## Open File Envelope No. 1506

**SML 466** 

#### **ROBINSON**

### PROGRESS AND FINAL REPORTS TO LICENCE SURRENDER, FOR THE PERIOD 17/9/1970 TO 8/5/1971

Submitted by Central Pacific Minerals NL 1971

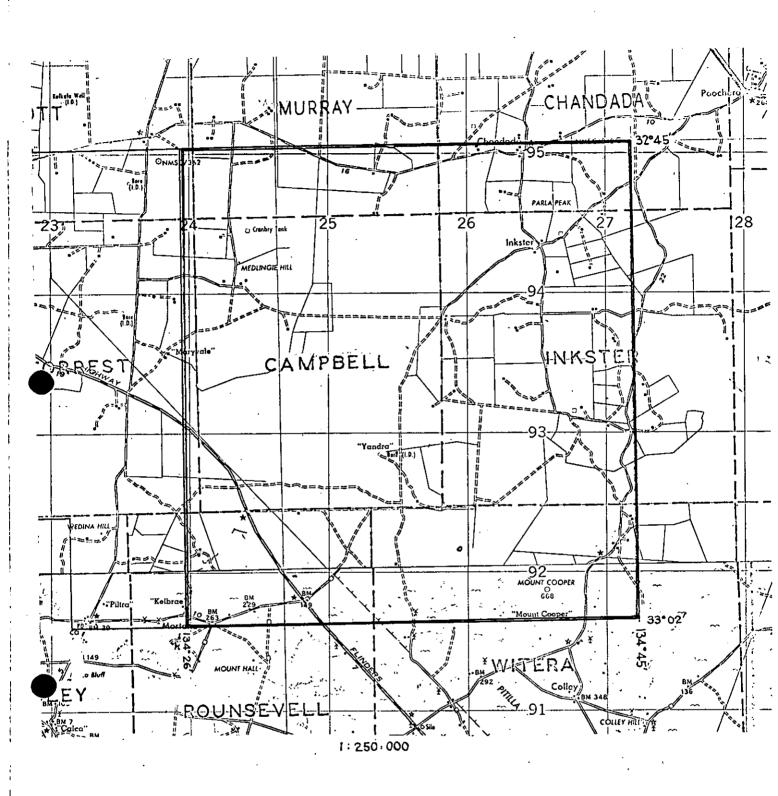
© 13/1/1977

This report was supplied as part of the requirement to hold a mineral or petroleum exploration tenement in the State of South Australia.

DMITRE accepts no responsibility for statements made, or conclusions drawn, in the report or for the quality of text or drawings.

This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced without written permission of the Chief Executive of Department for Manufacturing, Trade, Resources and Energy GPO Box 1264, Adelaide, SA 5001.

Enquiries: Customer Services Branch


Minerals and Energy Resources

7th Floor

101 Grenfell Street, Adelaide 5000

Telephone: (08) 8463 3000 Facsimile: (08) 8204 1880





Overlere;

CENTRAL PACIFIC MINERALS N.L.

DOCKET D.M. 951/70

AREA 359 SQ MILES

1:250000 PLANS . STREAKY BAY

ELLISTON

LOCALITY

S.M.L. No. 466

EXPIRY DATE 16.3.71

#### CONTENTS ENVELOPE 1506

TENEMENT: S.M.L. 466 - Robinson

TENEMENT HOLDER: Central Pacific Minerals N.L.

| REPORT: | Preview Report Oct. 1970                   | (Pgs 3-15)  |
|---------|--------------------------------------------|-------------|
|         | Central Pacific Minerals N.L. Final Report | Jan 1971    |
|         |                                            | (Pgs 16-28) |
|         | Quarterly Report No. 2                     | (Pgs 29-33) |
|         | Water Well data field Sheet                | (Pgs34-107) |
| PLANS:  | Total Magnetic Intensity                   | 1506-1      |
|         | Geochem Results                            | 1506-2      |
|         | Robinson Locality Plsn                     | (Pgs 108)   |
|         |                                            |             |

0012

#### CENTRAL PACIFIC MINERALS N.L. SPECIAL MINING LEASE 466 ROBINSON SOUTH AUSTRALIA QUARTERLY REPORT NO. 1

December, 1970

W. E. Schindlmayr

Distribution: Magellan Petroleum (N.T) Pty. Ltd., Urangesellschaft mbH, Frankfurt. Somiren SpA., Milan. Library

0013

# CENTRAL PACIFIC MINERALS N.L. SPECIAL MINING LEASE 466 ROBINSON SOUTH AUSTRALIA FIRST QUARTERLY REPORT

FOR

PERIOD ENDED 17th DECEMBER, 1971

#### CONTENTS

Preliminary Report
Summary of Activities
Aeromagnetic Base Map 1:63,630.

#### SUMMARY OF ACTIVITIES

The attached preliminary report summarised available geophysical and geological information in the lease area and its environs.

Information is being compiled on the stratigraphy of the sediments as revealed in bore hole logs and a contour map of the granite basement surface is in preparation.

A water sampling programme commenced in late November, 1970 was completed by mid-December. 145 samples were collected from bores and wells and these have been dispatched to the Australian Mineral Development Laboratories for uranium and copper determinations. The results are not yet available.

An assessment of the analytical results and the magnetic anomalies within the lease will be included in the second quarterly report. The report will also contain a recommendation that the Company either continues exploration for uranium and other base metals or terminate investigations.

0004

# CENTRAL PACIFIC MINERALS N.L. SPECIAL MINING LEASE 466 ROBINSON AREA SOUTH AUSTRALIA PREVIEW REPORT

October 1970

W. E. Schindlmayr

<u>Distribution</u>: Magellan Petroleum (N.T) Pty. Ltd.

Urangesellschaft mbH

Somiren

File



## CENTRAL PACIFIC MINERALS N.L. SPECIAL MINING LEASE 466 ROBINSON AREA SOUTH AUSTRALIA

PREVIEW REPORT

0005

#### Report SA 04

#### CONTENTS

|                                                           | <u>Page</u> |
|-----------------------------------------------------------|-------------|
| SUMMARY                                                   |             |
| CONCLUSIONS                                               |             |
| RECOMMENDATIONS                                           |             |
| INTRODUCTION                                              | 1           |
| SITUATION AND ACCESS                                      | 1           |
| PHYSIOGRAPHY                                              | 1           |
| PREVIOUS INVESTIGATIONS Geology Geophysics Drilling       | 2           |
| GEOLOGICAL SETTING Stratigraphy and Petrography Structure | <b>3</b>    |
| DISCUSSION                                                | 4           |
| PROGRAMME                                                 | 4           |
|                                                           |             |

#### APPENDICES

Locality Map SML 466 Terms and Conditions Literature References

#### SUMMARY

- 1. SML 466 is located on Western Eyre Peninsula, South Australia, about 250 miles north-west of Adelaide.
- 2. The lease was granted to Central Pacific Minerals N.L. for six months, commencing 17th September 1970. The terms and conditions are set out in Appendix 3. The lease covers all minerals. The project number is SA-04.
- 3. Tertiary and Pleistocene formations rest unconformably upon a Palaeo oic granite surface dissected by an ancient drainage system.
- .4. Pre-Cambrian metasediments and paragneisses containing primary uranium mineralization are known from the eastern and southern Eyre Peninsula.
- 5. Similar mineralization could occur on Western Eyre Peninsula, would form the primary source for secondary uranium enrichment in Tertiary and Quaternery deposits.
- -6. The lithology of the Cainozoic cover in terms of poorly developed carbonaceous sediment and absence of reducing conditions would tend to inhibit extensive precipitation or uraninite.
  - Selected water bores will be sampled and analysed for uranium and copper.
  - 8. Selected water bores, if possible, will be gamma-ray logged.
  - 9. Outcrops of the basement will be prospected for mineral occurrences.

#### CONCLUSIONS

The uranium potential of the area is considered to be low. Favourable host rocks for secondary uranium deposits are not known at the present but reports indicate that nearby crystalline rocks may provide a source.

#### RECOMMENDATIONS

After assessment of the data revealed by a literature search, a programme for sampling water from selected bores in the lease area and its environs, should be planned, samples being analysed for uranium.

Some of the deeper bores protected by casing should, if possible, be gamma-ray logged.

If both sampling and logging do not indicate the presence of uranium and prospecting of basement outcrops is not encouraging the lease should be abandoned at the end of the current six month period.

#### INTRODUCTION

On 31st July, 1970, Central Pacific Minerals N.L. applied for a Special Mining Lease, covering approximately 500 square miles, in Robinson County, Western Byre Peninsula. A reduced area of approximately 359 square miles, which excluded a fresh water basin, was offered to the Company by the South Australian Mines Department, on the 18th August 1970. On the 17th September, 1970, the area was granted to the Company for a period of six months under the conditions set out in Appendix 3. The lease covers all minerals. The project number is SA - 04, Robinson.

#### SITUATION AND ACCESS

SML 466 is located in the Robinson County of the Western Eyre Peninsula, 250 miles northwest of Adelaide. It covers the southern part of Streeky Bay 4 mile sheet and the northern part of Elliston 4 mile sheet. It includes portions of the Hundreds of Scott, Murray, Cungena, Inketer, Campbell, Forrest, Rounsevell and Witera.

Access to the area is provided by the Byre Highway between Port Lincoln (130 miles SE) and Ceduna (65 miles NW), both of them ports. The unsealed Flinders Highway between the townships of Streaky Bay (15 miles WMW) and Port Kenny (15 miles SW) passes through the southwestern portion of SML 466.

The nearest railhead of the Penong-Pt. Lincoln railways (gauge3'6") is Poochera on Eyre Highway (approx. 10 miles NE). This railway is not linked to the interstate railway network. The nearest airport is at Minnipa (approx. 35 miles east), a landing ground is available at Elliston (50 miles SSE).

#### PHYSIOGRAPHY

The surface features throughout most of the northern portion of the lease (Hundreds of Forrest, Campbell, Cungena, Scott and Murray) are undulating, principally consisting of low travertine limestone ridges and occasional old fixed sand dunes. In the western Hundreds small swamps may fill the depressions between the ridges.

The country gently increases in altitude from almost sea level in an easterly and southerly direction to form a group of hills near the settlement of Chandada (NW corner of SML 466) and an area of undulating hills extending east-west along the southern margin of SML 466 (Mt. Hall, Mt. Cooper, 668 feet above sea level).

0009

Short water courses have cut back into these hills but elsewhere there is no well defined surface drainage.

#### PREVIOUS INVESTIGATIONS

#### Geology

Preliminary notes on the geology of parts of the Robinson County were published in 1912 (Geol. Sur. S.A. Bull. 1). Investigations on the Robinson fresh water basin in 1932 included geological mapping of the western portion of the lease (Bundred of Forrest, part of Bundreds of Rounsevell, Campbell and Scott). Stratigraphy and petrography of the area mapped were subsequently described by Segnit. 1938 (Geol. Sur. S.A. Bull.17). Recent investigations by the S.A. Mines Department outlined the actual Robinson fresh water basin with surface mapping and ground water sampling, using resistivity techniques and observation bores.

#### Geophysics

The area has been covered by an aeromagnetic survey. Maps with the total magnetic intensity are available on a 1" \* 1 mile scale. Aeromagnetic anomalies in the Hundreds of Carina, Chandada and Ripon were investigated in detail by a low-level aeromagnetic survey, detailed ground magnetometer survey, detailed gravity traverses across the anomalous areas and by test drilling. (Dept. Mines S.A. Rep. Invest. 23, 1963). However, none of these holes has been logged geophysically.

#### Drilling

Numerous shallow water wells or hores were sunk within SML 466, many of them finishing in granite. Lithologs are available for most of the bores, but seldom for the wells, but unfortunately locality details are missing on some logs. Most of the bores are currently in use and are equipped with 5" or 6" casing.

The Department of Mines drilled several shallow stratigraphic and observation bores in the Hundreds of Forrest and Ripon; lithologs are available.

#### GEOLOGICAL SETTING

0010

#### Stratigraphy

Tertiary and Pléistocene formations have been deposited unconformably upon an old granitic terrain dissected by an ancient drainage system.

The Pre-Cambrian basement consists predominantly of igneous rocks - anmely granites, granite porphyries and porphyries which have subsequently been intruded by basic and acid rocks. Test drilling by the Mines Department over magnetic anomalies penetrated gabbros, adamellites and diorites. Detailed petrographic descriptions of the various rock types are given in Segnit (1938) Whitten (1963). Few occurrences of banded gneisses, augen gneisses or granitic gneisses of probably sedimentary origin are recorded.

The Pre-Cambrian rocks are deeply weathered to depths of 100 feet where they are overlain by younger sediments.

Cretaceous sediments, comprising carbonaceous clays, lignite, lignitic clays, silts and sands penetrated in Polda No. 1 bore (approx. 50 miles SE) have not been reported from the lease area. However, they may occur in deep depressions or valleys in the ancient terrain.

Tertiary and Pleistocene: Partly consolidated ferruginous and calcareous sands of brown, cream, bright yellow or red colour unconformably overly the zone of decomposed bedrock in a widely ranging thickness. Generally they are fine-grained, but grit and gravel occasionally occurs. These sands are thought to be of late Tertiary age.

In a profile described by Segnit (1938) from a shore cliff, the sands are overlain by a travertine limestone (representing an old (?) pre-Pleistocene land surface). Unconformably resting on the latter is a basal conglomerate and partially consolidated calcareous and fossiliferous sands. Occasionally clay occurs within this sequence, which is thought to be of Pleistocene age. However, it is possible that these younger beds do not occur as far east as SML 466.

The whole area is uniformly covered by a layer of travertine limestone Ripon Calcrete (Steel 1966) which is concealed by swamp deposits or by fine sediments of the Loveday Soil Complex in some places.

#### Structure

The **T**ertiary and Quaternery sediments lie almost undisturbed on the Pre-Cambrian basement, which has probably been slightly uplifted in sub-Recent time, the rate of uplift increasing eastwerd.

#### DISCUSSION

Primary uranium mineralization within metasediments and paragneisses of Archean (?) and lower
Proterosoic age is known from several places on the eastern
Eyre Peninsula (see Prelim. Rep. Of Invest. of AMDEL).
No radiometric survey has been done on the Western Plains of
Eyre Peninsula but similar primary mineralization is possible
here. Uranium removed from primary deposits by solution
might have been carried downwards following ancient drainage
patterns and could have been precipitated at depth in a
reducing environment. It is doubtful if weathering of the
basement rocks within the SML has contributed anything to the
uranium potential of the immediate area.

#### PROGRAMME

#### Stage I

- 1. Continue literature search. Obtain pastoral maps.
- 2. Prepare base maps (1" = 1 mile).
- 3. Prepare contour map of granite surface from drill records.
- 4. Arrange for water sampling and logging programme.

#### Stage II

- Contact land owners for their consent and co-operation with 2 and 3.
- Water sampling of selected bores in and adjacent to SML 466.
- 3. Gamma-ray logging of selected bores with the co-operation of the land owners.
- 4. Prospect outcrops of basement rocks.
- 5. Assess data.

#### Stage III

Abandon lease or plan drilling programme.

#### MINERAL RESOURCES

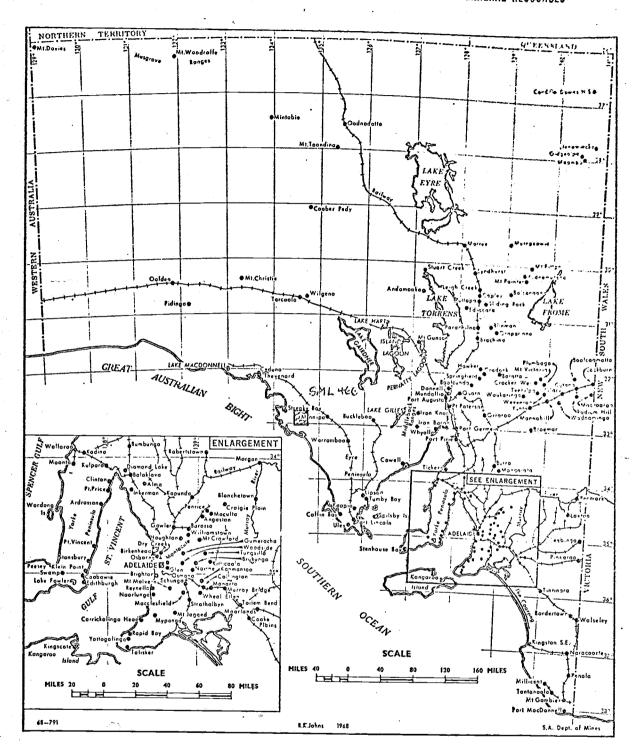
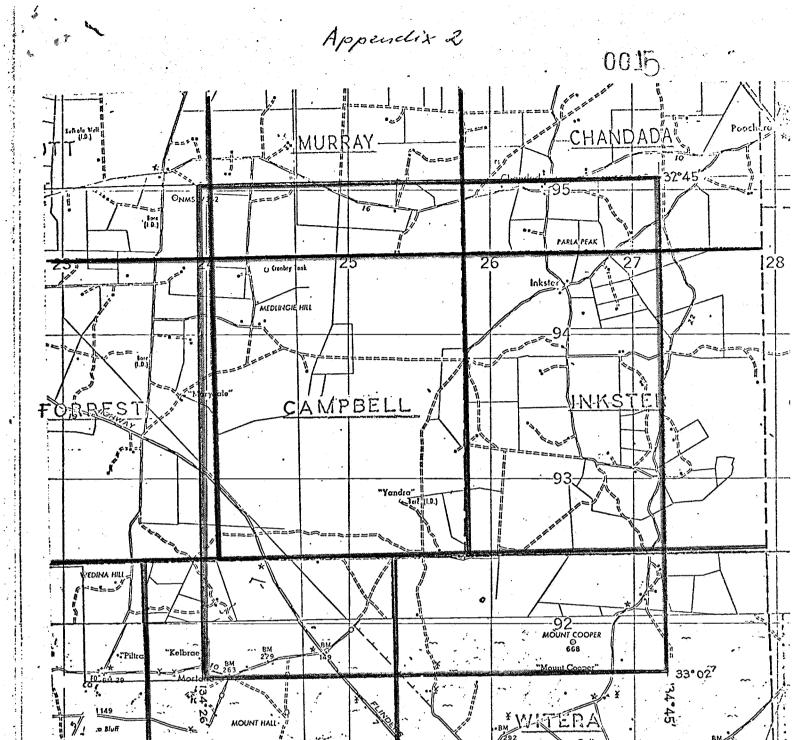




FIG. 129. Location of principal mineral deposits in South Australia.



le se cuttine.
Boundaries of Hundreds

· CENTRAL PACIFIC MINERALS N.L.

1:250:000

DOCKET D.M. 951/70 AREA 359

1:250000 PLANS . STREAKY BAY

. ELLISTON

LOCALITY . S.M.L. No. 4.66

EXPIRY DATE 17.3.714

SQ MILES

1506.

#### APPENDIX\_IV

#### LITERATURE REFERENCE

AMDEL 1970:

Research for areas with known or potential

uranium mineralization, unpublished

manuscript, July, 1970.

Hayball, J. F.:

1912:

Post Mesozoic Cover on Aeromagnetic Anomalies - Western Eyre Peninsula;

\* Lockhart, Jack R.

Unpub. Dept. Mines S.A. Rep. 47/148.
The Geology of Portions of the Counties

le Hunter, Robinson and Dufferin. Geol. Sur. S.A. Bull. 1).

Segnit, R. W. and Dridan, J. R. 1938: Geology and Development of Groundwater in the Robinson Fresh Water Basin, Eyres Peninsula. (Geol. Sur. S.A. Bull. 17).

Steel, Terry, 1966:

Robinson Basin, Progress Report No. 1. Sec. 57 Hundred of Forrest, Unpub. Mines Dept.

S.A. Rep. 54/52.

Whitten, G. F. 1963:

Investigation of Aeromagnetic Anomalies Hundreds Carina, Chandada and Ripon, Western Eyre Peninsula, Dept. Mines S.A. Rep.

Invest. 23.

0016

CENTRAL PACIFIC MINERALS N.I.

CINAL BUDGE SUCCIAL MINING I BASE 466 ROBINSON - COUTH AUSTRALIA

Jenuary, 1971

Distribution:

Central Pacific Minerals N.L.

Magellan Setroleum (N.T) Pty. Ltd.

Somiren Spa

Urangesells haft mbH

South Australian Mines Departmen

RECEIVED
27 APR 1971
DEPT. OF MINES
SECURITY
1506

#### CENTRAL PACIFIC MINERALS N.L. FINAL REPORT

#### SPECIAL MINING LEASE 466 ROBINSON - SOUTH AUSTRALIA

Report SA 04 c

#### COMMENTS

|                                                               | Lage        |
|---------------------------------------------------------------|-------------|
| SUMMARY INTRODUCTION                                          | 1           |
| SITUATION AND ACCESS                                          | **          |
| PHYSICGRAPHY                                                  |             |
| PREVIOUS INVESTIGATIONS  Geology  Geophysics  Drilling        | 2<br>2<br>3 |
| REGIONAL GEOLOGY<br>Stratigraphy and Petrography<br>Structure | 3           |
| SOURCE OF THE URANIUM                                         | 4           |
| EXPLORATION PROGRAMME                                         | 4           |
| EVALUATION                                                    | 5           |
| REFERENCES                                                    | 6           |

#### APPENDICES:

- 1. Locality Map
- 2. Lenge Map
- Conditions and Terms
- 4. Assay Data Sheet

#### MAPS:

Aeromegnetic Map 1" = 1 mile Geochemical Map 1" = 1 mile

#### SUMMARY

- SML 466, located on Western Byre Peninsula, was granted to Central Pacific Minerals N.L. for six months, commencing on 17th September, 1970.
- 2. The Western Eyre Peninsula was considered to contain primary mineralization similar to that occuring on the eastern Eyre Peninsula. This primary mineralization may have migrated from its host rocks and have been re-deposited as secondary uraninite in the Tertiary and Quaternary sedimentary basins in the Robinson area.
- 3. The lithology of the unconsolidated sediments was apparently unfavourable for a uranium precipitation.
- A water sampling programme was carried out for uranium and copper.
- Analytical results suggest there is no uranium or copper enrichment within the lease area.
- 6. Prospecting basement outcrops did not reveal any mineralization
- An aeromagnetic anomaly within the erea does not warrent further work.
- 8. It is therefore recommended that the Special Mineral Lease be relinquished.

Page 1

#### INTRODUCTION

on 31st July, 1970, Central Pacific Minerals N.L. applied for a Special Mining Lease in Robinson County, Western Eyre Peninsula, covering approximately 500 square miles. An amended area of approximately 359 square miles which excluded a fresh water basin, was offered on 18th August, 1970, by the South Australian Mines Department. This smaller area was granted to Central Pacific Minerals for a period of six months, commencing 17th September, 1970. The terms are set out in Appendix 3. The lease covers all minerals. The project number is SA-04, Robinson.

#### SITUATION AND ACCESS

SMI, 466 is located in the Robinson County of the Western Eyre Peninsula, 250 miles northwest of Adelaide. It comprises part of the Streaky Bay 4-mile sheet (SI 53-2) and the Elliston 4-mile sheet (SI 53-6). It includes at least part of the Hundreds of Scott, Murray, Chandada, Inskter, Campbell, Forrest, Rounsevell and Witera.

Access to the area is provided by the Eyre Highway between Port Lincoln and Ceduna, both having port facilities. The unsealed Flinders Highway between the townships of Streaky Bay and Port Kenny passes through the scuth-western portion of SML 466.

The nearest railhead of the Penong - Pt. Lincoln railway (gauge 3'6") is Poochera on Eyre Highway. This railway is not linked to the interstate railway network. The nearest sirport is at Minnipa but landing grounds are available at Streaky Bay and Elliston.

#### PRYSIOGRAPHY

The terrain throughout most of the northern portion of the lease (Hundreds of Forrest, Campbell, Chandada, Scott and Murray) is undulating and consists of low travertine-limestone ridges and occasional old fixed sand dunes. In the west of the area small swamps may fill the depressions formed between the ridges.

The country gently rises in a southerly direction from almost sea level in the north and west to form a group of hills near the settlement of Chandada (NE corner of SML 466) and andarea of undulating hills extending east-west along the southern margin of SML 466 (Mt. Hall, Mt. Cooper, 668 feet above sea level).

Except for these hills, where short water courses occur, there is no defined surface drainage pattern.

Page 2

#### PREVIOUS INVESTIGATIONS

#### Geology

Preliminary notes on the geology of parts of the Robinson County were published by Jack, 1912. Investigations on the Robinson fresh water basin in 1932 included geological mapping of the western portion of the lease (Hundred of Forrest, part of Hundreds of Rounsevell, Campbell and Scott). Stratigraphy and petrography of the area mapped are described by Segnit and Dridan, 1938. Recent investigations of the South Australian Mines Department outlined the actual Robinson fresh water Basin. (Steel, 1966).

#### Geophysics

As part of a regional programme by the Bureau of Mineral Resources and the South Australian Mines Department, the area has been covered by an aeromagnetic survey (Fig. SA 04-2). During 1970 the Streaky Bay 1:250,000 map sheet was covered by a reconnaissance gravity survey (stations established on a four mile grid) by the Bureau of Mineral Resources as part of a programme to complete the gravity coverage of South Australia.

The preliminary results of the recent gravity survey have been inspected at the Bureau of Mineral Resources, Canberra. In general terms there is a broad northeast trending high in the southeast corner of the Streaky Bay 1:250,000 sheet area. The values decrease by about 50 milligals towards the northwest corner of the sheet. A well developed gravity low is present on the Folwer 1:250,000 sheet area with many separate closures. These separate closures are probably caused by individual granitic intrusions while the higher values on the Streaky Bay sheet area probably indicative of a more basic or metamopphic terrain.

In many parts of Australia it is usual for the intrusive granites to be associated with gravity lows while the gneissic or foliated granites to have recognisable anomalies associated with them. Some of the small isolated gravity highs in the southeast part of the Streaky Bay sheet could be associated with basic intrusives.

Whitten (1963) describeds the work completed by the Scuth Australian Mines Department in areas immediately adjacent to SML 466 in the Hundreds of Carina, Chandada and Ripon. Webb (1966) also discusses work conducted by the Mines Department on the Eyre Peninsula. These surveys were orientated towards the search for iron ore similar to those of the Middleback Range which were associated with magnetic and gravity anomalies. Only the anomalies at Warramboo (Webb, 1966) are associated significant iron concentrations but economic deposits have not yet been established. The anomalies described by Whitten (1963) can all be related to gabbroic intrusions (containing up to 7.2% magnetite) within gneissic granite. No anomalous geochemical values for base metals were obtained from the gabbroic rocks.

#### Pege 3

The magnetic pattern over SML 466 is shown in Fig. SA C4-2 which also shows the anomaly in the Hundred of Chandade to the north. A northeast trending elongated magnetic anomaly is present in the southwest corner of the prospect. The anomaly is complex with many individual closures and shows more similarity with the anomalies associated with iron or than with those associated with the gabbroic intrusions. However, the magnitude of the anomaly is much less than those associated with the iron ore.

The gravity and drilling results both indicate a gneissic granite terrain beneath the southeast protion of the Streaky Bay 1:250,000 sheet area. The origin of the magnetic anomaly on SML 466 is probably due either to several gabbroic intrusions or to magnetic jaspilites. The possibility of there being economic mineralization associated with either source is remote.

#### Drilling

A great number of water wells, bores and stratigraphic bores ranging from 20 to more than 200 feet were sunk within SML 466 or adjacent areas and many of these terminated in granite or decomposed basement rocks. Reasonably detailed lithologs were usually available but none of the holes were geophyscially logged.

#### REGIONAL GEOLOGY

#### Stratigraphy

Tertiary and Pleistocene sediments have been deposited unconformably upon an old granitic terrain deeply dissected by an ancient drainage system. Very little is known about this drainage pattern but it may have been affected by the joint systems within the basement.

The Pre-Cambrian basement consists of granites, granite porphyries and porphyries, which have subsequently been intruded by basic and acid rocks. Test drilling by the Mines Department on magnetic anomalies penetrated gabbros, adamellites and diffites. Detailed petrographic descriptions of the various rock types are given in Segnit and Dridan (1938), Whitten (1963). Few occurrences of banded gneisses, augen gneisses or granitic gneisses of probably sedimentary origin are recorded.

The pre-Cambrian rocks are deeply weathered where they are overlain by younger sediments. Intersections up to 100 feet of decomposed bedrock are recorded.

Sediments comparable to the <u>Cretaceous</u> of Folda No. 1 Bore (approx. 50 miles SE), comprising lignites, lignitic clays and carbonaceous clays, silts and sands were only reported from three bores north of Mt. Cooper and from Cungena Well north of the SML 466 area. However, they may occur more often in deep depressions of the ancient granite terrain.

#### Page 4

Tertiary and Pleistocene: Partly consolidated ferruginous and calcareous sands commonly brown, cream, bright yellow or red of variable thickness unconformably overly the decomposed granite basement. Generally they are fine-grained but grit and gravel occasionally occur. These sands are thought to be of late Tertiary age.

In profile described by Segnit and Dridan (1938) from a shore cliff, the sands are overlain by a travertine limestone layer representing an old (?) pre-Pleistocene land surface. The travertine is unconformably overlain by the basal conglomerate partly consolidated sequence of calcareous and fossiliferous sands of ? Pleistocene age. Occasionally clay bands occur within this sequence. It is possible these younger beds do not occur as fer east as SML 466.

