

FRACTURE ANALYSIS of the EASTERN WARBURTON BASIN (Early Palaeozoic) South Australia

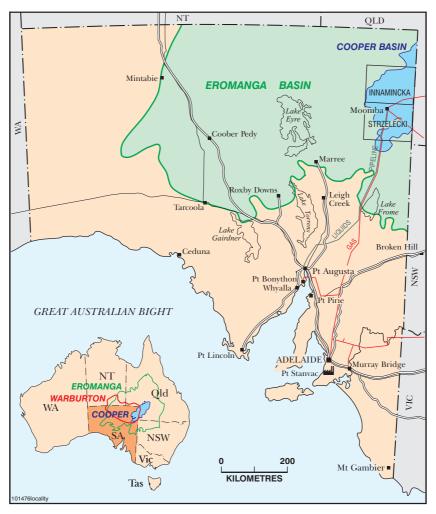
Compiled by

Xiaowen Sun National Centre for Petroleum Geology and Geophysics

July 1999

CONTENTS

EXECU	UTIVE SUMMARY
INTRO	DDUCTION
	ractured reservoirs
	Constraints
FRAC	TURE CHARACTERISATION
	lentification and classification
Α	ithological control
CASE	STUDY - FRACTURED RESERVOIR IN LYCOSA 1
FRAC	TURE MAPPING
C	Orientation
	Core measurement
	Dipmeter and FMS log interpretation
	Relative orientations
	Orientations of open and partially open fractures
F	racture density
DISCU	ISSION
C	Major fracture types and orientation 44 Origin of fractures 45 racture fairway 47
CONC	LUSIONS AND RECOMMENDATIONS
REFER	RENCES
ACKN	OWLEDGMENTS
FIGUR	ES
Fig. 1	Cooper Basin well location map, showing studied wells including economic wells Lycosa 1, Sturt 6, 7 and Moolalla 1, and major structural trends. (99-0412)
Fig. 2	Simplified stratigraphic column of the Warburton and Cooper Basins. (99-0413)
Fig. 3	Petal fractures (induced) in sandstone from Dullingari 1, core 28, at 9669'2". (Photo 046695)
Fig. 4	(a) Permian basal conglomerate above the Warburton Basin unconformity in Pelketa 1, 7093'10"–7094' 10
	(b) Detail of clasts containing pre-existing fractures within Warburton Basin siltstone and shale. (Photo 046696, 046697)
Eia 5	
Fig. 5	Core illustrating open and partially open fractures.
	(a) Core photo, showing open fractures connecting vuggy porosity in dolomite, Gidgealpa 5, 8118'. (<i>Photo 046698</i>)
	(c) Core photo, showing open fracture (middle) and other filled fractures along normal microfaults, Gidgealpa 4, 7226'8-9". (Photo 046700)
	(d) Open fracture in core, Meranji 2, 10920'. (Photo 046701)
	(e) Open fracture in core, Beanbush 1, 12130'6", showing fracture plane surface with very subtle mineral fill. (Photo 046702)
	(f) Open to completely, calcite filled fractures in Merrimelia 6, core 5, 7442'. (<i>Photo 046703</i>)
	(g) View of fracture plane, incompletely filled early with fine quartz crystals (transparent) and late coarse calcite
	crystals, Merrimelia 2, 9017'. (<i>Photo 046704</i>)
	(h) Remnant fracture porosity in Lycosa 1, at 8803', where matrix porosity of 6.2 per cent and permeability of 0.019 millidarcies were measured. (<i>Photo 046705</i>)


Fig. 6	Cores illustrating deformed fractures	
	(a) Gouge filled fracture in fine-grained sandstone, showing gouge with clasts derived from fractured walls or surrounding sandstone Innamincka 1, 7199'. (<i>Photo 046706</i>)	13
	(b) Detail of slickensided fracture plane combined with calcite fill. Lycosa 1, 8802'. (Photo 046707)	13
Fig. 7	Mineral filled fractures	
	(a) Calcite filled fracture in Gidgealpa 2, core 9, 7275', showing a broken fracture plane. (Photo 046708)	14
	(b) Silica-filled fractures crossed orthogonally by short vertical fractures filled with ferroan carbonate. Pando 1, 5812'. (Photo 046709)	14
	(c) Cuttings thin section, showing pyrite filled fracture in siltstone, Lycosa 1, 8670-8680'. (Photo 046710)	14
	(d) Core photo, from Tilparee A1, 7019', showing pyrite and quartz filled fractures. (Photo 046711)	14
	(e) Photomicrograph, showing siderite and kaolinite filled fracture in Daralingie 1, 7426', cross-polarised light. (Photo 046712)	14
Fig. 8	Vuggy fractures in Coonatie 1, core slab, 10400'6". (Photo 046713)	15
Fig. 9	Microfractures in thin sections.	
	(a) Vuggy dolomite from Gidgealpa 1, 12950', showing open microfracture connecting vuggy and intercrystalline pores. Plane light. (Photo 046714)	16
	(b) Incompletely filled fracture in Lycosa 1, 8798'. Plane light. Width of view 1.65 mm. (Photo 046715)	16
	(c) Open microfracture in Moolalla 1, 8600-8610'. Plane light. Width of view 1.65 mm. (Photo 046716)	16
	(d) Possible open fracture in Sturt 8, 6382.87'. Plane light. Width of view 1.65 mm. (Photo 046717)	16
	(e) Possible open fracture in Boxwood 1, 6160'. Plane light. Width of view 1.65 mm. (Photo 046718)	16
Fig. 10	Lithological control on fractures.	
	(a) At least three phases of fractures and fills in limestone, Gidgealpa 5, 7944'4"-7". (Photo 046719)	17
	(b) Numerous fractures and brecciation in quartz-arenite in Mudrangie 1 . (Photo 046720)	17
	(c) In Pelketa 1, short conjugate fractures are more numerous in softer mudstone rather than siltstone layers.17 (<i>Photo 046722</i>)	17
	(d) Fractures in weathered mudstone and fresh siltstone and shale, Narcoonowie 1. (Photo 046723)	17
Fig. 11	Associated structural features.	
	(a) Microfold and numerous fractures in Wantana 1. (Photo 046724)	18
	(b) Microfold and associated cleavage in Dullingari 1, Width of view 36 mm (Photo 046725)	18
	(c) Thrust fault in Packsaddle 1. (Photo 046726)	18
	(d) Thrust fault in Gidgealpa 1. (Photo 046727)	18
	(e) Restoration of thrust fault in Gidgealpa 1, 12605.5'. (Photo 046728)	18
	(f) Reverse fault in Wantana 1, 9628', with 0.8-0.9 cm displacement. (Photo 046729)	19
	(g) Lycosa 1, a low-angle reverse fault displaced bedding at 8794'. (Photo 046730)	19
	(h) Coongie 1, micro-normal fault. (Photo 046731)	19
	(i) Gidgealpa 7, 9069', showing a fault zone breccia and associated gouge fill. (Photo 046732)	20
	(j) Gidgealpa 1, 11678', showing vertical stylolites. (Photo 046733)	20
	(k) Lycosa 1, 8793', showing an orthoganal set of fractures dipping towards SW (blue) and SE (red) respectively, the SW dipping fracture is still partially open. (Photo 046324)	20
	(l) Lycosa 1, showing a conjugate set of fractures with slickensides on fracture planes, one dips SE, the other dips N to NNW (similar to bedding), apparently SE fracture crosscut the latter at 8802'. (<i>Photo 046734</i>)	20
Fig. 12	Chronology of fractures and fills.	
	(a) Pyrite filled fracture has cut and displaced silica-filled fracture in Tilparee A1, 7021.65'. (Photo 046735)	21

	(b) Narcoonowie 1, core 2, 6542'5", showing crosscut relationship as marked by numbers in ascending chronology (I-IV). (<i>Photo 046736</i>)	21
	(c) Photomicrograph, Gidgealpa 7, 9062', showing calcite filled fracture and vertical stylolite crosscutting gouge-filled fracture. (Photo 046737)	21
Fig. 13	Core 1, Lycosa 1, 8792-8814', showing main fractures on slab surface; fracture density is not even, and varies from low over the intervals 8799-8801' and 8807-8809'10", high to very high over the interval 8794-8797'. Density variations are marked to the left of the core intervals	23
Fig. 14	Rose diagrams of fractures in core 1, Lycosa 1: (a) high angle fractures; (b) main fractures; (c) slickensided fractures and lineations; (d) fault planes and tension gashes. (e) FMS over interval of core 1, Lycosa 1 showing fractures (red and orange) interpreted by Schlumberger. Bedding is shown in green. (99-0486)	24
Fig. 15	Stereographic projections of poles to and great circle for bedding, density and rose diagram of fractures measured from core 1, 8793', Lycosa 1	25
Fig. 16	FMS (fracture analysis) in Lycosa 1, showing SW dipping open fractures (orange)	26
Fig. 17	Dipmeter in Lycosa 1	27
Fig. 18	Composite log in Lycosa 1	28
Fig. 19	Fracture orientations in cores, (a) circumferential surface in Innamincka 1, (b) right angle to core axis, Gidgealpa 3. (Photos 046738, 046739)	29
Fig. 20	Strzelecki 3 dipmeter and core illustrations of angular unconformity between Toolachee Formation (Permian) and Dullingari Group (Ordovician). (Photo 046740) (99-0505)	30
Fig. 21	Mudlalee 1 core, illustration of fracture sets. (Photo 046741)	31
Fig. 22	Variation of fracture orientation with depth in Gidgealpa 1. (99-0408)	32
Fig. 23	Map of Cooper Basin showing absolute orientations of strike directions. (99-0414)	33
Fig. 24	Four groups of strike azimuths stand out from mean high angle fracture strike azimuths as shown in two histograms (n=45): (a) mean strike azimuths plot, with four average directions: 22°, 61°, 114°, 148°; (b) frequency of mean strike azimuths in four groups. (99-0415)	34
Fig. 25	Map showing two sets of orthogonal fractures which are independent of local structure. (99-0504)	
Fig. 26	Map of Cooper Basin showing absolute orientations of dip azimuths. (99-0417)	39
Fig. 27	Map of Cooper Basin showing those relative orientation data which fit within system I or II, or both orthogonal sets (possibility 1). (99-0418)	40
Fig. 28	Map of Cooper Basin showing those relative orientation data which fit within system I or II, or both orthogonal sets (possibility 2). (99-0419)	41
Fig. 29	Map of Cooper Basin showing combination of absolute and relative data (strike only). (99-0420)	42
Fig. 30	Map of Cooper Basin showing absolute strike orientations of steep fractures (circled) to low frequency lineaments (LFL), NNE8, WNW9 and NE1 identified by Boucher (1998). (99-0421)	43
Fig. 31	Core photo in Jennet 1, showing possible open fractures in brittle coarse sandstone	44
Fig. 32	Core photo in Kalanna 1, showing high to very high grades of fracture density	45
Fig. 33	Core photo in Titan 1, showing moderate grade of fracture density	45
Fig. 34	Core photo in Meranji 2, showing low grade of fracture density	47
Fig. 35	Core photo in Dunoon 1, showing nil grade of fracture density.	48
Fig. 36	Fracture density map of the Cooper Basin with main lithologies. (99-0422)	49
Fig. 37	High angle fractures in Lycosa 1, including those interpreted from FMS (symbol +), (a) rose diagram, (b) lower hemisphere, stereographic projections of poles to, open fractures are within red circle and dip SW. (99-0423)	50
Fig. 38	Well deviation plot – Palm Valley 6, 6a, 6b – showing location of drill breaks and cumulative gas flows. (from Aguilera, 1997). (99-0424)	50

т		DI	т	70
- 1	\boldsymbol{H}	ВI		٠.٠

Table 1	Four generations of fracture fill in Tilparee A1 (bedding arbitrarily north)
Table 2	Lycosa 1 directional and fill data for depth 8793'
Table 3	Dipmeter, FMS fracture analysis with corresponding gas show and pay zone as shown on composite log 22
Table 4	Dip and strike azimuths of fractures interpreted from dipmeters
Table 5	Absolute orientations of mean strike direction of fractures, including those interpreted from FMS by Hillis et al., 1997 (*) and in (Rayner and Chin, 1990; Chin, 1991) (¹) (o = open fractures, po = partially open fractures) 29
Table 6	Absolute dip azimuths and dip angles (e.g. 120/60) of steep fractures, including those interpreted from FMS by Hillis et al., 1997 (*) and in (Rayner and Chin, 1990; Chin, 1991) (¹)
Table 7	Strike orientations of fractures rotated in azimuth to fit within regional fracture systems
Table 8	Case by case selection of more likely fracture strike orientation
Table 9	Orientations, aperture, lithology of open and partially open fractures
Table 10	Fracture density and main lithology from 91 studied wells
Table 11	Fracture density change with depth in Merrimelia 2. Core recovery is 100%, except core 11 (92%) and cores 7, 15, 17 (85%)
Table 12	Orientations of fault-related tectonic fractures
APPENI	DICES (on 3.5" floppy disc included with this report)
1 Ori	entation data measured from cores.
2 0	antation data management from across in standard format. Don't I. Absolute arientations. Don't II. Deletive arientations

- Orientation data measured from cores in stereonet format. Part I. Absolute orientations. Part II. Relative orientations
- 3 Brief descriptions of fractures and associated data.
- 4 Selected mean strike azimuths from 23 wells.

Frontispiece: Locality map.

EXECUTIVE SUMMARY

Cambro-Ordovician Warburton Basin strata and intrusive granites are conventionally regarded as economic basement beneath the Cooper-Eromanga oil and gas province in northeast South Australia and southwest Queensland. This study, the first of its kind, has identified and mapped a regional fracture system through upper levels of the Warburton Basin and because the fractures contain oil and gas from Cooper Basin source rocks, effective secondary hydrocarbon migration into fractured 'basement' traps is confirmed. Oil has flowed in commercial volumes from fractured Cambrian tuffs in Sturt 6 and 7, gas has been tested in Moolalla 1 and Lycosa 1 in Ordovician sandstone and fractured siltstone lithologies respectively (Baily, 1991a, Taylor *et al.*, 1991).

Considerable information has been gathered from a detailed core study of 91 wells in conjunction with the use of dipmeters, formation micro-scanner (FMS) logs from 27 wells. Absolute orientation data are obtained from measurements of cores and logs from 23 wells and additional relative orientation data are collected from 24 wells. Two systems of orthogonal fracture sets have been identified for the first time across local structures, and extend beneath the Cooper Basin in South Australia. System I has a pair of orthogonal fractures, striking NNE-SSW (20-200°) and ESE-WNW (110-290°). This system is similar in direction to low frequency lineaments NNE8 and WNW9 (Boucher, 1998b). System II has a pair of orthogonal fracture sets, striking NE-SW (60-240°) and NW-SE (150-330°). The NE-SW strike orientation is similar to lineament NE1 (Boucher, 1998b). Open fractures in Lycosa 1 have azimuths striking WNW and NW within systems I and II, and dip SW. Open, steeply dipping SW fractures are interpreted from FMS in the production zone over the interval 8653-8670 feet, and incompletely filled fractures are observed in core 1. Open fractures striking NNE and NW are interpreted from FMS in Malgoona 4. Based on data from Lycosa 1, Gidgealpa 5 and Tilparee A1, system I is possibly younger than system II. The results indicate that an optimum well trajectory designed to maximise intersection with open natural fractures should be 200-210° and 240-250°, and possibly 270-290°. The deviation angle should be approximately 30° from horizontal in the fracture zone due to the high angle and subvertical fracture dips.

A semi-quantitative estimate of fracture density has been determined for 91 wells and summarised in the form of an interpretive map. The greatest fracture density is located in major fault zones or structural culminations as expected. Generally speaking, fractures are mainly developed within brittle rather than ductile rock types if they are frequently interbedded. Open fractures or incompletely filled fractures are associated with brittle dolomite such as in Gidgealpa 1, 5, 7, and also in brittle sandstones such as in Beanbush 1, Meranji 2, Jennet 1, Merrimelia 6, 7, or brittle ignimbrite and tuffaceous sandstone such as in Boxwood 1, Gidgealpa 4, and Sturt 7, 8. These fractures are mostly at a high angle. Microfractures have been found and are believed to connect secondary porosity in ignimbrite of Sturt 7, 8. Fracture fairways exist in brittle sandstone, dolomite and volcanics, and any rock types with the above suggested orientations of the two systems of orthogonal fracture sets.

INTRODUCTION

Fractured reservoirs

The eastern Warburton Basin unconformably underlies the Cooper and Eromanga Basins in northern South Australia. Since the discovery of gas in Gidgealpa 2 in the Cooper Basin in 1963, the Warburton Basin has been regarded as economic basement and thus not explored seriously. Its Early Palaeozoic age, limited drilling, poor seismic data below thick Permian coal beds, and tectonic deformation make the Warburton Basin a high-risk exploration target. Although, to now, more than 600 wells have partly intersected the Warburton Basin, most of them are "ratholes" with less than 40 m of penetration. Four wells (gas in Lycosa 1 and Moolalla 1, and oil in Sturt 6 and 7) (Fig. 1) have produced commercial volumes of hydrocarbons which are considered to have migrated from Cooper Basin source rocks (Taylor et al., 1991). The reservoir rocks comprise: fractured siltstone (Lycosa 1), sandstone and siltstone with fracture-enhanced matrix porosity (Moolalla 1), and tuff with fracture porosity (Sturt 6 and 7) (Taylor et al., 1991). The fractured siltstone in Lycosa 1 has a maximum gas flow of 5.0 MMCFD (million cubic feet per day) (0.14 Mm³/d), while the fracture enhanced sandstone reservoir in Moolalla 1 has maximum gas flow of 9.6 MMCFD (0.27 Mm³/d) (Taylor *et al.*, 1991).

The fractured tuff flowed at a rate of 1250 BOPD in Sturt 6 (Baily, 1991b). In Sturt 7, a small oil recovery from DST 4 (17.8 bbls oil + 0.7 bbls oil cut mud) demonstrated that the fractured volcanics contain oil (Nugent, 1991) and the well was subsequently completed using artificial lift. These Warburton Basin reservoirs are likely related to fractures or in fault contact with mature Permian source rocks. The relatively high porosity but very low permeability values in Warburton Basin sandstone, volcanics and dolomite (Taylor et al., 1991; ACS Laboratories report in Sun and Gravestock, 1999) highlight the importance of having open fractures to connect the pore spaces.

This is the first detailed study of fracture systems in Warburton Basin cores. It aims to characterise fractured reservoirs and to delineate fracture patterns in order to predict the orientation of open fractures and thus potential reservoirs. A similar study has been carried out in the Palm Valley gas field (Berry *et al.*, 1996 and references therein), where fracture analysis was based on study of outcrops, several unoriented cores and one oriented core. Palm Valley is a relatively simple anticline, and bedding dip angles are low. However, the Warburton Basin is orders of magnitude larger, lacks outcrop and has a large number of predominantly random cores. With a range of dips, commonly exceeding 30°, a major task is to determine the orientations of bedding, fractures and other vector properties based on integration of a minimal amount of directional data.

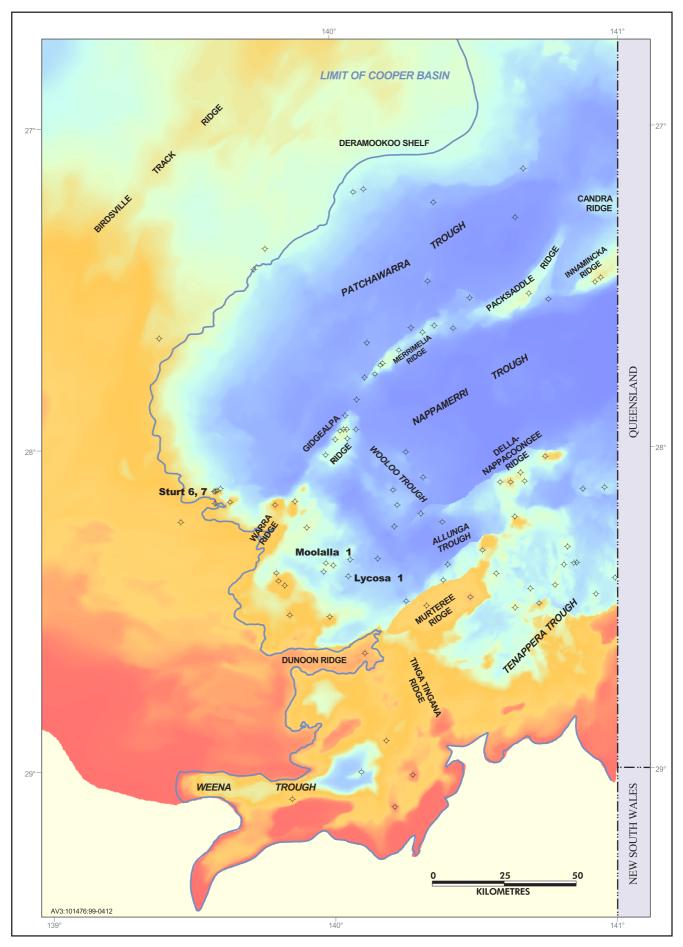


Fig. 1 Well location map, showing studied wells including economic wells Lycosa 1, Sturt 6, 7 and Moolalla 1, and major structural trends.

Data and methods

The study concentrates on the eastern Warburton Basin underlying the Cooper Basin (STRZELECKI and INNAMINCKA 1:250 000 map sheets).

Fractures in cores provide relative spatial information on fracture development. About 199 cores from 93 wells, which cover more than 98% of cores in the basin, have been studied in detail (Fig. 1). After washing and scrubbing cores clean, I have measured orientations of structural attributes particularly fractures and fault planes from cores. This stage of work resulted in about 135 measured orientation values at different depths from 22 oriented wells and 24 unoriented wells (Appendix 1, 2). The remaining wells studied have only core slabs, in most cases there are only 1/3 or less of the original core left. For these wells, I recorded fracture dip angles, types, chronology and fills (Appendix 3). 80% of the cores examined have been video recorded, and various kinds of fractures and fault planes have been photographed. In this study, I exclude granite (Big Lake Suite) intersected in wells such as McLeod 1, Moomba 1, and some metamorphic rocks of Willyama Supergroup, such as those cored in Mulga 1. Depths used in this study are in feet, normally KB driller depths.

Constraints

There are many wells with dipmeters recorded over Warburton Basin intervals, but in many cases, there are only unprocessed logs available at PIRSA, thus only 23 interpreted dipmeters are used for this study. Most of these dipmeter logs are old (pre-1980), cannot pick high angle data, and some are not suitable for meaningful interpretation due to random orientations of dip azimuths.

No azimuth data of deviated drilling axes are recorded in the studied Warburton Basin wells except Lycosa 1, although younger wells mostly after 1992 have azimuth data of deviation. Therefore, correction for deviation can be done only in Lycosa 1. Fortunately, most deviation angles are less than 5 degrees except Dullingari 1 (max. 32°), Merrimelia 2 (max. 10°) and Lycosa 1 (max. 17.9°). This error is not significant considering error in measurements by hand. Most strikes and dips calculated from seismic surveys are from the overlying Cooper Basin, rather than the Warburton Basin. In most cases, bedding dips change dramatically between the Warburton Basin and the overlying Cooper Basin. This reduces the accuracy of interpretation of bedding dip azimuth from seismic data. Lacking dipmeters, the orientations of open fractures from Gidgealpa 4, Meranji 4 and Jennet 1 have been assumed relatively or by considering the bedding dips of the adjacent wells or the regional fracture patterns.

Stratigraphy and tectonic history

The Cambro-Ordovician Warburton Basin unconformably underlies the Cooper and Eromanga Basins. Stratigraphy of the Warburton Basin has been discussed in Sun (1996, 1998), and is simplified in Fig. 2 which also shows the overlying Cooper Basin. The Warburton Basin has a complex tectonic history, which is largely speculative owing to a lack of reliable data and detailed study. Early work interpreted thrust fault-repeated sections in the Gidgealpa area (Daily, 1964; Carroll, 1990) and also in the

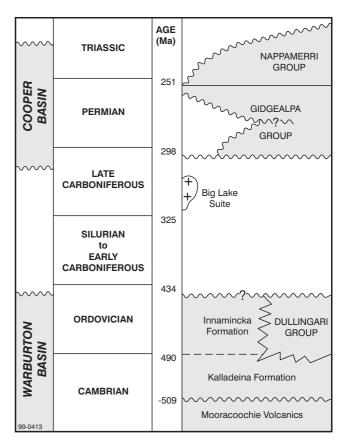


Fig. 2 Simplified stratigraphic column of the Warburton and Cooper Basins

Merrimelia, Wantana, Packsaddle and Innamincka areas (Sun, 1996, 1997), indicating a convergent tectonic regime. Compression has been attributed to several orogenic movements: Benambran Orogeny (Gatehouse, 1986), a late stage of the Delamerian Orogeny (arc setting of Roberts *et al.*, 1990), and the much younger Alice Springs Orogeny (Gravestock and Flint, 1995).

Using seismic sequence stratigraphic and biostratigraphic data, Sun (1996, 1997) has demonstrated mild compressive NW-SE fault reactivation as young as early Mesozoic in the Packsaddle area, while other seismic interpretations (e.g. Kuang, 1985), suggest Mesozoic wrench fault activity and Tertiary east-west compression. Wopfner (1985) suggested that a general state of compression existed during the Permian and early Triassic, and in the late Cretaceous and Tertiary.

FRACTURE CHARACTERISATION

Identification and classification

This report discusses only natural fractures and excludes those induced by drilling, coring and handling. It is the most difficult task to distinguish natural fractures from induced fractures when both types are open in cores. A comprehensive review of the physical characteristics of natural and induced fractures and how to distinguish them have been discussed by Kulander *et al.* (1990). One kind of induced fracture is petal fractures that have been observed in Coonatie 1, and Dullingari 1 (Fig. 3).

Numerous natural fractures have been identified from cores, wireline logs, and from indirect evidence during drilling. Poor core recovery and broken pieces in cores 25-29 in Gidgealpa 1 and core 16 in Gidgealpa 7 imply the presence of highly fractured zones in both wells. In Coongie 1, minor losses of drilling fluid may be caused by fractures or a breccia at 11150-11304', which is permeable but contains salt water (Pemberton, 1970). In Toolachee 51, a gas anomaly was encountered 34' into Warburton Basin siltstone, which was interpreted as a fractured zone that was also responsible for constant mud losses. DST 1 tested this zone, but flowed gas at a rate too small to measure, the gas peak over the zone was 600U (85/12/3/tr) (Ostler, 1996). In Gahnia 1, gas peaks of 60-320 units were recorded from siltstone of the Warburton Basin, which was assumed to be related to fracturing (Baily, 1996). In Cherri 1, cycle skipping on sonic over 4569-79' was suggested to indicate fracturing (Pexa Oil N.L., 1970).

A geological classification of natural fractures has been suggested by Nelson (1985), and is followed herein.

- tectonic fractures associated with local tectonic events.
- regional fractures developed over large areas of the earth's crust with relatively little change in orientation, show no evidence of offset across the fracture plane, and always perpendicular to major bedding surfaces.
- 3. contractional fractures tension or extension fractures resulting from a general bulk volume reduction through the rock.
- surface-related fractures developed during unloading, release of stored stress and strain, creation of free surfaces or unsupported boundaries and weathering in general.

Basically, most fractures examined in this study are either tectonic or regional except a few possible contractional fractures in rhyodacite in Gidgealpa 2, 3 and 11, and numerous fractures in basalt from Murteree A1. Here, I have concentrated on tectonic and regional fractures, which most likely contribute to the generation of fracture porosity.

Fig. 3 Petal fractures (induced) in sandstone from Dullingari 1, core 28, at 9669'2". (Photo 046695)

Generally speaking, the majority of studied natural fractures are only observed in Warburton Basin strata, in other words, they were caused by pre-Cooper Basin events. In several wells including Pelketa 1 (Fig. 4), Big Lake 52 and Gidgealpa 8, angular clasts with pre-existing and filled-fractures from Warburton Basin strata were redeposited in basal conglomerates of the immediately overlying Cooper Basin succession. Few fractures have been observed in the overlying Cooper Basin strata in most of the studied wells except Gidgealpa 5 in which vertical joints have been recorded in the Merrimelia Formation.

However, natural fractures do exist in the immediately overlying Cooper Basin strata though they do not commonly propagate above the Permian Tirrawarra Sandstone. An exception is in the Telopea field where Triassic sedimentary rocks overlie the Mooracoochie Volcanics of the Warburton Basin directly, and have been fractured. From FMS data, Hillis *et al.* (1997) interpreted natural fractures from the lower Patchawarra Formation and the Big Lake Suite of Moomba 73.

Fracture plane morphology and porosity

According to Nelson (1985, p.29), morphology of the fracture planes is an important attribute of fracture porosity and permeability. Four basic types of natural fracture plane morphology include:

- 1. open fractures,
- 2. deformed fractures: (a) gouge-filled fractures, (b) slickensided fractures,
- 3. mineral-filled fractures,
- 4. vuggy fractures.

These four basic types are all present, and some representatives are illustrated in Figs. 5-8. Porosity and permeability in the studied wells mainly exist in open fractures, partially open fractures or incompletely mineral-filled, slickensided, and rarely vuggy fractures.

Moolalla 1, Sturt 6 and Lycosa 1 exhibit fracture porosity, but no porosity values (as functions of the computed aperture (fracture width), Schlumberger, 1997) have been computed. Cuttings thin sections of these wells show some microfractures, but cuttings generally break along rather than across open fractures. Various microfractures are found in these and other wells, and are illustrated mainly from core samples in Figure 9.

Lithological control

Mechanically, different rock materials react to stress differently. In more brittle rocks such as dolomite and quartz-arenite, fractures are more irregular and intensive. Examples include well fractured dolomite in Gidgealpa 5 (Fig. 5a), fractured limestone (bioclastic wackestone and packstone) (Fig. 10a), severely fractured quartz-arenite in Mudrangie 1 (Fig. 10b), and ignimbrite in Sturt 7, 8 (Nugent, 1991). In softer rock such as mudstone and shale, as in Pelketa 1, short conjugate fractures are better developed in mudstone than siltstone layers (Fig. 10c). Weathered mudstone has irregular and short fractures, in contrast to fresh siltstone and shale which have long and regular fractures, as shown in Narcoonowie 1 (Fig. 10d). Mudstone in the altered zone at the top of the Warburton Basin (Boucher, 1998a) may thus form a top seal to fractures in the underlying fresh sequence (Gravestock *et al.*, 1998).

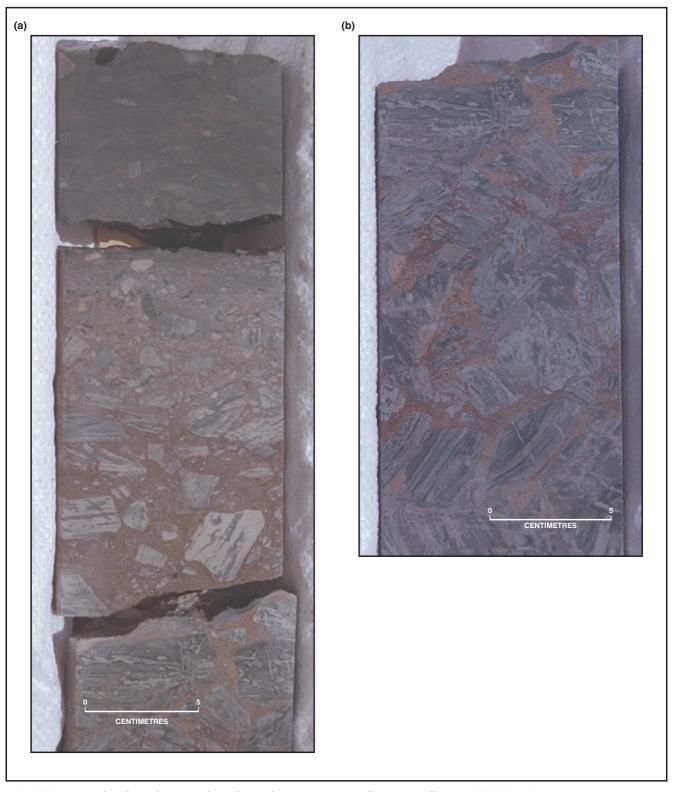


Fig. 4 (a) Permian basal conglomerate above the Warburton Basin unconformity in Pelketa 1, 7093'10"–7094'.
(b) Detail of clasts containing pre-existing fractures within Warburton Basin siltstone and shale. (Photo 046696, 046697)

Associated structural features

Many microstructures are observed in the studied cores. There are few normal microfaults whereas folds, reverse and thrust faults are common (Appendix 3), indicating deformation in a compressive tectonic regime. Most are unoriented and orientations of slickenside surfaces, lineations and fault planes can only be determined in a small number of wells with dipmeters. These structures are described briefly.

Folds

Microfolds are observed in several cores in Warburton wells, such as in Wantana 1. A microfold is associated with numerous short fractures (Fig.11a). In Dullingari 1, cleavage is developed along an axial plane, and some subparallel fractures also occur (Fig. 11b).

Fig. 5 (a) Core photo, showing open fractures connecting vuggy porosity in dolomite, Gidgealpa 5, 8118'.

- (b) Open fracture in ignimbrite from Boxwood 1, 6154.5'.
- (c) Core photo, showing open fracture and other filled fractures along normal microfaults, Gidgealpa 4, 7226'8-9".
- (d) Open fracture in core, Meranji 2, 10920'. (Photo 046698, 046699, 046700 and 046701).

Thrust faults

Thrust faults are observed in Packsaddle 1, (Fig. 11c). There is a thrust fault plane at 12605' in Gidgealpa 1 (Fig. 11d), at an angle of about 35° , and its azimuth is similar to that of the bedding plane, which is 67° (NE). Restoration across the fault is illustrated in Figure 11e.

Reverse faults

A reverse fault is observed in cored *Nuia*-rich limestone in Wantana 1 (Fig. 11f), and has less than 1 cm displacement. There is a reverse fault dipping about 65° to the core axis in Boxwood 1 at 6154.5' (Fig. 5b), but its azimuth is not certain as there is no definite bedding in ignimbrite. In Lycosa 1, a low-angle fault has displaced bedding at 8794' in a reverse mode (Fig. 11g).

Fig. 5 (e) Open fracture in core, Beanbush 1, 12130'6", showing fracture plane surface with very subtle mineral fill. (f) Open to completely, calcite filled fractures in Merrimelia 6, core 5, 7442'.

- (g) View of fracture plane, incompletely filled early with fine quartz crystals (transparent) and late coarse calcite crystals, Merrimelia 2, 9017'
- (h) Remnant fracture porosity in Lycosa 1, at 8803', where matrix porosity of 6.2 per cent and permeability of 0.019 millidarcies were measured. (Photo 046702, 046703, 046704 and 046705)

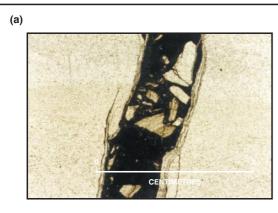


Fig. 6 (a) Gouge filled fracture in fine-grained sandstone, showing gouge with clasts derived from fractured walls or surrounding sandstone Innamincka 1, 7199'.

(b) Detail of slickensided fracture plane combined with calcite fill. Lycosa 1, 8802'. (Photo 046706, 046707)

Normal faults

A normal microfault in Gidgealpa 4 (Fig. 5c), is open and partially open. In Coongie 1, normal microfaults are found in thin section, and fractures have been filled with calcite (Fig. 11h).

Fault zone, gouge fill, shale smear

There is a major fault zone and associated gouge fill in limestone of Gidgealpa 7 (Fig. 11i). Carroll (1990) interpreted a thrust fault in this well but below this depth. There is another major fault zones and associated gouge fill in volcanics of Gidgealpa 8. Relatively smaller-scaled fault zones associated with little cataclasis and shale smear have been found in several wells such as Boxwood 1, Murteree 1 and Snake Hole 1 (Appendix 3).

Slickensides

Many slickensides are observed along bedding, fracture or fault planes. Those along fault planes have good lineations indicating movement of faults. In wells Lycosa 1, Gidgealpa 1, Snake Hole 1, Pelketa 1, slickenside surfaces are mainly SE dipping. Slickenside lineation is predominantly SE-NW, and subordinately NE-SW, such as in Lycosa 1 (Figs. 6b; 111).

Stylolites

There are basically two kinds of stylolites; one is the common horizontal type due to burial compaction from loading, the other is vertical such as in Gidgealpa 1 (Fig. 11j) due to lateral compressional stress. Most of the stylolites are found in limestone rocks, seldom in siliciclastics, which is unusual since a number of sandstones in the overlying Cooper Basin do possess styolites.

Conjugate fractures

Conjugate fractures are common, such as observed in cores of Nappacoongee 1, Lycosa 1 (Fig.111), Mudlalee 1, Tinga Tingana 1, Pelketa and Wantana 1. They have also been interpreted from dipmeters of Mudlalee 1, 2, Coochilara 1 and Strzelecki 3.

Chronology and fills

Chronology of fractures and fracture fills in each individual well is determined by crosscut relationships and recorded in Appendix 3. Although limited coring and intersection of fractures prevent positive fracture chronology determined by crosscutting of fractures in most wells, two general patterns are recognised: (1) High angle, fine fractures cross-cut low angle fault planes associated with fault breccia. They possibly also postdate high angle coarse fractures filled with calcite such as in Lycosa 1 and Gidgealpa 5. (2) At least four phases of fracture fill are found in several wells. Typical examples are in Murteree 1 and Tilparee A1 (Fig. 12a), Narcoonowie 1 (Fig. 12b), Gidgealpa 5 (Fig. 10a) and Gidgealpa 7 (Fig. 12c). Tilparee A1 is a typical example. Tilparee A1, particularly measured in core 3, 7019' 1" has the following relative orientation data (Table 1): (1) Fine fracture or joint, with dip angle of 85-90°, and dipping to the NW (300° dip azimuth); (2) fault plane, with dip angle of 60°, parallel to bedding (arbitrarily assigned to the north); (3) with dip angle of 70-90°, dipping SW (240°); (4) with dip angle of 60-80°, and dipping to the SE (140°). Table 1 also shows four generations of fracture and vein systems in ascending order.

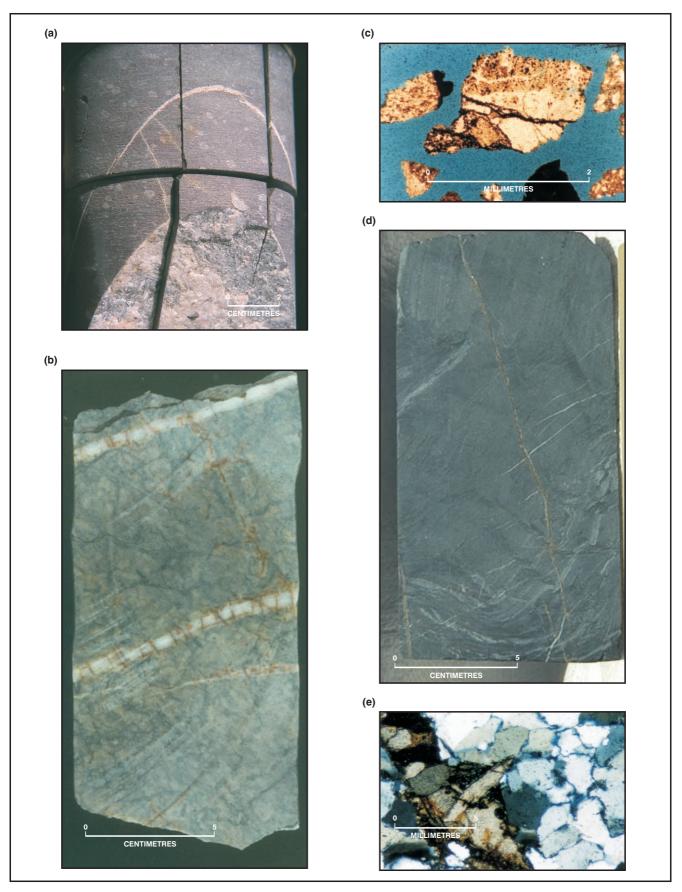


Fig. 7 (a) Calcite filled fracture in Gidgealpa 2, core 9, 7275', showing a broken fracture plane.

- (b) Silica-filled fractures crossed orthogonally by short vertical fractures filled with ferroan carbonate. Pando 1, 5812'.
- (c) Cuttings thin section, showing pyrite filled fracture in siltstone, Lycosa 1, 8670-8680'.
- (d) Core photo, from Tilparee A1, 7019', showing pyrite and quartz filled fractures.
- (e) Photomicrograph, showing siderite and kaolinite filled fracture in Daralingie 1, 7426', cross-polarised light. (Photo 046708, 046709, 046710, 046711 and 046712)



Fig. 8 Vuggy fractures in Coonatie 1, core slab, 10400'6". (Photo 046713)

Table 1 Four generations of fracture fill in Tilparee A1 (bedding arbitrarily north).

Туре	Dip zimutl	Dip h angle	Colour code	Comments	Generation (ascending)	Fills
bedding	0	60-70	green	bedding, against foldin	- Ig	-
frac (1)	300	85-90	blue	high angle, fracture	1	quartz
frac (2)	0	60	yellow	parallel to bedding, ? fault plane	2	quartz
frac (3)	240	70-90	brown	vein 2 (1-2 mm)	3	pyrite, quartz
frac (4)	140	60-80	black	vein 1, (1-8 mm) associated w slickensides	4 ith	quartz, pyrite

The four generations of fracture fill and mineralogy is more or less consistent with the fracture fill phases recognised by Rezaee (1997). He studied fracture filling cements of core samples from 5 wells by analysing their petrography, electron microprobe, fluid inclusions and oxygen and carbon stable isotopes. He deduced that the fracture fill phases in ascending order are: quartz in the form of chalcedony, pyrite, mega-quartz, siderite and ankerite, and kaolinite. However, he did not come across calcite and dolomite cement in his data. Rezaee (1997) also concluded, quite incorrectly in the face of evidence to the contrary, that the Warburton Basin 'cannot be a fractured reservoir'. Phillips (1997) found that the carbonate spar and dusty micrite postdate kaolinite in Narcoonowie 1. Calcite and dolomite fracture filling cements occur in many other wells especially in the region where the Kalladeina Formation subcrops, basically extending from the eastern flank of the Birdsville Track Ridge to the eastern flank of GMI Ridge. For example, subvertical fractures filled with calcite are common in various rock types in Coongie 1, (as only middle slabs of cores are available in Coongie 1, the orientations of these fractures cannot be determined). Low angle fractures filled with calcite are also observed in Daer 1 and other wells. At least four phases of calcite fill can be observed in Gidgealpa 5 (Fig. 10a) in ascending order: (1) coarse calcite vein fill (1cm width max.) and minor gouge fill, dip angle 65°, (2) fine (1-3mm max.), filled with calcite, 65°, surrounded by stylolite, (3) fine fracture (1mm), filled with calcite, steep to subvertical, 60°-85°, (4) slickenside fracture surface, undulating, slightly steeper than bedding.

CASE STUDY - FRACTURED RESERVOIR IN LYCOSA 1

Three drillstem tests in Lycosa 1 had some decline in flow with a maximum rate of 5.0 MMCFD (0.14 Mm³/d) (Baily, 1990a; Taylor *et al.*, 1991). Mean porosity calculated from the neutron-density log is 3-4 per cent within the pay zones. These indicate that Lycosa 1 has the behaviour of a fractured reservoir. The aim is to understand which fractures contributed in producing gas.

Among the Warburton Basin discovery wells, only Lycosa 1 has a relatively complete data set including dipmeter, FMS logs, and 6.7 m core (core 1, 8792-8814') which was cut immediately below the gross pay zone. A comprehensive account of this well is provided by Taylor *et al.* (1991). However, a detailed fracture study via integration of core and logs is given here. The composite log is shown on Figure 18.

Core data

At least five types of fracture have been measured in core 1, as listed below and can be more or less seen in core slabs (Fig. 13).

- 1. high angle, 78-80°, SE dipping, at 8793': dip azimuth 115-120°, hairline width, filled with calcite. At 8810', the fracture has displaced bedding plane slightly, and is associated with tension gashes and slickensides. At 8802', it is associated with slickensides as well, after being filled with calcite.
- 2. high angle, 60-70°, SW dipping, at 8793': dip azimuth 217-240°, hairline width, partially filled by calcite, and possibly partially filled with brown clay (?drilling mud) and white quartz at 8794';
- Low angle fractures dipping south, displaced bedding, thus could be part of a fault system; they have similar azimuths to mineralisation and brecciated zone over the intervals of 8795-8796', and other common low angle calcite filled fractures.
- 4. High angle veins, up to 25 mm calcite fill at 8802'6"–8803'5", and possibly the same cement in a veinlet at 8798' (2-5 mm), more or less parallel to bedding.
- Some nearly vertical fractures filled by calcite, curved (changing dip direction) at 8803'5" (SE), 8806-8807' (SW).

All fractures measured from, Lycosa 1 (Fig. 13) are divided into three groups and illustrated in stereonet and rose plots (Fig. 14) including (1) high angle fractures; (2) slickensided fractures; (3) other structure-related fractures. The dip azimuths and dip angles of major fractures, bedding and fault plane (after being corrected for deviation) fractures are summarised in Table 2 for the depth 8793' and illustrated in Fig. 11k and Fig. 15. They have not been picked via FMS data over the cored interval by Schlumberger (Fig. 14e).

