DEPARTMENT OF MINES AND ENERGY

GEOLOGICAL SURVEY

SOUTH AUSTRALIA

REPORT BOOK 94/22

REVIEW OF HEAVY MINERAL SAND EXPLORATION IN SOUTH AUSTRALIA - THE EUCLA BASIN

by

GM FERRIS

Mineral Resources

JUNE 1994 DME

©Department of Mines and Energy South Australia 1992.

This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced without written permission of the Director-General, Department of Mines and Energy South Australia.

COTTENTS		THOL	
ABSTRACT		1	
INTRODUCTION		2	
GEOLOGICAL SET	TING	2	
GEOMORPHOLOG'		$\frac{2}{2}$	
STRATIGRAPHY	1	4	
COMPANY EXPLO	RATION	5	
COMPANY EM EO	AUSTRALIAN ANGLO AMERICAN LTD	6	
	BHP MINERALS LTD	6	
	ABERFOYLE RESOURCES LTD	7	
	CRA EXPLORATION PTY LTD	7	
	NATIONAL MINERAL SANDS, SWAN REACH NL	/	
	& PEKO EXPLORATION LTD	7	
		8	
MECA DDILLING	SOUTHERN VENTURES		
MESA DRILLING	ONICH HOLONIC	9	
SUMMARY AND C		9	
RECOMMENDATIO	DNS	10	
REFERENCES		11	
APPENDICES			
	ary data sheets	A1 - A11	
	cant results - BHP Minerals Ltd	B1 - B5	
	cant results - National Mineral Sands, Swan Reach NL	C1 - C14	
	ko Exploration Ltd	C1 - C14	
& I Cr	to Exploration Eta		
FIGURES		PLAN NO.	
1.	Location of the Eucla Basi		96-0770
2.	Archaean to Early Palaeozoic Geology of South Australia		96-0771
3.	Geomorphology of the Northern Eucla Basin		96-0772
	1 0,		
4.	Stratigraphy of the Eucla Basin		96-0773

Location of previous and current EL's

Australian Anglo American sample locations

BHP Minerals Ltd - Ooldea Range drill hole locations EL 1353

BHP Minerals Ltd - Ooldea Range drill hole locations EL 1354

BHP Minerals Ltd - Ooldea Range drill hole locations EL 1355

BHP Minerals Ltd - Ooldea Range drill hole locations EL 1653

BHP Minerals Ltd - Ooldea Range drill hole locations EL 1654

PAGE

96-0774

96-0775

96-0776

96-0777

96-0778

96-0779

96-0780

CONTENTS

5.

6.

7.

8.

9.

10. 11.

12.	BHP Minerals Ltd - Ooldea Range drill hole locations EL 1655	96-0781
13a.	BHP Minerals Ltd - Eyre Peninsula drill hole locations EL1605 &1647	96-0782
13b.	BHP Minerals Ltd - Eyre Peninsula drill hole locations EL 1672	96-0783
14.	Aberfoyle Resources Ltd - drill hole locations EL 1520 & 1521	96-0784
15a.	NMS, Swan Reach NL & Geopeko - drill hole locations EB0-110	96-0785a
15b.	NMS, Swan Reach NL & Geopeko - drill hole locations EB111-458	96-0785b
15c.	NMS, Swan Reach NL & Geopeko - drill hole locations EB459-549	96-0785c
15d.	NMS, Swan Reach NL & Geopeko - drill hole locations EB550-839	96-0785d
15e.	NMS, Swan Reach NL & Geopeko - drill hole locations EB 840-962	96-0785e
15f.	NMS, Swan Reach NL & Geopeko - drill hole locations EB 963-1017	96-0785f

DEPARTMENT OF MINES AND ENERGY GEOLOGICAL SURVEY SOUTH AUSTRALIA

REPORT BOOK 94/22

Review of heavy mineral sand exploration in South Australia - the Eucla Basin

GM FERRIS

The Cainozoic Eucla Basin has been the focus of recent heavy mineral exploration due to the recognition of Tertiary coastal features including the Ooldea Range. Hypsometric and Landsat, data together with detailed work on the Tertiary stratigraphy of the Basin and surrounding palaeodrainage channels and palaeogeographic setting has greatly enhanced the search for heavy minerals. Terrigenous sediments of the Immarna Group occur along the eastern margin of the Basin, with the Ooldea Sand and Hampton Sandstone being the main stratigraphic units which host mineralisation.

Two heavy mineral strandlines within the Hampton Sandstone were outlined at Immarna by Geopeko. Metallurgical testing showed the deposit comprised predominantly ilmenite which gave an average TiO₂ assay between 61 - 62.1%. Numerous low grade anomalous zones were outlined throughout the Basin, but most drilling was at 1 km intervals and consequently narrow high grade zones may have been missed.

Most exploration focussed on the Ooldea Range and other coastal features including headlands, embayments, strandline beaches, islands and linear shorelines outlined by photogeomorphic mapping. Future exploration for heavy minerals within the Eucla Basin should concentrate on a greater understanding of the stratigraphic distribution of the Eocene Ooldea Sand and Hampton Sandstone and a greater emphasis on geomorphic factors including possible provenance areas and detailed analysis of sediments within palaeodrainage channels to determine flow rates and other factors which influence the transport and concentration of heavy minerals.

Potential still exists in areas north and south of the Ooldea Range where the Hampton Sandstone may be closer to the surface and within the Barton Range. Only limited exploration has been undertaken in the Barton Range. The current market for heavy minerals is depressed with prices reflecting reduced demand and oversupply. However, the market is predicted to improve towards the end of the decade, so the current period is the perfect time to explore for heavy minerals within underexplored areas of the Eucla Basin. With the release of new aeromagnetic data for the northwestern Gawler Craton offering new exploration potential, exploration companies should incorporate heavy mineral exploration within future drilling programs in the Eucla Basin.

INTRODUCTION

This report is the second in a series prepared to summarise and assist exploration for heavy mineral sands in South Australia. Regional mapping by Mines and Energy, South Australia (MESA) delineated Tertiary coastal dunes on the eastern margin of the Eucla Basin (Fig. 1) and reported on their heavy mineral potential (Benbow, 1983, 1986 and 1990a).

The Eucla Basin, together with the Murray Basin were major Tertiary depocentres and the dune systems record a number of transgression/regression events, which provided ideal conditions for the formation of heavy mineral deposits. Recent company exploration focussed on the Ooldea Range, a 650 km long coastal dune, but the Barton and Paling Ranges remain under explored and may have potential for heavy minerals.

GEOLOGICAL SETTING

The South Australian portion of the Eucla Basin is located on parts of the 1:250 000 map sheet areas of WYOLA, MAURICE, TALLARINGA, COOK, OOLDEA, BARTON, COOMPANA, NULLARBOR, NUYTS, FOWLER, CHILDARA, STREAKY BAY, YARDEA, ELLISTON, KIMBA and LINCOLN.

Cainozoic sediments within the Eucla Basin unconformably overly Neoproterozoic - Palaeozoic Officer Basin rocks and Mesozoic sediments of the Bight Basin (Rankin & Benbow, 1992). The Eucla Basin is also underlain and rimmed by Archaean to Middle Proterozoic crystalline basement rocks of the Gawler Craton, which include granites, gneisses, mafic/ultramafic intrusives and the Gawler Range Volcanics. These rocks, together with rocks from the Palaeoproterozoic Musgrave Block were suitable provenance for the formation of heavy mineral deposits. Fig. 2 outlines the Archaean to Early Proterozoic tectonic provinces of South Australia.

The Eucla Basin formed in response to the separation of Australia and Antarctica during Tertiary times (Falvey, 1974; Benbow, 1993). Recent mapping by MESA has extended the basin margins to include an inner platform belt of terrigenous sediments (Immarna Group) along the northeastern margin and Tertiary sediments within the Polda, Uley and Wanilla Basins along the west coast of Eyre Peninsula (Benbow, *et al.*, in prep).

Global sea level fluctuations during the Early Tertiary resulted in extensive deposition of marine temperate water limestone along the continents newly formed southern margin producing the Bunda Plateau (Rankin & Benbow, 1992). Marine transgression during the Late Eocene or Early Oligocene was the major period of dune building, forming the Ooldea, Barton and Paling Ranges from sediments deposited by the rivers around the basin.

During the Middle Miocene, the last major transgression resulted in the deposition of the Nullarbor Limestone over broad areas of the basin (Benbow, 1992). Benbow (1990a) reports that the Nullarbor Plain represents the former sea floor. The transgression did not extend beyond the Ooldea Range, resulting in the formation of a series of freshwater lakes between the Ooldea and Barton Ranges (Benbow, 1990; 1992)

Since the Middle Miocene, the climate has been predominantly semi-arid to arid, a factor which aided the preservation of these ancient landforms. Minor wetter periods during the Pliocene resulted in re-activation of palaeodrainage and subsequent deposition of fluvial and lacustrine Garford and Narlaby Formations.

During the Quaternary, vast quantities of quartz sand was blown inland blanketing the land surface forming a series of longitudinal dunes termed the Great Victoria Desert. These dunes were subsequently fixed by vegetation and now dominate the northern part of the Basin. In the southeastern Eucla Basin, calcareous sediments were blown inland during the Quaternary forming dunes as well as being incorporated into the soil.

GEOMORPHOLOGY

The geomorphology of the Eucla Basin reflects Australia's predominantly arid climate since Tertiary times. Recent hypsometric data (Benbow & Crooks, 1988) covering much of the Eucla Basin resulted in the production of regional topo-contour maps which clearly show many landforms including the Bunda Plateau, Nullarbor Plain, the Ooldea, Barton and Paling Ranges together with some unnamed dunes which possibly represent former coastal dunes and prominent palaeodrainage channels (Fig. 3).

The oldest landforms of the Eucla Basin are the coastal dunes of Late Eocene or Early Oligocene age, the Ooldea, Barton and Paling Ranges. Benbow

(1990a) reports that the Barton, Paling and Ooldea Ranges formed initially as spits and barrier islands during the period of maximum transgression at the end of the Eocene. These dunes are comprised of a core of marine and fluvial Eocene Hampton Sandstone, overlain by aeolian Ooldea Sand (Benbow, 1990a). The Ooldea Range was originally thought to be a shallow remnant basement high, but stratigraphic drilling by MESA confirmed the coastal origin of the Range (Benbow, 1990a).

The Ooldea Range is approximately 650 km in length and dune height varies between 40 - 150m above the surrounding terrain (Benbow, 1990a; Rankin & Benbow, 1992). The Ooldea Range is clearly recognisable on topo-contour maps (Fig. 3) and is composed of different morphological components (see Benbow, 1990a). Also clearly recognisable on topo-contour maps of the region are headlands and embayments (Fig. 3), which are important areas of heavy mineral accumulation. A number of other possible coastal dunes were outlined by Benbow and Crooks (1988), and Benbow (1990a) and are visible on topo-contour maps (Fig. 3).

The major landform of the western Eucla Basin is the Bunda Plateau (Tate, 1879) which is one of the worlds largest arid/semi arid karst terrains (Benbow *et al.*, 1994) and includes the Nullarbor Plain (Fig. 3).

Around the Basin are palaeodrainage networks which drained areas of crystalline basement and supplied vast quantities of sediments to the Basin (Fig. 3). Rankin & Benbow (1992) suggest the palaeodrainage network may have formed in the Jurassic and drained the Musgrave Block, Stuart Range and the Gawler Ranges (Benbow *et al.*, 1995). Sediments within palaeochannels are important indicators to provenance areas and reflect energy conditions, thereby aiding palaeogeographic reconstructions.

Twidale and Campbell (1985) report that the oldest landforms on Eyre Peninsula are the laterite plateau which formed on many basement blocks including the Lincoln Uplands and may be correlated with a similar laterite capping on Fleurieu Peninsula and Kangaroo Island, which is older than the Middle Jurassic.

Minor landforms within the Basin includes strings of

playa lakes and lunettes developed in low lying areas and interdune corridors (Fig. 3). The Tietkens Plain (Fig. 3) displays similar karst features to the Nullarbor Plain and was developed on Garford Formation freshwater dolomite (Benbow, 1992).

The landscape over much of western Eyre Peninsula is relatively flat with a number of plains developed at various levels (Poochera Peneplain, Chandada Plain). During Tertiary times, silcrete was widely developed forming plains which were later dissected by rejuvenated streams (Twidale & Campbell, 1985). Scattered inselbergs of Crystalline basement rocks including Mount Wudinna, Mount Hall and Mount Cooper are found throughout the Eyre Peninsula. These inselbergs display platforms preserved on and near the summits which may be remnants of former higher plains (Twidale & Campbell, 1985).

Climatic oscillations of the last 2 million years have influenced the development of the present landscape. Longitudinal dunes of the Great Victoria Desert dominate the northern part of the Basin and formed during the late Ouaternary from pre-existing Immarna Group sediments (Rankin & Benbow, 1992). Along the West Coast of Eyre Peninsula, Quaternary Bridgewater Formation calcarenite is widespread and represents former coastal dune deposits built up during periods of lower sea level. Episodes of sediment accumulation were interspersed with periods of erosion and arid pedogenesis producing multiple horizons of sheet, nodular and massive calcrete plus carbonate soils (Flint, 1990). Rising sea level has drowned and eroded Bridgewater Formation dunes to form the spectacular coastal cliffs along much of western Eyre Peninsula.

STRATIGRAPHY

During the Cainozoic, marine limestone of the Eucla Group was deposited over much of the Basin and terrigenous sediments of the Immarna Group were deposited around the northeastern basin margin and in palaeochannels which flowed into the Basin. The Immarna Group comprises the Pidinga Formation, Hampton Sandstone, Ooldea Sand, Yarle Sandstone, Garford Formation, Ilkina Formation, and Munjena Formation. Tertiary stratigraphy of the Eucla Basin is outlined in Fig. 4.

Seismic traverses across the Basin record an extensive seismic reflector (Fraser & Tilbury, 1979) which Benbow *et al.* (1995) suggest may be the base of the Tertiary sequence.

Benbow *et al.* (1995) report that sedimentation in the Eucla Basin may have commenced during the Palaeocene-Eocene with undifferentiated fluvial to marginal marine clastics.

Deposition was greatest during the Middle to Late Eocene with 4 major units deposited;

- . Pidinga Formation
- . Hampton Sandstone
- . Ooldea Sand
- . Wilson Bluff Limestone

The Pidinga Formation (Lindsay, 1966; Lindsay & Harris, 1975) comprises marine and non marine lignitic and pyritic sands, clay and silts deposited during reactivation of palaeorivers and unconformably overlies Officer Basin sediments and Archaean to Middle Proterozoic crystalline basement.

Deposition of the Pidinga Formation was widespread and occurred in a range of environments including fluvial, lacustrine, estuarine and marine (Rankin & Benbow, 1992). Sediments correlated with the Pidinga Formation occur in the Polda (Poelpana Formation) and the Cummins-Uley-Wanilla groundwater basins (Wanilla Formation).

On Eyre Peninsula and in the Narlaby and Yaninee Palaeochannels, marine sands of the Pidinga Formation were found to contain trace heavy minerals (Binks & Hooper, 1980; Marinelli, 1989).

Alley & Benbow (1989) summarise transgressive phases within the Pidinga Formation including the Tortachilla Transgression (McGowran, 1989), the Wilson Bluff Transgression (Lindsay & Harris, 1975; McGowran, 1989) and the Aldinga Transgression (Benbow *et al.*, 1982; McGowran, 1989). These transgressive phases explain the vertical and lateral lithological variations observed in drill hole samples across the Basin.

Conformably overlying the Pidinga Formation are fluvial, estuarine and marine quartz sands of the

Hampton Sandstone deposited during the Middle Eocene Wilson Bluff transgression (Rankin & Benbow, 1992). The Hampton Sandstone ranges from 20-50m thick and comprises very fine-coarse grained, well sorted sand containing trace heavy minerals (Benbow, 1990a). Rankin and Benbow (1992) report that deposition of the Hampton Sandstone occurred in energetic uppershore face and beach environments in the Ooldea and Barton Ranges, thereby providing excellent conditions for heavy mineral concentration.

The aeolian Ooldea Sand conformably overlies the Hampton Sandstone and comprises pale grey to off-white to pale brown, very fine to medium grained, moderately well to well sorted quartz sand, up to 112m thick and forms the Late Eocene - Early Oligocene Ooldea, Barton and Paling Ranges (Benbow, 1990a, 1993; Rankin & Benbow, 1992). The Ooldea Sand contains trace amounts of heavy minerals and is distinguished from the Hampton Sandstone by its more uniform grain size and common frosting of quartz grains (Benbow, 1990a).

During the Middle Eocene, platform carbonate deposition commenced. The Wilson Bluff Limestone is a temperate water limestone comprising white to grey wackestone and skeletal mudstone deposited over broad areas, which conformably overlies the Pidinga Formation and Hampton Sandstone (Benbow *et al.*, 1995). The formation intertongues with the Pidinga Formation and Hampton Sandstone which may indicate time(s) of maximum transgression (Rankin & Benbow, 1992).

During the Middle Miocene, a narrow coastal terrigenous belt of sandstones was deposited along the northeastern margin of the Nullarbor Plain, adjacent to the Ooldea Range. These are referred to as the Yarle Sandstone (Benbow, 1990b). The Yarle Sandstone is a fine to medium grained quartz sand which may contain minor bioclastic sediments (Benbow, 1990b). Rankin & Benbow (1992) report that the Yarle Sandstone is laterally equivalent to the Nullarbor Limestone and was deposited in a moderate energy strandline.

During the Middle Miocene, the Nullarbor Limestone (Lindsay & Harris, 1975) was deposited over a broad area. The Nullarbor Limestone comprises indurated bioclastic limestone with a

primary micrite mud matrix (Rankin & Benbow, 1992).

Unconformably overlying the Pidinga Formation and Hampton Sandstone is the Miocene to Pliocene Garford Formation (Rankin & Benbow, 1992). The Garford Formation (Benbow & Pitt, 1978) comprises argillaceous green to grey muds, carbonate muds and mudstones deposited in depressed areas between the Ooldea and Barton Ranges, Wilkinson Lakes area, and within palaeodrainage channels (Rankin & Benbow, 1992; Benbow *et al.*, 1995). Within the Narlaby Palaeochannel, the Garford Formation is overlain by the Narlaby Formation, a sequence up to 60m thick comprising fluvial to estuarine, fine to medium grained, moderately to well sorted sand with minor clay (Benbow *et al.*, 1995).

During the Late Pliocene or Early Pleistocene, the Ilkina Formation was deposited within palaeochannels including the Narlaby Palaeochannel and within some playa lakes such as Ifould Lake (Benbow *et al.*, 1995). The Ilkina Formation comprises clay, silt and sand up to 5m thick (Benbow *et al.*, 1995).

Around the margin of the Eucla Basin within bedrock interfluves and palaeochannels, the Munjena Formation was deposited (Benbow, 1993; Benbow *et al.*, 1995). The Munjena Formation comprises a sand rich sediment which may contain local reworked quartz pebbles from underlying Palaeozoic and Mesozoic sediments (Benbow *et al.*, 1995; Rankin & Benbow, 1992).

The present landscape is dominated by extensive tracts of Quaternary deposits. In the northern Eucla Basin, aeolian sand of the Wintrena Formation is the dominant dune forming unit of the Great Victoria Desert. The Wintrena Formation comprises very fine to medium, red brown to orange brown, moderately sorted calcareous sand. During periods of low sea level, fine calcareous material was blown inland forming a series of coastal foredunes and sief dunes as well as being incorporated into the soil over much of the southeastern portion of the Basin. Calcareous sediments belong to the Bridgewater Formation.

COMPANY EXPLORATION

Active exploration for heavy minerals in the Cainozoic Eucla and Murray Basins commenced during the 1980's as a result of increased environmental restrictions on East Coast deposits, high prices and improved demand. Previous mineral exploration in the Eucla Basin had focussed on sedimentary uranium and coal deposits. Exploration Pty Ltd in the search for uranium reported heavy minerals up to 8.27%, but the mineral assemblage comprised predominantly ilmenite (37%) and goethite (41%), with lesser amounts of zircon and rutile (Close, 1973). BP Mining Development Australia Pty Ltd in the search for uranium mineralisation reported that crystalline basement rocks from the Wilkinson Lakes area contained minor zircon, leucoxene and rutile (Weber, 1979).

PNC Exploration (Australia) Pty Ltd (1983) in the search for sedimentary uranium in the Tarcoola area reported several intersections of heavy minerals in carbonaceous (?Garford Formation) sediments within palaeochannels. The best intersection was 10% black heavy minerals in hole EE15. However, no samples were forwarded to MESA. This suggests that crystalline basement rocks around the Eucla Basin were suitable provenance areas for heavy minerals and the surrounding palaeodrainage channels transported these heavy minerals to the coast.

The recognition of stranded Tertiary coastal dunes by Benbow (1983, 1986 & 1990a) stimulated exploration during the 1980's for heavy mineral sands within the Eucla Basin. Table 1 summarises company exploration for mineral sands in the Eucla Basin with the location of previous EL's shown on Fig. 5. Summary data sheets of company exploration are presented in Appendix A.

AUSTRALIAN ANGLO AMERICAN LTD

Australian Anglo American Ltd explored for heavy mineral sands on EL 205, located along the west coast of Eyre Peninsula (Fig. 6). Exploration comprised regional mapping to delineate stranded Tertiary and Pleistocene beach deposits and their foredune systems (Hoyle, 1976). Target units were the Pidinga Formation equivalent Poelpana and Wanilla Formations as well as recent beach sands of the St. Kilda Formation and Semaphore Sand.

Samples from stranded beach and present day beaches together with basement samples were analysed for heavy minerals. Results were disappointing with only 27 of 156 samples showing heavy mineral concentrations >1%. The mineral assemblage was dominated by non-economic heavy minerals (ie: hornblende, biotite, goethite, magnetite, amphibole and epidote).

Hoyle (1976) reports that the stranded beach samples contained no significant heavy minerals and heavy mineral sands on present day beaches comprised predominantly magnetite associated with the weathering profile developed on the crystalline basement. Samples from Point Brown and Slade Point recorded high concentrations of heavy minerals up to 10.92%, however, the mineral suite comprised predominantly non-economic epidote, magnetite, hornblende and garnet (Hoyle, 1976).

Results show that crystalline basement rocks along the west coast of Eyre Peninsula are unsuitable provenance areas for economic heavy minerals, particularly rutile (Hoyle, 1976). The licence was subsequently relinquished.

BHP MINERALS LTD

BHP Minerals Ltd was a major explorer for heavy mineral sands within the Eucla Basin. Previous soil sampling for diamond indicator minerals on EL 1264 and 1265 reported trace ilmenite, zircon and rutile (BHP, 1985). EL's 1353, 1354 and 1355 were granted on 20 August 1986 to search for heavy minerals within the Ooldea Range. Target units were the Hampton Sandstone and Ooldea Sand.

During November 1986, a total of 169 holes (OL1-169) were drilled for 2930.8m along 9 traverses (Figs. 7-9) (Taylor & Tedder, 1987a, b). Drilling was designed to test possible coastal features delineated from regional topo-contour maps of the area. Drilling outlined several areas of low grade mineralisation. Significant intersections (>1% HM) are shown in Appendix B.

