Open File Envelope No. 11,446

EL 3538

TREGALANA

PACE INITIATIVE: THEME 2, YEAR 4

DRILLING PARTNERSHIP – MYALL CREEK NEOPROTEROZOIC STRATABOUND BASE METAL (COPPER) MINERAL PROSPECT

PROJECT FINAL REPORT

Submitted by Minotaur Exploration Ltd 2007

© 8/11/2007

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

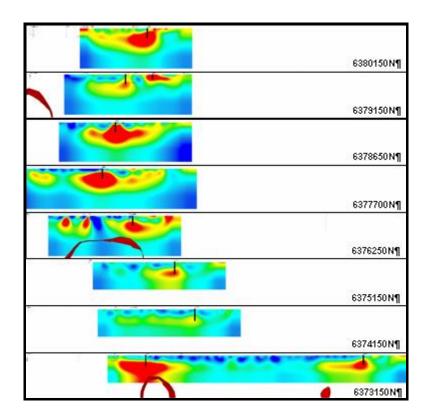
Enquiries: Customer Services Branch

Minerals and Energy Resources

7th Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880



Minotaur Exploration Ltd 247 Greenhill Rd, Dulwich 5065, South Australia Tel: +61 8 8366 6000 Fax: +61 8366 6001

Email: admin@minotaurexploration.com.au

FINAL REPORT PACE PROJECT DPY4-47

STRATABOUND NEOPROTEROZOIC COPPER MINERALISATION MYALL CREEK

R.B. Flint

July 2007

Minotaur Exploration Ltd 247 Greenhill Rd, Dulwich 5065, South Australia Tel: +61 8 8366 6000 Fax: +61 8366 6001

Email: admin@minotaurexploration.com.au

FINAL REPORT PACE PROJECT DPY4-47

STRATABOUND NEOPROTEROZOIC COPPER MINERALISATION MYALL CREEK

R.B. Flint

July 2007

SUMMARY

- The Myall Creek copper prospect N of Whyalla consists of low-grade copper sulphides (0.3–2.2% Cu) extending over an area of ~3 km². The higher-grade zone lies within a poorly defined, broad zone (~3km x 15 km) of low-grade Cu–Zn–Pb–Ag mineralisation which occurs in a thin (0.5m–2 m) sedimentary horizon at the base of the Neoproterozoic Tapley Hill Formation at depths of ~50–200 m.
- Minotaur's IP survey defined a number of highly chargeable bodies at the right depth and in close
 proximity to previously known copper mineralisation. Assistance was obtained from PIRSA through the
 PACE initiative to drill test and evaluate these chargeable IP anomalies in order to appraise the
 effectiveness of the geophysical technique in exploring for deposits of this type and also to hopefully
 discover new high-grade zones of stratabound mineralisation within the basal Tapley Hill Formation.
- Four RC/DDH holes were drilled (total of 529.9 m) along IP Line 6373150mN and results indicate that the highly chargeable IP anomalies reflect the abundance of pyrite (FeS) rather than Cu-bearing sulphides such as bornite and chalcopyrite.
- Based upon historical records, a strong correlation exists between mineralisation within the Tapley Hill Formation and the nature of the underlying stratigraphic unit. Highest Cu values (e.g. UB1, UB3-4, UB27, SAU12) often occur where black shales of the Tapley Hill Formation directly overlie coarse-grained sandstone of the Pandurra Formation rather than basalt of the Beda Volcanics. This sharply defined redox boundary above the Pandurra Formation suggests the interaction between oxidised and reduced fluids was a significant contributor to mineralisation in the Myall Creek area.

MAP REFERENCE: 1:250 000: PORT AUGUSTA (SI 53-4) MAP REFERENCE: 1:100 000: Roopena (6332), Cultana (6432)

DISTRIBUTION: PIRSA

Eagle Bay Resources NL Minotaur Exploration Ltd

CONTENTS

INITI	RODUCTION	Page
	GIONAL GEOLOGY	2
	RGET GENERATION	5
	LLING PROGRAM 2007	10
	LLING RESULTS	12
	CUSSION	17
	HABILITATION	19
	FERENCES	23
FIG	GURES	
		Page
1	Location plan for the Myall Creek area on EL 3538 (Tregalana)	2
2	Topographic map for the Myall Creek copper prospect	4
3	TMI-RTP image for the Myall Creek copper prospect area	6
4	Bouguer gravity image for the Myall Creek copper prospect area	7
5	Ten IP lines and profiles at the Myall Creek copper prospect with historical drillholes displayed (view north)	8
6	Examples of correlation between known high-grade copper intercepts within PUB44A and PUB25 (red horizontal discs) and IP chargeable horizons on Lines 6379150 and 6380150mN (orange to red shades in image)	9
7	Example of correlation between known high-grade copper intercept within UB4 (thin red horizontal disc) and IP chargeable horizon on Line 6373150mN (red shade in image)	10
8	Location of initially proposed drill holes with respect to all IP profiles and anomalies (view north)	11
9	Location of Minotaur's 2007 drill holes on IP Line 6373150mN (view north)	13
10	Minotaur's drill holes MC07RD01, MC07R02 and MC07RD03 with respect to highly chargeable anomaly on IP Line 6373150mN (view north)	13
11	Subsurface distribution of the Tapley Hill Formation, Beda Volcanics and Pandurra Formation with respect to anomalous Cu values for the Tapley Hill Formation	18
12	Drill site MC07RD01 during drilling operations; view ESE	19
13	Drill site MC07RD01 prior to exploration activities; view E	20
14	Drill site MC07RD01 immediately after rehabilitation; view E	20
15	Access track to drill site MC07R04 prior to rehabilitation; view E	21
16	Access track to drill site MC07R04 immediately after rehabilitation; view E	21
17	Drill site MC07R04 prior to rehabilitation; view E	22
18	Drill site MC07R04 immediately after rehabilitation; view E	22

TABLES

		Page
1	Best drillhole mineralised intercepts for the Myall Creek copper prospect	3
2	Proposed drill sites for the Myall Creek copper prospect (normal print = targets on northern IP lines; bold print = targets on southern IP lines)	10
3	Actual drill collars and particulars for Minotaur's 2007 drillholes at the Myall Creek copper prospect	12
4	Lithological logs for Minotaur's 2007 drillholes at the Myall Creek copper prospect	14
5	Summary geochemical results for Minotaur's drillhole MC07RD01	15
6	Summary portable XRF results for Minotaur's drillhole MC07RD03 (ND = not detected)	16
APP	PENDICES	
Α	Down-hole geochemical data for drillholes MC07RD01, MC07R02, MC07RD03 and MC07R04 (digital format only)	24

INTRODUCTION

The Tregalana tenement (EL 3538) covering an area of 381 km² of pastoral land straddling the main highway between Whyalla and Port Augusta, is prospective for stratabound copper mineralisation within Neoproterozoic sedimentary strata and is being explored in a 50:50 joint venture between Minotaur Exploration and Eagle Bay Resources. The tenement was granted on April 19th 2006 and has been renewed annually (Figure 1).

The Myall Creek copper prospect, centrally located on EL 3538, was discovered by Australian Selection (Pty) Ltd and Sims Metals Pty Ltd in March 1975 during reconnaissance exploration for Zambian copper-belt type ore bodies on the Stuart Shelf. Attention was focused on the basal unconformity between Adelaidean sedimentary strata and underlying crystalline basement of the Gawler Craton, and in particular basal sediments of the Tapley Hill Formation where low-grade copper–lead–zinc mineralisation extends over an area of ~15 x 3 km (Mason, 1972; Lambert *et al* 1984; Preiss, 1987, 1993; Dentith and Cowan, 2003).

In order to evaluate the lateral extent and continuity of the S-rich, mineralised base to the Tapley Hill Formation, ten lines of Dipole–Dipole Induced Polarisation (DDIP) were undertaken for Minotaur Exploration by Zonge Engineering and Research Organization (Zonge) during late 2006 (Figures 2–4). The IP data delineated a number of highly chargeable anomalies at a depth known to correspond with the base of the Tapley Hill Formation and in areas which had been poorly explored previously. Minotaur Exploration Ltd, on behalf of the Minotaur–Eagle Bay Joint Venture, successfully applied for a grant from Primary Industries and Resources of South Australia (PIRSA) through its Plan for Accelerated Exploration initiative (PACE) to drill test a number of the new IP targets in order to evaluate the usefulness of the Dipole–Dipole IP survey technique as a cost-effective exploration method in exploring for stratabound copper mineralisation within Neoproterozoic strata on northeastern Eyre Peninsula.

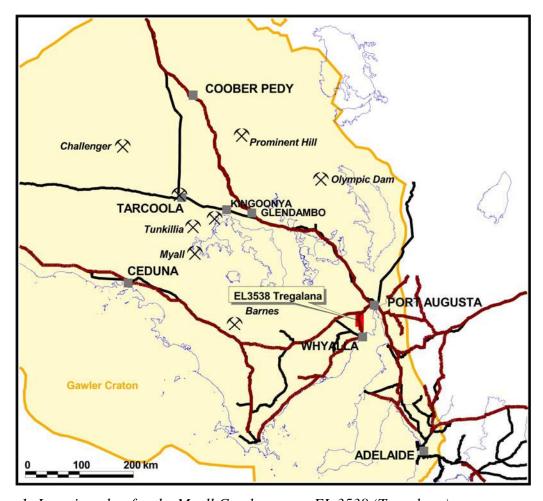


Figure 1: Location plan for the Myall Creek area on EL 3538 (Tregalana)

REGIONAL GEOLOGY

EL 3538 is situated near the eastern margin of the Gawler Craton with Palaeoproterozoic and/or Mesoproterozoic crystalline basement rocks exposed both to the west and east (Cultana Inlier) which are overlain by Mesoproterozoic sandstone, siltstone and shale of the Pandurra Formation. However, EL 3538 is characterised by exposures of flat-lying Neoproterozoic (Adelaidean) strata and formations present (both exposed and concealed) in ascending stratigraphic sequence include basal Adelaidean sandstone (Backy Point Beds) and interlayered basic lavas (Beda Volcanics), black shale of the Tapley Hill Formation, sandstone and siltstone (Cooraberra Sandstone) and quartzite (Simmens Quartzite). Adelaidean strata were deposited within a graben near the Gawler Craton margin peripheral to major faulting and sedimentation within the Adelaide Geosyncline. Initial faults within this peripheral graben trend ~N-S, abundant dolerite dykes of the Gairdner Dyke Swarm trend ~NW and were feeder dykes to basic lava flows of the Beda Volcanics. These mafic

igneous rocks are clearly evident in both gravity and magnetic imagery for the region (Figures 3–4).