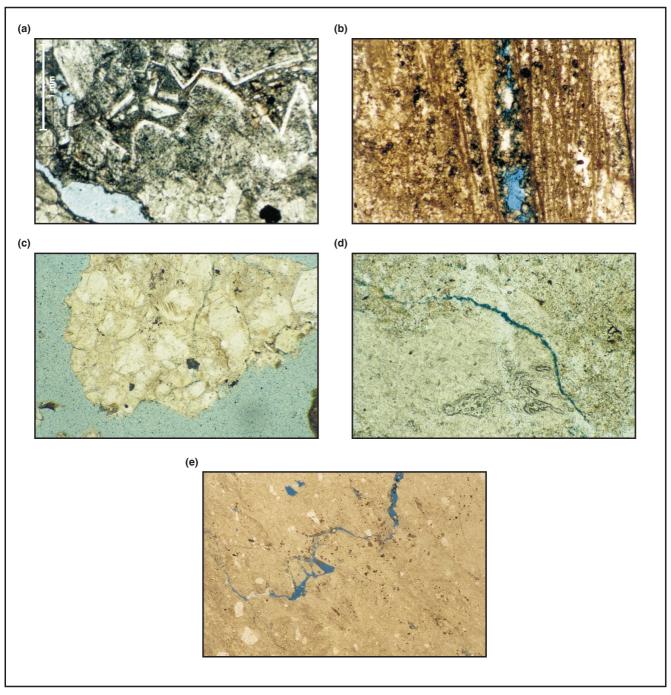


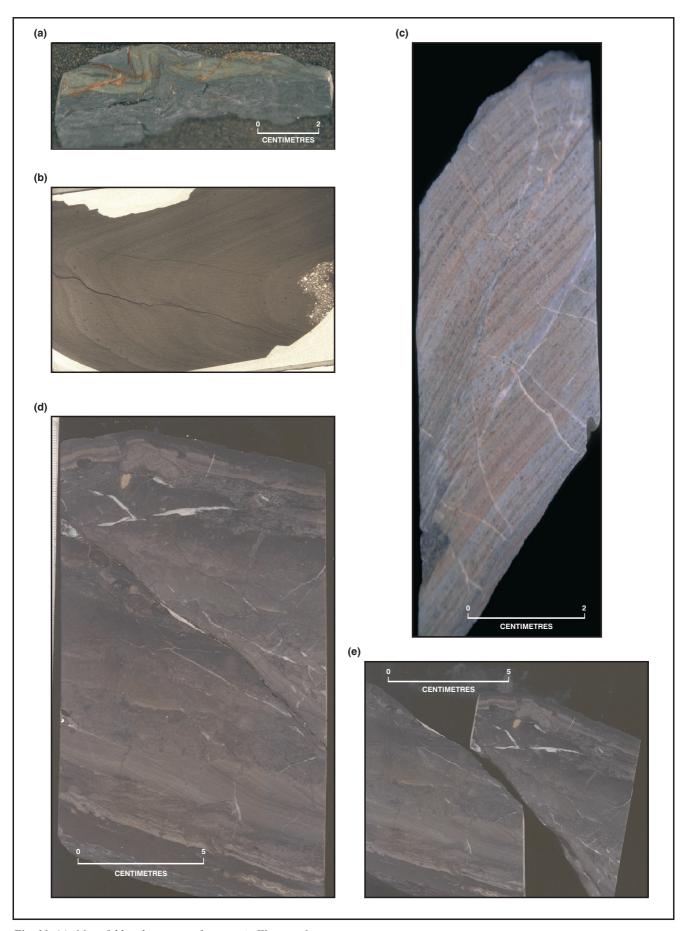
Fig 9 (a) Vuggy dolomite from Gidgealpa 1, 12950', showing open microfracture connecting vuggy and intercrystalline pores. Plane light.

- (b) Incompletely filled fracture in Lycosa 1, 8798'. Plane light. Width of view 1.65 mm.
- (c) Open microfracture in Moolalla 1, 8600-8610'. Plane light. Width of view 1.65 mm.
- (d) Possible open fracture in Sturt 8, 6382.87'. Plane light. Width of view 1.65 mm.
- (e) Possible open fracture in Boxwood 1, 6160'. Plane light. Width of view 1.65 mm. (Photo 046714, 046715, 046717, 046716 and 046718)

Chronology of fractures and fills

Four generations (I-IV) of fracture systems are recognised. First, as mentioned in Table 2, high angle fractures (SE and SW dipping) cross-cut the fault plane at 8793' and 8794'. Second, a high angle fracture (NNW dipping, subparallel to bedding, filled by calcite) has offset fault plane at 8798' and 8803'. Therefore, fault plane fracture is earlier than the latter two fractures. No direct crosscut relationship of the two later fractures can be observed. Movement on the NNW dipping fracture is evidenced by having a slickensided surface at 8803'. At

8802', a SE dipping slickensided fracture seems to crosscut a NNW dipping slickensided fracture (Fig. 111; Fig. 13).


Thus, at least four generations can be determined: (1) relatively low angle fault plane, associated with mineralised zone and breccia, (2) calcite-filled fracture subparallel to the bedding (NNE dip), (3) slickenside surface developed on the fracture orientation ranging from NNE to NNW, (4) SE dipping slickensided fracture. The high angle fractures (SE and SW dipping) therefore occur between generation 1 and 4.

Since high angle fractures (SE and SW dipping) belong to the system I orthogonal fracture set whereas SE and NW slickenside fractures belong to system II orthogonal fracture

Fig. 10 (a) At least three phases of fractures and fills in limestone, Gidgealpa 5, 7944'4"-7".

- (b) Numerous fractures and brecciation in quartz-arenite in Mudrangie 1.
 (c) In Pelketa 1, short conjugate fractures are more numerous in softer mudstone rather than siltstone layers.
- (d) Fractures in weathered mudstone and fresh siltstone and shale, Narcoonowie 1. (Photo 046719, 046720, 046722 and 046723)

- Fig. 11 (a) Microfold and numerous fractures in Wantana 1.
 (b) Microfold and associated cleavage in Dullingari 1, width of view 36 mm.
 (c) Thrust fault in Packsaddle 1.
 (d) Thrust fault in Gidgealpa 1.
 (e) Restoration of thrust fault in Gidgealpa 1, 12605.5'. (Photo 046724, 046725, 046726, 046727 and 046728)

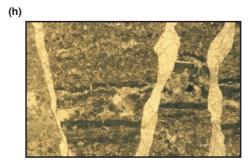
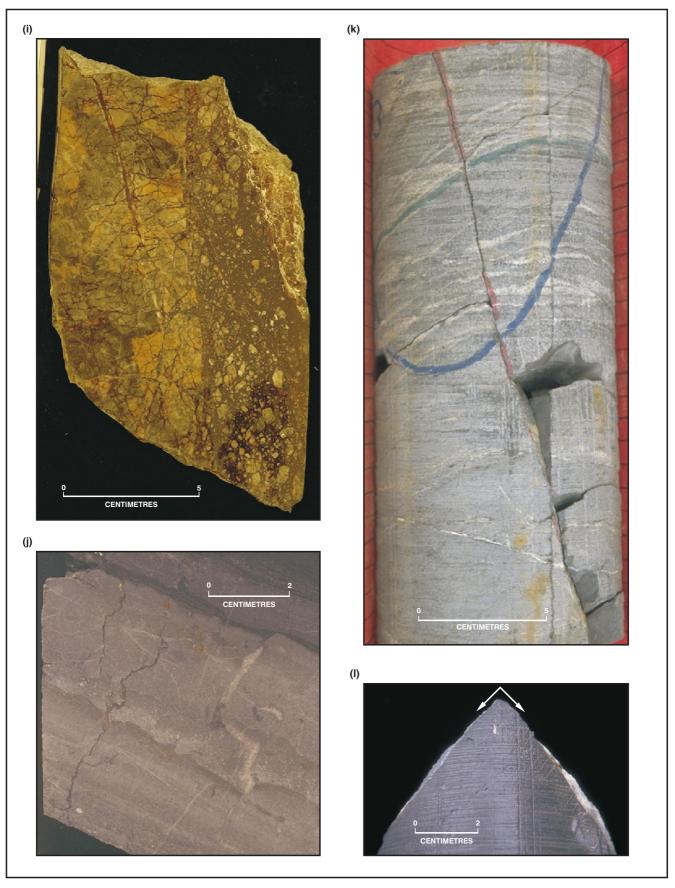


Table 2 Lycosa 1 directional and fill data for depth 8793'.

Туре	Dip azimuth	Dip angle	Colour code	Comments	Generation (ascending)	Fills
bedding	328.3°	20.8°	green	bedding		-
frac (1)	194.5°	81.5°	blue	high angle fracture	2	partially calcite
frac (1)	96.3°	82.7°	orange	high angle fracture	2	calcite
frac (2)	197.0°	79.2°	orange	high angle fracture	2	partially calcite
frac (1)	215.4°	76.4°	blue	high angle fracture	2	partially calcite
frac (2)	101.1°	84.0°	orange	high angle fracture	2	calcite
frac (3)	171.0°	20.3°	red	opposite bedding, fault plane	1	?dolomite

set, it is important to know which fracture set occurred first. Because the NW-SW oriented slickenside lineation is more dominant than others, the SE dipping slickensided fracture plane is interpreted to be the younger event.

Formation Micro Scanner (FMS) interpretation


Rayner and Chin (1990) have interpreted FMS images from Lycosa 1. A total of 47 fractures were identified in the logged interval which is 8549' to 8850', with moderate scatter (Rayner and Chin, 1990, Figure 2), dominated by azimuths: 14°, 163°, 214°, 270-289°. Compared with the fractures interpreted from FMS over the cored interval in Lycosa 1, my measurements have much higher resolution, recognising SW fractures which they did not. Rayner and Chin pointed out that "The shear energy profile [from the array sonic log] indicates that the fractures over the interval 8670 – 8651' extend away from the borehole and have the most potential for production". Although SW dipping fractures such as over the interval 8650-8662' (Fig. 16) were interpreted by Rayner and Chin as having a low confidence in interpretation because the microresistivity effect may be related to conductive minerals rather than open fractures, they concluded that most of these fractures are open and dip steeply towards the southwest. The average dip azimuth over this interval is similar to the high angle SW dipping, partially open fracture observed in core at depth 8793' (Table 2, Fig. 15). I have added representative, high-angle fractures interpreted from FMS to those measured from cores, and they are plotted on a stereonet. As can be seen, the open fractures dip SW (Fig. 37).

Dipmeter interpretation

I interpreted only the MSD 4 ft x 2 ft -35 degree x 2 which is a non-optimum option (Fig. 17), bad for detection of high angle dips. As a result, dip azimuth is right, but dip angle value is usually too low. Most dip azimuths range

Fig. 11 (f) Reverse fault in Wantana 1, 9628', with 8-9 mm displacement.

- (g) Lycosa 1, a low-angle reverse fault displaced bedding at 8794'.
- (h) Coongie 1, micro-normal fault. (Photo 046729, 046730 and 046731)

- Fig. 11 (i) Gidgealpa 7, 9069', showing a fault zone breccia and associated gouge fill.
 (j) Gidgealpa 1, 11678', showing vertical stylolites.
 (k) Lycosa 1, 8793', showing an orthogonal set of fractures dipping towards SW (blue) and SE (red) respectively, the SW
 - dipping fracture is still partially open.
 Lycosa 1, showing a conjugate set of fractures with slickensides on fracture planes, one dips SE, the other dips N to NNW (similar to bedding), apparently SE fracture crosscut the latter at 8802'. (Photo 046732, 046733, 046324 and 046734)

from N (0°) to NNE (18°), dip angles range from 34° to 60° over the interval 8330 to 8940', except 8840-70': NNE (30°), dip angle 65-70°.

All the dipmeter recordings are listed in Table 3 and compared with FMS interpretation against corresponding gas shows and log calculated or test calculated pay.

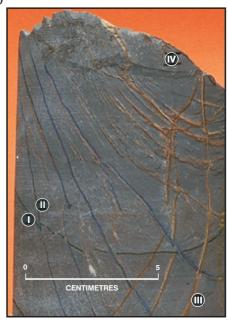
Slickensides

Several slickensides are observed in core 1, at 8803', 8810', 8813' and 8814' (Figs. 14, 15). Slickensides are also observed in cuttings samples which display calcite mineralisation over intervals with relatively low gamma values. Vague slickensides occur on the subhorizontal fracture just above 8797'.

Fracture density

Spacing between fractures along the core axis is not even, varying from 2.5 to 15 cm (Fig. 13). Very high fracture density (greater than 10 fractures per inch) occurs over the interval 8794-8796', in which numerous filled fractures are associated with cataclasis zone containing metallic and ore minerals (e.g. galena, Taylor *et al.*, 1991).

Creation of porosity


Open fractures (Figs. 9b; 11k), fracture surfaces parallel to slickensides (Fig. 6b), and remnant pores due to incomplete fill of original open fractures (Fig. 5h) all contribute to fracture porosity. Vuggy porosity, which more or less relates to calcite dissolution generated along cleavage of calcite crystals is also observed (Fig. 11k). Several calcite-rich intervals recognised by their low gamma log values, correspond to high gas shows, e.g. the intervals 8650-8666' and 8682-8680' with two gas peaks (Fig. 18). This indicates the possibility that calcite-rich intervals have better reservoir quality either due to incompletely filled pores or secondary dissolution. Alternatively, they correspond to open fractures due to parallel reactivation or slickensided after calcite fill such as in the interval 8650-60', where SW dipping open fractures dominate. Open space parallel to slickenside surfaces may be generated during several reactivation events of compressional tectonism. The dominant NW-SE orientation of the slickenside lineation further supports this assumption.

Fractures which contribute to production

Most fractures in core 1 are filled by calcite, dolomite or clay, this is why no gas was circulated over the interval. Only one partially open fracture is measured from core 1 at 8793', and dips steeply SW. This category of fracture may

- Fig. 12 (a) Pyrite filled fracture has cut and displaced silica-filled fracture in Tilparee A1, 7021.65'.
 - (b) Narcoonowie 1, core 2, 6542'5", showing crosscut relationship as marked by numbers in ascending chronology (I-IV).
 - (c) Photomicrograph, Gidgealpa 7, 9062', showing calcite filled fracture and vertical stylolite crosscutting gouge-filled fracture. (Photo 046735, 046736 and 046737)

Table 3 Dipmeter, FMS fracture analysis with corresponding gas show and pay zone as shown on composite log.

Depth (feet)	Azimuth (dipmeter)	Dip angle	Interpretation confidence	FMS depth (feet)	Gas show depth (feet)	Pay zone net pay (feet)
8300-01	S (181)	8°	Not good (NG)		8314	No pay
8318	SW (240)	6°	NG		8345-6	
8470	NW (336)	6°	NG			
8484	SW (202)	4°	NG			
8525	SW (210)	18°	G (Good)		8500, 8514	8514-8594: 17.5 Net pay
8560	NW (300)	34°	G			
8562	W (270)	32°	G	8562: near vertical, open fracture in NW and SE sectors. 8578: low planarity, open fracture		
				in SE and NW.	8572	
8600	NW (330)	30°	G			8594-8610:
8605	SE (120)	2°	G		8602-06	1.5 Net pay
8606	SE (160)	1°	G	8611-8661: SW dipping fractures.		8610-8634: 0.5 net pay
8653	SW (260)	38°	NG	8653-8670: SW dipping open fracture (WCR)		8634-8672: 30.5 net pay
8663	E-ENE (73)	30°	NG	8657: W dipping fracture low confid.		sols net pay
8670	SW (240)	20°	NG	8678.5: healed fracture	8688-8689	
8786	SE (157)	36°	NSG	8710: mineralised,	8729,	8672-8800:
	()			non-planar fracture	8732-34;	59.0 net pay
				In S and W sectors.	8740	r s s s s s r r r r r
				8732:	-,	
				mineralised fracture 8734:		
				numerous small fracture in SW sector.		
				8779: sub-ver., open fracture in E sector.		
				8792: sub-ver. open fracture in N sector.	8784	
8805	NW (330)	18°	G	8831: south dipping mineralised fractures. 8839: NNE dipping bed.	no gas circulated below 8800'	
8910	NW (345)	64°	NG	** -		
8918	NW (333)	47°	NG			
8936	NW (348)	56°	G			

contribute to production. Supporting evidence comes from the FMS, where this fracture type dominates the interval 8622 to 8661' within which there is a good gas show (Rayner and Chin, 1990). Fractures steeply dipping SE may be a conjugate set because they have similar dipping angles and fracture apertures and also either partially or completely filled by calcite (Fig. 111). However, I am not sure why dip angles of the SW dipping fractures observed in core 1 are above 75°, being much higher angle than those recorded by either dipmeter or from FMS interpretation (Rayner and Chin, 1990), and despite correction for hole deviation.

In conclusion, detailed measurements of fractures in core 1 of Lycosa 1 and FMS interpretation indicate open or partially open fractures tend to be high angle and SW dipping. Rayner and Chin (1990) also pointed out that the shear energy profile indicates that the fractures over the interval 8670-8653' extend away from the borehole and have the most potential for production. With similar dip azimuths, slickensided fractures associated with pre-existing calcite fill also contribute to production. Taylor et al. (1991) interpreted faults dipping SW and NE from seismic sections, and these faults were propagated into the overlying Permian Patchawarra Formation. If their interpretation is right, these faults including SW dipping fractures have been reactivated in the Permian and may re-open older fractures.

FRACTURE MAPPING

Orientation

Core measurement

I have measured dips of bedding planes, fractures and fault planes from cylindrical surfaces of cleaned, normally facing cores by using a flexible ruler. Azimuths of dips were measured from a face cut perpendicular to core axis by tracing their strikes in plan view (Fig. 19a, b). If a vertical fracture occurred (90°), I recorded its strike azimuth. I initially arbitrarily assumed bedding dip to north, with other fractures measured relative to the bedding. If there is no bedding plane such as in volcanics and weathered mudstone, I used a predominant fracture to north. I entered these orientation data into a StereoNett program created by Dr Johannes Duyster in Germany. After determination of orientations of bedding planes from dipmeters, I rotated bedding planes or predominant fractures with similar dip angle as recorded in dipmeter, and others into corrected orientations. A lower hemisphere stereonet projection has been used.

Dipmeter and FMS log interpretation

There are 33 wells with both dipmeters and cores within Warburton Basin intervals, but only 23 wells have both full-diameter cores for measurement and available

Fig. 13 Core 1, Lycosa 1, 8792-8814', showing main fractures on slab surface; fracture density is not even, and varies from low over the intervals 8799-8801' and 8807-8809'10", high to very high over the interval 8794-8797'. Density variations are marked to the left of the core intervals.

dipmeters (remaining cores have been slabbed). There are seven wells with FMS: Dullingari 44, Gidgealpa 47, Lycosa 1, Malgoona 4, Merrimelia 29, Moomba 73 and 75, but only Lycosa 1 has core material. Only three wells — Lycosa 1, Malgoona 4 and Yalchirrie 1 — have interpreted FMS logs available for this study.

Dipmeter is very useful at picking unconformities between the Warburton and Cooper or Eromanga Basins, and is normally recognised by abrupt change of azimuth or dip. The angular unconformity between the Dullingari Group and overlying Late Permian Toolachee Formation has been recognised in both core and dipmeter in Strzelecki 3 (Fig. 20).

Dipmeters are fairly good at picking dips of bedding planes or structural dips, but they are not sensitive for detecting high angle bedding planes or fractures because of non-optimal processing algorithms, even in relatively modern data as in Lycosa 1 (Fig. 17). In the cases where dipmeters pick several fractures, I analysed how many groups of orientations, compare with dip azimuth of fracture sets observed in core, and decided which represents bedding dips or fracture dips. One example is in Mudlalee 1, although only the centre core slab is available for study, bedding dips are higher than fractures (Fig. 21), fracture set 1 has opposite orientation from the bedding, and fracture set 2 is at an oblique angle to the bedding.

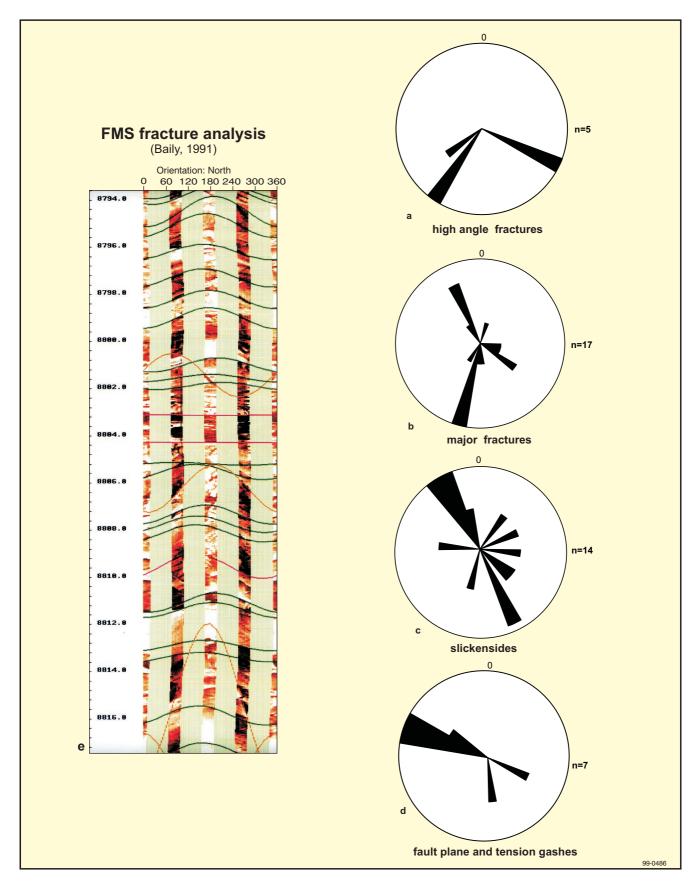


Fig. 14 Rose diagrams of fractures in core 1, Lycosa 1:

- (a) high angle fractures; (b) main fractures; (c) slickensided fractures and lineations; (d) fault planes and tension gashes.
- (e) FMS over interval of core 1, Lycosa 1 showing fractures (red and orange) interpreted by Schlumberger. Bedding is shown in green.

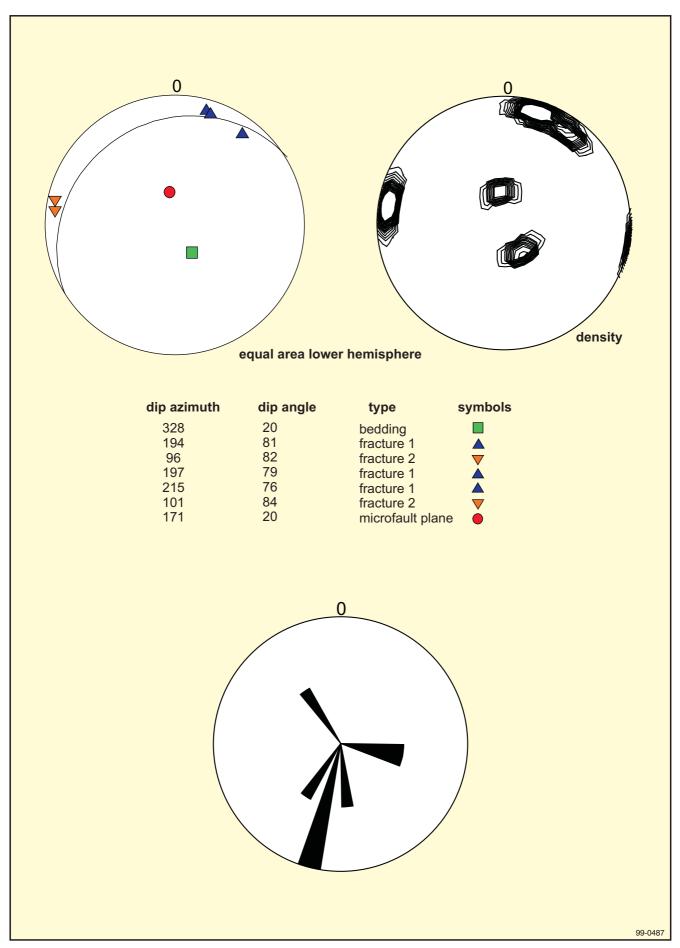


Fig. 15 Stereographic projections of poles to and great circle for bedding, density and rose diagram of fractures measured from core 1, 8793', Lycosa 1.

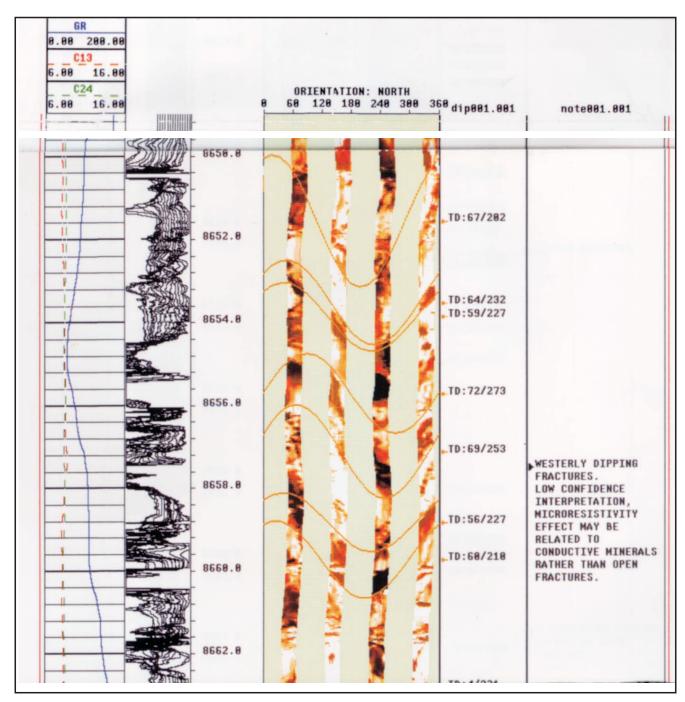


Fig. 16 FMS (fracture analysis) in Lycosa 1, showing SW dipping open fractures (orange). (From Rayner and Chin, 1990).

The wells listed in Table 4 have only core slabs except Coochilara 1 and Mudlalee 2 which lack cores. Their dipmeters can be interpreted by recognising conjugate fracture sets which cannot be confused with subvertical bedding dips as mentioned above for Mudlalee 1. With confidence, they can contribute to absolute orientation data (Figs. 23-24). The azimuths are averaged from dipmeter values, and are listed in the order of decreasing frequency of occurrence (Table 4).

Table 4 Dip and strike azimuths of fractures interpreted from dipmeters.

Well name	Dip azimuth	Strike azimuth
Coochilara 1	157°, 335°	67°, 245°
Mudlalee 1	240°, 330°	150°, 60°
Mudlalee 2	73°, 215°, 297°	163°, 125°, 27°
Strzelecki 3	52°, 335°	142°, 65°

Absolute orientations

From almost 100 measured depths in 22 wells, Table 5 lists absolute strike orientations of mostly high angle fractures. Low angle fractures have also been measured (Appendix 1, 2). Warburton Basin intervals in most wells have only one or two cores, each core is normally 10 feet long. However some old wells such as Gidgealpa 1, 2, 3, 4, 5, 7, 8, 9, 11, Merrimelia 1, 2, Innamincka 1, Coongie 1 and Kalladeina 1 have many cores. Therefore, for those wells, the measurements near top of Warburton Basin strata have been chosen because they are more likely to trap Cooper Basin hydrocarbons. A difference of orientation with depth is prominent in Gidgealpa 1 (Fig. 22), probably due to footwall and hanging wall deformation differences in a compressive fault system.

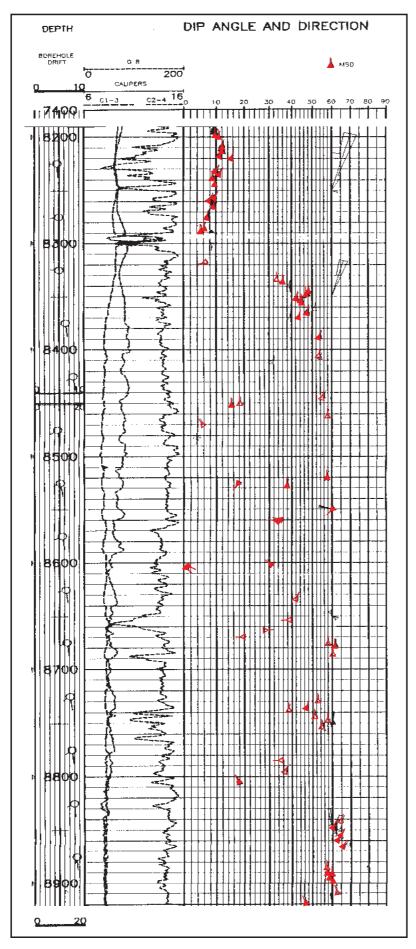


Fig. 17 Dipmeter in Lycosa 1.

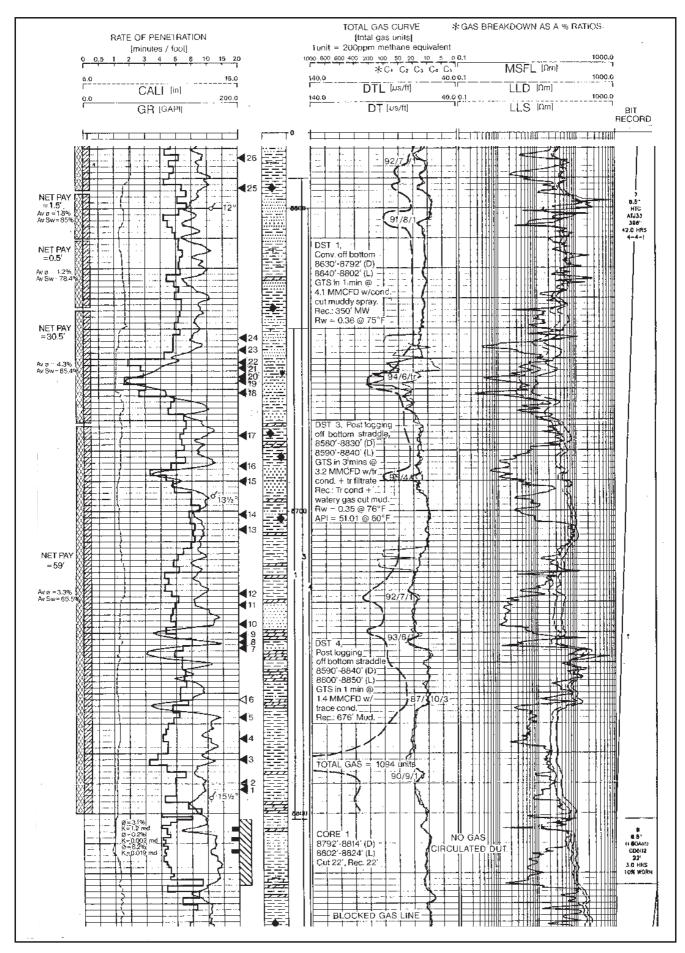


Fig. 18 Composite log in Lycosa 1

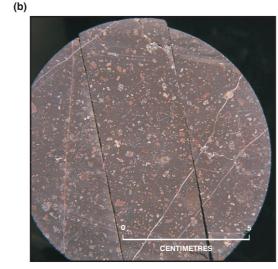


Fig. 19 Fracture orientations in cores,

- (a) circumferential surface in Innamincka 1,
- (b) right angle to core axis, Gidgealpa 3. (Photos 046738, 046739)

Since major regional structural trends in the Cooper Basin are inherited from those which deformed the Warburton Basin (Sun, 1997 and references therein), Warburton Basin fracture systems are grouped in the five major structural domains which control Cooper Basin architecture. They are further partitioned into seven strike subdivisions to show similarity from well to well within a subdivision.

Table 5 Absolute orientations of mean strike direction of fractures, including those interpreted from FMS by Hillis et al., 1997 (*) and in (Rayner and Chin, 1990; Chin, 1991) $\binom{l}{l}$ (o = open fractures, po = partially open fractures).

			STRIKE	SUBD	IVISION		
	1	2	3	4	5	6	7
Sturt-Malgoor	a-Neal	yon-Jen	net Stru	ctural [Domain		
Malgoona 4 (o)1	018°		060°		150°	
Gidgealpa-Me	rrimelia	a-Packs	addle-In	namino	ka Struct	ural Dom	nain
Gidgealpa 1	001°	018°	046°	060°	107°	150°	
Snake Hole 1	007°				104°		
					126°		
Gidgealpa 2				087°	120°	150°	
3 - 1						162°	
Gidgealpa 3		026°	046°	074°	120°		176°
Gidgealpa 5		021°		054°			
3 - 1				063°	133°		
Gidgealpa 7		025°		059°	136°	150°	
Merrimelia 6						147°	171°
Merrimelia 7		026°					173°
Mudrangie 1		030°	041°	060°		150°	
Wantana 1			•	079°	115°		
Packsaddle 3		021°		064°		150°	
		02.				140°	
Innamincka 1				079°	135°	150°	
Boxwood-Dar	alingie-	Lvcosa-	Moomb				
Boxwood 1	006°	_,,,,,	050°	085°	102°		
Lycosa 1	000	020°	000	063°	110°(po)	140°(o)¹	
Lyocoa :		020		000	127°(o)¹		
					(0)	162°(o)1	
Yalcumma 1			072°	082°		. 02 (0)	
Moomba 2		020°	0	002			
Moomba 73*		020				147°	
Della-Nappac	nonaee	-Dulling	ari Stru	rtural D	omain		
Della 1	oongee	Danning	juii Oti u	otalai D	112°	141°	
Dullingari 1					117°	144°	
Tilparee-Pelke	ta-Too	lachee-l	Munkari	Struct			
Murteree 1		021°	aiindii	50.00		156°	
martoroo i		021				100	
Munkarie 1	008°		068°		090°		
Pelketa 1	000		046°		108°		179°

The strike data in 23 wells (Table 5) chosen for final interpretation are from high angle fractures and averaged into 45 mean strike directions from many measurements. They are illustrated in Fig. 23. From these seven subdivisions, four groups of fractures can be further separated (Fig. 24; Appendix 4). The four groups have average strike azimuths of 22°, 61°, 114°, 148°, which can be approximated as four strike directions: 20°, 60°, 110°, 150°. As shown in Table 5, in the Gidgealpa-Merrimelia-Packsaddle-Innamincka domain, NW-SE strikes are dominated by azimuth 150-330°, subsidiary NW-SE strikes can be averaged as 110°. NNE strikes can be averaged as 020°. NE strikes can be averaged as 60°. These major strike directions can be seen in other domains as shown in Table 5 and Fig. 23. For example, in Lycosa 1, 020° and 110° are orthogonal directions, one dipping SW and the other dipping SE (Fig. 11k). I interpret the NE striking 060° and 150° pair as a second orthogonal set. These two sets are more or less found in all the structural domains although some fractures may not have been intersected during drilling or have no core or other logs to record them. These two systems are simplified and superimposed on the Z time structural map (Fig. 25). Relatively few wells, Munkarie 1, Pelketa 1, Wantana 1, Yalcumma 1, Boxwood 1 and Gidgealpa 2 have fractures close to E-W striking fractures.

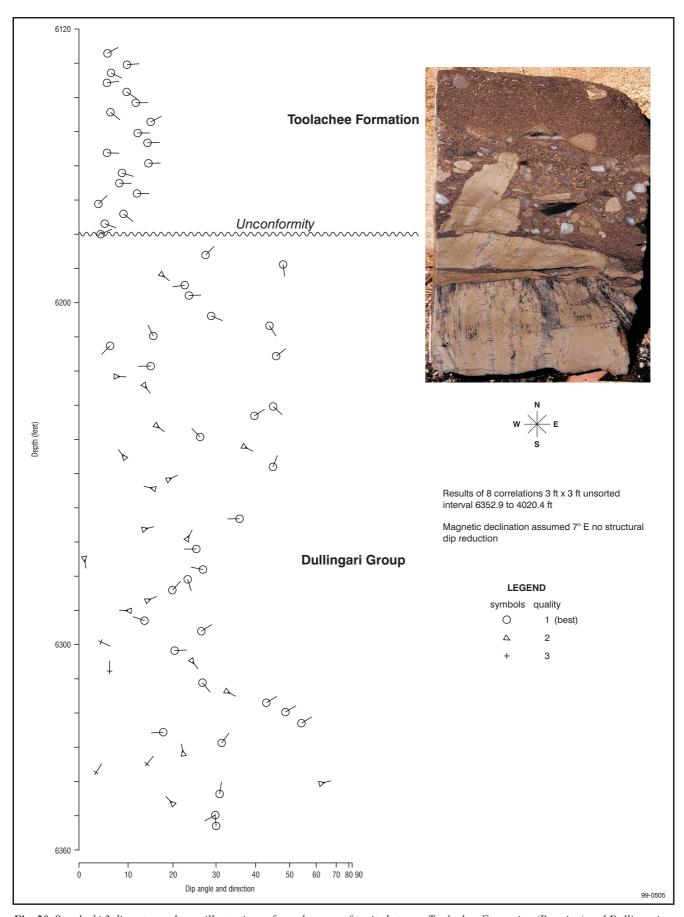


Fig. 20 Strzelecki 3 dipmeter and core illustrations of angular unconformity between Toolachee Formation (Permian) and Dullingari Group (Ordovician). (Photo 046740)

Table 6 Absolute dip azimuths and dip angles (e.g. 120/60) of steep fractures, including those interpreted from FMS by Hillis et al., 1997 (*) and in (Rayner and Chin, 1990; Chin, 1991) (1)

Sturt-Malgoona-Nealyon-Jennet Structural Domain

240/65(o)1 288/55(o)1 Malgoona 4(o)1

	` ,	` ,	` ,		
Gidgealpa-Me	rrimelia-Packsa	addle-Innam	incka Structura	al Domain	
Gidgealpa 1	136/55	197/35	239/80	271/55	
Snake Hole 1	14/89 or	36/80	277/83		
	194/89				
Gidgealpa 2	72/50, 177/80,	210/70, 240/	68		
Gidgealpa 3	116/78, 136/73	, 164/82, 210	0/85, 266/85		
Gidgealpa 5	144/55, 291/60	, 333/50			
Gidgealpa 7	226/85, 240/78	, 295/43, 329	9/73		
Merrimelia 6	237/87, 261/87	•			
Merrimelia 7	83/75, 296/80				
Mudrangie 1	120/48, 240/80	, 311/45, 330	0/60		
Wantana 1	169/60, 205/50				
Packsaddle 3	63/70, 230/80,	291/61, 334/	85		
Innamincka 1	45/70, 240/70,	349/68			
Boxwood-Dara	alingie-Lycosa-	Moomba Str	uctural Domai	n	
Boxwood 1	175/63, 192/55	, 276/80, 320	0/60		
Lycosa 1	110/84, 200/78	(op), 230/67	(o)1, 333/651, 21	17/62(o)1,	
	252/67(o)1				
Yalcumma 1	172/70, 342/58	1			

Moomba 2 290/85 Moomba 73 * 57 or 237

Della-Nappacoongee-Dullingari Structural Domain

Della 1 202/77, 231/80

Dullingari 1 54/55

Tilparee-Pelketa-Toolachee-Munkarie Structural Domain

Murteree 1 111/85, 246/70, 306/60 Munkarie 1 98/72, 158/75, 180/80 89/45, 136/52, 198/60 Pelketa 1

Dip azimuths of absolute orientations are presented in Fig. 26 and listed in Table 6. Several major groups of dip azimuths include in order of decreasing frequency: SW, SE, NW and NE.

Relative orientations

The majority of cores are from wells that are not orientated down-hole in the Warburton Basin. In 24 wells, bedding is arbitrarily assumed to dip north, with other fractures measured relative to the bedding (Appendix 1, 2). Because the two orthogonal fracture systems transcend local structures, and more or less have the same orientations as low frequency lineaments, they are interpreted as regional fractures. With guidance of the regional fracture pattern, relatively oriented high angle fractures can be rotated into sensible strike directions by their angular relationships. In this way the relatively-oriented high angle fractures from an additional 17 wells can fit within two orthogonal fracture systems. However, there are two possible solutions (Table 7, Figs. 27, 28 and 29).

A choice can be made between the two possibilities by considering the regional fracture patterns recognised in the nearby wells. Since the regional fractures in the Warburton Basin have been superposed by local tectonic fractures (see discussion), local structural features such as thrust faults, slickensided surfaces and lineation directions can constrain the more likely possibility on a case by case basis (Table 8). Absolute and relative orientations of fractures can then be combined to present a fracture strike map (Fig. 29).

Orientations of open and partially open fractures

From FMS interpretation, Chin (1991) identified 181 natural fractures in the Mooracoochie Volcanics in Malgoona 4, of which 167 are open (or conductive). He also

Fig. 21 Mudlalee 1 core, illustration of fracture sets. (Photo 046741)

found that the fractures have mean azimuth 288.6°, dip 55.9°, and the most intensely fractured intervals are 7225-7230 and 7278-7285 feet, in which fractures have aperture: max: 0.1 mm, mean: 0.063 mm; density of open fractures 7/foot. However, there are at least three dominant azimuths with 167 conductive fractures (Chin, 1991, Fig. 5), whose mean values are 290°/55, 240°/65, 330°/80 It is illogical to calculate a mean azimuth and dip for these fractures and hence Figure 29 displays all three directions for

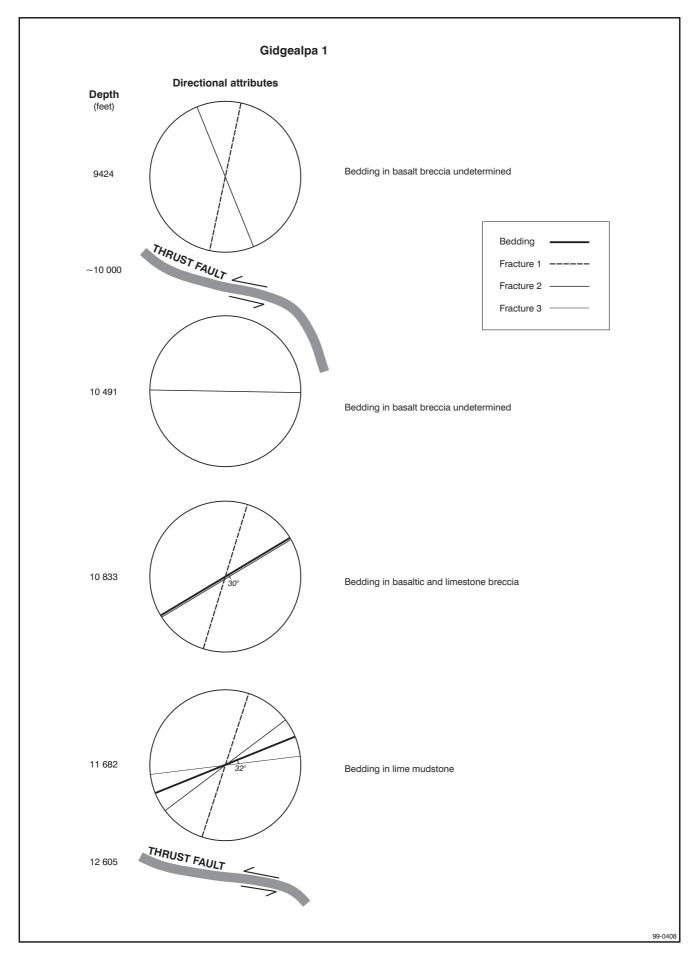


Fig. 22 Variation of fracture orientation with depth in Gidgealpa 1

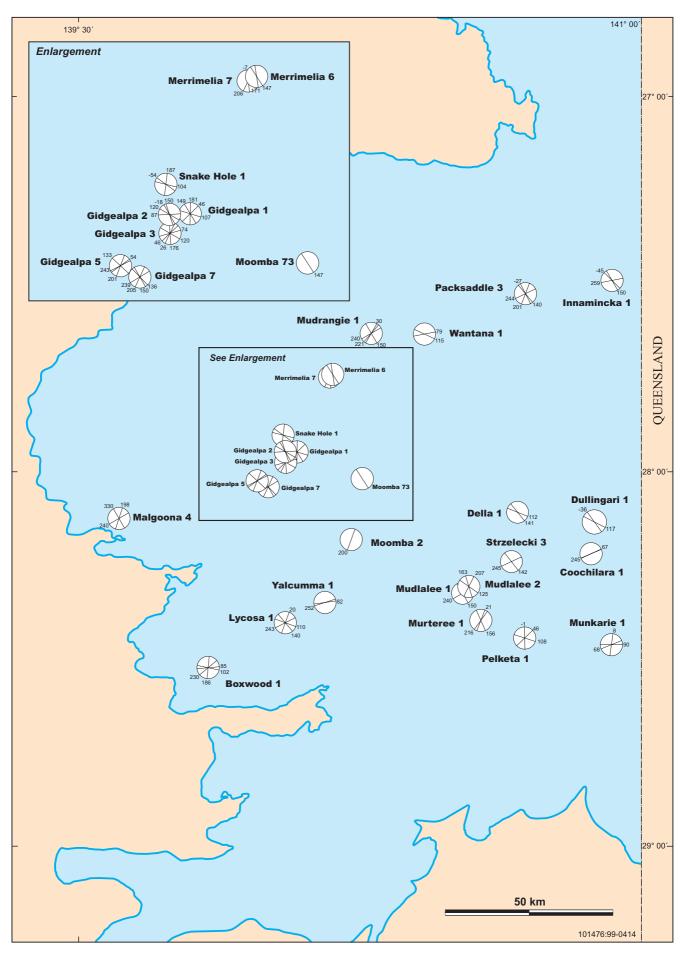


Fig. 23 Map of Cooper Basin showing absolute orientations of strike directions

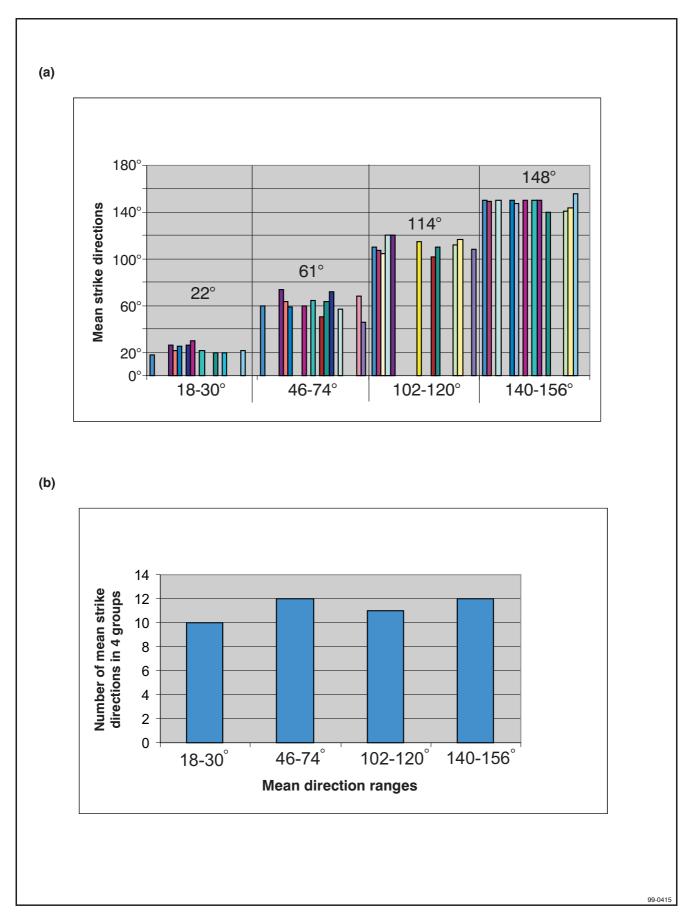


Fig. 24 Four groups of strike direction stand out from mean high angle fracture strike direction as shown in two histograms (n=45):

(a) mean strike direction plot, with four average directions: 22°, 61°, 114°, 148°;

(b) frequency of mean strike direction in four groups.

