DEPARTMENT OF MINES AND ENERGY

GEOLOGICAL SURVEY

SOUTH AUSTRALIA

REPORT BOOK 93/35

PRE-ADELAIDEAN BASEMENT TO THE STUART SHELF, SOUTH AUSTRALIA: DRILLHOLE DATABASE AND PRELIMINARY GEOLOGICAL INTERPRETATION

by

J L CURTIS¹

B J VANDERSTELT²

and

A J PARKER³

Senior Consultant Geologist - JLC Exploration Services

² Geologist - Regional Geology Branch

Chief Geologist - Regional Geology Branch

SEPTEMBER 1993

CONTENTS	<u>PAGE</u>
INTRODUCTION	1
PROJECT OBJECTIVES	2
METHODOLOGY	2
CONSTRUCTION OF DATABASE	3
A. SSDB KEY FIELDS	3
B. SSDB DATA TABLES	4
DRILLHOLE DATA	4
A. CODING SCHEMES	5
THE STUART SHELF DATABASE IN ArcView	6
A. INTRODUCTION	6
B. DH_INDEX FOR ArcView	7
C. DH_LOG for ArcView	7
D. USER NOTES	7
GEOLOGICAL-GEOPHYSICAL ANALYSIS AND DATA INTEGRATION	8
A. ARC/INFO "TIN" ANALYSIS	8
B. GRAVITY DATA	8
C. AEROMAGNETIC DATA	11
D. INTEGRATED INTERPRETATION	14
CONCLUSIONS/RECOMMENDATIONS	22
GLOSSARY OF ABBREVIATED TERMS	24
BIBLIOGRAPHY	25

TABLES

1	Geochronology of the Stuart Shelf Basement	
<u>FIGURES</u>		<u>PLAN No</u>
1	Stuart Shelf Basement Project	
2	Drillhole Locations	93-39
3	Database Configuration Diagram	
4 4a	Surface Geology Map Surface Geology Legend	93-40 93-40a
5	Depth to Basement Contour Diagram	93-41
6	Bouguer Gravity - Field Intensity Shaded Image	93-42
7	Total Magnetic Intensity - Magnetic Gradient Drape Image	93-43
8 8a	Interpreted Basement Geology Interpreted Basement Geology Legend	93-993 93-994
9	Mesoproterozoic Geochronology - Hiltaba Suite & Gawler Range Volcanics	
APPENDICES		
APPENDIX 1	GENERAL INFORMATION	
1.1 1.2	DH_LIST - Listing of DH_INDEX drillholes. Data Input Formats	
APPENDIX 2	Drillhole DATA SHEETS	
2.1 2.2 2.3 2.4	DH_INDEX - Field Descriptions. DH_IDXCD - List of Data Sheet Codes. AESIS Company Code List for DH_INDEX DH_INDEX - Printout of Data Sheets.	
APPENDIX 3	Drillhole LOGS	
3.1 3.2 3.3 3.4 3.5	DH_LOG - Field Descriptions SS_STRAT - List of Stratigraphic Codes LIMIN_CD - List of Lithological & Mineral Codes. DESCP_CD - Geological Summary Shorthand Codes. DH_LOG - Printout of Summary Log Sheets	

APPENDIX 4 COMPUTER DISKETTES DATASETS

4.1 DISK 1 Lotus worksheets

DH_LIST.WK1 DH_INDEX.WK1 DH_IDXCD.WK1 DH_LOG.WK1 SS_STRAT.WK1 LIMIN_CD.WK1 DESCP_CD.WK1

4.2 DISK 2 ASCII data dumps

DH_LIST.TXT
DH_INDEX.TXT
DH_IDXCD.TXT
DH_LOG.TXT
SS_STRAT.TXT
LIMIN_CD.TXT
DESCP_CD.TXT

4.3 DISKS 3-5 ArcView digital datasets.

DEPARTMENT OF MINES AND ENERGY GEOLOGICAL SURVEY SOUTH AUSTRALIA

REPORT BOOK 93/35

Pre-Adelaidean Basement to Stuart Shelf, South Australia: Drillhole Database and Preliminary Geological Interpretation

J L CURTIS
B J VANDERSTELT and
A J PARKER

The geology and mineralisation of the prospective northeast segment of the Gawler Craton is the focus of the Stuart Shelf Basement Project. Geological and technical data from selected open-file drillholes (those that intersected pre-Adelaidean basement) were compiled into comprehensive GIS database. A preliminary solid geology map of circa 1590 Ma rocks was constructed by combining imaged gravity and aeromagnetic data with database information and is presented together with structure contours of depth to basement and surface geology maps. The database information is provided both as appendices within this document and as an ArcView dataset for graphical display on 386/486 personal computers. Aspects of future developmental work are considered.

INTRODUCTION

The NE Gawler Craton basement, concealed beneath the Stuart Shelf Neoproterozoic sequence and Mesoproterozoic Pandurra Formation (Cariewerloo Basin), comprises deformed Archaean and Palaeoproterozoic units and undeformed circa 1590 Ma Gawler Range Volcanics (GRV) and comagmatic Hiltaba Suite intrusives. These basement units are potential hosts to major economic mineralisation as demonstrated by the Olympic Dam Cu-Au-U polymetallic resource.

Since 1970 there has been considerable exploration in this region, particularly for Olympic Dam type orebodies, and more than 90 deep drillholes have been targeted on geophysical features thought to indicate mineralised environments. While a considerable number of these holes were terminated in cover units without penetrating to basement, a significant proportion of the remainder detected weak mineralisation or alteration characteristics that could be indicative of nearby mineralisation.

The widespread distribution of these drillholes, the variability of basement lithologies intersected, a relatively poor knowledge of stratigraphic relationships, and extensive thick cover, have impeded exploration progress. Nevertheless, the nature and extent of mineralisation and other exploration indicators justifies on-going exploration activity.

The path to new resource discovery and development necessarily requires advancements in the understanding of the geology, geophysics, geochemistry and mineralisation of this prospective terrain.

This is the fundamental basis of this project.

The study area is large, approx. 80,000 km², covering the entire Stuart Shelf Region to the North of Pt. Augusta but with a centre of focus on 25,000 km² of concealed basement in the Olympic Dam - Mt. Gunson (ODMG) region immediately adjacent to the Torrens Hinge Zone (THZ) (Fig. 1).

PROJECT OBJECTIVES

The primary objective of the Stuart Shelf Basement Project is to maintain and stimulate exploration in this prospective region by providing a geological framework for current and potential explorers.

The project seeks to achieve this goal by establishing comprehensive factual geological, geochemical and geophysical datasets and undertaking a multifaceted interpretation of the available information utilizing new computer based analytical technologies.

The objective of the first stage of the project was to develop a drillhole database summarising lithological and stratigraphic data (including alteration characteristics etc.) and to integrate this information with image processed geophysics to create a preliminary solid geology map of the basement as an extension of database work initiated by Newton (1984) and building upon regional geological interpretations by Parker et al. (1986) & Parker (1990a & b) with industry contributions by Anderson (1979), Dalgarno (1986), Curtis (1985), O'Driscoll (1986), Paterson et al. (1986a, 1986b), Tonkin (1985) and other workers.

This report presents all the currently available open file drillhole geological information compiled during the initial stage of the project, preliminary imaging of regional geophysical data and a preliminary integrated geological interpretation. Recommendations are made regarding further work.

METHODOLOGY

The source of primary information was based on a search of the DME SAMREF bibliographic database for all open file and other publicly available drilling and geophysical references over the study region. This information was systematically examined to identify and extract exploration drilling reports. The drillholes accepted into the final database are listed in Appendix 1.1 and computer files DH_LIST.* and are displayed on Fig. 2.

A previous DME data listing prepared by Newton (1984) for a significant portion of the region was also examined to identify drillholes of interest and provide data.

Supplementary drillhole lists were also prepared from reports on the Pandurra Formation (Cowley, 1991a), Beda Volcanics (Cowley, 1991b) and the Kingoonya area (Cowley & Martin, 1989, 1991, Cowley & Fanning, 1991) and from DME Bulletin 53 (Preiss, 1987). A limited amount of data was also obtained from Aus.I.M.M. and GSA publications and unpublished theses. All the data used in this report are entirely within the public domain.

Supplementary information released within a combined petrological and geochemical study of felsic igneous rocks from the region (Creaser 1989, 1991) was used to assist the preparation of the basement geology interpretation but is not included in the dataset.

Drillholes were selected if they intersected pre-Pandurra Formation basement or substantial Pandurra Formation thickness likely to indicate pre-Pandurra Formation basement depth. Only relevant and well documented, stratigraphic reference drillholes were included.

The majority of the researched material was obtained directly from archived company reports examined at the DME Document Storage Centre. Initially, data were manually written on to forms but the work quickly progressed to interactive capture on to personal computers (PCs).

Geological datasets were manually constructed using wordprocessor/spreadsheet PC programs. Subsequently, the DME corporate drillhole database (DHDB) was updated and selected information copied into the ARC/INFO Geographic Information System (GIS) for further manipulation and map generation. Hardcopy printed reports were generated from the PC-based datasets.

The emphasis for the first stage of the programme was on capturing information on geology, alteration and mineralisation. Where feasible, geochemical, magnetic susceptibility and specific gravity data was also systematically captured for later analysis.

Problems that arose during drillhole data compilation were:-

- Accurate establishment of drillhole collar coordinates.
- Meaningful assignment of stratigraphic subdivisions to poorly described lithologies

and/or recognising spurious pre-existing stratigraphic interpretations.

Collar coordinate positioning varied from well authenticated survey and orthophoto coordinate referencing to sketch map matching with standard reference maps. In many cases elevations were estimated from standard topographic map sheets. Local geophysical surveys were often not tied to state datums and/or not available in computerised format and of little direct value to the regional compilation. Coordinate upgrading to the DME DHDB is anticipated over time.

Considerable effort was expended in ensuring that a reasonable degree of stratigraphic consistency is present in the new dataset. The assignment of stratigraphic units/names to lithological units was based on descriptive data contained in exploration reports such as Barratt (1991), Paterson (1986) and Tonkin (1985), supplemented by limited inspection of drillcores at the DME Core Library.

The stratigraphic interpretation of the whole geological interval present in each drillhole was reviewed and accordingly amended. Differences between geological logs in the original reports and the stratigraphic assignments in the dataset are the result of considered opinion based on the authors' experiences and changes stratigraphic to nomenclature over time as enunciated by Daly & Fanning (in prep.), Dyson (1992), Flint et al. (in prep.), Parker (1990a), Parker et al., (in prep.) Preiss (1987), Preiss (in prep.) and Webb et al. (1986).

To facilitate the computer generation of meaningful isopach contours and topological surfaces, assignment of stratigraphic intervals required the incorporation of minor, discordant, cross-cutting units into recognisable contiguous horizons. In some drillholes sub-intervals were also designated where distinct lithological units exist. Informal stratigraphic units are designated for such intervals.

As the project proceeds through subsequent phases and the knowledge base improves, re-assignment of basement stratigraphy and amendments to the cover units are to be expected. Stratigraphic assignment to date has erred on the side of diversity; therefore in the future a reduction in the number of informal basement units is likely.

CONSTRUCTION OF DATABASE

DME is vigorously pursuing the development of an integrated digital geoscientific information system for South Australia (GEOSIS) (Belperio, 1992). Therefore, the database tables for the Stuart Shelf database (SSDB) have been structured for compatibility with the DME centralised drillhole database (DHDB), geological mapping database (SA_GEOLOGY) and rock sample and geochemical databases (RS/GEOCHEM) (see Glossary and Fig. 3).

This has been achieved by adopting features from previous DME datasets, adding new description/data fields for more flexibility and by adapting geological codes from Queensland Geological Survey REGMAP (Lang et al., 1988) and Australian Geological Survey Organisation (AGSO) (Blewett and Ryburn, 1992) database systems and the recently evolved DME SASTRAT stratigraphic names coding and index system (Gatehouse et al, in prep.).

The DHDB (which includes the former DME **BORE GENERAL** FILE) lists essential specifications of drillholes within SA. drillhole is assigned the four digit number of the 1:100,000 map sheet area within which it occurs and a serialised number reflecting the sequential order of registration for that map sheet. Together, these numbers define a unique identification (ID) for each and every drillhole in the DHDB. While the SSDB is a PC-based project database separate from the DHDB and other existing elements of GEOSIS, it uses the same unique ID as the DHDB for linking.

The SSDB has two primary tables, DH_INDEX and DH_LOG which together with supplementary coding tables have been constructed to be compatible with the design of GEOSIS. Figure 3 schematically illustrates the relationships between the databases and supporting tables of SSDB Dashed lines indicate links between related elements of SSDB and GEOSIS.

A. SSDB KEY FIELDS

The two key fields MAP NO: and UNIT NO: as defined in the DHDB (see above), together define the unique drillhole identifiers, which not only link related records in the separate tables of the SSDB but also link SSDB to DHDB and other elements of

GEOSIS. Because some database software requires a single unique key field for cross referencing between tables a third, single, similarly unique field, MAPUNO:, a combination of MAP NO: and UNIT NO:, has been created. All tables containing drillhole specific data are linked using these fields.

Other fields such as drillhole names may be duplicated in different tables for convenience but have no database linkage significance.

<u>NOTE</u>: The unique specifiers <u>MAP NO:</u> + <u>UNIT NO:</u> and <u>MAPUNO:</u> should not be confused with similarly unique accession numbers assigned by the DME Glenside Core Library.

B. SSDB DATA TABLES

The SSDB is comprised of two principal tables: DH_INDEX and DH_LOG which are amenable to systematic computer data processing and have been modified on migration into ArcView .

Key elements of the SSDB table DH_INDEX form a subset of DHDB, including drillhole locations which are stored for GEOSIS using ARC/INFO. The SSDB table DH_LOG includes key coding for stratigraphic units which provide a link to geological maps (SA_GEOLOGY) via code definitions listed in SS_STRAT which includes relevant formalised stratigraphic coding defined by SASTRAT (See Appendix 3.2).

Detailed information on surface geophysical surveys, petrophysical, geochemical and down hole geophysical logging information is not included within DH_INDEX and DH_LOG but will be progressively added as separate tables to the SSDB (See Fig. 3). However, source references to this information are included within DH_INDEX.

DH INDEX

DH INDEX has been constructed around the parameters of the DHDB to provide comprehensive information set for each drillhole. It contains information such as drillhole name, references. sponsors, total depth, location. elevation, dip & azimuth, target commodities etc.. DH_INDEX also provides an easily recognised direct path to other available information located elsewhere such as geochemistry and geophysics. Each drillhole is represented by a single record in DH_INDEX and each corresponds to a datasheet page as presented in Appendix 2.4.

A complete listing or data dictionary of all 70 fields in DH_INDEX is included in Appendix 2.1 and comprises the field name, status, data type and brief description for each field/item.

Drillhole coordinate data are stored in AMG and GEODETIC (decimal degrees) coordinates for user convenience and to satisfy the requirements of different processing packages.

DH LOG

DH_LOG has been constructed to provide summary information on stratigraphy, lithology, alteration and mineralisation for each clearly defined stratigraphic and/or geological interval within a drillhole. Every interval so defined in each drillhole is represented by a single record in DH_LOG (ie. a many to one relationship for each drillhole).

The DH_LOG file table contains 18 data fields, of which four are for user convenience because they duplicate information in DH_INDEX. A complete listing or dictionary of all 18 data fields in DH_LOG is included in Appendix 3.1.

DRILLHOLE DATA

According to DME Mineral Exploration Index Series (MEIS) maps, Core Library records etc., there are over 4000 public domain drillholes in the Stuart Shelf region as defined in this project (Fig. 1). Of these, 146 contained information deemed pertinent to establishing the nature of pre-Pandurra Formation basement.

Detailed logistical data (eg. location, total depth, sponsor information, etc..) are included in hardcopy format in Appendix 2.4. and as Lotus 123 (*.WK1) spreadsheet files, '#' delimited ASCII files (*.TXT) and ArcView files in Appendices 4.1, 4.2 and 4.3 respectively. These data are also available in ARC/INFO format upon request.

Summary stratigraphic, lithological, alteration and mineralisation information is included as hardcopy format in Appendix 3.5 and digital formats in the above listed Appendices.

A. SSDB CODING SCHEMES

Comprehensive lists of codes used in the SSDB for stratigraphic units, lithologies, provinces and drillhole sponsors are provided in Appendices 2 & 3 at the back of this report. They are also provided as lookup tables in Appendix 4.

DH_INDEX

Codes used in DH_INDEX are an expansion upon those currently stored in the DHDB. Data entry sheets (Appendix 1.2) have the most important coding information embedded on each page for user convenience. The codes stored in the DH_IDXCD look-up table (Appendix 2.2) are mnemonic and generally self evident.

The <u>SPONSOR CODE</u>: is only available from a separate lookup table and is derived from the nationally recognised AESIS company code list which is available on a regularly updatable basis from the Australian Mineral Foundation. Appendix 2.3 is a subset listing of sponsors responsible for the SSDB drilling which is also provided in Appendix 4.

<u>NOTE</u>: To assist users, both sponsor codes and abbreviated corporate names have been included in drillhole data sheets (Appendix 2.4).

DH_LOG

Stratigraphic Codes

SASTRAT is a database being constructed by DME as a reference tool for all stratigraphic names used in South Australia. Unique codes for stratigraphic units have been assigned for keyboard entry, map generation and computer processing by Gatehouse et al. (in prep.).

This flexible coding system follows a logical scheme of letter symbols for age, group, formation, etc. of both formally defined and informal stratigraphic units, as well as invasive/discordant bodies (eg. veins, breccias, igneous intrusives) and structural entities (eg. diapirs and shear zones). These codes are unique within SA and provide a link to SA GEOLOGY the geological map GIS.

DH_LOG uses the SS_STRAT lookup table which consists of a project relevant subset of the SASTRAT keyboard codes with the addition of informal project specific units. SS_STRAT is presented in Appendix 3.2

Lithological and Mineral Codes

A set of lithological and mineral codes has been compiled for common rock types and minerals. The code set is a simple table presented in alphabetical order (Appendix 3.3 - LIMIN_CD.) but can also be sorted into a rock classification format to assist data entry.

The rock and mineral codes have been adapted from the REGMAP system of the Queensland Geological Survey (Lang et al. 1988) and the AGSO coding system, but expanded to include additional rock and mineral forms. The list fuses the best aspects of both systems but does not claim to be fully comprehensive with respect to uncommon rock and mineral types.

Following the policy of REGMAP, a 4-character rock code was adopted in the interests of brevity and simplicity to permit a higher information density on conventional PC screens compared to the AGSO 6-character code. The restrictive and semi-redundant generic data in the first two leading characters of each AGSO string were excluded.

However provision has been made for such generic indexing by incorporating three separate user transparent fields in the definition table LIMIN_CD, that will allow cross correlations and generic based queries.

Synonyms have been avoided where possible and the description field in DH_LOG has been used to resolve potential ambiguities that might otherwise occur.

Alteration - Mineral Codes

Early in the preparation of DH_LOG it was recognised that a limited number of alteration types and vein mineralogies were very common. The majority of such features could be described by up to four individual single-letter codes (Appendix 3.4 - DESCP_CD).

Codes for ore and accessory gangue minerals with well established usage in technical literature, such as Py = pyrite and Cp = clinopyroxene, have been used without modification.

Free text descriptions

Rock description and comment fields have been

designed and used extensively in DH_LOG for free text descriptive data from drillhole log records.

Screen space limitation and user convenience considerations led to the development of a limited shorthand vocabulary of simple intuitive user legible mnemonic abbreviations of some common geological terms and descriptors for colours, texture, etc.. Rigid adherence to the special vocabulary is not essential.

The mnemonics vocabulary is available in dictionary form in Appendix 3.4 - DESCP_CD and is also available in a categorised format suitable for encoding.

THE STUART SHELF DATABASE IN ArcView

A. INTRODUCTION

Having established the drillhole databases on PC's, the information was imported into the UNIX-based ARC/INFO (Ver. 6.1) GIS for map generation and further processing. This enabled drillhole locations to be plotted on geological maps and overlaid on geophysical images. It also provided the opportunity to establish a geographical query interface through ArcView.

ArcView is a user-friendly GIS able to store, display and query ARC/INFO prepared datasets on a stand-alone PC running Microsoft Windows (Ver. ≥ 3.0). The various datasets are stored and displayed as 'layers' able to be switched on or off and queried as the user wishes. Any different combination of layers and queries can then be stored as a 'view' file or reproduced as a hardcopy printout.

Three of the diskettes provided with this package contain the Stuart Shelf Database prepared for ArcView (ver 1.0). The entire contents of the disks should be copied into a new, empty directory on your PC. After transferring the data begin the ArcView application and Open the view STUARTSH.AV (you will need to navigate to the new directory). Having opened the view it is likely a prompt will appear stating that the data source c:/.../drainage cannot be located and asking if you wish to search for it. Select Yes and then navigate to the directory where the data is now located. Select 'drainage' (from the left hand window) and click O.K. After the data has loaded Save the view

so that this will not occur each time you load it.

The 'view' file STUARTSH.AV presents thirteen datasets as ArcView layers which are briefly described below.

1. Surface Geology

Subset of the SA_GEOLOGY/State 1:1,000,000 digital geological map database (Fig. 4).

Cultural

Railway lines, major roads, tracks and 1:250,000 map sheet boundaries.

3. Drainage

Major creeks, rivers and lake boundaries.

4. Dunes

Sand dunes.

5. TMI image

Subset of the South Australian State image of Total Magnetic Intensity.

6. Dh_index

The technical specifications and reference data for the drillholes. The field descriptions are summarised below in section B.

7. Dh log

The drillhole summary stratigraphy. For ArcView, because there are restrictions with respect to related tables and many-to-one type relationships, all of the fields for each stratigraphic unit are combined into one long text string described below in section C.

8 Dh base

A subset of Dh_log containing descriptions of the upper-most pre-Pandurra unit for each basement intersecting drillhole. This layer was used as 'ground-truth' for basement interpretation and allows for simplified querying of the upper basement units.

9. Basement Contours

Contour diagram of the depth to pre-Pandurra basement relative to mean sea-level, created in ARC/INFO using data from Dh_base supplemented with other data where required.

10. Basement Geology

Interpreted pre-Pandurra geology. Appendix 1 contains the key to the lithological units.

11. Basement Lineations

Interpreted basement lineations and faults.

12. Basement Fabric

Basement fabric as interpreted from the TMI image.

13. Gravity Image

Subset of the South Australian State image of Bouger Gravity.

B. DH_INDEX FOR ArcView

DH_INDEX for ArcView contains 37 fields listing technical specifications and reference information for each drillhole. The fields, which are either identical (*) or combinations of the fields in the DH_INDEX file table (Appendix 2.1), are listed below:-

ArcView Field Appendix 2.1 Field name

dh_index_i= ArcView internal id. no. name = NAME + SEO. NO

unique no = MAP + CLASS +UNIT

* other_name= OTHER NAME

* confdntl = CONFIDENTIAL

* province = PROVINCE CODES lease = LEASE (combined)

sponsor = SPONSOR CODE

* reference = REFERENCE ref_type = REF. TYPE + No

* samref_no = SAMREF CNO

* target = TARGET COMMODITY

* ttl_depth = TOTAL DEPTH

* completed = COMPLETION DATE

* method = DRILLTECH

sample_1 = SAMPLE: TYPE 1 +

LENGTH

sample_2 = SAMPLE: TYPE 2 +

LENGTH

* storage = LOCATION

* locn_acc = LOCATION ACCURACY

* declinatn = DIP ANGLE * azimuth = AZIMUTH

* orientsvy = DOWN HOLE

ORIENTATION SURVEY

* elevation = ELEVATION

* status = STATUS

* geol_log = GEOL LOG EXISTS

* geol_ref = GEOLOG REF

* groundsvys= GROUND (Targeting) SURVEYS

* grndsvyref = GROUND SURVEY REF

* dnhlgeophy = GEOPHYS. (Down Hole)

* dhgphyref = GEOPHYS DH. REF

* geochemref = GEOCHEMISTRY REF

* petrlgyref = PETROLOGY REF

* geochrnref = GEOCHRONOLOGY REF

* water_test = WATER

* other_test = OTHER

* other ref = REF (for OTHER)

* comments = COMMENTS

NB: * denotes fields identically named in the DH_INDEX file table (Appendix 2.1).

C. DH LOG for ArcView

Dh_log contains the summarised and abbreviated geological logs for the drillholes. The description for each unit takes the following format:

Strat unit From-To Lith1 Lith2 (Descript.| Altrn.| Fabric| Angle| Minrlsn.)

Each component is described briefly:

Strat unit: The code for the stratigraphic name of the unit being described.

From-To:TISETATE pts extent of the unit being described.

Lith 1:The predominant rock lithology of the unit.

Lith 2:Any secondary lithological component.

Descript:Summarised and abbreviated geological description of the unit.

Altrn:Any alteration noted within the unit.

Fabric: Texture and fabric description of the unit.

Angle: Angle of bedding or fabric relative to core axis.

Minrlsn:Any mineralisation (or other comments) noted for the unit.

The abbreviations for the data in Dh_log are explained in Appendix 3.

D. USER NOTES

• The data in the ArcView layers Dh_index, Dh_log and Dh_base are all linked to the same location point, ie the drillhole location. To use the ArcView 'Identify' tool to query one layer in preference to the others, ensure that the layer which you are querying is the only one which is highlighted (ie appears 'raised') on the table of contents window and also has a tick in it's check box (See 'Theme, highlighting for selection' in the

ArcView User Guide).

- Always keep a backup of the original view supplied with the package.
- To create a new view use the 'Save as...' option on STUARTSH.AV and delete or modify the layers as necessary rather than 'adding' the datasets to a new view. This avoids the time consuming task of colour re-allocation for 'Surface Geology' and 'Basement Geology' map units.
- To best view the aeromagnetic image 'TMI image' it may be necessary to have a 256 colour monitor and screen driver. An 800x600 pixel or better screen resolution will give best results but is not mandatory.

GEOLOGICAL-GEOPHYSICAL ANALYSIS AND DATA INTEGRATION

Geographic Information System (GIS) software running on workstation & PC platforms has been used to construct a database which integrates modified DH_INDEX & DH_LOG datasets with graphical images of digitized surface geology and processed gravity and magnetic data. Surface geological map data were derived from the SA_GEOLOGY/State digital geological database while geophysical data were extracted from DME datasets and image processed. The primary gravity and aeromagnetic datasets were compiled by J.F. Allender (in prep.) and Pitt Research (in prep.) respectively.

The UNIX-based programme ER-Mapper Ver. 3.0 was used to generate 1:1,000,000 pseudocolour and relief shaded grey-scale images of Bouguer gravity, total magnetic intensity (TMI), magnetic gradient (MGRAD) and TMI-MGRAD combined. ER-Mapper, ARC/INFO and ArcView were used for overlaying, analysing and interpreting the various datasets and the generation of an integrated GIS database for the Stuart Shelf region.

A. ARC/INFO "TIN" ANALYSIS

To aid in the interpretation of the geophysical images, a depth to basement contour map was produced using the 'TIN' 3D surface representation,

modelling and display module of ARC/INFO.

This was a relatively simple exercise using the Dh_base subset of DH_LOG and subtracting the depth of basement intersection from AHD collar elevations to obtain basement elevations relative to MSL.

In order to produce a relatively meaningful contour diagram, it was necessary to increase the number of data points beyond those few (106) drillholes which intersect basement, particularly in areas of very deep basement where intersections are few and sparse. Extra data points came from three sources: by digitising basement outcrop locations, adding data from other sources and finally, by making stratigraphically based depth-to-basement estimates from a few deep, non-basement intersecting drillholes. The latter estimates were made with the assistance of data from Cowley (pers. comm. & 1991a) and SADME (1982).

The resultant contour map of depth to pre-Pandurra basement relative to mean sea-level is presented in hardcopy form (Fig. 5) and as an ArcView layer, both with 100m contour intervals.

B. GRAVITY DATA

Information

Upgrading and conversion of the SA regional gravity dataset to match the IGSN 1971 specification is being undertaken by D. Love with assistance from J.F. Allender (in prep.). The State dataset comprises national AGSO (BMR) data (25 km spaced stations) with some supplementary DME in-fill data (typically 6-4 km spaced stations). A preliminary Stuart Shelf subset was extracted and merged with publicly accessible, detailed, exploration company surveys available in digital form by J.F. Allender. Although some discrepancies are visually self-evident at the boundaries of detailed surveys and for isolated data points, they have little impact on regional interpretation at the current scale of examination.

Systematic examination of company reports by D.Love & S.Biggins to document all gravity surveys in the project region is on-going and the addition of further detailed surveys and an upgrade of the Stuart Shelf Regional Gravity digital dataset is anticipated.

Image Processing

The available Bouguer gravity dataset was imaged as intensity by ER-Mapper in both relief shaded grey-scale and pseudocolour presentations. A number of standard algorithms were applied to the data but appeared to be unsuited to the data statistics of the Bouguer gravity.

The relative Bouguer contrast across the region results in the standard algorithm assigning deep blue (low intensity) and dark red (strong intensity) with loss of visual contrast over much of the image area.

This loss of contrast was mitigated by manually creating an algorithm which suppressed the intensity range of the deep red and blue colours.

A manually constructed saw-tooth algorithm was also found to be useful in highlighting arbitrarily selected Bouguer intensity contour slices and was effective in outlining major density blocks and lateral discontinuities. This process emulates the manual contour slice technique (black/white banding) successfully developed and applied by O'Driscoll (1986).

A Bouguer-intensity shaded image "illuminated" from the NE was also prepared and merged with both the colour-slice and Bouguer-intensity images resulting in a pseudo-three dimensional presentation which further enhanced the boundaries of gravity blocks (Fig. 6).

Computer-drawn overlays were produced to highlight the major gravity features for comparison between images and to assist interpretation. Only major features that were consistent with magnetic data were incorporated in the interpreted basement geology (Figs 7 & 8).

Interpretation

The region covered by the gravity dataset can be subdivided based on Bouguer intensity in relative detail at 1:1,000,000 scale. However, given the repetition and diversity of known lithologies in each major stratigraphic interval, their relatively low density contrasts, and the irregularly distributed and comparatively shallow nature of the drillhole data, such an approach was considered to be inappropriate at the present time.

The area was therefore given a broad fourfold subdivision: namely the NW, SW, NE and Adelaide Geosyncline (AGS) gravity regions (Fig. 6). Major structures at considerable depth can be clearly recognized.

The *NW gravity region*, which corresponds to the easterly continuance of the dominantly Archaean-Palaeoproterozoic Wilgena Tectonic Subdomain (Parker, 1990b), is predominantly of low to very low Bouguer gravity intensity with local high density blocks. The inferred cratonic basement is probably mostly granitic to considerable depth (estimated SG 2.67, R. Gerdes, pers. comm.). Local higher density units such as BIF or mafic volcanics occur within or overlie the granitic terrain (Figs. 4, 6 & 8).

Several major linear zones of high Bouguer gradient that are interpreted as shear zones (Figs 6 & 8)(Curtis, 1988) within the inferred Archaean basement to the west of the Stuart Shelf (Glenloth area) can be traced eastward below Gawler Ranges Volcanics and Pandurra Formation cover.

The *SW gravity region* is predominantly a high Bouguer gravity plateau, the southern boundary of which corresponds to the approximate outcrop of the Gawler Ranges Volcanic Province (GRV). The Bouguer magnitude suggests a thick, high density zone at considerable depth. A relative SG contrast of about 0.03 relative to the surrounding basement would be adequate for the observed signature (R. Gerdes, pers. comm.).

Mafic volcanics in the GRV have been shown to have a SG of about 2.78 in contrast to the major felsic component averaging about 2.64. This strongly suggests that the extensive high density substrate may be mafic rock.

Small gravity lows within the Bouguer plateau probably indicate the roots of Hiltaba Suite granite bodies which have not yet been unroofed by erosion. Shallow granite within felsic Archaean basement and the overlying GRV would be expected to have little density contrast and therefore little or no Bouguer signature. However, there would be a substantial density contrast between the roots of these granite bodies and the inferred mafic-rich substrate.

Also of interest is the distinct, strong, low density signature located at Lake Acraman (LA, Fig. 6) which corresponds closely to a magnetic low which has been attributed to an astrobleme impact site

(Williams, 1986) or alternatively a vent structure. The Bouguer signature implies that either rocks of lower density than the enclosing GRV occur in the near surface or that the feature penetrates down into the high density region possibly indicating the presence of a large granite pluton. The magnetic signature implies that a near surface feature is present.

Gravity lows around the southern perimeter of the Bouguer plateau mainly reflect relatively shallow balloons of Hiltaba Suite granites and some (syn-Kimban orogenic) Lincoln Complex granites in the east, within deformed Palaeoproterozic Hutchison Group and/or Archaean rocks of the Cleve and Coulta Tectonic Subdomains respectively (Parker, 1990b).

Along the northeast boundary of the region, eastward thickening of Pandurra Formation cover to GRV rocks (Cariewerloo Basin) is probably responsible for the flattening of the bounding gravity gradient of the deep high density substrate.

The *NE gravity region*, west of the Torrens Hinge Zone, is complex reflecting inter-basement density contrasts below a relatively thin Adelaidean cover sequence.

In the far north, a high density block which corresponds to the southern portion of the Palaeoproterozoic Mt. Woods Inlier, contrasts strongly with low density rocks of the ?Wilgena Tectonic Subdomain to the west and south.

Small, discrete, high density bodies are clearly associated with the Olympic Dam and Acropolis breccia complexes (Figs 6 & 8) and can be accounted for by high density hematite/magnetite-rich breccias within granitic host rocks. The host terrain is modestly to strongly magnetic on a regional scale indicating iron enrichment, which if it is depth extensive may be responsible for the generally elevated Bouguer gravity signature of these granitic rocks.

Between the Olympic Dam and Mt. Gunson areas, centred on 700000mE and 6570000mN, is a moderately high Bouguer gravity feature with a central high surrounded by a moat-like low. It is probably due to a complex block of metasediments and volcanics surrounded by low-iron granitoids.

The prominent Mt. Gunson Bouguer gravity anomaly could be due to blocks of mafic GRV (known from drilling) surrounded by low density felsic volcanics and granitic rocks providing adequate thickness is present. Alternatively, the linking ridge to the SW Bouguer plateau and similar signature, suggests the anomaly might be sourced at considerable depth.

Along the southwesterly portion of the region, the northwest-trending Elizabeth Creek Fault and similar faults to the southwest, are evident in the Bouguer gravity data, indicating that lateral SG contrasts are present at depth and therefore significant displacement of basement units has occurred. The faults are likely to be of at least early Mesoproterozoic age, dilated and probably reactivated during the eruption of the Beda Volcanics (Gairdner Dyke Swarm) and possibly again during Neoproterozoic deposition (Curtis, 1985). Lesser, parallel fractures/faults are evident from aeromagnetic data (see Section C).

The AGS gravity region has high contrast pre-Pandurra basement signatures that originate from deep beneath easterly thickening Neoproterozoic cover sequences of the Adelaide Geosyncline. In the north a block of high density rocks is bounded at depth by concealed ?faults parallel to and west of the Norwest Fault and the northern northwesterly oriented portion of the Torrens Hinge Zone respectively. Southwesterly cross-structures transgress from the adjacent NE gravity region. In the south, the deep basement appears to be of low density similar to the NW gravity region.

The parallelism of the deep gravity structures and outcropping faults is strong enough to infer that they reflect the same deep structure around the northeast corner of the Gawler Craton. The relationship could be interpreted to indicate west-dipping planes of structural discontinuity.

Considering *all gravity regions*, the broad, long wavelength, regional gravity signature probably originates at depths well beyond the upper kilometre of the basement and out of reach of present-day exploration activity. Hence, it follows that the application of filter and/or upward continuing/subtraction processing to remove the deeply sourced signatures could result in a more meaningful gravity dataset for basement map generation.

Research involving gravity modelling and filtering using data from the project area is actively being undertaken by Z. Shi at the University of Adelaide but it is evident that a substantial upgrading of the gravity data by systematic closer-spaced in-fill and more precise matching of detailed exploration grids in the project area is essential if relatively small signatures of potential economic significance are to be delineated.

C. AEROMAGNETIC DATA

Information

Subsets of the preliminary SA airborne total magnetic intensity (TMI) and gradient (MGRAD) datasets were extracted and imaged on ER-Mapper. Data in the Stuart Shelf subset was primarily derived from 1.6 km line-spaced regional AGSO (BMR) and DME surveys. Integration of existing local, more detailed surveys into the dataset is in progress and future images will be composite and substantially improved.

The main survey to be merged in the Stuart Shelf area is the Olympic Dam JV survey released by Western Mining Corporation under the Olympic Dam Indenture Agreement exploration conditions. Additional new DME surveys are also planned.

Image Processing

As in the case of gravity data, the wide spectrum of both the magnetic intensity and its gradient resulted in large areas of strong blue and red tones using standard ER-Mapper algorithms. A number of different experimental algorithms were manually constructed. The goal in each case was to extract structural data from areas with substantially different characteristics.

The best result used the TMI-MGRAD image (Fig. 7) and was achieved by flattening the colour intensity in the strong blue and red ends of the spectrum and steepening the middle spectrum. Minor changes to the algorithm result in significant changes to the resulting image colours. Further enhancement was also achieved by suppressing the grey-scale of strong gradients.

Overlays were also prepared on ER-Mapper at zoomed scales to outline magnetic bodies and linear features for different image algorithms. Many relatively minor fractures and faults were identified. Only lineaments believed to represent significant basement faults and gradient features considered to indicate geological boundaries have been incorporated into the basement geology interpretation (Fig. 8).

Interpretation

The aeromagnetic image (Fig. 7) is more complex than that of the Bouguer gravity and reflects the higher information density and much stronger signal of shallower magnetic sources with distinct lateral contrasts. The study region is subdividable into four major northwesterly trending domains: namely SW, Central, NE and Adelaide Geosyncline (AGS) magnetic regions.

The *SW magnetic region* is of relatively low base-level magnetic intensity with areas of irregular noise that correspond generally with outcropping GRV and shallow Palaeoproterozoic-Archaean basement in the north. The magnetic noise from this felsic magmatic terrain of lavas, tuffs and granites probably reflects lesser mafic members of the volcanics and relatively weak northwest-trending Gairdner Dyke Swarm (GDS) signatures. Signatures also reflect weak northeast-trending fractures or minor faults.

In the Kokatha-Glenloth area inferred shear zones (Curtis, 1988) in Archaean basement of the Wilgena Subdomain (Parker, 1990b) are faintly recognisable in TMI data and traced eastward with a subtle gradient image signature, below Pandurra Formation with clear correspondence to Bouguer gravity gradients.

In the south, in addition to the magnetic low associated with Lake Acraman are three faintly expressed ring structures of about 50 km in diameter (Fig. 8) which are not readily observable on the Fig. 7 image. The Coondambo ring (CR) coincides approximately with a mapped basin-like structure of the Chitalinga Hill Complex (Blissett, 1975) which has been interpreted by Branch (1978) to be a caldera. The Everard ring (ER) is similarly related to the Glyde Hill Complex (Giles, 1977, 1988, Blissett, 1975).

The Gairdner ring (GR) is therefore inferred to be a basin-like structure within the GRV stratigraphy. These `basins' might be drape/compaction features

associated with block faulting or local basement palaeogeography. They appear to be unrelated to major volcanic vent features as no corresponding gravity features appear to exist.

In the north of the region, small, localised areas of very high magnetic intensity are attributed to outliers of banded iron formation. While these bodies have been assigned to the Hutchison Group in Fig. 8, it is conceivable that they could correlate to the either the Wandearah Metasiltstone or Archaean Mulgathing Complex. There is also the possibility of an ultramafic origin.

The central magnetic region is of modestly high magnetic intensity which corresponds in general to the distribution of Pandurra Formation in the Cariewerloo Basin (exposed and concealed, Figs 4.5 & 8). Strings of northwest-aligned bead-like, bulls-eye anomalies characterise the documented shallow Gairdner Dyke Swarm. Significant blocks of stronger, relatively uniform magnetic intensity are present north 6600000mN. Major northeast-trending discontinuities are present at depth.

The origin of the elevated magnetic field strength throughout the region is conjectural since the near-surface Pandurra Formation is primarily a sandstone up to 1.5 km thick (Cowley, pers. comm.) with a relatively low magnetic susceptibility (hematite content that is unlikely to exceed 4% on average) and the next underlying unit is probably GRV which also has a generally low magnetic susceptibility (see SW magnetic domain).

The over-all geometry and smoothness of the magnetic signature indicates that a 1-2 km depth is probable. A model consistent with current stratigraphic data is elusive but an extensive undocumented early Mesoproterozoic mafic volcanic suite is a possible explanation and would be consistent with basal mafic GRV intersected by drillholes near Mt. Gunson.

The discrete areas of much higher magnetic intensity north of 6600000mN lack internal gradient contrast which also supports a sub-Pandurra Formation depth. The largest anomaly has no apparent impact on the Bouguer gravity signature which indicates it is either a thin layer above granitic basement or a low SG body which extends to depth without lateral contrast.

Nevertheless, a zone of significant ?magnetite enrichment in the pre-Pandurra subsurface is indicated and it is conceivable that centres of alteration and/or discrete high-level granitic complexes with accessory magnetite similar to the Olympic Dam area may be present (the lack of a corresponding regionally elevated Bouguer gravity signature as in the OD region may not be particularly significant because of the relative differences in cover and/or depth extent of iron enrichment). Thickened mafic GRV could also possibly give rise to the same signature.

At one locality, south of 6600000mN & west of 600000mE, a localised area of high magnetic intensity has been attributed to an outlier of banded iron formation. Since this site has not been drilled to basement, stratigraphic affinities are uncertain and an ultramafic lithology is also a possible origin.

The *NE magnetic region* has a wide TMI spectrum and zones of high frequency gradient signatures with complex structure that reflect relatively shallow magnetic basement. It is subdividable into three sub-regions.

In the far north of this magnetic region, the shallow sourced and strongly magnetic signature of the *Mt. Woods Inlier magnetic sub-region* is prominent. In the *Olympic Dam - Mt. Gunson magnetic sub-region* (ODMG) the northwesterly GDS fracture set is present but has a relatively weak expression compared to elsewhere probably reflecting either the absence of dykes or a substantially lower magnetic susceptibility contrast with adjacent host rocks or appreciable loss of magnetite due to alteration. In some instances the boundaries of basement bodies are coincident with the GDS fracture set indicating faulting has taken place.

The northern part of this sub-region has very high magnetic contrasts which provide for the easy recognition of internal structure reflecting the diversity of lithologies observed in drillholes.

However, to the south and east of Mt. Gunson, an extensive area of lower magnetic intensity appears relatively featureless in Fig. 7, but with spectral suppression of high magnetic intensity and gradients, exhibits a moderate degree of gradient contrast dominated by GDS fractures together with some curvilinear structures. Drilling information suggests that cover in this region is commonly less than 1 Km (Fig. 5).

Throughout the sub-region both strong and weak northeasterly-trending linear structures are also recognisable as probable faults (Anderson, 1979). Curvilinear gradient trends of relatively short extent have been interpreted as geological contacts and seem to be mainly associated with drilling intersections of deformed granites and occasional metasediments (see Section 7.4).

Localised, very strong, high gradient, magnetic signatures seem to be associated with Wandearah type calcsilicate, skarn, and BIF rocks associated with the Bouguer gravity high centred about 700000mE and 6570000mN and in the vicinity of 750000mE and 6000000mN.

In the Mt. Gunson area, along the southeast side of the Elizabeth Creek Fault, strong magnetic signatures appear to be due to a combination of magnetic mafic GRV and underlying Wandearah type siltstones and calcsilicate rocks.

At the southern end of the magnetic sub-region is a distinct, moderately magnetic area which has some GDS gradient structures along its western edge. This feature has a different signature to the nearby Mt. Gunson environment and correlates strongly with the delineated extent of post-Pandurra Formation Beda Volcanics (Cowley, 1991b).

The Mt. Woods - Olympic Dam magnetic subregion is characterised by a few isolated, relatively small, though strong magnetic features within a relatively uniform magnetically 'dead' environment. Spectral suppression of high TMI & GRAD intensities does not provide an avenue for detecting gradient contrasts. It seems, therefore, that the pre-Pandurra basement is either of very low, uniform, magnetic susceptibility or is buried to the extent that its magnetic signature is completely attenuated. The basement in this region is therefore undifferentiable magnetically where except localised magnetic highs are present.

A thick cover model (>> 2 km) seems doubtful when the 500-600 m basement intercepts of several drillholes located on the magnetic highs are considered. An Archaean basement similar to the northern portion of the southwest magnetic region is the preferred interpretation but a unknown basement with similar characteristics to that observed to the east of Mt. Gunson at slightly increased depths is also a possibility.

The *AGS magnetic region* in the north is also an area of high magnetic contrast, but gradients are subdued reflecting the thickening of the Neoproterozoic cover to the east.

Magnetic signatures reflect structural trends oriented parallel to the major Norwest Fault and north-westerly leg of the Torrens Hinge Zone and which correlate with Bouguer gravity features.

A zone in the north of the region with blocks of high magnetic intensity partially corresponds to the main, high density gravity block previously described on Fig. 6. The magnetic bodies are more widely distributed to the northeast and to the south extending over areas of low Bouguer values and are of relatively shallow origin at depths of 3.0 ± 0.5 km. (SADME, 1982).

Adjacent to the Torrens Hinge Zone the magnetic intensity pattern is suggestive of continuance of the Olympic Dam environment toward the northeast beneath thickening cover. However, eastward, the probability of mafic late Mesoproterozic Beda Volcanics and early Neoproterozoic Willouran Callana Group Volcanics occurring in the thickening cover, increases.

Drillholes along the western shore of Lake Torrens did not intersect Beda Volcanics above the basement and on the eastern shore WWD-1 was too shallow, terminating above the Umberatana Group at 529m. Recognising that the Umberatana Group possibly forms a 0-4km thick, easterly thickening wedge, it is inferred that north of about 6600000mN, magnetic signatures east of the Lake's midline may not reflect pre-Pandurra Formation basement but younger mafic volcanics.

This interpretation is consistent with similar gravity and aeromagnetic signatures associated with an extensive well documented sheet of Beda Volcanics in the south of the northeast magnetic region.

D. INTEGRATED INTERPRETATION

The generation of a preliminary solid-geology map of pre-Pandurra Formation basement, a primary objective of this project's initial phase, is presented in Fig. 8. This has been achieved by overlaying drillhole locations and basement lithology intersections on to gravity and aeromagnetic images using ARC/INFO, ArcView and ER-Mapper

software from which interpretation overlays were generated. While some of the work was done interactively on computers, final compilation was undertaken and summarised on plots at 1:1,000,000 scale.

Given the restrictions imposed by the wide spacing of regional gravity data points, a remarkably good match with aeromagnetic data is observable for some features. However, where correspondence is poor, it is probable that the magnetic feature is either additional to the Bouguer gravity structure with little SG contrast as might occur with hydrothermal alteration, or it is sourced at much shallower depth with a small nett mass and has only weak genetic links to deeper substrates.

Geophysical bodies and regions (mainly magnetic) were stratigraphically labelled using existing drilling data and by analogy, nearby areas of similar geophysical signature.

Major, regionally significant faults were inferred where relatively shallow aeromagnetic features coincided with relatively strong gravity contrasts. In general, Bouguer gravity was only used to supplement aeromagnetic data with some important exceptions such as the Olympic Dam Breccia Complex and Acropolis Complex.

Substantial geochronological measurements have been made on samples from stratigraphic units throughout the north-eastern Gawler Craton. This information demonstrates that two major orogenic events occurred prior to circa 1700 Ma and an a subsequent period of intense igneous activity circa 1600-1570 Ma followed by a thermal disturbance circa 1550-1485 Ma. Pertinent dating data used in stratigraphic reconstruction are presented in Table 1.

<u>Archaean Basement of the Wilgena</u> Subdomain

Archaean cratonic basement of the Wilgena Subdomain which corresponds to the NW gravity region is referred to as the Mulgathing Complex (Daly, 1986). This is composed predominantly of weakly compositionally layered, granitic Kenella Gneiss with lesser interbands of layered, migmatitic, Christie Gneiss and minor accessory mafic granulites, BIF, calc-silicates and ultramafics.

The Mulgathing Complex was subjected to granulite facies metamorphism during the Sleafordian Orogeny (circa 2640-2300 Ma)(Daly and Fanning, in prep.), subsequently deformed again by the Kimban Orogeny (circa 1845-1710 Ma)(Parker et al., in prep.) and intruded by synorogenic Sleafordian, and Kimban granites as well as postorogenic Hiltaba Suite granites.

Within the Wilgena Subdomain to the west of and in the extreme west of the study area the Archaean is partially concealed by the Palaeoproterozoic Wilgena Hill Jaspilite (BIF) and Tarcoola Formation (clastics and minor mafic volcanics) and Mesoproterozoic Labyrinth Formation (clastics and volcanics) and GRV. Except for GRV (Fig. 4) these units have not been explicitly recognised in drillholes or magnetic interpretations elsewhere in Stuart Shelf area (see section B).

Therefore the low regional Bouguer gravity and magnetic intensity signatures of the northwestern Stuart Shelf are interpreted to mainly represent granitic and gneissic units of the Mulgathing Complex consistent with geophysical signatures of the Wilgena Subdomain to the west.

Existing interpretations suggest that the Subdomain extends to the approximate position of the Elizabeth Creek Fault but since the Mt. Woods - Olympic Dam magnetic sub-region (Section C) has similar characteristics it is inferred that Wilgena Subdomain probably extends north-eastwards to the Torrens Hinge Zone, albeit with numerous Mesoproterozoic intrusions and inliers.

Archaean felsic/mafic volcanics (circa 2558±6 Ma) of relatively low metamorphic grade (Cowley & Fanning, 1991) near 'Millers Creek' in ESSO drillhole DP1, to the east of the Elizabeth Creek Fault, are the only positively identified Archaean rocks intersected by drilling in the northern Stuart Shelf region.

<u>Palaeoproterozoic - Pre-Kimban</u> Metasediments

Palaeoproterozoic metasediments of the eastern and southern Gawler Craton comprise the Hutchison Group, Broadview Schist (and Myola Volcanics circa 1791 Ma), Doora Schist (and Moonta Porphyry circa 1737 Ma), schists (and Tidnamurkuna Volcanics circa 1806 Ma) in the Peak and Denison Inliers, and granulite gneisses

(and BIF circa 1745 Ma) in the Mt. Woods Inlier (dates from Fanning et al., 1988).

Hutchison Group

The Hutchison Group is a sequence of fluvial to shallow marine quartzites, carbonates, iron formations, semipelitic schists and possible mafic volcanics known from the eastern third of Eyre Peninsula. It was deposited circa 1950-1850 Ma and regionally metamorphosed during the Kimban Orogeny circa 1845-1710 Ma (Parker et al., in prep.).

Structural trends south of the Gawler Ranges imply that the Hutchison Group extends from the Middleback Ranges - Buckleboo region, south of the study area, north and north-westward beneath the GRV.

Doora Schist and related units

The Myola Volcanics, Broadview Schist (northeastern Eyre Peninsula), Moonta Porphyry and Doora Schist (Moonta region of northern York Peninsula) are of syn-Kimban age (circa 1800-1730 Ma)(Parker et al., in prep.).

Schists have been intersected in a few drillholes in the ODMG region (eg Arcoona area Drillhole ASD-2), but positive identification and stratigraphic correlations remain ambiguous. These drilled occurrences appear to be within broad tracts interpreted to be Lincoln Complex, probably in a geological setting similar to the Lake Giles area on the southern boundary of Fig. 8 at about 700000mE, and therefore they may be Hutchison Group Schists. However, they are structurally in line with the Moonta Subdomain and so could be correlates of the Broadview or Doora Schists.

Palaeoproterozoic Syn-Kimban Granites

Geochemically-based studies by Creaser (1989) point to two generic associations for Palaeoproterozoic granitic rocks (suites #1 & #2) in the Stuart Shelf region. There is scant evidence of any particular geographic bias in the distribution of these suites beyond recognising that the study was generally focussed to the ODMG area where much of the data has been obtained from relatively isolated and irregularly distributed drillholes. Suites #1 & #2 are often indistinguishable from a

geophysical point of view and have both been assigned to the Lincoln Complex (Fig. 8).

Suite #1 includes distinctive mega-crystic granites from the Olympic Dam region which are correlated by Creaser (1989) with the Donington Granitoid Suite (circa 1845-1810 Ma) from southern Eyre Peninsula. These granites record two distinct deformations.

Suite #2 includes pegmatites, granitic and basic intrusives that have suffered one period of deformation. They are correlated by Creaser (1989) with the late synorogenic Kimban Moody Suite granites of the Lincoln Complex (circa 1750 - 1685 Ma)(Parker et al., in prep.)

Suite #2 granites, from four separate locations seem to have been minimally affected by circa 1500 Ma thermal events and give Rb-Sr muscovite and biotite ages in the range 1730 - 1681±18 Ma (Creaser, 1989) which provide a minimum age for the end of the Kimban Orogeny in the OD region.

Suite #1 and #2 granites appear to intermingle in drillhole intersections and the suites are geophysically indistinguishable. They frequently have a curvilinear internal aeromagnetic signature (Fig. 8) where they are weakly to strongly magnetic. The signature is probably due to relict compositional macro banding (inherited from protoliths) and/or structural grain. Such signatures are generally absent in Hiltaba type granites (see later).

Magnetic lows of substantial dimensions in the Olympic Dam-Mt. Gunson magnetic sub-region (eg 718000mE 6610000mN) are typical of non-magnetic granitic plutons but they lack typical corresponding Bouguer gravity lows. This geophysical signature indicates that either the root zone has low density contrast or is absent.