Mineralisation was confined to relatively narrow bands and the mineral assemblage was dominated by non-economic heavy minerals with only trace amounts of rutile. Due to the poor mineral assemblage and depth to mineralisation EL 1353 and 1354 were allowed to expire.

EL 1355 was extended and incorporated into a regional exploration program centred on the Ooldea Range which included EL's 1653, 1654 and 1655. Between 12 October and 11 November, 1990, 229 holes for 6447m were drilled within the 4 EL's (Figs. 10-12).

14 anomalous zones were outlined with the best zone being at the northern end of traverse 2 (M36 & M37) and the northern end of traverses 11 and 12 (M143-M148 & M169) (Darby, 1991a). Analytical results showed that the mineral assemblage ranged from moderately good to poor with the best mineral assemblage recorded for Anomalies 1, 2, 3, 10 and 11 (see Appendix B).

BHP sampled 7 company drill holes held at MESA Core Library for heavy mineral content. Results were disappointing with only 5 out of 29 samples recording >1% HM and the mineral assemblage was dominated by non-economic heavy minerals. Rutile contents were low averaging ~ 2%, with the highest rutile contents from 2 holes within the Barton Range (SAMP-5 & SAMP-6) (Darby, 1991b).

Darby (1991b) reported that the Ooldea Sand was barren with all mineralisation located within the Hampton Sandstone, usually at depth (av. 20-30m). Darby (1991a) reported that the Ooldea Range was unlikely to host an economic deposit due to the poor mineral assemblage and depth to mineralisation, but considered the area between the Ooldea Range and the Nullarbor Plain (seaward flank of the Ooldea Range) to be prospective, but access difficulties prevented exploration. The licences were subsequently relinquished.

Between October 1989 and March 1991, 212 holes totalling 5132m were drilled on EL's 1605, 1647, 1671, 1672 and 1703 in the search for heavy minerals within Tertiary Pidinga and Garford Formation sands on northwest Eyre Peninsula. Darby (1991c) reports that the Precambrian granitoids and Gawler Range Volcanics may be suitable provenances for heavy minerals which were transported to the coast by rivers during the Tertiary and may have been concentrated along palaeoshorelines at the eastern edge of the Eucla

Basin.

MESA aeromagnetic/radiometric data revealed 3 possible marine embayments along the northern margin of the Polda Basin (Benn, 1990). Drilling confirmed the presence of heavy minerals in embayment number 2 (Benn, 1990).

Results for the EL's revealed four zones of anomalous (low grade) mineralisation (see Appendix B). Mineralisation was confined to the Pidinga Formation, however, these anomalous zones were overlain by at least 10m of Quaternary sands which contain calcrete layers. Drill holes are shown on Figs. 13a and 13b.

Several suitable depositional environments were outlined but the mineralogy of heavy minerals was disappointing. From palaeogeographic reconstructions, it appears that the Gawler Range Volcanics was the main provenance for the Narlaby Palaeochannel which explains the high zircon content (Darby, 1991c). A possible Eocene palaeochannel southwest of Port Lincoln which may drain granulite grade rocks near Cummins is a possible exploration target (Darby, 1991c). Darby (1991c) concluded that the northwest Eyre Peninsula was unlikely to host a high grade deposit (>10% rutile) and any deposit would be a ilmenite and zircon deposit.

ABERFOYLE RESOURCES LTD

Aberfoyle Resources Ltd were a major explorer for mineral sands within the Murray Basin (Ferris & Hayball, 1993). Drilling on EL's 1520 and 1521 within the Eucla Basin failed to intersect the target Eocene Hampton Sandstone (Painter, 1990). Only trace heavy minerals were observed and the Licences were subsequently released. Drill hole locations are shown on Fig. 14.

CRA EXPLORATION PTY LTD

CRA Exploration Pty Ltd were granted 3 EL's (1570, 1571 & 1572) to explore for heavy minerals within the Narlaby Palaeochannel. Target units were the Eocene Pidinga Formation and the Miocene to Pliocene Garford Formation. Fifty holes were drilled across the palaeochannel, but only trace heavy minerals were observed in panned samples

(Marinelli, 1989). Particle size and specific gravity analysis confirmed the lack of heavy minerals (Marinelli, 1989).

NATIONAL MINERAL SANDS, SWAN REACH NL & PEKO EXPLORATION LTD

National Mineral Sands (NMS), Swan Reach NL and Geopeko under the Joint Venture Ceduna Heavy Minerals Project were the major explorers for mineral sands within the eastern margin of the Eucla Basin. Exploration centred on the Eocene Ooldea Range and other possible Eocene Coastal features which may contain heavy minerals. Target units were the Eocene Hampton Sandstone and Ooldea Sand. EL's 1597-1602, 1631, 1632 and 1633 were registered to National Mineral Sands (SA) NL and Swan Reach NL. EL's 1717, 1721 and 1722 were registered to Peko Exploration Ltd.

Between August 1989 and December 1991, 1017 holes, totalling 19 161.2m were drilled on the 12 EL's. Initial exploration by NMS comprised a regional air and ground survey to identify possible geomorphological features of interest. Samples from a bulldozer cut and a shallow hand auger hole in the Immarna area (EL 1602) recorded minor heavy minerals ranging from 0.16-1.59% HM (Besley & Olliver, 1990). The mineral suite comprised 65-85% altered ilmenite, 10-20% zircon, trace rutile and leucoxene (Besley & Olliver, 1990).

Australian Photogeologic Consultants undertook a photogeologic study of the eastern margin of the Eucla Basin and delineated a number of possible Eocene coastal landforms including large shoreline dunes, strandline beaches, islands, headlands, embayments, linear shorelines and 2 palaeodrainage networks which source crystalline basement rocks to the north and west (Besley & Olliver, 1990).

The first drilling program comprised 110 holes (EB001-110) on EL's 1597-1602 (Figure 15a). The best results were from Traverse 1 (EL 1597) and Traverse 3 (EL 1602), with all significant intersections of heavy minerals (>1% HM) tabled in Appendix C. The heavy mineral assemblage comprised 50-75% ilmenite, 12-34% zircon and approximately 5% rutile and Leucoxene (Besley & Olliver, 1990).

The second drilling program comprised 348 holes (EB111-458) (Figure 15b). Results were encouraging with the best intersections from the Immarna area (EL 1602) on traverses I-D, 14 Ext and 3. The best intersection was 27.2% HM in EB119 (38-40m) with the mineral suite comprising 51% zircon, 43% ilmenite/altered ilmenite and 3% rutile (Jurica & Rothnie, 1990). Microprobe analysis of the ilmenite returned an average TiO2 content of 66.2% (Jurica & Rothnie, 1990). Traverse 14 Ext showed a number of anomalous intersections, but mineralisation was localised and lacked lateral continuity (Jurica & Rothnie, 1990). Significant intersections are shown in Appendix C.

Jurica and Rothnie (1990) suggest that an upper layer of fine to medium sand on traverse I-D may be Colville Sandstone. However, Benbow (pers. comm.) suggests that the unit is more likely to represent the Ooldea Sand.

Drilling on EL's 1598, 1631, 1632 and 1633 (EB 459-549) (Figure 15c) during October-November 1990 was disappointing, with only 14 of the 1025 logging samples containing visible anomalous concentrations of heavy minerals (Morris & McInnes, 1991). The majority of samples were from Line 12 and mineralisation was predominantly magnetite derived from the weathering of basic rocks (Morris & McInnes, 1991). The abundance of indurated sand and silcrete horizons in these areas presented difficult drilling conditions further downgrading these prospects.

Between May - June 1991, 290 holes (EB550 - 839) (Figure 15d) were drilled along 14 lines on EL 1602 to delineate mineralisation discovered by previous drilling (Jurica, 1991). Two highly anomalous heavy mineral zones were outlined with significant intersections (>1% HM) shown in Appendix C. Ninety one soil samples were collected using a regular grid over the Immarna area to test for surface expression of below surface heavy mineral zones, which may have resulted from concentration by wind action during the period after peak Miocene transgression (Jurica, 1991). Soil sampling on EL 1717 located a minor anomalous zone approximately 4 km east of Barton (Jurica, 1991).

Jurica (1991) reports that interpretation of drill hole logs suggests that mineralisation occurs in 2 distinct

horizons of different age, grain size and mineral assemblage. Type 1 was a Late Eocene/Oligocene fine grained (~ 0.08mm) sand with the heavy mineral fraction comprising 25-50% zircon and up to 70% ilmenite and leucoxene (Jurica, 1991). Type 2 was a coarse grained (~ 0.17mm), Middle Miocene sand comprising predominantly ilmenite and leucoxene (up to 85% of the heavy fraction) with minor zircon (Jurica, 1991). However, reviewing limited drill hole samples and sections, the fine grained sand probably represents Ooldea Sand and the coarser sand represents the Hampton Sandstone. This may indicate possible reworking of deposits during successive regression/transgression events.

Between November - December 1991, 123 holes (EB840 - 962) were drilled at Immarna (EL 1602) to test the southern extent of mineralisation (Jurica, 1992). Results were disappointing with 2 weak anomalous zones outlined, but the thick Quaternary cover renders this area uneconomic (Jurica, 1992).

A total of 55 holes were drilled on EL 1717 to test the anomalous zone outlined by previous soil sampling. Results were disappointing with only 6 logging samples recording >1% HM (Jurica, 1992).

No further exploration for heavy minerals was carried out and EL's 1598, 1599, 1600, 1601, 1631, 1632, 1633, 1717, 1721 and 1722 were allowed to expire. EL 1597 and 1602 are currently held by Peko-Wallsend Operations Ltd.

SOUTHERN VENTURES NL

EL 1614 was granted on 4 October 1989 to explore for possible Tertiary coastal dunes west of the Lincoln Uplands. Analysis of water bores showed minor heavy minerals (1.41% TiO₂ and 0.28% ZrO₂ recorded in hole Bore General File No. 887 from 40-46.5m). Geomorphological mapping and drilling revealed the Central Basin comprised estuarine sediments.

Drilling outlined an low grade anomalous zone approximately 800m wide by 15 km long within the Wanilla Channel (Ward, 1990). The Wanilla Channel is located between the Lincoln Uplands and a NNE oriented line of basement highs which were provenance areas for heavy minerals. Heavy minerals were confined to a very fine to coarse,

angular, poorly sorted sand unit, most probably representing the Poelpena Formation.

Follow-up drilling failed to locate a high grade deposit and mineral sand exploration ceased in mid 1990 and the base metal potential of the was investigated.

MESA DRILLING

During March - April, 1986, 9 holes (OR-1 - OR-9) totalling 343.5m were drilled within the Ooldea Range along the railway line west of Barton. Holes ranged in depth from 14.5m to 93m. The aim of the drilling program was to determine the origin and stratigraphy of the Ooldea Range. Drill hole samples are currently held at MESA Core Library, Glenside. Drill hole locations are shown on Fig. 10.

Between June - December 1993, 184 RC holes totalling 10 126m were drilled on BARTON. The main aim of the drilling program was to test the basement to aid aeromagnetic interpretation of the northwest Gawler Craton and to stimulate company exploration. A number of holes were drilled in the Ooldea and Barton Ranges with trace heavy minerals observed in many samples (Morris, Hill & Ferris, 1994). Seven samples were forwarded to Amdel for heavy mineral determination. Results are presented below:

D/hole Others	Interval	HM%	I1	Z	L	R	G	
	(m)							
LBR17	16-22	0.76	56	17	15	3	tr	9
LBR24	59-61	7.90	2	2	tr	2	74	20
LBR24	62-64	5.55	2	1	tr	1	70	26
BAR29	16-18	1.56	60	12	3	2	2	20
BAR33	44-56	1.11	55	10	3	1	5	26
TAL52	28-32	0.68	56	20	10	4	-	10
TAL64	10-22	0.18	50	15	20	2	-	13

Il - ilmenite, Z - zircon, L - leucoxene, R - rutile, G - goethite

SUMMARY AND CONCLUSIONS

The Eucla Basin formed in response to the separation of Australia and Antarctica during Tertiary times.

Vast quantities of sediments were deposited within the Basin by the many rivers surrounding the Basin draining areas of crystalline basement rocks. These predominantly quartzose sediments were sorted by wave action and sea level fluctuations during the Early to Middle Eocene marine transgression to produce large coastal dunes including the Barton, Paling and Ooldea Ranges. These conditions were conducive for the concentration and formation of heavy mineral deposits. Company exploration has shown the Ooldea Range contains a number of anomalous zones of heavy minerals.

Initial exploration within the Eucla Basin and surrounding palaeodrainage channels focussed on sedimentary uranium and lignite. Several significant intersections of heavy minerals were reported including 8.27% HM by CRA Exploration Pty Ltd (Close, 1973) from the Lake Anthony - Lake Bring area. Basement rocks surrounding the Eucla Basin contain leucoxene, zircon, rutile, zircon and pyrite (Weber, 1979).

The main stimulus for company exploration was the recognition of a series of coastal dunes including the Ooldea Range by Benbow (1983; 1988: Benbow & Crooks, 1988). Detailed work by Benbow (1988; 1990a; in prep) on unravelling the Tertiary stratigraphy of the Eucla Basin and palaeodrainage and palaeogeographic reconstructions has greatly enhanced the exploration potential of the area.

The Ooldea Range was the main target for exploration with several zones of anomalous mineralisation outlined. Exploration comprised detailed geomorphological mapping and followup drilling along traverses across geomorphological features.

National Mineral Sands, Swan Reach NL and Peko Exploration Ltd under the Joint Venture Ceduna Heavy Minerals Project outlined the Immarna Prospect (EL 1602) which comprised 2 heavy mineral strandlines. Mineralisation was present in 2 distinct horizons which have different characteristics (ie: grain size, composition).

Preliminary metallurgical analysis of 2 representative bulk samples from the different horizons by Ammtec gave the following results:

	%HM	I1%	$TiO_2\%$	Zr%	$ZrO_2\%$
upper	2.77	86.1	62.1	11	
lower	1.94	66.1	61.0	26	62.8

The TiO₂ content of both samples is very good and compares favourably to other ilmenites including Eneabba which averages 60-61% TiO₂ (Towner, 1990). Jurica and Rothnie (1990) report that the ilmenite chemistry possibly satisfies specifications for chloride route processing. Jurica and Rothnie (1990) report that impurities present within the zircon concentrate include minor Fe₂O₃ and TiO₂, which could possibly be removed to improve the ZrO₂ content to 65%. Grain size analysis suggests that the heavy minerals could be separated by conventional mineral sands treatment methods, although the different grain size between the 2 types may create problems if the heavy minerals are processed together (Jurica & Rothnie, 1990).

Drilling near Lake Ifould by the Ceduna Joint Venture showed some encouraging results with some significant intersections within the Ooldea Sand. The best intersection was 27.2%HM in EB119 (38-40m) with the mineral assemblage comprising 51% zircon, 43% ilmenite and altered ilmenite and 3% rutile (Jurica & Rothnie, 1990). Limited microprobe analysis returned an average TiO2 assay of 66.2% (Jurica & Rothnie, 1990). Other significant intersections included 16%HM in EB115 (52-54m) and 9.4% HM in EB122 (38-40m). The depth to mineralisation greatly downgrades this prospect. Minor anomalous heavy mineral zones were also reported on traverses 4, 5/6 Extension and 21 (Jurica & Rothnie, 1990).

BHP Minerals Ltd outlined 14 anomalous heavy mineral zones within the Ooldea Range on EL's 1355, 1653, 1654 & 1655 (see Appendix B). The best zone was Anomaly No. 1 (traverse 2) centred on holes M36 (30-36m) and M37 (28-39.5m). The mineral assemblage comprised 59% ilmenite, 17% zircon, 5% leucoxene, 1% rutile and 18% noneconomic heavy minerals (Benn, 1990). Drill hole M178 (Anomaly No. 10) averaged 2.85%HM over 4m (34-38m) with the mineral assemblage comprising 31% ilmenite, 47% zircon, 5% leucoxene, 2% rutile, 2% monazite and 13% noneconomic heavy minerals (Benn, 1990). Generally, the mineral assemblages were dominated by non-

economic heavy minerals with only Anomalies 2, 3 and 11 recording high ilmenite and zircon (see Appendix B).

BHP Minerals Ltd outlined 4 anomalous strandlines along the west coast of Eyre Peninsula (EL's 1605 & 1647). However, grades were relatively low and the mineral assemblage was dominated by ilmenite and zircon. Due to the lack of rutile, difficult drilling conditions and the depth to mineralisation, BHP Minerals Ltd subsequently abandoned heavy mineral exploration within the Eucla Basin.

A low grade anomalous zone approximately 800m wide by 15 km long was outlined by Southern Ventures NL (EL 1614) within the Wanilla Channel. Heavy minerals were confined to estuarine sediments of the Poelpena Formation possibly derived from surrounding basement highs. Other company exploration within the Eucla Basin failed to locate any significant heavy mineral zones.

RECOMMENDATIONS

- 1. a complete/detailed study on the stratigraphy, palaeogeography of the Eucla Basin and surrounding palaeodrainage networks to determine provenance, energy and depositional environments to accurately target possible zones of heavy mineral concentration;
- 2. further drilling particularly within the Barton Range and areas of shallow Hampton Sandstone. Further drilling within palaeochannels to understand flow rates and to explore for other placer minerals (ie: gold etc.) and clay minerals (ie: palygorskite) and possibly diamonds if rocks in the Abminga area are found to be diamond bearing;
- 3. research other exploration techniques including surface sampling (Geopeko Exploration Ltd had limited success in the Immarna and Barton areas) which may be useful and relatively inexpensive exploration methods.

REFERENCES

Barnes, L.C. & Pitt, G.M., 1976. The Tallaringa palaeodrainage system. *South Australia. Geological Survey. Quarterly Geological Notes*, 59:2-6.

- Benbow, M.C., 1983. Aspects of Exploration of the east margin of the Eucla Basin. *In: South Australia Exploration Potential*. Symposium, Adelaide, 1983. Australian Mineral Foundation and Department of Mines and Energy.
- Benbow, M.C., 1986. TALLARINGA map sheet. South Australia. Geological Survey. Geological Atlas 1:250 000 Series, sheet SH53-5.
- Benbow, M.C., 1989. History of recognition and delineation of coastal aeolian land forms of the Eucla Basin, South Australia. *South Australia. Geological Survey. Quarterly Geological Notes*, 109:9-14.
- Benbow, M.C., 1990a. Tertiary coastal dunes of the Eucla Basin, Australia. *Geomorphology*, 3:9-29.
- Benbow, M.C., 1990b. Heavy mineral sand province of western South Australia. *In*: South Australia Exploration towards 2000. Extended Abstracts. *South Australia. Department of Mines and Energy. Report Book* 90/78.
- Benbow, M.C., 1992., Geomorphology and geology. *In*: Copley, P. & Kempes, C.M. *A biological survey of the Yellabinna region*. South Australia. Department of Environment and Land Management.
- Benbow, M.C., 1993. TALLARINGA. South Australia, sheet SH53-5. South Australia. Geological Survey. 1:250 000 series Explanatory Notes.
- Benbow, M.C., & Pitt, G.M., 1978. The Garford Formation. *South Australia. Geological survey. Quarterly Geological Notes*, 68:8-15.
- Benbow, M.C. & Crooks, A.F., 1988. Topographic contour maps and data, western *South Australia*. *South Australia*. *Department of Mines and Energy*. *Report Book* 88/44.
- Benbow, M.C., Lindsay, J.M., Harris, W.K & Cooper, B.J., 1982. Latest Eocene marine incursion, northeast margin of the Eucla Basin. *South Australia. Geological Survey. Quarterly Geological Notes*, 81:2-9.

- Benbow, M.C., Lindsay, J.M. and Alley, N.F. 1995. Eucla Basin and Palaeodrainage. *In* Drexel, J.F. and Preiss, W.V. (Eds). The geology of South Australia. Vol. 2, The Phanerozoic. *South Australia*. *Geological Survey, Bulletin*, 54: 178-186.
- Benn, C. 1990. Report for the quarter ended 27 September 1990 for BHP Minerals Ltd. South Australia. Department of Mines and Energy. Open file Envelope 8230 (unpublished).
- Besley, R.E. and Olliver, J.G., 1990. EL's 1597, 1598, 1599, 1600, 1601, 1602. Six monthly report for the period 25 July to 25 January 1990 for National Mineral Sands Pty Ltd. South Australia. Department of Mines and Energy. Closed file Envelope 8219 (confidential).
- Binks, P. and Hooper, G., 1980. Narlaby Palaeochannel, South Australia. Progress report on exploration for sandstone uranium mineralisation 1979-1980. For Carpentaria Exploration Company Pty Ltd. South Australia. Department of Mines and Energy. Open file Envelope 4010 (unpublished).
- Close, S.E., 1973. Annual report Lake Bring SML 711, South Australia, for CRA Exploration Pty Ltd. *South Australia. Department of Mines and Energy. Open file Envelope* 2093 (unpublished).
- Darby, P., 1991a. EL 1653, 1654 & 1655. Report for the quarter ended 29 April 1991 and final report. For BHP Minerals Ltd. South Australia. Department of Mines and Energy. Open file Envelope 8302 (unpublished).
- Darby, P., 1991b. EL 1355. Report for the quarter ended 1 June 1991. For BHP Minerals Ltd. *South Australia*. *Department of Mines and Energy*. *Open file Envelope* 6817 (unpublished).
- Darby, P., 1991c. EL 1605, 1647, 1671, 1672 and 1673. Joint report for the quarter ending 31 August 1991. For BHP Minerals Ltd. South Australia. Department of Mines and Energy. Open file Envelope 8230 (unpublished).
- Falvey, D.A., 1974. The development of continental margins in plate tectonics theory. *Journal of Australian Petroleum Exploration Association*. 14

(1): 95-106.

Flint, R.B., 1990. Explanatory notes for ELLISTON 1:250 000 map sheet. *South Australia. Department of Mines and Energy. Report Book* 90/74.

Jurica, A., 1991. Report No. WA91/48S Ceduna heavy minerals project. Period report for 25 April - 24 July 1991 for Peko Exploration Ltd. *South Australia. Department of Mines and Energy. Closed file Envelope* 8219 (confidential).

Jurica, A., 1992. Report No. WA92/17S Ceduna heavy minerals project. Quarterly report for the period ending 24 April 1992 for Peko Exploration Ltd. *South Australia. Department of Mines and Energy. Closed file Envelope* 8219 (confidential).

Jurica, A. and Rothnie, C., 1990. Report No. WA90/83S Annual Report for ELs 1597, 1599, 1600, 1601 & 1602. January 1990 - January 1991. South Australia. Department of Mines and Energy. Closed file Envelope 8219 (confidential).

Lindsay, J.M. and Harris, W.K., 1975. Fossiliferous marine and non-marine Cainozoic rocks from the eastern Eucla Basin, South Australia. *Mineral Resources Review. South Australia*, 138:29-42.