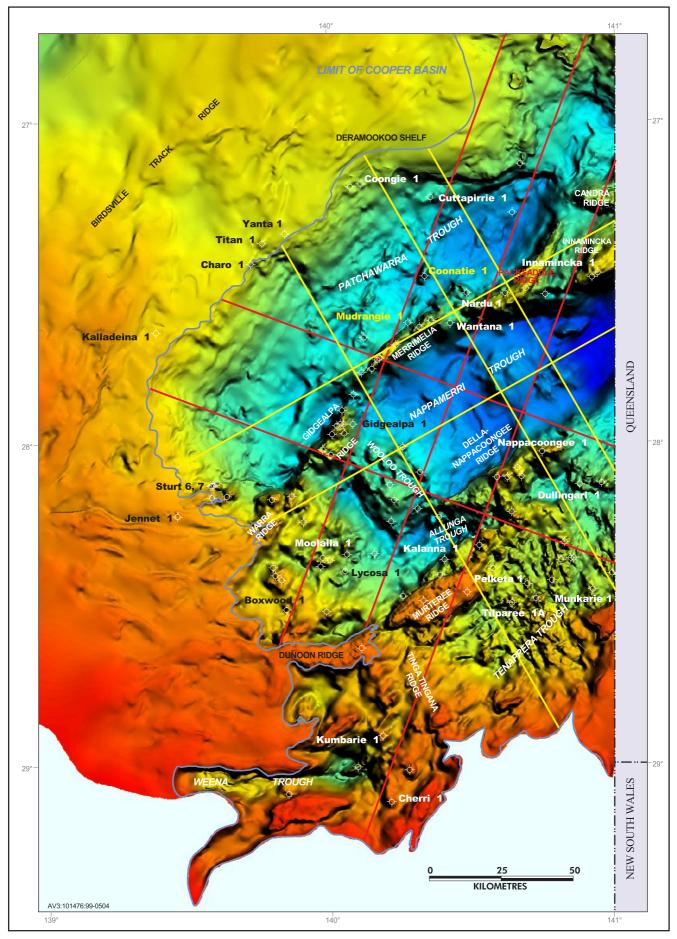


Fig. 25 Map of Cooper Basin showing two sets of orthogonal fractures which are independent of local structure when laid over the 'Z' horizon structural map.

Table 7 Strike orientations of fractures rotated in azimuth to fit within regional fracture systems

Well name	Possibility 1	Possibility 2
Big Lake 52	20°, 150°	60°, 110°
Brumby 1	20°, 110°	60°, 150°
Cherri 1	20°, 150°	60°, 110°
Coonatie 1	20°, 60°	110°, 150°
Daralingie 1	20°, 150°	60°, 110°
Della 2	20°, 60°	110°, 150°
Jennet 1	20°, 110°	60°, 150°
Kalanna 1	20°, 110°	60°, 150°
Kumbarie 1	20°, 60°	110°, 150°
Lowanna 1	20°, 150°	60°, 110°
Nappacoongee 1	20°, 60°	110°, 150°
Narcoonowie 1 (upper core)	20°, 60°	110°, 150°
Narcoonowie 1 (lower core)	20°, 150°	60°, 110°
Nealyon 1	20°, 60°	110°, 150°
Packsaddle 1	20°, 60°, 150°	60°, 110°, 150°
Tilparee A1	20°, 150°	60°, 110°
Toolachee 1	20°, 110°	60°, 150°
Toolachee 9	20°, 60°	110°, 150°

Table 8 Case by case selection of more likely fracture strike orientation.

Well name	More likely fracture strike orientations	Brief reasons
Big Lake 52	20°, 150°	shear plane (~1500) due to strike slip faulting zone, also relate to to those from Mudlalee 1 and 2 and Moomba 2
Brumby 1	60°, 150°	NE trending anticline related fractures.
Cherri 1	20°, 150°	N-S aligned small anticline
Coonatie 1	20°, 60°	Similar to adjacent Mudrangie 1
Daralingie 1	60°, 110°	NE trending anticline related fractures. Similar to Lycosa 1.
Della 2	110°, 150°	Similar to adjacent Della 1
Jennet 1	60°, 150°	Slickenside lineation dipping NW (3400), high angle fault dipping NW or SE, more NW.
Kalanna 1	60°, 150°	NE-SW trending fault zone
Kumbarie 1	20°, 60°	NE trending anticline related fractures.
Lowanna 1	20°, 150°	Close to Big Lake 52
Nappacoongee 1	110°, 150°	Similar to Della 1
Narcoonowie 1	110°, 150°	NE-SW trending anticline, NW flank
6543' (10 differ.)	60°, 110°	Similar to Pelketa 1
Nealyon 1	20°, 60°	Similar to Malgoona 4 and Jennet 1
Packsaddle 1	20°, 60°, 150°	NE trending anticline related fractures, especially thrust faults (~150°).
Tilparee 1A	60°, 110°	E to NE trending small anticline
Toolachee 1	20°, 110°	Large N-S trending anticline
Toolachee 9	20°, 60°	N-S bounding fault

this well. There is insufficient material to determine whether or not all three fracture sets are open (no core was cut).

Four of the wells shown in Table 9 have open or partially open fractures with known absolute orientations. They represent three of the five structural domains. One of the remainder, Gidgealpa 4, has open fractures along a normal microfault. Although this well is not oriented down the hole, and also has fractures with a single orientation, we can assume that its bedding plane dips SE (i.e. 130°) like many other nearby wells in the Gidgealpa North Dome. If this is the case, then the open fracture will dip towards the SW (236°) whose strike will be NW-SE (nearly 150°) similar to common bedding strikes of several nearby wells such as Gidgealpa 2 and 3. Open fractures are also found in Beanbush 1 (Fig. 5e)

and Meranji 2 (Fig. 5d), with high angles ranging from 80° to subvertical. Unfortunately these wells lack dipmeters and have no fracture patterns to help find their orientations. If we assume the bedding in Meranji 2 dips NW (330°), the subvertical fracture (dip angle 85°) will dip towards SW (215°) as shown in Table 9 (Appendix 2).

There are some possibly induced open fractures, which need further examination to be certain of their nature. Numerous irregular open fractures are observed in Jennet 1 (Fig. 31), also at some depths in Merrimelia 2. In Jennet 1, possible open fractures are observed in coarse-grained sandstone. Because it is an unoriented well, the dip azimuth of the fractures will be 230° (average) if one assumes that they belong to System II regional fractures striking 60° and 150° .

Fracture density

The productivity of a fractured zone is directly proportional to the number of fractures intersected by a wellbore. Where fracture distribution is even, I have recorded average distance or spacing between the fractures along the borehole; if not, I have measured both minimum and maximum distance between adjacent fractures along the borehole. I have used average distance to calculate the number of the fractures per foot along the borehole which is similar to raw fracture density (the number of fractures per foot or meter selected along the borehole, Schlumberger, 1997). Usually there are one or two fractures which intersect the circular face of a plane cut perpendicular to the core axis except in heavily fractured wells which can have more than 10 small fractures. Examples are cores from Murteree C1, Mureree A1, Pelketa 1, core 25 in Gidgealpa 5 and Kalanna 1 (Fig. 32). Therefore, for typical wells I calculate the number of fractures along the core axis. For heavily fractured cores, I take account of fractures which intersect a plane perpendicular to the core axis as well. These quantitative spacing data are recorded in excel format (Appendix 3). For mapping, I classified the fracture density of all the studied wells into five grades: very high (>25/1'), high ($\geq =7/1$ '), moderate ($\geq 2/1$ '), low ($\leq 1/1$ '), nil (0 fractures, in normally about 10 feet of core). The five grades for 91 wells are listed in Table 10 together with their main lithologies. They are illustrated in Figs 32-35. For those wells which have long intersections such as Gidgealpa 1, Innamincka 1, I have taken an average and shown the main lithology especially near the top of the Warburton Basin for the density map (Fig. 36). In such wells with many cores, fracture density varies with depth and lithology, such as in Merrimelia 2 (Table 11). Fracture density is often unevenly distributed within a single 10 or 20 feet length of core, such as in Lycosa 1 (Fig. 13) and Wancoocha 1. Normally, very high fracture density occurs in brecciated zones which are probably caused by faulting. In Lycosa 1, a severely fractured and brecciated zone is observed over the interval of 8794'5". The low angle microfaults and mineralised breccia zone all indicate faulting. At this stage, I have not attempted to compare the fracture densities of the two separate orthogonal sets.

Table 9 Orientations, aperture, lithology of open and partially open fractures

Well, Depth (feet)	open (o), partially open (po)	lithology	aperture (max. mm)	Azimuth (mean)	dip (average)
Lycosa 1					
8793	ро	siltstone and shale	0.1	202°	78°
86271	0	as above	no data	217°	62°
Malgoona 4 ⁺					
7278-7285	0	acid volcanics	0.1	288°	55°
				240°	65°
				330°	80°
Merrimelia 6					
7441.5-7442	ро	sandstone	0.2	249°	87°
Merrimelia 7	·				
7445.33	ро	sandstone	broken	83°	75°
7451	po	as above	0.2-0.3	296°	80°
Gidgealpa 4*	·				
7226.67	o and po	tuffaceous sandstone	0.2	236°	75°
Meranji 2*	·				
10920	0	fine sandstone	0.1	215°	85°
Jennet 1*					
5525	0	coarse sandstone	0.35	230°	65°
Beanbush 1					
	0	fine sandstone	0.1	no data	85°

^{*} assumed from relative orientation data, + from FMS interpretation

Table 10 Fracture density and main lithology from 91 studied wells

Well	Fracture density	Main lithology
Beanbush 1	low	siltstone, fine-grained sandstone.
Big Lake 52	high	siltstone and shale
Bookabourdie 1	high	siltstone and fine-grained sandstone
Boxwood 1	moderate	ignimbrite; siltstone and shale
Brumby 1	high	siltstone and mudstone
Burke 1	moderate	siltstone, sandstone
Charo 1	nil	grainy limestone
Cherri 1	high vertically	slate
Coonatie 1	moderate to high (not even)	siltstone, fine-grained sandstone, shale
Coongie 1	low (siltstone and shale to high (grainy limestone)	shale, siltstone, sandstone, grainy limestone
Cuttapirrie 1	high	rhyodacite
Daer 1	low-moderate (not even)	grainy and minor marly limestone
Daralingie 1	moderate to high (not even)	sandstone and siltstone (low); quartzite (high)
Daralingie 2	high	fine-grained sandstone, siltstone, shale
Daralingie 10	moderate to partly high (breccia)	protoquartzite, breccia
Della 1	moderate, not even	siltstone
Della 2	very high	siltstone and shale (weathered)
Della 4	low	sandstone
Della 5A	very high	siltstone and shale (weathered)
Dullingari 1	moderate to high	siltstone and shale, minor fine-grained sandstone
Dunoon 1	nil	siltstone, fine-grained sandstone
Gidgealpa 1	moderate to partly high (breccia)	marly limestone, grainy limestone, dolomite
Gidgealpa 2	high	tuffaceous sandstone, tuff, rhyodacite
Gidgealpa 3	moderate to high	tuffaceous conglomerate, tuff, rhyodacite
Gidgealpa 4	high to very high (breccia)	tuffaceous sandstone, tuff, ?rhyodacite
Gidgealpa 5	very high to moderate	marly and grainy limestone, dolomite (veryhigh), tuffaceou sandstone and rhyodacite (moderate)
Gidgealpa 7	high to very high (breccia)	marley limestone, grainy limestone, dolomite, tuffaceous sandstone
Gidgealpa 8	very high (breccia) to partly high	fault breccia, tuff
Gidgealpa 11	low	ignimbrite, tuff
Gurra 1	high	phyllite
nnamincka 1	low (mudstone) moderate to high (sandstone)	green siltstone, vf sandstone; red mudstone and siltstone.
nnamincka 4	low	siltstone and very fine sandstone.
Jennet 1	high	sandstone and minor siltstone.
Kalanna 1	high to very high	mudstone and shale
Kalladeina 1	low to partly moderate	siltstone, shale, marly and grainy limestone, rhyodacite
Kumbarie 1	high	weathered mudstone; siltstone and shale
owanna 1	high	siltstone and shale
ycosa 1	to very high	siltstone and shale
Malgoona 4	high and partly moderate	?ignimbrite
	moderate, not even	siltstone and shale
ЛсКinlay 1 Лerrimelia 1		SINSTOLIE ALIA STIAIE
Merrimelia 2	low (mudstone), moderate (sandstone) low (mudstone), moderate (sandstone), high (breccia zone)	
Merrimelia 3	high at top (8210'), nil in lower part (8964-76')	sandstone, siltstone and mudstone
Merrimelia 5	nil	mudstone
	* ***	
Merrimelia 6	low to moderate	fine-grained sandstone
Merrimelia 7 Meranji 2	moderate	fine-grained sandstone
	low	siltstone, fine-grained sandstone

Minkie 1 fine-grained sandstone low Moomba 2 high weathered sandstone, siltstone Moomba 3 low to moderate hornfels Moomba 7 low to moderate sandstone Moomba South 1 high to very high (breccia) hornfels Mudrangie 1 high to very high (breccia) quartzite Mudlalee 1 moderate balsalt; siltstone and shale Munkarie 1 high grey mudstone and shale Murteree 1 moderate to high dk siltstone and shale Murteree A1 veryhigh basalt Murteree C1 very high high to very high (breccia) weathered siltstone and mudstone Nappacoongee 1 shale, f. sandstone very high high Narcoonowie 1 weathered mudstone; mudstone and shale Nealyon 1 siltstone and shale high moderate to high Packsaddle 1 siltstone and f. sandstone, sandy limestone Packsaddle 3 shale and f. sandstone moderate to high high (breccia) Pando 1 sandstone Pando 2 weathered shale: sandstone moderate mudstone and siltstone Pando North 1 high to very high Pelketa 1 weathered siltstone and shale low, partly moderate Pinna 1 mudstone and siltstone Snake Hole 1 not even, moderate to high siltstone, red mudstone Spencer 1 Spencer 2 nil to low conglomerate of volcanics moderate to high hight to very high (short fractures) rhyolite pyritic shale Strzelecki 1 tuff (low); ignimbrite (moderate) tuff (low); ignimbrite (moderate) low but high partly Sturt 7 Stuart 8 low to moderate ignimbrite Taloola 1 low Tilparee A-1 high pyritic shale moderate to partly high quartzite; shale Tinga Tingana 1 Tirrawarra 1 nil to low sandstone, siltstone siltstone and shale, grainy limestone Titan 1 moderate to high (breccia) Toolachee 1 high and partly very high pyritic shale and siltstone Toolachee 2 moderate sandstone; shale Toolachee 4 moderate arkosic sandstone Toolachee 9 high arkosic sandstone Toolachee East 2 high weathered siltstone and shale Walkillie 1 moderate rhyolite Wancoocha 1 not even, high in upper part, (breccia), weathered siltstone and shale low in lower part (siltstone and shale) Wantana 1 moderate to high siltstone and shale, grainy limestone Weena 1 pebbly sandstone nil Wirrarie 1 sandstone, siltstone Yalcumma 1 not even, moderate to partly high siltstone and shale siltstone and shale Yanpurra 1

Table 11 Fracture density change with depth in Merrimelia 2. Core recovery is 100%, except core 11 (92%) and cores 7, 15, 17 (85%).

Top depth (feet)	Bottom depth (feet)	Core	Number of fractures	Main lithologies
7900.00	7916.70	2	26	Bioturbated red-brown, micaceous mudstone; x-laminated sandstone which is well fractured through along the core axis.
8339.00	8349.00	3	4	Similar lithology to the above, but more green pebbles.
8572.00	8603.00	4	>8	Similar to the above, sandstone with irregular lamination.
8630.00	8644.00	5	7	Cross-laminated sst, truncated bed. Green shale clasts.
8695.00	8715.00	6	5	Orthoquartzite and shale with vague low angle lamination. A possibly induced fracture (open).
9117.00	9127.00	7	18	Sandstone with thin soapy green shale layers, numerous fractures filled by quartz and calcite. Red sheet-like micaceous shale with fractures.
9627.00	9637.00	8	2	Low angle planar cross laminated sst. Red mudstone.
10139.00	10149.00	9	0	Bioturbated mudstone and siltstone, sandstone with rip-up clasts.
10636.00	10646.00	10	1	Slightly silty, convolute bed; siltstone, cross lamination. Red brown mudstone.
11110.00	11119.50	11	0	Brown laminated siltstone and sandstone. Well-bioturbated mudstone.
11513.50	11523.50	12	2	Red micaceous shale, and fine sandstone, planar lamination; rip-up clasts of green mudstone.
12071.00	12081.00	13	0	Red bioturbated mudstone and siltstone.
12123.00	12138.00	14	1	Lateral accretion foreset, calcareous. Trough cross-lamination; flat-pebbles, some still fit. Red shale breccia.
12673.00	12680.00	15	1	Red-brown mudstone, bioturbation. Slightly laminated.
12765.00	12781.00	16	3	Bioturbated mudstone, rip-up intraclasts (green), minor x-laminated siltstone.
13004.00	13011.00	17	2	Brown to purple sandstone, granules along bedding; truncated "trough" cross-lamination.

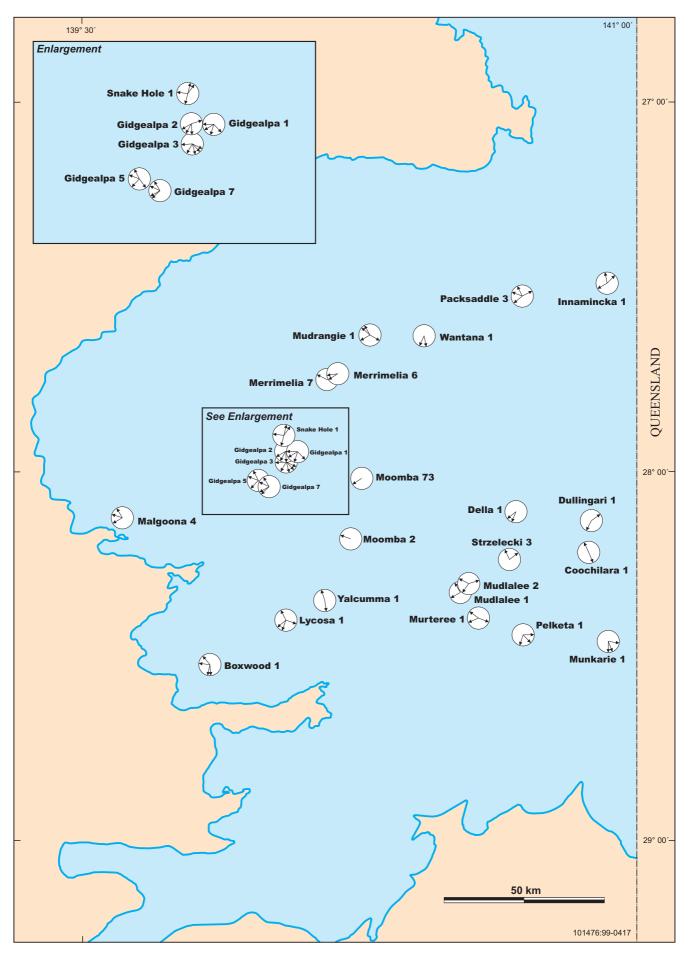


Fig. 26 Map of Cooper Basin showing absolute orientations of dip azimuths.

Fig. 27 Map of Cooper Basin showing those relative orientation data which fit within system I or II, or both orthogonal sets (possibility 1).

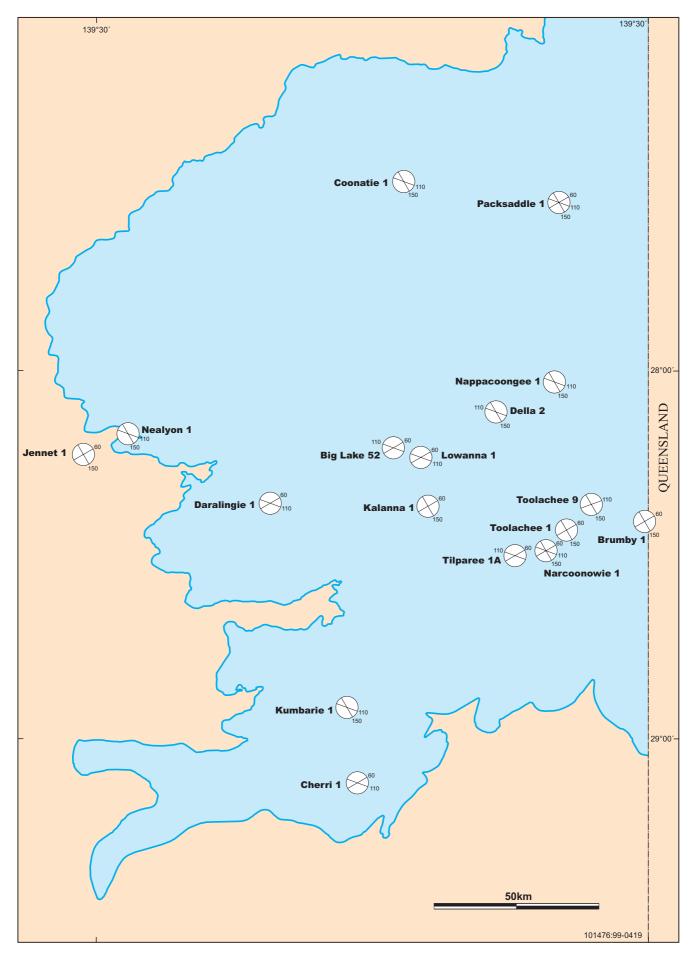


Fig. 28 Map of Cooper Basin showing those relative orientation data which fit within system I or II, or both orthogonal sets (possibility 2).

Fig. 29 Map of Cooper Basin showing combination of absolute and relative data (strike only).

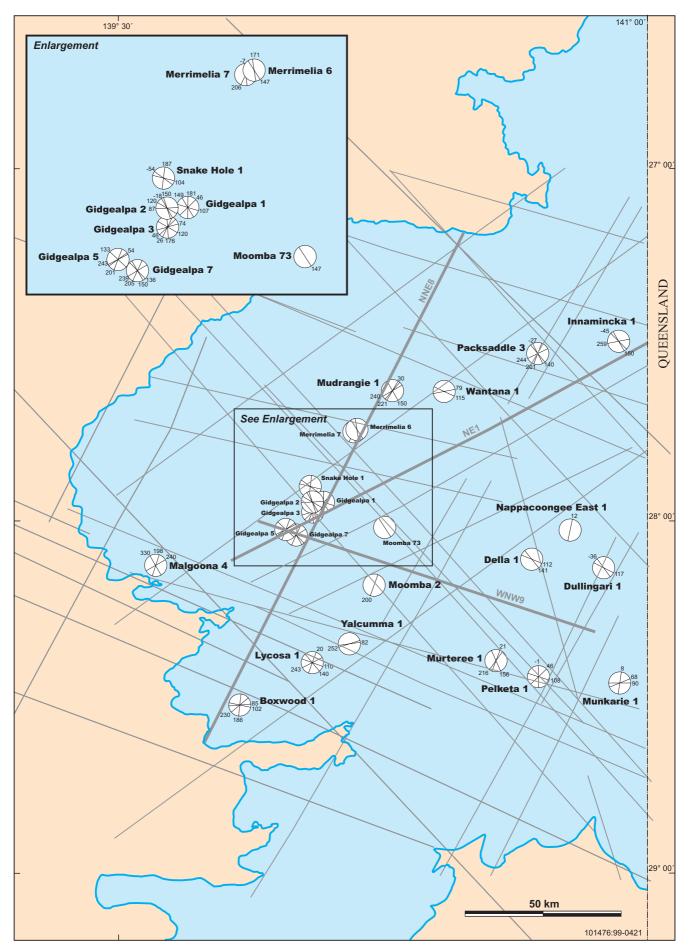


Fig. 30 Map of Cooper Basin showing absolute strike orientations of steep fractures (circled) to low frequency lineaments (LFL), NNE8, WNW9 and NE1 identified by Boucher (1998).

A fracture density map with lithologies has been constructed (Fig. 36). The fracture density depends first on structural style and severity of deformation, secondly on lithology, thickness and pattern of interbeds. The density distribution is consistent with the severity of structural deformation. Fractures are most severely developed along fault zones, such as in Kalanna 1 which has high to very high fracture density. Kalanna 1 lies on a NE-SW fault zone, and is a fault dependent trap with the Merrimelia-Tirrawarra-Patchawarra section truncated against Warburton strata along the fault (Morgeneier, 1985). Most wells with grade 5 fracture density are associated with faulting and gouge fill fault zones such as Lycosa 1, Gidgealpa 4, 5, 8, some of Gidgealpa 1 and 7, Della 5A, Murteree C1. Fractures are also more severe on the crests of structural culminations such as in the vicinity of Strzelecki 1, Pelketa 1, Murteree A1 and the Gidgealpa area (Appendix 3). Most of these culminations are bounded by faults at Z horizon depth. Wells without fractures such as Dunoon 1, Weena 1, Wirrarie 1 and Charo 1 are situated away from fault zones and off the crests of fault-related anticlines. They are almost flat-lying, and probably only suffered uplift within a large block such as Dunoon 1 or mild and broad folding such as in Charo 1. In severely faulted and uplifted areas, fractures are well developed and independent of lithology, which ranges from siltstone and shale to carbonate, sandstone or volcanics.

Within the Gidgealpa-Merrimelia-Packsaddle-Innamincka structural domain, fracture density varies markedly for two reasons. The first is due to structural control, strata which have been overthrusted have higher bedding dips and higher fracture density than those in underlying flat-lying and gently dipping beds. From seismic interpretation, we know that Gidgealpa 1, 7, Wantana 1 and Packsaddle 1 are located on overthrust slices, they are relatively steeply dipping and have high to very high fracture density. The second, is controlled by lithology, in the flat-lying or gently dipping thick Innamincka Red Beds as found in most Merrimelia wells, fracture density tends to be moderate to high in siltstone and sandstone, but nil to low in the interbedded bioturbated mudstone and micaceous shale. Generally speaking, steeply dipping strata have higher fracture density than flat-lying beds. Thicker beds have less fractures than thinner beds which have undergone the same structural history.

DISCUSSION

Major fracture types and orientations

Three main types of natural fractures are identified in the Warburton Basin, namely regional, tectonic and contractional. Possible contractional fractures have been recognised in the volcanics, varying from the acid Mooracoochie Volcanics such as in Gidgealpa 2 and 3 to basalt of Murteree A1. Since such fractures are sinuous, irregular and discontinuous, their orientations cannot be mapped.

Regional, high angle fractures are the most significant, forming two systems of orthogonal pairs. They cross local structures, and extend beneath the Cooper Basin in South Australia. They can be used as a guide to interpret fractures in cores from unoriented wells. System I has a pair of orthogonal fractures, striking NNE-SSW (20-200°) and ESE-WNW (110-290°). System II has a pair of orthogonal

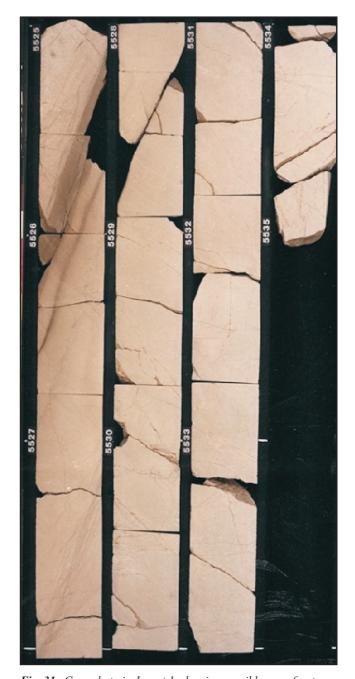


Fig. 31 Core photo in Jennet 1, showing possible open fractures in brittle coarse sandstone.

fracture sets, striking NE-SW (60-240°) and NW-SE (150-330°). System I is similar in direction to low frequency lineaments NNE8 (approximately 20°) and WNW9 (approximately 290°) referred to the Tethyan primary and orthogonal lineament network by Boucher (1998b). One of the system II fractures is similar in direction to low frequency lineament NE1 (approximately 60°), but the other is not recognised in lineament data (Fig. 30). The high degree of directional similarity indicates that these lineaments are basically related to deep-seated fracture systems in the Warburton Basin. According to Boucher (1998b), intersections of the WNW and NNE lineaments of the Tethyan primary and orthogonal lineament network are not prospective for petroleum but provide prospective mineral targets. He also found that most of the larger gas fields occur in 'shadow zones', 1-10 km from the NW and NE trending lineaments. However, in the Warburton Basin,

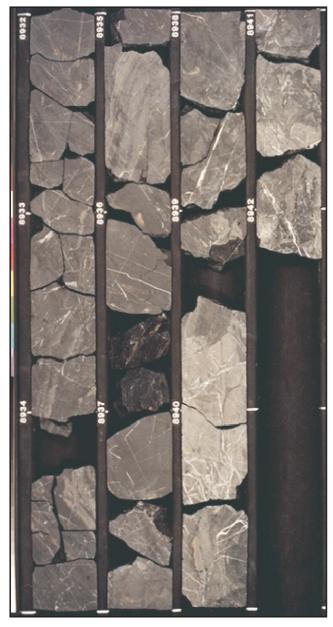


Fig. 32 Core photo in Kalanna 1, showing high to very high grades of fracture density.

WNW 9 is parallel to the strike direction of productive open fractures in Lycosa 1.

Similarly oriented orthogonal natural fracture sets have been recognised independently from FMS data by Hillis *et al.* (1997, p.13) in the lower Patchawarra Formation of the Cooper Basin. However, in the Big Lake Suite granodiorite of Moomba 73, Hillis *et al.* (1997) interpreted only northwest striking fractures. Fractures in Big Lake Suite cores have not been studied here.

Origin of fractures

In a recent publication on naturally fractured reservoirs, Aguilera (1997, p.26) stated that various reasons have been offered to explain the existence of regional fractures. These include: (1) Regional uplift (Price, 1966), (2) Fatigue due to low level cyclic stress differentials, (3) Formation of fractures soon after sedimentation, due to prolongation of fractures in the beds below. The first explanation is the best

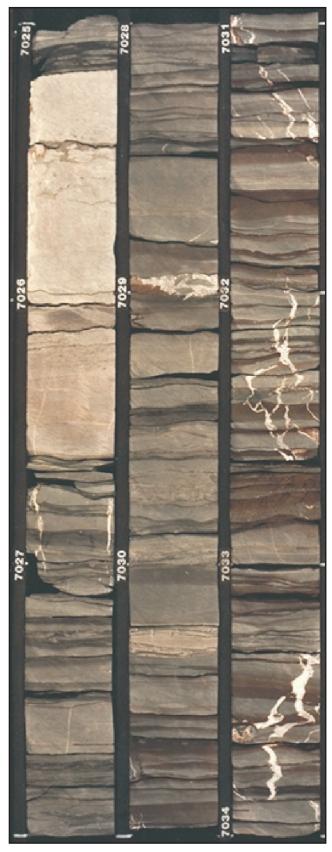


Fig. 33 Core photo in Titan 1, showing moderate grade of fracture density.

but it cannot explain the occurrence of two superposed patterns (four fractures) (Stearns and Friedman, 1972). Although no single explanation has proven conclusive, regional fracture systems produce hydrocarbons in

numerous fields, they are second in importance only to tectonic fractures in hydrocarbon production. Excellent fractured reservoirs occur when tectonic fracture systems are superposed over a strong regional system (Nelson, 1985, p.19). Some of these reservoirs include the Austin chalk, the Big Sandy field of eastern Kentucky and West Virginia which produces from Devonian shale (Bagwal and Ryan, 1976), the Altamont-Blue Bell field of Utah which produces from fractured sandstone (Baker, 1972). Regional fracture systems have also been called "systematic joints" by many authors (see Nelson, 1985 for references) because they are consistently distributed over a large area with orientation variations of only 15-20°, and fracture spacing ranging from just under 1 ft to over 20 ft vertically along the borehole axis. Warburton Basin regional fractures have all these characteristics, thus have reservoir potential.

The regional fractures in the Warburton Basin may be caused by regional uplift, and the two systems may have been caused by two different regional stress fields, due possibly to the Benambran and Alice Springs Orogenies. The Bebambran Orogeny was responsible for mid-Palaeozoic convergent tectonism on the eastern part of the Australian continent (E-W compression) while the Alice Springs Orogeny was responsible for convergent tectonism in Central Australia (N-S compression). Timing of system I and II is difficult to determine, it is possible that system I postdates II. As observed in Gidgealpa 5 (7942') regional fracture system I (200°) displaced system II (240°); a similar case exists in Lycosa 1. It is interesting that younger fractures have much finer apertures (about 0.1-0.3 mm) than older fractures (about 10-20 mm). One of the regional fracture systems, 20-200° and 110-290° in

the basin is almost parallel to NNE (G8, GD) and WNW (RD5, RD6) lineaments with less than 5° discrepancy. Sprigg (1961) believed that the lineaments were due to crustal fracture. They have been interpreted as fundamental lineaments controlling morphology of the Warburton Basin, which influenced distribution of oil and gas fields of the overlying Cooper and Eromanga Basins (Campbell and O'Driscoll, 1989). These authors also stated that the Warburton Basin was framed by the NNE and WNW continental lineaments. Interestingly, Price (1974) suggested that the two orthogonal orientations of most regional fracture sets parallel the long and short axes of any sedimentary basin due to the loading and unloading history of the rock. Supporting studies have been reported in Narr and Currie (1982) and Das Gupta and Currie (1983). If the regional fractures in the Warburton Basin are superposed over these crustal fracture lineaments, they are expected to be inherited by the Cooper Basin.

The tectonic fractures in the Warburton Basin include mainly fold and fault related fractures. Friedman (1969) used the orientation of microscopic fractures from oriented cores in the Saticoy Field of California to determine the orientation and dip of a nearby fault. There are not enough data to determine a relationship between faulting and fracturing. Only for those fractures along the fault planes or associated with small-scale thrust faults and reverse faults, can the orientation of fault movement be determined (Table 12). For other fractures associated with structural features, I can only decide their nature but not their orientations. The fractures related to folding include those associated with microfolds such as seen in Wantana 1 and Dullingari 1 (Figs. 11a, b). The fractures due to microfaults include reverse faults in Lycosa 1 (Fig. 11g) and

Table 12 Orientations of fault-related tectonic fractures.

Well depth (feet)	Туре	Dip azimuth (degree)	Dip angle (degree)	Slickensides, tension gashes	Slickensided lineation Direction (degree)
Lycosa 1					
8793	reverse fault	171	20	no	-
8802	fracture	32	26	yes	96 (older)
	fracture	129	80	yes	133 ′
(younger)				,	
8810	reverse fault	158	84	yes	146
Wantana 1				,	
9634'3"	reverse fault	169	60	no	-
Gidgealpa 1					
12605'	thrust fault	67	32	yes	~67
~10000'	thrust fault	155	37	no core	no core
Gidgealpa 19					
7400'	thrust fault	150	20	no core	-
Gidgealpa 7					
9069	thrust fault,				
	associated				
	with fault breccia	SE	no data	no data	no data
Packsaddle 1*					
10386'	thrust fault, fracture	150	60	no	
Gidgealpa 1					
11682'	slickensided surface	233	50	yes	143
Gidgealpa 5					
8391'	slickensided surface	4	65	yes	no data
7946'	slickensided surface	193	25	yes	223
8793'	? fault plane, fracture	40	5	yes	no data
Packsaddle 3					
7217'4"	slickensided surface	63	70	yes	231
Snake Hole 1					
9315'6"	slickensided surface	277	80	yes	277
Jennet 1*					
5525	slickensided surface	330	65	yes	160
Pelketa 1					
7097'6"	slickensided surface	124	40	yes	108

^{*} assumed from relative orientation and seismic interpretation

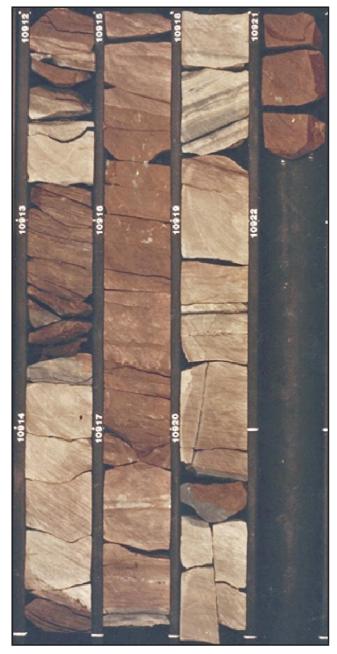


Fig. 34 Core photo in Meranji 2, showing low grade of fracture density.

Wantana 1 (Fig. 11f), thrust faults in Packsaddle 1 and Gidgealpa 1 (Figs. 11c, d); and normal faults in Gidgealpa 4 (Fig. 5c). A conjugate set of fractures in Lycosa 1 (Fig. 11l) possibly relates to faulting. The orientation of thrust faults and reverse faults can be determined from dipmeters and core measurement in several wells. (Table 12).

Slickensided fractures are common, and more or less superposed over regional fractures as indicated by associated thrust or reverse faults and fault breccias. Thrust faults and slickensided surfaces (Table 12) are dominantly SE dipping, and slickenside lineations are dominantly NW-SE. They indicate a NW-SE compressional regime. The GMI Ridge is believed to have overprinted the pre-existing Warburton Basin thrust belt. The GMI Ridge trends in a curve 50-60° (NE); thrust faults or reverse faults associated with it should dip 140°, 150°, 160°, depending on which compartment the faults are located in along the ridge. Amazingly, Gidgealpa 1,

5, 7, 19, fit about 140-150° dip angles; while Wantana 1 fit 169°, and Packsaddle should be 150°. Furthermore, 150° striking fractures have been measured from many wells around this domain. Therefore, the tectonic fractures are believed to overprint regional fracture system II by thrust and reverse faulting and slickensides.

The contractional fractures in the volcanics are probably due to thermal contraction, caused by volume reduction during cooling of lava. The classic example of natural thermally induced fractures is columnar jointing in fine-grained igneous rocks (Peck and Minakami, 1968). Sustained flow of oil and water of up to 1,000 bbl/day was achieved from such contractional fractures in the Tertiary basalt flows at West Rozel Field, Salt Lake, Utah (Nelson, 1985, p.24). The Jena Basalt in Murteree A1 is severely fractured, but the fractures have been mineral filled. If they were not filled, excellent fracture porosity and permeability would have had existed and may still be present at undiscovered locations.

Fracture fairway

Steeply dipping regional fractures cross the Warburton Basin and are interpreted to constitute two orthogonal sets which strike NNE/WNW and NE/NW. These directions remain the same in different structural domains at least on the drilled anticlines. Based on FMS interpretation the gas-productive open fracture system in Lycosa 1 strikes WNW and NW (Fig. 37) which leads to a conclusion that all open fractures in the region will similarly strike these two directions. However, FMS interpretation in Malgoona 4 (approx. 53 km from Lycosa) indicates a NNE-SSW open fracture strike direction in addition to the above two strike directions. Three directions of open fractures in Malgoona 4 seem unlikely and needs further study to clarify if some of them are alternatively caused by conductive minerals.

Although the regional fracture pattern does not vary across different local structural zones, the choice of which fractures are open probably does. The preferred orientation of open fractures is controlled by several factors, which include:

- superposition by tectonic structures
- reactivation through geological history
- · younger tectonic movements
- present day stress state

As mentioned in the discussion on the origin of fractures, tectonic fractures are believed to be superposed over regional fracture system II as a result of thrusting and reverse faulting, and also over regional fracture system I as evidenced by slickensides. Therefore, they have potential for fluid communication after tectonic movement.

Natural fractures found in the Cooper Basin may be caused by reactivation of the old Warburton Basin thrust belt, as old faults were propagated along the crests of the GMI Ridge as observed in seismic sections (Sun, 1997). Since compression has caused reactivation several times after the Late Carboniferous, filled fractures may be re-opened due to reactivation of relatively weak zones. Furthermore, the two sets of regional fractures in the Warburton Basin are very close to two lineament networks which occur within the Cooper Basin area and recognised by Campbell and O'Driscoll (1989) and Boucher (1998b). This

further supports the commonly held opinion that the Cooper Basin structures are inherited and reactivated from underlying Warburton Basin structures.

Mesozoic wrench fault activity and Tertiary east-west compression have generated large scale strike-slip faults and folds. These structures drape over the thrust belt and fault zones of the Warburton Basin. As a result, these deformations probably created new fractures, others may have re-opened previously filled fractures of the Warburton Basin. NW-SE striking fractures of system II may be related to strike-slip wrench faults along the GMI Ridge.

From borehole breakouts Hillis et al. (1997) interpreted the maximum horizontal stress to be oriented approximately east-west in the Nappamerri Trough area. Any steepdipping, east-west striking, pre-existing fractures in the Trough should thus be open and potentially productive. It is possible that natural fractures can be re-opened if they are parallel to such maximum in situ stress direction. Relatively few wells, Munkarie 1, Pelketa 1, Wantana 1, Yalcumma 1, Boxwood 1 and Gidgealpa 2 have close to E-W striking fractures. It is worth knowing that the interpreted maximum horizontal stress is not exactly east-west, but slightly WNW (see Hillis et al., 1997, Fig. 2.2). Furthermore, in Moomba and Wantana and other areas, it varies from WNW to NW. Therefore, it is possible that WNW (110-290°) striking regional fractures could re-open due to in situ stress. This is probably the case in Lycosa 1, in which the SW dipping fractures striking WNW (110-290°) were probably previously filled by calcite but re-opened later.

Considering all the factors, the preferred orientation of open fractures probably will include in decreasing order of likelihood order: WNW trending regional fractures of system I, NW oriented fractures of system II, and possibly NNE trending fractures of system I.

Although most fractures from the studied wells are either filled with minerals or deformed with gouge-fill or slickensides, some open fractures and many partially open fractures are observed both from cores and FMS. Although more than 90 wells in the Warburton Basin have hydrocarbon shows (Sun and Gravestock, 1999), they were not tested with fractures in mind, and were not optimally drilled. With few exceptions Cooper Basin wells are not designed to test naturally fractured reservoirs either. This is similar to the situation pointed out by Aguilera (1997) as a reason why many naturally fractured petroleum reservoirs around the world have not become profitable discoveries. Many have been abandoned because of 1) incorrect pressure extrapolations, 2) poor completions, and/or 3) failure to intersect the natural fractures. For example, three vertical wells were drilled in the Dilly field's Austin Chalk unsuccessfully. As a result the lease was dropped in 1979. More recently two horizontal wells were drilled in the same general area and were successful. Another example where a vertical and a second, slightly deviated well failed to yield commercial production is in the Palm Valley gas field, Amadeus Basin. A third well was drilled as a highly deviated well from the same borehole, it produced 137 MMSCFD from naturally fractured reservoir (Fig. 38). The successful gas producer Lycosa 1 is an unusual deviated well (max. 17.9°), and its success may be due in part to the unintentional deviation.

