in the area, and prior to their annual northerly migration, the local population may use the woodlands within the site as feeding grounds to build up fat reserves.

#### Brushtail Possum

Brushtail Possums prefer vegetation remnants based on more fertile soils. In the study area these fertile soils have been favoured and preferentially cleared by European settlers (Armstrong et al. 2003), and are associated with woodland, a much reduced habitat type in the Eastern Mount Lofty Ranges Ecological Area (Kahrimanis et al. 2001). In the Murray Darling Basin the loss of food trees, hollow trees and hollow branches is reducing the area of habitat available to this species and concomitantly increasing the competition among species that require similar habitat resources (Kahrimanis et al. 2001). This loss of habitat, in combination with high predation pressures, may be underlying the continuing decline of this species in South Australia.

The possible loss and degradation of Brushtail Possum habitat, in the context of a relatively large and species rich floral habitat fragment, may significantly impact on the Brushtail Possum population at the local level, and possibly contribute to the ongoing decline in population size at the regional level.

### 6.1 Diamond Firetail Investigations

This report identifies that the project may represent a significant threat to Diamond Firetail. Further investigations are required to better define this threat and to identify viable measures to minimise or mitigate impacts, if necessary.

Firstly, it is necessary to better assess the population in the Kanmantoo Project area in relation to other habitat in the region. It is recommended that other suitable habitat in the western slopes of the Southern Mount Lofty Ranges be surveyed to report the distribution of Diamond Firetail. This study would indicate whether the population at the mine site is a significant or insignificant proportion of the regional population.

Secondly, it is necessary to describe the status of the Diamond Firetail population in the Kanmantoo Copper Project area. In this study the size of the population and the size and number of flocks could not be determined. A reliable description of the population is recommended to quantify and monitor the magnitude of any impacts. A capture / mark / release program is recommended. Birds would be captured at focal points such as drinking sites or feeding areas using mist nets, banded to allow permanent identification, and then released. Birds would later be captured or observed and the proportion of banded birds caught would be used to estimate the population size.

On the completion of these studies, it is recommended that a detailed harm minimisation and mitigation plan is developed. This could involve operational guidelines for the mine or rehabilitation or protection of habitat elsewhere. Suitable alternative habitat would be identified from the proposed survey of habitat in the western Mount Lofty Ranges and from Ecological Associates (2007b). The plan would establish targets for the performance of the species and would set out how these targets would be monitored and reported.

The objectives and methodologies of these investigations should be established in consultation with representatives of the Department of Environment and Heritage.

## 6.2 Spring Survey

The results of this survey are likely to have been affected by the preceding dry conditions. This survey was conducted at the end of summer and after a 12-month period with below average rainfall. Under these conditions, food availability (including seeds, insects, flowers, nectar, forage) would have been particularly low and would have resulted in fewer species and individuals being observed than in more favourable conditions.

It is recommended that the survey be repeated in spring when a more representative sample of the site fauna will be evident.

References Section 7

Antos, M. J., and A. F. Bennett. 2006. Foraging ecology of ground-feeding woodland birds in temperate woodlands of southern Australia. Emu **106**:29-40.

- Armstrong, D. M., S. J. Croft, and J. N. Foulkes. 2003. A Biological Survey of the Southern Mount Lofty Ranges, South Australia. Department for Environment and Heritage, Adelaide.
- Barratt, R., S. Williams, and C. Nixon. 1991. How to Manage Native Vegetation in the Murray Mallee: A Conservation Handbook.*in* A. Department of Environment and Planning, South Australia, editor.
- Barrett, G., A. Silcocks, S. Barry, R. Cunningham, and R. Poulter. 2003. The New Atlas of Australian Birds. Birds Australia.
- Bautista, L. M., J. T. Garcia, R. G. Calmaestra, C. Palacin, C. A. Martin, M. B. Morales, R. Bonal, and J. Vinuela. 2004. Effect of weekend road traffic on the use of space by raptors. Conservation Biology **18**:726-732.
- Blakers, M., S. J. J. F. Davies, and P. N. Reilly. 1984. The Atlas of Australian Birds. RAOU and Melbourne University Press, Melbourne.
- Braithwaite, L. W., J. Turner, and J. Kelly. 1984. Studies on the arboreal marsupial fauna of eucalyptus forests being harvested for woodpulp at Eden, NSW. III.\* Relationships between faunal densities, eucalyptus occurrence and foliage nutrients, and soil parent materials. Australian Wildlife Research 11:41-48.
- Cooney, S. J. N. 2005. Diamond firetails (*Stagonopleura guttata*) preferentially nest in mistletoe. Emu **105**:317-322.
- Cooney, S. J. N., D. M. Watson, and J. Young. 2006. Mistletoe nesting in Australian birds: a review. Emu **106**:1-12.
- Dearing, M. D., and S. Cork. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, *Trichosurus vulpecula*. Journal of Chemical Ecology **25**:1205-1219.
- DEH. 2005a. Iron Grass (*Lomandra effusa L. multiflora* ssp. *dura*) Tussock Grassland: Nomination for listing under the Environment Protection and Biodiversity Conservation Act 1999. Department for the Environment and Heritage, Canberra.
- DEH. 2005b. Peppermint Box (*Eucalyptus odorata*) Grassy Woodland: Nominations for Listing under the Environment protection and Biodiversity Conservation Act 1999., Department of the Environment and Heritage, Canberra.
- DWLBC. 2005. Draft guidelines for native vegetation significance environmental benefit under the Native Vegetation Act 1991 and Regulations 2003 for the Mineral and Petroleum Resource Industry., Department of Water, Land and Biodiversity Conservation, Adelaide, South Australia.
- Eckert, J. 2000. Birds. Pages 25-89 *in* S. N. Club, editor. Natural History of Strathalbyn and Goolwa Districts. Douglas Press, Woodville North, SA.
- Ecological Associates. 2007a. Kanmantoo Copper Mine Project Flora Assessment. Adelaide.
- Ecological Associates. 2007b. Survey of remnant *Eucalyptus odorata* woodland and *Lomandra effusa* grassland in the Kanmantoo region., Hillgrove Resources, Adelaide.
- Emison, W. B., C. M. White, V. G. Hurley, and D. J. Brimm. 1997. Factors influencing the breeding distribution of the peregrine falcon in Victoria, Australia. Wildlife Research **24**:433-444.
- Falkenberg, I. D., t. E. Dennis, and B. D. Williams. 1994. Organochlorine pesticide contamination in three species of raptor and their prey in South Australia. Wildlife Research **21**:163-173.
- Forman, R. T. T., and L. E. Alexander. 1998. Roads and their major ecological effects. Annual Review of Ecology and Systematics **29**:207-231.
- Forman, R. T. T., B. Reineking, and A. M. Hersperger. 2002. Road traffic and nearby grassland bird patterns in a suburbanizing landscape. Environmental Management **29**:782-800.
- Foulkes, J. N., and J. S. Gillen. 2000. A Biological Survey of the Murray Mallee, South Australia. Biological Survey and Research, Department fo Environment and heritage. Geographic Analysis and Research Unit, Department for Transport, Urban Planning and Arts.
- Garnett, S. T., and G. M. Crawley. 2000. Action Plan for Australian Birds. Environment Australia.
- Habib, L., E. M. Bayne, and S. Boutin. 2007. Chronic industrial noise affects pairing success and age structure of ovenbirds *Seiurus aurocapilla*. Journal of Applied Ecology **44**:176-184.
- Harper, M. J. 2005. Home range and den use of common brushtail possums (*Trichosurus vulpecula*) in urban forest remnants. Wildlife Research **32**:681-687.

References Section 7

Higgins, P. J., J. M. Peter, and S. J. Cowling, editors. 2006. Handbook of Australian, New Zealand and Antarctic Birds. . Oxford University Press, Melbourne.

- How, R. A. 1983. *in* R. Strahan, editor. The Australian Museums Complete Book of Australian Mammals. Angus and Robertson Publishers, Melbourne.
- How, R. A., and S. J. Hillcox. 2000. Brushtail possum, *Trichosurus vulpecula*, populations in south-western Australia: demography, diet and conservation status. Wildlife Research **27**:81-89.
- Jones, E., and B. J. Coman. 1981. Ecology of the feral cat, *Felis catus* (L.), in south-eastern Australia. I. Diet. Australian Wildlife Research **8**:537-547.
- Kahrimanis, M. J., S. Carruthers, A. Oppermann, and R. Inns. 2001. Biodiversity Plan for the South Australian Murray-Darling Basin. Department for Environment and Heritage, Adelaide South Australia.
- Kerle, J. A. 1984. Variation in the ecology of *Trichosurus*: its adaptive significance. Pages 115-128 *in* A. P. Smith and I. D. Hume, editors. Possums and Gliders. Australian Mammal Society, Sydney.
- Kerle, J. A. 1998. The population dynamics of a tropical possum, *Trichosurus vulpecula arnhemensis* Collett. Wildlife Research **25**:171-181.
- Kerle, J. A., J. N. Foulkes, R. G. Kimber, and D. Papenfus. 1992. The decline of the Brushtail Possum, Trichosurus vulpecula (Kerr 1798), in arid Australia. Rangeland Journal **14**:107-127.
- Kertesz, V., G. Bakonyi, and B. Farkas. 2006. Water pollution by Cu and Pb can adversely affect mallard embryonic development. Ecotoxicology and Environmental Safety **65**:67-73.
- McGuire, A., and S. Kleindorfer. 2007. Nesting success and apparent nest-adornment in Diamond Firetails (*Stagonopleura guttata*). Emu **107**:1-8.
- National Parks and Wildlife Council and Department of Environment and Heritage. 2003. 2003 Review of the Status of Threatened Species in South Australia. Proposed Schedules under the South Australian National Parks and Wildlife Act 1972. Discussion Paper Adelaide.
- National Parks and Wildlife SA. 2000. Guidelines for Vertebrate Surveys in South Australia Using the Biological Survey of South Australia. *in* B. S. a. R. D. D. f. E. a. Heritage, editor.
- Neagle, N. 1995. An update of the conservation of the major plant associations of South Australia. Native Vegetation Conservation Section, Department of Environment and Natural Resources, Adelaide.
- O'Gorman, B. 1981. A prolonged field study of the diamond firetail. Australian Aviculture January: 14-27.
- Olsen, P., M. Weston, R. B. Cunningham, and A. Silcocks. 2003. The state of Australia's birds 2003. Birds Australia.
- Olsen, P. D., and J. Olsen. 1979. Eggshell thinning in the peregrine, *Falco peregrinus* (Aves: Falconidae) in Australia. Australia Wildlife Research **6**:217-226.
- Olsen, P. D., and J. Olsen. 1988a. Breeding of the Peregrine Falcon Falco peregrinus: I. weather, nest spacing and territory occupancy. Emu **88**:195-201.
- Olsen, P. D., and J. Olsen. 1988b. Population trends, distribution, and status of the peregrine falcon in Australia. Pages 255-274 *in* T. J. Cade, J. H. Enderson, C. G. Thelander, and C. M. White, editors. Peregrine Falcon Populations: Their Management and recovery. The Peregrine Fund, Boise.
- Parsons Brinckerhoff. 2006. Kanmantoo Fauna Desktop Assessment. Hillgrove Resources Limited, Adelaide.
- Paton, D. C., G. Carpenter, and R. G. Sinclair. 1994. A second bird atlas of the Adelaide region. Part 1: Changes in the distribution of birds: 1974-75 vs 1984-85. Part 2: Distribution maps 1984-85. South Australian Ornithologist **31**:151-265.
- Paton, D. C., D. J. Rogers, and W. Harris. 2004. Birdscaping the environment: restoring the woodland systems of the Mt Lofty region, South Australia. Pages 331-358 *in* D. Lunney, editor. Conservation of Australia's Forest Fauna. Royal Zoological society of New South Wales, Mosman, NSW.
- Pickett, K. N., D. S. Hik, A. E. Newsome, and R. P. Pech. 2005. The influence of predation risk on foraging behaviour of brushtail possums in Australian woodlands. Wildlife Research **32**:121-130.
- Read, J. L. 1987. The ecology of firetail finches. University of Adelaide, Adelaide.
- Read, J. L. 1994. The diet of three species of firetail finches in temporate South Australia. Emu 94:1-8.
- Reardon, T., and S. Bourne. 2006. Bats of the Limestone Coast: The South East of South Australia. The Friends of Naracoorte Caves, Naracoorte South Australia.

References SECTION 7

Rheindt, F. E. 2003. The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution? Journal fur Ornithologie **144**:295-306.

- Robinson, D., and M. Howell. 2003. Biodiversity Action Planning. Local Biodiversity Planning. Longwood Zone Trial. Department of Sustainability and Environment, Victoria and Goulburn Broken Catchment Management Authority, Victoria.
- Sacchi, M. P. 2003. The impact of habitat loss and habitat fragmentation on the survival of the herpetofauna in the southern Mount Lofty Ranges, South Australia. University of South Australia, Mawson Lakes, Adelaide.

# Appendix A Bird Observations from the Biological Survey of SA

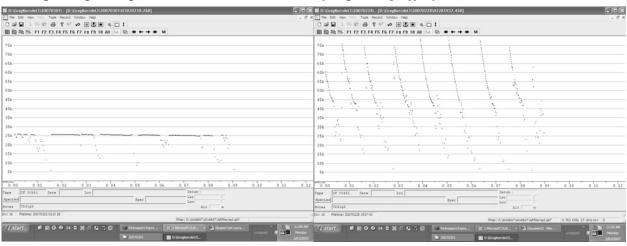
DEH records of birds within 6 km of the Kanmantoo Copper Mine area boundary

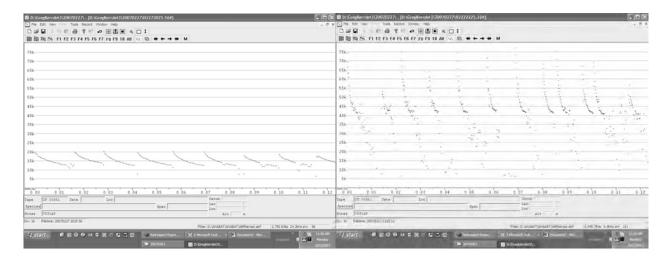
|                                              |                                                | DEH<br>Total | Percent of   | Ecol<br>Assoc |
|----------------------------------------------|------------------------------------------------|--------------|--------------|---------------|
| SPECIES                                      | COMNAME                                        | Records      | Observations | Survey        |
| Corvus sp.                                   | Avertual asia a Cuala a (Little                | 8            | 0.36         |               |
| Tachybaptus<br>novaehollandiae               | Australasian Grebe, (Little Grebe)             | 5            | 0.23         |               |
|                                              | ,                                              | 2            | 0.23         |               |
| Falco longipennis                            | Australian Hobby                               | 142          | 6.45         | 0             |
| Gymnorhina tibicen Aegotheles cristatus      | Australian Magpie<br>Australian Owlet-nightjar | 0            | 0.00         | 0             |
| Corvus coronoides                            | Australian Owlet-riigrijai Australian Raven    | 2            | 0.00         | U             |
|                                              | Australian Wood Duck, (Maned                   |              |              |               |
| Chenonetta jubata                            | Duck)<br>Barn Owl                              | 11<br>2      | 0.50<br>0.09 |               |
| Tyto alba                                    |                                                |              |              |               |
| Falco subniger<br>Coracina novaehollandiae   | Black Falcon                                   | 1            | 0.05         |               |
| Elanus axillaris                             | Black-faced Cuckoo-shrike                      | 29           | 1.32         | _             |
|                                              | Black-shouldered Kite                          | 9            | 0.41         | 0             |
| Falco berigora                               | Brown Falcon                                   | 3            | 0.14         |               |
| Accipiter fasciatus                          | Brown Goshawk                                  |              | 0.14         |               |
| Cincloramphus cruralis                       | Brown Songlark                                 | 1            | 0.05         |               |
| Climacteris picumnus                         | Brown Treecreeper                              | 8            | 0.36         | _             |
| Melithreptus brevirostris                    | Brown-headed Honeyeater                        | 6            | 0.27         | 0             |
| Melopsittacus undulatus                      | Budgerigar                                     | 1            | 0.05         |               |
| Acanthiza reguloides                         | Buff-rumped Thornbill                          | 23           | 1.04         |               |
| Scythrops novaehollandiae                    | Channel-billed Cuckoo                          | 1            | 0.05         |               |
| Acrocephalus stentoreus                      | Clamorous Reedwarbler                          | 2            | 0.09         |               |
| Nymphicus hollandicus                        | Cockatiel                                      | 1            | 0.05         |               |
| Accipiter cirrhocephalus                     | Collared Sparrowhawk                           | 1            | 0.05         |               |
| Phaps chalcoptera                            | Common Bronzewing                              | 3            | 0.14         | _             |
| Sturnus vulgaris                             | Common Starling                                | 62           | 2.82         | 0             |
| Phylidonyris pyrrhoptera                     | Crescent Honeyeater                            | 4<br>1       | 0.18         |               |
| Oreoica gutturalis                           | Crested Bellbird                               |              | 0.05         | _             |
| Ocyphaps lophotes                            | Crested Pigeon<br>Crimson Rosella              | 34           | 1.54         | 0             |
| Platycercus elegans                          | Diamond Firetail                               | 198<br>8     | 8.99<br>0.36 | 0             |
| Stagonopleura guttata<br>Gallinula tenebrosa | Dusky Moorhen                                  | 4            | 0.18         | O             |
| Artamus cyanopterus                          | Dusky Woodswallow                              | 13           | 0.59         | 0             |
| Acanthorhynchus                              |                                                |              |              |               |
| tenuirostris                                 | Eastern Spinebill                              | 19           | 0.86         |               |
| Turdus merula                                | Eurasian Blackbird                             | 39           | 1.77         |               |
| Fulica atra                                  | Eurasian Coot                                  | 5            | 0.23         |               |
| Alauda arvensis                              | Eurasian Skylark                               | 2            | 0.09         |               |
| Carduelis carduelis                          | European Goldfinch                             | 12           | 0.54         | 0             |
| Petrochelidon ariel                          | Fairy Martin                                   | 3            | 0.14         |               |
| Cacomantis flabelliformis                    | Fan-tailed Cuckoo                              | 2            | 0.09         | _             |
| Cacatua roseicapilla                         | Galah                                          | 85           | 3.86         | 0             |
| Pachycephala pectoralis                      | Golden Whistler                                | 27           | 1.23         |               |
| Phalacrocorax carbo                          | Great Cormorant                                | 2            | 0.09         |               |
| Strepera versicolor                          | Grey Currawong                                 | 28           | 1.27         |               |
| Rhipidura albiscapa                          | Grey Fantail                                   | 61           | 2.77         | _             |
| Colluricincla harmonica                      | Grey Shrike-thrush                             | 40           | 1.82         | 0             |
| Aythya australis                             | Hardhead (White-eyed Duck)                     | 1            | 0.05         |               |
| Poliocephalus poliocephalus                  | Hoary-headed Grebe                             | 1            | 0.05         |               |
| Chrysococcyx basalis                         | Horsfield's Bronze-cuckoo                      | 3            | 0.14         |               |
| Mirafra javanica                             | Horsfield's Bushlark                           | 1            | 0.05         |               |
| Passer domesticus                            | House Sparrow                                  | 36           | 1.63         |               |
|                                              |                                                |              |              |               |

# Appendix A Bird Observations from the Biological Survey of SA

|                            |                          | DEH<br>Total | Percent of   | Ecol<br>Assoc |  |
|----------------------------|--------------------------|--------------|--------------|---------------|--|
| SPECIES                    | COMNAME                  | Records      | Observations | Survey        |  |
| Microeca fascinans         | Jacky Winter             | 1            | 0.05         | Julivoy       |  |
| Dacelo novaeguineae        | Laughing Kookaburra      | 10           | 0.05         |               |  |
| Cacatua sanguinea          | Little Corella           | 4            | 0.18         |               |  |
| Phalacrocorax melanoleucos | Little Pied Cormorant    | 2            | 0.09         |               |  |
| Corvus mellori             | Little Raven             | 63           | 2.86         | 0             |  |
| Anthochaera chrysoptera    | Little Wattlebird        | 1            | 0.05         | J             |  |
| Grallina cyanoleuca        | Magpie-lark              | 27           | 1.23         | 0             |  |
| Vanellus miles             | Masked Lapwing           | <br>1        | 0.05         | •             |  |
| Dicaeum hirundinaceum      | Mistletoebird            | 2            | 0.09         |               |  |
| Glossopsitta concinna      | Musk Lorikeet            | 42           | 1.91         |               |  |
| Falco cenchroides          | Nankeen Kestrel          | 10           | 0.45         | 0             |  |
| Phylidonyris               |                          |              | 0.10         | -             |  |
| novaehollandiae            | New Holland Honeyeater   | 97           | 4.41         | 0             |  |
| Manorina melanocephala     | Noisy Miner              | 9            | 0.41         | Ö             |  |
| Anas superciliosa          | Pacific Black Duck       | 4            | 0.18         |               |  |
| Geopelia placida           | Peaceful Dove            | 4            | 0.18         |               |  |
| Falco peregrinus           | Peregrine Falcon         | 4            | 0.18         | 0             |  |
| Phalacrocorax varius       | Pied Cormorant           | 1            | 0.05         | -             |  |
| Porphyrio porphyrio        | Purple Swamphen          | 1            | 0.05         |               |  |
| Glossopsitta               |                          |              |              | _             |  |
| porphyrocephala            | Purple-crowned Lorikeet  | 6            | 0.27         | 0             |  |
| Merops ornatus             | Rainbow Bee-eater        | 4            | 0.18         | 0             |  |
| Trichoglossus haematodus   | Rainbow Lorikeet         | 9            | 0.41         |               |  |
| Anthochaera carunculata    | Red Wattlebird           | 81           | 3.68         |               |  |
| Neochmia temporalis        | Red-browed Finch         | 20           | 0.91         |               |  |
| Petroica goodenovii        | Red-capped Robin         | 1            | 0.05         |               |  |
| Psephotus haematonotus     | Red-rumped Parrot        | 23           | 1.04         |               |  |
| Myiagra inquieta           | Restless Flycatcher      | 2            | 0.09         |               |  |
| Anthus novaeseelandiae     | Richard's Pipit          | 5            | 0.23         |               |  |
| Columba livia              | Rock Dove                | 9            | 0.41         |               |  |
| Cincloramphus mathewsi     | Rufous Songlark          | 3            | 0.14         |               |  |
| Pachycephala rufiventris   | Rufous Whistler          | 5            | 0.23         | 0             |  |
| Zosterops lateralis        | Silvereye                | 6            | 0.27         |               |  |
| Lichenostomus virescens    | Singing Honeyeater       | 13           | 0.59         | 0             |  |
| Aphelocephala leucopsis    | Southern Whiteface       | 3            | 0.14         | 0             |  |
| Acanthagenys rufogularis   | Spiny-cheeked Honeyeater | 2            | 0.09         |               |  |
| Circus assimilis           | Spotted Harrier          | 1            | 0.05         |               |  |
| Pardalotus punctatus       | Spotted Pardalote        | 3            | 0.14         |               |  |
| Streptopelia chinensis     | Spotted Turtle-dove      | 4            | 0.18         |               |  |
| Pardalotus striatus        | Striated Pardalote       | 116          | 5.27         | 0             |  |
| Acanthiza lineata          | Striated Thornbill       | 53           | 2.41         |               |  |
| Coturnix pectoralis        | Stubble Quail            | 1            | 0.05         |               |  |
| Cacatua galerita           | Sulphur-crested Cockatoo | 23           | 1.04         |               |  |
| Malurus cyaneus            | Superb Fairy-wren        | 133          | 6.04         |               |  |
| Petrochelidon nigricans    | Tree Martin              | 41           | 1.86         |               |  |
| Daphoenositta chrysoptera  | Varied Sittella          | 4            | 0.18         |               |  |
| Malurus lamberti           | Variegated Fairy-wren    | 1            | 0.05         |               |  |
| Aquila audax               | Wedge-tailed Eagle       | 4            | 0.18         | 0             |  |
| Smicrornis brevirostris    | Weebill                  | 4            | 0.18         | 0             |  |
| Hirundo neoxena            | Welcome Swallow          | 28           | 1.27         | 0             |  |
| Cheramoeca leucosternus    | White-backed Swallow     | 1            | 0.05         |               |  |
| Pomatostomus superciliosus | White-browed Babbler     | 15           | 0.68         |               |  |
| Egretta novaehollandiae    | White-faced Heron        | 5            | 0.23         |               |  |
| Epthianura albifrons       | White-fronted Chat       | 1            | 0.05         |               |  |

# Appendix A Bird Observations from the Biological Survey of SA

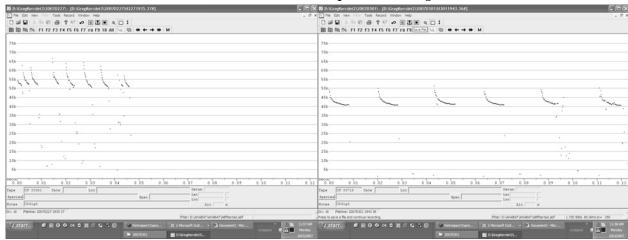

|                            |                            | DEH     |              | Ecol   |
|----------------------------|----------------------------|---------|--------------|--------|
|                            |                            | Total   | Percent of   | Assoc  |
| SPECIES                    | COMNAME                    | Records | Observations | Survey |
| Melithreptus lunatus       | White-naped Honeyeater     | 29      | 1.32         |        |
| Lichenostomus penicillatus | White-plumed Honeyeater    | 73      | 3.32         | 0      |
| Cormobates leucophaeus     | White-throated Treecreeper | 2       | 0.09         |        |
| Corcorax melanorhamphos    | White-winged Chough        | 6       | 0.27         | 0      |
| Rhipidura leucophrys       | Willie Wagtail             | 60      | 2.72         | 0      |
| Acanthiza nana             | Yellow Thornbill           | 17      | 0.77         | 0      |
| Lichenostomus chrysops     | Yellow-faced Honeyeater    | 101     | 4.59         |        |
| Acanthiza chrysorrhoa      | Yellow-rumped Thornbill    | 45      | 2.04         | 0      |
| Taeniopygia guttata        | Zebra Finch                | 1       | 0.05         |        |
| Grand Total                |                            | 2202    | 100.00       |        |

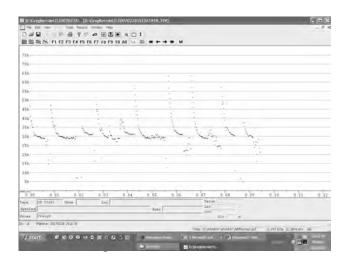

# Appendix B Bat species call identification graphs

The Australasian Bat Society Inc. reporting standards for insectivorous bat surveys using bat detectors require a sample 'time versus frequency' graph of each species identified during the survey to be included in the final report. These graphs must be of bats recorded and identified during the survey. Graphs of each of the seven species identified are presented below:

### Mormopterus planiceps

### Nyctophilus geoffroyi




# Appendix B Bat species call identification graphs

### Chalinolobus morio

### Vespadelus darlingtoni





# Appendix C Mammals

| Family                               | Common<br>Name                        | Scientific<br>Name            |                                |                              | F                            | labit           | at Typ                           | e                         |              |                   |          | ati | serv<br>on<br>tus |
|--------------------------------------|---------------------------------------|-------------------------------|--------------------------------|------------------------------|------------------------------|-----------------|----------------------------------|---------------------------|--------------|-------------------|----------|-----|-------------------|
|                                      |                                       |                               | Eucalyptus odorata<br>woodland | Lomandra effusa<br>grassland | Austrostipa sp.<br>grassland | Mallee Woodland | <i>Allocasuarina</i><br>Woodland | Golden wattle<br>Woodland | Rock Outcrop | Riparian NE Gully | Regrowth | AUS | SA                |
| MACROPODIDAE                         | Western<br>Grey<br>Kangaroo           | Macropus<br>fuliginosus       | 5,<br>>10                      |                              |                              |                 |                                  |                           |              |                   | 2        |     |                   |
| MACROPODIDAE                         | Euro                                  | Macropus<br>robustus          |                                | 1                            |                              | 2               |                                  |                           |              |                   |          |     | İ                 |
| PHALANGERIDAE                        | Common<br>Brushtail<br>Possum         | Trichosurus<br>vulpecula      | 2                              |                              |                              | 1               |                                  |                           |              |                   |          |     |                   |
| CANIDAE                              | Fox                                   | *Vulpes vulpes                | 2,1                            |                              |                              | 1               |                                  |                           |              |                   |          |     |                   |
| MURIDAE Murinae                      | House<br>Mouse                        | *Mus musculus                 | 1                              | 9                            | 3                            |                 |                                  |                           |              |                   |          |     |                   |
| LEPORIDAE                            | Rabbit                                | *Oryctolagus<br>cuniculus     | 1                              |                              |                              |                 |                                  |                           |              |                   |          |     |                   |
| LEPORIDAE                            | Brown<br>Hare                         | *Lepus<br>capensis            | 1                              |                              |                              |                 |                                  |                           |              | 1                 | 1        |     |                   |
| MOLOSSIDAE                           | White-<br>striped<br>Freetail-<br>bat | Tadarida<br>australis         | 20                             | 11                           | 12                           |                 |                                  |                           |              |                   |          |     |                   |
| MOLOSSIDAE                           | Southern<br>Freetail-<br>bat          | Mormopterus<br>planiceps      | 9                              |                              | 1                            |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Vespertilioninae | Gould's<br>Wattled<br>Bat             | Chalinolobus<br>gouldii       | 6                              | 1                            | 3                            |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Nyctophilinae    | Lesser<br>Long-<br>eared Bat          | Nyctophilus<br>geoffroyi      | 8                              | 1                            | 4                            |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Vespertilioninae | Chocolate<br>Wattled<br>Bat           | Chalinolobus<br>morio         | 5                              |                              |                              |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Vespertilioninae | Large<br>Forest Bat                   | Vespadelus<br>darlingtoni     | 2                              |                              |                              |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Vespertilioninae | Southern<br>Forest Bat                | Vespadelus<br>regulus         |                                |                              | 1                            |                 |                                  |                           |              |                   |          |     |                   |
| VESPERTILIONIDAE<br>Vespertilioninae | Little<br>Forest Bat                  | Vespadelus<br>vulturnus or Vd | 1?                             |                              |                              |                 |                                  |                           |              |                   |          |     | [                 |

AUS: National Conservation rating (EPBC Act)

SA: State Conservation rating (NPW Act)

CE: Critically Endangered threatened species rating – species facing an extremely high risk of extinction in the wild in the immediate future

E: Endangered threatened species rating – species not critically endangered but facing an extremely high risk of extinction in the wild in the immediate future

V: Vulnerable threatened species rating; species not critically endangered or endangered but facing a high risk of extinction in the wild in the medium-term future

# Appendix D Reptile

|                               |                                |                                                             | Habitat Type                   |                              |                              |                 |                                  |                           |              |                   |          | Conser<br>vation<br>Status |    |
|-------------------------------|--------------------------------|-------------------------------------------------------------|--------------------------------|------------------------------|------------------------------|-----------------|----------------------------------|---------------------------|--------------|-------------------|----------|----------------------------|----|
| Family                        | Common<br>Name                 | Scientific<br>Name                                          | Eucalyptus odorata<br>woodland | Lomandra effusa<br>grassland | Austrostipa sp.<br>grassland | Mallee Woodland | <i>Allocasuarina</i><br>Woodland | Golden wattle<br>Woodland | Rock Outcrop | Riparian NE Gully | Regrowth | AUS                        | SA |
| AGAMIDAE                      | Tawny<br>Dragon                | Ctenophorus<br>decressii                                    | 3                              |                              |                              |                 |                                  | 3                         | >5           |                   |          |                            |    |
| SCINCIDAE                     | Eastern<br>Spotted<br>Ctenotus | Ctenotus<br>orientalis                                      |                                | 2                            |                              |                 |                                  |                           |              |                   |          |                            |    |
| SCINCIDAE                     | Eastern<br>Striped<br>Skink    | Ctenotus<br>robustus                                        | 3                              | 1                            |                              |                 |                                  |                           |              |                   |          |                            |    |
| SCINCIDAE                     | Dwarf Skink                    | Menetia greyii                                              | 3                              | 1                            | 2                            |                 |                                  |                           |              |                   |          |                            |    |
| SCINCIDAE                     | Sleepy<br>Lizard               | Tiliqua rugosa                                              | 1                              |                              | 6                            |                 |                                  |                           | 2            | 1                 |          |                            |    |
| SCINCIDAE                     | Eastern<br>Bluetongue          | Tiliqua<br>scincoides                                       | 1                              |                              |                              |                 |                                  |                           |              |                   |          |                            |    |
| GEKKONIDAE<br>Pygopodinae     | Adelaide<br>Snake-lizard       | Delma<br>molleri?<br>(Possibly D.<br>inornata) <sup>1</sup> |                                |                              | 1                            |                 |                                  |                           |              |                   |          |                            |    |
| GEKKONIDAE<br>Diplodactylinae | Thick-tailed<br>Gecko          | Nephrurus<br>milii                                          | 2                              | 1                            |                              |                 |                                  | 1                         |              |                   |          |                            |    |
| GEKKONIDAE<br>Gekkoninae      | Southern<br>Rock Dtella        | <i>Gehyra</i> sp.<br>'2n=44'                                | 1                              |                              |                              |                 |                                  |                           | 2            |                   |          |                            | _  |

- AUS: National Conservation rating (EPBC Act)
  - SA: State Conservation rating (NPW Act)
  - CE: Critically Endangered threatened species rating species facing an extremely high risk of extinction in the wild in the immediate future
    - E: Endangered threatened species rating species not critically endangered but facing an extremely high risk of extinction in the wild in the immediate future
    - V: Vulnerable threatened species rating; species not critically endangered or endangered but facing a high risk of extinction in the wild in the medium-term future
    - 1: Identification made from skin cast. Based on location probably Delma molleri, but Delma inornata cannot be excluded

Appendix 5B

**Spring Fauna Survey** 

# Kanmantoo Copper Project: Spring Fauna Survey Final Report

# **Coffey Natural Systems**

2-3 Greenhill Rd Wayville SA 5034

November 2007

ECOLOGICAL ASSOCIATES REPORT DE009-B1

# Contents

| 1 | Introduction 1-1 |                                   |     |
|---|------------------|-----------------------------------|-----|
|   | 1.1              | Introduction                      | 1-1 |
|   | 1.2              | Background                        | 1-1 |
|   | 1.3              | Objectives                        | 1-1 |
|   | 1.4              | Study Area                        | 1-1 |
| 2 | Fauna            | Survey                            | 2-1 |
|   | 2.1              | Introduction                      | 2-1 |
|   | 2.2              | Methods                           | 2-1 |
|   | 2.3              | Results                           | 2-3 |
| 3 | Discus           | sion of Results                   | 3-1 |
|   | 3.1              | Overview                          | 3-1 |
|   | 3.2              | Species of Management Concern     | 3-2 |
| 4 | References4      |                                   | 4-1 |
| 5 | Apper            | idix A. Bird Records at Kanmantoo | 5-1 |

# Figures, Tables & Appendices

| Figures         |                                                                                                                     |                      |
|-----------------|---------------------------------------------------------------------------------------------------------------------|----------------------|
|                 | antoo Copper Project study area (white line), native vegetation command vegetation survey quadrats (black squares). |                      |
| Tables          |                                                                                                                     |                      |
| Table 1: Weathe | er during survey period. Weather station located on Kanmantoo Proje                                                 | ect Area, MacFarlane |
|                 | Hill                                                                                                                | 2-3                  |
| Table 2. Mamm   | als recorded during Kanmantoo Spring Survey                                                                         | 2-6                  |
|                 | ecorded during Kanmantoo Spring Survey                                                                              |                      |
|                 | bians and Reptiles recorded during Kanmantoo Spring Survey                                                          |                      |
| Appendices      |                                                                                                                     |                      |
| Appendix A      | Bird Records at Kanmantoo                                                                                           |                      |

### 1.1 Introduction

Coffey Natural Systems, on behalf of Hillgrove Resources Limited (HRL), engaged Ecological Associates Pty Ltd to carry out a spring fauna survey during September 2007, to update the findings of the Baseline Fauna Survey in February 2007, conducted for the proposed redevelopment and expansion of the Kanmantoo Copper Mine ('the project').

### 1.2 Background

Ecological Associates undertook a Fauna Baseline Survey and Impact Assessment of the proposed redevelopment and expansion of the Kanmantoo Copper Mine in February 2007. This survey was conducted at the end of summer and after a 12-month period with below average rainfall. Under these conditions, food availability (including seeds, insects, flowers, nectar, forage) would have been particularly low and would have resulted in fewer species and individuals being observed than in more favourable conditions.

The Fauna Baseline Survey and Impact Assessment recommended that the survey be repeated in spring when a more representative sample of the site fauna would be evident (Ecological Associates, 2007).

### 1.3 Objectives

The purpose of the project was to survey the fauna for the Kanmantoo Copper Project Mining Lease Proposal (MLP) in spring 2007. The scope of work was as follows.

- Survey the study area to describe the fauna species (including introduced species) and habitat types with a particular focus on species and communities of conservation significance (ie local, regional, state or national).
- Place the species and habitats present in the study area in a regional context.

## 1.4 Study Area

The Kanmantoo Copper Mine Project is located in the Eastern Mount Lofty Ranges Ecological Area near the western boundary of the South Australian Murray Darling Basin (Kahrimanis et al. 2001). The project is to be developed within an area of 439 ha (Figure 1).

Introduction SECTION 1




Figure 1: Kanmantoo Copper Project study area (white line), native vegetation communities (coloured), and vegetation survey quadrats (black squares).

### 2.1 Introduction

This survey applied the methods of the Biological Survey of South Australia (Owens 2000). The survey was carried out under:

- The Wildlife Ethics Committee Approval of a Project Involving Animals Application Number 7/2007;
- Permit to Undertake Scientific Research Permit Number W25407 1; and
- Licence to Use Animals for Teaching, Research or Experimental Purposes Licence No 202.

The survey replicated the methods applied in the earlier Baseline Fauna Survey (Ecological Associates 2007), which are described below.

### 2.2 Methods

### Trap Lines

One set of traplines was installed within three of the existing flora survey quadrats (Ecological Associates 2007):

- 1. Eucalyptus odorata woodland (SW corner: GDA 94 54H 0318112E 6115517S),
- 2. Lomandra effusa grassland (NW corner: GDA 94 54H 0318140E 6114548S), and
- 3. *Austrostipa* Grassland (NW corner: GDA 94 54H 0318029E 6114414S) previously identified within the Kanmantoo Copper Project area.

Each trap-line consisted of a pit-line (six pitfalls 10 m apart), one Elliot trap-line (15 traps 10 m apart), and two Sherman traps at either end of the line. Traps were installed and opened on Monday 24 September 2007; they were finally cleared, closed and removed on Friday 28 September 2007. Traps were checked in the evening and morning each day.

### Roaming Surveys

Two observers carried out roaming surveys for birds of at least two hours total duration each day over three days. Each of the key habitat types was surveyed each day. In addition walks were made through all other habitat types at least once.

### Physical Search

Physical searches were conducted on each day with particular emphasis within the three key habitat types and during roaming surveys throughout the area. Physical searches involved the lifting of rocks and logs, looking under bark on tree trunks, digging up burrows and raking of leaf litter. Observations were made of animals active at the time, or for signs of animals, including tracks, scats, scratchings, burrows, and skulls. Active animals were, where possible, hand caught and identified.

# Spotlighting

Spotlighting for nocturnal mammals, birds and reptiles was carried out on a warm humid evening (Wed 26/09) between 20:00 and 22:30. Using a portable spotlight, two observers walked a predetermined route along existing tracks and then spotlighted via vehicle in areas to the south. The walked route followed east parallel to the pit through mallee woodlands, along the eastern edge of the site through *Allocasuarina verticillata* woodlands and *Callitris gracilis* woodlands, and south towards the pit through *Eucalyptus odorata* and *Eucalyptus leucoxylon* woodlands, and past regrowth areas to the west (Figure 1). The spotlight survey by car followed the tracks from site 1 around to the west of the existing pit up to the southern limits of the high country, around to the north of site 2, back around the north of the pit and down to the eastern gate entrance. All sightings, audible movement and calls were investigated and identified.

#### 2.3 Results

#### Weather

Surveys were carried out over five days (four nights) 24/09/2007 to 28/09/2007. Weather conditions during this period were mild to warm (Table 1). There were strong northerly winds on Tuesday 25 September and strong westerly winds Wednesday to Friday 26-28 September. There were light showers during the mornings of Wednesday and Thursday 26-27 September and during the middle of the day on Friday 28 September. All traps were checked and cleared each morning between 07:00 and 09:00 and late each afternoon between 15:00 and 17:00.

Mean annual rainfall at Murray Bridge is 342.4 mm (N = 122years - 1885-2007 BOM 2007). Total rainfall at Murray Bridge in the previous 4-month period (01/06/07 - 30/09/07) was 96.6 mm, being below the long-term average for this period (146.2 mm). At the Kanmantoo Mine Site weather station rainfall over the previous year (01/10/07 - 30/09/07) was 196.4 mm, and in the previous 4-month period was 62 mm. Winter and spring rainfall was below average but sufficient to provide for normal spring growth and flowering in annual and perennial plants.

Table 1: Weather during survey period. Weather station located on Kanmantoo Project Area,
MacFarlane Hill

| Date               | Rainfall | Daily Temp | erature (°C) | Maximum      | Dew Point |
|--------------------|----------|------------|--------------|--------------|-----------|
|                    | (mm)     | Maximum    | Minimum      | Humidity (%) | (°C)      |
| Monday 24/09/07    | 0        | 21.5       | 6.5          | 83           | 4.2       |
| Tuesday 25/09/07   | 0        | 27.2       | 7.4          | 75           | 3.3       |
| Wednesday 26/09/07 | 4        | 24.2       | 10.8         | 84           | 9.1       |
| Thursday 27/09/07  | 1.2      | 20.1       | 9.3          | 88           | 8.9       |
| Friday 28/09/07    | 3        | 13.9       | 7.6          | 80           | 6.7       |

# Eucalyptus odorata Low Woodland

Two species of native mammal (Euro, *Macropus robustus*; and Common Brushtail Possum, *Trichosurus vulpecula*) were recorded during the spring survey from *Eucalyptus odorata* Woodland (Table 2). One Common Brushtail Possum was caught in a trap and several others were observed spotlighting in this habitat. No Foxes (\**Vulpes vulpes*)<sup>1</sup> or House Mice (\**Mus musculus*) were recorded.

<sup>1 \*</sup> denotes an introduced species

A total of 19 species of bird were recorded from the *Eucalyptus odorata* Woodland (Table 3). The Diamond Firetail (*Stagonopleura guttata*) was recorded from this habitat and has a State Conservation Status of Vulnerable. Ten Diamond Firetails were observed in this survey, but the protocol adopted does not allow a population estimate to be made from these observations. Diamond Firetails were also recorded from this habitat during the February 2007 survey. Black Kite (*Milvus migrans*) and Southern Boobook (*Ninox novaeseelandie*) are new records for the State Biological Database from this general area. Four other species not recorded during the February 2007 survey were recorded during the spring survey (Little Corella, *Cacatua sanguinea*; Brown Treecreeper, *Climacteris picumnus*; Varied Sitella, *Daphoenositta chrysoptera*; and Red-rumped Parrot, *Psephotus haematonotus*). Two other species (Singing Honeyeater, *Lichenostomus virescens* and Common Starling, \**Sturnus vulgaris*) were recorded during the February 2007 survey but not from *Eucalyptus odorata* Woodland.

A total of six species of reptile were recorded from the *Eucalyptus odorata* Woodland (Table 4). The Marbled Gecko (*Christinus marmoratus*) is the only species not recorded during the February 2007 survey.

### Lomandra effusa Open Tussock Grassland

The only mammal recorded during the Spring Survey from the *Lomandra effusa* Open Tussock Grassland was the Euro, *Macropus robustus* (Table 2).

A total of five species of bird were recorded from this habitat, none of which have Conservation Status. Two species were not recorded during the February 2007 survey (Black-faced Cuckoo-shrike, *Coracina novaehollandiae*; and Fairy Martin, *Petrocheilidon ariel*). Fairy Martins are migratory, arriving in southern Australia in August prior to breeding (Frith 1979). In the previous Baseline Survey they may have already bred and moved out of the area.

Four species of reptile were recorded from the *Lomandra effusa* Open Tussock Grassland. The Olive Snake-lizard (*Delma inornata*) was recorded from this habitat and has a State Conservation Status of Rare. This and one other species (Little Whip Snake, *Suta flagellum*) were not recorded during the February 2007 survey.

### Austrostipa blackii Open Tussock Grassland

No mammals were recorded during the Spring Survey from the *Austrostipa blackii* Open Tussock Grassland.

A total of five species of bird were recorded from this habitat (Table 3). The Peregrine Falcon (*Falco peregrinus*) was recorded from this habitat and has a State Conservation Status of Rare. Peregrine Falcons were also recorded during the February 2007 survey. Two species were not recorded during the February 2007 survey (Eurasian Skylark, *Alauda arvensis* and Brown Falcon, *Falco berigora*).

Four species of reptile were recorded from the *Austrostipa blackii* Open Tussock Grassland, none of which have Conservation Status. Two species were not recorded during the February 2007 survey (Bougainville's Skink, *Lerista bougainvilli*; and Little Whip Snake, *Suta flagellum*).

# Other habitats visited during the Spring Survey

A number of other habitats within the site were visited during the Spring Survey (*eg Eucalyptus leucoxylon* Woodland, *Allocasuarina* Woodland and Mallee) and these results are described below.

Two species of native mammal were recorded from these other habitats (Western Grey Kangaroo, *Macropus fuliginosus* and Euro, *Macropus robustus*) (Table 2). Exotic mammal species encountered were the Brown Hare (\**Lepus capensis*) and the Rabbit (\**Oryctolagus cuniculus*). Both species were in low abundance. A number of large warrens remain open on the site, but they are used by a number of native fauna species as refuge (eg the sleepy lizard).

A total of 21 species of bird were recorded from these habitats (Table 3). Two species with Conservation Status were recorded. The Rainbow Bee-eater (*Merops ornatus*), listed as a Marine Migratory species under the Japan Australia Migratory Bird Agreement (JAMBA) is therefore protected under the EPBC Act. It was recorded from *Eucalyptus leucoxylon* Woodland and *Allocasuarina* Woodland. During the February 2007 survey this species was recorded from *Eucalyptus odorata* Woodland and Mallee. The Diamond Firetail has a State Conservation Status of Vulnerable and was recorded from *Allocasuarina* Woodland and *Eucalyptus odorata* Woodland. During the February 2007 survey this species was recorded from *Eucalyptus odorata* Woodland. Black-faced Woodswallow (*Artamus cinereus*) is a new record for the State Biological Database from this general area. Eight species observed were not recorded during the February 2007 survey (Eurasian Skylark, \**Alauda arvensis*; Richard's Pipit, *Anthus novaeseelandiae*; Horsfield's Bronze-cuckoo, *Chrysococcyx basalis*; Rock Dove, \**Columba livia*; Black-faced Cuckoo-shrike, *Coracina novaehollandiae*; House Sparrow, \**Passer domesticus*; Red-rumped Parrot, *Psephotus haematonotus*; and Grey Fantail, *Rhipidura albiscarpa*).

Three species of amphibians and four species of reptile were recorded from these habitats (Table 4), none of which have Conservation Status. The amphibians were all associated with a *Juncus acutus* Wetland. The amphibians and two species of reptile (Bougainville's Skink, *Lerista bougainvillii*; and Little Whip Snake, *Suta flagellum*) were not recorded during the February 2007 survey.

Table 2. Mammals recorded during Kanmantoo Spring Survey

|                                     |                            |                                    |                                           |                                               |                                   | mannar rype                                     | ı y pe                  |                            |                          |           |                              | Status |
|-------------------------------------|----------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------|-------------------------------------------------|-------------------------|----------------------------|--------------------------|-----------|------------------------------|--------|
| Common Name                         | Scientific Name            | Eucalypius odorata<br>Low Woodland | Lomandra effusa<br>Open Tussock Grassland | Austrostipa blackii<br>Open Tussock Grassland | Eucalyptus leucoxylon<br>Woodland | Eucalypius leucoxylon,<br>Allocasuarina, Acacia | oninauarina<br>Woodland | Mallee<br>Acacia pycnantha | Metland<br>Juncus acutus | Crassland | Filled area with limited veg | SOV    |
| Western Grey Kangaroo               |                            |                                    |                                           |                                               |                                   |                                                 |                         | 9                          |                          |           |                              |        |
| Euro                                |                            | 2                                  | 2                                         |                                               |                                   |                                                 |                         |                            |                          |           |                              |        |
| Common Brushtail Possum Trichosurus | ssum Trichosurus vulpecula | 5                                  |                                           |                                               |                                   |                                                 |                         |                            |                          |           |                              |        |
| Brown Hare                          | Lepus capensis             | 2                                  |                                           |                                               | 2                                 |                                                 |                         | 2                          |                          |           |                              |        |
| * Rabbit                            | Oryctolagus cuniculus      | _                                  |                                           |                                               |                                   |                                                 |                         |                            |                          | -         |                              |        |

Table 3. Birds recorded during Kanmantoo Spring Survey

| Common Name Scientific Scientific Name Scientific Scientific Name Scientific |   |                           |                            |    |   |   |   | Habitat Type | Type |       |                 |   |   | ටී | Conservation<br>Status | ā   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------|----------------------------|----|---|---|---|--------------|------|-------|-----------------|---|---|----|------------------------|-----|
| Yellow-numped Thornbill         Acauthiza chrysorrhoa         1         2           Eurasian Skylark         Atunda arvensis         2         2           Bichard's Pipit         Anthus novaeselandiae         2         2           B Kichard's Pipit         Artunus circus         1         4         4           Dusky Woodswallow         Artunus circus         1         4         5           Dusky Woodswallow         Artunus circus         2         5           Galah         Cacatua songuinea         1         5           Eutre Corella         Cacatua songuinea         1         5           Horsfields Bronze-cuckoo         Chardelis cardulis         4         5           Horsfields Bronze-cuckoo         Chinacteris picumus         4         5           Grey Shrike-thrush         Colluricincla harmonica         4         8         1           Grey Shrike-thrush         Colluricincla harmonica         1         1         1           Grey Shrike-thrush         Colluricincla harmonica         4         8         8         1           White-winged Chough         Corcorax melanorhamphos         4         8         1         1           Varied Sittella         Elana axillaria         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Common Name               | Scientific Name            |    |   |   |   |              |      | Майее | мітьпэуд різьэА |   |   |    | VS                     | VO. |
| Eurasian Skylark         Alauda arvensis         2           Richard's Pipit         Anthus novaeseelandiae         1           Bischard's Pipit         Arminus cineratis         1           Dusky Woodswallow         Arramus cyanopterus         1           Galah         Cacatua roseicapilla         22           Little Corella         Cacatua singuinea         1           Little Corella         Cacatua singuinea         1           Little Corella         Cacatua singuinea         1           Little Corella         Cardua singuinea         4           Horsicela S Bronze-cuckoo         Chance singuinea         1           Grey Shrike-thrush         Columbal ivia         1           Grey Shrike-thrush         Columbal ivia         1           Rock Bove         Columbal ivia         1           Nhite-winged Chough         Columbal ivia         1           White-winged Chough         Corerax melanorhamphos         4           Varied Sittella         Daphoenositra chrysoptera         2           Varied Sittella         Falco perigora         1           Black-shouldered Kite         Falco perigora         2           Nankeen Kestrel         Falco perigora         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Yellow-rumped Thornbill   | Acanthiza chrysorrhoa      | 1  |   |   |   |              |      | 2     |                 |   |   |    |                        |     |
| Richard's Pipit         Anthus novaeseelandiae         1           Black-faced Woodswallow         Aramus cinereus         1           Dusky Woodswallow         Aramus cyanopterus         1           Dusky Woodswallow         Aramus cyanopterus         1           Dalah         Cacatua roseicapilla         22           Little Corella         Cacatua sanguinea         1           European Goldfinch         Carduelis carduelis         5           Horsfield's Bronze-cuckoo         Chryscoccyx basalis         4           Horsfield's Bronze-cuckoo         Chryscoccyx basalis         4           Grey Shrike-thrush         Collumba livia         1           Rock Dove         Collumba livia         1           Rock Dove         Columba livia         8           White-Ained Chough         Corcorax melanorhamphos         4           White-Sitella         Daphoenositat chrysoptera         2           Varied Sitella         Daphoenositat chrysoptera         2           Nankeen Kestrel         Falco berigora         5           Nankeen Kestrel         Falco peregrinus         5           Peregrine Falcon         Falco peregrinus         5           Australian Magpie         Gymnorhina tibicen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * | Eurasian Skylark          | Alauda arvensis            |    |   | 2 |   |              |      |       |                 |   |   | 2  |                        |     |
| Black-faced Woodswallow         Artamus cinereus         4           Dusky Woodswallow         Artamus cyanopterus         1         4           Dusky Woodswallow         Artamus cyanopterus         1         4           Cadal         Cacatua roseicapilla         22         5           Little Corella         Cacatua roseicapilla         2         5           Horsfield's Bronze-cuckoo         Christocecyx basalis         4         5           Horsfield's Bronze-cuckoo         Chinacteris picumuus         4         1           Grey Shrike-thrush         Colluricincla harmonica         1         1           Rock Dove         Columba livia         8         1           Black Shrike-thrush         Columba livia         8         1           White-winged Cuckoo-shrike         Columba livia         8         8           White-winged Cuckoo-shrike         Corcura melanorhamphos         4         8         9           Varied Sittella         Daphoenositta chrysoptera         2         1         1           Waried Sittella         Falco berigora         1         8         9           Brown Falcon         Falco berigora         1         1         1           Brown Falcon         Fal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Richard's Pipit           | Anthus novaeseelandiae     |    |   |   |   |              |      |       |                 |   |   |    |                        |     |
| Dusky Woodswallow         Artamus cyanopterus         1         1           Galah         Cacatua roseicapilla         22         5           Little Corella         Cacatua sanguinea         1         5           Little Corella         Cacatua sanguinea         1         5           Horsfield Shorace-cuckoo         Chrysococyx basalis         4         1           Horsfield's Bronze-cuckoo         Chrysococyx basalis         1         1           Brown Treecreeper         Cilmacteris picumnus         4         1         1           Rock Dove         Colluricincla harmonica         1         1         1           Back-Baced Cuckoo-shrike         Columba livia         8         1         1           White-winged Chough         Corocaina novaehollandiae         4         8         8         1           White-winged Chough         Corocaina delivoratia chrysoptera         2         8         1           Waixel Sittella         Falco berigora         1         1         1           Nankeen Kestrel         Falco perginus         5         2         2           Pregrine Falcon         Falco perginus         5         3         4           Welcomes Swallow         Hirrundo neoxena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Black-faced Woodswallow   | Artamus cinereus           |    |   |   |   | 4            |      |       |                 |   |   |    |                        |     |
| Galah         Cacatua songuinea         1           Little Corella         Cacatua sanguinea         1           European Goldfinch         Carduelis carduelis         5           Horsfield's Bronze-cuckoo         Chrysococcyx basalis         4           Brown Treereeper         Climacteris picumus         4           Grey Shrike-thrush         Colluricincla harmonica         1           Rock Dove         Columba Ilvia         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1           White-winged Chough         Corcorax melanorhamphos         4         8           Varied Sittella         Daphoenositra chrysoptera         2         3           Back-shouldered Kite         Elanus axillaris         1         3           Brown Falcon         Falco berigora         1         3           Peregrine Falcon         Falco peregrinus         5         3           Australian Magpie         Gymnorhina thibicen         5         3           Welcome Swallow         Hirundo neoxena         5         2           White-plumed Honeyeater         Lichenostonus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Dusky Woodswallow         | Artamus cyanopterus        | 1  |   |   | _ |              |      |       |                 |   |   |    |                        |     |
| Little Corella         Cacatua sanguinea         1           European Goldfinch         Carduelis carduelis         5           Horsfield's Bronze-cuckoo         Chrysococcyx basalis         1           Brown Treecreeper         Climacteris picumunis         4         1           Grey Shrike-thrush         Colluricined harmonica         1         1           Rock Dove         Colluricined harmonica         1         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1         1           White-winged Chough         Corcorax melanorhamphos         4         8         1           White-winged Chough         Corcorax melanorhamphos         4         8         1           Varied Sittella         Daphoenosita chrysoptera         2         8         2           Black-shouldered Kite         Elanus axillaris         1         8         2           Brown Falcon         Falco berigora         1         2         2           Brown Falcon         Falco cenchroides         1         3         2           Peregine Falcon         Falco cenchroides         2         3         3           Australian Magpie         Gymnorhina tibicen         5         4         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Galah                     | Cacatua roseicapilla       | 22 |   |   |   |              |      |       |                 |   |   |    |                        |     |
| European Goldfinch         Carduelis carduelis         5           Horsfield's Bronze-cuckoo         Chrysococcyx basalis         1           Brown Treecreeper         Climacteris picumuus         4           Grey Shrike-thrush         Colluricincla harmonica         1           Grey Shrike-thrush         Colluricincla harmonica         1           Rock Dove         Colluricincla harmonica         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1           White-winged Chough         Corrorax melanorhamphos         4           Varied Sittella         Daphoenosita chrysoptera         2           Black-shouldered Kite         Falco berigora         1           Brown Falcon         Falco berigora         1           Nankeen Kestrel         Falco peregrinus         2           Peregrine Falcon         Falco peregrinus         5           Australian Magpie         Gymnorhina tibicen         5           Welcome Swallow         Hirundo neoxena         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Little Corella            | Cacatua sanguinea          | _  |   |   |   |              |      |       |                 |   |   |    |                        |     |
| Horsfield's Bronze-cuckoo         Chrysococcyx basalis         1           Brown Treecreeper         Climacteris picumnus         4           Grey Shrike-thrush         Colluricincla harmonica         1           Rock Dove         Columba livia         1           Black-faced Cuckoo-shrike         Cororax melanorhamphos         4         8         1           White-winged Chough         Corcorax melanorhamphos         4         8         1           Varied Sitella         Daphoenositra chrysoptera         2         2           Brown Falcon         Falco berigora         1         2           Brown Falcon         Falco bergrinus         3         3           Peregrine Falcon         Falco peregrinus         5         3           Australian Magpie         Gymnorhina tibicen         5         2           Welcome Swallow         Hirundo neoxena         5         2           White-plumed Honeyeater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * | European Goldfinch        | Carduelis carduelis        |    |   |   |   |              |      |       |                 |   | 5 |    |                        |     |
| Brown Treecreeper         Climacteris picumnus         4           Grey Shrike-thrush         Collunicincla harmonica         1           Rock Dove         Columba livia         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1           White-winged Chough         Corcorax melanorhamphos         4           Varied Sittella         Back-shouldered Kite         Elanus axillaris           Black-shouldered Kite         Elanus axillaris         1           Brown Falcon         Falco berigora         1           Nankeen Kestrel         Falco peregrinus         2           Peregrine Falcon         Falco peregrinus         5           Australian Magpie         Gymnorhina tibicen         5           Welcome Swallow         Hirundo neoxena         5           White-plumed Honeyeater         Lichenostomus penicillatus         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Horsfield's Bronze-cuckoo | Chrysococcyx basalis       |    |   |   |   |              |      |       |                 | 1 |   |    |                        |     |
| Grey Shrike-thrush         Colluricincla harmonica         1           Rock Dove         Columba livia         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1           White-winged Chough         Corcorax melanorhamphos         4           Varied Sittella         Daphoenositra chrysoptera         2           Black-shouldered Kite         Elanus axillaris         1           Brown Falcon         Falco berigora         1           Nankeen Kestrel         Falco cenchroides         1           Peregrine Falcon         Falco peregrinus         3           Australian Magpie         Gymnorhina tibicen         5           Welcome Swallow         Hirundo neoxena         5           White-plumed Honeyeater         Lichenostomus penicillatus         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Brown Treecreeper         | Climacteris picumnus       | 4  |   |   |   |              |      |       |                 |   |   |    |                        |     |
| Rock Dove         Columba livia         1           Black-faced Cuckoo-shrike         Coracina novaehollandiae         1         1           White-winged Chough         Corcorax melanorhamphos         4         8         1           White-winged Chough         Corcorax melanorhamphos         4         8         1           Varied Sittella         Daphoenosita chrysoptera         2         8           Black-shouldered Kite         Elanus axillaris         1         8           Brown Falcon         Falco berigora         1         3           Nankeen Kestrel         Falco peregrinus         2         8           Peregrine Falcon         Falco peregrinus         5         8           Australian Magpie         Gymnorhina tibicen         5         8           Welcome Swallow         Hirundo neoxena         5         8           White-plumed Honeyeater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Grey Shrike-thrush        | Colluricincla harmonica    |    |   |   |   |              |      | 1     |                 |   |   |    |                        |     |
| coo-shrike         Coracina novaehollandiae         1           tough         Corcorax melanorhamphos         4         8           Daphoenosita chrysoptera         2         8           I Kite         Elanus axillaris         1         8           I Kite         Elanus axillaris         1         3           Falco berigora         1         3           Falco peregrinus         2         3           ie         Gymnorhina tibicen         5         8           w         Hirundo neoxena         5         9           w         Hirundo neoxena         5         9           pueseater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * | Rock Dove                 | Columba livia              |    |   |   |   |              |      |       |                 |   | 1 |    |                        |     |
| tough         Corcorax melanorhamphos         4         8           Daphoenosita chrysoptera         2         8           IKite         Elams axillaris         1         8           Falco berigora         1         3           Falco cenchroides         1         3           Falco peregrinus         2         3           ie         Gymnorhina tibicen         5         8           w         Hirundo neoxena         5         8           w         Hirundo neoxena         5         8           neweater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Black-faced Cuckoo-shrike | Coracina novaehollandiae   |    | - |   |   |              |      |       |                 |   |   | 1  |                        |     |
| Kite         Elanus axillaris         1           Falco berigora         1         3           Falco peregrinus         2         3           ie         Gymnorhina tibicen         5         6           w         Hirundo neoxena         5         6           neweater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | White-winged Chough       | Corcorax melanorhamphos    | 4  |   |   |   | 8            |      |       |                 |   |   |    |                        |     |
| Kite         Elanus axillaris         1           Falco berigora         1         3           Falco cenchroides         1         3           ie         Gymnorhina tibicen         5         6           w         Hirundo neoxena         5         6           w         Hirundo neoxena         5         6           neweater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Varied Sittella           | Daphoenositta chrysoptera  | 2  |   |   |   |              |      |       |                 |   |   |    |                        |     |
| Falco berigora         1         3           Falco cenchroides         1         3           Falco peregrinus         2         5           ie         Gymnorhina tibicen         5         5           w         Hirundo neoxena         5         5           nneyeater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Black-shouldered Kite     | Elanus axillaris           |    | 1 |   |   |              |      |       |                 |   |   |    |                        |     |
| Falco cenchroides         1         3           Falco peregrinus         2         5           ie         Gymnorhina tibicen         5         5           w         Hirundo neoxena         5         5           nneyeater         Lichenostomus penicillatus         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Brown Falcon              | Falco berigora             |    |   | - |   |              |      |       |                 |   |   |    |                        |     |
| Falco peregrinus2ieGymnorhina tibicen5wHirundo neoxena5oneyeaterLichenostomus penicillatus1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Nankeen Kestrel           | Falco cenchroides          |    | _ |   |   |              |      |       |                 |   |   | 3  |                        |     |
| ie Gymnorhina tibicen 5  w Hirundo neoxena 5  oneyeater Lichenostomus penicillatus 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Peregrine Falcon          | Falco peregrinus           |    |   | 7 |   |              |      |       |                 |   |   |    | R                      |     |
| Hirundo neoxena 5 eyeater Lichenostomus penicillatus 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Australian Magpie         | Gymnorhina tibicen         |    |   | 2 |   |              |      |       |                 |   |   |    |                        |     |
| Lichenostomus penicillatus 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Welcome Swallow           | Hirundo neoxena            |    | 2 |   |   |              |      |       |                 |   |   |    |                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | White-plumed Honeyeater   | Lichenostomus penicillatus | 1  |   |   | 7 |              |      |       |                 |   |   |    |                        |     |

|   |                         |                           |                                    |                                           |                                               |                                   | Habitat Type                                    | Type                      |                           |               |                      |                              | Conservation<br>Status | on |
|---|-------------------------|---------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------|-------------------------------------------------|---------------------------|---------------------------|---------------|----------------------|------------------------------|------------------------|----|
|   | Common Name             | Scientific Name           | Eucalypius odoraia<br>Low Woodland | Lomandra effusa<br>Open Tussock Grassland | Austrostipa blackii<br>Open Tussock Grassland | Eucalyptus leucoxylon<br>Woodland | Eucalyptus leucoxylon,<br>Allocasuarina, Acacia | nirausasoulA<br>banalbooW | ээШгМ<br>Асасіа руспапіћа | sninon suonul | Wetland<br>Grassland | Filled area with limited veg | SOV                    | VS |
|   | Singing Honeyeater      | Lichenostomus virescens   | 1                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      | 1                            |                        |    |
|   | Brown-headed Honeyeater | Melithreptus brevirostris | -                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Rainbow Bee-eater       | Merops ornatus            |                                    |                                           |                                               | 2                                 |                                                 | 4                         |                           |               |                      |                              | JAMBA                  |    |
|   | Black Kite              | Milvus migrans            | -                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Southern Boobook        | Ninox novaeseelandiae     | ×                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Rufous Whistler         | Pachycephala rufiventris  | æ                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Striated Pardalote      | Pardalotus striatus       | 2                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
| * | House Sparrow           | Passer domesticus         |                                    |                                           |                                               |                                   |                                                 |                           |                           |               | _                    |                              |                        |    |
|   | Fairy Martin            | Petrochelidon ariel       |                                    | 20                                        |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Adelaide Rosella        | Platycercus elegans       | 9                                  |                                           |                                               |                                   |                                                 |                           | 2                         |               |                      |                              |                        |    |
|   | Red-rumped Parrot       | Psephotus haematonotus    | ж                                  |                                           |                                               |                                   | _                                               |                           |                           |               |                      |                              |                        |    |
|   | Grey Fantail            | Rhipidura albiscapa       |                                    |                                           |                                               |                                   |                                                 |                           | T                         |               |                      |                              |                        |    |
|   | Willie Wagtail          | Rhipidura leucophrys      |                                    |                                           | 2                                             |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Weebill                 | Smicrornis brevirostris   | 4                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |
|   | Diamond Firetail        | Stagonopleura guttata     | S                                  |                                           |                                               |                                   |                                                 | 4                         |                           |               |                      |                              |                        | >  |
| * | Common Starling         | Sturnus vulgaris          | 1                                  |                                           |                                               |                                   |                                                 |                           |                           |               |                      |                              |                        |    |

 $AUS: National\ Conservation\ Rating\ (EPBC\ Act), JAMBA = Japan\ Australia\ Migratory\ Bird\ Agreement SA: State\ Conservation\ rating\ (NPW\ Act),\ R = Rare,\ V = Vulnerable$ 

Table 4. Amphibians and Reptiles recorded during Kanmantoo Spring Survey

|   |                              |                            |                                    |                                           |                                               | 1                    | Habitat Type                                    | ype                                        |                           |                          |           |                              | Conservation<br>Status | vation<br>tus |
|---|------------------------------|----------------------------|------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------|-------------------------------------------------|--------------------------------------------|---------------------------|--------------------------|-----------|------------------------------|------------------------|---------------|
|   | Common Name                  | Scientific Name            | Eucalypius odoraia<br>Low Woodland | Lomandra effusa<br>Open Tussock Grassland | Austrostipa blackii<br>Open Tussock Grassland | Koodland<br>Woodland | Eucalypius leucoxylon,<br>Allocasuarina, Acacia | harisususususususususususususususususususu | ээШэ.<br>Асасіа руспапіћа | Juneus acutus<br>Wetland | Grassland | Filled area with limited veg | SAV                    | VS            |
|   | Eastern Sign Bearing Froglet | Crinia parinsignifera      |                                    |                                           |                                               |                      |                                                 |                                            |                           | X                        |           |                              |                        |               |
| * | Common Froglet               | Crinia signifera           |                                    |                                           |                                               |                      |                                                 |                                            |                           | ×                        |           |                              |                        |               |
|   | Spotted Grass Frog           | Limnodynastes tasmaniensis |                                    |                                           |                                               |                      |                                                 |                                            |                           | ×                        |           |                              |                        |               |
|   | Marbled Gecko                | Christinus marmoratus      |                                    |                                           |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
|   | Tawny Dragon                 | Ctenophorus decresii       | 7                                  |                                           |                                               |                      | 33                                              |                                            | T                         |                          |           |                              |                        |               |
|   | Eastern Striped Skink        | Ctenotus robustus          |                                    | _                                         |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
|   | Olive Snake-lizard           | Delma inornata             |                                    | 2                                         |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        | R             |
| * | Tree Dtella                  | Gehyra "2n=44"             | _                                  |                                           |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
|   | Bougainville's Skink         | Lerista bougainvillii      |                                    |                                           | 1                                             |                      |                                                 |                                            | 1                         |                          |           |                              |                        |               |
|   | Dwarf Skink                  | Menetia greyii             | 3                                  |                                           |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
|   | Barking Gecko                | Nephrurus milii            |                                    |                                           | $\epsilon$                                    |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
| * | Little Whip Snake            | Suta flagellum             |                                    | 2                                         | 1                                             |                      |                                                 |                                            | 1                         |                          |           |                              |                        |               |
|   | Sleepy Lizard                | Tiliqua rugosa             | 1                                  | 7                                         | 3                                             |                      |                                                 |                                            |                           |                          |           |                              |                        |               |
|   | Eastern Bluetongue           | Tiliqua scincoides         | 1                                  |                                           |                                               |                      |                                                 |                                            |                           |                          |           |                              |                        |               |

\* = exotic, X = heard

SA: State Conservation rating (NPW Act), R = Rare

#### 3.1 Overview

The Spring Survey provided information about additional fauna species known to occur in the project area and confirmed the continued presence of most species recorded during the previous survey in February 2007.

The Spring Survey recorded a total of five species of mammal, thirty-eight species of bird, three species of amphibian and eleven species of reptile. Very few Eucalypts were flowering at the time of the survey. When they are flowering, a higher diversity and abundance of birds could be expected, especially honeyeaters and insectivores. Although there was an abundance of grasses in seed, very few granivorous birds were observed.

One species of National Conservation Significance was recorded:

• Rainbow Bee-eater (*Merops ornatus*) (Listing under JAMBA and therefore EPBC). This species was also recorded during the February 2007 survey.

Three species of State Conservation Significance were recorded:

- Peregrine Falcon (*Falco peregrinus*), Rare in South Australia. This species was also recorded during the February 2007 survey and is resident at the site.
- Diamond Firetail (*Stagonopleura guttata*), Vulnerable in South Australia. Flocks of four and five birds were observed during the survey. This species was also recorded during the February 2007 survey.
- Olive Snake-lizard (*Delma inornata*), Rare in South Australia. Two specimens were collected in pitfalls in the *Lomandra effusa* Open Tussock Grassland (A sloughed skin of a *Delma* species was collected during the February 2007 survey in *Austrostipa* Open Tussock Grassland but there was insufficient material to identify it to species).

The continuing presence of the Peregrine Falcon and Diamond Firetail at the Kanmantoo Copper Mine site verifies that these species are permanent residents in the area. The presence of the Rainbow Bee-eaters as pairs in early spring also suggests that this species uses the site for breeding.

Multiple captures of species new to the area (eg Olive Snake-lizard *Delma inornata* and Little Whip Snake *Suta flagellum*), confirms the importance of repeat surveys in a year to capture animals during transient activity periods. The absence of the Eastern Spotted Ctenotus *Ctenotus orientalis* in the second survey, which was captured in the first survey, supports this need.

In this survey water was present in the creek flowing south out of the site, and the dam was full. Three different frog calls were evident in the reeds and along the edge of this dam: Eastern Sign Bearing Froglet *Crinia parinsignifera*, Common Froglet *Crinia signifera*, and Spotted Grass Frog *Limnodynastes tasmaniensis*. None of these species have significant conservation ratings.

As with the survey in February, five reptile species previously recorded and common to the area (BDBSA) were not found (*Christinus marmoratus*, *Hemiergis decresiensis*, *Pogona barbarta*, *Pseudonaja textiles* and *Morethia boulengeri*). Anecdotally (pers. com: J. Popow, Hillgrove Resources Ltd. 12/02/2007) the Eastern Brown Snake *Pseudonaja textiles* is known to occur in reasonable numbers across the site. Despite extensive searches both during this, and the previous survey this species was not observed. The regionally common skink *Lerista bougainvillii* was captured for the first time in the spring survey.

For a habitat fragment of this size in the southern Mount Lofty Ranges the species count of reptiles in this survey was relatively good (Sacchi 2003), suggesting the outcome of the combined surveys was sufficient to determine the presence of a majority of the reptile species in the area.

Following on from the survey in summer ten additional bird species were observed in spring (Appendix A). Three of these species were new records for the area: *Artamis cinereus* Black-faced Wood Swallow, *Milvus migrans* Black Kite, and *Ninox novaeseelandiae* Southern Boobook. Of the rest, two were exotics *Sturnus vulgaris* Common Starling and *Alauda arvensis* Eurasian Skylark. None of the new species have significant conservation ratings. Honeyeaters were again in low abundance during this survey and again no eucalypts or wattles were in flower. In a regional context, the role that this remnant patch plays for Honeyeaters during the flowering period is still not determined.

It is of note that, unlike the previous survey, no House Mice (\*Mus musculus) or Foxes (\*Vulpes vulpes) were recorded during the Spring Survey. Following a recommendation made in the February Fauna Survey report, Hillgrove Resources Pty Ltd commenced a fox-baiting program (Marty Adams, Pers Com. 06/06/2007), which appears to have significantly reduced the fox population in the area. House Mouse populations generally decline in cold weather over winter, when reproductive rates are low (Singleton et al. 2001).

# 3.2 Species of Management Concern

In the Fauna Baseline Survey and Impact Assessment of the Kanmantoo project (Ecological Associates, August 2007) management concerns for four species were documented:

- Diamond Firetail (Stagonopleura guttata), State Conservation Status, Vulnerable;
- Peregrine Falcon (Falco peregrinus), State Conservation Status, Rare;
- Rainbow Bee-eater (Merops ornatus), National Conservation Status, JAMBA; and
- Common Brushtail Possum (*Trichosurus vulpecula*), Nominated for listing as State Rare.

The significance of these species at the site is discussed in the Baseline Survey Report (Ecological Associates 2007).

The Spring Survey recorded the continued presence of each of these species at the site. One additional species of Conservation Status, the Olive Snake-lizard (*Delma inornata*) was collected during the Spring Survey from Lomandra effusa Open Tussock Grassland and is a species of management concern.

Olive Snake-lizard (Delma inornata) - Rare in South Australia

### **Reasons for listing**

The Olive Snake-lizards are widespread across eastern Australia between SE Queensland and SE South Australia. The animals at Kanmantoo are part of an isolated population in the Mount Lofty Ranges. The only other records for South Australia are to the south-east of Bordertown at the western edge of the main area of distribution in Victoria and New South Wales.

Within South Australia the Olive Snake-lizard currently has a Rare conservation rating under the National Parks and Wildlife Act 1972 (Schedule 9), but has been proposed for relisting as Near Threatened in a 2003 review of

threatened species status (National Parks and Wildlife Council and Department of Environment and Heritage 2003). The Near Threatened classification means that: assessment against the criteria indicates that the taxon is close to qualifying as Critically Endangered, Endangered or Vulnerable (IUCN, 2001). Within South Australia the Olive Snake-lizard has a restricted distribution and this distribution does not lie within existing protected areas.

#### **Relevant Behavioural Ecology**

The Olive Snake-lizard (*Delma inornata*) is a species of legless lizard. Knowledge of the behavioural ecology of this secretive species is limited. They are active during the day in summer, but in winter the animal can shelter deep beneath the surface. The species occurs in grasslands, open forests and on rocky outcrops. It prefers structurally simple microhabitats and is more likely to be found at sites with no tree cover (Fischer et al. 2004). The species is known to withstand moderate levels of disturbance from grazing (ie introduction of some weeds, fertilizers and soil compaction) as long as a sufficient number of half-buried rocks and logs are available as a shelter site (Fischer et al. 2004). Consequently the species also occurs in farmlands and grazing lands. *Lomandra effusa* tussocks provide ideal microhabitat for this species. They are known to also shelter under metal, woody debris, and rocks.

The species is known to eat a variety of invertebrates. The predominant prey classes are spiders, cockroaches, grasshoppers, and lepidopteran adults.

#### **Threat Assessment and Mitigation**

Proposed clearance of high quality *Lomandra effusa* grassland at the Kanmantoo Copper Project site will directly impact on the existing population of the Olive Snake-lizards *Delma inornata*. The tendency of the species to be active in the summer months, and to enter into extended periods of inactivity in deep refuge at other times, reduces the range of options available to mitigate the impact of habitat clearance. Trapping over the summer period and subsequent translocation may be possible. It is unknown how successfully this species will respond to translocation.

The monitoring and relocation of the Olive Snake-lizards (*Delma inornata*), prior to clearance provides an excellent opportunity to collect further data on this species. It would be possible to collect detailed data on, for example population demographics, morphometrics, and habitat associations at Kanmantoo. Subsequently the captured individuals could be radio tracked upon release at a suitable site and their subsequent behaviour and survival monitored. Properly constructed such a study could constitute a valid Honours project within a tertiary Biodiversity and Conservation, or Environmental Studies program. The data collected would be an invaluable resource, providing the opportunity for publication of much needed information in this subject area.

- Ecological Associates. 2007. Kanmantoo Copper Project: Fauna Baseline Survey and Impact Assessment. Ecological Associates Pty Ltd, Adelaide SA.
- Fischer, J., D. B. Lindenmayer, and A. Cowling. 2004. The challenge of managing multiple species at multiple scales: reptiles in an Australian grazing landscape. Journal of Applied Ecology **41**:32-44.
- Frith, H. J., editor. 1979. Reader's Digest Complete Book of Australian Birds. Reader's Digest Services Pty Ltd, Surry Hills NSW.
- Kahrimanis, M. J., S. Carruthers, A. Oppermann, and R. Inns. 2001. Biodiversity Plan for the South Australian Murray-Darling Basin. Department for Environment and Heritage, Adelaide South Australia.
- Owens, H. 2000. Guidelines for vertebrate surveys in South Australia using the Biological Survey of South Australia. National Parks and Wildlife SA, Adelaide, South Australia.
- Sacchi, M. P. 2003. The impact of habitat loss and habitat fragmentation on the survival of the herpetofauna in the southern Mount Lofty Ranges, South Australia. University of South Australia, Mawson Lakes, Adelaide.
- Singleton, G., C. J. Krebs, S. Davis, L. Chambers, and P. Brown. 2001. Reproductive changes in fluctuating house mouse populations in south eastern Australia. Proceedings of the Royal Society of London (Series B) **268**:1741-1748.

| 1                                                                                                                                                                                              |                                                                                                                        |                  | Autumn 2007 Ecol |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------|
| SPECIES<br>Acanthagenys rufogularis                                                                                                                                                            | COMMON NAME<br>Spiny-cheeked Honeyeater                                                                                | DEH Records<br>X | Assoc Survey     | Assoc Survey |
| Acanthiza chrysorrhoa                                                                                                                                                                          | Yellow-rumped Thornbill                                                                                                | Х                | Х                | Х            |
| Acanthiza lineata<br>Acanthiza nana                                                                                                                                                            | Striated Thornbill Yellow Thornbill                                                                                    | X                | X                |              |
| Acanthiza reguloides                                                                                                                                                                           | Buff-rumped Thornbill                                                                                                  | x                | ^                |              |
| Acanthorhynchus tenuirostris                                                                                                                                                                   | Eastern Spinebill                                                                                                      | X                |                  |              |
| Accipiter cirrhocephalus Accipiter fasciatus                                                                                                                                                   | Collared Sparrowhawk<br>Brown Goshawk                                                                                  | X                |                  |              |
| Acrocephalus stentoreus                                                                                                                                                                        | Clamorous Reedwarbler                                                                                                  | X                |                  |              |
| Aegotheles cristatus<br>Alauda arvensis                                                                                                                                                        | Australian Owlet-nightjar<br>Eurasian Skylark                                                                          | ×                | X                | X            |
| Anas superciliosa                                                                                                                                                                              | Pacific Black Duck                                                                                                     | x                |                  | ^            |
| Anthochaera carunculata                                                                                                                                                                        | Red Wattlebird                                                                                                         | X                |                  |              |
| Anthochaera chrysoptera Anthus novaeseelandiae                                                                                                                                                 | Little Wattlebird<br>Richard's Pipit                                                                                   | X                |                  | X            |
| Aphelocephala leucopsis                                                                                                                                                                        | Southern Whiteface                                                                                                     | Х                | X                | ^            |
| Aquila audax<br>Artamis cinereus                                                                                                                                                               | Wedge-tailed Eagle<br>Black-faced Wood Swallow                                                                         | X                | X                | X            |
| Artamus cyanopterus                                                                                                                                                                            | Dusky Woodswallow                                                                                                      | X                | Х                | X            |
| Aythya australis                                                                                                                                                                               | Hardhead (White-eyed Duck)                                                                                             | X                |                  |              |
| Cacatua galerita<br>Cacatua roseicapilla                                                                                                                                                       | Sulphur-crested Cockatoo<br>Galah                                                                                      | X                | X                | X            |
| Cacatua sanguinea                                                                                                                                                                              | Little Corella                                                                                                         | X                | ^                | x            |
| Cacomantis flabelliformis                                                                                                                                                                      | Fan-tailed Cuckoo                                                                                                      | X                | X                |              |
| Carduelis carduelis<br>Chenonetta jubata                                                                                                                                                       | European Goldfinch Australian Wood Duck, (Maned Duck)                                                                  | X                | X                |              |
| Cheramoeca leucosternus                                                                                                                                                                        | White-backed Swallow                                                                                                   | Х                |                  |              |
| Chrysococcyx basalis<br>Cincloramphus cruralis                                                                                                                                                 | Horsfield's Bronze-cuckoo<br>Brown Songlark                                                                            | X                |                  | X            |
| Cincloramphus mathewsi                                                                                                                                                                         | Rufous Songlark                                                                                                        | Х                |                  |              |
| Circus assimilis                                                                                                                                                                               | Spotted Harrier                                                                                                        | X                |                  | L.           |
| Climacteris picumnus<br>Colluricincla harmonica                                                                                                                                                | Brown Treecreeper<br>Grey Shrike-thrush                                                                                | X                | Х                | X            |
| Columba livia                                                                                                                                                                                  | Rock Dove                                                                                                              | Х                | ^                | Х            |
| Coracina novaehollandiae                                                                                                                                                                       | Black-faced Cuckoo-shrike                                                                                              | X                |                  | Х            |
| Corcorax melanorhamphos<br>Cormobates leucophaeus                                                                                                                                              | White-winged Chough White-throated Treecreeper                                                                         | X                | Х                | X            |
| Corvus coronoides                                                                                                                                                                              | Australian Raven                                                                                                       | X                |                  |              |
| Corvus mellori<br>Corvus sp.                                                                                                                                                                   | Little Raven                                                                                                           | X                | Х                | X            |
| Coturnix pectoralis                                                                                                                                                                            | Stubble Quail                                                                                                          | Х                |                  |              |
| Dacelo novaeguineae                                                                                                                                                                            | Laughing Kookaburra<br>Varied Sittella                                                                                 | X                |                  | V            |
| Daphoenositta chrysoptera Dicaeum hirundinaceum                                                                                                                                                | Varied Sittella<br>Mistletoebird                                                                                       | X                |                  | X            |
| Egretta novaehollandiae                                                                                                                                                                        | White-faced Heron                                                                                                      | Х                |                  |              |
| Elanus axillaris<br>Epthianura albifrons                                                                                                                                                       | Black-shouldered Kite White-fronted Chat                                                                               | X                | Х                | X            |
| Falco berigora                                                                                                                                                                                 | Brown Falcon                                                                                                           | x                |                  | х            |
| Falco cenchroides                                                                                                                                                                              | Nankeen Kestrel                                                                                                        | X                | X                | Х            |
| Falco longipennis<br>Falco peregrinus                                                                                                                                                          | Australian Hobby Peregrine Falcon                                                                                      | X                | X                | X            |
| Falco subniger                                                                                                                                                                                 | Black Falcon                                                                                                           | X                | ~                |              |
| Fulica atra                                                                                                                                                                                    | Eurasian Coot                                                                                                          | X                |                  |              |
| Gallinula tenebrosa<br>Geopelia placida                                                                                                                                                        | Dusky Moorhen Peaceful Dove                                                                                            | X                |                  |              |
| Glossopsitta concinna                                                                                                                                                                          | Musk Lorikeet                                                                                                          | X                |                  |              |
| Glossopsitta porphyrocephala<br>Grallina cyanoleuca                                                                                                                                            | Purple-crowned Lorikeet<br>Magpie-lark                                                                                 | X                | X                |              |
| Gymnorhina tibicen                                                                                                                                                                             | Australian Magpie                                                                                                      | X                | X                | х            |
| Hirundo neoxena                                                                                                                                                                                | Welcome Swallow                                                                                                        | X                | Х                | X            |
| Lichenostomus chrysops<br>Lichenostomus penicillatus                                                                                                                                           | Yellow-faced Honeyeater White-plumed Honeyeater                                                                        | X                | Х                | x            |
| Lichenostomus virescens                                                                                                                                                                        | Singing Honeyeater                                                                                                     | X                | X                | X            |
| Malurus cyaneus<br>Malurus lamberti                                                                                                                                                            | Superb Fairy-wren Variegated Fairy-wren                                                                                | X                |                  |              |
| Manorina melanocephala                                                                                                                                                                         | Noisy Miner                                                                                                            | Х                | Х                |              |
| Melithreptus brevirostris                                                                                                                                                                      | Brown-headed Honeyeater                                                                                                | X                | Х                |              |
| Melithreptus lunatus<br>Melopsittacus undulatus                                                                                                                                                | White-naped Honeyeater Budgerigar                                                                                      | X                |                  |              |
| Merops ornatus                                                                                                                                                                                 | Rainbow Bee-eater                                                                                                      | Х                | X                | х            |
| Microeca fascinans<br>Milvus migrans                                                                                                                                                           | Jacky Winter<br>Black Kite                                                                                             | X                |                  | x            |
| Mirafra javanica                                                                                                                                                                               | Horsfield's Bushlark                                                                                                   | x                |                  | ^            |
| Myiagra inquieta                                                                                                                                                                               | Restless Flycatcher                                                                                                    | X                |                  |              |
| Neochmia temporalis<br>Ninox novaeseelandiae                                                                                                                                                   | Red-browed Finch<br>Southern Boobook                                                                                   | X                |                  | x            |
| Nymphicus hollandicus                                                                                                                                                                          | Cockatiel                                                                                                              | X                |                  |              |
| Ocyphaps lophotes Oreoica gutturalis                                                                                                                                                           | Crested Pigeon Crested Bellbird                                                                                        | X                | Х                |              |
| Pachycephala pectoralis                                                                                                                                                                        | Golden Whistler                                                                                                        | Х                |                  |              |
| Pachycephala rufiventris                                                                                                                                                                       | Rufous Whistler                                                                                                        | Х                | Х                | Х            |
| Pardalotus punctatus Pardalotus striatus                                                                                                                                                       | Spotted Pardalote Striated Pardalote                                                                                   | X                | X                | x            |
| Passer domesticus                                                                                                                                                                              | House Sparrow                                                                                                          | Х                |                  | х            |
| Petrochelidon ariel                                                                                                                                                                            | Fairy Martin                                                                                                           | X                |                  | X            |
| Petrochelidon nigricans Petroica goodenovii                                                                                                                                                    | Tree Martin<br>Red-capped Robin                                                                                        | X                |                  |              |
| Phalacrocorax carbo                                                                                                                                                                            | Great Cormorant                                                                                                        | Х                |                  |              |
| Phalacrocorax melanoleucos<br>Phalacrocorax varius                                                                                                                                             | Little Pied Cormorant Pied Cormorant                                                                                   | X                |                  |              |
| Phaps chalcoptera                                                                                                                                                                              | Common Bronzewing                                                                                                      | Х                |                  |              |
| Phylidonyris novaehollandiae                                                                                                                                                                   | New Holland Honeyeater                                                                                                 | X                | Х                |              |
| Phylidonyris pyrrhoptera<br>Platycercus elegans                                                                                                                                                | Crescent Honeyeater Crimson Rosella                                                                                    | X                | Х                | X            |
| Poliocephalus poliocephalus                                                                                                                                                                    | Hoary-headed Grebe                                                                                                     | Х                |                  |              |
| Pomatostomus superciliosus<br>Porphyrio porphyrio                                                                                                                                              | White-browed Babbler Purple Swamphen                                                                                   | X                |                  |              |
| Psephotus haematonotus                                                                                                                                                                         | Red-rumped Parrot                                                                                                      | Х                |                  | x            |
| Rhipidura albiscapa                                                                                                                                                                            | Grey Fantail                                                                                                           | X                |                  | Х            |
| Rhipidura leucophrys<br>Scythrops novaehollandiae                                                                                                                                              | Willie Wagtail Channel-billed Cuckoo                                                                                   | X                | X                | X            |
| Smicromis brevirostris                                                                                                                                                                         | Weebill                                                                                                                | X                | Х                | х            |
|                                                                                                                                                                                                | Diamond Firetail                                                                                                       | X                | Х                | Х            |
| Stagonopleura guttata                                                                                                                                                                          | Grey Currawong                                                                                                         | X                |                  |              |
| Stagonopleura guttata<br>Strepera versicolor                                                                                                                                                   |                                                                                                                        |                  |                  | lv.          |
| Stagonopleura guttata<br>Strepera versicolor<br>Streptopelia chinensis<br>Sturnus vulgaris                                                                                                     | Spotted Turtle-dove<br>Common Starling                                                                                 | Х                | X                | Х            |
| Stagonopleura guttata<br>Strepera versicolor<br>Streptopelia chinensis<br>Sturnus vulgaris<br>Tachybaptus novaehollandiae                                                                      | Spotted Turtle-dove<br>Common Starling<br>Australasian Grebe, (Little Grebe)                                           | X<br>X           | Х                | X            |
| Stagonopleura guttata<br>Strepera versicolor<br>Streptopelia chinensis<br>Sturnus vulgaris                                                                                                     | Spotted Turtle-dove Common Starling Australasian Grebe, (Little Grebe) Zebra Finch Rainbow Lorikeet                    | X<br>X<br>X      | X                |              |
| Stagonopleura guttata<br>Streptera versicolor<br>Streptopelia chinensis<br>Sturnus vulgaris<br>Tachybaptus novaehollandiae<br>Taeniopygia guttata<br>Trichoglossus haematodus<br>Turdus merula | Spotted Turtle-dove Common Starling Australasian Grebe, (Little Grebe) Zebra Finch Rainbow Lorikeet Eurasian Blackbird | X<br>X<br>X<br>X | X                | X            |
| Stagonopleura guttata<br>Streptera versicolor<br>Streptopelia chinensis<br>Sturnus vulgaris<br>Tachybaptus novaehollandiae<br>Taeniopygia guttata<br>Trichoglossus haematodus                  | Spotted Turtle-dove Common Starling Australasian Grebe, (Little Grebe) Zebra Finch Rainbow Lorikeet                    | X<br>X<br>X      | X                | X            |

| Ecol Assoc<br>September<br>Survey   |                          | 0                       |                    |                  |                       |                              |                          |                     |                         |                           | 0                |                    |                         |                         | 0                      |                         |                    | 0                       | 0                   |                            |                          | 0                    | 0                 |                           | 0                   |                                    |                         | 0                         |                        |                        |
|-------------------------------------|--------------------------|-------------------------|--------------------|------------------|-----------------------|------------------------------|--------------------------|---------------------|-------------------------|---------------------------|------------------|--------------------|-------------------------|-------------------------|------------------------|-------------------------|--------------------|-------------------------|---------------------|----------------------------|--------------------------|----------------------|-------------------|---------------------------|---------------------|------------------------------------|-------------------------|---------------------------|------------------------|------------------------|
| Ecol<br>Assoc<br>February<br>Survey |                          | 0                       |                    | 0                |                       |                              |                          |                     |                         | 0                         |                  |                    |                         |                         |                        | 0                       | 0                  |                         | 0                   |                            |                          | 0                    |                   |                           | 0                   |                                    |                         |                           |                        |                        |
| Percent of<br>Observations          | 0.00                     | 2.04                    | 2.41               | 0.77             | 1.04                  | 0.86                         | 0.02                     | 0.14                | 60.0                    | 0                         | 60.0             | 0.18               | 3.68                    | 0.02                    | 0.23                   | 0.14                    | 0.18               | 0                       | 0.59                | 0.02                       | 1.04                     | 3.86                 | 0.18              | 60.0                      | 0.54                | 0.5                                | 0.02                    | 0.14                      | 0.02                   | 0.14                   |
| DEH<br>Total<br>Records             | 2                        | 45                      | 53                 | 17               | 23                    | 19                           | _                        | 3                   | 2                       | 0                         | 7                | 4                  | 81                      | _                       | 2                      | 3                       | 4                  | 0                       | 13                  | _                          | 23                       | 82                   | 4                 | 7                         | 12                  | 11                                 | _                       | က                         | <b>~</b>               | က                      |
| COMMON NAME                         | Spiny-cheeked Honeyeater | Yellow-rumped Thornbill | Striated Thornbill | Yellow Thornbill | Buff-rumped Thornbill | Eastern Spinebill            | Collared Sparrowhawk     | Brown Goshawk       | Clamorous Reedwarbler   | Australian Owlet-nightjar | Eurasian Skylark | Pacific Black Duck | Red Wattlebird          | Little Wattlebird       | Richard's Pipit        | Southern Whiteface      | Wedge-tailed Eagle | Black-faced Woodswallow | Dusky Woodswallow   | Hardhead (White-eyed Duck) | Sulphur-crested Cockatoo | Galah                | Little Corella    | Fan-tailed Cuckoo         | European Goldfinch  | Australian Wood Duck, (Maned Duck) | White-backed Swallow    | Horsfield's Bronze-cuckoo | Brown Songlark         | Rufous Songlark        |
| SPECIES                             | Acanthagenys rufogularis | Acanthiza chrysorrhoa   | Acanthiza lineata  | Acanthiza nana   | Acanthiza reguloides  | Acanthorhynchus tenuirostris | Accipiter cirrhocephalus | Accipiter fasciatus | Acrocephalus stentoreus | Aegotheles cristatus      | Alauda arvensis  | Anas superciliosa  | Anthochaera carunculata | Anthochaera chrysoptera | Anthus novaeseelandiae | Aphelocephala leucopsis | Aquila audax       | Artamus cinereus        | Artamus cyanopterus | Aythya australis           | Cacatua galerita         | Cacatua roseicapilla | Cacatua sanguinea | Cacomantis flabelliformis | Carduelis carduelis | Chenonetta jubata                  | Cheramoeca leucosternus | Chrysococcyx basalis      | Cincloramphus cruralis | Cincloramphus mathewsi |

| Circus assimilis             | Spotted Harrier            | <b>~</b> | 0.05 |   |   |
|------------------------------|----------------------------|----------|------|---|---|
| Climacteris picumnus         | Brown Treecreeper          | ∞        | 0.36 |   | 0 |
| Colluricincla harmonica      | Grey Shrike-thrush         | 40       | 1.82 | 0 | 0 |
| Columba livia                | Rock Dove                  | 6        | 0.41 |   | 0 |
| Coracina novaehollandiae     | Black-faced Cuckoo-shrike  | 29       | 1.32 |   | 0 |
| Corcorax melanorhamphos      | White-winged Chough        | 9        | 0.27 | 0 | 0 |
| Cormobates leucophaeus       | White-throated Treecreeper | 2        | 0.09 |   |   |
| Corvus coronoides            | Australian Raven           | 2        | 0.09 |   |   |
| Corvus mellori               | Little Raven               | 63       | 2.86 | 0 | 0 |
| Corvus sp.                   |                            | ∞        | 0.36 |   | 0 |
| Coturnix pectoralis          | Stubble Quail              | <b>~</b> | 0.05 |   |   |
| Dacelo novaeguineae          | Laughing Kookaburra        | 10       | 0.45 |   |   |
| Daphoenositta chrysoptera    | Varied Sittella            | 4        | 0.18 |   | 0 |
| Dicaeum hirundinaceum        | Mistletoebird              | 2        | 60.0 |   |   |
| Egretta novaehollandiae      | White-faced Heron          | 2        | 0.23 |   |   |
| Elanus axillaris             | Black-shouldered Kite      | 6        | 0.41 | 0 | 0 |
| Epthianura albifrons         | White-fronted Chat         | _        | 0.05 |   |   |
| Falco berigora               | Brown Falcon               | က        | 0.14 |   | 0 |
| Falco cenchroides            | Nankeen Kestrel            | 10       | 0.45 | 0 | 0 |
| Falco longipennis            | Australian Hobby           | 2        | 60.0 |   |   |
| Falco peregrinus             | Peregrine Falcon           | 4        | 0.18 | 0 | 0 |
| Falco subniger               | Black Falcon               | _        | 0.05 |   |   |
| Fulica atra                  | Eurasian Coot              | 2        | 0.23 |   |   |
| Gallinula tenebrosa          | Dusky Moorhen              | 4        | 0.18 |   |   |
| Geopelia placida             | Peaceful Dove              | 4        | 0.18 |   |   |
| Glossopsitta concinna        | Musk Lorikeet              | 42       | 1.91 |   |   |
| Glossopsitta porphyrocephala | Purple-crowned Lorikeet    | 9        | 0.27 | 0 |   |
| Grallina cyanoleuca          | Magpie-Iark                | 27       | 1.23 | 0 |   |
| Gymnorhina tibicen           | Australian Magpie          | 142      | 6.45 | 0 | 0 |
| Hirundo neoxena              | Welcome Swallow            | 28       | 1.27 | 0 | 0 |
| Lichenostomus chrysops       | Yellow-faced Honeyeater    | 101      | 4.59 |   |   |
| Lichenostomus penicillatus   | White-plumed Honeyeater    | 73       | 3.32 | 0 | 0 |
| Lichenostomus virescens      | Singing Honeyeater         | 13       | 0.59 | 0 |   |
| Malurus cyaneus              | Superb Fairy-wren          | 133      | 6.04 |   |   |
|                              |                            |          |      |   |   |
|                              |                            |          |      |   |   |

| Malurus lamberti             | Variegated Fairy-wren      | _            | 0.05 |   |   |
|------------------------------|----------------------------|--------------|------|---|---|
| Manorina melanocephala       | Noisy Miner                | 6            | 0.41 | 0 |   |
| Melithreptus brevirostris    | Brown-headed Honeyeater    | 9            | 0.27 | 0 | 0 |
| Melithreptus lunatus         | White-naped Honeyeater     | 29           | 1.32 |   |   |
| Melopsittacus undulatus      | Budgerigar                 | <del></del>  | 0.05 |   |   |
| Merops ornatus               | Rainbow Bee-eater          | 4            | 0.18 | 0 | 0 |
| Microeca fascinans           | Jacky Winter               | <b>~</b>     | 0.05 |   |   |
| Milvus migrans               | Black Kite                 | 0            | 0    |   | 0 |
| Mirafra javanica             | Horsfield's Bushlark       | <b>~</b>     | 0.05 |   |   |
| Myiagra inquieta             | Restless Flycatcher        | 2            | 0.09 |   |   |
| Neochmia temporalis          | Red-browed Finch           | 20           | 0.91 |   |   |
| Ninox novaeseelandiae        | Southern Boobook           | 0            | 0    |   | 0 |
| Nymphicus hollandicus        | Cockatiel                  | _            | 0.05 |   |   |
| Ocyphaps lophotes            | Crested Pigeon             | 34           | 1.54 | 0 |   |
| Oreoica gutturalis           | Crested Bellbird           | <del></del>  | 0.05 |   |   |
| Pachycephala pectoralis      | Golden Whistler            | 27           | 1.23 |   |   |
| Pachycephala rufiventris     | Rufous Whistler            | വ            | 0.23 | 0 | 0 |
| Pardalotus punctatus         | Spotted Pardalote          | 3            | 0.14 |   |   |
| Pardalotus striatus          | Striated Pardalote         | 116          | 5.27 | 0 |   |
| Passer domesticus            | House Sparrow              | 36           | 1.63 |   | 0 |
| Petrochelidon ariel          | Fairy Martin               | 3            | 0.14 |   | 0 |
| Petrochelidon nigricans      | Tree Martin                | 41           | 1.86 |   |   |
| Petroica goodenovii          | Red-capped Robin           | <b>~</b>     | 0.05 |   |   |
| Phalacrocorax carbo          | Great Cormorant            | 2            | 0.09 |   |   |
| Phalacrocorax melanoleucos   | Little Pied Cormorant      | 2            | 0.09 |   |   |
| Phalacrocorax varius         | Pied Cormorant             | _            | 0.05 |   |   |
| Phaps chalcoptera            | Common Bronzewing          | က            | 0.14 |   |   |
| Phylidonyris novaehollandiae | New Holland Honeyeater     | 26           | 4.41 | 0 |   |
| Phylidonyris pyrrhoptera     | Crescent Honeyeater        | 4            | 0.18 |   |   |
| Platycercus elegans adelaide | Crimson (Adelaide) Rosella | 198          | 8.99 | 0 | 0 |
| Poliocephalus poliocephalus  | Hoary-headed Grebe         | _            | 0.05 |   |   |
| Pomatostomus superciliosus   | White-browed Babbler       | 15           | 0.68 |   |   |
| Porphyrio porphyrio          | Purple Swamphen            | <del>-</del> | 0.05 |   |   |
| Psephotus haematonotus       | Red-rumped Parrot          | 23           | 1.04 |   | 0 |

|                             | :                                  | ,        | 1    |    | (  |
|-----------------------------|------------------------------------|----------|------|----|----|
| Khipidura tuliginosa        | Grey Fantail                       | 1.9      | 7.77 |    | S  |
| Rhipidura leucophrys        | Willie Wagtail                     | 09       | 2.72 |    | 0  |
| Scythrops novaehollandiae   | Channel-billed Cuckoo              | _        | 0.05 |    |    |
| Smicrornis brevirostris     | Weebill                            | 4        | 0.18 | 0  | 0  |
| Stagonopleura guttata       | Diamond Firetail                   | ∞        | 0.36 | 0  | 0  |
| Strepera versicolor         | Grey Currawong                     | 28       | 1.27 |    |    |
| Streptopelia chinensis      | Spotted Turtle-dove                | 4        | 0.18 |    |    |
| Sturnus vulgaris            | Common Starling                    | 62       | 2.82 | 0  | 0  |
| Tachybaptus novaehollandiae | Australasian Grebe, (Little Grebe) | 2        | 0.23 |    |    |
| Taeniopygia guttata         | Zebra Finch                        | <b>~</b> | 0.05 |    |    |
| Trichoglossus haematodus    | Rainbow Lorikeet                   | 6        | 0.41 |    |    |
| Turdus merula               | Eurasian Blackbird                 | 39       | 1.77 |    |    |
| Tyto alba                   | Barn Owl                           | 2        | 0.09 |    |    |
| Vanellus miles              | Masked Lapwing                     | <b>~</b> | 0.05 |    |    |
| Zosterops lateralis         | Silvereye                          | 9        | 0.27 |    |    |
| Grand Total                 |                                    | 2202     | 100  | 32 | 38 |

3 new species for the locality

15 new species on top of last survey

No new species of conservation significance

| Conservation<br>Status            | AUS SA   |                       |                          |                       |                       |                |                |                    |            |                                        | Rare                      |                               |                      |                          |                                      |   |            |                            |                  |                              |
|-----------------------------------|----------|-----------------------|--------------------------|-----------------------|-----------------------|----------------|----------------|--------------------|------------|----------------------------------------|---------------------------|-------------------------------|----------------------|--------------------------|--------------------------------------|---|------------|----------------------------|------------------|------------------------------|
| Ecol Assoc<br>September<br>Survey | C        | O                     |                          | 0                     | 0                     | 0              | 0              | 0                  |            | (                                      | 0                         | 0 (                           | )                    | 0                        | С                                    | ) |            | Ι:                         | <b>I</b>         | I                            |
| Ecol Assoc<br>February<br>Survey  | (        | )                     | 0                        | 0                     |                       | 0              | 0              | 0                  |            | )                                      | ,                         | o (                           | O                    |                          |                                      |   |            |                            |                  |                              |
| Common Name                       | ,        | lawny Dragon          | Eastern Spotted Ctenotus | Eastern Striped Skink | Bougainville's Skink  | Dwarf Skink    | Sleepy Lizard  | Eastern Bluetongue |            | Adelaide Snake-lizard                  | Olive Legless Lizard      | Thick-tailed Gecko            | Southern Rock Dtella |                          | ival bled Gecko<br>Little Whip Snake |   |            | Spotted Grass Frog         | Common Frogret   | Eastern Sign Bearing Froglet |
| Scientific Name                   |          | Ctenophorus decressii | Ctenotus orientalis      | Ctenotus robustus     | Lerista bougainvillii | Menetia greyii | Tiliqua rugosa | Tiliqua scincoides |            | Delma molleri? (Possibly D. inornata)1 | Delma inornata            | Nephrurus milii               | Gehyra sp. '2n=44'   |                          | Suta fladellum                       |   |            | Limnodynastes tasmaniensis | Crinia signifera | Crinia parsignifera          |
| Family                            | Reptiles | AGAMIDAE              | SCINCIDAE                | SCINCIDAE             | SCINCIDAE             | SCINCIDAE      | SCINCIDAE      | SCINCIDAE          | GENNONIDAE | Pygopodinae<br>GEKKONIDAE              | Pygopodinae<br>GEKKONIDAE | Diplodactylinae<br>GEKKONIDAE | Gekkoninae           | GEKKUNIDAE<br>Cekkeninge | GERRUIIII I AE<br>FI APIDAF          |   | Amphibians | MYOBATRACHIDAE             | MYOBALKACHIDAE   | MYOBATRACHIDAE               |

3 new species of lizard.

