# Open File Envelope No. 3613

## EL 529

#### **POUTCHINA HILL**

## PROGRESS REPORTS FOR THE PERIOD 12/9/79 TO 11/9/81

Submitted by
Samedan Oil Corp. of Australia and Esso Australia Ltd
1981

© 31/12/83

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia. PIRSA accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings. This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Primary Industries and Resources South Australia, GPO Box 1671, Adelaide, SA 5001.

Enquiries: Customer Services

Ground Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880



#### CONTENTS ENVELOPE 3613

#### TRANSPARENT CYLINDER 3613/1

TENEMENT: E.L. 529.

(pg. 41 does not exsit)

TENEMENT HOLDER: SAMEDAN OF AUSTRALIA.

#### **REPORT:**

SAMEDAN OIL CORP. 1979.

E.L. 529. Progress report.

(period: September 22 - December 22, 1979.)

NO PLANS.

pg. (7)

#### **EXPENDITURE:**

E.L. 529. Exploration expenditures.

( period: September 22 - December 22, 1979.)

NO PLANS.

pg. (8)

#### REPORT:

SAMEDAN OIL CORP. 1980.

E.L. 529. Quarterly Progress Report.

(period:December 13, 1979 - March 12, 1980)

NO PLANS

pg. (9)

#### **EXPENDITURE:**

E.L.529. Exploration expenditures.

(period: December 13, 1979 - March 12, 1980.)

NO PLANS.

pg • (10)

#### **EXPENDITURE:**

E.L.529. Exploration expenditure S.A.

(period: 1st march, 1980 - 31st May, 1980)

NO PLANS.

pg. (11)

#### REPORT:

SAMEDAN OF AUST. & ESSO AUST. LTD. 1980.

E.L. 529. "Poutchina" Pt. Augusta region.

S.A. quarterly report.

(period:March 12, 1980 - June 11, 1980)

NO PLANS.

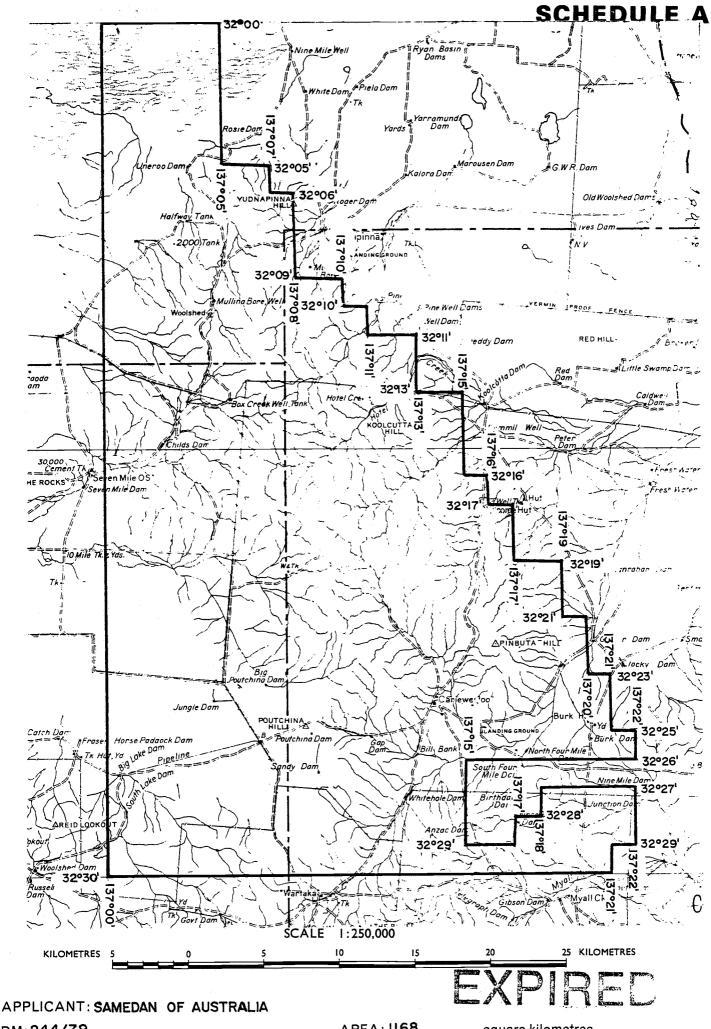
pg. (12)

(3613-2) (2)

#### REPORT: ESSO AUST. LTD. 1980. E.L. 529. "Poutchina" Pt. Augusta region, S.A. quarterly report. (period: June 12, 1980 - September 11, 1980) pg**%**(13-18) PLANS: TABLE. 1. (A,B,C) Listing of radiometric anomalies. Pg**S**(16-18) FIG. 1. (DWG. NO. 581-6) E.L. 529 "Poutchina" Aeromagnetic contours. (3613-1)(1)Scale 1:50,000. (DWG. NO. 581-8) E.L. 529. "Poutchina" FIG.2. Stacked aeromagnetic.profiles. Scale: 1:50,000 (3613-2)(1)FIG.3. (DWG. NO. 581-7) E.L. 529 "Poutchina" Airborne survey - Flight line recovery & Radiometric anomalies. Scale 1:50,000. (3613-3)(1)FIG.4. Radiometric anomaly distribution. (3613-4)(1)(Ternary diagram) REPORT: ESSO AUSTRALIA LTD. 1980. E.L.529. "Poutchina" quarterly report. pgs (19-40) (Period: September 11, 1980 - December 11, 1980) PLANS: (DWG. NO. 581-6) E.L. 529. "Poutchina" FIG.1. Aeromagetic contours. (2)Scale 1:50,000. (3613-1)FIG.2. (DWG.NO. 581-8) E.L. "Poutchina" Stacked aeromagnetic profiles.

Scale 1:50,000.

## CONTENT ENVELOPE 3613 TRANSPARENT CYLINDER 3613/1


| FIG.3.   |                                                   |                     |       |
|----------|---------------------------------------------------|---------------------|-------|
|          | (DWG. NO. 581-7) E.L. 529. "Poutchina".           |                     |       |
|          | Airborne survey - Flight line recovery.&          |                     |       |
| _        | Radiometric anomilies.                            |                     |       |
| •        | Scale 1:50,000.                                   | (3613-3)            | (2)   |
| FIG.4.   | (DWG. NO. 581-9) E.L. 529. "Poutchina"            |                     | (-)   |
|          | Aeromagnetic survey - preliminary interpretation. |                     |       |
| e e      | Scale 1:50,000                                    | (3613-4)            | (2)   |
| FIG.5.   | Interpretative cross section - line 160-          |                     |       |
|          | "Poutchina" aeromagnetic survey.                  | (3613-5)            | (2)   |
| FIG.6.   | Interpretative cross section- line 280-           |                     |       |
|          | "Poutchina" aeromagnetic survey.                  | (3613-6)            | (2)   |
| FIG.7.   | Interpretative cross section - line 500.          |                     | (-)   |
|          | "Poutchina" aeromagnetic survey.                  | (3613-7)            | (2)   |
| .FIG.8.  | Interpretative cross section - line 800.          |                     | * '\$ |
|          | "Poutchina" aeromagnetic suvery.                  | (3613-8)            | (2)   |
| FIG.9.   | Interpretative cross section - line 1100.         |                     |       |
|          | "Poutchina" aeromagnetic survey.                  | (3613-9)            | (2)   |
| REPORT:  |                                                   |                     |       |
| GREIG D. | .D. 1981.                                         |                     |       |
|          | Esso Aust. Ltd Minerals Dept. E.L.529,            |                     |       |
|          | "Poutchina" Quarterly report of exploration       |                     |       |
|          | to S.A.D.M.E.                                     |                     |       |
|          | (period ending March 11, 1981.)                   | Pg <b>S.</b> (42-12 | 22)   |
| PLAN:    |                                                   |                     |       |
| FIG.1.   | Location map 1:250,000 showing further            |                     |       |
|          | Geophysical surveys & drilling.                   | pg. (44)            |       |

## CONTENTS ENVELOPE 3613

| APPENDI      | X:1.                                             |                                       |     |
|--------------|--------------------------------------------------|---------------------------------------|-----|
|              | Solo Geophysics & Co. Yudapinna, via Pt. Augusta |                                       |     |
|              | S.A.grid: :Poutchina December, 1980              |                                       |     |
|              | phase 1.                                         |                                       |     |
|              | NO PLANS.                                        | pgs. (45-12                           | 2)  |
| REPORT:      |                                                  |                                       |     |
| ESSO AU      | ST. LTD MINERALS DEPT.                           |                                       |     |
|              | E.L.529 "Poutchina", S.A.                        |                                       |     |
|              | Quarterly report on exploration,                 |                                       |     |
|              | (period ending 11th June, 1981)                  | pgs. (123-1                           | 36) |
|              |                                                  |                                       |     |
| PLANS:       |                                                  |                                       |     |
| FIG.1.       | (DWG. NO. 581-12)                                | J.                                    |     |
|              | Drill hole location diagram.                     | (3613-1)                              | (3) |
| FIG.2.       | (DWG. NO. 581-13).                               |                                       |     |
|              | Gravity survey.                                  | (3613-2)                              | (3) |
| FIG.3.       | (DWG. NO581-14)                                  | ·                                     |     |
|              | Ground magnetic profiles Jungle Dam.             | (3613-3)                              | (3) |
| FIG.4.       | (DWG. NO. 581-15) Ground magnetic profiles       |                                       |     |
|              | White Dam.                                       | (3613-4)                              | (3) |
| FIG.5.       | (DWG. NO. 581-16) Ground magnetic profile        |                                       |     |
|              | Burk Dam.                                        | (3613-5)                              | (3) |
| FIG.6.       | (DWG.NO.581-17) Geological map 1:100,000.        | (3613-6)                              |     |
| •            | (DWG. NO. 581-18) Interpretative proterozoic     |                                       |     |
| -            | geology 1:100,000.                               | (3613-7)                              | (3) |
| FIG.8.       | •                                                |                                       | ` ' |
|              | 1:40,000.                                        | (3613-8)                              | (3) |
| ETC 0        | •                                                | , , , , , , , , , , , , , , , , , , , |     |
| F16.9.       | (DWG. NO. 581-20) Geological map sheet 2.        | (7647 0)                              | (7) |
|              | 1:40,000.                                        | (3613-9)                              | (3) |
| APPENDI      | x: 1.                                            |                                       |     |
| <del>-</del> | Electromagnetic sounding technique.              | ٠                                     |     |
|              | NO PLANS.                                        | pgs.(127-12                           | 8)  |

#### APPENDIX 2.

| APPENDI | <u>X Z.</u>                                    |                |
|---------|------------------------------------------------|----------------|
|         | Jungle Dam Prospect, ground magnetic modelling | _              |
|         | programme line 1200n.                          | pgs. (129-136) |
| PLATE:  |                                                |                |
| P.1.    | Jungle Dam Prospect geoprobe 1200n - 650e.     | pg.(134)       |
| P.2.    | Jungle Dam Prospect geoprobe 1200n - 750e.     | pg•(135)       |
| P.3.    | Burk Dam Prospect geoprobe 1250n - 00e.        | pg.(136)       |
|         |                                                |                |



DM:244/79 AREA: 1168 square kilometres

1:250000 PLANS: PORT AUGUSTA

LOCALITY: POUTCHINA HILL AREA - 60 km W of PORT AUGUSTA

DATE GRANTED: 12 - 9 - 79

DATE EXPIRED: 11 - 9 - 8081 ...

EL No: 529

#### SAMEDAN OIL CORPORATION

#### EXPLORATION LICENCE 529

#### PROGRESS REPORT

(Period: September 22 - December 22, 1979)

Exploration Licence 529, of 1204 square kilometres, was granted to Samedan Oil Corporation on September 22, 1979. The area is a continuation of Samedan's exploration programme in the adjoining Exploration Licence 398 area, where exploration has been confined in and around the Roopena Fault.

The first phase of exploration will be a detailed airborne magnetic survey of the licence area which is mostly covered by Pandurra Formation and to a lesser extent in the south the Gawler Range Volcanics. The aim of the survey is to assist in determining Carpentarian basement structures and depths to the basement. It is proposed to fly at flight lines at 500 metres apart and at elevation above the ground of 100 metres. Tenders for the contract survey will be invited shortly and the survey is expected to begin early in 1980.



#### SAMEDAN OIL CORPORATION

#### EXPLORATION EXPENDITURE

## EXPLORATION LICENCE 529

## (Period: September 22 - December 22, 1979)

|                          | \$         |
|--------------------------|------------|
| Exploration Licence Fees | 631.00     |
| Maps                     | 393.25     |
| Salaries                 | 1,402.58   |
|                          | \$2,426.83 |
|                          |            |

009

#### SAMEDAN OIL CORPORATION

#### EXPLORATION LICENCE 529

#### QUARTERLY PROGRESS REPORT

Period: December 13, 1979 to March 12, 1980

Tenders were invited for a contract aeromagnetic survey involving 3000 line kilometres over the whole exploration licence at line spacings of 500 metres and mean terrain clearance of 100 metres.

A contract is expected to be let soon with the flying to begin within the next two months.



#### SAMEDAN OIL CORPORATION

EXPLORATION LICENCE 529

EXPLORATION EXPENDITURES

Period: December 13, 1979 to March 12, 1980

Salary of Geologist - \$1,059.52

#### SAMEDAN OIL CORPORATION

#### EXPLORATION EXPENDITURE

## EXPLORATION LICENCE 529 SOUTH AUSTRALIA

## Period: 1st March, 1980 to 31st May, 1980

Geological

Geophysical

Overheads

1,381 19,951 1,047

\$22,379

\$



#### EXPLORATION LICENCE 529 "POUTCHINA"

#### PORT AUGUSTA REGION, SOUTH AUSTRALIA

### QUARTERLY REPORT FOR THE PERIOD MARCH 12, 1980 TO JUNE 11, 1980

As part of a joint venture agreement being negotiated between Samedan of Australia and Esso Australia Ltd. involving E.L. 529 "Poutchina" and the adjoining E.L. 398 "Roopena", the Coal and Minerals Department of Esso Australia Ltd. assumed operating responsibilities for E.L. 529 during the quarter.

The major activity undertaken during the quarter was a combined aeromagnetic-spectrometer survey covering the entire licence area. The survey specifications were as follows:-

Contractor - Geometrics International Corporation
Aircraft - Britten Norman Islander
Sensor (Aircraft) height - 100 m
Line spacing - 400 m
Aircraft speed - 110 knots
Line orientation - 060°
Tie line spacing - 5 km
Magnetometer - Geometrics G-803
Sample Interval - 1 second
Sensitivity - 1 nanotesla
Spectrometer - Geometrics GR 800
Crystal volume- 1024 cubic inches

No data from this survey has been received from the contractor to date.

The future exploration programme within the E.L. is dependent on a detailed assessment of this geophysical data and available geological, gravity and Open File exploration data.



#### PORT AUGUSTA REGION, SOUTH AUSTRALIA

#### QUARTERLY REPORT FOR THE PERIOD JUNE 12, 1980 TO SEPTEMBER 11, 1980

#### INTRODUCTION

The major activities undertaken during the fourth quarter of E.L. 529 were the completion and interpretation of the airborne magnetometer-spectrometer survey completed during the previous quarter. A limited amount of reconnaissance geology and preliminary photo-geological interpretation were undertaken.

#### AEROMAGNETIC DATA

The initial aeromagnetic data tied into the Australian Metric Grid is included as Figures 1 - 3. The final data will be included in a subsequent report. The magnetic data has been machine contoured and processed as follows:-

IGRF: Removed, datum 2000 nT added

GRID MESH: 100 m x 100 m CONTOUR INTERVAL: 5nT

GRID NOTATION: Australian Metric Grid

COMPILED BY: Engineering Computer Services Pty. Ltd.

Further machine filtering of this data to separate the higher frequency dyke effects from the deeper responses is in progress, as is quantitative interpretation of a selection of the magnetic features. The results of this work will be reported when they become available.

#### SPECTROMETER DATA

A detailed interpretation of the radiometric data has been completed. No ground follow up has been attempted as yet.

A total of 98 anomalies (Table 1, Figures 3 and 4) have been identified from the analogue records for flight lines 1 to 137 and tie lines 1 to 3. These were selected on the basis of the uranium channel radiation only with an anomaly being designated as a twice background (or greater) deflection for a statistically meaningful number of readings. These anomalies have been further classified in terms of the relative contributions from potassium uranium and thorium as follows:-

The local backgrounds were subtracted from the full count rates to obtain the anomalous counts in each channel. The percentage contributions from the three elements were calculated using the formulae:

$$K\% = \frac{K}{K + U + Th} \times 100$$

$$U\% = \frac{U}{K + U + Th} \times 100$$

$$Th\% = \frac{Th}{K + U + Th} \times 100$$

Table 1 lists the corrected anomalous values and the relative percentage contributions. These have also been plotted on a ternary diagram (Figure 4). From this it can be seen that the majority of the anomalies fall within a tight cluster near the potassium corner. These have been interpreted as "hot granite" type responses and are probably related to outcropping or subcropping Gawler Range Volcanics in the southwestern part of the area. Of the remaining anomalies only three (3, 5, 94) have above average uranium contributions, but these all have relatively low total count responses.

Both the northern half and the south-eastern section of the E.L. are relatively non-radioactive with total count, potassium, uranium and thorium channel backgrounds of 1500-2500 c.p.s., 40-60 c.p.s., 20-30 c.p.s. and 20-40 c.p.s. respectively.

#### FUTURE PROGRAMME

A programme based on the detailed interpretation and evaluation of the aeromagnetic and to a lesser extent the radiometric survey data is envisaged. This will probably necessitate ground magnetic and gravity surveys to follow up areas of interest generated from the magnetics or from the published 1:250,000 gravity data. A limited amount of photogeological mapping is also planned.

ŭ

#### LIST OF TABLES AND FIGURES

TABLE 1 (A,B,C)

Listing of Airborne Radiometric Anomalies

FIGURE 1 (Dwg. No. 581-6)

E.L. 529 "Poutchina" Aeromagnetic Contours Scale 1:50,000

FIGURE 2 (Dwg. No. 581-8)

E.L. 529 "Poutchina" - Stacked Aeromagnetic Profiles. Scale 1:50,000

FIGURE 3 (Dwg. No. 581-7)

E.L. 529 "Poutchina" Airborne Survey - Flight Line Recovery and Radiometric Anomalies Scale 1:50,000

Radiometric Anomaly Distribution (Ternary Diagram).

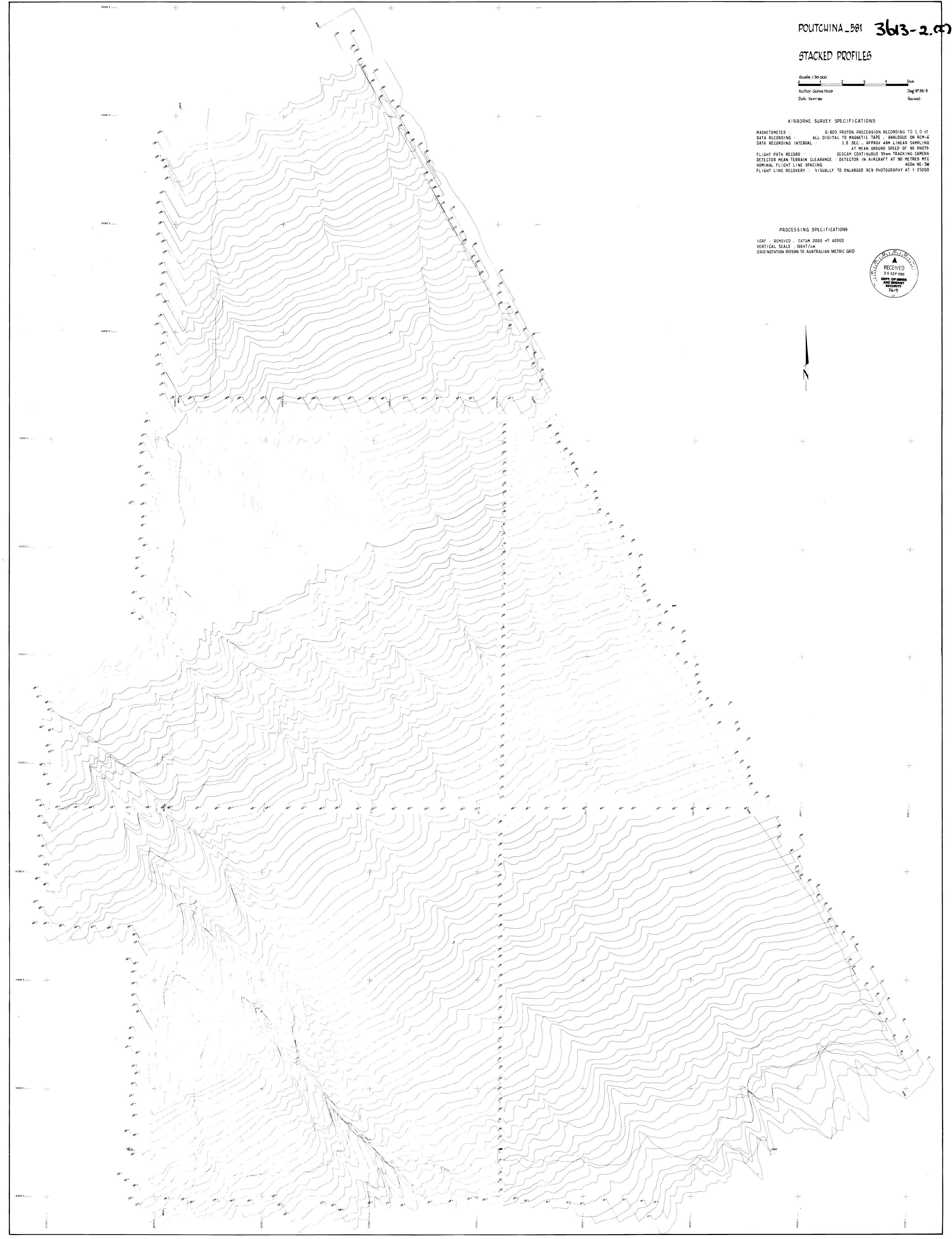
ESSO AUSTRALIA LTD.

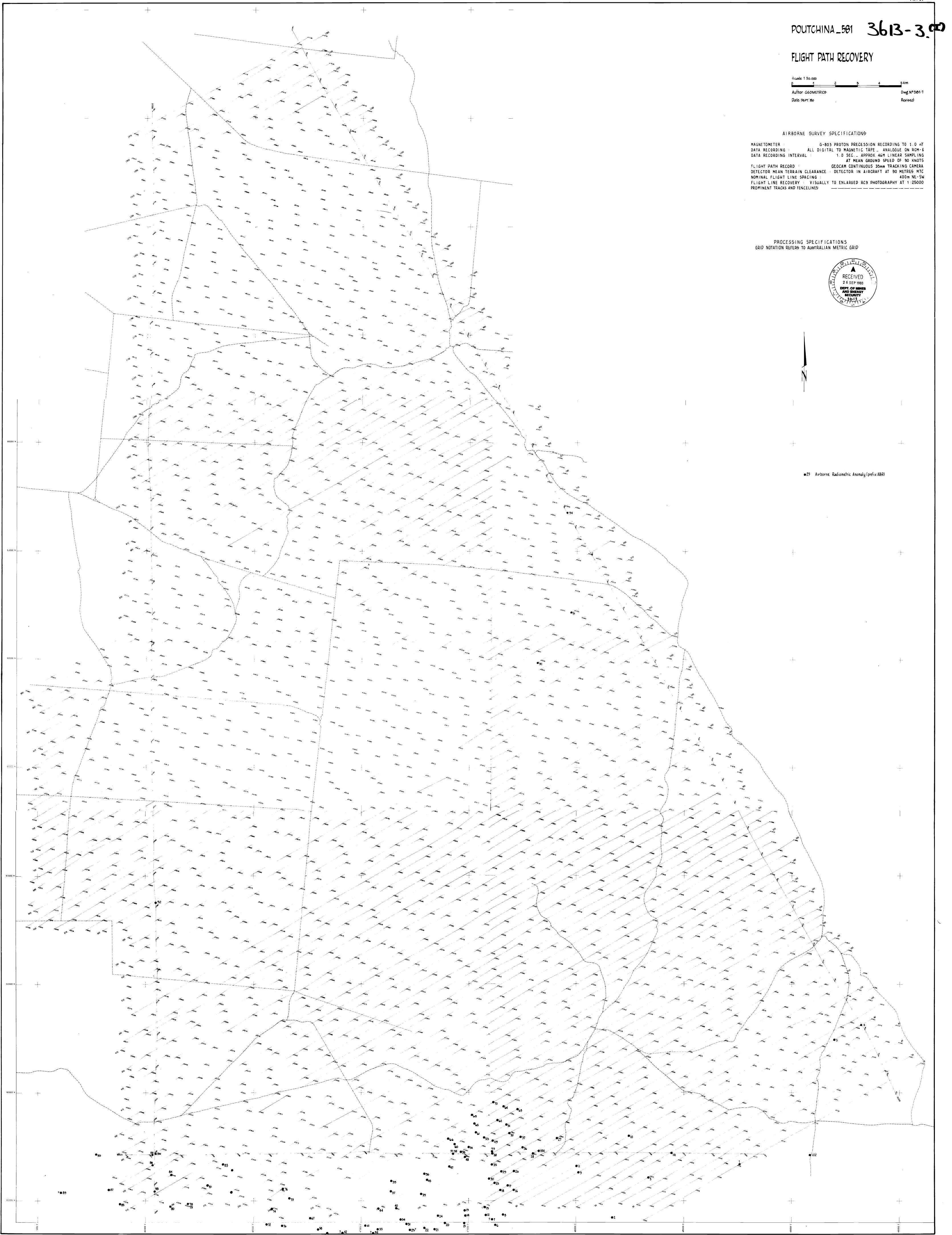
### POUTCHINA AREA SOUTH AUSTRALIA LISTING OF RADIOMETRIC ANOMALIES

| •                                                                                |                                                                                                                                                             |                                                                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                                         | -, <del></del>                                                                                                             |                |                                                                                                |                     |                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANOMALY<br>NUMBER                                                                | ' LINE<br>NUMBER                                                                                                                                            | FID.<br>VALUE                                                                                                                                                                                                                                        | TOTAL<br>COUNT                                                                                                                                                     | PÕT.<br>COUNT                                                                                                           | URAN.<br>COUNT                                                                                                             | THOR.<br>COUNT | POT.<br>RATIO                                                                                  | URAN.<br>RATIO      | THOR<br>RATI                                                                                                                                                                                                             |
| 24<br>25<br>26<br>27<br>29<br>33<br>33<br>34<br>35<br>35<br>36<br>37<br>39<br>40 | 1<br>358889910011<br>11<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 3186<br>4114<br>4853<br>5854<br>5853<br>6190<br>6231<br>6305<br>6880<br>6886<br>6886<br>6886<br>7042<br>7073<br>7783<br>7846<br>7846<br>7846<br>7857<br>7859<br>7858<br>8857<br>7858<br>8855<br>8855<br>8864<br>8865<br>8864<br>8865<br>8866<br>8866 | 1500<br>3100<br>500<br>1500<br>600<br>3300<br>4500<br>3300<br>4500<br>2800<br>3500<br>3500<br>3500<br>4500<br>4500<br>4500<br>4500<br>3100<br>3100<br>3100<br>3100 | 158<br>138<br>110<br>210<br>200<br>120<br>95<br>60<br>170<br>184<br>80<br>180<br>180<br>200<br>270<br>270<br>210<br>260 | 12<br>20<br>24<br>28<br>32<br>34<br>32<br>32<br>33<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 | 74<br>84       | 64<br>782<br>136<br>65<br>65<br>65<br>65<br>65<br>65<br>66<br>66<br>66<br>66<br>66<br>66<br>66 | 15<br>11<br>9<br>13 | 26<br>15<br>13<br>4<br>9<br>27<br>22<br>23<br>23<br>23<br>23<br>23<br>23<br>24<br>24<br>25<br>27<br>28<br>27<br>28<br>27<br>28<br>28<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 |

## ESSO AUSTRALIA LTD.

## POUTCHINA AREA SOUTH AUSTRALIA LISTING OF RADIOMETRIC ANOMALIES


| ANOMALY<br>NUMBER                                                                      | LINE<br>NUMBER                                                                   | FID.<br>VALUE                                                                                                                                         | TOTAL<br>COUNT                                                                                               | POT.<br>COUNT                                                                                         | URAN.<br>COUNT                                                                         | THOR.<br>COUNT                                                                      | POT.<br>RATIO                                                              | URAN.<br>RATIO                         |                                                                                              |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| 41<br>42<br>43<br>44<br>45                                                             | 17<br>17                                                                         | 9717<br>9740<br>9751<br>9801<br>9846                                                                                                                  | 4800                                                                                                         | 190<br>240<br>260<br>280<br>160                                                                       | 62<br>62<br>36<br>51<br>28                                                             | 100<br>104<br>88<br>110<br>100                                                      | 59<br>67<br>63                                                             | 11                                     | 28<br>25<br>22<br>24                                                                         |
|                                                                                        | 17<br>18                                                                         | 9877<br>9904<br>9917<br>10567                                                                                                                         | აილი<br>3500                                                                                                 | 220<br>230                                                                                            | 38<br>32<br>40<br>40<br>31                                                             | 50<br>90                                                                            | 62<br>65                                                                   | 10<br>8<br>11<br>8                     | 20<br>28<br>26<br>25<br>25                                                                   |
| 53<br>54<br>55<br>56<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68 | 18<br>18<br>18<br>18<br>18<br>19<br>19<br>19<br>20<br>20<br>20<br>21<br>21<br>21 | 10587<br>10601<br>10610<br>10640<br>10670<br>10673<br>10843<br>10899<br>10939<br>10957<br>11586<br>11613<br>11638<br>11638<br>11638<br>11766<br>11816 | 4700<br>1600<br>3000<br>3100<br>3100<br>4000<br>4000<br>4300<br>4300<br>4800<br>3200<br>3800<br>4600<br>3700 | 290<br>100<br>165<br>190<br>195<br>210<br>268<br>228<br>280<br>280<br>240<br>240<br>220<br>180<br>220 | 38<br>36<br>36<br>36<br>36<br>36<br>38<br>36<br>40<br>36<br>40<br>36<br>40<br>36<br>30 | 110<br>40<br>90<br>70<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>90 | 66<br>56<br>56<br>64<br>58<br>66<br>66<br>66<br>66<br>67<br>57<br>56<br>64 | 12<br>11                               | 25<br>22<br>30<br>23<br>23<br>25<br>23<br>24<br>23<br>23<br>23<br>23<br>26<br>28<br>26<br>26 |
| 72,                                                                                    | 22                                                                               | 12878                                                                                                                                                 | •.                                                                                                           |                                                                                                       | *                                                                                      | 115                                                                                 | : :                                                                        |                                        | -                                                                                            |
| 74<br>75<br>76<br>77<br>78<br>79<br>80<br>CLOSE P(                                     | <br>23<br>24<br>27<br>28<br>28<br>29<br>OUTCHINA:                                | 12947<br>13948<br>15163<br>16268<br>16268<br>16333                                                                                                    | 3500<br>4100<br>4000<br>900<br>2700                                                                          | 178<br>198<br>250<br>0<br>119<br>120                                                                  | 34<br>38<br>56<br>42<br>8<br>36<br>46                                                  | 90<br>110<br>90<br>9<br>0<br>66<br>30                                               | 58<br>57<br>63<br>0<br>100<br>54                                           | 11<br>10<br>14<br>100<br>0<br>16<br>29 | 29<br>31<br>22<br>0<br>0<br>29                                                               |


## ESSO AUSTRALIA LTD.

## POUTCHINA AREA SOUTH AUSTRALIA LISTING OF RADIOMETRIC ANOMALIES

|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                             |                                                                                                              |                                                                                              |                                                                                                                        |                                                                                              |                                                                                                                     | •                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ANOMALY LINE<br>NUMBER NUMBER                                                                                                                                                                                                                                                                                                                                                                                        | FID.<br>R VALUE                                                                                                                                                                                        | TOTAL<br>COUNT                                                                                                              | POT.<br>COUNT                                                                                                | URAN.<br>COUNT                                                                               | THOR.<br>COUNT                                                                                                         | POT.<br>RATIO                                                                                | URAN.<br>RATIO                                                                                                      | THOR.<br>RATIO                                                                                           |
| 81       29         82       29         83       30         84       32         85       32         86       34         87       34         88       35         89       62         91       65         92       901         93       901         94       903         95       902         97       902         98       902         99       902         100       902         101       902         102       902 | 16366<br>16388<br>17440<br>18708<br>18755<br>19989<br>20040<br>23108<br>21890<br>39589<br>41011<br>2280<br>2317<br>885<br>2464<br>2514<br>2747<br>2747<br>2747<br>2747<br>2747<br>2747<br>2706<br>3010 | 3900<br>3000<br>4500<br>4200<br>4200<br>2600<br>2500<br>1000<br>3200<br>1400<br>5000<br>5000<br>5100<br>5100<br>5100<br>700 | 230<br>170<br>230<br>130<br>200<br>110<br>140<br>140<br>140<br>184<br>196<br>224<br>224<br>224<br>224<br>200 | 36<br>26<br>54<br>38<br>46<br>28<br>36<br>32<br>28<br>36<br>36<br>36<br>42<br>28<br>32<br>29 | 80<br>80<br>110<br>70<br>110<br>40<br>30<br>60<br>70<br>24<br>22<br>90<br>52<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | 66<br>61<br>58<br>54<br>59<br>59<br>59<br>59<br>59<br>54<br>70<br>53<br>65<br>68<br>39<br>42 | 10<br>9<br>13<br>,16<br>12<br>15<br>14<br>15<br>15<br>20<br>22<br>11<br>18<br>44<br>12<br>27<br>11<br>8<br>31<br>28 | 23<br>28<br>27<br>29<br>30<br>22<br>15<br>25<br>27<br>29<br>27<br>16<br>16<br>25<br>29<br>29<br>29<br>28 |

| MACHETIC CONTOURS    Machine   Machi | . (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allie Commission Document Service Controlled Service Controlled Service Service Controlled Service Controlle |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROCESSING SPECIFICAL DAS PROTOMERS AS PROTO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROCESSING SPECIFICATIONS  PROCESSING SPECIFICATIONS  ISIAN RECOVERY VISUALITY TO ENGRACE PROTOCOMPRIA 4: 1. 22  PROCESSING SPECIFICATIONS  ISIAN RELIGIBITIES AND A SPECIFICATIONS  ISIAN RELIGIBITIES A | 0 nT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PROCESSING SPECIFICATIONS  ISAI REMOVED DATUM 2000 n° ADDED  61 P MESH 100 n by 100 m CONTROLA INTERVAL 15 n° n° GRID NOTATION RESERVE TO SUBSTRALIAN METRIC GRID  2 SEPTIMBLE  CONTROLA INTERVAL 15 n° n° GRID NOTATION RESERVE TO SUBSTRALIAN METRIC GRID  2 SEPTIMBLE  CONTROLA INTERVAL 15 n° N° GRID NOTATION RESERVE TO SUBSTRALIAN METRIC GRID  2 SEPTIMBLE MEXICANTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLING<br>(NOTS<br>NMERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IGRE REMOVED DATUM 2000 nT ADDED GRID MESH 100m by 100m CONTOUR INTERVAL 5 nT GRID NOTATION REFERS TO ALISTRALIAN METRIC GRID  2 6 SEP 1980  DEPT. OF MINNESS AND EMERGY SAID EMERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPT. OF MINES AND ENERGY SECURITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





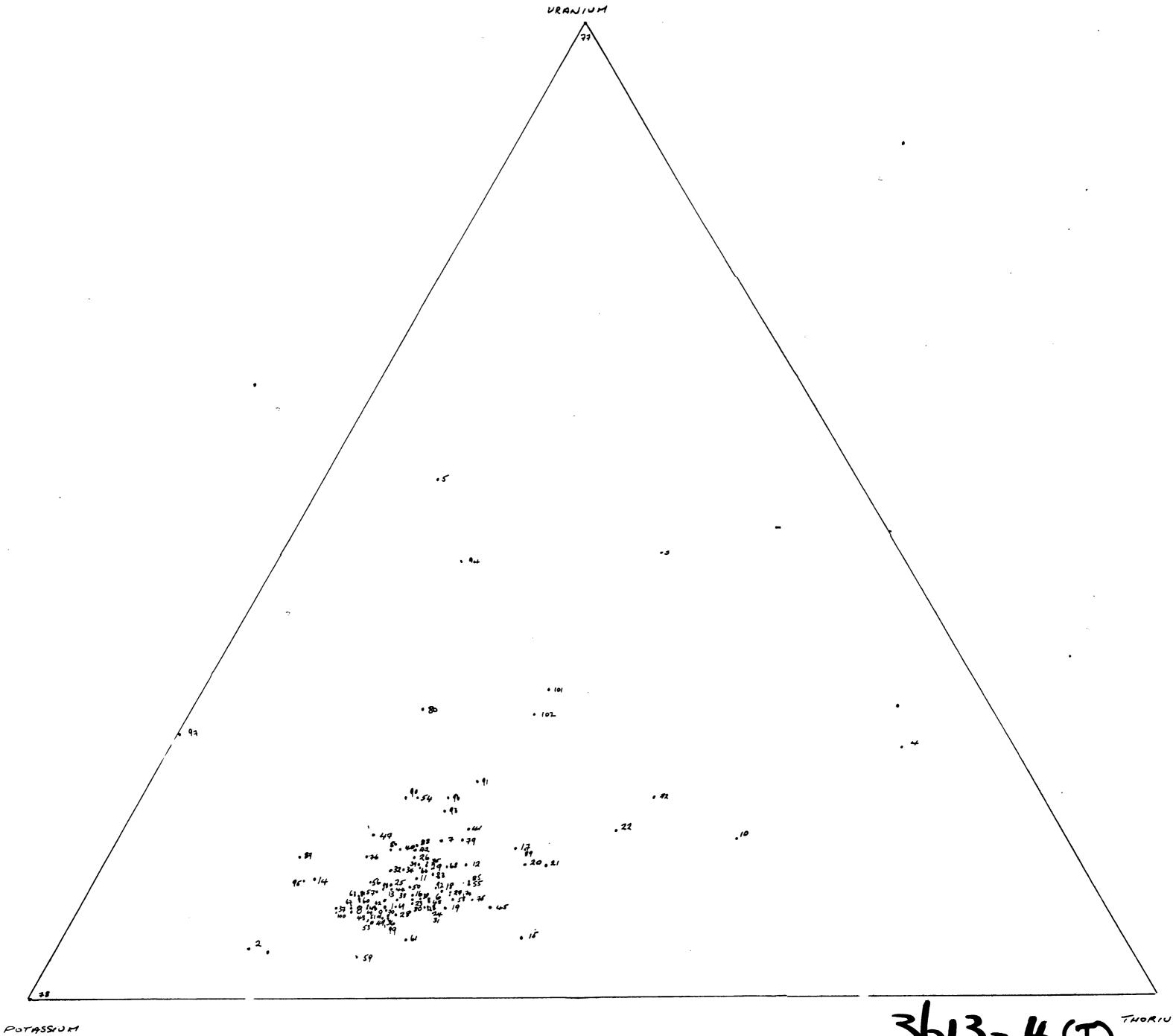



FIGURE 2

POUTEHINA DISTRIBUTION OF ANOMALIES

#### EXPLORATION LICENCE 529 "POUTCHINA"

#### PORT AUGUSTA REGION, SOUTH AUSTRALIA

## QUARTERLY REPORT FOR THE PERIOD SEPTEMBER 12, 1980 TO DECEMBER 11, 1980

#### 1. INTRODUCTION

The major activity undertaken during the quarter was the quantitative interpretation of portions of the aeromagnetic data collected previously.

