CONTENTS ENVELOPE 4232

TENEMENT: E.L. No. 820 - Freeling.

TENEMENT HOLDER: Rockdale Hill Pty. Ltd.

REPORT: Quarterly Report July 1981.

Pgs. 3-11

PLANS: Freeling Heights East 1st Quarterly Report. Drg. 4232-1

No. 1-2.

REPORT: Quarterly Report Oct. 1981.

Pgs. 12-21

PLANS: Freeling Heights East 2nd Quarterly Report. Drg. 4232-2

No. 1-1.

REPORT: Final Report + Analyses.

Pgs. 22-60

PLANS: Locality Map.

Pg. 27

ROCKDALE HILL PTY. LTD.

EXPLORATION LICENCE NO. 820

'FREELING HEIGHTS EAST'

FIRST QUARTERLY REPORT

JULY, 1981.

CONTENTS

	Pag e
INTRODUCTION	1
METHOD OF INVESTIGATION	2 & 3
GENERAL GEOLOGY	4
MINERALIZATION	5 & 6
CONCLUSIONS	7

PLANS

LOCATION FREELING HEIGHTS EAST E.L. 820.
TOPOGRAPHIC/SAMPLE LOCATION MAP (1:10,000).

APPENDICES

GEOCHEMICAL ANALYSIS

COMLABS	PTY.	LTD.	REPORTS	810059
				810493
				810451
				810482

MINERALOGICAL REPORT

PONTIFEX & ASSOCIATES PTY. LTD.

INTRODUCTION

Exploration Licence No. 820 covering approximately 44 sq. km was granted to Rockdale Hill Pty. Ltd. on 6th April, 1981 for a period of six months.

The area is located in the northern Flinders Ranges, approximately 7 km north-east of Freeling Heights, is bounded by longitudes 139°26' to 139°30' and latitudes 30°03' to 30°08'.

This report presents the results of geological exploration of deposits of rare elements. The company is mainly interested in the occurrence of columbite-tantalite, which is considered as an ideal exploration target for a small company with limited resources.

The area was chosen primarily on the basis of Anaconda Australia Inc.

Paralana Concession (Special Mining lease 112) summarizing report

which recommended more detailed examination of the Freeling Heights

Ordovician Granite in order to "locate areas of low grade tin, wolfram,

tantalum . . . of possible economic interest."

METHOD OF INVESTIGATION

The area is very mountainous with maximum height of 700m above sea level and contour of the terrain does not allow the use of any land vehicle. Field parties have operated for periods of 3-4 days at a distance from base-camp in order to penetrate the area.

The initial program involved sampling of stream sediment in water-courses at approximately 100m intervals. Samples numbered 23-196 were collected by this 100m interval method predominantly in the Northern sector of the area. Because 100m intervals were proving cost inefficient the program was modified to obtain in order of priority,

- (i) Heavy mineral stream sediment concentrate.
- (ii) Rock chip samples from pegmatitic and other intrusional formation
- (iii) Stream sediment at 200m intervals.

The stream sediment samples were taken approximately 20cm below surface and bagged in plastic and calico.

About half of each sample collected was chemically analysed - an effort was made to ensure that material analysed was representative in fraction size of material <u>in</u> situ.

Samples were analysed by Comlabs Pty. Ltd. and mineralogically assessed by Pontifex & Associate Pty. Ltd. Limits of detection for X-Ray Flourescent analysis are: Nb (2), Ta (10), Sn (4), W (10), Th (4), Zr (4), Mo (2), U (4), La (20), Ce (20), Nd (20).

Limit of detection - Atomic Absorption Spectrophotometry - V (20).

Predominant rock units of the sample areas are as follows:

British Empire	Granite	Pegmatite (rock chip)
130 - 144		338 - 349
150 - 181		410 - 424
201 - 219		533 - 537
260 - 229		542 - 556
314 – 318		561 - 582
329 - 337		319 - 326
350 - 359		626 - 635
370 - 374		641 - 635
377 - 394		646 - 649
425 - 442		557 - 560
483 - 500		
501 - 531		
637 - 640		
686 - 731		
740 - 752		
7 54 - 7 56		
783 - 815		
303 - 326		1

Remaining sample numbers were located in Freeling Heights Quartzite. Sample locations shown on water-courses represent stream sediment. All others represent rock chip samples.

GENERAL GEOLOGY

The area of interest consists of Palaeozoic Intrusions within Granite Ordovician and is surrounded by a Pre-Cambrian formation represented by Radium Creek Metamorphics and Older Granite Suite.

The Radium Creek Metamorphics were intruded by two generations of granites grouped as Older Granite Suite (1,600 m.yrs) and British Empire Granite (400 m.yrs). The Radium Creek Metamorphics and Older Granite Suite together comprise the Mt. Painter complex.

The Radium Creek Metamorphics contain Freeling Heights Quartzite and contacts between the Freeling Heights Quartzite and British Empire Granite are represented by moderately discordant large rafts of Freeling Heights Quartzite preserved with granodicrite. There is little sign of contact metamorphism or metasomotism except silicification and incipient biotite development. Pegmatitic offshoots are common along the Western margin along the massif, but are absent from the Eastern contact zone. Pegmatite distribution indicates that the Western contact form the roof and the eastern margin, the base of the intrusion. Granodicrites form a large oval massif on the Freeling Heights plateau. The massif is strongly jointed - preferred joint direction is approximately E.W. and slightly W. of N. The N-S joins are more persistent and appear to be relatively younger than the closely spaced E-W system. N.E.-S.W. sets are weakly developed.

Pegmatitic Zone on western margin of British Empire Granite.

· MINERALIZATION 0009

The area was previously researched by Anaconda Australia Inc. in 1965/66 which investigated the occurrence of Cu, Zn and Pb primarily and secondarily analysed for Sn, W, Ta, Nb, Th and Zr in heavy mineral concentrate sediment from major streams draining areas of granitic rock.

Although Nb and Ta usually appear together in geochemical configurations often in association with Y, Zr, W, Ti, Th, Mn and occasionally U, atmospheric and hydrolytic processes can encourage concentration of Nb and Ta either separately (eg. columbite-tantalite-wolframite). Nb and Ta mineralization is often located in pegmatitic formations. Rock chip sample MF 555A (670ppm. Nb, 120ppm. Ta) seems to justify further investigation of at least this one pegmatitic intrusion, preferably by core drilling. However, prior to further field investigation of this location, fuller mineralogical and geochemical assessment of the anomalous material shall be required.

