Open File Envelope No. 9369

EL 2377

MILTALIE

COMBINED FIRST ANNUAL / FINAL REPORT AT LICENCE EXPIRY/SURRENDER FOR THE PERIOD 27/6/1997 TO 26/6/1998

Submitted by Craton Resources NL 1998

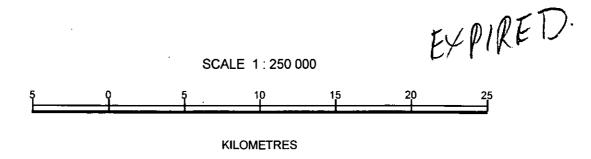
© 3/1/2006

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Branch

Minerals and Energy Resources


7th Floor


101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

SCHEDULE A

DATE EXPIRED : 26 June 1998 99

APPLICANT CRATON RESOURCES N.L.

DM: 223/97

180 AREA : 245 square kilometres (approx.)

1:250 000 PLANS: WHYALLA

DATE GRANTED: 27 June 1997

LOCALITY: MILTALIE AREA - Approximately 20 km northwest of Cowell

26.12.99

EL No: 2377

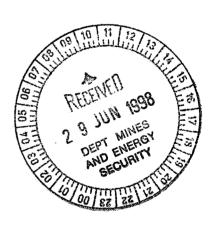
CRATON RESOURCES NL

ACN 076 516 080

(INCORPORATED IN WESTERN AUSTRALIA)

TECHNICAL OFFICE: LEVEL 1, NORWICH HOUSE 40 KINGS PARK ROAD WEST PERTH WA 6005 PO BOX 1786, WEST PERTH WA 6872

TELEPHONE: +61 8 9481 3638 FACSIMILE: +61 8 9481 3528


REGISTERED OFFICE:

4 BENDSTEN PLACE BALCATTA WA 6021 PO BOX 332, GREENWOOD WA 6024

TELEPHONE: +61 8 9345 4100 FACSIMILE: +61 8 9345 4541

FINAL REPORT TRIPLE HILL PROJECT

ANNUAL REPORT – PARTIAL SURRENDER
EXPLORATION LICENCE 2377 – MILTALIE

27 JUNE, 1998

DISTRIBUTION:

- 1) MESA (x2)
- 2) Craton Resources- office

Mines & Energy SA
R98/00370

TABLE OF CONTENTS

		Page
INTROI	DUCTION	1
1. LC	OCATION AND ACCESS	1
2. TE	ENURE	1
3. RI	EGIONAL GEOLOGY	2
4. PR	REVIOUS EXPLORATION	2
5. EX	KPLORATION BY CRATON RESOURCES NL	3
5.1	Stream Sediment Sampling	3
5.2	2 Geological Reconnaissance	3
CONCL	USIONS AND RECOMMENDATIONS	3
EXPEN	DITURE STATEMENT	4
APPENI	DIX 1	
Craton R	Resources NL Stream Sediment Sampling Data	
	TABLES	
Table 1	Tenure	
Table 2	Previous Exploration Activities	
	FIGURES	
Figure 1	Location and Access	
	PLANS	
Plan 1	Stream Sediment Sample Locations	

FINAL REPORT TRIPLE HILL PROJECT EL2377 – MILTALIE (Partial Surrender)

INTRODUCTION

The Triple Hill Project covers a total area of 409km² and is located on the central Eyre Peninsula of South Australia, east of the town of Cleve. The project comprises EL2324 (Triple Hill) and EL2377 (Miltalie) as shown in Figure 1. The Miltalie tenement is made up of two parts and is referred to as EL2377A and EL2377B.

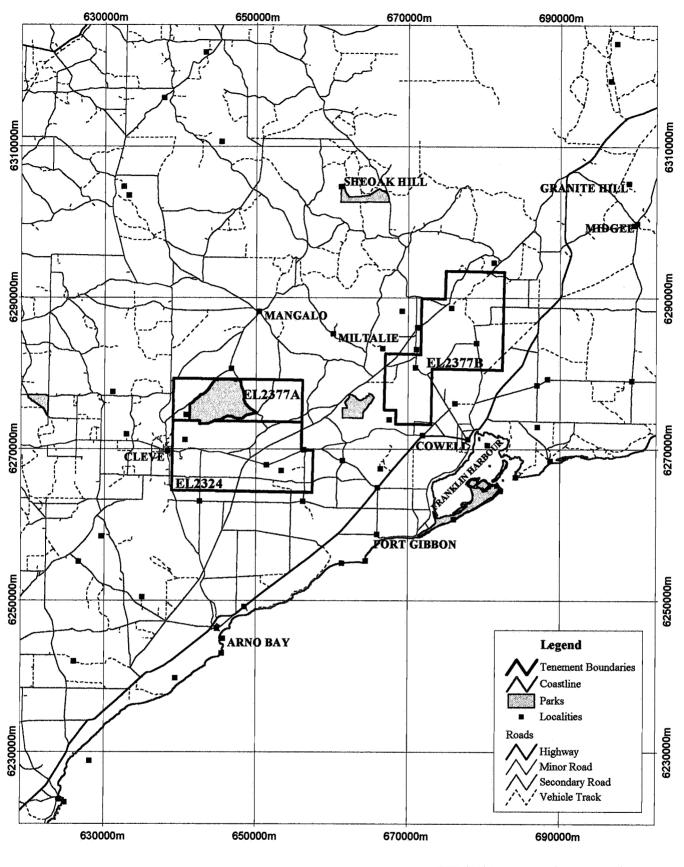
The presence of faults and mylonite zones, and the close relationships of known copper-lead mineralisation to magnetic anomalies within banded iron formation, suggests a favourable setting for banded iron hosted precious-base metal mineralisation. Copper-gold mineralisation associated with intrusive granites was also sought.

This report details exploration work completed by Craton Resources NL on the Triple Hill project area in the first year of the exploration licence to the date of surrender. Exploration work comprised stream sediment sampling and geological reconnaissance. The tenement is being surrendered on the grounds of diminished prospectivity.

1. LOCATION AND ACCESS

The project area is readily accessible by sealed road from Cowell, which is approximately 180km south west of Port Augusta on the Lincoln Highway. The project lies within agricultural and pastoral land in the central Eyre Peninsula.

EL2324 and EL2377A lie approximately 42 kilometres west of Cowell, and immediately east of the town of Cleve. EL2377B lies six kilometres west of Cowell. Access is gained by the sealed Cowell to Cleve road and a network of unsealed roads.


The Triple Hill project is located on the 1:250,000 Whyalla Sheet (SI53-8) and the 1:100,000 Cowell (6230) mapsheet.

2. TENURE

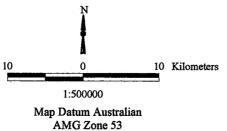

Exploration licences EL2324 and EL2377 were granted for an initial period of one year to Craton Resources NL on 1st May and 27th June 1997 respectively. The tenement details of the exploration licences, which constitute the Triple Hill Project, are outlined in Table 1.

Table 1 - Tenure

Project	Locality	EL Number	Date Granted	Anniversary Date	Area (km²)	Annual Commitment	Registered Holder
Triple Hill	Triple Hill	EL2324	01/05/97	01/05/98	164	\$45,000	Craton Resources NL
	Miltalie	EL2377	27/06/97	27/06/98	245	\$55,000	Craton Resources NL

CRATON RESOURCES NL

Figure 1
Triple Hill Project:
Location & Access

Date: April 1998

3. REGIONAL GEOLOGY

The Triple Hill Project lies in the Cleve subdomain of the Gawler Craton. The Cleve subdomain is a Palaeoproterozoic fold belt composed of tightly folded, high-grade metamorphic rocks of the Hutchison Group and associated rocks. The metasediments overlie an Archaean and early Proterozoic basement (Sleaford Complex) and were intruded by numerous granitoids (Lincoln Complex) during major deformation and metamorphism of the Kimban Orogeny (1850-1700 Ma).