The Tapley Hill Formation consists mainly of pyretic black shale, dolomitic siltstone and dolostone with deposition of the basal part of the formation probably influenced by tectonism along N- to NW-trending faults. A basal sandstone unit, deposited in palaeo-topographic lows, is considered to contain the highest grade mineralisation.

Low-grade copper mineralisation occurs over an area of 15 x 3 km with a central zone of 3 km² where Cu grades exceed 0.5% and up to a maximum of 2.2% (Table 1). Base metal sulphides occur as both disseminations and as small cross-cutting and bedding-parallel veinlets. Chalcopyrite, chalcocite and bornite are the principal Cu minerals with rare tennantite. Sphalerite, galena and pyrite also occur. Bornite and pyrite tend to occur in thin carbonaceous silty laminae, otherwise the mineralisation is mainly disseminated throughout the sandy siltstone and dolostone.

Company	Drillhole	Cu %	Thickness (m)
Australian Selection	PUB27	2.1	2
Dampier Mining	UB4	2.0	1
Dampier Mining	UB3	2.4	1
Dampier Mining	UB1	1.5	0.7
Merritt Mining	SAU12	2.05	0.5

Table 1: Best drillhole mineralised intercepts for the Myall Creek copper prospect

Historically, drilling was undertaken on a broad 2 x 1 km grid. Infill drilling was erratic, often at 400 m between discovery holes, but in some instances at 200 m spacing and many gaps in drill coverage remain. Results from the previous drilling reveal a very irregular distribution of values for all metals, there are no consistent metal-grade values and no estimate for a mineral resource was possible.

The deposit has many features that are consistent with those recognised in syngenetic stratiform mineralisation:

- Wide areal extent of thin sedimentary sequence,
- Vertical and lateral mineral zoning,
- Associated carbonaceous shale,
- Immediately overlies a major erosional and angular disconformity,
- Occurs within basal sediments of a transgressive sequence.

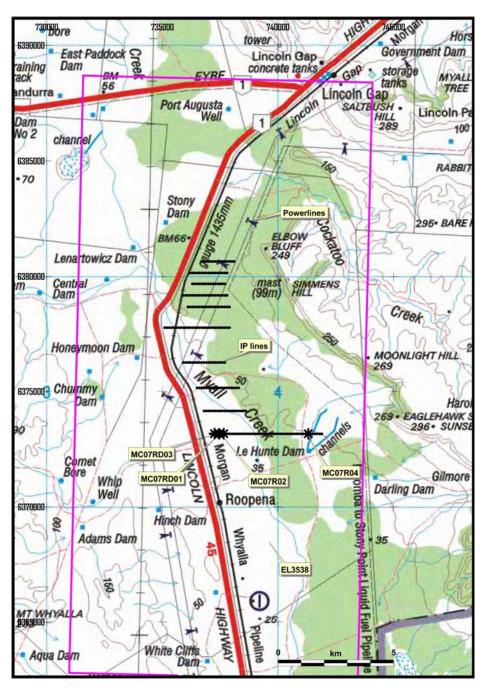


Figure 2: Topographic map for the Myall Creek copper prospect

TARGET GENERATION

Myall Creek prospect on EL 3538 is a sediment-hosted stratabound copper prospect similar in character to Zambian or Kupferschiefer style deposits. Low-grade copper–lead–zinc mineralisation occurs at the base of the Neoproterozoic Tapley Hill Formation over an area of about 15 x 3 km. The sub-economic deposit was discovered in 1975 by Australian Selection. Highest Cu values occur at the basal unconformity, and decrease upwards into the Tapley Hill Formation.

Merritt Mining N.L. in 1998 (Open File Env 9621) reviewed much of the earlier work and through extensive re-logging and re-assaying, concluded that a mineralising episode of possible Olympic Dam age must be present in basement rocks in the general vicinity based upon presence of S-bearing clasts within basal Adelaidean sediments.

Available geological, geophysical and drillhole data indicate that the Myall Creek region occupies a graben infilled with Mesoproterozoic Pandurra Formation, basal Adelaidean Beda Volcanics and interlayered Backy Point Beds, and Adelaidean Tapley Hill Formation. To the west (Roopena) and the east (Cultana) shallow basement ridges of Mesoproterozoic Gawler Range Volcanics and Hiltaba Granite are evident in outcrop and in the magnetics. In the Roopena area, the Gawler Range Volcanics and Wandearah Metasiltstone are brecciated and altered by chlorite, sericite, haematite and carbonate, and are anomalous in copper. At Cultana, the volcano-igneous complex is intensely hydrothermally altered, tourmaline and flourite—bearing, and haematite-veined, and has been dated as similar in age to the rocks and mineralising event at the Olympic Dam Mine. Copper mineralisation within basement rocks occurs at the historical Pandurra Copper Mine (to the west) and Point Lowly Copper Mine (to the east). Locating significant basement-penetrating structures in vicinity of the Myall Creek copper prospect may provide a direct vector to an iron oxide Cu-Au deposit in the basement rocks.

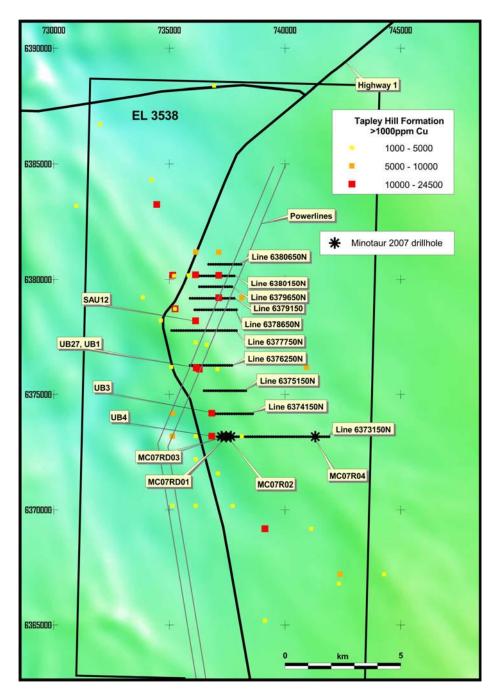


Figure 3: TMI-RTP image for the Myall Creek copper prospect area

Minotaur and Eagle Bay Resources both undertook gravity surveys in 2001 and 2002 to help define possible structural linear controls and identify potential exploration targets. Bouguer gravity data reveal a NW-trending gravity ridge passing directly beneath the Myall Creek copper prospect and is also coincident with NW-trending magnetic linears of the Gairdner Dyke Swarm (Figures 3–4).

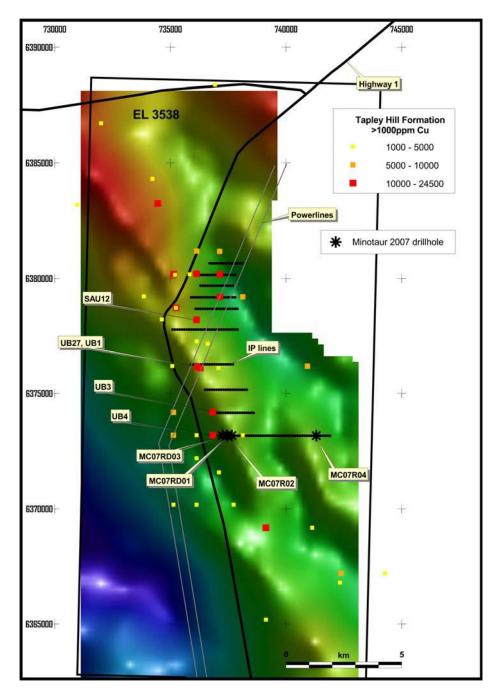


Figure 4: Bouguer gravity image for the Myall Creek copper prospect area

In order to test the possibility of both further extensions and better Cu grade and thickness for the Myall Creek copper prospect, ten Induced Polarisation (IP) lines were completed in late 2006. These were sited over the main anomaly area with highest Cu values in the central part of EL 3538, and it was believed that IP would detect the mineralised horizon and permit geophysical tracing of this mineralised horizon laterally to the east into areas poorly explored previously (Figures 3–5).