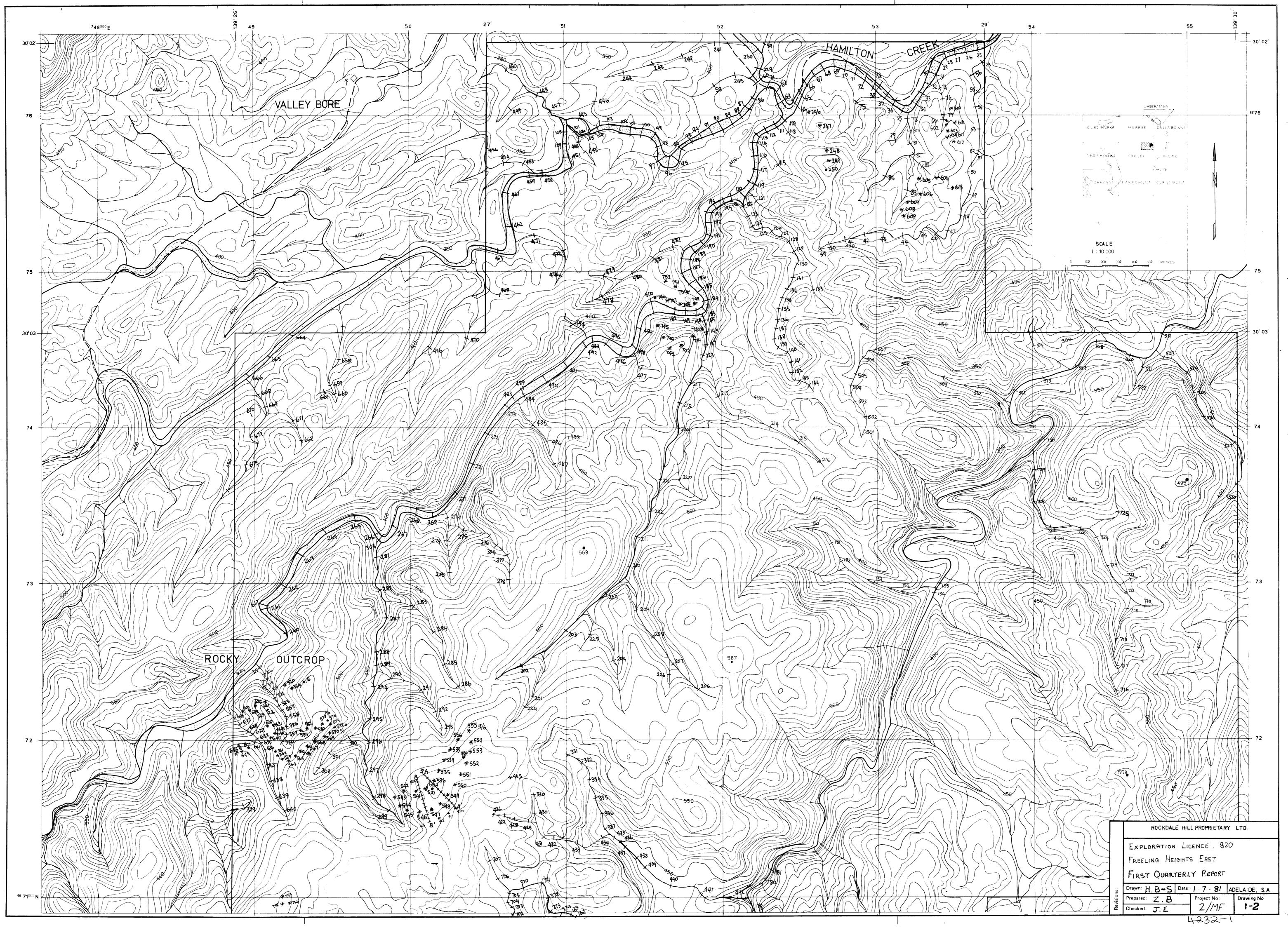
Irrespective of whether high-grade columbite-tantalite mineralization is representative of pegmatitic intrusions in the area under investigation, there exist many occurrences of medium-grade columbite - in this location, for example,

MF 551 (Nb 95ppm), MF 554 (Nb 95ppm), MF 542 (Nb 145ppm), MF 547 (Nb 130ppm).

Of further interest in the licence area is the concentration of higher grade columbite-tantalite in a conglomerate-type water-course based deposit. Sample MF 815 (450ppm Nb, 510ppm Ta) is an example of material possibly enriched by selective transportation of heavier metal bearing rock.

This sample contains associated elements: Sn, W, Th and Zr. Further investigation of conglomerate is suggested because there are substantial deposits present in the creek where MF 815 was found. However, because of the variables of (i) location of source material and (ii) transportation processes of heavy metal bearing material, the location of enriched high-grade columbite-tantalite in conglomerate remains somewhat problematical. Refer to Mineralogical Report, (Pontifex & Associates Pty. Ltd.) for detailed microscopic assessment of MF 815.

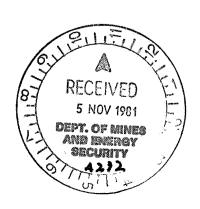
Finally, the highest rate of Nb and Ta is recorded in heavy metal concentrate located adjacent to MF 815. Sample MF 812 (Nb 520ppm, Ta 800ppm) probably derived from systematic erosion of medium to higher grade columbite-tantalite in conglomerate-type material. It is apparent from reference to topographic variables that this material is selectively deposited where water flow-rate decreases. MF 812 also contains anomalous Sn, W, Th & Zr. MF 811 and MF 814 also suggest the liklihood of further occurrences of high grade columbite-tantalite content in heavy metal concentrates. Further intensive investigation of Nb and Ta concentrations in heavy metal stream sediment concentrate is warranted.


Location of MF 555A Pegmatite Rock Chip Sample.

CONCLUSIONS

Relatively high-grade columbite-tantalite mineralization has been located in disparate areas. Evidence warrants further detailed investigation to establish economic feasability of heavy metal concentrate deposits and conglomerate-type material in the water-course that flows approximately W-E on latitude 30°05', and pegmatite based columbite mineralization at approximately latitude 71°00', longitude 139°27'.

Heavy Metal Stream Sediment Concentrate (MF 812)


ROCKDALE HILL PTY. LTD.

EXPLORATION LICENCE NO. 820

'FREELING HEIGHTS EAST'

SECOND QUARTERLY REPORT

OCTOBER, 1981.

CONTENTS

INTRODUCTION	1
METHOD OF INVESTIGATION	2
MINERALIZATION	3
CONCLUSION	4

PLANS:

SAMPLE LOCATION MAP (1:10,000)

APPENDIX:

GEOCHEMICAL ANALYSIS

COMLABS PTY. LTD. REPORT 810824

INTRODUCTION:

Previous investigation had identified evidence of relatively high-grade columbite-tantalite mineralization in disparate areas within the licence. The company's activity during the second quarter has focused on the task of establishing indicators of economic feasability of heavy metal concentrate deposits and conglomerate-type material.

The geochemical data presented highlights the heterogenous composition of surface conglomerate.

METHOD OF INVESTIGATION:

Samples that refer to the X-Ray Flourescent analysis that is presented in this report were all taken from conglomerate material in the watercourse that flows in a West-East direction at approximately 30°15' latitude. A total of 60 samples of typical conglomerate were taken from the surface along the watercourse up to the Western boundary of the licence area. Because samples were taken proximally to each other at varying distances depending on the factors of rock-type and deposit size, precise details of each sample location are available although not presented in this report. Our intention is to develop detailed rock-type mapping of the material in the watercourse from minerological and geochemical data in conjunction with aerial colour photography on a 1:2,000 scale.

MINERALIZATION:

Levels of mineralization from detailed rock-chip sampling of conglomerate material has qualified the proposition that conglomerate is a reliable source of high-grade tantalite. However anomalous levels of heavy metal mineralization are characteristic of this material and the proposition remains to be confirmed that consistently higher levels of Tantalite exist in the form of fossil beds or channels within the heterogenous material.

Samples MF815 (from previous report), MF854, MF828, MF859 and MF860, and MF867 represent the most highly mineralized locations found in this area of survey.

Detailed grid-based core drilling of the relatively shallow 1-2 metre depth to granite bedrock is considered to be warranted in order to confirm the presence of fossil beds of enriched Tantalite at each of these 4 locations.

CONCLUSIONS :

Evidence at this stage appears to warrant

- (1) Grid-based core drilling of conglomerate deposits
- (2) Grid and transect-based coring of sand deposits at the confluence of Hamilton Creek and the conglomerate enriched watercourse in order to quantify heavy metal concentrate mineralization.
- (3) Grid-based pneumatic drilling of enriched pegmatite (refer previous report) as a preliminary to core drilling in this location.