4. PREVIOUS EXPLORATION

The area has been explored by a number of companies for precious and base metals and diamonds. Previous work has included surface geochemistry work, mapping and drilling. A summary of work carried out is summarised in Table 2 below.

Table 2 – Previous Exploration Activities

MESA Envelope	Company	Exploration Licence	Period Licence Held	Exploration Targets	Summary
1355	Pacminex Pty Ltd	SML383	19.02.70 to 26.02.72	Base metals	Geophysics & geochemistry work on a prospect in western area of tenement
1966	Pacminex Pty Ltd	SML667	26.02.72 to 25.02.73	Base metals	Auger drilling of magnetic trends. Soil geo- chemistry work of prospects with follow up drilling.
2966 2967	CRA Exploration	EL286	16.02.77 to 17.02.79	Mineralisation associated with BIF horizons	1:20,000 mapping and sampling of BIF horizons, assessment of Pb-Cu-Ag Poonana Mine and auger drillingBIF units rich in Mn which acts as a scavenger.
3338	Uranerz, Pancontinental, Billiton, WMC JV	EL742	12.07.78 to 07.02.88	Uranium and base metals	Hydrogeochemistry sampling, mapping and scintillometer survey of the tenement. Radiometric anomalies located and sampled. Geophysical profiling, rock chip sampling, trenching and RC drilling of Cock Hill prospect.
3519	Pancontinental Mining Ltd.	EL3519	30.03.79 to 10.11.81	Roll-front uranium deposits associated with fold closures in sandstones.	1:25,000 geological – radiometric mapping and geochemical samplingVery low uranium mineralisation associated with the Katunga Dolomite.
3541	CRAE Shell-metal division	EL485	06.06.79 to 12.10.85	Massive stratiform Cu-Pb- Zn & Broken Hill Style mineralisation	Airborne EM surveys. Identified anomalies attributed to local features and graphitic horizons. Stream sediment, RAB and soil sampling of EM anomalies.
3575	Pancontinental Mining Ltd.	EL500	10.07.79 to 04.10.82	Uranium	Rock chip sampling of radiometric anomalies associated with Katunga Dolomite and shear zone. Soil sampling of Ben Buy prospect.
6566	Stockdale Prospecting Ltd.	EL1320	27.02.86 to 27.09.94	Diamonds	Heavy mineral stream samplingA number of kimberlite indicator minerals foundGround geophysics carried out & subsequent identification of a kimberlite to north of tenement.
8560	Aberfoyle Resources Ltd	EL1567	14.02.89 to 13.02.92		No fieldwork carried out in area.

5. EXPLORATION BY CRATON RESOURCES NL

Exploration by Craton Resources NL commenced in mid 1997. Exploration targets were mineralisation associated with proterozoic granites and magnetic anomalies within banded iron formations.

EL2324 and EL2377 have been the subject of literature research, GIS data compilation, geophysical interpretation of aeromagnetic data, geological reconnaissance of structural and stratigraphical target areas and a project wide stream geochemistry sampling programme.

5.1 Stream Sediment Sampling

Because of the sparse nature of geochemical sampling coverage by previous explorers a comprehensive, systematic stream sediment sampling programme was carried out. The density of the coverage was approximately 1 sample per 2km² over the tenements.

Samples of stream sediment were collected from active trap sites using a shovel and scoop. The alluvial material was sieved on site to a minus 1.6mm fraction for analysis. Approximately one to two kilograms of sample was obtained at each site. A total of 65 stream sediment samples were taken from EL2324 (THS 1 to 7, 9 to 30, 45 to 51, 53 to 59, 83, 85 to 90, 102 to 108, 113 to 121), 56 stream samples from EL2377A (THS 8, 31 to 44, 52, 60 to 82, 84, 91 to 101, 109 to 112) and 87 stream samples from EL2377B (CSS 3, 4, 12 to 76, 79 & 80, 94 to 98, 100 to 104, 106 to 113) were sent to Amdel in Adelaide for analysis for Au, Ag, As, Bi, U, Cu, Pb, Zn, Cd, Co, Mo, Ni, refer Appendix 1 for results. The sample site locations are illustrated in Plan 1.

Assay results from the stream geochemical programme indicate the presence of low gold (up to 1.6 ppb) and base metal (Cu to 47 ppm, Pb to 48.5 ppm, Zn to 180 ppm) anomalism in the project area. The gold anomaly trends NE-SW in the centre of the western project area, low level base metal anomalies occur west of the Yeldulknie Conservation Park, east of the reserve near the tenement boundary and again in the central area of the project.

5.2 Geological Reconnaissance

Ground reconnaissance was undertaken of areas where anomalous gold and base metal results were obtained and magnetic highs are present. Various lithologies were also field checked, including quartz veins, Lower Iron Formations (BIF) and the Katunga Dolomites. The Katunga Dolomite was found to be a grey to white dolomite, locally altered to poor-grade nephrite jade (amphibole). No significant alteration was observed.

Linear magnetic highs were found to have a similar general strike orientation to the foliation of the rocks in the area. Ground truthing of these highs failed to identify these magnetic signatures, which are interpreted as BIF units at depth.

No significant mineralisation was found to be associated with the BIFs in the area.

CONCLUSIONS AND RECOMMENDATIONS

Surface geochemistry sampling techniques by previous explorers and Craton Resources NL have had minimal success in the Triple Hill Project area. Ground reconnaissance of low order gold and base metals failed to upgrade the prospectivity of the project.

On the grounds of diminished prospectivity EL2324 and part of EL2377 will be surrendered.

EXPENDITURE STATEMENT

Expenditure on the Triple Hill Project for the period was \$41,724. Triple Hill (EL2324) \$23,258 and Miltalie (EL2377) \$18,466. A breakdown of the expenditure has been outlined on individual MESA Summary Report forms.

APPENDIX 1

STREAM SEDIMENT ANALYLITICAL DATA

TRIPLE HILL EL 2324 - THS 1 to 7, 9 to 30, 45 to 51, 53 to 59, 83, 95 to 90, 102 to 108,

103 to 121.