Scattered drillhole data in the ODMG suggests that such areas are occupied by suite #1 & #2 granitic rocks. Therefore they have been assigned stratigraphically to the Lincoln Complex even though these aeromagnetic signatures are very different from those from the Lincoln Complex on Eyre Peninsula. It is acknowledged however, that blocks of siliceous low-iron metasediment such as Hutchison Group or Archaean gneisses could equally well fit the data.

Palaeo/Mesoproterozoic Late-Kimban

Sediments and Volcanics.

The Wandearah Metasiltstone and Willamulka Volcanics which are weakly metamorphosed and slightly deformed appear to have been deposited during the closing stages of the Kimban Orogeny. These units are only known from drilling in the study area.

Stratigraphic relations with the Doora Schist, Moonta Porphyry and related units of moderately higher metamorphic grade and the Moonabie Formation, Tarcoola Formation and Corunna Conglomerate are unclear.

At Roopena, (720000mE, 6375000mN) on the southern extremity of the Stuart Shelf region, Corunna Conglomerate and GRV overlie brecciated sericitised hematitic siltstones equated tentatively to the Wandeareah Metasiltstone (Parker et al., in prep.). In the vicinity of Kadina in northern York Peninsula the contrast metamorphic grade from Doora Schist south of the town to low grade Wandearah Metasiltstone to the east implies older ages for the Doora Schist, Moonta Porphyry and hence also Moonabie Formation. This constrains deposition of the Wandearah Metasiltstone to circa 1740-1616 Ma (the latter age being a minimum from sericite at Roopena) and hence may be equivalent to the Tarcoola Formation.

The Tarcoola Formation (circa 1660-1650 Ma)(Parker et al., in prep.) is a laminated black shale/siltstone sequence with minor orthoquartzites and mafic volcanics which outcrops weakly due to Phanerozoic cover in a region north of 6600000mN near the western boundary of Figs. 4 & 8. This unit, of similar sedimentary and deformational style to the Wandearah Metasiltstone, is more extensive to the west of the study region but has not been recognised in pre-Pandurra Formation basement to the east.

Wandearah Metasiltstone

Wandearah Metasiltstone was first described from drill core south of Port Pirie but was later recognised elsewhere further south at Port Broughton and Bute where it is intercalated with the basic Willamulka Volcanics (Parker, in prep.) and extensively in core from the Stuart Shelf region. At these locations, the Wandearah Metasiltstone is a laminated shale-siltstone-carbonate sedimentary package and the predominant lithology is a very fine-grained massive, medium, reddish- grey laminated siltstone with thin bands of pink hematisation. Local brecciation is sometimes present. In the Bute area, the lithology is more variable and dolomite interbeds are present.

Beneath the Stuart Shelf carbonate units equated to Wandearah Metasiltstone have been altered to calcsilicate and in one hole was described as a skarn CSD-1. Local brecciation and small-scale ductile folding is observed in drill core from the Mt. Gunson area. Hematisation is widespread and in some cases banded iron formation has been described, eg drillholes AD-2 and AD-8.

Most of the Stuart Shelf drillholes which intersected Wandearah Metasiltstone were targeted on strong aeromagnetic highs. Therefore it is not surprising that these cores register moderately strong magnetic susceptibilities. However, magnetisation of the Wandearah Metasiltstone may be a locally restricted alteration feature associated with ?Hiltaba Suite hot spots in an otherwise non-magnetic, more widespread sequence indistinguishable from older basement.

Wandearah Metasiltstone as displayed in Fig.8 occurs in small areas but this is misleading because of the magnetic characteristic described above and it is also known from drilling to be present below GRV cover (eg. EC-21 & SAR-8).

Therefore, prior to the eruption of the GRV and the intrusion by the Hiltaba Suite, it is possible that the Wandearah Metasiltstone (and/or Tarcoola Formation) were widely distributed throughout the Stuart Shelf region. It is thus possible that any unexplained exotic liths in the GRV-related Olympic Dam Breccia Complex might be fallback from the former roof rocks to the host Roxby Downs Granite, (cf. 300m fall back of mega-blocks in South African diamond pipes) and could include these units. Furthermore there is a slight possibility that the hematite in the breccia may have been sourced in this way and later reconstituted by hydrothermal processes.

<u>Corunna Conglomerate and Labyrinth</u> <u>Formation</u>

Corunna Conglomerate and Labyrinth Formation

occur as isolated outliers from the known southwestern and north-western limits of the Stuart Shelf region respectively.

The Corunna Conglomerate occurs along the southern margin of the main GRV mass. It is a sequence of ?terrestrial fluviatile to shallow marine polymictic conglomerates, sandy quartzite and carbonaceous shale, with some intercalated tuff. Definite correlates have not been recognised elsewhere in the Stuart Shelf region.

The Labyrinth Formation (Cowley and Martin, 1989) consists of lithic and pebbly sandstone with minor basalt and rhyolite and is demonstrably younger than the Tarcoola Formation. Imprecise dating (circa 1600-1640 Ma) from Mt. Eba appears to be inaccurate since correlation with the GRV is considered probable.

Minor laminated to massive cherty siltstone beds of Labyrinth Formation in Carpentaria Exploration's BB- series drillholes could be confused with assumed Wandearah Metasiltstone correlatives from the ODMG region.

Gawler Range Volcanics

The almost geologically instantaneous deposition of the mainly felsic Gawler Range Volcanics (GRV), circa 1592 ±3 Ma (Fanning et al. 1988; Giles, 1988), is the largest documented cataclysmic igneous event of Mesoproterozoic volcanism in Australia (Creaser & White 1991). The magnitude of the event, in terms of felsic lava volume, lateral extent (probably originally double or treble the exposed limits) and nett thermal energy are probably unrivalled world wide. The stratigraphy of the exposed sequence in the Gawler Ranges has been revised (Flint et al., in prep.) but the new subdivision has yet to be successfully applied to drilled intersections in the pre-Pandurra Formation basement.

Creaser and White (1991) outline the enigmatic conditions of deposition and consider the genesis of the parent felsic A-type magma to be partial melting of deep crustal material of tonalitic composition at about 950°C (Creaser, 1989). Giles (1988) indicates that the mafic magmas were separately derived from the upper mantle with the igneous system driven by a common thermal event at the base of the crust. In situ crystallisation of the primary intrusive magma and/or venting to the

surface appears to have occurred at a pressure of about 200 Mpa and 875 ± 25 °C (Creaser, 1989).

No vents or venting systems have ever been documented. Branch (1978) proposed that a basin feature occupied by the Chandabooka Dacite is a caldera, but there is no supporting geophysical evidence, and Tonkin (1985) suggested that the combined Bouguer gravity and magnetic signature centred about 700000mE and 6570000mN was a caldera complex. However, subsequently-released drilling data do not support this latter model. The Lake Acraman ring structure (AR-Fig. 8) has been also suggested as a vent but Williams (1986) provides support for a Neoproterozic impact origin. Given that there appears to be no clear vent system of adequate magnitude, a dyke swarm or fissure system has been proposed although only a handful of dykes have ever been documented. The vent sources either lie more or less concealed within the volcanics or have not yet been recognised.

Minor volcanics and the conical diatremes of the Olympic Dam breccia Complex (ODBC) post-date the main GRV event indicating that volcanic activity on the Stuart Shelf may have continued perhaps until as late as circa 1582-3 Ma (Fig. 9).

Intersections of GRV are relatively common in the pre-Pandurra basement of the ODMG region. Many of these drill sites are associated with magnetic anomalies of which some are due to alteration of felsic units. In other instances, as at Mt. Gunson, mafic units have been clearly recognised.

Aeromagentic data provide a basis for interpreting that non-magnetic felsic volcanics extend eastward beneath the Pandurra Formation along the western margin of the Cariewerloo Basin. Beneath the centre of the basin (Fig. 5) the pre-Pandurra basement is more magnetic (central magnetic domain) and it is inferred that this signature is due to the presence of appreciably more ?mafic GRV units perhaps similar to those intersected at Mt. Gunson. Two holes intersected early mafic GRV, believed to be Roopena Volcanics, in the south of the study area.

This current study has not provided any new evidence regarding the venting mechanism or its location. However, following on from the work of Creaser (1989) which suggests Hiltaba Granite was

mobile at shallow depths prior to GRV expulsion (Fig. 9) it is tentatively suggested that the GRV was ejected from the carapaces of rising granitic plumes which continued to creep upwards to finally crystallize as higher level plutons of Hiltaba Suite within the covering volcanics. Vent features would have largely been obliterated during this process.

If this model is correct the Wirrda Subsuite plutons in the Olympic Dam region and Hiltaba Suite plutons exposed along the west and north west of GRV exposure are postulated to be significant vent centres.

However, the model as proposed does not specifically exclude the involvement of fissure and/or small vent eruptions for some of the GRV sequence as clearly applies for some of the stratigraphy as mapped by Giles (1977,1988).

Mesoproterozoic Post-Kimban Granites

Undeformed Hiltaba Suite granites (Suite #3 granite of Creaser, 1989; Flint, in prep.) are widely distributed. They include the Roxby Downs Granite at Olympic Dam and are considered to be comagmatically related to the GRV. The extent of this magmatic event is well illustrated on the 1:2,000,000 Tectonic Map of South Australia.

Major plutonic activity in the Olympic Dam region took place during the period 1597-1586 ± 3 Ma spanning the period of major GRV deposition circa 1592-2 ± 3 Ma. Most granites give final cooling ages which post-date the GRV and major granite intrusion continued elsewhere to the south and east of the Stuart Shelf region as late as circa 1585-1583 Ma, with minor intrusives (circa 1591 ± 10) being recorded in the Olympic Dam area at Acropolis (ACD-5, quartz latite - Creaser, 1989) (Fig. 9).

Rb/Sr isotopic dating of feldspar in OD region granites commonly gives ages in the range 1507-1484 ± 15 Ma (Creaser 1989) which are up to 90 Ma lower than the youngest corresponding U/Pb isotopic ages of zircons. Mafic minerals and apatite give a spread of intermediate ages indicating only partial re-equilibration of Rb/Sr ratios during this circa 1550-1500 Ma thermal disturbance.

Hiltaba-type granites have been named the Wirrda and White Dam sub-Suites of the Hiltaba Suite in the Olympic Dam region (Flint et al., in prep.).

The White Dam sub-suite (Opal Fields Suite of Creaser 1989) is distinguished on geochemical grounds from the Wirrda Sub-suite (Olympic Dam Suite of Creaser, 1989).

The origin of the magma as summarised in the preceding section offers little explanation for the relative abundance of iron in the Wirrda Subsuite and its magnetic characteristics. The igneous model does however indicate very hot conditions that increase the potential for assimilation and rapid dispersion of contaminants within the rising Creaser's evidence, that some of the magma. zircons from rhyolite in WRD-1 are inherited from underlying (circa 1800) Donington Granitoid suite (suite #1) of the older Lincoln Complex (Creaser 1989: WRD-1 & Mortimer et al., 1988: WRD-2), though limited, indicates that such contamination may have occurred.

The origin of the magma as summarised in the preceding section offers little explanation for the relative abundance of iron in the Wirrda Subsuite and its magnetic characteristics. The igneous model does however indicate very hot conditions that increase the potential for assimilation and rapid dispersion of contaminants within the rising magma. Creaser's (1989) conclusion, that some of the zircons extracted from Hiltaba granite obtained from drillholes WAD 1 & 2 were inherited from former Donington Granitoid suite (suite #1) granite of the older Lincoln Complex, though limited, provides evidence that such contamination may have occurred.

Recognition of concealed Hiltaba granites is not straightforward. In some cases mapped bodies exhibit classic uniformly low magnetic intensity and coincident simple negative gravity anomalies consistent with a simple plume like geometry (eg. see south and south western margin of the GRV).

However, in all situations, gravimetric discrimination of Hiltaba Suite granite in felsic host rocks such as the Mulgathing Complex of the Wilgena Subdomain or Lincoln Complex of the Cleve Subdomain is doubtful. Unless the host rocks have a magnetic grain or alternatively the granite has its own magnetic signature it will be geophysically unrecognisable.

A significant number of mapped Hiltaba suite granite bodies are either magnetic and/or appear to be of non-classic geometry which makes the unambiguous recognition of similar bodies solely on geophysical data difficult.

The largest contiguous mass of Hiltaba suite granite (Wirrda Subsuite) in the study area is located about Olympic Dam and oriented east-northeasterly measuring about 60 x 20 km. It is of modest magnetic intensity with a weak shadowy gradient that appears to define the RDG pluton, and has a relatively uniform gravity signature away from the hematitic environments of Acropolis and Olympic Dam (Figs 6,7, & 8).

Small bodies of late? Hiltaba? granite with classic signatures, are located along the southern margin and suggest the main granite mass is possibly of slightly higher than average density.

Magnetic anomalies located beneath the northern Cariewerloo Basin, that appear to resemble Hiltaba granite about Olympic Dam, are tentatively interpreted to be Wirrda Sub-suite plutons.

The observation that these concealed masses are closely related in space to the inferred relative abundance of slightly magnetic mafic? GRV beneath the Cariewerloo Basin and are also possible former extrusive centres suggests a potential genetic link between magnetic Wirrda Subsuite granites and magnetic mafic? GRV.

The only other probable Hiltaba granite mass beneath the in the Cariewerloo Basin occurs just to the northeast of Mt. Gunson and has a nearly classic magnetic-gravimetric signature.

Because exploration drilling sought out coincident magnetic and gravity signatures drillhole intersections of Hiltaba type granites outside the Acropolis-Olympic Dam-Wirrda Well region are few and significant masses of such granite may remain undetected.

Pandurra Formation

The stratigraphy and depositional environment of the Pandurra Formation (circa 1424±51 Ma) in the Cariewerloo basin is well described by Cowley (1991a) and has been readily recognised during the preparation of the stratigraphic dataset.

The formation is invariably hematitic throughout and readily subdivided into four members. The upper two members are predominantly sandstones, the basal unit is quite variable ranging from a pebbly conglomerate to silty fine sandstone and the intervening unit is a distinct shaley horizon.

The abundance of hematite in the Pandurra Formation is inferred to be a retained small portion of that in its main parent source the Yardea Dacite.

Mafic Dykes

Basalt dykes of the Gairdner Dyke Swarm (GDS) are well documented from the Cariewerloo Basin because they are easily recognised due to their magnetic susceptibility contrast with the surrounding Pandurra Formation sandstone. Elsewhere to the west some dykes are similarly recognisable in the GRV. However to the east the magnetic basement is much shallower and the magnetic susceptibility contrast is much lower, making the dykes harder to recognise.

However, magnetic gradients due to contrasts in basement lithologies do depict the northwest fracture set that the dykes have dilated further to the west. The confirmation that relatively young mafic dykes intruded the ODBC about 1059±69 Ma (Rb/Sr) (Creaser, 1989) and the existence of very weak magnetic signatures associated with probable dykes to the east of Mt. Gunson (Curtis, 1985) does suggest that the swarm is present in the ODMG region.

The magnetic image (Fig. 7) also illustrates the existence of less prominent north-northwesterly oriented fractures that were invaded by the Gairdner Dyke Swarm (Curtis, 1985).

Faulting

Maps depicting surface geology are relatively devoid of inferred and observed faulted contacts. This is due primarily to the monotonous nature of some of the predominant outcropping units and an abundance of Cretaceous-Quaternary cover elsewhere.

Recognition of faulting is therefore almost solely reliant on geophysical interpretation. Magnetic imaging has been the main tool used in the interpretation presented as Fig. 8.

Because of the major geological differences between the magnetic domains different degrees of structural detail are a natural consequence. Many features of minor stature are only evident from areas of outcropping GRV and have been deliberately omitted from Fig. 8. Features such as the GDS fracture set which are strongly evident due to near surface magnetic basic dykes in the Cariewerloo Basin have however been included where gravity contrasts indicate substantial fault movement has occurred as for example the Elizabeth Creek Fault.

In the east of the region, discrimination of faulting is blurred because of the extensive inferred occurrence of polycyclic granitoid intrusion where the boundaries of magmatic bodies could either be faulted or have been focussed along pre-existing fault structures. Generally collineation of several different juxtaposed units was regarded as evidence of faulting.

Mineralisation

<u>Olympic Dam Mineralisation and the </u>'Burgoyne batholith'

Reeve et. al. (1990) used the term 'Burgoyne batholith' for the collective distribution granites bodies which correspond to a region of relatively high magnetic intensity that extends eastwards from Acropolis to the Torrens Hinge Zone (Figs 7 & 8) without an explicit description. However, within this region there is a complex intermingling of Hiltaba Suite intrusives into older strained granitoids of the Lincoln Complex. Therefore, for the purposes of discussion in this report, this area is referred to as the 'Burgoyne Block'.

The aeromagnetic signature for 'Burgoyne block' clearly indicates four separate environments which have been distinguished in Fig. 8. In the southwest quadrant, Lincoln Complex associated granitoids (Suites #1 & #2) with typical magnetic characteristics occur. Along the northwestern flank there is a zone of relatively uniform high magnetic intensity where only intersections of Hiltaba type granite occur. Along the southeast flank is a zone of similar intensity but with signatures similar to Lincoln Complex (Suite #1 & #2) rocks; both Lincoln Complex and Hiltaba Suite (Suite #3) are recorded by drillholes into this zone. Two small, centrally located areas of low magnetic intensity are probably late, non-magnetic Hiltaba type granites.

Comparison of the geological data, geochronology (Creaser 1989) and aeromagnetic signatures of the 'Burgoyne block' indicate that the southern flank is

actually a block of Lincoln Complex (Suites #1 & #2) which was infiltrated by Hiltaba Suite granite beginning at Wirrda Well and White Dam circa 1597-5 Ma. Intrusion along the northern flank circa 1590-88 Ma concurrent with GRV eruption, resulted in a massive, relatively homogeneous 'magnetic' granite body. The north-western boundary of the 'Burgoyne block' is relatively straight suggesting that the main Hiltaba Suite mass intruded along-side of a pre-existing faulted contact between Archaean and Lincoln Complex rocks that appears to have been subsequently The Hiltaba Suite mass probably reactivated. spreads out southwards at depth beneath Lincoln Complex caprock which has been locally breached from place to place along the southern portion of the 'Burgoyne Block'.

The principle age of mineralisation is probably associated with late stage circa 1586 Ma igneous activity in the Olympic Dam Deposit and possibly lesser non-magnetic intrusives nearby. Poly-cyclic brecciation and mineralisation post-dates the host Roxby Downs Granite (circa 1588-7 Ma, Creaser, 1989) and probably pre-dates minor (circa 1586 Ma, Johnson and Cross, 1991) unmineralised and undisturbed intrusives (Reeve et al., 1990), constraining its age to circa 1586.5 Ma. Correlation of mineralisation with late Hiltaba Suite igneous activity, means that it post-dates the extensive Yardea Dacite (1592±2 Ma) sheet and major GRV volcanism. However, the early 1598±10 Ma age of apatite veins and late 1578±13 Ma quartz latite at Acropolis implies that episodic igneous/metallogenic activity may have occurred over a period of at least 10-15 Ma. It is however acknowledged that this proposed event sequence is not a unique solution because the precision ranges of the geochronological data are overlapping.

Recent studies by Reeve et al. (1990), Oreskes and Einaudi (1990) and Trueman (1986) of the Olympic Dam Breccia Complex have been able to build on previous studies to document a phreatomagmatic/igneous hydrothermal origin that has had a polycyclic history with mineralisation processes as an integral aspect. Given the dating evidence the ODBC is a localised stratigraphic variant of the GRV.

Later dates are to be expected from the deposit because some disturbance of geochemical systems is likely to have occurred during the circa 1550-1500 Ma thermal event recorded by nearby granites

and during localised heating related to Gairdner Dyke intrusion circa 1059±69.

Uranium and copper are self-evidently mobile without such thermal engines and can respond to minor changes in ground water conditions and acids released during sulphide REDOX reactions can attack rock minerals. Modifications of this type may have occurred any time up until the complex was virtually sealed off by the Neoproterozoic Tregolana Shale. Trueman's (1966) circa 1400 Ma pitchblende date is probably of this origin.

The opportunity for the upgrading of relatively weak mineralisation in the basement as well as the possibility of dispersion into both cover and nearby host country rocks has the potential to generate relatively large geochemical targets within which recognition of orebodies may prove difficult.

The Significance of Hematite

The abundance of hematite in the Pandurra Formation and the Yardea Dacite blanket of the GRV, the frequent pervasive hematitic alteration of pre-Pandurra basement lithologies and the massive abundance of hematite at Acropolis and Olympic Dam are intuitively connected.

Mobilisation of iron was not discussed by Creaser but initial calculations based on analytical data tables from his thesis (Creaser, 1989) and from Giles (1988) indicates:-

UNIT Fe % (Equiv.) Crustal Tonalite 5.96 ± 1.7 Hiltaba Granite (Wirrda Subsuite) 2.68 ± 0.85 Yardea Dacite &

Quartz latite (ACD 4 & 5) 5.28 ± 0.44

These calculations point to a marked partition of iron between the Hiltaba granite and Yardea Dacite of about 1% which possibly occurred just prior to venting. Given the very large masses in this igneous system this difference indicates an enormous mass of Fe has probably been liberated from the intrusive Hiltaba granite melt.

It is unlikely that the iron was only lost by vulcanism and herein lies a possible explanation for the source and veritable abundance of hematite associated with hydrothermal alteration. In particular the model provides for massive hematite accumulation such as at Olympic Dam and

magnetite at depth which is reflected by the large magnetic anomalies.

While this aspect of petrochemistry clearly warrants further investigation it is also suggestive that this same mechanism was responsible for the partition of copper and gold from the primary magma leading to mineralisation without necessarily requiring a secondary mafic igneous source. Recent investigations of Nd isotopic trace chemistry (Johnson and Cross 1991) in the ODBC does however suggest that the mineralising fluids contacted ?mafic mantle derived rocks.

The abundance of hematite in the ODBC is exceptional but non-essential to the formation of economic copper-gold ore. Hence any new resource of significant magnitude in the Stuart Shelf region could have a similar genesis without the significant geophysical signatures that arise from such a massive degree of iron enrichment.

The abundance of hematite in the Pandurra Formation is inferred to be a retained small portion of that in its main parent source the Yardea Dacite.

Regional Implications for Exploration

Clearly the close spatial and temporal association of mineralisation with Hiltaba Suite granites has exploration significance. Even if granite bodies are not the direct source of metals, regions with abundant granite do represent localities where prolonged geothermal engines were present with the capacity to deliver metal pregnant fluids to geochemically favourable host rock environments with potential epigenetic orebody sites.

This model is supported by the diversity of mineralisation that fits the Hiltaba Suite association where in addition to Olympic Dam, gold hosted by Tarcoola Formation adjacent to an unnamed granite at Tarcoola, Erea Dam in Kenella Gneiss, Glenloth in Glenloth Granite, with nearby Hiltaba granite (Parker et al., in prep.), trace copper and minor gold mineralisation in mafic GRV and lead-zinc in Wandearah Metasiltstone calcsilicate equivalents (Drillhole EC-21) in the Mt. Gunson area near a probable Hiltaba granite.

Elsewhere, on Northern Yorke Peninsula Wandearah Metasiltstone and Doora Schist hosted uranium-copper-molybdenum mineralisation at Alford, adjacent to Tickera Granite (min. Rb-Sr age: 1215±554, Webb et al., 1986) and further east, related? black shale hosted copper-lead-zinc (Lynch, 1982). Given the simple geometry of the Moonta vein type orebodies within the strained Moonta Porphyry, and the association of similar minor copper mineralisation (Crawford, 1965) near Pine Point in proximity to Arthurton Hiltaba-suite? granite, the Moonta-Kadina-Wallaroo copper mineralisation is also probably Hiltaba related.

The uranium mineralisation at OD may be a consequence of the redox regime resulting from the coexistence of sulphide and hematite coupled with hydrothermal leaching from the Olympic Dam Granite and is therefore only likely to recur where a similar relationship exists between a source rock and reduction site (eg. brecciated Tarcoola Formation host and GRV source near a granite heat engine). Creaser (1989) agrees with this uranium source model and further indicates that the REE may have been simultaneously mobilised but the work of Johnson and Cross (1991) is in conflict, and suggests that neither the GRV/Hiltaba melt nor and Archaean source rock were involved. The view of Conor (pers. comm.) and supported by Oreskes (1990) that the RDG at Olympic Dam was sericitised prior to the introduction of hematite is consistent with the hydrothermal interaction between the ODBC and its host.

Were it not for the complications offered by radioactive isotopes resulting from the uranium mineralisation the ODBC could possibly meet some of the criteria of commercial iron ores and exploration results that indicate a similar environment should consider this possibility.

mineralisation Lead-zinc in Wandearah Metasiltstone and allied units has not been examined in any great technical detail. common absence of significant copper and its stratabound appearance could falsely lead to the conclusion that it has a syn-sedimentary/basin dewatering origin without appropriate investigation. Irrespective of this aspect the fairly ubiquitous occurrence of intraformational breccias and carbonate horizons within the unit offer possible sites suitable for epigenetic ore deposition. The potential of this host environment is best illustrated from Yoke Peninsula.

Care is required in the evaluation of mineralisation indicators in the Stuart Shelf region because a Mesoproterozoic age is not totally unequivocal since post-Neoproterozoic mobilization of metals is demonstrated by the Mt. Gunson copper deposits and hence by inference, some mineralisation in pre-Pandurra Formation basement

Nonetheless, it is concluded that reducing host rock environments which offer adequate primary porosity or a composition amenable to chemical replacement processes in proximity to or within Hiltaba granites are primary exploration environments.

Empirically the 'magnetic' Hiltaba Granites which are intuitively iron rich seem to offer the highest exploration potential based on experience but mineralising processes have the capacity to destroy such a signature where strong sericitisation and reducing conditions associated with gold deposition may have occurred.

Meaningful generalised target definition criteria for the Stuart Shelf region therefore remain elusive at this time.

CONCLUSIONS/RECOMMENDATIONS

The primary conclusion from the investigative work so far undertaken is that there is much more to be learnt from the existing data if the following recommended suggestions are implemented.

A. GEOPHYSICS

Gravity

- 1) Finalise upgrading of the DME dataset to include all properly located company data.
- 2) Systematically attempt to field tie inadequately located information.
- 3) Develop a policy that will result in a substantial increase in the regional station density.
- 4) Establish datasets of SG data and use them for selective basement modelling.
- 5) Establish shallow and deep basement signature maps using upward continuing and subtraction data processing.
- 6) Actively support modelling studies being undertaken by Adelaide University.

Aeromagnetics

- 7) Pursue integration of aeromagentic datasets to ensure the highest feasible data density and integrity.
- 8) Establish datasets of magnetic susceptibility data and use them to selectively model the depth of magnetic sources.
- 9) Establish shallow and deep basement signature maps using upward continuing and subtraction data processing.

B. GEOCHEMISTRY AND GEOCHRONOLOGY

- 1) Establish a comprehensive drillhole and rock sample dataset of analyses.
- 2) Undertake supplementary analyses where appropriate.
- 3) Carry out whole rock discriminant analysis to aid stratigraphic correlation of basement lithologies.
- 4) Examine the partitioning of iron oxides in the Hiltaba GRV magmatic system to establish if the primary magma is the source of hematite/magnetite and copper-gold mineralisation.
- 5) Develop a comprehensive geochronology dataset.
- 6) Attempt to establish the age of suite #1 & #2 strained granitoids and major blocks of GRV south of the Olympic Dam area.

C. GEOLOGY

- 1) Establish a 'short' list of drillholes for detailed geological examination based on stratigraphic and/or mineralisation importance.
- 2) Re-code and massage the shallow Stuart Shelf database of Newton and update with SSDB data to enable facies mapping of Neoproterozoic sequences.
- 3) Generate a revised integrated interpretation at 1:500,000 scale with multi-level plan layers of geology, stratigraphic isopachs and disconformity surfaces.

4) Seek to identify information of potentially economic significance at any stage.

D. ECONOMIC GEOLOGY

- 1) Generate a set of orebody models based on the upgraded information.
- 2) Prepare a preferred set of targets for detailed geophysical test work and follow-up drilling.

E. GENERAL

- 1) Invite participation of exploration title holders both directly and through selective data access.
- 2) Pursue development of GIS and integrated data processing skills vigorously to allow maximum utilization of the information.

GLOSSARY OF ABBREVIATED TERMS

AESIS Australian Earth Science Information System.

AGSO (BMR) Australian Geological Survey Organisation, former Bureau Min. Res..

ARC\INFO Graphical Information System Software (UNIX) Package.

ArcView MS_DOS/UNIX Windows Display Interface for **ARC/INFO** data.

DHDB DME Central Drillhole Database. (**GEOSIS**)

DESCP_CD Coding system for common geological terms. (SSDB)

DH_BASE ArcView subset of DH_LOG

DH_INDEX SSBP Drillhole Information Index Dataset. (**SSDB**)

DH_IDXCD Code system used in **DH_INDEX**. (**SSDB**)

DH_LIST Listing of drillholes referred to in **DH_INDEX** and **DH_LOG**. (**SSDB**)

DH_LOG SSBP Drillhole Stratigraphic & Geological Summary Dataset. (**SSDB**)

ER-Mapper Image Processing Software (UNIX)

GRV Gawler Range Volcanics

GEOSIS DME - corporate digital geoscientific information system.

GRC Gawler Craton (Palaeoproterozoic-Archaean rocks).

GEOCHEM DME Geochemical Analyses Database. (**GEOSIS**)

IGSN International Gravity Standard Network.

LIMIN_CD Codes for common minerals and lithologies used in DH_LOG. (SSDB)

MEIS DME Mineral Exploration Index Series data tables & 1:250,000 scale maps.

REGMAP Regional mapping field data management and coding system - Qld. Geol. Svy.

RS DME Rock Sample Database. (**GEOSIS**)

SA_GEOLOGY DME geological map generating GIS. (**GEOSIS**)

SASTRAT DME Stratigraphic Coding & Definition Database. (GEOSIS)

SSDB DME Stuart Shelf Database (GEOSIS independent)

SS_STRAT Stuart Shelf Basement Project Stratigraphic Code List. (SSDB)

BIBLIOGRAPHY

Please note that the following list identifies only key papers and documents. The majority of the documents searched in the preparation of this report are referenced directly from the DH_INDEX dataset.

Anderson, C..., 1979. Magnetic and gravity interpretation of the Stuart Shelf of South Australia. <u>Australian Society of Exploration Geophysicists. Bulletin Vol. 10(3) pp. 193-194.</u>

Allender J.F., (In prep.). Preparation of a computerised gravity dataset for South Australia. <u>Australian Department of Mines and Energy.</u> <u>Report Book Series.</u>

Barratt, R.M., 1991. (Compiler) Stuart Shelf E.L. 1338(part) Partial relinquishment Report. Western Mining Corporation Limited, Exploration Division, Company Report (unpub.). In South Australia. Department of Mines and Energy. Open File Envelope No. 8482.

Belperio, A.P., 1992. The DME data model for a comprehensive geoscience information system. Bureau of Mineral Resources, Geology and geophysics, Australia. Record 1992/27, pp 149-154.

Branch, C.D., 1978. Evolution of the Middle Proterozoic Chandabooka Caldera, Gawler Range Acid volcano-plutonic province, South Australia. Geological Society of Australia. Journal v. 25, pp. 199-216.

Cowley, W.M., 1991a. The Pandurra Formation. Australian <u>Department of Mines and Energy.</u> Report Book No. 91/7.

Cowley, W.M., 1991b. Beda Volcanics and Backy Point Formation of the Eastern Gawler Craton. Australian Department of Mines and Energy. Report Book No. 90/16

Cowley, W.M. & Fanning, C.M., 1991. Low-grade Archaean metavolcanics in the northern Gawler Craton. <u>South Australia</u>. <u>Geological Survey</u>. <u>Quarterly Geological Notes</u> No. 119.

Cowley, W.M. & Martin, A.R., 1989. Definition - the Lake Labyrinth Formation, north of Kingoonya. South Australia. Geological Survey. Quarterly

Geological Notes No. 110.

Cowley, W.M. & Martin, A.R., 1991. Kingoonya. South Australia. Geological Survey. 1:250,000 Series - Explanatory Notes. Sheet SH53-11.

Crawford, A.R., 1965. The Geology of Yorke Peninsula. <u>South Australia</u>. <u>Geological Survey</u>. <u>Bulletin</u> 39.

Creaser, R.A., 1989. The Geology and Petrology of Middle Proterozoic felsic magmatism of the Stuart Shelf, South Australia. <u>Latrobe University</u> (Victoria). Ph.D. Thesis (unpub.)

Creaser, R.A & White, A.J.R., 1991. Yardea Dacite - Large volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia. Geology Vol. 19, pp. 48-51.

Curtis, J.L., 1985. Exploration Summary and Ongoing Programme YEM 86. EL 951, Mt Gunson. CSR Limited MEDG, Company Report, EMR 110/85 (unpub.). In South Australia. Department of Mines and Energy. Open File Envelope No. 6962.

Curtis, J.L., 1988. Exploration and Relinquishment Report, Tunkillia, EL 1390, South Australia, 1987. Placer Exploration Limited, Company Report No. SA 2/88 (unpub.). In South Australia. Department of Mines and Energy. Open File Envelope No. 6859

Dalgarno, C.R., 1986. Report on Stuart Shelf Drillholes PY1-PY4 and EC-21, with comparisons to other basement sections. <u>CSR Limited MEDG</u>, <u>Company Report, EMR 66/83 (unpub.)</u>. *In* <u>South Australia</u>. <u>Department of Mines and Energy</u>. <u>Open File Envelope</u> No. 6962.

Daly, S.J., 1986. The Mulgathing Complex. <u>South Australian Department of Mines and Energy.</u> <u>Report Book Series.</u> No. 86/41.

Dyson, I.A., 1992. Stratigraphic nomenclature and sequence stratigraphy of the lower Wilpena Group, Adelaide Geosyncline: the Sandison Subgroup. South Australia. Geological Survey. Quarterly Geological Notes No. 122.

Fanning, C.M., Flint R.B., Parker A.J., Ludwig K.R., & Blissett, A.H., 1988. Refined Proterozoic evolution of the Gawler Craton, South Australia,

through U-Pb zircon geochronology. <u>Precambrian</u> <u>Res.</u> 40/41:363-386.

Flint, R.B., (in prep.). (Compiler) Mesoproterozoic. *In:* The Geology of South Australia. <u>South Australia</u>. <u>Geological Survey</u>. <u>Bulletin</u> 54.

Gatehouse, C.G., Cowley, W.M., & Clough, B.J., (in prep.). SASTRAT Handbook Ver. 1.0 - A Users Guide to the South Australian Stratigraphic Database and Coding System. <u>Australian Department of Mines and Energy. Report Book Series</u> DME No. 118/92.

Giles, C.W., 1988. Petrogenesis of the Proterozoic Gawler Range Volcanics, South Australia. <u>Precambrian Res.</u> 40/41:407-427.

Lang, S.C., Withnall, I.W. and Grimes, K.G., 1988. Regional mapping field data management system (REGMAP) - Guide to data collection and entry. Queensland Geological Survey. Publications Geological Mapping Manual 1, 1988.

Lynch, J.E., 1982. An interpretation of the geology and mineralisation of northern Yorke Peninsula, S.A. MSc Thesis James Cook University, Qld.

Newton, A.W., 1984. Stuart Shelf drillhole Database. <u>South Australian Department of Mines</u> and Energy. Report Book Series. No. 84/16.

O'Driscoll, E.S.T., 1986. Observations of the Lineament-Ore Relationship. <u>Royal Society of London. Philosophical Transactions. Series A</u> 317, pp. 195-218.

Parker, A.J., Fanning, C.M., Martin, A.R. & Rankin, L.R., 1986. Archaean - Early Proterozoic granitoids, meta-sediments and mylonites of southern Eyre Peninsula, South Australia. Geological Society of Australia. South Australia Division. Mylonite Workshop & Eyre Peninsula Excursion Notes - Eighth Aust. Geol. Conv. Feb. 1986.

Parker, A.J., 1990a. Gawler Craton and Stuart Shelf - regional geology and mineralisation, *In* Geology of the Mineral Deposits of Australia and Papua New Guinea (Ed. F.E. Huges). <u>Australasian Institute of Mining & Metallurgy</u>. <u>Monograph</u> Series No 14 Vol. 2, pp. 999-1008

Parker, A.J., 1990b. Precambrian Provinces of

South Australia --- Tectonic Setting, *In* Geology of the Mineral Deposits of Australia and Papua New Guinea (Ed. F.E. Huges). <u>Australasian Institute of Mining & Metallurgy. Monograph Series</u> No 14 Vol. 2, pp. 985-990

Parker, A.J., (in prep.). (Compiler) Palaeoproterozoic. *In:* The Geology of South Australia. <u>South Australia</u>. <u>Geological Survey</u>. Bulletin 54.

Paterson, H.L., Muir, P.M. 1986. (Compilers)
Stuart Shelf E.L. 1316(part) Partial relinquishment Report. Western Mining
Corporation Limited, Exploration Division,
Company Report (unpub.) In South Australia.
Department of Mines and Energy. Open File
Envelope No. 6562.

Paterson, H.L., Dalgarno, C.R., Esdale, D.J., & Tonkin, D.G, 1986. Basement Geology of the Stuart Shelf Region, South Australia. <u>Geological Society of Australia.</u> South Australia <u>Division.</u> Excursion A1 Notes - Eighth Aust. Geol. Conv. Feb. 1986.

Pitt, J.?., et al. (in prep.) Preparation of a computerised Aeromagnetic dataset for South Australia. <u>South Australian Department of Mines and Energy</u>. Report Book Series.

Preiss, W.V., (Compiler) 1987. The Adelaide Geosyncline-Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. <u>South Australia</u>. Geological Survey. <u>Bulletin</u> 53.

Reeve, J.S., Cross, K.C., Smith, R.N. and Oreskes, N., 1990. Olympic Dam copper-uranium-gold-silver deposit, *In* Geology of the Mineral Deposits of Australia and Papua New Guinea (Ed. F.E. Huges). <u>Australasian Institute of Mining & Metallurgy. Monograph Series</u> No 14 Vol. 2, pp. 999-1008

DME, 1982. Interpreted depth to magnetic basement map. <u>South Australia</u>. <u>Geological Survey</u>. <u>Maps of South Australia Series</u>, 1:2,000,000.

Tonkin, D.G., 1985. Thirteenth quarterly report on exploration licence No. 951, Mt. Gunson, South Australia. CSR Limited MEDG, Company Report, EMR 40/85 (unpub.). In South Australia. Department of Mines and Energy. Open File Envelope No. 6962.

Webb, A.W., Thompson B.P., Blissett A.H., Daly, S.J., Flint R.B., & Parker, A.J. 1986. Geochronology of the Gawler Craton, South Australia. <u>Australian Journal of Earth Sciences</u>. (1986) Vol. 33, pp 119-143.

Williams, G.E., 1986. The Acraman impact structure: source of ejecta in late Precambrian shales, South Australia. <u>Science</u>, N.Y. 233: pp200-203.

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 1.1

DH_LIST - Listing of DH_INDEX Drillholes

Map Sheet	Unit No.	Drillhole	Nome	S			Total	Pre-Pandurra
5837	262	BDH	1	Sponsor Samedan	Lice		Depth (m)	Basement?
5837	263	BDH	2	Samedan	EL EL	399	219.7	Y
5837	264	BDH	3	Samedan	EL EL	693 693	361.1 500	Ý Y
5936	117	BB	1	Carpentaria	EL	458	94	<u> </u>
5936	118	BB	2	Carpentaria	EL	458	200	Y
5936	119	BB	3	Carpentaria	EL	458	280	Ϋ́
<u>5936</u>	120	BB	4	Carpentaria	EL.	458	304	Y
5937	10	SR	7	Newmont	EL	305	67.2	Ÿ
5937	13	SR	9	Newmont	EL	305	90.5	Ÿ
5937	60	EBA	3	Carpentaria	EL_	390	400	N.
6035 6037	68	<u>CD</u>	1_	Dampier	EL_	321	150	N
6037	145	DP	1	Esso	EL	600	616.6	Y
6037	146 147	DP EBA	2	Esso	EL	600	860	N
6037	148	EBA EBA	1 2	Carpentaria	EL,	390	400	N
6038	39	SR	1	Carpentaria Newmont	<u>EL</u>	390	400	N
6134	32	MH	1	Dampier	EL EL	304	171	<u> </u>
6134	33	KGB	1	Afmeco	EL	322 708	154.44 162	Y
6134	34	KGB	2	Afmeco	EL	708	43.5	Y Y
6134	35	KGB	3	Afmeco	EL	708	43.3 34	N N
6134	36	KGB	4	Afmeco	EL.	708	269	Y
6135	99	LH	1	Dampier	EL	298	443.2	N
6135	100	LH	2	<u>Dampier</u>	_ EL	298	507.15	N
6136	91	SSR	1001	Aquitaine	EL	1015	499.5	N
6137	52	RL	1	Shell	EL	774	674,4	N
6137	55	PEE	1	Kennecott	EL	333	655.6	N
6138	50	SR	6	Newmont	EL_	335	889.55	N
6139 6139	34 35	SR	12	Newmont	EL	327	302	N
6233	35 13	SR	13	Newmont	EL	341	900.27	N
6233	13 14	PH PH	5	Afmeco	EL	713	174	Y
6233	15	PH	1 2	Afmeco	EL	713	132	Y
6233	16	FH FH	3	Afmeco Afmeco	EL	713	48	Y
6233	17	FH	4	Afmeco	EL EL	713	87	N
6233	18	SAD	1	Aust Selection	EL	713 302	180 251.25	Ý Y
6233	19	PDH	1	Aust Selection	EL	302	68	N
6233	20	PDH	4	Aust Selection	EL	302	82	N
6233	21	PDH	6	Aust Selection	EL	302	224	Y
6233	22	PDH	8	Aust Selection	EL	302	60	N
6233	23	PDH	12	Aust Selection	_ EL	302	191	N
6234	21	PIL	12	Aust Selection	EL	301	156	Y
6234	22	PIL	13	Aust Selection	EL	301	390	Y
6234	23	PIL	14	Aust Selection	EL	301	302	Y
6234	24	PIL	15	Aust Selection	EL	301	160	Y
6234	25	PIL	16	Aust Selection	EL	301	324	Υ
6235 6235	42 77	WOOM	1	Clarence River	OEL	12	611	Ŋ,
6235	78	VG	1	CSR	EL	951	1095	Y
6236	66	CSD CSD		WMC	EL	1316	1015.1	Y
6236	67	HHD	1 1	WMC	EL	1316	994.2	Y
6236	68	TWN	1	WMC WMC	EL	1316	1186.2	Y
6236	69	TWN	2	WMC	EL.	1316	700.8	Y
6236	70	TWN	3	WMC	EL EL	1316	545.6	Y
6236	71	HHD	2	WMC	EL	1316 1316	641.1 364	Y N
6236	72	CRD	1	WMC	EL	1316	118	N
6236	73	ACD	1	WMC		1510	1097.6	Ÿ
6236	74	ACD	2	WMC			915	Ŷ
6236	75	ACD	4	WMC			848	Ÿ
6236	76	ACD	.5	WMC			687	Y
6236	77	ACD	7	WMC			978.8	Y
6236	78	ACD	9	WMC			877	Y
6236	79	ACD	10	WMC			807.5	Ý
6236	80	ACD	18	WMC			851	Y
6236	81	WRD	_1	WMC			982.8	Y
6237	15	BD	1	WMC	EL	1338	941	Y
6237	16 17	BD	2	WMC	EL	1338	829.4	Y
6237 6238		RD	16	WMC			1318.9	<u>Y</u>
6238 6238	6	FHD	1	WMC	EL	1316	743.8	N
6332	614	SR EX	17 165	Newmont	<u>EL</u>	335	1500	<u>Y</u>
6333	52	TR	3	CSR	EL EL	534	160	<u>Y</u>
6333	53	EX	31	Dampier Mt Gunson	EL	654	400.4	Y
6333	54	EX	32	Mt Gunson	EL EL	50 50	54.9 42.7	Y Y
6333	55	EX	.33	Mt Gunson	EL EL	50 50	42.7 89.9	Y Y
6333	56	EX	34	Mt Gunson	EL	50	38.1	Y
							~~	. •

Map Sheet	Unit No.	Drillhole l	Name	Sponsor	Licen	nje.	Total Depth	Pre-Pandurra Basement?
6333	147	EX	38	Mt Gunson	EL	50	56.4	Y
6333	148	EX	97	Mt Gunson	EL	50	17	Y Y
6333	149	EX	100	Mt Gunson	EL	50	9	Ÿ
6333	150	EX	105	Mt Gunson	EL	50	18	Ÿ
6333	151	EX	108	Mt Gunson	EL	50	33	Y
6333	152	EX	114	Mt Gunson	EL	50	33 18	
6333	153	EX	169	CSR				Y
6333	154	EX	171		EL	534	40	Y
6333	155	EX		CSR	EL	534	72	Y
6333	156		182	CSR	EL	534	120	Y
6334	55	EX	162_	Pacminex	EL_	332	196	N
		SAR	1	Aust Selection	EL	226	169.07	,N
6334	56	SAR	5	Aust Selection	EL	226	199.8	N
6334	57	SAR	6	Aust Selection	EL	226	243.2	N
6334	58	SAR	7	Aust Selection	EL	389	665	Y
6334	59	SAR	8	Aust Selection	EL	389	1338	Y
6334	60	SAR	9	Aust Selection	EL_	676	1246	Y
6335	92	EC	45	CSR	EL	543	128	Y
6335	93	EC	43	CSR	EL	543	159	Y
6335	94	EC	40	CSR	EL	543	596	Y
6335	95	EC	47	CSR	EL	543	370.95	Ŷ
6335	96	EC	48	CSR	EL	543	272	Ŷ
6335	97	BC	49	CSR	EL	543	240	Ŷ.
6335	98	EC	51	CSR	EL	543	292	Y
6335	99	EC	35	CSR	EL			
6335	100	EC	21	CSR		543	400	Y
6335	101	PY			EL	543	1002	Y
6335	102	PY	1	CSR	EL	543	1293.3	Y
6335	102		2	CSR	EL	543	926.6	Y
6335		PY	3	CSR	EL	951	1288.3	Y
	104	PY	4	CSR	EL	951	1015	Y
6335	105	SAR	2	Aust Selection	EL	226	415.2	N
6335	106	SAR	.3	Aust Selection	EL	226	286.44	N
6335	107	SAR	4	Aust Selection	EL	226	333.4	N
6335	108	PRL	22	Aust Selection	EL	389	276	Ň
6335	109	PL	32	Pacminex	EL	199	263.8	N
6335	110	HUD	1	WMC	EL	1316	483	Y
6335	111	ASD	1	WMC	EL	1316	1118	Ÿ
6335	112	ASD	2	WMC	EL	1316	1148.4	Ÿ
6335	113	AD	8	WMC	EL	1316	1000.2	Ŷ
6335	114	HUD	2	WMC	EL	1316	396,3	Ŷ
6335	115	AD	2	WMC	EL	1316	829	Y
6335	116	EC	50	CSR	EL	543	256	
6335	117	SASC	. 4	Carpentaria	EL		1250	N
6336	41	DRD	1	WMC		1170		<u>X</u>
6336	42	HWD	1		EL	1316	1192	Y
6336	43	RED	1	WMC	EL	1316	1097	Y
6336	44			WMC	EL	1338	410	Y
		RED	2	WMC	EL	1338	686.9	Y
6336	45	WLD	1	WMC	EL_	1338	445.5	Y
6337	55	SHD	1	WMC	EL	1316	965	Y
6337	56 50	SCYW	1	Amoco	EL	520	1450	N
6337	57	BLD	1	WMC	EL	1338	768	Y
6337	58	BLD	2	WMC	EL	1338	860.25	· • • • • • • • • • • • • • • • • • • •
6337	59	BLD	3	WMC	EL	1338	1024	Y
6337	60	BLD	4	WMC	EL.	1316	1037	<u>N</u>
6432	798	SAU	3	Aust Selection	EL	187	494	Υ
6433	33	SAU	1	Aust Selection	EL	187	275.35	Y
6434	30	BDH	2	Aquitaine	EL	206	553.1	N
6434	31	BDH	3	Aquitaine	EL			
6434	32	SLT	107	Aquitaine		582	1200	Y
6434	33	YAD			EL	582	1099	Y
6434	33 34		1	Urangesellschaft	EL	582	655.6	N
6434	34 35	WHD	1	WMC	EL	1316	683.53	Y
		SLT	101	Aquitaine	EL	370	1405.6	Y
6434	36 27	SLT	102	Aquitaine	EL	370	644	N
6434	37	SLT	103	Aquitaine	EL	370	750.5	Y
6434	38	SLT	106	Aquitaine	EL	582	1449	Y
6434	39	SLT	104	Aquitaine	EL	370	836	N
6435	5	NHD	1	WMC	EL	1316	643.2	
6436	6	MRD	1	WMC	EL	1316	918	Y
6436	11	WWD	1	WMC	EL	1316	762.1	N
6436	14	TD	1	WMC	EL	1338	498	Y
6436	15	TD	2	WMC	EL	1338	881	Y
6436	16	TD	3	WMC	EL		733.4	Y
				** 174	EL	1338	133.4	I

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 1.2

Data Input Formats

\$
STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE HOLE NO:
MAP:4 UNIT:6 NAME:20 SEQ. NO:4 CLASS:2
CONFIDENTIAL STATUS (O/C):1 O PROVINCE CODES:9 LEASE:3*5*1**
SPONSOR CODE:4 SPONSOR:45
REFERENCE: 40 SAMREF CNO: 7
OTHER NAME: 30 REF. TYPE: 3*3 COR*ENV NO: 10*
TARGET COMMODITY: 12*-**- TOTAL DEPTH: 7 m COMPLETION DATE: 10//19 CLASS = (WW-Water Well, MW-Mineral Well, SW-Stratigraphic Well, EW-Engineering Well, PW-Petroleum Well) TARGET COMMODITY = (BM-basemetals, CO-Coal, PE-Petroleum, GS-Gemstones, WA-Water, ST-Stratigraphy, PH-Phosphate, DI-Diamonds, RE-Rare Earth Elements, EM-Extractive Minerals, or Elemental Symbols: Separated by spaces: four max.) REF. TYPE = (COR-Company Report, SAD-SADME Source, * ENV-Envelope, RB-Report Book, MIQ-Mining Ind, Qtly., MRR-Min. Res. Rev., QGN-Qtly. Geol. Notes, BUL-Bulletin, DME-SADME Docket)
DRILLTECH: 3 SAMPLE: TYPE 1: 1 - LENGTH: 4 TYPE 2: 1 - LENGTH: 4 LOCATION: 2 -*- DRILLTECH = (Dia=Diamond, Rot=Rotary, RtA=Rotary Air, RtH=Rotary Hammer, RAB=Rotary Air Blast, RtM=Rotary Mud, REC=Rotary with Bottom Core, PrD=Percussion Diamond Precoll., RmD=Rotary Mud Diamond Precoll., Rc=Reverse Circulation, RcA=Reverse Circulation Aircore, CAB=Cable Tool, AUG=Auger, HdA=Hance Auger, HDg= Hand Dug) SAMPLE TYPES = (C=Cored, P=Part Cored, S=Spot Cored, M=Mud/sludge/cuttings) LENGTH (metres) LOCATON = (G=Glenside, M=Moonta, W=Whyalla, C=Company Storage, D=Discarded) Either:
EASTING: 9 NORTHING: 10 ZONE: 2 53 ZONE AZ: 3 LOCATION ACCURACY: 1 -
LATITUDE: "* LONGITUDE: "* GRID (ANS/CLK): DNHOLE ORIENTATD. SURVY: 1 -"
DIP ANGLE: 4 - 90.0 AZIMUTH (True): 5 Local Grid:*- (Lnorth-> T): LOCATION ACCURACY = (S=Surveyed, O=Orthophoto Plot, P=Plotted, E=Estimated) AZIMUTHS (Local Grid) nnn.n*Chr.=(M=Magnetic,T=True, A=AMG L=Local Grid) DOWN HOLE SURVEY =(N=None, A=Acid Test, T=Trupari, C=Camera)
ELEVATION: HUNDRED: SECTION: STATUS: -**- STATUS = (BF=Backfilled, CP=Capped, PL=Plugged, CE=Cemented Plug, CA=Cased, ST=Steel Cased, PV=PVC cased, UK=Unknown, OP=Open, CO=Collapsed, NP=Nuclear Probe in hole, SH=Steel in hole, AB=Abandonned, DM=Domestic, SD=Stock & Domestic, SK=Stock, NU=Not in Use, UQ=Unequipped, DR=Dry hole, MI=Mined, SM=Solution Mining, PS=Piesometer, HM=Hydromonitor.)
GEOL LOG EXISTS: 1 - LOGGED BY: 4 GEOLOG REF: 25 ENV\
GROUND (Targetting) SURVEYS: 3 GEOPHYS. (Down Hole): 2 GEOCHEMISTRY: 1 - PETROLOGY: 1 -
WATER: 2 PALAEONTOLOGY: 1 - METALLURGY: 1 - GEOCHRONOLOGY: 1 - OTHER: 13
GROUND SURVEY REF: 25 GEOPHYS DH. REF: 25
GEOCHEMISTRY REF: 25
OTHER: 10 REF: 25 GEOCHRONOLOGY REF: 13
COMMENTS:75
<u>CHECKED</u> : 13 <u>DATE</u> : 8/ <u>UPDATE</u> : 13 <u>DATE</u> : 8/

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 2.1

DH_INDEX - Field Descriptions

APPENDIX 2.1

DH_INDEX - Field Descriptions

The DH_INDEX file has 70 fields. A header, listing recommended field size, 10 character dBASE compatible field name and corresponding printout field names in both column and row format is incuded in both the DH_INDEX.WK1 & .TXT files (Appendices 4.1 & 4.2).