The Palm Valley gas field fracture systems are localised, mainly tectonic fractures related to a doubly plunging

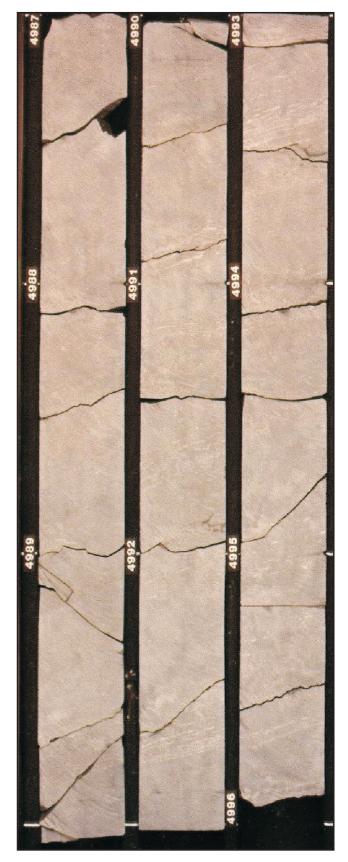


Fig. 35 Core photo in Dunoon 1, showing nil grade of fracture density.

anticline (Berry *et al.*, 1996) whereas the fracture systems in the Warburton Basin are regional, but superposed by tectonic fractures in many localised structures essentially related to thrust and reverse faults or fault-related anticlines.

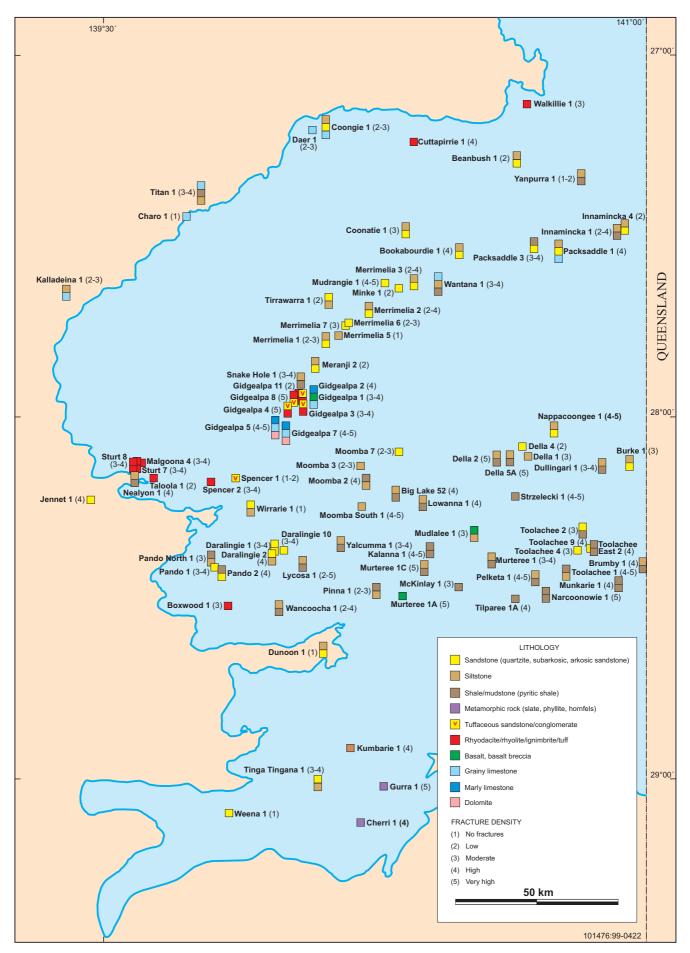


Fig. 36 Fracture density map of the Cooper Basin with main lithologies.

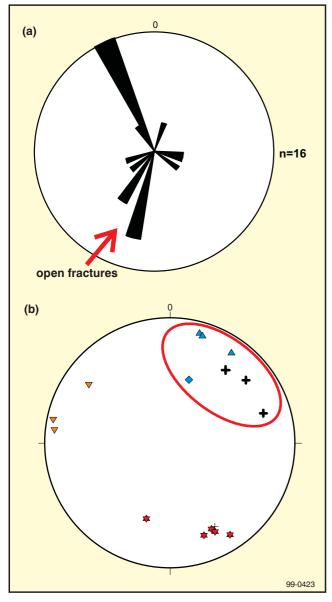


Fig. 37 High angle fractures in Lycosa 1, including those interpreted from FMS (symbol +),

(a) rose diagram,

⁽b) lower hemisphere, stereographic projections of poles to, open fractures are within red circle and dip SW.

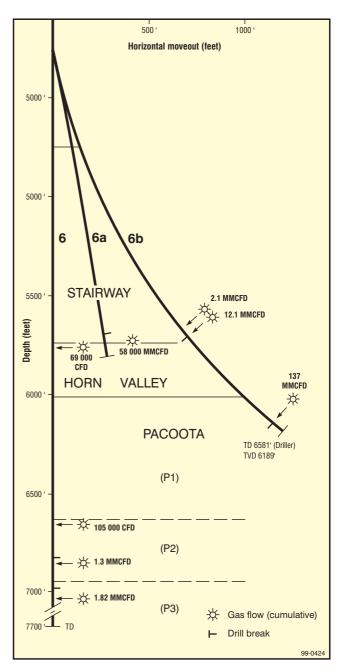


Fig. 38 Well deviation plot – Palm Valley 6, 6a, 6b – showing location of drill breaks and cumulative gas flows. (from Aguilera, 1997).

CONCLUSIONS AND RECOMMENDATIONS

This study is the first of its kind to characterise and analyse fracture systems in the Warburton Basin from 199 cores and wireline logs of 93 wells beneath the Cooper Basin in South Australia. Of the 93 wells, about 22 are oriented and 3 wells have FMS data, among them, Lycosa 1 has been studied intensively because it has produced gas from a fractured reservoir with the most complete data sets.

Natural fractures can be classified into contractional, regional and tectonic types. The Contractional fractures have been recognised in acid and basic volcanics. The regional high angle fractures comprise two systems of orthogonal pairs. They extend beneath and probably through the Cooper Basin in South Australia, and cross local structures. System I has a pair of orthogonal fractures, striking NNE-SSW and ESE-WNW. System II has a pair of orthogonal fracture sets, striking NE-SW and NW-SE. System I is similar in direction to low frequency lineaments NNE8 and WNW9 identified by Boucher (1998b). They are fairly close to NNE (G8, GD) and WNW (RDS, RD6) lineaments. The similarity of the regional fracture systems in the Warburton Basin and these lineaments suggests that the lineaments are related to the deep-seated fracture systems. The regional fracture pattern is useful for interpreting fractures measured from unoriented wells.

The tectonic fractures in the Warburton Basin include fractures related to mainly folds, thrust and reverse faults, and minor normal faults. From a few oriented wells, fault planes of thrust and reverse faults along the GMI Ridge dip SE, slickensides are very common and have majority orientation NW-SE. These features confirm a compressive tectonic regime interpreted from seismic and borehole breakout data. The tectonic fractures are superposed on the regional fractures.

Lithological control on fractures includes the following points. Thinly-interbedded siltstone and shale have more fractures than adjacent thick bedded sandstone mainly in the Dullingari Group. Thinly bedded brittle rocks of the Innamincka Formation including sandstone and siltstone are fractured whereas the adjacent thick ductile beds such as bioturbated micaceous mudstone are hardly fractured. Brittle dolomite and grainy limestone are also fractured and brecciated more than marly limestone of the Kalladeina Formation. Fine-grained tuff has fewer fractures than the adjacent welded ignimbrite of the Mooracoochie Volcanics.

Fracture density is not even in many wells, but varies with vertical depth. Density is controlled by structural style and structural intensity, less importantly by lithology. The greatest fracture density is associated with fault breccia, and located at fault zones or structural culminations. They are possibly caused by mainly thrust, reverse and strike-slip faults. Because this report mainly concentrates on hand specimens and some thin sections of about 20% of core specimens, it is possible that microfractures will be under-estimated. Further microscopic study is recommended.

More than 90 wells in the Warburton Basin have hydrocarbon shows, including some with drilling evidence indicating the existence of fractured reservoirs. This further encourages discovery at Warburton Basin depths. Future wells should be drilled at least 400 feet vertically into the Warburton Basin contacting Cooper Basin source rocks, and wells should be deviated approximately 30° from horizontal in the fracture zone to intersect open fractures. Proper testing for hydrocarbons in the Warburton Basin is recommended. Wireline logs should include dipmeter or FMS, especially where bedding dips are suspected to be significant.

REFERENCES

Aguilera, R., 1997. Naturally fractured reservoirs. Second edition. Pennwell Books. 515pp.

Baker, D.A. and Lucas, P.T., 1972. Strat trap production may cover 280 plus square miles. *World Oil*, 65-68.

Baily, T.A., 1991a. Lycosa 1 well completion report for Santos Ltd. *South Australia*. *Department of Primary Industries and Resources*. *Open file Envelope*, 7290 (unpublished).

Baily, T.A., 1991b. Sturt 6 well completion report for Santos Ltd. *South Australia*. *Department of Primary Industries and Resources*. *Open file Envelope*, 7299 (unpublished).

Baily, T.A., 1996. Gahnia 1 well completion report for Santos Ltd. *South Australia. Department of Primary Industries and Resources. Open file Envelope*, 7518 (unpublished).

Berry, M.D., Stearns, D.W. and Friedman, M., 1996. The development of a fractured reservoir model for the Palm Valley Gas Field. *The APPEA Journal*, 36:82-103.

Boucher, R.K., 1998a. A beginner's guide to picking basement from wireline logs, Cooper Basin area. *South Australia. Department of Primary Industries and Resources. Report Book* 97/37a, p.1-16.

Boucher, R.K., 1998b. Lineament associations in the Cooper Basin region, South Australia: basement controls on hydrocarbon distribution. *South Australia. Department of Primary Industries and Resources. Report Book* 98/00030. (unpublished).

Campbell, I.B. and O'Driscoll, E.S.T., 1989. Lineament-hydrocarbon associations in the Cooper and Eromanga Basin. *In:* O'Neil, B.J. (ed.), The Cooper and Eromanga Basins, Australia. Proceedings of the Petroleum Exploration Society of Australia, Society of Petroleum Engineers, Australian Society of Exploration Geophysicists (S.A. Branches), Adelaide, p.295-313.

Carroll, P.G., 1990. Pre-Permian structure and prospectivity at Gidgealpa, South Australia. *University of Adelaide, M. Sc. thesis* (unpublished).

Chin, A., 1991. Santos Limited Malgoona 4 FMS Interpretation. *In:* Nugent, O.W., 1992. Malgoona 4 well completion report for Santos Ltd. *South Australia. Department of Mines and Energy. Open file Envelope*, 7395 (unpublished).

Crozier, P.N., 1999. Special core analysis final report of Cooper Basin Paleozoics for PIRSA. *South Australia*. *Department of Mines and Energy. Open file Envelope* 9267 (unpublished).

Daily, B., 1964. Appendix 3 part B and Addendum to Appendix 3 part B. *In:* Harrison, J. and Higginbotham, G.T., 1964. Delhi-Santos Gidgealpa No. 1 South Australia, Well Completion Report. *South Australia. Department of Mines and Energy. Open file Envelope* 363 (unpublished).

Das Gupta, U. and Currie, J.B., 1983. An application of photoelastic models to explain microfractures and joints in carbonate strata. *Can. Jour. Earth Sci.*, 20:1682-1693.

Delhi-Santos, 1964. Gidgealpa 5 well completion report. South Australia. Department of Mines and Energy. Open file Envelope, 449 (unpublished).

Friedman, M., 1969. Structural analysis of fractures in cores from the Saticoy field, Ventura County, California. *AAPG Bulletin*, 53(2):367-389.

Gatehouse, C.G., 1986. The geology of the Warburton Basin in South Australia. *Australian Journal of Earth Sciences*, 33:161-180.

Gravestock, D.I., Alexander, E.M., Morton, J.G.G. and Sun, Xiaowen, 1998. Reservoirs and seals. *In:* Gravestock, D.I., Hibburt, J.E. and Drexel, J.F., 1998. The petroleum geology of South Australia Volume 4: Cooper Basin. *South Australia. Department of Primary Industries and Resources. Report Book* 98/9, p.159-181.

Gravestock, D.I. and Flint, R.B, 1995. Post-Delamerian compressive deformation. *In:* Drexel, J.F. and Preiss, W.V. (eds.). Geology of South Australia. Vol.2, The Phanerozoic. *South Australia. Department of Primary Industries and Resources. Geological Survey Bulletin*, 54:80-81.

Hillis, R.R., Meyer, J.J. and Magee, M.E., 1997. The contemporary stress field of the Nappamerri Trough and its implications for tight gas resources. *Confidential Report for PIRSA* (unpublished).

Kulander, B.R., Dean, S.L. and Ward, B.J. Jr., 1990. Fractured core analysis: interpretation, logging, and use of natural and induced fractures in core. *AAPG Methods in Exploration Series*, No.8, 88pp.

Kuang, K.S., 1985. History and style of the Cooper-Eromanga Basin structures. *Australian Society of Exploration Geophysicists, Bulletin*, 16(2/3): 245-248.

Morgeneier, C., 1985. Kalanna 1 well completion report for Delhi Petroleum Pty. Ltd., *South Australia. Department of Mines and Energy. Open file Envelope*, 6041 (unpublished).

Nelson, R. A., 1985. Geologic analysis of naturally fractured reservoirs. Contributions in Petroleum Geology and Engineering 1. Gulf Publishing Company Book Division Houston, London, Paris, Tokyo, p. 320pp.

Narr, W. and Currie, J.B., 1982. Origin of fracture porosity – example from Altamont field, Utah. *AAPG Bulletin*, 66(9):1231-1247.

Nugent, O.W., 1991. Sturt 7 well completion report for Santos Ltd. *South Australia*. *Department of Primary Industries and Resources*. *Open file Envelope*, 7303 (unpublished).

Ostler, S., 1996. Toolachee 51 well completion report for Santos Ltd. *South Australia. Department of Primary Industries and Resources. Confidential Envelope*, 7517 (unpublished).

Peck, D.L. and Minakami, T., 1968. The formation of columnar joints in the upper part of Kilauean Lava Lakes, Hawaii. *Geol. Soc. Amer. Bull.*, 79(9):1151-1166.

Pemberton, R.L., 1970, Coongie No.1 well completion report. Flinders Petroleum No Liability. *South Australia. Department of Mines and Energy. Open file Envelope* 1388 (unpublished).

Pexa Oil, N.L., 1970. Final Report on Cherri No. 1 Well, South Australia. *South Australia. Department of Mines and Energy. Open file Envelope* 1340 (unpublished).

Phillips, S.E., 1997. Petrology report Narcoonowie 1 and Putamurdie 1, Warburton Basin. *Report to PIRSA. Open file Envelope 9267 (unpublished)*.

Price, N.J., 1966. Fault and joint development in brittle and semi-brittle rock, Pergamon Press, London, 176p.

Price, N.J., 1974. The development of stress system and fracture patterns in undeformed sediments. Proc. Third Cong. Intern. Rock Mech., TA 487-496.

Rayner, B.L. and Chin, A., 1990. Lycosa-1 Formation MicroScanner image examiner interpretation. *In*: Baily, T.A., 1991. Lycosa-1 well completion report for Santos Ltd. *South Australia*. *Department of Mines and Energy*. *Open file Envelope*, 7290 (unpublished).

Rezaee, M., 1997. Timing of fracture-filling cements in the Warburton Basin. *South Australia. Department of Mines and Energy. Open file Envelope*, 9267 (unpublished).

Roberts, D.C., Carroll, P.G. and Sayers, J. 1990. The Kalladeina Formation - A Warburton Basin Cambrian carbonate play. *The APEA Journal*, 30(1):166-184.

Schlumberger Well Services, 1997. Fractures in geological applications of dipmeter and borehole electrical images. Schlumberger Oilfield Services.

Sprigg, R.C., 1961. On the structural evolution of the Great Artesian Basin. *The APEA Journal*, 1:37-56.

Stearns, D.W. and Friedman, M., 1972. Reservoirs in fractured rock. *AAPG Memoir*, 16:82-100.

Sun, Xiaowen, 1996. Sequence stratigraphy, sedimentology, biostratigraphy and palaeontology of the eastern Warburton Basin (Palaeozoic), South Australia. *University of Adelaide. Ph.D. thesis* (unpublished).

Sun, Xiaowen, 1997. Structural style of the Warburton Basin and control in the Cooper and Eromanga Basins, South Australia. *Exploration Geophysics*, 28, p.333-339.

Sun, Xiaowen, 1998. Prediction of carbonate reservoirs and traps by applying sequence stratigraphy in the eastern Warburton Basin, South Australia, 1998 *The APPEA Journal*, 38(1), 380-398.

Sun, Xiaowen and Gravestock, D.I., 1999. Potential hydrocarbon reservoirs in upper levels of the eastern Warburton Basin, South Australia. *South Australia. Primary Industries and Resources. Report Book* (in prep).

Taylor, S., Solomon, G., Tupper, N., Evanochko, J., Horton, G., Waldeck, R., and Phillips, S., 1991. Flank plays and faulted basement: new directions for the Cooper Basin. *The APEA Journal*, 31(1):56-73.

Wopfner, H., 1985. Some thoughts on the post-orogenic development of northeastern South Australia and adjoining regions. *Spec. Publ. South Australia. Dept Mines and Energy*, 5:365-372.

ACKNOWLEDGMENTS

I am grateful for receiving a Postdoctoral Fellowship from the Petroleum Group, PIRSA for this comprehensive study. I appreciate constant encouragement and supervision from Dr Dave Gravestock at the Petroleum Group. I would like to thank Messrs Brian Logan, Michael Pate, Kevin Braithwaite with excellent service of core inspection. Thanks also go to Les Tucker for his assistance with microphotographs, to Dragan Ivic for generating maps, and to Gayle Bruggemann, Jeff Weber, Ann Young and Adrian Francis for excellent drafting and desktop publishing skills.

FRACTURE ANALYSIS OF THE EASTERN WARBURTON BASIN (EARLY PALAEOZOIC), SOUTH AUSTRALIA

Disk contains data files for Appendix 1, 2, 3 and 4

Appendix 1

Stereon1.xls is an Excel file containing measurement data

Appendix 2

Contains StereoNett TXT files.

Nodmeter directory contains 61 files for Stereonet, rose, density and text data files for those without dipmeters.

Dipmeter directory contains 185 files for Stereonet, rose, density and text data files for those with dipmeters.

The software required to view these files is free for non-commercial use and available from the following website

http://homepage.ruhr-uni-bochum.de/Johannes.P.Duyster/stereo

Appendix 3

Fracture 1 : Excel file - basic data for wells with dipmeters

Fracture 2: Excel file - basic data for wells without dipmeters

Appendix 4

Excel file: 45 mean high angle fracture strike data of absolute measurement and plots

	T p I	<u> </u>	 	F			T	I N I O	T P I O	T D
1 Well 2		C I		Azimu	G H Dip	assumed reasons dipmeter dip azi. log	Comment	M N O chronology fill Deviation	r Q	R file names
3 Boxwood 1 4		dding 1	1 green	0 170	63 60-65	dip azi. log 6220-6250 24-30NW326	bedding		picks (WCK)	
5 6	fra	ac(1) 2 ac(2) 3 ac(3) 4		170 126 42	60 80 55 50-60	24-30NW326 ? factures, fault 6280-6326	fracture fracture fracture			
7 8			5 green	25	63 60-65	20-32SE137-170	fracture			
9	6339 bed	dding	green purple	0 105	47 45-50 low	?bedding	bedding low angle fracture			
11 12		t plane cture	no plastic		70 12 10-15	36 SWS195 ? Fracture	fault plane, can be discontinuous oblique to the fault plane, low angle fracture	brownish, ?		
13 14	fault	dding t plane	no plastic		47 45-50 80 70-90		similar fault, but steeper,			
15 16	6155-6154'6" bed	dding	no plastic		30		along fault plane, crosscut bedding plane ignimbrite, possible bedding 10-15dg	calcite + chlorite?		
17 18	fault	t plane	no plastic		63 60-70		60 dg to 70, shear plane?	filled by kaolinite		
20 Daralingie 1		dding 1 ac(1) 2	1 green 2 blue	0 224	67 65-70 65	missing	bedding, quartzose sandstone high angle fracture	brownish, ?		
21 22 23	fra	ac(2) 3		285 315	70		high angle fracture	0.1-0.2mm, yellow, ? still open		
24 25 Della 1		dding 1	1 green	0	42	CDM				
26 27	fra	ac(1) 2	2 yellow 3 yellow	60 60	80 72	SE 20dg	high angle fracture high angle fracture	0.05mm, black?		
28 29	7124 bed	dding 1	1 green 2 yellow	0 88	55 88		lineation of bedding, not sure high angle fracture			
30 31			3 yellow	90	82		high angle fracture			
32 Dullingari 1 33	fra	· ,	1 green 2 blue	0 46	60 60 81	27 should be opposite deviated direction	bedding high angle fracture,	0.2mm, ? Dolo.		
34 35	9198'-2" bed	dding 1	3 purple 1 green	236-56	87 85-90 60	S27W, 1dg. 27 should be opposite	? Induced curved, open frac, changing dip			
36 37 38	fra	ac(1) 2 ac(2) 3 dding 1		180 27 0	20 20 55 55	deviated direction S27W, 1dg.	? Induced,	0.2-1mm, ? Dol. < 0.1mm		
39 40	fra		2 blue	162	?		sandstone, bedding, not sure			
41 42	fra	ac(1) 1	1 blue 2 yellow	0 163	85 80-90 62 62		carracterie, becausig, not care			
43 44	fra	` '	3 purple	122 113	61 60-62 43 43		? stylolite, possible bedding			
45 46		ac(5) 5 dding 1	5 yellow 1 green	326 0	30-35		veinlet not apparent			
47 48	cut 90 fra	ac(2) 3		90 297	83 30			pyrite		
49 50	fra		1 green 2 orange	0 334	?		not recorded not recorded			
51 52 63 Cidroslas 1		` '	3 blue	190	60					
53 Gidgealpa 1 54 55	thrus	dding 1 st fault 2 cture 3		0	25 30-35 60		bedding thrust fault plane fracture	0.2-0.5mm, calcite		
55 56 57	11682 bed	dding 1	3 green 2 purple	0 173	32 30-35 55		important	0.2-0.5mm, calcite 7 max 3mm, calcite		
58 59	fra	ac (1) 2 ac (2) 3 ac (3) 4	3 red	210 195	70 50		not important hairline, 0.2mm	0.2mm, calcite		
60 61	fra slick	c (4) 5 ce. surf 6	5 yellow 6 yellow	130 165	45 50		very fine, vague fracture slickenside surface	, 55.510		
62 63	slick	enside 7	7 black	75-255			slickenside lineation			
64 65	fra		1 green 2 purple	0 180	30 80		fracture, displaced bedding	0.8mm, calcite		
66 67	fra	ac (2) 3	3 brown	138	35		microfault replacement	0.2mm, calcite		
68 69	fra	dding ac(1) 1	green 1 purple	0 0	55		no apparent bedding coarser fracture	2 cut 1 quartz		
70 71 72		dding 1	2 brown 1 green	135	32 30-35		fracture bedding not sure;	quartz		
73 74	fra	ac(1) 2 ac (2) 3	2 purple	280 246	65 60		coarse fracture fracture	2mm, calcite 1mm, calcite		
75 76 Gidgealpa 2		dding 1	1 green	0	25		bedding?	Tillin, calone		
77 78	fra		2 blue	138 105	70 80		fracture, fracture,	0.1mm; hematite?		
79 80		dding 1	1 green	not sure	low angl		bedding?			
81 82	fra	ac(2) 3		0 211	50 40-60 40 40		fracture, fracture,	? Brown , hematite lining, hematite,		
83 84		ac(3)		120	21 20-22		fracture,	sider or hemat.		
85 86 87	fra	dding 1 ac(1) 2 ac(3) 4		0 168 162	25 25 68 68 70 70		bedding? fracture, fracture,	0.5mm; ? Kaolinite		
88 89			5 blue	178	60 60		fracture,	0.2mm; brown, ? Clay		
90		dding 1 ac(1) 2	1 green 2 blue	0 157	20 20 60 60		bedding? fracture,	calcite		
92 93		dding 1	1 green	0	30 30		? Bedding			
94 95	fra	c(?1) 3		238 219	65 65 70 70		fracture, fracture,	0.5-0.8mm;calcite 0.2-0.3mm;calcite		
96 97	fra	· /	5 red	51 234	60 60 60 60		fracture, fracture,	0.2mm; calcite calcite		
98 99		a(1) 1 ac(2) 2	1 red 2 blue	238	35 35 70 70	280 dmeter:N80W:37	fracture, fracture,	0.2-0.3mm;calcite 0.8mm; calcite		g279176.txt previous mea.
100 101 102		a(1) 1 ac(2) 2	1 orange 2 brown	0 146	40 40 72 72		fracture fracture	0.1mm, calcite 0.4mm, calcite		
103 104		ac(2) 2 ac(3) 3		248	85 85		fracture	0.4mm, calcite		
105 Gidgealpa 3		a(1) 1 ac(2) 2	1 blue 2 red	0 115	82 80-85 85		fracture fracture	calcite(1.5mm), pyrite+gre.clay 3mm, calcite+ breccia		
107 108	fra	ac(3) 3 rac(3) 4		145 127	85 85		fracture fracture	<0.1mm, calcite 0.1mm, calcite		
109 110		rac(3) 5		140	85		fracture	0.1mm, calcite		
111 112		ac(1) 1 ac(2) 2	1 blue 2 red	200	77 89		fracture fracture	0.8mm, calcite 0.2mm, calcite		
113 114 115		ac(1) 1 ac(2) 2	1 blue 2 brown	0 357	80 78 78-79	124 10144':S56E:26 but angle too low	fracture fracture, possibly the same as the above	0.8mm, calcite, breccia 0.4mm, calcite		
115 116 117	fra	$\operatorname{ac}(2)$ 2 $\operatorname{ac}(3)$ 3 $\operatorname{ac}(4)$ 4	3 red	146 253	78 78-79 82 79	Sat angle too low	fracture, possibly the same as the above fracture fracture	0.4mm, calcite 0.2mm, calcite 0.1mm, calcite		
118 119	10597' fra	act(1) 3	3 brown	0	50	136 10624':S44E:21	fracture	0.15mm, calcite		
120 121	fra	rct(2) 1	1 blue 2 blue	130 130	85 85		fracture the same as the above	0.2mm, calcite 0.1mm, calcite		
122 123		ac(1) 1	. 5100	0	80		fracture	0.7mm, calcite		
124 125 126	fra	act(2) 2 act(3) 3 ac(4) 4		8 8 20	75 73 60		? the same as the above ? the same as the above ? the same as the above	0.4mm, calcite <0.1mm, calcite 0.5mm, calcite		
127 128	fra	` '	5 brown 1 brown	340 0	85 82 80-85		offset by blue offset blue by (0.5-0.9mm)	0.5mm, calcite 0.1-0.2mm, calcite calcite		
129 130	fra	ac(2) 2		290 295	66		relatively straight, most sinuous, ? Unloading fr? from 0.2mm to 1.2mm (partially)	co.1-0.2mm, calcite calcite		
131 132	10934' fra	ac(1) 1	1 blue	0	20		sinuous			
133 134		oct(2) 2		21	30		fracture			
135 136 137	fra	dding 1 ac(1) 2		0 118	35 80		bedding fracture	calcite		
137 138 139 Gidgealpa 5		ac(1) 3 dding 1	3 blue 1 green	0	85 17 15-20		fracture bedding	calcite		
140 141	525, 1050 Dec	- Suring	1 green blue	250	17 15-20 76		fine fracture	calcite		
142 143		dding 1 ac(3) 2	1 green 2 yellow	0 132	45 50		fracture	calcite		
144 145	fra	ac(3) 4	4 yellow 5 blue	140 280	60 55		the same as the above displace the above	calcite calcite		
146 147	7946' bed	dding 1	1 green	0	37 35-40		bedding, emphasised by stylolite, cal.mud	not much		
148 149		· ,	2 purple	225	65		coarse fracture, upto 10mm	cut by fra(2) calcite, min. cataclasts of surrou. ls < 5dg		
150 151 bedding dip 152 S14W		` '	3 green 4 yellow	0 110	37 35-40 65		medium fracture, upto 3mm fine fracture, up to 1mm; para. tension crack v-shaped tension gashes between "mud" layers, fil	calcite cut by fra(2) calcite calcite		
152 S14W 153 154		` '	5 yellow 6 black	315 15 NE-SW	65 37 35-40		v-shaped tension gashes between "mud" layers, fill fine fracture, up to 1mm; obliq tension crack along undulated bedding plane or stylolite	cut by fra(2) calcite, connected with stylolite seam cut every thing		
155 156	7946'	dding 1	o black 1 green	0	25		bedding, bioclastic packstone			
157 158	fra		2 blue	235 30	65 30		fracture, fracture, displace the above	up to 4mm, calcite & m. matrix up to 2mm, calcite + m. matrix		
159 160	fra fra	ac(3) 4 ac(3) 5	4 red 5 red	300 98	60 60		fine fracture, between the above vein fill & m. bed. fine fracture, between the above vein fill & m. bed.	0.2mm, calcite 0.1mm, calcite		
161 162	slick	enside 6	6 black	30	25		slickenside lineation from adjacent			
163 164	fra	. ,	1 green 2 blue	0 205	30 70		possible, due to dolomitization fine fracture			
165 166	fra	(/	4 yellow	210 280	68 70		fine fracture irregular, ? Induced			
167 168 169		ac(3) 5 dding 1	5 brown 1 green	320	57 55-60		projected from 1" below also irregular bedding	? Open, ? Microspar+py.		
170 171			green 2 brown	160	65		slickenside surface, 0.1mm	hematite		
172 173		dding 1 ac(1) 2	1 green 2 purple	0 170	55 80		lava banding? coarse fracture	calcite		
174 175	fra	` '	3 purple 4 orange	165 280	65 85		coarse fracture in fine sst	calcite		
176 177	fra	ac(3) 5	5 brown	240	76 75-78		fine fracture	brown cut purple calcite		
178	fra		1 green 2 orange	0 217	35 67		bedding fracture			
179	fro	ac(2) 3	3 blue	115	79 78-80		fracture			1
180 181	fra	ac(3) 4	4 :	S or SE ~ 190	5 0-10		fracture or fault pla., + slicken.			
180	second fra	ac(3) 4 ac(1) 2	4 :				fracture or fault pla., + slicken. fracture should = frac(1), blue	? Dolom, pyrite		