Delma inornata rare in SA. 1 16 species in total new snake species 3 new frog species

14

6

Total

| Conservation<br>Status<br>AUS SA  |                                           |                                |                 |                        |                 |                            |                                 |                      |                  |                       |                                      |                  |                        |                  |                     |                  |                            |
|-----------------------------------|-------------------------------------------|--------------------------------|-----------------|------------------------|-----------------|----------------------------|---------------------------------|----------------------|------------------|-----------------------|--------------------------------------|------------------|------------------------|------------------|---------------------|------------------|----------------------------|
| Ecol Assoc<br>September<br>Survey | 00                                        | 0                              |                 | 0                      | 0               |                            |                                 |                      |                  |                       |                                      |                  |                        |                  |                     |                  |                            |
| Ecol Assoc<br>February<br>Survey  | 00                                        | 0 0                            | 0               | 0                      | 0               | 0                          | 0                               | 0                    | C                | )                     | 0                                    | C                | D                      | C                | Ò                   | C                | )                          |
| Common Name                       | Western Grey Kangaroo<br>Euro             | Common Brushtail Possum<br>Fox | House Mouse     | Rabbit                 | Brown Hare      | White-striped Freetail-bat | Southern Freetail-bat           | Gould's Wattled Bat  |                  | Lesser Long-eared Bat | Chocolate Wattled Bat                |                  | Large Forest Bat       |                  | Southern Forest Bat |                  | Little Forest Bat          |
| Scientific Name                   | Macropus fuliginosus<br>Macropus robustus | Trichosurus vulpecula *Vulpes  | *Mus musculus   | *Oryctolagus cuniculus | *Lepus capensis | Tadarida australis         | Mormopterus planiceps           | Chalinolobus gouldii |                  | Nyctophilus geoffroyi | Chalinolobus morio                   |                  | Vespadelus darlingtoni |                  | Vespadelus regulus  |                  | Vespadelus vulturnus or Vd |
| Family                            | MACROPODIDAE<br>MACROPODIDAE              | PHALANGERIDAE<br>CANIDAF       | MURIDAE Murinae | LEPORIDAE              | LEPORIDAE       | MOLOSSIDAE                 | MOLOSSIDAE<br>VESPERTII IONIDAE | Vespertilioninae     | VESPERTILIONIDAE | Nyctophilinae         | VESPERTILIONIDAE<br>Vespertilioninae | VESPERTILIONIDAE | Vespertilioninae       | VESPERTILIONIDAE | Vespertilioninae    | VESPERTILIONIDAE | Vespertilioninae           |

n.b. no anabat surveys in September no new mammal species

Ω

15

Total

**Appendix 5C** 

Fauna Management Plan

| Kanmantoo Copper Project |                  |                 |  |  |  |  |  |
|--------------------------|------------------|-----------------|--|--|--|--|--|
| Fauna Management Plan    |                  |                 |  |  |  |  |  |
|                          | Issue: Version 4 | Date: July 2010 |  |  |  |  |  |
| HILLGROVE RESOURCES      | Authorised by:   | Signature:      |  |  |  |  |  |

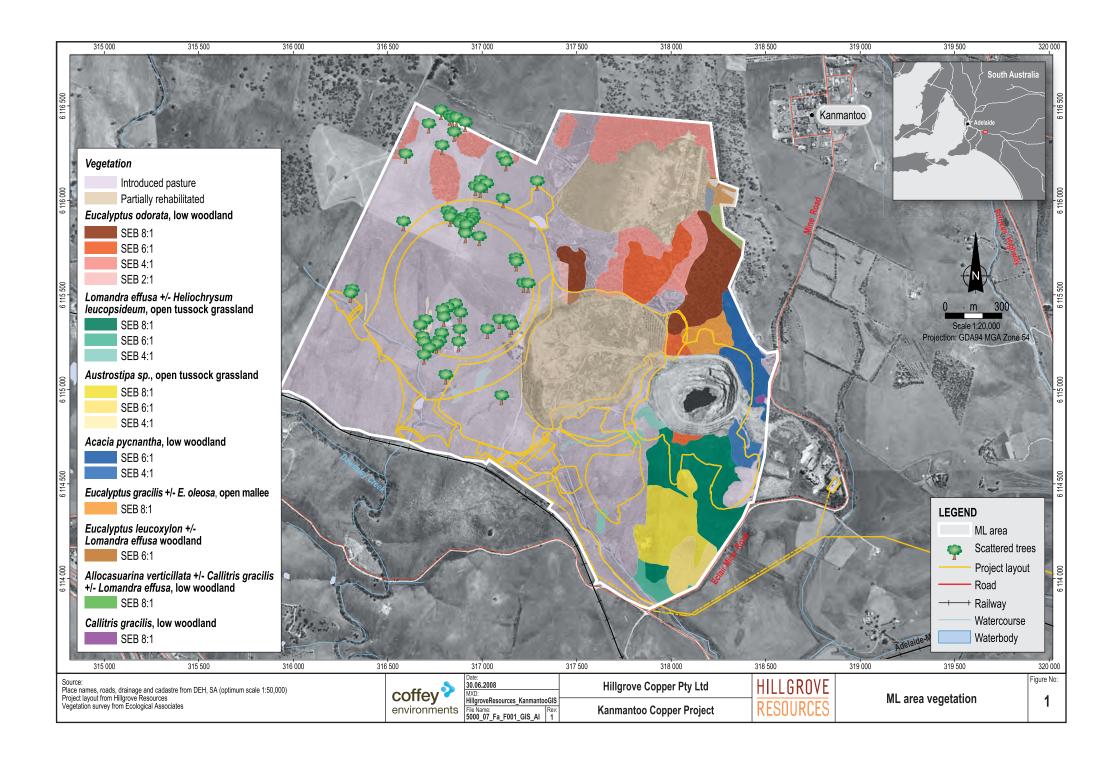
# 1. Background

# 1.1 Fauna Species

Where present, fauna species of conservation significance in the mining lease are classified as significant at the:

- National level, i.e., listed under the Environmental Protection and Biodiversity Conservation Act 1999 (EPBC Act).
- State level, i.e., listed under the National Parks and Wildlife Act 1972 (NPW Act).

The mining lease contains three major fauna habitats (Figure 1):


- Eucalyptus odorata woodland.
- · Lomandra effusa grassland.
- Austrostipa spp. grassland.

At the national level, one migratory EPBC Act-listed species (the rainbow bee-eater, *Merops ornatus*) is a seasonal visitor to the mining lease. However, this species is not listed as a threatened species under the act. It is highly unlikely that the rainbow bee-eater will be impacted by mining activities.

At the state level, three NPW Act listed species are known to occur within the mining lease. These are the:

- Diamond firetail (Stagonopleura guttata) listed as vulnerable.
- Peregrine falcon (Falco peregrinus) listed as rare.
- Common brushtail possum (Trichosurus vulpecula) listed as rare.

Approximately 3.2 ha of high quality (classified as 'good' and 'very good' condition) vegetation will be cleared in the *E. odorata* woodland. This habitat currently supports populations of the NPW Act listed diamond firetail and the brushtail possum. As a result, reduced abundance of threatened species in the mining lease is likely to occur. Areas of *L. effusa* grassland will be cleared; however, this is not expected to result in significant impacts to threatened species.



### 1.2 Introduced Species

Four introduced vertebrate species (other than sheep and cattle) are known to occur on the mining lease and surrounding region. These are the:

- European rabbit (Oryctolagus cuniculus).
- European (brown) hare (Lepus capensis).
- House mouse (Mus domesticus).
- Red fox (Vulpes vulpes).

# 2. Relevant Legislation

Fauna is protected at both the State and Federal level. The Australian Government's power and role in protection of fauna is restricted to protection of nationally threatened native species. Relevant legislation includes:

#### State:

- Native Vegetation Act 1991.
- National Parks and Wildlife Act 1972.
- Animal and Plant Control (Agricultural Protection and Other Purposes) Act 1986.
- Mining Act 1971.

#### Commonwealth:

• Environmental Protection and Biodiversity Conservation Act 1999.

# 3. Statutory Responsibilities

### 3.1 Mining Lease Conditions

A mining lease for operations at the Kanmantoo Copper Project has been issued (ML 6345), subject to conditions, under the Mining Act. These conditions must be complied with during all phases of the mining operation. Specifically, the following conditions must be adhered to in relation to fauna management:

- Condition 13: The Lessee must, in constructing and operating the Lease, ensure that there are
  no net adverse impacts from the site operations on the native fauna abundance or diversity in
  the Lease area and in adjacent areas.
- Condition 15: The Lessee must, in constructing and operating the Lease, ensure no
  introduction of new weeds, plant pathogens or pests (including feral animals), nor increase in
  abundance of existing weeds or pest species in the Lease area and adjacent areas caused by
  mining operations.

A number of mining lease conditions associated with mine closure and rehabilitation are also related to fauna management, however these are addressed in the project Mine Closure and Rehabilitation Plan and are not addressed in this management plan.

#### 3.2 MARP Commitments

A Mining and Rehabilitation Program (MARP) for the Kanmantoo Copper Project has been approved under the Mining Act for use during all phases of the mining operation. The MARP includes detailed and specific information on environmental control measures and establishes outcome-based performance criteria for the mining operation, presented in the table below. This EMP incorporates commitments made in the MARP that relate to fauna management.

Table 1 Control measures and performance criteria for fauna management

| Outcome                                                                                                                               | Assessment Criteria                                                                                                                                                                                                                                       | Summary of Control Measures                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No net adverse impacts from the site operations on native fauna                                                                       | Assessment Criteria:  Post-mining fauna survey within the ML and adjacent areas shows no net adverse impacts on native                                                                                                                                    | Establishment and ongoing management of SEB offset areas (including the implementation of a threatened species management plan).                        |  |  |
| abundance or<br>diversity in the<br>lease area and in<br>adjacent areas.                                                              | fauna abundance or diversity (as determined by flora and fauna consultant) compared to baseline                                                                                                                                                           | Project infrastructure located outside areas of very good quality <i>E. odorata</i> low woodland where possible.                                        |  |  |
|                                                                                                                                       | (as shown in Appendix 5A and 5B of the MARP) that can be reasonably attributed to mining                                                                                                                                                                  | Clearly identifying and documenting areas to be protected and areas to be cleared.                                                                      |  |  |
|                                                                                                                                       | operations.                                                                                                                                                                                                                                               | Minimising the area of direct land clearing.                                                                                                            |  |  |
|                                                                                                                                       |                                                                                                                                                                                                                                                           | Progressively rehabilitating cleared land.                                                                                                              |  |  |
|                                                                                                                                       |                                                                                                                                                                                                                                                           | Additional surveying of diamond firetail populations.                                                                                                   |  |  |
| No introduction of                                                                                                                    | Assessment Criteria:                                                                                                                                                                                                                                      | Prohibition of pets and feeding of animals.                                                                                                             |  |  |
| new pests<br>(including feral<br>animals), nor                                                                                        | Annual fauna surveys within the ML indicate no significant increase                                                                                                                                                                                       | Controlled extermination of introduced fauna species.                                                                                                   |  |  |
| increase in<br>abundance of<br>existing pest<br>species in the<br>lease area and<br>adjacent areas<br>caused by mining<br>operations. | in abundance of pest (feral) species and no introduction of new pest species that can be reasonably attributed to mining operations (as determined by flora and fauna consultant) when compared to baseline (as shown in Appendix 5A and 5B of the MARP). | Internal and external auditing to assess housekeeping standards (in particular litter control). Implementation of Hillgrove's Feral Animal Control SOP. |  |  |

### 4. Issues

Native bird, reptile and mammal species, including a number of EPBC Act and NPW Act listed species, may be affected by vegetation clearing and ground disturbance during construction of the project.

Key issues of concern to fauna are:

- Removal and/or disturbance of habitat.
- · Reduced level of resources.
- Increased abundance of feral animals.

# 5. Objectives

The objectives of this management plan include:

- No significant adverse impact to the abundance and diversity of threatened or non-threatened native fauna species.
- No significant increase in introduced fauna species.

#### 6. Associated Plans

- · SEB Native Vegetation Management Plan.
- · Flora Management Plan.
- · Noise and Vibration Plan.
- · Traffic Management Plan.
- Threatened Species Management Plan.

# 7. Standard Operating Procedures

- · General Fauna Management.
- · Excavation Inspection.
- Feral Animal Control.

#### 8. Forms

- · Trapped Animal Logsheet.
- · Incident Report.

# 9. Responsibilities

### 9.1 General Manager

The general manager will:

• Provide resources to implement the fauna management plan.

#### 9.2 Environmental Coordinator

The environmental coordinator will:

- Implement the fauna management plan.
- Manage the SEB offset area.
- · Coordinate monitoring activities.
- · Report monitoring results to government agencies.
- Review monitoring results, assess management action efficiency against results and either revise this management plan or implement corrective actions as applicable.
- Train and induct all employees on the requirements of the fauna management plan.

### 9.3 Department Managers

The department managers will:

- Support and promote the importance of minimising impact on the environment.
- Ensure that personnel implement requirements of the fauna management plan.

#### 9.4 All Personnel

All personnel will:

- Comply with requirements of the fauna management plan.
- Undertake an environmental induction.

# 10. General Management Procedures

General fauna management procedures are covered in the General Fauna Management Standard Operating Procedure and include:

- Establishment and ongoing management of SEB offset areas (including the implementation of a threatened species management plan).
- Project infrastructure located outside areas of very good quality E. odorata low woodland where possible.
- · Clearly identifying and documenting areas to be protected and areas to be cleared.
- · Minimising the area of direct land clearing.
- · Progressively rehabilitating cleared land.
- · Additional surveying of diamond firetail populations.
- · Prohibition of pets and feeding of animals.
- Controlled extermination of introduced fauna species.
- Internal and external auditing to assess housekeeping standards (in particular litter control).
   Implementation of Hillgrove's Feral Animal Control SOP.

# 11. Monitoring Procedures

Ongoing fauna monitoring will be conducted to allow identification of any impacts of mine construction and operations on native fauna. Monitoring will be conducted in the major habitat types present on the mining lease, which are areas of remnant *Eucalyptus odorata* low woodland and *Lomandra effusa* grassland and *Austrostipa* spp. grassland in areas remote from project activity (Figure 1).

#### 11.1 Methods

Fauna monitoring will involve fauna surveys and targeted counts for threatened species at selected sites to allow assessment of:

- Changes in the abundance, composition or condition of fauna species, particularly threatened species.
- Ongoing impacts to fauna as a result of project-related activities.
- Success of rehabilitation and/or relocation activities for threatened species.
- Increases in the density and distribution of pest animal infestations.
- Introduction of new pest animal species.

• Diversity and health of waterbird populations at permanent waterbodies.

Survey methods will include visual observations, spotlighting, bird census transects, trapping and active searching.

### 11.2 Monitoring Sites and Frequency

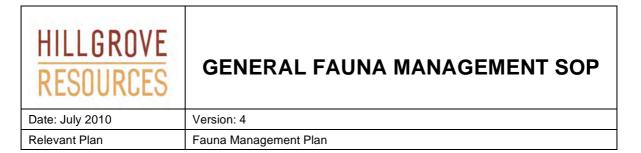
Monitoring sites will be located within the three major fauna habitat areas (*Eucalyptus odorata* low woodland, *Lomandra effusa* grassland and *Austrostipa* spp. grassland) within the mining lease. Inspection and monitoring is also to be conducted prior to, during and following disturbance. The number of sites to be sampled during monitoring will be calculated to allow for valid statistical comparisons between control and impact sites.

Fauna monitoring will be undertaken as follows:

- Annually during spring for selected sites within the three major fauna habitat areas (*Eucalyptus odorata* woodland, *Lomandra effusa* grassland and *Austrostipa* spp. grassland) within the mining lease to specifically identify the presence of diamond firetail, brushtail possum and other selected species.
- Annually during spring for selected sites within the three major fauna habitat areas (Eucalyptus odorata woodland, Lomandra effusa grassland and Austrostipa spp. grassland) within the mining lease for non-target species.
- Annually for pest animal presence and pest animal control success within the mining lease and surrounds.
- Weekly inspection of waterbodies located within the mining lease (including the TSF decant and process water dam) for all fauna species.
- Daily inspection of potential 'fauna traps' located within the mining lease (including temporary trenches and excavations).
- As required animal deaths as a result of project activities will be recorded.
- Post-closure fauna monitoring.

# 12. Compliance Criteria

Records will be retained to demonstrate:


- Native vegetation clearance to be in accordance with approved SEB Native Vegetation Management Plan.
- Regular surveying at selected sites to detect changes in abundance, composition or condition of fauna species from baseline shows no significant adverse impact.
- Regular checking of site water bodies to detect potential adverse impacts on migratory wetland bird species shows no adverse impacts to these species.
- SEB offset areas established and monitored to demonstrate objectives are being achieved.

# 13. Review and Reporting

The fauna monitoring results will be reviewed at least annually, the results assessed against management action efficiency. Depending on the results of this review, the management plan will either be revised or corrective actions will be implemented as applicable.

Reporting requirements include as a minimum:

- Hillgrove must provide to the Director Mines an annual Mining and Rehabilitation Compliance Report (MARCR) on operations carried out on the Lease and compliance with the approved MARP.
- Hillgrove must report any non-compliance with the Act, Lease Conditions and approved MARP
  to the Director of Mines. A verbal notification must be provided within 24 hours, after Hillgrove
  becomes aware of the non-compliance. A written report must be provided within 3 days of
  such time period as approved by the Director of Mines.
- Hillgrove must report to the Environment Protection Authority (EPA) (on EPA emergency phone number 1800 100 833) all incidents causing or threatening serious or material environmental harm (as defined in section 5 of the Environment Protection Act), upon becoming aware of the incident, in accordance with section 83 of the EP Act.



# 1. Background

This document addresses the general management of fauna during construction and operation of the mine. There is potential for interaction with fauna during construction and operation of the mine, this includes the potential for fauna to be involved in collisions with vehicles along the access road, trapped in project infrastructure and become habituated to people.

By following this procedure, the construction and operation of the project will minimise the potential for adverse affects to the general fauna of the area, be conducted in compliance with Hillgrove Resources' Environmental Management System.

# 2. Objectives

The objectives of this SOP are to:

- Minimise adverse impacts to fauna, in particular threatened species, during construction and operation of the project.
- Ensure the proper handling of injured or trapped fauna.

#### 3. Relevant Forms

- Incident report.
- · Trapped animal logsheet.

#### 4. Procedures

#### 4.1 Planning and Preparation

To ensure minimal impact upon fauna:

- A member of the Environment Department should be trained and/or experienced in the handling of wildlife to handle injured or trapped native fauna during construction and operation of the project.
- Regular information sessions should be conducted by Environment Department personnel to inform workers of procedures to follow should they encounter injured fauna.
- Ensure that incident reporting procedures are followed for any native fauna injured or trapped as a result of project activities.
- Appropriate wildlife handling equipment (e.g., gloves, sack and blanket) must be available at the Environment Department office.

 Hillgrove will consultant relevant experts including the Department of Environment and Heritage and Department of Water, Land and Biodiversity Conservation and if deemed appropriate, resident fauna species will be relocated (in agreed manner) to areas not subject to disturbance.

#### 4.2 General Fauna Interaction

During construction and operation staff may encounter and interact with fauna during the course of their duties. If fauna is encountered:

- Personnel must not chase, harass, intimidate or otherwise interfere with native fauna in the project area. This includes shooting or trapping fauna.
- Personnel must not feed native fauna in the project area.
- In the event that native fauna becomes habituated to people, personnel must report this to Environment Department personnel for investigation.
- Should the habituation of fauna in the project area become a problem, the Environment Department should develop procedures to address this.

#### 4.3 Vehicle Collisions

When personnel are driving vehicles:

- Personnel must follow all vehicle travel procedures outlined in the Traffic Management Plan.
- In the event that there is a collision between a vehicle and native fauna, personnel must:
  - Stop safely and assess whether the animal is injured or dead. If the animal is potentially dangerous (e.g., a snake), assess the condition of the animal from a distance and then inform the Environment Department.
  - If the animal is alive and not injured (as may happen in a low speed accident with a large animal), do not prevent the animal from escaping.
  - If the animal is injured, follow the procedures outlined in Section 4.4 below.
  - If the animal is dead, clear it from obstructing other vehicle traffic and submit an incident report to the Environment Department.

### 4.4 Rescuing Injured Wildlife

If personnel find injured wildlife (e.g., as a result of a collision with a vehicle or entrapment in project machinery) they must follow these steps:

- Ensure they are not at risk from either the injured animal or from other traffic or equipment.
- Assess whether the animal is suffering and beyond recovery. If this is the case, contact the Environment Department for advice as to how to euthanase the animal quickly and humanely.
- If the animal appears to be suffering from shock or is likely to recover from its injuries try to catch the animal with as little struggle as possible. If this is to be done:
  - If possible wear protective gloves.

#### Fauna Management Plan Kanmantoo Copper Project

- Place a blanket, jacket or sack over the animal and wrap it up to prevent it from biting and scratching.
- Once the animal is caught place it in a dark, quiet, warm (but not hot) place and deliver it to the Environment Department.
- If Environment Department personnel do not have comprehensive knowledge of what to feed
  the animal and how to manage the injured animal they must seek this information from a
  veterinarian, a local wildlife rescue group or regional Department of Environment and Heritage
  officers.
- If a rescue permit is required to care for the injured animal, this should be obtained by Environment Department personnel from regional Department of Environment and Heritage officers.

# **Appendix 5D**

**Threatened Species Management Plan** 

# Threatened Species Management Plan | Signature: | Signat

# 1. Background

This plan provides for the management of the entire project area for the appropriate protection of threatened fauna and flora species and includes strategies for monitoring and maintaining the status of existing threatened fauna and flora populations.

## 1.1 Threatened Species

Where present, species of conservation significance in the mining lease are classified as significant at the:

- National level, i.e., listed under the Environmental Protection and Biodiversity Conservation Act 1999 (EPBC Act).
- State level, i.e., listed under the National Parks and Wildlife Act 1972 (NPW Act).

## 1.1.1 Threatened Fauna Species

At the National level, one migratory EPBC Act-listed species (the rainbow bee-eater, *Merops ornatus*) is a seasonal visitor to the mining lease. However, this species is not listed as a threatened species under the act. It is highly unlikely that the rainbow bee-eater will be impacted by mining activities as it is found in a range of habitats, is an aerial feeder and although nesting areas are often re-used, breeding pairs usually build a new nesting burrow each breeding season (DSEWPAC, 2011).

At the State level, four NPW Act listed species are known to occur within the mining lease. These are the:

- Diamond firetail (Stagonopleura guttata) listed as vulnerable.
- Peregrine falcon (Falco peregrinus) listed as rare.
- White-winged chough (Corcorax melanorhamphos) listed as rare.
- Common brushtail possum (Trichosurus vulpecula) listed as rare.

Refer to the threatened fauna profiles for more information on each species.

| Common Name         | Diamond firetail                                                                                             |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Scientific Name     | Stagonopleura guttata                                                                                        |  |  |  |
| Conservation Status | Vulnerable (NPW Act)                                                                                         |  |  |  |
| Description         | Small finch-like bird. Crimson rump and black chest band (gray in females). Flanks are black, spotted white. |  |  |  |

| Habitat/Distribution            | Endemic to south-eastern Australia, ranging from Carnarvon Ranges in Queensland to the Eyre Peninsula and Kangaroo Island in South Australia. Diamond firetails are found in open grassy woodland, heath and farmland or grassland with scattered trees (Birds Australia, 2006).                                           |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distribution in<br>Project Area | This species has been repeatedly recorded in the project area (Ecological Associates, 2006; DES, 2008; DES, 2009; DES 2010) with the majority of the sightings recorded in the <i>Allocasuarina verticillata</i> and adjacent <i>Eucalyptus odorata</i> woodlands located along the eastern edge of the mining lease (ML). |
| Threats                         | Habitat clearance. Grazing and disturbance by stock and rabbits. Inappropriate fire regimes. Predation by feral cats (Wilson and Bignall, 2009).                                                                                                                                                                           |
| Recovery Plan                   | Regional recovery plan for threatened species and ecological communities of Adelaide and the Mount Lofty Ranges, South Australia (Wilson and Bignall, 2009)                                                                                                                                                                |

| Common Name                     | Peregrine Falcon                                                                                                                                                                                                                                                                                             |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific Name                 | Falco peregrinus                                                                                                                                                                                                                                                                                             |
| Conservation Status             | Rare (NPW Act)                                                                                                                                                                                                                                                                                               |
| Description                     | Large bird of prey with a black "hood", blue-black upperparts and creamy white chin, throat and underparts, which are finely barred from the breast to the tail. The eye ring is yellow and the beak is yellow, tipped black (Birds Australia, 2008a).                                                       |
| Habitat/Distribution            | The peregrine falcon is found across Australia but is not common anywhere. It is found in most habitats, from rainforests to arid zones and at most altitudes from coast to alpine areas (Birds Australia, 2008a).                                                                                           |
| Distribution in<br>Project Area | This species has been repeatedly recorded in the project area (Ecological Associates, 2006; DES, 2008; DES, 2009; DES 2010). A pair of falcons have previously been observed nesting within the walls of the open pit and have since been observed in the project area after expansion of the pit commenced. |
| Threats                         | Recreational activities and site disturbance (Wilson and Bignall, 2009).                                                                                                                                                                                                                                     |
| Recovery Plan                   | Regional recovery plan for threatened species and ecological communities of Adelaide and the Mount Lofty Ranges, South Australia (Wilson and Bignall, 2009)                                                                                                                                                  |

| Common Name                     | White-winged chough                                                                                                                                                                                                                         |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Scientific Name                 | Corcorax melanorhamphos                                                                                                                                                                                                                     |  |  |  |  |  |
| Conservation Status             | Rare (NPW Act)                                                                                                                                                                                                                              |  |  |  |  |  |
| Description                     | Large bird, almost all black with the exception of a white wing patch, which can be observed when the bird is in flight. Has a curved beak and the adults have red eyes (Birds Australia, 2008b).                                           |  |  |  |  |  |
| Habitat/Distribution            | Found throughout most of eastern and southeastern mainland Australia.                                                                                                                                                                       |  |  |  |  |  |
|                                 | This species has been repeatedly recorded in the project area (Ecological Associates, 2006; DES, 2008; DES, 2009; DES 2010).                                                                                                                |  |  |  |  |  |
| Distribution in Project<br>Area | This species has been repeatedly recorded in the project area (Ecological Associates, 2006; DES, 2008; DES, 2009; DES 2010). Records were with the <i>Eucalyptus odorata</i> and <i>Acacia pycnantha</i> woodlands to the north of the pit. |  |  |  |  |  |
| Threats                         | Predation by feral cats and foxes. Weed invasion (Wilson and Bignall, 2009).                                                                                                                                                                |  |  |  |  |  |
| Recovery Plan                   | Regional recovery plan for threatened species and ecological communities of Adelaide and the Mount Lofty Ranges, South Australia (Wilson and Bignall, 2009)                                                                                 |  |  |  |  |  |

| Common Name                     | Common brushtail possum                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Scientific Name                 | Trichosurus vulpecula                                                                                                                                                                                                                                                                                |  |  |  |  |
| Conservation Status             | Rare (NPW Act)                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Description                     | Generally silver-grey fur, with a pale to white coloured underside and dark brown to black bush tail.                                                                                                                                                                                                |  |  |  |  |
| Habitat/Distribution            | The common brushtail possum is found in most of eastern Australia, from far north Queensland right through New South Wales, all of Victoria, and into the southern half of South Australia, where suitable habitat exists.                                                                           |  |  |  |  |
| Distribution in Project<br>Area | This species has been repeatedly recorded in the project area (Ecological Associates, 2006; DES, 2008; DES, 2009; DES 2010) with the majority of the sightings recorded in the <i>Allocasuarina verticillata</i> and adjacent <i>Eucalyptus odorata</i> woodlands located north of the existing pit. |  |  |  |  |
| Threats                         | Habitat loss, habitat fragmentation, loss of tree hollows, fox predation, relocation by humans, competition for food, change in fire regimes                                                                                                                                                         |  |  |  |  |
| Recovery Plan                   | No recovery plan currently exists for this species                                                                                                                                                                                                                                                   |  |  |  |  |

## 1.1.2 Threatened Flora Species

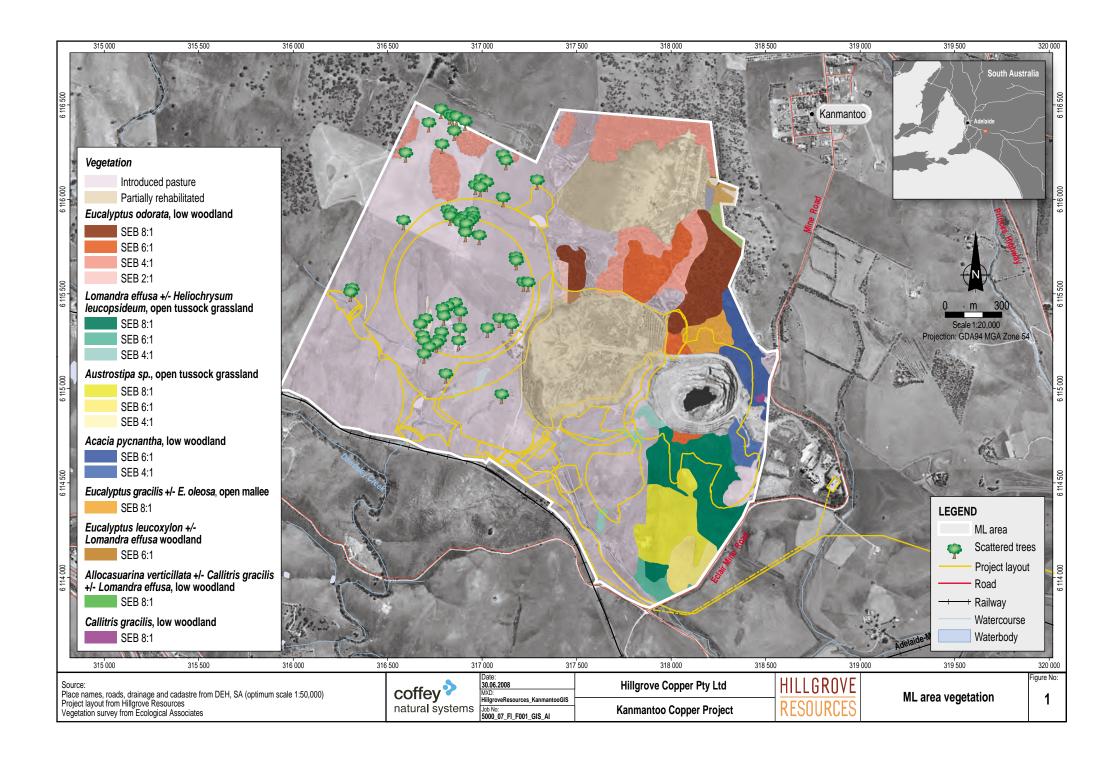
Management of the threatened vegetation communities that exist within the mining lease is addressed in the associated Native Vegetation Management Plan (Coffey Environments, 2010) and is not covered in this document.

No plant species of National (EPBC Act-listed) conservation significance have been recorded in the project area, and none are considered to be present.

Two flora species of State-listed (NPW Act-listed) have been recorded in the project area:

- Diuris behrii (Behr's cowslip orchid) listed as vulnerable.
- Ptilotus erubescens (hairy-tails) listed as rare.

Refer to the threatened flora profiles below for more information on these species.


| Common Name                     | Behr's cowslip orchid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Scientific Name                 | Diuris behrii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Conservation Status             | /ulnerable (NPW Act)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Description                     | From the Family Orchidaceae, Behr's cowslip orchid is a perennial orchid that grows to a height of approximately 40 cm. The plant has three to six leaves, to about 20 cm in height, in a grass-like tussock. One to four yellow flowers appear from September to November and often have fine brownish striations inside (DEH, 2008).                                                                                                                                                                     |  |  |  |  |  |
| Habitat/Distribution            | Within the Adelaide Mount Lofty Ranges the preferred broad vegetation groups are grassy woodland and grassland. At the Hillgrove site the orchid has been observed within the <i>Eucalyptus odorata</i> woodland north of the existing pit.                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Distribution in Project<br>Area | The species was initially recorded to the north of the existing open pit during the spring 2007 survey (Ecological Associates 2007b). The locations of individual <i>D. behrii</i> plants that occur within the project footprint were flagged for future identification at this time. Approximately 80 plants were flagged. A number of plants have since been relocated to a nursery in Littlehampton where they will be handed over to the Native Orchid Society of SA for maintenance and propagation. |  |  |  |  |  |
| Threats                         | Grazing and disturbance by kangaroos and rabbits. Weed invasion. Residential and commercial development.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |

| Recovery Plan | Regional recovery plan for threatened species and ecological communities of Adelaide and the Mount Lofty Ranges, South Australia (Wilson and Bignall, |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 2009)                                                                                                                                                 |

| Common Name          | Hairy tails                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Scientific Name      | Ptilotus erubescens                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Conservation Status  | Rare (NPW Act)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Description          | Small tufted herb. Has tufted, feathery flower heads. Inconspicuous when not in f lower , looks like a grass and grows about 0.5 m in height.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Habitat/Distribution | There is one historical record of <i>Ptilotus erubsecens</i> within the project area. This record is from the Biological Database of South Australia (managed by the Department of Environment and Natural Resources) and dates from 1994. Despite this historical record, no evidence of <i>P. erubescens</i> has been found in subsequent details surveys of the area specifically targeting threatened species (Ecological Associates, 2006, 2007a, 2007b). |  |  |  |  |
| Threats              | Habitat loss, habitat fragmentation.                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Recovery Plan        | No recovery plan currently exists for this species.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

A further 19 species of regional conservation significance (an unofficial regional conservation rating derived for regional conservation planning purposes) have been recorded within the mining lease. These are:

- South Australian blue gum (Eucalyptus leucoxylon ssp. leucoxylon).
- Native wheat-grass (Elymus scaber var. scaber).
- · Curly wire-grass (Aristida contorta).
- Brush wire-grass (Aristida behriana).
- Small-flower wallaby-grass (Austrodanthonia setacea).
- · Crested spear-grass (Austrostipa blackii).
- Bulbine lily (Bulbine bulbosa).
- Blue grass-lily (Caesia calliantha).
- Pointed centrolepis (Centrolepis aristata).
- Sweet hound's tongue (Cynoglossum suaveolens).
- Hibbertia crinite.
- Scaly buttons (Leptorhynchos squamatus ssp. squamatus).
- Hairy stylewort (Levenhookia dubia).
- Small mat-rush (Lomandra nana).
- Twiggy daisy-bush (Olearia ramulosa).
- Narrow-leaf plantain (Plantago gaudichaudii).
- Brackern fern (Pteridium esculentum).
- Purple-leaf groundsel (Senecio picridioides).
- Smooth solenogyne (Solenogyne dominii).



## 2. Relevant Legislation

Flora and fauna are protected at both the State and National level. Relevant legislation includes:

#### State:

- Native Vegetation Act 1991.
- National Parks and Wildlife Act 1972.
- Animal and Plant Control (Agricultural Protection and Other Purposes) Act 1986.
- Mining Act 1971.

#### Commonwealth:

Environmental Protection and Biodiversity Conservation Act 1999.

## 3. Statutory Responsibilities

## 3.1 Mining Lease Conditions

A mining lease (ML) for operations at the Kanmantoo Copper Project has been issued (ML 6345), subject to conditions, under the Mining Act. These conditions must be complied with during all phases of the mining operation. Specifically, the following conditions must be adhered to in relation to threatened flora and fauna management:

- Condition 5: The Lessee must ensure that no uncontrolled fires caused by mining operations effect remnant vegetation on or off the mine site.
- Condition 13: The Lessee must, in constructing and operating the Lease, ensure that there are
  no net adverse impacts from the site operations on the native fauna abundance or diversity in
  the Lease area and in adjacent areas.
- Condition14: The lessee must, in constructing and operating the Lease, ensure that all
  clearance of native vegetation is authorised under appropriate legislation and ensure no
  permanent loss of abundance or diversity on or off the Lease.
- Condition 15: The Lessee must, in constructing and operating the Lease, ensure no
  introduction of new weeds, plant pathogens or pests (including feral animals), nor increase in
  abundance of existing weeds or pest species in the Lease area and adjacent areas caused by
  mining operations.

A number of mining lease conditions associated with mine closure and rehabilitation are also related to fauna management, however these are addressed in the project Mine Closure and Completion Plan (Coffey Natural Systems, 2009) and are not addressed in this management plan.

## 3.2 PEPR Commitments

A Program for Environmental Protection and Rehabilitation (PEPR) for the Kanmantoo Copper Project has been approved under the Mining Act for use during all phases of the mining operation (Coffey Environments, 2011). The PEPR includes detailed and specific information on environmental control measures and establishes outcome-based performance criteria for the

mining operation, presented in the table below. This environmental management plan (EMP) incorporates commitments made in the PEPR that relate to flora and fauna management.

Table 1 Control measures and performance criteria for flora and fauna management

| Table 1 Control measures and performance cinteria for nota and faulta manageme                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Outcome                                                                                                                                                               | Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Summary of Control Measures                                                                                                                                          |  |  |
| No net adverse impacts from the site operations on native fauna                                                                                                       | Post-mining fauna survey within the ML and adjacent areas shows no net adverse impacts on native fauna abundance or diversity (as determined by flora and fauna consultant) compared to baseline (as shown in Appendix 5A and 5B                                                                                                                                                                                                                                                                    | Establishment and ongoing management of significant environmental benefit (SEB) offset areas (including the implementation of a threatened species management plan). |  |  |
| abundance or<br>diversity in the<br>lease area and in<br>adjacent areas.                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project infrastructure located outside areas of very good quality <i>E. odorata</i> low woodland where possible.                                                     |  |  |
| aujacem areas.                                                                                                                                                        | of the PEPR (Coffey<br>Environments, 2011)) that can be<br>reasonably attributed to mining                                                                                                                                                                                                                                                                                                                                                                                                          | Clearly identifying and documenting areas to be protected and areas to be cleared.                                                                                   |  |  |
|                                                                                                                                                                       | operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimising the area of direct land clearing.                                                                                                                         |  |  |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Progressively rehabilitating cleared land.                                                                                                                           |  |  |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional surveying of diamond firetail populations.                                                                                                                |  |  |
| No introduction of                                                                                                                                                    | Annual fauna surveys within the                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prohibition of pets and feeding of animals.                                                                                                                          |  |  |
| new pests<br>(including feral<br>animals), nor                                                                                                                        | ML indicate no significant increase in abundance of pest (feral) species and no introduction of new pest species that can be reasonably attributed to mining operations (as determined by flora and fauna consultant) when compared to baseline (as shown in Appendix 5A and 5B of the PEPR).  Leading Indicator Criteria:  Annual flora surveys within the ML (including photographic monitoring) show no significant mine related change (as determined by flora and fauna consultant) in remnant | Controlled extermination of introduced fauna species.                                                                                                                |  |  |
| increase in<br>abundance of<br>existing pest                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Internal and external auditing to assess housekeeping standards (in particular litter control).                                                                      |  |  |
| species in the lease area and adjacent areas caused by mining operations.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation of Hillgrove's Feral Animal Control standard operating procedure (SOP).                                                                               |  |  |
| All clearance of native vegetation is authorised under appropriate legislation and no permanent loss of abundance or diversity on or off the lease due to operations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Clear identification and documentation of areas to be protected and areas to be cleared.                                                                             |  |  |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ensuring areas to be disturbed are minimised and clearing complies with relevant requirements.                                                                       |  |  |
|                                                                                                                                                                       | vegetation (not cleared for mining) compared to baseline (as shown in Appendix 4A and 4B of the PEPR).                                                                                                                                                                                                                                                                                                                                                                                              | Implementation of the Native Vegetation Management Plan and Flora Management Plan.                                                                                   |  |  |
|                                                                                                                                                                       | Assessment Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clearing to be undertaken in accordance                                                                                                                              |  |  |
|                                                                                                                                                                       | Review of site clearance records<br>and maps of cleared areas to show<br>clearance is in accordance with                                                                                                                                                                                                                                                                                                                                                                                            | with Hillgrove's Native Vegetation<br>Management Plan and Ground Disturbance<br>SOP.                                                                                 |  |  |
|                                                                                                                                                                       | approved Native Vegetation Management Plan (Appendix 9 of the PEPR).                                                                                                                                                                                                                                                                                                                                                                                                                                | Establishment and ongoing management of SEB offset areas.                                                                                                            |  |  |
|                                                                                                                                                                       | At mine closure, flora survey to show onsite revegetation has been undertaken in accordance with the                                                                                                                                                                                                                                                                                                                                                                                                | Avoidance of threatened vegetation communities and flora species during the design phase where practicable.                                                          |  |  |
|                                                                                                                                                                       | approved Native Vegetation Plan (see Appendix 9 of the PEPR).                                                                                                                                                                                                                                                                                                                                                                                                                                       | Progressive rehabilitation. 'No go zones' clearly defined.                                                                                                           |  |  |

| Outcome                                                    | Assessment Criteria                                                                                                                                                     | Summary of Control Measures                                                                                      |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| No uncontrolled fires caused by mining operations          | Annual flora surveys within the ML (including photographic monitoring) show no significant fire related change (as determined by flora and fauna consultant) in remnant | Clear identification and documentation of areas to be protected and areas to be cleared.                         |
| effect remnant vegetation on or                            |                                                                                                                                                                         | Installation of fire breaks.                                                                                     |
| off the mine site.                                         | vegetation (not cleared for mining) compared to baseline (as shown in Appendices 4A and 4B of the                                                                       | Control measure relating to fire hazards are summarised in Section 7.15 of the PEPR (Coffey Environments, 2011). |
|                                                            | PEPR) resulting from uncontrolled fires caused by mining operations.                                                                                                    | All fires caused by mining operations are controlled.                                                            |
| No introduction of new weeds and                           | Annual flora surveys within the ML (including photographic monitoring)                                                                                                  | Inspection and wash down of vehicles and project equipment.                                                      |
| plant pathogens,<br>nor increase in                        | show no significant increase in weeds or plant pathogens and no introduction of new declared weeds that can be reasonably                                               | Control of declared weed species.                                                                                |
| abundance of existing weed                                 |                                                                                                                                                                         | Regular monitoring for weed outbreaks and implementation of weed control measures.                               |
| species in the                                             | attributed to mining operations (as                                                                                                                                     | Minimisation of disturbance areas.                                                                               |
| lease area and adjacent areas caused by mining operations. | determined by flora and fauna consultant) compared to baseline (as shown in Appendices 4A and 4B of the PEPR).                                                          | Implementation of Hillgrove's Weed and Pathogen Management SOP.                                                  |

## 4. Issues

Three major fauna habitat areas have been identified in the project area (*Eucalyptus odorata* low woodland, *Lomandra effusa* grassland and *Austrostipa* spp. grassland), threatened flora and fauna species may be affected by clearance of these areas as a result of project activities. Key issues of concern to threatened flora and fauna are:

- Removal and/or disturbance of habitat.
- · Reduced level of resources.
- · Increased abundance of feral animals.
- · Increased abundance of weed species.

# 5. Objectives

The objectives of this management plan include:

- No significant adverse impact to the abundance and diversity of threatened fauna species in the lease area and adjacent areas.
- No significant adverse impact to the abundance of threatened flora species in the lease area and adjacent areas.

## 6. Associated Plans

- · Native Vegetation Management Plan.
- Flora Management Plan.
- Noise and Vibration Plan.
- · Traffic Management Plan.

# 7. Standard Operating Procedures

- · General Fauna Management.
- Excavation Inspection.
- Feral Animal Control.
- · Weed and Pathogen Management.
- · Ground Disturbance.

## 8. Forms

- Trapped Animal Logsheet.
- · Incident Report.
- Ground Disturbance Certificate.
- Equipment Inspection Certificate.

## 9. Responsibilities

## 9.1 General Manager

The general manager will:

• Provide resources to implement the threatened species management plan.

## 9.2 Environmental Coordinator

The environmental coordinator will:

- Implement the threatened species management plan.
- · Manage the SEB offset area.
- · Coordinate monitoring activities.
- Report monitoring results to government agencies.
- Review monitoring results, assess management action efficiency against results and either revise this management plan or implement corrective actions as applicable.
- Train and induct all employees on the requirements of the threatened species management plan.

## 9.3 Department Managers

The department managers will:

- Support and promote the importance of minimising impact on the environment.
- Ensure that personnel implement requirements of the threatened species management plan.

## 9.4 All Personnel

All personnel will:

- Comply with requirements of the threatened species management plan.
- Undertake an environmental induction.

# 10. Management Procedures

## 10.1 General Management Procedures

General flora and fauna management procedures, which are also relevant to the management threatened flora and fauna, are covered in the General Fauna Management SOP and Ground Disturbance SOP and include:

- Establishment and ongoing management of SEB offset areas (including the implementation of a threatened species management plan).
- Project infrastructure located outside areas of very good quality *E. odorata* low woodland where possible.
- Avoidance of threatened vegetation communities and flora species during the design phase where practicable.
- Erecting an appropriate level of fencing, bunding or flagging tape to mark 'no-go' zones to ensure areas to be protected are clearly defined, identified and avoided.
- Clearly identifying and documenting areas to be protected and areas to be cleared.
- · Minimising the area of direct land clearing.
- Installation of fire breaks.
- Progressively rehabilitating disturbed areas and avoiding unnecessary future disturbance of these areas.
- · Prohibition of pets and feeding of animals.
- · Control of all declared weed species.
- Inspection and wash down of all vehicles and project equipment.
- · Controlled extermination of introduced fauna species.
- Internal and external auditing to assess housekeeping standards (in particular litter control). Implementation of Hillgrove's Feral Animal Control SOP.

## 10.2 Management Procedures Specific to Threatened Species

Management procedures specific to the threatened species listed in Sections 1.1.1 and 1.1.2 include:

- Annual surveys to monitor the presence and distribution of threatened species within the project area.
- Translocation of threatened plant species identified during flora surveys prior to land clearance
  of designated mining areas. Collected plants are to be transported to a nursery facility
  managed by COOE Pty Ltd located at Littlehampton, the plants are then to be handed over to
  the Native Orchid Society of SA for maintenance and propagation.
- Avoid disturbance of identified nests during the breeding season i.e., diamond firetail, August to January; white-winged chough, August to December; peregrine falcon, August to December.

- Stockpiling of tree stumps and large trees containing hollows that have been removed during land clearance. The tree stumps and large trees will be relocated into revegetated areas to provide ready-made habitat for fauna that utilise hollows i.e., brushtail possums and peregrine falcons.
- Management of grasses (i.e., staged slashing program) to minimise impact to feeding by beautiful firetail.

## 11. Monitoring Procedures

Ongoing fauna and flora monitoring will be conducted to allow identification of any impacts of mine construction and operations on threatened native fauna and flora. Monitoring will be conducted in the major habitat types present on the mining lease, which are areas of remnant *Eucalyptus odorata* low woodland and *Lomandra effusa* grassland and *Austrostipa* spp. grassland in areas remote from project activity (see Figure 1).

## 11.1 Fauna

## 11.1.1 Method

Threatened fauna monitoring will be conducted as part of the annual spring fauna surveys and will involve targeted counts for threatened species at selected sites to allow assessment of:

- Changes in the abundance, composition or condition of threatened species.
- Ongoing impacts to fauna as a result of project-related activities.
- Success of rehabilitation and/or relocation activities for threatened species.
- Increases in the density and distribution of pest animal infestations.
- Introduction of new pest animal species.
- Diversity and health of waterbird populations at permanent waterbodies.

Survey methods will include visual observations, spotlighting, bird census transects, trapping and active searching.

## 11.1.2 Monitoring Sites and Frequency

Monitoring sites are located within the three major fauna habitat areas (*Eucalyptus odorata* low woodland, *Lomandra effusa* grassland and *Austrostipa* spp. grassland) within the mining lease. Inspection and monitoring is also to be conducted prior to, during and following disturbance. The number of sites to be sampled during monitoring is calculated to allow for valid statistical comparisons between control and impact sites.

Fauna monitoring will be undertaken as follows:

Annually during spring for selected sites within the three major fauna habitat areas (*Eucalyptus odorata* woodland, *Lomandra effusa* grassland and *Austrostipa* spp. grassland) within the mining lease to specifically identify the presence of diamond firetail, brushtail possum and other selected species in the mining lease.

- Annually for pest animal presence and pest animal control success within the mining lease and surrounds.
- Weekly inspection of waterbodies located within the mining lease (including the TSF decant and process water dam) for the presence of fauna species.
- Daily inspection of potential 'fauna traps' located within the mining lease (including temporary trenches and excavations).
- As required animal deaths as a result of project activities will be recorded through the incident reporting system.

## 11.2 Flora

## 11.2.1 Method

Monitoring sites are surveyed and photographed to allow assessment of:

- Changes in the abundance, composition or condition of vegetation communities, particularly threatened vegetation communities (*Eucalyptus odorata* low woodland and *Lomandra effusa* ± *Heliochrysum leucopsideum* open tussock grassland).
- Ongoing impacts to threatened flora as a result of project-related activities.
- · Accumulation of litter.
- Landscape function analysis (LFA).

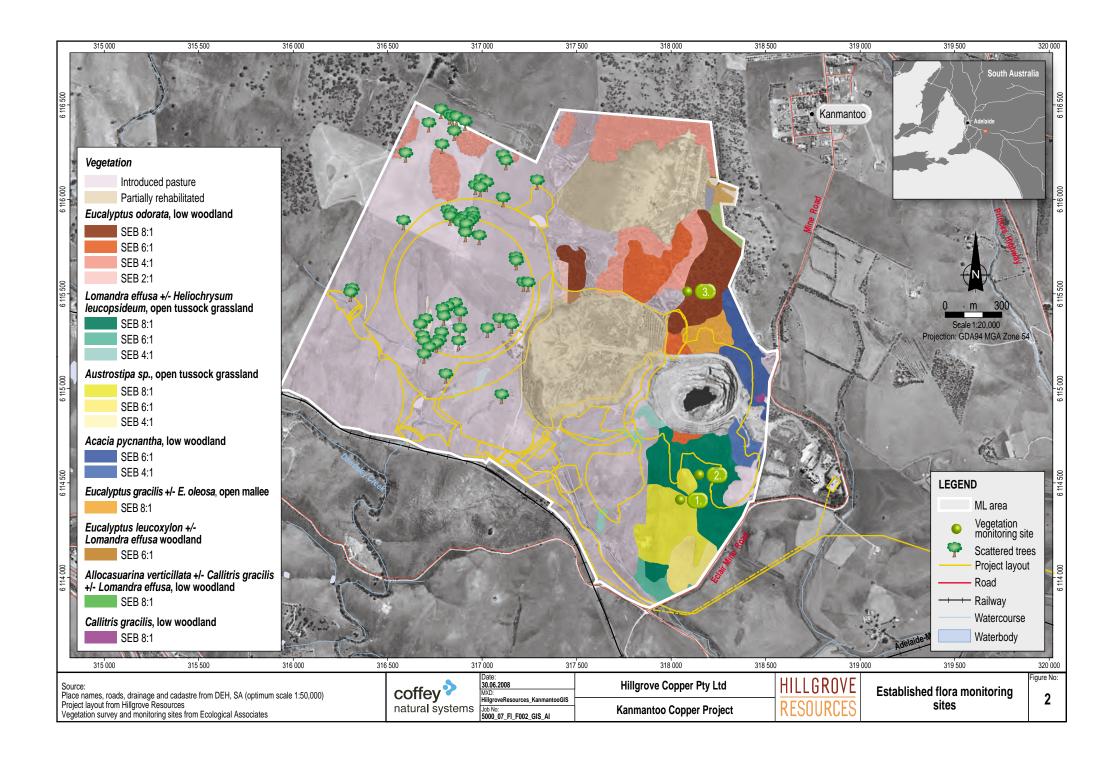
Transects and photo monitoring will be used to allow the comparison of quantitative data on threatened flora abundance in the different vegetation communities, and between near-mine and control sites.

Monitoring is to be conducted in the 24 established monitoring sites (Figure 2).

## 11.2.2 Monitoring Sites and Frequency

A minimum of three transects have been established within each of the following major vegetation associations:

- Austrostipa spp. open tussock grassland.
- Lomandra effusa ± Heliochrysum leucopsideum open tussock grassland.
- Eucalyptus odorata low woodland.


Transect locations and the permanent vegetation monitoring sites positions are listed in Table 2 and shown on Figure 2.

Vegetation monitoring will be undertaken as follows:

- Annually during spring of quadrats listed in Table 2 to identify the presence of *Diuris behrii* (Behr's cowslip orchid) and *Ptilotus erubescens* (hairy tails).
- Threatened plants observed during the survey will be flagged for translocation to a nursery facility managed by COOE Pty Ltd located at Littlehampton, the plants are then to be handed over to the Native Orchid Society of SA (*Diurus behrii*) or local land care group (*Ptilotus erubescens*) for maintenance and propagation.

Table 2 Location and description of permanent vegetation monitoring sites

| Cito name | UTM (WGS84) |          | Transect | <b>V</b>                                                                | Condition   |
|-----------|-------------|----------|----------|-------------------------------------------------------------------------|-------------|
| Site name | Easting     | Northing | position | Vegetation association                                                  | (SEB ratio) |
| KANLOM 1  | 317961      | 6114064  | Start    | Lomandra effusa (Scented Mat-rush) +/-                                  | 8:1         |
| KANLOM 1  | 317967      | 6114049  | End      | Lomandra multiflora subsp. dura (Stiff Mat-rush) Open Tussock Grassland |             |
| KANLOM 2  | 317963      | 6114040  | Start    | Lomandra effusa (Scented Mat-rush) +/-                                  | 8:1         |
| KANLOM 2  | 317964      | 6114024  | End      | Lomandra multiflora subsp. dura (Stiff Mat-rush) Open Tussock Grassland |             |
| KANLOM 3  | 317931      | 6114051  | Start    | Lomandra effusa (Scented Mat-rush) +/-                                  | 8:1         |
| KANLOM 3  | 317922      | 6114028  | End      | Lomandra multiflora subsp. dura (Stiff Mat-rush) Open Tussock Grassland |             |
| KANODO 1  | 317515      | 6115604  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 1  | 317470      | 6115623  | End      | Open Woodland                                                           |             |
| KANODO 2  | 317528      | 6115551  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 2  | 317505      | 6115592  | End      | Open Woodland                                                           |             |
| KANODO 3  | 318229      | 6115760  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 3  | 318260      | 6115786  | End      | Open Woodland                                                           |             |
| KANODO 4  | 316754      | 6116204  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 4  | 316788      | 6116247  | End      | Open Woodland                                                           |             |
| KANODO 5  | 316751      | 6116127  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 5  | 316746      | 6116089  | End      | Open Woodland                                                           |             |
| KANODO 6  | 316537      | 6116233  | Start    | Eucalyptus odorata (Peppermint Box)                                     | 8:1         |
| KANODO 6  | 316579      | 6116250  | End      | Open Woodland                                                           |             |
| KANSTI 1  | 318063      | 6114321  | Start    | Austrostipa scabra (Spear grass)                                        | 4:1         |
| KANSTI 1  | 318038      | 6114335  | End      | Tussock Grassland                                                       |             |
| KANSTI 2  | 318008      | 6114283  | Start    | Austrostipa scabra (Spear grass)                                        | 4:1         |
| KANSTI 2  | 318005      | 6114311  | End      | Tussock Grassland                                                       |             |
| KANSTI 3  | 318130      | 6115752  | Start    | Austrostipa scabra (Spear grass)                                        | 4:1         |
| KANSTI 3  | 318131      | 6115768  | End      | Tussock Grassland                                                       |             |



# 12. Review and Reporting

The fauna and flora monitoring results will be reviewed at least annually, the results assessed against management action efficiency. Depending on the results of this review, the management plan will either be revised or corrective actions will be implemented as applicable.

Reporting requirements include as a minimum:

- Hillgrove must provide to the Director of Mines an annual Mining and Rehabilitation
   Compliance Report (MARCR) on operations carried out on the mining lease and compliance with the approved PEPR.
- Hillgrove must report any non-compliance with the Act, Lease Conditions and approved PEPR
  to the Director of Mines. A verbal notification must be provided within 24 hours, after Hillgrove
  becomes aware of the non-compliance. A written report must be provided within 3 days of
  such time period as approved by the Director of Mines.
- Hillgrove must report to the Environment Protection Authority (EPA) (on EPA emergency phone number 1800 100 833) all incidents causing or threatening serious or material environmental harm (as defined in section 5 of the Environment Protection Act), upon becoming aware of the incident, in accordance with section 83 of the EP Act.

## 13. References

- Birds Australia. 2006. Diamond Firetail. A WWW publication accessed online at http://birdsinbackyards.net/species/Stagonopleura-guttata on 28 September 2011.
- Birds Australia. 2008a. Peregrine Falcon. A WWW publication accessed online at http://birdsinbackyards.net/species/Falco-peregrinus on 28 September 2011.
- Birds Australia. 2008b. White-winged Chough. A WWW publication accessed online at http://birdsinbackyards.net/species/Corcorax-melanorhamphos on 28 September 2011.
- Coffey Environments. 2010. Native Vegetation Management Plan: Kanmantoo Copper Project. A report prepared for Hillgrove Copper Pty Ltd, Kanmantoo, South Australia.
- Coffey Environments. 2011. Program for Environmental Protection and Rehabilitation: Kanmantoo Copper Project. A report prepared for Hillgrove Copper Pty Ltd, Kanmantoo, South Australia.
- Coffey Natural Systems, 2009. Mine Closure and Completion Plan: Kanmantoo Copper Project. A report prepared for Hillgrove Copper Pty Ltd. Kanmantoo, South Australia.
- DES. 2008. Spring survey of diamond firetail (*Stagonopleura guttata*) at the Kanmantoo Copper Project, South Australia. A report prepared by Donato Environmental Services for Hillgrove Resources. December 2008.
- DES. 2010. Spring survey of diamond firetail (*Stagonopleura guttata*) and common brushtail possum (*Trichosurus vulpecular*) at the Kanmantoo Copper Project, South Australia. A report prepared by Donato Environmental Services for Hillgrove Resources. December 2010.
- DSEWPAC. 2011. *Merops ornatus* in Species Profile and Threats Database, Department of Sustainability, Environment, Water, Population and Communities Canberra. A WWW publication accessed on 28 September 2011 at http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon\_id=670
- Ecological Associates. 2006. Targeted survey for threatened species and weed species at Kanmantoo Mine. September. A report prepared by Ecological Associates for Hillgrove Resources.
- Ecological Associates. 2007a. Final Report. Kanmantoo Copper Project Flora Assessment. May. A report prepared by Ecological Associates for Enesar Consulting, Abbotsford, Victoria.
- Ecological Associates. 2007b. Final Report. Kanmantoo Copper Project Spring Flora Assessment. A report prepared by Ecological Associates for Enesar Consulting, Wayville, Adelaide. November 2007.
- Wilson, A. and Bignall, J. 2009. Regional recovery plan for threatened species and ecological communities of Adelaide and the Mount Lofty Ranges, South Australia. Department for Environment and Heritage, South Australia.

**Appendix 6** 

Socio-economic

# Appendix 6A

Stakeholder and Community Engagement Plan

Prepared by:

Community Engagement Group Australia (cega) Bob Goreing CEO Mob 0418 816 788 E mail bob@cega.com.au

# **HILLGROVE RESOURCES LIMITED**

**Updated Stakeholder and Community Engagement Plan** 



# Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

# Contents

| Section    | Description                                                                  | Page |
|------------|------------------------------------------------------------------------------|------|
| 1.         | Statement of Commitment to Effective Stakeholder and Community<br>Engagement | 3    |
| 2.         | About the Plan                                                               | 3    |
| 3.         | Guiding principles for Stakeholder and Community Engagement                  | 4    |
| 4.         | Stage of the mining operation and its impact on the SCEP                     | 6    |
| 5.         | Project summary                                                              | 6    |
| 6.         | Understanding the community                                                  | 7    |
| 7.         | Stakeholder list                                                             | 10   |
| 8.         | Stakeholder and Community Engagement Framework                               | 12   |
| 9.         | Stakeholder and Community Engagement Plan (SCEP) Summary                     | 13   |
| 10.        | Stakeholder and Community Engagement Action Plan                             | 14   |
| Appendix 1 | Communications Plan                                                          | 16   |
| Appendix 2 | KCCCC Action List                                                            | 22   |

| Version control code | Status | Date         | Person supplied                        |
|----------------------|--------|--------------|----------------------------------------|
| v1 for review        | DRAFT  | 9 April 2014 | Steve McClare GM Kanmantoo Copper Mine |

## 1. Statement of Commitment to Effective Stakeholder and Community Engagement

The Board and Executive Management of Hillgrove Resources Limited (the company) sees effective stakeholder and community engagement as a key to success for its Kanmantoo Copper Mine development. The company particularly recognises the unique challenges and opportunities for its Kanmantoo operation working in an environmentally sensitive area and in close proximity to two small regional townships with residents enjoying a rural lifestyle.

The company understands that it has obligations under the SA Mining Act to consult with the community and document issues of concern and steps taken to address these. Beyond this the company is committed to leading practice that seeks to involve the community with a view to:

- ensuring the local and regional community is kept fully informed about each stage of the mine's development through the provision of clear, accurate and unbiased information in appropriate formats and delivered through a variety of media
- building stakeholder and community awareness in, understanding of, and support for, the company and the Kanmantoo Copper Mine
- building the company's understanding of its stakeholders and the wider community with a focus on addressing priority issues of concern in a timely manner as well as opportunities as they arise
- identifying and realising opportunities for the company to participate as a member of the community and deliver real and measurable benefits to the community
- encouraging community input into topics and issues that help to inform and improve the company's decision making

The company recognises and supports the South Australian Government's policy for effective community engagement contained in its guideline document 'Better Together' (SA Government 2012)<sup>1</sup>. In line with these guidelines, the company is committed to:

- clearly understanding the purpose of effectively engaging with stakeholders and the wider community
- communicating clearly, in accurate and unbiased terms
- communicating in a timely fashion with stakeholders and the wider community with particular appreciation of the likely changes to priorities through various stages of the mine's development
- identifying and involving the full range of stakeholders and the wider community likely to be impacted by our operations
- understanding, appreciating and being sensitive to the nature of the community in which we are operating
- behaving in a genuine manner with a particular emphasis on 'doing what we say we will do'
- encouraging innovative and creative solutions to issues and realising opportunities by listening to and appreciating community input.

| Α | pr | il | 2 | 0 | 14 | ı |
|---|----|----|---|---|----|---|
|   |    |    |   |   |    |   |

-

<sup>&</sup>lt;sup>1</sup> Better Together: principles of engagement - a foundation for engagement in the South Australian government (SA Government 2012)

#### 2. About the Plan

The Stakeholder and Community Engagement Plan (SCEP) for the Kanmantoo Copper Mine project has been updated in April 2014 as part of Hillgrove Resources Limited's commitment to good practice and continual improvement.

## The updated SCEP:

- recognises and acknowledges experience in the implementation of the current plan in the spirit of continual improvement
- recognises the performance orientated (risk based) formats sought by the mining regulator (DMITRE) in the SA Mining Act review 2011
- reflects policy developments of the SA Government and the South Australian Chamber of Mines and Energy (SACOME) in providing direction for effective community engagement
- reflects draft guidelines for Community Consultative Committees<sup>2</sup> currently being developed by South Australian <u>Department for Manufacturing, Innovation, Trade, Resources and Energy</u> (DMITRE). The Kanmantoo Callington Community Consultative Committee (KCCCC) is an important community forum which is supported by the company

## 3. Guiding principles for Stakeholder and Community Engagement

Hillgrove Resources Limited sees effective community engagement as a key success factor in striving to be a leading practice metalliferous mining company with a working copper mine in the Adelaide Hills of South Australia.

The company recognises the unique challenges of operating a mine in a sensitive environmental precinct near regional populations. The Board and executive team of the company are committed to proactively working with all stakeholders and the wider community who may be impacted by our operation.

The company's approach to community engagement is based on the good practice principles of the South Australian Government's guidelines for effective community engagement contained in their policy document 'Better Together (2012)'. In line with Better Together principles, the company's approach is designed to lead to six important outcomes:

- 1. '3We know why we are engaging and we communicate this clearly
- 2. We know who to engage
- 3. We know the background and history
- 4. We begin early
- 5. We are genuine
- 6. We are creative, relevant and engaging'.

This approach also reflects the principles of the SACOME Code of Practice for Community and Stakeholder Engagement for the South Australian Resources Industry in recognising that effective community engagement features:

1. involving stakeholders and communities of interest in the decision-making processes of the company in order to '4promote more informed, better understood and sustainable decisions'

\_

<sup>&</sup>lt;sup>2</sup> ibid pp 8

<sup>&</sup>lt;sup>3</sup> Better Together SA Government 2012 pp 12 source: http://saplan.org.au/better\_together/principles/5-we-are-genuine

## Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

2. respectfully acknowledging the interests of stakeholders and the wider community and valuing their input in order to '5build trust and positive relationships with and between stakeholder' groups'.

The five key principles for effective community engagement under the SACOME Code are:

- 1. Inclusivity
- 2. Transparency and accountability
- 3. Clarity, accuracy and balance
- 4. Accessibility and timeliness
- 5. Meaningfulness and respect

The 'Better Together' and the SACOME Code principles can be mapped against one another:

| Better Together                        | SACOME Code of Practice         |
|----------------------------------------|---------------------------------|
| We know why we are engaging and we     | Transparency and accountability |
| communicate this clearly               | Clarity, accuracy and balance   |
|                                        | Meaningfulness and respect      |
| We know who to engage                  | Inclusivity                     |
| We know the background and history     | Clarity, accuracy and balance   |
|                                        | Meaningfulness and respect      |
| We begin early                         | Accessibility and timeliness    |
| We are genuine                         | Transparency and accountability |
|                                        | Meaningfulness and respect      |
| We are creative, relevant and engaging | Clarity, accuracy and balance   |
|                                        | Meaningfulness and respect      |

<sup>&</sup>lt;sup>4</sup> SAC OME Code of Practice for Stakeholder and Community Engagement (2010 reviewed 2013) source: http://www.sacome.org.au/

<sup>&</sup>lt;sup>5</sup> ibid

## 4. Stage of the mining operation and its impact on the SCEP

The relationship with the community changes over time as the mining operation moves through stages including exploration, feasibility studies, approvals processes, construction, commissioning and operating and rehabilitation and mine closure.

Hillgrove Resources sought to effectively engage with the community at a very early stage in the development of the project (2005). This early relationship was based on keeping the community fully informed by providing accurate, complete and unbiased information about the project.

During the approvals process for the original mine lease application (2009) the relationship between the company and the community became more structured with the formation of the Kanmantoo Callington Community Consultative Committee (KCCCC). This group arose as a natural progression from broader public forums and shifted the focus from the company informing the community to the company and the community engaging in meaningful consultation to add value and improve decision making.

Now that the mine is fully operational, it is appropriate that the company updates its SCEP. Future decisions for the company may include continually improving day to day operations, further approvals and eventually rehabilitation and mine closure. The updated SCEP looks to involve the community in these next steps.

## 5. Project summary

The Kanmantoo Copper Project is located in the Adelaide Hills region of South Australia. The area has a long history of mining with over 39,000 tonnes of copper metal having been extracted by various operators over time. Despite this it remains one of the most under explored and prospective base metal provinces in Australia, showing outstanding potential for copper-gold and silver-lead-zinc mineralisation.

The project's location, 55 kilometres by road from Adelaide's CBD, brings significant inherent operating and capital cost advantages. The mine accesses low cost grid power and water. Ample water is available to operate the mine with the majority of its process water coming from treated waste water from the District Council of Mt Barker's Laratinga Water Treatment Plant. The water is piped about 15km form Mt Barker to Callington. Hillgrove assisted in building this infrastructure which now provides environmental and other benefits through sustainable water resources management.

The mine is situated three kilometres from the South Eastern Freeway which is the main dual carriageway leading to Adelaide and the export port of Port Adelaide.

The mine's location in the beautiful and well serviced Adelaide Hills helps to attract and retain a high quality workforce who predominantly live within the region. Approximately 200 personnel work at the mine.

The Project is a ten year open-cut mine with throughput of over 2.8Mt pa, producing approximately 80,000t of concentrate, containing about 20,000t of copper metal and associated gold and silver per annum with exploration potential for further copper-gold mineralisation. The potential for further discoveries at Kanmantoo is high. The deposit appears to remain open along strike and down dip where additional drilling could materially increase the resource inventory.

## 6. Understanding the community

The location of the Kanmantoo Copper Mine places it in close proximity of two small townships, Kanmantoo and Callington and about 15 kilometres from the Regional Centre of Mt Barker.

The local community (those living and working within 5 kilometres of the mine) has a strong identity and to respect this fact and to acknowledge that these residents are likely to be impacted more directly that those living further away, the company has made a clear distinction between the local community and the regional community.

The regional community covers the local government area (LGA) of the District Council of Mt Barker (DCMB). Amongst other things, economic and social benefits of the mine are likely to be felt across this area and community services like hospitals and high schools are located here.

The company also appreciates that there are implications for the state as a whole as a result of the scale of the operation at Kanmantoo Copper Mine and its potential to return benefits to this wider group.

## **Local community**

Like any community the local communities of Kanmantoo and Callington represent a diverse range of interests, priorities and perspectives. However it is clear to the company that any consideration of benefits for the community that may arise from the mine is based on the company having the confidence of the community that they can operate in harmony with other community pursuits including residential life and existing businesses like farming and manufacturing.

In December 2013 Hillgrove Resources Limited engaged with the community on plans for a mine life extension of two years (from 2017 – 2019) for its Kanmantoo Copper Mine. It was plain that community support for such an extension required confidence in the community that environmental matters like emissions of dust, noise and vibration could be effectively managed. Whilst the benefits to the community of an extension to mine life were recognised particularly by some groups, the company saw the priority as building community confidence in its environmental performance.

The priorities for the local community were captured in a summary of views expressed during this consultation and these have been adopted by the company and the community (through the Kanmantoo Callington Community Consultative Committee (KCCCC)) as its action list (Appendix 2).

## **Regional communities**

## Relative competitiveness

The Regional Institute Australia (RIA) has developed a measure of relative competitiveness for the nation's Local Government Areas (LGAs). The measure known as [In]Sight: Australia's regional competitiveness index is available from the RIA website (source: <a href="http://insight.regionalaustralia.org.au">http://insight.regionalaustralia.org.au</a>)

The index helps to understand how the region is performing in respect of a number of indicators for relative competitiveness. The benefit of this understanding for the company is to help identify how the presence of the mine may assist the community to improve its competitiveness.

## Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

The index allows for comparisons to be made between LGAs and benchmarks these nationally in the form of rankings against the 560 LGAs across the county.

A full description of the data used, the definitions of the various indicators and how the comparisons are made is available on the RIA website. It is noted that caution must be taken to recognise that the data is used to generate rankings only and is therefore limited in its scope

The indexes for DCMB and the Rural City of Murray Bridge are shown below.

|                                          | Mount Barker (DC) |          | Murray Bridge<br>(RC) |          |
|------------------------------------------|-------------------|----------|-----------------------|----------|
|                                          | Value             | National | Value                 | National |
|                                          |                   | Ranking  |                       | Ranking  |
| Institutions                             | Theme ranking     | 197      | Theme ranking         | 390      |
| Public service                           | 7.50%             | 143      | 5.40%                 | 320      |
| Infrastructure & Essential Services      | Theme ranking     | 143      | Theme ranking         | 208      |
| Aviation infrastructure                  | 29.5              | 212      | 65.6                  | 308      |
| Port infrastructure                      | 29.5              | 176      | 65.6                  | 247      |
| Access to tertiary education services    | 5.00%             | 121      | 2.00%                 | 308      |
| Access to technical or further education | 3.50%             | 163      | 3.30%                 | 214      |
| Access to hospital services              | 0.0059            | 372      | 0.0069                | 334      |
| Access to allied health services         | 12.00%            | 138      | 11.00%                | 202      |
| Access to GP services                    | 4.9               | 262      | 5.4                   | 178      |
| Police services                          | 0.0031            | 155      | 0.0033                | 135      |
| Road infrastructure                      | 3.7               | 316      | 3.6                   | 303      |
| Access to primary education services     | 4.9               | 305      | 4.4                   | 287      |
| Access to secondary education services   | 5.1               | 184      | 4.4                   | 171      |
| Rail infrastructure                      | 21.2              | 395      | 3.8                   | 55       |
| Economic Fundamentals                    | Theme ranking     | 136      | Theme ranking         | 208      |
| Building approvals                       | \$1.14            | 117      | \$1.01                | 148      |
| Wage/labour costs                        | \$41,632          | 227      | \$34,239              | 454      |
| Human Capital                            | Theme ranking     | 72       | Theme ranking         | 384      |
| University qualification                 | 19.00%            | 121      | 7.20%                 | 526      |
| Technical qualification                  | 37.80%            | 83       | 31.30%                | 318      |
| Lifelong learning                        | 44.50%            | 280      | 45.10%                | 245      |
| Early school leavers                     | 52.10%            | 164      | 65.80%                | 442      |
| Health                                   | 51.40%            | 89       | 63.80%                | 374      |
| English proficiency                      | 97.30%            | 39       | 91.70%                | 425      |
| Early childhood performance              | 16.60%            | 112      | 11.80%                | 35       |
| Primary school performance               | 34.80%            | 164      | 21.50%                | 422      |
| Secondary school performance             | 29.10%            | 91       | 11.90%                | 424      |
| Labour Market Efficiency                 | Theme ranking     | 179      | Theme ranking         | 485      |
| Unemployment rate                        | 4.50%             | 211      | 7.30%                 | 474      |
| Young unemployment                       | 11.60%            | 314      | 13.00%                | 390      |
| Participation rate                       | 80.70%            | 73       | 68.90%                | 463      |
| Skilled labour                           | 30.80%            | 285      | 19.90%                | 528      |
| Welfare dependence                       | 15.60%            | 147      | 21.20%                | 389      |
| Technological Readiness                  | Theme ranking     | 98       | Theme ranking         | 319      |

## Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

| Internet connection                       | 72.50%           | 51  | 55.00%          | 286 |
|-------------------------------------------|------------------|-----|-----------------|-----|
| Broadband connections                     | 72.00%           | 100 | 55.20%          | 453 |
| Businesses in technology and related      | 7.400/           | 111 | 2.100/          | 225 |
| industries                                | 7.10%            | 111 | 3.10%           | 325 |
| Workers in ICT and electronics            | 1.70%            | 125 | 0.80%           | 235 |
| Business Sophistication                   | Theme ranking    | 173 | Theme ranking   | 344 |
| Economic diversification                  | 0.05             | 96  | 0.17            | 226 |
| Dominance of large employers              | 3.20%            | 340 | 2.90%           | 203 |
| Exporters, importers, wholesalers         | 0.23%            | 89  | 0.08%           | 298 |
| Income source: Own business               | \$16,034         | 235 | \$14,966        | 260 |
| Access to local finance                   | 0.30%            | 294 | 0.34%           | 277 |
| Innovation                                | Theme ranking    | 146 | Theme ranking   | 421 |
| Human resources in science and technology | 3.90%            | 133 | 1.50%           | 413 |
| Research and development managers         | 0.06%            | 140 | 0.00%           | 257 |
| Presence of research organisations        | 0.00%            | 70  | 0.00%           | 70  |
| Market Size                               | Theme ranking    | 60  | Theme ranking   | 256 |
| Business turnover                         | \$15,570,015,000 | 34  | \$6,836,025,000 | 243 |
| Working age population                    | 199,194          | 90  | 120,526         | 254 |
| Natural Resources                         | Theme ranking    | 277 | Theme ranking   | 303 |
| Mineral resources                         | 1.60%            | 226 | 1.00%           | 283 |
| Timber resources                          | 5.40%            | 55  | 0.00%           | 118 |
| Commercial fishing and aquaculture        | 0.21%            | 86  | 0.06%           | 142 |
| Coastal access                            | 29.5             | 176 | 65.6            | 247 |
| National Park                             | 37.1             | 466 | 17.7            | 383 |
| Net primary productivity                  | 29.2             | 39  | 1.2             | 420 |

Date: 7/4 2014

Data provided by Region Australia Institute

http://www.regionalaustralia.org.au

This sort of information may be important to various groups such as those seeking to invest in the region but it also provides a valuable profile of the region's competitiveness for the whole community in order to contextualise issues of importance like the availability of a skilled workforce and youth unemployment for example.

## Adaptive capacity

Another measure to help characterise the region is its adaptive capacity. This is a measure of the region's capacity to manage change. Change could be the result of a major enterprise coming to the area or closing down, or an environmental threat like climate change as well as any number of other factors.

The Adelaide Hills, Fleurieu and Kangaroo Island RDA Board produced its latest Regional Roadmap in 2013. In this document they have presented the adaptive capacity for the DCMB as well as other LGAs in the region. The index was developed by EconSearch for the RDA and full details of the methodology are provided in the Roadmap which is available at <a href="http://rdahc.com.au/">http://rdahc.com.au/</a>

In summary, the DCMB is 'strong across most capital groups with the exception of social capital where voluntary work and community strength are lower than the median for LGAs in South Australia. Standouts include a diverse economy, relatively lower proportions of persons 65 years of age and over and lower levels of lone person households'<sup>6</sup>.

### 7. Stakeholder list

Better Together defines the community as 'individuals and groups of people (such as residents) who are not part of an organised structure or group'.

## Local and regional communities

- The 'local' community of people in the immediate area and who are directly affected by project-related activities comprise nine landowners, traditional owners (the Peramangk people), local business owners and residents of Kanmantoo and Callington (approximately 900 people).
- The wider communities within the DCMB comprise residents and business owners and others
  who provide community services for example. Murray Bridge is another important centre about
  20 kilometres from the mine that has a similar function to Mt Barker but looser ties with the
  Adelaide metropolitan area.

Better Together defines stakeholders as 'people who are organised under the banner of a defined group or organisation, often providing representation to a broader group'.

### **External stakeholders**

The following organisations and groups represent particular stakeholders for the mine:

- The traditional owners, the Peramangk people
   The Peramangk people are represented by the Mannum Aboriginal Community Association
- Local residents of Kanmantoo and Callington
   The Kanmantoo Callington Community Consultative Committee (KCCCC) is a forum where the many and varied groups with an interest in the mine can come together. As well as those listed separately below there are a number of smaller groups like the Oval Committees, sports clubs and local youth all of which can be heard through the KCCCC.
- Local residents of Kanmantoo directly impacted
   The Kanmantoo Action Group was formed in 2013 to represent local residents of Kanmantoo directly impacted by the mine with a focus on environmental matters and emissions particularly
- Environment
   Kanmantoo Landcare Group is the local Landcare Group
- Emergency services
   Callington Kanmantoo has a CFS unit
- Tourism
  - The SA Tourism Commission (SATC) and Adelaide Hills Tourism are stakeholders with an interest in tourism opportunities in the area including mine tourism
- Culture and heritage
   The Peramangk people and other Aboriginal groups are stakeholders with the region being a meeting place and a trading hub for indigenous groups in the past

<sup>&</sup>lt;sup>6</sup> 2013 – 2016 Regional Roadmap RDA Adelaide Hills Fleurieu and Kangaroo Island source: http://rdahc.com.au/

## Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

A local non-indigenous heritage group is emerging from interested individuals particularly with an interest in the mining past of the area

Education and training

The Kanmantoo Primary School is the local school closest to the mine Other education and training groups include TAFE (at Mt Barker) and primary and high schools with regional catchment

Local government

The DCMB is the local government area in which the mine is located

• Regional development

The Southern Hills and Fleurieu Local Government Association and the Adelaide Hills, Fleurieu and Kangaroo Island Regional Development Australia (RDA) Board are regional development stakeholders

State government departments and agencies

The South Australian Department for Manufacturing, Innovation, Trade, Resources and Energy (DMITRE) is the state's regulator for mining. Other departments and agencies that have a significant interest in the mine and its operations include the SA <u>Department of Environment</u>, <u>Water and Natural Resources</u>, Environment Protection Agency (EPA), SA <u>Department of Primary Industries and Regions</u>, SA <u>Department of Planning</u>, <u>Transport and Infrastructure</u> and the SA <u>Department of Further Education</u>, <u>Employment</u>, <u>Science and Technology</u> for example.

• Commonwealth Government departments and agencies

The following Commonwealth Government departments may be stakeholders of the mine:

<u>Department of Agriculture</u>, <u>Department of Communications</u>, <u>Department of Foreign Affairs and Trade (DFAT)</u>, <u>Department of Industry</u>, <u>Department of Infrastructure and Regional Development</u>, <u>Department of the Environment</u>

Local elected members of state and commonwealth government

Mark Goldsworthy MP is the State Government's elected member for Kavel which is the State electorate in which the mine is located

Hon Jamie Briggs MP is the Commonwealth Government's elected member for Mayo which is the Commonwealth electorate in which the mine is located

Media

State

The Courier is the regional Newspaper that covers issues related to the mine PowerFM and radio 5MU are located at Mt Barker ABC 891 is a radio station relevant to the region State and National media are also relevant to the mine's operations given its significance to the

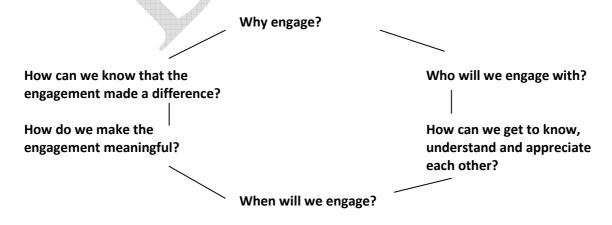
## Internal stakeholders

- The Hillgrove Resources Limited Board, the Executive team and shareholders
- staff of the mine
- contractors and suppliers to the mining operation

## 8. Stakeholder and Community Engagement Framework

## Aims of Stakeholder and Community Engagement

- ensuring the local and regional community is kept fully informed about each stage of the mine's development through the provision of clear, accurate and unbiased information in appropriate formats and delivered through a variety of media
- building stakeholder and community awareness in, understanding of, and support for, the company and the Kanmantoo Copper Mine
- building the company's understanding of its stakeholders and the wider community with a
  focus on addressing priority issues of concern in a timely manner as well as opportunities as
  they arise
- identifying and realising opportunities for the company to participate as a member of the community and deliver real and measurable benefits to the community
- encouraging community input into topics and issues that help to inform and improve the company's decision making
- ensuring that the relevant regulatory requirements related to community engagement are met


## **Outcomes and Key Objectives of Stakeholder and Community Engagement**

The following table identifies key outcomes and objectives of the Plan. It is based on the Better Together principles

| Outcomes                   | Key Objectives                                                                                                                      |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                            | key Objectives                                                                                                                      |
| 'Better Together' headings |                                                                                                                                     |
|                            |                                                                                                                                     |
| Outcome1                   | • to identify the company's commitment to effective community                                                                       |
|                            | engagement                                                                                                                          |
| We know why we are         | <ul> <li>to draw the link between stakeholder and community</li> </ul>                                                              |
| engaging and we            | engagement and the company's decision making                                                                                        |
| communicate this clearly   | <ul> <li>to identify the respective decisions that may be influenced by</li> </ul>                                                  |
|                            | community input                                                                                                                     |
|                            | • to identify which factors / decisions can and cannot be                                                                           |
|                            | influenced by stakeholder and community input?                                                                                      |
|                            | • to take note and respond to the changing nature of the project                                                                    |
|                            | over time                                                                                                                           |
|                            | to meet the company's compliance obligations for community                                                                          |
|                            | engagement                                                                                                                          |
| Outcome 2                  | to clearly define stakeholders and community members                                                                                |
| Guttonie 2                 | <ul> <li>to clearly define stakeholders and community</li> <li>to make sure that all relevant stakeholders and community</li> </ul> |
| We know who to engage      | members have been identified                                                                                                        |
| The Milot will to engage   | to make sure that stakeholders can continue to be identified                                                                        |
|                            |                                                                                                                                     |
|                            | (and self-nominate or be referred) through the life of the                                                                          |
|                            | project                                                                                                                             |
|                            | to respect and involve existing stakeholder networks and                                                                            |
|                            | community leadership groups in the engagement                                                                                       |
| Outcome 3                  | • to understand the community: profile, history, key drivers and                                                                    |
|                            | priorities and identify what this means for how stakeholders                                                                        |
| We know the background     | and the community may view the project                                                                                              |

| Outcomes<br>'Better Together' headings | Key Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and history                            | to ensure that information and approaches reflect the community profile and meet the particular needs of stakeholders and the wider community                                                                                                                                                                                                                                                                                                               |
| Outcome 4 We begin early (to ensure    | <ul> <li>to understand and match where possible, the expectations of<br/>stakeholders and the community in how, when and where they<br/>will be engaged</li> </ul>                                                                                                                                                                                                                                                                                          |
| 'no surprises')                        | to promote a 'no surprises' approach by beginning<br>engagement early and allowing time for stakeholders and the<br>community to develop an understanding of the project in a<br>logical sequence                                                                                                                                                                                                                                                           |
| Outcome 5                              | <ul> <li>to provide appropriate mechanism (s) through which<br/>information is available to stakeholders and the wider</li> </ul>                                                                                                                                                                                                                                                                                                                           |
| We are genuine                         | <ul> <li>community</li> <li>to allow appropriate time and opportunity for the community to consider the information</li> <li>to provide alternative ways for stakeholders to respond to calls for input in a timely manner</li> <li>to provide appropriate management and responsibility for stakeholder and community engagement within the company</li> <li>to measure and report on the effectiveness of stakeholder and community engagement</li> </ul> |
| Outcomes 6                             | <ul> <li>to facilitate the capture of the ideas, comments, suggestions<br/>and other input from stakeholders for use in informing</li> </ul>                                                                                                                                                                                                                                                                                                                |
| We are creative, relevant and engaging | <ul> <li>decision making by the company</li> <li>to identify the ways in which stakeholder and community input will be presented for use by the company and other decision makers (where appropriate)?</li> <li>to identify for the community how their input will be used in</li> </ul>                                                                                                                                                                    |
|                                        | <ul> <li>decision making</li> <li>to provide feedback to stakeholders and the community on how their input influenced company decision making</li> <li>to promote learning from experience</li> </ul>                                                                                                                                                                                                                                                       |

# 9. Stakeholder and Community Engagement Plan (SCEP) Summary



# 10. Stakeholder and Community Engagement Action Plan

| Why engage?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Who will we engage with?                                                                                                                                                                                                                                                                                                                                                          | How can we get to know, understand and appreciate each other?                                                                                                          | When will we engage?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | How do we make the engagement meaningful?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | How can we know that the engagement made a difference?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Present the outputs from the SCEP (input from the community) in a performance orientated (risk based) form consistent with other plans of the company.  Use the feedback from the community to inform other company Plans like induction and training and the Mine Closure Plan  Use input from the community and encourage company staff and contractors to be aware of the local community's priority issues of concern and potential opportunities and make suggestions to address these  Produce a clear statement of company commitment to effective community engagement  Regularly publish company updates in the Community Newsletter and make presentations to the KCCCC that clearly identify upcoming decisions of the company that can | the KCCCC in reviewing this stakeholder list and continually updating it  Include a Communications Plan in the SCEP  Ensure that all public publications carry an invitation to participate in the community engagement process either directly by contacting the company or through the KCCCC  Continue to support the KCCCC  encourage all KCCCC meetings to be public meetings |                                                                                                                                                                        | Identify key community expectations for engagement as part of the performance measurement process by using the community version of the SCEP as a guide.  Recognise that there may be changes in community priorities in relation to issues (positive and negative) as a result of progress in the project as it moves through stages of the development cycle.  Document progress made in easy to understand information sheets so that community members who join the engagement at a later stage are fully aware of the history of the project. | Through the Communications Plan in the SCEP, identify a number of different formats for the provision of information to stakeholders and the wider community and the collection of responses where appropriate. Recognise the usefulness of IAP2 tools in this regard. Include:  • published materials like facts sheets and Q and A available in hard copy or in electronic form on the KCCCC website  • display materials that may be shown at public events like public meetings, field days and regional shows  • presentations by relevant experts  • media including editorial in local newspapers and interviews on local radio  • social media opportunities  • site tours  Through the Communications Plan in the SCEP, consider appropriate response times such as lead time | Include a number of different techniques for gathering community input in the Communications Plan. Recognise the usefulness of IAP2 tools in this regard. Include:  • facilitated forums on dedicated topics including those hosted by KCCCC  • charrette meetings where experts are invited to participate  • 'circus' approaches encouraging responses to display materials and the like  • focus groups using existing community group structures  • direct responses via telephone and email or personal conversations  • surveys and questionnaires  Include a performance orientated (risk based) template in the SCEP for the collection of ideas, comments and other community input. Ensure that this is consistent with DMITRE guidelines |
| be influenced by community input  Clearly identify for the community where decisions cannot be influenced by the community because of factors like legal requirements or technical constraints  Produce a community version of the SCEP (simplified to one A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | support the broad advertising and inclusive invitations to participate in the KCCCC  Treat the SCEP as a 'living document' , continually updated as a standing item on the KCCCC agenda                                                                                                                                                                                           | on certain issues to make sure there is strong participation. For example it may be that youth employment is an issue and that the regional community may be targeted. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | for arranging meetings and reasonable time for submitting input.  Identify key persons from the senior management team with responsibility for stakeholder and community engagement. Include a standing item on Stakeholder and community engagement on the Hillgrove Resources Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for PEPR development.  Provide a clear explanation of how community input will be used by the company (and others where appropriate) as a matter of routine when community input is sought.  Provide feedback to the community on how their input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Hillgrove Resources Limited: Stakeholder and Community Engagement Plan

| page). Use this version:        |  | agenda.                             | was used to inform the decision     |
|---------------------------------|--|-------------------------------------|-------------------------------------|
| to identify a set of community  |  |                                     | making. This may be as a formal     |
| expectations under the          |  | Establish a set of six performance  | written report, a presentation at a |
| principles of the Plan that can |  | indicators (one for each outcome)   | KCCCC meeting or a personal         |
| be used to measure              |  | for effective stakeholder and       | explanation for example.            |
| performance                     |  | community engagement. Do this       |                                     |
| to provide a standing item of   |  | in consultation with the            | Link administrative tools like the  |
| the KCCCC where progress        |  | community and reflect community     | company's complaints register to    |
| can be monitored                |  | expectations. Report progress       | the identification of topic issues  |
|                                 |  | regularly as a standing item on the | for the community as part of a      |
| Document the outputs and        |  | KCCCC agenda.                       | real time approach that seeks to    |
| outcomes that are delivered     |  |                                     | make timely responses to            |
| through the SCEP and provide    |  |                                     | emerging issues.                    |
| these to DMITRE where           |  |                                     |                                     |
| appropriate as evidence of      |  |                                     |                                     |
| meeting compliance              |  | <b>*</b>                            |                                     |

## **APPENDIX 1**

# HILLGROVE RESOURCES LIMITED

# **Stakeholder and Community Engagement**

**Communications Plan** 

April 2014

### **Purpose**

To complement and enhance the Stakeholder and Community Engagement Plan (SCEP) through the effective use of communications.

