# Open File Envelope No. 9578

**EL 2538** 

## **BORDERTOWN**

# ANNUAL AND RELINQUISHMENT REPORT FOR THE PERIOD 18/8/98 TO 17/8/99

Submitted by

Minotaur Gold NL 1999

© 17/8/99

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880



# **Minotaur Gold**

Strand Minerals NL

A.C.N. 061 559 840

A.C.N. 078 729 325

Minotaur Gold NL

1A Gladstone Street, Fullarton 5063, South Australia

Tel: +61 8 8338 3333 Fax: +61 8 8338 3233 Email mingold@ozemail.com.au

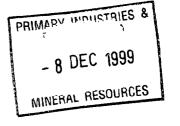
## **EL 2538 BORDERTOWN**

# FIRST ANNUAL TECHNICAL AND RELINQUISHMENT REPORT

FOR THE PERIOD

18<sup>TH</sup> AUGUST 1998 TO 17<sup>TH</sup> AUGUST 1999

H. S. R. FREEMAN PROJECT GEOLOGIST


A.P. BELPERIO CHIEF GEOLOGIST

6<sup>th</sup> November 1999

MAP REFERENCE: 1:250,000 MAP SHEET NARACOORTE SJ 54-2 1:100,000 MAP SHEETS KEITH 6925, CANAWIGARA 7025, NARACOORTE 7024

DISTRIBUTION: MINOTAUR GOLD NL

**PIRSA** 





# **CONTENTS**

| 1.0                                                       | INTR                                 | ODUCTION                               | 3 |  |  |  |
|-----------------------------------------------------------|--------------------------------------|----------------------------------------|---|--|--|--|
| 2.0                                                       | GEOLOGICAL SETTING AND PREVIOUS WORK |                                        |   |  |  |  |
| 3.0                                                       | WORK COMPLETED                       |                                        |   |  |  |  |
| 4.0                                                       | RESULTS                              |                                        |   |  |  |  |
| 5.0                                                       | CONCLUSION                           |                                        |   |  |  |  |
| 6.0                                                       | REFERENCES                           |                                        |   |  |  |  |
|                                                           |                                      | FIGURES                                |   |  |  |  |
| <b>-:</b>                                                 | . 4                                  |                                        |   |  |  |  |
| Figure 1 Location of EL 2358 Bordertown, Areas A, B and C |                                      |                                        |   |  |  |  |
| Figur                                                     | e 2                                  | Palaeogeography of the Bordertown area |   |  |  |  |
| TABLES                                                    |                                      |                                        |   |  |  |  |
| Table 1                                                   |                                      | Aircore drillhole locations            |   |  |  |  |
| Table                                                     | 2                                    | %HM Results                            |   |  |  |  |
|                                                           |                                      | APPENDIX                               |   |  |  |  |

**Geological logs** 

### 1.0 INTRODUCTION

This is the combined first annual technical report and final relinquishment report for the Bordertown Project area (EL 2358). The location of the licence, comprising Areas A, B and C and with a total area of approximately 1041km<sup>2</sup>, is shown in Figure 1.

The ground was acquired by Southern Diamonds, a wholly owned subsidiary of Minotaur Gold, on 18<sup>th</sup> August 1998 to explore for high grade, strandline-related, heavy mineral accumulations in the Pliocene Parilla Sand. Southern Diamonds subsequently changed its name to Strand Minerals NL.