The whole area is uniformly covered by a layer of travertine limestone (Ripon Calcrete, Steel, 1966) which may be concealed by swamp deposits or by fine sediments of recent to sub-recent Loveday Soil complex.

#### Structure:

The young sediments rest almost undisturbed on the pre-Cambrian basement. Two joint systems within the basement are reported (Jack, 1912), one within a few degrees of 315° with a minor system at right angles, both without displacement.

#### SOURCE OF THE URANIUM

Primary uranium mineralization within highly metamorphic metasediments and paragneisses of (?) Archean and Lower Proterozoic age occurs in several places on eastern Byre Peninsula. (See AMDEL, 1970). No radiometric survey has been carried out on the Western Plains of Byre Peninsula but similar primary uranium mineralization appeared possible here. It was thought that uranium leached from primary occurrences may have been carried westwards following ancient drainage patterns and may have been precipitated in a favourable environment. The local decomposition of the granitic basement was considered to be a possible weak contributor to the uranium potential of the immediate area. Similar considerations are valid for copper.

#### EMPLORATION PROGRAMMS

- ). Topographical and geophysical base maps (scale l' = 1 mile) have been prepared.
- Compilation of bore hole data indicates that favourable host rocks for secondary uranium mineralization will not be found in this area.
- During late November and early December, 1970, water samples were collected from those bores and wells within SML 466 and surrounding areas that were available for sampling. Unfortunately, as most of the farms in the Hundreds of Inkster and Chandada and in the eastern portion of the Hundred of Murray have been connected to a water supply service line

Page 5

for several years, most of the bores and wells have been neglected and are no longer productive. Thus the samples in the northeastern portion of the lease are very wide spaced, compared to the south and west.

Additionally, several samples were taken from bores, wells or open water pits far outside SML 466 to the south and east for regional information.

#### EVALUATION

#### Analytical Results

The samples were analysed by AMDEL for uranium and copper. The assay results are listed in Appendix 4 and are shown on the geochemical map SA 04-01, the upper figure representing copper in ppm, the lower transium in ppb.

The results can be outlined as follows:

- 1. The regional background of usenium concentration is low with the majority of samples assaying to 5 ppb usanium or less. Randomly distributed higher values sange up to 40 ppb usanium. Sample 110 gave 240 ppb which is anomalous but is not considered interesting because of its isolated occurrence.
- 2. The regional background of copper concentration is very low with the majority of samples containing 0.05 ppm or less. This was expected as most of the aquifors within the area are more or less calcareous or are overlain by calcareous layers and copper in solution would soon be precipitated as insoluble carbonates in the presence of (HCO<sub>3</sub>) ions. Under these conditions values as high as 170 x background (e.g. sample 18, 8.55 ppm copper) could be considered anomalous, although too low to be interesting.

Higher values tend to occur in the Western part of the lease and to the south and west of it with a rather random and soptty distribution.

There is no apparent relationship between geochemical values of either uranium or copper and the provimity of basement outcrops or basement highs.

#### Prospecting

Outcrops of basement granites and granite prophyries were inspected and appeared to be unmineralized. No mineralized veins or residual concentrations within weathered granites were found.

#### Ceophysical Data

The aeromagnetic anomaly within SML 466 may indicate either banded iron formation or basic intrusions. No basic rocks with economic mineralization are known on Eyre Peninsula. Within the framework of the budget no further investigation of the magnetic anomalies can be planned and on present knowledge none is recommended.

#### REFERENCES

AMDEL 1970

Research for areas with known or potential uranium mineralization, unpublished manuscript, July 1970.

HAYBALL J.P.

Post Mesozoic Cover on Aeromangetic Anomalies - Western Eyre Peninsula; Unpub. Dept. Mines S.A. Rep. 47/148.

JACK, R. Lockhart 1912

The Geology of Portions of the Counties le Hung, Robinson and Dufferin. Geol. Sur. S.A. Bull 1.

SEGNIT, R.W. and DRIDAN, J.R. 1938 Geology and Development of Groundwater in the Robinson Fresh Water Basin, Eyre Peninsula. Geol. Sur. S.A. Bull. 17.

STEEL, T. 1966

Robinson Basin, Progress Report No. 1 Sec. 57 Hundred of Forrest, Unpubl. Mines Dept. S.A. Rep. 54/52.

YEDS, J.E. 1966

The Search for Iron Ore, Eyre Peninsula, South Australia. Mining Geophysics, Volume 1, p. 379-390 Society of Exploration Geophysics.

WHITTEN, G.P. 1963

Investigation of Aeromagnetic Anomalies Hundreds Carina, Chandada and Ripon, Western Eyre Peninsula, Dept. Mines S.A. Rep. Invest. 23.

#### MINERAL RESOURCES

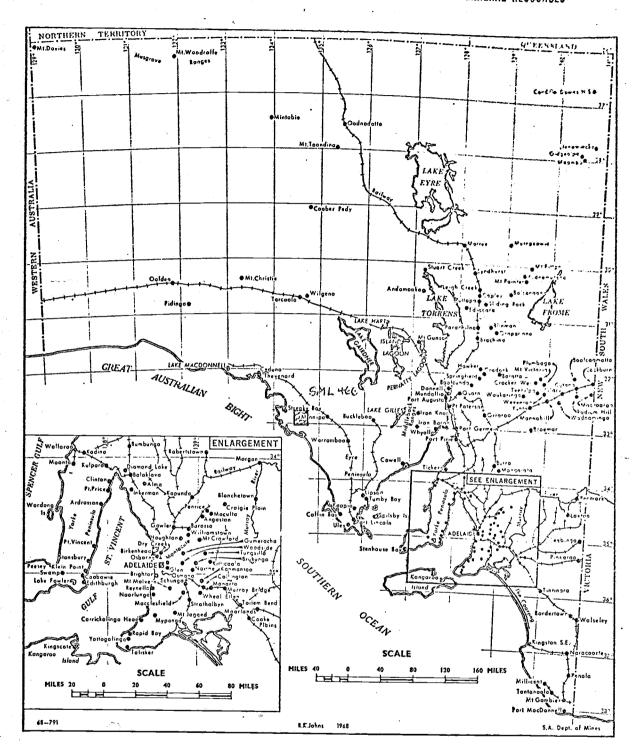
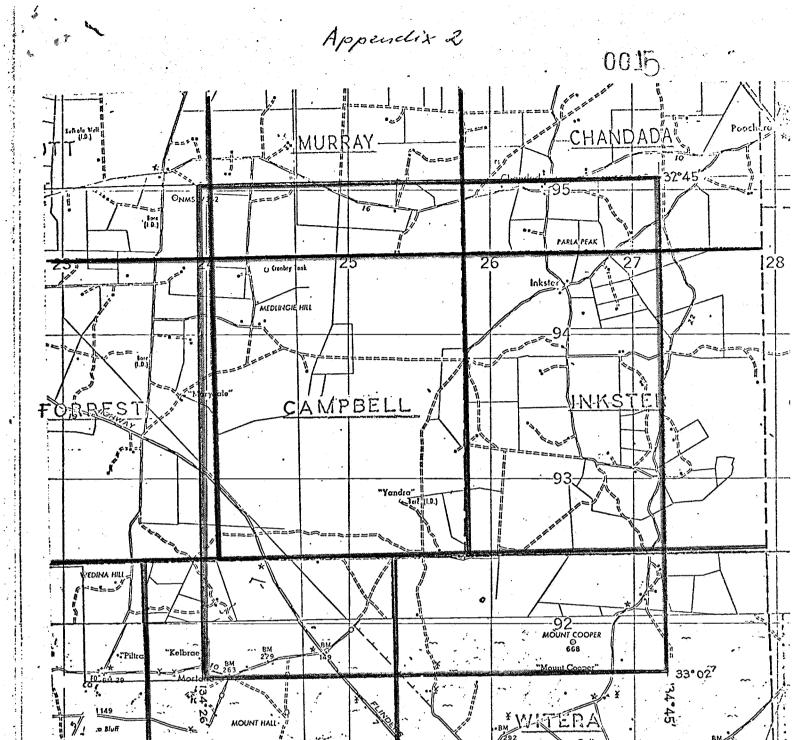




FIG. 129. Location of principal mineral deposits in South Australia.



le se cuttine.
Boundaries of Hundreds

· CENTRAL PACIFIC MINERALS N.L.

1:250:000

DOCKET D.M. 951/70 AREA 359

1:250000 PLANS . STREAKY BAY

. ELLISTON

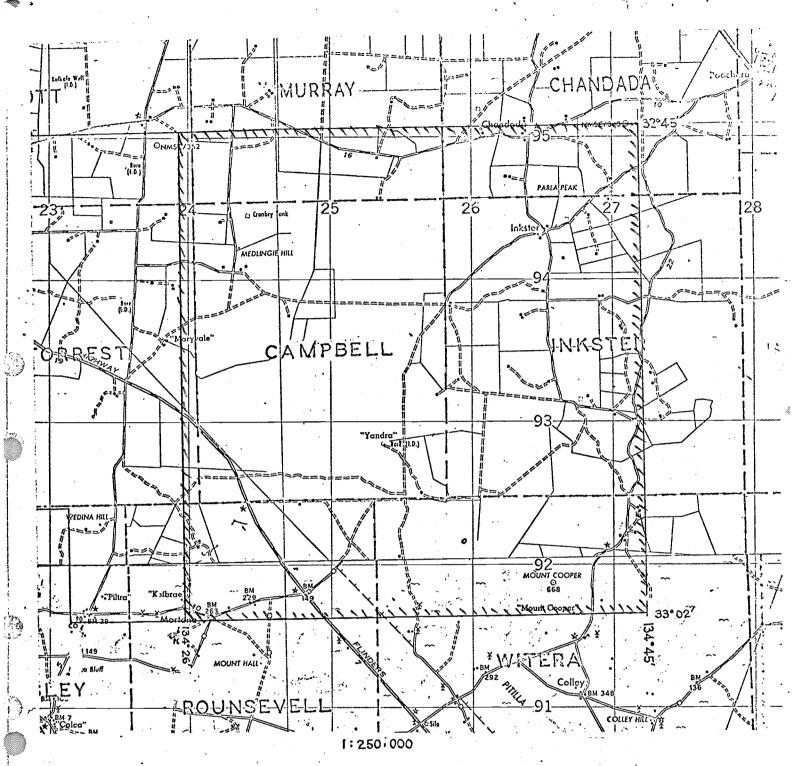
LOCALITY . S.M.L. No. 4.66

EXPIRY DATE 17.3.714

SQ MILES

1506.

#### VESEMBIX IA


#### REPORT ON 2635/71

#### THE AUSTRALIAN MINERAL DEVELOPMENT LABORATORIES

| ample Mo. | Uranium         | Copper        | Bore/    | Remarks |
|-----------|-----------------|---------------|----------|---------|
|           | <u>. in pob</u> | 11 777        | 7011     |         |
| 01        | . 5             | 0.15          | ъ        |         |
| 02        | 8               | 0.03          | b        |         |
| 0.3       | 5               | 0.05          | b        |         |
| 04        | *               | 0.05          | <b>b</b> |         |
| <b>05</b> | 3               | 0.15          | 5        |         |
| 06        | 8               | 0.05          | W        |         |
| 07        | 5               | 0.05          | b        | · ·     |
| 08        | 5               | 0.05          | **       |         |
| 09        | \$ 4            | 0.05          | W        |         |
| 10        | S               | 0.03          | W        |         |
| 11        | 10              | 0.30          |          |         |
| 12        | 10              | 0.45          | **       |         |
| 13        | 5               | 0.05          | V        |         |
| 14        | 3               | 0.05          | **       |         |
| 15        | 5               | 0.05          | b        |         |
| 16        | S               | 0.05          | W        |         |
| 17        | 5               | 0.03          | ***      |         |
| 10        | 5               | <b>8.</b> 55  | b        |         |
| 19        | 5               | 0.10          | W        | O.S.    |
| 20        | 10              | 0.25          | ***      | O.S.    |
| 21        | 5 .             | 0.10          | b        | 0.8.    |
| 22        | rig             | 0.05          | 5        | 0.3.    |
| 23        | 5               | 0.20          | w ni d   | 0.5.    |
| 24        | 5               | 0.05          | Ъ        |         |
| 25        | 5° * :          | 5             | b        |         |
| 26        | 20              | 0.10          | 5        |         |
| 27        | <b>\$</b>       | 2.30          | b        |         |
| 28        | 5               | 0.05          | 3        |         |
| 29        | *               | 0.25          | ь        |         |
| 30        | 5               | 0,05          | Ъ        |         |
| 31        | 10              | 0.05          | 3        |         |
| 32        | 10              | 0.05          | ъ        |         |
| 33        | 15              | 0.15          | b        |         |
| 34        | 10              | 0.05          | b        |         |
| 25        | 10              | 0 <b>.0</b> 5 | b        |         |
| 36        | 5               | 0.05          | W        |         |
| 7         | 5               | 0.05          | b        |         |
| 36        | 83              | 0.10          | b        |         |
| 39        | 10              | 0.30          | <b>b</b> | O.S.    |
| 40        | *               | 0.05          | ď        | 0.8.    |
| 41        | 5               | 0.15          | W        | 0.3.    |
| 42        | 10.             | 0.05          | 1)       | 0.5.    |
| 43        | 10              | 0.20          | Ъ        | O.S.    |
| 44        | 5               | 0.05          | 5        | O.S.    |
| 45        | 5               | 0.05          | ъ        |         |
| 46        | 5               | 0.05          | 3        |         |
| 47        | 30              | 0.10          |          |         |
| 48        | 5               | 0.10          | 35       |         |
| 49        | 5               | 1.50          | ъ        |         |

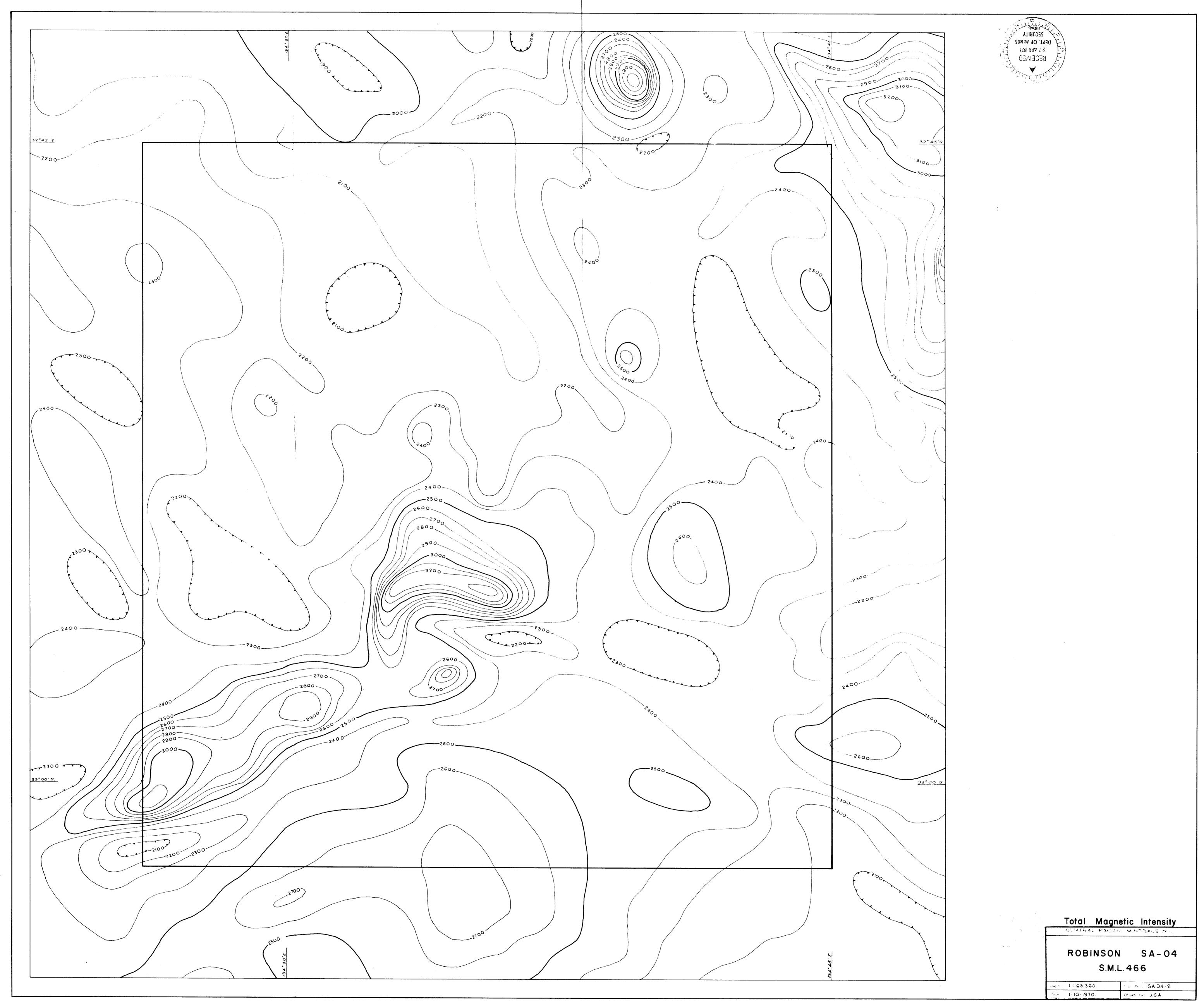
| Sample Mo.        | Uranium                                | Copper        | Bore/ Rem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ar <b>ks</b>                           |
|-------------------|----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                   | in vo                                  | in oan        | W@1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ay a y y y y y y y y y y y y y y y y y |
| 50                | \$                                     | 0.10          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 51                | <b>5</b>                               | 0.10          | ъ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| <b>32</b>         | 10                                     | 0.05          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 53                | 5                                      | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 54                | 5                                      | 0.05          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| .55               | <b>5</b>                               | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 56                | 10                                     | 0.05          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 57                | 5                                      | 0.05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 58                | 35                                     | 0.05          | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| 59                | 5                                      | 0.05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 60                |                                        | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 61                | 5                                      | 0.05          | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| 62                | 5                                      | 0.05          | w 0.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 63 A              | 10                                     | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 64                | <b>%</b>                               | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 65                | ***                                    | 0.05          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 66                | 5                                      | 0.05          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 67                | 5                                      | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 68                | \$                                     | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 69                | 5                                      | 0.10          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 70                | 5                                      | 0.10          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 73                | 5                                      | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 72                | 5                                      | 0.05          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 73                | 5                                      | 0.05          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 74                | 5                                      | 0.05          | ъ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 75                | 5                                      | 0.55          | b in w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 76                | • • • • • • • • • • • • • • • • • • •  | 0.05          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 77                | <b>5</b>                               | 0.15          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 78                | 5                                      | 0.05          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 79                | 5                                      | 0.05          | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 80                |                                        | 0.05          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 61                | 20                                     | 0 <b>.1</b> 0 | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 82                | 5                                      | 0.03          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 83                | 10                                     | 0.05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 84                | 25                                     | 0.15          | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| <b>8</b> 5        | 3                                      | 50            | <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| 86                | 5                                      | 0.70          | <b>∀</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| > <b>8</b> 7      | 30                                     | 0.05          | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 88                | 5                                      | 0.05          | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 89                | 5                                      | 0.05          | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 90                | ************************************** | 0.10          | b in v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                   | 5                                      | 0.05          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 92                | <b>→</b>                               | 0.00          | is a second of the second of t |                                        |
|                   | 5                                      |               | 7.2<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| ole geg           | -94 <sup>50</sup>                      | THE THE OFF   | 8 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| 94 13             | ***                                    | 0.05          | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| 35                | 20                                     | 0.05          | <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| -2 <i>:</i><br>96 | 20                                     | 0.30          | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| 97                | 10                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 98                | 5                                      | 0.05          | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
|                   |                                        | 0.10          | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 99                | <u>*</u>                               | 0.05          | b 0.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| LOC               |                                        | 0.05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 101               | 5                                      | 0.05          | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |

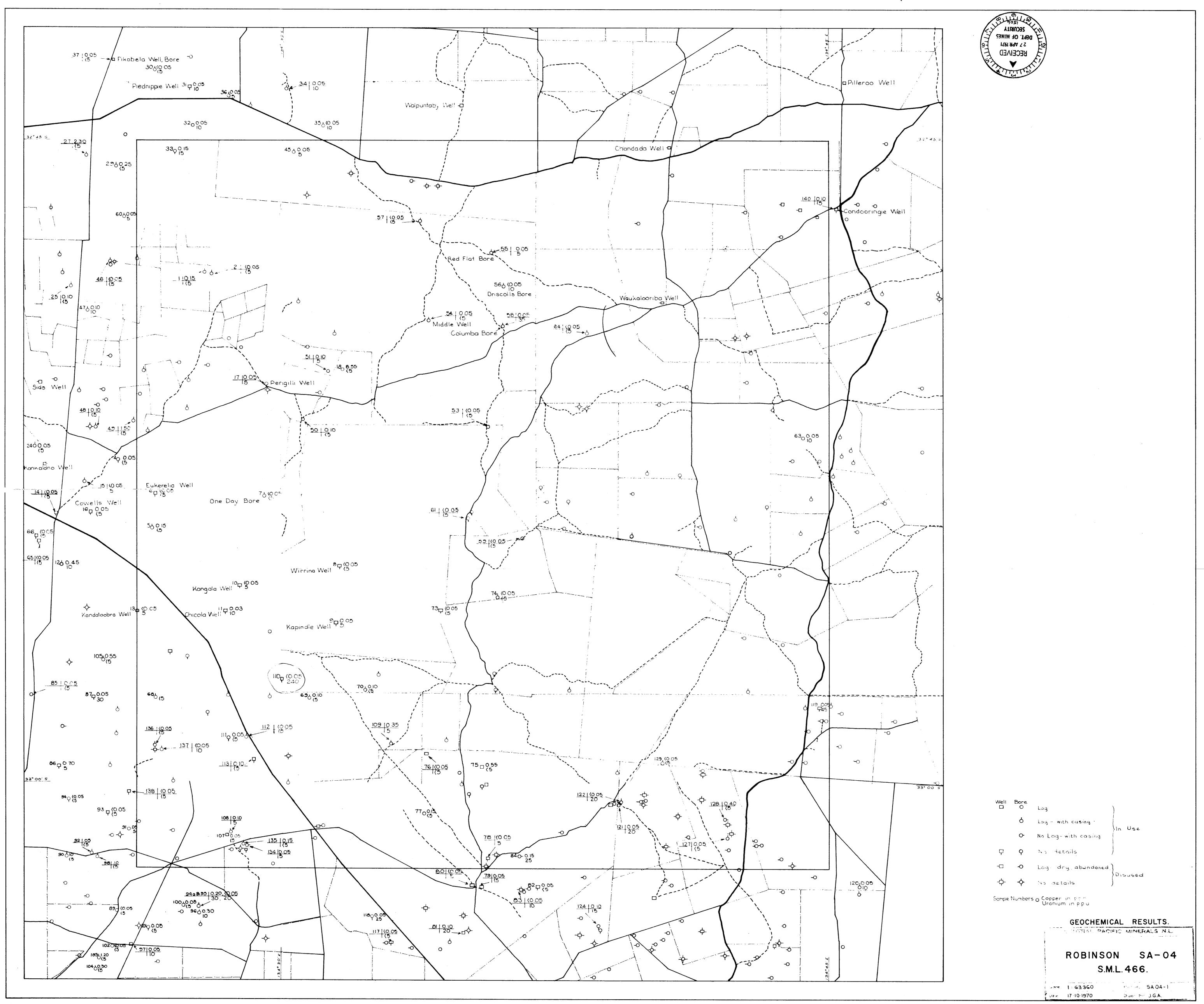
| Sample No.  | Oranium                                | Copper | Bore/                                  | lemarka               |
|-------------|----------------------------------------|--------|----------------------------------------|-----------------------|
|             |                                        |        | (ell                                   |                       |
| 302         | 5                                      | 0.05   |                                        |                       |
| 103         | 5                                      | 1.20   | Ď                                      |                       |
| 104         | 5                                      | 0.30   | •                                      |                       |
| <b>1</b> 05 | <b>4</b>                               | 0.55   | <b>5</b>                               |                       |
| 106         | 5                                      | 2000   | V                                      | •                     |
| 107         | 5                                      | 0.05   | ************************************** |                       |
| 108         |                                        | 0.10   |                                        |                       |
| 109         | 5                                      | 0.35   | ъ                                      |                       |
| 110         | 240                                    | 0.05   | */*                                    | ,                     |
| 111         |                                        | 0.05   | V                                      |                       |
| 112         | <b>5</b>                               | 0.05   |                                        |                       |
| 11.         | 5                                      | 0.10   | **                                     |                       |
| 114         | <u> </u>                               | 0.05   | **                                     |                       |
| 115         | 5                                      | 0.05   | 5                                      | 0.5.                  |
| 116         | 30                                     | 0.05   | ъ                                      | 0.5.                  |
| 117         | <b>.</b>                               | 0.05   | W                                      | मन्त्र छन् व्यक्तः छन |
| 116         | 25                                     | 0.05   | <b>.</b>                               |                       |
| 119         | 43                                     | 0.05   | W.                                     |                       |
| 120         |                                        | 0.05   |                                        |                       |
| 121         | 20                                     | 0.09   | 5                                      |                       |
| 122         | 20                                     | 0.05   | 5                                      |                       |
| 123         | 10                                     | 0.05   | •                                      |                       |
| 124         | 15                                     | 0.10   | Ъ                                      |                       |
| 125         | *                                      | 0.25   | ъ                                      |                       |
| 126         | <b>**</b>                              | 0.60   | 3                                      | •                     |
| 127         |                                        | 0.05   | W                                      |                       |
| 128         | 3                                      | 0.40   | ъ                                      |                       |
| 129         | •                                      | 0.05   | <b>&gt;</b>                            |                       |
| 130         | 5                                      | 0.05   | pit                                    | C.S.                  |
| 131         | 5                                      | 0.09   | <b>V</b> 7                             | •                     |
| 122         | 15                                     | 0.05   |                                        | C.S.                  |
| 2.23        | 20                                     | 0.05   | <b>b</b>                               |                       |
| 134         | \$                                     | 0.05   | ***                                    |                       |
| 135         | <b>5</b>                               | 0.15   | Ъ                                      |                       |
| 136         | <b>*</b>                               | 0.05   |                                        |                       |
| 137 6       | 10                                     | 0.05   | b v                                    |                       |
| 130         | 5                                      | 0.09   | W                                      | *                     |
| 139         |                                        | 0.05   | <b>b</b>                               |                       |
| 140         | 5                                      | 0.10   | ***                                    |                       |
| 141         | ************************************** | 0.03   | <b>5</b>                               |                       |
| 142         | 5                                      | 0.25   | ?                                      | 0.8.                  |
| 143         | 30                                     | 0.03   | ď                                      | 0.8.                  |



CENTRAL PACIFIC MINERALS N.L.

DOCKET D.M. 951/70


AREA 359 SQ MILES


1:250000 PLANS . STREAKY BAY . ELLISTON

LOCALITY

S,M.L. No. 455

EXPIRY DATE 7371





0029

#### CENTRAL PACIFIC MINERALS N.L.

#### SPECIAL MINING LEASE 466

#### ROBINSON

#### COUTH AUSTRALIA

#### QUARTERLY REPORT NO. 2

April, 1971

J. H. Hill

Distribution:

Magellan Petroleum (N.T.) Pty. Ltd. Urangesellschaft m.b.H., Frankfurt

Somiren S.p.A., Milan

Library

RECEIVED
27 APR 1971
DEPT. OF MINES
SECURITY
1506

#### CENTRAL PACIFIC MINERALS N.L.

#### SPECIAL MINING LEASE 466

#### ROBINSON

#### SOUTH AUSTRALIA

#### QUARTERLY REPORT NO. 2

FOR

PERIOD ENDING 17th MARCH, 1971

#### CONTENTS

74.

Summary of Activities

A water sampling programme for uranium was completed in December, 1970 and analytical results were obtained by early January 1971.

The Special Mining Lease was evaluated in terms of locating uranium deposits within unconsolidated Tertiary and Pleistocene sediments. The uranium content of the bore waters was not considered significant while evaluation of available geological and geophysical data has not upgraded the area.

During this quarter data has been reassessed and the final report on the project completed.