### **Communication strategies**

### Strategic planning, structure and function

- 1. Identify, establish and maintain communication with stakeholder groups and community groups
- 2. Raise stakeholder awareness of the opportunities to be involved in identifying issues of concern and opportunities that may arise with a view to assisting Hillgrove Resources with its decision making
- 3. Reflect the priority issues for stakeholders and communities of interest directly in the program (eg events agenda) and encourage shared ownership

### Data management

- 1. Identify the range of stakeholders and the community likely to be impacted by the project
- 2. Enter stakeholder contact information into an electronic data base and manage the data set in accord with company policy related to privacy and data base security.
- 3. Advise stakeholders that their contact details will be used to enable contact with and between them on matters related to the project.
- 4. Check the currency of existing contact data at least once per year.

### <u>Published information</u>

- 1. Develop a register of project information (library) that can be accessed by stakeholders and community members to provide those who may join the engagement to fully understand the history and past achievements of the engagement process.
- 2. Report on the performance of the Stakeholder and Community Engagement program to the community and also through company mechanisms such as the company's Annual Report
- 3. Develop and maintain a list of key topics and issues relevant to the project in a performance orientated (risk based) format.
- 4. Encourage input from a wide range of sources of data and information on issues to build confidence in the integrity of this information
- 5. Prepare information / facts sheets as required and in a timely manner and in a form (eg Plain English) that is easily recognized by stakeholders and the community
- 6. Produce a project Newsletter at least once a quarter

- distribute Newsletter by e mail to those stakeholders and community members on the data set who have identified a preference for this medium
- post the Newsletter on the website for download
- have hard copy available for those who prefer this through the Secretariat
- 7. Seek to understand the community (profile, history and priorities) in order to better understand the position of stakeholder and the community on key issues. Engage with groups like the Regional Development Australia Board and regional LGA who also track changes in environment, social and economic factors (capital) of these communities.
- 8. Participate in cultural awareness training to ensure communication strategies and techniques are appropriate for the cultural groups in the stakeholder and community group, particularly Indigenous people
- 9. Facilitate the release, where commercially appropriate, of independent reports related to key issues of concern to the community

### Website

- 1. Establish and maintain on the website, dedicated project web pages for community engagement
- 2. Include on the homepage of the website, a standing invitation for stakeholders and community members to self nominate to be included on the stakeholder and community member register.
- 3. Consider social media links on the web page to encourage contributions from the community. This may be a Facebook / Twitter response
- 4. Build links from the project webpage to other related pages such as employment and business opportunities, company information etc
- 5. Develop a Q&A facility on the webpage

### Face to face meetings, forums and committees

- 1. Select from a range of face to face methods based on the stage of the project and the issues being addressed, that will appropriately involve the stakeholders and community. These may include:
  - a. KCCCC meetings
  - b. Individual meetings
  - c. Focused forums (small scale issues or locality based)
  - d. Displays / 'road shows'
  - e. Open days / site visits
- 2. Utilise existing community networks, particularly where they are managed by key stakeholders to the project like NRM Boards, local Council (DCMB), Regional Development Australia Board, Landcare etc

### Complaints

- 1. Maintain a complaints register and use this to proactively identify emerging issues and opportunities
- 2. Report on complaints as part of the issues identification and response process.
- 3. Use complaints as part of the continual improvement program for the project

### **Current Strategies for Stakeholder and Community Engagement (April 2014)**

### Kanmantoo Callington Community Consultative Committee (KCCCC)

The Kanmantoo-Callington Community Consultative Committee (K/CCCC) was established in January 2007. The KCCCC is designed as a key mechanism for community engagement related to the proposed redevelopment, operations, and eventual closure of the Kanmantoo Copper/Gold Mine Project. The membership of the KCCCC is drawn from the local community and endorsed by South Australia's Director of Mines, in consultation with the independent Chair.

Open meetings are scheduled to occur each quarter and will be advertised in Hillgrove's newsletter. All interested parties are encouraged to attend to observe proceedings and ask questions.

The KCCCC current Terms of Reference, agendas, meeting notes, issues papers, reports and occasional papers are available at the Hillgrove website (www.hillgroveresources.com.au).

Committee member contact details and a library of other resources, including more detailed presentations on various issues and a range of published material is available on request from the Chairman, Bob Goreing, at (email:bob@cega.com.au) or on 0418 816 788.

### Out and about with Hillgrove

Hillgrove is a proud sponsor of the Callington United Eagles Football Club and the Bremer/Callington Cricket Club and look forward to their continued association. Hillgrove is also a supporter of the Callington and Mt Barker Shows and value being approached regarding local events and any support they may provide.

Hillgrove is pleased to host tours of the old Kanmantoo mine and exploration activities around it, having welcomed Callington Primary, Mannum Minerals Club, Resource Industry Alliance, YouthJet, the University of S.A. and Adelaide University during the past year. Group tours can be arranged with notice and provide an excellent understanding of Hillgrove's current activities.

### **Project Newsletter**

The Kanmantoo Copper Project newsletter is designed to keep the local community informed about Hillgrove's activities with regular updates on progress at the mine site and surrounds, and news on Hillgrove out and about in the area. The Kanmantoo newsletter is distributed monthly. Links to the current and past issues of the Kanmantoo Project Newsletter are given at the Hillgrove website (www.hillgroveresources.com.au).

### How to Provide us with Feedback

The following mechanisms are available to the community to express their views and feedback on the project:

### Website

Hillgrove Resources has an established website (www.hillgroveresources.com.au) which provides an overview of the project, advertises employment opportunities, provides contact details and allows for feedback to provided. The website is reviewed and revised regularly to include current information, including upcoming consultation events and the outcomes of consultation.

### E mail and postal address

A project email address and postal address is available to encourage questions or feedback on the project or consultation activities. The email and postal address have been and will be included on all communication materials provided at community information sessions and staffed public displays. The email address is also available from the Hillgrove Resources website.

### Telephone contact

Telephone contact details for the Kanmantoo Copper Project can be found on the Hillgrove Resources website.

### Display panels

Display panels will be produced and will be exhibited in local communities to provide background on the project and relevant contact details for community members to deliver feedback on the project

### **Project updates**

Project updates are being prepared regularly by Hillgrove Resources. They include information about the progress of the MARP, as well as other major developments. Project updates will be placed on the project website.

### **Project advertising**

Advertisements have been and will be, placed in local and community newspapers to raise awareness of the consultation process, promote the contact details, and advise of consultation activities.

### Media releases

Advertising will be supported by media releases, as appropriate, to promote the consultation process and inform the community of major project developments or milestones.

### Consultation data base

A database will be maintained to record all stakeholder contact. This database will evolve through periodic review to ensure that all stakeholders have been identified and are included.

The database will be maintained for all stakeholders by documenting all contact details and other details relating to the stakeholder's interest in the project. The consultation database will also document how and when complaints were received and addressed.

### **Documenting consultation**

The information obtained from all forms of ongoing consultation will be documented and notes and responses referenced in the consultation database. The records of consultation undertaken will be entered on a minimum fortnightly basis into the consultation database.

The consultation database will provide detail regarding:

- locations, dates, contact details and lists of participants at workshops or meetings.
- summaries of issues/complaints raised.
- project responses to issues/complaints raised and how these were communicated back to the stakeholders.

Hillgrove will also monitor community engagement through:

- records of attendance at public events and community meetings to gauge the success of stakeholder consultation and to improve ongoing stakeholder consultation.
- articles that appear in the media, particularly letters to the editor.
- number and nature of complaints documented in the Complaints Register, including the
  person's name and contact details, communication, action taken to resolve the complaint,
  outcomes and feedback from complainant.

### Reviewing Progress

Evaluation is a critical step in the consultation program and is used to identify successful and unsuccessful strategies and guide the development of future activities. In addition, ongoing monitoring facilitates continuous improvements to the program through the application of project learnings.

Each consultation activity is considered both during the course of the activity and in retrospect once complete to determine:

- whether they are effective in meeting the project consultation objectives
- whether they are productive exercises for participants and
- whether improvements can be made.

Stakeholder feedback, obtained from the consultation sessions via feedback forms and comments is an important input to this review.

# **Appendix 7**

Mine Waste (Part 1)

# Appendix 7A

**Cover Design and Characterisation** 

# Unsaturated Soils Engineering Ltd.

16368 – 10<sup>th</sup> Avenue, White Rock, BC, CANADA, V4A 1B1 Tel:(604)542-6448 Fax:(604)542-6449

October 27, 2008

Hillgrove Resources Limited 42 Back Callington Road Callington SA 5254

Attention: Mr. Marty Adams, Project Manager

Dear Mr Adams

Subject: DRAFT Report - Cover Design, Kanmantoo Copper Project

Please accept this report as analyses, design and recommendations for the cover systems to be implemented during closure of the waste rock and tailings cover impoundments at the Kanmantoo Copper Project. A detailed review of the existing data provided by Hillgrove Resources has been completed in order to develop a SoilCover model based on climate data and soil properties for the soil cover profiles. The results of the analyses presented herein indicate that the site is best suited for the application of Store and Release Covers to minimize infiltration rates and drainage from mine waste systems.

### Introduction

Geochemical investigations conducted by EGi indicate that significant proportions of the waste rock and tailings to be deposited for the Kanmantoo Copper Project are potentially acid forming (PAF). In order to control the infiltration of meteoric water into PAF mine waste materials, Hillgrove initially proposed a preliminary cover design consisting of a 2.0m thick layer of non acid forming (NAF) waste rock for the waste rock storage facility and a HDPE liner with 1.5m to 1.8m NAF waste rock for the tailings storage facility. A screening level investigation based on preliminary SoilCover modelling was completed by Unsaturated Soils Engineering Ltd. and reported to Hillgrove Resources Ltd., 23 June, 2008. The results of the screening study showed that Net Infiltration rates approaching zero could be achieved for a 1.0m thick NAF cover system. The purpose of this present study is to assess and confirm the suitability of the 1.0 m conceptual cover designs based on more comprehensive investigations with respect to material characterization, soil testing, climate data, and SoilCover modelling. Recommendations are provided for construction of a NAF cover system on the waste rock and tailings impoundments along with the construction of field lysimeters for long-term evaluation and optimization of cover system performance.

## **Climate Description**

The climate at the Kanmantoo site is classified as semi-arid. Mean annual precipitation in the Kanmantoo area is approximately 424 mm with an annual potential evaporation of about 1450mm. These parameters establish a potential evapotranspiration to precipitation ratio greater than 3. Approximately 50% of the precipitation occurs during the winter months between May and September when monthly rainfall exceeds potential evaporation. Intense summer storms occasionally produce more than 100mm within a 24 period and the highest recorded rainfall for Kanmantoo was 115mm in 60 minutes during December 1894.

### **Soil Cover Design Considerations**

The semi-arid climate at the site with a mean annual precipitation of 424mm versus 1450mm of potential evaporation is ideally suited for the application of Store and Release covers to minimize infiltration. Store and Release cover systems rely on the water retaining capacity of the soil within the root zone of the cover to retain infiltration for a sufficient period of time such that the excess soil moisture can be taken up and returned to the atmosphere through the process of evapotranspiration. Store and Release cover systems have been widely used throughout Australia and are often considered to be 'Best Practice' by the mining industry.

An excellent example of a Store and Release Cover system can be found at the Kidston Gold Mine in Northern Queensland. The long-term performance and evaluation of the cover systems at the Kidston Gold mine is well documented in the literature and has been described by Durham et al (2000) and Williams et al (2003). The annual precipitation at the Kidston site varies between 400 and 1500 mm/year with a mean annual value of approximately 700 mm/year. Potential evaporation is in the order of 2100mm/year, or about 3 times mean annual precipitation, and virtually all precipitation occurs within a distinct wet season of 4 months between December and March.

One of the specific objectives of the cover design implemented at Kidston was to construct the Store and Release cover in such a way as to minimize run-off. Extreme storms with daily rainfall events up to 300mm have been observed at site resulting in severe surface erosion. As a result, it was decided to form a flat and gently hummocked topography on the final surface of the cover in order to prevent run-off and the associated problems with erosion. Figure No. 1 below shows the surface of the cover constructed at Kidston shortly after installation, prior to the development of a vegetation canopy. It can be seen that the disordered drainage pattern resulted in the formation of ponded water as a result of preventing run-off. The Store and Release cover at Kidston was thus designed to provide sufficient soil water storage capacity that would retain all wet season precipitation without the occurrence run-off. Subsequent observations for the cover systems completed at Kidston have shown that the Store and Release approach to cover design has functioned very well with long-term net infiltration rates approaching zero.



**Figure No. 1** Photograph Showing the Newly Constructed Store and Release Cover Surface at the Kidston Gold Mine in Northern Queensland

The primary variables that will control the ultimate design of a Store and Release Cover system are:

- 1.) Quantity and distribution of annual precipitation and potential evaporation.
- 2.) Soil properties with respect to hydraulic conductivity and soil water retention or storage characteristic (i.e. Ksat and the Soil Water Characteristic Curve).
- 3.) Cover thickness or total depth.
- 4.) Establishment of permanent vegetation.
- 5.) Erosion and stability (including differential settlement) to ensure long term sustainability.

In general, the Store and Release cover approach is considered suitable if the quantity of annual potential evaporation exceeds precipitation by a factor of two. The evaporation to precipitation ratio for the study area at the Kanmantoo Copper Project is even greater at 3.4 (i.e.1450/424). Given these climatic parameters, the application

and design of a Store and Release cover concept for the waste rock impoundments at the Kanmantoo Copper Project is seen to be highly suitable.

## **Soil Properties**

Most of the soils encountered were classified as Clay low plastic to clayey Sand and/or gravelly clayey Sand (i.e. CL and SC/GC). Hydraulic conductivity tests showed that saturated hydraulic conductivity values (Ksat) in the range of 1 x 10<sup>-8</sup> m/s to 1 x 10<sup>-10</sup> m/s can be achieved for compacted samples. While the soils investigated were originally evaluated for constructing the proposed compacted clay liner, the same soils described above will also be suitable for the construction of Store and Release covers. In general, the sandy and clayey Gravels and gravelly clayey Sands described as Unit 2A within the Coffey Mining Pty Ltd report, 'Factual Report of Material Search For Proposed Tailings Storage Facility' (23 July, 2007) are considered to be suitable for the construction of Store and Release covers when placed in an noncompacted state.

Further field investigation and sampling was carried out for Hillgrove in August 2008 and samples were obtained for soil classification and saturated hydraulic conductivity testing of non-compacted samples. Aggregate/Soil Test Reports, MAT:MEND08S-06948 and MEND08S-06949 provided by Coffey Information Ltd. report the saturated hydraulic conductivities for non-compacted samples to be 2.9 x 10<sup>-7</sup> m/s and 7.9 x 10<sup>-7</sup> m/s with silt and clay contents (i.e. passing 75 um) of 27% and 13% respectively. SoilVision Software was used to determine the Soil-water Characteristic Curves (SWCC) that may be expected for the range of soils reported in the Coffey reports. Appendix A presents the SWCCs obtained from the SoilVision Data-base of 12 soils having soil classifications and grain-size distributions within the range of soils reported by Coffey.

Three SWCCs were selected for the present study to represent soil properties ranging coarse to fine, which are as follows:

Soil Cover Material 1 - Fine NAF oxide Waste Rock obtained from the SoilCover data-base.

Soil Cover Material 2 – Clayey Silty Sand, Soil Reference No. 10706 from the SoilVision data-base.

Soil Cover Material 3 – Silty Clay Sand, Soil Reference No. 10780 from the SoilVision data-base.

Figure No. 2 below illustrates the Soil-Water Characteristic Curves selected for the SoilCover Numerical Modeling described in the following section. It can be seen in Figure No. 2 that each curve exhibits a wide range in soil suction between the air entry value (i.e. at high water content/full saturation) and the residual or fully drained water content; therefore, these soils offer a high capacity to store and release moisture over an extended range of suction corresponding to wet and dry conditions.

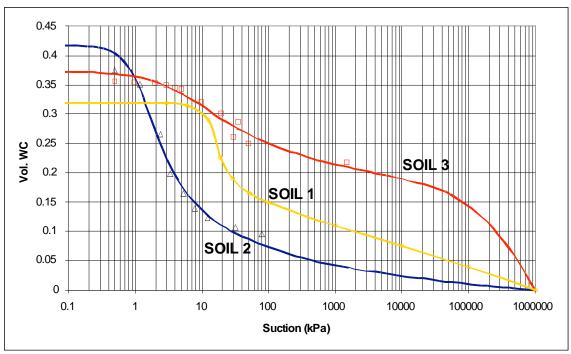



Figure No. 2 Soil – Water Characteristic Curves Selected for SoilCover Modelling

### **SoilCover Modelling**

The numerical model SoilCover (USG 1997) was used to evaluate the Store and Release cover at Kanmantoo. An extensive historical climate database is available for the Kanmantoo site and immediate region. However, daily rainfall records for Adelaide corresponding to the period 1 March 2007 through to 28 February 2008 were selected for the SoilCover model since this data set was the most comprehensive in terms of temperature and evaporation. The total precipitation for the Adelaide data set was 437mm, which is approximately equal to the mean annual precipitation at Kanmantoo (i.e. 424mm). Adelaide also has a similar rainfall pattern to the site.

Store and Release cover systems are typically designed to function most effectively under normal climatic conditions but must also provide protection against infiltration during years with above average rainfall. Therefore, a wet year climate data set was developed by synthesizing a high rainfall year. The mean year precipitation of 437mm was increased by 2 Standard Deviations equivalent to 222mm (established on the basis of the climate record at Kanmantoo for the period 1874 to 2007) to produce an annual wet year precipitation rainfall of 659 mm. Table No. 1 summarises the monthly precipitation and potential evaporation values adopted for the both the typical and wet year SoilCover simulations. Figure No. 3 shows a cumulative plot of the surface water balance for the case of uncovered waste rock with no vegetation during a typical year.

**Table No. 1** Summary of Rainfall and Evaporation Data Selected for Modelling

|                 | Typical Year<br>Precipitation | Wet Year<br>Precipitation | Potential<br>Evaporation |
|-----------------|-------------------------------|---------------------------|--------------------------|
| Jan             | 9 mm                          | 20 mm                     | 152 mm                   |
| Feb             | 3 mm                          | 22 mm                     | 90 mm                    |
| Mar             | 25 mm                         | 25 mm                     | 56 mm                    |
| Apr             | 82 mm                         | 82 mm                     | 42 mm                    |
| May             | 45 mm                         | 78 mm                     | 47 mm                    |
| Jun             | 65 mm                         | 95 mm                     | 65 mm                    |
| Jul             | 66 mm                         | 93 mm                     | 90 mm                    |
| Aug             | 26 mm                         | 64 mm                     | 133 mm                   |
| Sep             | 24 mm                         | 62 mm                     | 171 mm                   |
| Oct             | 25 mm                         | 51 mm                     | 186 mm                   |
| Nov             | 30 mm                         | 30 mm                     | 217 mm                   |
| Dec             | 37 mm                         | 38 mm                     | 188 mm                   |
| Annual<br>Total | 437 mm                        | 659 mm                    | 1437 mm                  |

# **Kanmantoo Water Balance**

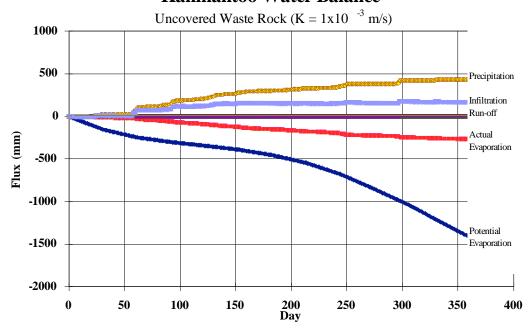



Figure No. 3 Surface Water Balance for Uncovered Waste Rock without Vegetation

The SoilCover model was used to evaluate and test the performance of three 1.0m NAF Cover profiles under atmospheric forcing conditions for both the average year

precipitation of 437mm and the wet year precipitation of 659mm. The results for the cases simulated are summarized in Table 2 below.

| Table 2<br>Summary of SoilCover Modeling |               |            |        |              |  |
|------------------------------------------|---------------|------------|--------|--------------|--|
| Profile                                  | Precipitation | Vegetation | Runoff | Net          |  |
|                                          |               |            |        | Infiltration |  |
| 1.) Uncovered<br>Waste Rock              | 437 mm        | None       | < 5 mm | 170 mm       |  |
| 2.) Uncovered<br>Waste Rock              | 659 mm        | None       | < 5 mm | 300 mm       |  |
| 3.) Uncovered<br>Waste Rock              | 437 mm        | Poor       | < 5 mm | 60 mm        |  |
| 4.) Uncovered<br>Waste Rock              | 659 mm        | Poor       | < 5 mm | 150 mm       |  |
| 5.) 1.0m NAF<br>Cover Soil 1             | 437 mm        | None       | < 5 mm | 100 mm       |  |
| 6.) 1.0m NAF<br>Cover Soil 1             | 659mm         | None       | < 5 mm | 150 mm       |  |
| 7.) 1.0m NAF<br>Cover Soil 2             | 437 mm        | None       | < 5 mm | 130mm        |  |
| 8.) 1.0m NAF<br>Cover Soil 3             | 437 mm        | None       | < 5 mm | 105mm        |  |
| 9.) 1.0m NAF<br>Cover Soil 1             | 437 mm        | Poor       | < 5 mm | Zero         |  |
| 10.) 1.0m NAF<br>Cover Soil 1            | 659mm         | Poor       | < 5 mm | 10 mm        |  |
| 11.) 1.0m NAF<br>Cover No. 1             | 659mm         | Good       | < 5 mm | < 5 mm       |  |
| 12.) 1.0m NAF<br>Cover No. 2             | 437 mm        | Poor       | < 5 mm | Zero         |  |
| 13.)1.0m NAF<br>Cover No.3               | 437 mm        | Poor       | < 5 mm | Zero         |  |

Four cases (shown as 1 to 4 in Table No.2) were modelled for an uncovered waste rock profile with and without vegetation. A high value of saturated hydraulic conductivity equal to 1 x 10<sup>-3</sup> m/s was used for the waste rock profile. Figure No. 3 shows the surface water balance for the uncovered waste rock simulation identified as simulation 1 in Table No. 2. The results of the SoilCover simulations for the uncovered waste profile show that 170mm and 300mm of infiltration occurs for the typical and wet year precipitations of 437mm/year and 659mm, respectively. These values correspond to net infiltrations quantities ranging between 40% and 45% of total precipitation and are considered the maximum infiltration possible at the site. A dramatic decrease in net infiltration can be seen in Table 2 when the simulations for the case of uncovered waste rock are repeated with the inclusion of poorly established vegetation. Poor vegetation corresponds to a Leaf Area Index of 1 and the rooting was set to a depth of 600mm. The net infiltration for uncovered waste rock with poor vegetation was computed to be 60mm and 150mm, or 14% and 23%, respectively for the mean and wet year precipitation simulations. While this example simulation is not considered a realistic option, due to the PAF nature of the waste rock, it helps illustrate the importance of vegetation in reducing infiltration.

A 1.0m thick profile was used to evaluate the three different Store and Release cover systems based on the soil properties summarised above for Materials 1, 2 and 3. The simulations were repeated for both the average and wet year precipitations with and without vegetation and the results are summarized in Table No. 2. The hydraulic conductivity for Material 1 was set equal to 1 x 10<sup>-6</sup> m/s based on the SoilCover data base. The hydraulic conductivity for Materials 2 and 3 was set equal to 8 x 10<sup>-7</sup> m/s based on the laboratory test results provided by Coffey, which is approximately the same as that for Material 1. These values of hydraulic conductivity are consistent with those for most non-compacted well graded weathered oxide soils/waste rock and are considered representative of the Unit 2A materials described above. Where vegetation was included in the simulations, it was mainly assumed to be poorly established with a Leaf Area Index of 1.0 and a rooting depth of 900mm, except for one case with a wet year (659mm/year) simulation were the vegetation was upgraded to good rating.

Run-off or water shedding was controlled or prevented (i.e. to less than 5mm/year) for all simulations in order to maximize the potential for infiltration. A thin 0.1m zone of high permeability was used in the simulations for each 1.0m cover (i.e. Material 1,2, and 3) to ensure no water shedding.

A dramatic change in Net Infiltration can be seen in Table 2 for the SoilCover model results of the 1.0 m cover profile with vegetation. It is important to note that the values of net infiltration, and run-off, presented in Table 2 are reported to a level of accuracy equal to plus or minus 5mm. The computed value of Net Infiltration is zero for all mean precipitation year simulations with the 1.0 m covers (i.e. Materials 1, 2 and 3) having poor vegetation. A value of zero is reported since each of the simulations showed a tendency to a negative water balance (i.e. water loss or desiccation of the cover profile). The wet year precipitation simulation (i.e. 659 mm/year) for the 1.0 m cover with Material 1 and poor vegetation computed a small value of Net Infiltration equal to 10mm or 1.5% of total precipitation. It is reasonable

to assume the quality of vegetation will improve during years with higher rainfall, and thus the wet year simulation was repeated with a good vegetative canopy and the computed Net Infiltration was found to be less than 5mm/year. It is paramount to note that vegetation is a critical component in reducing Net Infiltration for all 1.0m cover profiles. Table No. 2 also presents Net Infiltration for each of the three covers with no vegetation and it can be seen that computed Net Infiltration values between 100mm and 150mm per year occur in the absence of vegetation.

In summary, the results of the SoilCover modelling indicate that Net Infiltration values approaching zero can be achieved for the 1.0m Store and Release cover profiles at the Kanmantoo site using the NAF soils available at site. However, the role of vegetation is critical in achieving successful performance. In addition, while the results of the SoilCover modeling described above indicate that a 1.0m NAF cover with only poor vegetation will prevent rainfall from infiltrating to the underlying PAF waste rock and/or tailings, it is important to note that the SoilCover model has limitations. The primary limitation of the SoilCover model is that the flow of liquid water is assumed to be entirely Darcian (i.e. preferential flow due to macro pores such as cracks and root holes is not accounted for). In addition, calculations for the quantity of run-off that occurs during storm events is difficult to model accurately and thus the model was forced to conditions for no run-off. Full verification of the results presented herein can only be achieved with field scale test plots and careful model calibration.

### Recommendations

The results for the SoilCover model described above provide important guidance for the design and construction of the cover systems for the waste rock and tailings impoundments at Kanmantoo. The modelling clearly demonstrates the strong potential for achieving negligible to zero infiltration with a relatively thin 1.0m Store and Release NAF cover system. Furthermore, there appears to be little benefit in implementing a deep barrier layer such as a compacted clay liner or HDPE membrane since these layers would be constructed below a depth of 1.0m where Net Infiltration rates are expected to be negligible. It is recommended that the Store and Release approach to cover design be adopted for the cover systems at Kanmantoo.

While the results of the detailed SoilCover modelling described above show that a 1.0m thick Store and Release cover constructed with the NAF available at Kanmantoo will reduce Net Infiltration rates to values approaching zero, the potential for long-term erosion problems associated with run-off possesses a significant risk. It is therefore recommended that the thickness of the cover be varied and range between 1.0m to 1.5m, such that the final topography of the cover surface has gentle hummocks similar to the Store and Release cover systems implemented at the Kidston Gold Mine shown in Figure No. 1. This will create a rolling surface that captures run-off at a local scale and prevents the development of larger water catchments that accumulate overland flow causing the formation of rills and channels. In addition to reducing the potential for erosion problems, increasing the mean thickness of the cover should add a measure of additional storage capacity for the control of infiltration during periods of high fall. It is also understood that Hillgrove may

increase the cover thickness up to 2m. While the increased cover thickness is expected to mitigate much of the erosion risk, maximum erosion rilling depths, net infiltration versus cover thickness, differential dump settlement and other dump stability issues should be assessed before finalizing the cover thickness and placement requirements.

It is important to note that the surface of the waste rock dump immediately below the cover must be coarse and blocky with large voids. This is required to ensure that a capillary break is formed at the base of the NAF cover as well as to prevent rising moisture from either the underlying PAF waste rock or tailings being taken up into the PAF cover through root water uptake. General recommendations for the construction of the Store and Release cover system on waste rock and tailings as well as the installation of field lysimeters for direct measurement of cover performance are described below.

### **Selection of Materials for Cover Construction**

Adequate performance of the cover systems constructed at Kanmantoo depends on the selection and placement of suitable materials with hydraulic properties similar to those used for the numerical model described above. Coffey Mining Pty Ltd excavated more than 200 test pits to depths extending up to 5.5 m. In general, the SC and GC materials encountered are suitable for soil moisture storage in Store and Release covers. Highly plastic, clay rich materials are less suitable since they tend to form a blocky or clod like matrix with cracks and fissures permitting rapid infiltration with little soil water retention when high rainfall events create ponding conditions, particularly after prolonged drying. While most of the materials encountered in the test pits may be used for the Store and Release NAF layer, further investigation to ensure an adequate volume of materials is recommended, particularly for the weathered or oxide waste rock.

Soils types that are best suited for use as Store and Release cover material are silty and/or clayey gravels (i.e. GM and GC) with 15% to 30% passing the 75 micron sieve. Well graded gravels with a high fines content provide excellent soil moisture storage characteristics, resist cracking and the formation of clods, and tend to resist erosion. Silty Sands and Clayey Sands (i.e. SM and SC) also provide excellent soil moisture retention characteristics but tend to be more susceptible to erosion.

### Construction

The cover system should be placed such that the thickness of the cover varies between 1.0m to 1.5m. The method of construction used at the Kidston Gold mine is also recommended. The cover system was constructed using Haul Trucks depositing loads to form paddocks as described by Durham et al (2000) and Williams et al (2003). Compaction of the materials is not required and not recommended. The final undulating surface can be created with the use a dozer to gently smooth, but not flatten the peaks of the individual paddock deposits.

The surface of the waste rock dump should be relatively flat lying or slightly concave so as not to promote run-off to the perimeter of the dump. Furthermore, it is understood the batter slopes will use a concave landform and be graded from a maximum slope of 1 to 2.1 (25°) at RL 90m and decrease downhill to a slope of 1 to

4.7 (12°) below RL 60m. The use of the concave landform is strongly recommended as a primary control measure for the prevention of side-hill erosion. Hummocks may also be created while the sloping cover is being placed using the dozer in such a way as to form a series of staggered lateral scallops as shown in Figure No. 4 below. This method of cover construction proved successful for the 1 to 2 graded side slopes at the Golden Sunlight mine in Montana USA.



**Figure 4 Golden Sunlight Mine** (Montana USA). Photos showing re-graded 2H:1V slopes. Lateral Scallop Trenches designed to reduce erosion and rilling. Height of Scallops is approximately 0.5 m and the off-set pattern was designed to slow and retain run-off as it cascades down-slope.

A similar approach to the construction of the cover system on the tailings impoundment may also be implemented. However, the NAF cover material must not be placed directly on the tailings. It is recommended a minimum thickness of 1.0m of coarse ROM waste rock be placed over the final surface of the tailings as a capillary barrier between the NAF cover and underlying tailings. The placement of the 1m rock layer will also likely be required to form a trafficable surface for placement of the cover layer. In addition, it is recommended that the need to increase the thickness of the coarse rock layer or the use of a geo-fabric between the tailings and rock layer be considered to prevent the potential upwelling of tailings material into the overlying rock

### **Field Lysimeters**

The performance of the various cover profiles and options may be evaluated using field lysimeters that provide direct measurement of infiltration or drainage rates. Numerical models such as SoilCover are useful design tools for comparison of predicted performance for various cover options, but have significant limitations and can not be relied upon to provide exact predictions without detailed field verification. Alternately, the model becomes a powerful tool once actual field observations are available for model calibration.

The appropriate scale for field lysimeters is typically 10m as shown in Figure 5 below. Schematic drawings are appended to the report illustrating a typical profile for a 10m x 10m lysimeter. The lysimeter is approximately 2.5m deep and lined with HDPE or similar barrier such that all drainage reports to a central sump for discharge to an external collection point for flow measurement and sampling. The profile in the lysimeter consists of waste rock overlain with the desired cover profiles. The lysimeter can be monitored and maintained by field personnel. Flow measurements for both drainage and run-off can be obtained using a simple culvert or tank as a reservoir together with a tipping bucket gauge. Other methods to evaluate cover performance are also available and may be implement *insitu* within the cover system following construction. For example, this can be accomplished by excavating and installing smaller diameter pre-fabricated lysimeters (i.e. 1.5m dia x 2.5m deep) and backfilling the lysimeters with the excavated cover/waste rock materials. Durham et al (2000) showed this approach to be effective at the Kidston Gold mine over the long-term.

Typical instrumentation requirements for the lysimeters include a weather station and a tipping bucket gauge for continuous flow measurements. The collection of water samples and flow measurements can be obtained by mine site staff. Moisture profiling sensors such as TDR - Time Domain Reflectometry and TC - Thermo Conductivity sensors may also be installed. The results of the field lysimeter experiment would ultimately be used to evaluate and verify cover performance with respect to regulatory requirements, constructability, and cost.



Figure 5 Typical Field Scale Cover Lysimetres

### **Summary and Closure**

The report presented herein is intended to serve as a guide to defining the process, steps, outcomes and deliverables required to achieve an optimum and sustainable cover design that meets 'Best Practice' standards for the integrated waste landform system. Note that the cover design work is at a conceptual stage, and further work is required to determine final waste rock dump and tailings requirements.

The results of the SoilCover analysis indicate that 1.0m Store and Release NAF cover systems with vegetated cover will give excellent performance under the climatic regime for the site. Furthermore, soil test results completed for previous studies show that suitable materials for the construction of a NAF waste rock cover should be available. The 1.0m to 1.5m Store and Release cover system recommend herein is considered conservative from the point of view of infiltration control, although there are other considerations such as long term erosion and stability risks that may influence the final thickness required. There appears to be little or no benefit in cover performance with the construction of a compacted clay liner or the installation of a HDPE membrane at the base of the NAF waste rock profile. Based on information available to date, it is expected that the conceptual cover designs outlined in this report will be sufficient for control of water flux through waste rock and tailings, and hence minimize transport of ARD products.

Final cover designs and closure requirements will need to consider the following:

- The presence of vegetation in the cover layer is critical to the success of cover performance, and hence a thorough understanding of the succession, sustainability and water demand of the vegetation to be used in rehabilitation works will be required.
- The modelled cover performance must be confirmed with the construction of field lysimeters, which will also assist evaluation of vegetation requirements.
- The cover construction materials used must match closely to those modelled to be effective, and hence a detailed inventory of suitable materials will need to be established based on more widespread testing of hydrological, physical and geochemical properties.
- Maximum erosion rilling depths and differential dump settlement could impact on the required cover depth to ensure long-term sustainability, and these aspects will need to be evaluated before finalizing cover depths.
- A program of monitoring and maintenance of dump and dump cover integrity will be required after placement and post closure.
- Significant infiltration will occur prior to cover placement resulting in some future seepage. An understanding of the geochemistry (including lag times and element release rates) is required to evaluate the need for longer term treatment or mitigation. The performance of the existing waste rock impoundments should be accessed to help evaluate these issues.

In summary, the thickness of the NAF cover will most likely be determined by the type of vegetation selected and method of construction. Long-term performance of the NAF cover and its physical stability will depend on the quality and sustainability of the vegetation canopy established on the cover at closure. The results for the analyses presented herein should be confirmed with the construction of field lysimeters to compare and confirm the performance of the Store and Release cover system proposed herein.

Yours truly

Dr. G. Ward Wilson, P. Eng., P.Geo. Unsaturated Soils Engineering Ltd.

### References

Williams, D.J., Curry, N., Ritchie, P. and Wilson, G.W. (2003) Kidston Waste Rock Dump Design and "Store and Release Cover Performance – Seven Years On. 6<sup>th</sup> International Conference on Acid Rock Drainage. Cairns Australia

Durham, A.J.D., Wilson, G.W. and Curry, N. (2000) Field Performance of Two Low Infiltration Cover Systems in a Semi Arid Environment. 5<sup>th</sup> International Conference on Acid Rock Drainage., Denver Australia

USG (1997) SoilCover User's Manual. Unsaturated Soils Research Group. University of Saskatchewan, Saskatoon, Canada

# **APPENDIX A**

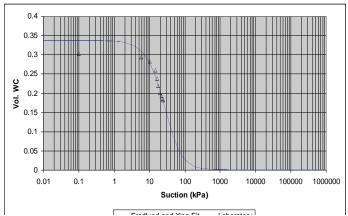



Figure A-1 SoilVision Reference Soil #61 (83% Sand, 16% Silt, 1% Clay)

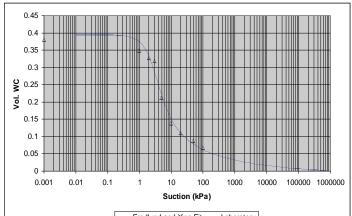



Figure A-2 SoilVision Reference Soil #10700 (85% Sand, 11% Silt, 4% Clay)

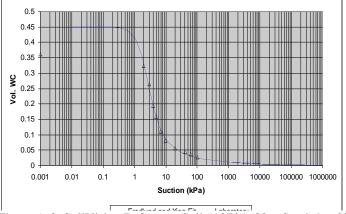



Figure A-3 SoilVision Reference Soil #10704 (88% Sand, 9% Silt, 2% Clay)

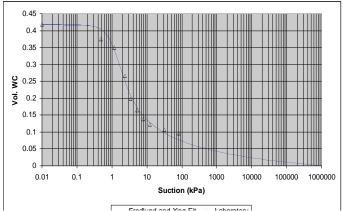



Figure A-4 SoilVision Reference Soil #10706 (90% Sand, 3% Silt, 6% Clay)

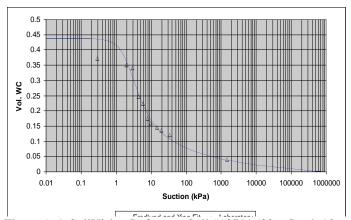



Figure A-5 SoilVision Reference Soil #10711 (80% Sand, 13% Silt, 7% Clay)

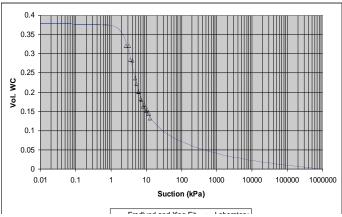



Figure A-6 SoilVision Reference Soil #10733 (73% Sand, 20% Silt, 7% Clay)

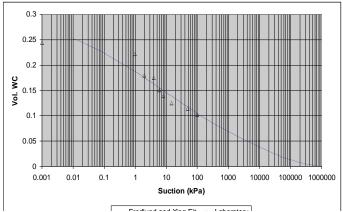



Figure A-7 SoilVision Reference Soil #10745 (81% Sand, 9% Silt, 10% Clay)

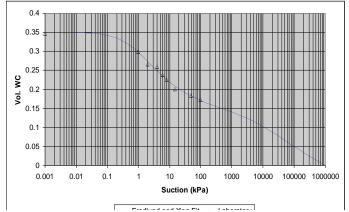



Figure A-8 SoilVision Reference Soil #10746 (69% Sand, 11% Silt, 20% Clay)

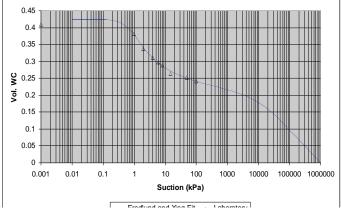



Figure A-9 SoilVision Reference Soil #10747 (64% Sand, 10% Silt, 26% Clay)

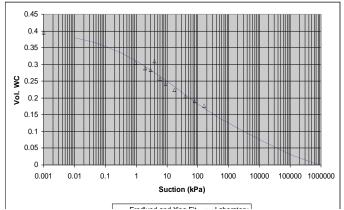



Figure A-10 SoilVision Reference Soil #10751 (66% Sand, 15% Silt, 18% Clay)

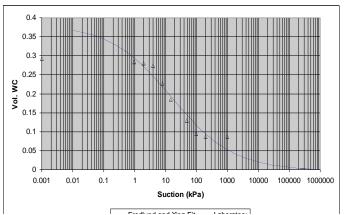



Figure A-11 SoilVision Reference Soil #10757 (61% Sand, 30% Silt, 9% Clay)

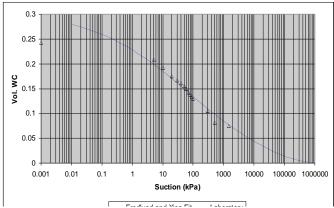
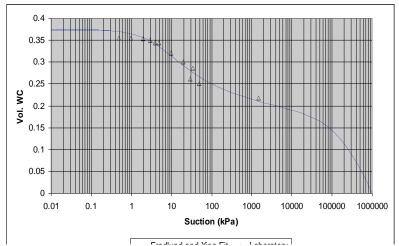
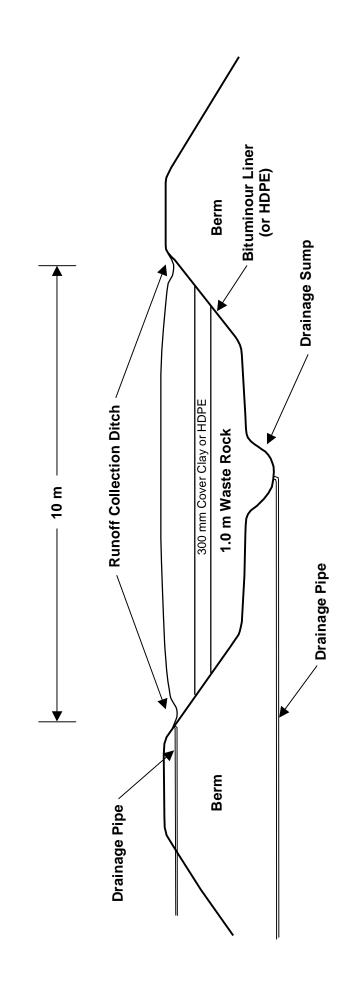
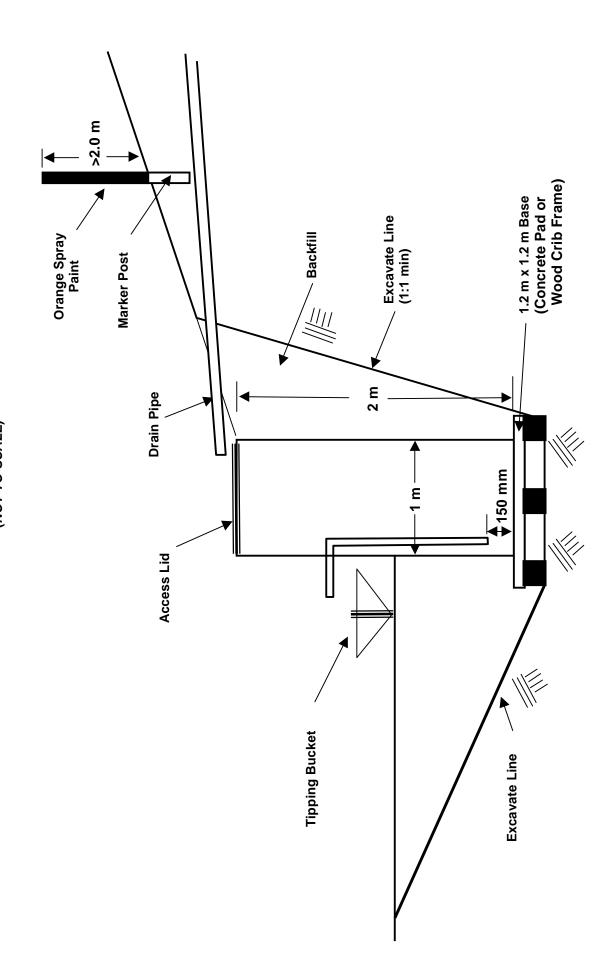



Figure A-12 SoilVision Reference Soil #10762 (72% Sand, 17% Silt, 10% Clay)



Figure A-13 SoilVision Reference Soil #10780 (57% Sand, 20% Silt, 20% Clay)

# HORIZONTAL LYSIMETER DESIGN

(DRAWING NOT TO SCALE)



# Detail for Drainage Reservoir



# Appendix 7B

**Non-Acid Forming Material Balance** 

# Memorandum



To: Marty Adams

Company: Hillgrove Resources Limited

From: Geoff Davidson

Copy:

Date: Monday, 11 February 2008

Project: Kanmantoo copper project

**Subject:** Updated non-acid forming material balance

87 Colin Street West Perth WA 6005
PO Box 77 West Perth WA 6872
Tel: +61 8 9213 9213
Fax: +61 8 9322 2576
www.snowdengroup.com

### MANAGEMENT OF POTENTIAL ACID FORMING MATERIAL

Potential acid forming (PAF) rock has been identified within waste zones of the pit areas. To avoid long term environmental impact from the PAF material, an encapsulation strategy will be adopted (Figure 1). The perimeter of the final formed integrated waste landform (IWL) will be constructed using non-acid forming (NAF) material

Assays from grade control/blasthole drilling will be used to identify PAF waste zones in the operating pit. As the PAF material is excavated it will be hauled to an internal location within the IWL. The NAF material will be dumped along the perimeter zone of the IWL.

In addition to disposal of PAF material in the IWL, the backfill placed in Emily Star and O'Neil will also consist of PAF.

A modelling exercise completed by Hillgrove subsequent to the definitive feasibility study has identified the quantities of NAF and PAF waste shown in Table 1

Table 1 Quantities of NAF and PAF identified by Hillgrove

|         |       | NAF  | PAF  | Total<br>Waste |
|---------|-------|------|------|----------------|
|         | SG    | 2.9  | 2.9  | 2.9            |
| Main    | M bcm | 7.3  | 10.2 | 17.6           |
| IVIAIII | Mt    | 21.3 | 29.6 | 51.0           |
| E/S     | M bcm | 2.7  | 0.0  | 2.7            |
|         | Mt    | 7.9  | 0.0  | 7.8            |
| Total   | M bcm | 10.0 | 10.2 | 20.3           |
|         | Mt    | 29.2 | 29.6 | 58.8           |

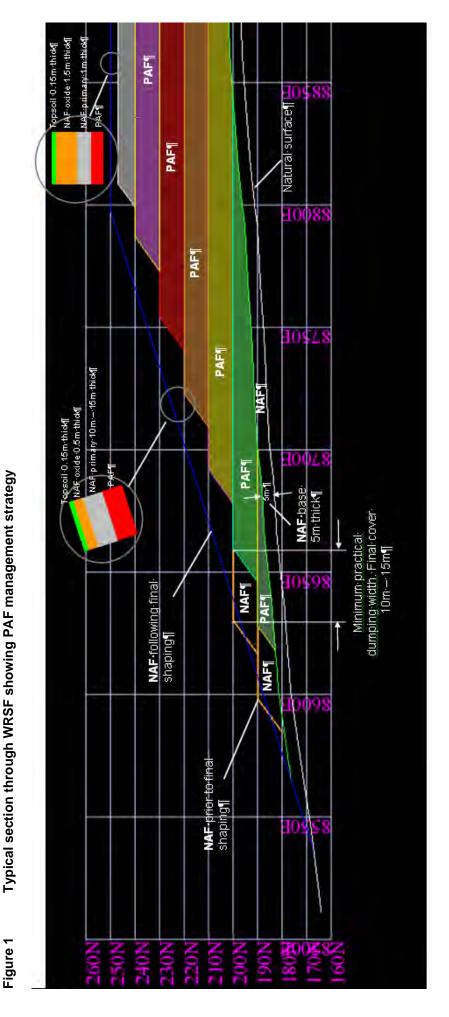

The material balance estimate from the DFS was updated to reflect these quantities and is summarised in Table 2.

Table 2 NAF material balance requirements

| Description                                                  | Units   | DFS  | Update |
|--------------------------------------------------------------|---------|------|--------|
| Waste density                                                | t/bcm   | 2.95 | 2.95   |
| Swell factor                                                 | lcm/bcm | 1.25 | 1.25   |
| Waste produced - Main                                        | M bcm   | 15.1 | 15.1   |
| Waste produced - Emily Star                                  | M bcm   | 2.7  | 2.7    |
| Waste produced - O'Neil                                      | M bcm   | 2.4  | 2.4    |
| Total                                                        | M bcm   | 20.2 | 20.2   |
| Total Volume produced                                        | M Icm   | 25.3 | 25.3   |
| TSF capacity                                                 | M Icm   | 9.1  | 9.1    |
| WRS capacity                                                 | M Icm   | 11.4 | 11.4   |
| Emily Star backfill capacity                                 | M Icm   | 3.1  | 3.1    |
| O'Neil backfill capacity                                     | M lcm   | 1.7  | 1.7    |
| Total site waste storage capacity                            | M lcm   | 25.3 | 25.3   |
| PAF capacity - WRS/TSF                                       | M Icm   | 9    | 9      |
| PAF capacity - Emily Star backfilled to within 2.5 m of topo | M Icm   | 2.9  | 2.9    |
| PAF capacity - O'Neil backfilled to within 2.5 m of topo     | M lcm   | 1.6  | 1.6    |
| Total site PAF capacity                                      | M lcm   | 13.5 | 13.5   |
| Required NAF                                                 | M Icm   | 11.8 | 11.8   |
| Required NAF                                                 | M bcm   | 9.4  | 9.4    |
| Identified NAF - Main pit                                    | M bcm   | 3.1  | 7.3    |
| Identified NAF - Emily Star                                  | M bcm   | 2.7  | 2.7    |
| Total NAF identified                                         | M bcm   | 5.8  | 10.0   |
| NAF deficit (still to be identified)                         | M bcm   | 3.6  | 0.0    |
| NAF deficit (still to be identified)                         | M t     | 10.7 | 0.0    |

This latest modelling demonstrates that sufficient NAF material is available within the design to achieve the proposed encapsulation strategy acid forming waste.

Typical section through WRSF showing PAF management strategy





#### **MEMORANDUM**

TO: Catherine Davis (Environmental Manager)

FROM: Richard Bradey (Geology Manager)

DATE: November 14, 2008

SUBJECT: Kanmantoo Project Sulphur Model

A digital model of the distribution of sulphur associated with the Kanmantoo copper resource has been developed to quantify potentially acid forming (PAF) and non acid forming (NAF) waste within the proposed Kanmantoo mine plan.

The model was constructed using data from the JORC compliant Kanmantoo resource database. This data comprises reverse circulation and diamond drillhole data along with assay and survey data all compiled within JORC compliant quality management guidelines.

Modelling of the 0.2% and 0.25% sulphur distribution was undertaken using Surpac resource modelling software by a mining and resource geologist with 20 years industry experience and a Member of the Australian Institute of Mining and Metallurgy.

Limitations of the database in regard to the development of the sulphur model included the following; As a result of the drilling being primarily targeting sulphide mineralisation the unmineralised areas of the mine plan have a lower density of drilling data. Assaying for sulphur was not undertaken for all of the drilling, particularly the older drill holes.

The database limitations were overcome in the modelling process by assuming PAF sulphur levels (>0.2% Sulphur) existed unless the data indicated otherwise.

The model that was developed in this exercise was of a simplified nature which included all areas of PAF within the mine plan in addition to many significant areas of NAF resulting in a model which is strongly conservative.

**Richard Bradey** 

Geology & Site Manager - Kanmantoo Copper Project

| Appendix 7                                                                   | 'C |
|------------------------------------------------------------------------------|----|
| Geochemical Characterisation of Waste Rock and Ore from the Kanmant<br>Proje |    |
|                                                                              |    |
|                                                                              |    |
|                                                                              |    |
|                                                                              |    |
|                                                                              |    |

#### Prepared By:

# ENVIRONMENTAL GEOCHEMISTRY INTERNATIONAL PTY LTD

81A College Street, Balmain, NSW 2041 Australia Telephone: (61-2) 9810 8100 Facsimile: (61-2) 9810 5542 Email: egi@geochemistry.com.au ACN 003 793 486 ABN 12 003 793 486

#### For:

#### HILLGROVE RESOURCES LIMITED

42 Back Callington Rd Callington SA 5254 Australia

Telephone: (08) 8538 5100 Facsimile: (08) 8538 5255

August 2010

Document No. 2042/937

Geochemical Characterisation of Waste Rock and Ore from the Kanmantoo Project

# **Contents**

| LIST ( | OF TABLES                                                         | iii |
|--------|-------------------------------------------------------------------|-----|
| LIST ( | OF FIGURES                                                        | iii |
|        | OF APPENDICES                                                     |     |
|        | UTIVE SUMMARY                                                     |     |
|        |                                                                   |     |
| 1.0 II | NTRODUCTION                                                       | 1   |
| 2.0 S  | AMPLE PREPARATION AND TEST METHODOLOGY                            | 2   |
| 3.0 S  | TANDARD GEOCHEMICAL CHARACTERISATION                              | 3   |
| 3.1    | Acid Base (NAPP) Results                                          | 3   |
| 3.2    | Single Addition NAG Results and Comparison with Acid Base Results |     |
| 4.0 S  | PECIALISED GEOCHEMICAL CHARACTERISATION                           | 5   |
| 4.1    | Acid Buffering Characteristic Curve (ABCC) Testing                | 5   |
| 4.2    | Sequential NAG Testing                                            | 6   |
| 4.3    | Kinetic NAG Testing                                               |     |
| 4.4    | Multi-Element Analysis of Solids and Water Extracts               | 7   |
| 5.0 S  | AMPLE CLASSIFICATION AND SEGREGATION CRITERIA                     | 8   |
| 6.0 C  | CONCLUSIONS AND RECOMMENDATIONS                                   | 10  |

#### List of Tables (after text)

- Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.
- Table 2: Sequential NAG test results for selected waste rock samples.
- Table 3: Multi-element composition of selected sample solids (mg/kg except where shown).
- Table 4: Geochemical abundance indices (GAI) of selected sample solids. Values of 3 or more are highlighted in yellow.
- Table 5: Chemical composition of water extracts.

#### **List of Figures** (after tables)

- Figure 1: Compares SESL Leco S with Hillgrove Resources ICP S.
- Figure 2: Box plot showing the distribution of total S split by the degree of weathering. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 3: Box plot showing the distribution of total S split by lithology (see Table 1 for lithology codes), excluding slightly to highly weathered samples. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 4: Box plot showing the distribution of ANC split by the degree of weathering. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 5: Box plot showing the distribution of total S split by lithology (see Table 1 for lithology codes), excluding slightly to highly weathered samples. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 6: Acid-base account (ABA) plot showing ANC versus total S.
- Figure 7: As for Figure 6 but rescaled.
- Figure 8: ARD classification plot showing NAGpH versus NAPP, with ARD classification domains indicated.
- Figure 9: As for Figure 8 but rescaled.
- Figure 10: ABCC profile for samples with an ANC value close to 10 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 11: ABCC profile for additional samples with an ANC value close to  $10 \text{ kg H}_2SO_4/t$ . Carbonate standard curves are included for reference.
- Figure 12: ABCC profile for samples with an ANC value close to 15 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 13: ABCC profile for additional samples with an ANC value close to 15 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 14: ABCC profile for samples with an ANC value close to 20 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 15: ABCC profile for additional samples with an ANC value close to 20 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 16: ABCC profile for samples with an ANC value close to 25 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

- Figure 17: ABCC profile for samples with an ANC value close to 30 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 18: ABCC profile for sample 33453 with an ANC value close to 35 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 19: ABCC profile for sample 40311 with an ANC value close to 80 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.
- Figure 20: ABCC profile for sample 40340 with an ANC value of 21 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference. Note that the sample profile is affected by dissolution of hydrated Cu carbonates (malachite and azurite).
- Figure 21: ABCC profile for sample 40337 with an ANC value of 49 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference. Note that the sample profile is affected by dissolution of hydrated Cu carbonates (malachite and azurite).
- Figure 22: Kinetic NAG graph for sample 33400.
- Figure 23: Kinetic NAG graph for sample 33402.
- Figure 24: Kinetic NAG graph for sample 33414.
- Figure 25: Kinetic NAG graph for sample 33425.
- Figure 26: Kinetic NAG graph for sample 33446.
- Figure 27: Kinetic NAG graph for sample 33452.
- Figure 28: Kinetic NAG graph for sample 40501.
- Figure 29: Kinetic NAG graph for sample 38631.
- Figure 30: Kinetic NAG graph for sample 40252.
- Figure 31: Kinetic NAG graph for sample 40306.
- Figure 32: Kinetic NAG graph for sample 40349.
- Figure 33: Kinetic NAG graph for sample 40649.
- Figure 34: Kinetic NAG graph for sample 40272.
- Figure 35: Kinetic NAG graph for sample 40664.
- Figure 36: Kinetic NAG graph for sample 40329.
- Figure 37: Proportion of ARD classification types by degree of weathering.
- Figure 38: Box plot showing the distribution of total S by ARD classification for slightly weathered, transition and fresh samples only. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 39: Box plot showing the distribution of NAGpH by ARD classification for slightly weathered, transition and fresh samples only. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.
- Figure 40: Proportion of ARD classification types by mineralisation zone for slightly weathered, transition and fresh samples only.

#### **List of Appendices** (after figures)

Appendix A – Assessment of Acid Forming Characteristics

# **Executive Summary**

Environmental Geochemistry International Pty Ltd (EGi) were commissioned by Hillgrove Resources Limited to carry out geochemical characterisation of waste rock, low grade ore and ore from the Kanmantoo Copper Project in South Australia. A combined total of 450 samples of waste rock, low grade ore and ore have been tested from the 2007, 2009, and 2010 sample sets. The objectives of the work were as follows:

- confirm the reliability of degree of weathering criteria for identification of non acid forming (NAF) waste rock;
- refine the preliminary S based criteria for identification of NAF waste rock in unweathered materials; and
- extend geochemical testing for Emily Star and O'Neil Zone deposits.

Results confirm that moderately to highly weathered waste rock is likely to be non acid forming (NAF), and that slightly weathered to fresh materials will be a mixture of NAF, potentially acid forming (PAF) and PAF low capacity (PAF-LC). Results indicate that slightly weathered to fresh waste rock at Emily Star (and possibly Green Zone) will have the lowest ARD potential, and that at Main Zone, NW Zone and NE Zone will have the higher ARD potential. Overall, 45% of slightly weathered to fresh samples were classified NAF, and 55% PAF or PAF-LC. Although the samples assayed may not be a true representation of the actual proportion of ARD rock types within the pit shells, it is likely that a significant proportion of the total waste rock will be PAF/PAF-LC.

Highly weathered and soil materials appear to contain reactive acid buffering minerals and may potentially be used for additional security and control of acid release when used in covers or blends with PAF materials. The acid buffering of other mine materials tested was generally low and poorly reactive, and PAF materials will tend to have a short lag before onset of low pH conditions.

Waste rock and ore are likely to be enriched in Ag, Bi, Co and Cu, and weathered ore materials also appear to show elevated Se. Results indicate that weathered ore and low grade ore are unlikely to contain metals or metalloids that are readily mobilised under circum neutral pH conditions. Under acid conditions, leachates will be associated with elevated metals, including Al, Co, Cu, Fe, Mn, Ni and Zn.

The following waste rock segregation criteria based on geology and S testing are recommended for modelling the distribution of ARD rock types:

NAF: moderately to highly weathered *or* 

slightly weathered to fresh and Total S ≤0.3%S

PAF-LC: slightly weathered to fresh and Total S >0.3%S and ≤0.8%S

PAF: slightly weathered to fresh and Total S > 0.8%S

Note that PAF-LC materials could potentially be used to supplement operational shortfalls in NAF materials if it can be demonstrated that blending PAF-LC with NAF and/or addition of limestone can render these materials NAF.

The findings of investigations to date have the following implications for materials management:

- Segregation and selective mining of ARD waste rock types will be required to manage ARD from waste rock dumps.
- A programme of routine sampling and geochemical testing of waste rock materials should be carried out during operations to monitor variation in acid potential, reconcile the ARD prediction model and check ARD rock type materials handling and placement.
- Site capability for routine ARD screening testing should be developed to support the above programme. The NAG test is an excellent option due to its high level of discrimination between ARD rock types at Kanmantoo, the robustness of the test, the relatively simple equipment and reagent requirements, and its potential for simplification. Total S testing could also be an option, but would require more complex equipment and training to implement.
- Routine surface and groundwater monitoring should include analysis of pH, EC, Ag, Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, SO4 and Zn.
- The final pit voids may also be significant sources of ARD, depending on the distribution of sulphidic materials in the final walls and floors.

It is recommended the following be carried out to better define the ARD and metal/metaloid leaching potential:

- The infill S testing programme in progress by Hillgrove should be continued to improve the S model, and any issues with NAF availability should be identified.
- Use the S model to determine a S distribution of final pit shells, and assess the likely overall acid potential from the final pit void.
- Waste rock kinetic testing should be carried out to confirm preliminary lag times indicated by kinetic NAG testing and provide information on leaching characteristics. These data will provide:
  - information to help finalise management strategies for waste rock to minimise oxidation and ARD generation during operations;
  - a basis for assessing the geochemical contribution from the current operations relative to those from previous mining activities;
  - data to predict pit water quality during operations and at closure; and
  - an indication of treatment requirements to minimise liabilities at closure.
- Leach column testing of low grade ore and oxide ore should be carried out to determine leaching characteristics and help assess management requirements for these materials.
- Carry out simplified NAG tests on a range of waste rock materials to determine a suitable method for site implementation.

#### 1.0 Introduction

Environmental Geochemistry International Pty Ltd (EGi) were commissioned by Hillgrove Resources Limited to carry out geochemical characterisation of waste rock, low grade ore and ore from the Kanmantoo Copper Project in South Australia. The work follows on from a previous geochemical assessment carried out by EGi in 2007<sup>1</sup>.

Mineralisation at Kanmantoo occurs as veins and stockworks within the Cambrian Kanmantoo Group. The mineralisation consists of a number of discrete lenses with relatively sharp boundaries between ore and waste, dipping steeply to the east and striking approximately North-South. The Kanmantoo resource is split into three main deposits, the Main Deposit, Emily Star and O'Neil Zone.

The main deposit surrounding the old workings is split up into a number of zones: Main Zone, Eastern Zone, NE Zone, NW Zone, SE Zone and Green Zone. Mineralisation in the main deposit comprises chalcopyrite, pyrrhotite and magnetite with lesser pyrite, and is hosted by a garnet-andalusite-biotite schist (GABS). Biotite schist occurs peripheral to the GABS unit.

Emily Star and O'Neil Zone are satellite deposits that have different mineralogical associations. Mineralisation at Emily Star is characterised by chalcopyrite and pyrite. Mineralisation in the O'Neil Zone is similar to the Main Deposit but is enriched in gold.

There is a distinct weathering zone of approximately 15 m depth in which most sulphide appears to be completely oxidised. Copper mineralisation in the oxide zone is dominated by malachite, azurite and chalcocite.

The objectives of the work were as follows:

- confirm the reliability of degree of weathering criteria for identification of non acid forming (NAF) waste rock;
- refine the preliminary S based criteria for identification of NAF waste rock in unweathered materials; and
- extend geochemical testing for Emily Star and O'Neil Zone deposits.

Initial work carried out in 2007 indicated that sulphides were mostly completely oxidised in the weathered zone, and hence the degree of weathering routinely recorded in geological logs could potentially be used to reliably classify NAF materials, without the need for specific testing. More widespread geochemical testing was required to confirm an appropriate geological cut off.

Environmental Geochemistry International Pty Ltd

<sup>&</sup>lt;sup>1</sup> Hillgrove Resources Limited, ARD Assessment of the Kanmantoo Copper Project, EGi Document No. 2042/771, September 2007.

Sulphur analysis is routinely carried out in ore zones, and the 2007 work indicated a cut off of around 0.2%S could be used to segregate NAF and PAF materials in the fresh rock. Preliminary modelling of the S distribution was carried out by Hillgrove geologists in 2008. Although the S data was biased towards ore zones, the modelling was sufficient to indicate that the Emily Star pit may contain mainly NAF waste rock, and that coherent blocks of NAF materials could be identified in the other pits although the distribution of PAF and NAF was more complex. A materials balance was reported in a memorandum by Snowden in February 2008, which determined that based on the preliminary modelling, there was likely to be sufficient NAF to meet the surface construction and cover requirements<sup>2</sup>.

The most reliable and ready sources of NAF appear to be weathered rock and fresh waste rock from Emily Star, but these sources alone will not meet requirements. Furthermore, due to the general lack of storage on site, it will be important to identify an excess of NAF to provide flexibility in scheduling and placement of NAF and PAF materials. It was therefore important to confirm a reliable S cut off criteria for fresh rock, and if possible increase the S cut off value to provide more flexibility in materials segregation and potentially increase the proportion of available NAF waste rock.

Testing in 2007 did not include O'Neil Zone samples and only included 25 samples in 1 hole at Emily Star. A more comprehensive geochemical characterisation programme was required for the Emily Star and O'Neil Zone deposits to account for potential variation in mineralogy, alteration and lithologies.

# 2.0 Sample Preparation and Test Methodology

A total of 235 waste rock, 49 low grade ore and 67 ore samples were provided to EGi for testing in June 2009 and in March and April 2010. Samples were selected by site personnel in conjunction with EGi to represent the weathered profile from across the deposit and to fill in gaps in coverage from previous testing. With the 2007 samples, a combined total of 450 samples have been geochemically tested.

Samples were provided as splits of pulverised (-75 $\mu$ m) reserves from ore resource definition testing.

Acid neutralising capacity (ANC) and single addition net acid generation (NAG) testing was completed on all samples. Most samples were already assayed for total S by ICP as part of routine resource testing. Leco equivalent (high temperature evolution) total S testing was carried out on selected samples with ICP S values to confirm the suitability of the ICP method, and also on samples not previously assayed for S.

Memorandum to Marty Adams, 11 February 2008.

Management of Potential Acid Forming Material, Snowden Mining Industry Consultants Pty Ltd,

Further testing was carried out on selected samples to help resolve uncertainties in the above test results and provide a guide to elemental mobilisation, as follows:

- sequential NAG test
- kinetic NAG test;
- acid buffering characteristic curve (ABCC) test;
- multi-element scans of solids; and
- pH, alkalinity/acidity and multi-element scans of deionised water batch extracts carried out at a ratio of 1 part solid to 2 parts water and agitated for 16 hours.

A general description of ARD test methods and calculations used is provided in Appendix A.

Total sulphur assays were carried out by Sydney Environmental and Soil Laboratory (SESL). Multi-element analyses of sample solids were carried out by ALS Laboratory Group (Brisbane). Multi-element analyses of deionised water batch extracts were carried out by ALS Laboratory Group (Sydney). All other analyses were carried out by EGi.

#### 3.0 Standard Geochemical Characterisation

Acid forming characteristics of waste rock, low grade and ore samples are shown in Table 1, comprising total S, MPA (maximum potential acidity), ANC, NAPP (net acid producing potential), ANC/MPA ratio, and single addition NAG. Table 1 includes results from the previous 2007<sup>1</sup> testing in addition to the recent 2009 and 2010 testing.

#### 3.1 Acid Base (NAPP) Results

Total S ranged up to 7.1%S, with approximately 60% of samples having relatively low total S of less than 0.5%S, and 5% of samples having high S values greater than 2%S.

ICP S is routinely determined on a wide sample set as part of Hillgrove Resources analytical testing for resource definition. Figure 1 compares the Hillgrove ICP total S with Leco (and Leco equivalent) total S carried out on the same samples from the 2007 and 2009 testing. The plot shows a strong 1:1 relationship between the ICP S and Leco S results, showing that the ICP S is suitable for determination of total S on Kanmantoo materials.

Figure 2 is a box plot of the distribution of S split by the degree of weathering, showing that weathering strongly effects the distribution of S, with slightly to highly weathered materials having a distinctly lower distribution of S than transition and fresh materials. Weathered materials have median S values of 0.02%S to 0.08%S, compared to median values of 0.3% to 0.5%S for transition/fresh materials. Although the slightly weathered samples have a low median S value of 0.03%S, this group also includes higher S samples with 10% of samples containing more than 1%S.

Figure 3 is a box plot of the distribution of S split by lithology for transitional and fresh samples only, focussing on the influence of lithology on S distribution independent of the weathering effects noted in Figure 2. The plot shows that all lithologies show a similar range of S values, but with the biotite schist (BS) showing a distinctly lower median S of 0.15%S, compared to the other lithologies with similar medians ranging from 0.49%S to 0.66%S. Results indicate that lithology does not strongly control S distribution, except for an apparent lower S in BS lithologies overall. Note that although the fresh/transitional BS samples show a low median S, 30% of the BS samples had S values greater than 1%S and as high as 7%S, indicating that portions of this rock type may be strongly pyritic.

ANC values ranged up to 179 kg  $H_2SO_4/t$  but were generally low, with 84% of samples having ANC values less than 20 kg  $H_2SO_4/t$ .

Figure 4 is a box plot of the distribution of ANC split by the degree of weathering (excluding the high ANC value of 179 kg H<sub>2</sub>SO<sub>4</sub>/t). Results show that weathering does not strongly control the distribution of ANC, with median ANC values low and less than 15 kg H<sub>2</sub>SO<sub>4</sub>/t for all weathering types. However, the highest ANC values were associated with the highly weathered samples. Figure 5 is a box plot of the distribution of ANC split by lithology for transitional and fresh samples only. The plot indicates that lithology does not significantly control ANC distribution.

The net acid producing potential (NAPP) value is an acid-base account calculation using measured total S and ANC values. It represents the balance between the maximum potential acidity (MPA) and ANC. A negative NAPP value indicates that the sample may have sufficient ANC to prevent acid generation. Conversely, a positive NAPP value indicates that the material may be acid generating.

Figure 6 is an acid-base account plot of ANC versus total S. Figure 7 is the same as Figure 6, but re-scaled to exclude the high S samples and to better represent ANC below 50 kg  $H_2SO_4/t$ . The NAPP zero line is shown which defines the NAPP positive and NAPP negative domains, and lines for ANC/MPA ratio values of 1.5 and 2 are also plotted. Note that the NAPP = 0 line is equivalent to an ANC/MPA ratio of 1. The ANC/MPA ratio is used as an indication of the relative factor of safety within the NAPP negative domain. Usually a ratio of 2 or more signifies a high probability that the material will remain circum-neutral in pH and thereby should not be problematic with respect to ARD. The plots emphasize the narrow ANC range, with the majority of samples having an ANC less than 20 kg  $H_2SO_4/t$ , but a broad range in S content. Approximately 55% of samples are NAPP negative, and most of these (65%) have ANC/MPA ratios of 2 or more.

#### 3.2 Single Addition NAG Results and Comparison with Acid Base Results

NAG test results are used in conjunction with NAPP values to classify samples according to acid forming potential. A NAGpH < 4.5 indicates the sample is acid producing. Table 1 shows that approximately 45% of the samples tested had a NAGpH greater than or equal to 4.5.

Figure 8 is an ARD classification plot showing NAGpH versus NAPP value. Figure 9 is the same plot rescaled to better represent the NAPP range from -50 to 50 kg  $H_2SO_4/t$ . Potentially acid forming (PAF), non-acid forming (NAF) and uncertain (UC) classification domains are indicated. A sample is classified PAF when it has a positive NAPP and NAGpH < 4.5, and NAF when it has a negative NAPP and NAGpH  $\geq$  4.5. Samples are classified uncertain when there is an apparent conflict between the NAPP and NAG results, i.e. when the NAPP is positive and NAGpH  $\geq$  4.5, or when the NAPP is negative and NAGpH  $\leq$  4.5.

The plot shows that most samples plot in the NAF and PAF domain, but a number of samples also plot in the upper right and lower left uncertain domains.

A total of 58 samples plot in the lower left uncertain domain with negative NAPP values but NAGpH values less than 4.5. Results suggest that the ANC measured is partially ineffective, resulting in an underestimation of acid potential in the NAPP value. This was confirmed with ABCC testing (see Section 4.1) and hence the NAG test results are expected to be a more reliable guide to acid potential for these samples.

Eleven samples plot in the upper right uncertain domain. These samples have low ANC values of 15 kg H<sub>2</sub>SO<sub>4</sub>/t or less and total S values of less than 0.8%S, and the NAG test would normally account for all pyritic S in the sample. These samples are expected to be NAF in accordance with the NAG results, and suggest the presence of non acid generating S forms. Note that many of these samples were highly to moderately weathered, and results confirm that much of the pyrite in these samples is likely to have been oxidised.

# 4.0 Specialised Geochemical Characterisation

#### 4.1 Acid Buffering Characteristic Curve (ABCC) Testing

Acid buffering characteristic curve (ABCC) testing was carried out on 34 selected waste rock, low grade ore and ore samples to evaluate the availability of the ANC measured. The ABCC test involves slow titration of a sample with acid while measuring the solution pH. The acid buffering of a sample to pH 4 can be used as an estimate of the proportion of readily available ANC.

Results are presented in Figures 10 to 21, with calcite, dolomite, ferroan dolomite and siderite standard curves as reference. Calcite and dolomite readily dissolve in acid and exhibit strongly buffered pH curves in the ABCC test, rapidly dropping once the ANC value is reached. The siderite standard provides very poor acid buffering, exhibiting a very steep pH curve in the ABCC test. Ferroan dolomite is between siderite and dolomite in acid buffering availability.

Moderately weathered samples 40340 (Figure 20) and 40337 (Figure 21) have unusual curves in that the acid consumed to pH 4 is equal to 2-3 times the total ANC. These two samples have high Cu concentrations greater than 3%Cu, and the log descriptions indicate that the Cu occurs as the hydrated copper carbonates malachite and azurite. In these cases the ABCC

curves reflect interference from dissolution of malachite and azurite, rather than carbonates. Cu will tend to remain in solution at below pH 5, but once it precipitates the acid consumed will be re-released, and hence there is no net acid neutralisation benefit from reaction of acid with these minerals. However, the results do demonstrate that Cu is readily mobilised from oxide zone ore under acidic conditions.

All of the highly weathered and soil samples show strong buffering (samples 40299 in Figure 12, 40561 and 40532 in Figure 14, 38602 and 40652 in Figure 16, and 40311 in Figure 19), with curves plotting between calcite and dolomite standard curves, and indicating almost all the total ANC in these samples is available and fast reacting. The results suggest surface enrichment of carbonate due to weathering processes, most likely as calcrete or equivalent.

By contrast, all the remaining 26 moderately weathered to fresh samples have profiles that plot between the ferroan dolomite and siderite standard curve, indicating poor reactivity and with 19 of these samples showing only partial (less than 60%) ANC effectiveness.

Results show that soil and highly weathered materials at Kanmantoo may provide a source of readily available acid buffering, potentially offering additional security and control of acid release when used in covers or blends with acid producing materials. However, the ANC in moderately weathered to fresh materials appears to be poorly available and slow reacting. Total ANC values for these materials may therefore overestimate the effective buffering available, resulting in underestimation of acid potential in the NAPP value, confirming that the samples plotting in the lower left uncertain domain are likely to be PAF as indicated by NAG testing.

#### 4.2 Sequential NAG Testing

When testing samples with high sulphide contents it is common for oxidation to be incomplete in the single addition NAG test. Sequential NAG testing overcomes this limitation to an extent through successive additions of peroxide to the same sample. Sequential NAG testing to 5 stages was carried out on six selected samples. Results are presented in Table 2.

Moderately weathered ore sample 40340 had a slightly negative NAPP of -2 kg  $H_2SO_4/t$  and a moderate ANC of 21 kg  $H_2SO_4/t$ , and sequential NAG testing was carried out to confirm this sample was non acid forming. Results show that the pH remained greater than 4.5 for all 5 stages, and the sample was classified NAF.

The remaining 5 samples had positive NAPP values, and sequential NAG testing was carried out to compare total sequential NAG acidities to NAPP values. Results show that most acid is released in the first stage of the test, with only minor acidity measured after stage 2. The total sequential NAG acidity values to pH 7 were approximately 60-80% of the NAPP values, suggesting that most of the S in this sample is present as reactive sulphide. Results also show that the single addition NAG is a reasonable guide to acid potential in these samples.

#### 4.3 Kinetic NAG Testing

Kinetic NAG tests provide an indication of the kinetics of sulphide oxidation and acid generation for a sample. Kinetic NAG testing was carried out on 15 selected slightly weathered to fresh samples with S values greater than 0.8% S and varying ANC. The kinetic NAG pH and temperature profiles are presented in Figures 22 to 36.

All samples have distinct temperature peaks, indicating that most of the total S in the samples is present as pyrite/pyrrhotite. However, the lag time before acid production (pH <4) in the test varies.

Samples 33402, 33414, 33425, 33452 and 40329 have moderate to high S of 0.81%S to 1.75%S and moderate ANC values of 19 to 29 kg  $H_2SO_4/t$ , and show a delay of close to 30 minutes before reaching pH 4. The results suggest materials represented by these samples will have a lag of 2 to 6 months before acid conditions develop in the field.

Sample 33400 has moderate S of 0.85%S and low to moderate ANC of 13 kg  $H_2SO_4/t$ , and shows slow rates of acid production, dropping below pH 4 after 100 minutes. The results indicate that materials represented by this sample are likely to have a lag 1-2 years before the onset of acid conditions.

The remaining 9 samples have moderate to high S of 1.0% to 2.5%S and low ANC of  $11 \text{ kg H}_2\text{SO}_4/\text{t}$  or less, and show rapid rates of acid production, reaching below pH 4 in the first 10 minutes of the test. The results indicate that pyritic materials with low ANC are likely to produce acid within a week to a few months after exposure.

Overall, results indicate that higher sulphur PAF materials with moderate ANC may have lags of 2-4 months after exposure to atmospheric oxidation conditions, whereas those with ANC values of around 10 or less are likely to react within weeks.

#### 4.4 Multi-Element Analysis of Solids and Water Extracts

A total of 39 samples were selected for multi-element analysis of solids and water extracts. Samples were selected to cover a range of ore and waste rock types and degree of weathering. Results of multi-element scans on solids were compared to the median soil abundance (from Bowen, 1979<sup>3</sup>) to highlight enriched elements.

The extent of enrichment is reported as the Geochemical Abundance Index (GAI), which relates the actual concentration with an average abundance on a log 2 scale. The GAI is expressed in integer increments where a GAI of 0 indicates the element is present at a concentration similar to, or less than, average abundance; and a GAI of 6 indicates approximately a 100-fold enrichment above average abundance. As a general rule, a GAI of 3 or greater signifies enrichment that warrants further examination.

<sup>&</sup>lt;sup>3</sup> Bowen, H.J.M. (1979) Environmental Chemistry of the Elements. Academic Press, New York, p 36-37.

Results of multi-element analysis are presented in Table 3 and the corresponding GAI values are presented in Table 4.

Results show significant enrichment in Cu for both ore samples and waste rock samples, with associated enrichment in Ag, Bi and Co. Se is enriched in the high to moderate weathered ore and low grade ore samples, with slight enrichment in some of the waste rock samples. Sulphur is mainly enriched in the fresh samples, as discussed in relation to acid forming potential (Section 3.1). There is also slight enrichment of Be in many of the samples, and individual samples are also slightly enriched in As. In addition, there is a single high W concentration of 202 mg/kg, which may be due to contamination or analytical error, as it is 2 orders of magnitude higher than other samples.

The same waste rock sample solids were subjected to water extraction at a solids:liquor ratio of 1:2 and results are provided in Table 5. Most sample extracts had circum neutral pH and low salinity EC values of less than 0.4 dS/m. Elevated Al and Fe were measured in many samples with circum neutral pH values. The presence of elevated Al and Fe in extracts with circum neutral pH values is unexpected, and indicates the presence of colloidal metals or fine particulates in the solution after filtering. This is supported by an association between dissolved Si and Al and Fe. A few samples contain elevated Cu concentrations of greater than 1 mg/L at circum-neutral pH, which may be due to fine particulates but may indicate Cu solubility. The water extract from high S sample 33446 has a low pH of 3.6, and shows elevated concentrations of Co, Cu, Mn, Ni and Zn. Overall results indicate a general lack of metal/metalloid mobilisation except under acid conditions.

Results indicate waste rock and ore are likely to be enriched in Ag, Bi, Co and Cu, and weathered ore materials also appear to show elevated Se. Results indicate that weathered ore and low grade ore is unlikely to contain metals or metalloids that are readily mobilised under circum neutral pH conditions (with the possible exception of Cu). Under acid conditions, leachates will be associated with elevated metals, including Al, Co, Cu, Fe, Mn, Ni and Zn. The solubility of these elements will largely be determined by pH and therefore control of acid generation will effectively control metal leaching. Leach column testing would be required to evaluate the likely seepage quality and release rates of environmentally important elements associated with oxidation of waste rock materials, both under neutral and acid conditions.

# 5.0 Sample Classification and Segregation Criteria

ARD classifications are provided in Table 1 based on results and discussions above. A total of 45% of samples in Table 1 were classified NAF/UC(NAF), 25% were classified PAF-LC/UC(PAF-LC) and 30% of samples were classified PAF/UC(PAF). Comparison of the ARD classification resulting from full geochemical characterisation with key parameters in Table 1 indicate that routine ARD screening of waste rock for distribution modelling, and reconciliation and checks during operations, could be based on a combination of geological description and ARD testing.

Figure 37 is a plot showing the relative proportion of samples classified NAF, PAF-LC and PAF by the degree of weathering. Note that the classification groupings include the expected classification of the uncertain samples, so that the NAF proportion (shown in blue) includes UC(NAF), the PAF-LC (pink) incudes UC(PAF-LC) and PAF (red) includes UC(PAF). The plot shows that none of the highly weathered samples were classified PAF or PAF-LC. Only a small proportion (6%) of the moderately weathered samples were classified PAF, and a slightly higher proportion (11%) were classified PAF-LC, but all PAF samples and all but 2 PAF-LC samples were ore or low grade ore rather than waste rock. Slightly weathered samples show a more significant proportion of PAF and PAF-LC, accounting for 27% of samples.

The results indicate that highly to moderately weathered waste rock materials can be classified NAF without the need to carry out specific testing (apart from routine checks during operations). The base of moderate weathering has already been defined as the base of oxidation surface in the site geological model, and hence is readily applied to planning and scheduling. However, some adjustments need to be made to the base of oxidation surface, as checks during the site visit showed that some holes have materials described as moderately weathered but are collared in the old pit surface below the true weathering profile. In these cases, decades of exposure have caused the sulphide to partly oxidise, giving the appearance of a moderately weathered material. Only materials logged as moderately to highly weathered within the natural weathering profile should be classified NAF.

ARD classification of materials below the base of oxidation surface (slightly weathered to fresh materials) requires the application of criteria based on ARD testing. Results suggest that total S and NAGpH are the most discriminating parameters for routine ARD classification of these materials.

ICP S has been routinely determined on a wide sample set as part of Hillgrove Resources analytical testing for resource definition, and preliminary S distribution modelling was carried out in 2008<sup>2</sup> based on previous EGi recommendations. The modelling confirmed the presence of minable low S blocks and the potential for S as a waste rock segregation tool.

Figure 38 is a box plot showing the distribution of total S by ARD classification type for all slightly weathered, transitional and fresh samples. The plot shows that at less than or equal to 0.3%S, 90% of NAF samples are included but no PAF samples and a minority of PAF-LC samples. The 0.3%S cut off is therefore the recommended criteria for separating NAF from PAF-LC and PAF.

The range 0.5%S to 0.8%S captures most of the PAF-LC samples but excludes most of the PAF samples, and could be used to separate PAF LC from PAF. PAF-LC materials could potentially be used to supplement operational shortfalls in NAF materials by blending with NAF and/or crushed limestone. Determining appropriate blending ratios and addition rates would require further geochemical investigations.

Figure 39 is a box plot of the distribution of NAGpH by ARD classification for all slightly weathered, transitional and fresh samples. The plot shows a NAGpH of 4.5 discriminates between all NAF and PAF/PAF-LC samples. A NAGpH of 3.5 is appropriate for segregating PAF-LC and PAF. Although NAGpH provides very good discrimination between NAF, PAF-LC and PAF rock types, the total S criteria is still preferred for development of an ARD rock type distribution model because of the existing large and expanding S database, and its direct relationship to sulphide mineralisation. However, NAG testing has strong potential as a site based method for reconciliation of the ARD prediction model and for routine checking. The NAG test could be simplified for site use to ensure ease of use and quick turn around.

Modelling of the S distribution will be required to accurately determine trends in ARD rock type occurrence across the deposit, but results in Table 1 show some general indications of the relative proportions of ARD rock types for the different mineralisation zones. Figure 40 is a plot of the relative proportion of samples classified NAF, PAF-LC and PAF in each of the mineralisation zones for slightly weathered, transitional and fresh samples. The figure indicates the following:

- Main Zone, NW Zone and NE Zone: low proportion of NAF and high proportion of PAF and PAF-LC;
- Eastern Zone, SE Zone and O'Neil Zone: moderate proportion of NAF but a relatively high proportion of PAF and PAF-LC;
- Emily Star: high proportion of NAF and a relatively low proportion of PAF and PAF-LC; and
- Green Zone: all samples were NAF suggesting a possible similar distribution to Emily Star, but only one hole was tested from this zone and results are inconclusive.

Overall, 45% of slightly weathered to fresh samples were classified NAF, and 55% PAF or PAF-LC. Note that testing of an additional 3 holes in 2009/2010 at Emily Star confirmed the low proportion of PAF indicated by testing of the single hole in 2007.

### 6.0 Conclusions and Recommendations

Results confirm that moderately to highly weathered waste rock is likely to be NAF, and that slightly weathered to fresh materials will be a mixture of NAF, PAF-LC and PAF. Results indicate that slightly weathered to fresh waste rock at Emily Star (and possibly Green Zone) will have the lowest ARD potential, and that at Main Zone, NW Zone and NE Zone will have the higher ARD potential. Overall, 45% of slightly weathered to fresh samples were classified NAF, and 55% PAF or PAF-LC. Although the samples assayed may not be a true representation of the actual proportion of ARD rock types within the pit shells, it is likely that a significant proportion of the total waste rock will be PAF/PAF-LC.

The ANC in the mine materials tested was generally low and poorly reactive, and PAF materials will tend to have a short lag before onset of low pH conditions. Highly weathered

and soil materials are an exception with apparently fast reacting acid buffering minerals present, most likely due to surface enrichment of carbonate (calcrete or equivalent) due to weathering processes. These highly weathered and soil materials may potentially be used for additional security and control of acid release when used in covers or blends with acid producing materials.

Waste rock and ore are likely to be enriched in Ag, Bi, Co and Cu, and weathered ore materials also appear to show elevated Se. Results indicate that weathered ore and low grade ore is unlikely to contain metals or metalloids that are readily mobilised under circum neutral pH conditions. Under acid conditions, leachates will be associated with elevated metals, including Al, Co, Cu, Fe, Mn, Ni and Zn.

The following waste rock segregation criteria based on geology and S testing are recommended for modelling the distribution of ARD rock types:

NAF: moderately to highly weathered *or* 

slightly weathered to fresh and Total S ≤0.3%S

PAF-LC: slightly weathered to fresh and Total S >0.3%S and ≤0.8%S

PAF: slightly weathered to fresh and Total S > 0.8%S

Once the distribution of ARD waste rock types are modelled across the deposit, the materials balance should be assessed to determine whether there is sufficient NAF to meet the surface construction and cover requirements.

Note that PAF-LC materials could potentially be used to supplement operational shortfalls in NAF materials. There may be opportunities to increase the NAF cut off between 0.3%S and 0.8%S if it can be demonstrated that blending PAF-LC with NAF and/or addition of limestone can render these materials benign. It is recommended that S distribution modelling of slightly weathered to fresh waste rock define zones with variable cut offs of  $\le 0.3\%S$ ,  $\le 0.5\%S$  and  $\le 0.8\%S$  to take into account possible contributions from PAF-LC materials. Significant increases in material volumes with an increased %S cut off would justify further geochemical investigations to determine appropriate blending ratios and/or limestone addition rates.

NAG testing has strong potential as a site based method for reconciliation of the ARD prediction model and for routine checking. The NAG test could be simplified for site use to ensure ease of use and quick turn around.

The findings of investigations to date have the following implications for materials management:

- ARD management of slightly weathered to fresh waste rock materials will be required to prevent ARD from waste rock dumps.
- A programme of routine sampling and geochemical testing of waste rock materials should be carried out during operations to monitor variation in acid potential, reconcile the ARD prediction model and check ARD rock type materials handling and placement.

- Site capability for routine ARD screening testing should be developed to support the above programme. The NAG test is an excellent option due to its high level of discrimination between ARD rock types at Kanmantoo, the robustness of the test, the relatively simple equipment and reagent requirements, and its potential for simplification. Total S testing could also be an option, but would require more complex equipment and training to implement.
- Routine surface and groundwater monitoring should include analysis of pH, EC, Ag, Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, SO4 and Zn.
- The final pit voids may also be significant sources of ARD, depending on the distribution of sulphidic materials in the final walls and floors.

It is recommended the following be carried out to better define the ARD and metal/metaloid leaching potential:

- The infill S testing programme in progress by Hillgrove should be continued to improve the S model. As discussed, the modelling should include cut offs of ≤0.3%S, ≤0.5%S and ≤0.8%S, and any issues with NAF availability should be identified.
- Use the S model to determine a S distribution of final pit shells, and assess the likely overall acid potential from the final pit void.
- Waste rock kinetic testing should be carried out to confirm preliminary lag times indicated by kinetic NAG testing and provide information on leaching characteristics. These data will provide:
  - information to help finalise management strategies for waste rock to minimise oxidation and ARD generation during operations;
  - a basis for assessing the geochemical contribution from the current operations relative to those from previous mining activities;
  - data to predict pit water quality during operations and at closure; and
  - an indication of treatment requirements to minimise liabilities at closure.
- Leach column testing of low grade ore and oxide ore should be carried out to determine leaching characteristics and help assess management requirements for these materials. It is understood that unoxidised high grade ore is not likely to be stockpiled for more than a week during operations, and hence there should be limited opportunities for ARD generation from these stockpiles. However, low grade ore and oxide ore may be stockpiled for a number of years, and could potentially leach acid (low grade ore only) and metals/metalloids.
- Carry out simplified NAG tests on a range of waste rock materials to determine a suitable method for site implementation.

