Open File Envelope No. 8900

EL 1872

ROOPENA WEST

ANNUAL REPORTS FOR THE PERIOD 1/10/93 TO 30/9/98

Submitted by

WMC Resources Ltd and Normandy Gold Ltd 1998

© open file date 9/3/00

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

ANNUAL REPORT

FOR

E.L. 1872 - ROOPENA WEST

1ST OCTOBER, 1993 TO 30TH SEPTEMBER, 1994

PASADENA, S.A. MAY, 1995

S. J. G. WOFFENDEN PROJECT GEOLOGIST

TABLE OF CONTENTS

		<u>P</u>	age No.
1.	INTRODUCTION	ON	1
2.	REGIONAL C	GEOLOGY	1
3.	WORK COM	PLETED	2
4.	PROPOSED	WORK	2
5.	EXPENDITUR	E SUMMARY	2
6.	REFERENCE	s	3
		LIST OF FIGURES	
	Figure		÷
	1.	Roopena Project, Lease Location Plan	
	2.	Stratigraphy, South Eastern Gawler Craton	
	3.	Schematic Regional Geology, Roopena Project, S.A.	•
	4.	Roopena West, Area of Aeromagnetic Survey	
		LIST OF PLANS	
Plan			_
1.	Bouguer Grav	rity Contour Plan, E.L. 1872, Sheet 6332 (Roopena)	1:100,000

Bouguer Gravity Contour Plan, E.L. 1872, Sheet 6333 (Carriewerloo) 1:100,000

2.

1. INTRODUCTION

Exploration Licence 1872 was granted to Western Mining Corporation Limited (WMC) on the 1st October, 1993 for a period of one year. The term of the licence was renewed in 1994, and is now valid until 30th September, 1995.

The E.L. covers an area of 1,018 km² and is located to the northeast of Iron Knob and adjacent to WMC's E.L. 1775 on eastern Eyre Peninsula (Figure 1).

The target ore type is Cu-Au occurrences comparable to those on the Stuart Shelf or the Eastern Succession of the Mt Isa Block.

2. REGIONAL GEOLOGY

The regional geology of the eastern Eyre Peninsula is poorly understood due to the generally poor outcrop conditions. In an attempt to place the stratigraphy into a regional context WMC refers to the "Whyalla Group" (Figure 2); a sequence of Early Proterozoic volcanic and sedimentary rocks which unconformably overlies the early Proterozoic Hutchison Group, and is overlain by younger Gawler Range volcanic and sedimentary rocks.

The geochronology of units within the Whyalla Group, and those bounding it, indicate that its age spans the period 1800Ma to 1650Ma.

The Whyalla Group occupies a N-S belt immediately east of the Middleback Ranges and west of Whyalla (Figure 3). It has regional correlatives in the Moonta-Wallaroo area. The belt appears to be fault-bound on both its western and eastern sides, and is overlain unconformably to the north by Gawler Range volcanic and sedimentary rocks.

Simplistically, the Whyalla Group consists of two volcanic-sedimentary cycles - the lower Myola Volcanics and Broadview Schist and the upper McGregor Volcanics and Moonabie Formation. The McGregor Volcanics-Moonabie Formation have been correlated on the basis of geochronology with the Moonta Porphyry and Doora Schist.

The lower part of the Whyalla Group is intruded by the Wertigo Granite, a Lincoln Complex granite equated with the Middlecamp Granite which has an age of 1757Ma (U-Pb). On the basis of image processed aeromagnetics the Wertigo Granite has a comparable pattern to the Myola Volcanics and may therefore be related to the volcanic rocks. The entire Whyalla Group is intruded by Hiltaba Suite granites (e.g. Charleston Granite, 1585Ma U-Pb, Creaser and Fanning, 1993). The "Whalers Granite" (informal name) occurs on the northeastern side of the belt and belongs to the Hiltaba Suite.

The lower part of the Whyalla Group has undergone two of the three phases of the Kimban Orogeny. The regional structure can be interpreted to consist of tight to open folds with axial plane sub-parallel to faults having NNW and NNE orientations.

Two documented areas of historic workings occur within the Whyalla belt. The Murninnie Mine, situated 40 km SSW of Whyalla, was mined for Cu and Bi during the period 1860-1900. The mine was reassessed during 1970 but no exploration was carried out(MESA open file reports). Numerous small diggings occur at "Hancocks Prospect" within the McGregor Volcanics, but no records of production exist.

3. WORK COMPLETED

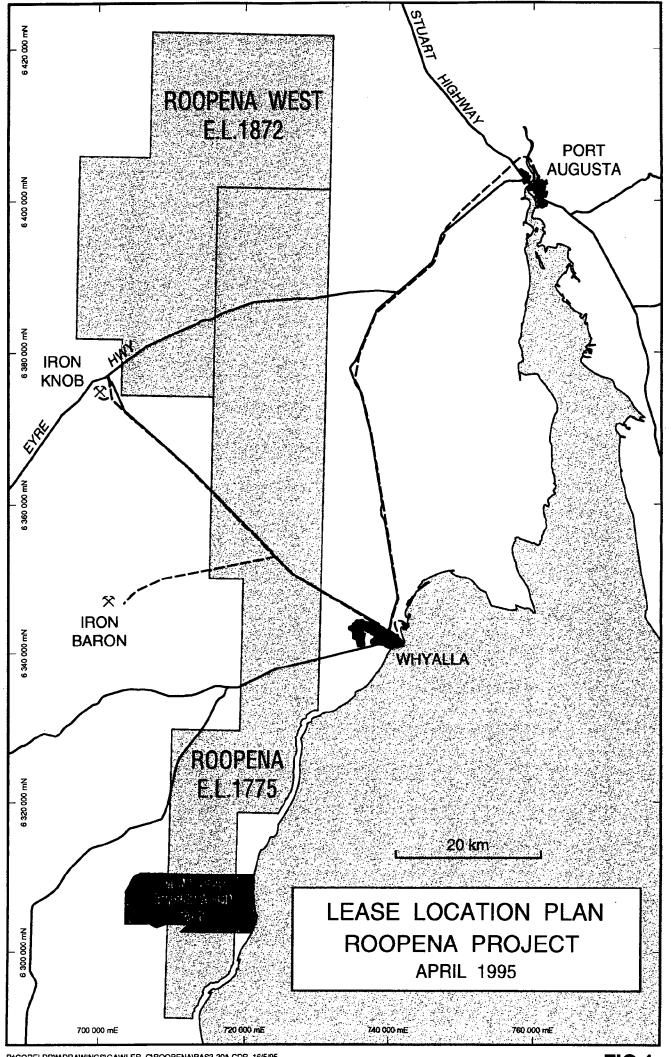
Airborne magnetics and radiometrics were completed at 200 m line spacing over the area shown on Figure 4. This was part of the 400 m line spacing SAEI survey over the Roopena 1:1,000,000 sheet (area B4), and WMC paid to have the 200 m infill lines flown.

A semi-regional gravity survey involving gravity stations being read along roads and tracks throughout the area was completed (Plans 1 and 2).

4. PROPOSED WORK

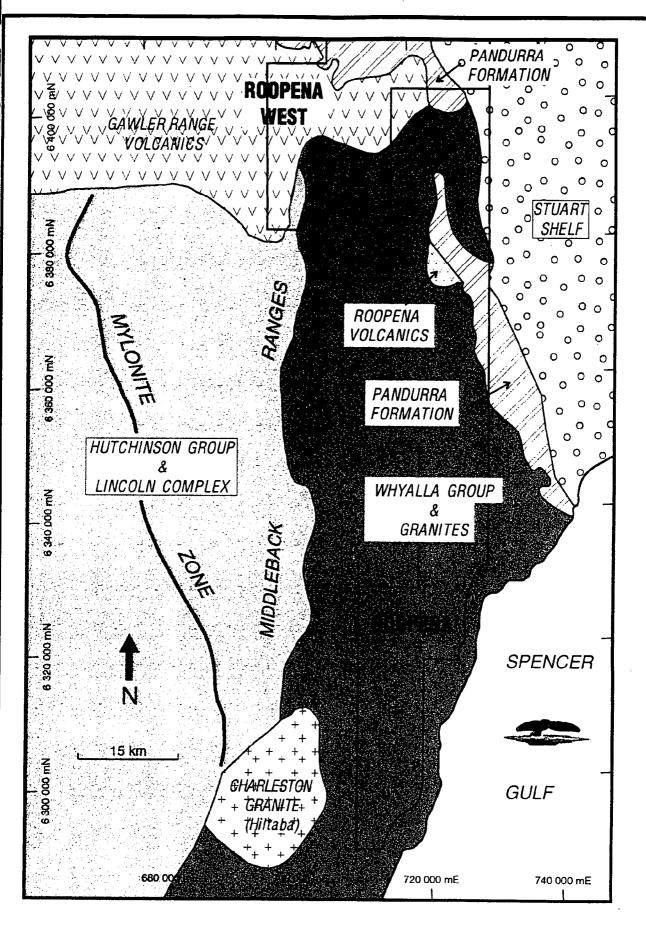
The aeromagnetics and gravity data will be used to define areas for reconnaissance electrical geophysics surveys during 1995. These surveys may define targets which warrant drill testing.

5. **EXPENDITURE SUMMARY**


WMC Expenditure on E.L. 1872 - Roopena West.

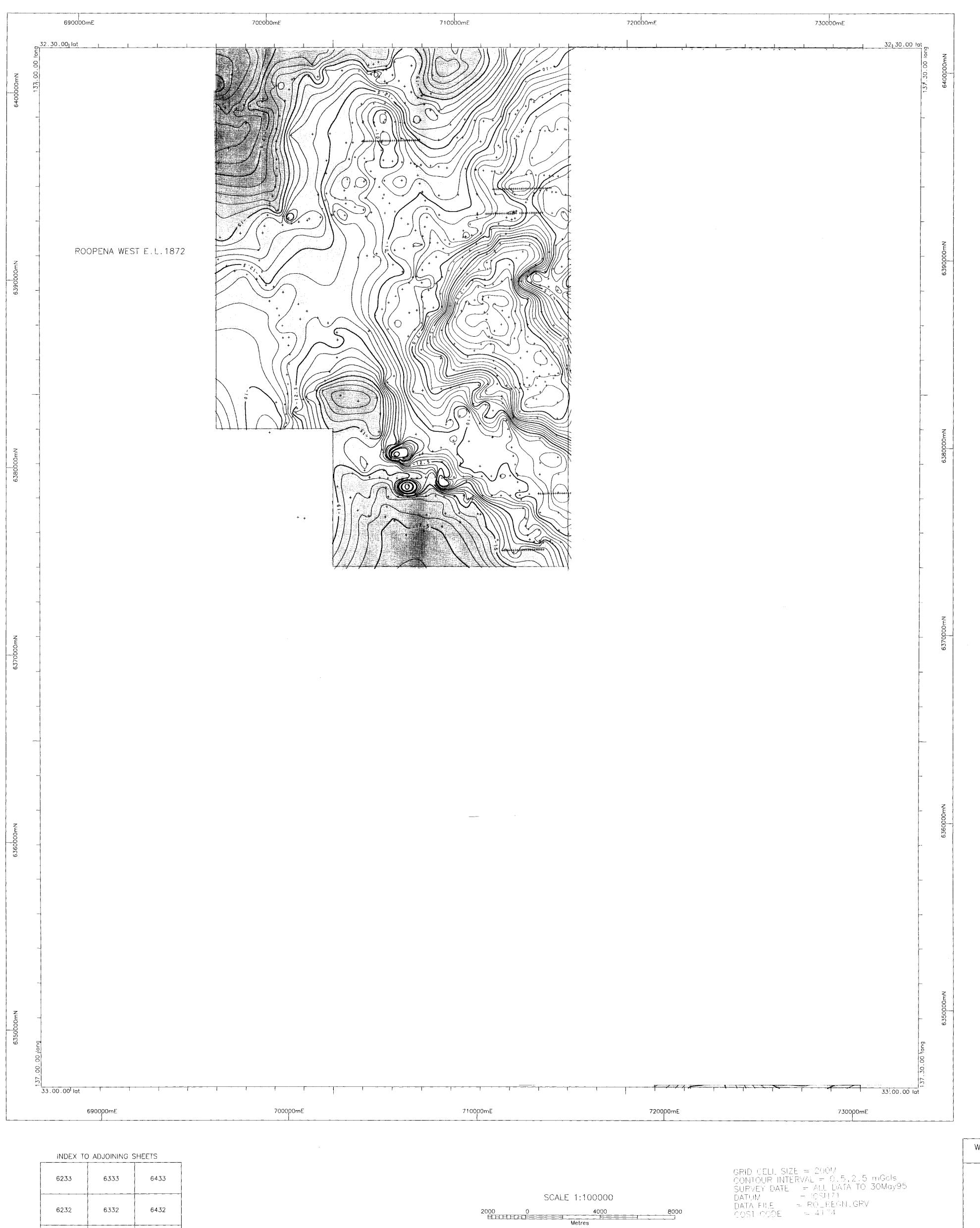
EXPENDITUR 1 ST SEPTEMBER, 1993 TO	
Activity	\$
Geology	43,186
Geophysics	28,295
Geochemistry	3,162
Drafting	753
Analytical	-
Drilling	-
Leasing	2,147
Administration	8,288
TOTAL	\$85,831

6. REFERENCES


Creaser, R.A., and Fanning, C.M., 1993, A U-Pb study of the Mesoproterozoic Charleston Granite, Gawler Craton, South Australia. Aust. Jnl. Earth Sciences, v40, 519-526.

EL1872AR.94 May, 1995


STRATIGRAPHY SOUTH EASTERN GAWLER CRATON (all ages U-Pb Zircon) Pandurra Formation (Stuart Shelf) 1587+/-15 Roopena Supersuite Volcanics 1585-1600 **GAWLER RANGE** VOLCANICS 1592+/-2 1650 Tarcoola Corunna **Formations** Moody + Granite Suite Moonabie Fm. 1710 - 1740 Doora Schist Moonta Porphyry 1735+/-5 WHYALLA GROUP McGregor Volcanics 1740 Middle Camp Granite **Broadview Schist** 1755 Sct/Sif exhalative horizon Myola Volcanics 1791+/-4 ᢧᢧ Donnington **Bosanquet Formation** Granite 1845+/-9 1843+/-2 **HUTCHISON GROUP** Lincoln Complex Archean


Figure 2

ROOPENA PROJECT S.A. SCHEMATIC REGIONAL GEOLOGY

FIG.3

AUSTRALIAN MAP GRID Grid interval 10000 Metres

6331

6231

6431

GRAVITY MGALS

SHEET No. 6332

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT E.L. 1872 - ROOPENA WEST

BOUGUER GRAVITY

DATE: 30-05-95 AUTHOR: K. HUTCHINGS PLAN NO. SCALE: 1:100,000 MAP REF. 6332

8900-2

SHEET No. 6333

GRAVITY

6233 6333 6433 6232 6332 6432

2000 0 4000 8000 HHHHHH Metres AUSTRALIAN MAP GRID Grid interval 10000 Metres

GRID CELL SIZE 200M
CONTOUR INTERVAL = 0.5,2.5 mGals
SURVEY DATE = ALL DATA TO 30May95
DATUM = IGSN/1
DATA FUE = ROLREGN.GRV
COSE CODE = 4174

EXPLORATION DIVISION GAWLER CRATON PROJECT

E.L. 1872 - ROOPENA WEST BOUGUER GRAVITY

DATE: 30-05-95	AUTHOR: K. HUTCHINGS	PLAN NO. 2	
SCALE: 1:100,000	MAP REF. 6333	<u></u>	

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

ANNUAL REPORT

FOR

E.L. 1872 - ROOPENA WEST

1st OCTOBER, 1994 TO 30[™] SEPTEMBER, 1995

PASADENA, S.A. FEBRUARY, 1996

R. R. RAMSAY PROJECT GEOLOGIST

TABLE OF CONTENTS

		<u>!</u>	Page No.
1.	INTRODU	JCTION	1
2.	REGIONA	AL GEOLOGY	1
3.	WORK C	COMPLETED	2
4.	PROPOS	ED WORK	3
5.	EXPENDI	TURE SUMMARY	3
6.	REFEREN	NCES	3
		LIST OF APPENDICES	
	Appendix		
	1.	Round Hill, Block Dam, Pankalla and Kittle Prospects Lag Sample Co-ordinates and Assay Results	
	2.	I.P. Results - Block Dam, Round Hill, Pankalla and Kittle P	rospects
		LIST OF FIGURES	
	Figure		
	1.	Roopena Project, Lease Location Plan	
	2.	Stratigraphy, South Eastern Gawler Craton	
	3.	Schematic Regional Geology, Roopena Project, S.A.	
		LIST OF PLANS	
Plan			
1.	Bouguer (Gravity Contour Plan, E.L. 1872, Sheet 6332 (Roopena)	1:100,000
2.	Bouguer (Gravity Contour Plan, E.L. 1872, Sheet 6333 (Carriewerloo)	1:100,000
3.	Induced P	olarization Lines, E.L. 1872, Sheet 6332 (Roopena)	1:100,000

1. INTRODUCTION

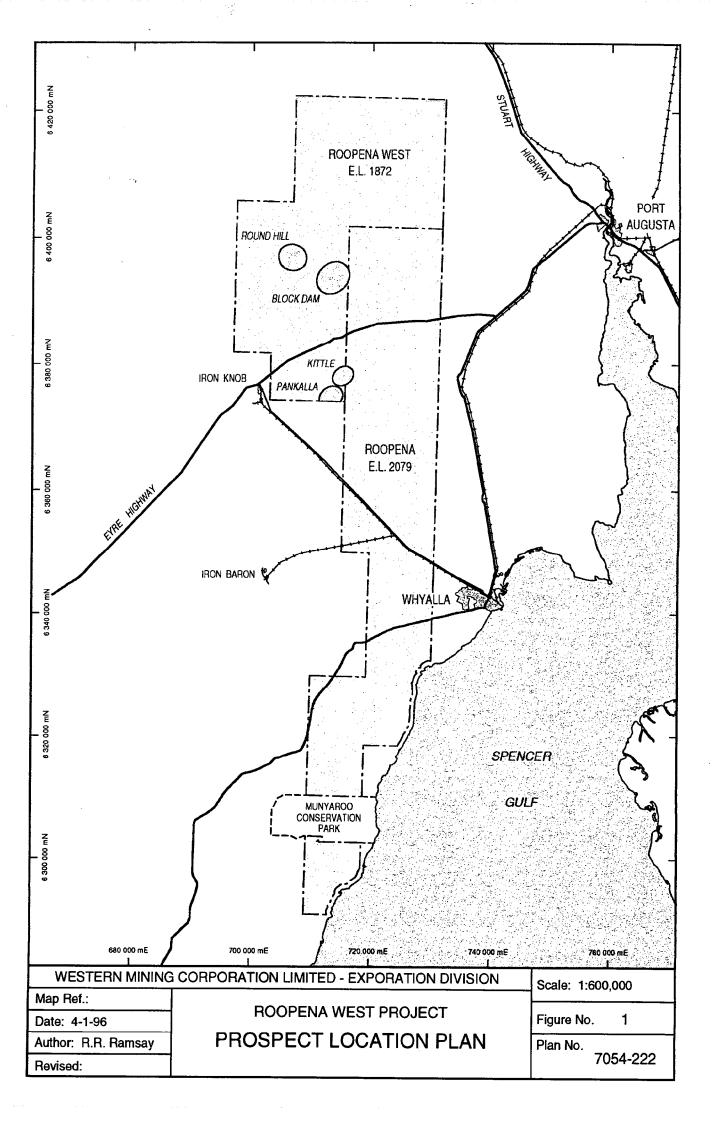
Exploration Licence 1872 was granted to Western Mining Corporation Limited (WMC) on the 1st October, 1993 for a period of one year. The term of the licence was renewed in 1994, and is now valid until 30th September, 1996.

The E.L. covers an area of 1,018 km² and is located to the northeast of Iron Knob and adjacent to WMC's E.L. 1775 on eastern Eyre Peninsula (Figure 1).

The target ore type is Cu-Au occurrences comparable to those on the Stuart Shelf or the Eastern Succession of the Mt. Isa Block.

2. REGIONAL GEOLOGY

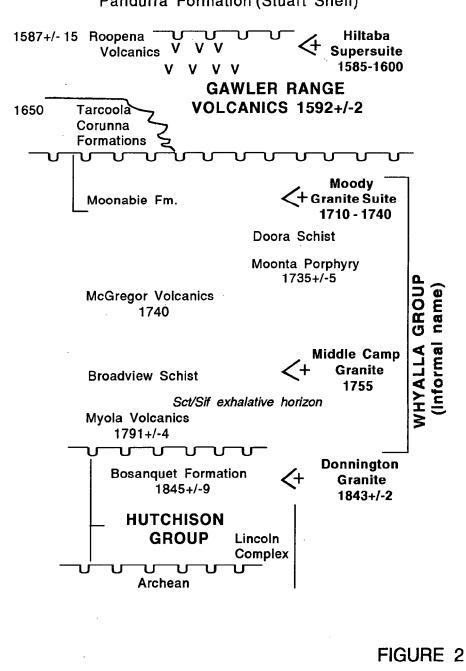
The regional geology of the eastern Eyre Peninsula is poorly understood due to the generally poor outcrop conditions. In an attempt to place the stratigraphy into a regional context WMC refers to the "Whyalla Group" (Figure 2); a sequence of Early Proterozoic volcanic and sedimentary rocks which unconformably overlies the early Proterozoic Hutchison Group, and is overlain by younger Gawler Range volcanic and sedimentary rocks.

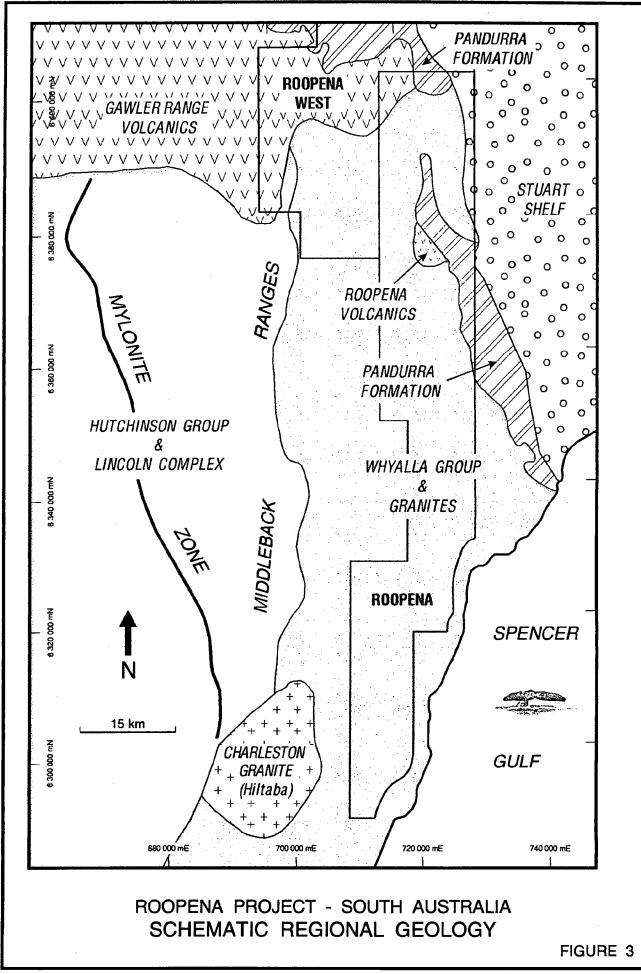

The geochronology of units within the Whyalla Group, and those bounding it, indicate that its age spans the period 1800Ma to 1650Ma.

The Whyalla Group occupies a N-S belt immediately east of the Middleback Ranges and west of Whyalla (Figure 3). It has regional correlatives in the Moonta-Wallaroo area. The belt appears to be fault-bound on both its western and eastern sides, and is overlain unconformably to the north by Gawler Range volcanic and sedimentary rocks.

Simplistically, the Whyalla Group consists of two volcanic-sedimentary cycles - the lower Myola Volcanics and Broadview Schist and the upper McGregor Volcanics and Moonable Formation. The McGregor Volcanics-Moonable Formation have been correlated on the basis of geochronology with the Moonta Porphyry and Doora Schist.

The lower part of the Whyalla Group is intruded by the Wertigo Granite, a Lincoln Complex granite equated with the Middlecamp Granite which has an age of 1757Ma (U-Pb). On the basis of image processed aeromagnetics the Wertigo Granite has a comparable pattern to the Myola Volcanics and may therefore be related to the volcanic rocks. The entire Whyalla Group is intruded by Hiltaba Suite granites (e.g. Charleston Granite, 1585Ma U-Pb, Creaser and Fanning, 1993). The "Whalers Granite" (informal name) occurs on the northeastern side of the belt and belongs to the Hiltaba Suite.


The lower part of the Whyalla Group has undergone two of the three phases of the Kimban Orogeny. The regional structure can be interpreted to consist of tight to open folds with axial plane sub-parallel to faults having NNW and NNE orientations.



STRATIGRAPHY SOUTH EASTERN GAWLER CRATON

(all ages U-Pb Zircon)

Pandurra Formation (Stuart Shelf)

Two documented areas of historic workings occur within the Whyalla belt. The Murninnie Mine, situated 40 km SSW of Whyalla, was mined for Cu and Bi during the period 1860-1900. The mine was reassessed during 1970 but no exploration was carried out(MESA open file reports). Numerous small diggings occur at "Hancocks Prospect" within the McGregor Volcanics, but no records of production exist.

3. WORK COMPLETED

Minor gravity surveys were conducted to infill regional coverage to a minimum density of one reading per square km. The interpretation of the regional gravity and aeromagnetics lead to the identification of four prospects.

Round Hill

A 2 km spread of 200 m dipole-dipole induced polarisation and 31 gravity stations at 100 m intervals was read on line 6 397 000N. No obvious responders were identified from this survey. Reconnaissance lag sampling along this line was also conducted and submitted for Cu and Au. A 930 ppb Au assay occurs at the western end of this line supported by values of 22, 2 and 4 ppb Au. The 930 ppb sample was re-assayed and returned a value of 76 ppb Au which is still strongly anomalous. A small grid has been pegged around the anomalous sample in preparation for follow-up sampling.

Block Dam

The magnetic anomaly at this location is coincident on the ground with a number of small ironstone capped rises. A 2 km spread of 200 m dipole-dipole induced polarisation and 31 gravity stations at 100 m intervals were read on lines 6 394 300N and 6 393 000N. Weak phase responses were identified associated with this survey. Reconnaissance lag sampling along this line was also conducted and submitted for Cu and Au, however no significant anomalism was detected.

Kittle

A 2 km spread of 200 m dipole-dipole induced polarisation and 21 gravity stations at 100 m intervals was read on line 6 378 000N. No obvious responders were identified from this survey. Reconnaissance lag sampling along this line was also conducted and submitted for Cu and Au, however no significant anomalism was detected.

<u>Pankalla</u>

A 2 km spread of 200 m dipole-dipole induced polarisation and 23 gravity stations at 100 m intervals was read on line 6 375 000N. No obvious responders were identified from this survey. Reconnaissance lag sampling along this line was also conducted and submitted for Cu and Au, however no significant anomalism was detected.

4. PROPOSED WORK

A small lag sampling program to follow up the anomalous gold sample at Round Hill will take place. The results of this survey will determine whether any further work will be conducted.

5. EXPENDITURE SUMMARY

EXPLORATION LI ROOPENA	· ·
Activity	\$
Geology	12,799
Geophysics	23,665
Geochemistry	6,758
Drafting	123
Field Costs	228
Drilling	600
Administration	27,786
TOTAL	\$71,959

The expenditure statement above covers the twelve months from 1st October, 1994 to 30th September, 1995.

6. REFERENCES

Creaser, R.A., and Fanning, C.M., 1993, A U-Pb study of the Mesoproterozoic Charleston Granite, Gawler Craton, South Australia. Aust. Jnl. Earth Sciences, v40, 519-526.

Woffenden, S.J.G., 1994, Annual Report for E.L. 1872, 1st October, 1993 to 30th September, 1994. WMC report to MESA.

APPENDIX 1

LAG SAMPLING CO-ORDINATES AND ASSAY RESULTS

BLOCK DAM
ROUND HILL
PANKALLA
KITTLE

TRA\ ORM 280	ERSE SAMP	LING	ARS Nº	MINE	2803				
SAMPLE PREFIX	CO-ORD 6 3 9 4	300 mg	AZM	MAP	REF / F	отоно			
Q D 6 4	ACTIVE CO-ORD METRES ##E	SOIL TYPE IC	GEOL	OGY	s REM	ARKS			
7606	712000	, ,	1	1	1	1.			
07	050				-				
08	100								
09	150								
10	200								
17	250								
12	300			·					
13	350								
14	400								
15	450		<u> </u>						
16	500		<u> </u>						
. 17	550		<u> </u>						
18	600		 			<u> </u>	•		
19	650								
20	700		 		_	<u> </u>			
21	750		 						
22	800					ļ.,			
2.3	850			}}-	<u> </u>	 			
2 4		-				 			
2.5	1 150					<u> </u>		٠.	٠
2.6	713000		<u> </u>	-		1			
27	050		 		+	 			
28	150					+	:		
30			 			1			,
.31	200		 			-			
31	250		ļ			 			
33	300			-		+:-			
34	350		 			 			
3 5	400	<u> </u>	 						
		<u> </u>	<u> </u>			<u> </u>			ļ
'HOJECT Roo <i>es-14</i>	PROSPECT SA A / BLOCK DAM DE 4176 DATE	MPLED BY	()	SAMP	LE TY 2 mm				

..