#### 2. AEROMAGNETIC SURVEY

The final version of the aeromagnetic contours, stacked profiles and flight line location maps are included as Figures 1-3. Initial versions of this data were included in the fourth quarterly report. However it has subsequently been found that the Australian Metric Grid co-ordinates reported on these initial maps are incorrect. Correct E.L. boundary location and latitude and longitude position are shown in Figures 1-3 accompanying this report.

#### 3. AEROMAGNETIC INTERPRETATION

A preliminary interpretation of the Poutchina aeromagnetic survey was prepared by Geospex Associates Pty. Ltd. for the Minerals Department, Esso Australia Ltd. The objectives of this study were to determine the depth, attitude and distribution of magnetic sources along selected profiles from the aeromagnetic survey.

The magnetic sources thought to be present include:

- i) doleritic dykes within the early Adelaidean Pandurra Formation (?Beda Volcanics feeders),
- possible sills or volcanics within the Pandurra Formation. These again should have affinities to the Beda Volcanics,
- iii) basic dykes, sills and volcanics beneath the Pandurra Formation. These are tentatively correlated with the Roopena Volcanics and/or the Gawler Range Volcanics.

Analysis of the aeromagnetic data was implemented with the Geospex interactive computer modelling facility. Approximate model matching was specified for the preliminary interpretation since a large number of magnetic sources are present within each profile.

## 3.1 <u>Interpretation Procedure</u>

The interpretation procedure can be divided into three discrete stages:

- Regional residual analysis,
- ii) Interactive geological cross section construction, and
- iii) Interpretation of the simulated magnetic response.

A general purpose interactive geophysical interpretation programme package (GEO 2D) developed by Geospex was used for this interpretation. A general description of this programme package is included as Appendix 1.

#### 3.1.1 Regional-Residual Analysis

Regional-residual analysis consists of the removal of the influence of deep magnetic sources from the field data. In this case since the IGRF had already been removed, regional removal refers to shallow crustal features generally deeper than about 5 kilometres.

A regional magnetic field is computed by fitting a low order polynomial curve (1st to 5th order) to the data by a least squares procedure. The optimum order of polynomial is chosen by visual comparison with the field data. This choice is made quickly by use of the interactive graphics display facility.

Once a regional has been selected, the package allows the result to be directly subtracted from the field data. A residual profile of data computed in this way is then used as the basic data set for the interpretation.

In some cases, a secondary regional may be required where large amplitude anomalies dominate those of lesser amplitude. The same procedure as described above may again be used. However, the polynomial is normally restricted to first or second order.

#### 3.1.2 <u>Interactive Geophysical Modelling</u>

Most of the magnetic features (Figure 1) are perpendicular to the flight path and have long strike length compared to their width. This is well suited to two dimensional geophysical modelling using the method of Talwani and Heirtzler (1965). By using this method, it is only necessary to define the cross-section of the geology to completely define the geophysical model.

A section of the aeromagnetic profile containing between 100 and 200 data points is selected for modelling and generally contains from 1 to 10 magnetic anomalies. The profile is then displayed on the colour graphics terminal prior to construction of the geological cross-section. A cross-section of regions of anomalous magnetic susceptibility is drawn on the colour screen as a series of polygons. Once the cross section has been drawn, the model total magnetic field is computed and displayed in a different colour on top of the aeromagnetic data.

Differences between the two are immediately apparent and adjustments can be made to the model susceptibility, depth and shape. Once the changes have been implemented, a new set of model data is computed for comparison with the field data. This procedure is iterated until the required "goodness of fit" is achieved.

The required goodness of fit for this preliminary interpretation was considered to be a comparison which provided a reasonable estimate of model shape (i.e. dyke, plate or block), a good estimate of depth, an indication of dip and a good estmation of susceptibility-thickness product.

Once a suitable fit has been achieved, the results presented on the screen are plotted for later use in the interpretation.

#### 3.1.3 Presentation and Interpretation

Each of the model sets created from individual profile segments is stored on disc until the line has been completed. Then all the models are combined to produce a continuous geological cross-section. This composite cross-section is then computed for the complete length of the aeromagnetic profile. Both the model data and field data are plotted above the interpreted geological cross-section.

Depth information from the interpretation is corrected for sensor altitude and plotted on the stacked profile map (Figure 4) along with a symbol which indicates the shape of the magnetic source. Structural information such as faulting can be interpreted by use of the cross-section and stacked profile map.

#### 3.2 Interpretation Results

Results from the interactive interpretation are presented as Figure 4, and as interpretive cross-sections in Figures 5 - 9. Prior to discussing the map presentation, a description of each profile will be provided.

#### 3.2.1 Line 160

This line was selected because it is located near the zone of disturbed, shallow source magnetics in the south east corner of the E.L. Anomalies along Line 160 are essentially two dimensional while those to the south become less consistent.

Results from the preliminary interpretation of Line 160 are shown in Figure 5. The field data is represented by the black trace and the simulated magnetic field data is blue. Below the profiles, the interpretive cross-section is plotted in green. Cross-section depths refer to depth below the aircraft and it is necessary to subtract 90 metres to obtain depth below ground level. Numerals on the x ordinate are the distances in metres from the start of the profile.

Most of the interpreted sources can be attributed to dykes. Even the wide blocks could be attributed to a group of thin dykes with higher magnetic susceptibilities. Near 8,000 metres, there is an interesting double anomaly with two distinctive sources. Here, the interpretation is depicted as a shallow dyke superimposed on a deeper block or dyke swarm. It would also be possible to replace the deeper block with volcanics at approximately the same depth. Depths to the top of the dykes increase progressively from a shallow 30 metres in the south west to 350 metres in the north east. A deep dyke like source at 11,000 is much deeper than any of the other interpreted dykes and the anomaly amplitude is very high. It is not plausible to model this as a group of shallower dykes due to the smooth nature of the anomaly. As such, the anomaly could be caused by a shallow basement or a group of older dykes.

Three magnetic anomalies have been interpreted as volcanics within or below the Pandurra Formation. Alternate multiple dyke interpretations are possible for the anomalies at 6,500 and 16,500 although the volcanics interpretation appears more plausible when comparing anomaly character with adjacent lines. In general, the broad low amplitude anomalies suggest faulted volcanic layers. Often, the faults appear to be intruded by dykes which may persist for long distances. In regions of little dyke activity, it is often possible to determine the fault throw from the interpreted cross-section. Although the extent of the interpreted volcanics on the section is limited, it is possible that large areas of volcanics exist within the region of the aeromagnetic survey.

Between 13,000 and 16,000, there is a broad discrepancy between the interpreted model and field data. This is attributed to inadequate removal of the regional magnetic field. However, this does not adversely influence the interpretation as it is probably associated with magnetic sources below the depth zone of interest (> 1000 m).

#### 3.2.2 Line 280

A good general match has been achieved on Line 280. However, this was the first line interpreted and the dips shown for volcanic sources are exaggerated compared with other lines. The dip is further exaggerated by a horizontal to vertical scale ratio of 0.5.

Depths to the interpreted dyke sources increase from west to east in the same manner as Line 160. However, depths are generally larger ranging from 100 metres to about 240 metres. Dip directions appear reasonable although the presence of remanent magnetization in the dykes could produce a substantial error in the interpretation.

The presence of shallow volcanics is evident in this profile in the region of 10,000 to 16,000. However, the dips are probably exaggerated. The interpreted depths at 10,500 and 13,600 should be more reliable than that associated with the neighbouring faulted block of volcanics.

As for Line 160, the broad discrepancy between 11,000 and 16,000 is believed to be caused by inadequate removal of the regional magnetic field.

#### 3.2.3 Line 500

Only a portion of Line 500 was interpreted to examine the low amplitude region between 8,000 and 12,000. Dykes at an approximate depth of 150 metres are interpreted on either side of this region. Volcanic units are interpreted within this zone with faulting at 8,000, 8,700, 9,900 and 11,700 metres. If faulting is responsible for the discontinuous nature of the volcanic layer, then the apparent loss of material near 9,000 could be explained by an up faulted block and subsequent erosion to the present unconformity surface. This would indicate a fault throw in excess of 250 metres if the top surface of the dykes is considered to be at the unconformity. The amount of throw probably decreases to the north west where the volcanics appear more continuous and the evidence of faulting disappears.

#### 3.2.4 Line 880

Depth interpretations of the dykes on Line 880 suggest a gently undulating unconformity horizon with depths ranging from 80 to 190 metres. Potential volcanic sources are also very shallow and are located in the general vicinity of the unconformity. A deeper volcanic source at 19,000 is adversely influenced by dykes on either side and the depth is probably grossly over - estimated.

#### 3.2.5 Line 1100

Interpretation of dyke like anomaly sources gives depth estimates for the unconformity surface ranging from 80 to 120 metres. An isolated depth estimate of 260 metres near 12,000 could be an over-estimate although it may be caused by a dyke which terminates below the unconformity. This estimate would probably be reproduced on lines further to the north west where it exhibits a well defined broad anomaly shape.

Faulted volcanics between 7,000 and 9,500 are a reasonable interpretation of the associated magnetic anomalies. However, the depth to the deeper unit is probably over-estimated. The depth estimate for the shallow unit should be reliable. This model also provides the direction of throw for the fault.

#### 3.2.6 Stacked Profile Map

Results from the interpretation of individual profile interpretations have been transferred to the stacked profile map (Fig. 4). These are depicted as a symbol representative of the class of magnetic source and a depth estimate in metres. Also shown are the locations of faults and where possible, an indication of the direction of throw.

Depth estimates for the dykes generally lie between 30 and 200 metres with the bulk of estimates between 100 and 150 metres. It is felt that these are representative of an unconformity surface possibly at the base of the Pandurra Formation. As such, these results are useful for mapping of the unconformity. The dykes are continuous for long distances and generally follow the same north west trend. Presumably, they are intruded along major fault zones.

In regions of less intense magnetic activity, it is possible to interpret the presence of flat lying magnetic features such as volcanics or sills. Since these features appear to be present throughout the survey area, it is more probable that they are caused by volcanics. Although volcanics are only shown in a small number of areas where there is little influence from the dykes, it is probable that the volcanics extend through the areas perturbed by dykes. The only reason that it is possible to see the volcanics is because they are faulted. More often than not, these faults have been intruded by dykes and the existence of a volcanic unit cannot be detected over the dominating influence of the dyke. There is evidence of a short dyke along one of the faults interpreted between Lines 280 and 500.

#### 4. FUTURE PROGRAMME

Further detailed evaluation and interpretation of the aeromagnetic data is envisaged. This will probably necessitate ground magnetic and gravity surveys to follow up any areas of interest generated. A limited amount of drilling may also be attempted to test some of the interpretations if warranted.

#### REFERENCES

- Pratt, D.A., 1980. Preliminary Interpretation of the Poutchina Aeromagnetic Survey. Consultant report to Esso Australia Ltd. by Geospex Associates Pty. Ltd.
- Talwani, M. & Heirtzler, J.R., 1964, Computation of magnetic anomalies caused by two dimensional structures of arbitrary shape, in Computers in the Mineral Industries: G. Parks, Ed., Stanford Univ., p. 464-480.

#### LIST OF APPENDIXES AND FIGURES

- APPENDIX 1 A description of GEO2D two dimensional interactive geophysical modelling package. (Geospex Associates Pty. Ltd.).
- FIGURE 1 (Dwg. No. 581-6) E.L. 529 "Poutchina" Aeromagnetic Contours Scale 1:50,000
- FIGURE 2 (Dwg. No. 581-8) E.L. 529 "Poutchina" Stacked Aeromagnetic Profiles. Scale 1:50,000
- FIGURE 3 (Dwg. No. 581-7) E.L. 529 "Poutchina" Airborne Survey Flight Line Recovery and Radiometric Anomalies Scale 1:50,000
- FIGURE 4 (Dwg. No. 581-9) E.L. 529 "Poutchina" Aeromagnetic Survey Preliminary Interpretation. Scale 1:50,000
- FIGURE 5 Interpretative Cross Section Line 160 Poutchina Aeromagnetic Survey.
- FIGURE 6 Interpretative Cross Section Line 280 Poutchina Aeromagnetic Survey.
- FIGURE 7 Interpretative Cross Section Line 500. Poutchina Aeromagnetic Survey.
- FIGURE 8 Interpretative Cross Section Line 880 Poutchina Aeromagnetic Survey.
- FIGURE 9 Interpretative Cross Section Line 1100 Poutchina Aeromagnetic Survey.

APPENDIX 1

#### APPENDIX 1

#### A DESCRIPTION OF

GEO2D

TWO DIMENSIONAL INTERACTIVE

GEOPHYSICAL MODELLING

PACKAGE

#### INTRODUCTION

GEO2D is a general purpose interactive program for the graphic analysis of geophysical and geochemical field data. This package is oriented to the analysis of multi-variable data collected along profiles or at random as may be the case for geochemical data. Question and answer interaction relieves the interpreter from the need for reference manuals, which greatly improves concentration, interest and throughput. A l hour training session is all that is required to start a geophysicist or geologist on the system.

The system is specifically designed for the geophysicist or geologist who wishes to examine, manipulate, display and interpret numerical field data in a friendly interactive manner. It is possible to display and manipulate simultaneously, multi-variable data such as gravity, magnetics and radiometric data or multi-element geochemical data.

Interactive modelling packages are available for gravity and magnetics which allow geological cross-sections to be drawn on the graphics screen. Theoretical geophysical responses can be computed and compared directly with field data. The same cross-section can be used for both gravity and magnetics to allow for maximum utilization of field data.

Regional-residual analysis of geophysical data is simply achieved on this system by both manual and automatic methods of determination. A polynomial regression procedure is

available for choosing polynomials up to order 15. A quick comparison of the results informs the interpreter of the -- optimum choice.

General statistics can be performed on the data and this is particularly useful for geochemical data in understanding the relationships between the different variables. A special feature of this package is the ability to perform statistics on incomplete data sets. That is, analyses for some elements may be missing which leaves gaps in the data set. This is particularly important in the calculation of correlation coefficients.

A consistant design philosophy has been used throughout the development of this interactive analysis package. This philosophy is based on the need to maintain the operator's interest, throughput and tidyness. These objectives are obtained by the interactive question-answer response while utilizing only those routines which are computationally efficient and avoid loss of interpreter concentration. Because of the flexibility and fast response time of the package, the interpreter can express his own interpretive flair. Paramount in the routine usage of such a package is the need for good book-keeping. This system uses a data base structure which automatically keeps track of the interpreter's results for easy reference at a later date.

Expansion of the facilities available for data analysis is a key component of the package design. It is only necessary

to insert one or two new subroutines to add a new function to the package. All the other plotting and analysis routines are available for operation on the data processed by the new routine Since these routines are overlain in memory, no additional memory is required to increase the sophistication. New routines are constantly being added to improve the effectiveness of the package.

Of special interest is the interactive graphics component of the package which takes advantage of the graphics cursor. Most graphics display terminals have a cursor which can be moved across the screen under keyboard or "joy stick" control. The position of this cursor is monitored by the program and can be used interactively to draw geological cross-sections on the screen. It is this facility which is used in the gravity and magnetics routines to interpret field data. procedure allows the construction of a geological crosssection and assignment of geophysical properties. In addition. the location of geological boundaries and the geophysical properties may also be changed interactively. If a colour graphics unit is available, the results are especially Once the interpreter has achieved a good match between the simulated response of the geologic section and the field geophysical data, the results can be plotted for later use.

#### DATA RETRIEVAL

Use of the general 2D data base facility makes it a simple matter to retrieve an individual profile or data set by a name which has previously been assigned at the time the file was input to the computer. It is not necessary to recall the whole of a given profile as only part need be specified.

Multiple data sets may be retrieved for simultaneous analysis during a given interactive session. The only restriction is that there are the same number of points retrieved from each set. Normally, these will have coincident profile location (x), but this is not mandatory.

The whole operation of the data base retrieval is transparent to the operator as it is only necessary to specify his data requirements in response to questions displayed on the interpreter's graphics console. Unformatted input alleviates the need for an unfriendly operations manual which is often encountered in batch operations. The whole basis for this system is its friendly interactive nature which allows a novice to be operating independently in 1 to 2 hours.

#### DATA STORAGE

After a long interactive session, it may be desirable to save the results generated by many of the sub-program options for use at a later date. Since the system forces the operator

to give each new variable a name at the time it is generated, saving the results in the general 2D data base format is a simple matter. It is only necessary to assign a file name (independent of operating system) and all results generated during the interactive session will be saved on disc. This data can be accessed later by the <a href="Data Retrieval">Data Retrieval</a> operation.

## GRAPHICS DISPLAY

Every variable that is stored in memory can be displayed rapidly by the general purpose graphics display. Some of the options available are:

- (a) Automatic default settings for quick preview
- (b) Fixed scaling for Y axis
- (c) Variable scaling for Y axis
- (d) Variable annotation
- (e) Optimized scaling in X and Y
- (f) Continuous or data point display
- (g) Individual variable selection.

Variable scaling of the Y axis is important when comparing variables with different dynamic ranges such as magnetics and gravity data. This option allows the base level and scales of the two variables to be different and provide optimum use of the graphics display area. Scaling information is placed beside the variable annotations at the top right hand side of the screen.

With any interpretation package, it is desirable to be able to save selected graphics displays in hard copy form. This option is available in the package and is independent of the available hardware. Whenever a plot output is requested, the graphics display is saved in a plot file which is reproduced at the end of the interactive session. The plot file is completely general and software is available to present the results on X,Y plotters such as Calcomp or raster plotters similar to Versatec. The software is easily modified for non-standard plotters such as the Houston Instruments HI-PLOT or Hewlett Packard XY plotters. If a multi-pen plotter is available, then these will also be utilized by the package.

#### DATA INTERPOLATION

Both equispaced and randomly spaced data are manipulated by GEO2D. However, an option is available to convert randomly spaced data to a regular spacing by spline interpolation. This option is required by the filtering routine or it may be used to improve the plot appearance of sparsely sampled profiles. In the case of magnetics and gravity interpretation, it may be desirable either to reduce or increase the data spacing, depending upon the original sample interval. Spline interpolation is optimal for potential field data.

#### DATA MANIPULATION

Numerical operations between variables are simply implemented in GEO2D. These may be considered as graph-graph manipulations of whole data set strings. Operations supported are:

- (a) addition of 2 variables
- (b) subtraction of 2 variables
- (c) multiplication of 2 variables
- (d) division of 2 variables
- (e) creation of a new constant variable
- (f) creation of a linear function of the type
  y = a + bx

Each of the above operations produces a new variable which may again be manipulated. In this way, a complex combination of variables may be achieved. Options (e) and (f) were introduced to allow variable scaling or subtraction of a background level. This is useful in regional removal in magnetics and gravity interpretation.

## DATA STATISTICS

A number of statistical routines for analysis of geochemical and geophysical data has been included in GEO2D.

- (1) Single variable statistics
- (2) Two variable statistics
- (3) Regression analysis.

Single variable statistics computes a range of simple statistics for any or all variables in memory.

- (a) Min.
- (b) Max.
- (c) Mean
- (d) Standard deviation
- (e) Variance.

Two variable statistics computes correlation coefficient and covariance statistics between any two or all variables in memory. This is particularly useful in geochemical sample analyses.

Regression analysis is used to fit a polynomial curve to any variable stored in memory. The order of polynomial may be between 1 and 14. Statistical information resulting from the regression is listed on the console terminal. By changing the order of the polynomial and using the graphics display, it is possible to determine the optimum polynomial for a particular task by interactive methods.

#### FILTERING

A low pass convolution filter routine is available for equispaced data. If the data is initially randomly spaced, the the Spline Interpolation routine should be used prior to filtering. A special feature of this routine is that the operator need only specify the frequency cutoff and filter length. It is not necessary to supply the program with user defined coefficients. The problem of filter roll-off at the

end of the data sets is handled automatically by reducing the length of the filter and recalculating filter weights until a minimum length of 2 is reached. This means that there is a progressive deterioration in filter response at data set ends with the last two points remaining unfiltered. This problem is normal for all filtering techniques. The method adopted here alleviates the need for the operator to make any decisions and is regarded as an optimum for geophysical data analysis.

Ahigh pass filter is implemented by subtracting the output of the low pass filter from the original data using the <a href="Data">Data</a>
<a href="Manipulation">Manipulation</a> option.

## **GRAVITY INTERPRETATION**

Two dimensional gravity modelling is ideal for interactive geophysical interpretation as it provides a very fast response time even for complex models. Three dimensional modelling is more complex and time consuming and is generally not as suitabl for interactive interpretation, except for very simple models.

A general two dimensional polygonal model has been adopted for use in this program. The gravity profile is assumed to be perpendicular to the strike direction of the model which extends to infinity on either side of the model. The program allows the definition of up to 20 discrete models and/or 200 polygon vertices. Each model may have a different density contrast.

Models may be defined interactively on the graphics screen by moving a cursor around the cross-section of each model. Thi is very useful in the early stages of interpretation and for drawing up the initial model. An option is available for savin the coordinates of the model in a data file which can be edited or retrieved at a later date. After drawing the initial model, it is possible to modify geological boundaries by selecting the vertex to be changed and moving the cursor to the new location. Density contrasts may also be modified interactively.

Three general model classes are defined to assist with a wide range of problems encountered in mineral and oil exploration.

- (a) closed polygon models
- (b) infinite 2 layer model
- (c) infinite 3 layer model.

Class (a) is often used in mineral exploration for geological units which have limited lateral extent. Class (b) is generally used in basin studies where it is desirable to map basement relief as a function of density contrast. Class (c) may be used in either mineral or basin studies for investigation of fold structures. Also Classes (b) and (c) may be used in conjunction with Class (a) to assist with complex modelling problems and regional isolation.

An important attribute of this modelling package is the ability to extend structures beyond the limits of the field

data. This is most important for regional isolation and the analysis of small residual gravity anomalies. In this way, edge effects are minimized, which is an important attribute when compared with conventional filters which are subject to adverse problems at the ends of lines. This can be extremely important when field lines are short or the anomalies are located near the end of a profile.

An iterative modelling procedure has been included for the two layer problem (Class (b)) to speed up the interpretation of basement depths. This model assumes a single density contrast and computes a depth adjustment to an initial model based on the residual difference between the field data and the initial computed model. This process may be iterated any number of times to achieve a good fit. A final adjustment to the model may be applied manually. This option may be used to produce contours of basement depth when a number of profiles is available. This is valid as long as the structures are approximately 2 dimensional or basement gradients are small.

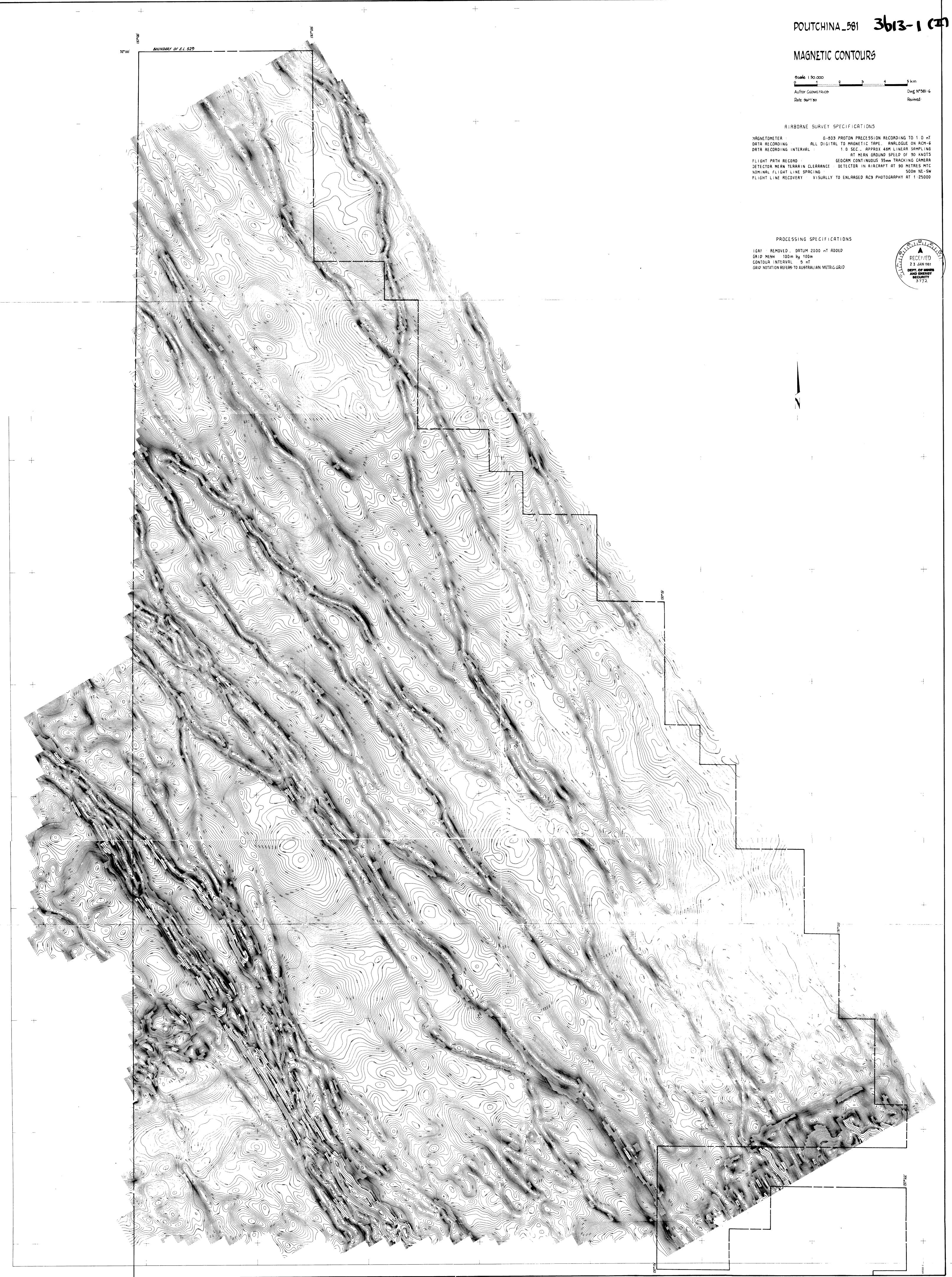
#### MAGNETIC INTERPRETATION

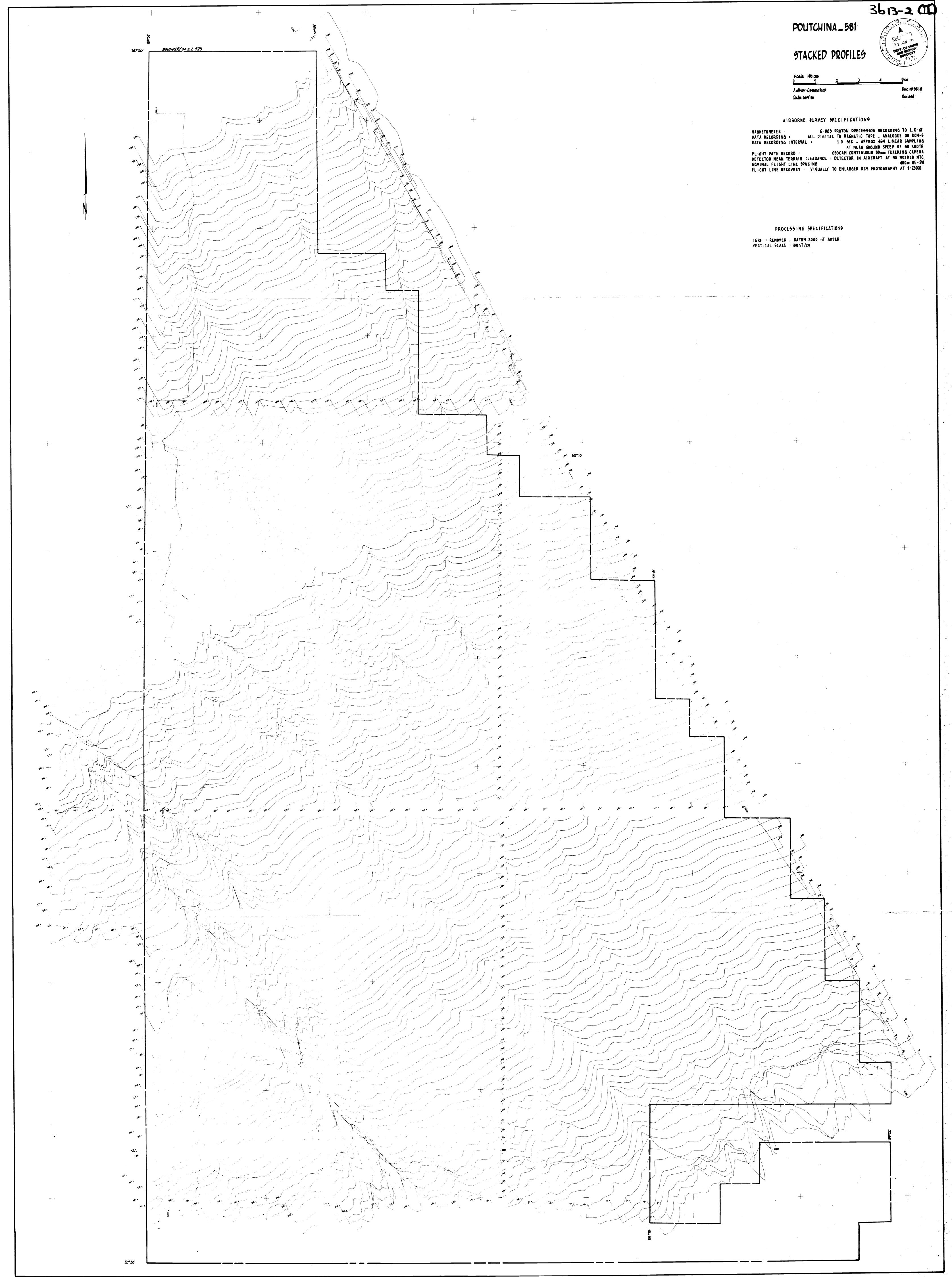
A general two dimensional magnetic modelling option similar to that of the gravity modelling is available in this package. All the same facilities except for iterative basement modelling are available in the magnetics interpretation option. The only difference is the need to specify the magnetic field characteristics, magnetic susceptibilities and profile orientation.

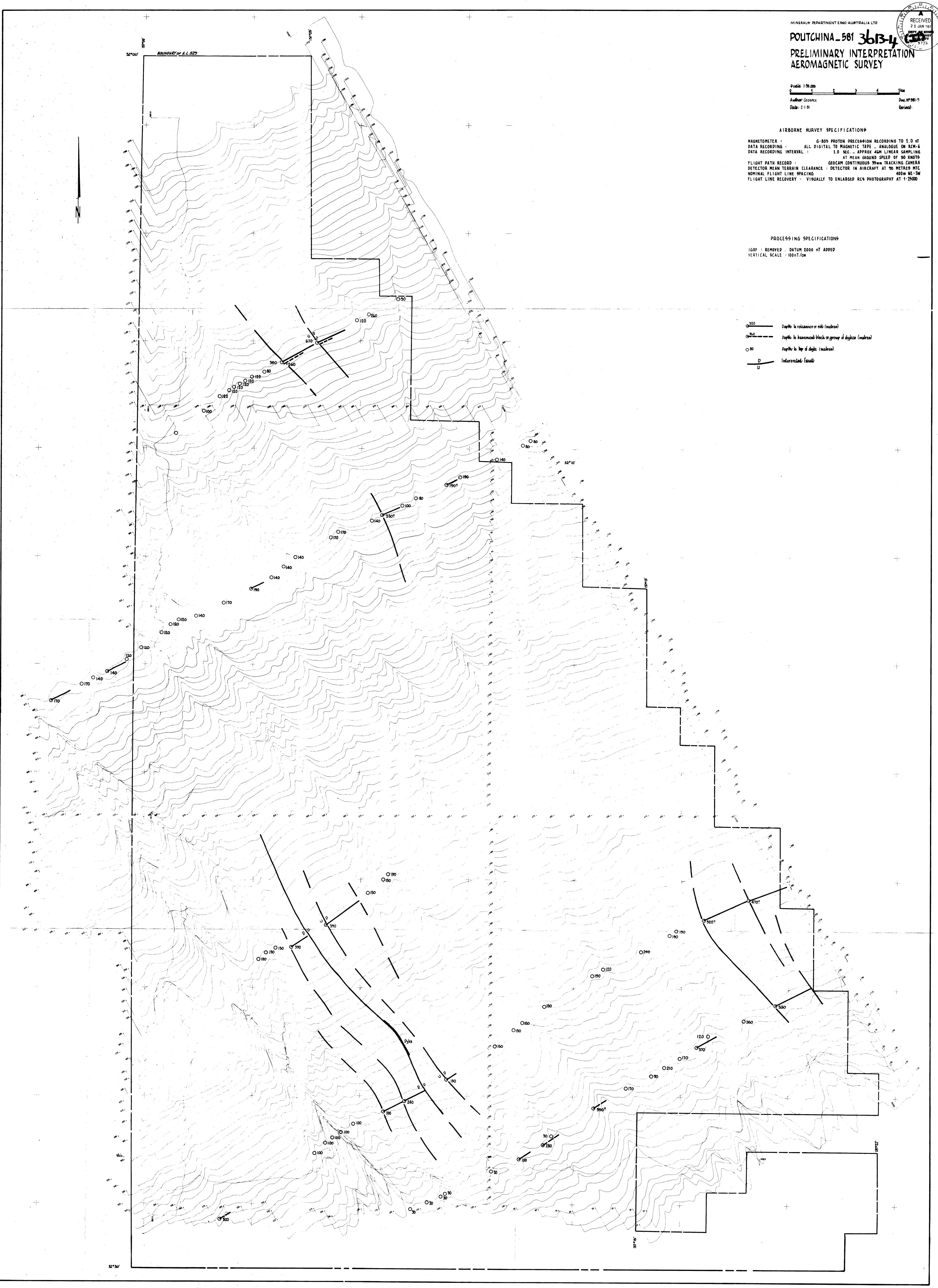
A major advantage of this package is that it is possible to analyse coincident gravity and magnetic data with the same model cross-section. It is only necessary to change density for magnetic susceptibility or vice versa. In this way, it is possible to refine the model cross-section until both sets of model results are in agreement with the field data.

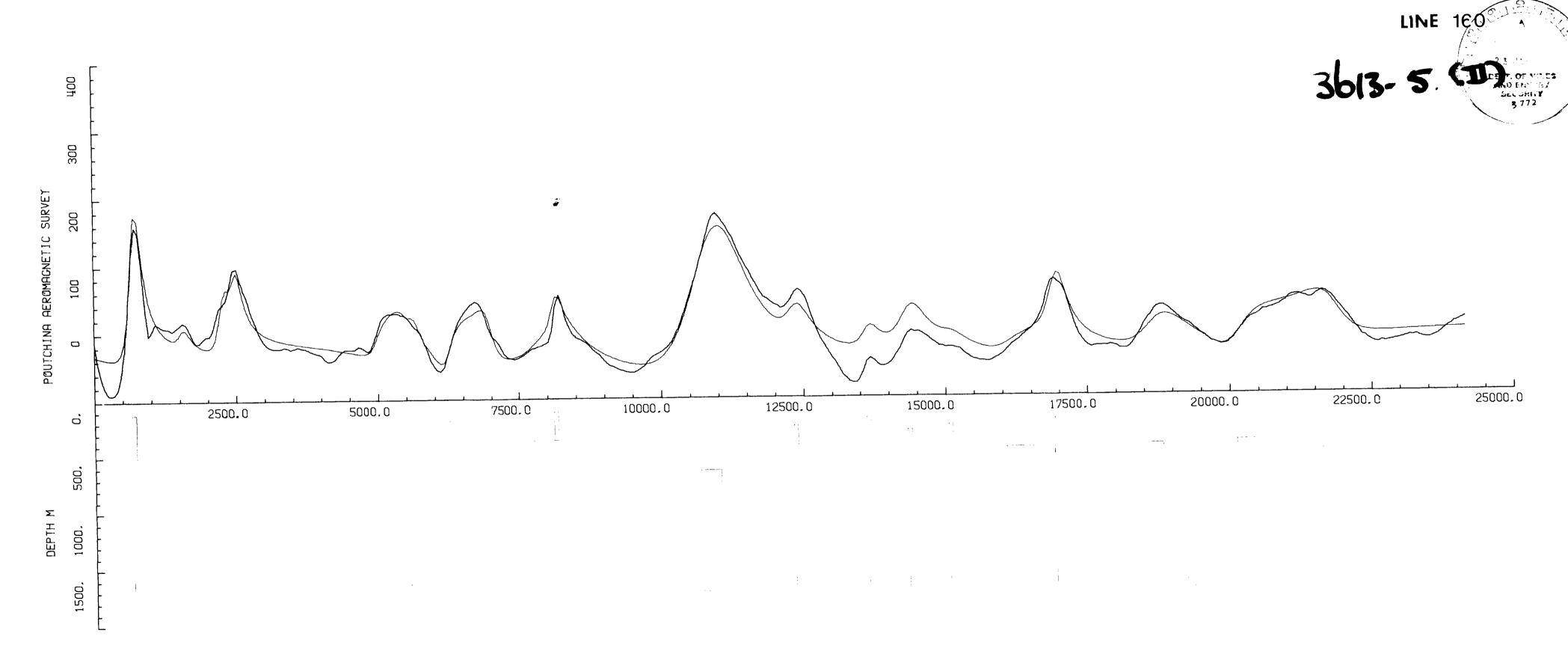
## SUPPORT SOFTWARE

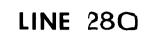
General support software for data preparation and previewing is supplied with the interactive package. This includes an ASCI to binary file conversion routine which produces USAF data base format files from files created by the host computer editor. The advantage of this procedure is speed in data recovery and forced documentation of all data files.

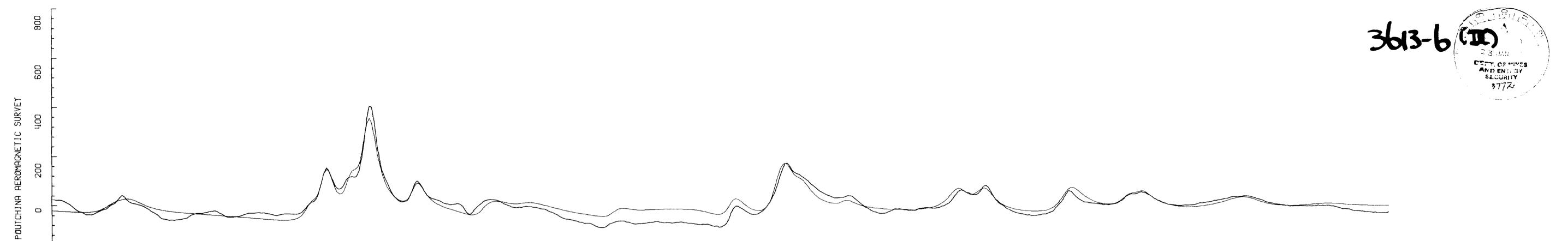

Multiple logical files are supported within the one physical file which allows all files from a single project to be stored in a tidy fashion. A merge program is supplied to concatenate a number of single logical files. The directory for each file is stored at the beginning of the merged file. This allows rapid inspection of file contents.


Since the USAF file is in binary format, it can not be accessed simply by the system editor. A utility program is supplied to list information contained in the USAF files. Various depths of listing can be obtained with simple option selection.


- (1) File Header
- (2) Directory
- (3) Data.


Often, it is only necessary to determine the contents of the file by listing the directory. However, if data is chosen, then any individual data item can be displayed at will.


