Open File Envelope No. 11,344

EL 3508 / 4744

MARTINS WELL

ANNUAL REPORTS AND FINAL REPORT TO LICENCE EXPIRY/SURRENDER, FOR THE PERIOD 24/1/2006 TO 10/5/2013

Submitted by
Strategic Minerals Corp. NL and Aldershot Resources Ltd
2013

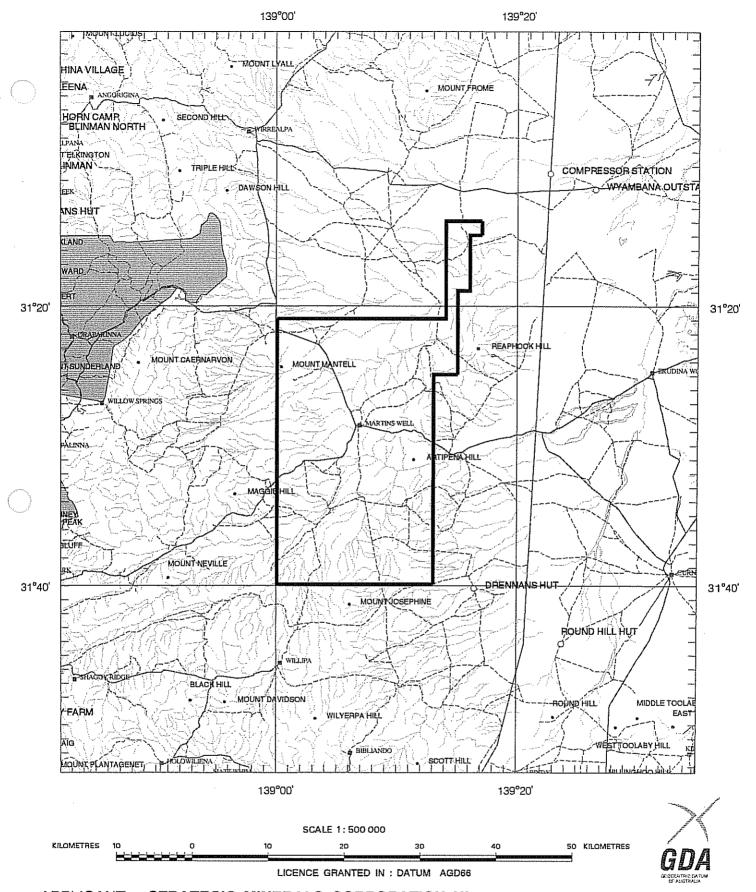
© 24/7/2013

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. DMITRE accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Executive Director of the DMITRE Resources and Energy Group, GPO Box 1264, Adelaide, SA 5001.

Enquiries: Customer Services

Resources and Energy Group

7th Floor

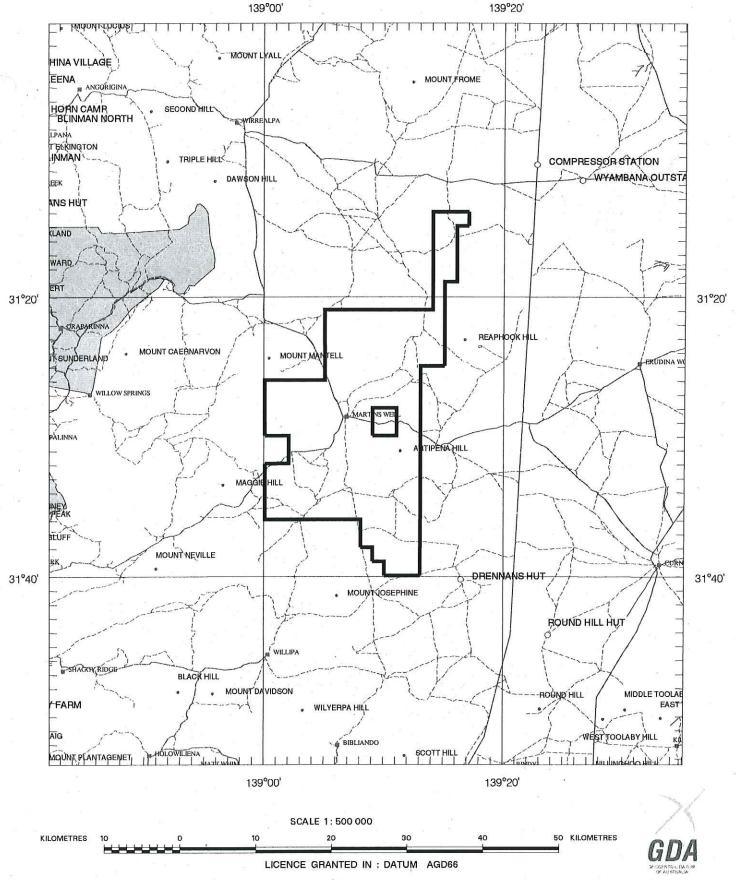

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

SCHEDULE A

AREA: 784 km² (approx.)

APPLICANT: STRATEGIC MINERALS CORPORATION NL


FILE REF: 680/05 TYPE: MINERAL ONLY

1:250000 MAPSHEETS: PARACHILNA

LOCALITY: MARTINS WELL AREA - Approximately 130 km southeast of Leigh Creek

DATE GRANTED: 24-Jan-2006 DATE EXPIRED: 23-Jan-2007 EL NO: 3508

SCHEDULE A

APPLICANT: STRATEGIC MINERALS CORPORATION NL

FILE REF: 352/10 TYPE: MINERAL ONLY AREA: 585 km² (approx.)

1:250000 MAPSHEETS: PARACHILNA

LOCALITY: MARTINS WELL AREA - Approximately 130 km southeast of Leigh Creek

DATE GRANTED: 11-May-2011 DATE EXPIRED: 10-May-2013 EL NO: 4744

MARTINS WELL PROJECT

EXPLORATION LICENCE 3508 ANNUAL REPORT FOR 23.1.2006 TO 23.1.2007

LOCATION: SOUTH AUSTRALIA

STRATEGIC MINERALS CORPORATION NL.

AUTHOR; Roland Bartsch (Technical Director)

DATE: 10 January, 2007

DISTRIBUTION:

- 1. Primary Industries and Resources SA
- 2. Strategic Minerals Perth Office

Authorized By:		
	Mr Wally Martin	
	Managing Director	Volume 1 of 1

SUMMARY

- ➤ Work completed by or for Strategic Minerals Corporation N.L. on EL3508 for the term 21-1-2006 to 21-1-2007 (Year 1) is documented in this report.
- ➤ Strategics work programs in 2006 comprised detailed office based open file data reviews and conceptual targeting with a preliminary field reconnaissance follow-up program to assess the identified targets.
- > Three primary target styles were identified from the preliminary data reviews:
 - 1. Uranium :- Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments;
 - 2. Cu (Au U) :- Fe-oxide associated hydrothermal targets magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
 - 3. Iron: Holowilena Ironstone
- ➤ Field reconnaissance was carried out to assess the potential of these targets and determine logistics for more detailed follow-up work programs.
- The highest priority target is an unexplained magnetic anomaly (high, approx. 1km long) within and cutting across the core of the Willipa anticline. The apparant discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydothermal alteration zone, which could have associated Cu (Au-U) mineralization. Additional detailed field assessment including drilling is a priority for these target in 2007.
- Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rockchip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect is reported to have grade 16% Cu, 5163 g/t Ag and 15.5g/t Au.

CONTENTS

SU	JMMARY	. 2
CO	ONTENTS	. 3
	LIST OF APPENDICES	
1.	Introduction	. 4
2.	Location & Tenement Status	. 4
3.	Work Programs Completed	. 4
	Results / Conclusion	

LIST OF APPENDICES

- Appendix 1 Review of Exploration Licence 3508, South Australia held by Signature Resources NL. Richard Simmons, September 2006.
- Appendix 2 Field Evaluation Report EL3508, Martins Well South Australia, B. Fehlberg 2006.

1. Introduction

This report presents a summary of work carried out by Strategic Minerals NL on the Martins Well Project (Figure 1), Exploration Licence 3508 for the twelve month period ending 23 January 2007 (Year 1).

The tenement was initially secured principally for its prospectivity for sedimentary hosted uranium deposits in Tertiary Frome basin sediments. The licence straddles the western side of the Frome Basin. Significant untested Cu (Au-Ag-U) potential has subsequently been identifided in the "basement" Proterozoic sedimentary sequence throughout he tenement.

.

2. <u>Location & Tenement Status</u>

Exploration Licence 3508 is located 500km north northwest of Adelaide, South Australia. The Licence covers the Frome Embayment (Figure 1) on the western side of the Frome Basin to the west of the Flinders Ranges.

3. Work Programs Completed

Strategics work programs in 2006 comprised:

- 1. Detailed office based open file data compilation, reviews, interpretation and conceptual targeting.
- 2. A preliminary field reconnaissance follow-up program to assess the identified targets and logistical aspects of more detailed ongoing work.

Summary reports for this work are provided in Appendices 1 & 2. Only the text portion of the reports is provided as all figures and maps are based on existing open-file data.

4. Results / Conclusion

Three primary target styles were identified from the preliminary data reviews:

- 1. Uranium :- Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments;
- 2. Cu (Au U) :- Fe-oxide associated hydrothermal targets magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
- 3. Iron: Holowilena Ironstone

The potential of the paleochannel type uranium targets, while good, is tempered by an apparent lack of radiogenic source rocks in the hinterland or likely area sourced by the palaeodrainage in the area.

The highest priority target identified is an unexplained magnetic anomaly (high, approx. 1km long) within, and cutting across, the core of the Willipa anticline (Figures 2 & 3). The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydrothermal alteration zone, which could have associated Cu (Au-U) mineralization. Additional detailed field assessment including drilling is a priority for these target in 2007.

Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rockchip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect is reported to have graded 16% Cu, 5163 g/t Ag and 15.5g/t Au.

Figure 1. EL3508 Location Map

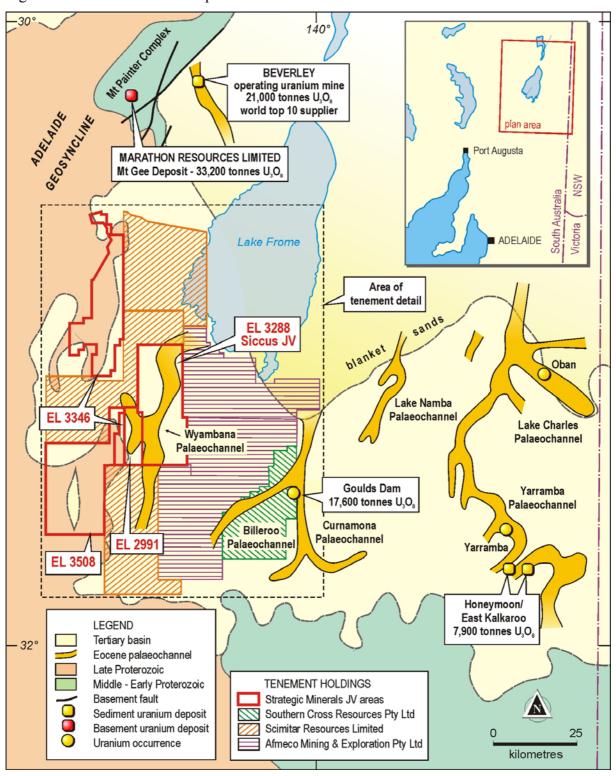
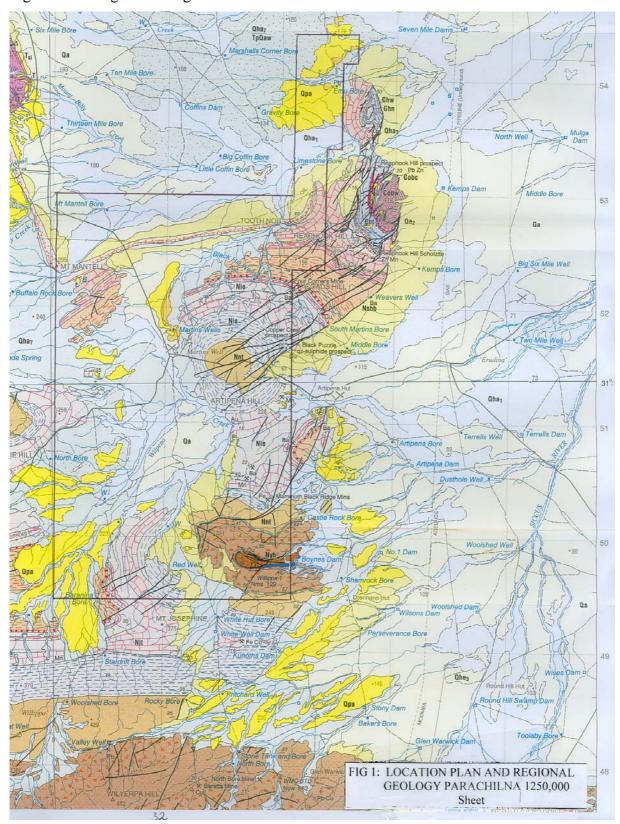



Figure 2. Geological Setting

1:50,000 Total Magnetic Intensity with 1:100,000 Geology

Figure 3. Magnetic Target Within the Willippa Dome

APPENDIX 1

Review of Exploration Licence 3508 South Australia held by Signature Resources NL

> Richard Simmons September 2006

Summary

Exploration Licence 3508 is located 500km north northeast of Adelaide, South Australia. The Licence secures Frome Basin sediments west of the Flinders Ranges in an area referred to as the Frome Embayment. This sediment pile hosts uranium deposits elsewhere in the Frome basin.

Past exploration relevant to the Licence area included an aeromagntics survey, gravity survey and several drillholes. The focus of this work was on petroleum and base metals associated with domed and diaper intruded Proterozoic sediments. This work fell short of adequately testing base metal targets.

The closest uranium exploration was north of the Licence in the Frome Embayment. A number of drillholes were completed 10 km from EL3508, one of which returned an anomalous downhole gamma response. Sediment hosted uranium deposits in the Frome Basin occur "downstream" of Mid Proterozoic, uranium anomalous, basement in porous, sandy horizons. Basement adjacent to the Frome Embayment is comprised of Adelaidean (Late) Proterzoic stratigraphy. It is unclear how important this difference is to the formation of deposits and, in the absence of evidence to the contrary, EL3508 remains prospective and the Licence is considered underexplored for sediment hosted uranium deposits.

In the southeast corner of the Licence a "gossanous" horizon occurs near the core of the Willippa Dome. A bullseye magnetic anomaly occurs in the same area, on the south side of the Dome. These two features provide encouragement for further exploration for copper at this location. North of the Dome, the Mammoth Black Ridge Prospect lies on ironstone variably developed over 1.3 km strike. This structure is reported to have returned high grades of copper, gold and silver and requires field evaluation.

Introduction

Tenure

Signature Resources NL holds Exploration Licence 3508 that was granted on 24/1/2006. The License is located approximately 500km north north west of Adelaide, South Australia.

The ground was secured principally for its prospectivity for sedimentary uranium deposits in the Frome Basin. Several examples of this style of deposit have been located in the Basin and the current uranium price has created a demand for tenure in this highly prospective region. Two hundred kilometres north of the Licence the Beverly Mine, owned by Heathgate Resources is exploiting sediment hosted uranium using in situ leach technology.

Geological Setting

The licence straddles the western side of the Frome Basin where it onlaps Neoproerozoic and Cambrian stratigraphy of the Adelaide Geosyncline. The Basin margin trends roughly north south and is considered to be influenced by Tertiary to Holocene faults (SRK, 2001). In the licence area the Basin extends further west than elsewhere and is referred to as the Frome Embayment.

The northeastern, northwestern and central parts of EL3508 cover Pleistocene to Holocene sediments at surface, which define the modern drainage pattern. The rest of the licence is characterized by subcrop of Late Proterozoic sandstone, siltstone, dolomite and limestone.

Mineralization in the immediate vicinity of the licence includes MVT lead/zinc, vein barite and sporadic Cu occurrences. The lead/zinc deposits are hosted in Cambrian limestone while the other commodities are located in Neoproterozoic stratigraphy. The Martins Well Dome is crosscut by multiple northeast trending faults, which manifest as barite bearing lodes

or manganiferous fractures. The lodes are recorded as one to two metres wide and are not targets of interest.

Sediment hosted uranium deposits have been discovered throughout the Frome Basin. These are located in Tertiary age paleochannels. Known uranium bearing sands are blind discoveries under approximately 100 metres of unmineralized sediment. There are no known deposits of this type recorded in the immediate vicinity of the Licence.

Scope of This Report

This report presents the results of a literature search of the PIRSA online database and utilizes information from previous explorers and the Parachilna 1:250000 mapsheet. Past exploration activity, geology and mineralization were investigated for the area within and surrounding EL3508.

Prior Exploration

Exploration activity in the vicinity of the Licence includes work by Mines Administration PL for uranium (early 70's) the SA Government for base metals (1990) and Frontier Exploration Ltd for petroleum and base metals. BHP Gold sampled streams draining the east boundary of the Licence.

Mines Administration conducted water bore analysis, airborne radiometrics and openhole drilling in the northern part of the Frome embayment. ("Wirrealpa Sub-basin"). The radiometrics survey showed no surface anomalies. The distribution of water bore sampling in the area is shown on figure 3. One water bore currently within EL3508 was analysed. Limestone Bore returned <5ppb U₃O₈ The work culminated in drilling a number of holes four of which are located approximately 10km from the most northerly part of EL3508 (fig 4). These holes drilled a thick sequence of Tertiary to Holocene age sediments mostly consisting of mudstones and siltstones. All holes were downhole gamma logged and one hole, W6, recorded anomalous uranium at approximately 92m depth within slightly carbonaceous claystone (fig5). Two samples of drill cuttings were analysed based on the gamma response and both returned 0.005 % U₃O₈.A suite of elements were analysed and the results include in Table 1.The quality of the sample and analysis is unknown.

In 1989 the Department of Mines and Energy Geological Survey (SADME) conducted a drilling program targeting base metals and prospective Cambrian host rocks. Some of the drillholes were sited close to or on EL3508.No geochemical anomalies were defined in the holes but they do provide some information on depth to basement (fig 4).

Frontier Exploration Ltd conducted exploration for hydrocarbons and base metals based on a concept linking their accumulation with diaper formation. Frontier mapped all the diapers, within the Adelaide Geosyncline, and initiated gravity and aeromagnetic surveys (1992), which partially cover EL3508. Frontier, also mapped the Willippa Dome, in the southeast corner of the Licence (fig 6) where they interpreted a salt dome or diapiric material to exist at 1200metres depth. Gossanous horizons with anomalous copper were located in the northwestern corner of the Dome core. Mapping by Dyson (1998) shows these as inferred faults. The presence of Burra Group stratigraphy in the core of the Dome was also considered interesting. The Burra Group hosts copper mineralization at the historical mining centre of Burra. One drillhole (Willippa 1) was drilled to 120m in the core of the Dome to test for diapiric material. The hole was abandoned due to poor ground conditions without effectively testing either the diaper theory or the gossanous horizons.

During 1998, on behalf of Frontier, Minotaur Gold sampled and assayed 16 rock chips from "quartz-ironstone veins", up to 100 metres long, in the Willippa Dome. The multi element results are attached, as Table 2. The maximum copper result was 0.85%, which reported with maxima in iron and manganese.

Frontier ceased exploration in 1999 citing a lack of funding as the prime reason. Prior to this the Willippa and Martins Well Domes were highlighted as areas of interest, both due to the interpretation of diapiric material at depth.

East of the Licence stream sampling for gold analysis, by BHP Gold, failed to locate any anomalies of interest.

Prospectivity

Uranium

The Licence has potential to contain a significant acreage of Tertiary, Frome Basin sediments, the host formation of sedimentary uranium deposits in this area. This is supported by the presence of Tertiary age sediments (identified in previous drilling), close to or at the tenement boundary, in association with the outcrop patterns on the Parachilna 1:250K geology sheet. The northern and northeastern portions of the Licence are likely to cover the greatest thickness of sediments.

It is likely that Tertiary faulting has influenced sedimentation (fig 7) and therefore sudden variations in thickness of the pile may be expected. If this process has operated then the area south and southwest of Martins Well may also contain a thick sediment package of prospective age. Fault distribution may also control the location of porous sandy paleochannels, which localize uranium-enriched groundwater (annual report, Giralia Resources).

Previous exploration for uranium in the area has been limited and does not diminish the prospectivity of the Licence. The modest anomaly In Mines Administration drilling shows uranium accumulation has occurred in the area. The localized nature of the anomaly may indicate an unsuitable host is present at that location.

The provenance for paleochannels in the Frome Basin, which contain uranium, is uranium anomalous basement. Examples include the Beverly Mine and Honeymoon Well. The former probably sourced uranium enriched groundwater from the Mt Painter and Mt Babbage Inliers to its west (mid Proterozoic). The latter source was the Willyama Complex to the south (also mid Proterozoic). The Licence area does not drain known uranium rich basement and while such a provenance would be ideal its absence should not preclude further evaluation. It is possible that uraniferous material was eroded some time during, and since, the Tertiary and was sourced by the Frome Embayment. Some contenders for a uranium source include large diapir xenoliths transported to near surface from below the Late Proterozoic (Explanetary Notes, Parachlina 1:250K Mapsheet) and the Wilawatty Formation, which has an elevated radiometric response (B Fehlberg pers comm.) Airborne radiometrics will have limited

application in the search for buried uraniferous paleochannels but the data may provide information on potential source rocks, which would reinforce the model of formation in the Frome Embayment.

Base Metals

The Willippa Dome (fig) remains prospective for copper mineralization. The core of the Dome exposes the most easterly occurrence of Burra Group sediments, host to replacement copper deposits further west. Several "gossanous horizons have been mapped in the sequence immediately north of the east-west fold hinge of the Dome. The longest has approximately 100 metres of strike and is two metres wide. Rock chip samples returned up to 0.8% copper although 4.5% is reported from abstracts in the PIRSA database). A single drillhole was collared in the core of the Dome, south of the copper occurrence, and is unlikely to have tested it.

An additional feature of major interest is a significant, isolated magnetic anomaly located on the south side of the Dome. The anomaly may reflect alteration or intrusion associated with copper mineralization Alternatively it may be caused by outcrop of the Holowilina Shale, a haematitic litholgy sporadically occurring at the top of the Burra Group. A field inspection by Barry Fehlberg is underway.

North of the Willippa Dome the Mammoth Black Ridge Prospect was developed on discordant, siliceous, ironstone striking approximately north northeast for 1.3 km. Copper, silver and gold were reported to have been mined here. An assay of ore is reported to have graded 16%Cu, 5163/tAg and 15.5g/tAu. The size and apparent lack of exploration make this structure worthy of follow up.

Competitor Activity

Scimitar Resources holds ground immediately east and north of EL3508 (figure 1). They refer to this group of tenements as the West Lake Frome Project. Scimitar's December Quarterly states "Evaluation of radiometric imagery suggests that uranium is being shed into the West Lake Frome Project from sources in the adjacent North Flinders Ranges". They also indicate that the appropriate host sequence occurs on the ground and that geophysical methods will be used to define paleochannels.

Recommendations

The Licence has potential for discovery of uranium in Tertiary paleochannels and copper deposits in Proterozoic stratigraphy at the Willippa Dome. The location of buried uranium deposits will rely on identification, then delineation, of paleochannels followed by drilling to test for a uraniferous redox front. Paleochannels can be localized, irregular and difficult to find.

The next stage of evaluation should proceed as follows.

- Sample water bores on EL3508 and assess in the context of the depth and nature of the water source. There are approximately six bores to test.
- Aquire airborne radiometric and magnetic data to aid interpretation of geology and identify uranium anomalous lithologies.
- Aquire the most recent and detailed gravity data. Depending on the detail this
 information has potential to map basement faults with significant displacement. These
 faults are likely controls on Tertiary sedimentation and paleochannel formation.
- Once the existing gravity data has been appraised it may be appropriate to conduct a new survey with closer spaced stations over the prospective parts of the Licence.
- A field assessment of The Willippa Dome is required to assess its potential
- The Mammoth Black Ridge Prospect also requires field inspection and if it is as lightly explored as appears may require mapping and rock chip sampling.

References

Wirrealpa. Progress and final reports for the period 17/9/1970 to 16/9/1971. Jan 1972 Brunt, D.A.; Bryan, R.

Blinman, Maggie Hill, Martins Well, Willippa, Bibliando, Upalinna and Mount Hemming. Quarterly, annual and final reports for the period 14/1/90 to 27/4/96.

Apr 1996

McLeod, A.; Tucker, D.H.; Zhi, Q.S.; Kivior, I.; Lethbridge, M.; Rudd, E.A.; Webb, B.P.; Nelson, R.G.; Dyson, I A

Geology of the Willippa Anticline, Central Flinders Ranges 1996 Dyson, I.A

Copper bearing gossans, Willippa Anticline, Central Flinders Zone Jan 1994 Webb, B.P.; Radke, F

Lead-Zinc Drilling Investigations, 1989, Wirrealpa Area, SA November 1991 Newton, A.W.

Eastern Arrowie Basin SEEBASE Project SRK Consulting May 2001

Explanatory notes, 1:25000 Geology of the Parachilna Sheet 1999 Department Primary Industries and Resouces, South Australia

FIELD EVALUATION REPORT EL 3508 MARTINS WELL SOUTH AUSTRALIA

B.FEHLBERG, Bsc Hons
NOVEMBER .2006

LIST OF CONTENTS

1. INTRODUCTION	Page 5
2. DATA EVALUATION	Page 5
3. WORK CARRIED OUT	Page 5
4.RESULTS	Page 5
5. WILLIPPA DOME INVESTIGATION	Page 6
5.1 Introduction	Page 6
5.2 Field Investigations	Page 6
5.3 Discussion of Results	Page 6
5.4 Recommendation	Page 7
6. REAPHOOK HILL	Page 10
6.1 Introduction	Page 10
6.2 Recommendation	Page 10
7. REFERENCES	Page 14

LIST OF PHOTOS

Photo 1 Thinly bedded haematitic siltstones outcropping as a prominent ridge South flank of the Willippa dome, looking east	Page 8
Photo 2 Close up of the outcropping haematitic siltstones. South flank of the Willippa dome, looking east	Page 8
Photo 3 HOLOWILENA IRONSTONE This unit outcrops as a prominent red coloured ridge along the south side of the Willip flank of the Willippa dome, looking south.	Page 9 pa Dome. South
Photo 4 REAPHOOK HILL , viewed looking west	Page 11
Photo 5 Reaphook Hill at sunset, looking west	Page 11
Photo 6 SCHOLZITE specimen dump with REAPHOOK HILL in the background	Page 12
Photo 7 SCHOLZITE occurrence with open cut specimen workings, looking south.	Page 12
Photo 8 REAPHOOK HILL, looking west with zinc bearing Cambrian limestone in the foregre	Page 13 ound
Photo 9 MANGANIFEROUS zinc rich Cambrian limestones	Page 13

APPENDICE 1

PASTORAL LEASE HOLDERS

LIST OF FIGURES EL 3508

FIG 1:

LOCATION PLAN AND REGIONAL GEOLOGY PARACHILNA 1250,000 Sheet

FIG 2:

WILLIPPA ANTICLINE GEOLOGY

FIG3:

AEROMAGNETIC CONTORS-WILLIPPA

FIG4

AEROMAGNETIC PROCESSED IMAGE 1 WILLIPPA

FIG5:

AEROMAGNETIC PROCESSED IMAGE 2 WILLIPPA

FIG6:

AEROMAGNETIC PROCESSED IMAGE 3 WILLIPPA

FIG 7

GEOLOGICAL SKETCH MAP – REAPHOOK HILL

FIG8:

GEOLOGICAL MAP- REAPHOOK HILL AREA

FIG9:

REAPHOOK HILL EXAMINATION

FIG10

GEOLOGICAL CROSS SECTION

FIG11:

SURFACE ZINC ASSAYS

1. INTRODUCTION

Exploration Licence EL 3508 was granted to Strategic Minerals Corporation NL on the 24th of January 2006.for a term of one year. The EL is centered on Martin Well pastoral lease located within the eastern portion of the Parachilna 1:250,000 topo sheet. The licence covers an area of 784 sqr km and extends from the Willippa anticline in the south to Emu Bore 15 km north of Reaphook Hill. The licence was acquired for uranium and base metal targeting based on regional theories..

2. DATA EVALUATION

SARIG searches and evaluation of regional aeromagnetic data were conducted to outline initial targets for evaluation. Existing gossan areas and mineral prospects identified on the Parachilna 1:250,000 sheet area were given a low priority due to reported previous work being largely negative. One priority target identified was an unexplained aeromagnetic anomaly roughly coincident with the Willippa anticline. Magnetic anomalies are known to be associated with deep seated hydrothermal mineralization, particularly where they are coincident with geological structures of interest.

3. WORK CARRIED OUT

Work carried out between 30th August to 1st September consisted of

A)Two days data evaluation of open file reports at the Dept of Primary Industry and Resources head office, Adelaide.

- B) Obtaining detailed aeromagnetic data with accurate plot locations relative to mapped geology of the Willippa anticline.
- C) obtaining pastoral leaseholder information from the company tenement officer.
- D) field inspection of target areas between 4th and 8th September.

4.FIELD RESULTS

A field inspection of the Willippa dome aeromagnetic anomaly and the Reaphook Hill Zinc prospect was carried out between the 4th and 8th September. Two samples from the Willippa dome anomaly were submitted for assay.

Consent for ground access was made by direct contact with the owners of Martins Well station Daryl and Kathy Fargher on the 5th and 7th September (see Appendices 1for pastoral Lease details) Access consent to the Willippa dome was received from Dennis Hilder of Willippa station by satellite phone.

5. WILLIPPA DOME INVESTIGATION

5.1 Introduction

Fig 1 to Fig 6 give regional geology, detailed geology and processed aeromagnetic data to outline the nature and location of the WILLIPPA aeromagnetic anomaly.

The published geology indicates the presence of a thin Sturtian age unit wrapping around the Willippa dome classified as the Holowilena Ironstone. The explanatory notes to the Parachilna geology sheet describes the Holowilena Ironstone as "laminated haematitic siltstone and minor haematitic diamictite".

Aeromagnetic imagining of the original data by officers of the Dept of Primary Industry and Resources (Fig 4 to 6) reveal a prominent east west single peak anomaly some 2km long coincident with the south flank of the Willippa Dome. This accurate plot of the anomaly enabled the anomaly source to be visited with some accuracy on the ground.

5.2 Field Investigations

The Willippa dome anomaly was field investigated on the 6th and 7th of September.

On driving into the centre of the Willippa dome, the most striking observation was the presence of a dominant east west trending dark reddish prominent ridge some 2km long and rising 100 to 150 metres above the surrounding outcrops. Based on the aeromagnetic data, it could be seen that the ridge zone is coincident with the anomaly.

A series of field traverses were conducted across and along the ridge. These showed that the ridge is composed of finely laminated haematitic siltstones dipping at 50 to 60 degrees to the south. The thickness of the unit is estimated at between 10 and 20 metres. The material is dense and heavy.

Two grab samples taken from the ridge, MW1 and MW2, gave the following significant assays (refer Appendice 1 for assays, see figure 2, Photo 3 for location)

MW!: 37.1% Fe, 0.093% P MW2: 35.4% Fe, 0.05% P

There were no other metals of interest shown up, by the ICP sacn.

5.3 Discussion of Results

The Holowilena ironstone is a large body of haematitic siltstone, confirmed by the assays showing strong iron content. However, the material at surface is haematitic, and would not necessarily account for the prominent magnetic anomaly shown on the aeromagnetic data...

The origin of these haematitic siltstones is believed to be caused by iron precipitation related to a global oxygenation of the oceans following a period of intense glaciation. This glacial event is evidenced by the underlying rocks to the Holowilena Ironstone being the Pulaco tillite (refer Reference 1).

The regional geological data (Fig 1) shows a copper occurrence on fault structures on the north side of the Willippa dome. Should these deep seated type faults interact with the haematitic siltstones , then significant mineralization could result.

5.4 Recommendation

- 1. Detailed mapping of the Holowilena Ironstone be conducted to determine its full extent.
- 2. Surveys be conducted to definitively determine the cause of the observed aeromagntic anomaly.
- 2. Stream sediment surveys be conducted to outline areas of mineralization potential in the Willippa dome area.

3. Surface sampling of mineral occurrences shown at Willippa, Mamoth Black ridge and Black puzzle should be conducted to investigate for copper and copper iron related mineralization.

Photo 1 Thinly bedded haematitic siltstones outcropping as a prominent ridge South flank of the Willippa dome, looking east

Photo 2 Close up of the outcropping haematitic siltstones. South flank of the Willippa dome, looking east

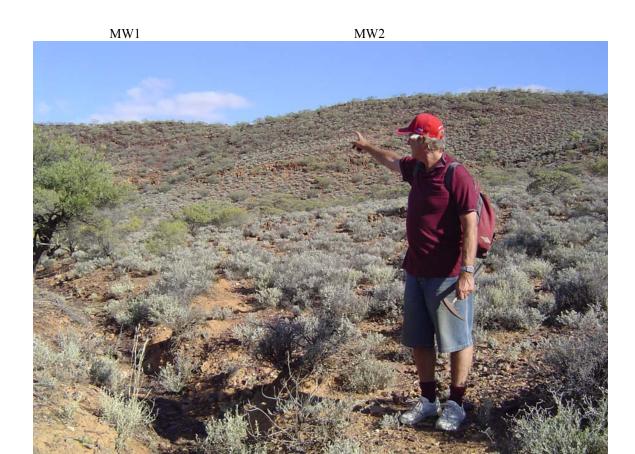


Photo 3 HOLOWILENA IRONSTONE

This unit outcrops as a prominent red coloured ridge along the south side of the Willippa Dome South flank of the Willippa dome, looking south.

6. REAPHOOK HILL

6.1 Introduction

This zinc prospect was investigated by Kennecott Exploration between 1966 and 1968 Reports by R.McNeil reveal zinc values grading 1% and 4% Zn. over a 600 m strike and 20m width at surface . No greater vales or any sulphide mineralization was found by 6 diamond drill holes completed by Kennecott and the prospect was deemed to be of little further interest.

A zone of very high grade surface and near surface zinc grading 25% Zn and more was found to be associated with the rare zinc mineral Scholtzite. This calcium phosphate zinc mineral is regarded to be an occurrence formed through secondary processes associated with fault controlled solution movements.

Fig 7 to 11 have been extracted from the old Kennecott reports. Fig 11 shows the location of the surface rock chip samples grading 1% and 4% Zn. This zone represents a target zone for follow up drilling to outline a possible larger tonnage low grade zinc resource. The drilling that has been conducted is inconclusive in testing for continuity of resource in this area.

6.2 Recommendation

The Reaphook hill zinc occurrence is under the control of the Perilya joint venture in which SMC has an interest. The company needs to determine the work program being conducted on behalf of the joint venture, and evaluate this in light of the historical evaluation covered in this report..

Photo 4
REAPHOOK HILL, viewed looking west

Photo 5 Reaphook Hill at sunset, looking west

Photo 6 SCHOLZITE specimen dump with REAPHOOK HILL in the background

Photo 7 SCHOLZITE occurrence with open cut specimen workings, looking south.

Photo 8 REAPHOOK HILL, looking west with zinc bearing Cambrian limestone in the foreground

Photo 9
MANGANIFEROUS zinc rich Cambrian limestones

7. REFERENCES

- 1. PARACHILNA 1:250,000 Geological series 1999, Explanatory Notes, SHEET SH54-,13, W.V. Preiss
- 2. Simmons, Richard, September 2006: Review of EL 3508, South Australia
- 3. Walker, Gabrielle, 2003: Snowball Earth: Bloomsbury Publishing, pg 95-96.

APPENDICE 1

PASTORAL LEASE HOLDERS

Hard Copy, Not Included For Mines Dept Report - On file

MARTINS WELL PROJECT

EXPLORATION LICENCE 3508 ANNUAL REPORT FOR 23.1.2007 TO 22.1.2008

LOCATION: SOUTH AUSTRALIA

STRATEGIC MINERALS CORPORATION NL.

AUTHOR; Roland Bartsch (Technical Director)

DATE: 10 January, 2008

DISTRIBUTION:

- 1. Primary Industries and Resources SA
- 2. Strategic Minerals Perth Office

Authorized By:		
•	Mr Wally Martin	
	Managing Director	Volume 1 of 1

SUMMARY

- ➤ Work completed by or for Strategic Minerals Corporation N.L. on EL3508 for the term 21-1-2007 to 21-1-2008 (Year 1) is documented in this report.
- Strategic Mineral's work programs in 2007 comprised detailed office based open file data compilations reviews and conceptual targeting.
- Three primary target styles were identified from the preliminary data & field reconnaissance reviews:
 - 1. Uranium :- Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments:
 - 2. Cu (Au U):- Fe-oxide associated hydrothermal targets magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
 - 3. Iron: Holowilena Ironstone & Mammoth Black Ridge Gossan
- ➤ The highest priority target is an unexplained magnetic anomaly (high, approx. 1km long) within and cutting across the core of the Willipa anticline. The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydrothermal alteration zone, which could have associated Cu (Au-U) mineralization. Additional detailed field assessment including drilling is a priority for these targets in 2007.
- Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rockchip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect is reported to have grades of 16% Cu, 5163 g/t Ag and 15.5g/t Au.
- ➤ No new sampling or geophysical surveying was conducted in 2007.