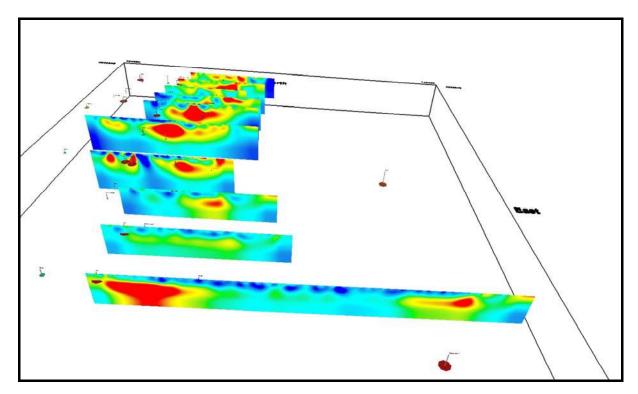


Figure 5: Ten IP lines and profiles at the Myall Creek copper prospect with historical drillholes displayed (view north)

Inversion modelling of these profiles confirmed known mineralisation from historic drillholes gave a detectable chargeable response. More significantly, zones of significantly higher chargeability are apparent that have not been drill tested by the historic broad drillhole network. Three examples of this are drillholes PUB44A, PUB25 and UB4. Hole PUB44A intersected 0.5 m of 1.5% Cu from 173 m and PUB25 intersected 0.5 m @ 1.8% Cu from 183 m. IP inversions of lines 6379150mN and 6380150mN reveal that in both instances the high-grade copper intersections correlate with the edge of an IP high (Figure 6). An even better example is Hole UB4 which intercepted 1 m at 2% Cu at 144 m — this hole is marginal to a highly chargeable IP anomaly with mineralisation at the same depth as expected depth to top of the chargeable anomaly (Figure 7).

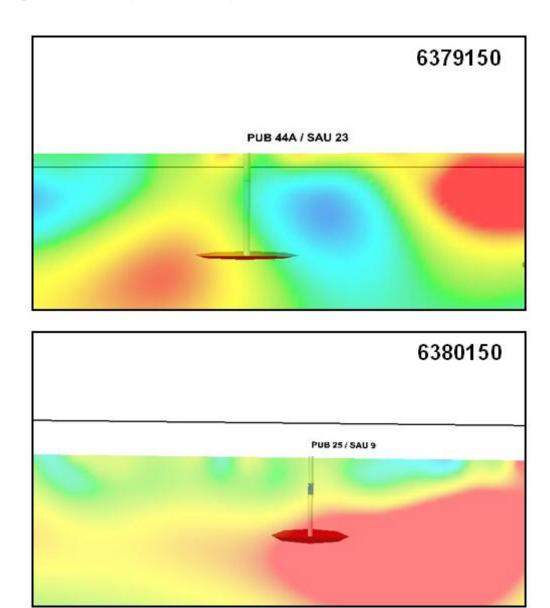


Figure 6: Examples of correlation between known high-grade copper intercepts within PUB44A and PUB25 (red horizontal discs) and IP chargeable horizons on Lines 6379150 and 6380150mN (orange to red shades in image)

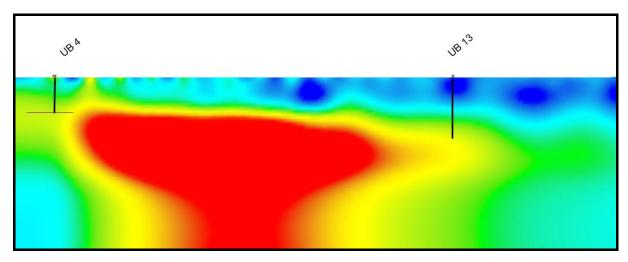


Figure 7: Example of correlation between known high-grade copper intercept within UB4 (thin red horizontal disc) and IP chargeable horizon on Line 6373150mN (red shade in image)

A number of possible sites were proposed to drill test these major new IP chargeable bodies in order to evaluate their potential to reflect mineralised horizons that were thicker and/or more mineralised than previously intercepted in historical drill holes (Figure 8).

DRILLING PROGRAM 2007

Eleven vertical drillholes for a total of 2 200 m were initially proposed at the Myall Creek copper prospect to test newly generated IP chargeability targets (Table 2 and Figure 8).

Hole	East	North	Dip	Azimuth	Depth
MCRC01	737450	6373150	90	0	250
MCRC02	741717	6373150	90	0	200
MCRC03	738400	6374150	90	0	250
MCRC04	738000	6375150	90	0	250
MCRC05	737150	6376250	90	0	250
MCRC06	736550	6377750	90	0	200
MCRC07	736800	6378650	90	0	200
MCRC08	737420	6380150	90	0	200
MCRC09	737000	6379150	90	0	200
MCRC10	737525	6379150	90	0	100
MCRC11	737850	6376250	90	0	100

Table 2: Proposed drill sites for the Myall Creek copper prospect (normal print = targets on northern IP lines; bold print = targets on southern IP lines)

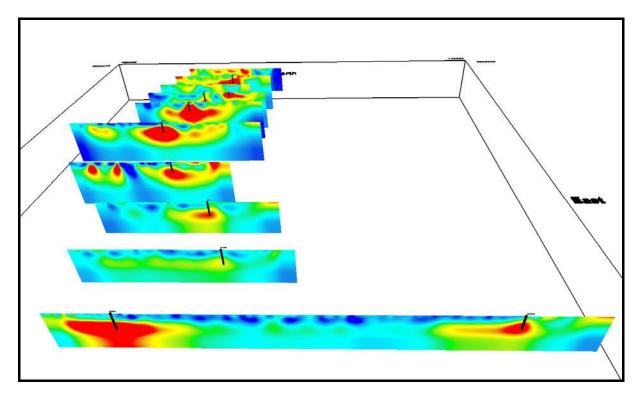


Figure 8: Location of initially proposed drill holes with respect to all IP profiles and anomalies (view north)

After submission of the proposal to PIRSA for PACE financial support and prior to drilling, a review was conducted of the IP data especially the spatial relationship between some anomalies and power lines. Traversing the Myall Creek copper prospect are three parallel power lines from Port Augusta to Whyalla and beyond to much of Eyre Peninsula. All of the significant chargeable anomalies on the northern IP lines (6377750mN and northwards) occur under or marginal to the exceedingly large high-voltage power lines. Historical drilling proves the existence of some copper mineralisation, however, ascertaining the significance of the IP chargeable anomalies for these northern lines is difficult due to cultural interference. Thus it was considered prudent to only target the southern IP lines and their anomalies (Lines 6373150, 6374150, 6375150 and 6376250mN).

United Drilling Services was contracted in June 2007 to undertake the drilling program using a multipurpose UDR1000 with the plan being to RC drill most of the holes and with limited coring of key stratigraphic intervals. Considerable problems were experienced during the RC drilling due to mechanical problems with the compressor and very high groundwater flows in both basal Cainozoic sediments and within fractured Adelaidean strata. As a consequence

only one of four RC drillholes reached the targeted base of the Tapley Hill Formation and two holes had to be deepened by diamond drilling. After four holes were drilled and considerable extra time had elapsed then initially envisaged UDS then terminated the program due to their other contractural obligations. Total metres drilled during the current program were 529.9 m (Figures 9–10) (Table 3).

All completed drillholes were situated on the southernmost IP line (6373150mN) and principally targeted the highest chargeable anomaly near the western end of the IP line.

HOLE_ID	GDA94_mE	GDA94_mN	TYPE	metres by TYPE	TD	ORIEN	DRILLED
MC07RD01	737450	6373145	RC/DDH	0-163 (RC) 163-176.4 (DDH)	176.4	90°	22/05/2007
MC07R02	737650	6373150	RC	0-94 (RC)	94	90°	23/05/2007
MC07RD03	737250	6373150	RC/DDH	0-110 (RC) 110-180.5 (DDH)	180.5	90°	24/05/2007
MC07R04	741304	6373144	RC	0-79 (RC)	79	90°	25/05/2007

Table 3: Actual drill collars and particulars for Minotaur's 2007 drillholes at the Myall Creek copper prospect

Representative samples (chips and core) for holes MC07RD01 and MC07RD03 are permanently stored at PIRSA's Core Library in Adelaide.

DRILLING RESULTS

Instead of the originally planned eleven drillholes, only four sites were drilled, and of these only two holes reached the targeted base of the Tapley Hill Formation (MC07RD01 and MC07RD03). Holes MC07R02 (TD = 94 m) and MC07R04 (TD = 79 m) terminated within upper Adelaidean stratigraphic units and contained no valuable information on the targeted IP anomaly (Figure 9).

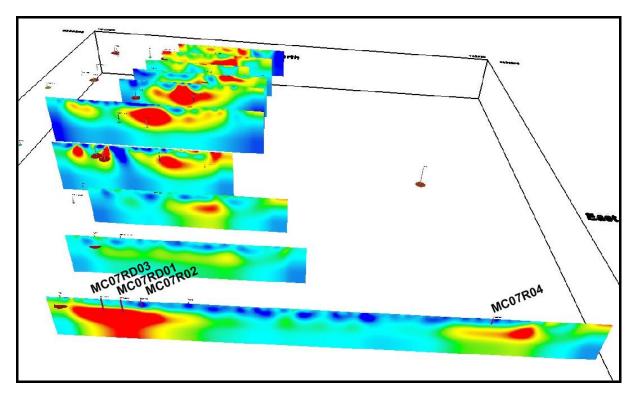


Figure 9: Location of Minotaur's 2007 drill holes on IP Line 6373150mN (view north)

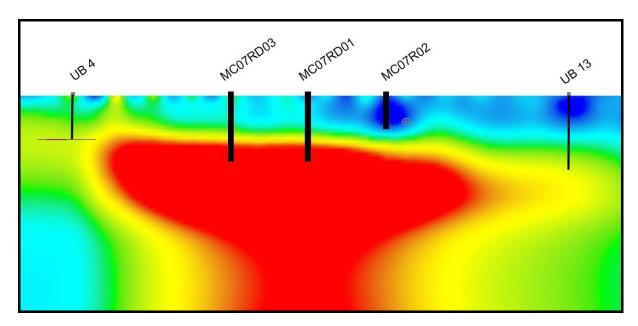


Figure 10: Minotaur's drill holes MC07RD01, MC07R02 and MC07RD03 with respect to highly chargeable anomaly on IP Line 6373150mN (view north)

Full integrated lithological descriptions of drill chips and core for each hole are presented in Table 4. Intersected below the Tapley Hill Formation in holes MC07RD01 and MC07RD03 is a thin succession of amygdaloidal basalt of the basal Adelaidean Beda Volcanics (13 m and 15.5 m thick respectively). This basalt overlies an arenaceous succession comprising poorly

sorted and coarse-grained sandstone with minor conglomerate and shale interbeds which may correlate stratigraphically with either the basal Adelaidean Backy Point Beds and/or Mesoproterozoic Pandurra Formation.