MILTALIE EL 2377A - THS 8, 31 to 44, 52, 60 to 82, 84, 91 to 101, 109-112

MILTALIE EL 2377B - CSS 3, 4, 12 to 76, 79, 80, 94 to 98, 100 to 104, 106 to 113

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
THS1	6271015	643600	0.4		0.05	3.5	0.5	1.15	15.5	29	78	<0.1	7.5	1.8	
THS2	6271700	643680	<0.2		0.05	1	0.7	0.94	. 5	16.5	33	<0.1	2.5	1	5
THS3	6271815	644444	0.2		0.05	1.5	0.7	1.45	8	23	54	0.1	3.8	2	8
THS4	6271895	643530	0.4	0.2	< 0.05	1	0.3	1.1	3.5	14	15	<0.1	1.3	1.7	5
THS5	6271820	643365	<0.2		< 0.05	1	0.6	0.87	4	10	9.5	<0.1	1.5	1.4	3
THS6	6273470	644110	0.8		< 0.05	. 1	0.6	1.3	6	13.5	25.5	< 0.1	3.5	2	6
THS7	6273200	643230	0.2	<0.2	< 0.05	0.5	0.4	1.15	3.5	12	14.5	<0.1	1.6	1.7	5
THS8	6273335	643140	<0.2		0.1	1.5	0.4	1.9	5	39	73	<0.1	3.2	1	5
THS9	6273165	642460	<0.2		0.05	1	0.4	1.4	4	26	24	<0.1	1.6	1.9	4
THS10	6273150	642395	< 0.2		< 0.05	1	0.4	0.74	. 5	5	7	<0.1	1.4	1.6	5
THS11	6270030	642437	< 0.2		< 0.05	1	0.4	1.15	3	14	14	<0.1	1.2	1.2	3
THS12	6271000	641290	<0.2		0.05	1	0.3	1	6.5	16.5	13.5	<0.1	1.6	1.5	5
THS13	6272145	640850	<0.2		< 0.05	1	0.3	1.2	5	20.5	17	<0.1	2	1.8	6
THS14	6272110	640815	<0.2	<0.2	0.05	2	0.5	1.55	9.5	9.5	13	<0.1	2.7	1.4	6
THS15	6273015	641080	<0.2	0.4	<0.05	1	0.3	1.2	11.5	9	10	<0.1	2.3	1.6	5
THS16	6272950	641015	0.4		0.05	1.5	0.4	1.65	7	30.5	31	<0.1	2	2.1	7
THS17	6271635	640270	0.2		<0.05	1.5	0.5	1.15	8.5	26	37	<0.1	2.8	0.8	5
THS18	6270000	640860	<0.2		0.05	1.5	0.4	0.7	7	19	42	<0.1	2.7	1.4	6
THS19	6269380	641850	<0.2		< 0.05	. 1	0.4	1	3.5	13.5	16	<0.1	1.3	2.6	6
THS20	6269400	641585	<0.2		< 0.05	1	0.3	0.97	5	16.5	20.5	<0.1	1.3	1	4
THS21	6268180	641180	<0.2		< 0.05	. 1	0.4	1.05	7	20	31	<0.1	2.5	1.6	7
THS22	6268315	641220	<0.2		<0.05	1	0.4	0.87	7.5	19.5	31.5	<0.1	3.2	1.5	7
THS23	6266310	640950	<0.2		< 0.05	3	0.3	0.84	7.5	13.5	24.5	< 0.1	2.8	1.1	7
THS24	6266310	641020	<0.2		< 0.05	1	0.3	1.05	4	13	15	<0.1	1.1	1.5	4
THS25	6269630	645030	<0.2		0.05	2	0.4	1.35	18	22	79	<0.1	6	1.9	13
THS26	6269590	645330	1.6		0.1	2	0.5	1.15	18.5	27.5	105	<0.1	7.5	0.8	15
THS27	6268725	648050	<0.2		<0.05	1	0.2	0.66	7	13	46	<0.1	2.6	1.9	10
THS28	6268580	645960	<0.2	0.2	<0.05	1	0.3	0.77	9	14.5	45	<0.1	3.2	1.8	10
THS29	6268765	645350	<0.2		<0.05	1	0.3	0.76	9.5	15	44	<0.1	3.2	0.8	8
THS30	6264770	640860	<0.2		<0.05	1	0.4	1.05	5	14	18.5	<0.1	1.4	1.5	5
THS45	6270165	645250	0.2	<0.2	0.1	1.5	0.5	1.55	7.5	36	130	<0.1	3.7	1.7	10
THS46	6270635	644990	<0.2	0.2	0.05	2.5	0.5	1.25	18.5	28	105	0.1	6	1.9	13
THS47	6270600	645040	<0.2		0.05	1.5	0.3	1.15	10.5	16	53	<0.1	3.5	1.2	7
THS48	6271210	646265	<0.2		0.05	2	0.4	1.3	16.5	17.5	57	<0.1	5.5	1.7	11
THS49	6271100	646850	0.2		<0.05	1	0.3	0.97	5.5	10	27.5	<0.1	2.1	2	7.
THS50	6272775	649505	<0.2		<0.05	1.5	0.3	1.4	7.5	13	30.5	<0.1	3.3	1.5	6
THS51	6272750	649580	0.2		0.1	5	0.5	1.75	20	22.5	89	<0.1	8.5	1.8	17
THS53	6271300	649980	0.6		<0.05	3	0.4	1.45	14.5	18.5	59	<0.1	4.8	1.1	10
THS54	6270875	649325	0.6		< 0.05	1.5	0.3	0.8	7	18	57	<0.1	3.6	2.5	11
THS55	6269860	648370	0.6		<0.05	1.5	0.3	0.74	7	14	45	<0.1	3.1	1.9	10

Stream Sediment Results

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
THS56	6269755	648055	0.6		0.05	1.5	0.4	1.1	8.5	23	77	<0.1	3.6	1.6	10
THS57	6272080	650780	0.6		0.05	4	0.6	1.95	26.5	23.5	78	<0.1	9.5	1.5	19
THS58	6272610	651460	0.2		0.05	3.5	0.4	1.05	17.5	19	60	<0.1	7.5	2	17
THS59	6273365	650930	0.4		0.05	2.5	0.6	1.2	27	20.5	87	<0.1	9.5	1.1	15
THS83	6273110	652155	< 0.2		0.05	2	0.4	1.15	16	16	56	<0.1	6.5	1.2	14
THS85	6272595	655140	<0.2	0.2	<0.05	1.	0.3	1.15	11.5	9.5	42.5	<0.1	3.7	1.9	10
THS86	6271110	653150	0.2		< 0.05	2	0.4	0.96	10.5	13.5	39	<0.1	4.1	0.8	9
THS87	6270800	653200	<0.2		0.05	. 3	0.4	0.6	9	20	42	<0.1	4	1.9	13
THS88	6269535	649800	1		0.05	3.5	0.4	1.4	16	22	5 9	<0.1	5	2	13
THS89	6271995	652000	<0.2		0.05	4	0.6	1.35	24.5	24	98	<0.1	8.5	0.9	17
THS90	6272590	652150	<0.2		0.05	2	0.4	1.1	13	15	43.5	<0.1	4.8	1.7	12
THS101	6273220	646620	<0.2		0.05	2.5	0.5	1.15	14	22	53	<0.1	4.8	0.9	10
THS102	6273025	646000	<0.2		0.05	2	0.5	1	10.5	22	49	<0.1	3.5	2	9
THS103	6271500	647130	<0.2		< 0.05	1.5	0.4	1.25	8	12	32	<0.1	2.9	2.5	9
THS104	6271275	647200	<0.2		<0.05	1.5	0.3	1.05	6	12	30.5	<0.1	2.4	1.2	6
THS105	6271550	647830	<0.2		< 0.05	1	0.3	1	6	10	22	< 0.1	2.3	2.3	9
THS106	6273100	654000	<0.2		0.05	1	0.3	1.3	14.5	10.5	32.5	<0.1	6	1.8	14
THS107	6273240	655150	<0.2	.'	< 0.05	1	0.2	0.83	6	7.5	18.5	<0.1	2.2	1.3	8
THS108	6271000	655800	<0.2		<0.05	1.5	0.3	1.15	12.5	13	35	<0.1	3.8	1.5	12
THS113	6271050	645480	<0.2		0.05	3	0.4	1.7	24.5	26	73	0.1	6	0.9	14
THS114	6273150	645350	<0.2		0.05	2.5	0.6	0.94	8.5	19.5	30	<0.1	2.7	1.8	8
THS115	6272210	644885	<0.2		0.1	2	1.1	2.1	15	48.5	100	<0.1	6	2.4	13
THS116	6272390	644940	<0.2		0.1	1	0.8	1.35	6.5	28	85	0.5	2.2	1.1	6
THS117	6273400	640650	<0.2		0.1	3	0.3	1.35	7	63	44.5	<0.1	2.2	2.3	7
THS118	6273350	640650	<0.2		0.1	2.5	0.5	1.9	6.5	42.5	44.5	<0.1	2.6	2.3	7
THS119	6273130	639120	0.4	<0.2	0.05	3	0.5	1.15	8.5	51	9	<0.1	1.2	0.9	3
THS120	6272170	640090	0.2		<0.05	2	0.4	1.2	10.5	28	55	<0.1	4	1.7	10
THS121	6270870	640265	0.2		0.05	2	0.5	0.83	9.5	32.5	48	<0.1	3.7	2	9