ANALYTICAL REPORT

JOB COM810824

Results in ppm

SAMPLE Sn Mo W Th Zr Nb MF 817 10 32 95 20 70 18 MF 819 14 38 30 14 55 24 MF 821 10 4 20 8 6 24 MF 822 <4 3 25 6 32 40 MF 823 <4 3 25 6 12 38 MF 826A 10 38 10 20 75 20 MF 826B 6 38 10 20 75 20 MF 828 250 22 45 55 85 90 MF 833 10 5 15								
MF 819 14 38 30 14 55 24 MF 821 10 4 20 8 6 24 MF 822 <4	SAMPLE	Sn	Мо	W	Th	Zr	Nb	Ta
MF 821 10 4 20 8 6 24 MF 822 <4 3 25 6 32 40 MF 823 <4 3 25 6 12 38 MF 824 8 32 15 22 60 16 MF 826A 10 38 10 20 75 20 MF 826B 6 38 10 20 75 20 MF 828 250 22 45 55 85 90 MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 853 14 34 400 16 70 20 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 817	10	32	95	20	70	18	<1.0
MF 822	MF 819	14	. 38	30	14	5 5	24	<10
MF 823 <4	MF 821	10	4	. 20	8	6	24	<10
MF 824 8 32 15 22 60 16 MF 826A 10 38 10 20 75 20 MF 826B 6 38 10 20 75 20 MF 828 250 22 45 55 85 90 MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 822	<4	3	2,5	6	32	40	<10
MF 826A 10 38 10 20 75 20 MF 826B 6 38 10 20 75 20 MF 828 250 22 45 55 85 90 MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4	MF 823	< 4	. 3	25	6	. 12	38	10
MF 826B 6 38 10 20 75 20 MF 828 250 22 45 55 85 90 MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 824	8	3 2	15	22	60	16	<10
MF 828 250 22 45 55 85 90 MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 826A	10	38	10	. 20	75	20	<10
MF 833 20 4 15 50 85 34 MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865B 16 16 15 24 110 32	MF 826B	6	38	10	20	75	20	<10
MF 835 14 22 10 12 60 16 MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 828	250	22	4.5	55	8.5	90	85
MF 837 10 5 15 14 50 24 MF 839 <4 4 15 24 65 34 MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 833	20	4	15	50	85	34	<10
MF 839	MF 835	14	2 2	10	12	60	16	<10
MF 841 60 18 20 26 90 30 MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 837	10	5	1.5	14	50	24	<10
MF 842 12 7 10 12 60 20 MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 839	<4	- 4	15	24	6.5	34	15
MF 843 6 3 10 6 75 20 MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 841	60	18	20	26	90	30	25
MF 844 8 4 15 8 40 28 MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 842	1 2	7	10	12	60	20	<10
MF 846 26 5 15 22 32 30 MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 843	6	3	1.0	6	7.5	20	<10
MF 848 28 9 15 36 130 46 MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 844	8	4	15	8	40	28	<10
MF 856 8 14 85 8 34 16 MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 846	26	5	15	22	32	30	z 2 0
MF 853 14 34 400 16 70 20 MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 848	28	9	15	36	130	4 6	25
MF 860 130 75 65 30 65 55 MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 856	8	14	85	8	34	16	<10
MF 865A 10 12 20 20 100 24 MF 865B 16 16 15 24 110 32	MF 853	1 4	34	400	16	70	20	<10
MF 865B 16 16 15 24 110 32	MF 860	130	. 75	65	30	65	55	85
· · · · · · · ·	MF 865A	10	1 2	20	20	100	24	<10
MF 873 24 12 15 22 70 26	MF 865B	16	16	15,	24	110	32	<10
	MF 873	24	1 2	1,5	22	70	26	15

ANALYTICAL REPORT

JOB COM810824

Results in ppm

SAMPLE	Sn	Mo	W	Th	Zr	Nb	Ta
MF 876	44	9	25	48	85	50	30
MF 877	40	8	1.5	22	46	26	15
MF 878	<4	7	10	10	65	14	<10

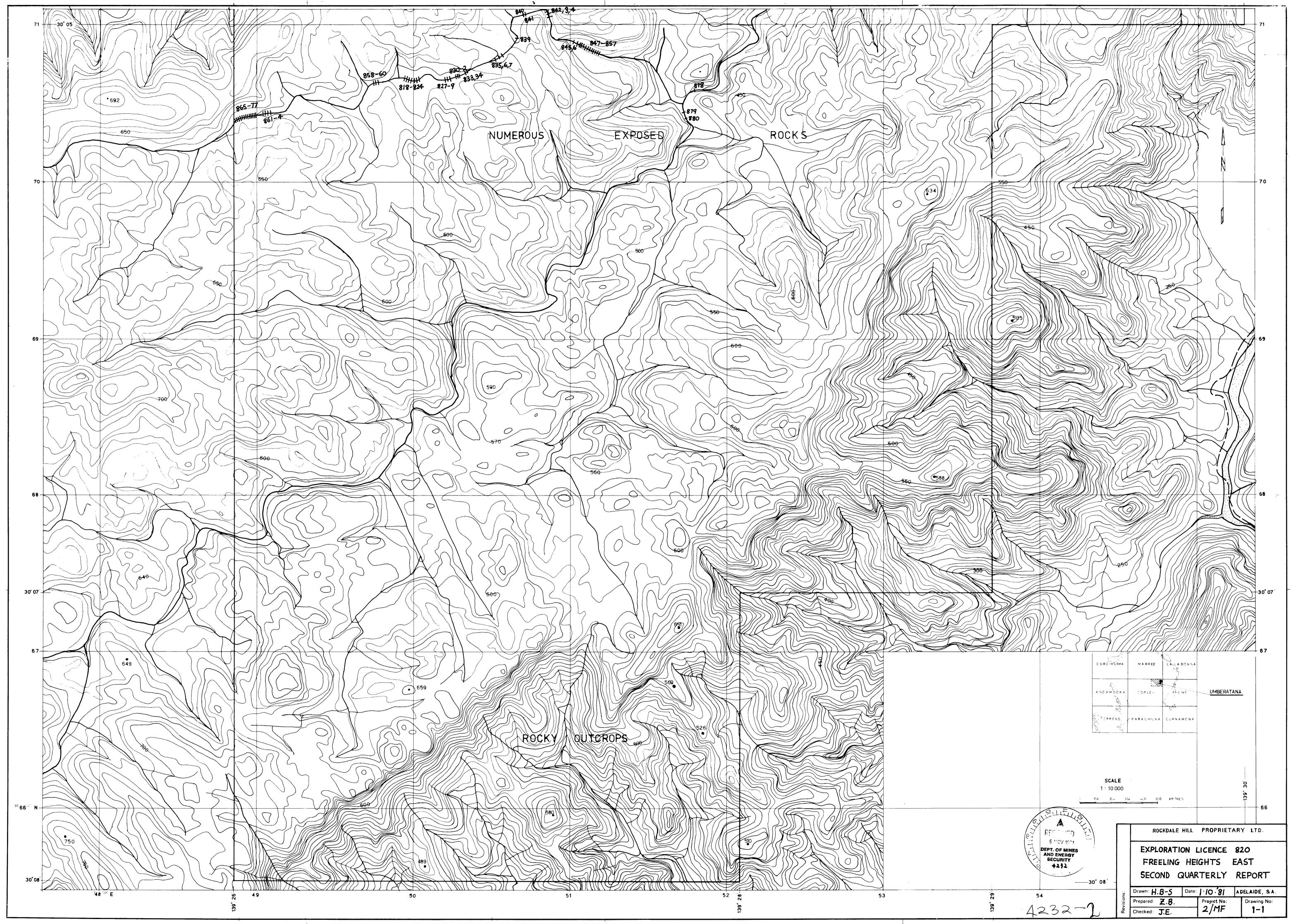
Method of Analysis : Sn Mo W Th Zr Nb Ta : XRF1

ANALYTICAL REPORT

JOB COM810824

Results in ppm

SAMPLE	Nb	Ta
MF 818	16	<10
MF 820	18	<10
MF 825A	42	2.5
MF 825B	26	< 10
MF 827A	50	40
MF 827B	85	50
MF 829	1 4	<10
MF 834	18	<10
MF 836	36	<10
MF 840	20	<10
MF 845A	1 2	< 10
MF 845B	30	15
MF 847	30	10
MF 849	2 4	<10
MF 850	2 4	<10
MF 851	26	10
MF 852	24	15
MF 854	100	70 <
MF 855	18	<10
MF 857	24	<10
MF 858	28	< 1.0
MF 859	. 80	75 🕜
MF 861	4.8	15
MF 862	70	10
MF 863A	18	<10


ANALYTICAL REPORT

JOB COM810824

Results in ppm

SAMPLE	NЪ	Та
MF 863B	16	<10
MF 864	32	10
MF 866A	30	20
MF 866B	42	20
MF 867A	60	40
MF 867B	55	65
MF 868	2.8	2.0
MF 869	38	15
MF 870	30	20
MF 871	26	<10
MF 872	24	10
MF 874	40	15
MF 875	6.5	45
MF 879	28	<10
MF 880	16	<10

Method of Analysis : Nb Ta : XRF1

ROCKDALE HILL PTY. LTD.