CONTENTS

SU	UMMARY	
	ONTENTS	
1.	Introduction	4
2.	Location & Tenement Status	4
3.	Work Programs Completed	4
	Results / Conclusion	

1. Introduction

This report presents a summary of work carried out by Strategic Minerals NL on the Martins Well Project (Figure 1), Exploration Licence 3508 for the twelve month period ending 23 January 2007 (Year 1).

The tenement was initially secured principally for its prospectivity for sedimentary hosted uranium deposits in Tertiary Frome basin sediments. The licence covers the western side of the Frome Basin. Significant untested Cu (Au-Ag-U) potential has subsequently been identified in the "basement" Proterozoic sedimentary sequence throughout the tenement.

.

2. <u>Location & Tenement Status</u>

Exploration Licence 3508 is located 500km north northwest of Adelaide, South Australia. The Licence covers the Frome Embayment (Figure 1) on the western side of the Frome Basin to the west of the Flinders Ranges.

3. Work Programs Completed

Strategic Mineral's work programs in 2007 comprised:

- 1. Detailed office based open file data compilation, reviews, interpretation and conceptual targeting.
- 2. No new sampling or geophysical surveying was conducted in 2007.
- 3. Target area selection and field sampling programes, initial drill program layouts and geophysical programes were designed and costed.

4. Results / Conclusion

Three primary target styles were identified from the preliminary data reviews:

- 1. Uranium :- Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments:
- 2. Cu (Au U):- Fe-oxide associated hydrothermal targets magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
- 3. Iron: Holowilena Ironstone
- 4. Fe: -Mammoth Black Ridge Gossan/Pseudo-Gossan

The potential of the paleochannel type uranium targets, while good, is tempered by an apparent lack of radiogenic source rocks in the hinterland or likely area sourced by the palaeodrainage in the area.

The highest priority target identified is an unexplained magnetic anomaly (high, approx. 1km long) within, and cutting across, the core of the Willipa anticline (Figures 2 & 3). The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydrothermal alteration zone, which could have associated Cu (Au-U) mineralization. Additional detailed field assessment including drilling is a priority for these targets in 2007.

Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rockchip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect is reported to have graded 16% Cu, 5163 g/t Ag and 15.5g/t Au.

Figure 1. EL3508 Location Map

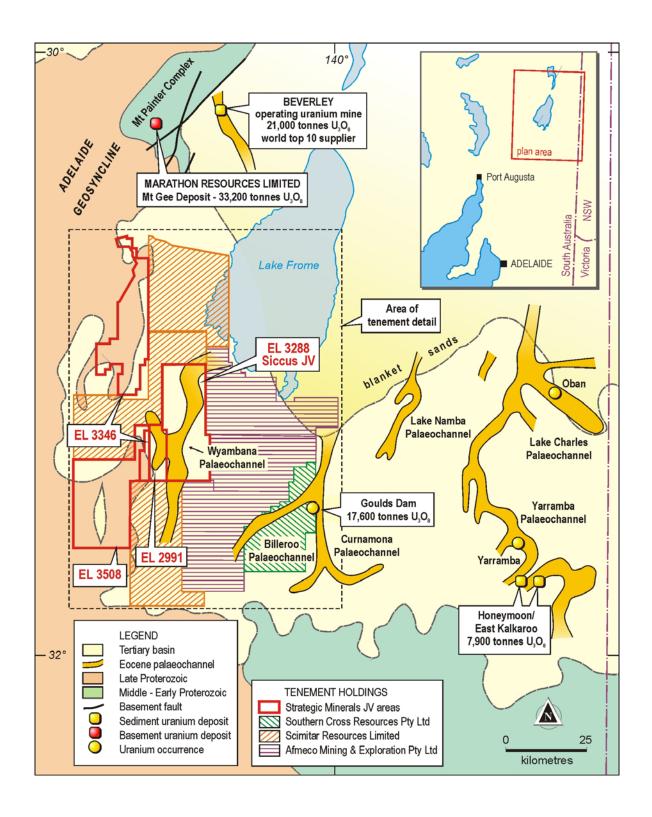


Figure 2. Geological Setting

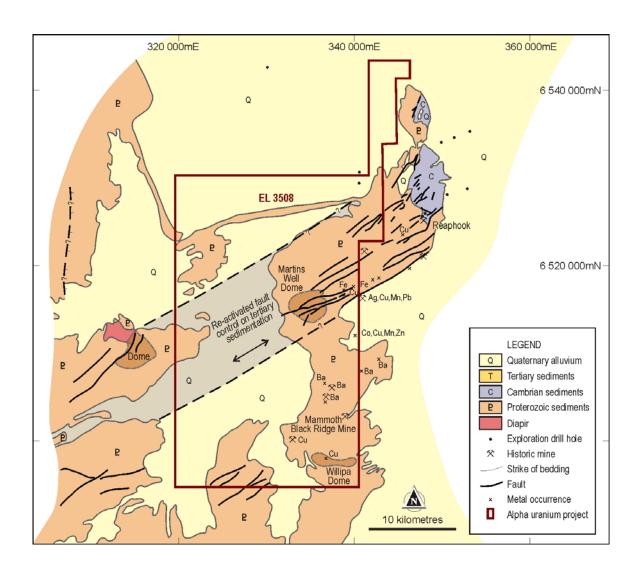
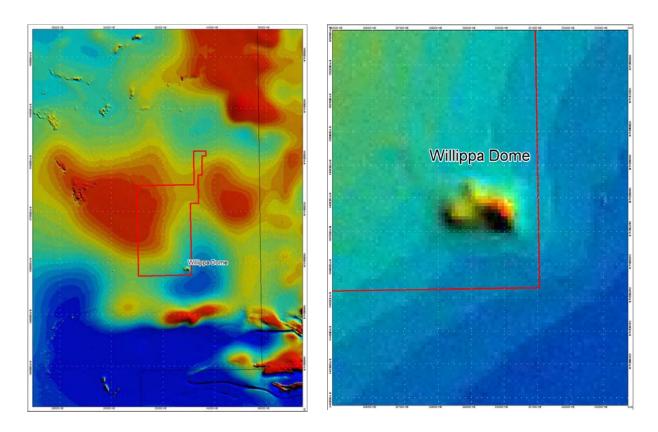



Figure 3. The Willippa Dome Cu-Au magnetic target – regional aeromagnetic survey data (AGSO 1996 Survey Data – TM image).

MARTINS WELL PROJECT

EXPLORATION LICENCE 3508 ANNUAL REPORT FOR 23.1.2008 TO 22.1.2009

LOCATION: SOUTH AUSTRALIA

STRATEGIC MINERALS CORPORATION NL.

AUTHOR; Kevin Richter (Project Geologist)

DATE: 9 November, 2009

DISTRIBUTION:

- 1. Primary Industries and Resources SA
- 2. Strategic Minerals Perth Office

Authorized By:	
-	Mr Wally Martin
	Managing Director

SUMMARY

- ➤ Work completed by or for Strategic Minerals Corporation N.L. on EL3508 for the term 23-1-2008 to 22-1-2009 is documented in this report.
- > Strategic Mineral's work programs in 2008 comprised detailed office based open file data compilations reviews and conceptual targeting and some field work.
- ➤ Three primary target styles were identified from the preliminary data & field reconnaissance reviews:
 - 1. Cu (Au U):- Fe-oxide associated hydrothermal targets magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
 - 2. Uranium :- Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments:
 - 3. Iron: Holowilena Ironstone & Mammoth Black Ridge Gossan
- The highest priority target is the unexplained magnetic anomaly (high, approx. 1km long) within and cutting across the core of the Willipa anticline. The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydrothermal alteration zone, which could have associated Cu (Au-U) mineralization.
- Modelling of the available aeromagnetic data across the Willipa dome anomaly was carried out for Strategic Minerals by Southern Geoscience Consultants to assist in drill targeting. The modelling includes a recommended drill hole location and design to test the Willipa anomaly (See appendix 1).
- Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rock chip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth

Black Ridge Prospect is reported to have grades of 16% Cu, 5163 g/t Ag and 15.5g/t Au.

New rock chip sampling conducted in 2008 returned a few significant copper values up to 11.3% (See Appendix 2).

CONTENTS

CONTENTS	4
1.Introduction	
2.Location & Tenement Status	5
3.Work Programs Completed	5
4 Results / Conclusion	

FIGURES

Figure 1 EL3508 Location Map

Figure 2 Geological Setting

Figure 3 The Willippa Dome Cu-Au magnetic target

APPENDICES

Appendix 1 Willippa Dome Mag Modelling – Southern Geoscience Consultants

Appendix 2 Rock chip Sampling

1. Introduction

This report presents a summary of work carried out by Strategic Minerals NL on the Martins Well Project (Figure 1), Exploration Licence 3508 for the twelve month period ending 23 January 2009.

The tenement was initially secured principally for its prospectivity for sedimentary hosted uranium deposits in Tertiary Frome basin sediments. The licence covers the western side of the Frome Basin. Significant untested Cu (Au-Ag-U) potential has subsequently been identified in the "basement" Proterozoic sedimentary sequence throughout the tenement.

2. Location & Tenement Status

Exploration Licence 3508 is located 500km north northwest of Adelaide, South Australia. The Licence covers the Frome Embayment (Figure 1) on the western side of the Frome Basin to the west of the Flinders Ranges.

3. Work Programs Completed

Strategic Mineral's work programs in 2008 comprised:

- 1. Detailed data review, data acquisition, and data interpretation.
- 2. Conceptual targeting and exploration planning.
- 3. Modelling of the available aeromagnetic data across the Willipa dome anomaly.
- 4. Rock chip sampling (84 samples) from the currently selected exploration target areas.

4. Results / Conclusion

Three primary target styles were identified from the data reviews:

- The Willippa Dome deep magnetic Cu-Au Target:- Fe-oxide associated hydrothermal targets and magnetic target within the Willippa Dome and several spatially associated gossanous zones to the North; and
- 2. Mammoth Black Ridge Base Cu-Ag-Au Target Gossan/Pseudo-Gossan
- 3. Palaeochannel Uranium Mineralisation A broad corridor of Palaeochannel ('Beverly Type') targets within Tertiary Frome Basin sediments;

The potential of the paleochannel type uranium targets, while good, is tempered by an apparent lack of radiogenic source rocks in the hinterland or likely area sourced by the palaeodrainage in the area.

The highest priority target identified is an unexplained magnetic anomaly (high, approx. 1km long) within, and cutting across, the core of the Willipa anticline (Figures 2 & 3). The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) constructive hydrothermal alteration zone, which could have associated Cu (Au-U) mineralization. Modelling of the available aeromagnetic data across the Willipa dome anomaly was carried out to establish the best location for initial drilling. From the modelling Southern Geoscience Consultants were able to recommend an initial drill hole location and design to test the Willipa anomaly (See appendix 1).

Also a high priority target are several gossanous horizons mapped in the sequence immediately North of the Dome. Rock chip samples from these are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect is reported to have graded 16% Cu, 5163 g/t Ag and 15.5g/t Au. Rock chip sampling in 2008 also returned a few significant copper values including 11.3%, 8.97%, 4.85%, and 4.65% (See appendix 2).

Figure 1. EL3508 Location Map

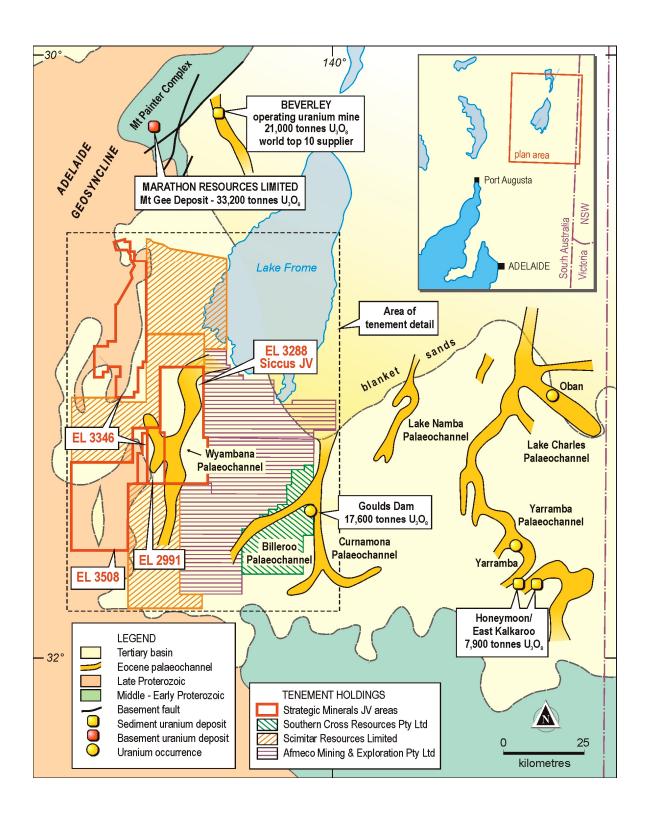


Figure 2. Geological Setting

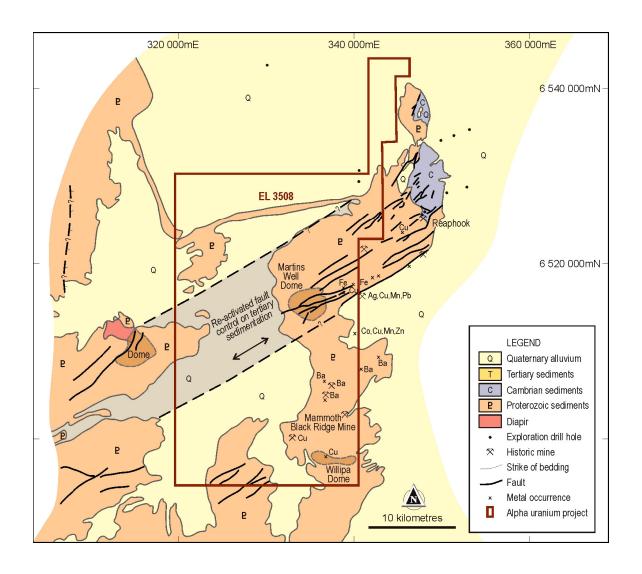
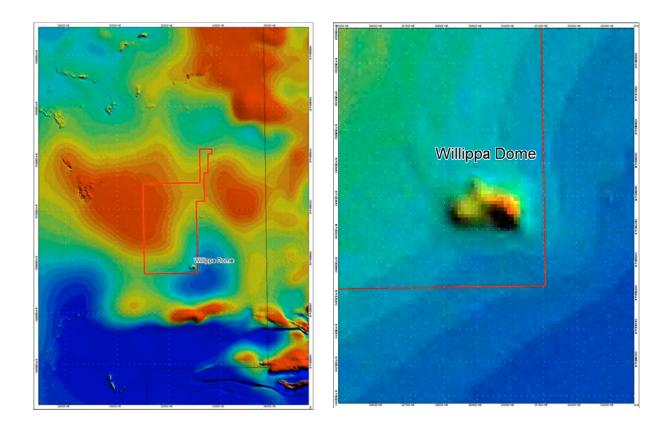



Figure 3. The Willippa Dome Cu-Au magnetic target – regional aeromagnetic survey data (AGSO 1996 Survey Data – TM image).

MARTINS WELL PROJECT

EXPLORATION LICENCE 3508 ANNUAL REPORT FOR 23.1.2008 TO 22.1.2009

APPENDIX 1 WILLIPPA DOME MAGNETIC MODELLING

SOUTHERN GEOSCIENCE CONSULTANTS

Pty Ltd ABN 69 067 552 461 8 Kearns Crescent Ardross WA 6153 AUSTRALIA Web: www.sgc.com.au

Bill Peters +61 8 9316 2814 Bruce Craven +61 8 9316 2804 Kim Frankcombe +61 8 9316 2074 Graham Jenke +61 8 9316 2801 Telephone: +61 8 9316 2074 Fax: +61 8 9316 1624 Email: anne@sqc.com.au

Memorandum

To: David Mounsey From: Anne Morrell

Strategic Minerals Corp. NL Level 4, St Martins Tower 44 St Georges Terrace

Perth, WA 6000

Project: Willippa Dome Magnetic Modelling Date: Friday, August 08, 2008

Dave.

As requested, we have completed forward modelling of the open-file aeromagnetic data across the Willippa Dome anomaly. The open-file data comprises the Flinders Ranges survey completed in 1998 by AGSO. This survey was flown at 200-400m line spacings on E-W lines with a mean terrain clearance of 80m; the Willippa Dome area is covered by 400m data. Modelling was performed initially on a single E-W flight line that transects the main anomaly peak (Figures 1, 2). An additional flight line to the immediate north is also shown with the same model (Figures 1, 3). A third line was then modelled from the gridded magnetic data and is located perpendicular to the interpreted strike of the body giving an optimum line orientation to model (Figures 4-5).

An ironstone unit outcrops coincident with, or at least very close to, the magnetic anomaly, however field checking by Strategic indicated that this was not the source of the anomaly. It was thought that magnetite alteration at depth may be the cause and we therefore began modelling using vertical cylindrical bodies to approximate this scenario. However this geological model could not be fitted to the observed magnetic signature. A best fit model was achieved using three flattened, cylindrical bodies. It is likely that the tops of these bodies would be sub-horizontal, however incorporating this into the models showed negligible change to the source geometries, depth and modelled response. All the modelled bodies strike 135°-140° and dip 20°-30° to the southwest. The larger, eastern body has a susceptibility of 0.09 SI and the smaller ones have been modelled with 0.05 SI. A full summary of modelled parameters is included in Table 1 below.

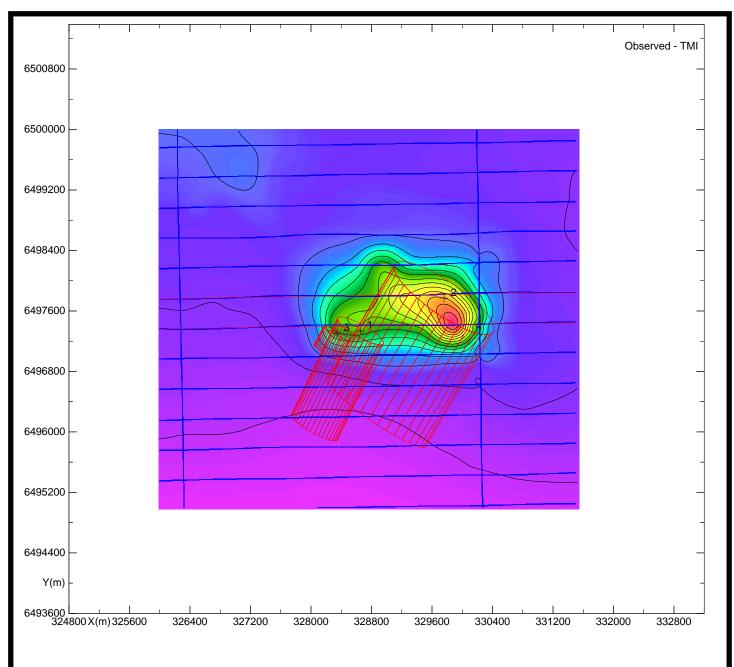
Table 1. Summary of modelled parameters.

	Body 1	Body 2	Body 3
Easting (MGA Zone 54)	328658.4	329763.8	328349.1
Northing (MGA Zone 54)	6497338.2	6497773.1	6497309.2
Depth to top (m)	-360	-80	-180
Strike (°)	135-315	140-320	135-315
Dip (°)	-60 south	-60 south	-70 south
Susceptibility (SI)	0.09	0.05	0.05
Strike length (m)	700	1600	400
Across-strike length (m)	350	550	200
Depth extent (m)	1600	2000	300

The modelled responses provide a reasonable fit on line 504250 (Figure 2) and the perpendicular line (Figure 5). The discrepancy in fit on the outer flanks of the perpendicular line may be due to remanent magnetisation which hasn't been accounted for.

The results of this modelling indicate a relatively shallow source for the magnetic anomaly (~80m). The shallow dipping modelled bodies are sub-parallel to the mapped stratigraphy and adjacent to, and possibly coincident with, the outcropping ironstone. Published structural measurements of the ironstone, located near the centre of the dome, show it strikes approximately E-W and dips 50° to the south (1:250 000 geology, Parachilna sheet SH5413). Surrounding units increase in dip (to 65°) away from the dome centre. Magnetic susceptibility readings taken from of the exposed ironstone may return anomalously low results due to strong, near surface oxidation. The modelled depth could indicate the depth of intense oxidation within the ironstone. Alternatively, the modelled source may be a magnetic unit adjacent and sub-parallel to the ironstone that may be masked at surface by scree or other cover.

A suggested collar position and drillhole design to test the Willippa Dome target is summarised in Table 2 below. An expected target depth has been provided, however the drillhole should be extended at least 20m beyond this depth to ensure target intersection.


Table 2. Summary of planned drillhole to test the Willippa Dome anomaly.

	WD-1
Easting (MGA54)	329700
Northing (MGA54)	6497365
Azimuth (MGA54)	030
Dip (°)	-60
Target depth (m)	100

Please contact me if you have any questions on the above.

Kind regards,

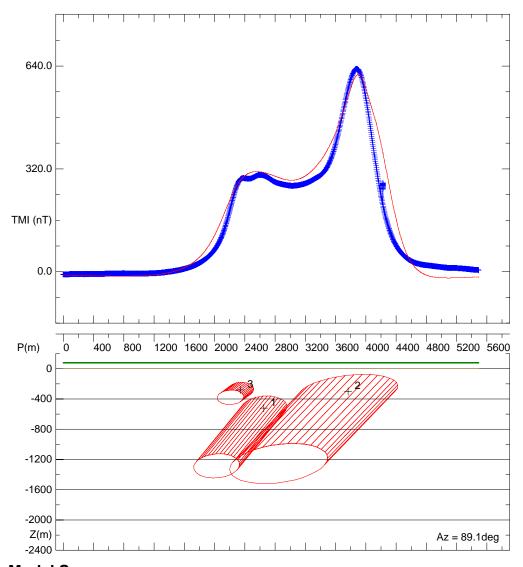
Anne Morrell

IGRF: H = 57772; Az = 7.7; Inc = -64.0

 Body
 Type
 X
 Y
 Z
 Strike
 Dip
 Plunge
 Density
 Susc.
 A
 B
 C
 Slope

 1
 Cylinder
 328658.4
 6497338.2
 -516.8
 -45.0
 60.0
 17.0
 1.000
 0.0900
 350.0
 700.0
 1600.090.0

 2
 Cylinder
 329763.8
 6497773.1
 -295.5
 -40.0
 60.0
 17.0
 1.000
 0.0500
 550.0
 1600.02000.070.0


 3
 Cylinder
 328349.1
 6497309.2
 -276.5
 -45.0
 70.0
 17.0
 1.000
 0.0500
 200.0
 400.0
 300.0
 95.0

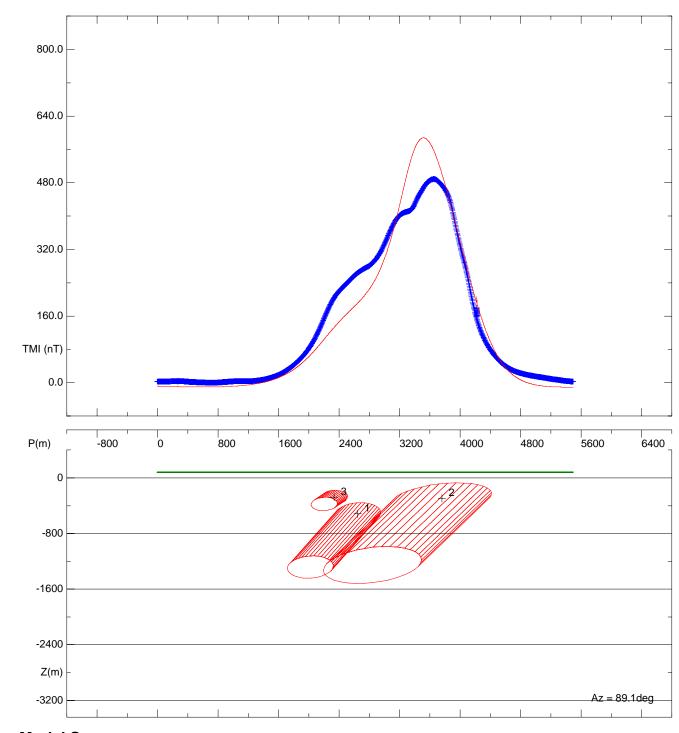
Southern Geoscience Consultants Pty.Ltd

STRATEGIC MINERALS LTD Willippa Dome

Magnetic Modelling
Plan view of modelling from Flight Lines

Map Reference:		
Author: F Villaudy	Original scale: 1:50000	Report No.:
Drawn by:	Date: 07 August 2008	Plan No.:

IGRF: H = 57772; Az = 7.7; Inc = -64.0


 Body
 Type
 X
 Y
 Z
 Strike
 Dip
 Plunge
 Density
 Susc.
 A
 B
 C
 Slope

 1
 Cylinder
 328658.4
 6497338.2
 -516.8
 -45.0
 60.0
 17.0
 1.000
 0.0900
 350.0
 700.0
 1600.090.0

 2
 Cylinder
 329763.8
 6497773.1
 -295.5
 -40.0
 60.0
 17.0
 1.000
 0.0500
 550.0
 1600.02000.070.0

 3
 Cylinder
 328349.1
 6497309.2
 -276.5
 -45.0
 70.0
 17.0
 1.000
 0.0500
 200.0
 400.0
 300.0
 95.0

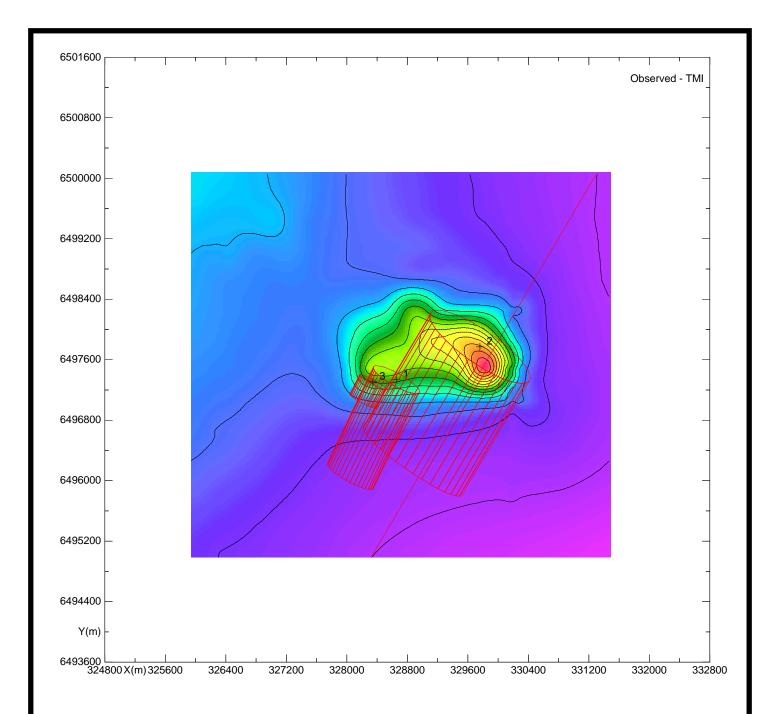
Southern Geoscience Consultants Pty.Ltd STRATEGIC MINERALS LTD Willippa Dome Magnetic Modelling Line 504250 (approx 6497300N) Map Reference: Author: F Villaudy Original scale: 1:50000 Report No.: Drawn by: Date: 07 August 2008 Plan No.:

IGRF: H = 57772; Az = 7.7; Inc = -64.0

 Body
 Type
 X
 Y
 Z
 Strike
 Dip
 Plunge
 Density
 Susc.
 A
 B
 C
 Slope

 1
 Cylinder
 328658.4
 6497338.2
 -516.8
 -45.0
 60.0
 17.0
 1.000
 0.0900
 350.0
 700.0
 1600.090.0

 2
 Cylinder
 329763.8
 6497773.1
 -295.5
 -40.0
 60.0
 17.0
 1.000
 0.0500
 550.0
 1600.02000.070.0


 3
 Cylinder
 328349.1
 6497309.2
 -276.5
 -45.0
 70.0
 17.0
 1.000
 0.0500
 200.0
 400.0
 300.0
 95.0

Southern Geoscience Consultants Pty.Ltd

STRATEGIC MINERALS LTD Willippa Dome

Magnetic Modelling Line 504240 (approx 6497750N)

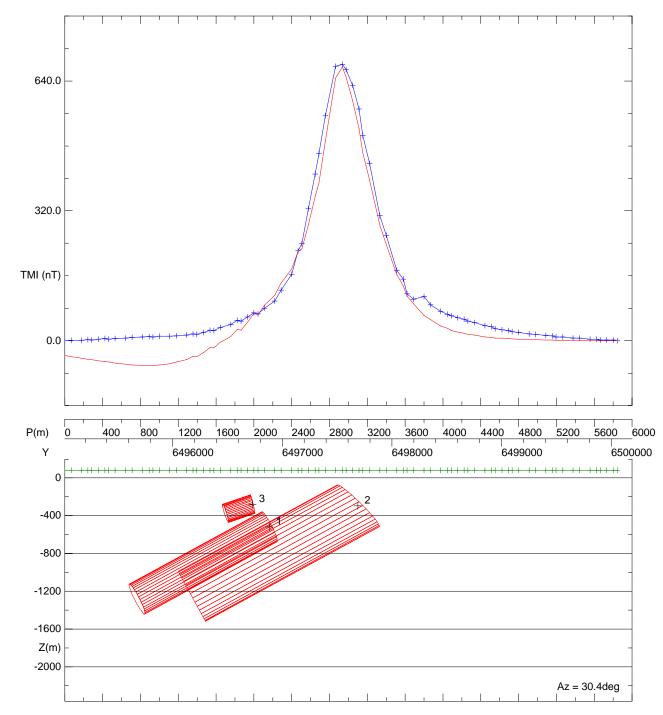
Map Reference:		
Author: F Villaudy	Original scale: 1:50000	Report No.:
Drawn by:	Date: 07 August 2008	Plan No.:

IGRF: H = 57772; Az = 7.7; Inc = -64.0

 Body
 Type
 X
 Y
 Z
 Strike
 Dip
 Plunge
 Density
 Susc.
 A
 B
 C
 Slope

 1
 Cylinder
 328658.4
 6497338.2
 -516.8
 -45.0
 60.0
 17.0
 1.000
 0.0900
 350.0
 700.0
 1600.090.0

 2
 Cylinder
 329763.8
 6497773.1
 -295.5
 -40.0
 60.0
 17.0
 1.000
 0.0500
 550.0
 1600.02000.070.0


 3
 Cylinder
 328349.1
 6497309.2
 -276.5
 -45.0
 70.0
 17.0
 1.000
 0.0500
 200.0
 400.0
 300.0
 95.0

Southern Geoscience Consultants Pty.Ltd

STRATEGIC MINERALS LTD Willippa Dome

Magnetic Modelling
Plan view of modelling from grid

Map Reference:		
Author: F Villaudy	Original scale: 1:50000	Report No.:
Drawn by:	Date: 07 August 2008	Plan No.:

IGRF: H = 57772; Az = 7.7; Inc = -64.0

 Body
 Type
 X
 Y
 Z
 Strike
 Dip
 Plunge
 Density
 Susc.
 A
 B
 C
 Slope

 3
 Cylinder
 328349.1
 6497309.2
 -276.5
 -45.0
 70.0
 17.0
 1.000
 0.0500
 200.0
 400.0
 300.0
 95.0

 2
 Cylinder
 329763.8
 6497773.1
 -295.5
 -40.0
 60.0
 17.0
 1.000
 0.0500
 550.0
 1600.02000.070.0

 1
 Cylinder
 328658.4
 6497338.2
 -516.8
 -45.0
 60.0
 17.0
 1.000
 0.0900
 350.0
 700.0
 1600.0200.090.0

Southern Geoscience Consultants Pty.Ltd STRATEGIC MINERALS LTD Willippa Dome Magnetic Modelling Perpendicular line Map Reference: Author: F Villaudy Original scale: 1:40000 Report No.: Drawn by: Date: 06 August 2008 Plan No.:

MARTINS WELL PROJECT

EXPLORATION LICENCE 3508 ANNUAL REPORT FOR 23.1.2008 TO 22.1.2009

APPENDIX 2 ROCK CHIP SAMPLING

Appendix 2 - Rock Chip Sampling

		TV067117	84	186									
		71451	061008Au	Au(R)	Ag	As	Мо	Cu	Pb	Zn	Sb	Ва	Co
		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
		DETECTION	0.01	0.01	2	5	10	5	5	5	5	5	5
		METHOD	FAA505	FAA505	ICP40Q								
		CO											
Easting	Northing	Sample											
329702	6503418	MB0001	0.02	-	X	56	X	558	24	65	19	106	X
329670	6503436	MB0002	0.01	-	X	91	X	626	14	47	15	1720	X
329638	6503355	MB0003	0.02	-	5	60	X	1550	21	104	13	1940	75
329604	6503262	MB0004	0.02	-	Χ	130	X	165	9	97	13	746	8
329687	6502985	MB0005	X	-	Χ	153	X	2190	13	51	13	408	X
329630	6502984	MB0006	0.28	-	X	645	X	2640	16	46	6	76	11
329644	6502951	MB0007	X	-	X	325	X	3320	21	74	17	65	X
329644	6502945	MB0008	X	-	X	145	X	575	19	90	15	22	X
329852	6502954	MB0009	0.04	0.04	X	100	X	1820	12	42	6	75	X
329601	6502890	MB0010	X	-	X	244	X	375	11	41	16	207	7
329586	6502863	MB0011	0.01	-	Χ	403	X	464	11	56	13	423	11
323561	6502826	MB0012	X	-	X	117	X	205	9	38	18	272	X
329544	6502799	MB0013	X	-	X	136	X	573	13	50	20	108	28
329512	6502773	MB0014	X	-	X	169	X	247	13	44	21	92	X
329486	6502748	MB0015	X	-	X	277	X	84	13	32	25	98	X
329364	6502640	MB0016	0.04	-	Χ	76	Χ	166	10	100	22	521	33
329533	6502535	MB0017	0.04	-	Χ	475	X	88	14	43	10	199	X
329495	6502487	MB0018	0.08	-	18	1050	X	3360	16	228	Χ	1460	816
329449	6502452	MB0019	X	-	Χ	571	X	888	15	71	10	1000	76
329381	6502430	MB0020	0.01	-	X	407	X	757	13	57	12	107	X
329320	6502407	MB0021	0.01	-	Χ	787	X	845	13	49	14	50	X
329323	6512400	MB0022	0.01	-	X	431	X	494	14	49	9	38	X
329292	6502390	MB0023	X	-	X	488	X	769	15	54	12	57	X
329253	6502384	MB0024	0.02	-	X	1060	X	1040	13	50	14	50	X
329218	6502365	MB0025	0.14	-	X	864	X	1150	12	80	11	147	X
329194	6502353	MB0026	0.03	-	X	225	X	385	26	122	7	136	X
329080	6502242	MB0027	0.02	-	Χ	282	Χ	212	13	268	12	918	39
329862	6502595	MB0028	0.01	-	X	101	X	133	8	34	X	684	52
329882	6502634	MB0029	X	-	Χ	48	X	2410	12	37	8	416	55
329911	6502716	MB0030	0.07	-	Χ	147	X	373	9	29	7	124	21
329761	6503024	MB0031	Χ	-	X	211	X	1880	14	113	12	127	X

