Open File Envelope No. 9298

EL 2669

WUDINNA HILL

PARTIAL SURRENDER REPORT FOR THE PERIOD 11/11/99 TO 10/11/2000

Submitted by

Adelaide Resources Ltd 2001

© open file date 23/5/2001

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

Adelaide Resources Limited

ACN 061 503 375

378 Unley Road Unley Park SA 5061 PO Box 3006 Unley SA 5061

Ph: (08) 8271 0600 Fax: (08) 8271 0033

email: adelres@senet.com.au Web: www.adelaideresources.com.au

EL 2669
PARTIAL RELINQUISHMENT
REPORT FOR THE
PERIOD ENDING
10 NOVEMBER 2000

Date: March 2001

Report No: **AR2001/04**

Volume: 1 of 1

PARTIAL RELINQUISHMENT REPORT FOR EL 2669 "WUDINNA HILL" EYRE PENINSULA, SOUTH AUSTRALIA.

(Covering areas relinquished on 10 November, 2000)

G	Drown
	G

March 2001 Date

Distribution:

PIRSA (2) (1) **Adelaide Resources**

CONTENTS

		Page
1.	INTRODUCTION	1
2.	TENURE	1
3.	EXPLORATION STRATEGY	1
4.	RECONNAISSANCE CALCRETE SAMPLING	3
5.	ABORIGINAL HERTIAGE SURVEY	4

List of Appendices

Appendix 1. Calcrete Field Data and Assay Ledgers

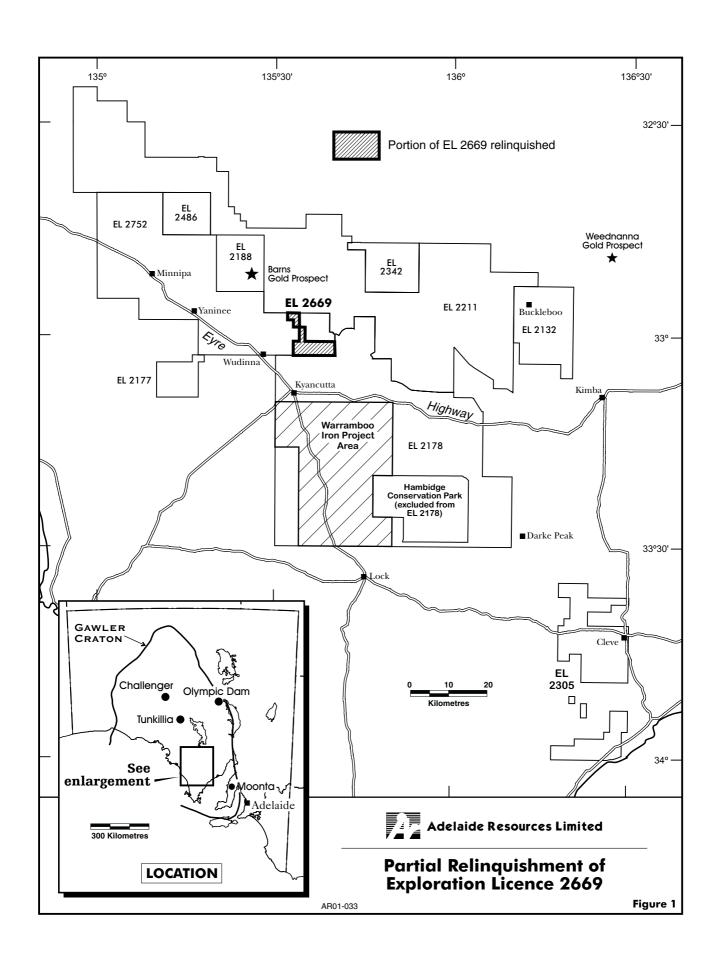
List of Figures

Figure No.	Description	Scale
Figure 1	EL 2669. Location and Detail of Relinquished Area	as shown
Figure 2	Reconnaissance (1.6km) Calcrete Sample Locations Showing Sample Number, Gold and Copper Assays	1:50,000

1. INTRODUCTION

This report describes exploration completed on that part of EL 2669 which was relinquished on 10 November 2000, the end of the first year of title. The licence is located in central Eyre Peninsula (Figure 1) and originally covered an area of 111 sq. km. A total area of 55 sq km was relinquished following negative exploration results.