THIRD FLOOR, 5 CHESSER STREET, ADELAIDE 5000

Address all correspondence to: POST OFFICE BOX 11 SUMMERTOWN, S.A. 5141 Telephone (08) 223-5040 After Hours (08) 390-3170

FINAL REPORT

EXPLORATION LICENCE 820

FREELING HEIGHTS EAST AREA

Samples of alluvial sand were taken along transects in the main watercourse which runs through the area under consideratiom.

These samples were taken from depths to 2m. and analysed for Nb and Ta.

It is conseidered that the results obtained do not warrant further investigation.

Page 23 is Missing

COMPUTERISED ANALYTICAL LABORATORIES

This Laboratory is registered by the National Association of Testing Authorities, Australia. The testis) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

JOB COM820279

0024

Rе	sul	t s	in	ppm
	UUL			1. 1. 1

SAMI	PLE	Sn	ИÞ	W	Та
F	1	< 4	30	20	<10
F	2	6	3 0	1 5	<10
F	3	6	30	<1.0	<10
F	4	.4	16	<10	<10
F	5	<4	3 2	20	<10
, , F	6	4	20	10	<10
F	7	<4	16	20	10
F	8	10	36	2 0	<10
F	9	1 2	50	40	<10
F	10	< 4	16	<1,0	<10
F	11	4	16	15	<10
F	12	<4	10	30	<10

Method of Analysis : Sn Nb W Ta : XRF1

This Laboratory is registered by the National Association of Testing Authorities, Australia. The testis) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

ANALYTICAL REPORT

0025

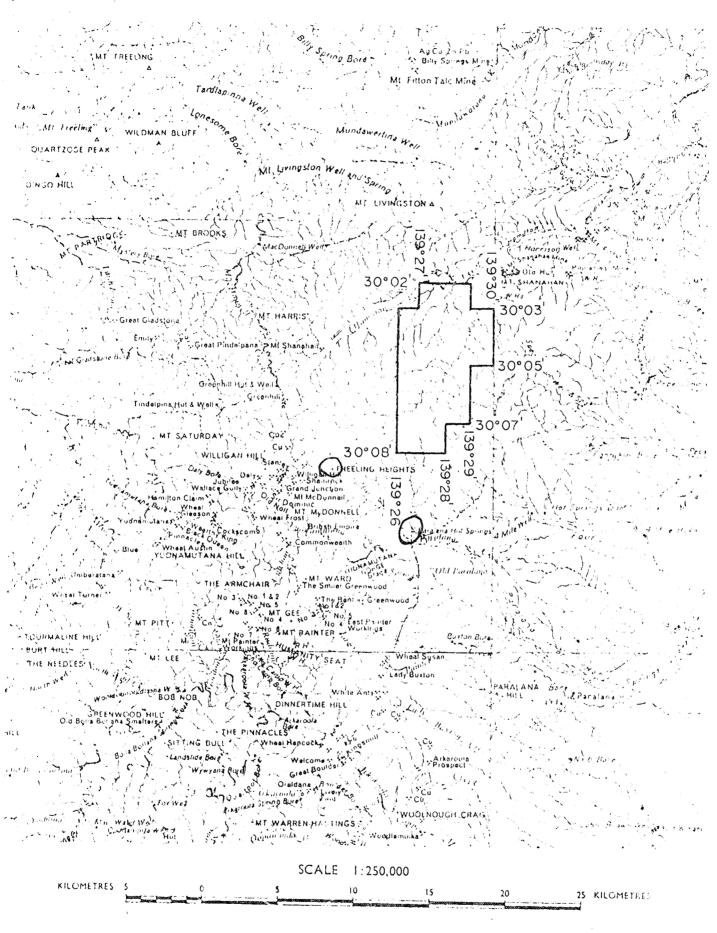
JOB COM820279

Res	ult	s i	n p	рm
-----	-----	-----	-----	----

				, ,
	SAM	PLE	K	b Ta
M	Fa	1	2	2 10
M	Fa	2	2	0 <1.0
M	Fa	5	1	2 <10
M	Fa	6	1	2 <10
M	Fa	7	1	4 <10
M	Fa	8	1	4 . 15
M	Fa	9	1	0 <10
M	Fa	10	1	2 <10
M	Fa	11	1	4 <10
M	Fa	12	1:	2 <10
M	Fa	13	1	4 <10
M	Fa	1 4	1	6 <10
M	Fa	15	1:	2 <10
1.	Fa	16	. 1	4 <10
M	Fa	17	10	<10
M	Fa	18	10	<10
M	Fa	19	16	<10
M	Fa	2 0	1 4	<10
M	Fa	21	12	<10
М	Fa	2 2	10	<10
M	Fa	23	14	<10
M	Fa	2 4	10	. <10
M	Fa	2 5	10	<10
M	Fa	26	1 2	<10
М	Fa	27	2 2	<10

This Laboratory is registered by the National Association of Testing Authorities, Australia. The testis) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

0026


ANALYTICAL REPORT

JOE COM820279

Results in ppm

SAMPLE	Nb	Та
N Fa 28	10	<10
M Fa 29	2 4	10
M Fa 30	24	<10
M Fa 31	130	55
M Fa 32	5	<10
M Fa 33	14	<10
M Fa 34	12	<1.0
M Fa 35	18	<10
M Fa 36	34	15
T 1	20	<10
Т 2	18	<10
т 3	16	<10
T 4	1 4	<10
т 6	18	<10
T 20	20	<10
T 21	18	<10
T 22	16	<10
T 23	16	<10
T 24	14	<10
T 25	1 2	<10
T 2.6	12	<10
US,BD	16	<10
PRSE	5 5	40

Method of Analysis : Nb Ta : XRF1

APPLICANT: ROCKDALE HILL PTY, LTD.

DM: 635 /80 `

AREA: 53 square kilometres

1:250 000 PLANS: COPLEY

LOCALITY: FREELING HEIGHTS EAST AREA - Approx. 110km N.E. of Leigh Creek DATE GRANTED: DATE EXPIRED:

EL No:

TEL.: (08) 43 5722 TELEX: AA 89323

0028

AMALYTICAL PEPORT

JOB COM810451

Results in ppm

Nb	Та
20	<10
2 6	15
2 4	1.5
42	15
10	< 1.0
16	15
5	< 1 (
28	<10
18	1.5
44	3 0
60	20
38	< 10
8	< 1.0
4 2	<10
1 4	<10
14	<10
28	10
3	<10
16	<10
2 2	< 10
5	<10
18	< 10
6	10
36	<10 >
26	<10 >
	20 26 24 42 10 16 5 28 18 44 60 38 42 14 14 28 3 16 22 5 18 6

ROCKDALE
18 JUN 1981
HILL P/L

- 2 -

COMLABS Pty Ltd

ANALYTICAL REPORT

0029

JOB COM810451

Results in ppm

SAMPLE	Nb	Та
NF 643	18	<10
1°F-644A	8	<10
MF-644B	7	<10
MF 645	12	<10
NF 646	18	<10
MF 647	36	< 10
NF 648	42	< 1.0
I'F 649	75	<10
NF 650	20	<10
MF 651	36	<10
MF 652	18	<10
MF 653	20	< 10
MF 654	46	< 1.0
HF 655	18	<10
MF 533	14	< 10
MF 534	14	<10
MF 535	16	<10
MF 536	12	<10
MF 537	16	<10
MF 541	34	<10
NF 542	145	<10
ПΓ 543	90	< 1.0
MF 544	60	< 10
MF 545	9	< 10
MF 546	0.3	<10

ROCKDALE
18 JUN 1981
HILL P/L.

