Open File Envelope

NUMBER 8981

EL 1952 CARAWA

ANNUAL AND FINAL REPORT FOR THE PERIOD 27/7/94 TO 22/11/95

Submitted by

Livre Holdings Pty Ltd 1995

© 11/12/95

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia.

MESA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. All rights reserved under the copyright. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of Mines and Energy South Australia, PO Box 151, Eastwood, SA 5063

Enquiries: Records Management

Mines and Energy South Australia 191 Greenhill Road, Parkside 5063

Telephone: (08) 274 7687 Facsimile: (08) 272 7597

ENVELOPE 8981

TENEMENT:

EL 1952 Carawa

TENEMENT HOLDER:

Livre Holdings Pty Ltd

CONTENTS

		MESA NO.	
REPORT:	Cooper, S.A., 1995. First annual and final report for EL 1952 Carawa, SA	8981 R 1	
A POPULATION AND A	(Diamond Ventures NL).	Pgs 3-13	
APPENDIX 1:	Hungerford, N., 1994. Carawa ELA 250-93. Geophysical interpretation	Pgs 14-25	
DT ANC	(Hungerford Geophysical Consultants Pty Ltd).		
PLANS	Scale Caravya lina 421200F	D- 05	12
	Carawa, line 431200E. SADME aeromagnetics (total field):	Pg. 25	A3
	Analytic signal. Shade from north-east. 1:100 000	0001 1	
		8981-1	
	Shade from east. 1:100 000 [Note: Colour microfilm images of Pgs 21-24 and	8981-2	
	8981-1 and 8981-2 follow the text on the microfiche.		
APPENDIX 2:	-	D 26 24	
AFFENDIA 2:	Ground magnetic contours, also showing topographic features and drillhole locations.	Pgs 26-34	
APPENDIX 3:	Drill logs for the twelve CAR drillholes.	Pgs 35-48	
APPENDIX 4:	Petrological reports:	rgs 33-46	
ALLENDIA 4.	Barron, D.J., 1995. Petrological examination of seven drill core samples from the	Pgs 49-57	
	Carawa project EL 1952, Gawler Craton, South Australia (Report no. D11/94/852	1 gs 43-37	
	for Diamond Ventures NL).		
	Barron, D.J., 1995. Petrological examination of eight drill core samples from the	Pgs 58-68	
	Carawa project, EL 1952, South Australia (Report no. D11/94/859 for Livre	1 gs 50-00	
	Holdings Pty Ltd).		
	Stiefenhofer, J., 1995. The petrography of a sample from drill hole CAR 10-1,	Pgs 69-71	
	tenement EL 1952, STREAKY BAY 1:250 000, South Australia (AARL Pty Ltd	1800) /1	
•	report no. KR95/0366).		
APPENDIX 5:	Heavy mineral results for five loam and two open hole drill samples.	Pgs 72-79	
APPENDIX 6:	Microprobe results for grains from the loam and open hole samples.	Pgs 80-87	
APPENDIX 7:	Chemical analytical report on drill core samples - Batch ST11840 and ST12067	Pgs 88-95	
	(Australian Laboratory Services Pty Ltd).		
APPENDIX 8:	Palynological report on core sample:		
	Alley, N.F., 1995. Palynological dating and correlation of Late Eocene sediments	Pgs 96-101	
	from the Eucla Basin, South Australia. South Australia. Department of Mines and		
	Energy, Report Book, 96/3 October 1995 DME.		

END OF CONTENTS

SEPARATELY HELD DATA

DRILLHOLE SAMPLES (Held by MESA Core Library):

For up to date information on available drillhole samples, contact the Supervisor, MESA Core Library and quote the Exploration Licence and drillhole numbers you wish to query.

CAR01-1, 02-1, 03-1, 04-1, 05-1, 06-1, 07-1, 09-2, 09-3, 10-1, 10-2, 10-3, 15-1.

FIRST ANNUAL AND FINAL REPORT FOR EXPLORATION LICENCE 1952 CARAWA, S.A.

STEVEN ALAN COOPER

M.Econ.Geol., M.AuslMM, M.AAPG

DIAMOND VENTURES NL

Level 1, 689 Burke Road Camberwell, Vic., 3124

OCTOBER 1995

Mines & Energy SA

R95/03232

CONTENTS

1.	INTRODUCTION & SUMMARY	1
2.	TITLE	1
 4. 	WORK COMPLETED 3.1 AERIAL GEOPHYSICAL INTERPRETATION 3.2 LOAM SAMPLING 3.3 GROUND MAGNETIC SURVEYS 3.4 DRILLING 3.4.1 Petrology 3.4.2 Heavy Mineral Sampling 3.4.3 Geochemistry 3.4.4 Palynological Sample CONCLUSIONS & RECOMMENDATIONS	3 3 4 4 7 8 8
5.	EXPENDITURE	9
6.	REFERENCES	9
	FIGURES	
1.	Carawa Project general location map	2
2	Magnetic anomalies, drillholes, and loam samples.	5
3.	Location of loam samples and northern magnetic anomalies	6
	TABLES	
1. 2.	Magnetic anomalies covered by ground magnetics & drilling.	4 7
	APPENDICES	
1.	Geophysical interpretation report by Hungerford Geophysical Consultants.	
2.	Ground magnetic Contours, also showing topographic features and drillhole locations.	
3.	Drillogs for the twelve CAR drillholes.	
4.	Petrological reports D11/94/852, D11/94/859, & KR95/0366 on drill core samples.	
5.	Heavy mineral results for five loam and two open hole drill samples.	
6.	Microprobe results for grains from the loam and open hole samples.	
7.	Chemical analytical report on drill core samples (Batch ST11840 & ST12067).	
8.	Palynological report by N.F. Alley on core sample.	

1. INTRODUCTION & SUMMARY

This report covers all the exploration within Exploration Licence 1952, Carawa, in the north western part of the Eyre Peninsula. The target commodity is diamonds beneath a cover of Quaternary and Tertiary sediments. Given the expected thick (>50m) cover, the exploration approach was to use the recently available SAEI A3 aerial magnetic survey data to locate and drill test possible kimberlitic type rocks.

During the term of the Licence, work has included acquiring of the aerial A3 magnetic data from MESA, imaging and interpretation of this data by a geophysical consultant, detailed ground magnetics over the isolated magnetic anomalies, limited heavy mineral loam sampling in the north, diamond core drilling with subsequent petrology, geochemistry (elements Cu, Pb, Zn, As, Co, Bi, Sb, Cr, Ca, K, Mg, Ni, P, Sr, & Au, 17 samples, and V, Nb, Ta, U, Ce, La, Nd, Th, Y, & Yb, 4 samples), and heavy mineral analysis (one hole). One palynological sample was also collected. A number of possible indicator grains from both the loam samples and the drillhole were microprobed to confirm their identity.

Eight magnetic targets drill intersected were from the Proterozoic Gawler Craton. One drillhole did not reach the target due to difficult drilling conditions (CAR4-1). Following a review of the data from the drilling, it was concluded that while the testing is not comprehensive, no evidence of kimberlite or diamonds exists within the Licence area. In a letter to the Department dated the 21 September 1995 the Licence was surrendered. A total of \$139440 has been spent on the Carawa Project.

2. TITLE

An Exploration Licence Application 250/93 over the Carawa (5733) 1:100,000 map sheet area was made by Helix Resources NL during June 1993. The applicant was subsequently changed to Livre Holdings Pty Ltd, following the sale all the diamond tenements held by Helix to Diamond Ventures NL (Livre Holdings Pty Ltd is a wholly owned subsidy of Diamond Ventures NL).

The Exploration Licence Application was granted as Exploration Licence 1952 by the Department of Mines and Energy on the 27 July 1994 for one year. On the 27 September 1994 the Director of Mineral Exploration approved the reduction of the Licence from 2282 to 1595 km² (30.1% reduction) following a proposal by Diamond Ventures.

The Licence was renewed for a further one year, but subsequently the remaining entire Licence was surrendered by Diamond Ventures in a letter dated the 21 September 1995.

3. WORK COMPLETED

During the term of the Licence, work has included acquiring the aerial A3 magnetic data from MESA, imaging and interpretation of this data by Diamond Ventures geophysical consultant, detailed ground magnetics over the isolated magnetic anomalies, limited heavy mineral loam sampling and microprobing, diamond core drilling with subsequent petrology, geochemistry, heavy mineral analysis and microprobing (one hole). One palynological sample was also collected.

A quick search had shown that previous exploration for diamonds within the Licence area was not existent, probably due to the perceived excessive deep cover. The limited diamond exploration within the Streaky Bay region is summarised in Rankin & Flint (1991) and consists of reconnaissance sampling in the Gawler Ranges (40km east from EL1952) by Stockdale Prospecting Limited.

3.1 AERIAL GEOPHYSICAL INTERPRETATION

The digital data was obtained following the release of the A3 South Australian Exploration Initiative (SAEI) aerial survey flown by the South Australian Department of Mines and Energy. Hungerford Geophysical Consultants Pty Ltd was engaged to provide interpretation of this data to indicate the location of possible kimberlitic type targets. The final report is provided as Appendix 1.

Following griding to a mesh size of 100 metres, Hungerford examined the total magnetic field, field filtered and high pass filtering, plus analytic signed images. The western and south west part of the Licence contained no kimberlitic type anomalies chosen for further work. This interpretation was used to surrender early this part of the Licence area. Many observed weak anomalies were considered likely to be accumulations of maghemite in the surficial sands.

In the remaining part of the Licence, a short list of ten targets were selected, six being small kimberlite-type anomalies. Two anomalies, CAR-7 and CAR-8, were located in shallow cover, and loam sampling was considered sufficient to test these anomalies, the rest would require drilling.

On the plots by Hungerford a further five lower priority targets had been circled. One of these additional anomalies, CAR-15 was chosen for further work. One was outside of the current Licence (CAR-14) and therefor not eligible, while CAR-11, 12, and 13 were in the Pureba Conservation Park. While drilling would be permitted in the Park, the Native Title determination would have needed to be settled. It was decided this procedure was too lengthy at this stage in the exploration. These two sites would have been considered for further work if it were not for the Native Title determination process.

3.2 LOAM SAMPLING

Examination of the available open file drill data reveals that the Gawler Craton basement is relatively shallow (<40m) in the northern part of the Exploration Licence. This area is also covered in thick scrub making ground magnetic surveys slow and difficult without line clearing. Thus this area was considered more suitable to testing by heavy mineral loam sampling. This technique was proven quite successful in similar stratigraphy by proving that kimberlites were in the local region prior to drilling magnetic targets (Mitchell, 1992) at the Elliston Kimberlite Field (200km to the south east).

A series of five loam samples were collected near and over the northern CAR-7 and CAR-8 anomalies that were delineated by Hungerford. The samples were treated and processed in the Perth laboratory of Diamond Ventures by screening, tabling, TBE flotation, followed by visual observation. Sample details including AMG coordinates are provided in Appendix 5, together with the heavy mineral data sheets for each sample. Figures 2 and 3 show the location of the loam samples.

All five loam samples were negative for indicator grains. To confirm, seven garnets (2 from CA-02, 2 from CA-03, 1 from CA-04, and 2 from CA-05), two ilmenites from CA-05, and a pyroxene from CA-03 were microprobed (Appendix 6, note grains with different prefixes are from other projects). All grains were confirmed by the microprobe analysis not to be of further interest.

3.3 GROUND MAGNETIC SURVEYS

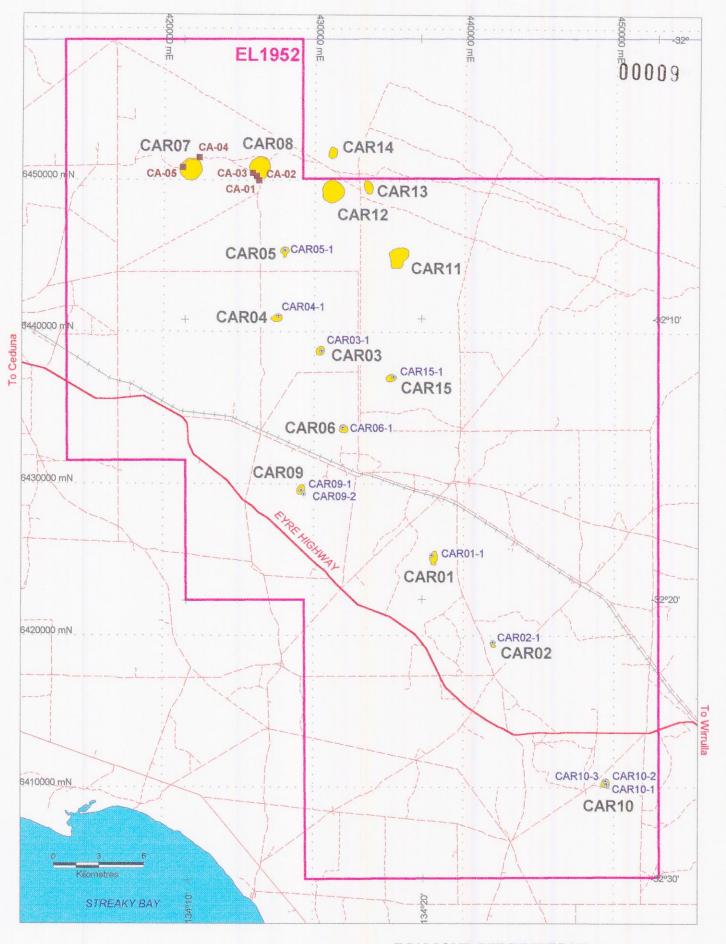
During March 1995, nine aerial magnetic anomalies were covered by ground magnetic surveys. All the grids consisted of 100 metre spaced north south lines, and with east west tie lines. Readings were all 10 metres apart using a GeoMetrics G856 proton precession magnetometer. Diurnal corrections were made by using

a second G856 base station magnetometer reading at 30 second intervals.

As can be seen from Table 1, over sixty line kilometres of magnetic data was collected. Appendix 2 provides the ground magnetic survey contour plans for each anomaly, showing cultural features, and the final locations for the following drilling.

TABLE 1 Magnetic anomalies covered by ground magnetics & drilling.					
ANOMALY	NUMBER LINES	GRID m (EWxNS)	LINE km	HOLES DRILLED	DRILLED METRES
CAR-01	15	800x800	9.2	1	128.6
CAR-02	12	600x700	5.73	1	51.7
CAR-03	10	600x600	4.84	1	137.8
CAR-04	12	800x800	7.42	1	34.0
CAR-05	10	600x800	6.2	1	82.5
CAR-06	12	800x800	8.0	1	73.6
CAR-09	10	620x600	5.04	2	47.7, 39.8
CAR-10	20	1050x1100	11.53	3	25.9, 33.4, 49.0
CAR-15	10	600x600	4.84	1	66.4
TOTAL	111	506.7 ha	62.70	12	770.4m

3.4 DRILLING


All of the ground magnetic grid anomalies were NQ diamond cored using open hole rotary precollars. One anomaly, CAR4, was abandoned due to flowing sands. All the drillogs are presented as Appendix 3. The drillogs provide the AMG coordinates (Zone 53H) for each hole, and Figure 2 show the locations. Local grid locations are provided on each of the ground magnetic contour plans provided as Appendix 2. Drilling was by Strata Exploration Pty Ltd from Adelaide.

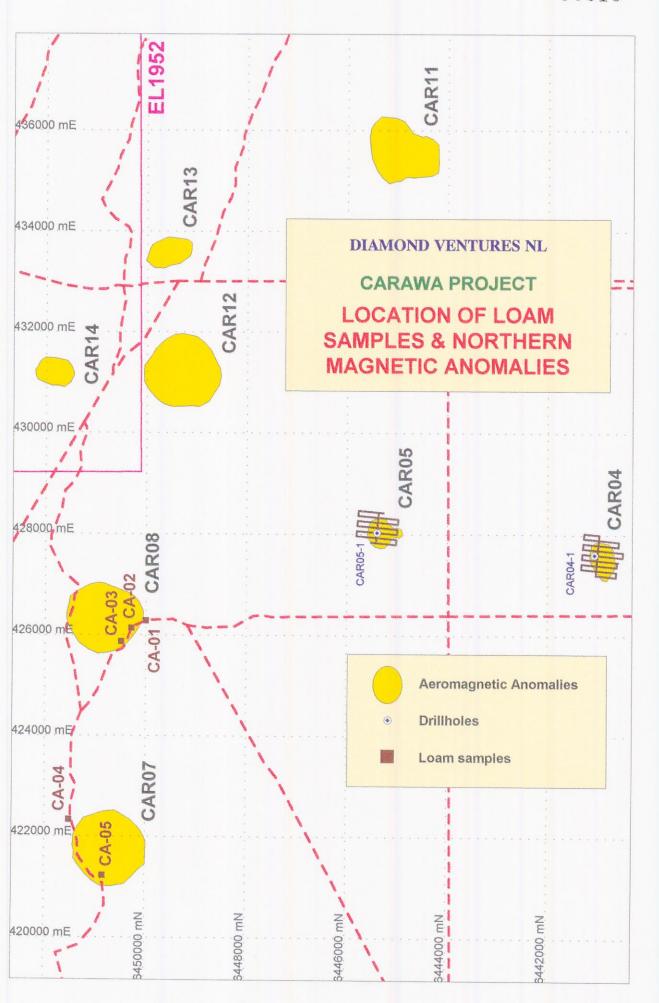
The cores have all been lodged with the Department of Mines & Energy Core Library in Glenside. Table 2 provides the number of holes, and the meterage drilled into each anomaly site.

3.4.1 Petrology

Petrological examinations were made on representative samples from the core samples. The detailed descriptions by consultant petrologist Dr Jane Barron are provided as Appendix 4. Table 2 provides a summary of the lithologies encountered. The sample from drillhole CAR10-1, 25.8m was also examined by J. Stiefenhofer from AARL (Pty) Limited. This extra examination is also provided within Appendix 4.

The petrology confirms that the magnetic units intersected are non prospective metamorphic units within the Gawler Craton. The only sample of interest was the CAR10 samples which contained unusual amounts of apatite.

DIAMOND VENTURES NL


CARAWA PROJECT

MAGNETIC ANOMALIES, DRILLHOLES, AND LOAM SAMPLES

Aeromagnetic Anomalies

Drillholes

Loam samples

TABLE 2. Summary of petrological descriptions.				
DRILLHOLE	INTERVAL	SUMMARY		
CAR1-1	115.45m	Partly graphic granite pegmatite.		
	128.55m	Amphibole & biotite rich quartz monzodiorite.		
CAR2-1	22.7m	Coarse grained granite gneiss.		
	36.0m	Course grained feldspathic granite.		
CAR3-1 136.35m Medium grained K-feldspar granite.		Medium grained K-feldspar granite.		
	137.2m	Medium grained roughly equigranular aplite.		
CAR5-1	81.3m	Course grained granite & biotite rich diorite gneiss.		
CAR6-1	73.6m	Medium to Course grained K-feldspar megacrystic granite.		
CAR9-1	47.5m	Course grained biotite bearing granodiorite.		
CAR9-2	36.3m	Medium grained biotite cordierite-K-feldspar-plagioclase gneiss.		
	38.0m	Biotite- and altered cordierite-bearing (gneissic) granitic rock.		
CAR10-1	25.8m	Strongly foliated albite-biotite-magnetite-apatite amphibolite.		
CAR10-2	33.0m	Strongly metamorphosed gabbro? with abundant apatite.		
CAR10-3	43.7m	Strongly foliated biotite-magnetite-apatite rich amphibolite.		

3.4.2 Heavy Mineral Sampling

Two samples from the rotary open hole collar of drillhole CAR03-1 were collected for heavy mineral examination. The two intervals, 127-129m and 132-133m are from near the base of the Pidinga Formation, within the Narlaby Palaeochannel as delineated by Rankin & Flint (1991). The samples were treated and processed in the Perth laboratory of Diamond Ventures by screening, tabling, TBE flotation, followed by observation, similar to the loam samples. Details on the samples are in Appendix 5, together with the resultant heavy mineral data sheets for the two samples.

Sample CAR3-1 127-129m contained some grains that resembled picroilmenites and Cr-spinels, thus the sample was recorded as positive for kimberlitic type indicators. The lower sample was negative. Also a number of garnets from each interval considered interesting were separated. Thus 2 garnets, 4 spinels, and 6 ilmenites from 127-129m, and 2 garnets and 2 ilmenites from 132-133m were sent to Microbeam Services in Melbourne for microprobing in conjunction with the grains from the loam samples.

The four grains tentatively identified as Cr-spinel from 127-129m were all were shown by microprobe to be very low in Cr (Cr_2O_3 all below 0.2%) and not of interest. The four possible picroilmenites from interval 127-129m, and two check ilmenites from 132-133m, were also shown by the microprobe to be common ilmenites and of no further interest. As a final check two garnets from each interval were also microprobed and which confirmed the overall low diamond prospectivity (all group 3 garnets). All microprobe analyses are provided in Appendix 6.

Thus no heavy minerals of kimberlitic interest were recovered from the lower CAR03-1 stratigraphy. The only heavy mineral in any real amount was topaz (2 & 3 % of the concentrates). The range of heavy minerals recovered is very similar to that recorded for the Pidinga Formation in Rankin & Flint (1991, page 19).

3.4.3 Geochemistry

Representative small splits were taken from each core section for chemical analysis. The seventeen samples were dispatched to Australian Laboratory Services Pty Ltd in Brisbane for assay of the elements Cu, Pb, Zn, As, Co, Bi, Sb, Cr, Ca, K, Mg, Ni, P, Sr, and Au (Batch ST11840). All the gold assays were below the detection limit (<0.1ppm).

The petrological report on the CAR10 core showed the unit has significant apatite (7%), which was confirmed by the assay of significant amounts of P (1.62%, 1.04%, 1.38%). Given this mineralogy, it was considered worthwhile assaying the four CAR10 pulps from the earlier analysis for V, Nb, Ta, U, Ce, La, Nd, Th, Y, and Yb (Batch ST12067). While some elements from this second batch of elements were elevated, none warranted further work. All chemical analyses are provided as Appendix 7.

3.4.4 Palynological Sample

A sample from drillhole CAR3-1 was sent to Dr N.F. Alley in the Department of Mines and Energy in an attempt to verify its age. The sample was from the mudstone intersected at 84-88m, just above the lower unit sampled for heavy minerals. The report on the sample is provided as Appendix 8. The sample is Late Eocene, therefor confirming the sample is from within the Pidinga Formation. The presence of dinoflagellates indicates a marginal marine setting for this sample.

4. CONCLUSIONS & RECOMMENDATIONS

Given the depth of the recent surfical cover (generally expected the Tertiary cover will be in the order of 50 to 100 metres depth) surface or loam sampling was not considered likely to pinpoint individual targets. Therefor the program has relied on using magnetics alone to obtain targets for drilling. The exception was in the northern part of the Licence where cover was in the order of twenty metres or less. Here five loam samples, taken near magnetic anomalies CAR-7 and CAR-8 would be expected to contain indicator grains if present. All samples were negative after confirmation using microprobe.

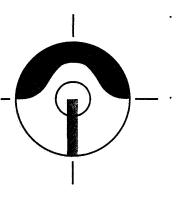
In the deeper regions to the south, the drilling intersected non prospective magnetite rich units within the Proterozoic Gawler Craton which were causing the observed magnetic anomalies. The lithologies have been confirmed by petrology and chemistry. Two heavy mineral samples from the coarser lower part of the Pidinga Formation were examined, and after confirmation by microprobe, are considered negative for kimberlitic type minerals.

The basement samples were assayed for a range of metals, including gold, but none returned significant amounts. Thus it appears that the targets drilled are also not prospective for metals.

It is concluded that while the testing is not comprehensive, no evidence of kimberlitic type rocks, or diamonds exists within the Licence area, and therefore the Licence be surrendered.

5. EXPENDITURE

The entire total expenditure for the Carawa Project up to the end of October 1995 has been;


Analysis	\$5113
Drilling	\$43986
Geophysical	\$2750
Vehicle	\$4196
Travel & Accommodation	\$5185
Maps & publications	\$82
Salaries & Labour	\$48401
Administration	\$11969
Rehabilitation	\$1220
Freight & Couriers	\$376
Consumables	\$4267
Consultants	\$1895
TOTAL	\$139440

6. REFERENCES

MITCHELL, M.S., 1992. EL1672 Elliston. Progress and final reports from 28 February 1991 to 27 May 1992 by Stockdale Prospecting Limited. South Australia Department of Mines & Energy Open File Envelope 8527.

RANKIN, L.R., & FLINT, R.B., 1991. Streaky Bay 1:250,000 Geological Exploratory Notes, Sheet SI53-2. Geological Survey of South Australia.