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|            |                        | ı                | Depth (n        | n)                            |                             |               |                     |                         |                           |                         | EGi            |             |                |          |              | ACIE     | -BASI | E ANALY  | 'SIS    |       | NAG TES               | г                     |                       |
|------------|------------------------|------------------|-----------------|-------------------------------|-----------------------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|----------------|----------|--------------|----------|-------|----------|---------|-------|-----------------------|-----------------------|-----------------------|
| Hole Name  | Location               | From             | То              | Lithology Primary             | Weathering                  | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample         | Data<br>Set | Cu (%)         | Au (g/t) | Total        | MPA      | ANC   | NAPP     | ANC/MPA | NAGpH | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
|            |                        | 110111           | 10              | Interval                      |                             |               |                     |                         |                           |                         | No             |             |                |          | %S           | """ ^    | AITO  | NAI I    | ANOMINA | идори | )                     | )                     |                       |
| KTRC070    | Main Zone              | 1.00             | 4.00            | 3.00 GABS                     | Fresh                       | WR            |                     |                         |                           |                         | 33384          | 2007        | 0.029          | 0.006    | 0.62         | 19       | 7     | 12       | 0.37    | 3.4   | 3                     | 10                    | PAF-LC                |
|            | Main Zone              | 8.00             |                 | 4.00 GABS                     | Fresh                       | WR            | 2                   |                         |                           |                         | 33385          | 2007        | 0.011          | 0.005    | 0.50         | 15       | _     | -        | 0.59    |       | 4                     | 11                    | PAF-LC                |
|            | Main Zone              | 20.00            | 24.00           | 4.00 GABSS                    | Fresh                       | WR            | 1                   |                         |                           |                         | 33386          | 2007        | 0.010          | 0.001    | 0.43         | 13       | _     |          | 0.76    |       | 4                     | 10                    | PAF-LC                |
|            | Main Zone<br>Main Zone | 28.00<br>30.00   | 30.00           | 2.00 GABSS<br>1.00 QV         | Fresh<br>Fresh              | WR<br>WR      | 1                   |                         |                           |                         | 33387<br>33388 | 2007        | 0.009          | 0.015    | 0.24         | 7<br>8   |       |          | 2.78    |       | 0                     | 3                     | NAF<br>NAF            |
|            | Main Zone              | 34.00            | 38.00           | 4.00 BGCS                     | Fresh                       | WR            | 2                   |                         | 1                         |                         | 33389          | 2007        | 0.167          | 0.053    | 0.89         | 27       |       |          | 0.40    |       | 6                     | 19                    | PAF                   |
| KTRC070    | Main Zone              | 38.00            | 39.00           | 1.00 BGCS                     | Fresh                       | WR            | 2                   |                         |                           |                         | 33390          | 2007        | 0.073          | 0.020    | 0.70         | 21       | 11    | 10       | 0.51    | 3.8   | 3                     | 13                    | PAF-LC                |
|            | Main Zone              | 41.00            | 44.00           | 3.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33391          | 2007        | 0.163          | 0.073    | 0.36         | 11       |       | 0        | 1.00    |       | 0                     | 5                     | NAF                   |
|            | Main Zone              | 44.00            | 45.00           | 1.00 GABSS                    | Fresh                       | WR            | 2                   |                         | 1                         |                         | 33392          | 2007        | 0.341          | 0.170    | 0.70         | 21       | _     | _        | 0.47    |       | 3                     |                       | PAF-LC                |
|            | Main Zone<br>Main Zone | 45.00<br>51.00   | 49.00<br>52.00  | 4.00 GABSS<br>1.00 GABSS      | Fresh<br>Fresh              | WR<br>WR      | 2                   |                         | 1                         |                         | 33393<br>33394 | 2007        | 0.114          | 0.035    | 0.86         | 26<br>16 |       | _        | 0.46    |       | 9                     |                       | PAF<br>PAF-LC         |
|            | Main Zone              | 56.00            | 57.00           | 1.00 GABS                     | Fresh                       | WR            | 2                   |                         | 1                         |                         | 33395          | 2007        | 0.100          | 0.070    | 1.49         | 46       |       |          | 0.32    |       | 20                    | 31                    | PAF                   |
|            | Main Zone              | 57.00            | 60.00           | 3.00 GABS                     | Fresh                       | WR            | 2                   |                         |                           |                         | 33396          | 2007        | 0.067          | 0.063    | 0.58         | 18       |       |          | 0.79    |       | 6                     | 13                    | PAF                   |
|            | Main Zone              | 64.00            | 68.00           | 4.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33397          | 2007        | 0.006          | 0.002    | 0.11         | 3        | 12    |          | 3.57    |       | 0                     | 3                     | NAF                   |
|            | Main Zone              | 72.00            | 76.00           | 4.00 GABSS                    | Fresh                       | WR            | 1                   |                         | 1                         |                         | 33398          | 2007        | 0.025          | 0.004    | 0.80         | 24       |       |          | 0.90    |       | 12                    | 20                    | PAF                   |
|            | Main Zone<br>Main Zone | 76.00<br>83.00   | 80.00<br>87.00  | 4.00 GABSS<br>4.00 BGCS       | Fresh<br>Fresh              | WR<br>WR      | 2                   |                         | 1                         |                         | 33399<br>33400 | 2007        | 0.048          | 0.008    | 0.89         | 27<br>26 |       |          | 0.62    |       | 13<br>8               | 22<br>17              | PAF PAF               |
|            | Main Zone              | 87.00            | 88.00           | 1.00 BGCS                     | Fresh                       | WR            | 2                   |                         | 1                         |                         | 33400          | 2007        | 0.212          | 0.000    | 0.85         | 19       | _     | _        | 0.50    |       | 5                     | 17                    | PAF-LC                |
|            | Main Zone              | 103.00           | 104.00          | 1.00 GABSS                    | Fresh                       | WR            |                     |                         | 2                         |                         | 33402          | 2007        | 0.168          | 0.000    | 0.81         | 25       | _     |          | 1.17    |       | 9                     | 19                    | UC(PAF)               |
|            | Main Zone              | 104.00           | 108.00          | 4.00 GABSS                    | Fresh                       | WR            | 1                   |                         | 1                         |                         | 33403          | 2007        | 0.065          | 0.010    | 0.46         | 14       |       |          | 0.78    |       | 4                     | 9                     | PAF-LC                |
|            | Main Zone              | 116.00           | 120.00          | 4.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33404          | 2007        | 0.017          | 0.003    | 0.42         | 13       |       |          |         |       | 4                     | 9                     | PAF-LC                |
|            | Main Zone              | 120.00           | 124.00          | 4.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33405          | 2007        | 0.010          | 0.004    | 0.23         | 7        |       |          | 1.71    |       | 1                     |                       | UC(PAF-LC)            |
|            | Main Zone<br>Main Zone | 132.00<br>28.00  | 136.00<br>32.00 | 4.00 GABSS<br>4.00 GABSS/GABS | Fresh<br>Transitional/Fresh | WR<br>WR      | 1                   |                         |                           | 5020112                 | 33406<br>40309 | 2007        | 0.002          | 0.005    | 0.36<br>1.69 | 11<br>52 |       | -1<br>44 | 1.09    |       | 3<br>19               | 36                    | UC(PAF-LC)            |
|            | Main Zone              | 32.00            | 36.00           | 4.00 GABSS/GABS               | Fresh                       | WR            |                     |                         |                           | 5020112                 | 40310          | 2010        | 0.015          | 0.022    | 1.09         | 33       |       |          | 0.2     |       | 14                    | 34                    | PAF                   |
|            | Main Zone              | 0.00             | 4.00            | 4.00 Olt/Ocl                  | Highly                      | WR            |                     |                         |                           | 4009451                 | 40561          | 2010        | 0.016          | 0.007    | 0.09         | 3        | _     |          | 6.5     |       | 0                     | 0                     | NAF                   |
| KTRC356    | Main Zone              | 4.00             | 8.00            | 4.00 BGCS                     | Highly                      | WR            |                     |                         |                           | 4009452                 | 40562          | 2010        | 0.006          | 0.010    | 0.09         | 3        | 4     | -1       | 1.5     | 6.2   | 0                     | 4                     | NAF                   |
|            | Main Zone              | 12.00            | 16.00           | 4.00 BGCS                     | Highly                      | WR            |                     |                         |                           | 4009454                 | 40563          | 2010        | 0.002          | 0.022    | 0.30         | 9        | _     |          | 0.7     |       | 0                     |                       | UC(NAF)               |
|            | Main Zone              | 16.00            | 20.00           | 4.00 BGCS                     | Highly                      | WR            |                     |                         |                           | 4009455                 | 40564          | 2010        | 0.003          | 0.020    | 0.20         | 6<br>9   | _     | _        |         |       | 0                     |                       | NAF                   |
|            | Main Zone<br>Main Zone | 20.00            | 24.00           | 4.00 GABS<br>4.00 GABS        | Moderately<br>Moderately    | WR<br>WR      |                     |                         |                           | 4009456<br>4009457      | 40565<br>40567 | 2010        | 0.084          | 0.013    | 0.29         | 6        |       |          | 0.8     |       | 0                     | 3                     | UC(NAF)<br>NAF        |
|            | Main Zone              | 32.00            | 36.00           | 4.00 GABS                     | Moderately                  | WR            |                     |                         |                           | 4009459                 | 40568          | 2010        | 0.008          | 0.016    | 0.06         | 2        | _     |          | 4.9     |       | 0                     | 0                     | NAF                   |
| KTRC356    | Main Zone              | 36.00            | 40.00           | 4.00 GABS                     | Moderately                  | WR            |                     |                         |                           | 4009460                 | 40569          | 2010        | 0.002          | 0.007    | 0.12         | 4        | 10    | -6       | 2.7     |       | 0                     | 0                     | NAF                   |
|            | Main Zone              | 40.00            | 44.00           | 4.00 GABS                     | Moderately                  | WR            |                     |                         |                           | 4009461                 | 40570          | 2010        | 0.001          | 0.014    | 0.07         | 2        |       |          | 4.7     |       | 0                     | 0                     | NAF                   |
|            | Main Zone              | 44.00            | 48.00           | 4.00 GABS                     | Moderately                  | WR            |                     |                         |                           | 4009462                 | 40571          | 2010        | 0.001          | 0.014    | 0.08         | 2        | _     |          | 4.9     |       | 0                     | 4                     | NAF                   |
|            | Main Zone<br>Main Zone | 48.00<br>52.00   | 52.00<br>56.00  | 4.00 GABS<br>4.00 GABS        | Moderately<br>Moderately    | WR<br>WR      |                     |                         |                           | 4009463<br>4009464      | 40572<br>40573 | 2010        | 0.008          | 0.016    | 0.13         | 9        | _     |          | 2.0     |       | 0                     | 0                     | NAF<br>NAF            |
|            | Main Zone              | 56.00            | 60.00           | 4.00 GABS/BCS                 | Fresh/Moderately            | WR            |                     |                         |                           | 4009465                 | 40574          | 2010        | 0.022          | 0.033    | 0.29         | 16       |       |          | 0.5     |       | 4                     | 11                    | PAF-LC                |
|            | Main Zone              | 60.00            | 61.00           | 1.00 BCS                      | Fresh                       | WR            | 1                   |                         |                           | 5043879                 | 40575          | 2010        | 0.001          | 0.010    | 1.41         | 43       |       | -        | 0.1     |       | 14                    | 22                    | PAF                   |
| KTRC356    | Main Zone              | 62.00            | 63.00           | 1.00 BCS                      | Fresh                       | WR            |                     |                         |                           | 5043881                 | 40576          | 2010        | 0.008          | 0.050    | 1.97         | 60       | 7     | 53       | 0.1     | 2.6   | 28                    | 41                    | PAF                   |
|            | Main Zone              | 64.00            | 65.00           | 1.00 BCS                      | Fresh                       | WR            | 1                   |                         |                           | 5043883                 | 40577          | 2010        | 0.181          | 0.100    | 6.38         | 195      | _     |          | 0.1     |       | 37                    | 78                    | PAF                   |
|            | Main Zone              | 0.00             | 4.00            | 4.00 GABSS                    | Slightly                    | WR            | 4                   |                         |                           |                         | 33407          | 2007        | 0.021          | 0.004    | 0.40         | 12       |       |          | 1.23    |       | 2                     |                       | UC(PAF-LC)            |
|            | Main Zone<br>Main Zone | 8.00<br>16.00    | 12.00           | 4.00 GABS<br>4.00 GABSS       | Fresh<br>Fresh              | WR<br>WR      | 1                   |                         |                           |                         | 33408<br>33409 | 2007        | 0.014          | 0.008    | 0.82         | 25<br>18 |       |          | 0.56    |       | 13<br>8               | 22<br>15              | PAF PAF               |
|            | Main Zone              | 24.00            | 28.00           | 4.00 GABS                     | Fresh                       | WR            | '                   |                         |                           |                         | 33410          | 2007        | 0.013          | 0.007    | 1.15         | 35       |       | _        | 0.72    |       | 19                    | 28                    | PAF                   |
|            | Main Zone              | 36.00            | 40.00           | 4.00 GABS                     | Fresh                       | WR            |                     |                         |                           |                         | 33411          | 2007        | 0.005          | 0.002    | 0.30         | 9        | _     |          | 1.09    |       | 2                     |                       | UC(PAF-LC)            |
|            | Main Zone              | 40.00            | 41.00           | 1.00 GABS                     | Fresh                       | WR            |                     |                         |                           |                         | 33412          | 2007        | 0.003          | 0.000    | 0.39         | 12       |       |          | 1.17    |       | 4                     |                       | UC(PAF-LC)            |
|            | Main Zone              | 41.00            | 44.00           | 3.00 GABS                     | Fresh                       | WR            |                     |                         |                           |                         | 33413          | 2007        | 0.006          | 0.000    | 0.72         | 22       |       | _        | 0.64    |       | 10                    | 18                    | PAF                   |
| KTRCD072 I | Main Zone<br>Main Zone | 44.00<br>48.00   | 48.00<br>49.00  | 4.00 GABS<br>1.00 QV          | Fresh<br>Fresh              | WR<br>WR      |                     | 1                       | 1                         |                         | 33414<br>33415 | 2007        | 0.116<br>0.165 | 0.038    | 1.75         | 54<br>55 | _     |          | 0.54    |       | 27<br>19              | 48<br>41              | PAF<br>PAF            |
|            | Main Zone              | 83.00            | 84.00           | 1.00 QV<br>1.00 GABSS         | Fresh                       | WR            |                     |                         | 2                         |                         | 33415          | 2007        | 0.165          | 0.020    | 0.71         | 22       |       |          | 1.15    |       | 19                    |                       | UC(PAF-LC)            |
|            | Main Zone              | 84.00            | 88.00           | 4.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33417          | 2007        | 0.088          | 0.010    | 0.88         | 27       |       | 8        | 0.71    |       | 10                    | 21                    | PAF                   |
| KTRCD072   | Main Zone              | 88.00            | 92.00           | 4.00 GABSS                    | Fresh                       | WR            |                     | 1                       |                           |                         | 33418          | 2007        | 0.017          | 0.003    | 0.42         | 13       | 18    |          |         | 3.5   | 3                     |                       | UC(PAF-LC)            |
|            | Main Zone              | 96.00            | 100.00          | 4.00 GABSS                    | Fresh                       | WR            | 1                   |                         |                           |                         | 33419          | 2007        | 0.006          | 0.001    | 0.61         | 19       |       |          | 0.91    |       | 7                     | 15                    | PAF                   |
|            | Main Zone              | 104.00           | 108.00          | 4.00 BGCS                     | Fresh                       | WR            | 1                   | 1                       |                           |                         | 33420          | 2007        | 0.046          | 0.005    | 0.88         | 27       |       |          | 0.63    |       | 10                    | 21                    | PAF                   |
| KTRCD072 I | Main Zone<br>Main Zone | 116.00<br>119.00 | 119.00          | 3.00 GABSS<br>1.00 GABS       | Fresh<br>Fresh              | WR<br>WR      |                     | 7                       |                           |                         | 33421<br>33422 | 2007        | 0.047          | 0.000    | 1.30         | 40<br>34 | _     | _        | 0.40    |       | 16<br>13              | 30<br>26              | PAF PAF               |
|            | Main Zone  Main Zone   |                  |                 | 1.00 GABS<br>1.00 GABSS       | Fresh                       | WR            |                     |                         | 1                         |                         | 33422          | 2007        | 0.067          | 0.050    | 0.82         | 25       | _     |          | 0.47    |       | 6                     | 15                    | PAF                   |
|            | Main Zone              |                  |                 | 4.00 GABSS                    | Fresh                       | WR            |                     |                         | 1                         |                         | 33424          | 2007        | 0.055          | 0.008    | 0.64         | 20       |       |          | 1.17    |       | 5                     |                       | UC(PAF-LC)            |
|            | Main Zone              | 134.00           |                 | 1.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33425          | 2007        | 0.050          | 0.020    | 1.07         | 33       | _     |          | 0.58    | 3.1   | 14                    | 27                    | PAF                   |
| KTRCD072   | Main Zone              | 135.00           | 136.00          | 1.00 GABSS                    | Fresh                       | WR            |                     |                         |                           |                         | 33426          | 2007        | 0.017          | 0.030    | 0.38         | 12       | 21    | -9       | 1.81    | 3.5   | 4                     | 8                     | UC(PAF-LC)            |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|           |                    | [                | Depth (n       | 1)                         |                                              |               |                     |                         |                           |                         | EGi            |             |                 |                  |              | ACID      | -BASE    | EANALY    | 'SIS      |       | NAG TES               | г                     |                       |
|-----------|--------------------|------------------|----------------|----------------------------|----------------------------------------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|-----------------|------------------|--------------|-----------|----------|-----------|-----------|-------|-----------------------|-----------------------|-----------------------|
| Hole Name | Location           | From             | То             | Interval Lithology Primary | Weathering                                   | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample<br>No   | Data<br>Set | Cu (%)          | Au (g/t)         | Total<br>%S  | MPA       | ANC      | NAPP      | ANC/MPA   | NAGpH | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
|           |                    |                  |                |                            |                                              |               |                     |                         |                           |                         |                |             |                 |                  |              |           |          |           |           |       | )                     | )                     |                       |
|           | IE Zone<br>IE Zone | 8.00<br>16.00    | 12.00<br>17.00 | 4.00 GABS<br>1.00 GABS     | Transitional Transitional                    | WR<br>WR      |                     |                         |                           | 5006205<br>5049221      | 40278<br>40279 | 2010        | 0.025           | 0.008            | 0.44<br>1.95 | 13<br>60  | 9        | 60        | 0.        |       | 19                    | 7<br>29               | PAF-LC<br>PAF         |
|           | IE Zone            | 18.00            | 19.00          | 1.00 GABS                  | Transitional                                 | WR            |                     |                         |                           | 5049221                 | 40279          | 2010        | 0.160           | 0.040            | 0.28         | 9         | 7        |           | 0.0       |       | 19                    | 29                    | UC(NAF)               |
|           | IE Zone            | 20.00            | 21.00          | 1.00 BS                    | Transitional                                 | WR            |                     |                         |                           | 5049225                 | 40281          | 2010        | 0.242           | 0.280            | 0.11         | 3         | 8        | -5        | 2.4       |       | 0                     | 0                     | NAF                   |
| KTRC118 N | IE Zone            | 21.00            | 22.00          | 1.00 BS                    | Transitional                                 | WR            |                     |                         |                           | 5049226                 | 40282          | 2010        | 0.165           | 0.170            | 0.30         | 9         | 11       | -2        | 1.:       |       | 0                     | 1                     | NAF                   |
|           | IE Zone            | 23.00            | 24.00          | 1.00 BS                    | Transitional                                 | WR            |                     |                         |                           | 5049228                 | 40283          | 2010        | 0.062           | 0.130            | 3.02         | 92        | 5        | 87        | 0.        |       | 28                    | 41                    | PAF                   |
|           | IE Zone<br>IE Zone | 25.00<br>26.00   | 26.00<br>27.00 | 1.00 BS<br>1.00 GABS       | Transitional<br>Fresh                        | WR<br>WR      |                     |                         | 1                         | 5005706<br>5005707      | 40499<br>40500 | 2010        | 0.308           | 0.200            | 6.97<br>1.99 | 213<br>61 | 13       | 213<br>48 | 0.0       |       | 47<br>37              | 78<br>60              | PAF PAF               |
|           | IE Zone            | 29.00            | 30.00          | 1.00 GABS                  | Fresh                                        | WR            |                     |                         |                           | 5005707                 | 40500          | 2010        | 0.049           | 0.040            | 1.52         | 47        | 10       |           | 0.:       |       | 20                    | 43                    | PAF                   |
|           | IE Zone            | 32.00            | 33.00          | 1.00 GABSS                 | Fresh                                        | WR            |                     |                         | 1                         | 5005713                 | 40502          | 2010        | 0.001           | -0.010           | 0.70         | 21        | 11       | _         | 0.5       |       | 5                     | 13                    | PAF-LC                |
| KTRC118 N | IE Zone            | 33.00            | 34.00          | 1.00 GABSS                 | Fresh                                        | WR            |                     |                         | 1                         | 5005714                 | 40503          | 2010        | 0.001           | -0.010           | 0.44         | 13        | 13       | 0         | 1.0       | 0 3.8 | 2                     | 9                     | UC(PAF-LC)            |
|           | IE Zone            | 35.00            | 36.00          | 1.00 GABSS                 | Fresh                                        | WR            |                     |                         |                           | 5005716                 | 40284          | 2010        | 0.002           | -0.010           | 0.53         | 16        | 12       |           |           |       | 6                     |                       | PAF                   |
|           | IE Zone            | 36.00            | 37.00          | 1.00 GABSS                 | Fresh                                        | WR            |                     |                         | 1                         | 5005717                 | 40504          | 2010        | 0.002           | -0.010           | 0.70         | 21        | 12       |           | 0.0       |       | 5                     | 12                    | PAF-LC                |
|           | IE Zone<br>IE Zone | 38.00<br>40.00   | 39.00<br>41.00 | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                               | WR<br>WR      |                     |                         | 1                         | 5005720<br>5005722      | 40505<br>40506 | 2010        | 0.003           | -0.010<br>-0.010 | 0.23         | 4         | 14<br>14 |           | 3.4       |       | 0                     | 2                     | NAF<br>NAF            |
|           | IE Zone            | 43.00            | 44.00          | 1.00 GABS                  | Fresh                                        | WR            |                     |                         | 1                         | 5005725                 | 40285          | 2010        | 0.009           | -0.010           | 0.13         | 8         | 17       | -10       | 2.0       |       | 0.3                   | 4                     | UC(PAF-LC)            |
|           | IE Zone            | 46.00            | 47.00          | 1.00 GABSS                 | Fresh                                        | WR            | 1                   |                         | 1                         | 5005728                 | 40286          | 2010        | 0.069           | 0.010            | 1.17         | 36        | 13       | 23        | 0.4       |       | 20                    | 35                    | PAF                   |
|           | IE Zone            | 49.00            | 50.00          | 1.00 GABSS                 | Fresh                                        | LG            |                     |                         | 2                         | 5005731                 | 40507          | 2010        | 0.098           | 0.010            | 1.24         | 38        | 10       |           | 0.3       |       | 16                    | 35                    | PAF                   |
|           | IE Zone            | 50.00            | 51.00          | 1.00 GABSS                 | Fresh                                        | LG            |                     |                         |                           | 5005733                 | 40508          | 2010        | 0.043           | -0.010           | 0.68         | 21        | 11       | _         | 0.5       |       | 8                     | 22                    | PAF                   |
|           | IE Zone<br>IE Zone | 51.00<br>52.00   | 52.00<br>53.00 | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                               | LG<br>LG      |                     |                         | 1                         | 5005734<br>5005735      | 40509<br>40510 | 2010        | 0.027           | -0.010<br>-0.010 | 0.51         | 16<br>9   | 13<br>13 |           | 0.8       |       | 0.3                   |                       | PAF-LC<br>UC(PAF-LC)  |
|           | IE Zone<br>IE Zone | 56.00            | 57.00          | 1.00 GABSS<br>1.00 BGCS    | Fresh                                        | HG            |                     |                         | 1                         | 5005735                 | 40510          | 2010        | 0.637           | 0.350            | 1.07         | 33        | 9        | 24        | 0.3       |       | 0.3                   | 19                    | PAF-LC)               |
|           | IE Zone            | 63.00            | 64.00          | 1.00 BGCS                  | Fresh                                        | HG            |                     |                         | 2                         | 5005747                 | 40512          | 2010        | 0.423           | -0.010           | 1.65         | 50        | 9        | 41        | 0.:       |       | 11                    | 36                    | PAF                   |
|           | IE Zone            | 72.00            | 73.00          | 1.00 BGCS                  | Fresh                                        | HG            |                     |                         | 1                         | 5005757                 | 40287          | 2010        | 0.218           | 0.010            | 1.02         | 31        | 14       | 17        | 0.4       |       | 11                    | 30                    | PAF                   |
|           | IE Zone            | 76.00            | 77.00          | 1.00 BGCS                  | Fresh                                        | LG            |                     |                         | 1                         | 5005761                 | 40288          | 2010        | 0.254           | 0.020            | 1.23         | 38        | 13       |           | 0.3       |       | 9                     | 29                    | PAF                   |
|           | IE Zone            | 78.00            | 79.00          | 1.00 GABSS                 | Fresh                                        | WR            |                     |                         |                           | 5005763                 | 40289          | 2010        | 0.012           | -0.010           | 0.48         | 15        | 21       | -6        | 1.4       |       | 3                     |                       | UC(PAF-LC)            |
|           | IE Zone<br>IE Zone | 82.00<br>83.00   | 83.00<br>84.00 | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                               | WR<br>WR      |                     |                         |                           | 5005768<br>5005769      | 40290<br>40291 | 2010        | 0.004           | -0.010<br>-0.010 | 0.30         | 9<br>19   | 15<br>14 |           | 1.0<br>0. |       | 9                     | 17                    | UC(PAF-LC)<br>PAF     |
|           | IE Zone            | 84.00            | 88.00          | 4.00 GABSS                 | Fresh                                        | WR            |                     |                         |                           | 5006209                 | 40513          | 2010        | 0.002           | 0.007            | 0.41         | 13        | 16       |           |           |       |                       |                       | UC(PAF-LC)            |
|           | IE Zone            | 142.00           | 143.00         | 1.00 BGCS                  | Fresh                                        | HG            |                     |                         | 1                         | 5005830                 | 40292          | 2010        | 0.265           | -0.010           | 0.54         | 16        | 16       | 0         | 1.0       |       | 1                     | _                     | UC(PAF-LC)            |
|           | IE Zone            | 157.00           | 158.00         | 1.00 BGCS                  | Fresh                                        | LG            |                     |                         |                           | 5005845                 | 40293          | 2010        | 0.159           | 0.090            | 0.64         | 20        | 16       | 4         | 0.8       |       | 5                     | 17                    |                       |
|           | IE Zone            | 161.00           | 162.00         | 1.00 BGCS                  | Fresh                                        | LG            |                     |                         |                           | 5005851                 | 40294          | 2010        | 0.038           | 0.080            | 0.50         | 15        | 20       | -5        |           |       | 2                     |                       | UC(PAF-LC)            |
|           | IE Zone            | 162.00           | 163.00         | 1.00 BGCS                  | Fresh                                        | LG            |                     |                         |                           | 5005852                 | 40295          | 2010        | 0.026           | -0.010           | 0.31         | 9         | 14       | -5<br>-1  |           |       | 0.2                   |                       | UC(PAF-LC)            |
|           | IE Zone<br>IE Zone | 165.00<br>170.00 | 166.00         | 1.00 BGCS<br>1.00 GABSS    | Fresh<br>Fresh                               | LG<br>WR      |                     |                         |                           | 5005855<br>5005860      | 40296<br>40297 | 2010        | 0.040           | 0.020            | 0.41         | 13<br>15  | 14<br>17 |           | 1.:       |       | 3                     |                       | UC(PAF-LC)            |
|           | IE Zone            | 0.00             | 1.00           | 1.00 GABS                  | Moderately (Fill)                            | WR            |                     |                         |                           | 5041765                 | 38644          | 2009        | -0.010          | 0.014            | 0.80         | 24        | - 17     |           | 1         | 3.1   | 6                     |                       |                       |
| KTRC297 N | IE Zone            | 1.00             | 2.00           | 1.00 GABS                  | Moderately (Fill)                            | WR            |                     |                         |                           | 5041766                 | 38645          | 2009        | 0.020           | 0.092            | 0.13         | 4         |          |           |           | 5.5   | 0                     | 1                     | UC(NAF)               |
|           | IE Zone            | 2.00             | 3.00           | 1.00 GABS                  | Slightly (Jarositic)                         | WR            |                     |                         |                           | 5041767                 | 38646          | 2009        | -0.010          | 0.031            | 0.47         | 14        |          |           |           | 3.7   | 2                     | 8                     | PAF-LC                |
|           | IE Zone            | 3.00             | 4.00           | 1.00 GABS                  | Slightly (Jarositic)                         | WR            |                     |                         |                           | 5041768                 | 38647          | 2009        | -0.010          | 0.026            | 0.53         | 16        |          |           |           | 3.2   | 4                     | 8                     | PAF-LC                |
|           | IE Zone<br>IE Zone | 4.00<br>5.00     | 5.00<br>6.00   | 1.00 GABS<br>1.00 GABS     | Slightly (Jarositic)<br>Slightly (Jarositic) | WR<br>WR      |                     |                         |                           | 5041769<br>5041770      | 38648<br>38649 | 2009        | 0.010<br>-0.010 | 0.007            | 1.25         | 38<br>32  |          |           |           | 2.7   | 13<br>12              | 20<br>18              | PAF PAF               |
|           | IE Zone            | 6.00             | 7.00           | 1.00 GABS                  | Slightly (Jarositic)                         | WR            |                     |                         |                           | 5041770                 | 38650          | 2009        | 0.030           | 0.016            | 0.89         | 27        |          |           |           | 2.7   | 9                     | 15                    | PAF                   |
|           | IE Zone            | 7.00             | 8.00           | 1.00 GABS                  | Slightly (Jarositic)                         | WR            | 1                   |                         |                           | 5041772                 | 38651          | 2009        | 0.020           | 0.039            | 1.41         | 43        |          |           |           | 2.5   | 16                    | 24                    | PAF                   |
|           | IE Zone            | 8.00             | 9.00           | 1.00 GABS                  | Slightly (Jarositic)                         | WR            |                     |                         |                           | 5041773                 | 38652          | 2009        | -0.010          | 0.044            | 1.18         | 36        |          |           |           | 2.7   | 11                    | 18                    | PAF                   |
|           | IE Zone            | 9.00             | 10.00          | 1.00 GABS                  | Slightly (Jarositic)                         | WR            |                     |                         |                           | 5041774                 | 38653          | 2009        | -0.010          | 0.075            | 1.44         | 44        |          |           |           | 2.5   | 15                    | 23                    | PAF                   |
|           | IE Zone<br>IE Zone | 10.00            | 11.00<br>12.00 | 1.00 GABS<br>1.00 GABS     | Slightly (Jarositic)                         | WR<br>WR      |                     |                         |                           | 5041775<br>5041776      | 38654<br>38655 | 2009        | 0.100           | 0.133            | 2.62         | 80<br>64  |          | _         |           | 2.4   | 28<br>25              | 38                    | PAF PAF               |
|           | IE Zone<br>IE Zone | 12.00            | 13.00          | 1.00 GABS<br>1.00 GABS     | Slightly (Jarositic)<br>Fresh                | WR            | 2                   |                         |                           | 5041776                 | 38656          | 2009        | 0.030           | 0.125            | 1.92         | 59        |          |           |           | 2.4   | 25                    | 33                    | PAF                   |
|           | IE Zone            | 13.00            | 14.00          | 1.00 GABS                  | Fresh                                        | WR            |                     |                         |                           | 5041777                 | 38657          | 2009        | -0.010          | 0.065            | 1.21         | 37        |          |           |           | 2.5   | 14                    | 22                    | PAF                   |
| KTRC425 N | IW Zone            | 0.00             | 1.00           | 1.00 Osu                   | Soil                                         | LG            |                     |                         |                           | KRC006996               | 40531          | 2010        | 0.161           | 0.180            | 0.09         | 3         | 18       |           | 6.9       |       | 0                     | 0                     | NAF                   |
|           | IW Zone            | 1.00             | 2.00           | 1.00 Osu                   | Soil                                         | HG            |                     |                         |                           | KRC006997               | 40532          | 2010        | 0.151           | 0.090            | 0.01         | 0         |          |           | 44.       |       | 0                     | 0                     | NAF                   |
|           | IW Zone            | 5.00             | 6.00           | 1.00 GABSS                 | Moderately                                   | HG            |                     |                         |                           | KRC007001               | 40533          | 2010        | 0.349           | 0.020            | 0.01         | 0         |          | -9        | 28.       |       | 0                     | 0                     | NAF                   |
|           | IW Zone<br>IW Zone | 9.00             | 10.00          | 1.00 GABSS<br>1.00 GABSS   | Moderately<br>Moderately                     | HG<br>HG      |                     |                         |                           | KRC007005<br>KRC007009  | 40534<br>40535 | 2010        | 0.651<br>0.558  | 0.050            | 0.14         | 14        | 10       | -6<br>5   | 2.4       | _     | 0.2                   | 9                     | NAF<br>PAF-LC         |
|           | IW Zone            | 14.00            | 15.00          | 1.00 GABSS<br>1.00 GABSS   | Moderately                                   | HG            |                     |                         |                           | KRC007009<br>KRC007010  | 40535          | 2010        | 0.558           | 0.050            | 0.46         | 19        | 10       | 9         | 0.0       |       | 0.2                   | 14                    | PAF-LC<br>PAF-LC      |
|           | IW Zone            | 16.00            | 17.00          | 1.00 GABSS                 | Moderately                                   | HG            |                     |                         |                           | KRC007012               | 40537          | 2010        | 0.148           | 0.030            | 0.64         | 20        | 9        | 11        |           |       | 7                     | 15                    | PAF                   |
|           | IW Zone            | 17.00            | 18.00          | 1.00 GABSS                 | Moderately                                   | HG            |                     |                         |                           | KRC007013               | 40538          | 2010        | 0.223           | 0.070            | 0.36         | 11        | 10       | 1         | 0.9       |       | 1                     | 8                     | PAF-LC                |
|           | IW Zone            | 18.00            | 19.00          | 1.00 GABSS                 | Moderately                                   | HG            |                     |                         |                           | KRC007014               | 40539          | 2010        | 0.305           | 0.060            | 1.12         | 34        | 12       | 22        | 0.:       |       | 7                     | 18                    | PAF                   |
|           | IW Zone            | 19.00            | 20.00          | 1.00 GABSS                 | Moderately                                   | HG            |                     |                         | 1                         | KRC007015               | 40540          | 2010        | 0.428           | 0.020            | 1.75         | 54        | 10       | 44        | 0.1       |       | 22                    | 44                    | PAF                   |
|           | IW Zone<br>IW Zone | 20.00            | 21.00          | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                               | HG<br>LG      | 1                   |                         | 1                         | KRC007016<br>KRC007018  | 40541<br>40542 | 2010        | 0.739           | -0.060           | 1.78<br>0.90 | 54<br>28  | 5        |           | 0.        |       | 12                    | 33<br>15              | PAF PAF               |
| KIRU425 N | IVV ZUITE          | 22.00            | ∠3.00          | 1.00 GADOO                 | LIESH                                        | LG            |                     |                         | 1                         | KKC007018               | 40542          | 2010        | 0.070           | -0.010           | 0.90         | ∠8        | 5        | 23        | J 0.,     | 2.9   | /                     | 15                    | PAF                   |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|           |                    | - 1            | Depth (ı       | n)                         |                          |               | <b>5</b> ''         |                         |                                                  |                         | EGi            | <b>.</b> .  |                  |                  |              | ACID     | -BASE    | ANALY   | 'SIS        |            | NAG TES               | Т                     | 488                   |
|-----------|--------------------|----------------|----------------|----------------------------|--------------------------|---------------|---------------------|-------------------------|--------------------------------------------------|-------------------------|----------------|-------------|------------------|------------------|--------------|----------|----------|---------|-------------|------------|-----------------------|-----------------------|-----------------------|
| Hole Name | Location           | From           | То             | Interval Lithology Primary | Weathering               | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance                        | Kanmantoo<br>Sample No. | Sample<br>No   | Data<br>Set | Cu (%)           | Au (g/t)         | Total<br>%S  | MPA      | ANC      | NAPP    | ANC/MPA     | NAGpH      | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
| KTRC426   | NW Zone            | 8.00           | 9.00           | 1.00 GABSS                 | Moderately               | LG            |                     |                         |                                                  | KRC007044               | 40367          | 2010        | 0.128            | 0.050            | 0.18         | 6        | 14       | -8      | 2.5         | 6.9        | 0                     | 0                     | NAF                   |
|           | NW Zone            | 9.00           | 10.00          |                            | Moderately               | LG            |                     |                         |                                                  | KRC007045               | 40368          | 2010        | 0.105            | 0.050            | 0.14         | 4        | 15       |         | 3.4         | 6.3        | 0                     | 0                     |                       |
|           | NW Zone            | 11.00          | 12.00          |                            | Moderately               | LG            |                     |                         |                                                  | KRC007047               | 40369          | 2010        | 1.041            | 0.325            | 0.18         | 6        | 13       |         | 2.4         | 6.0        | 0                     | 1                     | NAF                   |
|           | NW Zone<br>NW Zone | 12.00<br>13.00 | 13.00          |                            | Fresh<br>Fresh           | LG<br>WR      |                     |                         |                                                  | KRC007048<br>KRC007049  | 40370<br>40371 | 2010        | 0.261            | 0.130            | 0.93         | 28<br>25 | 6<br>12  | 13      | 0.2         | 3.1        | 11                    | 23                    | PAF PAF               |
|           | NW Zone            | 16.00          | 17.00          | 1.00 GABSS                 | Fresh                    | WR            |                     | 1                       |                                                  | KRC007052               | 40372          | 2010        | 0.025            | -0.010           | 0.89         | 27       | 12       |         | 0.4         | 3.2        | 10                    |                       | PAF                   |
|           | NW Zone            | 25.00          | 26.00          | 1.00 GABSS                 | Fresh                    | WR            |                     |                         | 1                                                | KRC007061               | 40373          | 2010        | 0.047            | 0.040            | 0.66         | 20       | 15       | 5       | 0.7         | 3.6        | 6                     | 14                    | PAF                   |
|           | NW Zone            | 30.00          | 31.00          | 1.00 QV                    | Fresh                    | HG            |                     |                         | 1                                                | KRC007069               | 40543          | 2010        | 0.265            | -0.010           | 0.60         | 18       | 7        | 11      | 0.4         | 3.5        | 4                     | 16                    | PAF-LC                |
|           | NW Zone<br>NW Zone | 34.00<br>36.00 | 35.00<br>37.00 | 1.00 QV<br>1.00 QV         | Fresh<br>Fresh           | HG<br>HG      |                     |                         | 1                                                | KRC007073<br>KRC007075  | 40544<br>40545 | 2010        | 0.222            | -0.010<br>-0.010 | 0.56         | 17       | 11       | 6       | 0.6         | 3.5        | 3                     | 13<br>11              | PAF-LC<br>PAF-LC      |
|           | NW Zone            | 40.00          | 41.00          |                            | Fresh                    | HG            |                     |                         | 1                                                | KRC007079               | 40546          | 2010        | 0.203            | 0.050            | 0.54         | 16       |          |         |             | 3.9        | 1                     | 16                    | PAF-LC                |
|           | NW Zone            | 42.00          | 43.00          |                            | Fresh                    | HG            |                     |                         |                                                  | KRC007081               | 40547          | 2010        | 0.120            | -0.010           | 0.15         | 5        | 0        | 5       | 0.0         | 3.3        | 1                     | 4                     | PAF-LC                |
|           | NW Zone            | 49.00          | 50.00          | 1.00 GABSS                 | Fresh                    | HG            |                     |                         | 1                                                | KRC007088               | 40374          | 2010        | 0.360            | -0.010           | 1.28         | 39       | 14       |         | 0.4         | 3.2        | 12                    |                       | PAF                   |
|           | NW Zone            | 55.00<br>57.00 |                | 1.00 GABSS<br>1.00 GABSS   | Fresh                    | LG<br>LG      |                     |                         |                                                  | KRC007094               | 40375          | 2010        | 0.106            | 0.010            | 1.15         | 35<br>25 | 14       |         | 0.4         | 3.1        | 14                    |                       | PAF                   |
|           | NW Zone<br>NW Zone | 62.00          | 58.00<br>63.00 | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh           | WR            |                     |                         |                                                  | KRC007096<br>KRC007101  | 40376<br>40377 | 2010        | 0.026            | -0.010<br>0.050  | 0.82         | 25<br>15 | 15<br>14 | 10      | 0.6         | 3.5        | 7                     | 17<br>15              | PAF PAF               |
|           | NW Zone            | 65.00          | 66.00          |                            | Fresh                    | WR            |                     |                         |                                                  | KRC007104               | 40378          | 2010        | 0.062            | 0.010            | 0.34         | 10       |          | -5      | 1.5         | 4.2        | 0.3                   |                       | UC(PAF-LC)            |
| KTRC426   | NW Zone            | 66.00          | 67.00          | 1.00 GABSS                 | Fresh                    | WR            |                     |                         |                                                  | KRC007105               | 40379          | 2010        | 0.016            | -0.010           | 0.18         | 5        | 18       | -13     | 3.3         | 5.2        | 0                     | 1                     | NAF                   |
|           | NW Zone            | 67.00          | 68.00          | 1.00 GABSS                 | Fresh                    | WR            | 1                   |                         |                                                  | KRC007106               | 40380          | 2010        | 0.037            | 0.010            | 0.47         | 15       |          |         | 1.1         |            | 5                     |                       | UC(PAF-LC)            |
|           | NW Zone<br>SE Zone | 69.00          | 70.00          |                            | Fresh<br>Highly          | WR<br>WR      |                     |                         |                                                  | KRC007108<br>5044678    | 40381<br>38602 | 2010        | 0.044            | -0.010<br>0.074  | 0.58         | 18       | 15<br>23 |         | 0.9<br>22.4 | 3.4<br>7.3 | 0                     |                       | PAF<br>NAF            |
|           | SE Zone            | 2.00           | 4.00           |                            | Highly                   | WR            |                     |                         |                                                  | 5044679                 | 38603          | 2009        | 0.610            | 0.074            | 0.03         | 1        | 4        | -3      | 4.2         | 6.4        | 0                     | 3                     | NAF                   |
| KTDD060   | SE Zone            | 4.00           | 6.00           | 2.00 BGCS                  | Highly                   | WR            | 2                   |                         |                                                  | 5044680                 | 38604          | 2009        | 0.020            | 0.034            | 0.10         | 3        | 4        | -1      | 1.4         | 5.7        | 0                     | 4                     | NAF                   |
|           | SE Zone            | 6.00           | 7.00           |                            | Highly                   | WR            | 3                   | 2                       |                                                  | 5044681                 | 38605          | 2009        | 0.020            | 0.081            | 0.18         | 6        |          |         |             | 5.4        | 0                     |                       | UC(NAF)               |
|           | SE Zone<br>SE Zone | 7.00<br>8.00   | 9.00           |                            | Highly                   | WR<br>WR      | 3                   | 2                       |                                                  | 5044682<br>5044683      | 38606<br>38607 | 2009        | 0.050            | 0.106            | 0.40         | 12<br>9  | 4        |         | 0.3         | 5.9<br>5.1 | 0                     |                       | UC(NAF)               |
|           | SE Zone            | 9.00           | 10.00          |                            | Highly<br>Highly         | WR            | 3                   | 2                       |                                                  | 5044684                 | 38608          | 2009        | -0.010           | 0.049            | 0.30         | 24       |          | 23      | 0.0         | 5.0        | 0                     |                       | UC(NAF)               |
|           | SE Zone            | 10.00          | 11.00          |                            | Moderately               | WR            | 3                   | 1                       |                                                  | 5044685                 | 38609          | 2009        | 0.020            | 0.033            | 0.21         | 6        |          |         |             | 5.5        | 0                     |                       | UC(NAF)               |
|           | SE Zone            | 11.00          | 12.00          |                            | Moderately               | WR            | 3                   | 1                       |                                                  | 5044686                 | 38610          | 2009        | 0.060            | 0.044            | 0.53         | 16       | 4        | 12      | 0.2         | 4.8        | 0                     | 2                     | UC(NAF)               |
|           | SE Zone            | 12.00<br>13.00 | 13.00          |                            | Fresh<br>Fresh           | WR<br>WR      | 2                   | 2                       |                                                  | 5044687<br>5044688      | 38611<br>38612 | 2009        | 0.210            | 0.041            | 0.18         | 5<br>10  | 7        | 3       | 0.7         | 5.6        | 0                     | 3                     | UC(NAF)<br>PAF-LC     |
|           | SE Zone<br>SE Zone | 14.00          | 14.00          |                            | Fresh                    | WR            | 2                   | 1                       |                                                  | 5044689                 | 38613          | 2009        | 0.050            | 0.104            | 0.33         | 10       | 6        | _       | 0.7         | 4.4        | 1                     | 3                     | PAF-LC<br>PAF-LC      |
|           | SE Zone            | 0.00           | 1.00           |                            | Moderately               | WR            | 1                   |                         |                                                  | 5028465                 | 38614          | 2009        | 0.020            | 0.034            | 0.03         | 1        | 8        | -7      |             | 6.3        | 0                     | 3                     | NAF                   |
| KTRC173   | SE Zone            | 1.00           | 2.00           |                            | Slightly                 | WR            | 1                   |                         |                                                  | 5028466                 | 38615          | 2009        | 0.020            | 0.041            | 0.02         | 1        | 15       |         | 29.0        | 6.9        | 0                     | 0                     | NAF                   |
|           | SE Zone            | 2.00           | 3.00           |                            | Slightly                 | WR            | 2                   |                         |                                                  | 5028467                 | 38616          | 2009        | -0.010           | 0.012            | 0.01         | 0        | 15       | -15     | 59.1        | 7.1        | 0                     | 0                     | NAF                   |
|           | SE Zone<br>SE Zone | 3.00<br>4.00   | 4.00<br>5.00   |                            | Slightly<br>Moderately   | WR<br>WR      | 2                   |                         |                                                  | 5028468<br>5028469      | 38617<br>38618 | 2009        | -0.010<br>0.040  | 0.007            | 0.01         | 2        | 9        | -7      | 5.4         | 6.9        | 0                     | 0                     | NAF<br>NAF            |
|           | SE Zone            | 5.00           | 6.00           |                            | Moderately               | WR            | 2                   | 1                       |                                                  | 5028470                 | 38619          | 2009        | 0.020            | 0.035            | 0.02         | 1        |          | · '     | 0.4         | 7.2        | 0                     | <u> </u>              | NAF                   |
| KTRC173   | SE Zone            | 6.00           | 7.00           | 1.00 GABS                  | Moderately               | WR            | 2                   |                         |                                                  | 5028471                 | 38620          | 2009        | 0.030            | 0.024            | 0.01         | 0        | 13       | -13     | 32.4        | 7.1        | 0                     | 0                     | NAF                   |
|           | SE Zone            | 7.00           | 8.00           |                            | Moderately               | WR            | 2                   |                         |                                                  | 5028472                 | 38621          | 2009        | -0.010           | 0.014            |              | 1        |          |         |             | 6.3        | 0                     | 2                     | NAF                   |
|           | SE Zone<br>SE Zone | 8.00<br>9.00   | 9.00           |                            | Moderately<br>Moderately | WR<br>WR      | 2 2                 |                         |                                                  | 5028473<br>5028474      | 38622<br>38623 | 2009        | -0.010<br>-0.010 | 0.005            | 0.03         | 1        |          |         |             | 5.9<br>6.0 | 0                     | 4                     | NAF<br>UC(NAF)        |
|           | SE Zone            | 10.00          | 11.00          | 1.00 GABS                  | Moderately               | WR            | 2                   |                         |                                                  | 5028474                 | 38624          | 2009        | 1.910            | 0.120            | 0.09         | 16       | 7        | 9       | 0.4         | 3.8        | 1                     | 4                     | PAF-LC                |
|           | SE Zone            | 11.00          | 12.00          |                            | Slightly                 | WR            | 2                   |                         |                                                  | 5028476                 | 38625          | 2009        | 0.120            | 0.035            | 0.73         | 22       |          | 15      | 0.3         | 3.2        | 5                     | 12                    | PAF-LC                |
|           | SE Zone            | 12.00          | 13.00          |                            | Slightly                 | WR            | 2                   |                         |                                                  | 5028477                 | 38626          | 2009        | 0.040            | 0.017            | 0.37         | 11       |          |         | 1.1         | 5.4        | 0                     | 1                     | NAF                   |
|           | SE Zone            | 13.00          | 14.00          |                            | Slightly                 | WR            | 3                   |                         |                                                  | 5028478                 | 38627          | 2009        | -0.010           | 0.010            | 0.11         | 2        | 13       | -10     | 3.9         | 6.4        | 0                     | 1                     | NAF<br>UC(NAE)        |
|           | SE Zone<br>SE Zone | 14.00<br>15.00 | 15.00<br>16.00 | 1.00 GABS<br>1.00 GABS     | Fresh<br>Fresh           | WR<br>WR      | 3                   |                         | <del>                                     </del> | 5028479<br>5028480      | 38628<br>38629 | 2009        | -0.010<br>0.020  | 0.008            | 0.05         | 3        |          |         |             | 6.9        | 0                     | 1                     | UC(NAF)               |
|           | SE Zone            | 16.00          | 17.00          | 1.00 GABS                  | Fresh                    | WR            | 3                   |                         |                                                  | 5028481                 | 38630          | 2009        | -0.010           | 0.003            | 0.06         | 2        |          |         |             | 6.5        | 0                     | 1                     | UC(NAF)               |
|           | SE Zone            | 17.00          | 18.00          |                            | Slightly                 | WR            | 3                   |                         |                                                  | 5028482                 | 38631          | 2009        | 0.030            | 0.009            | 1.02         | 31       |          |         | 0.3         | 2.9        | 11                    | 21                    | PAF                   |
|           | SE Zone            | 18.00          | 19.00          |                            | Fresh                    | WR            | 3                   |                         | 1                                                | 5028483                 | 38632          | 2009        | -0.010           | 0.003            | 0.19         | 6        |          |         |             | 5.3        | 0                     | 1                     | NAF                   |
|           | SE Zone<br>SE Zone | 2.00           | 3.00           |                            | Moderately Moderately    | WR<br>WR      |                     |                         |                                                  | KRC032627<br>KRC032629  | 40548<br>40549 | 2010        | 0.165<br>0.497   | -0.010<br>-0.010 | 0.45         | 14       |          | 5<br>-8 | 0.7<br>3.6  | 4.5<br>7.2 | 0                     |                       | UC(NAF)<br>NAF        |
|           | SE Zone            | 4.00           | 5.00           |                            | Moderately               | WR            |                     |                         |                                                  | KRC032631               | 40550          | 2010        | 0.497            | -0.010           | 0.40         | 12       |          | 2       | 0.8         | 4.8        | 0                     |                       | UC(NAF)               |
| KTRC682   | SE Zone            | 7.00           | 8.00           | 1.00 GABS                  | Moderately               | WR            |                     |                         |                                                  | KRC032634               | 40551          | 2010        | 0.019            | -0.010           | 0.37         | 11       | 7        |         | 0.6         | 4.2        | 1                     | 5                     | PAF-LC                |
|           | SE Zone            | 8.00           | 9.00           |                            | Slightly                 | WR            | 1                   |                         |                                                  | KRC032635               | 40552          | 2010        | 0.140            | 0.010            | 0.81         | 25       |          |         | 0.2         | 3.3        | 7                     | 16                    | PAF                   |
|           | SE Zone            | 9.00           | 10.00          |                            | Slightly                 | WR            | 1                   |                         |                                                  | KRC032636               | 40553<br>40554 | 2010        | 0.459            | 0.020            | 1.64<br>0.42 | 50       | 10       | 49      | 0.0         | 2.8        | 0.1                   | 22                    | PAF<br>PAF-LC         |
|           | SE Zone<br>SE Zone | 10.00          | 11.00          |                            | Slightly<br>Slightly     | WR<br>LG      |                     |                         | <del>                                     </del> | KRC032637<br>KRC032639  | 40554          | 2010        | 0.041            | -0.020           | 0.42         | 13<br>13 | 10<br>12 | 1       | 1.0         | 4.2        | 0.1                   | 6                     | UC(NAF)               |
| KTRC682   | SE Zone            | 14.00          | 15.00          |                            | Slightly                 | LG            |                     |                         |                                                  | KRC032641               | 40556          | 2010        | 0.094            | -0.010           | 0.31         | 9        | 12       |         | 1.3         | 4.8        | 0                     | 2                     | NAF                   |
|           | SE Zone            | 16.00          | 17.00          | 1.00 GABS                  | Slightly                 | HG            | 2                   | 1                       |                                                  | KRC032643               | 40557          | 2010        | 0.423            | 0.040            | 3.48         | 106      | 0        | 106     | 0.0         | 2.6        | 28                    | 53                    | PAF                   |
|           | SE Zone            | 17.00          | 18.00          | 1.00 BGCS                  | Fresh                    | HG            | 3                   | 2                       |                                                  | KRC032644               | 40558          | 2010        | 0.543            | 0.280            | 7.10         | 217      | 0        | 217     | 0.0         | 2.2        | 81                    | 127                   | PAF                   |
|           | SE Zone            | 19.00<br>21.00 | 20.00          | 1.00 BGCS<br>1.00 BGCS     | Fresh<br>Fresh           | HG<br>HG      | 1 2                 |                         | 2                                                | KRC032646               | 40559          | 2010        | 0.462            | 0.020            | 1.73         | 125      | 9        | 124     | 0.2         | 2.8        | 14                    | 30<br>61              | PAF PAF               |
| CIRCOSZ S | SE Zone            | 21.00          | 22.00          | 1.00 8665                  | riesn                    | HG            |                     |                         |                                                  | KRC032648               | 40560          | 2010        | 1.965            | 0.180            | 4.07         | 125      | 1        | 124     | 0.0         | 2.9        | 13                    | 61                    | PAF                   |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|                      |                              |                | Depth (        | m)       |                    |                                        |               |                     |                         |                           |                         | EGi            |             |                  |                |              | ACID- | BASE     | ANALY      | rsis           | ı          | NAG TES               | т                     |                    |
|----------------------|------------------------------|----------------|----------------|----------|--------------------|----------------------------------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|------------------|----------------|--------------|-------|----------|------------|----------------|------------|-----------------------|-----------------------|--------------------|
| Hole Name            | Location                     | From           | То             | Interval | Lithology Primary  | Weathering                             | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample<br>No   | Data<br>Set | Cu (%)           | Au (g/t)       | Total        | MPA   | ANC      | NAPP       | ANC/MPA        | NAGpH      | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD Classification |
|                      |                              |                |                |          |                    |                                        |               |                     |                         |                           |                         | NO             |             |                  |                | %S           |       |          |            |                |            | )                     | )                     |                    |
| KTRCD399             |                              | 0.00           | 1.00           |          | GABSS              | Moderately (In Pit)                    | WR            |                     |                         |                           | KRC004888               | 38682          | 2009        | 0.020            |                | 0.58         |       |          |            |                | 3.3        | 3                     |                       | PAF-LC             |
| KTRCD399             | SE Zone                      | 1.00           | 2.00           |          | GABSS              | Moderately (In Pit)                    | WR            |                     |                         |                           | KRC004889               | 38683          | 2009        | 0.020            | 0.020          | 0.88         |       |          |            |                | 2.9        | 9                     |                       | PAF                |
| KTRCD399             | SE Zone                      | 2.00           | 3.00           |          | GABSS              | Moderately (In Pit)                    | WR            |                     |                         |                           | KRC004890               | 38684          | 2009        | 0.010            | 0.020          | 0.86         | _     |          |            |                | 3.2        | 6                     |                       | PAF                |
| KTRCD399             | SE Zone                      | 3.00           | 4.00           |          | GABSS              | Slightly (In Pit)                      | WR            |                     |                         |                           | KRC004891               | 38685          | 2009        | 0.020            |                | 1.00         |       |          |            |                | 3.0        |                       | 19                    | PAF                |
| KTRCD399<br>KTRCD399 | SE Zone<br>SE Zone           | 4.00<br>5.00   | 5.00           |          | GABSS<br>GABSS     | Slightly (In Pit)<br>Slightly (In Pit) | WR<br>WR      |                     |                         |                           | KRC004892<br>KRC004893  | 38686<br>38687 | 2009        | 0.070            |                | 1.00         |       |          |            |                | 2.9<br>3.0 | 10<br>7               |                       | PAF PAF            |
| KTRCD399             | SE Zone                      | 6.00           | 7.00           |          | GABSS              | Slightly (In Pit)                      | WR            | 1                   |                         |                           | KRC004894               | 38688          | 2009        | 0.120            |                | 1.03         |       |          |            |                | 3.1        | . 8                   |                       | PAF                |
| KTRCD399             | SE Zone                      | 7.00           | 8.00           | 1.00     | GABSS              | Slightly (In Pit)                      | WR            | 1                   |                         |                           | KRC004895               | 38689          | 2009        | -0.010           | 0.053          | 0.54         | 17    |          |            |                | 3.3        | 3                     | 9                     | PAF-LC             |
| KTRCD399             | SE Zone                      | 8.00           | 9.00           |          | GABSS              | Fresh                                  | WR            | 1                   |                         |                           | KRC004896               | 38690          | 2009        | 0.100            | 0.143          | 1.13         | 35    |          |            |                | 3.1        | 8                     | 18                    | PAF                |
| KTRCD399             | SE Zone                      | 9.00           | 10.00          |          | GABSS              | Fresh                                  | WR            | 1                   |                         |                           | KRC004897               | 38691          | 2009        | -0.010           | 0.044          | 0.49         |       |          |            |                | 3.6        |                       |                       | PAF-LC             |
|                      | Eastern Zone                 | 0.00           | 4.00           |          | GABS               | Highly/Moderately                      | WR            |                     |                         |                           |                         | 33427          | 2007        | 0.046            | 0.008          | 0.31         | _     | 26       | -17<br>-47 | 2.74           | 8.2        |                       |                       | NAF<br>NAF         |
| KTRCD120<br>KTRCD120 | Eastern Zone<br>Eastern Zone | 9.00           | 9.00           |          | BS                 | Moderately Moderately                  | WR<br>WR      |                     |                         |                           |                         | 33428<br>33429 | 2007        | 0.245<br>0.186   | 0.000          | 0.02         |       | 48<br>17 | -47        | 78.43<br>13.89 | 8.3<br>7.8 | 0                     |                       | NAF                |
| KTRCD120             | Eastern Zone                 | 12.00          | 16.00          |          | BS/GABS            | Moderately                             | WR            |                     |                         |                           |                         | 33430          | 2007        | 0.186            | 0.004          | 0.04         | 0     | 20       | -20        |                | 7.0        | 0                     |                       | NAF                |
| KTRCD120             | Eastern Zone                 | 16.00          | 20.00          |          | GABS               | Transitional                           | WR            |                     |                         |                           |                         | 33431          | 2007        | 0.014            | 0.002          | 0.01         |       | 20       | -20        |                | 6.9        | ,                     |                       | NAF                |
| KTRCD120             | Eastern Zone                 | 24.00          | 28.00          |          | GABS               | Transitional                           | WR            |                     |                         |                           |                         | 33432          | 2007        | 0.072            | 0.002          | 0.15         | -     | 18       | -13        |                |            |                       | 2                     | NAF                |
| KTRCD120             | Eastern Zone                 | 32.00          | 36.00          |          | GABS               | Fresh                                  | WR            |                     |                         |                           |                         | 33433          | 2007        | 0.042            | 0.002          | 0.15         | 5     | 19       | -14        |                |            | 0                     | 1                     | NAF                |
| KTRCD120             | Eastern Zone                 | 40.00          | 41.00          |          | GABSS              | Fresh                                  | WR            |                     |                         |                           |                         | 33434          | 2007        | 0.091            | 0.010          | 0.37         | _     | 16       | -5         |                | 4.5        |                       |                       | NAF                |
| KTRCD120             | Eastern Zone                 | 41.00          | 44.00          |          | GABSS              | Fresh                                  | WR            |                     |                         |                           |                         | 33435          | 2007        | 0.097            | 0.010          | 0.32         |       | 17       | -7         |                |            |                       |                       | NAF                |
| KTRCD120<br>KTRCD120 | Eastern Zone                 | 48.00<br>52.00 | 52.00<br>53.00 |          | GABS<br>GABS       | Fresh                                  | WR<br>WR      |                     |                         |                           |                         | 33436<br>33437 | 2007        | 0.006            | 0.003          | 0.16         |       | 20       | -15<br>-19 |                | 4.9<br>6.4 |                       |                       | NAF<br>NAF         |
|                      | Eastern Zone Eastern Zone    | 54.00          | 55.00          |          | GABS               | Fresh<br>Fresh                         | WR            | 2                   |                         |                           |                         | 33437          | 2007        | 0.006            | 0.000          | 0.07         |       | 23       | -19        | 0.82           | 3.3        |                       |                       | PAF                |
| KTRCD120             | Eastern Zone                 | 55.00          | 56.00          |          | QV                 | Fresh                                  | WR            | _                   |                         |                           |                         | 33439          | 2007        | 0.735            | 0.060          | 1.02         |       | 15       | 16         |                |            |                       |                       | PAF                |
| KTRCD120             | Eastern Zone                 | 56.00          | 59.00          |          | GABS               | Fresh                                  | WR            | 1                   |                         |                           |                         | 33440          | 2007        | 0.291            | 0.010          | 0.71         |       | 15       | 7          | 0.69           |            |                       |                       | PAF-LC             |
| KTRCD120             | Eastern Zone                 | 60.00          | 64.00          | 4.00     | GABSS              | Fresh                                  | WR            |                     |                         |                           |                         | 33441          | 2007        | 0.002            | 0.000          | 0.08         | 2     | 21       | -19        | 8.58           | 6.3        | 0                     | 4                     | NAF                |
|                      | Eastern Zone                 | 72.00          | 76.00          |          | GABSS              | Fresh                                  | WR            | 1                   |                         |                           |                         | 33442          | 2007        | 0.005            | 0.006          | 0.57         |       | 19       | -2         |                |            |                       |                       | UC(PAF)            |
| KTRCD120             | Eastern Zone                 | 80.00          | 84.00          |          | GABS               | Fresh                                  | WR            |                     |                         |                           |                         | 33443          | 2007        | 0.003            | 0.004          | 0.44         |       | 22       | -9         | 1.63           |            |                       |                       | UC(PAF-LC)         |
| KTRCD120<br>KTRCD120 | Eastern Zone                 | 88.00<br>96.00 | 92.00          |          | GABSS/BGCS<br>GABS | Fresh                                  | WR<br>WR      | 1                   |                         |                           |                         | 33444<br>33445 | 2007        | 0.001            | 0.008<br>800.0 | 0.77         | _     | 13<br>15 | 11         | 0.55<br>0.79   | 2.9<br>3.2 |                       |                       | PAF PAF            |
|                      | Eastern Zone<br>Eastern Zone | 104.00         | 105.00         |          | GABS               | Fresh<br>Fresh                         | WR            |                     |                         |                           |                         | 33446          | 2007        | 0.003            | 0.060          | 2.33         |       | 8        | 63         |                | 2.8        |                       |                       | PAF                |
| KTRCD120             | Eastern Zone                 | 106.00         | 109.00         |          |                    | Fresh                                  | WR            |                     |                         | 2                         |                         | 33447          | 2007        | 0.018            | 0.000          | 0.35         |       | 16       | -5         |                |            | 2                     |                       |                    |
| KTRCD120             | Eastern Zone                 | 114.00         | 115.00         |          | GABSS              | Fresh                                  | WR            |                     |                         | 2                         |                         | 33448          | 2007        | 0.005            | 0.000          | 0.69         |       | 15       | 6          | 0.71           | 3.3        | 9                     |                       | PAF                |
| KTRCD120             | Eastern Zone                 | 118.00         | 121.00         | 3.00     | BGCS               | Fresh                                  | WR            |                     |                         | 2                         |                         | 33449          | 2007        | 0.375            | 0.023          | 1.19         | 36    | 13       | 23         | 0.36           | 3.1        | 10                    |                       | PAF                |
| KTRCD120             |                              | 124.00         | 125.00         |          | BGCS               | Fresh                                  | WR            |                     |                         | 2                         |                         | 33450          | 2007        | 0.047            | 0.000          | 0.48         |       | 17       | -2         |                |            | 1                     |                       | UC(PAF-LC)         |
| KTRCD120             |                              | 125.00         | 129.00         |          | BGCS               | Fresh                                  | WR            |                     |                         | 2                         |                         | 33451          | 2007        | 0.046            | 0.000          | 0.68         |       | 23       | -2         |                | 3.9        |                       |                       | UC(PAF-LC)         |
| KTRCD120<br>KTRCD120 | Eastern Zone Eastern Zone    | 132.00         | 136.00         |          | BGCS<br>BGCS       | Fresh<br>Fresh                         | WR<br>WR      |                     |                         | 2 2                       |                         | 33452<br>33453 | 2007        | 0.099            | 0.030          | 1.26<br>0.59 |       | 20<br>37 | 19<br>-19  |                |            |                       |                       | PAF<br>UC(PAF-LC)  |
| KTRCD120             | Eastern Zone                 | 164.00         | 165.00         |          | BGCS               | Fresh                                  | WR            |                     |                         |                           |                         | 33454          | 2007        | 0.030            | 0.050          | 1.45         | -     | 22       | 22         | 0.50           | 3.5        | _                     |                       | PAF                |
| KTRCD120             | Eastern Zone                 | 166.00         | 169.00         |          | GABSS              | Fresh                                  | WR            |                     |                         |                           |                         | 33455          | 2007        | 0.089            | 0.023          | 0.54         |       | 22       | -5         |                | 3.9        |                       |                       | UC(PAF-LC)         |
| KTRCD120             | Eastern Zone                 | 170.00         | 171.00         |          | GABSS              | Fresh                                  | WR            |                     |                         | 1                         |                         | 33456          | 2007        | 0.006            | 0.000          | 0.06         |       | 23       | -21        | 12.53          | 6.9        | 0                     | 0                     | NAF                |
| KTRCD120             | Eastern Zone                 | 176.00         | 180.00         |          | GABSS              | Fresh                                  | WR            |                     |                         | 1                         |                         | 33457          | 2007        | 0.003            | 0.003          | 0.05         | _     | 31       | -29        |                |            | -                     |                       | NAF                |
| KTRC414              | Green Zone                   | 4.00           | 5.00           |          | GABS               | Moderately                             | WR            |                     |                         |                           | KRC006017               | 38658          | 2009        | -0.010           | 0.024          | 0.01         | _     |          | -10        |                |            |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 5.00           | 6.00           |          | GABS               | Moderately                             | WR            |                     |                         |                           | KRC006018               | 38659          | 2009        | -0.010           | 0.037          | 0.01         |       | 10       | -10        |                | 6.9        |                       |                       | NAF                |
| KTRC414<br>KTRC414   | Green Zone<br>Green Zone     | 7.00           | 7.00           |          | QV<br>GABS         | Moderately<br>Slightly                 | WR<br>WR      |                     |                         |                           | KRC006019<br>KRC006020  | 38660<br>38661 | 2009        | -0.010<br>-0.010 | 0.039          | 0.01         | 0     | 14       | -14        | 86.3           | 7.1<br>6.9 |                       |                       | NAF<br>NAF         |
| KTRC414              | Green Zone                   | 8.00           | 9.00           |          | GABS               | Slightly                               | WR            |                     |                         |                           | KRC006021               | 38662          | 2009        | -0.010           | 0.130          | 0.00         |       |          |            |                | 7.1        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 9.00           | 10.00          |          | GABS               | Slightly                               | WR            |                     |                         |                           | KRC006022               | 38663          | 2009        | 0.010            | 0.157          | 0.01         | _     | 11       | -11        | 58.0           | 7.2        | 0                     | 0                     | NAF                |
| KTRC414              | Green Zone                   | 10.00          | 11.00          |          |                    | Slightly                               | WR            |                     |                         |                           | KRC006023               | 38664          | 2009        | 0.010            | 0.192          | 0.02         | 1     |          |            |                | 7.4        | 0                     |                       | NAF                |
| KTRC414              | Green Zone                   | 11.00          | 12.00          |          | GABS               | Slightly                               | WR            |                     |                         |                           | KRC006024               | 38665          | 2009        | 0.020            | 0.167          | 0.03         |       |          |            |                | 7.3        | 0                     |                       | NAF                |
| KTRC414              | Green Zone                   | 12.00          | 13.00          |          | GABS               | Slightly                               | WR            |                     |                         |                           | KRC006025               | 38666          | 2009        | -0.010           | 0.466          | 0.01         | 0     | 40       | 40         | 444.0          | 7.3        | 0                     | -                     | NAF<br>NAF         |
| KTRC414<br>KTRC414   | Green Zone<br>Green Zone     | 13.00          | 14.00          |          | GABS<br>GABS       | Slightly<br>Slightly                   | WR<br>WR      |                     |                         |                           | KRC006026<br>KRC006027  | 38667<br>38668 | 2009        | -0.010<br>0.060  | 0.241          | 0.00         | -     | 13       | -13        | 111.8          | 7.5<br>7.4 | 0                     | -                     | NAF<br>NAF         |
| KTRC414              | Green Zone                   | 15.00          | 16.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006027<br>KRC006028  | 38669          | 2009        | 0.040            | 0.273          | 0.01         | 0     |          |            |                | 7.4        | ,                     |                       | NAF                |
| KTRC414              | Green Zone                   | 16.00          | 17.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006029               | 38670          | 2009        | 0.020            | 0.073          | 0.00         |       |          |            |                | 7.3        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 17.00          | 18.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006030               | 38671          | 2009        | -0.010           | 0.022          | 0.01         | 0     | 13       | -13        | 66.4           | 7.1        |                       | 0                     | NAF                |
| KTRC414              | Green Zone                   | 18.00          | 19.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006031               | 38672          | 2009        | -0.010           |                | 0.01         |       |          |            |                | 6.9        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 19.00          | 20.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006032               | 38673          | 2009        | -0.010           | 0.008          | 0.01         |       | -,-      |            |                | 6.9        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 20.00          | 21.00          |          | GABSS              | Slightly                               | WR            |                     |                         |                           | KRC006033               | 38674          | 2009        | -0.010           | 0.014          | 0.00         | -     | 16       | -16        | 106.7          |            |                       |                       | NAF<br>NAF         |
| KTRC414<br>KTRC414   | Green Zone<br>Green Zone     | 21.00          | 22.00          |          | GABSS<br>GABSS     | Slightly<br>Slightly                   | WR<br>WR      |                     |                         |                           | KRC006034<br>KRC006035  | 38675<br>38676 | 2009        | -0.010<br>-0.010 | 0.031          | 0.01         | _     | 16       | -14        | 7.3            | 6.9<br>7.1 | 0                     |                       | NAF<br>NAF         |
| KTRC414              | Green Zone                   | 23.00          | 24.00          |          | GABSS              | Fresh                                  | WR            |                     |                         |                           | KRC006035               | 38677          | 2009        | -0.010           | 0.041          | 0.07         |       | 13       | -14        | 1.10           |            | ,                     | -                     | NAF                |
| KTRC414              | Green Zone                   | 24.00          | 25.00          |          | GABSS              | Fresh                                  | WR            |                     |                         |                           | KRC006037               | 38678          | 2009        | 0.010            | 0.043          | 0.02         | _     | -10      | 12         |                | 7.1        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 25.00          | 26.00          |          |                    | Fresh                                  | WR            |                     |                         |                           | KRC006038               | 38679          | 2009        | -0.010           | 0.044          | 0.03         | _     |          |            |                | 6.9        |                       |                       | NAF                |
| KTRC414              | Green Zone                   | 26.00          | 27.00          |          |                    | Fresh                                  | WR            |                     |                         |                           | KRC006039               | 38680          | 2009        | -0.010           | 0.068          | 0.06         |       | 16       | -14        | 9.0            | 7.2        | 0                     | 0                     | NAF                |
| KTRC414              | Green Zone                   | 27.00          | 28.00          | 1.00     | GABSS              | Fresh                                  | WR            |                     |                         |                           | KRC006040               | 38681          | 2009        | -0.010           | 0.237          | 0.14         | 4     |          |            |                | 6.2        | 0                     | 0                     | UC(NAF)            |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|           |                            | [               | Depth (n        | n)                         |                           |               |                     |                         |                           |                         | EGi            | _           |                |                 |              | ACID           | -BASE    | EANALY    | SIS          |            | NAG TES               | Г                     |                       |
|-----------|----------------------------|-----------------|-----------------|----------------------------|---------------------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|----------------|-----------------|--------------|----------------|----------|-----------|--------------|------------|-----------------------|-----------------------|-----------------------|
| Hole Name | Location                   | From            | То              | Interval Lithology Primary | Weathering                | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample<br>No   | Data<br>Set | Cu (%)         | Au (g/t)        | Total<br>%S  | MPA            | ANC      | NAPP      | ANC/MPA      | NAGpH      | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
| KTDD112   | O'Neil Zone                | 40.00           | 41.00           | 1.00 BS                    | Moderately                | WR            |                     |                         |                           | 5052701                 | 40247          | 2010        | 0.074          | -0.010          | 0.01         | 0              | 13       | -13       | 53.1         | 7.2        | 0                     | 0                     | NAF                   |
| KTDD112   | O'Neil Zone                | 42.00           | 43.00           | 1.00 GABS                  | Fresh                     | WR            | 1                   |                         |                           | 5052703                 | 40248          | 2010        | 0.018          | -0.010          | 0.02         | 1              | 15       | -14       | 27.9         | 7.1        | 0                     | 0                     | NAF                   |
| KTDD112   | O'Neil Zone                | 43.00           | 44.00           | 1.00 GABS                  | Fresh                     | WR            | 1                   |                         |                           | 5052704                 | 40249          | 2010        | 0.017          | -0.010          | 0.33         | 10             | 12       | -2        | 1.2          | 3.8        | 3                     | 7                     | UC(PAF-LC)            |
|           | O'Neil Zone                | 44.00           | 45.00           | 1.00 GABS                  | Fresh                     | WR            | 1                   |                         |                           | 5052705                 | 40250          | 2010        | 0.064          | -0.010          | 0.95         | 29             | 11       | 18        | 0.4          | 2.8        | 16                    | 24                    | PAF                   |
|           | O'Neil Zone                | 47.00           | 48.00           | 1.00 GABS                  | Fresh                     | LG            | 1                   |                         |                           | 5052708                 | 40251          | 2010        | 0.080          | -0.010          | 0.68         | 21             | 11       | 10        | 0.5          | 3.2        | 8                     | 15                    |                       |
|           | O'Neil Zone                | 50.00           | 51.00           | 1.00 GABS/GABSS            | Fresh                     | HG            | 1                   |                         | 1                         | 5052714                 | 40252          | 2010        | 0.345          | 0.020           | 1.48         | 45             | 5        | 40        | 0.1          | 2.7        | 16                    | 30                    | PAF PAF               |
|           | O'Neil Zone<br>O'Neil Zone | 56.20<br>70.00  | 57.00<br>71.00  | 0.80 GABSS<br>1.00 GABSS   | Fresh<br>Fresh            | HG<br>HG      | 1                   |                         | 1                         | 5052720<br>5052734      | 40253<br>40254 | 2010        | 0.834          | 0.320           | 2.96<br>0.21 | 90             | 10       | 87<br>-3  | 0.0<br>1.5   | 2.6<br>4.0 | 20                    | 43                    | UC(PAF-LC)            |
|           | O'Neil Zone                | 75.00           | 76.00           | 1.00 GABSS                 | Fresh                     | HG            | 1                   |                         | 1                         | 5052734                 | 40255          | 2010        | 0.403          | 7.170           | 1.20         | 37             | 8        | 29        | 0.2          | 3.0        | 13                    | 31                    | PAF                   |
|           | O'Neil Zone                | 85.00           | 86.00           | 1.00 GABSS                 | Fresh                     | HG            |                     |                         | 2                         | 5052751                 | 40256          | 2010        | 0.039          | -0.010          | 0.26         | 8              | _        | -3        | 1.4          | 4.1        | 0.4                   |                       | UC(PAF-LC)            |
|           | O'Neil Zone                | 89.00           | 90.00           | 1.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 5052755                 | 40257          | 2010        | 0.044          | -0.010          | 0.32         | 10             | 12       | -2        | 1.2          | 3.8        | 2                     |                       | UC(PAF-LC)            |
| KTDD112   | O'Neil Zone                | 91.00           | 92.00           | 1.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 5052758                 | 40258          | 2010        | 0.015          | -0.010          | 0.23         | 7              | 12       | -5        | 1.7          | 4.0        | 1                     | 5                     | UC(PAF-LC)            |
| KTDD112   | O'Neil Zone                | 94.00           | 95.00           | 1.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 5052761                 | 40259          | 2010        | 0.014          | -0.010          | 0.23         | 7              | 12       | -5        | 1.7          | 4.0        | 1                     | 4                     | UC(PAF-LC)            |
|           | O'Neil Zone                | 95.00           | 96.00           | 1.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 5052762                 | 40260          | 2010        | 0.059          | -0.010          | 0.61         | 19             | 15       | 4         | 0.8          | 3.1        | 7                     | 14                    |                       |
|           | O'Neil Zone                | 97.00           | 98.00           | 1.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 5052764                 | 40261          | 2010        | 0.026          | -0.010          | 0.36         | 11             |          | 0         | 1.0          | 3.5        | 4                     | 10                    | UC(PAF-LC)            |
|           | O'Neil Zone                | 4.00            | 8.00            | 4.00 SAP                   | Highly                    | WR            |                     |                         |                           | 5006281                 | 40298          | 2010        | 0.263          | 0.256           | 0.05         | 2              | 179      | -177      | 117.0        | 8.9        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 8.00            | 12.00           | 4.00 SAP/BS                | Highly                    | WR            |                     |                         |                           | 5006282                 | 40299          | 2010        | 0.036          | 0.050           | 0.04         |                | 15       | -14       | 12.3         | 7.3        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 12.00           | 16.00<br>41.00  | 4.00 BS                    | Highly/Moderately         | WR<br>WR      |                     |                         |                           | 5006283                 | 40300<br>40301 | 2010        | 0.021          | 0.004           | 0.04         | 1              | 10       | -9        | 8.2<br>0.1   | 6.9        | 0                     | 0                     | NAF<br>PAF            |
|           | O'Neil Zone<br>O'Neil Zone | 40.00           | 44.00           | 1.00 GABS<br>1.00 GABSS    | Transitional Transitional | WR            |                     |                         |                           | 5006873<br>5006876      | 40301          | 2010        | 0.211          | -0.010<br>0.030 | 2.07<br>0.79 | 63<br>24       | -        | 55<br>9   | 0.1          | 2.6<br>3.2 | 28                    | 41<br>13              | PAF                   |
|           | O'Neil Zone                | 44.00           | 45.00           | 1.00 GABSS                 | Transitional              | WR            |                     |                         |                           | 5006877                 | 40302          | 2010        | 0.037          | -0.010          | 0.79         | 8              | 19       | -11       | 2.4          | 4.6        | 0                     | 2                     | NAF                   |
|           | O'Neil Zone                | 45.00           | 46.00           | 1.00 GABSS                 | Transitional              | WR            |                     |                         |                           | 5006879                 | 40304          | 2010        | 0.009          | 0.010           | 0.35         | 11             | 18       | -7        | 1.7          | 4.5        | 0                     | 3                     | NAF                   |
|           | O'Neil Zone                | 53.00           | 54.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         | 1                         | 5006887                 | 40305          | 2010        | 0.009          | 0.010           | 0.85         | 26             | 15       | 11        | 0.6          | 3.2        | 12                    | 22                    | PAF                   |
|           | O'Neil Zone                | 56.00           | 57.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         | 1                         | 5006891                 | 40306          | 2010        | 0.002          | 0.020           | 1.47         | 45             | 10       | 35        | 0.2          | 2.7        | 22                    | 31                    | PAF                   |
| KTRC127   | O'Neil Zone                | 71.00           | 72.00           | 1.00 BGCS                  | Fresh                     | LG            |                     |                         | 2                         | 5007009                 | 40307          | 2010        | 0.174          | -0.010          | 2.06         | 63             | 10       | 53        | 0.2          | 2.9        | 14                    | 41                    | PAF                   |
|           | O'Neil Zone                | 83.00           | 84.00           | 1.00 BGCS                  | Fresh                     | HG            |                     |                         | 1                         | 5007022                 | 40308          | 2010        | 0.305          | 0.020           | 0.55         | 17             | 14       |           | 0.8          | 3.8        | 2                     | 13                    | PAF-LC                |
|           | O'Neil Zone                | 2.00            | 3.00            | 1.00 GABS                  | Highly                    | WR            |                     |                         |                           | 5027140                 | 40311          | 2010        | 0.028          | 0.140           | 0.02         | 1              | 78       | -77       | 124.3        | 7.7        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 3.00            | 4.00            | 1.00 GABS                  | Highly                    | LG            |                     |                         |                           | 5027141                 | 40312          | 2010        | 0.129          | 0.520           | 0.02         | 1              | 12       | -11       | 18.2         | 7.1        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 11.00           | 12.00           | 1.00 GABS                  | Highly                    | HG            |                     |                         |                           | 5027151                 | 40313          | 2010        | 2.225          | 0.360           | 0.02         | 1              | 5        | -4        | 7.3          | 7.5        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone<br>O'Neil Zone | 12.00<br>16.00  | 13.00           | 1.00 GABS<br>1.00 GABS     | Moderately<br>Moderately  | HG<br>HG      |                     |                         |                           | 5027152<br>5027157      | 40314<br>40315 | 2010        | 0.786          | 0.070           | 0.01         | 0              | 10       | -10<br>-7 | 21.9<br>18.6 | 7.2<br>7.4 | 0                     | 0                     | NAF<br>NAF            |
|           | O'Neil Zone                | 23.00           | 24.00           | 1.00 GABS                  | Moderately                | HG            |                     |                         |                           | 5027164                 | 40315          | 2010        | 1.251          | 0.070           | 0.01         | 1              | 11       | <u> </u>  | 7.8          | 7.4        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 28.00           | 29.00           | 1.00 GABS                  | Moderately                | HG            |                     |                         |                           | 5027170                 | 40317          | 2010        | 0.320          | 0.080           | 0.005        | - 0            | 9        | -9        | 60.0         | 7.1        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 31.00           | 32.00           | 1.00 GABS                  | Moderately                | WR            |                     |                         |                           | 5027173                 | 40318          | 2010        | 0.058          | 0.020           | 0.003        | 0              | 12       |           | 122.5        | 6.9        | 0                     | 0                     | NAF                   |
|           | O'Neil Zone                | 32.00           | 36.00           | 4.00 GABS                  | Moderately/Slightly       | WR            |                     |                         |                           | 5026592                 | 40319          | 2010        | 0.056          | 0.041           | 0.10         | 3              | 9        | -6        | 2.9          | 6.9        | 0                     | 0                     | NAF                   |
| KTRC161   | O'Neil Zone                | 36.00           | 40.00           | 4.00 GABS                  | Slightly                  | WR            |                     |                         |                           | 5026593                 | 40320          | 2010        | 0.082          | 0.015           | 0.16         | 5              | 10       | -5        | 2.0          | 5.0        | 0                     | 1                     | NAF                   |
| KTRC161   | O'Neil Zone                | 40.00           | 44.00           | 4.00 GABSS/QV/GABS         | Slightly/Fresh            | WR            |                     |                         |                           | 5026594                 | 40321          | 2010        | 0.056          | 0.014           | 0.24         | 7              | 13       | -6        | 1.8          | 4.5        | 0                     | 2                     | NAF                   |
|           | O'Neil Zone                | 44.00           | 45.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         |                           | 5027186                 | 40322          | 2010        | 0.017          | 0.020           | 0.16         | 5              | 10       | -5        | 2.0          | 4.1        | 1                     |                       | UC(PAF-LC)            |
|           | O'Neil Zone                | 45.00           | 46.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         |                           | 5027187                 | 40323          | 2010        | 0.021          | 0.010           | 0.24         | 7              | 11       | -4        | 1.5          | 3.8        | 2                     |                       | UC(PAF-LC)            |
|           | O'Neil Zone                | 49.00           | 50.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         |                           | 5027191                 | 40324          | 2010        | 0.008          | -0.010          | 0.02         | 1              | - ''     |           | 17.7         | 6.9        | 0                     | -                     | 7.0                   |
|           | O'Neil Zone<br>O'Neil Zone | 16.00<br>20.00  | 20.00           | 4.00 GABS<br>4.00 GABS     | Slightly                  | LG<br>WR      |                     |                         |                           | 4007107<br>4007108      | 40514          | 2010        | 0.093          | 0.010           | 0.06         | 3              | 16<br>13 |           | 8.7<br>3.9   | 7.2<br>7.5 | 0                     | 0                     | NAF<br>NAF            |
|           | O'Neil Zone O'Neil Zone    | 24.00           | 28.00           | 4.00 GABS<br>4.00 GABS     | Slightly<br>Fresh         | WR            |                     |                         |                           | 4007108                 | 40515          | 2010        | 0.151          | 0.015           | 0.11<br>1.66 | <u>3</u><br>51 | 8        | 43        | 0.2          | 2.7        | 18                    | 30                    | PAF                   |
|           | O'Neil Zone                | 32.00           | 36.00           | 4.00 GABS                  | Fresh                     | WR            |                     |                         |                           | 4007109                 | 40517          | 2010        | 0.040          | 0.043           | 0.20         | 6              | 16       | -10       | 2.6          | 4.9        | 0                     | 1                     | NAF                   |
|           | O'Neil Zone                | 40.00           | 41.00           | 1.00 GABS                  | Slightly                  | WR            |                     |                         |                           | 5039819                 | 40518          | 2010        | 0.018          | -0.010          | 0.45         | 14             |          | 1         | 0.9          | 3.6        | 4                     | 11                    | PAF-LC                |
|           | O'Neil Zone                | 41.00           | 42.00           | 1.00 GABS                  | Slightly                  | LG            |                     |                         |                           | 5039820                 | 40519          | 2010        | 0.199          | 0.020           | 1.32         | 41             | 6        | 35        | 0.1          | 2.7        | 15                    | 25                    | PAF                   |
|           | O'Neil Zone                | 43.00           | 44.00           | 1.00 GABS                  | Slightly                  | HG            | 1                   |                         | 2                         | 5039822                 | 40520          | 2010        | 0.385          | 0.260           | 2.29         | 70             | 2        | 68        | 0.0          | 2.6        | 21                    | 43                    | PAF                   |
|           | O'Neil Zone                | 44.00           | 45.00           | 1.00 GABS                  | Fresh                     | HG            | 2                   |                         | 2                         | 5039823                 | 40521          | 2010        | 0.458          | 0.350           | 2.34         | 72             | 1        | 71        | 0.0          | 2.6        | 22                    | 47                    | PAF                   |
|           | O'Neil Zone                | 44.00           | 45.00           | 1.00 GABSS                 | Fresh                     | WR            |                     |                         |                           | KRC003662               | 40522          | 2010        | 0.087          | -0.010          | 0.28         | 8              | 16       | -8        | 1.9          | 4.6        | 0                     | 2                     | NAF                   |
|           | O'Neil Zone                | 55.00           | 56.00           | 1.00 BGCS                  | Fresh                     | LG            |                     |                         |                           | KRC003675               | 40523          | 2010        | 0.105          | 0.020           | 0.26         | 8              | 13       | -5        | 1.6          | 4.1        | 1                     |                       | UC(PAF-LC)            |
|           | O'Neil Zone                | 62.00           | 63.00           | 1.00 BGCS                  | Fresh                     | LG            |                     |                         |                           | KRC003682               | 40524          | 2010        | 0.032          | 0.010           | 0.43         | 13             | 12       | 1         | 0.9          | 3.5        | 4                     | 10                    |                       |
|           | O'Neil Zone                | 65.00           | 66.00           | 1.00 BGCS                  | Fresh                     | HG            | 1                   |                         | 1                         | KRC003685               | 40525          | 2010        | 0.453          | 0.110           | 1.18         | 36             | 6        | 30        | 0.2          | 3.2        | 8                     | 25                    | PAF                   |
|           | O'Neil Zone                | 78.00           | 79.00           | 1.00 BGCS                  | Fresh                     | LG            | 1                   |                         | 1 2                       | KRC003698               | 40526          | 2010        | 0.153          | 0.040           | 0.48         | 15             | 11<br>7  | 4         | 0.8          | 3.5        | 7                     | 14<br>41              | PAF-LC<br>PAF         |
|           | O'Neil Zone<br>O'Neil Zone | 82.00<br>102.00 | 83.00<br>103.00 | 1.00 BGCS<br>1.00 BGCS     | Fresh<br>Fresh            | HG<br>LG      | 1                   |                         |                           | KRC003702<br>KRC003722  | 40527<br>40528 | 2010        | 1.200<br>0.076 | 0.230           | 1.68<br>0.49 | 52<br>15       | 8        | 45        | 0.1          | 3.2        | 3                     | 13                    | PAF-LC                |
|           | O'Neil Zone                |                 | 112.00          | 1.00 BGCS<br>1.00 GABSS    | Fresh                     | LG            |                     |                         |                           | KRC003722<br>KRC003731  | 40528          | 2010        | 0.076          | -0.010          | 1.51         | 46             | 7        | 39        | 0.5          | 3.0        | 11                    | 33                    | PAF-LC                |
|           | O'Neil Zone                | 117.00          |                 | 1.00 GABSS                 | Fresh                     | WR            |                     |                         |                           | KRC003737               | 40530          | 2010        | 0.050          | -0.010          | 0.64         | 20             | 9        |           | 0.5          | 3.1        | a                     | 17                    |                       |
|           | C                          | . 17.00         | . 10.00         |                            | 1                         | ****          | 1                   | ·                       | 1                         |                         | 40000          | 2010        | 0.000          | 0.010           | 3.04         | 20             |          |           | 0.0          | J. I       |                       | 17                    | 1731                  |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|                    |                            | C                | epth ( | (m)      |                   |                |               |                     |                         |                           |                         | EGi            | _           |        |                 |      | ACID-    | BASE     | ANALY     | SIS        | 1          | NAG TES               | Т                     |                       |
|--------------------|----------------------------|------------------|--------|----------|-------------------|----------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|--------|-----------------|------|----------|----------|-----------|------------|------------|-----------------------|-----------------------|-----------------------|
| Hole Name          | Location                   | From             | То     | Interval | Lithology Primary | Weathering     | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample         | Data<br>Set | Cu (%) | Au (g/t)        |      | МРА      | ANC      | NAPP      | ANC/MPA    | NAGpH      | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
|                    |                            | FIOIII           | 10     | interval |                   |                | Waste         | Abundanoc           | Abundanoc               | Abanaanoc                 | oumpie ito.             | No             | 001         |        |                 | %S   | IVIFA    | ANC      | NAFF      | ANC/IVIPA  | NAGPH      | )                     | )                     | Olussinoution         |
| KTRC417            | O'Neil Zone                | 18.00            | 19.0   | 0 1.00   | GABS              | Moderately     | LG            |                     |                         |                           | KRC006350               | 40338          | 2010        | 0.046  | 0.030           | 0.02 | 1        | 11       | -10       | 18.3       | 7.2        | 0                     | 0                     | NAF                   |
| KTRC417            | O'Neil Zone                | 19.00            | 20.0   |          | GABS              | Moderately     | LG            |                     |                         |                           | KRC006351               | 40339          | 2010        | 0.176  | 0.030           | 0.62 | 19       | 9        | 10        | 0.5        | 3.3        | 8                     | 17                    | PAF                   |
| KTRC417            | O'Neil Zone                | 20.00            | 21.0   |          | GABS              | Moderately     | HG            |                     |                         | 1                         | KRC006352               | 40340          | 2010        | 3.523  | 1.245           | 0.61 | 19       | 21       | -2        | 1.1        | 5.8        | 0                     | 1                     | NAF                   |
| KTRC417            | O'Neil Zone                | 23.00            | 24.0   | 0 1.00   | GABS              | Fresh          | HG            |                     |                         |                           | KRC006358               | 40341          | 2010        | 0.212  | 0.100           | 1.17 | 36       | 8        | 28        | 0.2        | 2.8        | 21                    | 39                    | PAF                   |
| KTRC417            | O'Neil Zone                | 26.00            | 27.0   | 1.00     | GABS              | Fresh          | LG            |                     |                         |                           | KRC006361               | 40342          | 2010        | 0.039  | 0.020           | 0.52 | 16       | 11       | 5         | 0.7        | 3.4        | 6                     | 13                    | PAF                   |
| KTRC417            | O'Neil Zone                | 27.00            | 28.0   |          | BGCS              | Fresh          | LG            | 1                   |                         |                           | KRC006362               | 40343          | 2010        | 0.053  | 0.010           | 0.28 | 9        | 14       | -5        | 1.6        | 4.2        | 0.4                   | 4                     | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 30.00            | 31.0   |          | BGCS              | Fresh          | LG            | 2                   |                         |                           | KRC006365               | 40344          | 2010        | 0.163  | 0.030           | 1.67 | 51       | 10       |           | 0.2        | 2.6        | 31                    | 50                    | PAF                   |
| KTRC417            | O'Neil Zone                | 37.00            | 38.0   |          | BGCS              | Fresh          | WR            | 1                   |                         |                           | KRC006372               | 40345          | 2010        | 0.068  | 0.050           | 0.81 | 25       | 11       | 14        | 0.4        | 3.5        | 11                    | 26                    | PAF                   |
| KTRC417            | O'Neil Zone                | 48.00            | 49.0   | -        | GABSS             | Fresh          | WR<br>WR      |                     |                         |                           | KRC006386               | 40346          | 2010        | 0.054  | -0.010          | 0.48 | 15       | 17       | -2<br>9   | 1.2        | 3.7        | 5                     |                       | UC(PAF-LC)            |
| KTRC417<br>KTRC417 | O'Neil Zone<br>O'Neil Zone | 53.00<br>55.00   | 54.0   |          | GABSS<br>GABSS    | Fresh<br>Fresh | WR            |                     |                         |                           | KRC006391<br>KRC006393  | 40347<br>40348 | 2010        | 0.018  | 0.020           | 0.73 | 22<br>15 | 13<br>14 |           | 0.6<br>1.0 | 3.2        | 11                    | 21<br>16              | PAF PAF               |
| KTRC417            | O'Neil Zone                | 59.00            | 60.0   |          | GABSS             | Fresh          | WR            | 1                   |                         |                           | KRC006393               | 40349          | 2010        | 0.009  | 0.020           | 1.59 | 49       | 11       | 38        | 0.2        | 2.8        | 21                    | 37                    | PAF                   |
| KTRC417            | O'Neil Zone                | 61.00            | 62.0   |          | GABSS             | Fresh          | WR            | 1                   |                         |                           | KRC006399               | 40350          | 2010        | 0.016  | -0.010          | 0.24 | 7        | 18       | -11       | 2.4        | 4.1        | 1                     |                       | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 66.00            | 67.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC006404               | 40351          | 2010        | 0.020  | 0.050           | 1.05 | 32       | 13       |           | 0.4        | 3.0        | 13                    |                       | PAF                   |
| KTRC417            | O'Neil Zone                | 68.00            | 69.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC006406               | 40352          | 2010        | 0.007  | 0.020           | 0.36 | 11       | 16       | -5        | 1.5        | 4.0        | 2                     |                       | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 69.00            | 70.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC006407               | 40353          | 2010        | 0.004  | 0.020           | 0.14 | 4        | 17       | -13       | 4.0        | 5.1        | 0                     | 1                     | NAF                   |
| KTRC417            | O'Neil Zone                | 72.00            | 73.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023904               | 40354          | 2010        | 0.003  | 0.020           | 0.26 | 8        | 18       | -10       | 2.3        | 4.6        | 0                     | 3                     | NAF                   |
| KTRC417            | O'Neil Zone                | 75.00            | 76.0   | 0 1.00   | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023907               | 40355          | 2010        | 0.013  | 0.040           | 0.45 | 14       | 16       | -2        | 1.2        | 3.7        | 4                     | 11                    | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 79.00            | 80.0   |          | GABSS             | Fresh          | WR            | 1                   |                         | 1                         | KRC023911               | 40356          | 2010        | 0.061  | 0.140           | 2.23 | 68       | 4        | 64        | 0.1        | 2.7        | 26                    | 37                    | PAF                   |
| KTRC417            | O'Neil Zone                | 82.00            | 83.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023914               | 40357          | 2010        | 0.145  | 0.080           | 0.55 | 17       | 26       | -9        | 1.6        | 4.1        | 1                     | 8                     | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 84.00            | 85.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023916               | 40358          | 2010        | 0.010  | 0.050           | 0.13 | 4        | 27       | -23       | 7.0        | 6.9        | 0                     | 0                     | NAF                   |
| KTRC417            | O'Neil Zone                | 86.00            | 87.0   |          | GABSS             | Fresh          | WR            | 1                   |                         | 1                         | KRC023918               | 40359          | 2010        | 0.021  | 0.010           | 0.08 | 3        | 18       | -15       | 7.1        | 7.2        | 0                     |                       | NAF                   |
| KTRC417            | O'Neil Zone                | 89.00            | 90.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023921               | 40360          | 2010        | 0.002  | 0.020           | 0.29 | 9        | 16       | -7        | 1.8        | 4.2        | 1                     | 5                     | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | 94.00            | 95.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC023926               | 40361          | 2010        | 0.002  | 0.020           | 0.20 | 6        | 16       | _         | 2.6        | 4.5        | 0                     | 3                     | NAF                   |
| KTRC417            | O'Neil Zone                | 122.00           |        |          | BGCS              | Fresh          | WR            |                     |                         |                           | KRC023954               | 40362          | 2010        | 0.003  | 0.010           | 0.36 | 11       | 18       |           | 1.6        | 4.2        | 1                     | 6                     | UC(PAF-LC)            |
| KTRC417<br>KTRC417 | O'Neil Zone<br>O'Neil Zone | 123.00<br>125.00 | 124.0  |          | BGCS<br>BGCS      | Fresh<br>Fresh | WR<br>WR      |                     |                         |                           | KRC023955<br>KRC023957  | 40363<br>40364 | 2010        | 0.001  | -0.010<br>0.020 | 0.16 | 5<br>7   | 17<br>16 | -12<br>-9 | 3.4<br>2.4 | 5.2<br>5.4 | 0                     | 1                     | NAF<br>NAF            |
| KTRC417            | O'Neil Zone                | 127.00           |        |          | BGCS              | Fresh          | WR            | 1                   |                         |                           | KRC023957               | 40365          | 2010        | 0.000  | -0.010          | 0.22 | 10       | 17       | _         | 1.7        | 4.2        | 0.4                   | 1                     | UC(PAF-LC)            |
| KTRC417            | O'Neil Zone                | -                | 134.0  |          | GABS              | Fresh          | WR            | -                   |                         |                           | KRC023959<br>KRC023965  | 40366          | 2010        | 0.000  | 0.010           | 0.02 | 10       | 17       |           | 33.7       | 7.2        | 0.4                   | 0                     | NAF                   |
| KTRC665            | O'Neil Zone                | 23.00            | 24.0   |          | GABS              | Slightly       | WR            |                     |                         |                           | KRC031363               | 40591          | 2010        | 0.036  | -0.010          | 0.05 | 2        | 13       | -11       | 8.5        | 7.3        | 0                     | 0                     | NAF                   |
| KTRC665            | O'Neil Zone                | 25.00            | 26.0   |          | GABS              | Slightly       | LG            |                     |                         |                           | KRC031365               | 40593          | 2010        | 0.325  | 0.260           | 0.52 | 16       | 12       | 4         | 0.8        | 4.3        | 0.1                   | 6                     | PAF-LC                |
| KTRC665            | O'Neil Zone                | 27.00            | 28.0   | 0 1.00   | GABS              | Slightly       | LG            |                     |                         |                           | KRC031367               | 40595          | 2010        | 0.200  | -0.010          | 0.77 | 24       | 13       | 11        | 0.6        | 3.6        | 2                     | 10                    | PAF-LC                |
| KTRC665            | O'Neil Zone                | 28.00            | 29.0   | 0 1.00   | GABS              | Fresh          | LG            |                     |                         |                           | KRC031368               | 40596          | 2010        | 0.058  | -0.010          | 0.46 | 14       | 14       | 0         | 1.0        | 4.2        | 1                     | 5                     | PAF-LC                |
| KTRC665            | O'Neil Zone                | 31.00            | 32.0   | 0 1.00   | GABS              | Fresh          | LG            |                     |                         |                           | KRC031371               | 40599          | 2010        | 0.016  | 0.010           | 0.52 | 16       | 15       | 1         | 0.9        | 3.7        | 2                     | 9                     | PAF-LC                |
| KTRC665            | O'Neil Zone                | 33.00            | 34.0   | 0 1.00   | GABS              | Moderately     | LG            |                     |                         |                           | KRC031373               | 40601          | 2010        | 0.180  | 0.150           | 0.62 | 19       | 13       | 6         | 0.7        | 3.7        | 2                     | 10                    | PAF-LC                |
| KTRC665            | O'Neil Zone                | 34.00            | 35.0   |          | GABS              | Moderately     | LG            |                     |                         |                           | KRC031374               | 40602          | 2010        | 0.134  | 0.200           | 0.36 | 11       | 13       |           | 1.2        | 4.3        | 0.2                   |                       | UC(PAF-LC)            |
| KTRC665            | O'Neil Zone                | 37.00            | 38.0   |          | GABS              | Slightly       | HG            | 2                   |                         |                           | KRC031377               | 40605          | 2010        | 0.204  | 0.110           | 1.36 | 42       | 12       | 30        | 0.3        | 3.2        | 8                     | 23                    | PAF                   |
| KTRC665            | O'Neil Zone                | 40.00            | 41.0   |          | GABS              | Fresh          | LG            | 1                   |                         |                           | KRC031380               | 40608          | 2010        | 0.021  | -0.010          | 0.46 | 14       | 15       | -1        | 1.1        | 3.9        | 1                     |                       | UC(PAF-LC)            |
| KTRC665            | O'Neil Zone                | 41.00            | 42.0   |          | GABS              | Fresh          | LG            | 1                   |                         |                           | KRC031381               | 40609          | 2010        | 0.919  | 0.140           | 1.52 | 47       | 12       |           | 0.3        | 3.7        | 2                     | 19                    | PAF-LC                |
| KTRC665            | O'Neil Zone                | 42.00            | 43.0   |          | GABS              | Fresh          | LG            |                     |                         |                           | KRC031382               | 40610          | 2010        | 0.113  | -0.010          | 0.39 | 12       | 14       |           | 1.2        | 4.5        | 0                     | 3                     | NAF                   |
| KTRC665<br>KTRC665 | O'Neil Zone<br>O'Neil Zone | 44.00<br>46.00   | 45.0   |          | GABS<br>BGCS      | Fresh<br>Fresh | WR<br>WR      |                     |                         |                           | KRC031384<br>KRC031386  | 40612<br>40614 | 2010        | 0.012  | -0.010<br>0.020 | 0.27 | 23       | 13<br>14 | -5<br>9   | 1.6<br>0.6 | 4.5<br>3.7 | 0                     | 14                    | NAF<br>PAF-LC         |
| KTRC665            | O'Neil Zone<br>O'Neil Zone | 48.00            | 47.0   |          | BGCS              | Fresh          | WR            |                     |                         |                           | KRC031386<br>KRC031388  | 40614          | 2010        | 0.036  | -0.020          | 0.74 | 19       | 13       | 6         | 0.6        | 3.7        | 3                     | 13                    | PAF-LC<br>PAF-LC      |
| KTRC665            | O'Neil Zone                | 52.00            | 53.0   |          | BGCS              | Fresh          | HG            |                     |                         |                           | KRC031388<br>KRC031395  | 40616          | 2010        | 0.017  | 0.140           | 3.62 | 111      | 13       | 111       | 0.7        | 2.5        | 19                    |                       | PAF-LC<br>PAF         |
| KTRC665            | O'Neil Zone                | 55.00            | 56.0   |          | GABS              | Fresh          | LG            |                     |                         |                           | KRC031395               | 40620          | 2010        | 0.013  | -0.010          | 0.53 | 16       | 15       | 1         | 0.0        | 3.7        | 3                     |                       | PAF-LC                |
| KTRC665            | O'Neil Zone                | 59.00            | 60.0   |          | GABSS             | Fresh          | WR            |                     |                         |                           | KRC031402               | 40627          | 2010        | 0.049  | -0.010          | 2.06 | 63       | 14       |           | 0.3        | 2.6        | 23                    | 39                    | PAF                   |
| KTRC665            | O'Neil Zone                | 63.00            | 64.0   |          | GABSS             | Fresh          | WR            |                     |                         | 1                         | KRC031406               | 40631          | 2010        | 0.045  | -0.010          | 1.41 | 43       | 16       | 27        | 0.4        | 2.9        | 11                    | 21                    | PAF                   |
| KTRC665            | O'Neil Zone                | 67.00            | 68.0   | -        | GABSS             | Fresh          | WR            |                     |                         |                           | KRC031410               | 40635          | 2010        | 0.003  | -0.010          | 0.11 | 3        | 15       |           | 4.5        | 6.3        | 0                     | 2                     | NAF                   |
| KTRC665            | O'Neil Zone                | 73.00            | 74.0   |          | GABSS             | Fresh          | HG            | 1                   |                         |                           | KRC031416               | 40641          | 2010        | 0.050  | 0.080           | 2.38 | 73       | 15       |           | 0.2        | 2.5        | 34                    | 49                    | PAF                   |
| KTRC665            | O'Neil Zone                | 76.00            | 77.0   | 1.00     | GABSS             | Fresh          | WR            | 2                   |                         |                           | KRC031419               | 40644          | 2010        | 0.007  | 0.020           | 0.50 | 15       | 16       | -1        | 1.0        | 3.7        | 3                     | 11                    | UC(PAF-LC)            |
| KTRC665            | O'Neil Zone                | 78.00            | 79.0   | 0 1.00   | GABSS             | Fresh          | WR            |                     |                         | 1                         | KRC031421               | 40646          | 2010        | 0.002  | 0.050           | 0.24 | 7        | 14       | -7        | 1.9        | 4.1        | 0.3                   | 4                     | UC(PAF-LC)            |
| KTRC665            | O'Neil Zone                | 81.00            | 82.0   |          | GABSS             | Fresh          | WR            | 1                   |                         |                           | KRC031426               | 40649          | 2010        | 0.104  | 0.090           | 2.47 | 76       | 9        | 67        | 0.1        | 2.5        | 31                    | 44                    | PAF                   |
| KTRC665            | O'Neil Zone                | 83.00            | 84.0   | 0 1.00   | GABSS             | Fresh          | WR            |                     |                         |                           | KRC031428               | 40651          | 2010        | 0.003  | 0.010           | 0.24 | 7        | 17       | -10       | 2.3        | 5.0        | 0                     | 2                     | NAF                   |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|                                |        |                  | Depth (n         | n)                         |                                |               |                                                  |                         |                           |                         | EGi            |             |                |          |       | ACID          | -BASI    | E ANALY    | 'SIS         | N      | IAG TEST              | Г                     |                       |
|--------------------------------|--------|------------------|------------------|----------------------------|--------------------------------|---------------|--------------------------------------------------|-------------------------|---------------------------|-------------------------|----------------|-------------|----------------|----------|-------|---------------|----------|------------|--------------|--------|-----------------------|-----------------------|-----------------------|
| Hole Name Loc                  | cation | From             | То               | Lithology Primary          | Weathering                     | Ore/<br>Waste | Pyrite<br>Abundance                              | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample         | Data<br>Set | Cu (%)         | Au (g/t) | Total | МРА           | ANC      | NAPP       | ANC/MPA      | NAGpH  | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
|                                |        | 110              | 10               | interval                   |                                |               |                                                  |                         |                           |                         | No             |             |                |          | %S    | <b>''</b> ''' | ANO      | INAL I     | AINO/IIII A  | NAOpii | )                     | )                     |                       |
| KTRC022 Emily                  | / Star | 0.00             | 1.00             | 1.00 GABS                  | Moderately                     | LG            |                                                  |                         |                           | 4000382                 | 40262          | 2010        | 0.109          | 0.020    | 0.005 | 0             | 11       | -11        | 73.4         | 7.2    | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 3.00             | 4.00             | 1.00 GABS                  | Moderately                     | HG            |                                                  |                         |                           | 4000385                 | 40263          | 2010        |                | 0.020    | 0.01  | 0             | 12       | -12        | 65.4         |        | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  | / Star | 25.00            | 26.00            | 1.00 GABS                  | Moderately                     | HG            |                                                  |                         |                           | 4000407                 | 40264          | 2010        | 0.248          | 0.010    | 0.10  | 3             | 10       | -7         | 3.4          | 6.9    | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 29.00            | 30.00            | 1.00 GABS                  | Moderately                     | HG            |                                                  |                         |                           | 4000411                 | 40265          | 2010        | 1.023          |          | 0.11  | 3             | _        |            | 2.1          |        | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 30.00            | 31.00            | 1.00 GABS                  | Slightly                       | HG            |                                                  |                         |                           | 4000412                 | 40266          | 2010        |                |          | 0.02  | 1             |          |            | 15.4         |        | 0                     | 0                     | NAF                   |
| KTRC022 Emily<br>KTRC022 Emily |        | 33.00            | 34.00<br>40.00   | 1.00 GABS<br>1.00 GABS     | Slightly                       | HG<br>WR      |                                                  |                         |                           | 4000415<br>4000421      | 40267<br>40268 | 2010        |                | -0.010   | 0.14  | 0             |          |            | 2.7<br>100.1 |        | 0                     | 0                     | NAF<br>NAF            |
| KTRC022 Emily<br>KTRC022 Emily |        | 40.00            | 44.00            | 4.00 GABS                  | Highly<br>Highly/Fresh         | WR            |                                                  |                         |                           | 5006119                 | 40268          | 2010        | 0.018          | -0.010   | 0.01  | 3             |          |            | 5.4          | 7.2    | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 44.00            | 48.00            | 4.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           | 5006120                 | 40270          | 2010        | 0.033          | -0.001   | 0.03  | 2             |          |            | 7.9          |        | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 53.00            | 54.00            | 1.00 BGCS                  | Fresh                          | HG            |                                                  |                         | 1                         | 4000435                 | 40271          | 2010        | 0.285          | -0.010   | 0.29  | 9             |          |            | 1.6          |        | 0                     | 4                     | NAF                   |
| KTRC022 Emily                  | / Star | 57.00            | 58.00            | 1.00 BGCS                  | Fresh                          | HG            |                                                  |                         | 1                         | 4000439                 | 40272          | 2010        | 1.147          | -0.010   | 1.59  | 49            | 5        | 44         | 0.1          | 3.2    | 9                     | 36                    | PAF                   |
| KTRC022 Emily                  | / Star | 60.00            | 61.00            | 1.00 BGCS                  | Fresh                          | HG            |                                                  |                         |                           | 4000442                 | 40273          | 2010        | 0.621          | -0.010   | 0.88  | 27            |          | 9          | 0.7          | 3.8    | 4                     | 23                    | PAF-LC                |
| KTRC022 Emily                  |        | 67.00            | 68.00            | 1.00 BGCS                  | Fresh                          | LG            |                                                  |                         |                           | 4000449                 | 40274          | 2010        | 0.093          | -0.010   | 0.12  | 4             |          | -17        | 5.6          |        | 0                     | 0                     | NAF                   |
| KTRC022 Emily                  |        | 72.00            | 73.00            | 1.00 BS                    | Fresh                          | LG            |                                                  |                         |                           | 4000454                 | 40275          | 2010        | 0.036          | 0.010    | 0.06  | 2             |          |            | 9.0          | 7.2    | 0                     | 0                     | NAF                   |
| KTRC022 Emily<br>KTRC022 Emily |        | 84.00<br>120.00  | 88.00            | 4.00 GABSS/GABS<br>3.00 BS | Fresh<br>Fresh                 | WR<br>WR      | -                                                |                         |                           | 5006123                 | 40276<br>40277 | 2010        |                | 0.002    | 0.04  | 1 -           | 17<br>21 | -16<br>-16 | 13.9         |        | 0                     | 0                     | NAF NAF               |
| KTRC022 Emily<br>KTRC217 Emily |        | 0.00             | 123.00<br>4.00   | 4.00 GABS                  | Highly                         | WR            | <del>                                     </del> |                         |                           | 5006132<br>5036842      | 40277          | 2010        | 0.004          | 0.005    | 0.15  | 5             |          | -16        | 15.0         | 0.0    | 0                     | 0                     | NAF<br>NAF            |
| KTRC217 Emily                  |        | 8.00             | 12.00            | 4.00 GABS                  | Highly                         | WR            |                                                  |                         |                           | 5036844                 | 40653          | 2010        | 0.027          | 0.012    | 0.05  | 2             |          |            | 7.8          |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 12.00            | 16.00            | 4.00 GABS                  | Highly/Moderately              | WR            |                                                  |                         |                           | 5036845                 | 40654          | 2010        |                | 0.008    | 0.06  | 2             |          |            | 6.5          |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 16.00            | 20.00            | 4.00 GABS                  | Moderately                     | WR            |                                                  |                         |                           | 5036846                 | 40655          | 2010        |                | 0.021    | 0.05  | 2             | 14       | -12        | 9.2          | 7.6    | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 20.00            | 24.00            | 4.00 GABS                  | Moderately                     | WR            |                                                  |                         |                           | 5036847                 | 40656          | 2010        | 0.062          | 0.008    | 0.05  | 2             |          |            | 8.5          |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 24.00            | 25.00            | 1.00 GABS                  | Moderately                     | WR            |                                                  |                         |                           | 5032808                 | 40657          | 2010        | 0.008          | -0.010   | 0.00  | 0             | _        |            | 104.0        |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 27.00            | 28.00            | 1.00 GABS                  | Moderately                     | LG            |                                                  |                         |                           | 5032811                 | 40658          | 2010        |                |          | 0.00  | 0             |          |            | 143.0        |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  |        | 31.00            | 32.00            | 1.00 GABS                  | Moderately                     | HG            |                                                  |                         |                           | 5032815                 | 40659          | 2010        | 1.979          | 0.405    | 0.08  | 2             | _        |            | 5.8          |        | 0                     | 0                     | NAF                   |
| KTRC217 Emily<br>KTRC217 Emily |        | 34.00<br>35.00   | 35.00            | 1.00 GABS<br>1.00 GABS     | Moderately                     | WR<br>WR      |                                                  |                         |                           | 5032818                 | 40660<br>40661 | 2010        | 0.063          | 0.020    | 0.00  | 0             |          |            |              |        | 0                     | 2                     | NAF NAF               |
| KTRC217 Emily<br>KTRC217 Emily |        | 36.00            | 36.00<br>40.00   | 4.00 GABS                  | Moderately<br>Fresh/Moderately | WR            |                                                  |                         | -                         | 5032819<br>5036848      | 40662          | 2010        | 0.021          | -0.010   | 0.00  | 2             |          |            |              |        | 0                     | - 2                   | NAF                   |
| KTRC217 Emily                  |        | 40.00            | 44.00            | 4.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           | 5036849                 | 40663          | 2010        | 0.010          | 0.009    | 0.03  | 4             |          |            | 3.0          | 0.0    | 0                     | 1                     | NAF                   |
| KTRC217 Emily                  |        | 44.00            | 48.00            | 4.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           | 5036850                 | 40664          | 2010        | 0.006          | 0.049    | 1.29  | 39            |          | 28         | 0.3          |        | 15                    | 23                    | PAF                   |
| KTRC217 Emily                  |        | 48.00            | 49.00            | 1.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           | 5032832                 | 40665          | 2010        | 0.009          | 0.030    | 0.75  | 23            | 15       | 8          | 0.7          | 3.3    | 6                     | 13                    | PAF                   |
| KTRC217 Emily                  | / Star | 49.00            | 50.00            | 1.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           | 5032833                 | 40666          | 2010        | 0.047          | 0.030    | 0.56  | 17            | 15       | 2          | 0.9          |        | 2                     | 9                     | PAF-LC                |
| KTRC217 Emily                  |        | 52.00            | 53.00            | 1.00 GABSS                 | Fresh                          | HG            |                                                  |                         | 2                         | 5032836                 | 40667          | 2010        |                | 0.050    | 1.77  | 54            |          |            | 0.3          |        | 6                     | 20                    | PAF                   |
| KTRC217 Emily                  |        | 53.00            | 54.00            | 1.00 GABSS                 | Fresh                          | HG            | 1                                                |                         |                           | 5032837                 | 40668          | 2010        |                |          | 0.43  | 13            | _        |            |              |        | 0.3                   |                       | UC(PAF-LC)            |
| KTRC217 Emily<br>KTRC217 Emily |        | 54.00<br>57.00   | 55.00<br>58.00   | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                 | HG<br>HG      | 1                                                |                         | 1                         | 5032838<br>5032841      | 40669<br>40670 | 2010        | 0.161<br>0.406 | 0.040    | 0.35  | 11<br>19      |          |            |              |        | 0                     | 3<br>7                | NAF<br>UC(NAF)        |
| KTRC217 Emily                  |        | 58.00            | 59.00            | 1.00 GABSS<br>1.00 GABSS   | Fresh                          | LG            | - '                                              |                         | 1                         | 5032842                 | 40670          | 2010        | 0.406          | 0.010    | 0.63  | 12            | _        | -          | 1.3          |        | 0                     | 3                     | NAF                   |
| KTRC217 Emily                  |        | 59.00            | 60.00            | 1.00 GABSS                 | Fresh                          | WR            |                                                  |                         | · ·                       | 5032843                 | 40672          | 2010        |                | -0.010   | 0.19  | 6             |          |            | 2.9          |        | 0                     | 1                     | NAF                   |
| KTRC217 Emily                  |        | 62.00            | 63.00            | 1.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           | 5032846                 | 40673          | 2010        | 0.012          | -0.010   | 0.02  | 1             | 22       | -21        | 35.9         | 6.9    | 0                     | 0                     | NAF                   |
| KTRC217 Emily                  | / Star | 66.00            | 67.00            | 1.00 BS                    | Fresh                          | WR            |                                                  |                         |                           | 5032850                 | 40674          | 2010        | 0.007          | -0.010   | 0.03  | 1             | 18       | -17        | 17.3         | 6.6    | 0                     | 2                     | NAF                   |
| KTRC217 Emily                  |        | 69.00            | 70.00            | 1.00 BS                    | Fresh                          | WR            |                                                  |                         |                           | 5032853                 | 40675          | 2010        | 0.007          | -0.010   | 0.01  | 0             |          |            | 60.5         | 7.1    | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 0.00             | 4.00             | 4.00 GABS                  | Slightly                       | WR            |                                                  |                         |                           |                         | 33458          | 2007        | 0.014          |          | 0.01  | 0             | _        |            | 71.90        |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 8.00             | 12.00            | 4.00 GABS                  | Moderately/Slightly            | WR            |                                                  |                         |                           |                         | 33459          | 2007        | 0.085          | 0.005    | 0.02  | 1             |          |            | 35.9         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily<br>KTRC221 Emily |        | 16.00<br>24.00   | 20.00            | 4.00 GABS<br>4.00 GABS/BS  | Slightly<br>Slightly           | WR<br>WR      |                                                  |                         |                           |                         | 33460<br>33461 | 2007        | 0.013          | 0.004    | 0.01  | 0             | _        | -24<br>-23 | 78.4<br>26.1 |        | 0                     | 0                     | NAF<br>NAF            |
| KTRC221 Emily                  |        | 32.00            | 36.00            | 4.00 GABS/BS<br>4.00 BS    | Slightly                       | WR            |                                                  |                         |                           |                         | 33462          | 2007        | 0.019          | 0.002    | 0.03  | 1             |          |            | 24.0         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 40.00            | 44.00            | 4.00 BS                    | Slightly                       | WR            |                                                  |                         |                           |                         | 33463          | 2007        | 0.007          | 0.000    | 0.48  |               |          | -7         | 1.5          |        | 4                     | Ū                     | UC(PAF-LC)            |
| KTRC221 Emily                  |        | 48.00            | 52.00            | 4.00 BS                    | Slightly/Fresh                 | WR            |                                                  |                         |                           |                         | 33464          | 2007        | 0.008          | 0.002    | 0.03  | 1             | 22       | -21        | 24.0         |        | 0                     | 4                     | NAF                   |
| KTRC221 Emily                  |        | 52.00            | 56.00            | 4.00 BS                    | Fresh                          | WR            |                                                  |                         |                           |                         | 33465          | 2007        | 0.002          | 0.001    | 0.02  | 1             | 24       |            | 39.2         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  | / Star | 60.00            | 64.00            | 4.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           |                         | 33466          | 2007        | 0.005          | 0.002    | 0.01  | 0             |          | -23        | 75.2         | 6.9    | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 64.00            | 68.00            | 4.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           |                         | 33467          | 2007        | 0.004          | 0.003    | 0.01  | 0             |          | -26        | 85.0         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 72.00            | 76.00            | 4.00 GABS/BS               | Fresh                          | WR            |                                                  |                         |                           |                         | 33468          | 2007        | 0.008          | 0.002    | 0.01  | 0             | _        | -38        | 124.2        |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 80.00            | 81.00            | 1.00 GABSS                 | Fresh                          | WR            | -                                                |                         |                           |                         | 33469          | 2007        | 0.017          | 0.000    | 0.03  | 1             |          | -20        | 22.9         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily<br>KTRC221 Emily |        | 81.00<br>85.00   | 85.00<br>86.00   | 4.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                 | WR<br>WR      | 1                                                |                         | 1                         |                         | 33470<br>33471 | 2007        | 0.076          | 0.020    | 0.10  | 3             |          | -18<br>-19 | 6.9<br>9.8   |        | 0                     | 0                     | NAF NAF               |
| KTRC221 Emily                  |        | 85.00            | 88.00            | 1.00 GABSS<br>1.00 GABS    | Fresh                          | WR            | 1                                                |                         | 2                         |                         | 33471          | 2007        | 1.204          | 0.010    | 1.50  | _             |          |            | 9.8          |        | 10                    | 34                    | PAF                   |
| KTRC221 Emily                  |        | 88.00            | 91.00            | 3.00 GABS                  | Fresh                          | WR            |                                                  |                         |                           |                         | 33473          | 2007        | 0.078          | 0.220    | 0.09  | 3             |          | -16        | 6.9          |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 91.00            | 92.00            | 1.00 BGCS                  | Fresh                          | WR            |                                                  |                         | 2                         |                         | 33474          | 2007        | 0.169          |          | 0.19  | 6             |          |            | 3.4          |        | 0                     | 2                     | NAF                   |
| KTRC221 Emily                  |        |                  | 133.00           | 1.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           |                         | 33475          | 2007        | 0.154          |          | 0.18  | 6             |          | -12        | 3.3          |        | 0                     | 3                     | NAF                   |
| KTRC221 Emily                  |        | 133.00           |                  | 4.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           |                         | 33476          | 2007        | 0.032          | 0.010    | 0.04  | 1             | 26       | -25        | 21.2         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 137.00           |                  | 1.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           |                         | 33477          | 2007        | 0.013          | 0.000    | 0.02  | 1             |          | -20        | 34.3         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        | 138.00           |                  | 4.00 GABSS                 | Fresh                          | WR            |                                                  |                         |                           |                         | 33478          | 2007        | 0.076          | 0.000    | 0.07  | 2             | _        | -19        | 9.8          |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily                  |        |                  | 145.00           | 3.00 GABSS                 | Fresh                          | WR            | -                                                |                         |                           |                         | 33479<br>33480 | 2007        | 0.021          | 0.000    | 0.03  | 1             | 0.       |            | 37.0         |        | 0                     | 0                     | NAF                   |
| KTRC221 Emily<br>KTRC221 Emily |        | 145.00<br>151.00 | 146.00<br>152.00 | 1.00 GABSS<br>1.00 GABSS   | Fresh<br>Fresh                 | WR<br>WR      | -                                                |                         | 1                         |                         | 33480<br>33481 | 2007        | 0.019          | 0.000    | 0.03  | 3             |          | -20<br>-17 | 22.9<br>5.9  |        | 0                     | 0                     | NAF<br>NAF            |
| KTRC221 Emily                  |        |                  | 154.00           | 2.00 GABSS                 | Fresh                          | WR            | <del>                                     </del> |                         |                           |                         | 33481          | 2007        | 0.096          | 0.000    | 0.11  | 3             | _        | _          | 8.1          |        | 0                     | 0                     | NAF                   |
| NINUZZI EIIIIIY                | Jai    | 102.00           | 104.00           | 2.00 GABOO                 | 1 16911                        | VVIC          | 1                                                | 1                       | 1                         |                         | JJ402          | 2007        | 0.076          | 0.000    | 0.09  | 1 3           | 21       | -18        | l 6.1        | 1.1    | U                     | 0                     | INAF                  |