Access to the area is by way of a number of existing council-maintained roads and by farm tracks. Virtually all native vegetation has been cleared to allow cereal cropping with remnants of scrub generally confined to road verges and the crests of sand ridges.


Work completed by Adelaide Resources on the dropped area included the collection of 28 reconnaissance calcrete samples and completion of an Aboriginal Heritage survey. The calcrete sampling did not discover any geochemical gold and copper anomalies deserving follow-up.

2. TENURE

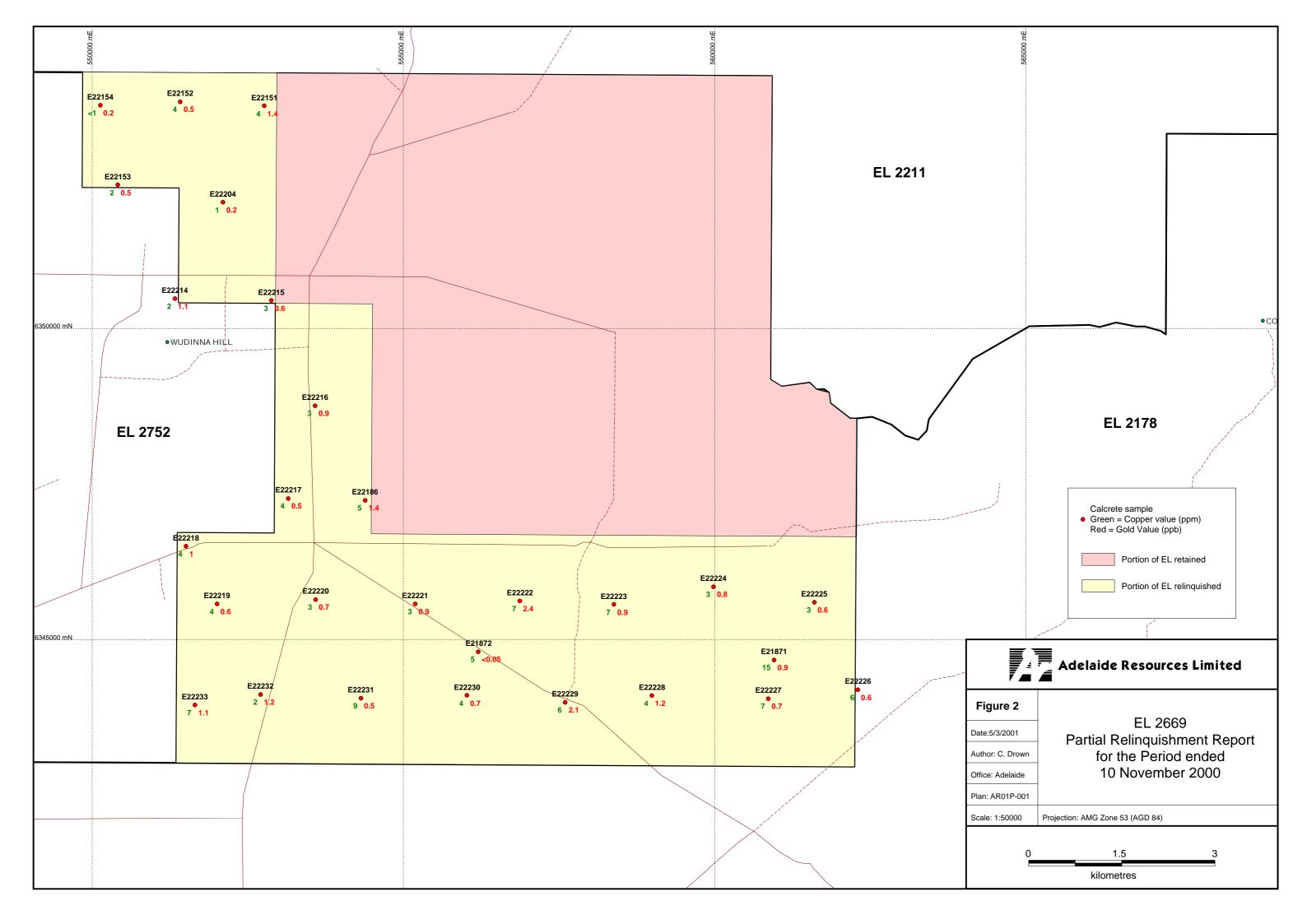
EL 2669 was granted to Adelaide Resources NL on 11 November 1999 for the term of twelve months with an extension of term granted by PIRSA for a second year of tenure.