HUNGERFORD

GEOPHYSICAL

CONSULTANTS

Y L T D

ACN 064 811 490

Suite 5, Level 1

672b Glenferrie Road

Hawthorn (PO Box 354)

VIC 3122

Australia

Phone: [03] (9) 818 8989

Fax: [03] (9) 818 1286

LIVRE HOLDINGS

CARAWA ELA 250-93

GEOPHYSICAL INTERPRETATION

BY HUNGERFORD GEOPHYSICAL CONSULTANTS PTY LTD

NIGEL HUNGERFORD 20 JULY 1994

LIVRE HOLDINGS

CARAWA ELA 250-93

GEOPHYSICAL INTERPRETATION

BY HUNGERFORD GEOPHYSICAL CONSULTANTS PTY LTD

INTRODUCTION

ELA 250-93 is situated on the South-western part of the Gawler Craton, South Australia. The south-west corner occurs over Streaky Bay (Fig.1). A number of shallow holes were drilled by CEC (in the 1950's for Uranium?), indicating that Quarternary sands (frequently dunes) cover much of the ELA to depths of generally 50 metres.

Access is good with the Eyre Highway and main railway crossing the ELA. Off road access may not be so easy especially in dune country.

The area is geologically prospective for diamonds, Lower Proterozoic (Broken Hill Type) Pb/Zn, ironstone-hosted Proterozoic Cu/Au, and greenstone-hosted Au.

GEOPHYSICAL DATA

SADME have recently flown semi-detailed aeromagnetics as part of the SA Government initiative. Line spacing was 400 metres along N-S lines and the magnetic sensor was at 80m above the surface. For this study, data gridded to a mesh size of 100 metres were used for post-processing and imaging.

The located data (ie profile data) were finally obtained at a late stage in this work from SADME. However the data are not correctly formatted for use in GEOSOFT so they have only been used for individual lines.

Although radiometrics were also flown by SADME they have not been processed. These data are unlikely to be useful except for regolith mapping, although they might possibly indicate small outcrops of basement rocks.

The AGSO Gravity data have been used to assist the interpretation, but the 8km station spacing means that only regional information can be obtained.

REGIONAL SETTING

(Note: the enclosed images are nominally at 1:100,000 and can be plotted at that scale if a suitable colour printer is available. At present they are plotted to fit A3 paper and are at a scale of 1:250,000).

Image 1 (IM.1) shows the total magnetic field in colour with a shade from the east. Also shown is a north-south magnetic profile (+ve to east).

The strong magnetic anomalies in the north-east are due to Hiltaba Suite Proterozoic granites with distinctive ovoid or semi-circular shapes. (They have been drilled by CEC). Most of the south-west half of the area appears to be underlain by Archean/Proterozoic granites and gneisses. This supposition is based on the CEC drilling results, and the texture and shape of the magnetic responses.

Through the centre of the image there is a broad NW-SE trend of quite magnetic rocks with a lower magnetic background. This area may be composed of metasediments and volcanics. At the north-west end, the strong linear anomalies could be composed of mafic volcanics (eg amphibolites?).

In the south-eastern part, there is a distinctive oval zone that is much less magnetic. It could be a reversely magnetised granite but the lack of a magnetite-rich aureole suggests otherwise. It could well be a Proterozoic (?) sedimentary basin, fault-bounded along its north-eastern margin, which itself is offset by what appears to be a sinistral SW-NE striking fault.

At the south-eastern corner of the EL is a complexly folded sequence that may well be a greenstone belt.

Also shown on IM.1 are linears derived from viewing greyscale gradient images from different shade directions. The linears in the north-western quadrant mainly trend SW-NE, whereas those elsewhere have a NW-SE trend. These seem to intersect mainly on the north central part of the EL. In some cases the linears are caused by reversely magnetised dykes. The structural significance of these linears is unclear but their intersections may provide foci for intrusions including kimberlites.

The gravity image (IM.2) suggests the presence of more mafic (including granodioritic) rocks to the south-east (higher density). The Hiltaba (Proterozoic), and Archean granites are likely to be less dense, although the former do seem to vary in relative density than most rock types throughout the Gawler Province.

IM.3 shows the magnetic field filtered so as to show the deeper and larger magnetic sources such as the granite batholiths in the north-east and west.

Conversely, high pass filtering, as in IM.4 enhances the shallower magnetic sources. It can readily be seen that there are literally hundreds of small magnetic anomalies throughout the E.L.

TARGETS

In order to further enhance isolated magnetic anomalies, the analytic signal was imaged (IM.5). This acts as a combination high pass filter and reduction to the pole. It also shows reversely magnetised sources (total field lows) as highs, so reversely magnetised kimberlites will appear as positive anomalies.

Clearly IM.5 shows a multiplicity of targets which need to be prioritised. Many of these isolated anomalies are likely to be accumulations of maghemite in the surficial sands. Note that many occur over deeper magnetic sources so their occurrence may be a weathering effect.

The anomalies recommended for follow-up are plotted on Figs 1 and 2. They lie along the central low magnetic (metasediment?) zone, primarily in the area of intersecting linears. Anomalies have not been selected where they occur over the interpreted granite or granite gneiss since there are possibly less likely hosts for Kimberlites. Further magnetic anomalies can be readily followed-up on the basis of the analytic signal plot, if this is thought not to be the case.

IM.1 includes a magnetic profile running north-south through the ELA. This profile is also included separately (Fig 3). Clearly the identification of individual Kimberlites from magnetic anomalies is a difficult task in this area, especially low amplitude anomalies.

Following is a list of anomalies that should be drill tested. Amplitudes vary from 50 to 750 nT. AMG locations are ± 100 metres.

Anomaly 1 (6425230N, 438000E)

Probably the most distinctive anomaly of all since it stands out against a low magnetic background. Although it has an amplitude of 100nT which is considerably less than that of BHP's large Cannington Pb/Zn deposit in Queensland (about 700nT), it's general magnetic setting is very similar. Cannington is thought to occur within Lower Proterozoic metasediments (probably arenites/quartzites) and has a large component of pyrrhotite in addition to galena and sphalerite, which makes it conductive and magnetic.

Anomaly 2 (6419360N, 442040E)

Occurs at the southern end of the large central magnetic low and has an amplitude of 100nT.

Anomaly 3 (6438790N, 430500E)

A 60nT anomaly on a SW-NE linear, in the less magnetic 'corridor'.

Anomaly 4 (6440900N, 427600E)

A 60nT anomaly on a W-E linear, in the less magnetic 'corridor'. Close to an old CEC drill hole that intersected Archean (?) rocks.

Anomaly 5 (6445360N, 428070E)

A relatively strong 120nT anomaly.

Anomaly 6 (6433720N, 4322000E)

A 50nT anomaly on the edge of the 'low magnetic corridor'.

Anomaly 7 (6450830N, 421220E)

This is a double anomaly with amplitudes of 50 and 120nT. The Euler Deconvolution processing indicates these anomalies to have likely pipe-like shapes.

Anomaly 8 (6450330N, 426150E)

On the total field map it is an anomaly of about 150nT. However the Euler Deconvolution shows it to be a circular feature.

Anomaly 9 (6429550N, 429160E)

A 90nT anomaly situated in what may be granite gneiss terrain.

Anomaly 10 (6410160N, 449600E)

This anomaly has the highest intensity of any within the EL, of 750nT. It appears to lie on a folded sequence which extends south beyond the EL boundary. As such it may well be part of a greenstone belt, including mafic volcanics (eg basalts) which would be prospective for gold. The aeromag line spacing of 400 metres is not presently sufficient to clearly define structure and therefore targets. A more detailed magnetic survey (100 metres line spacing) would be preferable.

FOLLOW-UP

For the Kimberlite-type anomalies (2 to 7), 4 lines of ground magnetics per anomaly is recommended. Each aeromag anomaly should be located with a GPS receiver, then the mag survey should be done on 100 metre lines each 1 km long at 10m spacing using chain and compass. Each anomaly should take no more than a day to survey, but 10 days should be allowed in case there are access problems (at \$800 per day = \$8,000 excluding mobilisation).

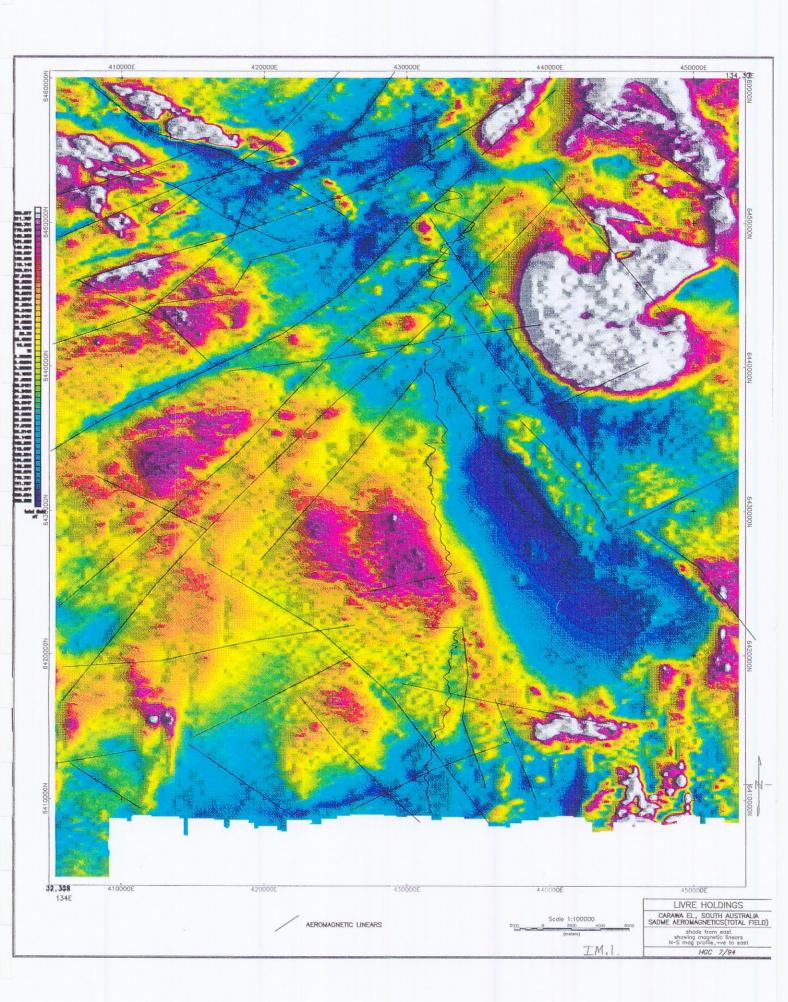
Preferably anomaly 1 should be gridded so that EM can be carried out in addition to magnetics. Lower Proterozoic Pb/Zn deposits can occur adjacent to or along strike of magnetic horizons such as BIF's so that EM will indicate the location of any massive sulphides that may be present.

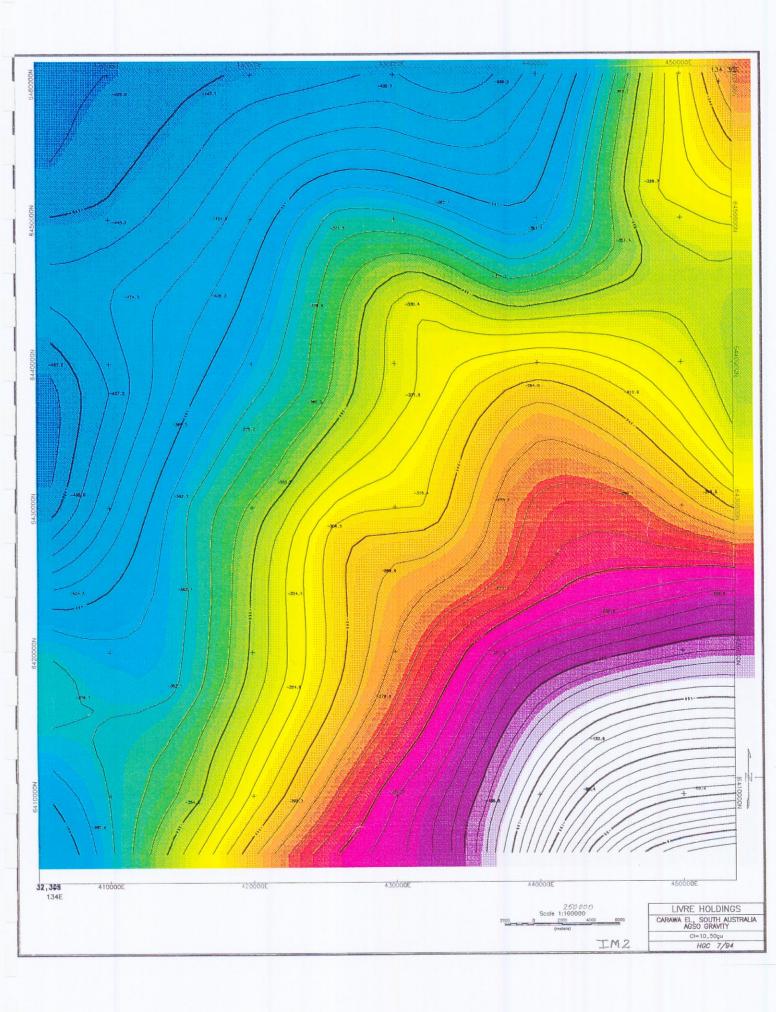
Anomaly 8 which may occur in a greenstone belt requires a larger magnetic grid in order to define structure and subsequent drill targets. A grid of 8 x 5 kms would be required.

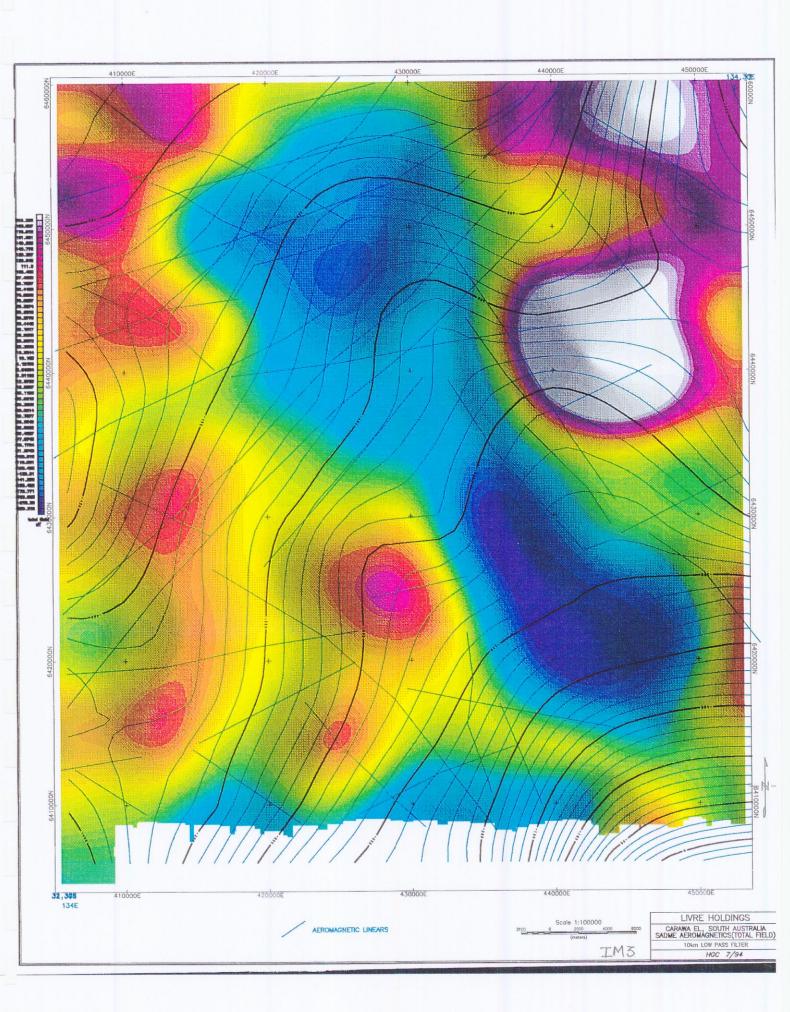
Ground magnetic surveys commonly appear to be cheaper to run, but it may be more cost-effective to use a Heli-mag system such as that used by Geo Instruments. Such a system could survey these several anomalies in only two or three days, and with much greater accuracy.

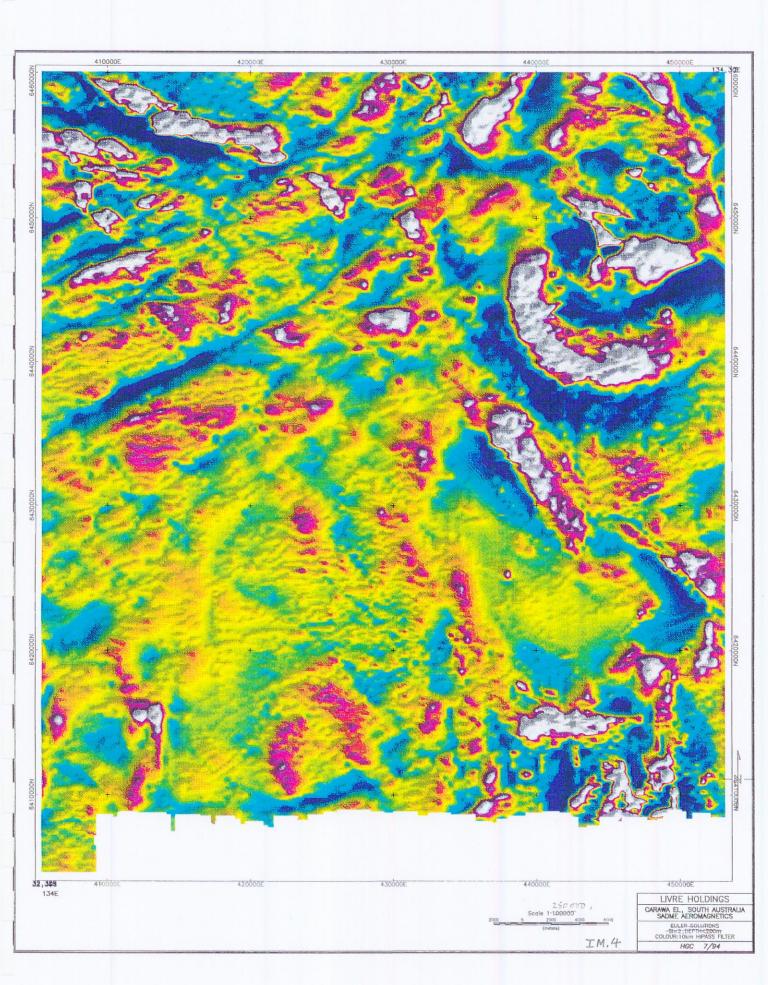
Cost of a helimag survey is about \$2,500 per day and approx \$3,000 mobilisation and installation. This is comparable to ground magnetic surveys and can be done quicker. It might then be appropriate to cover more anomalies than I have presently suggested.

PLOTS

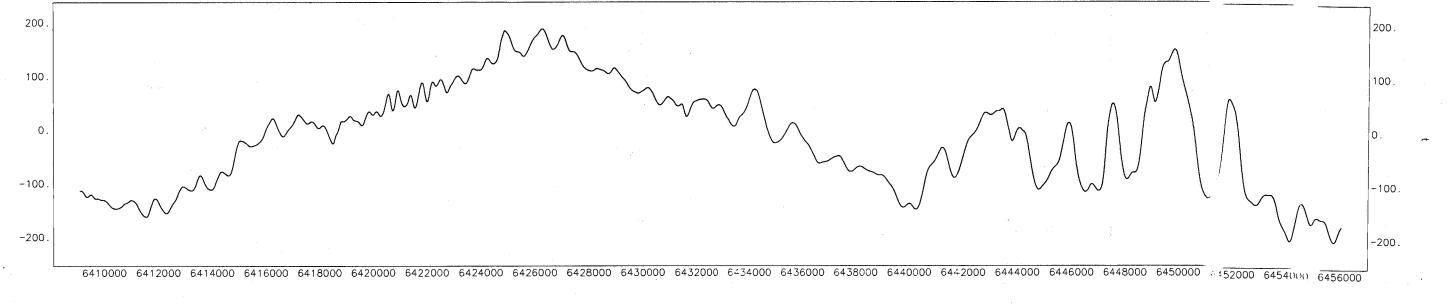

The images can be plotted at 1:100,000 scale if required. Cost can be discussed, - the actual printing is via a local company with a suitable HP Design Jet colour printer.

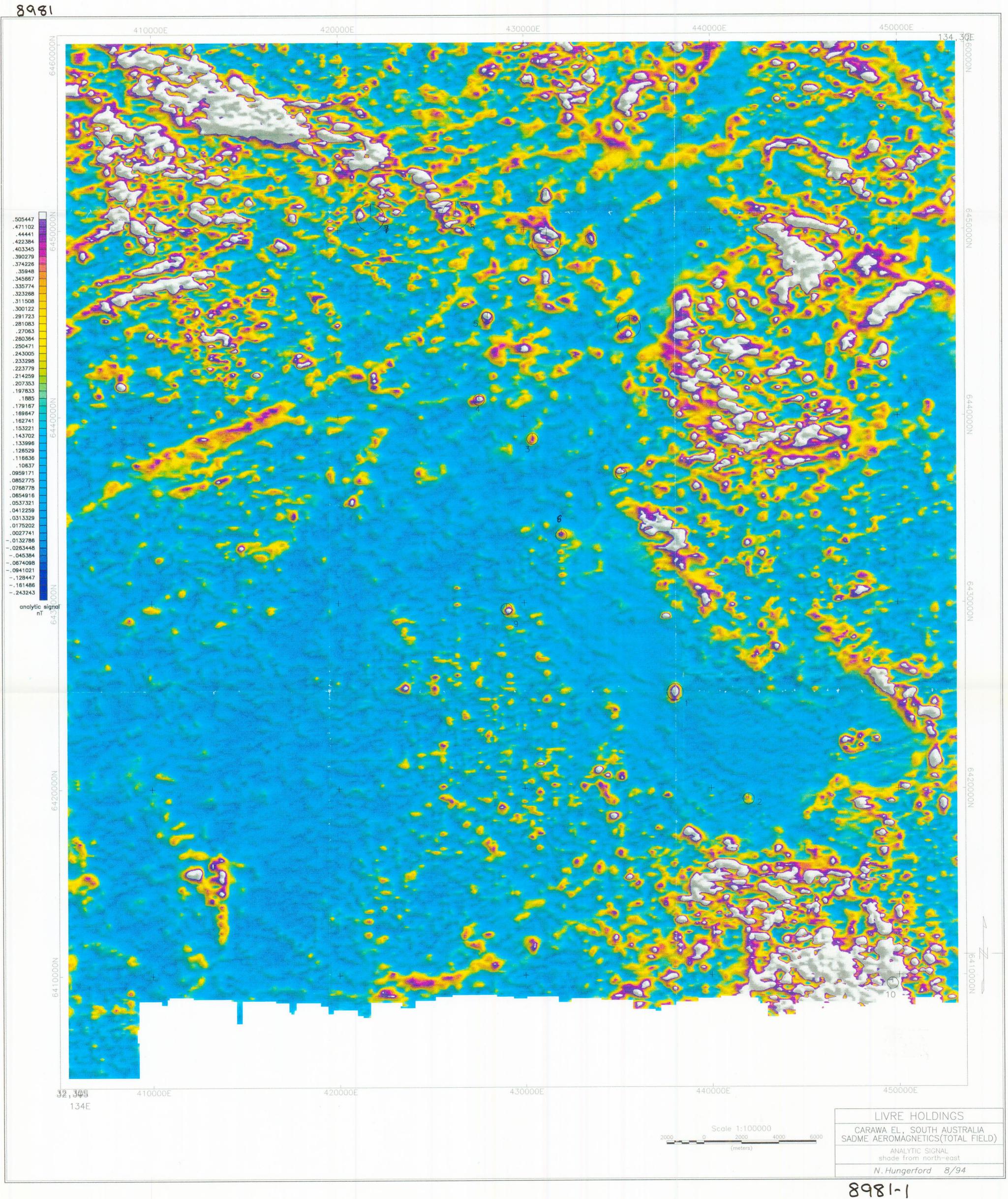

CONCLUSIONS

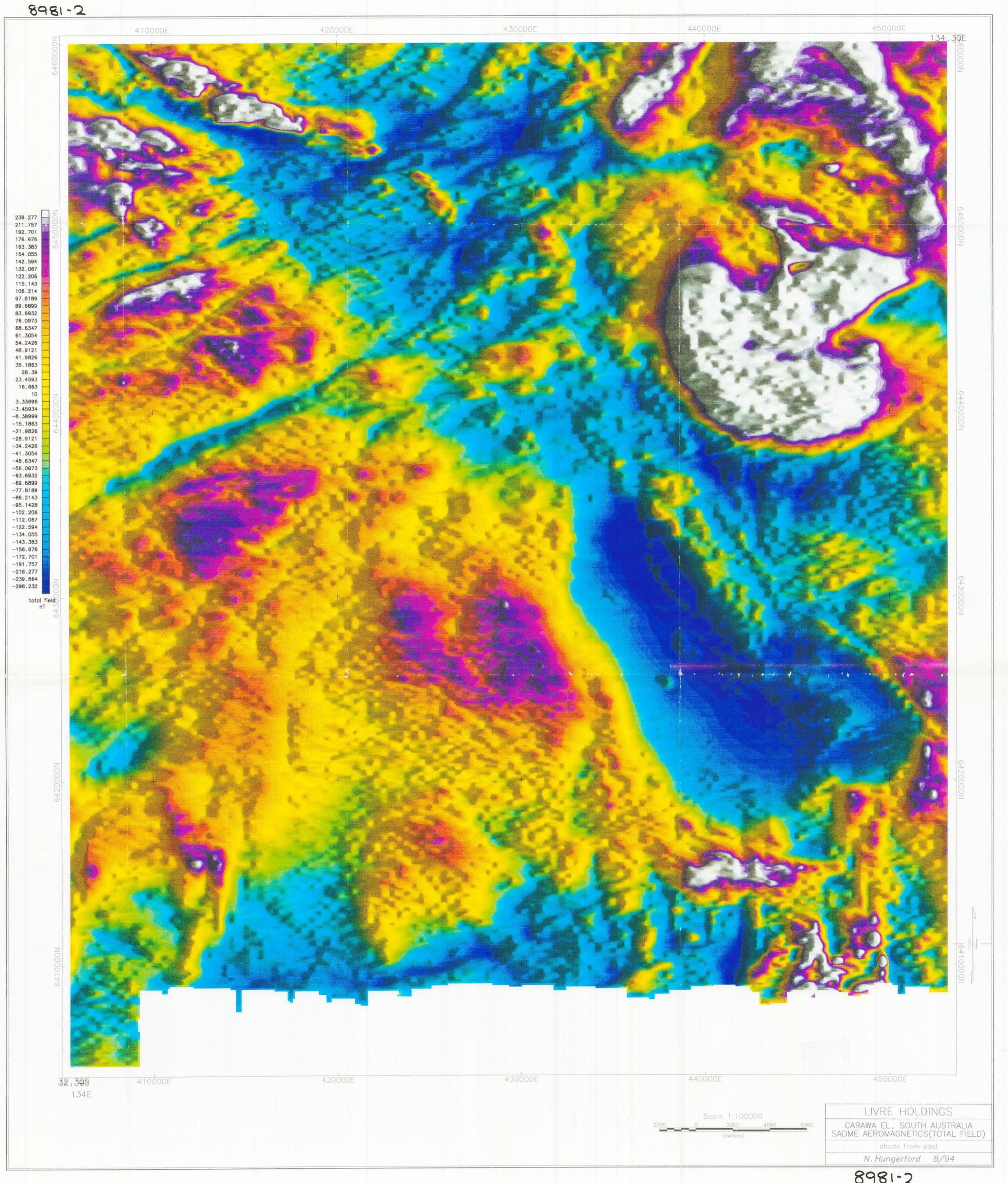

The SADME aeromagnetic data over the EL has revealed many low amplitude anomalies, within an Archean/Proterozoic terrain. A number of these have been selected for follow-up as Kimberlite targets on the basis of amplitude, location with respect to known geology, and geophysical characteristics.