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
THS31	6278130	639875	0.2		< 0.05	2	0.3	0.4	16.5	14.5	35	<0.1	8.5	2.1	16
THS32	6277350	638550	<0.2		0.05	1.5	0.2	0.3	11	18.5	57	<0.1	7.5	0.7	14
THS33	6279240	639320	0.6		0.1	6.5	0.7	1.5	100	23.5	62	<0.1	14.5	1.9	23
THS34	6277400	641350	<0.2		0.05	2	0.4	0.61	16	25.5	56	<0.1	7.5	1.9	13
THS35	6277365	641200	0.4		0.05	2	0.4	0.56	15.5	28.5	53	<0.1	5.5	1.3	9
THS36	6277080	641070	<0.2		0.05	2.5	0.3	0.63	18.5	26.5	71	<0.1	8.5	1.8	16
THS37	6277180	641260	0.2		< 0.05	1.5	0.4	0.52	8.5	20.5	33.5	<0.1	4.1	1.8	- 8
THS38	6278070	641795	<0.2		< 0.05	2	0.5	0.88	21	21	57	<0.1	6.5	1.2	12
THS39	6278700	641900	0.4		0.05	2.5	0.5	0.86	38	28.5	77	<0.1	16	1	27
THS40	6278760	641890	0.4		<0.05	1.5	0.5	0.64	19	21	52	<0.1	9	1.8	15
THS41	6278920	643225	0.2		0.05	2	0.5	0.61	15	16.5	28.5	<0.1	5.5	i	9
THS42	6275450	640580	0.4	<0.2	0.1	3.5	0.6	1.75	20.5	37	125	<0.1	6	2	12
THS43	6274670	639420	<0.2		0.1	3	0.4	0.91	11	38	120	<0.1	4.3	1.7	9
THS44	6274505	639250	<0.2	<0.2	0.1	3	0.3	1.1	5.5	65	12.5	<0.1	1.4	1.4	3
THS52	6273990	649750	0.2		0.1	8	0.7	2.7	63	36	180	0.1	25.5	1	42
THS60	6275845	648790	<0.2		0.05	1.5	0.6	1.05	7	26	26	<0.1	2.8	1.8	7
THS61	6276460	648515	<0.2		< 0.05	1	0.8	0.8	2	4	7	< 0.1	0.8	1.9	5
THS62	6276400	648560	<0.2		< 0.05	1.5	0.7	0.77	4	18.5	26	< 0.1	2.1	1.5	4
THS63	6276885	649215	0.2		< 0.05	3	0.6	0.73	7.5	26.5	38	<0.1	5	2	10
THS64	6277090	648710	<0.2	< 0.2	< 0.05	1.5	0.8	0.9	3	11.5	16	<0.1	1.5	2.1	5
THS65	6277175	648725	<0.2		< 0.05	1.5	0.6	0.94	3.5	18	24	<0.1	1.6	1.4	4
THS66	6277200	648690	<0.2		< 0.05	1.5	0.6	1.05	3	12.5	9	< 0.1	1	2.6	5
THS67	6277620	648410	<0.2		<0.05	1	0.2	0.85	2	4.5	7	<0.1	0.7	1.7	4
THS68	6278845	648000	<0.2		<0.05	1	0.5	1.1	3	9.5	13.5	<0.1	1.9	1.6	4
THS69	6278900	648140	<0.2		< 0.05	1	0.6	1.45	2.5	7.5	9.5	<0.1	0.7	1.7	3
THS70	6278000	648325	<0.2		< 0.05	1	0.6	0.99	3.	12	15	<0.1	1.3	2	5
THS71	6278080	648350	<0.2		< 0.05	1	0.8	1.35	2	5.5	15.5	<0.1	0.7	1.4	2
THS72	6278020	651600	<0.2		0.05	4	0.4	1.25	7.5	13	25	< 0.1	6.5	3.8	13
THS73	6278075	651710	0.4	0.2	0.05	1.5	0.4	1.3	8	18	27	<0.1	6.5	2.7	11
THS74	6278625	652420	0.2		0.05	4	0.5	1.4	11	20	54	<0.1	6.5	1	13
THS75	6278615	652500	0.4		0.1	2.5	0.3	1.05	17	24.5	44	<0.1	8	3	17
THS76	6277520	652380	0.2		<0.05	2	0.3	0.59	7.5	28	25	<0.1	4.3	2.6	12
THS77	6277550	652325	0.2		0.1	3	0.4	1.2	17.5	19.5	46.5	<0.1	9.5	1.1	18
THS78	6278935	653535	<0.2		< 0.05	2.5	0.3	0.9	7.5	12	25.5	< 0.1	4.3	1.5	8
THS79	6277835	654690	<0.2		<0.05	1.5	0.2	0.55	5.5	9.5	15	<0.1	4.7	2	8
THS80	6278990	654890	0.4		<0.05	1	0.4	0.94	4.5	8.5	20.5	<0.1	2.6	2.7	8
THS81	6276800	652240	<0.2		<0.05	3	0.3	0.59	9.5	17	29	<0.1	6	0.9	9
THS82	6275150	649620	0.4		<0.05	2	0.2	0.74	7	9.5	31.5	<0.1	4	1.8	10
THS84	6273930	654530	<0.2		< 0.05	1.5	0.3	1.2	13.5	12.5	50	<0.1	4.3	1.6	11
THS91	6274690	652190	<0.2		< 0.05	1	0.3	1.1	7.5	11.5	40	<0.1	3.3	1.7	8

Stream Sediment Results

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
THS92	6274760	652230	< 0.2		< 0.05	1	0.4	1.25	6.5	15	45.5	<0.1	3.3	1.3	8
THS93	6275735	653600	0.4		< 0.05	1	0.4	1.3	7.5	14	40.5	<0.1	3	2.1	9
THS94	6275850	653640	0.2	0.4	< 0.05	1	0.4	2.2	8	12.5	40	<0.1	3.7	2	11
THS95	6275650	654010	0.4	<0.2	0.1	2.5	0.4	1.65	23	31.5	100	0.1	11.	0.6	15
THS96	6275210	654440	<0.2		0.1	2	0.4	1.45	34.5	30	110	0.1	10.5	1.7	18
THS97	6275045	654425	<0.2		0.05	1.5	0.4	1.35	12.5	15.5	56	<0.1	4.7	2.1	12
THS98	6274830	654320	<0.2		0.05	2	0.3	1.15	23.5	16.5	73	<0.1	8	0.7	18
THS99	6274770	654795	<0.2		0.05	1.5	0.3	0.92	12.5	11.5	40	<0.1	4.3	1.9	11
THS100	6274665	654880	<0.2		0.05	2.5	0.3	1.1	8	8.5	26.5	<0.1	3.7	2.1	9
THS109	6275930	640010	<0.2	<0.2	0.1	2	0.3	0.8	15	31	69	<0.1	5	1.9	12
THS110	6275525	639380	<0.2		0.05	3	0.4	0.94	24	27	67	<0.1	10	0.9	17
THS111	6278420	641450	0.8		0.15	3.5	0.5	0.85	47	17.5	53	<0.1	20	1.6	36
THS112	6273770	650500	<0.2		0.05	2.5	0.5	1.2	14.5	18.5	55	<0.1	6	2.2	13