A 85 Gidgealpa 7	B 10573	C bedding	D E 1 green	F 0	G 23	H 20-25	I	J	K L M bedding, not exact (cut not 90 to axis)	N O	P Q	R
85 Gidgealpa 7 86 87 S31E	9995	fract bedding fract	2 red 1 green 2 red	233 0 85		40 20 85			fracture bedding fracture	0.2mm, calcite 1mm, calcite		
88 89 90 91	8074 (a)	fract(1a) fract(2a)	1 green 2 red 3 blue	90 123	45	10 40-50 70			bedding (a) ?hair line fracture hairline fracture	calcite		
92 93 94 95	8074(b)	fract(1b) fract(2b)	1 green 2 red 3 blue	0 155 180	43	10 40-50 70			bedding (b) ?hair line fracture hairline fract, up 3cm becomes 80	calcite		
96 97	7709	bedding fract	1 green 2 red	160	73	10? 70-75			calcite filled fracture	0.1-0.2mm, cal		
98 Inammincka 1 99	71993"	frac(1)	1 green 2 blue	107	17	15-20 85			bedding fracture			
99 000 01 02 03 04 05 06	11424'	fract(1)?	1 green 2 blue 3 blue	0 73 68		?30 76 80			bedding fracture fracture	1.5mm 1mm		
204 205 206	11444'	frac(2) bedding	4 blue 1 green	0	31	30-32			fracture bedding	1.4mm		
207 208 209 210		fract1) frac(2) frac(3)	2 blue 3 blue 4 blue	218 180 150		50 68 30			fracture fracture fracture			
11 12	11458	bedding frac(1)	1 green 1 blue	235		31 80			bedding? With heavies lining up fracture	2mm; calcite		
13 114 115	11462	bedding frac(1) frac(2)	1 green 2 blue 3 blue	0 108 90		30 60 88			bedding fracture fracture	calcite; 0.6mm Calcite; 0.2mm		
115 116 117 118	11465	bedding frac(1)	1 green 2 blue	0 220		33 60			bedding, fracture	1.2mm, calcite		
20 21 21	11467'6"	frac(2) bedding	3 blue 1 green	260		30			fracture bedding,	5-7mm, calcite		
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 Lycosa 1		frac(1) frac(2)	2 blue 2 brown	256 141		86 55			fracture fracture	1.5mm, 1mm, calcite		
225 226 227	11553	bedding frac(1) frac(2)	1 green 2 blue 3 blue	0 70 72		36 69 65			bedding, fracture fracture	0.7mm 0.4mm		
228 229 330	11561'2"	bedding frac(1)	1 green 2 blue	0 133		22 78			bedding fracture	0.5mm, calcite		
31 32 33	12070"7"	bedding frac(1)	1 green 2 blue	0 223		38 45			bedding fracture	0.6-0.7mm, calcite		
34 35 36 Lycosa 1	8793'	frac(2) bedding	3 blue 1 green	0		35	339	8803.54	fracture bedding, siltstone and shale	1mm, calcite + catac.	176	
38 logger 10' deeper 39 than driller	second	frac(1) frac(2) frac(1)	2 orange 3 blue 4 blue	217 115 220		67 80 65		339 / 17.5 dev. 176 / 15.4	fracture fracture fracture	calcite partially calcite partially calcite		
40 so core measurements 41 should add 10'		fra(2) frac(3) fault plane	5 yellow 6 orange 7 red	240 120 180	65	60-70: 65 80 5			should = frac(1), blue = red, fine fract., open; cut blue. fracture or fault pla., + slicken.	? dolom, pyrite calcite	176	
42 43 44	8798	bedding frac(1) fra(2)	1 green 2 black 3 black	0 207 0 to 6	57 12 67	55-60 10-15 60-70		8811 10 / 41.8 dev. 177 / 15.6	bedding, siltstone and shale fine, low-angled calcite veinlet coarse, high angle, calcite and ?siderite vein 2	calcite 2-5mm	170	
45 46 47	8799' - 4"	bedding	1 no plastic	0		60		as above	bedding, siltstone and shale	15.4	176	
48 49 50	8801	frac(1) bedding	1 no plastic 1 green	0	52	75-80 50-55		as above	open fracture, ? Induced, disconti. bedding, siltstone and shale	15.6	177	
49 50 51 52 53		frac(1) fra(2) frac(3)	2 purple 3 purple 4 red	180 302 110	17	15-20 ? 60			v. fine, low-angled, cut frac(1) v fine, 0.1mm; displace bedding; 0.1-0.8mm,	? siderite ? siderite calcite		
55 56	8802 - 3"	bedding frac(1)	1 simple 2 plastic	0 116		55 70		as above	bedding, siltstone and shale slickenside and calcite, up to 1cm	15.6 calcite	177	
557 58 59 60		slickenside frac(2) slickenside	3 4 5	100-280 10 120-300		40			slickenside lineation up to 1mm slickenside lineation			
60 61 62	8803	bedding frac(1) slickenside	1 no plastic 2 no plastic 3 no plastic	0 ~ 0		not mesure not mesure not mesure		as above	bedding, siltstone and shale calcite vein, up to 2.5cm, intercrystal. Pore	calcite 15.7	177	
62 63 64 65	8805 8806	frac(1)	1 no plastic	120		80		as obc:	high angle fracture	calcite 15.7	177 177	
66 67	8806	frac(1) frac(2)	1 no plastic 2 no plastic 3 no plastic	0 ~ 0 ~ 180	57	55-60 ~90		as above	bedding, siltstone and shale up to 1mm low-angle fracture, filled by up to 0.5mm	calcite ? siderite	177	
66 67 68 69 70	8806' 5"	bedding frac(1)	1 green 2 yellow	0 37	12	55 10-20		8816.31 6 / 61.9	bedding fracture 1	15.8	177	
71		frac(2) fra(3) lineation	3 blue 4 red 5 purple	330 197 65-248	15	80 10-20		dev. 177 / 15.8	fracture 2 slickenside surface 3 slickenside lineation			
72 73 74 75 76 77	8806' 5"	bedding frac(1)	1 green 2 blue	0 335	82	60 80-85		8816.31 6 / 61.9	bedding, siltstone and shale fracture 2	15.8	177	
77 78 79		frac(2) frac(3)	3 yellow 4 purple	42 200		15 30		dev. 177 / 15.8	low-angle, fracture filled by yellow, ? dolo. open			
79 80 81	8807' 6" 8808' 7"	bedding frac(1) bedding	1 no plastic 2 no plastic 1 no plastic	0 ~ 180 0		60 40 60			bedding, siltstone and shale low-angle fracture bedding, siltstone and shale	15.8	177	
81 82 83 84 85 86	8809' 5"	frac(1) bedding	2 no plastic 1 no plastic	~ 180 0		25 50			low-angle fracture bedding, siltstone and shale	15.9	176	
85 86 87	8810	frac(1) bedding	2 no plastic 1 green	~ 180		60		8819.81	low-angle fracture bedding, siltstone and shale	15.9	176	
88 89 90	correct	frac(1) frac(2) lineation	2 red 3 green green	338 160 310-130	69	40 68-70		357 / 70.4 dev. 176 / 15.9	x-cut tension gashes slickenside surface lineation of slickenside			
91 92 93 94 95	8810'2"	bedding frac(1)	1 green 2 red	0 322	63 25	60-65 ? 20-30		as above	bedding, siltstone and shale tension gashes	15.9	176	
94 95 96		frac(2) frac(3) frac(4)	3 blue 4 purple 5 red	155 321 335	77 22	75-80 20-30 20			?slickenside surface slickenside cut by blue slickenside ?tension gashes connected with blue slicen.			
97	8810'2" second	bedding frac(1)	1 green 2 red	0 322	25	60 ? 20-30		as above	bedding, siltstone and shale tension gashes: short to long, gentle to step-like	15.9	176	
98 99 00 01 02 03 04	measure.	frac(1) frac(1) frac(2)	3 red 4 red 5 blue	321 330 156	25 25	?20-30 ?20-30 70			tension gashes tension gashes, up to 4mm slickenside surface, vague			
603		nac(2)	3 blue	130		70			Silcheriside Surface, Vague			
04	8811' '7-11"	bedding	1 green	0		50		8821.31	bedding, siltstone and shale	15.9	176	
05 06	not present core slab	frac(1) frac(2)	2 red 3 red	333 335	87 82	85-90 80-85		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface	calcite		
05 06	not present	frac(1)	2 red	333		85-90		355 / 56	calcite veinlet 1-6mm		176	
005 006 007 008 009 010	not present core slab	frac(1) frac(2) bedding frac(1)	2 red 3 red 1 green 2 purple	333 335 0 339	82	85-90 80-85 40 80-85		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm	calcite 15.9		
005 006 007 008 009 010 011 012 013 Merrimelia 6	not present core slab 8811' 7"	frac(1) frac(2) bedding frac(1) frac(2) lineation	2 red 3 red 1 green 2 purple 3 purple 4 black	333 335 0 339 341 335-155	82	85-90 80-85 40 80-85 80		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation	calcite 15.9		
005 006 007 008 009 010 011 012 013 Merrimelia 6	not present core slab 8811' 7"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black	333 335 0 339 341 335-155 0 130 106 270 0 234	82 82 13 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture	calcite 15.9 calcite filled by calcite filled by calcite		
005 006 007 008 009 010 011 012 013 Merrimelia 6	not present core slab 8811' 7" 7441'6"-7442	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 lack 4 green 4 black 1 green 5 black 7 green 7 black 8 black 9 black 9 black 1 green	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0	82 82 13 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above	filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite		
005 006 007 008 009 010 011 012 013 Merrimelia 6	7441'6"-7442 7445'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 5 black 6 black 7 green 7 black 8 black 9 black 9 black 1 green 9 black 1 green 9 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67	82 82 13 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above	calcite 15.9 calcite filled by calcite filled by calcite filled by calcite		
05 06 07 08 09 10 11 12 13 Merrimelia 6	7441'6"-7442	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247	82 82 13 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite	filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite		
05 06 07 08 09 10 11 12 13 Merrimelia 6	7441'6"-7442 7445'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 pred 1 green 2 black 3 black 4 pred 1 green 2 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140	82 82 13 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open)	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay?		
05 06 07 08 09 10 11 12 13 Merrimelia 6	7441'6"-7442 7445'4" 7445	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 1 green 2 black 3 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic	calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay?		
05 06 07 08 09 10 11 12 13 Merrimelia 6	7441'6"-7442 7445'4" 7445 7445 7445 7445 7445	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 pred 1 green 2 black 3 black 4 pred 1 green 2 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 75-85 80 ?20 80-90 0		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ ? Fault plane 65-70, fracture filled	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled		
05 06 07 08 09 10 11 12 13 Merrimelia 6	7441'6"-7442 7445'4" 7445 7445 7445 7445 7445	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 red 2 black 1 green 2 black 3 black	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ?		
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40	7441'6"-7442 7441'6"-7442 7445'4" 7445 7445 7445 10448'6"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 red 4 red 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 bluck 3 black 1 green 2 blue 3 red 1 green 5 brown	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 90 0 30 40 35		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ?		
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40	7441'6"-7442 7441'6"-7442 7445'4" 7445 7445 7445 7445 9837 8914	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2)	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 pred 1 green 2 black 3 red 4 red 1 green 2 black 3 red 4 red 1 green 2 black 3 red 4 red 1 green 2 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 4 orange	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 75 25 75-85 80 ?20 80-90 0		355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown?		
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1	7441'6"-7442 7441'6"-7442 7445'4" 7445 7445 7445 10448'6"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding fracture fracture fracture fracture fracture bedding fracture fracture fracture bedding fracture fracture bedding	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 red 4 red 1 green 2 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 bluck 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 5 brown 1 green 2 blue 3 orange 5 brown 1 green 2 blue 3 orange	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 35 42 48 45	188	355 / 56 dev. 176 / 15.9	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture bedding fracture, high angle fracture bedding fracture, high angle fracture bedding fracture, high angle fracture bedding	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown?	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2°	7441'6"-7442 7441'6"-7442 7445'4" 7445 7445 7445 10448'6"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding fracture	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 bluck 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 35 42 48 45	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside ineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) ② ? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture bedding fracture, high angle fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown?	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2°	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding fracture	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 state of the state of t	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 35 42 48 45	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture bedding fracture, high angle fracture bedding fracture, high angle fracture fracture bedding fracture bedding fracture bedding fracture bedding high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown?	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2°	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 10449 22,7692'-6" ? 80	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding fracture	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 pred 2 black 3 black 4 pred 4 red 5 preen 6 preen 7 preen 8 preen 9 preen	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 35 42 48 45 80 70 72 80 80 70 72 80	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, slitstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture bedding fracture fracture fracture fracture fracture bedding fracture shigh angle fracture high angle fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 33 33 34 335 336 337 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2° directional 51 52 53 54 Murteree 1 55 56 57	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 bluck 3 red 2 bluck 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 5 brown 1 green 2 blue 3 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s)	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 75 25 75-85 80 ? 20 80-90 0 30 40 80 30 40 80 35 42 48 45 80 75	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture bedding fracture, high angle fracture, high angle fracture fracture fracture fracture fracture fracture fracture fracture bedding fracture high angle fracture high angle fracture high angle fracture short, discontinuous	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 33 33 34 335 336 337 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2° directional 51 52 53 54 Murteree 1 55 56 57	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding fracture	2 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 stack 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s)	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 35 42 48 45 80 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside surface slickenside sindention bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above parallel to the above parallel to the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) ② ? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture bedding fracture, high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
105 106 107 108 109 110 111 112 113 Merrimelia 6 114 115 116 117 Merrimelia 7 118 119 120 121 122 122 123 124 125 126 127 128 129 Moomba 2 130 131 120 W 132 133 134 135 136 137 Mudrangie 1 138 139 140 141 142 143 144 145 146 147 148 149 140 141 142 143 144 145 146 147 Munkarie 1 148 149 140	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s)	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 75 25 75-85 80 ? 20 80-90 0 30 40 80 30 40 80 30 40 80 80 75 75-85 80 75 75-85 80 75 75-85 80 75 75-85 80 80 80 80 80 80 80 80 80 80	188	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ 2 Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, ligh angle fracture fracture fracture fracture fracture fracture bedding fracture, ligh angle fracture, ligh angle fracture, ligh angle fracture, ligh angle fracture shotding fracture, ligh angle fracture fracture bedding fracture bedding high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous bedding fracture very fine fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
10	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow (s)	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 80 80 80 80 80 80 80 80 80 8		355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, slitstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) ② 7 Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture bedding fracture, high angle fracture sedding fracture bedding	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
05 06 07 08 09 10 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 45 46 47 Munkarie 1 48 49 2° 50 directional 51 55 55 55 55 56 57 58 59 Nappacoongie 1 60 61 62 63 64 Packsaddle 3 65 66 66 66 66 66 66	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 6 yellow 7 green 9 brown 1 green 9 brown 1 green 9 brown	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 120 311	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 30 40 80 35 42 48 45 80 70 70 80 80 80 80 80 80 80 80 80 8		355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, slitstone and shale calcite veinlet 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ ? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture bedding fracture, high angle fracture bedding fracture, high angle fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding high angle fracture high angle fracture bedding high angle fracture high angle fracture high angle fracture bigh angle fracture high angle fracture bigh angle fracture bigh angle fracture bigh angle fracture high angle fracture bigh angle fracture short, discontinuous	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? calcite tut pyrite	176	
100 100	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) bedding frac(1) slic. line.	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 5 yellow 6 yellow 7 green 9 blue 1 green 9 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 380 270 311 0 352 330 270 331 180	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 30 40 35 42 48 45 80 70 70 80 80 80 75	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, siltstone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture fracture fracture bedding fracture, high angle fracture short, angle fracture bedding fracture, high angle fracture bedding fracture short, discontinuous	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.1-0.3mm brown? <0.3mm brown? colonname colonname	176	
005 006 007 008 009 110 111 112 113 Merrimelia 6 114 115 116 117 Merrimelia 7 118 119 120 121 122	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) slic. line.	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 6 yellow 7 green 9 blue 1 green 9 blue 1 green 1 green 9 blue 1 green 9 blue 1 green 1 green 9 blue 1 green 1 green 1 green 1 green 1 green 2 blue 1 green 1 green 2 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 13 30 240 178 36 10 0 270 311 10 0 0 270 310 0 0 210 0 0 91	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 30 40 35 42 48 45 80 70 72 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-6mm slickenside surface bedding, sillstone and shale calcite veinlet. 1-6mm slickenside surface slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ ? Fault plane 65-70, fracture filled open or partially filled, random breccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture fracture fracture fracture fracture sedding high angle fracture, high angle fracture, high angle fracture fracture fracture fracture bedding high angle fracture high angle fracture high angle fracture bedding high angle fracture high angle fracture high angle fracture bedding high angle fracture short, discontinuous bedding fracture short, discontinuous bedding slickenside dipping surface slickenside lineation bedding fracture bedding slickenside lineation	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.1-0.3mm brown? <0.3mm brown? colonname colonname	176	
05 06 07 08 09 10 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 35 36 37 Mudrangie 1 38 39 40 41 42 43 44 44 44 44 44 44	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7451 c3, 9847' 9837 8914 10448'6" 22,7692'-6" ? 80 due to folding c4, 722 6706 7209'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) slic. line. bedding	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 6 yellow 7 green 9 blue 9 brown 1 green 9 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 340 240 178 36 13 39 240 178 36 13 39 240 178 36 13 39 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 18 36 19 40 10 10 10 10 10 10 10 10 10 10 10 10 10	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 70 70 80 80 80 75 75-85 80 80 80 80 75 75-85 80 80 80 80 80 75 80 80 80 90 90 90 90 90 90 90 90 90 9	240	355 / 56 dev. 176 / 15.9 as above	calcite verinlet 1-8mm slickenside surface bedding, slistsone and shale calcine verinlet 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallet to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ ? Fault plane 85-70, fracture flied open or partially flield, random breccia, but still fit like after cracking bedding fracture, high angle fracture fracture fracture fracture bedding fracture, high angle fracture short, discontinuous bedding slickenside dipping surface slickenside lineation bedding fracture bedding slickenside lineation bedding fracture slickenside lineation bedding fracture bedding fracture slickenside lineation bedding fracture bedding fracture bedding fracture bedding fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? colons brown?	176	
05 06 07 08 09 10 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 335 336 337 Mudrangie 1 38 39 40 41 42 43 44 44 44 44 44 44	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 5 yellow 6 yellow 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 5 yellow 6 yellow 6 yellow 6 yellow 7 green 8 blue 9 blue 1 green 9 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 380 240 178 36 13 380 240 178 36 13 380 240 178 36 13 39 240 178 36 13 39 240 178 36 13 39 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 13 39 30 240 178 36 180 348-168 0 94	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 72 80 80 75	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-8mm slickenside surface bedding, silistone and shale calcite veinlet: 1-8mm slickenside surface slickenside ineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above parallel to the bove filled by 2 kinds of crystals strike as same as the above, but diji opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @? Fault plane 65-70, fracture filled open or parallel yilled, random breccia, but still fit like after cracking. bedding fracture fracture fracture fracture fracture fracture fracture fracture bedding fracture, high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous bedding fracture bedding fracture high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous bedding fracture short, discontinuous bedding fracture bedding fracture bedding fracture short, discontinuous bedding fracture bedding fracture short, discontinuous bedding fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? colons brown?	176	
05 06 07 08 09 10 11 12 13 Merrimelia 6 14 15 16 17 Merrimelia 7 18 19 20 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 335 336 337 Mudrangie 1 38 39 40 41 42 43 44 44 44 44 44 44	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(1) frac(1) frac(1) frac(1) bedding frac(1) bedding frac(1) bedding frac(1) bedding frac(1) bedding frac(1) bedding frac(1)	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 5 yellow 6 yellow 6 yellow 7 green 9 blue 1 green 9 blue 1 green 9 blue 1 green 9 blue 1 green 9 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 311 0 352 330 270 331 133	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 70 80 80 80 75 75-85 80 80 80 80 80 80 80 80 80 80	240	355 / 56 dev. 176 / 15.9 as above	calcite verinlet 1-8mm slickenside surface bedding, silistone and shale calcite veinlet: 1-6mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded **No dip recorded **P Induced fracture parallel to the above parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic **P Fault plane 6-7 Faul	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 	176	
005 006 007 008 009 100 111 112 113 Merrimelia 6 144 155 166 177 Merrimelia 7 188 199 202 221 222 223 224 225 226 227 228 229 Moomba 2 230 331 20 W 332 333 334 335 336 337 Mudrangie 1 338 339 400 411 422 433 444 445 446 447 Munkarie 1 448 449 2° 650 directional 51 55 556 57 58 59 Nappacoongie 1 660 661 662 663 664 Packsaddle 3 655 666 667 668 669 770 771 772 773 774 775 776 777	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) slic. line. bedding frac(1) bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1)	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow (s) 1 green 2 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 355	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 70 80 80 75 75-85 80 80 75 80 80 80 75 75-85 80 80 90 0 30 40 35 42 48 45 80 70 70 80 80 80 80 80 80 70 80 80 80 80 80 80 80 80 80 8	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-fimm slickenside surface bedding, silststone and shale calcite veinlet: 1-fimm slickenside untace slickenside untace slickenside ineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0,4mm (open) @ ? Fault plane 65-70, fracture filled open or partially filled, random beccia, but still fit like after cracking. bedding fracture fracture fracture fracture fracture fracture bedding fracture, high angle fracture bedding fracture, high angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous bedding fracture bedding fracture short, discontinuous bedding fracture short, discontinuous bedding fracture bedding fracture short, discontinuous bedding fracture fracture bedding fracture fracture bedding fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? vol.1-0.3mm brown? col.3mm brown? col.4mm; crystals col.4mm brown? col.4mm; crystals col.4mm; crystals col.4mm brown? col.4mm; crystals col.4mm; crys	176	
055 066 077 088 099 110 111 112 133	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7446 7446 7446 7446 7447 9837 8914 10448'6" 280 due to folding 6706 7233 7209'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture	2 red 3 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 6 yellow 1 green 2 blue 3 brown 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 6 yellow 6 yellow 6 yellow 7 green 9 blue 1 green 9 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 331 133 0 352 330 270 331 133 0 0 210 150 15 0 270 31 133 0 358 27-207 0 91 0 91 0 180 348-168 0 94	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 30 40 80 35 42 48 45 80 70 72 80 80 75 75-85 80 75 75-85 80 75 75-85 80 70 72 80 80 30 40 35 42 48 45 80 70 70 70 80 80 80 80 80 80 80 80 80 8	240	355 / 56 dev. 176 / 15.9 as above	Galoite veiniet 1-mm slickenside surface bedding, sliktone and shale calcite veiniet: 1-mm slickenside surface slickenside lineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the abov	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? colonge of the property of the	176	
055 066 077 088 099 110 111 112 113	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7451 63, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7217'4" 7217'4" 7217'4" 7227	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) bedding frac(1) slic. line. bedding frac(1) frac(2) bedding frac(1) frac(2)	2 red 3 red 3 red 3 red 4 red 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 bluck 3 black 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 1 green 2 blue 3 brown 4 yellow 1 green 2 blue 3 brown 1 green 2 blue 3 brown 1 green 2 blue 3 brown 1 green 2 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 120 311 0 352 330 270 331 133 0 0 210 150 15 0 0 210 150 15 0 91 0 91 0 180 348-168 0 94 0 85 82 0 355 332	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 80 75 75-85 80 80 90 0 30 40 80 80 80 90 0 30 40 80 80 80 90 90 90 90 90 90 90 90 90 9	240	355 / 56 dev. 176 / 15.9 as above	calcite vainlet 1-mm slickenside surface bedding, siltstone and shale calcite veinlet; 1-mm slickenside surface slickenside surface slickenside surface slickenside surface slickenside ineation bedding, quartzose sandstone. No dip recorded ? Induced fracture parallel to the above parallel to the above parallel to the above parallel to the above filled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0.4mm (open) @ 7 Fault plane @ 7 Fault plane @ 7 Fault plane @ 85-70, fracture filled open or partially filled, random brecoia, but still fit like after cracking. bedding fracture fracture fracture fracture fracture fracture fracture fracture sligh angle fracture high angle fracture high angle fracture high angle fracture short, discontinuous bedding fracture short, discontinuous bedding slickenside dipping surface slickenside lineation bedding fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture fracture fracture fracture bedding fracture fracture fracture fracture fracture fracture bedding fracture fracture fracture fracture fracture bedding fracture fracture fracture fracture bedding fracture fracture fracture fracture fracture bedding fracture fracture fracture bedding fracture fracture fracture bedding fracture fracture fracture bedding fracture fracture bedding fracture fracture fracture bedding fracture fracture	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? https://doi.org/10.100/j.cm/ calcite pyrite +? pyrite +? calcite ut pyrite 1) calcite the pyrite 1) calcite 1 mm, siderite 0.8mm, siderite 0.8mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite	176	
055 066 077 088 099 110 111 112 113	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7451 63, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7217'4" 7217'4" 7217'4" 7227	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) slic. line. bedding frac(1) bedding frac(1) bedding frac(1) frac(2) bedding frac(1) bedding frac(1) bedding frac(1) bedding frac(1) bedding frac(1) frac(2) bedding frac(1) bedding frac(1) frac(2)	2 red 3 red 3 red 4 green 2 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 6 yellow 1 green 2 blue 1 green 2 blue 1 green 2 brown 3 brown 1 green 2 blue 1 green 2 brown 3 brown 1 green 2 brown 3 brown 4 yellow	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 331 150 0 270 311 0 352 330 270 331 150 0 270 31 150 15 0 91 0 91 0 85 82 0 94	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 35 42 48 45 80 70 72 80 80 90 0 70 72 80 80 80 90 0 70 72 80 80 80 90 70 72 80 80 80 80 90 90 70 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-mm silckenside surface bedding, siltstone and shale calcite veinlet. 1-mm silckenside surface parallel to the above parallel to the above parallel to the above silled by 2 kinds of crystals strike as same as the above, but dip opposite not sure from plastic possible bedding high angle fracture, 0 4mm (open) server fracture fracture, light angle fracture, high angle fracture, high angle fracture, high angle fracture, high angle fracture fracture fracture fracture bedding fracture, high angle fracture, high angle fracture, high angle fracture, high angle fracture short, discontinuous bedding high angle fracture short, discontinuous bedding silckenside dipping surface silckenside ineation bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture bedding fracture fracture bedding fracture fracture bedding fracture bedding fracture bedding	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 	176	
055 066 077 088 089 110 111 121 133	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) slic. line. bedding frac(1) slic. line. bedding frac(1) frac(2) frac(3)	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 bluck 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 1 green 2 blue 3 brown 4 yellow 1 green 2 blue 3 brown 4 yellow 1 green 2 blue 3 brown 4 yellow 1 green 2 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 331 150 0 270 311 0 352 330 270 331 150 0 270 31 150 15 0 91 0 91 0 85 82 0 94	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 ? 14 70 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 33 40 35 42 48 45 80 80 70 72 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	240	355 / 56 dev. 176 / 15.9 as above	calcite veinlet 1-mm silckenside surface bedding, silstone and shale calcite veinlet: 1-mm silckenside surface silckenside surface silckenside surface silckenside ineation bedding, quartzose sandstone. No dip recorded 7 Induced fracture parallel to the above par	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled so calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? https://doi.org/10.100/j.cm/ calcite pyrite +? pyrite +? calcite ut pyrite 1) calcite the pyrite 1) calcite 1 mm, siderite 0.8mm, siderite 0.8mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite	176	
055 066 077 088 089 099 110 111 122 133	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) slic. line. bedding frac(1) frac(2) frac(3) bedding frac(1) slic. line. bedding frac(1) frac(2) frac(3)	2	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 120 311 0 352 330 270 331 133 0 0 210 150 15 0 0 270 31 133 0 0 358 27-207 0 91 0 180 348-168 0 94 0 85 82 0 355 332 0 358 214	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 87 14 70 80 80 80 15 80 75 25 75-85 80 20 80-90 0 30 40 80 30 40 80 30 40 35 42 48 45 80 80 70 72 80 80 80 70 72 80 85 75 73 63 90 50 85 40 70 70 46 35 45 40 70 70 46 35 45 40 40 25 40 40 40 25 40 40 40 40 40 40 40 40 40 40 40 40 40	240	355 / 56 dev. 176 / 15.9 as above	calcie verinet 1-6mm slickensides unface bedding, slitstone and shale calcie verinet. 1-6mm slickenside unface slickenside unface slickenside unface slickenside unface slickenside unface parallel to the above parallel to the above parallel to the above parallel to the above, but dip opposite not sure from plastic possible bedding high angle fracture, forme SS-70, fracture filled open or parallel/filled, random broccia, but still fit like after cracking. bedding fracture, high angle fracture fracture fracture fracture fracture fracture fracture fracture bedding high angle fracture bedding fracture very fine fracture very fine fracture hedding slickenside dipping surface slickenside lineation bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture bedding fracture fracture fracture bedding fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture bedding fracture fracture branches of fracture 1 fracture branches of fracture 2 bedding fracture branches of fracture 2 bedding fracture branches of fracture 2	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? convery 0.3mm brown? calcite 0.3mm brown? 0.3mm brown? calcite 0.3mm brown? 10.3mm brown? calcite 0.3mm brown? calcite 0.4-1mm, siderite 0.8mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.4-1mm, siderite	176	
055 066 077 088 089 110 111 122 133	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7446 7446 7446 7447 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture fractor bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 311 0 352 330 270 331 133 0 358 27-207 0 91 0 180 348-168 0 94 0 0 85 82 0 0 355 332 0 0 355 332 0 0 358 27-207	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 97 14 70 80 80 80 15 80 75 75-85 80 75-85 80 90 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 40 80 35 42 48 45 80 70 72 80 80 70 70 72 80 80 80 80 80 80 70 70 70 70 85 80 80 80 80 80 80 80 80 80 80 80 80 80	240	355 / 56 dev. 176 / 15.9 as above	calcite venielt 1-6mm sistekanside surface bodding, silistone and shale calcite volnot: 1-6mm silickenside surface silickenside silickenside surface silickenside surface silickenside silickenside siliping surface silickenside surface silickenside siliping surface silickenside surface silickenside surface silickenside siliping surface silickenside siliping surface silickenside surface silickenside siliping surface silickenside surface silickenside surface silickenside surface silickenside surface silickenside surface silickenside	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? https://doi.org/10.100/mom/ https://doi.org/ 0.1-0.3mm brown? 0.3mm brown? https://doi.org/ o.1-0.3mm brown? 0.3mm brown? o.1-0.3mm pyrite +? 0.3mm, exalcrite 0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.5mm, exalcrite "stitches" 0.3mm, exalcrite "stitches"	176	
055 066 077 078 079 079 079 071 071 071 071 071 072 073 074 075 076 077 077 077 077 077 077 077 077 077	not present core slab 8811'-7" 7441'6"-7442 7445'4" 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7107'4"-9" 7107'4"-9" 7107'4"-9"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) slic. line. bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) frac(2) bedding frac(1) frac(2) frac(3)	2	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 120 311 0 352 330 270 331 133 0 0 210 150 15 0 0 210 150 15 0 0 270 31 133 0 358 27-207 0 91 0 180 348-168 0 94 0 85 82 0 355 332 0 0 355 332	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 70 80 80 80 15 80 75 25 75-85 80 20 80-90 0 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 70 72 80 80 70 72 80 80 80 70 70 72 80 80 80 70 70 72 80 80 80 80 80 70 70 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	240	355 / 56 dev. 176 / 15.9 as above	calcite veniet -6mm sickensides unface bedding, silistone and shale calcite veniet: 1-6mm silickenside surface silickenside surface silickenside incention bedding, quartzose sandstone. No dip recorded Pindued fracture parallel to the above	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? convery 0.3mm brown? calcite 0.3mm brown? 0.3mm brown? calcite 0.3mm brown? 10.3mm brown? calcite 0.3mm brown? calcite 0.4-1mm, siderite 0.8mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.4-1mm, siderite	176	
055 066 077 078 079 080 099 110 111 121 131	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7446 7446 7446 7447 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture fracture fracture fracture fracture fracture fracture fractoure fracture fracture fracture fractoure fracture fractoure fractoure frac(1) frac(2) frac(3) bedding frac(1) frac(1) bedding frac(1) frac(2) bedding	2 red 3 red 3 red 1 green 2 purple 3 purple 4 black 1 green 2 black 3 red 4 red 1 green 2 black 3 black 4 black 1 green 2 black 3 black 1 green 2 blue 3 red 1 green 2 blue 3 red 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 orange 4 orange 5 brown 1 green 2 blue 3 brown 4 yellow 5 yellow (s) 1 green 2 blue 3 brown 4 yellow 5 yellow 5 yellow 1 green 2 blue 3 brown 4 brown 1 green 2 blue 3 blue 1 green 2 brown 3 blue	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 352 330 270 331 133	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 30 40 33 42 48 45 45 80 80 30 40 35 42 48 45 50-55 60 70 72 80 80 80 80 30 40 35 42 48 45 50-55 60 70 70 72 80 80 80 80 70 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	240	355 / 56 dev. 176 / 15.9 as above dominated SW	calcite veniet 1-6mm silckensides unface bedding, siltstone and shale calcite veniet 1-6mm silckenside surface silckenside surface silckenside surface silckenside surface silckenside surface silckenside surface parallel to the show parallel to the above parallel t	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled wich silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? vo.3mm brown? calcite pyrite + ? calcite tut pyrite calcite 1) calcite 1 mm, siderite 0.8mm, siderite 0.4mm, siderite 0.2mm, ? + siderite 'stitches' 0.3mm, siderite	176	
055 066 077 078 079 080 099 110 111 121 131	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7105 7105	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 120 311 0 352 330 240 178 36 13 330 120 311 0 0 352 330 270 31 133 0 0 358 27-207 0 91 0 0 180 348-168 0 94 0 0 85 82 0 0 358 27-207	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 91 14 70 80 80 80 15 80 75 25 75-85 80 90 90 30 40 80 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 80 70 72 80 80 80 80 70 72 80 85 75 73 63 90 50 85 75 73 63 90 70 72 80 85 75 73 63 90 70 70 46 35 50 85 45 40 70 70 46 35 45 40 40 40 40 40 40 40 40 40 40 40 40 40	243	dominated SW	calcite verifies 1-8mm slickenside surface budding, silstorine and shalle catcher verifies 1-8mm slickenside outrace slickenside outrace slickenside outrace slickenside outrace slickenside outrace slickenside invention No dip recorded 7 induced fracture parallet to the above parallet to the above parallet to the above parallet to the above parallet to the above, but dip opposite not sure from plastic 1 possible budding high angle insure, gramm (open) 6 7 pr. (and the surface) 6 8 pr. (and the surface) 6 pr. (and the surf	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? convery 0.3mm brown? calcite 0.3mm brown? 0.3mm brown? calcite 0.3mm brown? 10.3mm brown? calcite 0.3mm brown? calcite 0.4-1mm, siderite 0.8mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.9mm, siderite 0.4-1mm, siderite	176	
055 066 077 078 079 079 079 079 079 079 079 079 079 079	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture fracture fracture fracture fracture fracture fracture fracture fracture fractore fracture fractor bedding frac(1) frac(2) frac(3) bedding frac(1) frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 18 37 38 240 18 348 18 348 18 348 18 348 18 348 18 348 18 348 18 348 18 349 340 160 348 346 348 349 340 340 340 340 340 340 340 340 340 340	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 80 75 25 75-85 80 ?20 80-90 0 30 40 35 42 48 45 80 80 30 40 35 42 48 45 80 80 70 72 80 80 80 90 70 72 80 80 80 80 90 70 72 80 80 80 80 80 80 80 90 70 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	243	355 / 56 dev. 176 / 15.9 as above dominated SW	calcle verified. 1-firm slicknamede surface bedding, slictione and shale calcle verified. 1-firm slicknamede surface bedding, quartzose sandatione. No dip recorded P. Induced trasture parallel to the above parallel to t	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite ? Clay 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.4-1mm, siderite 0.2mm, ? + siderite "stitches" 0.3mm, ? + siderite "stitches" 0.3mm, ? + siderite "stitches" 0.4-1mm, siderite 0.2-0.8mm, siderite 0.2-0.8mm, siderite 0.2-0.8mm, siderite 0.2-0.8mm, siderite 0.2-0.8mm, siderite	176	
055 066 077 078 088 099 110 111 112 113	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7445 7445 7446 7446 7447 9837 8914 10448'6" 780 due to folding c4, 722 6706 7233 7209'4" 7217'4" 7217'4" 7217'4" 7217'4" 7105 7107'4"-9" 7105	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 339 3341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 331 133 0 0 210 150 15 0 0 270 31 133 0 0 358 27-207 0 91 0 0 180 348-168 0 94 0 0 210 150 15 0 0 270 31 133 0 358 27-207 0 91 0 0 355 332 0 0 348-168 0 0 94 0 0 358 27-207	82 82 13 87 87 87	85-90 80-85 40 80-85 80 12-15 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 80 70 72 80 80 80 80 80 70 72 80 80 80 80 80 80 70 72 80 85 75 75 85 60 70 70 85 85 75 85 80 80 80 80 80 80 80 80 80 80 80 80 80	243	355 / 56 dev. 176 / 15.9 as above dominated SW	calibre veninger. Sitestones and shallo cacetor veninger. Home sitestones and shallo cacetor veninger. Home sides and shallo cacetor veninger. Home sides and shallo cacetor veninger. Home sides and shallow sides and shallow. Bodding, quartzone sandstone. No dip recorded 7 induced fracture parallel to the above parallel to the short of the proposite of the state of the sta	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite 7 Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, 2 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 3 + siderite 'stitches' 0.4-1nm, siderite 0.2-0.8mm, siderite	176	
05 06 07 08 09 10 11 11 12 13 Merrimelia 6 14 15 16 16 17 Merrimelia 7 18 19 20 21 22 23 24 25 26 27 28 29 Moomba 2 30 31 20 W 32 33 34 33 34 33 34 33 34 33 34 33 34 33 34 34 34 45 46 6 6 6 6 6 6 6 6	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture fracture fracture fracture fracture fracture fracture fracture fracture fractore fracture fractor bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 336 0 339 3341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 270 311 33 0 0 210 150 15 0 0 270 311 133 0 0 85 270 311 133 0 0 85 82 14 0 0 358 27-207 0 91 0 0 180 348-168 0 94 0 0 85 82 0 0 358 27-207 0 0 91 0 0 180 348-168 0 94 0 0 358 27-207	82 82 13 87 87 80 85	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 30 40 80 30 40 80 30 40 35 42 48 45 80 80 80 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	243	355 / 56 dev. 176 / 15.9 as above dominated SW	calcite venice 1-56mm sickensoise surface bedding, silicens and shale edition silicens and shale edit	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite 7 Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, 2 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 3 + siderite 'stitches' 0.4-1nm, siderite 0.2-0.8mm, siderite	176	
055 060 07 07 088 099 100 111 111 112 113	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7445 7445 7446" 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture fractoure fracture fractor frac(2) frac(3) bedding frac(1) frac(2) frac(3) frac(1) frac(2) frac(3)	2	333 335 0 339 3341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 240 178 36 13 330 270 311 0 352 330 270 331 133 0 0 210 150 15 0 0 270 31 133 0 0 858 27-207 0 91 0 180 348-168 0 94 0 0 85 82 0 0 355 332 0 0 358 27-207	82 82 13 87 87 80 85 63	85-90 80-85 40 80-85 80 12-15 85-90 85-90 85-90 ? 14 70 80 80 80 15 80 75 25 75-85 80 ?20 80-90 0 30 40 80 30 40 80 30 40 35 42 48 45 80 80 70 72 80 80 80 80 80 70 72 80 80 80 80 80 80 80 80 80 80 80 80 80	243	355 / 56 dev. 176 / 15.9 as above dominated SW	calcite venice 1 + 6mm silckenside surface	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite 7 Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, 2 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 3 + siderite 'stitches' 0.4-1nm, siderite 0.2-0.8mm, siderite	176	
1005 1006 1007 1008 1009	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7445 7445 7451 63, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 339 341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 270 331 133 0 0 210 150 15 0 0 270 311 133 0 0 358 27-207 0 91 0 0 180 348-168 0 94 0 0 85 82 0 0 355 332 0 0 358 27-207 0 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82 82 13 87 87 80 85 63	85-90 80-85 80-85 80 812-15 85-90 85-90 85-90 87 14 70 80 80 80 15 80 75 75-85 80 75-85 80 70 30 80 80 30 40 80 30 40 80 30 40 80 30 40 80 80 80 70 72 80 80 80 80 80 70 72 80 80 80 80 80 80 70 70 70 46 35 50 85 75 73 63 90 50 85 40 70 70 70 46 35 45 40 70 70 46 35 45 40 40 25 40 40 40 25 40 40 40 25 40 40 40 25 60 70 85	243	355 / 56 dev. 176 / 15.9 as above dominated SW 294 / 13 new file: 9313r	calcite veniest 1-8mm silckenside au drate state state of the state of	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite 7 Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, 2 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 3 + siderite 'stitches' 0.4-1nm, siderite 0.2-0.8mm, siderite	176 Useless see WCR	
100 100	not present core slab 8811' 7" 7441'6"-7442 7445'4" 7445 7445 7451 c3, 9847' 9837 8914 10448'6" 10449 c2,7692'-6" ? 80 due to folding c4, 722 6706 7233 7209'4" 7217'4"	frac(1) frac(2) bedding frac(1) frac(2) lineation bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) bedding frac(1) frac(2) bedding fracture bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3) frac(1) frac(2) frac(3) bedding frac(1) frac(2) frac(3)	2	333 335 0 339 3341 335-155 0 130 106 270 0 234 258 240 0 247 67 0 165 140 0 20 horizontal 330 240 178 36 13 330 240 178 36 13 330 270 331 133 0 0 210 150 15 0 0 270 31 133 0 358 27-207 0 91 0 0 180 348-168 0 94 0 0 85 82 0 0 355 332 0 0 358 214 0 0 348-168 0 94 0 0 348-168 0 94 0 0 348-168 0 0 94 0 0 355 332 0 0 358 324 14 0 0 358 340 160 0 345 0 0 348 0 0 348 0 0 0 348 0 0 0 348 0 0 0 348 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82 82 13 87 87 80 85 63	85-90 80-85 80-85 80 812-15 85-90 85-90 85-90 87 14 70 80 80 80 15 80 75 75-85 80 75-85 80 70 30 40 80 80 30 40 80 30 40 80 30 40 80 80 80 70 72 80 80 80 80 80 70 72 80 80 80 80 80 80 80 80 70 72 80 85 65 45 45 40 70 70 46 35 45 40 40 25 40 40 25 40 40 25 40 40 40 25 40 40 40 25 40 40 40 25 40 40 40 40 40 40 40 40 40 40 40 40 40	243	355 / 56 dev. 176 / 15.9 as above dominated SW	acide venida 1-5cmm silckenade surface bodding, allickenade surface	calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite filled by calcite 7 Clay two kinds of crystals 0.2-0.3mm; crystals 0.3mm; clay? partially filled with silica+calcite 0.6mm or > filled filled with yellow, ? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.3mm brown? <0.3mm brown? <0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? 0.1-0.3mm brown? <0.3mm brown? <0.4mm, siderite 0.4mm, siderite 0.4mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, siderite 0.2mm, 2 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 7 + siderite 'stitches' 0.3mm, 3 + siderite 'stitches' 0.4-1nm, siderite 0.2-0.8mm, siderite	176	

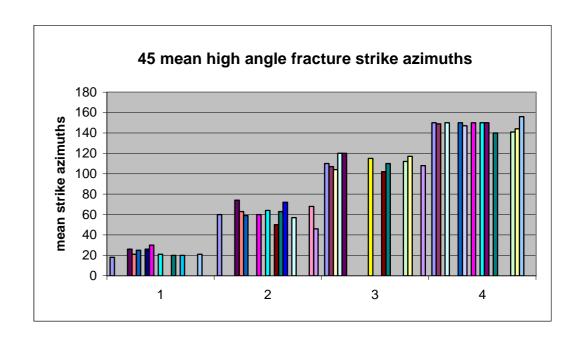
Stereon1.xls

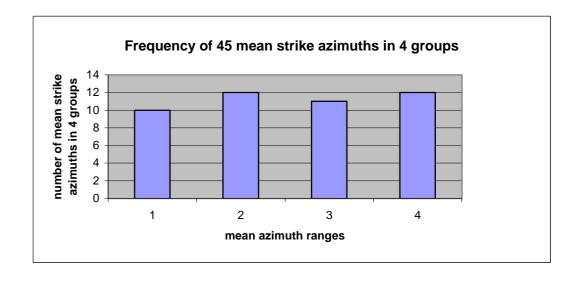
	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R
433												after filled with white ? minerals.						

No dipmeters Big Lake 52	9487'8"	` '	1 green 2 purple	0 180		70 50		bedding, siltstone hair line, shear quartz vein	brown, ?	
		frac(3)	3 orange 4 5			90		strike parallel to bedding 155-335 strike, dip not sure; displace bedding 18-198 strike, same as frac(3), both displaced by frac(1) and (2)		
Brumby 1	7710	bedding	1 green 2 blue	0 265		25 55				
	7709	frac(2) bedding	3 blue 1 green	0		45 25				
Cherri 1	4592	frac(2) bedding	2 blue 3 blue 1 green	343 180 0	47	40 60 45-50				
	4588	bedding	2 purple 1 green 2 purple	175 0 260	79	80-85 50 78-80		reliable	0.2mm	
	4582	frac(2) bedding	3 brown 1 green 2 red	210 0 160		65 50 75				
Door 4	400241411	frac(2)	3 red	160		65		veinlet, coarser than the above slowly acid reactive		
Daer 1	10634'4"	frac(1)	1 green 2 blue 3 blue	0 314 304		20 80 72		bedding, grainstone high angle fracture high angle fracture	0.8mm, calcite 0.2mm, calcite	
	10636'8"-10637	frac(1) bedding	4 blue 1 green	300		60 25		high angle fracture bedding, grainstone	0.6mm, calcite	
		frac(1)	2 blue 3 blue brown	272 318 95-275		10 31		low angle fracture slickenside surface slickenside lineation	2mm, calcite 0.8mm, calcite	
Della 2	7219	bedding					270 domal, flanking W	not measured		
	2cm below the next	. ,	purpleyelloworange	0 340 227		40 85 65		assume to N meshwork fracture	0.2mm 0.1mm 0.1mm	
	measurement 7219	frac(1)	4 brown 1 purple 2 yellow	168 0 120		80 50 85		veinlet assume to N fracture	2mm	
Oideadea 0	74471511	frac(3)	3 brown	163		70		fracture	O Omero a idenita	
Gidgealpa 8	7117'5"		1 brown 2 brown	0 18		40 60		fracture assumed to N fracture	0.8mm, siderite 2mm, siderite	
	7117'10"-7118'	` '	1 brown 2 brown	0 24		60 55		fracture assumed to N fracture	1-5mm, calcite 0.3mm, siderite?	
	7151	frac(1) frac (2)	1 blue 2 brown	0 39-219		80 90		dominated fracture assumed to N, breccia almost vertical fracture below which, v. broad calcite veinlet (4cm) tut siderite filled fracture.	> 2mm, calcite > 1mm, calcite	
nammincka 4	6976	bedding frac(1)	1 green 2 blue	0 286		20 85		0.6mm		
Jennet 1	c1, 5525'	` '	1 green 2 blue	0 90	67	65 65-70		bedding high angle fracture	open, fine frac, predate slickenside?	
	2" below	frac(2) slickenside	3 yellow4 orange5 orange	70 0 10-190		60 65 65		possibly equal blue slickenside strike on the bedding surf. slickenside lineation	open, fine frac, predate slickenside?	
	5232'2-7"		35					vuggy fractures		
Kalanna 1	8937'3"	` '	1 green 2 blue 3 orange	0 274 355		70 65 50	315 W. flank of major NE-SW Kal. Fault Coaxial P-Z dome/fault trap	possible bedding, muds. fracture, subpara to 300° (blue) fracture, displaced fra(1)	pyrite lam. 4 calcite, 0.3mm clay seam, v. fine, 0.08mm	
Kumbarie 1	5400'4"	bedding	1 green 2 blue	0 356		60 78		bedding high angle fracture	0.5mm, open, siderite "stitches"	
		` ,	3 brown 4 orange	200		33		fracture fracture, conjugate with frac(2)?	0.2mm, transparent crystal, non- calcite, further by siderite 0.1mm, transparent crystal, non- calcite, further by siderite	
	5524'10"	frac(4)	5 1 green	0		70		abundant, small, fine fractures, branched? bedding		
	5534	frac(1) frac(2)	2 red 3 blue	170 200 0		65 35 55		fracture fracture possible bedding between sst and shale.	1.3mm, dolomite 0.6mm, ?	
		frac(2)	1 green 2 blue 3 blue	33 172		30 35		fracture fine fracture, cut by the above	2.1mm, ? 0.1mm	
Lowanna 1	9802'3"	` ,	1 green 2 red 3 purple	0 210 240	53 57	50-55 25 55-58		veinlet fill	2-3mm, calcite 0.1, calcite	
	9801'3"	frac(3) bedding	4 orange 1 green 2 purple	120 0 280		60 55 50			.1-<1mm, calcite	
		frac(1) frac(1)	3 purple 4 purple	290 284	80	65 75-90		dominated fracture	calcite calcite	
		()	5 orange 6 red 7 purple	230 170 134		70 18 70		calcite and breccia zone hairline, minor fault displacement	calcite	
Meranji 2	10920	bedding fracture	1 green 2 black	0 245		20 85		? branch from frac(1) bedding open fracture		
larcoonowie 1	6542'5"	bedding	1 green	0	43	42-45	330 NW flank of anticline	bedding, siltstone and shale		
		` '	2 blue 3 yellow 4 black	335 horizontal 260	67	65-70 0 80		fracture afte	1 siderite or dolomite r 1? siderite or dolomite 3 siderite or dolomite	
opposite side		frac(4) fra(1)	5 brown blue black	205 30 310	67	40 65-70 80		coarse frac, or vein	2	
	6540	fra(3) bedding	1 green	0		40	330	bedding, siltstone and shale	3	
		. , ,	2 blue 3 brown 4 yellow	57 150 horizontal	43	70 45-50 0		high angle fracture ? Conjugate, coarser fract. horizontal fracture		
	6543	bedding	1 green	0 330	43	40-50 60-80	330	bedding, siltstone and shale	dolomite	
	6112'10"	fra(2) frac(1)	3 brown 1 blue	270 0	70	70 60	330	high angle fracture coarser fracture moderately steep fracture	dolomite breccia, filled with dolomite	
Nealyon 1	6333	frac(3) bedding	2 brown 3 yellow 1 green	101 240 0	13	60 65 10-15		displaced blue fracture displaced blue and brown siltstone	dolomite dolomite	
		frac(1)	2 brown 3 blue	210 172		85 70			1mm, filled with calcite 0.1-0.2mm; calcite	
Packsaddle 1	10366	bedding frac(1)	green 1 black 2 vellow	0 30		75 50	135 dipping SE in seismic	bedding, quartzose sst fracture	0.1mm	
	1cm below 10357'5"	frac(3) bedding	2 yellow 3 black green	335 70 0	35	65 30 30-40	section 135	bedding, siltstone / fine sst.	< 0.1mm up to 0.9mm	
			1 brown 2 yellow	0		60 65		thrust fault fracture	filled by calcite	
	10388	. ,	1 green 2 blue 3 brown	0 60 190	75	40 70-80 10	135	bedding, calcareous siltstone cross-cut every other fractures majority fracture 10 dg dip	calcite 0.5mm, calcite	
	10390	frac(3) bedding	4 black 1 green	105 0	0.5	20 45		fracture bedding, calcareous siltstone	up to 0.8mm, calcite	
		` ,	2 blue3 brown4 black	110 190 0	85	80-90 45 40		may be opposite due to almost vertical		
Strzelecki-1	6806-16' not exact		1 green 2 blue	0 90		70 23		bedding (from Daily's collection) fracture	pyrite + white, ?	
	6806-6915	bedding fracture	1 green 2 purple	0 225	37	70 35-40		bedding (from Daily's collection) fracture	pyrite + white, ?	
Sturt 7	6376'6"	bedding frac(1) bedding	1 green 2 blue 1 green	0 194 0	27	25-30 60 25	45 fault block anticline towards NE	reliable		
	6363	frac(1) bedding	2 blue 1 purple	203		50 50		more reliable flow band of volcanics		
	6381	bedding frac(1)	2 brown1 green2 red	142 0 285		70 30 70				
Tilparee A1	c3, 7019' 1" down to	frac(2) bedding	3 blue 1 green 2 blue	81 0 300	65 87	70 60-70 85-90	160 S flank of E-NE	similar to other 60dg bedding, against folding high angle fracture	1 white, ?	
	younger	frac(2) frac(3)	3 yellow 4 brown	0 240	80	60 70-90		parallel to bedding, ? fault plane 3 v2, veinlet (1-2mm)	brown, ? pyrite	
	c3, 7013'	bedding	5 black 1 green	0	70	80		v1, veinlet (1-8mm), asso. slickenside bedding	5 quartz+ pyrite	
		frac(1)	2 yellow 3 brown 4 brown	20 45-50 150	77	75-80 40 70		high angle fracture (fine) lower angle fracture v11" below, steps & slickenside		
Toolachee 1	7221'	`. '	5 orange 1 green	135-NW		60	90 N-S trending anticline	lineation of slickenside, 1" below bedding, siltstone and shale		
, 3.00 H	. 44 1	frac (1) frac(2)	2 blue 3 brown	0 105		55 65	? E flank	fracture fracture	pyrite pyrite	
		frac(3) frac(4)	4 yellow 5 red	107 135		80 10		fracture fracture, ?diss. Seam	? open	
Gidgealpa 4	7226'8-10"	bedding	1	0 106		3 79	315 western flank of IF gentle NE-SW	RB		
	1					. ~	trending anticline			