	,			•						· ·	2	
N	58	303		·	TRAN	ERSE SAME	PLING	ARS Nº	MIN	58		
1AP	RE	F/P	ното			CO-ORD 6 394	300 E	AZM				нотс
GΥ	s	REM A	RKS 2		QD64	ACTIVE CO-ORD METRES NE	SOIL TYPE IC	GEOL	OGY	s	REMA	ARKS
					7636	713500					NW	frendin
_					37 38	5 5 ŏ					141 no	tgc,
\dashv	\vdash				2 4	650				-	-	
\dashv	-			•	39	700	 	-			 	
	<u> </u>			·	41	750				+	i	
					42	800				\dashv	1	
\Box					43	85 <i>0</i>					↓ .	
	L				44	900		NO SI	MPLE	1	recen	dam
\dashv			<u> </u>		45	950				\sqcup	sed	\$
\dashv	H				46	714000				\perp		
-	\vdash	:			47	050				-	. :	
-3-	-	-	· ·	·	49	150		 		\dashv		<u> </u>
					50	200				\dashv		
			-	-	51	250		4	 	\dashv		
					52	300		7	() 	91	- ابن <u>ح</u>	flock
					53	350				n	of.	
\Box	Ш			•	54	400						
_				•	5.5	450][\prod		
_	-				5 6	500		<u> </u>		_	-	
	\vdash				57	550		<u> </u>		\parallel		
\dashv	\vdash		<u> </u>		5 g 5 g	650				\dashv		
\dashv	-			,	60	700				\dashv		<u></u>
\dashv	\dashv				61	750				\dashv		
\dashv	Н				62	800		 -		\dashv		
\dashv	Н	-			63	850		 -		-#		
\dashv					64	900			 	-#		
					65	950		· .		- -		
		MM	PE		RODPENA /	BLOCK DAM STO	IMPLED BY IW/DSL I/6/95		6+2		TYF	PE

	VERSE SAMI	PLING	NO MIN	1580>	
FORM 280	·				FORM
SAMPLE PREFIX	CO-ORD 639 4	300 €	AZM MAP	REF / PHOTO	SAM PRE
64	ACTIVE CO-ORD METRES NE	SOIL TYPE IC	GEOLOGY	S REMARKS	Ø D
7666		1	Strike.		76
		~			
	END OF	TRAVER			
					<u> </u>
					ļ
					<u> </u>
<u> </u>				 · · 	ļ <u> </u>
	 	 			
		 	· · · · · · · · · · · · · · · · · · ·	 	
	 	 	 	 	:
	 				
, , ,					
					:
					·
					ļ <u> </u>
		1			
					 :-
<u> </u>		╢┈┼┼			·
		 			:
		 			;
· · · · · · · · · · · · · · · · · · ·				 	
· · · · · · · · · · · · · · · · · · ·					
 	,				
PROJECT	/ PROSPECT S	AMPLED BY	SAMP	LE TYPE	PRO
COSTED	BLOCK DAM S	JSW/DSL E 1/6/95		-2mm.	, Re-
L	4176 DAT	72/12			· ;

		S MIN					TRAV	ERSE SA	MPLIN	1 G	AR	S MIN	58	303	
F F	AZI	МА	P RI	EF/F	чото		SAMPLE PREFIX	CO-ORD 6 3 9	300	0 %	AZ	MAI	RE	F/PI	ото
		DLOGY					Q064	ACTIVE CO-OF	RD SO	OIL PE C	GEO	DLOGY	s	REMA	RKS 2
\dashv		rile.	╟	 	 -		7667	711700						7	
\neg		-0.0	╟	-			68	750							
			╟═		+===		69	.800							
잭	Ē		1		 		70	850							
ㅓ	-			ļ	1		71	700							
					†		72	950							
\neg		• • • • • • • • • • • • • • • • • • • •	╟ ̄				73	712000							
					1		74	050							
\neg				<u> </u>			75	100							
							76	150							
							77	200			<u> </u>	· - i]		
	- :						78	250				:	<u> </u>		
							79	300			<u> </u>		1		<u> </u>
						: .	80	35 0			 		<u> </u>	ļ	<u></u>
							81	400			Ⅱ		↓		
							82	450		_			4		
							8.3	500			↓		4		<u> </u>
						•	84	550			↓		 _	<u> </u>	<u> </u>
							, 85	600					4		
							86	650					4		L.
							87	7:00			╢		վ	ļ	
╛	<u> </u>						88	750			╢		╢_	ļ	
						:	89	800			↓		4	<u> </u>	
						;	90	\$50			4		4	ļ	
						:	91	900			4		4		<u> </u>
							92	950			4		1-	<u> </u>	<u> </u>
							93						1	ļ	<u> </u>
							94	050			4		4	<u> </u>	<u> </u>
							95	100					1	<u> </u>	
							96	150			ــال	<u> </u>		<u> </u>	<u>L</u>
BY	- 1	5AM					PROJECT RAOPENA COST CO	/ PROSPECT / BLOCK DAM DE 4176	SAMPI DSL/S DATE	JAW 76/95	Υ			E TY 2 mm	

FORM 280	LEUSE SAIMI	LING		NO MIN	1280	3
SAMPLE PREFIX	CO-ORD 6 3 9 3	000	N/	AZM MAI	P REF/	РНОТО
Q D 6 4	ACTIVE CO-ORD METRES N/E	SOIL		GEOLOGY	s REN	AARKS 2
7697	7132004		П			1
98	250		П			
9 7	300					
7700	350					
01	400					
02	450					
0 3	500					
04	550					
05	600		Ш			
0 %	650			ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
07	700			- :		
08	750		Ш			
0 9	800				<u> </u>	
1 0	850		Ш	<u></u>	<u> </u>	
11	900		Ш	ļi	<u> </u>	
12	950		H		 	
1 1	4.000		Щ		 	1
1,4	050	ļ	\vdash			
1.5	100	<u> </u>		ļ	<u> </u>	+
16	150	ļ	\dashv	<u> </u>		
18	200		\dashv		 	
19	300	<u> </u>			 	
20	350		\vdash		 	
21	400	 	\dashv	 	H - H	
22	450		-		 - - 	
7723	500	-	\vdash	 		+— $ $
1214	191/4/2	- El	VO	o F		
1215	ago	1 7A	₹4	VERSE		+
			\dashv			+
PROJECT	PROSPECT SA	MPLED	BY	SAMP	LE TY	/PF
ROOPENA	L BLOCK DAM D	SL/556	ب	i		ļ
cost	E 🗯 DATE			-6-	+2mm	·
-	-4176-1					

TRA\	/ERSE	SAMI	PLING	•	ARS			<u> </u>	
FORM 280				•	No	MIN	15	80≥	•
SAMPLE	CO-ORD /	207	(N)	AZM	MA	PRE	F/F	НОТО
PREFIX				N,					11010
QD 6.4	ACTIVE (CO-ORD		L	GEOL	OGY	s	REM	ARKS
	METRE		TYPE	C			S	1	2
7724	105	000	1	44					
25	 	050	 	1		. !			
2 5	<u> </u>	100	∤		· · · · · ·				
28		150	II———	Н,		_:_			
2 9		200	 	\sqcup	_				
2 9		250							
31	ļ 	300	<u> </u>	+					
32	<u> </u>	400	 	+	_			·	
3 3		450		+	-{NO	SA	HP	LE-	
3.4		500	 	+-		- : -	-		
3 5		5 50		$+ \parallel$					
36		600	 	+			\vdash	<u> </u>	\vdash
37		650		╁╼╟			\vdash		
38		700					\vdash		\vdash
3 9		750	<u> </u>		NO S	لدة	0)		\vdash
4.0		800		\Box	140	7,71	H	<u> </u>	
4,		850					\vdash		
42		900				-	\vdash		
43		950					\vdash		
44	6	000				\dashv	H	-	\dashv
45		050					\sqcap	<u> </u>	
46		9 00	1				\Box		$\neg \neg$
47		150			1 1				
48		200							-
49		250	1.0						
50		300			VO 2	SAN	1/2		
51		3 50							
52		400		_l[No	870	MP	215	
7753	706								
ROOPENA/	PROSPEC	T SA	MPLED	ВΥ	S	MP	LE	TYP	E
KUULFNY			L/SJ41	ڊ		6 f			
COST CODE	4176	DATE	1/6/93	5	_	b t	-6	MM	
•			/ / / -						

DA 6	CO-ORD 6 397 ACTIVE CO-ORD METRES NE 4 7 0 8 00 0				
DA 69	4 ACTIVE CO-ORD METRES NE 4 708000		GEOLOGY	S REM	ARKS 2
	4708000				
	ENO				
				-	
				 	-
	13		<u> </u>		1
				<u> </u>	+
	_				
		1			
		$\parallel - \parallel - \parallel \parallel$			1::
		1	 		<u> </u>
		╂			
	 	╢──┤┤	 		
	-	$\parallel + \parallel - $		+	
		$\parallel - \parallel - \parallel \parallel$	 - -	+	
PROJECT	T / PROSPECT C/	AMPLED BY	CANADA		لينيا
				PROJECT / PROSPECT SAMPLED BY SAM	

									. •							
	/ERSE SAMP	PLING	ſ	ARS.				· 7	TRAN	VERSE SAM	LING	ARS		· .		
FORM 280			_ [No 1	NIN	2	802	╛	FORM 280	ı	·.	ARS MIN			- 1	
SAMPLE PREFIX	CO-ORD 6 3 9 7	000 N		AZM	MAP	RE	F/ PHOT)	SAMPLE PREFIX	CO-ORD 6 357	000 E	AZM MAF	PR	EF/P	ното	
a 064	ACTIVE CO-ORD METRES 12 E	SOIL TYPE C		GEOLO	GY	s	REMARK 1 2	S	DA 64	ACTIVE CO-ORD METRES NE	SOIL	GEOLOGY	s	REM/	ARKS	
7754	706500][寸		7	7784	708000			-	 		
755	550			:											 	
56	600		٦٢			T		7					╟╌	 -		
57	650][No S	AHI	PL	E	7					-	-		
58	7 0-0][1		7						 		
59	750][T				;					 	
60	800][
61	850][ENO				ļ <u>.</u>		
62	900][
6 3	950		╙													
64	707000		╢					7					H			
6.5	050															
66	100		⅃┖									- 1		-		
67	150		⅃ҍ										П			
68	200		∐													
69	250		╢	<u> </u>								:	П			
70	300		JL									1	Н			
7.1	350		╢										\Box			
7.2	400		1		IL											
7 3	450					\perp							\Box	-		
74	500		$\ \ $					_					П			
7 5	550		JL.				\	_					П			
76	600		4										П			
77	650	L	L					_					\Box			
78	700		ĮĽ		[_					\sqcap			
7.9	750		JL	4				J					\Box		· ·	
8 0	800															
81	850				NO \$	AΜ	plt ·						\Box	$\neg \neg$		
82	900							7		:			\vdash			
7783	707950][• 4				1					\vdash			
PROJECT ROOPENA /	PROSPECT SA ROUND HILL DE DE 4176 DATE	MPLED BY 1/6/95	Y)	SA			TYPE Zam		PROJECT ROOFENA COST COD	PROSPECT SA ROUND HILL DSL E 4176 DATE	MPLED BY /SJGW	SAMP -6+2			E	

TRAV	ERSE SAMP	LING	ARS						•	TRAV	/ERS
FORM 280			No	MIK	7 :	280	8			FORM 280	
SAMPLE PREFIX	CO-ORD 6 375	000 E	AZM	MAP	RE	F/PI	ното			SAMPLE PREFIX	or No
£464	ACTIVE CO-ORD METRES N/E	SOIL TYPE C	GEOL	OGY	s	REMA	RKS 2			Q D 64	ACT ME
7785	712000						·			7815	7
86	050									16	
87	100							٠.		17	ļ
88	150		<u> </u>							18	
89	200		No	SAT	<u> </u>	بح		,		19	
90	250				L			-		20	
91	300			\perp						21	
92	350				Ļ					2.2	
93	400		ļļ	\perp						2.3	
94	450		<u> </u>	_ _	<u> </u>			·		24	
95	500		l	_	<u> </u>					25	
7.6	550			*			ļ	:		26	
9.7	600		l			<u> </u>	<u> </u>			27	
98	650		 				<u> </u>			7829	7
99	700		 			,				1.06-1	
800	750	<u> </u>			-		<u> </u>				
01	800	ļ	 			•	<u> </u>			<u> </u>	
0,2	850		∤				<u> </u>				<u> </u>
03	900		 				ļ			 	 -
04	950	ļ	 				<u> </u>			<u> </u>	<u> </u>
05	3000		 ——		H				•	 	
06	050		∤ }		<u> </u>						-
07	100		∤ }		-	· · ·			i		
08	150		∤		<u> </u>		 		}		
09	200		∤ ├──		\vdash						
10	250		 		<u> </u>		-				
11	300		 		-		 	}	:		
12	350		├ ├		⊬	<u> </u>	<u> </u>				
13	400		╢┈╌		H	 	<u> </u>				
78 14	, 	<u> </u>	نيال		<u></u>	<u></u>		j 1		PROJECT .	/ PRO
COST COL	PANKAUA DSI	AMPLED BY -/SJZW = 2/6/95		.6+		TY nm	PE .			COST COD	PAN

SAMP	LING		ARS	J	280	Š			ERSE SAME			ARS MIN	15	280:	3
6375	000		AZM MA	P R	EF/P	ното	ı	SAMPLE PREFIX	CO-ORD 6 3 7 5	000	NE E	AZM MAF	R	EF/P	нотс
E CO-ORD RES N/E	SOIL		GEOLOGY	s	REM.	ARKS 1 2		Q D 64	ACTIVE CO-ORD METRES N/E	SOIL	ic	GEOLOGY	s	REM	ARKS
2000	1175	╢		╢	 	-		7815	713500			 	-	╁	-
050	-	ᅦ		╁	 	<u> </u>		16	550		Ħ		\vdash	 	<u> </u>
100		ᅦ		╢╴	 	 		17	600		П		\vdash	t	
150		ᅦ		╬		 		18	650						
200		٦	NO SA	MP	١٤			19	700						
250			ì	1		<u> </u>		20	750						
300								21	800		Ш				
350								2.2	850		Ш		L	<u> </u>	
400				1		 		2.3	900	ļ	\vdash		_	ļ	
450		_		↓	<u> </u>	ļ		24	950		H	<u> </u>	-	ļ	
500		_		╢_	<u> </u>	<u> </u>		25	4000		H	<u> </u>	L		
550		4	₩	╢	<u> </u>	 	:	26	050		Н	<u> </u>	_		
600		-1		╢—		 		2.8	100		H		-	┝÷	
650		-	ļ	╬	-	-		7829			Н		-	 	-
700		\dashv		╢	-	 		1.02/			Н		┢		
800		\dashv		╢╌		-				-		· ·			
850		\dashv		╫							П	· · · · · · · · · · · · · · · · · · ·	Г	-	
900		ᅦ		╫		<u> </u>		,							
950		┪		1											
3000								.			Ш				
050][<u> </u>	Ш			L.,_	
100											Ш		_		:
150				儿				ļ 			\dashv		L	<u> </u>	
200		_		1	<u> </u>						\dashv		L	<u> </u>	
250		_		1						<u> </u>	\dashv		_		ļ
300		4	.	$\bot\!$	ļ	<u> </u>		:	<u> </u>		\dashv	 	<u> </u>	<u> </u>	
350		4		4 _		<u> </u>		<u> </u>				 	L		
400		4	<u> </u>	41—	<u> </u>	<u> </u>					\dashv		<u> </u>	ļ .	ļ
450	MPLED	_]	SAM	<u> </u>	<u> </u>				∠ PROSPECT SA	MPLED		SAMP		<u> </u>	Ц.

TRAVERSE SAMPLIN	G					TRA\	/ERSE SA	MPLING	LARC	
FORM 280	, N	o MI	7220	3		FORM 280		٠.	ARS MIN	<u> 158</u>
SAMPLE CO-ORD 6378 00	O NA AZ	MA	P REF / PI	ОТО			co-ord 6 3		AZM MAF	P REF/
QD64 ACTIVE CO-ORD SO TYP	IL EIC GE	OLOGY	s REMA	RKS 2		Q064	ACTIVE CO-O METRES NA	RD SOIL E TYPE C	GEOLOGY	s REI
7830 714000			╟╌┼╌╌┤			7860	71550	0		
31 050						61	5 5	0		
32 100		~ i ~				62	6.0			
33 150						63	6.5			
3 4 200						64	. 7 0			
35 250						6.5	7.5	0		
36 300						66	8 (
37 350						6.7	8 9	0		
38 400						68	9 0	D		
39 450						69	9.5			
40 500						7870	71600	0		
41 550										
42 600	_					<u> </u>				<u> </u>
43 650	111-									-
4.4 700						<u> </u>	<u> </u>		<u> </u>	<u> </u>
45 750						 				<u> </u>
46 800					•					<u> </u>
47 850 48 900	$+ \parallel -$							╧━╂╌╧╌┰┼═┨		
49 950										-
50 715000	┼-									
51 050			+-+							
52 . 106										
53 150	╂═╟╼╧		+ + +							
54 200	╁┼┼								-	+
55 250	+++-	┿┷╢					-			- - :
56 300	1-11		$\dashv \dashv \dashv$							
57 350	 - 	$++\parallel$	+-+							-
58 400	+++-	+	 		,					\dashv
59 715450	+	++								
PROJECT PROSPECT SAMPLED	<u> </u>	اللين		4		PROJECT /	PROSPECT	SAMPLED BY	SAMP	1 E TY
PROJECT / PROSPECT SAMPLED DSL / STG	ار		LE TYPE		,	ROOPENA	161777	DSL /554W	ı	+2~

M 280	ERSE SAMP	٠	ARS MIN	15	:08C	3	FORM 28			٠.		ARS MIN	15	803
AMPLE REFIX	co-ORD 6378	000	AZM MAP			- 1	SAMPLE PREFIX	CO-ORD or No	6378	000	4	AZM MA	P REF	/ PHOT
D 6 4	ACTIVE CO-ORD METRES # E	SOIL	GEOLOGY	s	REMAR	ĸs	Q064	ACTIVI	E CO.ORD	SOIL TYPE	С	GEOLOGY	s R	EMARK 1 2
8301	714000			┝╌┼		-	7860	71	5 5 0 c		7		1	- -
3 /	050			\top		\dashv	6		550		$\exists l$			
32	100			_			6 2		600					
3 3	150			7			6 3		650					
3 4	200			- †		\neg	6.9		700					
35	250		<u> </u>				6.5		750					_
36	300			_			66		800					
37	350			\dashv		-+	6.7		850					
38	400						6.8	3	900					
39	450			7		-	6 4		950					
40	500				- -		7870	71	6000		\exists			
4)	550			+							7			
42	600			+		\dashv								
43	650			\dashv										
4 4	700		· · · · ·	\top										
4.5	750													
46	800			_				-						
4-7	850			\top	_	\neg		<u> </u>						
48	900					-		<u> </u>			_][П	
49	950			_		+	.							-
5 6	7.15000			\top										-
51	050			1	_ +-	\exists		1						
5 2	. 106			\top		\dashv		1						
5 3	150			\top	++-	\dashv		1			$\Box \Gamma$			
54	200			\top	\top	\dashv		1][
5 5	250			\top	=	\dashv								1 :
56	300			+-	- -						٦F			
57	350			┪		_					$\neg \vdash$			
58	400			+		\dashv					71			
59	400 7 15 450		┰┼┼┼	\dashv		\dashv					7			
ECT /	PROSPECT SAM	IPLED BY	SAMPL	_	TVS	==	PROJECT	/,PROSPE	ECT SA	MPLED F		SAMP	IF 7	VDE
ENA /	MITLE DSL/	559W 2/6/95	- 6 -				Roopene	DE 4(7)	·E D:	MPLED E SL /SJG 2/6/	w 96			

Roopena West EL 1872

Block Dam Lag Sampling Results

Line 6 394 300 N

Samp_No	As (ppm)	Au (ppb)	Bi (ppm)	Cu (ppm) N	lo (ppm)
QD647606	15	-1	0.9	10	2.5
QD647607	25	-1	1.0	15	3.0
QD647608	15	-1	1.2	15	2.5
QD647609	15	1	0.8	10	2.5
QD647610	. 20	-1	0.8	15	3.0
QD647611	25	-1	1.0	30	3.5
QD647612	25	-1	0.6	15	2.5
QD647613	25	-1 -1	0.6	25	3.0
QD647614	30	-1 -1	0.5	205	3.0
QD647615	25	-1 -1	0.3	180	
					2.5
QD647616	20	-1	0.4	220	2.0
QD647617	25	-1	0.5	185	2.5
QD647618	20	-1	0.5	145	2.0
QD647619	15	-1	0.4	90	2.0
QD647620	15	-1	0.6	135	2.0
QD647621	20	-1	8.0	130	2.5
QD647622	20	-1	0.7	90	2.0
QD647623	25	-1	0.7	50	2.5
QD647624	30	-1	0.6	40	2.5
QD647625	15	-1	0.5	35	1.5
QD647626	15	-1	0.6	40	2.0
QD647627	15	-1	0.6	35	2:0
QD647628	20	-1	0.7	40	2.0
QD647630	20	-1	0.6	30	1.5
QD647631	-5	-1	0.4	30	1.0
QD647632	-5	2	0.3	15	-0.5
QD647633	-5	-1	0.2	15	-0.5
QD647634	-5	-1	0.2	15	-0.5
QD647635	-5	-1	0.2	10	-0.5
QD647636	-5	-1	0.3	10	-0.5
QD647637	-5	-1	0.2	10	-0.5
QD647638	-5	-1	0.1	10	-0.5
QD647639	· -5	-1	-0.1	35	-0.5
QD647640	-5	-1	-0.1		-0.5
QD647641	5	-1	-0.1	15	4.5
QD647642	-5	-1	-0.1	30	-0.5
QD647643	-5	-1	0.1	20	-0.5
QD647652	-5	-1	0.2	20	0.5
QD647653	-5	-1	0.1	30	1.0
QD647654	- 5	-1	0.1	15	0.5
QD647655	-5 -5	1	-0.1	5	-0.5
QD647656	- 5	4	0.1	10	0.5
QD647657	-5	-1	0.1	20	-0.5
QD647658	-5	-1	-0.1	10	-0.5 -0.5
QD647659	-5	-1	0.1	5	-0.5 -0.5
QD647660	-5 -5	-1 -1	-0.1	10	-0.5 -0.5
QD647661	-5 -5	-1 -1	-0.1 -0.1	5	-0.5 -0.5
QD647662	-5 -5	-1 -1	0.1	5	-0.5 0.5
QD647662 QD647663	-5 -5	-1 -1	0.1	10	
QD647663 QD647664	-5 -5	-1 1	0.2	10 5	-0.5
QD647664 QD647666	-5 -5	2	0.2 0.1	5 10	-0.5
AD041000	- 5	2	U . 1	10	-0.5

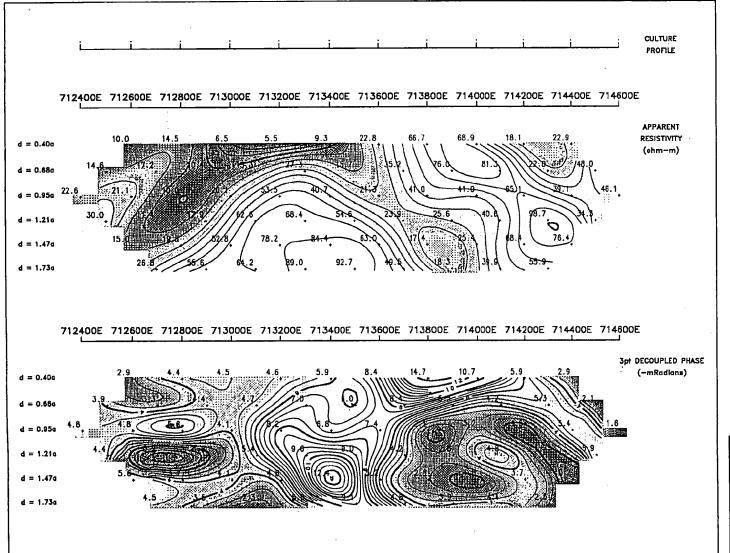
Roopena West EL 1872 Line 6 393 000 N

Samp_No	As (ppm)	Au (ppb)	Bi (ppm)	Cu (ppm)	Mo (ppm)
QD647667	25	-1	1.2	65	2.5
QD647668	30	2	1.2	50	2.5
QD647669	25	-1	0.8	50	2.5
QD647670	15	-1	0.7	. 25	1.5
QD647671	20	-1	0.8	35	2.0
QD647671	20	3	0.8	35	1.5
		-1		25	1.5
QD647673	15		0.7		1.5
QD647674	20	-1	8.0	30	
QD647675	10	-1	0.6	15	1.0
QD647676	10	-1	0.6	25	1.0
QD647677	10	-1	0.5	20	1.0
QD647678	10	-1	0.7	25	1.5
QD647679	5	-1	0.5	15	1.0
QD647680	5	-1	0.4	15	1.5
QD647681	10	-1	0.4	20	1.0
QD647682	10	-1	0.4	25	1.5
QD647683	10	-1	0.4	15	0.5
QD647684	10	-1	0.4	20	1.0
QD647685	10	1	0.5	20	1.0
QD647686	10	-1	0.5	15	1.0
QD647687	5	-1	0.4	15	1.0
QD647688	5	5	0.6	15	1.0
QD647689	10	-1	0.6	15	1.5
QD647690	5	-1	0.4	15	1.0
QD647691	5	-1	0.4	20	1.0
QD647692	5	-1	0.4	15	1.0
QD647693	5	-1	0.4	15	1.0
QD647694	15	-1	0.7	20	1.0
QD647695	10	-1	0.7	30	1.0
QD647696	25	-i	0.5	60	2.0
QD647697	10	2	0.5	30	1.5
QD647698	5	-1	0.2	25	1.0
QD647699	-5	-1	0.1	25	0.5
QD6477099 QD647700	-5 -5	-1	0.2	15	1.0
QD647700 QD647701	-5 5	-1 -1	0.2	10	1.0
QD647701 QD647702	5	-1 -1	0.3	15	1.0
	5	1	0.4	30	1.0
QD647703 QD647704	5	-1	0.4	45	1.0
	-5	-1 -1	0.3	15	0.5
QD647705	-5 10	-1 -1	0.2	95	1.0
QD647706		-1 -1	0.5	95	1.0
QD647707	15	-1 -1	0.5	120	1.5
QD647708	5	-1 -1	1.1	105	1.0
QD647710	10				1.5
QD647711	10	-1	0.7	120	
QD647712	10	-1	0.7	115	1.5
QD647713	15	1	0.7	190	1.5
QD647714	15	-1	1.4	170	1.5
QD647715	15	-1	0.5	135	1.0
QD647716	10	-1	0.6	105	1.0
QD647717	15	-1	0.7	115	1.5
QD647718	10	-1	0.4	55	0.5
QD647719	10	-1	0.6	60	1.0
QD647720	-5	-1	0.2	20	-0.5
QD647721	-5	-1	-0.1	25	0.5
QD647722	-5	-1	0.2	15	0.5
QD647723	-5	2	0.1	10	0.5

Roopena West EL 1872 Round Hill Lag Sampling Results

Line 6 397 000 N

Samp_No	As (ppm)	Au (ppb)	Bi (ppm)	Cu (ppm)	Mo (ppm)
QD647724	-5	22	0.1	5	-0.5
QD647725	-5	-1	0.1	10	1.0
QD647726	-5	0	0.2	15	1.0
QD647727	-5	930	0.3	15	1.0
QD647728	5	2	0.3	20	1.0
QD647729	-5	4	0.3	15	0.5
QD647730	-5	-1	0.3	15	1.5
QD647731	-5	-1	0.2	10	1.0
QD647734	-5	-1	-0.1	10	-0.5
QD647735	-5	-1	-0.1	10	-0.5
QD647736	-5	-1	-0.1	. 10	0.5
QD647737	-5	-1	0.1	10	-0.5
QD647738	-5	-1	-0.1	10	-0.5
QD647740	-5	-1	-0.1	20	-0.5
QD647741	-5	-1	-0.1	10	-0.5
QD647742	-5	-1	-0.1	10	-0.5
QD647743	-5	2	-0.1	20	-0.5
QD647744	20	-1	0.2	45	1.0
QD647745	70	-1	0.2	290	1.0
QD647746	60	-1	0.4	80	0.5
QD647747	5	-1	-0.1	30	-0.5
QD647748	10	-1	0.3	45	0.5
QD647749	5	-1	0.2	25	0.5
QD647751	15	-1	0.7	90	1.0
QD647753	5	-1	0.2	60	-0.5
QD647754	5	-1	0.1	20	-0.5
QD647755	-5	-1	-0.1	15	-0.5
QD647756	-5	-1	0.2	15	0.5
QD647766	-5	-1	-0.1	10	-0.5
QD647767	-5 -	-1	-0.1	10	-0.5
QD647768	-5	-1	-0.1	10	-0.5
QD647769	5	-1	-0.1	10	-0.5
QD647770	10	-1	-0.1	10	-0.5
QD647771	5	-1	-0.1	10	-0.5
QD647772	. 5	-1	-0.1	10	-0.5 -0.5
QD647773	-5 -	-1 -1	-0.1	10 5	-0.5 -0.5
QD647774	5		-0.1		0.5
QD647775 QD647776	-5 -5	-1 -1	-0.1 0.3	10 5	-0.5
QD647776 QD647777	-5 5	2	0.3	5	-0.5 -0.5
QD647778	5	-1	0.2	-5	0.5
QD6477784	5	-1 -1	0.2	-5 -5	0.5
QD047784	5	-1	0.2	-5	0.5


Roopena West EL 1872 Pankalla Lag Sampling Results

Line 6 375 000 N

Samp_No	As (ppm)	Au (ppb)	Bi (ppm)	Cu (ppm)	Mo (ppm)
QD647785	-5	-1	1.5	70	-0.5
QD647786	-5	-1	0.6	50	-0.5
QD647787	-5	3	1.6	35	0.5
QD647788	15	0	1.8	35	1.5
QD647797	-5	-1	1.0	10	1.0
QD647798	-5	1	0.5	5	1.0
QD647799	-5	-1	0.6	10	1.0
QD647800	5	-1	1.1	15	1.5
QD647801	10	-1	1.5	30	1.5
QD647802	-5	-1	1.2	30	1.0
QD647803	5	-1	0.9	- 25	1.0
QD647804	10	1	1.3	120	1.5
QD647805	10	-1	0.7	65	2.0
QD647806	15	-1	2.0	15	3.0
QD647807	20	-1	2.6	15	4.0
QD647808	20	-1	2.4	20	3.5
QD647809	25	-1	2.0	25	3.5
QD647810	20	-1	2.1	15	4.0
QD647811	20	1	2.2	15	4.0
QD647812	20	-1	2.3	15	3.5
QD647813	20	-1	2.3	20	3.5
QD647814	25	-1	2.3	25	3.5
QD647815	20	-1	2.1	20	3.0
QD647816	20	-1	2.0	20	3.5
QD647817	20	-1	2.3	25	3.0
QD647818	20	-1	2.2	20	3.5
QD647819	25	-1	1.7	30	3.0
QD647820	25	-1	2.3	25	3.0
QD647821	20	-1	1.8	30	3.5
QD647822	15	-1	1.4	25	3.0
QD647823	20	-1	1.6	30	3.0
QD647824 QD647825	20 20	-1 -1	1.6 1.4	30 25	3.0
QD647826	20	-1 -1	1.4	25 25	3.0 2.0
QD647827	20	-1 -1	1.4	30	2.0
QD647828	20 25	-1 -1	1.2	30	2.0 2.5
QD647829	20	-1 -1	1.7	30	2.5 2.5
WD04/028	20	-1	1.7	30	∠.5

APPENDIX 2

DIPOLE-DIPOLE IP RESULTS BLOCK DAM
ROUND HILL
PANKALLA
KITTLE

DIPOLE SIZE SURVEY DATE : 200.00 Meters

FREQUENCY

: 26-02-95

CURRENT RANGE

: .250 hz : 6.0 to 20.0 Amperes

IP RECEIVER

: ZONGE GDP18 S/N1029

IP TRANSMITTER SOFTWARE VERSION : CR 0521

: ZONGE GGT25 S/N2019A

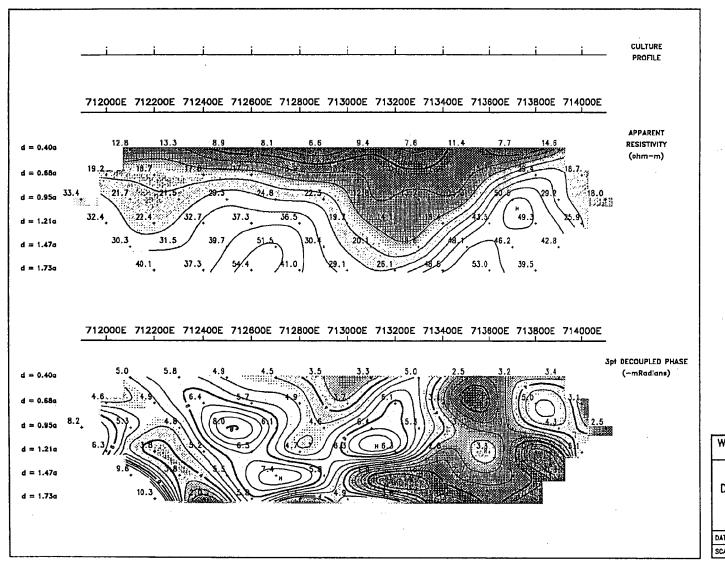
COST CODE : 4176

CONTOUR INTERVALS.