Plotting of interactive graphics results is done at the termination of an interpretation session. A general purpose plot routine which converts the plot files to plotter instructions is supplied with the package. However, if sufficient memory space is available in the host computer, it is possible to plot in real time with an appropriate modification to the plot dump routines.







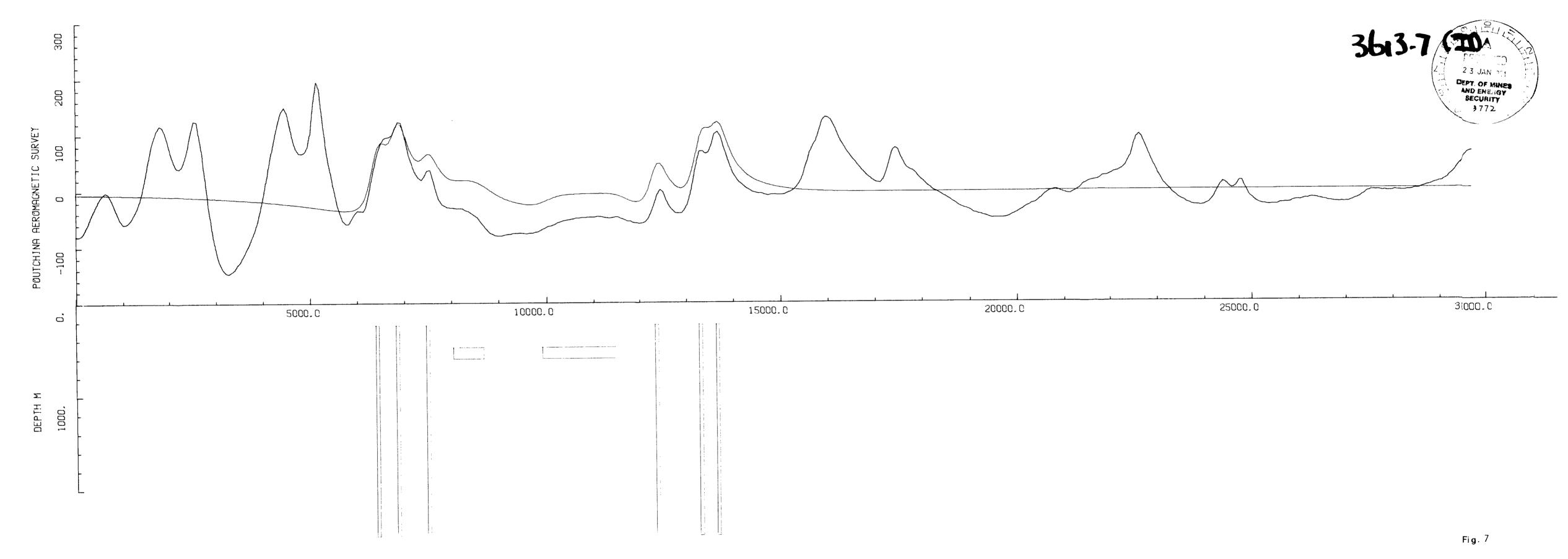


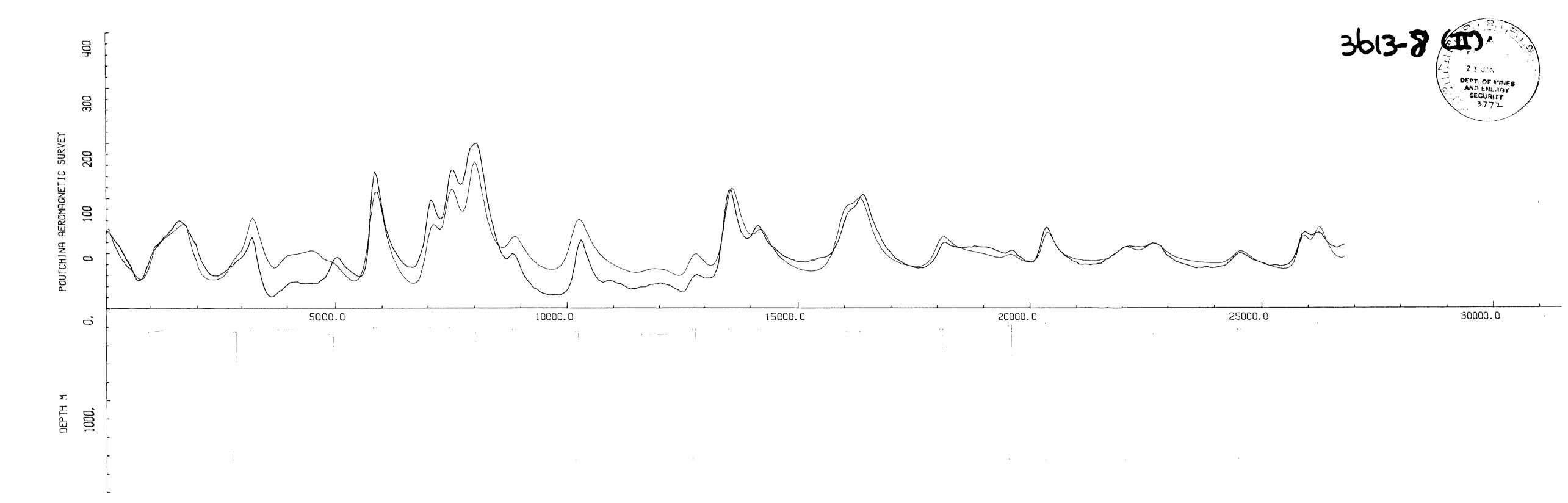


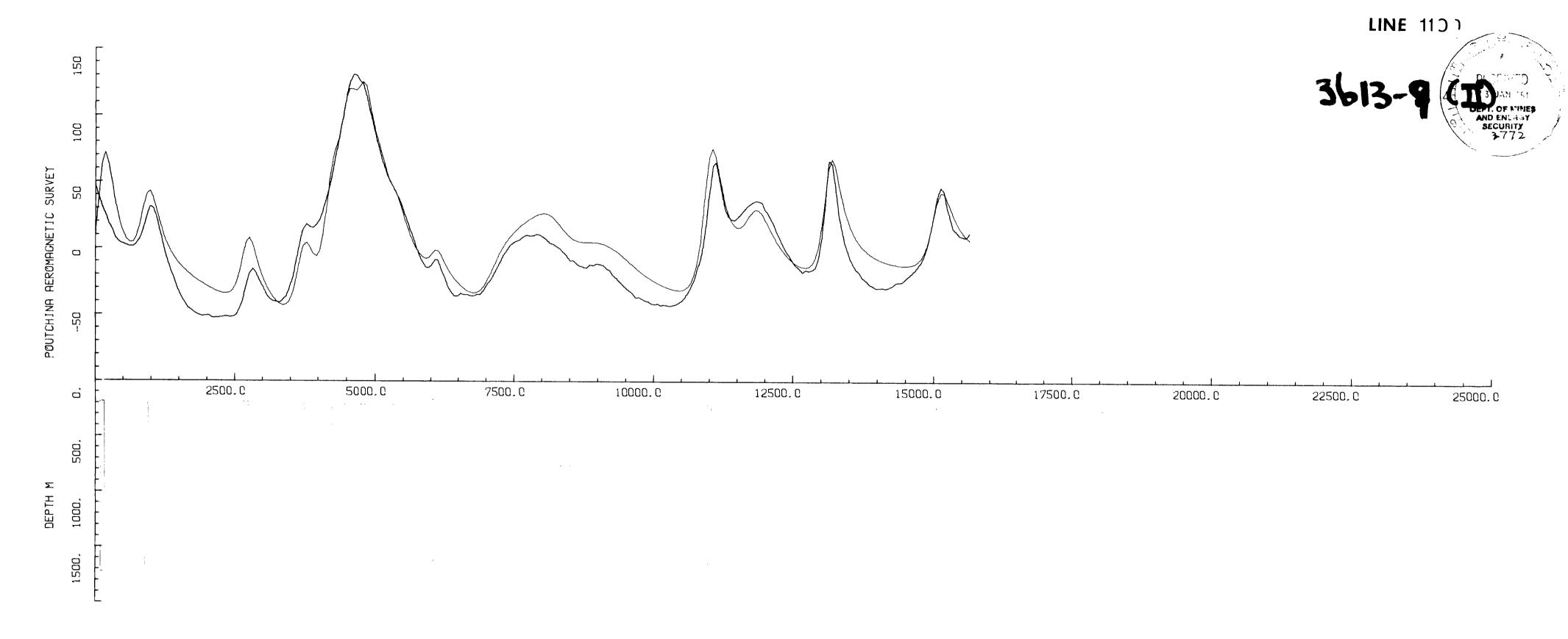



20000.0

25000.0


30000.0


15000.C


5000.0

10000.0

35000.0







# ESSO AUSTRALIA LIMITED - MINERALS DEPARTMENT EXPLORATION LICENCE 529 - POUTCHINA

# QUARTERLY REPORT OF EXPLORATION TO S.A.D.M.E. FOR THE PERIOD ENDING MARCH 11, 1981

By D.D. Greig

#### CONTENTS

SUMMARY

PREVIOUS EXPLORATION

CURRENT EXPLORATION

FUTURE PROGRAMME

APPENDIX - GRAVITY SURVEY OVER POUTCHINA ANOMALY, SOLO GEOPHYSICS AND CO., DECEMBER 1980.

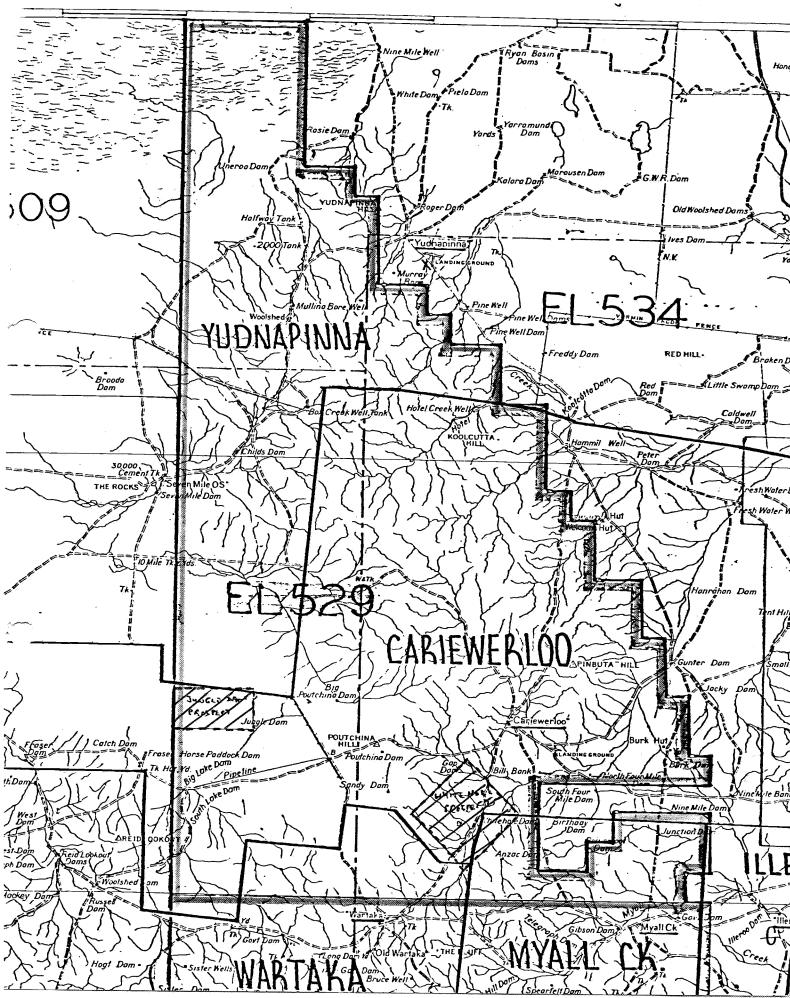
PLANS - POUTCHINA E.L. LOCATION MAP, 1:250,000 SHOWING TARGETS FOR FURTHER GEOPHYSICAL SURVEYS AND DRILLING.

#### SUMMARY

Field work was not undertaken during the quarter. Results from an earlier gravity and magnetic survey were received, although these do not appear to warrant any follow-up. However, further work, in the form of magnetic traverses, E.M. sounding and drilling, is planned in two areas as an extension of an earlier aeromagnetic survey.

## PREVIOUS EXPLORATION

The results of an earlier aeromagnetic survey were reported in the last quarter. Of particular interest was the identification of areas underlain by possible Roopena volcanics in the south and centre of the E.L. These could represent an extension of this Adelaidean-Carpentarian boundary formation from the type area some 40 kms to the southeast and raises the possibility that underlying Roopena Sequence sediments (with stratiform base metal mineralisation) of the Roopena Homestead area could also be present in Poutchina.


A second potential target was the small, low amplitude regional gravity high in the centre of the E.L. This was covered by a more detailed gravity - and magnetic - survey on 2000 x 400 m spacing, totalling 38 line kilometres.

#### CURRENT EXPLORATION

The results of the gravity survey are enclosed as an appendix. As the attached profiles show, no significant anomaly was detected, suggesting that the published regional anomaly is probably illusionary, being based on only one station. As noted in the attached report, conditions for ground surveying were extremely arduous.

#### FUTURE PROGRAMME

Following the demise of the gravity anomaly as a target, attention has now turned to the possibility of Roopena Sequence volcanics and sediments extending into the area. Based on earlier aeromagnetic interpretations, two zones of possible Roopena Sequence rocks have been selected for follow-up by ground magnetics and E.M. (Geoprobe) depth soundings. The most promising area will then be tested by drilling during the coming quarter.



SOLO GEOPHYSICS AND CO.

YUDNAPINNA, VIA PT. AUGUSTA, S.A.

GRID: POUTCHINA

DECEMBER, 1980

PHASE I

## CONTENTS

FIELD REPORT - Poutchina, S.A.

NETTLETON PROFILES - Lines 36000N - 42000N

Interleaved with gravity line files and multiple density listings.

CATALOG OF RAW FIELD DATA.

LOOPS 1 to 21 - Including Base Ties.

BOUGOUR GRAVITY PLOTS - Lines 36000N - 42000N

Scale: 1:50000 Density: 2.67 gms/cc

MAGNETICS DATA LINE FILES - and Raw Field Data in Loop format.

# A COMBINED GRIDDING GRAVITY, MAGNETICS & BAROMETRIC & OPTICAL

# LEVELLING SURVEY.

ESSO AUSTRALIA (COAL & MINERALS DIVISION) FOR:

153 GREENHILL ROAD,

PARKSIDE, S.A., 5063

AREA: YUDNAPINNA, via PT.AUGUSTA, S.A.

GRID: POUTCHINA

DATE: DECEMBER, 1980

## PHASE I.

This survey was completed by one crew from Solo Geophysics stationed at an out-station on Yudnapinna Station.

The area is located approximately southwest of Yudnapinna Station and north of the Eyre Highway, alternative access is via Pandurra Station.

# GENERAL CONDITIONS IN THE AREA.

Both Station Manager and Fencer agreed the survey area was in some of the roughest country they had encountered in South Australia.

Terrain varied only slightly, a few salt bush flats were the exception. The entire area was rock strewn, ranging in size from golf ball to basket ball size. Hills were steep with sharp creek bottoms. Vegetation ranged from salt bush with sparse trees and dead timber to thick scrub, where visibility was down to 10 metres. The counwas extremely hard on equipment. Travel time was high over short distances and long hours were necessary to achieve as little as Loop time was kept between 2 and 2½ hours. allowed only 5 gravity stations or 2 kms. to be covered. Both maps enclosed (one supplied by Station Manager) are inaccurate and should be used as a guide only.

Rough going made fast access with delicate instruments impractical. Numerous fences crossed the survey area. Many fences are unmarked on

Gravity measurements were taken at 400 m. spacings along the traverses, 500 m. stations along the base line. Magnetic stations were half that interval. The traverses mainly put in with compass and topofill cotton chain. The vehicle followed on a path of least resistance.

Grid Origin is gravity Base 1. Located at 40000N/40000E Elevation 64.81 metres, which is in fence corner east of Box Hill Dam, marked with white painted star dropper.

Gravity Base 2 - 38000N/40000E, Elevation 163.85 metres, Gravity Base 3 - 36000N/40000E, Elevation 153.68 metres.

Barometric level repeats showed that the accuracy was generally better than 2 metres with one metre to 50 cms. common. Gridding gravity and magnetics was done simultaneously.

The level datum for the grid was 42000N/40000E and was given an arbitary height of 200 metres. All gravity calculations are relative to gravity Base 1, as no recoverable gravity stations were found in the area.

The survey consisted of approximately;

38 kms. Gravity

6 kms. Optical Levelling

32 kms. Barometric Levelling

32 kms. Magentics

Station interval 400 m. and 500 m. gravity. Magnetics - half gravity spacing.

Approximates 130 gravity stations plus base ties.

The base line 40000E has a magnetic bearing of 359° and follows a main fence. A star picket and dumpy peg were placed at 1.0 kms. intervals along the base line. A wooden 1 metre peg and dumpy indicate gravity stations and gravity dish height should optical recovery be required at a later date.

# INSTRUMENTATION SUPPLIED FOR SURVEY.

One LaCoste & Romberg temperature compensated gravity meter G#37 One Scintrex MP-2 Proton Magnetometer.

Two Microbarometers.

One F.W.D. vehicle fitted with specially calibrated odo-meter.

The equipment used on this survey is either owned or maintained by Solo.

# VEHICLE DAMAGE SUSTAINED ON THE SURVEY.

One completely broken front spring and one bent and sheared tail shaft and one disintegrated front hub.

# COMMENTS.

Station Manager assisted with the loan of a vehicle to get spare parts.

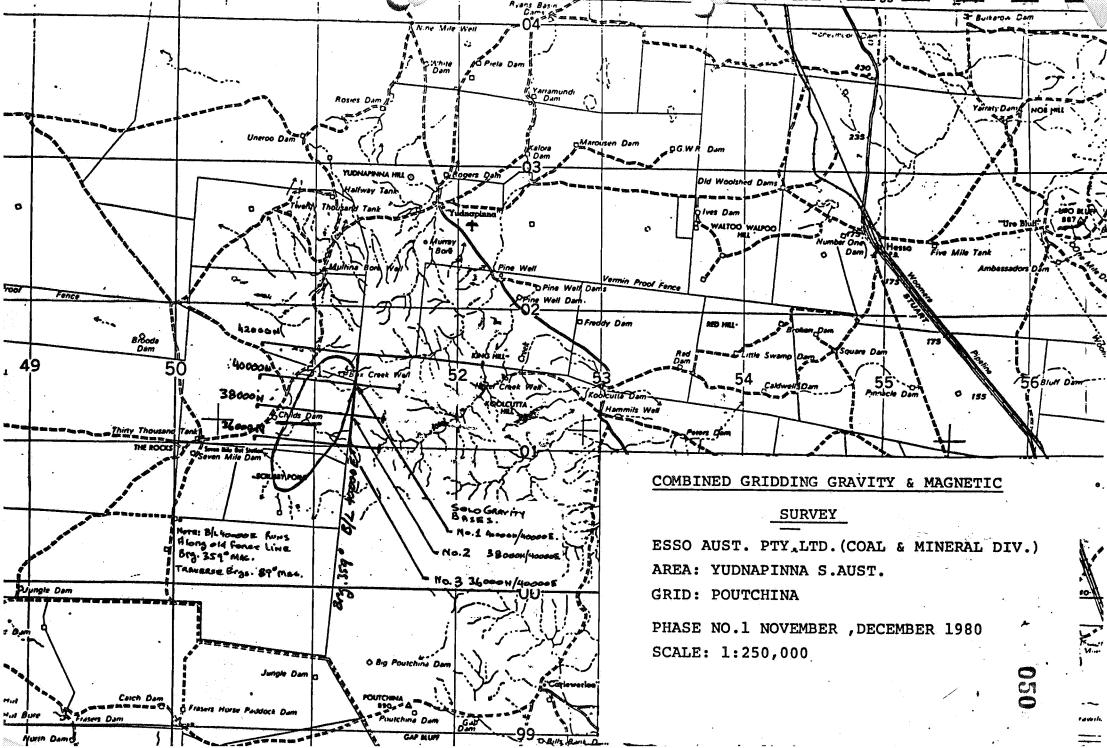
SOLO GEOPHYSICS & CO.

Greham h. Rass.

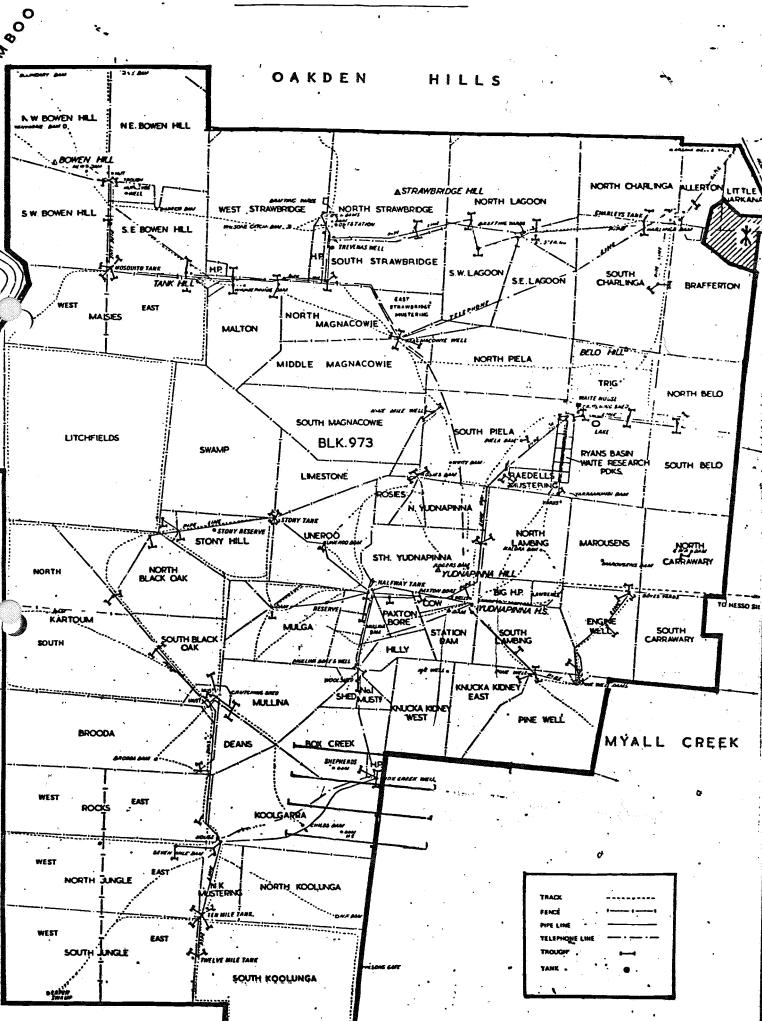
for: M. Burdorf
Graham L. Rau
(DIRECTOR)

# COMMENTS ON BAROMETRIC LEVELLING

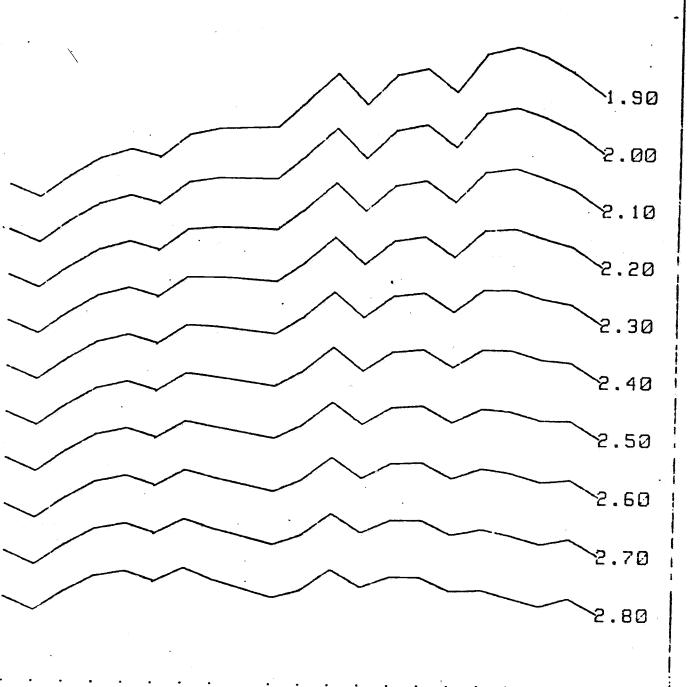
Barometric levels are dependant on local conditions surrounding each individual station. Physical changes in say hills, cause varying pressure fluctuations dependant on wind direction and surface materials on hills. i.e. Bare hills with numerous rocks or sand can cause hot spots and thermals. Depending on where the barometer is placed it could be in a high pressure eddy or a low pressure eddy. A bank of barometers would not indicate an error under such conditions.


In rough terrain it is economically impractical to re-occupy each station as alternative paths are usually taken to get back to base. The repeats in this case are restricted to one or two stations plus the loop lead in reliability stations near the base.

In non tropical regions, rapid fluctuatuions in wind pressure and weather conditions occur. This is most noticeable in periods of hot weather, storm conditions, cold fronts and the proximity to the coastal regions. Salt lakes and large clay pans can also influence barometric measurements.


Generally the minor local conditions have a more drastic effect on barometric levelling because they are more subtle and therefore more difficult to recognise. Also such occurrences can be localised to either the roving barometer or base barometer independently.

Note: Such occurrences include small cyclonic wind disturbances ("whirly-whirly")


Pressure disturbances caused by temperature, wind velocity and wind directional changes around cultural features near either the base barometer or roving barometer.



2243 KM<sup>2</sup> PASTORAL LEASE 2243



LOCATION: POUTCHINA GRID 5th Australia
NETTLETON PROFILES LINE 36000:N



TOPOGRAPHY (Not to scale)

-

| 0₩<br># |     | STATION<br>NUMBER | ELEVATION (meters) | BOUGUER GRAVITY ANOMALY (mgals) | Loop<br># |
|---------|-----|-------------------|--------------------|---------------------------------|-----------|
|         |     | 4.7               |                    |                                 |           |
| 1       |     | 34000             | 81.88              | 22.06                           | 18        |
| 2       |     | 34400             | 82.56              | 21.68                           | 18        |
| 3       |     | 34800             | 84.46              | 22.36                           | - 18      |
| 4       | ,   | 35200             | 86.83              | 22.93                           | 18        |
| 5       |     | 3560 <b>0</b>     | 90.16              | 23.21                           | 18        |
| 6       |     | 36000             | 91.80              | 22.97                           | 18        |
| 7       | RPT | 36000             | 91.80              | 22.94 *                         | 17        |
| 8       | RPT | 36000             | 91.80              | 22.95 *                         | 18        |
| 9       |     | 36400             | 99.86              | 23.68                           | . 17      |
| 10      |     | 36800             | 114.59             | 23.88                           | 17        |
| 11      |     | 37600             | 129.75             | 23.94                           | 17        |
| 12      |     | 38000             | 145.10             | 24.77                           | 16        |
| 13      | RPT | 38000             | 145.10             | · 24.78 *                       | 17        |
| 14      |     | 38400             | 151.30             | 25.63                           | 16        |
| 15      |     | 38800             | 139.48             | 24.67                           | 16        |
| 16      |     | 39200             | 156.06             | 25.62                           | 16        |
| 17      |     | 39600             | 162.20             | 25.83                           | 16        |
| 18      | RPT | 39600             | 162.20             | 25.83 *                         | 16        |
| 19      |     | 40000             | 153.68             | 25.11                           | 18        |
| 20      | RPT | 40000             | 153.68             | 25.11 *                         | - 19      |
| 21      | RPT | 40000             | 153.68             | 25.12 <b>*</b>                  | 1         |
| 22      | RPT | 40000             | 153.68             | 25.11 *                         | 16        |
| 23      | RPT | 40000             | 153.68             | 25.10 *                         | 14        |
| 24      | RPT | 40000             | 153.68             | 25.11 *                         | 14        |
| 25      | RPT | 40000             | 153.68             | 25.11 *                         | 19        |
| 26      |     | 40400             | 184.47             | 26.32                           | 19        |
| 27      |     | 40800             | 196.84             | 26.54                           | 19        |
| 28      |     | 41200             | 194.89             | 26.23                           | . 19      |
| 29      | •   | 41600             | 174.44             | 25.73                           | 19        |
| 30      |     | 42000             | 169.38             | 25.05                           | 19        |

- - - - - - 054

| BOUGUER                               | DENSITIES FOR p= | 1.8 TO | 2.8 | gms/c.c. | LINE 36000N             |
|---------------------------------------|------------------|--------|-----|----------|-------------------------|
| · · · · · · · · · · · · · · · · · · · | ***********      |        |     |          | •• <sup>3</sup> t. , tt |

| ROW<br>No.                                                                       | 1.80                                                                                                                                         | 1.90                                                                                                                       | 2.00                                                                                                                                         | 2.10                                                                                                                                         | 2.20                                                                                                                                         | 2.30                                                                                                                                         | 2.40                                                                                                                                | 2.50                                                                                                                                         | 2.60                                                                                                                                         | 2.70                                                                                                                                         |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15    | 22.06<br>21.68<br>22.36<br>22.93<br>23.21<br>22.97<br>22.94<br>22.95<br>23.68<br>23.88<br>23.94<br>24.77<br>24.78<br>25.63<br>24.67<br>25.62 | 21.71<br>21.33<br>22.00<br>22.56<br>22.83<br>22.59<br>22.57<br>23.27<br>23.40<br>24.16<br>24.17<br>25.00<br>24.08<br>24.97 | 21.37<br>20.99<br>21.65<br>22.20<br>22.45<br>22.27<br>22.17<br>22.19<br>22.85<br>22.92<br>22.86<br>23.55<br>23.56<br>24.37<br>23.50<br>24.31 | 21.03<br>20.64<br>21.30<br>21.84<br>22.08<br>21.82<br>21.78<br>21.80<br>22.43<br>22.44<br>22.31<br>22.94<br>22.95<br>23.73<br>22.91<br>23.66 | 20.68<br>20.29<br>20.94<br>21.47<br>21.70<br>21.43<br>21.40<br>21.42<br>22.01<br>21.77<br>22.33<br>22.34<br>23.10<br>22.33<br>23.00          | 20.34<br>19.95<br>20.59<br>21.11<br>21.32<br>21.05<br>21.01<br>21.03<br>21.59<br>21.48<br>21.22<br>21.72<br>21.74<br>22.46<br>21.74<br>22.35 | 20.00<br>19.60<br>20.23<br>20.75<br>20.94<br>20.66<br>20.65<br>21.17<br>21.00<br>20.68<br>21.12<br>21.13<br>21.83<br>21.16<br>21.70 | 19.65<br>19.26<br>19.88<br>20.38<br>20.56<br>20.25<br>20.25<br>20.25<br>20.52<br>20.52<br>20.51<br>20.51<br>20.52<br>21.20<br>20.58<br>21.04 | 19.31<br>18.91<br>19.53<br>20.02<br>20.19<br>19.89<br>19.88<br>20.34<br>20.04<br>19.59<br>19.90<br>19.91<br>20.56<br>19.99<br>20.39          | 18.97<br>18.56<br>19.17<br>19.65<br>19.81<br>19.51<br>19.48<br>19.49<br>19.92<br>19.56<br>19.05<br>19.29<br>19.30<br>19.93<br>19.41<br>19.73 |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 25.83<br>25.83<br>25.11<br>25.11<br>25.12<br>25.11<br>25.11<br>25.11<br>26.32<br>26.54<br>26.23<br>25.73<br>25.05                            | 25.15<br>24.46<br>24.46<br>24.46<br>24.46<br>24.46<br>24.46<br>25.54<br>25.71<br>25.41<br>25.41<br>24.34                   | 24.47<br>24.47<br>23.82<br>23.82<br>23.82<br>23.82<br>23.82<br>24.77<br>24.89<br>24.60<br>24.26<br>23.63                                     | 23.79<br>23.17<br>23.17<br>23.17<br>23.17<br>23.17<br>23.17<br>24.00<br>24.06<br>23.78<br>23.53<br>22.92                                     | 23.12<br>23.11<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53 | 22.44<br>22.43<br>21.88<br>21.88<br>21.88<br>21.88<br>21.88<br>21.88<br>21.88<br>22.45<br>22.41<br>22.15<br>22.07<br>21.50                   | 21.76<br>21.75<br>21.24<br>21.25<br>21.24<br>21.24<br>21.24<br>21.24<br>21.59<br>21.33<br>21.34<br>20.79                            | 21.08<br>21.07<br>20.60<br>20.60<br>20.60<br>20.60<br>20.60<br>20.60<br>20.76<br>20.76<br>20.51<br>20.61<br>20.08                            | 20.40<br>20.39<br>19.95<br>19.95<br>19.95<br>19.95<br>19.95<br>19.95<br>19.95<br>19.95<br>19.95<br>20.13<br>19.94<br>19.70<br>19.88<br>19.37 | 19.72<br>19.71<br>19.31<br>19.31<br>19.32<br>19.31<br>19.31<br>19.31<br>19.31<br>19.31<br>19.36<br>19.11<br>18.88<br>19.15                   |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

CLIENT: ESSO AUSTRALIA LTD 055 LOCATION: POUTCHINA GRID 5th Australia NETTLETON PROFILES LINE 38000:N 2.00 2.10 2.20 2.30 2.40 2.50 2.50 2.70 2.80 TOPOGRAPHY (Not to scale)

| • O₩<br>• ₩ |     | STATION<br>NUMBER | ELEVATION (meters) | BOUGUER GRAVITY ANOMALY (mgals) | Loop + |
|-------------|-----|-------------------|--------------------|---------------------------------|--------|
|             |     |                   |                    |                                 |        |
| 1           |     | 34000             | 106.46             | 23.77                           | 13     |
| 2           |     | 34400             | 111.71             | 23.95                           | 13     |
| 3           |     | 34800             | 115.71             | 23.63                           | . 13   |
| 4           |     | 35200             | 100.23             | 22.48                           | 13     |
| 5           |     | 35600             | 95.25              | 22.27                           | 13     |
| 6           | RPT | 35600             | 95.25              | 22.27 *                         | 13     |
| 7           |     | 36000             | 95.74              | 21.92                           | 13     |
| 8           |     | 36400             | 98.78              | 21.78                           | 13     |
| 9           |     | 36800             | 106.07             | 22.64                           | 13     |
| 19          | RPT | 36800             | 106.07             | 22.66 *                         | 12     |
| 11          |     | 37200             | 113.86             | 23.16                           | 12     |
| 12          |     | 37600             | 135.00             | , 24.35                         | 12     |
| 13          |     | 38000             | 155.81             | 25.42                           | 12     |
| 14          |     | 38400             | 163.10             | 24.89                           | 12     |
| 15          |     | 38800             | 173.59             | 24.87                           | 12     |
| 16          |     | 39200             | 176.09             | 24.41                           | 12     |
| 17          |     | 39600             | 170.59             | 25.01                           | 12     |
| 18          | RPT | 39600             | 170.59             | 25.01 *                         | 12     |
| 19          |     | 40000             | 163.85             | 24.88                           | 12     |
| 20          | RPT | 40000             | 163.85             | 24.87 *                         | 12     |
| 21          | RPT | 40000             | 163.85             | 24.87 *                         | 11     |
| 22          | RPT | 40000             | 163.85             | 24.87 *                         | 11     |
| 23          | RPT | 40000             | 163.85             | 24.88 *                         | 20     |
| 24          | RPT | 40000             | 163.85             | 24.84 *                         | 1      |
| 25          | RPT | 40000             | 163.85             | 24.88 *                         | 20     |
| 26          | RPT | 40000             | 163.85             | 24.88 *                         | 14     |
| 27          |     | 40400             | 177.71             | 24.62                           | 20     |
| 28          |     | 40800             | 181.57             | 25.13                           | 20     |
| 29          |     | 41200             | 194.40             | 25.08                           | 20     |
| 30          |     | 41600             | 198.63             | 25.13                           | 20     |
| 31          |     | 42000             | 189.33             | 24.86                           | 20     |
| 32          |     | 42400             | 185.80             | 24.11                           | 20     |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| ****       | BOUGUER DENSITIES FOR p= 1.8 TO 2.8 gms/c.c. LINE 38000N ********************************** |       |       |       |       |                |                |       |       |                |  |
|------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|----------------|----------------|-------|-------|----------------|--|
|            |                                                                                             |       |       | ***** | ****  | *****          | ****           | ***** | ***** | *****          |  |
|            |                                                                                             |       |       |       |       |                |                |       |       |                |  |
| ROW<br>No. | 1.80                                                                                        | 1.98  | 2.00  | 2.10  | 2.20  | 2.30           | 2.40           | 2.50  | 2.60  | 2.70           |  |
|            |                                                                                             |       |       |       |       |                |                |       |       |                |  |
| . 1        | 23.77                                                                                       | 23.33 | 22.88 | 22.44 | 21.99 |                |                |       |       |                |  |
| 2          | 23.95                                                                                       |       |       |       |       | \              | – –            | 20.65 |       |                |  |
| 3          | 23.63                                                                                       |       |       |       |       |                |                |       |       |                |  |
| 4          | 22.48                                                                                       | 22.06 |       |       |       |                |                |       |       |                |  |
| 5          | 22.27                                                                                       |       |       |       |       |                |                |       |       |                |  |
| 6          | 22.27                                                                                       | 21.87 |       |       |       |                |                |       |       | · <del>-</del> |  |
| 7          | 21.92                                                                                       |       | 21.12 |       |       |                |                | 19.48 |       | 18.68          |  |
| 8<br>9     | 21.78                                                                                       | 21.37 | 20.95 |       | 20.13 |                |                | 19.11 | 18.71 | 18.31          |  |
|            | 22.64                                                                                       | 22.20 |       | 21.31 | 20.86 |                |                | 18.88 |       | 18.06          |  |
| 10         | 22.66                                                                                       | 22.22 | 21.77 | 21.33 | 20.88 |                | 19.97<br>19.99 | 19.53 | 19.08 |                |  |
| 11         | 23.16                                                                                       | 22.69 | 22.21 | 21.73 | 21.26 | 20.78          |                | 19.55 | 19.10 |                |  |
| 12         | 24.35                                                                                       | 23.79 | 23.22 | 22.65 | 22.09 | 21.52          | 20.30          | 19.82 | 19.35 |                |  |
| 13         | 25.42                                                                                       | 24.77 | 24.11 | 23.46 |       | 22.16          | 20.96          | 20.39 | 19.83 |                |  |
| 14         | 24.89                                                                                       | 24.20 | 23.52 | 22.84 |       | 21.47          | 21.50          | 20.85 | 20.20 | 19.54          |  |
| 15         |                                                                                             | 24.14 | 23.41 | 22.69 |       | 21.23          | 20.79          | 20.10 |       | 18.73          |  |
| 16         | 24.41                                                                                       | 23.67 | 22.94 | 22.20 | 21.46 | 20.72          | 20.50          | 19.78 | 19.05 | 18.32          |  |
| 17         | 25.01                                                                                       | 24.29 | 23.58 | 22.86 | 22.15 | 21.43          | 19.98<br>20.72 | 19.25 | 18.51 | 17.77          |  |
| 18         | 25.01                                                                                       | 24.30 | 23.58 | 22.87 | 22.15 | 21.44          |                |       | 19.29 | 18.57          |  |
| 19         | 24.88                                                                                       | 24.19 | 23.50 | 22.82 | 22.13 | 21.44          | 20.72<br>20.76 |       | 19.29 | 18.58          |  |
| 20         | 24.87                                                                                       | 24.18 | 23.49 |       | 22.12 | 21.43          | 20.75          |       | 19.38 | 18.70          |  |
| 21         | 24.87                                                                                       | 24.18 | 23.50 | 22.81 | 22.12 | 21.44          | 20.75          |       |       | 18.69          |  |
| 22         | 24.87                                                                                       | 24.19 | 23.50 |       | 22.13 | 21.44          | 20.75          |       |       | 18.69          |  |
| 23         | 24.88                                                                                       | 24.19 | 23.50 | 22.82 | 22.13 | 21.44          | 20.76          |       |       | 18.69          |  |
| 24         | 24.84                                                                                       | 24.16 | 23.47 |       | 22.10 | 21.41          |                | 20.07 | 19.38 | 18.70          |  |
| 25         | 24.88                                                                                       | 24.19 | 23.50 |       | 22.13 | 21.44          | 20.72<br>20.76 |       | 19.35 | 18.66          |  |
| 26         | 24.88                                                                                       | 24.19 | 23.50 | 22.82 | 22.13 | 21.44          | 20.76          | 20.07 | 19.38 | 18.70          |  |
| 27         | 24.62                                                                                       | 23.88 | 23.13 | 22.39 | 21.64 | 20.90          |                | 20.07 | 19.38 | 18.70          |  |
| 28         | 25.13                                                                                       | 24.37 | 23.61 | 22.85 | 22.08 |                |                | 19.41 | 18.66 | 17.92          |  |
| 29         | 25.08                                                                                       | 24.27 | 23.45 | 22.64 | 21.82 | 21.32          | 20.56          | 19.80 | 19.04 | 18.28          |  |
| 30         | 25.13                                                                                       |       | 23.46 | 22.63 | 21.80 |                | 20.20          | 19.38 | 18.57 | 17.75          |  |
| 31         | 24.86                                                                                       | 24.06 | 23.27 | 22.48 | 21.68 | 20.97<br>20.89 | 20.13          | 19.30 | 18.47 | 17.64          |  |
| 32         | 24.11                                                                                       | 23.33 | 22.55 | 21.77 |       |                | 20.10          | 19.30 | 18.51 | 17.71          |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