Lowry, D.C., 1970. Geology of the Western Australian part of the Eucla Basin. *Western Australia. Geological Survey. Bulletin* 122.

Ludbrook, N.H., 1958. The Eucla Basin in South Australia. *In*: Glassner, M.F. & Parkin, L.W. (Eds), The geology of South Australia. *Geological Society of Australia. Journal*, 52(2):127-135.

Marinnelli, J.F., 1989. First and final quarterly reports for EL 1570, EL 1571 and EL 1572 for CRA Exploration Pty Ltd. *South Australia. Department of Mines and Energy. Open file Envelope 8153* (unpublished).

Martin, A.R., Rankin, L.R., Benbow, M.C. & Daly, S.J., 1989. Helicopter survey of the geology of the BARTON and TARCOOLA 1:250 000 map sheets. *South Australia. Department of Mines and Energy. Report Book* 89/58.

McGowran, B., 1989. The later Eocene

transgressions in Southern Australia. *Alcheringa*, 13:45-68.

Morris, B.J., Hill, P.W. and Ferris, G.M., 1994. Barton bedrock drilling project 1993. *South Australia. Department of Mines and Energy. Report Book* 94/19.

Morris, L. and McInnes, P., 1991. EL's 1598, 1631, 16322 & 1633. Joint annual report for periods ending 25 January 1991 (EL 1598) and 20 December 1990. For Ceduna Heavy Mineral Project. South Australia. Department of Mines and Energy. Open file Envelope 8471 (unpublished).

Painter, J.A.C., 1990. Progress report on exploration for the fifth quarter ended 20 December 1989, EL 1520 & 1521 for Aberfoyle Resources Ltd. *South Australia*. *Department of Mines and Energy*. *Open file Envelope* 8104 (unpublished).

Pitt, G.M., 1980. Paleodrainage systems in western South Australia: Their detection by LANDSAT imagery, stratigraphic significance and economic potential. *South Australia. Department of Mines and Energy. Report Book* 79/114 (unpublished).

PNC Exploration (Australia) Pty Ltd., 1983. EL 1058. Report for the quarter ending 24 July 1983. South Australia. Department of Mines and Energy. Open file Envelope 4943 (unpublished).

Rankin, L.R. and Benbow, M.C., 1992. Preliminary explanatory notes for the BARTON 1:250 000 sheet. *South Australia. Department of Mines and Energy. Report Book* 89/83.

Tate, R., 1879. The natural history of the country around the head of the Great Australian Bight. *Transactions of the Royal Society of Australia*. 2:94-128.

Taylor, R.J. and Tedder, I., 1987a. EL 1353. Report for the quarter ended 19 February 1987. For BHP Minerals Ltd. *South Australia. Department of Mines and Energy. Open file Envelope* 6816 (unpublished).

Taylor, R.J. and Tedder, I.,b 1987a. EL 1354. Report for the quarter ended 19 February 1987. For BHP Minerals Ltd. South Australia. Department of Mines and Energy. Open file Envelope 6817

(unpublished).

Towner, R., 1990. Australia: a major world market player in mineral sands. *Australian Mineral Sands Industry Symposium*.

Twidale, C.R. and Campbell, E.M., 1985. The form of the land surface. In: Twidale, C.R., Tyler, M.J. and Davies, M. (Eds) Natural History of Eyre Peninsula. *Royal Society of South Australia*. *Occasional Publications* 4:57-76.

Ward, C.W., 1990. The Strawberry Hill and Tumby Bay mineral sands project - EL 1614 Summary Report. South Australia. Department of Mines and Energy. Open file Envelope 8240 (unpublished).

Weber, G.B., 1979. Drilling programme No. 2, EL 413 & EL 514 - Wilkinson Lakes area South Australia. BP Mining Development Australia Pty Ltd. South Australia. Department of Mines and Energy. Open file Envelope 3570 (unpublished).

APPENDIX A SUMMARY DATA SHEETS EUCLA BASIN, SOUTH AUSTRALIA

COMPANY PAGE	EL	
Australian Anglo American Ltd	205	A1
BHP Minerals Ltd	1353	A2
BHP Minerals Ltd	1354	A3
BHP Minerals Ltd	1355	A4
Aberfoyle Resources Ltd	1520, 1521	A5
CRA Exploration Ltd	1570, 1571, 1572	A6
NMS, Swan Reach NL & Geopeko	1597-1602, 1631-1633, 1717, 1721-22	A7
BHP Minerals Ltd	1605, 1647, 1671, 1672, 1703	A9
Southern Ventures NI	1614	A10
BHP Minerals Ltd	1653, 1654, 1655	A11

COMPANY:	AUSTRALIAN ANGLO AMERICAN LTD

TENEMENT: EL 205

ENVELOPE: 2654

DURATION: August 1975 - December 1975

1:250 000 SHEET: STREAKY BAY, ELLISTON & KIMBA

TARGET: Heavy mineral sands

AGE/ROCKS Tertiary to recent sands

STRUCTURAL CONTROL: Precambrian basement and Tertiary to recent beach and dune

deposits

EXPLORATION SUMMARY: An area of approximately 3200 km² was mapped at 1:250 000 scale and 156 surface grab samples collected. Samples comprised 25 from raised beach and fore-dune deposits, 79 from present day beach sands, 41 from basement, Tertiary and basal Pleistocene rocks, 2 samples from hand auger holes on present day beaches and 7 samples collected near PortLincoln outside the licence area. Samples were submitted for heavy liquid separation and 27 samples with heavy mineral contents >1% were forwarded to Central Mineralogical Services for determination of the heavy mineral suite.

MINERALISATION

/PROSPECTS: Mapping outlined 5 raised beach deposits but these contained no heavy minerals. Anomalous heavy mineral contents were recorded for 27 samples but the heavy mineral assemblage was dominated by uneconomic heavy minerals including goethite, Fe oxides and various metamorphic minerals. The Licence was subsequently relinquished.

TENEMENT: EL 1353

ENVELOPE: 6816

DURATION: August 1986 - August 1988

1:250 000 SHEET: BARTON & FOWLER

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Hampton Sandstone and Ooldea Sand

STRUCTURAL CONTROL: Tertiary strandlines containing lenses of heavy minerals on

SW slopes of the Ooldea Range

EXPLORATION SUMMARY: 5 stream sediment samples showed the presence of heavy minerals with values ranging from 0.12-0.32%, with zircon>rutile. 55 RC holes were drilled along 3 traverses (2,3 & 7) for a total of 863.8m. Hole spacing varied between 400m and 200m. Each 2m sample was split on site using a Jones Splitter to produce a 3-5kg sample, from which a composite for each hole was obtained by grab samples from each 2m interval.

Samples were panned on site to give a visual estimate of heavy mineral content and selected 2m samples together with all composite samples were forwarded to BHP Mineral Laboratory, Perth for heavy mineral determination.

MINERALISATION

/PROSPECTS: Results from the drilling program were poor with only trace heavy minerals reported. The best intersections were;

Traverse 2
OL76 (0-6m) - 1.21% heavy minerals
OL68 (16-18m) - 0.99% "
OL69 (14-16m) - 1.01% "
Traverse7
OL111 (0-18m) - 1.20% "
OL111 (14-16m) - 1.18% "

No anomalous heavy mineral horizons were encountered on Traverse 3.

The mineral assemblage was dominated by non-economic heavies with only trace amounts of rutile.

Due to the poor mineral assemblage, depth of mineralisation and fine grain size (18 - $75\mu m$), the Licence was relinquished.

TENEMENT: EL 1354

ENVELOPE: 6817

DURATION: August 1986 - August 1987

1:250 000 SHEET: FOWLER

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Hampton Sandstone and Ooldea Sand

STRUCTURAL CONTROL: Tertiary strandlines adjacent to the Ooldea Range containing

lenses of heavy minerals

EXPLORATION SUMMARY: Loam samples were collected near outcropping granite gneiss at Euria Well and Midgerie Rockhole. Analysis showed trace amounts of ilmenite, zircon and rutile. 43 RC holes were drilled along 2 traverses (4 & 5) for a total of 863m. Hole spacing varied between 400m and 200m.

Each 2m sample was split on site using a Jones Splitter to produce a 3-5kg sample, from which a composite for each hole was obtained by grab samples from each 2m interval.

Samples were panned on site to give a visual estimate of heavy mineral content and selected 2m samples together with all composite samples were forwarded to BHP Mineral Laboratory, Perth for heavy mineral determination.

MINERALISATION

/PROSPECTS: Results from the drilling program were poor. The best intersection came from hole OL155 on Traverse 5, which recorded 1.41% heavy minerals over 10m (30-40m). However, the mineral assemblage was poor with only trace rutile and zircon. The Licence was subsequently relinquished.

TENEMENT: EL 1355

ENVELOPE: 6818

DURATION: September 1986 - August 1991

1:250 000 SHEET: OOLDEA

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Hampton Sandstone and Ooldea Sand

STRUCTURAL CONTROL: Tertiary strandlines adjacent to the Ooldea Range

EXPLORATION SUMMARY: RC air core drilling between 1986-1990 of 71 holes for 1204m along 4 traverses (1, 6, 8 & M) was carried out in the Licence area. Each 2m sample was split on site using a Jones Splitter to produce a 3-5kg sample, from which a composite for each hole was obtained by grab samples from each 2m interval.

Samples were panned on site to give a visual estimate of heavy mineral content and selected 2m samples together with all composite samples were forwarded to BHP Mineral Laboratory, Perth for heavy mineral determination. Samples from the M holes(M15 - M20) were forwarded to Amdel for analysis.

7 company drill holes held at MESA core library were sampled and the heavy mineral content determined by Amdel.

MINERALISATION

/PROSPECTS: Heavy mineral occurrence on EL 1355 were generally low and no economic deposits were located. The best intersections were;

Traverse 1

OL9 (0-20m) -1.61% heavy minerals Traverse 6 OL39 (0-24m) -1.35% OL39 (10-12m) -3.06% OL159 (22-23m) -1.06% OL160 (4-6m) -1.05% OL160 (6-8m) -0.84% OL160 (8-10m) -0.96% OL160 (10-12m) -1.74% OL160 (0-12m) -1.00%

No significant intersections were reported from traverse 8 and holes

M15-20.

Results from company drill holes range from 0.06 - 5.40% heavy minerals but rutile content was very low and the mineral assemblage was dominated by non-economic heavy minerals.

COMPANY: ABERFOYLE RESOURCES LTD

TENEMENT: EL 1520 & 1521

ENVELOPE: 8104

DURATION: September 1988 - March 1990

1:250 000 SHEET: CHILDARA

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Hampton Sandstone

STRUCTURAL CONTROL: Tertiary strandlines containing lenses of heavy minerals

EXPLORATION SUMMARY: After reviewing available literature, a study of LANDSAT data and topographic maps outlined possible palaeoshorelines. RC air core drilling was carried out along existing roads for 97 holes and a cumulative depth of 1953m. 100-150g grab samples were taken from each 2m interval. Part of the sample was bagged and a second sample was panned on site to visually assess the percentage of heavy minerals.

MINERALISATION

/PROSPECTS: Drilling failed to intersect the prospective Eocene Hampton Sandstone and only trace heavy minerals were observed. No samples were submitted for analysis and the Licences were relinquished.

COMPANY: CRA EXPLORATION PTY LTD

TENEMENT: EL 1570, 1571 & 1572

ENVELOPE: 8153

DURATION: February 1989 - June 1989

1:250 000 SHEET: STREAKY BAY & YARDEA

TARGET: Heavy mineral sands

AGE/ROCKS: Tertiary Garford and Pidinga Formations

STRUCTURAL CONTROL: Tertiary sediments within the Narlaby Palaeochannel

EXPLORATION SUMMARY: A total of 50 RC holes were drilled on the EL's for a total of 1 213m. Holes were drilled across the Narlaby Palaeochannel at 1km spacing and samples were collected at 1m intervals. All samples were panned on site to test for heavy minerals. Drill holes were also gamma logged. A total of 11 samples were forwarded to CRAE's Belmont Laboratory for particle size determination and specific gravity analysis.

MINERALISATION

/PROSPECTS: Results were disappointing with no significant intersections of heavy minerals encountered with only trace zircon observed in some panned samples. Due to poor results and large depths to basement, the Licences were relinquished.

COMPANY: NATIONAL MINERAL SANDS, SWAN REACH NL &

PEKO EXPLORATION LTD

TENEMENT: EL 1597, 1598, 1599, 1600, 1601, 1602, 1631, 1632, 1633,

1717, 1721 & 1722

DURATION: EL 1597, 1599, 1600, 1601 - July 1989 - January 1992

EL 1598, 1602 - July 1989 - ongoing

EL 1631, 1632, 1633 - June 1989 - June 1991 EL 1717, 1722 - May 1991 - May 1992 EL 1721 - May 1991 - May 1992

ENVELOPE: 8471, 8561 & 8219 (Env 8219 Closed File)

1:250 000 SHEET: OOLDEA, BARTON, FOWLER, CHILDARA, STREAKY

BAY, ELLISTON & YARDEA

TARGET: Heavy mineral sands

AGE/ROCK UNITS: Eocene Hampton Sandstone and Ooldea Sand

STRUCTURAL CONTROL: Cainozoic palaeo-strandlines and associated

geomorphological features

EXPLORATION SUMMARY: Initial exploration comprised collection of samples from a bulldozer cut and 4 shallow auger holes. Geomorphic maps of the eastern margin of the Eucla Basin were generated by Australian Photogeologic consultants showing large shoreline dunes, strandline beaches, islands, headlands, embayments and linear shorelines present within the licences.

1017 RC air core holes were drilled on the 12 Licence areas for a total of 19 161.2m between 1989-1992.

Initial exploration was carried out by National Mineral Sands Pty Ltd on EL's 1597, 1598, 1600, 1601 and 1602. 110 holes (EB 001-110) were drilled along 8 traverses for 1608.8m. Samples were taken at 1.5m intervals and split on site using a cyclone-spinner attachment. Part of the sample was forwarded to Australmin Holding Ltd laboratory, NSW for heavy mineral determination, with check analyses undertaken by Amdel.

Stage 2 comprised RC air core drilling of 348 holes (EB 110-458) totalling 11 921m by Geopeko. Each 2m interval was sampled and samples split on site using a rotary splitter attached to the sample cyclone. Samples were panned on site and intervals with a visual estimate of heavy minerals >0.5% were submitted to Amdel for heavy mineral determination. Check samples were forwarded to Western Geochem Laboratories, Perth. Initial results were encouraging and 2 representative bulk samples were

prepared and submitted to Australian Metallurgical and Mineral Testing Consultants Pty Ltd (Ammtec), Perth.

Between October and November, 1990, 91 holes (EB 459-549) totalling 2020.4m were drilled on EL 1631-33 along 8 lines. Results were very disappointing with only 14 of 1025 logging samples sent for analysis.

Between 5 May - 13 June 1991, 290 holes (EB 550- 839) were drilled along 14 lines totalling 8 165m in the Immarna area. Soil sampling was carried out in the Immarna (EL 1602) and Barton areas (EL 1717) with a total of 116 samples collected.

In December 1991, 178 holes were drilled by Geopeko. 123 holes (EB 840-962) were drilled along 4 lines in the Immarna area for 2 443m. 55 holes (EB 963-1017), totalling 1 168m were drilled at Barton (EL 1717).

MINERALISATION

/PROSPECTS: Initial results from reconnaissance samples showed the presence of heavy minerals with results ranging from 0.16-1.59% HM comprising predominantly altered ilmenite (65-80%) and zircon (10-20%).

2 anomalous zones were outlined during stage 1 (EB 001-110) on Traverse 1 and 3 (EL 1597 & 1602) with mineralogy predominantly altered ilmenite (50-75%) and zircon (12-34%).

During stage 2 (EB 111-458), the best intersections were from the Traverses I-D, 14 Ext and 3 in the Immarna area (EL 1602). The best intersection was 27.2% HM in EB 119 (38-40m) with the mineral assemblage comprising 51% zircon, 43% ilmenite/altered ilmenite and 3% rutile. Microprobe analysis returned average TiO_2 assay of 66.2% (range 61.7-70.5%). Many samples showed heavy mineral contents >1%, but mineralisation was relatively deep (av 40m below surface).

At Immarna, drill hole information suggests that mineralisation was present in 2 distinct horizons which differ in age, grain size and HM assemblage. 2 representative bulk samples (1 from each zone) were analysed with the HM concentration from the upper horizon being 2.77% HM comprising 86.1% altered ilmenite & leucoxene. The lower horizon recorded 1.94% HM comprising 66.1% altered ilmenite & leucoxene.

Stage 3 (EB 550-839) outlined 2 anomalous zones in the Immarna area, but grades and volumes were uneconomic.

Drill holes EB840-962 were drilled to test the extent of mineralisation at the Immarna Prospect, due due to thick Quaternary cover, the area was considered unprospective.

Holes EB963-1 017 on BARTON failed to intersect significant mineralisation with only 6 samples recording >1% HM.

See Appendix C for all drill hole samples which assayed >1% HM.

TENEMENT: EL 1605, 1647, 1671, 1672 & 1703

ENVELOPE: 8230

DURATION: EL 1605 - August 1989 - February 1992

EL 1647 - March 1990 - March 1992

EL 1671, 1672 - August 1990 - August 1992 EL 1703 - February 1991 - February 1992

1:250 000 SHEET: STREAKY BAY, ELLISTON, KIMBA & LINCOLN

TARGET: Heavy mineral sands

AGE/ROCK: Pliocene to Eocene marginal marine sands of the Pidinga and

Garford Formations

STRUCTURAL CONTROL: Pliocene to Eocene palaeo-shorelines containing lenses of

heavy minerals

EXPLORATION SUMMARY: 3 regional RC air core drilling programs were undertaken on the licences comprising 212 holes for 5132m.

The first drilling program between 2-11 October 1989, comprised 71 holes for 1357m with holes spaced at intervals ranging from 1-2km. Downhole gamma logging of

the first 54 holes showed no radioactive heavy minerals. Samples were taken at 2m intervals and panned on site for

traces of heavy minerals. 171 composite samples were forwarded to Classic Comlabs for Ti

and Zr determination by XRF.

93 holes totalling 2428m were drilled along 7 traverses (T8-T13 & traverse Tal) between 9-23 August 1990. Sampling commenced at the base of the Bridgewater

Formation. Samples were collected every 2m and split on site using a Jones riffle splitter. Samples were forwarded to Classic

Comlabs for heavy mineral determination

and detailed mineralogy on composites samples.

Between 7-17 March 1991, 48 holes totalling 1346m were drilled along 3 traverses (8, 14 & 15). All holes were down hole gamma logged. Sampling was as above. 421 samples were submitted for heavy mineral determination and 12 composite samples were forwarded to Amdel for heavy mineral determination.

MINERALISATION

/PROSPECTS: Drilling outlined 4 zones of low grade mineralisation, however the mineral assemblage was dominated by ilmenite and uneconomic heavy

minerals. The Licences were relinquished due to poor mineral assemblage, low grade, high overburden (>10m) and difficult drilling conditions.

COMPANY: SOUTHERN VENTURES NL

TENEMENT: EL 1614

ENVELOPE: 8240

DURATION: October 1989 - January 1994

1:250 000 SHEET: LINCOLN

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Wanilla Formation

STRUCTURAL CONTROL: Tertiary to Pleistocene palaeoshorelines and tombola facies

EXPLORATION SUMMARY: Initial exploration comprised examination of MESA Open file Envelopes and the Bore General File in order to identify prospective targets in the

licence area. A search of drill holes held at DME Core Library and 50g composite samples were forwarded to Analabs for determination of TiO₂ and ZrO₂ by XRF. A photogeological study identified a possible Pleistocene shoreline.

Regional reconnaissance air core RC drilling of 167 holes for 4049m was undertaken. Samples were collected every metre and a total of 816 samples were forwarded to Analabs for determination of TiO_2 and ZrO_2 by XRF.

MINERALISATION

/PROSPECTS: Initial results were encouraging with 1.41% TiO₂ & 0.28% ZrO₂ over a 6.5m interval (40-46.5m) from hole Bore General File No. 887.

Results from drilling showed heavy mineral intersections on the licence area were prevalent with the best intersections being;

<u>Sample</u>	$\%\text{TiO}_2$	$ppm ZrO_2$
315401	1.94	1248
315500	1.60	843
315525	2.54	558
315553	2.00	684
315643	2.13	850
315715	2.26	596

Drilling outlined a low grade anomalous zone approximately 800m wide by 15 km long within the Wanilla Channel, comprising poorly sorted, angular sand, derived from surrounding basement highs. However no economic deposit was outlined and heavy mineral exploration ceased in mid 1990.

TENEMENT: EL 1653, 1654 & 1655

ENVELOPE: 8302

DURATION: April 1990 - April 1991

1:250 000 SHEET: OOLDEA, WYOLA & MAURICE

TARGET: Heavy mineral sands

AGE/ROCKS: Eocene Ooldea Sand & Hampton Sand

STRUCTURAL CONTROL: Palaeo-beach ridges within the Ooldea Range and adjacent

areas.

EXPLORATION SUMMARY: A total of 229 holes totalling 6447m were drilled along 13 Traverses. 12 holes were gamma ray logged. Ground magnetic lines were carried out along 3 Traverses but drilling failed to locate anomalous mineralisation.

2m samples were logged and split on site to produce a 2kg sample. 679 composite samples over 10m were forwarded to Amdel for heavy mineral determination. A further 41 samples comprised of 2m intervals of 10m composites with heavy mineral contents of >0.5% were forwarded to Amdel.

MINERALISATION

/PROSPECTS: Initial results suggest that the mineralisation is predominantly within the Hampton Sandstone, with the overlying Pleistocene units relatively unmineralised. Best results were from holes M169 28-30m, 8.37%, M143 36-38m, 3.64% and M37 36-38m, 3.54%. 14 anomalous zones were identified and composite samples from each were analysed. Results showed the mineral assemblages was dominated by uneconomic minerals and ilmenite with low concentrations of rutile and zircon. Although mineralisation was present within the Licences, the depth to mineralisation (22-44m) and the poor mineral assemblage downgrade the prospect of an economic deposit. The Licences were subsequently relinquished.