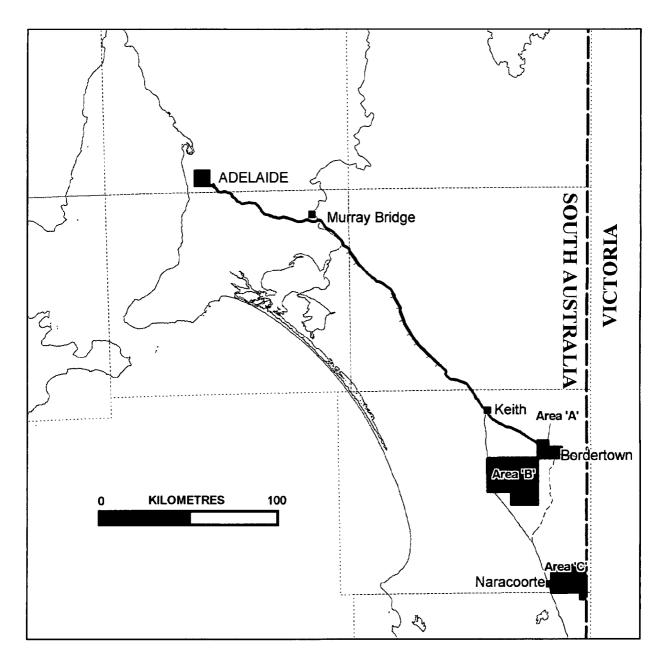



Figure 1 Location of EL 2358 Bordertown, Areas A, B and C

### 2.0 GEOLOGICAL SETTING AND PREVIOUS WORK

The licence areas lie in the SW corner of the intracratonic Tertiary-Quaternary Murray Basin, comprising fluvial and shallow marine sediments. The main lithologies observed in outcrop and from drilling include:

- Cambro-Ordovician felsic intrusives and volcanics.
- Eocene-Miocene marine limestone (Gambier Limestone)
- Pliocene marginal marine, transgressive to regressive, fine to coarse Parilla-Loxton sands which disconformably overlie the Miocene marine carbonates
- Pleistocene aeolian calcarenites and barrier shoreline deposits.

The Parilla Sand, the primary target for economic concentrations of heavy minerals, is present both in outcrop and in the subsurface for all three areas. Previous investigations by Belperio and Bluck (1990), Bluck (1989), Creelman (1989) and Richards and Jenke (1986) had highlighted the presence of a suitable suite of heavy minerals (albeit in low grades), and a palaeo-shoreline system capable of concentrating the heavy minerals into more suitable grade strandline-related accumulations. Former strandlines (**Figure 2**) are present on the east side of Bordertown, and to the southwest where they become increasingly calcareous before merging with the Pleistocene calcareous dune systems of the Coorong coastal plain. Coastal palaeogeography and morphodynamics are considered conducive to the concentration of heavy mineral sands in the palaeo swash zone (Belperio, 1999).

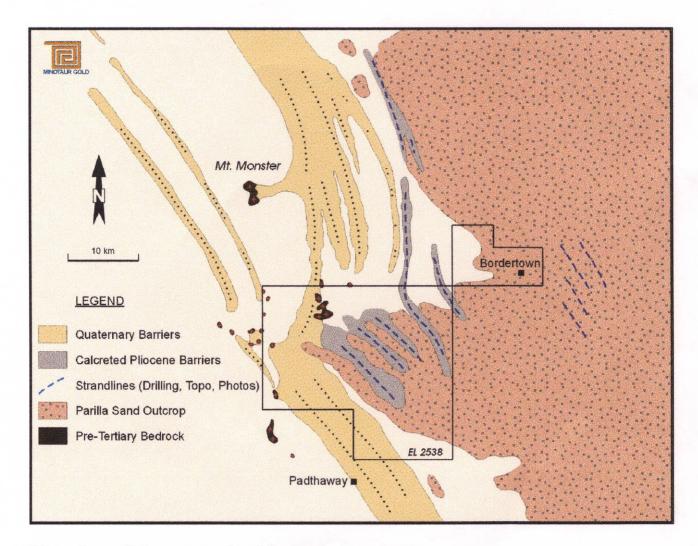



Figure 2 Palaeogeography of the Bordertown Area

#### 3.0 WORK COMPLETED

Previous exploration revealed only modest mineral sand grades (best 4m @ 1.1% from 6-10m) within the licence area. Previous drilling had tested zones of outcropping Parilla Sand. An aircore drilling was proposed to test the seaward slopes of the Pliocene calcreted barriers (Figure 2) at a number of roadside localities.

A reverse circulation aircore drilling program of 23 holes for 556 metres was completed in April 1999. Vertical holes were drilled on road verges at 10 localities in Areas A and B. Drillhole locations were recorded using a Garmin GPS with ±100m accuracy. Split samples (approx. 1kg) were collected at 1m intervals and logged on site. Samples with visible heavy minerals were submitted to AMDEL Laboratories for assay. Drillholes were backfilled immediately upon completion of drilling and any disturbance cleaned up to its former state.