3. EXPLORATION STRATEGY

The Gawler Craton is recognised as being highly prospective for gold and base metals. The widespread development of calcrete at shallow depths in the regolith profile, and calcrete's property of concentrating gold and other metals presents an easily collected and useful geochemical media to use in the search for buried mineral deposits. The basic exploration approach is to initially conduct a 1.6 km staggered pattern of reconnaissance calcrete sampling. Anomalous sample sites are then subjected to closer-spaced infill calcrete sampling to determine if drill testing is justified. If so, reconnaissance drilling is carried out to test for bedrock mineralisation sourcing the surface anomalies.

4. RECONNAISSANCE CALCRETE SAMPLING

Following granting of the title, work commenced with the service of statutory notices (Notice of Entry, Waiver of Exemption) on the Landowners of properties covered by EL 2669. No landowner denied access to their property.


Reconnaissance calcrete sampling commenced on 11 November 1999 and by 9 December 1999 sample collection over the entire licence area had been completed. Samples were collected at 1.6 km spacing with sample sites located using a DGPS navigation instrument. Sample collection was completed using shovel and crowbar or hand-augers with the presence of calcrete confirmed by testing with weak HCl acid.

The location of the reconnaissance samples, local geography and access tracks are shown on Figure 2. A total of 28 reconnaissance samples were collected over the area subsequently relinquished. Sample site field data are included in Appendix 1 of this report.

The reconnaissance samples were dispatched to Amdel Laboratories and Au and Ag determined by cyanide leach finished on a mass spectrometer (Amdel method BLEG1C, giving a 0.05ppb detection limit for Au and a 0.5ppb DL for Ag). Cu, Pb, Zn, Ni, As, Mo, Ca, Mg, Fe and Mn were determined by mixed acid digest finished on an ICP-OES instrument (Amdel method IC2EC, giving DL's of 1ppm for Cu, Zn, Ni, As, Mo, 3ppm for Pb, 5ppm for Mn, 100ppm for Fe, 0.01% for Ca and Mg). Analytical results are given in Appendix 1, together with estimated calcite, dolomite and total carbonate content calculated from the calcium and magnesium assays.

The carbonate estimates assume that all the Ca and Mg present is as either dolomite or calcite with ideal compositions. Estimates of total carbonate in the samples taken in the relinquished area range from 13.6% to 77.4%. These levels fall in the acceptable range of carbonate content and the quality of the samples collected is therefore considered to be suitable.

Gold (ppb) and copper (ppm) results of the reconnaissance samples have

been plotted and are shown with sample number on Figure 2. Assay results for all elements are tabulated and included as appendix 1 in this report.

Orientation studies, preliminary statistical analysis and experience from other areas on the Gawler Craton suggests that a threshold of 2.5ppb Au is appropriate to define regional gold anomalism, and 18 ppm copper to define regional copper anomalism.

No samples collected from within the relinquished area surpassed these thresholds and the area is not considered to warrant any further work.

Two sites were re-sampled to check for weak gold anomalism interpreted to possibly exist in samples taken by Newcrest Mining Limited, the previous holder of the area. This work did not confirm the presence of gold anomalism within the area relinquished.

5. Aboriginal Heritage Survey

In June 2000 a field survey was completed to ensure compliance with the Aboriginal Heritage Act of South Australia. A group comprising both male and female representatives of the Barngala Claimant group, whom DOSAA had advised were the Traditional Owners of the area in question, together with Traditional men and women from Coober Pedy, a male anthropologist and a company representative visited the area of EL 2669.

The granite hills and landforms located around Mt Wudinna were nominated as sites of Aboriginal significance, while no sites were located in the northern part of the licence.

Appendix 1.