The DH_INDEX printouts in Appendix 3.4 have 65 fields of which some are combinations of the DH_INDEX file fields. The fields for DH_INDEX are described in this Appendix and the data codes are listed in Appendices 2.2 (DH_IDXCD) and 2.3 (AESIS).

The fields listed below are presented with the following format:-

NAME: (N,Td)

tabl_fldnm Description

where-

NAME: = Field name as used in DH_INDEX printout. (Appendices 1.1 & 2.4).

<u>Double underlines</u> means key definition field used in DHDB and to compile

DH INDEX file table.

Single underline means the data in this field is used to compile the DH_INDEX file

table

Some fields are compound.

(N,Td) = N =field size - includes spaces, \pm signs and decimals.

T = field status - M = Mandatory, O = Optional, R = Recommended

d = data type - c = character, i = integer, r = real number

tabl_fldnm = Field name used in DH_INDEX file table (10 character, dBASE-compatibile).

Description = Explanatory text.

Field Descriptions :-

MAP: (4,Mi)

map_sheet 1:100,000 map sheet within which the drillhole is located eg 6335 = Arcoona sheet.

<u>UNIT</u>: (6,Mi)

unit_no Sequential no. serially issued from the DHDB for drillholes within each 1:100,000

map sheet.

<u>MAPUNO</u>: (10,Ac)

 map_uno Field generated by:- \underline{MAPUNO} : = $\underline{MAP \ NO}$: + $\underline{UNIT \ NO}$: to provide a single unique

identifier. MAPUNO: is unsuitable for ASCII sorting of data records into 1:100,000

mapsheets because UNIT NO: is defined without leading zeros.

<u>NAME</u>: (20,Mc)

dh_name Text portion of the drillhole name commonly used in the literature, eg. "SLT" from

drillhole SLT-6 (See also OTHER NAME field).

SEQ. NO: (4,Mi)

dh_seqno The numeric portion of the drillhole name, commonly a sequential number (eg "6" part

of SLT-6).

<u>CLASS</u>: (2,Oc)

dh_class A text code used to identify the original purpose of the drillhole (eg. MW for mineral

exploration well).

CONFIDENTIAL STATUS: (1,Mc)

confdntl To flag the confidentiality status of the drillhole.

PROVINCE CODES: (11,Oc)

province Provision for specifying up to 3, 3-character geological province codes for province-

based drillhole searches (eg. SSH for Stuart Shelf).

<u>LEASE</u>: (3,Mc:4,Mi:1,Oc)

lease_type A 3 character field used to specify the class of land title tenure authority under which

the drilling was carried out. Commonly this is an exploration or mining title but could also be a freehold title deed or a Crown allotment/lease (eg. EL for Exploration

Licence).

lease_no A 4 digit field to specify the title number current at the time the drillhole or its' pre-

collar was spudded (eg. "1000" of EL 1000A).

lease_sufx A single character field for a suffix to designate a portion of a partitioned title when

relevant (eg. "A" of EL 1000A).

SPONSOR CODE: (4,Mc)

sponsor_cd From the national AESIS sponsor code set. The sponsor is the proponent, manager and

reporter of the drilling operation. These codes are stored in Appendix 2.3.

REFERENCE: (40,Mc)

reference For the purpose of identifying the first technical report/document that is known to refer

to the actual drilling of the hole (eg. 5th Quarterly Report EL 1000A).

SAMREF CNO: (7,Ri)

samref_no DME library bibliographic database (SAMREF) control number for <u>REFERENCE</u>:.

SAMREF subscribers have on-line access to summaries of exploration activity.

OTHER NAME: (30,Oc)

other_name Any other name for the drillhole or its' pre-collar (eg. PDH-7 = PRECOLLAR).

REF. TYPE: (3,Mc:3,Mc)

ref_origin ref_doctyp The first field specifies the class/origin of the technical drilling report (eg.

COR = Company Report). The second field specifies the form of the reference

(eg. ENV = DME Exploration Envelope).

No: (5,Mi:5,Mi)

doc_no1 doc_no2 Fields for the recording of reference numbers for up to two similar documents (eg.

"2992" of ENV 2992).

TARGET COMMODITY: (12,Oc)

target Up to four two-character codes to indicate the drillholes' original target commodity (eg.

BM = Base Metals).

TOTAL DEPTH: (7,Mr:1,Mc)

ttl_depth unit_meas Two fields for the recording of the last documented maximum depth to two

decimal places and the unit of measurement used throughout the drillhole record. M represents metres, as used universally in DH_INDEX and F

represents feet measurements.

COMPLETION DATE: (10,Mc)

completed The date of final drilling completion in dd/mm/yyyy format (eg. 29/05/1987). Where

this is imprecisely known the day and/or month can be left blank or filled with "?".

DRILLTECH: (3,Mc)

method Used to specify the primary technique(s) employed during drilling (eg. PrD =

Percussion precollar-diamond).

<u>SAMPLE</u>: (1,Oc:4,Oi:1,Oc:4,Oi)

TYPE 1: LENGTH:

samp_typ1 samp_lng1 Field set for storing the drilling sampling method statistics. Aggregate

<u>TYPE 2</u>: <u>LENGTH</u> meterage (footage) to the nearest whole unit (eg. C=cored, 60 = sum of cored

samp_typ2 samp_lng2 intervals was 60 m).

LOCATION: (2,Oc)

storage Two single-character codes to record up to two sample material storage locations (eg.

G = DME Glenside Core Library).

EASTING: (9,Mr)

amg_east Australian Map Grid - Easting coordinate to two decimal places (meters).

NORTHING: (10,Mr)

amg_north Australian Map Grid - Northing coordinate to two decimal places (meters).

<u>ZONE</u>: (2,Mi)

amg_zone Australian Map Grid - Zone number.

MSG CONV: (3,Oc)

amg_conv Designed to accommodate mean AMG ZONE AZIMUTH CONVERGENCE for the

relevant 1:100,000 map sheet as expressed in degrees & minutes (eg. $105 = 1^{\circ}05'$).

LOCATION ACCURACY: (1,Mc)

locn_acc A code to specify the method/accuracy of the collar coordinate positioning (eg. O =

orthophoto plot).

<u>LATITUDE</u>: (10,Mr)

latitude Decimal degrees of south latitude to 5 significant figures.

LONGITUDE: (10,Mr)

longitude Decimal degrees of longitude to 5 significant figures.

GRID (ANS/CLK): (3,Rc)

geod_grid Used to specify the geodetic survey grid coordinates (Lat./Long.) of the source plan

(AMG plans are ANS based).

DOWN HOLE ORIENTATION SURVEY: (1,Oc)

orientsvy Used to flag the existence and type of any down hole orientation survey (eg. C = down

hole camera system).

DIP ANGLE: (6,Mr)

declinatn Drillhole collar orientation relative to horizontal in decimal degrees. Default

specification is vertically downwards ie. - 90.0 (note negative sign).

AZIMUTH (True): (5,Mr)

azimuth Horizontal drillhole collar orientation clockwise with respect to true north in decimal

degrees to one significant figure. Default is blank for vertical drillholes.

ELEVATION: (8,Mr)

elevation The drillhole collar elevation measured to Australian Height Datum 1971 (AHD) in

meters to two significant figures. A negative sign is used for elevations below AHD

(Mean Sea Level = 0 AHD).

HUNDRED: **SECTION**: (4,Oc:4,Oc)

hundred section Pair of fields for providing cadastral plan reference codes when relevant.

STATUS: (8,Mc)

status Provision for up to three two-character codes used to describe the last known condition

of the drillhole (eg. CA CO = cased and collapsed).

GEOL LOG EXISTS: (1,Mc)

geol_log A flag pointing to the existence of a geological log (eg. Y = exists, N= none, - not

known).

LOGGED BY: (4,Mc)

geol_recd A code to indicate the technical skills level used to generate the geological log. (eg.

GEOL = geologist)

GEOLOG REF: (25,Rc)

geol_ref A field for recording the source reference document for the geological log (eg. ENV

2992 P25 F-1 : see note below).

GROUND (Targeting) SURVEYS: (3,Rc)

groundsvys Provision for up to three single-character codes to designate the types of surface

exploration surveys used to develop the drillhole target (eg. M = geological mapping).

GEOPHYS.(Down Hole): (2,Mc)

dnhlgeophy One or two single-character codes to flag the existence and type of geophysical

measurements taken (eg. C = Core test).

GEOCHEMISTRY: PETROLOGY: (1,Oc:1,Oc)

geochmstry petrology Flags to the existence of geochemical and/or petrological data (eg Y = exists).

 $\underline{\text{WATER}}$: (2,Oc)

water_test One or two single character codes to flag the existence of bore water tests (eg. A =

Hydrochemical tests).

<u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: (1,Oc:1,Oc)

palaeontol metallurg geochron Flags to the existence of one or more of palaeontological, metallurgical

or geochronological studies.

<u>OTHER</u>: (13,Oc:1,Oc)

othr_topic Provision for recording the existence of surveys or sample tests other than those listed

above (eg. SOIL, GAS)

GROUND SURVEY REF: GEOPHYS DH. REF: GEOCHEMISTRY REF: (25,Oc:25,Oc)

grndsvyref dnhlgphref geochmref

PETROLOGY REF: GEOCHRONOLOGY REF: (25,Oc:13,Oc)

petrlgyref geochrnref

Fields referencing the source documents for surveys and sample tests performed (eg. ENV 2992 P25 F-1). For DH_INDEX reference fields the data entry format is :- ENV nnnn = DME envelope number and Pnn, F-nn refer to page and figure/plan numbers respectively.

OTHER: (10,Oc) REF: (25,Oc)

othr_topic* other_ref Fields to identify and reference a survey or sample test not mentioned in the

above listing. The survey/test reference follows the convention listed above.

COMMENTS: (75,Oc)

comments Provided for free-hand notes on any aspect of the drillhole (eg. "Hole deepened by

wedge from 230 m due to poor ground.")

CHECKED: (13,Rc) DATE: (8,Rc)

init_author init_date

<u>UPDATE</u>: (13,Rc) <u>DATE</u>: (8,Rc)

upd_author last_update Information regarding the currency of the coding, when it was last reviewed

and by whom. (eg. J.L. Curtis, 28/11/92).

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 2.2

DH_IDXCD - List of Data Sheet Codes

DH_IDXCD - List of Data Sheet Codes

<u>CLASS</u> WW Water Well

MW Mineral Well SW Stratigraphic Well EW Engineering Well PW Petroleum Well

EM Environmental Monitoring Well

<u>CONFIDENTIAL STATUS</u> O Open File - Free public access

C Closed File - Proprietory Data

PROVINCE CODES: SSH Stuart Shelf Neoproterozoic Seq.

GRP Gawler Range Post Kimban Seq. GCR Gawler Craton Pre Kimban Seq.

LEASE: EL Exploration Licence

SML Special Mineral lease RL Retention Lease ML Mining lease

MPL Miscellaneous Purposes Licence EML Extractive Minerals Lease

SPONSOR CODE: National AESIS corporate listing as availble from the Australian Mineral

Foundation. (see Appendix 2.3)

REF. TYPE

Origin:- COR Company Report

SAD DME Source

GSO Geological Society of Aust. AIM Aus. Inst. Min. Met.

DME Types:- ENV Envelope

RB Report Book

MIQ Mining Industry Quaterly.
MRR Mineral Resources Review
QGN Quartely Geological Notes

BUL Bulletin
DME Docket

General Types:- PUB Publication

PRO Proceedings CON Conference Papers MON Monograph

TARGET COMMODITY BM Basemetals- Cu, Pb, & Zn

CO Coal
PE Petroleum
GS Gemstones
WA Water
ST Stratigraphy
PH Phosphate
DI Diamonds

RE Rare Earth Elements EM Extractive Minerals,

xx Elemental Symbols of choice, eg Au,

TOTAL DEPTH metres m f feet **DRILL TECHNIQUES** Diamond Dia Rot Rotary RtA Rotary Air RtH Rotary Hammer **RAB** Rotary Air Blast Rotary Mud RtM Rotary with Bottom Core **RBC** Percussion precollared Diamond PrD RmD Rotary mud precollared Diamond Rc Reverse circulation Reverse circulation Aircore RcA **CAB** Cable Tool **AUG** Auger HdAHand Auger Hand Dug Excavation **HDg** SHF Shaft/Rise RcD Reverse Circulation precol. Diamond Percussion with Spot Core PrC RmC Rotary Mud with Spot Core C **SAMPLE TYPES** Cored P Part Cored S Spot Cored M Mud/sludge/cuttings **LOCATION** G Glenside Central Core Library M Moonta Regional Core Library W Whyalla Regional Core Library C Company Storage Facilities D Discarded LOCATION ACCURACY Not known S Surveyed-conventional G Global Positioning Satelite System O Orthophoto Plot P Plotted E Estimated **AZIMUTHS** M Magnetic T True (Local Grid) Α **AMG** L Local Grid relative only **GRID** ANS Aust. Nat. Survey 1966 (Aust. Geodetic Datum 1966 & Aust. Height Datum 1971) CLK Clarke Nat. Survey Grid 1858 (Clarke Spheroid) Not known **DOWN HOLE SURVEY** (ORIENATATION) N None Α Acid Test T Trupari

C

UK

BF

STATUS

Camera System

Unknown

Backfilled

	CP PL CE CA ST PV OP CO NP SH AB DM SD SK NU UQ DR MI SM PS HM PM	Capped Plugged Cemented Plug Cased Steel Cased PVC cased Open Collapsed Nuclear Probe in hole Steel in hole Abandoned Domestic water bore Stock & Domestic water bore Stock water bore Not in Use - water bore Unequipped water bore Dry hole - water bore Mined - destroyed by mining Solution Mining Well Piesometer water table monitor bore Hydromonitor - enviromental samping Pollution Monitoring Well
GEOL LOG EXISTS	N B D	None Brief Detailed
LOGGED BY	GEOL DRIL FLDA	Geologist Driller Field Assistant
GROUND SURVEYS (Targetting)	M G P	Geological Mapping/Interpretation Geochemical Survey(s) Geophysical Survey(s).
GEOPHYSICS SURVEYS (Down Hole)	N L C S	Not known None Dhole Logger Core Sample Cuttings
WATER	N H A	Not known Hydrological Hydrochemical
GEOCHEMISTRY PETROLOGY PALAEONTOLOGY METALLURGY GEOCHRONOLOGY OTHER))))	- Not known N No technical investigations Y Technical reports exist
REF Types:	ENV RB MIQ BUL	DME open-file Envelope DME Report Book DME Mineral Industy Quarterly DME/Geological Survey of South Aust. Bulletin

reference syntax

ENV nnnn Pxxx,xxx F-yy nnnn Pxx

nnnn = envelope/report book no.
Pxx,xxx = page(s) starting
F-yy = plan no(s) F-yy

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 2.3

AESIS Company Code List for DH_INDEX

AAM Aquitaine Australia Minerals Pty Ltd.

AFM Afmeco Pty Ltd.

AMA Amoco Minerals Australia Co. ASP Australian Selection Pty Ltd.

CBP Clarence River Basin Oil Exploration Co. NL.

CEX Carpentaria Exploration Co Pty Ltd.

CSR CSR Ltd.

CSR2 CSR Ltd - Minerals Division.

CSR4 CSR Ltd - Aluminium, Minerals and Chemicals Division.

DMC Dampier Mining Co Ltd. ESS2 Esso Australia Ltd.

KEX1 Kennecott Exploration (Australia) Ltd.

MGU Mount Gunson Mines Pty Ltd.

NMK1 Newmont Pty Ltd. PAC Pacminex Pty Ltd.

SDA2 Shell Company of Australia Ltd.

SOA Samedan of Australia.

URA Urangesellschaft Australia Pty Ltd.

WMC4 Western Mining Corporation. Exploration Division.

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 2.4

DH_INDEX - Printout of Data Sheets

HOLE NO: BDH 1

MAP: 5837 UNIT: 262. NAME: BDH SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR

LEASE: EL 399

SPONSOR CODE: SOA SPONSOR: SAMEDAN OF AUSTRALIA

REFERENCE: QTLY REPT ENDING MAY 1980 (EL 399)

SAMREF CNO: 1011996

OTHER NAME:

REF. TYPE: COR ENV No: 3293

TARGET COMMODITY: BM

TOTAL DEPTH: 219.70 m COMPLETION DATE: 06/06/1980

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 220 TYPE 2: LENGTH: . LOCATION: G

EASTING: 491525. NORTHING: 6653150. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°15'11.3" LONGITUDE: 134°54'42.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 85.0 AZIMUTH (True): 60.

(Lnorth > T):

ELEVATION: + 175.

HUNDRED:

Local Grid: . SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3293 P247,255

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:

OTHER: SEISMIC

GROUND SURVEY REF: ENV 3293 P28,48 F(II)-8,9 GEOPHYS DH. REF: ENV 3293 P256

GEOCHEMISTRY REF: ENV 3293 P256

PETROLOGY REF:

OTHER: SEISMIC REF: ENV 3293 F(III)-1,(V)-2-6 GEOCHRONOLOGY REF:

COMMENTS: PALYNOLOGY RPT ENV 3293 P566 (SADME RB 815). AMG & ELEV ESTIMATED

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

CLASS: MW

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: BDH 2

MAP: 5837 UNIT: 263. NAME: BDH

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 693

SPONSOR CODE: SOA

SPONSOR: SAMEDAN OF AUSTRALIA

REFERENCE: FIRST QTLY RPT NOV 1980 (EL 693)

SAMREF CNO: 1011996

OTHER NAME:

REF. TYPE: COR ENV No: 3293

SEQ. NO: 2

TARGET COMMODITY: BM

TOTAL DEPTH: 361.10 m COMPLETION DATE: 06/07/1980

DRILLTECH: RMC SAMPLE: TYPE 1: M LENGTH: 98 TYPE 2: S LENGTH: 263. LOCATION: G

EASTING: 491139. NORTHING: 6651490. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°16'05.2" LONGITUDE: 134°54'28.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 170.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3293 P252,266

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC

GROUND SURVEY REF: ENV 3293 P28,48,285 F(II) GEOPHYS DH. REF: ENV 3293 P267 GEOCHEMISTRY REF: ENV 3293 P267

PALAEONTOLOGY:

PETROLOGY REF:

OTHER: SEISMIC

REF: ENV 3293 P635 F(V)-2-6 GEOCHRONOLOGY REF:

COMMENTS: PALYNOLOGY REF ENV 3293 P566 (SADME RB 815). ELEV & AMG ESTIMATED

CHECKED: BJV

WATER:

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: BDH 3

MAP: 5837 UNIT: 264. NAME: BDH

SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 693

SPONSOR CODE: SOA

SPONSOR: SAMEDAN OIL CORPORATION

REFERENCE: QTLY RPT ENDING FEB 1981

SAMREF CNO: 1011996

OTHER NAME:

REF. TYPE: COR ENV No: 3293

TARGET COMMODITY: BM

TOTAL DEPTH: 500.00 m COMPLETION DATE: 12/02/1981

DRILLTECH: RmD SAMPLE: TYPE 1: M LENGTH: 210 TYPE 2: C LENGTH: 290 LOCATION: G

EASTING: 494609. NORTHING: 6653706. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°14'56.4" LONGITUDE: 134°56'39.6" GRID (ANS/CLK): ANS DNHOLE ORIENTN. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 175.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3293 P583,586

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): N GEOCHEMISTRY: Y PETROLOGY: Y WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3293 P571

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 3293 P622,7627

PETROLOGY REF: ENV 3293 P624

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION & ELEV ESTIMATED FROM COMPANY MAP & SADME CONTOUR MAP

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

the makes promoted the state of the state of

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: BB 1 MAP: 5936 UNIT: 117. NAME: BB SEQ. NO: 1 CLASS: MW CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 458 SPONSOR CODE: CEX SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: 3RD QTLY RPT DEC 1979 **SAMREF CNO: 1008795**

OTHER NAME: REF. TYPE: COR ENV No: 3509 TARGET COMMODITY: BM TOTAL DEPTH: 94.00 m COMPLETION DATE: 09/11/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 94 TYPE 2: LENGTH: . LOCATION: G

EASTING: 535722. NORTHING: 6600452. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°43'41.4" LONGITUDE: 135°22'23.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

ELEVATION: + 138. HUNDRED: SECTION:

STATUS: OP GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3509 P14,16

GROUND (Targetting) SURVEYS: N GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: N

WATER: N PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 3509 P17

GEOCHEMISTRY REF: ENV 3509 P16 PETROLOGY REF:

REF: GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: BB 2

(Lnorth > T):

MAP: 5936 UNIT: 118. <u>NAME</u>: BB SEQ. NO: 2

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 458

SPONSOR CODE: CEX SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: 3RD QTLY RPT DEC 1979 **SAMREF CNO: 1008795**

OTHER NAME: REF. TYPE: COR ENV No: 3509

TARGET COMMODITY: BM TOTAL DEPTH: 200.00 m COMPLETION DATE: 10/11/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 200 TYPE 2: LENGTH: . LOCATION:

EASTING: 536588. NORTHING: 6608725. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°39'12.6" LONGITUDE: 135°22'54.8" GRID (ANS/CLK): ANS DNHOLE ORIENTO. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 138. HUNDRED: SECTION: STATUS: OP

GROUND (Targetting) SURVEYS: N GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

LOGGED BY: GEOL

GEOL LOG EXISTS: B

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 3509 P20

GEOCHEMISTRY REF: ENV 3509 P18 PETROLOGY REF: ENV 3509 P34

OTHER: WATER REF: ENV 3509 P8 GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV DATE: 03/09/92 **UPDATE:** DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

GEOLOG REF: ENV 3509 P14,18

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                        HOLE NO: BB 3
MAP: 5936 UNIT: 119. NAME: BB
                                                  SEQ. NO: 3 CLASS: MW
CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP
                                                          LEASE: EL 458
SPONSOR CODE: CEX SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD
REFERENCE: 3RD QTLY RPT DEC 1979
                                                        SAMREF CNO: 1008795
OTHER NAME:
                                         REF. TYPE: COR ENV No: 3509
TARGET COMMODITY: BM TOTAL DEPTH: 280.00 m COMPLETION DATE: 15/11/1979
DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 280 TYPE 2: LENGTH: . LOCATION: G
EASTING: 542155. NORTHING: 6615443. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:
LATITUDE: 30°35'33.7" LONGITUDE: 135°26'23.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                       Local Grid: .
                                                             (Lnorth > T):
ELEVATION: + 150.
                         HUNDRED:
                                             SECTION:
                                                              STATUS: AB SH
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3509 P14,22
GROUND (Targetting) SURVEYS: N GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: N
WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:
                                                     OTHER:
GROUND SURVEY REF:
                                         GEOPHYS DH. REF: ENV 3509 P25
GEOCHEMISTRY REF: ENV 3509 P22
                                          PETROLOGY REF:
OTHER: WATER REF: ENV 3905 P8
                                               GEOCHRONOLOGY REF:
COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991
CHECKED: BJV
                        DATE: 03/09/92
                                          UPDATE:
                                                                 <u>DATE</u>: / /
```

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE HOLE NO: BB 4

MAP: 5936 UNIT: 120. NAME: BB SEQ. NO: 4 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

SPONSOR CODE: CEX SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: 3RD QTLY RPT DEC 1979

SAMREF CNO: 1008795

OTHER NAME:

REF. TYPE: COR ENV No: 3509

TARGET COMMODITY: BM TOTAL DEPTH: 304.00 m COMPLETION DATE: 19/11/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 304 TYPE 2: LENGTH: . LOCATION: G

EASTING: 539649. NORTHING: 6612742. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°37'01.7" LONGITUDE: 135°24'49.2" GRID (ANS/CLK): ANS DNHOLE ORIENTO. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T): STATUS: ST

ELEVATION: + 142.

HUNDRED:

SECTION:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3509 P14,

GROUND (Targetting) SURVEYS: N GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: N

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3509 P31

GEOCHEMISTRY REF: ENV 3509 P

PETROLOGY REF:

OTHER: WATER REF: ENV 3509 P8,9

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV

DATE: 03/09/92

UPDATE:

DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: EBA 3

MAP: 5937 UNIT: 60. NAME: EBA

SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): 0

PROVINCE CODES: GRP SSH

LEASE: EL 390

SPONSOR CODE: CEX

SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: QTLY RPT ENDING NOV 1978

SAMREF CNO: 1011608

OTHER NAME:

REF. TYPE: COR ENV No: 3236

TARGET COMMODITY: BM

TOTAL DEPTH: 400.00 m COMPLETION DATE: 16/10/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 400 TYPE 2: LENGTH:

. LOCATION: ?

EASTING: 539025. NORTHING: 6664223.

ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°09'09.4" LONGITUDE: 135°24'18.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . ELEVATION: + 191.

SECTION:

(Lnorth > T): · STATUS: ST

HUNDRED:

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

Local Grid:

GEOLOG REF: ENV 3236 P20

GROUND (Targetting) SURVEYS: P WATER: H PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY:

GROUND SURVEY REF: ENV 3236 F-2-4

GEOPHYS DH. REF: ENV 3236 P32

GEOCHEMISTRY REF: ENV 3236 P20

PETROLOGY REF: ENV 3236 P34

OTHER: WATER

REF: ENV 3236 P20

GEOCHRONOLOGY REF:

OTHER:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV

DATE: 03/09/92

UPDATE:

DATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SR 7

MAP: 5937 UNIT: 10. NAME: SR

SEQ. NO: 7

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 305 🥷

SPONSOR CODE: NMK1

SPONSOR: NEWMONT PTY LTD REFERENCE: EXPLORATION RPT OCT 1977

SAMREF CNO: 1006085

OTHER NAME:

TOTAL DEPTH:

REF. TYPE: COR ENV No: 3031

TARGET COMMODITY: BM

67.2 m COMPLETION DATE: 21/10/1977

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 67 TYPE 2: LENGTH: . LOCATION: G

EASTING: 512910. NORTHING: 6680390. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°00'26.2" LONGITUDE: 135°08'01.9" GRID (ANS/CLK): ANS DNHOLE ORIENTAL SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): .

ELEVATION: + 165.

HUNDRED:

SECTION:

(Lnorth > T): STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3031 P30,45,58

Local Grid:

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: PETROLOGY:

PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3031 P11,76 F-1

GEOPHYS DH. REF: ENV 3031 P60

GEOCHEMISTRY REF:

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV

DATE: 03/09/92

UPDATE:

DATE:

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

5

HOLE NO: SR 9

MAP: 5937 UNIT:

13. NAME: SR

SEQ. NO: 9 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 305

SPONSOR CODE: NMK1

SPONSOR: NEWMONT PTY LTD

REFERENCE: EXPLORATION RPT NOV 1977

SAMREF CNO: 1006085

OTHER NAME:

REF. TYPE: COR ENV No: 3031

TARGET COMMODITY: BM

TOTAL DEPTH: 90.5 m COMPLETION DATE: 29/10/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 71 TYPE 2: C LENGTH: 20. LOCATION: G

EASTING: 512920. NORTHING: 6679640. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°00'50.5" LONGITUDE: 135°08'02.3" GRID (ANS/CLK): ANS DNHOLE ORIENTATO. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): HUNDRED:

SECTION:

(Lnorth > T): STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GROUND (Targetting) SURVEYS: P

GEOLOG REF: ENV 3031 P33,36,44,61

Local Grid:

GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY:

OTHER:

GROUND SURVEY REF: ENV 3031 P11,76 F-1

GEOPHYS DH. REF: ENV 3031 P63

GEOCHEMISTRY REF: ENV 3031 P36,53

PETROLOGY REF: ENV 3031 P49

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV

DATE: 03/09/92

UPDATE: 13

DATE:8 / /

HOLE NO: CD 1

MAP: 6035 UNIT:

68. NAME: CD

SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 321

SPONSOR CODE: DMC

SPONSOR: DAMPIER MINING COMPANY LTD

REFERENCE: QTLY RPT ENDING AUGUST 1977

SAMREF CNO: 1055170

OTHER NAME: CD DDH 1

REF. TYPE: COR ENV No: 3035

TARGET COMMODITY: BM

TOTAL DEPTH: 150. m COMPLETION DATE: 13/06/1977

DRILLTECH: Dia SAMPLE: TYPE 1: M LENGTH: 150 TYPE 2: LENGTH:

. LOCATION: G

EASTING: 594538.

NORTHING: 6545949. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°13'00. " LONGITUDE: 135°59'33. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

(Lnorth > T):

ELEVATION: + 140.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GEOLOG REF: ENV 3035 P4,62

GROUND (Targetting) SURVEYS: PM GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: **METALLURGY:** GROUND SURVEY REF: ENV 3035 P9 F-1-7

GEOCHRONOLOGY: OTHER: GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 3035 P62

PETROLOGY REF: ENV 3035 P69

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM SADME CONTOUR MAP

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE:

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: DP 1

MAP: 6037 UNIT: 145. NAME: DP SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR LEASE: EL 600

SPONSOR CODE: ESS2 SPONSOR: ESSO AUSTRALIA LTD COAL & MINERALS DIVISION

REFERENCE: QTLY RPT ENDING DEC 1980 **SAMREF CNO: 0001476**

OTHER NAME:

REF. TYPE: COR ENV No: 3784 TARGET COMMODITY: BM U TOTAL DEPTH: 616.60 m COMPLETION DATE: 07/05/1982

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 258 TYPE 2: C LENGTH: 359. LOCATION: G

EASTING: 581104.

NORTHING: 6679291. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 30°00'52.4" LONGITUDE: 135°50'27.7" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 150.

HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3784 P383,445,568

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y

WATER: <u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: OTHER:

GROUND SURVEY REF: ENV 3784 P3,393 F(II)-1-8 GEOPHYS DH. REF: ENV 3784 P460

GEOCHEMISTRY REF: ENV 3784 P490,569 PETROLOGY REF: ENV 3784 P418,427,464

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV DATE: 03/09/92 UPDATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: DP 2

MAP: 6037 UNIT: 146. NAME: DP

SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 600

SPONSOR CODE: ESS2 SPONSOR: ESSO AUSTRALIA LTD COAL & MINERALS DIVISION

REFERENCE: QTLY RPT ENDING DEC 1980

SAMREF CNO: 0001476

OTHER NAME:

REF. TYPE: COR ENV No: 3784

TARGET COMMODITY: BM U TOTAL DEPTH: 860.00 m COMPLETION DATE: ??/??/1981

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 316 TYPE 2: C LENGTH: 544. LOCATION: G

EASTING: 581057. NORTHING: 6675290. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°03'02.4" LONGITUDE: 135°50'27.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: (Lnorth > T):

ELEVATION: + 139. **HUNDRED:** SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3784 P383,417

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): N GEOCHEMISTRY: N PETROLOGY: N

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3784 P3,393 F(II)-1-8 GEOPHYS DH. REF:

GEOCHEMISTRY REF:

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: EBA 1

MAP: 6037 UNIT: 147. NAME: EBA

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 390

SPONSOR CODE: CEX SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: QTLY RPT ENDING NOV 1978

SAMREF CNO: 1011608

OTHER NAME:

REF. TYPE: COR ENV No: 3236

TARGET COMMODITY: BM

TOTAL DEPTH: 400.00 m COMPLETION DATE: 07/10/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 400 TYPE 2: LENGTH:

LOCATION: ?

EASTING: 566900. NORTHING: 6645394. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 30°19'16.7" LONGITUDE: 135°41'45.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: (Lnorth > T):

ELEVATION: + 150.

HUNDRED:

SECTION:

STATUS: ST

GEOL LOG EXISTS: B

GEOLOG REF: ENV 3236 P12

GROUND (Targetting) SURVEYS: P

LOGGED BY: GEOL

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GROUND SURVEY REF: ENV 3236 F-2-4

GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 3236 P24

GEOCHEMISTRY REF: ENV 3236 P12

PETROLOGY REF:

OTHER: WATER

<u>REF</u>: ENV 3236 P12

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

CHECKED: BJV

DATE: 03/09/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EBA 2

MAP: 6037 UNIT:

148. NAME: EBA

PROVINCE CODES: GRP SSH

SEQ. NO: 2 CLASS: MW

LEASE: EL 390

SPONSOR CODE: CEX

SPONSOR: CARPENTARIA EXPLORATION COMPANY PTY LTD

REFERENCE: QTLY RPT ENDING NOV 1978

CONFIDENTIAL STATUS (O/C): O

SAMREF CNO: 1011608

OTHER NAME:

REF. TYPE: COR ENV No: 3236

TARGET COMMODITY: BM

TOTAL DEPTH: 400.00 m COMPLETION DATE: 12/10/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 400 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 561605. NORTHING: 6665734. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 30°08'17.0" LONGITUDE: 135°38'22.6" GRID (ANS/CLK): ANS DNHOLE ORIENTAL SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: . (Lnorth > T):

ELEVATION: + 178.

SECTION:

STATUS: ST

HUNDRED:

GEOLOG REF: ENV 3236 P16

GEOL LOG EXISTS: B LOGGED BY: GEOL

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3236 F-2-4

GEOPHYS DH. REF: ENV 3236 P28

GEOCHEMISTRY REF: ENV 3236 P16

PETROLOGY REF:

OTHER: WATER

REF: ENV 3236 P16

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

DATE: 03/09/92

UPDATE:

DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: SR 1

MAP: 6038 UNIT:

39. NAME: SR

SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR

LEASE: EL 304

SAMREF CNO: 1007075

SPONSOR CODE: NMK1 SPONSOR: NEWMONT PTY LTD

REFERENCE: QTLY RPTS ENDING SEPT & DEC 1977

OTHER NAME:

REF. TYPE: COR ENV No: 3017

TARGET COMMODITY: BM

TOTAL DEPTH: 171. m COMPLETION DATE: 21/07/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 80 TYPE 2: C LENGTH: 91'. LOCATION: G

EASTING: 586800. NORTHING: 6708500. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 29°45'02. " LONGITUDE: 135°53'52. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: T

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 185.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3017 P22,31

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y PALAEONTOLOGY: METALLURGY: WATER:

GROUND SURVEY REF: ENV 3017 P12,62

GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 3017 P21,23,36,49

GEOCHEMISTRY REF: ENV 3017 P21,28

PETROLOGY REF: ENV 3017 P46

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: PRE-COLLAR DEPTH ESTIMATED ONLY. AMG & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

HOLE NO: MH 1

UNIT: 32. NAME: MH MAP: 6134

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 322

SPONSOR CODE: DMC SPONSOR: DAMPIER MINING CO LTD

REFERENCE: QTLY RPT ENDING NOV 1977

SAMREF CNO: 1005171

OTHER NAME: MH DD1

REF. TYPE: COR ENV No: 3036

TARGET COMMODITY: BM TOTAL DEPTH: 154.44 m COMPLETION DATE: ??/10/1977

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 154 TYPE 2: LENGTH: . LOCATION: G

EASTING: 624896. NORTHING: 6489000. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°43'39. " LONGITUDE: 136°19'06. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

REF:

Local Grid: . '(Lnorth > T):

ELEVATION: + 153.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3036 P20,23

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY: Y

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: Y OTHER:

GROUND SURVEY REF: ENV 3036 P18 F-1

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 3036 P23

GEOCHRONOLOGY REF: ENV 3036 P6,

PETROLOGY REF: ENV 3036 P6,10

COMMENTS: LAST PAGE OF GEOLOGICAL LOG NOT IN ENVELOPE, ie 5m MISSING

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: KGB 1

MAP: 6134 UNIT: 33. NAME: KGB

SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 708

SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD

REFERENCE: QTLY RPT ENDING AUGUST 1981

SAMREF CNO: 1015134

OTHER NAME:

REF. TYPE: COR ENV No: 4040

TARGET COMMODITY: BM

TOTAL DEPTH: 162.00 m COMPLETION DATE: 25/07/1981

EASTING: 630577. NORTHING: 6503267. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 84 TYPE 2: C LENGTH: 78. LOCATION: G

LATITUDE: 31°35'53.5" LONGITUDE: 136°22'35.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 119

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 4040 P24 F-1

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 4040 P56 F-5,7

GEOPHYS DH. REF: ENV 4040 F-1

GEOCHEMISTRY REF: ENV 4040 P48

PETROLOGY REF: ENV 4040 P32

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION & ELEV ESTIMATED FROM COMPANY MAP & SADME CONTOUR MAP

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: KGB 2

<u>MAP</u>: 6134 <u>UNIT</u>: 34. <u>NAME</u>: KGB <u>SEQ. NO: 2 CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 708

SAMREF CNO: 1015134

SPONSOR CODE: AFM

SPONSOR: AFMECO PTY LTD

REFERENCE: QTLY RPT ENDING AUGUST 1981

OTHER NAME:

REF. TYPE: COR ENV No: 4040

TARGET COMMODITY: BM

TOTAL DEPTH: 43.5 m COMPLETION DATE: 27/07/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 21 TYPE 2: C LENGTH: 23. LOCATION: G

EASTING: 629800. NORTHING: 6504200. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°35'23.5" LONGITUDE: 136°22'05.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 119.

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 4040 P24 F-2

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

<u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>: GROUND SURVEY REF: ENV 4040 P56 F-5,7 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 4040 P48

PETROLOGY REF: ENV 4040 P32

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM CONTOUR PLAN

CHECKED: BJV

DATE: 04/09/92 UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: KGB 3

MAP: 6134

UNIT: 35. NAME: KGB

SEQ. NO: 3

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 708

SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD

REFERENCE: QTLY RPT ENDING AUGUST 1981

SAMREF CNO: 1015134

OTHER NAME:

REF. TYPE: COR ENV No: 4040

TARGET COMMODITY: BM TOTAL DEPTH: 34. m COMPLETION DATE: 29/07/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 26 TYPE 2: C LENGTH: 8. LOCATION: G

EASTING: 629250. NORTHING: 6502950. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°36'04.3" LONGITUDE: 136°21'44.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 126.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 4040 P24,29

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GROUND SURVEY REF: ENV 4040 P56 F-5,7

GEOPHYS DH. REF: ENV 4040 P29

the state of the s

GEOCHEMISTRY REF: ENV 4040 P48

PETROLOGY REF: ENV 4040 P32

REF:

GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM CONTOUR MAPS

CHECKED: BJV

DATE: 04/09/92 UPDATE:

the second of the second

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: KGB 4

MAP: 6134 UNIT: 36. NAME: KGB

SEQ. NO: 4

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 708

SAMREF CNO: 1015134

SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD

OTHER NAME:

REF. TYPE: COR ENV No: 4040

TARGET COMMODITY: BM

TOTAL DEPTH: 269. m COMPLETION DATE: 18/08/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 78 TYPE 2: C LENGTH: 191. LOCATION: G

EASTING: 632400. NORTHING: 6508450. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°33'04.4" LONGITUDE: 136°23'41.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 125.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 4040 P24 F-3

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

GROUND SURVEY REF: ENV 4040 P56 F-5,7

REFERENCE: QTLY RPT ENDING AUGUST 1981

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 4040 F-3

GEOCHEMISTRY REF: ENV 4040 P48

PETROLOGY REF: ENV 4040 P32

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM CONTOUR MAPS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

HOLE NO: LE 1

MAP: 6135 UNIT: 99. NAME: LH

REFERENCE: QTLY RPT ENDING JUNE 1977

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 298

SAMREF CNO: 1005188

SPONSOR CODE: DMC

SPONSOR: DAMPIER MINING CO LTD

OTHER NAME:

REF. TYPE: COR ENV No: 3022

TARGET COMMODITY: BM

TOTAL DEPTH: 443.20 m COMPLETION DATE: 14/05/1977

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 30 TYPE 2: C LENGTH: 413. LOCATION: G

EASTING: 639849. NORTHING: 6544213. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 31°13'40. " LONGITUDE: 136°28'06. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTE (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 107.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3022 P1,48

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3022 F-1

GEOPHYS DH. REF: ENV 3022 P71 F-7

PETROLOGY REF: ENV 3022 P67

GEOCHEMISTRY REF: ENV 3022 P1,7,48

GEOCHRONOLOGY REF:

SEQ. NO: 2

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

CLASS: MW

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: LH 2

MAP: 6135 UNIT: 100. NAME: LH

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 298

SPONSOR CODE: DMC SPONSOR: DAMPIER MINING CO LTD

REFERENCE: QTLY RPT ENDING SEPT 1977

SAMREF CNO: 1005188

OTHER NAME:

REF. TYPE: COR ENV No: 3022

TARGET COMMODITY: BM

TOTAL DEPTH: 507.15 m COMPLETION DATE: 08/08/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 30 TYPE 2: C LENGTH: 477. LOCATION: G

LATITUDE: 31°17'30. " LONGITUDE: 136°14'40. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

<u>EASTING:</u> 618444. <u>NORTHING</u>: 6537393. <u>ZONE</u>: 53 <u>ZONE AZ</u>: . <u>LOCATION ACCURACY</u>:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 132.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: D

LOGGED BY: GEOL GEOLOG REF: ENV 3022 P5,9

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

<u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>:

GROUND SURVEY REF: ENV 3022 P6,31 F-2,10,11 GEOPHYS DH. REF: ENV 3022 F-4-6

and the second of the second o

GEOCHEMISTRY REF: ENV 3022 P6,9

PETROLOGY REF:

GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM CONTOUR PLAN

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

DATE: / /

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: SSR 1001

MAP: 6136 UNIT: NAME: SSR 91.

SEQ. NO: 1001 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1015

SPONSOR CODE: AAM SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LTD

REFERENCE: FINAL RPT JUNE 1983

SAMREF CNO:

OTHER NAME:

REF. TYPE: COR ENV No: 3878

TARGET COMMODITY: Cu U TOTAL DEPTH: 499.50 m COMPLETION DATE: 23/05/1983

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 15 TYPE 2: C LENGTH: 485. LOCATION: G

EASTING: 628800.00 NORTHING: 6587140.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°50'30.6" LONGITUDE: 136°20'48.8" GRID (ANS/CLK): ANS DNHOLE ORIENTH. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

Local Grid: (Inorth > T):

ELEVATION: + 146.

HUNDRED:

SECTION:

STATUS: ST

GEOL LOG EXISTS: B

GEOLOG REF: ENV 3878 P120 F-7

LOGGED BY: GEOL

GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY:

GROUND (Targetting) SURVEYS: P

•

WATER: PALAEONTOLOGY: METALLURGY: OTHER: GEOCHRONOLOGY:

GROUND SURVEY REF: ENV 3878 P19,117,128 F-1- GEOPHYS DH. REF: ENV 3878 P124 F-8 + TAPE

GEOCHEMISTRY REF:

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: CENTURY GEOPHYSICAL SUPPLIED TAPE OF DOWNHOLE LOG - CONFIDENTIAL!!

CHECKED: BJV

DATE: 03/09/92

UPDATE:

<u>DATE</u>: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                          HOLE NO: PEE 1
MAP: 6137
           UNIT: 55. NAME: PEE
                                                     SEQ. NO: 1
                                                                   CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP SSH
                                                          LEASE: EL 333
SPONSOR CODE: KEX1
                   SPONSOR: KENNECOTT EXPLORATIONS (AUSTRALIA) LTD
REFERENCE: FINAL RPT FEB 1979
                                                          SAMREF CNO: 1007283
OTHER NAME: PEEWEENA 1
                                          REF. TYPE: COR ENV No: 3067
TARGET COMMODITY: Cu U TOTAL DEPTH: 655.60 m COMPLETION DATE: 25/11/1978
DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 97 TYPE 2: C LENGTH: 559. LOCATION: G
EASTING: 603495. NORTHING: 6675190. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P
LATITUDE: 30°02'59.6" LONGITUDE: 136°04'24.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:
                                                              (Lnorth > T):
ELEVATION: + 109.
                          HUNDRED:
                                              SECTION:
                                                                STATUS: UK
GEOL LOG EXISTS: B
                    LOGGED BY: GEOL GEOLOG REF: ENV 3067 P211
GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): N GEOCHEMISTRY: N PETROLOGY: N
         PALAEONTOLOGY: METALLURGY:
                                      GEOCHRONOLOGY: OTHER:
GROUND SURVEY REF: ENV 3067 P172,179 F-40-52 GEOPHYS DH. REF:
GEOCHEMISTRY REF:
                                           PETROLOGY REF:
OTHER:
                 REF:
                                                 GEOCHRONOLOGY REF:
COMMENTS: DRILLHOLE LOCATION AND ELEV ESTIMATED FROM COMPANY DIAGRAM AND CONTOUR MAP
```

DATE: 03/09/92

CHECKED: BJV

CHECKED: BJV

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: RL 1 MAP: 6137 UNIT: 52. NAME: RL SEQ. NO: 1 CLASS: MW CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 774 SPONSOR CODE: SDA2 SPONSOR: SHELL COMPANY OF AUSTRALIA LTD REFERENCE: QTLY RPT ENDING JULY 1982 **SAMREF CNO: 1015136** OTHER NAME: REEDY LAGOON 1 REF. TYPE: COR ENV No: 4113 TOTAL DEPTH: 674.4 m COMPLETION DATE: 27/07/1982 TARGET COMMODITY: BM DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 21 TYPE 2: C LENGTH: 653. LOCATION: G EASTING: 602529.00 NORTHING: 6644983.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P LATITUDE: 30°14'49.4" LONGITUDE: 130°25'54.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: (Lnorth > T): ELEVATION: + 122. HUNDRED: SECTION: STATUS: UK GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 4113 P123, GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y <u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>: GROUND SURVEY REF: ENV 4113 P8,13,39,119,193 GEOPHYS DH. REF: ENV 4113 P130,132 F-4 GEOCHEMISTRY REF: ENV 4113 P147 PETROLOGY REF: ENV 4113 P158,161

GEOCHRONOLOGY REF:

The contract of the first of the contract of t

UPDATE:

DATE:

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

DATE: 03/09/02 <u>UPDATE</u>:

COMMENTS: DRILLHOLE LOCATION AND ELEVATION FROM KINGOONYA DBASE, COWLEY, 1991

REF:

<u>DATE</u>: / /

HOLE NO: SR 6

MAP: 6138 UNIT: 50. NAME: SR SEQ. NO: 6

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: SSH

LEASE: EL 335

SAMREF CNO: 1011383

CLASS: MW

SPONSOR CODE: NMK1 SPONSOR: NEWMONT PTY LTD

REFERENCE: QTLY RPT ENDING JAN 1978

REF. TYPE: COR ENV No: 3090

OTHER NAME:

TARGET COMMODITY: BM

TOTAL DEPTH: 889.55 m COMPLETION DATE: 25/04/1979

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 78 TYPE 2: C LENGTH: 812. LOCATION: G

EASTING: 636669. NORTHING: 6704374. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 29°47'00. " LONGITUDE: 136°24'50. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: T

DIP ANGLE: - 90.0 AZIMUTH (True):

Local Grid:

(Lnorth > T):

ELEVATION: + 108.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

<u>DATE</u>: / /

LOGGED BY: GEOL GEOLOG REF: ENV 3090 P11,18,95,109

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3090 P11,45,52 F-1

GEOPHYS DH. REF: ENV 3090 P29

GEOCHEMISTRY REF:

PETROLOGY REF: ENV 3804 P120

OTHER:

CHECKED:

REF:

GEOCHRONOLOGY REF:

COMMENTS: DRILLED ON THE "MOUNT MORGAN ANOMALY". DNHOLE LOG BY SADME NOT PRESENT

UPDATE:

DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

17

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: SR 12 MAP: 6139 UNIT: 34. <u>NAME</u>: SR SEQ. NO: 12 CLASS: MW CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 327 SPONSOR CODE: NMK1 SPONSOR: NEWMONT PTY LTD REFERENCE: QTLY RPTS ENDING NOV 1977 & FEB 1978 SAMREF CNO: 1011388 OTHER NAME: REF. TYPE: COR ENV No: 3056 TARGET COMMODITY: BM TOTAL DEPTH: 302.00 m COMPLETION DATE: 31/05/1978 DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 97 TYPE 2: C LENGTH: 399. LOCATION: G EASTING: 619500. NORTHING: 6751200. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: LATITUDE: 29°21'45.3" LONGITUDE: 136°13'52.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T): ELEVATION: + 112. HUNDRED: SECTION: STATUS: ST GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3056 P21,28,36,39 GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): SC GEOCHEMISTRY: N PETROLOGY: N WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: OIL SHALE

GROUND SURVEY REF: ENV 3056 P12,47,52

GEOPHYS DH. REF: ENV 3056 P30,62

GEOCHEMISTRY REF:

PETROLOGY REF:

OTHER: OIL SHALE REF: ENV 3804 P390 GEOCHRONOLOGY REF:

COMMENTS: COLLAR ELEVATION ESTIMATED FROM LOCATION DIAGRAM + CONTOUR MAPS

CHECKED: BJV DATE: 07/08/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: SR 13

MAP: 6139 UNIT: 35. NAME: SR SEQ. NO: 13 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 341

SPONSOR CODE: NMK1 SPONSOR: NEWMONT PTY LTD

REFERENCE: QTLY RPT ENDING FEBRUARY 1979 SAMREF CNO: 1011389

OTHER NAME: SR 13/2 REF. TYPE: COR ENV No: 3092

TARGET COMMODITY: BM TOTAL DEPTH: 900.27 m COMPLETION DATE: 26/03/1979

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 176 TYPE 2: C LENGTH: 724. LOCATION: G

EASTING: 614440. NORTHING: 6790511. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 29°00'30. " LONGITUDE: 136°10'30. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 98. <u>HUNDRED</u>: <u>SECTION</u>: <u>STATUS</u>: ST

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3092 P46,52 F-2

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): GEOCHEMISTRY: PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3092 P10,14,22 F-1 GEOPHYS DH. REF:

GEOCHEMISTRY REF: PETROLOGY REF:

OTHER: GEOCHRONOLOGY REF:

COMMENTS: COLLAR ELEVATION ESTIMATED FROM LOCATION DIAGRAM + CONTOUR MAPS

CHECKED: BJV DATE: 07/08/92 UPDATE: //

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

المحاجب والمستهين والمستورات المستورات ووراوي والمستورة والأناف المستورية والمتعارب والمستورة

```
STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE
                                                         HOLE NO: FH 1
MAP: 6233
           UNIT:
                    14.
                         NAME: FH
                                                     SEQ. NO: 1
                                                                    CLASS: MW
CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH
                                                            LEASE: EL 713
SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD
REFERENCE: RECON. DRILLING RPT DEC 1981
                                                         SAMREF CNO: 0000306
OTHER NAME: FIDDLE HILL 1
                                          REF. TYPE: COR ENV No: 3994
TARGET COMMODITY: Cu Au U TOTAL DEPTH: 132.00 m COMPLETION DATE: 20/08/1981
DRILLTECH: RCD SAMPLE: TYPE 1: M LENGTH: 60 TYPE 2: C LENGTH: 72 . LOCATION: ?
EASTING: 677900.00 NORTHING: 6428700.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:
LATITUDE: 32°15'51.1" LONGITUDE: 136°53'19.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                         Local Grid:
                                                               '(Lnorth > T):
ELEVATION: + 130.
                          HUNDRED:
                                              SECTION:
                                                                 STATUS: UK
GEOL LOG EXISTS: B
                     LOGGED BY: GEOL GEOLOG REF: ENV 3994 P28 F-18
GROUND (Targetting) SURVEYS: P
                               GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y
WATER:
         PALAEONTOLOGY:
                         METALLURGY: GEOCHRONOLOGY: OTHER:
GROUND SURVEY REF: ENV 3994 P20,34 F-8-16
                                          GEOPHYS DH. REF: ENV 3994 P20 F-18
GEOCHEMISTRY REF: ENV 3994 P21
                                           PETROLOGY REF: ENV 3994 P76
OTHER:
                  REF:
                                                 GEOCHRONOLOGY REF:
```

HOLE NO: FH 2

MAP: 6233 UNIT: 15. NAME: FH

DATE: 04/09/92

COMMENTS: STRAT REINTERPRETED BY JLC. UNIT DEPTHS ESTIMATED FROM GEOLOGICAL LOG

UPDATE:

SEQ. NO: 2

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 713

SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD

REFERENCE: RECON. DRILLING RPT DEC 1981

SAMREF CNO: 0000306

OTHER NAME: FIDDLE HILL 2

REF. TYPE: COR ENV No: 3994

TARGET COMMODITY: Cu Au U

TOTAL DEPTH: 48.00 m COMPLETION DATE: 23/08/1981

DRILLTECH: RCD SAMPLE: TYPE 1: M LENGTH: ? TYPE 2: C LENGTH: ? . LOCATION: G

EASTING: 674750.00 NORTHING: 6427100.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

<u>LATITUDE</u>: 32°16'44.9" <u>LONGITUDE</u>: 136°51'20.1" <u>GRID (ANS/CLK)</u>: ANS <u>DNHOLE ORIENTD</u>. SURVY:

<u>DATE</u>: / /

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 125.