A summary of aircore drillhole collars is given in **Table 1** and in digital form (collars.txt). Geological logs are given in **Appendix 1**. Subsamples of all drillholes were lodged with PIRSA Core Library.

| Location        | Hole ID | Easting (mE) * | Northing (mN) * | RL (m)  | Dip  | DEPTH |
|-----------------|---------|----------------|-----------------|---------|------|-------|
|                 |         | AMG Zone 54    | AGD 84          | approx. | deg. | (m)   |
| "Pikes"         | BT-1    | 482270         | 5983480         | 93      | -90  | 22    |
| "Pikes"         | BT-2    | 482160         | 5983060         | 88      | -90  | 24    |
| Creecoona Nth   | BT-3    | 481650         | 5981990         | 91      | -90  | 20    |
| Wirrega         | BT-4    | 464675         | 5973920         | 79      | -90  | 22    |
| Wirrega         | BT-5    | 464200         | 5973700         | 76      | -90  | 25    |
| Wirrega         | BT-6    | 463950         | 5973550         | 72      | -90  | 24    |
| Wirrega         | BT-7    | 463700         | 5973440         | 70      | -90  | 18    |
| Changwa         | BT-8    | 460900         | 5973600         | 63      | -90  | 16    |
| "Para-Gum"      | BT-9    | 459770         | 5972490         | 66      | -90  | 24    |
| "Para-Gum"      | BT-10   | 459590         | 5972195         | 75      | -90  | 23    |
| "Para-Gum"      | BT-11   | 459500         | 5972000         | 68      | -90  | 30    |
| Swede Flat      | BT-12   | 451000         | 5963190         | 95      | -90  | 42    |
| Swede Flat      | BT-13   | 450550         | 5963010         | 75      | -90  | 29    |
| Challa Downs    | BT-14   | 453300         | 5968000         | 75      | -90  | 30    |
| Challa Downs    | BT-15   | 453500         | 5968200         | 80      | -90  | 30    |
| Challa Downs    | BT-16   | 453700         | 5968400         | 84      | -90  | 30    |
| Thornton Park   | BT-17   | 468100         | 5977360         | 70      | -90  | 24    |
| Thornton Park   | BT-18   | 468470         | 5977350         | 80      | -90  | 18    |
| Wampoony        | BT-19   | 459880         | 5975980         | 65      | -90  | 18    |
| Wampoony        | BT-20   | 459480         | 5975930         | 58      | -90  | 15    |
| Wangoola Downs  | BT-21   | 451870         | 5973775         | 75      | -90  | 15    |
| Christmas Rocks | BT-22   | 446550         | 5974870         | 75      | -90  | 33    |
| Christmas Rocks | BT-23   | 447020         | 5974800         | 68      | -90  | 24    |

Table 1 Aircore drillhole localities (\* coordinates not DGPS)

#### 4.0 RESULTS

A suite of variably-cemented quartz, quartz-carbonate and calcarenite sands consistent with a dune sand to strandline sand origin were intersected by the drilling. In general, grain size increased downhole from dune to littoral facies, and carbonate content increased in a westerly direction across the tenement. The latter reflects increasing aridity and increasing dilution of terrestrially-sourced sediment by continental shelf-sourced bioclastics with decreasing age of individual barriers from east to west.

Seven samples were submitted for heavy mineral analysis at AMDEL Laboratories Ltd (Adelaide). Portions of the -3.35+0.038mm fraction were separated using tetrabromoethane (SG 2.96). Generally poor results were obtained with a best result from BT-3 of 1m @ 0.52%HM from 13m depth. No differentiation of the heavy mineral suite has been undertaken. All results are given in **Table 2** and in digital format (HM results.txt).

The best heavy mineral concentrations intersected came from variably cemented quartz-carbonate sand and calcarenite. Only one intersection was associated with medium to coarse grained sand: BT-1, 11-12m.

| HOLE ID | Depth from (m) | Depth to (m) | Result (Total -3.35mm) |
|---------|----------------|--------------|------------------------|
| BT-1    | 11             | 12           | 1m @ 0.28% HM          |
| BT-1    | 20             | · 21         | 1m @ 0.34% HM          |
| BT-3    | 13             | 14           | 1m @ 0.52% HM          |
| BT-11   | 20             | 21           | 1m @ 0.13% HM          |
| BT-11   | 23             | 24           | 1m @ 0.18% HM          |
| BT-13   | 16             | 17           | 1m @ 0.35% HM          |
| BT-22   | 24             | 25           | 1m @ 0.26% HM          |

Table 2 %HM Results

#### 5.0 CONCLUSION

Drilling has confirmed a barrier origin for the remnant linear structures between Bordertown and Padthaway with relict strandlines becoming increasingly dominated by carbonate bioclasts and carbonate cement from east to west across the tenement.