APPENDIX B SIGNIFICANT RESULTS BHP MINERALS LTD

EL 1353, 1354 & 1355

Drill hole	Interval	Traverse	%HM	%R	%Z	%II	Other
	(m)						
OL9	0-20	1	1.61	<1	<1	<1	
OL39	0-24	6	1.35	2	9	19	70
OL39	10-12	6	3.06	5	13	12	70
OL76	0-6	2	1.21	-	-	<1	
OL111	0-18	7	1.20	-	6	<1	
OL111	14-16	7	1.18	-	2	4	
OL155	30-40	5	1.41	-	<1	<1	
OL159	22-23	6	1.06	-	-	3	
OL160	4-6	6	1.05	<1	2	38	
OL160	10-12	6	1.74	1	2	77	20
OL160	0-12	6	1.00	<1	1	74	25

R rutile Z zircon II Ilmenite

EL 1355, 1653, 1654 & 1655

•	1 - Traverse 2			
<u>Hole</u>	Depth(m)	<u>%HM</u>	Mineralogy	<u>(%)</u>
M36	30-36	1.79	ilmenite	59
M37	28-39.5	1.93	rutile	1
			zircon	17
			leucoxene	5
			monazite	tr
			trash	18
Anomaly No.	.2 - Traverse 5			
Hole	Depth(m)	%HM	<u>Mineralogy</u>	<u>(%)</u>
M906	22-30	0.69	ilmenite	35
M907	26-30	0.36	rutile	1
			zircon	28
			leucoxene	8
			monazite	_
			trash	28
Anomaly No.	3 - Traverse 8			20
Hole	Depth(m)	<u>%HM</u>	Mineralogy	(%)
M909	28-30	1.15	ilmenite	53
M910	30-32	0.82	rutile	tr
1,1,5 1 0	2002	0.02	zircon	14
			leucoxene	4
			monazite	_
			trash	29
Anomaly No.	4 - Traverse 9		uasii	2)
Hole	Depth(m)	%HM	Mineralogy	(%)
M103	38-42	1.46	ilmenite	1
111103	30 12	1.10	rutile	tr
			zircon	4
			leucoxene	3
			monazite	3
			trash	92
Anomaly No.	.5 - Traverse 10		u a511	94
Hole	Depth(m)	<u>%HM</u>	<u>Mineralogy</u>	(%)
M131	36-38	1.35	ilmenite	6
M131	30-46	0.44	rutile	tr
M134	38-41.8	1.20	zircon	12
W1134	30-41.0	1.20		5
			leucoxene monazite	5
			trash	- 77
Anomaly No.	.6 - Traverse 10		uasii	11
<u>Hole</u>	Depth(m)	<u>%HM</u>	<u>Mineralogy</u>	(%)
M138	38-44	0.88	ilmenite	7
			rutile	tr

			zircon leucoxene monazite trash	1 8 - 84
Anomaly No. Hole	7 - Traverse 11	%HM	Mineralogy	(%)
M143	<u>Depth(m)</u> 32-39	1.77	Mineralogy ilmenite	(%) 13
M144	34-39	0.64	rutile	13
M145	38-42	3.19	zircon	4
M146	32-36	0.73	leucoxene	9
M147	34-39	1.14	monazite	-
M172	34-42	0.51	trash	73
M173	28-38	0.88		
M174	34-39	0.74		
M175	34-44	1.30		
Anomaly No.	8 - Traverse 12			
<u>Hole</u>	Depth(m)	<u>%HM</u>	Mineralogy	<u>(%)</u>
M167	36-42	0.98	ilmenite	12
M168	30-34	0.88	rutile	tr
M169	24-28	1.00	zircon	4
			leucoxene	4
			monazite	-
			trash	80
•	9 - Traverse 10			
<u>Hole</u>	Depth(m)	<u>%HM</u>	Mineralogy	<u>(%)</u>
M914	34-42	0.67	ilmenite	27
			rutile	2
			zircon	8
			leucoxene monazite	14
			trash	tr 49
Anomaly No	10 - Traverse 1	1	uasii	47
Hole Hole	Depth(m)	<u>%HM</u>	Mineralogy	<u>(%)</u>
M178	34-38	2.86	ilmenite	31
1,11,0	0.00		rutile	2
			zircon	47
			leucoxene	5
			monazite	2
			trash	13
Anomaly No.	11 - Traverse 1	3		
<u>Hole</u>	Depth(m)	<u>%HM</u>	<u>Mineralogy</u>	<u>(%)</u>
M204	22-26	0.47	ilmenite	54
			rutile	2
			zircon	24
			leucoxene	9
			monazite	tr 11
Anomaly No	12 Trayara 1	2	trash	11
Hole Hole	12 - Traverse 13 <u>Depth(m)</u>	5 <u>%HM</u>	Mineralogy	<u>(%)</u>
11010	<u> Խշբառայ</u>	/011111	<u>ivinicialogy</u>	(/0)

M204 M204	26-28 20-22	1.40 1.48	ilmenite rutile zircon leucoxene	8 1 4 2
			monazite	tr 85
Anomaly No	o.13 - Traverse	11	trash	83
Hole	Depth(m)	<u>%HM</u>	<u>Mineralogy</u>	<u>(%)</u>
$\overline{M150}$	36-40	0.27	ilmenite	33
			rutile	4
			zircon	25
			leucoxene	16
			monazite	tr
			trash	22
Anomaly No	o.14 - Traverse	12		
<u>Hole</u>	Depth(m)	<u>%HM</u>	<u>Mineralogy</u>	<u>(%)</u>
M154	34-36	1.83	ilmenite	26
M154	20-36	0.27	rutile	5
			zircon	30
			leucoxene	8
			monazite	1
			trash	30

EL 1605, 1647, 1671, 1672 & 1703

Strandline	Length	Width	Thickness	Overburden	Grade	Asse	mblage			
	(km)	(m)	(m)	(m)	%HM	Ilm	Leu	R	Z	
	Trash									
1	34	2000	9	16	0.92	32	9	4	18	37
2	32	1000	3	20	1.11	0	1	4	13	82
3	25	3000	7	24	1.05	35	12	1	18	34
4	6	1500	6	18	0.97	41	10	1	25	23

APPENDIX C SIGNIFICANT RESULTS (>1% HM) CEDUNA HEAVY MINERALS PROJECT JOINT VENTURE NATIONAL MINERAL SANDS, SWAN REACH NL & PEKO EXPLORATION LTD

Hole #	Sample	from	to	HM %	OS	Slimes
EB0020 EB0021 EB0024 EB0028 EB0033 EB0033 EB0040 EB0050 EB0051 EB0065 EB0067 EB0067 EB0068 EB0067 EB0068 EB00112 EB0113 EB0114 EB0114 EB0114 EB0115 EB0115 EB0115 EB0116 EB0117 EB0118 EB0119 EB0119	100203 100215 100241 100281 100334 100337 100417 100514 100517 100564 100668 100667 100667 100667 100667 100667 256037 256055 256076 256080 256080 256112 256112 256112 256129 256229	9.00 12.00 6.00 15.00 19.50 13.50 9.00 3.00 7.50 12.00 3.00 10.50 7.50 9.00 14.00 12.00 20.00 28.00 34.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00	10.50 13.50 7.50 7.50 16.50 21.00 15.00 9.50 4.50 9.00 13.50 4.50 15.00 7.50 12.00 12.00 9.00 10.50 16.00 22.00 30.00 36.00 20.00 14.00 18.00 52.00 18.00 20.00 18.00 36.00 20.00 18.00 36.00 20.00 18.00 36.00 20.00 36	2.6000 1.7000 1.8000 0.5000 1.1000 2.0000 2.7000 1.5000 3.6000 1.2000 1.5000 2.4000 1.5000 21.0000 1.3200 1.3200 1.1200 1.0400 1.0450 1.4400 1.9400 1.9400 1.4400 2.2700 2.1300 1.0200 3.1700 1.1100 4.9700	18.7000 7.5000 41.2000 51.1000 2.0000 0.7000 41.9000 16.7000 6.2000 20.7000 13.5000 55.8000 8.9000 19.6000 28.9000 51.6000 15.8000 0.1000 0.2000 6.3000 0.1000 44.0000 19.1000 0.4000 0.2000 17.1000 2.4000 2.3650	35.7000 13.9000 28.4000 24.8000 4.8000 24.7000 8.0000 11.5000 24.2000 13.3000 47.8000 10.5000 22.2000 33.6000 26.2000 10.5000 22.3000 1.8000 1.5000 2.3000 1.5000 2.3000 1.7000 4.1000 3.0000 1.7000 4.3000 1.7000 4.3000 5.6000 6.3550
EB0121 EB0122	256280 256317	22.00 38.00	24.00 40.00	2.7400 9.3800	13.4100	2.0100 1.6000

EB0122	256320	44.00	46.00	1.0400	1.8000	6.4000
EB0129	256486	18.00	20.00	1.6700	4.6000	3.3000
EB0130	256504	12.00	14.00	2.3300	5.4000	6.4000
EB0132	256551	32.00	34.00	1.0600	26.1000	3.9000
EB0132	256563	56.00	57.00	1.6000		4.2000
EB0133	256576	24.00	26.00	3.3400	3.5000	4.2000
EB0133	256583	38.00	40.00	1.0800		7.1000
EB0134	256606	26.00	28.00	1.2600	5.3000	2.3000
EB0134	256619	52.00	54.00	1.0100	0.1000	5.9000
EB0135	256638	32.00	34.00	1.1000		8.0000
EB0135	256643	42.00	44.00	1.9000		7.4000
EB0136	256662	22.00	24.00	1.2200	0.2000	6.1000
EB0136	256669	36.00	38.00	1.6700	0.1000	5.3000
EB0147	256853	12.00	14.00	1.4700	40.3000	1.8000
EB0149	256894	6.00	8.00	1.5000	19.1000	8.3000
EB0151	256945	24.00	26.00	1.0200	14.7000	2.1300

Hole #	Sample	from	to	HM%	OS	Slimes
EB0171 EB0172	257303 257332	50.00 50.00	52.00 52.00	6.8600 3.2150	0.1050 1.0100	8.6200 5.5100
EB0174	257387	44.00	46.00	1.0300	1.3300	4.4100
EB0176	257446	46.00	48.00	1.2900	1.8000	6.0800
EB0177	257588	40.00	42.00	0.9200	0.9100	7.2000
EB0179	257498	34.00 52.00	36.00	2.0900	1.4900 0.1700	5.3900 8.1900
EB0180 EB0183	257536 257620	20.00	54.00 22.00	1.5600 2.1900	18.2000	18.0000
EB0183	257625	26.00	28.00	1.2400	0.1000	1.0000
EB0185	257660	36.00	38.00	7.8500	18.2000	24.6000
EB0187	257730	26.00	28.00	1.8700	9.5000	17.2000
EB0188	257707	38.00	40.00	1.0850	16.2100	12.5350
EB0189	257742	16.00	18.00	1.6800	9.0000	15.4000
EB0190	257768	30.00	32.00	2.6800	9.0000	15.3000
EB0191	257796	28.00	30.00	1.3100	2.3000	17.9000
EB0195	257898	32.00	34.00	2.6000	23.2000	33.6000
EB0196	257916	32.00	34.00	1.1700	1.1750	9.4050
EB0198 EB0199	257963 257974	38.00 16.00	40.00 18.00	1.1700 1.4900	4.3000 27.6000	10.2000
EB0199	257974	10.00	12.00	4.2100	28.2000	20.1000
EB0202	258058	14.00	16.00	2.9600	11.1000	16.7000
EB0208	258165	22.00	24.00	2.7200	14.5000	16.2000
EB0209	258182	2.00	4.00	3.3600	51.2000	8.1000
EB0209	258188	14.00	16.00	1.2800	0.6000	6.6000
EB0210	258202	12.00	14.00	2.7700	28.7000	7.2000
EB0210	258205	18.00	20.00	6.0900	30.5000	22.1000
EB0210	258209	26.00	28.00	1.1300	8.7000	6.5000
EB0211	258231	28.00	30.00	1.2700	3.7000	11.4000
EB0212	258253	24.00	26.00	1.1900	3.6000	11.2000
EB0213 EB0214	258269 258285	18.00 18.00	20.00	1.1500 1.4000	1.3000	2.7000 2.7000
EB0214	258289	26.00	28.00	2.6300	22.3000	16.1000
EB0215	258298	14.00	16.00	2.4200	0.2800	14.4750
EB0217	258330	18.00	20.00	1.2500	0.6950	1.5850
EB0217	258335	28.00	30.00	1.0600	5.2000	4.8000
EB0219	258389	42.00	44.00	1.7000	0.5000	5.3000
EB0220	258418	42.00	44.00	1.8800	1.2000	8.7000
EB0221	258437	22.00	24.00	1.5650	3.9250	6.1000
EB0222	258452	14.00	16.00	12.2800	0.2000	6.5000
EB0223	258472	10.00	12.00	1.3500	0.1000	2.6000
EB0223	258474 258485	14.00 36.00	16.00 38.00	1.1300 1.2100	0.1000	3.3000 7.5000
EB0223 EB0224	258507	26.00	28.00	1.6200	29.1000 1.7000	5.6000
EB0221	258515	42.00	44.00	1.2700	0.4000	5.6000
EB0227	258538	2.00	4.00	1.7500	16.3000	7.6000
EB0227	258541	8.00	10.00	1.4800	35.3000	4.0000
EB0229	258552	6.00	8.00	1.0500	6.3000	6.0000
EB0231	258569	0.00	2.00	1.2600	1.9000	20.7000
EB0232	258584	6.00	8.00	1.0200	0.7000	5.5000

Hole #	sample	from	to	НМ%	OS	Slimes
EB0234	258622	12.00	14.00	1.5300	0.3000	4.1000
EB0235	258628	6.00	8.00	0.9900	0.1000	3.1000
EB0235	258633	16.00	18.00	1.0300	0.6000	8.0000
EB0236	258639	8.00	10.00	2.3000	0.2000	9.1000
EB0236	258647	24.00	26.00	1.7100	3.0000	4.6000
EB0237	258663	20.00	22.00	2.1100	1.4000	6.5000
EB0238	258679	24.00	26.00	2.6900	1.2000	5.0000
EB0240	258695	24.00	26.00	3.2000	5.3000	4.0000
EB0240	258702	38.00	40.00	2.9900	0.3000	6.2000
EB0331	272024	12.00	14.00	2.7000	12.0000 7.2000	34.2000
EB0365	272388	26.00	28.00	1.0400		6.5000
EB0372	272565	30.00	32.00	1.5500	5.0900	5.3200
EB0372	272572	44.00	45.00	1.2400	27.7000 0.5000	26.7700
EB0373	272585	24.00	26.00	1.0200		7.0700
EB0374	272601	22.00 20.00	24.00	1.8600	0.3300	7.2000
EB0375	259689		22.00	1.6000	0.6350	7.1700
EB0375	272617	22.00	24.00	1.3200	3.9500	10.6600
EB0376 EB0377	272639 272648	8.00 6.00	10.00	1.3400	1.4600 5.4800	7.5500 8.0300
EB0377 EB0378	272649	8.00	10.00	1.2100	9.1700 2.2850	6.6500 9.8750
EB0379	259691 272669	8.00 8.00	10.00	1.6800 1.9100	12.7100	8.5300
EB0379	272676	22.00	24.00	1.5200	9.0000	6.1200
EB0380	272688	6.00	8.00	1.7900	14.0200	8.1000
EB0380	272696	22.00	24.00	2.7200	7.4800	14.0700
EB0381	272717	16.00	18.00	1.1400	0.8000	4.1000
EB0381	272722	26.00	28.00	1.1600	21.3500	8.2100
EB0382	272736	24.00	26.00	1.0300	0.1000	7.1100
EB0383	259694	18.00	20.00	1.5550	1.3350	3.6300
EB0383	272758	26.00	28.00	0.6900	2.1400	5.1700
EB0384	272779	26.00	28.00	1.1200	0.2100	7.9500
EB0385	259695	22.00	24.00	2.0550	2.5300	8.0400
EB0386	272810	14.00 2.00	16.00	1.8700	0.4200	7.9200
EB0387	272816		4.00	1.0500	12.4400	17.0800
EB0388	272825	12.00	14.00	1.5900	20.3800	5.7800
EB0389	272835	8.00	10.00	1.5300	0.2900	12.0100
EB0389	272841	20.00	22.00	1.7500	0.2700	5.0200
EB0390	272853	14.00	16.00	1.9300	0.5400	5.8200
EB0391	272866	22.00	24.00	1.9100	0.1800	5.7700
EB0392	272874	6.00	8.00	1.1400	0.1300	11.0000
EB0392	272881	20.00	22.00	2.1000	0.7100	4.7700
EB0393	272892	8.00	10.00	1.6600	0.0700	12.8000
EB0393	272900	24.00	26.00	2.9400	0.3700	4.1600
EB0393	272906	36.00	37.00	1.6200	34.0600	14.6400
EB0394	272918	22.00	24.00	2.5200	0.3200	6.9600
EB0396	272937	14.00	16.00	1.0400	0.4300	5.7200
EB0396	272938	16.00	18.00	1.6900	0.0500	4.6500
EB0396	272939	18.00	20.00	1.7200	0.0100	6.3700
EB0396	272940	20.00		3.6100	0.1900	6.2700

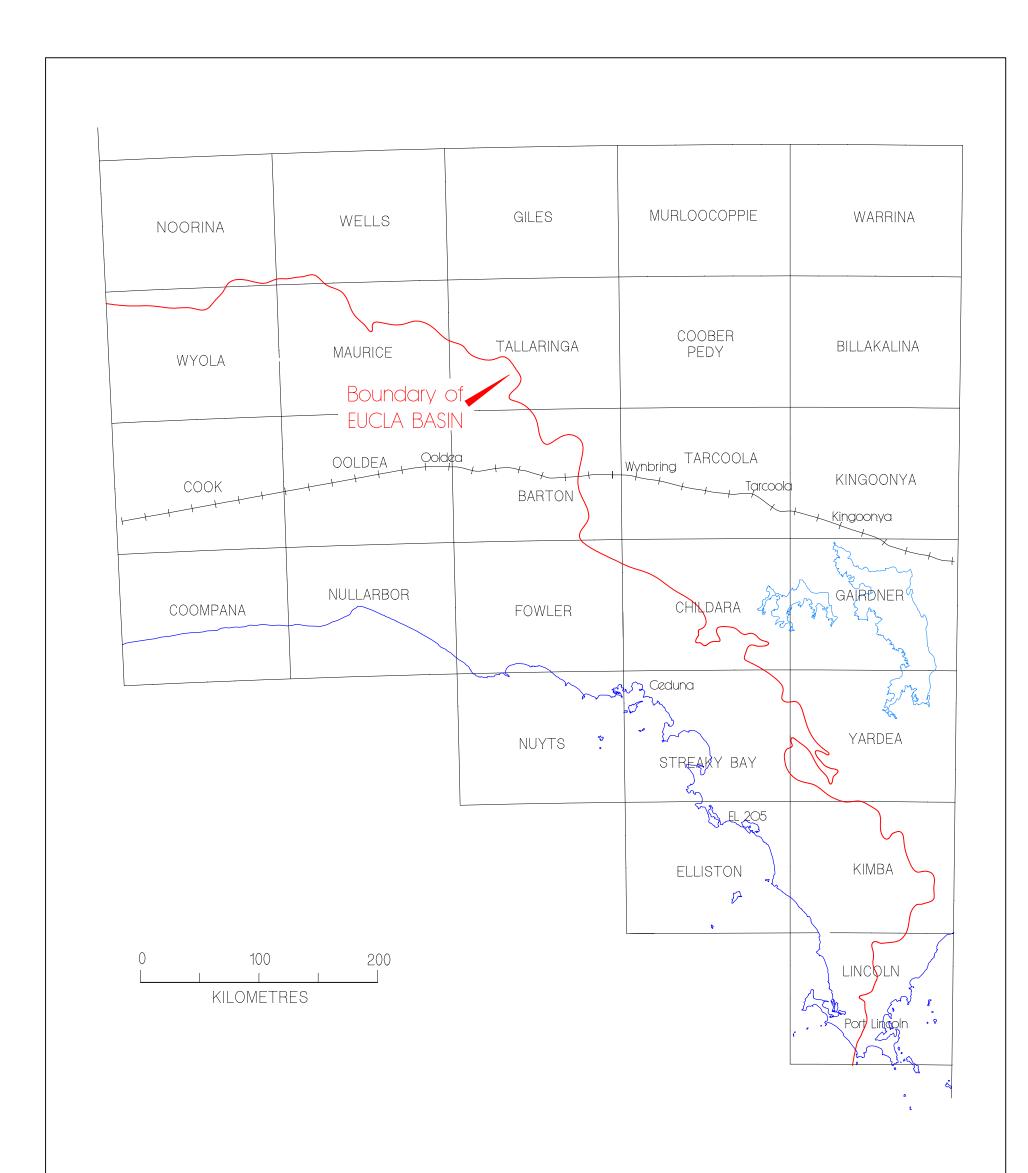
Hole #	Sample	from	to	НМ%	OS	Slimes
EB0396 EB0396	272941 272943	22.00	24.00 28.00	1.0100	0.1700 14.8100	10.8600
EB0397 EB0397	272955	20.00 22.00	22.00 24.00	1.0000	0.0400	4.3900
EB0397	259700 272957	24.00	26.00	1.2150 1.4200	0.0350 1.6900	7.7450 7.1300
EB0397	272958	26.00	28.00	1.5900	27.7300	9.9000
EB0398	272975	24.00	26.00	1.6300	0.0800	4.3200
EB0401	273034	22.00	24.00	2.0500	0.6200	11.2000
EB0401	259701	24.00	26.00	2.9350	8.1300	9.6300
EB0402	273047	18.00	20.00	1.0400	3.6400	8.9600
EB0402	273048	20.00	22.00	2.0000	0.1000	9.1300
EB0402	273049	22.00	24.00	2.9000	0.0800	9.1000
EB0402	273050	24.00	26.00	1.0400	9.3800	9.4500
EB0403 EB0403	273065 273066	24.00 26.00	26.00 28.00	1.2400 1.4300	0.8400 1.3400	10.4100 9.7100
EB0403	273067	28.00	30.00	2.5300	0.8500	8.6300
EB0403	273068	30.00	32.00	1.2400	12.5600	9.2900
EB0404	273080	22.00	24.00	1.3200	0.2300	9.6300
EB0404	273081	24.00	26.00	1.4700	1.0100	8.9800
EB0405	273091	12.00	14.00	1.0100	4.8200	6.7600
EB0405	273092	14.00	16.00	1.0900	0.0800	6.4800
EB0405	273093	16.00	18.00	1.5900	4.1600	6.6600
EB0405	273094	18.00	20.00	2.6800	5.1700	9.2500
EB0405	273095	20.00	22.00	1.8200	2.4600	10.3100
EB0406 EB0406	259704 273111	20.00 22.00	22.00 24.00	2.8100 1.3200	0.3450 0.2200	5.1750 6.3000
EB0400	273111	20.00	22.00	3.5300	0.7800	3.6100
EB0407	273130	22.00	24.00	1.3600	0.2900	4.2200
EB0407	273132	26.00	28.00	1.3100	0.7500	7.5300
EB0408	273142	4.00	6.00	1.3100	0.0700	5.8200
EB0408	259705	10.00	12.00	4.0800	3.9450	1.9700
EB0408	273149	18.00	20.00	3.0800	0.4400	4.1100
EB0408	273150	20.00	22.00	2.6400	0.6000	5.4800
EB0408	273152	24.00	26.00	1.6100	0.5600	9.1500
EB0408	273155	30.00	32.00	2.5400	23.3400	9.8300
EB0409 EB0409	273164 273165	12.00 14.00	14.00 16.00	1.2900 1.2600	0.1900	5.8200 3.8000
EB0409	273168	20.00	22.00	3.1500	0.8500	4.9800
EB0410	273186	20.00	22.00	1.4000	28.3900	8.4500
EB0411	273201	18.00	20.00	1.1000	0.2700	2.6900
EB0411	273202	20.00	22.00	1.1600	5.6100	5.9600
EB0411	273203	22.00	24.00	1.2800	22.5700	7.4900
EB0412	273219	24.00	26.00	1.2000	9.6100	10.5000
EB0413	273227	10.00	12.00	1.5000	1.8000	7.0400
EB0414	273238	8.00	10.00	1.1400	3.5200	8.3200
EB0414	273239	10.00	12.00	1.6500	1.4700	3.0400
EB0414 EB0415	273248 273251	28.00 4.00	30.00 6.00	1.0300 1.1000	19.9000 0.3400	10.7000 7.1700
EB0415	273251	6.00	8.00	1.9700	7.4000	2.0600