Calcrete Field Data and Assay Ledgers

				ADELAIDE RESOURCES NL (ACN 061 503 375) CALCRETE FIELD DATA SHEET															
	ADELAID	E RESOUR	CES NL (A	CALCE	RETE FIELD DATA SHE	ET													
Project:	ed by:		D	ate:			Ord	er No:	Sheet No:										
1. Soil + cal 2. Nodular of 3. Powdery of 4. Massive of 5. Platey cal	Icrete 6. Sa calcrete 7. Cla calcrete 8. Ca calcrete 9. No	Icrete 7. Clay + calcrete 2. Strong 2. Icrete 8. Casilcrete 3. Moderate 3. Icrete 9. Not calcrete 4. Weak 4.							tion) Agriculturd Eences Roads Other sped in notes	cified	1. Roo 2. Plo 3. Lak 4. Lov	ughed Fields 6. Woodland kes & Swamps 7. Dunes	2. Auger 3. Crowbar + Shovel						
Sample No.	Propose	Proposed AMG Northing Easting						I AMG	Dep	epth (m) Cald		e HCL	CON	TER	ST		NOTES		
	Northing							Northing Easting		Northing Easting		orthing Easting		Easting	From	То	Туре		
I			I		1		1	1	1	1	1								

	lin 4 El	-1.1 1.4		f 1				-11	41	(FL 00	00		- 140/	44/000														
Append	31X 1: FIG	eid and A	ssay data	tor cal	crete s	ampı	es collec	ctea on	tne a	rea of EL 26	b9 reii	nquisn	ea 10/	11/200														
Sample No	AMG Easting	AMG Northing	Depth From (m)	Depth To (m)	Class	Acid	Contam	Terrain	Site	Date	As 1ppm	Cu 1ppm	Pb 3ppm	Zn 1ppm	Mo 1ppm	Ni 1ppm	Ca 0.01%	Calcite 0.01%	Mg 0.01%	Dolomite 0.01%	CO3 0.01%	Fe 100ppm	Mn 5ppm	Au 0.05ppb	CNG 0.05ppb	Ag 0.5ppb	CNS 0.5ppb	Laboratory Job Code
E22151	552765	6353578	0.3	0.4	7321	1	1	2	3	Nov 11, 1999	2	4	4	7	<1	8	18.5	42.9	0.69	5.23	48.1	6550	60	1.4	3	14	29	9AD2886_AMA
E22152	551415	6353641	0.5	0.6	632	1	1	87	3	Nov 11, 1999	2	4	<3	5	<1	5	20	45	1.13	8.56	53.6	4000	40	0.5	0.9	5.5	11	9AD2886_AMA
E22153	550410	6352310	0.1	0.2	41	1	1	8	3	Nov 11, 1999	1	2	4	8	<1	7	19.5	47.2	0.47	3.58	50.7	6950	65	0.5	0.9	11	22	9AD2886_AMA
E22154	550130	6353585	0.4	0.5	2	1	1	8	3	Nov 11, 1999	3	<1	4	6	<1	7	23	55.9	0.53	4.01	59.9	6100	50	0.2	0.35	7	11	9AD2886_AMA
E22186	554385	6347240	0.3	0.4	32	1	1	38	3	Nov 14, 1999	3	5	6	10	<1	10	10.5	23.1	0.86	6.53	29.6	10600	55	1.4	4.8	5	16	9AD2886_AMA
E22204	552101	6352030	0.4	0.5	24	1	1	38	3	Nov 14, 1999	1	1	<3	4	<1	7	18.5	44.9	0.42	3.2	48.1	4150	90	0.2	0.3	5.5	11	9AD2886_AMA
E22214	551330	6350480	0.5	0.6	26	1	1	38	3	Nov 14, 1999	2	2	<3	7	<1	6	9.5	21.5	0.59	4.49	26	5600	40	1.1	4.1	8	30	9AD2886_AMA
E22215	552880	6350450	0.4	0.5	73	1	1	38	3	Nov 14, 1999	2	3	6	14	<1	10	4.6	9.22	0.58	4.42	13.6	11800	65	0.6	4.3	12	87	9AD2886_AMA