HOLE_ID	DEPTH	DEPTH	DESCRIPTION
MC07RD01	from 0	to 4	
MICU/RDU1	U	4	Unconsolidated Quaternary calcareous sand and clay with minor pebbles.
MC07RD01	4	27	Dark brown finely laminated siltstone with claystone and minor fine- grained sandstone. Well rounded coarse granules more common toward
			the base.
MC07RD01	27	43	Pale brown fine-grained sandstone, minor medium-grained sandstone and occasional well-rounded granules.
MC07RD01	43	162.2	Dark grey to black laminated siltstone with minor sandstone. Traces of pyrite throughout. Very wet with drilling difficulties to base of percussion
MC07RD01	162.2	175.3	hole. Dense fine grained green to grey volcanics. Beda Volcanics
MC07RD01	175.3	176.4	Poorly sorted sandstone with gradational upper contact. Abundant calcite filled vein networks. Possible Backy Point Formation?
MC07R02	0	5	Light-brown to yellow clayey soil and sand. Gypsum with sub-angular to
MC07R02	5	16	rounded gravel at base. Quaternary Red-brown laminated siltstone with slatey fracture. Mid-grey colour and
MC07R02	16	47	slightly sandy at base. Chocolate brown fine-grained calcareous sandstone.
MC07R02	47	51	Grey coarse to very coarse grained sandstone/grit, weakly calcareous.
MC07R02	51	94	Dark grey laminated siltstone. Trace pyrite. Some up-hole
			contamination with very wet sample to 89m. Minor calcite veins. Lost
MCOZDDOS	0		sample 94m, hole blowing out.
MC07RD03	0	6	Orange sandy soil, calcrete nodules, quartz, very weathered ferruginous sandstones. Quaternary
MC07RD03	6	40	Brown-red weathered clayey sandstone, fine-grained weakly laminated
MC07RD03	40	110	in part with minor coarse granules toward the base. Mid to dark grey weakly laminated siltstone. Fractures along lamellae.
WOOTKDOO	40	110	Major water problems with loss of circulation and no sample return at 110m.
MC07RD03	109.36	151	Finely laminated grey shale. Regular even to wavey bedding. Minor very thin intraformational conglomerates (122.1m, 130.4m, 148.8m), thin fine-grained sandstones (122.1m, 124.9m, 125.5m) and carbonaceous shales (144.7 to 144.9m). Pyritic shales and pyritized conglomerates between 130.4m and 135.5m, and 148.8m and151m. Tapley Hill Formation.
MC07RD03	151	152	Thin poorly sorted sandstone with disrupted cross-bedding. Possible Backy Point Beds?
MC07RD03	152	167.5	Green to red, fine- to medium-grained, amygdaloidal basalt with felted texture. Minor pyrite associated with minor fractures. Beda Volcanics.
MC07RD03	167.5	180.5	Generally poorly sorted, coarse-grained sandstone and interbedded conglomerate. Yellow to yellow-brown colour with rare thin red shale beds, becoming better bedded and sorted down hole. Probable Pandurra Formation?
MC07R04	0	4	Light brown clayey sand. Quaternary
MC07R04	4	7	Light and dark brown gravel, sandstone, calcrete.
MC07R04	7	10	Red-brown clay with minor sandstone chips.
MC07R04	10	17	Dark brown to banded yellow-brown saprolitic clays.
MC07R04	17	20	Brown-red laminated siltstone, minor sandstone with planar fractures
MC07R04	20	79	Very fine-grained, laminated brown-red sandstone, oxidised with planar fractures. Minor claystone/siltstone chips. Red-brown colour passing to
			pale grey-green near base. Minor coarser grained sandstone and increasing water flows from 42m. Slowed drilling at 71m-73m, possible quartz/quartzite conglomerate clasts. Lost sample return at 79m.
			Table 1 Table

Table 4: Lithological logs for Minotaur's 2007 drillholes at the Myall Creek copper prospect

Drillhole MC07RD01 started coring 1 m below the Tapley Hill Formation and the only drill core across the basal portion of the Tapley Hill Formation was MC07RD03. Upper portion of the Tapley Hill Formation consists of finely laminated, dark grey shale with minor pyrite. Thin fine-grained sandstone bands are also present. Towards the base, thin pyrite-rich laminae occur along with abundant disseminated fine-grained pyrite within black shale and also disseminated pyrite within thin conglomeratic sandstone beds. Individual pyrite-rich laminae are up to several millimetres thick. No chalcopyrite or bornite was observed.

The lowermost 10 m of RC chips from the Tapley Hill Formation in hole MC07RD01 were analysed for a full suite of elements (Appendix A). Minor anomalous Zn is present with maximum value of 530 ppm, however, Cu, Pb, Au, Ag and Co values are all exceedingly low (Table 5).

HOLE_ID	DEPTH	DEPTH	Cu	Pb	Zn	Au	Ag	Co
TIOLL_ID	from	to	ppm	ppm	ppm	ppm	ppm	ppm
MC07RD01	153	154	82	95	93	< 0.01	< 0.2	22
	154	155	35	37	57	< 0.01	< 0.2	13
	155	156	97	113	530	< 0.01	< 0.2	27
	156	157	71	11	57	0.01	< 0.2	34
	157	158	30	43	260	< 0.01	< 0.2	14
	158	159	28	42	71	< 0.01	< 0.2	11
	159	160	33	41	83	< 0.01	< 0.2	14
	160	161	41	40	82	< 0.01	< 0.2	12
	161	162	52	92	352	< 0.01	< 0.2	14
	162	163	40	54	63	<0.01	<0.2	22

Table 5: Summary geochemical results for Minotaur's drillhole MC07RD01

All 1 m RC chip bags and select drill core were also analysed on-site using a portable Niton XRF and full results are presented in Appendix A. Detection limits for the Niton portable XRF are variable even for the one element and are partly dependent upon internal instrument calibration and calibration of standards. A recordable elemental value is obtained when the sample reading is at least ~150% of the theoretical "detection" limit. The beam from the portable XRF is focused and encompasses only ~1 cm² of drill core.

For MC07RD03, no chalcopyrite or bornite was observed and in order to assess if standard laboratory analyses were required select intervals of drill core were analysed using the portable XRF (Table 6). Cu and Pb values were consistently very low and maximum values

obtained were only 136 ppm and 217 ppm respectively. Two highly anomalous Zn values of 3016 and 1184 ppm were recorded at 148.85–148.86 m and 148.95–148.96 m corresponding to zones of abundant fine-grained, disseminated pyrite within black shale. Cu, Pb, As and Co values for these two intervals were all very low. One highly anomalous Co value of 889 ppm (150.34–150.35 m) also corresponds with a zone of disseminated pyrite within black shale, though associated Cu, Pb and Zn values were all very low. No anomalous geochemistry was recorded from pyrite-dominate laminae and bands.

MC07RD	003						
DEPTH	DEPTH	Cu	Pb	Zn	As	Со	LITHOLOGY
from	to	ppm	ppm	ppm	ppm	ppm	
146.8	146.81	103	158	ND	ND	ND	siltstone
146.9	146.91	ND	44	ND	ND	ND	siltstone
148.85	148.86	ND	31	3016	ND	ND	very fine disseminated pyrite
148.95	148.96	ND	41	1184	ND	ND	very fine disseminated pyrite
149.19	149.2	ND	138	ND	ND	ND	very fine disseminated pyrite
149.26	149.27	136	177	ND	ND	ND	pyrite-rich band
149.44	149.45	ND	217	325	ND	ND	thin band of pyrite
149.63	149.64	ND	140	ND	ND	ND	shear zone
149.85	149.86	ND	66	ND	ND	ND	very fine disseminated pyrite
150.07	150.08	ND	98	ND	ND	ND	very fine disseminated pyrite
150.23	150.24	ND	65	66	ND	ND	very fine disseminated pyrite
150.34	150.35	ND	46	ND	ND	889	very fine disseminated pyrite
150.41	150.42	ND	49	ND	ND	ND	very fine disseminated pyrite
150.47	150.48	ND	60	ND	ND	ND	coarser siltstone to fine sandstone
150.52	150.53	ND	87	ND	ND	ND	siltstone
150.62	150.63	ND	33	ND	ND	ND	coarse sst layer with pyrite blebs
150.71	150.72	ND	70	ND	ND	ND	coarse sst layer with pyrite blebs
150.74	150.75	ND	75	ND	ND	ND	fine disseminated pyrite
150.78	150.79	ND	65	ND	ND	ND	coarse sst layer with pyrite blebs
150.86	150.87	ND	71	67	ND	ND	siltstone
150.91	150.92	ND	41	ND	ND	ND	sandstone with pyrite blebs
151.03	151.04	ND	ND	ND	ND	ND	coarse cross-bedded sandstone
151.06	151.07	ND	ND	ND	ND	ND	coarse sandstone (sst)
151.11	151.12	ND	ND	ND	ND	ND	contact- conglomeratic
151.16	151.17	ND	ND	ND	ND	ND	basalt
151.34	151.35	ND	ND	ND	ND	ND	basalt
151.54	151.55	92	ND	ND	ND	ND	basalt
151.83	151.84	ND	ND	ND	ND	ND	basalt
151.9	151.91	ND	ND	ND	ND	ND	calcite vein

Table 6: Summary portable XRF results for Minotaur's drillhole MC07RD03 (ND = not detected)

DISCUSSION

The Dipole–Dipole Induced Polarisation technique successfully delineated, even at depths of ~150 m, the sulphide-rich base to the Tapley Hill Formation. Drilling of the best, highly chargeable horizon on the western end of IP line 6373150mN revealed that the horizon consists of thin pyrite-rich laminae and thin beds rich in disseminated pyrite over a total accumulated thickness of ~10 m. Presumably this horizon is laterally continuous, at least locally, and readily conducts an electric current when charged. Unfortunately, this highly chargeable horizon on Line 6373150mN only reflects the abundance of pyrite (FeS) rather than Cu-bearing sulphides such as bornite and chalcopyrite (Figure 10).