CHECKED: BJV

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3994 P28,92

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3994 P20,34 F-8-16 GEOPHYS DH. REF: ENV 3994 P20,92

GEOCHEMISTRY REF: ENV 3994 P21

PETROLOGY REF: ENV 3994 P76

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: STRAT REINTERPRETED BY JLC. UNIT DEPTHS ESTIMATED FROM GEOLOGICAL LOG

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

19

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                          HOLE NO: FH 3
MAP: 6233 UNIT:
                  16. NAME: FH
                                                     SEQ. NO: 3
                                                                   CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP
                                                           LEASE: EL 713
SPONSOR CODE: AFM
                   SPONSOR: AFMECO PTY LTD
REFERENCE: RECON. DRILLING RPT DEC 1981
                                                         SAMREF CNO: 000306.
OTHER NAME: FIDDLE HILL 3
                                          REF. TYPE: COR ENV No: 3994
TARGET COMMODITY: Cu Au U
                            TOTAL DEPTH: 87.00 m COMPLETION DATE: 24/08/1981
DRILLTECH: RCD SAMPLE: TYPE 1: M LENGTH: 80 TYPE 2: C LENGTH: 7 . LOCATION:
EASTING: 681100.00 NORTHING: 6429000.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:
LATITUDE: 32°15'39.6" LONGITUDE: 136°55'21.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid: .
                                                               (Lnorth > T):
ELEVATION: + 142.
                          HUNDRED:
                                              SECTION:
                                                                STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3994 P28 F-19
GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y
```

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: :

<u>GROUND SURVEY REF</u>: ENV 3994 P20,34 F-8-16 <u>GEOPHYS DH. REF</u>: ENV 3994 P20 F-19

GEOCHEMISTRY REF: ENV 3994 P21 PETROLOGY REF: ENV 3994 P76

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: STRAT REINTERPRETED BY JLC. UNIT DEPTHS ESTIMATED FROM GEOLOGICAL LOG

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: FH 4

<u>MAP</u>: 6233 <u>UNIT</u>: 17. <u>NAME</u>: FH <u>SEQ. NO</u>: 4 <u>CLASS</u>: MV

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 713

SPONSOR CODE: AFM SPONSOR: AFMECO PTY LTD

REFERENCE: RECON. DRILLING RPT DEC 1981 SAMREF CNO: 0000306

OTHER NAME: FIDDLE HILL 4 REF. TYPE: COR ENV No: 3994

TARGET COMMODITY: Cu Au U TOTAL DEPTH: 180.00 m COMPLETION DATE: 31/08/1981

DRILLTECH: RCD SAMPLE: TYPE 1: M LENGTH: 126 TYPE 2: C LENGTH: 54 . LOCATION: ?

EASTING: 684750.00 NORTHING: 6428450.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 32°15'55.3" LONGITUDE: 136°57'41.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 200. <u>HUNDRED</u>: <u>SECTION</u>: <u>STATUS</u>: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3994 P28 F-20

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3994 P20,34 F-8-16 GEOPHYS DH. REF: ENV 3994 P20 F-20

GEOCHEMISTRY REF: ENV 3994 P21 PETROLOGY REF: ENV 3994 P76

OTHER: GEOCHRONOLOGY REF:

COMMENTS: STRAT REINTERPRETED BY JLC. UNIT DEPTHS ESTIMATED FROM GEOLOGICAL LOG

CHECKED: BJV DATE: 07/09/92 UPDATE: DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: FH 5

MAP: 6233 UNIT: 13. NAME: FH

SEQ. NO: 5

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 713

SPONSOR CODE: AFM

SPONSOR: AFMECO PTY LTD

REFERENCE: RECON. DRILLING RPT DEC 1981

SAMREF CNO: 0000306

OTHER NAME: FIDDLE HILL 5

REF. TYPE: COR ENV No: 3994

TARGET COMMODITY: Cu Au U

TOTAL DEPTH: 174.00 m COMPLETION DATE: 08/19/1981

DRILLTECH: RCD SAMPLE: TYPE 1: M LENGTH: 11 TYPE 2: C LENGTH: 163. LOCATION: G

EASTING: 686900.00 NORTHING: 6428560.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 32°15'50.4" LONGITUDE: 136°59'03.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 178.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3994 P28 F-21

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3994 P20,34 F-8-16

GEOPHYS DH. REF: ENV 3994 P20 F-21

GEOCHEMISTRY REF: ENV 3994 P21

PETROLOGY REF: ENV 3994 P76

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: STRAT REINTERPRETED BY JLC. UNIT DEPTHS ESTIMATED FROM GEOLOGICAL LOG

CHECKED: BJV

DATE: 07/08/92

UPDATE:

DATE: / /

૽ૢ૽૽૽ૢ૽૽૽ૢૼ

HOLE NO: SAD 1

MAP: 6233 UNIT: 18. NAME: SAD

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 302

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: FIRST OTLY RPT JUNE 1977

SAMREF CNO: 1010369

OTHER NAME: PDH-7 AS PRECOLLAR

REF. TYPE: COR ENV No: 2992

TARGET COMMODITY: BM

TOTAL DEPTH: 251.25 m COMPLETION DATE: 08/05/1977

DRILLTECH: PTD SAMPLE: TYPE 1: M LENGTH: 221 TYPE 2: C LENGTH: 30. LOCATION: G

EASTING: 673301. NORTHING: 6442437. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°07'44.5" LONGITUDE: 136°50'27.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

'(Lnorth > T):

ELEVATION: + 117.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

LOGGED BY: GEOL GEOLOG REF: ENV 2992 P25 F-1

GROUND SURVEY REF: ENV 2992 P6

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: :

GEOPHYS DH. REF: ENV 2992 P54 4115 F-1

GEOCHEMISTRY REF: ENV 2992 P25 F-1 4115 F-1 PETROLOGY REF: ENV 2992 P92

OTHER: WATER

REF: ENV 2992 P25

GEOCHRONOLOGY REF:

COMMENTS: TOP 120m OF LOG FOR PDH 7 MISSING. ELEV & AMG ESTIMATED FROM COMPANY PLAN

CHECKED: BJV

DATE: 07/08/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: PDH 1

MAP: 6233 UNIT: 19. NAME: PDH

SPONSOR CODE: ASP

SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

SPONSOR: AUSTRALIAN SELECTION PTY LTD

LEASE: EL 302

REFERENCE: FIRST QTLY RPT JUNE 1977

SAMREF CNO: 1010369

OTHER NAME:

REF. TYPE: COR ENV No: 2992

TARGET COMMODITY: BM TOTAL DEPTH: 68.00 m COMPLETION DATE: 26/10/1976

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 68 TYPE 2: LENGTH: . LOCATION: G

EASTING: 686992. NORTHING: 6415819. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°22'43.9" LONGITUDE: 136°59'15.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: .

(Lnorth > T):

ELEVATION: + 154.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 2992 P16

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): GEOCHEMISTRY: N PETROLOGY: N

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2992 P6

GEOPHYS DH. REF:

GEOCHEMISTRY REF:

REF:

PETROLOGY REF: GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION & ELEVATION ESTIMATED FROM LOCATION DIAGRAM & CONTOUR PLAN

CHECKED: BJV

<u>DATE</u>: 07/08/92 <u>UPDATE</u>:

DATE: / /

<u>Pouble Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

HOLE NO: PDH 4

MAP: 6233 UNIT:

20. NAME: PDH

SEQ. NO: 4

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LATITUDE: 32°09'13.9" LONGITUDE: 136°50'11.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

LEASE: EL 302

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

SAMREF CNO: 1010369

OTHER NAME:

REF. TYPE: COR ENV No: 2992

TARGET COMMODITY: BM

TOTAL DEPTH: 82.00 m COMPLETION DATE: 28/10/1976

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 82 TYPE 2: LENGTH:

REFERENCE: FIRST QTLY RPT JUNE 1977

. LOCATION: G

CLASS: MW

EASTING: 673185. NORTHING: 6441020. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

'(Lnorth > T):

ELEVATION: + 115.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 2992 P20

GEOPHYS. (Down Hole):

GEOCHEMISTRY: Y PETROLOGY:

WATER:

GROUND (Targetting) SURVEYS: M?

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2992 P6

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2992 P20

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION & ELEVATION ESTIMATED FROM LOCATION DIAGRAM & CONTOUR PLAN CHECKED: BJV

DATE: 07/08/92

<u>UPDATE</u>:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: PDH 6

MAP: 6233 UNIT:

21. NAME: PDH

SEQ. NO: 6

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 302

SPONSOR CODE: ASP

REFERENCE: FIRST QTLY RPT JUNE 1977

SAMREF CNO: 1010369

OTHER NAME:

REF. TYPE: COR ENV No: 2992

TARGET COMMODITY: BM

TOTAL DEPTH: 224.00 m COMPLETION DATE: 18/04/1977

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 224 TYPE 2: LENGTH: . LOCATION: G

EASTING: 677430. NORTHING: 6439745. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

SPONSOR: AUSTRALIAN SELECTION PTY LTD

LATITUDE: 32°09'52.9" LONGITUDE: 136°52'54.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 138.

HUNDRED:

SECTION:

STATUS: UK

LOGGED BY: GEOL

GEOLOG REF: ENV 2992 P23,38

GEOL LOG EXISTS: B

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER:

<u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>:

GROUND SURVEY REF: ENV 2992 P6

GEOPHYS DH. REF: ENV 2992 P48

GEOCHEMISTRY REF: ENV 2992 P23

CHECKED: BJV

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION & ELEVATION ESTIMATED FROM LOCATION DIAGRAM & CONTOUR PLAN

UPDATE:

DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

DATE: 07/08/92

APPENDIX 2.4

23

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: PDH 8

MAP: 6233 UNIT: 22. NAME: PDH SEQ. NO: 8 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 302

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: FIRST QTLY RPT JUNE 1977 **SAMREF CNO: 1010369**

OTHER NAME:

TARGET COMMODITY: BM TOTAL DEPTH: 60.00 m COMPLETION DATE: 23/04/1977

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 60 TYPE 2: LENGTH: . LOCATION: G

EASTING: 673211. NORTHING: 6434988. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°12'29.7" LONGITUDE: 136°50'16.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 117. HUNDRED:

SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2992 P27

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2992 P6 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2992 P27 PETROLOGY REF:

REF: GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION & ELEVATION ESTIMATED FROM LOCATION DIAGRAM & CONTOUR PLAN

CHECKED: BJV DATE: 07/08/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: PDH 12

MAP: 6233 UNIT: 23. NAME: PDH

SEQ. NO: 12

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 302

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 4TH QTLY RPT MARCH 1978 SAMREF CNO: 1010369

OTHER NAME:

REF. TYPE: COR ENV No: 2992

REF. TYPE: COR ENV No: 2992

TARGET COMMODITY: BM TOTAL DEPTH: 191.00 m COMPLETION DATE: 26/10/1976

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 191 TYPE 2: LENGTH: . LOCATION: G

EASTING: 683223. NORTHING: 6449162. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°04'43.9" LONGITUDE: 136°56'28.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 110. HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2992 P65,73

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: N PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2992 P62 GEOPHYS DH. REF: ENV 2992 P65,75

GEOCHEMISTRY REF: ENV 2992 P73 PETROLOGY REF:

OTHER: WATER REF: ENV 2992 P67,83,85 GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION & ELEVATION ESTIMATED FROM LOCATION DIAGRAM & CONTOUR PLAN

CHECKED: BJV DATE: 07/08/92 UPDATE: DATE: / /

HOLE NO: PIL 13

UNIT: 22 . NAME: PIL MAP: 6234

SEQ. NO: 13

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 301

CLASS: MW

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 6TH QTLY RPT SEPT 78

SAMREF CNO: 1010367

OTHER NAME:

REF. TYPE: COR ENV No: 2996

TARGET COMMODITY: BM

TOTAL DEPTH: 390.00 m COMPLETION DATE: 09/09/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 390 TYPE 2: LENGTH: . LOCATION: G

EASTING: 649400.00 NORTHING: 6470800.00 ZONE: 53 MSG CONV: 0 55' LOCATION ACCURACY: P

LATITUDE: 31°53'19.3" LONGITUDE: 136°34'46.9" GRID (ANS/CLK): ANS DNHOLE ORIENTO SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

. Local Grid: (Lnorth > T):

ELEVATION: + 112.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2996 P160

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY: WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 2996 P170

GEOCHEMISTRY REF: ENV 2996 P160

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: ?460000YDSE 1056800 YDSN SEE PAGE207, PLAN AS7800. COORDS WRONG!

CHECKED: BJV

DATE: 07/07/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

HOLE NO: PIL 16

MAP: 6234 UNIT: 25 . NAME: PIL SEQ. NO: 16

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 301

SAMREF CNO: 1010367

REFERENCE: 6TH QTLY RPT SEPT 1978

REF. TYPE: COR ENV No: 2996

OTHER NAME:

TARGET COMMODITY: BM

TOTAL DEPTH: 324.00 m COMPLETION DATE: 27/08/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 324 TYPE 2: LENGTH: . LOCATION: G

EASTING: 644400.00 NORTHING: 6471000.00 ZONE: 53 MSG CONV: 0 55' LOCATION ACCURACY: P

LATITUDE: 31°53'15.2" LONGITUDE: 136°31'36.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 116.00 HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 2996 P150

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 2669 P190

GEOCHEMISTRY REF: ENV 2996 P150

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: 454800YDSE 1056000YDSN

CHECKED: BJV

DATE: 07/07/92

UPDATE:

DATE: / /

HOLE NO: PIL 15

MAP: 6234 UNIT: 24 . NAME: PIL SEQ. NO: 15 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 301

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 6TH QTLY RPT SEPT 1978 **SAMREF CNO: 1010367**

OTHER NAME: REF. TYPE: COR ENV No: 2996

TARGET COMMODITY: BM TOTAL DEPTH: 160.00 m COMPLETION DATE: 20/08/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 160 TYPE 2: LENGTH: . LOCATION: G

EASTING: 650400.00 NORTHING: 6461900.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°58'07.8" LONGITUDE: 136°35'29.9" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: (Lnorth > T):

ELEVATION: + 108.00 **HUNDRED**: SECTION: STATUS: OP

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2996 P156

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 2996 P187

GEOCHEMISTRY REF: ENV 2996 P156 PETROLOGY REF:

OTHER: WATER REF: ENV 2996 P241 P245 GEOCHRONOLOGY REF:

COMMENTS: NO COORDS GIVEN NO ELEVATION GIVEN. NB -9999.99 INFERS ELEV UNKNOWN

CHECKED: BJV DATE: 07/07/92 DATE: / / UPDATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: PIL 12

SEQ. NO: 12 . NAME: PIL MAP: 6234 UNIT: 21 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 301

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 6TH QTLY RPT SEPT 78 SAMREF CNO: 1010367

OTHER NAME: REF. TYPE: COR ENV No: 2996

TARGET COMMODITY: BM TOTAL DEPTH: 156.00 m COMPLETION DATE: 05/08/1978

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 156 TYPE 2: LENGTH: . LOCATION: G

EASTING: 642400.00 NORTHING: 6471000.00 ZONE: 53 MSG CONV: 0 55' LOCATION ACCURACY: P

LATITUDE: 31°53'16.1" LONGITUDE: 136°30'20.4" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 122.00 HUNDRED: STATUS: OP SECTION:

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 2996 P167

GEOCHEMISTRY REF: ENV 2996 P164 PETROLOGY REF: ENV 2996 P200

OTHER: WATER REF: ENV 2996 P241 P243 P245 GEOCHRONOLOGY REF:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2996 P164

COMMENTS: 452300YDSE 1056200 YDSN SEE PAGE207, PLAN AS7800

CHECKED: BJV **DATE:** / / DATE: 07/07/92 UPDATE:

HOLE NO: PIL 14

MAP: 6234 UNIT: 23 . NAME: PIL

CLASS: MW SEQ. NO: 14

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

LEASE: EL 301

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 6TH OTLY RPT SEPT 78

SAMREF CNO: 1010367

OTHER NAME:

REF. TYPE: COR ENV No: 2996

TARGET COMMODITY: BM

TOTAL DEPTH: 302.00 m COMPLETION DATE: 09/08/1978

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 302 TYPE 2: LENGTH: . LOCATION: G

EASTING: 659600.00 NORTHING: 6468100.00 ZONE: 53 MSG CONV: 0 55' LOCATION ACCURACY: P

LATITUDE: 31°54'42.0" LONGITUDE: 136°41'16.6" GRID(ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

'(Lnorth > T):

ELEVATION: + 95.00

HUNDRED:

SECTION:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2996 P157

STATUS: UK

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY:

WATER:

<u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 2996 P182

GEOCHEMISTRY REF: ENV 2996 P157

PETROLOGY REF: ENV 2996 P210

OTHER:

REF:

GEOCHRONOLOGY REF:

<u>COMMENTS</u>: 471100YDSE 1053000 YDSN SEE PAGE207, PLAN AS7800 CHECKED: BJV

DATE: 07/07/92

UPDATE:

DATE: / /

HOLE NO: VG 1

UNIT: 77 . NAME: VG MAP: 6235

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 951

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: COMPLETION REPT DEC 1982

SAMREF CNO: 0005225

OTHER NAME: VANGUARD 1

REF. TYPE: COR ENV No: 6962

TARGET COMMODITY: BM TOTAL DEPTH: 1095.00 m COMPLETION: DATE: 20/11/1982

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 1095 TYPE 2: LENGTH: .. LOCATION: G

<u>EASTING</u>: 683300.00 <u>NORTHING</u>: 6520000.00 <u>ZONE</u>: 53 <u>ZONE AZ</u>: 0.54 <u>LOCATION ACCURACY</u>: S

LATITUDE: 31°26'24.4" LONGITUDE: 136°55'43.7" GRID (ANS/CLK): ANS DNHOLE ORIENTH SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: (Lnorth > T):

ELEVATION: + 89.30

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: D

LOGGED BY: GEOL GEOLOG REF: ENV 6962 P742

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y

GROUND SURVEY REF: ENV 6962 P737

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 6962 P733,756,767

GEOCHEMISTRY REF: ENV 6962 P743

PETROLOGY REF: ENV 6962 P785

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC/BJV

DATE: 17/07/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: WOOMERA 1

MAP: 6235 UNIT: 42 . NAME: WOOMERA

SEQ. NO: 1

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: SSH

LEASE: OEL 12

SPONSOR CODE: CBP

SPONSOR: CLARENCE RIVER BASIN OIL EXPLORATION CO NL

SAMREF CNO: 1004091

OTHER NAME: WOOMERA BORE

REF. TYPE: COR ENV No: 53

TARGET COMMODITY: PE

TOTAL DEPTH: 611.00 m COMPLETION DATE: 30/05/1958

DRILLTECH: ? SAMPLE: TYPE 1: LENGTH:

TYPE 2: LENGTH: . LOCATION: ?

<u>EASTING</u>: 675406.00 <u>NORTHING</u>: 6549508.00 <u>ZONE</u>: 53 <u>ZONE AZ</u>: 0.54 <u>LOCATION ACCURACY</u>:

REFERENCE: REPORT OF INSPECTION OEL 12

LATITUDE: 31°10'30.8" LONGITUDE: 136°50'26.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

ELEVATION: + 140.00

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

HUNDRED: GEOL LOG EXISTS: B LOGGED BY: GEOL

GEOLOG REF: ENV 53 P5 6627 P896

STATUS:

GROUND (Targetting) SURVEYS: N

GEOPHYS. (Down Hole):

GEOCHEMISTRY: PETROLOGY:

WATER: PALAEONTOLOGY:

the section of the

METALLURGY: GEOCHRONOLOGY:

OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: RB 46/206 PLAN L58-19

GEOCHEMISTRY REF:

PETROLOGY REF:

SECTION:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: RB 72/89 DISCUSSES WOOM BORE STRAT & HAS PHOTO GUNYAH MINE STRAT RELATIONS

CHECKED: BJV

DATE: 17/07/92

UPDATE:

DATE: / /

HOLE NO: WJD 1

MAP: 6235 UNIT: 78 . NAME: WJD

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: WINJABBIE D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 1015.10 m COMPLETION DATE: 28/05/1980

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 300 TYPE 2: C LENGTH: 715'. LOCATION: G

<u>EASTING</u>: 687630.00 <u>NORTHING</u>: 6561500.00 <u>ZONE</u>: 53 <u>ZONE</u> AZ: 0.54 <u>LOCATION ACCURACY</u>:

LATITUDE: 31°03'54.7" LONGITUDE: 136°57'59.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 147.00 HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P366,P43,P459

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

GROUND SURVEY REF: ENV 6562 P42, P460

GEOPHYS DH. REF: ENV 6562 P22 F-5 P735

GEOCHEMISTRY REF: ENV 6562 P735

PETROLOGY REF:

GEOCHRONOLOGY: OTHER:

OTHER:

WATER:

REF:

PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY REF:

COMMENTS: BASEMENT Fe FORMATION PREDATES VOLC COVER, WEATH PROFILE&MINRLZD UPPER FEW m

CHECKED: BJV

<u>DATE</u>: 17/07/92 <u>UPDATE</u>:

DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                           HOLE NO: CSD - 1
MAP: 6236
           UNIT:
                     66. NAME: CSD
                                                     SEQ. NO: 1
                                                                   CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GCR GRP SSH LEASE: EL 1316
SPONSOR CODE: WMC4
                   SPONSOR: WESTERN MINING CORPORATION, LIMITED EXPLORATION DIVISION
REFERENCE: PARTL. RELQ. REPT. EL 1316 JUN 1986
                                                          SAMREF CNO: 0001473
OTHER NAME: COCKY SWAMP D1
                                          REF. TYPE: COR ENV No: 6562
TARGET COMMODITY: BM
                              TOTAL DEPTH: 994.20 m COMPLETION DATE: 21/08/1980
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 216 TYPE 2: C LENGTH: 778 LOCATION: G
EASTING: 676050.00 NORTHING: 6574700.00 ZONE: 53 MSG CONV: 0.54 LOCATION ACCURACY: S
LATITUDE: 30°56'52.6" LONGITUDE: 136°50'34.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: N
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid:
                                                               '(Lnorth > T):
ELEVATION: + 107.00
                          HUNDRED:
                                              SECTION:
                                                                STATUS: UK
GEOL LOG EXISTS: B
                   LOGGED BY: GEOL GEOLOG REF: ENV 6562 P216
```

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: PETROLOGY:

PALAEONTOLOGY: METALLURGY: WATER: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P20,33,F(I)-25 GEOPHYS DH. REF: ENV 6562 P544,F(I)-10

GEOCHEMISTRY REF: ENV 6562 P412,544 PETROLOGY REF: ENV 6562 P33

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: HHD-1

MAP: 6236 UNIT: 67. NAME: HHD SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: HEATON HILL D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 1186.20 m COMPLETION DATE: 14/01/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 296 TYPE 2: C LENGTH: 890 LOCATION: G

<u>EASTING</u>: 669700.00 <u>NORTHING</u>: 6592860.00 <u>ZONE</u>: 53 <u>MSG CONV</u>: 0.54 <u>LOCATION ACCURACY</u>:

LATITUDE: 30°47'06.3" LONGITUDE: 136°46'24.6" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

(Lnorth > T):

ELEVATION: + 130.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P256 P422

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 6562 F(I)-12,17,20

GROUND SURVEY REF: ENV 6562 P20,36

The transfer of the second section of the second section is the second section of the second section of the second section is a second section of the sect

GEOCHEMISTRY REF: ENV 6562 P256 P611

PETROLOGY REF: ENV 6562 P422

REF:

GEOCHRONOLOGY REF:

COMMENTS: Affiliation to WRD & AD3 granites inferred by WMC Geol. (JLC)

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

HOLE NO: TWN-1

MAP: 6236 UNIT: 68. NAME: TWN

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: TOWNSITE D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 700.80 m COMPLETION DATE: 08/07/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 300 TYPE 2: C LENGTH: 401 LOCATION: ?

•

<u>EASTING</u>: 679800.00 <u>NORTHING</u>: 6616600.00 <u>ZONE</u>: 53 <u>MSG CONV</u>: 0.54 <u>LOCATION ACCURACY</u>:

LATITUDE: 30°34'10.2" LONGITUDE: 136°52'29.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

L'ocal Grid: '(Lnorth > T):

ELEVATION: + 100.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

GEOLOG REF: ENV 6562 P340 P50 P455

LOGGED BY: GEOL

GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:

OTHER:

GROUND SURVEY REF: ENV 6562 P20,50,F(I)-37 GEOPHYS DH. REF: GEOCHEMISTRY REF: ENV 6562 P455,683

GROUND (Targetting) SURVEYS: P

PETROLOGY REF: ENV 6562 P455

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: TWN-2

UNIT: MAP: 6236 69. NAME: TWN

SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 1316

SPONSOR CODE: WMC4

SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION **SAMREF CNO: 0001473**

REFERENCE: PARTIAL RELING RPT JUNE 1986

REF. TYPE: COR ENV No: 6562

OTHER NAME: TOWNSITE D2 TARGET COMMODITY: BM

TOTAL DEPTH: 545.60 m COMPLETION DATE: 14/06/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 280 TYPE 2: C LENGTH: 266 LOCATION: ?

EASTING: 682300.00 NORTHING: 6615500.00 ZONE: 53 MSG CONV: 0.54 LOCATION ACCURACY:

LATITUDE: 30°34'44.5" LONGITUDE: 136°54'04.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

ELEVATION: + 100.00

SECTION:

(Lnorth > T):

HUNDRED:

STATUS: UK

GEOL LOG EXISTS: D

LOGGED BY: GEOL

GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY:

GROUND (Targetting) SURVEYS: P PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P20,50,F(I)-37

GEOPHYS DH. REF:

GEOLOG REF: ENV 6562 P346 P50

GEOCHEMISTRY REF: ENV 6562 P695

PETROLOGY REF: ENV 6562 P

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: 1 /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

31

HOLE NO: TWN-3

MAP: 6236 UNIT: 70. NAME: TWN

SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986 **SAMREF CNO: 0001473**

OTHER NAME: TOWNSITE D3

REF. TYPE: COR ENV No: 6562

TOTAL DEPTH: 641.10 m COMPLETION DATE: 02/06/1981 TARGET COMMODITY: BM

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 290 TYPE 2: C LENGTH: 351 LOCATION: ?

EASTING: 681800.00 NORTHING: 6614300.00 ZONE: 53 MSG CONV: 0.54 LOCATION ACCURACY:

LATITUDE: 30°35'23.7" LONGITUDE: 136°53'46.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

Local Grid: '(Lnorth > T):

ELEVATION: + 100.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 6562 P351 P50

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY:

.

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P20,50,F(I)-37 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 6562 P704

PETROLOGY REF: ENV 6562 P???

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE:

CLASS: MW

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: HHD 2

MAP: 6236 UNIT: 71. NAME: HHD

SEQ. NO: 2

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: HEATON HILL D1

REF. TYPE: COR ENV No: 6565

TARGET COMMODITY: BM Au U TOTAL DEPTH: 364.00 m COMPLETION DATE: 21/04/1982

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 364 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 671300.00 NORTHING: 6596650.00 ZONE: 53 ZONE AZ: 0.54 LOCATION ACCURACY:

LATITUDE: 30°45'02.4" LONGITUDE: 136°47'22.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

(Lnorth > T):

ELEVATION: + 108.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P275

GROUND (Targetting) SURVEYS: PALAEONTOLOGY:

GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P20,36

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 6562 P626

PETROLOGY REF:

والمراجع والمتحرب فيوريها والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

OTHER:

WATER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

HOLE NO: CRD 1

MAP: 6236 UNIT: 72. NAME: CRD SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ RPT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: COORLAY RIDGE D1 REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM Au U TOTAL DEPTH: 118.00 m. COMPLETION DATE: ??/07/1980

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 118 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 684800.00 NORTHING: 6594600.00 ZONE: 53 ZONE AZ: 0.54 LOCATION ACCURACY:

LATITUDE: 30°46'01.7" LONGITUDE: 136°55'51.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Laorth > T):

ELEVATION: + 90.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P213

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV6562 P20,34 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 6562 P213,452 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                         HOLE NO: BD 1
MAP: 6237
           UNIT:
                  15. NAME: BD
                                                    SEQ. NO: 1 CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP SSH
                                                           LEASE: EL 1338
SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION
REFERENCE: PARTIAL RELINQ REPORT OCT 1991
                                                         SAMREF CNO: 0005709
OTHER NAME: BOPEECHEE D1
                                         REF. TYPE: COR ENV No: 8482
TARGET COMMODITY: BM Au U
                             TOTAL DEPTH: 941.00 m COMPLETION DATE: 08/06/1981
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 21 TYPE 2: C LENGTH: 920 LOCATION: ?
EASTING: 677100.00 NORTHING: 6663100.00 ZONE: 53 ZONE AZ: 0.53 LOCATION ACCURACY:
LATITUDE: 30°09'01.2" LONGITUDE: 136°50'19.8" GRID (ANS/CLK): ANS DNHOLE ORIENTAL SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .
                                                             (Lnorth > T):
ELEVATION: + 99.
                          HUNDRED:
                                             SECTION:
                                                               STATUS: UK
GEOL LOG EXISTS: B
                    LOGGED BY: GEOL
                                       GEOLOG REF: ENV 8482 P35,160
GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY:
WATER:
         PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:
```

GEOCHEMISTRY REF: ENV 8482 P196 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: AMG SUPPLIED IN ENVELOPE. ELEVATION ESTIMATED FROM 20m CONTOUR PLAN

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: /

GROUND SURVEY REF: ENV 8482 P29 F-3,8,10-12 GEOPHYS DH. REF: ENV 8482 P196 F-16

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: BD 2

MAP: 6237 UNIT: 16. NAME: BD SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR SSH LEASE: EL 1338

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR SSH LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED TWO CONTION RIVER.

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ REPORT OCT 1991

OTHER NAME: BOPEECHEE D2

REF. TYPE: COR ENV No: 8482 .

TARGET COMMODITY: BM Au U TOTAL DEPTH: 829.40 m COMPLETION DATE: 19/03/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 205 TYPE 2: C LENGTH: 624 LOCATION: ?

EASTING: 674300. NORTHING: 6665700. ZONE: 53 ZONE AZ: 0.53 LOCATION ACCURACY: P

<u>LATITUDE</u>: 30°07'38.8" <u>LONGITUDE</u>: 136°48'33.7" <u>GRID (ANS/CLK)</u>: ANS <u>DNHOLE ORIENTO. SURVY</u>: <u>DIP ANGLE</u>: - 90.0 <u>AZIMUTH (True)</u>: . Local Grid: . (Lnorth > T): .

<u>DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):</u>

<u>ELEVATION: + 131.00 HUNDRED: SECTION: STATUS: UK</u>

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 8482 P48,160

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: :

GROUND SURVEY REF: ENV 8482 P30 F-3,8,10-12 GEOPHYS DH. REF: ENV 8482 P222 F-13,17,23

GEOCHEMISTRY REF: ENV 8482 P222 PETROLOGY REF:

OTHER: GEOCHRONOLOGY REF:

COMMENTS: ELEV SUPPLIED IN ENVELOPE. AMG ESTIMATED FROM LOCALITY DIAGRAM

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

HOLE NO: FHD 1

MAP: 6238 UNIT: 6. NAME: FHD

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: SSH .

LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: FERGUSON HILL

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 743.80 m COMPLETION DATE: 05/11/1977

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 77 TYPE 2: C LENGTH: 667 LOCATION: G

EASTING: 665000.00 NORTHING: 6700550.00 ZONE: 53 MSG CONV: . LOCATION ACCURACY:

LATITUDE: 29°48'51.7" LONGITUDE: 136°42'26.9" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

'(Lnorth > T):

ELEVATION: + 88.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P246,418

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GROUND SURVEY REF: ENV 6562 P35 F-28

GEOPHYS DH. REF: ENV 6562 F-6

PETROLOGY REF: ENV 6562 P444

GEOCHEMISTRY REF: ENV 6562 P582

GEOCHRONOLOGY REF:

REF:

COMMENTS:

OTHER:

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SR 17 / 2

MAP: 6238 UNIT:

7. NAME: SR

SEQ. NO: 17 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH

LEASE: EL 335

SPONSOR CODE: NMK1

SPONSOR: NEWMONT PTY LTD REFERENCE: QTLY RPT ENDING JAN 1979

SAMREF CNO: 1011383

OTHER NAME: SR 17/2

REF. TYPE: COR ENV No: 3090 3803.

TARGET COMMODITY: BM

TOTAL DEPTH: 1500.00 m COMPLETION DATE: 19/11/1979 DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 200 TYPE 2: C LENGTH: 1300 LOCATION: G

EASTING: 660864. NORTHING: 6709593. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 29°44'00. " LONGITUDE: 136°39'48. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 89.

HUNDRED:

SECTION:

STATUS: ST

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3090 P95,102 3803 P12

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 3803 P12

GROUND SURVEY REF: ENV 3090 P84

PETROLOGY REF:

GEOCHRONOLOGY REF:

المراب والمعارض والمناز والمعارض والمعارض والمناز والم

COMMENTS: DRILLED ON "JOE'S ANOMALY". ELEVATION ESTIMATED FROM CONTOUR PLAN

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

HOLE NO: EX 165

MAP: 6332 UNIT: 614. NAME: EX

SEQ. NO: 165 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 534

SPONSOR CODE: CSR SPONSOR: CSR LIMITED MINERALS AND CHEMICALS DIVISION

REFERENCE: 1ST QTLY RPT SEPTEMBER 1979

SAMREF CNO: 0002709

OTHER NAME:

REF. TYPE: COR ENV No: 3552

TARGET COMMODITY: BM

TOTAL DEPTH: 160.00 m COMPLETION DATE: 04/05/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 160 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 725082. NORTHING: 6392393. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 32°34'58.7" LONGITUDE: 137°23'52.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: . (Inorth > T):

ELEVATION: + 76.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3225 P25,39

GROUND (Targetting) SURVEYS:

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3552 F-2 P25

GEOCHEMISTRY REF: ENV 3552 P39

والمراجع برضعتني والأخراب والمراجع والمستوم والأخراب والمتابع والمتابع

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: AMG & ELEV ESTIMATED FROM LOCALITY PLAN & CONTOUR PLANS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

HOLE NO: TR 3

MAP: 6333 UNIT: 52. NAME: TR <u>seq. no</u>: 3

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 654

SPONSOR CODE: DMC SPONSOR: DAMPIER MINING CO LTD

REFERENCE: QTLY RPT ENDING JUNE 1981

SAMREF CNO: 0000310

OTHER NAME: TREGOLANA 3

REF. TYPE: COR ENV No: 3915

TARGET COMMODITY: Cu TOTAL DEPTH: 400.40 m COMPLETION DATE: 07/04/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 39 TYPE 2: C LENGTH: 361 LOCATION: G

EASTING: 729550.00 NORTHING: 6408280.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 32°26'19.9" LONGITUDE: 137°26'29.9" GRID (ANS/CLK): ANS DNHOLE ORIENTAL SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

· Local Grid: .

'(Lnorth > T):

ELEVATION: + 116.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3915 P24

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GROUND SURVEY REF: ENV 3915 P5 F-3-6

GEOPHYS DH. REF: ENV 3915 F-1

GEOCHEMISTRY REF: ENV 3915 P40

PETROLOGY REF:

OTHER:

REF:

REFERENCE: QTLY RPT ENDING MARCH 1974

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 31

SEQ. NO: 31 CLASS: MW

MAP: 6333 UNIT: 53 NAME: EX

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 50

SAMREF CNO: 0002710

SPONSOR CODE: MGU

SPONSOR: MOUNT GUNSON MINES PTY LTD

OTHER NAME:

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM

TOTAL DEPTH: 54.9 m COMPLETION DATE: 16/10/1973

DRILLTECH: RMC SAMPLE: TYPE 1: M LENGTH: 53 TYPE 2: S LENGTH: 2. LOCATION: ?

EASTING: 720294. NORTHING: 6413170. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 31°23'48.0" LONGITUDE: 137°20'31.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 125.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 2273 P88 6667 P34

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:

GROUND SURVEY REF: ENV 2273 P6 F(I)-1

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P88

PETROLOGY REF: ENV 6611 P483,833

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

<u>Double Und.</u> = Bore General DB, <u>Single</u> & <u>Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

and the second of the second o

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                       HOLE NO: EX 32
MAP: 6333 UNIT: 54. NAME: EX
                                                  SEQ. NO: 32
                                                                 CLASS: MW
CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP
                                                        LEASE: EL 50
SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD
REFERENCE: QTLY RPT ENDING MARCH 1974
                                                        SAMREF CNO: 0002710
OTHER NAME:
                                       REF. TYPE: COR ENV No: 2273
TARGET COMMODITY: BM
                           TOTAL DEPTH: 42.7 m COMPLETION DATE: 16/10/1973
DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 43 TYPE 2: LENGTH: . LOCATION: ?
EASTING: 719251. NORTHING: 6410789. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P
LATITUDE: 32°25'06.0" LONGITUDE: 137°19'53.7" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .
                                                            (Lnorth > T):
ELEVATION: + 120.
                         HUNDRED:
                                            SECTION:
                                                              STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P89 6667 P35
GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y
         <u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>:
GROUND SURVEY REF: ENV 2273 P6 F(I)-1
                                         GEOPHYS DH. REF:
GEOCHEMISTRY REF: ENV 2273 P89
                                          PETROLOGY REF: ENV 6611 P833
OTHER:
                 REF:
                                               GEOCHRONOLOGY REF:
COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS
CHECKED: BJV
                        <u>DATE</u>: 04/09/92 <u>UPDATE</u>:
                                                                 DATE: / /
               ************
```

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE HOLE NO: EX 33
MAP: 6333 UNIT: 55. NAME: EX SEQ. NO: 33 CLASS: MW
CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 50
SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD
REFERENCE: QTLY RPT ENDING MARCH 1974 SAMREF CNO: 0002710
OTHER NAME: REF. TYPE: COR ENV No: 2273 .
TARGET COMMODITY: BM TOTAL DEPTH: 89.9 m COMPLETION DATE: 16/10/1973
DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 90 TYPE 2: LENGTH: . LOCATION: ?
EASTING: 724081. NORTHING: 6410858. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P
LATITUDE: 32°25'00.3" LONGITUDE: 137°22'58.4" GRID (ANS/CLK): ANS DNHOLE ORIENTAL SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T): .
ELEVATION: + 120. HUNDRED: SECTION: STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P90 6667 P36
GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y
WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: :
GROUND SURVEY REF: ENV 2273 P6 F(I)-1 GEOPHYS DH. REF:
GEOCHEMISTRY REF: ENV 2273 P90 PETROLOGY REF: ENV 6611 P834
OTHER: REF: GEOCHRONOLOGY REF:
COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

المراجع فالمراكب فالمعطور ويروي ويروي ويروي والمراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع

UPDATE:

DATE: 04/09/92

CHECKED: BJV

DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: WHD 1

<u>AP</u>: 6434 <u>UNIT</u>: 34 . <u>NAME</u>: WHD <u>SEQ. NO</u>: 1 <u>CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: EL 1316 PARTIAL RELINQ REPT JUNE 1986 SAMREF CNO: 0001473.

OTHER NAME: WHITTATA HILL D1 REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 683.53 m COMPLETION DATE: 08/05/1978

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 102 TYPE 2: C LENGTH: 581. LOCATION: G

EASTING: 738380.00 NORTHING: 6496800.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°38'21.1" LONGITUDE: 137°30'48.8" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

<u>DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):</u>

ELEVATION: + 131.00 HUNDRED: SECTION: STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P378 F6562(I)-39

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): GEOCHEMISTRY: PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 ??? GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 6562 P760 PETROLOGY REF:

OTHER: GEOCHRONOLOGY REF:

COMMENTS: GRAVITY DATA REPORTED AS BEING UNRELIABLE

CHECKED: JLC/BJV DATE: 01/07/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: YAD 1

<u>MAP</u>: 6434 <u>UNIT</u>: 33 . <u>NAME</u>: YAD <u>SEQ. NO</u>: 1 <u>CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 582

SPONSOR CODE: URA SPONSOR: URANGESELLSCHAFT AUSTRALIA PTY LTD

REFERENCE: QTLY RPT OCT 1981 SAMREF CNO: 0002108.

OTHER NAME: YADLAMALKA NO.1 REF. TYPE: COR ENV No: 3769 6670 .

TARGET COMMODITY: BM TOTAL DEPTH: 655.60 m COMPLETION DATE: 15/01/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 33 TYPE 2: C LENGTH: 623. LOCATION: G

<u>EASTING</u>: 765698.00 <u>NORTHING</u>: 6467094.00 <u>ZONE</u>: 53 <u>MSG CONV</u>: 1 27' <u>LOCATION ACCURACY</u>:

LATITUDE: 31°54'03.2" LONGITUDE: 137°48'33.9" GRID (ANS/CLK): ANS DNHOLE ORIENT' SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 37.00 HUNDRED: SECTION: STATUS: ST

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6670 P152

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3769 P359 RB 81/50 GEOPHYS DH. REF: ENV 3769(III)-1to10

GEOCHEMISTRY REF: ENV 3769 P449

PETROLOGY REF: ENV 3769 P399

OTHER: WATER REF: ENV 3769 P397 GEOCHRONOLOGY REF:

COMMENTS: EVERYTHING BUT GEOLOGICAL LOG IN ENV 3769! HOLE LOCEELV FROM W.NEWTON SSDB

CHECKED: BJV DATE: 01/07/92 UPDATE: DATE: //

<u>Double Und.</u> - Bore General DB, <u>Single & Double Und.</u> - GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

المعالج برين البياني والمواريون كالمعام فالمستهيز والربطية والمستروع والمستر

```
STUART SHELF BASEMENT PROJECT -- DRILLHOLE DATABASE
```

HOLE NO: BDH 2

MAP: 6434 UNIT: 30 . NAME: BDH

SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 206

SPONSOR CODE: AAM

SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LTD

REFERENCE: OTLY RPT AUG 1977

SAMREF CNO: 0002108.

OTHER NAME: DDH2 in early rpts

REF. TYPE: COR ENV No: 2643 3769 .

TARGET COMMODITY: BM

TOTAL DEPTH: 553.10 m COMPLETION DATE: 04/07/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 190 TYPE 2: C LENGTH: 363. LOCATION: G

EASTING: 739180.00 NORTHING: 6477830.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°48'36.0" LONGITUDE: 137°31'36.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 41.40

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 2643 P78

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): GEOCHEMISTRY: PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: Y OTHER: GROUND SURVEY REF: ENV 2643 P41,50

GEOPHYS DH. REF: ENV 2643(IV) 3769(II)

GEOCHEMISTRY REF: ENV 2643 P73. SEE "OTHER" PETROLOGY REF: ENV 2643 P98

REF: GEOL SURV SA BUL53 P58 OTHER: GEOCHEM COMMENTS: BOUNDARIES IN SUMMARY LOG P51 NOT SHOWN ON 'DETAILED' LOG P78

GEOCHRONOLOGY REF: SADME RB 80/6

CHECKED: BJV

WATER:

DATE: 01/07/92

UPDATE:

DATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: BDH 3

UNIT: 31 . NAME: BDH

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

SEQ. NO: 3 CLASS: MW LEASE: EL 582

SPONSOR CODE: AAM SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LIMITED

REFERENCE: QTLY REPTS EL206 AUG 77 EL582 APR 81

SAMREF CNO: 0002108.

OTHER NAME: DDH 3 in early reports

REF. TYPE: COR ENV No: 2643 3769 . TOTAL DEPTH: 1200.00 m COMPLETION DATE: 01/12/1980

TARGET COMMODITY: BM

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 297 TYPE 2: C LENGTH: 903. LOCATION: G

EASTING: 746860.00 NORTHING: 6475370.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°49'50.0" LONGITUDE: 137°36'30.0" GRID (ANS/CLK): ANS DNHOLE ORIENTATION SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: - 75.00

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: D

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

LOGGED BY: GEOL GEOLOG REF: ENV 2643 P94 3769 P293

PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2643 P41 P50

GEOPHYS DH. REF: ENV 2643 F(IV)

<u>GEOCHEMISTRY REF</u>: ENV 2643 P74 3769 P315 <u>PETROLOGY REF</u>: ENV 2643 P98 3769 P299

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: NB EXTRA GEOCHEM (INCLUDING WRA) BY CSR IN ENV 6962 P1625

CHECKED: JLC/BJV

DATE: 01/07/92

UPDATE:

DATE: / /

HOLE NO: SLT 106

MAP: 6434 UNIT: 38 . NAME: SLT

SEQ. NO: 106

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 582

SPONSOR CODE: AAM

SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LIMITED

REFERENCE: QTLY REPT OCT 1980

SAMREF CNO: 0002108.

OTHER NAME:

REF. TYPE: COR ENV No: 3769

TARGET COMMODITY: Cu BM TOTAL DEPTH: 1449.00 m COMPLETION DATE: ??/03/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 7 TYPE 2: C LENGTH: 1442. LOCATION: G

EASTING: 758020.00 NORTHING: 6490010.00 ZONE: 53 MSG CONV: 1 27 LOCATION ACCURACY: P

LATITUDE: 31°41'46.0" LONGITUDE: 137°43'20.0" GRID (ANS/CLK): ANS DNHOLE ORIENTATION SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 56.00

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3769 P181,349

GROUND (Targetting) SURVEYS: L GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY:

PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC

GROUND SURVEY REF: ENV 3769 F(I)-1

GEOPHYS DH. REF: ENV 3769 F(I)-3-5

GEOCHEMISTRY REF: ENV 6962 P1668

PETROLOGY REF:

OTHER: SEISMIC

REF: SADME ENV 3769 P192

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC/BJV

DATE: 01/07/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SLT 107

MAP: 6434

UNIT: 32 . NAME: SLT

SEQ. NO: 107 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 582

SPONSOR CODE: AAM SPONSOR: AQUITAINE AUST MINERALS PTY LIMITED

REFERENCE: OTLY REPT APR 1981

SAMREF CNO: 0002108.

OTHER NAME:

REF. TYPE: COR ENV No: 3769

TARGET COMMODITY: BM TOTAL DEPTH: 1099.00 m COMPLETION DATE: 23/01/1981

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 1099 TYPE 2: , LENGTH: . LOCATION: G

EASTING: 739790.00 NORTHING: 6476580.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°49'16.0" LONGITUDE: 137°32'00.0" GRID (ANS/CLK): ANS DNHOLE ORIENTATION SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 45.00

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: B

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

LOGGED BY: GEOL GEOLOG REF: ENV 3769 P307

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC

GROUND SURVEY REF: ENV 3769 P200

GEOPHYS DH. REF: ?NOT SUBMITTED

GEOCHEMISTRY REF: ENV 6962 P1670

PETROLOGY REF:

OTHER: SEISMIC

REF: SADME

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC/BJV DATE: 01/07/92

UPDATE:

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single</u> & <u>Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

41

HOLE NO: SLT 103

MAP: 6434 UNIT: 37 . NAME: SLT

SEQ. NO: 103 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 370

SPONSOR CODE: AAM SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LIMITED

REFERENCE: QTLY REPTS AUG 1978???

SAMREF CNO: 0002107.

OTHER NAME:

REF. TYPE: COR ENV No: 3093

TARGET COMMODITY: Cu

TOTAL DEPTH: 750.50 m COMPLETION DATE: 01/06/1978

DRILLTECH: RmD SAMPLE: TYPE 1: M LENGTH: 21 TYPE 2: C LENGTH: 729. LOCATION: G

EASTING: 738550.00 NORTHING: 6484690.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°44'54.0" LONGITUDE: 137°31'06.0" GRID (ANS/CLK): ANS DNHOLE ORIENTO SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . · (Lnorth > T):

ELEVATION: + 36.00

HUNDRED:

SECTION:

STATUS: CA

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3093 P136

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND (Targetting) SURVEYS: PM GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

GROUND SURVEY REF: ENV 3093 P24 F(I)-1-6 GEOPHYS DH. REF: ENV 3093 F(III)-5,6

GEOCHEMISTRY REF: ENV 6962 P1666

PETROLOGY REF: ENV 3093 P152

OTHER: REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC/BJV

DATE: 01/07/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SLT 104

MAP: 6434 UNIT: 39 . NAME: SLT

SEQ. NO: 104 CLASS: MW

CONFIDENTIAL STATUS (O/C): O SPONSOR CODE: AAM SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LTD

PROVINCE CODES: GRP SSH

LEASE: EL 370

REFERENCE: QTLY RPT AUG 1978

SAMREF CNO: 0002107.

OTHER NAME:

REF. TYPE: COR ENV No: 3093 3769 .

TARGET COMMODITY: BM

TOTAL DEPTH: 836.00 m COMPLETION DATE: 15/01/1981

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 836 TYPE 2: LENGTH: . LOCATION: G

EASTING: 754800.00 NORTHING: 6466400.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P LATITUDE: 31°54'34.7" LONGITUDE:137°41'40.1" GRID (ANS/CLK): ANS DNHOLE ORIENTO SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 44.00 HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3093 P144 3769 P346

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3093(I)-1to6

GEOPHYS DH. REF: ENV 3093(III)-7,8

GEOCHEMISTRY REF:

PETROLOGY REF:

والمراز والمراز والمراز والمنازع ومواهدون والمرازي والمنازع والمنازي والمنازع والمنا

REF:

GEOCHRONOLOGY REF:

COMMENTS: SUBSTANTIAL REINTERP OF ORIGINAL LOG (W.COWLEY) SUGGEST RE EXAMINE CORE

CHECKED: BJV

DATE: 01/07/92

UPDATE:

DATE: / /

```
STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE
                                                         HOLE NO: SLT 101 (BDH 4)
MAP: 6434
           UNIT: 35 . NAME: SLT
                                                     SEQ. NO: 101
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP SSH
                                                           LEASE: EL 370
SPONSOR CODE: AAM SPONSOR: AQUITANE AUSTRALIA MINERALS PTY LIMITED
REFERENCE: QTLY REPTS FEB 1978 OCT 1980 JUL 1981
                                                         SAMREF CNO: 0002107.
OTHER NAME: BDH 4 (also DDH4)
                                          REF. TYPE: COR ENV No: 3093 3769.
TARGET COMMODITY: Cu BM
                            TOTAL DEPTH: 1405.60 m COMPLETION DATE: ??/03/1981
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 106 TYPE 2: C LENGTH: 1300. LOCATION: G
EASTING: 754270.00 NORTHING: 6484430.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P
LATITUDE: 31°44'50.0" LONGITUDE: 137°41'03.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: T
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .
                                                              (Lnorth > T):
                          HUNDRED:
ELEVATION: + 44.00
                                              SECTION:
                                                                STATUS: CA ST
GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3093 P47 3769 P172
GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: PETROLOGY: Y
WATER:
         PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: Y OTHER:
GROUND SURVEY REF: ENV 2643 P41 P50
                                         GEOPHYS DH. REF: ENV 2643(IV) 3769(II)
GEOCHEMISTRY REF: ENV 6962 P1665
                                           PETROLOGY REF: ENV 2643 P98
OTHER:
                 REF:
                                                 GEOCHRONOLOGY REF: SADME RB 80/6
COMMENTS: FIRST DRILLED TO 600m THEN WEDGED FROM 570-1360 AND 1199 1405.6 SEE P345
```

UPDATE:

```
STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE
```

DATE: 01/07/92

HOLE NO: SLT 102

<u>DATE</u>: / /

<u>MAP</u>: 6434 <u>UNIT</u>: 36 . <u>NAME</u>: SLT <u>SEQ. NO</u>: 102 <u>CLASS</u>: M

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 370

SPONSOR CODE: AAM SPONSOR: AQUITAINE AUSTRALIA MINERALS PTY LIMITED

REFERENCE: QTLY REPT AUG 1978 SAMREF CNO: 0002107.

OTHER NAME:

CHECKED: JLC/BJV

REF. TYPE: COR ENV No: 3093

TARGET COMMODITY: Cu BM TOTAL DEPTH: 644.00 m COMPLETION DATE: 08/05/1978

DRILLTECH: RmD SAMPLE: TYPE 1: M LENGTH: 27 TYPE 2: C'LENGTH: 617. LOCATION: G

EASTING: 748610.00 NORTHING: 6475760.00 ZONE: 53 MSG CONV: 1 27' LOCATION ACCURACY: P

LATITUDE: 31°49'36.0" LONGITUDE: 137°37'36.0" GRID (ANS/CLK): ANS DNHOLE ORIENTATION SURVY:

DIP ANGLE: - 90. AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 31.50 <u>HUNDRED</u>: <u>SECTION</u>: <u>STATUS</u>: CA ST CO

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3093 P130

GRÓUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): N GEOCHEMISTRY: PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3093 F(1)-1-6 GEOPHYS DH. REF: ENV 3093 P158

GEOCHEMISTRY REF: PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: INITIALLY DRILLED TO 507m THEN WEDGED FROM 495m TO TD 2.5m ERROR

CHECKED: JLC/BJV DATE: 01/07/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE HOLE NO: SAU 1

MAP: 6433 UNIT: 33. NAME: SAU SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 187

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 1ST QTLY RPT JULY 1975 SAMREF CNO: 1007522

OTHER NAME: PUB 3 = PRECOLLAR REF. TYPE: COR ENV No: 2585

TARGET COMMODITY: BM TOTAL DEPTH: 275.35 m COMPLETION DATE: 13/03/1975

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 187 TYPE 2: C LENGTH: 88. LOCATION: G

EASTING: 745245. NORTHING: 6415410. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°22'16.5" LONGITUDE: 137°36'23.7" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 43.09 HUNDRED: SECTION: STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2585 P22 F-1

GROUND (Targetting) SURVEYS: M? GEOPHYS.(Down Hole): N GEOCHEMISTRY: Y PETROLOGY: N

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2985 P93 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2585 P17,22,53 F-1 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION & ELEV ESTIMATED FROM COMPANY MAP & SADME CONTOUR MAP

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: //

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SAU 3

MAP: 6432 UNIT: 798. NAME: SAU SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 187

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LTD

REFERENCE: 1ST QTLY RPT JULY 1975 SAMREF CNO: 1007522

OTHER NAME: PUB 11 = PRECOLLAR REF. TYPE: COR ENV No: 2585

TARGET COMMODITY: BM TOTAL DEPTH: 494. m COMPLETION DATE: 18/06/1975

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 162 TYPE 2: C LENGTH: 332. LOCATION: G

EASTING: 750055.00 NORTHING: 6397885.00 ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°31'41.3" LONGITUDE: 137°39'44.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 35.70 <u>HUNDRED</u>: <u>SECTION</u>: <u>STATUS</u>: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2585 P9,43 F-3

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2585 P93 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2585 P34,75 F-3 PETROLOGY REF: ENV 2585 P81

OTHER: GEOCHRONOLOGY REF:

COMMENTS: COLLAR LOCATION FROM W.NEWTON DBASE.