ROCKDALE

18 JUN 1981

HILL P/L.

ANALYTICAL REPORT

JOB COM810451

0030

Results in ppm

SAMPLE	Nb	Ta
MF 547	130	10
MF 548	5 0	<10
MF 549	120	10
MF 550	50	< 1 0
MF 557	38	<10
11F 558	44	<10
MF 559	26	10
MF 560	18	< 1.0
UF 561	50	10
PF 562	50	10
HF 563	24	<10
l'F 564	3.0	<10
NF 565	7	< 1.0
MF 566	42	< 1.0
MF 567	36	<10
HF 568	6	<10
MT 569	18	< 1.0
MF-570A	3	< 10
1'F-570B	5.5	1 5
MF-572A	3 4	< 10
MF 574	16	<10
MF 576	2 0	< 10
MF-578A	28	<10
MF-578B	40	< 10
MF 580	36	< 1 0

ANALYTICAL REPORT

JOB COM 810451

0031

Results in ppm

SAMPLE	пь	Ta
MF 582	7	< 10
MF 584	8	< 1 0
MF 260	1 4	< 1 0
MF 261	12	<10
NF 262	12	<10
MF 263	16	< 10
MF 264	16	< 10
MF 265	1 2	< 10
MF 266	18	< 10
MF 267	1 4	< 1 0
MF 268	20	< 1.0
MF 269	1 2	< 1.0
MF 270	14	< 1.0
MF 271	14	< 10
MF 272	12	< 10
MF 273	1.8	< 1.0
MF 274	10	< 10
MF 275	10	< 10
MF 276	22	< 1.0
MF 277	14	< 10
MF 278	1 2	< 10
MF 279	10	< 10
MF 280	18	<10
MF 281	16	< 1.0
NF 282	20	< 1 0

ANALYTICAL REPORT

0032

JOB COM810451

Results in ppm

SAMPLE	NЪ	Ta
MF 283	12	< 1.0
1:Γ 284	18	< 1.0
EF 285	16	<10
MF 226	26	10
HF 287	18	<10
MF 288	28	<10
MF 290	12	< 10
MF 291	18	< 10
MF 292	2 4	< 10
MF 293	16	<10
MF 294	42	<10
MF 295	40	<10
MF 296	2 2	< 10
NF 297	16	< 10
MF 298	12	<10
NF 299	12	<10
Hr 300	22	<10
11F 301	26	<10
MF 302	26	< 10
MF 303	12	< 1.0
MF 350	9	<10
MF 351	-8	<10
MF 352	10	< 1.0
MF 353	12	<10
MF 354	1 2	<10 ,

.../ 6

ANALYTICAL REPORT

JOB COM810451

0033

Pesults in ppm

SAMPLE	Nb	Ta
MF 355	16	< 10
MF 356	10	<10
MF 357	12	< 1.0
MF 358	10	< 10
MF 359	16	< 10
MF 426	16	< 10
MF 427	10	< 10
NF 428	9	10
MF 429	10	< 10
MF 430	8	< 10
MF 431	8	< 1.0
NF 432	8	<10
MF 433	7	< 10
PF 434	8	<10
11Γ 435	10	< 1.0
MF 436	10	< 10
HF 437	8	<10
MF 438	8	<10
MT 439	8	<10
11F 440	10	< 10
MF 441	9	< 10
MF 442	8	< 10
HF 201	55	15
Mr 202	10	< 1.0
MF 203	16	<10

ROCKDALE
18 JUN 1981
HILL P/L.

ANALYTICAL REPORT

JOB COME10451

Results	in ppm	0034
SAMPLE	ИЪ	Ta
MT 204	16	< 10
MF 205	1 4	< 10
MF 206	20	<10
MF 207	16	< 10
MF 208	85	< 10
MF 209	10	< 10
MF 210	14	< 10
MF 211	1 2	<10
MF 212	7	< 10
MF 213	3	< 10
MF 214	9	<10
MT 215	9	< 10
MF 216	10	< 10
MF 217	10	< 10
MF 218	10	< 10
MF 219	10	< 10
MF 220	16	< 1 0
MF 221	14	< 1 0
NF 222	10	< 1.0
MF 223	10	< 10
MF 224	18	<10
MF 225	20	< 10
МГ 226	3 2	10
NF 304	9	<10
MF 338	2 4	<10
_		

ROCKDALE
18 JUN 1981
HILL P/L.

COMLABS Pty Ltd COMPUTERISED ANALYTICAL LABORATORIES

TRANSECT

ROCKDALE

1 8 JUN 1981

AMALYTICAL REPORT

JOB COM810451

0035

Results in ppm

1,000,00	Tu bl	JIII
SAMPLE	Nb	Ta
↑ NF 339	4 0	< 1.0
MF 340	34	<10
NF 341	34	10
NF 342	6	< 1 0
нг 343	8	< 1 0
NF 344	16	< 10
HF 345	30	< 10
ИГ 346	26	< 1.0
MF 347	3.8	< 10
NF 348	1 4	< 1.0
NF 349	3 4	10
MF 411	5 5	10
MF 412	26	< 10
8 KF 413	32	< 10
MF 414	10	< 10
MF 415	5	< 10
IIF 416	16	< 10
MF 417	22	< 10
MF 418	9	<10
10F 419	12	<10
HF 420	3 2	<10
11F 421	1 2	<10
NF 422	20	< 1.0
MF 423	10	<10
6 MF 424	2 2	<10

TRANSECT

COMLABS Pty Ltd

ANALYTICAL REPORT

JOB COM810451

Results in ppm

0036

Sandan Charles	ROCK	DALE	
Salatan - decision of the last	18 JUN	1981	CONTRACTOR STATE
	HIILL	19/IL.	

-,004169	11 P	Pu
SAMPLE	Nb	Ta
MF 370	10	<10
MF 371	7	< 1.0
MF 372	10	<10
NF 373	10	<10
MF 374	10	< 10
MF-572B	4	<10
MF 478	1 4	<10
NF 479	14	<10
MF 480	1 4	<10
EF 481	14	<10
MF 482	12	< 1.0
NF 483	1 4	< 1.0
MF 484	10	<10
MF 485	10	< 10
MF 486	10	< 10
MF 487	10	< 10
MF 488	14	<10
MF 489	60	< 10
MF 490	18	< 10
MF 491	20	10
MF 492	16	10
HF 493	9	<10
NF 494	14	< 1.0
MF 495	1 4	<10
IIF 496	9	< 10

COMLABS Pty Ltd

COMPUTERISED ANALYTICAL LABORATORIES

ROCKDALE

1 8 JUN 1981

ANALYTICAL REPORT

JOB COM810451

0037

SAMPLE	NP	Ta
NF 497	8	10
MF 498	1 2	< 10
MF 499	10	< 10
EF 500	10	< 10
MF 501	12	< 10
MF 502	12	< 10
NF 503	12	<10
MF 551	95	< 10
MF 552	16	< 10
MF 553	70	< 10
MF 554	95	10
MF-5.55A	670	120
77-555B	4	1 C
MF 556	34	<10
MF 425	48	< 1.0
MF 682	24	<10
MF 683	14	<10
NF 684	12	< 10
NF 685	14	<10
1'F 686	18	< 10
1°F 687	ò	<10
NF 688	1 2	<10
NF 689	10	<10
HF 690	1 2	10
MF 691	10	<10

COMLABS Pty Ltd

AMALYTICAL REPORT

JOB COM810451

 003δ

Results in ppm

SAMPLE	ИР	Та
MF 692	10	< 1.0
11F 603	1.0	< 10
MF 694	8	< 1 0
MF 695	7	<10
NF 696	10	< 10
IF 697	8	<10
MF 698	10	< 10
1.L 933	9	< 10
MF 700	10	< 10
NF 701	-8	< 10
MF 702	9	<10
MF 703	10	< 10
MF 704	10	< 1.0
MF 705	18	< 1.0
MF 706	1 2	<10
MF 707	7	< 1.0
NF 708	o	< 1 0
MF 709	1.0	<10
F 710	60	3.0
HΓ 711	24	10
MF 712	5 5	30
°F 713	12	< 1.0
F 714	42	10
F 715	44	1.5
F 806	12	<10

18 JUN 1981 HIILL P/L.

COMLABS	Pty	Ltd	
	•		

COMPUTERISED ANALYTICAL LABORATORIE

ANALYTICAL REPORT

0039

JOP COM810451

Res	$\dot{u}1$	t s	in	ppm
-----	------------	-----	----	-----

SAMPLE	пь	Ta	
HF 807	20	< 10	
1!F 808	10	< 10	
ML 809	1 4	<10	
MF 810	16	<10	
MF 811	180	125	
MF 812	520	003	
MF 813	12	< 10	
MF 81/4	8.5	9.5	
MF 815	450	510	Constancieta.
MF 816	3 4	10	J

ROCKDALE
18 JUN 1981
HILL P/L.