RESISTIVITY

: Logarithmic (10 per cycle)

PHASE : 0.50, 2.00


NOTE:

EDWARD'S depth scale has been used with a vertical exaggeration of 2 for plotting.

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT DIPOLE - DIPOLE INDUCED POLARIZATION ROOPENA WEST-BLOCK DAM LINE 94300 North

DATE:	04/08/95	AUTHOR:	KTH	PLAN NO.
SCALE:	1:10000	REF.		

DIPOLE SIZE : 200.00 Meters SURVEY DATE : 25-02-95

FREQUENCY : .250 hz
CURRENT RANGE : 10.0 to 2

CURRENT RANGE : 10.0 to 20.0 Amperes
IP RECEIVER : ZONGE GDP18 S/N1029
IP TRANSMITTER : ZONGE GGT25 S/N2019A

SOFTWARE VERSION : CR 0521 COST CODE : 4178

CONTOUR INTERVALS.

RESISTIVITY : Logarithmic (10 per cycle)

PHASE : 0.50, 2.00

NOTE:

EDWARD'S depth scale has been used with a vertical exaggeration of 2 for plotting.

100 0 100 200 500 400 500 800 (meters)

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT
DIPOLE - DIPOLE INDUCED POLARIZATION
ROOPENA WEST-BLOCK DAM
LINE 93000 North

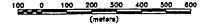
DATE:	04/06/95	AUTHOR:	PLAN NO
COME	1,10000	DEF .	

DIPOLE SIZE : 200.00 Meters

SURVEY DATE : 27-02-95 FREQUENCY : .250 hz

CURRENT RANGE : 5.0 to 15.0 Amperes
IP RECEIVER : ZONGE GDP16 S/N1029
IP TRANSMITTER : ZONGE GGT25 S/N2019A

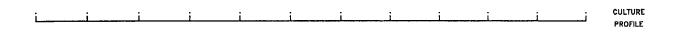
SOFTWARE VERSION : CR 0521 COST CODE : 4176

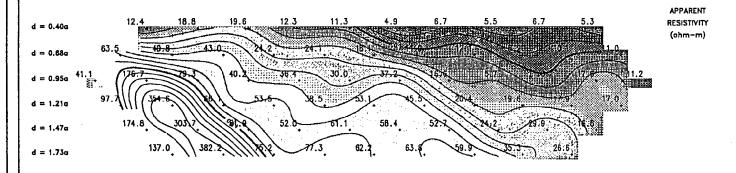

CONTOUR INTERVALS,

RESISTIVITY : Logarithmic (10 per cycle)

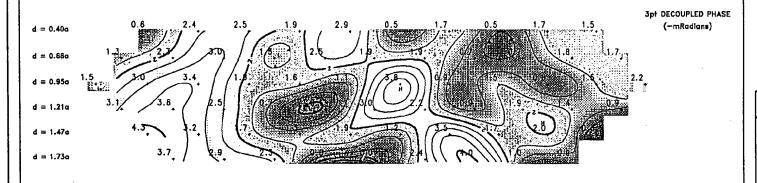
PHASE : 0.50, 2.00

NOTE:


EDWARD'S depth scale has been used with a vertical exaggeration of 2 for plotting.


WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT
DIPOLE - DIPOLE INDUCED POLARIZATION
ROOPENA WEST-ROUND HILL
LINE 97000 North


-	DATE:	05/06/95	AUTHOR:	PLAN NO.
	SCALE:	1:10000	REF.	

712000E 712200E 712400E 712600E 712800E 713000E 713200E 713400E 713600E 713800E 714000E 714200E

712000 712200 712400 712500 712800 713000 713200 713400 713500 713800 714000 714200

DIPOLE SIZE : 200.00 Meters
SURVEY DATE : 01-03-95
FREQUENCY : ,250 hz

CURRENT RANGE : 8.0 to 20.0 Amperes
IP RECEIVER : ZONGE GDP16

IP TRANSMITTER : ZONGE GGT25
SOFTWARE VERSION : CR 0521
COST CODE : 4176

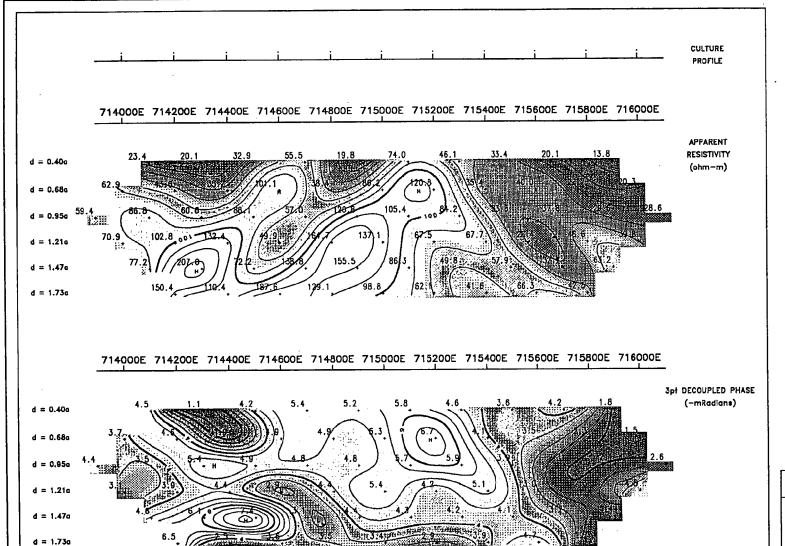
CONTOUR INTERVALS,

RESISTIVITY : Logarithmic (10 per cycle)

PHASE : 0.50, 2.00

NOTE:

EDWARD'S depth scale has been used with a vertical exaggeration of 2 for plotting.


100 0 100 200 300 400 500 600 (meters)

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT
DIPOLE - DIPOLE INDUCED POLARIZATION
ROOPENA WEST-PANKALLA

LINE 75000 North

DATE:	05/06/95	AUTHOR:	ктн	PLAN NO.	
SCALE:	1:10000	REF.			

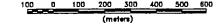
: 200.00 Meters DIPOLE SIZE SURVEY DATE

FREQUENCY

: .250 hz

CURRENT RANGE : 8.0 to 19.0 Amperes : ZONGE GDP16 S/N1029 IP RECEIVER IP TRANSMITTER : ZONGE GGT25 S/N2019A SOFTWARE VERSION : CR 0521

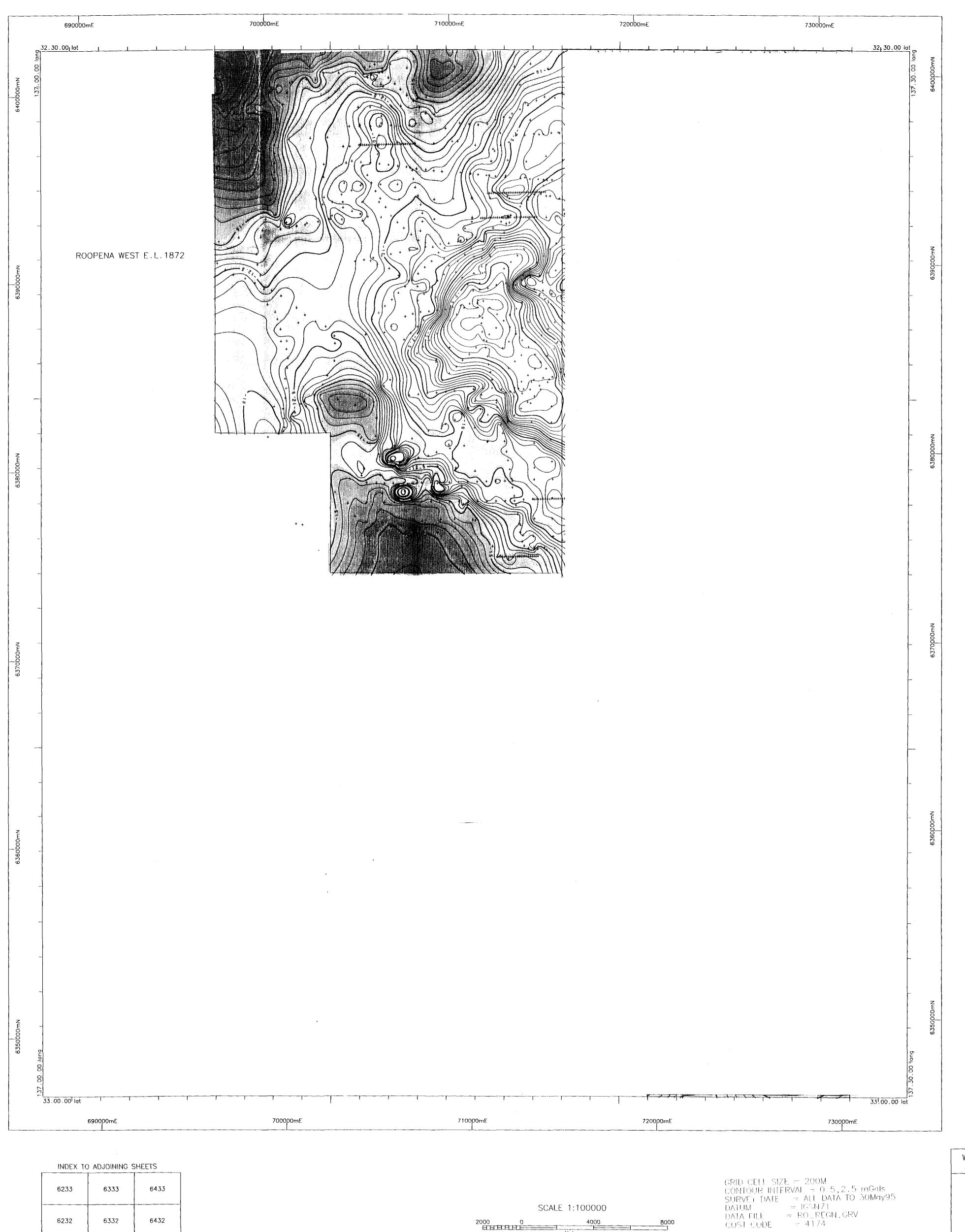
: 4176 COST CODE


CONTOUR INTERVALS.

RESISTIVITY : Logarithmic (10 per cycle)

: 0.50, 2.00 PHASE

NOTE:


EDWARD'S depth scale has been used with a vertical exaggeration of 2 for plotting.

WESTERN MINING CORPORATION LIMITED **EXPLORATION DIVISION**

GAWLER CRATON PROJECT DIPOLE - DIPOLE INDUCED POLARIZATION ROOPENA WEST-KITTLE LINE 78000 North

DAT	E: 04/0	06/95 AUT	HOR:	ктн	PLAN NO.
SCA	LE: 1:	10000 REF	•		

SHEET No. 6332

-12.09 -12.64 -13.13 -13.70 -14.29 -14.82 -15.46 -16.16 -16.93 -17.68 -18.70 -20.01 -21.74 GRAVITY MGALS

WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

GAWLER CRATON PROJECT E.L. 1872 - ROOPENA WEST

BOUGUER GRAVITY


DATE: 30/9/95 AUTHOR: K, HUTCHINGS PLAN NO. SCALE: 1:100,000 MAP REF. 6332

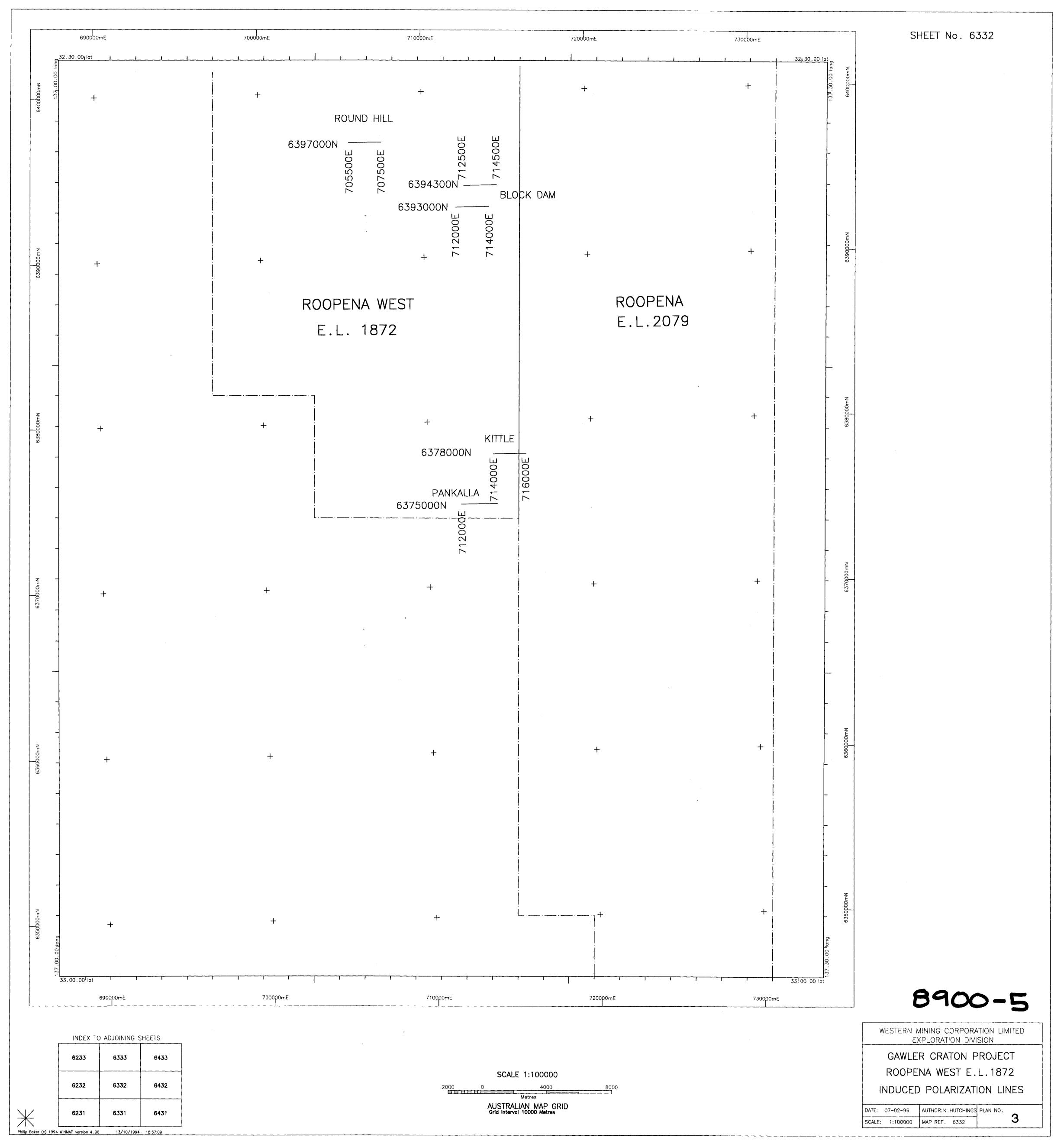
AUSTRALIAN MAP GRID Grid interval 10000 Metres

6331

6231

6431

AUSTRALIAN MAP GRID Grid interval 10000 Metres

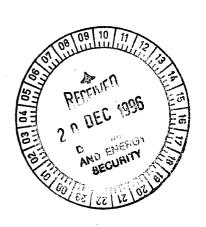

6232

6332

6432

BOUGUER GRAVITY DATE: 30/9/95 AUTHOR: K. HUTCHINGS PLAN NO. 2

SCALE: 1:100,000 MAP REF. 6333


WMC Resources Ltd Exploration Division - Copper

ANNUAL REPORT

FOR

E.L. 1872 - ROOPENA WEST

1ST OCTOBER, 1995 TO 30TH SEPTEMBER, 1996

R. R. RAMSAY PROJECT GEOLOGIST

PASADENA, S.A. DECEMBER, 1996

Distribution:

S.A.D.M.E. (2 copies)
Melbourne Properties (text only)
C.T.R.
File: PG 1-8f

1872AR96.doc December, 1996

Table of Contents

1.	Introduction1
2.	Regional Geology1
3.	Work Completed3
4.	Proposed Work3
5.	Expenditure Summary4
6.	References4
	List of Figures
Fig 1	Roopena Project, Lease Location Plan
Fig 2	Stratigraphy, South Eastern Gawler Craton
Fig 3	Schematic Regional Geology, Roopena Project, S.A.
	List of Appendices
Appendix	1Round Hill Prospect - Lag Sampling Results(includes plans of Cu and Au values at 1:10000)
Appendix	2 Block Dam Prospect - Reconnaissance Lag Sample

1. **INTRODUCTION**

Exploration Licence 1872 was granted to Western Mining Corporation Limited (WMC) on the 1st October, 1993 for a period of one year. The term of the licence was renewed in 1994, and again in 1995. In September 1996 the licence was renewed over a reduced area. The relinquished portion of the licence included an area covering the outcropping Gawler Range Volcanics to the north and a section of tested Broadview Schist to the south. The licence is now valid until 30th September, 1997.

The revised E.L. now covers an area of 254 km² and is located to the northeast of Iron Knob and adjacent to WMC's E.L. 2079 on eastern Eyre Peninsula (Figure 1).

The target ore type is Cu-Au occurrences and variations comparable to those on the Stuart Shelf or the Eastern Succession of the Mt. Isa Block.

Minimal work has been conducted on the licence in the period covered by this report. This is mainly as a result of WMC's efforts being concentrated on the adjacent Roopena Licence EL 2079 in the earlier part of the period and more recently through limited resources as a result of the re-assessment of WMC's exploration rationale. WMC is currently in the process of pursuing a potential JV partner to continue the exploration.

2. REGIONAL GEOLOGY

The regional geology of the eastern Eyre Peninsula is poorly understood due to the generally poor outcrop conditions. In an attempt to place the stratigraphy into a regional context WMC refers to the "Whyalla Group" (Figure 2); a sequence of Early Proterozoic volcanic and sedimentary rocks which unconformably overlies the early Proterozoic Hutchison Group, and is overlain by younger Gawler Range volcanic and sedimentary rocks.

The geochronology of units within the Whyalla Group, and those bounding it, indicate that its age spans the period 1800Ma to 1650Ma.

The Whyalla Group occupies a N-S belt immediately east of the Middleback Ranges and west of Whyalla (Figure 3). It has regional correlatives in the Moonta-Wallaroo area. The belt appears to be fault-bound on both its western and eastern sides, and is overlain unconformably to the north by Gawler Range volcanic and sedimentary rocks.

Simplistically, the Whyalla Group consists of two volcanic-sedimentary cycles - the lower Myola Volcanics and Broadview Schist and the upper McGregor Volcanics and Moonabie Formation. The McGregor Volcanics-Moonabie Formation have been correlated on the basis of geochronology with the Moonta Porphyry and Doora Schist.

The lower part of the Whyalla Group is intruded by the Wertigo Granite, a Lincoln Complex granite equated with the Middlecamp Granite which has an age of 1757Ma (U-Pb). On the basis of image processed aeromagnetics the Wertigo Granite has a

comparable pattern to the Myola Volcanics and may therefore be related to the volcanic rocks. The entire Whyalla Group is intruded by Hiltaba Suite granites (e.g. Charleston Granite, 1585Ma U-Pb, Creaser and Fanning, 1993). The "Whalers Granite" (informal name) occurs on the northeastern side of the belt and belongs to the Hiltaba Suite.

The lower part of the Whyalla Group has undergone two of the three phases of the Kimban Orogeny. The regional structure can be interpreted to consist of tight to open folds with axial plane sub-parallel to faults having NNW and NNE orientations.

Two documented areas of historic workings occur within the Whyalla belt. The Murninnie Mine, situated 40 km SSW of Whyalla, was mined for Cu and Bi during the period 1860-1900. The mine was reassessed during 1970 but no exploration was carried out(MESA open file reports). Numerous small diggings occur at "Hancocks Prospect" within the McGregor Volcanics, but no records of production exist.

3. WORK COMPLETED

The main field work completed during the period of reporting was at the Round Hill prospect in the northwest corner of the licence.

Round Hill

A small grid based lag sampling program to follow up the gold anomaly associated with the original reconnaissance was conducted. The results have shown a weak NE trending anomaly with values up to 68 ppb Au (Appendix 1). Further work is required to ascertain the extent and significance of this anomaly.

Block Dam

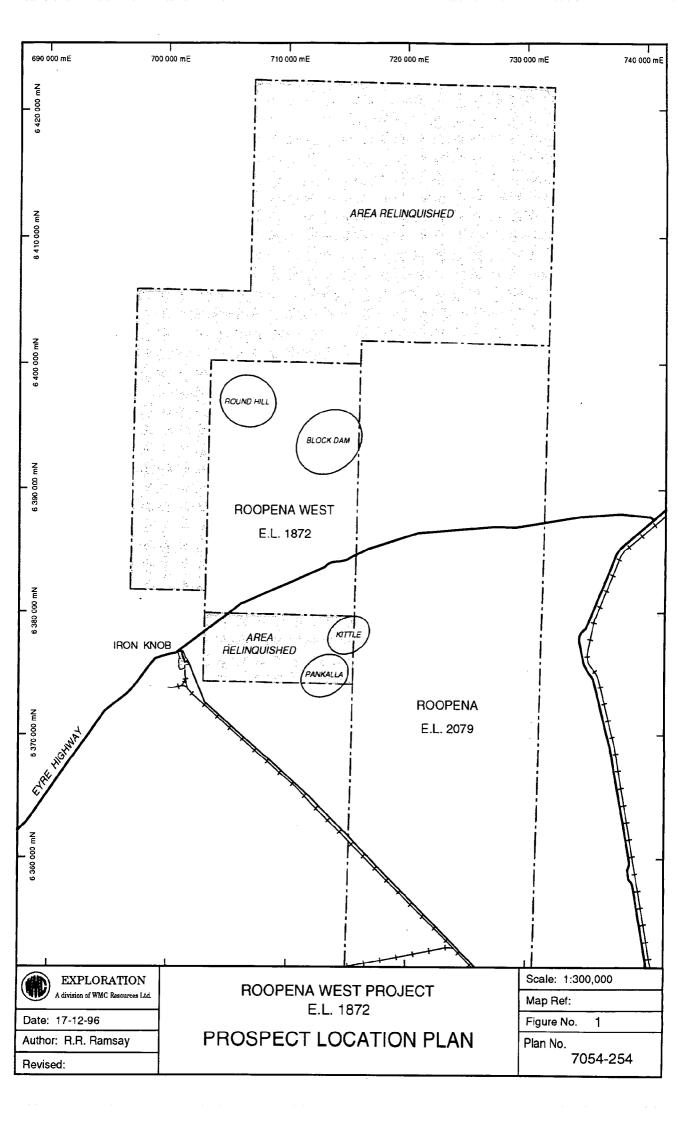
A reconnassance lag sample was taken associated with an ironstone outcrop at Block Dam. This was anomalous in both Au and Cu.

Geophysical modelling of the I.P. traverses conducted over the Block Dam prospect last year were completed. It was concluded (Hanneson, 1996) that significant potential exists for the anomaly to be related to sulphide mineralisation.

4. PROPOSED WORK

No further work is proposed by WMC at this stage. WMC is actively pursuing a partner to fund continued exploration on this and the adjacent Roopena Licence EL 2079.

5. **EXPENDITURE SUMMARY**


Roopena West EL 1872					
Activity 12 Months Cumulative Percentag					
Geology	\$6,885	\$67,464	41.3%		
Geophysics	\$3,332	\$50,081	30.7%		
Geochemistry	\$1,475	\$12,215	7.5%		
Surveying	\$459	\$459	0.3%		
Leasing		\$6,451	4.0%		
Drafting	\$25	\$1,159	0.7%		
Field Costs	\$21	\$249	0.1%		
Drilling	\$74	\$674	0.4%		
Administration	\$7,376	\$24,475	15%		
TOTAL	\$19,647	\$163,227	100%		

The expenditure statement above covers the twelve months from 1st October, 1995 to 30th September, 1996.

6. REFERENCES

Creaser, R.A., and Fanning, C.M., 1993, A U-Pb study of the Mesoproterozoic Charleston Granite, Gawler Craton, South Australia. Aust. Jnl. Earth Sciences, v40, 519-526.

Hanneson, J. E., 1996, Preliminary Interpretation of Geophsysical Data from the Block Dam Prospect, Roopena West EL 1872, Gawler Craton Project, South Australia, Internal WMC Report XPA23/96.