Given the poor results obtained from drilling across the seaward slope of most of the barriers (no drillholes returning >1%HM), potential for high grade heavy mineral deposits appears limited.

## 6.0 REFERENCES

Belperio, A. P. (1999). Geographic and tectonic controls on heavy mineral sand exploration targets in the Murray Basin. Australian Institute of Geoscientists Bulletin 26: 15-20.

Belperio, A. P. & Bluck, R. G. (1990). Coastal palaeogeography and heavy mineral sand exploration targets in the western Murray Basin. *The AusIMM Proceedings* 295: 5-10.

Bluck, R. G. (1989). Demis Pty Ltd EL 1555 Woorloo Hill. Reports for the period 9/1/89 to 9/7/89. MESA Open File Report ENV 8173.

Creelman, R. A. (1989). Burmine Ltd EL 1425 Bordertown. Progress and Relinquishment reports. *MESA Open File Report* ENV 6937, 8160.

Richards, M. N. & Jenke, G. P.(1986). CRA Ltd EL 1309 Kiama. Progress and Final reports to 14/1/86. MESA Open File Report ENV 6509.

## Appendix 1

| HOLE ID | FROM (m) | TO (m) | LITHOLOGICAL DESCRIPTION                         |
|---------|----------|--------|--------------------------------------------------|
| BT-1    | 0        | 3      | b2 clayey sand                                   |
| BT-1    | 3        | 13     | yb3-ob4 medium-coarse sand                       |
| BT-1    | 13       | 14     | y2 calcareous sand                               |
| BT-1    | 14       | 18     | yb3-ob7 medium-coarse sand                       |
| BT-1    | 18       | 21     | o5 fine-(medium) sand                            |
| BT-1    | 21       | 22     | yo6 medium-coarse cemented sand                  |
| BT-2    | 0        | 5      | ab5,b2,ob4 clayey sand                           |
| BT-2    | 5        | 9      | or5 coarse sand / fine.gravel                    |
| BT-2    | 9        | 11     | y2-o6 fine-(medium) sand                         |
| BT-2    | 11       | 13     | ob6 medium-coarse sand                           |
| BT-2    | 13       | 17     | o5 fine-(medium) sand                            |
| BT-2    | 17       | 24     | y3 limestone, bryozoal                           |
| BT-3    | 0        | 2      | b4-rb6 clay, sandy clay                          |
| BT-3    | 2        | 13     | o5 medium quartz sand                            |
| BT-3    | 13       | 19.5   | o5 fine quartz sand                              |
| BT-3    | 19.5     | 20     | y3 limestone, bryozoal                           |
| BT-4    | 0        | 2      | ab5 sandy clay, cemented sand, carbonate         |
| BT-4    | 2        | 4      | a2 calcrete, clay, micaceous clayey sand         |
| BT-4    | 4        | 8      | rb6 micaceous, calc sand, clayey fine sand       |
| BT-4    | 8        | 15     | w1 fine-medium carbonate-cemented micaceous sand |
| BT-4    | 15       | 19     | ra4-a2 fine-medium sand, fine gravel             |
| BT-4    | 19       | 22     | ga2 weathered granodiorite                       |
| BT-5    | 0        | 7      | ob6 calc, clayey fine sand, sandy clay           |
| BT-5    | 7        | 24     | yb3-ob6 micaceous fine sand, carbonate-cemented  |
| BT-5    | 24       | 25     | w1 limestone, bryozoal                           |
| BT-6    | 0        | 7      | aob5 clayey fine sand                            |
| BT-6    | 7        | 19     | rb-ob fine sand, carbonate cemented              |
| BT-6    | 19       | 24     | y3 limestone, bryozoal                           |
| BT-7    | 0        | 8      | a-yrb sandy clay, clayey fine sand               |
| BT-7    | 8        | 14     | rb-ob fine sand, (carbonate)cemented             |
| BT-7    | 14       | 18     | y4 limestone, bryozoal                           |
| BT-8    | 0        | 3      | clayey fine sand                                 |
| BT-8    | 3        | 6      | y5 fine sand, ironstone gravel                   |
| BT-8    | 6        | 11     | y4 fine cemented sand                            |
| BT-8    | 11       | 16     | y3 calc fine sand, calcarenite                   |
| BT-9    | 0        | 16     | (clayey) fine-medium sand, cemented              |
| BT-9    | 16       | 24     | calcareous fine sand, calcarenite                |
| BT-10   | 0        | 21     | clayey fine sand                                 |
| BT-10   | 21       | 23     | calc fine sand, calcarenite                      |
| BT-11   | 0        | 3      | fine quartz sand, ironstone, calcrete            |
| BT-11   | 3        | 17     | fine-(medium) quartz sand, cemented              |
| BT-11   | 17       | 30     | calc fine sand, calcarenite, (coal)              |
|         |          |        |                                                  |