Further work does not appear to be warranted and consideration will be given to surrendering our tenure over the area.

| Unit Number WATER WELL DATA FIELD SHEET Ref. No. SA 04 03                         |
|-----------------------------------------------------------------------------------|
| Oll Hund. Sec./Town 20 Allot, Bore 27                                             |
| Landholder Address                                                                |
| Co-ord.<br>Latitude/East Longitude/North Type Zone Acc.                           |
| 45 52 60 63 Basin                                                                 |
| Situation of Well                                                                 |
| DRILLING DATA (See over for Aquifer Data)  Driller(s)  Date Drilled: From  to  17 |
| Method used                                                                       |
| Rig operated by Purpose Status                                                    |
| Depth Drilled m Angle                                                             |
| Casing Yes From m to m Diameter Type Type 43 44                                   |
| From m to m Diameter                                                              |
| From m to m Diameter Type                                                         |
| Screen/Slotted Liner: Present? No 62 Core Library No 63 Logging by                |
| Screen/Slotted Liner Type                                                         |
| Interval: From                                                                    |
| Samples obtained 17                                                               |
| Analyses available 21                                                             |
| MOST RECENT DATA  O.7                                                             |
| 1 Total depth m 17 23 Date 24 SWD m 2 37 Date 38                                  |
| Supply: Flowing? Flow Rate Method measured                                        |
| Supply method Yield Method measured                                               |
| Power source Intake depth m Pump diameter 53                                      |
| Column diameter Drawdown                                                          |
| Date of Test / 1 9 Status                                                         |
| Sampling Method Depth sample taken                                                |
| Analysis Results: Field Conductivity                                              |
| 63                                                                                |
| 73 80 Security Rating                                                             |
| Permit No. 24 Reference No. 5.A.O.4.O.3                                           |
| 36 50 60 69                                                                       |
| Aerial Photo No. 73 80 Accuracy of Identification                                 |
| Compiled Coding Check Locality Plan                                               |

| Date                                    | for S.M.C.                             | 466, Ennelope 1506, D.M. 951/-            | 70                                      |
|-----------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|
| • • • • • • • • • • • • • • • • • • • • | Sample Results                         | ار از |                                         |
|                                         | , <b>,</b>                             |                                           |                                         |
| **********                              | ······································ | 0.05 ppm                                  |                                         |
|                                         | Uranium                                |                                           |                                         |
| *                                       | ·                                      |                                           |                                         |
|                                         |                                        |                                           |                                         |
|                                         |                                        |                                           |                                         |
| • • • • • • • •                         | ********************                   |                                           |                                         |
| *                                       |                                        |                                           |                                         |
|                                         |                                        |                                           |                                         |
| ORIGINAL DATA                           | Unit Number                            |                                           |                                         |
| 0.6 Re                                  | peated on each card 16                 |                                           |                                         |
|                                         | Supply method                          | Method of Measure                         | 17 I8                                   |
|                                         | Duration of Test                       | thours                                    | 1, 10                                   |
| lst. Aquifer:                           | Depth water cut m                      |                                           |                                         |
|                                         | Drawdown m                             | Supply                                    | <u>'</u> 9                              |
|                                         | Conductivity/Salinity                  | 34 39                                     | _, [ . • ]                              |
|                                         | Depth sample taken m                   | Aquifer developed?                        | PH 48                                   |
| 2nd. Aquifer:                           | Depth water cut m                      | SWD                                       |                                         |
|                                         | Drawdown m                             | 51 56 5<br>Supply                         |                                         |
|                                         | Conductivity/Salinity                  | Aquifer developed?                        | nu ( •                                  |
|                                         | Depth sample taken m                   | Sampling method Analysis No               | 76                                      |
| 0.6                                     |                                        |                                           |                                         |
| 3rd. Aquifer:                           | Depth water cut m                      | SWD                                       | • • • • • • • • • • • • • • • • • • • • |
|                                         | Drawdown m                             | Supply                                    |                                         |
|                                         | Conductivity/Salinity                  | Aquifer developed?                        | pH i                                    |
|                                         | Depth sample taken m                   | Sampling method                           | 48                                      |
| 4th. Aquifer:                           | Depth water cut m                      | SWD                                       | 7 1 1 1                                 |
|                                         | Drawdown m                             | Supply                                    |                                         |
|                                         | Conductivity/Salinity                  | Aquifer developed?                        | pH .                                    |
|                                         | Depth sample taken m                   | Sampling method Analysis No               | /0                                      |

| Unit Number WATER WELL DATA FIELD SHEET Ref. No.                                                                  | SA 04 19 |
|-------------------------------------------------------------------------------------------------------------------|----------|
| Oli Hund. Fee./Town 20 AT                                                                                         |          |
| Landholder                                                                                                        |          |
| Latitude/East Longitude/North Type Zone Acc.  Basin  45  52  60  63  Basin                                        |          |
| Situation of Well                                                                                                 |          |
| DRILLING DATA (See over for Aquifer Data)                                                                         |          |
| Date Driller(s) Date Drilled: From                                                                                | . to 17  |
| Method used                                                                                                       |          |
| Rig operated by Purpose Status                                                                                    |          |
| Depth Drilled                                                                                                     | 29 31 33 |
| Casing Yes From                                                                                                   | 43 44    |
| From m to m Diameter Type                                                                                         | 5056     |
| From m to m Diameter                                                                                              | 57 61    |
| Screen/Slotted Liner: Present? No Core Library No 1.1.1.1.1 Logging by                                            | 69 70    |
| Screen/Slotted Liner Type Material                                                                                |          |
| Interval: From m to m to 71                                                                                       | 76       |
| O4 Samples obtained                                                                                               | 17       |
| Analyses available                                                                                                | 21       |
| MOST RECENT DATA                                                                                                  | F        |
| 0.7 Total depth m 17 23 Date 24 SWD m 32 37 D                                                                     | ate 38   |
| Supply: Flowing? Flow Rate Method measured                                                                        | 46 51    |
| Supply method                                                                                                     |          |
| Power source                                                                                                      |          |
| Column diameter Drawdown                                                                                          | hrs. 54  |
| Date of Test                                                                                                      |          |
| Sampling Method Depth sample taken                                                                                |          |
| Analysis Results: Field Conductivity µm @ °C    Conductivity/Salinity   PH   70   70   70   70   70   70   70   7 |          |
| Date 73 80 AMDEL No                                                                                               |          |
| 17 [18]                                                                                                           |          |
| 24 30                                                                                                             | •        |
| 36 50 60 69                                                                                                       | i i      |
| Aerial Photo No. 1 Accuracy of Identification                                                                     | 144 93   |

| Data                                  | Rom                                   | 5M.L.             | <i>466,</i>                             | Envelope                              | 1506,                           | О.М.          | 951/                                  | 7.0         |
|---------------------------------------|---------------------------------------|-------------------|-----------------------------------------|---------------------------------------|---------------------------------|---------------|---------------------------------------|-------------|
|                                       |                                       |                   |                                         |                                       |                                 |               |                                       |             |
| Sau                                   | uple A                                | asit!             |                                         |                                       |                                 |               |                                       |             |
|                                       | <b>7</b> .                            |                   | 0 60                                    | <b>1</b> 0                            |                                 |               |                                       |             |
| · · · · · · · · · · · · · · · · · · · | 1/2                                   | . ۲۰۰۰ ا          | 19/04                                   | b                                     |                                 |               | , ,                                   | ,           |
|                                       | warin u                               |                   | ····p                                   | <b>6</b>                              |                                 |               |                                       |             |
|                                       |                                       |                   |                                         | · · · · · · · · · · · · · · · · · · · |                                 |               |                                       |             |
|                                       |                                       |                   |                                         |                                       | · · · · · · · · · · · · · · · · |               |                                       |             |
|                                       |                                       |                   |                                         |                                       |                                 |               |                                       |             |
|                                       |                                       |                   |                                         |                                       |                                 |               |                                       |             |
|                                       | 4.5 6 6 6 6 6 6 6 6 6 6 6             |                   | * • • • • • • • • • • • • • • • • • • • |                                       |                                 |               |                                       |             |
| ORIGINAL DATA                         |                                       |                   |                                         |                                       |                                 |               |                                       |             |
|                                       | Unit Number                           | <del></del>       |                                         |                                       |                                 |               |                                       |             |
| 0,6 Rep                               | peated on each card                   | 16                |                                         |                                       |                                 |               |                                       |             |
|                                       | Supply method                         |                   | . • • • • • •                           | Method of Measure                     | • • • • • • • • •               |               |                                       | 17 18       |
|                                       | e e e e e e e e e e e e e e e e e e e | Duration of Test. |                                         | . lighthours                          |                                 |               | · · · · · · · · · · · · · · · · · · · |             |
| 1st. Aquifer:                         | Depth water cut                       | m                 | SWD                                     |                                       | m                               | 23            |                                       | 29          |
|                                       | Drawdown                              | , . , m           | Supply .                                |                                       | • • • •,                        | 34            |                                       |             |
|                                       | Conductivity/Salini                   | ty                | Aquifer                                 | developed?                            | •. • • •                        | 40            | _                                     | pH 48       |
|                                       | Depth sample taken                    | m                 | Sampling                                | method                                |                                 | Analy         | sis No.                               |             |
| 2nd. Aquifer:                         | Depth water cut                       | m⁄                | SWD                                     |                                       | . <b>m</b>                      | 51            | 50                                    |             |
|                                       | Drawdown                              | m                 | Supply .                                |                                       | * * * * * >                     | 62            |                                       | J<br>7      |
|                                       | Conductivity/Salini                   | ty                | Aqui fer                                | developed?                            |                                 | 68            | 74 7                                  | pH 76       |
| 0.6                                   | Depth sample taken                    | m                 | Sampling                                | method                                |                                 | Analy         | sis No                                |             |
|                                       | Depth water cut                       | . m               | SWD                                     |                                       | m                               |               |                                       |             |
| Sra. Aquiter.                         | •                                     |                   |                                         |                                       |                                 | 23            |                                       | 8 29        |
|                                       | Drawdown                              |                   |                                         |                                       | 1. *                            | 34            | $\frac{1}{3}$                         | <u> </u>    |
|                                       | Conductivity/Salini                   | . *               |                                         | developed?                            |                                 | 40 Analy      | 46 4                                  | _l pH       |
| 4th. Aquifer:                         | Depth sample taken  Depth water cut   |                   |                                         | , method 2                            |                                 | 51            | <u> </u>                              |             |
|                                       | Drawdown                              |                   | Supply .                                |                                       |                                 |               | ֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 5/<br>      |
|                                       |                                       |                   |                                         | developed?                            |                                 | 62            |                                       | /<br>] pH . |
|                                       | Conductivity/Salin Depth sample taken |                   |                                         | g method                              |                                 | 68<br>. Analy | 74 7<br>sis No                        | 5 76        |

| Unit                 | Number           | WATER                  | WELL              | DATA                        | FIELD               | SHEET                                            | Ref.                 | No. SA               | 04 20                                 |
|----------------------|------------------|------------------------|-------------------|-----------------------------|---------------------|--------------------------------------------------|----------------------|----------------------|---------------------------------------|
| 0 1 3 Repeated       | on each card     | Hund.                  | <i></i>           |                             | 17                  | Sec./Town                                        | 20                   | Allot. 24            | Bore 27                               |
| Landholder           | ٠                | a * 35 * * 25 *        |                   | Address                     |                     |                                                  |                      |                      |                                       |
| Latitude/East        | Longitude/No     | Co-ord.<br>orth Type 2 | Zone Acc.         |                             |                     | 4                                                |                      |                      |                                       |
|                      |                  |                        |                   | Basin                       |                     |                                                  |                      |                      |                                       |
| Situation of Well    |                  |                        |                   |                             |                     |                                                  |                      |                      |                                       |
|                      | (See over for Ac | uifer Data)            |                   |                             |                     | å                                                |                      |                      |                                       |
| 03 Driller(s) .      |                  |                        |                   | Ď                           | ate Drilled: Fr     | rom                                              |                      | to 17                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                      |                  |                        |                   | M                           | ethod used          |                                                  | •<br>• • • • • • • • | . و دکار در در د<br> | 25                                    |
| Rig operated by      |                  |                        | Purpose           |                             | Statı               | ıs                                               | '.<br>•••••          |                      | 31 33                                 |
| Depth Drilled        | п                | n Angle                |                   | , Но1                       | e Diameter          |                                                  |                      | 35                   | 41 42                                 |
| Casing Yes From      | π                | to                     | m                 | Diameter                    | <u></u>             | Type                                             |                      | 43                   | 44                                    |
| From                 |                  | ı to.,                 | m                 | Diameter                    |                     | Type                                             | ī <sub>.</sub>       | 50                   | 56                                    |
| From                 | .,, <b></b>      |                        | . , , m           | Diameter                    |                     | Type                                             |                      | 57                   | 61                                    |
| Screen/Slotted Liner |                  | lo 62 Cor              | e Library         | No 63                       | Logg.               | ing by                                           |                      |                      | 69 70                                 |
| Screen/Slotted Li    | ner Type         |                        |                   | Mater                       | ial                 |                                                  |                      |                      | ·····                                 |
|                      | Interval:        | From                   |                   | m                           | to                  |                                                  | m <u> </u><br>71     | 76                   | لئيب                                  |
| O4 Samples obta      | ained            |                        |                   |                             |                     |                                                  |                      |                      |                                       |
| Analyses ava         | ailable,         |                        |                   |                             | <del></del>         |                                                  |                      |                      |                                       |
| MOST RECENT DA       |                  |                        | <del></del>       |                             |                     | <del>(                                    </del> | - h .                | ·<br>                |                                       |
| O7 Total depth       | m 17             | Da<br>23 Da            | ate               | لبب                         | SWD                 | m                                                | , , M<br>37          | Date 38              |                                       |
| Supply: Flowing?     |                  |                        |                   |                             | Metho               | d measured                                       |                      |                      | 51                                    |
| Supply method        | ,                | . Type                 |                   | . Yield                     |                     | Method                                           | l measured           |                      | 52                                    |
| Power source         |                  |                        | .Intake dep       | th                          | . , <b> m</b>       | Pump d                                           | liameter .           |                      | 53                                    |
| Column diamet        | ter              |                        | , ,               | <del></del>                 |                     |                                                  | on of Test           |                      | hrs. 54                               |
|                      | Date o           | f Test /.              | /   <b>9</b>   57 | Status .                    | * * * * * * * * * * | 60                                               | <del></del>          |                      |                                       |
| Sampling Met         | hod              |                        | Depth samp        | le taken                    | <sub>.</sub> m      | 62                                               |                      |                      | * .                                   |
| Analysis Results: F  | ield Conductivi  | ty                     | μm (              | ·                           | oc                  | N                                                |                      |                      |                                       |
| 63<br>Date           | Conductivity     | 6                      | 9                 | OH 10<br>70<br>Deptmt 1. No | ;                   | * 1.                                             |                      |                      |                                       |
| 02                   | 80<br>ting       |                        |                   | Bore Folder                 |                     |                                                  |                      |                      |                                       |
| Permit No. 24        |                  | Reference              | No. S.A.C         | 4,20                        |                     |                                                  |                      |                      |                                       |
| 36                   |                  | 50                     | 11111             | 60                          |                     | 69                                               |                      |                      |                                       |
| Aerial Photo No.     | 73               | Accurac                | y of Identif      | ication                     | ,                   |                                                  |                      |                      |                                       |
| Compiled             | /3               | ou<br>Codina           | Check             |                             |                     |                                                  |                      | cality Plan          | 1                                     |

|                                       |                                    |                           |       |                                            |                                       | * * * * * * * * * * * *                |                    |                |             |
|---------------------------------------|------------------------------------|---------------------------|-------|--------------------------------------------|---------------------------------------|----------------------------------------|--------------------|----------------|-------------|
| Data                                  | Lom                                | 5.M.L                     | . +66 | Envelop                                    | e 1500                                | 6, Du                                  | 951/               | 70             |             |
|                                       | *                                  | * »                       |       | <i>[</i>                                   | · · · · · · · · · · · · · · · · · · · | ,* .<br>                               |                    |                |             |
| <u> </u>                              | ample                              | Ron H                     | ts.   |                                            |                                       |                                        |                    | • • • • •      |             |
| *                                     | - in poor                          |                           |       | ٠                                          |                                       |                                        |                    | • • • •        |             |
| • • • • • • • •                       | / / /                              |                           |       | ppin.                                      | .,                                    |                                        |                    |                |             |
|                                       | Viva                               | aura                      |       | pp                                         |                                       | ,                                      |                    | • • •          |             |
|                                       |                                    |                           |       | ·<br>· • • • • • • • • • • • • • • • • • • |                                       | • • • • • • • • •                      |                    |                |             |
|                                       | ·                                  | *******                   |       |                                            | •••••                                 |                                        |                    |                |             |
|                                       |                                    | ******                    | ,     |                                            |                                       |                                        |                    |                |             |
|                                       |                                    |                           |       |                                            |                                       | ************************************** |                    |                |             |
| ORIGINAL DATA                         | Unit Number                        |                           |       |                                            |                                       |                                        | e.                 |                |             |
| 0.6 Re                                | peated on each ca                  | ard 16                    | K.    |                                            |                                       |                                        |                    |                |             |
|                                       | Supply method .                    |                           |       | · · · · · · · · · · · · · · · · · · ·      | of Measure                            | ,                                      |                    |                | 17 18       |
|                                       |                                    | Duration of               | Test  | 19                                         | hours                                 |                                        |                    | Sa di          | <del></del> |
| lst. Aquifer:                         | Depth water cut                    |                           | m SW  | ID                                         | m                                     | , et et                                | 23                 | 28             | 29          |
|                                       | Drawdown                           |                           | m Su  | apply                                      |                                       | <del>[</del>                           | 34                 | 39             |             |
|                                       | Conductivity/Sal                   |                           |       |                                            | ?                                     | 40                                     | 46                 | 47             | pH 48       |
| 2nd. Aquifer:                         | Depth sample tak  Depth water cut  |                           |       |                                            | m                                     | * * 4: * 4 * *                         |                    | M              |             |
| · · · · · · · · · · · · · · · · · · · | Drawdown                           |                           |       | ipply,                                     |                                       |                                        | 51                 | 56<br>[]       | 57          |
|                                       | Conductivity/Sal                   | inity                     |       | quifer developed                           | ?                                     | 68                                     | 62                 | 67             | pH .        |
| <u> </u>                              | Depth sample tak                   | en                        | m Sa  | ampling method .                           |                                       | , , ,                                  | Analysis No.       |                |             |
| 0,6                                   |                                    |                           | 601   |                                            |                                       |                                        | •                  | M              |             |
| ard, Aquiter:                         | Depth water cut                    |                           |       |                                            | m                                     |                                        | 23                 | 28             | 29          |
|                                       | Drawdown                           |                           |       |                                            | ?                                     |                                        | 34                 | 39             | рН          |
| ± 45                                  | Conductivity/Sal  Depth sample tak |                           |       | •                                          |                                       | 40                                     | 46<br>Analysis No. | 47             | 48          |
| 4th. Aquifer:                         | Depth water cut                    | · · · · · · · · · · · · · | m SW  | ID                                         | m                                     |                                        | 51                 | <b>M</b><br>56 | 57          |
|                                       | Drawdown                           |                           | m Su  | upply                                      |                                       |                                        | 62                 | 67             |             |
|                                       | Conductivity/Sal                   | linity                    | Ac    | quifer developed                           | ?                                     | 68                                     | 74                 |                | pH 76       |
|                                       | Depth sample tak                   | ken                       | m Sa  | ampling method .                           |                                       |                                        | Analysis No.       |                |             |

| Unit Number WATER WELL DATA FIELD SHEET Ref No. SA 04 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 1 3 Repeated on each card 16 Hund. Sec./Town 20 Allot. Bore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                      |
| Landholder Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| Co-ord.<br>Latitude/East Longitude/North Type Zone Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 45 52 60 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Situation of Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| <del>'</del> ' <sub>[''</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                             |
| Method used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | لبب                                     |
| Rig operated by Purpose Status 29 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                      |
| Depth Drilled m Angle Hole Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Casing Yes From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 42                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>7                                   |
| From m to m Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                      |
| From m to m Diameter Type Type 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                                      |
| Screen/Slotted Liner: Present? No Core Library No Logging by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| Screen/Slotted Liner Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| Interval: From m to m 71 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ]                                       |
| O4 Samples obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Analyses available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| MOST RECENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | لــــــــــــــــــــــــــــــــــــــ |
| 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| i de la companya del companya de la companya de la companya del companya de la companya del la companya de la c |                                         |
| Supply: Flowing? Flow Rate Method measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51                                      |
| Supply method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 52                                    |
| Power source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| Column diameter Drawdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| Date of Test / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                       |
| 5/ 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| Sampling Method Depth sample taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | į.                                      |
| Analysis Results: Field Conductivity μm @ ος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| Conductivity/Salinity by pH 70  Date 5A.M. 71 AMDEL No. Deptmtl. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| 73 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| Security Rating Bore Folder No. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| Permit No. Reference No. SA.O.4.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| 36 50 60 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Aerial Photo No. Zanation Accuracy of Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                       |
| 73 80  Compiled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

| Q               | lata from s.M.L                       | . 466 Europe 150      | 6, D.M. 951/70                          |
|-----------------|---------------------------------------|-----------------------|-----------------------------------------|
| ·····           | ande Results.                         |                       |                                         |
|                 |                                       |                       |                                         |
| • • • • • • • • |                                       | 10ppm                 |                                         |
|                 | Marinn 5                              | to ppm                | ······································  |
|                 |                                       |                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                 |                                       |                       |                                         |
|                 |                                       |                       |                                         |
|                 | · · · · · · · · · · · · · · · · · · · | · . ,                 |                                         |
|                 |                                       |                       |                                         |
| ORIGINAL DATA   | Unit Number                           |                       |                                         |
| 0,6 , , , , , 1 | peated on each card 16                | •                     |                                         |
| <u> </u>        | Supply method                         | Method of Measure     |                                         |
|                 | Duration of Test                      | hours                 | 1/ 10                                   |
| total Acod from | •                                     | 19<br>SWDm            | M                                       |
| ist. Aquiter:   | : Depth water cut                     |                       | 23 28 29                                |
|                 | Drawdown m                            | Supply                | 34 39                                   |
|                 | Conductivity/Salinity                 | Aquifer developed?    | 46 47 pH 48                             |
|                 | Depth sample taken m                  | Sampling method       | Analysis No.                            |
| znd. Aquiter:   | Depth water cut m                     | SWD m                 | 51 56 57                                |
|                 | Drawdown m                            | Supply                | 62 67                                   |
|                 | Conductivity/Salinity                 | Aquifer developed? 68 | 74 75 pH 76                             |
| 0.6             | Depth sample taken m                  | Sampling method       | Analysis No                             |
| 3rd. Aquifer:   | Depth water cut                       | SWD m                 | 23 28 29                                |
|                 | Drawdown m                            | Supply                | 34 39                                   |
|                 | Conductivity/Salinity                 | Aquifer developed?    | DH DH                                   |
|                 | Depth sample taken m                  | Sampling method       | 46 47 48 Analysis No                    |
| 4th. Aquifer    | : Depth water cut m                   | SWD m                 | 51 56 57                                |
|                 | Drawdown m                            | Supply                | 62 67                                   |
|                 | Conductivity/Salinity                 | Aquifer developed?    | DH DH                                   |
|                 | Depth sample taken m                  | Sampling method       | 74 75 76<br>Analysis No                 |

Locality Plan

FORM DP 18A DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA 2 WATER WELL DATA FIELD SHEET Ref.No. 5A 04 22 Sec./Town Allot. Bore Hund. . . . . Co-ord.
Longitude/North Type Zone Acc. Basin. DRILLING DATA (See over for Aquifer Data) Date Drilled: From ... Method used ... Rig operated by Purpose Depth Drilled .... m Angle . . . . . . . . . . . . . Hole Diameter . . . ..... m to..... m Diameter ..... Type ..... Core Library No Screen/Slotted Liner: Present? No Logging by . . Screen/Slotted Liner Type. . Samples obtained . . . . . . . Analyses available..... MOST RECENT DATA 7 23 Date 24 Method measured .... Pump diameter Column diameter . . . . . . . . . . . . . Drawdown . . . . Duration of Test .... hrs. Date of Test ... Sampling Method ...... Depth sample taken ...... Analysis Results: Field Conductivity . . . . . . Conductivity/Salinity ..... Dep tmt 1. No. . AMDEL No.... Security Rating . . . . . Bore Folder No. Reference No. S. A 04,212 Permit No.

Accuracy of Identification....

..... Coding Check.

Compiled . .

| D.t.                                                                                                                                                                      | 2 from S.M.L.                         | 466, Einebope.     | 1506                         | 0.4      | 951/70       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|------------------------------|----------|--------------|
|                                                                                                                                                                           | •                                     |                    |                              |          |              |
|                                                                                                                                                                           | uple Results.                         |                    |                              |          |              |
| ,>q                                                                                                                                                                       |                                       |                    | <del></del>                  |          |              |
|                                                                                                                                                                           |                                       | ppb                | ·<br>• • • • • • • • • • • • |          |              |
| ORIGINAL DATA  Unit Nu  O.6  1 3 Repeated on Supply me  Lst. Aquifer: Depth wat  Drawdown  Conductiv  Depth sam  Prod. Aquifer: Depth wat  Drawdown  Conductiv  Conductiv | Mrs.in 5                              |                    |                              |          |              |
|                                                                                                                                                                           |                                       |                    |                              |          |              |
|                                                                                                                                                                           |                                       |                    |                              |          |              |
| · · · · · · · · ·                                                                                                                                                         |                                       |                    |                              |          |              |
|                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · | ,                  |                              |          |              |
|                                                                                                                                                                           |                                       |                    |                              |          |              |
|                                                                                                                                                                           | Unit Number                           |                    |                              |          |              |
| 0.6 1 1 Re                                                                                                                                                                | peated on each card 16                |                    |                              |          |              |
|                                                                                                                                                                           | Supply method                         | Method of Measure  |                              |          | 17 18        |
|                                                                                                                                                                           | Duration of Test                      | hours              |                              |          |              |
| lst. Aquifer                                                                                                                                                              | Depth water cut m                     | SWD m              | 23                           | M 28     | 29           |
|                                                                                                                                                                           | Drawdown m                            | Supply             | 34                           | 30       |              |
|                                                                                                                                                                           | Conductivity/Salinity                 | Aquifer developed? | 34                           |          | pH •         |
|                                                                                                                                                                           | Depth sample taken m                  | Sampling method    | 40<br>Analy                  | 46 4/    | 48           |
| 2nd. Aquifer:                                                                                                                                                             | Depth water cut m                     | SWD m              | 51                           | M 56     | 57           |
|                                                                                                                                                                           | Drawdown m                            | Supply             | 62                           | 67       |              |
|                                                                                                                                                                           | Conductivity/Salinity                 | Aquifer developed? | 60                           | 74 75    | pH 76        |
| i                                                                                                                                                                         | Depth sample taken m                  | Sampling method    | Analy                        | sis No.  |              |
| 0,6                                                                                                                                                                       |                                       | · ·                | <u> </u>                     |          |              |
| 3rd. Aquifer                                                                                                                                                              | Depth water cut m                     | SWD m              | 23                           | 28       | 29           |
|                                                                                                                                                                           | Drawdown m                            | Supply             | 34                           | 39       | <u> </u>     |
| **                                                                                                                                                                        | Conductivity/Salinity                 | Aquifer developed? | 40                           | 46 47    | pH 48        |
|                                                                                                                                                                           | Depth sample taken m                  | Sampling method    | Analy                        | vsis No. | •            |
| 4th. Aquifer                                                                                                                                                              | : Depth water cut                     | SWD m              | 51                           | 56       | 57           |
|                                                                                                                                                                           | Drawdown m                            | Supply             | 62                           |          | <del> </del> |
|                                                                                                                                                                           | Conductivity/Salinity                 | Aquifer developed? | 68                           | 74 75    | рН           |
|                                                                                                                                                                           | Depth sample taken m                  | Sampling method    | Analy                        | sis No   |              |

| Unit Number                                                 | ATER WELL D              | ATA FIELD S        | HEET Ref. No.      | SA 04 23                          |
|-------------------------------------------------------------|--------------------------|--------------------|--------------------|-----------------------------------|
| 0,1                                                         | Hund.                    | sa                 | ec./Town A1        |                                   |
| 1 3 Repeated on each card 16                                |                          | 17                 | 20                 | 24 27                             |
| Landholder                                                  | Co-ord.                  | ess                |                    | • • • • • • • • • • • • • • • • • |
| Latitude/East Longitude/North  • • •                        |                          |                    |                    |                                   |
| 45 . 52                                                     | 60 63                    | n                  |                    |                                   |
| Situation of Well                                           |                          |                    |                    |                                   |
| DRILLING DATA (See over for Aquife  Driller(s)              | •                        | Date Drilled: From |                    | to                                |
| 1.                                                          |                          |                    |                    | 17                                |
|                                                             |                          | Method used        |                    | 25                                |
| Rig operated by                                             | Purpose                  | Status             |                    | 29 31 33                          |
| Depth Drilled m                                             | Angle                    | Hole Diameter      | ,                  | 35 41 42                          |
| Casing Yes From m to                                        | ) m Di                   | ameter Typ         | pe                 |                                   |
| From m to                                                   | )                        | ameterTy           | pe                 | 43 44                             |
| From m to                                                   |                          |                    |                    | 50 56                             |
| Yes                                                         |                          | <del></del>        |                    | 57 61                             |
| Screen/Slotted Liner: Present? No Screen/Slotted Liner Type | 02                       | 63 Logging         |                    | 09 70                             |
|                                                             | *                        | m to               |                    |                                   |
| O4 Samples obtained                                         |                          | *                  | - 71               | 76                                |
| 1                                                           |                          | *                  | , ., , . , . , . , | 17                                |
| Analyses available                                          |                          |                    |                    | 1                                 |
| MOST RECENT DATA  O.7                                       | M Date                   | SWD                | m M n              | 240                               |
| O.7 Total depth m 17                                        |                          |                    |                    | 38                                |
| Supply: Flowing? Flo                                        | ow Rate                  | Method m           | easured            | 46 51                             |
| Supply method                                               | pe,                      | eld                | . Method measured  |                                   |
| Power source                                                | Intake depth .           | ,                  | Pump diameter      |                                   |
| Column diameter                                             | Drawdown                 |                    | Duration of Test   | hrs. 54                           |
| Date of Te                                                  | st /1 9                  | Status             | ] [                |                                   |
| Sampling Method                                             | · ·                      | ٦                  | ]                  |                                   |
| Analysis Results: Field Conductivity                        |                          | 6                  |                    |                                   |
| Conductivity/Sal                                            | inity 69 pH 7            | 0                  | N<br>              |                                   |
| Date 73 80 AMDR                                             | EL No De                 | ptmt1. No          | . <del> </del>     |                                   |
| Security Rating                                             | 1/                       | Folder No. 18      | J                  |                                   |
| Permit No. 24                                               | Reference No. S.A.O.4.   | 2.3                | :                  |                                   |
| 36                                                          | 50                       | 60 6               | <u> </u>           |                                   |
| Aerial Photo No.                                            | Accuracy of Identificati | on                 | <u>.</u><br>       | 1                                 |
| 73 80                                                       | )<br>Coding Check        |                    | 11                 | itu Blan                          |