Appendix 2 Text files on CD

Well core round? dipmeter depth (t) depth (b) Iog ft m ft m Boxwood 1 2 y CDM 6151.0 1874.8 6161.0 1877.9 ENV 879 down to 6340 Iogger=driller Iogger=dri	below Merrimelia sst at about 6152' (my), 6157'(WCR) 6220-6250 24-30NW326	vein (1) filled by vein (2) filled by fractures (1) filled? fractures (2) filled? fra	tures (3) filled? chronology fracture Comments Structure (WCR) intensity Mooracoochie ignimbrite, possible along shear plane. Boxwood structure, The Gidgealpa Fm dips at appro. Some kaolinite filled along the plane. At 6155-6154'6". 7 dg. Merrimelia Fm at 30 while Pre-Permian 30-50. Fold, microfold. Up to 0.4 x 0.8cm vug, numerous microfractures.	WCR 6153'6" and below, mottled green, recrystalised sediment. Shear planes 70, 85dg. Slickenside on some of surfaces. A definite structural dip: 30 (6151-6153 1/2'). 6153'3"up: Merr. Fm
3 y 6332.0 1930.0 6342.0 1933.0	? factures, fault 6280-6326 20-32SE137-170 ?bedding 10.00 36 SWS195 dark green laminated to thin-bedded mudstone and ? Fracture shale, slump. Daily (WCR): dip:40dg; abundant worm castings parallel to bedding. 30dg, >4mm calcite, chlor metamor? X-cut bedding		at 6339', fault (? compressive block faulting, high angle, 70). Vertical fractures along faultplane, cut across bedding, low angle; bedding above the fault: 40-50dg. Fault reappear at 6332'6"	Light grey-green shale, dip 30 (6332-6334'); to 50 (6334-6342). Shearing, on shear plane para to bedding. another at 70 to the horizontal. White clay calcareous in part with green mineral chlorite?) along shear planes.
Coongie 1 4 slab CDM 8615.0 2625.9 8626.5 2629.4 1/3 to 11790 5 middle dominated dominated 9838.0 2998.6 9849.0 3002.0 by NNW 8 NNE; 4-16,22 6 few SE, 10-16 10069.0 3069.0 10079.0 3072.1	10.67 < 2 8 NNW330 siltstone, shale, minor sandstone. max: 4 1/2 10.30 at 10400 16 NNW359 siltstone, shale, minor sandstone. 7.75 18 N30E dolomitised peritidalite	? 80 (8625') 0.3mm; calc. 75-80,? ? 80-90 (9839') 0.2mm, cal. high angle 9847.0 <0.2mm calcite 10076; 4mm; 2 fra calcite	low to moderate tend to be in v.f. sst, but not orange-red sst. Strending structural lineation extending from the Gidgealpa area, to be a Cambrian hinge-line.	DST No.3 (10020-250') minor losses of drilling fluid. ? Due to fracture or breccia? 11150-11304': permeable but salt water.
7	14.50 no reading dolomitised algaliminite abundant	? 75 10074: 85? 0.5mm / 2mm 10075: 2 frac. calcite stop at stylolite calcite 75-80; 6mm / 1.9mm 10164', 2 frac. <2mm, cal	; numerous moderate high angle fractures, filled with calcite actures moderate moderate	
9 NW or SE 11236.0 3424.7 11251.0 3429.3 11500-11750 6-38: NE10-40		11939'3"; 20dg? calcite;	moderate 2-3 fracs at 11248'10", ? r. angle to bedding. 0.8mm 11238'4"-11240': high angle frac., 1.8mm. numerous fine fracture, same high angle.	
10 11931.0 3636.6 11941.0 3639.6 Cuttapirrie 1 CDM 10095 3077.0 10100 3078.5 9870'	10.00 no reading ignimbrite lined up. 3.0 7 Max. rhyodacite or crystal tuff below dipmeter interval. 234dg: 9845' only cuttings single bioclastic, peloidal packstone.	1.6cm	low 11938', numerous hairline fracture filled with calcite. 1cm in Fractures completely or partially filled by calcite, NW flank of Ptachawarra Trough, its anticline is width partially filled, 1mm, 70dg at 10095'. elongate parallel to NE trend. 0.5-1mm, 70, calcite. Small antithetic faults distrub the regional southerly dip.	Welded tuff, two relict cleavages at right angle. No bedding. One well deve. Joint set at 25 dg to core axis, calcite along the planes.
Daralingie 1 4 y CDM 7420.0 2261.6 7431.0 2265.0 Env 837 down to 10gger = driller 7430' 10gger = driller 7430' 10gger = driller	structural dip 20-38dg 210-250 azim	0.5-1mm brownish 50-70° brown, at 7451 ft ? clay 2 clay ? clay		X-Ray: bedding 90°, but very tentative. Orthoquartzite (7423'), 99% quartz. Core description: 75o, colour banding. Three fracture sets, two > 70°, one 15°.
3 7170.0 2185.4 7220.0 2200.7	Conglomerate may belong to Merrimelia Fm, 65 dg.	80°, < 1mm brownish, ? 40° < 1mm brownish, siderite ? Siderite	1/1', but more Fracture, brown fill, (35dg), ? Siderite. as meshwork 20cm Bedding, undetermined due to biotur. possibly < 20dg.	Merrimelia Fm, conglomerate, sst. high and low angle partings: 75 100, occass. frac. with slickensides.
Daralingie 2 8 only slab CDM 7910.0 2411.0 7924.0 2415.2 900 6312-7912' <t< td=""><td>containing angular to rounded quartzite = Dara-1, core 4 quartzite, bioturbated sst, red pebbles of ? and ? volcanics (see Chris TS 7193'). 60° (WCR) fragmental core, disturbed by poor handling, not along shaly mainly SE reliable for study. However, sst, siltstone /shale, ? 163 / 30 gradually more weathered near top. at 7890' Therefore, possibly belongs to WB. Glauconitic sst ? Fracture seems to be porous</td><td>10-30° at 7190'</td><td>brownish (?). Frac(1), 80° but by frac(2), 40°, but both discontinuous. 3-5cm Bedding, 80, ssst and glauconitic at top; Southern flank of the Daral. anticline. 2 miles S, Sw. 85-90 at 7910'; fractures: 1 . Filled by sider., kaol Top of Permian, 200 feet lower than Dara. 1. 20-30 dg; some siderite crystalline "seeds" . Tria to Permian 9-12 dg, azimuth from SE to SW . 2. Filled by white (?) siderite also fills parall-bedding, original porous?</td><td>brown waxy modules, ? Manganese. 0° bedding (conformed by X-ray at 7190') dip appro. 60dg; interbedded phyllite and quartzitic sst; phyllite at 7922 dip: 60.</td></t<>	containing angular to rounded quartzite = Dara-1, core 4 quartzite, bioturbated sst, red pebbles of ? and ? volcanics (see Chris TS 7193'). 60° (WCR) fragmental core, disturbed by poor handling, not along shaly mainly SE reliable for study. However, sst, siltstone /shale, ? 163 / 30 gradually more weathered near top. at 7890' Therefore, possibly belongs to WB. Glauconitic sst ? Fracture seems to be porous	10-30° at 7190'	brownish (?). Frac(1), 80° but by frac(2), 40°, but both discontinuous. 3-5cm Bedding, 80, ssst and glauconitic at top; Southern flank of the Daral. anticline. 2 miles S, Sw. 85-90 at 7910'; fractures: 1 . Filled by sider., kaol Top of Permian, 200 feet lower than Dara. 1. 20-30 dg; some siderite crystalline "seeds" . Tria to Permian 9-12 dg, azimuth from SE to SW . 2. Filled by white (?) siderite also fills parall-bedding, original porous?	brown waxy modules, ? Manganese. 0° bedding (conformed by X-ray at 7190') dip appro. 60dg; interbedded phyllite and quartzitic sst; phyllite at 7922 dip: 60.
Daralingie 10 2 Y HDT 7215.0 2199.1 7224.0 2201.9 5725 7190-7301' 3' (log > driller)	5.30 1- 1/2° 50-60° Quartzite, fine, glauconitic, mud drape. n = 6 (> 7218') from 7218' upwards: shattered due to weathering? 60-65 (< 7218') fractures and vuggy poro. filled by siderite rhombs. 46-66 NNW deformed sandstone lenses, breccia upward to 7215', from which upwards belongs to Permian?		Steep bedding of shaly layers, 80-90 dg, at 7912' (80); at 7910' (85-90); fracture 20-30, filled by siderite and kaolinite in between crystals. not even Bedding, 50-60 dg (6); 60-65 (2) upper part, such moderate to high as 7218'. Deformed sst lense plus breccia; high (6/1") upwards to 7215'. Glauconitic sst + mud drapes. Above 7218', shattered, fracture, vuggy pore filled	quartzite, phyllite, sandstone: 10% dull yellow mineral fluorescence dip 50°. HDT decides 46-66 NNW.
Della 1 6 y CDM 7122.0 2170.8 7132.0 2173.8 SE 20dg 142 / 20			both fractures cut 10-17cm, 1cm (not Two sets fractures cut "lineation", 1. 30-55 angular unconformity with overlying Merr. Fm of glacigene "lineation", 2. Stop even); width < 1-2cm filled by 0.1mm black, ? 2. 80-90, filled 0.05mm conglomerate; possibly Devonian uplift. Also during Permian, Della structure.	7072' top of WB; bedding 60-70; fracture abundant, irregular from hori. to ver.
Dullingari 1 26 Y CDM 9191.0 2801.4 9211.0 2807.5 ENV 258 6700-11550 Below 8425			displace 2:70 carbonate filled in thin section. moderate A seismically delineated fold, well defined anticline;	Dark grey shale and interbedded siltstone. Small slump and micro-crossbedding. Dip: 60 (reliable)
not reliable (WCR)	NW at 9050 dip to SE 10.00 4-6dg 44dg (WCR) Greenish, laminated siltstone and shale.		Below 8425' CDM curves not suitable for dip calculations. moderate 60 dg in upper part of WB, 45dg in the lower part WCR, Appendix III, part E by Opik and Jones:	Dark grey shale, silty, fine irregular dolomite veins frequent, occasional patches of pyrite. Dip: 44 (reliable)
28 y 9668.0 2946.8 9678.0 2949.9 29 y 9802.0 2987.6 9812.0 2990.7				Shale, fractured, vein filling by dolomite. Fractures at 90 angle to dip and strike. Dip: 46. 9803 1/2 to 9812: Conglomerate in matrix of sandstone, numerous fine unoriented fractures. Dip: not apparent.
frag.	shale clasts. 2.00 22dg Dark grey shale, pyritic, dolomitic. Lineation 4.00 30dg 24dg(WCR) Dark grey shale, pyritic, dolomitic. Lineation		moderate high pyrite filled fractures, severe	dark grey shale, fine irregular fractures. Dip: 53. Dark grey shale, pyritic, dolomitic. Dip: high but amount interdeterminate due to broken nature. Fissile, very hard, silty, slightly carbonaceous(?), Thin veinlets (probably fracture fillings of pyrite etc.).
Gidgealpa 1 30 y CDM 13106.0 3994.7 13114.0 3997.1 d. to 13100 3947.2 12960.0 3950.2 breccia		up to 1mm, 65-9 calcite 25-28 calcite top of core ash-size bed hairline ?clay up to 0.1mm mud invasion?	only top basalt breccia and calcite-rich cement down the flank of a strong NE-SW anticline. "P' seismic 700' closure. The anticline asymmetrical, west limb intensive, indeterminate, vugs and brecciation steeper than eastern one. 1mm-cm saddle dolomite partially filled vug; From 10,000 to 11300 dip above is SE but below: N-E	Dip: 24-26 (unreliable). Pyritic slate, pyrite filled fractures. 31-33 dg reliable indeterminate, bright pale blue fluores. Red clay filled fracture, ?mud invasion
28 breccia 12800.0 3901.4 12804.0 3902.7 27 breccia 12773.0 3893.2 12783.0 3896.3			fractures abundant, well connected network ? Due to thrust fault causing repeated section. not core brecciation not core	dull gold fluorescence rounded vugs & fractures. Doubtful oil staining;
	0.0 12692 no recovery 0.0 S7E:49 no recovery 10.0 12597 thin-bedded siltstone, shale and bioclastic ps, ws. common N67E:42	50-70 calcite	not core not core 2-5cm 30-45dg, 2 sets of fractures filled by calcite	heavy mud invasion in vugs and fractures. bedding 32 dg reliable, two systems of weak fractures at 10-60 dg to core axis.
12605.0 12239.0 3730.4 12251.0 3734.1	bedding, 25dg 11.50 12258 thin-bedded ws, ps, rs, basaltic tuff-rich layers common yes	60; 0.2-0.5mm, calcite 40-50; 1-2mm calcite 45-60; 0.3-6mm calcite	which calcite veinlets were sheared	Filled by calcite, no displacement of beds but slickensideing common. 50 dg reliable, irregular fractures, filled
22 12021.0 3664.0 12031.0 3667.0	12218 ? Bedding, along dissolution seam, 70dg N55E:62	30-40 (1-2mm) calcite	Calcite-filled fracture right angle to seam ? bedding 2-5cm 36-43 dg, fracture filled by calcite or	30-32 dg reliable, prominent fracture system 65 dg to core axis.
21 11675.0 3558.5 11719.0 3572.0	40.50 11715 thin-bedded Im ms and ws, ps; nodular, ribbon, N68E:59 breccia, turbidites etc. bedding: 30dg, dilate filled by calcite, 30-40-50 dg.	50-60; 2-6mm calcite 60-80; 0.3-1mm calcite	h. angle, calcite-filled not even, 2-5cm 30-45 dg, slickenside surface = calcite fracture, tension below 11679' fracture surface (60dg, 1mm), parallel to gash; then stylolit. ~ 20cm calcite veinlet (6mm).	30-37 dg, occasional fractures in 3 systems: 1. parallel to bedding (? Cleavage) 2. 45 dg to core axis 3. 65 to core axis.
11684.0	from 0.3mm to 1cm, opposite bedding or 90 to it. 11565 bedding: 25-30 dg; calcite veinlet opposite bedding. N69E:42 turbidite bedding (20), almost vertical displacement.	35-40; 0.3-4mm calcite	4-5" fault displacement 1.3cm; vertical stylolite postdate calcite veinlet bed, 20dg; calcite filled fracture along microfaultplane almost 90dg, haireline to corner fill (5mm).	
20 11391.0 3472.0 11407.0 3476.9 19 11366.0 3464.4 11391.0 3472.0	N69E:39 13.50 11329 massive amygodal basalt & minor Is interbeds	60-65; >1mm	5-8cm, most of them 30 dg, faultplane displacing bedding, are fine, hairline one parallel to calcite frac (65; 0.01mm), oppo. bedding. 12cm or 6cm bedding undeterminate; one calcite vein (1cm)	25-30 dg, occasionally slickensides. 30-35 dg from minor limestone beds
18 11068.0 3373.5 11078.0 3376.6 17 10828.0 3300.4 10838.0 3303.4	N37E:49 10.0 10858 thinly bedded tuffaceous limestone yes	1.7-2cm calcite 60-70; 3mm, calcite 1. along bedding 2. opposite bedd.	one fracture, up to 1mm (55dg). 10 - 12cm two sets of calcite fractures: para. To bed and one opposite to bedding 45-50 dg; well fractured, filled by calcite, two sets.	at 11367'. 50-55 dg; calcite veins common; some up to 1" wide and parallel to bedding; 45 dg reliable; two major sets of fractures:
16 10488.0 3196.7 10498.0 3199.8 15 10280.0 3133.3 10290.0 3136.4	8.5 10516 basaltic breccia, bedding indeterminate S44E:56 laminated siltstone and shale with slump.	60; 1mm dolomite 50; 0.6-0.7mm dolomite 55.0 calcite	65; >1mm; 60, 1-1.5mm; bedding dip undeterminable; two sets of dolomite-filled fractures 5cm or more bedding dip 65 at 10284', slump-fold, 70; calcite-filled microfaults (2mm displaceme) & fracture fill, plus breccia and good fracture. irregular fracture network at breccia horizon	filled by calcite: parallel to bedding normal to bedding. Other no pref. Orient. dip indeterminate due to lack of bedding. 45-65 dg, everage 55dg, bottom 5 feet of core fractured & shattered; two systems one parallel to, other normal to bedding, displacements up to 1cm on fractured lam
14 9989.0 3044.6 9999.0 3047.7 13 9798.0 2986.4 9808.0 2989.5	bedding about 50 dg. 10.0 9963 finely laminated siltstone and shale S19E:48 10.0 interbedded siltstone and shale	45; 0.5mm calcite 75; 0.3mm calcite 75; 1.3mm calcite	Breccia and gauge zone, push-up, 50dg, hairline. 10cm (not continu.) 30-40 bedding, two sets of calcite filled fract. 5-12cm (uneven) bedding 30-40; calcite-filled fract. one opposite to bedding, 70 dg.;	30 reliable; irregular fractures (displa. 1/2") 30dg, reliable; few irregular fracture, with displacement up to 1". Filled by calcite.
	10.0 9422 basaltic breccia and limestone; similar to c18,19. yes S88E:44 11.0 9199 ribbon, nodular limestone and lime mudstone/shale. S59E:34	65-80; 0.5-1mm calcite 75; 0.8mm calcite	brecciation, filled by calcite. < 1m bedding 25-35; calcite-filled fract.	reliable 30dg; small, irregular fract, with displacement 1/4 - 1/2. 27-30 reliable;
1/8 miss 8656 7 y NE dominant 6895.00 2101.6 6915.00 2107.7	15.00 6802 feldspathic pebbly sandstone, some with x-beds. N4E:17 ? Sedimentary or 20.00 6922 greenish breccia and tuffaceous layers		high on the Gidgealpa structure, while Gidgealpa 1 2.54cm or more 60-70dg;, fracture filled by brownish Fe? was drilled well down the flank of the structure (anticline). Slickenside, filled by siderite nodules or ? 18 to 20 dg (reliable dip at 6890') by CDM.30 at 7275'.	
9 7275.0 2217.4 7285.0 2220.5	N72E:19 6995.5': minor cross-bed, dune migration truncation 7094 ?sandwave beds in hydroclastites. 10.00 N21E:22 top, red tuff and breccia 10.00 7283 laminated fine tuff. 0.00 N68E:41 No recovery		from 6899 1/2' upwards white in colour, similar to c6 greenish to brown, siderite nodules near 6963'. Between 6922-7578, dip 19-30, reliable, E to NE. Below 7578, dip very erratic, very unreliable. random fractures: 60-85 dg. Breccia at top, > 2mm calcite filled fractures (0.5-1.2mm) at 7284'	
10 7449.0 2270.5 7455.0 2272.3 11 7455.0 2272.3 7462.0 2274.4 12 7914.0 2412.2 7924.0 2415.2	7401		calcite (0.1mm) fracture, 90dg. calcite-filled fracture(7914'), 0.3-0.4mm, 90dg. flow lineation, ? 37dg.	
13 8683.0 2646.6 8692.0 2649.3	8299.00 7987 S37E S30W:22		calcite fracture, 60-75dg, filled by ?clay.	
14 9011.0 2746.6 9020.0 2749.3 Gidgealpa 3 7 d. to 10932 8068.0 2459.1 8076.0 2461.6	6.80 8066		moderate to high located on eastern flank of N-E trending structure.	
SE dominant 8 8524.0 2598.1 8530.0 2599.9 9 8572.0 2612.7 8582.0 2615.8	S83E:31 0.45 6.40 8577 S31E:67			
10 9151.0 2789.2 9161.0 2792.3 11 9735.0 2967.2 9745.0 2970.3 12 10151.0 3094.0 10161.5 3097.2	9.00 9178 S62E:55 9.50 9734 N81E:24			
13 10591.0 3228.1 10599.0 3230.6 14 10927.0 3330.5 10934.0 3332.7	S56E:26 8.00 10624 S44E:21			
Gidgealpa 5 27 y CDM SW dominant 8708.0 2654.2 8723.0 2658.8 26 8384.0 2555.4 8399.0 2560.0 25 8114.0 2473.1 8126.0 2476.8	15.00 ? <5(DIG) 8581 rhyodacite, lava, some flowing band and thin beds. S30W:10 15.00 8332' light green tuffaceous breccia, sst. yes S24W: 20 haematite 12.00 8136' complete dolomitisation, dense recrystalline, possible	0.7cm quartz 70-90; 0.5cm calcite three kinks dolomite, cal	quartz vein, cut by calcite-filled veinlet and fract. red lava banding (0.8cm wide). V. f. cal. Fract. low low angle dip; slickenside surface filled by haematite? From 60-80 dg., up to 3mm. 2-5cm possible bedding at 8122', 30dg.	no bedding; veins subvertical, and at 60 to core axis. Haematite veins, fine qtz veins. dip 15dg. Occasional subvertical fractures. dip indeterminate, subvertical, horizon
24 7941.0 2420.4 7951.0 2423.5 23 7609.0 2319.2 7630.0 2325.6	S13W:20 emphasise paral to fraction muddy layer	65; up to 1cm calcite 50-75; up to 1mm frac(3) calcite 2 frac (1) 40; up to 3mm fra(2) calcite 60-85; fine frac(4), calcite	horizontal fractures more intensive, filled by cal. frac(1) displaced 8 / 1" bedding 35dg, four sets of fractures, stylolite by frac(2), or (4); not even parallel to frac(2), amplitude outline boundary frac (3) finer than frac < 1" spacing between frac(2) and matrix; undulated surface possibly same phase. parallel to mud layer and finally by slickenside.	fractures, 60 to the core axis, and occa. Conn vugs, whose length is up to 2", line with dol. dip slightly irregular, between 25-35dg. generally slickenside, pyrite veins, large and small calcite veins. minor erosional surface dip 15-20, microfaults. SW plunging nose of Gidgealpa structure
Gidgealpa 7 17 y CDM 10567.0 3220.8 10582.0 3225.4 10580.0 16 breccia. S31E 10120.0 3084.6 10125.0 3086.1	15.00 10548' well bedded, lamination at top; but massive in S31E:30 breccia or conglomerate at bottom. 5.00 10110' vuggy dolomite, no apparent bedding. Brecciated	45-50; 0.2mm calcite	1-1.5cm 20-25 dg; pebbly volcaniclastic sst, breccia; SE sector of the Gidgealpa structure. calcite-filled fractures. Dip direction is constant, from 10 to 30, S30E (everage)	25-35 dg, but in volcanics 15 dg. 20dg; occasional calcite filled fracture. no bedding; very heavily fractured.
15 y 9985.0 3043.4 9997.0 3047.1 14 y 9674.0 2948.6 9685.0 2952.0	S47E:29	75-85; 1mm calcite	1-1.5' 20-30 dg; oblique calcite-filled fractures; slickensides intercalated with calcite. 20-30 dg; 30 average, slump: 20-30;	20-30 dg; sub-vertical frac filled by calcite along which slickensides developed. 28-30dg; graded bedding & current ripples; slickenside along dip; thin calcite fractures. 30 dg; horizontal fract (top 2 feet), vertical vein
	N56W:6 Original intergranular pore, fenestrae, shelter filled by sparry calcite, some dolomitised. 15.00 no reading massive intraclastic ps, gs, brecciated.	70-75; 2.5-3cm calcite 60-70; 1-4mm calcite haematite	stylites emphasised by haematite; calcite-filled veinlet; 4.5mm; 75-80; horizontal slickensides numerous horizontal calcite-filled(?open) fractures.	indeterminated dip; fracture - breccia (top 1 foot strongly); massive.
	Stylolite at 8798'6", a-b = 6.5 (straight line), =11.5cm 8793-4' high relief (curved line), reduction = 5cm.		1. Calcite vein; 2. Brecciation filled by haematite 3. stylolite; 4. Filled by kaolinite.	and partially filled by calcite . Stylolitic.
		Pogo 1		