Table 1: Acid forming characteristics of waste rock, low grade ore and ore samples.

|           |            |        | Depth (n | n)                         |                |               |                     |                         |                           |                         | EGi          |             |        |          |             | ACID | -BASE | ANALY | SIS     | NA    | G TEST               | -                     |                       |
|-----------|------------|--------|----------|----------------------------|----------------|---------------|---------------------|-------------------------|---------------------------|-------------------------|--------------|-------------|--------|----------|-------------|------|-------|-------|---------|-------|----------------------|-----------------------|-----------------------|
| Hole Name | Location   | From   | То       | Interval Lithology Primary | Weathering     | Ore/<br>Waste | Pyrite<br>Abundance | Pyrrhotite<br>Abundance | Chalcopyrite<br>Abundance | Kanmantoo<br>Sample No. | Sample<br>No | Data<br>Set | Cu (%) | Au (g/t) | Total<br>%S | MPA  | ANC   | NAPP  | ANC/MPA | NAGpH | AG <sub>(pH4.5</sub> | NAG <sub>(pH7.0</sub> | ARD<br>Classification |
| KTRC227   | Emily Star | 12.00  | 16.00    | 4.00 GABS                  | Slightly       | WR            |                     |                         |                           | 5036140                 | 38633        | 2009        | 0.010  | 0.037    | 0.00        | 0    |       |       |         | 6.9   | 0                    | 0                     | NAF                   |
| KTRC227   | Emily Star | 16.00  |          | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036141                 | 38634        | 2009        | -0.010 | 0.008    | 0.01        | 0    |       |       |         | 6.4   | 0                    | 3                     | NAF                   |
| KTRC227   | Emily Star | 20.00  |          | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036142                 | 38635        | 2009        | -0.010 | 0.011    | 0.01        | 0    |       |       |         | 6.4   | 0                    | 3                     | NAF                   |
| KTRC227   | Emily Star | 24.00  | 28.00    | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036143                 | 38636        | 2009        | -0.010 | 0.014    | 0.01        | 0    |       |       |         | 6.9   | 0                    | 0                     | NAF                   |
| KTRC227   | Emily Star | 28.00  |          | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036144                 | 38637        | 2009        | -0.010 | 0.017    | 0.01        | 0    |       |       |         | 6.9   | 0                    | 0                     | NAF                   |
| KTRC227   | Emily Star | 32.00  |          | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036145                 | 38638        | 2009        | -0.010 | 0.019    | 0.00        | 0    |       |       |         | 6.5   | 0                    | 3                     | NAF                   |
| KTRC227   | Emily Star | 36.00  |          | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036146                 | 38639        | 2009        | 0.010  | 0.007    | 0.00        | 0    |       |       |         | 6.4   | 0                    | 4                     | NAF                   |
| KTRC227   | Emily Star | 40.00  | 44.00    | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036147                 | 38640        | 2009        | -0.010 | 0.006    | 0.02        | 1    |       |       |         | 6.5   | 0                    | 2                     | NAF                   |
| KTRC227   | Emily Star | 44.00  | 48.00    | 4.00 BS                    | Slightly       | WR            |                     |                         |                           | 5036148                 | 38641        | 2009        | -0.010 | 0.007    | 0.37        | 11   |       |       |         | 4.2   | 0.2                  | 3                     | PAF-LC                |
| KTRC227   | Emily Star | 48.00  | 52.00    | 4.00 BS                    | Slightly/Fresh | WR            |                     |                         |                           | 5036149                 | 38642        | 2009        | -0.010 | 0.005    | 0.66        | 20   |       |       |         | 3.7   | 2                    | 9                     | PAF-LC                |
| KTRC227   | Emily Star | 52.00  | 56.00    | 4.00 BS                    | Fresh          | WR            |                     |                         |                           | 5036150                 | 38643        | 2009        | -0.010 | 0.006    | 0.12        | 4    |       |       |         | 6.2   | 0                    | 1                     | UC(NAF)               |
| KTRC227   | Emily Star | 126.00 | 127.00   | 1.00 GABS                  | Fresh          | HG            |                     |                         | 3                         | 5033994                 | 40325        | 2010        | 2.102  | 0.365    | 3.04        | 93   | 0     | 93    | 0.0     | 3.0   | 16                   | 49                    | PAF                   |
| KTRC227   | Emily Star | 128.00 | 129.00   | 1.00 GABS                  | Fresh          | HG            |                     |                         | 1                         | 5033998                 | 40326        | 2010        | 0.223  | 0.050    | 0.36        | 11   | 13    | -2    | 1.2     | 4.1   | 1                    | 7                     | UC(PAF-LC)            |
| KTRC227   | Emily Star | 130.00 | 131.00   | 1.00 BGCS                  | Fresh          | HG            |                     |                         |                           | 5034000                 | 40327        | 2010        | 0.199  | 0.030    | 0.24        | 7    | 12    | -5    | 1.6     | 3.9   | 1                    | 5                     | UC(PAF-LC)            |
| KTRC227   | Emily Star | 131.00 | 132.00   | 1.00 BGCS                  | Fresh          | HG            |                     |                         | 2                         | 5034001                 | 40328        | 2010        | 0.441  | 0.020    | 0.57        | 18   | 20    | -2    | 1.1     | 4.1   | 1                    | 11                    | UC(PAF-LC)            |
| KTRC227   | Emily Star | 133.00 | 134.00   | 1.00 BGCS                  | Fresh          | HG            |                     |                         | 2                         | 5034003                 | 40329        | 2010        | 0.332  | 0.150    | 0.99        | 30   | 23    | 7     | 0.8     | 3.5   | 6                    | 25                    | PAF                   |
| KTRC227   | Emily Star | 134.00 | 135.00   | 1.00 BGCS                  | Fresh          | HG            |                     |                         | 1                         | 5034004                 | 40330        | 2010        | 0.110  | 0.050    | 0.19        | 6    | 14    | -8    | 2.5     | 4.6   | 0                    | 3                     | NAF                   |
| KTRC227   | Emily Star | 136.00 | 137.00   | 1.00 GABS                  | Fresh          | HG            |                     |                         | 2                         | 5034006                 | 40331        | 2010        | 0.343  | 0.100    | 0.48        | 15   | 14    | 1     | 1.0     | 4.1   | 1                    | 10                    | PAF-LC                |
| KTRC227   | Emily Star | 138.00 | 139.00   | 1.00 GABS                  | Fresh          | HG            |                     |                         | 2                         | 5034008                 | 40332        | 2010        | 0.773  | 0.080    | 0.86        | 26   | 12    | 14    | 0.5     | 3.4   | 6                    | 25                    | PAF                   |
| KTRC227   | Emily Star | 141.00 | 142.00   | 1.00 GABS                  | Fresh          | WR            |                     |                         | 1                         | 5034011                 | 40333        | 2010        | 0.037  | -0.010   | 0.04        | 1    | 12    | -11   | 9.5     | 7.1   | 0                    | 0                     | NAF                   |
| KTRC227   | Emily Star | 148.00 | 149.00   | 1.00 GABS                  | Fresh          | WR            |                     |                         | 1                         | 5034018                 | 40334        | 2010        | 0.080  | -0.010   | 0.28        | 9    | 16    | -7    | 1.9     | 4.8   | 0                    | 2                     | NAF                   |
| KTRC227   | Emily Star | 153.00 | 154.00   | 1.00 GABS                  | Fresh          | WR            |                     |                         |                           | 5034023                 | 40335        | 2010        | 0.005  | -0.010   | 0.01        | 0    | 10    | -10   | 65.4    | 7.2   | 0                    | 0                     | NAF                   |
| KTRC370   | Emily Star | 23.00  | 24.00    | 1.00 GABS                  | Moderately     | HG            |                     |                         |                           | KRC001989               | 40336        | 2010        | 0.296  | 0.050    | 0.003       | 0    | 14    | -14   | 134.6   | 7.5   | 0                    | 0                     | NAF                   |
| KTRC370   | Emily Star | 25.00  | 26.00    | 1.00 GABS                  | Moderately     | HG            |                     |                         |                           | KRC001991               | 40337        | 2010        | 8.745  | 0.435    | 0.12        | 4    | 49    | -45   | 13.0    | 7.9   | 0                    | 0                     | NAF                   |

| <u>KEY</u>                                                                                     |
|------------------------------------------------------------------------------------------------|
| pH <sub>1:2</sub> = pH of 1:2 extract                                                          |
| EC <sub>1:2</sub> = Electrical Conductivity of 1:2 extract (dS/m)                              |
| MPA = Maximum Potential Acidity (kgH <sub>2</sub> SO <sub>4</sub> /t)                          |
| ANC = Acid Neutralising Capacity (kgH <sub>2</sub> SO <sub>4</sub> /t)                         |
| NAPP = Net Acid Producing Potential (kgH <sub>2</sub> SO <sub>4</sub> /t)                      |
| NAGpH = pH of NAG liquor                                                                       |
| $NAG_{(pH4.5)}$ = Net Acid Generation capacity to pH 4.5 (kgH <sub>2</sub> SO <sub>4</sub> /t) |
| $NAG_{(pH7.0)} = Net Acid Generation capacity to pH 7.0 (kgH2SO4/t)$                           |
|                                                                                                |

| Schist                               |
|--------------------------------------|
| Andalusite Biotite Schist            |
| Andalusite Biotite Staurolite Schist |
| Sarnet Chlorite Schist               |
| Muscovite Schist                     |
| Chlorite Schist (not lode schist)    |
| e                                    |
| Sulphide Zone                        |
| Vein                                 |
|                                      |
|                                      |
| m                                    |
| neral)                               |
| e                                    |
|                                      |

Ore/Waste
WR Waste Rock
LG Low Grade Ore
HG High Grade Ore

Sulphide Abundance

2 minor

trace

moderate

strong intense

extreme

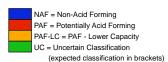



Table 2: Sequential NAG test results for selected waste rock samples.

|          |           |            |     | EGi    | Total | ANC   | NAPP                               |       | Stage 1                |                        |       | Stage 2                                      |       | Stage 3                |                        |       | Stage 4                |                        |       | Stage 5               |                                  | Cumulative NAG         |
|----------|-----------|------------|-----|--------|-------|-------|------------------------------------|-------|------------------------|------------------------|-------|----------------------------------------------|-------|------------------------|------------------------|-------|------------------------|------------------------|-------|-----------------------|----------------------------------|------------------------|
| Hole     | Lithology | Weathering | Ore | Sample | S     | ANC   | NAPP                               | NAGpH | NAG <sub>(pH4.5)</sub> | NAG <sub>(pH7.0)</sub> | NAGpH | NAG <sub>(pH4.5)</sub> NAG <sub>(pH7.0</sub> | NAGpH | NAG <sub>(pH4.5)</sub> | NAG <sub>(pH7.0)</sub> | NAGpH | NAG <sub>(pH4.5)</sub> | NAG <sub>(pH7.0)</sub> | NAGpH | NAG <sub>(pH4.5</sub> | NAG <sub>(pH7.0)</sub>           | NAG <sub>(pH7.0)</sub> |
|          |           |            |     | No     | (%)   | (kg F | I <sub>2</sub> SO <sub>4</sub> /t) |       | (kg H <sub>2</sub>     | SO₄/t)                 |       | (kg H <sub>2</sub> SO <sub>4</sub> /t)       |       | (kg H <sub>2</sub>     | SO₄/t)                 |       | (kg H <sub>2</sub>     | SO₄/t)                 |       | (kg H                 | <sub>2</sub> SO <sub>4</sub> /t) | (kg H₂SO₄/t)           |
| KTRC118  | BGCS      | Fresh      | HG  | 40511  | 1.07  | 9     | 24                                 | 3.7   | 2                      | 12                     | 3.5   | 2 5                                          | 4.4   | 0.1                    | 1                      | 4.8   | -                      | -                      | 5.7   | -                     | -                                | 18                     |
| KTRC682  | GABS      | Slightly   |     | 40553  | 1.64  | 1     | 49                                 | 2.7   | 9                      | 19                     | 3.1   | 3 5                                          | 3.6   | 1                      | 3                      | 3.7   | 1                      | 3                      | 4.0   | 1                     | 3                                | 33                     |
| KTRCD120 | GABS      | Fresh      |     | 33446  | 2.33  | 8     | 63                                 | 2.8   | 17                     | 35                     | 3.2   | 5 9                                          | 3.6   | 2                      | 4                      | 3.7   | 1                      | 3                      | 4.4   | 0.05                  | 1                                | 52                     |
| KTRC417  | GABS      | Moderately | HG  | 40340  | 0.61  | 21    | -2                                 | 5.8   | -                      | -                      | 5.3   |                                              | 5.5   | -                      | -                      | 5.5   | -                      | -                      | 5.7   | -                     | -                                | -                      |
| KTRC665  | GABS      | Slightly   | HG  | 40605  | 1.36  | 12    | 30                                 | 3.2   | 8                      | 18                     | 3.4   | 1 3                                          | 4.4   | 0.1                    | 1                      | 4.8   | -                      | -                      | 5.1   | -                     | -                                | 22                     |
| KTRC665  | GABS      | Fresh      | LG  | 40609  | 1.52  | 12    | 35                                 | 3.8   | 1                      | 13                     | 3.5   | 2 5                                          | 4.3   | 0.1                    | 1                      | 4.6   | -                      | -                      | 4.9   | -                     | -                                | 19                     |

#### KEY:

NAGpH = pH of NAG liquor

 $NAG_{(pH4.5)} = Net Acid Generation capacity to pH 4.5 (kgH<sub>2</sub>SO<sub>4</sub>/t)$ 

 $NAG_{(pH7.0)} = Net Acid Generation capacity to pH 7.0 (kgH<sub>2</sub>SO<sub>4</sub>/t)$ 

Table 3: Multi-element composition of selected sample solids (mg/kg except where shown).

|          | ļ                  | HG     | HG           | HG    | HG           | HG    | HG           | HG    | HG           | HG      | LG           | LG     | WR          | WR          | WR           | WR         | WR           | WR     | WR     | WR           | WR     | WR     | WR       | WR       | WR             | WR             | WR     | WR    | WR    | WR    | WR           | WR    | WR           | WR    | WR    | WR       | WR    | WR       | WR       | WR    |
|----------|--------------------|--------|--------------|-------|--------------|-------|--------------|-------|--------------|---------|--------------|--------|-------------|-------------|--------------|------------|--------------|--------|--------|--------------|--------|--------|----------|----------|----------------|----------------|--------|-------|-------|-------|--------------|-------|--------------|-------|-------|----------|-------|----------|----------|-------|
| Element  | Detection<br>Limit | High   | Mod          | Mod   | Mod          | Mod   | Mod          | Mod   | Mod          | Mod     | Mod          | Mod    | High        | High        | High         | High       | High/<br>Mod | Mod    | Mod    | Mod          | Mod    | Mod    | Mod      | Mod      | Mod/<br>Slight | Mod/<br>Slight | Slight | Fresh | Fresh | Fresh | Fresh        | Fresh | Fresh        | Fresh | Fresh | Fresh    | Fresh | Fresh    | Fresh    | Fresh |
|          |                    | 40313  | 40533        | 40536 | 40317        | 40340 | 40263        | 40265 | 40659        | 40337   | 40369        | 40601  | 40562       | 38606       | 40298        | 40268      | 33427        | 40567  | 38618  | 38624        | 40549  | 38659  | 40247    | 40655    | 33459          | 40319          | 33463  | 33402 | 33405 | 33410 | 33415        | 33416 | 33425        | 33446 | 33449 | 33454    | 33465 | 33467    | 33471    | 3347  |
| Ag       | 0.01               | 1.49   | 0.41         | 1.54  | 0.18         | 49.1  | 0.79         | 1.03  | 1.32         | 41.7    | 1.21         | 0.64   | 0.13        | 0.53        | 0.07         | 0.04       | <0.1         | 0.26   | 0.12   | 0.65         | 1.13   | 0.09   | 0.07     | 0.09     | 0.4            | 1.38           | 0.2    | 0.3   | 0.1   | <0.1  | 0.4          | 0.3   | 0.2          | 1.2   | 1.1   | 0.7      | <0.1  | <0.1     |          | 0.3   |
| Al       |                    | 5.27%  |              |       |              |       | 7.40%        |       | 5.62%        |         | 6.91%        |        |             |             |              | 8.63%      | 7.39%        |        | 7.66%  | 5.88%        |        | 6.26%  | 7.47%    | 8.33%    |                | 7.32%          |        |       |       | 6.52% |              |       |              |       |       |          |       |          |          |       |
| As       | 0.2                | 3.3    | 1.5          | 1.3   | 2.9          | 51.9  | 2            | 6.4   | 4.5          | 6       | 3            | 1.7    | 1.2         | 20.4        | 8.1          | 1.2        | 3            | 2.1    | 2.6    | 62.2         | 1.2    | 1.4    | 0.8      | 1.4      | 2              | 3.4            | 25     | <1    | <1    | 2     | 2            | 2     | 2            | 4     | 56    | 1        | <1    | 1        | <1       | 4     |
| Ba       | 10                 | 190    | 270          | 160   | 220          | 80    | 380          | 140   | 160          | 140     | 230          | 220    | 190         | 40          | 540          | 350        | 291          | 90     | 210    | 140          | 240    | 250    | 590      | 390      | 245            | 250            | 620    | 239   | 235   | 221   | 137          | 181   | 222          | 176   | 167   | 167      | 661   | 785      | 344      | 109   |
| Be       | 0.05               | 0.88   | 1.34         | 1.07  | 1.03         | 0.39  | 1.91         | 0.88  | 1.2          | 0.7     | 1.6          | 1.13   | 0.94        | 2.04        | 2.05         | 1.98       | 2.1          | 0.95   | 3.1    | 1.31         | 1.3    | 1.31   | 1.92     | 2.6      | 2.0            | 1.5            | 3.9    | 2.1   | 2.1   | 1.3   | 1.0          | 1.3   | 1.6          | 2.0   | 1.8   | 1.5      | 4.1   | 3.0      | 2.1      | 1.1   |
| Bi       | 0.01               | 54.0   | 22.6         | 96.6  | 11.6         | 171.0 | 17.0         | 6.6   | 470.0        | 1125.0  | 142.0        | 7.2    | 2.0         | 2.8         | 17.2         | 3.1        |              | 4.8    | 3.7    | 96.3         | 3.8    | 9.8    | 0.4      | 5.6      |                | 5.1            |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Ca       | 0.01%              | 0.04%  | 0.07%        | 0.12% | 0.04%        | 0.06% | 0.12%        | 0.10% | 0.12%        | 0.06%   | 0.08%        | 0.10%  | 0.01%       | 0.07%       | 3.50%        | 0.17%      |              |        | 0.11%  | 0.09%        |        | 0.11%  | 0.20%    | 0.15%    |                | 0.05%          |        |       |       |       | 0.14%        |       |              |       |       |          |       |          |          |       |
| Cd       | 0.02               | 0.03   | <0.02        | 0.1   | <0.02        |       | 0.03         | 0.09  | 0.09         | 0.4     | 0.05         | 0.37   | < 0.02      | <0.02       | 0.09         | <0.02      | <0.1         | < 0.02 | < 0.02 | <0.02        |        | < 0.02 | 0.06     | 0.06     | <0.1           | < 0.02         | 0.5    | <0.1  | <0.1  | <0.1  | <0.1         | <0.1  | <0.1         | <0.1  | <0.1  | <0.1     | <0.1  | <0.1     | <0.1     | <0.1  |
| Ce       | 0.01               | 63.6   | 102.5        | 90.5  | 86.2         | 42.6  | 86.1         | 22.7  |              | 42      | 73.9         | 83.7   | 60.8        | 131.5       | 86.5         | 108.5      |              | 59.9   | 91.9   |              | 101.5  | 98.2   | 72.1     | 106.5    |                | 95.1           |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Co       | 0.1                | 33     | 97           | 121   | 27           | 212   | 19           | 23    | 67           | 82      | 87           | 108    | 14          | 18          | 24           | 19         | 29           | 43     | 36     | 186          | 79     | 45     | 27       | 27       | 20             | 13             | 23     | 91    | 24    |       | 168          | 72    | 72           | 138   | 148   | 130      | 21    | 22       |          | 18    |
| Cr       | 1                  | 73     | 80           | 67    | 87           | 56    | 94           | 87    | 100          | 61      | 78           | 76     | 84          | 89          | 67           | 107        | 74           | 72     | 106    | 99           | 84     | 75     | 89       | 113      | 131            | 89             | 111    | 91    | 83    | 89    | 92           | 91    | 100          | 78    | 71    | 102      | 116   | 84       | 91       | 83    |
| Cs       | 0.05               | 0.34   | 5.22         | 4.39  | 3.14         | 3.89  | 3.28         | 2.90  | 5.27         | 3.11    | 7.24         | 3.14   | 2.78        | 1.06        | 4.26         | 4.42       |              | 1.76   | 3.32   | 3.11         | 4.70   | 4.21   | 5.70     | 5.45     |                | 3.59           |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Cu       | 0.2                | 20600  | 3020         | 4480  | 3090         | 36100 | 4010         | 9960  | 19800        | 92700   | 8670         | 2060   | 60.7        | 1020        | 2620         | 196        | 541          | 496    | 194.5  | 1090         | 5030   | 377    | 707      | 1640     | 916            | 670            |        | 1571  |       | 233   | 1492         | 1625  | 501          | 4242  | 3593  |          | 48    |          | 614      |       |
| F        |                    |        |              |       |              |       |              |       |              |         |              |        |             |             |              |            | 729          |        |        |              |        |        |          |          | 861            |                | 935    | 909   | 1018  |       | 683          | 754   | 934          | 875   | 803   | 733      | 899   | 860      | 984      |       |
| Fe       |                    | 6.1%   | 8.8%         |       | 8.8%         |       |              |       | 10.5%        |         |              |        |             |             | 5.3%         |            | 7.5%         |        | 8.9%   | 12.9%        |        | 8.6%   | 5.7%     | 7.6%     | 7.5%           |                | 4.9%   | 10.4% | 8.9%  | 10.7% | 12.2%        | 10.7% | 8.7%         | 9.2%  | 8.6%  | 11.4%    | 5.1%  | 5.9%     | 10.7%    | 14.0% |
| Ga       | 0.05               | 16     | 19           | 14    | 17           | 11    | 20           | 17    | 16           | 13      | 20           | 18     | 17          | 19          | 17           | 20         |              | 18     | 21     | 17           | 21     | 18     | 23       | 25       |                | 19             |        |       |       |       |              |       |              |       |       |          |       |          | _        | ┼     |
| Ge       | 0.05               | 0.20   | 0.29         | 0.26  | 0.28         | 0.24  | 0.26         | 0.42  |              | 0.30    | 0.31         | 0.25   | 0.25        | 0.39        | 0.21         | 0.30       |              | 0.33   | 0.31   | 0.38         | 0.34   | 0.28   | 0.23     | 0.27     |                | 0.27           |        |       |       |       |              |       |              |       |       |          |       |          | _        | ┼     |
| Hf       | 0.1                | 2.4    | 1.9          | 2.6   | 2.3          | 1.3   | 3.0          | 2.5   |              | 1.4     | 1.7          | 1.9    | 2.0         | 3.3         | 2.9          | 2.7        |              | 2.7    | 2.4    | 2.8          | 2.5    | 3.1    | 3.3      | 3.0      |                | 2.7            |        |       |       |       |              |       |              |       |       |          |       | <b>-</b> | L        | +     |
| Hg       |                    | <0.005 |              |       | _            |       | <0.005       |       | 0.008        | 0.071   | 0.007        | <0.005 |             |             | 0.009        | <0.005     | <0.01        |        | <0.005 | 0.012        |        | <0.005 | <0.005   | <0.005   | <0.01          | <0.005         | <0.01  | <0.01 | <0.01 | <0.01 | <0.01        | <0.01 | <0.01        | <0.01 | <0.01 | <0.01    | <0.01 | <0.01    | <0.01    | <0.01 |
| In Ir    |                    | 1.160  |              | 0.481 | 0.326        | 1.210 | 0.381        | 0.484 |              | 5.070   | 0.488        | 0.388  | 0.392       | 0.575       | 0.204        | 0.310      | 0.40/        | 0.225  | 0.299  | 0.290        |        | 0.280  | 0.214    | 0.285    | 0.407          | 0.474          | 0.00/  | 0.00/ | 0.007 | 0.007 | 4.007        | 4.50/ | 0.00/        | 0.007 | 0.40/ | 0.00/    | 0.00/ | 0.00/    | 0.00/    |       |
| K        |                    | 0.8%   | 2.0%         | 1.7%  |              |       | 2.1%         | 1.2%  |              | 1.6%    | 2.2%         | 1.6%   | 1.3%        |             | 1.8%         |            | 2.1%         |        | 2.3%   |              | 2.4%   | 1.9%   | 3.6%     |          | 2.4%           | 2.0%           | 2.6%   | 2.3%  | 2.2%  | 2.0%  | 1.9%         | 1.5%  | 2.2%         | 2.2%  | 2.1%  | 2.6%     | 2.9%  | 3.2%     | 2.6%     | 0.9%  |
| La       | 0.5                | 34     | 52           | 47    | 45           | 21    | 43           | 11    | 27           | 21<br>9 | 37           | 43     | 31          | 65          | 46           | 55         |              | 30     | 47     | 48           | 51     | 50     | 34<br>23 | 55<br>28 |                | 49<br>18       |        |       |       |       |              |       |              |       |       |          |       | 1        | -        | +     |
| Li<br>M- | 0.2                | 4      | 18           | 25    | 18           | 16    | 18           | 14    | 24           | -       | 24           | 29     | 7           | 30          | 22           | 21<br>1.8% | 4.50/        | 12     | 25     | 18           | 18     | 12     |          | 2.0%     | 4.70/          | 1.7%           | 0.40/  | 4.00/ | 4.00/ | 4.00/ | 4.00/        | 4.00/ | 4.70/        | 4.50/ | 4.00/ | 4.70/    | 0.00/ | 4.00/    | 4.70/    | 4.00/ |
| Mg<br>Mn | 0.01%              | 0.1%   | 1.4%<br>1560 | 1.3%  | 1.5%<br>1580 | 1.0%  | 1.2%<br>1040 | 1.3%  | 1.4%<br>2130 | 1.3%    | 1.7%<br>1840 | 1.4%   | 0.9%<br>182 | 1.3%<br>718 | 2.9%<br>1370 | 1620       | 1.5%<br>1912 | 2460   | 1.8%   | 1.3%<br>2490 | 1.4%   | 1.4%   | 2.0%     | 2490     | 1.7%<br>2218   | 1.7%           | 2076   | 1.9%  | 1689  |       | 1.3%<br>1764 | 2256  | 1.7%<br>1534 | 1610  | 1.3%  | 2565     | 2229  |          | 1913     | 1.2%  |
| Mo       | 0.05               | 4.7    | 2.7          | 2.9   | 2.8          | 5.4   | 1.8          | 5.1   |              | 2.4     | 2.9          | 0.9    | 3.2         | 6.5         | 2.3          | 2.2        | 1.3          | 4.3    | 3.8    | 5.8          | 1.6    | 2.8    | 1.0      | 1.7      | 2.5            | 2.1            | 1.9    | 3.1   | 1.7   | 6.7   | 5.0          | 5.2   | 4.3          | 3.6   | 2.9   | 3.7      | 1.4   | 1.6      |          |       |
| Na       |                    | 0.19%  |              |       | 0.08%        |       | 0.15%        |       | 0.10%        |         |              | 0.13%  |             |             | 0.20%        |            |              |        |        | 0.06%        |        | 0.09%  | 0.18%    | 0.20%    |                | 0.08%          |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Nb       | 5                  | 12     | 14           | 12    | 13           | 7     | 15           | 11    | 11           | 8       | 12           | 12     | 14          | 9           | 10           | 16         | 0.15%        | 12     | 13     | 13           | 16     | 15     | 15       | 16       | 0.13%          | 15             | 1.24%  | 0.06% | 0.05% | 0.04% | 0.05%        | 0.05% | 0.05%        | 0.05% | 0.05% | 0.04%    | 1.10% | 0.61%    | 0.17%    | 0.07% |
| Ni       | 0.2                | 11     | 41           | 58    | 28           | 49    | 40           | 42    | 75           | 67      | 76           | 65     | 21          | 23          | 34           | 50         | 31           | 36     | 64     | 100          | 28     | 29     | 57       | 63       | 59             | 24             | 54     | 47    | 45    | 56    | 52           | 48    | 58           | 51    | 39    | 48       | 55    | 53       | 52       | 19    |
| P        | 10                 | 250    | 490          | 590   | 160          | 240   | 580          | 470   | 520          | 450     | 500          | 550    | 280         | 1790        | 130          | 850        | 285          | 440    | 750    | 710          | 520    | 670    | 630      | 710      | 728            | 330            | 846    | 516   | 634   | 638   | 542          | 636   | 741          | 712   | 632   | 551      | 746   | 635      | 765      |       |
| Pb       | 0.5                | 43     | 34           | 37    | 25           | 14    | 15           | 8     | 8            | 9       | 19           | 8      | 18          | 10          | 98           | 8          | 15           | 10     | 10     | 9            | 26     | 7      | 123      | 15       | 10             | 23             | 244    | 14    | 8     | 9     | 22           | 16    | 11           | 30    | 11    | 15       | 21    | 12       | 7        | 12    |
| Rb       | 0.1                | 23     | 141          | 131   | 116          | 79    | 149          | 86    | 150          | 104     | 184          | 104    | 162         | 87          | 130          | 170        |              | 54     | 157    | 108          | 167    | 154    | 190      | 187      | 1.0            | 125            |        |       |       |       |              |       |              | - 00  |       |          |       |          | <u> </u> | +     |
| S        |                    | 0.02%  |              | 0.62% | 0.01%        |       | 0.01%        |       | 0.09%        |         |              | 0.66%  |             | 0.41%       |              |            | 0.31%        |        | 0.06%  | 0.52%        |        | 0.01%  | 0.01%    | <0.01%   | 0.02%          | 0.10%          | 0.48%  | 0.81% | 0.23% | 1.15% | 1.80%        | 0.71% | 1.07%        | 2.33% | 1.19% | 1.45%    | 0.02% | 0.01%    | 0.07%    | 0.199 |
| Sb       | 0.05               | 0.29   | 0.17         | 0.30  | 0.16         | 1.32  | 0.22         | 0.14  |              | 0.90    | 0.22         | 0.08   | 0.06        | 1.17        | 0.27         | 0.08       | 0.10         | 0.12   | 0.13   | 0.20         | < 0.05 | 0.05   | 0.08     | 0.15     | 0.14           | 0.14           |        | 0.08  |       |       | 0.09         | 0.06  | 0.23         | 0.26  | 0.11  | 0.09     |       |          | 0.07     |       |
| Sc       | 0.1                | 13     | 14           | 11    | 13           | 7     | 14           | 11    | _            | 9       | 14           | 13     | 11          | 16          | 15           | 15         |              | 11     | 15     | 12           | 16     | 12     | 15       | 18       |                | 14             |        |       |       |       |              |       |              |       |       |          |       |          |          | T     |
| Se       | 1.0                | 4.0    | 4.0          | 3.0   | 2.0          | 5.0   | 2.0          | 4.0   | 7.0          | 15.0    | 6.0          | 2.0    | 1.0         | 2.0         | 2.0          | 1.0        | 0.1          | 2.0    | 2.0    | 4.0          | 3.0    | 2.0    | 1.0      | 1.0      | 0.1            | 2.0            | 0.4    | 0.7   | 0.1   | 0.3   | 1.6          | 0.3   | 0.5          | 4.3   | 1.0   | 2.3      | 0.0   | 0.0      | 0.2      | 0.7   |
| Sn       | 0.2                | 4.9    | 6.3          | 5.1   | 3.3          | 4.3   | 4.7          | 3.6   |              | 27.9    | 4.9          | 4.7    | 5.4         | 2.8         | 3.4          | 5.4        | 6.9          | 4.6    | 4.2    | 4.5          | 11.6   | 4.3    | 4.5      | 4.3      | 5.9            | 3              | 6.4    | 8.1   | 7.3   | 9.2   | 10.7         | 9.5   | 7.1          | 9.2   | 8.0   | 10.7     |       | 6.2      |          |       |
| Sr       | 0.2                | 21     | 30           | 14    | 6            | 17    | 20           | 19    | 11           | 9       | 37           | 30     | 8           | 80          | 318          | 14         | 49           | 40     | 23     | 88           | 38     | 114    | 36       | 26       | 36             | 19             | 169    | 10    | 10    | 9     | 10           | 8     | 10           | 11    | 11    | 8        | 81    | 59       | 16       |       |
| Ta       | 0.05               | 0.92   | 1.09         | 0.88  | 0.99         | 0.52  | 1.15         | 0.86  | 0.83         | 0.68    | 0.9          | 0.94   | 1.03        | 0.71        | 0.79         | 1.26       |              | 0.91   | 1.07   | 0.94         | 1.16   | 1.13   | 1.13     | 1.23     |                | 1.12           |        |       |       |       |              |       |              |       |       | <u> </u> |       |          |          | 1     |
| Th       | 0.2                | 15     | 18           | 15    | 16           | 9     | 19           | 14    | 12           | 11      | 16           | 15     | 11          | 20          | 16           | 21         | 16           | 15     | 17     | 16           | 18     | 17     | 15       | 21       | 16             | 18             | 17     | 15    | 15    | 14    | 12           | 15    | 15           | 14    | 14    | 12       | 17    | 17       | 19       | 18    |
| Ti       | 0.005%             | 0.34%  | 0.38%        |       | 0.38%        | 0.21% | 0.47%        | 0.32% | 0.33%        | 0.27%   |              | 0.34%  | 0.39%       | 0.26%       | 0.29%        | 0.50%      |              | 0.32%  | 0.40%  | 0.35%        | 0.42%  | 0.39%  | 0.41%    | 0.43%    |                | 0.42%          |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| TI       | 0.02               | 0.16   | 0.77         | 0.67  | 0.68         | 0.57  | 0.64         | 0.58  | 0.76         | 0.58    | 1.14         | 0.49   | 0.60        | 0.25        | 0.79         | 0.70       |              | 0.35   | 0.73   | 0.57         | 0.89   | 0.76   | 1.60     | 0.87     |                | 0.61           |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| U        | 0.1                | 3.5    | 3.6          | 3.0   | 3.3          | 3.7   | 3.5          | 4.0   | 2.9          | 2.5     | 3.4          | 4.1    | 2.3         | 5.0         | 1.4          | 3.6        | 2.7          | 4.2    | 3.3    | 3.6          | 4.0    | 3.4    | 2.4      | 4.3      | 3.7            | 4.2            | 3.6    | 3.1   | 3.3   | 3.1   | 2.6          | 3.1   | 3.2          | 3.0   | 3.1   | 3.1      | 3.7   | 3.4      | 3.9      | 3.8   |
| V        | 1                  | 60     | 80           | 61    | 81           | 43    | 94           | 63    | 62           | 60      | 85           | 81     | 79          | 81          | 76           | 101        |              | 73     | 89     | 70           | 89     | 73     | 96       | 104      |                | 87             |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| W        | 0.1                | 3.7    | 1.3          | 1.3   | 1.7          | 1.9   | 1.6          | 1.4   | 2.8          | 1.7     | 0.8          | 2.0    | 1.4         | 202.0       | 3.0          | 1.4        |              | 6.2    | 3.3    | 3.2          | 2.8    | 1.2    | 4.5      | 3.4      |                | 1.6            |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Y        | 0.1                | 23     | 28           | 25    | 25           | 25    | 22           | 29    | 22           | 16      | 45           | 19     | 5           | 23          | 43           | 24         |              | 33     | 24     | 28           | 30     | 45     | 30       | 32       |                | 28             |        |       |       |       |              |       |              |       |       |          |       |          |          |       |
| Zn       | 2                  | 25     | 49           | 51    | 62           | 59    | 124          | 66    | 144          | 148     | 80           | 105    | 55          | 222         | 207          | 53         | 127          | 112    | 75     | 75           | 85     | 78     | 274      | 184      | 115            | 81             | 246    | 76    | 68    | 86    | 83           | 78    | 65           | 131   | 81    | 133      | 173   | 149      | 131      | 47    |
|          |                    | 87     | 64           | 87    | 85           |       | 105          | 91    | 81           | 43      | 63           | 71     | 71          | 123         | 106          | 99         |              | 99     | 89     | 103          | 93     | 108    | 120      | 109      |                | 96             |        |       |       |       |              |       |              |       |       |          |       |          | 1        | 1     |

<sup>&</sup>lt; element at or below analytical detection limit.

Table 4: Geochemical abundance indices (GAI) of selected sample solids. Values of 3 or more are highlighted in yellow.

|          |                 |          |          |            |          |       |       |          |             |       |          |          |       |        |       |      | -            |       |       |       |       |       |       |       |                |                |        |       |       |       |       |       |       |          |             |       |          |          |                 |               |
|----------|-----------------|----------|----------|------------|----------|-------|-------|----------|-------------|-------|----------|----------|-------|--------|-------|------|--------------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------|--------|-------|-------|-------|-------|-------|-------|----------|-------------|-------|----------|----------|-----------------|---------------|
|          | Median Soil     | HG       | HG       | HG         | HG       | HG    | HG    | HG       | HG          | HG    | LG       | LG       | WR    | WR     | WR    | WR   | WR           | WR    | WR    | WR    | WR    | WR    | WR    | WR    | WR             | WR             | WR     | WR    | WR    | WR    | WR    | WR    | WR    | WR       | WR          | WR    | WR       | WR       | WR              | WR            |
| Element  | Abundance*      | High     | Mod      | Mod        | Mod      | Mod   | Mod   | Mod      | Mod         | Mod   | Mod      | Mod      | High  | High   | High  | High | High/<br>Mod | Mod   | Mod/<br>Slight | Mod/<br>Slight | Slight | Fresh    | Fresh       | Fresh | Fresh    | Fresh    | Fresh           | Fresh         |
|          |                 | 40313    | 40533    | 40536      | 40317    | 40340 | 40263 | 40265    | 40659       | 40337 | 40369    | 40601    | 40562 | 38606  | 40298 |      |              | 40567 | 38618 | 38624 | 40549 | 38659 | 40247 | 40655 |                |                |        | 33402 | 33405 | 33410 | 33415 | 33416 | 33425 | 33446    | 33449       | 33454 | 33465    | 33467    | 33471           | 33474         |
| Ag       | 0.05            | 4        | 2        | 4          | 1        | 9     | 3     | 4        | 4           | 9     | 4        | 3        | 1     | 3      | -     | -    | -            | 2     | 1     | 3     | 4     | -     | -     | -     | 2              | 4              | 1      | 2     | -     | -     | 2     | 2     | 1     | 4        | 4           | 3     | -        | -        | -               | 2             |
| Al       | 7.1%            | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        |          | -               | -             |
| As       | 6               | -        | -        | -          | -        | 3     | -     | -        | -           | -     | -        | -        |       | 1      | -     | -    | -            | -     | -     | 3     | -     | -     | -     | -     | -              | -              | 1      | -     | -     | -     | -     | -     | -     | -        | 3           | -     | -        | -        | -               | -             |
| Ba       | 500             | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Be       | 0.3             | 1        | 2        | 1          | 1        | -     | 2     | 1        | 1           | 1     | 2        | 1        | 1     | 2      | 2     | 2    | 2            | 1     | 3     | 2     | 2     | 2     | 2     | 3     | 2              | 2              | 3      | 2     | 2     | 2     | 1     | 2     | 2     | 2        | 2           | 2     | 3        | 3        | 2               | 1             |
| Bi       | 0.2             | 7        |          | 8          | 5        | 9     | 6     | 4        | 11          |       | 9        | 5        | 3     | 3      | 6     | 3    |              | 4     | 4     | 8     | 4     | 5     | -     | 4     | -              | 4              |        |       |       |       |       |       |       |          |             |       |          |          |                 |               |
| Ca       | 1.5%            | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | 1     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Cd       | 0.35            | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        |          | -               | -             |
| Ce       | 50              | -        | -        | -          | -        | -     | -     |          | -           | -     | -        | -        | -     | 1      | -     | 1    |              | -     | -     | -     | -     | -     | -     | 1     |                | -              |        |       |       | -     |       |       | -     |          |             | -     |          |          | <b>└</b>        | $\vdash$      |
| Co       | 8               | 1        |          | 3          | 1        | 4     | 1     | 1        | 2           |       | 3        | 3        | -     | 1      | 1     | 1    | 1 -          | 2     | 2     | 4     | 3     | 2     | 1     | 1     | 1              | -              | 1      | 3     | 1     | 3     | 4     | 3     | 3     | 4        | 4           | 3     | 1        | 1        | 1               | 1             |
| Cr       | 70              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | •           | -     | -        | -        | <u> </u>        | -             |
| Cs<br>Cu | 4               | 9        | 6        | 7          | 6        | 10    | 6     | 8        | 9           | 11    | 8        | 6        | -     | 5      | 6     | 2    | 4            | 3     | 2     | 5     | 7     | 3     | 4     | 5     | 4              | 4              | - 1    | 5     | -     | 2     | 5     | 5     | 3     | 7        | 6           | 6     | -        | $\vdash$ | 4               | 5             |
| F        | 30<br>200       | 9        | 0        | ′          | 0        | 10    | 0     | 0        | 9           | - 11  | 0        | 0        |       | 3      | 0     |      | 1            | 3     | - 2   | 5     | -/    | 3     | 4     | 5     | 2              | 4              | 2      | 2     | 2     | 2     | 1     | 1     | 2     | 2        | 1           | 1     | 2        | 2        | 2               | 1             |
| Fe       | 4.0%            |          | 1        | 1          | 1        | 1     | 1     | 1        | 1           | 1     | 1        | 1        | 1     | 1      | -     | 1    | -            | 1     | 1     | 1     | 1     | 1     | -     | -     | -              | 1              | -      | 1     | 1     | 1     | 1     | 1     | 1     | 1        | 1           | 1     | -        | -        | 1               | 1             |
| Ga       | 20              |          | -        | -          | <u> </u> | -     | -     | -        | -           | -     | -        | -        |       | -      | -     | -    |              |       | -     | -     | -     | - :   | -     |       |                | -              | _      | - '   | - '   | - '   | '     |       |       | - '      | - '         | - '   |          | -        |                 |               |
| Ge       | 1               | -        | -        | -          |          |       |       | -        | -           | -     |          | -        |       | -      |       |      |              | -     | -     |       | -     | -     | -     |       |                | -              |        |       |       |       |       |       |       |          |             |       |          | $\vdash$ | $\vdash$        | $\vdash$      |
| Hf       | 6               | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       |       |       |       |       |          |             |       |          | $\vdash$ |                 | $\overline{}$ |
| Hg       | 0.06            |          | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | 1      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| In       | 1               | -        | -        |            | -        | -     | -     | · -      | -           | 2     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                |                |        |       |       |       |       |       |       |          |             |       |          |          |                 | $\overline{}$ |
| K        | 1.4%            | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | 1     | 1     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | 1        | -               | -             |
| La       | 40              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       |       |       |       |       |          |             |       |          |          | ,               |               |
| Li       | 25              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       |       |       |       |       |          |             |       |          |          | ,               |               |
| Mg       | 0.5%            | -        | 1        | 1          | 1        | -     | 1     | 1        | 1           | 1     | 1        | 1        | -     | 1      | 2     | 1    | 1            | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1              | 1              | 1      | 1     | 1     | 1     | 1     | 1     | 1     | 1        | 1           | 1     | 1        | 1        | 1               | 1             |
| Mn       | 1000            | -        | -        | -          | -        | -     | -     | -        | 1           | -     | -        | -        | -     | -      | -     | -    | -            | 1     | -     | 1     | -     | -     | 1     | 1     | 1              | -              | -      | -     | -     | -     | -     | 1     | -     | -        | -           | 1     | 1        | 1        | -               | 1             |
| Mo       | 1.2             | 1        | 1        | 1          | 1        | 2     | -     | 1        | 1           | -     | 1        | -        | 1     | 2      | -     | -    | -            | 1     | 1     | 2     | -     | 1     | -     | -     | -              | -              | -      | 1     | -     | 2     | 1     | 2     | 1     | 1        | 1           | 1     | -        | -        | 1               | 2             |
| Na       | 0.5%            | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | 1      | -     | -     | -     | -     | -     | -     | -        | -           | -     | 1        | -        | -               | -             |
| Nb       | 10              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       |       |       |       |       |          |             |       |          |          |                 |               |
| Ni       | 50              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        |          | -               | -             |
| P        | 800             | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | 1      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Pb       | 35              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | 1     | -    | -            | -     | -     | -     | -     | -     | 1     | -     | -              | -              | 2      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Rb       | 150             | -        | -        | -          | -        | -     | 1 -   | -        | <u> </u>    | 1 -   |          | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       | -     |       |       | -     |          |             |       |          | $\vdash$ | <u>'</u>        |               |
| S        | 0.07%           | -        | -        | 3          | -        | 3     | -     | -        | -           | -     | 1        | 3        | -     | 2      | -     | -    | 2            | 1     | -     | 2     | -     | -     | -     | -     | -              | -              | 2      | 3     | 1     |       | 4     | 3     | 3     |          | 4           | 4     | -        | -        | -               | 1             |
| Sb       | 7               | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -<br>1 | -     | -    | -            | -     | - 1   | -     | 1     | -     | 1     | - 1   | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Sc       | 0.4             | 3        |          | 2          | 2        | -     | 2     | 3        | 4           | 5     | 3        | 2        |       | 2      | 2     | 1    |              | 2     | 2     | 3     | 2     | 2     | 1     |       | -              | 2              |        | -     |       |       | - 1   | -     |       | 2        | 1           | 2     | -        | -        |                 | $\vdash$      |
| Se<br>Sn | 0.4<br>4        | -        | -        | - 2        | - 2      | 3     | -     | -        | 1           | 2     | -        | - 2      | 1 -   | -      | -     | -    | -            | -     | - 2   | - 3   | 1     | - 2   | -     | 1     | -              | -              | -      | -     | -     | 1     | 1     | 1     | -     | 1        | -           | 1     | -        | -        | 1               | -             |
| Sr       | 250             | -        | -        | -          |          | -     | -     | -        | 1           | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | - 1   | -     | -     | -     | -              | -              | -      | -     | -     | - 1   | - 1   | 1 -   | -     | -        | <del></del> | - 1   | -        | -        | - 1             | -             |
| Ta       | 250             | -        | -        | -          | ÷        | -     | -     | <u> </u> |             | -     | -        | -        | -     | -      | -     | -    | -            | -     | -     | -     | -     | -     | -     | -     | <del>  </del>  | -              | -      |       | -     | -     | -     | -     | -     | <u> </u> | <u> </u>    | -     | <u> </u> | $\vdash$ | <u> </u>        | $\overline{}$ |
| Th       | 9               |          | -        | -          |          | -     | 1     | -        | <del></del> | -     | <u>₩</u> |          |       | 1      | -     | 1    | -            |       | -     |       |       |       | -     | 1     | <b>-</b>       | -              | -      | H . H |       | -     |       | -     | -     | H .      | H           |       | H .      | $\vdash$ | -               | -             |
| Ti       | 0.5%            |          | -        | -          |          | -     | + :-  | -        | H -         | + -   |          | -        | -     |        | -     |      | -            | -     | -     | -     | -     | -     | -     |       | + -            | -              | -      | -     |       | -     | -     | -     | -     | <u> </u> | <u> </u>    | -     | <u> </u> | $\vdash$ |                 |               |
| TI       | 0.2             |          | 1        | 1          | 1        | 1     | 1     | 1        | 1           | 1     | 2        | 1        | 1     | -      | 1     | 1    |              |       | 1     | 1     | 2     | 1     | 2     | 2     | -              | 1              |        |       |       |       |       |       |       |          |             |       |          | $\vdash$ | $\vdash \vdash$ |               |
| U        | 2               | -        | -        | -          |          | -     | -     | <u> </u> | <u> </u>    | 1     | -        | <u> </u> |       | 1      | -     | -    | -            | -     | -     | -     | -     |       | -     | 1     | -              | -              | -      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | <u> </u> | -               |               |
|          | 90              |          | -        | -          |          | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              |        |       |       |       |       |       |       |          |             |       |          | $\vdash$ |                 |               |
| W        | 1.5             | 1        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | 6      | -     | -    |              | 1     | 1     | 1     | -     | -     | 1     | 1     |                | -              |        |       |       |       |       |       |       |          |             |       |          |          |                 |               |
| Y        | 40              |          | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     | 1              | -              |        |       |       |       |       |       |       |          |             |       |          |          |                 |               |
| Zn       | 90              | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | 1      | 1     | -    | -            | -     | -     | -     | -     | -     | 1     | -     | -              | -              | 1      | -     | -     | -     | -     | -     | -     | -        | -           | -     | -        | -        | -               | -             |
| Zr       | 400             | -        | -        | -          | -        | -     | -     | -        | -           | -     | -        | -        | -     | -      | -     | -    |              | -     | -     | -     | -     | -     | -     | -     |                | -              | · ·    |       |       |       |       |       |       |          |             |       |          |          |                 |               |
|          | M.(1979) Enviro | nnmental | Chemistr | v of the l | lements  |       |       |          |             |       |          |          |       |        |       |      |              |       |       |       |       |       |       |       |                |                |        |       |       |       |       |       |       |          |             |       |          | -        |                 |               |

\*Bowen H.J.M.(1979) Environmental Chemistry of the Elements.

Table 5: Chemical composition of water extracts.

|                     |                    |             |         |              |          |        |          |          |         |             |          |              |         |              |             |           |              |             | Ore/Was | te, Weath    | hering an   | d Sample    | e Number    |         |                |                |              |             |             |              |              |              |             |              |              |              |          |          |             |              |
|---------------------|--------------------|-------------|---------|--------------|----------|--------|----------|----------|---------|-------------|----------|--------------|---------|--------------|-------------|-----------|--------------|-------------|---------|--------------|-------------|-------------|-------------|---------|----------------|----------------|--------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|----------|----------|-------------|--------------|
|                     |                    | HG          | HG      | HG           | HG       | HG     | HG       | HG       | HG      | HG          | LG       | LG           | WR      | WR           | WR          | WR        | WR           | WR          | WR      | WR           | WR          | WR          | WR          | WR      | WR             | WR             | WR           | WR          | WR          | WR           | WR           | WR           | WR          | WR           | WR           | WR           | WR       | WR       | WR          | WR           |
| Parameter           | Detection<br>Limit | High        | Mod     | Mod          | Mod      | Mod    | Mod      | Mod      | Mod     | Mod         | Mod      | Mod          | High    | High         | High        | High      | High/<br>Mod | Mod         | Mod     | Mod          | Mod         | Mod         | Mod         | Mod     | Mod/<br>Slight | Mod/<br>Slight | Slight       | Fresh       | Fresh       | Fresh        | Fresh        | Fresh        | Fresh       | Fresh        | Fresh        | Fresh        | Fresh    | Fresh    | Fresh       | Fresh        |
|                     |                    | 40313       | 40533   | 40536        | 40317    | 40340  | 40263    | 40265    | 40659   | 40337       | 40369    | 40601        | 40562   | 38606        | 40298       | 40268     | 33427        | 40567       | 38618   | 38624        | 40549       | 38659       | 40247       | 40655   | 33459          | 40319          | 33463        | 33402       | 33405       | 33410        | 33415        | 33416        | 33425       | 33446        | 33449        | 33454        | 33465    | 33467    | 33471       | 33474        |
| pН                  | 0.01               | 7.3         | 7.5     | 6.8          | 7.8      | 6.9    | 7.6      | 7.2      | 7.9     | 7.6         | 7.4      | 7.2          | 6.7     | 6.8          | 8.8         | 8.9       | 8.4          | 6.6         | 7.9     | 6.8          | 8.5         | 8.6         | 9.0         | 8.6     | 7.2            | 8.2            | 7.6          | 7.5         | 8.1         | 5.4          | 5.2          | 5.3          | 4.5         | 3.6          | 4.9          | 5.1          | 7.5      | 8.1      | 6.7         | 7.9          |
| EC dS/m             | 0.01               | 0.15        | 0.14    | 0.32         | 0.11     | 0.25   | 0.12     | 0.28     | 0.29    | 0.20        | 0.19     | 0.53         | 0.46    | 0.20         | 0.51        | 0.10      | 0.15         | 0.23        | 0.12    | 0.39         | 0.14        | 0.09        | 0.11        | 0.08    | 0.12           | 0.13           | 0.12         | 0.12        | 0.12        | 1.52         | 1.12         | 1.11         | 1.88        | 2.88         | 1.29         | 1.55         | 0.13     | 0.18     | 0.13        | 0.16         |
| Alkalinity mg/l     | 1                  | 27          | 72      | 18           | 51       | 31     | 30       | 24       | 28      | 41          | 31       | 21           | 18      | 16           | 113         | 75        |              | 20          | 35      | 15           | 60          | 42          | 54          | 55      |                | 42             |              |             |             |              |              |              |             |              |              |              |          |          |             |              |
| Ag mg/l             | 0.001              | <0.001      | <0.001  | <0.001       | <0.001   | <0.001 | <0.001   | <0.001   | <0.001  | <0.001      | <0.001   | <0.001       | <0.001  | <0.001       | <0.001      | <0.001    | <0.001       | <0.001      |         | <0.001       |             | <0.001      |             | <0.001  | <0.001         | <0.001         | <0.001       | <0.001      |             |              | <0.001       |              |             |              | <0.001       |              |          | <0.001   |             |              |
| Al mg/l             | 0.01               | 0.22        | 2.04    | 0.14         | 0.06     | 1.05   | 0.05     | 1.05     | 0.04    | 0.49        | 0.82     | 0.50         | 0.24    | 0.29         | 0.72        | 0.64      | 3.22         | 0.30        | 2.28    | 0.70         | 5.14        | 0.78        | 0.24        | 0.24    | 9.65           | 0.11           | 2.59         | 3.00        | 6.82        | 0.74         | 9.80         | 1.68         | 4.21        | 0.98         | 0.30         | 9.47         | 18.58    | 14.75    | 20.27       | 0.88         |
| As mg/l             | 0.001              |             | <0.001  | <0.001       | <0.001   |        |          | <0.001   | <0.001  |             |          | <0.001       | <0.001  |              |             |           | 0.0007       |             | <0.001  | <0.001       | <0.001      |             | 0.002       | 0.002   | 0.0002         |                | 0.0016       | 0.0006      | 0.0005      |              | 0.0005       | 0.0002       |             | 0.0008       | 0.0024       | 0.0003       |          | 0.0010   | 0.0024      |              |
| B mg/l              | 0.05               | 0.05        | <0.05   | <0.05        | <0.05    |        |          | <0.05    | <0.05   |             | <0.05    | <0.05        | 0.08    | <0.05        |             | <0.05     | 0.02         | 0.06        | <0.05   | <0.05        | <0.05       | <0.05       | <0.05       | <0.05   | 0.02           | <0.05          | 0.02         | 0.03        | 0.04        | 0.03         | 0.01         | 0.02         | <           | 0.01         | <            | <            | 0.02     | 0.02     | _ <         | 0.01         |
| Ba mg/l             | 0.001              | 0.006       | 0.012   | 0.009        | <0.001   |        |          | 0.013    | 0.002   | 0.006       | 0.007    | 0.015        | 0.035   | <0.001       |             | 0.003     | 0.056        | 0.004       | 0.015   | 0.006        | 0.036       | 0.005       | 0.001       | 0.001   | 0.047          | 0.001          | 0.048        | 0.024       | 0.040       |              | 0.047        | 0.074        | 0.023       | 0.003        | 0.008        | 0.041        | 0.161    |          | 0.130       | 0.005        |
| Be mg/l             | 0.001              | <0.001      |         | <0.001       | <0.001   | _      | <0.001   | <0.001   | <0.001  | <0.001      | <0.001   | <0.001       | <0.001  | <0.001       |             | _         | <0.001       | _           |         | <0.001       | <0.001      |             | <0.001      | <0.001  | <0.001         | <0.001         | <0.001       | <0.001      | <0.001      |              | <0.001       | <0.001       | <0.001      | 0.001        | <0.001       | <0.001       | 0.002    | 0.002    | 0.002       | <0.001       |
| Ca mg/l             | 0.0004             | <1          | <1      | 0.0000       | <1       | 4      | -0.0004  | <1       | <1      | 1 -0.0004   | -0.0004  | 3            | <1      | <1           | 25          | <1        | 18           | <1          | <1      | 15           | <1          | 3           | -           | <1      | -0.0004        | <1             | 0.0000       | -           | -0.0004     | 2            | -0.0004      | 3            | -0.0004     | 2            | 2            | <1           | -0.0004  | -0.0004  | -0.0004     | 0.0004       |
| Cd mg/l<br>Cl mg/l  | 0.0001             | <0.0001     | 4       | 5            | 4        | 0.0001 | <0.0001  | <0.0001  | <0.0001 | <0.0001     | <0.0001  | 0.0001       | 80      | <0.0001      | 12          | 2         | <0.0001      | 22          | <0.0001 | <0.0001      | 4           | <0.0001     | <0.0001     | <0.0001 | <0.0001        | <0.0001        | 0.0002       | <0.0001     | <1          | <0.0001      | <0.0001      | 0.0003       | <0.0001     | 0.0011       | 0.0001       | 0.0001       | <0.0001  | <0.0001  | <1          | 3            |
| Co mg/l             | 0.001              | 0.002       | 0.007   | 0.134        | <0.001   | 0.085  |          | 0.001    | <0.001  | <0.001      | 0.003    | 0.01         | <0.001  | _            | _           | _         | 0.004        | 0.001       | 0.009   | 0.057        | 0.017       | 0.006       | <0.001      | <0.001  | 0.005          | <0.001         | 0.002        | 0.007       | 0.004       | 0.093        | 0.026        | 0.031        | 0.006       | 1.578        | 0.119        | 0.033        | 0.010    | _        | 0.012       | -            |
| Cr mg/l             | 0.001              | <0.002      | 0.007   | <0.001       | <0.001   |        |          | 0.002    | <0.001  | <0.001      | 0.003    | <0.001       | 0.001   | <0.001       | _           | <0.001    | 0.010        | _           | 0.005   | 0.002        | 0.010       | 0.000       | <0.001      | <0.001  | 0.030          | 0.001          | 0.020        | 0.010       | 0.020       |              | 0.020        | 0.031        | 0.010       | 0.010        | <0.001       | 0.020        | 0.050    | 0.040    | 0.040       | <0.001       |
| Cu mg/l             | 0.001              | 0.47        | 0.33    | 0.51         | 0.04     | 1.33   | 0.01     | 0.91     | 0.05    | 1.66        | 0.38     | 0.07         | 0.01    | 0.02         | 0.06        | 0.01      | 0.10         | 0.02        | 0.05    | 0.04         | 1.99        | 0.03        | 0.01        | 0.01    | 0.60           | 0.02           | 0.03         | 0.08        | 0.03        | 0.01         | 0.24         | 0.08         | 0.04        | 3.68         | 0.05         | 0.27         | 0.06     | 0.04     | 0.29        | 0.03         |
| F mg/l              | 0.1                | 0.9         | 1.6     | 0.5          | 1.0      | 0.7    | 1.7      | 0.7      | 1.9     | 1.5         | 1.9      | 1.2          | 0.2     | 0.3          | 1.7         | 0.8       | 0.3          | 0.5         | 1.3     | 0.7          | 1.6         | 1.3         | 1.0         | 1.3     | 0.2            | 0.9            | 0.3          | 0.1         | 0.1         | <0.1         | <0.1         | <0.1         | 0.2         | <0.1         | <0.1         | 0.1          | <0.1     | <0.1     | <0.1        | 0.5          |
| Fe mg/l             | 0.05               | 0.16        | 3.28    | 0.20         | 0.06     | 1.64   | < 0.05   | 1.70     | <0.05   | 0.74        | 1.35     | 0.78         | 0.30    | 0.41         | 0.67        | 0.58      | 3.79         | 0.40        | 3.57    | 1.06         | 8.52        | 0.96        | 0.06        | 0.21    | 13.66          | 0.10           | 2.51         | 5.01        | 10.42       | 1.44         | 21.05        | 3.81         | 7.76        | 7.49         | 0.68         | 17.12        | 21.71    | 19.26    | 31.61       | 1.48         |
| Hg mg/l             | 0.0001             | 0.0001      | <0.0001 | < 0.0001     | <0.0001  | 0.0001 | < 0.0001 | <0.0001  | <0.0001 | 0.0001      | <0.0001  | <0.0001      | <0.0001 | <0.0001      | <0.000      | 1 <0.0001 | <0.0001      | <0.0001     | <0.0001 | < 0.0001     | <0.0001     | <0.0001     | <0.0001     | <0.0001 | <0.0001        | <0.0001        | <0.0001      | <0.0001     | <0.0001     | <0.0001      | <0.0001      | <0.0001      | < 0.0001    | <0.0001      | <0.0001      | <0.0001      | < 0.0001 | <0.0001  | <0.0001     | <0.0001      |
| K mg/l              | 1                  | 8           | 31      | 46           | 28       | 38     | 16       | 60       | 59      | 39          | 39       | 94           | 29      | 2            | 22          | 29        | 23           | 24          | 29      | 41           | 47          | 27          | 26          | 12      | 21             | 34             | 53           | 64          | 30          | 74           | 78           | 106          | 66          | 1            | 72           | 93           | 22       | 17       | 33          | 35           |
| Mg mg/l             | 1                  | <1          | 2       | 10           | <1       | 8      | <1       | 8        | 2       | 3           | 2        | 17           | 3       | 2            | 18          | <1        | 5            | 7           | 2       | 15           | 3           | 4           | 4           | <1      | 4              | <1             | 10           | 5           | 3           | 17           | 11           | 44           | 4           | 59           | 16           | 10           | 10       | 7        | 8           | 2            |
| Mn mg/l             | 0.001              | 0.060       | 0.074   | 0.256        | 0.015    | 0.457  | 0.004    | 0.063    | 0.007   | 0.028       | 0.022    | 0.022        | 0.008   | 0.011        | 0.018       | 0.012     | 0.060        | 0.093       | 0.075   | 1.850        | 0.180       | 0.107       | 0.059       | 0.009   | 0.200          | 0.006          | 0.100        | 0.020       | 0.030       | 0.130        | 0.060        | 0.250        | 0.030       | 2.200        | 0.130        | 0.040        | 0.210    | 0.130    | 0.060       | <0.001       |
| Mo mg/l             | 0.001              | <0.001      | <0.001  | <0.001       | <0.001   | <0.001 | <0.001   | <0.001   | <0.001  | <0.001      | <0.001   | <0.001       | <0.001  |              |             | <0.001    | 0.001        | <0.001      | 0.002   | <0.001       | <0.001      | 0.003       | 0.001       | <0.001  | <0.001         | 0.002          | 0.001        | 0.001       | <           | <0.001       | <0.001       | <0.001       | 0.001       | <            | <0.001       | <0.001       | <        | <        | <           | 0.007        |
| Na mg/l             | 1                  | 27          | 12      | 10           | 7        | 9      | 9        | 5        | 9       | 6           | 10       | 12           | 38      | 32           | 35          | 6         | 7            | 17          | 5       | 12           | 5           | 12          | 11          | 10      | 6              | 6              | 14           | 7           | 5           | 6            | 6            | 10           | 6           | 1            | 5            | 4            | 8        | 8        | 6           | 4            |
| Ni mg/l             | 0.001              | <0.001      |         | 0.037        | <0.001   |        |          | 0.001    | <0.001  | _           | _        | 0.007        | <0.001  | _            | _           |           | <0.001       |             | +       | 0.010        | 0.004       | 0.002       | <0.001      | <0.001  | <0.001         | <0.001         | <0.001       | <0.001      | 0.010       |              | 0.010        | 0.040        | 0.010       | 0.720        | 0.030        | <0.001       | 0.030    | 0.020    | 0.020       | <0.001       |
| P mg/l              | 1                  | <1          | <1      | <1           | <1       | <1     | <1       | <1       | <1      | <1          | <1       | <1           | <1      | <1           | <1          | <1        | <1           | <1          | <1      | <1           | <1          | <1          | <1          | <1      | <1             | <1             | <1           | <1          | <1          | <1           | <1           | <1           | <1          | <1           | <1           | <1           | <1       | <1       | <1          | <1           |
| Pb mg/l             | 0.001              | <0.001      |         | <0.001       | <0.001   |        |          |          | <0.001  |             |          | <0.001       | <0.001  |              |             |           |              |             | <0.001  | <0.001       |             |             | <0.001      | <0.001  | 0.002          | <0.001         | 0.021        | 0.002       |             |              | 0.013        | 0.003        | 0.002       | 0.005        | 0.002        | 0.003        | 0.007    |          | 0.004       | 0.001        |
| Sb mg/l             | 0.001              | <0.001      |         | <0.001       | <0.001   |        |          | <0.001   | <0.001  |             |          | <0.001       | <0.001  |              |             |           | <0.001       | _           | _       | <0.001       | <0.001      |             |             | <0.001  | <0.001         | <0.001         | <0.001       | <0.001      | <0.001      |              | <0.001       | <0.001       | <0.001      | <0.001       | <0.001       | <0.001       | <0.001   |          | <0.001      | 0.001        |
| Se mg/l             | 0.01               | <0.01       |         | <0.01        | <0.01    |        | _        | <0.01    | <0.01   | <0.01       | <0.01    | <0.01        | <0.01   | <0.01        | <0.01       | <0.01     | <            | <0.01       | <0.01   | <0.01        | <0.01       | <0.01       | <0.01       | <0.01   | <              | <0.01          | 0.005        | 0.001       | <           |              | 0.001        | 0.001        | <           | 0.004        | 0.002        | 0.001        | <        | <        | 0.001       | 0.002        |
| Si mg/l             | 0.05               | 2.4         | 0.9     | 1.7          | 1.2      | 1.8    | 1.1      | 1.2      | 2.0     | 1.4         | 1.7      | 1.3          | 3.2     | 2.2          | 7.1         | 0.9       | 5.3          | 1.5         | 1.2     | 1.6          | 0.9         | 2.6         | 1.4         | 1.1     | 11.3           | 0.8            | 4.2          | 5.3         | 8.5         | 3.0          | 13.2         | 4.0          | 6.1         | 2.6          | 1.7          | 12.1         | 22.5     | 18.1     | 23.8        | 2.4          |
| Sn mg/l             | 0.001              | <0.001      |         | <0.001       | <0.001   |        | <0.001   | _        | <0.001  | <0.001      | _        | <0.001       | <0.001  | <0.001<br>40 | <0.001      | _         | <0.001       | <0.001      | _       | <0.001       | <0.001      | _           | _           | <0.001  | <0.001         | <0.001         | <0.001       | <0.001      | <0.001      |              | <0.001       | <0.001       | <0.001      | <0.001       | <0.001       | 0.0003       | <0.001   | <0.001   | _           | <0.001<br>42 |
| SO4 mg/l<br>Sr mg/l | 0.001              | <1<br>0.009 | 0.007   | 100<br>0.034 | 0.002    | 0.077  |          | 0.009    | 0.006   | 37<br>0.012 | 0.013    | 186<br>0.055 | 0.013   | _            | 81<br>0.165 | 0.002     | 26<br>0.080  | 39<br>0.012 | 0.007   | 120<br>0.166 | 26<br>0.011 | 28<br>0.032 | 26<br>0.019 | <0.001  | 0.007          | 0.002          | 120<br>0.022 | 89<br>0.007 | 23<br>0.003 | 171<br>0.008 | 120<br>0.008 | 311<br>0.017 | 72<br>0.004 | 231<br>0.002 | 153<br>0.007 | 127<br>0.003 |          | _        | 16<br>0.004 |              |
| Th mg/l             | 0.001              |             | <0.007  |              |          |        | <0.003   | _        | <0.001  | _           | <0.001   | <0.001       | <0.001  | _            | <0.001      | _         | 0.000        | _           |         | <0.001       |             | <0.032      | _           | <0.001  | 0.007          | <0.002         | 0.022        | 0.007       | 0.003       | 0.000        | 0.000        | 0.017        | 0.004       | 0.002        | 0.007        | 0.003        | 0.003    | 0.004    | 3.004       | 0.002        |
| U mg/l              | 0.001              | <0.001      | <0.001  | <0.001       | <0.001   |        |          | <0.001   | <0.001  | <0.001      | <0.001   | <0.001       | <0.001  |              |             |           | -            | <0.001      |         | <0.001       |             |             |             | <0.001  | 1              | <0.001         |              |             |             |              |              |              |             |              |              |              |          | $\vdash$ | <b></b>     | -            |
| Zn mg/l             |                    | <0.001      |         |              | <0.001   |        |          |          |         |             |          | 0.006        |         | <0.001       |             |           | 0.010        |             | 0.006   | 0.008        |             |             | <0.005      |         | 0.020          |                | 0.010        | 0.010       | 0.010       | <            | 0.020        | <            | <           | 0.650        | 0.020        | 0.030        | 0.090    | 0.060    | 0.100       | <del>-</del> |
| Zii ilig/i          | 0.005              | ₹0.000      | ~0.003  | 0.011        | 1 <0.003 | 0.000  | ₹0.005   | 1 <0.005 | <0.003  | \ \0.000    | 1 <0.005 | 0.000        | 0.007   | 1 <0.000     | 1 <0.000    | 0.008     | 0.010        | 0.000       | 0.000   | 0.008        | 0.013       | \U.0.003    | 1 <0.005    | 0.000   | 0.020          | 0.000          | 0.010        | 0.010       | 0.010       | `            | 0.020        | ` `          | •           | 0.000        | 0.020        | 0.030        | 0.090    | 0.000    | 0.100       |              |

<sup>&</sup>lt; element at or below analytical detection limit.

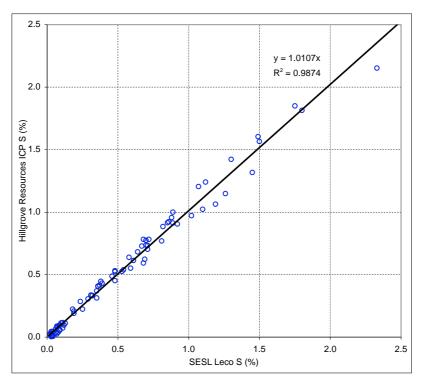



Figure 1: Compares SESL Leco S with Hillgrove Resources ICP S.

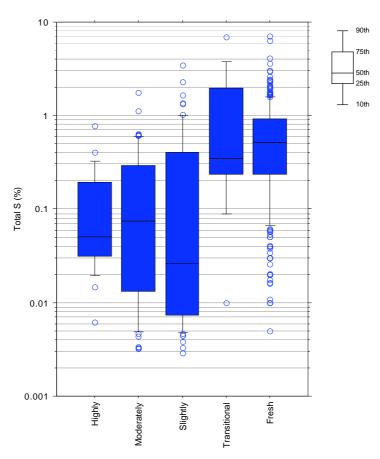



Figure 2: Box plot showing the distribution of total S split by the degree of weathering. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

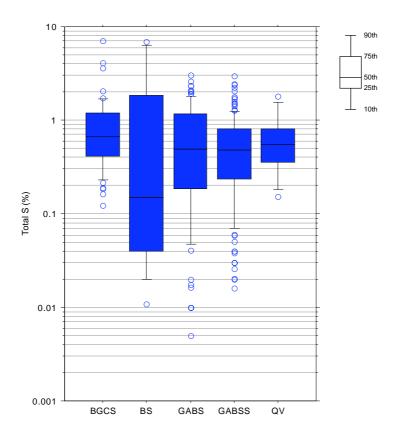



Figure 3: Box plot showing the distribution of total S split by lithology (see Table 1 for lithology codes), excluding slightly to highly weathered samples. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

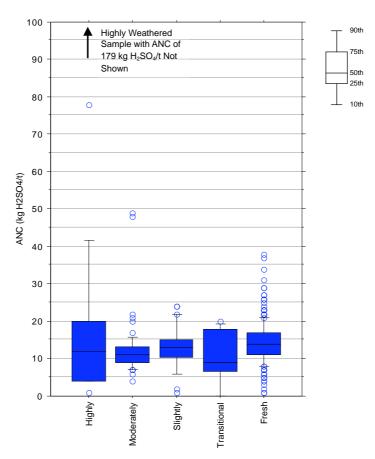



Figure 4: Box plot showing the distribution of ANC split by the degree of weathering. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

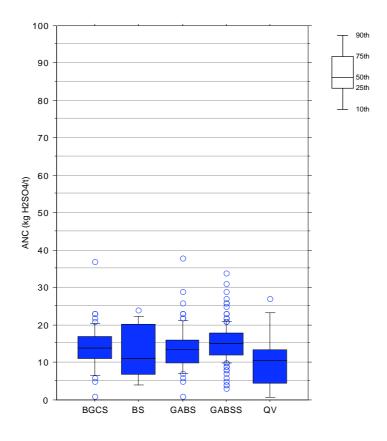



Figure 5: Box plot showing the distribution of total S split by lithology (see Table 1 for lithology codes), excluding slightly to highly weathered samples. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

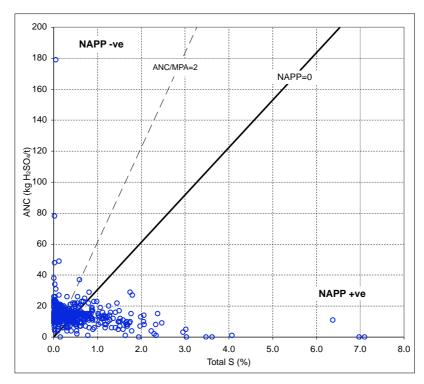



Figure 6: Acid-base account (ABA) plot showing ANC versus total S.

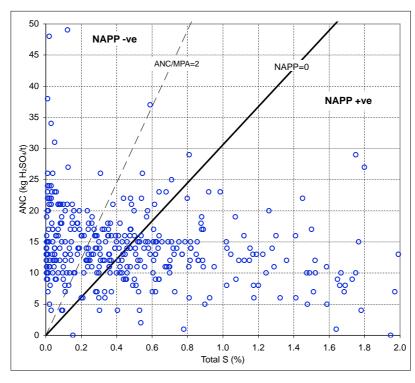



Figure 7: As for Figure 6 but rescaled.

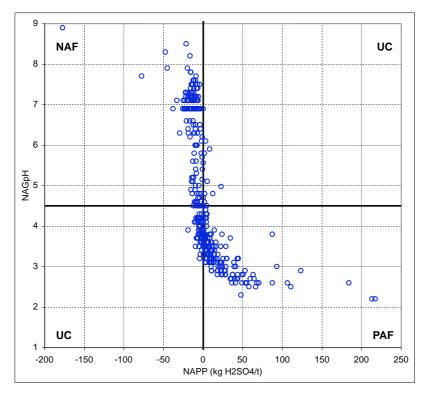



Figure 8: ARD classification plot showing NAGpH versus NAPP, with ARD classification domains indicated.

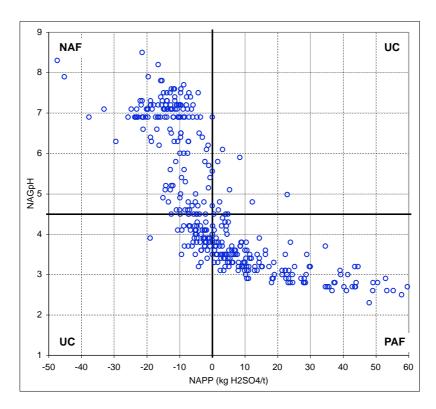



Figure 9: As for Figure 8 but rescaled.