It is recommended that these anomalies be located using ground or helimag, prior to drill testing. Since there is likely to be overburden of the order of 50 metres, it may be necessary to geophysically model the anomalies to provide an accurate drill target.

There are at least 2 possible base metal targets identified. Base metal analyses should be carried out on the drill chips in addition to theidentification of kimberlite indicator minerals.

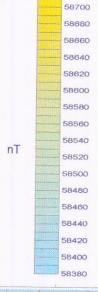


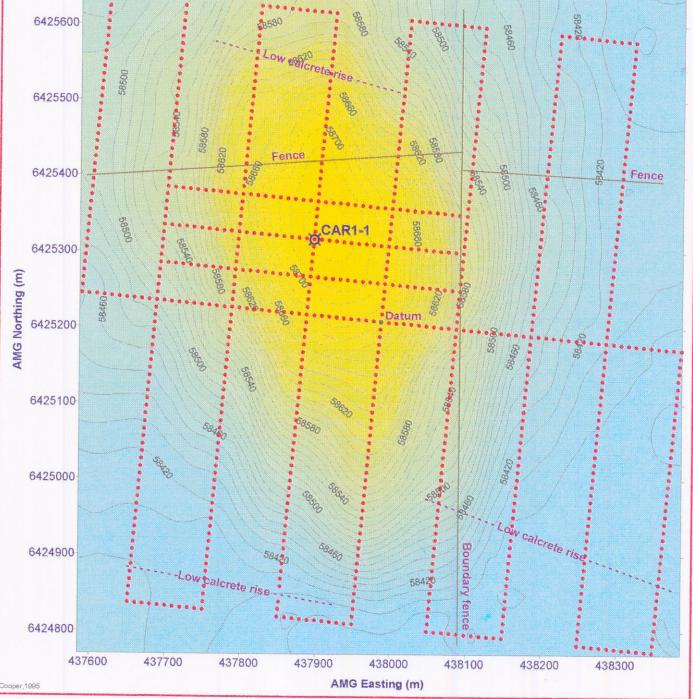



Line 431200

CARAWA, LINE 431200E

3192

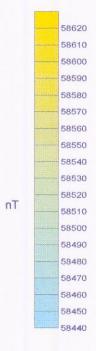

58720


DIAMOND VENTURES NL

CARAWA PROJECT, S.A. EL 1952

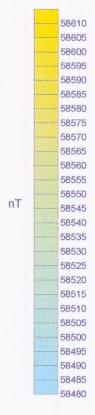
MAGNETIC ANOMALY CAR-01

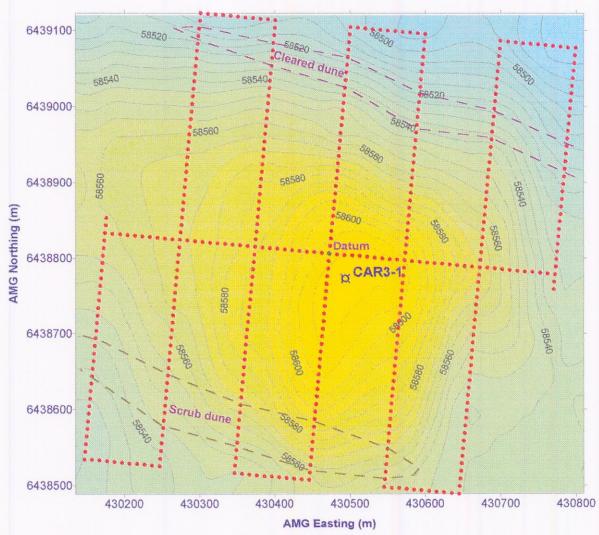
Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 437986mE, 6425208mN, Zone 53H. Line control with compass and hipohain by D. Horacek. Station interval 10m, sensor height 2.5m. Diurnal corrected using base GeoMetrics G856 magnetometer at 30s intervals (datum = 58680nT). Field magnetometer read by S. Cooper, March, & L. Muskett, May 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER. Extream single spike reading (51749nT) removed (4900mE, 4630mN).



MAGNETIC ANOMALY CAR-02

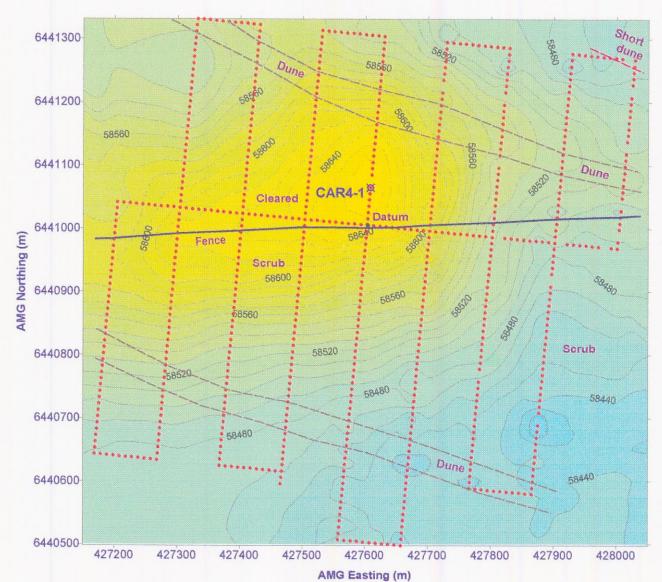
Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 442053mE, 6419314mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diurnal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER.





MAGNETIC ANOMALY CAR-03

Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 430473mE, 6438806mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diurnal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 5nT contours from 25m inverse distance squared regular grid using SURFER 5.01.

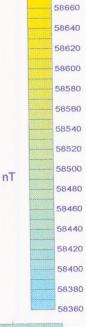


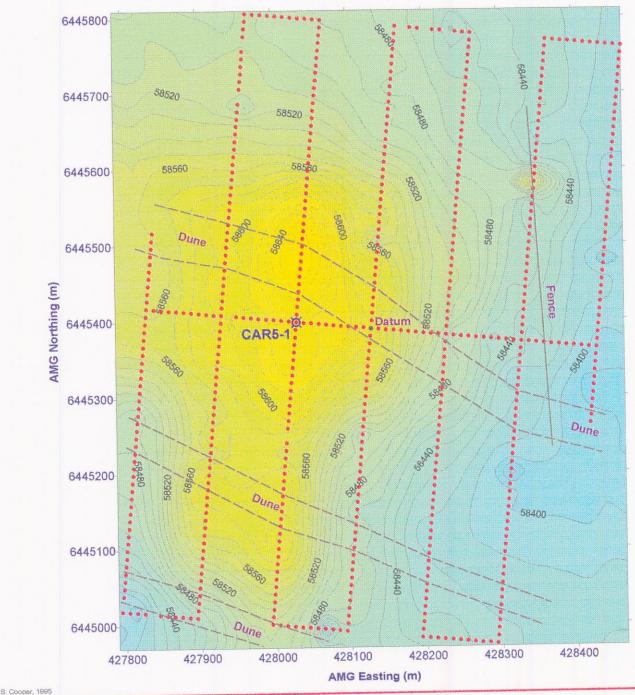
CARAWA PROJECT, S.A. EL 1952

MAGNETIC ANOMALY CAR-04

Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 427603mE, 6441005mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diumal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER 5.01. Readings with extream single spikes have been removed.

nT

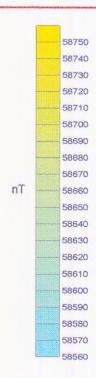


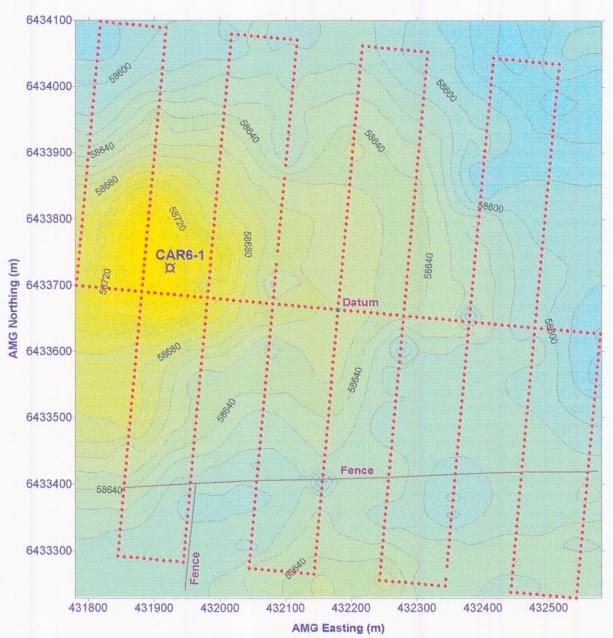

DIAMOND VENTURES NL

CARAWA PROJECT, S.A. EL 1952

MAGNETIC ANOMALY CAR-05

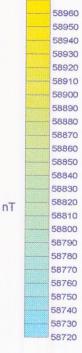
Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 428130mE, 6445390mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diurnal corrected using base magnetometer at 30s intervals. GeoMetrics G855 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER. Single extream spike readings (>1000nT) have been removed.

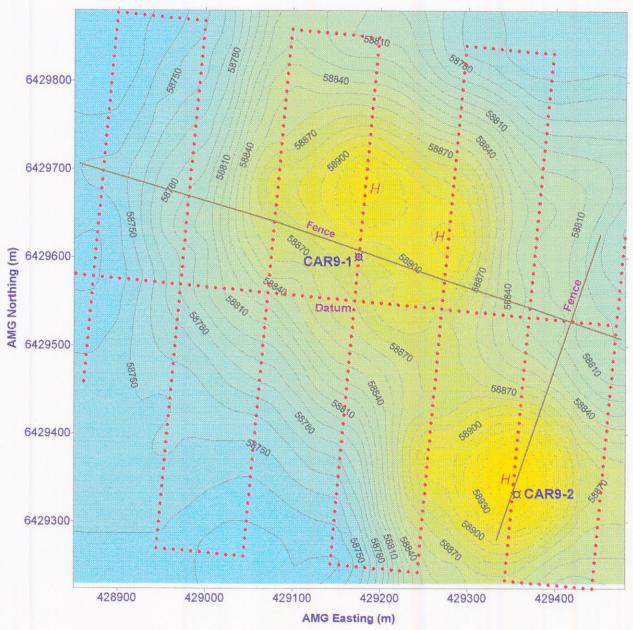




MAGNETIC ANOMALY CAR-06

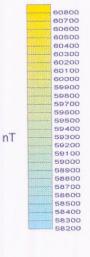
Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 432180mE, 6433663mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diumal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER 5.01. Single extream spike readings (>1000nT) have been removed.

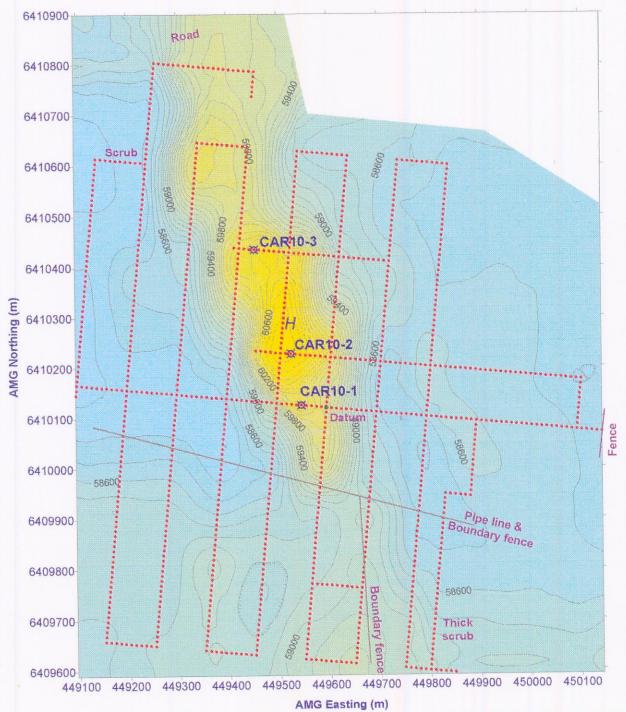




MAGNETIC ANOMALY CAR-09

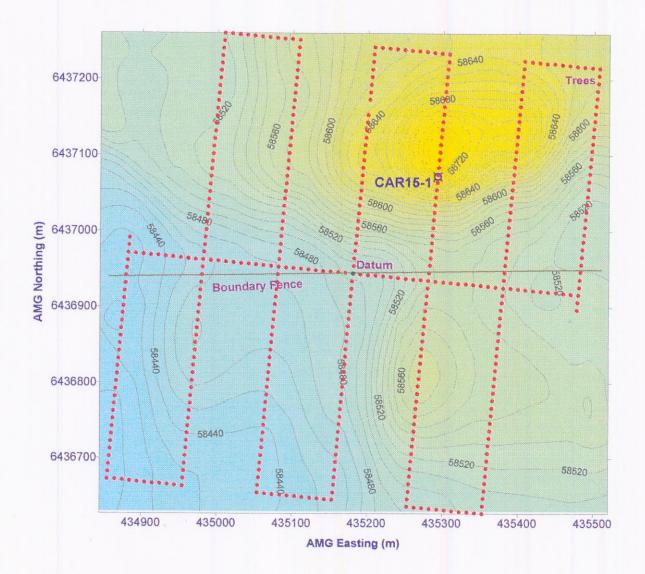
Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 429171mE, 6429551mN, Zone 53H. Line control with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diurnal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER 5.01.





MAGNETIC ANOMALY CAR-10

Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 449595mE, 6410120mN, Zone 53H. Line control? with compass and hipchain by D. Horacek. Station interval 10m, sensor height 2.5m. Diumal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 100nT contours from 25m inverse distance squared regular grid using SURFER 5.01.



CARAWA PROJECT, S.A. EL 1952

MAGNETIC ANOMALY CAR-15

Local grid datum point 5000mE, 5000mN, located by Ensign GPS using 99 reading average at AMG 435181mE, 6436944mN, Zone 53H. Line control with compass and hipchain by D. Horecek. Station interval 10m, sensor height 2.5m. Diumal corrected using base magnetometer at 30s intervals. GeoMetrics G856 magnetometer read by S. Cooper, March 1995. 10nT contours from 25m inverse distance squared regular grid using SURFER 5.01. Extream single reading spike removed (5000mE, 5220mN, 52722nT).

nT

Appendix 3

Project:

Carawa, EL1952.

Hole No.:

CAR01-1.

Anomaly:

CAR01.

Date:

28 April to 1 May 1995

Local Grid: AMG:

4900mE, 5100mN. 437896mE, 6425317mN.

Orientation: Geologist:

Vertical L. Muskett

Drill Method: Open hole 0-102m, diamond core (NQ) 102-128.6m.

Collar Samples.

0-0.7m	Top soil.
0.7-3m	<u>Calcrete</u> - Generally white/cream in colour, the calcrete is found as fragments of what were previously more massive units. Concretionary textures are commonly observed due to its gradual deposition in the upper horizons, and typically these have developed around many small, and dark coloured fine grained/cherty clasts. Additionally, the calcrete is extremely hard, and proved to be a considerable problem throughout the drilling programme.
3-7m	As above & organic material.
7-9m	Fine sands and clay, brown/orange in colour & contamination of calcrete.
9-13m	Medium grained, consolidated sandstone fragments, with a pale coloured, possibly carbonaceous matrix.
13-23m	Arenite - Medium grained quartz-rich sandstone held in a red/brown matrix & minor siliceous material.
23-55m	As above & coarser individual quartz grains 2/3mm in size, displaying various habits from well-rounded to angular.
55-65m	Deep red in colour prior to washing, containing quartz-rich sandstone with individual crystals of quartz.
65-75m ~	Pale brown in colour prior to washing, but the same mineralogy.
75-85m	Green/grey in colour prior to washing, the sample contains quartz-rich sandstone.
85-87m	Green in colour, this sample contains the same sands as above, but also minute clusters of pyritohedra pyrite crystals.
87-97m	As above, but no visible pyrite
97-102m	As above & minor mica.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
102	102.9	-	0	102-102.3m. Predominately a felsic lithology with >90% feldspar, and a matrix of quartz, muscovite, possibly biotite and opaques. Within the unit a banded metamorphic fabric is present indicating that the lithology is, or was, in a state of re-equilibrium, altering to a gneissic assemblage. 102.3-102.8m. Possibly faulted against the above is a mesocratic intermediate unit of diorite. It is also undergoing re-equilibrium as the feldspars are altering to clay, a fact which is supported by the presence of considerable chlorite. Typically, quartz is rare and muscovite abundant.
102.9	103.5	0.15	222	102.8-103m. Faulted contact. Granitic unit with phenocrysts of feldspar up to 2cm. and a matrix of quartz, feldspar and mica. This unit is competent, unlike the intermediate material which is weak and therefore unstable. 103-103.1m. Faulted contact with intermediate. 103.1-103.2m. Faulted contact with granitic material, which now contains magnetite.
103.5	104.5	_	223	103.2-104.35m. Faulted contact with intermediate. 104.35-104.7m. Faulted contact with granitic material.
104.5	105.4	0.35	45	104.7-107.2m. Shear zone of intermediate material containing xenoliths of granitic material.
105.4	105.8	0.15	41	
105.8	107.3	4	47	107.2-107.3m. Faulted contact with granitic material.
107.3	108.2	0.40	57	107.3-108.4m. Contact with intermediate material.
108.2	109.7	1.10	118	108.4-111.3m. Intermediate material becomes competent due enrichment in iron, this also gives the rock a red colouration.

109.7	110.9	0.20	72	
110.9	111.5		32	111.3-111.5m. Granitic material probably of the same unit above. However, this unit has undoubtably been subjected to a greater degree of alteration, with coarse grained anhedral feldspar development in a finer grained matrix.
111.5	112.0	0.40	.	111.5-112.8m. Faulted contact with intermediate material.
112.0	112.2	-	-	
112.2	113.5	0.15	68	112.8-113.2m. Faulted contact with granitic material. However, the fault axis in this section is steeply inclined at 70-80 degrees to the horizontal, unlike all the previous faults which are typically 45 degrees. 113.2-113.5m. Contact with intermediate material.
113.5	115.1	-	15	113.5-115.9m. Contact with granitic material.
115.1	116.4	-	12	115.9-116.45m. Faulted contact with intermediate material.
116.4	118.0	-	40	116.45-117m. Contact with granitic material. 117-117.25m. Faulted contact with intermediate material. 117.25-17.75m. Faulted contact with granitic material. 117.75-118.25m. Faulted contact with intermediate material.
118.0	118.8		45	118.25-123.25m. This section is cut by many faults, resulting in a complex structure of alternating slices of the predominant rock types. Additionally, the combined unit is further by veins of both quartz and feldspar.
118.8	119.2	+0.20	82	
119.2	121.2	0.10	216	
121.2	124.2	-	793	123.25-123.55m. Bleached intermediate. 123.55-123.9m. Fine grained leucocratic lens, seemingly not of the same origin as the previously described acidic rocks. 123.55-126m. Intermediate.
124.2	127.2	-	672	126-127.7m. Contact with granitic material.
127.2	128.6 EOH	-	486	127.7-128.6m. Brecciated granitic material-possible shear zone?

Project: Carawa, EL1952. Anomaly: CAR02.

Hole No.: CAR02-1. Date: 2 & 3 May 1995

Local Grid: 4880mE, 5250mN. Orientation: Vertical AMG: 441956mE, 6419574mN. Geologist: L. Muskett

Drill Method: Open hole 0-22.5m, diamond core (NQ) 22.5-51.7m.

Collar Samples.

0-6m	Calcrete (see notes from previous hole).					
6-8m	Fine unconsolidated sands, apparently poorly sorted due to the presence of coarser quartz crystals. Boundary also indicated by colouration change to an orange/brown.					
8-14m	Competent fragments of the above sands.					
14-16m	As above regardless of colour change to a v.pale brown.					
16-22m	Predominately quartz crystals with sandstone fragments (basement?)					
22-22.5m	As above & fragments of feldspar.					

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
22.5	23.4	<u>-</u>	0	22.5-25m. A leucocratic lithology composed predominately of quartz and yellow feldspars, with an opaque phase which is weathering, possibly an iron oxide, and minor sulphide. The quartz and feldspar, which are largely intergrown, typically display anhedral crystal habits. While although competent, the rock itself shows evidence of faulting, along which considerable iron staining has occurred.
23.4	23.5	-	0	
23.5	24.5	- :	0	
24.5	24.8	-	0	
24.8	26.5	0.10	.8	25-26.5m. This is the same unit, however, the colour of the feldspars has altered to a deep red over a gradational contact.
26.5	29.5	-	211	26.5-30m. Once again there is a gradational colour change, in this horizon the rock is predominately pale grey in colour.
29.5	32.5	_	966	30-35.5m. In this horizon the rock has reverted to the red colouration.
32.5	34.4	-	261	
34.4	36.5	0.10	5527	35.5-51.7m. At this point the rock is highly sheared and extremely magnetic, the latter being due to the concentration of magnetite. The red/pink feldspars are very angular and surrounded by a matrix of quartz, feldspar and magnetite. The linear habit of the magnetite indicates that its been sheared into thin horizons, and/or possibly that its been re-mobilised or introduced into the system at the time of shearing. This shear extends for 2.5m before returning to the red granitic material previously described. However, a further shear zone between 42.5-43m also exists, unlike the above it is not rich in its magnetite content, but does indicate that all three mineral phases have been re-mobilised during the shearing. The red granite is dominant to the EOH, with the magnetite becoming more stable with depth.
36.5	39.2	•	3216	
39.2	40.9		201	
40.9	42.5	-	1409	
42.5	45.5	-	150	
45.5	48.5	-	667	
48.5	51.7 EOH	-	732	

Carawa, EL1952.

Anomaly:

CAR03.

Hole No.:

CAR03-1.

Date:

11 to 13 May 1995

Local Grid:

5025mE, 4970mN.

Orientation:

Vertical

AMG:

430495mE, 6438774mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-133m, diamond core (NQ) 133-137.8m.

Collar Samples.