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
CSS003	6293480	678390	<0.2		< 0.05	1	<0.1	2.7	4.5	6	14	<0.1	2.9	0.6	5
CSS004	6293430	678400	0.2		< 0.05	1	<0.1	2.6	6	6.5	19	<0.1	5	2.4	10
CSS012	6293000	681240	0.4		< 0.05	1	<0.1	1.2	4	5.5	9	<0.1	2.5	0.8	5
CSS013	6292400	680050	<0.2		< 0.05	1	<0.1	1.55	4.5	5.5	9	<0.1	3.7	1.5	8
CSS014	6290900	678470	0.4		< 0.05	1	<0.1	1.35	6	6.5	15	<0.1	5.5	1.4	11
CSS015	6290930	678815	<0.2		< 0.05	1	< 0.1	0.9	4	5.5	11.5	<0.1	3.5	1	7
CSS016	6290720	681160	< 0.2	<0.2	<0.05	1	< 0.1	1.45	4	5.5	9.5	<0.1	3.6	1.2	8
CSS017	6291170	680760	<0.2		< 0.05	1	<0.1	1.35	4.5	6	9.5	<0.1	3.3	0.7	6
CSS018	6290890	680700	<0.2		< 0.05	2	0.1	0.68	6	6	21	<0.1	7.5	1	13
CSS019	6289820	681160	0.2		< 0.05	1	< 0.1	1.15	5	5.5	12	<0.1	4.2	1.2	9
CSS020	6289700	680830	<0.2		< 0.05	1.5	<0.1	0.87	6.5	6	14.5	<0.1	4.8	0.9	9
CSS021	6288950	680145	< 0.2	<0.2	< 0.05	1.5	< 0.1	1.4	8	6.5	16	<0.1	7.5	0.7	11
CSS022	6290620	682500	0.2		< 0.05	1	<0.1	. 1	6	5.5	10.5	<0.1	4	1	9
CSS023	6284370	679000	0.2		< 0.05	1	< 0.1	0.7	6	5	13	<0.1	3.5	0.7	8
CSS024	6288760	680000	<0.2		< 0.05	1.5	<0.1	1.3	9	16.5	24.5	<0.1	6.5	1.4	13
CSS025	6288410	679750	0.4		< 0.05	2	0.1	1.15	13	10	30.5	<0.1	13	1.4	20
CSS026	6289960	677595	<0.2		<0.05	1	<0.1	1.85	5	6	14	< 0.1	3.8	1.2	7
CSS027	6288700	677560	0.2		0.1	. 2	< 0.1	1.95	14	13	44	<0.1	11	2	19
CSS028	6288430	677585	<0.2	<0.2	< 0.05	1	<0.1	2.5	8.5	10.5	31.5	< 0.1	8	1.6	12
CSS029	6287730	677940	<0.2		< 0.05	1	<0.1	1.6	7	8.5	19	<0.1	5.5	0.5	9
CSS030	6287560	679125	<0.2		< 0.05	1	<0.1	1.2	9	7	19.5	<0.1	7.5	0.9	11
CSS031	6286630	678425	<0.2		<0.05	1.5	< 0.1	1.65	10.5	19.5	35	< 0.1	8	1.4	15
CSS032	6286290	678200	<0.2		< 0.05	2.5	<0.1	1.1	10	10	21	<0.1	6	0.7	13
CSS033	6285600	677940	<0.2		< 0.05	1	<0.1	1.9	7.5	8	16	< 0.1	6.5	1.2	9
CSS034	6285210	677320	<0.2	0.2	< 0.05	1	<0.1	2.5	9.5	9	23	< 0.1	7.5	1.4	12
CSS035	6284490	676485	<0.2		< 0.05	1.5	<0.1	1	7.5	8.5	22.5	<0.1	7	0.7	11
CSS036	6284850	676760	<0.2		< 0.05	1	0.1	1.15	9	9	23.5	<0.1	6.5	1.2	10
CSS037	6284020	676145	<0.2		<0.05	2	<0.1	0.85	7	5.5	15	<0.1	6	1.5	10
CSS038	6279975	672665	<0.2		<0.05	1.5	0.1	1.75	5.5	9	14	<0.1	3.1	0.5	6
CSS039	6282300	673910	0.2		< 0.05	1.5	0.1	0.81	10.5	11	27.5	<0.1	8.5	1.3	14
CSS040	6282320	673900	<0.2		< 0.05	1	<0.1	0.85	8.5		21	<0.1	7.5	1,1	12
CSS041	6282250	674000	<0.2	<0.2	<0.05	1.5	0.3	0.96	10.5	9	25.5	<0.1	8	0.7	11
CSS042	6281920	673715	<0.2		< 0.05	2.5	0.1	1.15	15.5	10.5	33	< 0.1	12.5	1.2	18
CSS043	6281490	673650	<0.2		<0.05	1.5	0.1	0.81	9.5	8.5	21.5	<0.1	7.5	0.9	12
CSS044	6281500	673665	<0.2		<0.05	I	< 0.1	1.3	7	6	15.5	< 0.1	5.5	1.5	11
CSS045	6280500	672795	<0.2		<0.05	1.5	0.1	1.35	6.5	9.5	19	<0.1	4.1	1.3	9
CSS046	6280090	672110	0.2		<0.05	1	0.1	1.35	6	8	17	<0.1	4	1.3	9
CSS047	6280120	672054	<0.2		<0.05	1	0.1	2	4.5	7	10.5	<0.1	3	0.7	5
CSS048	6280500	670550	<0.2		<0.05	1	0.2	2.2	4	7.5	14	<0.1	3.5	1.4	7
CSS049	6280465	670593	<0.2		<0.05	I	0.2	1.45	4	5.5	10	<0.1	3.2	1.2	7

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
CSS050	6280504	671740	0.4		<0.05	1.5	0.2	1.8	5	8.5	15	<0.1	3.7	0.9	6
CSS051	6280510	671800	<0.2		<0.05	1.5	<0.1	1.1	4	5	7.5	< 0.1	2.5	1.3	5
CSS052	6278975	672270	0.4		< 0.05	3	<0.1	1.8	10	10	31.5	<0.1	7	1.7	13
CSS053	6278500	672125	0.4		<0.05	1.5	<0.1	1.4	10.5	6.5	34	<0.1	9.5	1.3	13
CSS054	6278335	672000	0.4		<0.05	2	<0.1	1.7	19.5	10	32.5	<0.1	11.5	1.5	17
CSS055	6277735	671775	0.2		< 0.05	1	<0.1	1.9	6.5	9	17	<0.1	4.5	0.8	7
CSS056	6277270	671610	0.4		<0.05	1	<0.1	2.5	4	7.5	10	<0.1	3.5	1.7	7
CSS057	6278140	670900	0.4		< 0.05	1.5	0.1	2.8	5.5	9	17.5	<0.1	6	1.9	12
CSS058	6278150	668400	<0.2		< 0.05	1.5	0.1	4.1	4	11.5	19	<0.1	6	0.8	8
CSS059	6278025	668400	0.6		0.05	2	0.4	3.7	10.5	15	38.5	<0.1	9.5	1.4	17
CSS060	6277710	668210	0.4	0.4	< 0.05	1	0.2	1.8	4.5	8	15.5	<0.1	4.1	1.5	9
CSS061	6277660	668120	0.4	0.4	<0.05	1.5	0.4	3.5	9.5	13	30	<0.1	7	1	12
CSS062	6277125	667910	0.6		< 0.05	1.5	0.4	2.3	9.5	15	24.5	<0.1	6	1.6	11
CSS063	6277050	667940	0.4		< 0.05	1.5	0.2	1.8	5	8	17	<0.1	3.9	0.9	8
CSS064	6276760	667865	0.4		<0.05	2.5	0.4	1.55	8	16.5	23.5	<0.1	5.5	0.6	7
CSS065	6276045	668875	0.4	0.4	<0.05	1	0.1	2	4	7.5	14	<0.1	4.1	0.9	7
CSS066	6275790	669170	0.4		< 0.05	1	0.1	1.6	5.5		15	<0.1	4.1	1.4	8
CSS067	6275400	668870	0.4		< 0.05	1.5	0.2	1.6	4.5	8.5	15.5	<0.1	3.4	1.1	7
CSS068	6275410	668065	0.2	_	< 0.05	1.5	0.2	1.15	5	11	17	<0.1	4.1	1.1	9
CSS069	6275450	667990	0.4		<0.05	1.5	0.3	1.7	7.5	9.5	22	<0.1	5.5	1.1	11
CSS070	6275500	668035	0.4		< 0.05	2	0.2	2.1	5	9	16	<0.1	3.6	1.1	7
CSS071	6275470	669550	0.4		< 0.05	1.5	<0.1	1.8	4	5	13	<0.1	4.2	1.2	8
CSS072	6274951	669390	0.2		< 0.05	1.5	0.1	2.1	6.5	12.5	29	<0.1	4.6	1	9
CSS073	6275040	669620	0.6		<0.05	1	0.1	1.45	4	7	12.5	<0.1	3.3	1.3	7
CSS074	6274780	669950	0.4		< 0.05	2	0.2	2.7	6	9.5	22	<0.1	5.5	1.7	11
CSS075	6274420	669600	0.2		< 0.05	2	0.2	1.65	9	17	42	<0.1	6.5	0.9	11
CSS076	6274135	670458	<0.2		< 0.05	1	0.1	1.5	5.5	8	19.5	<0.1	4	0.4	7
CSS079	6281590	668185	<0.2		<0.05	1.5	<0.1	2.1	3.5	5.5	9	<0.1	2.1	1.7	. 7
CSS080	6280540	666960	<0.2		<0.05	1	<0.1	2.2	3	3.5	6	<0.1	1.8	1.3	6
CSS094	6293100	677365	0.2	<0.2	< 0.05	2	<0.1	1.35	8	4.5	17	<0.1	4.6	1	9
CSS095	6289720	676300	0.4		< 0.05	1	<0.1	1.4	4	6.5	15	<0.1	3.6	1.6	7
CSS096	6293460	680240	<0.2		< 0.05	1	<0.1	0.98	6.5	6.5	13.5	<0.1	4.2	1.7	9
CSS097	6293200	679040	<0.2		< 0.05	1	<0.1	1.9	6	7.5	12.5	<0.1	5.5	1.3	7
CSS098	6292695	679775	<0.2		< 0.05	1	<0.1	1.85	8	8	19	<0.1	6.5	1.2	10
CSS100	6291765	678750	<0.2		<0.05	1	<0.1	1.2	18.5	8	40.5	< 0.1	14	0.5	19
CSS101	6290410	680225	<0.2		<0.05	1.5	<0.1	1.05	11.5	9.5	26.5	<0.1	11	1.2	17
CSS102	6288420	681830	<0.2		<0.05	1	<0.1	1.05	5	5.5	14	<0.1	3.6	1.4	8
CSS103	6285980	676985	<0.2	0.2	< 0.05	1	<0.1	1.2	11	7.5	27.5	<0.1	7	1.8	12
CSS104	6283195	675875	<0.2		< 0.05	1	<0.1	0.6	6	5	18.5	<0.1	3.4	1.5	8
CSS106	6281975	675030	0.2	<0.2	< 0.05	1.5	<0.1	1.05	9.5	7.5	24.5	<0.1	8	1.1	12