Method of Analysis : Nb Ta : XPF1

COMLABS Pty Ltd

0040

	OOMENDO I LY	L. CCI						
	COMPUTERISED ANALYTICAL LABO	RATORIES		JOB COL	810451			
			F	Results	in ppm		÷	
	SA	MPLE	Sn	tio	R	Th	Zr	
	ř: F	682	130	3	10	16	28	V
	ME	683	6	3	<10	6	18	
	ME	684	4	2	< 10	6	2.0	
	ME	685	4	2	10	8	26	
	t! F	686	8	3	10	1,2	50	v
	ME	687	4	2	10	4	20	
	ME	886	4	3	< 10	10	20	
	ME	689	. 6	2	<10	8	2.8	
	MÍ	690	6	2	<10	6	26	
RO	CKDALE	69,1	< 4	2	10	6	2 2	
18	3 JUN 1981 F	692	< 4	3	< 10	6	2.4	
Hiii		693	4	2	<10	< 4	22	
0 00	I / Las	694	. 4	2	< 10	< 4	14	
)* F	695	4	2	<10	6	3 ,	
	l. I	696	E	< 2	10	10	28	
	111	697	< 4	< 2	< 1.0	< 4	1 4	
	MI	698	< 4	2	< 10	6	2 0	
	111	699	4	< 2	< 10	4	20	
	I.I	700	4	3	<10	6	28	
	и	7.01	< 4	2	< 10	10	1 4	
	MI	702	< 4	2	<10	6	18	
	111	703	< 4	2	<10	. 8	2.4	
	J. I	704	< 4	2	10	4	18	
	MI	705	4	2	<10	6	36	
	MI	706	8	2	<10	14	5.5	Ý

COMLABS Pty Ltd	MA.	ALYTICAL	REPORT	00%	
		JOE COM8	10451	0041	
	P	sults i	n ppm		
SAMPLI	E Sn	No	$oldsymbol{V}$	Th	Zr
11F 70	7 6	2	<10	3	36
11F 708	4	2	< 1.0	6	3 4
HF 709	4	2	10	10	26
HF 710	22	2	20	80	110
NF 711	4	2	< 10	2 4	6.5
MF 71.2	3 4	3	20	75	5 5
MF 713		2	< 1 0	4	32
MT 714	32	2	2 5	4 2	70
MF 71,5	36	2	15	70	8.5
ROCKDALE 806	6	2	< 1.0	٤	4 6
1 8 JUN 1981 NE 805	1 0	< 2	10	26	130 %
Paris I for a	4	2	< 10	10	60
17 809	1 2	< 2	<10	18	60
14F 84°0	4	< 2	10	26	110 V
MF 811	195	< 2	50	150	100
MF 812	2450	< 2	125	140	60
MF 813	6	2	< 10	10	36
l'F 814	165	3	30	0.8	65
MF 8r5	1050	4	145 2	20	110
MF 816	1 2	< 2	1 5	50	70
	Method of	Analysi	s : Sn	Mo V T	Ch Zr : XRF1

JOB COM810482

0042

Results	in ppm	
SAMPLE	МР	Ta
tr 716	10	< 10
1F 717	1 2	10
1F 718	1 4	< 1.0
MF 719	2 4	< 1.0
MT 720	10	< 10
MF -72-1	10	10
MF 722	O	< 1.0
MF 723	1 2	<10
NF 724	10	<10
NF 725	12	<10
MF 726	1 2	< 1.0
1'F 727	12	< 1.0
MF 728	12	<10
MF 729	9	<10
11F 73.0	18	< 10
MF 731	12	< 10
MF 754	8	< 10
MF 755	1.6	< 1.0
MF 756	42	<10
MF 757	34	< 1.0
MF 758	26	10
rr 759	9	<10
NF 760	38	< 1.0
NT 701	* *	<.:
MF 762	28	< 1 0

ANALYTICAL PEPCET

JOP COM810482

Results in ppm

0043

	SAN	PLE	Mb	Ta
1	f:F	763	34	<10
THE REAL PROPERTY.	NF	764	8	< 1.0
	MF	765	7	<10
	NF	766	42	< 1.0
	MF	767	16	< 1.0
	MF	768	5	<10
	MF	769	50	< 10
	J, L	770	30	<10
	ľГ	771	ô	10
	MF	772	٤	< 10
	MF	773	20	< 10
	l' F	774	16	< 1.0
	MF.	775	10	<10
	HF	776	1 4	< 10
	нг	777	1 2	< 1.0
	ΗF	778	8	< 1.0
	ŀГ	779	2 4	10
	MF	781	12	< 10
-	MF	7 <i>82</i>	14	<10
	i'r	783	Ĉ.	<10
	#F	784	38	< 1.0
	ř F	785	18	<10
	MF	786	1 2	< 10
	MF	7 2 7	14	< 1.0
Ì	!Γ 7	Λ33	26	<10

ROCKDALE
18 JUN 1981
HILL P/L.

ANALYTICAL PEPORT 0044

JOB COM810482

Results in ppm

nes.	ults in	ppm
SAMPLE	Nb	Ta
1'F 788B	18	<10
MF 789	14	<10
IF 790	14	< 10
l'F 791	2.0	<10
MF 792	36	<10
MF 793	30	<10
MF 794	9	<10
MF 795	8	< 10
MF 796	16	10
MF 797	22	<10
MF 798	O	<10
MF 799	3	< 10
FF 800	Ò	<10
PF 801	8	<10
l'F 802	44	10
MF 803	9	<10
NF 804	12	<10
MF 805	8	<10
MT 377	4 4	<10
MF 378A	1 2	<10
Mr 378B	34	<10
MF 379A	1 4	<10
NF 379R	30	15
MF 380	5.0	٤5
MF 381	30 <	10

HF

JOB COM810482

Results	in ppm	0045
SAMPLE	Nb	Та
MF 382	2 2	10
MF 383	2.2	10
MF 384	22	<10
MF 385	16	<10
KF 386	18	< 10
MF 387	12	1.0
MF 388	20	1.0
MF 389	3 4	< 10
MF 390	18	< 1.0
NF 391	16	10
MF 392A	7	<10
FF 392E	12	< 10
MF 393	2.6	<10
NF 394	26	<10
MF 740	24	< 10
MF 741	7	< 10
MF 742	3	< 10
MF 743	75	15
MF 744	2	< 1.0
MF 745	3	< 1.0
MΓ 746	16	<10
MF 747	4	<10
NF 748	6	< 1.0
MF 749	7	< 1.0
MF 750	2	< 10

ROCKDALE
18 JUN 1981
HILL P/L.

.../

JOB COM810482

Rest	ults in pp	m	0046
SAMPLE	Nb	Ta	
MF 751	4	< 1.0	
MF 752	4	< 1.0	
MF 753	1 4	< 1.0	
Nethod of	Analysis	: Ta Nh	· YETI

1 8 JUN 1981

HULL P/L.