Appendix 2 - Rock Chip Sampling

		TV067117	84	186									
		71451	061008Au	Au(R)	Ag	As	Мо	Cu	Pb	Zn	Sb	Ba	Co
		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
		DETECTION	0.01	0.01	2	5	10	5	5	5	5	5	5
		METHOD	FAA505	FAA505	ICP40Q								
		CO											
Easting	Northing	Sample											
329764	6503025	MB0032	0.04	-	X	305	Χ	1530	8	90	5	207	5
329815	6503073	MB0033	0.01	-	X	299	Χ	3580	13	64	10	176	X
329798	6503086	MB0034	0.02	-	Χ	349	Χ	1680	15	104	10	141	X
329821	6503102	MB0035	X	-	X	463	Χ	689	X	24	X	15	X
329821	6503100	MB0036	X	-	X	332	Χ	1480	12	63	16	39	X
323881	6503110	MB0037	0.05	-	Χ	186	Χ	1060	13	72	13	61	X
329864	6503132	MB0038	X	-	X	375	Χ	1090	14	30	13	48	X
329980	6503167	MB0039	X	X	X	165	Χ	2670	15	37	10	25	X
329933	6503195	MB0040	0.04	-	X	157	Χ	2790	11	32	X	68	X
329359	6503212	MB0041	X	-	Χ	123	Χ	2730	20	37	11	30	X
329978	6503231	MB0042	X	-	X	185	Χ	1990	15	27	10	19	X
329795	6497352	WD0001	0.04	-	X	18	Χ	131	6	21	X	578	53
329795	6497352	WD0002	0.08	-	3	9	Χ	515	5	75	X	854	443
329809	6437408	WD0003	0.06	-	X	X	Χ	100	10	32	X	382	10
329837	8497458	WD0004	0.01	-	X	X	Χ	82	17	57	X	411	8
329954	6497608	WD0005	0.01	-	X	214	Χ	74	14	19	X	432	6
329960	6497632	WD0006	0.02	-	X	1310	Χ	124	18	17	31	496	X
329969	6497638	WD0007	X	-	4	2940	Χ	153	67	66	173	1770	16
329977	6497642	WD0008	0.01	-	Χ	2730	Χ	95	75	30	81	189	X
329978	6497661	WD0009	0.01	-	X	2150	Χ	69	72	36	55	237	X
330026	6497697	WD0010	0.01	-	Χ	919	Χ	104	36	39	18	185	6
330036	6497664	WD0011	0.01	-	X	547	Χ	88	25	20	15	107	X
329900	6497712	WD0012	X	-	41	23	Χ	631	18	376	X	7210	535
330010	6497743	WD0013	0.01	-	6	17	Χ	573	19	84	5	1220	576
330004	6497755	WD0014	0.01	-	X	11	Χ	108	12	30	10	115	X
330022	6497805	WD0015	0.01	0.01	X	9	Χ	36	10	20	X	112	X
330094	6497855	WD0016	0.01	-	3	60	Χ	94	15	243	Χ	955	191
330083	6497877	WD0017	0.01	-	X	134	Χ	40	10	323	X	1300	31
330086	6497982	WD0018	0.01	-	4	139	Χ	32	17	628	Χ	627	82
323600	6519400	WD0019	0.01	-	Χ	31	Χ	27	Χ	10	Χ	55	X
327995	6498399	WD0020	0.02	-	8	104	X	>10000	210	92	X	29	X

Appendix 2 - Rock Chip Sampling

		TV067117	84	186									
		71451	061008Au	Au(R)	Ag	As	Мо	Cu	Pb	Zn	Sb	Ba	Co
		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
		DETECTION	0.01	0.01	2	5	10	5	5	5	5	5	5
		METHOD	FAA505	FAA505	ICP40Q								
		CO											
Easting	Northing	Sample											
327987	6498427	WD0021	0.01	-	Χ	572	Χ	9350	8	15	Χ	155	Χ
328019	6498294	WD0022	0.01	-	X	350	X	568	9	21	X	132	27
NL	NL	CC0001	0.01	-	X	23	X	76	14	14	8	95	X
NL	NL	CC0002	0.01	-	X	25	X	100	13	17	10	60	X
NL	NL	CC0003	0.01	-	X	23	X	136	15	13	9	87	X
NL	NL	CC0004	0.01	-	5	44	Χ	>10000	135	99	Χ	80	Χ
NL	NL	CC0005	X	-	44	83	X	260	17	303	22	6660	859
NL	NL	CC0006	0.01	-	3	38	Χ	6550	15	10	8	81	6
NL	NL	CC0007	0.01	-	5	56	Χ	>10000	117	21	7	66	7
NL	NL	CC0008	0.03	-	8	20	X	>10000	205	18	6	56	X
NL	NL	CH0001	0.01	-	X	X	X	483	X	5	X	538	X
NL	NL	CH0002	0.01	-	X	5	X	664	8	110	X	617	X
NL	NL	CH0003	0.01	-	X	X	X	34	X	Χ	X	440	X
NL	NL	CH0004	0.01	-	X	X	X	618	6	7	X	2550	X
NL	NL	BP0001	X	-	X	102	X	304	60	223	12	1210	20
NL	NL	BP0002	X	0.01	2	47	X	223	25	36	12	3770	X
NL	NL	BP0003	0.01	-	Χ	64	Χ	168	25	128	6	518	44
NL	NL	BP0004	0.01	-	19	26	X	420	25	664	X	2130	424
NL	NL	BP0005	0.02	-	Χ	27	X	84	25	104	8	125	X
NL	NL	BP0006	0.01	-	X	24	X	180	38	383	11	1030	45
NL	NL	BP0007	0.01	-	Χ	75	X	193	36	120	6	444	6
NL	NL	BP0008	0.01	-	Χ	122	Χ	156	16	94	8	345	Χ

Appendix 2 - Rock Chip Sampling

			TV067117									
			71451	Fe	Mn	Р	Au	Au(R)	Au(S)	Cu	Fe	Mn
			UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
			DETECTION	100	10	30	0.001	0.001	0.001	25	500	25
			METHOD	ICP40Q	ICP40Q	ICP40Q	FAL505	FAL505	FAL505	ICP43Q	ICP43Q	ICP43Q
			CO									
E	Easting	Northing	Sample									
3	329702	6503418	MB0001	>400000	2420	440	0.013	0.008	-	-	556000	-
3	329670	6503436	MB0002	>400000	4230	370	X	-	-	-	595000	-
3	329638	6503355	MB0003	>400000	>20000	790	0.001	-	-	-	521000	42400
3	329604	6503262	MB0004	306000	>20000	1000	0.011	0.01	-	-	-	25300
3	329687	6502985	MB0005	>400000	11700	1380	0.005	-	-	-	498000	-
3	329630	6502984	MB0006	274000	6400	1130	0.004	-	-	-	-	-
3	329644	6502951	MB0007	>400000	2970	1450	0.009	-	-	-	576000	-
3	329644	6502945	MB0008	>400000	2620	750	0.01	0.006	-	-	602000	-
3	329852	6502954	MB0009	283000	1670	710	0.003	-	-	-	-	-
3	329601	6502890	MB0010	>400000	10900	530	0.004	-	-	-	597000	-
3	329586	6502863	MB0011	>400000	8750	550	0.004	-	-	-	567000	-
3	323561	6502826	MB0012	>400000	3260	740	0.009	0.01	-	-	414000	-
3	329544	6502799	MB0013	>400000	4530	460	0.004	-	-	-	563000	-
3	329512	6502773	MB0014	>400000	5550	400	0.004	-	-	-	547000	-
3	329486	6502748	MB0015	>400000	3060	380	0.004	-	-	-	562000	-
3	329364	6502640	MB0016	>400000	5540	880	0.004	-	-	-	509000	-
3	329533	6502535	MB0017	>400000	8010	790	0.002	-	-	-	457000	-
3	329495	6502487	MB0018	>400000	>20000	640	0.004	-	-	-	436000	96000
3	329449	6502452	MB0019	>400000	>20000	1150	0.008	-	-	-	551000	24000
3	329381	6502430	MB0020	>400000	5950	480	0.013	0.008	-	-	612000	-
3	329320	6502407	MB0021	>400000	3250	610	0.005	-	-	-	612000	-
3	329323	6512400	MB0022	>400000	2290	370	0.004	-	-	-	623000	-
3	329292	6502390	MB0023	>400000	2570	750	0.009	-	-	-	612000	-
3	329253	6502384	MB0024	>400000	2770	510	0.01	0.006	-	-	551000	-
3	329218	6502365	MB0025	>400000	5550	740	0.004	-	-	-	529000	-
3	329194	6502353	MB0026	>400000	12000	680	0.005	-	-	-	449000	-
3	329080	6502242	MB0027	>400000	15700	1000	0.006	-	-	-	433000	-
3	329862	6502595	MB0028	270000	14400	440	0.006	-	-	-	-	-
3	329882	6502634	MB0029	>400000	>20000	600	0.001	-	-	-	529000	30600
3	329911	6502716	MB0030	393000	15300	1100	0.004	-	-	-	-	-
3	329761	6503024	MB0031	>400000	8890	890	0.006	-	-	-	570000	-

Appendix 2 - Rock Chip Sampling

		TV067117									
		71451	Fe	Mn	Р	Au	Au(R)	Au(S)	Cu	Fe	Mn
		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
		DETECTION	100	10	30	0.001	0.001	0.001	25	500	25
		METHOD	ICP40Q	ICP40Q	ICP40Q	FAL505	FAL505	FAL505	ICP43Q	ICP43Q	ICP43Q
		CO									
Easting	Northing	Sample									
329764	6503025	MB0032	299000	12700	840	0.004	-	-	-	-	-
329815	6503073	MB0033	>400000	5960	900	0.011	0.006	-	-	468000	-
329798	6503086	MB0034	>400000	17100	1330	0.006	-	-	-	505000	-
329821	6503102	MB0035	118000	1140	680	0.005	-	-	-	-	-
329821	6503100	MB0036	>400000	3630	720	0.004	-	-	-	511000	-
323881	6503110	MB0037	>400000	3480	1600	0.004	-	-	-	612000	-
329864	6503132	MB0038	>400000	9580	1000	0.008	-	-	-	499000	-
329980	6503167	MB0039	>400000	15800	380	0.006	-	-	-	528000	-
329933	6503195	MB0040	187000	5110	1210	0.004	-	-	-	-	-
329359	6503212	MB0041	>400000	18100	410	0.011	0.006	-	-	542000	-
329978	6503231	MB0042	>400000	14000	300	0.008	-	-	-	454000	-
329795	6497352	WD0001	172000	5100	300	0.004	-	-	-	-	-
329795	6497352	WD0002	24400	19800	220	0.006	-	-	-	-	-
329809	6437408	WD0003	44200	490	510	0.004	-	-	-	-	-
329837	8497458	WD0004	49700	200	470	0.003	-	-	-	-	-
329954	6497608	WD0005	63200	930	410	0.004	-	-	-	-	-
329960	6497632	WD0006	78300	3220	350	0.007	0.003	-	-	-	-
329969	6497638	WD0007	>400000	>20000	1520	0.002	-	-	-	385000	31500
329977	6497642	WD0008	313000	640	690	0.005	-	-	-	-	-
329978	6497661	WD0009	194000	540	980	0.004	-	-	-	-	-
330026	6497697	WD0010	293000	860	2330	0.002	-	-	-	-	-
330036	6497664	WD0011	115000	400	450	0.002	-	-	-	-	-
329900	6497712	WD0012	219000	>20000	1370	0.003	-	-	-	-	140000
330010	6497743	WD0013	>400000	>20000	4620	0.003	-	-	-	406000	43000
330004	6497755	WD0014	>400000	980	6330	0.002	-	-	-	451000	-
330022	6497805	WD0015	327000	730	2040	0.003	-	-	-	-	-
330094	6497855	WD0016	263000	>20000	850	0.002	-	-	-	-	32400
330083	6497877	WD0017	262000	9840	810	0.002	-	-	-	-	-
330086	6497982	WD0018	309000	>20000	1830	0.002	-	-	-	-	-
323600	6519400	WD0019	59300	2450	80	0.004	-	-	-	-	-
327995	6498399	WD0020	146000	3170	2450	0.003	-	-	113000	-	-

Appendix 2 - Rock Chip Sampling

		TV067117									
		71451	Fe	Mn	Р	Au	Au(R)	Au(S)	Cu	Fe	Mn
		UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
		DETECTION	100	10	30	0.001	0.001	0.001	25	500	25
		METHOD	ICP40Q	ICP40Q	ICP40Q	FAL505	FAL505	FAL505	ICP43Q	ICP43Q	ICP43Q
		CO									
Easting	Northing	Sample									
327987	6498427	WD0021	43700	3220	260	0.002	-	-	-	-	-
328019	6498294	WD0022	89300	3080	410	0.003	-	-	-	-	-
NL	NL	CC0001	>400000	>20000	350	0.003	-	-	-	507000	32100
NL	NL	CC0002	>400000	>20000	320	0.007	-	-	-	476000	32800
NL	NL	CC0003	>400000	>20000	200	0.004	-	-	-	416000	24000
NL	NL	CC0004	237000	2070	1740	0.002	-	-	46500	-	-
NL	NL	CC0005	381000	>20000	680	0.002	-	-	-	-	143000
NL	NL	CC0006	393000	>20000	120	0.006	-	-	-	-	29500
NL	NL	CC0007	374000	15000	1240	0.01	0.008	-	48500	-	-
NL	NL	CC0008	>400000	10700	2360	0.006	-	-	89700	408000	-
NL	NL	CH0001	3600	140	X	0.007	-	-	-	-	-
NL	NL	CH0002	1500	60	X	0.006	-	-	-	-	-
NL	NL	CH0003	600	30	X	0.003	0.007	-	-	-	-
NL	NL	CH0004	9200	400	170	0.002	-	-	-	-	-
NL	NL	BP0001	>400000	4210	1350	0.002	-	-	-	535000	-
NL	NL	BP0002	>400000	>20000	770	0.002	-	-	-	545000	32100
NL	NL	BP0003	>400000	15700	870	0.004	-	-	-	493000	-
NL	NL	BP0004	335000	>20000	1020	0.004	-	-	-	-	94600
NL	NL	BP0005	>400000	3550	790	0.008	-	-	-	518000	-
NL	NL	BP0006	>400000	>20000	660	0.002	-	-	-	586000	27900
NL	NL	BP0007	>400000	>20000	690	0.005	-	-	-	487000	32100
NL	NL	BP0008	>400000	10800	620	0.003	-	-	-	516000	-

MINERAL TENEMENT SERVICES

ABN 68 593 203 550

25 March 2010

Records Officer
Mineral Tenements
PIRSA
GPO Box 1671
ADELAIDE SA 5001

PO Box 115, Kent Town

South Australia 5071

M. 0415 397 870

F/AH. 08 8342 4914

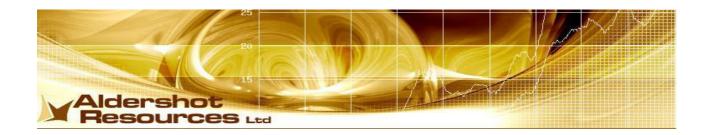
E. tcoppin@teneman.com.au

Dear Sir/Madam

EL 3508 Annual Technical Report for the year ending 23 January 2010

No field work was undertaken during the period 24 January 2009 to 23 January 2010. As no new technical data were acquired, a formal report will not be submitted.

Strategic Minerals Corporation NL has recently completed Joint Venture negotiations with Aldershot Resources Limited, for Aldershot to acquire an interest in EL 3508. A letter agreement was signed on 24 February 2010.


Total expenditure for the year was \$16,492. Details have been provided in the relevant summary reports.

Please contact me on 8414 3352 or 0415 397 870 if you require additional information.

Yours sincerely

Teena Coppin

Tenement Manager

ANNUAL REPORT ON EL 3508

MARTIN'S WELL PROJECT SOUTH AUSTRALIA

FOR THE PERIOD

23 January 2010 to 22 January 2011

Holder: Strategic Minerals Corporation NL

Operator: Aldershot Resources Ltd

Compiled by: Ian Faris
Date: February 2011

Distribution: Aldershot Resources Ltd

Strategic Minerals Corporation NL

PIRSA

TABLE OF CONTENTS

1.	SUMMARY	1
2.	Introduction	4
3.	HISTORY	4
4.	TARGETS	5
5.	GEOLOGICAL SETTING	5
6.	RESULTS	6
6.1.	Mapping	6
6.2.	Airborne magnetic-radiometric survey	6
6	6.2.1 Interpretation	6
6.3.	Drilling	8
7.	Environment	9
8.	Expenditure	10
9.	CONCLUSIONS	11
10.	References	12
	LIST OF FIGURES	
Figure	re 1: Exploration Index Map (1:250,000)	3
Figure	re 2: Regional Location Map (1:500,000)	4
Figure	re 3: Willippa Dome Strip geology (1:5,000)	7
Figure	re 4: First vertical derivate magnetic image overlain over historic geological map	8
	LIST OF TABLES	
Table	e 1: Exploration Activities	2
Table	e 2: Hawke1 hole details	9

APPENDICES

APPENDIX A 100410 Review of Willippa Dome target

APPENDIX B 2411_Aldershot Logistic Report (GPX Surveys)

APPENDIX C 100528 Detailed magnetic survey over Mt Martin.

APPENDIX D Martins Well Hawke 1 Report

APPENDIX E Digital Data Files

Logging codes	62kB	Aldershot_codes_2010.pdf
Collar metadata	3kB	EL3508_SL1_2010A.txt
Downhole survey metadata	3kB	EL3508_SADS3_SUR2010A.txt
Downhole geochemistry metadata	8kB	EL3508_SADG3_ASS2010A.txt
Downhole lithology metadata	8kB	EL3508_SADL3_GEO2010A.txt
Downhole magnetic susceptibility metadata	17kB	EL3508_SADME3_MAGSUS2010A.txt
Downhole radiometric metadata	5kB	EL3508_SADRE3_RADIO2010A.txt

APPENDIX F GPX Survey #2411 Data (see Government of SA Mineral Resources Website)

Grids Located data Map

Products

1. SUMMARY

Project Name: Martin's Well

Tenement Number: E3508

Tenement Operator: Aldershot Resources Ltd

Tenement Holder: Strategic Minerals Corporation NL

Report Type: Annual

Report Title: Annual Report on EL3508, Martin's Well Project, South Australia for the

period 23 January 2010 to 22 January 2011

Report Period: 23 January 2010 to 22 January 2011

Author: Ian Faris

Date of Report: February 2011

1:250 000 map sheet: Parachilna SH 54-10

1:100 000 map sheet: Reaphook (6735), Willippa (6734)

Target Commodity: Magnetite, Copper, Gold

Keywords: Parachilna SH 54-10, Reaphook (6735), Willippa (6734), Willippa Dome, Martin's

Well, Iron, Copper, Gold, Data compilation, airborne magnetic-radiometric survey, magnetic modelling, mapping, diamond drilling, assaying, magnetic susceptibility, Adelaide Geosyncline, Sturtian, HOLOWILENA Ironstone, Paulco

Tillite, Wilyerpa Formation.

Prospects worked: Willippa Dome

List of Assays: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P,

Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn

Location: The project is located 380 kilometres north of Adelaide and 78 kilometres

northeast of Hawker.

Geology: The project covers the northern Adelaide Geosyncline (Central Flinders Ranges)

and western margin of the Curnamona Province. Distinctive dome and basin folding has led to the development of two prominent diapiric domal structures, the Willippa and Martin's Well Domes. The initial exploration focus will be on the Willippa Dome where the Holowilena Ironstone is visible as a dominant east-west ridge some 2 kilometres long and rising 100 to 150 metres above the surrounding area. The ridge is composed of finely laminated haematitic siltstone between 20 and 50 metres thick that dips to the south at 50 to 60 degrees. A strong magnetic anomaly along the southern edge of the Dome suggests a large magnetite rich zone at depth, possibly coincident with the Holowilena Ironstone or iron metasomatism related to ascending hydrothermal fluids associated with the diaper formation,

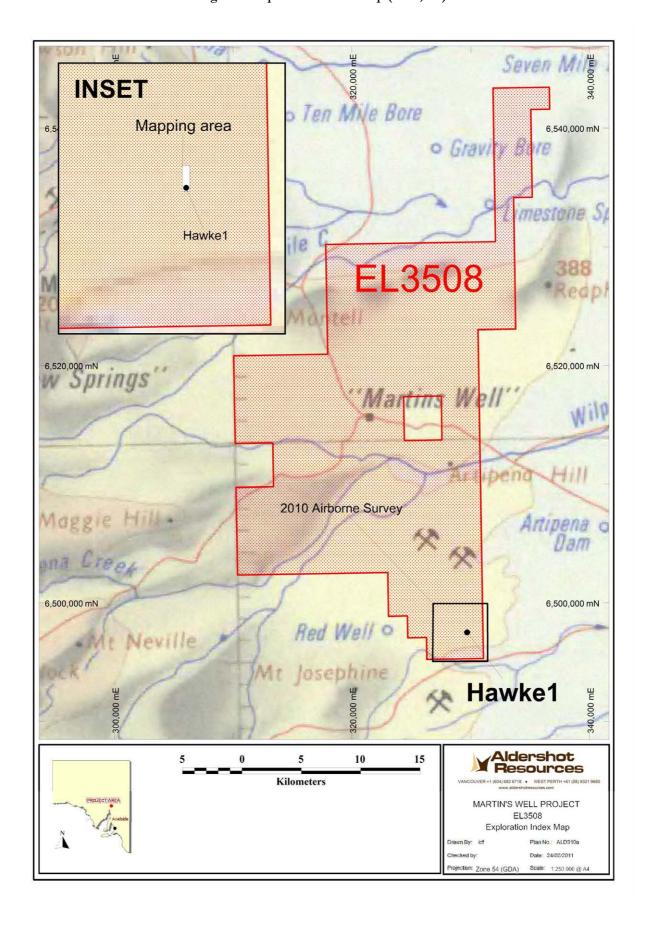
particularly where the fluids are brought into contact with reactive rocks.

Target: The two interpretations for the magnetic anomaly associated with the Willippa

Dome have generated two exploration targets, namely:

- iron ore as a magnetite body associated with the Holowilena Ironstone and

- a magnetite body with associated Cu (Au-U) mineralisation related to diapiric structure


Table 1: Exploration Activities

3.5	Scale	1:5,000
Mapping	Area (m²)	40,000
Sampling	Number	17
	Туре	1/4 NQ core
Accessina	Number	20
Assaying	Туре	1/4 core, duplicate, stds
	Holes	1
Drilling	Туре	Diamond-NQ
	Metres	198
Surveys		
Airborne	Туре	Magnetic, radiometric
	Line kms	537
Ground	Туре	
	Line kms	
Downhole	Туре	Hole orientation
	Shots	4
	Туре	Magnetic susceptibility
Drillcore	Readings	500
Dimeore	Туре	Gamma
	Readings	42

Exploration activities over EL3508 during 2010–11 involved compilation of the historical data, reinterpretation of past airborne magnetic surveys, flying of a new airborne radiometric-magnetic survey, modelling of the magnetic source, preparation and submission of an Exploration Works Approval (EWA) and undertaking of a heritage survey all in preparation for a diamond drillhole. One 198 metre diamond hole was drilled on the southern edge of the Willippa Dome. Drilling was supported by recording of magnetic susceptibility and gamma activity on the dill core and assaying of selected intervals.

M

Figure 1: Exploration Index Map (1:250,000)

2. INTRODUCTION

The Martin's Well Project is defined by the area covered by EL3508 which was granted on 24 January 2006 over an area of 784 km². Following a partial surrender it now covers approximately 586 km². It is owned (100%) by Strategic Minerals Corporation NL and is operated by Aldershot Resources Ltd in accordance with a Letter Agreement dated 24 February 2010. The licence was renewed until 24 January 2011 on 30 May 2010 and an application for a subsequent Exploration Licence was lodged on 24 November 2010.

EL3508 is located in the central Flinders Ranges approximately 160 km northeast of Port Augusta, a regional centre located at the head of Spencer Gulf in South Australia and 80 km northeast of Hawker. It is located on the eastern portion on the Parachilna 1:250,000 topographic sheet. The EL is centred on the Martins Well Pastoral Lease with the southern and west edges covering the Nannawarra, Point Saltia, Willippa and Glen Warwick Pastoral Leases. Activities during 2010 were on the Glen Warwick Pastoral Lease (Figure 2).

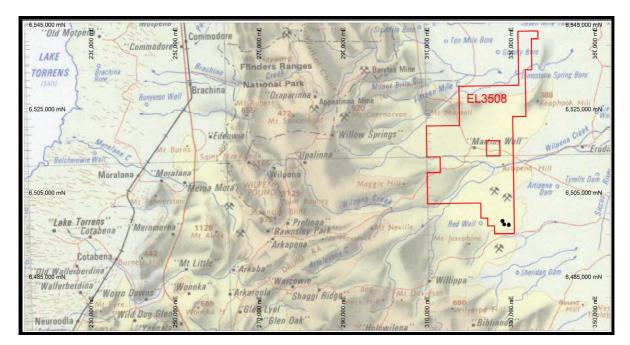


Figure 2: Regional Location Map (1:500,000)

3. HISTORY

Historical exploration in the vicinity of EL3508 includes work by Mines Administration Pty Ltd ("MINAD") for uranium (early 1970s), the SA Government for base metals (1990) and Frontier Exploration Ltd for petroleum and base metals. BHP Gold sampled streams draining the east boundary of the Licence.

MINAD conducted water bore analysis, airborne radiometrics and open hole drilling in the northern part of the Frome embayment i.e. Wirrealpa Sub-basin. The radiometrics survey showed no surface anomalies. One water bore currently within EL3508 was analysed. Limestone Bore returned <5ppb U308 The work culminated in drilling a number of holes four of which are located approximately 10km to the north of EL3508. These holes drilled a thick sequence of Tertiary to Holocene sediments mostly consisting of mudstones and siltstones. All holes were downhole gamma logged and one hole, W6, recorded anomalous uranium at approximately 92m depth within slightly carbonaceous claystone. Two samples of drill cuttings were analysed based on the gamma response and both returned 50 ppm U30s. The quality of the sample and analysis is unknown.

In 1989 the Department of Mines and Energy Geological Survey (SADME) conducted a drilling program targeting base metals and prospective Cambrian host rocks. Some of the drillholes were sited close to or on

EL3508. No geochemical anomalies were defined in the holes but they did provide some information on depth to basement.

Frontier Exploration Ltd conducted exploration for hydrocarbons and base metals based on a concept linking their accumulation with diaper formation. Frontier mapped all the diapers, within the Adelaide Geosyncline, and initiated gravity and aeromagnetic surveys (1992), which partially cover EL3508. Frontier, also mapped the Willippa Dome, in the southeast comer of the Licence where they interpreted a salt dome or diapiric material to exist at 1200metres depth. Gossanous horizons with anomalous copper were located in the north western comer of the Dome core. Mapping by Dyson (1998) shows these as inferred faults. The presence of Burra Group stratigraphy in the core of the Dome was also considered interesting. The Burra Group hosts copper mineralization at the historical mining centre of Burra. One drillhole (Willippa I) was drilled to 120m in the core of the Dome to test for diapiric material. The hole was abandoned due to poor ground conditions without effectively testing either the diaper theory or the gossanous horizons.

During 1998, on behalf of Frontier, Minotaur Gold sampled and assayed 16 rock chips from "quartz-ironstone veins", up to 100 metres long, in the Willippa Dome. The maximum copper result was 0.85% Cu, which reported with maxima in iron and manganese. Frontier ceased exploration in 1999 citing a lack of funding as the prime reason. Prior to this the Willippa and Martins Well Domes were highlighted as areas of interest, both due to the interpretation of diapiric material at depth.

East of the Licence stream sampling for gold analysis, by BHP Gold, failed to locate any anomalies of interest.

4. TARGETS

Three primary target styles were identified on EL3508 from the preliminary data & field reconnaissance:

- Fe-oxides (+/_ Cu Au U) associated hydrothermal targets within the Willippa Dome and several spatially associated gossanous zones further north;
- Uranium associated with palaeochannels (Beverley Style) within Tertiary Frome Basin sediments;
- Fe-oxides (haematite and magnetite) associated with the Holowilena Ironstone & Mammoth Black Ridge Gossan.

The highest priority target is the unexplained magnetic anomaly approximately one kilometre long on the southern margin of the Willippa Dome. The apparent discordant nature and size of this anomaly suggests it may represent a large magnetite (Fe-oxide) hydrothermal alteration zone, which could have associated mineralization (Cu-Au-U).

5. GEOLOGICAL SETTING

The licence straddles the western side of the Tertiary Callabona Sub-basin where it onlaps Neoproterozoic and Cambrian units of the Adelaide Geosyncline. The Callabona Sub-Basin margin trends roughly north south and is considered to be influenced by Tertiary to Holocene faults. In the licence area the Sub-Basin extends further west than elsewhere and is referred to as the Frome Embayment. The north eastern, north western and central parts of EL3508 cover Pleistocene to Holocene sediments at surface, which define the modern drainage pattern. The rest of the licence is characterized by subcrop of the Neoproterozoic (Torrensian-Marinoan) sandstone, siltstone, dolomite and limestone of the Adelaide Geosyncline. Recorded stratigraphic units range in age from the Skillogalee Dolomite (Torrensian) exposed in the core of the Willippa Dome through to Trezona Formation (Marinoan) in the north western quadrant.

Mineralization in the immediate vicinity of the licence includes MVT lead/zinc, vein barite and sporadic Cu occurrences. The lead/zinc deposits are hosted in Cambrian limestone while the other commodities are located in Neoproterozoic units. Sediment hosted uranium deposits have been discovered throughout the

Frome Basin. These are located in Tertiary age palaeochannels. Known uranium bearing sands are blind discoveries under approximately 100 metres of unmineralized sediment. There are no known deposits of this type recorded in the immediate vicinity of the Licence.

The Willippa Dome, focus of exploration in 2010, has the Skillogalee Dolomite exposed in the core and flanked by Paulco Tillite, Holowilena Ironstone, Warcowie Dolomite Member (?) of the Willyerpa Formation and the Tarcowie Siltstone.

6. RESULTS

6.1. Mapping

Strip mapping (400m x 100m) was completed at 1:5,000 from just south of the Hawke1 drill collar to the start of the Skillogalee Dolomite to aid in the interpretation of the lithologies intersected by Hawke1 and the outcrop of the units intersected by the drillhole. The results are contained in Appendix D and shown on Figure 2. The mapping indicates the Holowilena ironstone was not differentiated from the Paulco Tillite but separate shale and sandstone units could be identified within the Wilyerpa Formation.

6.2. Airborne magnetic-radiometric survey

Following an examination and interpretation of the existing government airborne survey data (Appendix A) a small airborne survey was commissioned to allow better modelling of the magnetic anomaly which appeared to be displaced from the Willippa Dome. GPX Surveys was contracted to undertake the survey on north-south lines spaced 50m apart with a nominal height of 45 metres. The details are contained in Appendix B.

PIRSA were notified of the survey on 11 May 2011 and the digital data is summarised in Appendix F and attached in digital format..

6.2.1 Interpretation

The results of the detailed magnetic survey correlate very closely with historic detailed geological mapping as shown below in Figure 3 with the magnetic anomalies identified within the new survey data coinciding with mapped outcrop of the Howilena Ironstone, including both the prominent magnetic feature on the south limb of the anticline structure as well as lesser anomalies to the north. The total strike length of the main (southern) magnetic body is approximately 2 kilometres

Other rock types are generally weakly to non-magnetic. However, subtle magnetic trends within the data parallel bedding. Similarly oriented trends are also noted in the radiometric data. Outcrop of the Howilena Ironstone can also be identified by a low radiometric response, particularly along the prominent topographic ridge on the southern limb of the anticline. A prominent low radiometric marker within the Wilyerpa Formation, which overlies the Howilena Ironstone, coincides with a sedimentary horizon and probably represents an arkose or dolomitic unit.

A high potassium (red) radiometric response in the core of the Willippa Anticline was preciously interpreted to be the direct response of a possible diapiric breccia. However this response correlates perfectly with the outcrop of the Skillogalee Dolomite, which is host to a number of minor copper occurrences, and may simply represent the normal radiometric signature of this unit, although it is not clear why dolomite would have a high radiometric response.

Magnetic inversion modelling allowed the design of two holes to test the magnetic anomaly. The full text and interpretation of the results of the survey is contained in Appendix C. To date only one of the two proposed holes has been completed.

Y

6,498,900 mN -6,498,000 mN Nms ∞Cu Nyp Nyww Holowilena Ironstone -6,497,500 mN 6,497,500 mN Nyw Hawke1 Aldershot Resources VANCOUVER +1 (604) 9202 2710 WEST PERTIH +61 (90) 9201 9200 www. afforts/decourses con 0.1 0.2 0.1 Kilometers MARTIN'S WELL PROJECT EL3508 2010 Drilling & mapping Drawn By: icf Plan No.: ALD310b Date: 25/02/2011

Figure 3: Willippa Dome Strip geology (1:5,000)

Annual Report Martins Well_EL3508_2010 Page 7

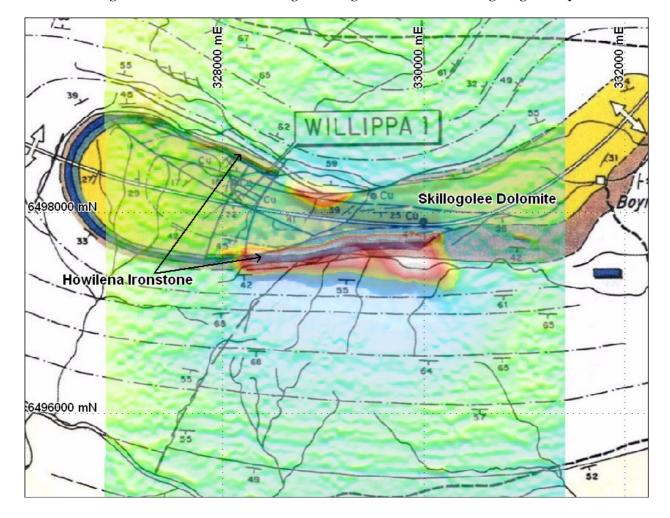


Figure 4: First vertical derivate magnetic image overlain over historic geological map

6.3. Drilling

A single diamond (NQ3) hole, Hawke1, was drilled to test the magnetic anomaly on the southern margin of the Willippa Dome. The details are summarised below in Table 2.

Hawke 1 was located at 329700mE 6497500mN (GDA, Zone 54) and inclined at -60° towards magnetic north. The hole was drilled by Range Drilling with a Gemco H13 rig fitted with a 600psi/350cfm compressor. Drilling was undertaken between 3rd – 26th September 2010 although rain and flooding interrupted the programme. The total hole depth was 198.4 metres. Downhole camera (Camteq digital Proshot) surveys were taken every 50m. Magnetic susceptibility readings were taken on the core every metre on the non-magnetic zones and every 0.25m in the magnetic zones. Average radiometric readings (total count) were taken with a GR-135 spectrometer for each core tray and showed no significant radioactivity. Instrument failure prevented a more detailed radiometric survey being completed. All data from the drilling is contained in digital files as summarised in Appendix E.

Assay samples were half core or quarter core where duplicates were submitted for assay. All samples were prepared by Challenger Geological Services Pty Ltd, Edwardstown and submitted to ALS Minerals, Adelaide.

Drilling intersected four major lithological units:-

• The top part of the hole is dominated by finely laminated, non-ferruginous siltstones with zones of medium-grained sandstones, conglomerate, diamictite and pebbly sandstones; which is

- underlain by ferruginous red siltstones with a low magnetic susceptibility.
- A white-grey magnetic siltstone unit, the Holowilena Ironstone (?), at 151.47m is defined by a sharp change in colour as well as a 10 fold increase in magnetic susceptibility readings.
- The bottom of the hole is characterised by a diamictite (Pualco Tillite?) with a gradational boundary to the overlying magnetic horizon.

Weak haematitic alterations were observed above the magnetic horizon, but no major alteration was observed within or below it. Rare occurrences of pyrite were observed within veins within the magnetic horizon and in the underlying diamictite. Minor displacement of beds was observed within the laminated non-ferruginous siltstones as well as the underlying ferruginous red siltstone.

The geological report and cross section on the drilling is contained in Appendix D and summary graphic logs are contained in Appendix E.

No significant base metal assays results were obtained with the highest assays being Cu-117 ppm, Pb-8 ppm and Zn 35 ppm plus P returned 8420 ppm and S returned 0.40%. The iron rich intervals returned 30.5% Fe between 96-100 metres and 30.5% Fe between 150-176 metres with a maximum value of 32% Fe between 96-98 metres.

Hole Hawke1 Depth 198.4m Azimuth 0° magnetic -60° Dip 329700mE 6497500mN Collar Grid **GDA** Zone 54 Size NQ3 **Downhole Surveys** Holes 1 @50m Camera Camteq Proshot **Core Readings** Magnetic Susceptibility Gamma 1/2 or 1/4 core Sampling 20 samples, including duplicates and blanks Samples Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni Assay suite P,Pb,S,Sb,Sc,Sr,Th,Ti,Tl,U,V,W,Zn Method ME-ICP61 ALS Laboratory Adelaide Details and results are contained in Appendix E –Downhole geochemistry metadata

Table 2: Hawke1 hole details

7. ENVIRONMENT

All rubbish and material has been removed from site and once the decision has been made whether further drilling is required, timing of final rehabilitation will be established and completed. An extension to the time allowed for rehabilitation has been requested from PIRSA as the repeated rains and flooding has prevented access to the area and the preferred drilling contractor is currently not available.