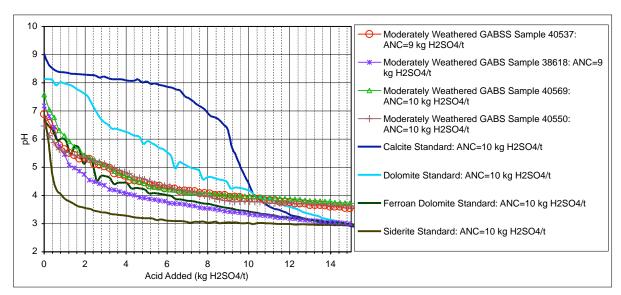



Figure 10: ABCC profile for samples with an ANC value close to 10 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

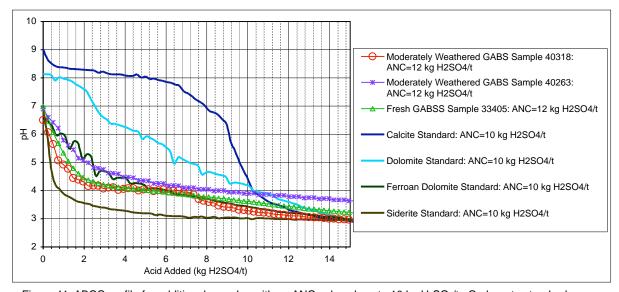



Figure 11: ABCC profile for additional samples with an ANC value close to 10 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

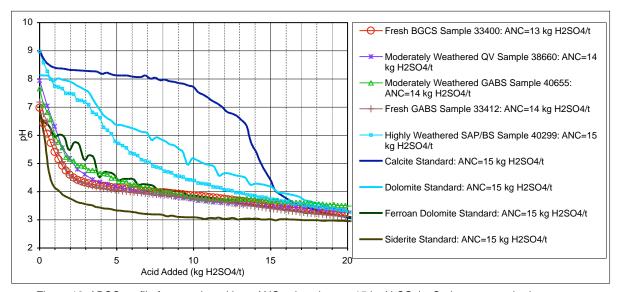



Figure 12: ABCC profile for samples with an ANC value close to 15 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

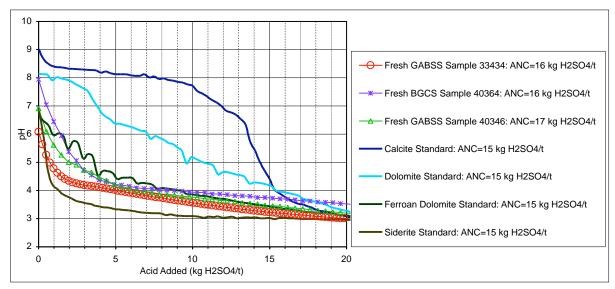



Figure 13: ABCC profile for additional samples with an ANC value close to 15 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

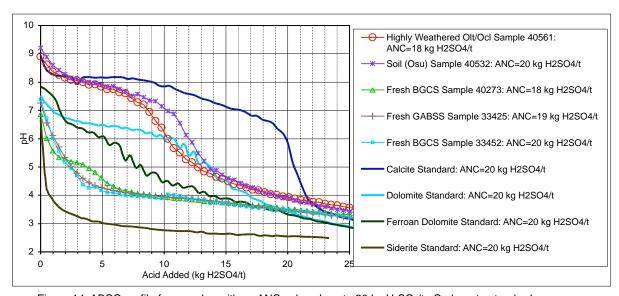



Figure 14: ABCC profile for samples with an ANC value close to 20 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

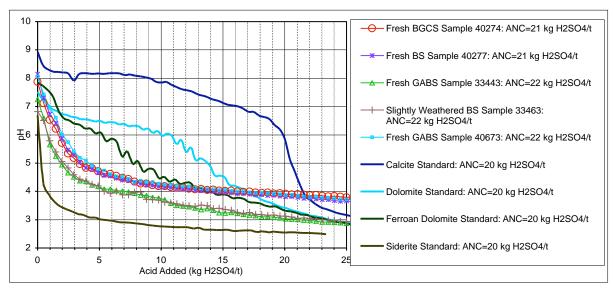



Figure 15: ABCC profile for additional samples with an ANC value close to 20 kg H₂SO₄/t. Carbonate standard curves are included for reference.

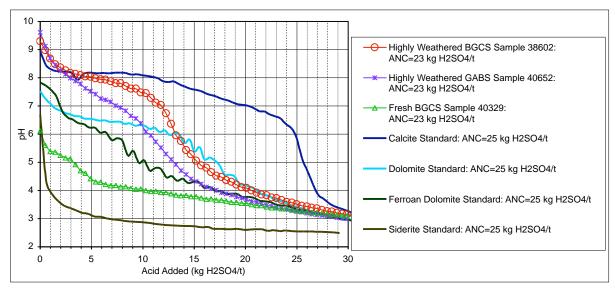



Figure 16: ABCC profile for samples with an ANC value close to 25 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

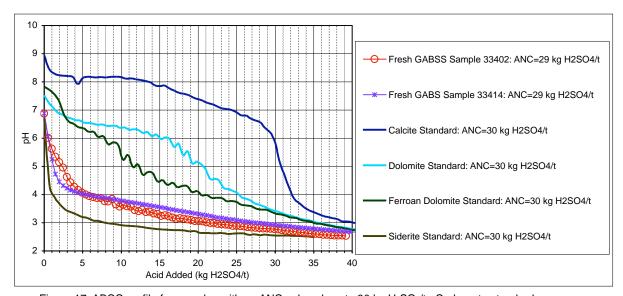



Figure 17: ABCC profile for samples with an ANC value close to 30 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

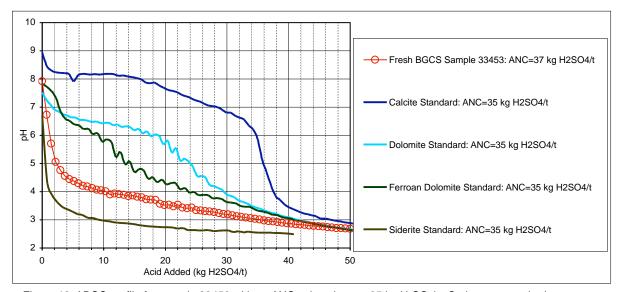



Figure 18: ABCC profile for sample 33453 with an ANC value close to 35 kg  $H_2SO_4/t$ . Carbonate standard curves are included for reference.

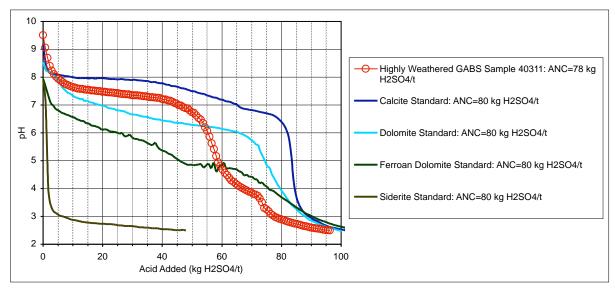



Figure 19: ABCC profile for sample 40311 with an ANC value close to 80 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference.

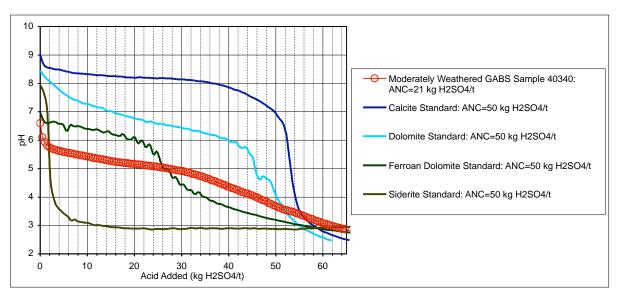



Figure 20: ABCC profile for sample 40340 with an ANC value of 21 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference. Note that the sample profile is affected by dissolution of hydrated Cu carbonates (malachite and azurite).

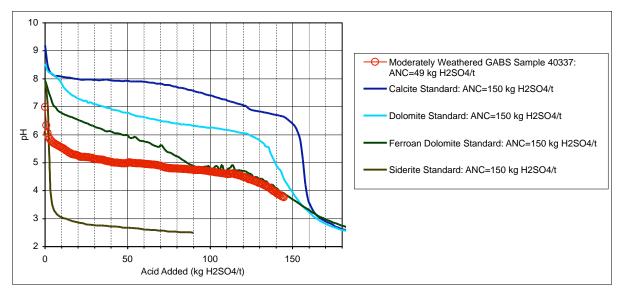



Figure 21: ABCC profile for sample 40337 with an ANC value of 49 kg H<sub>2</sub>SO<sub>4</sub>/t. Carbonate standard curves are included for reference. Note that the sample profile is affected by dissolution of hydrated Cu carbonates (malachite and azurite).

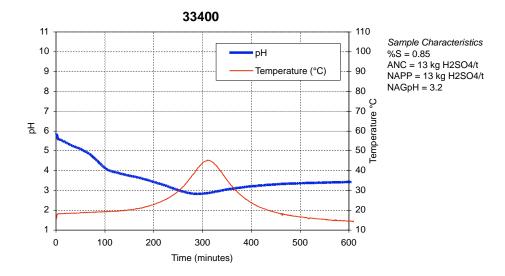



Figure 22: Kinetic NAG graph for sample 33400.

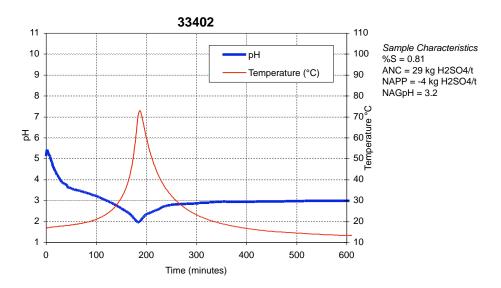



Figure 23: Kinetic NAG graph for sample 33402.

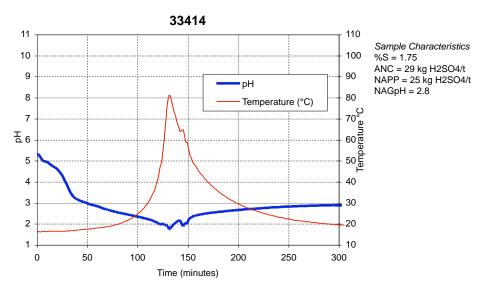



Figure 24: Kinetic NAG graph for sample 33414.

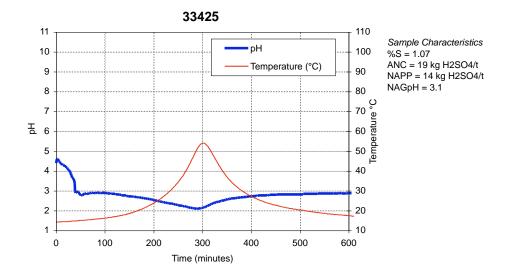



Figure 25: Kinetic NAG graph for sample 33425.

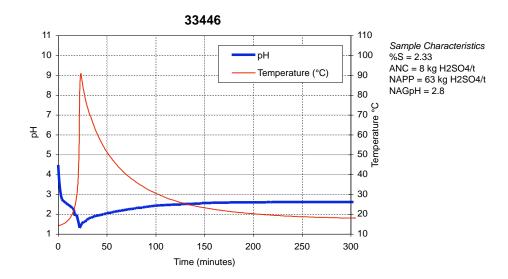



Figure 26: Kinetic NAG graph for sample 33446.

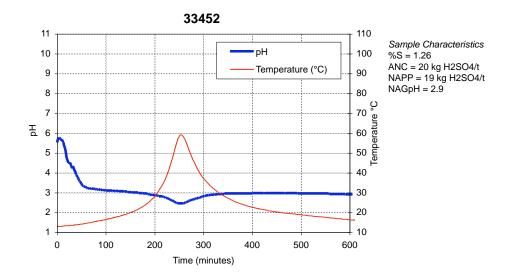



Figure 27: Kinetic NAG graph for sample 33452.

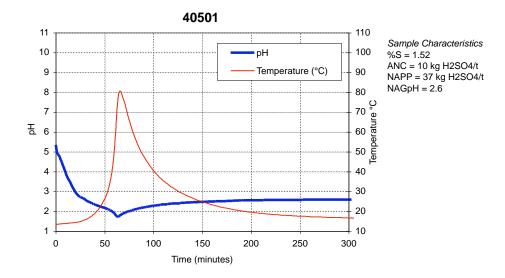



Figure 28: Kinetic NAG graph for sample 40501.

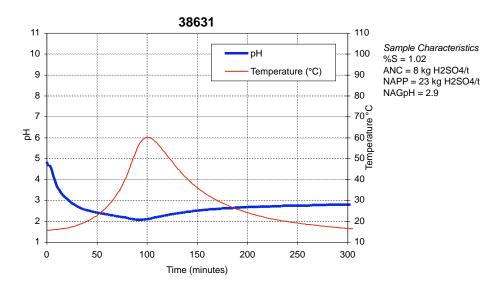



Figure 29: Kinetic NAG graph for sample 38631.

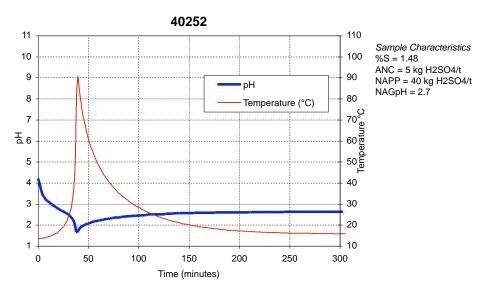



Figure 30: Kinetic NAG graph for sample 40252.

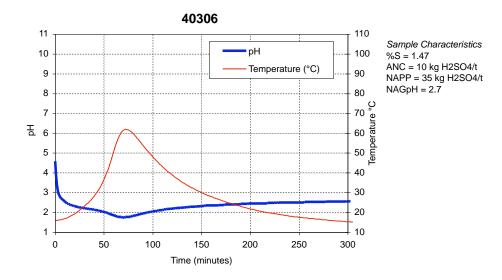



Figure 31: Kinetic NAG graph for sample 40306.

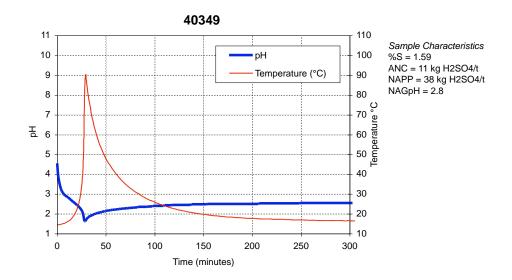



Figure 32: Kinetic NAG graph for sample 40349.

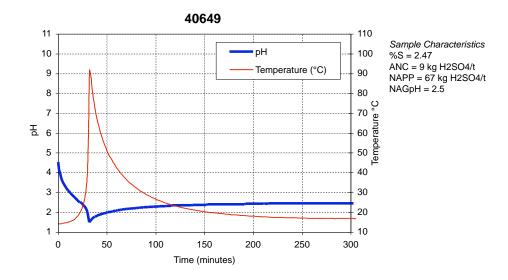



Figure 33: Kinetic NAG graph for sample 40649.

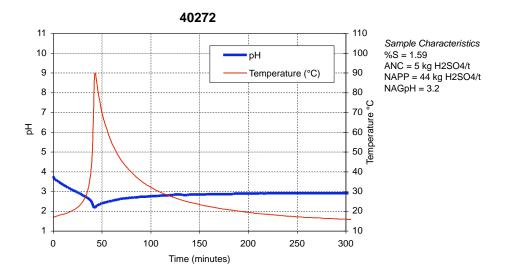



Figure 34: Kinetic NAG graph for sample 40272.

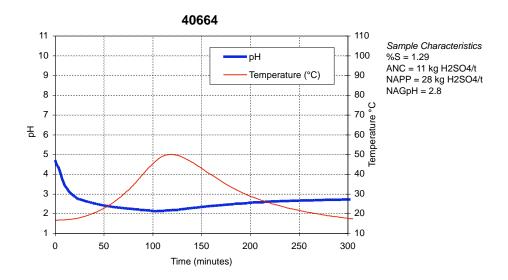



Figure 35: Kinetic NAG graph for sample 40664.

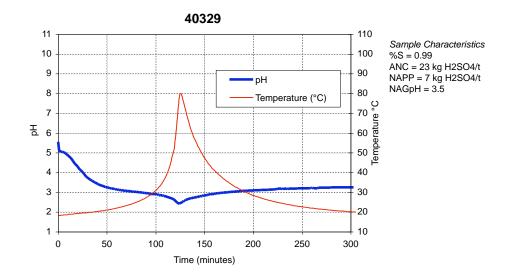



Figure 36: Kinetic NAG graph for sample 40329.

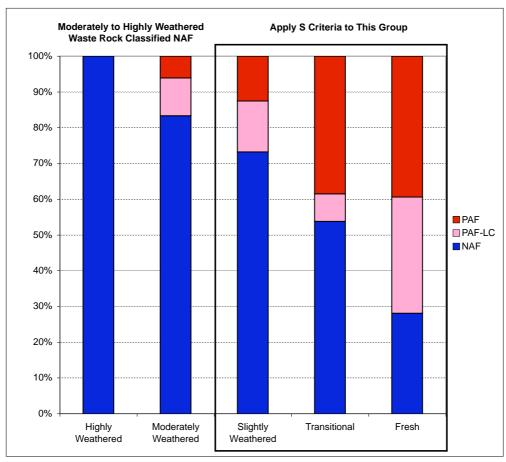



Figure 37: Proportion of ARD classification types by degree of weathering.

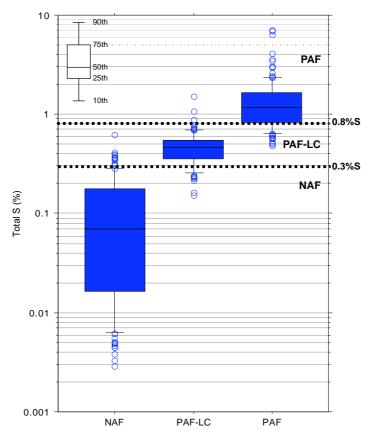



Figure 38: Box plot showing the distribution of total S by ARD classification for slightly weathered, transition and fresh samples only. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

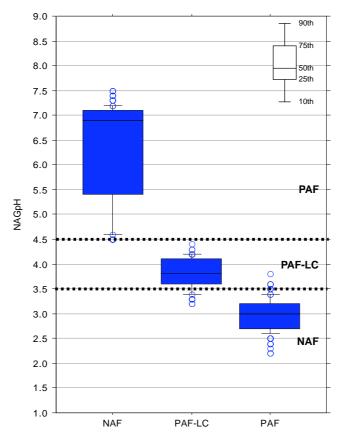



Figure 39: Box plot showing the distribution of NAGpH by ARD classification for slightly weathered, transition and fresh samples only. Box plots have 10th, 25th, 50th (median), 75th and 90th percentiles marked.

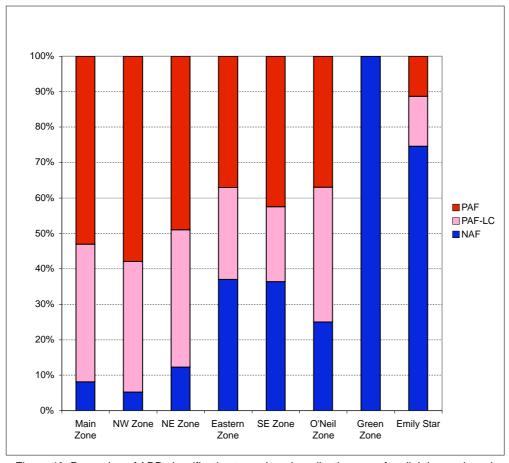



Figure 40: Proportion of ARD classification types by mineralisation zone for slightly weathered, transition and fresh samples only.

# APPENDIX A

**Assessment of Acid Forming Characteristics** 

# **Assessment of Acid Forming Characteristics**

#### Introduction

Acid rock drainage (ARD) is produced by the exposure of sulphide minerals such as pyrite to atmospheric oxygen and water. The ability to identify in advance any mine materials that could potentially produce ARD is essential for timely implementation of mine waste management strategies.

A number of procedures have been developed to assess the acid forming characteristics of mine waste materials. The most widely used methods are the Acid-Base Account (ABA) and the Net Acid Generation (NAG) test. These methods are referred to as static procedures because each involves a single measurement in time.

#### **Acid-Base Account**

The acid-base account involves static laboratory procedures that evaluate the balance between acid generation processes (oxidation of sulphide minerals) and acid neutralising processes (dissolution of alkaline carbonates, displacement of exchangeable bases, and weathering of silicates).

The values arising from the acid-base account are referred to as the potential acidity and the acid neutralising capacity, respectively. The difference between the potential acidity and the acid neutralising capacity value is referred to as the net acid producing potential (NAPP).

The chemical and theoretical basis of the ABA are discussed below.

#### Potential Acidity

The potential acidity that can be generated by a sample is calculated from an estimate of the pyrite (FeS<sub>2</sub>) content and assumes that the pyrite reacts under oxidising conditions to generate acid according to the following reaction:

$$FeS_2 + 15/4 O_2 + 7/2 H_2O => Fe(OH)_3 + 2 H_2SO_4$$

Based on the above reaction, the potential acidity of a sample containing 1 %S as pyrite would be 30.6 kilograms of H<sub>2</sub>SO<sub>4</sub> per tonne of material (i.e. kg H<sub>2</sub>SO<sub>4</sub>/t). The pyrite content estimate can be based on total S and the potential acidity determined from total S is referred to as the maximum potential acidity (MPA), and is calculated as follows:

MPA (kg 
$$H_2SO_4/t$$
) = (Total %S) × 30.6

The use of an MPA calculated from total sulphur is a conservative approach because some sulphur may occur in forms other than pyrite. Sulphate-sulphur, organic sulphur and native sulphur, for example, are non-acid generating sulphur forms. Also, some sulphur

may occur as other metal sulphides (e.g. covellite, chalcocite, sphalerite, galena) which yield less acidity than pyrite when oxidised or, in some cases, may be non-acid generating. The total sulphur content is commonly used to assess potential acidity because of the difficulty, costs and uncertainty involved in routinely determining the speciation of sulphur forms within samples, and determining reactive sulphide-sulphur contents. However, if the sulphide mineral forms are known then allowance can be made for non- and lesser acid generating forms to provide a better estimate of the potential acidity.

# Acid Neutralising Capacity (ANC)

The acid formed from pyrite oxidation will to some extent react with acid neutralising minerals contained within the sample. This inherent acid buffering is quantified in terms of the ANC.

The ANC is commonly determined by the Modified Sobek method. This method involves the addition of a known amount of standardised hydrochloric acid (HCl) to an accurately weighed sample, allowing the sample time to react (with heating), then back-titrating the mixture with standardised sodium hydroxide (NaOH) to determine the amount of unreacted HCl. The amount of acid consumed by reaction with the sample is then calculated and expressed in the same units as the MPA (kg  $H_2SO_4/t$ ).

#### *Net Acid Producing Potential (NAPP)*

The NAPP is a theoretical calculation commonly used to indicate if a material has potential to produce acidic drainage. It represents the balance between the capacity of a sample to generate acid (MPA) and its capacity to neutralise acid (ANC). The NAPP is also expressed in units of kg  $H_2SO_4/t$  and is calculated as follows:

$$NAPP = MPA - ANC$$

If the MPA is less than the ANC then the NAPP is negative, which indicates that the sample may have sufficient ANC to prevent acid generation. Conversely, if the MPA exceeds the ANC then the NAPP is positive, which indicates that the material may be acid generating.

#### ANC/MPA Ratio

The ANC/MPA ratio is frequently used as a means of assessing the risk of acid generation from mine waste materials. The ANC/MPA ratio is another way of looking at the acid base account. A positive NAPP is equivalent to an ANC/MPA ratio less than 1, and a negative NAPP is equivalent to an ANC/MPA ratio greater than 1. A NAPP of zero is equivalent to an ANC/MPA ratio of 1.

The purpose of the ANC/MPA ratio is to provide an indication of the relative margin of safety (or lack thereof) within a material. Various ANC/MPA values are reported in the literature for indicating safe values for prevention of acid generation. These values typically range from 1 to 3. As a general rule, an ANC/MPA ratio of 2 or more signifies

that there is a high probability that the material will remain circum-neutral in pH and thereby should not be problematic with respect to acid rock drainage.

#### Acid-Base Account Plot

Sulphur and ANC data are often presented graphically in a format similar to that shown in Figure A-1. This figure includes a line indicating the division between NAPP positive samples from NAPP negative samples. Also shown are lines corresponding to ANC/MPA ratios of 2 and 3.

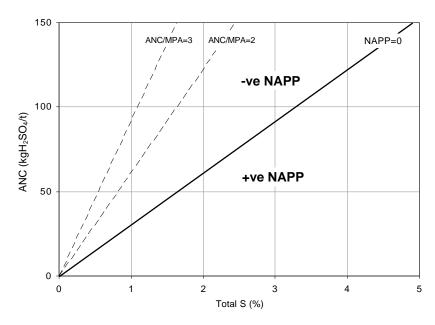



Figure A-1: Acid-base account (ABA) plot

# **Net Acid Generation (NAG) Test**

The NAG test is used in association with the NAPP to classify the acid generating potential of a sample. The NAG test involves reaction of a sample with hydrogen peroxide to rapidly oxidise any sulphide minerals contained within a sample. During the NAG test both acid generation and acid neutralisation reactions can occur simultaneously. The end result represents a direct measurement of the net amount of acid generated by the sample. The final pH is referred to as the NAGpH and the amount of acid produced is commonly referred to as the NAG capacity, and is expressed in the same units as the NAPP (kg H<sub>2</sub>SO<sub>4</sub>/t).

Several variations of the NAG test have been developed to accommodate the wide geochemical variability of mine waste materials. The four main NAG test procedures currently used by EGi are the single addition NAG test, the sequential NAG test, the kinetic NAG test, and the extended boil and calculated NAG test.

### Single Addition NAG Test

The single addition NAG test involves the addition of 250 ml of 15% hydrogen peroxide to 2.5 g of sample. The peroxide is allowed to react with the sample overnight and the following day the sample is gently heated to accelerate the oxidation of any remaining sulphides, then vigorously boiled for several minutes to decompose residual peroxide. When cool, the NAGpH and NAG capacity are measured.

An indication of the form of the acidity is provided by initially titrating the NAG liquor to pH 4.5, then continuing the titration up to pH 7. The titration value at pH 4.5 includes acidity due to free acid (i.e. H<sub>2</sub>SO<sub>4</sub>) as well as soluble iron and aluminium. The titration value at pH 7 also includes metallic ions that precipitate as hydroxides at between pH 4.5 and 7.

## Sequential NAG Test

When testing samples with high sulphide contents it is not uncommon for oxidation to be incomplete in the single addition NAG test. This can sometimes occur when there is catalytic breakdown of the hydrogen peroxide before it has had a chance to oxidise all of the sulphides in a sample. To overcome this limitation, a sequential NAG test is often carried out. This test may also be used to assess the relative geochemical lag of PAF samples with high ANC.

The sequential NAG test is a multi-stage procedure involving a series of single addition NAG tests on the one sample (i.e. 2.5 g of sample is reacted two or more times with 250 ml aliquots of 15% hydrogen peroxide). At the end of each stage, the sample is filtered and the solution is used for measurement of NAGpH and NAG capacity. The NAG test is then repeated on the solid residue. The cycle is repeated until such time that there is no further catalytic decomposition of the peroxide, or when the NAGpH is greater than pH 4.5. The overall NAG capacity of the sample is then determined by summing the individual acid capacities from each stage.

# Kinetic NAG Test

The kinetic NAG test is the same as the single addition NAG test except that the temperature and pH of the liquor are recorded. Variations in these parameters during the test provide an indication of the kinetics of sulphide oxidation and acid generation. This, in turn, can provide an insight into the behaviour of the material under field conditions. For example, the pH trend gives an estimate of relative reactivity and may be related to prediction of lag times and oxidation rates similar to those measured in leach columns. Also, sulphidic samples commonly produce a temperature excursion during the NAG test due to the decomposition of the peroxide solution, catalysed by sulphide surfaces and/or oxidation products.

#### Extended Boil and Calculated NAG Test

Organic acids may be generated in NAG tests due to partial oxidation of carbonaceous materials<sup>1</sup> such as coal washery wastes. This can lead to low NAGpH values and high acidities in standard single addition NAG tests unrelated to acid generation from sulphides. Organic acid effects can therefore result in misleading NAG values and misclassification of the acid forming potential of a sample.

The extended boil and calculated NAG tests can be used to account for the relative proportions of pyrite derived acidity and organic acidity in a given NAG solution, thus providing a more reliable measure of the acid forming potential of a sample. The procedure involves two steps to differentiating pyritic acid from organic derived acid:

Extended Boil NAG decompose the organic acids and hence remove the influence

of non-pyritic acidity on the NAG solution.

Calculated NAG calculate the net acid potential based on the balance of

cations and anions in the NAG solution, which will not be

affected by organic acid.

The extended boiling test is carried out on the filtered liquor of a standard NAG test, and involves vigorous boiling of the solution on a hot plate for 3-4 hours. After the boiling step the solution is cooled and the pH measured. An extended boil NAGpH less than 4.5 confirms the sample is potentially acid forming (PAF), but a pH value greater than 4.5 does not necessarily mean that the sample is non acid forming (NAF), due to some loss of free acid during the extended boiling procedure. To address this issue, a split of the same filtered NAG solution is assayed for concentrations of S, Ca, Mg, Na, K and Cl, from which a calculated NAG value is determined<sup>2</sup>.

The concentration of dissolved S is used to calculate the amount of acid (as  $H_2SO_4$ ) generated by the sample and the concentrations of Ca, Mg, Na and K are used to estimate the amount of acid neutralised (as  $H_2SO_4$ ). The concentration of Cl is used to correct for soluble cations associated with Cl salts, which may be present in the sample and unrelated to acid generating and acid neutralising reactions.

The calculated NAG value is the amount of acid neutralised subtracted from the amount of acid generated. A positive value indicates that the sample has excess acid generation and is likely to be PAF, and a zero or negative value indicates that the sample has excess neutralising capacity and is likely to be NAF.

<sup>1</sup> Stewart, W., Miller, S., Thomas, J.E., and Smart R. (2003), 'Evaluation of the Effects of Organic Matter on the Net Acid Generation (NAG) Test', in *Proceedings of the Sixth International Conference on Acid Rock drainage (ICARD), Cairns, 12-18<sup>th</sup> July 2003, 211-222.* 

<sup>2</sup> Environmental Geochemistry International, Levay and Co. and ACeSSS, 2008. *ACARP Project C15034: Development of ARD Assessment for Coal Process Wastes*, EGi Document No. 3207/817, July 2008.

# **Sample Classification**

The acid forming potential of a sample is classified on the basis of the acid-base and NAG test results into one of the following categories:

- Barren:
- Non-acid forming (NAF);
- Potentially acid forming (PAF); and
- Uncertain (UC).

#### Barren

A sample classified as barren essentially has no acid generating capacity and no acid buffering capacity. This category is most likely to apply to highly weathered materials. In essence, it represents an 'inert' material with respect to acid generation. The criteria used to classify a sample as barren may vary between sites, but for hard rock mines it generally applies to materials with a total sulphur content  $\leq 0.1$  %S and an ANC  $\leq 5$  kg H<sub>2</sub>SO<sub>4</sub>/t.

## *Non-acid forming (NAF)*

A sample classified as NAF may, or may not, have a significant sulphur content but the availability of ANC within the sample is more than adequate to neutralise all the acid that theoretically could be produced by any contained sulphide minerals. As such, material classified as NAF is considered unlikely to be a source of acidic drainage. A sample is usually defined as NAF when it has a negative NAPP and the final NAG pH  $\geq$  4.5.

# Potentially acid forming (PAF)

A sample classified as PAF always has a significant sulphur content, the acid generating potential of which exceeds the inherent acid neutralising capacity of the material. This means there is a high risk that such a material, even if pH circum-neutral when freshly mined or processed, could oxidise and generate acidic drainage if exposed to atmospheric conditions. A sample is usually defined as PAF when it has a positive NAPP and a final NAGpH < 4.5.

#### *Uncertain (UC)*

An uncertain classification is used when there is an apparent conflict between the NAPP and NAG results (i.e. when the NAPP is positive and NAGpH > 4.5, or when the NAPP is negative and NAGpH  $\le 4.5$ ). Uncertain samples are generally given a tentative classification that is shown in brackets e.g. UC(NAF).

Figure A-2 shows the format of the classification plot that is typically used for presentation of NAPP and NAG data. Marked on this plot are the quadrats representing the NAF, PAF and UC classifications.

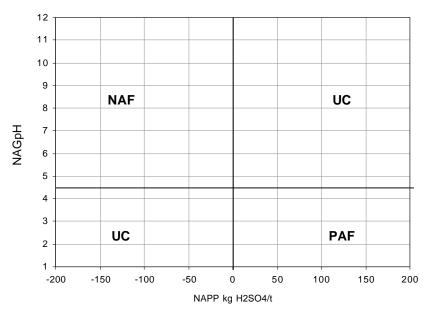



Figure A-2 ARD classification plot

#### **Other Methods**

Other test procedures may be used to define the acid forming characteristics of a sample.

# pH and Electrical Conductivity

The pH and electrical conductivity (EC) of a sample is determined by equilibrating the sample in deionised water for a minimum of 12 hours (or overnight), typically at a solid to water ratio of 1:2 (w/w). This gives an indication of the inherent acidity and salinity of the waste material when initially exposed in a waste emplacement area.

# Acid Buffering Characteristic Curve (ABCC) Test

The ABCC test involves slow titration of a sample with acid while continuously monitoring pH. These data provides an indication of the portion of ANC within a sample that is readily available for acid neutralisation.

# **Appendix 7D**

**Initial Geochemical Investigation** 



TO: Hillgrove Resources Limited

ATTENTION: Catherine Davis Warwick Stewart FROM: DATE: 10 April 2014 REFERENCE NO: 2042/1102

SUBJECT: Review of Acid Rock Drainage (ARD) Waste Rock Management at

Kanmantoo Mine

This memo details the findings of an EGi audit of acid rock drainage (ARD) waste rock type identification and management at Kanmantoo Mine. The audit involved review of various site documents, discussion with relevant personnel, and a site visit on 8th April 2014 to examine the mine and ARD waste rock management procedures.

## Waste Rock ARD Classification Criteria

Waste rock is segregated into non acid forming (NAF) and potentially acid forming (PAF) ARD rock types according to the following classification criteria:

NAF – Total S less than or equal to 0.3%S

PAF – Total S greater than 0.3%S

The classification criteria were validated through comprehensive geochemical characterisation work carried out by EGi in 2007<sup>1</sup> and 2010<sup>2</sup> on 450 samples from across the mine site. The EGi work used a variety of techniques including net acid production potential (NAPP), net acid generation (NAG) testing, and a number of specialised tests to confidently classify the samples. This data set was then used to calibrate total S for routine ARD classification of waste rock materials during operations. determined by ICP-OES S for operational monitoring. EGi carried out check testing of ICP-OES S against Leco S in 2010 and confirmed that the ICP-OES S is suitable for determination of total S on Kanmantoo materials.

The basis for the classification criteria is considered appropriate and appears reliable. Ongoing routine checks of the S criteria are recommended to provide confidence and

<sup>&</sup>lt;sup>1</sup> Hillgrove Resources Limited, ARD Assessment of the Kanmantoo Copper Project, EGi Document No. 2042/771, September 2007.

<sup>&</sup>lt;sup>2</sup> Geochemical Characterisation of Waste Rock and Ore from the Kanmantoo Project, EGi Document No. 2042/937, August 2010.

demonstrate reliability. The geochemical characterisation work indicates that single addition NAG testing would be a suitable check.

# **Waste Rock Segregation**

Waste rock segregation was reviewed based on a draft standard operating procedure<sup>3</sup>, an internal document on grade control for NAF and PAF waste<sup>4</sup>, and supporting discussions and field inspection with site geologists.

Materials are currently segregated using blast hole sample data with geology used to guide the sampling configuration. Blast holes are used for ore grade control, and all blast holes in and around the projected ore zones are sampled. Outside of the ore zones, blast hole sampling echelons are used to represent waste rock material. The sample echelons are oriented roughly perpendicular to the strike of mineralisation, with all blast holes along a given echelon sampled, but with echelons spaced, typically skipping across 3 or 4 lines.

Geological information shows that sulphide mineralisation generally strikes north/south to northeast/southwest. Pyrite and pyrrhotite are the main acid producing sulphides at Kanmantoo and mainly occur as halos to Cu mineralisation, but sometimes as separate zones. These separate pyrite and pyrrhotite zones are oriented on the same strike as the Cu mineralised zones. Based on this information, the blast hole sampling echelons in waste rock are oriented east/west to northwest/southeast. This ensures sampling focuses the greatest density across strike of mineralisation (where variation is also greatest) to define the boundaries of NAF and PAF materials, with the established strike trends and geological knowledge used to correlate NAF and PAF zones between sampling echelons.

Mining is carried out on 12m benches, with each blast hole generally sampled in 3 intervals. Sampling for NAF and PAF segregation is carried out in the same way as grade control for the resource, with on-rig and off-rig representative sample splitting, careful recording of details, and analysis for the same suite of elements (Cu, S, Bi, Ag and Fe). In areas of ore the NAF/PAF sample and grade control sample are the same. Dedicated samplers are generally assigned to blast hole rigs to collect the 3 samples from each hole as they are drilled. In same cases sampling cannot be carried out during drilling (due to samplers being temporarily unavailable) and samples are collected by trowel from the hole collar to represents the entire blast hole depth.

Samples are dispatched to a commercial lab for analysis, and results are generally received within 48 hours, sufficient time to interpret and coordinate mining activities.

Results are entered into grade control models and results interpreted by geologists, taking into account individual blast hole results, geological controls not necessarily allowed for in the model, and the effects of movement of materials due to blasting. Boundaries between NAF and PAF waste rock are applied directly by geologists (rather than relying on modelled boundaries) with some conservatism, e.g. scattered PAF samples within a mostly

.

<sup>&</sup>lt;sup>3</sup> *Blockouts*, Hillgrove Resources Limited, Version 1.1, J. Wilkins, 30/09/2013.

 $<sup>^4</sup>$  Grade Control NAF/PAF Waste Methodology, Hillgrove Resources Limited, Hayden Arbon, No Date.

NAF zone would be classified PAF, narrow NAF zones of 5m or less would be generally classified as PAF with the surrounds, and boundaries between well defined PAF and NAF zones would sit mainly within the NAF zone.

Even using this conservative system of NAF classification the amount of NAF mined is in excess of requirements for the current dump design.

In summary, the sampling configuration is appropriately optimised to represent geological variation. Sampling for NAF/PAF and assignment of PAF and NAF zones involves the same rigour as grade control and includes an element of conservatism. Currently there are no lithological details recorded for blast hole samples. Lithological logging of blast holes and building of a geological model may further enhance the current NAF/PAF identification and segregation and should be considered.

# **Excavation and Placement of ARD Rock Types**

NAF/PAF boundaries are set out on the mine bench by surveyors and geologists using colour coded tape, and a block out map is provided to excavator operators who direct the haul trucks. Each bench is mined in 3 to 4 flitches, and block out maps are provided for each flitch. The excavator operators provide haul truck operators with a material code (i.e. NAF, PAF or ore types) and unique shot/block codes, and haul truck drivers are advised of dumping locations at pre-start meetings.

It is understood that the amounts of the various material types moved and placed are reconciled against what was present in the mining bench, which would pick up any significant discrepancies in misplacement of NAF and PAF. However, there is no system of direct checks of dumped materials. A system of checks (such as testing of dumped materials together with visual inspection) would help monitor the performance of the current excavation and placement procedures.

Waste rock materials are incorporated into an integrated waste landform (IWL), which includes the tailings storage facility. The current dump design includes a 5m base NAF layer, followed by undifferentiated PAF and NAF, with all covered by a 2m NAF store and release cover and vegetated topsoil.

NAF waste rock is currently being used to line the base of the dump, with survey pegs marking out the dumping boundaries. PAF material is placed only in areas where the 5m NAF base layer has been established. Given the excess of NAF, there is an opportunity to improve dump security by increasing the thickness of NAF in the cover layer, including the possible set back of PAF material 100m from the outer surface in slope zones to help control convection.

The cover design was based on modelling work carried out by Unsaturated Soils Engineering Ltd<sup>5</sup> in 2008. The purpose of the cover is to control infiltration through the

<sup>&</sup>lt;sup>5</sup> Cover Design, Kanmantoo Copper Project, Unsaturated Soils Engineering Ltd, October 27, 2008.

PAF materials and prevent significant transport of ARD oxidation products. The following are key aspects to the successful performance of the cover:

- Sustainable vegetation is established in the cover layer;
- The physical and hydrological properties of the actual cover construction materials need to match the modelled parameters; and
- The cover needs to be sufficiently thick and constructed in a manner that takes into account impacts of erosion and differential settlement.

Confirmation of these aspects should be carried out prior to construction of the final cover. It is understood that investigations into establishing vegetation are in progress, and that test pit investigations in 2007and 2008<sup>6</sup> have confirmed that suitable materials are likely to be available within 6 m or so of surface. It is not known whether erosion and dump settlement studies have been carried out.

In addition, the results of the cover design modelling work should be confirmed by field trials.

#### Conclusions

Overall the current systems used for identification, segregation and placement of NAF and PAF materials appear to be rigorous and appropriate. Some minor modifications and additions in regards to monitoring and gathering additional data could assist in demonstrating performance.

Cover construction has not yet commenced, but since this component is a key to the long term ARD control on site, investigations into vegetation, cover materials availability, erosion and settlement should be progressed. Field trials should also be established to confirm the modelled performance of the cover.

A summary of the audit findings and recommendations/opportunities are provided in Table 1.

Regards,

Warwick Stewart

<sup>&</sup>lt;sup>6</sup> Carried out by Coffey Mining Pty Ltd in 2007 and follow up work by Coffey Information Ltd in 2008.

**Table 1: Summary of Audit Findings and Recommendations/Opportunities** 

| Item and Findings                                                                                                                                                                                                                                             | Recommendations/Opportunities                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste Rock ARD Classification Criteria  The classification criteria are based on comprehensive test work, are considered appropriate and appear reliable.                                                                                                     | Ongoing routine checks of the S criteria are recommended to provide confidence and demonstrate reliability. Single addition NAG testing is likely to be a suitable check method.                                                              |
| Waste Rock Segregation  The sampling configuration is appropriately optimised to represent geological variation.  Sampling for NAF/PAF and assignment of PAF and NAF zones involves the same rigour as grade control and includes an element of conservatism. | Lithological logging of blast holes and building of a geological model should be considered as it may further enhance the current NAF/PAF identification and segregation.                                                                     |
| Excavation and Placement of ARD Rock  Types  Controls and systems for excavation, dispatch and placement of NAF and PAF materials appear rigorous.                                                                                                            | A system of direct checks of dumped materials (such as testing of dumped materials together with visual inspection) would help monitor the performance of the current excavation and placement procedures.                                    |
| Available NAF materials are in excess of dump design requirements.                                                                                                                                                                                            | The excess NAF provides an opportunity to improve dump security by increasing the thickness of NAF in the cover layer, including the possible set back of PAF material 100m from the outer surface in slope zones to help control convection. |
| The design of the planned store and release cover appears appropriate for the climate and the mine materials produced. The cover design is based on modelling carried out pre-mining using the data available at the time.                                    | Investigations should be progressed into key controls on the successful performance of the cover.  Field trials should be established to confirm the constructability and modelled performance of the cover.                                  |

# **Appendix 7E**

**Tailings Geochemical Characterisation** 

#### HILLGROVE RESOURCES PTY LTD

# **KANMANTOO COPPER PROJECT**

# GEOCHEMICAL CHARACTERISATION OF TAILINGS-PROFILE SAMPLES FROM EXISTING TAILINGS-STORAGE FACILITY

**Implications for Process-Tailings Management** 

GRAEME CAMPBELL AND ASSOCIATES PTY LTD
(ACN 061 827674)

JULY 2007

Job No. 0721

| TABLE OF CONTENTS                                           |                                                     |                                                                                                                                                                                |        |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| 1.0                                                         | INTF                                                | RODUCTION                                                                                                                                                                      | 1      |  |  |  |
| 2.0                                                         | STU                                                 | DY APPROACH                                                                                                                                                                    | 3      |  |  |  |
|                                                             | 2.1<br>2.2                                          | Samples Testwork Programme                                                                                                                                                     |        |  |  |  |
| 3.0                                                         |                                                     | HARACTERISATION OF TAILINGS-PROFILE SAMPLES FROM  KISTING TSF4                                                                                                                 |        |  |  |  |
|                                                             | 3.1<br>3.2                                          | Physical Characteristics  Geochemistry  3.2.1 Acid-Base Chemistry of Tailings-Solids  3.2.2 Multi-Element Composition of Tailings-Solids  3.2.3 Quality of Tailings-Porefluids | 5<br>6 |  |  |  |
| 4.0                                                         | REACTIVITY OF TAILINGS-SOLIDS DESTINED FOR NEW TSF7 |                                                                                                                                                                                |        |  |  |  |
| 5.0                                                         | CONCLUSIONS8                                        |                                                                                                                                                                                |        |  |  |  |
| 6.0                                                         | REFERENCES                                          |                                                                                                                                                                                |        |  |  |  |
| TABLES, FIGURE, PLATE AND APPENDIX (At Back of Report Text) |                                                     |                                                                                                                                                                                |        |  |  |  |
| TAB                                                         | SLES                                                |                                                                                                                                                                                |        |  |  |  |
|                                                             | e 3.1:<br>e 3.2:                                    | Physical Characteristics of Tailings-Profile Samples<br>Acid-Base-Analysis and Net-Acid-Generation Resul<br>Tailings-Profile Samples                                           | ts for |  |  |  |
| Table                                                       | e 3.3:                                              | Multi-Element-Analysis Results for Tailings-Profile S (BH3)                                                                                                                    | amples |  |  |  |
| Table                                                       | e 3.4:                                              | Multi-Element-Analysis Results for Tailings-Profile S (BH4)                                                                                                                    | amples |  |  |  |
| Table                                                       | e 3.5:                                              | Multi-Element-Analysis Results for Tailings-Profile S (BH1 and BH2)                                                                                                            | amples |  |  |  |
|                                                             | e 3.6:<br>e 4.1:                                    | Analysis Results for Tailings-Porefluid Samples Analysis Results for Column-Leachate Samples                                                                                   |        |  |  |  |

Graeme Campbell & Associates Pty Ltd

# **FIGURE**

Figure 1: Location of Drillholes for Geochemical Study

**PLATE** 

Plate 1: Segment of cemented-tailings from BH3, 12.03-12.05 m showing

wafer-thin, horizontal laminations.

**APPENDIX** 

Appendix: Laboratory Reports

## 1.0 INTRODUCTION

Hillgrove Copper Pty Ltd (Hillgrove) are proposing to develop their Kanmantoo Project, which is located in the Mount Lofty Ranges 55 kilometres southeast of Adelaide in South Australia. This is a brownfields development with an existing mine and some infrastructure from previous mining operations, including a tailings-storage facility (TSF) at the site. Overburden removal for mining commenced in August 1970, and treatment of ore commenced in October 1971. Mining ceased in 1975, and the mine placed on care-and-maintenance in 1976.<sup>1</sup>

From the historic operations, a stream of process-tailings (in slurry form) was discharged to an engineered, valley-type TSF (referred to herein as the existing TSF). A new TSF is currently being designed for the proposed project.

Graeme Campbell & Associates Pty Ltd (GCA) was commissioned to carry out geochemical testwork on tailings-profile samples derived from the tailings-bed in the **existing TSF**.

The Static-Testwork Programme focused on the <u>Acid-Formation Potential (AFP)</u>, and <u>Multi-Element Composition</u> of the tailings-solids samples.<sup>2</sup> Limited physical testing was also undertaken. In addition, the quality (viz. major/minor-ion chemistry) of tailings-porefluid samples was determined. Finally, the tailings-solids sample tested in the GCA (2007) study for the new TSF was subjected to Kinetic-Testwork (viz. Weathering-Column) to assess sulphide-oxidation rates.

The testwork results are presented and discussed in this report, and implications for process-tailings management highlighted.

<sup>&</sup>lt;sup>1</sup> <u>Information Source:</u> Email correspondence of 23rd July 2007 from Mr Chris Lane [Coffey Mining Pty Ltd, Perth].

<sup>&</sup>lt;sup>2</sup> A Static-Testwork Programme comprises "whole-rock" analyses and tests.

Since the orebody is that mined historically, and since the ore-processing routes are broadly similar, the tailings-bed in the existing TSF is an analogue from which lessons may usefully be gained for the design of the new TSF. Due regard needs to be given, however, to the fact that the tailings-bed-surface in the existing TSF was left exposed for several years prior to the construction of a vegetated-cover system during the 1980s.<sup>3</sup>

\_

<sup>&</sup>lt;sup>3</sup> Topsoil was laid down during 1975 and 1976 on the upper-surface of the tailings-bed. The surfical-tailings were scarified and limed prior to placement of topsoil which was then seeded. (<u>Information Source</u>: Email correspondence of 23rd July 2007 from Mr Chris Lane [Coffey Mining Pty Ltd, Perth]).

#### 2.0 STUDY APPROACH

#### 2.1 Samples

A range of tailings-profile samples was provided to GCA for testing, and are derived from a drilling programme carried out by Coffey Mining Pty Ltd (Adelaide).

The locations of drillholes BH1, BH2, BH3, and BH4, are shown on Figure 1.

Since the drilling was undertaken in May 2007, the moisture status of the tailings-bed should be at the "low-end-of-the-range" (i.e. minimal influences from recent recharge) following the 2006-2007 summer.

Details of sample treatment are given in the laboratory reports presented in Appendix A.

It is understood that the existing TSF operated during the 1970s, and was left exposed for c. 5 yrs before being covered with 0.5 m (nominal) of soil/regolith materials with a loam (+/-) texture. The cover supports grasses and shrubs. Although difficult to estimate accurately, under the Mediterranean conditions of the mine-site, the mean-recharge across the cover/tailings-interface may approach several cms per annum, and likely would occur mainly from mid-winter to spring in most years. Prior to covering, the mean-recharge may have locally been within the decimetre+ per year range.

#### 2.2 Testwork Programme

The geochemical testing herein employed methods as described in the GCA (2007) report.

# 3.0 CHARACTERISATION OF TAILINGS-PROFILE SAMPLES FROM EXISTING TSF

#### 3.1 Physical Characteristics

Values of various physical properties for selected tailings-profile samples from drillholes BH1, BH3 and BH4 are presented in Table 3.1.

The Dry-Bulk-Densities (DBDs) determined on 30-cm sections at different depths were within the range 1.59-2.08 g/cm<sup>3</sup>.

#### Relative-Saturation of Pore-Spaces

The near-saturated state of the samples from BH1 reflect the down-beach position of this drillhole. Under such conditions sulphide-oxidation is negligible (i.e. limited by O<sub>2</sub>-diffusion through water-filled pores which is negligibly slow).

The tested samples from BH3 and BH4 had relative-saturations within the range 15.9-21.2 %. These conditions favour sulphide-oxidation, as governed by the reach of the O<sub>2</sub>-diffusion front, in turn controlled by sulphide-mineral reactivity.

#### **Intermittent Fines-Enriched Bands**

Two depth-intervals (viz. c. 8.00-9.00 m, and c. 11.60-12.20 m) from drillhole BH3 were used for sectioning to determine the content of fines (i.e. -75 $\mu$ m) determined via dry-sieving. The sections were typically 10 cm in length, except for selected positions where an enrichment in fines was inferred visually (e.g. 12.03-12.05 m as shown on Plate 1). In total, 16 samples were tested.

The range in fines content was 7-24 %. The sample from 12.03-12.05 m had a fines content of 24 %. If this result is excluded, then the range in fines content was 7-15 %, and the mean-fines content was 10 %. The wafer-thin, horizontal laminations shown on

Plate 1 have important implications for maintaining near-saturation conditions locally within the tailings-bed of the new TSF during its active-lifetime.

### 3.2 Geochemistry

#### 3.2.1 Acid-Base Chemistry of Tailings-Solids

The results from acid-base-chemistry testing on the tailings-profile samples are presented in Table 3.2. The results of related testing on the tailings-solids sample from the GCA (2007) study are also given for comparison.

#### Key findings include:

- pH-(1:2) values of:
  - c. 2-3 within the surface-zone of BH3 (i.e. sulphide-oxidation most intense)
  - c. 3-4 typically where unsaturated conditions occur
  - c. 4-5 in BH1 associated with near-saturated conditions
- evidence of segregation of sulphide-minerals, and association with tailings-particles of coarser texture (viz. BH3)
- sulphide-decomposition generally at an advanced stage with only minute/trace amounts of "remnant-sulphides", although only modest decomposition in BH3 below the top 4-5 m
- inferred "start-condition" of tailings-solids in existing TSF very similar to the nature of the tailings-solids sample tested in the GCA (2007) study

#### 3.2.2 Multi-Element Composition of Tailings-Solids

The multi-element-analysis results are presented in Tables 3.3-3.5. Reference should be made to the GCA (2007) report for the definition of the Geochemical-Abundance Index (GAI) indicated in these tables.

The tailings-profile samples were variously enriched in Cu, Ag, Bi, and Se. However, none of these enrichments were marked.

The above suite of enriched minor-elements is similar to that observed in the GCA (2007) study.

#### 3.2.3 Quality of Tailings-Porefluids

The analysis results for tailings-porefluid samples from near the bases of BH1 and BH4 are presented in Table 3.6. These samples are derived from turbid fluids drained from the plastic-tubes employed for tailings-profile coring. The tailings-fines were allowed to settle-out, followed by filtration and preservation, for analysis.

The tailings-porefluid samples had pH values of 3.2-4.1, and were variously saline with SO<sub>4</sub> concentrations ranging up to 12,000 mg/L. The salts in solution mainly comprised Fe-sulphates [and most likely dominated by Fe(II)-sulphates].

#### 4.0 REACTIVITY OF TAILINGS-SOLIDS DESTINED FOR NEW TSF

The tailings-solids sample tested in the GCA (2007) study was subjected to kinetic-testing employing a weathering-column similar in design to that described in the AMIRA (2002) document. The column contained c. 1.0 kg (dry-solids basis) of tailings-solids, and underwent weekly cycles of desiccation-flushing. At the completion of each drying-cycle, deionised-water was added to elute solutes produced through sulphide-oxidation – this addition was continued until the Electrical-Conductivity (EC) value of the leachate was less than 500  $\mu$ S/cm.

The analysis results for the column-leachate samples are presented in Table 4.1.

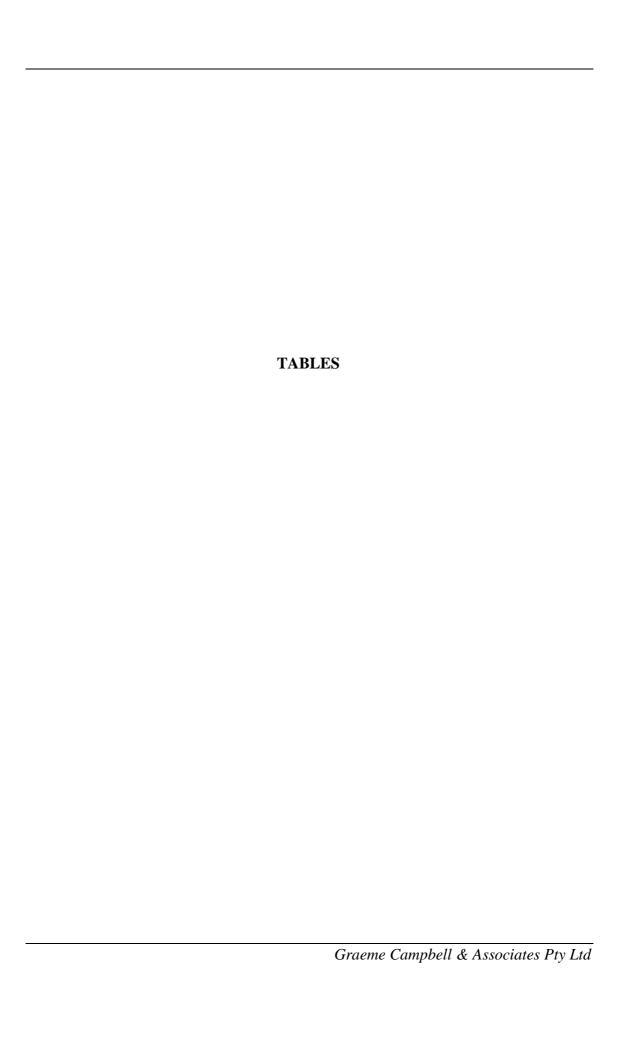
Mass-balance calculations indicate that, during the five (5) weathering-cycles carried out, the Sulphide-Oxidation Rate (SOR) was c. 400 mg SO<sub>4</sub>/kg/week. Given the Sulphide-S value of 0.78 % (GCA 2007), this SOR estimate means that the sulphidemineral suite contains reactive varieties, consistent with the occurrence of marcasites (GCA 2007).

The reactive nature of the tailings-solids means that where desaturation occurs within the surface-zone of the dormant tailings-beaches in the new TSF, sulphide-oxidation will be confined close-to-surface. In any case, the high relative-saturation during the active-lifetime of the TSF will suppress sulphide-oxidation via O<sub>2</sub>-diffusion control.

#### 5.0 CONCLUSIONS

During the active-lifetime of the new TSF, sulphide-oxidation should be minimal where spigot rotations occur over weeks (c.f. months), so that moist surface conditions occur on the tailings beaches, and near-saturation conditions within the tailings bed. The latter should be favoured by impeding-bands of fines. In addition to curtailed rates of sulphide-oxidation, soluble-alkalinity forms in the "fresh" incoming tailings-slurry will at least partly neutralise any acidity locally generated within the surface-zone of any dormant tailings-beaches.

Although difficult to quantify, soluble-Fe(II) forms should occur in the tailings-pore-fluids, but overall likely not beyond the 10 m/L range when due account is taken of localised sulphide-oxidation within the surface-zone, and mixing/dilution with tailings-pore-fluids derived from the incoming, freshly-deposited-tailings. Since anoxic conditions should prevail at depth, scaling-up of the underdrainage system is considered unlikely, though this is again difficult to quantify *a priori*.


The underdrainage-fluids reporting from the underdrainage-system are anticipated to have a pH of c. 5-6 (and possibly slightly higher) with low amounts of latent-acidity in the form of soluble-Fe(II) forms. The Al concentrations should be low (e.g. near-mg/L range), and the Cu concentrations may be within the range 1-10 mg/L. The latent-acidity in the form of soluble-Fe(II) forms means that the underdrainage-fluids could acidify to pH 4 (+/-) upon "daylighting", and ageing in contact with air. However, this acid-producing mechanism should be offset by decant-fluids discharged in larger quantities at a pH likely similar to the tailings-slurry-pH at discharge (i.e. c. 8-9). Some form of neutralisation treatment may nonetheless be required as part of the water-conditioning process before the tailings-waters are returned to the process circuit.

It is emphasised that because of the paucity of carbonate-minerals, and the presence of reactive-sulphides, albeit in trace amounts, accurate projection of pH regime and metal-solubility behaviour is difficult for this Project. Monitoring is needed to confirm (or

refine) the above anticipated chemistry of the underdrainage-fluids. Routine sampling and analysis is recommended at the discharge-points of both the underdrainage-fluids, and decant-fluids.

#### 6.0 REFERENCES

- AMIRA International Ltd, 2002, "ARD Test Handbook", Prepared by Ian Wark Research Institute, and Environmental Geochemistry International Pty Ltd.
- Graeme Campbell & Associates Pty Ltd, 2007, "Kanmantoo Copper Project:
  Geochemical Characterisation of Process-Tailings-Slurry Sample [Static-Testwork] Implications for Process-Tailings Management", Unpublished report prepared for Hillgrove Resources Pty Ltd.



**Table 3.1: Physical Characteristics of Tailings-Profile Samples** 

| GCA-<br>SAMPLE-<br>NO. | Depth-<br>Interval (m) | Gravimetric-<br>Water-<br>Content<br>(GWC)<br>[%, w/w] | Dry-Bulk-Density (DBD) [t/m3] | Particle-<br>Density<br>(PD)<br>(t/m3) | Porosity     | Volumetric<br>Water-<br>Content<br>(VWC)<br>[%, w/w] | Relative-<br>Saturation |
|------------------------|------------------------|--------------------------------------------------------|-------------------------------|----------------------------------------|--------------|------------------------------------------------------|-------------------------|
| BH4                    |                        |                                                        |                               |                                        |              |                                                      |                         |
| GCA7096                | 1.25-1.55              | 5.8                                                    | 1.59                          | 2.93                                   | 0.46         | 9.2                                                  | 20.0                    |
| GCA7094                | 1.65-1.95              | 5.4                                                    | 1.64                          | 2.83                                   | 0.42         | 8.9                                                  | 21.2                    |
| GCA7091                | 4.65-4.95              | 5.0                                                    | 1.58                          | 2.83                                   | 0.44         | 7.9                                                  | 18.0                    |
| DIII                   |                        |                                                        |                               |                                        |              |                                                      |                         |
| BH1<br>GCA7102         | 2.50-2.80              | 30.4                                                   | nm                            | 2.94                                   | nc           | nc                                                   | nc                      |
| GCA7099                | 5.40-5.70              | 31.3                                                   | 1.62                          | 2.95                                   | 0.45         | 50.7                                                 | >95                     |
| DITA                   |                        |                                                        |                               |                                        |              |                                                      |                         |
| BH3                    | 1.05.4.25              | 2.2                                                    | 1.07                          | 2.00                                   | 0.24         | 6.1                                                  | 10.0                    |
| GCA7115<br>GCA7112     | 4.05-4.35<br>7.05-7.35 | 3.2<br>3.3                                             | 1.97<br>2.08                  | 2.98<br>3.09                           | 0.34<br>0.33 | 6.4<br>6.9                                           | 18.8<br>20.9            |
| GCA7112<br>GCA7110     | 9.80-10.10             | 2.6                                                    | 2.08                          | 3.12                                   | 0.33         | 5.4                                                  | 15.9                    |
| GCA7110<br>GCA7107     | 13.00-13.30            | 3.6                                                    | 1.82                          | 2.93                                   | 0.34         | 6.6                                                  | 17.4                    |
| GC/1/10/               | 13.00-13.30            | 3.0                                                    | 1.02                          | 2.93                                   | 0.30         | 0.0                                                  | 17.4                    |

$$\label{eq:Notes:notes} \begin{split} & \underline{Notes} \colon \\ & nm = not \; measured; \; nc = not \; calculated. \\ & Relative-saturation \; is \; the \; ratio \; of \; VWC \; and \; Porosity \; expressed \; as \; a \; percentage. \end{split}$$

Table 3.2: Acid-Base-Analysis and Net-Acid-Generation Results for Tailings-Profile Samples

| GCA-       | Depth-      | MC       |          | EC-(1:2) | TOTAL-S | SO <sub>4</sub> -S | Sulphide-S | Cr(II)- | TOTAL-C | ANC | NAPP                                 | NAG     |           |
|------------|-------------|----------|----------|----------|---------|--------------------|------------|---------|---------|-----|--------------------------------------|---------|-----------|
| SAMPLE     | Interval    | (%, w/w) | pH-(1:2) | [mS/cm]  | (%)     | (%)                | (%)        | Red     | (%)     | k   | g H <sub>2</sub> SO <sub>4</sub> /to | nne     | NAG-pH    |
| NO.        | (m)         |          |          |          |         |                    |            | S (%)   |         |     |                                      |         |           |
| <u>BH3</u> |             |          |          |          |         |                    |            |         |         |     |                                      |         |           |
| GCA7118    | 0.00-1.50   | 4.8      | 2.8      | 4.1      | 1.4     | 1.2                | 0.20       | 0.12    | 0.03    | -8  | 15                                   | 12      | 2.8       |
| GCA7117    | 1.55-3.00   | 3.1      | 2.9      | 4.9      | 1.6     | 0.82               | 0.80       | 0.64    | < 0.01  | -6  | 31                                   | 20      | 2.5       |
| GCA7116    | 3.00-4.45   | 3.5      | 3.3      | 2.1      | 0.88    | 0.35               | 0.53       | 0.51    | 0.01    | 7   | 9.3                                  | 17      | 2.6       |
| GCA7114    | 5.00-5.95   | 3.1      | 3.7      | 2.0      | 1.2     | 0.23               | 1.0        | nm      | 0.02    | 10  | 21                                   | 24      | 2.6       |
| GCA7113    | 6.00-7.45   | 4.3      | 3.2      | 1.3      | 0.49    | 0.15               | 0.34       | 0.33    | 0.01    | 12  | -1.5                                 | 8.5     | 3.1       |
| GCA7111    | 9.00-10.20  | 3.2      | 3.3      | 0.79     | 0.61    | 0.13               | 0.48       | nm      | 0.03    | 11  | 3.7                                  | 15      | 2.8       |
| GCA7109    | 10.20-11.15 | 2.8      | 3.6      | 0.67     | 1.2     | 0.13               | 1.1        | 0.85    | 0.08    | 11  | 23                                   | 24 (21) | 2.6 (2.6) |
| GCA7108    | 12.20-13.40 | 3.2      | 3.6      | 0.79     | 0.73    | 0.17               | 0.56       | nm      | 0.05    | 11  | 6.2                                  | 15      | 2.7       |
| GCA7106    | 13.40-14.60 | 7.3      | 3.9      | 0.67     | 0.95    | 0.12               | 0.83       | nm      | 0.05    | 17  | 8.4                                  | 11      | 3.0       |
| GCA7105    | 14.60-15.00 | 18.2     | 3.9      | 0.96     | 2.1     | 0.16               | 2.0        | 1.5     | 0.03    | 8   | 54                                   | 29      | 2.6       |
|            |             |          |          |          |         |                    |            |         |         |     |                                      |         |           |
| <u>BH1</u> |             |          |          |          |         |                    |            |         |         |     |                                      |         |           |
| GCA7104    | 0.00-1.55   | 16.2     | 3.9      | 1.7      | 0.34    | 0.19               | 0.15       | nm      | 0.02    | 12  | -7.4                                 | 6.3     | 3.4       |
| GCA7103    | 1.55-2.90   | 16.2     | 4.8      | 1.5      | 0.35    | 0.13               | 0.22       | 0.22    | 0.04    | 15  | -8.2                                 | 7.7     | 3.5       |
| GCA7101    | 2.90-4.50   | 26.2     | 4.4      | 1.5      | 0.48    | 0.13               | 0.35       | nm      | 0.06    | 15  | -4.2                                 | 10      | 3.1       |
| GCA7100    | 4.50-5.80   | 36.4     | 4.4      | 1.9      | 0.58    | 0.16               | 0.42       | nm      | 0.10    | 67  | -54                                  | 13      | 3.0       |
| GCA7098    | 7.00-7.90   | 39.1     | 4.4      | 2.0      | 0.59    | 0.15               | 0.44       | 0.42    | 0.08    | 68  | -54                                  | 11      | 3.2       |
|            |             |          |          |          |         |                    |            |         |         |     |                                      |         |           |

#### Notes:

MC = Moisture-Content; EC = Electrical-Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; NAG = Net-Acid Generation; Cr(II)-Red.-S = Cr(II)-Reducible-S. pH-(1:2) and EC-(1:2) correspond to pH and EC determined on sample slurries prepared using deionised-water at a solid:solution ratio of *c*. 1:2 (w/w). All results expressed on a dry-weight basis, except for pH-(1:2), EC-(1:2), and NAG-pH. Values in parentheses represent duplicates.

Table 3.2 (Cont'd): Acid-Base-Analysis and Net-Acid-Generation Results for Tailings-Profile Samples

| GCA-       | Depth-       | MC       |           | EC-(1:2)  | TOTAL-S     | SO <sub>4</sub> -S | Sulphide-S | Cr(II)- | TOTAL-C | ANC     | NAPP                                 | NAG       |           |
|------------|--------------|----------|-----------|-----------|-------------|--------------------|------------|---------|---------|---------|--------------------------------------|-----------|-----------|
| SAMPLE     | Interval     | (%, w/w) | pH-(1:2)  | [mS/cm]   | (%)         | (%)                | (%)        | Red     | (%)     | k       | g H <sub>2</sub> SO <sub>4</sub> /to | nne       | NAG-pH    |
| NO.        | ( <b>m</b> ) |          |           |           |             |                    |            | S (%)   |         |         |                                      |           |           |
| <b>BH4</b> |              |          |           |           |             |                    |            |         |         |         |                                      |           |           |
| GCA7097    | 0.00-1.55    | 5.6      | 4.5       | 0.14      | 0.30        | 0.31               | < 0.01     | nm      | 0.07    | 5       | nc                                   | 2.8       | 3.3       |
| GCA7095    | 1.55-3.00    | 4.3      | 4.2       | 0.14      | 0.26        | 0.28               | < 0.01     | nm      | < 0.01  | 12      | nc                                   | < 0.5     | 7.8       |
| GCA7093    | 3.00-4.50    | 4.5      | 4.2       | 0.21      | 0.19        | 0.21               | < 0.01     | < 0.01  | 0.03    | 11      | nc                                   | 2.5       | 3.3       |
| GCA7092    | 4.50-5.95    | 6.5      | 4.0       | 0.36      | 0.23        | 0.26               | < 0.01     | nm      | < 0.01  | 10      | nc                                   | 2.7       | 3.3       |
| GCA7090    | 6.00-7.45    | 5.9      | 3.9       | 0.49      | 0.21        | 0.19               | 0.02       | nm      | 0.03    | 5       | nc                                   | < 0.5     | 6.7       |
| GCA7089    | 7.50-8.75    | 17.8     | 3.6       | 2.4       | 0.34        | 0.33               | 0.01       | 0.07    | 0.01    | 6       | nc                                   | 5.3       | 3.4       |
| GCA7088    | 9.00-10.45   | 30.2     | 3.5       | 1.5       | 0.48        | 0.23               | 0.25       | nm      | 0.06    | 12      | -4.3                                 | 9.7       | 3.2       |
| GCA7087    | 10.50-11.50  | 31.1     | 3.7 (3.7) | 1.9 (1.8) | 0.44 (0.43) | 0.21               | 0.23       | 0.23    | 0.07    | 14 (12) | -4.9                                 | 5.3       | 3.4       |
|            |              |          |           |           |             |                    |            |         |         |         |                                      |           |           |
| <u>BH2</u> |              |          |           |           |             |                    |            |         |         |         |                                      |           |           |
| GCA7121    | 0.00-1.55    | 8.0      | 4.3       | 0.13      | 0.21        | 0.22               | < 0.01     | nm      | 0.04    | 9       | nc                                   | 4.3 (4.8) | 3.5 (3.3) |
| GCA7120    | 1.55-3.00    | 10.0     | 4.0       | 0.29      | 0.24        | 0.24               | < 0.01     | nm      | < 0.01  | 4       | nc                                   | 3.8       | 3.4       |
| GCA7119    | 3.00-4.50    | 21.1     | 3.9       | 1.2       | 0.43        | 0.17               | 0.26       | 0.26    | 0.03    | 12      | -4.0                                 | 6.6       | 3.2       |
|            |              |          |           |           |             |                    |            |         |         |         |                                      |           |           |

Notes:

MC = Moisture-Content; EC = Electrical-Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential;

NAG = Net-Acid Generation; Cr(II)-Red.-S = Cr(II)-Reducible-S; nm = not measured; nc = not calculated.

pH-(1:2) and EC-(1:2) correspond to pH and EC determined on sample slurries prepared using deionised-water at a solid:solution ratio of c. 1:2 (w/w).

All results expressed on a dry-weight basis, except for pH-(1:2), EC-(1:2), and NAG-pH. Values in parentheses represent duplicates.

#### The following is Table 3.1 from the GCA (2007) report for the new TSF (included here for comparison)

| GCA-<br>SAMPLE<br>NO. | MC<br>(%, w/w) | TOTAL-S<br>(%) | SO <sub>4</sub> -S<br>(%) | Sulphide-S<br>(%) | CO <sub>3</sub> -C<br>(%) | ANC<br>kg | NAPP<br>H <sub>2</sub> SO <sub>4</sub> /to | NAG<br>onne | NAG-pH    | AFP<br>CATEGORY |
|-----------------------|----------------|----------------|---------------------------|-------------------|---------------------------|-----------|--------------------------------------------|-------------|-----------|-----------------|
| GCA6298               | 20.5           | 0.80 (0.76)    | 0.03 (0.02)               | 0.78              | 0.01 (0.01)               | 9 (8)     | 16                                         | 13 (13)     | 3.6 (3.7) | PAF-[Short-Lag] |

Notes

MC = Moisture-Content; EC = Electrical-Conductivity; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; PAF = Potentially-Acid Forming; NAG = Net-Acid Generation; Cr(II)-Red.-S = Cr(II)-Reducible-S; nm = not measured; nc = not calculated.

All results expressed on a dry-weight basis, except for NAG-pH. Values in parentheses represent duplicates.

Table 3.3: Multi-Element-Analysis Results for Tailings-Profile Samples (BH3)

Note: Refer Appendix B in the GCA (2007) report for the definition of the Geochemical-Abundance-Index (GAI) indicated in this table.

|         |           | TOTAL-ELEM |           |           |           | AVERAGE-     |           | · · · · · · · · · · · · · · · · · · · | L-ABUNDAN |           | ·AI)      |
|---------|-----------|------------|-----------|-----------|-----------|--------------|-----------|---------------------------------------|-----------|-----------|-----------|
| ELEMENT | 1.55-     | 5.00-      | 9.00-     | 12.20-    | 14.60-    | CRUSTAL-     | 1.55-     | 5.00-                                 | 9.00-     | 12.20-    | 14.60-    |
|         | 3.00 m    | 5.95 m     | 10.20 m   | 13.40 m   | 15.00 m   | ABUNDANCE    | 3.00 m    | 5.95 m                                | 10.20 m   | 13.40 m   | 15.00 m   |
|         | [GCA7117] | [GCA7114]  | [GCA7111] | [GCA7108] | [GCA7105] | (mg/kg or %) | [GCA7117] | [GCA7114]                             | [GCA7111] | [GCA7108] | [GCA7105] |
| Al      | 7.1%      | 6.5%       | 6.0%      | 5.0%      | 6.8%      | 8.2%         | 0         | 0                                     | 0         | 0         | 0         |
| Fe      | 19.5%     | 14.9%      | 14.3%     | 10.3%     | 16.4%     | 4.1%         | 2         | 1                                     | 1         | 1         | 1         |
| Na      | 0.019%    | 0.037%     | 0.033%    | 0.052%    | 0.043%    | 2.3%         | 0         | 0                                     | 0         | 0         | 0         |
| K       | 0.55%     | 1.0%       | 0.82%     | 1.1%      | 0.91%     | 2.1%         | 0         | 0                                     | 0         | 0         | 0         |
| Mg      | 1.3%      | 1.4%       | 1.3%      | 1.4%      | 1.3%      | 2.3%         | 0         | 0                                     | 0         | 0         | 0         |
| Ca      | 0.15%     | 0.13%      | 0.12%     | 0.11%     | 0.14%     | 4.1%         | 0         | 0                                     | 0         | 0         | 0         |
| Ag      | 1.0       | 0.4        | 0.6       | 0.7       | 2.2       | 0.07         | 3         | 2                                     | 3         | 3         | 4         |
| Cu      | 1,600     | 610        | 460       | 450       | 4,200     | 50           | 4         | 3                                     | 3         | 3         | 6         |
| Zn      | 37        | 46         | 40        | 46        | 48        | 75           | 0         | 0                                     | 0         | 0         | 0         |
| Cd      | < 0.1     | < 0.1      | < 0.1     | < 0.1     | < 0.1     | 0.11         | 0         | 0                                     | 0         | 0         | 0         |
| Pb      | 10        | 15         | 12        | 18        | 20        | 14           | 0         | 0                                     | 0         | 0         | 0         |
| Cr      | 62        | 67         | 62        | 57        | 63        | 100          | 0         | 0                                     | 0         | 0         | 0         |
| Ni      | 34        | 43         | 28        | 29        | 42        | 80           | 0         | 0                                     | 0         | 0         | 0         |
| Co      | 140       | 94         | 66        | 61        | 130       | 20           | 2         | 2                                     | 1         | 1         | 2         |
| Mn      | 5,000     | 3,200      | 2,900     | 1,800     | 4,300     | 950          | 2         | 1                                     | 1         | 0         | 2         |
| Hg      | 0.02      | < 0.01     | < 0.01    | < 0.01    | < 0.01    | 0.05         | 0         | 0                                     | 0         | 0         | 0         |
| Sn      | 5.2       | 5.9        | 8.2       | 6.1       | 6.6       | 2.2          | 1         | 1                                     | 1         | 1         | 1         |
| Sr      | 6.0       | 7.9        | 9         | 12        | 18        | 370          | 0         | 0                                     | 0         | 0         | 0         |
| Ba      | 59        | 110        | 92        | 120       | 94        | 500          | 0         | 0                                     | 0         | 0         | 0         |
| Th      | 11        | 11         | 9.4       | 9.3       | 12        | 12           | 0         | 0                                     | 0         | 0         | 0         |
| U       | 2.6       | 2.7        | 2.3       | 2.4       | 2.6       | 2.4          | 0         | 0                                     | 0         | 0         | 0         |
| Tl      | 0.23      | 0.41       | 0.32      | 0.42      | 0.42      | 0.6          | 0         | 0                                     | 0         | 0         | 0         |
| V       | 64        | 70         | 66        | 59        | 61        | 160          | 0         | 0                                     | 0         | 0         | 0         |
| As      | 2         | 1          | <1        | <1        | <1        | 1.5          | 0         | 0                                     | 0         | 0         | 0         |
| Bi      | 92        | 79         | 48        | 81        | 130       | 0.048        | 6         | 6                                     | 6         | 6         | 6         |
| Sb      | < 0.05    | < 0.05     | < 0.05    | < 0.05    | 0.07      | 0.2          | 0         | 0                                     | 0         | 0         | 0         |
| Se      | 2.3       | 1.5        | 1.5       | 1.2       | 3.2       | 0.05         | 5         | 4                                     | 4         | 4         | 5         |
| Mo      | 0.8       | 0.8        | 0.7       | 1.0       | 2.1       | 1.5          | 0         | 0                                     | 0         | 0         | 0         |
| В       | < 50      | 51         | < 50      | < 50      | < 50      | 10           | 0         | 2                                     | 0         | 0         | 0         |
| P       | 470       | 480        | 450       | 420       | 460       | 1,000        | 0         | 0                                     | 0         | 0         | 0         |
| F       | 250       | 460        | 390       | 430       | 400       | 950          | 0         | 0                                     | 0         | 0         | 0         |

Note: Average-crustal abundance of elements based on Bowen (1979) [see GCA (2007) report]

Table 3.4: Multi-Element-Analysis Results for Tailings-Profile Samples (BH4)

Note: Refer Appendix B in the GCA (2007) report for the definition of the Geochemical-Abundance-Index (GAI) indicated in this table.

|         |           | MENT CONTENT |           | AVERAGE-     |           | AL-ABUNDANCI | E INDEX (GAI) |
|---------|-----------|--------------|-----------|--------------|-----------|--------------|---------------|
| ELEMENT | 0.00-     | 3.00-        | 9.00-     | CRUSTAL-     | 0.00-     | 3.00-        | 9.00-         |
|         | 1.55 m    | 4.50 m       | 10.45 m   | ABUNDANCE    | 1.55 m    | 4.50 m       | 10.45 m       |
|         | [GCA7097] | [GCA7093]    | [GCA7088] | (mg/kg or %) | [GCA7097] | [GCA7093]    | [GCA7088]     |
| Al      | 5.3%      | 5.3%         | 7.5%      | 8.2%         | 0         | 0            | 0             |
| Fe      | 10.5%     | 8.3%         | 12.6%     | 4.1%         | 1         | 0            | 1             |
| Na      | 0.049%    | 0.052%       | 0.11%     | 2.3%         | 0         | 0            | 0             |
| K       | 1.3%      | 1.6%         | 2.3%      | 2.1%         | 0         | 0            | 0             |
| Mg      | 1.5%      | 1.6%         | 2.6%      | 2.3%         | 0         | 0            | 0             |
| Ca      | 0.079%    | 0.092%       | 0.21%     | 4.1%         | 0         | 0            | 0             |
| Ag      | 0.3       | 0.1          | 0.3       | 0.07         | 2         | 0            | 2             |
| Cu      | 390       | 240          | 530       | 50           | 2         | 2            | 3             |
| Zn      | 35        | 38           | 73        | 75           | 0         | 0            | 0             |
| Cd      | < 0.1     | < 0.1        | < 0.1     | 0.11         | 0         | 0            | 0             |
| Pb      | 14        | 15           | 28        | 14           | 0         | 0            | 0             |
| Cr      | 56        | 53           | 76        | 100          | 0         | 0            | 0             |
| Ni      | 20        | 25           | 53        | 80           | 0         | 0            | 0             |
| Co      | 35        | 33           | 99        | 20           | 0         | 0            | 2             |
| Mn      | 1,600     | 910          | 950       | 950          | 0         | 0            | 0             |
| Hg      | < 0.01    | < 0.01       | < 0.01    | 0.05         | 0         | 0            | 0             |
| Sn      | 6.7       | 6.1          | 14        | 2.2          | 1         | 1            | 2             |
| Sr      | 11        | 9.5          | 20        | 370          | 0         | 0            | 0             |
| Ba      | 140       | 180          | 250       | 500          | 0         | 0            | 0             |
| Th      | 9.7       | 9.8          | 18        | 12           | 0         | 0            | 0             |
| U       | 2.3       | 2.3          | 4.4       | 2.4          | 0         | 0            | 0             |
| Tl      | 0.47      | 0.62         | 0.86      | 0.6          | 0         | 0            | 0             |
| V       | 70        | 69           | 96        | 160          | 0         | 0            | 0             |
| As      | <1        | <1           | 1         | 1.5          | 0         | 0            | 0             |
| Bi      | 140       | 180          | 250       | 0.048        | 6         | 6            | 6             |
| Sb      | < 0.05    | < 0.05       | < 0.05    | 0.2          | 0         | 0            | 0             |
| Se      | 0.97      | 0.41         | 0.64      | 0.05         | 4         | 2            | 3             |
| Mo      | 1.3       | 1.0          | 0.7       | 1.5          | 0         | 0            | 0             |
| В       | < 50      | < 50         | < 50      | 10           | 0         | 0            | 0             |
| P       | 410       | 440          | 830       | 1,000        | 0         | 0            | 0             |
| F       | 530       | 640          | 990       | 950          | 0         | 0            | 0             |

Note: Average-crustal abundance of elements based on Bowen (1979) [see GCA (2007) report]

Table 3.5: Multi-Element-Analysis Results for Tailings-Profile Samples (BH1 and BH2)

Note: Refer Appendix B in the GCA (2007) report for the definition of the Geochemical-Abundance-Index (GAI) indicated in this table.

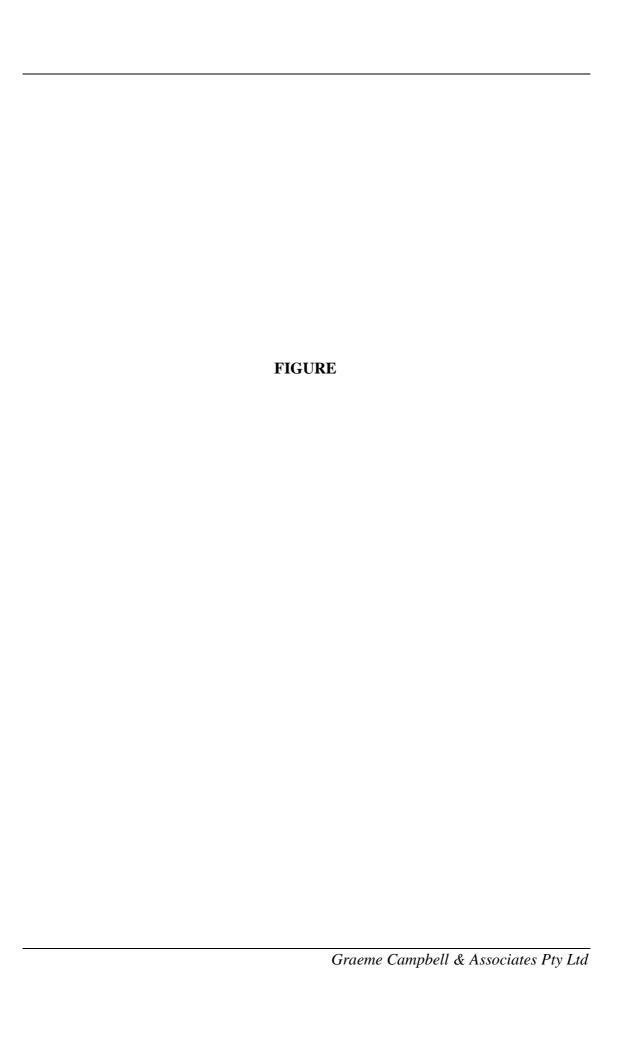
| Trote. Iterer |            | MENT CONTENT |           | AVERAGE-     |            | AL-ABUNDANCI | E INDEX (GAI) |
|---------------|------------|--------------|-----------|--------------|------------|--------------|---------------|
|               | <u>BH1</u> | <u>BH1</u>   | BH2       | CRUSTAL-     | <u>BH1</u> | <u>BH1</u>   | BH2           |
| ELEMENT       | 0.00-      | 4.50-        | 1.55-     | ABUNDANCE    | 0.00-      | 4.50-        | 1.55-         |
|               | 1.55 m     | 5.80 m       | 3.00 m    |              | 1.55 m     | 5.80 m       | 3.00 m        |
|               | [GCA7104]  | [GCA7100]    | [GCA7120] | (mg/kg or %) | [GCA7104]  | [GCA7100]    | [GCA7120]     |
| Al            | 7.2%       | 7.8%         | 6.0%      | 8.2%         | 0          | 0            | 0             |
| Fe            | 11.7%      | 12.8%        | 9.1%      | 4.1%         | 1          | 1            | 1             |
| Na            | 0.075%     | 0.10%        | 0.053%    | 2.3%         | 0          | 0            | 0             |
| K             | 2.1%       | 2.5%         | 1.8%      | 2.1%         | 0          | 0            | 0             |
| Mg            | 2.4%       | 2.7%         | 1.7%      | 2.3%         | 0          | 0            | 0             |
| Ca            | 0.17%      | 0.21%        | 0.12%     | 4.1%         | 0          | 0            | 0             |
| Ag            | 0.4        | 0.4          | 0.4       | 0.07         | 2          | 2            | 2             |
| Cu            | 1,300      | 440          | 290       | 50           | 4          | 3            | 2             |
| Zn            | 61         | 77           | 46        | 75           | 0          | 0            | 0             |
| Cd            | < 0.1      | < 0.1        | < 0.1     | 0.11         | 0          | 0            | 0             |
| Pb            | 25         | 26           | 16        | 14           | 0          | 0            | 0             |
| Cr            | 94         | 110          | 69        | 100          | 0          | 0            | 0             |
| Ni            | 41         | 45           | 22        | 80           | 0          | 0            | 0             |
| Co            | 79         | 110          | 37        | 20           | 1          | 2            | 0             |
| Mn            | 1,000      | 1,100        | 1,100     | 950          | 0          | 0            | 0             |
| Hg            | < 0.01     | < 0.01       | < 0.01    | 0.05         | 0          | 0            | 0             |
| Sn            | 12         | 14           | 7.6       | 2.2          | 2          | 2            | 1             |
| Sr            | 19         | 18           | 14        | 370          | 0          | 0            | 0             |
| Ba            | 220        | 260          | 190       | 500          | 0          | 0            | 0             |
| Th            | 18         | 20           | 13        | 12           | 0          | 0            | 0             |
| U             | 4.3        | 4.8          | 2.8       | 2.4          | 0          | 0            | 0             |
| Tl            | 0.79       | 0.92         | 0.69      | 0.6          | 0          | 0            | 0             |
| V             | 89         | 98           | 75        | 160          | 0          | 0            | 0             |
| As            | 1          | 1            | <1        | 1.5          | 0          | 0            | 0             |
| Bi            | 64         | 69           | 62        | 0.048        | 6          | 6            | 6             |
| Sb            | 0.21       | 0.07         | < 0.05    | 0.2          | 0          | 0            | 0             |
| Se            | 1.1        | 0.71         | 0.70      | 0.05         | 4          | 3            | 3             |
| Mo            | 1.2        | 1.1          | 0.8       | 1.5          | 0          | 0            | 0             |
| В             | < 50       | < 50         | < 50      | 10           | 0          | 0            | 0             |
| P             | 690        | 800          | 560       | 1,000        | 0          | 0            | 0             |
| F             | 850        | 1,100        | 690       | 950          | 0          | 0            | 0             |

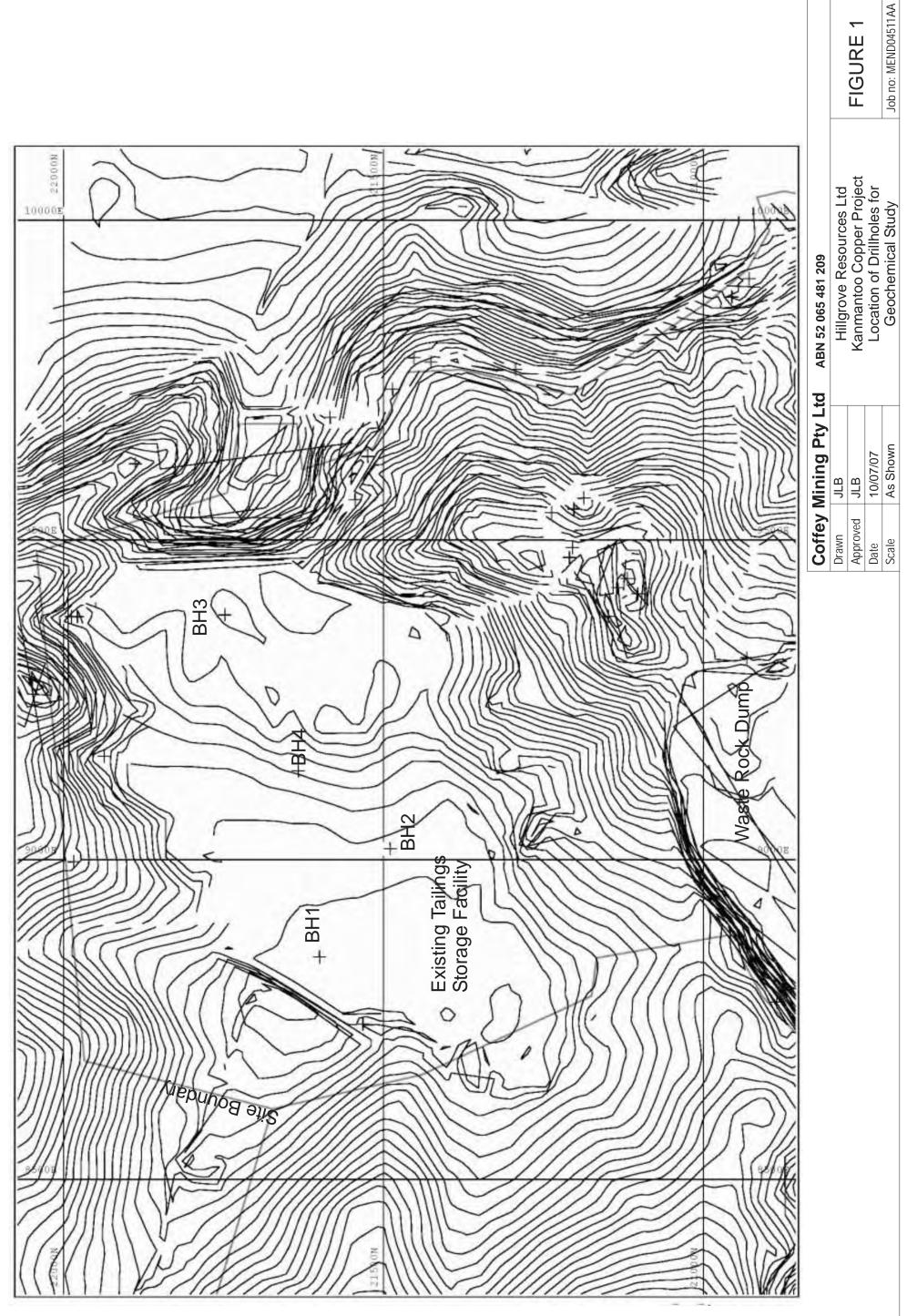
Note: Average-crustal abundance of elements based on Bowen (1979) [see GCA (2007) report]

Table 3.6: Analysis Results for Tailings-Porefluid Samples

Note: All results in mg/L, except for pH and EC (μS/cm).

| ELEMENT/<br>PARAMETER                                       | BH4<br>(10.50-11.50 m)<br>[GCA7084] | BH4<br>(9.00-10.45 m)<br>[GCA7085]                          | BH1<br>(7.00-7.90 m)<br>[GCA7086]                              | ELEMENT/<br>PARAMETER                                               | BH4<br>(10.50-11.50 m)<br>[GCA7084]                                                                                                                                       | BH4<br>(9.00-10.45 m)<br>[GCA7085]                                                                                                                                                                                  | BH1<br>(7.00-7.90 m)<br>[GCA7086]                                                                                                                                                                                |
|-------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major-<br>Parameters                                        |                                     |                                                             |                                                                | Minor-Ions                                                          |                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                  |
| pH EC [μS/cm]  Major-Ions  Na K Mg Ca Cl SO <sub>4</sub> Si | 3.2<br>9,800                        | 3.5<br>7,000<br>63<br>84<br>330<br>470<br>78<br>7,700<br>25 | 4.1<br>5,300<br>420<br>310<br>250<br>500<br>280<br>2,900<br>16 | Fe Cu Ni Zn Co Al Cd Pb Cr Hg As Sb Bi Se B Mo P Ag Ba Sr Tl V Sn U | 3,500 1.0 5.5 2.3 30 3.7 0.0019 0.007 <0.1 <0.001 0.008 <0.0001 0.00007 0.006 0.5 0.0017 <1 <0.0001 0.0098 0.14 <0.0001 <0.1 0.0098 0.14 <0.0001 <0.1 0.003 0.0056 0.0011 | 2,900 <0.1 8.2 5.5 31 5.5 0.0030 <0.005 <0.1 <0.001 0.007 <0.0001 <0.0005 <0.005 <1 <0.0007 <1 <0.0007 <1 <0.0001 0.007 <1 <0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.0031 0.00013 | 210<br><0.1<br><0.1<br>0.2<br>0.27<br>1.0<br>0.0024<br>0.016<br><0.1<br><0.001<br>0.002<br><0.0001<br><0.0005<br><0.005<br>0.30<br>0.0006<br><1<br><0.0001<br>0.042<br>1.4<br><0.0001<br><0.1<br>0.002<br>0.0001 |
|                                                             |                                     |                                                             |                                                                | Th<br>Mn                                                            | 120                                                                                                                                                                       | 69                                                                                                                                                                                                                  | 0.00008                                                                                                                                                                                                          |


Note: EC = Electrical Conductivity.


**Table 4.1: Analysis Results for Column-Leachates** 

Note: All results in mg/L, except for pH and EC ( $\mu$ S/cm).

| PARAMETER              |       | WEEKL | Y WEATHI | ERING-CY | CLES (GCA | A6298) |      |
|------------------------|-------|-------|----------|----------|-----------|--------|------|
|                        | 1-1   | 1-2   | 1-3      | 2        | 3         | 4      | 5    |
| рН                     | 2.8   | 3.1   | 3.2      | 2.9      | 2.9       | 3.0    | 3.0  |
| EC (μS/cm)             | 1,700 | 420   | 260      | 890      | 860       | 890    | 790  |
| SO <sub>4</sub> (mg/L) | 1,200 | 140   | 66       | 350      | 390       | 410    | 300  |
| Fe (mg/L)              | 160   | 7.6   | 2.8      | 51       | 47        | 62     | 36   |
| Al (mg/L)              | 71    | 4.9   | 1.6      | 21       | 25        | 26     | 20   |
| Cu (mg/L)              | 18    | 2.4   | 1.2      | 4.0      | 4.5       | 3.7    | 2.9  |
| Mn (mg/L)              | 6.7   | 0.67  | 0.25     | 0.82     | 1.3       | 0.84   | 0.61 |
| Leachate Wt (kg)       | 0.48  | 0.99  | 1.00     | 1.32     | 1.51      | 1.54   | 1.54 |

Notes:
EC = Electrical Conductivity.
Tailings-solids sample GCA6298 was that tested in the GCA (2007) study.