Due to drilling difficulties and time constraints for the UDS drill rig other chargeable horizons on other IP lines were not drilled, though it is believed that these anomalies also reflect pyrite-rich horizons.

The factors influencing the distribution of Cu mineralisation at the base of the Tapley Hill Formation remain enigmatic. In assessing the recent drilling results along with the historical data, a surprising pattern emerges between mineralisation within the Tapley Hill Formation and the nature of the underlying stratigraphic unit (Figure 11). Highest Cu values (e.g. UB1, UB3–4, UB27, SAU12) often occur near the western limit of the Beda Volcanics, in other words, when black shales of the Tapley Hill Formation directly overlie coarse-grained sandstone of the Pandurra Formation. This suggests that mineralisation is not simply a function of depositional environment within the Tapley Hill Formation and/or local faults but that movement of very oxidised fluids within porous sediments of the Pandurra Formation was also a significant contributor. Thus a sharply defined redox boundary exists between the Tapley Hill Formation and underlying Pandurra Formation sandstone and is a better geological setting for mineralisation than when the underlying unit simply comprises basalt of the Beda Volcanics.

The Dipole-Dipole Induced Polarisation technique could still be used to target for sedimentary Cu mineralisation within the Tapley Hill Formation in the Myall Creek area, but rather than the centre of highly chargeable anomalies their western margins may be the more appropriate geophysical target. For the Myall Creek area, cultural features such as the

powerlines, Port Augusta to Whyalla railway line and Highway 1 are complicating factors as their location in part coincides with the inferred favourable stratigraphic setting of Tapley Hill Formation directly overlying the Pandurra Formation. This geological setting NW of Highway 1 on the NW portion of EL 3538 and NW of any of the recent IP lines has been poorly tested by historical drillholes.

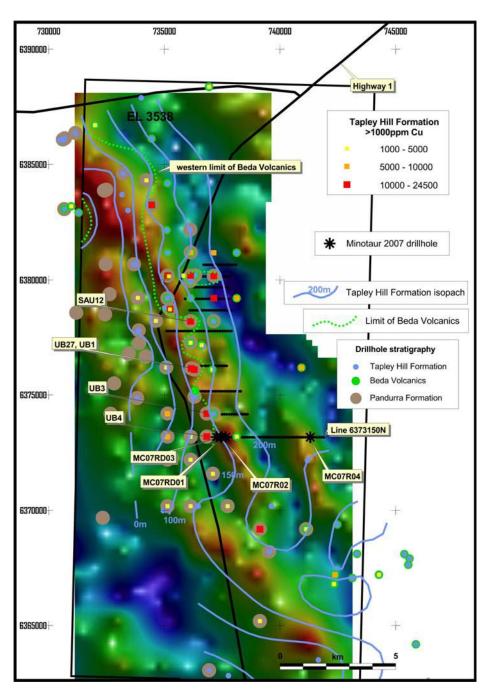


Figure 11: Subsurface distribution of the Tapley Hill Formation, Beda Volcanics and Pandurra Formation with respect to anomalous Cu values for the Tapley Hill Formation

REHABILITATION

Rehabilitation has been undertaken of all 4 RC/DDH holes drilled during June 2007 along with sites where sumps were prepared but not subsequently drilled. Rehabilitation was in accordance with PIRSA's guidelines and requirements for rehabilitation of exploration activities (Mineral Information sheets M21 and M33). In particular, each hole was plugged, all disturbed ground at each drill site and non-station access tracks were scarified in order to promote revegetation. All surface rubbish was removed along with any other evidence of exploration activities (Figures 12–17).

Figure 12: Drill site MC07RD01 during drilling operations; view ESE

Figure 13: Drill site MC07RD01 prior to exploration activities; view E

Figure 14: Drill site MC07RD01 immediately after rehabilitation; view E

Figure 15: Access track to drill site MC07R04 prior to rehabilitation; view E

Figure 16: Access track to drill site MC07R04 immediately after rehabilitation; view E

Figure 17: Drill site MC07R04 prior to rehabilitation; view E

Figure 18: Drill site MC07R04 immediately after rehabilitation; view E

REFERENCES

- Dentith, M. and Cowan, D., 2003. Unconformity-related copper mineralisation on the Stuart Shelf, South Australia: geophysical responses of mineralisation and the mineralised environment. *In:* Dentith, M.C. (Editor), Geophysical signatures of South Australian mineral deposits. *Australian.Society of Exploration Geophysicists. Special Publication*, 12:197–212.
- Lambert, I.B., Knutson, J., Donnelly, T.H. and Etminan, H. and Mason, M.G., 1984. Genesis of copper mineralisation, Myall Creek prospect, South Australia. *Mineralium Deposita*, 19:266–273.
- Mason, M.G., 1972. Myall Creek copper prospect. *Mineral Resources Review, South Australia*, 151:58–64.
- Preiss, W.P., 1987. The Adelaide Geosyncline Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. *South Australia. Geological Survey. Bulletin*, 53.
- Preiss, W.V., 1993. Neoproterozoic. *In:* Drexel, J.F., Preiss, W.V. and Parker, A.J. (Eds), The geology of South Australia. Vol. 1, The Precambrian. *South Australia. Geological Survey. Bulletin*, 54:170–203.

APPENDICES

APPENDIX A:

Down-hole geochemical data for drillholes MC07RD01 and MC07RD03 (digital format only)

H1000	Hole_ID	EASTING	NORTHING	ELEVATION	AZIMUTH	INCLINATION	MAX_DEPTH	DRILLED	DRILL_CONTRACTOR	DRILL_METHOD
H1001		metres	metres		degrees	degrees	metres			
H1004	Horizontal accuracy	2 metres	2 metres							
D	MC07RD01	737450	6373145	Not known	360	90	176.4	22/05/2007	United Drilling Services	RC 0-163, DIA 163-176.4m
D	MC07R02	737650	6373150	Not known	360	90	94	23/05/2007	United Drilling Services	RC 0-94m
D	MC07RD03	737250	6373150	Not known	360	90	180.5	24/05/2007	United Drilling Services	RC 0-110, DIA 110-180.5m
D	MC07R04	741304	6373144	Not known	360	90	79	25/05/2007	United Drilling Services	RC 0-79m
EOF										

		Depth_	Depth_	Sample_																	
H1000	Hole_ID	from	to	ID	Au	Ag	ΑI	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K
H1001		m	m		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%
H1002	Assay_method				OG43	ME-ICP41s															
H1003	Detection limit				0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10	1	0.01
D	MC07RD01	153	154	MC0117	<0.01	<0.2	2.38	15	30	40	1.7	<2	9.43	<0.5	22	32	82	3.71	10	1	0.66
D	MC07RD01	154	155	MC0118	< 0.01	<0.2	2.49	10	20	190	1.2	<2	9.51	<0.5	13	34	35	3.92	10	1	0.5
D	MC07RD01	155	156	MC0119	<0.01	<0.2	2.19	16	30	100	1.9	<2	8.12	1.6	27	29	97	3.72	10	1	0.59
D	MC07RD01	156	157	MC0120	0.01	<0.2	3.96	6	20	70	1	3	5.66	<0.5	34	150	71	5.85	20	1	0.17
D	MC07RD01	157	158	MC0121	<0.01	<0.2	2.44	10	20	200	1.3	2	11.35	0.6	14	32	30	3.53	10	<1	0.53
D	MC07RD01	158	159	MC0122	<0.01	<0.2	2.09	7	20	90	1.1	<2	15.7	<0.5	11	28	28	2.89	10	1	0.45
D	MC07RD01	159	160	MC0123	<0.01	<0.2	2.97	9	20	110	1.5	2	11.45	<0.5	14	37	33	3.84	10	<1	0.53
D	MC07RD01	160	161	MC0124	<0.01	<0.2	2.7	8	20	240	1.3	<2	13.3	<0.5	12	30	41	3.7	10	1	0.46
D	MC07RD01	161	162	MC0125	<0.01	<0.2	2.43	27	20	160	1.4	3	7.53	0.7	14	33	52	4.14	10	<1	0.34
D	MC07RD01	162	163	MC0126	<0.01	<0.2	3.29	22	20	60	1.3	3	4.97	<0.5	22	33	40	5.18	10	1	0.36
EOF																					