8. EXPENDITURE

ALDERS	SHOT RESOURCES LTD					
	FOR THE PERIOD	1/02/2010	то	31/1/2011		
	TENEMENT NAME:	MARTINS WELL	TENEMENT NUMBER:	3508		
	COMMITMENT	\$245,000				
10	200 8 800	A 24/01/2010	B 23/01/2011	С	D Work in	E Total
Code 2	Description Accommodation & Meals	[Start date]	[Finish date]	Variance 0	Progress	Expenditure
3	Aerial photos / remote sensing	0	0	0		0
5	Assaying	0	534	534		534
15	Compensation	0	0	0		0
16 17	Computing – hardware / software	0 0	36 157	36 157		36 157
18	Consultants – computing Consultants – drafting		0	0		0
19	Consultants – engineering	0	Ö	0		0
20	Consultants – field assistants	0	11,730	11,730		11,730
21 22	Consultants – general	0	0	0		0
23	Consultants – geochemical Consultants – geological		24,315	24,315		24,315
24	Consultants – geophysical	0	3,435	3,435		3,435
25	Consultants – others	0	0	0		0
28 29	Contractors – HMS Plant Database – acquisition	0	0	0 0		0 0
30	Draft & plan printing		0	0		0
35	Drilling – aircore	0	0	0		0
36	Drilling – diamond	0	47,488	47,488		47,488
37	Drilling – Rab	0	0	0		0
38	Drilling – RC	0	0	0		0
41 42	Earthmoving Field supplies & equipment	0	15,135 2,118	15,135 2,118		15,135 2,118
44	First Aid & safety	0	2,110	2,110		2,110
46	Freight	0	160	160		160
47	Fuel (non vehicle)	0	3,610	3,610		3,610
48	Fuel (vehicles)	0	1,852	1,852		1,852
50 51	Geochemical Geophysical	0	10,000	10,000		10,000
52	Gridding & survey	0	0	10,000		10,000
56	Hire – helicopter expenses	0	o o	0		0
57	Hire – plant & equipment	0	0	0		0
58	Hire – other	0	0	0		0
61	Insurance	0	0	0		0
64 65	Legal fees Library	0	1,121	1,121		1,121
66	Metallurgy	0	0	0		0
67	Maps	0	42	42		42
68	Office Expenses	0	0	0		0
69	Option payments	0	0	0		0
70 71	Rent – storage Salaries & Wages – computing	0	0 4,865	0 4,865		0 4,865
72	Salaries & Wages – computing Salaries & Wages – drafting	0	0	4,665		4,863
73	Salaries & Wages – field assistances	0	0			
			20.000	0		0
74 75	Salaries & Wages – geological	0 0	23,226	23,226		23,226
75	Staff training and development Stamp duty	0	0	0 0		0
77	Telecommunications	0	3,534	3,534		3,534
78	Tenement – administration	0	0	0		0
79	Tenement – advertising	0	893	893		893
80 81	Tenement – acquisition Tenement – applications	0	0 367	0 367		0 367
82	Tenement – exemption fees	0	0	0		0
83	Tenement – maintenance	0	0	0		0
84	Tenement – rates	0	0	0		0
85	Tenement - rents	0	4,726	4,726		4,726
86 87	Tenement – transfer fees Native title	0	0 379	0		0
88	Travel, accommodation & meals	0	13,848	379 13,848		379 13,848
91	Native title - Heritage	0	17,694	17,694		17,694
92	Control of the Contro	0	0	0		0
93	Valuations	0	0	0		0
94	Vehicle rental & expenses	0	2,839	2,839		2,839
97 98	Costs recovered Exploration expenditure written off	0	0	0 0		0 0
	Total	\$0	\$194,104	\$194,104	\$0	\$194,104
ļ	, vai	φ0	φ134,104			
				Previous Exper		\$232,428
				Expenditure for		\$194,104
R_calc_Jan20	010_Jan2011			Expenditure to	date	\$426,532
8/02/2011	orresistance (2000) a Patrick					

9. CONCLUSIONS

- EL3508 is still considered prospective for
 - o Fe-oxides (+/. Cu Au U) associated hydrothermal targets, particularly those areas with associated gossanous zones further north;
 - o Uranium associated with palaeochannels (Beverley Style) within the Tertiary Frome Basin sediments;
 - o Fe-oxides (haematite and magnetite) associated with the Holowilena Ironstone & Mammoth Black Ridge Gossan.
- The highest priority target was the unexplained magnetic anomaly approximately one kilometre long on the southern margin of the Willippa Dome. The new airborne magnetic survey showed the anomaly to be coincident with mapped outcrop of the Holowilena Ironstone and not displaced from the units as per previous interpretations based on earlier magnetic surveys parallel to the strike of the units.
- The Hawke1 diamond hole has shown the magnetic anomaly is related to the Holowilena Ironstone with approximately 25 metres of magnetite bearing siltstone being intersected.
- There is no associated Cu-Au-U mineralisation associated with the magnetic anomaly.
- The magnetic anomaly is considered to be stratigraphic in origin related to terminations of and dislocation within the Holowilena Ironstone around the margins of the Willippa Dome.
- Still to be checked are several gossanous horizons mapped in the sequence immediately north of the Willippa Dome. Rock chip samples from these gossans are reported to have returned up to 4.5% Cu. An assay of ore from the main occurrence, the Mammoth Black Ridge Prospect, is reported to have graded 16% Cu, 5163 g/t Ag and 15.5g/t Au. Rock chip sampling in 2008 also returned a few significant copper values including 11.3%, 8.97%, 4.85%, and 4.65%.

10. REFERENCES

Brunt, D.A; Bryan, R., 1972

Wirrealpa. Progress and final reports for the period 17/9/1970 to 16/9/1971.

McLeod, A.; Tucker, D.H.; Zhi, Q.S.; Kivior, I.; Lethbridge, M.; Rudd, E.A.; Webb, B.P.; Nelson, R.G.; Dyson, L.A, 1996

Blinman, Maggie Hill, Martins Well, Willippa, Bibliando, Upalinna and Mount Hemming. Quarterly, annual and final reports for the period 14/1/90 to 27/4/96.

Dyson, L.A, 1994

Geology of the Willippa Anticline, Central Flinders Ranges

Webb, B.P., Radke, F, 1994

Copper bearing gossans, Willippa Anticline, Central Flinders Zone

Newton, A.W., 1991

Lead-Zinc Drilling Investigations, 1989, Wirrealpa Area, SA

SRK Consulting. 2001

Eastern Arrowie Basin SEEBASE Project,

Department Primary Industries and Resources, South Australia, 1999 Geology of the Parachilna Sheet, 1:25000 Explanatory notes.

Appendix A

Review of magnetic target within the Willippa Dome (EL 3508 – Martin Well).

Memo by Hawke Geophysics Pty Ltd dated 10 April 2010

<u>6 Joy Close, Willetton, WA 6155</u> <u>Mobile: 0419 500 383</u> <u>Fax: 08 9259 0722</u>

Memorandum To: Ian Faris

From: Phil Hawke

Date: 10 April 2010

Re: Review of magnetic target within the Willipa Dome (EL 3508 – Martin Well).

Introduction

The Willipa target is a 2 x 1.5km magnetic anomaly located near the centre of the Willipa Dome, in the southeast corner of Strategic Mineral's Martin Well Project (EL 3508) as shown in Figure 1.

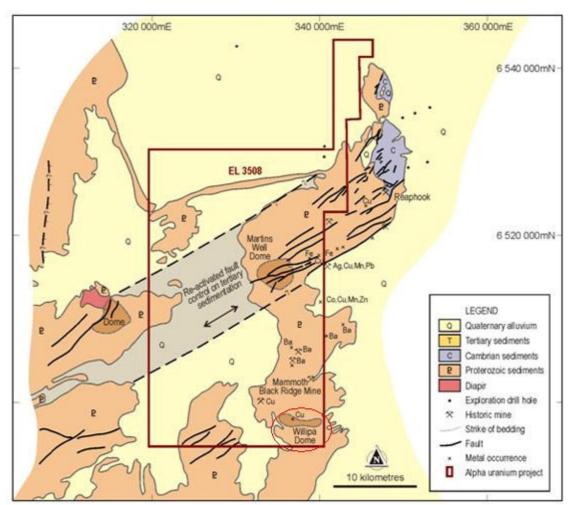


Figure 1: Location of EL3508 showing the Willippa Dome target area.

Outcrop geology in the target area consists of the Neoproterozoic sediments of the Adelaide Geosyncline, specifically the lower part of the Umberatana Group including the Tapley Hill Formation and the Wilyerpa Formation of the basal Yudnamutana Subgroup. The Wilyerpa Formation includes a distinctive iron-rich marker horizon named the Holowilena Ironstone. Regionally the Adelaide Geosyncline sedimentary rocks have been intruded by diapric breccias.

Geophysical data

Magnetic and radiometric data have been extracted from the 400m line spaced Flinders Ranges (East) magnetic survey collected by PIRSA / GA in 1999. An image of the first vertical derivative from these data over the target area, superimposed on the regional geology map, is shown in Figure 2.

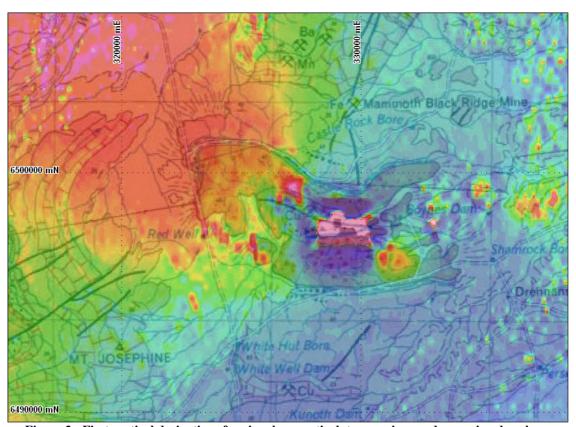


Figure 2: First vertical derivative of regional magnetic data superimposed on regional geology.

The magnetic character of most of the sediments within the Willipa Dome area is fairly subtle, with a minor magnetic marker defining the top of the Wilyerpa Formation. The main exception to this is the Willipa magnetic target, which coincides with mapped Holowilena Ironstone. There is no indication of extension of this unit under cover from the magnetic suggesting that this outcrop ironstone unit has either been fault truncated or has only been exposed in the core of the anticlinal structure (along the synclinal axis). The latter interpretation, which implies the ironstone unit may have been structurally

thickened within the fold structure, would also help explain the relatively high amplitude of the magnetic response of the ironstone unit compared with similar outcrops nearby.

A ternary image of the radiometric data (potassium = red, thorium = green, uranium = blue) is shown in Figure 3. Regionally the radiometric data is a useful tool for stratigraphic mapping, with a number of prominent marker horizons easily interpretable from the data.

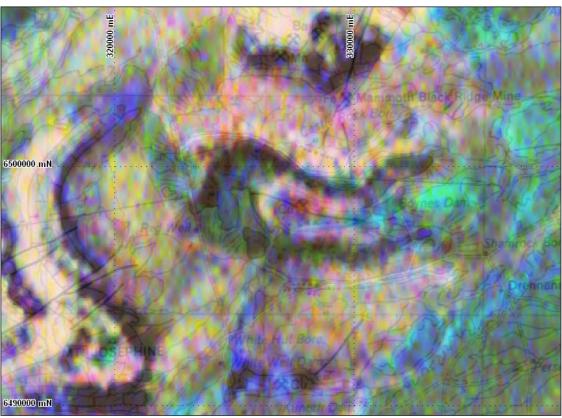


Figure 3: Ternary radiometric image overlain on the regional geology.

Interpretation

A basement geology interpretation of Willipa Dome area based on the geophysical data and regional geological mapping is shown in Figure 4. The radiometric data was most useful for interpreting geological boundaries in conjunction with the regional mapping.

Within the core of the structure, it is possible to subdivide the Wilyerpa Formation into three distinct stratigraphic units; with sediments characterised by moderate to high radiometric responses (siltstones?) surrounding a unit of lower radiometric response (arkosic sandstone?). The magnetic marker horizon coincides with outcropping Holowilena Ironstone, which is also identified as a member within the Wilyerpa Formation.

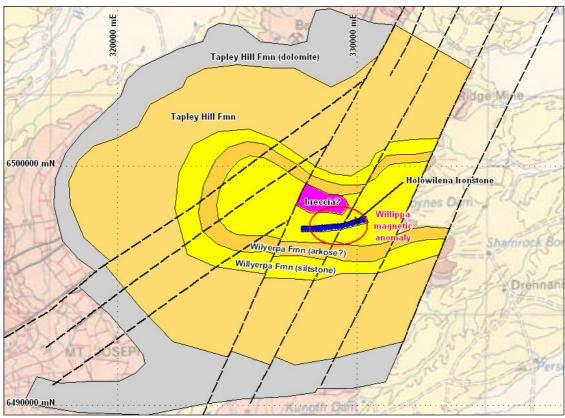


Figure 4: Basement geology interpretation of the Willipa Dome area.

Regionally, Willouran age diapiric breccias intruding through the Adelaidean cover sequence are characterised by a strong potassium response in the radiometric image. On this basis, a region of elevated potassium just to the north of the magnetic target is interpreted as possible breccia. However, regional stratigraphic drilling by the South Australian Mines Department in this approximate area failed to identify any evidence to support this interpretation (I. Faris, pers. com.).

Various NE to ENE trending structures are interpreted from the geophysical data. Many small scale base metal mineral occurrences in the area have been associated with similar structures, particularly where they intersect carbonate and / or iron rich stratigraphy.

Review of modeling

Forward modeling studies were conducted by Southern Geoscience Consultants (SGC) on two flightlines extracted from the regional magnetic survey, plus a third (N-S) line extracted from the gridded data. The magnetic source of the Willippa anomaly was modeled using three flattened ellipsoid bodies, with an approximate susceptibility of 0.05 to 0.09 SI and depth to top of 275-300m. The bodies were modeled dipping to the southwest at approximately 60°.

It was interpreted that the bodies were *not* due to the Holowilena Ironstone as surface samples of this material were relatively non-magnetic, or at least the anomaly represented

meta-somatic alteration of the ironstone to increase the magnetite concentration of the rock. However it is plausible that the material sampled was highly weathered and did not a true indication of the magnetic properties of fresh ironstone material.

The approximate locations of the three model sections (white lines) as well as the resultant bodies (red) are shown in Figure 5. The wide spaced, E-W flight line data has not been ideally selected for modeling as it has primarily samples the positive lobe of the anomaly, while ignoring the negative, although the perpendicular traverse does help. As a result, the dip of the modeled bodies must be considered suspect, particularly in the eastern half of the target area, away from the perpendicular line. The curvature of the models matches the observed data well on the perpendicular section, and passably on the east-west sections, suggesting the modeled depth to top of the source is reasonable.

As an independent check of the SGC forward modeling, a simple inversion model was constructed on a 10 x 8 km area centred on the Willippa target (Figure 5) using the University of British Columbia (UBC) inversion code. The input data was the 100m cell size TMI grid of the data. A 100 x 100 x 50m model mesh and default inversion parameters were used.

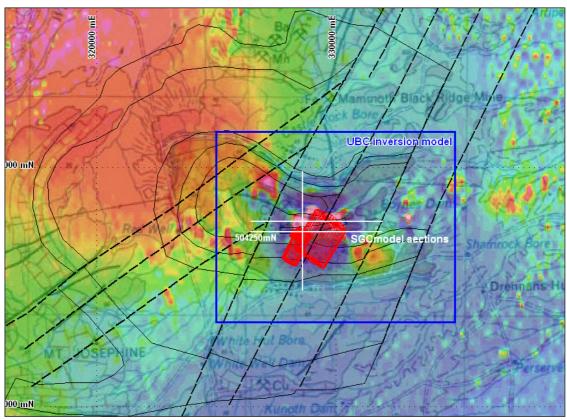


Figure 5: Locations of Southern Geoscience Consultants model traverses (white lines) and modeled sources (red) overlain on the regional magnetics. A blue box shows the extent of the UBC inversion.

The results of inversion modeling are compared with the SGC models along two sections; the southern east-west traverse (5042500mN) and the north-south section (~328600mE). Comparative sections are shown as Figures 6 and 7.

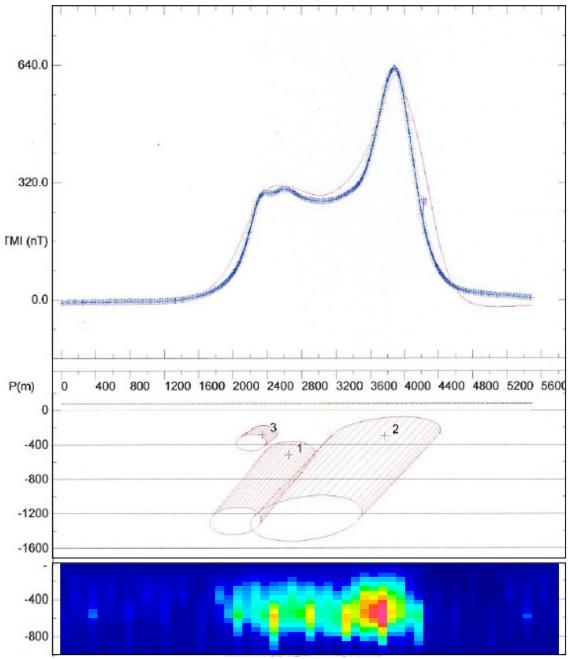


Figure 6: SGC forward model (top) and UBC inversion model slice along 5042500mN.

In general a good agreement is observed between the two models on this section, with peak susceptibility values in the UBC model similar to that obtained from the forward model (~0.1 SI). However, the UBC model suggests a minimum depth to top of the magnetic layer of around 250-300m.

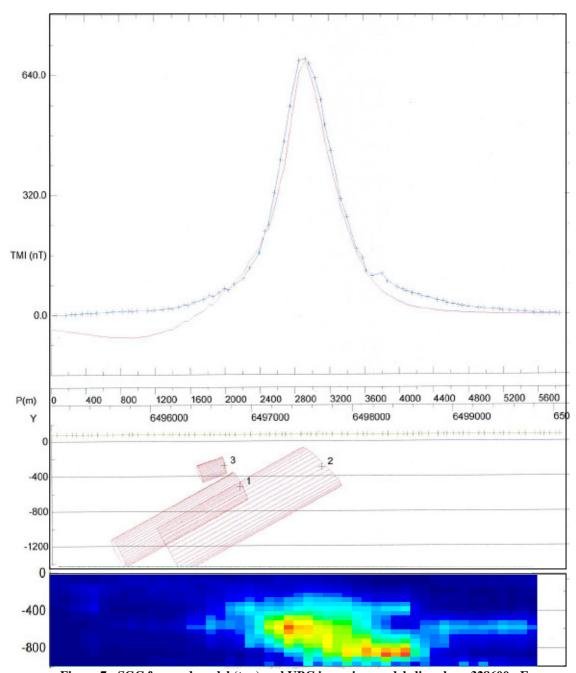


Figure 7: SGC forward model (top) and UBC inversion model slice along 328600mE.

The results of modeling on the north south do not agree so well. On this section the UBC model suggests that the depth to top (at the western end of the magnetic body) is close to 400m below surface. The inversion model also suggests a shallow dip to the north of the magnetic body, as opposed to the southerly dip predicted by the forward modeling study.

These differences confirm that there is a moderate degree of ambiguity in the initial modeling completed by SGC, and further work should be completed to further constraining the geometry of the magnetic target prior to drilling.

Recommendations

The collection of further (ground or low level aero-) magnetic data to provide a better input for modeling is recommended. Data should be collected ideally on a north-south traverses at a 100 or 200m line spacing to cover an area bounded by:

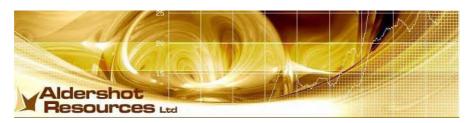
327800 - 330600mE 6496000 - 6499000mN

This will enable sufficient definition of both the positive and negative lobes of the anomaly, which will be able to better define the dip of the body. Collection of the additional data will also help constrain the thickness of the magnetic target which is poorly defined by the existing data which was flown at a low angle to the strike of the body at a wide (400m) line spacing.

In the absence of the collection of further information, the following drill locations are proposed to test the magnetic anomaly (utilizing the inversion model):

	GDA_E	GDA_N	Dip	Target depth	(Lat	Long)
Hole 1	329700	6497250	-90	300m	-31.646	139.200
Hole 2	328600	6497400	-90	400m	-31.645	139.192

Appendix B


Airborne Geophysical Survey Mount Martin, South Australia Surveyed May 2010 Survey Operations and Logistics Report

Report on Job Number 2411 by GPX Survey

Airborne Geophysical Survey Mount Martin, South Australia

Surveyed May 2010 Survey Operations and Logistics Report

Prepared for

Survey Flown by:

GPX Surveys Pty Ltd

Job Number 2411

1	GEN	ERAL SURVEY INFORMATION	
	1.1 1.2	INTRODUCTION	
	1.3	SURVEY PERSONNEL	
2	SUR	VEY SPECIFICATIONS	
	2.1	Survey Maps	ŗ
	2.2	SURVEY SPECIFICATIONS	
3	EQU	IPMENT SPECIFICATIONS	9
	3.1	SURVEY EQUIPMENT SUMMARY	
	3.2	DATA ACQUISITION EQUIPMENT	10
	3.3	Magnetometer Processor	
	3.4	MAGNETOMETER SENSOR	
	3.5 3.6	FLUXGATE MAGNETOMETER	
	3.7	BAROMETRIC PRESSURE SENSOR	
	3.8	RADAR ALTIMETER	13
	3.9	DGPS RECEIVER	
	3.10	Base Magnetometer	
4	EQU	IPMENT CALIBRATIONS AND DATA ACQUISITION CHECKS	16
	4.1	DYNAMIC MAGNETOMETER COMPENSATION	
	4.2	HEADING ERROR CHECK	
	4.3 4.4	SYSTEM PARALLAX TESTS	
	4.5	DAILY RADIOMETRIC SYSTEM TESTS	
	4.6	TIME SYNCHRONISATION	
5	DAT	A VERIFICATION AND PRELIMINARY PROCESSING	19
	5.1	DATA VERIFICATION AND CHECKS	
	5.2	Data Archives	
6	FINA	L PROCESSING	2 1
	6.1	FINAL MAGNETIC DATA PROCESSING	
	6.2	FINAL RADIOMETRIC DATA PROCESSING	
	6.3	FINAL ELEVATION DATA PROCESSING	
7		L DELIVERABLES	
	7.1	FINAL GRIDS AND DATA PRODUCTS	
M.	AP IMA	GES	
	7.2	FLIGHT PATH	
	7.3 7.4	DIGITAL TERRAIN MODEL	
	7.4 7.5	TOTAL MAGNETIC INTENSITY	
	7.6	TOTAL MAGNETIC INTENSITY 1VD	31
	7.7	RADIOMETRIC TERNARY CMY COLOURS	
	7.8	RADIOMETRIC TERNARY RGB COLOURS	
8		TRACTOR INFORMATION	
ΑI	PPENDI	X A: LOCATED DATA FORMAT AND PROCESSING SPECIFICATIONS	35
ΔΙ	DDENIDI	Y R. WEEKLY PRODUCTION SLIMMARY _ VH.AEN	40

1 GENERAL SURVEY INFORMATION

1.1 INTRODUCTION

In May 2010, GPX Surveys commenced a fixed wing airborne magnetic and radiometric survey for Aldershot Resources Limited over the Mount Martin Project area in South Australia. The survey consisted of one area located approximately 200 km north east of Whyalla. The survey was flown using a Fletcher FU-24 fixed wing aircraft with registration VH-AFN. This report summarises the procedures, details and equipment used by GPX Surveys in the acquisition, verification and processing of the airborne geophysical data.

Client: Aldershot Resources Limited

GPX Project Number: 2411

Survey Area: Mt Martin

Field Base: Baratta Station, South Australia

Mobilisation: 30-04-2010

Production: 10-05-2010

Demobilisation: 11-05-2010

Line km surveyed: 537.0 km

1.2 SURVEY SUMMARY

On 30thth April 2010 the GPX Surveys crew mobilised to Baratta Station, South Australia. Aircraft VH-AFN arrived on location the same day. Compensation checks, heading checks and radar altimeter calibrations were performed prior to reaching the survey area on the 15th April. The survey was flown in conjunction with another survey, and production for Mt Martin was carried out on the 10th May over two flights. The aircraft completed flying and moved to another area on the 11th May 2010.

Flying operations were based at Baratta Station for the duration of the survey.

Data acquisition was monitored in the aircraft and preliminary data checks were performed after each flight at the field bases. At the end of each day's flying all data was sent back to the offices of GPX Surveys for further processing and review. Throughout the survey system stability and continuity had been monitored.

1.3 SURVEY PERSONNEL

The following personnel were involved on this project:

Airborne Operations Manager: Bob Blizzard

Field Project Managers: Shane Hulme

Final Data Processing: Cathy Car

Technical Support: Mike Barrett

Joe Kita

Survey Pilots: S Helliwell

2 SURVEY SPECIFICATIONS

2.1 SURVEY MAPS

Overview Map

The following map provides an overview of the planned survey areas.

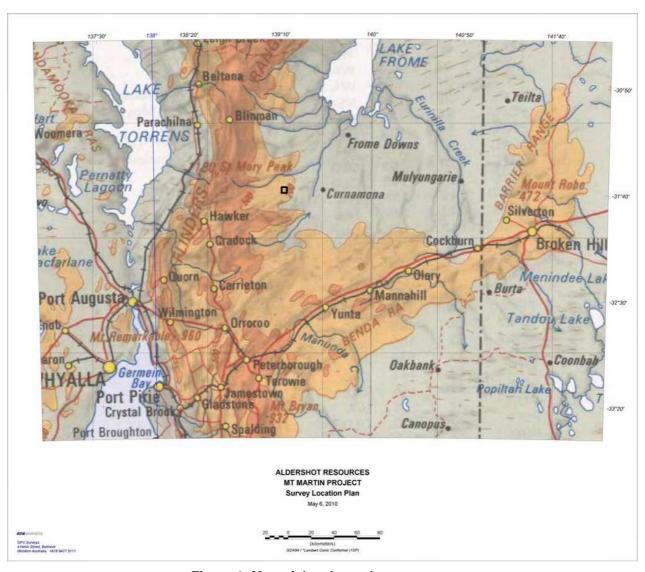


Figure 1: Map of the planned survey area.

Detail Maps

Detailed maps of the planned survey areas are shown below.

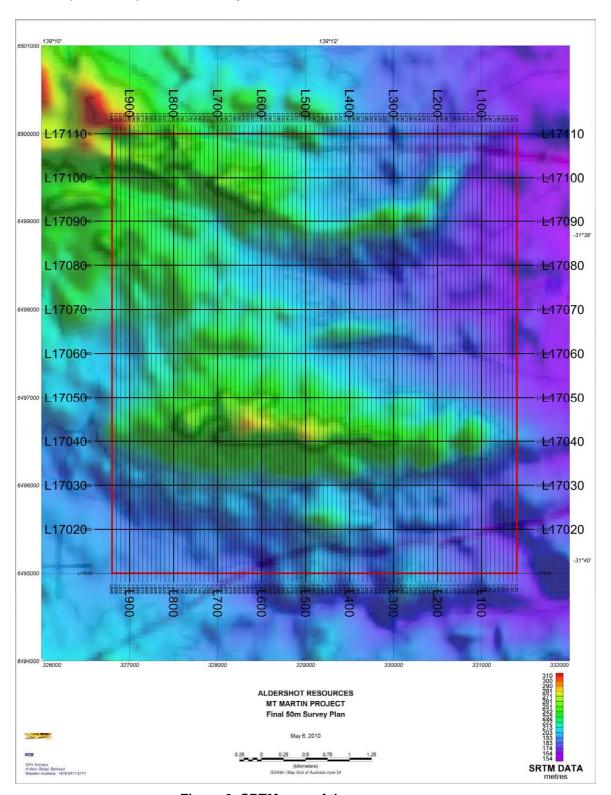


Figure 2: SRTM map of the survey area.

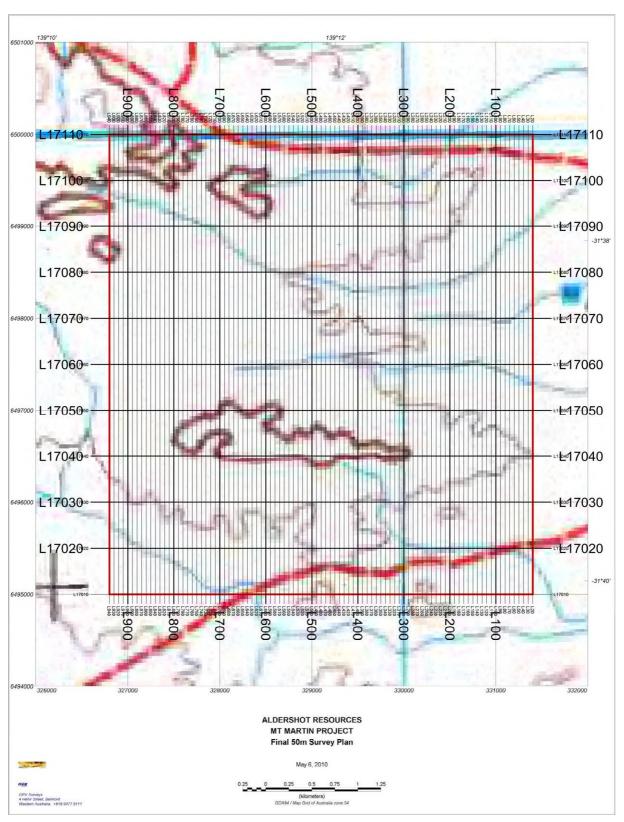


Figure 3: Detailed Flight Plan of the survey area.

2.2 SURVEY SPECIFICATIONS

Job Specifications

The following are the flying specifications, equipment sample rates and line specifications for the survey:

Flying Specifications

Nominal ground clearance: 45 m

Sample Rates

Magnetometer: 20 Hz
Altimeter: 10 Hz
Base magnetometer: 1 Hz
Spectrometer: 1 Hz

Line Specifications

Traverse line numbers:

Traverse line spacing: 50 m

Traverse line direction: 000° and 180°

Tie line spacing: 500 metres

Tie line direction: 090° and 270°

Tie line numbers: 17010 – 17110

Note: The last digit in the traverse and line numbers indicates the attempt number where 0 is the first attempt and 1 is the second attempt, etc

10020 - 10940

Boundary Coordinates

The following coordinates are in GDA94 MGA Zone 54 and define the survey area:

Easting	Northing
326800	6495000
331400	6495000
331400	6500000
326800	6500000

3 EQUIPMENT SPECIFICATIONS

3.1 SURVEY EQUIPMENT SUMMARY

A Fletcher FU-24 aircraft with registration VH-AFN was used during this survey.

The following equipment was used in the survey.

Survey Platform: Fletcher FU-24 (VH-AFN)

Data Acquisition and Survey System: Pico Envirotec AGIS PC104

Magnetometer Processor: Pico Envirotec MMS-4

Magnetometer Sensor: Geometrics G-822A Cesium Vapour

Fluxgate Magnetometer: Billingsley Ultra Miniature TFM 100G2

Magnetic Base Stations: GEM GSM-19W Overhauser

Spectrometer: Exploranium GR820 (32 litre crystal)

Temperature and Humidity Sensor: Vaisala HMP233

Barometric Pressure Sensor: Vaisala PTB220

GPS and DGPS Receiver: CSI DGPS Max

Radar Altimeter: Collins ALT-50A

In-field Computer: Toshiba Notebook

In-field Software: Pico Envirotec PEIView, ChrisDBF,

GPX proprietary software

Figure 4: Fletcher FU-24 with registration VH-AFN.

3.2 DATA ACQUISITION EQUIPMENT

The data acquisition console is a Pico Envirotec AGIS PC104. This is a versatile multifunction system that is capable of operation in many different configurations, depending on platform type, navigation and system requirements. For this survey the AGIS PC104 was used for navigation and flight control, data recording, real-time monitoring of magnetic data and data retrieval.

Navigation and Flight Control

The AGIS PC104 is used to guide the aircraft on a pre-defined flight plan that can be generated in UTM or Latitude/Longitude coordinates. The pre-defined flight plan can be designed to file prior to the start of the project, entered or altered in the AGIS system or delineated 'on-the-fly' e.g. while in the air flying the boundary and entering corner coordinates. Co-ordinates can only be entered in the WGS84 datum system, this has been implemented to avoid confusion and eliminate possible conversion errors. Normal survey altitude and ground speed, with pre-set tolerances are also entered.

The pilot display consisted of a 2-line strip display or more comprehensive Pilot Guidance Unit (PGU). The strip display is driven directly from the AGIS PC104 console; whereas the PGU is a self-contained computer system that is capable of more demanding navigation functions such as "drape" flying using a pre-programmed altitude grid.

The desired flight line is selected from the operator interface, which will either be a keyboard or touch-screen.

Data Recording

The AGIS PC104 relates all acquired data to the instant position from the GPS receiver and records the collected data to three separate data files. The data is recorded in compressed binary format, to a commercial solid-state hard disk.

The flight path file is recorded from AGIS program start-up to shutdown and cannot be turned off by the operator. It contains position, timing, altitude and basic data.

The data file is recorded whenever the acquisition system is "On-line". It contains all navigation data plus "enabled" data.

The raw data file, when enabled and supported by the GPS receiver in use, contains raw GPS data necessary for post-flight position correction. It is recorded from AGIS program start-up to shutdown.

Real-time Data Display and Status Monitoring

The AGIS displays flight path and geophysical data as it is acquired aiding the data quality control and real time navigation guidance. The user is presented with graphical representations of the survey area, flight lines, navigation status, and sensor data.

Several other status indications are also provided which will either change state indicating a major system malfunction, such as a magnetometer failure, or will change state during normal operation, indicating data being written to a file etc.

Figure 5: AGIS real-time data and status display.

Data Retrieval

The AGIS PC104 provides the facility to transfer the recorded data from the internal solidstate disk to compact flash media immediately following the completion of the survey flight. The data is then transferred from the compact flash media to the field laptop. Recorded data is not deleted from the main disk until this "retrieved" data has been verified "error free".

3.3 MAGNETOMETER PROCESSOR

The magnetometer processor is a Pico Envirotec MMS-4 Magnetometer Processor. This is an advanced frequency-measuring device that can support four continuous signal magnetometers (Cs, He, K). It is a hardware-software designed system, exhibiting simplicity, easy interfacing and substantial versatility. Magnetometer readings are synchronized with the PPS (Pulse Per Second) signal derived from the GPS for accurate timing.

The MMS-4 contains 8 channels of analog differential inputs. The first 4 analog channels are sampled synchronously with MMS-4 at up to 50 samples per second. The remaining 4 analog channels are sampled at 10 samples per second. Analog data is integrated into the magnetometer data stream. The magnetic values and GPS time is recorded by a TM-6 magnetometer.

Specifications

Input: Coaxial - Larmour signal over DC Power

Supply

Resolution: 0.0002 nT (Gamma) = 0.2 picoTesla

Sampling rates: 5, 10, 20, 25, 50, 100 Hz

Dynamic range: 15,000 to 100,000nT

Synchronization: GPS – PPS (Pulse Per Second)

3.4 MAGNETOMETER SENSOR

The magnetometer sensor is a Geometrics G-822A, which employs an optically pumped cesium-vapour atomic magnetic resonance system that functions as the frequency control element in an oscillator circuit.

Specifications

Operating Range: 20,000 – 100,000 nT

Sensitivity: Typically 0.002 nT P-P at a 20Hz sample

rate

Heading Error: < 0.15 nT over entire 360°

Output: Larmour frequency, 3.498572 Hz/nT

3.5 FLUXGATE MAGNETOMETER

The fluxgate magnetometer is a Billingsley Ultra Miniature TFM 100G2. This unit is a low noise, high sensitivity unit, packaged into a compact housing. An analog DC output voltage is produced for each of the measured X, Y and Z orthogonal components of the current magnetic field.

Specifications

Axial Alignment: Orthogonality better than $\pm 1^{\circ}$

Sensitivity: $100\mu V / nT$

Noise: 20pT RMS / Hz @ 1Hz

Output: $\pm 100 \mu T = \pm 10 V$

3.6 SPECTROMETER

The spectrometer is an Exploranium GR820 system. The unit comprises of 2 detector crystal packs which give a total volume for detection of 32 litres. The spectrometer employs automatic gain stabilisation control to eliminate the need to heat the detectors. Signal processing automatically perform digital gain control to the individual crystal spectra, ensuring the summed spectrum is stable. The system was running with software modifications to enable raw 256 channel data to be recorded.

Specifications

Sensitivity: 0 - 3.0 MeV

Maximum count rate: 100,000 counts/sec

Detector volume: 16.7 Litres (each)

Detector weight: 83.9 kgs (each)

3.7 BAROMETRIC PRESSURE SENSOR

The barometric pressure sensor is a Vaisala PTB220. The unit provides both a digital RS232 output and Analogue voltage or current output directly proportional to the measured Barometric Pressure. The unit is a Class "A" commercial grade device housed in a rugged aluminium enclosure.

Specifications

Range: 500 – 1100 hPa

Resolution: 0.01 hPa

Accuracy at $+20^{\circ}$ C: $\pm 0.1 \text{ hPa}$

3.8 RADAR ALTIMETER

The radar altimeter is a Rockwell Collins ALT-50A two-antenna unit operating at a centre frequency of 4300MHz. The voltage output to the data system is directly proportional to the aircraft flying height with an output characteristic of 20mV/ft up to 500ft, then 10.4V + 3mV/ft above 500ft.

Specifications

Accuracy: ± 3ft - 0 to 150ft range

± 2% of indicated altitude – 150-500 ft

± 3.5% of indicated altitude – 500-2000 ft

Measurement Rate: 10Hz minimum

3.9 DGPS RECEIVER

The DGPS receiver is a CSI DGPS MAX, which is a 12-channel combined GPS/DGPS unit. The DGPS MAX is able to use differential corrections received through an internal WAAS demodulator, VLF beacon receiver, or the OmniSTAR DGPS Service. The DGPS position data was used for aircraft navigation and for processing the aeromagnetic data.