Hole #	Sample	from	to	HM%	os	Slimes
EB0415 EB0415 EB0415 EB0415	273253 273254 273259 273260	8.00 10.00 20.00 22.00	10.00 12.00 22.00 24.00	2.1400 6.7400 3.1100 2.8300	0.1800 0.5700 0.3200 0.4000	1.3400 5.6800 4.4400 7.4000
EB0416 EB0416	259709 273277	24.00 26.00	26.00 28.00	1.6300	0.2850 0.9100	4.6400 5.0100
EB0417 EB0417	273287 273288	14.00 16.00	16.00 18.00	1.4400 2.6900	0.0200 0.1400	6.0500 4.7300
EB0418 EB0418	273302 273303	18.00 20.00	20.00 22.00	1.4100 1.8400	7.7700 3.1500	9.1800 9.1800
EB0418 EB0419	273304 273319	22.00	24.00 26.00	2.7800	1.7500	8.6500 9.7400
EB0419	273320	26.00	28.00	1.5100	3.1300	8.3000
EB0419 EB0420	273322 273334	30.00	32.00	1.6900	19.0600	9.8200 7.6500
EB0420 EB0421	259711 273349	26.00	28.00	2.9900 1.5900	0.2750 0.5200	8.4750 6.8500
EB0421 EB0421	273350 273351	22.00 24.00	24.00 26.00	1.0200 1.6400	0.5000 14.1100	8.5000 9.0500
EB0422 EB0423	273367 273378	28.00 20.00	30.00 22.00	1.6000 1.3400	5.1600 0.2000	14.5000 3.0500
EB0424 EB0424	259713 273391	14.00 16.00	16.00 18.00	1.4800 2.6400	0.1500 0.2900	5.6650 6.4300
EB0424 EB0425	273393 273401	20.00 12.00	22.00 14.00	1.1900 1.3400	5.1700 0.2000	11.2900 3.7100
EB0425 EB0425	273402 273406	14.00 22.00	16.00 24.00	1.7100 1.3200	0.0200 3.0700	2.0000 5.0700
EB0425 EB0426	273407 273423	24.00 24.00	26.00 26.00	3.7600 1.5100	0.9700 1.4500	5.5900 8.2500
EB0427 EB0427	273433 273434	14.00 16.00	16.00 18.00	2.2400 10.9000	0.0700 0.0200	4.0600 1.9800
EB0427 EB0427	259715 273436	18.00 20.00	20.00 22.00	17.4100 1.3700	0.0250 0.0100	1.7650 2.7200
EB0427 EB0427	273438 273439	24.00 26.00	26.00 28.00	1.7900	0.0500	4.4100 5.8700
EB0428 EB0428	273448 273449	8.00 10.00	10.00	1.1400	0.6100 0.1800	20.7000
EB0428	273450	12.00 18.00	14.00 20.00	1.0500	0.1700	8.1100
EB0428 EB0428	273453 273454	20.00	22.00	1.7600	0.1900	5.8800 6.2400
EB0429 EB0429	273464 273465	12.00	14.00	1.2400	3.6000 0.1600	19.6000 15.8400
EB0429 EB0430	259716 273477	16.00 16.00	18.00	2.7500 1.5100	0.1900	8.0600 15.0400
EB0430 EB0430	273478 273479	18.00	20.00	1.7600	0.0800	10.4700
EB0430 EB0430	273480 273484	22.00	24.00	5.3200	0.0300	2.5000 8.8700
EB0430	273485	32.00	34.00	2.3400	0.6900	9.5200

Hole #	Sample	from	to	НМ%	OS	Slimes
EB0430 EB0431 EB0431 EB0431 EB0431 EB0432 EB0432 EB0433 EB0434 EB0434	273486 273496 273497 273498 273499 273524 273526 259718 273564 273565	34.00 14.00 16.00 18.00 20.00 26.00 30.00 28.00 30.00	36.00 16.00 18.00 20.00 22.00 28.00 32.00 30.00 32.00	3.5300 1.0000 1.3100 1.8900 3.4200 1.5900 2.9400 1.7000 1.1700 1.7600	0.1300 0.0400 0.0600 1.0300 1.6500 0.6700 0.3400 0.3850 2.2700 0.7300	10.0100 16.0700 9.3700 2.9100 1.7100 3.8300 6.5500 4.5600 4.4600 4.9900
EB0434 EB0435 EB0435 EB0436 EB0436 EB0436	273566 273586 259719 273600 273601 273602 273603	32.00 30.00 32.00 16.00 18.00 20.00 22.00	34.00 32.00 34.00 18.00 20.00 22.00 24.00	1.8400 2.4900 1.6100 1.0400 1.2800 1.3500 2.0400	0.2700 14.8600 0.5350 1.9600 0.1300 0.1500 0.1300	3.6000 3.3600 5.7450 23.0900 16.4500 12.5500 6.8400
EB0437 EB0437 EB0438 EB0438 EB0438 EB0438	273617 259720 273627 273628 273629 273630	18.00 20.00 12.00 14.00 16.00 18.00	20.00 22.00 14.00 16.00 18.00 20.00	1.4000 2.5750 1.1200 2.5000 5.6900 1.2000	0.5200 1.1900 0.1900 0.0800 0.0200 0.0500	6.4800 10.7250 14.4100 5.0400 1.9700 3.6700
EB0439 EB0439 EB0439 EB0439 EB0440 EB0440	273639 273640 259721 273643 273645 273662 273663	10.00 12.00 14.00 18.00 22.00 24.00 26.00	12.00 14.00 16.00 20.00 24.00 26.00 28.00	1.0300 1.2500 1.1900 1.4100 1.3700 1.9800 1.9700	0.1200 1.0100 0.3300 0.0300 0.9700 0.1000 1.1100	2.8600 1.1500 1.1950 1.6200 4.3100 6.0000 6.4400
EB0441 EB0441 EB0441 EB0441 EB0441 EB0442	273668 273669 273675 273676 273678 273682	2.00 4.00 16.00 18.00 22.00 4.00	4.00 6.00 18.00 20.00 24.00 6.00	1.7300 1.9200 4.8500 2.6400 2.1000 2.2200	0.3700 0.2100 1.5500 1.2000 1.7800 0.1800	12.7100 0.8700 6.2400 6.1100 10.9900 5.4000
EB0442 EB0443 EB0443 EB0443 EB0443 EB0444	273683 273689 259722 273696 273700 273701 273709	6.00 18.00 6.00 8.00 16.00 18.00 8.00	8.00 20.00 8.00 10.00 18.00 20.00 10.00	1.4500 2.2400 1.6450 1.4400 1.0200 2.4500 1.5700	0.2100 0.3200 0.5300 0.1700 0.5500 0.8300 0.8200	2.2500 8.1000 4.5500 2.0800 4.0600 3.9700 4.5500
EB0444 EB0444 EB0444 EB0445 EB0445 EB0445	273710 273714 273715 273722 273725 273726	10.00 18.00 20.00 10.00 16.00 18.00	12.00 20.00 22.00 12.00 18.00 20.00	2.7900 2.8900 1.2600 1.7200 3.2300 1.0500	0.2500 1.3100 0.6700 0.0600 2.5200 26.3100	2.3100 6.1100 6.4100 1.5100 5.1600 7.9800

Hole #	Sample	from	to	HM%	os	Slimes
EB0446 EB0447 EB0448 EB0448 EB0449 EB0449 EB0450 EB0450 EB0451 EB0451 EB0451 EB0451	Sample 273738 273739 273753 273767 273768 273781 259724 273794 273796 273797 273804 259725 273806 273807 273808	from 22.00 24.00 22.00 24.00 24.00 28.00 18.00 22.00 24.00 10.00 12.00 14.00 16.00 18.00	24.00 26.00 24.00 24.00 26.00 30.00 20.00 24.00 12.00 14.00 16.00 18.00 20.00	HM% 2.5800 1.6800 1.2800 1.3500 1.9400 1.2100 2.5400 1.5300 1.1900 1.7400 1.1300 2.8600 3.5400 1.1600 1.4500 1.4000	OS 0.7100 0.3900 0.3000 0.2200 0.6300 0.2700 0.5700 16.9300 0.1300 0.4700 0.7100 5.4200 0.6400 0.0500 0.5700 2.4500	5.0200 6.3600 10.9300 3.3500 25.5000 3.1100 5.6250 8.6300 2.4400 3.8000 8.6000 6.9700 2.6050 2.7400 3.1700 4.4100
EB0451 EB0452 EB0452 EB0452 EB0452 EB0452 EB0452 EB0452 EB0452 EB0452 EB0452	273819 273813 273814 273815 273816 273817 273818 273819 273821 273822 273823	20.00 22.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 16.00 18.00 20.00	22.00 24.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 18.00 20.00 22.00	1.2600 1.4200 1.3000 1.2900 2.9000 3.2900 3.2000 14.8700 1.8900 1.0500 2.7200 2.0100	1.1100 2.6600 0.2400 0.1300 0.1400 4.1400 0.2200 1.1800 0.0900 0.9000 0.1800 0.5900	3.8900 5.1400 13.3500 11.8400 8.9400 4.1900 1.6700 1.8800 1.4900 3.4400 3.9500 5.4200
EB0452 EB0453 EB0453 EB0453 EB0453 EB0454 EB0454 EB0454 EB0454	273825 273836 259726 273840 273841 273843 273851 273854 273857 273858	24.00 16.00 18.00 24.00 26.00 30.00 10.00 16.00 22.00 24.00	26.00 18.00 20.00 26.00 28.00 32.00 12.00 18.00 24.00 26.00	2.0200 1.2000 1.1025 2.5700 3.5100 1.3100 1.0100 1.7800 1.7200 4.9200 2.0200	1.5000 0.0300 0.0250 0.0900 0.2900 0.7200 0.1300 0.0700 0.9300 2.3300 1.0900	9.2600 2.5800 1.7350 5.2300 5.3600 9.0200 9.6800 2.3300 3.1800 5.2800 4.2400
EB0455 EB0455 EB0455 EB0455 EB0455 EB0455 EB0455 EB0455 EB0455	273868 273869 273870 273871 259727 273873 273876 273877 273878 273886	10.00 12.00 14.00 16.00 18.00 20.00 26.00 28.00 30.00 8.00	12.00 14.00 16.00 18.00 20.00 22.00 28.00 30.00 32.00 10.00	1.5700 2.2500 2.6500 1.9900 4.6600 2.0600 1.0400 1.6200 3.1600 1.4800	0.1400 0.0500 0.0700 0.0400 0.1650 0.3100 2.3800 0.7600 0.3600 0.1100	16.0100 8.2400 2.5200 2.2700 2.0600 0.8200 3.5200 6.9200 5.2100 15.5600

Hole #	Sample	from	to	НМ%	OS	Slimes
EB0456 EB0456 EB0456 EB0456 EB0456 EB0456 EB0456 EB0456 EB0457 EB0457 EB0457 EB0457 EB0457 EB0457 EB0457 EB0458	273887 273888 273889 273890 273891 273895 273896 273906 273907 273908 273909 273911 273914 273915 273916 273924 273925 273926 273927 273928 273929 273930 273930 273931 27	10.00 12.00 14.00 16.00 18.00 20.00 26.00 28.00 10.00 14.00 16.00 20.00 28.00 30.00 28.00 30.00 12.00 14.00 18.00 20.00 28.00 30.00 12.00 14.00 18.00 20.00 22.00	12.00 14.00 16.00 18.00 22.00 28.00 30.00 12.00 14.00 16.00 22.00 28.00 30.00 22.00 22.00 12.00 14.00 16.00 12.00 14.00 16.00 12.00 12.00 14.00 16.00 20.00 22.00 30.00 22.00 22.00 24.00 24.00	1.9100 3.4000 3.8300 2.8500 2.4200 1.2400 1.5700 2.1000 2.1700 3.0800 2.4400 4.7900 3.9900 1.2600 1.8800 3.7000 3.9100 1.1900 1.4100 1.4700 1.7800 1.9300 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.8700 1.1900	0.0500 2.2600 0.1200 0.0600 0.1000 0.1000 1.4400 0.2900 0.2700 0.0600 0.0300 0.2400 0.6800 0.7300 0.2000 1.3700 0.2000 0.3700 0.2600 0.3700 0.2600 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3500 0.3700 0.3400 0.	9.1600 3.1800 1.6800 1.4800 1.5100 1.4800 5.9400 6.7200 13.4500 2.8400 2.8400 2.3300 1.2600 1.4800 4.9600 5.6200 6.0300 17.3400 11.7800 10.2600 4.9600 3.2900 1.2700 1.4300 4.3600 3.4600 9.7100 7.6300 16.1700 12.1300 15.5300 13.9200 10.8800
EB0566 EB0572 EB0572 EB0572	284135 284137 284138 284139	28.00 16.00 18.00 20.00	30.00 18.00 20.00 22.00	1.1500 1.5000 1.9100 1.6800	0.1400 0.1200 0.1100 0.1400	2.5000 30.5100 20.1600 8.4300
EB0572 EB0573 EB0573 EB0573	284141 284142 284143 284144	28.00 14.00 16.00 18.00	30.00 16.00 18.00 20.00	1.5500 3.1500 4.7900 5.5000	20.6400 0.1400 0.2300 2.4700	13.4600 7.4000 5.0100 7.3200
EB0573 EB0573 EB0574 EB0574 EB0574	284145 284146 284147 284148 284149	20.00 22.00 14.00 16.00 18.00	22.00 24.00 16.00 18.00 20.00	4.3300 12.1600 2.4000 2.8400 3.3600	18.5500 58.9300 0.1800 0.2500 0.1500	14.9300 8.6200 14.9000 15.1300 13.1900
EB0574	284150	20.00	22.00	4.2700	0.0900	11.9900


Hole #	Sample	from	to	HM%	OS	Slimes
EB0718 EB0718 EB0718 EB0718 EB0718 EB0719 EB0719 EB0719 EB0719 EB0719 EB0719 EB0719 EB0720 EB0720 EB0720 EB0721 EB0735 EB0735 EB0735 EB0735 EB0747 EB0753 EB0754 EB0754 EB0754	284329 284330 284333 284336 284337 284338 284339 284340 284345 284345 284345 284345 284356 284357 284356 284357 284357 284361 284370 284371 284383 284383 284385 284385 284387 284387 284383 284387 284383 284438 284438 284433 28443 28	0.00 2.00 8.00 14.00 16.00 18.00 2.00 4.00 8.00 12.00 14.00 16.00 12.00 14.00 12.00 14.00 20.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 22.00 24.00 20.00 24.00 20.00 21.00	2.00 4.00 10.00 16.00 18.00 20.00 4.00 10.00 14.00 16.00 20.00 21.00 22.00 22.00 24.00 22.00 24.00 22.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 26.00 26.00 27.00 28.	1.2600 1.1350 2.6700 2.2200 2.4300 1.4700 1.5500 1.3000 1.0400 1.3800 3.1400 11.2300 2.8200 4.3200 1.4400 2.0300 1.3200 2.2500 1.3200 2.2500 1.3200 2.2500 1.3700 2.3200 4.2700 1.0400 1.0400 1.7800 2.1400 1.0100 2.1300 2.1400 1.0500 2.1400 2.1400 1.0500 2.1400 2	0.5900 0.3950 1.7100 1.8000 0.4900 0.2900 0.5200 0.3100 0.1800 0.4400 1.1550 0.5000 0.4500 0.1700 0.8500 3.1000 0.2200 0.1100 0.2600 0.0800 2.2700 0.4900 1.0100 0.0800 3.8100 0.0800 3.8100 0.0800 3.6200 0.0100 0.0200	5.8900 10.0750 4.8800 4.5200 6.9600 6.2200 5.0100 7.9700 9.0600 10.8400 5.1550 3.4700 3.9000 5.6200 7.4700 2.9400 1.7900 2.3000 3.0300 3.5500 4.6500 7.4300 8.5000 6.0700 7.1200 2.0300 2.5700 5.0500 3.4000 1.9600 2.8200 2.3400 3.8100 5.9800 3.4900 1.4400 1.5200 1.4400 1.6800
EB0754	284436	14.00 16.00 18.00 20.00	16.00 18.00 20.00 22.00	1.8100 1.8900 7.3000 2.4800	0.0100	1.4400 1.6800 3.0900 2.4200
EB0754 EB0754 EB0754 EB0754 EB0754 EB0755	284438 284439 284440 284441 284442 284443 284449	18.00 20.00 22.00 24.00 26.00 28.00 4.00	20.00 22.00 24.00 26.00 28.00 30.00 6.00	7.3000 2.4800 0.3100 0.6400 1.3100 1.2100 1.1700	0.1600 0.1400 0.0200 0.0400 0.0400 0.0500 0.0200	3.0900 2.4200 1.8200 2.8300 2.5200 4.2800 2.7900
EB0755 EB0755	284450 284451	6.00 8.00	8.00	1.2200	0.0300 0.0100	3.0600 2.7300

Hole #	Sample	from	to	HM%	OS	Slimes
EB0755 EB0758 EB0758 EB0758 EB0758 EB0758 EB0758 EB0758 EB0759 EB0760 EB0760 EB0760 EB0760 EB0760 EB0760 EB0761 EB0762 EB0762 EB0764 EB0762 EB0764 EB0763 EB0769 EB07773 EB0773 EB07799 EB07799 EB0799 EB0799 EB0799 EB0799 EB0799 EB0799 EB0799	284456 284465 284466 284466 284466 284466 284466 284467 284467 284470 284470 284471 284488 284488 284488 284488 284488 284488 284488 284491 284508 284510 284511 284527 284559 284557 284557 284559 284559 284559 284559 284559 284559 284559 284559 284559 284559 284561 284613 284613 284619 284619 284619 284619 284619	28.00 16.00 12.00 14.00 16.00 20.00 22.00 24.00 24.00 24.00 2.00 4.00 6.00 8.00 16.00 16.00 24.00 16.00 24.00 16.00 24.00 24.00 24.00 24.00 24.00 26.00 16.00 28.00 24.00 26.00 21.00 28.00 20.00 21.00	30.00 18.00 14.00 16.00 22.00 24.00 26.00 24.00 26.00 4.00 6.00 8.00 10.00 12.00 18.00 27.00 18.00 27.00 18.00 27.00 18.00 27.00 18.00 24.00 26.00 26.00 18.00 20.00 26.00 27.00 28.00	1.7800 1.3700 1.2600 1.1800 1.6600 2.3900 0.9600 0.6800 0.9800 3.1800 1.7500 1.3100 1.3100 1.6100 4.8300 11.7500 7.0350 2.8800 11.7500 1.7300 4.2500 1.1600 1.0900 2.1500 2.1850 1.3700 1.2000 1.5900 1.2100 1.2100 1.2100 1.2100 1.2100 1.2100 1.2100 1.2100 1.2100 1.3900 1.3900	0.5400 0.0300 0.2200 0.2900 0.1900 0.0700 0.0500 0.8300 0.6000 0.2800 0.3400 0.3400 0.34700 12.1600 0.6000 0.1000 0.0600 0.1000 0.0600 0.2500 1.5500 1.0000 3.0300 20.0700 13.5200 0.5600 5.0300 0.9800 8.0200 1.7400 0.2400 0.0400 0.0400 0.0300 1.8000 1.8000 1.4900 0.2200 0.2200 0.2200 0.2200 0.33900	5.7200 2.0100 8.0600 4.9700 2.5500 1.7600 1.3900 2.0800 6.4200 5.9400 11.6700 10.0500 24.0900 18.7600 8.8500 6.2600 5.9800 6.3300 8.6200 13.2000 2.8600 4.9200 11.9300 8.6750 9.7300 12.3800 10.1400 11.5500 6.4900 10.4800 7.4600 4.5100 5.6900 2.3700 2.3700 1.5300 6.3900
EB0924 EB0924 EB0924 EB0925	284620 284621 284622 284623	10.00 12.00 14.00 18.00	12.00 14.00 15.00 20.00	1.3900 1.8200 1.3500 1.7900	0.3900 0.7800 8.4900 1.7300	6.3900 4.3200 2.6800 0.4700
EB0951 EB0959 EB0963 EB0984 EB0984	284624 284625 284626 284628 284629	2.00 18.00 8.00 26.00 28.00	3.00 20.00 10.00 28.00 30.00	1.2300 1.3400 1.4800 1.2350 2.3300	49.7000 0.0100 8.1400 6.8850 1.3200	2.4100 0.5600 1.8500 1.2200 0.9900
EB0984	284630	30.00	32.00	1.9300	4.1800	0.9600

Hole #	Sample	from	to	HM%	OS	Slimes
EB0987	284632	22.00	24.00	5.0000	6.1600	1.1600
EB0987	284633	24.00	26.00	2.6200	11.7900	1.3500
EB0799	284557	20.00	22.00	1.2100	0.2400	10.4800
EB0799	284558	22.00	24.00	1.2600	0.0400	7.4600
EB0799	284559	24.00	26.00	1.0500	0.0300	4.5100
EB0799	284564	34.00	36.00	1.1800	1.8000	5.6900
EB0812	284587	24.00	26.00	3.1700	1.4900	2.3500
EB0812	284588	26.00	28.00	1.6100	0.2200	2.0100
EB0827	284612	26.00	28.00	1.0300	0.2200	4.1300
EB0827	284613	28.00	30.00	1.0000	0.2200	2.3700
EB0870	284619	18.00	20.00	1.1200	0.1700	1.5300
EB0924	284620	10.00	12.00	1.3900	0.3900	6.3900
EB0924	284621	12.00	14.00	1.8200	0.7800	4.3200
EB0924	284622	14.00	15.00	1.3500	8.4900	2.6800
EB0925	284623	18.00	20.00	1.7900	1.7300	0.4700
EB0951	284624	2.00	3.00	1.2300	49.7000	2.4100
EB0959	284625	18.00	20.00	1.3400	0.0100	0.5600
EB0963	284626	8.00	10.00	1.4800	8.1400	1.8500
EB0984	284628	26.00	28.00	1.2350	6.8850	1.2200
EB0984	284629	28.00	30.00	2.3300	1.3200	0.9900
EB0984	284630	30.00	32.00	1.9300	4.1800	0.9600
EB0987	284632	22.00	24.00	5.0000	6.1600	1.1600
EB0987	284633	24.00	26.00	2.6200	11.7900	1.3500