CHECKED: BJV DATE: 07/08/92 UPDATE: DATE: / /

HOLE NO: BLD 3

MAP: 6337 UNIT: 59. NAME: BLD SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ REPORT OCT 1991 SAMREF CNO: 0005709

OTHER NAME: BILLS LOOKOUT D3 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 1024.00 m COMPLETION DATE: 31/07/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 300 TYPE 2: C LENGTH: 724 LOCATION: ?

EASTING: 722190. NORTHING: 6636990. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 30°22'42.7" LONGITUDE: 137°18'44.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 32.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 8482 P83,154

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 P28 F-2,7 GEOPHYS DH. REF: ENV 8482 P276 F-20,26

GEOCHEMISTRY REF: ENV 8482 P276 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: BLD-4

<u>MAP</u>: 6337 <u>UNIT</u>: 60. <u>NAME</u>: BLD <u>SEQ. NO</u>: 4 <u>CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ RPT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 1037.00 m COMPLETION DATE: 21/06/1985

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 300 TYPE 2: C LENGTH: 737 LOCATION: G

EASTING: 716440.00 NORTHING: 6644740.00 ZONE: 53 MSG CONV: 1.09 LOCATION ACCURACY:

LATITUDE: 30°18'34.9" LONGITUDE: 137°15'03.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 50.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P201,407

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: N PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P29 F-22 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 6562 P531 PETROLOGY REF:

OTHER: GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                         HOLE NO: BLD 1
MAP: 6337
           UNIT: 57. NAME: BLD
                                                    SEQ. NO: 1
                                                                   CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                                                           LEASE: EL 1338
                              PROVINCE CODES: GRP SSH
SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION
REFERENCE: PARTIAL RELINQ REPORT OCT 1991
                                                         SAMREF CNO: 0005709
OTHER NAME: BILLS LOOKOUT D1
                                        REF. TYPE: COR ENV No: 8482
TARGET COMMODITY: BM Au U
                           TOTAL DEPTH: 768. m COMPLETION DATE: 01/05/1979
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 163 TYPE 2: C LENGTH: 605 LOCATION: ?
EASTING: 712645.
                 NORTHING: 6636750. ZONE: 53 ZONE AZ: 1.09 LOCATION ACCURACY: P
LATITUDE: 30°22'56.7" LONGITUDE: 137°12'46.9" GRID (ANS/CLK): ANS DNHOLE ORIENTH. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid:
                                                              (Lnorth > T):
ELEVATION: + 66.00
                          HUNDRED:
                                              SECTION:
                                                                STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL
                                       GEOLOG REF: ENV 8482 P55,151
GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY:
WATER:
         PALAEONTOLOGY:
                         METALLURGY: GEOCHRONOLOGY:
                                                     OTHER: MAG REMANENCE :
GROUND SURVEY REF: ENV 8482 P28 F-2,7
                                        GEOPHYS DH. REF: ENV 8482 P237 F-18,25
GEOCHEMISTRY REF: ENV 8482 P237
                                           PETROLOGY REF:
OTHER: MAG REMNCE REF: ENV 8482 P584
                                                GEOCHRONOLOGY REF:
COMMENTS: DRILLHOLE LOCATION PLOTTED FROM COMPANY LOCATION DIAGRAM
```

UPDATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

DATE: 03/09/92

HOLE NO: BLD 2

DATE: / /

MAP: 6337 UNIT: 58. NAME: BLD SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT OCT 1991 SAMREF CNO: 0005709

OTHER NAME: BILLS LOOKOUT D2 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 860.25 m COMPLETION DATE: ??/09/1979

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 208 TYPE 2: C LENGTH: 652 LOCATION: G

EASTING: 717002. NORTHING: 6633067. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 30°22'42.7" LONGITUDE: 137°18'44.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 48.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 8482 P67,151

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 P28 F-2,7 GEOPHYS DH. REF: ENV 8482 P256 F-19

GEOCHEMISTRY REF: ENV 8482 P256 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

the Applications of the street of the second

```
STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE
                                                        HOLE NO: SHD-1
          UNIT: 55. NAME: SHD
                                            SEQ. NO: 1
                                                                 CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GCR SSH
                                                          LEASE: EL 1316
SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION
REFERENCE: PARTIAL RELING RPT JUNE 1986
                                                        SAMREF CNO: 0001473
OTHER NAME: SADDLE HILL D1
                                        REF. TYPE: COR ENV No: 6562
TARGET COMMODITY: BM TOTAL DEPTH: 965.00 m COMPLETION DATE: 12/05/1981
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 172 TYPE 2: C LENGTH: 793 LOCATION: G
<u>EASTING</u>: 692440.00 <u>NORTHING</u>: 6658960.00 ZONE: 53 MSG CONV: 1.09 LOCATION ACCURACY:
LATITUDE: 30°11'07.8" LONGITUDE: 136°59'55.7" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid: .
                                                             (Lnorth > T):
ELEVATION: + 106.00 HUNDRED:
                                             SECTION:
                                                               STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P326 P452
GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y
WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:
GROUND SURVEY REF: ENV 6562 P40 F-34
                                    GEOPHYS DH. REF: ENV 6562 P671
GEOCHEMISTRY REF: ENV 6562 P327,454,671
                                        PETROLOGY REF: ENV 6562 P454
                 REF:
                                               GEOCHRONOLOGY REF:
```

COMMENTS:

CHECKED: BJV DATE: 03/09/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: SCYW 1A

<u>MAP</u>: 6337 <u>UNIT</u>: 56. <u>NAME</u>: SCYW SEQ. NO: 1A CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 520

SPONSOR CODE: AMA SPONSOR: AMOCO MINERALS AUSTRALIA COMPANY

REFERENCE: SECOND QUARTERLY RPT FEB 1980 SAMREF CNO: 0000276

OTHER NAME: STUART CREEK YARRAWURTA 1A REF. TYPE: COR ENV No: 3637

TARGET COMMODITY: BM TOTAL DEPTH: 1450.00 m COMPLETION DATE: 07/07/1981

DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 1450 TYPE 2: LENGTH: . LOCATION: G

EASTING: 707632.87 NORTHING: 6665237.40 ZONE: 53 ZONE AZ: 1.09 LOCATION ACCURACY:

LATITUDE: 30°07'35. " LONGITUDE: 137°09'19. " GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 59.0 <u>HUNDRED</u>: SECTION: STATUS: UK

LOGGED BY: GEOL GEOLOG REF: ENV 3637 P22,59,100,F-4,5 GEOL LOG EXISTS: B

GROUND (Targetting) SURVEYS: PM GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

WATER: N PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC

<u>GROUND SURVEY REF</u>: ENV 3637 F-1,2,3,5,17 <u>GEOPHYS DH. REF</u>: ENV 3637 P97 F-8,9,10 <u>GEOCHEMISTRY REF</u>: ENV 3637 P22,59,86,100 <u>PETROLOGY REF</u>: ENV 3637 P10,68

REF: ENV 3637 P110 F-8A,11-16 GEOCHRONOLOGY REF:

COMMENTS: FIRST 3 PAGES OF ENV 3637 MISSING 21/7/92. ELEV ESTIMATED FROM 1:100000 CONTOUR

<u>DATE</u>: 03/09/92 <u>UPDATE</u>: DATE: / /

HOLE NO: WLD 1

MAP: 6336

UNIT: 45. NAME: WLD

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: SSH

LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT OCT 1991

SAMREF CNO: 0005709

OTHER NAME: WILLAROO LAGOON D1 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 445.50 m COMPLETION DATE: 22/06/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 252 TYPE 2: C LENGTH: 194. LOCATION: ?

EASTING: 721100. NORTHING: 6605900. ZONE: 53 ZONE AZ: 1.09 LOCATION ACCURACY: P

LATITUDE: 30°39'32.6" LONGITUDE: 137°18'27.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

'(Lnorth > T):

ELEVATION: + 86.00 HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS:

LOGGED BY: GEOL GEOLOG REF: ENV 8482 P141,193

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 P20 F-5

GEOPHYS DH. REF: ENV 8482 P347 F ??,??,??

GEOCHEMISTRY REF: ENV 8482 P347

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

COMMENTS: LOCAL COORDS 11500N 99500E. ELEV & AMG ESTIMATED FROM LOCALITY PLAN

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: RED 1

MAP: 6336 UNIT: 43. NAME: RED SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT OCT 1991 SAMREF CNO: 0005709

OTHER NAME: RED DAM 1 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 410. m COMPLETION DATE: 06/05/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 294 TYPE 2: C LENGTH: 116. LOCATION: ?

EASTING: 725370. NORTHING: 6612000. ZONE: 53 ZONE AZ: 1.09 LOCATION ACCURACY: P

LATITUDE: 30°36'11.7" LONGITUDE: 137°21'02.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 51.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: LOGGED BY: GEOL GEOLOG REF: ENV 8482 P101,170

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAFONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 P20 F-5

GEOCHEMISTRY REF: ENV 8482 P291

GEOCHEMISTRY REF: ENV 8482 P291

PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: LOCAL GRID 18410N 99985E. ELEV & AMG ESTIMATED FROM LOCALITY PLAN

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: RED 2

MAP: 6336 UNIT: 44. NAME: RED SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT OCT 1991 SAMREF CNO: 0005709

OTHER NAME: RED DAM 2 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 686.90 m COMPLETION DATE: 10/12/1985

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 290 TYPE 2: C LENGTH: 397. LOCATION: ?

EASTING: 726840. NORTHING: 6614700. ZONE: 53 ZONE AZ: 1.09 LOCATION ACCURACY: P

LATITUDE: 30°34'43.1" LONGITUDE: 137°21'55.7" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 40. HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: LOGGED BY: GEOL GEOLOG REF: ENV 8482 P107

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): LC GEOCHEMISTRY: PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 P20 F-5 GEOPHYS DH. REF: ENV 8482 P298 F-??,??

GEOCHEMISTRY REF: ENV 8482 P298 PETROLOGY REF:

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: LOCAL GRID 21400N 100780E. NO ELEV FOUND. ELEV & AMG ESTMATED FROM CO PLAN

CHECKED: BJV DATE: 04/09/92 UPDATE: //

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

e e a la company de la com

HOLE NO: DRD-1

MAP: 6336 UNIT: 41. NAME: DRD SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR? GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: DROMEDARY DAM D1 REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 1192.00 m COMPLETION DATE: 12/11/1980

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 325 TYPE 2: C LENGTH: 867 LOCATION: G

EASTING: 708160.00 NORTHING: 6591800.00 ZONE: 53 MSG CONV: 1.09 LOCATION ACCURACY:

LATITUDE: 30°47'18.7" LONGITUDE: 137°10'31.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 113.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P229 P415

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P34,415,F(I)-27 GEOPHYS DH. REF: ENV 6562 P22,F(I)-7

GEOCHEMISTRY REF: ENV 6562 P35,416,562 PETROLOGY REF: ENV 6562 P416

OTHER: REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: HWD-1

<u>MAP</u>: 6336 <u>UNIT</u>: 42. <u>NAME</u>: HWD <u>SEQ. NO</u>: 1 <u>CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINO RPT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: HORSE WELL D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 1097.00 m COMPLETION DATE: 16/06/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 284 TYPE 2: C LENGTH: 813 LOCATION: G

EASTING: 695780.00 NORTHING: 6575380.00 ZONE: 53 MSG CONV: 1.09 LOCATION ACCURACY:

LATITUDE: 30°56'19.3" LONGITUDE: 137°02'57.3" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 116.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 6562 P290 P434

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: PETROLOGY:

<u>WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:</u>

GROUND SURVEY REF: ENV 6562 P20,36 GEOPHYS DH. REF: ENV 6562 P598

GEOCHEMISTRY REF: ENV 6562 P438,598 PETROLOGY REF: ENV 6562 P436

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

HOLE NO: EC 50

MAP: 6335 UNIT: 116. NAME: EC

SEQ. NO: 50

LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY RPT OCT 1981

OTHER NAME: ELIZABETH CREEK 50

REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 256.00 m COMPLETION DATE: 29/10/1981

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 256 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 715974.00 NORTHING: 6538002.00 ZONE: 53 ZONE AZ: 1.10 LOCATION ACCURACY:

LATITUDE: 31°16'19.8" LONGITUDE: 137°16'06.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: . (Lnorth > T):

ELEVATION: + 110.00

HUNDRED:

SECTION:

PETROLOGY REF:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GEOLOG REF: ENV 3703 P1427

GROUND (Targetting) SURVEYS: ? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: N

PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY:

OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-7

GEOCHEMISTRY REF: ENV 3703 P1427

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 03/08/92

UPDATE:

DATE:

HOLE NO: AD 2 (W1, W2)

MAP: 6335 UNIT: 115 NAME: AD

SEQ. NO: 2

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: (AD4 EL 232)

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 829.00 m COMPLETION DATE: 18/07/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 93 TYPE 2: C LENGTH: 736 LOCATION: G

EASTING: 702600.00 NORTHING: 6558540.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY:

LATITUDE: 31°05'21.8" LONGITUDE: 137°07'26.3" GRID (ANS/CLK): ANS DNHOLE ORIENTH SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: '(Lnorth > T):

ELEVATION: + 135.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P149

METALLURGY: GEOCHRONOLOGY:

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

GROUND SURVEY REF: ENV 6562 P30 F(I)-21

GEOPHYS DH. REF: ENV 6562 P472

GEOCHEMISTRY REF: ENV 6562 P31,472

PALAEONTOLOGY:

PETROLOGY REF:

OTHER:

WATER:

REF:

GEOCHRONOLOGY REF:

OTHER:

COMMENTS: DRILLED TO 253.2 WEDGED FROM 236 401 AND 341 829m. ORIGINALLY EL232. cf AD1

CHECKED: BJV/JLC

DATE: 21/07/92

UPDATE:

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: PL 32

MAP: 6335 UNIT: 109 NAME: PL

SEQ. NO: 32

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 199

SPONSOR CODE: PAC SPONSOR: PACMINEX PTY LTD

REFERENCE: 8TH & FINAL OTLY RPT JULY 1977

SAMREF CNO: 0003424

OTHER NAME: POWERLINE 32

REF. TYPE: COR ENV No: 2627 6635. TOTAL DEPTH: 263.80 m COMPLETION DATE: 18/06/1977

TARGET COMMODITY: BM

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 77 TYPE 2: C LENGTH: 187. LOCATION: G EASTING: 693550.00 NORTHING: 6517300.00 ZONE: 53 ZONE AZ: 1.10 LOCATION ACCURACY: P

LATITUDE: 31°27'46.0" LONGITUDE: 137°02'13.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: .

(Lnorth > T):

ELEVATION: + 105.82

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6635 P10 6611 P1322

GROUND (Targetting) SURVEYS: N GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: F6634-1,2

GEOCHEMISTRY REF: ENV 6635 P10

PETROLOGY REF: ENV 6611 P922, P1319

REF:

GEOCHRONOLOGY REF:

COMMENTS: AMG CALCULATED FROM LOCALITY DIAGRAM

CHECKED: BJV

DATE: 21/07/92

UPDATE:

DATE: / /

HOLE NO: PRL 22

MAP: 6335 UNIT: 108 NAME: PRL

SEQ. NO: 22 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH LEASE: EL 389

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION (PTY) LTD

REFERENCE: 6TH QTLY REPT AUG 1979

SAMREF CNO: 0001986

OTHER NAME: RED LAKE 22

REF. TYPE: COR ENV No: 3245

TARGET COMMODITY: BM

TOTAL DEPTH: 276.00 m COMPLETION DATE: 23/07/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 276 TYPE 2: LENGTH: . LOCATION: G

EASTING: 722500.00 NORTHING: 6516500.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: P

LATITUDE: 31°27'53.2" LONGITUDE: 137°20'30.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

Local Grid: (Lnorth > T):

ELEVATION: + 79.00 HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GROUND (Targetting) SURVEYS: M? GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

GEOLOG REF: ENV 3245 P183

WATER: PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS'DH. REF: ENV 3245 P310 SADME?

GEOCHEMISTRY REF: ENV 3245 P183

PETROLOGY REF: ENV 3245 P207 P226

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: `BASEMENT' EXOTIC LITHS CAST DOUBT ON GRANITE INTERPRETATION

CHECKED: JLC/BJV

DATE: 21/07/92

UPDATE:

DATE: / /

CLASS: MW

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: HUD 1

MAP: 6335 UNIT: 110 NAME: HUD SEQ. NO: 1

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: EL 1316 PARTIAL RELING REPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: HUNTER HILL DI

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 483.00 m COMPLETION DATE: 27/07/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 326 TYPE 2: C LENGTH: 157. LOCATION: G

EASTING: 722650.00 NORTHING: 6548100.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: P LATITUDE: 31°10'47.6" LONGITUDE: 137°20'10.8" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 183.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL

GEOLOG REF: ENV 6562 P279 F6562(I)-29

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P37 F6562(I)-29 GEOPHYS DH. REF: ENV 6562 P22,630 F(I)-9

GEOCHEMISTRY REF: ENV 6962 P630

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV/JLC DATE: 21/07/92

UPDATE:

<u>DATE</u>: / /

<u>Pouble Und.</u> = Bore General DB, <u>Single</u> & <u>Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

والأمان الموافق ويوسط ويستان ويناوي والمراوي والمراوي المراوية والمراوية والمراوية والمعارض والمعارض والمراوية

APPENDIX 2.4

53

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE HOLE NO: ASD 1 MAP: 6335 UNIT: 111 NAME: ASD SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: ARCOONA STRUCTURE D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 1118.00 m COMPLETION DATE: 07/07/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 110 TYPE 2: C LENGTH: 1008 LOCATION: G

EASTING: 700600.00 NORTHING: 6564150.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY:

LATITUDE: 31°02'20.9" LONGITUDE: 137°06'06.8" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: '(Lnorth > T):

ELEVATION: + 128.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: D

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P173 P396

GROUND (Targetting) SURVEYS: P

GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

GROUND SURVEY REF: ENV 6562 P28??

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

PETROLOGY REF: ENV 6562 P397

GEOCHEMISTRY REF: ENV 6562 P398,504

GEOCHRONOLOGY REF:

GEOPHYS DH. REF: ENV 6562 P22,504 F-11,18

REF:

COMMENTS:

WATER:

CHECKED: BJV/JLC

<u>DATE</u>: 21/07/92 <u>UPDATE</u>:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: ASD 2 (W1)

MAP: 6335 UNIT: 112 NAME: ASD

SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: ARCOONA STRUCTURE D2 D2W1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 1148.40 m COMPLETION DATE: 04/03/1984

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 250 TYPE 2: C LENGTH: 898 LOCATION: G

<u>EASTING</u>: 692400.00 <u>NORTHING</u>: 6566250.00 <u>ZONE</u>: 53 <u>MSG CONV</u>: 1 10' <u>LOCATION ACCURACY</u>:

LATITUDE: 31°06'42.3" LONGITUDE: 137°01'03.1" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 139.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P188 P402

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: GROUND SURVEY REF: ENV 6562 F(I)-21

GEOPHYS DH. REF: ENV 6562 P22,517 F-13,15

GEOCHEMISTRY REF: ENV 6562 P405,517

PETROLOGY REF: ENV 6562 P404

OTHER:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: ORIGINALLY DRILLED TO 727.6m THEN WEDGED FROM 695.3m

CHECKED: BJV/JLC

DATE: 21/07/92

والمراجع والمراجع والمراجع والمنطق والمراجع والمنطق والمراجع والمنطق والمراجع والمنطق والم

UPDATE:

<u>DATE</u>: / /

HOLE NO: AD 8

MAP: 6335 UNIT: 113 NAME: AD SEQ. NO: 8 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986 **SAMREF CNO: 0001473**

OTHER NAME: ARCOONA D8 REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 1000.20 m COMPLETION DATE: 14/10/1985

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 304 TYPE 2: C LENGTH: 696 LOCATION: G

EASTING: 702000.00 NORTHING: 6557800.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY:

LATITUDE: 31°05'43.2" LONGITUDE: 137°07'04.2" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): • Local Grid: (Lnorth > T):

ELEVATION: + 158.00 HUNDRED: SECTION: STATUS:

GEOL LOG EXISTS: LOGGED BY: GEOL GEOLOG REF: ENV 6562 P162 P390 P31

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: WATER: OTHER:

GROUND SURVEY REF: ENV 6562 P30 F(I)-21 GEOPHYS DH. REF: ENV 6562 P492 F-14,16,19

GEOCHEMISTRY REF: ENV 6562 P393,492 PETROLOGY REF: ENV 6562 P393

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: ELEVATION ESTIMATED FROM 1:100,000 CONTOUR MAP

CHECKED: BJV/JLC DATE: 21/07/92 UPDATE: DATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: HUD 2

MAP: 6335 UNIT: 114 NAME: HUD SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING RPT JUNE 1986 **SAMREF CNO: 0001473**

OTHER NAME: HUNTER HILL D2 REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 396.30 m COMPLETION DATE: 21/04/1982

DRILLTECH: Prc SAMPLE: TYPE 1: M LENGTH: 393 TYPE 2: S LENGTH: 3. LOCATION: G

<u>EASTING</u>: 723250.00 <u>NORTHING</u>: 6544850.00 <u>ZONE</u>: 53 <u>MSG CONV</u>: 1 10' <u>LOCATION ACCURACY</u>:

LATITUDE: 31°12'32.6" LONGITUDE: 137°20'36.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: (Lnorth > T):

ELEVATION: + 220.00 HUNDRED: SECTION: STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P286

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P37,431 F(I)-29 GEOPHYS DH. REF: ENV 6962 P637

GEOCHEMISTRY REF: ENV 6562 P432 PETROLOGY REF: ENV 6562 P431

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS:

and the second second second second second

CHECKED: BJV/JLC DATE: 21/07/92 UPDATE: DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

The state of the second second

APPENDIX 2.4

HOLE NO: EC 51

MAP: 6335 UNIT: 98 NAME: EC

CLASS: MW SEQ. NO: 51

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY REPT OCT 1981

SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 51

REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 292.00 m COMPLETION DATE: 31/10/1981

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 292 TYPE 2: LENGTH: . LOCATION: W

.

EASTING: 714385.96 NORTHING: 6531017.04 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0

LATITUDE: 31°20'07.6" LONGITUDE: 137°15'12.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True):

Local Grid: '(Lnorth > T):

ELEVATION: + 90.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

GEOLOG REF: ENV 3703 P1440

LOGGED BY: GEOL

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER: A PALAEONTOLOGY: METALLURGY:

GROUND (Targetting) SURVEYS: ?

GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-2

GEOCHEMISTRY REF: ENV 3703 P1440 6962 P1643 PETROLOGY REF:

REF: ENV 3703 P1258

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

OTHER: WATER

DATE: 21/07/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EC 35

MAP: 6335 UNIT: 99 NAME: EC SEQ. NO: 35

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP REFERENCE: 5TH & 8TH QTLY REPTS JAN OCT 1981

SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 35

REF. TYPE: COR ENV No: 3703 6962.

TARGET COMMODITY: BM

TOTAL DEPTH: 400.00 m COMPLETION DATE: 13/10/1981

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 400 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 712445.00 NORTHING: 6536690.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0

LATITUDE: 31°17'04.7" LONGITUDE: 137°13'54.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: N

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 70.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: D

LOGGED BY: GEOL GEOLOG REF: ENV 3703 P282 6962 P282

GROUND (Targetting) SURVEYS: ? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-6

GEOCHEMISTRY REF: ENV 3703 P1314 6962 P1633 PETROLOGY REF: ENV 3703 P1613 6962 P310

OTHER: WATER

<u>REF:</u> ENV 3703 P1258

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

DATE: 21/07/92

UPDATE:

DATE: / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

en internación exemples de la companya de la compan

56

HOLE NO: EC 45

MAP: 6335 UNIT: 92. NAME: EC

CONFIDENTIAL STATUS (O/C): O

SEQ. NO: 45

CLASS: MW LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINS. DIVIS. EXPLORATION GROUP

REFERENCE: 8TH & FINAL RPT EL 548 OCT 1981

SAMREF CNO:

OTHER NAME: ELIZABETH CREEK DDH 45 REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 128.00 m COMPLETION DATE: 11/10/1981

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 128 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 713191.83 NORTHING: 6534628.44 ZONE: 53 MSG.CONV: 1 10' LOCATION ACCURACY: 0

LATITUDE: 31°18'11.2" LONGITUDE: 137°14'24.0" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: T

PROVINCE CODES: GCR SSH

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: (Lnorth > T):

ELEVATION: + 75.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1371

GROUND SURVEY REF:

GROUND (Targetting) SURVEYS: ?

GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GEOPHYS DH. REF: ENV 3703 F(XI)-3

<u>GEOCHEMISTRY REF: ENV 3703 P1371 6962 P1638 PETROLOGY REF: ENV 3703 P1615</u>

OTHER: WATER REF: ENV 3703 P1258

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

<u>DATE</u>: 21/07/92 <u>UPDATE</u>:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EC 43

MAP: 6335 UNIT: 93. NAME: EC

SEQ. NO: 43 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY REPT OCT 1981

SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 43

REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 159.00 m COMPLETION DATE: 9/10/1981

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 159 TYPE 2: LENGTH: . LOCATION: W

EASTING: 712942.94 NORTHING: 6533143.23 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0

LATITUDE: 31°18'59.5" LONGITUDE: 137°14'15.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: N DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 85.00 HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1355

GROUND (Targetting) SURVEYS: ? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: N PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-1

<u>GEOCHEMISTRY REF</u>: ENV 3703 P1355 6962 P1637 <u>PETROLOGY REF</u>: ENV 3703 P1614

REF:

OTHER:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

<u>DATE</u>: 21/07/92 <u>UPDATE</u>:

DATE: / /

HOLE NO: EC 48

MAP: 6335 UNIT: 96. NAME: EC

SEQ. NO: 48 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY REPT OCT 1981

SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 48

REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 272.00 m COMPLETION DATE: 27/10/1981

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 272 TYPE 2: C LENGTH:

EASTING: 715972.84 NORTHING: 6534820.21 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0

LATITUDE: 31°18'03.1" LONGITUDE: 137°16'09.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 75.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: G

LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1401

GROUND (Targetting) SURVEYS: ? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-2

<u>GEOCHEMISTRY REF:</u> ENV 3703 P1401 6962 P1641 <u>PETROLOGY REF:</u> ENV 3703 P1617

OTHER: WATER

REF: ENV 3703 P1258

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

DATE: 21/07/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EC 49

MAP: 6335 UNIT: 97 NAME: EC SEQ. NO: 49

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY REPT OCT 1981 SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 49

REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM

TOTAL DEPTH: 240.00 m COMPLETION DATE: 18/10/1981

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 240 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 715236.13 NORTHING: 6536216.14 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0 LATITUDE: 31°17'18.3" LONGITUDE: 137°15'40.1" GRID (ANS/CLK): ANS DNHOLE ORIENTO SURVY:

DIP ANGLE: - 90.00 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 75.00 HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1415

GROUND (Targetting) SURVEYS: ? GEOPHYS.(Down Hole): L GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 3703 F(XI)-8

GEOCHEMISTRY REF: ENV 3703 P1415 6962 P1642 PETROLOGY REF: ENV 3703 P1618

OTHER: WATER

<u>REF:</u> ENV 3703 P1258

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC

DATE: 21/07/92

UPDATE:

<u>DATE</u>: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                        HOLE NO: EC 40
           UNIT: 94 NAME: EC
                                                    SEQ. NO: 40
                                                                  CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP SSH
                                                          LEASE: EL 543
SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP
REFERENCE: 8TH & FINAL QTLY REPT OCT 1981
                                                        SAMREF CNO:
OTHER NAME: ELIZABETH CREEK 40
                                        REF. TYPE: COR ENV No: 3703
TARGET COMMODITY: BM
                            TOTAL DEPTH: 596.00 m COMPLETION DATE: 04/12/1981
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 379 TYPE 2: C LENGTH: 217 LOCATION: G
EASTING: 715968.98 NORTHING: 6529543.68 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0
LATITUDE: 31°20'54.3" LONGITUDE: 137°16'13.0" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid: .
                                                             (Lnorth > T):
ELEVATION: + 80.00
                        HUNDRED:
                                             SECTION:
                                                               STATUS: OP CA
```

LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1291 P1323 GEOL LOG EXISTS: D

GROUND (Targetting) SURVEYS: ? GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 3703 P1555 F(XI)-11

<u>GEOCHEMISTRY REF: ENV 3703 P1291 6962 P1634 PETROLOGY REF: ENV 3703 P1625</u>

OTHER: WATER REF: ENV 3703 P1258 GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: JLC <u>DATE</u>: 21/07/92 <u>UPDATE</u>: DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EC 47

MAP: 6335 UNIT: 95 NAME: EC SEQ. NO: 47 CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR SSH LEASE: EL 543 SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: 8TH & FINAL QTLY REPT OCT 1981 SAMREF CNO:

OTHER NAME: ELIZABETH CREEK 47 REF. TYPE: COR ENV No: 3703

TARGET COMMODITY: BM TOTAL DEPTH: 370.95 m COMPLETION DATE: 08/12/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 200 TYPE 2: C LENGTH: 171. LOCATION: G

EASTING: 714066.48 NORTHING: 6537694.32 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0 LATITUDE: 31°16'31.1" LONGITUDE: 137°14'54.7" GRID (ANS/CLK): ANS DNHOLE ORIENT SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 95.00 HUNDRED: SECTION:

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3703 P1298 P1391

GROUND (Targetting) SURVEYS: ? GEOPHYS. (Down Hole): CL GEOCHEMISTRY: PETROLOGY:

WATER: N PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: GEOPHYS DH. REF: ENV 3703 P1557 F(XI)-5

<u>GEOCHEMISTRY REF: ENV 3703 P1298 6962 P1639 PETROLOGY REF: ENV 3703 P1619</u>

GEOCHRONOLOGY REF: REF:

COMMENTS: MAG SUS ON P1557, SPEC GRAV ON P1564

DATE: 21/07/92 UPDATE: **DATE:** / /

Double Und. = Bore General DB, Single & Double Und. = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

والمراب والمراب والمراب والمنافي والمنافية والمنافرة والم

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: SAR 3 (PRL 4)

<u>MAP</u>: 6335 <u>UNIT</u>: 106 <u>NAME</u>: SAR

SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 226

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION (PTY) LTD

REFERENCE: 2ND & 4TH QTLY REPTS JUL 1976 JAN 1977 SAMREF CNO: 0001985

OTHER NAME: PRL 4 (RED LAKE 4) REF. TYPE: COR ENV No: 2703

TARGET COMMODITY: BM TOTAL DEPTH: 286.44 m COMPLETION DATE: 1/12/1976

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 177 TYPE 2: C LENGTH: 109 LOCATION: G

EASTING: 726500.00 NORTHING: 6539000.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: P

LATITUDE: 31°15'40.2" LONGITUDE: 137°22'43.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: C

<u>DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):</u>

ELEVATION: + 80.40 HUNDRED: SECTION: STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2703 P26 F2703-3

GROUND (Targetting) SURVEYS: P? GEOPHYS.(Down Hole): L GEOCHEMISTRY: PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ? GEOPHYS DH. REF: ENV 2703 P110

GEOCHEMISTRY REF: ENV 2703 P26

OTHER: WATER REF: ENV 2703 P15,26 GEOCHRONOLOGY REF:

COMMENTS: COMPLETED IN PANDURRA FM. LOCATION PLOTTED FROM LOCALITY PLAN +/ 1Km.

CHECKED: BJV/JLC DATE: 21/07/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: SAR 4 (PRL 5)

MAP: 6335 UNIT: 107 NAME: SAR

المعرار والمعالم والمعالم المناز والمعالم المعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم والمعالم

SEQ. NO: 4 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

PROVINCE CODES: GRP SSH LEASE: EL 226

the second of th

PETROLOGY REF:

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION (PTY) LTD

REFERENCE: 2ND &4TH QTLY REPTS JULY 1976 JAN 1977 SAMREF CNO: 0001985

OTHER NAME: PRL 5 (RED LALE 5 REF. TYPE: COR ENV No: 2703

TARGET COMMODITY: BM TOTAL DEPTH: 333.40 m COMPLETION DATE: 9/12/1976

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 185 TYPE 2: C LENGTH: 148 LOCATION: G

EASTING: 721200.00 NORTHING: 6532700.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: P

LATITUDE: 31°19'08.4" LONGITUDE: 137°19'28.3" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 100.3 <u>HUNDRED</u>: <u>SECTION</u>: <u>STATUS</u>:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2703 P28 F2703-4

GROUND (Targetting) SURVEYS: P? GEOPHYS.(Down Hole): GEOCHEMISTRY: PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ? GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2703 P28 PETROLOGY REF:

OTHER: WATER REF: ENV 2703 P15,28 GEOCHRONOLOGY REF:

COMMENTS: COMPLETED IN PANDURRA FM. LOCATION PLOTTED FROM LOCALITY PLAN +/ 1km.

CHECKED: BJV/JLC DATE: 21/07/92 UPDATE: DATE: / /

```
STUART SHELF BASEMENT PROJECT -- DRILLHOLE DATABASE
                                                        HOLE NO: PY 4
MAP: 6335
           UNIT:
                   104 NAME: PY
                                                    SEQ. NO: 4
                                                                   CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP SSH
                                                           LEASE: EL 951
SPONSOR CODE: CSR4 SPONSOR: CSR LIMITED ALUMINIUM MINERALS & CHEMICALS EXPL. GRP.
REFERENCE: DDH PERNATTY 4 (PY4) COMPLETION REPT.
                                                        SAMREF CNO: 0005224
OTHER NAME: PERNATTY 4
                                          REF. TYPE: COR ENV No: 6962
TARGET COMMODITY: BM
                            TOTAL DEPTH: 1015.00 m COMPLETION DATE: 17/01/1983
DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 9 TYPE 2: C LENGTH: 1006 LOCATION: G
EASTING: 711700.00 NORTHING: 6517500.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: 0
LATITUDE: 31°27'28.1" LONGITUDE: 137°13'40.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: T
DIP ANGLE: - 90.0 AZIMUTH (True): .
                                        Local Grid:
                                                              (Lnorth > T):
ELEVATION: + 58.00
                          HUNDRED:
                                                              STATUS: CA ST SH
                                              SECTION:
GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 6962 P661
GROUND (Targetting) SURVEYS: P
                               GEOPHYS. (Down Hole): C GEOCHEMISTRY: PETROLOGY:
WATER:
         PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:
GROUND SURVEY REF: ENV 6962 P660
                                          GEOPHYS DH. REF: ENV 6962 P701
GEOCHEMISTRY REF: ENV 6962 P674 P1659
                                          PETROLOGY REF: ENV 6962 P686
OTHER:
                 REF:
                                               GEOCHRONOLOGY REF:
COMMENTS:
```

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

DATE: 21/07/92

HOLE NO: SAR 2 (PRL 3)

<u>DATE</u>: / /

MAP: 6335 UNIT: 105 NAME: SAR SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

UPDATE:

LEASE: EL 226

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION (PTY) LTD

CHECKED: JLC/BJV

REFERENCE: 2ND & 4TH QTLY REPTS JULY 1976 JAN 1977

SAMREF CNO: 0001985

OTHER NAME: PRL 3 (RED LAKE 3)

REF. TYPE: COR ENV No: 2703

TARGET COMMODITY: BM

TOTAL DEPTH: 415.20 m COMPLETION DATE: 13/11/1976

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 155 TYPE 2: C LENGTH: 260. LOCATION: G

EASTING: 724390.00 NORTHING: 6520252.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: P LATITUDE: 31°25'50.1" LONGITUDE: 137°21'39.0" GRID (ANS/CLK): ANS DNHOLE ORIENT' SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 78.9

HUNDRED:

SECTION:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2703 P24 F2703-2

GROUND (Targetting) SURVEYS: P? GEOPHYS.(Down Hole): GEOCHEMISTRY: PETROLOGY:

WATER: H PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ?

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2703 P24 F-2

PETROLOGY REF:

OTHER: WATER

REF: ENV 2703 P15,24 GEOCHRONOLOGY REF:

COMMENTS: LOG ALSO APPEARS AS F3245(VII) 2 WITH COORDS CONFLICT WITH FIGS IN ENV 2703 CHECKED: BJV/JLC DATE: 21/07/92 UPDATE:

DATE: / /

```
STUART SHELF BASEMENT PROJECT -- DRILLHOLE DATABASE
```

HOLE NO: PY 2

GEOCHRONOLOGY REF:

MAP: 6335 UNIT: 102 NAME: PY SEQ. NO: 2 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 543

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: DRILL HOLE COMPLETION REPT PY2 FEB 1983 SAMREF CNO: 0005222

OTHER NAME: PERNATTY 2 REF. TYPE: COR ENV No: 6962

TARGET COMMODITY: BM TOTAL DEPTH: 926.60 m COMPLETION DATE: 07/06/1981

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 7 TYPE 2: LENGTH: 919 LOCATION: G

EASTING: 710160.00 NORTHING: 6523120.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: S

LATITUDE: 31°24'26.7" LONGITUDE: 137°12'38.2" GRID (ANS/CLK): ANS DNHOLE ORIENTH SURVY: T

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 97.57 HUNDRED: SECTION: STATUS: CA ST

GEOL LOG EXISTS: G LOGGED BY: GEOL GEOLOG REF: ENV 6962 P318 P477

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3703 P620 6962 P483 GEOPHYS DH. REF: ENV 6962 P492 P451

GEOCHEMISTRY REF: ENV 6962 P496 P1650 PETROLOGY REF: ENV 6962 P508

COMMENTS: DOWN HOLE LOGS F6962 16T019

REF:

OTHER:

CHECKED: JLC/BJV DATE: 21/07/92 UPDATE: DATE: //

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE HOLE NO: PY 3

MAP: 6335 UNIT: 103 NAME: PY SEQ. NO: 3 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 951

SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP

REFERENCE: DRILL HOLE COMPLETION REPT PY3 FEB 1983 SAMREF CNO: 0005223

OTHER NAME: PERNATTY 3 REF. TYPE: COR ENV No: 6962

TARGET COMMODITY: BM TOTAL DEPTH: 1288.30 m COMPLETION DATE: 29/01/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 493 TYPE 2: C LENGTH: 795 LOCATION: G

EASTING: 708860.00 NORTHING: 6524600.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: S

LATITUDE: 31°23'39.5" LONGITUDE: 137°11'47.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: T

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 68.20 HUNDRED: SECTION: STATUS: CA ST

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 6962 P550 P570

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y

WATER: A PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC : Y

GROUND SURVEY REF: ENV 3703 P620 6962 P556 GEOPHYS DH. REF: ENV 6962 P20,629 F-20-23

GEOCHEMISTRY REF: ENV 6962 P570 1653 PETROLOGY REF: ENV 6962 P586

OTHER: SEISMIC REF: ENV 3703 P751 GEOCHRONOLOGY REF:

COMMENTS: ENV 3703 P1258=WATER P1545=MAG SUS P1562=SG F(XI)-10,12,14,15=DNHOLE LOGS.

CHECKED: JLC/BJV DATE: 21/07/92 UPDATE: DATE: //

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: EC 21

MAP: 6335 UNIT: 100 NAME: EC CLASS: MW SEO. NO: 21 CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR GRP SSH LEASE: EL 543 SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP REFERENCE: 2ND QTLY REPT APR 1980 SAMREF CNO: OTHER NAME: ELIZABETH CREEK 21 REF. TYPE: COR ENV No: 3703 TARGET COMMODITY: BM TOTAL DEPTH: 1002.00 m COMPLETION DATE: 23/03/1980 DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 385 TYPE 2: C LENGTH: 617 LOCATION: G EASTING: 709400.00 NORTHING: 6526500.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: S LATITUDE: 31°22'37.5" LONGITUDE: 137°12'06.9" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . '(Lnorth > T): ELEVATION: + 70.61 HUNDRED: SECTION: STATUS: CA ST CO GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3703 P355 P432 P453 GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): LC GEOCHEMISTRY: Y PETROLOGY: Y <u>WATER:</u> A <u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: OTHER: GROUND SURVEY REF: ENV 3703 P437 GEOPHYS DH. REF: ENV 3703 P284 F(III)-26 GEOCHEMISTRY REF: ENV 3703 P282 P355 P519 PETROLOGY REF: ENV 3703 P465

COMMENTS: ADDITIONAL GEOCHEM ENV 6962 P1627 BAAS BECKING REPT?, COLLAPSED BELOW 805m

UPDATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

REF: ENV 3703 P627,282

DATE: 21/07/92

OTHER: WATER

CHECKED: JLC/BJV

HOLE NO: PY 1

DATE:

GEOCHRONOLOGY REF:

UNIT: 101 NAME: PY SEQ. NO: 1 CLASS: MW CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 543 SPONSOR CODE: CSR2 SPONSOR: CSR LIMITED MINERALS DIVISION EXPLORATION GROUP **SAMREF CNO: 0005221** REFERENCE: 6TH QTLY REPT APR 1981 COMPL RPT FEB 83 OTHER NAME: PERNATTY 1 REF. TYPE: COR ENV No: 3703 6962. TARGET COMMODITY: BM TOTAL DEPTH: 1293.30 m COMPLETION DATE: 20/03/1981 DRILLTECH: Dia SAMPLE: TYPE 1: C LENGTH: 1293 TYPE 2: LENGTH: . LOCATION: G EASTING: 709000.00 NORTHING: 6516000.00 ZONE: 53 MSG CONV: 1 10' LOCATION ACCURACY: S LATITUDE: 31°28'18.5" LONGITUDE: 137°11'59.7" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: T DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: (Lnorth > T): ELEVATION: + 57.42 HUNDRED: SECTION: STATUS: CA ST GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3707 P724 6962 P391 GROUND (Targetting) SURVEYS: P? GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY: Y PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: SEISMIC WATER: GROUND SURVEY REF: ENV 3703 P541 F(IV)-1 GEOPHYS DH. REF: ENV 3703 P727 6962 F-14 GEOCHEMISTRY REF: ENV 3703 P724 6962 P1644 PETROLOGY REF: ENV 6962 P425

GEOCHRONOLOGY REF: **REF: ENV 3703 P573** OTHER: SEISMIC

COMMENTS: DOWN HOLE LOGS ENV 6962 F-14,15

CHECKED: JLC/BJV DATE: 21/07/92 DATE: / / UPDATE:

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: SAR 8 (PRL 21)

MAP: 6334 UNIT: 59. NAME: SAR SEQ. NO: 8 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 389

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: QTLY REPTS 6 AUG 79;EL676 4-6 JUL OCT81

SAMREF CNO: 0001986

OTHER NAME: PRL 21 (RED LAKE 21)

REF. TYPE: COR ENV No: 3245

TARGET COMMODITY: BM TOTAL DEPTH: 1338.00 m COMPLETION DATE: / /1981

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 364 TYPE 2: C LENGTH: 974. LOCATION: G

<u>EASTING: 723420.00 NORTHING: 6502750.00 ZONE: 53 MSG CONV: 1 11' LOCATION ACCURACY: S</u>

LATITUDE: 31°35'18.8" LONGITUDE: 137°21'16.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: '(Lnorth > T):

ELEVATION: + 71.00

HUNDRED:

SECTION:

STATUS: CA ST

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3245 P186 F3245(VIII)

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): CL GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GPHY LOGGER : Y WATER:

GROUND SURVEY REF: ENV 3245 P530 GEOPHYS DH. REF: ENV 3245 P307 P334 P186

GEOCHEMISTRY REF: ENV 3245 P86 F(VII)-1 2 3 PETROLOGY REF: ENV 3245 P206 P210 P463

OTHER: GPHY LOGGER REF: ENV F3245(VII)-4 to 12 GEOCHRONOLOGY REF:

COMMENTS: PRL21=Precollar Commonwealth Catch grid:10880Em 667Nm

CHECKED: BJV/JLC

DATE: 17/07/92

UPDATE:

DATE: / /

HOLE NO: SAR 9 (PRL 23)

MAP: 6334 UNIT:

60. NAME: SAR

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

SEQ. NO: 9 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR GRP SSH LEASE: EL 676

SPONSOR CODE: ASP

SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: 7TH QTLY REPT MARCH 1982

SAMREF CNO: 0001986

OTHER NAME: PRL 23 (RED LAKE 23)

REF. TYPE: COR ENV No: 3245

TARGET COMMODITY: BM

TOTAL DEPTH: 1246.00 m COMPLETION DATE: 01/03/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 303 TYPE 2: C LENGTH: 943. LOCATION: G

EASTING: 722198.00 NORTHING: 6505216.00 ZONE: 53 MSG.CONV: 1 11' LOCATION ACCURACY: P

LATITUDE: 31°33'59.6" LONGITUDE: 137°20'28.2" GRID (ANS/CLK): ANS DNHOLE ORIENTA SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 72.04

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: D LOGGED BY: GEOL GEOLOG REF: ENV 3245 P528 F(IX)-4 5 6

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GEOPHYS DH. REF:

GROUND SURVEY REF: ENV 3245 P532 GEOCHEMISTRY REF: ENV F3245(IX)-4 5 6

PETROLOGY REF: ENV F3245(IX)-4 5 6

OTHER: REF:

GEOCHRONOLOGY REF:

and the second second

COMMENTS: LOCATION FROM W.NEWTON DBASE

CHECKED: BJV/JLC

<u>DATE</u>: 17/07/92 <u>UPDATE</u>:

DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: SAR 6 (PRL 11)

MAP: 6334 UNIT: 57. NAME: SAR

SEQ. NO: 6 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH LEASE: EL 226

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: 4TH & 6TH QTLY REPTS JAN JULY 1977

SAMREF CNO: 0001985

OTHER NAME: PRL 11 (RED LAKE 11)

REF. TYPE: COR ENV No: 2703

TARGET COMMODITY: BM

TOTAL DEPTH: 243.20 m COMPLETION DATE: 11/02/1977

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 210 TYPE 2: C LENGTH: 33. LOCATION: G

EASTING: 722100.00 NORTHING: 6500300.00 ZONE: 53 MSG CONV: 1 11' LOCATION ACCURACY: P

LATITUDE: 31°36'39.3" LONGITUDE: 137°20'28.5" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True):

L'ocal Grid: '(Lnorth > T):

ELEVATION: + 83.00 HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B

LOGGED BY: GEOL

GEOLOG REF: ENV 2703 P67 F2703-6

GROUND (Targetting) SURVEYS: P? GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY: WATER: N PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 2703 P115

GEOCHEMISTRY REF: ENV 2703 P67 F-6

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV/JLC

DATE: 17/07/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SAR 7 (PRL 19)

MAP: 6334 UNIT: 58. NAME: SAR

SEQ. NO: 7

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 389

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: 2ND & 5TH QTLY REPTS AUG 1978 MAY 1979

SAMREF CNO: 0001986

OTHER NAME: PRL 19 (RED LAKE 19)

REF. TYPE: COR ENV No: 3245

TARGET COMMODITY: BM

TOTAL DEPTH: 665.00 m COMPLETION DATE: 03/06/1979 DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 382 TYPE 2: C LENGTH: 283. LOCATION: G

EASTING: 731545.00 NORTHING: 6500270.00 ZONE: 53 MSG CONV: 1 11' LOCATION ACCURACY: S

LATITUDE: 31°36'33.5" LONGITUDE: 137°26'26.6" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: .

(Lnorth > T):

ELEVATION: + 80.00 GEOL LOG EXISTS: D

HUNDRED:

SECTION:

STATUS: CA

LOGGED BY: GEOL GEOLOG REF: ENV 3245 P41 F3245(VII)-7

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L? GEOCHEMISTRY: Y PETROLOGY: Y

WATER:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2703 P102

GEOPHYS DH. REF: SADME

GEOCHEMISTRY REF: ENV 3245 P41 F3245(VII)-7 PETROLOGY REF: ENV 3824 P191

REF:

GEOCHRONOLOGY REF:

COMMENTS: PRL19=Precollar Hole sited on Treasure Dam magnetic anomaly-grid "B"

CHECKED: BJV/JLC

DATE: 17/07/92

UPDATE:

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single & Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

65

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SAR 1 (PRL 1)

MAP: 6334 UNIT: 55. NAME: SAR

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 226

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: 2ND-4TH QTLY REPTS JUL OCT 1976 JAN 1977

SAMREF CNO: 0001985

OTHER NAME: PRL 1 (RED LAKE 1)

REF. TYPE: COR ENV No: 2703

TARGET COMMODITY: BM

TOTAL DEPTH: 169.07 m COMPLETION DATE: 06/11/1976

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 143 TYPE 2: C LENGTH: 26 / . LOCATION: G

EASTING: 729175.00 NORTHING: 6485525.00 ZONE: 53 MSG CONV: 1 11' LOCATION ACCURACY: S

LATITUDE: 31°44'33.7" LONGITUDE: 137°25'09.2" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: A

DIP ANGLE: - 90.0 AZIMUTH (True): •

Local Grid: (Lnorth > T):

ELEVATION: + 57.83

HUNDRED:

SECTION:

STATUS: CA

GEOL LOG EXISTS: D

LOGGED BY: GEOL

GEOLOG REF: ENV 2703 P20 F-1 3245 (7)-1 GROUND (Targetting) SURVEYS: P? GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER: H PALAEONTOLOGY: GROUND SURVEY REF:

METALLURGY: GEOCHRONOLOGY:

OTHER: GEOPHYS DH. REF: ENV 2703 P132

GEOCHEMISTRY REF: ENV 2703 P20

PETROLOGY REF:

OTHER: WATER

REF: ENV 2703 P15,20

GEOCHRONOLOGY REF:

COMMENTS: PRL1=Precollar ENV 3703 Geological log is incomplete.

CHECKED: BJV/JLC

DATE: 17/07/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: SAR 5 (PRL 10)

MAP: 6334 UNIT: 56. NAME: SAR

SEQ. NO: 5 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 226

SPONSOR CODE: ASP SPONSOR: AUSTRALIAN SELECTION PTY LIMITED

REFERENCE: 4TH OTLY REPT JAN 1977

SAMREF CNO: 0001985

OTHER NAME: PRL 10 (RED LAKE 10)

REF. TYPE: COR ENV No: 2703 TOTAL DEPTH: 199.80 m COMPLETION DATE: 17/12/1976

TARGET COMMODITY: BM

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 150 TYPE 2: C LENGTH: 50. LOCATION: G

EASTING: 722300.00 NORTHING: 6499400.00 ZONE: 53 MSG CONV: 1 11' LOCATION ACCURACY: P

LATITUDE: 31°37'08.3" LONGITUDE: 137°20'36.8" GRID (ANS/CLK): ANS DNHOLE ORIENTE SURVY: C

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

(Lnorth > T):

ELEVATION: + 73.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2703 P65 F2703-5

GROUND (Targetting) SURVEYS: P? GEOPHYS.(Down Hole): GEOCHEMISTRY: Y PETROLOGY:

OTHER:

WATER: N PALAEONTOLOGY: METALLURGY:

GEOCHRONOLOGY:

GROUND SURVEY REF:

GEOPHYS DH. REF: PETROLOGY REF:

GEOCHEMISTRY REF: ENV 2703 P65 F-5 OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV/JLC

DATE: 17/07/92

UPDATE:

<u>DATE</u>: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 162

MAP: 6333 UNIT: 156. NAME: EX

SEQ. NO: 162

CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 332

SAMREF CNO: 0002709

SPONSOR CODE: PAC

SPONSOR: PACMINEX PTY LIMITED

REFERENCE: FIFTH QTLY RPT SEPT 1978

OTHER NAME:

REF. TYPE: COR ENV No: 3024

TARGET COMMODITY: BM

TOTAL DEPTH: 196.00 m COMPLETION DATE: 17/06/1978

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 196 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 725646. NORTHING: 6453339. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°02'00.7" LONGITUDE: 137°23'22.1" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

(Lnorth > T):

ELEVATION: + 128.

HUNDRED:

SECTION:

STATUS: UK

Local Grid:

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 3024 P229

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

<u>WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:</u> GROUND SURVEY REF: ENV 3024 P173-175

GEOPHYS DH. REF: ENV 3024 F(II)-7,8

GEOCHEMISTRY REF: ENV 3024 P229

PETROLOGY REF:

OTHER:

GEOCHRONOLOGY REF:

COMMENTS: DRILLHOLE LOCATION & ELEV ESTIMATED FROM COMPANY MAP & SADME CONTOUR MAP

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

57

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: EX 171

MAP: 6333 UNIT: 154. <u>NAME</u>: EX

SEQ. NO: 171 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 534

SPONSOR CODE: CSR SPONSOR: CSR LIMITED

REFERENCE: 1ST QTLY RPT (PART 1) SEPT 1979

SAMREF CNO: 0002709

OTHER NAME:

REF. TYPE: COR ENV No: 3552

TARGET COMMODITY: BM

TOTAL DEPTH: 72.0 m COMPLETION DATE: 09/05/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 72 TYPE 2: LENGTH:

. LOCATION: ?

EASTING: 724953. NORTHING: 6417723. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°21'16.9" LONGITUDE: 137°23'25.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: . (Lnorth > T):

ELEVATION: + 85.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL

GEOLOG REF: ENV 3552 P68

GROUND (Targetting) SURVEYS: PG GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GROUND SURVEY REF: ENV 3552 P11,12

GEOCHRONOLOGY: OTHER: GEOPHYS DH. REF: ENV 3552 P22

GEOCHEMISTRY REF: ENV 3552 P68

PETROLOGY REF:

OTHER:

WATER:

REF:

GEOCHRONOLOGY REF:

DATE: / /

COMMEN S: BJV

DATE: 04/09/92

UPDATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 182

MAP: 6333 UNIT: 155. NAME: EX

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP

SEQ. NO: 182 CLASS: MW LEASE: EL 534

SPONSOR CODE: CSR

SPONSOR: CSR LIMITED

REFERENCE: 1ST QTLY RPT (PART 2) DEC 1979

SAMREF CNO: 0002709

OTHER NAME:

TARGET COMMODITY: BM

REF. TYPE: COR ENV No: 3552 TOTAL DEPTH: 120.0 m COMPLETION DATE: 25/10/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 120 TYPE 2: LENGTH:

EASTING: 710916. NORTHING: 6433807. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

. LOCATION: ?