STRATIGRAPHY SOUTH EASTERN GAWLER CRATON

(all ages U-Pb Zircon)

Pandurra Formation (Stuart Shelf)

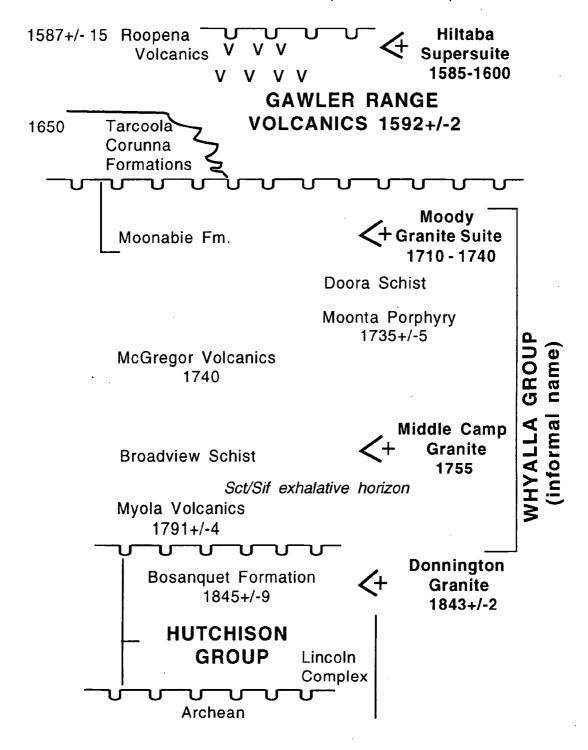
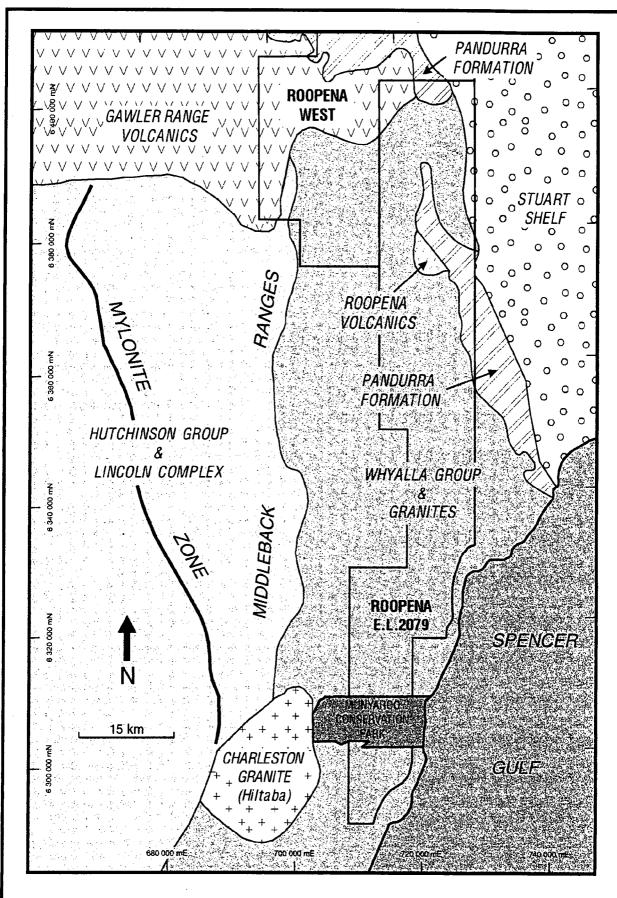



FIGURE 2

ROOPENA PROJECT - SOUTH AUSTRALIA SCHEMATIC REGIONAL GEOLOGY

FIGURE 3

Appendix 1 Round Hill Prospect Lag Sampling Results

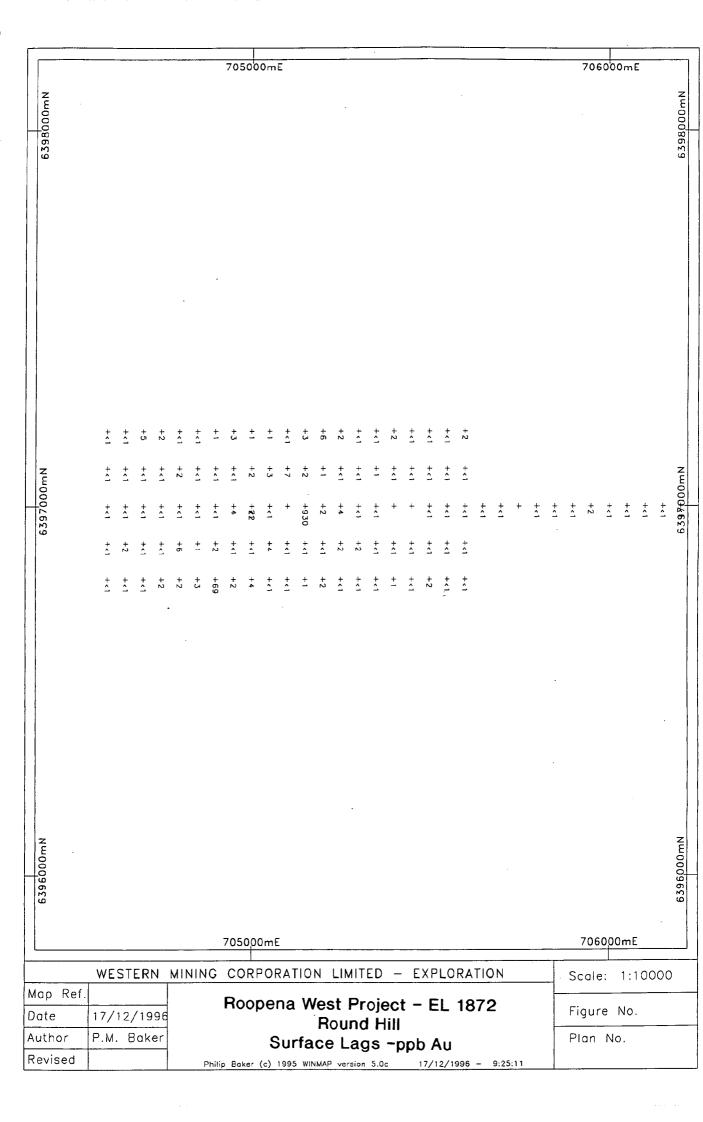
WMC Resources Ltd Roopena West EL 1872

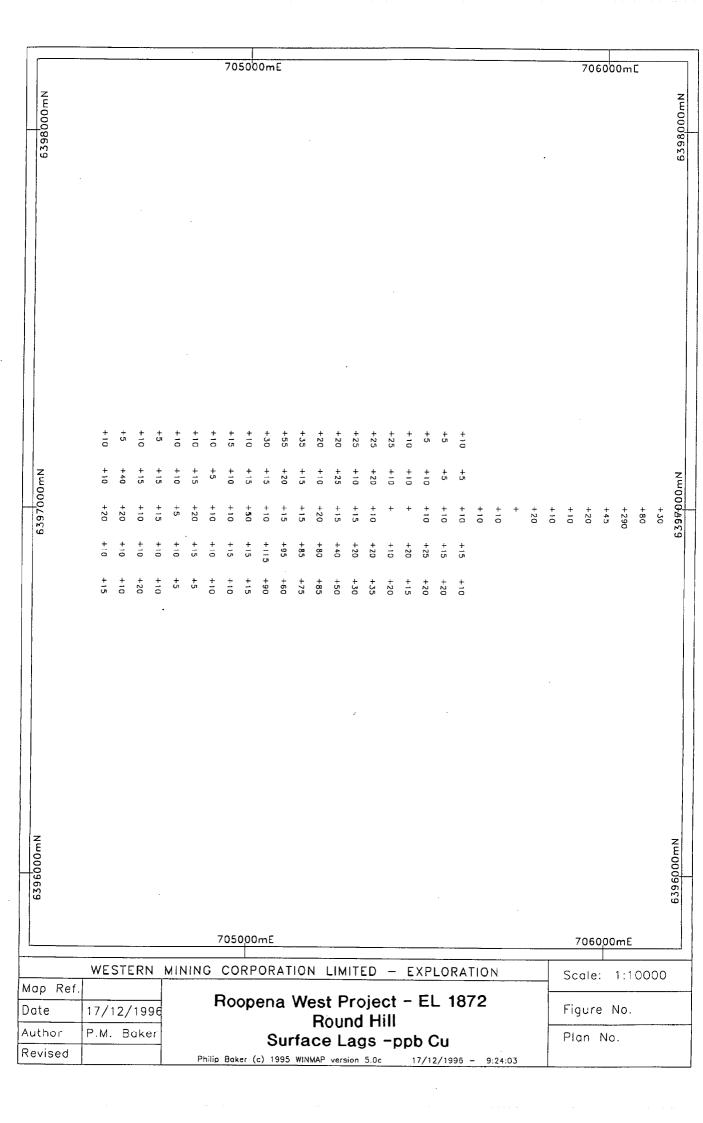
Lag Sampling Program - Round Hill Prospect

Sample Type: Lags -6+2mm

ARS No: MIN5709

ARS NO: MINS	709			
Sample No:	Northing	Easting	Cu (ppm)	Au (ppb)
GC410001	6396800	704600	15	<1
GC410002	6396800	704650	10	. <1
GC410003	6396800	704700	20	<1
GC410004	6396800	704750	10	2
GC410005	6396800	704800	5	2
GC410006	6396800	704850	5	3
GC410007	6396800	704900	10	69
GC410008	6396800	704950	10	2
GC410009	6396800	705000	15	4
GC410010	6396800	705050	90	<1
GC410011	6396800	705100	60	<1
GC410012	6396800	705150	75	1
GC410013	6396800	705200	85	2
GC410014	6396800	705250	50	<1
GC410015	6396800	705300	30	<1
GC410016	6396800	705350	35	<1
GC410017	6396800	705400	20	1
GC410018	6396800	705450	15	<1
GC410019	6396800	705500	20	2
GC410020	6396800	705550	20	<1
GC410021	6396800	705600	10	<1
GC410022	6396900	704600	10	<1
GC410023	6396900	704650	10	2
GC410024	6396900	704700	10	<1
GC410025	6396900	704750	10	<1
GC410026	6396900	704800	10	6
GC410027	6396900	704850	15	1
GC410028	6396900	704900	10	2
GC410029	6396900	704950	15	<1
GC410030	6396900	705000	15	<1
GC410031	6396900	705050	115	4
GC410032	6396900	705100	95	<1
GC410033	6396900	705150	85	<1
GC410034	6396900	705200	80	<1
GC410035	6396900	705250	40	2
GC410036	6396900	705300	20	2
GC410037	6396900	705350	20	<1
GC410038	6396900	705400	10	<1
GC410039	6396900	705450	20	<1
GC410040	6396900	705500	25	<1
GC410041	6396900	705550	15	<1
GC410042	6396900	705600	15	<1
GC410043	6397000	704600	20	<1
GC410044	6397000	704650	20	<1
GC410045	6397000	704700	10	<1
GC410046	6397000	704750	15	<1
GC410047	6397000	704800	5	<1


WMC Resources Ltd Roopena West EL 1872


Lag Sampling Program - Round Hill Prospect

Sample Type: Lags -6+2mm

ARS No: MIN5709

ARS NO. MINS	103			
Sample No: GC410048	Northing 6397000	Easting 704850	Cu (ppm) 20	Au (ppb) <1
GC410049	6397000	704900	10	<1
GC410050	6397000	704950	10	4
GC410051	6397000	705000	10	<1
GC410051	6397100	704600	10	<1
GC410053	6397100	704650	40	<1
GC410054	6397100	704030	15	<1
GC410055	6397100	704750	15	<1
GC410056	6397100	704750	10	2
GC410057	6397100	704850	15	<1
GC410058	6397100	704900	5	<1
GC410059	6397100	704950	10	<1
GC410060	6397100	705000	15	2
GC410061	6397100	705050	15	3
GC410061 GC410062	6397100	705030	20	3 7
GC410062 GC410063				
	6397100	705150	15 10	2
GC410064	6397100	705200	10 25	1
GC410065	6397100 6397100	705250	25 40	<1
GC410066 GC410067		705300	10	<1
GC410067 GC410068	6397100 6397100	705350 705400	20 10	1 <1
GC410069	6397100	705450	10	<1
GC410009 GC410070	. 6397100	705450	10	<1
GC410071	6397100	705550	5	<1
GC410071	6397100	705600	5	<1
GC410072	6397200	704600	10	<1
GC410074	6397200	704650	5	<1
GC410075	6397200	704700	10	5
GC410076	6397200	704750	5	2
GC410077	6397200	704800	10	- <1
GC410078	6397200	704850	10	<1
GC410079	6397200	704900	10	1
GC410080	6397200	704950	15	3
GC410081	6397200	705000	10	1
GC410082	6397200	705050	30	1
GC410083	6397200	705100	55	<1
GC410084	6397200	705150	35	3
GC410085	6397200	705200	20	6
GC410086	6397200	705250	0	2
GC410087	6397200	705300	25	<1
GC410088	6397200	705350	25	<1
GC410089	6397200	705400	25	2
GC410090	6397200	705450	10	<1
GC410091	6397200	705500	5	<1
GC410092	6397200	705550	5	<1
GC410093	6397200	705600	10	2

Appendix 2 Block Dam Prospect Reconnaissance Lag Sample

WMC Resources Ltd Roopena West EL 1872

Reconnaissance Lag Sample - Block Dam Prospect

Sample Type: Lag -6+2mm

ARS No: MIN5704 Date: 12/11/95

 Sample No:
 Northing
 Easting
 Cu (ppm)
 Au (ppb)

 DA748104
 6393920
 712720
 260
 6

103 - 105 King William Street, Kent Town, South Australia PO Box 751, Kent Town, 5071, South Australia, Australia

Phone (08) 8464 2200 Fax (08) 8464 2299

EL 1872 - ROOPENA WEST

ANNUAL REPORT

FOR PERIOD FROM 01/10/96 TO 30/09/97

Port Augusta 1:250,000 Sheet SI 53-04

Author:	A. J. Downie	
Date:	March, 1998	
Authorised:	Andy Price.	
Distribution:	Department of Primary Industries and Resources WMC Resources Ltd Adelaide Norex - Library, Kent Town	
	Norex - SE Region	L

Report No. 22982

The contents of this report remain the property of Normandy Gold Limited and may not be published in whole or in part, nor used on a company prospectus without the written consent of the company.

Mines & Energy SA

R98/00297

Report No:

22982

Title:

Annual Report for EL 1872 (Roopena West) for the period 1 October,

1996 to 30 September, 1997.

Authors:

A. J. Downie

Date:

March, 1998

Location:

Port Augusta

1:250,000 Sheet SI 53-4

<u>ABSTRACT</u>

This report summarises the exploration work carried out by WMC limited and Normandy Gold Ltd on EL 1872 from 1 October, 1996 to 30 September, 1997. EL 1872, together with EL 2079, comprise the Roopena Project.

The tenements cover a highly prospective area within the Gawler Craton and are situated on the eastern margin of the Eyre Peninsula. The tenements are registered to WMC Limited and are subject to a joint venture agreement with Normandy Gold Limited. During the farm-in period Normandy Gold have assumed project management.

WMC Limited's main priority during the reporting period was to divest part of its interest in this project. Their work consisted of compiling and preparing the data sets for appraisal by interested parties. Normandy Gold Ltd were the successful party in securing a joint venture agreement. Normandy Gold Ltd has completed compiling and reformatting WMC's exploration data. Regolith mapping at 1:100,000 scale and a structural interpretation of the project area was also completed during the reporting period by Normandy Gold Ltd.

Exploration proposed by Normandy Gold Ltd. for the forthcoming year includes regional and prospect scale geochemical assessment. Targets generated from these programmes will be drill tested using RAB or aircore techniques. Further drill testing at the Spencer Prospect is warranted.

CONTENTS

LIST OF FIGURES

01 01	· ·	Page No
1.0	CONCLUSIONS and RECOMMENDATIONS	5
2.0	INTRODUCTION	5
3.0	TENURE	5
4.0	LOCATION and ACCESS	5
5.0	NATIVE TITLE	6
6.0	REGIONAL GEOLOGY	6
7.0	HISTORIC EXPLORATION	7
8.0	EXPLORATION COMPLETED	7
	8.1 Data Compilation8.2 Geomorphological Mapping8.3 Structural Interpretation	
9.0	PROPOSED EXPLORATION	8
10.0	EXPENDITURE SUMMARY	8
11.0	REFERENCES	9

LIST OF FIGURES

<u>Figure</u> <u>No.</u>	<u>Drawing</u> <u>No</u> .	Description		<u>Scale</u>
1	72000L02	Locality Plan		1:4,000,000
2	72000M02	Native Title Plan		1:1,000,000
3	PAS03-21	Regional Geology	approx	1:500,000

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
1	Report on Regolith Mapping of the Roopena Area, South Australia - MDJ Derriman.
2	Preliminary Structural Geology Analysis of the Roopena Project, South Australia - Dr C N Windsor

1.0 CONCLUSIONS and RECOMMENDATIONS

Exploration completed by WMC Ltd. over the past five years on the Roopena Project has identified several areas of gold and copper anomalism. At the Spencer prospect gold and copper anomalism has been delineated over 2 km and is associated with the Spencer Fault. This could possibly represent a splay structure from the regional north-south trending Roopena Fault.

It is recommended that exploration be continued on both a regional and prospect scale. A regional surface geochemical programme is recommended to cover EL 1872. Results of which can be incorporated with the regolith mapping and structural interpretation. Priority targets generated from this programme will required drill testing.

2.0 INTRODUCTION

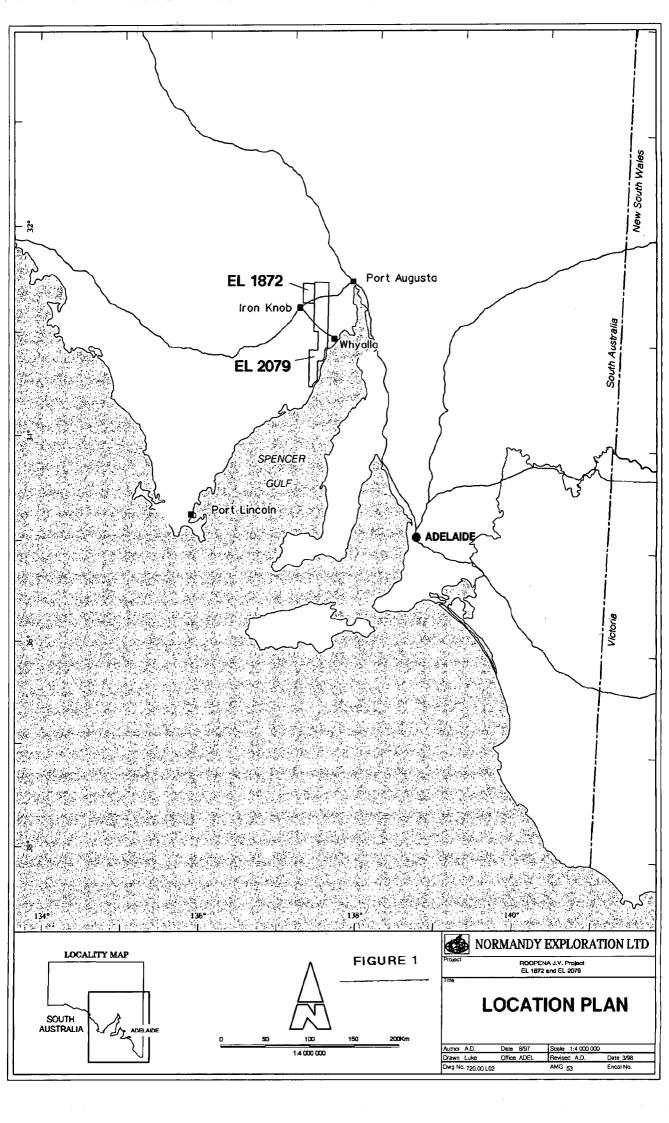
Exploration Licence 1872 was granted to Western Mining Corporation Limited (WMC) on the 1 October, 1993.

In September 1996 the licence was renewed over a reduced area. The relinquished portion of the licence included an area covering the outcropping Gawler Range Volcanics to the north and a section of tested Broadview Schist to the south. The revised EL now covers an area of 254 km² and is located to the northeast of Iron Knob and adjacent to WMC's EL 2079 on eastern Eyre Peninsula (Figure 1).

Normandy Gold Pty Limited have entered an agreement with WMC to earn an equity in the Roopena Project which consists of ELs 2079 and 1872. During the earn-in phase, Normandy Gold is responsible for the management and the statutory requirements for these tenements. This agreement commenced on the 23rd April, 1997.

This report details the work completed by WMC and Normandy Gold for the period. 15/10/96 to 30/09/97.

3.0 TENURE


WMC Ltd. was granted EL 1872 on the 1 October, 1993. It covers an area of 254km² and is located on the Port Augusta (SI 53-04) 1:250,000 sheet.

4.0 LOCATION and ACCESS

The tenement EL 1872 is located approximately 50 kms west of Port Augusta. It represents a rectangular shape of $13 \text{km} \times 20 \text{m}$ along and to the north of the Eyre Highway.

The major land use sheep and cattle grazing on essentially uncleared ground.

Access throughout the project is excellent with a complex network of well maintained tracks and boundary roads. The tenement is also cut by the Eyre Highway in the south eastern portion.

5.0 NATIVE TITLE

The Roopena Project tenements are covered by three native title claims. These are listed below and are shown in Figure 2.

* Barngala Native Title Claim (SC 96/4)

This claim covers the entire Eyre Peninsula extending up to Leigh Creek in the northeast and across to Bulgunnia homestead in the northwest. This application was lodged with the National Native Title Tribunal on the 4th April, 1996 and accepted on the 21st August, 1996. The registered native title claimant is Henry Croft on behalf of the Barngarla families.

Nukunu Native Title Claim (SC 96/5)

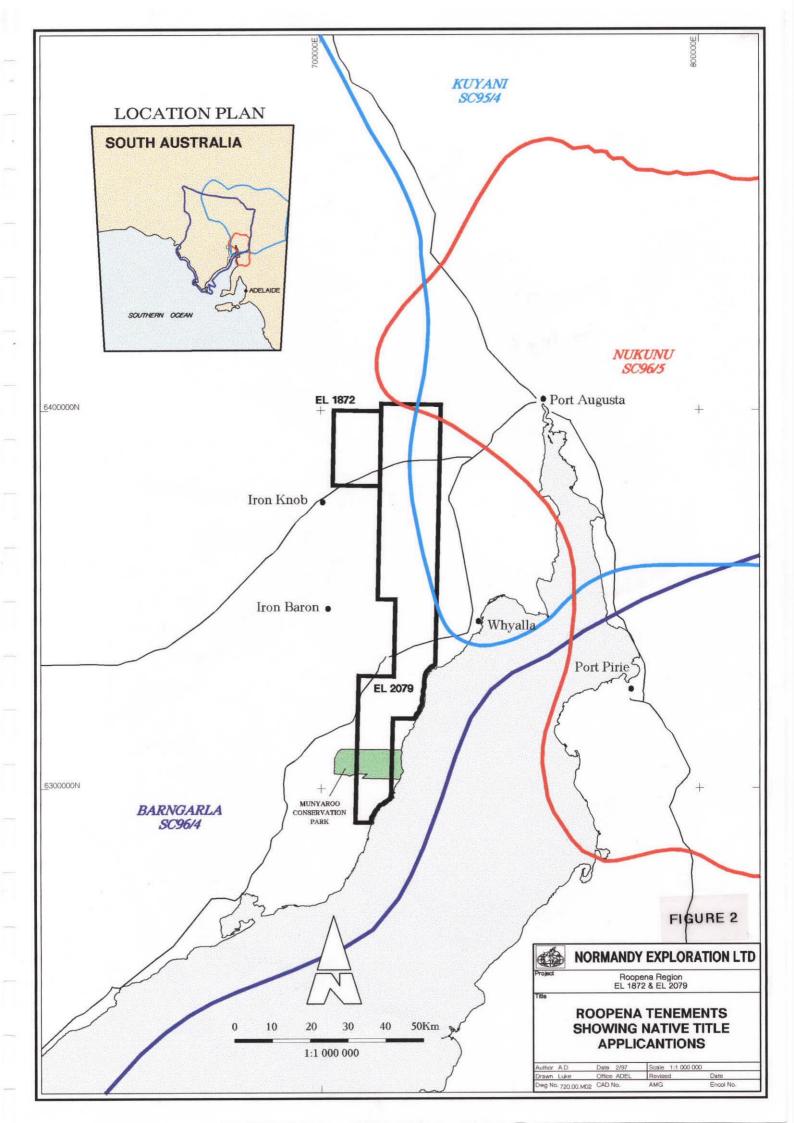
This claim covers the area between Port Augusta and Port Pirie. This application was lodged with the National Native Title Tribunal on the 10th April, 1996 and accepted on the 4th October, 1996. The registered native title claimant is James Alexander Bramfield.

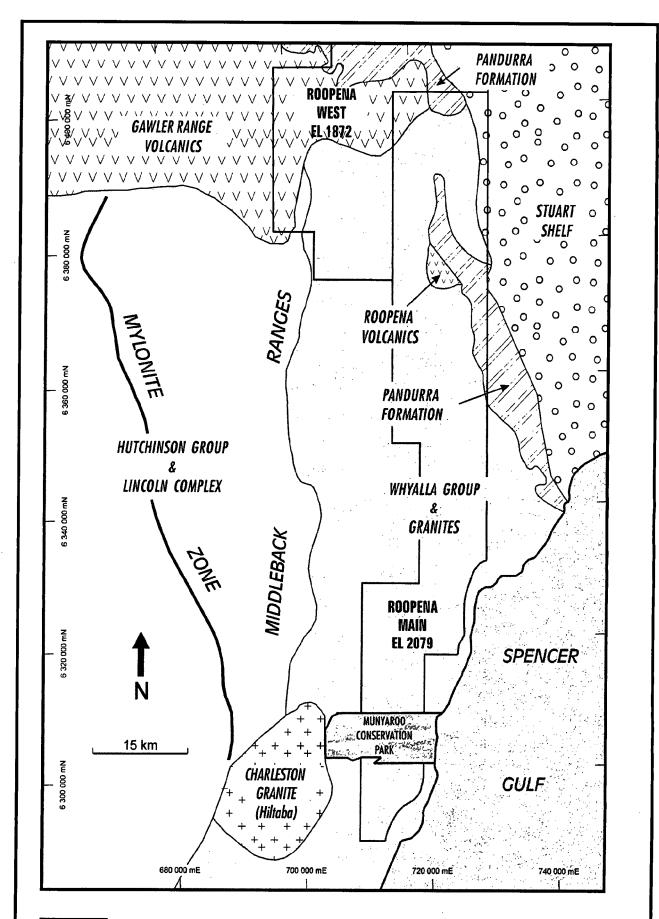
This claim covers only a very small portion of the project in the extreme north-east corner.

* Kuyani Native Title Claim (SC 95/4)

This claim covers a large area north of Whyalla. It extends as far as Maree in the north, west as far as Painted Hills and across to the SA/NSW border in the east. This application was lodged with the National Native Title Tribunal on the 19th September, 1995, and accepted on the 13th March, 1996. The registered native title claimant is Mark McKenzie Senior.

6.0 REGIONAL GEOLOGY (after Ramsay 1996)


In an attempt to place the stratigraphy of the Roopena area into a regional context WMC refers to the "Whyalla Group" (Figure 3): the sequence of early Proterozoic volcanic and sedimentary rocks which unconformably overlies the early Proterozoic Hutchison Group, and is overlain by younger Gawler Range volcanic and sedimentary rocks.


The geochronology of units within the Whyalla Group and those bounding it, indicate that its age spans the period 1800 Ma to 1650 Ma.

The Whyalla Group occupies a north-south belt (part of the Moonta Sub-domain) immediately east of the Middleback Ranges and West of Whyalla. It has regional correlatives in the Moonta-Wallaroo area.

The belt appears to be fault bound on both its western and eastern sides, and overlain unconformably to the north by Gawler Range volcanic and sedimentary rocks.

Simplistically, the Whyalla Group consists of two volcanic-sedimentary 'cycles' - the lower Myola Volcanics and Broadview Schist, and the upper McGregor Volcanics and Moonabie Formation. The McGregor Volcanics - Moonabie Formation have been correlated on the basis of geochronology with the Moonta Porphyry and Doora Schists.

NORMANDY EXPLORATION

ROOPENA PROJECT - SOUTH AUSTRALIA SCHEMATIC REGIONAL GEOLOGY

The lower part of the Whyalla Group is intruded by the Wertigo Granite, a Lincoln Complex granite equated with the Middle Camp Granite which has an age of 1757 Ma (U-Pb). On the basis of image processed aeromagnetics the Wertigo Granite has a comparable pattern to the Myola Volcanics and may therefore be related to the volcanic rocks. The entire Whyalla Group is intruded by Hiltaba Suite granites (e.g. Charleston Granite, 1585 Ma U-Pb, Creaser and Fanning, 1983). The "Whalers Granite" (informal name) occurs on the north-eastern side of the Whyalla belt and belongs to the Hiltaba Suite. Creek exposures contain large tourmaline veins. The lower Whyalla Group has undergone two of three phases of the Kimban Orogeny. The regional structure can be interpreted to consist of tight to open folds with axial plane sub-parallel faults having NNW and NNE orientations.

7.0 HISTORIC EXPLORATION

Historical exploration in the Whyalla area has been previously discussed in Norris 1994, and will not be covered in this report.

8.0 EXPLORATION COMPLETED

During the reporting period, the majority of WMC's work has been focussed on divesting this project. This has involved the compilation and preparation of their data sets for assessment by potential joint venture partners. Following on from this, negotiations with interested companies was also completed, of which Normandy Gold Ltd was the successful partner.

Normandy Gold's work on EL 1872 during the reporting period has involved data compilation of previous exploration, geomorphological mapping and the completion of a structural/geophysical study.

8.1 DATA COMPILATION

Previous exploration conducted by WMC includes surface geochemistry and drilling. This data was reformatted and imported into Normandy's in-house Explorer III database.

8.2 **GEOMORPHOLOGICAL MAPPING**

Geomorphological mapping of the Roopena Project area was completed by Mark Derriman (Senior Regolith Geochemist) seconded from Normandy's Perth office. The project area was mapped at a scale of 1:100,000 using colour aerial photography along with image processed thematic mapper imagery. In conclusion the project area can be essentially divided into 2 domains. The area north of Middleback homestead comprises of outcrop and thinly developed colluvial detritus.

The Southern area is dominated by depositional regime material apart from some outcrop associated with the abandoned Murminie copper mine. This report is attached in appendix 1.

8.3 <u>STRUCTURAL INTERPRETATION</u>

A structural study of the Roopena Project area was undertaken by consultant Dr Colin Winsor. The structural interpretation was completed at 1:100,000. covering the Roopena Project area. Several stages of deformation have been interpreted along with potential sites of dilation. This report is attached in appendix 2.

Exploration to be completed over the next 12 months for the Roopena Project will involve:

- * Orientation geochemistry
- Regional and Prospect scale surface geochemistry

No systematic regional exploration has been conducted on this project focussed on gold mineralisation. The above work outlined will be targeted in the majority on the regional scale. Targets and anomalies generated from this program will be drill tested using RAB/aircore techniques.

10.0 EXPENDITURE SUMMARY

An expenditure breakdown for exploration completed on the Roopena West tenement EL 1872 is detailed overleaf.

ROOPENA

Expenditure by Natural Account From 1 October 1996 to 30 September 1997

Description # ###	EL (1872)
Eligible Staff Training	1057
Conferences/Mine Visits	, , , ,
Entertainment	
Stationery/Office Supplies/Printing	30
Couriers/Freight Charges/Postage	299
Bank Charges	
Sponsorships/Contributions	
Publications/Maps/Subscriptions	875
Data Purchase/Search Charges	
Analytical & Assay	
Travel/Accomodation/Meals	1,012
Field Supplies/Exploration Consumables	264
Equipment Hire/Lease	
Equipment Maintenance/Repairs	
Equipment Purchases (under \$500 only)	32
Communication	
Safety Office Rental and Halla's a	244
Office Rental and Utilities	
House Expenses Vehicle Hire/Lease	
Vehicle Operating Costs	400
Air Charter/Helicopter	426
Tenement Costs - incl. Rental & Shire Rates	784
Traditional Landowner Costs	7 04
Regional Office Cost	3,871
Fixed Asset Usage Charge	1,540
Drafting Services and Supplies	318
Other Contractors/Casuals	010
Geophysical	100
Aerial Photography/Photogramatry	
Computing Services/Supplies/Maintenance	100
Computer Hardware (<\$500)	87
Computer Software (<2000)	261
Mineralogy/Petrology	
Legal Services	
Other Consultants	3,750
Diamond Drilling	
RC Drilling RAB Drilling	
Other Drilling	
Surveying/Gridding	
Site Preparation/Rehabilitation/Environment	
Image Processing	
Time Charges - Salaries & Wages	17.072
- goo - calando a fragos	17,073

\$32,123

Ψ02, 12¢

11.0 REFERENCES

BMR P427. Magnetics.

Derriman M.D.J. (1997). Report of regolith mapping of the Roopena area, South Australia. Internal Report Normandy Exploration Ltd. 5p. (RN64249).

Fietz G.B. (1989). The geological structure and slope stability of the Iron Duke iron ore deposit. Thesis for Graduate Diploma in applied geology, South Australian Institute of Technology.

Norris M.S. (1994). Annual Report for EL 1775 Roopena, 22nd April 1992 to 21st April, 1993. Vol. 1, 2, 3, 4. WMC Ltd. Exp. (CR21344).

Parker A.J. & Daly S.J. (1982). Symposium on the Gawler Craton Drill Hole Logs. Dept. Mines and Energy, SA. Report Bk.No. 82/9.

Parker A.J. & Lemon N.M. (1982). Reconstruction of the early proterozoic stratigraphy of the Gawler Craton, South Australia. J.geol. Soc. Aust. 29, 221-238.