	0-2m	Top soil.
- Andrews Williams	2-6m	Calcrete (see previous notes).
	6-14m	Fine, well sorted, and unconsolidated sands with a v.fine/clay matrix.
3	14-16m	As above & minor fragments of fine, well sorted arenite.
0.61	16-18m	As above & individual med.grained, sub-rounded quartz crystals.
Sacford	18-70m	Fine unconsolidated sands, with minor opaques and contamination from above.
	70-76m	Fine/med.grained sands which are rich in feldspar and therefore dark red/brown in colour.
	76-82m	Med.grained sands composed of quartz, feldspar, and lithics. The grains are generally angular, and there is little or no matrix, making the unit porous and grain supported.
200	82-84m	Fine/med.sands relatively richer in quartz and subsequently lighter in colour.
Pidinga	84-88m	Clay, dark brown in colour.
<i>Q</i>	88-96m	Med.grained quartz sands which are well sorted and display various habits.
	96-133m	Very clean coarse grained sands?, composed mainly of irregular shaped quartz, feldspar, and organics. The unit is well sorted, grain supported, with no apparent matrix, and subsequently will be very porous. The unit may be the upper horizon of the underlying basement?

Diamond Core.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
133	134.4	.	0	133-134.4m. A med.grained lithology with phenocrysts of anhedral-subhedral feldspars, which often display zoning. The matrix is composed of quartz and feldspar, the latter of which is commonly breaking down to a clay assemblage. Chloritic alteration is occurring, and the unit is cut by faults along which iron staining has occurred. Towards the base fine mafic banding can be seen, indicating that the unit is/has undergone a degree of metamorphism.
134.4	135.9	0.7	0	134.4-136.15m. Extreme alteration of the feldspars into a clay assemblage has made the unit unconsolidated, and mineral identification impossible.
135.9	137.8 EOH	<u>-</u>	343 @ 136.75m 2023 @ 137.0m	136.15-136.65m. Med.grained mesocratic rock which displays a strong metamorphic fabric. It consists of zoned white alkali feldspars of various habits, quartz, magnetite, other opaques, and minor metallic minerals. 136.65-136.9m. Med.grained leucocratic rock which is rich in pink/red feldspar, lesser quartz, and minor opaques. The quartz and the feldspars are commonly intergrown with embayed crystal boundaries, and therefore generally anhedral in habit. The opaques are evenly disseminated through the rock and are not obviously magnetic, however, some do appear platey and presumably these are biotite. The
			1842 @ 137.2m 2016 @ 137.6m	boundary between this and the above unit is not faulted, but a sharp and intergrown. Therefore the original units were either two igneous bodies which while still ductile mixed to a limited extent, or possibly two sedimentary horizons. There is no evidence of chilled margins, but these could have been overprinted by the subsequent metamorphism and recrystallisation. 136.9 m-E.O.H. This unit is composed mainly of alkali feldspars with minor quartz magnetite, and other opaques. It has a strong metamorphic banded texture, therefore classifying it as a gneiss. In other horizons the banding is absent, but the
			852 @ 137.7m	mineralogy remains the same. Once again the contact between the unit and the above is not faulted, and the same characteristics apply as previously described.

Carawa, EL1952.

Anomaly:

CAR04.

Hole No.:

CAR04-1.

Date:

7 May 1995

Local Grid:

5000mE, 5060mN.

Orientation:

Vertical

AMG:

Geologist:

427609mE, 6441065mN.

L. Muskett

Drill Method: Open hole 0-34m, hole abandoned.

Collar Samples.

0-8m:	Calcrete (see previous notes).
8-12m:	Fine unconsolidated sands, generally brown in colour and matrix supported, although weakly, by a v.fine/clay material
12-14m	The colour of the sample is somewhat paler due to the presence of med.grained quartz crystals within the sands.
14-18m	As above, however the sands are becoming more consolidated
18-34m E.O.H.	Predominately med.grained, well rounded, well sorted, and grain supported quartz crystals which have little or no matrix. Minor fragments of sandstone and fine sand are present, but these may be contamination. These sands due to their lack of matrix, their rounded habit, and degree of sorting, are obviously very porous and the reason as to why water circulation while drilling could not be attained - hole abandoned at 34m.

Carawa, EL1952.

Anomaly:

CAR05.

Hole No.:

CAR05-1.

Date:

8 to 11 May 1995

Local Grid:

4900mE, 5000mN.

Orientation:

Vertical

AMG:

428030mE, 6445399mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-77m, diamond core (NQ) 77-82.5m.

Collar Samples.

0-6m:	Calcrete (see previous notes).
6-10m	Very fine unconsolidated sands with minor quartz crystals up to 0.5mm. Generally the sands are poorly sorted and matrix supported, although weakly, by a clay material.
10-14m	Quartz-rich yellow and white sands. Both appear to be reasonably consolidated, but it is difficult to elucidate as to whether they are grain or matrix supported. Individual quartz crystals are still present as previously described.
14-16m	Unconsolidated quartz sands in a clay matrix. Additionally there are poorly sorted but consolidated sands in a green, possibly crystalline matrix.
16-20m	Med/coarse quartz-rich sands with minor feldspar.
20-22m	As above & fine sands in a yellow matrix.
22-24m	Unconsolidated med.grained quartz sands,
24-30m	As above, no evidence of a matrix and therefore clast supported.
30-54m	Difficult to ascertain what is prominent, generally however it is composed of quartz displaying angular to sub-rounded habits, feldspar, and sandstone fragments.
54-66m	As above, with fragments of fine sandstone and coarser quartz crystals up to 0.7mm.
66-74m	Brown coloured feldspar-rich sands with minor quartz.
74-76m	As above & white clay.
76-77m	White clay, possible weathered basement.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
77.0	77.6	0.15	18 @ 77.0m	70-77.7m. Fragments of coarsely grained recrystallised quartz can be found at the top of the core. However, this passes into a med.grained quartz, feldspar, and lithic assemblage held in a pale brown matrix, it is greatly weathered and subsequently incompetent.
77.6	77.7	-		
77.7	78.5	÷	18 @ 78.0m	77.7-79m. The same unit is now veined with an opaque mineral phase, and by the recrystallised quartz. It is still considerably weathered and is stained with iron along many of the veins and fractures.
78.5	78.8	0.10		79-80.5m. The same unit continues but is less weathered, and therefore more competent. It is composed of pink/red feldspars which display subhedral to anhedral habits, and which are held in a med.grained matrix of quartz, mica, and opaques. Along many of the fractures chlorite is found, while many of the feldspars are being overprinted by an acicular mineral which appears to be actinolite. Pyrite cubes are also present, but these form a minor phase.
78.8	79.8	0.25		
79.8	80.2		121 @ 80.0m	

80.2	81.5	+0.40	3571 @ 81.0m	80.5-E.O.H. Once again the same unit continues, this time however the degree of metamorphism is considerably greater. Gneissic banding has developed, and magnetite forms opaque, and highly magnetic stringers cutting through the unit. The feldspars have rounded and vague crystal boundaries due to replacement, and in addition to the quartz, have become engulfed by an opaque mineralogy. In other horizons the quartz and feldspar have developed into an anhedral mosaic of coarsely grained minerals, and generally these areas are devoid of opaques. Subsequently, such regions do not have the same magnetic characteristics as the more mafic rich areas. This is obviously a high grade metamorphic rock, displaying the characteristics of both a schist and a gneiss, while its original rock type is difficult to ascertain.
81.5	82.1	-	3926 - 81.3m	
82.1	82.5 EOH	-	1812 @ EOH	

Carawa, EL1952.

Anomaly:

CAR06.

Hole No.:

CAR06-1.

Date:

15 & 16 May 1995

Local Grid:

4740mE, 5040mN.

Orientation:

Vertical

AMG:

431925mE, 6433727mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-71m, diamond core (NQ) 71-73.6m.

Collar Samples.

0-2m	Calcrete (see previous notes).			
2-4m	Fine/med., poorly sorted sands which are generally unconsolidated and grain supported.			
4-10m	V.poorly sorted sands held in a red/brown v.fine/clay matrix.			
10-12m	As above & fragments of white arenite.			
12-14m	As above, but no arenite.			
14-34m	Fine/med., moderately sorted sands held in little or no matrix. The grains vary in habit from angular to rounded, while the unit in general is grain supported and unconsolidated.			
34-36m	Red/brown clay.			
36-48m:	The same unit as found between 14-34m.			
48-54m	Poorly sorted fine sands held in a matrix of variously coloured clays. Additionally, a high percentage of unidentified opaque minerals are present giving the sample its dark colouration.			
54-60m	Fragments of dark brown and fine grained sandstone, with clay.			
60-62m	Fine sands in a yellow clay matrix.			
62-70m	White clay.			
70-71m	Blue/white clay.			

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
71.0	72.4	•	3 @ 71.1m	71-71.35m. Fine grained intergrowths of anhedral quartz and feldspar with disseminated opaques, some of which are biotite. The feldspars, which are white in colour, are in the preliminary stages of breaking down as they are v.soft, however, presently no clay has developed. The unit is faulted, and along which quartz veins have developed.
72.4	72.5	-	1 @ 72.1m	71.35-E.O.H. A coarse grained granitic/gneiss rock containing phenocrysts of brown alkali feldspar in a matrix of quartz, feldspar, biotite, and magnetite with increasing depth. Some of the feldspars display subhedral habits and zoning, whereas the remainder do not. However, all the feldspars are competent, and therefore not breaking down, unlike the above unit. Feldspar veins cut the unit, and recrystallisation is evident with the development of a banded metamorphic fabric.
72.5	73.6 EOH	-	50 @ 73.1m 1108 @ 73m	

Carawa, EL1952.

Anomaly:

CAR09.

Hole No.:

CAR09-1.

Date:

4 & 5 May 1995

Local Grid:

5000mE, 5050mN.

Orientation:

Vertical

AMG:

429176mE, 6429601mN.

Geologist:

L. Muskett

Drill Method:

Open hole 0-22.5m, diamond core (NQ) 22.5-29.4m, open hole 29.4-43.5m, diamond core

(NQ) 43.5-47.7m.

Collar Samples.

0-6m	Calcrete (see previous notes).
6-14m	Fine unconsolidated sands.
14-16m	Consolidated fragments of the above & fragments of white fine/med. Quartz-rich sands - arenite.
16-20m	As above & individual quartz crystals <0.5mm.
20-22.5m	Fine sands with no arenite.

Diamond Core.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
22.5	23.7	-	0	22.5-22.9m. Friable fine/med.sands, mod.sorted, subangular-rounded in habit, held in an orange/brown matrix.
23.7	24.7	0.30	0	22.9-26.7m. Bleached, poorly consolidated quartz-rich sandstone predominates, gradually becoming more consolidated with depth. The unit displays various habits
24.7	26.7	0.85	0	and degrees of sorting, and is generally matrix supported. Structures are limited to faulting and subsequent brecciation, in addition to iron-rich laminations.
26.7	29.4	1.2	0	26.7-29.4m. Red/brown fine arkosic sandstone which is poorly sorted, grain supported and generally unconsolidated.

Rotary Samples.

itotal y ban	· Mariana de la companya de la comp
29.4-33m	As above.
33-39m	As above & quartz crystals.
39-41m	Colour white/l.brown due arenite clasts predominating.
41-43.5m	Mainly quartz with yellow feldspars-possible weathered basement?

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
43.5	45.2	- 0 23@44.7m 76@44.9m 1820@45.1m		43.5-43.8m. Fine grained leucocratic rock composed mainly of pink alkali feldspar with quartz and minor muscovite-no opaques. Felsite/micro granite.
45.2	47.7 EOH		1904@- 45.3m 1712 @ 45.7m 1998 @ 46.2m 3169 @ 47.2m 1971 @ 47.7m.	43.8-47.7m. Contact with granitic material composed of subhedral feldspar phenocrysts (2cm) and a matrix of intergrown quartz, feldspar, muscovite and biotite mica granite. The unit is commonly fractured, and characterised by an increasing amount of magnetite with depth.

Carawa, EL1952.

Anomaly:

CAR09.

Hole No.:

CAR09-2.

Date:

6 May 1995

Local Grid: AMG:

5200mE, 4800mN.

Orientation:

Vertical

Drill Method: Open hole 0-32m, diamond core (NQ) 32.6-39.8m.

429352mE, 6429334mN.

Geologist: L. Muskett

Collar Samples.

0-4m	Calcrete (see previous notes).
4-14m	Fine unconsolidated sands identified in sample due to colour change in sample prior to washing.
14-22m	Fine/med.consolidated fragments of arenite held in a carbonaceous matrix.
22-30m	Fine/med.consolidated sandstone in an orange/brown matrix.
30-32m	White alkali feldspar with quartz - basement?

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
32.6	33.8	0.60	0 @ <33.7m	32.6-33.8m. Med.grained and pale grey feldspar-rich rock, with minor quartz throughout and opaques (biotite?) at depth. The feldspars generally form anhedral habits with the occasional crystal being subhedral. Additionally they form a phenocrystal phase with crystals up to 1cm, but typically they average around 3mm.
33.8	36.8	-	83 @ 34.3m 121 @ 35.3m 282 @ 36.4m 2215 @ 36.6m	33.8-36m. This is the same unit as above, but it is brown in colour, more porphyritic, biotite and possibly muscovite are more abundant, and a secondary opaque phase is present forming around the primary crystal boundaries. Banding in the rock is also very apparent, and may represent relic bedding, thus making this an S-type granite? There are also minor sulphides. 36-36.5m. Banded schist consisting of quartz, feldspar, mica, and tabular opaques of homblende, which in places appear to have been replaced by chlorite. Amphibolite schist.
36.8	39.8 EOH	_	10420 @ 37.0m 8397 @ 38.0m 3700 @ 39.7m	36.65-39.8m. This unit is a feldspar-rich rock with phenocrysts up to 2/3cm. The crystals are rounded and poorly developed, and obviously in a state of disequilibrium. The matrix which surrounds the phenocrysts is composed of quartz, feldspar and magnetite, and the magnetite is commonly oxidizing. The rock type at the top of the core is also present, as is the banding previously described.

Carawa, EL1952.

Anomaly:

CAR10.

Hole No.:

CAR10-1.

Date:

17 May 1995

Local Grid:

4950mE, 5000mN.

Orientation:

Vertical

AMG:

449545mE, 6410125mN.

Geologist:

L. Muskett

Drill Method:

Open hole 0-23.5m, diamond core (NQ) 23.5-25.9m.

Collar Samples

Collar Sar	nples.
0-2m	Top soil.
2-8m	Calcrete (see previous notes).
8-10m	Fine, moderately sorted sands in a brown clay matrix.
10-12m	As above & minor quartz crystals <1mm.
12-16m	As above & consolidated fragments of the same sands.
16-20m	Dark brown sample with clays, quartz, and mica - possible basement?
20-23.5m	Quartz, feldspar, mica, and opaques, with lesser amounts of clay.

Diamon	d Core.			
Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
23.5	24.7	-	172	23.5-24.8m. A mesocratic rock with a pronounced schistosity. Quartz and white alkali feldspars are intergrown, and appear to be the original components of what is now a mica rich lithology. In addition there is a blue, and possibly metallic phase which is difficult to identify.
24.7	25.8	-	187	24.8-25.5m. Quartz and feldspar become rarer with depth, and therefore the rock becomes more mafic. Flakes of biotite dominate the mineralogy, thus classifying the unit as a biotite schist. 25.5-E.O.H. The rock is now melanocratic in appearance, and strongly magnetic. The blue coloured mineral now forms a major part of the unit, and there is a considerable density difference in this section of core towards the core higher in the profile. Whether it is the magnetic phase is difficult to ascertain, but there is no obvious magnetite present, therefore its possible that it may be specular haematite?
25.8	25.9 EOH		12316	

Carawa, EL1952.

Anomaly:

CAR10.

Hole No.:

CAR10-2.

Date:

17 & 18 May 1995

Local Grid:

4920mE, 5100mN.

Orientation:

Vertical

AMG:

449525mE, 6410227mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-23m, diamond core (NQ) 23-33.4m.

Collar Samples.

0-6m:	Calcrete (see previous notes).
6-10m:	Fine unconsolidated and consolidated sands, the latter being weakly bonded by a clay matrix. Minor med.grained quartz crystals are also present.
10-23m	As above, with the addition of mica flakes and minor fragments of the blue mineral previously found in the last drill hole.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
23.0	24.7	0.15	0 @ 23.0m 604 @ 23.5m	23-E.O.H. At the top of the core recrystallised siliceous material as found at CAR 05 can be found, and this is cut by fine veins of opaque minerals giving the rock a metamorphic fabric. The rock passes quickly into a schist, containing quartz, feldspar, biotite, and other opaques, this is the same unit as found in the previous hole. A considerable amount of the core is iron stained, but it has remained competent. Additionally, the unit is commonly cut by quartz veins, such as those previously described, however, in these horizons they contain small blue coloured opals. This unit remains until the E.O.H.
24.7	27.5	-	680 @ 24.5m 868 @ 25.5m	
27.5	29.4	,	1586 @ 27.4m 1737 @ 28.4m	
29.4	32.4	-	2265 @ 29.4m	
32.4	33.4 EOH	-	6538 @ 32.5m	

Carawa, EL1952.

Anomaly: CAR10.

Hole No.:

CAR10-3.

Date:

18 & 19 May 1995

Local Grid:

4820mE, 5300N.

Orientation:

 60° towards 090° magnetic

AMG:

449443mE, 6410435mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-21.5m, diamond core (NQ) 21.5-49.0m.

Collar Samples.

0-6m	Calcrete (see previous notes).
6-14m	Fine, moderately sorted sands in a clay matrix.
14-18m	As above & individual crystals of quartz.
18-20m	As above & consolidated fragments of the same sands.
20-21.5m	Quartz, feldspar, mica, and opaques, with white clay.

Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes
21.5	22.8	-	91 @ 22m	21.5-22.1m. Fine grained mafic schist, with schistosity steeply inclined, and an occasional band of coarse feldspar. 22.1-22.8m. Augen Gneiss. Augen shaped feldspars up to 1cm in length are found in a matrix of quartz and opaques.
22.8	25.9	0.3	76 @ 22.8m	22.8-25.8m. Mafic schist as above, but here it is cut by quartz veins.
25.9	26.5	. -	378 @ 24m	25.8m-35.7m. This unit is a <u>banded gneiss</u> , composed generally of feldspar and very minor quartz and opaques. The opaques form fine lineations in the rock and give it its banded texture, and they are at the same inclination, and possibly orientation, as the schistosity. Presumably the same metamorphism has caused both textures, and therefore its also possible that the units represent different relic sedimentary horizons.
26.5	28.3	-	5285 @ 27m	
28.3	30.7	-	227 @ 28.5m	
30.7	32.6			
32.6	33.2	1	:	
33.2	33.5	1		
33.5	34.1	•		
34.1	34.6	•		
34.6	36.8	-		35.7-38.1m. Mafic schist.
36.8	38.2	1	2039 @ 37m	38.1-41.8m. Banded gneiss. This unit clearly shows that the units are not faulted against one another.
38.2	38.9	-		
38.9	39.7	ı	1510 @ 39m	41.8-EOH. Mafic schist. This unit is cut by many quartz veins, some of which contain iron sulphide and possibly the copper oxide cuprite. It is highly magnetic, probably due a high concentration of magnetite. However, this rock also has a blue lustre and obviously contains the same mineral as the previous two drill holes, but the identity of the mineral is still unresolved.
39.7	42.8	•		
42.8	49.0 EOH	-	15025 @ 43m 12593 @ 48.5m	

Carawa, EL1952.

Anomaly:

CAR15.

Hole No.:

CAR15-1.

Date:

14 & 15 May 1995

Local Grid:

5100mE, 5138mN.

Orientation:

Vertical

AMG:

435293mE, 6437072mN.

Geologist:

L. Muskett

Drill Method: Open hole 0-62m, diamond core (NQ) 62.3-66.4m.

Collar Samples.

0-2m	Calcrete (see previous notes).				
2-8m	Fine, well sorted sand held in a orange/brown clay matrix.				
8-10m	Red/brown coloured clay, with fragments of fine grained, yellow sandstone.				
10-14m	Red/brown and cream coloured clays.				
14-18m	Fine grained sands held in yellow fine/clay matrix.				
18-22m	Difficult to determine predominant lithology. The section is composed of sandstone fragments, clay, siliceous material, and quartz crystals.				
22-28m	Med.grained, well sorted, and grain supported sands, which display various habits.				
28-30m	Difficult to determine predominant lithology. The section is composed of quartz, clay, and sandstone fragments.				
30-60m	Coarse, angular quartz-rich sands with a minor to absent clay matrix.				
60-62m	Yellow clay.				

Jiamond Core.							
Start (m)	End (m)	Lost (m)	Mag. Sus.	Notes			
62.3	62.6	- -	12533 @ 62.4m	62.3-E.O.H The entire core is composed of the same lithology. Meso-melanocratic in appearance, the unit contains considerable opaques, especially magnetite, but also quartz, feldspar, chlorite, and minor sulphide. Relic phenocrysts of feldspar display a metamorphic replacement texture, but there is no banding or obvious foliation as seen in some of the other rocks. Classification of this rock in the field is difficult, however, it is obviously metamorphic, and the presence of chlorite indicates that it is of greenschist facies.			
62.6	64.0	-	12895 @ 63.4m				
64.0	64.2	<u>-</u>	13771 @ 64.4m				
64.2	65.5		13243 @ 65.4m				
65.5	66.4 EOH	_	13167 @ 66.4m				

DR B.J. BARRON

Petrologist

7 Fairview Avenue ST IVES NSW 2075 Tel: (02) 449.5839

Our ref: D11/94/852

Your ref: Purchase Order numbers 0555 (3 May, 1995) and

0556 (10 May, 1995).

Petrological examination of seven drill core samples (CAR 1-1 115.45m; CAR 1-1 128.55m; CAR 2-1 22.7m; CAR 2-1 36.0m; CAR 9-1 47.5m; CAR 9-2 36.3m; CAR 9-2 38.0m), from the Carawa Project EL1952, Gawler Craton, South Australia.

Report No: D11/94/852

30 May, 1995

For: Diamond Ventures NL

Dr B.J. Barron
Consulting Petrologist

Sample No.

CAR 1-1 128.55 m

Rock Type

Partly selectively altered and partly recrystallised,

amphibole- and biotite-rich, quartz monzodiorite.

Hand Specimen A coarse grained, mottled white and dark green-grey, granular and friable drill core sample, for which K-feldspar staining gave patchy positive results for parts of the white fraction. The rock is faintly magnetic.

This sample has undergone partial metamorphic recrystallisation, but retains a clear, once holocrystalline hypidiomorphic granular intrusive igneous relict texture. This texture is marked by abundant unoriented stout plagioclase laths that vary in length from less than 1.3 mm up to more than 3 mm. The plagioclase retains recognisable magmatic zoning, with central cores that are heavily clouded with fine sericite and minor granular epidote. Interstitial anhedral patches are filled with perthitic K-feldspar (microcline) and granular quartz. Both the microcline and quartz show domains of distinct metamorphic recrystallisation, and anhedral patches of microcline commonly show myrmekitic margins.

The dark green-grey patches of the hand specimen comprise aggregates of anhedral intergrown blue-green amphibole (probably a hornblende), and ragged biotite flakes that are partly converted to olive green chlorite. These ;mafic aggregates are distinctly spongy (poikilitic, and poikiloblastic), enclosing numerous anhedral inclusions of quartz, feldspars, apatite, zircon and opaque oxides.

An approximate primary <u>modal composition</u> for this sample could be as follows; plagioclase 55%; K-feldspar 8%; quartz 10%; amphibole 10%; biotite 10%; once ?titaniferous opaque oxides 5%: and < 2%; accessory apatite, zircon and sphene.

The sample may be described as a partly selectively altered and partly recrystallised, amphibole- and biotite-rich, quartz monzodiorite.

Sample No.

CAR 1-1 115.45 m

Rock Type

Coarse grained partly graphic granite pegmatite, with

minor clay alteration.

Hand Specimen A very coarse grained somewhat friable feldspathic pinkgrey drill core sample with conspicuous white argillic vein-like patches. K-feldspar staining gave very strong positive results for about 70% of the offcut surface.

This is a coarse grained (pegmatitic) granitic sample, with an allotriomorphic granular to graphic texture. Grain size is variable, and reaches more than 3 cm in the present section. Anhedral crystals of strongly perthitic microcline predominate, and these have distinctly graphic rims where they are intergrown with quartz. The microcline also encloses sparse small subhedral crystals of albite.

The anhedral coarse grained microcline-rich domains are separated by domains of granular, partly ?recrystallised (0.15 mm) quartz intergrown strongly clay-clouded albitic plagioclase and microcline. The clay appears to be low birefringent kaolinite.

The sample contains minor accessory muscovite as ragged flakes enclosed within K-feldspar, rare degraded anhedral opaque oxides, and small metamict euhedral zircon crystals.

An approximate modal composition for the present section is as follows; K-feldspar 70%; quartz 20%; and albite 10%; with accessory muscovite, opaque oxides and metamict zircon.

The sample may be described as a coarse grained partly graphic granite pegmatite, with minor clay alteration.