Specifications

GPS Position update rate: 5Hz

GPS Input frequency: L1

DGPS Update rate: Typically every 6 seconds

DGPS Solution Used: OmniSTAR VBS

Antenna: Fugro L1/Differential Wideband

3.10 BASE MAGNETOMETER

Diurnal activity was monitored using portable GEM GSM-19W Overhauser magnetometers and sampled at 1 Hz. The unit has a built-in GPS receiver.

Specifications

Type: Overhauser Magnetometer

Resolution: 0.01 nT Sensitivity: 0.02 nT Absolute Accuracy: \pm 0.1nT

Dynamic Range: 10,000 to 120,000 nT

Sampling Rate: 1 hour to 5 Hz

Data Storage: Internal memory

Data Retrieval: Up to 115,200bps serial transfer

Base Station Location

<u>Baratta Station</u>
The primary base station at Baratta Station was located near the air strip.

Location

Coordinates: -31° 57.98' S 139° 12.65' E

Datum: WGS84

Figure 6: Base magnetometer location (image courtesy of Google Earth).

4 EQUIPMENT CALIBRATIONS AND DATA ACQUISITION CHECKS

4.1 DYNAMIC MAGNETOMETER COMPENSATION

Aircraft compensation tests were flown at high altitude on the 4 survey line headings and also at +/-15° to the line headings (to accommodate for cross wind flying conditions). The data for each heading consists of a series of aircraft manoeuvres with large angular excursions: specifically pitches, rolls and yaws. This is done to artificially create the worst possible attitudes and rates of attitudinal change likely to be encountered while on line and compensate for any magnetic noise created by the aircraft's motion within the earth's magnetic field. This data is processed to obtain the REAL TIME COMPENSATION terms of which the aircraft used the standard 17 term model. These terms include permanent, induced and eddy values. These coefficients may be applied in real time or during post processing. Note that this form of compensation will only remove those noise effects modelled in the manoeuvres test flight. External noise sources and random motions of the stinger with respect to the aircraft airframe generally establish the noise floor for this type of installation. The surveyor's goal is to achieve a 4th difference noise level on the order of 0.01 nT RMS during normal surveying conditions. In general, this noise level was routinely achieved or bettered as a matter of course.

The following is a list of dates in which a compensation test had been flown and the flights they were applied to.

Aircraft	Compensation Flight Date	Compensation applied to flight #
VH-AFN	17 th April 2010	All Flights

4.2 HEADING ERROR CHECK

Historically, heading error checks have been an essential part of the aeromagnetic data acquisition procedure but their importance now has diminished. GPX Surveys now corrects for these effects using the dynamic aircraft magnetic compensation system and specially developed software. In the past, repeatable heading errors of less than one nanotesla (1.0 nT) were considered good. Dynamic compensation typically yields heading errors in the order of 0.1 to 0.3 nT, which are effectively eliminated by modern data levelling techniques.

4.3 SYSTEM PARALLAX TESTS

One of the processing parameters required to process digital data was the parallax or offset time, between the time the digital reading was taken by the instrument and the time the position fix for the fiducial of the reading was obtained. Each instrument - magnetometer, altimeter, spectrometer, barometer and thermometer - may have a different parallax, so the parallax must be computed for each instrument.

The parallax correction derived is the correction to be applied to each survey line. A positive parallax indicates the instrument reading is ahead of the position of the fiducial. Each integer fiducial represents one second so the parallax can be expressed in either fiducial or seconds.

The correct fiducial is computed by:

 $P_c = F_r - P_i$

where

 P_c = Parallax corrected fiducial F_r = Fiducial for recorded reading

P_i = Instrument parallax

Results of parallax test

A summary of the parallax corrections to the different data types is shown below:

Data	Parallax applied (seconds) VH-AFN
GPS Position	2.5
Magnetic Data	1.6
Radiometric data	0.0
Radar Altimeter	1.5
Barometric Altimeter	1.5
GPS derived DEM	2.5
Barometric derived DEM	1.0
Temperature	1.5
Pressure	1.5
Humidity	1.5

4.4 PRE-SURVEY RADIOMETRIC CALIBRATION TESTS

Several pre-survey calibration tests were conducted to calculate height attenuation coefficients, sensitivity coefficients, stripping ratios, and to estimate aircraft and cosmic background radiation. The calibration methods are as generally described by Grasty and Minty (1995) and the International Atomic Energy Agency (2003).

VH-AFN Calibrations

Radiometric pad calibrations were conducted at Jandakot Airport, Perth in October 2009. Radiometric equipment calibration flights were carried out during October 2009 at Carnamah test range. The aircraft background and cosmic test flights were flown at high altitude over the Indian Ocean near Perth.

The calibration test result values are listed below:

VH-AFN	Date	Window	Value
Aircraft Background	20-10-2009	TC	102.77
_		K	23.25
		U	2.56
		Th	0.17
Cosmic Background	20-10-2009	TC	0.754406
		K	0.043633
		U	0.035670
		Th	0.043925
Stripping	20-10-2009	Alpha	0.2623
		Beta	0.4054
		Gamma	0.7538
		а	0.0475
		b	0.0000
		g	0.0000
Height Attenuation	20-10-2009	TC	0.007743
		K	0.010858
		U	0.009761
		Th	0.007399
Air/Ground @80m	20-10-2009	Dose	22.82
		K	62.93
		U	7.76
		Th	4.82

4.5 DAILY RADIOMETRIC SYSTEM TESTS

Daily tests were performed on the radiometric system to monitor system sensitivity and stability. These tests are as generally described by Grasty and Minty (1995) and the International Atomic Energy Agency (2003).

A system stability test was performed at the start and end of each day. This was done using a thorium source placed a least 40cm from the centre of each detector. The average deadtime and background corrected thorium window was calculated and checked to be within 3 percent from the average of all other calibrations.

Additionally a low-level test line was flown of at least 100 seconds in duration, This was used to establish that the soil moisture had not changed significantly and that the spectrometer system is functioning correctly.

4.6 TIME SYNCHRONISATION

All data is recorded in GPS time therefore all data is inherently synchronised.

5 DATA VERIFICATION AND PRELIMINARY PROCESSING

All data verification and preliminary processing and map production was conducted at the field office using a Toshiba notebook computer. ChrisDBF was the primary field quality control software.

At the conclusion of each survey flight all magnetic data, altimeter data, GPS position, and diurnal data was transferred via compact flash memory onto the field computer for preliminary data verification. The raw data was transferred from the field onto the GPX Surveys ftp site for further verification and processing.

5.1 DATA VERIFICATION AND CHECKS

General Checks and Verification

The magnetic data, diurnal data, radar altimeter, GPS height data and flight path was checked for noise, spikes, inconsistencies and deviations. Any inconsistencies were queried and flagged and discussed with the technicians and senior data processors. If necessary the equipment was checked over and any damages were repaired or replaced. Prior to survey resumption any repairs were thoroughly tested.

Magnetic Data Checks

The raw un-edited magnetic data was checked to identify noise and spikes. Single reading spikes were manually edited and if the noise exceeded the contract specifications, the line was re-flown.

Diurnal Data Checks

At the completion of each day's flying the diurnal data was downloaded from the base magnetometer onto the field laptop via a RS-232 serial cable link. The data was plotted and analysed for noise, spikes and erroneous activity. Multiple readings were flagged as invalid and if invalid diurnal data occurred during survey the affected section was re-flown.

The diurnal data was checked to see that the change in diurnal readings during the course of the survey did not exceed the specified tolerances. When this occurred the affected survey lines were re-flown.

Radar Altimeter Checks

The altimeter data was checked to ensure a reasonably constant height above the terrain was maintained. Any significant deviations were queried with the pilot and flagged. The section was then checked against contract specifications and if it was out of specification the section was checked against SRTM data and compared to terrain information in Google Earth. If none of these revealed a valid reason for being out of specification the section was re-flown.

GPS Height Data Checks

The aircraft's height above mean sea level was determined by data from the postprocessed GPS data. The GPS height of the aircraft is checked for data masking and equipment reliability. The aircraft GPS recorded the data in the WGS84 datum.

Flight Path Checks

The flight path was plotted against the flight plan and checked for deviations. Any significant deviations were queried with the pilot and flagged. The section was then checked against contract specifications and if it was out of specification the section was checked against SRTM data and compared to terrain information in Google Earth. If none of these revealed a valid reason for being out of specification the section was re-flown. The aircraft GPS recorded the data in the WGS84 datum.

Digital Terrain Data

After radar and GPS height data verification the radar altimeter height was subtracted from the GPS height to give the elevation of the terrain above mean sea level. The digital terrain data and was gridded to check for inconsistencies and errors.

Radiometric Data

The 256-channel radiometric data was viewed to confirm that the spectra peaks are correctly calibrated. The following peak locations were checked daily:

- Potassium 1460 keV
- Uranium 1760 keV
- Thorium 2614 keV

Gridding and Inspection

The magnetic, digital terrain and radiometric data was gridded and displayed on screen. With the aid of sun-angles the gridded data was checked for inconsistencies and errors. Any inconsistencies were flagged and if necessary corrected.

5.2 DATA ARCHIVES

All raw and field processed aircraft data plus the raw diurnal base data were backed up onto an external hard drive at the end of each day's survey. A further copy of the raw and edited data remained on the field laptop for the duration of the project. The raw data was also uploaded onto the company ftp site and the data backed up at the offices of GPX.

6 FINAL PROCESSING

All final checks, verification and data processing were performed in the offices of GPX Surveys. The raw field data was transferred to the GPX Surveys ftp site at the end of each flight. The final processing of the data follows the same quality control checks that are made in the field however the final data has additional processes performed. No field-processed data was used in the making of the final data.

All data used in the final processing was within contract specifications.

The following software was used in the final verification and data processing:

- GPX proprietary software
- ChrisDBF
- Geosoft Oasis Montai

6.1 FINAL MAGNETIC DATA PROCESSING

Initial checks on the field data were performed as described in section 5.1.

The following processes were then performed on the magnetic data:

- Single reading spikes were manually edited.
- The magnetic data was diurnally corrected.
- System parallax was calculated and removed.
- The magnetic data was IGRF corrected.
- The magnetic data was tie line levelled.
- The magnetic data was micro levelled.

Diurnal Correction to the Magnetic Data

The raw magnetic and diurnal data was checked for spikes and single reading spikes were manually edited. The synchronised digital diurnal data collected by the base station was first subtracted from the corresponding airborne magnetic readings to calculate a difference. The resultant difference was then subtracted from the base value to produce diurnally corrected magnetic data.

Parallax Correction to the Magnetic Data

A system parallax as described in section 4.3 was applied to the magnetic data.

IGRF Correction to the Magnetic Data

The diurnally corrected magnetic data has been corrected for the regional gradient by subtracting the calculated IGRF (2005 model) computed continuously over the whole area. The calculation of these corrections used the GPS flying height. A base value of 57870 nT was added to the data.

Tie Line Levelling

A crossover program was used to compute the magnetic difference between each tie line and the traverse line intersection. These differences were then applied to level the traverse lines to the tie lines.

Micro Levelling

Finally the data was micro-levelled using a proprietary program that more subtly levels the data. Micro levelling was used to remove residual differences with a long wavelength along line and short wavelength across line. Application of the micro-levelling process removed the streaks that were sometimes visible when using various grid enhancements.

Gridding and Inspection

The magnetic data was gridded and grid image enhancements were computed and displayed on screen. These were also viewed with the aid of crossline sun angles and inspected for inconsistencies and errors and appropriate corrections were made if required.

6.2 FINAL RADIOMETRIC DATA PROCESSING

The data is processed in accordance with the International Atomic Energy Agency Guidelines for radioelement mapping using gamma ray spectrometry data (July 2003).

Prior to final processing the data was validated using the methods described in Section 5.1. The following is a summary of processes that were performed on the radiometric data:

- Single reading spikes were edited.
- Noise removal from data using Noise Adjusted Singular Value Decomposition (NASVD).
- Apply the dead-time correction.
- The radiometric data was energy calibrated.
- Aircraft, cosmic and radon background radiation was removed.
- The stripping corrections were applied.
- System parallax was calculated and removed.
- The height data was corrected to standard temperature and pressure and then corrected to a nominal survey height using height attenuation coefficients.

- If necessary the data was levelled using tie line levelling and/or micro levelling techniques.
- The data was converted to elemental concentrations.

Noise Adjusted Singular Value Decomposition (NASVD)

This was developed specifically for radiometric processing and uses Principal Component Analysis (PCA). Analysis of the eigenvalues and eigenvectors of the PCA are done then the 8 most significant principal components are used to reduce the data with the remainder considered to be noise. To verify this, residual line profiles and images of potassium, uranium and thorium are generated to confirm that no signal is present.

Deadtime correction

The GR-820 spectrometer requires a finite time to process each pulse from the detectors. The deadtime of the GR-820 is less than 5 microseconds per detector and this correction was applied.

Energy Recalibration

Spectra analysis was performed on each line of data and the position of the thorium and potassium peak positions determined and compared to their theoretical positions. The original spectra data was then mapped to the correct peak positions and new windowed data created for each of the standard IAEA windows as follows.

Window	Peak Energy (KeV)	Energy \	w (KeV)	
Total Count		410	-	2810
Potassium	1460	1370	-	1570
Uranium	1760	1660	-	1860
Thorium	2615	2410	-	2810
Cosmic		3000		

Aircraft Background Correction

The aircraft background radiation was removed by subtracting the aircraft background values from the Total Count, Potassium, Uranium and Thorium windows. The values that are used are in Appendix A.

Cosmic Correction

The effect of cosmic radiation was removed from each window by multiplying the cosmic channel by the cosmic stripping factor for each window and subtracting the result from the window data. The values that are used are in Appendix A.

Radon Background Correction

The spectral ratio method was used for radon removal. This method uses the 352 keV uranium peak as a substitute for upward crystals. The 352 keV uranium peak is an extremely good detector of radon gas because very little radiation from the ground will reach the aircraft at this low energy.

Stripping Corrections

The radiometric spectra of potassium (K), uranium (U) and thorium (Th) series overlap. To evaluate of any one spectral window, which is designed to detect one radioelement, requires removal of the spectral overlap. This process of removal of the spectral overlap is known as stripping. The stripping procedure uses spectral stripping ratios determined experimentally using concrete calibration pads of known K, U and Th concentration. The values that are used are in Appendix A.

Parallax Correction

A system parallax as described in section 4.3 was applied to the radiometric data.

Calculation of Effective Height

Spikes from the temperature and pressure data were removed. The radiometric data was converted to effective altitude at standard temperature and pressure (STP) using the expression:

$$Alt(STP) = BA \times (\frac{P}{1013}) \times \frac{273}{(T+273)}$$

Alt(STP) = Effective altitude at STP in metres BA = Barometric Altitude in metres P = Pressure in millibars T = Temperature in °C

Height Correction

The temperature and STP corrected data was converted to a nominal survey height using the height attenuation coefficients.

Tie Line Levelling

Where required, a crossover program was used to compute the radiometric difference between each tie line and the traverse line intersection. These differences were then applied to level the traverse lines to the tie lines.

Micro Levelling

Where required, micro levelling was used to remove residual differences with a long wavelength along line and short wavelength across line. Application of the micro levelling process removed the streaks that were sometimes visible when using various grid enhancements.

Gridding and Inspection

The radiometric data was gridded and grid image enhancements were computed and displayed on screen. These were also viewed with the aid of crossline sun angles and inspected for inconsistencies and errors and appropriate corrections were made if required.

6.3 FINAL ELEVATION DATA PROCESSING

Initial checks on the field altimeter and GPS height data were performed as described in section 5.1.

GPS Height Data

The aircraft's height above mean sea level each second was determined by data from the post-processed GPS. The GPS height of the aircraft is verified to check for data masking and for equipment reliability. The GPS height data is used in the production of digital terrain maps.

Parallax Correction

A parallax error correction as described in section 4.3 was applied to the coordinate data.

Digital Terrain Calculation and N-value correction

After verification, the radar altimeter height was subtracted from the GPS height and the Geoid – Ellipsoid separation (N-value) correction applied to give the elevation of the terrain above mean sea level.

Tie Line Levelling

A crossover program was used to compute the height difference between each tie line and the traverse line intersection. These differences were then applied to level the traverse lines to the tie lines.

Micro Levelling

Micro levelling was used to remove residual differences with a long wavelength along line and short wavelength across line. Application of the micro levelling process removed the streaks that were sometimes visible when using various grid enhancements.

DISCLAIMER

Every effort has been made to make this model a useful general reference. No guarantee can be made that this model is a true representation of height above sea level as it can contain laser altimeter responses from buildings, trees and scrub. Users of the product should be aware of the topographic limitations mapped herewithin. Do not use this DTM for navigation purposes.

7 FINAL DELIVERABLES

7.1 FINAL GRIDS AND DATA PRODUCTS

Grids and located data were delivered on 2 sets of DVDs (original and archive copy).

Grids

All grids are in ERMapper format (*.ERS) and are based on the GDA94 datum and are projected in MGA Zone 54S.

The following grids were delivered:

- Digital Terrain Model (DTM)
- Total Magnetic Intensity (TMI)
- TMI First Vertical Derivative (TMI1VD)
- TMI Second Vertical Derivative (TMI2VD)
- TMI Reduced to Pole (RTP)
- RTP First Vertical Derivative (RTP1VD)
- Potassium (POT)
- Uranium (URA)
- Thorium (THO)
- Total Count (TOT)

Located Data (ASCII format) _ASEG Format compatible

The located data is based on GDA94 datum and is projected in MGA Zone 54S. The final located data and raw radiometric located data is in a format as described in Appendix A.

Digital Colour Map Products

The following map products were delivered:

- Flight Path
- Total Magnetic Intensity
- Reduction to the pole
- TMI First Vertical Derivative
- Ternary Radiometrics
- Digital Terrain Model

MAP IMAGES

7.2 FLIGHT PATH

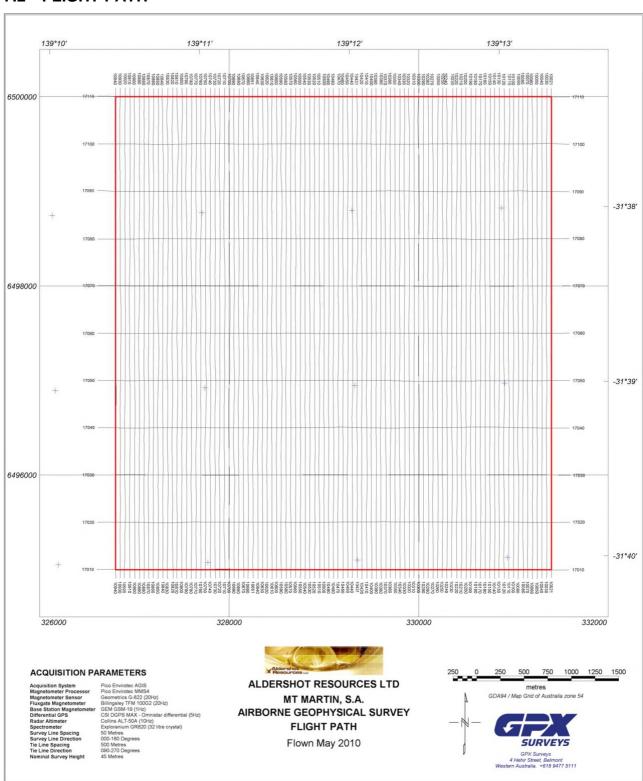


Figure 7: Flight path image.

7.3 DIGITAL TERRAIN MODEL

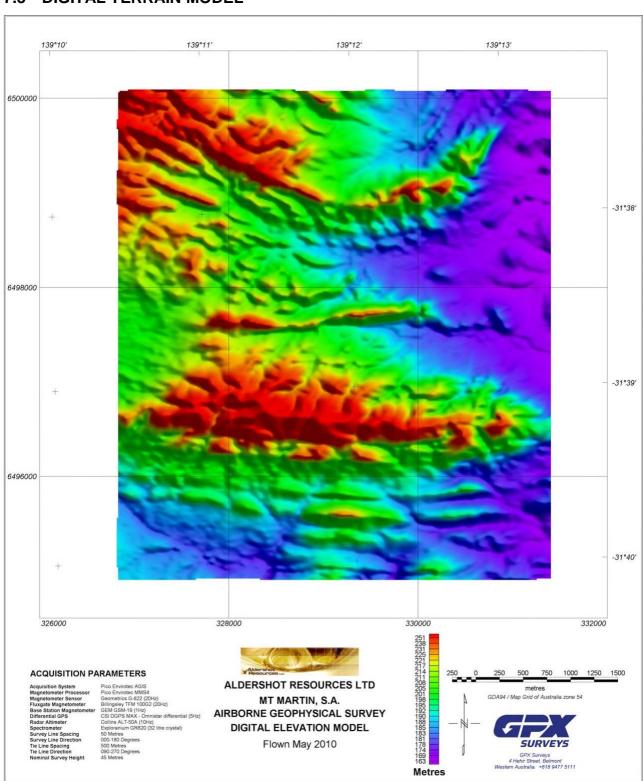


Figure 8: Digital terrain model image.

7.4 TOTAL MAGNETIC INTENSITY

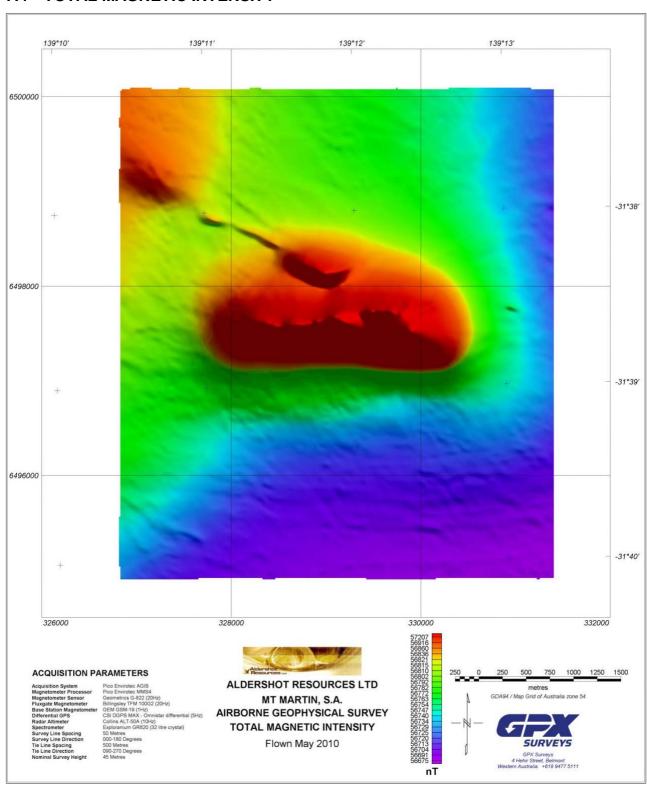


Figure 9: Total magnetic intensity image.

7.5 TMI REDUCED TO POLE

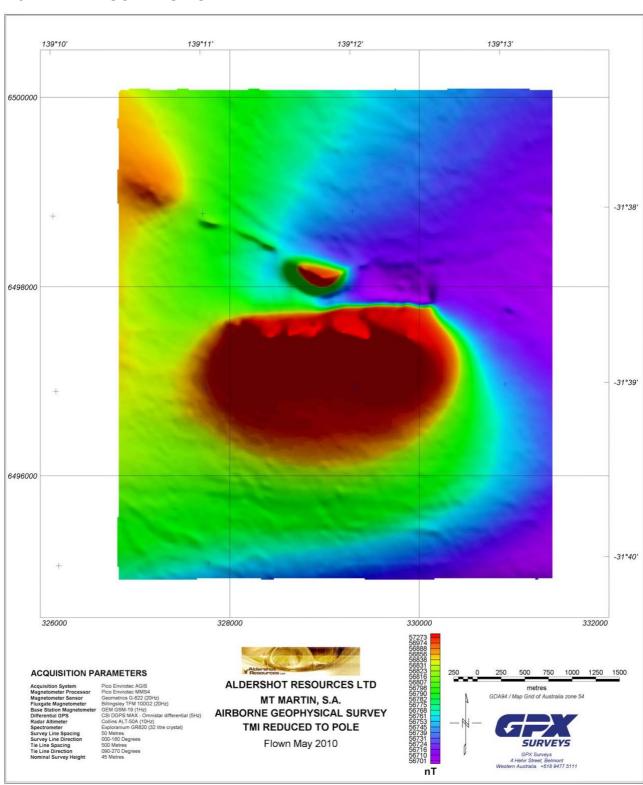


Figure 10: Total magnetic intensity reduced to pole image.

7.6 TOTAL MAGNETIC INTENSITY 1VD

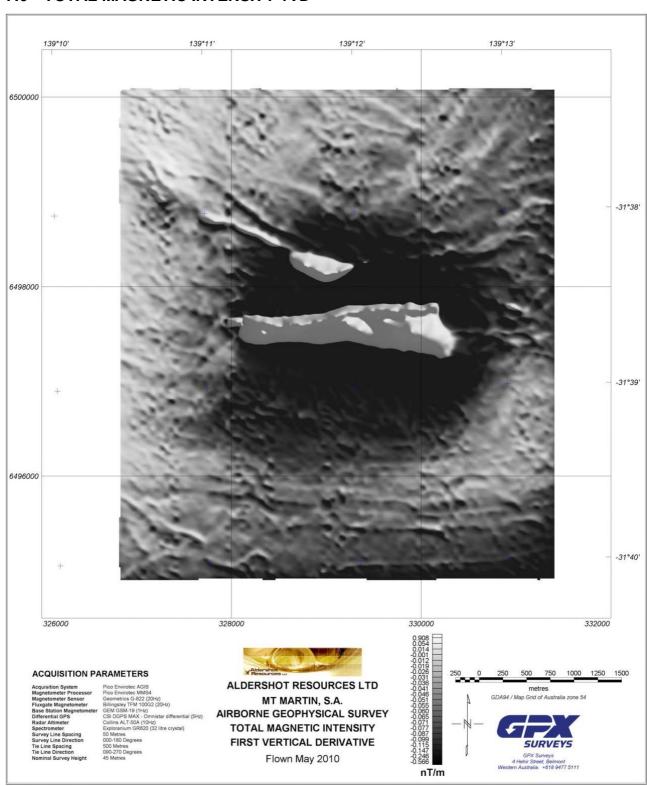


Figure 11: Total magnetic intensity first vertical derivative image.

7.7 RADIOMETRIC TERNARY CMY COLOURS

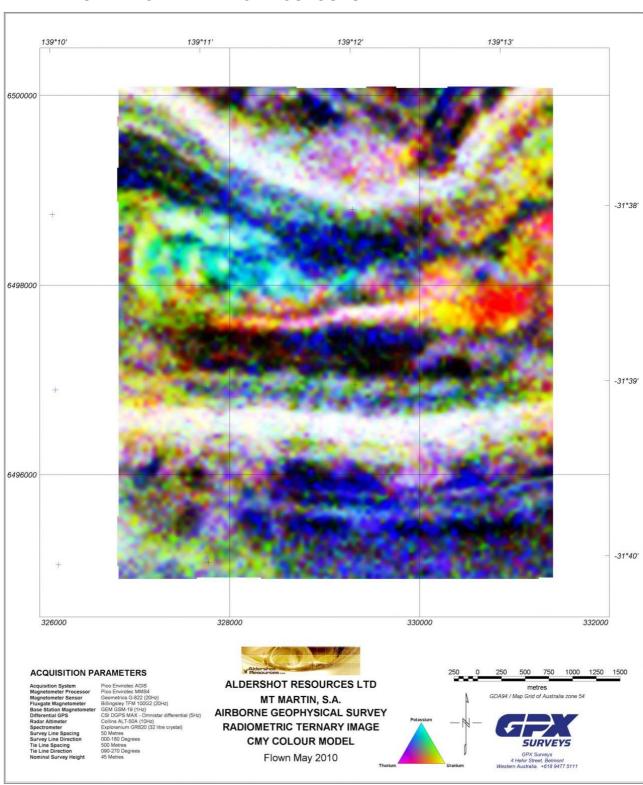


Figure 12: Radiometric ternary CMY colours image.

7.8 RADIOMETRIC TERNARY RGB COLOURS

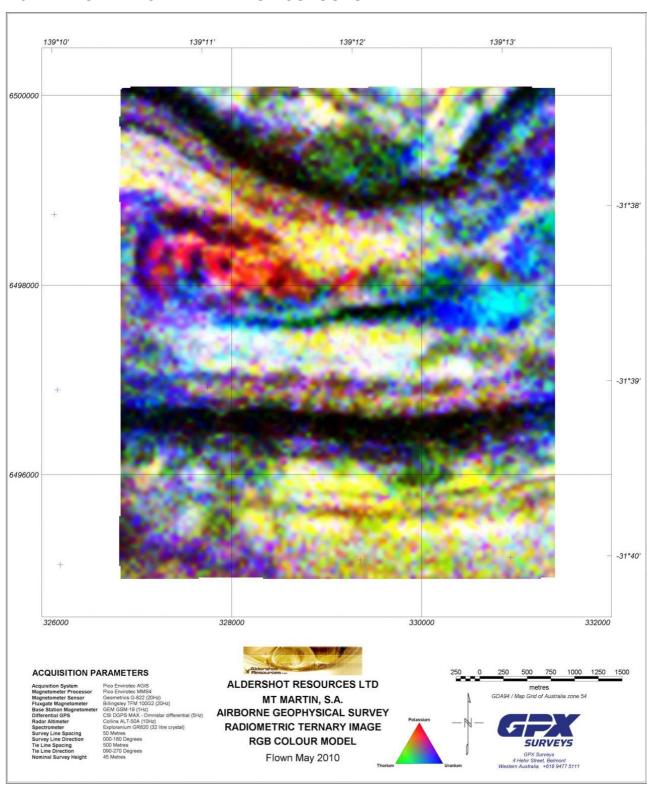


Figure 13: Radiometric ternary RGB colours image.

8 CONTRACTOR INFORMATION

GPX Surveys Pty Ltd ABN 48 110 619 602

Address: 4 Hehir Street, Belmont WA 6104 Australia

Postal: PO Box 808, Cloverdale WA 6985 T +61 8 9477 5111 F +61 8 9477 5211

info@gpxsurveys.com.au www.gpxsurveys.com.au

APPENDIX A: LOCATED DATA FORMAT AND PROCESSING **SPECIFICATIONS**

Magnetic Data Description File

GENERAL

Project ALDERSHOT MAG/SPEC SURVEY

Survey area AlderShot

Located data type 0.05 Second Final Data

GPX AIRBORNE PTY LTD. Surveyed by

Job number

2419 GPX AIRBORNE PTY LTD. Processed by

Creation date May 2010

SURVEY SPECIFICATIONS

Survey flown May 2010

Survey flown

Traverse line spacing

Traverse line direction

Tie line spacing

50 metres

500 metres Tie line direction 090-270 degrees

Survey height 45 metres

LOCATED DATA FORMAT

Variable	Units	Undefined	From	То	Format
Line number		9999999	1	8	18
Easting (MGA54)	metres	9999999.99	9	19	F11.2
Northing (MGA54)	metres	9999999.99	20	30	F11.2
Fiducial		99999.99	31	39	F9.2
Flight number		999	40	44	I5
Direction (1=E, 2=N, 3=W, $4=3$	3)	9	45	46	I2
Date (YYYYMMDD)		9999999	47	55	19
Time (GPS)	seconds	99999.99	56	64	F9.2
Longitude (GDA94)	degrees	999.999999	65	75	F11.6
Latitude (GDA94)	degrees	999.999999	76	86	F11.6
Radar altimeter	metres	9999.9	87	93	F7.1
GPS altitude	metres	9999.9	94	100	F7.1
Raw magnetics	nT	99999.999	101	110	F10.3
Post compensated magnetics	nT	99999.999	111	120	F10.3
Diurnal	nT	99999.999	121	130	F10.3
Final magnetics	nT	99999.999	131	140	F10.3
Pressure	millibars	9999.9	141	147	F7.1
Temperature	degrees C	99.9	148	152	F5.1
Raw total count	cps	999999	153	159	F7.0
Raw potassium	cps	9999	160	164	F5.0
Raw uranium	cps	9999	165	169	F5.0
Raw thorium	cps	9999	170	174	F5.0
Raw cosmic	cps	9999	175	179	F5.0
Final dose rate	nGy/h	99999.99999	180	191	F12.5
Final potassium	percent	99999.99999	192	203	F12.5

Final	uranium	eppm	99999.99999	204	215	F12.5
Final	thorium	eppm	99999.99999	216	227	F12.5
Final	DEM	metres	99999.9	228	235	F8.1

DATA PROCESSING

COORDINATE DATA

All lines are scissored to the following rules:

- 1) A 'smooth' edge outside the area boundary.
- 2) Maximum line overlap of 0 fiducials within the area boundary.

The local projection is a UTM projection based on the GDA94 spheroid with a central meridian of 141 East degrees. System parallax of 2.5 fiducial has been removed.

MAGNETIC DATA

The magnetic data has been corrected for regional gradient by subtraction of IGRF model 2005 computed continuously over the whole area based on the GPS height.

Diurnal magnetic variations have been removed.

System parallax of 1.6 fiducial has been removed.

Tie-line levelling has been applied.

Microlevelling has been applied.

A base value of 57870 nT has been added to the data.

RADIOMETRIC DATA

Raw channel data provided has been energy calibrated NASVD has been applied to channel data prior to windowing System parallax of 0.0 fiducial has been removed. Height attenuated to 45m AGL Airborne radon has been removed

AIRCRAFT BACKGROUND		UNITS
Total Count	102.77	cps
Potassium	23.25	cps
Uranium	2.56	cps
Thorium	0.17	cps
COSMIC STRIPPING RATIOS		
Total Count	0.754406	
Potassium	0.043633	
Uranium	0.035670	
Thorium	0.043925	
COMPTON STRIPPING RATIOS		
alpha	0.2623	
beta	0.4054	
gamma	0.7538	
a	0.0475	
HEIGHT ATTENUATION COEFFICIENT		
Total Count	0.007743	per metre
Potassium	0.010858	per metre
Uranium	0.009761	per metre
Thorium	0.007399	per metre
SENSITIVITY CONSTANTS		
Total Count - nGy/h	22.82	cps

Potassium - 1%	62.93	cps	
Uranium - 1ppm	7.76	cps	
Thorium - 1ppm	4.82	cps	
WINDOW ENERGY LEVELS	Low Energy High	n Energy	
Total Count	410.0	2810.0	keV
Potassium	1370.0	1570.0	keV
Uranium	1660.0	1860.0	keV
Thorium	2410.0	2810.0	keV

DIGITAL ELEVATION MODEL DATA

DIGITAL ELEVATION MODEL CALCULATION

The radar altimeter data was subtracted from the GPS heights to provide a digital elevation model which is height above the WGS84 spheroid. Using interpolation on the 120 second DMA Geoid model, a correction was computed and subtracted from the WGS84 data to convert to height above the geoid.

DATA RELIABILITY

This Digital Elevation Model (DEM) has been computed from data generated during the course of an airborne geophysical survey flown at a nominal spacing of 50m and data has been interpolated between such lines. Every effort has been made to make this model a useful general reference. No guarantee can be made that this model is a true representation of height above sea level as it can contain radar altimeter responses from buildings and in some instances dense timber. Users of the product should be aware of the topographic limitations mapped herewithin. Do not use this DEM for navigation purposes.

Windowed Radiometric Data Description File

GENERAL

Project ALDERSHOT MAG/SPEC SURVEY

AlderShot Survey area

Located data type 1 Second Radiometric Data

GPX AIRBORNE PTY LTD. Surveyed by

2419 Job number

GPX AIRBORNE PTY LTD. Processed by

Creation date May 2010

SURVEY SPECIFICATIONS

Survey flown May 2010

Traverse line spacing 50 metres
Traverse line direction 000-180 degrees
Tie line spacing 500 metres Tie line direction 090-270 degrees

Survey height 45 metres

LOCATED DATA FORMAT

Variable		Units	Undefined	From	То	Format
Line number			9999999	1	8	18
Easting (MGA54)		metres	9999999.99	9	19	F11.2
Northing (MGA54)		metres	9999999.99	20	30	F11.2
Fiducial			99999.99	31	39	F9.2
Flight number			999	40	44	I5
Direction (1=E, 2=N,	3 = W, 4 = S)	9	45	46	I2
Date (YYYYMMDD)			9999999	47	55	I9
Time (GPS)		seconds	99999.99	56	64	F9.2
Longitude (GDA94)		degrees	999.99999	65	75	F11.6
Latitude (GDA94)		degrees	999.99999	76	86	F11.6
Radar altimeter		metres	9999.9	87	93	F7.1
Pressure		millibars	9999.9	94	100	F7.1
Temperature		degrees C	99.9	101	105	F5.1
Raw total count		cps	999999	106	112	F7.0
Raw potassium		cps	9999	113	117	F5.0
Raw uranium		cps	9999	118	122	F5.0
Raw thorium		cps	9999	123	127	F5.0
Raw cosmic		cps	9999	128	132	F5.0
Final dose rate		nGy/h	99999.99999	133	144	F12.5
Final potassium		percent	99999.99999	145	156	F12.5
Final uranium		eppm	99999.99999	157	168	F12.5
Final thorium		eppm	99999.99999	169	180	F12.5
Raw 256 channel data		cps	999	181	1204	I5
Energy calibrated 256	channel	cps	9999.9	1205	2996	F7.1

DATA PROCESSING

COORDINATE DATA

All lines are scissored to the following rules:

- 1) A 'smooth' edge outside the area boundary.
- 2) Maximum line overlap of 0 fiducials within the area boundary.