23.33 22.55 21.77 20.99

20.21

19.44 18.66

17.88

17.10

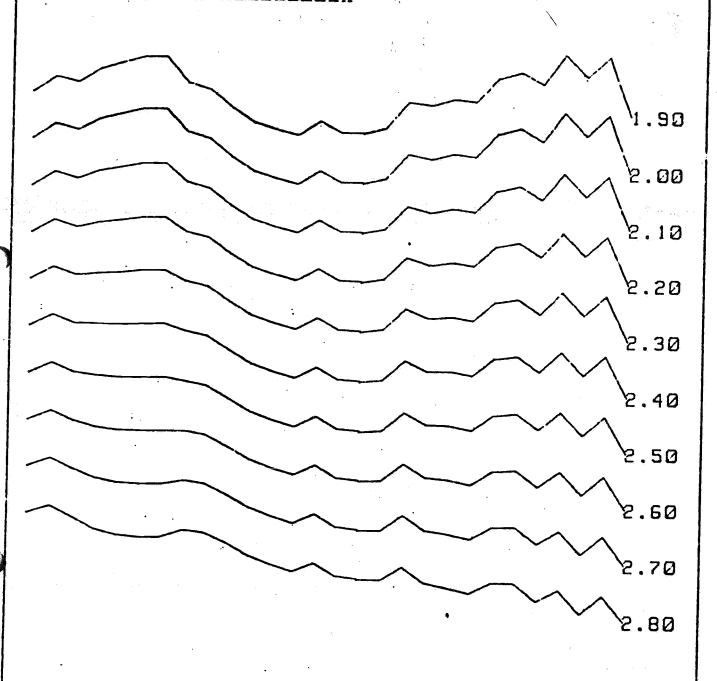
CLIENT: ESSO AUSTRALIA LTD 058 LOCATION: POUTCHINA GRID Sth Australia NETTLETON\_PROFILES LINE 40000:E -1.90 -2.00 2.10 2.20 2.30 2.40 2.50 2.50 2.70 2.80 TOPOGRAPHY (Not to scale)

| *  | W<br> | STATION<br>NUMBER | ELEVATION (meters) | BOUGUER GRAVITY ANOMALY (mgals) | Loop<br># | . त <b>स स</b> १ |
|----|-------|-------------------|--------------------|---------------------------------|-----------|------------------|
|    | _     | \                 |                    | *************************       |           |                  |
| 1  |       | 36000             | 153.68             | 25.11                           | 19        |                  |
| 2  |       | 36000             | 153.68             | 25.10 *                         | 14        |                  |
| 3  |       | 36000             | 153.68             | 25.11 *                         | 14        |                  |
| 4  |       | 36000             | 153.68             | 25.11 *                         | 16        |                  |
| 5  |       | 36000             | 153.68             | 25.11 *                         | 18        |                  |
| 6  |       | 36000             | 153.68             | 25.11 *                         | 19        |                  |
| 7  |       | 36000             | 153.68             | 25.12 *                         | í         |                  |
| 8  |       | 36500             | 170.05             | 25.37                           | <u>.</u>  |                  |
| 9  |       | 37000             | 187.57             | 25.52                           |           |                  |
| 10 |       | 37500             | 190.44             | 25.48                           |           |                  |
| 11 |       | 38000             | 163.85             | 24.88                           | 1         |                  |
| 12 | RPT   | 38000             | 163.85             | 24.88 *                         | 14        |                  |
| 13 |       | 38000             | 163.85             | 24.87 *                         | 12        |                  |
| 14 |       | 38000             | 163.85             |                                 | 12        |                  |
| 15 |       | 38000             | 163.85             | ° 24.87 *                       | 11        |                  |
| 16 |       | 38000             | 163.85             | 24.88 *                         | 20        |                  |
| 17 | RPT   | 38000             | 163.85             | 24.87 *                         | 11        |                  |
| 18 | RPT   | 38000             | 163.85             | 24.88 *                         | 20        |                  |
| 19 | • • • | 38500             | 159.20             | 24.84 *<br>24.25                | 1         |                  |
| 20 |       | 39000             | 156.21             | 23.70                           | 1         |                  |
| 21 |       | 39500             | 150.90             | 23.05                           | 1         |                  |
| 22 | RPT   | 39500             | 150.90             | 23.05 *                         | 1         | •                |
| 23 |       | 40000             | 164.83             | 23.32                           | 1 ,       |                  |
| 24 | RPT   | 40000             | 164.83             | 23.32 *                         | 15        |                  |
| 25 | RPT   | 40000             | 164.81             | 23.32 *                         | 21        |                  |
| 26 | RPT   | 40000             | 164.81             | 23.32 *                         | 1         |                  |
| 27 | RPT   | 40000             | 164.83             | 23.31 *<br>23.32 *              | 11        |                  |
| 28 | RPT   | 40000             | 164.83             | 23.32 *                         | 8         |                  |
| 29 | RPT   | 40000             | 164.81             | 23.32 *                         | 8         |                  |
| 30 | RPT   | 40000             | 164.83             | 23.32 *                         | 7         |                  |
| 31 | RPT   | 40000             | 164.81             | 23.32 *                         | 21        |                  |
| 32 | RPT   | 40000             | 164.81             | 23.32 *                         | 1         |                  |
| 33 | •••   | 40500             | 165.57             | 23.80                           | 7         |                  |
| 34 | •     | 41000             | 176.87             |                                 | 7         |                  |
| 35 |       | 41500             | 190.61             | 23.72                           | 7         | •                |
| 36 |       | 42000             | 200.00             | 23.66                           | 7         |                  |
| 37 | RPT   | 42000             |                    | 23.59                           | 5         |                  |
| 38 | RPT   | 42000             | 200.00             | 23.61 *                         | 5         |                  |
| 39 | RPT   |                   | 200.00             | 23.64 *                         | 2         |                  |
|    |       | 42000             | 200.00             | 23.66 *                         | 2         |                  |
| 10 | RPT   | 42000             | 200.00             | 23.60 *                         | 7         |                  |

BOUGUER DENSITIES FOR p= 1.8 TO 2.8 gms/c.c.

LINE 40000E

| ROW<br>No. | 1.80  | 1.90                                    | 2.99  | 2.10  | 2.20   | 2.30  | 2.40  | 2.50           | 2.60           | 2.70           |
|------------|-------|-----------------------------------------|-------|-------|--------|-------|-------|----------------|----------------|----------------|
| 1          | 25.11 |                                         |       | 23.17 | 22.53  | 21.88 | 21.24 | 20.60          | 10.05          |                |
| . 2        | 25.10 |                                         | 23.82 | 23.17 | 22.53  |       |       |                |                |                |
| 3          | 25.11 |                                         | 23.82 | 23.17 | 22.53  |       |       |                |                |                |
| 4          | 25.11 |                                         |       | 23.17 |        |       |       |                | 19.95          |                |
| 5          | 25.11 |                                         |       | 23.17 |        |       |       | 20.60          | 19.95          |                |
| 6          | 25.11 | , , , , , , , , , , , , , , , , , , , , |       | 23.17 |        |       |       | 20.60          | 19.95          |                |
| 7          | 25.12 |                                         |       | 23.18 | 22.54  |       |       |                | 19.95          | - T            |
| 8          | 25.37 |                                         |       | 23.23 | 22.52  |       |       |                | 19.96          | 19.32          |
| 9          | 25.52 | 24.73                                   |       | 23.16 | 22.37  |       |       | 20.01          | 19.67          | 18.96          |
| 10         | 25.48 | 24.68                                   | 23.88 | 23.09 | 22.29  | 21.49 |       | 19.89          | 19.23          | 18.44          |
| 11         | 24.88 | 24.19                                   |       | 22.82 | 22.13  | 21.44 | 20.76 | 20.07          | 19.10          | 18.30          |
| 12         | 24.88 | 24.19                                   | 23.50 | 22.82 | 22.13  | 21.44 | 20.76 | 20.07          | 19.38          | 18.70          |
| 13         | 24.87 | 24.18                                   | 23.49 | 22.81 | 22.12  | 21.43 | 20.75 | 20.06          | 19.38          | 18.70          |
| 14         | 24.87 | 24.19                                   | 23.50 | 22.81 | 22.13  | 21.44 | 20.75 | 20.07          | 19.37          | 18.69          |
| 15         | 24.88 | 24.19                                   | 23.50 | 22.82 | 22.13  | 21.44 | 20.76 |                | 19.38          | 18.69          |
| 16         | 24.87 | 24.18                                   | 23.50 | 22.81 | 22.12  | 21.44 | 20.75 |                | 19.38          | 18.70          |
| 17         | 24.88 | 24.19                                   | 23.50 |       | 22.13, |       | 20.76 |                | 19.38          | 18.69          |
| 18         | 24.84 | 24.16                                   | 23.47 | 22.78 | 22.10  | 21.41 | 20.72 |                | 19.38          | 18.70          |
| 19         | 24.25 | 23.59                                   | 22.92 | 22.25 | 21.58  | 20.92 | 20.25 | 19.58          | 19.35          | 18.66          |
| 20         | 23.70 | 23.05                                   | 22.39 | 21.74 | 21.08  | 20.43 | 19.77 |                | 18.92          | 18.25          |
| 21         | 23.05 | 22.42                                   | 21.78 | 21.15 | 20.52  | 19.89 | 19.25 | 19.12<br>18.62 | 18.47          | 17.81          |
| 22         | 23.05 | 22.42                                   | 21.79 | 21.15 | 20.52  | 19.89 | 19.26 | 18.62          | 17.99          | 17.36          |
| 23         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.56  | 19.87 |       | 18.49          | 17.99          | 17.36          |
| 24         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.56  | 19.87 | 19.18 | 18.49          | 17.80<br>17.80 | 17.10          |
| 25         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.55  | 19.86 | 19.17 | 18.48          |                | 17.10          |
| 26         | 23.31 | 22.62                                   | 21.93 | 21.24 | 20.55  | 19.86 | 19.17 | 18.48          | 17.79<br>17.79 | 17.10          |
| 27         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.56  | 19.87 | 19.18 | 18.49          | 17.80          | 17.10          |
| 28         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.56  | 19.87 | 19.18 | 18.49          | 17.80          | 17.10          |
| 29         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.55  | 19.86 | 19.17 | 18.48          | 17.79          | 17.10          |
| 30         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.56  | 19.87 | 19.18 | 18.49          | 17.80          | 17.10          |
| 31         | 23.32 |                                         | 21.94 | 21.25 | 20.55  | 19.86 | 19.17 | 18.48          | 17.79          | 17.10          |
| 32         | 23.32 | 22.63                                   | 21.94 | 21.25 | 20.55  | 19.86 | 19.17 | 18.48          | 17.79          | 17.10          |
| 33         | 23.80 | 23.11                                   | 22.41 | 21.72 | 21.03  | 20.33 | 19.64 | 18.95          | 18.25          | 17.10          |
| 34         | 23.72 | 22.98                                   | 22.23 | 21.49 | 20.75  |       | 19.27 | 18.53          | 17.79          | 17.56          |
| 35         | 23.66 | 22.86                                   | 22.06 | 21.26 | 20.46  | 19.66 | 18.86 | 18.06          | 17.27          | 17.05          |
| 36         | 23.59 | 22.75                                   | 21.91 | 21.07 | 20.24  | 19.40 | 18.56 |                | 16.88          | 16.47          |
| 37         | 23.61 | 22.77                                   | 21.93 |       | 20.26  | 19.42 | 18.58 |                |                | 16.04          |
| 38         | 23.64 | 22.81                                   | 21.97 | 21.13 |        | 19.45 | 18.62 |                | 16.91          | 16.07          |
| 39         | 23.66 | 22.82                                   | 21.99 | _     |        | 19.47 |       |                | 16.94          | 16.10          |
| 40         | 23.60 | 22.76                                   | 21.92 |       |        | 19.41 |       |                | 16.96<br>16.89 | 16.12<br>16.05 |


\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

CLIENT: ESSO AUSTRALIA LTD

LOCATION: POUTCHINA GRID 5th Australia

061

NETTLETON PROFILES LINE 40000:N



\* TOPOGRAPHY (Not to scale)

|     |      |         |           | BOUCHER CRAHER.      |      | / <b>(SA)</b> |
|-----|------|---------|-----------|----------------------|------|---------------|
| row |      | STATION | ELEVATION | BOUGUER GRAVITY      | Loop |               |
| *   |      | NUMBER  | (meters)  | ANOMALY (mgals)      | •    |               |
|     |      |         |           |                      |      | -             |
| 1   |      | 32000 🐍 | 99.76     | 23.56                | 21   |               |
| 2   |      | 32400   | 107.30    | 24.08                | 21   |               |
| 3   | •    | 32800   | 113.10    | 23.90                | - 21 | **            |
| 4   |      | 33200   | 136.29    | 24.37                | 21   | يبو.          |
| 5   |      | 33600   | 147.55    | 24.60                | 21   |               |
| 6   |      | 34000   | 155.00    | 24.80                | 21   |               |
| 7   | RPT  | 34000   | 155.00    | 24.80 *              | 21   |               |
| 8   | RPT  | 34000   | . 155.00  | ` 24.80 <del>*</del> | 10   |               |
| 9   |      | 34400   | 154.43    | 24.80                | 10   |               |
| 10  |      | 34800   | 123.97    | 23.91                | 10   |               |
| 11. |      | 35200   | 120.24    | 23.66                | 10   |               |
| 12  |      | 35600   | 112.16    | 23.01                | 10   |               |
| 13  |      | 36000   | 110.45    | 22.53                | 10   |               |
| 14  | RPT  | 36000   | 110.45    | · 22.53 *            | 10   |               |
| 15  | RPT  | 36000   | 110.45    | 22.53 *              | 9    |               |
| 16  |      | 36400   | 112.50    | 22.31                | 9    |               |
| 17  |      | 36800   | 113.97    | 22.13                | 9    |               |
| 18  | •    | 37200   | 118.62    | 22.60                | 9    |               |
| 19  |      | 37600   | 120.78    | 22.23                | 9    |               |
| 28  |      | 38000   | 123.57    | 22.23                | 9    |               |
| 21  | RPT  | 38000   | 123.57    | 22.20 *              | 9    |               |
| 22  | RPT  | 38000   | 123.57    | 22.23 *              | 8    |               |
| 23  | •••  | 38400   | 129.42    | 22.42                | 8    |               |
| 24  |      | 38800   | 139.73    | 23.29                | 8    |               |
| 25  |      | 39200   | 152.12    | 23.18                | 8    |               |
| 26  | ÷.   | 39600   | 162.97    | 23.43                | 8    |               |
| 27  |      | 40000   | 164.83    | 23.32                | 21   |               |
| 28  | RPT  | 40000   | 164.83    | 23.32 *              | 15   |               |
| 29  | RPT  | 40000   | 164.81    | 23.32 *              | 1    |               |
| 30  | RPT. | 40000   | 164.81    | 23.32 *              | 7    |               |
| 31  | RPT  | 40000   | 164.81    | 23.32 *              | 7    |               |
| 32  | RPT  | 40000   | 164.83    | 23.32 *              | 8    |               |
| 33  | RPT  | 40000   | 164.83    | 23.32 *              | 8    |               |
| 34  | RPT  | 40000   | 164.81    | 23.32 *              | 1    |               |
| 35  | RPT  | 40000   | 164.81    | 23.31 *              | 11   |               |
| 36  | RPT  | 40000   | 164.83    | 23.32 *              | 21   |               |
| 37  |      | 40400   | 177.88    | 24.18                | 15   |               |
| 38  | RPT  | 40400   | 177.88    | 24.18 *              | 15   |               |
| 39  | •••• | 40800   | 183.95    | 24.41                | 15   |               |
| 40  |      | 41200   | 188.61    | 23.98                | 15   |               |
| 41  |      | 41600   | 206.68    | 25.04                | 15   |               |
| 42  |      | 42000   | 207.36    | 24.27                | 15   |               |
| 43  |      | 42400   | 210.16    | 24.99                | 15   |               |
| 44  |      | 42800   | 177.27    | 22.87                | . 15 |               |

BOUGUER DENSITIES FOR p= 1.8 TO 2.8 gms/c.c. LINE 40000N ROW 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 No. 1, 23.56 23.14 22.73 22.31 21.89 21.47 20.22 21.05 20.64 19.80 2 24.08 23.63 23.18 22.73 22.28 21,83 21.38 20.93 20.48 20.03 3 23.90 23.43 22.95 22.48 22.01 21.53 21.06 20.11 20.58 19.64 4 24.37 23.80 23.23 22.66 22.09 21.52 20.95 20.38 19.80 19.23 5 24.60 23.98 23.36 22.74 22.13 21.51 20.89 20.27 19.65 19.03 6 24.80 24.15 23.50 22.86 22.21 21.56 20.91 20.26 19.61 18.96 7 24.80 24.15 23.50 22.85 22.20 21.55 20.90 20.25 19.60 18.95 8 24.80 20.90 24.15 23.50 22.85 22.20 21.55 20.25 19.60 18.95 9 24.80 24.16 23.51 22.86 22.22 21.57 20.92 20.27 19.63 18.98 10 23.91 23.39 22.87 22.35 21.83 21.31 20.79 20.27 19.75 19.23 11 23.66 23.15 22.65 22.15 21.64 20.63 20.13 21.14 19.63 19.12 12 23.01 22.54 22.07 21.60 21.13 20.66 20.19 19.72 19.25 18.78 13 22.53 22.06 21.60 21.14 20.67 20.21 19.75 19.29 18.82 18.36 14 22.53 22.07 21.61 21.15 20.68 20.22 19.76 19.29 18.83 18.37 15 22.53 22.07 21.60 21.14 20.68. 20.22 19.75 19.29 18.83 18.36 16 22.31 21.84 21.36 20.89 20.42 19.95 19.48 19.01 18.54 18.06 17 22.13 21.65 21.17 20.69 20,22 19.74 19.26 18.78 18.31 17.83 18 22.60 22.11 21.61 21.11 20.61 20.12 19.62 19.12 18.63 18.13 19 22.23 21.72 21.22 20.71 20.20 19.70 19.19 18.68 18.18 17.67 20 22.23 21.72 21.20 20.68 20.16 19.13 19.64 18.61 18.09 17.57 21 22.20 21.16 20.65 21.68 19.61 20.13 19.09 18.57 18.06 17.54 22 22.23 21.71 21.19 20.67 19.64 20.15 19.12 18.60 18.08 17.56

20.25

20,95

20.63

20.70

20.56

20.56

20.55

20.55

20.55

20.56

20.56

20.55

20.55

20.56

21.20

21.20

21.32

20.82

21.58

20.80

21.47

19.90

19.70

20.36

19.99

20.01

19.87

19.87

19.86

19.86

19.86

19.87

19.87

19.86

19.87

20.46

20.45

20.55

20.02

20.71

19.93

20.59

19.15

19.86

19.16

19.78

19.36

19.33

19.18

19.18

19.17

19.17

19.17

19.18

19.18

19.17

19.17

19.18

19.71

19.71

19.78

19.23

19.84

19.06

19.71

18.41

18.62

19.19

18.72

18.65

18.49

18.49

18.48

18.48

18.48

18.49

18.49

18.48

18.48

18.49

18.97

18.96

19.01

18.44

18.98

18.19

18.83

17.67

18.08

18.60

18.08

17.96

17.80

17.80

17.79

17.79

17.79

17.80

17.80

17.79

17.79

17.80

18.22

18.22

18.24

17.65

18.11

17.32

17.95

16.93

17.53

18.02

17.44

17.28

17.10

17.10

17.10

17.10

17.10

17.10

17.10

17.10

17.10

17.10

17.47

17.47

17.47

16.86

17.25

16.45

17.07

16.18

20.79

21.53

21.38

21.25

21.25

21.25

21.25

21.25

21.25

21.25

21.25

21.24

21.25

21.95

21.94

22.09

21.61

22.44

21.67

22.35

20.64

21.27

21.33

22.12

21.91

22.06

21.94

21.94

21.94

21.94

21.94

21.94

21.94

21.94

21.93

21.94

22.69

22.69

22.86

22.40

23.31

22.53

23.23

21.38

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

21.87

22.70

22.54

22.74

22.63

22.63

22.63

22.63

22.63

22.63

22.63

22.63

22.62

22.63

23.44

23.43

23.63

23.19

24.18

23.40

24.11

22.13

22.42

23.29

23.18

23.43

23.32

23.32

23.32

23.32

23.32

23.32

23.32

23.32

23.31

23.32

24.18

24.18

24.41

23.98

25.04

24.27

24.99

22.87

CLIENT: ESSO SUSTRALIA LTD 064 LOCATION: POUTCHINA GRID 5th Australia NETTLETON PROFILES LINE 42000:N 1.90 8.00 2.10 2.20 2.30 2.40 2.50 2.50 2.70 2.80 TOPOGRAPHY (Not to scale)

| row<br># | ŀ     | STATION        | ELEVATION        | ************************************** | Loop                  | ************************************** |
|----------|-------|----------------|------------------|----------------------------------------|-----------------------|----------------------------------------|
| #<br>    |       | NUMBER         | (meters)         | ANOMALY (mgals)                        | *                     | ••                                     |
| •        |       | 0.400.0        |                  | ,,                                     |                       |                                        |
| 1        |       | 34000          | 130.45           | 22.59                                  | 6                     | 1 %                                    |
| 2<br>3   |       | 34400          | 135.72           | 22.99                                  | . 6                   |                                        |
| 4        |       | 34800          | 126.95           | 21.85                                  | 6                     | •                                      |
| 5        |       | 35200<br>35600 | 126.22           | 21.81                                  | 6                     |                                        |
| 6        |       | 36000          | 137.16           | 22.06                                  | 6                     |                                        |
| 7        |       | 36400          | 135.93           | 21.98                                  | . 6                   |                                        |
| 8        |       | 36800          | 142.92           | 22.38                                  | 6                     |                                        |
| 9        | RPT   | 36800          | 145.63           | 22.73                                  | 5                     |                                        |
| 10       | RPT   | 36800          | 145.63           | 22.77 *                                | 6                     |                                        |
| 11       | IXI I | 37200          | 145.63           | 22.71 *                                | 6                     |                                        |
| 12       |       | 37600          | 136.09           | 22.03                                  | 5                     |                                        |
| 13       |       | 38000          | 136.33<br>146.88 | 20.71                                  | <b>5</b>              |                                        |
| 14       |       | 38400          | 153.81           | 21.82                                  | 5                     |                                        |
| 15       |       | 38800          | 169.29           | 22.33                                  | 5                     |                                        |
| 16       |       | 39200          | 179.62           | 22.41                                  | 5                     |                                        |
| 17       |       | 39600          | 191.27           | 22.78                                  | 5                     |                                        |
| 18       |       | 40000          | 200.00           | 23.27                                  | 5                     |                                        |
| 19       | RPT   | 40000          | 200.00           | 23.61                                  | 5                     | •                                      |
| 20       | RPT   | 40000          | 200.00           | 23.66 *                                | 2                     |                                        |
| 21       | RPT   | 40000          | 200.00           | 23.59 *                                | 5                     |                                        |
| 22       | RPT   | 40000          | 200.00           | 23.60 *                                | 7                     | ,                                      |
| 23       |       | 40400          | 205.34           | 23.64 *                                | 2                     |                                        |
| 24       |       | 40800          | 203.30           | 23.43                                  | 2                     |                                        |
| 25       |       | 41200          | 195.37           | 23.35                                  | 2                     |                                        |
| 26       | •     | 41600          | 185.28           | 22.86                                  | 2<br>2<br>2<br>2<br>2 |                                        |
| 27       |       | 42000          | 181.42           | 22.63                                  | 2                     |                                        |
| 28       |       | 42400          | 171.13           | 22.37<br>21.96                         | 2                     |                                        |
| 29       |       | 42800          | 158.66           | 21.99                                  | 2                     |                                        |
| 30       | RPT   | 42800          | 158.66           | 21.94 *                                |                       |                                        |
| 31       |       | 43200          | 132.73           | 20.89                                  | 3<br>3                |                                        |
| 32       |       | 43600          | 122.12           | 19.49                                  |                       |                                        |
| 33       |       | 44000          | 130.11           | 19.28                                  | 3                     |                                        |
| 34       |       | 44400          | 125.55           | 19.47                                  | 3                     |                                        |
| 35       |       | 44800          | 113.23           | 19.00                                  | 3                     |                                        |
| 36       |       | 45200          | 121.54           | 18.47                                  | 3                     |                                        |
| 37       |       | 45600          | 131.84           | 18.95                                  | 3<br>3                |                                        |
| 38       | RPT   | 45600          | 131.84           | 18.93 *                                | 3                     |                                        |
| 39       | RPT   | 45600          | 131.84           | 18.95 *<br>18.96 *                     |                       |                                        |
| 40       |       | 46000          | 135.43           | 19.20                                  | 4                     |                                        |
| 41       |       | 46400          | 178.39           | 20.41                                  | 4                     |                                        |
| 42       |       | 46800          | 170.37           | 21.14                                  | 4                     |                                        |
| 43       |       | 47200          | 159.86           | 20.40                                  |                       |                                        |
| 44       |       | 47600          | 144.42           | 19.78                                  | 4                     |                                        |
| 45       |       | 48000          | 119.54           | 18.69                                  | 4                     |                                        |
| -,       |       |                |                  | 10.QF                                  | *                     |                                        |
|          |       |                |                  |                                        |                       |                                        |

| BOUGUER | DENSITIES | FOR p= | 1.8 TO | 2.8  | gms/c.c. |
|---------|-----------|--------|--------|------|----------|
| ******  | *****     | *****  | *****  | **** | *******  |

LINE 42000N

| ROW<br>No. | 1.80  | 1.90  | 2.00           | 2.10           | 2.20  | 2.30           | 2.40           | 2.50  | 2.60  | 2.70  |
|------------|-------|-------|----------------|----------------|-------|----------------|----------------|-------|-------|-------|
| 1          | 22.59 | 22.04 | 21.49          | 20.95          | 20.40 |                |                |       |       |       |
| 2          | 22.99 |       |                |                | 20.71 |                |                |       |       |       |
| 3          | 21.85 |       |                |                | 19.72 |                |                |       |       |       |
| 4          | 21.81 |       |                |                |       | 19.19<br>19.17 |                |       |       |       |
| 5          | 22.06 |       |                | 20.33          | 19.76 |                |                |       |       |       |
| 6          | 21.98 |       |                |                | 19.70 |                |                |       |       |       |
| 7          | 22.38 |       |                | 20.58          | 19.98 |                |                |       |       |       |
| 8          | 22.73 |       |                | 20.90          | 20.29 | 19.38          |                | 18.18 |       |       |
| 9          | 22.77 |       |                | 20.94          |       |                |                | 18.46 | 17.85 |       |
| 10         | 22.71 | 22.10 |                | 20.88          | 20.33 |                | 19.11          | 18.50 | 17.89 |       |
| 11         | 22.03 |       |                | 20.32          | 20.27 |                | 19.05          | 18.44 | 17.83 |       |
| 12         | 20.71 |       |                |                | 19.75 |                |                |       | 17.47 |       |
| 13         | 21.82 | 21.20 | 20.59          | 18.99          |       |                | 17.28          | 16.71 | 16.14 |       |
| 14         |       | 21.68 |                | 19.97          |       | 18.74          |                | 17.51 | 16.90 |       |
| 15         | 22.41 | 21.70 | 21.04<br>20.99 | 20.40          |       | 19.11          | 18.46          |       | 17.17 |       |
| 16         |       | 22.03 | 21.28          | 20.28          |       | 18.86          | 18.16          | 17.45 | 16.74 |       |
| 17         | 23.27 |       | 21.67          | 20.52          |       | 19.02          | 18.26          |       |       | 16.01 |
| 18         | 23.61 | 22.77 |                | 20.87<br>21.10 |       | 19.26          | 18.46          |       |       | 16.06 |
| 19         | 23.66 | 22.82 | 21.99          | 21.15          | 20.26 | 19.42          | 18.58          |       |       | 16.07 |
| 20         |       | 22.75 |                | 21.13          |       | 19.47          | 18.63          | 17.79 |       | 16.12 |
| 21         | 23.60 | 22.76 |                | 21.08          | 20.24 | 19.40          | 18.56          |       | 16.88 | 16.04 |
| 22         | 23.64 | 22.81 | 21.97          | 21.13          | 20.29 |                | 18.57          |       | 16.89 | 16.05 |
| 23         | 23.43 | 22.57 | 21.71          |                | 19.99 | 19.45<br>19.13 | 18.62          |       | 16.94 | 16.10 |
| 24         | 23.35 | 22.50 | 21.64          | 20.79          |       | 19.13          | 18.27          |       | 16.54 | 15.68 |
| 25         | 22.86 | 22.04 | 21.22          |                | 19.58 | 18.76          | 18.24          | 17.38 | 16.53 | 15.68 |
| 26         | 22.63 | 21.85 | 21.08          |                | 19.52 |                | 17.95          | 17.13 | 16.31 | 15.49 |
| 27         | 22.37 | 21.61 | 20.85          |                | 19.32 | 18.75<br>18.56 | 17.97          |       | 16.42 | 15.64 |
| 28         |       | 21.24 | 20.52          |                | 19.09 | 18.37          | 17.80          | 17.04 | 16.28 | 15.52 |
| 29         | 21.99 | 21.32 | 20.66          |                | 19.33 |                | 17.65          | 16.94 | 16.22 | 15.50 |
| 30         | 21.94 | 21.28 | 20.61          |                | 19.28 | 18.66<br>18.62 | 18.00<br>17.95 | 17.33 | 16.67 | 16.00 |
| 31         | 20.89 | 20.33 | 19.77          |                | 18.66 | 18.11          | 17.55          |       | 16.62 | 15.96 |
| 32         |       | 18.98 | 18.47          |                | 17.45 | 16.93          | 16.42          |       | 16.44 | 15.88 |
| 33         | 19.28 | 18.74 | 18.19          | 17.65          | 17.10 | 16.56          | 16.01          | 15.91 | 15.40 | 14.89 |
| 34         | 19.47 |       | 18.42          |                | 17.36 |                | 16.31          | 15.47 | 14.92 | 14.38 |
| 35         | 19.00 | 18.52 | 18.05          | 17.57          | 17.10 | 16.62          |                | 15.79 | 15.26 | 14.73 |
| 36         | 18.47 | 17.96 | 17.45          | 16.94          | 16.43 | 15.92          | 15.41          | 15.68 | 15.20 |       |
| 37         | 18.95 |       | 17.85          |                | 16.74 | 16.19          |                | 14.90 | 14.39 | 13.88 |
| 38         | 18.93 | 18.38 | 17.83          |                | 16.72 | 16.17          | 15.64          | 15.09 | 14.53 | 13.98 |
| 39         | 18.96 | 18.41 | 17.85          |                | 16.75 |                | 15.62          | 15.07 | 14.51 | 13.96 |
| 40         | 19.20 | 18.64 | 18.07          | 17.50          |       | 16.20          | 15.64          | 15.09 | 14.54 | 13.98 |
| 41         | 20.41 | 19.66 | 18.91          |                | 16.93 | 16.37          | 15.80          | 15.23 | 14.66 | 14.10 |
| 42         | 21.14 | 20.43 | 19.71          | 18.17          | 17.42 | 16.67          | 15.92          | 15.18 | 14.43 | 13.68 |
| 43         | 20.40 | 19.73 |                | 19.00          | 18.28 | 17.57          |                | 16.14 | 15.43 | 14.71 |
| 44         | 19.78 |       | 19.06          | 18.39          | 17.72 | 17.05          |                | 15.71 | 15.04 | 14.37 |
| 45         | 18.69 |       | 18.57          | 17.96          | 17.36 | 16.75          |                | 15.54 | 14.94 | 14.33 |
| 73         | 10.07 | 18.19 | 17.69          | 17.19          | 16.69 | 16.19          | 15.69          | 15.19 | 14.69 | 14.18 |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DATA REDUCTION PARAMETERS

CLIENT:

ESSO AUSTRALIA LTD

LOCATION:

POUTCHINA GRID Sth Australia

Bouguer Reduction Density is 1.8 gm/cc

Base Line Bearing is 9 degrees EAST

The Known Point of 32.2302 degrees Latitude is located at Line Number 40000 and Station Number 40000

The Base Station Observed Gravity Values are:

| BASE #     | OBSERVED GRAVI | TY (mgals) |
|------------|----------------|------------|
| 1          | 3099.83        |            |
| 2          | 3103.06        |            |
| <b>3</b> , | 3107.11        |            |

## \*\*\*\*\*\* CATALOG OF RAW FIELD DATA \*\*\*\*\*\*

| LOOP# | 1  | BASE | LINE   |         | •       |     | FROM | 400001 | 1 TO | 36000N |
|-------|----|------|--------|---------|---------|-----|------|--------|------|--------|
| L00P# | 2  | LINE | 42000N |         |         |     | FROM | 4000E  | то   | 42800E |
| L00P# | 3  | LINE | 42000N |         |         |     | LINE | 428008 | то   | 45600E |
| LOOP# | 4  | LINE | 42000N |         |         |     | FROM | 456008 | то   | 48000E |
| LOOP# | 5  | LINE | 42000N |         |         |     | FROM | 40000E | то   | 36800E |
| L00P# | 6  | LINE | 42000N |         |         |     | FROM | 36800E | то   | 34000E |
| LOOP# | 7  | BASE | LINE   |         |         |     | FROM | 400001 | то   | 42000N |
| L00P# | 8  | LINE | 40000N |         | **      |     | FROM | 40000E | ТО   | 38000E |
| L00P# | 9  | LINE | 40000N |         | e Santa | . • | FROM | 38000E | то   | 36000E |
| LOOP# | 10 | LINE | 40000N |         |         | •   | FROM | 36000E | TO   | 34000E |
| LOOP# | 11 | BASE | TIE    |         |         | ,   | FROM | BASE 1 | TO   | BASE 2 |
| LOOP# | 12 | LINE | 38000N | •       |         |     | FROM | 40000E | TO   | 36800E |
| LOOP# | 13 | LINE | 38000N |         |         |     | FROM | 36800E | TO   | 34000E |
| LOOP# | 14 | BASE | TIE    |         |         |     | FROM | BASE 2 | ŢΟ   | BASE 3 |
| L00P# | 15 | LINE | 40000N |         |         |     | FROM | 40000E | TO   | 42800E |
| LOOP# | 16 | LINE | 36000N |         |         |     | FROM | 40000E | TO   | 38000E |
| LOOP# | 17 | LINE | 36000N |         |         |     | FROM | 38000E | TO   | 36000E |
| LOOP# | 18 | LINE | 36000N | * * * * |         |     | FROM | 36000E | TO   | 34000E |
| LOOP# | 19 | LINE | 36000N |         |         | £ . | FROM | 40000E | TO:  | 42000E |
| LOOP# | 20 | LINE | 38000N |         |         |     | FROM | 40000E | TO   | 42400E |
| LOOP# | 21 | LINE | 40000N |         |         |     | FROM | 34000E | TO   | 32000E |
|       |    |      |        |         |         |     |      |        |      |        |

\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

\*\*\*\*\*\* LOOP NUMBER 1 \*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD

Location: POUTCHINA GRID Sth Australia

Coverage: BASELINE

FROM 40000N TO 36000N

Loop Time: 1.95 Hours
Loop Drift: -.084 Mgals
Drift Rate: -.043 Mgals/Hour

Operator:

M. BURDORF Gravimeter: Lacoste G#037

Date: 27/11/80

| LINE<br>No. | STATION<br>No. | METER<br>READING  | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|-------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
|             |                |                   |      |                  |                    | , <del></del>         |                   |                   |
| BASE        | # 01           | 2959.950          | 1201 |                  | 3099.83            |                       |                   |                   |
| 40000       | 40000          | 2959.950          | 1201 | 0164.81          | 3099.83            | 32.23020              | 979515.47         | 23.32             |
| 39500       | 40000          | 2963.130          | 1212 | 0150.90          | 3103.17            | 32.23464              | 979515,83         | 23,05             |
| 39000       | 40000          | 2962.910          | 1220 | 0156.21          | 3102.94            | 32.23909              | 979516.19         | 23.70             |
| 38500       | 40000          | 2963.110          | 1229 | 0159.20          | 3103.16            | 32.24353              | 979516.56         | 24.25             |
| 38000       | 40000          | 2962.980          | 1234 | 0163.85          | 3103.03            | 32.24798              | 979516.92         | 24.84             |
| 37500       | 40000          | 2958.010          | 1243 | 0190.44          | 3097.83            | 32.25242              | 979517.28         | 25.48             |
| 37000       | 40000          | 2959.020          | 1255 | 0187.57          | 3098.89            | 32.25687              | 979517.64         | 25.52             |
| 36500       | 40000          | 2963.120          | 1305 | 0170.05          | 3103.20            | 32.26131              | 979518.00         | 25.37             |
| 36000       | 40000          | 2966.860          | 1315 | 0153.68          | 3107.12            | 32.26576              | 979518.36         | 25.12             |
| 39500       | 40000          | 2963.060          | 1352 | 0150.90          | 3103.17            | 32.23464              | 979515.83         | 23.05             |
| 40000       | 40000          | 2959.870          | 1358 | 0164.81          | 3099.83            | 32.23020              | 979515.47         | 23.32             |
| BASE        | # 01           | 29 <b>59.</b> 870 | 1358 |                  | 3099.83            |                       |                   |                   |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client: Location:

ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: LINE 42000N FROM 4000E TO 42800E