Sample No.

CAR 2-1 22.7 m

Rock Type

Strongly recrystallised and foliated, coarse grained granite

'gneiss'.

Hand Specimen A coarse to fine grained pink-grey feldspathic drill core sample with dark grey somewhat subparallel lenses marking a wavy foliation. K-feldspar staining gave strong positive results for abundant patches within the pink fraction of the sample.

Thin Section Strong metamorphic recrystallisation and foliation has affected this sample. However there are preserved in several domains stout subhedral prismatic shaped albitised and sericite-bearing plagioclase prisms, and coarse anhedral perthitic microcline crystals that clearly once were part of a granitic intrusive igneous parent rock. These relict feldspar grains and aggregates reach 5 mm grain size in the present section, but commonly show branching narrow zones of fine recrystallisation, dislocation and fracture. They are intergrown with abundant quartz rich domains that are recrystallised to granular or granoblastic aggregates with an average grain size of about 0.3 mm. The quartz rich domains, although irregular, have somewhat subparallel elongate wavy lensed shapes.

Narrow wavy lenses of strongly recrystallised biotite mark relict mafic domains. Several retain poor outlines of large ragged igneous biotite flakes that are now deformed and drawn out parallel to the wavy foliation. The biotite in such sites is partly converted to clay, and encloses patches of leucoxenealtered granular sphene. An approximate composition for the granitic igneous parent is as follows; quartz 35%; albitised plagioclase 20%; K-feldspar 40%; and biotite 5%.

The sample may be described as a strongly recrystallised and foliated, coarse grained granite 'gneiss'.

Sample No.

CAR 2-1 36.0 m

Rock Type

Partly deformed and recrystallised, coarse grained

feldspathic granite.

Hand Specimen A coarse grained granular red-brown granitic drill core sample with sparse dark grey mafic crystal sites. K-feldspar staining gave strong positive results for coarse anhedral crystal sites and clusters.

Thin Section Relict hypidiomorphic granular texture is quite well preserved in this felsic granitic rock, in spite of strong but partly selective metamorphic recrystallisation. It retains a primary grain size that varies from less than 1.5 mm up to more than 5 mm in the present section. Feldspar crystals and clusters have undergone only partial fine grained metamorphic recrystallisation, particularly along grain boundaries and narrow cleavage or fracture surfaces. On the other hand quartz is selectively recrystallised forming a mosaic with an average grain size of about 0.2 mm.

An approximate primary modal composition could have been as follows; quartz 35%; plagioclase 25%; K-feldspar 35%; oxides 3%; altered mafic silicates < 1%; and < 1% accessory zircon and minor apatite.

The plagioclase is albite, commonly with central zones that are quite heavily clouded with sericite. Many of the elongate plagioclase prisms

(show deformed and bent twin lamellae, as well as fractured grains with small) displacements. K-feldspar is strongly perthitic microcline, with branching narrow zones of finely recrystallised grains. Anhedral oxide grains reach 2 mm across and commonly are rimmed with dusty sphene indicating a titaniferous composition. The oxides could contain unusual elements since they enclose abundant small zircon euhedra. The euhedral zircon crystals show narrow epitaxial rims of zircon overgrowth in optical continuity with the host grains. This overgrowth possibly could date the metamorphic event while the core zircon could represent primary magmatic crystallisation. Small ragged biotite flakes are partly chlorite-altered.

The sample is a partly deformed and recrystallised, coarse grained feldspathic granite.

Sample No.

CAR 9-1 47.5 m

Rock Type

Little-altered coarse grained biotite bearing granodiorite.

Hand Specimen A coarse grained, mottled pale pink-grey to pale grey granitic drill core sample in which K-feldspar staining gave positive results for anhedral pink grains accounting for about 12% of the present offcut area.

Thin Section Hypidiomorphic granular texture is evident in this granitic intrusive igneous rock, that has not undergone significant metamorphic recrystallisation. The sample has a variable grain size, mostly within the size range 0.6 mm up to 5 mm, but with an average size of about 1.5 mm.

It has the following approximate modal mineralogy; quartz 35%; plagioclase 45%; K-feldspar 12%; biotite 5%; opaque oxides 3%; and accessory apatite, zircon, sphene and traces of allanite.

Unlike the previous sample CAR 2-1 36.0 m, the quartz in the present sample is not recrystallised, but granular and anhedral. Some coarse grains show strain shadows, with trails of dusty solid and fluid inclusions. Plagioclase crystals are subhedral with distinct compositional zoning, and patchy distribution of sericite clouding. Clusters of relatively coarse grained ragged sericite flakes, minor carbonate and epidote are developed in several sericite-clouded plagioclase crystal sites. Anhedral K-feldspar (perthitic microcline) is distinctly poikilitic containing rounded quartz blebs, small plagioclase laths, as well as sphene, oxides, and biotite. Some marginal patches are myrmekitic.

Ragged biotite flakes show minor chlorite alteration and commonly are intergrown with interstitial quartz. They occur in clusters with anhedral oxides, accessory apatite and zircon.

The sample is a little-altered coarse grained biotite bearing granodiorite.

Sample No.

CAR 9-2 36.3 m

Rock Type

Distinctly compositionally banded, and well foliated,

medium grained, biotite - altered cordierite-K-feldspar-

plagioclase gneiss.

Hand Specimen A distinctly compositionally layered medium grained well foliated drill core sample in which alternating dark grey (mafic rich) and pale browngrey (feldspar rich) bands vary in thickness from 1 mm up to more than 1 cm. K-feldspar staining gave strong positive results for the pale brown-grey felsic bands.

Thin Section Granular to granoblastic recrystallised metamorphic texture, and an average grain size of about 0.35 mm is characteristic in this sample. However, there are preserved relict blastophenocrysts and some glomeroporphyritic

aggregates, up to 2 mm grain size, of prismatic shaped, once compositionally zoned plagioclase that is now albitised and heavily clouded by dusty sericite and fine granular epidote. Also present are rare relict, somewhat irregular shaped plagioclase crystals that retain some primary magmatic zoning. Other recognisable relict textural features are not preserved.

The conspicuous compositional layering of the hand specimen mostly is defined by sharp variation in the proportion of biotite flakes in adjacent bands. The ragged ~ 0.2 mm long biotite flakes account of up to 35% of some layers, and are well aligned parallel to the compositional layering and the foliation which they define. The biotite-rich layers contain approximately equal major proportions of biotite, quartz, plagioclase ± oxides (partly hematite-altered), apatite, and accessory epidote and sericite. In strongly felsic layers biotite decreases to less than 5%, and the granular felsic material comprises almost equally abundant granular quartz, plagioclase, K-feldspar (microcline), as well as abundant elongate lensed sites now selectively filled with pale yellow stained low birefringent layer silicates. These sites almost certainly once were cordierite. Sphene and opaque oxides once again are accessory. Several narrow, crosscutting, vein like fracture zones are marked by strong development of patchy epidote and sericite.

This sample could have had a mixed sedimentary/tuffaceous parent of feldspathic composition, but now may be described accurately only in terms of its present strongly recrystallised metamorphic mineralogy as a distinctly compositionally banded and well foliated, medium grained, biotite-altered cordierite-K-feldspar-plagioclase gneiss.

Sample No.

CAR 9-2 38.0 m

Rock Type

Partly selectively altered, K-feldspar megacrystic, deformed, irregularly foliated and partly recrystallised, biotite- and altered cordierite-bearing (gneissic) granitic rock, with a variable grain size and mineral distribution.

Hand Specimen A very coarse but uneven grained pink-grey granitic drill core sample. K-feldspar staining gives strong positive results for very coarse anhedral grains (up to 2 mm across) and aggregates, separated by irregular pale pink-grey fine grained granular domains throughout which are patches and wavy black trails of ?biotite, possibly defining a wavy foliation.

Thin Section Coarse (up to 2 cm) K-feldspar 'megacrysts' and clusters are characteristic of this partly recrystallised and foliated granitic rock. The 'megacrysts' are strongly perthitic anhedral microcline, that is also strongly poikilitic, enclosing numerous small (~ 0.3 mm), irregular patches of quartz, plagioclase laths, and sparse ragged biotite flakes.

The microcline 'megacrysts' are set within a somewhat granular and party recrystallised matrix fraction, with an average grain size of about 0.3 mm. This fraction contains subhedral prismatic albitised plagioclase (up to 3 mm grain size), commonly with central zones now converted to sericite. Such crystals most likely are of a relict igneous nature. They are set in a mosaic of anhedral interlocking to partly granular and granoblastic quartz, intergrown with plagioclase, microcline, patches of myrmekite and sparse anhedral clay-altered patches that once could have contained cordierite. The latter is associated with clusters of partly chlorite-altered biotite flakes, anhedral opaque oxides and abundant accessory apatite and zircon. In several domains clusters of biotite flakes poorly define a possible wavy foliation, bending around the coarse feldspar grains and aggregates.

The sample may be described as a partly selectively altered, K-feldspar megacrystic, deformed, irregularly foliated and partly recrystallised, biotite- and altered cordierite-bearing (gneissic) granitic rock, with a variable grain size and mineral distribution.

DR B.J. BARRON Petrologist

7 Fairview Avenue ST IVES NSW 2075 Tel: (02) 449.5839

Our ref: D11/94/859

Your ref: Purchase Order No. 0560, 24th May 1995

SEYOU.

Petrological examination of eight drill core samples from the Carawa project, EL 1952, South Australia.

Report No: D11/94/859

22 June, 1995

For: Livre Holdings Pty Ltd

Sample No.

CAR 03-1 136.35 m

Rock Type

Mildly selectively altered, medium grained, once-biotitebearing granite containing sparse K-feldspar (microcline)

megacrysts.

Hand Specimen A medium to coarse grained, mottled dark grey and pale grey drill core sample for which K-feldspar staining gave strong positive results. K-feldspar forms abundant anhedral medium sized grains as well as sparse subhedral stout prismatic poikilitic megacrysts reaching 1.5 cm long. The rock is not magnetic.

Thin Section Holocrystalline hypidiomorphic granular texture is characteristic of this granitic intrusive igneous rock. In addition it is sparsely 'megacrystic' containing an aggregate of stout subhedral K-feldspar (microcline) more than 1 cm long in the present section. The microcline is perthitic and strongly poikilitic, containing abundant small (up to 1 mm) clouded and partly sericitised albite prisms, sparse anhedral quartz grains and several coarse sericite flakes.

The granitic host rock has an average grain size of about 1.5 mm, and has the following approximate modal composition; quartz 35%; K-feldspar 30%; plagioclase 30%; and about 5% of degraded mica crystal sites.

Stout subhedral plagioclase prisms and aggregates are albitised, but probably once were compositionally zoned since central domains are heavily clouded, and contain dusty sericite. Quartz and K-feldspar (perthitic microcline) on the other hand, form a mosaic of anhedral interlocking grains. Quartz commonly is weakly strained and encloses trails of minute fluid inclusions. The sample contains minor accessory sulphides, rare oxides, apatite and zircon.

2.

There is a narrow zone of branching vein-like microfractures (only 0.015 mm wide) that are filled with fine granular to subradial K-feldspar ± zeolite ± patches of low birefringent clay and traces of sulphides. Dusty oxides and sulphides penetrate narrow fractures and certain grain boundaries.

The rock is a mildly selectively altered, medium grained, once-biotite-bearing granite containing sparse K-feldspar (microcline) megacrysts.

Sample No.

CAR 03-1 137.2 m

Rock Type

Weakly selectively altered, medium grained and more or

less equigranular aplite.

Hand Specimen A rather massive medium grained, granular, patchy pink to mid grey drill core sample for which K-feldspar staining gave very strong positive results. Staining shows a weak narrow compositional banding (possibly magmatic flow banding). The rock is weakly magnetic.

This sample shows a more or less equigranular ophitic (allotriomorphic granular) texture, with an average grain size of about 0.4 mm, but with some grains reaching 1 mm.

An approximate modal composition is as follows; K-feldspar 40%; quartz 30%; and plagioclase 30%.

The K-feldspar is weakly perthitic microcline lightly clouded with dusty hematite, and forms an interlocking granular intergrowth of anhedral grains with quartz. Most albitised plagioclase also is anhedral with patchy argillic clouding and sparse development of wispy sericite. Accessory sites of small ragged biotite flakes now are converted to chlorite and sericite and enclose clusters of

small zircon crystals, and sphene-altered oxides. Sparse granular opaque oxides (~ 0.03 mm) also are accessory, and most likely are magnetite since the rock is faintly magnetic. Accessory secondary phases include clusters of anhedral epidote, sericite flakes, patches of sphene, and grain-boundary-located patches of translucent limonitic oxides.

The sample may be identified as a weakly selectively altered, medium grained and more or less equigranular aplite.

Sample No.

CAR 05-1 81.3 m

Rock Type

Partly recrystallised (gneissic) coarse grained granite/

medium grained biotite rich diorite.

Hand Specimen A mottled dark grey to pale grey drill core sample that appears to be grain size, and possibly compositionally banded. It comprises a coarse grained fraction containing abundant stout pale grey feldspar crystal sites set in a somewhat meagre dark grey matrix, and a medium grained fraction containing abundant pale grey feldspar crystal sites, set throughout a conspicuously foliated dark grey matrix. K-feldspar staining gave strong positive results for numerous anhedral grains in the coarse fraction, but not for the medium grained fraction. The rock is not magnetic.

Thin Section The coarse fraction of this sample retains a hypidiomorphic granular granitic texture, and clearly had an acidic intrusive igneous parent, that has undergone partial patchy metamorphic recrystallisation. Relict coarse crystal sites reach 3 mm across, and include subhedral plagioclase prisms, some of which retain relict igneous compositional zoning. Most contain patches of epidote and sericite, as well as sparse ragged biotite flakes. K-feldspar is anhedral, strongly poikilitic microcline enclosing abundant small inclusions of quartz,

plagioclase, biotite, chlorite and epidote. Intergrown quartz also is anhedral but also shows distinct strain shadows and patches of fine metamorphic recrystallisation. Minor wispy biotite and sericite form a weak wavy foliation, bending around the coarse relict igneous grains.

An approximate modal composition for this fraction is as follows; quartz 35%; plagioclase 35%; K-feldspar 20%; biotite 5%; sericite 3%; and minor accessory (< 2%); sphene, oxides, apatite and zircon.

There is a rather sharp boundary with a second but related fraction, that lacks K-feldspar and could have had a plagioclase rich intrusive igneous parent with an average grain size of about 1.5 mm. Several elongate prismatic plagioclase laths retain relict magmatic compositional zoning, but generally the plagioclase is partly clouded by patchy sericite, and granular epidote. This fraction contains only minor recrystallised quartz but abundant ragged metamorphic biotite defining a distinct wavy foliation. Opaque oxides and apatite are common accessory phases.

The sample may be described as a partly recrystallised (gneissic) coarse grained granite/medium grained biotite rich diorite.

Sample No.

CAR 06-1 73.6 m

Rock Type

Medium to coarse grained, and partly K-feldspar 'megacrystic' granite, with minor selective alteration confined to plagioclase and biotite.

Hand Specimen A medium to coarse grained granitic drill core sample with approximately equal major proportions of pale grey and pink-grey feldspars, and quartz with subordinate black mafic clusters. K-feldspar staining gave strong

positive results for coarse anhedral pink K-feldspar crystals up to 1 cm grain size. The sample is not magnetic.

This is a holocrystalline intrusive igneous rock with a distinct hypidiomorphic granular texture. It has a variable grain size from less than 1 mm up to more than 1 cm, and with an average grain size of about 2 mm.

The following approximate modal composition is characteristic; quartz 25%; K-feldspar 35%; plagioclase 35%; biotite 3%; and about 2% of opaque oxides.

Plagioclase forms stout prismatic crystals that show distinct compositional magmatic zoning. Some are quite heavily clouded by dusty inclusions, sericite, epidote and traces of carbonate, particularly in selected compositional zones. Small plagioclase prisms, generally less than 1 mm commonly form inclusions in poikilitic anhedral K-feldspar. The latter is perthitic microcline, with some marginal lobate myrmekitic patches. Sparse anhedral 'megacrystic' K-feldspar shows simple twins, and is distinctly poikilitic enclosing mainly plagioclase as well as sparse rounded quartz grains and minor ragged biotite. Granular anhedral quartz is intergrown with the K-feldspar, and contains sparse trails of minute fluid inclusions. Sparse small ragged biotite flakes are partly converted to sericite, chlorite and sphene. Apatite and zircon are minor accessory phases.

The sample is undeformed, and may be described as a medium to coarse grained, and partly K-feldspar 'megacrystic' granite, with minor selective alteration confined to plagioclase and biotite.

<u>Sample No.</u> CAR 10-1 25.8 m

Rock Type Coarse grained apatite and magnetite rich mafic intrusive igneous rock, most likely of alkaline affinity, that has

undergone strong metamorphic recrystallisation and foliation. It is now a strongly foliated albite-biotite-magnetite-apatite amphibolite.

Hand Specimen A friable, medium to coarse grained strongly foliated, dark grey to almost black drill core sample, containing scattered coarse grained pale grey (?feldspar) crystals and clusters. K-feldspar staining proved negative. The sample is quite strongly magnetic.

Thin Section Strong metamorphic recrystallisation and foliation has affected this rock, and largely obscures primary textural and mineralogical features. Nevertheless, there are preserved numerous coarse (more than 3 mm long) prismatic crystals of mostly albitised plagioclase with (several plagioclase crystals could show relict compositional zoning), and barely recognisable mafic crystal sites that are now completely recrystallised. Some albitised plagioclase prisms bent and deformed, but many contain clouds of crystallographically oriented minute solid inclusions, as well as patches of clouded clay and sericite. Stout, once subhedral but now mostly anhedral mafic crystal sites now are converted to dense aggregates of metamorphic recrystallised amphibole. Some sites contain colourless twinned magnesium amphibole (possibly cummingtonite) centrally, with blue-green (?alkali) amphibole peripherally. Most mafic crystal sites now are dominated by recrystallised blue-green amphibole.

The coarse feldspar and mafic crystal sites tend to form lenses separated by elongate wavy foliated zones that bend around the coarse crystal aggregates. The foliated zones contain abundant patchy biotite and elongate anhedral patches of opaque oxides that are strongly poikilioblastic, containing prismatic crystals of apatite up to 2 mm long, that are also subparallel to the wavy foliation.

A very approximate modal composition for the rock is as follows; (relict) albitised plagioclase 25%; recrystallised amphibole rich mafic crystal sites 20%; metamorphic biotite 15%; opaque oxides 25%; and apatite 15%.

The rock retains a poorly preserved coarse grained holocrystalline intrusive igneous relict texture, and an unusually mafic and apatite rich composition, suggesting strong alkaline affinity. (It could be worth checking for high Ti and V etc in oxides, and for associated recrystallised rocks of ijolitic to ?carbonatitic affinity).

The sample may be identified as a coarse grained apatite and magnetite rich mafic intrusive igneous rock, most likely of alkaline affinity, that has undergone strong metamorphic recrystallisation and foliation. It is now a strongly foliated albite-biotite-magnetite-apatite amphibolite.

Sample No.

CAR 10-2 33.0 m

Rock Type

Strongly metamorphosed (partly recrystallised and foliated), medium to coarse grained intrusive igneous rock of alkaline affinity and mafic primary composition (gabbro or even ?ijolite), with abundant and conspicuous apatite.

Hand Specimen A mottled dark green-grey to pale green-grey medium grained drill core sample that is strongly foliated. K-feldspar staining gave weak patchy positive results. The rock is quite strongly magnetic.

Thin Section Strong metamorphic recrystallisation and foliation have affected this sample, but in spite of this a recognisable medium to coarse grained holocrystalline hypidiomorphic granular texture is preserved of a mafic intrusive igneous parent rock. Primary grain size varies from less than 0.4 mm up to more than 3 mm, and the rock is dominated by stout unoriented prisms of albitised plagioclase intergrown with subordinate and generally finer grained subhedral to interstitial and anhedral mafic crystal sites.

The coarse albitised <u>plagioclase</u> crystals contain clouds of dusty pale brown solid inclusions, as well as patches and trails of wispy sericite and carbonate. Several of the coarse crystals once could have been compositionally zoned, while other elongate prismatic crystals show bent and deformed multiple twin lamellae. (Could this phase once have been nepheline?).

Although most primary <u>mafic</u> crystal sites are strongly recrystallised, in several there remains relict primary pale brown clinopyroxene, commonly with partial narrow rims of green aegirine, and outer rims of metamorphic blue-green amphibole. The clinopyroxene is partly converted to patchy carbonate and wispy metamorphic amphibole. Elsewhere mafic crystal sites are completely converted to green, and blue-green metamorphic amphibole.

Interstitial relict primary phases include anhedral opaque oxides enclosing stout prisms of apatite, as well as anhedral clouded patches of K-feldspar.

In several areas of the section oxide patches are lensed and drawn out parallel to a wavy foliation and are set in similarly foliated lenses of dense biotite flakes, fine grained recrystallised patches of quartz and abundant fine grained somewhat foliated patches of fibrous blue-green amphibole.

An approximate primary composition for this rock could have been as follows; albitised plagioclase (and/or ?nepheline) 40%; mafic crystal sites, amphibole-altered, and relict clinopyroxene) 20%; biotite 15%; opaque oxides 10%; apatite 10%; and K-feldspar < 5%.

This sample is somewhat similar to the previous sample CAR 10-1 25.8 m. It may be identified as a strongly metamorphosed (partly recrystallised and foliated), medium to coarse grained intrusive igneous rock of

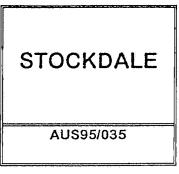
alkaline affinity and mafic primary composition (gabbro or even ?ijolite), with abundant and conspicuous apatite.

Sample No.

CAR 10-3 43.7 m

Rock Type

Strongly foliated medium grained biotite-, magnetite- and apatite-rich amphibolite, possibly derived from a mafic alkaline igneous parent.


<u>Hand Specimen</u> A very strongly foliated medium grained almost black drill core sample that is moderately magnetic. K-feldspar staining proved negative.

Thin Section Recognisable relict textures are not preserved in this intensely foliated and recrystallised metamorphic rock. However, it is clearly mineralogically related to the previous samples CAR 10-1 25.8 m and CAR 10-2 33.0 m.

The present rock has an average grain size of about 0.25 mm and a strongly foliated to partly granoblastic metamorphic texture, and has the following approximate modal mineralogy; blue-green amphibole (?hornblende) 55%; biotite 20%; apatite 12%; opaque oxides 12%; and ~ 1% accessory quartz.

Dense aggregates of the blue-green amphibole form somewhat augen-shaped patches around which bend lenses of biotite defining the strong wavy foliation. Anhedral patches of opaque oxides also are drawn out parallel to the foliation and are located within both amphibole- and biotite-rich domains. Stout subhedral crystals of apatite have a more or less even distribution throughout the rock, and commonly form poikilitic inclusions in ?titaniferous opaque oxides. Several very narrow discontinuous lensed layers contain granular quartz intergrown with all the other phases present.

The rock may be described as a strongly foliated medium grained biotite-, magnetite- and apatite-rich amphibolite, possibly derived from a mafic alkaline igneous parent.

DESPATOHED

1985 - 10 - 1 3

A A 7

AARL

M/95X1577 KR95/0366

m18094

THE PETROGRAPHY OF A SAMPLE FROM DRILL HOLE CAR 10-1, TENEMENT EL1952, STREAKY BAY 1:250 000, SOUTH AUSTRALIA

J. Stiefenhofer

SAMPLE DETAILS:

OCCNUM:	601/266/UR001/1	SAMPNUM:	AB3971
ANOMNUM:		OCCNAME:	CAR10-1

CONSIGNMENT STATUS:

DATE RECEIVED:

20/09/95

JOB TYPE	PRESENT STATUS			
Petrography	This report			

CLASSIFICATION:

ROCK TYPE

Amphibolite/meta-gabbro

FACIES

NOTE

Metamorphic

TEXTURE

Nematoblastic, lepidoblastic

MINERALOGY

Hornblende-biotite-apatite-magnetite(?)-plagioclase

See summary and remarks

REMARKS:

MACROCRYSTS

None observed

PHENOCRYSTS

None observed

VEINS

Magnetite(?)

Page 2

SUMMARY

Sample AB3971, collected from a depth of 25.8 metres, was submitted for petrographic analysis. Hand sample examination reveals a magnetite(?)-rich, metamorphosed rock consisting of feldspar, a greenish amphibole, mica, and notably visible apatite. A vague fabric is visible. A free-swinging magnet is attracted by the sample, thereby confirming the possible presence of magnetite.

Thin section examination confirms the above observations and reveals a very fresh metamorphic rock consisting of prominent green to brown pleochroic hornblende, brown pleochroic biotite, twinned and recrystallised plagioclase, strikingly coarse and abundant apatite and abundant magnetite(?), intimately associated with the above minerals.