La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Ti	TI	U	V	W	Zn
ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
ME-ICP41s																	
10	0.01	5	1	0.01	1	10	2	0.01	2	1	1	0.01	10	10	1	10	2
10	1.97	1380	2	0.18	39	830	95	2.75	<2	7	128	0.01	<10	20	57	<10	93
10	4.33	2380	2	0.1	26	680	37	2.07	2	8	58	0.01	<10	20	66	<10	57
10	1.78	1200	5	0.12	48	790	113	2.97	2	7	107	0.01	<10	20	55	<10	530
10	4.6	922	1	0.18	86	620	11	0.83	<2	26	39	0.02	<10	10	205	<10	57
10	3.97	2330	4	0.15	24	680	43	1.9	<2	8	88	0.01	<10	20	64	<10	260
10	2.71	2170	2	0.18	20	600	42	1.68	<2	7	199	0.01	<10	40	53	<10	71
10	4.09	2130	2	0.16	24	720	41	1.83	<2	9	84	0.01	<10	30	72	<10	83
10	3.8	2250	2	0.09	21	620	40	2.03	3	7	99	0.01	<10	30	59	<10	82
20	2.58	1260	3	0.16	25	820	92	2.49	3	6	68	0.01	<10	20	61	<10	352
20	3.15	994	2	0.13	27	530	54	2.16	<2	7	33	0.01	<10	10	66	<10	63

Sampl Sample_ Depth_ Depth_ е Pb Zn Со H1000 Hole_ID from ID Cu As to type Lithology H1001 ppm ppm ppm ppm ppm m P-XRF H1003 P-XRF P-XRF P-XRF P-XRF D MC07RD01 1 MC165 ND ND 115 ND ND Cuttings 0 D MC07RD01 2 MC166 ND ND 112 ND ND Cuttings 1 MC07RD01 MC167 ND ND 161 ND ND Cuttings D 2 3 MC168 MC07RD01 ND ND 151 ND ND D 3 4 Cuttings D MC07RD01 5 MC169 ND ND 147 ND ND Cuttings 4 MC07RD01 D 5 6 MC170 ND 31 190 ND ND Cuttings MC07RD01 D 7 MC171 ND ND 149 ND ND Cuttings 6 D MC07RD01 7 8 MC172 ND ND 151 ND ND Cuttings Cuttings D MC07RD01 8 9 MC173 ND 37 173 ND ND D ND ND ND MC07RD01 9 10 MC174 26 141 Cuttings D MC07RD01 10 11 MC175 ND ND 147 ND ND Cuttings D MC07RD01 MC176 ND ND ND 11 12 ND 160 Cuttings D MC07RD01 12 13 MC177 ND ND 124 ND ND Cuttings D MC07RD01 13 14 MC178 ND ND 123 ND ND Cuttings MC07RD01 MC179 D 14 15 ND ND 172 ND ND Cuttings MC07RD01 15 MC180 ND ND 127 ND ND D 16 Cuttings D MC07RD01 16 17 MC181 ND ND 98 ND ND Cuttings MC07RD01 17 MC182 ND ND ND D 18 ND 104 Cuttings D MC07RD01 18 19 MC183 ND ND 175 ND ND Cuttings D MC07RD01 19 20 MC184 ND ND 137 ND ND Cuttings MC07RD01 D 20 21 MC185 ND ND 101 ND ND Cuttings D MC07RD01 21 22 MC186 ND ND 155 ND ND Cuttings D MC07RD01 22 23 MC187 ND ND 164 ND ND Cuttings D MC07RD01 24 MC188 ND ND ND ND 23 167 Cuttings D MC07RD01 24 25 MC189 ND 28 164 ND ND Cuttings MC07RD01 Cuttings D 25 26 MC190 ND ND 156 ND ND MC07RD01 MC191 D 26 27 ND ND 172 ND ND Cuttings MC07RD01 27 MC192 ND ND 93 ND ND D 28 Cuttings MC07RD01 MC193 D 28 29 50 ND 153 ND ND Cuttings MC07RD01 MC194 ND 125 D 29 30 ND ND ND Cuttings MC07RD01 D 30 31 MC195 ND ND 115 ND ND Cuttings MC07RD01 D 31 32 MC196 ND ND 112 ND ND Cuttings D MC07RD01 32 33 MC197 ND ND 130 ND ND Cuttings MC07RD01 Cuttings D 33 34 MC198 ND ND 106 ND ND D MC07RD01 MC199 ND ND ND 34 35 ND 140 Cuttings D MC07RD01 35 MC200 ND ND ND 36 ND 153 Cuttings D MC07RD01 MC201 ND ND ND 36 37 ND 169 Cuttings D MC07RD01 37 38 MC202 ND ND 175 ND ND Cuttings D MC07RD01 MC203 ND ND ND 38 39 123 ND Cuttings MC07RD01 MC204 D 39 40 ND ND 128 ND ND Cuttings MC07RD01 40 41 MC205 ND ND 167 ND ND D Cuttings MC07RD01 MC206 ND ND ND D 41 42 ND 184 Cuttings MC07RD01 MC207 ND ND ND D 42 43 ND 168 Cuttings MC208 D MC07RD01 43 44 ND ND 112 ND ND Cuttings D MC07RD01 44 45 MC209 ND ND ND Cuttings 63 123 D MC07RD01 45 46 MC210 ND ND 224 ND ND Cuttings D MC07RD01 46 47 MC211 146 ND 194 ND ND Cuttings D MC07RD01 47 48 MC212 347 43 229 ND ND Cuttings D MC07RD01 MC213 58 228 ND ND 48 49 111 Cuttings D MC07RD01 49 50 MC214 71 35 244 ND ND Cuttings D MC07RD01 51 MC215 126 31 238 ND ND Cuttings 50 MC07RD01 MC216 D 51 52 ND ND 185 ND ND Cuttings MC07RD01 MC217 ND ND 138 ND ND D 52 53 Cuttings D MC07RD01 MC218 ND ND 234 ND ND 53 54 Cuttings MC07RD01 MC219 252 D 54 55 119 ND ND ND Cuttings MC07RD01 MC220 D 55 56 ND ND 202 ND ND Cuttings D MC07RD01 56 57 MC221 ND 37 158 ND ND Cuttings MC222 D MC07RD01 ND ND ND 57 58 214 ND Cuttings Cuttings D MC07RD01 58 59 MC223 ND ND 222 ND ND 60 D MC07RD01 59 MC224 ND 40 225 ND ND Cuttings D MC225 ND ND 202 ND MC07RD01 61 ND Cuttings MC226 ND Cuttings 618 Cuttings MC07RD01 MC227 ND 233 ND 62 63 65 MC07RD01 D MC228 ND 252 ND ND Cuttings 63 64 28 MC07RD01 MC229 Cuttings D 64 65 ND 35 231 ND ND MC07RD01 MC230 D 65 66 ND ND 260 ND ND Cuttings MC07RD01 MC231 ND ND 215 ND ND Cuttings D 66 67 MC07RD01 MC232 ND 260 ND ND Cuttings D 67 68 31 MC233 D MC07RD01 68 69 ND ND 205 ND ND Cuttings D MC07RD01 69 70 MC234 ND 33 265 ND ND Cuttings MC07RD01 Cuttings MC235 D 70 71 ND ND 232 ND ND MC236 D MC07RD01 71 72 ND 31 227 ND ND Cuttings D MC07RD01 MC237 174 ND 72 73 ND 34 ND Cuttings MC07RD01 D 73 74 MC238 ND ND 154 ND ND Cuttings D MC07RD01 74 75 MC239 63 31 212 ND ND Cuttings D MC07RD01 75 76 MC240 ND ND 255 ND ND Cuttings MC07RD01 MC241 D 76 77 74 39 209 ND ND Cuttings D MC07RD01 77 78 MC242 ND 29 218 ND ND Cuttings