| Da                  | ta from S.M.L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 466, Envelope 1506, D.M. 9  | 57/70      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
|                     | Unit Number  3 Repeated on each card 16  Supply method Method of Measure 17 18  Duration of Test 19 hours  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 34 37 pH 48  Conductivity/Salinity Aquifer developed? 40 Analysis No.  Aquifer: Depth water cut m SWD m 51 65 57  Drawdown m Supply 68 74 75 pH 76  Aquifer: Depth sample taken m Sampling method Analysis No.  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown Supply 68 74 75 pH 76  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 46 47 pH 48  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 46 47 pH 48  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 46 47 pH 48  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 46 47 pH 48  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 67 65 57  Depth sample taken m Sampling method Analysis No.  Aquifer: Depth water cut m SWD m 23 28 29  Drawdown m Supply 67 68 57  Depth sample taken m Sampling method Analysis No.  Aquifer: Depth water cut m SWD m 51 56 57  Depth sample taken m Sampling method Analysis No.  Aquifer: Depth water cut m SWD m 51 56 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |            |
| Sq                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
|                     | Ovanuim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20 ppm<br>5 ppb           |            |
|                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
|                     | . , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
|                     | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |            |
| IDICINAL DATA       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
| 0,6                 | 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |            |
| 1 3 Re              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method of Measure           |            |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 17 18      |
|                     | Sinhl Data  Unit Number  Signature  Supply method of Measure  Duration of Test  Supply method  Diracdoan  Supply  Conductivity/Salinity  Aquifer dawaloped?  Diracdoan  Supply  Conductivity/Salinity  Aquifer dawaloped?  Conductivity/Salinity  Conductivity/Salinity  Aquifer dawaloped?  Conductivity/Salinity  Conductivity/Salinity  Aquifer dawaloped?  Conductivity/Salinity  Conductivity/Salinit |                             |            |
| lst. Aquifer:       | Depth water cut m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SWD                         | 8 29       |
|                     | Drawdown m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Supply                      | 9          |
|                     | Conductivity/Salinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquifer developed?          | рн 48      |
|                     | Depth sample taken m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |            |
| 2nd. Aquifer:       | Depth water cut m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |            |
|                     | Drawdown , m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Supply                      | 7          |
|                     | Conductivity/Salinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquifer developed?          | pH 76      |
| ==1                 | Depth sample taken , m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampling method Analysis No | -<br>      |
| <b>0</b> , <b>6</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |            |
| Brd. Aquifer:       | Depth water cut,, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SWD                         | 8 29       |
|                     | Drawdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Supply ,                    | 9          |
|                     | Conductivity/Salinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquifer developed?          | 7 pH 48    |
|                     | Depth sample taken m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | <u> </u>   |
| 4th. Aquifer:       | Depth water cut m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SWD                         | 57         |
|                     | Drawdown m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Supp ly                     | ]<br>7<br> |
|                     | Conductivity/Salinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aquifer developed?          | pH 76      |
|                     | Depth sample taken m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling method Analysis No |            |

|                 |              | Unit Nur    | nber            | WATER                         | WELL           | . DATA                                | FIELD                                   | SHEET                                 | Ref.      | 10. SA 0                              | <del>1</del> 26                                    |
|-----------------|--------------|-------------|-----------------|-------------------------------|----------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------|---------------------------------------|----------------------------------------------------|
| 0,1             | 3 Rai        | peated on   | each card       | Hund.                         |                |                                       |                                         | Sec./Town                             |           | T                                     | Bore 27                                            |
| المستال         |              | •           |                 |                               |                |                                       |                                         |                                       |           |                                       | , 21                                               |
| Landr           |              |             |                 | Co-ord.                       |                | Address                               |                                         | ,                                     |           |                                       |                                                    |
| ſ               | Latitud      | le/East     | Long1tude/      | lorth Type                    | Zone Acc.      | D                                     |                                         |                                       |           |                                       |                                                    |
| 4               | 15           | 52          |                 | 6D                            | 63             | Basin,                                |                                         |                                       |           | · · · · · · · · · · · · · · · · · · · |                                                    |
|                 |              | fWell       |                 | quifer Data)                  |                |                                       |                                         |                                       |           |                                       |                                                    |
| 0,3             |              |             |                 |                               | <b></b>        | . [                                   | Date Drilled: F                         | rom                                   |           | to                                    |                                                    |
| 1               |              |             |                 |                               | *              |                                       | lethod used                             |                                       |           | 17                                    | 1 1 1                                              |
| D4              |              |             |                 |                               |                |                                       |                                         |                                       |           |                                       | 25                                                 |
|                 |              |             |                 |                               |                |                                       | Stat                                    |                                       |           | 29                                    | 31 33                                              |
| Depth           | Drilled      |             |                 | m Angle                       |                | Но1                                   | e Diameter                              |                                       |           | 35                                    | 41 42                                              |
| Casing          | Yes<br>No Fr | rom         | 1               | m to                          | m              | Diameter                              |                                         | . Type                                |           | 43 44                                 | 4                                                  |
|                 | Fr           | om          | 1               | m to                          | m              | Di ame te r                           | • • • • • • • • • • • • • • • • • • • • | Type                                  |           | 50                                    | 56                                                 |
|                 | Fr           | om          |                 | m to.,                        | m              | Diameter                              |                                         | . Type                                |           | 57                                    |                                                    |
| Screen          | /Slotted     | l Liner: Pr | resent?         | es Cor                        | re Library     | No [                                  | Logg                                    | ing by                                |           |                                       |                                                    |
| Scree           | n/Slott      | ed Liner    | Туре            | ~-                            |                | • •                                   | ial                                     |                                       |           |                                       | 69 70                                              |
|                 |              | I           | nterval:        | From                          |                | m                                     | to                                      |                                       | m         | 76                                    | لنب                                                |
| 0.4             | Samp1        | es obtaine  | d               |                               |                |                                       |                                         |                                       |           |                                       | 17                                                 |
| •               | Analys       | ses availa  | ble             |                               | ,              |                                       |                                         |                                       |           |                                       |                                                    |
| !               |              | ENT DATA    |                 |                               |                |                                       |                                         |                                       |           | 21                                    |                                                    |
| $\frac{0.7}{1}$ | otal der     | oth         | . m 17          | 23 D                          | ate            |                                       | SWD                                     | m                                     | ; M       | Date 38                               | <del>1   1   1   1   1   1   1   1   1   1  </del> |
|                 |              |             |                 |                               |                |                                       | Metho                                   | od measured .                         |           |                                       | 51                                                 |
| Supply          | method       |             | . , ,           | Type                          |                | ·· Yield ··                           |                                         | Method                                | measured. |                                       |                                                    |
|                 | Power s      | source      |                 |                               | Intake de      | pth                                   | m                                       | Pumo di                               | iameter   |                                       | 52                                                 |
|                 |              |             |                 |                               |                |                                       |                                         | •                                     |           | • • • • • • •                         | 53                                                 |
|                 | COTURS       | undmeter    |                 |                               |                |                                       |                                         |                                       |           |                                       | 54                                                 |
|                 |              |             | Date (          | of Test/.                     | 57             | Status                                |                                         | 60                                    |           |                                       |                                                    |
|                 |              |             |                 |                               |                |                                       |                                         | []  <br>62                            |           |                                       | <b>k</b>                                           |
| Analys          | is Resul     |             |                 | ity                           | 7              | рн                                    | º̞̞C                                    | N<br>I                                |           |                                       |                                                    |
|                 | 63<br>Date   | 7.4.1       |                 | //Salinity L<br>6<br>AMDEL No | 9              | 70                                    | o <b>.</b>                              |                                       |           |                                       |                                                    |
| 02              |              | 73          | 80              |                               |                |                                       | No. 18                                  |                                       |           |                                       |                                                    |
| . Pe            | rmit No.     |             |                 | Reference                     | No. SA         |                                       | 19                                      |                                       |           |                                       |                                                    |
|                 |              | 24          |                 | ,                             | 30             | · · · · · · · · · · · · · · · · · · · |                                         |                                       |           |                                       | •                                                  |
| _               | 36           |             |                 | 50                            |                | 60                                    | <del></del>                             | 69                                    |           |                                       | ı                                                  |
|                 | ial Phot     | 73          | . 1 - 7 - 1 - 1 | 80                            |                |                                       |                                         |                                       |           |                                       |                                                    |
| CUI             | باتاتان      |             |                 |                               | ωπ <b>-υ</b> Λ |                                       |                                         | · · · · · · · · · · · · · · · · · · · | — L0€     | cality Plan                           |                                                    |

| Σ                                           | lata from S.                              | M.L. 4            | 66, En | selope. 15                              | -06, E   | ).M 95                                  | 1/10       |
|---------------------------------------------|-------------------------------------------|-------------------|--------|-----------------------------------------|----------|-----------------------------------------|------------|
| Sa                                          | imple Result                              | <b>1</b>          |        |                                         |          |                                         |            |
|                                             | (Cu<br>(Ivanium                           | \$0. <sub>1</sub> | o ppm  |                                         |          | · · · · · · · · · · · · · · · · · · ·   |            |
|                                             |                                           |                   |        |                                         |          |                                         |            |
|                                             |                                           |                   |        | • • • • • • • • • • • • • • • • • • • • |          | · . · · · · · · · · · · · · · · · · · · |            |
|                                             | ·                                         |                   |        |                                         |          |                                         |            |
| ORIGINAL DATA  O 6   1   1   1   1   3   Re | Unit Number                               | *                 |        |                                         |          | •                                       |            |
|                                             | Supply method                             | on of Test        |        | of Measure                              |          |                                         | 17 18      |
| lst. Aquifer:                               | Depth water cut                           | m                 | 13     | m                                       | * *      | 23                                      | 28 29      |
|                                             | Drawdown                                  |                   | Supply |                                         |          | 34                                      | 39         |
|                                             | Conductivity/Salinity  Depth sample taken |                   |        | d?                                      | 40       | 46<br>Analysis No.                      | PH 48      |
| 2nd. Aquifer:                               | Depth water cut                           | m                 |        | , m                                     |          | 51                                      | 56 57      |
|                                             | Drawdown                                  | , ·               |        | d?                                      |          | 62                                      | 67<br>D pH |
| 0.6                                         | Depth sample taken                        |                   |        |                                         | 68       | Analysis No.                            | 75 /6      |
|                                             | Depth water cut                           | · m.              | SWĎ    | <b>n</b>                                |          | 23                                      | 28 29      |
|                                             | Drawdown                                  |                   |        |                                         | <u> </u> | 34                                      | 39         |
|                                             | Conductivity/Salinity  Depth sample taken |                   |        | d?                                      | 40       | Analysis No.                            | PH 48      |
| 4th. Aquifer:                               | Depth water cut                           | m                 | SWD    | m                                       |          | 51                                      | 56 57      |
|                                             | Drawdown                                  |                   |        | d?                                      |          | 62                                      | 67         |
|                                             | Conductivity/Salinity Depth sample taken  |                   |        |                                         | 68       | 74<br>Analysis No.                      | 75 76      |

| Unit Number WATER WELL DATA FIELD SHEET Ref. No. SA 04 25            | Ł.       |
|----------------------------------------------------------------------|----------|
| Oll Sec./Town Allot. Bor 17 Sec./Town 20 24                          |          |
| Landholder                                                           | 21       |
| Co-ord. Latitude/East Longitude/North Type Zone Acc.                 |          |
| 45 52 60 63 Basin                                                    |          |
| Situation of Well                                                    |          |
| DRILLING DATA (See over for Aquifer Data)                            |          |
| O3 Driller(s) Date Drilled: From to 17                               | لبب      |
| Method used                                                          | لبند     |
| Rig operated by         Purpose         Status         29         31 | 33_      |
| Depth Drilled                                                        | 41 42    |
| Casing Yes From m to m Diameter                                      |          |
| From m to m Diameter Type                                            | 56       |
| From m to m Diameter Type Type 57                                    | 61       |
| Screen/Slotted Liner: Present? No 62 Core Library No 1 Logging by    | 69 70    |
| Screen/Slotted Liner Type Material                                   | <u> </u> |
| Interval: From                                                       | J        |
| Samples obtained                                                     |          |
| Analyses available                                                   |          |
| MOST RECENT DATA                                                     |          |
| 0.7 Total depth m 17 23 Date 24 SWD                                  | أبلسب    |
| Supply: Flowing? Flow Rate Method measured                           |          |
| Supply method Type Yield Method measured                             | 52       |
| Power source                                                         | 53       |
| Column diameter                                                      | 54       |
| Date of Test                                                         |          |
| Sampling Method Depth sample taken m 62                              | -        |
| Analysis Results: Field Conductivity μm @                            |          |
| Date AMDEL No. Deptmtl. No.                                          |          |
| 73 80 Security Rating                                                |          |
| Permit No. 24                                                        |          |
| 36 50 60 69                                                          |          |
| Aerial Photo No. Accuracy of Identification                          | 1        |
| Commiled Coding Check                                                |          |

|               | D.t.            | -Rom                                  | S.M.L.                                | 466          | , Erveli                              | pe                | 1506                    | D.M.        | 951/70                                   |
|---------------|-----------------|---------------------------------------|---------------------------------------|--------------|---------------------------------------|-------------------|-------------------------|-------------|------------------------------------------|
|               | Sample          | Rent                                  |                                       |              |                                       | ******            |                         |             |                                          |
|               |                 | Cu.                                   |                                       | ppm          | • • • • • • • • • • • • • • • • • • • | • * • • • • *<br> |                         |             |                                          |
|               |                 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |              |                                       |                   |                         |             |                                          |
|               |                 |                                       |                                       | ·            |                                       | • • • • • •       |                         |             |                                          |
|               |                 |                                       |                                       |              |                                       |                   |                         |             |                                          |
| DRIGINAL DATA |                 |                                       |                                       |              |                                       |                   |                         |             |                                          |
| 0,6 1 Re      | Unit Number     | ard 16                                |                                       |              |                                       |                   |                         |             | ПП                                       |
|               | Supply method . |                                       | est                                   | Method of Me |                                       |                   | · · · · · · · · · · · · |             | 17 18                                    |
| lst. Aquifer: |                 |                                       |                                       |              |                                       |                   | 23                      | 28          | 29                                       |
|               |                 | linity                                |                                       | developed?   |                                       | 40                | 34                      | 39<br>16 47 | рН • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 2nd. Aquifer: |                 | ken                                   | •                                     | g method     | m                                     | ••••              | Analysis N              | 56          | 57                                       |
|               |                 | linity                                | ,,,                                   | developed?   |                                       |                   | 62                      | 67          | pH 76                                    |
| 0,6           | Depth sample ta | ken                                   | m Samplin                             | g method     |                                       |                   | Analysis N              | 0           |                                          |
| 3rd. Aquifer: |                 |                                       |                                       |              |                                       |                   | 23                      | 28          | 29                                       |
| e e           | Conductivity/Sa | linity                                | . Aqui fer                            | developed?   |                                       | 40                | 34                      | 39<br>16 47 | pH 48                                    |
| 4th. Aquifer: | •               | ken                                   |                                       | g method     | m                                     | ¥ •. •            | Analysis N              | 56          | 57                                       |
|               |                 | linity                                | ,                                     | r developed? |                                       | 68                | 62                      | 67          | pH 76                                    |
|               | Depth sample ta | ken                                   | m Samplir                             | ng method    |                                       |                   | Analysis N              | o <b>.</b>  |                                          |

| Unit Number WATER WEL                           | L DATA                                | FIELD                   | SHEET                                      | Ref.No. S                             | A 04 38                       |
|-------------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------|---------------------------------------|-------------------------------|
| 1 3 Repeated on each card 16                    |                                       | 17                      | Sec./Town 20                               |                                       |                               |
| Landholder                                      | Address                               |                         | *<br>• • • • • • • • • • • • • • • • • • • |                                       |                               |
| Latitude/East Longitude/North Type Zone Ac      | 7                                     |                         |                                            |                                       |                               |
| 45 52 60 63 Situation of Well                   | • .                                   |                         |                                            |                                       |                               |
| DRILLING DATA (See over for Aquifer Data)       |                                       |                         |                                            | _                                     |                               |
| 0.3 Driller(s)                                  | • • •                                 | Date Drilled: Fr        | nom                                        | to                                    | 17                            |
|                                                 |                                       | Method used             |                                            |                                       | 25                            |
| Rig operated by Purpose                         | · · · · · · · · · · · · · · · · · · · | Statu                   | ı <b>s</b>                                 | [                                     | 29 31 33                      |
| Depth Drilled m Angle                           | Но                                    | le Diameter             |                                            | 35                                    | M 41 42                       |
| Casing Yes From                                 | m Diameter                            |                         | Туре                                       | 43                                    | 44                            |
| From                                            | m Diameter                            | •••                     | Туре                                       | [                                     | j0 <u>56</u>                  |
| From m to                                       | m Diameter.                           |                         | Туре                                       | • * • • •                             | 57 61                         |
| Screen/Slotted Liner: Present? No 62 Core Libra | ary No                                | Loggi                   | ing by                                     | • • • • • • • • •                     | $\bigcap_{69}$ $\bigcap_{70}$ |
| Screen/Slotted Liner Type                       | Mater                                 | rial                    |                                            |                                       |                               |
| Interval: From                                  | , <b>m</b>                            | , to                    | *****                                      | m 71                                  | 7.6                           |
| Samples obtained                                |                                       |                         |                                            | • • • • • • • • • • •                 |                               |
| Analyses available                              |                                       | * * * * * * * * * * * * |                                            | 21                                    | <del></del>                   |
| MOST RECENT DATA                                | <del></del>                           |                         | <del></del>                                |                                       |                               |
| 0.7 Total depth m 7. 23 Date 24                 |                                       | SWD                     | m                                          | 37 Date 3                             | 8                             |
| Supply: Flowing? Flow Rate                      |                                       | Metho                   | d measured                                 | · · · · · · · · · · · · · · · · · · · | 46 51                         |
| Supply method Type                              | Yield                                 |                         | Method mea                                 | sured                                 | 52                            |
| Power source                                    | depth                                 | <b>m</b>                | Pump diame                                 | ter                                   | 53                            |
| , , , , ,                                       | vn                                    |                         | Duration o                                 | f Test                                | hrs. 54                       |
| Date of Test /                                  | Status<br>57                          | 5t ·                    | 60                                         |                                       | -                             |
| Sampling Method Depth s                         |                                       |                         | 62                                         |                                       |                               |
| Analysis Results: Field Conductivity            |                                       | °C                      | Ņ                                          |                                       |                               |
| Date TAN 71 AMDEL No                            | pH L                                  | lo                      |                                            |                                       |                               |
| 0.2 Security Rating                             | Bore Folder                           |                         |                                            |                                       |                               |
| Permit No. 24 Reference No. 30                  | A.O.43.8                              |                         |                                            |                                       |                               |
| 36 50                                           | 60                                    | 111111                  | 69                                         |                                       |                               |
| Aerial Photo No. 73 Accuracy of Iden            | ntification                           |                         |                                            |                                       |                               |
| Compiled Coding Check                           |                                       |                         | l                                          | Locality D                            | lan                           |

| Dorta from s.m.                                              | 466, Envelope 506, D.W. 951/20                                           |
|--------------------------------------------------------------|--------------------------------------------------------------------------|
| Sample Results.                                              |                                                                          |
|                                                              | 5.10 ppm<br>5 ppb                                                        |
| Mrasism                                                      | 5 ppb                                                                    |
|                                                              |                                                                          |
|                                                              |                                                                          |
|                                                              | ••••••••••••••••••••••••••••••••••••••                                   |
| ORIGINAL DATA Unit Number  0,6  1 3 Repeated on each card 16 |                                                                          |
| Supply method                                                | Method of Measure                                                        |
| 1st. Aquifer: Depth water cut m                              | SWD                                                                      |
| Drawdown m                                                   | Supply                                                                   |
| Conductivity/Salinity  Depth sample takenm                   | Aquifer developed?                                                       |
| 2nd. Aquifer: Depth water cut . , m                          | SWD                                                                      |
| Drawdown m                                                   | Supply                                                                   |
| Conductivity/Salinity                                        | Aquifer developed?                                                       |
| Depth sample taken m                                         | Sampling method Analysis No                                              |
| 3rd. Aquifer: Depth water cut m                              | SWD m                                                                    |
| Drawdown m                                                   | Supply                                                                   |
| Conductivity/Salinity                                        | Aquifer developed?                                                       |
| Depth sample taken m                                         | Sampling method                                                          |
| 4th. Aquifer: Depth water cut m  Drawdown m                  | SWD                                                                      |
|                                                              | Aquifer developed?                                                       |
| Conductivity/Salinitym                                       | 68       74       75       76         Sampling method       Analysis No. |

|             | Unit Number              | WATER                                 | WELL            | DATA F         | IELD S           | SHEET                                 | Ref.No. SA                               | 04 39        |
|-------------|--------------------------|---------------------------------------|-----------------|----------------|------------------|---------------------------------------|------------------------------------------|--------------|
| 0,1         | Repeated on each card    | Hund.                                 |                 |                | 17               | Sec./Town 20                          | A11ot                                    |              |
| Landhold    | ler                      |                                       | Ad              | dress          |                  |                                       |                                          |              |
| Lat         | titude/East Longitude/   | Co-ord.<br>North Type Zo              |                 |                |                  |                                       | es e                                     |              |
| 45          | 52                       |                                       | ПП              | sin            |                  |                                       | y ele ele ele ele ele ele ele ele ele el |              |
| Situati     | on of Well , B ,         |                                       |                 |                | ".<br>           |                                       |                                          |              |
|             | LLING DATA (See over for | •                                     |                 |                |                  |                                       | <br><del></del>                          | <del></del>  |
| 0,3 Dr      | iller(s)                 |                                       |                 | Date I         | Orilled: From    | ١                                     | to 17                                    | حليا المناسط |
|             |                          |                                       | • • • • • • • • | Method         | iused            | · · · · · · · · · · · · · · · · · · · | A A A A A A A A A A A A A                | 25           |
| Rig opera   | ted by                   |                                       | Purpose         |                | . Status         |                                       | 29                                       | 31 33_       |
| Depth Dri   | 11ed                     | m Angle.                              |                 | Hole Dia       | meter,           |                                       | 35                                       | M 41 42      |
| Casing N    | es From                  | m to                                  |                 | Diameter       |                  | ype                                   | 43                                       | 44           |
|             | From                     | m to                                  | m               | Diameter       | T                | ype                                   | 50                                       | 56           |
|             | From                     | m to                                  | <sub>.</sub> m  | Diameter       |                  | уре                                   |                                          | 57 _ 61      |
| Screen/S1   | otted Liner: Present?    | Yes Core                              | e Library No    | 63             | Loggin           | ą b <b>y</b>                          | * * * * * * * * * * * *                  | 69 70        |
| Screen/S    | lotted Liner Type        |                                       |                 | Material .     |                  |                                       |                                          |              |
|             | Interval:                | From                                  |                 | m to           |                  |                                       | m 71                                     | 76           |
| <b>04</b> s | amples obtained          |                                       |                 |                |                  |                                       |                                          | 17           |
| A           | nalyses available        |                                       |                 |                |                  | , . ,                                 |                                          |              |
|             | T RECENT DATA            | · · · · · · · · · · · · · · · · · · · |                 |                |                  | · · ·                                 |                                          | ·            |
| 0.7 Tota    | 1 depth m 17             | 23 Da1                                | te              | <del></del>    | SWD              | . m 32                                | M Date 38                                |              |
| Supply: F   | lowing?                  | Flow Rate                             |                 |                | Method           | measured                              |                                          | 46 51        |
| Supply me   | thod                     | Type                                  |                 | Yield          |                  | Method mea                            | sured                                    |              |
| Ро          | wer source               |                                       | .Intake depth   |                | m                | Pump diame                            | ter                                      | 53           |
| Co          | lumn diameter            | • • • • • • • • • • •                 | Drawdown        |                | . , . , <b>m</b> | Duration o                            | f Test                                   | hrs. 54      |
|             | Date                     | of Test                               | /19             | Status         |                  |                                       |                                          | <del> </del> |
| Sa          | umpling Method           | • • • • • • • • • • • • • • • • • • • | Depth sample    | taken          | m                | 62                                    |                                          | *            |
| Analysis    | Results: Field Conductiv | rity                                  | μm.@            |                | , oC             | N                                     |                                          |              |
| 63          | Conductivit              | 69                                    | рН              | 70 Deptmtl.No  |                  | +                                     |                                          |              |
| 02          | 73 80<br>Security Rating |                                       | П               | ore Folder No. |                  |                                       |                                          |              |
| Permi       | t No. 24                 | Reference                             | No. SA.04       | 439            | <del></del>      | ٠                                     |                                          |              |
|             | 36                       | 50                                    |                 | 60             | 1111             | 69                                    | ÷                                        |              |
| Aerial      | Photo No.                | Accuracy                              | of Identific    | ation          |                  |                                       |                                          |              |
| Compil      | rs<br>ed                 | ou<br>Coding C                        | herk            |                |                  |                                       | Locality Pl                              | an .         |

| De            | ta          | from                      | S.M.L          | 466        | . tivelge.        | 1506,                                 | DM S               | 957 /70                 |
|---------------|-------------|---------------------------|----------------|------------|-------------------|---------------------------------------|--------------------|-------------------------|
| So            | •           | . Per                     | _              | 0.30       | opn               |                                       |                    |                         |
|               |             | Uvan                      | www            | 10         | pph               |                                       |                    |                         |
|               |             |                           |                |            |                   |                                       |                    |                         |
| ORIGINAL DATA | Unit Num    | nber                      |                |            |                   |                                       |                    |                         |
| 1 3 Re        | peated on e | thod                      | ation of Test. |            | Method of Measure | • • • • • • • • • • • • • • • • • • • |                    | 17 18                   |
| lst. Aquifer: |             | r cut                     |                | SWD Supply |                   | m                                     | 23                 | 28 29                   |
|               |             | ty/Salinity               |                |            | method            | . 41                                  | 34<br>Analysis No  | 39<br>16 47 pH 48       |
| 2nd. Aquifer: |             | r cut                     |                |            |                   |                                       | 51                 | 56 57                   |
|               |             | ty/Salinity.              | m              |            | method            | 68                                    | 3 7<br>Analysis No | pH 76                   |
| O.6           | ·           |                           |                |            |                   |                                       | 23                 | 28 29                   |
|               | Conductivi  |                           | m              | Aqui fer o | developed? method | 40                                    | 34<br>Analysis No  | 39<br>p <sub>H</sub> 47 |
| 4th. Aquifer: | Depth wate  |                           | m              | SWD ,      |                   | m                                     | 51                 | 56 57 67                |
|               |             | ity/Salinity<br>ole taken | m              | ·          | method            | 61                                    | B 7<br>Analysis N  | pH 76                   |