The hornblendes range in size from ±0.08mm to 0.5mm in length and exhibit textures ranging from granoblastic to nematoblastic. The biotite is of similar size range compared to that of amphibole and occurs as pools, lenses and single grains throughout the sample. A lepidoblastic texture is often present. The plagioclase may occur as twinned and recrystallised plates up to 3mm in size. Twinning has in part been destroyed by metamorphism and the grain boundaries may be embayed or sutured. Apatite is unusually abundant and exhibits typical six-sided basal sections and prismatic laths up to 2mm in length and is clearly visible in hand specimen. The cracked and broken appearance of some of the larger apatite grains suggest that they may have crystallised during the initial stages of metamorphism. The entire sample has been pervasively veined by magnetite(?) which commonly encloses all of the above-mentioned minerals.

Sample AB3971 is classified as an unrelated amphibolite or meta-gabbroic rock. Although apatite commonly occurs in these rock types, the abundance thereof in this particular sample is unusual and the reason for this unknown at this point. The abundance of apatite will result in elevated REE-contents in the rock, as is shown by the appended geochemical results. No obvious "kimberlitic" or other high-interest features are visible in this sample.

RECOMMENDATIONS

No further work is recommended.

REPORT NO. KR95/0366

AUTHOR:

J. Stiefenhofer

M. de Wit

GEOLOGICAL MANAGER

KEYWORDS : petrology, amphibolite, unrelated,

meta-gabbro

DATABANK INDEX : 18.2.4

AARL PROJECT NO. : R/95/226

ORIGIN . 3013

TYPE : 102

DISTRIBUTION LIST:

Head Office (x2) KRSL (x1)

1995 CARAWA PROJECT SAMPLES

DIAMOND VENTURES NL

SAMPLE No	ТҮРЕ	AMG mE	AMG mN	No BAGS	RATING	LOCATION	COMMENTS
CA-01	Loam	426283	6449996	2	Very poor	South of CAR8 magnetic anomaly, east of track	Sandy red soil with calcrete boulders
CA-02	Loam	426138	6450277	2	Very poor	Near CAR8 magnetic anomaly, west of track	Sandy red soil with calcrete boulders
CA-03	Loam	425866	6450478	2	Very poor	Near CAR8 magnetic anomaly, west of track	Sandy red soil with calcrete boulders
'A-04	Loam	422325	6451505	2	Very poor	Near CAR7 magnetic anomaly, north of track	Sandy red soil with minor calcrete fragments
A-05	Loam	421225	6450836	2	Very poor	East of CAR7 magnetic anomaly, south of track	Sandy red soil, beside sand dune in low land
AR3 127-129m	Drill chip	430495	6438774	1		Anomaly CAR3, local grid 5025mE,4970mN, depth 127-129m	Very clean coarse grained irregular shaped guartz & feldspar sands
AR3 132-133m	Drill chip	430495	6438774	1		Anomaly CAR3, local grid 5025mE,4970mN, depth 132-133m	Very clean coarse grained irregular shaped guartz & feldspar sands
7 Sa	mnles			12	E Roge		

FORM IDL	···									0007	3
LABORA	TORY	DA'	TA SI	HEET		SAMPL	E NO.	CA-01			
<u>WEIGHTS</u> : 1.0g		Indica	tor vial					lite Indica	tors):	· · · · · · · · · · · · · · · · · · ·	Triple is the second of the second
0.8 <1 g 0.5 <1 g 0.4 g		Interes	sting vial			Positive	(Econon	nic Mineral	s):		
0.3 <1 g 0.25 g		SEM v	rial			Negative	::			\boxtimes	
TOTAL 1 g		TO PF	OBE:			Observed			+ 0.3		
SINGLE CHECK DOUBLE CHECK AUDIT						Commen	ts: Synth	etic diamor	d recover	y 9+0.5	
AUDII		<u> </u>	,,,	, /~ / -		· ·	, , , , , , , , , , , , , , , , , , , 		*******		d <u></u>
KIMBERLITE/LAMPRO	DITE INDICA	TORS									
DIAMOND	+2	+1	+0.8	+0.5	+0.4	+0.3	-0.3	WEAR	KIMB?	FORM	1
CHROME DIOP.											
CHROMITE PHLOGOPITE											
PICROILMENITE	- -		 								
PYROPE		 	+			+	···			 	
111012		 	+ + +	***	 -	+					
					-				· · · · · · · · · · · · · · · · · · ·	 	
											• • • • • • • • • • • • • • • • • • • •
DETAILED DESCRIPTI MINERAL		LUST UMARY S	RE SURFACE)		USTRE I FRACT				OTHER		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		- 	·····	· · · · · · · · · · · · · · · · · · ·				
				-							· , ,
 		· · · · · · · · · · · · · · · · · · ·	(************************************						· · · · · · · · · · · · · · · · · · ·		
									····	 	
										· · · · · · · · · · · · · · · · · · ·	
							·····	······································		· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	,				
		',	*****								·
											
ECONOMIC MINERAL	S(Wt. % of h	nitial Wt)									
	CU-CARBON		GO	LD		CHEELITE		MONAZITE		 	
		<u> </u>			\perp			· · · · · · · · · · · · · · · · · · ·			
OTHER MINERALS (Vo	ol. % after TB	E)	<u> </u>								
ALMANDINE		MAGN				AMPHIBO)LE		LEUCO	XENE	rare
ANDRADITE		PLEON				ANATASI			MAGNI		
GROSSULAR SPESSARTINE		SPINEL	<u>, </u>			ANDALU		trac			
OL DOGAK I HAG		 	, ,			APATITE			SILLIM		
CLINOPYROXENE		HEMAT	TTE	· · · ·		BARITE		···	SPHEN		
DIOPSIDE		ILMEN				BIOTITE BROOKIT	F		STAUR	OLITE MALINE	rare
OLIVINE		LIMON			95%	CORUND		tie trac			trace
ORTHOPYROXENE		PYRITE			7570	GORCEEN		uac	QUART		rare
		PYROL			· · · · · · · · · · · · · · · · · · ·	EPIDOTE		rar		FRAGMENTS	5%
		RUTILI			rare	KYANITE		trac		le/sandstone	1 3 9
						CARBON		rar		· · · · · · · · · · · · · · · · · · ·	+
						· 					

FORM IDL												5507	X.
LABORAT	ORY	DA	TA SI	HEE		SAM	PLE N	Ю.	CA-02				
<u>WEIGHTS</u> : 1.0 g		Indica	ntor vial			Positi	ve (Ki	mbe	rlite In	dicato	rs):		Arthur L. L. Con
0.8 <1 g 0.5 <1 g 0.4 g		Intere	sting vial	⊠ g	t	Positi	ve (Ec	onon	nic Min	erals):	:		
$\begin{bmatrix} 0.4 & & & g \\ 0.3 & \leq 1 & g \\ 0.25 & & & g \end{bmatrix}$		SEM	vial			Negat	ive:					\square	
TOTAL I g		TO PI	ROBE:			Obser	ved Fr	actio	nc.	-1+0	2		
SINGLE CHECK DOUBLE CHECK					:	Comn		actio	113.	-170			
AUDIT													
KIMBERLITE/LAMPROITE	INDICA	TORS					, ,					' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	'- '
	+2	+1	+0.8	+0.5	+0.4	+0	3 -	0.3	WEA	R I	KIMB?	FORM	· ; ; ; ; ; ; ; ;
DIAMOND													
CHROME DIOP. CHROMITE			+			_							
PHLOGOPITE	· · ·	 	+			- !		_				<u> </u>	
PICROILMENITE			+			- 							
PYROPE	. ,					+	++-					<u> </u>	
		· · · · · · · · ·				+							
						1					·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
												 	
DETAILED DESCRIPTIONS	3												
MINERAL	(DD	LUST			USTRE						OTHER		
	(PR	INLARI	SURFACE)	(FRESE	I FRACT	CRE)		· · · · · · · · · · · · · · · · · · ·					1-11
Transition in the second seco	·									···		, , , , , , , , , , , , , , , , , , , ,	······································
		, 'mmm' '			-					· · · · · · · · · · · · · · · · · · ·			
										···			····
- Committee of the second of t													
													
 		,						· · · · ·					·
aran da 	·										······································		
			 	·									
													
													, , , , , , , , , , , , , , , , , , ,
and the second of the second o											·		
				 	- :				 				
										··· · · · · · · · · · · · · · · · · ·		- 	
<u> 1900 ta da ang ang ang ang ang ang ang ang ang an</u>			,						~~~			· · · · · · · · · · · · · · · · · · ·	
		', ',	······································		·····	· · · · · · · · · · · · · · · · · · ·				', , , , , , , , , , , , , , , , , , , 	· · · · · · · · · · · · · · · · · · ·	Maria Cara Cara Cara Cara Cara Cara Cara	
EGOVOL do Las about a de-													
ECONOMIC MINERALS (W	t. % of in			,								entent of the company	·
CASSITERITE CC-C	ARBUN	AIES	GO	ւր	+	CHEEL	ILE		MONAZ	CITE			
<u> </u>			L	· · · · · · · · · · · · · · · · · · ·				<u> </u>		·····	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·
OTHER MINERALS (Vol. %	after TBI		 										
ALMANDINE	rare	MAGN					IBOLE			гаге	LEUCO:		
ANDRADITE GROSSULAR		PLEON				ANAT		•		rare	MAGNE		
SPESSARTINE	#G#G	SPINE! GAHN					LUSITE	<u>.</u>		trace	PREHNI		
O. LOGARI INE	rare	JAMN.	IIE.		rare	APATI BARIT					SILLIM		+
CLINOPYROXENE		HEMA	TITE			BIOTI					SPHENE		
DIOPSIDE		ILMEN		···		BROO					TOURM		trace
OLIVINE		LIMON			90%	CORU		synthe	tic	trace	ZIRCON		trace
ORTHOPYROXENE		PYRIT			2070		EIXITE		+	4400	OUART		trace
		PYROI				EPIDO			· · · · · 			RAGMENTS	10%
		RUTIL				KYAN				trace		e/sandstone	1070
										-24			
<u> </u>													T 1

LABORAT	ORY	DAT	A SH	HE		SAMPL	E NO	CA 03			
WEIGHTS:						SAIVIPL	E IVU.	CA-03			
1.0 g 0.8 <1 g		Indicate	or vial			Positive	(Kimber	lite Indicat	ors):		
0.5 <1 g 0.4 g		Interest	ing vial	⊠g	t(1)	Positive	(Econom	ic Mineral	s):		
0.3 <1 g		SEM v	ia l			Negative				\square	
$\begin{bmatrix} 0.25 & & g \\ \text{TOTAL } & \underline{1} & & g \end{bmatrix}$		TO PR	OBE:								
SINGLE CHECK	\boxtimes					Observed Commen		ns: -1+	0.3		
DOUBLE CHECK											
AUDIT									 	 	
KIMBERLITE/LAMPROIT	E INDICA +2	TORS +1	+0.8	+0.5	+0.4	+0.3	-0.3	WEAR	KIMB?	FORM	
DIAMOND			0.0	- 0.5	10.4	10.3	-0.3	WEAR	KIMB?	FORM	
CHROME DIOP.										 	
CHROMITE					<u></u>						
PHLOGOPITE											
PICROILMENITE				 .							
PYROPE											
					ļ						
											
DETAILED DESCRIPTION MINERAL		LUSTF IMARY SU			USTRE I FRACT	URE)			OTHER		
ECONOMIC MINERALS (Wt. % of In	itial Wt.)									
CASSITERITE CU	-CARBON	IATES	GO	LD		CHEELITE		MONAZITE			
<u> </u>						·					
OTHER MINERALS (Vol. 9	% after TR	E)									
ALMANDINE	гаге	MAGNE	TITE	- 1		AMPHIBO	ME		LEUCOX	ZENIE	
ANDRADITE	1.010	PLEONA				ANATASE		rare			rare
GROSSULAR	 	SPINEL	D115						MAGNE		-
SPESSARTINE	+	OLHVEL				ANDALUS	311E	rare			
	-					APATITE		 	SILLIM		
CLINOPYROXENE		LIENAATI	TE			BARITE	 		SPHENE		<u> </u>
DIOPSIDE	rare	HEMATI				BIOTITE			STAURO		rare
	+	ILMENT			2.5	BROOKIT		 	TOURM		trace
OLIVINE	 	LIMONI	IE		20%	CORUND		ic trace			5%
ORTHOPYROXENE	ļ	PYRITE				GORCEIX			QUART2	Z	5%
	<u> </u>	PYROLU	SITE			EPIDOTE		rare		RAGMENTS	70%
 	_	RUTILE			rare	KYANITE		rare	- Fe shale	/sandstone	
		·									
	1		. ——	· - T					1		T 1

FORM IDL											
LABORAT	ORY	DAT	TA SH	133		SAMPL	E NO.	CA-04		01	0076
<u>WEIGHTS</u> : 1.0 g		Indicat	tor vial					rlite Indicat	fore):		
$0.8 \qquad \frac{3}{\langle 1 \rangle} g$				البا							
0.5 <1 g 0.4 g		Interes	sting vial	⊠ gʻ	t(1)	Positive	(Econon	nic Mineral	s):		
$0.3 \qquad \underline{\leq 1 \qquad g}$		SEM v	/ial			Negative	:				
0.25 g				بــــا			•			\bowtie	
TOTAL 1 g		TO PR	OBE:			Observed	f Fractio	inc· _1-	+0.3		
SINGLE CHECK	\boxtimes					Commen		113.	10,5		
DOUBLE CHECK		ł									
AUDIT		İ				ĺ					
						·	W	velori , , , , and and , , , , , , , , , , , , , , , , , , ,		- <u> </u>	
KIMBERLITE/LAMPROIT			т Т		T :0.4	1 .03		·		•	
DIAMOND	+2	+1	+0.8	+0.5	+0.4	+0.3	-0.3	WEAR	KIMB?	FORM	
CHROME DIOP.					<u> </u>						
CHROMITE											
PHLOGOPITE	<u> </u>		\Box								
PICROILMENITE PYROPE	 		 		 	_	ļ	I			
PIKOPE		 		<u> </u>	 		 	<u> </u>		ļ. <u>.</u>	<u> </u>
	 								 		
			 		 	+			· · · · · · · · · · · · · · · · · · ·	 	
ECONOMIC MINERALS (CASSITERITE CU	Wt. % of In J-CARBON	itial Wt.)	GOI	a D	-1: :	SCHEELITE		MONAZITE			
						301111111111111111111111111111111111111		MONALLE	- <u> </u>		
OTHER MINERALS (Vol. 9	% after TBI	E)									, ' ,
ALMANDINE		MAGNE				AMPHIBO			LEUCO		rare
ANDRADITE	<u> </u>	PLEONA				ANATASI			MAGNE		
GROSSULAR		SPINEL				ANDALUS		trac			
SPESSARTINE	rare	GAHNIT	ſΈ		rare	APATITE			SILLIM		
OF INCOMPONENTE	 	TYPENAT	nerican		·	BARITE			SPHENE		Ι
CLINOPYROXENE DIOPSIDE	 	HEMAT				BIOTITE			STAURO		I
OLIVINE	+	ILMENT				BROOKIT			TOURM		trace
ORTHOPYROXENE	 	LIMONI PYRITE			20%	CORUND			ZIRCON		2%
OKTHOT I KOMETAL	+	PYROLU			rare	GORCEIX			QUART		3%
	+	RUTILE			T3T0	EPIDOTE KYANITE		rar		RAGMENTS	75%
	+	NO LILL			rare	CARBON		rar		e shale/sandstone	
	+				<u></u>	SHELL	AIE.	rar rar			+
	لننديبيا					ULLUUU		Lai	·		1

rare

FORM IDL			ndendar by a								
LABORAT	ORY	DA'	ΓA SH	IEE	Ī	SAMPLE	NO.	CA-05		0007	7
WEIGHTS: 1.0 g		Indicat	tor vial					rlite Indica	tors):		
0.8 2 g 0.5 2 g 0.4 g		Interes	ting vial	⊠g	t	Positive (l	Econon	nic Minera	ls):		
0.3 $\frac{2}{2}$ g		SEM v	rial			Negative:				$\overline{\boxtimes}$	
0.25 g TOTAL <u>6</u> g		TO PR	OBE:			Observed 1	Eraction		10° 3°		
SINGLE CHECK	\boxtimes	* *	-					ns: -1 hetic diamo	+0.3 and recover	ry 10+0.5	
DOUBLE CHECK AUDIT			<u>.</u>								
			, a ga da					, , , , , , , , , , , , , , , , , , , 	- 	 	
KIMBERLITE/LAMPROIT	E INDICA +2	TORS +1	+0.8	+0.5	+0.4	+0.3	-0.3	WEAR	KIMB?	FORM	
DIAMOND										†	
CHROME DIOP.										 	
CHROMITE				•						 	
PHLOGOPITE								- :		 	
PICROILMENITE	· · · · · · · · · · · · · · · · · · ·		1						, , , , , , , , , , , , , , , , , , , 	 	
PYROPE			-		 	+				 	
TIROIL	- · · · · · · · · · · ·					 			·	<u> </u>	
											
											
<u> </u>											
DETAILED DESCRIPTION MINERAL		LUST IMARY S	RE URFACE)		USTRE H FRACT	URE)			OTHER		
the state of the s				 							
and the second of the second o				· · · · · · · · · · · · · · · · · · ·							
The second state of the se			·					· · · · · · · · · · · · · · · · · · ·			
A CONTRACT OF THE PARTY OF THE											
		· · · · · · · · · · · · · · · · · · ·						 	** ** **		
					***************************************				, ,	- Australia	
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · ·
the second of th											
talia () programa () () () montant () () promin						 				· · · · · · · · · · · · · · · · · · ·	
The state of the s											

to describe the transfer of t									·		·
	·	·····	<u></u>						 		
ECONOMIC MINERALS (
CASSITERITE CU	-CARBON	IATES	GO	LD		CHEELITE		MONAZITE			
						, , , , , , , , , , , , , , , , , , , ,					· · · · · · · · · · · · · · · · · · ·
				- (), (, 	erentialisti in in income	to an in the state of the state		<u> </u>			· · · · · · · · · · · · · · · · · · ·
OTHER MINERALS (Vol. 9	% after TBI	E):		•							
ALMANDINE	rare	MAGNE	TITE			AMOUTINOT	177	·	I EUCO	3/723 772	
ANDRADITE	Tale					AMPHIBOL	-E		LEUCO		rare
		PLEON				ANATASE		 	MAGNE		
GROSSULAR		SPINEL				ANDALUSI	TE	trac	∞ PREHN	ITE	
SPESSARTINE	rare	GAHNI	ΓE	<u> </u>	rare	APATITE			SILLIM	ANITE	
	L					BARITE			SPHENI	E	
CLINOPYROXENE	rare	HEMAT	ITE			BIOTITE			STAUR		rare
DIOPSIDE		ILMENI		· · · · · · · · · · · · · · · · · · ·	rare	BROOKITE			TOURN		+
OLIVINE	 	LIMON									trace
ORTHOPYROXENE	 				20%	CORUNDU		tic ra			4
OKINOPIKOXENE	<u> </u>	PYRITE				GORCEIXIT	ľE		QUART		rare
		PYROL				EPIDOTE		ra	re ROCK F	RAGMENTS	80%
· · · · · · · · · · · · · · · · · · ·		RUTILE			rare	KYANITE		ra	re		
							 				
											+

FORM IDL												.
LABORAT	ORY	DATA	SH	目書		SAMPL	E NO.	CAR-3	(132-	133m)	0007	3
WEIGHTS:				·							-	·
1.0 g		Indicator v	/ial			Positive	(Kimber	rlite Indi	cator	·s):		
$\frac{0.8}{0.7}$ $\frac{2}{0.7}$ g				_	1							
0.5 <u>2</u> g		Interesting	g vial	⊠ gt		Positive	(Econon	nic Mine	rals):	:		
$ \begin{array}{ccc} 0.4 & & g \\ 0.3 & & g \end{array} $		OF A		\Box	ľ	167 4 ° -						
_		SEM vial			ľ	Negative	:				\times	
0.25 g TOTAL 7 g		TO PROB	E.		ŀ							
TOTAL / g		TOTROD	E.			Observed	Erantia		1 1 0	2		
SINGLE CHECK						Commen		as:	-1+0	.3		
	띔ㅣ					Commicn	ıs.					
DOUBLE CHECK	닐											
AUDIT								<u></u>				
KIMBERLITE/LAMPROIT	E INDICA +2		0.8	+0.5	+0.4	+0.3	-0.3	TOTAN		m m a	7071	
DIAMOND		71	0.8	+0.3	+0.4	-0.3	-0.3	WEAR	- - '	KIMB?	FORM	
CHROME DIOP.												
CHROMITE												
PHLOGOPITE PICROILMENITE						4						
PYROPE					<u> </u>							
TROID	· · · · · · · · · · · · · · · · · · ·		-									
					-				_			
DETAILED DESCRIPTION	1S											
MINERAL		LUSTRE	· · · /]		USTRE			***		OTHER	A THE STATE OF THE	
	(PR	IMARY SURF	ACE)	(FRESH	FRACT	URE)						
and the state of t		 									 	
		,						·· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
				· · · · · ·								
. T. Samularia i a su propinsi propins												· · · · · · · · · · · · · · · · · · ·
	·	· · · · · · · · · · · · · · · · · · ·						ode a		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			··· +			· · · · · · · · · · · · · · · · · · ·			·		, , , , , , , , , , , , , , , , , , , 	
											· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·					
taning the state of					· :			, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·		
		, , . ,	···				······································	•				
							alada da 		 			andread at the
		· · · · · · · · · · · · · · · · · · ·										
					· · · · · · · · · · · · · · · · · · ·						- · · · · · · · · · · · · · · · · · · ·	
			٠				·····	·				
ECONOMIC MINERALS (V			-	<u> </u>	-i			<u> </u>				
CASSITERITE CU	-CARBON	ATES	GOL	,D	S	CHEELITE		MONAZI	ΓE			
		<u></u>								<u>.l.,</u>		············
OTHER MINERALS (Vol. 9	T			 	·	,					<u> </u>	
ALMANDINE ANDRADITE	rare	MAGNETIT			rare	AMPHIBO				LEUCOX		rare
GROSSULAR	 	PLEONAST SPINEL	<u> </u>			ANATASI ANDALU			rare	MAGNE PREHNI		
SPESSARTINE	trace	V. 11 1444			· · · · · · · ·	APATITE	34 F 15 .		1416	SILLIMA		
						BARITE				SPHENE		rare
CLINOPYROXENE		HEMATITE				BIOTITE				STAURO		trace
DIOPSIDE	<u> </u>	ILMENITE			trace	BROOKIT				TOURM		rare
OLIVINE ORTHOPYROXENE	 	LIMONITE PYRITE*			······································	CORUND				ZIRCON		rare
OKTHOLIKO/LEVE	+	PYROLUSI	Œ			GORCEIX EPIDOTE	116			QUARTZ ROCK FI	RAGMENTS*	trace 98%
		RUTILE			rare	KYANITE	<u> </u>	····	rare	- pyrite-b		7070
						TOPAZ			2%			
· ·································	<u> </u>											

DIAMOND VENTURES MICROPROBE REPORT

DESIGNOTED VENTORES MICROI ROBE RELOKT

Appendix 6

GARNETS

	CA02	CA02	CA03	CA03	CA04	CA05	CA05	
SiO2 TiO2 Fe2O3 Al2O3 Cr2O3 MgO CaO MnO FeO ZnO Na2O total	2 37.329 0.044 0.000 22.113 0.000 8.046 1.199 4.185 26.088 0.065 0.050 99.119	0.057 0.242 20.963 0.000 5.684 5.645 1.718 27.376 0.000 0.026	4 36.891 0.056 0.000 21.596 0.151 8.471 0.784 0.735 29.363 0.000 0.000 98.047	0.071 0.000 62.968 0.103 0.117 0.000 0.020 0.201 0.107 0.000	6 34.855 0.000 0.000 20.637 0.046 1.884 0.625 20.556 19.472 0.205 0.013 98.293	0.000 21.985 0.000 6.928 1.037 0.833 31.909 0.000	0.020 0.000 21.405 0.023 7.292 2.443 2.185 29.113 0.000 0.000	
Si Ti Fe Al Cr Mg Ca Mn Fe Zn Na total Fe+Mn/Fe+Mr	5.873 0.005 0.000 4.100 0.000 1.887 0.202 0.558 3.432 0.008 0.015 16.080 n+Mg=	5.815 0.007 0.029 4.005 0.000 1.373 0.980 0.236 3.711 0.000 0.008 16.164 67.90	5.869 0.007 0.000 4.049 0.019 2.008 0.134 0.099 3.906 0.000 0.000 16.091 74.19	4.683 0.007 0.000 9.698 0.011 0.023 0.000 0.002 0.022 0.010 0.000 14.456	5.826 0.000 0.000 4.065 0.006 0.469 0.112 2.910 2.722 0.025 0.004 16.139 51.49	0.001 0.000 4.168 0.000 1.661 0.179 0.114	5.754 0.002 0.000 4.062 0.003 1.750 0.421 0.298 3.920 0.000 0.000 16.210 72.62	70.68
Si sig/k Ti sig/k Al sig/k Cr sig/k Mg sig/k Ca sig/k Mn sig/k Fe sig/k Zn sig/k Na sig/k D&S	0.9 9.4 1.0 27.7 1.8 4.3 4.6 1.9 15.6	0.9 8.9 1.0 30.2 2.1 7.0 1.8 15.1 18.9	0.9 9.6 1.0 20.0 1.7 5.1 10.4 1.8 15.6 25.8	0.9 10.9 0.6 25.8 10.5 15.4 25.8 14.6 15.6 23.0	0.9 9.5 1.0 22.9 3.6 5.6 2.1 2.1 13.9 19.3	0.9 9.7 1.0 31.6 1.9 4.6 9.7 1.7 15.8 18.3	0.9 9.9 1.0 24.3 1.9 3.1 6.3 1.8 15.8 20.9	