	10 y	8413.0 2564.3	433.0 2570.4 20.	.00	8410' S11E:17	ribbon limestone and lime ms, shale (carbonate turbidite); nodular bedding. Thin bed of basalt, flat-pe. pebbles of shale at contact, thermal dyke forced?			0; 2mm calcite 80-90; hairline; calcite opposite bedding.			low	< 10 dg; high angle calcite-filled fractures.		7-10 dg, reliable; fracture healed with calcite and pyrite, paralleling core axis.
	9 y		082.0 2463.4 10.	.00	8056' S 8E:13	Ribbon Is and Im ms; former more than latter.			opposite seasing.			30.48cm	more ribbon limestone than Im ms. tension cracks between or within nodules. deformed ribbons have been pushed up like TP. microfaults, and fractures filled by calcite.		10 dg; mm's lamination and nodular.
Innamincka 1	y DIP LOG to 12635	7701.00 2347.3	711.0 2350.3 10.	.00	7713' S11E:10 SE (dmeter) dominated	Im ms / shale more than ribbon ls.	V	vertical 65-70; 0.1-2mm calcite	70; 0.4mm calcite			5cm below 7708' 2-3cm above it. moderate to high	10 dg approximately; vertical stylolite in ribbon ls; calcite-filled fractures in high angles.	E-NE trending anticline, no possible to interpret Palaeozoic structure from Inn. 1.	10 reliable, frac 30-90 to bedding, or parallel to core axis.
	18	7194.0 2192.7 72 7477.0 2279.0 74	07.0 2196.7 10. 90.0 2283.0 10.			7199'3": bedding: 15-20 7477: 32 dg						high moderate		Occasional fracturing occurs below 10,000', with a badly disturbed and distorted section blow 11396. The shatter zone includes vertical shears with apparently considerable displacement. Both fractures	
	20	7917.0 2413.1 79 7995.0 2436.9 80										moderate moderate		and shears may be filled with calcite and or soft, red, silty mudstone. Average apparent dip is 25, varying from 18 to 37.	
	21 22	8216.0 2504.2 82 8392.0 2557.9 84			34 S20E	8225: 25dg (B1 facies) 8407': 30dg						moderate moderate			
	23 24	9397.0 2864.2 9 ²	99.0 2712.4 19. 14.0 2869.4 17.		31 S15W 30 S6E	8895: 30dg						moderate moderate			
	25 26	9887.0 3013.6 99 10358.0 3157.1 10			36 S26E 39 S18E	9891': 30dg 10361: 25						moderate moderate			
	28	10881.0 3316.5 10 11396.0 3473.5 11			39 S13E 32 S4E	10888' : 30dg,						moderate moderate	fracture 70dg, 85 not continuous, filled by calcite		
	30	11399.0 3474.4 11 11423.0 3481.7 11	23.5 3481.9 24. 55.0 3491.5 31.			11399' : 30dg						moderate high			
	31 32		3506.7 14. 344.0 3518.6 38.		32 S8E or 111	Laminated sandstone.						moderate moderate	well fractured, filled by calcite.		
	33		67.0 3525.6 23. 88.0 3684.4 14.		39 S10E 34 S21E							moderate moderate			
	35 MOD	12576.0 3833.2 12			35 S24E	A thin hadded storaged riveles for a region of	24.07071		200 - 10700l	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 500 4 100 2	high	A diambased baddings		
Lycosa 1 Env 7290 10' > driller	1 Y MSD 8942.0 CSB 8942.0	8792.0 2679.8 88	14.0 2686.5 22.	.00 Y 15° max. 17.9	at 8793'	thin-bedded, starved ripples, fine-grained sand lobes.	at 8797' 8796'6"	2cm calcite-rich 1mm at 8803'	quartz? at 8793' partially 67-68° (210° SW) calcite para to vein 1 hairline	at 8793' ? open network 78-80° (120°SE) partial filled patches or para to vein 2 by calcite micro en echlon hairline see 8794' at 8796'	? quartz 1 by 2	1" ever, but not even	1 displaced beddings, fault plane? at 8796ft Mineralisation zone: vein: 5mm filled by ? calcite;	Small and reverse fault on the northern flank, throw of fault increase with depth, max. throw of 80'. North to NW regional dip. Reverse-faulted anticline 5km south of Big Lake	8514 (FTP of WB), metasiltstone, calcite filled fracture en echlon calcite filled fractures, slickensides; dolomite banding. Open fractures at 8803'5" (not true).
	B900.0									90° to bedding			breccia (3.5cm) at 8796 ft, with metals including Fe.	Fault	
Malgoona 4 cuttings only		7178.0 74	57.0			volcanics, some flow banding. (WCR)						high 7 / 1' from FMS	Good fractures shown in FMS etc.	Southern flank of Patchawarra Trough, West lobe of a fault.	acid volcanics consisting of crystals of quartz, white feldspar, minor pink feldspar. 181 natural fractures identified by FMS, 167 are open due to conductive, dip towards WNW, dip 50 ave.
															the most intensely fractured intervals: 7225-7230, 7278-7285., fracture aperture: max: 0.1mm; densities: 7/ft DST 3 indicates 100 bbl fluid/day range but produces water.
Merrimelia 1 ENV 471	13 N CDM 6434-9985 NW12-15 14 (9950-60)	9958.0 3035.2 99 10317.0 3144.6 10		increase to >1 to 4)	Grey sandstone, with minor red mudstone/siltstone. Horizontal to x-lamination; some shale pebbles. Grey-orange sandstone, with flat pebbles.					6	low in mudstone	a few fractures in siltstone and sandstone	NW flank of NE-SW trending closed anticline the well located near SW extremity of the structure, 300' structurally below the highest point on SE	Maroon shale, fissile, siltstone. Dip 10: 20 between 9971-73'. light grey sandstone, shale (maroon). 10-15 dip.
Merrimelia 2 ENV 496	slab (M.) CDM < 1/3 down to8266	.55.7.0 3144.0 10	J148.2 15.	1-3 7-10 below	v	Thin bedded, laminated siltstone, sandstone; bioturbated red-brown mudstone.	along red shale	n e.g. 9018: qtz, calcite				low in mudstone low to moderate high in brecciation	In general, calcite filled fracture high angle, opposite azimuth to the bedding or x-lam.direction.	NE-SW trending anticline with no surface expression possible east flanking normal fault.	Dipmeter in the red bed (7650-7780): 7-12 to SE. Angular u/c at 7650' (WB top). 7650-11520: 15-30;
EINV 496	< 1/3 down to8266 2 pieces 2 S47E: 7dg at 7917'	7900.00 2407.9 79	6.70 2413.0 16.	?12,000		bioturbated red-brown mudstone. bioturbated red-brown, micaceous mudstone; x-lam. sst. drapes of heavies ? 2-4mm faint lam.	rou siidit		yellow, ?			1cm or less vertically 26 fractures	opposite azimuth to the bedding or x-lam.direction. well fractured, all the way through.	Passion and mainting normal fault.	but 11520-13011: 30-40 which may be caused by faulting or u/c. shale (7900-7910'); sst (7901-7911': qtz filled fracture
	3 S46E: 11dg	8339.00 2541.7 83	9.00 2544.8 10.	.00		x-lam. sst. drapes of heavies ? 2-4mm faint lam. similar as above. With more green pebbles.			half filled by qtz, m. cal.			26 fractures 2 fractures	two fractures.		common. 7911-7916.7':shale green and red; cut and fill ripple marks common. 10dg reliable. sst and shale, 7-10 dg reliable .
	at 8257'	8572.00 2612.7 86	3.00 2622.2 31.	.00	30dg: 8597'	similar to the above. Sst with irregular lami. Green mudstone.			? 65-70 qtz+calc. 0.1- 1mm			> 8 fractures	more than 8 fractures, more between 8572-76' Microfault displaced 1-1.5mm.		Orthoquartzite above 8587', below which red shale. two sets fractures at appro. 80 dg to core axis; healed by gypsum; well developed 8577-8579';
	6		4.00 2634.7 14. 5.00 2656.3 20.			X-laminated sst, truncated bed. Green shale clasts. 4cm high relief along which green mud clasts. vague low angle lamination; sst opaque along lam.			fracture, high ang. tiny qtz cryst. 2mm, high angle cal. rhombs	open, ? 60dg N		7 fractures 5 fractures	fracture, 0.5mm, filled by clay or quartz, > 5 hard 5 fractures, filled by calcite, 1: 1mm, 2. 2mm		8580-8530; 8596-99.5'. 3-6 dg reliable. Orthoquartzite and shale; 4 dg fairly reliable Orthoquartzite and shale. 7-10 dg reliable.
	7	9117.00 2778.9 91	7.00 2781.9 8.5	50		Green mud clasts (rounded, flakes). 3.2cm long. Sandstone with thin soaping green shale layers. Red sheet-like micaceous shale.			70-90, 1- 1.5mm + ? dolomite ? 90 cut bedding	? Induced 70-80? veins & fracture, qtz high angle calcite		18 fractures	3. Open, ? Induced. 14" long fracture or vein (2-4mm), filled by qtz, cal. plus breccia zone with 2cm wide vein filled by qtz		8703-8715: prominent fracture set at 80 to axis and parallel to bedding Orthoquartzite interbedded shale; vertical fracture healed with qtz. Shale with slickenside.
	9	9627.00 2934.3 96 10139.00 3090.4 101 10636.00 3241.9 106	49.00 3093.4 10.	.00		Low angle planar cross laminated sst. Red ms. Mud drape along x-laminae. Siltstone / shale. Bioturbated mudstone /silt. X-lam. Sst. Rip-up clasts Slightly silty, convoluate bed; siltstone, x-lam.			70-80 ? Green clay			2 fractures one fracture	Slickenside in green mudstone, breccia zone Two high angle fractures. no fractures. Good trace fossils (photoed). Fractured and brecciated zone, slickenside;	NE-SW trending elongated anticline, no surface expres.	Thinly interbedded shale and sandstone. 15 reliable Interbedded sst, siltstone. Small "cut & fill"; 7 dg re Sst, shale, limestone. Fracture common, healed by
	11 12	11110.00 3386.3 111 11513.50 3509.3 115	19.50 3389.2 8.7	75		Red brown mudstone. Brown lamin. Siltstone / sst. Well-bioturbated ms. Red micaceous shale, and fine sst, planar lami. Rip-up clasts of green mudstone. De-water; synaer.						one fracture	filled by calcite. no fractures. Fracture	"P" horizon 3 culminations; reverse fault west flanks. west flanking fault, normal fault. U/C between Lower Triassic and the red bed which is 7-12 dg. 7650-7780'	calcite, qtz and gypsum. 10-13 reliable. Shale, sandstone; limestone at 11112.25'. 5-10dg. Interbedded sh and sst. 10-15 reliable. Irre. Fract.
	13	12071.00 3679.2 120 12123.00 3695.1 121				Red bioturbated mudstone /silt. X-lam. Sst. Small granules and intraclasts (orange); green ms. Lateral accretion forset? Calcareous. Trough X-lam.			fracture, high ang.calcite			no fracture 1 fracture	? No fractures. one fracture, filled with calcite.	From 11520 to 12080 core dips increase from 15 to 30, and to 30-40 at 13011 (core 17). This may be caused by faulting or unconformity which cannot be overlooked. Permian structure near crestal area of an anticline,	Shale, siltstone / sst. Pegmatite sills and dykes. Slickenside, thermally metamorphosed. Cal. veins common, vertical fractures. 30 dg reliable. Sandstone, shale; microfaults common; right angle
	15	12673.00 3862.7 126	30.00 3864.9 6.0	00		Flat-pebbles, some still fit. Red shale breccia? Red-brown mudstone, bioturbation. Slightly cross lamination.	yes		? >70, calcite			1 fracture	One fracture, ? 70 dg, filled with calcite.	the growth may be associated with a west flanking fault. During Permian and Permo-Carboniferous times, the central culmination of the structure was rising or	to bedding with calcite. Cut and fill; 30-35 reliable. dip 20dg; sst / silts, slickensides; 3 sets fractures two at high angle to bedding, one 60-70 to c. axis.
	17	12765.00 3890.8 127 13004.00 3963.6 130				Bioturbated mudstone, rip-up intraclasts (green), minor x-laminated siltstone. Slightly brown to purple sst, granules along bedding truncated "trough" x -lamination.	yes yes mica. gre. sh.		> 70 0.2-0.5mm calcite calcite			3 fractures 2 fractures	three fractures, ? 70dg, filled with calcite. Breccia zone; slickenside. Bedding: 20-25 dg; calcite-filled fracture.	stood as a positive physiographic element. At the end of Permian, the Merrimelia structure tilt to the north, this probably initiated by movement along faults.	Quartzite, siltstone, shale. 20 fairly reliable Fracture set 75 to core axis, calcite veins heal. Sandstone, siltstone, shale; silty shale nodules. 30-40 dg fairly reliable.
Merrimelia 3 ENV 508	17 CDM 6350-8900 16 at 8146		31.0 2737.4 16. 15.0 2503.9 5.0			red to green, cross-laminated siltstone, sandstone, escaping trail. Faint-horizontal laminated sandstone.	yes					not even none to 2-5cm near 8210	In core 16, well-fractured interval near 8210', ? 45 dg, filled by siderite? (>1mm).	Seismically delineated structure. Faulting possible within the Permian itself.	Interbedded sandstone, shale and siltstone. Dip: 10 (reliable) to east or southeast. Light grey sandstone, very fine grained, interbedded shale.
Merrimelia 4 ENV 284	S34E: 24 below 8146 115-177 / 7-46 3 slab CDM 1/3 6100-8535'	8495.0 2589.3 85	11.0 2594.2 16.	.00		Green micaceous shale within the sst. Cross laminated sandstone, red siltstone, shale. ? Brush mark and ? Trilobite trail	yes	3-4mm breccia 7mm	0.2mm hematite	45 dg; < 1mm siderite 0.7mm haematite small fracture meshwork 0.1mm	siderite	1-1.5' lightly to moderately	14 scattered fractures and veinlets, filled by haematite and siderite.	Little difference between Pre-Permian and base of Permian. A small reverse fault at 8380 within	Dip: 10 (fairly reliable) to east or southeast. Red brown sandstone, shale, interbedded silt/sst/sh. Dip 4-7 reliable. (?) Trilobite tracks present.
Merrimelia 6	SE azim 110-170 dip 6-26 5 y GEODIP	7432.0 2265.3 74	42.5 2268.5 10.	.50		Light green, grey, fine-grained sandstone, low-angle						1-3 fractures	Two calcite veinlet through 7440-42'6". Partially	Permo-Carboniferous at 8380', striking NE-SW, up thrown block being to the NW side. NE-SW Merrimelia horst structure.Growth fault step	8401 SE, 9dg. Maroon shale, green shale clasts, white to buff quartzite
ENV 4554	CDM					x-lamination, bedding plane has brush mark trace							**** * * * * * * * * * * * * * * * * * *	att the flex hand the attention	
Merrimelia 7 ENV 4910	5 GEODIP	7442.0 2268.3 74	52.0 2271.4 9.3	30		fossil. Flat-pebbles of green shales. Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle		7444-4"; fracture				not even 13 fractures.	filled by crystals. Partially filled fractures, see plastics for detail. 6 fractures.	off the flanks of the structure. Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome.	shallow dip appro. 2-5dg. Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo
			52.0 2271.4 9.3 309.0 1923.0 11			Light grey, green, fine-grained sandstone, forset		7444-4"; fracture	28;0.5-0.8mm	80.0	2 displace 1		Partially filled fractures, see plastics for detail.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of	Claystone, sandstone, Vein 70dg to horizontal.
Taloola 1 7147 Moomba 2	5 GEODIP 1 y SHDT 4170-6305'	6294.0 1918.4		1.0	x-ray 58°(WCR)	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded.		0.5cm silica cross-cut v	1 calcite 90° to vein 1 calcite	80.0 2 50-60° to calcite bedding	2 displace 1	13 fractures.	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant
ENV 4910 Taloola 1 7147	5 GEODIP 1 y SHDT 4170-6305' 3 y CDM W 20° at 9836' 9770-90 SE / 72-77°	6294.0 1918.4	309.0 1923.0 11	1.0	x-ray 58 ^{o(WCR)}	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded.		0.5cm silica cross-cut v	calcite 90° to vein 1 calcite form network brownish at 9837 ft para or 10° to bedding		2 displace 1	13 fractures. a few through	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'.
Taloola 1 7147 Moomba 2	5 GEODIP 1 y SHDT 4170-6305' 3 y CDM W 20° at 9836' 9770-90 SE / 72-77° SE mainly 2 CDM 31°, 36° / NW	9837.0 2998.3 98 9245.0 2817.9 92	309.0 1923.0 11 58.0 3004.7 21.	1.0 .00 ?Y		Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded.		0.5cm silica cross-cut v at 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica	calcite 90° to vein 1 calcite n 1 form network brownish at 9837 ft para or 10° to		2 displace 1	13 fractures. a few through	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green
Taloola 1 7147 Moomba 2	5 GEODIP 1 y SHDT 4170-6305' 3 y CDM W 20° at 9836' 9770-90 SE / 72-77° SE mainly 2 CDM	9837.0 2998.3 98 9245.0 2817.9 92	74.0 2826.7 29.	.00 ?Y	x-ray 20-35°	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below	9248'	0.5cm silica cross-cut value at 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding	calcite 90° to vein 1 calcite n 1 form network brownish at 9837 ft para or 10° to bedding small angle		2 displace 1	13 fractures. a few through	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837'	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults.
Taloola 1 7147 Moomba 2	5 GEODIP 1	9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89	74.0 2826.7 29.	.00 ?Y	x-ray 20-35° (WCR)	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding	9248'	0.5cm silica cross-cut value at 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding	calcite 90° to vein 1 calcite n 1 form network brownish at 9837 ft para or 10° to bedding small angle ? para to ? calcite	right angle	2 displace 1	13 fractures. a few through	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?),	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles
Taloola 1 7147 Moomba 2 Env 632 Moomba 7	5 GEODIP 1	9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8	74.0 2826.7 29. 21.0 2719.1 15. 1955.0 3034.3 3.	.00 ?Y	x-ray 20-35° (WCR) x-ray 40°(WCR)	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite.		0.5cm silica cross-cut vat 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica? 90° to bedding similar as above	calcite 90° to vein 1 calcite n 1 form network brownish at 9837 ft para or 10° to bedding small angle ? para to pedding or clay ? para to pedding ? para to pedding ? para to pedding ? calcite	right angle	2 displace 1	a few through high 5-8"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg.
Taloola 1 7147 Moomba 2 Env 632	5 GEODIP 1	9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core	74.0 2826.7 29. 21.0 2719.1 15.	.00 ?Y	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain;	9248'	0.5cm silica cross-cut vat 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica? 90° to bedding similar as above	dk grey conjugate to bk (better in basalt) Calcite 90° to vein 1 calcite brownish calcite brownish calcite brownish calcite c	right angle	2 displace 1	a few through high	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open;	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz.
Taloola 1 7147 Moomba 2 Env 632 Moomba 7	5 GEODIP 1	9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3	74.0 2826.7 29. 21.0 2719.1 15. 1955.0 3034.3 3.	.00 ?Y	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with		0.5cm silica cross-cut vat 9852 ft 1-2° to veir 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction of to bedding (brown + conjugate)	dk grey conjugate to bk (better in basalt) 2 calcite 90° to vein 1 calcite brownish at 9837 ft para or 10° to bedding small angle ? para to ? calcite or clay	right angle	2 displace 1	a few through high 5-8"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. Odg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50°
Taloola 1 7147 Moomba 2 Env 632 Moomba 7	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6"	74.0 2826.7 29. 21.0 2719.1 15. 1955.0 3034.3 3.	1.0 .00 ?Y .00 .00 .00 .0 no data 50 2° directional	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with		0.5cm silica cross-cut vat 9852 ft 1-2° to veir 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction of to bedding (brown + conjugate)	dk grey conjugate brownish to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite brownish calcite calc	right angle	2 displace 1	a few through high 5-8"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline northwest trending anticlinal nose downthrown side of a major	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite.
Mudlalee 1 867 Munkarie 1 3308	5 GEODIP 1 y SHDT 4170-6305' 3 y CDM W 20° at 9836' 9770-90 SE / 72-77° SE mainly 2 CDM 31°, 36° / NW 22° / NWW 1 71° / S SE / 24-38° 6 y CDM to 9952' 9920': NE16 9805': NE9 9630 (Cooper) S9 to SSE 3 n CDM d. to 6822' 6800-6810 NW dominant 0-40 azim. dip angle 10-26 2 GEODIP HRD 3700- 7690'	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circum- pherential at 6828' 7692.0 2344.5 76 only 6" recovery	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5	1.0 .00 .00 .00 .00 .00 .00 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact.	N N	0.5cm silica cross-cut vat 9852 ft 1-2° to veil 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica at 9846' similar as above 1.5mm wide quartz + wavy, opposite direction of the bedding (brown + conjugate white) set	dk grey conjugate brownish to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine pyrite	right angle or less to bedding high angle, fine open		13 fractures. a few through high 5-8"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6"-7694' no recovery due to barrel jammed.
Taloola 1 7147 Moomba 2 Env 632 Moomba 7 Mudlalee 1 867	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6"	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5	1.0 .00 ?Y .00 .00 .00 .0 no data 50 2° directional	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact.		0.5cm silica cross-cut vat 9852 ft 1-2° to veir 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction of to bedding (brown + conjugate)	dk grey conjugate brownish at 983r to calcite ? para to ? calcite bedding or clay dk grey conjugate brownish 20 - 45° = Vein 1 high angle, fine pyrite 80, parallel to bedding Calcite brownish Provided Provide	right angle or less to bedding high angle, fine open	2 displace 1 2 displace 1 2 younger order: yellow, blue, brown, a fault plane is earliest.	a few through high 5-8"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wes-	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite.
Taloola 1 7147 Moomba 2 Env 632 Moomba 7 Mudlalee 1 867 Munkarie 1 3308	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circum- pherential at 6828' 7692.0 2344.5 76 only 6" recovery	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5	.00 ?Y .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 983r to calcite ? para to ? calcite bedding or clay dk grey conjugate brownish 20 - 45° = Vein 1 high angle, fine pyrite 80, parallel to bedding Calcite brownish Provided Provide	right angle or less to bedding high angle, fine open	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure. Downthrown side of fault, flank of Murteree A1	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding; 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6"-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding; 45-60° fracture plane parallel to bedding, but in opposite
Taloola 1 7147 Moomba 2 Env 632 Moomba 7 Mudlalee 1 867 Munkarie 1 3308	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circum- pherential at 6828' 7692.0 2344.5 76 only 6" recovery	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 94.0 2345.1 0.5	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 983r to calcite ? para to ? calcite bedding or clay dk grey conjugate brownish 20 - 45° = Vein 1 high angle, fine pyrite 80, parallel to bedding Calcite brownish Provided Provide	right angle or less to bedding high angle, fine open	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures,	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6"-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis.
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 94.0 2345.1 0.5	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3" moderate to high 1-4"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. Odg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases).	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic silitstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849:55-60. Dolomitic silitstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic silitstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable.
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9837.0 2998.3 98 98 98 99 99 99 99 99 99 99 99 99 99	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 31.0 2204.0 74.0 3009.6 10.	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Dark grey to black, laminated siltstone and shale. shale fragmental cores, shale	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3" moderate to high 1-4"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable.
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circum- pherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72 8619.0 2627.1 86	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 94.0 2345.1 0.5 31.0 2204.0	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3" moderate to high 1-4"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip content at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet higher than the highest closing contour at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innanincka structure is the order to the North, with greater structural relief.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic silitstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic silitstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic silitstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° 4 tz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, dip 25-32 reliable. Mean 28. Fracture set at 15-30 to core axis, healed by dolomite and occasionally calcite. Shale, silty, dolomitic; a fracture set at 30° to core axis No apparent dip.
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72 8619.0 2627.1 86	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 31.0 2204.0 74.0 3009.6 10.	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Dark grey to black, laminated siltstone and shale. shale fragmental cores, shale	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3" moderate to high 1-4"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of s seismically located anticline with no surface expression. rejuvinated during Cooper The Nappacoongee 900 feet higher than the highest closing contour at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flattened. In core 8, 32 dg; at 9870, core 9: 16.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic silitstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic silitstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic silitstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. Shale, silty, dolomitic; a fracture set at 30° to core axis
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9245.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 6810.0 2075.7 68 one piece of 1/3 core circum- pherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72 8619.0 2627.1 86	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 29.0 2081.5 29.0 2081.5 31.0 2204.0 74.0 3009.6 10. 36.0 2632.3 9.0 22.0 2567.0 1.0 37.0 2346.0 34.	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. fragmental cores, shale fragmental cores, shale Massive grey fine-grained sandstone and siltstone. Lots of breccias.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	a few through high 5-8" 2-3" 0.4576m	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. odg, 2. 90dg; 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline Anticline Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is crest of seismically located anticline with no surface expression. rejuinated during Cooper The Nappacoongee 900 feet higher than the highest closing contour at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innamincka structure is the only cliefled feature to the North, with greater structural reliefled. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9,	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849:55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Silckensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 76926'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis No apparent dip. Shale and siltstone; sharp fract; an foliation at 30° to core axis, no apparent bedding. Lineation; possible bedding: micaceous layer. Dip 20 fairly rislable and siltstone. Dip: 12-15° relia. silt balls, flute tasts and wom casts common. A near vertical fracture set healed with dolomite,
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9950.0 2817.9 92 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 0ne piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 0nly 6" recovery 7224.0 2201.9 72 9864.0 3006.5 98 9864.0 2627.1 86 9864.0 2627.1 86 9864.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565.8 84 9866.0 2565	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 94.0 2345.1 0.5 31.0 2204.0 74.0 3009.6 10. 74.0 3009.6 10.	1.0 .00 .00 .00 .00 .00 .00 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint tow angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. presented to the presented sandstone and siltstone. Lots of breccias. TS (7664), ? Spicules. Grey to green, micaceous fine sst, more greenish.	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	a few through high 5-8" 2-3" 0.4576m	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953'; 1. odg, 2. 9odg; 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218tt): 9-20dg NE. Anticline Anticline Anticline Anticline Anticline Anticline Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of s seismically located anticline with no surface expression. rejuicine with no surface expression. Reliable of the fault is to the NW. Nappacoogee of located in the NW. Nappacoogee of located in the NW. Nappacoogee of the higher than the highest closing contour at the Gidgelpa field. It is 800' high to Dulling on the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by K-ray taneds) in core 7, 2t 8420. Bot word class of three, or "possible". This is becaused massion class of three, or "possible". This is becaused massion class of three, or "possible". This is becaused massion cater of the nature and unchanging lithology and fracture patterns	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dlp 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849:55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6"-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, sity, dolomitic; a fracture set at 30° to core axis. No apparent dip. Shale and siltstone; sharp fract; an foliation at 30° to core axis, possible bedsing. Lineator, spile and siltstone; sharp fract; an foliation at 30° to core axis, possible bedsing. Lineator, spile and siltstone; sharp fract; an foliation at 30° to core axis, possible bedsing. Lineator, spile and siltstone; sharp fract; an foliation at 30° to core axis, possible and solos-foed. Dip: 12-15° relia. silt balls, flute casts and worm casts common.
Moomba 7 Moomba 7 Moomba 7 Mudlalee 1 867 Murteree 1 1511	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9837.0 2998.3 98 9950.0 2714.5 89 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 0ne piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 0nly 6" recovery 7224.0 2201.9 72 72 72 72 72 72 72 72 72 72 72 72 72	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 29.0 2081.5 20.0	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey silistone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. fragmental cores, shale Massive grey fine-grained sandstone and shale. Massive grey fine-grained sandstone and siltstone. Lots of breccias. Crey to green, micaceous fine sst, more greenish. TS (MESA) Grey to brownish siltstone, pseudo nodular sst, lobes. well fractured; displaced bedding (2-4mm).	N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	right angle or less to bedding high angle, fine 1/10mm	? younger order: yellow, blue, brown, a	13 fractures. a few through high 5-8" 2-3" 1-2cm	Partially filled fractures, see plastics for detail. 6 fractures. 1 fractures and significant. 1 Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837 fractures and breccias fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953; 1. 0dg, 2. 90dg; 2 cut 1.; 3. 76dg, filled by clay (?), all hairline, and open. At 9951, 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218tt): 9-20dg NE. Anticline Anticline Anticline Anticline Anticline Anticline Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of s seismically located anticline with no surface expression. rejuicine with no surface expression. Reliable of the fault is to the NW. Nappacoogee of located in the NW. Nappacoogee of located in the NW. Nappacoogee of the higher than the highest closing contour at the Gidgelpa field. It is 800' high to Dulling on the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by K-ray taneds) in core 7, 2t 8420. Bot word class of three, or "possible". This is becaused massion class of three, or "possible". This is becaused massion class of three, or "possible". This is becaused massion cater of the nature and unchanging lithology and fracture patterns	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4' band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 76926'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. shale and siltstone; sharp fract, and foliation at 30° to core axis, healed by dolomite and occasionally calcite. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. shale and siltstone; sharp fract, and foliation at 30° to core axis, fried and siltstone. Dip: 12-15° relia. silt bals, flute casts and set mealed with donon. A near vertical fracture set at set work casts combon. A near vertical fracture set, load casts, slumping. two intersecting frac: 20-30° to core axis.
Moomba 2 Env 632 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1	5 GEODIP 1	6294.0 1918.4 9837.0 2998.3 98 9945.0 2817.9 92 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 0ne piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 0nly 6" recovery 7224.0 2201.9 72 9864.0 3006.5 98 9864.0 3006.5 98 9864.0 3006.5 98 9864.0 2565.8 84 9866.0 2565.0 2565.8 84 9866.0 2565.0	309.0 1923.0 111 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 29.0 2081.5 29.0 2081.5 29.0 2345.1 0.6 31.0 2204.0 31.0 2248.5 4.0 31.0 2143.0 30. 31.0 2143.0 30.	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 15-45 SW 17-40 NE	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey to black, laminated siltstone and shale. Dark grey to black, laminated siltstone and shale. black grey fine-grained sandstone and siltstone. Lots of breccias. TS (7664'), ? Spicules. Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to brownish siltstone, pseudo nodular sst, lobes. well fractured; displaced bedding (2-4mm). Lamination cm's. light grey siltstone, massive; fine lam. (not clear).lineation, almost vertical, = Della 1 Light grey siltstone, massive; fine lam. (not clear).lineation, almost vertical, = Della 1	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	dk grey conjugate brownish at 9837 to bedding small angle ? para to ? calcite brownish dk grey conjugate to bk (better in basalt) 2mm 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high 5-8" 2-3" 1-2cm	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and breccias Bedding possibly 20-25dg. Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953; 1. odg. 2. 90dg; 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951', 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top. displacement (2-4mm), 2 slets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) + brecciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) + of fractures, a few breccias filled by calcite at top.	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline Anticline Anticline structure. Downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of s seismically located anticline with no surface expression. rejuvinated during Cooper The Nappacoongee 900 feet higher than the highest closing contour at the Gidgealpa field. It is 800 high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flattened. In core 8, 32 dg at 9870, core 9: 16. CDM considered by Schlumberger to have a correlation class of three, or possible". This is becaused massive nature and unchanging lithology and fracture patterns in Pre-Permian section.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9852 (dip 40) and 4" band of white silica at 9852. Possible dip varied from 40 to 55, good at 9849:55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 76926"-7694" no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, very sharp fracture set at 30° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. Shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineation; possible bedding: micaceous layer. Dip 20 fairly reblable at 7696-7697* Interbedded shale and siltstone. Dip: 12-15° relia. silt balls, flute casts and worm casts common. A replication fracture gates the healed with dolomite, qt and pystile is present. siltstone gates and third cash and siltstone; date for 60-70° (possible bedding). Lineation; possible bedding two core axis. bedding at 20°. highly fract. siltstone; dip 60-7
Moomba 2 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1	5	6294.0 1918.4 9837.0 2998.3 98 9837.0 2998.3 98 9837.0 2998.3 98 9245.0 2817.9 92 9245.0 2075.7 68 925.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 92.0 2344.5 76 9	309.0 1923.0 111 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 29.0 2081.5 29.0 2081.5 29.0 2345.1 0.6 31.0 2204.0 31.0 2248.5 4.0 31.0 2143.0 30. 31.0 2143.0 30.	1.0 .00 ?Y .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 15-45 SW 17-40 NE	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. shale fragmental cores, shale fragmental cores, shale Massive grey fine-grained sandstone and siltstone. Lots of breccias. TS (7664'), ? Spicules. Grey to green, micaceous fine sst, more greenish. TS (7664'), ? Spicules. Grey to brownish siltstone, pseudo nodular sst, lobes, well finatured; displaced bedding (2-4mm). Lamination citis companies of the standard products of the standard pro	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle ? para to ? calcite bedding or clay Acalcite 90° to vein 1 calcite brownish at 9837 ft para or 10° to bedding small angle ? para to ? calcite bedding or clay Acalcite para or 10° to bedding or clay Acalcite province small angle in province state in basalt) = ? Vein 1 Acalcite province state province small angle in province state province st	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high 5-8" 3-5" 2-3" moderate to high 1-4" 1-2cm 5cm, not even moderate	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures and precipies and page and p	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline Anticline Anticline Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of seismically located anticline with no surface expression. rejuvinated during Cooper The Nappacoogee of Seismically does thigh to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the wice relief. Dip increas below the wice relief. Dip increas the core of seismically located anticline with respective is the only drilled feature to the North, with greater structural relief. Dip increas below the wice relief. Dip increas below the wice relief. Dip increas below the wice relief. Dip increas pales his core 8, 32 dg; at 9870, core 9: 16. CDM considered by Schlumbertper to have a correlation class of three, or "possibiline" rips have a correlation class of three, or "possibiline" rips have a correlation class of three, or "possibiline" rips have a correlation class of three, or "possibiline" rips in core 7, at 8420. Between 67-c9, dips flattened. In core 8, 32 dg; at 9870, core 9: 16. CDM considered by Schlumbertper to have a correlation rips of the rips have a correlation.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9852 (dip 40) and 4" band of white silica at 9852. Possible dip varied from 40 to 55, good at 9849":55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argiliaceous minerals, green chlorite (7) and minor calcite. Silckensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6"-7694" no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, use to in opposite direction to bedding at 60dg. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding bedding: 50 core axis. dip: 15-20°, unreliable. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineaton fills bedding at 80 core axis, and poss. right angle to apparent bedding. Lineaton fills bedding at 20° to core axis, shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineaton fills and thin clay-filled stringers. Dip approx
Moomba 2 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1	5	6294.0 1918.4 9837.0 2998.3 98 9845.0 2817.9 92 9245.0 2817.9 92 9850.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 68 9950.0 2075.7 76 9950.0 2075.7 9950.0 20	309.0 1923.0 111 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 29.0 2081.5 29.0 2081.5 29.0 2345.1 0.6 31.0 2204.0 31.0 2248.5 4.0 31.0 2143.0 30. 31.0 2143.0 30.	1.0 .00 ?Y .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 15-45 SW 17-40 NE	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey sitistone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey to black, laminated siltstone and shale. Dark grey to black, laminated siltstone and shale. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. fragmental cores, shale grey shale Massive grey fine-grained sandstone and siltstone. Lots of breccias. TS (7664'), ? Spicules. Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to green, micaceous fine sst, more greenish. TS (MESA) Lamination cm's. light grey siltstone, massive; fine lam. (not clear).lineation, almost vertical, = Della 1 Light grey sandstone interbedded with carbonaceous shale. Flat-shale-pebble beds common, shale clasts with green edge, some turn green which are similar to those in edge, some turn of "Mudrangle Sst".	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle ? para to ? calcite bedding or clay Acalcite 90° to vein 1 calcite brownish at 9837 ft para or 10° to bedding small angle ? para to ? calcite bedding or clay Acalcite para or 10° to bedding or clay Acalcite province small angle in province state in basalt) = ? Vein 1 Acalcite province state province small angle in province state province st	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high 5-8" 3-5" 2-3" moderate to high 1-4" 1-2cm 5cm, not even moderate	Partially filled fractures, see plastics for detail. 6 fractures. 6 fractures. Two sets of fractures not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837 fractures and breccias fractures at 9953; 1. 0dg, 2. 90dg; 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951; 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top. displacement (0.5mm) + brecciated zone: 6-7cm displacement (0.5mm), filled by calcite at top. displacement (2-4mm), 2 sets of fractures at least, majority fractures < 40dg, brecciation + veinlet (0.5mm) + precciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures at least, majority fractures < 40dg, brecciation + veinlet (0.5mm) + precciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures at least, majority fractures < 40dg, brecciation + veinlet (0.5mm) + precciated zone: 6-7cm	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218th): 9-20dg NE. Anticline Anticline Anticline Anticline Nessession (218th): 9-20dg NE. Downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Selsmic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 900 feet higher than the highest closing contour at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flara structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flara and unchanging lithology and fracture patterns in Pre-Permian section.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filied by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853 (dip 40) and 47 band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic siltstone. Numerous small fractures and faults. Filied with white earthy argillaceous minerals, green chlorite (7) and minor calcite. Silckensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. hos apparent dip. Shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineation; possible bedding: micaceous layer. Dip 20 parting fractical fracture set at 30° to core axis hos apparent dip. Shale, silty, dolomitic; a fracture set at 30° to core axis. bedding this cand pyrite is present. siltstone shale; worm casts, load casts, slumping, two intersecting frac: 20-30° to core axis. bedding. Lineation; possible bedding: micaceous layer. Dip 20 parting fracture set at 60-70° (possible bedding) White sandstone, low angle cross-bedding, gr
Moomba 2 Env 632 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1 16 > Driller	5	6294.0 1918.4 9837.0 2998.3 98 9837.0 2998.3 98 9837.0 2998.3 98 9245.0 2817.9 92 9245.0 2075.7 68 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 3032.8 9950.0 2075.7 68 9960.0 2075.7 68 9960.0 2075.7 68 9960.0 2344.5 76 997.0 2344.5 76 9861.0 2075.7 86 9864.0 3006.5 98 9864.0 3006.5 98 9864.0 2565.8 84 9864.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0 2565.0	309.0 1923.0 111 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 29.0 2081.5 29.0 2081.5 29.0 2345.1 0.5 31.0 2204.0 74.0 3009.6 10. 37.0 2248.5 4.0 37.0 2248.5 4.0 31.0 2143.0 30. 31.0 2143.0 30.	1.0	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 15-45 SW 17-40 NE	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey sitistone, mudstone (minor red), green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half, basalt at top half with sharp contact. Grey to black, laminated siltstone and shale. Dark grey to black, laminated siltstone and shale. Massive grey fine-grained sandstone and siltstone. Lots of 6641, ? Spicules, slumping or microfolding. Massive grey fine-grained sandstone and siltstone. Lots of 6641, ? Spicules. Ts (MESA) Grey to green, micaceous fine sst, more greenish. Ts (MESA) Grey to green, micaceous fine sst, more greenish. Ts (MESA) Grey to brownish siltstone, pseudo nodular sst, lobes. well miractured; displaced bedding (2-4mm). Light grey sandstone interbedded with carbonaceous shale. Flaet-shale-pebble burds green which shale clasts with grey sandstone interbedded with carbonaceous shale. Flaet-shale-pebble burds green which shale clasts with grey sandstone interbedded with carbonaceous shale. Flaet-shale-pebble burds green which shale clasts with grey sandstone interbedded with carbonaceous shale. Flaet-shale-pebble burds green which shale clasts with grey sandstone interbedded former silicified siltstone and shale. High angle breccia below horizontal Patch weathered, interbedded, former silicified siltstone and shale. High angle breccia below horizontal Patch	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut v at 9852 ft 1-2° to veit 2cm at 9846 ft silica at 9846' 2cm at 9847 ft silica ? 90° to bedding similar as above 1.5mm wide quartz + wavy, opposite direction to bedding (brown + conjugate white) set quartz vein quartz 1cm wide with brecciated	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle ? para to ? calcite or clay dk grey conjugate brownish to bk (better in basalt) =? Vein 1 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm ? 40; 0.1mm pyrite 70dg brown, ?7224	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high 5-8" 5-8" 2-3" moderate to high 1-4" 1-2cm 5cm, not even moderate not even, 3"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias (parabolic? 30-40); 2 sets of fractures at 9953; 1. 0gg, 2. 90dg; 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951; 45 open; 45 dg; so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse falts because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few brecciast filled by calcite at top. displacement (2-4mm), 2 sets of fractures at least; majority, 50, no bemen, filled by calcite at top. displacement (2-4mm), 2 sets of fractures 45, 70. 1 parallel to bedding or parting surface, -1mm 2, high angle, 1-2mm; some filled with ? Dolomite. bedding measured from cores: 35, 50, 60; fractures from 70 - 85 dg. Measured at 7218, 19 At 7222: fractured plus breccias, siderite concentration, At 7235: fisciture filled by black, plus yellow (?dolom), 2 sets of fractures in concentration, At 7235: fisciture filled by black, plus yellow (?dolom), 2 sets of fractures in concentrati	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218th): 9-20dg NE. Anticline Anticline Anticline Anticline Nessession (218th): 9-20dg NE. Downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Selsmic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 900 feet higher than the highest closing contour at the Gidgealpa field. It is 800' high to Dullingari 1 and 1400 feet high to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flara structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flara and unchanging lithology and fracture patterns in Pre-Permian section.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite, silica healed. Dolomitic sitistone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853 (flp 40) and 47 band of white silica at 9852. Possible dip varied from 40 to 55, good at 9849:55-60. Dolomitic silistone. Numerous small fractures and faults. Filled with white earthy argillaceous minerals, green chlorite (?) and minor calcite. Slickensides on fault plane. Dolomitic silistone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. Sandstone and shale; bedding: 45-60° green shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding; but in opposite direction to bedding at 60dg. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding; but in opposite direction to bedding at 60dg. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. shale and siltstone; sharp fract; an foliation at 30° to core axis, nos pobs. right and green shale galls and fried returned salt whom casts, slumping. The planes and printer forces of the planes of the planes and planes and planes. Bedding at 20°. Interbidde, fluthe arial salt worm casts, load casts, slumping. The planes and planes and siltstone; bedding and 20°. Interbidded metased minded planes and siltstone, dip: 45-57. T201-7209 2° Mermille or planes and siltstone; bedding dip: 60dg to core axis. Numerous fract
Moomba 2 Env 632 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1 16 > Driller Packsaddle 3 Pelketa 1 Pando 1 Env 585 6 feet < driller	5	6294.0 1918.4 6 9837.0 2998.3 98 9837.0 2998.3 98 9945.0 2817.9 92 8906.0 2714.5 89 9950.0 3032.8 6 9950.0 3032.8 6 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72 7224.0 2201.9 72 8619.0 2627.1 86 8418.0 2565.8 84 7663.0 2335.7 76 7371.0 2246.7 73 6997.0 2132.7 76 7371.0 2246.7 73 6997.0 2132.7 76 7371.0 2246.7 73 6897.0 1770.0 58	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 29.0 2081.5 29.0 2081.5 29.0 2081.5 20. 31.0 2204.0 30. 30. 30. 30. 30. 30. 30. 30. 30. 3	.00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 8600.0 18SEE 15-45 SW 17-40 NE 25-45 SE one of them	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey sitistone, mudstone (minor red); green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey to green, micaceous fine sst, more greenish. Ts (MeSA) Dark grey fine-grained sandstone and shale. Massive grey fine-grained sitstone and shale. fragmental cores, shale fragmental cores, shale Massive grey fine-grained sitstone and shale. Grey to green, micaceous fine sst, more greenish. Ts (MeSA) Grey to brownish siltstone, pseudo nodular sst, lobes. well fractured; displaced bedding (2-4mm). Laminated comes, shale grey shale fragmental cores, shale fragmental cores, shale Massive grey fine-grained sandstone and siltstone. Using the grey shale grey shale grey shale grey shale Massive grey fine-grained sandstone and shale. Using the grey shale grey shal	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut vat 9852 ft silica at 9846 ft silica at 984	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high high 5-8" 3-5" 2-3" 1-2cm 5cm, not even moderate not even, 3" high to very high -5cm vertical, 1-6cm hori. moderate to high 2"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837 fractures and breccias fractures and preccias fractures and preccias fractures and preccias fractures and preccias fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite at top. displacement (2-4mm), 2 sets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) + brecciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) + brecciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures, and prove some set of the prove set of	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wes-flank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pre-Permian section. Down thrown side of the fault is to the NW. Nappacoogee of the fact is to the NW. Nappacoogee of the first the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flattened. In core 8, 32 dg, at 9870, core 9: 16. CDM considered by Schlumberger to have a correlation class of three, or "possible". This is becaused massive nature and unchanging lithology and fracture patterns in Pre-Permian section. Within the largest NE-SW trending structural complexes. Fault-bounded articline. Adjacent to thick sequences of Permian section. Within the largest NE-SW trending structural complexes. Fault-bounded articline. Adjacent to thick sequences of Permian section. Dip memerian section.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic silitstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9853' (dip 40) and 4' band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic silitstone. Numerous small fractures and faults. Filled with white earthy argiliaceous minerals, green chlorite (?) and minor calcite. Silickensides on fault plane. Dolomitic silistone, highly factured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture giane parallel to bedding, but in opposite direction to bedding at 60dg. Shale, silty, dolomitic; a fracture set at 30° to core axis. dip: 15-20°, unreliable. Shale, very sharp fracture: 15-20° to core axis. dip: 15-20°, unreliable. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineation; possible bedding; micaceous layer. Dip 20 fairly fellable at 7696-7697' Initebdded shale as and siltstone. Dip: 12-15° relia. siltstone; bedding at 70° relia. Shale, silty, dolomitic; a fracture set at 35° to core axis. loud casts, slumping. two drides and siltstone; bedding dip: 60dg to core axis. Numerous fract
Moomba 2 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1 16 > Driller Packsaddle 3	5 GEODIP 1	6294.0 1918.4 6 9837.0 2998.3 96 9245.0 2817.9 92 8906.0 2714.5 86 9950.0 3032.8 6 9950.0 3032.8 6 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 7692.0 2344.5 76 only 6" recovery 7224.0 2201.9 72 7224.0 2201.9 72 8619.0 2627.1 86 8418.0 2565.8 84 7663.0 2335.7 76 7371.0 2246.7 73 6997.0 2132.7 76 7371.0 2246.7 73 6997.0 2132.7 76 7371.0 2246.7 73	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 29.0 2081.5 31.0 2204.0 74.0 3009.6 10. 36.0 2632.3 9.0 22.0 2567.0 1.0 37.0 2248.5 4.0 37.0 2248.5 4.0 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2143.0 30.	.00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 8600.0 18SEE 15-45 SW 17-40 NE 25-45 SE one of them	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey sitistone, mudstone (minor red), green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey to black, laminated siltstone and shale. Massive grey fine-grained sandstone and siltstone. Lots of brecciaes. Its (7664), ? Spicules, slumping or microfolding. Massive grey mudstone, with needles of ? spicules, slumping or microfolding. Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to brownish siltstone, pseudo nodular sst, lobes. well fractured, displaced bedding (2-4mm). Lamination cms. light grey sandstone interbedded with carbonaceous shale. Flast-shale-pebble beds common, shale clasts with green silts and the similar to the same similar to those in the part of IRB or "Mudrangie Sst". Siderite emphased bedding. Truncation of x-lam. Light grey sandstone interbedded, former silicified siltstone and shale. High angle breccia below horizontal Patch awara Formation. Siderite emphased bedding. Truncation of x-lam. weathered, interbedded, former silicified siltstone and shale. High angle breccia below horizontaled set. Some pebbleses of core from bioturbated sst. some pebbleses of core from biotur	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut vat 9852 ft silica at 9846 ft silica at 984	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle ? para to ? calcite or clay dk grey conjugate brownish to bk (better in basalt) =? Vein 1 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm ? 40; 0.1mm pyrite 70dg brown, ?7224	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high high 5-8" 3-5" 2-3" 1-2cm 5cm, not even moderate not even, 3" high to very high -5cm vertical, 1-6cm hori. moderate to high 2"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837' fractures and breccias fractures induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. fractures and breccias fractures, approx. 5004 dip angles to the core edge: (4). Broken core in the interval 7 caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plassic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 500g, only 4 fractures. a few breccias filled by calcite at top. displacement (2-4mm), 2 sets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) + brecciated zone: 6-7cm displacement (2-4mm), 2 sets of fractures at least; majority fractures < 40dg, brecciation + veinlet (0.5mm) filled by calcite. Condition on the process of th	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Giggealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline Anticline Anticline Anticline Anticline Anticline flault. Situated on western to south wesflank of the structure. Downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pro-Permian section. Down thrown side of the fault is to the NW. Nappacoogee 1 near the crest of s esismically located anticline with no surface expression. rejuvinated during Cooper The Nappacoongee 900 feet higher than the highest closing contour at the Gidgealpa fleid. It is 800° high to Dullingan! and 1400 feet high to Merrimelia 2. Innamincka structure is the only drilled feature to the North, with greater structural relief. Dip increas below the u/c, reached a max, of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flattened. In core 8, 32 dg, at 870, core 9: 16. CDM contends and the second of the fault is to the NW. Seign and the second of the fault is to second of the fault is second of the fault is to the NW. Seign of the fault is second of the fault is second of the fault is second of the fault is to the NW. Seign of the fault is to the NW. Seign of the fault is to the NW.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic silitstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white clay, calcite, and minor silica and traces of lignite. Two white veins of silica with minor dolomite out the core at 9846 (60dg) and 9853' (dip 40) and 4" band of white silica at 9852'. Possible dip varied from 40 to 55, good at 9849':55-60. Dolomitic silitstone. Numerous small fractures and faults. Filled with white earthy argiliaceous minerals, green chlorite (?) and minor calcite. Silickensides on fault plane. Dolomitic silistone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 2 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 7692'6'-7694' no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding: 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes and coasionality calcite. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, very sharp fracture set at 30° to core axis. No apparent dip. shale and silistone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineation; possible bedding: micaceous layer. Dip 20 fairly feliable at 7696-7697' Inteldedded thealea and silistone casts comon. A near vertical fracture set healed with dolomite, qtz ard vertical fracture set and silistone. Shale and silistone; low angle cross-bedding, green shale galts and silistone; indeed of the condition of the condit
Moomba 2 Env 632 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1 16 > Driller Packsaddle 3 Pelketa 1 Pando 1 Env 585 6 feet < driller	5 GEODIP 1	6294.0 1918.4 6294.0 1918.4 6294.0 2998.3 98 9837.0 2998.3 98 8906.0 2714.5 88 9950.0 3032.8 68 9950.0 3032.8 68 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 68	309.0 1923.0 11 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 29.0 2081.5 29.0 2081.5 29.0 2081.5 20. 31.0 2204.0 30. 30. 30. 30. 30. 30. 30. 30. 30. 3	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 8600.0 18SEE ?paral to vein 1	Light grey, green, fine-grained sandstone, forset cross bedding and truncations, faint low angle to horizontal lamination. Minor muddy layers. 7442. 7444. dark grey siltstone, mudstone (minor red). green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquantzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. dk grey mudstone, with needles of ? spicules, slumping or microfolding. dk grey to black, laminated siltstone and shale. dk grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to drownish siltstone, pseudo nodular sst, lobes, well fractured; displaced bedding (2-4mm). Lamination cm's. light grey siltstone, massive; fine lam. (not clear). Lineation cm's. light grey siltstone, massive; fine lam. (not clear). Lineation, almost vertical, = Della 1 Light grey sandstone interbedded with carbonaceous shale. Plat-shale-petiol flow, or many lamination cm's. light grey siltstone, massive; fine lam. (not clear). Lineation, almost vertical, = Della 1 Light grey sandstone interbedded with carbonaceous shale. Plat-shale-petiol flow or more semilar to those and shale. Lifer and plate of the programmination of x-lam. bioturbated sst, deformed by tectonics small burrows similar to Dara. 1, but plus big ones. Conglomerate, pebbly sst, and smashed pieces of core from bioturbated sst. Siderite emphased bedding. Truncation of x-lam. bioturbated sst, deformed by tectonics small burrows similar to Dara. 1, but plus big ones. Conglomerate belong to Cooper Basin, ? fluvial depo. no core left	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut variety silica at 9846 state 2cm at 9846 state 2cm at 9846 state 2cm at 9846 state 2cm at 9847 state 2cm at 9847 state 2cm at 9846 st	Acalcite 90° to vein 1 calcite form network at 9837 ft para or 10° to bedding small angle ? para to ? calcite or clay dk grey conjugate brownish to bk (better in basalt) =? Vein 1 20 - 45° = Vein 1 high angle, fine 80, parallel to bedding 1/10 to 1/2mm ? 40; 0.1mm pyrite 70dg brown, ?7224	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high high 5-8" 3-5" 2-3" 1-2cm 5cm, not even moderate not even, 3" high to very high -5cm vertical, 1-6cm hori. moderate to high 2"	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837 fractures and breccias At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50tg, only 4 fractures, approx. 50tg, only 4 fractures, a few breccias filled by calcite. Brown one ; Pyrite; one been displaced by other fractures, fine, 0.3mm, filled by calcite. One half or less core, two fractures: 45, 70. 1 parallel to bedding or parting surface. <1mm 2, high angle, 1-2manured frog. Measures. 45, 70. 1 parallel for less core, two fractures. fine, 0.7mm, filled by calcite. Greatures include, parallel to bedding, obliquely high and to bedding, 2 conjugate sets within shale beds. Siderite filled in thin section. quart filled vein cut by siderite-filled veinlets. core 4 may belong	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Talcola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218ft): 9-20dg NE. Anticline Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesfiank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappacoogee anticline structure. Nappacoogee of the fault is to the NW. Nappacoogee of the fault is the service of the NW. Nappacoogee of the fault is to the NW. Nappacoogee of the service of the NW. Nappacoogee of the the NW. Nappacoogee of the NW. Nappacoogee of the NW. Nappacoo	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desent rose minor haematite; silica healed. Dolomitic silistone. Fractures numerous, dominant at 80 to 90dg. They are filled by white day, calcite, and minor silica and traces of lignel. Two white veins of silica with minor dolomite cut the core at 9846 (60dg) and 9852 (dg 40) and photo silicate silicate silicate silicate with white earthy argiliaceous interals, green chlorite (?) and minor calcite. Silicensides on fault plane. Dolomitic silistone. Numerous small fractures and faults. Filled with the earthy argiliaceous flat silicates and silicates of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding; 70° 12 parting directions: 40-50° qtz 8 pyrite fill fractures Argilite, freq., mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding; 45-60° fracture plane parallel to bedding, but in opposite direction to bedding at 60dg. Argilite, freq., mm wide fracture; frequent qtz filled conjugate fracture planes. Bedding, but in opposite direction to bedding at 60dg. Shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, very sharp fractures at a 30° to core axis. A para vertical fracture set headed with dolomite and occasionally calcite. Shale, silty, dolomitic; a fracture set at 30° to core axis. No apparent dip. Shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss; right angle to apparent bedding. Lineation; possible bedding; inaceous layer. Dip 20 fairly reliable at 7696-7697′ Interbedded fair facture set headed with dolomite, qtz and prite is present. Siltstone shale and siltstone, lop; 12-15° relia. Silt balls, flute casts and worm casts common. A near vertical fracture set headed with dolomite, qtz and prite is present. Siltstone sha
Taloola 1 7147 Moomba 2 Env 632 Env 632 Moomba 7 Moomba 7 Mudlalee 1 867 Munkarie 1 3308 Murteree 1 1511 Nappacoongee 1 16 > Driller Pelketa 1 Pando 1 Env 585 6 feet < driller core 6 missing	5 GEODIP 1	6294.0 1918.4 6294.0 1918.4 6294.0 2998.3 98 9837.0 2998.3 98 8906.0 2714.5 88 9950.0 3032.8 68 9950.0 3032.8 68 6810.0 2075.7 68 one piece of 1/3 core circumpherential at 6828' 68	309.0 1923.0 11 58.0 3004.7 21. 58.0 3004.7 21. 74.0 2826.7 29. 21.0 2719.1 15. 955.0 3034.3 3. 29.0 2081.5 29.0 2081.5 31.0 2204.0 31.0 2204.0 31.0 2204.0 31.0 2248.5 4.0 31.0 2346.0 34. 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2143.0 30. 31.0 2248.5 4.0 31.0 2346.0 34.	1.0 .00	x-ray 20-35° (WCR) x-ray 40°(WCR) 60-70° from 1/3 core at 6828' ? 80 from core due to folding 45-55° 8600.0 18SEE ?paral to vein 1 ?paral to vein 1	Light grey, green, fine-grained sandstone, forset cross bedding and fruncations, faint low angle to horizontal lamination. Minor muddy layers. 7442-7444, dark grey siltstone, mudstone (minor red), green (shard) lining between quartz dominated layer slightly welded. thin-bedded, thin ribbons of ? ms severely fractured, more deformed, bedding hardly recognisable, probably the same as below within weathered zone Horizontally-laminated sandstone, medium to coarse WCR, petrological report: 0.75-0.3mm qtz grain; called it orthoquartzite. Grey to dark grey laminated mudstone /shale at bottom half; basalt at top half with sharp contact. Grey to drey mudstone, with needles of ? spicules, slumping or microfolding. dk grey mudstone, with needles of ? spicules, slumping or microfolding. Dark grey to black, laminated siltstone and shale. dk grey mudstone, with needles of ? spicules, slumping or microfolding. dk grey mudstone, with needles of ? spicules, slumping or microfolding. dk grey shale Massive grey fine-grained sandstone and siltstone. Lots of breccias. TS (7664), ? Spicules. Grey to green, micaceous fine sst, more greenish. TS (MESA) Grey to brownish siltstone, pseudo nodular sst, lobes, well fractured, displaced bedding (2-4mm). Lamination cm's. light grey siltstone, massive; fine lam. (not clear). Inneation, almost vertical, = Delia 1 Light grey sandstone interbedded with carbonaceous shiel, Fraer endje, sobne turn green won, shale clasts with grey sandstone interbedded with carbonaceous shiel, rear-endje, pebble turn green won, shale clasts with grey sandstone interbedded with carbonaceous shiel, rear-endje, pebble bed green won, shale clasts with grey sandstone interbedded with carbonaceous shiel, prear endje, pebble bed green won, shale clasts with grey sandstone interbedded with carbonaceous shiel, grey sandstone interbedded with carbonaceou	N N N N N N N N N N N N N N N N N N N	0.5cm silica cross-cut vary 1-2" to valid at 9852 ft silica at 9846" silica at	Acalcite 90° to vein 1 calcite brownish at 9837 ft para or 10° to bedding small angle small angle 2 para to 9 calcite bedding or clay dk grey conjugate (better in basalt) 2 vein 1 pyrite 80, parallel to bedding 1/10 to 1/2mm pyrite 2 40; 0.1mm pyrite 2 40; 0.1mm pyrite 2 forwing 1 pyrite 2 forwing 1 pyrite 2 forwing 1 pyrite 3 forwin	bedding right angle or less to bedding high angle, fine 1/10mm ? 50; 0.8mm calcite # 85.0 orange, 2 fract. 85, 72	? younger order: yellow, blue, brown, a fault plane is earliest.	13 fractures. a few through high high 5-8" 5-8" 3-5" 2-3" moderate to high 1-4" 1-2cm 5cm, not even 1-2cm 5cm, not even	Partially filled fractures, see plastics for detail. 6 fractures. Two sets of fractures, not significant. Possibly filled by silica. high angle fractures intraclasts or folded ribbons at 9837 fractures and breccias fractures and breccias Bedding possibly 20-25dg, Induced fractures (parabolic? 30-40); 2 sets of fractures at 9953; 1. odg, 2, 90dg, 2 cut 1; 3. 76dg, filled by clay (?), all hairline, and open. At 9951; 45 open; 45 dg, so they are probably all induced. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. At least 2 sets of fractures, low angle, high conjugate, one steeper than the other in core slab. minor vuggy porosity. high angle dipping (? structural fold) due to slumping or fracture, paral. to ? bedding, both 80. Other fract. connecting but not straight. dipmeter only show: 10W, 40S, 80E Several reverse fault planes observed, dip angles to the core edge: (4). Broken core in the interval ? caused by fault. 2 sets of conjugate and tension gashes. At least three kinds of joints: blue, brown and yellow (plastic trace of core slab) Fault plane may be thrust or reverse faults because of displacement of beddings (2 phases). 0.8mm, calcite-filled fractures, approx. 50dg, only 4 fractures. a few breccias filled by calcite top. displacement (2-4mm), 2 sets of fractures at least; majority, 50, (0.5mm), filled by calcite, Brown one , 2 pyrite; one been displaced by other fractures, fine, 0.3mm, filled by calcite, Brown one , 2 pyrite; one been displaced by calcite at top. displacement (2-4mm), 2 sets of fractures at least; majority, 50, (0.5mm), filled by calcite, plane filled by calcite, significant and the set of	Downdip to the SW of Merr. 6 which on crestal culmi. of Merr. High NE-SW trending dome. NE-SW trending anticlinal dome located on the NE end of the Nealyon-Taloola high on western flank of Patchawarra Trough, 6 km east of Nealyon 1. broad low relief closed anticline, NE-SW trending 4.8km NE of Moomba 1, near crest of SE end of N closure of the Moomba feature. Gidgealpa Fm S-dip. WB succession (218f): 9-20dg NE. Anticline Anticline Anticline northwest trending anticlinal nose downthrown side of a major NW trending fault. Situated on western to south wesflank of the structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Downthrown side of fault, flank of Murteree A1 on the crest of anticline structure. Nappaccogee anticline is asymmatric with steep flank to NW. Seismic data indicates that normal fault within the steep dip in the Pro-Permian section. Down thrown side of the fault is to the NW. Nappaccogee 1 near the crest of seismically located anticline with no surface expression. Right of the Structure is to the NW. Nappaccogee 1 near the crest of seismically located anticline with no surface expression. Right of the Structure is the only drilled leature to the North, with greater structural relief. Dip increas below the u/c, reached a max. of 36.5 dg (by X-ray analysis) in core 7, at 8420. Between c7-c9, dips flatened. In core 8, 32 dg; at 8870, core 9: 16. CDM considered by Schlumberger to have a correlation class of three, or 'possible'. This is becaused massive nature and unchanging lithology and fracture patterns in Pre-Permian section. Within the largest NE-SW trending structural complexes. Fault-bounded a Prelimin. Adjacent to thick. Dipmeter inter. random high angle dips too high for sedigenting notes and preliminal sediments of the surfacture patterns in Pre-Permian section. Within the largest NE-SW flexture.	Claystone, sandstone, Vein 70dg to horizontal. Bedding is sub-horizontal to 30. Core photo Subhorizontal hairline fractures with dolomite after desert rose minor haematite; silica healed. Dolomitic siltstone. Fractures numerous, dominant at 80 to 90dg. They are filled by white day, calcite, and minor silica and traces of lighte. Two white veins of silica with minor dolomite out the core at 9846 (600dg) and 9953′ (dip 40) and 4′ band of white silica at 9952′. Possible dip varied from 40 to 55, good at 9849′.55-60. Dolomitic siltstone. Numerous small fractures and faults. Filled with white earthy argiliaceous minerals, green chlorite (?) and minor calcite. Silckensides on fault plane. Dolomitic siltstone, highly fractured, with sets at angles of 40, 50, 70, filled with carbonates, clay material, qtz. Orthoquatzite, structural dip 20dg. sandstone and shale; bedding: 70° 22 parting directions: 40-50° qtz & pyrite fill fractures homogenous shale, dense, hard, dark grey shale with minor quartz veining and minor pyrite. 76926′-7694′ no recovery due to barrel jammed. Argillite, freq, mm wide fracture; frequent qtz filled conjugate fracture planes, Bedding; 45-60° tracture plane parallel to bedding, but in opposite direction to bedding at 60dg. shale, very sharp fracture. 15-20° to core axis. dip: 15-20°, unreliable. Shale, sity, dolomitic; a fracture set at 30° to core axis. dip: 15-20°, unreliable. Shale and siltstone; sharp fract; an foliation at 30° to core axis, and poss. right angle to apparent bedding. Lineation; possible bedding; micaeous layer. Dip 20 tain; praisible at 7696°-7697′ historedded shale and siltstone, Dip: 12-15° relia. sith balls, futle casts and worm casts common. A near vertical fracture set healed with dolomite, quart and pyrite casts and worm casts common. A near vertical fracture set healed with dolomite, quart and pyrite dayers. Proper set of the core axis, bedding, green shale gaster, by a factor of the core axis, sumpring. White sandstone, low angle cross-bedding, green s


					Fracture T.xis				· · · · · · · · · · · · · · · · · · ·
							1. Conjugate set: 65° and 70°. 2. Nearly horizontal to 5° can be connected to wavy, oblique, even		of 40 dg to bedding.
Snake Hole 1 1 y CYBERDIP 9212.0 2807.8 9322.0 2841.3 7.00 6 3/4 6-8 thinly bedded siltstone, v.f sst and red mudstone,	у	asso. Fract 1 calcite	en-echelon	345 / 85 9317'	calcite strike: 350-170; calcite	low in mudstone	well fractured from 9316 upwards and below	Snake Hole Prospect parallels the Gidgealpa Nth	Dip: 0; with microfault zone between 9315-9316'6"
6' > logger	9315-7' n soapy green			9317'	90 0.6mm 9313'10"	3 / 1" in fault zone	9312'9"; fault breccia (1cm wide) at 9315-7" microfaulting, displacement up to 2.5mm;	dome on the NW side. Gidgealpa Nth dome is NE-SW oriented anticlinal trend.	with calcite infilling on fault plane. Interbedded metasiltstone.
	shale						slickenside along soapy green clay along the fault zone. Bedding at 9316 is about 0-3. High angle calcite filled fractures at 9312'9"-9314'5"	The pre-Permian strata have been uplifted along a complex, NE trending fault system. Merrimelia Fm onlap to the structure. Asymmetry of the	
							Discontinuous calcite-filled fracture, similar to	uplifted basement block is indicated by thinning of sediments from SE, whereas sediments on	
								NW flank are markedly thicker. The block thus had a steep NW face and a more gentle SE face. The prospect three way dip closure, truncated on	
								on the SE flank by the uplifted basement block.	
Spencer 1 3 slab 6736.0 2053.1 6738.0 2053.7 20 SWS201 Dark red-brown cobbles of rhyodacite within red siltstone/mudstone (e.g. 6738' has 1cm red mudstone). bottom 6733.00 2052.2 6747.00 2056.5 14.00 at core 3 siltstone/mudstone (e.g. 6738' has 1cm red mudstone).						nil to low	Slabs except a piece at bottom rounded (no bedding) Rhyodacite cobbles at bottom have fractures,	structural nose along GMI, southern end. located downdip.	Tuff, agglomerate, with minor shale. Apparent dip: 20dg.
rounded but 9 NE 31 At top, sst pebbbles or cobbles (>7cm in diameter) at u/c (6626) and breccias of truncated rhyodacite or welded tuff. 12 NW332									
at 6675									
Tinga Tingana 1 10 N CDM 7547.0 2300.3 7552.0 2301.8 4.50 1.1 max. thinly bedded, light brown quartzite, with minor micaceous; shale.							two conjugate fractures filled by silica, near 7552'	Near crest of the Tinga Tingana anticline, about 3-1/2 miles long, up to 2 miles wide. Vertical closure:200'.	7547-7551.5': orthoquartzite, minor shale. Dip 70-80 reliable. A fracture set 15-20 dg to horizontal.
7512' 7512' not much							7548'; 45° or less to the core edge.		Slickensides on these fracture planes, infilled with calcite or occasionally a green clay.
difference from above 7427.0 2263.7 7436.0 2266.5 12.00 ? near 80° or under 7427', sandstone and shale more above 7427', conglomerate, with pebbles of							Dip nearly vertical.		7424-27': conglomerate; 7427-7436': shale, siltstone,
rhyodacite, sandstone and ?									nearly 80 dg, reliable.calcite veins and slickenside from 10 - 30 dg to horizontal.
Toolachee 9 2 no, 1/2 CDM 7802.0 2378.0 7806.0 2379.3 1.5 1 1/4 Two units: bottom - grey coarse sandstone, similar to that of Pandieburra, with muscovite, no app. ENV 3731 7790.0 at 7600 to that of Pandieburra, with muscovite, no app. 4' > driller bedding. upper: dark grey to black gradded-bedding						high 5 / 1"	80-85 dip of bedding. Quartz veinlet, 1-3mm. ? become stylolite.	Eastern edge of Toolachee structure on the upthrown side of the major N-S bounding fault which separates Toolachee 9 from Toolachee East 1.	Grey, medium-grained, micaceous quartzite. Fine fractures present, causing minor disturbance and microbrecciation of quartz framework grains.
									Petrology: Minor quartz veins, find joints/fracture. Well-compacted and indurated sericitic, mica, quartzite
Yalcumma 11yHDT9783.52982.09794.52985.410.50grey to dark grey siltstone and shale, good burrows on muddy bedding planes, deformed bedding.3946at southern Nappamerri Trough area.						moderate to high 10 / 1'	Steeply dipping bedding, cross-cut by calcite filled fractures.	Fault closed anticline in southern part of Nappamerri Trough. Northerly trending anticline	Steeply dipping interbedded quartzite and metasiltstones. Quartzite, white to pale frey-green, very hard, silt to
at southern Nappamerri Trough area.								"C" only nose, no closure. fault across northern flank of anticline, intersects only 'V' and 'Z", implying faulting contemporaneous with uplift in early Permian A slight	fine sst. Metasiltstone: light grey very hard.
								thickening of V to Z interval on downthrown side of fault.	
Wantana 1yHDT9628.002934.69636.002937.17.503 maxbioturbated fine sst; shale with siltstone layers; laminated siltstone and fine sandstone.17 > drillerTop by sandy limestone, laminated, rip-up clasts				60; 0.2mm-2mm	calcite	1" but 5 / 1" in sst. + fault	Very tight microfold, thrust fault with 0.8-0.9mm displacement, 70-75dg. Two sets of fractures, high angle one displaced by low angle one.	SE flank of the Merrimelia Anticline of NE trend. NW and SE flanks are faulted with smaller faults cutting across the main structure.	Dip 30dg. Qtz veins (to2mm) - random. subphylitic shale, convoluted or compacted struct. WB TOP: 9537'
17 > driller Top by sandy limestone, laminated, rip-up clasts and intraclastic grainstone full of Nuia debris.							high angle one displaced by low angle one. Bedding: 20-22 dg. If bedding: N, thrust fault SE.	outing across the main structure.	101.3001