|                          | Ur              | nit Number      | WAT       | FER               | WELL            | . DATA        | FIELD         | ) SH      | EET       | . Ref.        | No. SA. C                             | 24 40                  | <b>9</b>   |
|--------------------------|-----------------|-----------------|-----------|-------------------|-----------------|---------------|---------------|-----------|-----------|---------------|---------------------------------------|------------------------|------------|
| 0.1                      | الليالة         |                 |           | Hund.             |                 |               |               | Sec.      | ./Town    |               | Allot.                                |                        |            |
| 1 3                      | Repeat          | ed on each car  | d 16      |                   |                 |               | 17            |           |           | 20            | 24                                    |                        | 27         |
| Landh                    | older           |                 |           |                   |                 | Address       |               |           |           |               | · · · · · · · · · · · · · · · · · · · |                        |            |
|                          | Latitude/Ea     | st Longitud     | le/North  | Co-ord.<br>Type Z | Zone Acc.       |               |               |           |           |               | t e.                                  |                        |            |
|                          |                 |                 | _1_1_     |                   |                 | Basin         |               |           |           | · · · · · · · |                                       |                        |            |
| 4:<br>Situa              | )<br>tion of We | 11 <b>. </b>    |           | 60                | 63              |               |               |           |           |               |                                       |                        |            |
|                          |                 | A (See over for |           |                   |                 |               |               |           |           |               |                                       |                        |            |
| 0,3                      | Driller(s)      |                 |           |                   | <b></b>         | . [           | Date Drilled: | : From    |           |               | to                                    |                        |            |
| 1                        |                 |                 |           |                   |                 |               |               |           |           |               | 17                                    | 1                      | 1-1        |
|                          |                 |                 |           | , .               |                 | . r           | lethod used   |           | • • • • • |               |                                       | 25                     | بب         |
| Rig ope                  | rated by        |                 |           |                   | Purpose         |               | , St          | tatus     |           |               | []                                    | 31                     | .33        |
| Depth D                  | rilled          |                 | . m       | Angle .           |                 | , Ho1         | e Diameter    |           |           | ,             |                                       |                        |            |
| Casino                   | Yes From        |                 | m to      |                   |                 | Diameter      |               | Tyne      |           |               | , jo                                  | 41                     | • 42       |
| ousing                   |                 |                 |           |                   |                 |               |               |           |           |               | 43                                    | 44                     | <br>       |
|                          | From .          |                 | .m to.    | ,                 | m               | Diameter      |               | Туре      | • • • • • | •••••         | 50                                    | <u>_</u>               | 5 <u>6</u> |
|                          | From .          |                 | .m to.    |                   | m               | Diameter.     |               | . Туре    |           |               |                                       |                        | 61         |
| Screen/                  | Slotted Lin     | er: Present?    | Yes No    | Cor               | e Library       | No L          | Lo            | ogging b  | <b>v</b>  |               |                                       |                        |            |
|                          |                 | Liner Type,.    |           |                   |                 | -0.5          |               |           |           |               |                                       | 0,0                    | 70         |
|                          |                 |                 |           |                   |                 | m             | • . •         |           |           |               |                                       |                        |            |
| 04                       | io solome?      |                 |           |                   |                 |               | 4 44          |           |           | 71            | 76                                    |                        | -          |
| 1                        | 2 ampiles of    | btained         |           |                   |                 |               |               |           |           |               |                                       | 17                     |            |
|                          | Analyses        | avai lable 🎿    |           |                   |                 |               |               |           |           |               |                                       | <del>- i - i - i</del> | لب         |
|                          | OST RECENT      |                 |           | 8.4               | <u> </u>        | ·····         |               |           | ř.        |               | . [                                   | ···                    |            |
| <b>U</b> , <b>(</b> ) To | tal depth       | m 17            |           | Da<br>23          | te              |               | SWD           |           | 32        | 37            | Date                                  |                        | لب         |
| Supply:                  | Flowing? .      |                 | Flow      | Rate              |                 |               | Me            | thod meas | ured .    |               |                                       |                        | 51         |
| Supply                   | method          |                 | Type      |                   |                 | Yield         |               |           | Method    | measured.     | 40                                    |                        |            |
|                          |                 |                 |           |                   |                 |               |               |           |           |               |                                       |                        | 52         |
|                          | Power sour      | <b>ce</b> ,     |           |                   | .Intake dep     | oth           | m             |           | Pump di   | iameter       |                                       |                        | 53         |
|                          | Column diam     | meter           |           |                   |                 |               |               |           | Duratio   | n of Test     |                                       | hrs. 54                | لبيا       |
|                          |                 | Dat             | e of Test | /.                | / / <u>  9,</u> | Status        |               | . [       | Γ         |               |                                       |                        |            |
|                          | Samoling Me     | ethod           |           |                   | Depth samm      | ole taken     |               | " Ü       |           |               | ,                                     | \$                     |            |
|                          |                 | Field Conduct   |           |                   |                 |               |               | 62        |           |               |                                       |                        |            |
|                          | _1_1_1_1_       | Conductiv       |           |                   | 1               | рН            |               |           | N<br>I    |               |                                       |                        |            |
|                          | Date 5          | TAN 711         | 1         | 69                | 9               | 70 Deptmtl.No | D <b>.</b>    |           | 1.        |               |                                       |                        |            |
| 0.2                      | 73              | 80<br>Rating    | 0 .       |                   |                 |               | No. 18        |           |           |               |                                       |                        |            |
| 1                        | . [             |                 |           |                   | 17              |               | 18            | . ——      |           |               |                                       |                        |            |
| Per                      | mit No          | 4               | Re        | terence           | No. SA          |               |               | 1         |           |               |                                       |                        |            |
|                          | 36              | <del></del>     | 1 1 1 1   | 50                | 1111            | 60            |               | 69        | •         |               |                                       |                        |            |
| Aeri                     | al Photo No     | 73              | 1 1 2     | Accuracy          | y of Identif    | fication      |               |           |           |               |                                       |                        |            |
|                          |                 | /3              |           |                   |                 |               |               |           |           |               | cality Plan                           |                        |            |

| Dai           | a Ram SM.L.           | 966, Envelope 1506, D. W. 951/70 |
|---------------|-----------------------|----------------------------------|
| Sa            | ample Results.        |                                  |
|               | Cu                    | 0.05 ppm                         |
|               |                       | 0.05 ppm                         |
|               | Monin                 |                                  |
|               |                       |                                  |
|               |                       |                                  |
|               |                       |                                  |
|               |                       |                                  |
|               |                       |                                  |
|               |                       |                                  |
| ORIGINAL DATA |                       |                                  |
| 0.6           | Unit Number           |                                  |
|               | Supply method         | Method of Measure                |
|               | Duration of Test      | hours                            |
| 1.4 A         | •                     | SWD                              |
| ist. Aquiter: | Depth water cut       | 23 28 29                         |
|               | Drawdown              | Supply                           |
|               | Conductivity/Salinity | Aquifer developed?               |
|               | Depth sample taken m  | Sampling method Analysis No.     |
| 2nd. Aquifer: | Depth water cut m     | SWD                              |
|               | Drawdown m            | Supply                           |
|               | Conductivity/Salinity | Aquifer developed?               |
| F====         | Depth sample taken m  | Sampling method Analysis No      |
| 0.6           |                       |                                  |
| 3rd. Aquifer: | Depth water cut m     | SWD                              |
|               | Drawdown m            | Supply                           |
| *1            | Conductivity/Salinity | Aquifer developed?               |
|               | Depth sample taken m  | Sampling method Analysis No      |
| 4th. Aquifer: | Depth water cut m     | SWD m 51 56 57                   |
|               | Drawdown m            | Supply                           |
|               | Conductivity/Salinity | Aquifer developed?               |
|               | Depth sample taken m  | Sampling method                  |

| Unit Number WATER WELL DA                            | ATA FIEL                               | _D SH           | EET           | Ref N            | o. ŞA 6           | £ 41   |              |
|------------------------------------------------------|----------------------------------------|-----------------|---------------|------------------|-------------------|--------|--------------|
|                                                      | Γ                                      | 7.              | [             |                  | f                 |        |              |
| 1 3 Repeated on each card 16                         | , , <u>.</u>                           | Sec<br>17       | ./Town [      | البلبلية ا       | 24                | Bore   | 27           |
| Landholder                                           | ss                                     |                 |               | **.<br>          |                   |        |              |
| Co-ord. Latitude/East Longitude/North Type Zone Acc. |                                        |                 |               |                  |                   |        |              |
| 45 52 60 63 Basin                                    | n                                      |                 |               |                  |                   |        |              |
| Situation of Well                                    |                                        |                 | ,             |                  |                   |        |              |
| DRILLING DATA (See over for Aquifer Data)            |                                        |                 |               |                  |                   |        |              |
| 03 Driller(s)                                        | Date Drill                             | ed: From .      |               |                  | to 17             |        | _1_1         |
| ,,,,,                                                | Method use                             | d               |               |                  |                   | 25     |              |
| Rig operated by Purpose                              |                                        | Status          | • • • • • • • | ng<br>Ngjarangan | . 29              | 31     | 33           |
| Depth Drilled m Angle                                | Hole Diamete                           | r.,,            |               |                  | 35                |        | <b>41</b> 42 |
| Casing Yes From m to m Dia                           | meter                                  | Туре            |               | • • • • •        | 43                | 44     | ا ا          |
| From m to m Dia                                      | meter                                  | Туре            |               |                  | 50                |        | <u>56</u>    |
| From                                                 | meter                                  | Туре            |               |                  | 57                | لبب    | 61           |
| Screen/Slotted Liner: Present? No 62 Core Library No | 63                                     | Logging b       | у             |                  |                   | 6      |              |
| Screen/Slotted Liner Type                            | Material                               | • • • • • • •   |               |                  | · · · · · · · · · |        | <u>.</u>     |
| Interval: From                                       | m to                                   |                 |               | . m              |                   |        | J            |
| O4 Samples obtained                                  |                                        |                 |               |                  |                   |        |              |
| Analyses available                                   |                                        |                 |               |                  | . 21              | 1111   |              |
| MOST RECENT DATA                                     |                                        |                 |               |                  |                   |        |              |
| 0.7 Total depth m 17 23 Date 24                      | SWD                                    | <b>). , . ,</b> | n 32          | <b>M</b> 37      | Date 38           |        |              |
| Supply: Flowing? Flow Rate                           |                                        | Method mea      | sured         |                  | 46                | 1,1,1  | ] []<br>51   |
| Supply method Yie                                    | 11d                                    |                 | Method me     | easured          |                   |        | 52           |
| Power source                                         |                                        | m               | Pump diam     | meter            |                   |        | 53           |
| Column diameter Drawdown                             |                                        |                 | Duration      | of Test          |                   | hrs. 5 | 4            |
| Date of Test                                         | Status                                 | 60_             | <u> </u>      |                  |                   | -      |              |
| Sampling Method Depth sample tal                     | ken                                    | m 📙             | 1             |                  |                   | *      |              |
| Analysis Results: Field Conductivity µm @            | ······································ | °C              | N             |                  |                   |        |              |
| Conductivity/Salinity 69 pH 70                       |                                        |                 | Ì             |                  |                   |        |              |
| Date 73 80 AMDEL No Dep  73 80 Bore                  | Folder No. 18                          |                 | Ţ.            |                  |                   |        |              |
| Permit No. Reference No. Reference No. 200 4.4       |                                        |                 |               |                  |                   |        |              |
| 24 30                                                | 1 1 1 1 1 1                            |                 |               |                  |                   |        |              |
| Aerial Photo No. 73 80 Accuracy of Identification    | 60                                     | 69              | 1             |                  |                   |        | 1            |
| 73 80  Compiled                                      |                                        |                 |               | Loc              | ality Plan        |        |              |

| Dad                         | han d                                   | Rom           | S.M.L.             | 466             | Envelope          | 1506,                                              | D.M. 95         | 1/70            |
|-----------------------------|-----------------------------------------|---------------|--------------------|-----------------|-------------------|----------------------------------------------------|-----------------|-----------------|
| Sa                          | mple                                    | Resi          | 143                |                 |                   |                                                    |                 |                 |
|                             |                                         | (1            | Cu                 | 0.15            | ppm               | • • • • • • • • • • • • • • • • • • •              |                 |                 |
|                             |                                         |               |                    |                 |                   |                                                    |                 |                 |
|                             | · • • • • • • • • • • • • • • • • • • • |               |                    | • • • • • • • • |                   | • • • • • • • • • • • • • • • • • • •              |                 |                 |
|                             |                                         | •••••         |                    |                 |                   | •••••                                              |                 |                 |
| ORIGINAL DATA               | Unit Numbe                              | er .          | i                  |                 |                   |                                                    | *               |                 |
| 0,6<br>1 3 Re               | peated on ea                            |               | ]<br>              | ·               | Method of Measure |                                                    |                 | 17 I8           |
| lat Aquifay.                | Double water                            | •             | tion of Test       |                 | hours 19          | m                                                  |                 | M               |
| <u>lst. Aquifer</u> :       |                                         |               |                    |                 |                   |                                                    | 34              | 28 29           |
|                             | Depth sample                            | y/Salinity    | , . <sub>,</sub> m | Sampling        | eveloped?         | <b>4U</b><br>• • • • • • • • • • • • • • • • • • • | Analysis No.    | 47 pH 48        |
| 2nd. Aquifer:               |                                         | cut           |                    |                 |                   |                                                    | 51              | 56 57           |
| 0.6                         |                                         | //Salinity    |                    | •               | eveloped? method  | . 68                                               | 74 Analysis No. | 75 pH 76        |
| <b>0,6</b><br>3rd. Aquifer: | Depth water                             | cut · · · · · | m                  | SWD             |                   | <b>m</b>                                           | 23              | 28 29           |
| <i>2</i> 1                  |                                         | //Salinity    |                    |                 | eveloped?         |                                                    | 34 46           | 39<br>147 pH 48 |
| 4th. Aquifer:               |                                         | e taken       |                    |                 | method            |                                                    | Analysis No.    | 56 57           |
|                             |                                         | y/Salinity    |                    |                 | eveloped?         | Ė                                                  | 62              | 67<br>D pH 76   |
|                             | Depth sampl                             | e taken       | m                  | Sampling        | method            | * * * * * * * * * * * * *                          | Analysis No.    |                 |

|               | linit !      | Number       | WAT           | ER               | WELL          | DATA          | FIE         | LD                                               | SHEET           | C Ref.       | No. 🙎    | A D         | 4 42     | _  |
|---------------|--------------|--------------|---------------|------------------|---------------|---------------|-------------|--------------------------------------------------|-----------------|--------------|----------|-------------|----------|----|
| 0.1           |              | 1 1          | П             | und.             |               |               | [           |                                                  | Sec./Town       |              | ٦ (      |             | Bore [   |    |
| 1 3           | Repeated o   | n each card  | 16            |                  |               |               |             | 17                                               | 2 3030, 10      | 20           |          | 24          | 2        | 27 |
| Landholde     | er           |              |               |                  |               | Address       |             |                                                  |                 |              |          |             |          |    |
| Lat           | itude/East   | Longitude/   | North 1       | o-ord.<br>Type Z | one Acc.      |               |             |                                                  | •               |              |          |             |          |    |
| 45            |              | 52           |               |                  |               | Basin         |             | . <b></b>                                        | . ,             | • • • • • •  |          |             |          |    |
| Situatio      | n of Well .  |              |               |                  |               |               |             |                                                  |                 |              |          |             |          |    |
| DRIL          | LING DATA (S | See over for | Aquifer D     | ata)             |               |               |             |                                                  |                 |              | ,        |             |          |    |
| 03 Dri        | ller(s)      |              |               |                  |               | Į             | Date Drill  | ed: Fr                                           | om              |              | to       | 17          |          |    |
|               | ,            |              |               |                  |               | 4             | lethod use  | d                                                |                 |              |          | · • • • • • | 25       |    |
| Rig operat    | ed by        |              |               |                  | Purpose       | • • • • • • • |             | Statu                                            | is              |              | [        | 29          | 31 3     | 3  |
| Depth Dril    | 1ed          |              | m ·           | Angle .          |               | Но1           | e Diamete   | r                                                |                 |              |          | بنب         |          | 42 |
| Casing Yes    | S From       |              | m to          |                  | m             | Diameter      |             |                                                  | Type            |              | . "      |             | **       |    |
|               | From         | .,,          | m to          |                  | , <b>m</b> .  | Diameter      | •, • • • •  |                                                  | Type            | ** * * * * * | . 43     |             | •        |    |
|               |              |              |               |                  |               |               |             |                                                  |                 |              | ,        |             |          |    |
| Screen/Slo    | tted Liner:  | Present?     | Yes<br>No     | Core             | e Library     | No []         |             | Loggi                                            | ing by          |              |          | 57          |          |    |
|               |              | er Type      |               |                  |               |               |             |                                                  |                 |              |          |             |          | 70 |
|               |              | Interval:    | From .        | • • • • •        | ,             | m             | to          |                                                  |                 | m            |          | 76          |          |    |
| <b>0.4</b> sa | mples obtai  | ned          |               |                  |               |               |             | • • • •                                          |                 |              |          |             |          |    |
| 1<br>An       | alyses avai  | lable        |               |                  |               |               |             |                                                  |                 |              |          |             | 17       |    |
| MOST          | RECENT DATA  | <u>.</u>     |               |                  |               |               |             |                                                  |                 |              | 21       |             |          |    |
| 0.7 Total     | depth        | m 17         | 111           | Dat              | te            |               | SWD         |                                                  | m               | , M          | Date     | 20          | عند      |    |
|               |              |              |               |                  |               |               |             |                                                  |                 |              |          |             |          |    |
| Supply meth   | nod          |              | Type.         |                  |               | Yield         |             |                                                  | · · · · Me thod | measured     |          |             |          | 51 |
| Pow           | er source .  | ,,           |               |                  | .Intake dep   | th . , :      |             | m                                                | Pump d          | iameter .    | , .      | ,           |          |    |
| Co1           | umn diamete: | r            |               |                  | Drawdown .    |               |             | ,m                                               | Duratio         | on of Test   |          | h:          | ر.<br>آي | 53 |
|               |              | Date         | of Test       | , . /.           | /19           | Status        |             |                                                  |                 | <del></del>  |          |             | 54       |    |
| Sam           | pling Metho  | d            | • • • • • • • |                  | Depth samp    | le taken      |             | m                                                | °°              |              |          | ı           |          |    |
| Analysis Re   | esults: Fie  | ld Conductiv | ity           |                  | µm (          | 9 . <u></u> . |             | ºC                                               | 62              |              |          |             |          |    |
| 63            |              | Conductivit  | y/Salinit     | ty               | F             | он 70         |             | 1                                                | n<br>           |              |          |             |          |    |
| 02            | 73           | 80           |               |                  | ,<br>П        | . Deptmtl.No  |             |                                                  |                 |              |          |             |          |    |
| 1             | -            | ng           |               |                  | 17<br>No. SAC | Bore Folder   | 18          | <del>-                                    </del> |                 |              |          |             |          |    |
| Permit        | No. 24       |              | Kef           | erence           | 30            | T.T.D.        |             |                                                  |                 |              |          |             | •        |    |
|               | 36           | 1 1 1 1 1    |               | 50               | <u> </u>      | 60            | <del></del> | <del></del>                                      | 69<br>          |              |          |             |          |    |
|               | .•           | 73           |               |                  |               |               |             |                                                  | 1               |              |          |             |          |    |
| COMPT 16      | u            |              | CO            | varng Cl         | IECK          |               |             |                                                  |                 | <u> </u>     | cality f | lan ·       |          |    |

| Donta fo                      | ion S.M.L. 4                          | 66, Einelope 1                        | 506, DM. 951/70         |
|-------------------------------|---------------------------------------|---------------------------------------|-------------------------|
| San                           | ple Results.                          |                                       |                         |
|                               | Cu o                                  | 05 ppm                                |                         |
| 1                             | runinin 10                            | )                                     |                         |
| ,                             | *                                     | ppo                                   |                         |
|                               |                                       |                                       |                         |
|                               |                                       | · · · · · · · · · · · · · · · · · · · |                         |
|                               |                                       |                                       |                         |
|                               |                                       |                                       |                         |
|                               | , , , , , , , , , , , , , , , , , , , |                                       |                         |
|                               |                                       |                                       |                         |
|                               | Number                                |                                       |                         |
| 06 Repeated of                | on each card 16                       |                                       |                         |
| Supply                        | method                                | Method of Measure                     | 17 18                   |
|                               | Duration of Test.                     | hours                                 |                         |
| <u>lst. Aquifer</u> : Depth w | water cut m                           | SWD m                                 | 23 28 29                |
| Drawdow                       | wn                                    | Supply                                | 34 39                   |
| Conduct                       | tivity/Salinity                       | Aquifer developed?                    | 46 A7 pH 48             |
| Depth s                       | sample taken m                        | Sampling method                       | 40 40 47 48 Analysis No |
| 2nd. Aquifer: Depth w         | water cut m                           | SWD m                                 | 51 56 57                |
| Drawdow                       | wn ,                                  | Supply                                | 62 67                   |
| Conduct                       | tivity/Salinity                       | Aquifer developed?                    | 68 74 75 pH 76          |
| Depth s                       | sample taken m                        | Sampling method                       | Analysis No             |
| 0,6                           |                                       |                                       |                         |
| 3rd. Aquifer: Depth w         | water cut m                           | SWD                                   | 23 28 29                |
| Drawdow                       | wn m                                  | Supply                                | 34 39                   |
| Conduct                       | tivity/Salinity                       | Aquifer developed?                    | 40 46 47 pH 48          |
| Depth s                       | sample taken m                        | Sampling method                       |                         |
| 4th. Aquifer: Depth v         | water cut m                           | SWD                                   | 51 56 57                |
| Drawdow                       | wn                                    | Supply                                | 62 67                   |
| Conduc                        | tivity/Salinity                       | Aquifer developed?                    | 68 74 75 pH 76          |
| Depth s                       | sample taken m                        | Sampling method                       | Analysis No             |

| Unit Number WATER WELL DATA FIELD SHEET Ref.No. SA 04 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of the second se |
| Landholder Address Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Co-ord.  Latitude/East Longitude/North Type Zone Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45 52 60 63 Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DRILLING DATA (See over for Aquifer Data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date Drilled: From to 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Method used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rig operated by Purpose Status 29 31 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth Drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Casing Yes From m to m Diameter Type Type 43 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| From m to m Diameter Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From m to m Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Screen/Slotted Liner: Present? No 62 Core Library No 63 Logging by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Screen/Slotted Liner Type Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Interval: From m to m 1 71 76  Samples obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyses available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MOST RECENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.7 Total depth m 17 23 Date 24 SWD m 32 37 Date 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Supply: Flowing? Flow Rate Method measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Supply method Yield Method measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Power source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Column diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sampling Method Depth sample taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analysis Results: Field Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Security Rating Bore Folder No. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Permit No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 36 50 60 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Aerial Photo No. 73 Accuracy of Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Compiled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                       | Dates Rom                                 | S.M., | L 46       | 6, Enela                                     | pe 150                                  | 56, O.M         | 1. 951/20                                      |
|---------------------------------------|-------------------------------------------|-------|------------|----------------------------------------------|-----------------------------------------|-----------------|------------------------------------------------|
| So                                    | unde Res                                  | u.Hs. |            |                                              |                                         |                 |                                                |
|                                       | Co                                        | ^     | o.20<br>10 | ppm                                          | · • • • • • • • • • • • • • • • • • • • |                 |                                                |
| • • • • • • • • • • • • • • • • • • • |                                           | *<br> |            | <b>[                                    </b> |                                         | **              |                                                |
|                                       |                                           |       |            |                                              |                                         |                 |                                                |
|                                       |                                           |       | ********** |                                              | ·                                       |                 | [                                              |
| ORIGINAL DATA                         | Unit Number                               |       |            |                                              |                                         | ys.             |                                                |
| 0,6 1 1 Rep                           | peated on each card 16 Supply method      |       | Met        | hod of Measure                               | . <b></b>                               |                 | 17 18                                          |
| <u>lst. Aquifer</u> :                 | Duration Depth water cut                  |       | SWD        | hours                                        | 1                                       | 23              | 28 29                                          |
|                                       | Drawdown                                  |       |            | oped?                                        | <u> </u>                                | 34              | 39<br>pH                                       |
|                                       | Depth sample taken                        |       |            | od                                           | 40                                      |                 | 47 48                                          |
| <u>2nd. Aquifer</u> :                 | Depth water cut                           |       |            |                                              | <b>n</b>                                | 51              | 56 57                                          |
|                                       | Conductivity/Salinity  Depth sample taken |       |            | oped?                                        | 68                                      | 74 Analysis No. | 75 pH 76                                       |
| <b>0</b> , <b>6</b><br>3rd. Aquifer:  | Depth water cut                           |       |            |                                              |                                         |                 | 28 29                                          |
|                                       | Drawdown                                  |       | Supply     |                                              | · <u></u>                               | 23 [            | 28 29                                          |
| 21                                    | Conductivity/Salinity                     |       |            | oped?                                        | 40                                      | 46 Analysis No. | pH 48                                          |
| 4th. Aquifer:                         | Depth sample taken  Depth water cut       |       |            |                                              |                                         |                 | <b>M</b> • • • • • • • • • • • • • • • • • • • |
|                                       | Drawdown                                  |       |            |                                              |                                         | 62              | 67                                             |
|                                       | Conductivity/Salinity  Depth sample taken |       |            | nod                                          | 68                                      | Analysis No.    | 75 PH [                                        |

T900

| Unit Number WATER WELL DAT                                          | TA FIELD SHEE                          | T Ref. No. SA 04 44                     |
|---------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| 1 3 Repeated on each card 16                                        | Sec./Tow                               | wn 20 Allot. 24 Bore 27                 |
| Landholder                                                          | · · · · · · · · · · · · · · · · · · ·  |                                         |
| Latitude/East Longitude/North Type Zone Acc.  Basin.                |                                        |                                         |
| 45 52 60 63<br>Situation of Well                                    |                                        | · • • • • • • • • • • • • • • • • • • • |
| DRILLING DATA (See over for Aquifer Data)                           |                                        |                                         |
| O3 Driller(s)                                                       | Date Drilled: From                     | to 17                                   |
|                                                                     | Method used                            | 25                                      |
| Rig operated by Purpose                                             | Status                                 | 29 31 33                                |
| Depth Drilled m Angle                                               | Hole Diameter                          | 3541 42                                 |
| Casing Yes From                                                     | ter Type                               | 4344                                    |
| From m to m Diame                                                   | ter                                    | 5056                                    |
| From m to m Diame                                                   | ter                                    | 5761                                    |
| Screen/Slotted Liner: Present? No 62 Core Library No 6.             | Logging by                             | 69 70                                   |
| Screen/Slotted Liner Type Ma                                        | aterial                                | · · · · · · · · · · · · · · · · · · ·   |
| Interval: From                                                      | . m to                                 | m 1 71 76                               |
| O4 Samples obtained                                                 |                                        | 17                                      |
| Analyses available                                                  | ,                                      | 21                                      |
| MOST RECENT DATA  O 7                                               |                                        | · <b>V</b>                              |
| 0.7 Total depth m 17 23 Date 24                                     |                                        |                                         |
| Supply: Flowing? Flow Rate                                          |                                        | 46 51                                   |
| Supply method Yield                                                 |                                        | od measured                             |
| Power source                                                        | Pump                                   | diameter                                |
| Column diameter Drawdown                                            | ·                                      | tion of Test hrs. 54                    |
| Date of Test / 1 9 Sta                                              | tus                                    |                                         |
| Sampling Method Depth sample taker                                  | 62                                     | * · · · · · · · · · · · · · · · · · · · |
| Analysis Results: Field Conductivity µm @  Conductivity/Salinity pH | -N - N - N - N - N - N - N - N - N - N |                                         |
| 63 69 70 Date 17 A:NL:17.11 AMDEL No Deptm                          | t1. No                                 |                                         |
| Security Rating                                                     | Ider No. 18                            |                                         |
| Permit No. 24 Reference No. S.A.O.4.4.4                             | · .                                    |                                         |
| 36 50                                                               | 60 69                                  |                                         |
| Aerial Photo No. 73 80 Accuracy of Identification                   |                                        |                                         |
| Compiled Coding Check                                               | Į.                                     | 1 344 - D1-m                            |

| Dota          | Com                                   | S.M.L                                 | 466.,   | Envelope                              | 150                    | 6.72    | O.M 9                                 | 51,         | /70               |
|---------------|---------------------------------------|---------------------------------------|---------|---------------------------------------|------------------------|---------|---------------------------------------|-------------|-------------------|
| S             | made                                  | Results.                              |         |                                       |                        |         |                                       |             |                   |
|               |                                       | Cy                                    | 0.0     | 25 00                                 | n                      |         |                                       |             |                   |
|               |                                       | avaninin                              |         | dag                                   |                        |         |                                       |             |                   |
|               |                                       |                                       |         |                                       |                        |         | , , , , , , , , , , , , , , , , , , , |             | * * * * * * * * * |
|               |                                       |                                       |         |                                       | , (                    |         |                                       |             |                   |
|               |                                       |                                       |         |                                       |                        |         |                                       |             |                   |
|               | • • • • • • • • • • • • • • • • • • • |                                       | . ,     | ••••••                                |                        |         |                                       |             |                   |
|               |                                       | • • • • • • • • • • • • • • • • • • • |         |                                       | <b>,</b>               |         |                                       |             |                   |
| ORIGINAL DATA | Unit Number                           |                                       |         |                                       |                        |         | e e                                   |             |                   |
| 1 3 Re        | peated on each Supply method          | card 16                               |         | Method of Measu                       | ire                    |         | en en el en en en en e                |             | 17 18             |
|               | •.                                    | Duration of Test.                     |         | hours                                 |                        |         | <u></u>                               |             |                   |
| lst. Aquifer: | Depth water cu                        | ıt m                                  | SWD     |                                       | , M                    | e e     | 23                                    | 28          | 29                |
|               |                                       | m                                     |         | • • • • • • • • • • • • • • • • • • • |                        | <u></u> | 34                                    | ] []<br>39  |                   |
|               |                                       | aken m                                |         | developed?                            |                        | 40<br>  | 46<br>Analysis No.                    | 47          | pH 48             |
| 2nd. Aquifer: |                                       | t m                                   | SWD     |                                       | m                      |         | 51                                    | <b>M</b> 56 | 57                |
|               | Drawdown                              | m                                     | Supply  |                                       |                        | ·       | 62                                    | 67          |                   |
|               |                                       | alinity                               | ·       | developed?                            |                        | 68      | 74                                    | 75          | pH 76             |
| 0,6           | Depth sample t                        | aken m                                | Samplin | ng method                             |                        |         | Analysis No.                          |             |                   |
| Brd. Aquifer: | Depth water cu                        | t                                     | SWD     | · · · · · · · · · · · · · · · · · ·   | m                      |         | 23                                    | 28          | 29                |
|               | Drawdown                              | <b>m</b>                              | Supply  |                                       | • • • • •              | ·       | 34                                    | 39          | [                 |
| 10 N          |                                       | alinity                               |         | developed? , .                        |                        | 40      | 46                                    | 47          | pH 48             |
| 4th. Aquifer: | ,                                     | aken m                                | •       | g method                              |                        | •, •    | Analysis No.                          | <b>M</b>    | •                 |
|               |                                       | m                                     | Supply  |                                       | • • • • <del>•</del> • |         | 62                                    | 67          | J/                |
|               | Conductivity/S                        | alinity                               | Aqui fe | r developed?                          |                        | 68      | 74                                    | 75          | pH 76             |
|               | Depth sample t                        | aken m                                | Samplin | ng method                             |                        |         | Analysis No.                          |             |                   |