Loop Time: 2.42 Hours
Loop Drift: -.021 Mgals
Drift Rate: -.009 Mgals/Hour

Operator: Gravimeter: M.BURDURF Lacoste G#037

Date: 28/11/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER D= 1.8 |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|----------------|
|             |                |                  |      |                  |                    |                       |                   |                |
| ASE         | # 01           | 2959.930         | 0705 |                  | 3099.83            |                       |                   |                |
| 42000       | 40000          | 2951.040         | 0738 | 0200.00          | 3090.52            | 32.21242              | 979514.03         | 23.66          |
| 42000       | 40400          | 2949.670         | 0754 | 0205:34          | 3089.09            | 32.21298              | 979514.07         | 23.43          |
| 42000       | 40800          | 2950,090         | 0804 | 0203.30          | 3089.53            | 32.21355              | 979514.12         | 23.35          |
| 42000       | 41200          | 2951.430         | 0811 | 0195.37          | 3090.94            | 32.21411              | 979514.16         | 22.86          |
| 42000       | 41600          | 2953.500         | 0819 | 0185.28          | 3093.10            | 32.21467              | 979514.21         | 22.63          |
| 42000       | 42000          | 2954.150         | 0831 | 0181.42          | 3093.79            | 32.21524              | 979514.26         | 22.37          |
| 42000       | 42400          | 2956.090         | 0846 | 0171.13          | 3095.82            | 32.21580              | 979514.30         | 21.96          |
| 42000       |                | 2958.940         | 0857 | 0158.66          | 3098.81            | 32.21636              | 979514.35         | 21.99          |
| 42000       |                | 2951.010         | 0912 | 0200.00          | 3090.50            | 32.21242              | 979514.03         | 23.64          |
| )<br>BASE   | # 01           | 2959.910         | 0930 |                  | 3099.83            |                       |                   | 4              |

\* SOLO \* \*\*\*\*\*

LOOP NUMBER 3 \*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD
Location: POUTCHINA GRID Sth Australia

Coverage: LINE 42000N LINE 42800E TO 45600E

Loop Time: 2.83 Hours Loop Drift: .052 Mgals Drift Rate: .018 Mgals/Hour

Operator: Date:

M. BURDORF Gravimeter: Lacoste G#037 28/11/80

| LINE   | STATION       | METER    | TIME |                  |                    |                       |                   |                   |
|--------|---------------|----------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
| No.    | No.           | READING  | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
| \      | • • •         |          |      |                  | ~~                 |                       |                   |                   |
|        |               |          |      |                  |                    |                       |                   |                   |
| BASE   | # 01          | 2959.910 | 0930 |                  | 3099.83            |                       |                   |                   |
| 42000  | 42800         | 2958.900 | 0959 | 0158.66          | 3098.76            | 32.21636              | 979514.35         | 21.94             |
| 42000  | 43200         | 2963.710 | 1009 | 0132.73          | 3103.80            | 32.21693              | 979514.39         | 20.89             |
| 42000  | 43600         | 2964.790 | 1027 | 0122.12          | 3104.92            | 32.21749              | 979514.44         | 19.49             |
| 42000  | 44000         | 2962.860 | 1040 | 0130.11          | 3102.90            | 32.21805              | 979514.48         | 19.28             |
| 42000  | 44400         | 2964.100 | 1059 | 0125.55          | 3104.19            | 32.21862              | 979514.53         | 19.47             |
| 42000  | 44800         | 2966.440 | 1113 | 0113.23          | 3106.64            | 32.21918              | 979514.58         | 19.00             |
| 42000  | 45200         | 2964.130 | 1124 | 0121.54          | 3104.22            | 32.21974              | 979514.62         | 18.47             |
| 42000  | 45600         | 2962.350 | 1137 | 0131.84          | 3102.35            | 32.22031              | 979514.67         | 18.95             |
| BASE # | <b># 01</b> 2 | 2959.960 | 1220 |                  | 3099.83            |                       |                   |                   |

\* SOLO \* \*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\* LOOP NUMBER 4 \*\*\*\*\*\*\*\*\*\*\*\*\*\*

Client:

ESSO AUSTRALIA LTD

Location: POUTCHINA GRID Sth Australia

Coverage: LINE 42000N

FROM 45600E TO 48000E

Loop Time: 3.40 Hours
Loop Drift: -.147 Mgals
Drift Rate: -.043 Mgals/Hour

Operator:

M.BURDORF

Gravimeter: Lacoste G#037

28/11/80 Date:

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
|             |                |                  |      |                  |                    |                       | <del>,</del>      |                   |
| BASE        | # 01           | 2959.970         | 1308 |                  | 3099.83            |                       |                   |                   |
| 42000       | 45600          | 2962.320         | 1357 | 0131.84          | 3102.33            | 32.22031              | 979514.67         | 18.93             |
| 42000       | 46000          | 2961.810         | 1418 | 0135.43          | 3101.81            | 32.22087              | 979514.71         | 19.20             |
| 42000       | 46400          | 2953.430         | 1434 | 0178.39          | 3093.04            | 32.22143              | 979514.76         | 20.41             |
| 42000       | 46800          | 2955.950         | 1445 | 0170.37          | 3095.69            | 32.22200              | 979514.80         | 21.14             |
| 42000       | 47200          | 2957.620         | 1500 | 0159.86          | 3097.45            | 32.22256              | 979514.85         | 20.40             |
| 42000       | 47600          | 2960.490         | 1517 | 0144.42          | 3100.47            | 32.22312              | 979514.90         | 19.78             |
| 42000       | 48000          | 2965.030         | 1527 | 0119.54          | 3105.23            | 32.22368              | 979514.94         | 18.69             |
| 42000       | 45600          | 2962.260         | 1559 | 0131.84          | 3102.35            | 32.22031              | 979514.67         | 18.96             |
| BASE        |                |                  | 1632 |                  | 3099.83            |                       |                   |                   |
| *****       | ******         | **********       | **** | *******          | *****              | ******                | *****             | ******            |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

Coverage: LINE 42000N FROM 40000E TO 36800E

Loop Time: 2.40 Hours
Loop Drift: -.042 Mgals
Drift Rate: -.017 Mgals/Hour

Operator: Gravimeter: Date:

M.BURDORF Lacoste G#037 29/11/80

| No.    | STATIC<br>No.     | N METER<br>READING | TIME  | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees                  |           | BOUGUER |
|--------|-------------------|--------------------|-------|------------------|--------------------|---------------------------------------|-----------|---------|
|        | Y<br>Standar      |                    |       |                  |                    |                                       |           | D= 1.8  |
| BASE   | # 01              | 2959.970           | 0741  |                  | 3099.83            |                                       |           |         |
| 42000  | 40000             | 2951.030           | 0802  | 0200.00          | 3090.47            | 32.21242                              | 979514.03 | 22 64   |
| 42000  | 39600             | 2952.600           | 0816  | 0191.27          | 3092.12            | 32.21186                              | 979513.98 | 23.61   |
| 42000  | 39200             | 2954.680           | 0825  | 0179.62          | 3094.30            | 32.21130                              | 979513.93 | 23.27   |
| 42000  | 38800             | 2956.580           | 0835  | 0169.29          | 3096.29            | 32.21073                              | 979513.89 | 22.78   |
| 42000  | 38400             | 2959.900           | 0844  | 0153.81          | 3099.78            | 32.21017                              | 979513.84 | 22.41   |
| 12000  | 38000             | 2960.910           | 0854  | 0146.88          | 3100.84            | 32.20961                              | 979513.80 | 22.33   |
| 2000   | 37600             | 2962.150           | 0904  | 0138.33          | 3102.14            | 32.20904                              | 979513.75 | 21.82   |
| 2000   | 37200             | 2963.420           | 0912  | 0136.09          | 3103.47            | \                                     | 979513.71 | 21.17   |
| 2000   | 36800             | 2961.920           | 0920  | 0145.63          | 3101.90            |                                       | 979513.66 | 22.03   |
| 2000   | 40000             | 2950.980           | 0943  | 0200.00          | 3090.45            |                                       | 979514.03 | 22.73   |
| BASE # | 01                | 2959.930           | 1005  |                  | 3099.83            | · · · · · · · · · · · · · · · · · · · |           | 23.59   |
| ****   | <del>****</del> * | *****              | ***** | *****            |                    |                                       | *****     |         |

LOOP NUMBER 6

\*\*\*\*\*\*\*

\* SOLO \* \*\*\*\*\*

Client:

ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

> LINE 42000N Coverage: FROM 36800E TO 34000E

Loop Time: 2.13 Hours
Loop Drift: .010 Mgals Drift Rate: .005 Mgals/Hour

Operator: Gravimeter: Date:

M.BURDORF Lacoste G#037 29/11/80

|             |                |                  | <del></del> |                  |                    |                       |                   |                   |
|-------------|----------------|------------------|-------------|------------------|--------------------|-----------------------|-------------------|-------------------|
| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME        | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|             |                | - <del> </del>   |             |                  |                    |                       |                   |                   |
| BASE        | # 01           | 2959.930         | 1005        |                  | 3099.83            |                       |                   |                   |
| 42000       | 36800          | 2961.950         | 1026        | 0145.63          | 3101.94            | 32,20792              | 979513.66         | 22.77             |
| 42000       | 36400          | 2962.130         | 1034        | 0142.92          | 3102.13            | 32.20735              | 979513.61         | 22.38             |
| 42000       | 36000          | 2963.260         | 1045        | 0135.93          | 3103.32            | 32.20679              | 979513.57         | 21.98             |
| 42000       | 35600          | 2963.020         | 1053        | 0137.16          | 3103.06            | 32,20623              | 979513.52         | 22.06             |
| 42000       | 35200          | 2965.180         | 1101        | 0126.22          | 3105.33            | 32,20566              | 979513.48         | 21.81             |
| 42000       | 34800          | 2965.010         | 1109        | 0126.95          | 3105.15            | 32.20510              | 979513.43         | 21.85             |
| 42000       | 34400          | 2964.100         | 1123        | 0135.72          | 3104.19            | 32.20454              | 979513.39         | 22.99             |
| 42000       | 34000          | 2964.850         | 1135        | 0130.45          | 3104.98            | 32.20397              | 979513.34         | 22.59             |
| 42000       | 36800          | 2961.900         | 1,157       | 0145.63          | 3101.88            | 32.20792              | 979513.66         | 22.71             |
| BASE        | # 01           | 2959.940         | 1213        |                  | 3099.83            | *                     |                   | ٠                 |

\*\*\*\*\* \* SOLO \* \*\*\*\*\* \*\*\*\*\*\*\*\*\* LOOP NUMBER 8 \*\*\*\*\*\*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: LINE 40000N

FROM 40000E TO 38000E

Loop Time: 1.70 Hours
Loop Drift: -.052 Mgals
Drift Rate: -.031 Mgals/Hour

Operator: Gravimeter: Date:

J. PIERCEY Lacoste G#037 29/11/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER D= 1.8 |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|----------------|
|             |                |                  |      |                  |                    |                       |                   |                |
| BASE        | # 01           | 2959.940         | 1410 | ,                | 3099.83            |                       |                   |                |
| 40000       | 40000          | 2959.940         | 1410 | 0164.83          | 3099.83            | 32.23020              | 979515.47         | 23.32          |
| 40000       | 39600          | 2960.400         | 1432 | 0162.97          | 3100.32            | 32.22964              | 979515.43         | 23.43          |
| 40000       | 39200          | 2962.530         | 1447 | 0152.12          | 3102.56            | 32.22907              | 979515.38         | 23.18          |
| 40000       | 38800          | 2965.340         | 1458 | 0139.73          | 3105.51            | 32.22851              | 979515.33         | 23.29          |
| 40000       | 38400          | 2966.750         | 1514 | 0129.42          | 3107.00            | 32.22795              | 979515.29         | 22.42          |
| 40000       | 38000          | 2967.820         | 1527 | 0123.57          | 3108.12            | 32.22738              | 979515.24         | 22.23          |
| 40000       | 40000          | 2959.890         | 1552 | 0164.83          | 3099.83            | 32.23020              | 979515.47         | 23.32          |
| BASÉ        | # 01           | 2959.890         | 1552 |                  | 3099.83            |                       | •                 | ٠.             |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*

Client: Location: ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: LINE 40000N

FROM 38000E TO 36000E

Loop Time: 1.68 Hours
Loop Drift: .042 Mgals
Drift Rate: .025 Mgals/Hour

Operator: Gravimeter: J.PIERCEY Lacoste G#037 29/11/80

Date: 29/11/86

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals)                    | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|------------------|------|------------------|---------------------------------------|-----------------------|-------------------|-------------------|
| <del></del> |                |                  |      |                  | All the second sections of the second |                       | **                |                   |
| ASE         | # 01           | 2959.890         | 1552 |                  | 3099.83                               |                       |                   |                   |
| 40000       | 38000          | 2967.790         | 1610 | 0123.57          | 3108.10                               | 32.22738              | 979515.24         | 22.20             |
| 40000       | 37600          | 2968.400         | 1623 | 0120.78          | 3108.73                               | 32.22682              | 979515.20         | 22.23             |
| 40000       | 37200          | 2969.200         | 1636 | 0118.62          | 3109.56                               | 32.22626              | 979515.15         | 22.60             |
| 40000       | 36800          | 2969.740         | 1644 | 0113.97          | 3110.13                               | 32.22569              | 979515.11         | 22.13             |
| 40000       | 36400          | 2970.200         | 1655 | 0112.50          | 3110.60                               | 32.22513              | 979515.06         | 22.31             |
| 40000       | 36000          | 2970.760         | 1706 | 0110.45          | 3111.19                               | 32.22457              | 979515.01         | 22.46             |
| 40000       | 38000          | 2967.850         | 1719 | 0123.57          | 3108.13                               | 32.22738              | 979515.24         | 22.23             |
| BASE        | # 01           | 2959.930         | 1733 |                  | 3099.83                               |                       |                   |                   |

\*\*\*\*\*\*\* \* SOLO \*

Client: Location:

ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: LINE 40000N

FROM 36000E TO 34000E

Loop Time: 1.92 Hours
Loop Drift: -.031 Mgals
Drift Rate: -.016 Mgals/Hour

Operator:
Gravimeter:
Date:

M.BURDORF Lacoste G#037 30/11/80

|             |                |                  |      |                  |                    | 4                     | •                 | •                 |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAY<br>(mgals) | BOUGUER<br>D= 1.8 |
|             |                |                  | •    |                  |                    |                       |                   |                   |
| BASE        | # 01           | 2959.930         | 0718 |                  | 3099.83            |                       |                   |                   |
| 40000       | 36000          | 2970.840         | 0732 | 0110.45          | 3111.26            | 32.22457              | 979515.01         | 22.53             |
| 40000       | 35600          | 2970.870         | 0741 | 0112.16          | 3111.30            | 32.22401              | 979514.97         | 23.01             |
| 40000       | 35200          | 2969.640         | 0756 | 0120.24          | 3110.01            | 32.22344              | 979514.92         | 23.66             |
| 40000       | 34800          | 2969.000         | 0807 | 0123.97          | 3109.34            | 32.22288              | 979514.88         | 23.91             |
| 40000       | 34400          | 2963.030         | 0824 | 0154.43          | 3103.10            | 32.22232              | 979514.83         | 24.80             |
| 40000       | 34000          | 2962.850         | 0839 | 0155.00          | 3102.91            | 32.22175              | 979514.78         | 24.80             |
| 40000       | 36000          | 2970.810         | 0858 | 0110.45          | 3111.25            | 32.22457              | 979515.01         | 22.53             |
| BASE        | # 01           | 2959.900         | 0913 |                  | 3099.83            |                       |                   |                   |

\*\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client: Location: ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: BASE TIE FROM BASE 1 TO BASE 2

Loop Time: .75 Hours
Loop Drift: -.010 Mgals
Drift Rate: -.014 Mgals/Hour

Operator:
Gravimeter:
Date:

M.BURDORF Lacoste G#037 30/11/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAY<br>(mgals) | LATITUDE (degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|------------------|------|------------------|--------------------|--------------------|-------------------|-------------------|
|             |                |                  |      |                  |                    | <b></b>            |                   | en ar v           |
| BASE        | # 01           | 2959.900         | 0913 |                  | 3099.83            |                    |                   |                   |
| 38000       | 40000          | 2962.980         | 0926 | 0163.85          | 3103.06            | 32.24798           | 979516.92         | 24.87             |
| 40000       | 40000          | 2959.890         | 0936 | 0164.81          | 3099.82            | 32.23020           | 979515.47         | 23.31             |
| 38000       | 40000          | 2962.970         | 0947 | 0163.85          | 3103.05            | 32.24798           | 979516.92         | 24.87             |
| BASE        | # 01           | 2959.890         | 0958 |                  | 3099.83            |                    |                   |                   |
|             |                | -                |      |                  |                    |                    |                   |                   |

\*\*\*\*\* \* SOLO \* \*\*\*\*\*

\*\*\*\*\*\*\*\* LOOP NUMBER 12 \*\*\*\*\*\*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

Coverage: LINE 38000N

FROM 40000E TO 36800E

Loop Time: 2.07 Hours
Loop Drift: .021 Mgals
Drift Rate: .010 Mgals/Hour

Operator: Gravimeter: Lacoste G#037

M. BURDORF

Date:

30/11/80

| No.    | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|--------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
|        |                |                  |      | •                | •                  |                       |                   |                   |
| BASE   | # 02           | 2962.970         | 1008 | v.               | 3103.06            |                       |                   |                   |
| 38000  | 40000          | 2962.970         | 1058 | 0163.85          | 3103.05            | 32.24798              | 979516.92         | 24.87             |
| 38000  | 39600          | 2961.560         | 1021 | 0170.59          | 3101.58            | 32.24742              | 979516.87         | 25.01             |
| 38000  | 39200          | 2959.720         | 1034 | 0176.09          | 3099.65            | 32.24685              | 979516.83         | 24.41             |
| 38000  | 38800          | 2960.670         | 1045 | 0173.59          | 3100.64            | 32.24629              | 979516.78         | 24.87             |
| 38000  | 38400          | 2962.980         | 1054 | 0163.10          | 3103.06            | 32.24573              | 979516.73         | 24.89             |
| 38000  | 38000          | 2965.070         | 1105 | 0155.81          | 3105.25            | 32.24516              | 979516.69         | 25.42             |
| 38000  | 37600          | 2968.640         | 1120 | 0135.00          | 3108.99            | 32.24460              | 979516.64         | 24.35             |
| 38000  | 37200          | 2972.170         | 1131 | 0113.86          | 3112.68            | 32.24404              | 979516.60         | 23.16             |
| 38000  | 36800          | 2973.380         | 1140 | 0106.07          | 3113.95            | 32.24347              | 979516.55         | 22.66             |
| 38000  | 39600          | 2961.570         | 1206 | 0170.59          | 3101.57            | 32.24742              | 979516.87         | 25.01             |
| 38000  | 40000          | 2962.990         | 1212 | 0163.85          | 3103.06            | 32.24798              | 979516.92         | 24.88             |
| BASE 4 | 0,2            | <b>29</b> 62.990 | 1212 | •                | 3103.06            |                       |                   | •                 |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client: Location: ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia

Coverage: LINE 38000N FROM 36800E TO 34000E

Loop Time: 2.10 Hours
Loop Drift: .021 Mgals
Drift Rate: .010 Mgals/Hour

Operator:
Gravimeter:
Date:

M.BURDORF Lacoste G#037 30/11/80

THGRAY LATITUDE OBSGRAV TIME ELVN STATION METER LINE (degrees) D=1.8(mgals) (mgals) (meters) READING No. No. 3103.06 1339 BASE # 02 2963.020 979516.55 22.64 32.24347 3113.93 1400 0106.07 2973.400 38000 36800 979516.50 21.78 3114.72 32.24291 0098.78 1408 2974.160 36400 38000 979516.46 21.92 32.24235 3115.53 0095.74 1419 2974.930 36000 38000 22.27 979516.41 3115.95 32.24178 0095.25 1429 2975.330 38000 35600 979516.37 22.48 32.24122 3114.95 0100.23 1440 2974.380 35200 38000 23.63 979516.32 3112.44 32.24066 0115.71 34800 2971.990 1450 38000 23.95 32.24009 979516.28 3113.65 0111.71 2973.140 1502 38000 34400 23.77 979516.23 32.23953 3114.65 2974.100 1513 0106.46 38000 34000 22.28 979516.41 32.24178 3115.96 1526 0095.25 2975.350 38000 35600 3103.06 BASE # 02 1545 2963.040

LOOP NUMBER 14

Client: ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

BASE TIE Coverage: FROM BASE 2 TO BASE 3

Loop Time: 1.62 Hours
Loop Drift: -.021 Mgals
Drift Rate: -.013 Mgals/Hour

Operator: Gravimeter: Lacoste G#037

M.BURDORF

Date:

01/12/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME   | ELYN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|------------------|--------|------------------|--------------------|-----------------------|-------------------|-------------------|
|             |                |                  |        |                  |                    |                       |                   |                   |
|             | # 02           | 2962.980         | 0832   |                  | 3103.06            |                       |                   |                   |
| 36000       | 40000          | 2966.840         | 0901   | 0153.68          | 3107.11            | 32.26576              | 979518.36         | 25.11             |
| 38000       | 40000          | 2962.970         | 0924 · | 0163.85          | 3103.06            | 32.24798              | 979516.92         | 24.88             |
| 36000       | 40000          | 2966.830         | 0948   | 0153.68          | 3107.11            | 32.26576              | 979518.36         | 25.10             |
| BASE        | # 02           | 2962.960         | 1009   |                  | 3103.06            |                       |                   |                   |
| *****       |                | ******           | *****  | *****            | ******             | ******                | *****             | *****             |

\* SOLO \* \*\*\*\*\* \*\*\*\*\*\*\*\*\* LOOP NUMBER 15 \*\*\*\*\*\*\*\*\*

Client:

ESSO AUSTRALIA LTD

Location: POUTCHINA GRID Sth Australia

Coverage: LINE 40000N FROM 40000E TO 42800E \

Loop Time: 1.92 Hours
Loop Drift: .021 Mgals

Drift Rate: .011 Mgals/Hour

Operator:

M. BURDORF

Gravimeter: Lacoste G#037

Date: 01/12/80

|             |                |                  |      |                  |                    |                       |                   | . <b></b>         |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|             | <del></del>    |                  |      |                  |                    |                       | <del> </del>      |                   |
| PASE        | # 01           | 2959.910         | 1032 |                  | 3099.83            |                       |                   |                   |
| 40000       | 40000          | 2959.910         | 1032 | 0164.83          | 3099.83            | 32.23020              | 979515.47         | 23.32             |
| 40000       | 40400          | 2957.870         | 1045 | 0177.88          | 3097.69            | 32.23076              | 979515.52         | 24.18             |
| 40000       | 40800          | 2956.780         | 1055 | 0183.95          | 3096.55            | 32.23133              | 979515.56         | 24.41             |
| 40000       | 41200          | 2955.380         | 1108 | 0188.61          | 3095.08            | 32.23189              | 979515.61         | 23.98             |
| 40000       | 41600          | 2952.420         | 1118 | 0206.68          | 3091.98            | 32.23245              | 979515.65         | 25.04             |
| 40000       | 42000          | 2951.580         | 1127 | 0207.36          | 3091.09            | 32.23302              | 979515.70         | 24.27             |
| 40000       | 42400          | 2951.690         | 1144 | 0210.16          | 3091.21            | 32.23358              | 979515.75         | 24.99             |
| 40000       | 42800          | 2957.030         | 1159 | 0177.27          | 3096.80            | 32.23414              | 979515.79         | 22.87             |
| 40000       | 40400          | 2957.890         | 1215 | 0177.88          | 3097.70            | 32.23076              | 979515.52         | 24.18             |
| SE          | # 01           | 2959.930         | 1227 |                  | 3099.83            |                       |                   |                   |
|             |                |                  |      |                  |                    |                       |                   |                   |

\*\*\*\* \* SOLO \* \*\*\*\*\*

\*\*\*\*\*\* LOOP NUMBER 16 \*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

Coverage: LINE 36000N FROM 40000E TO 38000E

Loop Time: 2.38 Hours
Loop Drift: .021 Mgals
Drift Rate: .009 Mgals/Hour

Operator: Date:

J. PIERCEY Gravimeter: Lacoste G#037 02/12/80

| STATION<br>No. | METER<br>READING                                   | TIME                                                                                                                                        | ELVN<br>(meters)                                                                                                                                               | OBSGRAV<br>(mgals)                                                                                                                                                                                                                                                                                                                                                                                                                                                | LATITUDE<br>(degrees)              | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8                                             |
|----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------------------------------------------------|
| X              |                                                    |                                                                                                                                             | .,                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                   |                                                               |
| # 03           | 2966.840                                           | 1114                                                                                                                                        |                                                                                                                                                                | 3107.11                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                   |                                                               |
| 40000          | 2966.840                                           | 1114                                                                                                                                        | 0153.68                                                                                                                                                        | 3107.11                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26576                           | 979518.36         | 25.11                                                         |
| 39600          | 2965.600                                           | 1145                                                                                                                                        | 0162.20                                                                                                                                                        | 3105.81                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26519                           | 979518.32         | 25.83                                                         |
| 39200          | 2966.720                                           | 1159                                                                                                                                        | 0156.06                                                                                                                                                        | 3106,98                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26463                           |                   | 25.62                                                         |
| 38800          | 2969.460                                           | 1218                                                                                                                                        | 0139.48                                                                                                                                                        | 3109.85                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26407                           |                   |                                                               |
| 38400          | 2967.710                                           | 1231                                                                                                                                        | 0151.30                                                                                                                                                        | 3108.01                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                   | 24.67                                                         |
| 38000          | 2968.220                                           | 1252                                                                                                                                        | 0145.10                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                   | 25.63                                                         |
| 29600          | 2065 646                                           |                                                                                                                                             |                                                                                                                                                                | 0.00.07                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26294                           | 979518.13         | 24.77                                                         |
| 37666          | 2965.610                                           | 1320                                                                                                                                        | 0162.20                                                                                                                                                        | 3105.80                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.26519                           | 979518.32         | 25.83                                                         |
| # 03           | 2966.860                                           | 1337                                                                                                                                        |                                                                                                                                                                | 3107.11                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | •                 | •                                                             |
|                | No. # 03 40000 39600 39200 38800 38400 38000 39600 | * 03 2966.840<br>40000 2966.840<br>39600 2965.600<br>39200 2966.720<br>38800 2969.460<br>38400 2967.710<br>38000 2968.220<br>39600 2965.610 | * 03 2966.840 1114 40000 2966.840 1114 39600 2965.600 1145 39200 2966.720 1159 38800 2969.460 1218 38400 2967.710 1231 38000 2968.220 1252 39600 2965.610 1320 | No.       READING       (meters)         # 03       2966.840       1114         40000       2966.840       1114       0153.68         39600       2965.600       1145       0162.20         39200       2966.720       1159       0156.06         38800       2969.460       1218       0139.48         38400       2967.710       1231       0151.30         38000       2968.220       1252       0145.10         39600       2965.610       1320       0162.20 | No. READING (meters) (mgals)  # 03 | # 03              | No. READING (meters) (mgals) LATITUDE (degrees) (mgals)  # 03 |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Location:

POUTCHINA GRID Sth Australia

Coverage: LINE 36000N

FROM 38000E TO 36000E

Loop Time: 2.35 Hours
Loop Drift: .021 Mgals
Drift Rate: .009 Mgals/Hour

Operator:
Gravimeter:
Date:

J.PIERCEY Lacoste G#037 02/12/80

| LINE S    | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters)                      | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-----------|----------------|------------------|------|---------------------------------------|--------------------|-----------------------|-------------------|-------------------|
|           |                |                  |      | · · · · · · · · · · · · · · · · · · · | •                  |                       |                   |                   |
| )<br>SE 1 | # 03           | 2966.860         | 1337 |                                       | 3107.11            |                       |                   |                   |
| 36000     | 38000          | 2968.240         | 1403 | 0145.10                               | 3108.55            | 32.26294              | 979518.13         | 24.78             |
| 36000     | 37600          | 2970.820         | 1419 | 0129.75                               | 3111.25            | 32,26238              | 979518.09         | 23.94             |
| 30000     | 37200          | 2970.720         | 1432 | 0132.40                               | 3111.15            | 32.31515              | 979522.38         | 20.15             |
| 36000     | 36800          | 2974.050         | 1445 | 0114.59                               | 3114.63            | 32.26125              | 979518.00         | 23.88             |
| 36000     | 36400          | 2977.100         | 1459 | 0099.86                               | 3117.82            | 32.26069              | 979517.95         | 23.68             |
| 36000     | 36000          | 2978.140         | 1511 | 0091.80                               | 3118.91            | 32.26013              | 979517.90         | 22.94             |
| 5555      |                |                  |      |                                       | :                  |                       |                   | -                 |
| BASE      | # 03           | 2966.880         | 1558 |                                       | 3107.11            |                       |                   | •                 |
|           |                |                  |      |                                       |                    |                       |                   |                   |

SOLO \* \*\*\*\*\* \*\*\*\*\*\*\* LOOP NUMBER 18 \*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD POUTCHINA GRID Sth Australia Location:

> Coverage: LINE 36000N FROM 36000E TO 34000E

Loop Time: 2.30 Hours Loop Drift: .010 Mgals Drift Rate: .005 Mgals/Hour

Operator: Date:

J.PIERCEY Gravimeter: Lacoste G#037 02/12/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters)                        | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|-------------|----------------|------------------|------|-----------------------------------------|--------------------|-----------------------|-------------------|-------------------|
|             |                |                  |      | *************************************** |                    |                       |                   |                   |
| BASE        | # 03           | 2966.880         | 1558 |                                         | '3107.11           |                       |                   |                   |
| 36000       | 36000          | 2978.180         | 1633 | 0091.80                                 | 3118.94            | 32.26013              | 979517.90         | 22.97             |
| 36000       | 35600          | 2978.730         | 1646 | 0090.16                                 | 3119.52            | 32.25956              | 979517.86         | 23.21             |
| 36000       | 35200          | 2979.160         | 1659 | 0086.83                                 | 3119.97            | 32.25900              | 979517.81         | 22.93             |
| 36000       | 34800          | 2979.100         | 1708 | 0084.46                                 | 3119.91            | 32.25844              | 979517.77         | 22.36             |
| 36000       | 34400          | 2978.830         | 1720 | 0082.56                                 | 3119.62            | 32.25787              | 979517.72         | 21.68             |
| 36000       | 34000          | 2979.300         | 1730 | 0081.88                                 | 3120.11            | 32.25731              | 979517.68         | 22.06             |
| 36000       | 36000          | 2978.170         | 1747 | 0091.80                                 | 3118.93            | 32.26013              | 979517.90         | 22.95             |
| 36000       | 40000          | 2966.890         | 1816 | 0153.68                                 | 3107.11            | 32.26576              | 979518.36         | 25.11             |
| BASE        | # 03           | 2966.890         | 1816 |                                         | 3107.11            |                       |                   |                   |

LOOP HUMBER \*\*\*\*\*\*\*

\* SOLO \*

Client:

ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

> LINE 36000N . Coverage:

FROM 40000E TO 42000E

Loop Time: 2.62 Hours
Loop Drift: -.031 Mgals
Drift Rate: -.012 Mgals/Hour

Operator: Gravimeter: Date:

Lacoste G#037 03/12/80

| LINE<br>No. | STATION<br>No. | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER D= 1.8 |
|-------------|----------------|------------------|------|------------------|--------------------|-----------------------|-------------------|----------------|
|             |                |                  |      |                  |                    |                       |                   |                |
| ) B. 1      | # 03           | 2966.830         | 0852 |                  | 3107.11            |                       |                   |                |
| 36000       | 40000          | 2966.830         | 0852 | 0153.68          | 3107.11            | 32.26576              | 979518.36         | 25.11          |
| 36000       | 40400          | 2961.170         | 0921 | 0184.47          | 3101.19            | 32.26632              | 979518.41         | 26.32          |
| 36000       | 40800          | 2958.670         | 0943 | 0196.84          | 3098.57            | 32.26688              | 979518.45         | 26.54          |
| 36000       | 41200          | 2958.850         | 1007 | 0194.89          | 3098.77            | 32.26745              | 979518.50         | 26.23          |
| 36000       | 41600          | 2962.960         | 1026 | 0174.44          | 3103.07            | 32.26801              | 979518.55         | 25.73          |
|             | 42000          | 2963.480         | 1042 | 0169.38          | 3103.62            | 32.26857              | 979518.59         | 25.05          |
| 36000       |                | 2966.800         | 1129 | 0153.68          | 3107.11            | 32.26576              | 979518.36         | 25.11          |
| 36000       | 40000          | 2300.000         |      |                  | ••                 |                       |                   |                |
| BASE        | # 03           | 2966.800         | 1129 |                  | 3107.11            |                       |                   | ·              |

\*\*\*\*\*\*\* \* SOLO \* Client: Location: ESSO RUSTRALIA LTD

POUTCHINA GRID Sth Australia

Coverage: LINE 38000N

FROM 40000E TO 42400E

Loop Time: 1.75 Hours
Loop Drift: -.052 Mgals
Drift Rate: -.030 Mgals/Hour

Operator:
Gravimeter:
Date:

M.BURDORF Lacoste G#037 04/12/80

LINE STATION METER TIME ELYN OBSGRAY LATITUDE THGRAV BOUGUER (mgals) (degrees) (mgals) D= 1.8 No. READING (meters) BASE # 02 2962.950 0837 3103.06 38000 40000 2962.950 0163.85 3103.06 32.24798 979516.92 24.88 0837 38000 32.24854 40400 2959.660 0852 0177.71 3099.62 979516.96 24.62 38000 40800 0908 32.24910 979517.01 25.13 2959.320 0181.57 3099.27 41200 2956.460 3096.28 32.24967 979517.05 25.08 38000 0920 0194.40 38000 41600 2955.600 0929 0198.63 3095.39 32.25023 979517.10 25.13 38000 42000 2957.450 0939 0189.33 32.25079 979517.15 24.86 3097.33 38000 42400 0950 0185.80 3097.45 32.25136 979517.19 24.11 2957.560 0163.85 38000 40000 2962.900 1022 3103.06 32.24798 979516.92 24.88 BASE # 02 2962.900 1022 3103.06

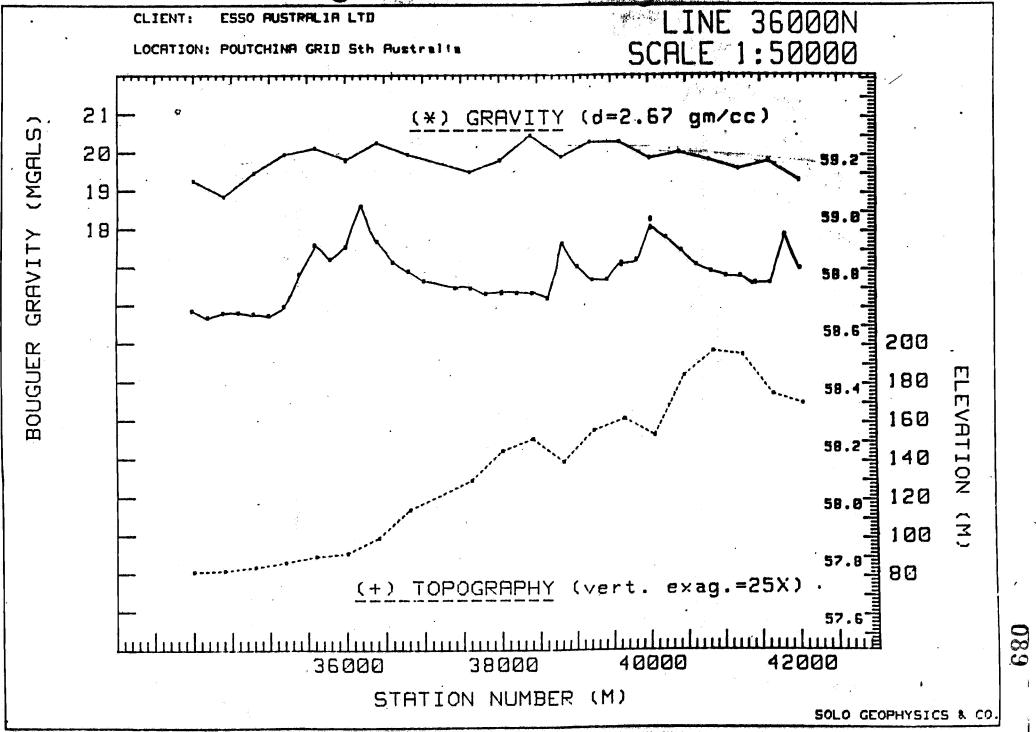
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

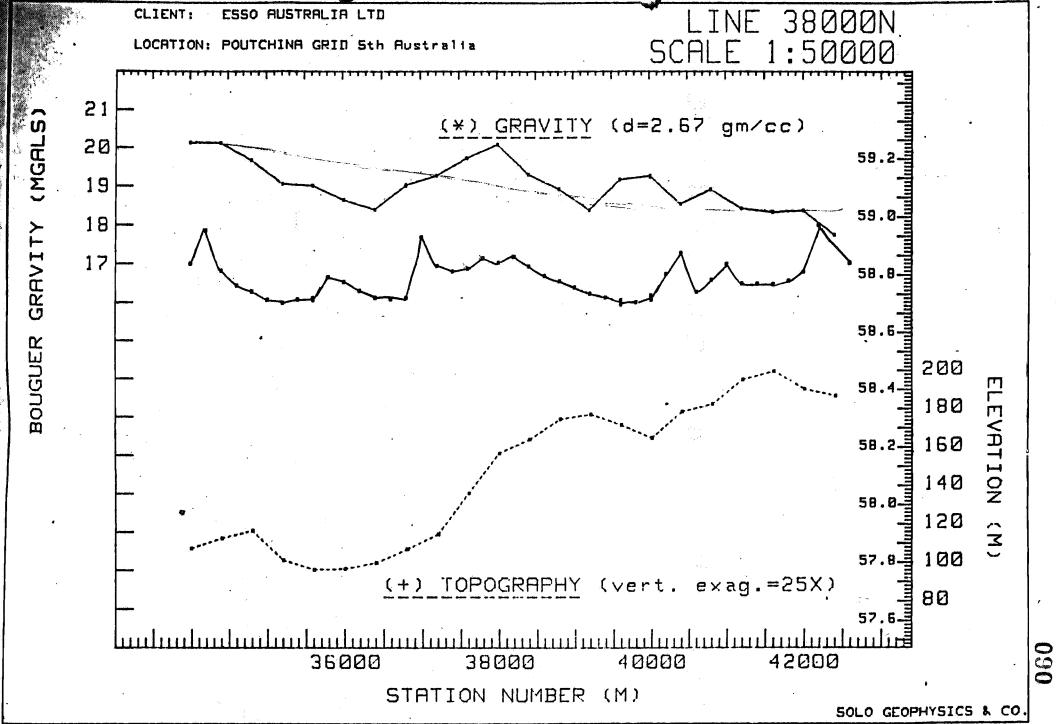
\* SOLO \* \*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\* LOOP NUMBER 21 \*\*\*\*\*\*\*\*\*