Parker A.J., Fanning C.M., Flint R.B., Martin A.R., Rankin L.R. (1988).

Archaean - early proterozoic granitoids, metasediments and mylonites of southern Eyre Peninsula, South Australia. Specialist group in tectonics and structural geology. Field guide No. 2, 90 pp.

PNC Exploration (Australia) (1986). Quarterly Report (CR21930).

Ramsay R.R. (1979). Structure, stratigraphy, mineralogy and comparative geochemistry of Iron Duke, southern Middleback Range, SA. BSc (Hons) Adel.Uni.

Ramsay R.R. (1996a). Annual report for EL 1872 Roopena West. (CR21374) WMC.

Ramsay R.R. (1996b). Annual report for EL 2079 Roopena 25/4/95 - 24/4/95. WMC (CR21347).

SAEI Area B4. Magnetics.

Tardell Pty. Ltd. (1990). EL 1646 Roopena area progress report for the period to 6/6/90. Open File envelop No. 8314 SADME.

Weste G. (1994)a. Roopena pretertiary geology 1:100,000 SADME Preliminary mapping.

Weste G. (1994)b. Roopena geology 1:100,000 SADME.

WMC/Kevron (1993). Magnetics

Woffenden S.J.G. (1994). Annual Report for EL 1775 Roopena 22/4/93 - 21/4/94. WMC Ltd. - Exploration Division. Vol. 1, 2. (CR21347).

Woffenden S.J.G. (1995). Annual Report for EL 1872 Roopena West 1/10/93 - 30/9/94. WMC Ltd. - Exploration Division. Vol. 1, 2. (CR21373).

Woffenden S.J.G. (1996). Annual Report for EL 1775 Roopena 22/4/94 - 21/4/95. WMC Ltd. - Exploration Division. Vol. 1, 2. (CR21346).

Yeates G. (1990). Middleback Range iron ore deposit. In geology of the mineral deposits of Australia and Papua New Guinea (ed. F.E. Hughes) pp. 1045-1048 AIMM.

BIBLIOGRAPHIC DATA SHEET

Report Number : 22982

Report Title : Annual Report on Exploration Licence No. 1872

(Roopena West) for period from 1 October, 1996

to 30 September, 1997.

Author : A. J. Downie

Date : March, 1998

Commodities : Gold, Copper-Gold

Tectonic Units : Gawler Craton

1:250,000 Map Sheet : Port Augusta SI 53-04

Keywords : Gawler Craton

Hiltaba Suite Granite Sample Analysis

APPENDIX 1

Report on Regolith Mapping of the Roopena Area, South Australia - MDJ Derriman

1. Introduction

Regolith mapping was undertaken within the Roopena project area for Normandy Exploration Ltd (Adelaide) during May 1997. Prior to the field mapping some photogeological interpretation was carried out on 1:40,000 colour aerial photography in addition to image processing of thematic mapper imagery. The field work comprised a series of traverses, mainly along existing tracks and roads.

2. Location

The Roopena project area is located 15km west of Whyalla and approximately 200km NW of Adelaide. Access is via the sealed trans Australia highway (Route 1) which bisects the project area. Numerous dry weather station tracks and fencelines traverse the project area.

3. Data Sources

3.1 Landsat Thematic Mapper Imagery

Thematic Mapper (TM) imagery was purchased for the Roopena Project Area and processed using TNT Mipps software. Several treatments are included at the rear of the report. The TM imagery has highlighted the dominantly erosional nature of the terrain in the north and the dominantly depositional nature in the southern portion.

TM Band 7

This is the 'clay' channel with higher albedo areas representing areas of exposed sediments or weathered rock. The northern area represents just such material.

TM Bands 7, 4, 2 (with Decorralation Stretch)

TM bands 7, 4, 2 is a standard combination to highlight regolith and geological features as various colour tones. The decorralation stretch is a specific contract enhancement to add further discrimination. In the northern area several lithological and regolith units are easily distinguishable. The sand dune terrain in the far south is recognisable as a bright green tone due to thick eucalypt and acacia cover.

Principle Components 1, 4 and 5

Principle components is a technique whereby high discrimination of geological and regolith units is possible by separating the data from the combined bands using axis which are aligned with the trend of the data. Lower order principle components highlight more subtle aspects of the data and can contain geological information not apparent in a standard 7, 4, 2 composite. In this imagery the sand dunes are again apparent in the south as is the surface expression of an extensive NNE-SSW breakaway, the base of which is highlighted by yellow proximal colluvium. Geological and regolith units are easily distinguished in the north of the project area due to the higher level of erosional material.

Ratios 5/4, 4/7 and Band 4

The maximum discrimination obtained was from a combination of ratios and a single band image. Unfortunately the ratio process in the southern half was swamped by the sharp contrast between ocean and land so only the erosional/depsoitonal terrain in the northern half was processed. A comparison of this imagery with the preceding ones indicates the extent of the discrimination possible using ratios, particularly in the northern portion of the project area.

3.2 Aerial Photography

Detailed colour aerial photography at 1:40,000 scale was obtained for the project area. The photography purchased covers all of EL 2079 but only the eastern half of EL 1872 as outlined below:

(A) Port Augusta Sheet (SI53-04)

Film No.	Run No.	Frame No.	No. of Frames
SVY SA 5081	5081	097-102	6
SVY SA 5081	5081	063-068	6
SVY SA 5081	5081	014-019	6
SVY SA 5093	5093	015-019	5
SVY SA 5075	5075	386-391	6
SVY SA 5079	5079	338-342	5
SVY SA 5079	5079	305-311	7
SVY SA 5079	5079	258-263	6

(B) Whyalla Sheet (SI53-08)

Film No.	Run No.	Frame No.	No. of Frames
SVY SA 5043	5043	005-008	4
SVY SA 5043	5043	053-057	5
SVY SA 5043	5043	061-066	6
SVY SA 5043	5043	106-111	6
SVY SA 5043	5043	114-118	5
SVY SA 5043	5043	161-164	4
SVY SA 5045	5045	171-175	5
SVY SA 5046	5046	330-333	4

The photography was used to impart a 3-dimensional aspect to the processed TM data as well as indicating vegetation effects highlighted with the TM imagery. A full photo interpretation was not carried out.

3.3 Geological Mapping

Geological mapping at 1:100,000 scale was carried out by G Weste of the South Australian Department of Mines and Energy. This data was used to categorise some of the TM regolith units in addition to field traverses. The 1:100,000 geological mapping was carried out over the northern half of the project area with 1:250,000 geological mapping available for the southern half.

3.4 **Drilling**

Extensive drilling has been carried out within the Roopena Project Area by previous tenement holders. Only the drilling within the southern half of the tenement (carried out by BHP Minerals) was looked at as this area comprises a thick sequence of Quaternary and Tertiary Sediments.

Traverse PP1-PP5

This 10km E-W drill traverse was carried out across unit DW1 in the extreme south of the project area. The average depth of the percussion drill holes was 140m and comprised from 60-120m of Quaternary red clayey sands and gravels overlying white sandy clays. These units in turn overly a sequence of Tertiary sediments comprising glauconitic sands, lignite and fossilferous limestone. The Quaternary and Tertiary Sequences thin towards the coast.

Traverse PP12-PP18

This 17km N-S traverse parallels the present day coastline across unit EC1 which occurs to the east of a prominent scarp (possible fossil shoreline?). The average depth of drilling was 100m with a 25m thick Quaternary sequence of for Traverse PP1-PP5 overlying a similar, and up to 60m thick Tertiary sequence, which in turn overlies Proterozoic bedrock lithologies. The drilling indicates overall thinning of the sequence towards the north.

4. **REGOLITH UNITS**

4.1 Relict Regime

Lateritic material is confined to NW section of the project area and comprises a small ridge of cutinous haematitic laterite and lateritic lag.

4.2 Erosional Regime

Erosional regime material dominates the northern half of the project area and varies from isolated outcrops and extensive proximal colluvium.

4.3 <u>Depositional Regime</u>

4.3.1 Channel Alluvium - Active (DA1/DA2)

Active channel alluvium is confined to several discrete channels. The alluvium can be up to 4m thick and is locally mottled.

4.3.2 Sheetwash Alluvium (DA32)

The sheetwash alluvium is quartz dominant with lesser lithics. Extensive sheetwash alluvium occurs adjacent to the Pandurra Homestead.

4.3.3 <u>Valley Side Colluvium (DC1)</u>

This is proximal alluvium adjacent to erosional regime material and is likely to be thinly developed ie < 2-3m.

4.3.4 Valley Plain Colluvium (DC2/DC22)

This is more distal colluvium and has 2 varieties within the project area.

- (a) North of 'Middleback Homestead' the colluvium (DC22) is dominated by quartz rich lag associated with granitic bedrock. This colluvium is possibly <2-4m in thickness.
- (b) The majority of the valley plan colluvium comprises of a mixture of lithic, quartz and ferricrete lag and is the dominant cover type in the south of the project area. The lag is coarser in the north due to the abundance of erosional regime material.

4.3.5 Lake and Lacustrine Sediments (DL1)

Two small freshwater lakes occur in the north east of the project with a Cu mineral occurrence located just to the west of the southern most lake.

4.3.6 Silcrete (DS1)

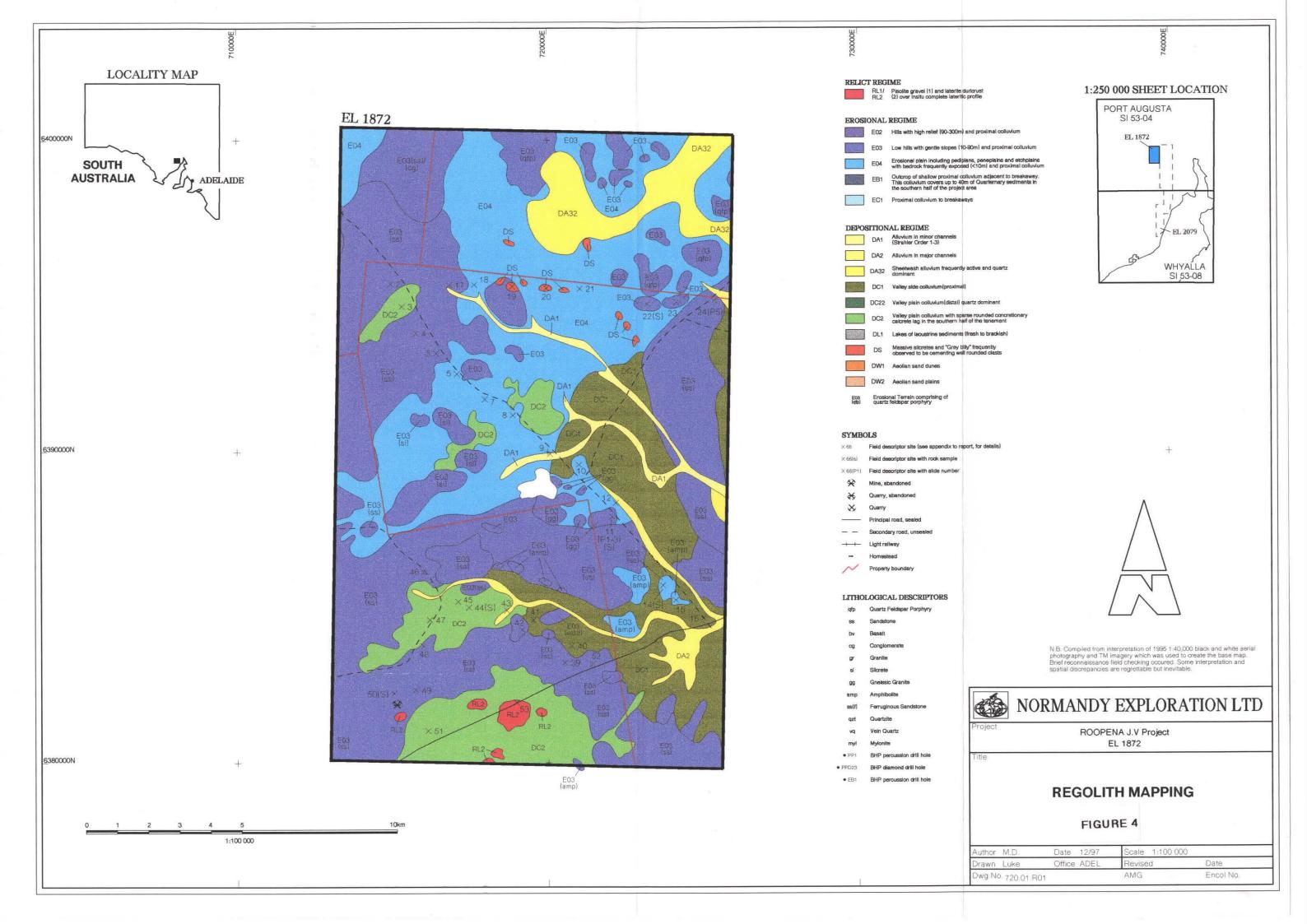
Several prominent silcrete ridges are located in the NW of the project area with a small area in the NE comprising silcrete fragment with a silica cement.

4.3.7 Aeolian Sand Dunes and Plains (DW1 and DW2)

The extreme southern part of the project area is dominated by sand dunes to 12m in height and covered by a moderate canopy of eucalypt and acacia vegetation. A line of drilling across this unit indicates the dunes cover a Quaternary Sediment sequence to 80m in thickness.

4.3.8 Breakaways (EB1)

A distinctive breakaway parallels the current coastline for a distance of up to 50km and possibly represents the position of a fossil coastline. There is a build up of rounded concretionary calcrete on the leading edge, the calcrete being of possible aeolian origin. The breakaway is in part associated with the Roopena fault which may have be the impetus for the fosil coastline development.


4.3.9 Proximal Colluvium to Breakaway (EC1)

There is a zone of proximal colluvium to the east of the breakaway in the southern section of the project area, this colluvium overlies a Quaternary Sequence to 40m in thickness.

5. **CONCLUSION**

The Roopena project area can essentially be divided into 2 domains comprising an essentially erosional domain north of 'Middleback' homestead comprising outcrop and thinly developed colluvial detritus. This is shown in figure 4. An extensive area of sheetwash is developed adjacent to the 'Pandurra' homestead, the depth of which could be ascertained from the drilling records of previous companies.

The southern domain is dominated by depositional regime material apart from some outcrop associated with the abandoned Murminie copper mine. Previous drilling records have indicated the area south of 'Middleback' homestead is dominated by a Quaternary and Tertiary Sedimentary sequence to 100m in thickness and thinning from south to north.

APPENDIX 2

Report on Structural Geology Analysis of the Roopena Project, South Australia - Dr C N Winsor

1. INTRODUCTION

Structural analysis was undertaken as part of mineral exploration within the Roopena Project area for Normandy Exploration Limited (Adelaide) during August 1997. The structural analysis involved examination of aerial magnetic data, gravity data, thermatic mapping (TM) imagery, surface geological mapping (by MESA), regolith mapping and LANDSAT imagery. Based on trend analysis a deformation history was established and potential sites for mineralisation have been identified. Previous structural investigations include those by Parker & Lemon (1982) and Parker et. al (1988).

2. LOCATION

The Roopena project area is located 15 km west of Whyalla and approximately 200 km NW of Adelaide. The area extends in a N-S trending belt from 6400000N to 6390900N. Access is via the sealed Eyre highway (Route 1) which bisects the project area.

3. DATA SOURCES

3.1 MESA Geological Mapping

Regional mapping has been undertaken by Weste (1994)a,b, of the Pre-tertiary Geology and Roopena Geology map sheet area. A prominent suite of NW to NNW trending dykes (the Gairdner Dykes) transect the area. To the west of the Roopena Fault an extensive belt of the Broadview schist unit extends from north to south. Various N-S to NE-SW faults transect the area. Previous mapping of selected areas has also been undertaken at Iron Knob and Iron Duke (e.g. Fietz 1989).

3.2 LANDSAT

Structural trends have been identified on LANDSAT TM imagery for the Red - bnd 7, Green - bnd 4 and Blue - bnd 2. This data is presented in a report by M Derriman (1997).

3.3 Regolith

Regolith mapping has been undertaken by M Derriman (1997). Traverses for field checking were carried out mainly along existing roads and tracks.

3.4 **Drilling**

Previous drilling which has been undertaken in the Roopena area is listed in Table 1 and includes reference to drilling completed by companies to 1982 by Parker & Daly (1982). In the northern section WMC and PNC Exploration have undertaken drilling. In the southern area drilling has been carried out by BHP. WMC drilling in the northern area of the exploration licence spanning the interval 1992 - 1996 is contained in reports by Norris (1994), Ramsay (1996a, b) and Woffenden (1994, 1995 and 1996).

Table 1

Roopena Drilling 1969 - 1996

EL	Envelop No. (Company Report)		Company	<u>Date</u>
SML 204	BHP RP	Base Metals (RP3 on Roopena Fault)	BHP Exploration	1969
EL 266	2869	U	BHP Exploration	1970
EL 50	2273	Base Metal/Cu	Mt. Gunson	1973
EL 266	3154	Ag, Au Base Metals, Fe	BHP Exploration	1977
EL 1041 398, 6 92	3292	Base Metals	SADME	1978
EL 332	3024	Base Metals	CSR Ltd.	1978
EL 766	4124	Coal	BHP Exploration	1981
EL 692	3292	Base Metals	Sameda Oil Co., ESSO, SADME	1982
EL 1339	6778	Base Metals	PNC Exploration	1987
EL 1775	CR21344	Base Metals, Ozone & Laura Targets	WMC	1/1994
EL 1775	CR21345	Copper/Au, Spencer & Bayview Prospect	WMC	7/1994
EL 1775	CR21346	Base Metals, Mallee River Prospect Kennedy Dam Extension Tank Mulga Dam Tank Hill Spencer Prospect/Bayview South Prospect	WMC	4/1996

The results of drilling in the northern section of the tenement area by PNC Exploration is contained in a PNC Quarterly Report (1986). Plate 1 (6778-1) of this report displays drilling completed over the Roopena area (EL 1339) until July, 1987.

Exploration drilling across the northern section of the exploration licences by Tardell Pty. Ltd. was carried out in 1990, results of which are contained in Tardell (1991).

3.5 Aeromagnetics

Magnetic data is of good quality in the northern section of the exploration licence EL 2079 and within all of exploration licence EL 1872. In the southern section of EL 2079 the quality is very much reduced, being only BMR 1600m line spaced date.

In exploration licence EL 1872 and the northern part of EL 2079 the data used for the interpretation includes magnetic E, NW, NE sun angles, and grey scale first vertical derivation. This data includes SAEI area B4 (400m line spacing E-W) and WMC/Kevron 1993 (200m line spacing E-W).

3.6 Gravity

Bouguer gravity data is fairly good in the northern portion of the exploration licence areas EL 1872 and EL 2079. A prominent gravity high exists about 6385000N, 711500E displaying NE, SW and South trending arms. This major gravity high lies to the east of the Iron Knob BHP steel mine. Most of the data were collected by WMC along traverses (roads and tracks).

3.7 Induced Polarisation

Detailed IP survey results have been completed as part of the WMC Roopena exploration investigation 1993-1996 identifying areas of potential mineralisation. IP investigations were also undertaken by PNC Exploration across the Warkaka and Pandurra Grid which extends across the Roopena Fault Zone.

This report does not include an investigation of all IP investigations undertaken over the exploration licences.

4. STRUCTURAL INTERPRETATION

The interpretation made here mainly covers the northern section of the Roopena exploration licences where there is better geological and geophysical data available. In the southern area of the licence prior to defining an exploration target further regional geological and geophysical investigations are required. Until further field investigations are carried out in the northern area, this interpretation must be considered preliminary.

4.1 Regional Geology

Although outcropping rocks in the region are sparse, it is evident that the Roopena area comprises a north-south belt of metasediments and volcanoclastic metasediments of Palaeoproterozoic age to the west of the Roopena Fault (Weste 1994 a, b). Foliation trends to the north, north-northwest (Weste 1994b).

Locally amphibolite lenses follow the layering (probably a metamorphic fabric) in the Broadview Schist and syntectonic granites and basic intrusions intrude the Broadview Schist as part of the Lincoln Complex.

Stratigraphically overlying the Broadview Schist is a unit of metasandstones and minor volcanoclastic metasandstones the Moonabie Formation towards the base of which a unit of ore grade hematite is present which is the rock unit mined for iron ore at Iron Knob in the north-south belt extending south to Iron Duke (Yeates 1990). Locally on the Roopena Pre-tertiary geology of Weste (1994a) in the north-south belt extending to the west of the Roopena Fault, the Moonabie Formation is absent. This may be a result of stratigraphic facies changes or absence of the unit due to faulting. Field investigations should be able to verify the nature of the contact between the Broadview Schist and Wanderah Metasiltstone.

Overlying the Moonabie Formation in the Roopena Lease area is a rock unit known as the Wandearah metasiltstone comprising thinly laminated dolomitic and sandy metasiltstone. This unit is present in a north-south belt about 2 km wide.

The McGregor volcanics are rhyolitic volcanics which intrude the Moonabie Formation and Wandearah metasiltstone.

The Corunna conglomerate and minor basal dolomite overlies the McGregor Volcanics. This is overlain by Roopena Volcanics comprising basalt, volcanic siltstone and rhyolite.

To the east of the Roopena Fault, a north-south belt of granite and granodiorite is exposed, of interpreted Hiltaba Suite age. This is informally known as the Whalers Granite.

Dolerite Dykes of the Gairdner Dyke Swarm transects the exploration licence trending to the NW-SE. Locally along the Roopena Fault, dolerite has been intruded.

4.2 Previous Structural Interpretations

Structural investigations over the Roopena EL and adjacent areas have either involved preliminary regional investigations not necessarily linked to mineralisation as in Parker & Lemon (1982) and Parker et. al (1988), or have involved detailed structural investigations of adjacent iron ore resources as in Fietz (1989) and Ramsay (1979).

The Roopena EL is mainly within the Cleve Subdomain as discussed by Parker & Lemon (1982) and Parker et. al (1988). This is an orogenic belt or orogenic zone of early to middle Proterozoic rocks transected by the Roopena Fault.

To obtain further information on the deformation history identified in the Roopena EL's see Parker & Lemon (1982).

4.3 Structural Investigation based on:

4.3.1 - LANDSAT and Regolith

Structural trends identified on LANDSAT TM imagery for the Red-bnd 7, green-bnd 4 and Blue-bnd 2 are contained in Plan 2. The results of regolith mapping by Derriman (1997) in terms of areas where major regolith units are also identified in Plan 2. The major regolith units include Collivium, Valley plain colluvium, hills and erosional plains.

Prominent structural trends are readily identified on the LANDSAT TM imagery (Plan 2) and include prominent NE-SW, NW-SE, E-W and N-S trends. (Note: Lineament analysis could form a valuable adjunct to this investigation).

Comparison between the LANDSAT structural trends and the geological mapping by Weste (1994a, b) reveals that many of the lineaments correspond to distinct geological boundaries either rock unit contacts or faults. The Roopena Fault Zone and the NE-SW trending fault to the NW of the licence area are readily identified from the LANDSAT imagery.

The LANDSAT imagery and regolith mapping of Derriman (1997), particularly in the southern portion of EL 2079, does provide additional information on structural trends and potential for mineralisation in an area where there is poor resolution geophysical data. Significantly there does not appear to be as many structural lineaments identified in the southern area as present in the northern section, possibly reflecting a lower exploration potential to the south.

4.3.2 <u>Aeromagnetics</u> - (Northern area)

Interpreted magnetic trends over the Roopena 1:100000 map sheet area in the exploration lease reveal magnetic high trends to the northwest - north-northeast, north-south and east-west. These trends are obvious on all magnetic maps (Plans 3-7), but are probably best identified on the Roopena greyscale magnetics RTP-IVD, (Plan 3).

Comparison between the interpreted magnetic trends and the Pre-tertiary Roopena geology map and the Roopena mapping by Weste (1994a,b) reveals that magnetic highs transecting the area with trends to the north-south and northwest, corresponds to a suite of dolerite dykes (the Gairdner Suite). Other magnetic trends are assigned to faults (e.g. the Roopena Fault zone is easily identified as a prominent north south trending magnetic low. This is due to magnetite distruction as a function of shearing. A number of minor fault splays are identified in the area adjacent to the Roopena Fault. Their orientation is suggestive of an interval of left lateral (sinistral) strike slip movement on the fault. This is indicated where the Roopena Fault makes a slight left lateral dilatational jog, where it is transected by a major northwest trending dolerite dyke (this is at coordinate 721000E 6372000N).

The Roopena Fault is believed to exhibit evidence for more than one interval of strike slip movement. This is evident where a NNE trending arm of the fault displaces it in a dextral sense (right lateral) the prominent NW trending dolerite dyke discussed previously.

The interpretation of the aeromagnetic data suggests the Roopena Fault has had a complex history of strike slip movement.

Another prominent fault evident from the aeromagnetic data intersects position 720000E, 6400000N and trends to the NE-SW.

South of 6370000N and to the west of the Roopena Fault a series of closely spaced N-S, NNW to NNE trends are believed to reflect either foliation trends or joints parallel to the foliation. These trends and others identified should be verified in the field.

Structural trends interpreted over the Roopena 1:100,000 lease areas for the magnetic NW shade (Plan 4), E shade RTP and bouger gravity (Plan 5) and NE shade (Plan 6) strongly resemble the trends established and the grey scale RTP-IVD interpretation (Plan 3).

Preliminary analysis suggests northwest dolerite dykes and faults transect the area. Fabric trends are suggested in the region adjacent to the Roopena Fault locally indicating north and south plunging fold closures (Plan 4). Without field investigation it is difficult to determine the nature of these suspected fold closures, whether representing anticlines or synclines. However, comparison with the Roopena pre-tertiary geology indicates most fold closures are north plunging synclines (probably F₁ folds). The Roopena Fault is a prominant north-south linear feature through the centre of lease area EL 2079. Other structural trends apparent include minor ENE to NE trending faults, inferred to be related to the movement history of the Roopena Fault.

Aeromagnetics - Southern Area

Magnetic data across the southern section of EL 2079 (south of 6340000N) is of a much lower resolution than that to the north. The difference is a function of the line spacing (1,600m vs. 200m).

The resolution on the Grey scale magnetics over the Middleback 1:100,000 map sheet as interpreted in Plan 7 is sufficient to identify broad trends, but not of a high enough resolution to identify fine detail as has been possible across the Roopena 1:100,000 map sheet. For this reason, exploration targets have not been identified in the southern area.

On the Middleback magnetics a broad magnetic high extends from the north in a NS trend to a SW trend to the south.

Another magnetic high is situated to the west about 711000E to 712000E, comprising a narrow NE-N-S to SSE trending belt (see Plan 7).

4.3.3 Gravity Roopena 1:100,000 (Northern Area)

The Roopena 1:100,000 gravity trends reflect the underlying structure.

A fairly narrow N-S gravity high extends south of 6400000N along the entire length of the Roopena map sheet. This trend represents the western contact of the Roopena Fault, with maximum gravity high about 1-2 km to the west of the fault. This broad trend follows the western margin of the Roopena Fault and individual troughs and highs. The trend may also represent secondary faults to the Main Roopena

Fault, but individual structural elements are difficult to identify from the gravity data.

A broad gravity high is situated about 710000E and 6400000N near the site of a NE-SW trending fault. (Figure 3). A broad arm of this trend extends to the southeast, the trend following the direction of a dyke.

Gravity Roopena 1:100,000 (Southern Area)

The gravity data in the southern area is not of a sufficient quality to distinguish features, only establish broad regional trends (Middleback 1:100,000 sheet detailed WMC gravity).

A gravity high exists to the NE and another to the SW. These appear to be related to magnetic highs (see Plan 7).

5. PRELIMINARY DEFORMATION HISTORY

Interpretation of the structural history of the Roopena Licence area must at present be considered as preliminary and intuitive based on a regional appreciation of deformation events affecting Proterozoic rocks in South Australia, since detailed structural analysis has not been undertaken in the field as part of this study. Despite the preliminary nature of the study, significant progress can be made on the structural history based on the observations made by others (e.g. Parker & Lemon, 1982 and Parker et al. 1988) and the author of the Iron Duke deposit (Winsor unpublished data).

5.1 <u>D₁ Shortening and Relaxation</u>

The deformation history established in the Roopena Exploration Licence areas is depicted in Table 2. Dilational sites related to phases of folding, shearing and extension during this history are also shown.

Folds on the Roopena 1:100,000 geological map (Weste 1994) adjacent to the Roopena Fault are believed to be first generation (F_1) folds. If these folds formed in their present orientation, they are a result of east-west shortening, however, they probably did not form in their present orientation but would have been transformed into this orientation by folding (and/or faulting). During D_1 extension or tension fractures or veins probably developed normal to the fold axis.

The Roopena Fault probably was initiated towards the end of the first deformation as either a thrust or normal fault along the inflexion zone of an F₁ syncline.

At the final stages or after the first deformation, dyke material intruded along the Roopena Fault (see Table 2b).

5.2 D₂-D₃ Shortening and Relaxation

A second (and/or third) deformation phase resulting in shortening about a NE-SW trending axis and producing gentle warps with fold axes plunging to the NW-SE. These folds are not evident in the Roopena lease area, but are suggested by the occurrence of a NW trending dyke swarm.

Faults, joints and fractures which trend to the NE-SW, as in the fault which passes through 710000E 6390000N, probably were initiated as tension fractures normal to the $D_{2\cdot3}$ shortening axis. Evidently however, from the aeromagnetic interpretation (e.g. Plan 3), these structural weaknesses are not very common. Following $D_{2\cdot3}$ shortening and associated shearing, stress relaxation took place about a NE-SW axis (Table 2a). Tension occurred normal to this direction and a suite of NW-SE trending dykes intruded (the Gairdner Dyke Swarm). The curvature of some of the dykes suggests they have undergone a period of shearing.

5.3 D. Shortening

A minor interval of shortening occurred about a NW-SE trending principal stress axis, resulting in NE-SW trending folds. Evidence for this deformation phase is suggested by the curved (arcuate) nature of some dykes of the Gairdner Dyke Swarm.

6. SITES OF DILATION RELATED TO DEFORMATION HISTORY

The potential sites of dilation related to the deformation history are indicated in Table 2. Extension veins and fractures are either normal or parallel to the folding shortening directions.

Movement on the Roopena Fault or other NS trending faults can be responsible for the development of dilational gashes that could host mineralisation. At the present time, the relative timing of the mineralisation in relation to the structure is unknown.