TABLE 1. Summary of company exploration

EL	Company	Envelope	Date granted	Date expired	No. of drill holes	Total meterage
205	Australian Anglo American Ltd	2654	20/8/75	24/12/75	156 surface grab samples	
1353 1354 1355	BHP Minerals Ltd	6816 6817 6818	20/8/86 20/8/86 2/9/86	19/8/88 19/8/88 1/9/91	55 43 71	863.8 863 1 204
1520 1521	Aberfoyle Resources Ltd	8104	29/9/88 29/9/88	29/6/89 29/6/89	97	1 953
1570 1571 1571	CRA Exploration Pty Ltd	8153	14/2/89 14/2/89 14/2/89	29/6/89 29/6/89 29/6/89	50	1 213
1597 1598 1599	National Mineral Sands, Swan Reach NL & Peko	8561 & 8219	25/7/89 25/7/89 25/7/89	ongoing 24/1/92 24/1/92		
1600 1601 1602	Exploration Ltd		25/7/89 25/7/89 25/7/89	24/1/92 24/1/92 ongoing	895	16 503.7
1605 1647 1671 1672 1703	BHP Minerals Ltd	8230	18/8/89 28/3/90 31/8/90 31/8/90 14/2/91	17/2/92 27/3/92 30/8/92 30/8/92 13/2/92	212	5 132
1614 1631	Southern Ventures NL National Mineral	8240	4/10/89 21/12/89	3/1/94 20/6/91	167	4 049
1632 1632	Sands, Swan Reach NL & Peko Exploration Ltd		21/12/89 21/12/89 21/12/89	20/6/91 20/6/91 20/6/91	67	1 168
1717 1721 1722	Peko Exploration Ltd		6/5/91 17/5/91 17/5/91	5/5/92 16/11/92 16/11/92	55	1 168

REVIEW OF HEAVY MINERAL SAND EXPLORATION LOCALITY OF EUCLA BASIN

100336GF.DTA

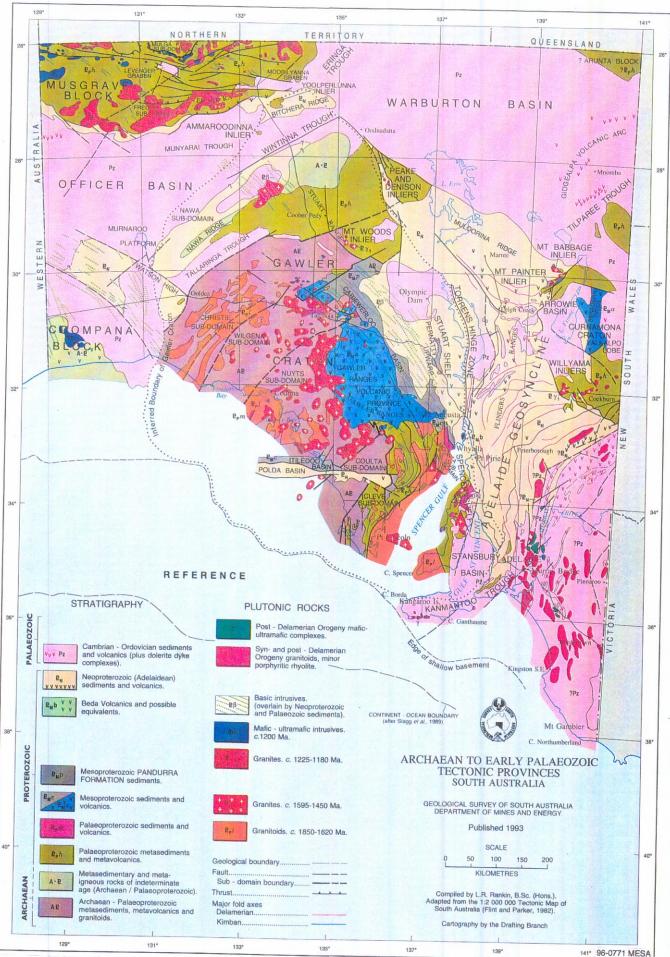
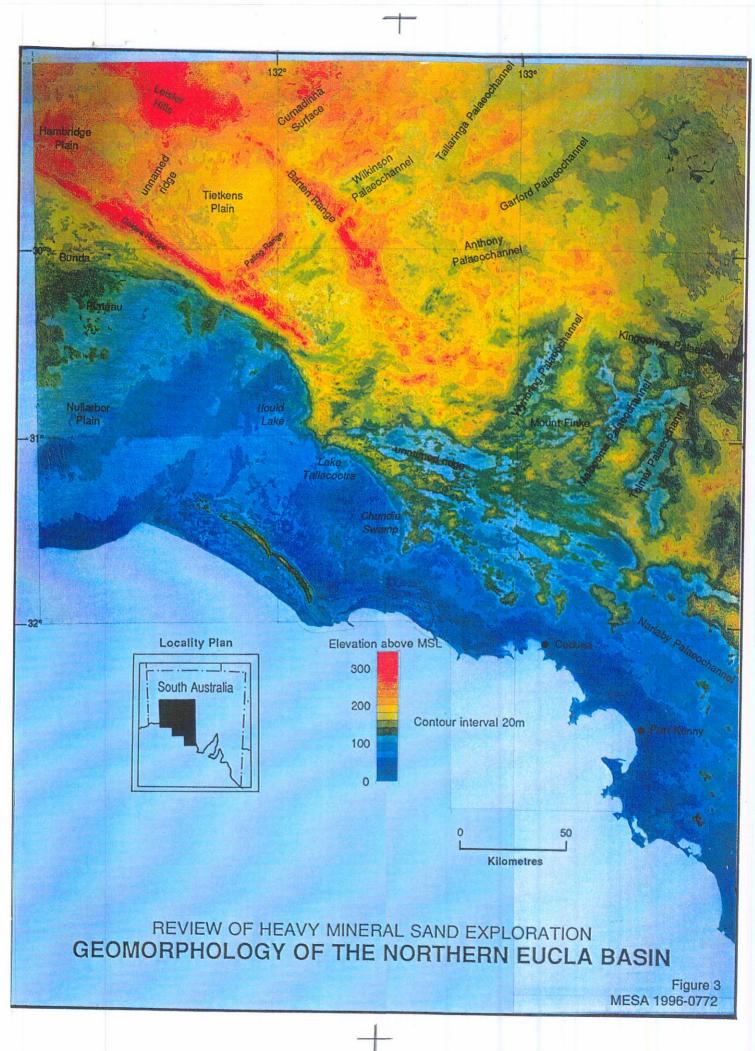
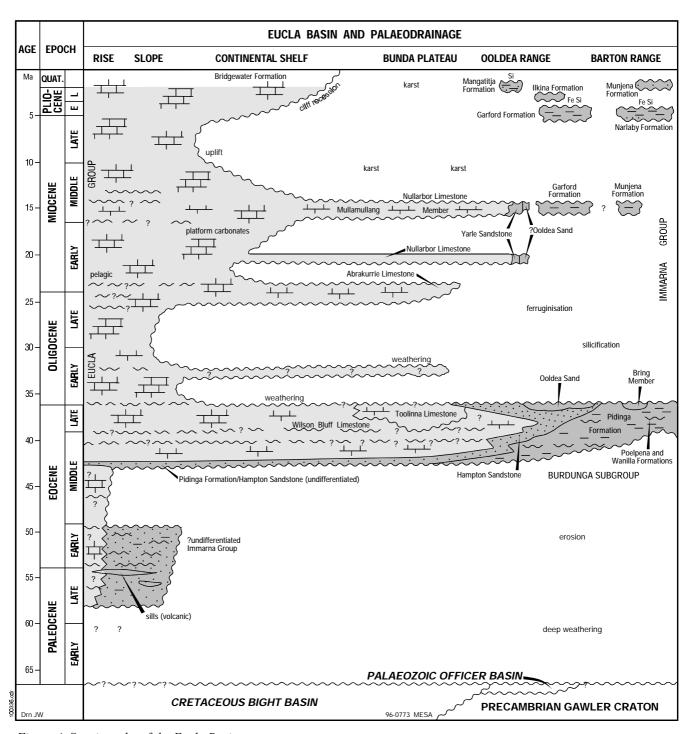
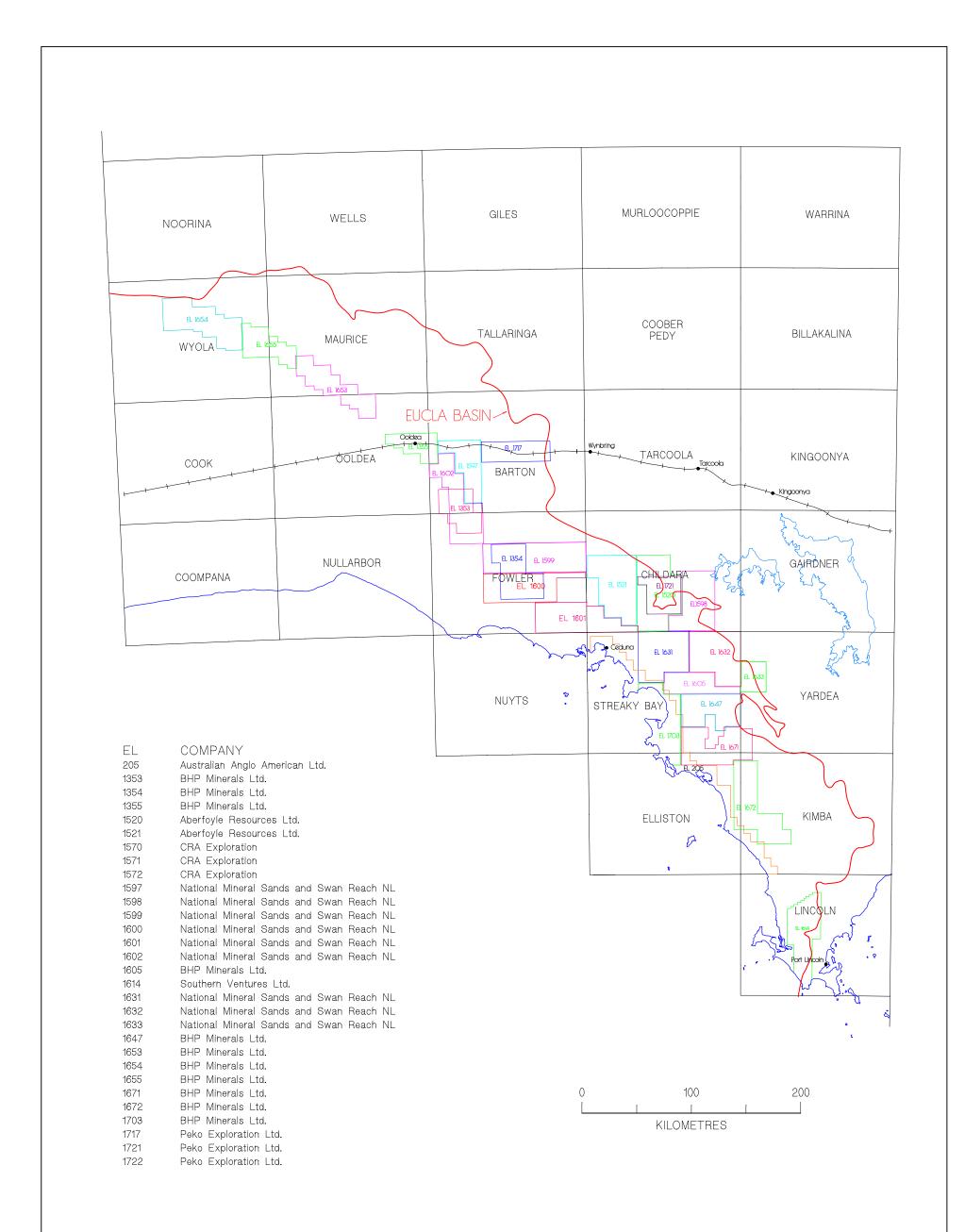
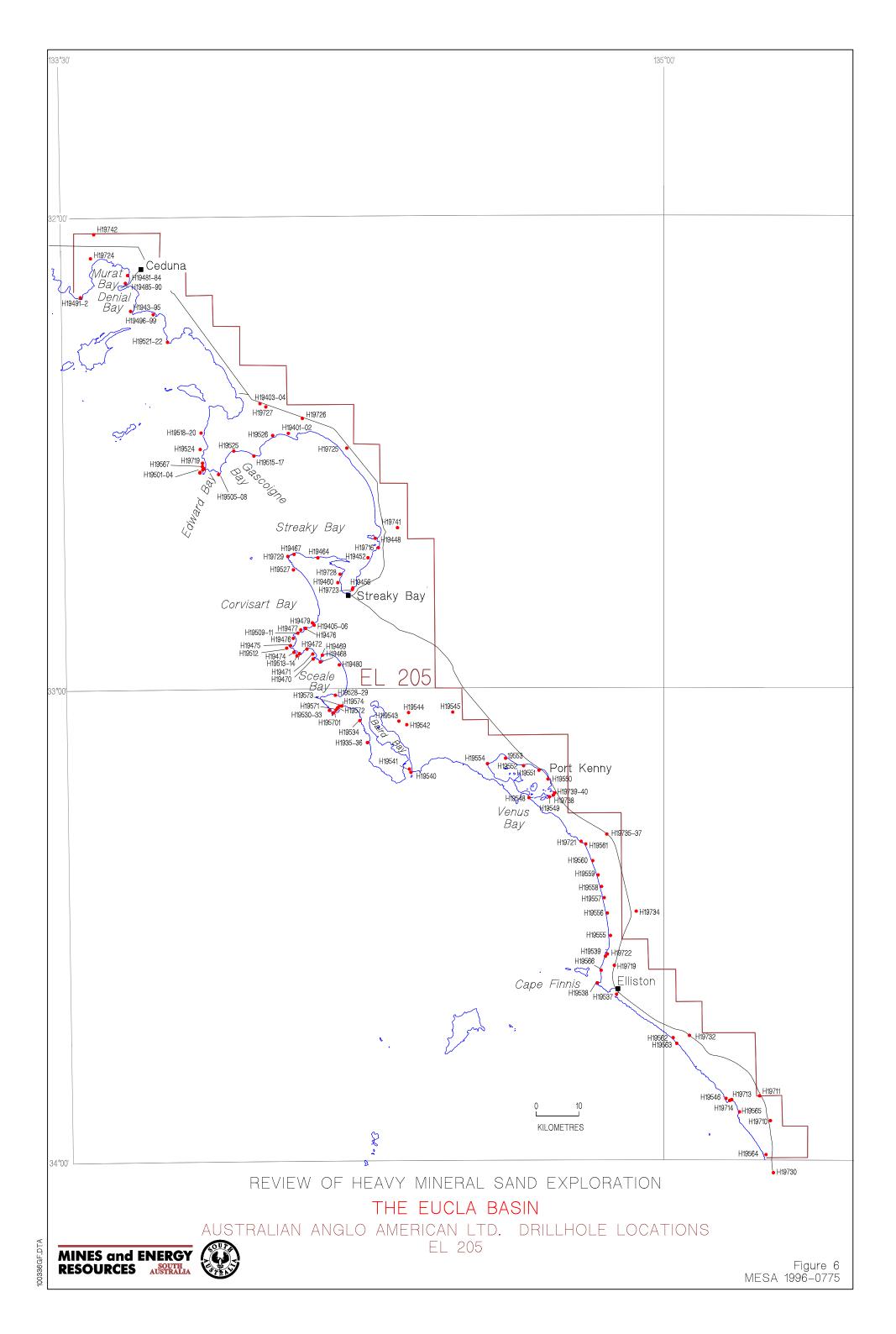
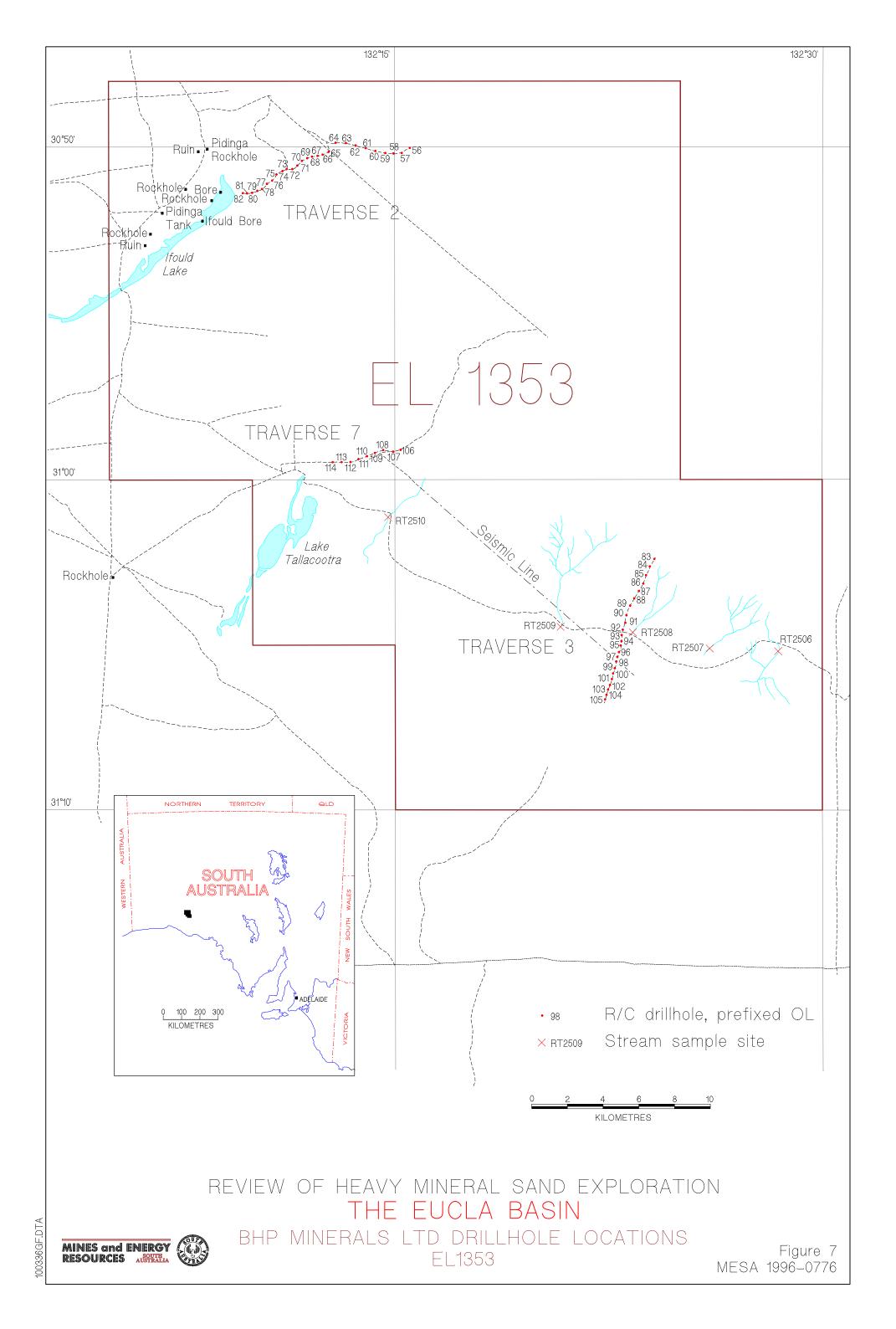
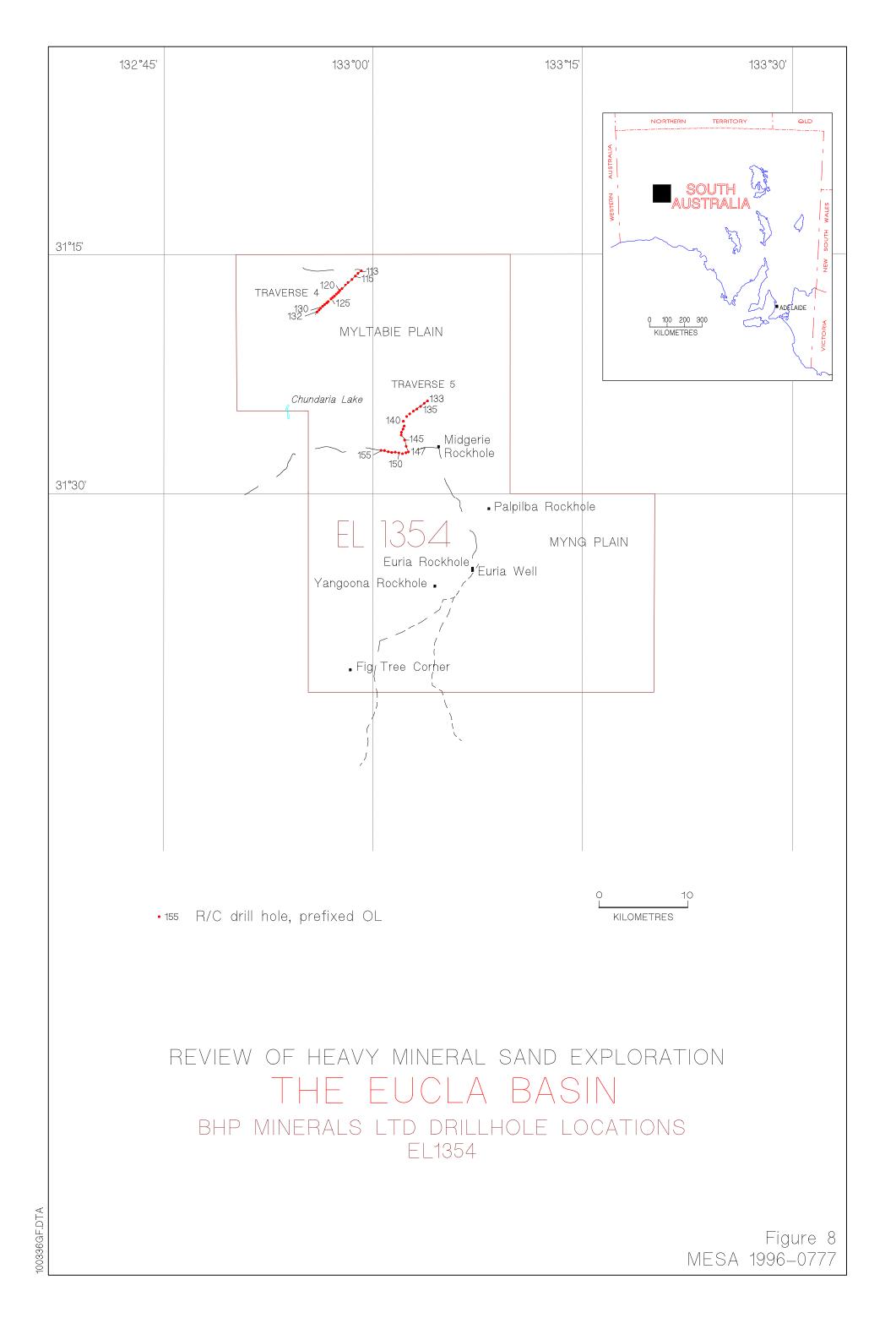