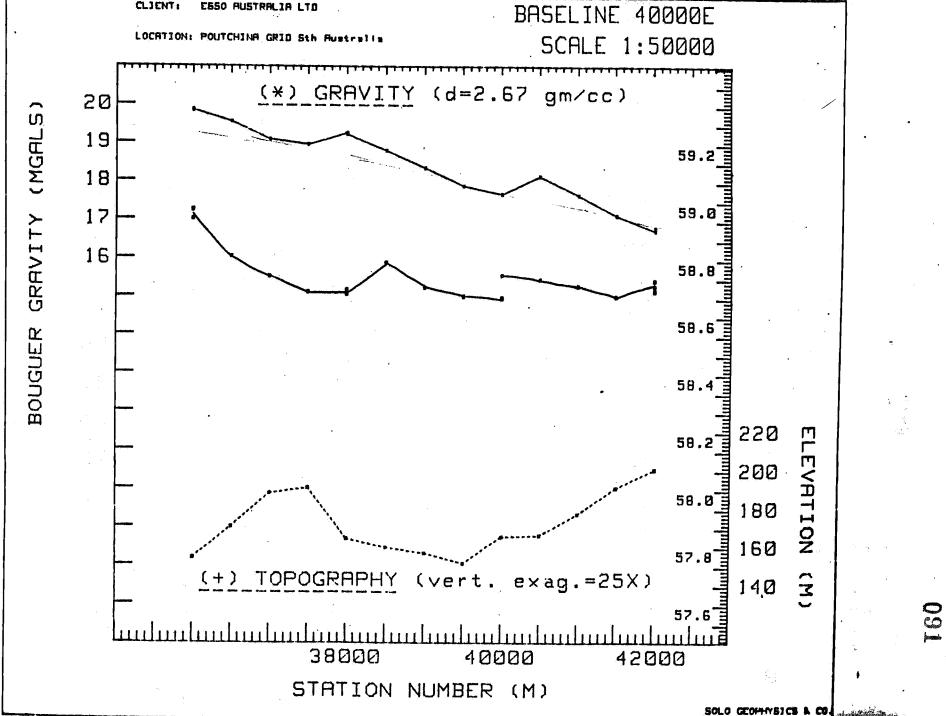
ESSO AUSTRALIA LTD Location: POUTCHINA GRID Sth Australia

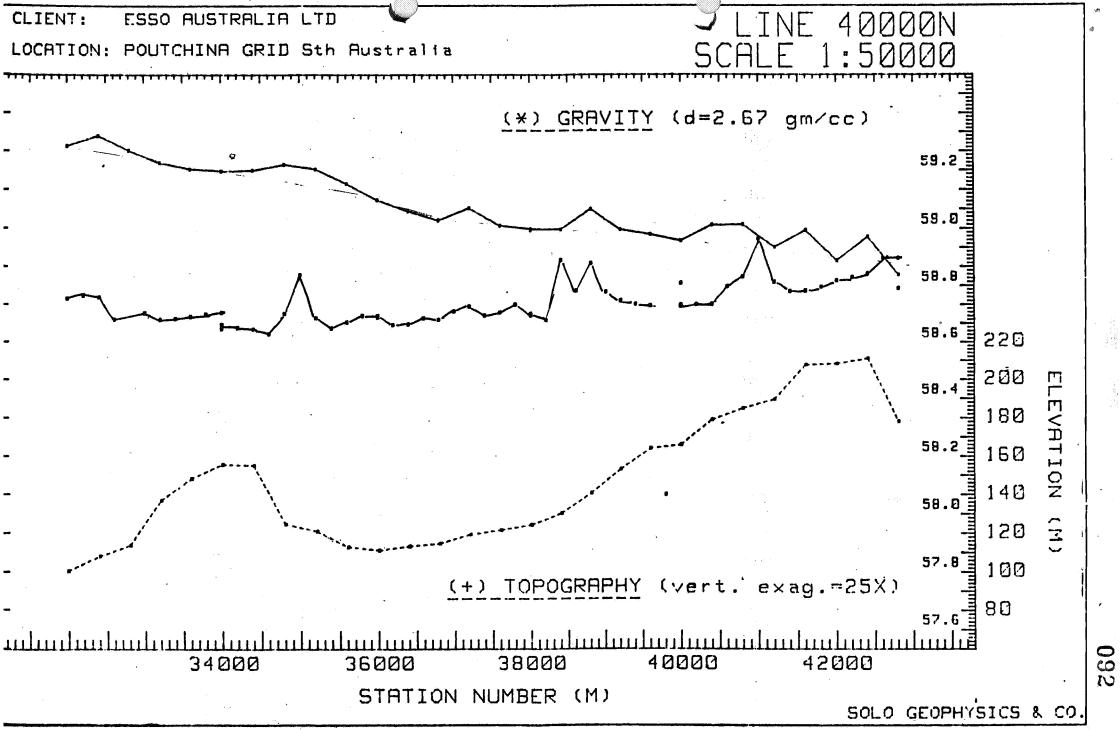
Coverage: LINE 40000N

FROM 34000E TO 32000E


Loop Time: 2.07 Hours
Loop Drift: .021 Mgals
Drift Rate: .010 Mgals/Hour


Operator: Gravimeter: M. BURDORF


Lacoste G#037


Date: 04/12/80

| No.                                    | STATION<br>No.       | METER<br>READING | TIME | ELVN<br>(meters) | OBSGRAV<br>(mgals) | LATITUDE<br>(degrees) | THGRAV<br>(mgals) | BOUGUER<br>D= 1.8 |
|----------------------------------------|----------------------|------------------|------|------------------|--------------------|-----------------------|-------------------|-------------------|
| <b>ಾ</b> ಗಿ೧೯೯                         | # <b>6</b> 4         | 2959.830         | 1104 |                  | 3099.83            |                       |                   | •                 |
| ************************************** | # <b>01</b><br>40000 | 2959.830         | 1104 | 0164.83          | 3099.83            | 32.23020              | 979515.47         | 23.32             |
| 40000                                  | 34000                | 2962.780         | 1131 | 0155.00          | 3102.92            | 32.22175              | 979514.78         | 24.80             |
| 40000                                  | 33600                | 2964.200         | 1140 | 0147.55          | 3104.40            | 32.22119              | 979514.74         | 24.60             |
| 40000                                  | 33200                | 2966.450         | 1155 | 0136.29          | 3106.76            | 32.22063              | 979514.69         | 24.37             |
| 40000                                  | 32800                | 2971.120         | 1207 | 0113.10          | 3111.65            | 32.22006              | 979514.65         | 23,90             |
| 40000                                  | 32400                | 2972.540         | 1218 | 0107.30          | 3113.13            | 32.21950              | 979514.60         | 24.08             |
| 40000                                  | 32000                | 2973.680         | 1229 | 0099.76          | 3114.32            | 32.21894              | 979514.56         | 23.56             |
| 40000                                  | 34000                | 2962.790         | 1248 | 0155.00          | 3102.91            | 32.22175              | 979514.78         | 24.80             |
| 40000                                  | 40000                | 2959.850         | 1308 | 0164.83          | 3099.83            | 32.23020              | 979515.47         | 23.32             |
| BASE                                   | # 01                 | 2959.850         | 1308 |                  | 3099.83            |                       | ,                 |                   |











\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DATA REDUCTION PARAMETERS

CLIENT: LOCATION:

ESSO AUSTRALIA LTD

POUTCHINA Grid Sth. Australia

BASE # OBSERVED MAGNETICS (nTs)

1 58697 2 58717 3 → 59003 \*\*\*\*\*\* CATALOG OF RAW FIELD DATA \*\*\*\*\*\*

| LOOP# | 1  | LINE 40000  | ,  |     | FROM   | 4000 <b>0</b> N | TO   | 36 <b>00</b> 0N |
|-------|----|-------------|----|-----|--------|-----------------|------|-----------------|
| LOOP# | 2  | LINE 42000N |    | ٠., | FROM   | 40000E          | то   | 42800E          |
| L00P# | 3  | LINE 42000N | 1, |     | FROM   | 42800E          | то   | 45600E          |
| LOOP# | 4  | LINE 42000N |    |     | FROM   | 45600E          | TO   | 48000E          |
| LOOP# | 5  | LINE 42000N |    | :   | FROM   | 40000E          | то   | 36800E          |
| LOOP# | 6  | LINE 42000N |    |     | FROM   | 36800E          | ΤO   | 34000E          |
| LOOP# | 7  | BASELINE    |    |     | FROM   | 40000N          | TO   | 42000N          |
| LOOP# | 8  | LINE 40000N |    |     | FROM   | 40000E          | TO   | 38000E          |
| LOOP# | 9  | LINE 40000N | •  |     | FROM   | 38000E          | TO   | 36000E          |
| LOOP# | 10 | LINE 40000N |    |     | FROM   | 36000E          | TO   | 34000E          |
| LOOP# | 11 | BASETIE     |    |     | FROM   | BASE 1          | TO   | BASE 2          |
| LOOP# | 12 | LINE 38000N | •  |     | FROM   | 40000E          | TO   | 36800E          |
| L00P# | 13 | LINE 38000N |    |     | FROM   | 36800E          | то   | 34000E          |
| LOOP# | 14 | BASE TIE    |    |     | FROM   | BASE 2          | TO   | BASE 3          |
| _00P# | 15 | LINE 40000N |    |     | FROM   | 40000E          | то   | 42800E          |
| _00P# | 16 | LINE 36000N |    |     | FROM   | 40000E          | TO   | 38000E          |
| _00P# | 17 | LINE 36000N |    |     | FROM   | 38000E          | TO   | 36 <b>0</b> 00E |
| _00P# | 18 | LINE 36000  |    | •   | FROM   | 36000E          | TO   | 34000E          |
| .00P# | 19 | LINE 36000N |    |     | FROM   | 40000E          | TO   | 42000E          |
| .00P# | 20 | LINE 38000N |    |     | FROM   | 40000E          | TO.  | 42400E          |
| .00P# | 21 | LINE 40000N |    |     | FROM : | 34000E          | TO : | 32000E          |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| LO | d.  | STHITON | READING | Loop     | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|-----|---------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #  |     | NUMBER  | nTESLAS | #        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | /       |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1  | l   | 34000   | 58683   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2  |     | 34200   | 58661   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3  | 3   | 34400   | 58676   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4  |     | 34600   | 58678   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5  | 5   | 34800   | 58673   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6  |     | 35000   | 58668   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7  |     | 35200   | 58700   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  |     | 35400   | 58814   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9  | l.  | 35600   | 58916   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 |     | 35800   | 58866   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 |     | 36000   | 58910   | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 | RPT | 36000   | 58909 * | 17       | garage with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | RPT | 36000   | 58910 * | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 |     | 36200   | 59050   | 17       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15 |     | 36400   | 58928   | 17<br>17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 |     | 36600   | 58855   | 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 |     | 36800   | 58824   | 17<br>17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 |     | 37000   | 58790   | 17<br>17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 |     | 37400   | 58765   | 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 |     | 37600   | 58764   | . 17     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 |     | 37800   | 58744   | 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22 |     | 38000   | 58750   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23 | RPT | 38000   | 58746 * | 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 |     | 38200   | 58746   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 |     | 38400   | 58746   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26 | . • | 38600   | 58728   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27 |     | 38800   | 58919   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28 |     | 39000   | 58839   | 16 .     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29 |     | 39200   | 58793   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 |     | 39400   | 58794   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31 |     | 39600   | 58844   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32 | RPT | 39600   | 58853 * | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33 |     | 39800   | 58862   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 |     | 40000   | 59003   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35 | RPT | 40000   | 59003 * | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36 | RPT | 40000   | 58971 * | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37 | RPT | 40000   | 59003 * | 1<br>19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38 | RPT | 40000   | 59003 * | 14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39 | RPT | 40000   | 59001 * | 14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 | RPT | 40000   | 59003 * | 16       | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 41 |     | 40200   | 58940   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42 |     | 40400   | 58894   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43 |     | 40600   | 58845   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44 |     | 40800   | 58822   | 19<br>19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45 | _   | 41000   | 58805   | 19       | Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 46 | ₹   | 41200 * | 58803   | 19       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47 |     | 41400   | 58779   |          | And the second of the second o |
| 48 |     | 41600   | 58780   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 |     | 41800   | 58946   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 |     | 42000   | 58829   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     |         | JUJ23   | 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| row      | •    | STATION        | READING        | Loop     | •         |
|----------|------|----------------|----------------|----------|-----------|
| #        |      | NUMBER         | nTESLAS        | #        | ·         |
|          |      |                |                |          | · ,       |
| 1        |      | 34000          | 58837          | 13       | ,         |
| 2        |      | 34200          | 58950          | 13       | 1<br>4 f  |
| 3        |      | 34400          | 58812          | 13       |           |
| 4        |      | 34600          | 58761          | 13       |           |
| 5        |      | 34800          | 58741          | 13       | :         |
| 6        |      | 35000          | 58711          | 13       |           |
| 7        |      | 35200          | <b>5</b> 8700  | 13       |           |
| 8        |      | 35400          | 58712          | 13       |           |
| 9        |      | 35600          | 58718          | 13       | *         |
| 10       | RPT  | 35600          | 58711 *        | 13       |           |
| 11       |      | 35800          | 58790          | 13       |           |
| 12       |      | 36000          | 58773          | 13       |           |
| 13       | •    | 36200          | 58743          | • 13     |           |
| 14       |      | 36400          | 5871 <b>9</b>  | . 13     |           |
| 15       |      | 36600          | 58714          | 13       |           |
| 16       |      | 36800          | 58719          | 13       |           |
| 17       | RPT  | 36800          | 58719 *        | 12       |           |
| 18       |      | 37000          | 58927          | 12       |           |
| 19       |      | 37200 -        | 58829          | . 12     |           |
| 20       |      | 37400          | 58809          | 12       |           |
| 21       |      | 37600          | 58818          | 12       |           |
| 22       |      | 37800          | 58854          | 12       |           |
| 23       |      | 38000          | 58839          | 12       |           |
| 24       |      | 38200          | 58859          | 12       |           |
| 25       |      | 38400          | 58827          | 12       |           |
| 26       | •    | 38600          | 58794          | 12       |           |
| .27      |      | 38800          | 5877 <b>6</b>  | 12<br>12 |           |
| 28       |      | 39000          | 58754<br>50702 | 12       |           |
| 29       |      | 39200          | 58732<br>58719 | 12       |           |
| 30       |      | 39400          | 58710          | 12       |           |
| 31       | 007  | 39600<br>39600 | 58695 *        | 12       |           |
| 32       | RPT  | 39800          | 58703          | 12       |           |
| 33       |      | 40000          | 58717          | 14       |           |
| 34       | RPT  | 40000          | 58717 *        | 20       |           |
| 35<br>36 | RPT  | 40000          | 58711 *        | 1        |           |
| 37       | RPT  | 40000          | 58727 *        | 20       |           |
| 38       | RPT  | 40000          | 58718 *        | 11       |           |
| 39.      | RPT  | 40000          | 58716 *        | 11       |           |
| 40       | RPT  | 40000          | 58724 *        | 12       | •         |
| 41       | RPT  | 40000          | 58717 *        | 12       | •.        |
| 42       | •••• | 40200          | 58801          | 20       | Section 1 |
| 43       |      | 40400          | 58872          | 20       |           |
| 44       | RET  | 40400          | 58871 *        | 20       |           |
| 45       |      | 40600          | 58738          | 20       | •         |
| 46       |      | 40800          | 58780          | 20       | •         |
| 47       |      | 41000          | 58834          | 20       |           |
| 48       |      | 41200          | 58767          | 20       | Lws 2     |
| 49       |      | 41400          | 587 <b>6</b> 6 | 20       |           |
| 50       |      | 41600          | 58765          | 20       |           |
| 51       |      | 41800          | 58776          | 20       | 8         |
| 52       |      | 42000          | 58808          | 20       |           |
| 53       |      | 42200          | 58967          | 20       |           |
| ~~       |      | 42600          | 58838          | 20       |           |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| ************************ |     |         |           |      |                                                                                     |  |
|--------------------------|-----|---------|-----------|------|-------------------------------------------------------------------------------------|--|
| row                      | 1   | SIHITON | READING   | Loop | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                              |  |
| #                        |     | NUMBER  | nTESLAS   | *    | `\                                                                                  |  |
|                          |     |         |           |      |                                                                                     |  |
| 1                        |     | 36000   | E0000 (   |      |                                                                                     |  |
| 2                        |     | 36000   | 59003 ··· | . 19 |                                                                                     |  |
| 3                        |     | 36000   | 59001 *   | 14   | $(\mathbf{v}_{i}) = (\mathbf{v}_{i} + \mathbf{v}_{i})^{T} \cdot \mathbf{v}_{i}^{T}$ |  |
| 4                        |     |         | 59003 *   | 14   | •                                                                                   |  |
| 5                        |     | 36000   | 59003 *   | 16   |                                                                                     |  |
| 6                        |     | 36000   | 59003 *   | 18   |                                                                                     |  |
| 7                        |     | 36000   | 59003 *   | 19   |                                                                                     |  |
| 8                        |     | 36000   | 58971 *   | 1    |                                                                                     |  |
|                          |     | 36500   | 58841     | 1    |                                                                                     |  |
| 9                        |     | 37000   | 58772     | 1    |                                                                                     |  |
| 10                       |     | 37500   | 58719     | 1    |                                                                                     |  |
| 11                       | DD7 | 38000   | 58717     | 14   | Market Control                                                                      |  |
| 12                       |     | 38000   | 58717 *   | 12   |                                                                                     |  |
| 13                       | RPT | 38000   | 58724 *   | . 12 |                                                                                     |  |
| 14                       | RPT | 38000   | 58718 *   | 11   |                                                                                     |  |
| 15                       | RPT | 38000   | 58717 *   | 20   |                                                                                     |  |
| 16                       | RPT | 38000   | 58716 *   | 1.1  |                                                                                     |  |
| 17                       | RPT | 38000   | 58727 *   | 20   |                                                                                     |  |
| 18                       | RPT | 38000   | 58711 *   | 1    |                                                                                     |  |
| 19                       |     | 38500   | 58821     | 1    |                                                                                     |  |
| 20                       |     | 39000   | 58735     | 1    |                                                                                     |  |
| 21                       |     | 39500   | 58705     | 1    |                                                                                     |  |
| 22                       | RPT | 39500   | 58703 *   | 1    |                                                                                     |  |
| 23                       |     | 40000   | 58697     | 15   | *                                                                                   |  |
| 24                       | RPT | 40000   | 58777 *   | 21   |                                                                                     |  |
| 25                       | RPT | 40000   | 58697 *   | 1    |                                                                                     |  |
| 26                       | RPT | 40000   | 58700 *   | 1.1  |                                                                                     |  |
| 27                       | RPT | 40000   | 58697 *   | 8    |                                                                                     |  |
| 28                       | RPT | 40000   | 58696 *   | 8    |                                                                                     |  |
| 29                       | RPT | 40000   | 58697 *   | 7    |                                                                                     |  |
| 30                       | RPT | 40000   | 58697 *   | 21   |                                                                                     |  |
| 31                       | RPT | 40000   | 58697 *   | 1    |                                                                                     |  |
| 32                       | RPT | 40000   | 58697 *   | 7    |                                                                                     |  |
| 33                       |     | 40500   | 58763     | 7    |                                                                                     |  |
| 3.4                      |     | 41000   | 58740     | 7    |                                                                                     |  |
| 35                       | •   | 41500   | 58704     | 7    | •                                                                                   |  |
| 36                       |     | 42000   | 58725     | 5    |                                                                                     |  |
| 37                       | RPT | 42000   | 58725 *   | 5    |                                                                                     |  |
| 38                       | RPT | 42000   | 58760 *   | 2    |                                                                                     |  |
| 39                       | RPT | 42000   | 58740 *   | 2    |                                                                                     |  |
| 40                       | RPT | 42000   | 58723 *   | 7    |                                                                                     |  |
|                          |     |         |           |      |                                                                                     |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\* \*\*\* LINE M40000 \*\*\* \*\*\*\*\*\*\*

| <b>`</b> @₩ | STATION       | READING        | Loop .   |                                          |     |
|-------------|---------------|----------------|----------|------------------------------------------|-----|
| #           | NUMBER        | nTESLAS        |          |                                          |     |
| 1           | 32000         | E030 <i>6</i>  |          | •                                        |     |
| 2           | 32200         | 58726<br>58726 | 21       |                                          |     |
| 3           | 32400         | 58736<br>58734 | 21       |                                          | 4.5 |
| 4           | 32600         | 58731<br>58651 | 21       | •                                        | * . |
| 5           | 33000         | 58651<br>58674 | 21       |                                          |     |
| 6           | 33200         | 58650          | 21       | •                                        |     |
| 7           | 33400         | 58654          | 21       |                                          |     |
| 8           | 33600         | 58661          | 21<br>21 |                                          |     |
| 9           | 33800         | 58670          | 21       |                                          |     |
| 10          | 34000         | 58676          | 21       |                                          |     |
| 11 RPT      | 34000         | 58633 *        | 21       |                                          |     |
| 12 RPT      | 34000         | 58618 *        | 10       | 88                                       |     |
| 13          | 34200         | 58621          | 10       | AN A |     |
| 14          | 34400         | 58617          | .10      |                                          |     |
| 15          | 34600         | 58600          | 10       |                                          |     |
| 16          | 34800         | 58672          | 10       |                                          |     |
| 7           | 35000         | 58808          | 10       |                                          |     |
| 8           | 35200         | 58657          | 10       |                                          |     |
| 9           | 35400         | 58620          | 10       |                                          |     |
| 9           | 35600         | 58642          | 10       |                                          |     |
| 1           | 35800         | 58664          | 10       |                                          |     |
| 2           | 36000         | 58659          | 10       |                                          |     |
| 3 RPT       | 36000         | 58662 *        | 10       |                                          |     |
| 4 RPT       | 36000         | 58664 *        | 9        |                                          |     |
| 5           | 36200         | 58632          | 9        |                                          |     |
| 6           | 36400         | 58634          | 9        |                                          |     |
| 7           | 36600         | 58656          | ý.       |                                          |     |
| 3           | 36800         | 58651          | ý        |                                          |     |
| 9           | 37000         | 58681          | ý        |                                          |     |
| )           | 37200         | 58697          | 9        | 4                                        |     |
|             | 37400         | 58665          | 9        | •                                        |     |
| 2           | 37600         | 58676          | 9        |                                          |     |
| }           | 37800         | 58704          | 9        |                                          |     |
| }           | 38000         | 58671          | 9        |                                          |     |
| RPT         | 38000         | 58667 *        | 9        |                                          |     |
| RPT         | 38000         | 58666 *        | 9<br>8   |                                          |     |
| 7           | 38200         | 58650          | 8        |                                          |     |
| <b>}</b>    | 38400         | 58860          | 8        |                                          |     |
|             | 38600         | 58753          | 8        |                                          |     |
|             | 38800         | 58848          | 8        |                                          |     |
|             | 39000         | 58748          | 8        |                                          |     |
|             | 39200         | 58716          | 8        |                                          |     |
| <b>.</b>    | 39400         | 58704          | 8        | •                                        |     |
|             | 39600         | 58698          | 8        |                                          |     |
|             | 39800         | 58035          | 8        |                                          |     |
|             | 40000         | 58777          | 21 .     |                                          |     |
| RPT         | 40000         | 58697 *        | 21       |                                          |     |
| RPT         | 40000         | 58697 *        | 15       |                                          | . % |
| RPT         | 40000         | 58700 *        | 11       |                                          |     |
| RPT         | 40000         | 58697 *        | 1        |                                          |     |
| RPT         | 40000         | 58697 *        | 8        |                                          |     |
| RPT         | 40000         | 58696 *        | 8        |                                          |     |
| RPT<br>RPT  | 40000         | 58697 *        | 7        |                                          |     |
|             | 40000         | 58697 *        | 7        |                                          |     |
| RPT         | 40000         | 58697 *        | 1        |                                          |     |
|             | 40200         | 58701          | 15       |                                          |     |
|             | 40400         | 58702          | 15       |                                          |     |
| RPT         | 40400         | . 58703 *      | 15       |                                          |     |
| ļ           | 40600         | 58765          | 1.5      |                                          |     |
| ).          | 408 <b>00</b> | 588 <b>0</b> 0 | 15       |                                          |     |

|        |       | kilkatai u ta | Error Co |         |
|--------|-------|---------------|----------|---------|
| 61     | 41000 | 58935         | 15       | <br>100 |
| 62     | 41200 | 58782         | 15       | TUU     |
| 63     | 41400 | 58749         | 15       | * * *   |
| 64     | 41600 | 58751         | 15       |         |
| 65     | 41800 | 58765         | 15       |         |
| 66     | 42000 | 58788         | 15       |         |
| 67     | 42200 | 58800         | 15       |         |
| 68     | 42400 | 58812         | 15       |         |
| 69     | 42600 | 58867         | 15       |         |
| 70     | 42800 | 58866         | 15       |         |
| 71 RPT | 42800 | 58760 ÷       | 21       |         |

\*\*\*\*\*\*\*\* LINE M42000 \*\*\* \*\*\*\*\*\*\*\*

| row      |       | STATION        | ************************************** | *******************************         | *****            | *******                               |
|----------|-------|----------------|----------------------------------------|-----------------------------------------|------------------|---------------------------------------|
| <b>#</b> |       | NUMBER         | nTESLAS                                | #                                       | ·                |                                       |
|          | ,     | ·              | •                                      |                                         |                  |                                       |
| 1        |       | 34000          | 58701                                  | 6                                       |                  |                                       |
| 2        |       | 34200          | 58668                                  | 6                                       |                  | •                                     |
| 3<br>4   |       | 34400<br>34600 | 58663                                  | 6                                       | •                |                                       |
| 5        |       | 34800<br>34800 | 58626<br>58616                         | 6                                       |                  |                                       |
| 6        |       | 35000          | 58604                                  | 6<br>6                                  |                  |                                       |
| 7        |       | 35200          | 58598                                  | 6                                       |                  |                                       |
| 8        |       | 35400          | 58602                                  | 6                                       |                  |                                       |
| 9        |       | 35600          | 58593                                  | 6                                       |                  |                                       |
| 10       |       | 35800          | 58575                                  | 6                                       |                  |                                       |
| 1.1      |       | 36000          | 58538                                  | 6                                       | or profession of | :                                     |
| 12       |       | 36200          | 58707                                  | 6                                       |                  |                                       |
| 13       |       | 36400          | 58645                                  | ٠ 6                                     |                  |                                       |
| 14       |       | 36600          | 58630                                  | 6                                       |                  |                                       |
| 15<br>16 | RPT   | 36800          | 58608                                  | 5                                       | ·                |                                       |
| 17       | RPT   | 36800<br>36800 | 58609 *                                | 6                                       |                  |                                       |
| 18       | IXL 1 | 37000          | 58613 *<br>58613                       | 6                                       |                  |                                       |
| 19       |       | 37200          | 58896                                  | 5<br>5                                  |                  |                                       |
| 20       |       | 37400          | 58839                                  | 5<br>5                                  |                  |                                       |
| 21       |       | 37600          | 58719                                  | 5                                       |                  |                                       |
| 22       |       | 37800          | 58722                                  | 5                                       |                  |                                       |
| 23       |       | 38000          | 58749                                  | 5                                       |                  |                                       |
| 24       |       | 38200          | 58711                                  | 5                                       |                  |                                       |
| 25       |       | 38400          | 58701                                  | 5                                       |                  |                                       |
| 26       | •     | 38600          | 58688                                  | 5                                       |                  |                                       |
| 27       |       | 38800          | 58688                                  | 5                                       |                  |                                       |
| 28       |       | 39000          | 58680                                  | 5                                       |                  |                                       |
| 29<br>30 |       | 39200          | 58680                                  | 5                                       |                  |                                       |
| 31       |       | 39400<br>39600 | 58685<br>58685                         | 5                                       |                  |                                       |
| 32       |       | 39800          | 58698<br>58722                         | 5                                       |                  |                                       |
| 33       |       | 40000          | 58725                                  | 5<br>5                                  |                  |                                       |
| 34       | RPT   | 40000          | 58740 *                                | 2                                       |                  |                                       |
| 35       | RPT   | 40000          | 58725 *                                | 5                                       |                  |                                       |
| 36       | RPT   | 40000          | 58723 *                                | 5<br>7 € 1                              |                  |                                       |
| 37       | RPT   | 40000          | 58760 *                                | 2                                       |                  |                                       |
| 38       |       | 40200          | 58748                                  | · 2                                     |                  |                                       |
| 39       |       | 40400          | 58769                                  | 2 .                                     |                  |                                       |
| 40<br>41 |       | 40600          | 58792                                  | 2                                       |                  |                                       |
| 42       |       | 40800<br>41000 | 58813                                  | 2                                       |                  | ,                                     |
| 43       |       | 41200          | 58878<br>58817                         | 2                                       |                  |                                       |
| 44       | •     | 41400          | 58777                                  | 2                                       |                  |                                       |
| 45       |       | 41600          | ≈ 58756                                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                  |                                       |
| 46       |       | 41800          | 58752                                  | 2                                       |                  | · · · · · · · · · · · · · · · · · · · |
| 47       |       | 42000          | 58742                                  | 2                                       |                  |                                       |
| 48       |       | 42200          | 58722                                  | 2                                       |                  |                                       |
| 49       |       | 42400          | 58718                                  | 2                                       |                  |                                       |
| 50       |       | 42600          | 58726                                  | 2                                       |                  |                                       |
| 51       | DOT   | 42800          | 58733                                  | 2                                       |                  |                                       |
| 52<br>53 | RPT   | 42800          | 58740 *                                | 3<br>3<br>3<br>3<br>3                   |                  |                                       |
| 54       |       | 43000<br>43200 | 58756<br>58707                         | 3                                       |                  |                                       |
| 55       |       | 43200<br>43400 | 58797<br>50700                         | 3                                       |                  |                                       |
| 56       |       | 43600          | 58788<br><b>5</b> 8 <b>81</b> 3        | ა<br>ე                                  |                  |                                       |
| 57       |       | 43800          | 58782                                  | ა<br>ვ                                  |                  |                                       |
| 58       |       | 44000          | 58759                                  | 3                                       |                  |                                       |
| 59       |       | 44200          | 58754                                  | 3                                       |                  |                                       |
| 60       |       | 44400          | 507 <i>66</i>                          | 3                                       |                  |                                       |

| D. ****** |     |       | •       |   |  |
|-----------|-----|-------|---------|---|--|
| 61        |     | 44600 | 59040   | 3 |  |
| 62        |     | 44800 | 58759   | 3 |  |
| 63        | _   | 45000 | 58749   | 3 |  |
| 64        | •   | 45200 | 58733   | 3 |  |
| 65        |     | 45400 | 58743   | 3 |  |
| 66        |     | 45600 | 58696   | 4 |  |
| 67        | RPT | 45600 | 58701 * | 4 |  |
| 68        | RPT | 45600 | 58720 * | 3 |  |
| 69        |     | 45800 | 58708   | 4 |  |
| 70        |     | 46000 | 58702   | 4 |  |
| 71        |     | 46200 | 58702   | 4 |  |
| 72        |     | 46400 | 58698   | 4 |  |
| 73        | •   | 46600 | 58698   | 4 |  |
| 74        |     | 46800 | 58690   | 4 |  |
| 75        |     | 47000 | 58679   | 4 |  |
| 76        |     | 47200 | 58699   | 4 |  |
| 77        |     | 47400 | 58697   | 4 |  |
| 78        |     | 47600 | 58718   | 4 |  |
| 79        |     | 47800 | 58908   | 4 |  |
| 80        |     | 48000 | 58671   | 4 |  |

\* SOLO \* \*\*\*\*\*\*

\*\*\*\*\*\*\*\* LOOP NUMBER 1 \*\*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD Location: POUTCHINA Grid Sth.Australia

Coverage: LINE 40000 FROM 40000N TO 36000N

| Loc    | op Time: op Drift: ift Rate: | 1.95 Hours<br>25.000 nTs<br>-12.821 nTs/H | our      | Operator:<br>Meter:<br>Date:          | J.PIERCEY<br>Scintrex MP-2<br>27/11/80 |
|--------|------------------------------|-------------------------------------------|----------|---------------------------------------|----------------------------------------|
| LINE S | STATION<br>No.               | READING<br>nT                             | TIME     | REDUCED<br>VALUE                      | · · · · · · · · · · · · · · · · · · ·  |
|        |                              |                                           |          | · · · · · · · · · · · · · · · · · · · |                                        |
| BASE   |                              | 58662                                     | 1201     |                                       | •                                      |
| 40000  | 40000                        | 58662                                     | 1201     | 58697                                 |                                        |
| 39500  | 40000                        | 58670                                     | 1212     | 58703                                 |                                        |
| 39000  | 40000                        | 58704                                     | 1220     | 58735                                 |                                        |
| 38500  | 40000                        | 58792                                     | 1229     | 58821                                 |                                        |
| 38000  | 40000                        | 58683                                     | 1234     | 58711                                 |                                        |
| 37500  | 40000                        | 58693                                     | 1243     | 58719                                 |                                        |
| 37000  | 40000                        | 58749                                     | 1255     | 58772                                 |                                        |
| 36500  | 40000                        | 58820                                     | 1305     | 58841                                 | 7                                      |
| 36000  | 40000                        | 58952                                     | 1315     | 58971                                 |                                        |
| 39500  | 40000                        | 58694                                     | 1352     | 58705                                 | •                                      |
| 40000  | 40000                        | 58687                                     | 1358     | 58697                                 |                                        |
| BASE # | 01                           | 58687                                     | 1358     | 2 4 May                               |                                        |
| ·****  | *****                        | ******                                    | {******* | *****                                 | *******                                |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*

Client: Location: ESSO AUSTRALIA LTD

POUTCHINA Grid Sth. Australia

Coverage: LINE 42000N

FROM 40000E TO 42800E

| Loo           | p Drift: -    | .42 Hours<br>64.000 nTs<br>26.483 nTs/Ho | our                                     | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>28/11/80 |
|---------------|---------------|------------------------------------------|-----------------------------------------|------------------------------|----------------------------------------|
| LINE S<br>No. | TATION<br>No. | READING<br>nT                            | TIME                                    | REDUCED<br>VALUE             |                                        |
|               |               |                                          | · — — — — — — — — — — — — — — — — — — — |                              |                                        |
| BASE #        | 01            | 58708                                    | 0705                                    |                              |                                        |
| 42000         | 40000         | 58736                                    | 0738                                    | 58740                        |                                        |
| 42000         | 40200         | 58742                                    | 0743                                    | 58748                        |                                        |
| 42000         | 40400         | 58758                                    | 0754                                    | 58769                        |                                        |
| 42000         | 40600         | 58780                                    | 0756                                    | 58792                        |                                        |
| 42000         | 40800         | 58798                                    | 0804                                    | 58813                        |                                        |
| 42000         | 41000         | 58862                                    | 0806                                    | 58878                        |                                        |
| 42000         | 41200         | 58799                                    | 0811                                    | 58817                        |                                        |
| 42000         | 41400         | 58758                                    | 0814                                    | 58777                        |                                        |
| 42000         | 41600         | 58734                                    | 0819                                    | 58756                        |                                        |
| 42000         | 41800         | 58728                                    | 0824                                    | 58752                        |                                        |
| 42000         | 42000         | 58715                                    | 0831                                    | 58742                        | v.                                     |
| 42000         | 42200         | 58692                                    | 0838                                    | 58722                        |                                        |
| 42000         | 42400         | 58684                                    | 0846                                    | 58718                        |                                        |
| 42000         | 42600         | 58690                                    | 0851                                    | 58726                        |                                        |
| 42000         | 42800         | 58695                                    | 0857                                    | 58733                        |                                        |
| 42000         | 40000         | 58715                                    | 0912                                    | 58760                        |                                        |
| BASE #        | 01            | 58644                                    | 0930                                    | · · · · .                    |                                        |

\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\* \*\*\*\* LOOP NUMBER 3 \*\*\*\*\*\*

J.PIERCEY Scintrex MP-2 28/11/80

Client: ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage:

LINE 42000H FROM 42800E TO 45600E

| Lo          | op Time:<br>op Drift:<br>ift Rate: |               | ur   | Operator:<br>Meter:<br>Date:          |
|-------------|------------------------------------|---------------|------|---------------------------------------|
| LINE<br>No. | STATION<br>No.                     | READING<br>nt | TIME | REDUCED<br>VALUE                      |
|             |                                    |               |      | · · · · · · · · · · · · · · · · · · · |
| BASE        | # 01                               | 58644         | 0930 |                                       |
| 42000       | 42800                              | 58690         | 0959 | 58740                                 |
| 42000       | 43000                              | 58707         | 1005 | 58756                                 |
| 42000       | 43200                              | 58749 ·       | 1009 | 58797                                 |
| 42000       | 43400                              | 58740         | 1015 | 58788                                 |
| 42000       | 43600                              | 58767         | 1027 | 58813                                 |
| 42000       | 43800                              | 58737         | 1034 | 58782                                 |
| 42000       | 44000                              | 58714         | 1040 | 58759                                 |
| 42000       | 44200                              | 58710         | 1046 | 58754                                 |
| 42000       | 44400                              | 58723         | 1059 | 58766                                 |
| 42000       | 44600                              | 58998         | 1104 | 59040                                 |
| 42000       | 44800                              | 58718         | 1113 | 58759                                 |
| 42000       | 45000                              | 58709         | 1118 | 58749                                 |
| 42000       | 45200                              | 58693         | 1124 | 58733                                 |
| 42000       | 45400                              | 58704         | 1129 | 58743                                 |
| 42000       | 45600                              | 58682         | 1137 | 58720                                 |
| BASE #      | 01                                 | 58664         | 1220 |                                       |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\* LOOP NUMBER 4

Client: Location: ESSO AUSTRALIA LTD POUTCHINA Grid Sth. Australia

Coverage:

LINE 42000N FROM 45600E TO 48000E

|            | Lo         | op Time:<br>op Drift:<br>ift Rate: | 3.40 Hours<br>45.000 nTs<br>-13.235 nTs/Ho | ur   | Operator:<br>Meter:<br>Date: | J.PIERCEY Scintrex MP-2 28/11/80 |
|------------|------------|------------------------------------|--------------------------------------------|------|------------------------------|----------------------------------|
|            | INE<br>No. | STATION<br>No.                     | READING<br>nT                              | TIME | REDUCED<br>VALUE             |                                  |
| -          |            | ~ ~ ~                              |                                            |      |                              |                                  |
| <u>)</u> 1 | BASE       | # 01                               | 58673                                      | 1308 | 4.                           |                                  |
| 1          | 2000       | 45600                              | 58683                                      | 1357 | 58696                        |                                  |
| 4:         | 2000       | 45800                              | 58697                                      | 1406 | 58708                        |                                  |
| 4:         | 2000       | 46000                              | 58693                                      | 1418 | 58702                        |                                  |
| 4          | 2000       | 46200                              | 58695                                      | 1427 | 58702                        |                                  |
| 4          | 2000       | 46400                              | 58693                                      | 1434 | 58698                        | •                                |
| 4          | 2000       | 46600                              | 58694                                      | 1439 | 58698                        |                                  |
| 4          | 2000       | 46800                              | 58687                                      | 1445 | 58690                        |                                  |
| 4          | 2000       | 47000                              | 58678                                      | 1453 | 58679                        | ,                                |
| 4          | 2000       | 47200                              | 58700                                      | 1500 | 58699                        |                                  |
| 4          | 2000       | 47400                              | 58700                                      | 1510 | 58697                        |                                  |
| <b>)</b> 4 | 2000       | 47600                              | , 58722                                    | 1517 | 58718                        |                                  |
| 4          | 2000       | 47800                              | 58913                                      | 1521 | 58908                        |                                  |
| 4          | 2000       | 48000                              | 58678                                      | 1527 | 58671                        |                                  |
| 4          | 2000       | 45600                              | 58715                                      | 1559 | 58701                        |                                  |
|            |            | # 01                               | 58718                                      | 1632 |                              |                                  |