E22216	553580	6348760	0.5	0.6	13	1	1	2	3	Nov 14, 1999	2	3	4	9	<1	10	14	30.8	0.94	7.11	37.9	8350	60	0.9	2.3	2	5.14	9AD2886_AMA
E22217	553150	6347270	0.3	0.4	26	1	1	2	3	Nov 14, 1999	2	4	4	9	<1	6	7.5	16	0.57	4.35	20.3	6100	60	0.5	2.2	5	25	9AD2886_AMA
E22218	551506	6346501	0.3	0.4	236	1	1	2	3	Nov 15, 1999	4	4	4	10	<1	8	15	35	0.72	5.49	40.5	8900	65	1	2.3	3.5	9.19	9AD2886_AMA
E22219	552008	6345577	0.4	0.5	36	1	1	2	3	Nov 15, 1999	2	4	4	12	<1	8	7	15.3	0.58	4.42	19.8	10000	70	0.6	2.9	5	27	9AD2886_AMA
E22220	553590	6345645	0.3	0.4	236	1	1	2	3	Nov 15, 1999	3	3	4	11	<1	9	9.5	20.7	0.75	5.7	26.4	10800	60	0.7	2.6	4.5	18	9AD2886_AMA
E22221	555190	6345575	0.3	0.4	2	1	1	2	3	Nov 15, 1999	3	3	<3	5	<1	9	29.5	69.7	0.84	6.36	76.1	5000	70	0.9	1.2	4	5.57	9AD2886_AMA
E22222	556870	6345622	0.3	0.4	21	1	1	2	3	Nov 15, 1999	2	7	<3	8	<1	9	23	51.5	1.54	11.7	63.3	5950	55	2.4	3.8	4	6.63	9AD2886_AMA
E22223	558380	6345565	0.2	0.3	21	1	1	2	3	Nov 15, 1999	3	7	<3	9	<1	6	27.5	63.7	1.24	9.42	73.1	5450	80	0.9	1.2	3.5	4.81	9AD2886_AMA
E22224	559980	6345850	0.2	0.3	24	1	1	2	3	Nov 15, 1999	3	3	<3	5	<1	7	30	72.5	0.65	4.91	77.4	3500	95	0.8	0.95	4	4.9	9AD2886_AMA
E22225	561600	6345600	0.4	0.5	73	1	1	2	3	Nov 15, 1999	3	3	6	12	<1	8	4.9	10.1	0.51	3.89	14	14500	50	0.6	4	4	28	9AD2886_AMA
E22226	562300	6344195	0.3	0.4	123	1	1	5	3	Nov 15, 1999	2	6	6	13	<1	8	9	19.8	0.66	5	24.8	12500	100	0.6	2.3	10	40	9AD2886_AMA
E22227	560860	6344050	0.2	0.3	12	1	1	2	3	Nov 15, 1999	3	7	<3	10	<1	8	18	40.7	0.99	7.5	48.2	6000	100	0.7	1.4	11	23	9AD2886_AMA
E22228	558990	6344101	0.4	0.5	123	1	1	2	3	Nov 15, 1999	3	4	4	18	<1	9	13.5	29.9	0.98	7.46	37.4	12500	75	1.2	3.2	2.5	6.54	9AD2886_AMA
E22229	557598	6343992	0.3	0.4	123	1	1	2	3	Nov 15, 1999	3	6	6	12	<1	9	20	46	1.08	8.24	54.2	9650	70	2.1	3.8	4	7.41	9AD2886_AMA
E22230	556020	6344108	0.2	0.3	123	1	1	2	3	Nov 15, 1999	2	4	4	14	<1	9	9.5	20.5	0.82	6.22	26.7	9850	80	0.7	2.5	4	15	9AD2886_AMA
E22231	554315	6344060	0.4	0.5	123	1	1	2	3	Nov 15, 1999	2	9	6	14	<1	9	11	24.5	0.68	5.15	29.6	7950	120	0.5	1.5	10	33	9AD2886_AMA
E22232	552705	6344120	0.2	0.3	2	1	1	2	3	Nov 15, 1999	3	2	<3	6	<1	8	30	71.7	0.67	5.06	76.8	5200	70	1.2	1.5	12	15	9AD2886_AMA
E22233	551650	6343950	0.3	0.4	12	1	1	2	3	Nov 15, 1999	3	7	4	8	<1	9	22	50.5	0.96	7.33	57.8	7250	85	1.1	1.8	6.5	11	9AD2886_AMA
E21871	560952	6344675	0.7	0.8	7	1	1	5	2	Dec 9, 1999	5	15	12	34	<1	18	4.9	9.49	0.7	5.28	14.8	31800	240	0.9	5.9	18	121	9AD3106_AMA
E21872	556202	6344807	0.3	0.4	124	1	1	8	3	Dec 9, 1999	1	5	<3	11	<1	6	6.5	15.6	0.31	2.33	17.9	5850	80	<0.05	0.05	6.5	38	9AD3106_AMA