6900

| Unit Number WATER WELL DATA FIELD SHE                                    | ET Ref. No. SA 04 52  |
|--------------------------------------------------------------------------|-----------------------|
| Hund. Sec./T                                                             | own 20 Allot. Bore 27 |
| 1 3 Repeated on each card 16 17                                          | 20 24 27              |
| Landholder                                                               |                       |
| Latitude/East Longitude/North Type Zone Acc.                             |                       |
| 45 52 60 63 Basin                                                        | .,,.,,.,,.,           |
| Situation of Well                                                        |                       |
| DRILLING DATA (See over for Aquifer Data)  Driller(s) Date Drilled: From |                       |
|                                                                          | 17                    |
| Method used                                                              | 25                    |
| Rig operated by Purpose Status                                           | 29 31 33              |
| Depth Drilled m Angle Hole Diameter                                      | 35 41 42              |
| Casing Yes From m to m Diameter                                          |                       |
| From m to m Diameter Type                                                | 43 44                 |
|                                                                          | 50 .56                |
| Yes                                                                      | 57 61                 |
| Screen/Slotted Liner: Present? No Core Library No Lill Logging by        | 05 70                 |
| Screen/Slotted Liner Type                                                | <del></del>           |
| Interval: From                                                           |                       |
| Samples obtained                                                         | 17                    |
| Analyses available                                                       | 21                    |
| MOST RECENT DATA  O 7                                                    | . N                   |
| Total depth m 17 23 Date 24 SWD m                                        |                       |
| Supply: Flowing? Flow Rate Method measur                                 | ed                    |
| Supply method                                                            | thod measured         |
| Power source                                                             | mp diameter           |
| Column diameter Drawdown                                                 | ration of Test hrs.   |
| Date of Test / 19 Status                                                 | 54                    |
| " □                                                                      |                       |
| Sampling Method                                                          |                       |
| Conductivity/Salinity pH PH                                              |                       |
| Date 73 AMDEL No Deptmt 1. No                                            |                       |
| Security Rating                                                          |                       |
| Permit No. Reference No. S.A.O.4.52                                      |                       |
| 24 3U                                                                    |                       |
| Aerial Photo No. Accuracy of Identification                              | 1                     |
| Aerial Photo No. Liiii Accuracy of Identification                        | ( analidas Olan       |

| COI | MME | NT | ን: |
|-----|-----|----|----|
|     |     |    |    |

|                       |                                           |                |                 | ·                                     |       |                    |                |
|-----------------------|-------------------------------------------|----------------|-----------------|---------------------------------------|-------|--------------------|----------------|
| Dat                   | a from                                    | 5.M.L          | 466, Z          | Twelope.                              | 1506, | P.M. 5             | 951/70         |
|                       | Sample                                    | Resul          | <br>Ь           |                                       |       |                    |                |
|                       | •                                         |                |                 | na.                                   |       |                    |                |
|                       | avoi                                      | Cy O           | 10              | b                                     | ,     |                    |                |
|                       |                                           | -              | P               |                                       |       |                    |                |
| * * * * * * * * * * * |                                           |                |                 |                                       | ,     |                    | •••••          |
| 4 • 4 • 4 • 5 • 6     |                                           |                |                 |                                       |       |                    |                |
|                       |                                           |                |                 |                                       |       |                    |                |
| DRIGINAL DATA         |                                           |                |                 |                                       |       |                    |                |
| 0,6                   | Unit Number                               | <u> </u>       |                 |                                       |       | *                  |                |
| 1 3 Re                | peated on each card                       | 16             | Wo Alba         | d of Maarine                          |       |                    |                |
|                       | Supply method                             |                |                 | od of Measure                         |       |                    | 17 18          |
|                       | •                                         | ration of Test | 19              | <u>ப</u> ி hours                      |       |                    | <b>M</b> 28 29 |
| lst. Aquifer:         | Depth water cut                           |                |                 |                                       | ш     | 23                 | 28 29          |
|                       | Drawdown                                  | , ,            |                 |                                       |       | 34                 | 39             |
|                       | Conductivity/Salinity  Depth sample taken |                |                 | ped? ,                                | 40    | 46<br>Analysis No. | 47 PH 48       |
| 2nd. Aquifer:         | Depth water cut                           |                | SWD             |                                       | m     | 51                 | 56 57          |
|                       | Drawdown                                  | m              | Supply          | · · · · · · · · · · · · · · · · · · · |       | 62                 | 67             |
|                       | Conductivity/Salinity                     |                | Aquifer develo  | ped?                                  | . 69  | J                  | pH 76          |
|                       | Depth sample taken                        | m              | Sampling method | d                                     |       | Analysis No.       |                |
| 0,6                   |                                           |                |                 |                                       |       |                    | M              |
| 3rd. Aquifer:         | Depth water cut                           | m              |                 |                                       |       | 23                 | 28 29          |
|                       | Drawdown                                  | M              |                 |                                       |       | 34                 | 39             |
| **                    | Conductivity/Salinity                     |                |                 | ped?                                  | 40    | 46<br>Analysis No. | H 48           |
| 4th. Aquifer:         | Depth sample taken                        |                |                 |                                       |       | 51                 | 56 57          |
|                       | Drawdown                                  |                | Supply          |                                       |       | 62                 | 67             |
|                       | Conductivity/Salinity                     |                | Aquifer develo  | ped?                                  | . [   | 111                | pH             |
|                       | Depth sample taken .                      |                | Sampling metho  | d                                     | b8    | Analysis No.       | /5 /6<br>      |
|                       |                                           |                |                 |                                       |       |                    |                |

|                   | Unit Nu     | mber                                  | WATER                                 | WELL                         | DATA              | FIELD                     | SHEET         | Ref.No.                               | SA 04     | 62              |
|-------------------|-------------|---------------------------------------|---------------------------------------|------------------------------|-------------------|---------------------------|---------------|---------------------------------------|-----------|-----------------|
| 01                | epeated on  | each card                             | Hund.                                 |                              |                   |                           | Sec./Town     | A110                                  |           |                 |
|                   |             |                                       |                                       |                              |                   |                           |               | - <b>.</b>                            |           | 21              |
| Landholder        |             |                                       | Co-ord                                |                              | Address           |                           |               | , , , , , , , , , , , , , , , , , , , |           |                 |
| Latitu            | de/East     | Longitude/No                          | orth Type                             |                              | Danin             |                           |               |                                       |           |                 |
| 45<br>Situation o | 5           | 2 h/                                  | 60                                    | 63                           |                   | •••••                     |               |                                       |           |                 |
|                   |             | e over for Aq                         |                                       |                              |                   |                           |               |                                       |           |                 |
| 02                | •           |                                       |                                       |                              | .0                | ate Drilled: F            | rom           | , . , . , . , . , t                   | :0 17     |                 |
| •••               |             |                                       |                                       |                              | · M               | ethod used                |               |                                       |           | 25              |
| Rig operated      | by          |                                       |                                       | Purpose                      |                   | Stat                      | us ,          |                                       | 29 31     |                 |
| Depth Drilled     | 1           | , <b>.</b>                            | Angle                                 |                              | Ho1               | e Diameter                |               |                                       |           | M 1             |
| Casing Yes F      | rom         | m                                     | to                                    | m                            | Diameter .        |                           | . Type        |                                       | 43 44     |                 |
| F                 | rom         | , . , m                               | to,                                   | m                            | Diameter          | <b>, .</b> ,              | Type          |                                       | 50        | 56              |
| F                 | rom         |                                       | to.,                                  | "m <sub>.,</sub>             | Diameter.         |                           | Type          | • • • • • •                           | 57        |                 |
| Screen/Slotte     | d Liner: Pı | Yesent? N                             |                                       | re Library                   | No 63             | Logg                      | ing by        |                                       | * * * * * | 69 70           |
| Screen/Slot       | ted Liner   | Type                                  | • • • • • • •                         |                              | Mater             | ial                       |               |                                       |           | · · · · · · · · |
|                   | 1           | Interval:                             | From                                  |                              | m                 | to                        |               | m L                                   | 76        | i               |
| 0.4 Samp          | les obtaine | d                                     |                                       |                              |                   | 5 ·                       |               |                                       |           | 17              |
| Analy             | ses availa  | ble                                   | · · · · · · · · · · · · · · · · · · · |                              |                   |                           |               |                                       |           |                 |
|                   | CENT DATA   | •                                     |                                       |                              |                   |                           |               | 21                                    |           |                 |
| 07 Total de       | epth        | . m 17                                | 23 D                                  | ate 24                       |                   | SWD                       | m 32          | ; M Dat                               | e 38      | 11              |
| Supply: Flowi     | ng?         |                                       | Flow Rate                             |                              | · . · . · · · · · | Metho                     | od measured . | · · · · · · · · · · · ·               | 46        | 51              |
| Supply method     |             |                                       | Type                                  |                              | · Yield · · ·     |                           | Me thod       | measured                              | ,         | 52              |
| Power             | source      |                                       |                                       | Intake dep                   | th                | m                         | Pump di       | ameter                                |           | 53              |
| Column            | diameter    |                                       | · · · · · · · · · · · · · · ·         |                              |                   |                           |               | n of Test                             | hrs.      | 54              |
|                   |             | Date o                                | f Test /                              | /1 <mark>9</mark> .          | Status .          |                           | 60            | _                                     |           |                 |
|                   |             |                                       |                                       |                              |                   | m                         | 62            |                                       | *         |                 |
| Analysis Resu     |             | d Conductivii<br>Conductivity,        | Γ                                     | 7                            | он Г              |                           | Ņ<br>J        |                                       |           |                 |
| 63<br>Date        | 7-21        |                                       | 6                                     | 59                           | 70                | )• • • <u>• • • • • •</u> | <u></u>       |                                       |           |                 |
| <b>02</b> Secu    | rity Rating | • • • • • • • • • • • • • • • • • • • |                                       | . 📙                          | Bore Folder       | No. 18                    |               |                                       |           |                 |
| Permit No         | . 24        |                                       | Reference                             | No. SAG                      | 2462              | ·                         |               |                                       |           |                 |
| 3                 | 6 -         |                                       | 50                                    | <del>.   .   .   .  </del> . | 60                | 1111                      | 69            |                                       |           |                 |
| Aerial Pho        | to No. 73   | <del> </del>                          | Accurac                               | y of Identif                 | ication           |                           |               |                                       |           |                 |
| Commiled          |             |                                       | Codina                                | Check                        |                   |                           | j j           |                                       | . 01      | l               |

|                                        | •                      |                                      |              | FORM DP 18#                           |
|----------------------------------------|------------------------|--------------------------------------|--------------|---------------------------------------|
| COMMENTS:                              | 0                      |                                      | O 44 Oo /    |                                       |
| Parta                                  | drom S.M.L. 466        | , Envelopes 1500, 1                  | J.M. 451/-   | 70                                    |
|                                        |                        |                                      |              |                                       |
|                                        |                        |                                      | ~            |                                       |
| ······································ |                        |                                      |              |                                       |
| Sau                                    | aple Results.          |                                      |              |                                       |
|                                        | Cu 0.00                | 5 ppm                                |              | ·                                     |
| . *                                    | 110 5                  |                                      |              |                                       |
| * • • • • • • • •                      | VIVanium               | pp                                   |              |                                       |
|                                        |                        | ;<br>                                |              |                                       |
|                                        |                        |                                      |              |                                       |
|                                        |                        |                                      |              |                                       |
| • • • • • • • • • •                    |                        |                                      |              |                                       |
| · • • • • • • • •                      |                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                                       |
|                                        |                        |                                      |              |                                       |
| ORIGINAL DATA                          | Unit Number            |                                      |              |                                       |
| 0.6 Re                                 | peated on each card 16 |                                      | ,            |                                       |
| 1 3 ке                                 | Supply method          | Method of Measure                    |              |                                       |
|                                        | Duration of Test       | hours                                |              | 17 18                                 |
|                                        | buración of lesc       |                                      |              |                                       |
| 1st. Aquifer:                          | Depth water cut m      | SWD m                                | 23 28        | 29                                    |
|                                        | Drawdown , m           | Supply                               | 34 39        |                                       |
|                                        | Conductivity/Salinity  | Aquifer developed?                   | 46 47        | pH 48                                 |
|                                        | Depth sample taken m   | Sampling method                      | Analysis No  |                                       |
| 2nd. Aquifer:                          | Depth water cut m      | SWD                                  | 51 56        | 57                                    |
|                                        | Drawdown m             | Supply                               | 62 67        |                                       |
|                                        | Conductivity/Salinity  | Aquifer developed?                   | 74 75        | pH 76                                 |
|                                        | Depth sample taken m   | Sampling method                      | Analysis No  |                                       |
| 0,6                                    |                        | •                                    |              |                                       |
| 3rd. Aquifer:                          | Depth water cut m      | SWD m                                | 23 28        | 29                                    |
|                                        | Drawdown m             | Supply                               | 34 39        |                                       |
|                                        | Conductivity/Salinity  | Aquifer developed?                   | 46 47        | pH 48                                 |
|                                        | Depth sample taken m   | Sampling method                      | Analysis No. |                                       |
| 4th. Aquifer:                          | Depth water cut m      | SWD                                  | 51 56        | 57                                    |
|                                        | Drawdown m             | Supply                               | 62 67        |                                       |
|                                        | Conductivity/Salinity  | Aquifer developed?                   | 76           | pH                                    |
|                                        | Depth sample taken m   | Sampling method , ,                  | Analysis No  | · · · · · · · · · · · · · · · · · · · |

| Unit Numb                 | wATER                                    | WELL         | DATA                | FIELD                                   | SHEET             | Ref.No.                                 | SAO      | 267              |      |
|---------------------------|------------------------------------------|--------------|---------------------|-----------------------------------------|-------------------|-----------------------------------------|----------|------------------|------|
| 1 3 Repeated on ea        | Hund.                                    |              | , <b></b>           | 17                                      | Sec./Town         |                                         |          | Bore 2           | 27   |
| Landholder                |                                          |              | Address             |                                         |                   |                                         |          |                  |      |
| Latitude/East L           | Co-ord.<br>ongitude/North Type 7         | Zone Acc.    | *                   |                                         |                   |                                         |          |                  |      |
| 45 52                     | 60                                       |              | Basin               |                                         |                   | * * * * * * * * * * * * * * * * * * * * |          |                  |      |
| Situation of Well         | 0                                        |              |                     |                                         |                   |                                         |          |                  |      |
| 03                        | over for Aquifer Data)                   |              |                     |                                         |                   |                                         |          | · ·              | - 7  |
| Driller(s)                |                                          |              | D                   | ate Drilled: Fi                         | rom               |                                         | to<br>17 | <del></del>      |      |
|                           |                                          |              | M                   | ethod used                              |                   |                                         |          | 25               |      |
| Rig operated by           |                                          | Purpose      |                     | Stati                                   | us                | • • • • • • • •                         | 29       | 31 3             | 33   |
| Depth Drilled             | m Angle                                  |              | Но1                 | e Diameter                              |                   | 35                                      |          |                  | 42   |
| Casing Yes From           | m to                                     | , m          | Diameter .          |                                         | Type              |                                         |          | أ الما           |      |
| From                      | , m to                                   |              | Diameter            |                                         | Type              | • • • • • • · · .                       | 73       |                  |      |
| From                      | m to                                     | m            | Diameter            |                                         | Type              |                                         | 50       |                  |      |
| Screen/Slotted Liner: Pre | Yes Coresent? No Cor                     | e Librarv    | No L                | Logg                                    | ing by            |                                         | 57       | П                | 61   |
| Screen/Slotted Liner      |                                          |              |                     |                                         |                   |                                         |          | <u>69</u>        | 70   |
| In                        | terval: From                             |              | m                   | to                                      |                   | . m 71                                  | 76       |                  |      |
| <b>A</b>                  | ,                                        |              |                     |                                         |                   |                                         |          |                  |      |
| Analyses availabl         |                                          |              |                     |                                         |                   |                                         |          | 17               |      |
| MOST RECENT DATA          |                                          | <del></del>  | · · · · · ·         |                                         | <u> </u>          | 21                                      | ·        |                  | ·    |
| O.7 Total depth           | m 17 23 Da                               | ite          | لسب                 | SWD                                     | m                 |                                         | te       | <u>. 1 1 1 1</u> | لــا |
| Supply: Flowing?          | Flow Rate                                |              |                     | Metho                                   | od measured .     | • • • • • • • • •                       | 46       |                  | 51   |
| Supply method             | Туре                                     |              | Yield               |                                         | Method            | measured                                |          |                  | 52   |
| Power source              | ,,                                       | .Intake dept | th                  | , m                                     | Pump di           | ameter                                  |          |                  |      |
| Column diameter .         |                                          | Drawdown .   | , , , , , , , , , , | <b> </b>                                | Duration          | n of Test                               | h        | ırs. 🗀           | 53   |
|                           | Date of Test /.                          | / /19.       | Status .            | م و د د د د و ه د و و                   |                   | _                                       |          | 54<br>———        |      |
| Sampling Method           |                                          | 5/           |                     |                                         | 60                |                                         |          |                  |      |
| Analysis Results: Field   |                                          |              |                     |                                         | 62                |                                         |          |                  | •.   |
| 63 Co                     | nductivity/Salinity                      | ]<br>p       | H 70                |                                         | N<br>             |                                         |          |                  |      |
| Date JAN 7                | AMDEL No                                 |              |                     | • • • • • • • • • • • • • • • • • • • • | <del></del> ; † - |                                         |          |                  |      |
| Security Rating           | -, -, -, -, -, -, -, -, -, -, -, -, -, - | 17           | Bore Folder         | No. 18                                  |                   |                                         |          |                  |      |
| Permit No. 24             | Reference                                | No. 5.4.0    | 4.6.7               |                                         |                   |                                         |          |                  |      |
| 36                        | 50                                       | <u> </u>     | 60                  |                                         | 69                |                                         |          |                  |      |
| Aerial Photo No.          | Accuracy                                 | of Identif   | ication             |                                         |                   |                                         |          |                  | 1    |
| Compiled                  | . Codina (                               | Check        |                     |                                         |                   | la anii                                 | tv Dlan  |                  |      |

| Data Don S.M.L.                                      | 466, Envelope 1506, D.M. 951/20 |
|------------------------------------------------------|---------------------------------|
| Sample Results                                       | •                               |
| Manin S                                              | os ppo                          |
|                                                      |                                 |
|                                                      |                                 |
| · · · · · · · · · · · · · · · · · · ·                |                                 |
| Unit Number                                          |                                 |
| 1 3 Repeated on each card 16  Supply method          | Method of Measure               |
| lst. Aquifer: Depth water cut m                      | 19<br>SWD                       |
| Drawdown m                                           | Supply                          |
| Conductivity/Salinity  Depth sample taken            | Aquifer developed?              |
| 2nd. Aquifer: Depth water cut m                      | SWD                             |
| Drawdown m                                           | Supply                          |
| Conductivity/Salinity                                | Aquifer developed?              |
| O.6  3rd. Aquifer: Depth water cut m                 | SWD                             |
| Drawdown                                             | Supply                          |
| Conductivity/Salinity                                | Aquifer developed?              |
| Depth sample taken m 4th. Aquifer: Depth water cut m | Sampling method m Analysis No   |
| Drawdown m                                           | Supp 1y                         |
| Conductivity/Salinity                                | Aquifer developed?              |
| Depth sample taken m                                 | Sampling method Analysis No     |

### DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

| Unit Number WATER WELL D                             | ATA FIELD                              | SHEET R                               | ef. No. SA 04 71 |               |
|------------------------------------------------------|----------------------------------------|---------------------------------------|------------------|---------------|
| Oll Hund.                                            | 17                                     | Sec./Town 20                          |                  | 7             |
| Co-ord.                                              | 2 <b>55</b> ,                          |                                       |                  |               |
| Latitude/East Longitude/North Type Zone Acc.         | n                                      | »<br>•••»•••                          |                  |               |
| Situation of Well                                    |                                        |                                       |                  |               |
| DRILLING DATA (See over for Aquifer Data)            |                                        |                                       |                  |               |
| 0.3 Driller(s) 1                                     | Date Drilled: Fro                      | m                                     | to 17            |               |
|                                                      | Method used                            |                                       | 25               |               |
| Rig operated by Purpose                              | Status                                 | · · · · · · · · · · · · · · · · · · · | 29 31 33         | <u>.</u>      |
| Depth Drilled m Angle                                | Hole Diameter                          |                                       | 35 41            | 42            |
| Casing Yes From                                      | ameter                                 | Туре                                  | 43 44            |               |
| From                                                 | ameter                                 | Туре                                  | 50               | 56            |
| From m to m Dia                                      | ameter,                                | Туре                                  | 57               | 61            |
| Screen/Slotted Liner: Present? No 62 Core Library No | Loggi                                  | ng by                                 |                  |               |
| Screen/Slotted Liner Type                            | 0.5                                    |                                       | 0,5              | ,             |
| Interval: From                                       | m to                                   |                                       | 71 76            |               |
| Samples obtained                                     | · · · · · · · · · · · · · · · · · · ·  |                                       | 17               |               |
| Analyses available                                   |                                        |                                       | 21               | لـــــ        |
| MOST RECENT DATA                                     | <del></del>                            | <del> </del>                          |                  | <del></del> 1 |
| 0.7 Total depth m 17 23 Date 24                      | SWD                                    | m                                     | M Date 38        | ᆜ             |
| Supply: Flowing? Flow Rate                           | Method                                 | l measured                            | 46               | 51            |
| Supply method Yie                                    | eld                                    | Method measure                        | ed               | 52            |
| Power source                                         | ,, m                                   | Pump diameter                         |                  | 53            |
| , ,                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       | st hrs. 54       | ا             |
| Date of Test / 9                                     | Status                                 | 0                                     | . · ·            |               |
| Sampling Method Depth sample to                      |                                        | 62                                    | £ .              | , <u>†</u>    |
| Analysis Results: Field Conductivity                 | ······································ | N<br>                                 |                  |               |
| Date 73 80 AMDEL No De                               |                                        | <u>.</u>                              |                  |               |
| 1/                                                   | Folder No. L. 18                       |                                       |                  |               |
| Permit No. 24 Reference No. 30                       | <u> </u>                               |                                       | •                |               |
| 36 50                                                | 60                                     | 69                                    |                  |               |
| Aerial Photo No. 73 Accuracy of Identificati         | on                                     |                                       |                  |               |
| Compiled Coding Check                                |                                        | .1                                    | 1 144 91-m       | - 1           |

| Data                                                 | from S.M.L. 4          | 66, Envelope 1506, D.M. 951           | /70        |
|------------------------------------------------------|------------------------|---------------------------------------|------------|
| Ş                                                    | simple Results.        |                                       |            |
| aja a see e e <b>e</b> e e e e e e e e e e e e e e e |                        | ~ ~                                   |            |
|                                                      | <u> </u>               | os ppb                                |            |
|                                                      | Mranism 5              | dag.                                  |            |
|                                                      | *                      |                                       |            |
|                                                      |                        | · · · · · · · · · · · · · · · · · · · | *****      |
|                                                      |                        |                                       | ·          |
|                                                      |                        |                                       |            |
|                                                      |                        |                                       |            |
|                                                      |                        |                                       |            |
| DOLOTŘIAL DAŤA                                       |                        |                                       |            |
| ORIGINAL DATA                                        | Unit Number            |                                       |            |
| 0.6 Re                                               | peated on each card 16 |                                       |            |
|                                                      | Supply method          | Method of Measure                     | 17 18      |
|                                                      | Duration of Test       | hqurs                                 |            |
| lst Aguifer:                                         | Depth water cut m      | SMD                                   | 28 29      |
| ISOS /AMATICE .                                      |                        | 23                                    | 28 29      |
|                                                      | Drawdown               | Supply                                | 39         |
|                                                      | Conductivity/Salinity  | Aquifer developed?                    | 47 pH 48   |
|                                                      | Depth sample taken m   | Sampling method Analysis No.          | M          |
| 2nd. Aquifer:                                        | Depth water cut m      | SWD                                   | 56 57      |
|                                                      | Drawdown , m           | Supply                                | 67         |
|                                                      | Conductivity/Salinity  | Aquifer developed?                    | 75 pH 76   |
|                                                      | Depth sample taken m   | Sampling method Analysis No.          |            |
| 0,6                                                  | 6                      | · · · · · · · · · · · · · · · · · · · | R.A        |
| 3rd. Aquifer:                                        | Depth water cut m      | SWD                                   | 28 29      |
|                                                      | Drawdown m             | Supply                                | 39         |
| W*                                                   | Conductivity/Salinity  | Aquifer developed?                    | DH         |
|                                                      | Depth sample taken m   | Sampling method Analysis No.          | 4/ 40      |
| 4th. Aquifer:                                        | Depth water cut m      | SWD                                   | 56 57      |
|                                                      | Drawdown m             | Supply                                |            |
|                                                      | Conductivity/Salinity  | Aquifer developed?                    | 0/<br>pH • |
|                                                      | Depth sample taken m   | 68 74                                 | 75 76      |
|                                                      |                        | •                                     |            |

#### DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

| WATER WELL DATA FIELD SHEET                                             | 72           |
|-------------------------------------------------------------------------|--------------|
| Unit Number Ref.No.                                                     | <u> </u>     |
| 1 3 Repeated on each card 16 Hund. Sec./Town 20 Allot. Bore 2           | 27           |
| Landholder                                                              |              |
| Latitude/East Longitude/North Type Zone Acc.                            |              |
| 45 52 60 63 Basin                                                       |              |
| Situation of Well W                                                     |              |
| DRILLING DATA (See over for Aquifer Data)                               |              |
| Date Driller(s) to to 17                                                | لب           |
| Method used                                                             | -1           |
| 25 r                                                                    | <br>         |
|                                                                         | 33           |
| Depth Drilled m Angle Hole Diameter M<br>3541                           | 42           |
| Casing Yes From m to m Diameter Type                                    |              |
| From m to m Diameter Type 50                                            | 56           |
| From m to m Diameter Type 57                                            | 61           |
| Screen/Slotted Liner: Present? No 62 Core Library No 63 Lill Logging by | 70           |
| Screen/Slotted Liner Type                                               |              |
| Interval: From                                                          |              |
| Samples obtained                                                        |              |
| Analyses available                                                      |              |
| MOST RECENT DATA                                                        |              |
| 0.7 Total depth m 17 23 Date 24 SWD m 32 37 Date 38                     |              |
| Supply: Flowing? Flow Rate Method measured                              | 51           |
| Supply method                                                           | 52           |
| Power source                                                            | 53           |
| Column diameter Drawdown                                                |              |
| Date of Test / 19 Status                                                | $\neg$       |
| Sampling Method Depth sample taken                                      | $\downarrow$ |
| o2<br>Analysis Results: Field Conductivity                              |              |
| Conductivity/Salinity 69 pH 70                                          |              |
| Date 78 M. 77 AMDEL No Deptmtl. No                                      |              |
| 1 17 18  Permit No. 24 Reference No. 30 18                              |              |
| 36 50 60 69                                                             |              |
| Aerial Photo No. 73 Accuracy of Identification                          | -            |
| Compiled                                                                |              |

| Pata from S.W.L               | 466, Enve                             | lope 1506,                     | D.M                                           | 951/70      | 2            |
|-------------------------------|---------------------------------------|--------------------------------|-----------------------------------------------|-------------|--------------|
| Souple Resi                   | ~lt>`                                 |                                |                                               |             |              |
|                               | 0.05                                  | .0.                            |                                               |             |              |
| //                            | ^                                     | pp                             |                                               |             |              |
| Many                          | n5                                    | pph                            |                                               | *           |              |
|                               |                                       |                                |                                               |             |              |
|                               | · · · · · · · · · · · · · · · · · · · |                                |                                               |             |              |
|                               | · · · · · · · · · · · · · · · · · · · | *                              |                                               |             |              |
|                               |                                       |                                |                                               |             |              |
| ODTOTUAL DATA                 |                                       |                                |                                               |             |              |
| Unit Number                   | ٦                                     |                                |                                               |             |              |
| 0.6 Repeated on each card 1   |                                       |                                |                                               |             |              |
| Supply method                 |                                       | Method of Measure              |                                               |             | ∐ ∐<br>17 18 |
| Dur                           | ation of Test                         | hours 19                       |                                               |             |              |
| 1st. Aquifer: Depth water cut | m SWD                                 | m                              |                                               | <b>M</b> 28 | 29           |
| Drawdown                      | Supply                                |                                | 3                                             | 4 39        |              |
| Conductivity/Salinity.        |                                       | r developed?                   | 40                                            | 46 47       | pH 48        |
| Depth sample taken            | m Samplin                             | ng method                      | A                                             | nalysis No  |              |
| 2nd. Aquifer: Depth water cut | m SWD                                 |                                |                                               | 1 56        | 57           |
| Drawdown                      | , m Supply                            |                                | 6                                             | 2 67        |              |
| Conductivity/Salinity.        | Aqui fe                               | r developed?                   | 68                                            | 74 75       | pH 76        |
| Depth sample taken            | m Sampli                              | ng method                      | A                                             | nalysis No  |              |
| 0,6                           |                                       |                                | Γ                                             | M           | • . ]        |
| 3rd. Aquifer: Depth water cut | m SWD                                 | <u> </u>                       | 2<br>2                                        | 3 28        | 29           |
| Drawdown                      | m Supply                              |                                | 3                                             | 4 39        | [·····]      |
| Conductivity/Salinity.        | Aqui fe                               | r developed?                   | 40                                            | 46 47       | pH 48        |
| Depth sample taken            |                                       | ng method                      |                                               | nalysis No. | •            |
| 4th. Aquifer: Depth water cut |                                       | ,,,,,,,,,,,,,,,,,,,,, <b>m</b> | , <u>, , , , , , , , , , , , , , , , , , </u> | 1 56        | 57           |
| Drawdown                      | m Supply                              |                                | . <u>6</u>                                    | 2 67        |              |
| Conductivity/Salinity.        |                                       | r developed?                   | 68                                            | 74 75       | pH           |
| Depth sample taken            | m Sampli                              | ng method                      | <sub>7</sub> . A                              | nalysis No  |              |

# DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

|        | Unit            | Number         | WATER                 | WELL                | DATA                  | FIELD                                            | SHEET           | Ref.No.                               | SA 04           | <b>8</b> &                            |
|--------|-----------------|----------------|-----------------------|---------------------|-----------------------|--------------------------------------------------|-----------------|---------------------------------------|-----------------|---------------------------------------|
| 0,1    |                 |                | Hund.                 |                     |                       |                                                  | Sec./Town       | A110                                  | f               | Bore                                  |
| 1      | 3 Repeated      | on each card   | 16                    |                     |                       | 17                                               |                 | 20                                    | 24              | 27                                    |
| Landh  | nolder          |                |                       |                     | Address               |                                                  |                 |                                       |                 |                                       |
| ,      | Latitude/East   | Longitude/     | Co-ord.<br>North Type | Zone Acc.           |                       |                                                  |                 |                                       |                 |                                       |
| 4      | 45              | 52             | 60                    | 63                  | Basin                 |                                                  |                 |                                       |                 | ,                                     |
|        |                 |                |                       |                     | <i>.</i>              |                                                  |                 |                                       |                 |                                       |
|        | DRILLING DATA   |                |                       |                     |                       |                                                  |                 |                                       |                 | <u> </u>                              |
| 1      | Driller(s)      |                | <b></b>               |                     | D                     | ate Drilled: F                                   | rom             | .,.,.,.,.,.                           | 17              |                                       |
|        |                 |                |                       |                     | :M                    | ethod used                                       |                 |                                       | · · · · · · · · |                                       |
| Rig op | perated by      |                |                       | Purpose             |                       | Stat                                             | us              |                                       | 29              | 31 33                                 |
| Depth  | Drilled         |                | m Angle               | • • • • • • • • • • | Ho1                   | Diameter                                         |                 | 35                                    |                 | M 41 42                               |
| Casing | Yes From        |                | m to                  | m                   | Diameter .            |                                                  | . Type          |                                       | 43 44           |                                       |
|        | From            |                | m to                  | m                   | Diameter              |                                                  | . Type          |                                       | 50              | 56                                    |
|        | From            |                | m to                  | m                   | Diameter              | ••••                                             | Туре            |                                       | 57              | 61                                    |
| Screen | /Slotted Liner  |                | res Co                | re Library          | No [1]                | Logg                                             | ing by          |                                       |                 | 69 70                                 |
| Scree  | n/Slotted Li    | ner Type       |                       |                     | Mater                 | ial                                              |                 |                                       |                 | · · · · · · · · · · · · · · · · · · · |
|        |                 | Interval:      | From                  |                     | , m                   | to                                               |                 | m 1                                   | 76              |                                       |
| 0.4    | Samples obta    | ained          |                       |                     |                       |                                                  |                 |                                       |                 |                                       |
|        | Analyses ava    | ıi lable       |                       |                     |                       |                                                  |                 | ,                                     |                 |                                       |
|        | MOST RECENT DAT |                |                       | <u></u>             | <del></del>           |                                                  | <del> ن</del> م | ···                                   |                 | ·········                             |
| 0,7    | Total depth     | m<br>17        | . M [                 | )ate                |                       | SWD                                              | m 132           |                                       | e 38            | <del></del>                           |
|        |                 |                |                       |                     |                       | Me th                                            | od measured     | · · · · · · · · · · · · · · · · · · · | 46              | 51                                    |
| Supply | method          | ,              | . Type                | . ,                 | . Yield               |                                                  | Method          | l measured                            |                 |                                       |
|        | Power source    |                |                       | Intake dep          | th                    | , . , . , . m                                    | Pump d          | liameter                              | • • • • • ,     | 53                                    |
|        | Column diamet   | er             |                       | . Drawdown .        |                       | . , ,. ,m                                        | Durati          | on of Test                            | 1               | nrs                                   |
|        |                 | Date           | of Test /             | / / 19,             | Status .              |                                                  | 60_             | <del></del>                           |                 |                                       |
|        | Sampling Meth   | nod            |                       | Depth samp          | le taken              | m                                                | 62              |                                       |                 |                                       |
| Analys | is Results: F   | ield Conductiv | ity                   | μm (                |                       | °C                                               | N               |                                       |                 |                                       |
|        | 63              | Conductivit    |                       | 69                  | он                    |                                                  | Ï               |                                       |                 |                                       |
| 02     | 73              | 80             |                       | .,<br>П             | Bore Folder           | No                                               | 1 1 ]           |                                       |                 |                                       |
| 1      | Security Rat    | ting           |                       | . 17<br>CA.6        | <del></del>           | 18                                               |                 |                                       |                 |                                       |
| Pe     | rmit No. 24     | <del></del>    | Referenc              | e No. <b>SA.</b> 6  | 1 11 <del>19</del> 2) |                                                  |                 |                                       |                 | -                                     |
|        | 36              | <del></del>    | 50                    |                     | 60                    | <del>                                     </del> | 69              |                                       |                 |                                       |
| Aer    | rial Photo No.  | 73             | Accura<br>80          | cy of Identif       | ication               |                                                  |                 |                                       |                 |                                       |
| Low    | niled           |                | Codina                | Check               |                       |                                                  |                 | locali                                | tv Plan         |                                       |

| Λ.I.          | American Sun I          | 466, Envelope 1506                      | 5 5 4 951/70                           |
|---------------|-------------------------|-----------------------------------------|----------------------------------------|
| Dan           | 3, V V 000 3, 11, 14    | 40, envelope 1300                       | 7, . D.M                               |
|               |                         |                                         |                                        |
|               |                         |                                         |                                        |
| ς.            | and Ban Hi              |                                         |                                        |
| <b>.</b>      | 1                       |                                         |                                        |
|               | Copper O                | :05 ppm                                 | ······································ |
|               | Uranium                 | :05 ppm                                 |                                        |
|               |                         | VI                                      |                                        |
| ,             |                         | • • • • • • • • • • • • • • • • • • • • |                                        |
|               |                         |                                         |                                        |
|               | A                       |                                         |                                        |
|               |                         |                                         |                                        |
| ORIGINAL DATA | <u>.</u>                |                                         |                                        |
| 0.6           | Unit Number             |                                         |                                        |
| 1 3 Re        | epeated on each card 16 |                                         | ПП                                     |
|               | Supply method           |                                         | 17 18                                  |
|               | Duration of Test        | hours                                   |                                        |
| lst. Aquifer  | : Depth water cut m     | SWD m                                   | 23 28 29                               |
|               | Drawdown m              | Supply                                  | 34 39                                  |
|               | Conductivity/Salinity   | Aquifer developed?                      | pH pH                                  |
|               | Depth sample taken m    | Sampling method                         | Analysis No                            |
| 2nd. Aquifer: | Depth water cut m       | SWD m                                   | 51 56 57                               |
|               | Drawdown m              | Supply                                  | 62 67                                  |
|               | Conductivity/Salinity   | Aquifer developed?                      | pH pH                                  |
|               | Depth sample taken m    | Sampling method                         | Analysis No                            |
| 0,6           |                         |                                         |                                        |
| 3rd. Aquifer: | Depth water cut m       | SWD                                     | 23 28 29                               |
|               | Drawdown m              | Supply                                  | 34 39                                  |
|               | Conductivity/Salinity   | Aquifer developed?                      | pH                                     |
|               | Depth sample taken m    | Sampling method                         | Analysis No                            |
| 4th. Aquifer: | Depth water cut m       | SWD m                                   | 51 56 57                               |
|               | Drawdown m              | Supply                                  | 62 67                                  |
|               | Conductivity/Salinity   | Aquifer developed?                      | DH DH                                  |
|               | Depth sample taken m    | Sampling method                         | Analysis No                            |

| Unit Number WATER WELL DATA FIELD SHEET Ref No. CACA               |
|--------------------------------------------------------------------|
|                                                                    |
| 1 3 Repeated on each card 16 Hund                                  |
| Landholder Address Address                                         |
| Co-ord.<br>Latitude/East Longitude/North Type Zone Acc.            |
| 45 52 60 Basin                                                     |
| Situation of Well                                                  |
| <u>DRILLING DATA</u> (See over for Aquifer Data)                   |
| Date Driller(s) to                                                 |
| Method used                                                        |
| Rig operated by Purpose Status 25                                  |
| 29 31 33                                                           |
| Depth Drilled                                                      |
| Casing No From m to m Diameter Type 43 44                          |
| From m to m Diameter Type 50 50                                    |
| From m to m Diameter Type Type                                     |
| Screen/Slotted Liner: Present? No 62 Core Library No 63 Logging by |
| 62 63 69 7 Screen/Slotted Liner Type Material                      |
| Interval: From m to m                                              |
| Samples obtained                                                   |
| Analyses available                                                 |
| MOST RECENT DATA                                                   |
| 0.7 Total depth m 17 23 Date 24 SWD m 32 37 Date 38                |
| Supply; Flowing? Flow Rate Method measured                         |
| Supply method                                                      |
| <u>, 5</u>                                                         |
| Power source                                                       |
| Column diameter Drawdown                                           |
| Date of Test / 1 9   Status 60                                     |
| Sampling Method Depth sample taken                                 |
| Analysis Results: Field Conductivity                               |
| 63 Conductivity/Salinity 69 pH 70                                  |
| Date TAN 71 AMDEL No Deptmt1. No                                   |
| Security Rating                                                    |
| Permit No. 24 Reference No. SAIDA 9.9                              |
| 36 50 60 60                                                        |
| Aerial Photo No. Accuracy of Identification                        |
| Compiled Coding Check                                              |

| Data                                    | from s.m.L                                | 466     | , Envelope 1506,                      | D. 1   | 1, 951                                  | /70              |
|-----------------------------------------|-------------------------------------------|---------|---------------------------------------|--------|-----------------------------------------|------------------|
| Sau                                     | ple results:                              |         |                                       |        |                                         |                  |
| • • • • • • • • • • • • • • • • • • • • | Cu 0.<br>Uvanium                          | 05<br>5 | ppb                                   |        |                                         |                  |
| • • • • • • • •                         |                                           |         |                                       |        |                                         |                  |
| ORIGINAL DATA                           | Unit Number                               |         | · · · · · · · · · · · · · · · · · · · |        |                                         |                  |
| <mark>0,6</mark>                        | peated on each card 16  Supply method     |         | Method of Measure                     |        |                                         | 17 18            |
| <u>lst. Aquifer</u> :                   | Depth water cut                           |         | 19<br>SWD m                           |        | 23                                      | 28 29            |
|                                         | Drawdown                                  |         | Supply                                |        | 34                                      | 39               |
|                                         | Conductivity/Salinity  Depth sample taken |         | Aquifer developed?                    | 40     | Analysis No                             | 47 pH 48         |
| 2nd. Aquifer:                           | Depth water cut                           |         | SWD m                                 |        | Analysis No.                            | <b>M</b> • 56 57 |
|                                         | Drawdown                                  | m,      | Supply                                |        | 62                                      | 67               |
|                                         | Conductivity/Salinity                     |         | Aquifer developed?                    |        |                                         | DH DH            |
| 0.6                                     | Depth sample taken                        | m       | Sampling method                       |        | Analysis No.                            |                  |
|                                         | Depth water cut                           | m'      | SWD m                                 |        | • • • • • • • • • • • • • • • • • • • • | 28 29            |
|                                         | Drawdown                                  | m       | Supply                                |        |                                         |                  |
|                                         | Conductivity/Salinity                     | ė.      | Aquifer developed?                    |        | 34                                      | pH               |
|                                         | Depth sample taken                        | m       | Sampling method                       | 40<br> | 46<br>Analysis No.                      | 47 48            |
| 4th. Aquifer:                           | Depth water cut                           |         | SWD m                                 |        | 51                                      | 56 57            |
|                                         | Drawdown                                  | m       | Supply                                |        | 62                                      | <u>67</u>        |
|                                         | Conductivity/Salinity                     |         | Aquifer developed?                    | 68     | 74                                      | pH               |
|                                         | Depth sample taken                        | m       | Sampling method                       |        | Analysis No.                            |                  |

## LLOO

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA SA 04 (05 WATER WELL DATA FIELD SHEET Ref.No. \_\_\_\_ Sec./Town \_\_\_\_\_Allot. Hund. . . . Reneated on each card Landholder Address Co-ord. Latitude/East Longitude/North Type Zone Acc. Basin DRILLING DATA (See over for Aquifer Data) **0.3** Driller(s) ..... Date Drilled: From Method used Rig operated by Purpose Depth Drilled . . . . . . . . . m Hole Diameter.... Angle . . . . . . . . . . . . . . . . From .... m to .... m Diameter .... Type .... Screen/Slotted Liner: Present? Core Library No Logging by . Analyses available..... MOST RECENT DATA Date 23 SWD.... m Date Supply: Flowing? ..... Flow Rate ..... Method measured . . . . Supply method . . . . . . . . . . . Type. . . . . . . . . Yield . . . . . . . . . ... Method measured . . . . . Duration of Test .... hrs. Date of Test ...... Status ..... Analysis Results: Field Conductivity µm @ Conductivity/Salinity Date AMDEL No. . . Security Rating ....... Bore Folder No. Reference No. S.A.O.4.1.05 Permit No. Aerial Photo No. Accuracy of Identification.....

Coding Check . .

| Oa                                      | ta from S.M.           | L. 466, Envolope                      | 1506, D.4. 951/70                     |
|-----------------------------------------|------------------------|---------------------------------------|---------------------------------------|
| * * * * * * * * * * * * * * * * * * * * |                        | · · · · · · · · · · · · · · · · · · · |                                       |
|                                         |                        |                                       |                                       |
| S                                       | ample results.         | · · · · · · · · · · · · · · · · · · · |                                       |
|                                         | Cu &                   | 1290.55 Mm                            |                                       |
|                                         | Cu &                   | s mh                                  |                                       |
|                                         |                        | ppo                                   |                                       |
| • • • • • • • •                         |                        |                                       | · · · · · · · · · · · · · · · · · · · |
|                                         |                        |                                       |                                       |
| ORIGINAL DATA                           | Unit Number            |                                       | •                                     |
| <b>0.6</b> Re                           | peated on each card 16 |                                       |                                       |
|                                         | Supply method          | Method of Measure                     | 17 18                                 |
|                                         | Duration of Test.      | hours                                 |                                       |
| lst. Aquifer:                           | Depth water cut m      | SWD m                                 | 23 28 29                              |
|                                         | Drawdown m             | Supply                                | 34 39                                 |
|                                         | Conductivity/Salinity  | Aquifer developed?                    | 40 46 47 pH 48                        |
|                                         | Depth sample taken m   | Sampling method                       | Analysis No                           |
| 2nd. Aquifer:                           | Depth water cut m      | SWD m                                 | 51 56 57                              |
|                                         | Drawdown m             | Supply                                | 62 67                                 |
|                                         | Conductivity/Salinity  | Aquifer developed?                    | 68 74 75 pH 76                        |
| 0,6                                     | Depth sample taken m   | Sampling method                       | Analysis No                           |
| 3rd. Aquifer:                           | Depth water cut m      | SWD m                                 | 23 28 29                              |
|                                         | Drawdown m             | Supply                                | 34 39                                 |
|                                         | Conductivity/Salinity  | Aquifer developed?                    | 40 46 47 pH 48                        |
|                                         | Depth sample taken m   | Sampling method                       | Analysis No.                          |
| 4th. Aquifer:                           | Depth water cut m      | SWD: m                                | 51 56 57                              |
|                                         | Drawdown m             | Supply                                | 62 67                                 |
|                                         | Conductivity/Salinity  | Aquifer developed?                    | 68 74 75 pH 76                        |
|                                         | Depth sample taken m   | Sampling method                       | Analysis No                           |

# DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA SA 04 106 WATER WELL DATA FIELD SHEET Ref.No. Sec./Town Allot. Reneated on each card Address Co-ord. Latitude/East Longitude/North Type Zone Acc. Basin DRILLING DATA (See over for Aquifer Data) 03 Driller(s) ..... Date Drilled: From Method used Rig operated by Purpose ..... Depth Drilled .... m Hole Diameter..... Casing Yes From ..... m to ..... m Diameter ..... Type ..... From . . . . . . . m to . . . . . m Diameter . . . . . . . Type From . . . . . . m to . . . . . m Diameter . . . . . . Type . . . . . . . . Screen/Slotted Liner: Present? Core Library No Logging by . . MOST RECENT DATA Date 24 M Date SWD. . . . . . . m L Method measured .. Supply method . . . . . . . . . . . . . . . . . . Yield . . . . . . . . Method measured . . . . . Duration of Test . . . . . hrs. Date of Test ...... Status ..... Analysis Results: Field Conductivity . . . . . . . . Conductivity/Salinity Date AMDEL No. . . Security Rating ...... Bore Folder No. Reference No. SAIDIAILO Permit No. Aerial Photo No. Accuracy of Identification . . . . . .

Coding Check...

| Doi                                   | ta four s.                                | ч. С.   | <del>1</del> 66, | Euve                                    | lope          | 1506,                 | Д. М.              | 95       | 1/70                    |
|---------------------------------------|-------------------------------------------|---------|------------------|-----------------------------------------|---------------|-----------------------|--------------------|----------|-------------------------|
| · · · · · · · · · · · · · · · · · · · | Sample resy                               | H3      |                  |                                         |               |                       |                    |          |                         |
|                                       | Sample nesy<br>Cu                         | O       | <b>5</b> —       | ·                                       |               |                       |                    |          |                         |
|                                       | Uranium                                   | 5       | ×                | dag                                     |               |                       |                    |          |                         |
|                                       |                                           |         |                  | 11                                      |               |                       |                    |          |                         |
|                                       |                                           |         |                  | * • • • • • • • • •                     |               |                       |                    |          |                         |
|                                       | · · · · · · · · · · · · · · · · · · ·     |         |                  |                                         |               | * * * * * * * * * * * |                    |          | · · · · · · · · · · · · |
|                                       |                                           |         |                  | * * * * * * * * * * * * * * * * * * * * | • • • • • • • |                       |                    |          |                         |
| ORIGINAL DATA                         | Unit Number                               |         |                  |                                         |               |                       | ø.                 |          |                         |
| 0,6                                   | peated on each card 16                    | ٠       |                  |                                         |               |                       |                    |          |                         |
|                                       | Supply method                             |         | ·                | Method of Me                            | asure         |                       |                    |          | 17 18                   |
|                                       | Duration                                  | of Test |                  | hour                                    | rs            |                       |                    |          | •                       |
| lst. Aquifer:                         | Depth water cut                           | m       | SWD              |                                         | m             |                       | 23                 | M 28     | 29                      |
|                                       | Drawdown                                  | m       | Supply           | **************************************  |               | <u> </u>              | 34                 | 39       | <del></del>             |
|                                       | Conductivity/Salinity                     |         | Aqui fer         | de ve loped?                            |               | 40                    | 46                 | 47       | pH 48                   |
| 2nd Aquifer                           | Depth sample taken  Depth water cut       |         | , ,              | method                                  |               |                       | Analysis No.       | M        |                         |
|                                       | Drawdown                                  |         |                  |                                         |               |                       | 51                 | 56       | 57                      |
|                                       | Conductivity/Salinity                     |         |                  | developed?                              |               |                       | 62                 | 67       | nH .                    |
| 0.0                                   | Depth sample taken                        |         |                  | method                                  |               | 68                    | 74<br>Analysis No. | 75       | 76                      |
| 0,6                                   |                                           |         | CHD              |                                         |               |                       | •                  |          | •                       |
| sra. Aquiter :                        | Depth water cut                           |         |                  |                                         |               |                       | 23                 | 28       | 29                      |
|                                       | Drawdown                                  |         |                  |                                         |               |                       | 34                 | 39       |                         |
|                                       | Conductivity/Salinity  Depth sample taken |         |                  | developed?                              |               | 40                    | 46<br>Analysis No  | 47       | рн ()<br>48             |
| 4th. Aquifer:                         | Depth water cut                           |         | , -              |                                         |               |                       | 51                 | <b>M</b> | 57                      |
|                                       | Drawdown                                  | m       | Supply           |                                         |               |                       | 62                 | ] []     |                         |
|                                       | Conductivity/Salinity                     |         | Aquifer          | developed?                              |               | 68                    | 74                 | ] [      | pH 76                   |
|                                       | Depth sample taken                        | m       | Sampling         | method                                  |               |                       | Analysis No.       |          |                         |

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA SA 04 114 WATER WELL DATA FIELD SHEET Ref.No. Sec./Town Allot. Hund. Repeated on each card Landholder....... Co-ord. Longitude/North Type Zone Acc. Basin...... DRILLING DATA (See over for Aquifer Data) 03 Driller(s) ..... Date Drilled: From Method used ..... Rig operated by Purpose ......... Depth Drilled ..... m Angle ...... Hole Diameter...... From ..... m to ..... m Diameter ..... Type From ..... m to ..... m Diameter .... Type ..... Core Library No Logging by . Screen/Slotted Liner: Present? MOST RECENT DATA Date 24 SWD....m Date Method measured ..... Supply method . . . . . . . . . Type . . . . . . . Yield . . . . . . . . Method measured . . . . . . . Pump diameter ...... Column diameter ..... Drawdown .... m Duration of Test . . . . . hrs. Date of Test ...... Status ...... Analysis Results: Field Conductivity ........ um @ Conductivity/Salinity Date AMDEL No. . . Security Rating ...... Bore Folder No. Reference No. SAD4114 Permit No. Aerial Photo No. Accuracy of Identification......

. . . . . . . Coding Check .

| Date          | 2 from S.M.L. 4                         | 66, Envelope 1506, 3    | D.M. 951/70  |
|---------------|-----------------------------------------|-------------------------|--------------|
| <u></u>       | Sample results.<br>Cu 0:0               | 25 ppm                  |              |
|               |                                         |                         |              |
| ORIGINAL DATA | Unit Number                             |                         |              |
|               | Supply method                           | Method of Measure hours | 17 18        |
| lst. Aquifer: | Depth water cut m                       | 19 <sup>1</sup> SWD m   | 23           |
|               | Drawdown m                              | Supply                  | 34 39        |
|               | Conductivity/Salinity                   | Aquifer developed?      | 46 47 pH 48  |
| 2nd. Aquifer: | Depth sample taken m  Depth water cut m | SWD m                   | Analysis No  |
|               | Drawdown m                              | Supply                  | 62 67        |
|               | Conductivity/Salinity                   | Aquifer developed?      | 74 75 pH 76  |
| 0,6           | Depth sample taken m                    | Sampling method         | Analysis No  |
| 3rd. Aquifer: | Depth water cut m                       | SWD m                   | 23 28 29     |
|               | Drawdown m                              | Supply                  | 34 39        |
|               | Conductivity/Salinity                   | Aquifer developed?      | 46 47 pH 48  |
|               | Depth sample taken m                    | Sampling method         | Analysis No. |
| 4th. Aquifer: | Depth water cut m                       | SWD m                   | 51 56 57     |
|               | Drawdown m                              | Supply                  | 62 67        |
|               | Conductivity/Salinity                   | Aquifer developed?      | 74 75 pH 76  |
|               | Depth sample taken m                    | Sampling method         | Analysis No  |

| D.e                                   | ata form s.m          | .L. 466, Envelope   | 1506, D.M. 951/70       |
|---------------------------------------|-----------------------|---------------------|-------------------------|
| · · · · · · · · · · · · · · · · · · · | - 2/2 06 Ro- H        |                     |                         |
| ·                                     | -ample Results.       |                     |                         |
|                                       | Cu<br>Uvanium         | 5 ppb               |                         |
|                                       |                       |                     | ·                       |
|                                       |                       |                     |                         |
|                                       |                       |                     |                         |
| ORIGINAL DATA                         | Unit Number           |                     | ,                       |
|                                       | Supply method         | Method of Measure   | 17 18                   |
|                                       | Duration of Test      | hours               |                         |
| lst. Aquifer:                         | Depth water cut m     | SWD m               | 23 28 29                |
|                                       | Drawdown m            | Supply              | 34 39                   |
|                                       | Conductivity/Salinity | Aquifer developed?  | 40 46 47 pH 48          |
|                                       | Depth sample taken m  | Sampling method     |                         |
| 2nd. Aquifer:                         | Depth water cut m     | SWD m               | 51 56 57                |
|                                       | Drawdown m            | Supply              | 62 67                   |
|                                       | Conductivity/Salinity | Aquifer developed?  | 68 74 75 pH 76          |
| 0,6                                   | Depth sample taken m  | Sampling method     | Analysis No             |
| Brd. Aquifer:                         | Depth water cut m     | SWD m               | 23 28 29                |
|                                       | Drawdown m            | Supply              | 34 39                   |
|                                       | Conductivity/Salinity | Aqui fer developed? | DH L                    |
|                                       | Depth sample taken m  | Sampling method     | 40 46 47 48 Analysis No |
| 4th. Aquifer:                         | Depth water cut m     | SWD m               | 51 56 57                |
|                                       | Drawdown              | Supply              | 62 67                   |
|                                       | Conductivity/Salinity | Aquifer developed?  | 68 74 75 pH 76          |
|                                       | Depth sample taken m  | Sampling method     |                         |

| Data                  | Con s.m.L. 4                          | 166, Envelope 1506,                          | D. w | 1.951/                                  | 70             |
|-----------------------|---------------------------------------|----------------------------------------------|------|-----------------------------------------|----------------|
|                       |                                       | <b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |                                         |                |
|                       | •                                     |                                              |      |                                         |                |
|                       | Uranium                               | 0.05 ppm                                     |      | • • • • • • • • • • • • • • • • • • • • |                |
|                       |                                       | ·                                            |      |                                         |                |
|                       |                                       | • • • • • • • • • • • • • • • • • • • •      |      |                                         | .,             |
| ORIGINAL DATA         | Unit Number                           |                                              |      | 2                                       |                |
| 1 3 Re                | peated on each card 16  Supply method |                                              |      |                                         | 17 18          |
| <u>lst. Aquifer</u> : | Depth water cut m                     | hours 19 SWD                                 |      | 23                                      | M              |
|                       | Drawdown m                            | Supply                                       |      | 34                                      | 39 .           |
|                       | Conductivity/Salinity                 | Aquifer developed?                           | 40   | 46                                      | pH 48          |
|                       | Depth sample taken m                  | Sampling method                              |      |                                         |                |
| 2nd. Aquifer:         | Depth water cut m                     | SWD m                                        |      |                                         | M 56 57        |
|                       | Drawdown m                            | Supply                                       |      | 62                                      | 67             |
|                       | Conductivity/Salinity                 | Aquifer developed?                           | 68   | 74                                      | 75 pH 76       |
| 0.6                   | Depth sample taken m                  | Sampling method                              |      | Analysis No                             |                |
| 3rd. Aquifer:         | Depth water cut m                     | SWD m                                        |      | 23                                      | M 28 29        |
|                       | Drawdown m                            | Supply                                       |      | 34                                      | 39             |
|                       | Conductivity/Salinity                 | Aquifer developed?                           | 40   | 46                                      | pH 48          |
|                       | Depth sample taken m                  | Sampling method                              |      | Analysis No.                            |                |
| 4th. Aquifer:         | Depth water cut m                     | SWD m                                        |      | 51                                      | <b>M</b> 56 57 |
|                       | Drawdown m                            | Supply                                       |      | 62                                      | <u> </u>       |
|                       | Conductivity/Salinity                 | Aquifer developed?                           | 68   | 74                                      | pH 76          |
|                       | Depth sample taken $\dots$ m          | Sampling method                              |      | Analysis No                             |                |