\*\*\*\*\* \* SOLO \* \*\*\*\*

\*\*\*\*\*\*\* LOOP NUMBER 5 \*\*\*\*\*\*\*\*

J.PIERCEY Scintrex MP-2 29/11/80

Client: ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 42000N

FROM 40000E TO 36800E

| Ī      | oop Time:<br>oop Drift:<br>rift Rate: | 2.40 Hours<br>-10.000 nTs<br>4.167 nTs/H | our  | Operator:<br>Meter:<br>Date: |
|--------|---------------------------------------|------------------------------------------|------|------------------------------|
| HO.    | STATION<br>No.                        | READING<br>nT                            | TIME | REDUCED<br>VALUE             |
| BASE   | # 01                                  | 58710                                    | 0741 |                              |
| 42000  | 40000                                 | 58737                                    | 0802 | ·                            |
| 42000  | 39800                                 | 58733                                    | 0810 | 58725                        |
| 42000  | 39600                                 | 58709                                    | 0816 | 58722                        |
| 42000  | 39400                                 | 58695                                    | 0820 | 58698<br>58685               |
| 42000  | 39200                                 | 58690 .                                  | 0825 | 58680                        |
| 42000  | 39000                                 | 58690                                    | 0829 | 58680                        |
| 42000  | 38800                                 | 58697                                    | 0835 | 58688                        |
| 42000  | 38600                                 | 58697                                    | 0838 | 58688                        |
| 42000  | 38400                                 | 58710                                    | 0844 | 58701                        |
| 42000  | 38200                                 | 58719                                    | 0849 | 58711                        |
| 42000  | 38000                                 | 58757                                    | 0854 | 58749                        |
| 42000  | 37800                                 | 58730                                    | 0858 | 58722                        |
| 42000  | 37600                                 | 58726                                    | 0904 | 58719                        |
| 42000  | 37400                                 | 58846                                    | 0906 | 58839                        |
| 42000  | 37200                                 | 58903                                    | 0912 | 58896                        |
| 42000  | 37000                                 | 58619                                    | 0916 | 58613                        |
| 42000  | 36800                                 | 58614                                    | 0920 | 58608                        |
| 42000  | 40000                                 | 58730                                    | 0943 | 58725                        |
| BASE ( | # 01                                  | 58700                                    | 1005 | 30120                        |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\* J.PIERCEY Scintrex MP-2

29/11/80

Client: Location: ESSO AUSTRALIA LTD

POUTCHINA Grid Sth. Australia

Coverage: LINE 42000N

FROM 36800E TO 34000E

| Ī                 | .00    | p Drift:      | 2.13 Hours<br>-31.000 nTs<br>14.531 nTs/Ho | ur   | Operator:<br>Meter:<br>Date: |
|-------------------|--------|---------------|--------------------------------------------|------|------------------------------|
| LINE<br>No.       |        | TATION<br>No. | READING<br>nt                              | TIME | REDUCED<br>VALUE             |
|                   | . — —  |               |                                            |      |                              |
| BASE              | #      | 0.1           | 58700                                      | 1005 |                              |
| 42000             | 1      | 36800         | 58607                                      | 1026 | 58609                        |
| <b>)</b><br>42000 | )      | 36600         | 58627                                      | 1028 | 58630                        |
| 42000             | ļ      | 36400         | 58641                                      | 1034 | 58645                        |
| 42000             | )      | 36200         | 58702                                      | 1039 | 58707                        |
| 42000             | ì      | 36000         | 58531                                      | 1045 | 58538                        |
| 42000             | ŀ      | 35800         | 58568                                      | 1048 | 58575                        |
| 42000             | l      | 35600         | 58584                                      | 1053 | 58593                        |
| 42000             | ŀ      | 35400         | 58592                                      | 1057 | 58602                        |
| 42000             | i<br>i | 35200         | 58587                                      | 1101 | 58598                        |
| 42000             | ].     | 35000         | 58593                                      | 1104 | 58604                        |
| 42000             | Į.     | 34800         | 58603                                      | 1109 | 58616                        |
| 42000             |        | 34600         | 58613                                      | 1113 | 58626                        |
| 42000             |        | 34400         | 58647                                      | 1123 | 58663                        |
| 42000             |        | 34200         | 58651                                      | 1129 | 58668                        |
| 42000             |        | 34000         | 58682                                      | 1135 | 58701                        |
| 42000             |        | 36800         | 58589                                      | 1157 | 58613                        |
| BASE              | #      | 01            | 58669                                      | 1213 |                              |

LOOP NUMBER 7 \*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD POUTCHINA Grid Sth.Australia

Coverage:

BASELINE

FROM 40000N TO 42000N

| L          | 00 |               | .75 Hours<br>0.000 nTs<br>0.000 nTs/Ho | ur.  | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>29/11/80 |  |  |
|------------|----|---------------|----------------------------------------|------|------------------------------|----------------------------------------|--|--|
| INE<br>No. | s  | TATION<br>No. | READING<br>nt                          | TIME | REDUCED<br>VALUE             |                                        |  |  |
|            |    |               |                                        |      |                              |                                        |  |  |
| BASE       | #  | 01            | 58669                                  | 1213 | W.                           | •                                      |  |  |
| 10000      |    | 40000         | 58669                                  | 1213 | • 58697                      |                                        |  |  |
| 0500       |    | 40000         | 58735                                  | 1220 | 58763                        |                                        |  |  |
| 1000       |    | 40000         | 58712                                  | 1230 | 58740                        |                                        |  |  |
| 1500       |    | 40000         | 58676                                  | 1237 | 58704                        |                                        |  |  |
| 2000       |    | 40000         | 58695                                  | 1243 | 58723                        |                                        |  |  |
| 0000       |    | 40000         | 58669                                  | 1258 | 58697                        |                                        |  |  |
| BASE       | #  | 01            | 58669 *                                | 1258 |                              |                                        |  |  |

M. BURDORF

Operator:

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client: \_ocation:

ESSO AUSTRALIA LTD POUTCHINA Grid Sth. Australia

Coverage: LINE 40000N FROM 40000E TO 38000E

|             | Look       | Time: Drift: Rate: | 1.70 Hours<br>16.000 nTs<br>-9.412 nTs/Hour | <b></b> _ | Meter:<br>Date:                         | Scintrex MP-2<br>29/11/80 |
|-------------|------------|--------------------|---------------------------------------------|-----------|-----------------------------------------|---------------------------|
| LINE<br>No. |            | TATION<br>No.      | READING<br>nT                               | TIME      | REDUCED<br>VALUE                        |                           |
|             |            |                    |                                             |           | · • • • • • · · · · · · · · · · · · · · |                           |
| BAS         | E #        | 01                 | 58661                                       | 1410      | •                                       |                           |
| . 10        | 0          | 40000              | 08660                                       | 1410      | 8696                                    |                           |
| 4000        | 0          | 39800              | 58000                                       | 1418      | 58035                                   |                           |
| 4000        | 90         | 39600              | 58665                                       | 1432      | 58698                                   |                           |
| 4000        | 90         | 39400              | 58672                                       | 1436      | 58704                                   | ,                         |
| 4000        | 30         | 39200              | 58686                                       | 1447      | 58716                                   |                           |
| 4000        | 30         | 39000              | 58718                                       | 1450      | 58748                                   |                           |
| 400         | <b>3</b> 0 | 38800              | 58820                                       | 1458      | 58848                                   |                           |
| 400         | 00         | 38600              | 58725                                       | 1503      | 58753                                   |                           |
| 400         | 00         | 38400              | 58834                                       | 1514      | 58860                                   |                           |
| 400         | 00         | 38200              | 58625                                       | 1520      | 58650                                   | 4                         |
| 100         | 00         | 38000              | 58642                                       | 1527      | 58666                                   |                           |
| 400         | 00         | 40000              | 58677                                       | 1552      | 58697                                   |                           |
| ВA          | SE :       | # 01               | 58677                                       | 1552      |                                         |                           |
|             |            |                    |                                             |           |                                         |                           |

\*\*\*\*\*\*\* \* SOLO \* M.BURDORF Scintrex MP-2 29/11/80

\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 40000N

FROM 38000E TO 36000E

| Loop      | Rate: -13 | B Hours<br>.000 nTs<br>.069 nTs/Hour | <b>€</b> , | Operator:<br>Meter:<br>Date: |
|-----------|-----------|--------------------------------------|------------|------------------------------|
|           | ITION I   | READING<br>T                         |            | REDUCED<br>VALUE             |
|           |           |                                      |            |                              |
| BASE # 0  | 1 .       | 58677                                | 1552       | •                            |
| 40000 3   | 8000      | 58651                                | 1610       | 58667                        |
| 40000 3   | 7800      | 58689                                | 1615       | 58704                        |
| 40000 3   | 7600      | 58663                                | 1623       | 58676                        |
| 40000 3   | 7400      | 58653                                | 1627       | 58665                        |
| 40000 3   | 7200      | 58687                                | 1636       | 58697                        |
| 40000 3   | 7000      | 58671                                | 1639       | 58681                        |
| 40000 3   | 6800      | 58642                                | 1644       | 58651                        |
| 40000 3   | 6600      | 58648                                | 1648       | 58656                        |
| 40000 30  | 6400      | 58628                                | 1655       | 58634                        |
| 40000 36  | 6200      | 58627                                | 1700       | 58632                        |
| 40000 36  | 5000      | 58660                                | 1706       | 58664                        |
| 40000 38  | 3000      | 58670                                | 1719       | 58671                        |
| BASE # 01 | I.        | 58699                                | 1733       |                              |
|           |           |                                      |            |                              |

\* SOLO \* \*\*\*\*\*

\*\*\*\*\*\* LOOP NUMBER 10 \*\*\*\*\*\*\*

J.PIERCEY

Operator:

Client: Location: ESSO AUSTRALIA LTD POUTCHINA Grid Sth. Australia

LINE 40000N Coverage:

Loop Time: 1.92 Hours

FROM 36000E TO 34000E

| Lo             | oop Time:<br>oop Drift:<br>rift Rate: | 1.92 Hours<br>-8.000 nTs<br>4.174 nTs/Hour |                       | Operator: Meter: Date: | Scintrex MP-2<br>30/11/80 |
|----------------|---------------------------------------|--------------------------------------------|-----------------------|------------------------|---------------------------|
| LINE<br>No.    | STATION<br>No.                        | READING<br>nT                              | TIME                  | REDUCED<br>VALUE       | ·                         |
|                |                                       |                                            |                       |                        |                           |
| BASE           | # 01                                  | 58705                                      | 0718                  | •                      |                           |
| <b>1</b> 0000  | 36000                                 | 58669                                      | 0732                  | 58662                  |                           |
| 40000          | 35800                                 | 58671                                      | 0736                  | 58664                  |                           |
| 40000          | 35600                                 | 58648                                      | 0741                  | 58642                  |                           |
| 40000          | 35400                                 | 58626                                      | 0749                  | 58620                  |                           |
| 40000          | 35200                                 | 58662                                      | 0756                  | 58657                  |                           |
| 40000          | 35000                                 | 58813                                      | 0801                  | 588 <b>08</b>          |                           |
| 40000          | 34800                                 | 58677                                      | 0807                  | 58672                  |                           |
| 40000          | 34600                                 | 58604                                      | 0812                  | 58600                  |                           |
| 40000          | 34400                                 | 58620                                      | 0824                  | 58617                  |                           |
| 40000          | 34200                                 | 58624                                      | 0833                  | 58621                  |                           |
| <b>3</b> 40000 | 34000                                 | 58620                                      | 0839                  | 58618                  | ÷                         |
| 40000          | 36000                                 | 58660                                      | 0858                  | 58659                  |                           |
| BASE           | # 01                                  | 58697                                      | 0913                  |                        |                           |
|                |                                       |                                            | · · · · · · · · · · · | *****                  | *****                     |

\* SOLO \* \*\*\*\*\*\*

LOOP NUMBER 11 \*\*\*\*\*\*\*

Client: ESSO AUSTRALIA LTD
Location: POUTCHINA Grid Sth.Australia

Coverage: BASETIE

FROM BASE 1 TO BASE 2

| L           | 00           | p Time:<br>p Drift:<br>ft Rate: | .75 Hours<br>-1.000 nTs<br>1.333 nTs/Hour |              | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>30/11/80 |
|-------------|--------------|---------------------------------|-------------------------------------------|--------------|------------------------------|----------------------------------------|
| LINE<br>No. | S            | TATION<br>No.                   | READING<br>nt                             | TIME         | REDUCED<br>VALUE             |                                        |
| BASE        |              | 01                              | 58697                                     | 0040         |                              |                                        |
| 38000       | ņ            | 40000                           | 58718                                     | 0913<br>0926 | 58718                        |                                        |
| 40000       |              | 40000                           | 58699                                     | 0936         | 58700                        |                                        |
| 38000       |              | 40000                           | 58715                                     | 0947         | 58716                        |                                        |
| BASE        | #            | 01                              | 58696                                     | 0958         |                              |                                        |
| ****        | * <b>*</b> * | ******                          | ******                                    | *****        | ******                       | *******                                |

\*\*\*\*\* \* SOLO \* \*\*\*\*\*

LOOP NUMBER 12 \*\*\*\*\*\*

Client:

ESSO AUSTRALIA LTD Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 38000N

FROM 40000E TO 36800E

| Lo          | qoo | Time:<br>Drift:<br>Rate: | -40.0    |       | 'Hour | •    |   | Operator<br>Meter:<br>Date: | <u>:</u> | J.PIER<br>Scintr<br>30/11/ | ex t | 1P-2                   |
|-------------|-----|--------------------------|----------|-------|-------|------|---|-----------------------------|----------|----------------------------|------|------------------------|
| LINE<br>No. |     | TION<br>No.              | RE<br>nT | ADING |       | TIME |   | REDUCED<br>VALUE            |          |                            |      | m. ess. ess. ess. ess. |
|             |     |                          |          |       |       |      |   |                             |          |                            |      |                        |
| BASE        | # 6 | <b>3</b> 2               | , . 5    | 8710  |       | 1008 |   | •                           |          |                            |      |                        |
| 38000       |     | 40000                    | 5        | 8701  |       | 1058 |   | 58724                       |          | •                          |      |                        |
| 38000       |     | 39800                    | _        | 8694  |       | 1014 |   | 58703                       |          |                            |      |                        |
| 38000       |     | 39600                    |          | 8684  |       | 1021 |   | 58695                       |          |                            |      |                        |
| 38000       |     | 39400                    |          | 8706  |       | 1027 |   | 58719                       |          |                            |      |                        |
| 38000       |     | 39200                    |          | 8717  |       | 1034 |   | 58732                       |          |                            | *    |                        |
| 38000       |     | 39000                    |          | 8737  |       | 1040 |   | 58754                       |          |                            |      |                        |
| 38000       |     | 38800                    | _        | 8757  |       | 1045 |   | 58776                       |          |                            |      |                        |
| 38000       |     | 38600                    | 5        | 8774  |       | 1048 |   | 58794                       |          |                            |      | pr.                    |
| 38000       |     | 38400                    | Ē        | 8805  |       | 1054 |   | 58827                       |          |                            |      |                        |
| 38000       |     | 38200                    |          | 8836  |       | 1058 |   | 58859                       |          |                            |      |                        |
| 38000       |     | 38000                    | -        | 58814 |       | 1105 |   | 58839                       |          |                            |      |                        |
| 38000       |     | 37800                    |          | 58826 |       | 1113 |   | 58854                       |          |                            |      |                        |
| 38000       |     | 37600                    | Ę        | 8788  |       | 1120 |   | 58818                       |          |                            | :    |                        |
| 38000       |     | 37400                    |          | 58777 |       | 1126 |   | 58809                       |          |                            |      |                        |
| 38000       |     | 37200                    | •        | 58795 |       | 1131 |   | 58829                       |          |                            |      |                        |
| 38000       |     | 37000                    |          | 58892 |       | 1134 | , | 58927                       |          |                            |      |                        |
| 38000       |     | 36800                    | 5        | 58682 |       | 1140 |   | 58719                       |          |                            |      |                        |
| 38000       |     | 39600                    | Ę        | 58665 |       | 1206 |   | 58710                       |          |                            |      |                        |
| 38000       |     | 40000                    |          | 58670 |       | 1212 |   | 58717                       |          |                            |      |                        |
| BASE        | # - | 02                       | ;        | 58670 |       | 1212 |   |                             |          |                            |      |                        |

\*\*\*\*\*\*\* \* SOLO \*

Client:

ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 38000N

FROM 36800E TO 34000E

| Loc          | p Drift:      | 2.10 Hours<br>27.000 nTs<br>-12.857 nTs/Ho | our                                                  | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>30/11/80 |
|--------------|---------------|--------------------------------------------|------------------------------------------------------|------------------------------|----------------------------------------|
| LINE S       | TATION<br>No. | READING<br>nt                              | TIME                                                 | REDUCED<br>VALUE             | on                                     |
|              |               |                                            | , while these time water, this same when the water w |                              |                                        |
| BASE #       | 02            | 58668                                      | 1339                                                 | •.                           |                                        |
| 38000        | 36800         | 58674                                      | 1400                                                 | 58719                        |                                        |
| 38000        | 36600         | 58670                                      | 1403                                                 | 58714                        |                                        |
| 38000        | 36400         | 58676 ·                                    | 1408                                                 | 58719                        |                                        |
| 38000        | 36200         | 58701                                      | 1411                                                 | 58743                        |                                        |
| 38000        | 36000         | 58733                                      | 1419                                                 | 58773                        |                                        |
| 38000        | 35800         | 58750                                      | 1422                                                 | 58790                        |                                        |
| 38000        | 35600         | 58680                                      | 1429                                                 | 58718                        |                                        |
| 38000        | 35400         | 58675                                      | 1433                                                 | 58712                        |                                        |
| 38000        | 35200         | 58664                                      | 1440                                                 | 58700                        |                                        |
| 38000        | 35000         | 58676                                      | 1443                                                 | 58711                        |                                        |
| 38000        | 34800         | 58707                                      | 1450                                                 | 58741                        |                                        |
| 38000        | 34600         | 58728                                      | 1455                                                 | 58761                        |                                        |
| 38000        | 34400         | 58781                                      | 1502                                                 | 58812                        | •                                      |
| 38000        |               | •                                          | *                                                    |                              | , ,                                    |
| <del>-</del> | 34200         | 58920                                      | 1506                                                 | 58950                        |                                        |
| 38000        | 34000         | 58808                                      | 1513                                                 | 58837                        |                                        |
| 38000        | 35600         | 58685                                      | 1526                                                 | 58711                        |                                        |
| BASE #       | <b>0</b> 2    | 58695                                      | 1545                                                 |                              |                                        |

\*\*\*\*\*\*

LOOP NUMBER 14 \*\*\*\*\*\*\*\*

Client: Location: ESSO AUSTRALIA LTD

POUTCHINA Grid Sth. Australia

Coverage:

BASE TIE FROM BASE 2 TO BASE 3

| Lo          | ook | Time: Drift:  | 1.62 Hours<br>-6.000 nTs<br>3.711 nTs/Hour |       | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>01/12/80  |
|-------------|-----|---------------|--------------------------------------------|-------|------------------------------|-----------------------------------------|
| LINE<br>No. | S1  | TATION<br>No. | READING<br>nT                              | TIME  | REDUCED<br>VALUE             |                                         |
|             |     |               |                                            |       |                              |                                         |
| BASE        | #   | 02            | .58704                                     | 0832  | . •                          |                                         |
| ~~000       |     | 40000         | 58988                                      | 0901  | 59003                        | . •                                     |
| 38000       |     | 40000         | 58701                                      | 0924  | 58717                        |                                         |
| 36000       |     | 40000         | 58983                                      | 0948  | 59001                        |                                         |
| BASE        | #   | 02            | 58698                                      | 1009  |                              |                                         |
| ****        | **  | *****         | *******                                    | ***** | ************                 | * * * * * * * * * * * * * * * * * * * * |

\*\*\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

Client:

ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 40000N

FROM 40000E TO 42800E

| <u>L</u>    | oop Time:<br>oop Drift:<br>rift Rate: | 1.92 Hours<br>-7.000 nTs<br>3.652 nTs/Hou | r    | Operator: Meter: Date: | J.PIERCEY<br>Scintrex MP-2<br>01/12/80 |
|-------------|---------------------------------------|-------------------------------------------|------|------------------------|----------------------------------------|
| LINE<br>No. | STATION<br>No.                        | READING<br>nt                             | TIME | REDUCED<br>VALUE       |                                        |
|             |                                       |                                           |      |                        |                                        |
| BASE        | # .01                                 | 58688                                     | 1032 | + 4                    |                                        |
| 40000       | 40000                                 | 58688                                     | 1032 | 58697                  |                                        |
| 40000       | 40200                                 | 58692                                     | 1039 | 58701                  |                                        |
| 40000       | 40400                                 | 58693                                     | 1045 | 58703                  |                                        |
| 40000       | 40600                                 | 58755                                     | 1049 | 58765                  |                                        |
| 40000       | 40800                                 | 58790                                     | 1055 | 58800                  |                                        |
| 40000       | 41000                                 | 58924                                     | 1101 | 58935                  | ·                                      |
| 40000       | 41200                                 | 58771                                     | 1108 | 58782                  |                                        |
| 40000       | 41400                                 | 58738                                     | 1111 | 58749                  |                                        |
| 40000       | 41600                                 | 58739                                     | 1118 | 58751                  |                                        |
| 40000       | 41800                                 | 58753                                     | 1121 | 58765                  |                                        |
| 40000       | 42000                                 | 58776                                     | 1127 | 58788                  |                                        |
| 40000       | 42200                                 | 58787                                     | 1135 | 58800                  | •                                      |
| 40000       | 42400                                 | 58799                                     | 1144 | 58812                  |                                        |
| 40000       | 42600                                 | 58853                                     | 1154 | 58867                  | · •                                    |
| 40000       | 42800                                 | 58852                                     | 1159 | 58866                  |                                        |
| 40000       | 40400                                 | 58687                                     | 1215 | 58702                  |                                        |
| BASE        | # 01                                  | 58681                                     | 1227 |                        | :                                      |

\*\*\*\*\*\* LOOP NUMBER 16

\*\*\*\*\*\*\*\*

SOLO \*

ESSO AUSTRALIA LTD Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 36000N FROM 40000E TO 38000E

| Loop    | Time:<br>Drift:<br>Rate: | 2.38 Hours<br>-9.000 nTs<br>3.776 nTs/Hour |         | Operator:<br>Meter:<br>Date: | M.BURDORF<br>Scintrex MP-2<br>02/12/80 | ,          |
|---------|--------------------------|--------------------------------------------|---------|------------------------------|----------------------------------------|------------|
| LINE ST | ATION                    | READING<br>nT                              | TIME    | REDUCED<br>VALUE             |                                        | <u>.</u> - |
|         |                          |                                            | <b></b> |                              | •                                      |            |
| BASE #  | 03                       | 58988                                      | 1114    |                              | •                                      |            |
|         | 40000                    | 58 <b>9</b> 88                             | 1114    | 59003                        |                                        |            |
| 36000   | 39800                    | 58846                                      | 1137    | 58862                        | e b                                    |            |
| 36000   | 39600                    | 58827                                      | 1145    | 58844                        | •.                                     |            |
| 36000   | 39400                    | 58777                                      | 1150    | 58794                        |                                        |            |
| 36000   | 39200                    | 58775                                      | 1159    | 58793                        |                                        |            |
| 36000   | 39000                    | 58821                                      | 1209    | 58839                        |                                        |            |
| 36000   | 38800                    | 58900                                      | 1218    | 58919                        |                                        |            |
| 36000   | 38600                    | 58709                                      | 1224    | 58728                        |                                        |            |
| 36000   | 38400                    | 58726                                      | 1231    | 58746                        |                                        |            |
| 36000   | 38200                    | 58726                                      | 1241    | 58746                        |                                        |            |
| 36 )0   | 38000                    | 58725                                      | 1252    | 58746                        |                                        |            |
| 36000   | 39600                    | 58830                                      | 1320    | 58853                        |                                        |            |
| BASE    | # 03                     | 58979                                      | 1337    |                              |                                        |            |

\*\*\*\*\* \* SOLO \* \*\*\*\*\*\*

LOOP NUMBER 1; \*\*\*\*\*\*\*\*

Client:

LINE STATION

BASE # 03

No.

No.

ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 36000N

Loop Time: 2.35 Hours
Loop Drift: 15.000 nTs
Drift Rate: -6.383 nTs/Hour

----

READING

nT

58979

FROM 38000E TO 36000E

TIME

1337

Operator:

Meter:

Date:

. <del>. . . . .</del> . . .

REDUCED

VALUE

M. BURDORF

Scintrex MP-2

02/12/80

|        |       |         | •     |           |         |       |                     |
|--------|-------|---------|-------|-----------|---------|-------|---------------------|
| 36000  | 38000 | 58729   | 1403  | 58750     |         |       |                     |
| 36000  | 37800 | 58723   | 1408  | 58744     |         |       |                     |
| 36000  | 37600 | 58744   | 1419  | 58764     |         |       |                     |
| 36000  | 37400 | 58746   | 1425  | 58765     | •       |       |                     |
| 30000  | 37200 | 58751   | 1432  | 58769     |         | •     |                     |
| 36000  | 37000 | 58772   | 1437  | 58790     |         |       |                     |
| 36000  | 36800 | 58807   | 1445  | 58824     |         |       |                     |
| 36000  | 36600 | 58839   | 1452  | 58855     |         |       | •                   |
| 36000  | 36400 | 58913   | 1459  | 58928     |         | •     |                     |
| 36000  | 36200 | 59035   | 1505  | 59050     |         |       |                     |
| 36000  | 36000 | 58895   | 1511  | 58909     |         |       |                     |
| BASE # | . 03  | 58994   | 1558  |           |         |       | ·                   |
| *****  | ***** | ******* | ***** | ********* | ******* | ***** | *** <del>**</del> * |

\*\*\*\*\*\* \* SOLO \* \*\*\*\*\* \*\*\*\*\*\*\* LOOP NUMBER 18 \*\*\*\*\*\*\*\*

Client:

ESSO AUSTRALIA LTD

Location: POUTCHINA Grid Sth. Australia

Coverage: \LINE 36000

FROM 36000E TO 34000E

| Loc          | op Time:<br>op Drift:<br>ft Rate: | 2.30 Hours<br>10.000 nTs<br>-4.348 nTs/Hour |        | Operator: Meter: Date:                | M.BURDORF<br>Scintrex MP-2<br>02/12/80 |       |
|--------------|-----------------------------------|---------------------------------------------|--------|---------------------------------------|----------------------------------------|-------|
| LINE S       | TATION<br>No.                     | READING<br>nT                               | TIME   | REDUCED<br>VALUE                      |                                        |       |
| <u></u>      |                                   |                                             |        | 4                                     |                                        |       |
| BASE #       | 03                                | <sub>.</sub> 58994                          | 1558   | •                                     |                                        |       |
| : 100        | 36000                             | 58904                                       | 1633   | 58910                                 | •                                      |       |
| 36000        | 35800                             | 58860                                       | 1639   | 58866                                 |                                        |       |
| 36000        | 35600                             | 58910                                       | 1646   | 58916                                 | •                                      |       |
| 36000        | 35400                             | 58809                                       | 1652   | 58814                                 |                                        |       |
| 36000        | 35200                             | 58695                                       | 1659   | 58700                                 |                                        |       |
| 36000        | 35000                             | 58664                                       | 1702   | 58668                                 |                                        | *     |
| 36000        | 34800                             | 58669                                       | 1708   | 58673                                 |                                        |       |
| 36000        | 34600                             | 58674                                       | 1712   | 58678                                 |                                        |       |
| 36000        | 34400                             | 58673                                       | 1720   | 58676                                 |                                        |       |
| 36000        | 34200                             | 58658                                       | 1724   | 58661                                 |                                        |       |
| <b>)</b> 000 | 34000                             | 58681                                       | 1730   | 58683                                 | •                                      |       |
| 36000        | 36000                             | 58909                                       | 1747   | 58910                                 | •                                      |       |
| 36000        | 40000                             | 59004                                       | 1816   | 59003                                 |                                        |       |
| BASE #       |                                   | 59004                                       | 1816   | · · · · · · · · · · · · · · · · · · · | ******                                 | ***** |
| *****        | ******                            | **********                                  | ****** | ******                                | * * * * * * * * * * * * * * * * * * *  |       |

\* SOLO \* \*\*\*\*\*\* \*\*\*\*\*\* LOOP NUMBER 19 \*\*\*\*\*\*\*

Client: \_ ESSO AUSTRALIA LTD Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 36000N FROM 40000E TO 42000E

| <u>L</u>    | oop Time:<br>oop Drift:<br>rift Rate: | 2.62 Hours<br>-11.000 nTs<br>4.204 nTs/Hou | ur    | Operator:<br>Meter:<br>Date: | M.BURDORF<br>Scintrex MP-2<br>03/12/80 |
|-------------|---------------------------------------|--------------------------------------------|-------|------------------------------|----------------------------------------|
| LINE<br>No. | STATION<br>No.                        | READÌNG<br>nT                              | TIME  | REDUCED<br>VALUE             | · · · · · · · · · · · · · · · · · · ·  |
|             |                                       |                                            |       |                              |                                        |
| BASE        | # 03                                  | 59008                                      | 0852  |                              |                                        |
| 36000       | 40000                                 | 59008                                      | 0852  | 59003                        |                                        |
| 36000       | 40200                                 | 58944                                      | 0907  | 58940                        |                                        |
| 36000       | 40400                                 | 58897                                      | 0921  | 58894                        |                                        |
| 36000       | 40600                                 | 58847                                      | 0930  | 58845                        |                                        |
| 36000       | 40800                                 | 58823                                      | 0943  | 58822                        |                                        |
| 36000       | 41000                                 | 58805                                      | 0957  | 58805                        |                                        |
| 36000       | 41200                                 | 58803                                      | 1007  | 58803                        |                                        |
| 36000       | 41400                                 | 58778                                      | 1014  | 58779                        |                                        |
| 36000       | 41600                                 | 58778                                      | 1026  | 58780                        |                                        |
| 36000       | 41800                                 | 58944                                      | 1032  | 58946                        |                                        |
| 36000       | 42000                                 | 58826                                      | 1042  | 58829                        | . •                                    |
| 36000       | 40000                                 | 58997                                      | 1129  | 59003                        |                                        |
|             | # 03                                  | 58997                                      | 1129  | • •                          |                                        |
| * * * * *   | *****                                 | * * * * * * * * * * * * * * *              | ***** | <del>{</del> ************    | ******                                 |

\* SOLO \*

Client: ESSO AUSTRALIA LTD
Location: POUTCHINA Grid Sth. Australia

Coverage: LINE 38000N FROM 40000E TO 42400E

| Loop          | o Time: o Drift: ft Rate: | 1.75 Hours<br>-10.000 nTs<br>5.714 nTs/Hour |               | Operator:<br>Meter:<br>Date: | J.PIERCEY<br>Scintrex MP-2<br>04/12/80 |
|---------------|---------------------------|---------------------------------------------|---------------|------------------------------|----------------------------------------|
| LINE S'       | TATION<br>No.             | READING<br>nT                               | TIME          | REDUCED<br>VALUE             |                                        |
|               |                           |                                             |               |                              |                                        |
| BASE #        | 02                        | 58717                                       | 0837          | •                            |                                        |
| 38000         | 40000                     | 58717                                       | 0837          | 58717                        |                                        |
| 38000         | 40200                     | 58800                                       | Ø8 <b>4</b> 5 | 58801                        |                                        |
| 38000         | 40400                     | 58871                                       | 0852          | 58872                        | · ·                                    |
| 38000         | 40600                     | 58736                                       | 0858          | 58738                        |                                        |
| 38000         | 40800                     | 58777                                       | 0908          | 58780                        |                                        |
| 38000         | 41000                     | 58830                                       | 0914          | 58834                        |                                        |
| 38000         | 41200                     | 58763                                       | 0920          | 58767                        |                                        |
| 38000         | 41400                     | 58762                                       | 0923          | 58766                        |                                        |
| 38000         | 41600                     | 58760                                       | 0929          | 58765                        | •                                      |
| <b>3</b> 8000 | 41800                     | 58771                                       | 0932          | 58776                        |                                        |
| 38000         | 42000                     | 58802                                       | 0939          | 58808                        |                                        |
| 38000         | 42200                     | 58961                                       | 0944          | 58967                        |                                        |
| 38000         | 42600                     | 58831                                       | 0950          | 58838                        |                                        |
| 38000         | 40400                     | 58862                                       | 1013          | 58871                        |                                        |
| 38000         | 40000                     | 58717                                       | 1022          | 58727                        |                                        |
| BASE          | # 02                      | 58707                                       | 1022          | 100 AM                       |                                        |

\* SOLO \* \*\*\*\*\*\*

LOOP NUMBER 21 \*\*\*\*\*\*\*\*\*

× MP-2

0

J. PIERCEY

Operator:

Client: ESSO AUSTRALIA LTB LOCATION: POUTCHINA Grid Sth. POUTCHINA Grid Sth. Australia

> LINE 40000N Coverage:

Loop Time: 2.07 Hours

FROM 34000E TO 32000E

| <u>L</u> o  | 0                | o Drift:<br>ft Rate:     | 66.000 nTs<br>-31.935 nTs/H | our            | Meter:<br>Date:  | Scintre:<br>04/12/8 |
|-------------|------------------|--------------------------|-----------------------------|----------------|------------------|---------------------|
| LINE<br>No. |                  | TATION<br>No.            | READING<br>nt               | TIME           | REDUCED<br>VALUE |                     |
|             |                  |                          |                             |                |                  |                     |
| BASE        | #                | 01                       | 58602                       | 1104           | 7<br>2 Mg        |                     |
| 40000       |                  | 40000                    | 58682                       | 1104           | 5,8777           | ÷                   |
| 40000       |                  | 34000                    | 58595                       | 1131           | 58676            |                     |
| 40000       |                  | 33800                    | 58591                       | 1134           | 58670            |                     |
| 40000       |                  | 33600                    | 58585                       | 1140           | 58661            |                     |
| 40000       |                  | 33400                    | 58583                       | 1149           | 58654            |                     |
| 40000       |                  | 33200                    | 58582                       | 1155           | 58650            |                     |
| 40000       |                  | 33000                    | 58610                       | 1202           | 58674            |                     |
| 40000       |                  | 42800                    | 58699                       | 1207           | 58760            |                     |
| 40000       |                  | 32600                    | 58592                       | 1212           | 58651            | 26                  |
| 40000       |                  | 32400                    | 58675                       | 1218           | 58731            |                     |
| 40000       |                  | 32200                    | 58683                       | 1223           | 58736            |                     |
| 40000       |                  | 32000                    | 58676                       | 1229           | 58726            |                     |
| 40000       |                  | 34000                    | 58593                       | 1248           | 58633            |                     |
| 40000       |                  | 40000                    | 58668                       | 1308           | 58697            |                     |
| BASE        | #                | 01                       | 58668                       | 1308           |                  |                     |
| ****        | <del>( *</del> : | * <del>* * * * * *</del> | ******                      | 6<br>********* | ******           | ********            |

#### ESSO AUSTRALIA LIMITED - MINERALS DEPARTMENT

#### EXPLORATION LICENCE 529 - POUTCHINA

#### QUARTERLY REPORT FOR THE PERIOD ENDING 11TH JUNE, 1981

#### CONTENTS

#### INTRODUCTION

#### PRESENT EXPLORATION

- 1. Geophysics
  - (a) Electromagnetic Soundings
  - (b) Magnetic Surveys
- 2. Geology
  - (a) Geological Mapping
  - (b) Drilling Programme

| APPENDIX I | ELECTROMAGNETIC | SOUNDING | TECHNIQUE |
|------------|-----------------|----------|-----------|
|------------|-----------------|----------|-----------|

- APPENDIX II JUNGLE DAM PROSPECT
  Ground magnetics Modelling Programme
  Line 1200N.
- PLATE 1 Jungle Dam Prospect Geoprobe 1200N 650E.
- PLATE 2 Jungle Dam Prospect Geoprobe 1200N 750E.
- PLATE 3 Burk Dam Prospect Geoprobe 1250N 00E.
- FIGURE 1 Drawing No. 581-12 Drill Hole Location Diagram.
- FIGURE 2 Drawing No. 581-13 Gravity Survey.
- FIGURE 3 Drawing No. 581-14 Ground Magnetic Profiles Jungle Dam.
- FIGURE 4 Drawing No. 581-15 Ground Magnetic Profiles White Dam.
- FIGURE 5 Drawing No. 581-16 Ground Magnetic Profile Burk Dam.
- FIGURE 6 Drawing No. 581-17 Geological Map 1:100,000.
- FIGURE 7 Drawing No. 581-18 Interpretative Proterozoic Geology 1:100,000.
- FIGURE 8 Drawing No. 581-19 Geological Map Sheet 1 1:40,000.
- FIGURE 9 Drawing No. 581-20 Geological Map Sheet 2 1:40,000.

#### INTRODUCTION

Extensive geophysical work, including airborne magnetic and radiometric surveys, ground magnetic profiling, gravity surveys (see Fig.2) and electromagnetic soundings enabled two drill sites to be selected at Jungle Dam and Burk Dam Prospects.

#### PRESENT EXPLORATION

### 1. Geophysics

### (a) Electromagnetic Soundings

Three electromagnetic soundings were completed within a licence area. (See Fig.1). Two surveys were completed at Jungle Dam Prospect (See Plate 1 and 2) and one at the Burk Dam Prospect (See Plate 3). Refer to Appendix I for technical aspects of the Maxiprobe EMR 16 system.

At the station 1200N 750E at Jungle Dam Prospect, good agreement was obtained with a major interface at 177m depth. Drilling logs indicated a major increase in magnetic susceptibility at this depth and the geoprobe indicated an increasing resistivity. However for shallower depths correlation between drill hole data and geoprobe data was not good. The interface between the Pandurra Formation and the Gawler Range Sequence was not identifiable at either station using the electromagnetic sounding.

At Burk Dam Prospect the interface at 200m and 230m was detected however interpretation of data would be assisted with a longer vertical scale for depths.

### (b) Magnetic Surveys

Ground magnetic surveys were conducted at Jungle Dam, White Dam and Burk Dam Prospects. (See Figs. 3,4, & 5). These were follow-up surveys to locate airborne anomalies and to aid the modelling of the magnetic features and to determine depths to upper surfaces. Agreement between lithologies and magnetic modelling was useful at Jungle Dam. The magnetic interface is a gradational zone beginning at  $150m \ (700-900 \ X10^{-5}S.I.)$  and increasing to  $187m \ (1500x \ 2000 \ X10^{-5}S.I.)$ 

Modelling the ground magnetic results suggested that the interface would occur at approximately 168m. (Refer to Appendix II).

## 2. <u>Geology</u>

#### (a) Geological Mapping

Regional mapping by Mark Foy (consultant geologist) has been completed on a scale 1:40,000 using aerial photograph

interpretations with detailed ground traverses. The dominant rock types were the basal Pandurra Formation and the Carpentarian Gawler Range Volcanics. A basic to intermediate volcanic sequence corresponding to that sequence intersected in the stratigraphic hole Myall Creek RC 1 was recognised within a massive sequence of acid rhyolitic to dacitic volcanic tuffs and flows. (See Fig. 6-9).

### (b) Drilling Programme

Two zones of possible Roopena Sequence rocks have been outlined and two holes were subsequently drilled, using a Schramm T64 Deep Percussion drilling rig. (See Fig.1). A summary of the drilling results is as follows:

### Burk Dam Prospect

BD-1 was drilled to test a magnetic target. 108 metres of non-magnetic Gawler Range Acid Volcanics overly 120 metres of magnetic basic volcanics with no sediments being present. The hole terminated in a massive crystal tuff which is non magnetic.

#### Burk Dam BD-1 1300N 000E:

| Mag.Sus.<br>(X10 <sup>-5</sup> SI) | <u>m</u> |                                                                                          |
|------------------------------------|----------|------------------------------------------------------------------------------------------|
| 200                                | 0-108    | Reddish fine grain porphyritic (fld-qtz) acid volcanic (Dacite).                         |
|                                    | 108-120  | Lithic-crystal chloritic tuff or flow breccia.                                           |
|                                    | 120-122  | Laminated f.g. tuff.                                                                     |
| ·                                  | 122-132  | Amygdaloidal grey green basalt becoming coarse grained with less amygdules towards base. |
| 2600                               | 132-146  | Amygdaloidal basalt.                                                                     |
| 1500-2000                          | 147-204  | Dark grey green amygdaloidal basalt.                                                     |
| ·<br>·                             | 204-213  | Flow breccia of amygdaloidal trachyandesite basalt?                                      |
| 2500-4500                          | 214-232  | Dark grey black crystal lithic tuff.                                                     |
| 250                                | 232-240  | Pale brown to greenish laminated to massive crystal (lithic) tuff.                       |

### Jungle Dam Prospect

A magnetic target was drilled to test for the presence of basic volcanics and subsequent underlying sediments. The magnetic interface occurred at 150-170 metres whereafter the Gawler Range acid volcanic rocks were moderately magnetic. No basic volcanics nor sediments were intersected.