				Sampl						
		Depth_	-	e _						Sample_
H1000		from	to	ID MC243	Cu	Pb	Zn	As	Co	type Lithology
D D	MC07RD01 MC07RD01	78 79	79 80	MC243 MC244	ND ND	35 ND	259 229	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	80	81	MC245	ND	ND	241	ND	ND	Cuttings
D	MC07RD01	81	82	MC246	ND	38	211	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	82 83	83 84	MC247 MC248	ND 76	ND 35	199 210	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	84	85	MC249	ND	ND	228	ND	ND	Cuttings
D	MC07RD01	85	86	MC250	ND	ND	166	ND	446	Cuttings
D	MC07RD01	86	87	MC251	ND	ND	253	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	87 88	88 89	MC252 MC253	ND ND	ND ND	239 212	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	89	90	MC254	ND	30	265	ND	ND	Cuttings
D	MC07RD01	90	91	MC255	ND	ND	245	ND	ND	Cuttings
D	MC07RD01	91	92	MC256	ND	ND ND	207	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	92 93	93 94	MC257 MC258	ND ND	ND ND	231 216	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	94	95	MC259	ND	25	182	ND	ND	Cuttings
D	MC07RD01	95	96	MC260	ND	28	156	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	97 98	98 99	MC261 MC262	ND ND	ND ND	210 205	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	99	100	MC263	ND	32	230	ND	ND	Cuttings
D	MC07RD01	100	101	MC264	ND	ND	246	ND	ND	Cuttings
D	MC07RD01	101	102	MC265	ND	36	204	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	102 103	103 104	MC266 MC267	98 ND	29 ND	207 233	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	104	105	MC268	ND	34	212	ND	ND	Cuttings
D	MC07RD01	105	106	MC269	ND	ND	175	25	ND	Cuttings
D	MC07RD01	106 107	107 108	MC270 MC271	ND ND	ND ND	188	ND ND	ND ND	Cuttings
D D	MC07RD01 MC07RD01	107	108	MC271	ND	29	265 273	ND	ND	Cuttings Cuttings
D	MC07RD01	109	110	MC273	61	34	268	ND	ND	Cuttings
D	MC07RD01	110	111	MC274	ND	ND	206	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	111 112	112 113	MC275 MC276	ND ND	ND ND	249 194	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	113	114	MC277	ND	26	197	ND	ND	Cuttings
D	MC07RD01	114	115	MC278	ND	ND	232	ND	ND	Cuttings
D	MC07RD01	115	116	MC279	ND	54	232	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	116 117	117 118	MC280 MC281	ND 69	30 38	231 285	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	118	119	MC282	ND	41	249	ND	ND	Cuttings
D	MC07RD01	120	121	MC283	ND	ND	256	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	121 122	122 123	MC284 MC285	ND ND	41 38	258 309	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	123	123	MC286	ND	27	255	ND	ND	Cuttings
D	MC07RD01	124	125	MC287	ND	26	218	ND	ND	Cuttings
D	MC07RD01	125	126	MC288	ND	38	237	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	126 127	127 128	MC289 MC290	ND ND	41 43	255 272	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	128	129	MC291	ND	32	300	ND	ND	Cuttings
D	MC07RD01	129	130	MC292	ND	31	255	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	130 131	131 132	MC293 MC294	ND ND	39 38	282 247	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	132	133	MC295	ND	36	285	ND	ND	Cuttings
D	MC07RD01	133	134	MC296	ND	24	167	ND	508	Cuttings
D	MC07RD01	134	135	MC297	63	ND	247	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	135 136	136 137	MC298 MC299	ND ND	40 66	242 230	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	137	138	MC300	ND	27	255	ND	ND	Cuttings
D	MC07RD01	138	139	MC301	ND	59	221	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	139 140	140 141	MC302 MC303	ND ND	44 62	241 226	ND ND	ND 625	Cuttings Cuttings
D	MC07RD01	141	142	MC304	ND	57	242	ND	ND	Cuttings
D	MC07RD01	142	143	MC305	ND	52	274	ND	ND	Cuttings
D	MC07RD01	143	144	MC306	ND	55	210	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	144 145	145 146	MC307 MC308	ND 68	53 28	247 210	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	146	147	MC309	ND	53	191	ND	ND	Cuttings
D	MC07RD01	147	148	MC310	ND	54	481	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	148 149	149 150	MC311 MC312	ND ND	59 49	300 406	ND ND	ND ND	Cuttings
D	MC07RD01	150	150	MC312	69	49 42	406 795	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	151	152	MC314	ND	75	289	ND	ND	Cuttings
D	MC07RD01	152	153	MC315	ND	39	318	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	153 154	154 155	MC316 MC317	ND ND	66 37	288 255	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	155	156	MC318	ND	36	262	ND	ND	Cuttings
D	MC07RD01	156	157	MC319	ND	48	346	ND	ND	Cuttings
D D	MC07RD01 MC07RD01	157 158	158 159	MC320 MC321	ND 80	34 43	208 253	ND ND	ND ND	Cuttings Cuttings
D	MC07RD01	158	160	MC321	74	43 56	253 280	ND ND	ND ND	Cuttings
		-	-	_		-	-			•

				Sampl						
		Depth_	-	e _						Sample_
H1000 D	Hole_ID MC07RD01	from 160	to 161	ID MC323	Cu 70	Pb 45	Zn 264	As ND	Co ND	type Lithology Cuttings
D	MC07RD01	161	162	MC324	ND	33	220	ND	ND	Cuttings
D	MC07RD01	162	163	MC325	ND	34	137	ND	ND	Cuttings
D D	MC07RD01 MC07RD03	168.5 0	168.55 1	MC326 MC327	ND ND	ND ND	81 148	ND ND	ND ND	Core Cuttings
D	MC07RD03	1	2	MC328	ND	ND	163	ND	ND	Cuttings
D	MC07RD03	2	3	MC329	ND	ND	144	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	3 4	4 5	MC330 MC331	ND ND	26 ND	183 178	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	5	6	MC332	ND	ND	115	ND	ND	Cuttings
D	MC07RD03	6	7	MC333	ND	34	178	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	7 8	8 9	MC334 MC335	ND ND	33 25	176 175	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	9	10	MC336	ND	ND	187	ND	ND	Cuttings
D	MC07RD03	10	11	MC337	ND	ND	159	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	11 12	12 13	MC338 MC339	ND ND	ND ND	130 134	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	13	14	MC340	ND	ND	161	ND	ND	Cuttings
D	MC07RD03	14	15	MC341	ND	ND	158	ND	ND	Cuttings
D	MC07RD03	15 10	16	MC342	ND	25 ND	194	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	16 17	17 18	MC343 MC344	ND ND	ND ND	186 196	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	18	19	MC345	ND	ND	250	ND	ND	Cuttings
D	MC07RD03	19	20	MC346	ND	27	168	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	20 21	21 22	MC347 MC348	ND ND	ND ND	209 198	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	22	23	MC349	ND	ND	213	ND	ND	Cuttings
D	MC07RD03	23	24	MC350	ND	ND	194	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	24 25	25 26	MC351 MC352	ND ND	26 27	173 177	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	26	20 27	MC353	ND	ND	164	ND	ND	Cuttings
D	MC07RD03	27	28	MC354	ND	ND	183	ND	ND	Cuttings
D	MC07RD03	28	29	MC355	ND	ND ND	173	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	29 30	30 31	MC356 MC357	ND ND	ND ND	148 167	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	31	32	MC358	ND	ND	181	ND	ND	Cuttings
D	MC07RD03	32	33	MC359	ND	36	165	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	33 34	34 35	MC360 MC361	ND ND	ND ND	117 155	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	35	36	MC362	ND	ND	186	ND	ND	Cuttings
D	MC07RD03	36	37	MC363	ND	ND	178	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	37 38	38 39	MC364 MC365	ND ND	ND ND	189 206	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	39	40	MC366	1363	25	246	ND	ND	Cuttings
D	MC07RD03	40	41	MC367	ND	30	292	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	41 42	42 43	MC368 MC369	79 151	44 ND	299 248	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	43	43 44	MC370	104	38	207	ND	ND	Cuttings
D	MC07RD03	44	45	MC371	ND	34	194	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	45 46	46 47	MC372 MC373	ND 79	ND 32	236 183	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	40 47	48	MC374	73	28	250	ND	ND	Cuttings
D	MC07RD03	48	49	MC375	ND	27	216	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	49 50	50 51	MC376 MC377	ND 76	30 ND	220 214	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	51	52	MC378	ND	ND	207	ND	ND	Cuttings
D	MC07RD03	52	53	MC379	ND	35	232	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	53 54	54 55	MC380 MC381	82 63	44 ND	273 264	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	55	56	MC382	ND	ND	224	ND	ND	Cuttings
D	MC07RD03	56	57	MC383	ND	43	228	ND	ND	Cuttings
D	MC07RD03	57 58	58 59	MC384 MC385	ND ND	ND 37	188 210	ND ND	ND ND	Cuttings
D D	MC07RD03 MC07RD03	56 59	59 60	MC386	ND	ND	184	ND	ND	Cuttings Cuttings
D	MC07RD03	60	61	MC387	ND	28	201	ND	ND	Cuttings
D	MC07RD03	61	62	MC388	68 ND	59	220	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	62 63	63 64	MC389 MC390	ND ND	ND 27	265 225	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	64	65	MC391	ND	ND	231	ND	ND	Cuttings
D	MC07RD03	65 66	66 67	MC392	ND 66	ND	203	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	66 67	67 68	MC393 MC394	66 ND	ND 31	173 265	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	68	69	MC395	ND	ND	232	ND	ND	Cuttings
D	MC07RD03	69	70	MC396	87	ND	253	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	70 71	71 72	MC397 MC398	ND 89	ND ND	241 244	ND ND	ND ND	Cuttings Cuttings
D	MC07RD03	72	73	MC399	ND	ND	259	ND	ND	Cuttings
D	MC07RD03	73	74	MC400	ND	ND	286	ND	ND	Cuttings
D D	MC07RD03 MC07RD03	74 75	75 76	MC401 MC402	ND ND	43 26	249 208	ND ND	ND ND	Cuttings Cuttings
U	INICO1 KD03	10	10	IVIU4UZ	טאו	20	200	טאו	טאו	Cuttings