7. PROPOSED EXPLORATION TARGETS BASED ON STRUCTURAL INTERPRETATION

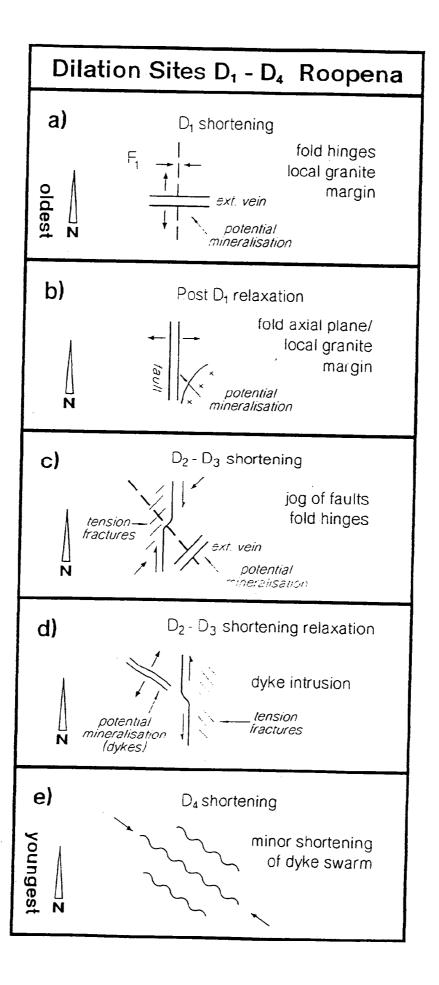
Based on the structural interpretation developed above, the inferred sites of mineralisation which support this interpretation and areas defined from previous exploration programs (as revealed in Table 1), are depicted on Plan 8. These inferred sites incorporate all of the dilational sites identified in Table 2 and reflect the stages across the entire deformation history. In Plan 8, letters (a) - (e) at the respective sites refer to the relative timing of mineralisation in relation to structure.

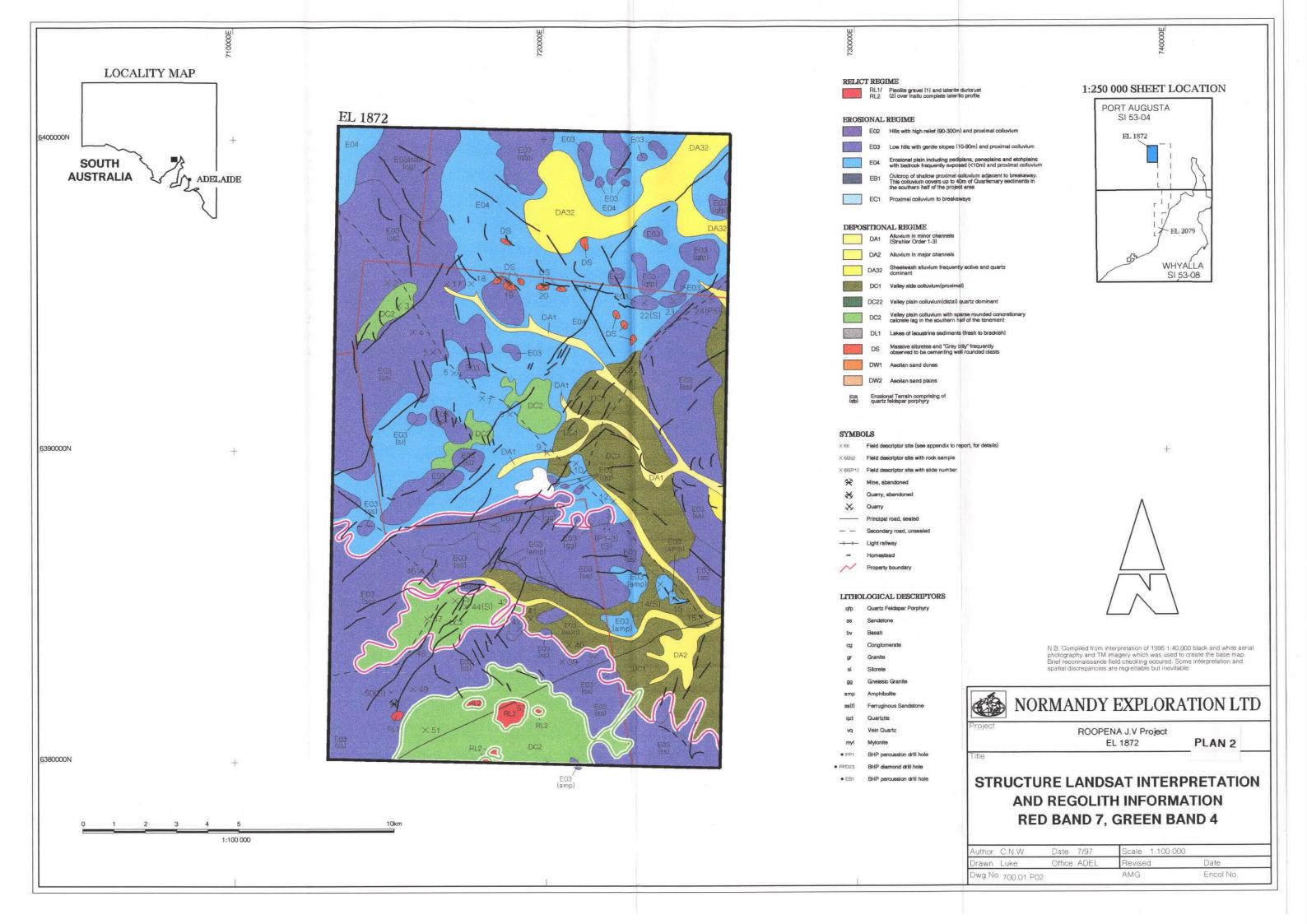
Many of the potential exploration targets identified from this study are also areas that have been assigned from earlier exploration programs, for example the Kennedy Dam and Block Dam WMC prospects (Plan 8). Other prospects previously identified appear to be close to potential sites recognised in this report as in Mulga Dam Prospect. In some large prospect areas that have been previously recognised, as in the WMC 1996 Bayview Prospect or the Tank Hill Prospect, specific exploration targets have been identified in the current study.

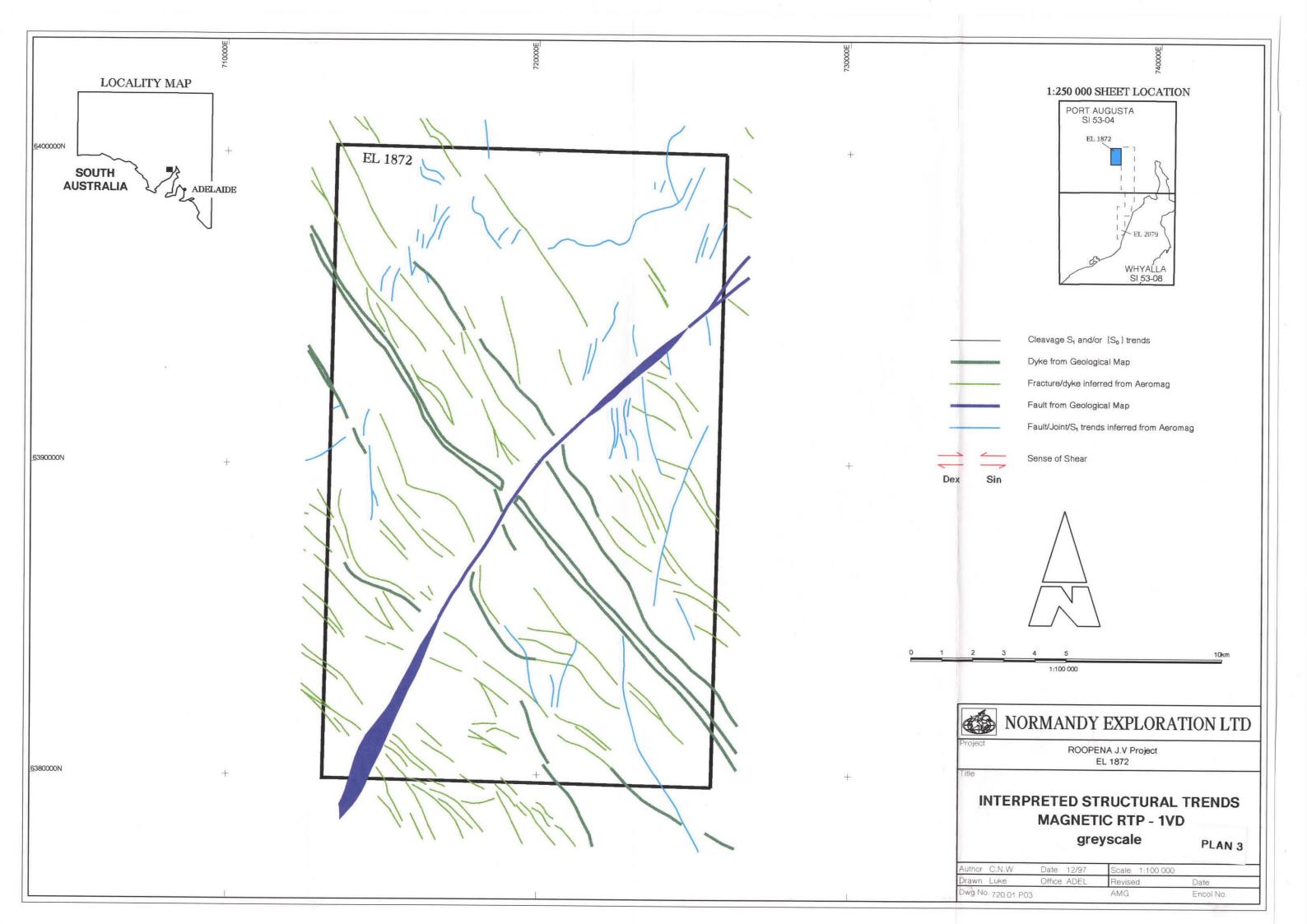
Importantly it should be recognised that the sites identified in Plan 8 across the northern area of the Roopena Lease are sites of structural dilation that may host mineralisation. Obviously other factors are important to consider in controlling whether mineralisation is present, such as:

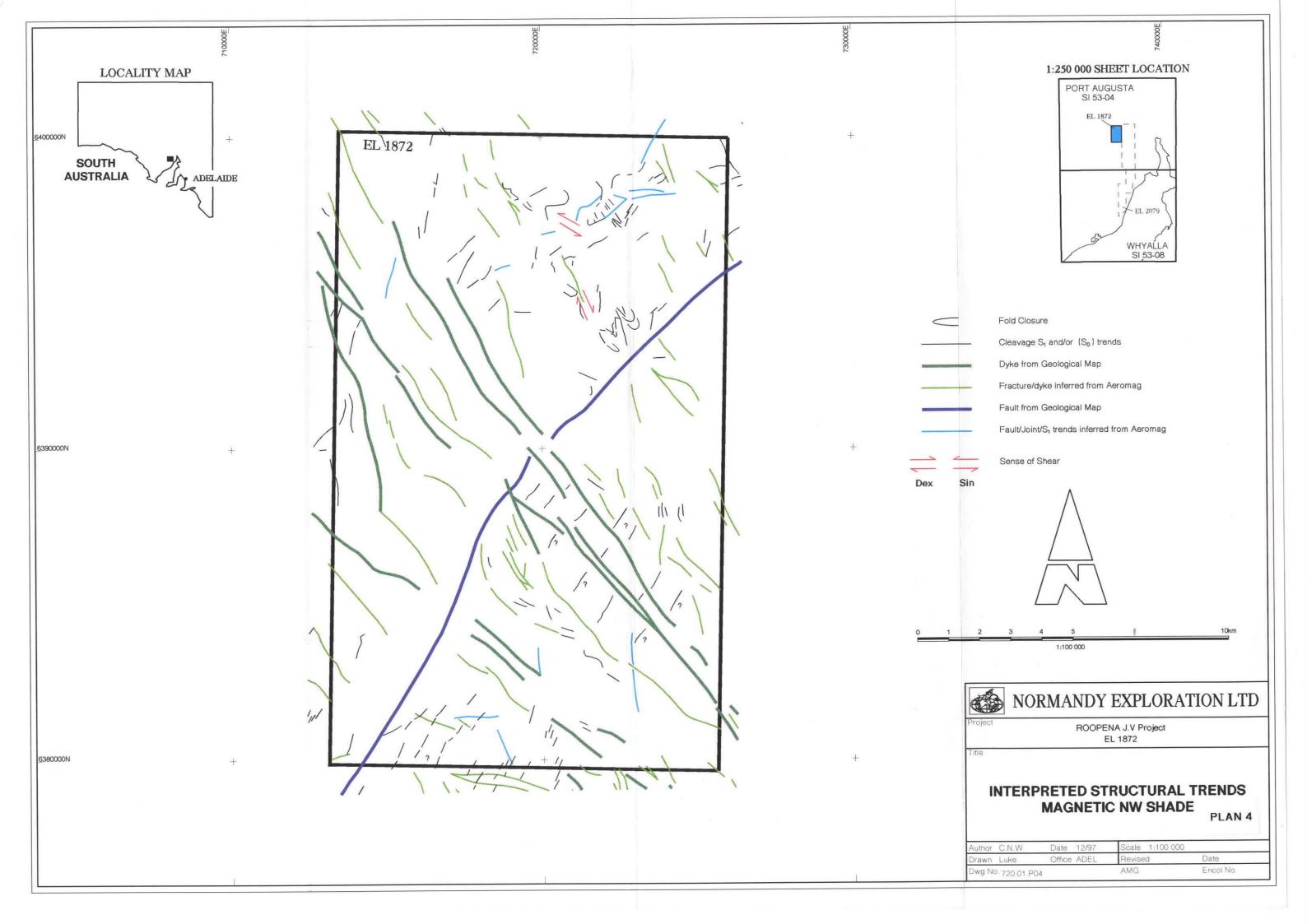
- 1) timing of structure in relation to mineralisation
- 2) source rocks
- 3) potential heat source.

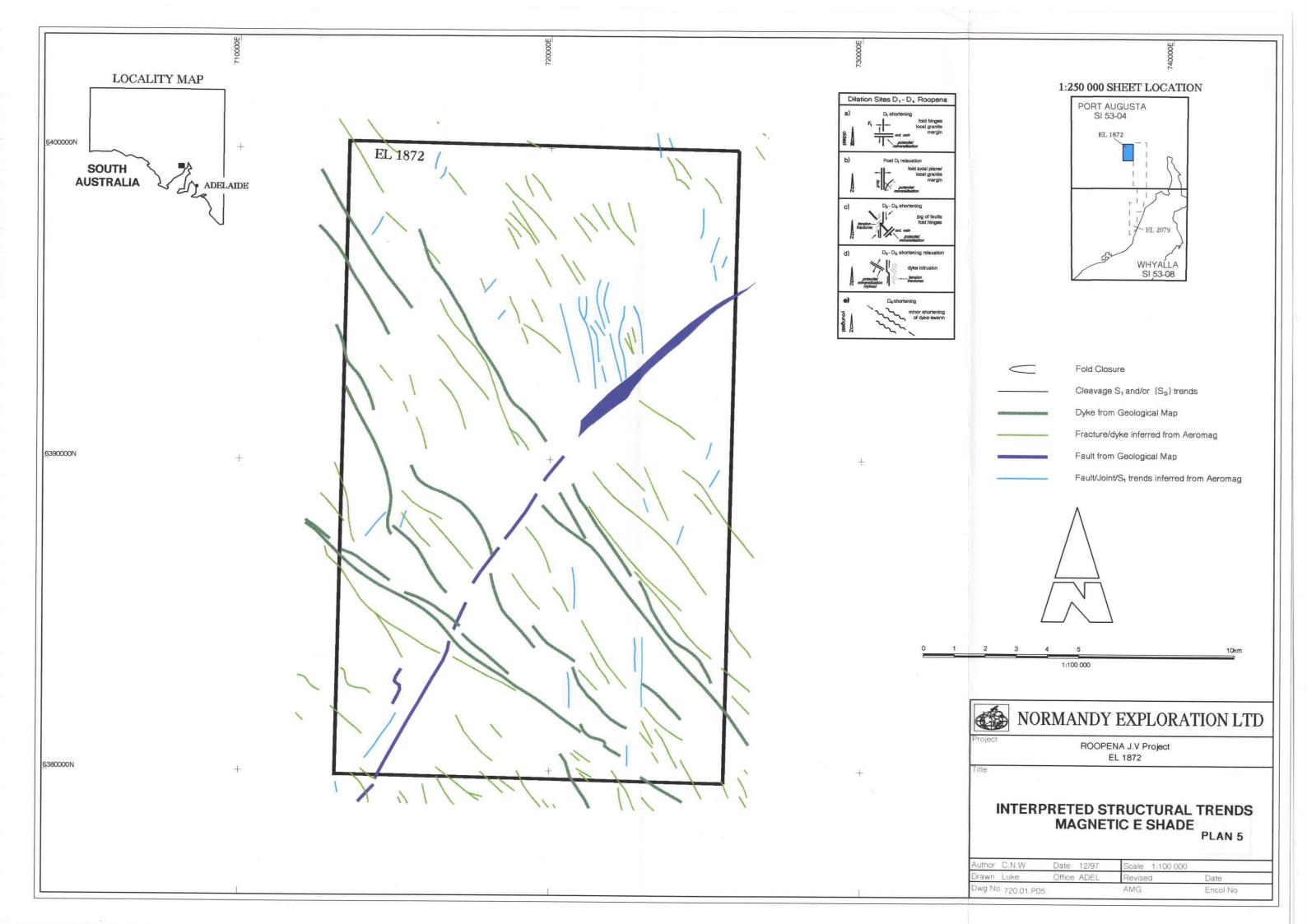
After a more thorough examination is undertaken of the previously collected geological and geophysical data, the potential exploration targets should be tested, probably starting with sites along the Roopena Fault where there is a dilational jog, i.e. type b) sites from Table 2 and Plan 8. After this, the other targets identified should be examined in a systematic manner.

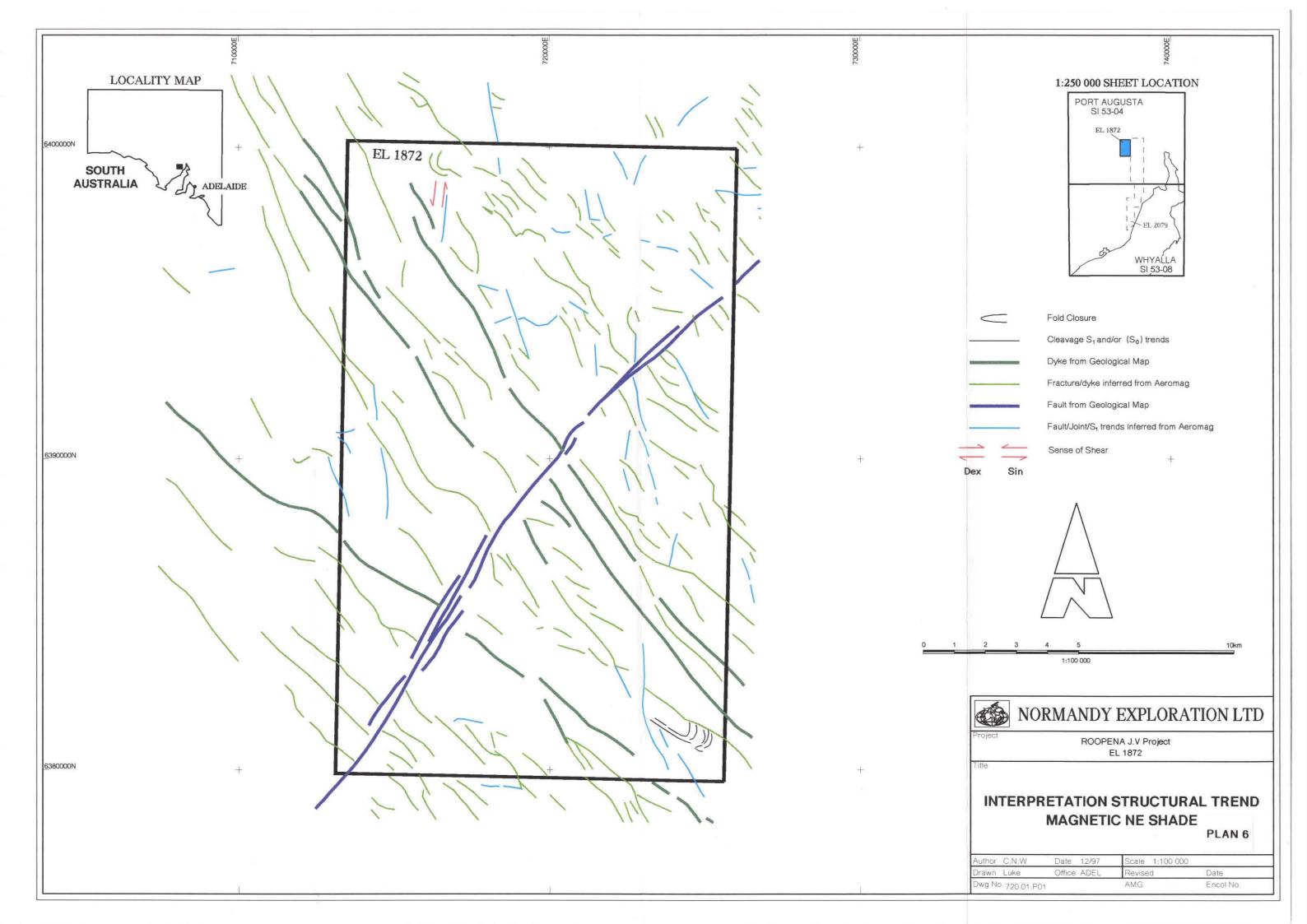

8. **RECOMMENDATIONS**

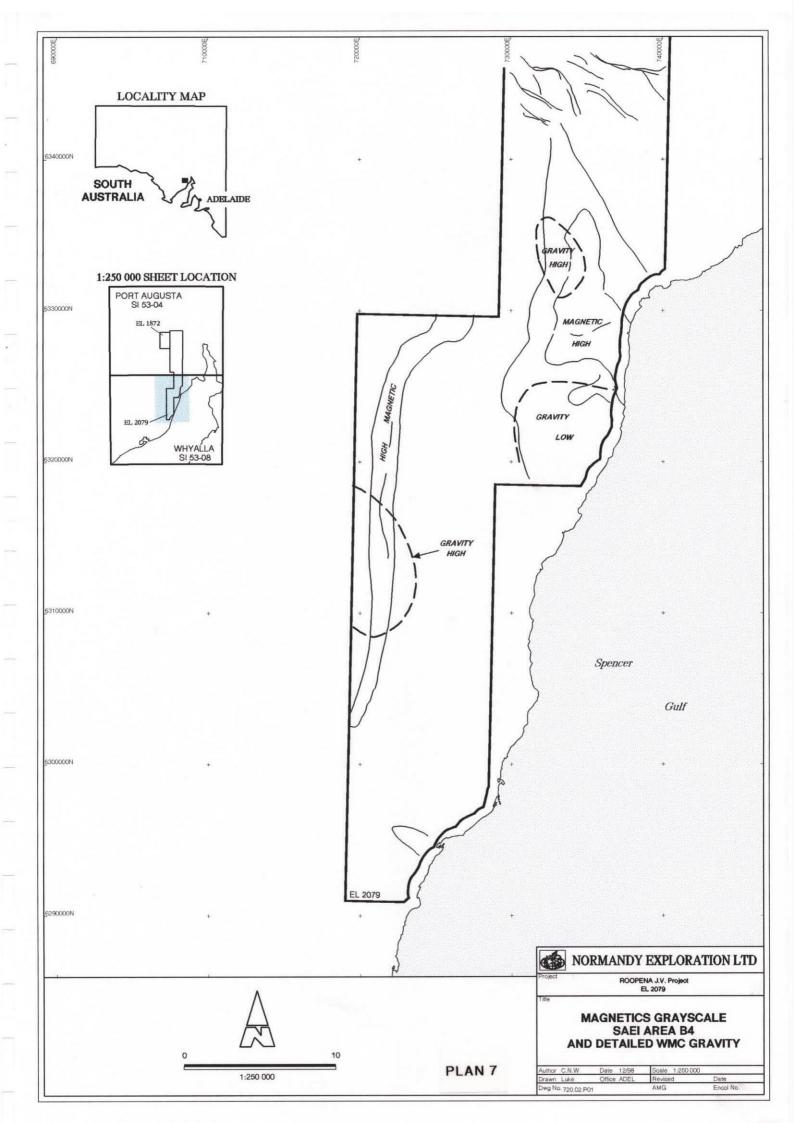

1. Complete review of all previous geological and geophysical investigations in an effort to evaluate potential targets. Previous investigations include those carried out by:

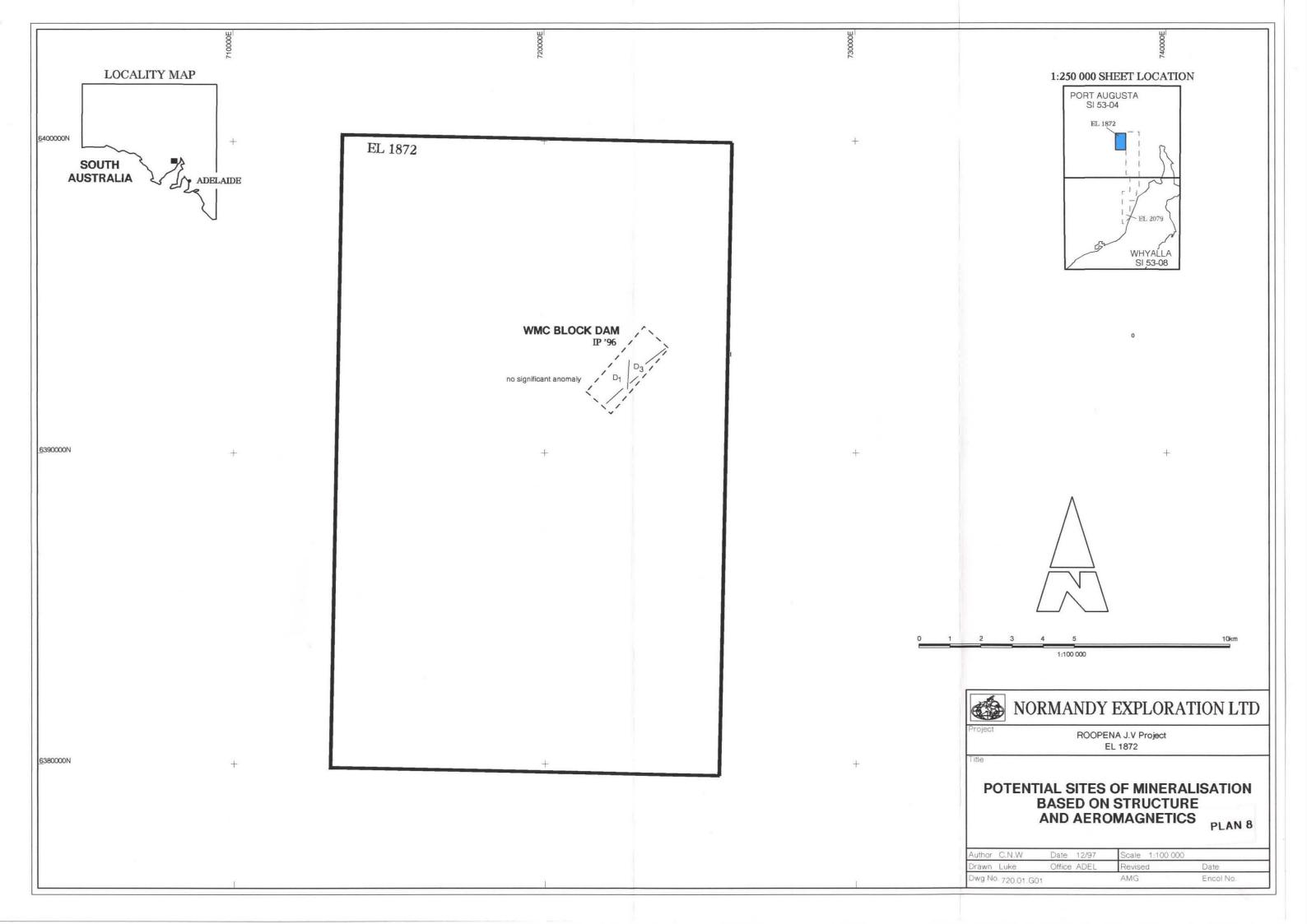

Pacminex, WMC, Australian selection, BHP/Dampier, SADME, Billiton, ESSO, and PNC exploration.


- Detailed surface mapping in areas identified as having exploration potential, incorporating lithological and structural mapping.
 Refining targets and establishing the history of structural events and relationship to mineralisation.
- 3. Collection of geochemical samples in areas identified as having exploration potential.
- 4. Collection of further magnetic data in southern portion of lease area if required.
- 5. Localised drilling over potential targets if required.
- 6. Review interpretation and mineralisation potential.


Table 2







ACN 007 511 006

Telephone +61 8 8464 2200 Facsimile +61 8 8464 2299

103-105 King William Street, Kent Town 5067, South Australia, Australia PO Box 751, Kent Town 5071, South Australia, Australia

ROOPENA WEST

Exploration Licence (EL) 1872

Annual Report

For the period 01 October 1997 to 30 September 1998

Author:

S Dries

Tenement Holder:

Normandy Gold Pty Ltd

Date:

November 1998

Authorised:

Distribution:

Department of Primary Industries and Natural Resources

WMC Resources Limited

Normandy Exploration- South East Region Office, Adelaide \ni

Normandy Exploration- Library, Adelaide

Mines & Energy SA
R98/00587

The contents of this report remain the property of Normandy Mining Limited and may not be published in whole or in part, nor used on a company prospectus without the written consent of the company.

Report No: 23621

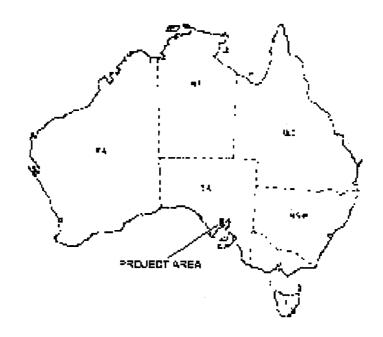
Report No:

23621

Title:

ROOPENA WEST, Exploration Licence (EL) 1872, Annual Report

For the period 01 October 1997 to 30 September 1998


Author:

S Dries

Date:

November 1998

Location Map:

SUMMARY

This report provides a summary of the work completed by Normandy Exploration Limited (Normandy) on behalf of WMC Resources Limited (WMC) on EL1872 during the period 01 October 1997 to 30 September 1998.