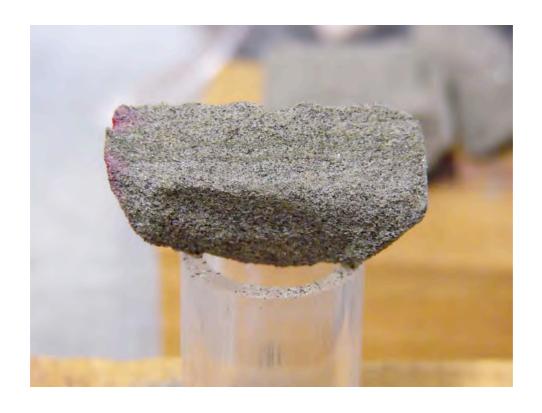
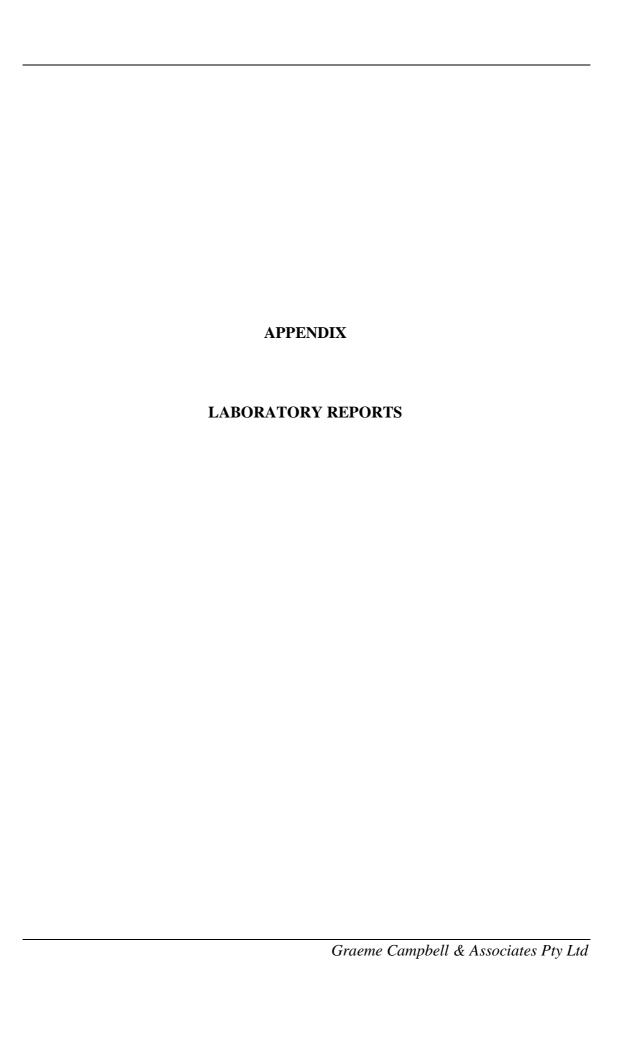




PLATE 1:

Segment of cemented-tailings from BH3, 12.03-12.05 m showing wafer-thin, horizonal laminations.





#### **Dr G Campbell**

CAMPBELL, GRAEME and ASSOCIATES PO Box 247 BRIDGETOWN WA 6255

#### **JOB INFORMATION**

| 143.0/0705837                   |
|---------------------------------|
| 63                              |
| GCA0721                         |
| Base-Metal Operation            |
| Tailings-Pore-Fluids and Solids |
| 28 <sup>th</sup> May, 2007      |
| 4 <sup>th</sup> July, 2007      |
|                                 |

#### **LEGEND**

X = Less than Detection LimitN/R = Sample Not Received\* = Result Checked

() = Result still to come

I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000 UA = Unable to Assay

> = Value beyond Limit of Method

The tailings samples were contained in plastic-walled tubes which were transparent. Tube section were cut with a hack-saw, and contents removed for oven-drying at 80oC in a forced-fan oven which minimises oxidation of sulphide-minerals. After oven-drying, samples were pushed through a 4.75mm sive (brass) and then handmixed prior to testing. Procedures were shown by Dr GD Campbell.

Some grab sub-samples at the time of sampling were taken and deionised-water added to allow measurement of slurry-pH (or "Mud-pH").

Some samples had tailings-pore-fluids which drained from the tubes, and these pore-fluids were collected, vacuum-filtered (0.45µm membrane), and preserved for analysis, as appropriate.

#### **TAILINGS-PORE-FLUID SAMPLES:**

| Sample<br>Name | GCA<br>No. | Volume<br>(ml) | Slurry-pH | Slurry-EC<br>(mS/cm) |
|----------------|------------|----------------|-----------|----------------------|
| BH4/1          | GCA7084    | 80             | 3.2       | 9.78                 |
| BH4/2          | GCA7085    | 220            | 3.5       | 6.91                 |
| BH1/1          | GCA7086    | 50             | 4.1       | 5.29                 |

#### **TAILINGS-SOLIDS SAMPLES:**

| Sample<br>Name | GCA No. | Slurry-pH | Tray+wet sample (g) | Tray+dry<br>sample<br>(g) | Weight<br>(g)<br>moist-solids | Weight<br>(g)<br>dry-solids | Weight<br>(g)<br>water | Gravimetric<br>Moisture<br>Content |
|----------------|---------|-----------|---------------------|---------------------------|-------------------------------|-----------------------------|------------------------|------------------------------------|
| BH4/1a         | GCA7087 |           | 838.5               | 644.5                     | 818                           | 624.0                       | 194.0                  | 31.1                               |
| BH4/1b         | "       | 4.7       | 893                 | 686                       | 872.5                         | 665.5                       | 207.0                  | 31.1                               |
| BH4/2a         | GCA7088 |           | 891                 | 694.5                     | 870.5                         | 674.0                       | 196.5                  | 29.2                               |
| BH4/2b         | "       |           | 732.5               | 562                       | 712                           | 541.5                       | 170.5                  | 31.5                               |
| BH4/3a         | GCA7089 | 3.6       | 578                 | 536.5                     | 557.5                         | 516.0                       | 41.5                   | 8.0                                |
| BH4/3b         | "       |           | 870.5               | 749.5                     | 850                           | 729.0                       | 121.0                  | 16.6                               |
| BH4/3c         | "       |           | 934.5               | 746.5                     | 914                           | 726.0                       | 188.0                  | 25.9                               |
| BH4/4a         | GCA7090 |           | 745                 | 712                       | 724.5                         | 691.5                       | 33.0                   | 4.8                                |
| BH4/4b         | "       |           | 746.5               | 700                       | 726                           | 679.5                       | 46.5                   | 6.8                                |
| BH4/4c         | "       | 4.0       | 737                 | 696                       | 716.5                         | 675.5                       | 41.0                   | 6.1                                |
| BH4/5a         | GCA7091 |           | 645                 | 615                       | 624.5                         | 594.5                       | 30.0                   | 5.0                                |
| BH4/5b         | GCA7092 |           | 824                 | 768                       | 803.5                         | 747.5                       | 56.0                   | 7.5                                |
| BH4/5c         | "       |           | 843                 | 800                       | 822.5                         | 779.5                       | 43.0                   | 5.5                                |
| BH4/6a         | GCA7093 |           | 744.5               | 713.5                     | 724                           | 693.0                       | 31.0                   | 4.5                                |
| BH4/6b         | "       |           | 819.5               | 780                       | 799                           | 759.5                       | 39.5                   | 5.2                                |

| Camanda        |           |           | Tray+wet | Tray+dry | Weight       | Weight     | Weight | Gravimetric |
|----------------|-----------|-----------|----------|----------|--------------|------------|--------|-------------|
| Sample<br>Name | GCA No.   | Slurry-pH | sample   | sample   | (g)          | (g)        | (g)    | Moisture    |
| Name           |           |           | (g)      | (g)      | moist-solids | dry-solids | water  | Content     |
| BH4/6c         | "         |           | 711      | 686.5    | 690.5        | 666.0      | 24.5   | 3.7         |
| BH4/7a         | GCA7094   |           | 673.5    | 640      | 653          | 619.5      | 33.5   | 5.4         |
| BH4/7b         | GCA7095   | 4.4       | 751.5    | 720.5    | 731          | 700.0      | 31.0   | 4.4         |
| BH4/7c         | "         |           | 801      | 769      | 780.5        | 748.5      | 32.0   | 4.3         |
| BH4/8a         | GCA7096   |           | 656      | 621      | 635.5        | 600.5      | 35.0   | 5.8         |
| BH4/8b         | GCA7097   |           | 811      | 772      | 790.5        | 751.5      | 39.0   | 5.2         |
| BH4/8c         | "         | 4.8       | 748      | 707      | 727.5        | 686.5      | 41.0   | 6.0         |
| BH3/1a         | GCA7105   | 4.2       | 1299.5   | 1102.5   | 1279         | 1082.0     | 197.0  | 18.2        |
| BH3/2a         | GCA7106   | 4.2       | 1052     | 968      | 1031.5       | 947.5      | 84.0   | 8.9         |
| BH3/2b         | "         |           | 900.5    | 855      | 880          | 834.5      | 45.5   | 5.5         |
| BH3/3a         | GCA7107   |           | 731      | 706.5    | 710.5        | 686.0      | 24.5   | 3.6         |
| BH3/3b         | GCA7108   | 3.9       | 669.5    | 649      | 649          | 628.5      | 20.5   | 3.3         |
| BH3/3c         | "         |           | 743      | 720.5    | 722.5        | 700.0      | 22.5   | 3.2         |
| BH3/5a         | GCA7109   | 3.9       | 609.5    | 592.5    | 589          | 572.0      | 17.0   | 3.0         |
| BH3/5b         | "         |           | 609      | 594      | 588.5        | 573.5      | 15.0   | 2.6         |
| BH3/6a         | GCA7110   |           | 821      | 801      | 800.5        | 780.5      | 20.0   | 2.6         |
| BH3/6b         | GCA7111   | 3.2       | 983.5    | 954      | 963          | 933.5      | 29.5   | 3.2         |
| BH3/8a         | GCA7112   |           | 829      | 803.5    | 808.5        | 783.0      | 25.5   | 3.3         |
| BH3/8b         | GCA7113   | 3.3       | 939      | 901      | 918.5        | 880.5      | 38.0   | 4.3         |
| BH3/9a         | GCA7114   | 4.3       | 1055     | 1026.5   | 1034.5       | 1006.0     | 28.5   | 2.8         |
| BH3/9b         | "         |           | 992      | 960.5    | 971.5        | 940.0      | 31.5   | 3.4         |
| BH3/10a        | GCA7115   |           | 787.5    | 763.5    | 767          | 743.0      | 24.0   | 3.2         |
| BH3/10b        | GCA7116   | 3.6       | 692.5    | 669      | 672          | 648.5      | 23.5   | 3.6         |
| BH3/10c        | "         |           | 680      | 658      | 659.5        | 637.5      | 22.0   | 3.5         |
| BH3/11a        | GCA7117   | 2.8       | 1098     | 1061.5   | 1077.5       | 1041.0     | 36.5   | 3.5         |
| BH3/11b        | "         |           | 1201.5   | 1170     | 1181         | 1149.5     | 31.5   | 2.7         |
| BH3/12a        | GCA7118   | 2.7       | 1171     | 1118.5   | 1150.5       | 1098.0     | 52.5   | 4.8         |
| BH3/12b        | Discarded |           | 961.5    | 906.5    | 941          | 886.0      | 55.0   | 6.2         |
| BH3/12c        | Discarded |           | 816.5    | 747.5    | 796          | 727.0      | 69     | 9.5         |
| BH1/1a         | Discarded |           | 742.5    | 556      | 722          | 535.5      | 186.5  | 34.8        |
| BH1/1b         | GCA7098   | 5.7       | 582.5    | 424.5    | 562          | 404.0      | 158.0  | 39.1        |
| BH1/2a         | GCA7099   |           | 822      | 631      | 801.5        | 610.5      | 191    | 31.3        |
| BH1/2b         | GCA7100   | 5.7       | 521      | 387.5    | 500.5        | 367.0      | 133.5  | 36.4        |
| BH1/3a         | GCA7101   | 5.4       | 585.5    | 460.5    | 565          | 440        | 125    | 28.4        |
| BH1/3b         | "         |           | 533      | 434.5    | 512.5        | 414        | 98.5   | 23.8        |
| BH1/4a         | GCA7102   |           | 486      | 377.5    | 465.5        | 357        | 108.5  | 30.4        |
| BH1/4b         | GCA7103   | 5.4       | 829      | 716      | 808.5        | 695.5      | 113.0  | 16.2        |
| BH1/5a         | GCA7104   | 4.4       | 555.5    | 468      | 535          | 447.5      | 87.5   | 19.6        |
| BH1/5b         | "         |           | 607.5    | 538.5    | 587          | 518.0      | 69.0   | 13.3        |
| BH2/2a         | GCA7119   | 4.2       | 684.5    | 563      | 664          | 542.5      | 121.5  | 22.4        |
| BH2/2b         | "         |           | 704      | 564.5    | 683.5        | 544.0      | 139.5  | 25.6        |
| BH2/2c         | "         |           | 631      | 550.5    | 610.5        | 530.0      | 80.5   | 15.2        |
| BH2/3a         | GCA7120   | 3.9       | 641      | 551.5    | 620.5        | 531.0      | 89.5   | 16.9        |
| BH2/3b         | "         |           | 719.5    | 664      | 699          | 643.5      | 55.5   | 8.6         |
| BH2/3c         | "         |           | 593.5    | 566.5    | 573          | 546.0      | 27.0   | 4.9         |
| BH2/4a         | GCA7121   | 4.3       | 487      | 448      | 466.5        | 427.5      | 39.0   | 9.1         |
| BH2/4b         | "         |           | 584.5    | 543.5    | 564          | 523.0      | 41.0   | 7.8         |
| BH2/4c         | "         |           | 482.5    | 451.5    | 462          | 431.0      | 31.0   | 7.2         |

#### **NATA ENDORSED DOCUMENT**

#### **Company Accreditation Number 3244**

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

NATA Signatory: A Evers Chief Chemist

Date: 4<sup>th</sup> July 2007



This document is issued in accordance with NATA's accreditation requirements.



#### **Dr G Campbell**

CAMPBELL, GRAEME and ASSOCIATES PO Box 247 BRIDGETOWN WA 6255

#### **JOB INFORMATION**

| JOB CODE       | 143.0/0705929              |
|----------------|----------------------------|
| No. of SAMPLES | 26                         |
| CLIENT O/N     | GCA0721                    |
| PROJECT        | Base-Metal Operations      |
| STATE          | Tailings                   |
| DATE RECEIVED  | 8 <sup>th</sup> June 2007  |
| DATE COMPLETED | 18 <sup>th</sup> July 2007 |

#### **LEGEND**

X = Less than Detection LimitN/R = Sample Not Received\* = Result Checked

() = Result still to come

I/S = Insufficient Sample for Analysis E6 = Result X 1,000,000

UA = Unable to Assay

> = Value beyond Limit of Method

The samples were received as tailings solids which required crushing, drying ,mixing, splitting and fine pulverising in a zirconia bowl.

#### Results of analysis on:

| Element       |       | S_tot | C_tot | S-SO4           | EC      | рН      |
|---------------|-------|-------|-------|-----------------|---------|---------|
| Method        |       | /LECO | /LECO | Na2CO3/<br>GRAV | W/METER | W/METER |
| Detection     |       | 0.005 | 0.01  | 0.01            | 0.01    | 0.1     |
| Units         |       | %     | %     | %               | mS/cm   | NONE    |
| Sample Name   |       |       |       |                 |         |         |
| Control Blank |       | Χ     | 0.01  | Χ               | X       | 4.4     |
| GCA7087       |       | 0.433 | 0.06  | 0.21            | 1.76    | 3.7     |
| GCA7087       | Check | 0.430 | 0.07  |                 | 1.84    | 3.7     |
| GCA7088       |       | 0.480 | 0.06  | 0.23            | 1.46    | 3.5     |
| GCA7089       |       | 0.333 | 0.01  | 0.33            | 2.33    | 3.6     |
| GCA7090       |       | 0.201 | 0.03  | 0.19            | 0.49    | 3.9     |
| GCA7092       |       | 0.222 | Χ     | 0.26            | 0.36    | 4.0     |
| GCA7093       |       | 0.182 | 0.03  | 0.21            | 0.21    | 4.2     |
| GCA7095       |       | 0.253 | Χ     | 0.28            | 0.14    | 4.2     |
| GCA7097       |       | 0.297 | 0.07  | 0.31            | 0.14    | 4.5     |
| GCA7098       |       | 0.590 | 0.08  | 0.15            | 1.91    | 4.4     |
| LECO5         |       | 1.999 | 1.08  |                 |         |         |
| GCA7100       |       | 0.571 | 0.10  | 0.16            | 1.88    | 4.4     |
| GCA7101       |       | 0.471 | 0.06  | 0.13            | 1.46    | 4.4     |
| GCA7103       |       | 0.343 | 0.04  | 0.13            | 1.42    | 4.8     |
| GCA7104       |       | 0.333 | 0.02  | 0.19            | 1.61    | 3.9     |
| GCA7105       |       | 2.039 | 0.03  | 0.16            | 0.96    | 3.9     |
| GCA7106       |       | 0.948 | 0.05  | 0.12            | 0.67    | 3.9     |
| GCA7108       |       | 0.725 | 0.05  | 0.17            | 0.79    | 3.6     |
| GCA7109       |       | 1.119 | 0.08  | 0.13            | 0.67    | 3.6     |
| GCA7111       |       | 0.605 | 0.03  | 0.13            | 0.79    | 3.3     |
| GCA7113       |       | 0.490 | 0.01  | 0.15            | 1.30    | 3.2     |
| GCA7114       |       | 1.172 | 0.02  | 0.23            | 1.99    | 3.7     |
| GCA7116       |       | 0.880 | 0.01  | 0.35            | 2.10    | 3.3     |
| GCA7117       |       | 1.522 | Χ     | 0.82            | 4.86    | 2.9     |

| Element   | S_tot | C_tot | S-SO4           | EC      | рН      |
|-----------|-------|-------|-----------------|---------|---------|
| Method    | /LECO | /LECO | Na2CO3/<br>GRAV | W/METER | W/METER |
| Detection | 0.005 | 0.01  | 0.01            | 0.01    | 0.1     |
| Units     | %     | %     | %               | mS/cm   | NONE    |
| GCA7118   | 1.314 | 0.03  | 1.24            | 4.04    | 2.8     |
| GCA7119   | 0.427 | 0.03  | 0.17            | 1.13    | 3.9     |
| GCA7120   | 0.232 | Χ     | 0.24            | 0.29    | 4.0     |
| GCA7121   | 0.203 | 0.04  | 0.22            | 0.13    | 4.3     |
| LECO8     | 1.060 | 1.13  |                 |         |         |
| PD-1      |       |       | 4.32            |         |         |
| S_SO4_A   |       |       | 0.63            |         |         |
| S_SO4_B   |       |       | 1.33            |         |         |

- 1. The C,S results were determined from the pulverised portion
- 2. The Carbon and Sulphur was determined according to Genalysis method number SL\_W023.
- 3. S-SO4 was determined by precipitation of BaSO4 according to Genalysis method number ENV\_W039
- 4. pH and EC were analysed on a 1:2 soil to water extract with results reported on the extract basis according to Genalysis method number MPL\_W033.

#### **Acid Neutralisation Capacity (ANC)**

| Sample<br>Name |       | Fizz<br>Rating | Sample<br>Weight<br>(g) | Molarity<br>HCl | Molarity<br>NaOH | Initial<br>Efferve<br>scence | colour<br>change | pH<br>drop<br>* | ANC<br>Solution<br>pH | ANC<br>(kg<br>H2SO4/tonne) |
|----------------|-------|----------------|-------------------------|-----------------|------------------|------------------------------|------------------|-----------------|-----------------------|----------------------------|
| GCA7087        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.2             | 1.9                   | 13                         |
| GCA7087        | Check | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.3             | 1.9                   | 12                         |
| GCA7088        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.2             | 2.0                   | 12                         |
| GCA7089        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.8                   | 6                          |
| GCA7090        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 5                          |
| GCA7092        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.2             | 1.7                   | 10                         |
| GCA7093        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.7                   | 11                         |
| GCA7095        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.7                   | 11                         |
| GCA7097        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 5                          |
| GCA7098        |       | 0              | 2                       | 0.4788          | 0.4788           | None                         | N                | NA              | 1.4                   | 67                         |
| GCA7100        |       | 0              | 2                       | 0.4788          | 0.4788           | None                         | N                | NA              | 1.4                   | 68                         |
| GCA7101        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.2             | 2.0                   | 14                         |
| GCA7103        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 14                         |
| GCA7104        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 11                         |
| GCA7105        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.8                   | 7                          |
| GCA7106        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.9                   | 16                         |
| GCA7108        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.7                   | 11                         |
| GCA7109        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.4             | 1.8                   | 11                         |
| GCA7111        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.8                   | 11                         |
| GCA7113        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | 3.3             | 1.8                   | 11                         |
| GCA7114        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.8                   | 10                         |
| GCA7116        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.8                   | 7                          |
| GCA7117        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | -5                         |
| GCA7118        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.9                   | -8                         |
| GCA7119        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 11                         |
| GCA7120        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 2.0                   | 4                          |
| GCA7121        |       | 0              | 2                       | 0.4788          | 0.1051           | None                         | N                | NA              | 1.7                   | 9                          |

#### Notes:

- 1. ANC was determined on the -2mm portion. Acid concentrations are as stated
- 2. Colour change: \* Indicates the appearance of a green colouration as the pH=7 endpoint was approached. Two drops of hydrogen peroxide are added to each sample as the endpoint is approached to oxidise any ferrous iron
- 3. pH drop: \* Indicates a pH drop to a value below 4 on addition of peroxide
- 4. This procedure according to Genalysis methods number ENV\_W035
- 5. A negative ANC indicates that acid was present in the sample in excess of that added for the test by that amount.

#### **NATA ENDORSED DOCUMENT**

#### **Company Accreditation Number 3244**

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

NATA Signatory: A Evers Chief Chemist

Date: 18<sup>th</sup> July 2007



This document is issued in accordance with NATA's accreditation requirements.



#### LABORATORY REPORT COVERSHEET

Date: 17 July 2007

To: **Graeme Campbell & Associates** 

PO Box 247

Bridgetown WA 6255

Attention: Dr Graeme Campbell

Your Reference: GCA 0721 12660

**Laboratory Report No:** 56337

**Samples Received:** 13/07/2007 Samples / Quantity: 12 Soil

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

ffoddore Shey Goddard

Administration Manager

**CAIRNS** 

Jon Dicker Manager **CAIRNS** 



**ACCREDITATION** 

Page 1 of 4



**CLIENT:** Graeme Campbell & Associates

PROJECT: GCA 0721 12660

**Laboratory Report No:** 56337

#### LABORATORY REPORT

| Our Reference Your Reference    | Units | 56337-1<br>GCA 7093 | 56337-2<br>GCA 7089 | 56337-3<br>GCA 7087 |
|---------------------------------|-------|---------------------|---------------------|---------------------|
| Chromium Reducible Sulfur (ScR) | % w/w | <0.005              | 0.069               | 0.23                |

| Our Reference Your Reference    | Units | 56337-4<br>GCA 7119 | 56337-5<br>GCA 7118 | 56337-6<br>GCA 7117 |
|---------------------------------|-------|---------------------|---------------------|---------------------|
| Chromium Reducible Sulfur (ScR) | % w/w | 0.26                | 0.12                | 0.64                |

| Our Reference Your Reference    | Units | 56337-7<br>GCA 7116 | 56337-8<br>GCA 7113 | 56337-9<br>GCA 7109 |
|---------------------------------|-------|---------------------|---------------------|---------------------|
| Chromium Reducible Sulfur (ScR) | % w/w | 0.51                | 0.33                | 0.85                |

| Our Reference Your Reference    | Units | 56337-10<br>GCA 7105 | 56337-11<br>GCA 7103 | 56337-12<br>GCA 7098 |
|---------------------------------|-------|----------------------|----------------------|----------------------|
| Chromium Reducible Sulfur (ScR) | % w/w | 1.5                  | 0.22                 | 0.42                 |



**CLIENT:** Graeme Campbell & Associates

**PROJECT:** GCA 0721 12660

### LABORATORY REPORT

**Laboratory Report No:** 56337

| TEST PARAMETERS                    | UNITS | LOR   | METHOD               |
|------------------------------------|-------|-------|----------------------|
|                                    |       |       |                      |
| Chromium Reducible<br>Sulfur (ScR) | % w/w | 0.005 | ASSMAC_22B / CEI-405 |



**CLIENT:** Graeme Campbell & Associates

PROJECT: GCA 0721 12660

# LABORATORY REPORT

**Laboratory Report No:** 56337

| QUALITY CONTROL                    | UNITS | Blank | Replicate<br>Sm# | Replicate              |
|------------------------------------|-------|-------|------------------|------------------------|
|                                    |       |       |                  | Sample  Replicate      |
| Chromium Reducible<br>Sulfur (Scr) | % w/w | [NT]  | 56337-1          | <0.005    <0.005       |
| QUALTY CONTROL                     | UNITS | Blank | Replicate<br>Sm# | Replicate              |
|                                    |       |       |                  | Sample  Replicate      |
| Chromium Reducible<br>Sulfur (Scr) | % w/w | [NT]  | 56337-11         | 0.22    0.22    RPD: 0 |

#### **NOTES:**

LOR - Limit of Reporting.

Analysis Date: Between 13/07/07 and 16/07/07

SGS Terms and Conditions are available from www.au.sgs.com

<sup>\*</sup> This test is not covered by our current NATA accreditation.

#### Graeme Campbell & Associates Pty Ltd Laboratory Report

## **pH-(1:2) & EC-(1:2) TESTWORK**

| SAMPLE    | SAMPLE | SAMPLE +   | II (1.2)        | EC-(1:2) |
|-----------|--------|------------|-----------------|----------|
| NO.       | WEIGHT | DEIONW     | <b>pH-(1:2)</b> | (mS/cm)  |
|           | (g)    | WEIGHT (g) |                 |          |
| GCA7087   | 30.0   | 90.0       | 3.9             | 1.5      |
| GCA7088   | 30.0   | 90.0       | 3.8             | 0.95     |
| GCA7089   | 30.0   | 90.1       | 3.8             | 1.9      |
| GCA7090   | 30.0   | 90.4       | 4.0             | 0.47     |
| GCA7092   | 30.0   | 90.1       | 4.1             | 0.30     |
| GCA7093   | 30.0   | 90.5       | 4.3             | 0.19     |
| GCA7095   | 30.0   | 90.3       | 4.3             | 0.13     |
| GCA7097   | 30.0   | 90.0       | 4.6             | 0.12     |
| GCA7098   | 30.0   | 90.2       | 4.6             | 1.1      |
| GCA7100   | 30.0   | 90.5       | 4.6             | 1.1      |
| GCA7101   | 30.0   | 90.0       | 4.6             | 0.98     |
| GCA7103   | 30.0   | 90.3       | 5.0             | 1.1      |
| GCA7104-1 | 30.0   | 90.2       | 4.0             | 1.1      |
| GCA7104-2 | 30.0   | 90.1       | 4.0             | 1.1      |
| GCA7105   | 30.0   | 90.2       | 4.0             | 0.77     |
| GCA7106   | 30.0   | 90.1       | 4.0             | 0.56     |
| GCA7108   | 30.0   | 90.3       | 3.8             | 0.58     |
| GCA7109   | 30.0   | 90.4       | 3.8             | 0.55     |
| GCA7111   | 30.0   | 90.3       | 3.4             | 0.62     |
| GCA7113   | 30.0   | 90.6       | 3.3             | 0.99     |
| GCA7114   | 30.0   | 90.3       | 3.9             | 1.6      |
| GCA7116   | 30.0   | 90.0       | 3.5             | 1.6      |
| GCA7117   | 30.0   | 90.1       | 3.1             | 4.3      |
| GCA7118   | 30.0   | 90.1       | 2.9             | 3.6      |
| GCA7119   | 30.0   | 90.3       | 4.3             | 0.49     |
| GCA7120   | 30.0   | 90.4       | 4.2             | 0.28     |
| GCA7121   | 30.0   | 90.5       | 4.4             | 0.13     |

**Note:** EC = Electrical-Conductivity.

Testwork performed on crushed (nominal -2 mm) samples.

pH-(1:2) and EC-(1:2) values correspond to pH and EC values of suspensions with a solid:solution ration of c. 1:2 (w/w) prepared using deionised-water.

Drift in pH-glass-electrode less than 0.1 pH unit between commencement, and completion, of testwork.

Drift in EC-electrode less than 0.05 mS/cm between commencement, and completion, of testwork.

Testwork performed in a constant-temperature room (viz. 21 +/- 2-3 °C).

# **pH-(1:2) & EC-(1:2) TESTWORK (REPEAT)**

| SAMPLE<br>NO. | SAMPLE<br>WEIGHT<br>(g) | SAMPLE +<br>DEIONW<br>WEIGHT (g) | pH-(1:2) | EC-(1:2)<br>(mS/cm) |
|---------------|-------------------------|----------------------------------|----------|---------------------|
| GCA7087       | 30.0                    | 90.1                             | 3.8      | 0.94                |
| GCA7088       | 30.0                    | 90.3                             | 3.6      | 1.1                 |
| GCA7089       | 30.0                    | 90.1                             | 3.7      | 1.9                 |
| GCA7090       | 30.0                    | 90.4                             | 3.9      | 0.39                |
| GCA7092       | 30.0                    | 90.3                             | 4.0      | 0.34                |
| GCA7093       | 30.0                    | 90.3                             | 4.1      | 0.21                |
| GCA7095       | 30.0                    | 90.2                             | 4.1      | 0.16                |
| GCA7105       | 30.0                    | 90.2                             | 3.9      | 0.81                |
| GCA7106       | 30.0                    | 90.0                             | 3.9      | 0.55                |
| GCA7108       | 30.0                    | 90.3                             | 3.6      | 0.67                |
| GCA7109       | 30.0                    | 90.3                             | 3.7      | 0.60                |
| GCA7111       | 30.0                    | 90.0                             | 3.3      | 0.67                |
| GCA7113       | 30.0                    | 90.3                             | 3.3      | 1.1                 |
| GCA7114       | 30.0                    | 90.0                             | 3.9      | 1.4                 |
| GCA7116       | 30.0                    | 90.5                             | 3.5      | 1.8                 |
| GCA7117       | 30.0                    | 90.4                             | 3.1      | 4.4                 |
| GCA7118       | 30.0                    | 90.2                             | 2.9      | 3.7                 |
| GCA7119       | 30.0                    | 90.0                             | 4.2      | 1.10                |
| GCA7120       | 30.0                    | 90.1                             | 4.1      | 0.36                |
| GCA7121       | 30.0                    | 90.0                             | 4.3      | 0.16                |

**Note:** EC = Electrical-Conductivity.

Testwork performed on crushed (nominal -2 mm) samples.

pH-(1:2) and EC-(1:2) values correspond to pH and EC values of suspensions with a solid:solution ration of c. 1:2 (w/w) prepared using deionised-water.

Drift in pH-glass-electrode less than 0.1 pH unit between commencement, and completion, of testwork.

Drift in EC-electrode less than 0.05 mS/cm between commencement, and completion, of testwork.

Testwork performed in a constant-temperature room (viz. 21 +/- 2-3 °C).

Dr GD Campbell 28th June 2007

#### Graeme Campbell & Associates Pty Ltd

#### Laboratory Report

#### **NET-ACID-GENERATION (NAG) TESTWORK**

| Sample     | Sample<br>Weight | Comments                     | pH of Test<br>Mixture  | Test Mixture After Boiling Step |            | Titre<br>[0.5 M-<br>NaOH]<br>(mL) | NAG<br>(kg H <sub>2</sub> SO <sub>4</sub> /<br>tonne) |
|------------|------------------|------------------------------|------------------------|---------------------------------|------------|-----------------------------------|-------------------------------------------------------|
| Number (g) |                  |                              | Before<br>Boiling Step | pН                              | EC (μS/cm) |                                   |                                                       |
| GCA7087    | 3.0              | Reaction peaked within 2 hrs | 2.9                    | 3.4                             | 390        | 3.20                              | 5.3                                                   |
| GCA7088    | 3.0              | Reaction peaked within 2 hrs | 2.7                    | 3.2                             | 480        | 5.90                              | 9.7                                                   |
| GCA7089    | 3.0              | Reaction peaked overnight    | 3.6                    | 3.4                             | 300        | 3.20                              | 5.3                                                   |
| GCA7090    | 3.0              | Reaction peaked overnight    | 7.0                    | 6.7                             | 240        | -                                 | < 0.5                                                 |
| GCA7092    | 3.0              | Reaction peaked overnight    | 4.4                    | 3.3                             | 300        | 1.60                              | 2.7                                                   |
| GCA7093    | 3.0              | Reaction peaked overnight    | 4.3                    | 3.3                             | 300        | 1.50                              | 2.5                                                   |
| GCA7095    | 3.0              | Reaction peaked overnight    | 7.1                    | 7.8                             | 280        | -                                 | < 0.5                                                 |
| GCA7097    | 3.0              | Reaction peaked overnight    | 4.6                    | 3.3                             | 340        | 1.70                              | 2.8                                                   |
| GCA7098    | 3.0              | Reaction peaked within 2 hrs | 2.7                    | 3.2                             | 620        | 6.50                              | 11                                                    |
| GCA7100    | 3.0              | Reaction peaked within 2 hrs | 2.6                    | 3.0                             | 630        | 7.40                              | 13                                                    |
| GCA7101    | 3.0              | Reaction peaked within 2 hrs | 2.6                    | 3.1                             | 560        | 6.10                              | 10                                                    |
| GCA7103    | 3.0              | Reaction peaked within 2 hrs | 2.9                    | 3.5                             | 440        | 4.70                              | 7.7                                                   |
| GCA7104    | 3.0              | Reaction peaked within 2 hrs | 2.9                    | 3.4                             | 390        | 3.80                              | 6.3                                                   |
| GCA7105    | 3.0              | Reaction peaked within 2 hrs | 2.2                    | 2.6                             | 1,300      | 17.30                             | 29                                                    |
| GCA7106    | 3.0              | Reaction peaked within 2 hrs | 2.4                    | 3.0                             | 830        | 6.70                              | 11                                                    |
| GCA7108    | 3.0              | Reaction peaked within 2 hrs | 2.4                    | 2.7                             | 950        | 8.90                              | 15                                                    |
| GCA7109-1  | 3.0              | Reaction peaked within 2 hrs | 2.2                    | 2.6                             | 1,300      | 14.40                             | 24                                                    |
| GCA7109-2  | 3.0              | Reaction peaked within 2 hrs | 2.2                    | 2.6                             | 1,300      | 12.40                             | 21                                                    |
| Blank      | 3.0              |                              | 5.9                    | 6.5                             | 76         | -                                 | < 0.5                                                 |

**Notes:** Test conditions based on those described by Miller *et al.* (1997). The pH of the 15 % (v/v)  $H_2O_2$  solution was adjusted to 4.5 using 0.1 M-NaOH prior to commencing the NAG Tests. Test mixtures boiled for *c*. 2 hours to accelerate reaction with  $H_2O_2$ . Then, after allowing the test mixtures to cool, 1.0 mL of 0.016 M-CuSO<sub>4</sub> solution was added, and the test mixtures again boiled for *c*. 2 hours. The addition of Cu(II) catalyses the decomposition of any residual, unreacted  $H_2O_2$  in the test mixtures (O'Shay *et al.* 1990). K-Feldspar was employed for the Blanks.

Dr GD Campbell 4th July 2007

#### Graeme Campbell & Associates Pty Ltd

#### Laboratory Report

#### **NET-ACID-GENERATION (NAG) TESTWORK**

| Sample    | Sample<br>Weight | Comments                     | pH of Test<br>Mixture  | Ai  | Test Mixture<br>fter Boiling Step | Titre<br>[0.5 M- | NAG<br>(kg H <sub>2</sub> SO <sub>4</sub> / |
|-----------|------------------|------------------------------|------------------------|-----|-----------------------------------|------------------|---------------------------------------------|
| Number    | (g)              |                              | Before<br>Boiling Step | pН  | EC (μS/cm)                        | NaOH]<br>(mL)    | tonne)                                      |
| GCA7111   | 3.0              | Reaction peaked within 2 hrs | 2.4                    | 2.8 | 760                               | 9.00             | 15                                          |
| GCA7113   | 3.0              | Reaction peaked within 2 hrs | 2.6                    | 3.1 | 510                               | 5.20             | 8.5                                         |
| GCA7114   | 3.0              | Reaction peaked within 2 hrs | 2.3                    | 2.6 | 930                               | 14.10            | 24                                          |
| GCA7116   | 3.0              | Reaction peaked within 2 hrs | 2.5                    | 2.6 | 870                               | 9.90             | 17                                          |
| GCA7117   | 3.0              | Reaction peaked within 2 hrs | 2.5                    | 2.5 | 1,100                             | 12.20            | 20                                          |
| GCA7118   | 3.0              | Reaction peaked overnight    | 3.1                    | 2.8 | 660                               | 7.10             | 12                                          |
| GCA7119   | 3.0              | Reaction peaked within 2 hrs | 2.9                    | 3.2 | 460                               | 4.00             | 6.6                                         |
| GCA7120   | 3.0              | Reaction peaked overnight    | 4.1                    | 3.4 | 250                               | 2.30             | 3.8                                         |
| GCA7121-1 | 3.0              | Reaction peaked overnight    | 4.9                    | 3.5 | 200                               | 2.60             | 4.3                                         |
| GCA7121-2 | 3.0              | Reaction peaked within 2 hrs | 4.3                    | 3.3 | 270                               | 2.90             | 4.8                                         |
| Blank     | 3.0              |                              | 5.9                    | 6.7 | 55                                | -                | < 0.5                                       |

Notes: Test conditions based on those described by Miller *et al.* (1997). The pH of the 15 % (v/v)  $H_2O_2$  solution was adjusted to 4.5 using 0.1 M-NaOH prior to commencing the NAG Tests. Test mixtures boiled for *c*. 2 hours to accelerate reaction with  $H_2O_2$ . Then, after allowing the test mixtures to cool, 1.0 mL of 0.016 M-CuSO<sub>4</sub> solution was added, and the test mixtures again boiled for *c*. 2 hours. The addition of Cu(II) catalyses the decomposition of any residual, unreacted  $H_2O_2$  in the test mixtures (O'Shay *et al.* 1990). K-Feldspar was employed for the Blanks.

Dr GD Campbell 4th July 2007

## ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### **JOB INFORMATION**

JOB CODE : 143.0/0705930

No. of SAMPLES : 11 No. of ELEMENTS : 32

CLIENT O/N : GCA0721 (Job 1 of 1)

SAMPLE SUBMISSION No. :

PROJECT : Base-Metals Operation (Tailings -Soli

STATE : Pulp : 08/06/2007 DATE RECEIVED

DATE COMPLETED : 29/06/2007 DATE PRINTED : 29/06/2007

#### **LEGEND**

F6

Χ = Less than Detection Limit

N/R = Sample Not Received

= Result Checked

() = Result still to come

I/S = Insufficient Sample for Analysis

= Result X 1,000,000 UA = Unable to Assay

= Value beyond Limit of Method

#### MAIN OFFICE AND LABORATORY

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

#### KALGOORLIE SAMPLE PREPARATION DIVISION

12 Keogh Way, Kalgoorlie 6430, Western Australia

#### **ADELAIDE SAMPLE PREPARATION DIVISION**

124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

Anderbolt, Gauteng, South Africa 1459.

Tel: +27 11 918 0869 Fax: +27 11 918 0879

#### SAMPLE DETAILS

#### **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

#### SAMPLE STORAGE DETAILS

#### **GENERAL CONDITIONS**

#### **SAMPLE STORAGE OF SOLIDS**

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$3.00 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

#### **NOTES**

\*\*\* NATA ENDORSED DOCUMENT \*\*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The 11 samples, as listed in the report, were received as being 'tailings solids' which had been pulverised in a zirconia bowl.

The results have been determined according to Genalysis methods codes :

Digestions : SL\_W001 (A/), SL\_W007 (BP/), ENV\_W012 (DH/SIE), SL\_W013 (D/),

SL\_W012 (CM/).

Analytical Finishes: ICP\_W004 (/OES), ICP\_W005 (/MS), and AAS\_W004 (/CVAP).

The results included the assay of blanks and international reference standards OREAS 45P and SY-2 and Genalysis in-house standards MPL-1,HgSTD-4, and Se\_Std.

The results are expressed as parts per million or percent by mass in the dried and prepared material.

NATA Signatory: A Evers

**Chief Chemist** 

Date: 29th June 2007

This document is issued in accordance with NATA's accreditation requirements.

|                    |      |      | , ,, ,, |     | . •   |        |       |     |       |      |
|--------------------|------|------|---------|-----|-------|--------|-------|-----|-------|------|
| ELEMENTS           | Ag   | Al   | As      | В   | Ва    | Bi     | Ca    | Cd  | Co    | Cr   |
| UNITS              | ppm  | %    | ppm     | ppm | ppm   | ppm    | ppm   | ppm | ppm   | ppm  |
| DETECTION          | 0.1  | 0.02 | 1       | 50  | 0.1   | 0.01   | 10    | 0.1 | 0.1   | 2    |
| DIGEST             | A/   | D/   | A/      | D/  | A/    | A/     | A/    | A/  | A/    | A/   |
| ANALYTICAL FINISH  | MS   | OES  | MS      | OES | MS    | MS     | OES   | MS  | MS    | OES  |
| SAMPLE NUMBERS     |      |      |         |     |       |        |       |     |       |      |
| 0001 GCA7088       | 0.3  | 7.48 | 1       | Х   | 240.7 | 67.99  | 2032  | Х   | 99.0  | 76   |
| 0002 GCA7093       | 0.1  | 5.29 | Χ       | Χ   | 176.5 | 40.73  | 919   | Χ   | 32.8  | 53   |
| 0003 GCA7097       | 0.3  | 5.26 | X       | Χ   | 136.9 | 77.37  | 782   | Χ   | 34.4  | 56   |
| 0004 GCA7100       | 0.4  | 7.80 | 1       | Χ   | 254.9 | 63.14  | 2045  | Χ   | 101.8 | 101  |
| 0005 GCA7104       | 0.4  | 7.15 | 1       | Χ   | 217.7 | 68.91  | 1642  | Χ   | 78.3  | 94   |
| 0006 GCA7105       | 2.2  | 6.76 | Х       | Х   | 93.3  | 122.25 | 1393  | Х   | 121.6 | 63   |
| 0007 GCA7108       | 0.7  | 5.00 | X       | Χ   | 115.4 | 80.68  | 1004  | Χ   | 60.5  | 57   |
| 0008 GCA7111       | 0.6  | 5.91 | X       | Χ   | 91.3  | 47.05  | 1159  | Χ   | 66.0  | 62   |
| 0009 GCA7114       | 0.4  | 6.49 | 1       | 51  | 107.2 | 78.06  | 1261  | Χ   | 93.7  | 67   |
| 0010 GCA7117       | 1.0  | 7.10 | 2       | Χ   | 59.0  | 91.34  | 1462  | Χ   | 130.9 | 62   |
| 0011 GCA7120       | 0.4  | 5.96 | Х       | Х   | 187.7 | 61.33  | 1127  | Х   | 36.1  | 69   |
|                    |      |      |         |     |       |        |       |     |       |      |
| CHECKS             |      |      |         |     |       |        |       |     |       |      |
| 0001 GCA7088       | 0.5  | 7.45 | Х       | Х   | 246.5 | 67.94  | 2029  | Х   | 100.1 | 90   |
|                    |      |      |         |     |       |        |       |     |       |      |
| STANDARDS          |      |      |         |     |       |        |       |     |       |      |
| 0001 HgSTD-4       |      |      |         |     |       |        |       |     |       |      |
| 0002 MPL-1         | 16.4 |      | 784     |     | 150.3 | 27.94  | 1.24% | 5.1 | 160.3 | 1153 |
| 0003 OREAS 45P     |      | 6.54 |         | Χ   |       |        |       |     |       |      |
| 0004 Se_Std        |      |      |         |     |       |        |       |     |       |      |
| 0005 SY-2          |      |      |         |     |       |        |       |     |       |      |
|                    |      |      |         |     |       |        |       |     |       |      |
| BLANKS             |      |      |         |     |       |        |       |     |       |      |
| 0001 Control Blank | Х    | Х    | X       | Х   | Х     | 0.01   | 16    | Х   | 0.1   | Х    |
| 0002 Control Blank |      |      |         |     |       |        |       |     |       |      |
| 0003 Control Blank |      |      |         |     |       |        |       |     |       |      |
| 0004 Control Blank |      | X    |         | Х   |       |        |       |     |       |      |
| 0005 Acid Blank    | X    |      | Х       |     | X     | 0.03   | X     | Χ   | 0.1   | X    |
| 0006 Acid Blank    |      |      |         |     |       |        |       |     |       |      |
| 0007 Acid Blank    |      | Х    |         | Х   |       |        |       |     |       |      |
|                    |      |      |         |     |       |        |       |     |       |      |

|                    |      |      | ,,    |      | -     |       |      |      |       |      |
|--------------------|------|------|-------|------|-------|-------|------|------|-------|------|
| ELEMENTS           | Cu   | F    | Fe    | Hg   | K     | Mg    | Mn   | Мо   | Na    | Ni   |
| UNITS              | ppm  | ppm  | %     | ppm  | ppm   | ppm   | ppm  | ppm  | ppm   | ppm  |
| DETECTION          | 1    | 50   | 0.01  | 0.01 | 20    | 20    | 1    | 0.1  | 20    | 1    |
| DIGEST             | A/   | DH/  | D/    | CM/  | A/    | A/    | A/   | A/   | A/    | A/   |
| ANALYTICAL FINISH  | OES  | SIE  | OES   | CVAP | OES   | OES   | OES  | MS   | OES   | OES  |
| SAMPLE NUMBERS     |      |      |       |      |       |       |      |      |       |      |
| 0001 GCA7088       | 389  | 990  | 12.59 | Х    | 2.30% | 2.52% | 948  | 0.7  | 1002  | 53   |
| 0002 GCA7093       | 239  | 633  | 8.21  | Χ    | 1.58% | 1.58% | 904  | 1.0  | 514   | 25   |
| 0003 GCA7097       | 524  | 524  | 10.48 | X    | 1.23% | 1.47% | 1513 | 1.3  | 481   | 20   |
| 0004 GCA7100       | 434  | 1008 | 12.77 | Χ    | 2.42% | 2.62% | 1072 | 1.1  | 994   | 45   |
| 0005 GCA7104       | 1236 | 849  | 11.65 | Χ    | 2.03% | 2.38% | 992  | 1.2  | 745   | 41   |
| 0006 GCA7105       | 4195 | 392  | 16.37 | Х    | 9015  | 1.21% | 4250 | 2.1  | 428   | 42   |
| 0007 GCA7108       | 449  | 430  | 10.25 | Χ    | 1.04% | 1.32% | 1760 | 1.0  | 511   | 29   |
| 0008 GCA7111       | 451  | 387  | 14.28 | Χ    | 8165  | 1.28% | 2855 | 0.7  | 330   | 28   |
| 0009 GCA7114       | 608  | 456  | 14.87 | Χ    | 9911  | 1.36% | 3133 | 0.8  | 366   | 43   |
| 0010 GCA7117       | 1511 | 247  | 19.48 | 0.02 | 5428  | 1.21% | 4944 | 0.8  | 185   | 34   |
| 0011 GCA7120       | 286  | 682  | 9.04  | Х    | 1.71% | 1.66% | 1018 | 0.8  | 526   | 22   |
|                    |      |      |       |      |       |       |      |      |       |      |
| CHECKS             |      |      |       |      |       |       |      |      |       |      |
| 0001 GCA7088       | 391  | 978  | 12.44 | Х    | 2.32% | 2.53% | 955  | 0.6  | 1000  | 55   |
|                    |      |      |       |      |       |       |      |      |       |      |
| STANDARDS          |      |      |       |      |       |       |      |      |       |      |
| 0001 HgSTD-4       |      |      |       | 0.29 |       |       |      |      |       |      |
| 0002 MPL-1         | 1877 |      |       |      | 2893  | 3.65% | 1882 | 55.4 | 2.83% | 1758 |
| 0003 OREAS 45P     |      |      | 19.20 |      |       |       |      |      |       |      |
| 0004 Se_Std        |      |      |       |      |       |       |      |      |       |      |
| 0005 SY-2          |      | 4723 |       |      |       |       |      |      |       |      |
|                    |      |      |       |      |       |       |      |      |       | _    |
| BLANKS             |      |      |       |      |       |       |      |      |       |      |
| 0001 Control Blank | X    | 60   | Х     | Χ    | X     | Χ     | Χ    | 0.2  | Х     | Х    |
| 0002 Control Blank |      |      |       |      |       |       |      |      |       |      |
| 0003 Control Blank |      |      |       | 0.01 |       |       |      |      |       |      |
| 0004 Control Blank |      |      | Х     |      |       |       |      |      |       |      |
| 0005 Acid Blank    | Χ    |      |       |      | Х     | Х     | Х    | X    | Χ     | X    |
| 0006 Acid Blank    |      |      |       | Х    |       |       |      |      |       |      |
| 0007 Acid Blank    |      |      | Х     |      |       |       |      |      |       |      |
|                    |      |      |       |      |       |       |      |      |       |      |

|                    |     |      | ,,    |        |      |      |        |       |       |      |
|--------------------|-----|------|-------|--------|------|------|--------|-------|-------|------|
| ELEMENTS           | Р   | Pb   | S     | Sb     | Se   | Sn   | Sr     | Th    | TI    | U    |
| UNITS              | ppm | ppm  | ppm   | ppm    | ppm  | ppm  | ppm    | ppm   | ppm   | ppm  |
| DETECTION          | 20  | 2    | 10    | 0.05   | 0.01 | 0.1  | 0.05   | 0.01  | 0.02  | 0.01 |
| DIGEST             | A/  | A/   | A/    | A/     | BP/  | A/   | A/     | A/    | A/    | A/   |
| ANALYTICAL FINISH  | OES | MS   | OES   | MS     | MS   | MS   | MS     | MS    | MS    | MS   |
| SAMPLE NUMBERS     |     |      |       |        |      |      |        |       |       |      |
| 0001 GCA7088       | 828 | 28   | 4913  | Χ      | 0.64 | 13.3 | 19.23  | 17.59 | 0.86  | 4.39 |
| 0002 GCA7093       | 435 | 15   | 1849  | Χ      | 0.41 | 6.1  | 9.48   | 9.77  | 0.62  | 2.27 |
| 0003 GCA7097       | 408 | 14   | 2943  | Χ      | 0.97 | 6.7  | 10.52  | 9.65  | 0.47  | 2.22 |
| 0004 GCA7100       | 795 | 26   | 5820  | 0.07   | 0.71 | 14.0 | 17.21  | 19.66 | 0.92  | 4.71 |
| 0005 GCA7104       | 685 | 25   | 3408  | 0.21   | 1.09 | 11.2 | 18.59  | 17.07 | 0.79  | 4.24 |
| 0006 GCA7105       | 456 | 20   | 1.82% | 0.07   | 3.11 | 6.6  | 17.21  | 11.09 | 0.42  | 2.55 |
| 0007 GCA7108       | 414 | 18   | 6685  | X      | 1.17 | 6.1  | 11.07  | 9.25  | 0.42  | 2.33 |
| 0008 GCA7111       | 450 | 12   | 6196  | Χ      | 1.43 | 8.2  | 8.71   | 9.40  | 0.32  | 2.25 |
| 0009 GCA7114       | 478 | 15   | 1.10% | Χ      | 1.48 | 5.9  | 7.88   | 10.61 | 0.41  | 2.63 |
| 0010 GCA7117       | 468 | 10   | 1.41% | Х      | 2.29 | 5.2  | 5.96   | 10.47 | 0.23  | 2.52 |
| 0011 GCA7120       | 553 | 16   | 2360  | Х      | 0.70 | 7.6  | 13.41  | 12.37 | 0.69  | 2.74 |
| CHECKS             |     |      |       |        |      |      |        |       |       |      |
| 0001 GCA7088       | 817 | 28   | 5031  | Х      | 0.61 | 13.3 | 19.49  | 17.37 | 0.87  | 4.45 |
|                    |     |      |       |        |      |      |        |       |       |      |
| STANDARDS          |     |      |       |        |      |      |        |       |       |      |
| 0001 HgSTD-4       |     |      |       |        |      |      |        |       |       |      |
| 0002 MPL-1         | 582 | 1526 | 1.88% | 195.28 |      | 3.9  | 402.56 | 93.87 | 11.31 | 8.61 |
| 0003 OREAS 45P     |     |      |       |        |      |      |        |       |       |      |
| 0004 Se_Std        |     |      |       |        | 0.64 |      |        |       |       |      |
| 0005 SY-2          |     |      |       |        |      |      |        |       |       |      |
| BLANKS             |     |      |       |        |      |      |        |       |       |      |
| 0001 Control Blank | X   | Х    | 25    | X      | Х    | 0.2  | X      | 0.02  | Х     | X    |
| 0002 Control Blank |     |      |       |        | Х    |      |        |       |       |      |
| 0003 Control Blank |     |      |       |        |      |      |        |       |       |      |
| 0004 Control Blank |     |      |       |        |      |      |        |       |       |      |
| 0005 Acid Blank    | Χ   | Х    | 13    | 0.07   |      | X    | 0.06   | 0.02  | Х     | 0.01 |
| 0006 Acid Blank    |     |      |       |        |      |      |        |       |       |      |
| 0007 Acid Blank    |     |      |       |        |      |      |        |       |       |      |
|                    |     |      |       |        |      |      |        |       |       |      |

|                    |     |      | ANALIOIO |
|--------------------|-----|------|----------|
| ELEMENTS           | V   | Zn   |          |
| UNITS              | ppm | ppm  |          |
| DETECTION          | 2   | 1    |          |
| DIGEST             | A/  | A/   |          |
| ANALYTICAL FINISH  | OES | OES  |          |
| SAMPLE NUMBERS     |     |      |          |
| 0001 GCA7088       | 96  | 73   |          |
| 0002 GCA7093       | 69  | 38   |          |
| 0003 GCA7097       | 70  | 35   |          |
| 0004 GCA7100       | 98  | 77   |          |
| 0005 GCA7104       | 89  | 61   |          |
| 0006 GCA7105       | 61  | 48   |          |
| 0007 GCA7108       | 59  | 46   |          |
| 0008 GCA7111       | 66  | 40   |          |
| 0009 GCA7114       | 70  | 46   |          |
| 0010 GCA7117       | 64  | 37   |          |
| 0011 GCA7120       | 75  | 46   |          |
|                    |     |      |          |
| CHECKS             |     |      |          |
| 0001 GCA7088       | 96  | 73   |          |
|                    |     |      |          |
| STANDARDS          |     |      |          |
| 0001 HgSTD-4       |     |      |          |
| 0002 MPL-1         | 250 | 1189 |          |
| 0003 OREAS 45P     |     |      |          |
| 0004 Se_Std        |     |      |          |
| 0005 SY-2          |     |      |          |
|                    |     |      |          |
| BLANKS             |     |      |          |
| 0001 Control Blank | X   | Χ    |          |
| 0002 Control Blank |     |      |          |
| 0003 Control Blank |     |      |          |
| 0004 Control Blank |     |      |          |
| 0005 Acid Blank    | Х   | Х    |          |
| 0006 Acid Blank    |     |      |          |
| 0007 Acid Blank    |     |      |          |

#### METHOD CODE DESCRIPTION

#### A/MS

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Beakers. Analysed by Inductively Coupled Plasma Mass Spectrometry.

#### A/OES

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Beakers. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

#### BP/MS

Aqua-Regia digest followed by Precipitation and Concentration. Specific for Selenium. Analysed by Inductively Coupled Plasma Mass Spectrometry.

#### D/OES

Sodium peroxide fusion (Zirconium crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

#### DH/SIE

Alkaline fusion (Nickel crucible) specific for Fluorine. Analysed by Specific Ion Electrode.

#### CM/CVAP

Low temperature Perchloric acid digest specific for Mercury. Analysed by Cold Vapour Generation Atomic Absorption Spectrometry.

Coffey Geotechnics Ptv Ltd ABN 93 056 929 483
24 Hasler Road Herdsman WA 6017 Australia
PO Box 1530 Osborne Park BC 6916 Australia
T (+61) (8) 9347 0000 F (+61) (8) 9347 0099
www.coffey.com.au

### **TEST CERTIFICATE**

Client: Graeme Campbell & Associates P/L

Principal: -

Project: Kanmantoo Project

Location: -

Report No.: HERD07S-03156-9

Job No.: LABTHERD00243AA

**Date Tested: 28/06/2007** 

## Soil Particle Density AS 1289.3.5.1

| Laboratory Number                                      | HERD07S-03156 | HERD07S-03157 | HERD07S-03158 | HERD07S-03159  |
|--------------------------------------------------------|---------------|---------------|---------------|----------------|
| Sample Identification                                  | GCA 7091      | GCA 7094      | GCA 7096      | GCA 7099       |
|                                                        |               |               |               |                |
| Temperature of Test C                                  | 20°           | 20°           | 20°           | 20°            |
| Average Soil Particle Density -2.36mm t/m <sup>3</sup> | 2.83          | 2.83          | 2.93          | 2.95           |
| Average Soil Particle Density +2.36mm t/m <sup>3</sup> | _             | -             | -             | <del>-</del> . |
| Average Soil Particle Total Sample t/m <sup>3</sup>    |               | -             | -             | <b>-</b> .     |
|                                                        |               |               |               |                |
|                                                        |               |               |               |                |
|                                                        |               | ·             |               |                |
| ,                                                      |               |               |               | •              |

Remarks: Sampling Method/s - Submitted by client

W. Rozmianiec

Date: 4/07/2007

24 Hasler Road Herdsman WA 6017 Australia PO Box 1530 Osborne Park BC 6916 Australia T (+61) (8) 9347 0000 F (+61) (8) 9347 0099 www.coffey.com.au

### **TEST CERTIFICATE**

Client: Graeme Campbell & Associates P/L

Principal: -

Project: Kanmantoo Project

Location: -

Report No.: HERD07S-03160-63

Job No.: LABTHERD00243AA

**Date Tested: 28/06/2007** 

## Soil Particle Density AS 1289.3.5.1

| ·                                                      |   | y             |               |               |               |
|--------------------------------------------------------|---|---------------|---------------|---------------|---------------|
| Laboratory Number                                      |   | HERD07S-03160 | HERD07S-03161 | HERD07S-03162 | HERD07S-03163 |
| Sample Identification                                  |   | GCA 7102      | GCA 7107      | GCA 7110      | GCA 7112      |
| Temperature of Test                                    | С | 20°           | 20°           | 20°           | 20°           |
| Average Soil Particle Density -2.36mm t/m³             |   | 2.94          | 2.93          | 3.12          | 3.09          |
| Average Soil Particle Density +2.36mm t/m <sup>3</sup> |   | -             | _             | -             | -             |
| Average Soil Particle<br>Total Sample t/m³             |   | -             | -             | -             | -             |
|                                                        |   |               |               |               |               |
|                                                        |   |               |               |               |               |

Remarks: Sampling Method/s - Submitted by client

W. Rozmianiec

Date: 4/07/2007

Coffey Geotechnics Pty Ltd ABN 93 056 929 483

24 Hasler Road Herdsman WA 6017 Australia
PO Box 1530 Osborne Park BC 6916 Australia
T (+61) (8) 9347 0000 F (+61) (8) 9347 0099

www.coffey.com.au

## **TEST CERTIFICATE**

Client: Graeme Campbell & Associates P/L

Principal: -

**Project:** Kanmantoo Project

Location: -

Report No.: HERD07S-03164

Job No.: LABTHERD00243AA

**Date Tested: 28/06/2007** 

## Soil Particle Density AS 1289.3.5.1

| Laboratory Number                                         | HERD07S-03164 |   |  |
|-----------------------------------------------------------|---------------|---|--|
| Sample Identification                                     | GCA 7115      |   |  |
| Temperature of Test C                                     | 20°           |   |  |
| Average Soil Particle<br>Density -2.36mm t/m³             | 2.98          |   |  |
| Average Soil Particle<br>Density +2.36mm t/m <sup>3</sup> | -             |   |  |
| Average Soil Particle<br>Total Sample t/m³                | -             | · |  |
|                                                           |               |   |  |
|                                                           |               |   |  |

Remarks: Sampling Method/s - Submitted by client

W. Rozmianiec

Date: 4/07/2007

Coffey Geotechnics Pty Ltd ABN 93 056 929 483 24 Hasler Road Herdsman WA 6017 Australia PO Box 1530 Osborne Park 6916 Australia T (+61) (8) 9347 0000 F (+61) (8) 9347 0099 www.coffey.com.au

### TEST CERTIFICATE

Client: Graeme Campbell & Associates

Project: Kanmantoo Project

Location: -

Principal: -

Report No.: HERD07S-03246-61

Job No.: LABTHERD00243AA

**Date Tested: 3/07/2007** 

#### Particle Size Distribution (Part - % Fines) AS 1289.3.6.1(Part)

| Laboratory No. | Sample Identification | Percent Finer Than 0.075mm (%) |
|----------------|-----------------------|--------------------------------|
| HERD07S-03246  | BH3 @ 8.00-8.10       | 11                             |
| HERD07S-03247  | BH3 @ 8.10-8.20       | 8                              |
| HERD07S-03248  | BH3 @ 8.20-8.30       | 9                              |
| HERD07S-03249  | BH3 @ 8.30-8.40       | . 11                           |
| HERD07S-03250  | BH3 @ 8.40-8.50       | 15                             |
| HERD07S-03251  | BH3 @ 8.50-8.60       | 11                             |
| HERD07S-03252  | BH3 @ 8.60-8.70       | 9                              |
| HERD07S-03253  | BH3 @ 8.70-8.80       | 8                              |
| HERD07S-03254  | BH3 @ 8.80-8.90       | 9                              |
| HERD07S-03255  | BH3 @ 11.63-11.73     | 7                              |
| HERD07S-03256  | BH3 @ 11.73-11.83     | 10                             |
| HERD07S-03257  | BH3 @ 11.83-11.93     | 8                              |
| HERD07S-03258  | BH3 @ 11.93-12.03     | 10                             |
| HERD07S-03259  | BH3 @ 12.03-12.05     | 24                             |
| HERD07S-03260  | BH3 @ 12.05-12.13     | . 13                           |
| HERD07S-03261  | BH3 @ 12.13-12.15     | 11                             |
|                |                       |                                |

Remarks: Sampling Method/s - Submitted by client



This document is issued in accordance with NATA's Accreditation Requirements. Accredited for compliance with ISO/IEC 17025

**Authorised Signature:** 

W.Rozmianiec

Date:

6/07/2007

NATA Acc. Laboratory No 431



#### LABORATORY REPORT COVERSHEET

DATE: 25 June 2007

TO: Graeme Campbell & Associates Pty Ltd

PO Box 247

**BRIDGETOWN WA 6255** 

ATTENTION: Dr Graeme Campbell

YOUR REFERENCE: GCA Job no. 0721

**OUR REFERENCE:** 12289

**SAMPLES RECEIVED:** 13/06/2007

**SAMPLES/QUANTITY:** 3 Waters

The above samples were received intact and analysed according to your instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

PETER KEYTE Business Manager



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (1705). This report must not be reproduced except in full.

Page 1 of 5



PROJECT: GCA Job no. 0721

#### LABORATORY REPORT

| Your Reference Our Reference Type of Sample | Units | GCA 7084<br>12289-1<br>Water | GCA 7085<br>12289-2<br>Water | GCA 7086<br>12289-3<br>Water |
|---------------------------------------------|-------|------------------------------|------------------------------|------------------------------|
| Chloride, Cl                                | mg/L  | 170                          | 78                           | 280                          |
| Sulphate, SO <sub>4</sub>                   | mg/L  | 12,000                       | 7,700                        | 2,900                        |



PROJECT: GCA Job no. 0721

#### LABORATORY REPORT

| TEST PARAMETERS           | UNITS | LOR | METHOD  |
|---------------------------|-------|-----|---------|
| Waters and Wastewaters    |       |     |         |
| Chloride, Cl              | mg/L  | 1   | PEI-020 |
| Sulphate, SO <sub>4</sub> | mg/L  | 1   | PEI-020 |



PROJECT: GCA Job no. 0721

#### LABORATORY REPORT

| QUALITY CONTROL           | UNITS | Blank | Replicate<br>Sm# | Replicate         | Spike Sm# | Matrix Spike (%) |
|---------------------------|-------|-------|------------------|-------------------|-----------|------------------|
|                           |       |       |                  | Sample  Replicate |           |                  |
| Chloride, Cl              | mg/L  | <1    | [NT]             | [NT]              | Control   | 95%              |
| Sulphate, SO <sub>4</sub> | mg/L  | <1    | [NT]             | [NT]              | Control   | 109%             |



PROJECT: GCA Job no. 0721

#### LABORATORY REPORT

#### **NOTES:**

LOR - Limit of Reporting.

# This test is not covered by the scope of our NATA accreditation. SGS terms and conditions are available from www.au.sgs.com



## ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### **JOB INFORMATION**

JOB CODE : 143.0/0706114

No. of SAMPLES : 3 No. of ELEMENTS : 31

CLIENT O/N : GCA0721 (Job 1 of 1)

SAMPLE SUBMISSION No. :

PROJECT : Tailings-Porefluid Samples

 STATE
 : Solutions

 DATE RECEIVED
 : 14/06/2007

 DATE COMPLETED
 : 10/07/2007

 DATE PRINTED
 : 10/07/2007

#### **LEGEND**

X = Less than Detection Limit

N/R = Sample Not Received

\* = Result Checked
() = Result still to con

( ) = Result still to comeI/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000

UA = Unable to Assay

= Value beyond Limit of Method

#### MAIN OFFICE AND LABORATORY

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

#### KALGOORLIE SAMPLE PREPARATION DIVISION

12 Keogh Way, Kalgoorlie 6430, Western Australia

#### ADELAIDE SAMPLE PREPARATION DIVISION

124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

Anderbolt, Gauteng, South Africa 1459.

Tel: +27 11 918 0869 Fax: +27 11 918 0879

#### SAMPLE DETAILS

#### **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

#### SAMPLE STORAGE DETAILS

#### **GENERAL CONDITIONS**

#### **SAMPLE STORAGE OF SOLIDS**

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$3.00 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

#### **NOTES**

\*\*\* NATA ENDORSED DOCUMENT \*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The samples, GCA7084, GCA7085 and GCA7086 were received as being 'tailings porefluids'.

The results have been determined according to Genalysis methods numbers ICP\_W004 and ICP\_W005.

The analysis included the assay of blanks and Genalysis in-house reference standards. The results are expressed as milligrams per litre or micrograms per litre in the solution.

NATA Signatory: H Pham

**ICP Chemist** 

Date: 10th July 2007

This document is issued in accordance with NATA's accreditation requirements.

|                    |      |      |       | _    | _    |      |       |      |        |      |
|--------------------|------|------|-------|------|------|------|-------|------|--------|------|
| ELEMENTS           | Ag   | Al   | As    | В    | Ва   | Bi   | Ca    | Cd   | Co     | Cr   |
| UNITS              | ug/l | mg/l | mg/l  | mg/l | ug/l | ug/l | mg/l  | ug/l | mg/l   | mg/l |
| DETECTION          | 0.1  | 0.1  | 0.001 | 0.1  | 0.5  | 0.05 | 0.1   | 0.2  | 0.001  | 0.1  |
| DIGEST             |      |      |       |      |      |      |       |      |        |      |
| ANALYTICAL FINISH  | /MS  | /OES | /MS   | /OES | /MS  | /MS  | /OES  | /MS  | /MS    | /OES |
| SAMPLE NUMBERS     |      |      |       |      |      |      |       |      |        |      |
| 0001 GCA7084       | X    | 3.7  | 0.008 | 0.5  | 9.8  | 0.07 | 443.6 | 1.9  | 29.091 | X    |
| 0002 GCA7085       | X    | 5.5  | 0.007 | 0.4  | 20.6 | Χ    | 464.3 | 3.0  | 30.199 | Χ    |
| 0003 GCA7086       | Χ    | 1.0  | 0.002 | 0.3  | 41.3 | Χ    | 498.0 | 2.4  | 0.261  | Х    |
|                    |      |      |       |      |      |      |       |      |        | _    |
| CHECKS             |      |      |       |      |      |      |       |      |        |      |
| 0001 GCA7084       | Х    | 3.8  | 0.007 | 0.4  | 9.7  | 0.06 | 453.2 | 1.9  | 30.893 | X    |
| STANDARDS          |      |      |       |      |      |      |       |      |        |      |
| 0001 Alcoa5-OES    |      | 2.1  |       | 0.9  |      |      | 51.7  |      |        | 0.6  |
| 0002 Alcoa8-MS     | 5.3  |      | 0.027 |      | 5.0  | 4.90 |       | 5.8  | 0.519  |      |
| BLANKS             |      |      |       |      |      |      |       |      |        |      |
| 0001 Control Blank | Х    | Х    | Х     | Х    | Х    | Х    | Х     | Х    | Х      | X    |
|                    |      |      |       |      |      |      |       |      |        |      |

| ELEMENTS           | Cu   | Fe-Sol | Hg        | K           | Mg    | Mn    | Мо    | Na           | Ni          | Р      |
|--------------------|------|--------|-----------|-------------|-------|-------|-------|--------------|-------------|--------|
| UNITS              | mg/l | mg/l   | ug/l      | mg/l        | mg/l  | mg/l  | ug/l  | mg/l         | mg/l        | mg/l   |
| DETECTION          | 0.1  | 1      | 49/1<br>1 | 1119/1<br>1 | 0.1   | 0.1   | 0.5   | 1            | 0.1         | 11.g/1 |
| DIGEST             | 0.1  | '      | '         | '           | 0.1   | 0.1   | 0.5   | '            | 0.1         |        |
|                    | /050 | /OF0   | /1.40     | /050        | (0.50 | /050  | // 40 | <b>/0</b> 50 | <b>/050</b> | (050   |
| ANALYTICAL FINISH  | /OES | /OES   | /MS       | /OES        | /OES  | /OES  | /MS   | /OES         | /OES        | /OES   |
| SAMPLE NUMBERS     |      |        |           |             |       |       |       |              |             |        |
| 0001 GCA7084       | 1.0  | 3427   | Χ         | 283         | 867.0 | 111.2 | 1.7   | 112          | 5.5         | X      |
| 0002 GCA7085       | X    | 2827   | Χ         | 84          | 323.1 | 68.9  | 0.7   | 63           | 8.2         | X      |
| 0003 GCA7086       | Х    | 210    | X         | 310         | 241.3 | 16.6  | 0.6   | 415          | Х           | X      |
| CHECKS             |      |        |           |             |       |       |       |              |             |        |
| 0001 GCA7084       | 1.0  | 3347   | Х         | 301         | 888.9 | 110.4 | 1.9   | 117          | 5.5         | X      |
| STANDARDS          |      |        |           |             |       |       |       |              |             |        |
| 0001 Alcoa5-OES    | 0.3  | 2      |           | 4           | 62.3  | 0.5   |       | 248          | 0.6         | X      |
| 0002 Alcoa8-MS     |      |        | 5         |             |       |       | 5.3   |              |             |        |
| BLANKS             |      |        |           |             |       |       |       |              |             |        |
| 0001 Control Blank | Х    | X      | Х         | X           | Х     | Х     | Х     | Х            | Х           | X      |

|                    |       |      |       | _    | _    |        |      |      |      |      |
|--------------------|-------|------|-------|------|------|--------|------|------|------|------|
| ELEMENTS           | Pb    | Sb   | Se    | Si   | Sn   | Sr     | Th   | TI   | U    | V    |
| UNITS              | mg/l  | ug/l | mg/l  | mg/l | ug/l | ug/l   | ug/l | ug/l | ug/l | mg/l |
| DETECTION          | 0.005 | 0.1  | 0.005 | 0.5  | 1    | 0.2    | 0.05 | 0.1  | 0.05 | 0.1  |
| DIGEST             |       |      |       |      |      |        |      |      |      |      |
| ANALYTICAL FINISH  | /MS   | /MS  | /MS   | /OES | /MS  | /MS    | /MS  | /MS  | /MS  | /OES |
| SAMPLE NUMBERS     |       |      |       |      |      |        |      |      |      |      |
| 0001 GCA7084       | 0.007 | Χ    | 0.006 | 23.1 | 3    | 135.1  | 1.03 | Х    | 5.53 | X    |
| 0002 GCA7085       | X     | Χ    | Χ     | 24.4 | 3    | 225.3  | 0.13 | Χ    | 3.05 | X    |
| 0003 GCA7086       | 0.016 | Х    | Х     | 15.4 | 2    | 1364.8 | 0.08 | Χ    | 2.76 | X    |
|                    |       |      |       |      |      |        |      |      |      |      |
| CHECKS             |       |      |       |      |      |        |      |      |      |      |
| 0001 GCA7084       | 0.007 | Х    | 0.006 | 23.1 | 3    | 135.7  | 1.01 | Х    | 5.60 | X    |
| STANDARDS          |       |      |       |      |      |        |      |      |      |      |
| 0001 Alcoa5-OES    |       |      |       | 11.1 |      |        |      |      |      | 0.5  |
| 0002 Alcoa8-MS     | 0.007 | 5.4  | 0.024 |      | 6    | 482.7  | 5.61 | 4.9  | 5.33 |      |
| BLANKS             |       |      |       |      |      |        |      |      |      |      |
| 0001 Control Blank | Х     | Х    | Х     | Х    | Х    | Х      | Х    | Х    | Х    | X    |
|                    |       |      |       |      |      |        |      |      |      |      |

| ELEMENTS           | Zn   |  |
|--------------------|------|--|
| UNITS              | mg/l |  |
| DETECTION          | 0.1  |  |
| DIGEST             |      |  |
| ANALYTICAL FINISH  | /OES |  |
| SAMPLE NUMBERS     |      |  |
| 0001 GCA7084       | 2.3  |  |
| 0002 GCA7085       | 5.5  |  |
| 0003 GCA7086       | 0.2  |  |
|                    |      |  |
| CHECKS             |      |  |
| 0001 GCA7084       | 2.3  |  |
|                    |      |  |
| STANDARDS          |      |  |
| 0001 Alcoa5-OES    | 0.5  |  |
| 0002 Alcoa8-MS     |      |  |
|                    |      |  |
| BLANKS             |      |  |
| 0001 Control Blank | X    |  |

### **METHOD CODE DESCRIPTION**

#### /MS

No digestion or other pre-treatment undertaken. Analysed by Inductively Coupled Plasma Mass Spectrometry.

#### **/OES**

No digestion or other pre-treatment undertaken. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

## ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### JOB INFORMATION

JOB CODE : 143.0/0705612

No. of SAMPLES : 7 No. of ELEMENTS : 5

CLIENT O/N : GCA0721 (Job 1 of 1)

SAMPLE SUBMISSION No. :

DATE PRINTED

PROJECT : Column - Leachates Samples

: 11/06/2007

STATE : Solutions
DATE RECEIVED : 31/05/2007
DATE COMPLETED : 11/06/2007

#### **MAIN OFFICE AND LABORATORY**

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

#### **KALGOORLIE SAMPLE PREPARATION DIVISION**

12 Keogh Way, Kalgoorlie 6430, Western Australia Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

#### **ADELAIDE SAMPLE PREPARATION DIVISION**

124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

#### **LEGEND**

X = Less than Detection Limit
N/R = Sample Not Received
\* = Result Checked

) = Result still to come

I/S = Insufficient Sample for Analysis E6 = Result X 1,000,000

UA = Unable to Assay

= Value beyond Limit of Method

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Anderbolt, Gauteng, South Africa 1459.
Tel: +27 11 918 0869 Fax: +27 11 918 0879

#### SAMPLE DETAILS

#### **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

#### SAMPLE STORAGE DETAILS

#### **GENERAL CONDITIONS**

#### SAMPLE STORAGE OF SOLIDS

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$3.00 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

#### **NOTES**

#### \*\*\* NATA ENDORSED DOCUMENT \*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The 7 samples, as listed in the report, were received as being column leachates.

The results have been determined according to Genalysis methods numbers ICP\_W005.

The analysis included the assay of blanks and Genalysis in-house reference standards. The results are expressed as milligrams per litre in the solution.

NATA Signatory: H Pham

ICP CHemist

Date: 8th June 2007

This document is issued in accordance with NATA's accreditation requirements.

| ELEMENTS           | Al    | Cu    | Fe-Sol | Mn   | S     |  |
|--------------------|-------|-------|--------|------|-------|--|
| UNITS              | mg/l  | mg/l  | mg/l   | mg/l | mg/l  |  |
| DETECTION          | 0.01  | 0.01  | 0.01   | 0.01 | 0.1   |  |
| DIGEST             |       |       |        |      |       |  |
| ANALYTICAL FINISH  | /OES  | /OES  | /OES   | /OES | /OES  |  |
| SAMPLE NUMBERS     |       |       |        |      |       |  |
| 0001 GCA6298-1-1   | 70.80 | 17.74 | 155.14 | 6.64 | 385.7 |  |
| 0002 GCA6298-1-2   | 4.82  | 2.40  | 7.57   | 0.67 | 46.3  |  |
| 0003 GCA6298-1-3   | 1.54  | 1.15  | 2.76   | 0.25 | 21.7  |  |
| 0004 GCA6298-2     | 20.34 | 3.96  | 50.75  | 0.82 | 114.6 |  |
| 0005 GCA6298-3     | 24.07 | 4.50  | 46.70  | 1.23 | 129.2 |  |
| 0006 GCA6298-4     | 25.48 | 3.69  | 61.30  | 0.84 | 136.4 |  |
| 0007 GCA6298-5     | 19.45 | 2.84  | 35.57  | 0.61 | 99.3  |  |
|                    |       |       |        |      |       |  |
| CHECKS             |       |       |        |      |       |  |
| 0001 GCA6298-1-1   | 66.62 | 16.71 | 146.37 | 6.22 | 353.4 |  |
|                    |       |       |        |      |       |  |
| STANDARDS          |       |       |        |      |       |  |
| 0001 Alcoa5-OES    | 2.10  | 0.25  | 2.13   | 0.53 | 21.8  |  |
|                    |       |       |        |      |       |  |
| BLANKS             |       |       |        |      |       |  |
| 0001 Control Blank | X     | X     | X      | X    | X     |  |

### **METHOD CODE DESCRIPTION**

#### **/OES**

No digestion or other pre-treatment undertaken. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

#### HILLGROVE RESOURCES PTY LTD

## **KANMANTOO COPPER PROJECT**

# GEOCHEMICAL CHARACTERISATION OF PROCESS-TAILINGS-SLURRY SAMPLE

[STATIC-TESTWORK]

**Implications for Process-Tailings Management** 

GRAEME CAMPBELL AND ASSOCIATES PTY LTD
(ACN 061 827674)

JANUARY 2007

Job No. 0616

|       |                                  | TABLE OF CONTENTS                                                                                                                      | Page Nos.   |
|-------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|
|       |                                  |                                                                                                                                        |             |
| 1.0   | INTRODUCTION                     | ON                                                                                                                                     | 1           |
| 2.0   | STUDY APPR                       | OACH                                                                                                                                   | 2           |
|       | 2.1.1<br>2.1.2<br>2.2 Calcu      |                                                                                                                                        | 2<br>2<br>3 |
|       |                                  |                                                                                                                                        |             |
| 3.0   | ACID-BASE C                      | HEMISTRY OF TAILINGS-SOLIDS SAMPLE                                                                                                     | 8           |
| 4.0   |                                  | ENT COMPOSITION AND MINERALOGY OF TAILIN                                                                                               |             |
| 5.0   | QUALITY OF                       | TAILINGS-SLURRY-WATER SAMPLE                                                                                                           | 10          |
| 6.0   | CONCLUSION                       | IS                                                                                                                                     | 11          |
| 7.0   | REFERENCES                       |                                                                                                                                        | 13          |
|       |                                  |                                                                                                                                        |             |
|       |                                  | TABLES AND APPENDICES                                                                                                                  |             |
|       |                                  | (At Back of Report Text)                                                                                                               |             |
| Table |                                  | Acid-Base-Analysis and Net-Acid-Generation Rest<br>Tailings-Solids Sample<br>Multi-Element-Analysis Results for Tailings-Solids Sample |             |
|       | e 4.2:<br>e 5.1:                 | Mineralogical Results for Tailings-Solids Sample<br>Analysis Results for Tailings-Slurry-Water Sample                                  |             |
| Appe  | endix A:<br>endix B:<br>endix C: | Details of Bench-Scale-Metallurgical-Testwork Programs<br>Testwork Methods<br>Laboratory Reports                                       | me          |

Graeme Campbell & Associates Pty Ltd

#### SUMMARY OF TECHNICAL TERMS EMPLOYED IN THIS REPORT

| ACRONYM    | PARAMETER                    | DEFINITION/DETERMINATION                                                   | UNIT                                     |
|------------|------------------------------|----------------------------------------------------------------------------|------------------------------------------|
| AFP        | Acid-Formation Potential     |                                                                            |                                          |
| ARD        | Acid-Rock Drainage           |                                                                            |                                          |
| Total-S    | Total Sulphur                | Analysis Result                                                            | % (w/w)                                  |
| Sulphide-S | Sulphide Sulphur             | Testwork Result [i.e. Sulphide-S = Total-S - Sulphate-S]                   | % (w/w)                                  |
| ANC        | Acid-Neutralisation Capacity | Testwork Result                                                            | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
| MPA        | Maximum-Potential Acidity    | Calculation                                                                | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
| NAPP       | Net-Acid-Producing Potential | Calculation                                                                | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
| NAG        | Net-Acid Generation          | Testwork Result                                                            | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
| NAF        | Non-Acid Forming             | Calculation:                                                               | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
|            | _                            | • Sulphide-S < 0.3 %                                                       |                                          |
|            |                              | • Sulphide-S $\geq$ 0.3 %, and negative-NAPP value with ANC/MPA $\geq$ 2.0 |                                          |
| PAF        | Potentially-Acid Forming     | Calculation:                                                               | kg H <sub>2</sub> SO <sub>4</sub> /tonne |
|            |                              | • Sulphide-S $\geq$ 0.3 %, and any positive-NAPP value                     |                                          |
|            |                              | • Sulphide-S $\geq$ 0.3 %, and a negative-NAPP value with ANC/MPA $<$ 2.0  |                                          |
| PAF-[SL]   | PAF-[Short-Lag]              | Estimation [e.g. inferred from 'kinetic' testing]                          |                                          |
| PAF-[LL]   | PAF-[Long-Lag]               | Estimation [e.g. inferred from 'kinetic' testing]                          |                                          |
| SOR        | Sulphide-Oxidation Rate      | Testwork Result [e.g. obtained from 'kinetic' testing]                     | mg SO <sub>4</sub> /kg/week,             |

#### Notes:

The <u>PAF-[SL]</u> classification applies to PAF-materials (e.g. mine-wastes, and/or process-tailings) that are initially circum-neutral, but acidify (viz. pH less than 5) within weeks-to-months when exposed, and subjected to an "aggressive-weathering" regime typical of well-watered environments (e.g. where unsaturated-conditions prevail for at least a few days [via drainage/evaporation processes] between successive infiltration/flushing episodes that, in turn, occur regularly [e.g. monthly rainfall patterns comprising 1-2+ major-raindays of 10+ mm "on-average" during most of the annual hydrological-cycle]). The occurrence of thin, dilute films of pore-fluids on sulphide-grain surfaces which are regularly flushed constitutes an aeration/moisture regime that is near-optimal for sulphide-oxidation. In such well-watered settings, surface-zones of exposed mine-wastes/process-tailings seldom experience total-suctions in excess of 1+ bars (i.e. 0.1+ MPa).

The <u>PAF-[LL]</u> classification applies to PAF-materials where exposure for years (even decades+) may be needed before acidification develops. Circum-neutral-pH during "lag-phase" weathering is chiefly due to "at-source" buffering by carbonate-minerals.

Climate directly influences "lag-phase" duration, and a sulphide-gangue assemblage classified as PAF-[SL] in well-watered settings where the SOR is controlled by O2-supply, may instead be classified as PAF-[LL] in water-limited settings where the SOR is controlled by H2O-supply in terms of both total-suction, and infrequency of "flushing-episodes" (Campbell 2004, 2006). The formation of "secondary-oxidation-products" (e.g. Fe-oxyhydroxides) as indurated, and tightly adhering/cohering deposits, is typically enhanced during "lag-phase" weathering in water-limited settings, and is a further mechanism by with sulphide-oxidation is stifled under the ensuing "mild" weathering-regime. Surface-zones of exposed mine-wastes/process-tailings in such environments are typically characterised by total-suctions well in excess of 1 bar for most of the year. At high total-suctions, even the physical meaning of pore-fluid "films" becomes tenuous.

#### 1.0 INTRODUCTION

Hillgrove Resources Pty Ltd operates the Kanmantoo Copper Project located to the east of Callington, South Australia.

Ore is treated in the mill, and the resulting stream of process-tailings (in slurry form) discharged to an engineered, tailings-storage facility (TSF).

Graeme Campbell & Associates Pty Ltd (GCA) was commissioned to carry out geochemical testwork on a tailings-slurry sample derived from a bench-scale-metallurgical study.

The Static-Testwork Programme focused on the <u>Acid-Formation Potential (AFP)</u>, <u>Multi-Element Composition</u>, and <u>Mineralogy</u> of the tailings-solids sample.<sup>1</sup> In addition, the quality (viz. major/minor-ion chemistry) of the tailings-slurry-water sample was determined.

The testwork results are presented and discussed in this report, and implications for process-tailings management highlighted.

<sup>&</sup>lt;sup>1</sup> A Static-Testwork Programme comprises "whole-rock" analyses and tests.

#### 2.0 STUDY APPROACH

Details of the sampling and testwork programmes, and the calculations and criteria employed for classifying the tailings-solids sample into an AFP category, are presented and discussed in the following sections.

# 2.1 Testwork Programme

#### 2.1.1 Sample

The tailings-slurry sample was supplied by Ammtec Ltd (Balcatta). Details of the bench-scale-metallurgical study are presented in Appendix A.

The tailings-slurry sample was provided in a 10-L, opaque plastic-pail that was four-fifths-filled with slurry. The height of the tailings-solids was approximately one-tenth of the total-slurry height. The supernatant (viz. tailings-slurry-water) overlying the tailings-solids was decanted via siphoning, vacuum-filtered (0.45-µm-membrane), and preserved for specific analyses.<sup>2</sup>

The 'sludge' of tailings-solids was passed through a 5-mm-nylon sieve, and then homogenised by hand-mixing. The resulting tailings-solids sample was <u>not</u> washed prior to testing.

#### 2.1.2 Testwork

The testwork methods employed in this study are based on recognised procedures for the geochemical characterisation of mine-waste materials, process-liquors and natural-waters (e.g. AMIRA 2002; Morin and Hutt 1997; Smith 1992; Coastech Research 1991; BC AMD Task Force 1989; APHA 1992).

 $<sup>^2</sup>$  A sub-sample of the 'raw-filtrate' was employed for the analysis of major-parameters. Sub-samples of the filtrate were dosed with HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> for multi-element analyses, and the determination of NO<sub>3</sub>-N and NH<sub>3</sub>-N, respectively.

Details of the testwork methods are presented in Appendix B.

Part of the testwork was carried out by Genalysis Laboratory Services (Maddington), and SGS Environmental Services (Welshpool). Specialised testing (viz. auto-titrations and Net-Acid-Generation [NAG] Tests) was undertaken by Dr. Graeme Campbell in the GCA Testing-Laboratory (Bridgetown). The mineralogical work was performed by Dr. Roger Townend of Roger Townend & Associates (Malaga).

Copies of the laboratory and mineralogical reports are presented in Appendix C.

#### 2.2 Calculated Parameters

The <u>Maximum-Potential-Acidity (MPA)</u> value (in kg  $H_2SO_4$ /tonne) of the tailings-solids sample was calculated by multiplying the Sulphide-S value (in %) by 30.6. The multiplication-factor of 30.6 reflects both the reaction stoichiometry for the complete-oxidation of marcasite/pyrrhotite, by  $O_2$  to "Fe(OH)<sub>3</sub>" and  $H_2SO_4$ , and the different weight-based units of % and kg  $H_2SO_4$ /tonne. The stoichiometry of sulphide-oxidation is discussed further in Appendix B. The <u>Net-Acid-Producing-Potential (NAPP)</u> value (in kg  $H_2SO_4$ /tonne) was calculated from the corresponding MPA and <u>Acid-Neutralisation-Capacity (ANC)</u> values (i.e. NAPP = MPA - ANC).

#### 2.3 Classification Criteria

In terms of AFP, mine-wastes may be classified into one of the following categories, viz.

- <u>Non-Acid Forming (NAF).</u>
- <u>Potentially-Acid Forming (PAF)</u>.

There are **no** unifying, "standard" criteria for classifying the AFP of mine-wastes (e.g. Price 2005; Campbell 2002a,b; Smith 1992), and reflects the diversity of sulphide- and gangue-mineral assemblages within (un)mineralised-lithotypes of varying weathering- and alteration-status. Rather, criteria for classifying AFP may need to be tailored to deposit-specific geochemistry, and mineralogy, and <u>site-specific climate</u>.

The AFP-classification criteria often employed at mining-operations worldwide are:

- NAF: Sulphide-S < 0.3 %. For Sulphide-S  $\geq$  0.3 %, both a negative NAPP value, and an ANC/MPA ratio  $\geq$  2.0.
- PAF: For Sulphide-S  $\geq 0.3$  %, any positive-NAPP value; negative-NAPP value with an ANC/MPA ratio < 2.0.

In assessing the AFP of mine-wastes, there is consensus that lithotypes with Sulphide-S contents less than c. 0.3 % are unlikely to oxidise at rates fast enough to result in acidification (e.g. pH less than 4-5). This position assumes that the groundmass hosting such "trace-sulphides" is <u>not</u> simply quartz, and/or clays (Price 2005; Price *et al.* 1997), and that for a carbonate-deficient gangue, the sulphide-minerals are <u>not</u> unusually reactive (e.g. sulphide-oxidation rates [SORs] less than c. 20-40 mg SO<sub>4</sub>/kg/flush) [= c. 1-2 kg SO<sub>4</sub>/tonne/year for weekly flushing/drying-cycles].<sup>3</sup> A "cut-off" of 0.3 % for Sulphide-S also accords with the findings of kinetic-testing (viz. Weathering-Columns) conducted, since the late-1980s, by Dr. Graeme Campbell for mine-wastes of diverse mineralogy in terms of AFP.

reactive.

<sup>&</sup>lt;sup>3</sup> Although 'steady-state' SORs (at circum-neutral-pH) for Sulphide-S contents less than 0.3 % may indeed exceed 1-2 kg SO<sub>4</sub>/tonne/year, such rates are generally restricted to either sedimentary forms (e.g. framboidal-pyrites, and marcasites), or hydrothermal-sulphides that are ultrafine-grained, and atypically

The ANC/MPA criteria for the NAF category reflects the need to compensate for less-than-perfect availability of alkalinity-forms (e.g. carbonate-minerals) for neutralisation of acid produced through sulphide-oxidation. A less-than-perfect availability of alkalinity-forms may arise from:

- (a) Restricted accessibility of acid to carbonate-grains;
- (b) Rate-limiting dissolution of carbonates-grains near pH=6-7; and,
- (c) Depletion of carbonate-minerals through rainfall-fed leaching within waste-dumps.<sup>4</sup>

In terms of (a), restricted accessibility of acid to the surfaces of carbonate-grains may occur at different spatial-scales (viz. at the "whole-rock-scale" where rapid flows of Acid-Rock Drainage [ARD] by-pass the calcareous-matrix of rock-fragments [e.g. limestones] via preferential-flow pathways within a waste-dump, and at the "pore/grainscale" in which the surfaces of carbonate-grains are "blinded/rimmed" by precipitates of Fe(III)-oxyhydroxides [e.g. ferrihydrite-type phases]). As shown by Li (1997), Fe-rich varieties of ferroan-carbonates are especially prone to "surface-armouring" effects (e.g. kinetic-testing of pyritic tailings-solids containing pyrite, ankerites and siderites resulted in acidic leachates when less than one-third of the carbonate-grains had dissolved). The effectiveness, or otherwise, of circum-neutral buffering is closely tied to inter alia the residence-time of pore-fluids in contact with carbonate-grain surfaces, and therefore a function of mine-site climate. In water-limited settings where flushing from infiltration is infrequent, and where moisture dynamics mainly involve slow unsaturated-flow below "field-capacity" (c.f. regular, rapid flow rates near saturation in well-watered settings), longer residence-times favour diffusion of soluble-alkalinity forms across armoured carbonate-grains, and thereby favour neutralisation reactions.

<sup>&</sup>lt;sup>4</sup> Depletion of carbonate-minerals through dissolution in meteoric-waters is generally minimal in water-limited settings, especially within the "hydrologically-active-zone" (e.g. top 2-3 m) of a waste-dump, since re-precipitation occurs during evapo-concentration when strongly-desiccating conditions return after major wet-spells.

To compensate for the effects of (a) to (c) above, some practitioners advocate that, for a mine-waste sample to be classified as NAF, it must have an ANC/MPA ratio of at least 3.0 (see review of earlier literature by Smith [1992]). In recent years, fundamental-research (especially estimation of reaction-rates for diverse sulphide/gangue-mineral assemblages), and field-experience at mining operations world-wide, have shown that the potential for ARD production is very low for mine-waste materials with ANC/MPA ratios greater than 2.0 (AMIRA 2002; Price *et al.* 1997, Currey *et al.* 1997, and Murray *et al.* 1995).<sup>5</sup> This ANC/MPA ratio is employed in the present work.<sup>6</sup>

The risk posed by handling PAF-lithotypes during the active-lifetime of a deposit is governed primarily by the duration of the <a href="lag-phase">lag-phase</a> (i.e. the period during which sulphide-oxidation occurs, but acidification does <a href="not">not</a> develop, due to circum-neutral buffering by gangue-phases [chiefly carbonate-minerals]). Although the duration of the lag-phase for mine-wastes at field-scale cannot be accurately predicted *a priori*, estimates (albeit approximate) may still be needed to identify threshold exposure-times for the safe handling of PAF-lithotypes, and so reduce ARD risk. Estimates of SORs, and lag-phase duration, may be obtained through programmes of kinetic-testing (viz. Weathering-Columns), and consideration of <a href="inter-alia">inter-alia</a> the moisture/aeration-regimes of exposed (i.e. uncovered) mine-wastes under the climatic conditions of the mine-site (especially rainfall distribution in relation to Potential-Evapotranspiration [PET] rates). In the absence of results from kinetic-testing, experience permits "first-pass" estimates of SORs and lag-phase duration to be made from the results of static-testing, and thereby used to further classify PAF-lithotypes into PAF-[Short-Lag] and PAF-[Long-

<sup>&</sup>lt;sup>5</sup> Such ANC/MPA ratios are consistent with those indicated from SORs, and carbonate-depletion rates, as reported in the International-Kinetic Database for mine-waste materials from around the world (Morin and Hutt 1997).

<sup>&</sup>lt;sup>6</sup> It should be noted that mining-regulators in Nevada (USA) classify a mine-waste sample as NAF, if it is characterised by an ANC/MPA ratio greater than 1.2 (US EPA 1994). This lower ANC/MPA ratio reflects the semi-arid conditions typically encountered at mine-sites in Nevada. Although utilised in the early-1990s, it is understood that an ANC/MPA ratio of 1.2 is still entertained by regulators in Nevada for "screening" PAF and NAF varieties of mine-wastes in semi-arid settings.

<sup>&</sup>lt;sup>7</sup> SO<sub>4</sub> is still produced by sulphide-oxidation during the lag-phase, and appreciable amounts of soluble-forms of certain minor-elements (e.g. Ni and As) may be released at circum-neutral-pH during lag-phase weathering. However, in the latter case, the mine-wastes would need to be at least appreciably enriched in Total-Ni and Total-As to begin with.

**Lag]** sub-categories. Such "first-pass" estimations are necessarily provisional, and subject to revision, in the light of the outcomes of kinetic-testing, and field observations.

# 3.0 ACID-BASE CHEMISTRY OF TAILINGS-SOLIDS SAMPLE

The testwork results on the acid-base chemistry of the tailings-solids sample are presented in Table 3.1.

The tailings-solids sample was characterised by (Table 3.1):

- a Sulphide-S content of 0.78 %;
- an ANC value of 8-9 kg H<sub>2</sub>SO<sub>4</sub>/tonne, and a CO<sub>3</sub>-C value of 0.01 %;
- a NAPP value of 16 kg H<sub>2</sub>SO<sub>4</sub>/tonne; and,
- a NAG-pH value of 3.6-3.7, and a NAG value of 13 kg H<sub>2</sub>SO<sub>4</sub>/tonne.

The calculated-NAPP and measured-NAG values were well matched.

The testwork results indicate that the tailings-solids sample contained trace amounts of sulphide-minerals (viz. Sulphide-S content of 0.5-1.0 %) in a gangue devoid of carbonate-minerals. The sulphide-mineral suite was dominated by marcasite with sub-ordinate pyrrhotite (Table 4.2).

The tailings-solids sample is classified as <u>PAF</u>, and given both the reactive nature of marcasites, and the "gutless-gangue" in terms of circum-neutral buffering, the sample may be further classified as <u>PAF-[Short-Lag]</u>.

# 4.0 MULTI-ELEMENT COMPOSITION AND MINERALOGY OF TAILINGS-SOLIDS SAMPLE

The multi-element composition and mineralogy of the tailings-solids sample are indicated by the data presented in Tables 4.1 and 4.2, respectively.<sup>8</sup> The corresponding element-enrichments in the samples, as indicated by the values of the Geochemical-Abundance Index (GAI), are also presented in Table 4.1.<sup>9</sup> It should be noted that these element-enrichments are relative enrichments, based on the element contents typically recorded for <u>unmineralised</u> soils, regoliths and bedrocks (Bowen 1979).

The tailings-solids sample was variously enriched in Ag, Bi and Se (Table 4.1).

The tailings-solids sample mainly comprised quartz, chlorites, biotites, and garnets (Table 4.2). The sulphide-mineral suite was dominated by marcasite over pyrrhotite. Although traces of sphalerite and chalcopyrite were identified in the mineralogical study, the Cu and Zn contents of the tailings-solids sample were only 0.037 %, and 0.005 %, respectively (Table 4.1).

The analysis results indicate that, geochemically, the tailings-solids sample was relatively "clean".