## Jungle Dam JD-1 12000N 750E:

| Mag.Sus<br>(X10-5SI) | . <u>m</u> |                                                                        |
|----------------------|------------|------------------------------------------------------------------------|
|                      | 0-40       | Coarse feldspathic sandstone.                                          |
|                      | 40-50      | Tan, green sandy siltstone and mudstones.                              |
| 15                   | 50-67      | Haematitic micaceous fine grain                                        |
|                      |            | maroon sst, siltstone and mudstones. (55-67) Dominantly siltstones and |
|                      |            | mudstones. Minor pale grn mdst.                                        |
| 10                   | 68-106     | Haematitic silty sandstones with                                       |
|                      |            | coarse to gritty bands. Some specularite cemented bands.               |
| 15                   | 106-112    | Flow top breccia.                                                      |
| 100                  | 112-146    | Reddish orange fld porphyritic acid                                    |
|                      |            | volcanic (Rhyodacite?)                                                 |
| 700-900              | 146-177    | +Visible magnetite.                                                    |
| 800-1000             | 177-187    |                                                                        |
| 1500-2000            | 187-245    | Brownish porphyritic acid volcanic (Dacite). (Possibly a tuff).        |
|                      |            |                                                                        |

Based on field mapping by Mark Foy, geophysics and these drilling results it is apparent that no easily accessible sediments are present.

Assay results have not been received and fourteen samples have been submitted for petrological description.

A final assessment will be made after the above data has been received.

Q

# APPENDIX I

ELECTROMAGNETIC SOUNDING TECHNIQUE.

## **ELECTROMAGNETIC SOUNDING TECHNIQUE**

The system employed for these soundings was the Maxi-Probe EMR 16 developed by Geoprobe Ltd. and operated by Geoterrex Pty. Ltd. The system consists of a wideband multifrequency transmitter and a receiver that measures the horizontal and vertical components of the resultant magnetic field. The receiver-transmitter separation is dependent on the desired depth of investigation.

A total of 123 frequencies in the range 1 Hz to 40 KHz are available though in normal circumstances the full range of frequencies is not used.—The-transmitting coil consists of a simple loop or number of loops of 10 turns placed on the ground surface. A sinusoidal current is driven into this loop by a 2.5 KW motor generator.

The receiving antenna system consists of two parallel identical pairs of vertical and horizontal ferrite cored coils housed in a fibreglass ball designed to minimize noise due to wind vibrations. The antenna is connected to a low noise wide band (0.5 Hz to 50 KHz) preamplifier. Reference to the transmitter is achieved via an internal crystal clock.

For each sounding (i.e. each transmitter receiver set up) the vertical and horizontal magnetic field amplitudes and phases are measured for the desired range of frequencies. Based on theoretical considerations developed by Geoprobe, an apparent resistivity and depth is calculated for each frequency from the amplitude ratio and phase difference. This calculated resistivity and depth data is used to plot a sounding curve from which subsurface resistivity discontinuities can be interpreted. In general the high frequency range is used for shallow penetration and the low frequency range for deeper penetration.

## APPENDIX II

## JUNGLE DAM PROSPECT

Ground Magnetics Modelling Programme Line 1200N.

## 2-D GRAVITY/MAGNETIC MODELING PROGRAM

LIMÉ 12000 GROUND MAGNETICS JUNGLE DAM POUTCHINA THIS MODEL CONTAINS 4 BODIES

THE BACKGROUND SUSCEPTIBILITY IS 0 MICRO CGS UNITS

THE MAGNETIC INCLINATION IS -65 DEGREES

THE PROFILE DIRECTION MAKES A 90 DEGREE ANGLE WITH MAGNETIC NORTH

THE MAGNETIC TOTAL FIELD STRENGTH IS 59500 GAMMAS

THE MEAN TERRAIN CLEARANCE IS 6 FEET or 1.82926829268 METRES

BODY NUMBER 1 HAS 6 VERTICES

SUSCEPTIBILITY: 4200 MICRO CGS UNITS

| X-COORD(FT)<br>1543<br>2470<br>2719<br>3146<br>3146<br>1543 | Z-COURD(FT)<br>643<br>552<br>552<br>604<br>1493 | X~COORD(M)<br>470<br>753<br>829<br>959<br>959 | Z-COORD(M)<br>196<br>168<br>168<br>184<br>455 |
|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 1543                                                        | 1500                                            | 470                                           | 457                                           |

BODY NUMBER 2 HAS 4 VERTICES

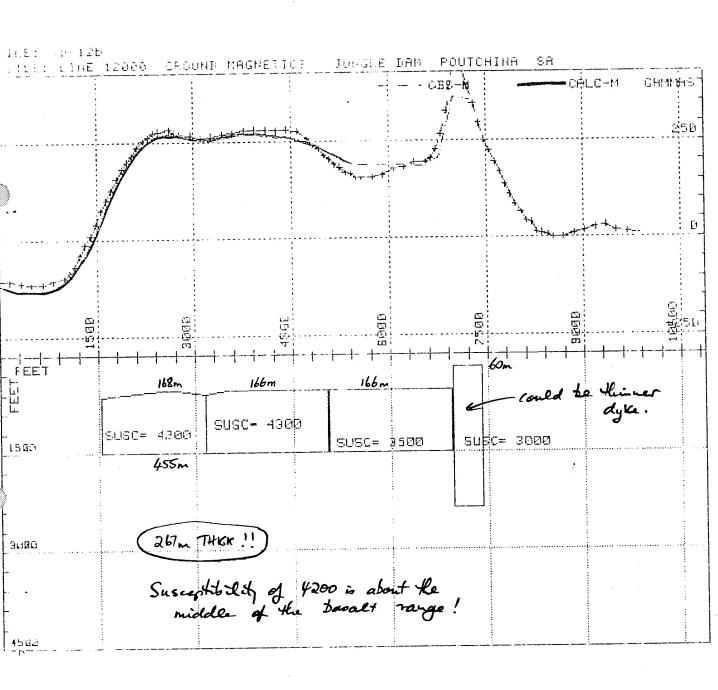
SUSCEPTIBILITY: 3000 MICRO CGS UNITS

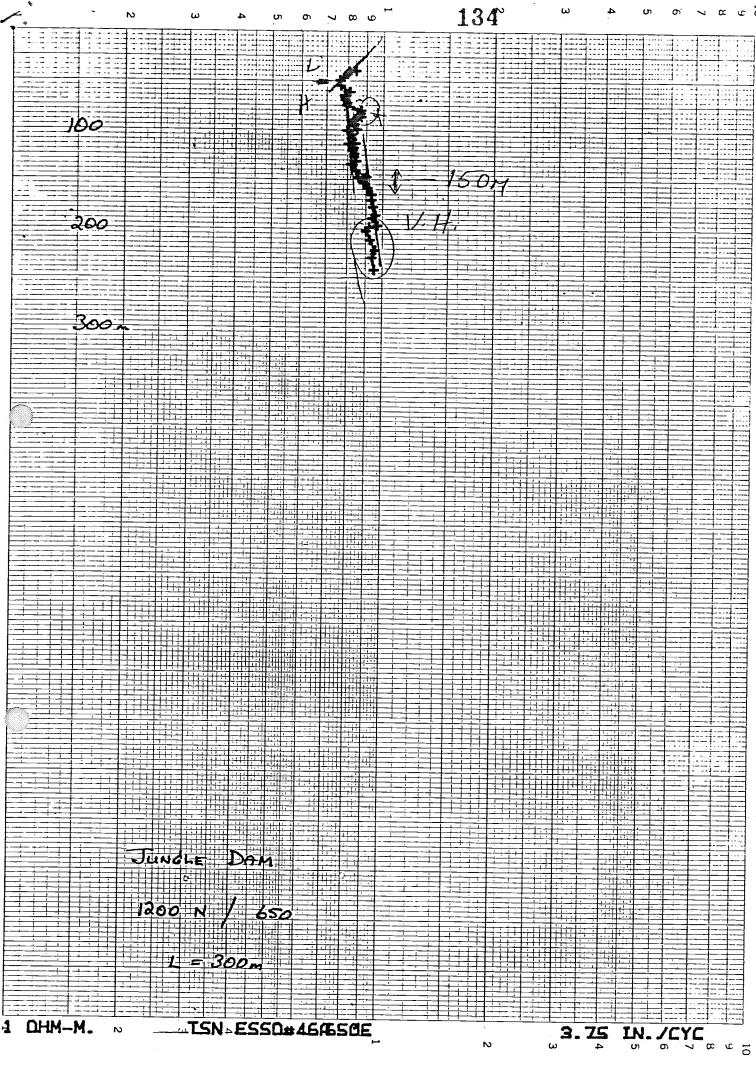
| X-COORD(FT)<br>6946<br>7402<br>7402<br>6946 | Z-COORD(FT)<br>198<br>198<br>2358 | X-COORD(M<br>2118<br>2257<br>2257 | Z-COORD(p)<br>60<br>60<br>719 |
|---------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------|
| 6946                                        | 2358                              | 2118                              | 719<br>719                    |

BODY NUMBER 3 HAS 4 VERTICES SUSCEPTIBILITY: 3500 MICRO CGS UNITS

| X-COORD(FT) | Z-COORD(FT) | X-COORD(,) | Z-COORD(M) |
|-------------|-------------|------------|------------|
| 5035        | 546         | 1535       | 166        |
| 6936        | 546         | 2114       | 166        |
| 6936        | 1493        | 2114       | 455        |
| 5035        | 1498        | 1535       | 400<br>455 |

ODY NUMBER 4 HAS 5 VERTICES SUSCEPTIBILITY: 4300 MICRO CGS UNITS


| %-COORD(FT) | 2-000RD(FT) | X-COORL(M) | Z-COORD(M) |
|-------------|-------------|------------|------------|
| 3149        | 602         | 960        | 184        |
| 3506        | 544         | 1069       | 166        |
| 5037        | 537         | 1536       | 164        |
| 5037        | 1507        | 1536       | 459        |
| 3149        | 1507        | 960        | 459        |


| X-COURD(FT)     | GAMMAS           | H-COORD(M)   |
|-----------------|------------------|--------------|
| Ø               | -105.0           | 0            |
| 164             | -106.0           | 50<br>100    |
| 328<br>492      | -110.0<br>-113.0 | 150          |
| 656 ·           | -113.0           | 200          |
| 820             | -106.0           | 250          |
| 984             | -97.0            | 300          |
| 1066            | -84.0            | 325          |
| 1148<br>,* 1230 | -70.0°<br>-41.0  | 350<br>375   |
| 1312            | -15.0            | 400          |
| 1394            | 8.0              | 425          |
| 1476            | 38.0             | 450          |
| 1558            | 73.0             | 475<br>500   |
| 1640<br>1722    | 99.0<br>125.0    | 525          |
| 1804            | 156.0            | 550<br>550   |
| 1886            | 180.0            | 575          |
| 1968            | 199.0            | 600          |
| 2050            | 213.0<br>236.0   | 625<br>650   |
| 2132<br>2214    | 253.0            | 675          |
| 2296            | 263.0            | 700          |
| 2378            | 274.0            | 725          |
| 2460            | 277.0            | 750          |
| 2624<br>2706    | 281.0<br>274.0   | 800<br>825   |
| 2788<br>2788    | 270.0            | 850          |
| 2952            | 267.0            | 900          |
| 3116            | 259.0            | 950          |
| 3280            | 264.0            | 1000         |
| 3444<br>3608    | 270.0<br>271.0   | 1050<br>1100 |
| 3772            | 279.0            | 1150         |
| 3936            | 280.0            | 1200         |
| 4100            | 280.0            | 1250         |
| 4264            | 278.0<br>280.0   | 1300<br>1350 |
| 4428<br>4592    | 275.0            | 1400         |
| 4756            | 255.0            | 1450         |
| 4838            | 241.0            | 1475         |
| 4920            | 230.0            | 1500         |
| 5002<br>5084    | 214.0<br>203.0   | 1525<br>1550 |
| 5064<br>5166    | 203.0<br>190.0   | 1575         |
| 5248            | 183.0            | 1600         |
| 5330            | 170.0            | 1625         |
| 5412            | 165.0            | 1650         |
| 5494<br>5576    | 156.0<br>155.0   | 1675<br>1700 |
| 5740            | 155.0            | 1750         |
| 5904            | 161.0            | 1800         |
| 6068            | 179.0            | 1850         |
| 6232            | 183.0            | 1900<br>1950 |
| 6396<br>6560    | 193.0<br>193.0   | 2000         |
| 6642            | 203.0            | 2025         |
| 6724            | 227.0            | 2050         |
| 6806            | 266.0            | 2075         |
| 6888<br>6970    | 326.0<br>424.0   | 2100<br>2125 |
| 63.0<br>7052    | 455.0            | 2150         |
| 7134            | 432.0            | 2175         |
| 7216            | 388.0            | 2200         |
| 7298<br>7200    | 343.0            | 2225         |
| 7380<br>7460    | 294.0<br>251.0   | 2250<br>2275 |
| 7462<br>7544    | 251.0<br>223.0   | 2300<br>2300 |
| 7626            | 193.0            | 2325         |
| = , .           |                  |              |

|   | 7708 | 169.0         | 2350         |
|---|------|---------------|--------------|
|   | 7790 | 135.0         | 2375         |
|   | 7872 | 109.0         | 2400         |
|   | 7954 | 84.0          | 2425         |
|   | 8036 | 64.0          | 2450         |
|   | 8118 | 42.0          | .2475        |
|   | 8200 | 37.0          | 2500         |
|   | 8282 | 13.0          | 2525         |
|   | 8364 | 10.0          | 2550         |
|   | 8446 | 5.0           | 2575         |
|   | 8528 | -1.0          | 2600         |
|   | 8692 | 0.0           | 265Ø         |
|   | 8856 | 9.0           | 2700         |
| * | 9020 | 15.0          | 2750         |
|   | 9184 | 24.0          | 2800         |
|   | 9348 | 30.0          | 2850         |
|   | 9512 | 17.0          | 2900         |
|   | 9676 | 13.0          | 2950<br>2950 |
|   | 9840 | 9.0           | 3000         |
|   |      | - <del></del> | 0000         |

## HE FOLLOWING IS THE CALCULATED MAG DATA X-COORD(FT) GAMMAS

|           | tive ducoprinch number |            |
|-----------|------------------------|------------|
| COORD(FT) | GAMMAS                 | X-COORD(M) |
| 0         | -118.8                 | Ø          |
| 250       | -127.5                 | 76         |
| 500       | -132.9                 | 152        |
| 750       | -130.0                 | 229        |
| 1000      | -110.0                 | 305        |
| 1250      | -60.1                  | 381        |
| 1500      | 25.0                   | 457        |
| 1750      | 123.1                  | 534        |
| 2000      | 201.0                  | 610        |
| 2250      | 248.5                  | 686        |
| 2500      | 268 <b>.</b> 9         | 762        |
| 2750      | 266.5                  | 838        |
| 3000      | 254.6                  | 915        |
| 3250      | 252.6                  | 991        |
| 3500      | 262,1                  | 1067       |
| 3750      | 269.1                  | 1143       |
| 4000      | 269.5                  | 1220       |
| 4250      | 266.5                  | 1296       |
| 4500      | 260.2                  | 1372       |
| 4750      | 247.4                  | 1448       |
| 5000      | 225.5                  | 1524       |
| 5250      | 202.3                  | 1601       |
| 5500      | 189.5                  | 1677       |
| 5750      | 186.5                  | 1753       |
| 6000      | 187.7                  | 1829       |
| 6250      | 187.7                  | 1905       |
| 6500      | 184.1                  | 1982       |
| 6750      | 204.0                  | 2058       |
| 7000      | 359.2                  | 2134       |
| 7250      | 353.2                  | 2210       |
|           |                        |            |





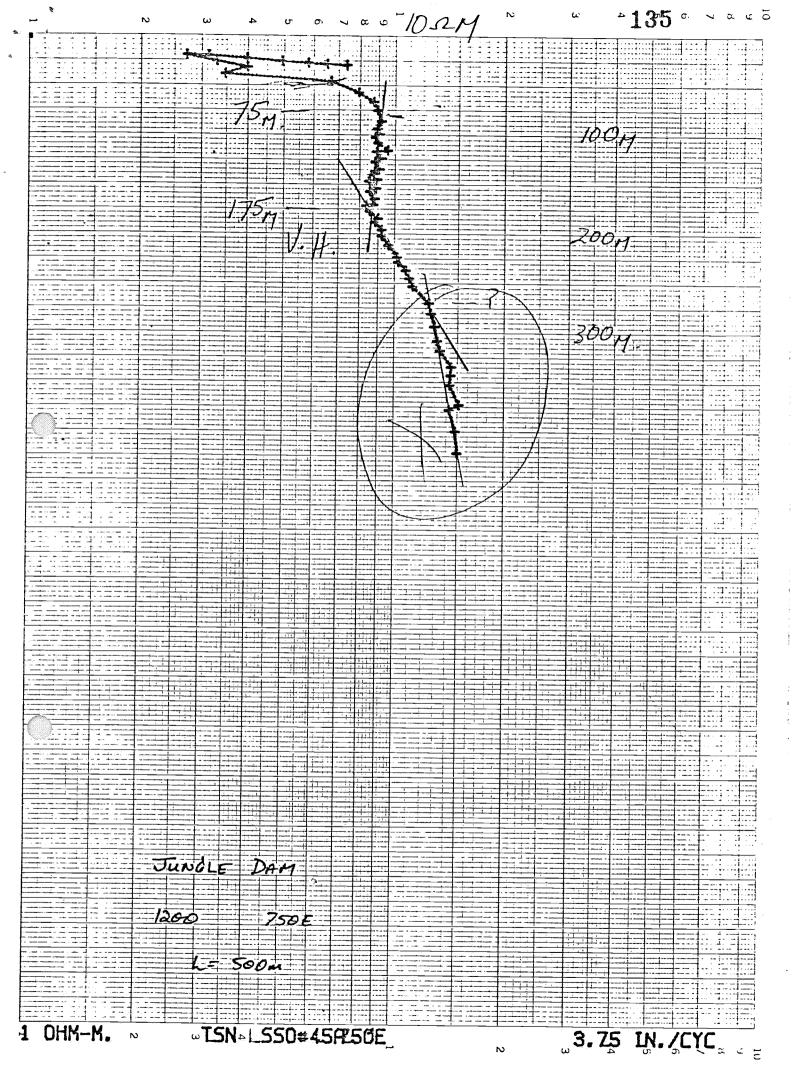
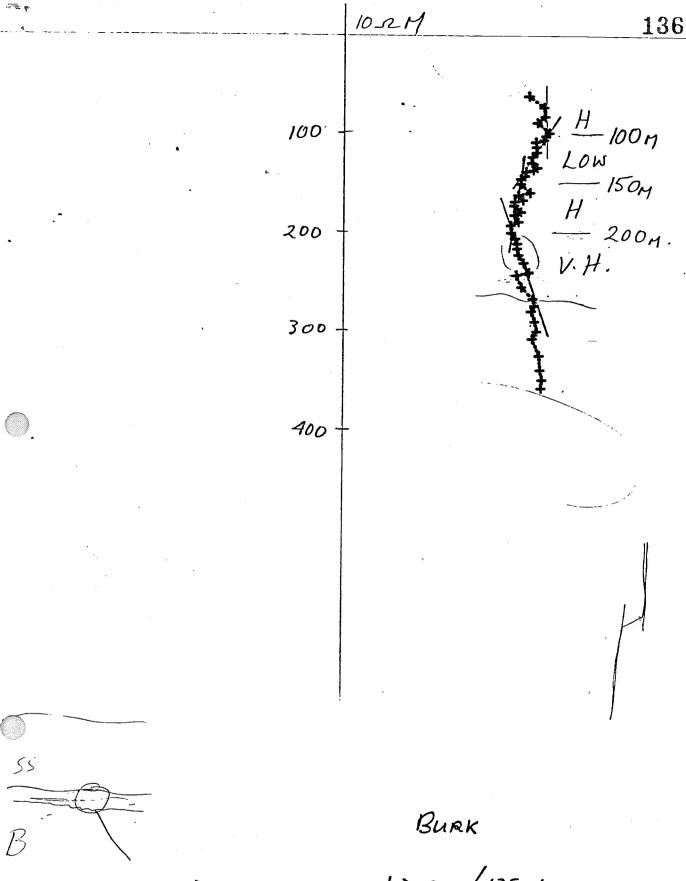
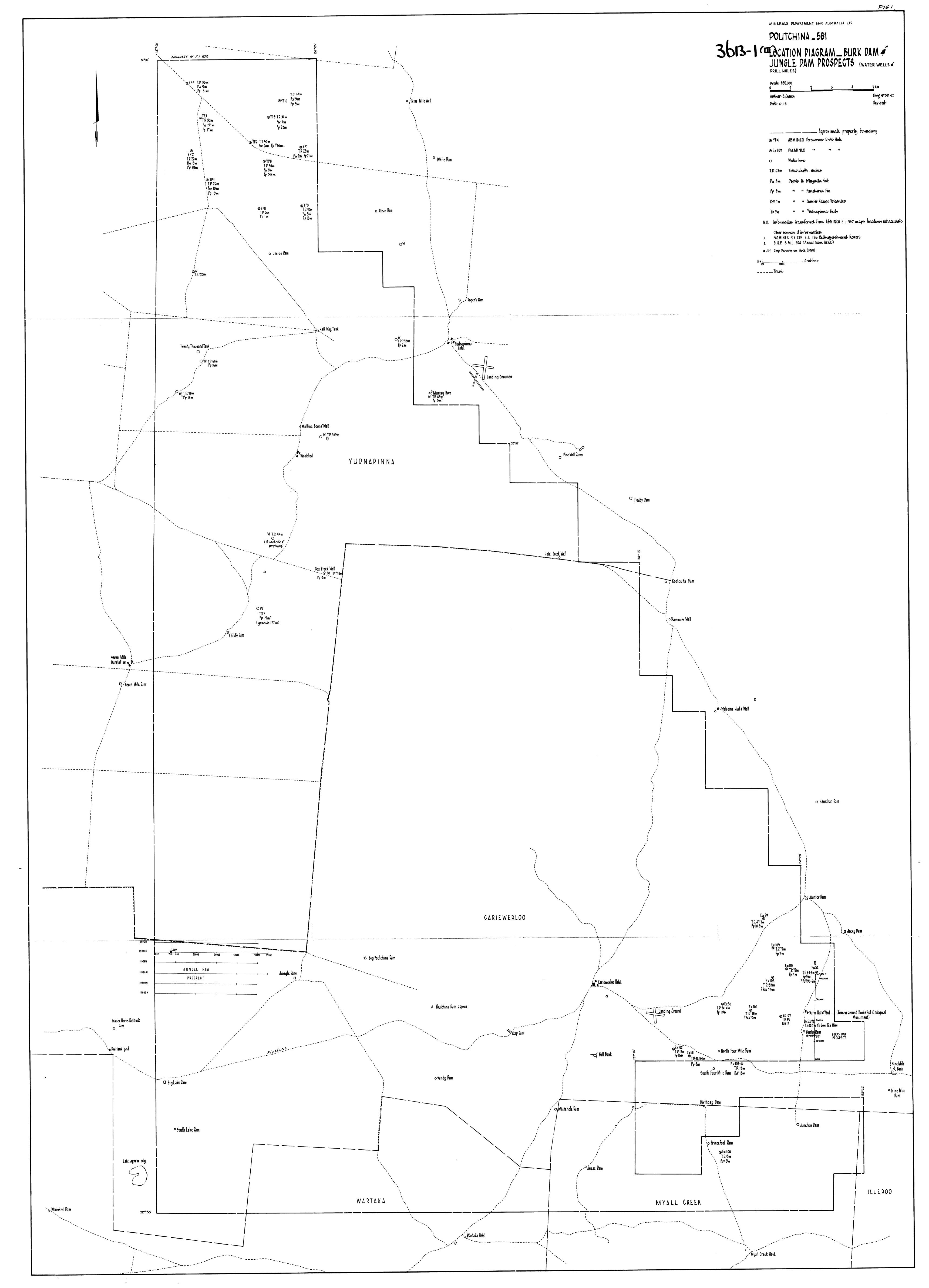
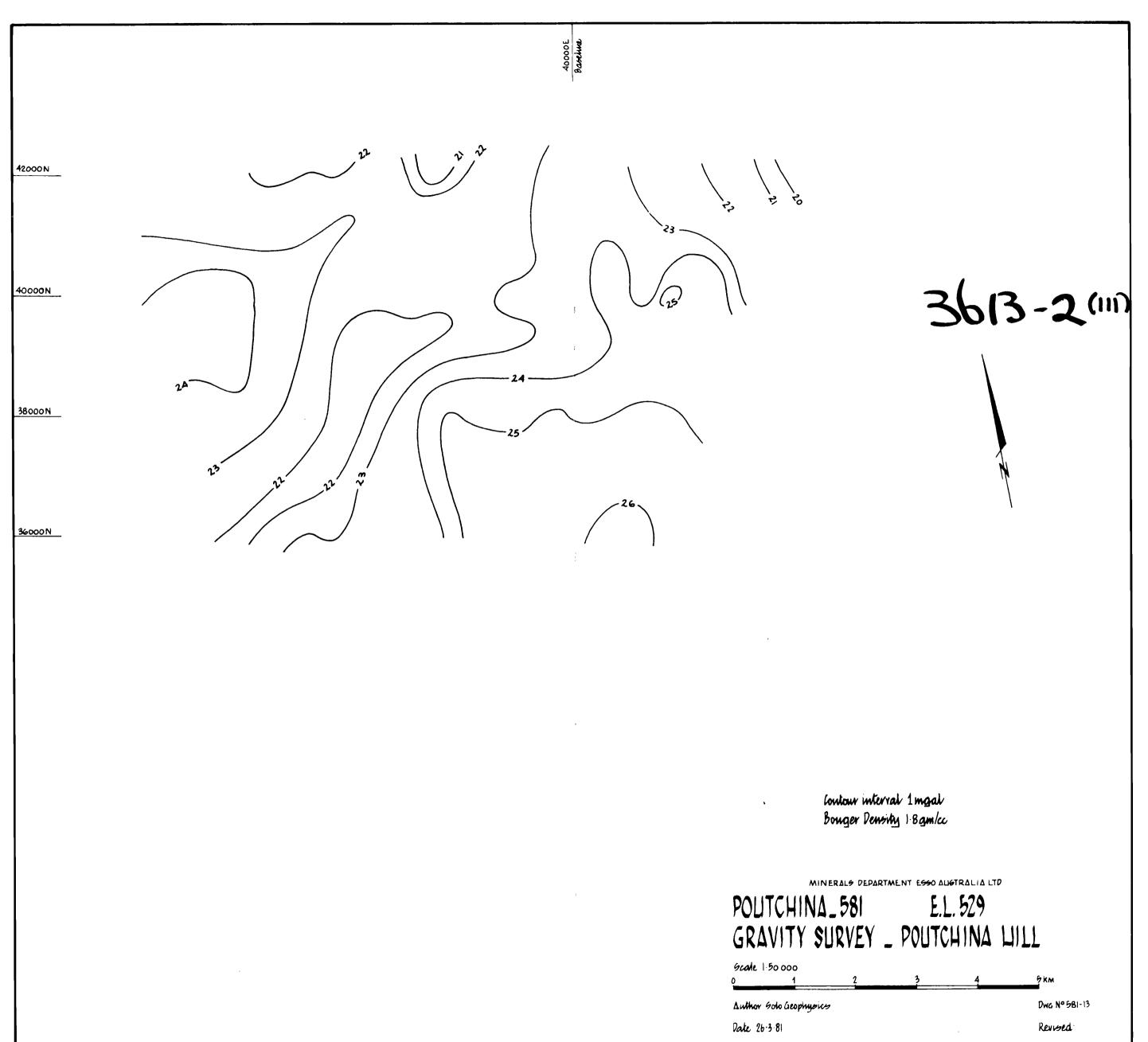
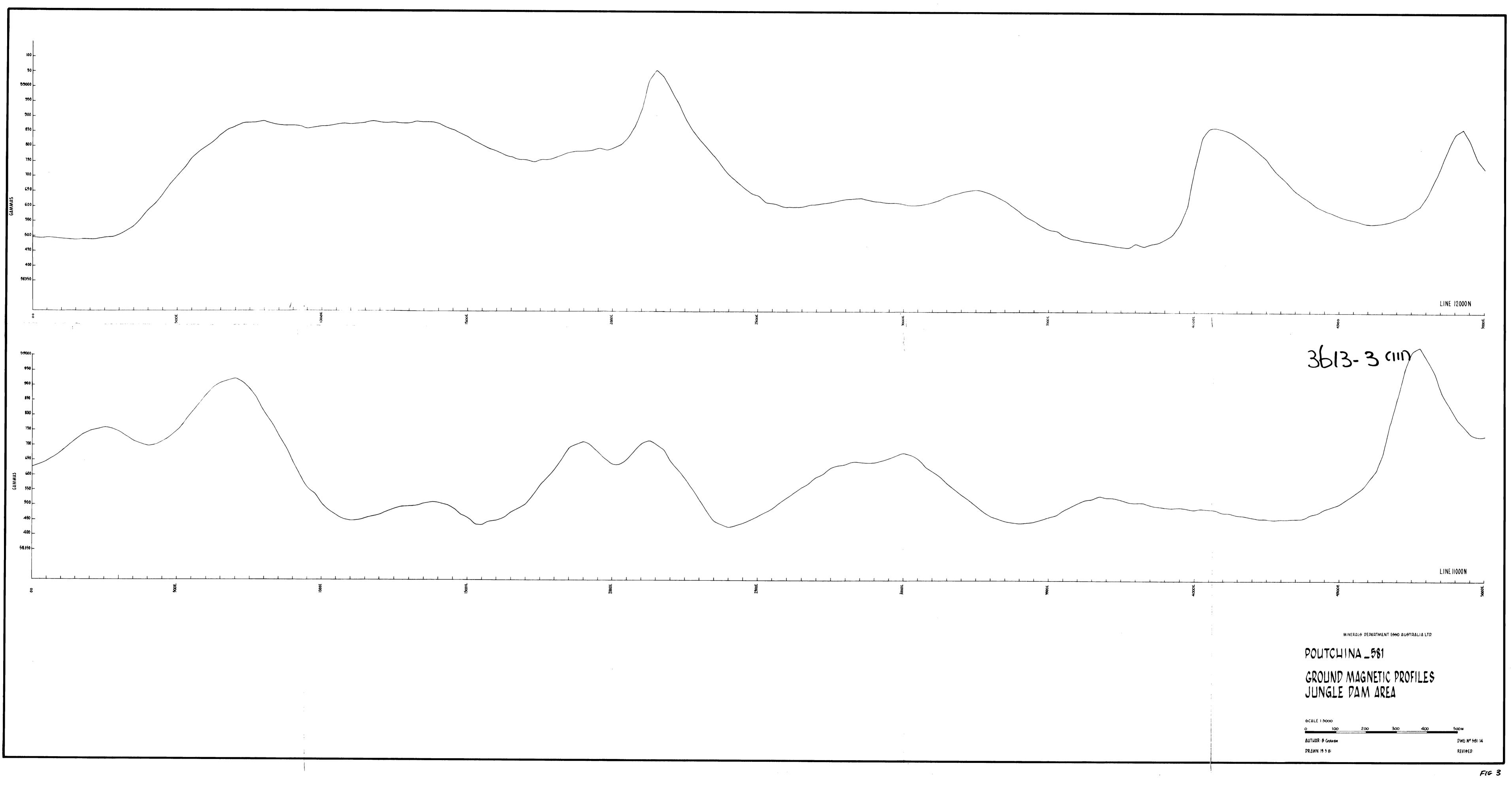



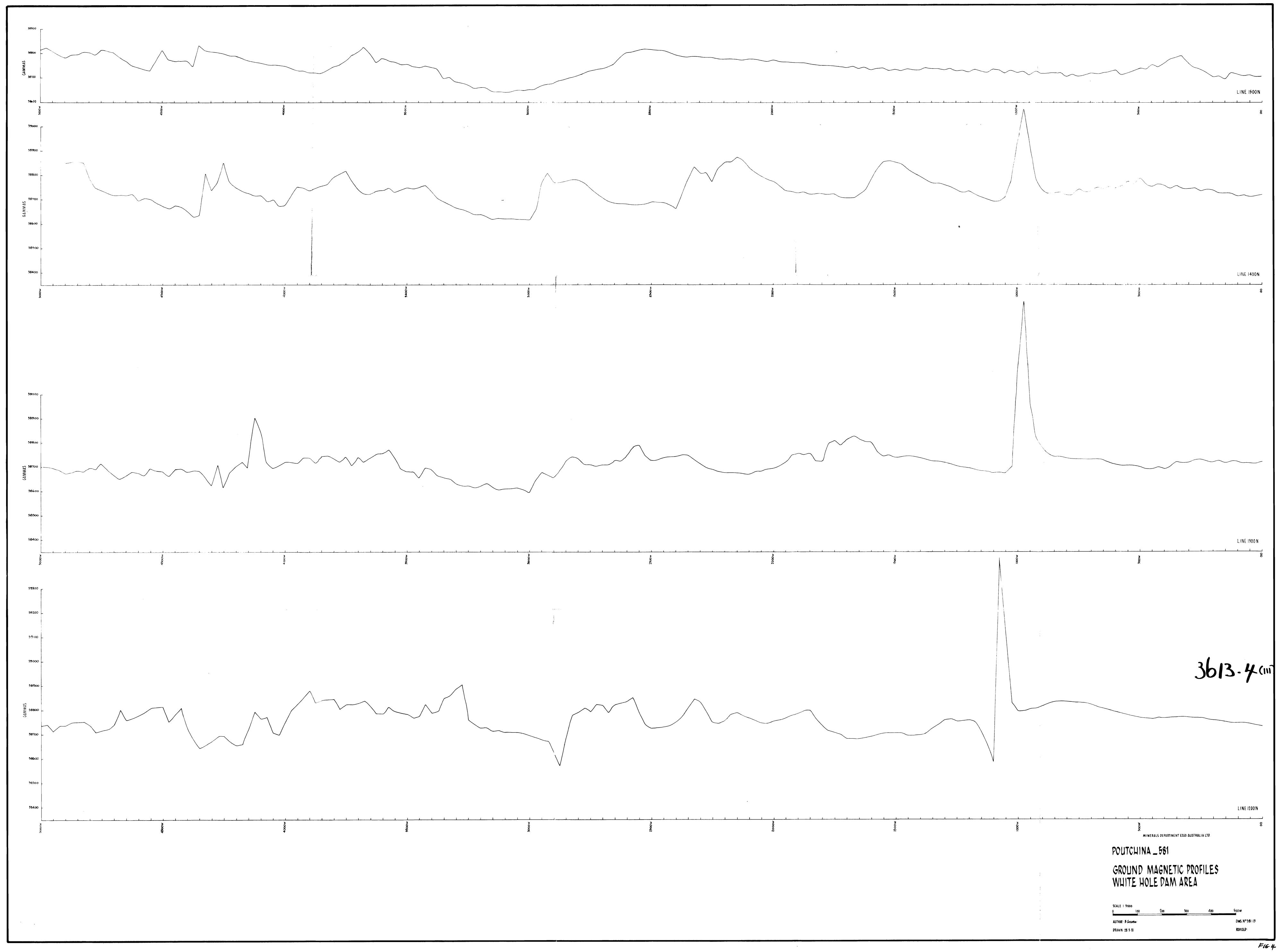

PLATE 2

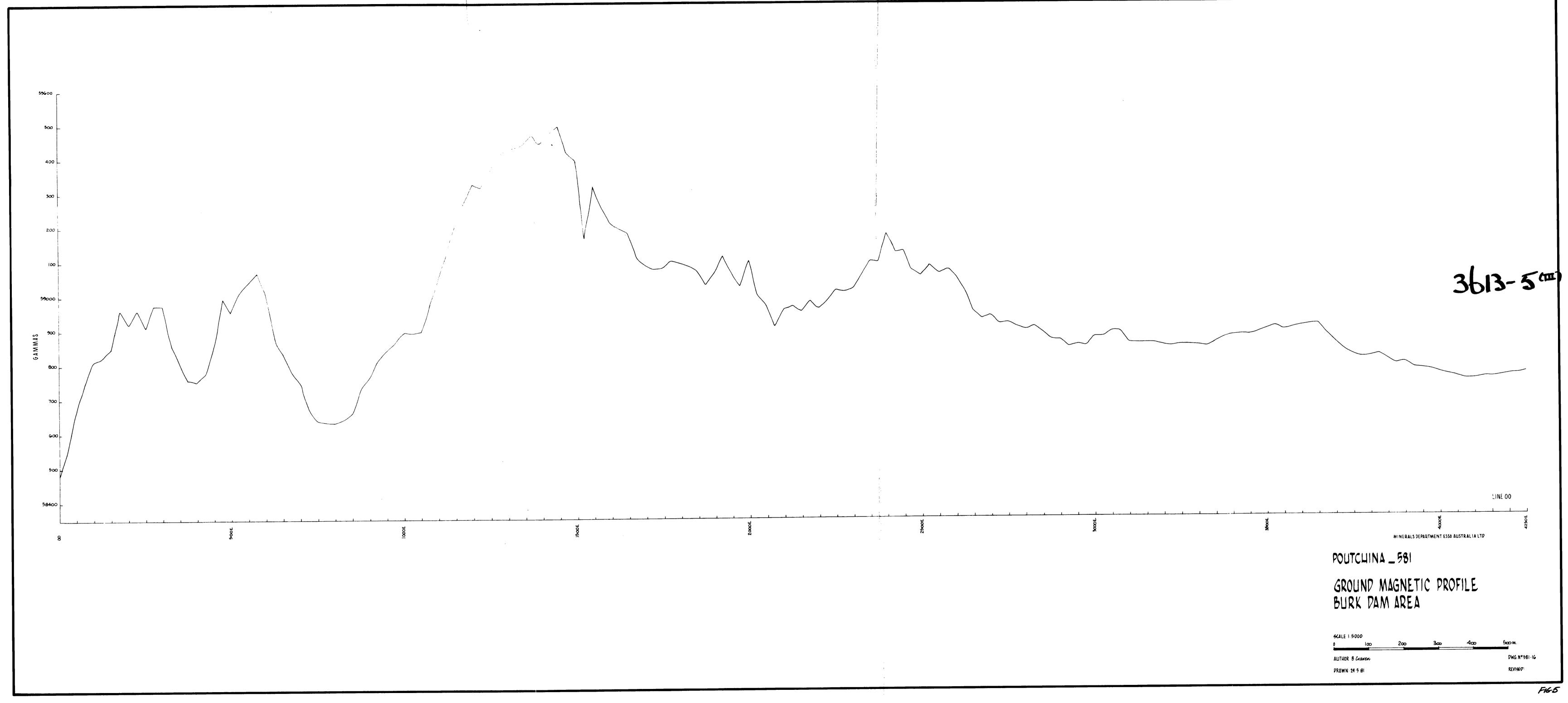



L= 800 / 1250N L= 800? check


OHM-M.


ISN ESSO#47A 250N


3.75 IN./CYC


PLATE 3