The local projection is a UTM projection based on the GDA94 spheroid with a central meridian of 141 East degrees. System parallax of 2.5 fiducial has been removed.

RADIOMETRIC DATA

NASVD has been applied to channel data prior to windowing System parallax of 0.0 fiducial has been removed. Height attenuated to 45m AGL Airborne radon has been removed

AIRCRAFT BACKGROUND		UNITS	
Total Count	102.77	cps	
Potassium	23.25	cps	
Uranium	2.56	cps	
Thorium	0.17	cps	
COSMIC STRIPPING RATIOS			
Total Count	0.754406		
Potassium	0.043633		
Uranium	0.035670		
Thorium	0.043925		
COMPTON STRIPPING RATIOS			
alpha	0.2623		
beta	0.4054		
gamma	0.7538		
a	0.0475		
HEIGHT ATTENUATION COEFFICIENT			
Total Count	0.007743	per metre	
Potassium	0.010858	per metre	
Uranium	0.009761	per metre	
Thorium	0.007399	per metre	
SENSITIVITY CONSTANTS			
Total Count - nGy/h	22.82	cps	
Potassium - 1%	62.93	cps	
Uranium - 1ppm	7.76	cps	
Thorium - 1ppm	4.82	cps	
WINDOW ENERGY LEVELS	Low Energy	High Energy	
Total Count	410.0	2810.0	keV
Potassium	1370.0	1570.0	keV
Uranium	1660.0	1860.0	keV
Thorium	2410.0	2810.0	keV

APPENDIX B: WEEKLY PRODUCTION SUMMARY - VH-AFN

Project Information Form supplied (YES / NO)??

	Client GPX Job No. dershot 2411					s) Job Name Flying Base Mt Martin Baratta Station			n		raft Type tcher FU-			ontact Ph		Cre	w Conta	ct Fax No	
Res	ources			· .				Dai	Paratic Glation Flotorior FO 24 FO 14 0047 4200 NOTE				Balatta Station		101 4 0047 4200		110110		
Aircraft:	VH-AFN	Project Ma	anager:	S. Hulme		Pilots:	S. Helliwell												
					K	ilometres						Aircraft	Time				1		
	Date	Flt	Prod	Scrub	Reflight	Total	Flown to	Remain	Prod	Scrub	Turns	Ferry	Cals	Cals	Mob	Total	Hrs to	s	tandby
						Planned	date						Daily	Setup			100 Hrly	Hrs	Reason
Mon	10/05/10	001/002	538.6	0.0	0.0	538.6	538.6	0.0	5.5	0.0		0.0			0.0	5.5	79.3		
Tue	11/05/10		0.0	0.0	0.0	538.6	538.6	0.0	0.0	0.0		0.0			1.1	1.1	78.2		
Wed	12/05/10		0.0	0.0	0.0	538.6	538.6	0.0	5.8	0.0		0.0			0.0	5.8	72.4		
Thu	13/05/10		0.0	0.0	0.0	538.6	538.6	0.0	0.0	0.0		0.0			0.0	0.0	72.4		——
Fri	14/05/10		0.0	0.0	0.0	538.6	538.6	0.0	6.0	0.0		0.0			0.0	6.0	66.4		
Sat	15/05/10		0.0	0.0	0.0	538.6	538.6	0.0	6.0	0.0		0.0			0.0	6.0	60.4		-
Sun	16/05/10		0.0	0.0	0.0	538.6	538.6	0.0	5.7	0.0		0.0			0.0	5.7	54.7		
	Totals:		538.6	0.0	0.0	538.6	538.6	0.0	29.0	0.0		0.0			1.1	30.1		0.0	i
hargeab	le Lost Tim	e (Hrs):		0.0	Non-Char	geable Lost	Time (Hrs):	0.0		Previous	Week Flov	vn Kilome	tres:	0.0	Previou	s Week H	rs to 100 h	nrly:	84.8
	D-1-	1	GPX	Other	Accom'	Vehicles	Aircraft	Markadi	Familia	M = 1 = 41	1	0	I / D		0.0				
	Date	Julian Day	Crew	Crew	(Rooms)	venicies	Hrs	S/U	Equip Hrs	S/U		Gene	erai / Proc	cessing / C	C Comm	ents			
Mon	10/05/10	130	1	1	2	1					2 x Produc	ction flights	s. Job cor	nplete.					2.0 TBM
Tue	11/05/10	131																	
Wed	12/05/10	132																	
Thu	13/05/10	133																	
Fri	14/05/10	134																	
Sat	15/05/10	135																	
Sun	16/05/10	136																	
	Totals:						0.0		0.0								Total Fu	el:	2.0
	All areas Ferry = 0	marked ir perations	n black are base to s	urvey area	ulating & s a & return	hould not be	_			Aircraft	= Enter = Inform = Daily	total kilor nation to l fuel uploa	metres & be entere ad in litres	oolbox Me hours flow ed by GPX s or drums duled / U =	vn from p Airborne (per airc	revious/p Manage craft).	receding	Weekly	Report.

General/Processing/QC Comments should include basic weather description.

Appendix C

Results and modelling studies from a detailed magnetic survey over the Willippa Dome (EL 3508 – Martin Well).

Memo by Hawke Geophysics Pty Ltd dated 28 May 2010

6 Joy Close, Willetton, WA 6155 Mobile: 0419 500 383 Fax: 08 9259 0722

Memorandum To: Ian Faris

From: Phil Hawke

Date: 28 May 2010

Re: Results and modeling studies from a detailed magnetic survey over the Willipa

Dome (EL 3508 – Martin Well).

Background

As follow-up of recommendations made in the review of the Willipa Dome magnetic target (refer memo dated 10 April 2010), a detailed aeromagnetic survey was flown over the Willipa Dome to provide a better data set for modeling the geometry and determining the source of the magnetic anomaly. The extent of this survey is shown in Figure 1.

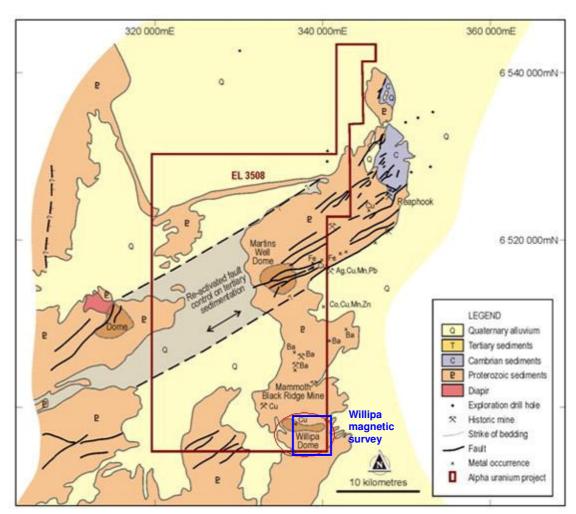


Figure 1: Map of EL3508 showing the location of the Willippa Dome detailed survey.

Airborne survey specifications

New detailed magnetic and radiometric survey was flown over the Willipa Dome target in October 2010 by GPX Surveys. Specifications of the airborne survey were:

Aircraft: Fletcher FU-24

Line spacing: 50 m
Flying direction: N-S
Nominal height: 45 m
Survey size: 529 km

Coordinate datum: GDA94 Zone 54

The magnetic data were compensated for noise generated by aircraft orientation and corrected for parallax and diurnal variations and a nominal IGRF value was applied. Both tie-line and micro-levelling was applied to the final gridded data.

Additional processing of the total magnetic intensity (TMI) grids were completed to produce first vertical derivative (1vd) and analytic signal (AS) images. An image of the first vertical derivative of the detailed magnetic data, overlain on the similar images from previous surveys is shown in Figure 2.

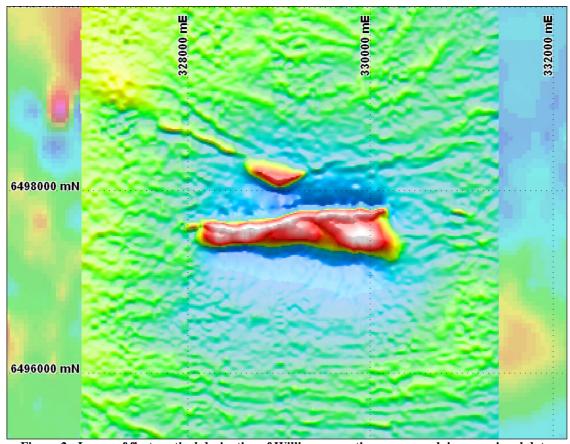


Figure 2: Image of first vertical derivative of Willipa magnetic survey overlain on regional data.

Radiometric data were processed using a standard IAEA (International Atomic Energy Agency) window processing methodology. Corrections and checks include;

- Check and correct for altitude, pressure and temperature variations
- Check and correct spectral peak positions
- Apply NASVD filtering to raw 256 channel data (noise cleaning)
- Correct for dead time
- Remove aircraft and cosmic and radon (spectral ratio method) background
- Correct for aircraft flying height
- Micro-leveling of temperature, pressure and height corrected data
- Conversion to equivalent ground concentrations.

An image of the RGB composite (red = potassium, green = thorium, blue = uranium) from the survey is shown overlain on a similar image from previous surveys is shown as Figure 3.

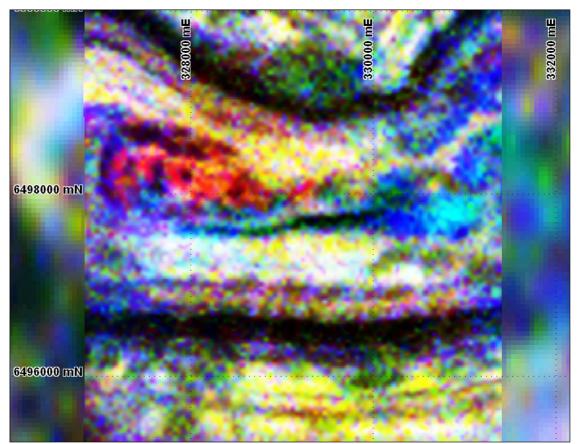


Figure 3: RGB radiometric composite image from the Willipa survey overlain on regional data.

A digital elevation model (DEM) was created by subtracting the radar altimeter data from the GPS aircraft height. The gridded elevation data has been tie-line and micro-leveled. The elevation data has not been validated by any ground survey points. While the elevation model should be internally consistent to the limit of precision of the survey equipment, it has not been tied to the AHD and, consequently, should be used for reference only.

Magnetic, radiometric and DEM data were gridded to a 50m cell size using a bi-cubic spline algorithm.

Interpretation notes

The results of the detailed magnetic survey correlate very closely with historic detailed geological mapping as shown in Figure 4.

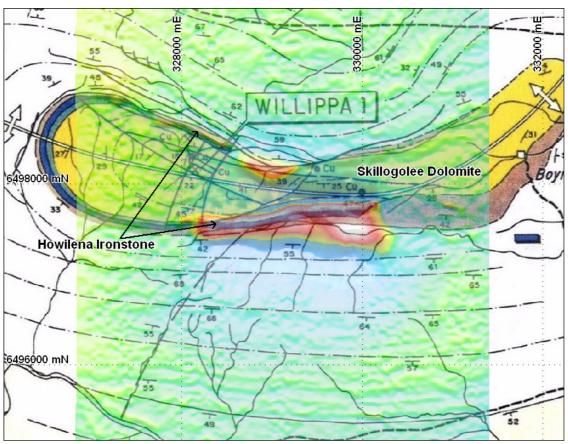


Figure 4: First vertical derivative magnetic image overlain on historic geological mapping.

Notes:

• Magnetic anomalies identified within the new survey data coincide with mapped outcrop of the Howilena Ironstone, including both the prominent magnetic feature on the south limb of the anticline structure as well as lesser anomalies to the north. The total strike length of the main (southern) magnetic body is approximately 2 kilometres.

- Other rock types are generally weakly to non-magnetic. However, subtle magnetic trends within the data parallel bedding.
- Similarly oriented trends are also noted in the radiometric data.
- Outcrop of the Howilena Ironstone is also identified by a low radiometric response (Figure 3), particularly along the prominent topographic ridge on the southern limb of the anticline.
- A prominent low radiometric marker within the Wilyerpa Formation (which overlies the Howilena Ironstone) is related with a marker sedimentary horizon, probably an arkose or dolomitic unit.
- A high potassium (red) radiometric response in the core of the Willipa Anticline was preciously interpreted to be the direct response of a possible diapric breccia. However this response correlates perfectly with the outcrop of the dolomitic Skillogolee Dolomite, which is host to a number of minor copper occurences, and may simply represent the normal radiometric signature of this unit.

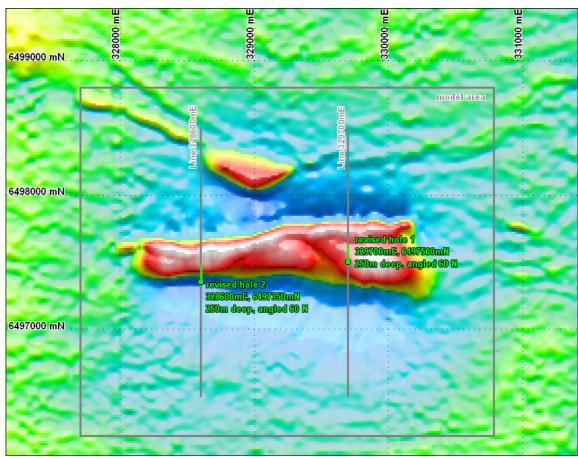


Figure 5: Extent of inversion model (grey box) and extracted sections (grey lines). Revised hole locations to test the magnetic target are shown in green.

Inversion modeling and revised drillhole planning

Inversion modeling was completed over a 3.0 x 2.6 km area shown in Figure 5. Data were modeled using the "mag3D" inversion algorithm developed by the University of British Columbia (UBC) (Li and Oldenberg, 1996, Geophysics, 61, 394-408). Input for the inversion model was the grid of total magnetic intensity. The model mesh was made of voxels of 50x50x20m dimension and default inversion parameters were used.

Susceptibility values are assigned to each cell within the block model as part of the inversion modeling process. Two slices through the inversion model, located along previous sections proposed for drill testing (refer memo dated 10 April 2010) are shown in Figure 6.

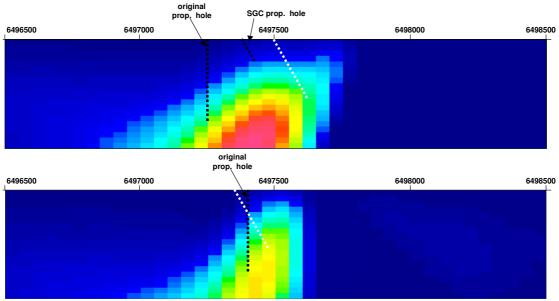


Figure 6: Slice of the inversion model results through sections located at 329700mE (top) and 328600mE (bottom). Previously proposed holes to test the magnetic feature are shown in black, currently proposed holes are shown by white dotted lines.

While the inversion modeling generally supports (the dip implied by) previous modeling by Southern Geoscience Consultants (per memo dated 8 August 2008), the new data suggests the geometry of the source is more like a dipping plane rather than a series of cylindrical bodies.

A section through 329700mE, along which Southern Geoscience (SGC) propose a hole to test the anomaly, is shown is Figure 6 (top). This model suggests the holes originally proposed both by both SGC and Hawke Geophysics will probably be too shallow to intersect the main magnetic horizon.

A revised hole location, collared at 329700mE, 6497500mN and angled 60° towards true north is proposed to intersect through the entire magnetic sequence. The total proposed

depth of this hole is 250m (downhole), with the top of the magnetic horizon expected from a depth of 150m.

A second section through the western end of the main magnetic horizon is shown through 328600mE. A second 250m hole collared at 6497350mN is proposed to test the magnetic horizon at this location.

This hole could be sited to test the hole at a shallower depth by relocating further to the north; for instance a hole located at 6497500mN would probably intersect the magnetic horizon at a (downhole) depth of 100-120m.

Appendix D

Martin's Well EL's 3508 Martin's Well Project

Report by J. Chin, Euro Exploration Services
Dated 29 September 2010

Martin's Well EL's 3508

MARTIN'S WELL PROJECT

By: J. Chin, Euro Exploration Services

For: I. Faris, Aldershot Resources Limited

29th September 2010

CURRENT EXPLORATION PROGRAM

Drilling

A 6 wheel diamond drill rig, operated by Ragged Range Drilling was dispatched to drill from the surface to an expected depth of 250m.

Drilling commenced on the 3rd September 2010 and ended on the 26th September 2010.

Overall, the drilling was slow due to the presence of soft ground- this is reflected in the highly fragmented sections of the drill cores. In addition, before the hole was canned, water recirculation problems arose in sections within the Pualaco Tillite.

Only one of the holes planned was completed. It was anned at a depth of 198.4m. The program was halted without completing the second hole due to less than expected magnetite / copper mineralisation within the magnetic target position in the first hole (HAWKE1). The decision whether to proceed with the second hole will be made when the ALS drill core assays are completed and analysed. The hole was canned on the 26th September using A+B Foam solution.

Table 2 shows the details of Hawke 1.

Table 2- Drilling Summary

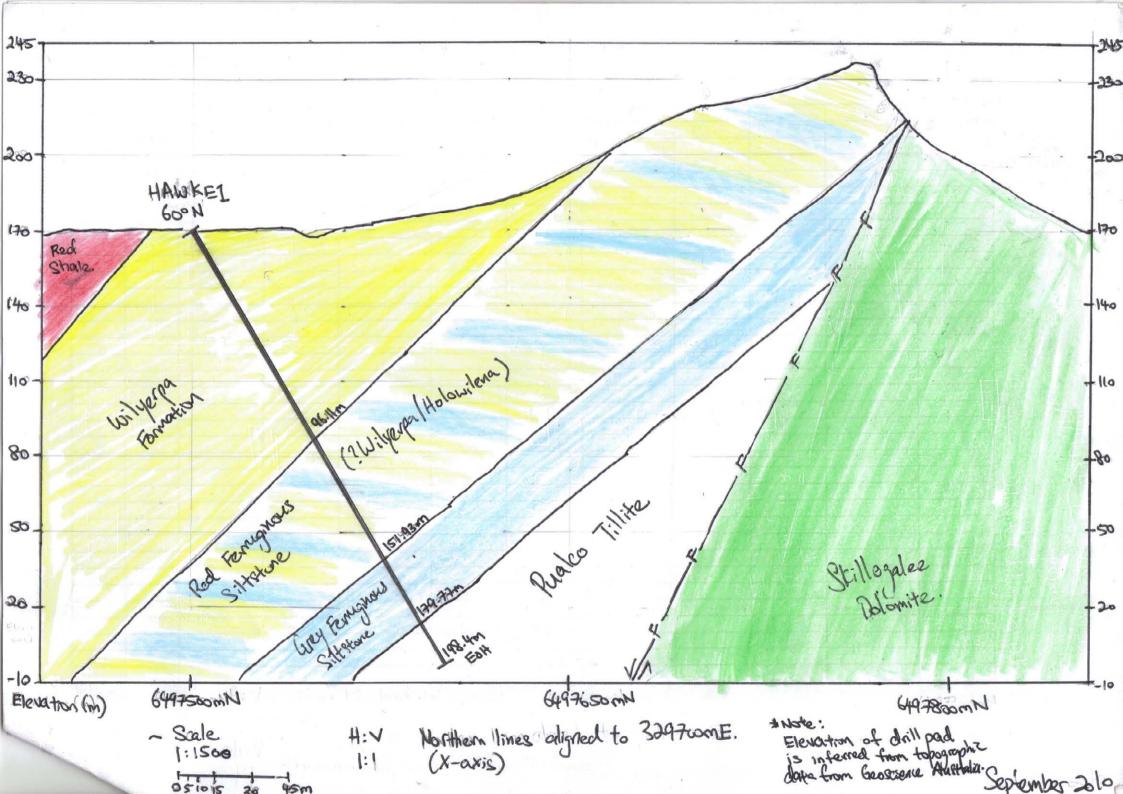
Hole ID	Easting	Northing	Az(nT)	Dip	Precollar	Core	Depth	Completed
HAWKE 1	329700mE	6497500mN	0	-60	0	198.4	198.4	26/09/2010

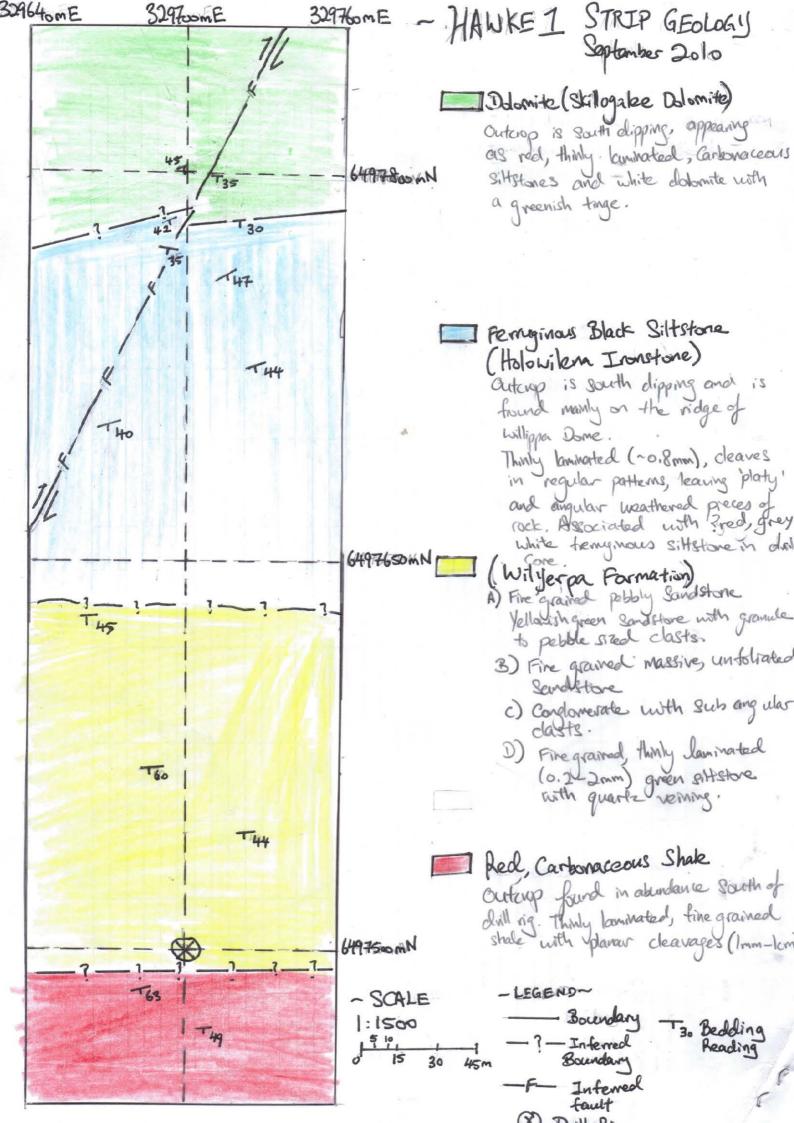
Geology

This drill hole was designed to penetrate at a 60° angle towards true north into the Willippa Dome, with the purpose of seeking an explanation to the magnetic anomalies observed within the south-dipping layers of the Wilyerpa Formation and the Howilena Ironstone.

The target of the drilling was a magnetic horizon within the Howilena Ironstone, which was expected from geophysical modelling to be at 150m downhole.

The drilling hole penetrated 4 major lithological units.


- The top part of the hole is dominated by finely laminated, non-ferruginous siltstones with zones of medium-grained sandstones, conglomerate, diamictite and pebbley sandstones.
- This is underlain by ferruginous red siltstones which give off low magnetic susceptibility readings.
- The target magnetic horizon (white-grey siltsone) beneath it, at 151.47m is defined by a sharp change in colour as well as a 10 fold increase in magnetic susceptibility readings. However, the increase in magnetic susceptibility values was lower than what would be expected if massive magnetite was present. Judging from the magnetic susceptibility readings, the mineral that could have given rise to the 10 fold increase


- in values could be either ilmenite or pyrrhotite. The former being more likely due to it having a black to grey colour.
- The bottom of the hole is characterised by an underlying diamictite formation which shares a diffusive boundary with the overlying magnetic horizon.

While possible weak haematitic alterations were observed above the magnetic horizon, no major alteration was observed within or below it. Rare occurrences of pyrite were observed within the veins of both the magnetic horizon and the diamictite lying beneath it. Minor displacement of beds could be seen within the finely laminated non-ferruginous siltstones as well as the underlying ferruginous red siltstone.

Further descriptions can be found in the accompanying excel spread sheets.

Although it remains to be established if the level of magnetite intersected is sufficient to explain the observed magnetic anomaly, the low level of sulphide mineralisation observed within the magnetic portion of the hole did not justify continuing with the second planned hole at this stage.

Appendix E

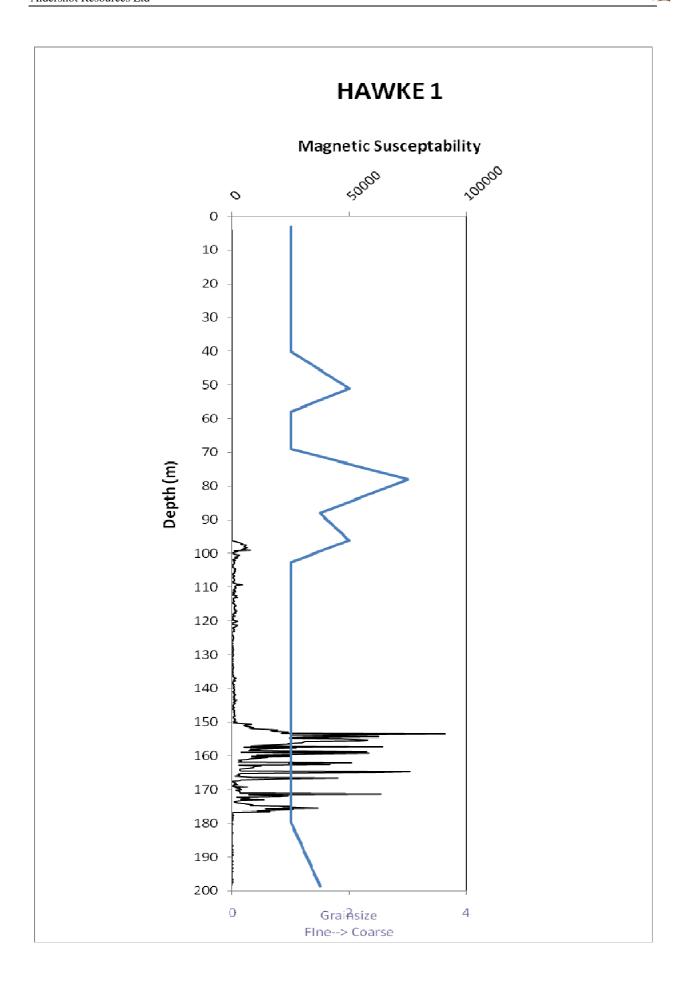
Digital data files included

Logging codes	Aldershot_codes_2010.pdf
Drill collar details	EL3508_SL1_2010A.txt
Downhole survey details	EL3508_SADS3_SUR2010A.txt
Downhole assay results	EL3508_SADG3_ASS2010A.txt
Downhole lithology	EL3508_SADL3_GEO2010A.txt

Downhole magnetic susceptibility

EL3508_SADME3_MAGSUS2010A.t

xt


Downhole radiometric EL3508_SADRE3_RADIO2010A.txt

m					
From	m To	CODE	Texture	Grainsize	Comments
3	7	1	LAM	gzf	Barren, slightly weathered, finely laminated, fine grained siltstone.
7	30	1	LAM	gzf	Barren, fresh, finely laminated, fine grained siltstone with minor sandstone beds. Cb veins occur towards the bottom of the interval. Sandstone beds, ranging from 6cm to 60 cm occur throughout the interval.
30	33	1	LAM	gzf	Barren, moderately altered, finely laminated, fine grained siltstone with haematitic beds
33	40	1	LAM	gzf	Barren, fresh, finely laminated, fine grained siltstone. Pz veining increase in abundance towards the bottom of the interval.
40	51	2	MAS	gzm	Barren, fresh, medium grained sandstone with granule to medium pebble sized quartz, feldspar, magnetite clasts with finely laminated siltstone beds towards the top and bottom of interval. He veins and alteration occurs throughout the interval.
51	58	1	LAM	gzf	Barren, fresh, finely laminated, fine grained siltstone.
58	69	1	LAM	gzf	Barren, fresh, finely laminated, finely grained siltstone with minor sandstone interbedding. The interval is weakly to moderately altered in the zones near the top and bottom of the interval.
69	78	3	POLY	gzy	Barren, slightly weathered, weakly altered, coarse grained polygenetic conglomerate with fine grained, finely laminated siltstone. The conglomerate accounts for the top 90% of the interval.
78	88	1.5	MAS	gzv	Barren, non laminated, weakly altered, non sorted diamictite. The diamictite is composed of a very fine to fine grained matrix with granule (~2mm) to small cobble sized (~87mm) quartzofeldsparthic clasts distributed randomly throughout the interval.
88	96	2	POLY	gzf	Barren, non laminated, weakly altered, weakly weathered, fine to coarse grained pebbly sandstone (sandy diamictite in some literature).
96	102.5	1	LAM	gzf	Moderately magnetic, laminated (0.1-5mm) ferruginous red siltstone with fine grained sandstone interbeds. More magnetic towards top of the interval and weakens towards the base.
102.5	109	1	LAM	gzf	Non-magnetic, laminated ferruginous siltstone with zones of sericitic (?) alteration and sandstone interbeds.
109	141.5	1	LAM	gzf	Non-magnetic, moderately fragmented, laminated, weakly altered ferruginous siltstone with minor sandstone interbeds. More fragmented and altered than above unit.
141.5	151.5	1	LAM	gzf	Non-magnetic, partially fragmented, laminated, highly altered, ferruginous siltstone with minor non-ferruginous interbeds.
151.5	155.5	1	LAM	gzf	Magnetic, weakly chloritised, ferruginous siltstone. More magnetic intervals associated with darker bands.
155.5	158.75	1	LAM	gzf	Weakly to moderately magnetic, unaltered, laminated, ferruginous siltstone.
158.75	178	1	LAM	gzf	Weakly magnetic, unaltered, laminated ferruginous siltstone.
178	179.75	1	LAM	gzf	Diffusive zone of non-magnetic, weakly laminated siltstone and fine grained diamictite. The interval is carbonate veined.
179.75	198.5	1.5	MAS	gzf	Non-magnetic, poorly sorted, non-laminated diamictite. Clasts well rounded to sub angular, up to large pebble sized clasts.

Annual Report Martins Well_EL3508_2010 Appendix E

H0002	EL3508_SL1_2010A Version 3.1
H0003	Date_generated 9-Feb-11
H0004	Reporting_period_end_date 22-Jan-11
H0005	State SA
H0100	Tenement_no/Combined_rept_no EL3508
H0101	Tenement_holder Strategic Minerals Corporation NL
H0102	Project_name Martin's Well
H0106	Tenement_operator Aldershot Resources Ltd
H0150	250K_map_sheet_number SH 5410
H0151	100K_map_sheet_number 6735 6734
H0152	50K_map_sheet_number
H0153	25K_map_sheet_number
H0200	Start_date_of_data_acquisition 23-Jan-10
H0201	End_date_of_data_acquisition 22-Jan-11
H0202	Data_format SL1
H0203	Number_of_data_records 1
H0204	Date_of_metadata_update 23-Feb-11
H0300	Location_data_file EL3508_SL1_2010A.txt
H0301	Location_data_file EL3508_SL1_2010A.txt
H0302	Downhole_lithology_data_file EL3508_SADL3_GEO2010A.txt
H0303	Downhole_geochem_data_file EL3508_SADG3_ASS2010A.txt
H0304	Downhole_survey_data_file EL3508_SADS3_SUR2010A.txt
H0307	Lithology_code_file Aldershot_Codes_2010.pdf
H0308	Lithology_code_file Aldershot_Codes_2010.pdf
H0310	Water_data_file NO
H0311	Hydrodata_in_lithlog_flag NO
H0312	Data_dictionary_file Aldershot_Codes_2010.pdf
H0313	Alteration_data_file EL3508_SADL3_GEO2010A.txt
H0314	Magsusc_data_file EL3508_SADM3_MAGSUS2010A.txt
H0315	Vein_data_file EL3508_SADL3_GEO2010A.txt
H0316	Recovery_data_file NO

EL3508_SL1_2010A

H0317	Weathering_data_file		е	EL3508_SADL3_GEO2010A.txt					
H0318	Radiome	trics_data_	file	EL3508_SADR3_RADIO2010A.txt					
H0319									
H0400	Drill_code	e Diamond							
H0401	Drill_cont	tractor	Hodges [Orilling Pty I	_td				
H0402	Description	on	Diamond	Drilling NC	triple				
H0500	Feature_	located	Drillhole o	collar					
H0501	Geodetic	_datum	GDA94						
H0502	Vertical_o	datum	AHD	AHD					
H0503	Projection UTM MGA Zone 54								
H0508	Local_gri	d_name							
H0530	Coordina	te_system	Projected	I					
H0531	Projection	n_zone	54	Camteq c	ligital prosl	hot			
H0532	Surveying	g_instrume	nt	GPS-Coll	ar	Hodges [Orilling Pty	Ltd	
H0533	Surveying	g_company	Aldershot	Resource	s Ltd	Hodges [Orilling Pty	Ltd	
H0900	Remarks								
H1000	Hole_id	MGA_N	MGA_E	Elevation	Total_de _l	oth	Drill_code	e Dip	
Azimuth_ H1001	ınay	metres	metres	metres	metres		degrees	degrees	
H1004		1	1	1	1	1	1	1	
D	Hawke1	6497500	329700	187.7	198.4	DD	90	270	
EOF									

EL3508_SADS3_SUR2010A

H0002	Version 3
H0003	Date_generated 9-Feb-11
H0004	Reporting_period_end_date 22-Jan-11
H0005	State SA
H0100	Tenement_no/Combined_rept_no EL3508
H0101	Tenement_holder Strategic Minerals Corporation NL
H0102	Project_name Martin's Well
H0106	Tenement_operator Aldershot Resources Ltd
H0150	250K_map_sheet_number SH 54-10
H0151	100K_map_sheet_number 6735 6734
H0152	50K_map_sheet_number
H0153	25K_map_sheet_number
H0200	Start_date_of_data_acquisition 23-Jan-10
H0201	End_date_of_data_acquisition 22-Jan-11
H0202	Data_format DS3
H0203	Number_of_data_records 4
H0204	Date_of_metadata_update 23-Feb-11
H0300	Location_data_file EL3508_SL1_2010A.txt
H0301	Location_data_file EL3508_SL1_2010A.txt
H0302	Downhole_lithology_data_file EL3508_SADL3_GEO2010A.txt
H0303	Downhole_geochem_data_file EL3508_SADG3_ASS2010A.txt
H0304	Downhole_survey_data_file EL3508_SADS3_SUR2010A.txt
H0307	Lithology_code_file Aldershot_Codes_2010.pdf
H0308	Lithology_code_file Aldershot_Codes_2010.pdf
H0310	Water_data_file NO
H0311	Hydrodata_in_lithlog_flag NO
H0312	Data_dictionary_file Aldershot_Codes_2010.pdf
H0313	Alteration_data_file EL3508_SADL3_GEO2010A.txt
H0314	Magsusc_data_file EL3508_SADM3_MAGSUS2010A.txt
H0315	Vein_data_file EL3508_SADL3_GEO2010A.txt
H0316	Recovery_data_file NO
	Page 1

EL3508_SADS3_SUR2010A

	144 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			FLOROS CARLO OFCOSASA I						
H0317	Weathering_data_file			EL3508_SADL3_GEO2010A.txt						
H0318	Radiometrics_data_file			EL3508_	SADR3_R	ADIO2010 <i>i</i>	A.txt			
H0319										
H0400	Drill_code	e Diamond	RC							
H0401	Drill_cont	tractor	Hodges [Orilling Pty	Ltd	Hodges [Orilling Pty Ltd			
H0402	Description	on	Diamond	Drilling NC	triple	Reverse	Circulation Drilling			
H0502	Vertical_c	datum	AHD							
H0532	Surveying_instrument			Camteq o	Camteq digital proshot					
H0533	Surveying	g_company	/ Hodges [Orilling Pty	Ltd					
H0900	Remarks	ns - not s	urveyed							
H1000	Hole_id	Surveyed	_depth	Dip	Azimuth_	MGA	Survey_instrument	Drill_code		
H1001		metres	degrees	degrees						
H1004		0	-60	6.8	COMPAS	SS_CLINO	DD			
D	Hawke1	50	-60.3	4.2	D PROSI	НОТ	DD			
D	Hawke1	100	-59.9	9.4	D PROSI	НОТ	DD			
D	Hawke1	150	-57.1	4.5	D PROSI	НОТ	DD			
D	Hawke1	198.4	-55.9	358.2	D PROSI	НОТ	DD			
EOF										