PAGE 2

		CAR12 2 /9	CAR12 2 /9	CAR132/	'3 CAR132/	3 HL05	HL06	HL06	
		9	10	11	12	13	14	15	
SiO	2	34.216	34.873	34.203	34.288	39.700	41.087	40.185	
TiO	2	0.178	0.362	0.168	0.258	0.011	0.554	0.486	
Fe20	03	0.000	0.609	0.000	0.000	0.000	0.364	0.000	
A120	03	20.040	19.472	20.167	19.940	19.676	21.473	21.653	
Cr20	03:	0.000	0.059	0.082	0.140	5.756	2.186	2.542	
MgO		0.573	0.512	0.632	1.208	19.781	21.051	20.417	
CaO		0.784	1.630	0.909	0.669	6.045	4.641	5.167	
MnO		25.725	27.388	26.111	24.268	0.318	0.184	0.048	
FeO		15.983	12.550	15.617	16.176	7.005	6.583	8.079	
ZnO		0.077	0.140	0.255	0.000	0.159	0.000	0.000	
Na 20	D.	0.054	0.000	0.049	0.040	0.004	0.043	0.036	
tota	al	97.630	97.595	98.193	96.987	98.455	98.166	98.613	
Si		5.820	5.903	5.792	5.835	5.837	5.939	5.838	
Ti		0.023	0.046	0.021	0.033	0.001	0.060	0.053	
Гe		0.000	0.078	0.000	0.000	0.000	0.040	0.000	
Al		4.018	3.885	4.025	4.000	3.409	3.658	3.708	
Cr		0.000	0.008	0.011	0.019	0.669	0.250	0.292	
Mg		0.145	0.129	0.160	0.307	4.335	4.536	4.421	
Ca		0.143	0.296	0.165	0.122	0.952	0.719	0.804	
Mn		3.707	3.927	3.745	3.498	0.040	0.023	0.004	
Fe		2.274	1.777	2.212	2.302	0.861	0.796	0.982	
Zn		0.010	0.018	0.032	0.000	0.017	0.000	0.000	
Na		0.018	0.000	0.016	0.013	0.001	0.012	0.010	
tota	a 1	16.158	16.067	16.179	16.129	16.122	16.033	16.114	
	-Mn/Fe+Mn-					94.98	17.21	15.28	18.26
	riniy Letriii	nig 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		37.33	24.20	17.21	13.20	10.20
Si	sig/k	0.9	0.9	0.9	0.9	0.8	0.8	0.8	
Ti	sig/k	7.6	6.5	8.0	7.1	10.6	5.9	6.2	
Al	sig/k	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Cr	sig/k	27.7	22.4	22.9	20.9	4.6	7.4	6.8	
Mg	sig/k	6.0	6.1	5.8	4.5	1.1	1.1	1,.1	
Ca	sig/k	5.1	3.7	4.8	5.5	2.0	2.3	2.2	
Mn	sig/k	1.9	1.9	1.9	2.0	12.5	14.6	16.4	
Fe	sig/k	2.3	2.5	2.3	2.3	3.5	3.5	3.3	
Zn	sig/k	15.1	14.2	13.1	14.4	15.4	15.6	21.3	
Na	sig/k	16.7	18.3	16.5	16.0	19.3	15.3	16.5	
NG	51g/ N	10.7	10.5	10.5	10.0	19.3	10.0	10.5	
D&S		3	3	3	3	11	1	1	

DIAMOND VENTURES MICROPROBE REPORT

CHROMITES

	DO53						
V205 SiO2 TiO2 Fe203 Al203 Cr203 MgO CaO MnO FeO NiO ZnO Na20 K2O total	3 0.000 0.037 0.026 0.000 2.843 68.561 11.594 0.000 3.453 7.397 0.247 5.787 0.173 0.000 100.118	4 0.000 0.064 0.105 0.000 3.046 67.687 8.040 0.036 1.233 8.100 0.000 11.561 0.250 0.016 100.138	5 0.251 0.132 0.057 0.000 1.614 68.755 9.600 0.000 0.492 8.043 0.179 10.763 0.250 0.002	6 0.000 0.059 0.000 0.000 1.821 69.517 9.319 0.019 2.543 6.403 0.000 9.658 0.270 0.004 99.613	7 0.136 0.082 0.035 0.000 5.151 66.395 7.930 0.019 1.155 8.387 0.049 8.848 0.175 0.000 98.362	8 0.000 2.110 0.000 58.977 0.145 0.038 0.027 0.087 1.350 25.239 0.243 0.000 0.036 0.016 88.268	9 0.000 0.014 0.115 0.000 1.885 70.945 10.848 0.032 0.433 10.501 0.066 5.579 0.206 0.022 100.646
V Si Ti Fe Al Cr Mg Ca Mn Fe Ni Zn Na K total Fe / Fe+Mg= Cr / Cr+Al=	0.000 0.010 0.005 0.000 0.913 14.765 4.707 0.000 0.797 1.685 0.054 1.164 0.092 0.000 24.192 26.36 94.18	0.000 0.018 0.022 0.000 1.003 14.947 3.347 0.011 0.292 1.892 0.000 2.384 0.136 0.006 24.058 36.11 93.71	0.046 0.037 0.012 0.000 0.530 15.134 3.984 0.000 0.116 1.873 0.040 2.213 0.135 0.001 24.121 31.98 96.62	0.000 0.016 0.000 0.000 0.599 15.348 3.879 0.006 0.601 1.495 0.000 1.991 0.146 0.002 24.083 27.82 96.24	0.025 0.023 0.007 0.000 1.691 14.624 3.293 0.006 0.273 1.954 0.011 1.820 0.095 0.000 23.822 37.24 89.63	0.000 0.720 0.000 15.154 0.058 0.010 0.014 0.032 0.390 7.207 0.067 0.000 0.024 0.007 23.683 99.81 15.01	0.000 0.004 0.024 0.000 0.605 15.288 4.407 0.009 0.100 2.393 0.014 1.123 0.109 0.008 24.084 35.19 96.19
V sig/k Si sig/k Ti sig/k Al sig/k Cr sig/k Mg sig/k Ca sig/k Mn sig/k Fe sig/k Ni sig/k Zn sig/k K sig/k	22.9 8.4 8.5 2.8 1.4 1.6 13.1 4.8 3.3 13.0 4.4 11.4 15.3	30.2 7.9 7.7 2.7 1.4 2.0 10.9 7.3 3.2 14.4 3.2 9.9 13.5	22.9 7.3 8.2 3.6 1.4 1.8 14.3 9.7 3.2 12.1 3.3 10.0 13.9	30.2 8.0 9.0 3.4 1.3 1.8 12.3 5.4 3.5 13.3 3.5	22.9 7.7 8.3 2.1 1.4 2.0 12.4 7.3 3.1 12.9 3.6 11.0 16.2	28.9 3.2 9.1 8.8 24.3 12.6 9.9 7.3 1.1 13.4 12.5 16.9 13.9	27.7 8.1 7.7 3.3 1.3 1.7 11.3 9.9 2.8 13.7 4.4 11.4 13.3

PAGE 5

	DO55	DO55	CAR127	/9 CAR127	/9 CAR127	/9 CAR127/	9 HL05A
V2O5 SiO2 TiO2 Fe2O3 Al2O3 Cr2O3 MgO CaO MnO FeO NiO ZnO	31 0.000 0.018 0.006 0.000 3.543 67.741 6.079 0.000 20.066 0.124 0.659 0.074 0.000	32 0.000 0.007 0.104 0.000 3.986 66.448 7.663 0.000 0.000 19.719 0.050 0.392 0.010 0.000	33 0.096 35.850 0.540 37.236 4.133 0.000 0.584 0.731 0.000 19.595 0.026 0.593 0.457 1.263	34 0.000 33.301 0.560 37.373 5.600 0.086 0.475 1.465 0.062 20.899 0.000 0.641 0.475 1.269	35 0.000 34.573 0.481 35.329 5.770 0.108 0.495 1.366 0.000 19.994 0.000 0.316 0.493 1.718	36 0.019 36.266 0.522 37.698 4.700 0.000 0.967 0.898 0.080 19.407 0.145 0.893 0.420 1.682	37 0.020 0.052 0.026 2.093 26.937 39.407 11.615 0.000 0.117 17.778 0.212 0.151 0.000 0.014
total	98.310	98.379	101.104	102.206	100.643	103.697	98.422
V Si Ti Fe Al Cr Mg Ca Mn Fe Ni Zn Na K total Fe / Fe+Mg= Cr / Cr+Al=	0.000 0.005 0.001 0.000 1.181 15.147 2.562 0.000 0.000 4.746 0.028 0.138 0.041 0.000 23.849 64.94 92.77	0.000 0.002 0.022 0.000 1.316 14.712 3.198 0.000 0.000 4.618 0.011 0.081 0.001 0.000 23.966 59.08 91.79	0.014 8.093 0.092 6.325 1.100 0.000 0.196 0.177 0.000 3.699 0.005 0.099 0.200 0.364 20.364 94.97 0.00	0.000 7.548 0.095 6.374 1.496 0.015 0.160 0.356 0.012 3.961 0.000 0.107 0.209 0.367 20.700 96.12 1.01	0.000 7.857 0.082 6.042 1.545 0.019 0.168 0.333 0.000 3.800 0.000 0.053 0.217 0.498 20.614 95.77 1.24	0.003 7.994 0.087 6.253 1.221 0.000 0.318 0.212 0.015 3.578 0.026 0.145 0.180 0.473 20.505 91.84 0.00	0.003 0.013 0.005 0.389 7.847 7.701 4.279 0.000 0.024 3.675 0.042 0.028 0.000 0.004 24.010 46.20 49.53
V sig/k Si sig/k Ti sig/k Al sig/k Cr sig/k Mg sig/k Ca sig/k Mn sig/k Fe sig/k Ni sig/k Zn sig/k K sig/k K sig/k	27.7 8.6 8.7 2.5 1.4 2.2 13.3 14.0 2.1 13.4 9.4 16.5 14.0	26.7 8.2 7.6 2.4 1.4 2.0 11.6 16.0 2.1 14.0 10.2 17.7	23.6 0.8 5.5 2.3 22.4 6.2 5.2 20.9 1.3 15.8 9.4 9.4	31.6 0.9 5.5 2.0 20.4 6.6 3.8 16.4 1.3 15.4 10.0 8.7 4.2	33.3 0.9 5.7 1.9 21.8 6.8 3.9 19.3 1.4 14.6 11.0 9.0 3.6	28.9 0.8 5.5 2.1 25.8 5.1 4.7 20.0 1.3 13.6 9.4 9.6 3.7	27.7 9.1 9.0 0.9 1.8 1.6 13.9 14.4 2.1 11.7 12.3 23.0 15.8

DIAMOND VENTURES MICROPROBE REPORT

ILMENITES

	DO54	DO54	DO54	DO54	DO54	DO54	DO54
V205 Nb205 Si02 Ti02 Zr02 Fe203 Al203 Cr203 Mg0 Ca0 Mn0 Fe0 Ni0 Zn0 Na20 K20 total	3 0.000 0.494 0.000 50.787 0.019 9.363 0.367 0.293 11.310 0.019 0.298 25.606 0.017 0.148 0.020 0.009 98.750	4 0.000 0.260 0.045 49.715 0.130 9.086 0.299 2.015 11.410 0.002 0.325 25.202 0.126 0.025 0.025 0.000 98.665	5 0.000 0.026 0.027 52.181 0.001 8.143 0.758 0.012 11.873 0.051 0.208 26.090 0.134 0.148 0.065 0.000 99.717	6 0.000 0.104 0.093 53.340 0.000 5.922 0.367 0.625 12.564 0.025 0.353 25.768 0.000 0.000 0.000 99.161	7 0.000 0.440 0.000 49.133 0.166 9.985 0.166 1.128 7.572 0.027 0.268 31.065 0.075 0.000 0.000 100.060	8 0.000 0.468 0.020 48.648 0.129 11.184 0.087 1.986 10.099 0.000 0.224 26.519 0.058 0.000 0.020 0.013 99.455	9 0.000 0.312 0.114 53.931 0.071 6.045 0.823 0.388 12.599 0.023 0.153 26.649 0.292 0.202 0.000 0.000
V Nb Si Ti Zr Fe Al Cr Mg Ca Mn Fe Ni Zn Na K total Fe / Fe+Mg= Cr / Cr+Al=	0.000 0.011 0.000 1.801 0.000 0.332 0.020 0.011 0.795 0.001 0.012 1.010 0.001 0.005 0.002 0.001 4.002 55.96 34.83	0.000 0.006 0.002 1.767 0.003 0.323 0.017 0.075 0.804 0.000 0.013 0.996 0.005 0.001 0.002 0.000 4.014 55.33 81.88	0.000 0.001 0.001 1.823 0.000 0.285 0.042 0.000 0.822 0.003 0.008 1.014 0.005 0.005 0.005 0.006 0.000 4.015 55.23 1.03	0.000 0.002 0.004 1.863 0.000 0.207 0.023 0.870 0.001 0.014 1.001 0.000 0.000 0.000 4.005 53.50 53.36	0.000 0.010 0.000 1.773 0.004 0.360 0.009 0.043 0.541 0.001 0.011 1.246 0.003 0.000 0.002 0.001 4.004 69.73 82.00	0.000 0.010 0.001 1.735 0.003 0.399 0.005 0.074 0.714 0.000 0.009 1.052 0.002 0.002 0.002 0.001 4.007 93.88	0.000 0.006 0.005 1.842 0.002 0.207 0.044 0.014 0.853 0.001 0.006 1.012 0.011 0.007 0.000 0.000 4.010 54.26 24.02
V sig/k Nb sig/k Si sig/k Ti sig/k Zr sig/k Al sig/k Cr sig/k Mg sig/k Ca sig/k Mn sig/k Fe sig/k Ni sig/k Xn sig/k K sig/k K sig/k	14.2 19.3 9.3 0.7 7.8 6.4 15.8 1.6 11.8 13.9 1.6 14.7 12.9 17.2	15.3 22.9 8.8 0.7 7.3 7.0 7.2 1.6 11.9 12.8 1.6 14.0 14.3 16.9 15.6	14.3 31.6 8.7 0.7 7.1 4.9 23.6 1.6 11.0 14.6 1.6 12.9 12.9 16.0	16.2 25.8 8.7 0.7 7.3 6.5 12.0 1.5 12.0 13.5 1.7 14.0 13.9 17.4	15.1 20.4 9.1 0.7 6.7 7.6 9.7 2.0 11.1 13.7 1.5 14.7 13.7 17.2	13.3 20.4 8.7 0.7 6.9 8.8 7.4 1.7 12.6 14.0 1.6 14.1 14.0 18.9	14.3 21.8 8.0 0.7 7.4 4.7 14.3 1.5 12.0 15.4 1.7 11.3 12.3 18.9 15.8

PAGE 2

	DO54	DO54	DO54	DO55	CA05	CA05	CAR12 7 /9
V205 Nb205 Si02 Ti02 Zr02 Fe203 Al203 Cr203 Mg0 Ca0 Mn0 Fe0 Ni0 Zn0 Na20 K20 total	10 0.000 0.156 0.057 48.560 0.087 10.052 0.242 2.817 9.547 0.032 0.224 27.927 0.175 0.147 0.010 0.009 100.042	11 0.000 0.182 0.027 52.258 0.159 7.759 0.360 0.000 10.161 0.000 0.198 28.935 0.000 0.000 0.040 0.000	12 0.000 0.547 0.014 33.232 0.308 34.425 0.144 2.452 3.723 0.011 0.114 24.393 0.050 0.085 0.000 99.498	13 0.000 0.130 0.000 53.636 0.117 5.402 0.464 0.187 10.724 0.008 0.234 29.295 0.008 0.000 0.000 0.033 100.238	14 0.000 0.186 12.996 52.727 0.418 0.000 11.127 0.074 2.005 0.204 12.969 4.310 0.000 0.000 2.373 1.081 100.470	15 0.000 0.101 0.451 66.144 0.032 0.000 0.455 0.060 0.087 0.229 0.840 24.674 0.109 0.000 0.005 93.197	16 0.000 0.000 30.887 0.522 0.116 60.663 4.702 0.011 0.463 1.355 0.123 2.838 0.017 0.288 0.478 0.960 103.423
V Nb Si Ti Zr Fe Al Cr Mg Ca Mn Fe Ni Zn Na K total Fe / Fe+Mg= Cr / Cr+Al=	0.000 0.003 0.003 1.731 0.002 0.359 0.014 0.106 0.674 0.002 0.009 1.107 0.007 0.005 0.001 4.024 62.16 88.63	0.000 0.004 0.001 1.843 0.004 0.274 0.020 0.000 0.710 0.000 0.008 1.135 0.000 0.000 0.004 0.000 4.003 61.52 0.00	0.000 0.012 0.001 1.259 0.008 1.305 0.009 0.098 0.280 0.001 0.005 1.028 0.002 0.003 0.000 0.000 4.011 78.59 91.95	0.000 0.003 0.000 1.879 0.003 0.189 0.025 0.007 0.745 0.000 0.009 1.141 0.000 0.000 0.000 0.000 0.000 21.32	0.000 0.003 0.532 1.624 0.008 0.000 0.537 0.002 0.122 0.009 0.450 0.148 0.000 0.148 0.056 3.679 54.81 0.44	0.000 0.002 0.022 2.422 0.001 0.000 0.026 0.002 0.006 0.012 0.035 1.005 0.004 0.000 0.000 0.001 3.538 99.41 8.12	0.000 0.000 1.275 0.016 0.002 1.884 0.229 0.000 0.028 0.060 0.004 0.098 0.001 0.009 0.038 0.051 3.695 77.78 0.15
V sig/k Nb sig/k Si sig/k Ti sig/k Zr sig/k Al sig/k Cr sig/k Mg sig/k Mn sig/k K sig/k Ni sig/k Ni sig/k Xn sig/k K sig/k K sig/k	14.9 23.6 8.5 0.7 6.7 7.3 6.2 1.8 12.0 14.6 1.5 12.9 18.9 16.0	13.5 22.9 8.6 0.7 6.9 6.3 22.9 1.7 12.4 13.6 1.6 15.3 13.7 17.7	10.1 17.4 8.5 0.9 6.2 8.5 6.4 2.8 11.8 16.4 1.3 15.1 12.6 20.9	13.7 25.0 9.6 0.7 7.0 5.7 16.7 1.7 12.3 14.2 1.6 13.5 13.9 21.3 13.4	17.2 27.7 1.3 0.7 6.3 1.4 21.3 3.5 8.5 2.7 4.2 18.0 17.7 4.3 4.4	14.2 24.3 5.5 0.6 7.5 5.8 19.6 11.0 7.3 9.6 1.9 14.0 13.3 20.0	33.3 33.3 0.9 5.4 7.1 2.1 25.8 6.7 3.9 16.2 1.3 14.0 11.3 9.3 4.7

PAGE 3

CAR127/9 CAR127/9 CAR127/9 CAR127/9 CAR132/3 CAR132/3

	CAR127,	/9 CAR127	/9 CAR127/	9 CAR127/	9 CAR127	/9 CAR132/	3 CAR132
	17	18	19	20	21	22	23
V205	0.096	0.076	0.114	0.000	0.000	0.194	0.000
Nb205	0.085	0.000	0.000	0.279	0.000	0.000	1.113
SiO2	31.635	31.244	32.163	0.065	0.141	38.029	0.059
T102	0.518	0.548	0.544	63.884	61.070	0.528	60.164
ZrO2	0.000	0.144	0.121	0.074	0.141	0.000	0.033
Fe2O3	58.063	61.882	61.095	0.000	0.000	53.775	0.000
A1203	4.866	4.291	3.983	0.445	0.447	4.101	0.308
Cr203	0.000	0.000	0.063	0.096	0.000	0.000	0.012
MgO	0.752	0.857	0.748	0.044	0.291	0.503	0.018
CaO	1.037	0.831	0.671	0.054	0.093	0.687	0.029
MnO	0.027	0.053	0.026	3.375	1.400	0.089	10.753
FeO	2.529	1.935	1.965	23.458	28.242	2.378	21.788
NiO	0.009	0.000	0.017	0.092	0.000	0.060	0.058
ZnO	0.491	0.563	0.614	0.000	0.000		0.147
						0.670	
Na20	0.432	0.544	0.461	0.010	0.076	0.293	0.071
K20	1.490	1.446	1.410	0.000	0.000	1.194	0.009
total	102.030	104.414	103.995	91.876	91.901	102.501	94.562
V	0.003	0.002	0.003	0.000	0.000	0.005	0.000
Nb	0.002	0.000	0.000	0.006	0.000	0.000	0.025
Si	1.313	1.278	1.314	0.003	0.007	1.519	0.003
Ti	0.016	0.017	0.017				2.261
				2.398	2.326	0.016	
Zr	0.000	0.003	0.002	0.002	0.003	0.000	0.001
Fe	1.814	1.904	1.879	0.000	0.000	1.616	0.000
Al	0.238	0.207	0.192	0.026	0.027	0.193	0.018
Cr	0.000	0.000	0.002	0.004	0.000	0.000	0.000
Mg	0.047	0.052	0.046	0.003	0.022	0.030	0.001
Ca	0.046	0.036	0.029	0.003	0.005	0.029	0.002
Mn	0.001	0.002	0.001	0.143	0.060	0.003	0.455
Fe	0.088	0.066	0.067	0.979	1.196	0.079	0.911
Ni	0.000	0.000	0.001	0.004	0.000	0.002	0.002
Zn	0.015	0.000	0.019	0.000	0.000	0.020	0.002
Na							
	0.035	0.043	0.037	0.001	0.008	0.023	0.007
K	0.079	0.075	0.073	0.000	0.000	0.061	0.001
total	3.697	3.702	3.682	3.572	3.654	3.596	3.692
Fe / Fe+Mg=	65.19	55.93	59.29	99.69	98.19	72.48	99.89
Cr / Cr+Al=	0.00	0.00	1.06	12.64	0.00	0.00	2.52
V sig/k	22.9	26.7	27.7	14.9	13.1	23.6	15.1
Nb sig/k	28.9	37.8	33.3	20.9	28.9	30.2	12.9
Si sig/k	0.9	0.9	0.9	7.7	7.7	0.8	7.9
Ti sig/k	5.3	5.4	5.4	0.7	0.7	5.4	0.7
Zr sig/k	8.0	7.4	7.5	6.8	6.7	8.0	7.0
	2.1		2.3				
-		2.2		6.0	5.8	2.3	6.7
Cr sig/k	25.0	26.7	21.8	22.9	25.8	25.0	26.7
Mg sig/k	5.8	5.3	5.7	12.7	8.1	6.5	12.9
Ca sig/k	4.4	4.8	5.3	10.8	9.5	5.3	10.2
Mn sig/k	23.6	18.6	17.7	5.0	7.6	17.7	2.9
Fe sig/k	1.3	1.3	1.3	1.9	1.8	1.4	2.0
Ni sig/k	13.7	16.2	16.4	13.5	15.3	14.7	14.0
Zn sig/k	10.6	9.8	9.3	14.4	13.0	10.0	12.2
Na sig/k	9.2	8.8	9.5	20.9	16.0	10.9	16.9
K sig/k	3.9	3.9	4.0	17.2	14.8	4.3	13.9
519/1	٠. ٥	3.9	4.0	1,.2	T.4. O	4.7	10.5