ANALYTICAL REPORT

JOB COM 810059

0047

Results in ppm

AMPLE	<u>Ta</u>		<u>Nb</u>	
F 2	10		<4	
3	<10		20	
4	15		<4	
5	<10		20 .	
6	<10		10	
7	15		4	
8	15		4	
9	<10		12	
10	<10		16	
1	<10		8	
2	Samples	returned	to Clien	.t
3	11	11	11	
4	n	, II	11	100
5	11	11	11	
6	11	11"	ti	
7	Ħ	11	11	description of the second
8	11	11	11	
9	11	TŤ.	11	
20	11	11	İT	
1	11	11	11	
2	11	11	11	J
23	<10		18	
4	<10		22 •	
5	<10		14	-
6	10		18	
7	<10		18 '	
	3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 23 4 5 6	F 2 10 3 <10 4 15 5 <10 6 <10 7 15 8 15 9 <10 10 <10 1 <10 2 Samples 3 " 4 " 5 " 6 " 7 " 8 " 9 " 20 " 1 " 2 " 23 <10 4 <10 5 <10 6 10	F 2 10 3 <10 4 15 5 <10 6 <10 7 15 8 15 9 <10 10 <10 1 <10 2 Samples returned 3 " " " 5 " " " 6 " " " 7 " " " 8 " " " 9 " " " 1 " " 20 " " " 1 " " 23 <10 4 <10 5 <10 6 10	F 2 10

29

MF 30

8

<10

<10

<10

24

12

18

TAKEN MARIDE

MIR AREA

1 8 JUN 1981

HILL P/L.

ANALYTICAL REPORT

JOB COM 810059

0040

Results in ppm

SAMPLE	Ta	<u>Nb</u>
MF 31	15	12
2	10	4
3	10	16
4	<10	20
5	<10	<4
` ·6	<10	8
7	<10	14
8	30	6
9	<10	12
40	15	22
1	15	10
2	10	20
3	20	14
4	<10	14
5	<10	30
6	<10	18
7	<10	12
8	10	10
9	<10	26
50	<10	12
1	10	14
2	10	14
3	<10	16
4	15	28
5	10	20
6	10	18
7	<10	4
8	<10	24
1F 59	10	12

20		

29

1 8 JUN 1981

HILL P/L

ANALYTICAL REPORT

JOB COM 810059

0049

	SAMPLE	Ta	Nb
	MF 60	<10	6
	1	<10	14
	2	<10	8
	3	<10	10
	4	15	14
	5	<10	16
nie:	6	<10	12
Marchines	7	<10	10
- Chicago	8	10	30
	9	<10	. 18
Constitution of the last	70	<10	22
1	1	10	16
	2	<10	10
	3	10	24
	4	<10	6
	5	<10	1 6
	6	<10	14
	7	10	12
	8	<10	<4
	9	<10	2 8
	80	<10	2 2
	1	<10	14
	2	<10	2 2
	3	20	16
	4	15	1 8
	5	<10	14
	6	<10	6
	7	10	10
MF	F 88	<10	16
	<u> </u>		
	,		

1 8 JUN 1981

HILL P/L.

ANALYTICAL REPORT

JOB COM 810059

0050

SAMPLE	<u>Ta</u>	<u>Nb</u>
MF 89	<10	Ą
90	20	24
1	<10	34
2	<10	12
3	<10	10
4	<10	22
. 5	15	6
6	<10	16
7	<10	16
8	<10	20
9	<10	6
100	<10	20
1	<10	16
2	<10	- 14
3	<10	10
4	<10	10
5	10	16
6	20	20
7	10	10
8	10	18
9	10	10
110	10	<4
1	10	8
2	<10	10
3	<10	14
4	<10	12
5	<10	28
6	<10	14
MF117	<10	4

18 JUN 1981 HILL P/L.

ANALYTICAL REPORT

0051

JOB COM 810059

	SAMPLE	<u>Ta</u>	Nb	
	MF118	<10	12	
	9	<10	18	ě
	20	10	20	,
	1	<10	20	
	2	<10	20	ı
	3	<10	18	J
	4	<10	<4	
	5	<10	10	
displacements.	6	10	16	
CONTRACTOR OF THE PARTY OF THE	7	<10	16	
Contraction of the last	8	<10	20	•
Panisas.	9	10	20	
1	30	20	- 12	s
	4	15	10	
	2	15	12	
	3	<10	<4	
	4	<10	26	7
	5	15	4	
	6	<10	14	
	7	<10	16	
	8	<10	20	
	9	15	18	
	40	<10	16	
	1	<10	6	
	2	<10	26	
	3	<10	36	
	4	<10	22	
	5	15	8	
M	F146	15	26	j
	59			

JOB COM 810059

0052

Results in ppm

	SAMPLE	~	
		Ta	Nb
	MF147	10	32
	8	15	16
	9	<10	12
	151	15	20
	2	<10	14
	3	<10	<4
	4	<10	14
	. 5	<10	8
E	6	<10	14
	7	<10	6
Operator.	8	15	6
j	9	25	14
	60	20	24
	1	10	8
	2	10	8
	3	<10	20
	4	10	24
	5	<10	18
	6	10	
	7	15	24
	8	<10	12
	9	<10	6
	70	<10	8
	1	10	18
	2	<10	8
*	3	<10	8
	4	<10	24
	5	<10	10
MF17			8
	· ·	10	18 ,
2	9		

ROCKDALE

1 8 JUN 1981

HILL P/L.

1 8 JUN 1981

HILL P/L.

ANALYTICAL REPORT

JOB COM 810059

0055

Results in ppm

•		
SAMPLE	Ta	Nb
MF177	<10	6
8	<10	6
9	<10	20
86	15	20
. 1	<10	6
2	10	50
-3	20	40
4	10	20
5	20	12
6	20	32
7	<10	28
-8	<10	60
9	30	36
90	<10	38
1	<10	24
2	20	26
3	20	30
4	<10	34
5	<10	50
Æ196	<10	30
20		

Method of Analysis - XRF 1

JOB COM810493

Results in ppm

		1,	.esuits	In pp.		المالماليال ال	مدر د	•
SAMPLE	Та	ИР	Sn	F_{i}	Th	Zr	1'0	0054
nr 315	< 10	10	1 2	15	10	90	8	
1°F 316	< 10	10	14	15	1 2	90	10	
MF 317	< 1.0	1 4	14	<10	16	90	6	
1'F 318	4 5	175	370	60	< 4	< 4	4	
NF 319	< 10	2	6	< 10	< 4	< 4	4	
1'F 320	< 10	26	90	65	2 4	12	4	
PF 321	< 1.0	6	8	10	4	6	4	
MF 322	1 5	145	1 2	50	12	< 4	4	ā
NF 323A	10	26	6	<10	8	4	< 4	
1'F 324A	10	22	6	<10	< 4	< 4	•	
1.F 325	<10	8	2.0	10	16	110	4	
DF 326	< 1.0	12	< 4	10	18	36	l,	
EF 327	<10	36	6.5	40	30	20	4	
1'F 328	< 1 0	2	< 4	<10	< 4	< 4	4	
MF 329	10	3.8	10	15	6	4	4	
11F 33-0	< 1 °C	5.0	1.2	20	10	2 2	4	
MF 323D	<10	34	4	20	6	< 4	4	
MF 324E	<10	34	46	3.5	18	2 2	• 6	
MF 331	< 10	2 4	4	10	4	4	4	
11F 3 3·2	< 1.0	3	< 4	<10	Ž,	< 1;	4	
MF 334	10	26	8	10	10	10	4	
11Γ 335	< 1.0	20	6	10	< 4	2.8	<4	
NF 236	20	135	10	< 10	70	90	< 4	
MF 337	< 10	5	< 4	< 1.0	8	< 4	4	
MF 815B	<10	1 4	16	10	10	42	105	

JOB COM810493

Results in ppm

SAI	PLE	ИР	Ta
ПF	504	1 4	< 1.0
NF	5.0.5	10	<10
ΜF	506	8	< 10
ΝF	507	18	<10
MF	508	1 0	< 10
ИF	509	2 2	<10
MF	510	9	<10
MF	511	3	< 10
MF	512	7	< 1.0
MF	513	10	< 10
MF	514	12	< 10
ЙF	515	1 2	<10
μF	516	12	<10
MF	517	7	< 10
MF	518	9	<10
MF	519	16	<10
ΝĖ	5.20	7	< 10
ΝF	521	7	< 1.0
ИF	522	8	< 10
EF	523	9	<10
MT	5.24	9	< 1.0
иг	525	9	<10
MF	526	10	< 1 0
MF	527	9	<10
ME	E D.C		

MF 528

3

<10

ROCKDALE 18 JUN 1981 HILL P/L.