LATITUDE: 32°12'44.8" LONGITUDE: 137°14'16.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

<u>DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .</u>

(Lnorth > T):

ELEVATION: + 140.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3552 P137

GROUND (Targetting) SURVEYS: PG GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 3552 P11,12 GEOCHEMISTRY REF: ENV 3552 P137

GEOPHYS DH. REF: PETROLOGY REF:

OTHER:

WATER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: BOTTOM HOLE VOLCANICS POSSIBLY "MONOMICT" CONGLOMERATE (JLC)

CHECKED: BJV

<u>DATE</u>: 04/09/92 <u>UPDATE</u>:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 114

MAP: 6333 UNIT: 152. NAME: EX

SEQ. NO: 114 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP SSH

LEASE: EL 50

SAMREF CNO: 0002710

SPONSOR CODE: MGU

SPONSOR: MOUNT GUNSON MINES PTY LTD

REFERENCE: OTLY RPT ENDING MARCH 1974

OTHER NAME:

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM

TOTAL DEPTH: 18.0 m COMPLETION DATE: 08/06/1974

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 18 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 722780. NORTHING: 6413593. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°23'32.5" LONGITUDE: 137°22'06.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 110.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

METALLURGY: GEOCHRONOLOGY:

LOGGED BY: GEOL GEOLOG REF: ENV 2273 P171 6667 P117

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: GROUND SURVEY REF: ENV 2273 P6 F(I)-1

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P171

PETROLOGY REF: ENV 6611 P859

OTHER:

OTHER:

WATER:

GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 169

MAP: 6333 UNIT: 153. NAME: EX

SEQ. NO: 169 PROVINCE CODES: GRP SSH

LEASE: EL 534

SPONSOR CODE: CSR SPONSOR: CSR LIMITED

CONFIDENTIAL STATUS (O/C): O

REFERENCE: 1ST QTLY RPT (PART 1) SEPT 1979

SAMREF CNO: 0002709

OTHER NAME:

REF. TYPE: COR ENV No: 3552

TARGET COMMODITY: BM

TOTAL DEPTH: 40.0 m COMPLETION DATE: 08/05/1979

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 40 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 724664. NORTHING: 6412497. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:

LATITUDE: 32°24'06.7" LONGITUDE: 137°23'19.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY: DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: .

(Lnorth > T):

ELEVATION: + 100.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 3552 P63

GROUND (Targetting) SURVEYS: PG GEOPHYS. (Down Hole): N GEOCHEMISTRY: Y PETROLOGY:

GROUND SURVEY REF: ENV 3552 P11,12

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 3552 P63

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT -- DRILLHOLE DATABASE

HOLE NO: EX 105

MAP: 6333 UNIT: 150. NAME: EX SEQ. NO: 105 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 50

SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD

REFERENCE: QTLY RPT ENDING MARCH 1974 SAMREF CNO: 0002710

OTHER NAME: REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM TOTAL DEPTH: 18. m COMPLETION DATE: 27/03/1974

DRILLTECH: Rth SAMPLE: TYPE 1: M LENGTH: 18 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 715994. NORTHING: 6409060. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°26'04.4" LONGITUDE: 137°17'50.5" GRID (ANS/CLK): ANS DNHOLE ORIENTN. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 139. HUNDRE

HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P162 6667 P108

GROUND (Targetting) SURVEYS: M GEOPHYS.(Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2273 P6 F(I)-1 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P162 PETROLOGY REF: ENV 6611 P852

OTHER: REF: GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: / /

STUART SHELF BASEMENT PROJECT -- DRILLHOLE DATABASE

HOLE NO: EX 108

MAP: 6333 UNIT: 151. NAME: EX SEQ. NO: 108 CI

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 50

SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD

REFERENCE: QTLY RPT ENDING MARCH 1974 SAMREF CNO: 0002710

OTHER NAME:

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM TOTAL DEPTH: 33.0 m COMPLETION DATE: 28/03/1974

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 33 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 718279. NORTHING: 6412813. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°24'01.0" LONGITUDE: 137°19'14.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 118. HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P165 6667 P111

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

<u>WATER:</u> <u>PALAEONTOLOGY:</u> <u>METALLURGY:</u> <u>GEOCHRONOLOGY:</u> <u>OTHER:</u>

GROUND SURVEY REF: ENV 2273 P6 F(I)-1 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P165 PETROLOGY REF: ENV 6611 P858

THER: GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
                                                        HOLE NO: EX 97
MAP: 6333 UNIT: 148. NAME: EX
                                                   SEQ. NO: 97
                                                                  CLASS: MW
CONFIDENTIAL STATUS (O/C): O
                              PROVINCE CODES: GRP
                                                          LEASE: EL 50
SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD
REFERENCE: QTLY RPT ENDING MARCH 1974
                                                        SAMREF CNO: 0002710
OTHER NAME:
                                        REF. TYPE: COR ENV No: 2273
TARGET COMMODITY: BM
                            TOTAL DEPTH: 17.0 m COMPLETION DATE: 23/03/1974
DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 17 TYPE 2: LENGTH: . LOCATION: ?
EASTING: 723761. NORTHING: 6406461. ZONE: 53 ZONE AZ: . LOCATION ACCURACY:
LATITUDE: 32°27'23.2" LONGITUDE: 137°22'49.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:
DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .
                                                              (Lnorth > T):
ELEVATION: + 96.
                        HUNDRED:
                                             SECTION:
                                                                STATUS: UK
GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P154 6667 P100
GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole):
                                                     GEOCHEMISTRY: Y PETROLOGY: Y
<u>WATER:</u> <u>PALAEONTOLOGY</u>: <u>METALLURGY</u>: <u>GEOCHRONOLOGY</u>: <u>OTHER</u>:
GROUND SURVEY REF: ENV 2273 P6 F(I)-1
                                       GEOPHYS DH. REF:
GEOCHEMISTRY REF: ENV 2273 P154
                                           PETROLOGY REF: ENV 6611 P848
OTHER:
                                                GEOCHRONOLOGY REF:
```

UPDATE:

DATE: 04/09/92

```
HOLE NO: EX 100
   STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
MAP: 6333
          UNIT: 149. NAME: EX
                                               SEQ. NO: 100 CLASS: MW
```

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GRP LEASE: EL 50

SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD

CHECKED: BJV

OTHER NAME:

REFERENCE: QTLY RPT ENDING MARCH 1974 SAMREF CNO: 0002710

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM TOTAL DEPTH: 9.0 m COMPLETION DATE: 26/03/1974

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 9 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 715310. NORTHING: 6404819. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°28'22.5" LONGITUDE: 137°17'27.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 136. HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P157 6667 P103

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole): GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2273 P6 F(I)-1 GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P157 PETROLOGY REF: ENV 6611 P849

REF: GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV <u>DATE</u>: 04/09/92 <u>UPDATE</u>:

<u>Double Und.</u> = Bore General DB, <u>Single</u> & <u>Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 34

MAP: 6333 UNIT: 56. NAME: EX

SEQ. NO: 34 CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH LEASE: EL 50

SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD

REFERENCE: QTLY RPT ENDING MARCH 1974

SAMREF CNO: 0002710

OTHER NAME:

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM

TOTAL DEPTH: 38.1 m COMPLETION DATE: 18/10/1973

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 38 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 723493. NORTHING: 6408843. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°26'06.1" LONGITUDE: 137°22'37.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 101.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL

GEOLOG REF: ENV 2273 P91 6667 P37

GEOPHYS DH. REF:

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole):

GEOCHEMISTRY: Y PETROLOGY: Y

PALAEONTOLOGY: GROUND SURVEY REF: ENV 2273 P6 F(I)-1

METALLURGY: GEOCHRONOLOGY: OTHER:

GEOCHEMISTRY REF: ENV 2273 P91

PETROLOGY REF: ENV 6611 P834

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE:

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: EX 38

MAP: 6333 UNIT: 147. NAME: EX SEQ. NO: 38

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP

LEASE: EL 50

SPONSOR CODE: MGU SPONSOR: MOUNT GUNSON MINES PTY LTD

REFERENCE: QTLY RPT ENDING MARCH 1974

SAMREF CNO: 0002710

OTHER NAME:

REF. TYPE: COR ENV No: 2273

TARGET COMMODITY: BM TOTAL DEPTH: 56.4 m COMPLETION DATE: 01/11/1973

DRILLTECH: RtH SAMPLE: TYPE 1: M LENGTH: 56 TYPE 2: LENGTH: . LOCATION: ?

EASTING: 719543. NORTHING: 6408357. ZONE: 53 ZONE AZ: . LOCATION ACCURACY: P

LATITUDE: 32°26'24.7" LONGITUDE: 137°20'06.9" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 118.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 2273 P95 6667 P38

GEOCHEMISTRY: Y PETROLOGY: Y

GROUND (Targetting) SURVEYS: M GEOPHYS. (Down Hole):

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 2273 P6 F(I)-1

GEOPHYS DH. REF:

GEOCHEMISTRY REF: ENV 2273 P95

PETROLOGY REF: ENV 6611 P838

OTHER:

WATER:

REF:

GEOCHRONOLOGY REF:

COMMENTS: LOG AMENDED AFTER PETROLOGY. HOLE LOCAL & ELEV ESTIMATED FROM CO PLANS

CHECKED: BJV

DATE: 04/09/92 UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: NHD 1

MAP: 6435 UNIT:

5 NAME: NHD

SEQ. NO: 1

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR SSH

LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORP PTY LTD EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ REPT JUNE 1986

SAMREF CNO: 0001473.

OTHER NAME: NOLTENIUS HILL D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM U Au

TOTAL DEPTH: 643.20 m COMPLETION DATE: 26/06/1979

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 300 TYPE 2: C LENGTH: 343. LOCATION: G

EASTING: 743700.00 NORTHING: 6537000.00 ZONE: 53 MSG CONV: 1 26' LOCATION ACCURACY: P

LATITUDE: 31°16'32.6" LONGITUDE: 137°33'35.0" GRID (ANS/CLK): ANS DNHOLE ORIENTH SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid: (Lnorth > T):

ELEVATION: + 140.00

HUNDRED:

SECTION:

STATUS:

GEOL LOG EXISTS: D

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P315 F6562(I)-2

GROUND (Targetting) SURVEYS: N GEOPHYS.(Down Hole): LC GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY:

OTHER:

GROUND SURVEY REF:

GEOPHYS DH. REF: ENV 6562 P660 F6562(I)-3

GEOCHEMISTRY REF: ENV 6562 P654

PETROLOGY REF:

OTHER:

GEOCHRONOLOGY REF:

COMMENTS:

WATER:

CHECKED: BJV/JLC

DATE: 21/07/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: MRD-1

MAP: 6436 UNIT: 6 . NAME: MRD

SEQ. NO: 1

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GRP SSH

LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION REFERENCE: PARTIAL RELINQ RPT JUNE 1986

SAMREF CNO: 0001473

OTHER NAME: MURDIE D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM

TOTAL DEPTH: 918.00 m COMPLETION DATE: 18/11/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 104 TYPE 2: C LENGTH: 814 LOCATION: G

EASTING: 764620.00 NORTHING: 6570720.00 ZONE: 53 MSG CONV: 1.24 LOCATION ACCURACY:

LATITUDE: 30°58'02.2" LONGITUDE: 137°46'13.5" GRID (ANS/CLK): ANS DNHOLE ORIENTH SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): .

Local Grid:

(Lnorth > T):

ELEVATION: + 31.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS: B

LOGGED BY: GEOL GEOLOG REF: ENV 6562 P304 P442

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER:

PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 6562 P39 F-32 GEOCHEMISTRY REF: ENV 6562 P446 P643

GEOPHYS DH. REF: ENV 6562 P643 PETROLOGY REF: ENV 6562 P444

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

<u>DATE</u>: / /

<u>Double Und.</u> = Bore General DB, <u>Single</u> & <u>Double Und.</u> = GIS DB System. SADME V. MAY 92/G03349.BJC/JLC.

APPENDIX 2.4

73

STUART SHELF BASEMENT PROJECT — DRILLHOLE DATABASE

HOLE NO: TD 1

MAP: 6436 UNIT: 14. NAME: TD

SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O LEASE: EL 1338 PROVINCE CODES: GCR SSH

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT OCT 1991

SAMREF CNO: 0005709

OTHER NAME: TORRENS D1

REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 498.00 m COMPLETION DATE: 10/02/1977

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 58 TYPE 2: C LENGTH: 440. LOCATION: ?

EASTING: 750800.00 NORTHING: 6589685.00 ZONE: 53 ZONE AZ: 1.24 LOCATION ACCURACY:

LATITUDE: 30°47'57.6" LONGITUDE: 137°37'16.3" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid:

(Lnorth > T):

ELEVATION: + 32.00

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS:

LOGGED BY: GEOL GEOLOG REF: ENV 8482 P116,176

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER: WATER: GROUND SURVEY REF: ENV 8482 F-6 P588

GEOPHYS DH. REF: ENV 8482 P308

GEOCHEMISTRY REF: ENV 8482 P308

PETROLOGY REF:

OTHER:

REF:

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: TD 2

MAP: 6436 UNIT: 15. NAME: TD

SEQ. NO: 2

CLASS: MW

CONFIDENTIAL STATUS (O/C): O

PROVINCE CODES: GCR SSH

LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION REFERENCE: PARTIAL RELING REPORT OCT 1991

SAMREF CNO: 0005709

OTHER NAME: TORRENS D2

REF. TYPE: COR ENV No: 8482

ZONE: 53 ZONE AZ: 1.24 LOCATION ACCURACY:

TARGET COMMODITY: BM Au U TOTAL DEPTH: 881.00 m COMPLETION DATE: 16/12/1981

DRILLTECH: Prd SAMPLE: TYPE 1: M LENGTH: 36 TYPE 2: C LENGTH: 845. LOCATION: ?

LATITUDE: 30°47'09.9" LONGITUDE: 137°39'01.8" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: .

(Lnorth > T):

ELEVATION: + 31.00

EASTING: 753640.

HUNDRED:

SECTION:

STATUS: UK

GEOL LOG EXISTS:

NORTHING: 6591090.

LOGGED BY: GEOL GEOLOG REF: ENV 8482 P122,178

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

PALAEONTOLOGY:

METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 F-6 P588 GEOCHEMISTRY REF: ENV 8482 P323

PETROLOGY REF:

REF:

GEOCHRONOLOGY REF:

GEOPHYS DH. REF: ENV 8482 P323

COMMENTS: LOCAL GRID 95400N 203000E. NO AMG FOUND. ESTIMATED FROM LOCALITY PLAN

CHECKED: BJV

DATE: 04/09/92

UPDATE:

DATE: / /