EL 1872, in conjunction with EL 2079 constitutes the Roopena JV Project. The tenements cover a highly prospective area within the Gawler Craton and are situated on the eastern margin of the Eyre Peninsula. The tenements are registered to WMC and are subject to an agreement with Normandy Gold Limited (Normandy). During the farm-in period Normandy have assumed project management.

Work completed by Normandy during the reporting period included; reviewing and summarising previous exploration, ground truthing regolith mapping and negotiations with Native Title claimants for Site Clearance Agreements.

i

TABLE OF CONTENTS

Sum	mary	Page No						
1.0	CONCLUSIONS AND RECOMMENDATIONS	1						
2.0	INTRODUCTION							
3.0	LOCATION AND ACCESS							
4.0	TENURE	1						
5.0	NATIVE TITLE							
6.0	GEOLOGY							
7.0	PREVIOUS WORK							
8.0	WORK COMPLETED DURING REPORTING PERIOD 8.1 Reconnaissance Geological Investigations	3						
	8.2 Site Clearance Surveys	3						
9.0	REHABILITATION							
10.0	REFERENCES 3							
BIBL	IBLIOGRAPHIC DATA SHEET 5							

LIST OF FIGURES

Figure	Drawing No	Title	Scale
1	720.00.L02	Location plan	1:4 000 000
2	720.00.M02	Roopena Tenements with Native Title Claims	1:1 000 000

LIST OF APPENDICES

Appendix Title

1 Chronological Summary of Previous Exploration

1.0 CONCLUSIONS AND RECOMMENDATIONS

Work completed by Normandy during the reporting period included reviewing previous exploration, ground truthing regolith landform mapping and negotiations with Native Title Claimants for Site Clearance Agreements. No further fieldwork can be undertaken until agreements with Native Title claimants are successfully completed.

Once clearance has been granted, proposed exploration includes regional and prospect scale geochemical assessment. Targets generated from these programs will be tested with RAB, aircore or RC drilling.

2.0 INTRODUCTION

This report provides a summary of the work completed by Normandy Exploration Limited (Normandy) on behalf of WMC Resources Limited (WMC) on EL 1872 during the period 1 October 1997 to 30 September 1998.

Normandy Gold Limited (Normandy) have entered an agreement with WMC to earn an equity in the Roopena JV Project which comprises ELs 1872 and 2079. During the earn-in phase, Normandy is responsible for the management and the statutory requirements for these tenements. This agreement commenced on the 23rd April 1997.

3.0 LOCATION AND ACCESS

EL 1872 is located approximately 50 kms west of Port Augusta, South Australia. The licence area covers rectangular area (about 20 km x 13 km) north of the Eyre Highway (Fig. 1).

The major land use is sheep and cattle grazing on essentially uncleared ground. Access throughout the project is excellent with a complex network of well maintained tracks and boundary roads. The Eyre Highway intersects the tenement in the south eastern portion.

4.0 TENURE

Exploration Licence (EL) 1872 (254 km²) was granted to WMC on 1 October 1993, and expired on 30 September 1998. An exploration licence covering the same areas is currently under application (ELA 213/98).

EL 1872, in conjunction with EL 2079 constitutes the Roopena JV Project, which in accordance with the agreement is managed by Normandy during the earn-in phase. The agreement commenced on the 23rd April 1997.

5.0 NATIVE TITLE

The Roopena JV Project tenements are covered by three native title claims. These are listed below and are shown in figure 2.

Barngala Native Title Claim (SC 96/4)

This claim covers the entire Eyre Peninsula extending up to Leigh Creek in the northeast and across to Bulgunnia homestead in the northwest. This application was lodged with the National Native Title Tribunal on the 4th April 1996 and accepted on the 21st August 1996.

The registered native title claimant is Henry Croft on behalf of the Barngarla families.

Nukunu Native Title Claim (SC 96/5)

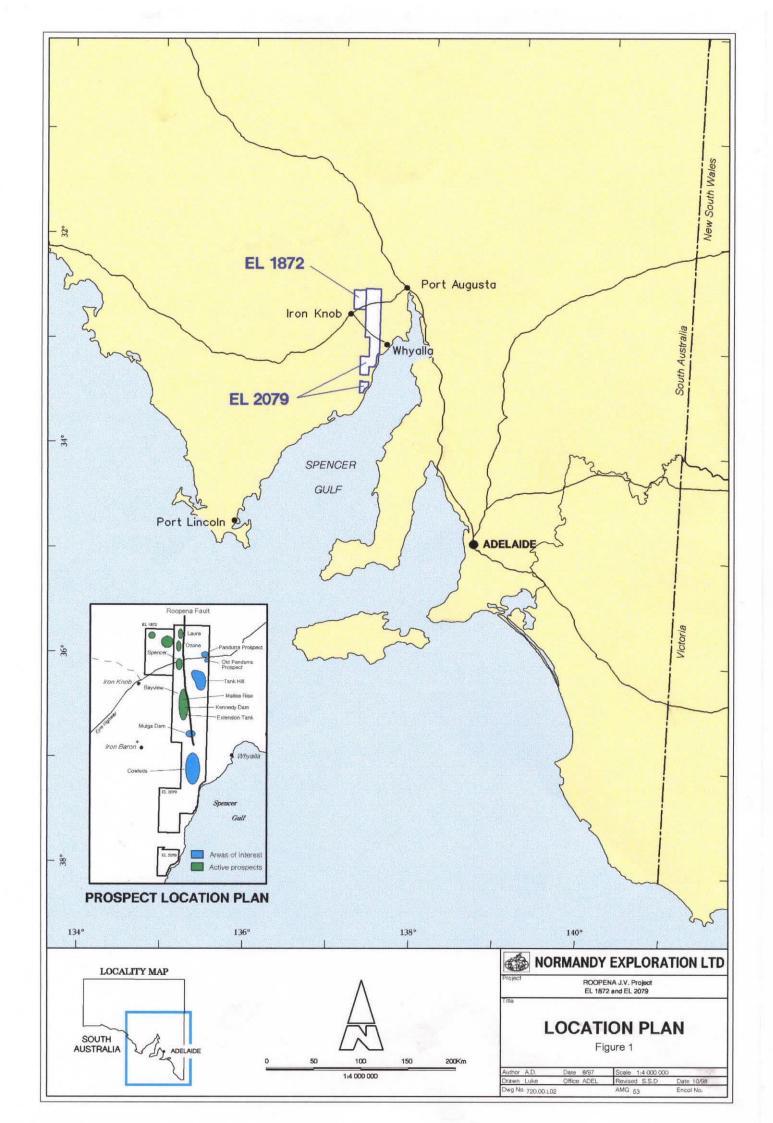
This claim covers the area between Port Augusta and Port Pirie. This claim covers only a very small portion of the licence in the extreme north-east corner. This application was lodged with the National Native Title Tribunal on the 10th April 1996 and accepted on the 4th October 1996. The registered native title claimant is James Alexander Bramfield.

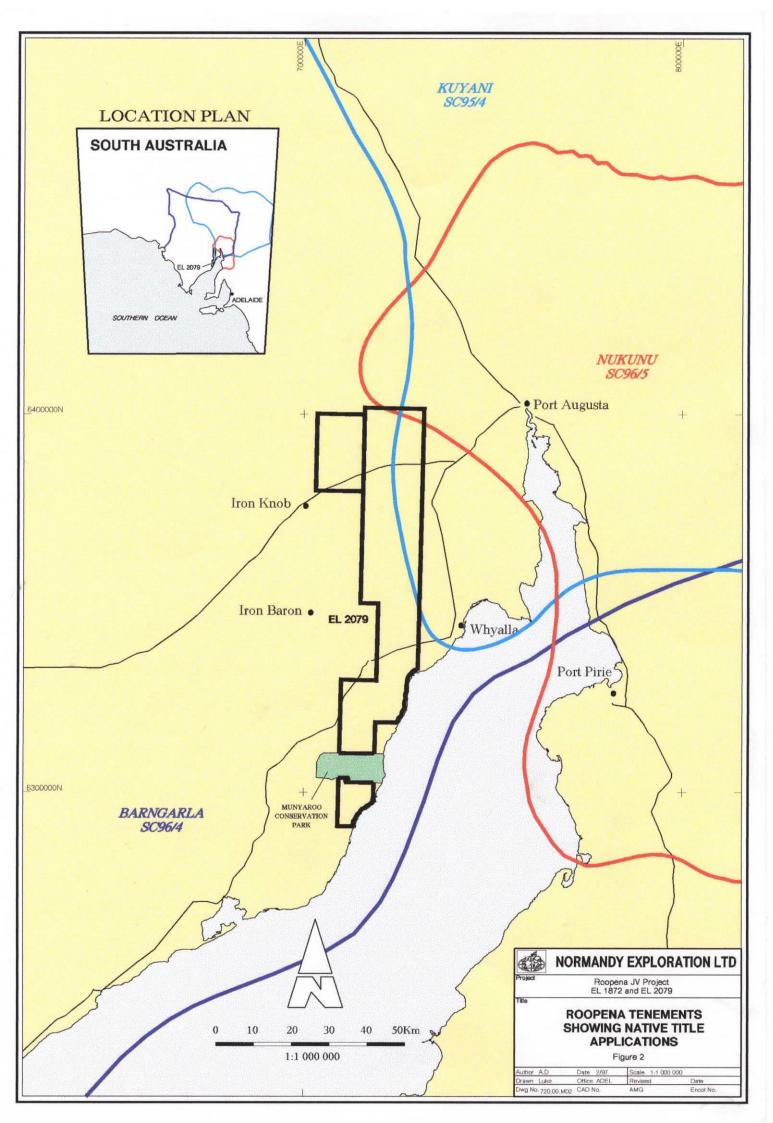
Kuyani Native Title Claim (SC 95/4)

This claim covers a large area north of Whyalla. It extends as far as Maree in the north, west as far as Painted Hills and across to the SA/NSW border in the east. This application was lodged with the National Native Title Tribunal on the 19th September 1995, and accepted on the 13th March 1996. The registered native title claimant is Mark McKenzie Senior.

6.0 GEOLOGY

The geology covered by EL 1872 is illustrated on the Port Augusta (SI 53-04) and Whyalla (SI 53-08) 1:250,000 sheets, and summarised below by Norris (1994).


In an attempt to place the stratigraphy of the Roopena area into a regional context WMC refers to the "Whyalla Group". The Whylla Group comprises the sequence of early Proterozoic volcanic and sedimentary rocks, which unconformably overlie the early Proterozoic Hutchison Group, and is overlain by younger Gawler Range volcanic and sedimentary rocks.


Simplistically, the Whyalla Group consists of two volcanic-sedimentary 'cycles' - the lower Myola Volcanics and Broadview Schist, and the upper McGregor Volcanics and Moonabie Formation. The McGregor Volcanics - Moonabie Formation have been correlated on the basis of geochronology with the Moonta Porphyry and Doora Schist.

The geochronology of units within the Whyalla Group and those bounding it, indicate that its age spans the period 1800 Ma to 1650 Ma.

The Whyalla Group occupies a north-south belt (part of the Moonta Sub-domain) immediately east of the Middleback Ranges and West of Whyalla. It has regional correlatives in the Moonta-Wallaroo area. The belt appears to be fault bound on both its western and eastern sides, and overlain unconformably to the north by Gawler Range volcanic and sedimentary rocks.

The lower part of the Whyalla Group is intruded by the Wertigo Granite, a Lincoln Complex granite equated with the Middle Camp Granite, which has an age of 1757 Ma (U-Pb). On the basis of image processed aeromagnetics, the Wertigo Granite has a comparable pattern to the Myola Volcanics and may therefore be related to the volcanic rocks. The entire Whyalla Group is intruded by Hiltaba Suite granites (e.g. Charleston Granite, 1585 Ma U-Pb; Creaser and Fanning, 1983). The "Whalers Granite" (informal name) occurs on the northeastern side of the Whyalla belt and belongs to the Hiltaba Suite. Creek exposures contain large tourmaline veins. The lower Whyalla Group has undergone two of three phases of the Kimban Orogeny. The regional structure can be interpreted to consist of tight to open folds with axial plane sub-parallel faults having NNW and NNE orientations.

7.0 PREVIOUS WORK

Details of previous exploration have been discussed in Norris (1994) and the other annual reports listed in the references. Previous exploration was reviewed and a chronological summary is included in Appendix 1.

8.0 WORK COMPLETED DURING REPORTING PERIOD

8.1 Reconnaissance Geological Investigations

Regolith Landform mapping of the project area completed in August 1997 was ground truthed during reconnaissance geological investigations. This work helped identify suitable sample mediums for surface geochemical sampling.

8.2 Site Clearance Surveys

Negotiations with the Native Title claimants and the Aboriginal Legal Rights Movement (ALRM) for Site Clearance Agreements were instigated and are still ongoing. No further fieldwork can be undertaken until agreements with Native Title claimants are successfully completed.

9.0 REHABILITATION

Existing roads and stations tracks were used for access. An assessment of areas where previous drilling has occurred will be done once access to the ground is granted. Any rehabilitation required will be conducted at this time. For future drilling programs drill holes will be sited to cause the least impact to flora. All holes will be plugged, excess cuttings will be flattened out and all hand dug trenches filled in or leveled out.

10.0 REFERENCES

CREASER R.A. and FANING C.M., 1993. A U-Pb study of the Mesopreoterozoic Charleston Granite, Gawler Craton, South Australia. Aust. Jour. Earth Sciences, V40, 519-526

DERRIMAN M.D.J., 1997. Report of regolith mapping of the Roopena area, South Australia. Internal Report Normandy Exploration Ltd. 5p. Report No 64249.

DOWNIE A.J., 1998. Annual Report for EL 1872 Roopena West for the period 1 October 1996 to 30 September 1997. Report No 22982.

NORRIS M.S., 1994. Annual Report for EL 1775 - Roopena, 22nd April 1992 to 21st April 1993. WMC report to Mines and Energy, SA. Report No CR21344

PARKER A.J. & DALY S.J., 1982. Symposium on the Gawler Craton Drill Hole Logs. Dept. Mines and Energy, SA. Report Bk.No. 82/9.

PARKER A.J. & LEMON N.M., 1982. Reconstruction of the early proterozoic stratigraphy of the Gawler Craton, South Australia. J.geol. Soc. Aust. 29, 221-238.

PARKER A.J., FANNING C.M., FLINT R.B., MARTIN A.R., RANKIN L.R., 1988. Archaean - early proterozoic granitoids, metasediments and mylonites of southern Eyre Peninsula, South Australia. Specialist group in tectonics and structural geology. Field guide 2, 90 pp.

PNC Exploration (Australia) 1986. Quarterly Report CR21930.

RAMSAY R.R., 1996. Annual report for EL 1872 Roopena West. WMC. CR 21374

RAMSAY R.R., 1979. Structure, stratigraphy, mineralogy and comparative geochemistry of Iron Duke, southern Middleback Range, SA. BSc (Hons) Adel.Uni.

SAEI Area B4. Magnetics.

TARDELL PTY. LTD. 1990. EL 1646 Roopena area progress report for the period to 6/6/90. Open File envelop No. 8314 SADME.

WESTE G., 1994a. Roopena pretertiary geology 1:100,000 SADME Preliminary mapping.

WESTE G., 1994b. Roopena geology 1:100,000 SADME.

WMC/Kevron 1993. Magnetics

WOFFENDEN S.J.G., 1995. Annual Report for EL 1872 Roopena West for the period 1 October 1993 – 30 Spetember 1994. WMC Ltd. - Exploration Division. Vol. 1, 2. CR21373.

YEATES G., 1990. Middleback Range iron ore deposit. *In* geology of the mineral deposits of Australia and Papua New Guinea (ed. F.E. Hughes) pp. 1045-1048 AUSIMM

BIBLIOGRAPHIC DATA SHEET

REPORT NUMBER

23621

REPORT TITLE

ROOPENA WEST, Exploration Licence (EL) 1872,

Annual Report for the period 1 October 1997 to

30 September 1998

PROJECT NAME

Roopena JV Project

TENEMENT NUMBERS

EL 1872 "Roopena West"

OWNER/JV PARTNERS

WMC Resources Limited

(with Normandy Gold Pty Ltd earning an equity)

COMMODITIES

Gold, Copper

TECTONIC UNIT

Gawler Craton

STRATIGRAPHIC UNITS

Hutchison Group, Broadview Schist, Gawler Range Volcanics, Hiltaba Suite

1:250,000 MAP SHEET

Port Augusta SI 53-04 Whyalla SI 53-08

1:100,000 MAP SHEETS

Roopena 6332 Middleback 6331

KEYWORDS

Proterozoic, Regolith, Exploration Review

Appendix 1

Chronological Summary of Exploration

Roopena West Roopena Main EL1872 EL2079

Regional

entire project area

EXPLORATION	ACTIVITY	From	То	PROSPECT	DESCRIPTION
TYPE		DATE	DATE		
Mining	Mining	1860	1900	Murninnie	Cu and Bi mined
Drilling	Drilling	1969		SML 204	Exploration by BHP Exploration for base metals (RP3 or
				•	Roopena Fault). Defined an inferred resource at Pandurra Cu
		ļ		<u> </u>	Mn Mine, 120 000 t @ 0.3-0.4% Cu
Geophysics &	Aeromag &	late	early		Exploration by BHP Exploration for Iron Ore. 4 percussion
Drilling	radiometric survey	1960	1970		holes (2 within WMC area of interest intersected mafics
	& Drilling				quartzites with trace malachite and azurite).
Assesment	Assesment	1970		Murninnie	Assesment (SADME open file data)
Drilling	Drilling	1970		EL 266	Exploration by BHP Exploration for U
Drilling	Drilling	1973		EL 50	Exploration by Mt Gunson for base meatal/Cu
Drilling	Drilling	1977		EL 266	Exploration by BHP Exploration for Ag, Au, base metals, Fe
Assesment	Assesment	1977	1979	Pandurra	Revisited Pandurra prospect, did not improve BHP's resource
Drilling	Drilling	1978		EL's 1041,	Exploration by SADME for base metals
				398, 692	
Drilling	Drilling	1978		EL 332	Exploration by CSR ltd. for base metals
Drilling	Drilling	1978	1985	EL 692	Exploration by Sameda Oil Co., ESSO, SADME for base
					metals. Concentated on the 1050 prospect 5 km south
	i				Roopena Prospect. Discovered Cu mineralisation within ~5 m
					thick heamatite-tourmaline-dolomite breccia in the uppermos
					quartzites of the Moonablie Formation, and near the northern
					tip of the Whalers Granite. Significant pyrite occured above the
					breccia. Max 3.4% Cu, 660 ppm Zn, 111 ppm Ag, 185 ppb Au
		ļ	-		and 112 ppm U
Drilling	Drilling	1978	1985	Laura	Samedan drilled 8 shallow perc holes, 6 of which intersected
			1		basement clays and quartzites.
Drilling	Drilling	1978	1985	Bayview	Samedan drilled single RAB traverse. 3 holes intersected+E8
		1			haematitic doterite and iron oxides with max 934 ppm Cu.
Drilling	Drilling	1978	1988	Ozone	Samedan and PNC drilled 23 perc holes (21 Samedan, 2 PNC)
Diming	Gr.iiii(19	Tari	1.000	V2.0110	and minor ground mag. Max 490 ppm Cu. IP and Alpaha
				- 1 mg	Card? surveys SE of ozone
Drilling	Drilling	1981	1	EL 766	Exploration by BHP Exploration for coal
Drilling and	Drilling, aeromag,	1984	Jul 88?	EL 1339 +?	Exploration by PNC Exploration for base metals. Compiled
geophysics	radiometric, IP and		""		gravity data. E47Drilled regional RAB traverses then
gcopinyoloo	semi regional			1	concentrated at Wartaka prospsect (20 km north of Iron Knob)
	gravity		ł	İ	and Pandurra prospect (8 km NW of Pandurra homestead). In
					the south they concentrated on Corunna Conglomerate east of
					Iron Duchess
Drilling	Drilling	1990			Exploration by Tardell Pty Ltd
	ŭ				
Geochemistry	Rock Chip	Jan-92		Regional	4 samples collected SW of Myola homestead near Ash Dam.
	Sampling				submitted for Au + multielements (DA660086-0087) Max 230
]	ppm Cu
Geochemistry	Rock Chip	Jan-92		Kennedy Dam	2 samples collected on ironstone near Kennedy Dam,
	Sampling				submitted for Au + multielements (DA660086-0087) Max 230
					ppb Au
Geochemistry	Rock Chip	Jan-92	Feb 92	Kennedy Dam	1 sample collected west of Kennedy Dam along Roopena Fault
* *	Sampling				and 1 sample collected near Kennedy Dam submitted for Au +
				1.46	multielements (DA660141-0142) Max 100 ppm W
Geochemistry	Lag Sampling	Feb-92		Pankala?	Bulk lag sampling near shallow q-h? shaft in vicinity of MM to
			ŀ		west of Roopena magneic units. 4 samples submitted for Au +
					multi elements (DA660144-0147) Max 140 ppm Cu
Geochemistry	Rock Chip Sampling	Feb-92		Pankala?	1 sample collected at shallow shaft, submitted for Au + multielements (DA6600143)

Interpretation

Interpretation

Geophysics

Geology

Apr 93

Apr 93 Project

Project

Apr-92

Apr-92

Image processing and interpretation of BMR data over Whyalla and Port Augusta 1:250 000 sheets. Acquisition and digitising of BHP 1969 aeromag data and other open file data to produce Geological interpretation completed and target areas identified

Geomorphology	Interpretation	Apr-92	Apr 93	Project	Reconaisance air-photo interp completed by work experience student
Geophysics	Ground Magnetics	Apr-92	Apr-93	Ozone	200 x 20 m
Geophysics	Gravity	Apr-92	Apr-93	Ozone	400 X 100 m
Geophysics	IP .	Apr-92	Apr-93	Ozone	400 X 200 m dipole and 3 lines of 100 m dipoles
Geophysics	TEM		Apr-93	Ozone	400 X 200 Loop TEM
Geophysics	Interpretation	Apr-92	Apr-93	Ozone	Interpretation Identified "N-S trending magnetic units, which in the eastern area had co incident gravity anoamies, intersected by a NW trending mag unit possibly related to the Roopena Volcanics.
Drilling	Diamond Drilling	Apr-92	Apr-93	Оzопе	2 holes across the main magnetic anomaly
Summary	Summary		Apr-93	Laura	Geophysical surveys conducted over 4.5 km x 2 km area.
Geophysics	Ground Magnetics	Apr-92	Apr-93	Laura	200 x 20 m
Geophysics	Gravity	Apr-92	•	Laura	400 x 100 m
Geophysics	IP.	Apr-92	Apr-93	Laura	400 X 200 m Dipole
Geophysics	TEM	Apr-92	Apr-93	Laura	400 X 200 m Loop TEM
Geophysics	Interpretation	Арг-92	Apr-93	Laura	Geophysical surveys failed to identify targets, no drilling completed
Geochemistry	Lag Sampling	Jui-92		Mulga Dam??	Lag sampling along Roop 3 (Railway cut over magnetic response 2? Km NW Middleback homestead). 15 samples plus 5 standards? submitted for Au + multi elements (QD622422-2436)
Geochemsitry	Rock Chip Sampling	Jul-92		Mulga Dam??	15 samples submitted for Au + multielements (DA723001- 3015) Anomalous Ba, max 4700 ppm Ba
Geochemistry	Lag Sampling	Jul-92		Kennedy Dam	Maple Leaf prospect, Lag sampling along Roop 4 (ironstone outcrop), 17 samples + 5 standards submitted for Au + multi-elements (QD622405-2421)
Geochemistry	Rack Chip Sampling	Jul-92		Kennedy Dam	Maple Leaf prospect. Isample submitted for Au + multielements (DA723016)
Geochemistry	Rock Chip Sampling	Jul-92	e Propyeny	Tank Hill	Samples collected near Roopena homestead. 2 samples submitted for Au + multielements (DA723017-3018). Anomalous Ba, Mn, Cu (225 ppm), Zri (240 ppm)
Geochemistry	Rock Chip Sampling	Nov-92		Bayview	18 samples submitted for Au, Cu, Bi (DA683401-3418) Max 350 ppm Cu, 18.2 ppm Bi
Geochemistry	Rock Chip Sampling	Nov-92		Spencer	20 samples submitted for Au, Cu, B) (DA683419-3438) Max 2900 ppm Cu
Geochemistry	Soit Sampling	Feb-93		Bayview	Traverse over outcropping ironstone and malachite. Various mesh sizes. 13 samples + 4 standards? submitted for Au, Cu (DA723044-3056). Max 1100 pm Cu
Summary	Summary	Feb-93		Ozone	Strong magnetic anomaly at lineament intersections, weakly anomalous Cu from previous percussion drilling. Geophysical
Geochemistry	Lag Sampling	Feb-93	5.11.0.00.00°	Ozone	surveys conducted over 6 km x 3 km area. Reconsissance lag sampling along 6392600N.
	endad endad	inger Programmer Programmer		an in the comment of	Femicrete/pisolite hill SW of Red Dam. 13 samples and 5 standards? submitted for Au, Cu (QD637349-7361). No
Geochemistry	Rock Chip	Feb-93		Ozone	anomalous results returned. Rock chips collected at above location, 2 samples submitted
friling	Sampling BC Drilling	Feb-93	Mar 93	Ozone	for Au. Cu (DA660084-0085) Max 160 ppm Cu
Drilling	RC Drilling	, eu-33	MGE 33	CAUNE	17 holes for 1717.62 m testing magnetics, gravity, IP (RPAC1-17). 8 holes were drilled across the main magnetic anomaly, 3 holes were drilled in the NW and 3 in the SE. A water bore (RPAC2) was drilled on the Roopena Fault RPAC1 and 3 drilled on easiern N-S mag response-intersected wealthy hm quartities, no anom Cu results. RPAC4 and 5 into NW trending mag anomaly, intersected magnetite bearing wackes and mithin-
					cb-ch-ep-mir py-tr cpy rocks. RPAC 6-13 drilled across western mag units, intersected attered and detormed mafic-intermediate rocks volcanoclastic? and deterite origin? RPAC16-17 intersected quartities and mafic rocks XX samples + standards were analysed for Cu and Au and selected holes for a multiplement suite. Max 930 ppm Cu

Caarbaninin	t sa Complian	Mac on		Parades.	Passaraicannos las camplina alaine Back 7 (modition Back 8
Geochemistry	Lag Sampling	Mar-93		Bayview	Reconaissance lag sampling along Roop 7 (northern Bayview)
		1	I		and Roop 8 (central Bayview). 126 samples submitted for multi
			.		elements (QD622437-2500 & 2801-2815 and QD622816-2862) Max 220 ppm Cu.
Geochemistry	Rock Chip	Mar-93	 	Bayview	Samples collected over gossan and granite, 10 samples
Эвоснанизиу	Sampling	Ivrai-53	h 2	Day Noxy	submitted for Au, Cu, Bi (DA723057-3066).
Geochemistry	Rock Chip	Mar-93	1 2 12 12 12 12 12 12 12 12 12 12 12 12	Spencer	2 samples submitted for Au, Cu, Bi (DA723067-3068)
Geogramsay	Sampling	Teles SG	l	Оренов	La demplos adominies for Pid, Ou, Di (DA12300) -dobo)
Geophysics	Gravity	Apr-93	Apr 94	Regional	compilation of data
Summary	Summary	Apr-93	Apr 94	Spencer	Identified from aeromag as weakly anomalous, located on
					magnetic lineaments, favorable structural position. Target area is 2.5 x 6 km on the W side of Roopena fault.
Geophysics	Gravity	Apr-93	Apr 94	Spencer	400 x 100 m
Geophysics	IP	Apr-93	Apr 94	Spencer	400 x 100 m dipole IP, ID two responders? Possibly hematite vs. magnetite ironstone. Both are drill targets
Geophysics	TEM	Apr-93	Apr 94	Spencer	partially covered by 400 x 100 m coincident loop TEM
Geophysics	Interpretation	Apr-93	Apr 94	Spencer	Identified N-S to NW trending magnetic units within
, , ,			1.		magnetically complex zone, and coincident 2.5 mgal gravity
			1		anomaly. Source of magnetics possibly magnetic stratigraphy.
		**************************************			magnetic intrusives (dolerite or granite) or hydrothermal Fe-Ox concentrations. IP phase anomalies
Geochemistry	Lag Sampling	Apr-93	Apr 94	Spencer	250 samples (QD635001-082, 564-731) collected on a 400 x
					50 m grid (6 lines) ID weakly anom Au. Max 40 ppb
Geochemistry	Stream Seds	Apr-93	Apr 94	Spencer	11 samples -6mm + 2 mm (DA728922-932). Max 21 ppb
Geochemistry	Rack chip	Apr-93	Apr 94	Spencer	1 sample collected for XRD (DA723074)
Drilling	Diamond Drilling	Apr-93	Apr 94	Spencer	3 holes for 551.7m, testing geophysical targets, RPAD18, 21,
		Marian .		1 1 2 4 4 TH THE	23. RPAD18 and 23 drilled to test IP pants legs anomaly,
	Aug Trans III (1)			. Law of the control	intersected sheered allo lun-si vn & bx grt-diss py RPAD21 tested weaker IP
					response, intersected sitteous seds broadview schist?. No anom Cu Au results
Geophysics	Interpretation	Арг-93	Apr 94	Bayview	Regional aeromag with coincident bouger gray. Festone
			Partico Purios e su	. Paragraphy	outcrop, granite w/ qz vein and py, and mnr grt-hm bx. Interp of
					Mag and gravity ID NNW trending mag units, disrupted and
			I		poss folded. Poss mag strat units, intrusions (dolerite? or grt).
		100			Prospect also cut by NW trending galrdner dykes. Modelling of
in the			1		geophysics data => 2 drill targets, + 1 target generated from
		0.00	0.004	6	TEM conductor+IP+Cu lag anom (510 ppm)
Geophysics	gravity	Apr-93	Apr 94	Bayview Bayview	400 x 100 m 400 x 100 m dipole IP
Geophysics Geophysics	TEM	Apr-93 Apr-93	Apr 94 Apr 94	Bayview	400 x 100 m Caincident loop TEM
Geochemistry	Lag sampling	Apr-93	 	Bayview	1001 samples collected (QD622437-500, 601-700, 801-876,
CONTROL MAIN	-ag oumping				QD635401-563, QD637401-8000) on a 400 x 50 m grid.
			l or deposit	Establish	Analysed for Au, Cu, Bi, Mo, As. ID 3 Cu anomalies. (i) max 325
		Tiệu H.	1		ppm Cu, 47 ppb Au, mylonite porp felsic => Roopens fault. Infill sampled to 250 x
			Ī		50 m. Subsequently tested with 18 RC holes. (ii) Broad shom, max 235 ppm Cu.
		Market Market			Abundent Fa stone, basement close to surface. Tested with 6 RC holes. (iii) Wide anom, max 510 ppm Cu, with strong Ma anom. Coincident TEM conductor.
Programme Control of the Control of			Ŧ.	E .	Second were and blue on same and the wing sports Propertional (ED) columnical
			ŧ		
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	5 holes for 989 m drilled to test geophysics targets.RPAD20,
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to test IP, intersected arbitised and
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to test IP, intersected arbitised and
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to test IP, intersected abilitised and epidote altered amph+zones grt veining, shearing, cb and mm km veming + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24 & 31 targeted IP-TEM-gravity response. Intersected variably albitised and epidote
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to test IP, intersected abilitised and epidote altered amph+zones grl veining, shearing, cb and mrr hm veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24 & 31 targeted IP-TEM-gravity response, intersected variably albibised and epidote altered amph with zones hm veining + mor brecciation + mor py + tr cpy. Max 3 m
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to tast IP, intersected abilitised and epidote altered amph+zones grt veining, shearing, cb and mm km veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24 & 31 targeted IP-TEM-gravity response, intersected variably albitised and epidote altered amph with zones him veining + mm bracciation + mm py + tr cpy. Max 3 m @ 3085 ppm Cu (incl 1 m @ 6100 ppm). Results??? RPAD32 tested TEM
Drilling	Diamond Drilling	Apr-93	Apr 94	Bayview	22, 24, 31 and 32. RPAD20 drilled to tast IP, intersected abilitised and epidote altered amph+zones gri veining, shearing, cb and min im veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24 & 31 targeted IP-TEM-gravity response, intersected variably albibsed and epidote altered amph with zones him veining + mor brecciation + mor by + tr cpy. Max 3 m
			Apr 94		22, 24, 31 and 32. RPAD20 drilled to test IP, intersected abilitised and epidote altered amph+zones grt veining, shearing, cb and mm km veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24. 8 31 targeted IP-TEM-gravity response, intersected variably albibised and epidote altered amph with zones him veining + mm bracciation + mm py + tr cpy. Max 3 m @ 3085 ppm Cu (incl. 1 m @ 6100 ppm). Results??? RPAD32 tested TEM conductor+Cu lag anom. Results???
Drilling Geophysics	SAEI Aeromag +	Apr-93 May-93	Apr 94	Bayview Regional	22, 24, 31 and 32. RPAD20 drilled to test IP, intersected abilised and epidote altered amph+zones grt veining, shearing, cb and mm km veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24. RPAD24. 8 31 targeted IP-TEM-gravity response, intersected variably afbilised and epidote altered amph with zones him veining + mm brecciation + mm py + tr cpy. Max 3 m @ 3085 ppm Cu (incl 1 m @ 6100 ppm). Results??? RPAD32 tested TEM conductor+Cu tag anom. Results???
Drilling Geophysics Geophysics					22, 24, 31 and 32. RPAD20 drilled to test IP, intersected abilitised and epidote altered amph+zones grt veining, shearing, cb and mm hm veining + diss py. Results??? RPAD22 abandoned, replaced with RPAD24 RPAD24 & 31 targeted IP-TEM-gravity response, intersected variably albitised and epidote altered amph with zones him veining + mm brecciation + mm py + tr cpy, Max 3 m @ 3085 ppm Cu (incl 1 m @ 6100 ppm). Results??? RPAD32 tested TEM conductor+Cu lag anom. Results???