-

<sup>&</sup>lt;sup>8</sup> The suite of elements listed in Table 4.1 is grouped into (a) the major-elements (viz. Na, K, Mg, Ca, Al and Fe) making-up the lattices of primary-silicates, sulphides, clays, sesquioxides and carbonates, and (b) minor-elements. A distinction is made between minor-elements which, under neutral-to-alkaline conditions, occur (i) as cationic-hydrolysis forms (e.g. Cu), and (ii) as anions/oxyanions (e.g. As). Anionic forms may exhibit moderate solubility under neutral-to-alkaline conditions.

<sup>&</sup>lt;sup>9</sup> The GAI is defined in Appendix A.

# 5.0 QUALITY OF TAILINGS-SLURRY-WATER SAMPLE

The analysis results for the tailings-slurry-water sample are presented in Table 5.1.

The tailings-slurry-water sample had a pH value of 6.1, and a salinity (as Total-Dissolved Solids, TDS) of 650 mg/L (Table 5.1).<sup>10</sup>

The concentrations of minor-elements were below, or close to, the respective detection-limits (Table 5.1). The low concentrations of soluble metals attest to the efficiency of metal-sorption reactions under neutral-to-alkaline conditions (Sposito 1984).<sup>11</sup>

The analysis results indicate that the tailings-slurry-water sample was circum-neutral (viz. pH 6-7, and of potable-salinity, with minor-element concentrations either below, or close to, the respective detection-limits.

<sup>&</sup>lt;sup>10</sup> Perth scheme-water was employed in the bench-scale-metallurgical study.

<sup>&</sup>lt;sup>11</sup> Sorption reactions include both adsorption and precipitation reactions (Sposito 1984).

## 6.0 CONCLUSIONS

Based on the testwork results obtained in this study, it is concluded that the process-tailings-slurry sample was characterised by:

- tailings-solids which are classified as PAF-[Short-Lag];
- tailings-solids which are only moderately enriched in Ag, Bi, and Se; and,
- a tailings-slurry-water which is circum-neutral and of potable-salinity, with very-low concentrations of minor-elements.

During the active-lifetime of the TSF, the exposed surface-zone-tailings on the beaches should largely undergo "lag-phase-weathering", assuming that the exposure-times between deposition-cycles is only a matter of weeks (c.f. months).

Sulphide-oxidation within the surface-zone of the tailings-beaches should be constrained by either:

- (a) high moisture contents (e.g. relative-saturations greater than c. 80 % [v/v]) initially, due to the settling/shrinking-stage of tailings-ageing; or,
- (b) residual moisture contents (corresponding to total-suctions above 10+bars), due to evaporative-drying, and formation of a surface-crust (likely at the "mm/cm-scale"), especially during the summer months.

However, the roles played by (a) and (b) above will depend closely on the reactivity of the sulphide-minerals (chiefly marcasites), and the (seasonal) unsaturated-moisture dynamics within the surface-zone-tailings. A programme of kinetic-testing (viz. Weathering-Columns) would be required to better project the duration of the lag-phase.

At TSF-closure, some form of dry-cover system will likely be required. Given the Mediterranean climate, and the local mallee-type vegetation communities of trees and shrubs, optimising evapotranspiration to minimise percolation beneath the cover system should prove more challenging than that for vegetated store/release-cover systems at mine-sites within the arid Australian interior (Campbell 2004).

# 7.0 REFERENCES

- American Public Health Association, 1992, "Standard Methods for the Examination of Water and Wastewater", 18th Edition, Washington.
- AMIRA International Ltd, 2002, "ARD Test Handbook", Prepared by Ian Wark Research Institute, and Environmental Geochemistry International Pty Ltd.
- Berigari MS and Al-Any FMS, 1994, "Gypsum Determination in Soils by Conversion to Water-Soluble Sodium Sulfate", *Soil Science Society of America Journal*, 58:1624-1627.
- Belzile N, Chen Y-W, Cai M-F and Li Y, 2004, "A Review on Pyrrhotite Oxidation", *Journal of Geochemical Exploration*, <u>84</u>:65-76.
- Bowen HJM, 1979, "Environmental Chemistry of the Elements", Academic Press, New York.
- British Columbia Acid Mine Drainage Task Force Report, 1989, "Draft Acid Rock Drainage Technical Guide. Volume 1".
- Campbell GD, 2002a, "Geochemistry and Management of Pyritic Mine-Wastes: I. Characterisation", in Proceedings of Workshop on "Soil Technology Contaminated Land", February 2002, Centre for Land Rehabilitation, University of Western Australia.
- Campbell GD, 2002b, "Geochemistry and Management of Pyritic Mine-Wastes: II. Weathering Behaviour and Arsenic Solubility", in Proceedings of Workshop on "Soil Technology Contaminated Land", February 2002, Centre for Land Rehabilitation, University of Western Australia.

- Campbell GD, 2004, "Store/Release Covers in the Australian Outback: A Review", Section 13 in the Proceedings from the Australian Centre for Geomechanics seminar on "Mine Closure Towards Sustainable Outcomes", 5-6 August, Perth.
- Campbell GD, 2006, "Acid-Formation Potential of Mine-Wastes: Sampling, Testwork and Interpretation Approaches for the WA Goldfields", in the Goldfields Environmental Management Groups "2006 Workshop on Environmental Management", 24-26 May 2006, Kalgoorlie-Boulder. In addition, power-point presentation titled: "Geochemistry of Mine-Wastes and Process-Tailings at Gold and Nickel Mines in WA Goldfields: Manner and Rates of Weathering in Water-Limited Environments". A copy of this presentation is available upon request. (gca@wn.com.au).
- Coastech Research Inc., 1991, "Acid Rock Drainage Prediction Manual".
- Currey NA, Ritchie PJ and Murray GSC, 1997, "Management Strategies for Acid Rock Drainage at Kidston Gold Mine, North Queensland", pp. 93-102 in McLean RW and Bell LC (eds), "Third Australian Workshop on Acid Mine Drainage Proceedings", Australian Centre for Minesite Rehabilitation Research.
- Förstner U, Ahlf W and Calmano W, 1993, "Sediment Quality Objectives and Criteria Development in Germany", *Water Science & Technology*, 28:307-316.
- Jambor JL, Dutrizac JE and Chen TT, 2000, "Contribution of Specific Minerals to the Neutralization Potential in Static Tests", pp. 551-565 in "Proceedings from the Fifth International Conference on Acid Rock Drainage", Volume I, Denver.
- Jambor JL, Dutrizac JE, Groat LA and Raudsepp M, 2002, "Static Tests of Neutralization Potentials of Silicate and Aluminosilicate Minerals", *Environmental Geology*, 43:1-17.

- Jambor JL, Dutrizac JE and Raudsepp M, 2005, "Neutralization Potentials of Some Common and Uncommon Rocks, and Some Pitfalls in NP Measurements", in "Challenges in the Prediction of Drainage Chemistry", Proceedings of the 12th Annual British Columbia MEND ML/ARD Workshop.
- Janzen MP, Nicholson RV and Scharer JM, 2000, "Pyrrhotite Reaction Kinetics: Reaction Rates for Oxidation by Oxygen, Ferric Iron, and for Nonoxidative Dissolution", *Geochimica et Cosmochimica Acta*, <u>64</u>:1511-1522.
- Jerz JK and Rimstidt JD, 2004, "Pyrite Oxidation in Moist Air", *Geochimica et Cosmochimica Acta*, <u>68</u>:701-714.
- Lenahan WC and Murray-Smith R de L, 1986, "Assay and Analytical Practice in the South African Mining Industry", The South African Institute of Mining and Metallurgy Monograph Series M6, Johannesburg.
- Li MG, 1997, "Neutralization Potential Versus Observed Mineral Dissolution in Humidity Cell Tests for Louvicourt Tailings", pp. 149-164 in "Proceedings of the Fourth International Conference on Acid Rock Drainage", Volume I, Vancouver.
- Miller S and Brodie K, 2000, "Cover Performance for the Control of Sulfide Oxidation and Acid Drainage from Waste Rock at the Martha Mine, New Zealand", pp. 99-108 in Grundon NJ and Bell LC (eds), "Proceedings of the Fourth Australian Workshop on Acid Mine Drainage", Australian Centre for Mining Environmental Research.
- Miller SD, Jeffery JJ and Donohue TA, 1994, "Developments in Predicting and Management of Acid Forming Mine Wastes in Australia and Southeast Asia", pp. 177-184 in "Proceedings of the International Land Reclamation and Mine

- Drainage Conference and Third International Conference on the Abatement of Acidic Drainage", Pittsburgh.
- Miller S, Robertson A and Donohue T, 1997, "Advances in Acid Drainage Prediction Using the Net Acid Generation (NAG) Test", pp. 535-547 in "Proceedings of the Fourth International Conference on Acid Rock Drainage", Vancouver.
- Morin KA and Hutt NM, 1997, "Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies", MDAG Publishing, Vancouver.
- Murray GSC, Robertson JD and Ferguson KD, 1995, "Defining the AMD Problem. I. A Corporate Perspective", pp. 3-15 in Grundon NJ and Bell LC (eds), "Second Australian Acid Mine Drainage Workshop Proceedings", Australian Centre for Minesite Rehabilitation Research.
- Nicholson RV and Scharer JM, 1994, "Laboratory Studies of Pyrrhotite Oxidation Kinetics", pp. 14-30 in Alpers CN and Blowes DW (eds), "Environmental Geochemistry of Sulfide Oxidation", ACS Symposium Series 550, American Chemical Society, Washington DC.
- O'Shay T, Hossner LR and Dixon JB, 1990, "A Modified Hydrogen Peroxide Method for Determination of Potential Acidity in Pyritic Overburden", *Journal of Environmental Quality*, 19:778-782.
- Price W, 2005, "Criteria Used in Material Characterization and the Prediction of Drainage Chemistry: "Screaming Criteria"", Presentation B.1 in "Proceedings of the 12th Annual British Columbia MEND ML/ARD Workshop on "Challenges in the Prediction of Drainage Chemistry", November 30 to December 1, 2005, Vancouver, British Columbia.

- Price WA, Morin K and Hutt N, 1997, "Guidelines for the Prediction of Acid Rock Drainage and Metal Leaching for Mines in British Columbia: Part II. Recommended Procedures for Static and Kinetic Testing", pp. 15-30 in "Proceedings of the Fourth International Conference on Acid Rock Drainage", Volume I, Vancouver.
- Rimstidt JD and Newcomb WD, 1993, "Measurement and Analysis of Rate Data: The Rate of Reaction of Ferric Iron With Pyrite", *Geochimica et Cosmochimica Acta*, <u>57</u>:1919-1934.
- Rimstidt JD and Vaughan DJ, 2003, "Pyrite Oxidation: A State-of-the-Art Assessment of Reaction Mechanism", *Geochimica et Cosmochimica Acta*, <u>67</u>:873-880.
- Shaw S, 2005, "Case Studies and Subsequent Guidelines for the Use of the Static NAG Procedure", Presenttaion A.4 in "Proceedings of the 12th Annual British Columbia MEND ML/ARD Workshop on "Challenges in the Prediction of Drainage Chemistry", November 30 to December 1, 2005, Vancouver, British Columbia.
- Smith A, 1992, "Prediction of Acid Generation Potential", in Hutchison IPG and Ellison RD (eds), "Mine Waste Management", Lewis Publishers, Michigan.
- Sobek AA, Schuller WA, Freeman JR and Smith RM, 1978, "Field and Laboratory Methods Applicable to Overburdens and Minesoils", EPA-600/2-78-054.
- Sposito G, 1984, "The Surface Chemistry of Soils", Oxford University Press, Oxford.
- U.S. Environmental Protection Agency, 1994, "Technical Document: Acid Mine Drainage Prediction", EPA530-R-94-036, NTIS PB94-201829.

White AF and Brantley SL (eds.), 1995, "Chemical Weathering Rates of Silicate Minerals", Reviews in Mineralogy, Volume 31, Mineralogical Society of America, Washington, D.C.

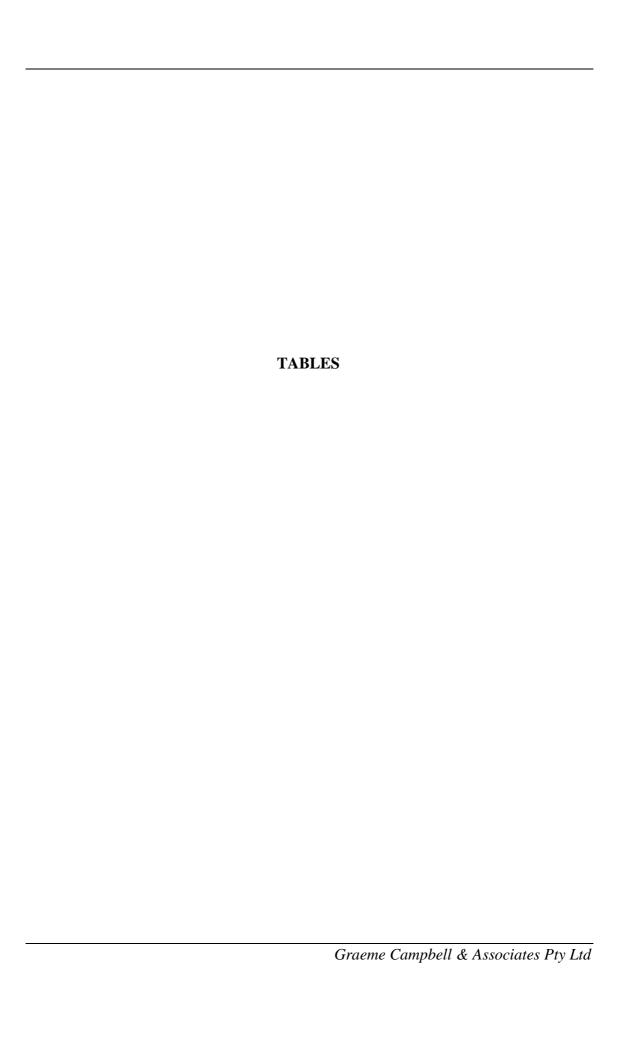



Table 3.1: Acid-Base-Analysis and Net-Acid-Generation Results for Tailings-Solids Sample

| GCA-<br>SAMPLE<br>NO. | MC<br>(%, w/w) | TOTAL-S<br>(%) | SO <sub>4</sub> -S<br>(%) | Sulphide-S<br>(%) | CO <sub>3</sub> -C<br>(%) | ANC<br>kg | NAPP<br>H <sub>2</sub> SO <sub>4</sub> /to | NAG<br>onne | NAG-pH    | AFP<br>CATEGORY |
|-----------------------|----------------|----------------|---------------------------|-------------------|---------------------------|-----------|--------------------------------------------|-------------|-----------|-----------------|
| GCA6298               | 20.5           | 0.80 (0.76)    | 0.03 (0.02)               | 0.78              | 0.01 (0.01)               | 9 (8)     | 16                                         | 13 (13)     | 3.6 (3.7) | PAF-[Short-Lag] |

## Notes:

MC = Moisture-Content; ANC = Acid-Neutralisation Capacity; NAPP = Net-Acid-Producing Potential; AFP = Acid-Formation Potential; PAF = Potentially-Acid Forming; NAG = Net-Acid Generation.

All results expressed on a dry-weight basis, except for NAG-pH.

Values in parentheses represent duplicates.

 Table 4.1:
 Multi-Element-Analysis Results for Tailings-Solids Sample

Note: Refer Appendix B for the definition of the Geochemical-Abundance-Index (GAI) indicated in this table.

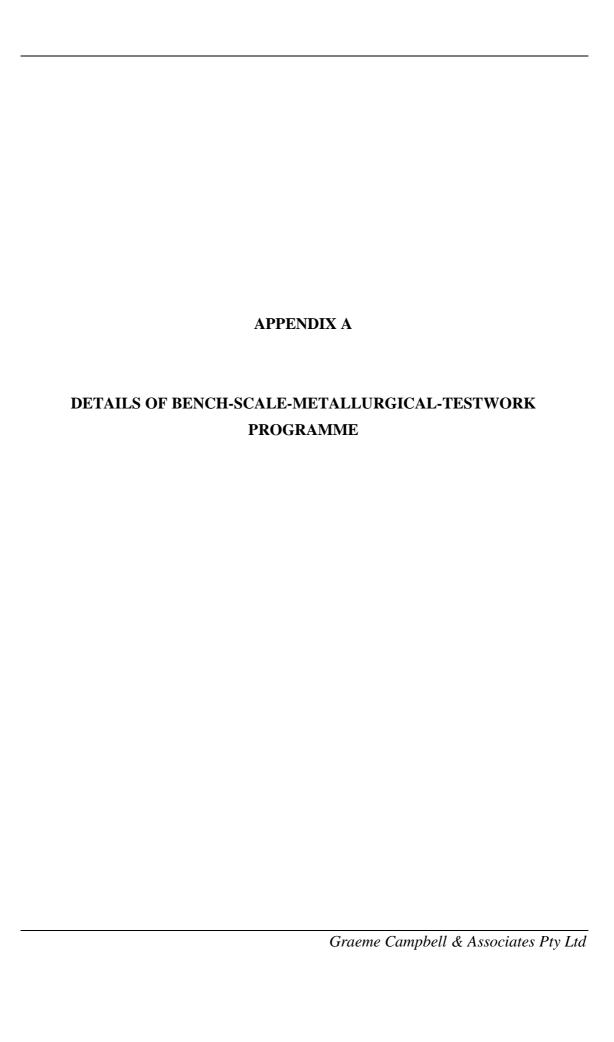
| Note. Refer | TOTAL-ELEMENT        | AVCRUSTAL    | GEOCHEMICAL-          |
|-------------|----------------------|--------------|-----------------------|
| ELEMENT     | CONTENT (mg/kg or %) | ABUNDANCE    | ABUNDANCE INDEX (GAI) |
|             | GCA6298              | (mg/kg or %) | GCA6298               |
| Al          | 5.4%                 | 8.2%         | 0                     |
| Fe          | 13.6%                | 4.1%         | 1                     |
| Na          | 0.059%               | 2.3%         | 0                     |
| K           | 0.91%                | 2.1%         | 0                     |
| Mg          | 1.7%                 | 2.3%         | 0                     |
| Ca          | 0.21%                | 4.1%         | 0                     |
| Ag          | 0.8                  | 0.07         | 3                     |
| Cu          | 370                  | 50           | 2                     |
| Zn          | 50                   | 75           | 0                     |
| Cd          | < 0.1                | 0.11         | 0                     |
| Pb          | 19                   | 14           | 0                     |
| Cr          | 150                  | 100          | 0                     |
| Ni          | 54                   | 80           | 0                     |
| Co          | 68                   | 20           | 1                     |
| Mn          | 2,300                | 950          | 1                     |
| Hg          | < 0.01               | 0.05         | 0                     |
| Sn          | 3.3                  | 2.2          | 0                     |
| Sr          | 11                   | 370          | 0                     |
| Ba          | 91                   | 500          | 0                     |
| Th          | 11                   | 12           | 0                     |
| U           | 3.2                  | 2.4          | 0                     |
| Tl          | 0.34                 | 0.6          | 0                     |
| V           | 64                   | 160          | 0                     |
| As          | 4                    | 1.5          | 1                     |
| Bi          | 75                   | 0.048        | 6                     |
| Sb          | 0.11                 | 0.2          | 0                     |
| Se          | 0.99                 | 0.05         | 4                     |
| Mo          | 5.2                  | 1.5          | 1                     |
| В           | <50                  | 10           | 0                     |
| P           | 480                  | 1,000        | 0                     |
| F           | 540                  | 950          | 0                     |

Note: Average-crustal abundance of elements based on Bowen (1979).

**Table 4.2:** Mineralogical Results for Tailings-Solids Sample

| GCA6298                                                                    |           |  |  |  |  |
|----------------------------------------------------------------------------|-----------|--|--|--|--|
| Component                                                                  | Abundance |  |  |  |  |
| quartz                                                                     | dominant  |  |  |  |  |
| chlorite                                                                   | major     |  |  |  |  |
| biotite<br>almandine-garnet                                                | minor     |  |  |  |  |
| marcasite<br>staurolite<br>magnetite                                       | accessory |  |  |  |  |
| pyrrhotite<br>sphalerite<br>chalcopyrite<br>monazite<br>apatite<br>bismuth | trace     |  |  |  |  |

# Notes:


 $dominant = greater \ than \ 50 \ \%; \ major = 20-50\%; \ minor = 10-20 \ \%; \ accessory = 2-10 \ \%; \ and, \ trace = less \ than \ 2 \ \%.$ 

**Analysis Results for Tailings-Slurry-Water Sample Table 5.1:** 

Note: All results in mg/L, except for pH and EC (μS/cm).

| Note: All results    | 1 -          | of for pH and EC (µS/cm). |              |  |  |
|----------------------|--------------|---------------------------|--------------|--|--|
|                      | Tailings-    |                           | Tailings-    |  |  |
| ELEMENT/             | Slurry-Water | ELEMENT/                  | Slurry-Water |  |  |
| PARAMETER            |              | PARAMETER                 |              |  |  |
|                      | (GCA6298)    |                           | (GCA6298)    |  |  |
|                      |              |                           |              |  |  |
| Major-<br>Parameters |              | Minor-Ions                |              |  |  |
| rarameters           |              | Minor-ions                |              |  |  |
| pН                   | 6.1          | Fe                        | 0.19         |  |  |
| EC [μS/cm]           | 1,100        | Cu                        | 0.01         |  |  |
| TDS(gravimetric)     | 650          | Ni                        | 0.24         |  |  |
|                      |              | Zn                        | 0.11         |  |  |
| Major-Ions           |              | Co                        | 0.51         |  |  |
|                      |              | Al                        | 0.10         |  |  |
| Na                   | 96           | Cd                        | 0.00033      |  |  |
| K                    | 27           | Pb                        | 0.0006       |  |  |
| Mg                   | 23           | Cr                        | < 0.01       |  |  |
| Ca                   | 65           | Hg                        | < 0.0001     |  |  |
| Cl                   | 200          | As                        | 0.0004       |  |  |
| $\mathrm{SO}_4$      | 290          | Sb                        | 0.00014      |  |  |
| HCO <sub>3</sub>     | 10           | Bi                        | < 0.000005   |  |  |
| $CO_3$               | <1           | Se                        | 0.0030       |  |  |
| ОН                   | <1           | В                         | 0.04         |  |  |
|                      |              | Mo                        | 0.00009      |  |  |
| Nitrogen-Forms       |              | P                         | 0.1          |  |  |
|                      |              | F                         | 0.2          |  |  |
| NH <sub>3</sub> -N   | 2.4          | Ag                        | < 0.00001    |  |  |
| NO <sub>3</sub> -N   | 1.0          | Ba                        | 0.059        |  |  |
|                      |              | Sr                        | 0.38         |  |  |
|                      |              | Tl                        | 0.00006      |  |  |
|                      |              | V                         | < 0.01       |  |  |
|                      |              | Sn                        | < 0.0001     |  |  |
|                      |              | U                         | 0.00013      |  |  |
|                      |              | Th                        | < 0.000005   |  |  |
|                      |              | Mn                        | 0.72         |  |  |
|                      |              |                           |              |  |  |

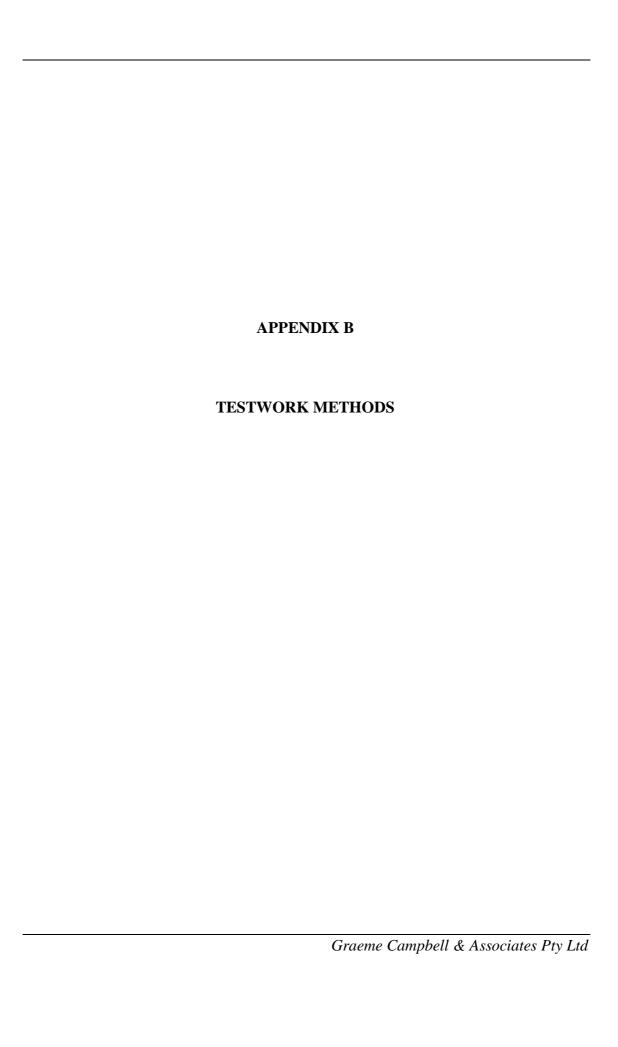
Note:
EC = Electrical Conductivity; TDS = Total-Dissolved Solids.



# Production of a Flotation Tailings Sample for Geo-chemical Testing by G Campbell and Associates.

The flotation tailings sample used for the Geo-chemical test work was derived from three flotation tests conducted on samples from the Kanmantoo copper deposit by AMMTEC laboratories, Balcatta, WA – Job Ref A10080.

Two tests (Ref GS 2420 and GS 2422) were on ore samples from Main zone and the third sample from the smaller O'Neil mineralization zone.


The flotation test conditions adopted for the all tests were as follows;

Ore samples were dry crushed to < 2mm and wet ground in a rod mill to produce a flotation feed sizing of approximately 80% passing 212 microns.

Flotation consisted of a rougher - scavenger stage of 7 minutes using Cytec 3418A (di-thio-phosphinate) as the collector at an addition rate of 50 g\tone of feed together with a small amount approximately 20g\tonne of MIBC (metyl iso-carbinol) as the frother at a pH of 8.5 using lime. The resulting rougher scavenger concentrates, approximately 9% by weight of the feed, were retained for further test investigations. The resulting rougher-scavenger tailings were collected as a pulp in a bucket filled to the brim and dispatched to G Campbell and Associates for geochemical test work. The above flotation conditions were used for all three tests however in test GS 2421 on the O'Neil ore zone an addition of 50g\t potassium amyl xanthate was added to the scavenger stage to improve the recovery of a chalcopyrite-pyrite middlings fraction.

An analyses of the key elements in the test work tailings which constituted the submitted sample are outlined below

| Test No\Ore Zone | %Wt  | %Cu  | %Fe | %S   |
|------------------|------|------|-----|------|
|                  |      |      |     |      |
| GS2420 (Main)    | 91.3 | 0.02 | 6.2 | 0.26 |
| GS2422 (Main)    | 91.9 | 0.03 | 6.3 | 0.88 |
| GS2421 (O'Neil)  | 91.2 | 0.07 | 5.5 | 1.27 |
|                  |      |      |     |      |



#### **APPENDIX B**

#### **TESTWORK METHODS**

# B1.0 ACID-BASE-CHEMISTRY TESTWORK ON TAILINGS-SOLIDS SAMPLE

The acid-base chemistry of the tailings-solids sample was assessed by determining:

- Total Sulphur (Total-S) and Sulphate Sulphur (SO<sub>4</sub>-S).
- Acid-Neutralisation Capacity (ANC), and Carbonate Carbon (CO<sub>3</sub>-C).
- Net-Acid-Producing Potential (NAPP).
- Net-Acid Generation (NAG).

Relevant details of the testwork methods employed are discussed briefly below. Further details are presented in the laboratory reports (see Appendix C).

# B1.1 Total-S and SO<sub>4</sub>-S Tests

The <u>Total-S</u> value was measured by Leco combustion (@ 1300  $^{\circ}$ C) with detection of evolved  $SO_{2(g)}$  by infra-red spectroscopy. The <u>SO<sub>4</sub>-S</u> value was determined by the Na<sub>2</sub>CO<sub>3</sub>-Extraction Method (Berigari and Al-Any 1994; Lenahan and Murray-Smith 1986).<sup>1</sup>

The difference between the Total-S and SO<sub>4</sub>-S values indicates the Sulphide-S (strictly Non-Sulphate-S) content.

 $^1$  The Na<sub>2</sub>CO<sub>3</sub>-reagent extracts SO<sub>4</sub>-S which occurs as soluble sulphates, and calcium sulphates (e.g. gypsum and anhydrite). It also extracts SO<sub>4</sub> sorbed to the surfaces of sesquioxides, clays and silicates. However, SO<sub>4</sub> present as barytes (BaSO<sub>4</sub>) is <u>not</u> extracted, and SO<sub>4</sub> associated with jarositic-type and alunitic-type compounds is incompletely extracted.

# B1.2 ANC, CO<sub>3</sub>-C and pH-Buffering Tests

#### B1.2.1 ANC Test

The ANC value was determined by a procedure based on that of Sobek *et al.* (1978). This procedure is essentially the "standard" method employed for estimating the ANC values of mine-waste materials (Morin and Hutt 1997; BC AMD Task Force 1989).

The sample was reacted with dilute HCl for *c*. 2 hours at 80-90 °C, followed by backtitration with NaOH to a pH=7 end-point to determine the amount of acid consumed.<sup>2</sup> The simmering step for *c*. 2 hours differs slightly from the heating treatment of the Sobek *et al.* procedure wherein the test mixtures are heated to near boiling until reaction is deemed to be complete (viz. gas evolution not visually apparent), followed by boiling for one minute. In terms of dissolution of carbonate, primary-silicate and oxyhydroxide minerals, this variation to the Sobek *et al.* method is inconsequential.

The Sobek *et al.* (1978) procedure exposes mine-waste samples to both strongly-acidic conditions (e.g. pH of 1-2), and a near-boiling temperature. Provided excess acid is added, this method ensures that carbonate-minerals (including ferroan- and manganoan-varieties) are dissolved quantitatively, and that at least "traces" of ferro-magnesian-silicates (e.g. amphiboles, pyroxenes, chlorites, micas, etc.), and feldspars, are dissolved. However, under circum-neutral (viz. pH 6-8) conditions required for mine-waste and environmental management, the hydrolysis/dissolution of ferro-magnesian-silicates is kinetically extremely slow (e.g. see review-monograph by White and Brantley [1995]). Near pH=7, the hydrolysis/dissolution rates (under 'steady-state' conditions, and in the absence of inhibiting alteration-rims) of mafic-silicates and feldspars generally correspond to H<sub>2</sub>SO<sub>4</sub>-consumption rates 'of-the-order' 10<sup>-11</sup>/10<sup>-12</sup> moles/m<sup>2</sup>/s (White and Brantley 1995). As a guide, for minerals of sub-mm grading, such silicate-dissolution rates correspond to Sulphide-Oxidation Rates (SORs) ranging

<sup>&</sup>lt;sup>2</sup> Two drops of 30 % (w/w)  $H_2O_2$  were added to the test mixtures as the pH=7 end-point was approached, so that any Fe(II) forms released by the acid-attack of ferroan-carbonates and -silicates are oxidised to Fe(III) forms (which then hydrolyse to "Fe(OH)<sub>3</sub>"). This step ensures that the resulting ANC values are not biased "on-the-high-side", due to the release of Fe(II) during the acidification/digestion step. Such potential bias in ANC values may be marked for mine-waste samples in which "Fe-rich" ferroan-carbonates (e.g. siderite) dominate acid consumption. The addition of the  $H_2O_2$  reagent is <u>not</u> part of the methodology described by Sobek *et al.* (1978).

up to 'of-the-order' 1-10 mg  $SO_4/kg/week$  (= c. 0.1-1.0 kg  $H_2SO_4/tonne/year$ ).<sup>3</sup> Maintenance of circum-neutral-pH through hydrolysis/dissolution of primary-silicates is therefore restricted to both "mineral-fines", and slow rates of sulphide-weathering.

Despite the aggressive-digestion conditions employed, the ANC values determined by the Sobek *et al.* (1978) method allow an informed, initial "screening" of mine-waste materials in terms of acid-consuming and pH-buffering properties, especially when due account is taken of gangue mineralogy (Morin and Hutt 1997). Jambor *et al.* (2000, 2002) have presented a compendium of 'Sobek-ANC' values for specific classes of primary-silicates, and assists interpretation of the ANC values recorded for mine-waste materials of varying mineralogy.

#### B1.2.2 CO<sub>3</sub>-C Value

The CO<sub>3</sub>-C value is the difference between the Total-C and Total-Organic-C (TOC) values.

The Total-C was measured by Leco combustion (@ 1300  $^{\circ}$ C) with detection of evolved  $CO_{2(g)}$  by infra-red spectroscopy. The TOC is determined by Leco combustion on a sub-sample which has been treated with strong HCl to decompose carbonate-minerals.

## **B1.3** NAPP Calculation

The NAPP value of the tailings-solids sample was calculated from the Total-S, SO<sub>4</sub>-S and ANC values, assuming that <u>all</u> of the Non-Sulphate-S occurs in the form of marcasite/pyrrhotite. The sulphide-mineral suite in the tailings-solids sample was dominated by marcasite with sub-ordinate pyrrhotite (Table 4.2). NAPP calculations serve as a starting point in the assessment of the acid-formation potential of sulphide-bearing materials.

\_\_\_

<sup>&</sup>lt;sup>3</sup> SORs of this magnitude (at circum-neutral-pH) would typically only be recorded for the oxidation of "trace-sulphides" (e.g. Sulphide-S contents less than 0.5 %).

The complete-oxidation of <u>pyrite</u> (= marcasite) may be described by:

$$FeS_2 + 15/4 O_2 + 7/2 H_2O = 2H_2SO_4 + "Fe(OH)_3"$$

The complete-oxidation of <u>pyrrhotite</u> may be described by:

$$\text{FeS}_{(s)}^{"} + 9/2O_{2(g)} + 5/2H_2O_{(l)} = \text{Fe}(OH)_{3(s)}^{"} + 2SO_4^{2-}_{(aq)} + 2H^{+}_{(aq)}$$

Pyrrhotite is non-stoichiometric, so that expressing pyrrhotite as "FeS" in the above equation represents an approximation of the oxidation reaction (Belzile *et al.* 2004; Janzen *et al.* 2000). Elemental sulphur (as an intermediate-oxidation product) may also accumulate during pyrrhotite weathering (Nicholson and Scharer 1994), especially at low-pH. However, Elemental-S is ultimately oxidised to H<sub>2</sub>SO<sub>4</sub> (albeit via a complex, microbially-mediated pathway involving thiosulphate and an array of polythionates).

It may be shown that, if the Sulphide-S (in %S) occurs as pyrite, and/or pyrrhotite, then the amount of acid (in kg  $H_2SO_4$ /tonne) produced through complete-oxidation is given by <u>30.6 x %S</u>. The NAPP value of the tailings-solids sample was therefore calculated from the Sulphide-S content (in %S), and 30.6 as the 'conversion-factor' to estimate the amount of acid that may potentially be produced through the aerobic-oxidation of marcasite/pyrrhotite.

It may be shown that, if the Sulphide-S (in %S) occurs as pyrite, then the amount of acid (in kg  $H_2SO_4$ /tonne) produced through complete-oxidation is given by 30.6 x %S.

<u>Note</u>: The above treatment of oxidation-reaction stoichiometry is restricted to oxidation by 'atmospheric-O<sub>2</sub>' which is the dominant oxidant at circum-neutral-pH. A different oxidation-stoichiometry applies under acidic conditions (e.g. pH less than 3-4) where soluble-Fe(III) forms prevail, and then function as the chief oxidant (e.g. Rimstidt and Newcomb 1993).

Mechanistic aspects of pyrite-oxidation and pyrrhotite-oxidation at the molecular-scale were recently reviewed by Rimstidt and Vaughan (2003), and Belzile *et al.* (2004), respectively.

#### B1.4 NAG Test

The NAG Test is a direct measure of a sample's potential to produce acid through sulphide oxidation, and also provides an indication of the reactivity of the sulphides, and the availability of the alkalinity-forms contributing to the ANC (Miller *et al.* 1997, 1994).

In this test, the sample is reacted with  $H_2O_2$  to rapidly oxidise contained sulphides, and allow the produced acid to react with the acid-neutralising materials (e.g. carbonates). The NAG Test supplements the NAPP-based assessment of the acid-formation potential of mine-waste materials (Morin and Hutt 1997).

The procedure employed in this study is based on that for the 'Static-NAG Test' in its 'single-addition' mode, as described in AMIRA (2002), and by Miller *et al.* (1994, 1997). The Start-pH of the 15 % (w/w) H<sub>2</sub>O<sub>2</sub> solution (prepared from A.R.-grade H<sub>2</sub>O<sub>2</sub>) was adjusted to pH=4.5 using dilute NaOH. In addition, the boiling treatment to decompose residual, unreacted-H<sub>2</sub>O<sub>2</sub> following overnight reaction was carried out in two stages (viz. boiling for *c*. 2 hours initially, cooling and addition of 1 mL of 0.02 M-CuSO<sub>4</sub> to the test mixtures, followed by boiling again for *c*. 2 hours). The addition of Cu(II) salts catalyses the decomposition of any unreacted-H<sub>2</sub>O<sub>2</sub>, and thereby prevents "positive-blank" values being obtained (O'Shay *et al.* 1990). Pulped K-feldspar was employed for the blanks run for the NAG-testwork.

Prior to the boiling-steps, the pH values of the test-mixture suspensions are measured, and invariably correspond to an "overnight-period" of reaction. Such pH values reflect buffering under ambient conditions without accelerated dissolution of gangue-phases through boiling to decompose any unreacted- $H_2O_2$ . In the interpretation of NAG-testwork data, it is important to take note of the pH values recorded prior to the boiling-steps, especially for mine-waste samples that have both Sulphide-S contents less than c. 1 %, and ANC values less than c. 10 kg  $H_2SO_4$ /tonne (as typically recorded for a

'carbonate-deficient' gangue). Furthermore, oxidation by H<sub>2</sub>O<sub>2</sub> is generally at least 10<sup>4</sup>-10<sup>5</sup> faster than the SORs recorded during 'kinetic' testing (e.g. Weathering-Columns) of mine-waste samples. If circum-neutral conditions are to prevail during NAG testwork, then the rate of acid consumption by gangue-phases must be proportionately faster (c.f. This aspect must also be borne in mind when rates for 'ambient-weathering'). interpreting NAG-testwork data, especially for mine-waste materials that are devoid of carbonates, since the <u>dissolution/hydrolysis kinetics of primary-silicates are strongly</u> pH-dependent.

#### **B2.0 MULTI-ELEMENT ANALYSES** ON **TAILINGS-SOLIDS SAMPLE**

The total contents of a wide range of major- and minor-elements in the tailings-solids samples were determined through the use of various digestion and analytical techniques. The detection-limits employed are appropriate for environmental investigations.

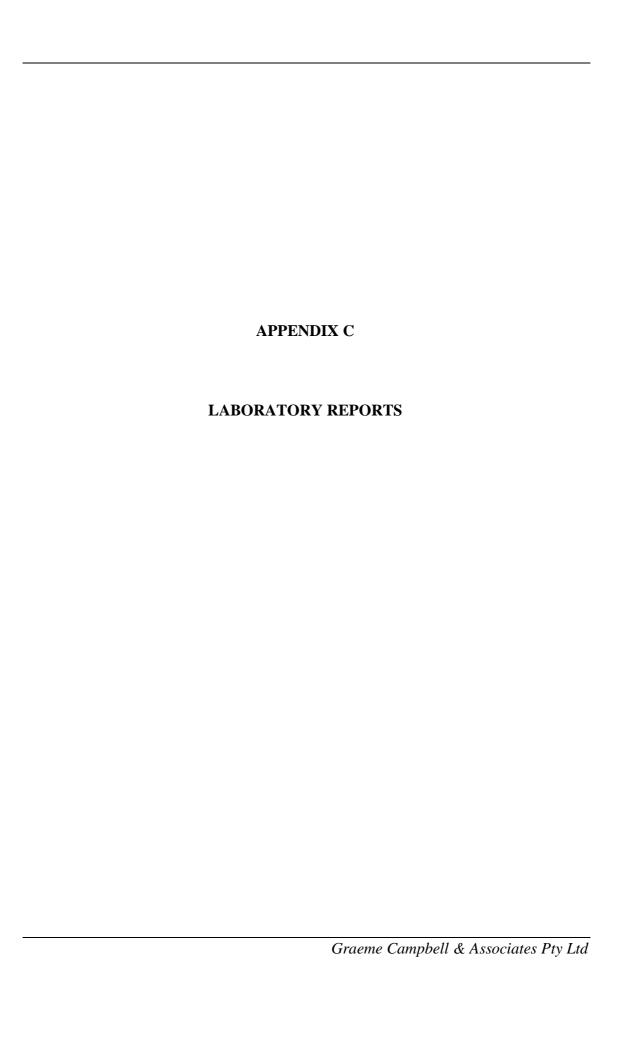
Element enrichments were identified using the Geochemical Abundance Index (GAI).<sup>4</sup>

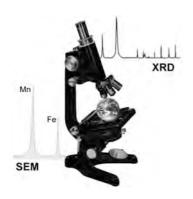
The GAI quantifies an assay result for a particular element in terms of the averagecrustal-abundance of that element.<sup>5</sup> The GAI (based on a log-2 scale) is expressed in 7 integer increments (viz. 0 to 6). A GAI of 0 indicates that the content of the element is less than, or similar to, the average-crustal-abundance; a GAI of 3 corresponds to a 12fold enrichment above the average-crustal-abundance; and so forth, up to a GAI of 6 which corresponds to a 96-fold, or greater, enrichment above average-crustalabundances.

 $C_n$  = measured content of n-th element in the sample.

Graeme Campbell & Associates Pty Ltd

<sup>&</sup>lt;sup>4</sup> The GAI was developed by Förstner *et al* (1993), and is defined as:  $GAI = log_2 [C_n/(1.5 \times B_n)]$ 


 $B_n$  = "background" content of the n-th element in the sample.


<sup>&</sup>lt;sup>5</sup> The average-crustal-abundances of the elements for the GAI calculations are based on the values listed in Bowen (1979).

# B3.0 ANALYSIS OF TAILINGS-SLURRY-WATER SAMPLE

The tailings-slurry-water sample was analysed for pH, Electrical Conductivity (EC), salinity (as Total-Dissolved Solids, TDS), alkalinity forms, Cl, SO<sub>4</sub>, NO<sub>3</sub>, NH<sub>3</sub>-N, and a wide range of major- and minor-elements employing detection-limits appropriate for environmental investigations

All analyses were performed on appropriately-preserved 'splits' for the determination of specific analytes (see Appendix C).





# Roger Townend and Associates Consulting Mineralogists

Unit 4, 40 Irvine drive, Malaga Western Australia 6062

Phone: (08) 9248 1674

email: rogertownend@westnet.com.au

Fax: (08) 9248 1502

GRAEME CAMPBELL AND ASSOC,

10-11-2006

PO BOX 247,

**BRIDGETOWN** 

WA

OUR REF. 21800

YOUR REF 0616

XRD/PLM/SEM ANALYSIS OF ONE TAIL.

(KANMANTOO)

R TOWNEND

# RESULTS (XRD/PLM/SEM)

| GCA              | 6298      |
|------------------|-----------|
| QUARTZ           | DOMINANT  |
| CHLORITE         | MAJOR     |
| BIOTITE          | MINOR     |
| ALMANDINE GARNET | MINOR     |
| STAUROLITE       | ACCESSORY |
| MARCASITE        | ACCESSORY |
| PYRRHOTITE       | TRACE     |
| SPHALERITE       | TRACE     |
| CHALCOPYRITE     | TRACE     |
| MAGNETITE        | ACCESSORY |
| MONAZITE         | TRACE     |
| APATITE          | TRACE     |
| BISMUTH          | TRACE     |



# **Dr G Campbell**

CAMPBELL, GRAEME and ASSOCIATES PO Box 247 BRIDGETOWN WA 6255

#### **JOB INFORMATION**

| JOB CODE       | 143.0/0608152            |
|----------------|--------------------------|
| No. of SAMPLES | 1                        |
| CLIENT O/N     | GCA0616                  |
| PROJECT        | Kanmantoo Copper project |
| STATE          | Tailings                 |
| DATE RECEIVED  | 01/09/2006               |
| DATE COMPLETED | 26/09/2006               |

#### **LEGEND**

X = Less than Detection LimitN/R = Sample Not Received\* = Result Checked

() = Result still to come

I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000 UA = Unable to Assay

> = Value beyond Limit of Method

The sample was received as tailings solids which required drying at 45 degrees Celcius, mixing, splitting and fine pulverising in a zirconia bowl.

#### Results of analysis on:

| Element       | LOD   | S_tot | S-SO4           | S-SO4  | C_tot | TOC+C         | C-CO3 |
|---------------|-------|-------|-----------------|--------|-------|---------------|-------|
| Method        | /GRAV | /LECO | Na2CO3/<br>GRAV | SO/OES | /LECO | OrgC/<br>LECO | /CALC |
| Detection     | 0.01  | 0.005 | 0.01            | 0.01   | 0.01  | 0.01          | 0.01  |
| Units         | %     | %     | %               | %      | %     | %             | %     |
| Control Blank | Х     | Х     | X               | Х      |       |               |       |
| GCA6298       | 19.49 | 0.793 | 0.03            | 0.07   | 0.06  | 0.05          | 0.01  |
| GCA6298 Dup   | 20.56 | 0.759 | 0.02            | 0.06   | 0.05  | 0.04          | 0.01  |
| LECO2         |       | 2.31  |                 |        | 4.38  |               |       |
| PD-1          |       |       | 4.29            |        |       |               |       |
| Graphite-1    |       |       |                 |        |       | 1.78          |       |
| PD-1          |       |       |                 | 4.29   |       |               |       |
| Control Blank |       |       |                 |        |       |               |       |
| S_SO4_A       |       |       | 0.60            |        |       |               |       |
| S_SO4_B       |       |       | 1.29            |        |       |               |       |

- 1. The C,S results were determined from the pulverised portion
- 2. The Carbon and Sulphur was determined according to Genalysis method number SL\_W043.
- 3. S-SO4 was determined by removal of sulphide sulphur from the samples by boiling in hydrochloric acid followed by leaching with hydrochloric acid to dissolve the remaining sulphate which is then read by OES, method code SL\_W045
- 4. S-SO4 was also determined by precipitation of BaSO4. TOC+C (acid insoluble carbon compounds and elemental carbon) by LECO after removal of carbonates and soluble organic carbon. These methods are not covered by Genalysis terms of accreditation to NATA

### **Acid Neutralisation Capacity (ANC)**

| Sample Name | Fizz<br>Rating | Sample<br>Weight<br>(g) | Molarity<br>HCl | Molarity<br>NaOH | Initial<br>Efferves<br>cence | colour<br>change | pH<br>drop | ANC<br>Solution<br>pH | ANC<br>(kg<br>H2SO4/tonne) |
|-------------|----------------|-------------------------|-----------------|------------------|------------------------------|------------------|------------|-----------------------|----------------------------|
| GCA6298     | 0              | 2.004                   | 0.50            | 0.103            | Nil                          | No               | 3.4*       | 2.3                   | 9                          |
| GCA6298 Dup | 0              | 2.006                   | 0.50            | 0.103            | Nil                          | No               | 3.4*       | 2.3                   | 8                          |

#### Notes:

- 1. ANC was determined on the -2mm portion. Acid concentrations are as stated
- Colour change: \* Indicates the appearance of a green colouration as the pH=7 endpoint was approached.
   Two drops of hydrogen peroxide are added to each sample as the endpoint is approached to oxidise any
   ferrous iron
- 3. pH drop: \* Indicates a pH drop to a value below 4 on addition of peroxide
- 4. This procedure according to Genalysis methods number ENV\_W035

#### **NATA ENDORSED DOCUMENT**

#### **Company Accreditation Number 3244**

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

NATA Signatory: R H Essers

Date: 26th September 2006



This document is issued in accordance with NATA's accreditation requirements.

## Graeme Campbell & Associates Pty Ltd

### Laboratory Report

## **NET-ACID-GENERATION (NAG) TESTWORK**

| Sample           | Sample<br>Weight | Sample<br>Weight | Comments                  | pH of Test<br>Mixture |     | Test Mixture<br>fter Boiling Step | Titre<br>[0.1 M- | NAG<br>(kg H <sub>2</sub> SO <sub>4</sub> / |
|------------------|------------------|------------------|---------------------------|-----------------------|-----|-----------------------------------|------------------|---------------------------------------------|
| Number           | (g)              | (g)              |                           | Before                | pН  | EC (μS/cm)                        | NaOH]            | tonne)                                      |
|                  | [moist]          | [dry]            |                           | Boiling Step          |     |                                   | (mL)             |                                             |
| GCA6298          | 6.3              | 5.2              | Reaction peaked overnight | 2.8                   | 3.6 | 470                               | 13.30            | 13                                          |
| GCA6298 (Repeat) | 5.8              | 4.8              | Reaction peaked overnight | 2.9                   | 3.7 | 440                               | 11.90            | 13                                          |
| Blank            | -                | 3.4              |                           | 6.1                   | 7.5 | 71                                | -                | <0.5                                        |

**Notes:** Test conditions based on those described by Miller *et al.* (1997). The pH of the 15 % (v/v)  $H_2O_2$  solution was adjusted to 4.5 using 0.1 M-NaOH prior to commencing the NAG Tests. Test mixtures boiled for *c*. 2 hours to accelerate reaction with  $H_2O_2$ . Then, after allowing the test mixtures to cool, 1.0 mL of 0.016 M-CuSO<sub>4</sub> solution was added, and the test mixtures again boiled for *c*. 2 hours. The addition of Cu(II) catalyses the decomposition of any residual, unreacted  $H_2O_2$  in the test mixtures (O'Shay *et al.* 1990). K-Feldspar was employed for the Blanks.

Dr GD Campbell 27th October 2006

# ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### **JOB INFORMATION**

JOB CODE : 143.0/0608153

No. of SAMPLES : 1 No. of ELEMENTS : 32 CLIENT O/N : GCA0616

SAMPLE SUBMISSION No. :

PROJECT : Kanmantoo Cooper Project

 STATE
 : Ex-Pulp

 DATE RECEIVED
 : 01/09/2006

 DATE COMPLETED
 : 11/10/2006

 DATE PRINTED
 : 11/10/2006

#### **LEGEND**

X = Less than Detection Limit
N/R = Sample Not Received
\* = Result Checked

( ) = Result still to come I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000

UA = Unable to Assay

> = Value beyond Limit of Method

#### MAIN OFFICE AND LABORATORY

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

#### KALGOORLIE SAMPLE PREPARATION DIVISION

12 Keogh Way, Kalgoorlie 6430, Western Australia Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

## **ADELAIDE SAMPLE PREPARATION DIVISION**

124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

Anderbolt, Gauteng, South Africa 1459.

Tel: +27 11 918 0869 Fax: +27 11 918 0879

## SAMPLE DETAILS

## **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

## SAMPLE STORAGE DETAILS

### **GENERAL CONDITIONS**

#### **SAMPLE STORAGE OF SOLIDS**

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$1.95 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

## **NOTES**

\*\*\* NATA ENDORSED DOCUMENT \*\*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The sample, GCA6298, was received as being a 'tailings solid' which had already been dried and crushed on Genalysis report 143.0/0608152. A 100 gram portion was mixed and split from the bulk prior to being fine pulverised in a zirconia bowl.

The results have been determined according to Genalysis methods codes:

Digestions: SL\_W001 (A/), SL\_W007 (BP/), ENV\_W012 (DH/SIE), SL\_W013 (D/), and SL\_W013 (CM/)

and SL\_W012 (CM/)

Analytical Finishes: ICP\_W004 (/OES), ICP\_W005 (/MS) and AAS\_W004 (/CVAP).

The results included the assay of blanks and international reference standards OREAS 45P, and STSD-2 and Genalysis in-house standards TKC5, AE12 and HgSTD-4.

The results are expressed as parts per million or percent by mass in the dried and prepared material.

NATA Signatory: R H Essers

This document is issued in accordance with NATA's accreditation requirements.

| ELEMENTS           | Ag   | Al    | As  | В   | Ва    | Bi    | Ca    | Cd  | Co    | Cr  |
|--------------------|------|-------|-----|-----|-------|-------|-------|-----|-------|-----|
| UNITS              | ppm  | ppm   | ppm | ppm | ppm   | ppm   | ppm   | ppm | ppm   | ppm |
| DETECTION          | 0.1  | 20    | 1   | 50  | 0.1   | 0.01  | 10    | 0.1 | 0.1   | 2   |
| DIGEST             | A/   | A/    | A/  | D/  | A/    | A/    | A/    | A/  | A/    | A/  |
| ANALYTICAL FINISH  | MS   | OES   | MS  | OES | MS    | MS    | OES   | MS  | MS    | OES |
| SAMPLE NUMBERS     |      |       |     |     |       |       |       |     |       |     |
| 0001 GCA6298       | 0.8  | 5.18% | 4   | Х   | 91.0  | 73.32 | 2073  | Х   | 67.3  | 142 |
| CHECKS             |      |       |     |     |       |       |       |     |       |     |
| 0001 GCA6298       | 0.6  | 5.31% | 4   | Χ   | 89.4  | 74.18 | 1607  | Х   | 66.3  | 129 |
| STANDARDS          |      |       |     |     |       |       |       |     |       |     |
| 0001 HgSTD-4       |      |       |     |     |       |       |       |     |       |     |
| 0002 OREAS 45P     |      |       |     | Χ   |       |       |       |     |       |     |
| 0003 STSD-2        |      |       |     |     |       |       |       |     |       |     |
| 0004 TKC5          | 15.5 | 6.03% | 629 |     | 539.4 | 30.32 | 2.46% | 5.3 | 155.4 | 721 |
| BLANKS             |      |       |     |     |       |       |       |     |       |     |
| 0001 Control Blank | 0.2  | Х     | Х   | Х   | 0.3   | 0.02  | 17    | Х   | Х     | 5   |
| 0002 Control Blank | Χ    | Х     | 1   |     | 0.1   | 0.03  | 12    | Χ   | 0.2   | 2   |
| 0003 Control Blank |      |       |     |     |       |       |       |     |       |     |
| 0004 Control Blank |      |       |     |     |       |       |       |     |       |     |
| 0005 Control Blank |      |       |     | Χ   |       |       |       |     |       |     |
| 0006 Acid Blank    | X    | Х     | Х   |     | Χ     | 0.02  | Х     | Χ   | Χ     | X   |
| 0007 Acid Blank    |      |       |     |     |       |       |       |     |       |     |
| 0008 Acid Blank    |      |       |     | Х   |       |       |       |     |       |     |
| 0009 Control Blank |      |       |     |     |       |       |       |     |       |     |

| ELEMENTS           | Cu   | F   | Fe    | Hg   | K     | Mg    | Mn   | Мо   | Na    | Ni   |
|--------------------|------|-----|-------|------|-------|-------|------|------|-------|------|
| UNITS              | ppm  | ppm | %     | ppm  | ppm   | ppm   | ppm  | ppm  | ppm   | ppm  |
| DETECTION          | 1    | 50  | 0.01  | 0.01 | 20    | 20    | 1    | 0.1  | 20    | 1    |
| DIGEST             | A/   | DH/ | D/    | CM/  | A/    | A/    | A/   | A/   | A/    | A/   |
| ANALYTICAL FINISH  | OES  | SIE | OES   | CVAP | OES   | OES   | OES  | MS   | OES   | OES  |
| SAMPLE NUMBERS     |      |     |       |      |       |       |      |      |       |      |
| 0001 GCA6298       | 354  | 487 | 13.48 | Х    | 8976  | 1.65% | 2216 | 5.2  | 585   | 54   |
| CHECKS             |      |     |       |      |       |       |      |      |       |      |
| 0001 GCA6298       | 362  | 538 | 13.57 | Х    | 9072  | 1.67% | 2282 | 4.7  | 584   | 53   |
| STANDARDS          |      |     |       |      |       |       |      |      |       |      |
| 0001 HgSTD-4       |      |     |       | 0.28 |       |       |      |      |       |      |
| 0002 OREAS 45P     |      |     | 18.79 |      |       |       |      |      |       |      |
| 0003 STSD-2        |      | 992 |       |      |       |       |      |      |       |      |
| 0004 TKC5          | 1806 |     |       |      | 1.15% | 1.67% | 1944 | 61.1 | 1.71% | 2309 |
| BLANKS             |      |     |       |      |       |       |      |      |       |      |
| 0001 Control Blank | Х    | Х   | Х     | Х    | Х     | Х     | Х    | 0.1  | Х     | 2    |
| 0002 Control Blank | X    |     |       |      | Χ     | Х     | X    | 0.2  | Х     | 2    |
| 0003 Control Blank |      |     |       |      |       |       |      |      |       |      |
| 0004 Control Blank |      |     |       | Χ    |       |       |      |      |       |      |
| 0005 Control Blank |      |     | Χ     |      |       |       |      |      |       |      |
| 0006 Acid Blank    | X    |     |       |      | Х     | Χ     | Χ    | Х    | X     | X    |
| 0007 Acid Blank    |      |     |       | Χ    |       |       |      |      |       |      |
| 0008 Acid Blank    |      |     | X     |      |       |       |      |      |       |      |
| 0009 Control Blank |      |     |       |      |       |       |      |      |       |      |

| <b>AN</b> | AL | YS | SIS |
|-----------|----|----|-----|
|-----------|----|----|-----|

|                    |      |      | / \ \ \ / | \L   \O |      |     |        |        |       |       |
|--------------------|------|------|-----------|---------|------|-----|--------|--------|-------|-------|
| ELEMENTS           | Р    | Pb   | S         | Sb      | Se   | Sn  | Sr     | Th     | TI    | U     |
| UNITS              | ppm  | ppm  | ppm       | ppm     | ppm  | ppm | ppm    | ppm    | ppm   | ppm   |
| DETECTION          | 20   | 2    | 10        | 0.05    | 0.01 | 0.1 | 0.05   | 0.01   | 0.02  | 0.01  |
| DIGEST             | A/   | A/   | A/        | A/      | BP/  | A/  | A/     | A/     | A/    | A/    |
| ANALYTICAL FINISH  | OES  | MS   | OES       | MS      | MS   | MS  | MS     | MS     | MS    | MS    |
| SAMPLE NUMBERS     |      |      |           |         |      |     |        |        |       |       |
| 0001 GCA6298       | 476  | 19   | 8183      | 0.11    | 0.97 | 3.3 | 10.47  | 10.67  | 0.34  | 3.15  |
| CHECKS             |      |      |           |         |      |     |        |        |       |       |
| 0001 GCA6298       | 479  | 19   | 8262      | 0.09    | 0.99 | 3.2 | 10.14  | 10.70  | 0.34  | 3.05  |
| STANDARDS          |      |      |           |         |      |     |        |        |       |       |
| 0001 HgSTD-4       |      |      |           |         |      |     |        |        |       |       |
| 0002 OREAS 45P     |      |      |           |         |      |     |        |        |       |       |
| 0003 STSD-2        |      |      |           |         |      |     |        |        |       |       |
| 0004 TKC5          | 1992 | 1478 | 1.32%     | 185.26  |      | 5.7 | 575.66 | 143.06 | 25.48 | 15.75 |
| BLANKS             |      |      |           |         |      |     |        |        |       |       |
| 0001 Control Blank | Х    | Х    | 16        | Х       | 0.02 | 0.2 | Х      | Х      | Х     | 0.02  |
| 0002 Control Blank | X    | 2    | 11        | Х       |      | 0.2 | Х      | 0.02   | Х     | 0.02  |
| 0003 Control Blank |      |      |           |         | 0.02 |     |        |        |       |       |
| 0004 Control Blank |      |      |           |         |      |     |        |        |       |       |
| 0005 Control Blank |      |      |           |         |      |     |        |        |       |       |
| 0006 Acid Blank    | Х    | Х    | Х         | Х       |      | Х   | Х      | 0.02   | 0.02  | Х     |
| 0007 Acid Blank    |      |      |           |         |      |     |        |        |       |       |
| 0008 Acid Blank    |      |      |           |         |      |     |        |        |       |       |
| 0009 Control Blank |      |      |           |         | 0.01 |     |        |        |       |       |

| ELEMENTS           | V   | Zn   |
|--------------------|-----|------|
| UNITS              | ppm | ppm  |
| DETECTION          | 2   | 1    |
| DIGEST             | A/  | A/   |
| ANALYTICAL FINISH  | OES | OES  |
| SAMPLE NUMBERS     | 020 | 010  |
| 0001 GCA6298       | 63  | 49   |
| 0001 GCA0230       |     | 43   |
| CHECKS             |     |      |
| 0001 GCA6298       | 64  | 50   |
| 0001 GCA0290       | 04  | 50   |
| STANDARDS          |     |      |
|                    |     |      |
| 0001 HgSTD-4       |     |      |
| 0002 OREAS 45P     |     |      |
| 0003 STSD-2        |     |      |
| 0004 TKC5          | 338 | 1116 |
| BLANKS             |     |      |
| 0001 Control Blank | X   | 2    |
| 0002 Control Blank | X   | Χ    |
| 0003 Control Blank |     |      |
| 0004 Control Blank |     |      |
| 0005 Control Blank |     |      |
| 0006 Acid Blank    | Х   | Х    |
| 0007 Acid Blank    |     |      |
| 0008 Acid Blank    |     |      |
| 0009 Control Blank |     |      |
|                    |     |      |

## METHOD CODE DESCRIPTION

#### A/MS

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Beakers. Analysed by Inductively Coupled Plasma Mass Spectrometry.

#### A/OES

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Beakers. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

#### **BP/MS**

Aqua-Regia digest followed by Precipitation and Concentration. Specific for Selenium. Analysed by Inductively Coupled Plasma Mass Spectrometry.

#### D/OES

Sodium peroxide fusion (Zirconium crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

#### DH/SIE

Alkaline fusion (Nickel crucible) specific for Fluorine. Analysed by Specific Ion Electrode.

## CM/CVAP

Low temperature Perchloric acid digest specific for Mercury. Analysed by Cold Vapour Generation Atomic Absorption Spectrometry.

# ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### **JOB INFORMATION**

JOB CODE : 143.0/0608154

No. of SAMPLES : 1 No. of ELEMENTS : 31 CLIENT O/N : GCA0616

SAMPLE SUBMISSION No. :

PROJECT : Kanmantoo Cooper Project

 STATE
 : Solutions

 DATE RECEIVED
 : 01/09/2006

 DATE COMPLETED
 : 11/10/2006

 DATE PRINTED
 : 11/10/2006

#### MAIN OFFICE AND LABORATORY

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

## KALGOORLIE SAMPLE PREPARATION DIVISION

12 Keogh Way, Kalgoorlie 6430, Western Australia Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

## **ADELAIDE SAMPLE PREPARATION DIVISION**

124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

Anderbolt, Gauteng, South Africa 1459.

Tel: +27 11 918 0869 Fax: +27 11 918 0879

#### **LEGEND**

X = Less than Detection Limit
N/R = Sample Not Received

\* = Result Checked

() = Result still to come

I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000 UA = Unable to Assay

> = Value beyond Limit of Method

## SAMPLE DETAILS

## **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

## SAMPLE STORAGE DETAILS

### **GENERAL CONDITIONS**

#### **SAMPLE STORAGE OF SOLIDS**

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$1.95 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

## **NOTES**

#### \*\*\* NATA ENDORSED DOCUMENT \*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The sample, GCA6298, were received as being tailings-slurry-water which had been filtered and acidified.

The results have been determined by ICP-MS according to Genalysis method code ICP\_W004 and by ICP-OES according to method code ICP\_W005.

The analysis included the assay of blanks and Genalysis in-house reference standards. The results are expressed as milligrams per litre or micrograms per litre in the solution as received

NATA Signatory: R H Essers

This document is issued in accordance with NATA's accreditation requirements.

| ELEMENTS           | Ag   | Al   | As   | В    | Ва    | Bi    | Ca    | Cd   | Co    | Cr   |
|--------------------|------|------|------|------|-------|-------|-------|------|-------|------|
| UNITS              | ug/l | mg/l | ug/l | mg/l | ug/l  | ug/l  | mg/l  | ug/l | ug/l  | mg/l |
| DETECTION          | 0.01 | 0.01 | 0.1  | 0.01 | 0.05  | 0.005 | 0.01  | 0.02 | 0.1   | 0.01 |
| DIGEST             |      |      |      |      |       |       |       |      |       |      |
| ANALYTICAL FINISH  | /MS  | /OES | /MS  | /OES | /MS   | /MS   | /OES  | /MS  | /MS   | /OES |
| SAMPLE NUMBERS     |      |      |      |      |       |       |       |      |       |      |
| 0001 GCA6298       | Х    | 0.10 | 0.2  | 0.04 | 58.12 | Х     | 64.01 | 0.30 | 486.4 | X    |
| CHECKS             |      |      |      |      |       |       |       |      |       |      |
| 0001 GCA6298       | Х    | 0.10 | 0.4  | 0.04 | 58.99 | Х     | 63.14 | 0.33 | 502.9 | X    |
| STANDARDS          |      |      |      |      |       |       |       |      |       |      |
| 0001 Alcoa5-OES    |      | 1.85 |      | 0.93 |       |       | 47.67 |      |       | 0.48 |
| 0002 Alcoa7MS      | 4.52 |      | 26.0 |      | 5.64  | 4.907 |       | 4.61 | 497.1 |      |
| BLANKS             |      |      |      |      |       |       |       |      |       |      |
| 0001 Control Blank | Х    | Х    | 0.1  | Х    | Х     | Х     | Х     | Х    | 0.2   | Х    |
|                    |      |      |      |      |       |       |       |      |       |      |

|                    |      |        | ,,   |      | . •   |      |      |       |      |      |
|--------------------|------|--------|------|------|-------|------|------|-------|------|------|
| ELEMENTS           | Cu   | Fe-Sol | Hg   | K    | Mg    | Mn   | Мо   | Na    | Ni   | Р    |
| UNITS              | mg/l | mg/l   | ug/l | mg/l | mg/l  | mg/l | ug/l | mg/l  | mg/l | mg/l |
| DETECTION          | 0.01 | 0.01   | 0.1  | 0.1  | 0.01  | 0.01 | 0.05 | 0.1   | 0.01 | 0.1  |
| DIGEST             |      |        |      |      |       |      |      |       |      |      |
| ANALYTICAL FINISH  | /OES | /OES   | /MS  | /OES | /OES  | /OES | /MS  | /OES  | /OES | /OES |
| SAMPLE NUMBERS     |      |        |      |      |       |      |      |       |      |      |
| 0001 GCA6298       | 0.01 | 0.19   | Х    | 26.3 | 22.51 | 0.71 | 0.08 | 95.1  | 0.24 | 0.1  |
| CHECKS             |      |        |      |      |       |      |      |       |      |      |
| 0001 GCA6298       | 0.01 | 0.19   | Х    | 26.4 | 22.80 | 0.72 | 0.09 | 94.9  | 0.24 | 0.1  |
| STANDARDS          |      |        |      |      |       |      |      |       |      |      |
| 0001 Alcoa5-OES    | 0.24 | 1.93   |      | 3.8  | 60.32 | 0.48 |      | 230.9 | 0.52 | 0.9  |
| 0002 Alcoa7MS      |      |        | 5.1  |      |       |      | 5.10 |       |      |      |
| BLANKS             |      |        |      |      |       |      |      |       |      |      |
| 0001 Control Blank | Х    | Х      | Х    | Х    | Х     | Х    | Х    | Х     | Х    | Х    |
|                    |      |        |      |      |       |      |      |       |      |      |

| ELEMENTS           | Pb   | Sb   | Se   | Si   | Sn   | Sr     | Th    | TI   | U     | V    |
|--------------------|------|------|------|------|------|--------|-------|------|-------|------|
| UNITS              | ug/l | ug/l | ug/l | mg/l | ug/l | ug/l   | ug/l  | ug/l | ug/l  | mg/l |
| DETECTION          | 0.5  | 0.01 | 0.5  | 0.05 | 0.1  | 0.02   | 0.005 | 0.01 | 0.005 | 0.01 |
| DIGEST             |      |      |      |      |      |        |       |      |       |      |
| ANALYTICAL FINISH  | /MS  | /MS  | /MS  | /OES | /MS  | /MS    | /MS   | /MS  | /MS   | /OES |
| SAMPLE NUMBERS     |      |      |      |      |      |        |       |      |       |      |
| 0001 GCA6298       | 0.6  | 0.13 | 2.0  | 8.00 | Х    | 360.73 | Х     | 0.06 | 0.122 | X    |
|                    |      |      |      |      |      |        |       |      |       |      |
| CHECKS             |      |      |      |      |      |        |       |      |       |      |
| 0001 GCA6298       | 0.5  | 0.14 | 3.0  | 7.94 | Х    | 378.25 | Х     | 0.05 | 0.121 | X    |
| STANDARDS          |      |      |      |      |      |        |       |      |       |      |
| 0001 Alcoa5-OES    |      |      |      | 9.86 |      |        |       |      |       | 0.48 |
| 0002 Alcoa7MS      | 5.3  | 5.00 | 24.6 |      | 4.9  | 485.03 | 5.253 | 4.75 | 4.971 |      |
|                    |      |      |      |      |      |        |       |      |       |      |
| BLANKS             |      |      |      |      |      |        |       |      |       |      |
| 0001 Control Blank | Х    | Х    | Х    | Х    | Х    | 0.05   | Х     | Х    | X     | X    |

| ELEMENTS           | Zn   |
|--------------------|------|
| UNITS              | mg/l |
| DETECTION          | 0.01 |
| DIGEST             |      |
| ANALYTICAL FINISH  | /OES |
| SAMPLE NUMBERS     |      |
| 0001 GCA6298       | 0.11 |
|                    |      |
| CHECKS             |      |
| 0001 GCA6298       | 0.11 |
|                    |      |
| STANDARDS          |      |
| 0001 Alcoa5-OES    | 0.48 |
| 0002 Alcoa7MS      |      |
|                    |      |
| BLANKS             |      |
| 0001 Control Blank | X    |

## **METHOD CODE DESCRIPTION**

### /MS

No digestion or other pre-treatment undertaken. Analysed by Inductively Coupled Plasma Mass Spectrometry.

### **/OES**

No digestion or other pre-treatment undertaken. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.



## LABORATORY REPORT COVERSHEET

DATE: 3 November 2006

TO: Graeme Campbell & Associates Pty Ltd

PO Box 247

**BRIDGETOWN WA 6255** 

ATTENTION: Dr Graeme Campbell

YOUR REFERENCE: GCA Job No. 0616

**OUR REFERENCE:** 98284

**SAMPLES RECEIVED:** 08/09/2006

**SAMPLES/QUANTITY:** 1 Water

The above samples were received intact and analysed according to your instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

DON SARATHCHANDRA Senior Chemist



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (1705). This report must not be reproduced except in full.

Page 1 of 4

Welshpool 6106



CLIENT: Graeme Campbell & Associates Pty Ltd OUR REFERENCE: 98284

PROJECT: GCA Job No. 0616

## LABORATORY REPORT

| Your Reference Our Reference Type of Sample | Units    | GCA 6298<br>98284-1<br>Water |
|---------------------------------------------|----------|------------------------------|
| рН                                          | pH Units | 6.1                          |
| Conductivity @25°C                          | μS/cm    | 1,100                        |
| Total Dissolved Solids @ 180°C              | mg/L     | 650                          |
| Chloride, Cl                                | mg/L     | 200                          |
| Sulphate, SO <sub>4</sub>                   | mg/L     | 290                          |
| Bicarbonate, HCO <sub>3</sub>               | mg/L     | 10                           |
| Carbonate, CO <sub>3</sub>                  | mg/L     | <1                           |
| Hydroxide Alkalinity as CaCO <sub>3</sub>   | mg/L     | <5                           |
| Fluoride, F                                 | mg/L     | 0.2                          |
| Nitrate, NO <sub>3</sub>                    | mg/L     | 1.0                          |
| Ammonia Nitrogen NH <sub>3</sub> -N         | mg/L     | 2.4                          |



CLIENT: Graeme Campbell & Associates Pty Ltd OUR REFERENCE: 98284

PROJECT: GCA Job No. 0616

## LABORATORY REPORT

| TEST PARAMETERS                           | UNITS    | LOR | METHOD  |
|-------------------------------------------|----------|-----|---------|
|                                           |          |     |         |
| рН                                        | pH Units | 0.1 | AN-101  |
| Conductivity @25°C                        | μS/cm    | 2   | AN-106  |
| Total Dissolved Solids @ 180°C            | mg/L     | 10  | PEI-002 |
| Chloride, Cl                              | mg/L     | 1   | PEI-020 |
| Sulphate, SO <sub>4</sub>                 | mg/L     | 1   | PEI-020 |
| Bicarbonate, HCO <sub>3</sub>             | mg/L     | 5   | PEI-006 |
| Carbonate, CO <sub>3</sub>                | mg/L     | 1   | PEI-006 |
| Hydroxide Alkalinity as CaCO <sub>3</sub> | mg/L     | 5   | PEI-006 |
| Fluoride, F                               | mg/L     | 0.1 | PEI-027 |
| Nitrate, NO <sub>3</sub>                  | mg/L     | 0.2 | PEI-020 |
| Ammonia Nitrogen NH3-N                    | mg/L     | 0.1 | PEI-010 |



CLIENT: Graeme Campbell & Associates Pty Ltd OUR REFERENCE: 98284

PROJECT: GCA Job No. 0616

## LABORATORY REPORT

### **NOTES:**

LOR - Limit of Reporting.

Nitrate and ammonia were determined from the sulphuric acid preserved sample.

# This test is not covered by the scope of our NATA accreditation.



#### GRAEME CAMPBELL & ASSOCIATES PTY LTD

Specialists in Mine-Waste Geochemistry, & Soil-Moisture-Retention Testing

P.O. Box 247, Bridgetown, Western Australia 6255 Phone: (61 8) 9761 2829 Fax: (61 8) 9761 2830 E-mail: gca@wn.com.au

0721/2

COMPANY: Hillgrove Resources Pty Ltd

ATTENTION: Marty Adams

FROM: Graeme Campbell

SUBJECT: Kanmantoo Copper Project: Testwork Results for

Drilling Samples from Various Site Areas

NO. PAGES (including this page): 10 DATE: 23rd July 2007

Marty,

The results for the drilling samples from areas in the vicinity of the existing tailings-storage facility (TSF) and seepage-pond are presented in Table 1. Related results for samples from the area of the proposed TSF and waste-rock dumps are presented in Table 2.

The locations of the drillholes are given in the Coffey Mining Pty Ltd report to which this factual memorandum-report is included as an appendix.

The testing undertaken herein provides background geochemical information for the soil/geologic-profiles drilled in the respective areas.

Regards,

## Dr GD Campbell Director

Encl. Tables (2 pages)

Laboratory reports (7 pages)

**Results for Drilling Samples from Areas in Vicinity of Existing** Table 1: Tailings-Storage Facility and Seepage-Pond

| GCA-           | Depth-       |          | EC-(1:2) | Total-S     | Total-Cu  | Total-C     |
|----------------|--------------|----------|----------|-------------|-----------|-------------|
| SAMPLE-<br>NO. | Interval (m) | pH-(1:2) | [mS/cm]  | (%)         | (%)       | (%)         |
|                |              |          |          |             |           |             |
| KMB011         |              |          |          |             |           |             |
| GCA7122        | 1-2          | 7.8      | 0.55     | 0.03 (0.02) | 120 (110) | 0.28 (0.28) |
| GCA7123        | 4-5          | 7.6      | 1.2      | 0.08        | 84        | 0.34        |
| GCA7124        | 7-8          | 6.5      | 1.1      | 0.08        | 72        | 0.11        |
| GCA7125        | 10-11        | 6.4      | 1.1      | 0.10        | 78        | 0.13        |
| <b>KMB012</b>  |              |          |          |             |           |             |
| GCA7126        | 4-5          | 8.8      | 0.35     | 0.02        | 64        | 0.09        |
| GCA7127        | 9-10         | 8.6      | 0.60     | 0.02        | 81        | 0.16        |
| GCA7128        | 14-15        | 9.1      | 0.28     | 0.02        | 67        | 0.03        |
| GCA7129        | 19-20        | 9.1      | 0.23     | 0.01        | 28        | 0.13        |
| KMB013         |              |          |          |             |           |             |
| GCA7130        | 4-5          | 9.0      | 0.31     | 0.02        | 330       | 0.08        |
| GCA7131        | 14-15        | 7.4      | 0.37     | 0.05        | 140       | 0.19        |
| GCA7132        | 24-25        | 7.8      | 0.27     | 0.10        | 23        | 0.17        |
| GCA7133        | 29-30        | 4.3      | 1.4      | 5.9         | 2,800     | 0.10        |
|                |              |          |          |             |           |             |

Notes: EC = Electrical-Conductivity.

pH-(1:2) and EC-(1:2) correspond to pH and EC determined on sample slurries prepared using deionised-water at a solid:solution ratio of c. 1:2 (w/w).

All results expressed on a dry-weight basis, except for pH-(1:2), EC-(1:2), and NAG-pH.

Values in parentheses represent duplicates.

**Results for Drilling Samples from Area of Proposed Tailings-Storage** Table 2: Facility and Waste-Rock Dumps

| NO.  KMB016 GCA7134 GCA7135 GCA7136 GCA7137 GCA7138 GCA7139 KMB017 GCA7146 GCA7144 GCA7144 GCA7144                             | 5-6<br>15-16<br>25-26<br>35-36<br>45-46<br>55-56 | 8.2<br>7.8<br>8.4<br>8.7<br>8.5<br>6.8 | 0.19<br>0.22<br>0.12<br>0.13<br>0.13<br>0.48 | 0.03<br>0.05<br>0.01<br>0.04<br>0.10 | 99<br>150<br>10<br>17<br>30 | 0.20<br>0.12<br>0.04<br>0.07 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------|------------------------------|
| KMB016<br>GCA7134<br>GCA7135<br>GCA7136<br>GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7144<br>GCA7149 | 15-16<br>25-26<br>35-36<br>45-46<br>55-56        | 7.8<br>8.4<br>8.7<br>8.5<br>6.8        | 0.19<br>0.22<br>0.12<br>0.13<br>0.13         | 0.03<br>0.05<br>0.01<br>0.04<br>0.10 | 99<br>150<br>10<br>17       | 0.20<br>0.12<br>0.04<br>0.07 |
| GCA7134<br>GCA7135<br>GCA7136<br>GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7147                      | 15-16<br>25-26<br>35-36<br>45-46<br>55-56        | 7.8<br>8.4<br>8.7<br>8.5<br>6.8        | 0.22<br>0.12<br>0.13<br>0.13                 | 0.05<br>0.01<br>0.04<br>0.10         | 150<br>10<br>17             | 0.12<br>0.04<br>0.07         |
| GCA7134<br>GCA7135<br>GCA7136<br>GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7144<br>GCA7147                      | 15-16<br>25-26<br>35-36<br>45-46<br>55-56        | 7.8<br>8.4<br>8.7<br>8.5<br>6.8        | 0.22<br>0.12<br>0.13<br>0.13                 | 0.05<br>0.01<br>0.04<br>0.10         | 150<br>10<br>17             | 0.12<br>0.04<br>0.07         |
| GCA7135<br>GCA7136<br>GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7147                                 | 15-16<br>25-26<br>35-36<br>45-46<br>55-56        | 7.8<br>8.4<br>8.7<br>8.5<br>6.8        | 0.22<br>0.12<br>0.13<br>0.13                 | 0.05<br>0.01<br>0.04<br>0.10         | 150<br>10<br>17             | 0.12<br>0.04<br>0.07         |
| GCA7136<br>GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7147<br>GCA7148                                 | 25-26<br>35-36<br>45-46<br>55-56                 | 8.4<br>8.7<br>8.5<br>6.8               | 0.12<br>0.13<br>0.13                         | 0.01<br>0.04<br>0.10                 | 10<br>17                    | 0.04<br>0.07                 |
| GCA7137<br>GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7148<br>GCA7149                                            | 35-36<br>45-46<br>55-56                          | 8.7<br>8.5<br>6.8                      | 0.13<br>0.13                                 | 0.04<br>0.10                         | 17                          | 0.07                         |
| GCA7138<br>GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7148<br>GCA7149                                                       | 45-46<br>55-56<br>5-6                            | 8.5<br>6.8                             | 0.13                                         | 0.10                                 |                             |                              |
| GCA7139<br>KMB017<br>GCA7146<br>GCA7147<br>GCA7148<br>GCA7149                                                                  | 55-56<br>5-6                                     | 6.8                                    |                                              |                                      | 30                          |                              |
| KMB017<br>GCA7146<br>GCA7147<br>GCA7148<br>GCA7149                                                                             | 5-6                                              |                                        | 0.48                                         | 0.40                                 |                             | 0.24                         |
| GCA7146<br>GCA7147<br>GCA7148<br>GCA7149                                                                                       |                                                  |                                        |                                              | 0.49                                 | 49                          | 0.06                         |
| GCA7147<br>GCA7148<br>GCA7149                                                                                                  |                                                  |                                        |                                              |                                      |                             |                              |
| GCA7148<br>GCA7149                                                                                                             |                                                  | 9.1                                    | 0.22                                         | < 0.01                               | 63                          | 0.06                         |
| GCA7149                                                                                                                        | 15-16                                            | 9.0                                    | 0.18                                         | < 0.01                               | 44                          | 0.05                         |
|                                                                                                                                | 25-26                                            | 8.2                                    | 0.38                                         | 0.18 (0.19)                          | 91 (81)                     | 0.05 (0.04)                  |
| GCA7150                                                                                                                        | 35-36                                            | 8.5                                    | 0.32                                         | 0.10                                 | 48                          | 0.04                         |
|                                                                                                                                | 45-46                                            | 8.5                                    | 0.33                                         | 0.15                                 | 29                          | 0.02                         |
| GCA7151                                                                                                                        | 55-56                                            | 8.5                                    | 0.42                                         | 0.11                                 | 22                          | 0.03                         |
| KMB018                                                                                                                         |                                                  |                                        |                                              |                                      |                             |                              |
| GCA7140                                                                                                                        | 5-6                                              | 8.9                                    | 0.25                                         | < 0.01                               | 44                          | 0.14                         |
| GCA7141                                                                                                                        | 15-16                                            | 9.2                                    | 0.14                                         | < 0.01                               | 51                          | 0.06                         |
| GCA7142                                                                                                                        | 25-26                                            | 8.9 (8.9)                              | 0.17 (0.12)                                  | < 0.01                               | 16                          | 0.05                         |
| GCA7143                                                                                                                        | 35-36                                            | 8.8                                    | 0.14                                         | < 0.01                               | 21                          | 0.08                         |
| GCA7144                                                                                                                        | 45-46                                            | 8.7                                    | 0.14                                         | < 0.01                               | 17                          | 0.03                         |
| GCA7145                                                                                                                        | 55-56                                            | 8.2                                    | 0.13                                         | 0.03                                 | 33                          | 0.05                         |
| KMB019                                                                                                                         |                                                  |                                        |                                              |                                      |                             |                              |
| GCA7152                                                                                                                        | 5-6                                              | 8.6                                    | 0.15                                         | < 0.01                               | 21                          | 0.06                         |
| GCA7153                                                                                                                        | 15-16                                            | 8.6                                    | 0.18                                         | 0.02                                 | 42                          | 0.12                         |
| GCA7154                                                                                                                        | 25-26                                            | 8.7                                    | 0.23                                         | 0.01                                 | 33                          | 0.05                         |
| GCA7155                                                                                                                        | 35-36                                            | 8.5                                    | 0.29                                         | 0.14                                 | 31                          | 0.06                         |
| GCA7156                                                                                                                        | 45-46                                            | 8.6 (8.4)                              | 0.25 (0.28)                                  | 0.07                                 | 51                          | 0.04                         |

Notes: EC = Electrical-Conductivity.

pH-(1:2) and EC-(1:2) correspond to pH and EC determined on sample slurries prepared using deionised-water at a solid:solution ratio of c. 1:2 (w/w).

All results expressed on a dry-weight basis, except for pH-(1:2), EC-(1:2), and NAG-pH.

Values in parentheses represent duplicates.

## Graeme Campbell & Associates Pty Ltd

### Laboratory Report

## pH-(1:2) & EC-(1:2) TESTWORK

| GCA7122<br>GCA7123<br>GCA7124<br>GCA7125<br>GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7132<br>GCA7133 | (g)          | WEIGHT (g)   |            | (mS/cm)      |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------|--------------|
| GCA7123<br>GCA7124<br>GCA7125<br>GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7133            |              | (g)          |            |              |
| GCA7123<br>GCA7124<br>GCA7125<br>GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7133<br>GCA7134 | 30.0         | 90.3         | 7.8        | 0.55         |
| GCA7124<br>GCA7125<br>GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7133<br>GCA7134            | 30.0         | 90.3         | 7.6        | 1.2          |
| GCA7125<br>GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7133<br>GCA7134                       | 30.0         | 90.4         | 6.5        | 1.1          |
| GCA7126<br>GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7133<br>GCA7134<br>GCA7135                       | 30.0         | 90.0         | 6.4        | 1.1          |
| GCA7127<br>GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                  | 30.0         | 90.0         | 8.8        | 0.35         |
| GCA7128<br>GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                             | 30.0         | 90.3         | 8.6        | 0.53         |
| GCA7129<br>GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                                        | 30.0         | 90.1         | 9.1        | 0.00         |
| GCA7130<br>GCA7131<br>GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                                                   | 30.0         | 90.2         | 9.1<br>9.1 | 0.28         |
| GCA7131<br>GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                                                              | 30.0         | 90.3         | 9.1        | 0.23         |
| GCA7132<br>GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                                                                         |              |              |            |              |
| GCA7133<br>GCA7134<br>GCA7135<br>GCA7136                                                                                                    | 30.0<br>30.0 | 90.0<br>90.2 | 7.4<br>7.8 | 0.37<br>0.27 |
| GCA7134<br>GCA7135<br>GCA7136                                                                                                               |              |              |            |              |
| GCA7135<br>GCA7136                                                                                                                          | 30.0         | 90.5         | 4.3        | 1.4          |
| GCA7136                                                                                                                                     | 30.0         | 90.0         | 8.2<br>7.8 | 0.19         |
|                                                                                                                                             | 30.0         | 90.3         |            | 0.22         |
|                                                                                                                                             | 30.0         | 90.3         | 8.4        | 0.12         |
| GCA7137                                                                                                                                     | 30.0         | 90.1         | 8.7        | 0.13         |
| GCA7138                                                                                                                                     | 30.0         | 90.2         | 8.5        | 0.13         |
| GCA7139                                                                                                                                     | 30.0         | 90.1         | 6.8        | 0.48         |
| GCA7140                                                                                                                                     | 30.0         | 90.4         | 8.9        | 0.25         |
| GCA7141                                                                                                                                     | 30.0         | 90.3         | 9.2        | 0.14         |
| GCA7142-1                                                                                                                                   | 30.0         | 90.1         | 8.9        | 0.17         |
| GCA7142-2                                                                                                                                   | 30.0         | 90.1         | 8.9        | 0.12         |
| GCA7143                                                                                                                                     | 30.0         | 90.0         | 8.8        | 0.14         |
| GCA7144                                                                                                                                     | 30.0         | 90.1         | 8.7        | 0.14         |
| GCA7145                                                                                                                                     | 30.0         | 90.0         | 8.2        | 0.13         |
| GCA7146                                                                                                                                     | 30.0         | 90.1         | 9.1        | 0.22         |
| GCA7147                                                                                                                                     | 30.0         | 90.3         | 9.0        | 0.18         |
| GCA7148                                                                                                                                     | 30.0         | 90.0         | 8.2        | 0.38         |
| GCA7149                                                                                                                                     | 30.0         | 90.2         | 8.5        | 0.32         |
| GCA7150                                                                                                                                     | 30.0         | 90.0         | 8.5        | 0.33         |
| GCA7151                                                                                                                                     | 30.0         | 90.1         | 8.5        | 0.42         |
| GCA7152                                                                                                                                     | 30.0         | 90.0         | 8.6        | 0.15         |
| GCA7153                                                                                                                                     | 30.0         | 90.2         | 8.6        | 0.18         |
| GCA7154                                                                                                                                     | 30.0         | 90.2         | 8.7        | 0.23         |
| GCA7155                                                                                                                                     |              |              | 8.5        | 0.29         |
| GCA7156-1                                                                                                                                   | 30.0         | 90.2         |            |              |
| GCA7156-2                                                                                                                                   | 30.0<br>30.0 | 90.2<br>90.1 | 8.6        | 0.25         |

**Note:** EC = Electrical-Conductivity.

**Dr GD Campbell** 18th July 2007

Testwork performed on crushed (nominal -2 mm) samples.

pH-(1:2) and EC-(1:2) values correspond to pH and EC values of suspensions with a solid:solution ration of c. 1:2 (w/w) prepared using deionised-water.

Drift in pH-glass-electrode less than 0.1 pH unit between commencement, and completion, of testwork.

 $Drift\ in\ EC\text{-electrode less than }0.05\ mS/cm\ between\ commencement,\ and\ completion,\ of\ testwork.$ 

Testwork performed in a constant-temperature room (viz. 21 +/- 2-3 °C).

# ANALYTICAL REPORT

Dr G. CAMPBELL

**CAMPBELL, GRAEME and ASSOCIATES** 

PO Box 247

BRIDGETOWN, W.A. 6255

**AUSTRALIA** 

#### **JOB INFORMATION**

JOB CODE : 143.0/0706097

No. of SAMPLES : 35 No. of ELEMENTS : 3

CLIENT O/N : GCA0721/2 (Job 1 of 1)

SAMPLE SUBMISSION No. :

PROJECT

 STATE
 : Ex-Pulp

 DATE RECEIVED
 : 13/06/2007

 DATE COMPLETED
 : 19/07/2007

 DATE PRINTED
 : 19/07/2007

## MAIN OFFICE AND LABORATORY

15 Davison Street, Maddington 6109, Western Australia

PO Box 144, Gosnells 6990, Western Australia Tel: +61 8 9251 8100 Fax: +61 8 9251 8110

Email: genalysis@genalysis.com.au Web Page: www.genalysis.com.au

#### KALGOORLIE SAMPLE PREPARATION DIVISION

12 Keogh Way, Kalgoorlie 6430, Western Australia

ADELAIDE SAMPLE PREPARATION DIVISION
124 Mooringe Avenue, North Plympton 5037, South Australia

Tel: +61 8 8376 7122 Fax: +61 8 8376 7144

Tel: +61 8 9021 6057 Fax: +61 8 9021 3476

#### JOHANNESBURG SAMPLE PREPARATION DIVISION

Unit 14a 253 Dormehl Road, Middlepark,

Anderbolt, Gauteng, South Africa 1459.

Tel: +27 11 918 0869 Fax: +27 11 918 0879

#### **LEGEND**

X = Less than Detection LimitN/R = Sample Not Received

\* = Result Checked
() = Result still to come

I/S = Insufficient Sample for Analysis

E6 = Result X 1,000,000 UA = Unable to Assay

= Value beyond Limit of Method

## SAMPLE DETAILS

## **DISCLAIMER**

Genalysis Laboratory Services Pty Ltd wishes to make the following disclaimer pertaining to the accompanying analytical results.

Genalysis Laboratory Services Pty Ltd disclaims any liability, legal or otherwise, for any inferences implied from this report relating to either the origin of, or the sampling technique employed in the collection of, the submitted samples.

#### SIGNIFICANT FIGURES

It is common practice to report data derived from analytical instrumentation to a maximum of two or three significant figures. Some data reported herein may show more figures than this. The reporting of more than two or three figures in no way implies that the third, fourth and subsequent figures may be real or significant.

Genalysis Laboratory Services Pty Ltd accepts no responsibility whatsoever for any interpretation by any party of any data where more than two or three significant figures have been reported.

## SAMPLE STORAGE DETAILS

### **GENERAL CONDITIONS**

#### **SAMPLE STORAGE OF SOLIDS**

Bulk Residues and Pulps will be stored for 60 DAYS without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$3.00 per cubic metre per day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost. Current disposal cost is charged at \$50.00 per cubic metre.

#### SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids, waters or solutions will be held for 60 DAYS free of charge then disposed of, unless written advice for return or collection is received.

## **NOTES**

\*\*\* NATA ENDORSED DOCUMENT \*\*\*\*

Company Accreditation Number 3244

The contents of this report have been prepared in accordance with the terms of NATA accreditation and as such should only be reproduced in full.

The analysis results reported herein have been obtained using the following methods and conditions:

The 35 samples, as listed in the report, was received as being 'rock chips' which required crushing prior to splitting and a 100g portion being fine pulverised in a zirconia bowl.

The results for Cu are based Genalysis method code SL\_W001 (A/) with the analytical finishes according to ICP\_W004 (/OES). The LECO results have been determined according to Genalysis methods number SL\_W023 on the pulverised portion of the samples.

The results included the assay of blanks and Genalysis in-house standard MPL-1 and certified reference material MA-1b.

The results are expressed as parts per million or percent by mass in the dried and prepared material.

NATA Signatory: A P Evers

**Chief Chemist** 

Date: 19th July 2007

This document is issued in accordance with NATA's accreditation requirements.

| ELEMENTS                     | С     | Cu   | S     |  |
|------------------------------|-------|------|-------|--|
| UNITS                        | %     | ppm  | %     |  |
| DETECTION                    | 0.01  | 1    | 0.005 |  |
| DIGEST                       |       | A/   |       |  |
| ANALYTICAL FINISH            | /LECO | OES  | /LECO |  |
| SAMPLE NUMBERS               |       |      |       |  |
| 0001 GCA7122                 | 0.28  | 116  | 0.024 |  |
| 0002 GCA7123                 | 0.34  | 79   | 0.071 |  |
| 0003 GCA7124                 | 0.11  | 74   | 0.073 |  |
| 0004 GCA7125                 | 0.13  | 78   | 0.092 |  |
| 0005 GCA7126                 | 0.09  | 59   | 0.015 |  |
| 0006 GCA7127                 | 0.16  | 85   | 0.016 |  |
| 0007 GCA7128                 | 0.03  | 71   | 0.012 |  |
| 0008 GCA7129                 | 0.13  | 29   | 0.006 |  |
| 0009 GCA7130                 | 0.08  | 343  | 0.013 |  |
| 0010 GCA7131                 | 0.19  | 122  | 0.041 |  |
| 0011 GCA7132                 | 0.17  | 23   | 0.097 |  |
| 0012 GCA7133                 | 0.10  | 2813 | 5.835 |  |
| 0013 GCA7134                 | 0.20  | 108  | 0.024 |  |
| 0014 GCA7135                 | 0.12  | 149  | 0.043 |  |
| 0015 GCA7136                 | 0.04  | 11   | 0.008 |  |
| 0016 GCA7137                 | 0.07  | 17   | 0.034 |  |
| 0017 GCA7138                 | 0.24  | 31   | 0.094 |  |
| 0018 GCA7139                 | 0.06  | 54   | 0.487 |  |
| 0019 GCA7140                 | 0.14  | 41   | 0.005 |  |
| 0020 GCA7141                 | 0.06  | 49   | 0.006 |  |
| 0021 GCA7142                 | 0.05  | 17   | 0.006 |  |
| 0022 GCA7143                 | 0.08  | 20   | 0.008 |  |
| 0023 GCA7144                 | 0.03  | 17   | 0.005 |  |
| 0024 GCA7145                 | 0.05  | 30   | 0.028 |  |
| 0025 GCA7146                 | 0.06  | 61   | X     |  |
| 0026 GCA7147                 | 0.05  | 43   | X     |  |
| 0027 GCA7148                 | 0.05  | 86   | 0.179 |  |
| 0028 GCA7149                 | 0.04  | 49   | 0.095 |  |
| 0029 GCA7150                 | 0.02  | 30   | 0.143 |  |
| 0030 GCA7151                 | 0.03  | 23   | 0.108 |  |
| 0031 GCA7152                 | 0.06  | 22   | X     |  |
| 0032 GCA7153                 | 0.12  | 41   | 0.014 |  |
| 0032 GCA7154                 | 0.05  | 33   | 0.009 |  |
| 0034 GCA7155                 | 0.06  | 32   | 0.138 |  |
| 0035 GCA7156                 | 0.04  | 50   | 0.064 |  |
| 2330 20711 100               | 0.0-1 |      | 0.00- |  |
| CHECKS                       |       |      |       |  |
| 0001 GCA7122                 | 0.28  | 117  | 0.016 |  |
| 0001 GCA7122<br>0002 GCA7148 | 0.23  | 83   | 0.010 |  |
| 000Z OOA/ 140                | 0.04  |      | 0.104 |  |

| ELEMENTS           | С     | Cu   | S     |
|--------------------|-------|------|-------|
| UNITS              | %     | ppm  | %     |
| DETECTION          | 0.01  | 1    | 0.005 |
| DIGEST             |       | A/   |       |
| ANALYTICAL FINISH  | /LECO | OES  | /LECO |
| STANDARDS          |       |      |       |
| 0001 MA-1b         | 2.48  |      | 1.235 |
| 0002 MPL-1         |       | 1883 |       |
| 0003 MA-1b         | 2.49  |      | 1.260 |
| 0004 MPL-1         |       | 1782 |       |
|                    |       |      |       |
| BLANKS             |       |      |       |
| 0001 Control Blank | Х     | Х    | Х     |
| 0002 Control Blank |       | X    |       |
| 0003 Acid Blank    |       | Х    |       |

## **METHOD CODE DESCRIPTION**

### /LECO

No digestion or other pre-treatment undertaken. Analysed by LECO furnace.

### A/OES

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Beakers. Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.