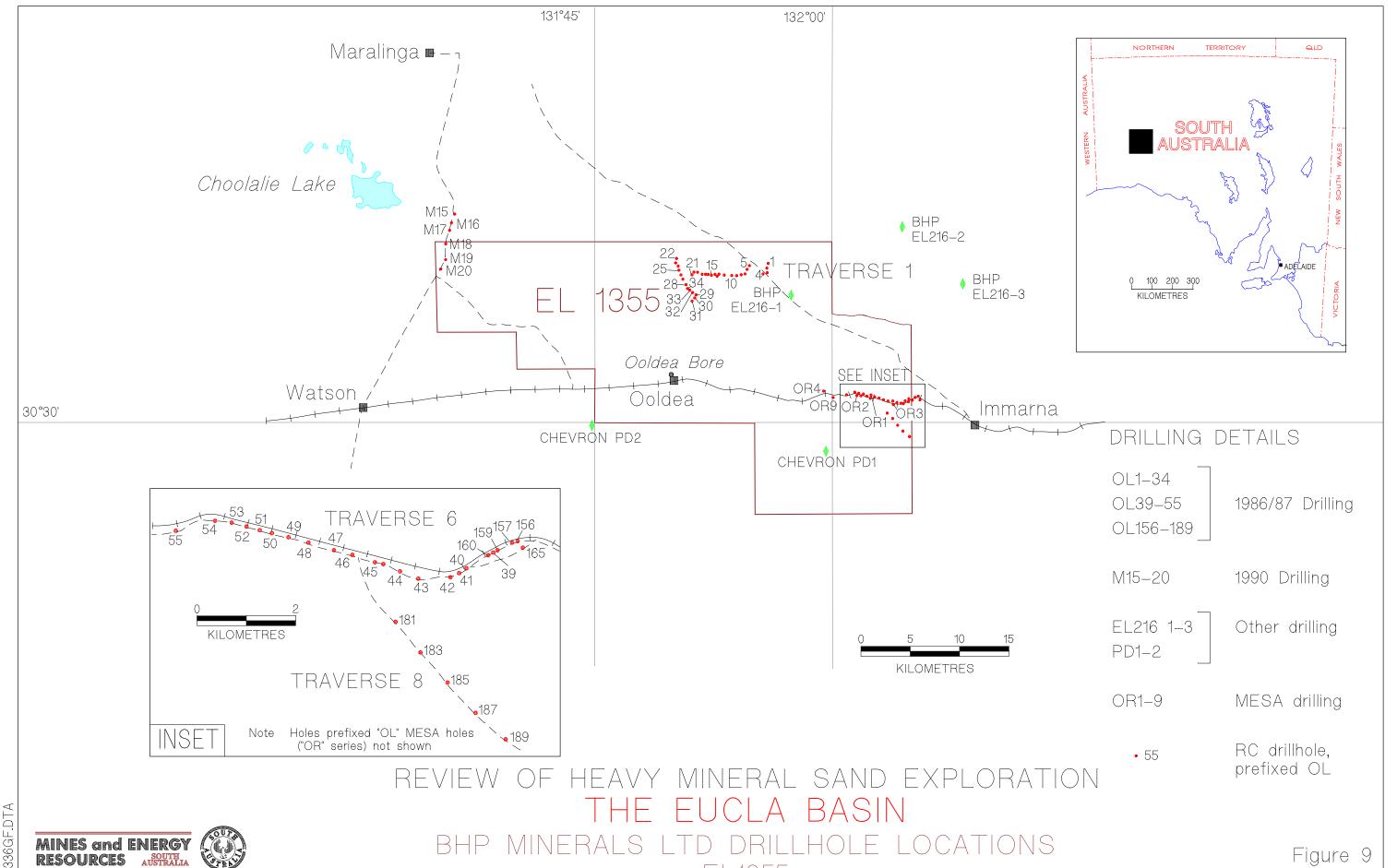
Figure 2 Archaean to Early Palaeozoic geology of South Australia