DIAMOND VENTURES MICROPROBE REPORT

PYROXENES

	DO53	DO53	DO54	DO54	DO55	DO55	CA03
	4	5	6	7	8:	9	10
SiO2	52.035	52.144	53.581	52.796	53.529	52.410	0.003
TiO2	0.513	0.467	0.256	0.414	0.428	0.328	0.000
Fe2O3	2.979	2.368	1.672	0.984	1.425	4.384	53.771
A1203	3.995	3.115	4.895	3.488	3.575	3.605	53.693
Cr203	0.664	0.588	1.013	1.179	1.203	0.998	0.000
MgO	15.342	16.106	15.910	16.012	16.232	17.225	2.148
CaO	20.882	21.822	20.131	20.759	21.218	20.763	0.043
MnO	0.138	0.089	0.020	0.178	0.079	0.197	1.268
						0.000	0.000
FeO	1.275	1.581	0.760	1.668	1.531		
ZnO	0.041	0.095	0.068	0.027	0.000	0.000	39.279
Na2O	.1.521	0.926	1.995	. 1.396	1.438	1.388	0.994
K20	0.027	0.020	0.020	0.007	0.000	0.010	0.017
total	99.412	99.321	100.321	98.908	100.658	101.308	151.216
Si	1.904	1.912	1.923	1.932	1.926	1.880	0.000
Ti	0.014	0.013	0.007	0.011	0.012	0.009	0.000
Fe	0.082	0.065	0.045	0.027	0.039	0.118	1.278
Al:	0.172	0.135	0.207	0.150	0.152	0.152	1.999
Cr	0.019	0.017	0.029	0.034	0.034	0.028	0.000
Mg	0.837	0.880	0.851	0.874	0.871	0.921	0.101
Ca	0.819	0.857	0.774	0.814	0.818	0.798	0.001
Mn	0.004	0.003	0.001	0.006	0.002	0.006	0.034
Fe	0.039	0.048	0.023	0.051	0.046	0.000	0.000
Zn	0.001	0.003	0.002	0.001	0.000	0.000	0.916
Na	0.108	0.066	0.139	0.099	0.100	0.097	0.061
к	0.001	0.001	0.001	0.000	0.000	0.000	0.001
total	4.000	4.000	4.002	3.999	4.000	4.009	4.391
Fe / Fe+Mg=	4.45	5.17	2.63	5.51	5.02	0.00	0.00
re / reing-	4.45	3.1,	2.03	3.31	3.02	0.00	0.00
Si sig/k	0.7	0.7	0.7	0.7	0.7	0.7	10.0
Ti sig/k	6.2	6.3	7.8	6.7	6.5	7.0	9.3
Al sig/k	2.2	2.5	2.0	2.4	2.3	2.3	0.7
Cr sig/k	12.9	13.6	10.4	9.9	10.0	10.6	31.6
Mg sig/k	1.3	1.2	1.2	1.2	1.2	1.2	3.7
Ca sig/k	1.2	1.1	1.2	1.2	1.2	1.2	12.0
Mn sig/k	17.4	19.6	19.6	17.7	22.9	18.6	7.8
Fe sig/k	4.6	4.8	6.0	5.7	5.4	5.3	4.4
Zn sig/k	15.6	14.8	16.2	16.0	17.2	18.0	1.9
Na sig/k	4.8	6.0	4.2	5.0	4.9	4.9	5.1
K sig/k	15.3	16.7	16.9	16.9	20.9	15.4	13.9

Appendix 7 AUSTRALIAN LABORATORY SERVICES P/L

ANALYTICAL REPORT

3 PAGE 1 of

CONTACT: MR S COOPER

CLIENT: LIVRE HOLDINGS PTY LTD

ADDRESS:

691 BURKE ROAD 1ST FLR CAMBERWELL VIC 3124 LABORATORY: STAFFORD

BATCH NUMBER: ST11840

0 SUB BATCH:

25 No. OF SAMPLES:

DATE RECEIVED: 26/05/95

DATE COMPLETED: 31/05/95

DRDER No.: 400

SAMPLE TYPE CORF

DOO IDOT

DRDER No.: 400		SAMPLE TYPE: 1	LUKE		PROJECT:		
SAMPLE NUMBER	ELEMENT UNIT METHOD L.O.R.	Cu ppm IC587 5	Pb ppm IC587 5	Zn ppm IC587 5	As ppm IC587 5	Co ppm IC587 5	Bi ppm IC587 5
CAR 01-1 103. CAR 01-1 124.	85M	11 26	47 14	17 69	10 8	94 47	<5 <5
CAR 01-1 115. CAR 02-1 22 CAR 02-1 CAR 03-1 137	.7M 36M	7 5 6 5	46 35 33	15 5 55	5 8 7	101 83 97	<5 <5 <5
CAR 03-1 137 CAR 03-1 136. CAR 05-1 81 CAR 09-1 47	35M .3M	0 6 13 <5	34 23 15 19	31 7 39 37	9 10 10 10	90 98 75 92	<5 <5 <5 <5
CAR 09-2 36 CAR 09-2 CAR 06-1 73	38 .6M	10 28 6	21 27 26	47 63 31	11 10 9	27 58 76	<5 <5 <5
CAR 15-1 66 CAR 10-1 25 CAR 10-2 CAR 10-3 43	.8M 33M	62 13 19 49	\$5 \$5 \$5 \$5	70 209 113 205	11 12 15 11	45 65 35 53	<5 <5 <5 <5
CAR 10-3 PAC 1 PAE-1	45M 12M 77M	6 19 122	<5 20 16	7 59 165	6 22 14	170 20 43	<5 <5 <5
PAC PAC PAU PAN	91M 70M	32 29 28 33	105 17 16 30	645 20 167 62	39 10 16 25	28 31 39 14	<5 <5 <5 <5
PAN 1 PAN 1	40M	160 17	14 17	190 263	24 21	36 44	<5 <5
			· · · · · · · · · · · · · · · · · · ·			:	

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

• Results apply to sample(s) as submitted by client

A Springs Laboratory
2: (089) 52 6020 Fax: (089) 52 6028
Bernigo Laboratory
Prone: (054) 46 1399 Fax: (054) 46 1389
Brisbane Laboratory
Prone: (07) 3243 7222 Fax: (07) 3243 7218
Errs Towers Laboratory
2: (077) 87 4155 Fax: (077) 87 4220

Cloncurry Laboratory Phone: (077) 42 1323 Fax: (077) 42 1685 Kalgoorlie Laboratory Phone: (090) 21 1457 Fax: (090) 21 6253 Mt Isa Laboratory Phone: (077) 49 5545 Fax: (077) 49 5546 New Zealand Laboratory Phone: (07) 575 7654 Fax: (07) 575 7641

All pages of this report Orange Laboratory
Phone: (063) 63 1722 Fax: (063) 63 1189
Perth Laboratory
Phone: (09) 249 2988 Fax: (09) 249 2942
Townsville Laboratory
Phone: (077) 79 9155 Fax: (077) 79 9729

All pages of this report have been checked and approved for release.

laur

ANALYTICAL REPORT

3 2 **PAGE** of

CONTACT: MR S COOPER

CLIENT: LIVRE HOLDINGS PTY LTD

ADDRESS:

1ST FLR 691 BURKE ROAD CAMBERWELL VIC 3124

LABORATORY: STAFFORD BATCH NUMBER: ST11840

SUB BATCH:

No. OF SAMPLES: 25

DATE RECEIVED: 26/05/95 DATE COMPLETED: 31/05/95

ORDER No.: 400

SAMPLE TYPE: CORE

PROJECT.

SAMPLE NUMBER	Mg % IC587 0.01	Ni ppm IC587
METHOD IC587	0.01	5
CAR 01-1 103.18M	<0.01 0.62 0.01 <0.01 <0.01 0.06 0.01 0.22 0.20 0.19 0.23 0.13 3.12 1.79 2.11 4.30 0.06 3.08 1.97 3.08 5.75 1.31 3.92 3.70 3.76	<pre><5 11 <5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

• Results apply to sample(s) as submitted by client.

CONTACT: MR S COOPER

1ST FLR

CAMBERWELL

CLIENT: LIVRE HOLDINGS PTY LTD

AUSTRALIAN LABORATORY SERVICES P/L

ANALYTICAL REPORT

3 3 PAGE of

LABORATORY: STAFFORD

BATCH NUMBER: ST11840

SUB BATCH:

25

No. OF SAMPLES:

DATE RECEIVED: 26/05/95

DATE COMPLETED: 31/05/95

DRDER No.: 400

ADDRESS:

SAMPLE TYPE: CORE

3124

691 BURKE ROAD

VIC

PROJECT:

- 4							· · · · · · · · · · · · · · · · · · ·	
SAMPLE NU	IMBER	ELEMENT UNIT METHOD L.O.R.	p ppm IC587 10	Sr ppm IC587 10	Au ppm PM201 0.1	Au PM201 ppm CHECKS 0.1		
CAR	PAE-1 PAO PAO PAU	3.18M .85M .50M 2.7M .36M 7.2M .35M 1.3M 17.5M 6.3M 2.38 3.6M .6.3M .5.8M .3.7M .45M .45M .45M .45M .77M .45M .77M .91M .77M .91M .70M .98M .98M .98M	42 1460 36 86 44 175 87 320 327 1830 1180 178 1840 1.62% 1.04% 1.38% 187 995 1580 804 136 1900 820 1190 989	10 441 13 35 31 152 193 473 418 431 217 275 563 306 424 94 <10 59 93 52 55 130 66 35 66	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1		
		e e e e e e e e e e e e e e e e e e e			maning managan sangkat makababababab			

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

· Results apply to sample(s) as submitted by client.

CONTACT: MR S COOPER

1ST FLR

CAMBERWELL

CLIENT: LIVRE HOLDINGS PTY LTD

AUSTRALIAN LABORATORY SERVICES P/L

ANALYTICAL REPORT

3 PAGE of

LABORATORY: STAFFORD

BATCH NUMBER: ST11840

SUB BATCH: 0

No. OF SAMPLES: 25

DATE RECEIVED: 26/05/95

DATE COMPLETED: 31/05/95

ADDRESS:

3124

691 BURKE ROAD

VIC

DRDER No.: 400		SAMPLE TYPE: [[]	QUALITY CO	DNTROL	PROJECT:		
SAMPLE NUMBER	ELEMENT UNIT METHOD L.O.R.	Cu ppm IC587 5	Pb ppm IC587 5	Zn ppm IC587 5	As ppm IC587 5	Co ppm IC587 5	Bi ppm IC587 5
*** CAR 09-1 4 *** PAE-1 *** PAO	*** CAR 09-1 47.5M *** PAE-1 77M		19 18 92	43 164 564	12 15 36	100 44 24	<5 <5 <5
		27	72	30 ;	30	<u>2</u> -∃	,
and the second					:		
		:					
_	y on one in a construction of the construction						

COMMENTS:

Results which appear on this report are routine laboratory checks for QUALITY CONTROL purposes.

• This is the Final Report which supersedes any preliminary reports with this batch number.

· Results apply to sample(s) as submitted by client.

ANALYTICAL REPORT

3 2 PAGE of

LABORATORY: STAFFORD

BATCH NUMBER: ST11840

SUB BATCH:

25

No. OF SAMPLES:

DATE RECEIVED: 26/05/95

1ST FLR 691 BURKE ROAD

CLIENT: LIVRE HOLDINGS PTY LTD

CAMBERWELL

CONTACT: MR S COOPER

VIC

DATE COMPLETED: 31/05/95

3124

DEDER NO - 400

ADDRESS:

SAMPLETYPE ALIALITY CONTROL

DRDER No.: 400		SAMPLE TYPE:	QUALITY CO	ONTROL	PROJECT:		
SAMPLE NUMBER	ELEMENT UNIT METHOD L.O.R.	Sb ppm IC587 5	Cr ppm IC587 5	Ca % IC587 0.01	K % IC587 0.01	Mg % IC587 0.01	Ni ppm IC587 5
*** CAR 09-1 4 *** PAE-1 *** PAC	77M	<5 <5 <5	6 48 `69	1.16 1.70 2.29	1.05 0.65 1.99	0.21 2.00 2.65	5 60 34
		2					
Ē							
					:		
				:		: :	

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

· Results apply to sample(s) as submitted by client.

ANALYTICAL REPORT

3 3 PAGE of

CONTACT: MR S COOPER

CLIENT: LIVRE HOLDINGS PTY LTD

ADDRESS:

1ST FLR 691 BURKE ROAD CAMBERWELL

VIC 3124 LABORATORY: STAFFORD

BATCH NUMBER: ST11840

SUB BATCH: 0

No. OF SAMPLES: 25

DATE RECEIVED: 26/05/95

DATE COMPLETED: 31/05/95

DRDER No.: 400

SAMPLETYPE: QUALITY CONTROL

PRO IFCT

DRUER No.: 700		SAMPLE TYPE:	WUHLIII U	JNIKOL	PROJECT:	
SAMPLE NUMBER	ELEMENT UNIT METHOD L.O.R.	p ppm IC587 10	Sr ppm IC587 10	5		
*** PAE-1	*** CAR 09-1 47.5M *** PAE-1 77M *** PAO 77M		408 100 46			
		: C				
Estate S						- - - -
						7 0 7

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

• Results apply to sample(s) as submitted by client.

CONTACT: MR S COOPER

1ST FLR

CAMBERWELL

CLIENT: LIVRE HOLDINGS PTY LTD

AUSTRALIAN LABORATORY SERVICES P/L

A.C.N. 009 936 029

ANALYTICAL REPORT

PAGE 2 1 of

LABORATORY: STAFFORD

BATCH NUMBER: ST12067

SUB BATCH: ()

No. OF SAMPLES: 4

DATE RECEIVED: 22/06/95

DATE COMPLETED: 04/07/95

DRDER No.: 0566

ADDRESS:

SAMPLE TYPE: PILL P

3124

691 BURKE ROAD

VIC

DDO JECT

DRDER No.: 0566	·	SAMPLE TYPE: PULP PROJECT:						ŀ
SAMPLE NUMBER	ELEMENT UNIT METHOD L.O.R.	V ppm MS532 1	Nb ppm MS532 0.2	Ta ppm MS532 0.2	U ppm MS532 0.1	Ce ppm MS532 0.1	La ppm MS532 0.1	
CAR 10-1 2 CAR 10-2 3		793 197	2.8 0.6	0.4 <0.2	0.4 0.7	124 94.8	50.3 .40.1	
CAR 10-3 4	CAR 10-3 43.7M CAR 10-3 45.0M		1.2 0.4	<0.2 <0.2	0.7 0.2	119	49.4 3.6	
		·			e :			
				·				
			:					

COMMENTS:

• This is the Final Report which supersedes any preliminary reports with this batch number.

• Results apply to sample(s) as submitted by client.

A Springs Laboratory
P :: (089) 52 6020 Fax: (089) 52 6028
Bandigo Laboratory
Phone: (054) 46 1399 Fax: (054) 46 1389
Brisbane Laboratory
P :: (07) 3243 7222 Fax: (07) 3243 7218
C :ers Towers Laboratory
P :: (077) 87 4155 Fax: (077) 87 4220

Cloncurry Laboratory Phone: (077) 42 1323 Fax: (077) 42 1685 Kalgoorlie Laboratory Phone: (090) 21 1457 Fax: (090) 21 6253 Mt Isa Laboratory Phone: (077) 49 5545 Fax: (077) 49 5546 New Zealand Laboratory Phone: (07) 575 7654 Fax: (07) 575 7641

Orange Laboratory
Phone: (063) 63 1722 Fax: (063) 63 1189
Perth Laboratory
Phone: (09) 249 2988 Fax: (09) 249 2942 Townsville Laboratory Phone: (077) 79 9155 Fax: (077) 79 9729

All pages of this report have been checked and approved for release.

A.C.N. 009 936 029

ANALYTICAL REPORT

PAGE 2 of 2

LABORATORY: STAFFORD

BATCH NUMBER: ST12067

SUB BATCH: 0

No. OF SAMPLES: 4

DATE RECEIVED: 22/06/95

DATE COMPLETED: 04/07/95

1ST FLR CAMBERWELL

CLIENT: LIVRE HOLDINGS PTY LTD

CONTACT: MR S COOPER

691 BURKE ROAD VIC 3124

ORDER No.: 0566

ADDRESS:

SAMPLE TYPE: PULP

PROJECT:

J ONDER IV	0 0500		SAMPLE ITPE:	PULP		PHOJECT:	
SAMPL	E NUMBER	ELEMENT UNIT METHOD L.O.R.	Nd ppm MS532 0.1	Th ppm MS532 0.1	Y ppm MS532 0.1	Yb ppm MS532 0.1	
	CAR 10-1 2 CAR 10-2 3 CAR 10-3 4 CAR 10-3 4	3.0M 3.7M	96.5 68.6 86.2 3.0	1.8 3.3 2.3 0.3	80.2 55.8 71.1 2.0	4.9 4.1 4.6 0.2	
				(
							:
					:		
						:	
			:				
					·		:

COMMENTS:

This is the Final Report which supersedes any preliminary reports with this batch number.

• Results apply to sample(s) as submitted by client.

Appendix 8

DEPARTMENT OF MINES AND ENERGY GEOLOGICAL SURVEY SOUTH AUSTRALIA

REPORT BOOK

PALYNOLOGICAL DATING AND CORRELATION OF LATE EOCENE SEDIMENTS FROM THE EUCLA BASIN, SOUTH AUSTRALIA. DIAMOND VENTURES NL.

N F ALLEY

Biostratigraphy

OCTOBER, 1995 DME

©Department of Mines and Energy South Australia 1995.

This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced without written permission of the Director-General,

Department of Mines and Energy South Australia

Palynological dating and correlation of Late Eocene sediments from the Eucla Basin, South Australia. Diamond Ventures NL.

Neville F. Alley

Summary

A sample from CAR3 No. 1 Well on Eyre Peninsula is Late Eocene in age and correlative with the marginal marine upper part of the Pidinga Formation.

Introduction

One sample of cuttings from 84-88 m depth in CAR3 No. 1 Well, Eyre Peninsula, was submitted by Diamond Ventures NL, Camberwell, Victoria, for palynological dating.

The laboratory processing was undertaken by Laola Pty. Ltd., Perth, and the microscope analyses and dating by Neville F. Alley, Principal Geologist, Mines and Energy, South Australia.

The data were processed and details presented graphically using Stratabugs 1.2 and CorelDraw 5 software.

General composition of the palynofloras (Fig. 1)

The sample produced a palynoflora of good yield and preservation.

The palynoflora is dominated by Nothofagidites pollen, especially the Brassospora group (N. deminutus/emarcidus/falcatus/heterus/incrassatus/vansteenisii species). Other common taxa are Haloragacidites harrisii and the conifers Microcachryidites antarcticus and Podocarpidites ellipticus. Although the Proteacidites group forms only a small percentage of the overall palynoflora, it is reasonably diverse in species.

A relatively small amount of marine microplankton (dinoflagellates) is present with moderate species diversity.

Dating and correlation

The presence of *Triorites magnificus* indicates a correlation with the largely Late Eocene Middle *Nothofagidites asperus* spore-pollen Zone of Stover and Partridge (1973, 1982; Fig 2). This species makes its oldest appearance at the base of the zone and is largely restricted in its time range to that zone. A marginal marine setting is indicated by the presence of the marine microplankton.

This designation is supported by the presence of the relatively diverse assemblage of the genus *Proteacidites*, in particular the species *P. grandis*, *P. kopiensis* and *P. pachypolus*, which are common associates of *T. magnificus* and are largely extinct by the latest Eocene.

The palynoflora is very similar to those of Late Eocene age in the eastern Eucla Basin (Alley and Benbow, 1989; Alley and Beecroft, 1993). Because of its age and the presence of the marine microplankton the sediment is correlative with the upper part of the Pidinga Formation which is widespread in the Eucla Basin, underlying the Early to Middle Tertiary carbonates and occurring in palaeochannels several hundred kilometres inland from the coast (Fig. 2; Alley and Beecroft, 1993; Benbow et al., 1995). Deposition was undoubtedly related to the Tortachilla Transgression of McGowran (1989) which was a major sea level rise in the Late Eocene leading to deposition of the upper part of the Pidinga Formation (Alley and Beecroft, 1993).

Conclusions

The sample is Late Eocene in age and correlates with the upper marginal marine part of the Pidinga Formation in the Eucla Basin.

References

- Alley, N.F. and Benbow, M.C., 1989. Late Eocene palynofloras from the Pidinga Formation, SADME Ooldea Range 6, eastern Eucla Basin. South Australia. Geological Survey. Quarterly Geological Notes, 111, 2-12.
- Alley, N.F. and Beecroft, A., 1993. Foraminiferal and palynological evidence from the Pidinga Formation and its bearing on Eocene sea level events and palaeochannel activity, eastern Eucla Basin, South Australia. Memoir Association of Australasian Palaeontologists 15, 375-393.
- Benbow, M.C., Lindsay, J.M. and Alley, N.F., 1995. Eucla Basin and Palaeodrainage. In Drexel, J.F. and Preiss, W.V. (Eds.) The geology of South Australia. Volume 2. The Phanerozoic. South Australia. Department of Mines and Energy. Bulletin, 54, 178-186.
- McGowran, B., 1989. The later Eocene transgressions in southern Australia. *Alcheringa*, 13, 45-68.
- Stover, L.E. and Partridge, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Royal Society of Victoria. Proceedings 85, 237-286.
- Stover, L.E. and Partridge, A.D., 1982. Eocene spore-pollen from the Werillup Formation, Western Australia. Palynology 6, 69-95.

DIAMOND VENTURERS CAR3 NO. 1

84.00m CU	Samples	
-	Araucariacites australis	_
Riceio)	Baculatisporites comaumensis	9
Taxable 1	Baculatisporites disconformis	a.
in the second	Banksieaeidites arcuatus	7
	Beaupreaidites elegansiformis	흦
_	Casuarinidites cainozoicus	8
-	Clavatipollenites glarius Cupanieidites orthoteichus	an
Bigger 1	Cyathidites australis	Sp
Taxona (Cyathidites minor	fertiary pollen and spores
-	Cyathidites paleospora	S9.
	Dacrycarpites australiensis	
-	Dilwynites granulatus	
-	Dilwynites tuberculatus Ericipites crassiexinus	
	Gleicheniidites circinidites	
	Haloragacidites harrisii	
	Ilexpollenites anguloclavatus	
	Ischyosporites gremius	
-	Lilliacidites aviemorensis Lilliacidites lanceolatus	
	Lygistepollenites florinii	
	Microcachryidites antarcticus	
BOGON	Milfordia homeopunctata	
33330	Nothofagidites brachyspinulosus	
	Nothofagidites deminutus	
	Nothofagidites emarcidus	
	Nothofagidites falcatus Nothofagidites heterus	
	Nothofagidites incrassatus	
	Nothofagidites vansteensii	
-	Osmundacidites wellmanii	
	Parvisaccites catastus Periporopollenites demarctus	
	Phyllocladidites mawsonii	
-	Phyllocladidites ovalis	
	Phyllocladidites reticulosaccatus Podocarpidites ellipticus	
<u> </u>	Podocarpidites magnificus	
	Proteacidites annularis	ľ
	Proteacidites grandis	
	Proteacidites kopiensis	
┝┷┥	Proteacidites obscurus Proteacidites pachypolus	
 	Proteacidites pseudomoides	
	Proteacidites rynthius	
	Proteacidites simplex	
	Rhoipites sphaerica	
	Rugulatisporites mallatus	
┝╼┤	Santalumidites cainozoicus	ŀ
	Sapotaceoidaepollenites rotundus Trichotomosulcites subgranulatus	
-	Tricolporites adelaidensis	
	Tricolporites leuros	
	Tricolporites prolata	ľ
	Triorites magnificus	
	Verrucatosporites cristatus	
	Verrucatosporites kopukuensis	ľ
ـــــــــــــــــــــــــــــــــــــــ	Verrucatosporites speciosus	

Department of Mines and Energy Parkside, South Australia

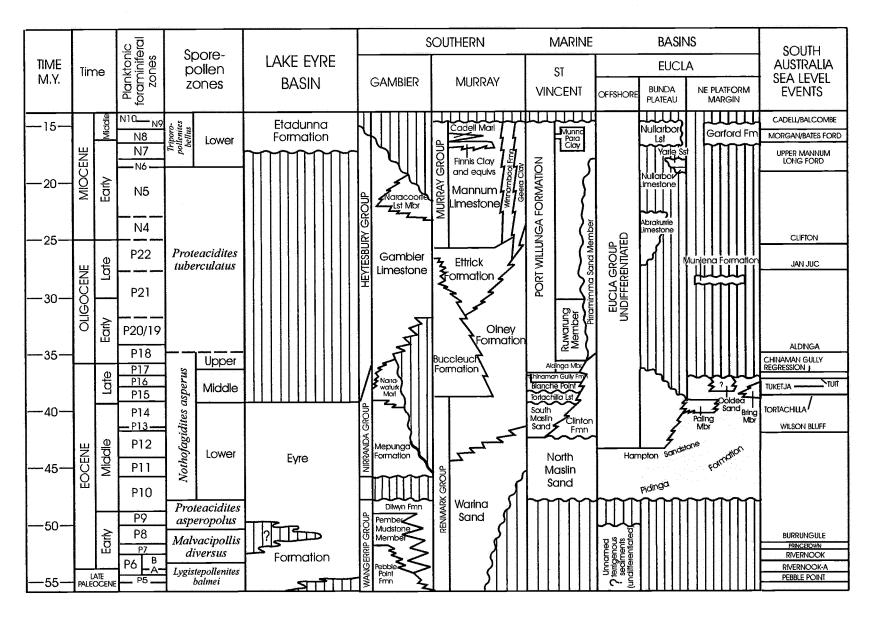


Figure 2