				Sampl							
		Depth_	Depth_	e_						Sample_	
H1000	Hole_ID	from	to	ID	Cu	Pb	Zn	As	Со	type	Lithology
D	MC07RD03	76	77	MC403	129	ND	243	ND	ND	Cuttings	
D	MC07RD03	77 70	78 70	MC404	ND	34 ND	247	ND	ND	Cuttings	
D D	MC07RD03 MC07RD03	78 79	79 80	MC405 MC406	ND ND	ND ND	237 239	ND ND	ND ND	Cuttings Cuttings	
D	MC07RD03	80	81	MC407	63	ND	159	ND	ND	Cuttings	
D	MC07RD03	81	82	MC408	ND	28	184	ND	ND	Cuttings	
D	MC07RD03	82	83	MC409	ND	ND	274	ND	ND	Cuttings	
D	MC07RD03	83	84	MC410	ND	ND	216	ND	ND	Cuttings	
D	MC07RD03	84	85	MC411	ND	ND	266	ND	ND	Cuttings	
D D	MC07RD03 MC07RD03	85 86	86 87	MC412 MC413	ND ND	38 ND	223 237	ND ND	ND ND	Cuttings Cuttings	
D	MC07RD03	87	88	MC414	89	32	248	ND	ND	Cuttings	
D	MC07RD03	88	89	MC415	ND	42	274	ND	ND	Cuttings	
D	MC07RD03	89	90	MC416	ND	ND	255	ND	ND	Cuttings	
D	MC07RD03	90	91	MC417	ND	ND	255	ND	ND	Cuttings	
D	MC07RD03	91	92	MC418	ND	35 ND	201	ND	ND	Cuttings	
D D	MC07RD03 MC07RD03	92 93	93 94	MC419 MC420	ND ND	ND 32	220 175	ND ND	ND ND	Cuttings Cuttings	
D	MC07RD03	94	95	MC421	66	26	270	ND	ND	Cuttings	
D	MC07RD03	95	96	MC422	62	ND	217	ND	ND	Cuttings	
D	MC07RD03	96	97	MC423	ND	28	281	ND	ND	Cuttings	
D	MC07RD03	97	98	MC424	ND	ND	178	ND	ND	Cuttings	
D	MC07RD03	98	99	MC425	ND	41 ND	211	ND	ND	Cuttings	
D D	MC07RD03 MC07RD03	99 100	100 101	MC426 MC427	92 ND	ND 71	239 240	ND ND	ND ND	Cuttings Cuttings	
D	MC07RD03	100	101	MC427 MC428	ND	ND	247	ND	ND	Cuttings	
D	MC07RD03	102	103	MC429	ND	31	263	ND	ND	Cuttings	
D	MC07RD03	103	104	MC430	59	ND	154	ND	ND	Cuttings	
D	MC07RD03	104	105	MC431	ND	ND	176	ND	402	Cuttings	
D	MC07RD03	105	106	MC432	ND	25	175	ND	ND	Cuttings	
D D	MC07RD03 MC07RD03	106 107	107 108	MC433 MC434	ND 72	32 ND	238 303	ND ND	ND ND	Cuttings	
D	MC07RD03	107	100	MC434 MC435	ND	30	303 247	ND	ND	Cuttings Cuttings	
D	MC07RD03	109	110	MC436	ND	ND	224	ND	ND	Cuttings	
D	MC07RD03	146.8	146.81	MC437	103	158	ND	ND	ND	Core	siltstone
D	MC07RD03	146.9	146.91	MC438	ND	44	ND	ND	ND	Core	siltstone
5	M007DD00	4.40.05	4.40.00	140400	ND	0.4	0040	ND	NID	0	very fine disseminated
D	MC07RD03	148.85	148.86	MC439	ND	31	3016	ND	ND	Core	pyrite very fine disseminated
D	MC07RD03	148.95	148.96	MC440	ND	41	1184	ND	ND	Core	pyrite
											very fine disseminated
D	MC07RD03	149.19	149.2	MC441	ND	138	ND	ND	ND	Core	pyrite
D	MC07RD03	149.26	149.27	MC442	136	177	ND	ND	ND	Core	pyrite-rich band
D	MC07RD03		149.45	MC443	ND	217	325	ND	ND	Core	thin band of pyrite
D	MC07RD03	149.03	149.04	MC444	ND	140	ND	ND	ND	Core	shear zone very fine disseminated
D	MC07RD03	149.85	149.86	MC445	ND	66	ND	ND	ND	Core	pyrite
											very fine disseminated
D	MC07RD03	150.07	150.08	MC446	ND	98	ND	ND	ND	Core	pyrite
D	MC07RD03	150.23	150 24	MC447	ND	65	66	ND	ND	Core	very fine disseminated pyrite
D	WC07ND03	130.23	130.24	1010447	ND	03	00	ND	טאו	Core	very fine disseminated
D	MC07RD03	150.34	150.35	MC448	ND	46	ND	ND	889	Core	pyrite
											very fine disseminated
D	MC07RD03	150.41	150.42	MC449	ND	49	ND	ND	ND	Core	pyrite
Б.	MCOZDDOO	450.47	450.40	MC450	ND	60	ND	ND	ND	Coro	slightly coarser siltstone-
D D	MC07RD03 MC07RD03	150.47		MC450 MC451	ND ND	60 87	ND ND	ND ND	ND ND	Core Core	fine sandstone siltstone
D	WC07ND03	130.32	130.33	1010431	ND	07	ND	ND	טאו	Core	coarse sandstone layer,
D	MC07RD03	150.62	150.63	MC452	ND	33	ND	ND	ND	Core	1cm with pyrite blebs
											coarse sandstone layer,
D	MC07RD03	150.71	150.72		ND	70	ND	ND	ND	Core	1cm with pyrite blebs
D	MC07RD03	150.74	150.75	MC454	ND	75	ND	ND	ND	Core	fine disseminated pyrite
D	MC07RD03	150.78	150.79	MC455	ND	65	ND	ND	ND	Core	coarse sandstone layer, 1cm with pyrite blebs
D	MC07RD03	150.76	150.73	MC456	ND	71	67	ND	ND	Core	siltstone
_							0.			00.0	sandstone with pyrite
D	MC07RD03	150.91	150.92	MC457	ND	41	ND	ND	ND	Core	blebs
_	1400=====	48455	4545	140 :==						0	coarse cross-bedded
D	MC07RD03			MC458	ND	ND	ND	ND	ND	Core	sandstone
D D	MC07RD03 MC07RD03			MC459 MC460	ND ND	ND ND	ND ND	ND ND	ND ND	Core Core	coarse sandstone contact- conglomeratic
D	MC07RD03			MC461	ND	ND	ND	ND	ND	Core	basalt
D	MC07RD03			MC462	ND	ND	ND	ND	ND	Core	basalt
D	MC07RD03		151.55	MC463	92	ND	ND	ND	ND	Core	basalt
D	MC07RD03			MC464	ND	ND	ND	ND	ND	Core	basalt
D	MC07RD03	151.9	151.91	MC465	ND	ND	ND	ND	ND	Core	calcite vein

H1000 H1001	Hole_ID	Depth_from m	Depth_to	Lithology
D	MC07RD01	0		Sand,clay
D	MC07RD01	4	27	Siltstone
D	MC07RD01	27	43	Sandstone
D	MC07RD01	43		Siltstone
D	MC07RD01	162.2	175.3	Volcanics
D	MC07RD01	175.3	176.4	Sandstone
D	MC07R02	0	5	Sand,clay
D	MC07R02	5	16	Siltstone
D	MC07R02	16	47	Sandstone
D	MC07R02	47	51	Sandstone
D	MC07R02	51	94	Siltstone
D	MC07RD03	0	6	Sand/soil
D	MC07RD03	6	40	Sandstone
D	MC07RD03	40	110	Siltstone
D	MC07RD03	109.36	151	Shale
D	MC07RD03	151		Sandstone
D	MC07RD03	152		Volcanics
D	MC07RD03	167.5	180.5	Sandstone
D	MC07R04	0		Soil
D	MC07R04	4	7	Gravel
D	MC07R04	7		Saprolite
D	MC07R04	10		Clay
D	MC07R04	17		Siltstone
D EOF	MC07R04	20	79	Sandstone

Description

Unconsolidated Quaternary calcareous sand and clay with minor pebbles.

Dark brown finely laminated siltstone with claystone and minor fine-grained sandstone.

Well rounded coarse granules more common toward the base.

Pale brown fine-grained sandstone, minor medium-grained sandstone and occasional well-rounded granules.

Dark grey to black laminated siltstone with minor sandstone. Traces of pyrite throughout.

Very wet with drilling difficulties to base of percussion hole.

Dense fine grained green to grey volcanics. Beda Volcanics

Poorly sorted sandstone with gradational upper contact. Abundant calcite filled vein networks. Possible Backy Point Formation?

Light-brown to yellow clayey soil and sand. Gypsum with sub-angular to rounded gravel at base. Quaternary

Red-brown laminated siltstone with slatey fracture. Mid-grey colour and slightly sandy at base.

Chocolate brown fine-grained calcareous sandstone.

Grey coarse to very coarse grained sandstone/grit, weakly calcareous.

Dark grey laminated siltstone. Trace pyrite. Some up-hole contamination with very wet sample to 89m. Minor calcite veins.

Lost sample 94m, hole blowing out.

Orange sandy soil, calcrete nodules, quartz, very weathered ferruginous sandstones. Quaternary

Brown-red weathered clayey sandstone, fine-grained weakly laminated in part with minor coarse granules toward the base.

Mid to dark grey weakly laminated siltstone. Fractures along lamellae. Major water problems with loss of circulation and no sample return at 110m.

Finely laminated grey shale. Regular even to wavey bedding. Minor very thin intraformational conglomerates (122.1m, 130.4m, 148.8m),

thin fine-grained sandstones (122.1m, 124.9m, 125.5m) and carbonaceous shales (144.7 to 144.9m).

Pyritic shales and pyritized conglomerates between 130.4m and 135.5m, and 148.8m and 151m. Tapley Hill Formation.

Thin poorly sorted sandstone with disrupted cross-bedding. Possible Backy Point Beds?

Green to red, fine- to medium-grained, amygdaloidal basalt with felted texture. Minor pyrite associated with minor fractures. Beda Volcanics.

Generally poorly sorted, coarse-grained sandstone and interbedded conglomerate. Yellow to yellow-brown colour with rare thin red shale beds,

becomeing better bedded and sorted down hole. Probable Pandurra Formation?

Light brown clayey sand. Quaternary

Light and dark brown gravel, sandstone, calcrete.

Red-brown clay with minor sandstone chips.

Dark brown to banded yellow-brown saprolitic clays.

Brown-red laminated siltstone, minor sandstone with planar fractures

Very fine-grained, laminated brown-red sandstone, oxidised with planar fractures. Minor claystone/siltstone chips.

Red-brown colour passing to pale grey-green near base. Minor coarser grained sandstone and increasing water flows from 42m.

Slowed drilling at 71m-73m, possible quartz/quartzite conglomerate clasts. Lost sample return at 79m.