EL3508_SADR3_RADIO2010A

H0002 Version 3 H0003 Date_generated 9-Feb-11 H0004 Reporting period end date 22-Jan-11 H0005 SA State H0100 Tenement no/Combined rept no EL3508 H0101 Tenement_holder Strategic Minerals Corporation NL H0102 Project name Martin's Well H0106 Tenement_operator Aldershot Resources Ltd H0150 250K_map_sheet_number SH 54-10 H0151 100K_map_sheet_number 6735 6734 H0152 50K_map_sheet_number H0153 25K_map_sheet_number H0200 Start_date_of_data_acquisition 23-Jan-10 H0201 End_date_of_data_acquisition 22-Jan-11 H0202 Data_format DR3 H0203 Number_of_data_records 42 H0204 Date_of_metadata_update 23-Feb-11 H0300 Location_data_file EL3508_SL1_2010A.txt H0301 Location_data_file EL3508_SL1_2010A.txt H0302 Downhole_lithology_data_file EL3508_SADL3_GEO2010A.txt H0303 Downhole_geochem_data_file EL3508_SADG3_ASS2010A.txt H0304 Downhole_survey_data_file EL3508_SADS3_SUR2010A.txt H0307 Lithology_code_file Aldershot_Codes_2010.pdf H0308 Lithology_code_file Aldershot_Codes_2010.pdf H0310 Water_data_file NO H0311 Hydrodata_in_lithlog_flag NO H0312 Data dictionary file Aldershot Codes 2010.pdf H0313 Alteration data file EL3508 SADL3 GEO2010A.txt H0314 Magsusc_data_file EL3508_SADM3_MAGSUS2010A.txt H0315 Vein data file EL3508 SADL3 GEO2010A.txt H0316 Recovery_data_file NO

EL3508_SADR3_RADIO2010A

H0317	Weathering_data_file		EL3508_SADL3_GEO2010A.txt			
H0318	Radiometrics_data_file		EL3508_	EL3508_SADR3_RADIO2010A.txt		
H0319						
H0400	Drill_code Diamond					
H0401	Drill_contractor	Hodges [Orilling Pty	Ltd		
H0402	Description	Diamond	Drilling NC	triple		
H0600	Instrument	GR-135				
H0601	Sample_type	CORE:Di	amond cor	е		
H0602	Sample_description	NQ core				
H0700						
H0701						
H0702						
H0800						
H0801						
H0802						
H0900	Remarks					
H1000	Hole_id Sample_i	id	From	То	Drill_code Radiometrics (TC)	
H1001		metres	metres		cps	
D	Hawke1	0	6.85	NQ core	155	
D	Hawke1	6.85	12.40	NQ core	133	
D	Hawke1	12.40	16.80	NQ core	144	
D	Hawke1	16.80	21.35	NQ core	133	
D	Hawke1	21.35	26.10	NQ core	131	
D	Hawke1	26.10	30.55	NQ core	137	
D	Hawke1	30.55	35.20	NQ core	144	
D	Hawke1	35.20	39.65	NQ core	140	
D	Hawke1	39.65	44.45	NQ core	136	
D	Hawke1	44.45	49.05	NQ core	127	
D	Hawke1	49.05	53.75	NQ core	139	

Б	Univided		_	R3_RADIO	
D	Hawke1	53.75	58.25	NQ core	146
D	Hawke1	58.25	63.60	NQ core	140
D	Hawke1	63.60	67.35	NQ core	129
D	Hawke1	67.35	74.75	NQ core	125
D	Hawke1	74.75	79.45	NQ core	110
D	Hawke1	79.45	84.25	NQ core	105
D	Hawke1	84.25	88.85	NQ core	104
D	Hawke1	88.85	93.80	NQ core	105
D	Hawke1	93.80	98.55	NQ core	102
D	Hawke1	98.55	102.55	NQ core	106
D	Hawke1	102.55	107.15	NQ core	96
D	Hawke1	107.15	111.95	NQ core	104
D	Hawke1	111.95	116.10	NQ core	97
D	Hawke1	116.10	121.00	NQ core	93
D	Hawke1	121.00	125.85	NQ core	100
D	Hawke1	125.85	130.00	NQ core	100
D	Hawke1	130.00	134.50	NQ core	102
D	Hawke1	134.50	138.86	NQ core	103
D	Hawke1	138.86	141.50	NQ core	111
D	Hawke1	141.50	148.24	NQ core	109
D	Hawke1	148.24	152.67	NQ core	92
D	Hawke1	152.67	157.31	NQ core	89
D	Hawke1	157.31	161.98	NQ core	91
D	Hawke1	161.98	166.66	NQ core	94
D	Hawke1	166.66	171.15	NQ core	94
D	Hawke1	171.15	175.75	NQ core	105
D	Hawke1	175.75	180.15	NQ core	106
D	Hawke1	180.15	185.91	NQ core	106
D	Hawke1	185.91	190.37	NQ core	112
D	Hawke1	190.37	195.00	NQ core	114
D	Hawke1	195.00	198.40	NQ core	114
				Page 3	

EOF

EL3508 SADM3 MAGSUS2010A

	EL3	508_SADM	13_MAGSUS2010A
H0002 H0003 H0004	Version 3 Date_generated 9-Feb-11 Reporting_period_end_date	22-Jan-11	
H0005 H0100	State SA Tenement_no/Combined_rept_	_no	EL3508
H0101	Tenement_holder Strategic	Minerals C	orporation NL
H0102	Project_name Martin's V	Vell	
H0106	Tenement_operator Aldershot	Resources	s Ltd
H0150	250K_map_sheet_number	SH 54-10	
H0151	100K_map_sheet_number	6735	6734
H0152	50K_map_sheet_number		
H0153	25K_map_sheet_number		
H0200	Start_date_of_data_acquisition	23-Jan-10)
H0201	End_date_of_data_acquisition	22-Jan-11	
H0202 H0203	Data_format DG3 Number_of_data_records	500	
H0204	Date_of_metadata_update	23-Feb-11	1
H0300	Location_data_file EL3508_5	SL1_2010A	ı.txt
H0301	Location_data_file EL3508_5	SL1_2010A	ı.txt
H0302	Downhole_lithology_data_file	EL3508_5	SADL3_GEO2010A.txt
H0303	Downhole_geochem_data_file	EL3508_9	SADG3_ASS2010A.txt
H0304	Downhole_survey_data_file	EL3508_9	SADS3_SUR2010A.txt
H0307	Lithology_code_file Aldershot	_Codes_20	010.pdf
H0308	Lithology_code_file Aldershot	_Codes_20	010.pdf
H0310 H0311	Water_data_file NO Hydrodata_in_lithlog_flag	NO	
H0312	Data_dictionary_file Aldershot	_Codes_20	010.pdf
H0313	Alteration_data_file EL3508_5	SADL3_GE	O2010A.txt
H0314	Magsusc_data_file EL3508_S	SADM3_MA	AGSUS2010A.txt
H0315	Vein_data_file EL3508_S	SADL3_GE	O2010A.txt
H0316 H0317	Recovery_data_file NO Weathering_data_file	EL3508_5	SADL3_GEO2010A.txt
H0318	Radiometrics_data_file	EL3508_9	SADR3_RADIO2010A.txt
H0319			

EL3508_SADM3_MAGSUS2010A

H0402 Description Diamond Drilling NQ triple H0600 Instrument Fugro GMS-2	
H0600 Instrument Fugro GMS-2	
H0601 Sample_type CORE:Diamond core	
H0602 Sample_description NQ core H0700 SO31 H0701 H0702 H0800 H0801 H0802 H0900 Remarks	
H1000 Hole_id Sample_id From To Magnetic Susc	ceptability
Hawke1	

			FI 3508 SADI	M3 MAGSUS2010A
D	Hawke1	20	21	24
D	Hawke1	21	22	19
D D	Hawke1 Hawke1	22 23	23 24	20 17
D	Hawke1	24	25	18
D	Hawke1	25	26	19
D	Hawke1	26	27	17
D D	Hawke1 Hawke1	27 28	28 29	21 19
D	Hawke1	29	30	23
D	Hawke1	30	31	20
D D	Hawke1 Hawke1	31 32	32 33	39 19
D	Hawke1	33	34	34
D	Hawke1	34	35	19
D D	Hawke1	35	36 37	27
D	Hawke1 Hawke1	36 37	37 38	19 22
D	Hawke1	38	39	26
D	Hawke1	39	40	13
D D	Hawke1 Hawke1	40 41	41 42	20 13
D	Hawke1	42	43	14
D	Hawke1	43	44	16
D D	Hawke1 Hawke1	44 45	45 46	27 25
D	Hawke1	46	47	22
D	Hawke1	47	48	21
D D	Hawke1 Hawke1	48 49	49 50	22 36
D	Hawke1	50	51	30
D	Hawke1	51	52	44
D D	Hawke1	52 53	53 54	36 41
D	Hawke1 Hawke1	53 54	55	41
D	Hawke1	55	56	32
D	Hawke1	56	57 50	38
D D	Hawke1 Hawke1	57 58	58 59	31 26
D	Hawke1	59	60	33
D	Hawke1	60	61	0
D D	Hawke1 Hawke1	61 62	62 63	34 25
D	Hawke1	63	64	21
D	Hawke1	64	65	39
D D	Hawke1 Hawke1	65 66	66 67	44 35
D	Hawke1	67	68	18
D	Hawke1	68	69	32
D D	Hawke1	69 70	70 71	16
D	Hawke1 Hawke1	70 71	71 72	0 22
D	Hawke1	72	73	10
D	Hawke1	73	74 75	8
D D	Hawke1 Hawke1	74 75	75 76	12 14
D	Hawke1	76	70 77	13
D	Hawke1	77	78 70	16
D D	Hawke1 Hawke1	78 79	79 80	11 16
D	Hawke1	80	81	14
				Daga 2

		EL3	508 SADM	13_MAGSUS2010A
D	Hawke1	81	82	17
D D	Hawke1 Hawke1	82 83	83 84	16 14
D	Hawke1	84	85	19
D	Hawke1	85	86	16
D D	Hawke1 Hawke1	86 87	87 88	18 15
D	Hawke1	88	89	11
D	Hawke1	89	90	14
D D	Hawke1 Hawke1	90 91	91 92	13 7
D	Hawke1	92	93	9
D	Hawke1	93	94	14
D D	Hawke1 Hawke1	94 95	95 96	9 116
D	Hawke1	96	97	4557
D	Hawke1	97	97.25	3679
D D	Hawke1 Hawke1	97.25 97.5	97.5 97.75	6037 5789
D	Hawke1	97.75	98	5243
D	Hawke1	98	98.25	6540
D D	Hawke1 Hawke1	98.25 98.5	98.5 98.75	5898 4329
D	Hawke1	98.75	99	7745
D	Hawke1	99	99.25	1131
D D	Hawke1 Hawke1	99.25 99.5	99.5 99.75	2346 392
D	Hawke1	99.75	100	781
D	Hawke1	100	100.25	1085
D D	Hawke1 Hawke1	100.25 100.5	100.5 100.75	3035 2223
D	Hawke1	100.75	101	1458
D	Hawke1	101	101.25	2289
D D	Hawke1 Hawke1	101.25 101.5	101.5 101.75	1470 385
D	Hawke1	101.75	102	1311
D D	Hawke1 Hawke1	102	102.25 102.5	805
D	Hawke1	102.25 102.5	102.5	1153 922
D	Hawke1	102.75	103	1024
D D	Hawke1 Hawke1	103 103.25	103.25 103.5	546 111
D	Hawke1	103.25	103.5	248
D	Hawke1	103.75	104	270
D D	Hawke1 Hawke1	104 104.25	104.25 104.5	382 1164
D	Hawke1	104.25	104.75	1411
D	Hawke1	104.75	105	1051
D D	Hawke1 Hawke1	105 105.25	105.25 105.5	1181 1094
D	Hawke1	105.5	105.75	1092
D	Hawke1	105.75	106	473
D D	Hawke1 Hawke1	106 106.25	106.25 106.5	378 1103
D	Hawke1	106.5	106.75	959
D	Hawke1	106.75	107	523
D D	Hawke1 Hawke1	107 107.25	107.25 107.5	585 970
D	Hawke1	107.5	107.75	1145
D	Hawke1	107.75	108	976
D	Hawke1	108	108.25	483

EL3508 SADM3 MAGSUS2010A 108.25 713 D Hawke1 108.5 D 108.75 229 Hawke1 108.5 D 108.75 109 1968 Hawke1 D 109 109.25 4566 Hawke1 D Hawke1 126.5 126.75 307 D Hawke1 126.75 127 119 D Hawke1 127 127.25 98 D 127.25 222 Hawke1 127.5 D 446 Hawke1 127.5 127.75 D 127.75 390 Hawke1 128 D Hawke1 128 128.25 353 D 128.5 Hawke1 128.25 704 524 D Hawke1 128.5 128.75 D 128.75 129 476 Hawke1 D Hawke1 129 129.25 336 D 129.25 Hawke1 129.5 48 129.75 D 129.5 291 Hawke1 D 129.75 674 Hawke1 130 D Hawke1 130 130.25 358 D Hawke1 130.25 130.5 285 D Hawke1 130.5 130.75 191 D Hawke1 130.75 131 117 131.25 D Hawke1 131 240 131.25 D 253 Hawke1 131.5 D 131.5 131.75 Hawke1 0 D 131.75 372 Hawke1 132 D 132 132.25 183 Hawke1 D Hawke1 132.25 132.5 186 D Hawke1 132.5 132.75 371 D Hawke1 132.75 133 360 D Hawke1 133 133.25 94 D 133.25 307 Hawke1 133.5 D 133.5 133.75 Hawke1 743 D Hawke1 133.75 134 257 D Hawke1 134 134.25 493 D Hawke1 134.25 134.5 419 D Hawke1 134.5 134.75 195 D Hawke1 134.75 135 431 D 135.25 Hawke1 135 297 D Hawke1 135.25 135.5 309 135.75 D Hawke1 135.5 145 D Hawke1 135.75 649 136 D Hawke1 136.25 792 136 D Hawke1 136.25 136.5 434 D Hawke1 136.5 136.75 937 D Hawke1 136.75 137 1626 D Hawke1 137 137.25 848 D Hawke1 137.25 137.5 840 D Hawke1 137.5 137.75 1382 D Hawke1 137.75 138 811 D Hawke1 138 138.25 348 D Hawke1 138.25 138.5 403 D Hawke1 138.5 138.75 1007 D Hawke1 138.75 139 709 D 139.25 760 Hawke1 139 D Hawke1 139.25 139.5 908 D 139.75 654 Hawke1 139.5 D Hawke1 139.75 140 586 D 140 140.25 986 Hawke1 D Hawke1 140.25 140.5 1046 D Hawke1 140.5 140.75 900

		FI3	508 SADN	M3 MAGSUS2010A
D	Hawke1	140.75	141	444
D	Hawke1	141	141.25	892
D	Hawke1	141.25	141.5	730
D D	Hawke1 Hawke1	141.5 141.75	141.75 142	869 1353
D	Hawke1	141.75	142.25	729
D	Hawke1	142.25	142.5	848
D	Hawke1	142.5	142.75	540
D D	Hawke1 Hawke1	142.75 143	143 143.25	893 840
D	Hawke1	143.25	143.5	1802
D	Hawke1	143.5	143.75	904
D	Hawke1	143.75	144	727
D D	Hawke1 Hawke1	144 144.25	144.25 144.5	1233 870
D	Hawke1	144.5	144.75	734
D	Hawke1	144.75	145	470
D D	Hawke1	145 145.25	145.25 145.5	574 456
D	Hawke1 Hawke1	145.25	145.75	1014
D	Hawke1	145.75	146	406
D	Hawke1	146	146.25	373
D D	Hawke1 Hawke1	146.25 146.5	146.5 146.75	1121 1062
D	Hawke1	146.75	140.75	686
D	Hawke1	147	147.25	1090
D	Hawke1	147.25	147.5	1071
D D	Hawke1 Hawke1	147.5 147.75	147.75 148	1145 1063
D	Hawke1	148	148.25	1175
D	Hawke1	148.25	148.5	760
D D	Hawke1 Hawke1	148.5 148.75	148.75 149	627 859
D	Hawke1	140.75	149.25	1354
D	Hawke1	149.25	149.5	966
D	Hawke1	149.5	149.75	839
D D	Hawke1 Hawke1	149.75 150	150 150.25	2011 562
D	Hawke1	150.25	150.5	8337
D	Hawke1	150.5	150.75	5975
D D	Hawke1 Hawke1	150.75 151	151 151.25	5066 6222
D	Hawke1	151.25	151.5	9315
D	Hawke1	151.5	151.75	7438
D D	Hawke1	151.75	152	9056
D	Hawke1 Hawke1	152 152.25	152.25 152.5	19410 16430
D	Hawke1	152.5	152.75	17820
D	Hawke1	152.75	153	23810
D D	Hawke1 Hawke1	153 153.25	153.25 153.5	21060 90900
D	Hawke1	153.25	153.75	57760
D	Hawke1	153.75	154	25530
D	Hawke1	154	154.25	62750
D D	Hawke1 Hawke1	154.25 154.5	154.5 154.75	30690 24510
D	Hawke1	154.75	155	47070
D	Hawke1	155	155.25	57770
D D	Hawke1 Hawke1	155.25 155.5	155.5 155.75	54810 31050
D	Hawke1	155.75	155.75	29500
-				20000 2000 6

EL3508 SADM3 MAGSUS2010A D 156 Hawke1 156.25 23890 D Hawke1 109.25 109.5 2082 D 109.5 109.75 1200 Hawke1 D 109.75 1478 Hawke1 110 D Hawke1 110 110.25 1564 D Hawke1 110.25 110.5 1373 D Hawke1 110.5 110.75 823 D Hawke1 110.75 111 1353 D 111.25 Hawke1 111 1192 D 111.25 Hawke1 111.5 419 D Hawke1 111.5 111.75 964 D 446 Hawke1 111.75 112 D 0 Hawke1 112 112.25 D 112.25 1884 Hawke1 112.5 D Hawke1 112.75 1320 112.5 D Hawke1 112.75 113 2314 D 113.25 Hawke1 113 719 D 113.25 682 Hawke1 113.5 D Hawke1 113.5 113.75 750 D Hawke1 113.75 114 609 114.25 D Hawke1 114 1070 D 114.25 Hawke1 114.5 474 D Hawke1 114.5 114.75 346 D 114.75 Hawke1 115 957 D 115.25 1101 Hawke1 115 D 115.25 Hawke1 115.5 1543 D 115.75 Hawke1 115.5 883 D Hawke1 115.75 116 1019 Hawke1 116.25 D 116 880 D Hawke1 116.25 116.5 937 D Hawke1 116.5 116.75 1618 D Hawke1 116.75 117 2006 D 117.25 Hawke1 117 910 D Hawke1 117.25 117.5 1537 D Hawke1 117.5 117.75 968 D Hawke1 117.75 118 328 D Hawke1 118 118.25 724 D Hawke1 118.25 118.5 1171 D 118.5 118.75 Hawke1 247 D Hawke1 118.75 119 72 D Hawke1 119.25 221 119 D Hawke1 119.25 119.5 537 D Hawke1 119.5 119.75 0 D Hawke1 119.75 120 2347 D Hawke1 120 120.25 1690 D Hawke1 120.25 120.5 703 D 120.5 Hawke1 120.75 0 D Hawke1 156.25 24980 156.5 D Hawke1 156.5 156.75 18720 D Hawke1 156.75 157 8033 D Hawke1 157 157.25 64400 D Hawke1 157.25 157.5 5252 D Hawke1 157.5 157.75 27400 D 157.75 Hawke1 158 7765 D 158 158.25 11400 Hawke1 D Hawke1 158.25 158.5 7118 D 158.75 57510 Hawke1 158.5 D Hawke1 158.75 159 3851 D 159 159.25 58550 Hawke1 D Hawke1 159.25 159.5 38820 D Hawke1 159.5 159.75 10550

EL3508 SADM3 MAGSUS2010A D 160 Hawke1 159.75 25480 D 160.25 8325 Hawke1 160 D 160.25 160.5 14890 Hawke1 D 160.5 160.75 7704 Hawke1 D Hawke1 160.75 161 6331 D Hawke1 161 161.25 2616 D Hawke1 161.25 161.5 4309 D Hawke1 161.5 161.75 2605 D Hawke1 161.75 162 51060 D 162.25 24330 Hawke1 162 D Hawke1 162.25 162.5 41660 D Hawke1 162.5 162.75 2980 D Hawke1 162.75 163 12560 D 163.25 Hawke1 163 9719 D Hawke1 163.25 163.5 8947 D Hawke1 163.5 163.75 6013 163.75 D Hawke1 164 3157 D 164.25 3071 Hawke1 164 D Hawke1 164.25 164.5 3553 D Hawke1 164.5 164.75 75980 D Hawke1 164.75 165 61370 D Hawke1 165 165.25 3489 D 165.25 Hawke1 165.5 2477 D 165.5 165.75 Hawke1 3042 D 165.75 1342 Hawke1 166 D 166.25 8357 Hawke1 166 D 166.25 166.5 Hawke1 45170 D Hawke1 166.5 166.75 23920 D Hawke1 166.75 167 3690 D Hawke1 167 167.25 3519 D Hawke1 167.25 167.5 88 167.5 D 167.75 Hawke1 278 D 167.75 Hawke1 168 1733 D Hawke1 168 168.25 976 D Hawke1 168.25 168.5 2223 D Hawke1 168.5 168.75 608 D Hawke1 168.75 169 430 D Hawke1 169 169.25 6450 D 169.25 169.5 Hawke1 1334 D Hawke1 169.5 169.75 2490 169.75 D Hawke1 170 4313 D Hawke1 170 170.25 1732 D Hawke1 170.25 170.5 2981 D Hawke1 170.5 170.75 3181 D Hawke1 170.75 171 3411 D Hawke1 171 171.25 63770 D Hawke1 171.25 171.5 6988 D Hawke1 171.5 171.75 24020 D Hawke1 171.75 20840 172 D Hawke1 172 172.25 2020 D Hawke1 172.25 172.5 7230 D Hawke1 172.5 172.75 3692 172.75 D Hawke1 173 13850 D 173.25 Hawke1 173 3958 D 173.25 Hawke1 173.5 1036 D 173.75 Hawke1 173.5 1347 D 173.75 174 2294 Hawke1 D 174.25 Hawke1 174 5131 D 174.25 174.5 8996 Hawke1 D Hawke1 174.5 174.75 7812 174.75 D Hawke1 175 24520

EL3508 SADM3 MAGSUS2010A D 175 Hawke1 175.25 22090 D Hawke1 175.25 175.5 36520 D 175.5 175.75 14470 Hawke1 D 175.75 176 26200 Hawke1 D Hawke1 176 176.25 10800 D Hawke1 176.25 176.5 15940 D Hawke1 176.5 176.75 600 D Hawke1 176.75 177 65 D 177.25 62 Hawke1 177 D 177.25 556 Hawke1 177.5 D 177.5 177.75 238 Hawke1 D Hawke1 177.75 178 26 D Hawke1 178 178.25 313 D 178.25 226 Hawke1 178.5 D Hawke1 178.5 178.75 45 D Hawke1 178.75 179 213 D 179.25 Hawke1 179 0 D 179.25 7 Hawke1 179.5 D Hawke1 179.5 179.75 8 D Hawke1 179.75 180 72 180.25 D Hawke1 180 348 D Hawke1 180.25 180.5 18 D 7 Hawke1 180.5 180.75 D 2 Hawke1 180.75 181 D 181.25 182 Hawke1 181 D 181.25 Hawke1 181.5 82 D 181.5 Hawke1 181.75 16 D Hawke1 181.75 182 20 D Hawke1 182 182.25 11 112 D Hawke1 182.25 182.5 D Hawke1 182.5 182.75 370 D 182.75 Hawke1 183 15 D Hawke1 183 183.25 20 D Hawke1 183.25 183.5 169 D Hawke1 183.5 183.75 47 D Hawke1 183.75 184 12 D Hawke1 184 184.25 103 D Hawke1 184.25 184.5 9 D 184.5 184.75 9 Hawke1 D 184.75 0 Hawke1 185 D Hawke1 185 185.25 7 D 0 Hawke1 185.25 185.5 D Hawke1 185.5 185.75 0 D Hawke1 185.75 186 118 D Hawke1 186 186.25 9 D 35 Hawke1 186.25 186.5 D Hawke1 186.5 186.75 231 D Hawke1 186.75 35 187 D Hawke1 187 187.25 D Hawke1 187.25 187.5 133 D Hawke1 187.5 187.75 283 D Hawke1 187.75 188 10 D Hawke1 188 188.25 41 D 188.25 Hawke1 188.5 330 D 29 Hawke1 188.5 188.75 D 188.75 4 Hawke1 189 D 253 189.25 Hawke1 189 D Hawke1 189.25 189.5 261 D 189.75 3 Hawke1 189.5 D Hawke1 189.75 190 67 D Hawke1 190 190.25 12

EL3508_SADM3_MAGSUS2010A D Hawke1 190.25 190.5 113 D Hawke1 190.5 190.75 16 D Hawke1 190.75 191 130 D Hawke1 191 191.25 221 D Hawke1 191.25 191.5 5 2 D Hawke1 191.5 191.75 D 191.75 94 Hawke1 192 D 192.25 262 Hawke1 192 D Hawke1 192.25 192.5 14 D 192.75 Hawke1 192.5 4 D Hawke1 192.75 193 3 D 193.25 394 Hawke1 193 D 193.25 25 Hawke1 193.5 D Hawke1 193.5 193.75 5 D Hawke1 193.75 194 40 D Hawke1 194 194.25 280 D Hawke1 194.25 194.5 34 D Hawke1 194.5 194.75 121 D Hawke1 194.75 195 110 D Hawke1 195 195.25 31 195.25 D Hawke1 195.5 45 D 186 Hawke1 195.5 195.75 D 195.75 Hawke1 196 0 D 196.25 Hawke1 196 0 D 196.25 196.5 Hawke1 0 196.75 D Hawke1 196.5 413 D Hawke1 196.75 197 0 197.25 D Hawke1 197 0 D Hawke1 197.25 197.5 343 D 197.5 197.75 Hawke1 192 D 197.75 Hawke1 198 39 D Hawke1 198 198.25 8 D Hawke1 198.25 198.5 0

EOF

H0002 Version 3

H0003 Date_generated 9-Feb-11

H0004 Reporting_period_end_date 22-Jan-11

H0005 State SA

H0100 Tenement_no/Combined_rept_no EL3508

H0101 Tenement_holder Strategic Minerals Corporation NL

H0102 Project_name Martin's Well

H0106 Tenement_operator Aldershot Resources Ltd

H0150 250K_map_sheet_number SH 54-10

H0151 100K_map_sheet_number 6735 6734

H0152 50K_map_sheet_number

H0153 25K_map_sheet_number

H0200 Start_date_of_data_acquisition 23-Jan-10

EL3508_SADL3_GEO2010A

H0201	End_date_of_data_acquisition 22-Jan-11
H0202	Data_format DL3
H0203	Number_of_data_records 20
H0204	Date_of_metadata_update 23-Feb-11
H0300	Location_data_file EL3508_SL1_2010A.txt
H0301	Location_data_file EL3508_SL1_2010A.txt
H0302	Downhole_lithology_data_file EL3508_SADL3_GEO2010A.txt
H0303	Downhole_geochem_data_file EL3508_SADG3_ASS2010A.txt
H0304	Downhole_survey_data_file EL3508_SADS3_SUR2010A.txt
H0307	Lithology_code_file Aldershot_Codes_2010.pdf
H0308	Lithology_code_file Aldershot_Codes_2010.pdf
H0310	Water_data_file NO

EL3508_SADL3_GEO2010A

H0311	Hydrodata_in_lithlog	_flag	NO	
H0312	Data_dictionary_file	Aldershot	_Codes_2010.pdf	
H0313	Alteration_data_file	EL3508_5	SADL3_GEO2010A.tx	ct
H0314	Magsusc_data_file	EL3508_9	SADM3_MAGSUS201	IOA.txt
H0315	Vein_data_file	EL3508_5	SADL3_GEO2010A.tx	ct .
H0316	Recovery_data_file	NO		
H0317	Weathering_data_fil	е	EL3508_SADL3_GE	EO2010A.txt
H0318	Radiometrics_data_	file	EL3508_SADR3_RA	ADIO2010A.txt
H0319				
H0400	Drill_code Diamond	RC		
H0401	Drill_contractor	Hodges D	Prilling Pty Ltd	Hodges Drilling Pty Ltd
H0402	Description	Diamond	Drilling NQ triple	Reverse Circulation Drilling

EL3508_SADL3_GEO2010A

H0502	Vertical_o	datum	AHD							
H0532	Surveyin	g_instrume	nt	Camteq d	igital prosh	ot				
H0533	Surveyin	g_company	Hodges D	rilling Pty L	.td					
H0900	Remarks									
Sulph1_0	e Alt_2 de /le ct Vein1_St	Sulph1_E	Alt2_Style _Vol de Vein2	Lith1 Weatherin Min1_Coo Min2_Styl Min4_Pct Vein2_Co Sulph1_S	le e _Vol mp	Structure Min1_Pct_ Min3_Coc Min4_Styl	_Vol le	Alt_1 Min1_Styl Min3_Pct_ Vein1 rle		mp
H1004		0.05	0.05							
D wmd grains to	Hawke1 UNK o fine	0 sap mtx	3 CARB fx	SPLT WE grains too	MAS DIS fine	gzv mtx	SPRK	LAM	gzf qz	
D wsl grains to	Hawke1 BED o fine	BN 3 frs mtx he	D 7.39 HEMC fx vst	BN SLST WE grains too 0.1	LAM DIS fine VMLT	gzf mtx pz	vst	0.1	qz VSIN	
D BED	Hawke1 frs	BN 7.39 HEMC	D 30.34 WE	BN SLST DIS	RD LAM	gzf	SDST	EQ qz		frs
fine	mtx pz GN	fx vst VP	grains too 0.1 GN	fine VNLT	mtx cb	vcb	0.1	VSIN		
D	Hawke1	30.34	33.4	SLST	LAM	gzf				frs

LAM Page 4

			Е	L3508_SA	DL3_GEO	2010A				
BED	frs	HEMC	MOD	DIS			_	qz	grains too)
fine	mtx	fx	grains too		mtx	he	5	bdi	go	
0.1	dis	cb GN	vcb P	0.1 GN	VSIN RD	pz WT	vst	0.1	VSIN	
D	Hawke1	33.4	39.57	SLST	LAM	gzf				frs
BED	frs	HEMC	WE	DIS		Ü		qz	grains too)
fine	mtx	fx	grains too		mtx	. 1.	0.4	VOIN		
	he GN	vst P	0.1 GN	VMLT RD	cb GY	vcb	0.1	VSIN		
D	Hawke1	39.57	50.97	SDST	MAS	gzm	SLST	LAM	gzf	
wsl	PXST	frs	HEMC	MOD	DIS	J			qz	
grains too	fine	mtx	fx	grains too		mtx	mt	0.1	ang	
		he YW	vst D	0.1 YW	VMLT GN	pz PK	vst	0.1	VSIN	
D	Hawke1	50.97	57.83	SLST	LAM	gzf	SDST	MAS	gzm	frs
BED	frs	HEMC	WE	DIS		921	0501	qz	grains too	
fine	mtx	fx	grains too		mtx	sd	0.1	rex	_	
	cb GY	vcb P	0.1 GY	VMLT	sr	vst	0.1	VMLT		
D	Hawke1	57.83	69.25	PK SLST	LAM	gzf	SDST	MAS	gzm	frs
BED	frs	HEMC	WE	DIS	L/ (IVI	921	ODOI	qz	grains too	
fine	mtx		grains too		mtx	ba	0.1	rex	Ü	
	he	vst	0.1	VMLT	cb	vcb	0.1	VMLT		
D	GY Hawke1	P 69.25	GY 77.95	GN CNGL	PK POLY	071/	SLST	LAM	azf	
wsl	CLAS	frs	HEMC	WE	DIS	gzy CARB	WE	DIS	gzf qz	30
cls	fx	25	cls	qz		fine to see		fx	grains too	
fine to se	emtx	cl	vst	0.1	VMLT	pz	vst		VMLT	
D	Hawke1	GN 77.95	P 88.5	GN DMCT	GY MAS	071/				frs
CLAS	frs	HEMC	WE	DIS	CARB	gzv WE	DIS	qz	grains too	
fine	mtx	fx		fine to see		cl	0.1	rdd	grains too	,
	he	vst	0.1	VSIN	pz	vst		VSIN		
_	GY	P	GY	GN	PK		OL OT		. (
D wsl	Hawke1 CLAS	88.5 frs	96.11 HEMC	SDST WE	POLY DIS	gzf	SLST	LAM	gzf qz	
grains too		mtx	fx		fine to see	emtx	fe	0.1	bdu	
_		qz	vqz	1	VLRF					
D	l lavelea 1	ĠN 00.11	P 100 FF	GN	WT	BK ~=f	CDCT	DΛ	af	£
D BED	Hawke1 frs	96.11 HEMC	102.55 WE	SLST DIS	LAM	gzf	SDST	BA qz	gzf grains too	frs
fine	mtx	fx		fine to see	emtx	fe	>15%	mtx	granio tot	,
	he	vst	0.1	VMLT	cl	vst		VMLT		
_	RD	D	RD	GN	PK	t	CDCT	D.4		£
D BED	Hawke1 frs	102.55 HEMC	109 WE	SLST DIS	LAM SERC	gzf WE	SDST DIS	BA qz	gzf grains too	frs
fine	mtx	fx		fine to see		fe	>15%	mtx	grains too	,
	sr	vst	0.1	VMLT	cl	vst		VMLT		
D	RD	D	RD	GN	GY		ODOT	D.4	,	
D wsl	Hawke1 BED	109 frs	141.54 HEMC	SLST WE	LAM DIS	gzf SERC	SDST WE	BA DIS	gzf	
grains too		mtx	fx		פום fine to see		fe	>15%	qz mtx	
9		sr	vst	0.1	VMLT	go	vst		VSIN	
_		RD	D	RD	GN	GY				
D BED	Hawke1	141.54	151.43 WE	SLST	LAM	gzf	ΛΝΙΛ	07	araine too	frs
fine	frs mtx	HEMC fx		DIS fine to see	AA e mtx	PEV fe	ANA >15%	qz mtx	grains too he	5
dis	he	vst	0.1	VMLT	sr	vst		VMLT		-
	RD	D	RD	GN	GY					
D	Hawke1	151.43	155.45	SLST	LAM	gzf		~~	araina t-	frs
BED	frs	CLT	WE	DIS				qz	grains too)

Page 5

			E	EL3508_S/	ADL3 GE	O2010A				
fine	mtx cb GY	fx vst P		o fine to se VMLT BK		fe	>15%	mtx		
D	Hawke1	155.45	158.75	SLST	LAM	gzf				frs
BED	frs	UL						qz	grains to)
fine	mtx cb GY	fx vst P	grains to 0.1 GY	o fine to se VMLT BK	ee mtx	fe	>15%	mtx		
D	Hawke1	158.75	178.03	SLST	LAM	gzf	DMCT	MAS	gzf	frs
BED	frs	UL				3		qz	grains to	
fine	mtx	fx	grains to	o fine to se	ee mtx	fe	>15%	mtx	· ·	
	cb	vst	0.1	VMLT	ру	vst	0.1	VSIN	py1	
0.1	rex	GY	Р	GY	BK	_				
D	Hawke1	178.03	179.77	SLST	LAM	gzf				frs
BED	frs	UL						qz	grains to)
fine	mtx	fx .		o fine to se	ee mtx					
	cb	vst	0.1	VMLT						
Б	WT	P 170.77	WT	GY	MAG	af				£
D BED	Hawke1	179.77	198.4	DMCT	MAS	gzf		~=	araina ta	frs
	frs	UL fv	araine to	o fine to se	o mtv			qz	grains to)
fine	mtx	fx	0.1	VSIN	HILX				nv1	
0.1	qz rex	vst WT	0.1 P	WT	PK				py1	
EOF	167	VVI	•	VVI	1 11					

H0002 Version 3

H0003 Date_generated 9-Feb-11

H0004 Reporting_period_end_date 22-Jan-11

H0005 State SA

H0100 Tenement_no/Combined_rept_no EL3508

H0101 Tenement_holder Strategic Minerals Corporation NL

H0102 Project_name Martin's Well

H0106 Tenement_operator Aldershot Resources Ltd

H0150 250K_map_sheet_number SH 54-10

H0151 100K_map_sheet_number 6735 6734

H0152 50K_map_sheet_number

H0153 25K_map_sheet_number

H0200 Start_date_of_data_acquisition 23-Jan-10

H0201 End date of data acquisition 22-Jan-11

H0202 Data_format DG3

H0203 Number_of_data_records 20

EL3508_SADG3_ASS2010A

H0204	Date_of_metadata_update 23-Feb-11
H0300	Location_data_file EL3508_SL1_2010A.txt
H0301	Location_data_file EL3508_SL1_2010A.txt
H0302	Downhole_lithology_data_file EL3508_SADL3_GEO2010A.txt
H0303	Downhole_geochem_data_file EL3508_SADG3_ASS2010A.txt
H0304	Downhole_survey_data_file EL3508_SADS3_SUR2010A.txt
H0307	Lithology_code_file Aldershot_Codes_2010.pdf
H0308	Lithology_code_file Aldershot_Codes_2010.pdf
H0310	Water_data_file NO
H0311	Hydrodata_in_lithlog_flag NO
H0312	Data_dictionary_file Aldershot_Codes_2010.pdf
H0313	Alteration_data_file EL3508_SADL3_GEO2010A.txt
H0314	Magsusc_data_file EL3508_SADM3_MAGSUS2010A.txt
H0315	Vein_data_file EL3508_SADL3_GEO2010A.txt
H0316	Recovery_data_file NO