Well Beanbush 1	Formation of IRB	core round? ft 5 y 12126.0	m ft	depth (b) Rec ft m 3699.7 11.7	?deviation	bedding dip angle	Sedi. structure Laminated and cross-laminated siltstone, fine	slickenside	stylolite vein () filled by vein (2) filled by	fractures (1)) filled? fr	fractures (2) filled? fractures (3)	filled?	chronology	fracture intensity 3 / 12'	Comments Open subvertical fracture at 12130'6", aperture: 0.1m	Structure (WCR)	WCR
Big Lake 52	Dullingiari	2 y 9462.0	2884.0 9520.0	2901.7 42'8"			sandstone, minor red mudstone. Thin-bedded, grey, siltstone and shale. Steeply dipping bedding below almost horizontally	para. bedding at 2892.5m	quartz vein	4mm; qtz	35 dg (1mm) displace 7mm	? Siderite			qtz vein cut by	high	80-85 degree strongly fractured and sheared, slickenside 65-70. see plastics; dip: 50-55, siderite cemented	domal anticline	Steeply dipping slate and quartzite with quartz veins.
> 12' than driller							bedded Cooper conglomerate (Merrimelia Fm).	75dg			displace 7mm				Siderite		veinlet (2.5mm) (fault displacement); finer (0.5mm) also displaced. Quartz vein (3mm) twisted at 9491', ? right-lateral. Fracture breccia.		
Bookabourdie 1 6237	Innam. Red	4 Y 9700.0	2956.6 9710.0	2959.6	6° 9700'	subhorizontal but deformed at 9705'6"- 9706', slump	light brown, grey, greenish siltstone/sst, below 9710'; cross lamination & bioturbation at 9706' some part calcite rich; above 9710': red ms				85-90° at 9707'	grey to white co	conjugate light grey 10° at 9702'6"		fractures in differer intervals, not possible to decide.	not even	fracturing and brecciation, slickenside, ? Fault zone. To fragile to measure. 85-90° at 9707' conjugate, 40 at 9702'6"	anticlinal dome striking NE. Basement uplifted along NW-SE trending Permian faults as compressional and wrench tectonics.	High angle fracture, brecciation: 9702-3'.
Brumby	Dullingari	4 y 7703.0	2347.9 7713.0	2350.9 10.0	3/02/2004 7703	or folding	Dark grey, thin-bedded, siltstone, with abundant spicules.	common bedding plane								5"	Fractures, 20 (5) - 30 (1)	drilled close to the crest of a broad anticline, trends NE	Banded siltstone (phyllite), low-grade metamorphic. Fracture planes at 50 dg. structural dip: 30.
Burke 1	Dullingari	7 y 8375.0	2552.7 8385.0	2555.7 10.0	2 3/4		Light grey siltstone, sandstone, slumping. ? weathered zone									3-5"	Weathered former sandstone to siltstone, shale. Patches of siderite within sericite shale. fractures. Fra(1): nearly horizontal to 20dg; Frac(2) 60 to 90.	Burke feature is closure adjacent to the Dullingari structure; Burke 1 just off the crest of the Burke feature which is part of a larger closure which forms the Dullingari-Burke feature.	Siltstone and shale, light grey, slightly , fossiliferous (sponge? Spicules).
Charo 1	Kalladeina	1 y 7309.0	2227.8 7319.0	2230.8 4.95			Oncolitic packstone, grainstone, thin beds, storm beds (thin).		abundant intercalations	;.							No fractures. Abundant stylolites, every 4-6cm. 5 dg bedding and emphasised by stylolite.	NW flank of the Patchawarra Trough. N-S elongated, low relief anticline, prevailing SE regional dip. A fault in Cambrian sequence.	Massive limestone with minor siltstone Lithic fragments (<1cm) meta sandstone within limestone at 7313.8'.
Cherri 1	Dullingari	3 y 4581.0	1396.3 4596.0	1400.9 14.00	2 max.		Laminated mudstone / shale, marked by white (?) and pyrite, possible due to metamorphism (DIG) Very black, graphite or carbon. ? schist or slate	minor	75; 2mm	minor calcite ? Kaolinite 1	80-85; 0.2mm	pyrite 65	3 3	? Siderite		through all core vertically; but half horizontally across core (8cm) in	Possible bedding alignment possibly emphasised or pure due to metamorphism; at least two or three sets of fractures and veinlets.	locates flank of westerly culmination of N-S aligned small anticline; locates also at the southern extremity of a magnetic and gravity high. Cycle skipping on sonic over 4569-79' indicates fracturing. Marked decrease in sonic travel time indicates considerable movement	45 bedding, shale and minor siltstone; rare white siliceous vein appro. 80dg. micromicaceous, fissile, finely carbonaceous
																diameter.		prior to the deposition of the Permian.	
Coonatie 1 1697	"Mudr. Sst"	8 Y 10395.0	3168.4 10405.0	3171.4		0-5°	light grey fine sst, with cross-bed, cross-lamina. rounded green shale pebbles; interbedded with dark greenish siltstone / shale.		at 10401': 2-4cm 80-85 dg	brownish breccia	85-90° ? Former	auth. Qtz, pa	para. Bedding brownish 60-65° Fe- clay? 4mm	1mm-1cm brownish Fe - clay		4 / 1" in fractured	some faint fractures: more or less parallel to bedding and also connect vertically, dish-structure like,	North of GMI, a Permian downwarp, this low is bounded to the South by normal down to north faulting	numerous small faults & joints in core
Daer 1	Kalladeina	1 v 10630.0	3240.0 10640.0	3243.1 8.00			nodular skeletal wackestone, thin bedded packstone,				Slickenside					moderate in other	not cross-cut whole core, 5-25° discontinuous. High angle cut by horizontal or low ang Bedding measured: 15, 20, 25; fractures:	le The structure located on NW flank of Pat. Trough. NE	Bedded dolomitic limestone, intrasparite.
Daei i	Rallagella	1 y 10030.0	3240.0 10040.0	3243.1 0.00			oncolitic grainstone, dolomitised									2 / 1' 1 / 1-2'	10, 2mm, calcite filled; 75, calcite, 0.4mm. scond phase fracture, 80, calcite, fill, fract. 0.15mm; stopped below slickenside. High amplitute stylolite, > 25 dg. At 10637'7", 1cm calcite vein + catac. slickenside along surface, similar to thermal fluid. Stopped at slickenside.	-SW aligned folding with W.B. sequ. But extensive NNW-SSE normal faulting on EW sides of structure. Changing of structural style: W of Daer structure, the western flank of the Patchawarra Trough trends N-E; to the east, the margin defined by an EW fault system 4km WSW of Coongie 1.	The core to bedding angle averages: 70 dg. Minor calcite veining. Most prominent set of calcite veins averages 60 dg to core axis. Calcite veinlets form stockworks at 10631'7"- 10631'11" and 10636'-10636'5". Also good porosity equivalent to Coongie 1,
Della 2	Dullingari	7 y 7212.0	2198.2 7222.0	2201.3 10.00	1 1/4 at 7212'		weathered, slightly deformed rock, originally silt/sh. no bedding; well fractured and brecciated partially.			0 Fe? Siderite 3mm kaolinite	1. 25-35; 0.1-0.3mm	Fe, or sideri. 2.	2. meshwork 80-90:0.1mm	Fe clay		3-5mm ; < 1cm wid.	thoroughly fractured; weathered, altered 3 phases of fracture, vein, veinlet displaced frac	Angular u/c with overlying Merrime. Fm at 7148'.	but water wet. low meta., fractures 40-50, filled by silica, pyrite. distinct parting at 40, bedding poss. 70.
Della 4	Dullingari	6 y 7063.00	2152.8 7073.00	2155.9 4.50	at 7212		relatively well-sorted sandstone (0.1-1mm), no bedding.		gauge up to	Smm kaomine	50-60		rregular		frac(1) which repl frac (2)	30cm	1-displc frac2. Weathered crust (Dr Luo, per. comm.) Filled by siderite or ankerite in thin section. Irregular fractures, siderite patches (2-3cm interv)	near axis of N-E trending Della structure, north of Della 1	fracture 40-50.
Della 5A	Dullingari	4 y 6409.0	1953.5 6446.0	1964.7 37.00			A mud clast about 2cm long. light grey siltstone, but it is badly	abundant			not regular gauge, 2mm 25dg,		neshwork	Fe clay or		5mm (length)	at 7065', possible induced fracture, open to filled by brownish clay, grey mud(drilling?). Weathered, altered zone, brecciation, slightly	structurally equal to Della, higher than Della 2 and 3. Crest of the Della structure, between productive Della 1,	
			1935.2 6409.0		above core interv.		weathered and altered zone, fractured and brecciated. slightly foliated, common slickensides. similar to Della 2, but more strongly deformed, more brecciation, broken core at bottom, u/c Cooper at top	high angle 85-90 very polished lineation			25dg, lining + filling	(reactive) =l	nigh angle =low angle connected preccias	siderite		< 1cm (width)	foliation; angular unconformity below horizontal ? Merrimelia Fm. Veinlet cut meshwork (2), some shining surface has sericite	2, and SW of Della 4. It is development well to test if gas was escaping from Della 5.	core 4, mudstone breccia; high angle foliation slickensides. Minor crystalline fracutre filling. Trace calcite on fractures.
Dunoon 1	? Dullingari	1 Y 4987.0	1520.0 4997.0	1523.1	1 to 1+1/4		grey, mm to cm laminated siltstone and v. f. sst.	new mineral formed on curved surfa.									a few low angle gauge No fractures at all.	58 km SSW of Moomba; on an E-W trending anticline	Metasandstone, grey green, very fine, well sorted,
6047 7' > driller Gurra 1	W. GP	2 y 4684.0			Max: 2		271 feet thick of W.B. Phyllite, possibly orignally shale and sitlstone		0; upto 7mm	calcite	80-85; 1mm	calcite				no fractures	Well-fractured, horizontal and vertical, filled by calcite.	located in SW of the Murteree Horst. SW margin of Cooper, small anticline; fracture and	angularity, quartzitic, chloritic, v. hard, horizontal beds. Core 1 phyllite shale, between 4529-4533':
Guita i	W. GI	half	1380.1 4535.0		at TD		crenulation, vertical graphite alignment. Horizontal and vertical calcite veinlet, brecciation. formal shale, shining lineation.		o, upto mini	Calcite	00-00, 111111	calcite				JUII	ven-nactured, nonzontal and venteal, filled by calcite.	indurated WB succession, recovered low salinity water. Similar to Cherri 1, with low grade dg of metamorphism	numerous fractures from very fine to 1.5", filled by milky quartz, slightly vuggy. core 2, dip 20; core 1, 10-15 dg.
Gidgealpa 4	Mooracoochie		2191.5 7257.0				tuffaceous sandstone, breccia of porphyritic latite? ignimbrite in core 11.									4-15 /1'	severely fractured, brecciated	Western flank of gentle NE-SW anticline, u/c on crest	tuff, green-yellowish. Small veins of apparently of carbonate in the upper section.
			2256.1 7494.0 2369.2 7703.0	2284.2 11.00															tuff, varicoloured, with abundant green specks, unreliable traces of bedding, 15dg.
Gidgealpa 8	Mooracoochie	У	2157.7 7145.0		3 3/4		tuff, fault breccia, still jig-saw fit. Warburton Basin top at about 7089'.									not even		Western flank of gentle NE-SW anticline, slightly higher than Gidgealpa 4. Volcanics with ? 20 dip angle.	tuff, variouloured, buff-brown, sandy in places.
		7089 WE														1-2cm /vert.	highly fractured, brecciated. highly fractured, brecciated. highly fractured, brecciated.	man clageapa ii reisamee mii r ze alp aligie.	tuff, extensive veining. Fractures with slickensides. dip over the upper nine feet is irregular within 20dg.
Gidgealpa 11	Mooracoochie	3 6852.0	2088.5 6885.0	2098.5 30.5			ignimbrite, tuff.										sparse fractures, due to ? Contractional	norther part of Gidgealpa structure.	
Jennet 1 7028	metasst, sit	1 y 5525.0	1684.0 5535.0	1687.1	1°	steep dip 60-65° at 5525'	Coarse to fine porous sst with brownish ms layer, cross lamination at 5525-5526'. (phyllite WCR) most porous at cross-lamination portion.	many such as 5525' 5528' (WCR)								vertically	brittle fracturing, some open, ? induced fractures at 5232'2"-5" slicenside at 5525'5", fracture displ. bedding.	crest of a domal anticline develpoed upon a major NE-SW trending horst block plunging basinward towards the NE. Pre-Z, high angle fault along its NW & SE displacement along NW more significant	Steeply dipping metasandstone, minor metasiltstone. Common fracturing, nil visual porosity, no shows. Slickensides, phyllite at 5525'6".
Kalanna 1	Dullingari	1 8933.0	2722.8 8943.0	2725.8	4° 8930'		dark grey to black mudstone, bedding unrecognisable, because of folding. Some sandy layers sheared in between mudstone, e.g.	N	40-50° 1-3mm	calcite	70°		20, 30°, calcite P Para bedding				Possible fault plane (40-50°) along which parallel veins.	At Z, NE-SW Kalanna fault zone is defined by a series of subparallel intersecting and anastomosing faults that cut the scarp into a number of wedge slices of varying	silt, sst, fractures filled by calcitic brecciated;
							at 8940'.											throw.	
Innamincka 4	IRB		2126.3 6986.0																
		1 y 6976.0		2129.3 7.50	1 3/4	a few	Green to red siltstone, mudstone, v.f. sst. thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos.		6976' - 5" see measure		6982'1-8". 2 frac 1. 0.1mm; 2. 0.6		9976'-3" : 80 calcite 6981'6"-6983'	calcite		low	6978'2"-6978"8"-9" fracture filled by calcite.	on the upthrown side of the basement fault, Patchawarra Fm pinched out at the flanks.	Interbedded sandstone and siltstone. Vertical fracture with quartz infill at 5981 to 5982
Kumbarie 1	? Dullingari	2			1 3/4	a few	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken							calcite		1-2cm, hor/ver. or > 10 /1'			Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes.
Kumbarie 1 Lowanna 1		1 y 6976.0 2 3 y 5376.0 1 y 9800.0	5392.0	7.9	3 1/2	a few	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae.							calcite		1-2cm, hor/ver. or > 10 /1' 2-3cm	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified.
		2 3 y 5376.0	5392.0	7.9		a few	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and							calcite		1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm	N-E trending anticlinal accumulation, on a N-S trendin ridge.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5	Dullingari	2	5392.0 2987.0 9803.0 10922.0	7.9	3 1/2	a few nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone,							calcite		1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous.
Lowanna 1 Logger > driller 16' Meranji 2	Dullingari	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0	7.9 2988.0 2"7" 2739.8 20.00	3 1/2 at 9800'	a few nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale.							calcite		1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525	Dullingari IRB Innamincka	2 3 y 5376.0 1 y 9800.0 1 y 10912.0 5 y 8969.0	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00	3 1/2 at 9800'	a few nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone,		see measure			6mm 0.6		brown, ?clay		1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7'	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller	Dullingari IRB Innamincka	2 3 y 5376.0 1 y 9800.0 1 y 10912.0 5 y 8969.0 1 y 7840.0	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00	3 1/2 at 9800'	nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches.		see measure			6mm 0.6	0.6mm			1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid?	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3	Dullingari IRB Innamincka	2 3 y 5376.0 1 y 9800.0 1 y 10912.0 5 y 8969.0 1 y 7840.0	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00	3 1/2 at 9800'	nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network.		see measure			6mm 0.6	0.6mm			1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia High, throws up to 900'. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119' lower than Moomba 1.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487	Dullingari IRB Innamincka Innamincka ? ?	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 0 2897.4 9508.0 0 3004.7 9876.5	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 2898.0 2.0 3010.4 17.80	3 1/2 at 9800'	nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite?		see measure	d fracture ?	1. 0.1mm; 2. 0.6	6mm O.6	ine, hairline	brown, ?clay		1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite.	Patchawarra Fm pinched out at the flanks. g N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia High, throws up to 900'. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119' lower than Moomba 1. to the south of the Moomba structure, a broad, low relief composite anticlinal structure with subsidiary culminations at the 'P' horizon. The Moomba South prospect is a NE-SW trending elongate dome.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. g Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3	Dullingari IRB Innamincka Innamincka ?	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 2898.0 2.0 3010.4 17.80	3 1/2 at 9800'	nil A0-60°	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. Green, ?hornfel, pyrite-rich. Iight grey, contact with granite? Iight grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite.		see measure	d fracture ?		6mm O.6	0.6mm		1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite.	Patchawarra Fm pinched out at the flanks. By N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia High, throws up to 900'. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119' lower than Moomba 1. to the south of the Moomba structure, a broad, low relief composite anticlinal structure with subsidiary culminations at the 'P' horizon. The Moomba South prospect is a NE-SW trending	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. g Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487	Dullingari IRB Innamincka Innamincka ? ?	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3004.7 9876.5 3186.7 10452.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3010.4 17.80	3 1/2 at 9800'	nil	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are		see measure 40-50° 45-50°	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	ine, hairline 50-60° brownish 90°	brown, ?clay	1 and 2 cut by 3	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing	N-E trending anticlinal accumulation, on a N-S trending ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and	Patchawarra Fm pinched out at the flanks. By N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia High, throws up to 900'. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119' lower than Moomba 1. to the south of the Moomba structure, a broad, low relief composite anticlinal structure with subsidiary culminations at the 'P' horizon. The Moomba South prospect is a NE-SW trending elongate dome.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156	Dullingari IRB Innamincka Innamincka ? ? ? The state of the sta	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3004.7 9876.5 3186.7 10452.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 1574.3	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 3 1/2	nil 40-60°	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black ? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)).	6x4cm².	40-50° 45-50° at 10450: 5n	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	0.6mm ine, hairline 60-60° ? Fe clay 60.0 60.0	brown, ?clay	1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes, shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 9 Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite).
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577	Dullingari IRB Innamincka Innamincka ? ? ? ? *Mudr. Sst**	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3004.7 9876.5 3186.7 10452.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 1574.3	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 1/4° 5051'	nil A0-60°	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black ? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide.	6x4cm ² .	40-50° 45-50° at 10450: 5n	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	ine, hairline 50-60° brownish 90°	brown, ?clay	1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm 1 cm or 8 / 1" 1 cm or > 10/1"	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. 3 fractures and a meshwork. v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. Metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156	Dullingari Pullingari Innamincka Innamincka ? ? ? "Mudr. Sst" Pullingari "altered"	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3004.7 9876.5 3186.7 10452.0 2263.7 7437.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3010.4 17.80 3185.8 2266.8	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 3 1/2	y, 62° at 7430' most changing from 60 to 90°.	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide.	6x4cm².	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	0.6mm ine, hairline 60-60° ? Fe clay 60.0 60.0	brown, ?clay	1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm 1 cm or 8 / 1" 1cm or > 10/1"	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. 3 fractures and a meshwork. cutings are intensive (1-10mm) filled by siderite. Cuttings from 10240' granite; 10130: siltstone Numerous fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, several phases (> 2). Fill of and granite are white silver and granite and granite are white silver and granite and granite severely fractures, several phases (> 2). Fill of and granite and granite are white silver and granite and granite and granite severely fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation.	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous netamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite. highly fractured, metasiltstone or phyllite. Prominent NE-SW trending Horst
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186	Dullingari Pullingari Innamincka Innamincka ? ? ? "Mudr. Sst" Pullingari "altered"	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3004.7 9876.5 3186.7 10452.0 2263.7 7437.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3010.4 17.80 3185.8 2266.8	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 3 1/2	y, 62° at 7430' most changing from 60 to 90°.	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, silitstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide.	6x4cm ² .	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	0.6mm ine, hairline 60-60° ? Fe clay 60.0 60.0	brown, ?clay	1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 2 /1" not even	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside steep. Fracture filled by brown (?clay). Different shape of greenish granules along	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 3 Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. **A-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite. highly fractured, metasilistone or phyllite. Prominent NE-SW treutins, Basement structure is one of a network of facilite. Network of facilities. Detrical seasons and the province of a network of facilities. Seasons and the control of a network of facilities. Detrical seasons and the seasons and the seasons and seasons and the seasons and s
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186	Dullingari Pullingari Innamincka Innamincka Pullingari altered" Pullingari altered"	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1571.2 5165.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 3185.8	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 3 1/2	y, 62° at 7430' most changing from 60 to 90°.	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black ? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination (brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding.	6x4cm².	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla	d fracture ?	1. 0.1mm; 2. 0.6	6mm 0.6	0.6mm ine, hairline 60-60° ? Fe clay 60.0 60.0	brown, ?clay brownish ? Fe clay	1 and 2 cut by 3 in some core not st	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 2 /1" not even	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. 3 fractures and a meshwork. 2 fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone Severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fractured shop brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite.	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. No obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes, shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. **Aray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite, highly fractured, metasiltstone or byllite. Prominent NE-SW trending Horst flanked by major faults. Basement structure is one of a network of facilite of McKinlay. Phyllitic sheen on some surfaces Data grey phyllitic slestenie, dipity thin quartz veins. Data grey phyllitic sheen on some surfaces.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186	Dullingari "Mudr. Sst" Pullingari "altered" Pullingari "altered"	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1593.4 6550.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 1574.3	3 1/2 at 9800' 4 1/2 3 1/2 3 1/2 No data 1/4° 5051' 3-1/4° at 7344' N/R N/R	y, 62° at 7430' most changing from 60 to 90°.	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black ? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination (brecciation / vecinlet); pyrite lamination and nodules (1x5cm) along bedding. grey, dark grey mudstone, shale, siltstone from 6545' adostone with light grey, medium to coarse sadostone place of quartzite, and the sadostone and siltstone.	6x4cm².	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla 50-55 (6), 1-branches of brown: 40-70	d fracture ?	1. 0.1mm; 2. 0.6 1. 0.1mm; 2. 0.6 500 500 500 500 500 500 600 6	6mm 0.6	ine, hairline 60-60° brownish 90° ? Fe clay 60.0 = silickenside	brown, ?clay brownish ? Fe clay	fra (blue) by fra (brown)	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 1 cm or 8 / 1" 2 /1" not even	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite.	Patchawarra Fm pinched out at the flanks. Robinstrian Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 3 Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated silitstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Low grade metom. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite, highly fractured, restalististone or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structure is one of a network of faulite, made the silts one or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structure is one of a network of faulits. Prominent of faulits. Basement structure is one of a network of talline of the silts of phyllite end and quarts filled thin fractures. Elso to cere, 4es to core, filled thin fractures
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186	Dullingari "Mudr. Sst" Pullingari "altered" Pullingari "altered"	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1593.4 6550.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 1574.3 1996.4	3 1/2 at 9800' 4 1/2 3 No data 1/4° 5051' 3-1/4° at 7344' N/R not recorded	y, 62° at 7430' most changing from 60 to 90°.	hin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey -laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite, some visible fragments of black? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination (brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding. Dark grey to black siltstone/shale, mm's lamination (brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding.	6x4cm².	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla	d fracture ?	1. 0.1mm; 2. 0.6 1. 0.1mm; 2. 0.6 500 500 500 500 500 500 500	6mm 0.6	20° brownish 90° 7 Fe clay 60.00	brown, ?clay brownish ? Fe clay	fra (blue) by fra (brown)	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 1 cm or 8 / 1" 2 /1" not even	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures averal phases (> 2). Fill of amygdale & veinlets are white silica and? Carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. bedding: 45°, fra (blue): 70°; fra (brown): 40-70°, toy direction; fra (yellow): nearly horizontal and	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, silistone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes. shale with minor silistone. Fractures healed partly by white anhydrite or gypsum. Silistone band: 70-80 dg dip. Dolomitic silistone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous. moderaite fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 3 Very small flame structure. metasandstone and metasilistone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip. 10. Sandstone with shale clasts; laminated silistone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. **Aray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. **Bedding: 40° low-grade metom. two planes: 60° fault brecciated **Indianation of the part of t
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186	Dullingari Para Innamincka Innamincka Para Para Para Para Para Para Para Pa	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1993.4 6550.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3010.4 17.80 1566.7 1566.7	3 1/2 at 9800' 4 1/2 3 No data 1/4° 5051' 3-1/4° at 7344' N/R not recorded N/R 2.5 above 6000'	y, 62° at 7430' most changing from 60 to 90°.	thin beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? - bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination (brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding. Dark grey to black siltstone, shale, siltstone from 6545' downwards: light grey, medium to coardstone and silt in water, displaced by later (frac(1)).	6x4cm².	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz' brownish cla 50-55 (6), 1-branches of brown: 40-70	d fracture ?	1. 0.1mm; 2. 0.6 1. 0.1mm; 2. 0.6 500 500 500 500 500 500 500	6mm 0.6	20° brownish 90° 7 Fe clay 60.00	brown, ?clay brownish ? Fe clay	fra (blue) by fra (brown) by fra (fine, ?black).	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 1 cm or 8 / 1" 1cm or > 10/1" 2 /1" not even	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Brecciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone severely fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. bedding: 45°, fra (blue): 70°; fra (brown): 40-70°, two direction; fra (yellow): anearly horizontal and associated with stylolites; fra (black) altered zone, pale grey due to alteration to clay? Fra (brown): ? filled with quartz in wide fracture, kaolinite and siderite in thin section of 6110′. cement in fracture is dolomite. Intensively fractured, filled by calcite, fine, 0.1-0.2mm wide, but 2-4mm in veiniet	Patchawarra Fm pinched out at the flanks. N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoonge trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "2" seismic mapping: basement has been faulted by major NE trending faults on the sides of Merrimelia High, throws up to 900'. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest Moomba Structure, it 119' lower than Moomba 1. 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119' lower than Moomba 1. to the south of the Moomba structure, a broad, low relief composite anticlinal structure with subsidiary culminations at the 'P' horizon. The Moomba South prospect is a NE-SW trending elongate dome. large anticlinal feature. Down thrown side of SW-NE trending fault, forming N flank of the horst. Down thrown side of SW-NE trending fault, forming N flank of the horst.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes, shale with minor silistone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified. Grading to quartzite, very hard, minor argillaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 9 Very small flame structure. metasandstone and metasilitstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. x-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Meta sst, siltstone, sot. Low grade metorn, two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Cocassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite, highly fractured, metasilistone or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structured, metasilistone or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structured, so no of a network of faults. Domed anticine of McKinlay. Phyllitic metasilistone, foliation, possibly represent bedding, phyllitic sheen on some surfaces can and veinlets fracture filled by calcide, interstitial othlorite sheen on some surfaces cement in fracture is dolomite.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186 Murteree C1 2186	Dullingari Part of the state o	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1571.2 5165.0 1993.4 6550.0 1861.1 6116.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 3185.8 1574.3 1996.4 1996.4	3 1/2 at 9800' 4 1/2 3 No data 1/4° 5051' 3-1/4° at 7344' N/R not recorded N/R 2.5 above 6000'	y, 62° at 7430' most changing from 60 to 90°.	minor x-lamination. Skolithos. minor x-lamination. Skolithos. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. x-lamination, slump, nodular structures. Faint bioturbation Light grey. Alaminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite, some visible fragments of black ? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination for brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding. Dark grey mudstone, shale, siltstone from 6545' downwards: high grey, medium to coarse sandstone with slumps, thin interbeds of mudstone and siltsone. Dark grey to black siltstone/shale, mm's lamination for brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding.	minor	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz) brownish cla 50-55 (6), 1-branches of brown: 40-70 yellow: 65° 6112' 10"	d fracture ?	1. 0.1mm; 2. 0.6 1. 0.1mm; 2. 0.6 500 seems cut f(2) 80° fine, 2-20° (6) 40° (1) blue: 65-70° blue: 60° 73; (0.1-0.2mm) opp. Bedding(56)	6mm 0.6	one, hairline follow: horizon ? Dolomite black: fine: 80° to vertical brown: ? foreward of the state of the	brown, ?clay brownish ? Fe clay	fra (blue) by fra (brown) by fra (fine, ?black).	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 1 cm or 8 / 1" 1cm or > 10/1" 2cm or less	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Breciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone Numerous fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? filled by calcite, fine, 0.1-0.2mm wide, but 2-4mm in veinlet + breccia at 6327'.	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes, shale with minor siltstone. Fractures healed partly by white anhydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified Grading to quartzite, very hard, minor arigiliaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. 2 very small flarme structure. Metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. X-ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. Bedding: 40° low-grade metorm. two planes: 60° fault brecciated andesite, 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite. highly fractured, metasiltstone or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structure is one of a network of faults. Domed anticline of McKinlay, Phyllitic metasiltstone, foliation, possibly represent bedding. Dark grey phyllitic siltsone, dip 45 to core. Fractures: 160 to core, 45 to core, filled by thin quartz veins. phyllitic sheen on some surfaces coment in fracture is dolomite. Silceous siltstone shale and sandstone, siltstone on some surfaces cement in fracture is dolomite.
Lowanna 1 Logger > driller 16' Meranji 2 Merrimelia 5 ENV 1525 Minkie 1 8 > driller Moomba 3 Moomba South 1 5487 Mudrangie 1 1577 Murteree A1 2156 Murteree C1 2186 Murteree C1 2186	Dullingari Part of the state o	2	5392.0 2987.0 9803.0 10922.0 2733.8 8989.0 2389.6 7847.0 3186.7 10452.0 1571.2 5165.0 1571.2 5165.0 1993.4 6550.0 1861.1 6116.0	7.9 2988.0 2"7" 2739.8 20.00 2391.8 7.00 3185.8 3185.8 1574.3 1996.4 1996.4	3 1/2 at 9800' 4 1/2 3 No data 1/4° 5051' 3-1/4° at 7344' N/R not recorded N/R 2.5 above 6000'	y, 62° at 7430' most changing from 60 to 90°.	him beds, flat pebbles of rip-up greeb shale clasts. minor x-lamination. Skolithos. weathered, light grey mudstone, whole core broken dark siltstone and shale, 5526' has sandstone layer. Green-grey siltstone, shale, laminae. cm laminated very fine sandstone, shale. x-laminated fine sandstone, silstone and minor red shale. Red mudstone and minor fine-grained sandstone, siltstone, x-lamination, slump, nodular structures. Faint bioturbation Light grey x-laminated fine-grained sandstone, with green shale pebbles, siderite nodules and patches. Green, ?hornfel, pyrite-rich. Green, ?hornfel, pyrite-rich. massive metasst, siltstone, ? hornfel. Bedding not recognisable, well fracture but irregular network. dk brown to grey. Contact with granite? light grey, medium to fine, well sorted quartzite, lamination, greenish muddy siltstone and mud. Greenish pebbles of shale or mudstone are lined-up along the bedding plane of quartzite. some visible fragments of black? lithics along the bedding of the sst. amygdales in basalt, brecciation called original basalt in water, displaced by later (frac(1)). Light grey, siltstone and mudstone, cm's layering, ? = bedding, 60°; because of alteration, hard to decide. Dark grey to black siltstone/shale, mm's lamination (brecciation / veinlet); pyrite lamination and nodules (1x5cm) along bedding. Dark grey to black siltstone/shale, mm's lamination corads sone and siltstone, shale, low-angle grey to creamy claystone, brecciated, patches of siderite after silica. ? a total calcal	minor	see measure 40-50° 45-50° at 10450: 5n breccia of mother rock qtz (vein qtz brownish classes of the second sec	d fracture ?	1. 0.1mm; 2. 0.6 1. 0.1mm; 2. 0.6 500 seems cut f(2) 80° fine, 2-20° (6) 40° (1) blue: 65-70° blue: 60°	6mm 0.6	ine, hairline 60.0 60.0 60.0 cellow: horizor ? Dolomite black: fine: 80° to vertical brown: ?	brown, ?clay brownish ? Fe clay ?	fra (blue) by fra (brown) by fra (fine, ?black).	1-2cm, hor/ver. or > 10 /1' 2-3cm 1-2cm 3 / 10' low nil 3 / 7' a few fractures 1-10 mm high > 4 /1" 2-5" spacing 1 cm or 8 / 1" 1cm or > 10/1" 2/1" not even 2cm or less	N-E trending anticlinal accumulation, on a N-S trendin ridge. Well fractured, filled by calcite. 0.1mm-4mm at bottom. Dip: 50-65? Measured, see plastics. high angle open fractures, aperture 0.15mm No obvious fractures. 3 fractures and a meshwork. a few horizonal fractures filled by brown (?clay). v. high angle to vertical lamination due to flowing band? Breciation forced by thermal fluid? fractures are intensive (1-10mm), filled by siderite. Cuttings from 10240' granite; 10130: siltstone Numerous fractured, brecciated, thick vein filled by breccia and brownish? Fe rich clay. Numerous fractures, series of displacement surfaces. fine fractures, several phases (> 2). Fill of amygdale & veinlets are white silica and? carbonate and? Kaolinite severely fractured & brecciated, slickenside (steep). Fracture filled by brownish (?clay). Different shape of greenish granules along (?bedding) lineation. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? dolo or siderite, calcite or kaolinite. microfaulting & veining of at least two phases of filling, brown? filled by calcite, fine, 0.1-0.2mm wide, but 2-4mm in veinlet + breccia at 6327'.	Patchawarra Fm pinched out at the flanks. Patchawarra Fm pinched out at the flanks. N-E trending anticlinal accumulation, on a N-S trending ridge. N margin of the Allunga Trough, SE of Big Lake trend. Dormal form is caused by prominent NE-SW folds extending SW from Della-Nappacoongee trends with less prominent - folds oriented NW-SE. The Permian and Mesozoic Fms are simply draped over the underlying Pre-Permian block, with minor crestal thinning. anticlinal dome NE-SW anticline, southern flank of this structure. NE of Merrimelia structure (NE trending uplifted horst block. Located in the Merrimelia North high, irregular and splays east from normal NE trend. "Z' seismic mapping: basement has been faulting by major NE trending faults on the sides of Merrimelia High, throws up to 900. Reactivation bounding faults in pre-Toolachee caused uplift, erosion Permian in crest 5.6km NNW of Moomba 2; correlated with Moomba 2. Moomba structure, it 119 lower than Moomba 1. to the south of the Moomba structure, a broad, low relief composite anticlinal structure with subsidiary culminations at the 'P' horizon. The Moomba South prospect is a NE-SW trending elongate dome. NE-SW, NE-SW trending anticline, fault bounded on the northern (downthrown) side of the fault of Merrimelia strusoutmost of 3 en echelon structures, trending NE-SW, NE-SW trending anticline, fault bounded on the horst.	Vertical fracture with quartz infill at 5981 to 5982. no obvious bedding dip. Light grey sandstone, siltstone with shany lustre very siliceous with common slickensides highly fractured with healed fractures, cleavage planes, shale with minor siltstone. Fractures healed partly by white anthydrite or gypsum. Siltstone band: 70-80 dg dip. Dolomitic siltstone, green-grey, very silicified Grading to quartzite, very silicified Grading to quartzite, very silicified Grading to quartzite, very hard, minor argillaceous, moderalte fault brecciation in part and thin fracturing throughout. Off white to dark grey calcareous fill. Very small flame structure. metasandstone and metasiltstone. Red shale, ssub-fissile, silty, slightly micaceous. Red sandstone, very siliceous. Dip: 10. Sandstone with shale clasts; laminated siltstone. Shale clasts generally angular, smooth texture, fissile, commonly aligned parallel to bedding. **ray core shows 18dg, fractures 20-30dg; pyrite fill. Sandstone, siltstone, shale. Meta sst, siltstone, sst. Meta sst, siltstone, sst. **Bedding: 40° low-grade metom. two planes: 60° fault brecciated **andesite,** 70-75° fracture planes abundant rare bedding 30-35° suggesting a tuffaceous nature in part. Low grade metamorphic (phyllite). Occassional thin layers of quartz pebbles up to two inches delineating bedding at appro. 70° Fracture planes frequent at approximately 70°, along bedding and at 90° opposite to bedding planes. Detrital andersite. highly fractured, metasiltstone or phyllite. Prominent NE-SW trending Horst flanked by major faults. Basement structure is one of a network of faults. Domed anticine of McKinlay. Phyllitic metasiltstone, foliation, possibly represent bedding. Dark grey phyllitic silstone, foliation, possibly represent bedding. Dark grey phyllitic silstone, of thin quartz veins. phyllitic sheen on some surfaces cement in fracture is dolomite. Steeply dipping metasandstone with very minor metasiltstone shale and sandstone, siltstone on some surfaces cement

														fractures				forth fracture is about 60-70, adjacent to thrust fault		
Pandieburra 1	? Dullingari	N				Sandstone, interbedded with little shale/mudstone; tabular pebbles of shale/mudstone. Dirty sst (my ts description)					swarm (reverse) thus thrust fault					r	moderate	Calcite filled fracture in massive sandstone with wavy lamination or	locates on the intersection of two major anticlinal trends (one: E-W, the other SW-NE)	felspathic sandstone with shaly partings.
Pando 2	?Pando 2	N 5993.0 1826.	.7 6020.0 1834.9 27	00	? horizontal	Light grey, thin-bedded to massive sandstone with	ves	two 1.5mm veins	atz?	fracture	brown, ? Siderite							crenuation, 50° to core axis. Yellowish (?) filled fractures.	10 miles W-SW of Daralingie gas field. Fault trending	bedding average 10; 3 sets fractures: 80, 45, 50 to
Env 1031 11' > driller	?Fallou Z	N 3993.0 1820.	.7 0020.0 1834.9 27	.00	! HOHZOHIAI	green flat pebbles of shale or mudstone, truncation of cross-bedding, along which mud drapes. Shale shows variation of weathering, top the most.	along shaly layer	x to bedding 10 dg to c. edge	qız:	20-30	then kaolinite								NE-SW. Pando 2 on S or downthrown side of this fault. on a culmination within a graben. Structural dip in Gidgealpa Fm is 5-7, but average 10 in pre-Permian.	the horizontal. Clay along fracture planes. Orthoquartzite, siltstone, shale.
Pando North 1 Env 1483	? Pando 4	N 6449.8 1965.	.9 6460.0 1969.0 4.	33 1 1/2° at core 4 Max. 2 1/4° at 5320'		thin-bedded siltstone and mudstone; starved ripples, accretional cross-lamination; slump-fold, step-like; cm's graded; bedding of fine-grained sand lobes; ? tiny burrows.		2-4.5mm ? para to N	calcite		para to N or fold plane	calcite 40° to N	calcite	120 to N calc	tite 1 by 2	2 by 3	moderate		Locates 2 miles N of Pando 1 anticline on the northern plunge of the feature. Vertical closure is over 400' on structural nose, about 300' at Pando North location.	Argillite, green, silty in part, micromicaceous. Poorly developed slaty cleavage at high angle to core. One dolomite-filled fracture at top of core.
Spencer 2	Mooraco. 2	y 6429.0 1959.	.6 6432.0 1960.5 2.4			rhyolite with flow bands. Phenocrysts (1-2mm) and groundmass. High angle to vertical fractures, 80, < 0.2mm, filled by brown, ? Silica.										mod		orange-brown rhyolite, flowing structures, similar to those in Spencer 1; high-angle to	on the crest of the Spencer structure ridge. The basement at Spencer consists of a brittle-fractured Early Palaeozoic metamorphics.	arkosic quartzite, some indications of possible relic of bedding 30dg.
Strzelecki 1 1575	Dullingari 5	Y 6805.0 2074.	.2 6815.0 2077.2	1 1/2° 5635'		possibly laminated dark grey siltstone / shale, because of severely folding. Numerous short fractures,	N	50-60°	y, by qtz?	70-90° y, by qtz?	discontinuous					hig	gh to v. high	Severely folded, less fractured, only two veins with similar fill, poss.	The block is bounded by a prominent fault to W and N with more complex trends to NE and S. angular unconformity with Cooper. on crest of N-trending anticline.	sh, metamorphosed to slate; bedding: 70°; parting plane at 45°
						only few long fractures.												quartz, dip change from 50 to 90°.	On nose of structure.	
Sturt 6 7312	Moorac. N/C					only cuttings, thin sections: rhyodacite											no data		northern flank of an E-W aligned anticlinal structure, Sturt / Sturt East structure.	
Sturt 7 7303	Moorac. 1	y 6336.0 1931.	.2 6394.0 1948.9	4 3/4 6520'		below 6356': low-angle banded green banded ? ignimbrite been fractured; from 6456' (1cm siltstone)	common n	90; 3-11mm	siderite		70; 0.5-1mm	siderite					not even	filled by calcite and siderite, 50 dg, opposite	Fault block on anticline flank.	Green banding of serpentine? dips: 10 to 30 at 6358'. Slickensides with
						above: dk brown to black breccia, dominated by dk brown to grey volcanic fragments (reworking) without fractures.												it; possibly second phase stop before first. From 6356' upwards: reworked volcanics.		lineation. At 6355'6"-6367'6" volcanics with slickensides and infilled settling structures. from 6336' upwards: reworked volcanics.
Sturt 8	Moorac. 2	y 6328.0 1928.	.8 6388.0 1947.1			below 6364', yellow-green ignimbrite = Taloola 1;										lo	ow to high	a few fractures, slickensides are in ignimbrite,	anticline	6345'9" - 6350': 10% very dull even to patch
						between 6364' to u/c (about 6348.7'or 6352 WCR): red-brown tuff or tuffaceous breccia.											1-2" 1-2 / 1'	none in ? reworked tuff and above u/c. Intensity: 2m at bottom, <1m top part.		yell/grn fluorescence, no crush cut. 6352-6354': 30% even fluo.
						Above u/c, elongate greenish angular breccia of vol. (Wenlong has photo).												A slickenside at contact between ignimbrite and ? Tuff		6354-69': trace, even to patchy fluo. below 6368'6" -rhyolite, 6352'-thin basal coal. 6352-54' reworked tuff, 30% Fluo; 6354-69' rhyolite tuff, 30% fluo; 6369-6356, rhyolitic lava,
Tilparee A-1 1905	? Dullingari 3	7012.0 2137.	.3 7022.0 2140.3	Y 7013-7013'9" 70 same as v(1)	70-80	Black pyritic shale with starved ripple lobes of silt or very fine-grained sandstone. Folding & faulting, bedding steep. Strongly fractured, at least 2 phases; slickensided.	Y 7013-7013'9"	75-80: 1-8mm at 7018'; 7017'5";	qtz + Pyri.	80: 1-2mm pyrite cut by v(1)	,	brownish, blue, fine, 85	5-9 white, ?			(f(2)) by f(1) (2)by v(1)		Dip of bedding changes a lot.	On southern flank of a fairly small E-NE trending anticlinal structure, at least 2 phases of fractures and slickensides.	dipping, horizontal to 80o. Foliation and pyrite
Tirrawarra 1 1416	"Mudr. Sst" 8	Y 10220.0 3115.	.1 10226.0 3116.9		5-17°	light grey, fine-grained sst, with green clasts of shale (cm), interbedded with 2cm green	70-85	? At 10220' to 10221;	80-85-90°									sst, no fractures, except a slickensided surface.	Large N-S trending anticline, dip 5-10 dg of 10220-6'; 10066-76': 30 dg.	White quartzite, dip: 5-10°
						siltstone or mudstone.												possibly due to progradation of forsets (because thickening of		
																		laminae from 1mm to 1-2cm; at 10220' back to subhorizontal).		
Titan 1	Kalladeina	y 7025.00 2141.	.2 7035.00 2144.3 9.0	00		laminated siltstone and shale, interbedded with thin beds of bioclastic packstone and oolitic grainstone.										70 7028		curved, 80; 0.2-2mm. Breccia at 7029', with calcite	crest of low relief dome, aligned NE-SW in western part of the Patchawarra Central Block.	Shale, limestone, metasandstone, veining.
Toolachee 1	Dullingari 6	Y 7224.0 2201.	.9 7227.0 2202.8			Thin-bedded, lamination of siltstone / shale,					80-90°, fine,	y, white? 50-60°, coar	se y, by brown	Low angle		hig	gh to v. high		SW closure of southern part of a large anticline	sh/sil, fissile, pyritic; fractured,
1090						dark grey to black; slumping: dip changes from 20-90°.					discontinuous.			displacing bedding.				slumping. Brecciated between 7162-7164', especially 7162'. Well fractured.	(N-S trending), gravity low, SW flank of Tennappera.	slightly metamorphosed bedding: 70° reliable, at 7222-7227: cleavage
	5	7159.0 2182.	.1 7178.0 2187.9											similar to Lycosa 1.				Combination of slickensides and quartz, lineation along fault plane or microdisplaced surface.		80-90 degree.
Toolachee 2	? Dullingari 3	Y 7195 2193.	.0 7202.0 2195.2		60-70	Grey shale with microfolds, at 7202', above which			cut by v(1)			brown,				r	moderate	Similar to Nacoonowie, but more	crest of northern part of N-S trending structure.	crest of the northern structure
					shaly portion 65° (WCR)	coarse feldspathic sst, massive.		= f(1), 7196'8" associated with quartz fill	stylolite		,	dolo. Or sider lite or calcite						sandstone within mudstone Stylolite.		E-W trending.
Toolachee 4 1906	? Dullingari 3	y 7280.0 2218.	.9 7311.0 2228.4			Almost massive sst, seems from 7299', coal bed horizontal bedding, Cooper sequence.		quartz IIII								r		irregular fractures, filled by siderite, near top at 7296', many siderite nodules.	northernmost culmination of the structure, fault controlled in the east.	d sandstone, poorly sorted, composed of quartz and dark lithic fragments below 7362,. Merr.(7312-7362)
						Possibly at 7311'6" to 7312'1", bedding: 75-80; decided by apparent boundary between graded bedding												Sandstone is coarse, pebbly, some with truncated quartz veinlets.		Fm, including this core 3, sst, light grey, pebbles. Anticline structure.
Toolachee East 2	? Dullingari	Y 8333 2539.	.9 8343.0 2542.9	1+3/4	40-45	Weathered rock, light grey, brownish, dk grey	N					brownish, ? swarm or ne					2-3 /1"	Well fractured and slickensides; major frac (f(1)),	near crestal location of a drag fold on the downthrown	mestsiltstone, dip: 45dg. Trace pyrite, fissile.
					N=7	lining may indicate original bedding, also paral. with pebbles (see ts). Clay? Kaolinite					? Cleavage or fault plane disp. Bedding &	displaced by 30-40	/ T(['?					but displaced f(2), F(1) may be reverse fault plane or cleavage reverse displacement.	side of a major fault.	
Walkillie 1	Mooracoochie 1	y 9012.0 2746. 2/3 left	9016.00 2748.1 3.0	00		rhyolite	? 80					calcite 80;		calc	site			well fractured, causing broken core. At least two sets of fractures, and one possible slickenside.	N-S elongate low relief anticline at southern end of N-NE - S-SW oriented horst trend. N fault (E-W) denotes N edge of Patchawarra Trough.	Potassic rhyolite;
Wancoocha 1	Dullingari 3	slab 6510.0 1984.	.2 6525.0 1988.8 15	5.0		Dark green, laminated siltstone and shale, bedding 45-50 (appro.); slumping and fold, and normal faults at 6501' (cm's displacement); with some white and yellow (silty or v. f. sst laminae). Balck lineation along graphite lining (oblique) similar to Lycosa 1.	yes n 6501'										2-5cm		19.2km south of Daralingie structure on the N flank of a large NE trending anticline.	60-65dg bedding shale or siltstone. Fractures about 45-55dg, secondary mineralisation along fracture faces. At 6510-15': siltstone lamination 60 reliable. Bedding dip: 0-70; slickenside along bedding
Wirrarie 1	Dullingari 3	y 7242.0 2207.	7.4 7258.0 2212.2 15	5.0 1 max.		Massive green-grey fine to medium sst, interbedded with dark green siltstone. Lamination and slump in siltstone (7254-7256')												!	on crest of small anticline; 'P' horizon, lowest closing contour 3x2 miles; vertical closure is 120'.	dip: 0 - 70. Sandstone, siltstone, shale. pale grey, very fine-grained, moderately well sorted, slightly micaceous. Shale, subfissile
Weena 1	? IRB 5					bioturbated sandstone, "pipe" (> 15cm long) rock. granule-sized (>1.2mm) sandstone. Red micaceous layers.										no	nil o fractures.		north plunging nose on the southern flank of E-W elongate trending graben. Close to the south by a fault downthrown on its northern side.	quartz-mica-schist with minor quartzite bands no dip determinable. micaceous shale, dip: 20-30; quartzite.
Yanpurra 1		slab		3 1/2		micaceous siltstone and shale. Minor sandstone.											nil to low	no fracture, or only one.	North extension of the Packsaddle anticline on a North	Siltstone and sandstone.

Well	ı	mean	strike azi	muths	range	frequency
Malgoona 4	18	60	110	150	18-30	10
Gidgealpa 1			107	149	46-74	12
Snake Hole 1			104		102-120	11
Gidgealpa 2			120	150	140-156	12
Gidgealpa 3	26	74	120			total: 45
Gidgealpa 5	21	63				
Gidgealpa 7	25	59		150		
Merrimelia 6				147		
Merrimelia 7	26					
Mudrangie 1	30	60		150		
Wantana 1			115			
Packsaddle 3	21	64		150		
Innamincka 1				150		
Boxwood 1		50	102			
Lycosa 1	20	63	110	140		
Yulcumma 1		72				
Moomba 2	20					
Moomba 73		57				
Della 1			112	141		
Dullingari 1			117	144		
Murteree 1	21			156		
Munkarie 1		68				
Pelketa 1		46	108			
sum	228		1225	1777		
aver.	22	61	114	148		
min	18	46	102	140		
max	30	74	135	156		