```
STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE
```

HOLE NO: TD 3

<u>MAP</u>: 6436 <u>UNIT</u>: 16. <u>NAME</u>: TD <u>SEQ. NO</u>: 3 <u>CLASS</u>: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: GCR SSH LEASE: EL 1338

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELINQ REPORT OCT 1991 SAMREF CNO: 0005709

OTHER NAME: TORRENS D1 REF. TYPE: COR ENV No: 8482

TARGET COMMODITY: BM Au U TOTAL DEPTH: 733.40 m COMPLETION DATE: 15/06/1982

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 34 TYPE 2: C LENGTH: 699. LOCATION: ?

EASTING: 751900. NORTHING: 6594490. ZONE: 53 ZONE AZ: 1.24 LOCATION ACCURACY:

LATITUDE: 30°45'20.9" LONGITUDE: 137°37'53.4" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Lnorth > T):

ELEVATION: + 34. HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: LOGGED BY: GEOL GEOLOG REF: ENV 8482 P132,184

GROUND (Targetting) SURVEYS: P GEOPHYS.(Down Hole): C GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

GROUND SURVEY REF: ENV 8482 F-6 P588 GEOPHYS DH. REF: ENV 8482 P338

GEOCHEMISTRY REF: ENV 8482 P338 PETROLOGY REF:

OTHER: GEOCHRONOLOGY REF:

COMMENTS: LOCAL GRID 99000N, 203100E. NO AMG, NO ELEVATION. ESTIMATED FROM CO PLAN

CHECKED: DATE: // UPDATE: DATE: //

STUART SHELF BASEMENT PROJECT - DRILLHOLE DATABASE

HOLE NO: WWD 1

MAP: 6436 UNIT: 11. NAME: WWD SEQ. NO: 1 CLASS: MW

CONFIDENTIAL STATUS (O/C): O PROVINCE CODES: SSH LEASE: EL 1316

SPONSOR CODE: WMC4 SPONSOR: WESTERN MINING CORPORATION LIMITED EXPLORATION DIVISION

REFERENCE: PARTIAL RELING REPORT JUNE 1986 SAMREF CNO: 0001473

OTHER NAME: WEST WELL D1

REF. TYPE: COR ENV No: 6562

TARGET COMMODITY: BM TOTAL DEPTH: 762.10 m COMPLETION DATE: 13/06/1978

DRILLTECH: PrD SAMPLE: TYPE 1: M LENGTH: 72 TYPE 2: C LENGTH: 690. LOCATION: G

EASTING: 764650.00 NORTHING: 6621440.00 ZONE: 53 ZONE AZ: 1.24 LOCATION ACCURACY:

LATITUDE: 30°30'36.4" LONGITUDE: 137°45'27.6" GRID (ANS/CLK): ANS DNHOLE ORIENTA. SURVY:

DIP ANGLE: - 90.0 AZIMUTH (True): . Local Grid: . (Laorth > T):

ELEVATION: + 32.00 HUNDRED: SECTION: STATUS: UK

GEOL LOG EXISTS: B LOGGED BY: GEOL GEOLOG REF: ENV 6562 P356,458

GROUND (Targetting) SURVEYS: P GEOPHYS. (Down Hole): L GEOCHEMISTRY: Y PETROLOGY:

WATER: PALAEONTOLOGY: METALLURGY: GEOCHRONOLOGY: OTHER:

the second secon

GROUND SURVEY REF: ENV 8482 P20,42 F-38 GEOPHYS DH. REF: ENV 8482 F-4

GEOCHEMISTRY REF: ENV 6562 P719 PETROLOGY REF:

OTHER: REF: GEOCHE

GEOCHRONOLOGY REF:

COMMENTS:

CHECKED: BJV DATE: 04/09/92 UPDATE: DATE: //

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 3.1

DH_LOG - Field Descriptions

APPENDIX 3.1

DH_LOG - Field Descriptions

The DH_LOG file has 18 fields. A header, listing recommended field size, 10 character dBASE compatible field name and corresponding printout filed names in both column and row format is incuded in both the DH_LOG.WK1 & .TXT files (Appendices 4.1 & 4.2).

Codes for the data in DH_LOG are listed in Appendices 3.2 (SS_STRAT), 3.3 (LIMIN_CD) and 3.4 (DESCP_CD).

The header of the DH_LOG data entry template (Appendix 1.1) is used to generate 5 index fields in the file table (including key fields) for each 13 field row used to specify a geological unit. The drillhole name and sequential number fields are included for user convenience since they duplicate information in DH_INDEX.

The fields listed below are presented with the following format:-

NAME: (N,Td)

tabl_fldnm Description

where-

NAME: = Field name as used in DH_LOG printout (Appendices 1.2 & 3.5).

(N,Td) = N =field size - Includes spaces, \pm signs and decimals.

T = field status - M = Mandatory, O = Optional, R = Recommended

d = data type - c = character, i = integer, r = real number

tabl_fldnm = Field name used in DH_LOG file table (10 character, dBASE-compatibile).

Description = Explanatory text.

Descriptions:-

MAP NO: (4,Mi)

map_sheet 1:100,000 map sheet within which the drillhole is located eg 6335 = Arcoona sheet.

UNIT NO: (6,Mi)

unit_no Sequential no. serially issued from the DHDB for drillholes within each 1:100,000

map sheet.

MAPUNO: (9,Ac)

map_uno Field generated by :- MAPUNO: = MAP NO: + UNIT NO: to provide a single unique

identifier. MAPUNO: is unsuitable for ASCII sorting of data records by map sheet

because UNIT NO: is defined without leading zeros.

HOLE: (10,Rc)

dh name Text portion of the drillhole name. This is the name commonly used in literature, eg.

"SLT" from drillhole SLT-6.

NUMBER: (4,Mi)

dh_seqno The numeric portion of the drillhole name, commonly a sequential number (eg "6" from

drillhole SLT-6).

GIS Unit: (11,Mc)

strat_code Code for the stratigraphic unit to which the described interval has been assigned.

DH_LOG uses SS_STRAT a subset of the recently developed SASTRAT

stratigraphic coding system (see Appendix 3.2).

Sub: (1,Mc:1,Mc)

strat_sub Field for designating the stratigraphic 'level' of the unit being described. The "Y" flag

indicates that the interval is a sub-division of the immediately preceding unit marked with an "N" flag. The "N" flagged intervals are designed to assist the generation of

compact summaries.

From: (7,Mr)

uppr_dpth This value is the upper-most logged depth of the unit being described (DH_LOG

depths are in meters).

To: (7,Mr)

lowr_dpth This value is the lower-most recorded depth of the unit being described and may

correspond to the drillhole total depth (DH_LOG depths are in meters).

1st Lith: (4,Mc)

lith_1 A valid upper case lithology/mineral code that best describes the dominant component

present in the depth interval (See Appendix 3.3 LIMIN_CD).

2nd Lith: (4,Mc)

lith 2 A valid upper case lithology/mineral code that best describes the second dominant

component present in the depth interval.

Rock Description: (40,Oc)

descriptin Field for free-text geological description of the drilled interval. The codes presented in

Appendix 3.4 (DESCP_CD) were used in DH_LOG.

Alterat.: (4,Oc)

alteration Field for up to four alteration types using single letter codes as provided in Appendix

3.4. (eg QSH = silicified, sericitic and hematitic alteration.)

Texture / Fabric: (4,Oc:4,Oc)

text_fab_1 text_fab_2 Fields for codes indicating rock texture, structure or fabric. Codes as in

Appendix 3.4 DESCP_CD.

Core /_: (3,Oi)

core_angle Average acute angle in whole degrees between the axis of the drill core and any

layering, bedding, foliation, or tabular intrusive units according to the nature of the

unit that is present.

Formation / Comment: (40,Oc)

extra info A free text field for additional descriptive data. Particularly suited to special aspects

such as mineralisation, veining, etc.. Codes as in Appendix 3.4 DESCP_CD.

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 3.2

SS_STRAT - List of Stratigraphic Codes

Stratigraphic Codes used by the Stuart Shelf Database

These codes are adapted from the SASTRAT database which was still under compilation during this phase of the project. For this reason some codes may differ from the final SASTRAT listing and will be updated in the next phase.

The stratigraphic names are presented with the following typographic hierarchy

AGE

PNhh1

Neoproterozoic

SUPERGROUP

GROUP (INFORMAL GROUPING)

Subgroup

Formation

Member

Da

Informal lithological unit

NB Quotation marks around a stratigraphic name implies that the unit (or group etc) and its code are specific to this project, informal and not used in SASTRAT.

CODE	Age	Stratigraphic Name
CAINOZOIC		
Q	Quaternary	UNDIFFERENTIATED QUATERNARY
TO	Tartian (Ossatanna)	I B ID THE DAY OF A STATE OF A ST
TQ	Tertiary/Quaternary	UNDIFFERENTIATED QUATERNARY-TERTIARY
T	Tertiary	UNDIFFERENTIATED TERTIARY
	,	ONDER BRESTIANDE TERMINAL
MESOZIC		
K	Cretaceous	UNDIFFERENTIATED CRETACEOUS
		STATE STATE OF THE
Kmb	Cretaceous	Buildog Shale
Knc	Cretaceous	Cadna-owie Formation
Knca	Cretaceous	Mt Anna Sandstone Member
		The same same same same same same same sam
JK	Jurassic-Cretaceous	UNDIFFERENTIATED JURASSIC-CRETACEOUS
JKa	Jurassic-Cretaceous	Algebuckina Sandstone
PALAEOZOIC		
Ps	Permian	Stuart Range Formation
CP	Carb-Permian	UNDIFFERENTIATED CARBONIFEROUS-PERMIAN
СРЬ	Carb-Permian	Boorthanna Formation
_		
E	Cambrian	UNDIFFERENTIATED CAMBRIAN
Eh	Cambrian	HAWKER GROUP
Eha	Cambrian	Andamooka Limestone
Ehp	Cambrian	Parachilna Formation
Eoy	Cambrian	Yarrawurta Shale
PROTEROZOIC - up		
PN	Neoproterozoic	UNDIFFERENTIATED NEOPROTEROZOIC
DNI	37	THE BOLL AS AS
PNw	Neoproterozoic	WILPENA GROUP
PNwb	Neoproterozoic	Bunyeroo Formation
PNwy	Neoproterozoic	Yarloo Shale
PNwyl	Neoproterozoic	Yarloo Shale "informal facies 1, shale/siltstone"
PNwy2	Neoproterozoic	Yarloo Shale "informal facies 2, siltsone/sandstone"
PNs	Neoproterozoic	Sandison Subgroup
PNsa	Neoproterozoic	ABC Range Quartzite
PNsb	Neoproterozoic	Brachina Formation
PNsbb	Neoproterozoic	Bayley Range Siltstone Member
PNst	Neoproterozoic	Tent Hill Formation
PNst1	Neoproterozoic	Tent Hill Formation "informal 1, f.g. sandstone"
PNsts	Neoproterozoic	Simmens (Arcoona) Quartzite Member
PNstc	Neoproterozoic	Corraberra Sandstone Member
PNstt	Neoproterozoic	Tregolana (Woomera) Shale Member
PNsn	Neoproterozoic	Nuccaleena Formation
DNI	NT	IN IDED ADALL OF CAR
PNu	Neoproterozoic	UMBERATANA GROUP
PNh	Neoproterozoic	Willochra Subgroup
PNhl	Neoproterozoic	Elatina Formation
PNhir	Neoproterozoic	Reynella Siltstone
PNhh	Neoproterozoic	Whyaila Sandstone

Whyalla Sandstone "informal 1, dolomitic"

PNh1	Namental	Manage of the Control
	Neoproterozoic	"Yudnapinna Beds"
PNh2	Neoproterozoic	"Cattle Grid Breccia"
PNh3	Neoproterozoic	"Pandurra Regolith"
PNhw	Neoproterozoic	Wilmington Formation
PNha	Neoproterozoic	
PNf	•	Angepena Formation
	Neoproterozoic	<u>Farina Subgroup</u>
PNfh	Neoproterozoic	Brighton Limestone
PNft	Neoproterozoic	Tapley Hill Formation
PNftw	Neoproterozoic	Woocalla Do lom ite Member
PNft1	-	
	Neoproterozoic	"Gunson Beds"
PNft2	Neoproterozoic	"Mcleay Regolith"
PNft3	Neoproterozoic	"Yeltacowie Sandstone"
PNft4	Neoproterozoic	"Gunson Beds Breccia"
PNua	- · · · · · · · · · · · · · · · · · · ·	
rivua	Neoproterozoic	Appila Tillite
PNb	Neoproterozoic	BURRA GROUP
PROTEROZO	IC - middle	
PM	Mesoproterozoic	I DIDITED DAME A COLOR OF COLOR
	•	UNDIFFERENTIATED MESOPROTEROZOIC
PM1	Mesoproterozoic	"Arcoona Mafic Suite"
PM1f	Mesoproterozoic	"Arcoona Mafic Suite - anorthosite"
PM1m	Mesoproterozoic	"Arcoona Mafic Suite - gabbro"
PM1h	•	• • • • • • • • • • • • • • • • • • • •
rivitii	Mesoproterozoic	"Arcoona Mafic Suite - hybrid gabbro"
PMy	Mesoproterozoic	BACKY GROUPING
PMye	Mesoproterozoic	Beda Volcanics
PMya	Mesoproterozoic	
		Backy Point Formation
PMyg	Mesoproterozoic	Gairdner Dyke Swarm
РМ-р	Mesoproterozoic	Pandurra Formation
PM-p4	Mesoproterozoic	"Pandurra Formation Member 4"
•		
PM-p3a	Mesoproterozoic	"Pandurra Formation Member 3a"
PM-p3	Mesoproterozoic	"Pandurra Formation Member 3"
PM-p2	Mesoproterozoic	"Pandurra Fo rm ation Member 2"
PM-pla	Mesoproterozoic	
-		"Pandurra Formation Member 1a - sandstone/shale"
PM-p1b	Mesoproterozoic	"Pandurra Formation Member 1b - grit/conglomerate"
PM-plc	Mesoproterozoic	"Pandurra Formation Member 1c - basal shale/siltstone"
PM-p1	Mesoproterozoic	"Pandurra Formation Member 1"
•		. William I dimension Monoci I
PMh	Maganestarozaio	TITL TADA OT HYDE
	Mesoproterozoic	HILTABA SUITE
PMh1	Mesoproterozoic	"Arcoona Megacrystic Granite"
PMh2	Mesoproterozoic	***** not assigned *****
PMh3	Mesoproterozoic	Hiltaba Suite - "pegmatitic phase"
PMh4	•	• • •
	Mesoproterozoic	"North Torrens Granite - granite breccia"
PMh5	Mesoproterozoic	"North Torre ns Granite - granite"
PMh6	Mesoproterozoic	"North Torrens Granite - microgranite"
PMh7	Mesoproterozoic	"North Torrens Granite - aplite"
PMh8		· · · · · · · · · · · · · · · · · · ·
	Mesoproterozoic	"North Torrens Granite - porphyry"
PMh9	Mesoproterozoic	"Willaroo Porphyry"
PMh10	Mesoproterozoic	"Acropolis Granite"
PMh11	Mesoproterozoic	"Acropolis Syenite"
PMw	•	
	Mesoproterozoic	WIRRDA SUB-SUITE
PMw1	Mesoproterozoic	"Wirrda Breccia Complex"
PM wr	Mesoproterozoic	Roxby Downs Granite
PMwro	Mesoproterozoic	Olympic Dam Breccia Complex
PMwro1	•	
	Mesoproterozoic	"Olympic Dam Hematite Breccia"
PMwro2	Mesoproterozoic	"Olympic Dam Granite Breccia"
PMwro3	Mesoproterozoic	"Olympic Dam Hematite/Sulphide Breccia"
PMwr1	Mesoproterozoic	Roxby Downs Granite "granite breccia"
PMwr2		
	Mesoproterozoic	Roxby Downs Granite "granite"
PMwr3	Mesoproterozoic	Roxby Downs Granite "microgranite"
PMwr4	Mesoproterozoic	Roxby Downs Granite "megacrystic granite"
PMwr5	Mesoproterozoic	Roxby Downs Granite "biotite granite"
PMwr6	Mesoproterozoic	Roxby Downs Granite "leucogranite"
PMwr7		
	Mesoproterozoic	Roxby Downs Granite "granodiorite"
PMwr8	Mesoproterozoic	Roxby Downs Granite "diorite"
PMa	Mesoproterozoic	GAWLER RANGE VOLCANICS
PMalg	Mesoproterozoic	Gawler Range Volcanics "Gunson mafic extrusive"
PMa2g	Mesoproterozoic	
•		Gawler Range Volcanics "Gunson dacite #1"
PMa3g	Mesoproterozoic	Gawler Range Volcanics "Gunson K-mafic extrusive"
PMa4g	Mesoproterozoic	Gawler Range Volcanics "Gunson conglomerate"
PMa5g	Mesoproterozoic	Gawler Range Volcanics "Gunson dacite #2"
PMa6g	Mesoproterozoic	
1 MITTOR	Mesopioierozoie	Gawler Range Volcanics "Gunson felsic extrusive breccia"

PMa7g	Mesoproterozoic	Gawler Range Volcanics "Gunson andesite/dacite"
PMa8g	Mesoproterozoic	Gawler Range Volcanics "Gunson lamproite"
PMa9g	Mesoproterozoic	Gawler Range Volcanics "Gunson dolerite"
PMa10	Mesoproterozoic	"GRV Arcoona Mafic Dyke"
PMal1	Mesoproterozoic	"Arcoona Volcanics"
PMa12	Mesoproterozoic	"Bills Lookout Dolerite"
PMa13	Mesoproterozoic	"Red Dam Monzonite"
PMa14	Mesoproterozoic	"Acropolis Feldspar Porphry"
PMa15	Mesoproterozoic	"Acropolis hematite/magentite hydrothermal rock"
PMa16	Mesoproterozoic	"Acropolis sinter"
PMar	Mesoproterozoic	Roopena Volcanics
	2	reopena voicames
PMc	Mesoproterozoic	CORUNNA GROUPING
PMc1	Mesoproterozoic	
PMcl	Mesoproterozoic	"Corunna Conglomerate Correlate"
PMcla*	<u> </u>	Labyrinth Formation
rivicia.	Mesoproterozoic	"GRV / Labryinth Fm package"
DDOTEDOZOIO I		
PROTEROZOIC - I		
PP	Palaeoproterozoic	UNDIFFERENTIATED PALEOPROTEROZOIC
PP1	Palaeoproterozoic	"Elizabeth Creek granite"
PP2	Palaeoproterozoic	"Arcoona Leucogranite"
PP3	Palaeoproterozoic	"Arcoona BIF Breccia"
PP4	Palaeoproterozoic	"Arcoona chlorite rock"
PP5	Palaeoproterozoic	"Arcoona BIF"
PP6	Palaeoproterozoic	"Arcoona Arkose"
PPw	Palaeoproterozoic	" <u>WANDEARAH GROUPING</u> "
PPwp1	Palaeoproterozoic	"Pernatty Metasiltstone"
PPwp2	Palaeoproterozoic	"Upper Pernatty Metasiltstone"
PPwp3	Palaeoproterozoic	"Middle Pernatty Metasiltstone Breccia"
PPwp4	Palaeoproterozoic	"Lower Pernatty Metasiltstone Breccia"
PPwp5	Palaeoproterozoic	"Arcoona Chert"
PPwp6	Palaeoproterozoic	"Pernatty Volcanics (basic)"
PPw1	Palaeoproterozoic	"Cocky Swamp Skarn"
PPw2	Palaeoproterozoic	"Lake Torrens BIF"
PPw3	Palacoproterozoic	"Lake Torrens Calcsilicate/Quartzite"
1,,	1 41-40 p 1 049102010	Dake Torrens Calcanicate/Quarizite
PPI	Palaeoproterozoic	LINCOLN COMPLEX
PPI1	Palaeoproterozoic	"Dromedary Dam Granite/Microgranite"
PPI2	Palaeoproterozoic	"Noltenius Gneiss"
	1 diacoprototozoic	Wollenius Gheiss
PPh	Palaeoproterozoic	LITTCHISON CROUD
PPh1	Palaeoproterozoic	HUTCHISON GROUP
PPh2		"Arcoona Schist"
	Palaeoproterozoic	"Arcoona Meta-pegmatites"
PPh3	Palacoproterozoic	"Bopeechee Chlorite Schist"
PPh4	Palaeoproterozoic	"Bopeechee Amphibolite"
PPh5	Palaeoproterozoic	"Bopeechee Meta-basalt?"
PPh6	Palaeoproterozoic	"Bopeechee Meta?-shale"
PPh7	Palaeoproterozoic	"Stuart Range Amphibolite"
PPh8	Palaeoproterozoic	"Strafford Swamp Schist"
ARCHAEAN		
4 4	A 1	

Non Stratigraphic Abbreviations
CODE UNIT
brl Fault Breccia

Archaean

A1

"Devil's Playground Volcanics"

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 3.3

LIMIN_CD - List of Lithological & Mineral Codes

ADM	1 117	DLAD	1.1
ADML	adamellite	DLAR	dolarenite
AEOL	aeolinite	DLMC	dolomicrite
AGLM	agglomerate	DLOM	dolomite
AGMT	agmatite	DOLR	dolerite
AGRN	alkalis granite	DUNT	dunite
ALLV	alluviium	DURI	duricrust
ALSK	alaskite	ELLV	elluvium
AMPH	amphibolite	ELUV	elluvium
AMPH	amphibolite	EXTR	igneous exrusive
ANDS	andesite	FBRC	fault breccia
ANRT	anorthosite	FECT	ferricrete
ANTH	anorthosite	FECT	laterite
APLT	aplite	FERC	laterite
ARGL	argillite	FERC	ferricrete
ARKS	arkose	FEST	ironstone
ARNT	arenite	FEXT	felsic extrusive
ASH	ash	FINT	felsic intrusive
BDST	boundstone	FLIN	flintstone
BIF	banded iron formation	FLST	felsite
BIFO	oxide facies BIF (hematite/geothite)	FPEG	felsic pegmatite
BIFR	reduced facies BIF (sulphides)	FSPO	feldspar porphry
BITM	bitumen	GBBR	gabbro
BREC	breccia	GBRO	_
			gabbro
BSLT	basalt	GIBB	gibber regolith
CAAR	calcarenite	GLAS	glass
CACT	calcrete	GLSS	glass
CAEH	calcareous earth	GNPH	granophyre
CALC	calcrete	GNSC	greenschist
CALC	caliche	GNSS	gneiss
CALI	caliche	GNST	greenstone
CALU	calcilutite	GOSS	gossan
CARU	calcrudite	GOUG	gouge
CASI	calcsilicate rock	GPCT	gypcrete
CATA	cataclasite	GPSM	gypsum
CBSD	chemical/biogenic sed.	GPST	grapestone
CBSS	chem/biognc-siliciclastic	GRAV	gravel
CGLM	conglomerate	GRDI	granodiorite
CGLT	conglomerate	GREI	greisen
CHRT	chert	GRIT	grit-bimodal sand/granule sediment
CLAY	clay	GRNL	granulite
CLLV	colluvium	GRNP	granophyre
CLRD	calcrudite	GRNT	granite
CLST	claystone	GRST	grainstone
CNCP	complex (multimin) vein	GRTD	granitoid
COAL	coal	GRVL	gravel
COQN	coquina	GSTN	grainstone
COQT	coquinite	GYPC	gypcrete
CPXT	clinopyroxenite	GYWK	greywacke
CRMT	chromitite	HALT	halite
DACT	dacite	HARZ	
			harzburgite
DIAT	diatomite	HFLS	hornfels
DIMC	diamictite	HYBR	hybrid (mixed melt) igneous
DIOR	diorite		intrusive

HANDD		METTO	
HYRR	hydrothermal replacement rock	METO	meteroite
HYTR	hydrothermal rock	MEXT	mafic extrusive
IEXT	intermediate extrusive	MFIG	meta-felsic igneous rock
IGNE	unclassified igneous	MGBR	metagabbro
IGNM	ignimbrite	MGYW	<i>C</i> 3
IINT	intermediate intrusive	MIGM	migmatite
IMPC	impactite	MIIG	meta-intermediate igneous
INTR	igneous intrusive	MINT	mafic intrusive
IPEG	intermediate pegmatite	MMIG	meta-mafic igneous rock
IRST	ironstone	MONZ	monzonite
JASP	jasper	MPEG	mafic pegmatite
JSPT	jasplilite	MPEL	metapelite
KIMB	kimberlite	MPOR	metaporphry
KIMB	kimberlite	MRBL	marble
KOMT	komatiite	MRBL	marble
KPHR	keratophyre	MREG	regional metamorphic
LATR	laterite	MRHY	metarhyolite
LAVA	lava	MSED	metasediment
LCGR	leucogranite	MSOM	metasomatite
LGNT	lignite	MTHR	
LGRT	leucogranitoid	MTUF	metatuff
LHZT	lherzolite	MUD	mud
LMST	limestone	MUIG	meta-ultramafic rock
LOAM	loam	MUIN	mafic/ultramafic intursy
LPHY	lamprophyre	MUIN	mafic/ultramafic intursy
LPRO	lamphroite	MVOL	
LPRO	lamphroite	MYLN	mylonite
LUTT	lutite	NEPH	•
MADL	microadamellite	NORT	nephelinite norite
			obsidian
MAGN	magnesite	OBSD	
MAND	meta-andesite	OISH	oil shale
MARB	marble	OPXT	orthopyroxenite
MARB	marble	OQZT	orthoquartzite
MARK	meta-arkose	OREB	orebody
MARL	marl .	PAMP	para-amphibolite
MARN	meta-arenite	PCST	pitchstone
MBAS	metabasalt	PDBR	pebble dyke breccia
MCDI	microdiorite	PEAT	peat
MCGD	microgranodiorite	PEGD	pegmatoids
MCGR	microgranite	PEGM	pegmatite
MCGT	microgranitoid	PELT	pelite
MCHM	chemical metamorphic	PERL	perlite
MCMZ	micromonzonite	PHBR	phreatic breccia
MCRT	micrite	PHON	phonolite
MCSY	microsyenite	PHOS	phosphorite
MDAC	metadacite	PHYL	phyllite
MDIO	metadiorite	PKST	packstone
MDLR	metadolerite	PRDT	peridotite
MDOL	metadolerite	PSAM	psammite
MDST	mudstone	PSCG	pseudoconglomerate
MDYN	dynamic metamorphic rock	PSEP	psephite
MEPH	melaphyre (vfg blk intrusive)	PXNT	pyroxenite
META	metamorphic rock(s)	PYRC	pyroclastic
			F 7

QDIO	quartz diorite
QFPO	quartz feldspar porphry
QTZT	quartzite
QZPO	quartz porphry
RDAC	rhyodacite
REGL	regolith
REGO	regolith
	•
RHLT	rhyolite
RHYD	rhyodacite
RHYO	rhyolite
RUBL	rubble-stoney regolith
RUDI	rudite
SAND	sand
SBRC	sedimentary breccia
SCHT	schist
SCNT	hydrothermal scinter
SCOR	scoria
SCRE	scree/talus
SDST	sandstone
SEDB	biochemical sedimentary rock
SEDC	chemical sedimentary rock
SEDL	clastic sedimentary rock
SEDM	sedimentary rock
SERP	serpentinite
SERP	serpentinite
SGWK	subgreywacke
SHLE	shale
SIBR	hyrdrothermal scinter breccia
SICT	silcrete
SILC	silcrete
SILT	silt
SKRN	skarn
SLAT	slate
SLST	siltstone
SOIL	soil
SPIL	spilite
SPST	soapstone
SSED	siliciclastic sed.
SURG	surge (plume)
SYEN	-
	syenite
TACH	tachelyte
TAND	trachyandesite
TBAS	trachybasalt
TECT	tecktite/australite
TEPH	tephra
THOL	tholeiite
TILL	tillite
TLUS	scree/talus
TONL	tonalite
TRAC	trachyte
TD AXI	4

TRAV

TRCH

TRON

travertine

trondhjemite

trachyte

TUFF tuff **UEXT** ultramafic extrusive UINT ultramafic intrusive UNKN unclassified **UPEG** ultramafic pegmatite VEIN hydrothermal vein anhydrite vein VNAH **VNCB** carbonate vein **VNQT** quartz vein VNSU sulphide vein VOLC volcanics VSND volcanic sandstone WKST wackestone WOOD wood

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 3.4

DESCP_CD - Geological Summary Shorthand Codes

CODES USED IN ROCK/INTERVAL DESCRIPTION FIELD

COLOURS		yel	yellow
		yl	yellow
bkrd	brick-red	ylbn	yellow-brown
blgn	blue-green	ylgn	yellow-green
blgy	blue-grey	ylbn	yellow-brown
blk	black	ylgn	yellow-green
blu	blue	ylwht	yellow-white
bn	brown	ylwt	yellow-white
brn	brown	OLIAI IEIEDO	
buf	buff	QUALIFIERS	11.
buff	buff	d/dk	
cbrn	chocolate-brown	l/lt	light
ch	chocolate	p/pl	pale
chbn	chocolate-brown		medium
chbrn	chocolate-brown		variegated
crm	cream	motl	mottled
gn	green	CD AINGIZE	
gngy	green-grey	GRAINSIZE	
grgn	grey-green	gnsz	grainsize
grn	green	ufg	ultra-fine/clay
gry	grey	vfg	very fine
gwht	grey-white	fg	fine
gy	grey	mg	medium
gybl	grey-blue	cg	coarse
gyblk	grey-black	vcg	very coarse
gybn	grey-brown	CHADEC	
gygn	grey-green	SHAPES	1.1. 1. 1. 1
kki	khaki	bld-	bladed shape
mar	maroon	pro-	prolate shape
ogbn	orange-brown	tab-	tabular shape
olgn	olive-green	equ-	equant shape euhedral
or orbn	orange brown	euh-	
orbn	orange-brown	suh- nod-	subhedral
org	orange		nodular shape
orgy owht	orange-grey orange-white	blby	blebby
	pink	BRECCIATIO	ant
pk nkbn	pink- pink-brown	BRECCIATIO	VIN
pkbn pnbn	pink-brown	brec	breccia-unqal
pnon	pink-brown pink	tabr	talus (gravity) breccia
ppbn	purple-brown	inbr	intraformational breccia
ppoli	purple purple	aubr	autobreccia
pplbn	purple-brown	pdbr	pebble-dyke breccia
pplgy	purple-grey	hybr	hydrothm/phreatic
pwht	pink-white	svbr	subvolcanic breccia
rbn	red-brown	vtbr	vent breccia
rbrn	red-brown	flbr	volc flow top breccia
rchbrn	red-chocolate-brown	vobr	volcanic breccia
rd	red	sebr	sedimentary breccia
rdbn	red-brown	tebr	tectonic breccia
rdpnk	red-pink	dibr	diatreme breccia
red	red	jsbr	jigsaw breccia
wht	white	dlbr	dilational breccia
wt	white	vnbr	vein breccia
wtgy	white-grey	,1101	
	67		

BOUNDARIES

ABUNDANCE

General		Relative/quali	tative
cnct	contact-unspecified	sup	superimposed
shct	sharp contact	prim	primary
grct	gradational contact	+	with/add
irct	irregular contact	-	without/less
rgct	regular contact	mnr	minor
C	<u> </u>	maj	major
Sedimentary		max	maximum
disf	disconformity	min	minimum
uncf	unconformity	lesr	lesser (comparative)
anuf	angular unconformity	incr	increased (comparative)
scfl	scour & fill	abun	abundance
tran	transition	Tr	trace
Other		accs	accessory
inct	intrusive contact	Quantatative	
ftct	fault contact	0	0-1%
grct	gradational contact	1	1-2%
unct	unclassifiable	2	2-3%
		3	3-4%
GENERAL T	ERMS	4	4-5%
		5	5-6%
Rock Format		6	6-7%
RK	rock	7	7-8%
CLS-r1	-r2 clasts	8	8-9%
XN-r1-	r2 xenoliths	9	9-10%
INC-t1	-t2 inclusions		
	-m2 veins	MINERAL FO	ORMS
PHXT-	m1-m2 phenocryst list		
Spatial Position	on	xtl	crystalline
loc	local	rxt	recrystallised
dist	distal	mxtl	microcrystalline
bas	basal	dru	drusy
upr	upper	jasp	jasperoidal
lwr	lower	cryp	crypto-crystalline
prox	proximal	orb	orbiculoidal
ovly	overlying	botr	botryoidal
unly	underlying	piso	pisolitic
dpth	depth	qey	quartz eye
Spatial Freque		rad	radiating
abu	abundant	sacc	saccaroidal
num	numerous	sphr	spherulitic
sly	slightly	vug	vug
occ	occasional	vugy	vughy
sct	scattered		
rar	rare	MINERAL T	EXTURES
com	common		
vrr	very rare	mtx	matrix
Orientation		mes	mesostasis
suhz	sub-vertical sub-vertical	phxt	phenocryst
suvt	sub-horizontal	phen	phenocryst
supl	sub-parallel	mgxt	megacryst
oblq	oblique	xnxt	xenocryst
acut	acute	meso	mesostasis
		gmas	groundmass
		phbl	porphrablast
		res	residual
		relc	relict
		skl	skeletal
		otln	outlined

TEXTURE CODES			onco	oncolites
GENERIC				
detr	detrital	Deposi	itional	
rewk	reworked		incl	intraclast
frgm	fragmental		nod	nodules
epcl	epiclastic		flu	flutes
marn	marine lacustrine		merk	mudcraked
lacu	terresrial		culn	current lineations
terr fluv	fluvial		teep slum	teepes slumps/ing
fisfl	fissure fill		lest	loadcasts
CLASTIC	nosure iii		fens	fenestral
cls	clast(s)		ological	
bld	boulder		pelo	pelloids
cbl	cobble		mico	microids
pbl	pebble		piso	pisoids
gnl	granule	·	pisl	pisolites
gra	grain		ool	oolites
Roundness	C		gypc	gypsum casts
ang	angular		halc	halite casts
sang	sub-angular		ctgr	coated grains
srnd	sub-rounded			
rnd	rounded	PALA	EONTO	LOGICAL
wrnd	well rounded			
Sorting		GENE	RAL	
usrt	unsorted		foss	fossiliferous
rsrt	rough/crude		mfos	micro foss
psrt	poorly std		bizn	biostrat zone
wsrt	well sorted		bima-n1	,n2 etc. biostrat marker
bsrt	bimodal srt	MARI	NE	
grty	gritty		marf	marine fossils
Cementation			mfos	mesofossils
cmnt	cemented		mifs	microfossils
scem	strongly		algf	algal fossils
wcem	weakly		srtm	stromatolites
mcem	moderately		corf	coralline fossils
Coherence			echf	echinoid fossils
fbl	friable		bryf	bryozoan fossils
fis	fissile		algf	algal fossils
ind	indurated		forf	foraminiferal fossils
hrd	hard		molf	molluscan fossils
sft	soft firm		bivf	bivalve fossils
frm	unconsolidated		gasf artf	gastropod fossils arthropodal fossils
unc			arti trif	trilobita
pla pgy	plastic puggy		mivf	marine invertabrates
sec	sectile		aivf	amphibious
brt	brittle	invertabrattes	arvi	ampmoious
chy	chalky		ESTRIA	J.
City	charky		tivf	terrestrial invertabrates
SEDIMENTA	RY- FEATURES		aivf	amphibious
~22 11,121 (11)		invertabrates		umpmorous
Biogenic			conif	coniferal
rofd	roofed		plnf	plant fossils
buro	burrowed	·	paln	palnologic
biot	bioturbated		-	
bord	bored	STRUG	CTURE	- layering
wmtu	worm tubes			
wmtr	worm trails	Genera	al	
trtr	trilobite tracks		BAND	banded-non specific
rsmk	rest mark		LAYR	layered
agln	algal laminations		ILYR	interlayered

	CDIID						
		colour banded			pegt	pegmatitic	
		mineral banded			alli	allitriomorphic	
	FBND	finely banded			ocel	ocelloidal	
	PRFL	profile	_		ves	vesicular	
	WPRF	weathering profile	3		amyg	amygdaloidal	
	Cadimantam h	addina			tuff	tuffaceous	
	Sedimentary b	-			spur	spherulitic	
	PBED	plane laminar			ignm	ignimbritic	
		finely laminated			glsy	glassy aphanitic	
	TBED	thin			aph stel	stellate	
		massive			lflw	lava flows	
	IBED	interbedded			IIIW	iava nows	
	UBED	uniform			INVASIVE 7	FFRMS	
	WBED				II VII BIVE	LINIS	
	FBED	flazer			vein	vein	
	XBED	cross			dyk	dyke	
	IXBD	imbricate XBED			frf	fractfill	
		ripple XBED			chm	chilled margin	
		tabular XBED			fbm	flow banded mgn	
	TXBD	trough XBED			10111	now builded ingi	
	FXBD	festoon XBED			TEXTURE (CODES - Metamorphic	
	LBED	lenticular			12.11012	30225 Hitemmorphic	
	UFBD	upwdfing BED			gnsc	gneissic	
	CBED	crude			schs	schistose	
		convoluted			foli	foliated	
		graded			hfl	hornfelsic	
		reverse graded			boud	boudinage	
	COLF	colloform			ALTE	RATION/VEINS	
	Bedding/seque	nce qualifiers					
		-			General		
	structure						
	Buactare				UPPE	R CASE indicate	es
	unif	uniform		'primary'	UPPE	R CASE indicate	es
		uniform upward	fining	'primary'	Lower	Case indicates 'secondary	
sequences	unif	upward	fining	'primary'	Lower Monmin Typ	Case indicates 'secondary	
sequences	unif ufsq grd	upward graded	fining	'primary'	Lower Monmin Typ H,h	Case indicates 'secondary es hematitic	
sequences	unif ufsq grd rgrd	upward graded reverse graded	fining	'primary'	Lower Monmin Typ H,h L,l	Case indicates 'secondary es hematitic limonitic	
sequences	unif ufsq grd rgrd flbnd	graded reverse graded flow banding	fining	'primary'	Lower Monmin Typ H,h L,l Q,q	Case indicates 'secondary es hematitic limonitic silic	
sequences	unif ufsq grd rgrd flbnd nodl	graded reverse graded flow banding nodular		'primary'	Lower Monmin Typ H,h L,l Q,q S,s	Case indicates 'secondary es hematitic limonitic silic sericitic	
sequences	unif ufsq grd rgrd flbnd nodl dimc	graded reverse graded flow banding		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition	graded reverse graded flow banding nodular diamictic structur		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc	graded reverse graded flow banding nodular diamictic structur		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly	upward graded reverse graded flow banding nodular diamictic structur polymict polymict		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono	upward graded reverse graded flow banding nodular diamictic structur polymict polymict monomict		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr	upward graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono	upward graded reverse graded flow banding nodular diamictic structur polymict polymict monomict		'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb	upward graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation ess weth) weathering	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Ignee igneous texture	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction	
	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c) O,o D,d P,p	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic	
sequences	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d P,p I,i	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Ignee igneous texture	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(O,o D,d P,p I,i U,u	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation	
	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(O,o D,d P,p I,i U,u B,b	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Ignee igneous texture igneous/intrusive volcanic/extrusive massive	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d P,p I,i U,u B,b Other	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d P,p I,i U,u B,b Other oxid	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation ses weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut hyp	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic hypabyssal	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(0 O,o D,d P,p I,i U,u B,b Other oxid redn	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation reduction	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut hyp porp	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic hypabyssal porphyryitic	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d P,p I,i U,u B,b Other oxid redn lsng	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation reduction liesegange	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut hyp	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic hypabyssal	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(O,o D,d P,p I,i U,u B,b Other oxid redn lsng lsgg	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation reduction	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut hyp porp opht	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic hypabyssal porphyryitic ophitic	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(c O,o D,d P,p I,i U,u B,b Other oxid redn lsng lsgg Descriptors	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation reduction liesegange liesegange	
texture	unif ufsq grd rgrd flbnd nodl dimc composition plmc poly mono hetr hmb TEXTURE/ST ignt intt volt mass plut hyp porp opht cum	graded reverse graded flow banding nodular diamictic structur polymict polymict monomict heterolthc heavy min bnds RUCTURE - Igned igneous texture igneous/intrusive volcanic/extrusive massive plutonic hypabyssal porphyryitic ophitic cumulate	e	'primary'	Lower Monmin Typ H,h L,l Q,q S,s R,r Y,y C,c F,f K,k A,a E,e Multmin Typ W,w,(O,o D,d P,p I,i U,u B,b Other oxid redn lsng lsgg	Case indicates 'secondary es hematitic limonitic silic sericitic chlorite clay carbonate fluoridated potassic anhydrite epidoitisation es weth) weathering oxidation reduction propylitic illic sulphidation bleaching oxidation reduction liesegange	

ptch patchy irr irregular

bnd/bnds band/bands

TECTONIC

Structure

fld fold fldd folded slmp slump folds

ifld intraformational folding

diap diapiric cren crenulation chev chevron folding

myln mylonite
flt fault
shrz shear zone
jnt joint
slsld slickenslide

CODES USED IN ALTERATION FIELD

A,a anhydrite B,b bleaching C,ccarbonate E,e epidoitisation F,f fluoridated G,g garnetised H,h hematitic illic I,i K,k potassic L,l limonitic M,m magnetite O,o oxidation Q,q silic R,r chlorite S,ssericitic U,u sulphidation W,w weathering weth weathering

CODES USED IN TEXTURE/FABRIC FIELDS

AGLM agglomeratic **SHRZ** shear zone **ALLI** allotriomorphic **SLMP** slump folds **AMYG SPUR** spherulitic amygdaloidal **APHN** aphanitic **STEL** stellate **BAND** banded-non specific **STRM** stromatilitic **BED** bedding-unqualified STYL stylolitic **BREC** breccia-unqualified talus (gravity) breccia **TABR** thin-bedded **CBND** colour banded **TBED CCLV** crenulated cleavage **TEBR** tectonic breccia **CUBD** current bedded **TUFF** tuffaceous dilational breccia **UBED** uniform bedded **DLBR** dyke DYKE **VEIN** vein **EPCL** epiclastic **VNBR** vein breccia **FBND** finely banded **VUG** vug folding **FLD WBED** wavy-bedded foliated cross-bedded **FOLI XBED FRAC** fractured **FRGM**

fragmental **GBED** graded **GNSC** gneissic interbedded **IBED** ignimbritic **IGNM JSBR** jigsaw breccia **LAMB** laminar LAYR layered **LFLW** lava flows MASS massive massive-bedded

MBED massive-bedded MLYR metamorphic layering

NODL nodular
OPHT ophitic
PBED planar-bedded
PEGM pegmatitic
PORP porphyritic
RLBD relict bedding
SEBR sedimentary breccia

SHRD sheared

SOUTH AUSTRALIAN DEPARTMENT OF MINES AND ENERGY REGIONAL GEOLOGY BRANCH

STUART SHELF BASEMENT PROJECT PHASE I REPORT

APPENDIX 3.5

DH_LOG - Printout of Summary Log Sheets

_	ROJECT		tuart Sh	elf Baser	nent_	STRATI	GRAPHIC SUMMARY - DRILL CORE	HOLE			MAP N	
F	GIS Uni		From (m)	To (m)	1st Lith	2nd Lit						Formation / Comment
1	Q?	N	0.00	3.50			No data		_		_	
2	K	N	3.50	5150	SDST	CLAY	Ltbn? sang-rnd og SDST +wht CLAY mtx	-	<u> </u>	ĺ — ¡		
3	CP	N	51.50	216.38	MDST	DIMC	Blk-gry-wht MDST/SLST +loc ibed glacials				87	Tr diss Py
4	Ps	Y	51.50	127.85	MDST	SLST	Wht-gry-blk plst MDST/SLST +tr vig Py				87	Tr diss py
5	СРъ	Y	127.85	216,38	SLST	DIMC	Ltgy SLST +loc vive & DIMC ibed:pbls<&cm				87	Tr diss py
6	PPw?	N	216.38	219.70	BIFO	JASP	Blk-puk-red(mnr) JASP: Brecc mtx-H-Q-R	:	BREC	LBED	65	Vnits Py; Q-H-R?
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		BDH	MAP	5837
S	TRATIGE						LITHOLOGY	NUMBE			UNIT I	
_	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2.45	REGL		Rdbn recemt piso LATR +SDST mtx		_	_	-	
2	K	N	2.45	51.65	SDST	CLAY	Red-ylwt f-cg SDST+CLAY rpup clst & ibed	-		 ,		
3	CP	N	51.65	210.30	MOST	:	Lt/dk gry MDST/SLST & ibed DIMC	<u> </u>		_	· 	**************************************
4	Ps	Y	51.65	57.63	MDST	SLST	Lt/dkgry crb plst MDST +mnr SLST					Intrpl lwr enet dpth
5	Ps?	Y	57.63	127.00			No sample or other data					Intrpl lwr enet dpth
6	СРь	Y	127.00	210.30	MDST	DIMC	Ltgry MDST +vrvs & ibed DIMC pbis<0.5m				, -	
7	PM-p?	N.	210.30	280.90	SDST	CGLM	Pnk-crm f?-cg rnd SDST +mnr pbl bnds		, 	 .	83	
8	PM-p1a	Y	210.30	253.72	SDST	SLST	Pnk-m f?-eg rnd SDST +pbl bnds					Tr Py < 221m
9	PM-p1b	Y	253.72	280.90	SDST	CGLM	Pnk-crm c-weg rnd part SDST/CGLM			_	-	
10	PMcla*	N	280.90	361.10	CGLM	TUFF	Rd-pnk? bree plmc CGLM/FEXT ibed		SBRC			
11	PMcl	Y	280.90	304.60	CGLM	BREC	Pnk-rdbn? bidr CGLM/BREC:cist FEXT,OQZT		SBRC		-	FEXT domnt, mar BIF
12	PMa	Y	304.60	306.50	RHLT		Pnk (g? RHLT					
13	PMcl	Y	306.50	339.60	CGLM	BREC	Pnk-rdbn? bldr CGLM/BREC:clst FEXT,OQZT	HS	SBRC		-	
14	PMa	Y	339.60	340.00	MEXT	-	Grgn? fg? MEXT(BSLT?): snowflake xtlits					Devitrified glass?
15	PMcl	Y	340.00	361.00	CGLM		Pnk-rdbn? bldr CGLM/BREC:clst FEXT,OQZT		SBRC			
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 14/8/92

-	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		BDH-	MAPN	lo: 5837
1	STRATIGE						LITHOLOGY	NUMBE	R		UNIT!	
L	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
	Q	N	0.00	8.00	SAND	CACT	Rdbn SAND +CACT zn 2-4m, base limonitic				_	
	Kmb	N	8.00	18.00	CLAY	SAND	Wht-crm CLAY +fg SAND bnd @16m				-	
1	JKa	N	18.00	68.00	SDST	MDST	Crm-pnk-ltgry f-cg SDST:CLAY mix & ibed				-	Mnr pbly inbd
1	CP CP	N	68.00	331.22	MDST	SDST	Dkgy-chbu-crm MDST/SLST ovly SDST/DIMC				- :	Infrd entets
	Ps	Y	68.00	170.00	MDST		Dkgy sit-plate MDST +mnr SLST	,			-	Lwr enet infrd
1	СРъ	Y	170.00	331.22	MDST	SDST	Chbn-grgn-crm plate MDST/SDST/DIMC(mnr)		LBED	:	85	Upr enet infrd, XBED?
	PM-p	N	331.22	374.72	SDST		Pnk-crm/grn motl mass m-cg SDST:clst BIF	н	;		87	Upr paisol?,Vns PY
1	PMcla*	N	374.72	500.00	BREC	RHLT	Ppl-brn SDST mtx sppt BREC ovly varig RHLT				_	Vns/ptchs/frac Py
<u> </u>	PMcl	Y	374.72	385.33	SDST	BREC	Ppl-brn SDST mtx sppt BREC:clst 50%BIF			-		Vns/ptchs Py
1	PMa	Y	385.33	500.00	RHLT		Orbn-ppbn-grgn porp vig RHLT:plat Q <2mm Pnk-m f?-cg rnd SDST +pbl bnds	HSQC	IGNM	FBND	40	Frac R-S-Q-Py, Znd-fel
Ļ	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 14/8/92

		1000		÷	,	STRATI	GRAPHIC SUMMARY	HOLE			MAP N	
13	TRATIGE						LITHOLOGY	NUMBE	R	1	UNIT N	fo: 117
L	GIS Un	Sub	From (m)	To(m)	1st Lith	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core	Formation / Comment)
1	Q	N	0.00	8.00	SAND	CACT	Rdbn f-cg rnd-srnd SAND +CLAY/CACT mix				-	Latr @9 m
2	T	N	8.00	40.00	SDST	CLAY	Orbn-yel-ltgy f-cg SDST + CLAY ibed/mtx	weth				Tr diss Py & pbls >50
3	K	N	40.00	66.00	SDST	SLST	Plbn-gry part and-sang SDST +SLST mtx				-	Asst sml-pbls/grnls
4	PMcla*	N	66.00	94.00	SLST	RDAC	Orbn sandy SLST ovly rd-orbn vfg RDAC	HS			-	
5	PMcl	Y	66.00	72.00	SLST	SDST	Qrg-dkrdbn SLST +mnr fg SAND grns: mica	s ,				Tr CHL
6	PMa	Y	72.00	94.00	RDAC		Dkrdbn-org-gygn vfg DACT? +lath ILMN1%	HS			- ;	ILMN prt alt to LEUX
7		N					"Geology revised W.M. Cowley 2/86"				-	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

_	ROJECT		tuart Sh	elf Baser	<u>nent</u>	STRATI	GRAPHIC SUMMARY	HOLE		BB-	MAP N	fo : 5936
3	TRATIG						LITHOLOGY	NUMBE	R	2	UNIT I	Vo: 118
	GIS Un	i Sub	From (m)	To (m)	1st Lith	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabrio	Core	Formation / Comment
1	Q	N	0.00	11.00	SAND	CACT	Ogbn clayey f-mg SAND +wht-gry-buf CACT				-	
2	T	N	11.00	41.00	CLAY	SAND	Ltgn-plorbn-buf CLAY: +mnr f-cg SAND					Mnr MnOX
3	JKa	N	41.00	66,00	CLAY	SAND	Pnk-brn CLAY +upr/lwr f-cg SDST/GRVL resp	Q			,	
4	PMcla*	N	66.00	200.00	SLST	IEXT	Orgy-grn SLST/CHRT & bik BSLT/org RHLT/T	H₩			:	
5	PMcl	Y	66.00	112.00	SLST	TUFF	Plgn-gry-pnk SLST +vfg SDST ibed:diss Py	weth		IBED	4 	Fg lth SDSt=subaq TU
6	PMa	Y	112.00	124.00	BSLT	ANDS	Blk-gygn vfg amyg(H-<1mm) BSLT +CHL incl	Н				Diss Mt, vns DOL
7	PMa	Y	124.00	138.00	RHLT	TUFF	Org-pak vig porp RHLT: mar QTZ vas,plat	Н	TUFF		-	Diss blk ILMN, tr Py
8	PMcl	Y	138.00	200.00	SLST	TUFF	Or/kki-pngy vfg SLST/CHRT:lith SDST ibed	Н	TUFF	TBED		Org SDST=saqu TUF
9	•-	N					"Geology revised W.M. Cowley 2/86"		_			Is CHRT=ultr fg TUF
L.	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

_	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		BB-	MAP N	o: 5936
S	TRATIGI						LITHOLOGY	NUMBE	Я	3	UNITA	lo: 119
L	GIS Un	Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	6.00	SAND	CACT	Brn-ylbn mg SAND +CACT mtx: mnr GRVL			-		
2	K	N	6.00	55.00	SDST	CLAY	Yibn-wht (f-mg)SAND/CLAY: mnr pbls					
3	PMcl	N	55.00	280.00	SDST	SLST	Rdbn-gry-grn ang-sang f-mg SDST: blk HEM	HS				Tr diss Py, mtx H-S
4		N					"Geology revised W.M. Cowley 2/86"		,			
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

	OJECT TRATIGE		tuart Sh	elf Baser	<u>nent</u>	STRATI	CRAPHIC SUMMARY	HOLE			MAP N	
				m / \	4	0 111	LITHOLOGY	NUMBE			UNIT	
-	GIS Uni	200	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	0.50	SAND	CLAY	Brn SAND & CLAY +CACT & LATR?					
2	K	N	0.50	43.00	CLAY	SAND	Yel f-cg SAND & buf CLAY: mnr pbls,uncsl				-	Bel CGLM
3	PMcla*	N	43.00	304.00	SDST	RHLT	Org-dkrdbn f-mg SDST/SLST & grbn fg RHLT	HS				
4	PMcl	Y	43.00	290.00	SDST		Org-dkrdbn f-ing ang-sang SDST;mnr vns Q	HS		MBED		Weth silic < 70m.tr Py
5	PMcl	Y	290.00	294.00	SLST		Dkgygn-brn víg silicious SLST, magnetic			LBED	-	Cls:alt ANDS=maf TU
0	PMa	Y	294.00	304.00	RHLT		Gry-brn fg porp RHLT:sml QTZ phot TUFF?		TUFF			Tr diss Py, Blded ILM
7	*	N					"Geology revised W.M. Cowley 2/86"					
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

_	ROJECT		tuart Sh	elf Basen	nent	STRATI	GRAPHIC SUMMARY	HOLE		EBA-	MAP N	lo: 5937
S	TRATIG							NUMBE	R	3	UNIT N	Vo: 60
L	GIS U	ni Sub	From (m)	То (т)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	√ Fabric	Core	Formation / Comment
1	ĸ	N	0.00	68.00	SHLE	SAND	Crm-plbrn SHLE +gry SAND ibed >14m		. .		_	
2	Kmb	Y	0.00	14.00	SHLE	, 	Crm-plbn SHLE	weth	- 1	<u> </u>	-	
3	Knc	Y	14.00	68.00	SAND	SHLE	Plbrn SHLE & ibed gry SAND/SDST+pbls<3cm		_	IBED	i 	Cg & grty SDST > 56m
4	PNft?	N	68.00	140.00	SHLE		Blk-gry fiss SHLE carb <96m				-	Lgd=CP
s	PNft1?	N	140.00	170.00	SDST		Gry m-cg pbly SDST +loc bnds Py mb/cmnt	-,				Lgd=CP
6	РМ-р	N	170.00	400.00	SDST		Ppbn-gry & wht part sang-arnd SDST	В			-	Mica partings
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 24/8/92

PI	ROJECT	<u>: S</u>	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		SR-	MAP N	lo: 5937
S	TRATIGR	APHIY	<u>': </u>				LITHOLOGY	NUMBE	Ħ	7	UNIT	Vo: 10
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	K	N	0.00	35.00	SHLE	CGLM	Wht-yibn SHLE ovly brn grty CGLM/SDST	weth			-	
2	Kmb	Y	0.00	25.00	SHILE		Wht-yel-brn SHLE part-sandy: strng weth	weth			-	
3	Кпса?	Y	25.00	35.00	SDST	CGLM	Brn-plylbn srnd grty SDST/CGLM: pbls<3cm	weth			-	Mnr SHLE bads
4	PPhs	N	35.00	67.20	SCHT		Dkgn CHL SCHT; vry strng weth 38.8-65.7m	weth		FOLI	-	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

P	ROJE	<u> T:</u>	S	tuart Sh	elf Basen	<u>aent</u>	STRATE	GRAPHIC	SUMMARY		HOLE		SR-	MAP N	ю <u>:</u>	5937
S	TRAT								IOLOGY		NUMBE	R	9	UNIT I	lo:	13
L	GIS	Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	R∞	k Description - Dia	gnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	K		N	0.00	49.90	SHLE	GRIT	Rdba-pn	ik-wht SHLE/SLST	oviy SDST/GRIT			-			
2	Kmb	,	Y	0.00	27.00	SHLE	SLST	Rdbn-pk	wt-ylpp SHLE/SLS	T :silic < 22.5m	weth				Sandier to	depth
3	Knca	, 2	r	27.00	49.90	SDST	GRIT	Pibn-ppi	fribl clayey GRIT			(
4	СРь	2	N	49.90	68.20	DIMC	SDST	Gry sand	ly/pbiy DIMC? & ye	el sity SDST					DIMC?=#	arcasite!??
5	PMH	9	N	68.20	71.40	MARK	SCHT	Gry-wht	grty-pbly MARK &	mnr SCHT ibed			FOLI	10	FOLI @501	Og, Vns Q-P
L	(11	ı) (1)	(7)	(7)	(4)	(4)	(40)	(SADME/JLCEXS	Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	ILC 26/8/92

_	ROJECT		tuart Sh	elf Basen	nent_	STRATI	GRAPHIC SUMMARY	HOLE		ф	MAPA	fo:	6035
S	TRATIGE						LITHOLOGY	NUMBE	R	. 1	UNIT !	Vo:	68
L	GIS Uni	Sub	From (m)	To(m)	1st Lith	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	-/ Fabrid	Core	Formation	/ Comment
1	Q	N	0.00	21.50	SAND	CLAY	Rdbn-gngy uncsi m-cg sang SAND/CLAY ibed			-			
2	T	N	21.50	22.70	SAND	LATR	Rdbn SAND/LATR: earthy hem mtx	weth			-		'''''''
3	PMyg	N	22.70	150.00	DOLR		Dkgn-blk f-mg DOLR PX rich thol, fg Mt	weth			. -	Vns QTZ <	2mm,weth
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 7/8/92

_		ECT :		uart Sh	elf Basen	aeat	STRATI	GRAPHIC SUMMARY	HOLE		DP-	MAP N	lo: 6037
L		TIGRA						LITHOLOGY	NUMBE	R	1	UNIT A	fo: 145
ŀ	GI	S Uni S	ub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	-/ Fabric	Core	Formation / Comment
	i TQ	2	N	0.00	24.00	CLAY	SAND	CLAY,SHLE & SDST-Feox-mbx/cmt				_	
	2 Km	ab	N	24.00	126.00	SHLE	MDST	Gngy-brn SHLE/MDST					
	3 CP	ь	N	126.00	166.00	SDST	SLST	Gybn fg SDST & vfg SLST +bsl CGLM=2m thk		LBED		- :	
	4 A1		N	166.00	616.60	MEXT	FEXT	Pnk-gry DACT? and dkcol? MEXT: FOLI-1rrg	QRSC		FOLI	_	Fre/dis Py-Cpy-Phy-C-
	5 A1	Y		166.00	259.20	ANDS	DACT	Poor data. Porphyritic Tuff ibeds	QSRÇ			-	Bhs TUFF-frac PY-C-
	6 A1	Y		259.20	273.50	DACT	SCHT	Pkgy porp DACT +inlyr SCHT-QTZ-SER-PLA	RS	FBND	FOLI	45	Fracton Q-C-Py-Phy-C
1	7 A1	Y	.	273.50	298.70	SCHT	DACT	Schistose vfg porp DACT: TUFF?, loc BSLT		. 	FOLI	50	Fracton Py-Cpy-Phy
	8 A1	Y		298.70	318,30	DACT	MEXT	Pkgy vfg DACT loc amyg MEXT & vfg TUFF	RS ·		FOLI	40	Frac/diss Py-Cpy-Phy
	9 A1	Y	.	318.30	339.00	MAND	MDAC	SCHT-QTZ-CHL-SER-CRB: frmnti? +bsl MEX	RSC		FOLI	50	Irr Py ass Maics
1	0 A1	Y		339.00	422.70	BSLT	DACT	Fg BSLT & inlyr DACT flws: +mnr amyg	Q	BREC	FOLI	-	Frac Py-Cpy-Q-C-R
1	1 A1	Y		422.70	512.90	SCHT	DACT	SCHT-CHL-SER-CRB +inlyr DACT & mnr BS	RSQ		FOLI	28	Vns/diss Q-C-Py-Cpy
1	2 A1	Y		512.90	515.70	DOLR		QTZ-DOLR:fgmgns, alt ALBT-TREM-EPDT	1	MASS			Vns CRB, diss Py
1	3 A1	Y		515.70	590.80	TRAC	BREC	TRAC flue & TRAC? flutp? BREC		MASS	BREC	+	Vns mnr CRB
1	4 A1	Y	.	590,80	616.60	TRAC	DACT	TRAC flws & inlyr DACT flws			FBND	45	Tr diss Py, Vn CRB
L		11) (1	l)	(T)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 15/8/92

_	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE	,		MAP N		6037
1	TRATIGE							NUMBE	R	2	UNIT I	<u> (o:</u>	146
L	GIS Un	i Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabrio	Core/_	Formation	/ Comment
1	TQ	N	0.00	16.00	CLAY	SHLE	No details						
2	Кшь	N	16.00	204.00	SHLE	SDST	Gry-brn SHLE+mnr SDST/GRIT:cls GRNT-FE		:			Poss Perm I	DIMC incl?
3	РМ-р	N	204.00	860.00	SDST	SLST	Rdbn SDST/GRIT +mnr rdbn hem SLST		<u></u> :			Feldspathic	=Sericite?
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 14/8/92

_	ROJECT		tuart Sh	elf Beser	nent	STRATI	GRAPHIC SUMMARY	HOLE		EBA-	MAPA	fo: 6037
S	TRATIC						LITHOLOGY	NUMBE	R	1	UNIT I	Vo: 147
L	GISU	ni Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	-/ Fabric	Core	Formation / Comment
1	Q	N	0.00	4.00	SILT	CLAY	Rdbn sandy SILT & wht sandy CLAY				_	
2	T	N	4,00	8.00	CLAY	SICT	Gry-ylbn sandy CLAY/SICT			,	-	
3	JKa	N	8.00	26.00	SAND	CLAY	Wht-yibn m-cg srnd SAND +bsl sandy CLAY				-	
4	PNstt	N	26.00	124.00	SHLE	:	Chbn-blgy(buds) mica lam SHLE			LBED	-	***************************************
5	РМ-р	N	124.00	490.00	SDST		Ppl-gry-bn m=cg sang-srnd SDST +mnr pbls	н 📜			_	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 14/8/92

TY	A IECON		L	16 10		-	OT LONG OF STREET				_	
-	WECT		<u>tuart Sh</u>	eli Haser	nent	SIKAII	GRAPHIC SUMMARY	HOLE		EBA-	MAPN	lo: 6037
S	TRATIGE						LITHOLOGY	NUMBE	R	2	UNIT N	fo: 148
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	K	N	0.00	140.00	CLAY	CLST	Crm-wht CLAY & Pibrn-blgy CLST				-	
2	Kmb	Y.	0.00	40.00	CLAY	CLST	Crm-wht CLAY & Plbrn-blgy CLST	weth	_			Weth transition @ 30m
3	Kne	Y	40.00	140.00	SILT	SAND	Bigy clyy SILT,mg rnd SAND+mnr pbls <3cm	_			-	Mnr Py in SAND @75
4	PNstt	N	140.00	150.00	SHLE		Ppbn-blgy lam SHLE, micaceous partings		LBED		:	
5	РМ-р	N	150.00	400.00	SDST		Ppbn-gry m-cg ang-srnd SDST +mica laminae	HB	_		- (Qtz pbls <1cm, psrtd
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 24/8/92

-	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE	2	SR-	MAPA	lo: 6038
Ŀ	TRATIG	RAPHY	<u> </u>				LITHOLOGY	NUMBE	R	1	UNIT	Vo: 39
Ĺ	GIS Un	iSub	From (m)	To (m)	1st Lith	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabrio	Core	Formation / Comment
:	. K	N	0.00	143,60	SLST	SDST	Dkgy carb SLST +gry-wht SDST ibed @60m	weth		-	-	weth wht-ylbn <35m
1	Kmb	Y	0.00	60,00	SLST		Dkgry carb SLST weth wht-pk/ylbn <35m	weth				
	Knca?	Y	60.00	90.00	SDST	:	Gry-wht fg/grty frbl SDST: hrd zns Py					
١,	Knc	Y	90.00	143.60	SLST	SDST	Dkgry carb SLST +SDST bnd 10m @122				-	
ŀ	JKa	N	143.60	158.00	SDST	CGLM	Pigngy pert pbly SDST/CGLM: marly				-	Diss Py in mtx
	PPh7	N	158.00	171.00	AMPH		Dkylgn f-mg AMPH: weth/alt upr0.8m, EPID	E		FOLI	20	Vus Q-C/Q-F +Py/Phr
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

_	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		KGB-	MAPN	6 134
S	TRATIGE	RAPHY	<u>':</u>		L		LITHOLOGY	NUMBE	R	1	UNIT	Vo: 33
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	-/ Fabric	Core	Formation / Comment
1	Q	N	0.00	2.00	SOIL		No description				-	
2	РМ-р	N	2.00	81.00	SDST		Puk-gry(mnr) fg SDST & ppl-rdbn SLST	-	<u> </u>	IBED	-	
3	PM-p3	Y	2.00	40.00	SDST	SLST	Pnk-gry(mnr) fg SDST & mnr SLST ibed				-	
4	PM-p2	Y	40.00	67.00	SLST	SDST	Ppl-rdbn mica SLST/SHLE;grn alt spts/bnd	S .				Alt=ser?
5	PM-p1	Y	67.00	81.50	SDST	SLST	Ppl-wht og SDST ibed SLST: loc XBED		IBED	XBED		
6	PMa	N	81.50	163.00	DACT	RHLT	Puk-org? fg? porp? DACT/RHLT/TRAC	н			-	Vns QTZ,frac EPID-Q-
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

,	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		KGB-	MAP	fo: 6134
S	TRATIGE	7 7 -					LITHOLOGY	NUMBE	R	2	UNIT I	Vo: 34
_	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
,1	T	N	0.00	16.50	SICT		Wht mass & ndlr SICT		_		_	
2	PM-p?	N	16.50	23.00	SDST		Wht-pnk fg SDST					
3	PMa	N	23.00	60.00	RHLT	TRAC	Pnk vfg RHLT/DACT: SICT ait >50m?-(pet)	Qw			-	Weth < 35m?-(log)
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

P	ROJECT	: S	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		KGB-	MAPA	fo: 6134
S	TRATIGR						LITHOLOGY	NUMBE	R	3	UNIT	Vo: 35
L	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	5.00	SAND	CLAY	Yel SAND/CLAY		-			
2	K?	N	5.00	20.00	SAND	CLAY	Wht-yel SAND?clay				-	
3	PMyg	N	20.00	37.00	DOLR		Gygn? f-mg? DOLR; stng weth <27md	weth			-	Loc frac, diss? Mt
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		KGB-	MAP N	lo: 6134
S	TRATIGR		and the second second				LITHOLOGY	NUMBE	R	4	UNIT N	fo: 36
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	-/ Fabric	Core	Formation / Comment
1	Q	N	0.00	2.00	SAND		Acol SAND		. 		-	
2	PM-p	N	2.00	199.00	SDST	SLST	Rdbn SDST & SLST ibed	weth			-	
3	PM-p3	Y	2.00	23.00	SDST	SLST	Wht-yel/rdbn SDST ibed yel SLST(CLAY)		,		-	
4	PM-p2	Y	23.00	65.00	SLST	SDST	Rdbn mica SLST ibed rdbn vfg lsr SDST				-	
5	PM-p1a	Y	65.00	131.00	SDST	SLST	Rdbn f-vfg SDST & lsr SLST ibed					
6	PM-p1b	Y	131.00	199.00	SDST		Rdbn-gry motl cg grty part SDST	н			-	
7	PMa	N	199.00	270.00	RHLT	FSPO	Dkrdbn-yel porp RHLT: Phot FELD? ,CHL	RC				Vns/frac C-R 45-60Dg
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb 92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

P	ROJECT	: S	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		MH-	MAP N	6 134
S	TRATIGR						LITHOLOGY	NUMBE	R	1	UNIT I	fo: 32
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
1	РМ-р	N	0.00	133.00	SDST	SLST	Rdbn-pplbn SDST(SLT-mtx) & SLST ibed		-		-	Hematitic
2	PM-p3	Y	0,00	63.00	SDST	SLST	Ppl-brn m-cg SDST +SLST ibed: weth-<15m	weth		XBED		Weth frbleox frac Py
3	PM-p2	Y	63.00	70.50	SLST	SDST	Rdbn-gry SLST & fg SDST: thin ibed			IBED	-	
4	PM-p1	Y	70.50	133.00	SDST	SLST	Brn sang c-vcg SDST +SLST mtx & ibed			MBED	- :	Bel SLST 2.5m@130.05
5	PMa	N	133.00	154.55	RDAC		Brn-pplgy vfg amyg porp RDAC:Q rch gmass	HSRC			-	Lim pseud to diss Py
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

_	ROJECT		tuart Sh	elf Basen	nent	STRATI	GRAPHIC SUMMARY	HOLE		LH-	MAP N	6 : 6135
5	TRATIG		14.					NUMBE	R	1	UNIT	fo: 99