Stream Sediment Results

Sample	Northing	Easting	Au	Au Dp1	Ag	As	Bi	U	Cu	Pb	Zn	Cd	Co	Mo	Ni
Number	(mN)	(mE)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
CSS107	6282520	668720	0.4		< 0.05	6	0.2	1.85	15.5	21.5	49.5	<0.1	5.5	1.7	14
CSS108	6281995	672200	<0.2		< 0.05	1	<0.1	1.15	7	5.5	19	<0.1	5.5	1.4	11
CSS109	6274318	672388	0.2	0.2	< 0.05	2	0.1	1.75	10	9.5	38	<0.1	7.5	0.8	12
CSS110	6276025	672000	<0.2		< 0.05	1	<0.1	1.35	11.5	8.5	25.5	<0.1	7	1.6	13
CSS111	6279925	670155	0.2		< 0.05	2	0.2	4.6	6.5	10.5	29	<0.1	5.5	2.3	11
CSS112	6276735	669730	<0.2		<0.05	1	<0.1	2.8	4	6	15.5	<0.1	4.5	1.2	7
CSS113	6274375	668860	<0.2		< 0.05	1	<0.1	1.7	4	10	13	<0.1	3	1.5	7

This Laboratory is registered by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

MINERAL CHEMISTRY

Amdel Laboratories Ltd PO Box 338 Torrensville Plaza SA 5031 ACN 009 076 555 Telephone (08) 8416 5300 Facsimile (08) 8234 0321

Mr Neil O'Loughlin Craton Resources NL Level 1, Norwich House 40 Kings Park Road WEST PERTH WA 6872 DECEIVED

1 3 OCT 1997

FINAL ANALYSIS REPORT

Your Order No:

Our Job Number: 7AD2424

Sample rec'd:

09/09/97

Results reported: 25/09/97

No. of samples

792

Report comprises a cover sheet and pages A:1 to 24,B:1 to 10

This final analysis report replaces the preliminary reports sent on 19/9/97.

Approved Signature:

tor

Alan Ciplys

Manager - Mineral Chemistry

Report Codes:

N.A. - Not Available.

L.N.R. - Listed But Not Received.

I.S. - Insufficient Sample.

Distribution Codes:

CC - Carbon Copy

EM - Electronic Media

MM - Magnetic Media

ANALYTICAL REPORT inal

Job: 7AD2424B O/N:

SAMPLE	Ag	As	Bi	υ	Cu	Pb	Zn
CSS 001 CSS 002 CSS 003 CSS 004 CSS 005 CSS 006 CSS 007 CSS 008 CSS 009 CSS 010 CSS 011 CSS 012 CSS 013 CSS 014 CSS 015 CSS 016 CSS 017 CSS 018 CSS 019 CSS 020 CSS 021 CSS 020 CSS 021 CSS 022 CSS 023 CSS 024 CSS 025 CSS 026 CSS 027 CSS 028 CSS 029 CSS 029 CSS 030 CSS 031 CSS 032 CSS 031 CSS 032 CSS 033 CSS 034 CSS 035 CSS 036 CSS 037 CSS 038 CSS 039 CSS 049		1.5 1.0 1.5 2.5 1.5 1.0 1.5 1.0 1.0 1.5	<0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2	1.20 0.21.33.55.20 1.34.5.20 1.35.55.20 1.35.39 1.36.157 1.39.50 1.39.	6.0 4.5 4.0 4.0 5.0	9.0 11.0 8.0 9.0 10.5 8.5 6.0 9.5 8.0 7.5 5.5 8.5	15.0 ppm
DET.LIM SCHEME	0.05 IC2M	0.5 IC2M	0.1 IC2M	0.02 IC2M	0.5 IC2M	0.5 IC2M	0.5 IC2M

Page 1 of 10

Final

Job: 7AD2424B O/N:

ANALYTICAL REPORT

SAMPLE	Ag	As	Bi	U	Cu	Pb	Zn
CSS 051 CSS 052 CSS 053 CSS 054 CSS 055 CSS 056 CSS 057 CSS 058 CSS 059 CSS 060 CSS 061 CSS 062 CSS 063 CSS 064 CSS 066 CSS 067 CSS 070 CSS 077 CSS 080 CSS 081 CSS 082 CSS 083 CSS 084 CSS 085 CSS 087 CSS 087 CSS 089 CSS 089 CSS 089 CSS 089 CSS 089 CSS 091 CSS 091 CSS 092 CSS 096 CSS 097 CSS 099	0.055555555555555555555555555555555555	13.50.00.05.55.00.05.55.00.00.05.05.55.50.05.55.00.00	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	1.80 1.70 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9	0.05.5.5.0.5.0.5.5.0.0.5.0.0.5.0.0.5.0	0.05.005.000.005.505.05.005.05.555.555.	7.55050505050055000550005500550055005500
DET.LIM SCHEME	0.05 IC2M	0.5 IC2M	0.1 IC2M	0.02 IC2M	0.5 IC2M	0.5 IC2M	0.5 IC2M

Page 2 of 10

ANALYTICAL REPORT inal

Job: 7AD2424B O/N:

SAMPLE	Ag	As	Bi	U	Cu	Pb	Zn
CSS 101 CSS 102 CSS 103 CSS 104 CSS 105 CSS 106 CSS 107 CSS 108 CSS 109 CSS 110 CSS 111 CSS 112 CSS 111 CSS 112 CSS 113 THS 001 THS 002 THS 003 THS 004 THS 005 THS 006 THS 010 THS 011 THS 011 THS 011 THS 011 THS 011 THS 011 THS 012 THS 013 THS 014 THS 015 THS 016 THS 017 THS 017 THS 018 THS 017 THS 018 THS 021 THS 022 THS 023 THS 024 THS 025 THS 026 THS 027 THS 027 THS 028 THS 027 THS 030 THS 031	0.055 0.	1.00.00.00.00.00.00.00.00.00.00.00.00.00	<pre><0.1 1.1 2.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0</pre>	1.05 1.020 1.085 1.755 1.368 1.755 4.87 1.194 1.194 1.190 1.	15.0000555005500500500505500550055005500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	214.555500508040555553 24.555500508040555553 24.5555005050505055553 24.5000005055553 24.5000005055553 24.5000005055553 24.5000005055553 24.5000005055553
DET.LIM SCHEME	0.05 IC2M	0.5 IC2M	0.1	0.02 IC2M	0.5	0.5	0.5 IC2M

Page 3 of 10

ANALYTICAL REPORT 'inal

Job: 7AD2424B O/N:

SAMPLE	Ag	As	Bi	Ū	Cu	Pb	Zn
THS 038 THS 039 THS 040 THS 041 THS 042 THS 043 THS 044 THS 045 THS 046 THS 047 THS 048 THS 050 THS 051 THS 052 THS 053 THS 055 THS 055 THS 056 THS 067 THS 067 THS 066 THS 067 THS 066 THS 067 THS 067 THS 070 THS 071 THS 072 THS 073 THS 074 THS 077	<pre></pre>	3.0	0.55.55.64.35.53.4.33.57.4.33.4.6.4.6.6.8.7.6.8.6.6.2.5.6.6.8.4.4.5.3.3.4.4.3.2.4.3.3.4.4.m.p.p.p.p.p.p.p.p.p.p.p.p.p.p.p.p.p	0.8864 0.6615 1.91055555 1.39705 1.397		19.5 12.0 9.5 8.5 17.0 9.5 16.0 12.5 9.5	5772551205012.505375559097078072000555050505050505050505050505000000555050
DET.LIM SCHEME	0.05 IC2M	0.5	0.1 IC2M	0.02 IC2M	0.5	0.5	0.5 IC2M

Page 4 of 10

inal

ANALYTICAL REPORT

Job: 7AD2424B O/N:

SAMPLE	Ag	As	Вi	U	Cu	Pb	Zn
THS 088 THS 089 THS 090 THS 091 THS 092 THS 093 THS 094 THS 095 THS 096 THS 097 THS 098 THS 099 THS 100 THS 101 THS 102 THS 103 THS 104 THS 105 THS 106 THS 107 THS 106 THS 1107 THS 1107 THS 1110 THS 1110 THS 1111 THS 112 THS 1113 THS 1114 THS 1115 THS 1116 THS 1116 THS 1117 THS 1118	Ag 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	As 3.5 4.0 1.0 1.0 1.0 2.5 2.5 2.5 2.5 1.0 1.5 2.0 1.5 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Bi 46434444333355433455461835	U 1.40 1.35 1.10 1.25 1.30 2.65 1.35 1.35 1.15 1.00 1.00	Cu .05.0 .5.5 .5.0 .0.0 .5.5 .5.0 .0.0 .5.0 .0.0 .5.0 .5.0 .0.0 .5	Pb 22.0 15.0 11.5 15.0 14.5 15.5 15.5 16.5 16.5 17.5 17.5 17.5 18.0 17.5 18.0 17.5 18.0 19.5 18.0 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Zn 5985 400.55 400.00 1106 400.53 400.05
THS 119 THS 120 THS 121	0.05 <0.05 0.05	3.0 2.0 2.0	0.5 0.4 0.5	1.15 1.20 0.83	8.5 10.5 9.5	51 28.0 32.5	9.0 55 48.0

UNITS	ppm	ppm	ppm	ppm	ppm	mqq	ppm
DET.LIM	0.05	0.5	0.1	0.02	0.5	0.5	0.5
SCHEME	IC2M						

Final

ANALYTICAL REPORT

Job: 7AD2424B

	٠	1,502	4 4	- t
$N \setminus N$;			

SAMPLE	Au A	Au Dp1	Cd	Co	Мо	Ni
CSS 001 CSS 002 CSS 003 CSS 004 CSS 005 CSS 006 CSS 007 CSS 008 CSS 009 CSS 010 CSS 011 CSS 012 CSS 013 CSS 014 CSS 015 CSS 016 CSS 017 CSS 018 CSS 017 CSS 020 CSS 021 CSS 022 CSS 023 CSS 024 CSS 025 CSS 026 CSS 027 CSS 028 CSS 027 CSS 028 CSS 029 CSS 030 CSS 031 CSS 031 CSS 031 CSS 032 CSS 033 CSS 034 CSS 035 CSS 036 CSS 037 CSS 038 CSS 037 CSS 038 CSS 039 CSS 040 CSS 045 CSS 045 CSS 045 CSS 045 CSS 049 CSS 04	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.4 <0.2 <0.2 <0.2 <0.2 0.2 ppb	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	0.9902581132575563528505508005500550155055100527 m 6325271421323533374474363318578667766638782754433333 pp	0.00.00.00.00.00.00.00.00.00.00.00.00.0	98508478768581786399198307929153921006421821995776 pp
DET.LIM SCHEME	0.2 FA3L	0.2 FA3L	0.1 IC2M	0.2 IC2M	0.1 IC2M	1 IC2M

ANALYTICAL REPORT Final

Job: 7AD2424B O/N:

SAMPLE	Au	Au Dp1	Cd	Co	Мо	Ni
CSS 051 CSS 052 CSS 053 CSS 053 CSS 054 CSS 055 CSS 056 CSS 057 CSS 058 CSS 060 CSS 060 CSS 061 CSS 062 CSS 064 CSS 065 CSS 067 CSS 067 CSS 067 CSS 070 CSS 070 CSS 077	<pre></pre>	0.4 0.4 0.4 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	27914366947635114156263550701880042500362156625520 mg 14366947635443453564352144843363212244345634 pp	1.373587984506994111111.37943859072333658780673275 m	5 13 17 77 12 87 17 18 97 11 17 90 10 10 10 10 10 10 10 10 10 10 10 10 10
DET.LIM SCHEME	0.2 FA3L	0.2 FA3L	0.1 IC2M	0.2 IC2M	0.1 IC2M	1 IC2M

rinal

Job: 7AD2424B O/N:

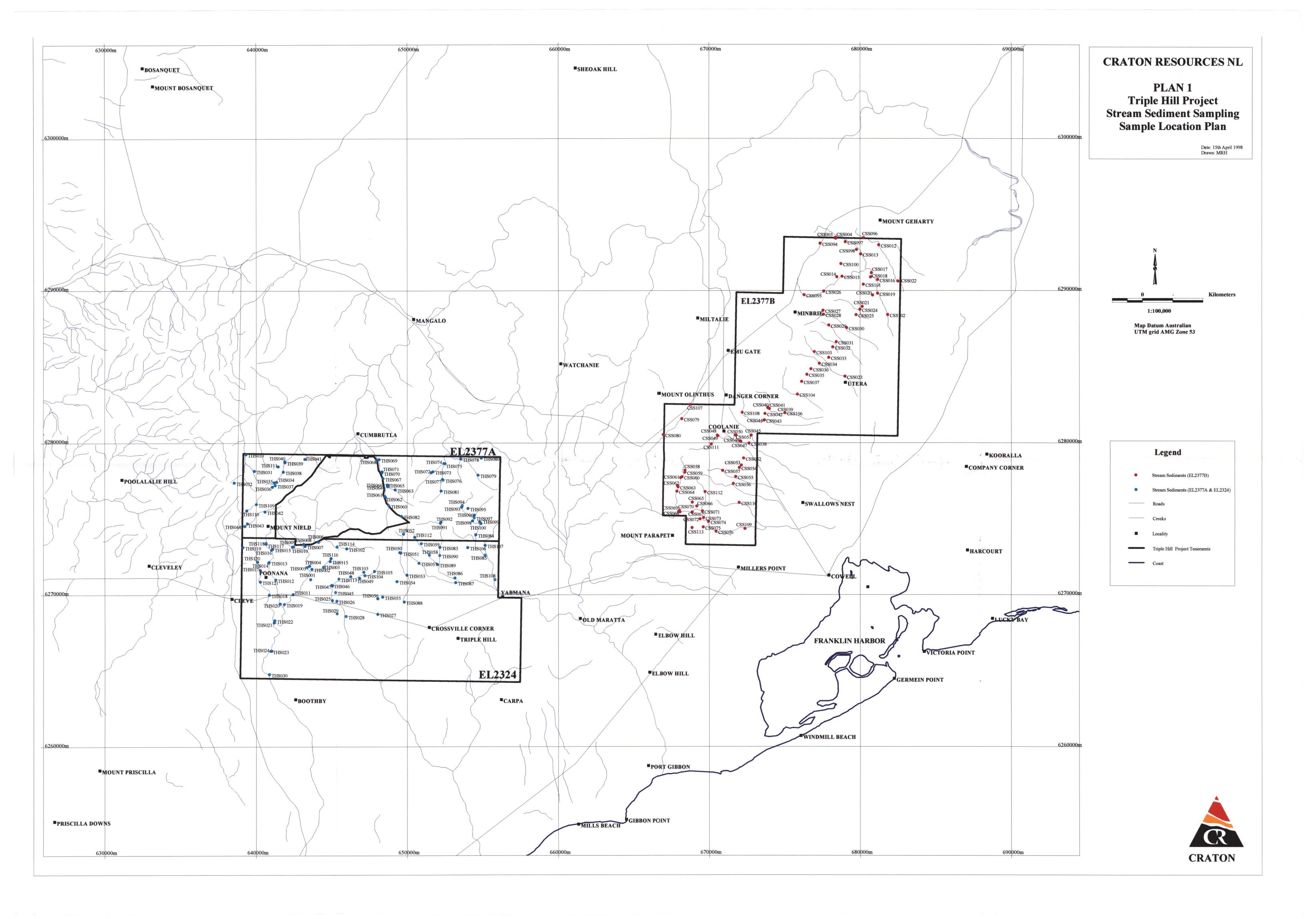
ANALYTICAL REPORT

SAMPLE	Au A	Au Dp1	Cd	Co	Мо	Ni
CSS 101 CSS 102 CSS 103 CSS 104 CSS 105 CSS 106 CSS 107 CSS 108 CSS 109 CSS 110 CSS 111 THS 001 THS 002 THS 003 THS 004 THS 005 THS 006 THS 010 THS 011 THS 011 THS 011 THS 011 THS 011 THS 011 THS 012 THS 013 THS 014 THS 015 THS 016 THS 017 THS 018 THS 017 THS 018 THS 017 THS 020 THS 021 THS 022 THS 021 THS 022 THS 021 THS 021 THS 022 THS 021 THS 031	22222222222222222222222222222222222222	0.2 	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	11.37.36.85.57.75.43.72.31.13.13.1.11.22.22.22.11.23.21.67.23.3.1.87.4.75.8.4. pp	1.48521.74863258007407096258461846065159898851799388 m1	17812841211177558536555453566575664777743500856433968 m1
SCHEME	0.2 FA3L	0.2 FA3L	0.1 IC2M	0.2 IC2M	0.1 IC2M	1 IC2M

Page 8 of 10

'inal ANALYTICAL REPORT Job: 7AD2424B O/N:

SAMPLE	Au .	Au Dp1	Cd	Co	Мо	Ni
THS 038 THS 039 THS 040 THS 041 THS 041 THS 042 THS 043 THS 044 THS 045 THS 046 THS 047 THS 048 THS 050 THS 051 THS 052 THS 053 THS 054 THS 055 THS 056 THS 057 THS 058 THS 060 THS 061 THS 062 THS 063 THS 066 THS 067 THS 066 THS 067 THS 067 THS 067 THS 067 THS 077 THS 078 THS 079 THS 081 THS 086 THS 087	<pre>< 0.2 0.4 0.4 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</pre>	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	66.9.5.6.4.1.3.6.3.5.2.3.8.5.4.3.3.3.9.7.9.2.0.2.5.1.1.0.1.0.6.6.6.8.4.9.4.4.2.6.4.6.4.3.4.4.	1.08.00.74.79.27.05.80.15.96.50.18.95.01.46.76.70.48.70.06.15.07.98.26.98.9 1.10.07.47.92.70.58.01.59.50.14.67.00.48.70.06.15.07.98.26.98.9	1275929303717672011019757540545352311372888890411093 12719293037176720110111111111111111111111111111111
UNITS DET.LIM SCHEME	ppb 0.2 FA3L	ppb 0.2 FA3L	ppm 0.1 IC2M	ppm 0.2 IC2M	ppm 0.1 IC2M	ppm 1 IC2M


Final

Job: 7AD2424B O/N:

ANALYTICAL REPORT

SAN	MPLE	Au	Au Dp1	Cd	Co	Мо	Ni
THS	088	1.0		< 0.1	5.0	2.0	13
THS	089	< 0.2	- ÷	< 0.1	8.5	0.9	17
THS	090	<0.2		<0.1	4.8	1.7	12
THS	091	<0.2	·	<0.1	3.3	1.7	8
THS	092	<0.2		<0.1	3.3	1.3	.8
\mathtt{THS}	093	0.4		<0.1	3.0	2.1	9
THS	094	0.2	0.4	<0.1	3.7	2.0	11
THS	095	0.4	< 0.2	0.1	11.0	0.6	15
\mathtt{THS}	096	< 0.2		0.1	10.5	1.7	18
THS	097	<0.2		< 0.1	4.7	2.1	12
THS	098	<0.2	سعر جيد	<0.1	8.0	0.7	18
\mathtt{THS}	099	<0.2		<0.1	4.3	1.9	11
THS	100	<0.2	-:-	<0.1	3.7	2.1	9
THS	101	<0.2	. -	<0.1	4.8	0.9	10
THS	102	<0.2		<0.1	3,5	2.0	9
THS	103	<0.2	,	<0.1	2.9	2.5	9
THS	104	<0.2	- -	<0.1	2.4	1.2	6
THS	105	<0.2		< 0.1	2.3	2.3	9
THS	106	<0.2		<0.1	6.0	1.8	14
\mathtt{THS}	107	< 0.2		<0.1	2.2	1.3	8
THS	108	<0.2	,	<0.1	3.8	1.5	12
THS	109	<0.2	< 0.2	<0.1	5.0	1.9	12
THS	110	< 0.2		<0.1	10.0	0.9	17
THS	111	0.8		<0.1	20.0	1.6	36
THS	112	<0.2		<0.1	6.0	2.2	13
THS	113	<0.2		0.1	6.0	0.9	14
THS	114	<0.2	- -	<0.1	2.7	1.8	8
THS	115	<0.2		<0.1	6.0	2.4	13
THS	116	<0.2	<u> </u>	0.5	2.2	1.1	6
THS	117	<0.2		< 0.1	2.2	2.3	7
THS	118	<0.2		<0.1	2.6	2.3	7
THS	119	0.4	<0.2	<0.1	1.2	0.9	3
THS	120	0.2		<0.1	4.0	1.7	10
THS	121	0.2	,	<0.1	3.7	2.0	9

UNITS	ppb	ppb	ppm	mqq	mqq	mqq
DET.LIM	0.2	0.2	0.1	0.2	0.1	1
SCHEME	FA31.	FA3T.	TC2M	TCOM	TC2M	TC2M