| $\sim$ 1 $\sim$                         |                                         |                         |
|-----------------------------------------|-----------------------------------------|-------------------------|
| Data Hom S,M                            | L. 466, Ewelope                         | 1506, D.M. 951/70       |
|                                         | *******************************         |                         |
|                                         | -                                       |                         |
| Sample results                          | \$                                      |                         |
| •                                       |                                         |                         |
|                                         | 0.05. ppm                               | ********************    |
| Vanion                                  | 10 ppb                                  |                         |
|                                         |                                         |                         |
|                                         | •                                       |                         |
| · · · · · · · · · · · · · · · · · · ·   | *************************************** |                         |
| • • • • • • • • • • • • • • • • • • • • |                                         |                         |
| DRIGINAL DATA                           |                                         |                         |
| Unit Number  0.6                        |                                         | •                       |
| 1 3 Repeated on each card 16            |                                         | ПП                      |
| Supply method                           | <del></del>                             | 17 18                   |
| Duration of Tes                         | thours                                  |                         |
| <u>lst. Aquifer</u> : Depth water cut m | SWD m                                   | 23 28 29                |
| Drawdown m                              | Supply                                  | 34 39                   |
| Conductivity/Salinity                   | Aquifer developed?                      | 40 46 47 pH 48          |
| Depth sample taken m                    | Sampling method                         | Analysis No             |
| <u>2nd. Aquifer</u> : Depth water cut m | SWD m                                   | 51 56 57                |
| Drawdown                                | Supply                                  | 62 67                   |
| Conductivity/Salinity                   | Aquifer developed?                      | 68 74 75 pH 76          |
| Depth sample taken m                    | Sampling method                         | Analysis No             |
| 3rd. Aquifer: Depth water cut m         | SWD m                                   | 23 28 29                |
| Drawdown m                              | Supply                                  |                         |
| Conductivity/Salinity                   | Aquifer developed?                      | 34 39 pH •              |
| Depth sample taken m                    | Sampling method                         | 40 46 47 48 Analysis No |
| 4th. Aquifer: Depth water cut m         | SWD mi                                  | 51 56 57                |
| Drawdown                                | Supply                                  | 62 67                   |
| Conductivity/Salinity                   | Aquifer developed?                      | 68 74 75 pH 76          |
| Depth sample taken $\dots$ m            | Sampling method                         | Analysis No             |

| · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · · |              |
|-----------------------------------------|---------------------------------------|--------------|
| Data from S.M.L                         | 466, Envelope 1506, 1                 | ) m 951/70   |
| Somple result                           | s                                     |              |
| · ·                                     |                                       |              |
| (Avaniam                                | 5 ppb                                 |              |
| • • • • • • • • • • • • • • • • • • • • |                                       |              |
| •                                       |                                       |              |
|                                         |                                       |              |
| *************************************** |                                       |              |
| ORIGINAL DATA Unit Number               |                                       |              |
| 1 3 Repeated on each card 16            |                                       | пп           |
| Supply method                           | Method of Measure                     | 17 18        |
| Duration of Test.                       | hours                                 |              |
| lst. Aquifer: Depth water cut m         | SWD m                                 | 23           |
| Drawdown m                              | Supply                                | 34 39        |
| Conductivity/Salinity                   | Aquifer developed?                    | 46 47 pH 48  |
| Depth sample taken m                    | Sampling method                       | Analysis No  |
| 2nd. Aquifer: Depth water cut m         | SWD m                                 | 51           |
| Drawdown m                              | Supply                                | 62 67        |
| Conductivity/Salinity                   | Aquifer developed?                    | 74 75 PH 76  |
| Depth sample taken m                    | Sampling method                       | Analysis No. |
| 0,6                                     |                                       |              |
| 3rd. Aquifer: Depth water cut m         | SWD m                                 | 23 28 29     |
| Drawdown m                              | Supply                                | 34 39        |
| Conductivity/Salinity                   | Aquifer developed?                    | 46 47 pH 48  |
| Depth sample taken m                    | Sampling method                       | Analysis No. |
| 4th. Aquifer: Depth water cut m         | SWD m                                 | 51 56 57     |
| Drawdown m                              | Supply                                | 62 67        |
| Conductivity/Salinity                   | Aquifer developed?                    | 74 75 pH 76  |
| Depth sample taken $\dots$ m            | Sampling method                       | Analysis No. |

| D                     | Ha from                                   | S.M.L.                                | 466, Envelope      | 1506                | , D.M                     | · . 95  | 1/70              |
|-----------------------|-------------------------------------------|---------------------------------------|--------------------|---------------------|---------------------------|---------|-------------------|
|                       | · · · · · · · · · · · · · · · · · · ·     | · · · · · · · · · · · · · · · · · · · |                    |                     |                           |         |                   |
| S                     | ample resu                                | Hs.                                   |                    |                     |                           |         |                   |
|                       | ,                                         |                                       |                    |                     |                           |         |                   |
|                       | / / 50                                    |                                       | oo papus           | * • • • • • • •     |                           | · · · · |                   |
|                       | Manina                                    |                                       | 60 ppm             |                     | * * * * * * * * * * * * * |         | i ere e e e e e e |
|                       |                                           |                                       |                    |                     |                           |         |                   |
|                       |                                           |                                       |                    |                     |                           |         |                   |
|                       |                                           |                                       |                    |                     |                           |         | · * * * * * * *   |
|                       |                                           |                                       |                    |                     |                           |         |                   |
| ORIGINAL DATA         | Unit Number                               |                                       |                    |                     | <i>&lt;</i>               |         |                   |
| 0.6 Re                | peated on each card 16                    | ·                                     |                    |                     |                           |         |                   |
|                       | Supply method                             |                                       | Method of Measure  | ** ** * * * * * * * |                           |         | 17 18             |
|                       | Durati                                    | ion of Test                           | hours              |                     |                           |         | <u>.</u> .        |
| lst. Aquifer:         | Depth water cut                           | m                                     | SWD m              |                     | 23                        | M 28 29 |                   |
|                       | Drawdown                                  | m                                     | Supply             | ,                   | 34                        | 39      | ii                |
|                       | Conductivity/Salinity                     |                                       | Aquifer developed? | 40                  | 46                        | 47      | он <u>48</u>      |
|                       | Depth sample taken                        |                                       | Sampling method    |                     | Analysis No.              | M       | •                 |
| <u>2nd. Aquiter</u> : | Depth water cut                           |                                       | SWD                |                     | 51                        | 56 57   | <del></del>       |
|                       | Drawdown                                  | m                                     | Supply             |                     | 62                        | 67      |                   |
|                       | Conductivity/Salinity  Depth sample taken |                                       | Aquifer developed? | 68<br>68            | Analusis No               | 75      | ж 76              |
| 0,6                   | bepoil sample caken                       |                                       | Sampling method    |                     | Analysis No.              |         |                   |
| 3rd. Aquifer:         | Depth water cut                           | <b>m</b>                              | SWD m              |                     | 23                        | 28 29   |                   |
|                       | Drawdown                                  | a m                                   | Supply             |                     | 34                        | 39      |                   |
|                       | Conductivity/Salinity                     |                                       | Aquifer developed? | 40                  | 46                        |         | эн 48             |
|                       | Depth sample taken                        | m                                     | Sampling method    |                     | Analysis No.              |         |                   |
| 4th. Aquifer:         | Depth water cut                           | m                                     | SWD                |                     | 51                        | M 56 57 | لىنىپ             |
|                       | Drawdown                                  | <b>m</b>                              | Supply             | <u> </u>            | 62                        | 67      | <u> </u>          |
|                       | Conductivity/Salinity                     |                                       | Aquifer developed? | 68                  | 74                        | 75 p    | н                 |
|                       | Depth sample taken                        | m                                     | Sampling method    |                     | Analysis No.              |         |                   |

| Data                                   | from                                | S.M.L. 4         | 66, En                                | retopa      | 15.06                                 | D.M.     | 951/70             |              |                 |
|----------------------------------------|-------------------------------------|------------------|---------------------------------------|-------------|---------------------------------------|----------|--------------------|--------------|-----------------|
|                                        |                                     |                  | · · · · · · · · · · · · · · · · · · · |             |                                       |          |                    |              |                 |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Sample                              | results.         | · · · · · · · · · · · · · · · ·       |             |                                       |          |                    |              |                 |
|                                        | Cı.                                 | :                | 2.05                                  | ppm.        |                                       |          |                    |              |                 |
| * * * * * * * * * * *                  | Uvani                               | um               | . ،                                   | pp.b        |                                       |          |                    |              |                 |
|                                        |                                     |                  |                                       |             |                                       | * *      |                    |              |                 |
| • • • • • • • • • • •                  |                                     |                  |                                       | - * - *     |                                       |          |                    |              |                 |
| ORIGINAL DATA                          | Unit Number                         |                  |                                       |             |                                       |          | v                  |              |                 |
| 1 3 Re                                 | peated on each car<br>Supply method |                  |                                       | <u> </u>    | f Measure                             |          |                    |              | 17 18           |
|                                        |                                     | Duration of Test |                                       | 19          |                                       |          |                    | M            |                 |
| ist. Aquiter :                         | Depth water cut .                   |                  |                                       |             | m                                     |          | 23                 | 28           | 29              |
|                                        | Conductivity/Sali                   | nity             |                                       | •           |                                       | 40       | 34                 | 39           | pH AS           |
|                                        | Depth sample taker                  | n m'             | Sampling                              | method      |                                       |          | 40<br>Analysis No. | 4/           | <b>40</b><br>   |
| 2nd. Aquifer:                          | Depth water cut .                   | m                | SWD                                   |             | m                                     |          | 51                 | <b>M</b> 56  | 57              |
|                                        | Drawdown                            | m                | Supply                                |             |                                       | <u> </u> | 62                 | 67           | <del></del>     |
|                                        | Conductivity/Sali                   | nity             | Aquifer d                             | leve1 oped? |                                       | 68       | 74                 | <br>75       | pH 76           |
| 0,6                                    | Depth sample taker                  | n m              | Sampling                              | method      |                                       | e        | Analysis No.       |              | • • • • • • • • |
| 3rd. Aquifer:                          | Depth water cut .                   | m                | SWD                                   |             | m                                     |          | 23                 | 28           | 29              |
|                                        | Drawdown                            | m                | Supply                                |             |                                       |          | 34                 | 39           |                 |
|                                        | Conductivity/Salir                  | ni ty            | Aquifer d                             | leve1 oped? |                                       | 40       | 46                 | 47           | pH 48           |
|                                        | Depth sample taker                  | n m              | Sampling                              | method      |                                       |          | Analysis No.       |              |                 |
| 4th. Aquifer:                          | Depth water cut                     |                  | SWD                                   |             |                                       |          | 51                 | <b>M</b> {   | 57              |
|                                        | Drawdown                            |                  | * * *                                 |             | · · · · · · · · · · · · · · · · · · · | <u></u>  | 62                 | ∐<br>67<br>∏ |                 |
|                                        | Conductivity/Salin                  | nity             | Aquifer d                             | leve1oped?  |                                       | 68       | 74                 | <br>75       | рН <u>Г</u>     |
|                                        | Depth sample take                   | n m              | Sampling                              | method      |                                       |          | Analysis No.       |              |                 |

|               | Data from              | S.M. L     | 46          | 6, Einel               | ope 15   | 06,         | р.ш.         | 95             | 1/70     |
|---------------|------------------------|------------|-------------|------------------------|----------|-------------|--------------|----------------|----------|
|               |                        |            |             |                        |          |             |              |                |          |
|               | sample resu            | lts.       |             |                        |          |             |              |                |          |
|               |                        |            |             |                        |          |             |              |                |          |
|               | Ch                     |            | ). V.Z<br>1 | $\mathcal{L}_{1}^{pn}$ |          |             |              |                |          |
|               | Chowin                 |            | <b>Š</b>    | pp                     |          |             |              |                |          |
|               |                        |            |             |                        |          |             |              |                |          |
|               |                        | ·.         |             |                        |          |             |              |                |          |
|               |                        |            |             |                        |          |             |              |                |          |
|               |                        |            |             |                        |          |             |              |                |          |
| ORIGINAL DATA | Unit Number            | ,          |             |                        |          |             | ,            |                |          |
| 1 3 Re        | peated on each card 16 |            |             |                        |          |             |              |                |          |
|               | Supply method          |            |             | Method of Measure      |          |             |              |                | 17 18    |
|               | Duration               | of Test    |             | hours 19               |          |             |              |                |          |
| lst. Aquifer: | Depth water cut        | mi         | SWD         |                        | m        |             | 23           | M<br>28        | 29       |
|               | Drawdown               | m          | Supply      |                        |          |             | 34           | 39             |          |
|               | Conductivity/Salinity  |            | Aquifer de  | eveloped?              | ÷ • •    | 40          | 46           | 47             | pH 48    |
|               | Depth sample taken     |            | Sampling m  | ethod                  |          |             | Analysis No. | M              | •        |
| 2nd. Aquifer: | Depth water cut        | m          | SWD         |                        | <b>m</b> |             | 51           | 56             | 57       |
|               | Drawdown               | m·         | Supply      |                        |          | <del></del> | 62           | 67             | <u> </u> |
|               | Conductivity/Salinity  |            | Aquifer de  | veloped?               |          | <b>6</b> 8  | 74           | <b>75</b>      | pH 76    |
| 0,6           | Depth sample taken     | <b>m</b> i | Sampling m  | ethod                  |          | · .         | Analysis No. | <br>Ema        |          |
| 3rd. Aquifer: | Depth water cut        | m          | SWD         |                        | m        |             | 23           | <b>M</b><br>28 | 29       |
|               | Drawdown               | m          | Supply      |                        |          |             | 34           | 39             |          |
|               | Conductivity/Salinity  |            | Aquifer de  | eveloped?              |          | 40          | 46           | 47             | pH 48    |
|               | Depth sample taken     | m          | Sampling m  | nethod                 |          |             | Analysis No. |                |          |
| 4th. Aquifer: | Depth water cut        | m          | SWD         |                        | m        |             | 51           | <u>M</u>       | 57       |
|               | Drawdown               | m          | Supply      |                        |          | <u> </u>    | 62           | 67             |          |
|               | Conductivity/Salinity  |            | Aquifer de  | eveloped?              |          | 68          | 74           |                | pH       |
|               | Depth sample taken     | M          | Sampling m  | nethod                 |          |             | Analysis No. |                |          |

| De                   | ata from su                           | ч.L.  | 466, Envelope      | 1506, | O.M. 9:      | 51/70    |
|----------------------|---------------------------------------|-------|--------------------|-------|--------------|----------|
|                      |                                       |       |                    |       |              |          |
|                      | Sample result                         | \$    |                    |       |              |          |
|                      |                                       |       |                    |       |              |          |
|                      | Cu                                    | ام    | N ala              |       |              |          |
| *********            | Mrancum                               | . (() |                    |       |              |          |
| * 4, 1 4 4 4 4 4 4 4 | ,                                     |       |                    |       |              |          |
| *                    |                                       |       |                    |       |              |          |
|                      |                                       |       |                    |       |              |          |
| ORIGINAL DATA        |                                       |       |                    |       |              |          |
| 0,6                  | Unit Number                           |       |                    |       | r.           |          |
| 1 3 Re               | peated on each card 16  Supply method |       | Method of Measure  |       |              |          |
|                      |                                       |       | hours              | ,     |              | 17 18    |
| lst. Aquifer:        | Depth water cut m                     |       | 19<br>SWD          | m     |              | 28 29    |
|                      | Drawdown                              | n     | Supply             |       | 23           | 28 29    |
|                      | Conductivity/Salinity                 | •     | Aquifer developed? |       | 34           | 39 pH    |
|                      | Depth sample taken m                  | ń     | Sampling method    | 40    | Analysis No. |          |
| 2nd. Aquifer:        | Depth water cut                       | n     | SWD                | m.    | 51           | 56 57    |
|                      | Drawdown                              | n     | Supply             | 2     | 62           | 67       |
|                      | Conductivity/Salinity                 |       | Aquifer developed? | . 68  | 74           | 75 pH 76 |
| 0.6                  | Depth sample taken                    | n     | Sampling method    |       | Analysis No. |          |
| 3rd. Aquifer:        | Depth water cut                       | n     | SWD                | m     | 23           | 28 29    |
|                      | Drawdown                              | ń     | Supply             |       | 34           | 39       |
|                      | Conductivity/Salinity                 | •*    | Aquifer developed? | . 40  | 46           | pH A9    |
|                      | Depth sample taken m                  | m.    | Sampling method    |       | Analysis No. | +/ +0    |
| 4th. Aquifer:        | Depth water cut                       | n'    | SWD                | m     | 51           | 56 57    |
|                      | Drawdown                              | n:    | Supply             | -     | 62           | 67       |
|                      | Conductivity/Salinity                 | •     | Aquifer developed? | . 68  | 74           | 75 pH 76 |
|                      | Depth sample taken m                  | m     | Sampling method    |       | Analysis No. |          |

| Data            | Dom SM.L 46            | do, Env     | elope 1506,0.     | M. 95    | <del>-</del> 1/70 |                                         |
|-----------------|------------------------|-------------|-------------------|----------|-------------------|-----------------------------------------|
|                 |                        |             |                   |          |                   |                                         |
| . , ř ,         | ample results          |             |                   |          |                   |                                         |
|                 | Ca                     |             | ppb.              |          |                   |                                         |
|                 | Vanian                 | <b>.</b> \$ | ppb               |          |                   |                                         |
|                 |                        |             |                   |          |                   |                                         |
|                 |                        | •           |                   |          |                   |                                         |
| • • • • • • • • |                        |             |                   | P        |                   |                                         |
|                 |                        |             |                   |          |                   |                                         |
| DRIGINAL DATA   | Unit Number            | •           |                   |          | ,                 |                                         |
| <b>0</b> 6 3 Re | peated on each card 16 |             |                   |          |                   |                                         |
|                 | Supply method          |             | Method of Measure |          |                   | 17 18                                   |
|                 | Duration of Tes        | <b>t</b>    | hours 19          | _        |                   |                                         |
| lst. Aquifer:   | Depth water cut m      | SWD         | m                 |          | 23                | 28 29                                   |
|                 | Drawdown m             | Supply .    |                   | [        | 34                | 39                                      |
|                 | Conductivity/Salinity  | Aqui fer    | developed?        | 40       |                   | pH                                      |
|                 | Depth sample taken m   | Sampling    | g method          | <i>I</i> | Analysis No.      | 47 40<br>                               |
| 2nd. Aquifer:   | Depth water cut m      | SWD         | m                 | Į.       |                   | M                                       |
|                 | Drawdown: m            | Supply .    |                   | Ĺ        | 62                | 67                                      |
|                 | Conductivity/Salinity  | Aquifer     | developed?        | 68       | 74                | 75 pH 76                                |
| 0,6             | Depth sample taken m   | Samplin     | g method          |          | Analysis No       |                                         |
| 3rd. Aquifer:   | Depth water cut m      | SWD         | m                 |          | 23                | 28 29                                   |
|                 | Drawdown m             | Supply.     |                   |          | 34                | 39                                      |
|                 | Conductivity/Salinity  | Aqui fer    | developed?        |          |                   | pH pH                                   |
|                 | Depth sample taken m   | Sampling    | g method          |          | Analysis No.      | T/ 46                                   |
| 4th. Aquifer:   | Depth water cut m      | SWD         | . , m             | [        | 51                | M 56 57                                 |
|                 | Drawdown m             | Supply      |                   |          | 62                | 67                                      |
|                 | Conductivity/Salinity  | Aqui fer    | developed?        | 68       | 74                | 75 pH 76                                |
|                 | Depth sample taken m   | Samplin     | g method          |          | Analysis No       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| DEPARTMENT OF MINES AND ENERGY — SOUTH AUSTRA Unit Number WATER WELL DATA FIELD SHEET | LIA SA 64 141  Ref. No. |
|---------------------------------------------------------------------------------------|-------------------------|
| 0 1 Hund. Sec./Town 20                                                                |                         |
| Landholder Address Address                                                            | 27                      |
| Latitude/East Longitude/North Type Zone Acc.                                          |                         |
| 45 52 60 63 Basin                                                                     |                         |
| DRILLING DATA (See over for Aquifer Data)                                             | <u> </u>                |
| O.3 Driller(s) Date Drilled: From                                                     | to 17                   |
| Method used                                                                           | 25                      |
| Rig operated by Status                                                                | 29 31 33                |
| Depth Drilled m Angle Hole Diameter                                                   | M (2                    |
| Casing Yes From                                                                       |                         |
| From m to m Diameter Type                                                             |                         |
| From m to m Diameter Type                                                             |                         |
| Screen/Slotted Liner: Present? No 62 Core Library No 63 Logging by                    |                         |
| Screen/Slotted Liner Type                                                             | ט/ עם                   |
| Interval: From                                                                        | /T /c                   |
| Analyses available                                                                    | 21                      |
| MOST RECENT DATA                                                                      |                         |
| 1 17 23 24 332 32 4 4 32 32 4 4 4 4 4 4 4 4                                           | M Date 38               |
| Supply method Type Yield Method measur                                                | 46 <u>51</u>            |
|                                                                                       | 52                      |
| Column diameter Drawdown                                                              | est hrs.                |
| Date of Test / 9 Status                                                               | 54                      |
| Sampling Method Depth sample taken m                                                  |                         |
| Analysis Results: Field Conductivity                                                  | *                       |
| Date 3 A N 7 1 AMDEL No. Deptmt1. No.  Security Rating Bore Folder No. 18             |                         |
| Permit No. 24 Reference No. 5.A.0.4.1.4 1                                             |                         |
| 36 50 60 69                                                                           |                         |
| Aerial Photo No. 2 Accuracy of Identification                                         |                         |
| County Check.                                                                         | Locality Plan           |

| Date                                  | 2 from S.M.L. 46                       | 6, Envelope 1506, D.1 | M. 951/70    |
|---------------------------------------|----------------------------------------|-----------------------|--------------|
| · · · · · · · · · · · · · · · · · · · | •••••••••••••••••••••••••••••••••••••• |                       |              |
|                                       | ······                                 |                       |              |
| S.<br>Virginia                        | Sample results.                        |                       |              |
| ·<br>·                                | Ca                                     | 0.02 ppm              |              |
|                                       | - Ca<br>Uvanina                        | 0.05 ppm<br>5 ppb     |              |
|                                       | - VIV-IOILUIG                          | pp                    |              |
|                                       | ······································ |                       |              |
|                                       | · · · · · · · · · · · · · · · · · · ·  |                       | ,            |
|                                       | •                                      |                       |              |
|                                       |                                        |                       |              |
| ORIGINAL DATA                         |                                        |                       | e            |
| 0,6                                   | Unit Number                            |                       |              |
| 1 3 Re                                | peated on each card 16  Supply method  | Method of Measure     | ПП           |
|                                       |                                        |                       | 17 18        |
|                                       | Duration of Test                       | hours                 |              |
| <u>lst. Aquifer</u> :                 | Depth water cut m                      | SWD m                 | 23 28 29     |
|                                       | Drawdown m                             | Supply                | 34 39        |
|                                       | Conductivity/Salinity                  | Aquifer developed? 40 | 46 47 pH 48  |
|                                       | Depth sample taken m                   | Sampling method       | Analysis No. |
| 2nd. Aquifer:                         | Depth water cut m                      | SWD m                 | 51 56 57     |
|                                       | Drawdown m                             | Supply                | 62 67        |
|                                       | Conductivity/Salinity                  | Aquifer developed?    | 74 75 pH 76  |
| 0.6                                   | Depth sample taken m                   | Sampling method       | Analysis No  |
|                                       | Depth water cut m                      | SWD m                 | M            |
| Sid. Additer .                        |                                        |                       | 23 28 29     |
|                                       | Drawdown m                             | Supply                | 34 39        |
|                                       | Conductivity/Salinity                  | Aquifer developed?    | PH L 7 PH 48 |
| Ath Noutfor:                          | Depth sample taken m                   | SwD                   | Analysis No. |
| -tur. Aquiter:                        |                                        |                       | 51 56 57     |
|                                       | Drawdown m                             | Supply                | 62 67        |
|                                       | Conductivity/Salinity                  | Aquifer developed?    |              |
|                                       | Depth sample taken m                   | Sampling method       | Analysis No. |

doto

| Oa                                      | ta from S.M.L. 4                        | 166, Envelope 1506, D.W                | 1. 951/70                             |
|-----------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|
| • • • • • • • • • • • • • • • • • • • • |                                         |                                        |                                       |
|                                         |                                         |                                        |                                       |
|                                         |                                         |                                        |                                       |
|                                         |                                         | ************************************** |                                       |
|                                         | Ch                                      | 0:25 ppm                               |                                       |
|                                         | avanum                                  | 0:25 ppm<br>5 ppb                      | · · · · · · · · · · · · · · · · · · · |
|                                         |                                         | • • • • • • • • • • • • • • • • • • •  |                                       |
|                                         |                                         |                                        |                                       |
|                                         |                                         |                                        |                                       |
| ORIGINAL DATA                           | Unit Number                             |                                        | *                                     |
| 0,6<br>1 3 Re                           | peated on each card 16                  |                                        |                                       |
| *                                       | Supply method                           | Method of Measure                      | 17 18                                 |
|                                         | Duration of Test.                       | hours                                  |                                       |
| lst. Aquifer:                           | Depth water cut m                       | SWD                                    | 23 28 29                              |
|                                         | Drawdown m                              | Supply                                 | 34 39                                 |
|                                         | Conductivity/Salinity                   | Aquifer developed?                     | 40 46 47 pH 48                        |
| 2nd. Aquifer:                           | Depth sample taken m  Depth water cut m | Sampling method m                      | M                                     |
|                                         | Drawdown m                              | Supply                                 | 51 56 57<br>62 67                     |
|                                         | Conductivity/Salinity                   | Aquifer developed?                     | 68 74 75 pH 76                        |
| 0.6                                     | Depth sample taken m                    | Sampling method                        | · · · · · · · · · · · · · · · · · · · |
|                                         | Depth water cut m                       | SWD m                                  | M                                     |
|                                         | Drawdown m                              | Supply                                 | 23 28 29                              |
|                                         | Conductivity/Salinity                   | Aquifer developed?                     | 34 39 pH •                            |
|                                         | Depth sample taken m                    | Sampling method                        | 40 46 47 48  Analysis No              |
| 4th. Aquifer:                           | Depth water cut                         | SWD m                                  | M 55 57 57                            |
|                                         | Drawdown m                              | Supply                                 | 62 67                                 |
|                                         | Conductivity/Salinity                   | Aquifer developed?                     | 68 74 75 pH 76                        |
|                                         | Depth sample taken m                    | Sampling method                        | Analysis No                           |

| 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0106 FORM DP 18                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| DEPARTMENT OF MINES AND E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| WATER WELL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIELD SHEET Ref. No. SA . 04 143 |
| Unit Number  Hund.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| 1 3 Repeated on each card 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sec./Town 20 Allot. Bore 27      |
| Landholder Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| Co-ord.<br>Latitude/East Longitude/North Type Zone Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| Situation of Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| DRILLING DATA (See over for Aquifer Data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| 03 Driller(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Drilled: From               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method used                      |
| Pig operated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| Rig operated by Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29 31 33                         |
| Depth Drilled m Angle H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ole Diameter                     |
| Casing $\frac{\text{Yes}}{\text{No}}$ From m to m Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type                             |
| From m to m Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type                             |
| From m to m Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r Type                           |
| Ves [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57 61                            |
| Screen/Slotted Liner: Present? No 62 Core Library No 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03 70                            |
| Screen/Slotted Liner Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| Interval: From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n to m L 1 1 76                  |
| Samples obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Analyses available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| MOST RECENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                               |
| O.7 Total depth m Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWDm Date                        |
| 1 17 23 24  Supply: Flowing? Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 37 38                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46 51                            |
| Supply method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method measured                  |
| Power source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Pump diameter 53               |
| Column diameter Drawdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| Date of Test / 19 Statu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s                                |
| 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 60                             |
| Sampling Method Depth sample taken .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>62</b>                        |
| Analysis Results: Field Conductivity µm @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °c<br>N                          |
| Conductivity/Salinity   pH   70   Date   SAN 71   AMDEL No. Deptmt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                |
| Date   12   AMDEL No Deptmt1   Deptmt |                                  |
| 1 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                               |
| Permit No. 24 Reference No. 5A.04.1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

Aerial Photo No. 73 Accuracy of Identification .....

.... Coding Check...

Compiled . .

| D             | ata from S.M.L        | 466, Envelope 1506, O. | m. 951/70                               |
|---------------|-----------------------|------------------------|-----------------------------------------|
| <u></u>       | ample results         |                        |                                         |
| •             |                       | 0.05 004               |                                         |
|               | Uranism               | 0.05 ppm               | *************************************** |
|               |                       |                        |                                         |
|               |                       | ******************     |                                         |
| DRIGINAL DATA | Unit Number           |                        |                                         |
| 1 3 RE        | Supply method         | Method of Measure      | 17 18                                   |
| st. Aquifer:  | : Depth water cut m   | SWD m                  | 23 <b>M</b> 28 29                       |
|               | Drawdown m            | Supply                 | 34 39                                   |
|               | Conductivity/Salinity | Aquifer developed?     | 2 46 47 pH 48                           |
|               | Depth sample taken m  | Sampling method        | Analysis No                             |
| 2nd. Aquifer: | Depth water cut m     | SWD m                  | 51 56 57                                |
|               | Drawdown m            | Supply                 | 62 67                                   |
|               | Conductivity/Salinity | Aquifer developed?     | 74 75 pH 76                             |
| 0,6           | Depth sample taken m  | Sampling method        | Analysis No                             |
| Brd. Aquifer: | Depth water cut       | SWD m                  | 23 28 29                                |
|               | Drawdown m            | Supply                 | 34 39                                   |
|               | Conductivity/Salinity | Aquifer developed?     | pH pH                                   |
|               | Depth sample taken m  | Sampling method        | Analysis No                             |
| th. Aquifer:  | Depth water cut m     | SWD m                  | 51 56 57                                |
|               | Drawdown m            | Supply                 | 62 67                                   |
| r<br>F        | Conductivity/Salinity | Aquifer developed?     | 74 75 pH 76                             |
|               | Depth sample taken m  | Sampling method        | Analysis No                             |
| 4.010         |                       | A second               | *                                       |