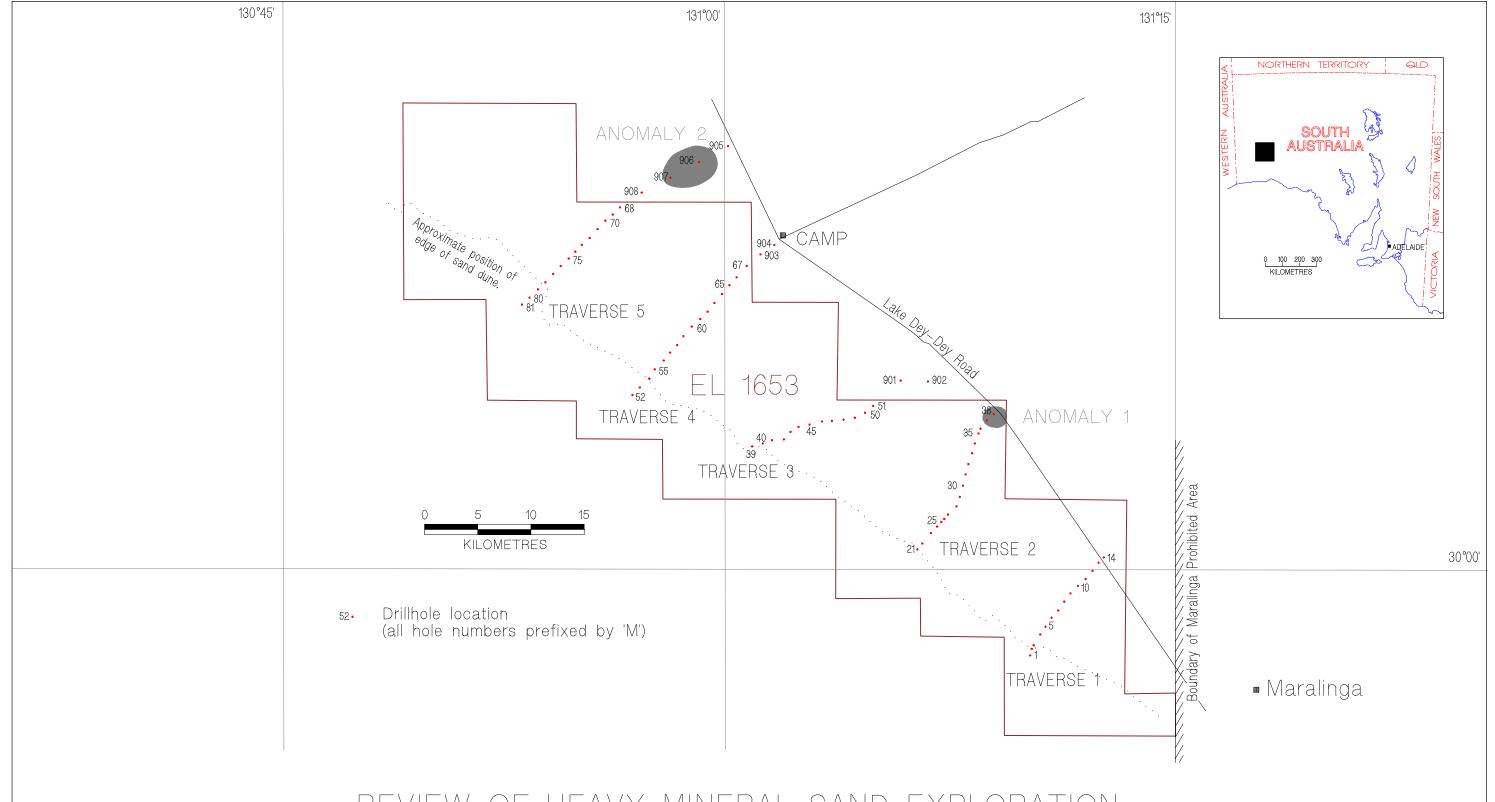




Figure 4 Stratigraphy of the Eucla Basin




REVIEW OF HEAVY MINERAL SAND EXPLORATION

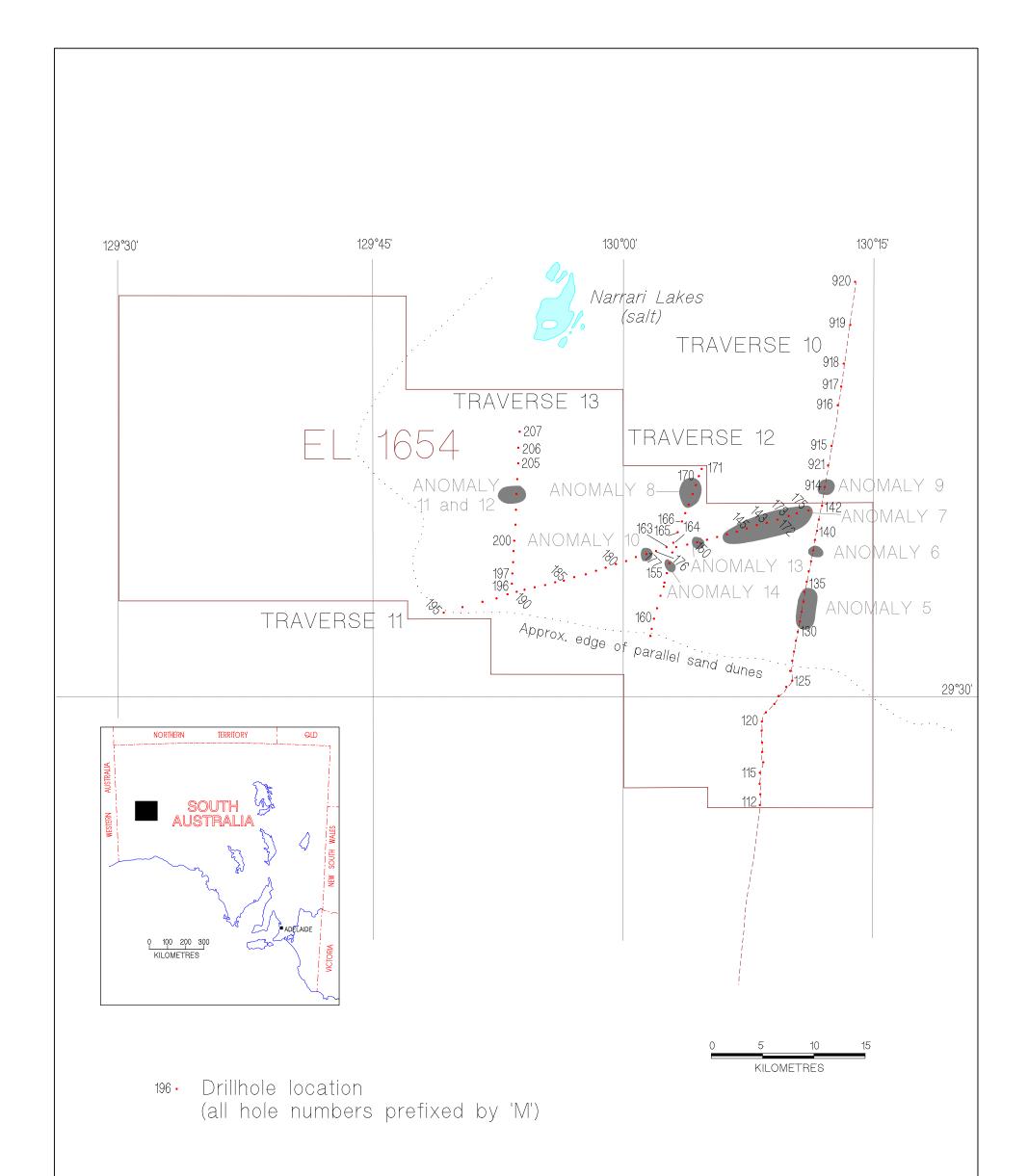

LOCATION OF PREVIOUS AND CURRENT EXPLORATION LICENCES



EL1355

MESA 1996-0778

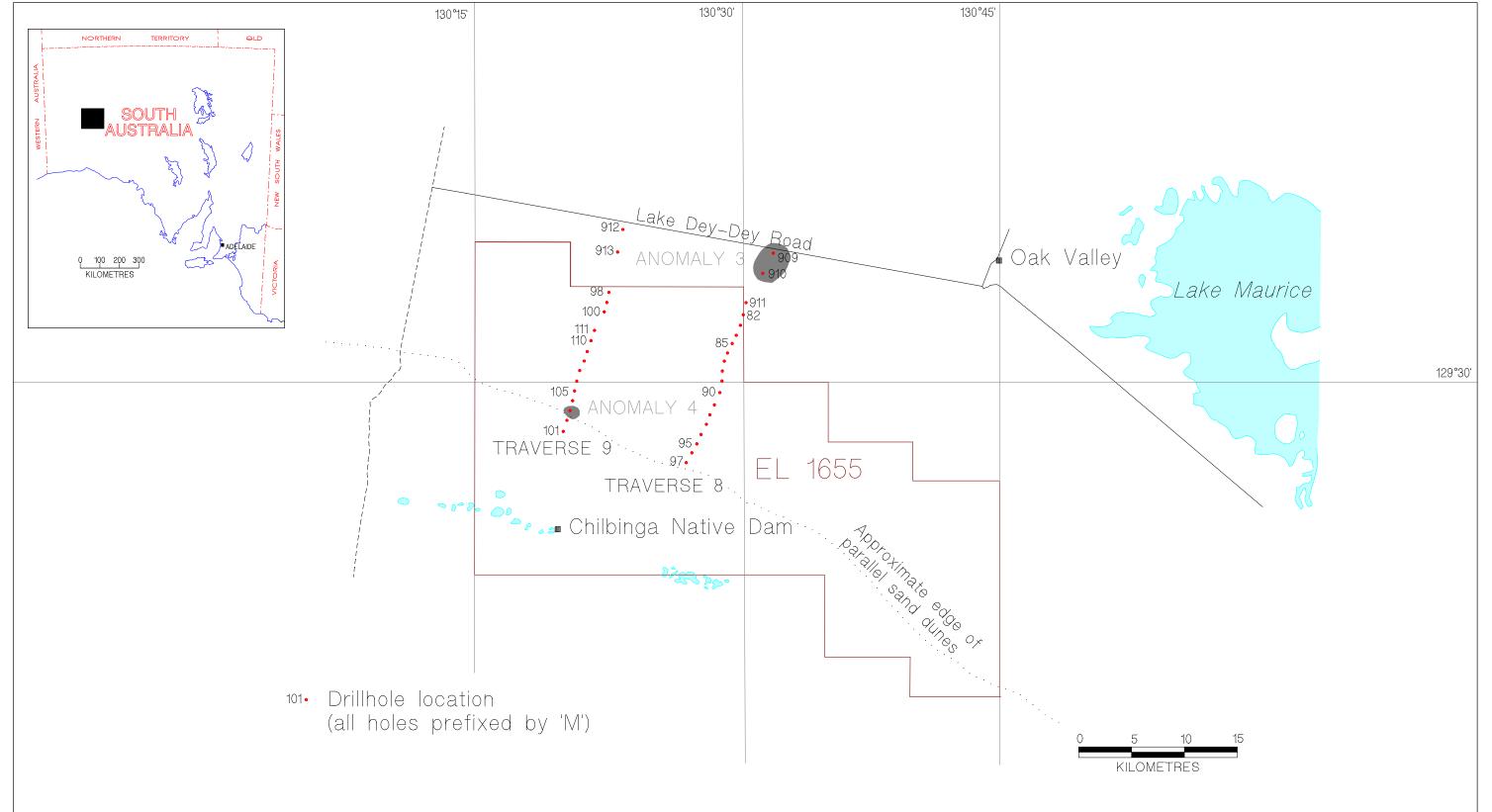
100336GF.DTA


REVIEW OF HEAVY MINERAL SAND EXPLORATION

THE EUCLA BASIN

BHP MINERALS LTD DRILLHOLE LOCATIONS

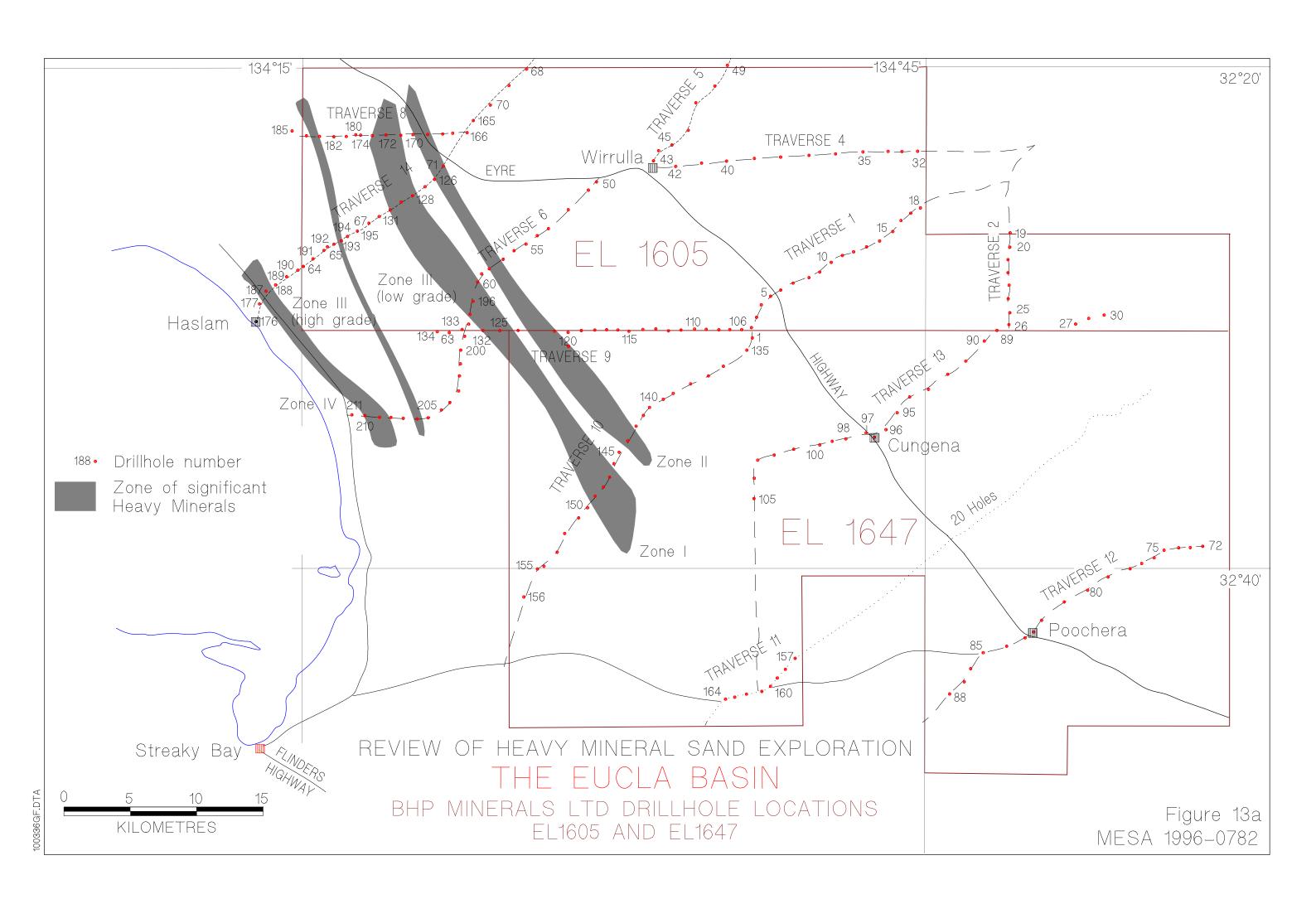
EL1653

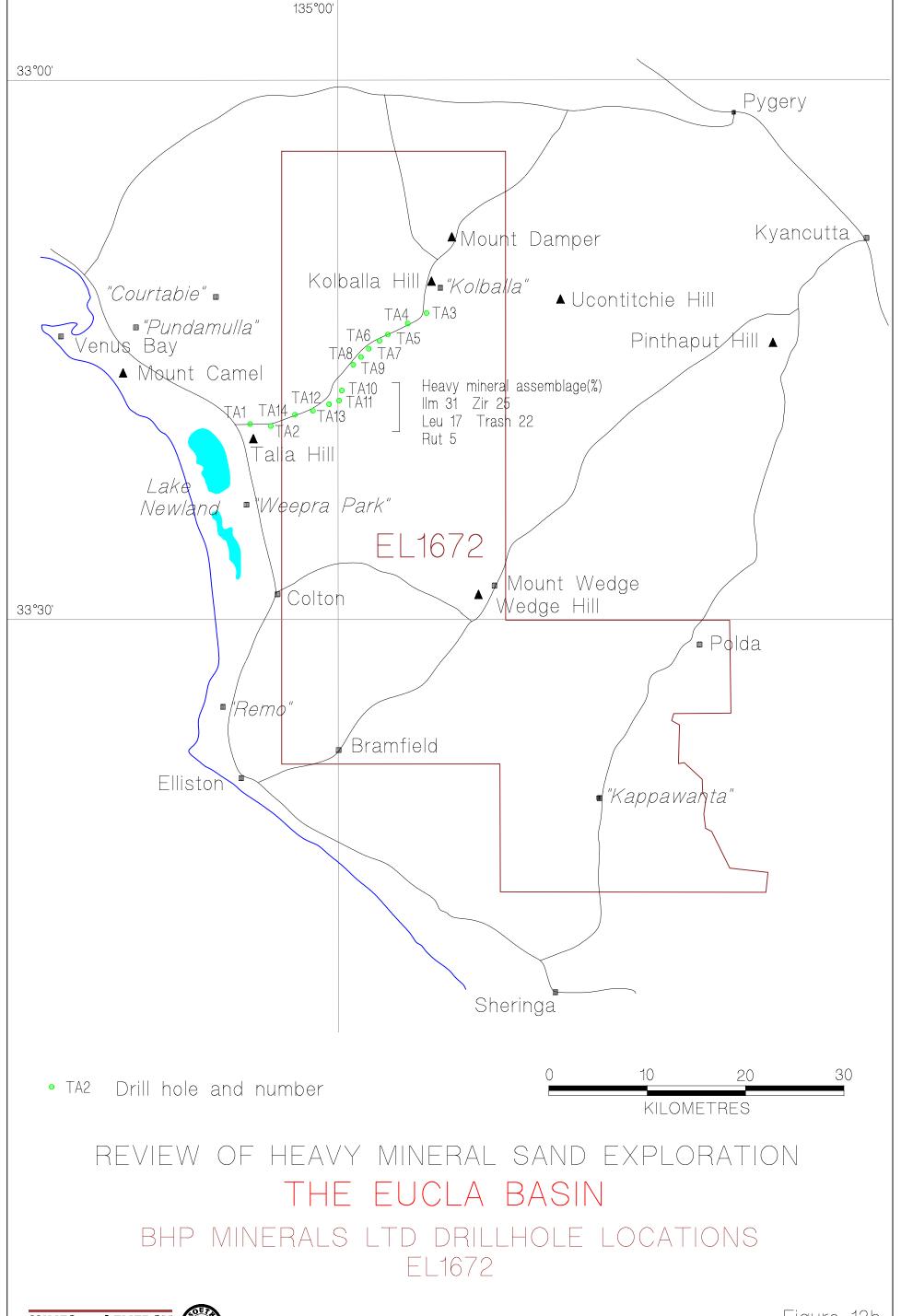

REVIEW OF HEAVY MINERAL SAND EXPLORATION

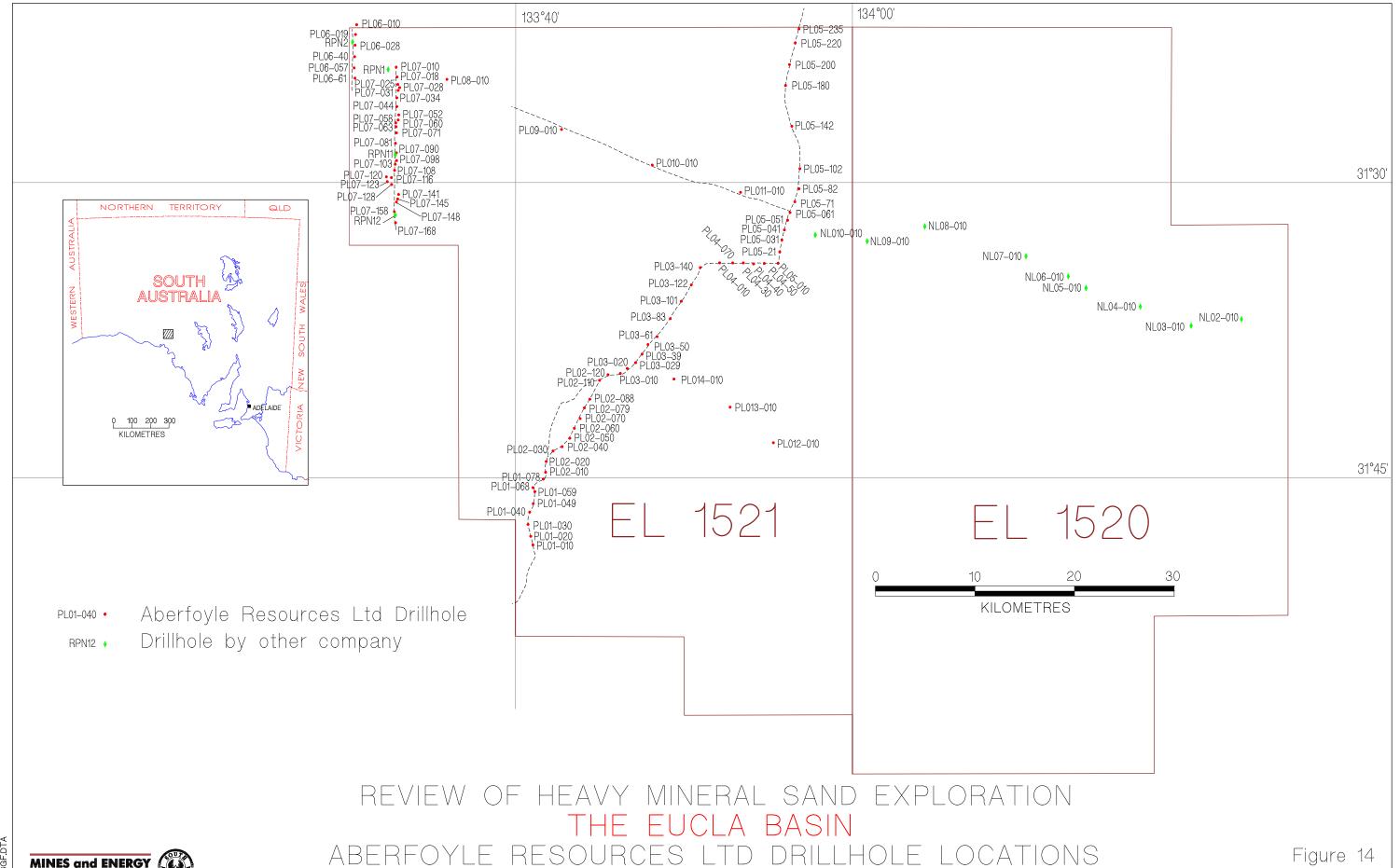
THE EUCLA BASIN

BHP MINERALS LTD DRILLHOLE LOCATIONS

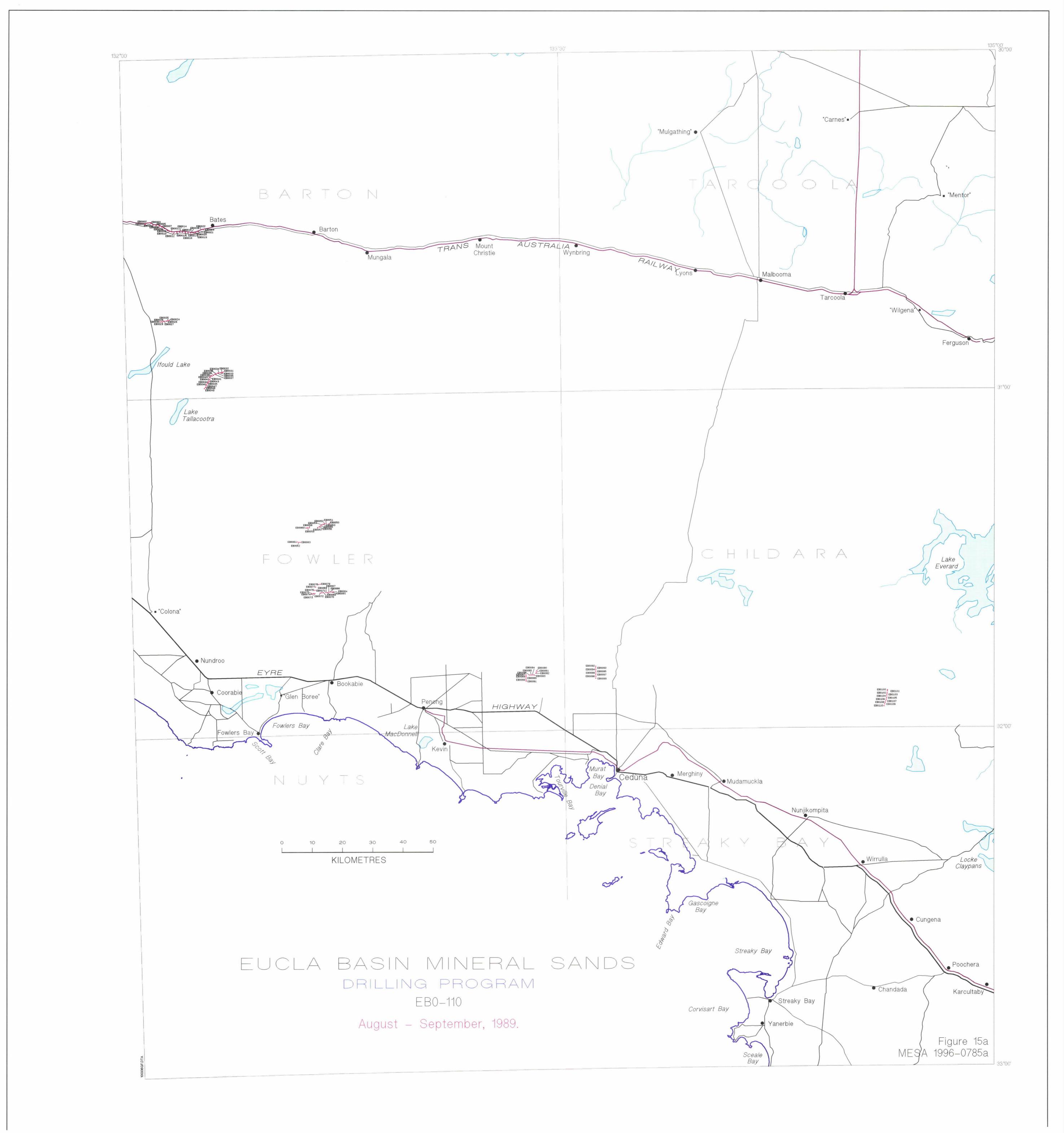
EL1654

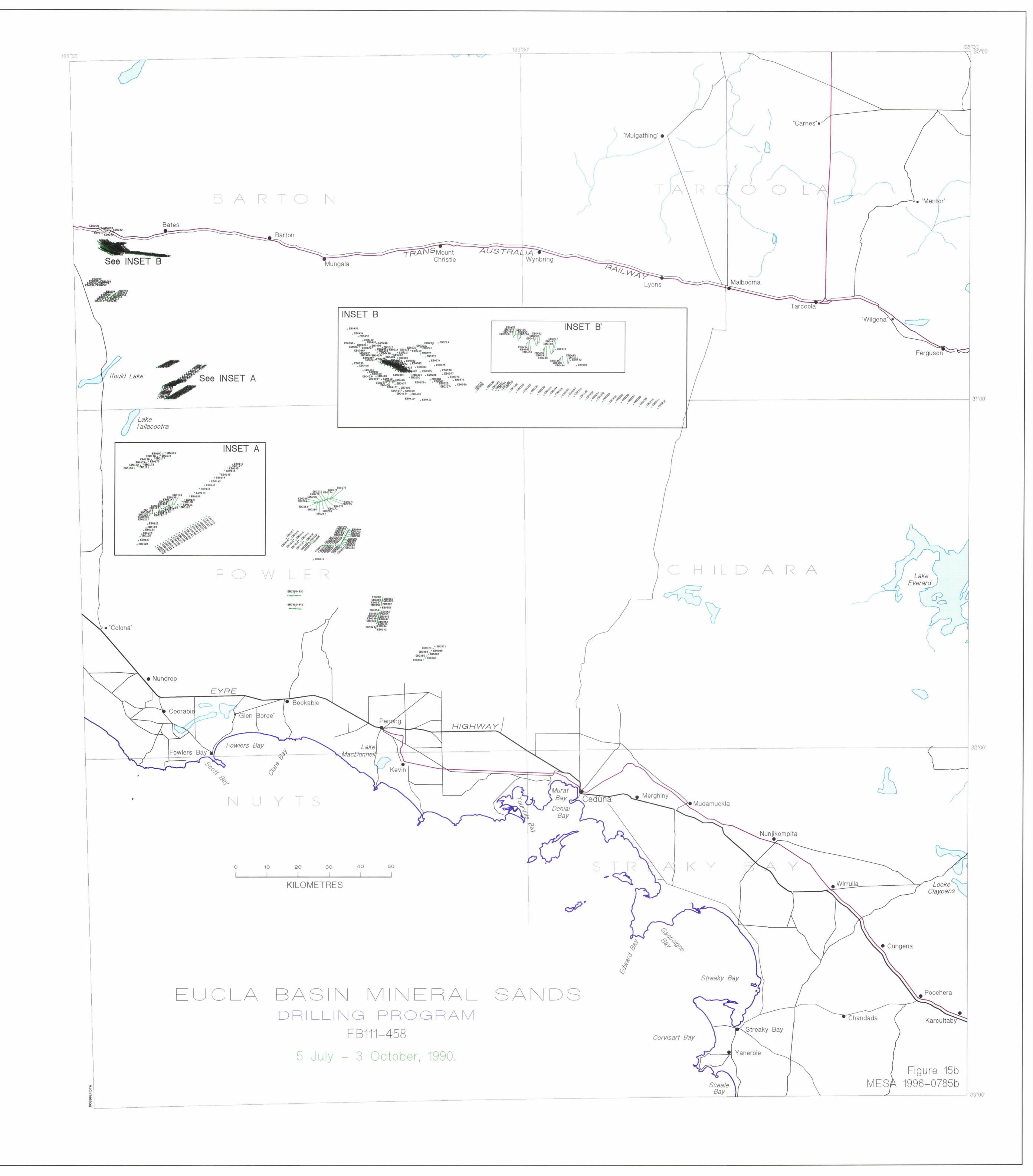


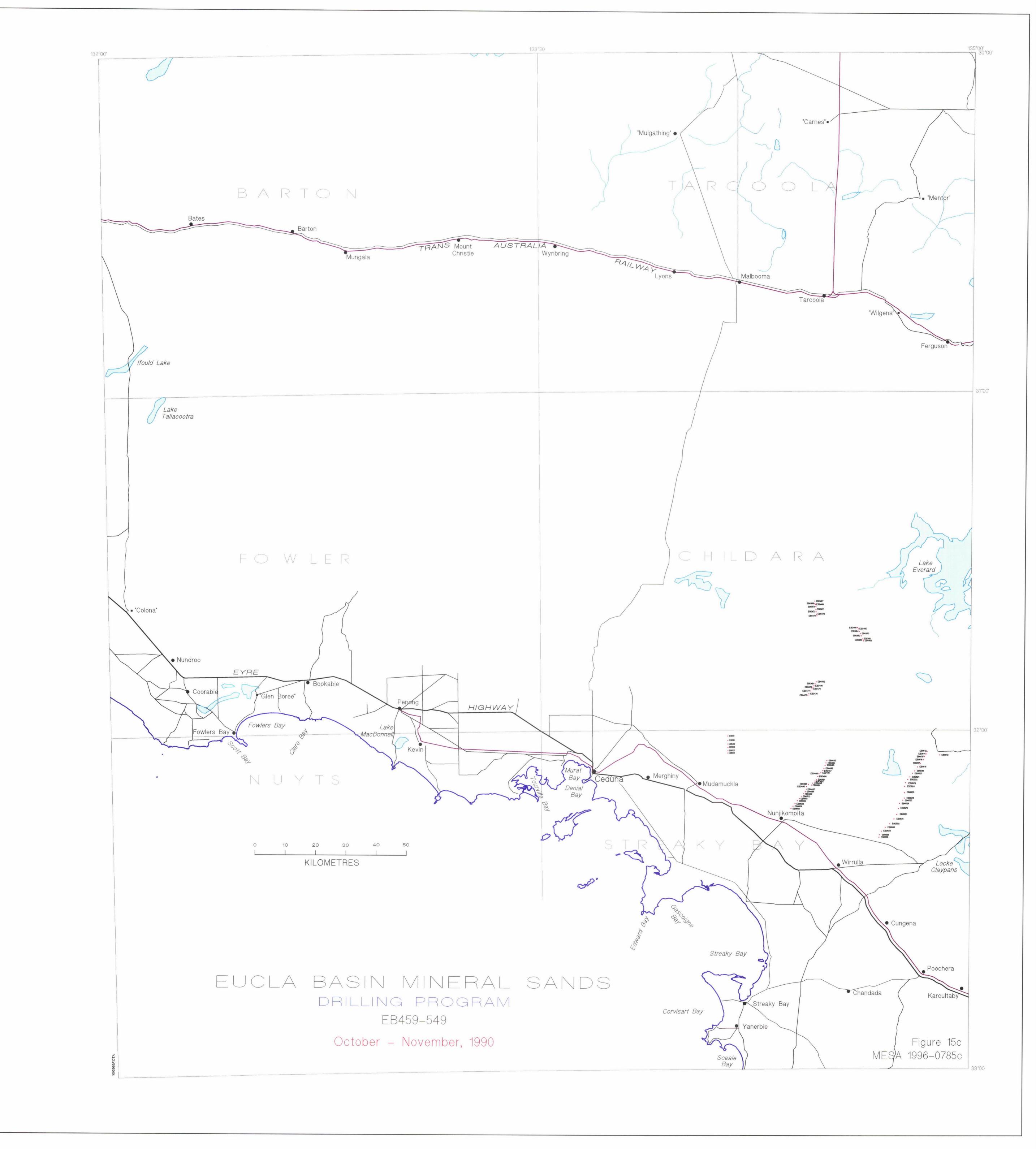


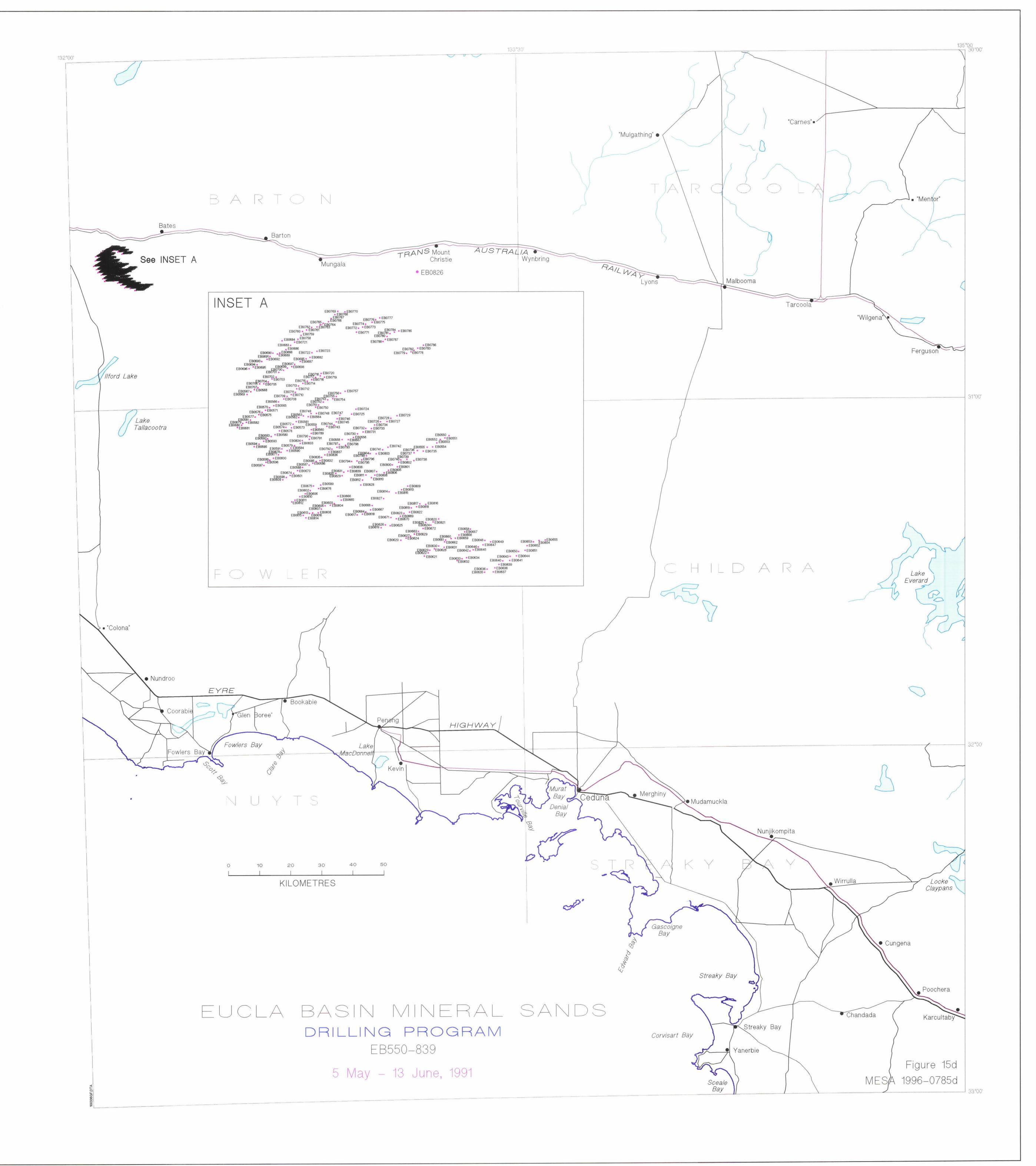


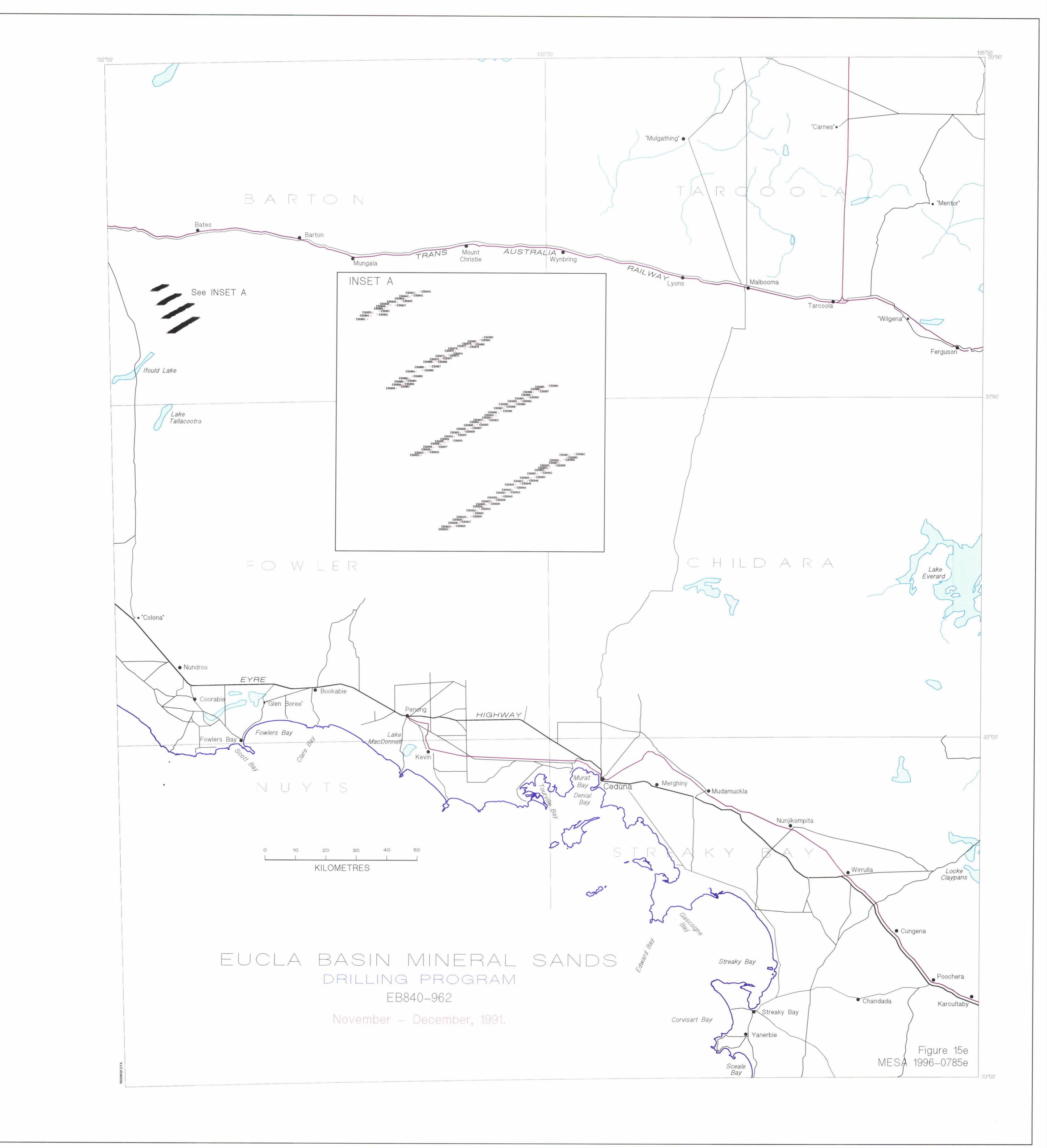
REVIEW OF HEAVY MINERAL SAND EXPLORATION
THE EUCLA BASIN
BHP MINERALS LTD DRILLHOLE LOCATIONS
EL1655


Figure 12 MESA 1996-0781








1520 and EL 1521