EL3508_SADG3_ASS2010A

H0317	Weathering_data_fil	le EL3508_SADL3	EL3508_SADL3_GEO2010A.txt				
H0318	Radiometrics_data_	file EL3508_SADR	3_RADIO2010A.txt				
H0319							
H0400	Drill_code Diamond						
H0401	Drill_contractor	Hodges Drilling Pty Ltd	Hodges Drilling Pty Ltd				
H0402	Description	Diamond Drilling NQ triple	e Reverse Circulation Drilling				
H0600	Sample_code	HCORE QCORE					
H0601	Sample_type	HCORE:Diamond half core	re QCORE:Diamond quarter core				
H0602 cut"	Sample_description	"Half NQ core, diamond sa	aw cut" "Quarter NQ core, diamond saw				
H0700	Sample_preparation	n_code "CRU-32a, SPL	21, PUL-21"				
H0701	Sample_preparation	n_details "Fine crush 90%	%<3mm, riffle split, pulverise ntire sample"				
H0702	Job_no AD10158	007					
H0800*	Assay_code	ME-ICP61					
H0801	Assay_company	Australian Laboratory Serv	vices Pty Ltd - ALS				
H0802	Assay_description	33 element four acid ICP-A					

EL3508_SADG3_ASS2010A

H0900 Remarks

H1000	Hole_id	Sample i	d	From	To	Drill code	e Ag	Al	As	
Ва	Be _	Bi ' _	Ca	Cd	Co	Cr _	Cŭ	Fe	Ga	Κ
La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	
Sc	Sr	Th	Ti	TI	U	V	W	Zn		
H1001			metres	metres		ppm	%	ppm	ppm	
ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	
ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	
ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		
H1002						ME-ICP6	ME-ICP61	ME-ICP61	ME-ICP61	
ME-ICP6	1 ME-ICP6 ⁻	I ME-ICP61	ME-ICP61	ME-ICP61						
ME-ICP6	1 ME-ICP6 ⁻	I ME-ICP61	ME-ICP61	ME-ICP61						
ME-ICP6	1 ME-ICP6 ⁻	I ME-ICP61	ME-ICP61							
H1003						0.5	0.01	5	10	
0.5	2	0.01	0.5	1	1	1	0.01	10	0.01	10
0.01	5	1	0.01	1	10	2	0.01	5	1	1
20	0.01	10	10	1	10	2				
H1004										

H1005

H1006

H1007

D	Hawke1	552001	96	98	DD	<0.5	2.98	<5	70	
1.2	<2	1.81	<0.5	8	46	11	32	10	0.53	20
1.08	394	<1	0.04	9	8350	6	0.02	<5	10	
117	<20	0.22	<10	<10	71	<10	35			
D	Hawke1	552002	98	100	DD	<0.5	2.82	<5	80	
1.1	3	1.8	< 0.5	6	45	9	29.1	10	0.5	20
1.22	166	<1	0.03	10	8420	4	0.02	<5	9	
116	<20	0.21	<10	<10	67	<10	34			
D	Hawke1	552003	98	100	DD	< 0.5	2.77	<5	80	
1.1	<2	1.55	< 0.5	6	43	8	30.3	10	0.5	20
1.22	217	<1	0.03	7	7410	4	0.02	<5	8	
101	<20	0.2	<10	<10	66	<10	35			
D	Hawke1	552004	0	0		< 0.5	0.39	<5	10	
<0.5	<2	17.7	< 0.5	1	3	17	1.28	<10	0.08	
<10	12.9	1340	<1	0.06	4	420	3	0.01	<5	1
57	<20	0.02	<10	10	7	<10	12			
D	Hawke1	552005	150	152	DD	< 0.5	3.64	9	100	
1.4	<2	1.34	< 0.5	8	45	8	29.2	10	0.59	20

				E1 3508 9	SADG3_AS	S2010A				
2.33 <20	233 0.31	<1 <10	0.12 <10	37 86	2760 <10	4 28	0.15	<5	10	64
D	Hawke1	552006	152	154	DD	< 0.5	3.69	<5	130	
1.2 3.07	<2 768	3.29 1	<0.5 0.27	7 13	42 2150	23 8	24.5 0.21	<10 <5	0.81 11	20 92
<20	0.29	<10	<10	83	<10	24	0.21	23	11	32
D	Hawke1	552007	154	156	DD	< 0.5	4.21	<5	140	
1.3	<2	3.77	< 0.5	6	40	9	25.3	10	0.96	20
3.61 <20	816 0.33	<1 <10	0.16 <10	15 83	1870 <10	5 20	0.19	<5	12	97
D	Hawke1	552008	156	158	DD	< 0.5	5.12	<5	210	
1.3	<2	4.51	< 0.5	10	50	11	13.05	10	1.3	20
4.04 114	969 <20	<1 0.46	0.26 <10	18 <10	1340 87	5 <10	0.49 21	<5	13	
D	Hawke1	552009	158	160	DD	<0.5	4.82	<5	160	
1.4	2	5.39	< 0.5	10	49	33	18.8	<10	1.09	20
4.31	1030	<1	0.24	17	1680	5	0.33	<5	13	
130 D	<20 Hawke1	0.43 552010	<10 160	<10 162	92 DD	<10 <0.5	20 5.1	5	210	
1.4	<2	3.03	<0.5	8	47	11	19.95	10	1.33	20
3.19	660	<1	0.3	19	1880	4	0.21	<5	13	86
<20 D	0.43 Hawke1	<10 552011	<10 162	88 164	<10 DD	18 <0.5	5.15	<5	190	
1.4	<2	3.67	< 0.5	12	51	15	16.5	10	1.32	20
3.58	810	<1	0.23	26	1610	6	0.29	<5	13	97
<20	0.44	<10	<10	88	<10	18	5 7 4	_	070	
D 1.6	Hawke1 <2	552012 2.24	164 <0.5	166 10	DD 59	<0.5 30	5.71 16.05	<5 10	270 1.79	20
3.03	686	<1	0.14	20	1590	8	0.23	<5	1.75	75
<20	0.48	<10	<10	92	<10	19				
D 17	Hawke1	552013	166	168	DD	< 0.5	6.39	<5	330	00
1.7 2.83	<2 428	1.67 <1	<0.5 0.27	12 24	65 1260	17 7	11.3 0.3	10 <5	1.98 15	30 64
<20	0.49	<10	<10	93	<10	, 19	0.0	νο.	10	0.
D	Hawke1	552014	168	170	DD	<0.5	5.77	<5	230	
1.8 3.25	<2 890	2.59 <1	<0.5 0.12	10 23	60 1330	117 5	13.65 0.18	10 <5	1.84 14	20 76
<20	0.49	<10	<10	97	<10	20	0.10	ζ3	14	70
D	Hawke1	552015	170	172	DD	<0.5	5.06	7	200	
1.4	<2	2.68	< 0.5	10	49	40	17.5	10	1.52	20
2.95 <20	1030 0.46	<1 <10	0.16 <10	17 87	1840 <10	5 17	0.22	<5	12	77
D	Hawke1		172	174	DD	<0.5	4.77	<5	190	
1.4	<2	2.28	<0.5	7_	46	20	15.2	10	1.37	20
2.76 <20	1350 0.42	<1 <10	0.12 <10	17 84	1550 <10	4 17	0.13	<5	12	68
Z20 D	0.42 Hawke1		174	176	DD	<0.5	3.29	<5	130	
1.1	<2	2.49	< 0.5	9	38	8	20.3	<10	0.96	20
2.45	1880	<1	0.12	12	2050	4	0.1	<5	9	67
<20 D	0.29 Hawke1	<10 552018	<10 0	74 0	<10	17 <0.5	3.14	<5	120	1
<2	2.36	< 0.5	8	36	6	20.8	<10	0.84	20	'
2.4	1910	<1	0.1	16	2030	3	0.1	<5	9	64
<20	0.27	<10	<10	72 170	<10	16 <0.5	0.00	.E	10	
D <0.5	Hawke1 <2	552019 16.8	176 <0.5	178 1	DD 3	<0.5 18	0.38 0.7	<5 <10	10 0.09	
<10	12.1	1450	<1	0.06	3	290	3	0.01	<5	1
52	<20	0.02	<10	10	7	<10	10	_	400	
D 1.2	Hawke1 <2	552020 1.58	0 <0.5	0 9	44	<0.5 6	4.19 16.95	<5 10	180 1.1	20
3.08	3280	<1	0.22	15	1580	4	0.15	<5	1.1	44
					Paga F					

Page 5

EL3508_SADG3_ASS2010A <10 80 <10 15

<20 0.39 <10 <10 80 <10 EOF

Hole Type	
Code	Description
AC	Aircore
AT	Air Track
AUG	Auger
COST	Costean
DD	Diamond
NR	Not recorded
PER	Percussion
PERDD	Percussion with DD Tail
PIT	Pit
RAB	Rotary Air Blast
RABDD	RAB with DD tail
RABDD	RAB with DD Tail
RC	Reverse Circulation
RCDD	RC hole with DD Tail
ROLL	Roller tri-cone
RP	Rotary percussion
TRENCH	Trench
UNKN	Unknown
VAC	Vacuum
WB	Water Bore
WELL	Well
XRP	Obsolete 0.5 inch core (Canadian)

Surface Survey Type	
Survey Type	Description
DGPS	Digital GPS
GPS	GPS_handheld
MEASURED	Distance and bearing from known
NR	Not recorded
PLAN	Planned azimuth & dip
SCALED	Scaled or digitised from map or
SURVEY	Survey_conventional

	Lithology
Code	Description
ADK	adakite
AFG	alkali feldspar granite
AFR	alkali feldspar rhyolite
AFS	alkali feldspar syenite
AGB	analcime gabbro = teschenite
AGL	agglomerate
AGLT	argillite
AIRK	alkaline intrusive
ALB	albitite
ALO	alnoite
ALUV	alluvium
AMBR	amber
AMP	amphibolite
ANA	analcimite
ANS	anorthosite
ANT	andesite
ANTH	anthracite
APL	aplite
ARKS	arkose
ARNT	arenite
ASH	ash
ATRK	altered rock
AUGN	augen gneiss
BAD	basaltic andesite
BDST	boundstone
BHRK	beachrock
BIF	banded iron formation
BIOC	biocarbonate
BIOM	biomicrite
BIOS	biosparite
BIT	bitumen
BLD	boulder

	Texture
Code	Description
AMOR	Amorphous
BA	Banded
BCAR	Bladed carbonate
BPSU	Bladed pseudomorphs
BXVA	Breccia vein aggregate
BXVI	Breccia vein infill
BQZA	Buck quartz anhedral
BQZE	Buck quartz euhedral
CPAM	Close packed amorphous
CPXN	Close packed crystalline
CKDE	Cockade
CLFM	Colloform
COMB	
CKSL	
CRFM	
DOGT	Dog tooth
EQ	Equigranular
FBRS	Fibrous
FANT	
FSYN	Fibrous syntaxial
FO	Foliated
GHBA	3
GHBX	
INEQ	Inequigranular
ITS	Interstitial
LACN	Lam. planar chalcedonic w/ nurls
LAM	Laminated
LAC	Laminated planar chalcedonic
LASV	Laminated: sheeted veinlet
MAS	Massive
MX	Microcrystalline
MOSS	Moss

Downhole Survey Method	
Survey Method	Description
COMPASS_CLINO	Compass & clino
D PROSHOT	Proshot
EASTMAN	Single shot camera
EST	Estimated
GEOREF	Scaled from map
GYRO	Downhole gyroscope
NR	Not recorded

Sample Type	
Code	Description
1C	1m composite sample
2C	2m composite sample
3C	3m composite sample
C4	4m composite sample
5C	5m composite sample
6C	6m composite sample
7C	7m composite sample
8C	8m composite sample
CHANNEL	channel sample
CHIPS	Percussion chips RC or Percussion
COMP	Composite Sample
COST	Costean
DUP	Duplicate
FCORE	Full core sampled
FILLET	Fillet
HCORE	Half core sampled
PULP	Pulp
NR	not recorded
QCORE	Quarter core sampled
RESAMP	Resample of original sample
RESPLIT	Resampling of composite at smaller
SLUDGE	Sludge
SPOT	Spot interval in core
TRENCH	Trench
WCORE	Whole core
UCORE	Core sample unknown method

	Lithology (cont)
Code	Description
BLSH	black shale
BLT	basalt
BMT	benmoreite
BNBD	bone bed
BON	boninite
BSN	basanite
BTA	basaltic trachyandesite
BTH	bomb, block tephra
BX	breccia
CALR	calcarenite
CALU	calcilutite
CAV	cavity
CBIF	carbonate iron formation
CBRK	carbonate rock
CBT	carbonatite
CCB	crystalline carbonate
CCT	calciocarbonatite
CHAR	charnockite
CHLK	chalk
CHRT	chert
CHT	chromitite
CLAS	clast
CLBX	clast supported breccia
CLCR	calcrete
CLST	claystone
CLY	clay
CMP	camptonite
CNGL	conglomerate
COAL	coal
COLV	colluvium
COM	comendite
CORL	coral
CPN	clinopyroxene norite
CPT	clinopyroxenite
CQNA	coquina
CRNL	carnieule
CSRK	calc-silicate rock

Texture (cont)		
Code	Description	
MOUL	Mouldic	
OPLN	Opaline	
POLY	Polygonal	
POB	Porphyroblastic	
PS	Pseudomorphous	
RX	Recrystallised	
REPC	Replacement complete	
REPP	Replacement partial	
RIBN	Ribbon	
RBMY	Ribbon mylonitised	
SAC	Saccharoidal	
SRTE	Seriate	
SKFW	Skeletal framework	
SPVP	Spider phantom veinlets	
SPV	Spider veinlets	
STXL	Stretch crystal	
SCAR	Stubby carbonate	
STYC	Stylolitic	
SIMP	Superimposed	
SUT	Sutured	
VLAY	Vein-normal layered	
VUG	Vuggy	

	Weathering
Code	Description
whl	weathered, highly
wmd	weathered, moderately
wsl	weathered, slightly
wtd	weathered, weathering
frs	fresh

ColourTone		
Code	Description	
VP	very pale	
Р	pale	
D	dark	
VD	very dark	

	Sample Method
Code	Description
CORE	unspecified core
CCORE	cut core
CHANNEL	channel sample
CHIP	chip sample
CONE	cone & quarter
GRAB	grab
NR	not recorded
RFSPLT	riffle split
SCOOP	scoop
SPLITCORE	Manual core split
WCORE	whole core
SPEAR	spear

Wet/Dry	
Wet/Dry	Description
W	wet
d	dry
m	moist

Sample Category		
Code Description		
NR	Not recorded (historical data)	
ORIG	Original Sample(incl Comp 1m>)	
RESAMP	Resample	
RSPLT	Resplit	

Sample condition		
Code Description		
D	dry	
M NR	wet	
NR	not recorded	
W	wet	

Code	Description
CVN	carbonate vien
DAC	dacite
DLAR	dolarenite
DLST	dolostone
DLT	dolerite
DMCT	diamictite
DRT	diorite
DST	dust
DTMT	diatomite
DUN	dunite
DUR	duricrust
EGL	eclogite
EPCR	epiclastic rock
EVPT	evaporite
FAN	foid-bearing anorthosite
FAT	foid-bearing alkali feldspar trachyte
FBG	foid-bearing gabbro
FBM	foid-bearing monzonite
FCT	ferrocarbonatite
FDI	foid-diorite
FDL	foidolite
FDR	foid-bearing diorite
FDT	foidite
FFS	foid-bearing alkali feldspar syenite
FGLT	fanglomerate
FGS	fergusite
FIRK	felsic intrusive
FLNT	flint
FLT	foid-bearing latite
FLVA	felsic lava
FMD	foid-bearing monzodiorite
FMG	foid-bearing monzogabbro
FNT	fenite
FOS	fossil
FPY	feldspar porphyry
FRCT	ferricrete
FRK	felsic rock

Lithology (cont)

Grainsize		
Code	Description	
gzv	very fine grained (<0.1mm)	
gzf	fine grained (0.1- 0.25mm)	
gzm	medium grained (0.25 - 0.5mm)	
gzc	coarse grained (0.5 - 1.0mm)	
gzy	very coarse grained (>1.0mm)	

	Dogo lith
0-1-	Regolith
Code	Description Description
ars	arenose (weathering profile term)
blc	bleached
bxw	boxworked (as in limonite- after-
cap	cap or capping
ccr	calcreted
fcr	ferricreted
frs	fresh
gos	gossanous
hpn	hardpanized, hardpanned
ind	indurated
lat	lateritic
lch	leached
ars	arenose (weathering profile term)
blc	bleached
bxw	boxworked (as in limonite- after-
cap	cap or capping
ccr	calcreted
fcr	ferricreted
frs	fresh
gly	gley
gos	gossanous
hpn	hardpanized, hardpanned
ind	indurated
lat	lateritic
lch	leached
lom	loamy
mot	mottled or as mottles
oxd	oxidised
pal	pallid

Mag. Susc. Instrument		
Code Description		
Geometrics	hand-held geometrics susc meter	
Kappameter		
JH-8	hand-held geometrics susc meter	

Mag.susc. Units		
Code Description		
10x-3	x10-3 SI	
10x-5	x10-5 SI	

Radiometrics Instrument		
Code Description		
SRAT	Saphymo SRAT SPP2 scintillometer	
GR-135G	Exploranium Spectrometer	
Ludlum	Ludlum counter	
DLS5-A075	Auslog Downhole logger	

MineralStyle		
Code	Description	
acc	acicular	
adc	adcumulate	
alt	alternating	
amd	amygdaloidal	
ams	rothsay data	
ang	angular	
anh	anhedral	
bdg	bedded, graded	
bdi	interbedded	
bdu	bedded/general	
blb	blebs	
blk	blocky	
brn	branchings, anastamosing	
cch	rothsay data	
cls	clastics	
csp	clast supported	
ctg	coatings	
dis	disseminated	
eqg	equigranular	

	Lithology (cont)		Regolith (cont)	
Code	Description	Code	Description	
FSY	foid-bearing syenite	ped	pedogenic	
FTR	foid-bearing trachyte	pis	pisolitic, pisolites, pisoliths	
FVOL	felsic volcanic	res	residual	
GAB	gabbro	sap	saprolitic	
GBN	gabbronorite	sfl	surficial	
GFL	granofels	sit	silcreted	
GNS	gneiss	spg	supergene	
GNST	grainstone	whl	weathered, highly	
GO	gossan	wmd	weathered, moderately	
GOUG	gouge	wsl	weathered, slightly	
GPST	grapestone	wtd	weathered, weathering	
GRD	granodiorite			
GRN	granulite		Alteration Style	
GRP	granophyre	Code	Description	
GRSN	greisen	ANA	Anastomosing	
GRT	granite	AURL	Aureole/selvage	
GRU	grus	BA	Banded	
GSD	greensand	BXV	Breccia vein	
GSQ	gossanous quartz	DIF	Diffuse	
GST	greenstone	DIS	Disseminated	
GUN	guano	INTD	Interdigitating	
GVL	gravel	LSGG	Liesegang-ring-like	
GYST	geyserite	MAS	Massive	
GYT	gyttja	MO	Mottled	
GYWK	greywacke	NET	Net-like	
HBT	hornblendite	PAT	Patchy	

GPST	grapestone	wta	weatnered, weatnering
GRD	granodiorite		
GRN	granulite		Alteration Style
GRP	granophyre	Code	Description
GRSN	greisen	ANA	Anastomosing
GRT	granite	AURL	Aureole/selvage
GRU	grus	BA	Banded
GSD	greensand	BXV	Breccia vein
GSQ	gossanous quartz	DIF	Diffuse
GST	greenstone	DIS	Disseminated
GUN	guano	INTD	Interdigitating
GVL	gravel	LSGG	Liesegang-ring-like
GYST	geyserite	MAS	Massive
GYT	gyttja	MO	Mottled
GYWK	greywacke	NET	Net-like
HBT	hornblendite	PAT	Patchy
HDG	hornblende gabbro	PEV	Pervasive
HFL	hornfels	SPTD	Spotted
HWT	hawaiite	VCPD	Vein - centipede
HYA	hyaloclastite	VCSH	Vein - central shear
HZB	harzburgite	VFA	Vein - discrete fault-related
IGM	ignimbrite	VGAS	Vein - gash-shaped
IIRK	intermediate intrusive	VLJK	Vein - leather jacket
IJL	ijolite	VLRF	Vein - leg reef
ILVA	intermediate lava	VMEX	Vein - massive extension
IRFM	iron formation	VMLT	Vein - multiple
IRK	intermediate rock	VNEK	Vein - neck

MineralStyle (cont)		
Code Description		
euh	euhedral	
fb	fibrous	
fgm	fragmental	
fis	fissile	
flb	flow banded	
flt	faulted	
fol	foliated	
fri	friable, loose	
gns	gneissic	
grb	granoblastic	
het	heterogeneous	
hom	homogeneous	
imb	imbricated	
ing	intergranular	
lam	-	
leu		
mas	massive	
mct	mesocumulate text	
mlk	milky	
mod f		
mtx	matrix (in or of)	
mxs	matrix supported	
oct	orthocumulate text	
por	porphyritic	
ppb	porphyroblastic	
rad	radiating	
rdd	rounded	
rel	relict	
rex	recrystallised	
rip	rippled, ripples	
rod	rodded, columnar	
sba	subangular	
sbh	subhedral	
sbr	subrounded	
sch	schistose	
sfx	spinifex textured	
shd	sheared	

Lithology (cont)			
Code	Description		
IRST	ironstone		
IVOL	intermediate volcanic		
JASP	jasper		
JSPL	jaspilite		
KBL	kimberlite		
KTT	komatiite		
KZT	kersantite		
LAG	lag		
LATT	laterite		
LAVA	lava		
LBG	limburgite		
LCTT	leucitite		
LHZ	Iherzolite		
LIG	lignite		
LITF	lithic tuff		
LMST	limestone		
LOM	loam		
LOS	loess		
LPR	lamproite		
LPY	lamprophyre		
LTT	latite		
LTUF	lapilli tuff		
MARL	marl		
MBL	marble		
MCH	meimechite		
MCQ	monchiquite		
MCRT	micrite		
MCT	magnesiocarbonatite		
MDST	mudstone		
METB	metabasite		
METS	metasediment		
MGBS	high-Mg basalt		
MGST	magnesite		
MIG	migmatite		
MIRK	mafic intrusive		
MLAV	mafic lava		
MLG	melteigite		

Alteration Style (cont)		
Code	Description	
VOSH	Vein - oblique shear	
VSRF	Vein - saddle reef	
VSIG	Vein - sigmoidal	
VSIN	Vein - single	
VSPR	Vein - spur	
VNLT	Veinlets	
VECH	Veins - en echelon	
VLDR	Veins - ladder arrays	
VSHT	Veins - sheeted	
VSTK	Veins - stockwork array	
WIS	Wispy	
ZON	Zoned	
ZONC	Zoned - central	
ZONI	Zoned - inner	
ZONO	Zoned - outer	

Structure		
Code	Description	
BX	Breccia	
BRIT	Brittle structures	
CLAS	Clasts/fragments	
CLV	Cleavage	
CLVC	Cleavage - crenulation	
LAYC	Compositional layering	
CONT	Contact	
XB	Cross stratification	
DTRM	Diatreme	
DYKE	Dyke	
EXSH	Extension + shear fracture	
EXFR	Extension fracture	
FA	Fault	
FTOP	Flow top	
HIN	Fold hinge	
LIMB	Fold limb	
FDZ	Fold-related zones	
FO	Foliation	
FR	Fractures	

MineralStyle (cont)		
Code	Description	
stg	sorting good	
stm	sorting moderate	
stp	sorting poor	
sug	sugary	
trn	transitional	
ufx	uniform textured	
ves	vesicular or in vesicles	
vug	vuggy	
xen	xenolith or xenolithic	
xtl	crystalline	

Minerals		
Code	Description	
aa	agate	
Ab	albite	
ac	actinolite	
ad	adularia	
ae	andradite	
af	allophane	
ah	anhydrite	
ai	almandine	
ak	ankerite	
am	amphibole (general)	
an	andalusite	
ao	asbestos	
ар	apatite	
ar	aragonite	
as	arsenophyrite	
au	auridium, gold	
aw	allanite	
ax	anatase	
az	azurite	
ba	barite	
bi	biotite	
bn	bornite	
bs	bismuthnite	
ca	calcite	

	Lithology (cont)		
Code	Description		
MLL	melilitolite		
MLT	melilitite		
MNRK	manganese rock		
MNTT	minette		
MPD	melilite-bearing peridotite		
MPT	melilite-bearing pyroxenite		
MQZ	massive quartz		
MRK	mafic rock		
MSI	massive silica		
MSK	miaskite		
MSS	missourite		
MSU	massive sulphide		
MSYN	monzosyenite		
MTBX	matrix supported breccia		
MTIF	magnetite iron formation		
MTRK	magnetite rock		
MTS	metasomatite		
MTX	matrix		
MUD	mud		
MUG	mugearite		
MUV	melilite-bearing ultramafic volcanic		
MVOL	mafic volcanic		
MYL	mylonite		
MZB	monzogabbro		
MZD	monzodiorite		
MZG	monzogranite		
MZT	monzonite		
NFOS	nanofossil		
NGB	nepheline gabbro = theralite		
NLL	nephelinolite		
NMD	nepheline monzodiorite = essexite		
NMG	nepheline monzogabbro = essexite		
NPH	nephelinite		
NRT	norite		
NSY_	nepheline syenite		
NVLT	novaculite		
OBS	obsidian		

	Structure (cont)
Code	Description
GR	Graded bedding
IPLW	Interpillow zones
INT	Intrusion
JO	Joints
LIN	Lineation
MT	Matrix
	Paleosurface
PXST	Phenocrysts
PI	Pillows
POB	Porphyroblasts
SHFO	Shear foliation
SHFR	Shear fracture
SH	Shear zone
SILL	Sill
THST	
UNCF	Unconformity
UNK	Unknown
VEIN	Vein
AMY	Vesicles/amygdales/varioles
BED	Bedding
FLO	Flow direction indicator
FD	Fold
PLA	Planar Structure
SSI	Shear Sense Indicator
VEC	Vector Measurement

Alteration Intensity		
Code	Description	
I	intense	
MOD	moderate	
PEV	pervasive	
STG	strong	
WE	weak	

Minerals		
Code	Description	
cb	carbonate (general, see also vein	
СС	chalcocite	
cd	chloritoid	
ce	cerussite	
ch	chrysocolla	
ck	chalcedony	
cl	chlorite	
cm	chromite	
cn	carbon (as in carbonaceous)	
со	cordierite	
ср	chalcopyrite	
cq	chrysoprase	
cr	cuprite	
cs	cherty silica	
ct	cassiterite	
cu	copper, native	
cv	covellite	
cx	clinopyroxene (general)	
су	clay (general)	
CZ	zinozoisite	
di	diopside	
do	dolomite	
ер	epidote	
fe	ferric iron oxides, (goethite,	
fl	fluorite	
fm	ferromagnesian mineral (general)	
fu	fuchsite	
fx	feldspar (general)	
ga	galena	
gh	gahnite	
gi	garnierite	
gl	glauconite	
gn	garnet	
go	goethite	
gp	graphite	
gs	grossularite	
gt	grunerite	

	Lithology (cont)
Code	Description
OCP	olivine clinopyroxenite
ODT	opx diorite = norite
OFG	opx alkali feldspar granite
OFS	opx alkali feldspar syenite
OGD	opx granodiorite = opdalite
OGT	opx granite = charnockite
OHP	olivine hornblende pyroxenite
OHT	olivine hornblendite
OMD	opx monzodiorite = jotunite
OML	olivine melilitolite
OMT	olivine melilitite
OMZ	opx monzonite = mangerite
OOP	olivine orthopyroxenite
OOZ	ooze
OPHL	ophiolite
OPT	orthopyroxenite
ORE	ore
OST	opx syenite
OTT	opx tonalite = enderbite
OWT	olivine websterite
OXIF	oxide iron formation
PBS	phonolitic basanite
PBT	picrobasalt
PCLN	porcellanite
PCT	picrite
PEAT	peat
PEG	pegmatite
PELT	pelite
PER	peridotite
PFD	phonolitic foidite
PHD	plagioclase-bearing hornblendite
PHG	pyroxene hornblende gabbro
PHP	pyroxene hornblende peridotite
PHSP	phosphorite
PHT	pyroxene hornblendite
PHY	porphyry
PHYL	phyllite

		Colour
Code		Description
RD	red	
OR	orange	
YW	yellow	
GN	green	
BL	blue	
GY	grey	
BK	black	
WT	white	
PP	purple	
BG	beige	
BN	brown	
PK	pink	

	Sulphides	
Code	Description	
as	Arsenopyrite	
со	Cobaltite	
ср	Chalcopyrite	
pn	Pentlandite	
ро	Phyrrotite	
ру	Pyrite	
py1		
su	Unknown	

Veining	
Code	Description
vcb	carbonate veined
vcr	chromite
vlc	vein on lithologic contact
vlt	veinlet
vmr	massive vein, reef
vqc	quartz carbonate veined
vqz	quartz veined
vsk	stockworked or as stockworks
vst	stringers
vsv	vein subvertical

	Minerals (cont)
Code	Description
gy	gypsum
hb	hornblende
he	hematite
hm	heavy minerals (general)
im	ilmenite
ja	jarosite
ka	kaolin
kf	K-feldspar
ky	kyanite
lc	limonite after carbonate
le	lepidolite
li	limonite
lp	limonite after pyrite
ls	limonite after sulphide
lx	leucoxene
lz	lizardite
mc	microline
mg	magnesite
mh	maghemite
mi	mica (general)
mk	malachite
ml	mineral (general)
mn	manganese oxides (general)
mo	molybdenite
mr	marcasite
mt	magnetite
mu	muscovite
mz	monazite
nf	nepheline
nt	nontronite
ос	orthoclase
ol	olivine
ор	opaline silica
ox	orthopyroxene
pf	pyrophyllite
ph	phosphate (general)
pi	pitchblende

Lithology (cont)		
Code	Description	
PIS	pisolite	
PIST	pisolitic ironstone	
PKR	peralkaline rhyolite	
PKST	packstone	
PLDZ	pallid zone	
PLZ	polzenite	
PML	pyroxene melilitolite	
PNT	phonolite	
POM	pyroxene olivine melilitolite	
PPD	pyroxene peridotite	
PPX	plagioclase-bearing pyroxenite	
PRX	pyroxenite	
PSAM	psammopelite	
PSMT	psammite	
PTB	potassic trachybasalt	
PTR	phonolitic tephrite	
PTT	pantellerite	
PYCR	pyroclastic rock	
QAS	quartz alkali feldspar syenite	
QFPY	quartz feldspar porphyry	
QFRK	quartz feldspar rock	
QGB	quartz gabbro	
QHBX	quartz-hematite breccia	
QMD	quartz monzodiorite	
QMG	quartz monzogabbro	
QMRK	quartz magnetite rock	
QTE	quartzolite	
QTY	quartz trachyte	
QZA	quartz anorthosite	
QZBX	quartz breccia	
QZD	quartz diorite	
QZG	quartz-rich granitoid	
QZL	quartz latite	
QZM	quartz monzonite	
QZPY	quartz porphyry	
QZS	quartz syenite	
QZT	quartzite	

Alteration	
Code	Description
AB	albitic
ALU	alunitic
AR	argillic
CARB	carbonate
CLT	chloritic
EP	epidotised
GRSN	greisen
HEMC	hematitic
KA	kaolinitic
POT	potassic
PR	propylitic
PY	pyritic
RR	red rock
SERC	sericitic
SRP	serpentinised
SI	silicified
SK	skarn
UL	unaltered
AA	undefined alteration assemblage
ZEC	zeolitic

	Minerals (cont)
Code	Description
pl	plagioclase
pn	pentlandite
ро	pyrrhotite
рр	phlogopite
pr	prehnite
pt	platinum
рх	pyroxene
ру	pyrite
pz	pyrolusite
qc	quartz-carbonate mixture
qz	quartz (see "silica" and vein quartz)
rb	riebeckite
rd	rhodonite
ru	rutile
sa	sanidine
sb	stibnite
sc	scapolite
sd	siderite
se	serpentine
sf	sphene
sh	scheeilte
si	silliminite
sm	smectite, montomorillonite
sp	sphalerite
sr	sericite
SS	smithsonite
st	staurolite
su	sulphides (general)
SX	sulphates (general)
tc	talc
tm	tourmaline
tr	tremolite
tz	topaz
ur	uraninite
ux	uranium minerals (general)
VC	vein carbonate
vl	violarite

	Lithology (cont)
Code	Description
QZVN	quartz vein
RDLT	radiolarite
RDST	rudstone (breccia)
RHD	rhyodacite
RHY	rhyolite
ROCK	rock
ROD	rodingite
SAN	sannaite
SCHT	schist
SCRE	scree
SDBX	sedimentary breccia
SDST	sandstone
SDT	sodalitite
SED	sediment
SHK	shonkinite
SHLE	shale
SHT	shoshonite
SINT	sinter
SKN	skarn
SLA	slate
SLCT	silcrete
SLST	siltstone
SLT	silt
SMD	sodalite monzodiorite
SND	sand
SOIL	soil
SPGT	sparagmite
SPIL	spilite
SPLT	saprolite
SPRK	saprock
SPT	spessartite
SRP	serpentinite
SSY	sodalite syenite
SUIF	sulphide iron formation
SURK	sulphide-rich material
SYG	syenogranite
SYN	syenite

Minerals (cont)	
Cod	
vq	vein quartz
vs	vesurvianite
wf	wolframite
wl	willemite
wo	wollastonite
ze	zeolite
zo	zoisite

Lithology (cont)	
Code	Description
TBDT	turbidite
TDJ	trondhjemite
TFD	tephritic foidite
TFT	tuffite
TGWK	tuffaceous greywacke
TLL	till
TLLD	tilloid
TLLT	tillite
TMST	tuffaceous mudstone
TNL	tonalite
TORB	torbanite
TOUM	tourmalinite
TPH	tephra
TPL	tephritic phonolite
TPT	tephrite
TRC	trachyte
TRVN	travertine
TSDS	tuffaceous sandstone
TSST	tuffaceous siltstone
TTL	troctolite
TUF	tuff
TYA	trachyandesite
TYB	trachybasalt
TYD	trachydacite
UMRK	ultramafic
URT	urtite
UVOL	ultramafic volcanic
VBX	volcanic breccia
VCR	volcaniclastic rock
VEBX	vein breccia
VEIN	vein
VGT	vogesite
VOLR	volcanic rock
VTUF	vitric tuff
WD	wood
WHL	wehrlite
XTUF	crystal tuff

Appendix F

GPX Survey Job #2411 data

(see Government of South Australia Mineral Resources Website)

Grids Located data Map Products

ABN 68 593 203 550

14 October 2012

E

N

R

Records Officer
Mineral Tenements
DMITRE
GPO Box 1264
ADELAIDE SA 5001

PO Box 115, Kent Town

South Australia 5071

M. 0415 397 870

F/AH. 08 8342 4914

E. tcoppin@teneman.com.au

Dear Sir/Madam

EL 4744 Annual Technical Report for the year ending 10 May 2012

No field work was undertaken during the period 11 May 2011 to 10 May 2012. As no new technical data were acquired, a formal report will not be submitted.

E

E

M

E

N

Total expenditure for the year was \$29,630. Details have been provided in the relevant summary reports.

Please contact me on 8342 4914 or 0415 397 870 if you require additional information.

Yours sincerely

Teena Coppin

Tenement Manager

MINERAL TENEMENT SERVICES

ABN 68 593 203 550

15 May 2013

EL Reporting Officer Mineral Tenements DMITRE GPO Box 1264 ADELAIDE SA 5001

PO Box 115, Kent Town

South Australia 5071

M. 0415 397 870

F/AH. 08 8342 4914

E. tcoppin@teneman.com.au

Dear Sir/Madam

EL 4744 Final Technical Report for the year ending 10 May 2013

No field work was undertaken during the period 11 May 2012 to 10 May 2013.

The tenement was not renewed and expired on 10 May 2013. As no new technical data were acquired during the final year of tenure, a formal report will not be submitted.

Total expenditure for the final year was \$14.060. Details have been provided in the relevant summary reports.

Please contact me on 8342 4914 or 0415 397 870 if you require additional information.

Yours sincerely

Teena Coppin

Tenement Manager

Efloppin