# Appendix 1

| HOLE ID | FROM (m) | TO (m) | LITHOLOGICAL DESCRIPTION                                  |
|---------|----------|--------|-----------------------------------------------------------|
| BT-12   | 0        | 5      | fine quartz sand                                          |
| BT-12   | 5        | 19     | (clayey) fine-medium carbonate-quartz sand, cemented      |
| BT-12   | 19       | 37     | medium-coarse quartz sand                                 |
| BT-12   | 37       | 42     | fine carbonate-quartz sand                                |
| BT-13   | 0        | 2      | ap2 calcrete, fine sand                                   |
| BT-13   | 2        | 29     | fine carbonate-cemented carbonate-quartz sand             |
| BT-14   | 0        | 7.     | fine siliceous sand                                       |
| BT-14   | 7        | 18     | fine carbonate-quartz sand, calcarenite, cemented         |
| BT-14   | 18       | 22     | fine-medium calcarenite                                   |
| BT-14   | 22       | 30     | fine quartz-carbonate sand                                |
| BT-15   | 0        | 6      | fine quartz sand, Fe, clay micaceous, calcrete            |
| BT-15   | 6        | 30     | carbonate-cemented fine quartz-carbonate sand (micaceous) |
| BT-16   | 0        | 1      | fine siliceous sand                                       |
| BT-16   | 1        | 10     | clayey fine quartz-carbonate sand                         |
| BT-16   | 10       | 30     | fine quartz-carbonate sand, cemented                      |
| BT-17   | 0        | 6      | (carbonate) sandy clay                                    |
| BT-17   | 7        | 9      | clayey sand                                               |
| BT-17   | 9        | 18     | ob5-yb5 clayey quartz-carbonate fine sand                 |
| BT-17   | 18       | 24     | y4 limestone                                              |
| BT-18   | 0        | 1      | calcareous fine sand                                      |
| BT-18   | 1        | 18     | fine quartz-carbonate sand, cemented                      |
| BT-19   | 0        | 2      | ob4 clayey sand                                           |
| BT-19   | 2        | 16     | y3-ob5 carbonate-cemented, fine carbonate-quartz sand     |
| BT-19   | 16       | 18     | y4 limestone                                              |
| BT-20   | 0        | 9      | calcareous sandy clay, clayey sand                        |
| BT-20   | 9        | 15     | y4 limestone                                              |
| BT-21   | 0        | 9      | calcareous sandy clay, clayey sand                        |
| BT-21   | 9        | 15     | y5 limestone                                              |
| BT-22   | 0        | 1      | calcrete                                                  |
| BT-22   | 1        | 23     | wi1-y1 fine-(medium) quartz-carbonate sand                |
| BT-22   | 23       | 30     | ra3-rb6 carbonate-cemented medium siliceous sand, Fe      |
| BT-22   | 30       | 33     | wy1 fine-medium quartz-(carbonate) sand                   |
| BT-23   | 0        | 2      | fine siliceous sand                                       |
| BT-23   | 2        | 8      | wi1-y1 fine-(medium) quartz-carbonate sand                |
| BT-23   | 8        | 19     | (clay), calcareous medium-(fine) quartz sand, cemented    |
| BT-23   | 19       | 24     | y1 fine-medium quartz-carbonate sand (calcarenite)        |

## Appendix 1

## **COLOUR CODES**

| W | white  | 1 | very pale    |
|---|--------|---|--------------|
| у | yellow | 2 | pale         |
| r | red    | 3 | light        |
| b | brown  | 4 | medium light |
| р | purple | 5 | moderate     |
| i | pink   | 6 | dusky        |
| а | grey   | 7 | very dusky   |
| g | green  | 8 | dark         |
|   |        | 9 | very dark    |