0055

JOB COM810493

0056

Pesults in ppm

SAMPLE	КÞ	Ta
MF 529	10	< 1.0
NF 530	8	< 10
MF 531	8	10
MT 532	7	<10

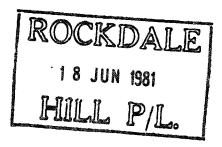
Method of Analysis : Nb Ta : MRFI

- 4 -

COMLABS Pty Ltd

ANALYTICAL REPORT

0057


JOB COM810493

Results in ppm

 SAMPLE
 U
 La
 Y
 V
 Ce
 Nd

 MF 815B
 22
 50
 20
 170
 90
 <20</td>

Method of Analysis : U La Y Ce Nd : XRF1 V : AAS3

Pontifex & Associates Pty. Ltd.

TEL. 332 6744 A.H. 31 3816

26 KENSINGTON ROAD, ROSE PARK SOUTH AUSTRALIA

P.O. BOX 91, NORWOOD **SOUTH AUSTRALIA 5067**

MINERALOGICAL REPORT NO. 3277

0056

8th May, 1981

TO:

The Chief Geologist,

Rockdale Hill Exploration, 4 Montrose Road,

NORWOOD S.A. 5067

YOUR REFERENCE:

Samples personally delivered

MATERIAL AND

IDENTIFICATION:

Mineral sample MF 743

Porous ironstone sample MF 815

WORK REQUESTED:

Microscopic examination,

identification and comment on

genesis as appropriate

SAMPLES & SECTIONS:

Returned to you with this report

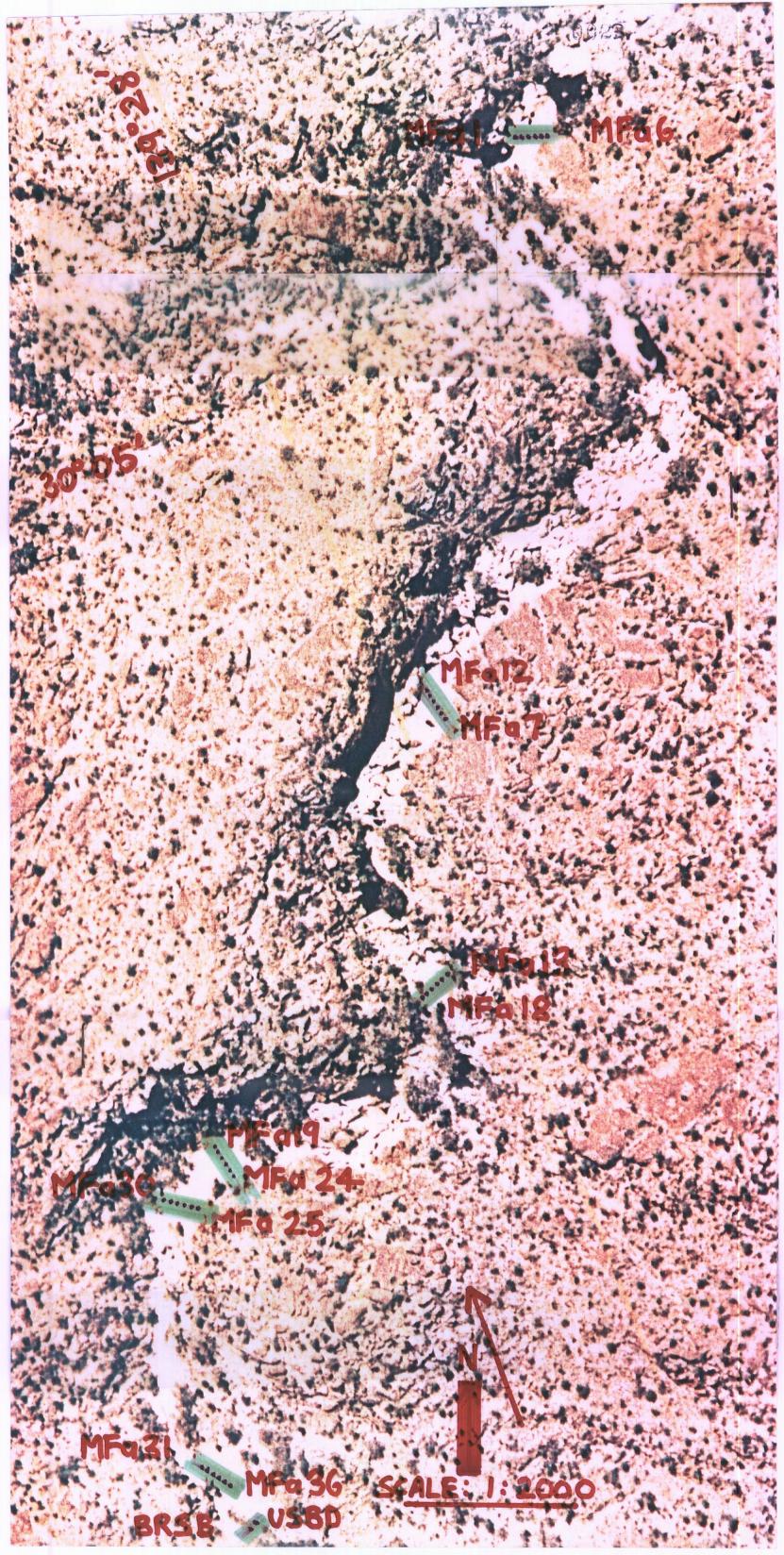
PONTIFEX & ASSOCIATES PTY. LTD.

MF 815 :

superficial 'lateritic' limonite-rich caprock: composed of exotic supergene limonite cementing residual weathering products, quartz, muscovite, felspar, accessory ilmenite and hematite, probably derived from a muscovite-granite

In hand specimen, and under binocular microscope, this sample is seen to consist of a very irregularly cellular mass of secondary iron oxide (limonite) incorporating abundant small to coarse fragments of quartz, muscovite, and felspar. These mineral fragments are randomly disposed and quite unsorted.

In view of the predominance of the limonite, which is opaque, the sample was examined in polished section, under reflected light, with the aim of identifying diagnostic textures which may allow an interpretation of genesis.


In polished section the limonite is seen to form a random highly irregular framework. Textures within the limonite are irregularly colloform, patchy and layered, all characteristic of a migratory/accretionary accumulation of exotic material. Minor exotic manganese oxides are intergrown with the limonite.

This material acts as a cement (or matrix), to a loose-packed, unsorted aggregate of fine to coarse mineral fragments, quartz, felspar and muscovite. Almost certainly these are residual products derived by the weathering of a muscovite granite. The limonite cement is a superficial material, and may be loosely regarded as lateritic.

MF 815 contd.

The microscopy cannot objectively establish whether these iron-cemented residual weathering products occur immediately over the parent granite (as a caprock), or whether they have been transported from their source and cemented at a location separate from that source. The former suggestion seems most likely, but if transport has taken place it is only over a very short distance.

Accessory, discrete grains of ilmenite, rutile and hematite, together form about 2% of the whole rock. These are randomly scattered through the limonite cement/matrix; they range in size from 0.1 to (rarely) 0.5 mm, and no doubt were original accessory minerals in the coarse muscovite granite. They now occur in this rock as residual weathering products, together with the far more abundant rock-forming minerals.