Orilling	RC Drilling	Feb-94	Apr 94	Bayview.	25 holes for 516 m drilled testing Cu lag anomalies (i) and (ii)
					above (RPAC25-30, 33-50), and 1 water bore (RPAC19), 1387 samples were submitted for Au. Cu. As analysis (DA746561-6600, 6701-7000, DA718801-8820, DA747031-757, 7781-
					8000, DA777501-7580). RPAC33-50 diffied to test anom (i) directly over the Roopena Fault. Intersected exidised, variably ferrug, sheared phyllites, amphibolites and mylonitic perphyritic telsics. Best results 12m @1120 ppm Cu
				antytog y Proprietor	and 5 m @ 1232 ppm Cu (RPAC35), 2 m @ 1800 ppm Cu (RPAC45), 4 m @ 46 ppb Au (RPAC44), 5 m @ 55 ppb Au (RPAC34) and 4 m @ 45 ppb Au (RPAC42). RPAC25-30 defied to test anom (ii) with large As Bi halo. Intersected ferrug, phylite and amph. Max 410 ppm Cu.
Geochemistry	Rock chip	Mar-94		Regional	1 sample collected for XRD (DA723078)
Geochemistry	Drill chips	Mar-94		Spencer	7 samples submitted for XRD from RPAD18 (6 samples) and RPAD21 (1 sample) (DA728129-8134, 8137).
Geochemistry	Rock chips	Mar-94	on the likely tool	Bayview	4 samples collected for XRD (DA723073, 3075-3077) from anom (III) above
Geochemistry	Drill chips	Mar-94	nan mengenya. Mana	Bayview	2 samples submitted for XRD from RPAD20 (DA728135-8136)
Geochemistry	Lag Sampling	Арг-94	Apr 95	Spencer	xx samples (xxxxxx) infilling to a 200 x 50 m grid, -6+2 mm fraction analysed for Au, +/- Cu, As and some Mo. ID weak
		-63		Aphle Jan	coherent anom trending NNW 3 km x 500 m. Max 66 ppb Au
Geophysics		Apr-94	Apr 95	Spencer	Extension of last years 400 x 100 m dipole IP to the west. Also 2 x 500 m spreads of 50 m dipole IP. Very weak phase representation at 6323400M, 717000F
reality -	Acces Drilling	Apr-94	Apr 05	Spencer	response interp at 6383400N, 717900E. 51 shallow holes for xx m, (1-8.3 m depth) testing depth to and
Drilling	Auger Drilling	/	Αφι 93	Spencer	geochem of basement. RPxxxxxxx. Xx samples analysed for XX. Intersected oxidised qualitiesphylitis in west beneath 1-2 m cover, but no
					recogniseable bedrock in east.
Drilling	RC Drilling	Apr+94	Apr 95	Spencer	31 holes for xx m, (40 m depth) drilled along two traverses,
				and the second of the second o	testing lag anomaly and linear aeromag feature (RPAC51-81)
					xx 2kg sample collected at EOH and analysed for Au, Cu, As, Mo, Sb, Tl and Cr. Best result 46 ppb Au, Holes on 6383300 N
		erania Proposition (p. 1919)		Anna an	intersected weathered metasediments with variable quartz veining, no holes over may lineament intersected fresh rock, 6382100N intersected basem granite at eastern end and deeply weathered quartzite with minor physite and amph
					elsewhere xx 1 m intervals analysed for Au, As and Cu. Best Au results occur west of aeromag lineament within weathered
			•		quartzite, phyllite, argillite +/- qz veining (Max 1 m @ 650 ppb). Best : Cu results within clay, weathered quartzite and amphibolite (Max 1 m @ 1180 ppm). Generally anom Au and
tage of the					Cu intervals do not coincide.
Drilling	RC Drilling	Apr-94	Apr 95	Spencer	6 holes for 480 m, (80 m depth) drilled along 6383400N, in order to intersect fresh bedrock. As above the holes were
					testing weak phase and resistivity high (IP) and linear aeromag
		The Section of the Se		1 111	feature (RPAC112-117). Base of oxidation ~60 m, intersected sillerlied quartities, interbedded quartities and phylities with minor shearing, plus magnetite bearing amphibolite to the west. XX 1 m intervals analysed for
					Au, As and Cu. Two holes (RPAC 114, 115) intersected anomalous mineralisation. RPAC114 - Best results 6 m @
					2455 ppm and 2 m @ 1035 ppm Cu, 4 m 220 ppb Au. RPAC115 - Best results 19 m @ 1834 ppm Cu and 15 m @
			•		532 ppb Au.
Petrography	Petrography	Apr-94	Apr 95	Spencer	xx chip samples from RPAC115 were submitted for petrographic studies
Geochemistry	Lag Sampling	Apr-94	Apr 95	Bayview	xx samples (xxxxxx) were collected on a 400 x 50 m grid6+2 mm fraction analysed for Au, Cu, As and Mo. Doubt over the
					effectiveness of program due to sheetwash. Disappointing results, max 100 ppm Cu.
Geophysics	IP	Apr-94	Apr 95	Bayview	Extended IP coverage with 10 lines of 400 m x 100 m dipole IP
Geophysics	Interpretation	Apr-94	Apr 95	Bayview	Four prospect defined within Bayview South which warrant further work - Mallee Rise, Kennedy Dam, Extension Tank and
fig. 1					Mulga Dam
Geochemistry	Rock Chips	Арг-94	Apr 95	Mailee Rise	1 rock chip collected around 2-3 small pits with Cu-ox minerals, 1100 ppm Cu.

Geophysics	P	Apr-94	Apr 95	Mallee Rise	Infill line (6567600N) closed sampling to 200 m x 100 m. Date indicates resistive and polarisable body 200-300 m wide, co incident with
					anomatous rock chip. A further 3, 25 m spreads of 25 m dipole- dipole IP were read over the rock chip area after 40%
		- 12 13 13 13 13 13 1			malachite was intersected in drilling (RPAC82). Data ID malachite but did not suggest a deeper source.
Geophysics	TEM	Apr-94	Apr 95	Mallee Rise	Infill line (6567600N) closed sampling to 200 m x 100 m Coincident loop. Results broadly consistent with IP
Geophysics	Gravity	Apr-94	Apr 95	Mallee Rise	xx 100 m spaced stations collected along 6567600N. Residual high corresponding with tP response.
Drilling	RC Drilling	Apr-94	Apr 95	Mallee Rise	9 holes for xx m drilled (RPAC82, 83, 85, 86, 87, 88, 89, 90, 98) xx samples were submitted for Au, Cu, As analysis
					(DAXXX). RPAC82,88,98 were drilled under the Cu anomalous rock thip, and intersected cherty volcaniclastics, granites 1/2 hem, red rock attd amphibolite, up to 40 % malachia. RPAC83, 85, 86, 87 were drilled to test the broad iP response on 5967600N. Same as above plus magnetite bearing 1/2 red rock altered amphibolite, with py (accounting for the IP response. RPAC99, 90 were collared blw 85, 86 to test strike extension of malachite, but none was intersected. Max tree
		Tue Legation to the Tuestine Legation			@ 7.8 % Cu in RPAC82. No further work warranted.
Drilling	Diamond	Apr-94	Apr 95	Mallee Rise	I hole for xx m drilled testing a magnetic body within a resistivity high (RPAD84). xx samples were submitted for Au, Cu, As analysis (DAxx). Intersected heam granite, charty volcaniclastics, red rock atterned amphibolite with mor haam granits velving, + minor coarse
Cattles a	DC Delling	Ace DI	An- 05	Konnady Door	blebby pyrite.
Drilling	RC Drilling	Apr-94	Apr 95	Reimedy Dani	2 holes for 120 m drilled (RPAC91,92) to test weak resistive IP phase response on 6365000N (from 719300E to 719500E). xx samples were submitted for Au. Cu. As analysis (DAxxx) intersected weakly haematike isminated cherty volcaniciastic sediments over a redrock-epidote altered weakly heam amphibidite, plus some haem granite with mnr diss py, and mnr mgt. MAx 6m @ 727 ppm Cu. No further work is warranted.
	PA 6 W	A 04))05		
Drilling	RC Dalling	Apr-94	Apr 95	Extension Tank	13 holes for 780 m drilled (RPAC93-97, 99-106) to test structurally complex mag and grav anomalies, and IP responses near a mag break with sinistral offset. xx samples were submitted for Au, Cu, As analysis (DAxxx). RPAC102-106 testing resistive phase high intersected redrock altered sheared amphibotite+/-magnetite, lamintaed silicatus volcaniclastics + mar quartate. Did not account for phase response. RPAC93-97 testing E-W mag teature with break intersected cherty, bedded volcaniclastics, with up to 10 % magnetite, beneath 10 m gravelty cover. Max 1m @ 120 ppb Au probably within cover. No further work warranted.
(1 0.200	DO Dawa	A 04	8 05	NA Inc. Date	
Drilling	RC Drilling	Apr-94	Apr 95	Mulga Dam	5 holes for ?300 m drilled (RPAC107-111) to test strong resistive IP phase response with coincident mag anomaly on
		and Se tet			flank of grav anom. xx samples were submitted for Au, Cu, As analysis (DAXXX). Intersected bedded silicous volcaniclastic sediment #/-magnetite, with minr red rock attered emph, sheared magnetite-bearing granite
		i. trip			and biolite-muscovite schist. No anomalous results, no further work warranted.
Geophysics	IP ::	Apr-94	Apr 95	Tank Hill	8 lines of 200m dipole-dipole IP along 6377000, 6379000, 6379500, 6379800, 6380500, 6381000, 6382200 and
				general New York Miller Miller	6381000N. Modelling ID phase and resistivity high at 722350E. Coincident to mag body, adjacent to magnetite-destructive fault to east and plateau in steep gravity gradient to the west.
	+ 1 + 1 + 1	aigini.		i englise Vizing et	
Geophysics	TEM	Apr-94	Apr 95	Tank Hill	200m single loop TEM was read on 6379000, 6379600 and 6381000N
Geophysics	Gravity	Apr-94	Apr 95	Tank Hill	Barometrically levelled gravity stations read at 100m spacing on all reconaissance geophysics traverses??
Drilling	RC Drilling	Apr-94	Apr 95	Tank Hill	15 holes for xx m drilled (RPAC118-132) to test residual gravity anomalies adja+E111cent to mag-destructive faults within Roopena volcanics xx samples were submitted for Au, Cu, As
			ision or Luciente e Operation	in a new Maring of the control of th	analysis (DAXXX). RPAC118-125 intersected amyodatoidal, +/- mgt chloritic besalt with zones heem alteration (Roopena volcanics). Out of RPAC126-131 only RPAC131 penetrated Panduma Formation to intersect Roopena Volcanics as above. RPAC32 drilled to test IP anomaly described above.

Summany	Anr.Q4	Apr 95	Pandura Cu	Cu-Mn mine located 3 km ESE of Pandurra Station, Number of
January		,	Mine	pits upto 2 m deep in 100 x 50m area with malachite and zurite. Inferred resource 120 000 t @ 0.3-0.4 % Cu
IP	Apr-94	Apr 95	Panduma Cu	3, 500 m spreads of 50m dipole-dipole IP along 6386050
	Transaction		Mine	6385850, 6385650N. Phase responses over old workings and along strike. Results not yet integrated.
Summary	Арг-94	Apr 95	Panduna	Weak, magnetic and gravity anomalies on 2 parallel NW trending faults, possibly masked by sediment cover.
IP.	Apr-94	Apr 95	Pandurra	200 m dipole-dipole IP along 6388000N (725500-729000E) and
				6389400N (723000-726000E). Weak phase response, but no further work is warranted
Gravity	Apr-94	Apr 95	Pandurra	100 m spaced stations read on above two lines
Gravity	Apr-94	Apr 95	Cowleds	131 stations read on 100 x 500 m spaced grid, targetted poorly defined coincident mag and gravity anomalies on Roopens Fault at intersection of SE trending structure. Showed small cluster of gravity anomalies along Roopens Fault. Resolution
				needs improving before targetting can be completed.
Gravity	Apr-94	Apr 95	Regional	Semi regional gravity survey. 150 stations collected south of the Lincoln Hwy and east of the Roopena Fault.
Gravity	Oct-94	Sep 95	Round Hill	31 stations collected at 100m intervals along 6397000N Infilling regional gravity survey to 1station per km ²
Interpretation	Oct-94		Block Dam	Magnetic anomaly coincident with ironstone capped rises
Gravity	Oct-94	Sep 95		31 stations collected at 100m intervals along 6394300 &
	1			6393000N. Infilling regional gravity survey to 1station per km ²
Gravity	Oct-94	Sep 95	Kittle	21 stations collected at 100m intervals along 6378000N Infilling regional gravity survey to 1station per km ²
Gravity	Oct-94	Sep 95	Pankala	23 stations collected at 100m intervals along 6375000N
Lag Sampling	Oct-94	Sep 95	Round Hill	Infilling regional gravity survey to 1station per km² Reconalssance lag sampling on small grid. 93 samples submitted for Cu, Au (GC41001-0093). Max 69 ppb Au
ID	Feb-05	 	Round Hill	2km of 200m dipole-dipole IP along 6397000N
IP	Feb-95		Block Dam	2km of 200m dipole-dipole IP along 6394300 & 6393000N
10	E-L 0E		1/:41-	Weak phase responses identified
				2km of 200m dipole-dipole IP along 6378000N
ib.	Mar-95		Pankala 	2km of 200m dipole-dipole IP along 6375000N. No obvious
Gravity	Apr-95	Apr 96	Regional	responders identified Regional gravity survey continued with xx stations collected
•	, ,,,,	,,,,,	, togional	over a number of prospect areas. Collected using La Coste and Romberg gravimeter barometrically levelled with Digibar barometers. Radio linked
**************************************				real-time GPS was used to establish grids.
Lag Sampling	Apr-95	Apr 96	Spencer	234 samples (GC408501-8834) extending grid to south and southwest. Collected on 100 x 50 m grid, -6+2 mm fraction
		District		analysed for Au, Cu. Results closed off anomaly to the south, and anomaly
				in the SW possibly autibuted to surface topography and better sampling conditions.
Magnetics	Apr-95	Apr 96	Spencer	31.2 line km read on 100 m spaced lines with 10 m stations.
				4, 1 km x 1 km blocks and 1, 1 km x 1.5 km block of gradient
				array IP (50 m dipoles on 100 m spaced lines) was conducted
				to assist in determining strike ext of mineralisation. Defined a zones higher phase response to the east correlating with haem/chloric granite
				gnelss, - and weaker phase response to the west containing localised highs. Downhole IP was conducted on RPAD133.
	8 = 00	A 6.2	O=)====	
iviagnetics	Apr-95	Apr 96	Cowleds	Phase 1 - gound magnetics read 500 m intervals on 1km lines. Phase 2 - 100 m intervals on 1 km lines. Resulted in 10 X 5 km
Gravity	Apr-95	Apr 96	Cowleds	block with ~500 m spaced stations? 200 m spaced stations on above grid. Data plus above
				magnetics data generated drill targets
IP	Apr-95	Apr 96	Cowleds	200 m spaced dipole dipole IP on 5 traverses. Weak phase anomaly at 6332000N, 723900E at break in mag feature and
	Summary IP Gravity Gravity Gravity Interpretation Gravity Gravity Underpretation Gravity Gravity Gravity Interpretation Gravity Gravity Gravity Lag Sampling IP IP IP IP	IP Apr-94 Summary Apr-94 IP Apr-94 Gravity Apr-94 Gravity Apr-94 Gravity Oct-94 Interpretation Oct-94 Gravity Oct-94 Gravity Oct-94 Interpretation Oct-94 Gravity Oct-94 Gravity Apr-95 Gravity Apr-95 IP Feb-95 IP Feb-95 IP Feb-95 IP Feb-95 IP Apr-95 Magnetics Apr-95 IP Apr-95 Magnetics Apr-95 IP Apr-95	IP Apr-94 Apr 95 Summary Apr-94 Apr 95 IP Apr-94 Apr 95 Gravity Apr-94 Apr 95 Gravity Apr-94 Apr 95 Gravity Apr-94 Apr 95 Gravity Oct-94 Sep 95 Interpretation Oct-94 Sep 95 Gravity Oct-94 Sep 95 Gravity Oct-94 Sep 95 Gravity Oct-94 Sep 95 IP Feb-95 IP Feb-95 IP Feb-95 IP Feb-95 IP Feb-95 IP Apr-95 Apr 96 Magnetics Apr-95 Apr 96 Magnetics Apr-95 Apr 96 Magnetics Apr-95 Apr 96	IP Apr-94 Apr 95 Pandurra Cu Mine Summary Apr-94 Apr 95 Pandurra IP Apr-94 Apr 95 Pandurra IP Apr-94 Apr 95 Pandurra Gravity Apr-94 Apr 95 Pandurra Gravity Apr-94 Apr 95 Cowleds Gravity Oct-94 Sep 95 Round Hill Interpretation Oct-94 Sep 95 Block Dam Gravity Oct-94 Sep 95 Block Dam Gravity Oct-94 Sep 95 Round Hill Interpretation Oct-94 Sep 95 Round Hill Interpretation Oct-94 Sep 95 Round Hill IP Feb-95 R

Drilling	RC? Drilling	Apr-95	Apr 96	Cowleds	7 holes for 576 m, drilled along 5 traverses, testing geophysics anomalies (RPAC0201-0207). 505, 1 m samples were
					analysed for Au, As, Al, Bl, Ca, Co, Cu, Fe, Mg, Mn, Mo, Pb, S, Sb, Si, U, W and Zn, (0A980722-0786, 0801-0865, 0871-0960, 0971-1000
					1872, 2501-2656, 2671-2757, 2751-2791) Intersected ~30 m cover over weathred basement clays. Max RPAC202 1 m @ 0.11% Cu
Geophysics	IP .	Apr-95	Apr 96	Pandurra	Gradient array IP. Two tkmx 1 km blocks suing 50 m dipoles on 100 m lines. ID 2 main phase anomalies. Anomalies probably attributed to significant pyrite within Pandurra Fm
Geophysics	Gravity	Apr-95	Apr 96	Pandurra	intersected in Pacminex drilling. xx stations collected at 100 m spacing on two traverses 600 m
Geophysics	Gravity	Арг-95	Apr 96	Murninnie	apart. No further work warranted. Semi regional gravity survey, xx stations collected at 500 m spacing on 1 km spaced traverses. No further work warranted.
Geophysics	TEM	Apr-95	Apr 96	Tank Hill	Single line of high power TEM read on 6379700N. No bedrock
	And the state of t				conductor ID, no further work warranted.
Geochemistry	Lag Sampling	Jun-95		Round Hill	Reconaissance lag sampling along 6397000N. 42 samples submitted for Cu, Au (QD647724-7784). Max 930 ppb Au (reassayed @76 ppb) returned on western end. Max 290 ppb Cu
Geochemistry	Lag Sampling	Jun-95		Block Dam	Reconaissance lag sampling along 6394300 & 6393000N. 118 samples submitted for Cu, Au (QD647606-7666 & QD647667-7723). No anomalous results returned.
Geochemistry	Lag Sampling	Jun-95		Kittle	Reconaissance lag sampling along 6378000N. 41samples submitted for Cu, Au (QD647830-7870) No anomalous results returned.
Geochemistry	Lag Sampling	Jun-95		Pankala	Reconaissance lag sampling along 6375000N. 37 samples submitted for Cu, Au (QD647785-7829) No anomalous results returned.
Drilling	Diamond Drilling	Ju#-95		Spencer	1 hole for 151 m (RPAD133), drilled 5 m west of RPAC115 (hole with most significant Cu). 105 samples collected and analysed for Au, Cu, As, Mo. U ₃ O ₈ and Bi. (DA968611-8658, DA722001-2057) Results 28.4 m @ .22% Cu, 0.292 ppm Au, incl 12.5 m @ .31% Cu, 0.548 ppm Au. Max assay 0.8 m @ 1.77 % Cu, 4.03 pm Au. intersected quartite and phylite with mineralisation within skiphfed and veined quartities and in a thin amphilipolitie unit above silicified zone.
Drilling	RC Drilling	Jul-95	Aug 95	Spencer	18 holes for 1440 m. (80 m depth) drilled along three traverses, testing anomalous geochem (RPAC134-151). 1440, 1 m samples analysed for Au, Cu, As, Mo and Bi. (DA968661-DA970100) Intersected metasediments, quartities, and interpreted metaself and grante gness (east of metasediments). Program not completed and
					potential remains for mineralisation near RPAD133 at depth. Best results in RPAC141, 146, 147, 150, 151, 13 m @ .33% Cu. 1 m @ .78 ppm Au. 7 samples analysed using XRD (DA969534, 9540, 9613, 9813, 9939, 9984, 9990, 70000, 0018)
Geochemiatry	Calcrete Sampling	Aug-95		Spencer	1 calcrete sample collected at sump of RPAD133. Analysed for Au, Cu, Mo and Bl. Returned 15 ppm Cu, 2 ppb Au
Petrography	Petrography	Oct-95		Spencer	10 samples of mineralised and unmineralised portions from RPAD133 submitted for petrography. Confirmed petrographic
					studies in 1994-95. Alteration clearly overprints, thus postdates metamorphism. Cu mineralisation is exclusively chalcopyrite, and is intimately associated with alteration, unclear if same origin. Spencer has been focus of strong hydrothremal activity with some deposition of Cu and Au, yet to determine if
Geophysics	Interpretation	Oct-95	Sep 96	Block Dam	economic concernitations Modelling of IP traverserses concluded significant potential exists for the anomaly to be related to sulphide mineralisation

Drilling	RC Drilling	Nov-95	Dec-95	Spencer	19 holes for 1505 m, drilled along four traverses, testing IP
4					gradient array targets (RPAC154-158, 160-166, 168-175), xx
		ener en er			samples analysed for Au, Cu (DA861165-1236, 1246-1913, 1325-1406-1415-1494, 1505-1578, 1078-1152, 1005-1073, 1605-1676, 1701-1759, 1801
				La de la	1862 1881-1941, 1961-2035, 2041-2106, 2121-2200, 2201-2340, 2361-2500
The section of the se					0501-0600, 1791- 1794 0601-0680 Best result RPAC156 1m @0.234 ppm Au, RPAC166 1m @0.13 % Cu. Intersected attered shickfies
			1		metasedments to the east and less sitcified unattered phylines to the west. Over
					highest phase response intersected pyritic and haematitic grt. RPAC166
			14.73 244 - 14		intersected pyritic dolerite 3 samples analysed using XRD (DA748101-8103)
		Nov-95		Diagl. Dag.	
Geochemistry	Lag Sampling	May-96	106	Block Dam	Reconaissance lag sample collected at ironstone outcrop (DA748104). 260 ppm Cu, 6 ppb Au returned.
Geology	Geology			Spencer	Geological logging and assaying of unlogged portions of RPAD21-23, (DA722101-2136 DA983030-3074)
Geology	Geology	May-96		Bayview	Geological togging and assaying of unlogged portions of RPAD31-32, (DADA21714-1756), Max 830 ppm Cu
Geology	Geology	May-96	Oct-96	Bayview Sth / Mallee Rise	Geological logging and assaying of unlogged portions of RPAD84 (0A9850013029)
Geology	Geology	Sep-96		Ozone	Geological logging and assaying of unlogged portions of RPAD14-15 (DAXXX)
Geomorphology	Regolith Landform Mapping	May-97		Project	Mapping at 1:100 00 scale and photogeological interpreation at 1:40 000 scale by M Derriman. Plus processing TM imagery.
Structural	Structural	Aug-97	<u> </u>	Project	Geophysical/structural interpretation at 1:100 000 scale by
Interpretation	Interpretation			-	Colin Windsor. ID potential dilation sites for Au, Cu
Geochemistry	Geochemical	Jan-98		Spencer	52, -180um soil samples (+ 2 stds) collected at 50 m spacings
	Orientation	ing terminal			along 3 traverses at Spencer and 1 traverse at Spencer South.
					Samples were submitted to Amdet, Adelaide for Au + multielement analysis analysis (1022101-152)
Geochemistry	Geochemical Orientation	Jan-98		Kennedy Dam	-180um soil sample and submitted to Amdel, Adelaide for Au + multielement analysis analysis (1022153)
Geochemistry	Geochemical Orientation	Jan-98		Spencer	50, BLEG samples (same locations as above; 1022201-251 submitted to Norex Lab Welshpool for Au, Ag, Cu analysis
Geochemistry	Geochemical Orientation	Jan-98		Kennedy Dam	1 BLEG samples (same location as above; 1022251) submitted to Norex Lab Welshpool for Au, Ag, Cu analysis
Geochemistry	Geochemical Orientation	Jan-98		Spencer	6 calcrete samples (1022001-00s) collected and submitted to Amdel, Adelaide for Au analysis
Compilation	Data Compilation	Feb-98		Project	WMC's data was reformatted and incorporated into Norex's database
Geochemistry	Geochemical	Feb-98		Spencer	52, Lag samples (+ 2 stds) collected at 50 m spacings along 3
	Orientation				traverses at Spencer and 1 traverse at Spencer South were
	Page 12 September 1				submitted to Amdel, Adelaide for splitting into magnetic and normal lag fractions and Au + multielement analysis (102201-
			1		352)
Geochemistry	Geochemical	Feb-98		Spencer	52, -125um soll samples (+ 2 stds) collected at 50 m spacings
	Orientation			, su ar em e	along 3 traverses at Spencer and 1 traverse at Spencer South
					were submitted to Amdel, Adelaide for Au + multielement
Geochemistry	Geochemical	Feb-98		Spencer	analysis (1022401-452) 16 bulk soil samples collected and submitted to Amdel,
·	Orientation				Adelaide for size fraction determination (1022252-267)
Drilling	Drilling	Apr+9 8		Spencer	35, 1m core samples from RPAD23 submitted to Amdel for Au + multi element analysis (1022501-535) No anomalous results
Geochemistry	Rock Chips	Aug-98		Murninnie	returned 4 rock chips samples collected and submitted to Amdel for Au
			grás.		+ multi element analysis (1022010-013). Max 2.2% Cu
Geochemistry	Rock Chips	Aug-98		Spencer	1 rock chip sample (quartzite lag) collected and submitted to Amdel for Au + multi element analysis (1022021). 1060 ppb Au
Geochemistry	Rock Chips	Aug-98	1000	Regional	3 rock chips samples collected from the Roopena area and
					submitted to Amdel for Au + multi element analysis (1022025, 030, 031)