L	GIS U	ii Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	-/ Fabrid	Core	Formation / Comment
1	TQ	N	0.00	30.00	SAND	CLAY	No descriptions				_	
2	PNwy	N	30.00	48.10	SLST	SDST	Rdbn-gry(bnds) SLST +loc SDST layr <10cm					SDST (g & xbed
3	PNstc	N	48.10	95.20	SDST	SHLE	Brn fg arksic SDST +mnr SHLE/SLST ibed	 .	MBED	IBED	-	SLST inbd abun 80-90
4	PM-p	N	95.20	443,20	SDST		Lt-dkbn c-fg SDST+pbl bedscls QTZ-FEXT		MBED	GBED	. +	Prob PM-p3/4, HMB
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):

P	ROJECT	: S	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		LH-	MAPA	lo: 6135
S	TRATIGE						LITHOLOGY	NUMBE	in .	. 2	UNIT I	Vo: 100
	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	TQ	N	0.00	30.00	SAND	CLAY	No descriptions					
2	K	N	30.00	37_50	CLAY	SAND	Wht-ltgry CLAY & sandy CLAY:SAND vf-fg					Loe pbls/grnls, Kmb?
3	РМ-р	N	37,50	507.15	SDST	SLST	Rdbn c-fg part SDST +silt/grnl/pbly bnds	weth			-	Loc weth
4	PM-p4?	Y	37.50	285.00	SDST	SLST	Rdbn mass m-fg psrt SDST +loc SLST bnds	weth	MASS	XBED		Weth-bleach to < 55m
5	PM-p3?	Y	285.00	428.50	SDST	SLST	Rdbn mass f-mg msrt SDST +freq SLST bnds		MASS	MBED	_	Mnr Py
6	PM-p1?	Y	428.50	507.15	SDST	GRIT	Rdbn mass m-cg psrt SDST +grnl/pbly bnds			MBED		Cls sang FEXT-FELD-
L	(11)	(1)	(ħ)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

P	ROJECT	: S	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		SSR-	MAPN	o: 6136
[TRATIGE	APHY	':		Ī.		LITHOLOGY	NUMBE	R	1001	UNIT N	fo: 91
Г	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	_/ Fabric	Core	Formation / Comment
1	Q	N	0.00	4.00	GIBR		Pbls LATR, CHRT, & OQZT				-	
2	T	N	4.00	6.00	CACT		Wht ndlr-ethy CACT				-	
3	PNst	N	6.00	215.71	SDST	SLST	Wht-brn SDST/SLST ovly/chbn/SHLE/SLST		XBED	LBED	90	
4	PNets	Y	6.00	43.60	SDST	SHLE	Wht-plbuf f-mg wert SDST +mnr ibed SHLE		MASS	MBED	90	Wk XBED, poor BED
1	PNstc	Y	43.60	60.90	SDST	SLST	Wht vfg mica lam SDST & wht-brd lam SLST			LBED	90	Ripples
1	PNett	Y	60.90	215.71	SHLE	SLST	Chbn-grn/wht(mnr) lam SHLE/SLST			LBED	88	Bsl mtr "grn spheres" -poss PNwn facies?
1	PNhh	N	215.71	242.39	SDST	SHLE	Rdbn-wht m-cg SDST & chbn SHLE ibed	-			.88	SHLE=PNwtt descp.
8	РМ-р	N	242.39	499.50	SDST	CGLM	Ppl-rdbn grtty SDST +mnr CGLM:intr-DOLR				90	DOLR dykes=15m thk
5	PM-p1?	Y	242.39	300.00	CGLM	GRIT	Ppl wert bimdl m-vcg CGLM/GRIT:sity HEM					Rnd pbls, ang cg GRIT
1	PMyg	Y	300,00	307.60	DOLR		Dkgrn DOLR, chld mgns-H-R-alt, frac CRB	HR	DYKE		45	
1	PM-p1?	Y	307.60	328.40	GRIT	SDST	Ppl m-fg rnd-sang SDST/GRIT:mnr SHLE cls			XBED	90	Dips to 80Dg, GRIT bn
1	PMyg	Y	328.40	423.65	DOLR	мерн	Dkgrn DOLR:chld mgns-R-slck:frac C-Q-R-H	HR	DYKE		65	PN-p@330.2, MEPH p
1:	PM-p1?	Y	423.65	432.00	GRIT	SDST	Ppl m-fg rnd-sang SDST/GRIT:mnr SHLE cls	RH		XBED	90	Mnr poi bnds,frac R-H Rev grading-fluviatile!
1	PMyg	Y	432.00	434.25	мерн		Blk fg aphan MEPH		DYKE		. 	Late pase of DOLR
1	PM-p1?	Y	434.25	499.50	GRIT	SDST	Ppl m-fg rnd-sang SDST/GRIT:mnr SHLE cls	RH		XBED	90	Mnr pbl bnds,frac R-H
	(11)_	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 31/08/92

,	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		RL-	MAPA	fo: 6137
S	TRATIGE						LITHOLOGY	NUMB	ER		UNIT I	
\vdash	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	_/ Fabric	Core	Formation / Comment
1	T?	N,	0.00	26.55	SAND		Yel-brn? QTZ SAND +mnr FEOX stain	_		•	-	
2	Eha	N	26.55	69.65	DLAR	CLRD	Wht-org-gry styl cavit corln clast DLOM			LBED	-	Mnr rdbn SHLE, Py-st
3	Ehp?	N	69.65	71.70	SDST	CGLM	Brn CGLM/GYWK/SDST /SHLE +gygn-olgn S	; 	MASS			
4	PNstt	N	71.70	236.85	SHLE	SDST	Rdbn-blgn(bnds) SHLE + lsr mass fg SDST		XBED	LBED	-	
5	PNsn	N	236.85	238.22	DLOM		Pnk-brn-plyel mass DLOM		MASS		-	
6	PNft2	N	238.22	238.80	CGLM		Rdbn plmc regi CGLM				- ,	
7	PMya	N	238.80	400.82	SDST	CGLM	Robn hem SDST/CGLM: cls=PM-p; leisg alt					Poss fault repit
8	PM-p3	N	400.82	616.05	SDST	SLST	Rdbn-ppl hem SDST: mnr pbly zns, SLST			,		DOLR cyke 5m @595.4
9	PM-p3	Y	400,82	595.4 0	SDST	SLST	Rdbn-ppl hem SDST: mnr pbly zns, SLST					Ufsq-SLST-tops:upr ox
10	PMyg	Y	595.40	600.35	DOLR		Grn? DOLR: PLAG laths: fg mgns: <5% Mt	C	OPHT:	DYKE	-	Mnr Py, 0.8 SDST @59
11	PM-p3	Y	600,35	616.05	SDST		Relbn-ppl hem SDST: mar pbly zns, SLST	c				
12	PMyg	N	616.05	674.60	DOLR	MGBR	Grn? DOLR: PLAG laths: fg mgns; <8% Mt	CU	- :	DYKE	-	Vns Q-C-KFLD(rd-pn
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/08/92

_	ROJECT		tuart Sh	elf Baser	pent	STRATI	GRAPHIC SUMMARY	HOLE		PEE-	MAP N	6137
3	TRATIGE						LITHOLOGY	NUMBE	R	1	UNIT I	Vo: 55
ļ.,	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabrio	Core	Formation / Comment
1	Q	N	0.00	9.00	CLAY	GYPS	Ltbn-grn CLAY +abund GYPS ndls,lyrs,blads					
2	CP	N	9.00	81.00	MDST	DIMC	Blu-gry sandy MDST +rnd-QTZ els DIMC				<u></u>	
3	Ps	Y	9.00	60.00	MDST		Blu-gry MDST +sandy lyrs -rnd-QTZ				-	
4	СРЬ	Y	60.00	81.00	MDST	DIMC	Blu-gry MDST +rnd-QTZ: frags pbls?				-	Poss DIMC, Py ndls
5	Eha	N	81.00	121.00	LMST	MDST	Gry-brn LMST/MDST: algl CAAR, soln vugs			TBED	-	Intertidal struct?
6	PNstt?	N	121.00	292.37	SLST		Chbn SLST & FG SDST ibed-ufsq			XBED	 :	Bsl-distl-facies?
7	PNh1?	N	292.37	324.32	SLST	CGLM	Rdbn SDST, chbn SLST, gngy CACT pbi CGLM			TBED	-	PNwn equiv?
8	PNft1	N	324.32	346.25	CGLM		Red QTZ pole HEM mtx CGLM: sandy, moti	В]		
9	РМ-р3	N	346.25	655.60	SDST		Rdbn-gry mg SDST +SLST lyrs	В		GBED	_	Tr diss Py ass B alt
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 28/08/92

_	ROJECT		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE	· - "- " · " · " · " · " · " · " · · · ·	SR-	MAPN	fo: 6138
S	TRATIG						LITHOLOGY	NUMBE	R	. 6	UNIT !	Vo: 50
L	GIS Un	iSub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/	Formation / Comment
1	Q	N	0.00	2.00	SAND	CLAY	Superfical deposits.				-	
2	PNst	N	2.00	455.63	SDST	SHLE	Plbrn SDST abov chbn lam SHLE/SLST		XBED	LBED	:	Fault bndry
3	PNstc	Y	2.00	146.80	SDST	SLST	Plbrn-grn SDST +ibed brn-grn SHLE/SLST		<u>.</u>	XBED		Mnr MARC, silic emt
4	PNstt	Y	146.80	455.63	SHLE	SLST	Chbn-blgy(mnr) SHLE/SLST: fin-lam & fisl			LBED	-	Upr cnt=fault
5	PNh	N	455.63	483.10	GRIT	SLST	Brn-gygn GRIT/CGLM +SLST ibed		 .			
6	PNhh	Y	455.63	464.71	GRIT		Brn? wrnd wert arcosic GRIT:cls CRB <3cm			XBED	-	
7	PNh?	Y	464.71	480.40	SLST	GRIT	Brn-gygn SLST +bnds GRIT				·	Scour features
8	PNh27	Y	480,40	483.10	CGLM	SLST	Gygn CGLM +SLST-CACT mtx: els no descrp		,		-	Vns mnr CALC
9	PNft	N	483,10	616.73	SLST	DLOM	Gygn mass SLST +algl biohm dec abun		,	TBED	-	Vns CALC, diss Py, Cp
10	PNua	N	616.73	895.55	DIMC	SDST	Gygn DIMC sand/silt mtx:ibed SDST/SLST		MBED	TBED	-	Plym, highfrq lith vars
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):

-	ROJEC		tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		SR-	MAP N	lo: 6139
L		GRAPH					LITHOLOGY	NUMBE	R	12	UNIT N	fo: 34
L	GIS	Jni Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
	Q?	N	0.00	40.00	SHLE		Ltgry-blk carb SHLE=MDST/CLAY:weth-GYPS	weth		<u>.</u>	-	Weth <16.4, lacust?
ŀ	2 17	N	40.00	8210	SAND	GRIT	Gry? pyritic SAND; GRIT + thn pbl ibed			IBED		Py grns <3mm
l	3 Kmb	N	82.10	119.60	SHLE	SDST	Dkgy? carb SHLE+mnr hrd SDST bnds:bse-Py					Coquina? shelly lam?
	4 JKa?	N	119.60	138.80	SDST	SHLE	Gry mass wert e-mg frbl SDST +mnr SHLE				-	SICT @top, bsl-Py
	CP CP	N	138.80	399.00	MDST	DIMC	Gybl algl MDST & wht wert SDST/DIMC	*		XBED	1	algi struc <181.15m
	Ps	Y	138.80	197.92	MDST	GRIT	Gybl algl MDST & wht wert fg XBED SDST		·—	XBED		algi struc <181.15m
1	7 СРъ	Y	197.92	399.00	DIMC		Gry sandy DIMC:cls GRNT & META, mtx pert		- 1	XBED	20	SHLE & CGLM inbds
	(11	(1)	(ħ)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 28/08/92

P	ROJECT	: S	tuart Sh	elf Baser	nent	STRATI	GRAPHIC SUMMARY	HOLE		SR-	MAP N	fo: 6139
S	TRATIGE						LITHOLOGY	NUMBE	R	13_2	UNIT!	Vo: 35
L	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lit	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	4.00	SAND		Org mrnd pert SAND				-	
2	K?	N	4.00	92.00	SAND		Wht-crm/gry s-mrnd p-mertd uncheld SAND		:			Probably weak crit
3	PNua	N	92.00	670.88	SDST	DIMC	Blk-gry-brn SDST & DIMC/CGLM +mnr SLST		MASS	XBED	90	
4	PNua	Y	92.00	136.00	SDST		Blk-brn SHLE & gry wrnd wart SDST					***************************************
5	PNua	Y	136.00	208.60	DIMC	SDST	Rdbn-gry DIMC/CGLM, SDST & SLST-SICTifd	Q	MASS	XBED	.90	Plym, loc diss Py
6	PNua	Y	208.60	247.90	DIMC	است	Rdbn-gry DIMC/CGLM, SDST & SLST		MASS	XBED	85	
7	PNua	Y	247.90	282.00	SLST	SDST	Gry? mass SLST +ibed fg SDST		IBED	TBED		
8	PNua	Y	282.00	670.88	DIMC	GRIT	Gry DIMC/CGLM grty SDST & SLST/SHLE ibe		MASS	TBED	80	Irreg seq, Tr mtx Py
9	PNb	N	670.88	900.27	SDST	SLST	Gry SDST & SLST/SHLE ibed seq		IBED	TBED	80	Vns CRB, mnr CGLM
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 28/08/92

]	PROJE	CT:	Stuart St	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	•	FH-	MAP N	o: 6233
E	STRATI	IGRAPHY	:				LITHOLOGY	NUMBE	R;	. 1	UNIT N	fo: 14
-[GIS	Uni Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
	1 Q	N	0.00	3,00	SAND	REGL	Yel-brn f-mg SAND + clst wht CALC		_			Estimated depths !!!
	2 T	N	3.00	27.00	SAND		Rdbn-ylwht f-mg SAND & CLAY: upr LATR zn	-		-	-	Palaeosol prfl
	3 T	Y	3.00	7.00	SAND	LATR	Rdbn-ylbn f-mg lateritic SAND				-	
	4 T	Y	7.00	27.00	SAND	CLAY	Rdbu-wht f-mg SAND & CLAY		¥			
	5 PNh	1? N	27.00	60.50	SDST	CGLM	Yel-gry vf-mg SDST +mnr CLAY:bsl CGLM	-				
	6 PMa	N	60.50	132.00	RHLT	RDAC	Rdbn porp RHLT:plxt SANI/PLAG:CHL/EPID	RESF	PORP			Vns/frac Mt-Py(mnr)
	(1	1) (1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 1/7/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		FH-	MAP N	o: 6233
S	TRATIGR		•				LITHOLOGY	NUMBE	<u> </u>	2	UNIT N	fo: 15
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	3.00	SAND	CACT	Yibn clayey f-mg SAND +ige cls CACT					Estimated depths !!!
2	T	N	3.00	18.00	SAND	CLAY	Rdbn-yel-wht SAND/CLAY +latr weth prfl			BED	-	
3	T	Y	3.00	5.00	SAND	CLAY	Rdbn f-mg SAND +sandy CLAY bnds?				-	
4	T	Y	5.00	7.00	LATR	SAND	Rdbn LATR/SAND +MAGT/MAGH?		,	_	-	
5	T	Y	7.00	15.00	SAND	CLAY	Red-Yel SAND + sandy CLAY ibed?		,,,,,,,,		-	
6	T	Y	15.00	18.00	CLAY	<u> </u>	Wht CLAY + sml clst FEXT & MAGT	·	-	 :		
7	PMa	N	18.00	48.00	RHLT	_	Rdbn porp RHLT: phxt wht-PLAG,CHL,	HRF	-			Diss/vns CHL-MAGT
_	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 31/7/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

Pf	OJECT	: 5	Stuart Sh	elf Base	<u>ment</u>	STRATI	IGRAPHIC SUMMARY	HOLE		FH-	MAP N	<u>:</u>	6233
S	RATIGR	APHY :					LITHOLOGY	NUMBER	1	3	UNIT N	<u>'o:</u>	16
Γ.	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Con	ament
1	Q	N	0.00	2.50	SAND	REGL	Gry-yl f-mg SAND:clayey, clst CACT				-	Estimated depths Q-soil pril	111
2	T	N	2.50	75.00	SAND	CLAY	Rdbn-yel-wht SAND/CLAY: mult weth prfis		_		- :	Wprfls on seds &	basmt
3	T	Y	2.50	4.00	SAND	CACT	Rd fg SAND & wht? CACT			, i ·		T-soil prfl	
4	T	Y	4.00	20.00	SAND	LATR	Rdbn f-mg SAND & LATR+mnr CLAY:cls FEXT	weth		· · · · · ·	-	Palaeo weth prfl	
5	т	Y	20.00	47.00	SAND		Rdbn f-mg SAND+mnr CLAY,MAGT & cls FEXT					"Frsh" T-seds	
6	т	Y	47.00	53.00	SAND	CLAY	Yel-wht fg SAND & CLAY	-				Pre Tsed soil prfl	
7	T?	Y	53.00	75.00	CLAY		Wht CLAY	weth				Weth pril A/B Ho	rz?
8	PMyg?	N	75.00	87.00	DOLR		wht CLAY? +cls DOLR? ovly grn? DOLR	weth		-			
9	PMyg?	Y	75.00	80.00	DOLR		"dolerite enet zn"=wht CLAY? +cls DOLR?	weth			-	C-horiz weth?	
10	PMyg?	Y	80.00	87.00	DOLR		Grn? mass? mg DOLR:meso-KFLD-QTZ:BIOTgrns		-			MDOL with PMa	affinity
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	·····

P	ROJECT	: 5	Stuart St	elf Base	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE		PH-	MAP N	o: 6233
3	TRATIGR						LITHOLOGY	NUMBE	8	4	UNIT A	fo: 17
L	GIS Un	Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2.00	SAND		Rdbn vfg SAND +clst wht CACT					Estimated depths !!!
2	T	N	2.00	13.00	SAND	_	Rdbn f-mg SAND: lateritic?				-	
3	PNh1?	N	13.00	70.00	SDST		Gry-pnk vfg SDST					
4	РМ-р	N	70.00	150.00	SDST	SLST	Rdbn-wht/gry(mnr) SDST +mica SLST	В	*			
5	РМ-р3	Y	70.00	103.00	SDST	SLST	Rdbn SDST +mica SLST	В				
6	PM-p2	Y	103.00	130.50	SLST	SDST	Rdbn mica SLST +mnr fg SDST	-			-	
7	PM-p1	Y	130.50	150.00	SDST	SLST	Rdbn-ylbn fg SDST +loc SLST 3.5m @139.5m			· ····		
8	PMa	N	150.00	180,00	RHLT		Rdbn-gry porp RHLT:pbxt SANI-CHL	HRF	PORP			Vns thn Cl-IL @60Dg-90
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 2/7/92

_	ROJECT			elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		FH-	MAP N	o: 6233
S	TRATIGR						LITHOLOGY	NUMBE	R	5	UNITA	lo: 13
	GIS Uni	Sub	From (m)	To (m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Соте	Formation / Comment
1	Q	N	9.00	7.50	SAND	REGL	Yel vf-mg SAND +cis frbl SDST & SICT					Estimated depths !!! FEOX-magnetic
2	PNh1?	N	7.50	86.00	SDST		Pkgy-gry(wht) ang wert m-cg SDST:loc GRT	weth		 ;	-	White bleach alt=weth?
3	РМ-р	N	86.00	167.00	SDST	SLST	Rdbn-gry ang m-cg SDST & SLST			,		
4	PM-p3	Y	86.00	143.50	SDST	SLST	Rdbn-gry ang vf-cg SDST +SLST ibedimica			IBED		Loc GRIT & hmb
5	PM-p2	Y	143.50	156.50	SLST		Rdbn SLST			TBED	-	
6	PM-p1	Y	156,50	167.00	SDST	SLST	Rdgy fg SDST & lsr SLST ibed		-	IBED	-	SLST-radm/log
7	PMa	N	167.00	174.00	RHLT		Rdbn porp RHLT:phat CHL(grn)-FELD(wt/pk)	HRS		:		Vns undescrb, loc SHRZ
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 2/7/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

	ROJECT			nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		PDH-	MAP N	<u>o:</u> ,	6233
3	TRATIGR				L		LITHOLOGY	NUMBE	R .	1	UNIT N	io:	19
	GIS Uni	Sub	From (m)	То(п)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	T	N	0.00	60.00	SAND	CLAY	Red-wht-gry SAND & CLAY : unci	HS	_				 ;
2	T	Y	0.00	4.00	SAND	CACT	Rdbn aeol SAND +40% wht CACT			 :			
3	т	Y	4.00	8.00	SAND	CLAY	Red-org mg QTZ SAND +30% CLAY						 .
4	T	Y	8.00	18.00	CLAY	SAND	Red & wht uncl CLAY +m-cg QTZ SAND			: 			
5	T	Y	18.00	36.00	SAND	CLAY	Red & wht uncl m-cg QTZ SAND & 25% CLAY			, 			
6	T	Y	36.00	60,00	SAND	CLAY	Red ylwt uncl f-cg QTZ SAND & 20% CLAY	_			-	Sand ang-sr	nd+pbl PM-
7	PM-p1b	N	60.00	68.00	SDST	GRIT	Mar-grn(mnr) hem SDST +grn SLST & GRIT	HS			-	Diss? Py <2	% fg flms
L	(11)	(1)	(7)	(T)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): I	LC 29/7/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PDH-	MAP N	o: 6233
S	TRATIGR		*****				LITHOLOGY	NUMBE	R		UNIT N	
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	10.00	SAND	CACT	Wht-red CACT <2m abv red aeol m-cg SAND	wh			-	
2	PNh?	N	10.00	20.00	SLST	SDST	Wht-yel SLST +lsr f-mg QTZ SDST	weth			-	No chips-frbl=weth
3	PNhh	N	20.00	30.00	SDST	CGLM	Pibrn-yel f-cg SDST, wrnd QTZ, bsl CGLM	weth			-	
4	PNft	N	30.00	58.00	SLST	SDST	Wht-gry-blk SLST +mnr fg SDST, weth<55m	weth	;	. :	-	soft, MALC loc @ base
5	PNft1	N	58.00	64.00	SDST		Mar-dkgrn hem fg SDST	SH	<u>-</u>			loc< 2% Py
6	PMy?	N	64.00	82.00	DOLR	 .	Grn-blk opht DOLR: PLAG lath in fg gmas		OPHT		1-	Diss C-H-R & 2% fg Py
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 29/7/92

PE	OJECT	: 5	Stuart Sh	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PDH-	MAP N	<u>o:</u> 6233
S7	TRATIGR		:				LITHOLOGY	NUMBE	R	6	UNIT N	<u>60:</u> 21
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	8.00	SAND	CACT	Brn f-mg SAND & rdbn SILT/CLAY +SICTALC					4
2	PNh	N	8.00	32.00	SDST	REGL	Brn-mar f-cg SDST+bsl REGL=SDST/SDST-cls				-	
3	PNhh	Y	8.00	24.00	SDST		Plbn-pimar f-cg SDST +<15% wht SER	weth			-	SILC prof <16m: Cret?
4.	PNh3	Y	24.00	32.00	SDST	REGL	Ltbn-plmar SDST +clst Fe SDST:paleo REGL				-	
5	РМ-р	N	32.00	196.00	SDST	SLST	Brn-mar f-cg SDST & lsr mar SLST/SHLE	HR				Loc blk SHLE ibed @120
6	PM-p3	Y	32.00	110.00	SDST		Ltbn-plmar f-cg SDST +HEM-SER mtx, mica			TBED	ı -	Cls GRNT, Mt,IM,PX,
7	PM-p2	Y	110.00	140.00	SLST	SHLE	Mar SLST/SHLE +mnr fg ang-sang QTZ SDST	HR		LBED	,	Blk SHLE @ 20%!! @12
8	PM-pla	Y	140,00	196.00	SDST	SLST	Mar-plon f-mg SDST & lsr mar SLST/SHLE			IBED		Bed bimdl grasz
9	PMa	N	196.00	224.00	DACT	·	Brn mass vig porp FEXT: plact twind PLAG				-	No QTZ, comp inferd
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 29/7/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

P	ROJECT	: 8	Stuart Sh	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PDH-	MAP N	o: 6233
	TRATIGR	APHY:					LITHOLOGY	NUMBE	?	. 8	UNIT N	lo: 22
	GIS Uni	Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
[Q	N	0.00	2.00	SAND		Rdbn? f-cg aeol SAND +CLAY <20%	-			_	
2	Ti	N	2.00	8.00	CACT	SAND	Rdbn f-cg SAND in CRB mtx < 20%				-	
3	PNft	N	8.00	42.00	SLST		Wht-gry SHLE/SLST (75/25%) +mnr SAND	weth	, 	 :		Weth=b,Cxd=h,poxd=g
1	PNft1	N	42.00	60.00	SLST	SDST	Dkmar lam SLST & fg ang-sang SDST:transt	0		LBED	_ _	Oxd=Hem?, partoxd=gr
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 30/7/92

Pi	ROJECT	: 5	Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		PDH-	MAP N	o: 6233
S	TRATIGRA	APHY :					LITHOLOGY	NUMBE	R	12	UNIT N	<u>fo:</u> 18
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2.00	SAND	CLAY	Brn acol SAND & CLAY				-	
2	T?	N	2.00	4,00	CACT		Brn SAND/CLAY & wht CACT 30%				-	
3	T?	N	4.00	28.00	SAND	CLAY	Org mg wrnd QTZ SAND & 40% CLAY					Very weth PNhh?
4	PNhh	N	28.00	64.00	SDST	<u> </u>	Wht-yel m-cg wrnd lith SDST+20% CLAY mix	weth	· •	. 		
5	PM-p	N	64.00	191.00	SDST	SLST	Mar-pnk-wht m-cg hem SDST & SLST	В			-	Mox, ANHY, & Py
6	РМ-р3	Y	64.00	146.00	SDST	SLST	Mar-pnk-wht m-cg hem SDST +mnr rdbn SLST	В			-	Mox-Py-ANHY, specHE
7	PM-p2	Y	146.00	168.00	SLST	SDST	Mar-puk hem SLST +mnr rdbn mg SDST ibed	ļ . 	<i>,</i> —		-	Mox ndls, ANHY, Py
8	PM-pla	Y	168.00	191.00	SDST	SLST	Mar-pnk m-cg hem SDST +mnr rdbn SLST					Mox ndls, ANHY
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 30/7/92

Pf	ROJECT	: 8	Stuart Sk	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		SAD-	MAP N	o: 6233
S	TRATIGRA	APHY :					LITHOLOGY	NUMBE	R	1	UNIT N	lo: 23
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2,00	SAND	CACT	Rdbn mg aelo SAND? +wht CACT/SICT?				-	Doth estim only glg NA
2	PNhh	N	2.00	142.00	SDST		Brn-wht/gry? f-mg SDST +acc CLAY/SILT?					
3	PNft	N	142.00	229.10	SLST	DLOM	Gry lam dolm SLST+mnr ibed DLOM lam.SDST	: 	XBED	LBED	90	Rpl XBED, diss Py-Cpy
4	PNft1	N	229.10	236.96	SLST	CGLM	Dkgry lam SLST +bsl SDST/CGLM & disp pbl	_		TBED	90	Nrshre facs, Py-Cpy-Ga
5	PMa	N	236.96	251.25	RDAC	FSPO	Rdpnk vfg porp AMYG RDAC :phxt FELD<10%		PORP	-	-	Vns CRB-QTZ-Py
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 30/7/92

P	ROJECT	: :	Stuart St	nelf Base	<u>ment</u>	STRAT	GRAPHIC SUMMARY	HOLE		PIL-	MAP N	o:	6234
S	TRATIGR						LITHOLOGY	NUMBE	<u>R</u>	12	UNIT N	lo:	21
ļ	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	CLAY	Rdbn sandy soil				-		
2	T	N	2.00	26.00	SAND	CLAY	Yel-pak SAND +CLAY lyrs clst-SDST-FEXT	,			-	mnr LIGN	
3	РМ-р	N	26.00	35.00	SDST	DOLR	Buf bmdl SAND & CLAY +PYX-FLD grns	weth			-	Weth prof o	rig unrecog
4	PMyg	N	35,00	102.00	DOLR	SDST	Grn f-mg DOLR subv dyk SDST-upr DACT-lwr	_	ŕ				
.5	PMyg	Y	35.00	44.00	DOLR	SDST	Grn CLAY & buf SAND +PYX-FLD gns	weth	-		-	See gehem B	Meti levels
6		Y	44.00	54.00	DOLR	CLAY	Grn CLAY & DLOR clst	weth					***************************************
	PMyg	Y	54.00	102.00	DOLR	,	Dkgrn mg LUCX/MAGT1 FELD5 PYX2 QTZ1	Ch	,		-	Py/Cpy Cu,Z	n,Ni enrch
	PMyg	Y	102.00	107.00	DOLR	DACT	Brn fg chld mgn rimd FELD: Orbn DACT	Н	-		-	Inct subv	
1	PMa	N	107.00	156.00	DACT	DOLR	Orbn DACT: DOLR child mgn inet subv	HR					
	PMa	Y	107.00	122.00	DACT		Dkorbn fg: FELD-phxt1 CHLR1	RH					
11	PMa	Y	122.00	156.00		FSPO	Brn-grn fg: fg FELD1 FELD-phxt3 CHLR2	HR	PORP			Cu,Zn enrch	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JL	C 30/8/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		PIL-	MAP N	io: 6234
S	TRATIGR						LITHOLOGY	NUMBE	R	13	UNIT N	fo: 22
L	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	6.00	SAND	CLAY	Pibrn ang cg usrt clayey sand +SDST clst	_			_	
2	РМ-р	N	6.00	380.00	SDST	SLST	Mar-rdbn e-mg SDST +ibed rdbn SLST		}		-	
3	PM-p4	Y	6.00	180.00	SDST	SLST	Mar c-mg hem SDST +pgrn-wht mott mnr SLST	HS				Mnr Zn enrich in SHLE
4	PM-p3	Y	180.00	278.00	SDST	SLST	Red ibed SDST SHLE/SLST wht-grn mott	HS		-	-	
5	PM-p2	Y	278.00	310,00	SLST	SDST	Rdbn fg SLST mnr SHLE & SDST wht-grn spt	s	,,		, 	Mnr Zn enrich
6	PM-p1b	Y	310.00	380.00	SDST	SLST	Red-wht f-cg subr SDST mnr SLST	s	;	محصتون	:	
7	PMa	N	380.00	390.00	DACT		Rdbn fg: euh FELD phxt2-alt ?ocelli	HS				Vmnr Zn enrich
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

P	ROJECT	: 5	Stuart Sh	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PIL-	MAP N	o:	6234
S	TRATIGR.						LITHOLOGY	NUMBE	R	14	UNIT N	lo:	23
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	9.00	2.00	SAND	CLAY	Brn stiff clayey sand		_				
2	T	N	2.00	6.00	SICT		Buf cg ang siicified sand				-		
3	T	N	6.00	32.00	SAND	SILT	Buf qtz SAND40% SILT20% CLAY30% +clst10%				,		
4	РМ-р	N	32.00	264,00	SDST	SLST	Mar ibed SDST/SLST +bleached by SERC ait	Hs	·	:	-		
5	PM-p4	Y	32.00	126.00	SDST		Pimar-wht f-cg ang-sang +mnr SLST	Hs					
6	PM-p3	Y	126.00	191.00	SDST	SHLE	Mar-wht/grn ibed sang f-cg SDST/SLST/SHLE	Hs				Vmnr Zn em	rch-SHLE
7	PM-p2	Y	191.00	218.00	SLST		Red-wht varg +vfg srnd QTZ	Hs	,	LBED	 .	Vmnr Zn en	rch-SHLE
.8	PM-p1	Y	218.00	264.00	SDST	,	Buf f-cg sang bimdl srt SDST +SERC mtx	Hs	_			Mnr Cu.Pb e	nrch-MNOX
9	PMa	N	264.00	280.00	FEXT	:	No log- pet: QTZ-ORTH-PLAG-MUSC-SER-CHLR		, 		_	Strat sub on	Zn enrch
10	PMyg	N	280.00	302.00	DOLR		No log- pet PLAG-TREM?-CACT child mgn?		STEL		-	Strat sub on	Zn,Cu,Ni
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JL	C 30/8/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		PIL-	MAP N	o:_	6234
S	TRATIGR.	APHY :					LITHOLOGY	NUMBE	9	15	UNIT N	lo:	24
Ŀ	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	РМ-р	N	9.00	140.00	SDST	SLST	Mar/gry ibed hem SDST & SLST +SERC alt	Hs			-		
2	РМ-р3	Y	0.00	70.00	SDST	SLST	Mar/gry fg sang SDST +ibed rd/gn SHLE/SLST	Hs	:		-		
3	PM-p2	Y	70.00	120.00	SLST	SHLE	Red-grn SLST/SHLE +mnr fg SDST	Hs					
4	PM-pi	Y	120.00	140.00	SDST	SLST	Pimar f-cg QTZ SDST +mnr grn-red SLST	Hs				Mnr Cu,Pb e	nrch-?SLST
5	P Ma	N	140.00	160.00	RDAC	_	Brn-grn FEXT FELD-platt1 QTZ-MICA-FELDmes	s			-	Mnr Zn eard	h
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JI	.C 30/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

,	OJECT			elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PIL-	MAP N		6234
3	TRATIGR					,	LITHOLOGY	NUMBE			UNIT N		25
_	GIS Uni	Sub	Prom(m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	CLAY	Brn stiff clayey sand				-		
2	PM-p	N	2.00	320.00	SDST	SLST	Mar-gry/wht/plgrn	;					
3	PM-p4	Y	2.00	108.00	SDST	SLST	Mar-gry/wht/plgrn f-cg SDST +mnr SLST	В		_ :	·		
4	PM-p3	Y	108.00	182.00	SDST	SLST	Gry/mar fg SDST into red/mar SLST +spty ait	В					
5	PM-p2	Y	182.00	232.00	SLST	SHILE	Red SHLE/SLST & mnr gry SDST ibed				-	Mnr Zn enr	ch-SHLE
6	P M -p1	Y	232.00	320.00	SDST	SLST	Buf/Rdbn f-mg fol SDST +mnr SHLE	s			-		
7	P Ma	N	320.00	324.00	DACT		Brn/grn fg FELD phxt		PORP				
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):J	LC 30/8/92

DA	COJECT	: {	Stuart St	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		VG-	MAP N	o: 6235
5	TRATIGR						LITHOLOGY	NUMBE	3		UNIT N	
-	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	. N	0.00	1.00	MUD	· -	Saline lake mud	_				
2	PNstt	N	1.00	104.30	SHILE		Chbn-blgy(bnds) mica SHLE	_		TBED	-	SHLE bnds & microfault
3	PNsn	N	104.30	110.90	SHLE	DLOM	Chbn SHLE & wht DLOM ibed & nodi			IBED	-	DLOM mass >110.4
4	PNh	N	110.90	219.89	SDST	DLAR	Gry? mg lith SDST ovly Grn mg DLART/GRIT	_	· · · · ·	MBED		DLAR/GRIT=PNha?
5	PNhh	Y	110,90	216.75	SDST		Gry? m-cg pert lith SDST: lam-grn-SLST			MBED	-	Py cmnt HMB, doim<11
6	PNh1	Y	216.75	219.89	DLAR		Grn mg DLAR/GRIT: blk SHLE mix					Slump Strue-periglac
7	PNf	N	219.89	378.70	SHILE	SDST	Blk-gry SHLE/DLOM & bsl pnk? SDST/CGLM				-	
8	PNft	Y	219.89	328.25	SHILE	DLOM	Bik-gry lam SHLE +mnr bnds DLOM & GYPS			LBED	-	Ripple mks
9	PNftw	Y	328.25	374.39	DLOM	SHLE	Gry? DLOM: teepee? BREC +blk SHLE ibed			IBED		Bsl tr Py-Cpy, Zn enrich
10	PNft1	Y	374.39	378.70	CGLM	·	Pnk? para-CGLM: clst QTZ SDST					
11	РМ-р	N	378.70	1067.47	SDST	:	Rdbn hem SDST & lesr SHLE ibed, mar GRIT					
12	PM-p4	Y	378,70	795.10	SDST	· 	Rdbn psrt mass grty m-cg SDST: loc blch	BS		MBED		Mtx-HEM-KAOL
13	PM-p3	Y	795.10	991.18	SDST	SHLE	Rdbn wsrt mg? SDST & mnr SHLE ibed; ufsq	Q		IBED		Frac QTZ,GYPS,HEMsp
14	PM-p2	Y	991.18	1001.20	SHILE		Rdbn-grn motl mica fiss SHLE	-		- '		
15	PM-pla	Y	1001.20	1066.00	SDST		Rdbn grty SDST: bree -ripup SLST/SDST?	-				
16	PM-p1b	Y	1066.00	1067.47	CGLM		Rdbn GRIT: clst ppl-FEXT			·	-	
17	PMa2g	N	1067.47	1096.00	DACT	RHLT	Pnk? RHLT-IGNM & DACT-TUFF intlyr	HRS			-	
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 11/7/92

F	ROJECT	1: 5	Stuart St	nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		MID-,	MAP N	o: 6235
3	TRATIGR						LITHOLOGY	NUMBE	R	1	UNIT N	
L	GIS Un	u Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core	Formation / Comment
1	PNst	N	0.00	342.30	SDST	SHLE	Brn-wht-grgn SDST ovly chbn SHLE/SLST		-		-	
1	PNsts	Y	0.00	158.00	SDST	SHILE	Lt/mdbrn-grgn SDST +mnr SHLE				+-	
3	PNstc	Y	158.00	188.00	SDST	SHILE	Dkbrn fg SDST +mnr SHLE				-	Mnr GYPS bnds
4	PNstt	Ÿ	188.00	342_30	SHLE	SLST	Chbn-gra(mnr-bnds) SHLE/SLST+mar SDST zn		j	TBED	90	
	PNhh	N	342.30	507.30	SDST		Pnk-pired wk-hem m-cg lith SDST:bsl pbly		, <u></u>	MBED	90	
	PNf	N	507.30	755.95	SHLE	SDST	Gry-blk ibed SHLE/DLOM & bsl CGLM				90	
7	PNft	Y	507.30	73610	SHLE	DLOM	Blk-gry SHLE +ibed wht-gry DLOM:loc bree			IBED	90	Tr Py
8	PNft1	Y	736.10	755.95	CGLM	SDST	Cg plmc CGLM:cls CHRT-FEXT-LMST-OQZT	Q			-	Silic DOLM-CGLM; tr P
9	PM-p1	N	755.95	827.20	SDST	SHILE	Ppl-bkrd mica SDST +mrr SHLE & CGLM bnds			XBED	90	НМВ
11	PMa	N	827.20	861.60	RHLT	DACT	Pak-Gry-wht RHLT TUFF/AGLM: TEPH?	HRCS	EPCL	·		Tr Cpy
1:	PMa	Y	827.20	831.50	RHLT		Gry-pak fg lith RHLT-TUFF	Н	TUFF			
12	PMa	Y	831.50	845.50	AGLM	RHLT	Dkgry-pnk lith TUFF/AGLM: cls-CHRT-FEXT	HR	AGLM			Tr Py
1:	PMa	Y	845.50	861.60	RHLT		Wht-ppl mass PORP RHLT-xtl-TUFF	HS	TUFF	-		
1.	PPwp5	N	861.60	101516	BIF	CHRT	Rdbn-pnk BIF: HEM/MAGT-QTZ-CHL; loc fld	RC		LAYR	75	Mnr vas Cp-Bn-Py
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

-	ROJECT			nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		WOOM	MAP N	<u>o:</u>	6235
L	TRATIGE						LITHOLOGY	NUMBE	Ŕ	1	UNIT N	fo:	42
L	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core/	Formation	/ Comment
	PNst	N	0.00	239.00	SLST	SHLE	ibed slat,shle+fg sdst ovr lamb shle		LAMB				
	PNstc	Y	0.00	72.00	SLST	SHILE	grn,ppl+pnk xbed ibed slst,shle+fg sdst		IBED		-		
	PNstt	Y	72.00	239.00	SHLE	SLST	ppl.brn+grn lamb shie+rar slst.mn: xbed	<u></u>	LAMB				
ŀ	PNh	N	239.00	342.00	SDST	CLST	mg-cg sdst ovr sandy clst+bsl dlom bree			,	-		•
	PNhh	Y	239.00	320.00	SDST		mg-cg fbl sdst + occ clay bands				-		
	PNhh1?	Y	320.00	341.00	CLST	SDST	sandy elst+occ frags black dlom					org PNhh	
	PNh2	Y	341.00	342.00	DLOM	BREC	PNhh+wht dlom frags in dk gry shle mix				-		·
	PNf	N	342.00	470.00	SHLE	OQZT	blk lamb dlom shle ovr pnk-gry lamb OQZT	_	LAMB		-		
1	PNft	Y	342.00	455.00	SHILE	DLOM	dk gry-blk lamb shle+mnr ibed slst+dlom	_	LAMB			сру	
1	PNft1	Y	455.00	470.00	OQZT		puk-gry fg lamb OQZT+set qtz pbl+?dlom		LAMB		-		
1	РМ-рза	N	470.00	611.00	OQZT		ppl-red ind OQZT		_			could be any	PM-p mem.
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): I	3JV 30/6/92

Ę	RO	JECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		TWN-	MAP N	o:	6236
		ATIGRA	PHY:		. , ,			LITHOLOGY	NUMBE	R	2	UNIT N	(o:	69
Ļ		GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation /	Comment
	1 0	5	N	0.00	4.00	SAND	<u> </u>	Red sand uncsi						
	2 E	ha	N	4.00	20.00	LMST		No data						
	3 P	Nst	N	20.00	293,00	SDST	SHILE	Rdbn vmnr grn SHLE data from 282m only	 .			-		· · · · · · · · · · · · · · · · · · ·
1	4 P	Nstc	Y	20.00	154,00	SDST		Red-wht "quartzite" No other data	_	; —	,	90		
	5 P	Nett	Y	154.00	293.30	SHILE	-	Rdbn vmnr grn SHLE data from 282m only	_	^ <u></u>	LAMB	90		
		Nan	N	293.30	294.50	DLOM	SHLE	Crm-pnk mott dolomite/mudstone	<u> </u>		TBED	90		
		Nh2	N	294.50	303.40	BREC		GRNT clst f-mg bree & hem fg matix suptd		,			Basi budy @76	dg,Vn-CR
		Mwr	N	303.40	545.60	GRNT	LGRT	Pnk mg-mxt GRNT mg LGRT +mnr GRDI & FPEG	SRH	VEIN	MASS			
		Mwr4		303.40	383.50	GRNT	· 	Pnk eg mxt QTZ-FELD-BIOT +mafic XENO	SRH	VEIN	MASS		Vns-Q-CRB-H	
-		Mwr5		383.50	420.10	GRNT		Pnk mg QTZ-KFLD-BIOT +mafic XENO & FPEG	SRH		MASS		Diss-Py-Cpy, \	
-	1 1	Mwr6	Y	420.10	423.10	LGRT		Pnk mg	H		MASS	-	Vis-CHR-Py-	Сру
1	2 P	Mwr5	Y	423.10	443.10	GRNT	_ '	Pnk mg QTZ-KFLD-BIOT +mafic XENO & FPEG	SRH		MASS	-	Lyrs B!OT,XF	LD,& Py,
	1	Mwr6	Y	443.10	444.20	LGRT		Pnk mg	н	· .	MASS			
			Y	444.20	460.30	GRNT	-	Pnk cg mxt QTZ-FELD-BIOT +mafic XENO	SRH	VEIN	MASS	-	Feldspars allig	ned
ľ			Y	460.30	461.30	GRDI		Gry? mg? PLAG-BIOT +KFLD-VEIN/CLOT	SR	VEIN	MASS	-		
			Y	461.30	517.40	GRNT		Pnk cg mxt QTZ-FELD-BIOT +mafic XENO	SRH	VEIN	MASS		Feld all, Vns C	hemFLD
			Y Y	517.40	526.70	LGRT	GRNT	Gry? mg KFLD-QTZ-mnr PLAG +XENO (.3m mxt)	_	_	MASS	-		
	1		Y :	526.70 532.00	532.00	GRNT	LGRT	Puk cg mxt QTZ-FELD-BIOT +FPEG, mnr LGRT	SRH	VEIN	MASS		Mnr vns-CRB	
1			Y	534.90	534.90	GRNT		Pnk mg QTZ-KFLD-BIOT		 .	·		Shrzn?, mar Py	
2	V P		1 (1)	(7)	.545.60 (7)	GRNT (4)	(4)	Pnk eg mxt QTZ-FELD-BIOT +FPEG, mnr LGRT (40) (SADME/JLCEXS Feb'92 Format)	SR (4)	(4)	(4)	(2)	Mar vas-Py-Ci Author(s):JLC	
<u>_</u>			1.4/		(1)	(7)	(7)	(TV) (SADMEDILCEAS FEO 32 POIMAT)	(")	(7)	(7)	(4)	i ramor (s) a be	~VI VO.

25

_	ROJECT			elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		TWN-	MAP N	6:	6236
15	TRATIGR.	·		TT - 7 - 8	4 - 7 1 1	A- 1-1-	LITHOLOGY	NUMBE			UNIT N		70
-	GIS Uni	200	From (m)	To(m)	1st Lith.	and Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comm	nent
1	Q	N	0.00	2.00	SAND		Red uncsl sand & gypsum	-		- 1	-		
2	Eha	N	2.00	16.00	LMST		No data		_				
3	PNst	N	16.00	288.00	SDST	-	Red-wht "quartzite"					, , , , , , , , , , , , , , , , , , , ,	
4	PNstc	N	16.00	148.00	SDST		Red-wht "quartzite"	-	· —		-		
5	PNstt	N	148.00	288.00	SHLE		No data						
6	PMwr8	N	288.00	305.43	DIOR		Pnk mg 75%FLD 25%BIOT(CHL) thin QTZ Vns	HRC	MASS		, 	Mnr vns-Q-CRB-/H	EM
7	PM1	N	305.43	318.43	GBBR	,	Grn mg lwr chld mrgn & FLD laths HC Vns	HCR	_		-	Vns-Q-CRB-HEM	
.8		Ŋ	318.43	641.10	DIOR	LGRT	Gry/Pnk pale LGRT in older GRDI	HCR	MASS	SHRZ		PMwr7 may be pre i	PMh
9		Y	318.43	333.06	DIOR		Pnk mg 75%FLD 25%BIOT(CHL) thin QTZ Vns	HRC	MASS	SHRZ	-	Two vnset-Q-CRB-i	ŒΜ
	PMyg	N	333.06	336.00	DOLR	· 	Gra fg	RC	MASS	SHRZ	60	Intruded into SHRZ	
	PMwr8	Y	336.00	. 362.55	DIOR		Pak mg 75%FLD 25%BIOT/PX(CHL) & HC Vas		MASS	SHRZ		Mnr vns Q-HEM-C	
-	PMwr6	Y	362.55	363.30	LGRT		Plpnk QTZ-KFLD +DIOR Xenos	R	MASS			DIOR Xenos -> late	int
	PMwr8	Y	363.30	367.25	DIOR		Puk mg 75%FLD 25%BIOT/PX(CHL) & HC Vns		MASS	_			
1	PMwr6		367.25	371.10	LGRT		Plpnk QTZ-KFLD	R	MASS		25	Xeutt intr T20,B30 d	g
	PMwr8		371.10	399.70	DIOR	LGRT	Pnk mg 75%FLD 25%BIOT/PX(CHL) LGRT bnds	_		SHRZ	60	Mineral layering	
	PMwr7?		399.70	425.00	GRDI	LGRT	Gry-pnk? mg +lyrs LGRT C-Vns	C	GNSC	FOLI	; =+ '	Mnr pnk vns- CRB	
	PMwr6		425.00 481.50	481.50 493.20	DIOR LGRT		Pak mg 75%FLD 25%BIOT/PX(CHL) & HF Vns	HRC	_	FOLI	-	Vn-Q-FELD +hem,	CHR
		Y	493.20	498.00	DIOR		Pak i-mg +pak KFLD plat	R	_		-	CHR in fracs	-,
		Y	498.00	499.00	LGRT		Pnk mg 75%FLD 25%BIOT/PX(CHL) & HF Vns	HRC					
ľ		Y	499.00	544.30	DIOR		Pak f-mg +pak KFLD plaxt	R	MASS	VEIN		CDB in DDEC	
	PMwr7		544.30	551.30	GRDI		Pnk mg 75%FLD 25%BIOT/PX(CHL) & QC Vns Gry? f-mg 15%mfc(BIOT) mnr QTZ & FLD Pxt	RC C		VEIN FOLI	65 50	CRB in BREC, vn-Q	уCH ——
	PMwr8	Ì	551.30		DIOR	*****		R	MASS	. 021		Frac CI-IR-CRB	
	PMwr7		560.00		GRDI		Gry? f-mg 15%mfc(BIOT) mnr QTZ & FLD Pxt			FOLI	.50		
	PMwr8	1	562.90		DIOR	+++-	Pnk mg 75%FLD 25%BIOT/PX(CHL) & RH Vns		MASS		_	Vns-HEM-CHR	
	PMwr7		566.50		GRDI		Gry? f-mg 15%mfc(BIOT) mnr QTZ & FLD Pxt			FOLI	60		
	PMwr8		569.80		DIOR		Pnk mg 75%FLD 25%BIOT/PX(CHL) & C Vns	c		FOLI	-	Mnr vns-Cp-CRB-Be	ART
28	PMwr6	Y	586.90		LGRT		Pnk/grn f-mg +pnk KFLD/QTZ allgn-Phxt	_	MASS		40	Flow banding?	
29	PMwr8	Y	596.25	641.10	DIOR		Pnk mg 75%FLD 25%BIOT/PX(CHL) +LGRT bnds	RC		FOLI		Frac-Cpy,vns Q/CHF	R-CR
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	_(4)	(2)	Author(s):JLC 30/08/	/92

1	ROJECT	: 8	Stuart Sh	nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		ACD-	MAP N	o:	6236
L	TRATIGR	APHY .					LITHOLOGY	NUMBE	R	1	UNIT A	fo:	73
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation / Com	ment
	Eha	N	0.00	40.00	LMST	_	No description available		· —				
	PNst	N	40.00	411.37	SDST	SHILE	No description available				-		
	PNsts	Y	40.00	172.00	SDST	_	No description available	}			-		 :
	PNstc	Y	172.00	200.50	SDST		No description available	-	· ^		-		<u> </u>
	PNstt	Y	200,50	411.37	SHILE		No description available		<i>`</i> — ˈ		_		
	PNsn	N	411.37	412.90	DLOM	SHLE	No description available	-					 ,
	PM-p	N	412-90	717.80	SDST	CGLM	No description available	_	_		_		
	РМ-р	Y	412.90	715.20	SDST		No description available		·				
1	PM-p1b	Y	715.20	717.80	CGLM		No description available	-	"	-	- ·		
1	PMa	N	717.80	1097.60	FEXT	EPCL	Felsic volcanics & sediments	HS		· —	-	Wk Cu min, U @ 81	.8-26
1	PMa	Y	717.80	924.00	EPCL	BREC	Pnk? volegen sed: dis FEXT, part BREC	HS		BREC	-	Dis Py, vugs, Bn@9)Om
1	PMa	Y	924.00	1097.60	FEXT	BREC	Porp FEXT: vus Mt throughout	s		BREC	-	Tr Py-Cp, +Bn 940-	985m
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/	92

	ROJECT			elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		ACD-	MAP N	
3	GIS Un		From (m)	To(m)	1st Lith.	2-21:4	LITHOLOGY Rock Description - Diagnostic Features	NUMBE Alterat.	Texture		UNIT A	fo: 74 Formation / Comment
	1	N	-1						Texture	/Fabric		
1	TQ		0.00	2.00	SAND	CACT	Red SAND, CACT + weth LMST/DLOM	weth				
2	Eha	N	2.00	27.00	LMST	_	No description available		_	 :	-	
3	PNst	N	27.00	400.00	SHILE	SDST	No description available		_	_ [-	
4	PNsts	Y	27.00	162.00	SDST		No description available		 .		-	
5	PNstc	Y	162.00	180.00	SDST		No description available	ļ ,				to the state of th
6	PNstt	Y	180.00	400,00	SHILE		No description available	-	:	· · · .		
7	PNh3?	N	400.00	402.55	BREC		Bedded CGLM & BREC			BED	-	
8	РМ-р	N	402.55	431.90	SDST	SHILE	SDST, SHLE +bsl HEM/FEXT-BREC: ibed	-		IBED	-	
9	PMa	N	431.90	915.00	FEXT	BREC	Porp FEXT/BREC complex	HS	PORP	BREC		Vn H-PY-Cp-Bn
10	PMa15	Y	431.90	673.60	FEXT	DLBR	Pnk? porp FEXT: insitu DLBR?: freq H vns	HS	PORP	BREC		Vns H, +Bn >655m
11	PMa14	Y	673.60	680.00	FEXT		Pnk? wk bnd FEXT/TUFF: vns H-Bn	_	BND			Vns-H-Bn, scatterd
12	PMa14	Y	680.00	773.40	FEXT	-	Pnk? mass porp FEXT: vns H-Cc-Bn < 742m	HS	MASS		-	Mnr diss Cp & Py >717 & in H-vns <742m
13	PMa15	Y	773.40	873.00	FEXT	BREC	Pnk? mass porp FEXT: Thin invasive? BREC	HS	MASS	PORP		Vns-H, +APAT 831-840 Perv-H ints 831-840m
14	PMa14	Y	873.00	915.00	FEXT		Pnk? mass porp FEXT: mnr thin BREC	HS	MASS	PORP	-	
	(11)	(1)	の	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

-	ROJECT	: 8	Stuart Sh	elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		ACD-	MAP N	fo: 6236
S	TRATIGR	APHY	:				LITHOLOGY	NUMBE	R	4	UNIT I	
L	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
1	Q	N	0.00	6.00	SAND		Dune SAND	-				
2	T	N,	6.00	18.00	CLST		Claystone					
3	Eha	N	18.00	60.00	LMST		No descriptions available				_	
4	PNst	N	60.00	457.05	SHILE	SDST	No descriptions available		. —		:	
5	PNets	Y	60.00	212.00	SDST		No descriptions available		·		-	
6	PNetc	Y	21.2.00	222.00	SDST		No descriptions available		_			
7	PNett	Y	222.00	457.05	SHILE		No descriptions available					
8	PNsn	N	457.05	458.40	DLOM	SHILE	No descriptions available				-	
9	PNf	N	458.40	486.10	SLST	CGLM	Bal pebble CGLM			,		
10	PNft	Y	458.40	480.15	SLST		No descriptions available					
11	PNft1	Y	480.15	486.10	CGLM	 .	Sandy pebble CGLM		_			
12	РМ-р	N	486.10	576.25	SDST		No descriptions available					
13	PMa	N	576.25	848.00	FEXT	BREC	Mass (porp) FEXT +ibed plmc BREC/CGLM	HSR	MASS	EPCL		Phat var abund.
14	PMa14	Ÿ	576.25	834.60	FEXT	EPCL	Mass (porp) FEXT +ibed plmc BREC/TUFF	HSR	MASS	EPCL	_	Irrg BND @>830m BRE
15	PMa	Y	834.60	837.00	CGLM	SDST	Granule CGLM/SDST				 -	686,713,749, & 755m
16	PMa14	Y	837.00	848.00	FEXT	BREC	Mass FEXT +ibed plmc BREC		MASS	BREC		
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

-	ROJECT		Stuart Sh	nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE	` ; ; · · · · · · · · · · · · · · · · · 	ACD-	MAP N	o:	6236
Ŀ	TRATIGR		-				LITHOLOGY	NUMBE	R	5	UNIT N	lo:	76
L	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation	/ Comment
	T	N	0.00	20.00	SDST		Sandstone-weakly? cemented		-		-		
	Eha	N	20.00	46.00	LMST		No description available				-		
:	PNst	N	46.00	408.15	SHLE	SDST	No description available	-	:	:			
	PNsts	Y	46.00	190.00	SDST		No description available	-	:	 .	_		
	PNstc	Y	190.00	198.00	SDST		No description available						
١,	PNstt	Y	198.00	408. 15	SHILE		No description available						
	PNsn	N	408.15	409.1 5	DLOM	SHILE	No description available				1		
	PNh3	N	409.15	410.45	CGLM		Plmc CGLM: cls-GRNT, FEXT, & DLOM	-				PNft pincho	ut nearby?
!	PNf	N	410.45	426.40	SLST	BREC	Bsl hematitic REGL?				- :		
1	PNft	Y	410.45	426.15	SLST	DLOM	No description available				_		
1	PNft27	Y	426.15	426.40	BREC		BREC cls-FEXT: thin basement REGL lag?		<u></u>				
1	PMa14	N	426.40	687.00	FEXT		Pnk? porp FEXT: Intuse frac zns <559m	HS			-	Strng alt dim	nin >636m
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JL	C 5/11/92

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		ACD-	MAP N	lo: 6236
S	TRATIGR						LITHOLOGY	NUMBE	R	7	UNIT I	
_	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Litt	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
1	Q	N	0.00	15.00	SAND		Orange and white SAND		_		_	
2	Eha	N	15.00	44.00	LMST		No description available	_			-	
3	PNst	N	44.00	421.75	SHILE	SDST	No description available	-			-	
4	PNets	Y	44.00	194.00	SDST		No description available		· —			
5	PNstc	Y	194.00	202.00	SDST		No description available	_	,		_	
6	PNstt	Y	202.00	421.75	SHILE		No description available	-	-	_		
7	PNsn	N	421.75	423.90	DLOM	SHILE	No description available		, -	 ;	-	
.8	PNft	N	423.90	448.90	SLST		No description available		-		-	
	PM-p	N	448.90	464.30	SDST	BREC	Bel bree/talus? of local derivation?		-	-		
	РМ-р	Y	448.90	463.10	SDST		No description available			_ '		
	PM-p1b		463.10	464.30	BREC		Hematite breccia- regolith/talus?				+-	
	PMh10	N	464.30	567,30	AGRN	MCGR	Pnk moti mass f-mg MCGR: mnr phxt-FLD	SH	MASS			Alk GRNT comp, Q=30
	PMh11 PMh10	N	567.30	572.70	SYEN	_	Fg ALK-QTZ-SYEN:				+	QTZ-low abun
	PMh10	N N	572.70 576.30	576,30 580,12	AGRN	FSPO	Pnk motl mass f-mg MCGR: <10%-phxt-FLD		PORP			Alk GRNT comp, Q=30
	PMa14	N	580.12	589.95	AGRN FSPO	MCGR	Puk moti mass f-mg MCGR: mnr phxt-FLD	SH	MASS	_		Alk GRNT comp, Q=30
	PMh11	N	589.95	605.70	SYEN	_	Pnk i-mg FSPO: gmas-FLD-QTZ,phxt-FLD Fg ALK-QTZ-SYEN: phxt abun > 595.45m	SH	PORP		_	pExt=20-30%
	PMa15	N	605.70	751.06	MAGT	HYTR	Pnk-brn? mass vfg Mt-HEM-(APAT-QTZ) rk:	R	BREC'	MASS		Vug/diss Cp-Py
	PMyg	N	751.06	751.50	DOLR		Grn? fg DOLR: dyke?	R				only R alt reported
	PMa15	N	751.50	780.62	MAGT	HYTR	Puk-brn? mass vfg Mt-HEM-(APAT-QTZ) rk:	R	BREC	MASS		Vug/diss Cp-Py
21	PMh10	N	780.62	787.24	AGRN	MCGR	Pnk mass fg MCGR: 25%? phxt-FLD/QTZ	SH	MASS			Alk GRNT comp
22	PMa15	N	787.24	854.73	NAGT	HYTR	Pnk-brn? mass vig Mt-HEM-(APAT-QTZ) rk:	RC			· ;	FEXT/GRNT ricts
23	PMa14	N	854.73	954.30	FEXT	FSPO	Pnk fg porp "FEXT":phxt-QTZ<15%; vns@909m			_	<u></u>	Vns/alt-QTZ-Mt-HYTR
24	PMh11	N	954.30	956.80	SYEN		Vig ALK-QTZ-SYEN: dyke?	:	;		-	• · · · · · · · · · · · · · · · · · · ·
25	PMa14	N	956.80	95910	FEXT	FSPO	Porphyritic felsic lithologies				-	
26	PMa15	N	959.10	978.80	MAGT	HYRR	Mt-QTZ-CHL-SER rk: rlct SYEN & FEXT/PORP	RS	_		- :	Perv rplac alt?
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

	ROJECT			nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		ACD-	MAP N	o: 6236
Ŀ	STRATIGE	APHY	:				LITHOLOGY	NUMBE	R	9	UNIT A	fo: 78
	GIS Un	u Sub	From (m)	To (m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
	Q	N	0.00	2.00	SAND		Dune sand	_	_		-	
:	Q	N	2.00	19.00	CLAY		Grey-white clay				-	
:	Eha	N	10.00	41.00	LMST		No available description				-	
	4 PNst	N	41.00	642.95	SHLE	SDST	No available description		÷ —		+-	
	PNsts	Y	41.00	156.00	SDST		No available description		·		.,=-	
1	PNstc	Y	156.00	196.00	SDST		No available description	-			_	
	PNstt	Y	196.00	409.90	SHLE		No available description		 			
	PNsn	N	409.90	410.20	DLOM	SHILE	No available description					
!	PM-p	N	410.20	642.95	SDST		No available description					
1	0 PMa	N	642.95	877.00	FEXT	HYTR	FEXT-SCINT-SIBR-HYRR-HYTR	BHSR			+	
1	PMa16	Y	642.95	660,50	SINT	BIFO	Rdbn? mass & cbnd HEM-BIFO: loc brec		BREC	BND	-	
	2 PMa16	Y	660.50	663.80	SIBR	FEXT	Wht DLBR of FEXT +SER mtx: FEXT alt	BQ	DLBR		4-	
ľ	3 PMa16	Y	663.80	672.65	HYRR	FEXT	Wht fg mass FEXT-perv? alt	BQ	MASS		-	
1	PMa14	Y	672.65	849.20	FEXT	FSPO	Puk-grn? porp FEXT: Mt-vns mod abund	HSR	PORP		-	
1	PMa15	Y	849.20	877.00	MAGT	HYTR	Puk-rd? mg mass? Mt-APAT: mnr R-S-Cp-Py				-	Acc BRAN/RUTLAg-U
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

,	ROJECT		Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE	· · · · · · · · · · · · · · · · · · ·	ACD-	MAP N	o: 6236
5	TRATIGR						LITHOLOGY	NUMBE	R	10	UNIT N	fo: 79
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2.00	SAND		Red SAND				-	
2	Eha	N	2.00	44.00	LMST	****	No description available			;		
3	PNst	N	44.00	430.50	SHILE	SDST	No description available					
4	PNsts	Y	44.00	178.00	SDST		No description available	-				
5	PNstc	Y	178.00	196.00	SDST		No description available	-				
6	PNstt	Y	196.00	430.50	SHILE		No description available					
7	PM-p	N	430.50	550.60	SDST		No description available					
8	PMa	N	550.60	807.50	FEXT	HYTR	PNK? porp FEXT cut by MASS HEM vns/brec	SQH	PORP	BREC	-	Var diss H, Cu-Ag min T Tr UAu,La,CE
9	PMa14	Y	550.60	670.50	FEXT	****	Pnk? porp FEXT: loc H ait & vns	SQ	PORP			
10	PMa15	Y	670.50	627.70	HYTR	BREC	BREC cls FEXT in mass HEM mtx	-	BREC		-	
11	PMa14	Y	627.70	753.80	FEXT		Pnk? porp FEXT: loc H,Q alt,Vns-H	SQH	PORP			Wk Cu-Ag min, Tr u-Au Vns-H 723.65-735m
12	PMa15	Y	753.80	765.50	HYTR	BREC	MASS HEM: + cls FEXT-(mnr CHL alt)	R				
13	PMa14	Y	765.50	807.50	FEXT		Pnk porp FEXT: perv H +vns-H	Н	PORP			Wk Cu-Ag-U min M Mnr La-Ce
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

30

I	ROJEC	! :	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		ACD-	MAP N	o: 6236
-	STRATIG	PAPHY					LITHOLOGY	NUMBE	R	18	UNIT N	lo: 80
L	GIS U	ni Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
	PNst	N	0.00	420,60	SHILE	SDST	No description available				;	
	2 PNsts	Y	0.00	180.30	SDST		No description available					
	PNstc	Y	180.30	191.80	SDST		No description available					
	4 PNstt	Y	191.80	420,60	SHILE		No description available		÷ —		-	
	PNhh	Y	420.60	426.9 5	SDST		Fine grained arenite		´		_	
	PNft	N	426.95	429.65	SLST	DLOM	No description available		· 			
	PM-p	N	429.65	674.60	SDST	CGLM	Bel hematitic CGLM	_	, <u></u> :			
	PM-p	Y	429.65	659.70	SDST		No description available					
	PM-pi	b Y	659.70	674.60	CGLM		Hematitic conglomerate					
1	0 PMa	N	674.60	851.00	FEXT	FINT	Pnk porp FEXT & FINT?	HS				
1	1 PMa14	Y	674.60	846_50	FEXT		Pnk? porp FEXT of intmedt composition	н	PORP			
1	2 PMa14	Y	846.50	851.00	FINT		Puk? mg equ-gran feisic FINT?: QTZ eyes	s	MASS		-	Plag lath-S-alt
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb*92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		CRD-	MAP N	o <u>:</u>	6236
S		RATIGRAPHY: GIS Uni Sub From (m) To (n					LITHOLOGY	NUMBE	7	1	UNIT N	lo:	72
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	6.00	SAND	_	yel to rorn fg sand with gyps+CACT						
2	PNsts	N	6.00	118.00	SDST	SHILE	pkbu+wht fg-mg wsrt sdst+mnr lamb shle	r	·		-		
	(11)	(1)	の	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	BJV 30/6/30

	ROJECT		Stuart Sh	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		CSD-	MAP N	ю:_	6236
5	TRATIGR						LITHOLOGY	NUMBE	7	1	UNIT A	ю:	66
L	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	SOIL	Red-Brown	_		_			
2	PNst	N	2.00	340.00	SHILE	SDST	Rehbrn SHLE & pale to Rbrn SDST units						•
3	PNsts	Y	2.00	77.00	SDST	SHLE	White f-mg, well std. fbl, min grn SHLE	WEAT		MBED	-		
4	PNstc	Y	77.00	132.00	SDST	SHLE	Rbrn-pwht fg, some SFiLE	-		IBED	-		
5	PNstt	Y	132.00	140.00	SHILE	SLST	Rd-chbrn, min grn bands.	-		TBED	-		
6	PNstc	Y	140.00	142.00	SDST	SHLE	Rdbrn m-fg SDST/SHLE	-		IBED			-
7	PNstt	Y	142.00	339.80	SHLE	SLST	Rd-chbrn, min grn bands, min XBED SLST			TBED			
8	PNah	N	339.80	352.80	SDST	CGLM	Rdbrn-grn, lithic, hvm, pebbly, min SHLE	SIL		IBED	78		
9	PNf	N	352.80	403.00	DLOM	SHILE	dkgyblk & wht, increasing DLOM to base		_	TBED	90		
16	PNftw	Y	352.80	399.30	DLOM	SHILE	dkgyblk & wht, increasing DLOM to base	-		TBED	90		·
11	PNft1	Y	399.30	403.00	SDST	CGLM	Rdbrn SDST & CGLM				-		
12	PM-p	N	403.00	864.95	SDST	SHLE	Hrdbrn with bleached bands, hmb, ufsq	В			90	Barren	
13	PM-p4	Y	403.00	718.70	SDST	CGLM	Hrdbrn m-veg CGLM, hmb min cbrn SHLE	_		XBED	87		
14	PM-p3	Y	718.70	849.00	SDST	SHILE	Hirdbrn micaceous shaley ufsq pebbly hmb		, 	BED	90		·
15	PM-p2	Y	840.00	860.00	SHLE	SDST	Rdbru sandy shales, min grty/pbly SDST			TBED	90		
16	PM-p1	Y	860.00	864.95	SDST	SHILE	Rdbrn min grty/pbly SDST & SHLE			IBED			
17	PPw1	N	864.95	994.20	SKRN		Mag (hem)-Garnet-Amph(chlr)-Qtz	нс		RLBD	.50	Vis-Q-MA	ЭТ-Ру-Сру
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author: JLC	30/08/92

P	OJECT	: 8	Stuart Sh	nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		HHD-	MAP N	o <u>:</u>	6236
STRATIGRAPHY:				LITHOLOGY	NUMBE	<u> </u>	1	1 UNIT No:					
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	0.00	4,00	SAND		Org sand ?aeolian						-
2	r	N	4.00	10.00	SICT		Owht laminated siliceous "cherty sitstone"	weth		LAMB	-		
3	Ecy	N,	10.00	22.00	CLAY	SAND	Pnk-brn clay +/- sand	weth				Mnr Zn,Co	enrch-bal lat
4	PNst	N	22.00	354,00	SDST	SLST	Corn-mnr blu/grn SHLE/SLST +mnr-crm-DLOM		; —				
5	PNets	Y	22.00	138.00	SDST	SHILE	Pnk-wht mg wsrt (org weth < 40m) red SHLE	Н	-	BED	-		
6	PNstc	Y	138.00	165,00	SDST	SHLE	Com/dppl SDST & LAM SHLE	-		IBED			
7	PNett	Y	165.00	354.70	SHLE	SLST	Corn/ron min blu/grn hrd		·	LAMB	87		
8	PNsn	N	354.70	360.10	DLOM	SHLE	Crm DOLM BED/NOD & red LAM SHLE lc grn	-			90		
9	PNhh	N	36010	361.10	SDST	CGLM	Wht wert stud QTZ SDST meem + gra/pol	-	,			Lwr enet=d	isf
10	PNft2	N	361.10	369.70	CGLM	SDST	Ppl sandy CGLM +HEM mtx, mtx in fracs	weth	, .	-		Mc Leay Re	golith
11	PM-p	.N	369.70	1132.80	SDST	SHLE	Rdbn-wht SDST +ibed SHLE & loc CGLM	вн			-	Вагател	
12	PM-p4	Y	369.70	510.00	SDST	CGLM	Red/ppl +wht zns veg-mg gra/pbl min SHLE	вн		XBED	90		
13	PM-p3	Y	510.00	947.50	SDST	SHLE	Lppl m/wert hmb inclst-SHLE ufsq			XBED	.90		
14	PM-p2	Y	947.50	1012.20	SHLE	SDST	Rbn SHLE lsr SLTS+mg SDST ufsq			LAMB			
15	PM-pla	Y	1012.20	1118.20	SDST	SHLE	Lppl/red m/wsrt+bsrt pbl/gnl beds hem-mtx			PBED			
16	PM-p1b	Y	1118.20	1132.80	CGLM	SDST	Pnk/red srnd/sang clst QTZ OQZT HEM-GRNT?			BED			
17	PPh?	N	1132.80	1118.20	GNSS		Rdpnk KFLD-phbls mtx-QTZ/SER: sup-H-wprf	Sh		FOLI	.50	Вагтеп	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):J	LC 30/08/92

				elf Base	ment	STRATIGRAPHIC SUMMARY			HOLE		MAP No:		6236	
S	TRATIGRA	APHY:					LITHOLOGY	NUMBER			UNIT N	<u>o:</u>	71	
GIS Uni Sub From		From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment		
1	Q	N	0.00	4,00	SAND		org mg to eg dune sand+mnr CACT							
2	Q?	N	4.00	8.00	CLST	CACT	wht to buf,yel clst+CACT+mnr gyps					Tertiary?		
3	PNst	N	8.00	328.00	OQZT	SHILE	wht fg to eg oqzt ovr brn+grn shle+slst				:			
4	PNsts	Y	8.00	156.00	OQZT	_	wht fg to eg wrnd oqzt+mnr shle				_			
5	PNstt	Y	156.00	328.00	SHLE	SLST	brn+grn shle+slst+mnr vfg sdst				-	v rare bedde	ed epy	
6	PM-p3a	N	328.00	364,00	SDST	SHILE	dk rbrn wert sang mg qtz hem sdet+shle				- ,			
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): E	JV 30/7/92	

P	ROJECT	: 5	Stuart Sk	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		TWN-	MAP N	o:	6236
S	STRATIGRAPHY:					LITHOLOGY				1	UNIT N	68	
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	8.00	SAND	CLAY	Red SAND +mnr CLAY				_		
2	Eha	N	8.00	34.00	DLOM	SHILE	"No description supplied"				_		
3	PNst	N	34.00	414 .30	SDST	SHILE	"described from 301.4m only			BED			
4	PNstc	У	34.00	198,00	SDST	SHILE	"No description supplied"		;				
5	PNstt	Y	198.00	414.30	SHILE	SLST	Chbn +mnr gyggn SHLE/SLST, DLOM at base		/ <u></u> :	LAMB	90		
6	PMwr	N	414.30	700.80	GRNT	BREC	Pnk cg intgth PLAG/QTZ, +AFLD, mnr MCGR	HRw		TALU	,		
7	PMwr1	Y	414.30	432.80	GRNT	BREC	Pnk cg +bree bnds, rnd elst-gygn/on SHLE	HR	PORP			Megcist?-41	
8	PMwr2	Y	432.80	545.10	GRNT	MCGR	Pnk cg intgth PLAG/QTZ, +AFLD, mnr QTZ Vns	R	 .				negg CGLM? B-CHR-FLD
9	PMwr3	Y	545.10	547.10	MCGR		Pnk? fg AFLD-PLAG?-BIOT-QTZ			DYKE	. 60		
10	PMwr2	Y	547.10	571.50	GRNT	MCGR	Pnk cg intgth PLAG/QTZ, +AFLD, S-C Vns	R				Frace/vns-Cl	RB-CHR-SE
11	PMwr3	Y	571.50	572.70	MCGR		Pnk? fg AFLD-PLAG?-BIOT-QTZ			DYKE	60		
12	PMwr2	Y	572.70	676.30	GRNT	MCGR	Pnk cg intgth PLAG/QTZ, +AFLD, H-R-C Vns	R			-	Fracs-SER-C	CRB-CHR-SI
13	PMwr3	Y	676.30	679.20	MCGR		Pnk? fg AFLD-PLAG?-BIOT-QTZ, +BAR			DYKE	-		
14	PMwr2	Y	679.20	700.80	GRNT	MCGR	Pnk cg intgth PLAG/QTZ, +AFLD, H-R-B Vns	R			-	Fracs-CRB-	CHR-BART
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JI	C 30/08/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		WRD-	MAP N	o:	6236
S	STRATIGRAPHY:						LITHOLOGY			NUMBER 1			81
_	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation	/ Comment
1	PNst	N	0.00	348.43			No description available				-		
2	PNsts	Y	0.00	162.00	SDST		No description available						
3	PNstc	Y	162.00	168.00	SDST		No description available						:
4	PNett	Y	168.00	348.43	SHILE		No description available		·				
5	PNsn	N	348.43	350.00	DLOM	SHILE	No description available		·				
6	PM-p?	N	350.00	355.43	CGLM	BREC	Low mix plme BREC/CGLM						
7	РМа	N	355.43	568.24	FEXT		Puk-org porp FEXT +mnr BREC	HS			- 		
8	PMw1	N	568.24	982.80	BREC	GRNT	GRNT-KFLD-QTZ/GRNT-BREC + FEXT/FINT		FOLI		-	Vis-H-Ce-B	
L	(11)	(1)	(T)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	EPCL vent b Author(s):JL	1

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		BD-	MAP N	o:	6237	
S	STRATIGRAPHY:						LITHOLOGY	NUMBER 1			UNIT No:		15	
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment	
1	Qî	N	0.00	21.00			No data available.				-			
2	E	N	21.00	217.40	SHILE	LMST	Chbn-grn SHLE & wht LMST/DLOM			MASS	90			
3	Eoy	Y	21.00	78.60	SHILE		Chbn/mar-gngy CACT-SHLE:grn bnds-pyritic			BED	90	Wht high C	LC zns	
4	Eha	Y	78.60	217.40	LMST	DLOM	Wht mass LMST/DLOM +ibed chbn SHLE:Tr Py	-	y ugy	MASS	90	Loc abun ar	y corais	
5	PNst	N	217.40	607.60	SDST	SHILE	Wht/Brn SDST & brn SHLE:mnr thin ibed		MASS	IBED	90			
6	PNsts	Y	217.40	389.00	SDST	SHILE	What f?-mg SDST + ibed thin grn-bin SHLE binds	_	MASS	IBED	90	Loc spherul	tic Py	
7	PNstc	Y	389.00	407.60	SDST	SHILE	Brn fg SDST +ibed thn brn-gn SFiLE bnds		MASS	IBED	90	<u></u>		
8	PNstt	Y	407.60	607.60	SHILE		Brn-gry(grn) fiss bnd SHLE +mnr XBED		XBED	TBED	90			
9	PMa	N	607.60	941.00	ARKS	FEXT	Pnk m-cg mass ARKS & fg PORP FEXT	SRHC	l <u></u> :	IBED	80	Va Ру-Сру-	Q-Mt-C-BA	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JI	.C 30/08/92	

P	OJECT	: 8	Stuart St	<u>relf Base</u>	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE		BD-	MAP N	<u>o:</u> 6237
S	RATIGRA						LITHOLOGY	NUMBE	R	2	UNIT N	fo: 16
	GIS Uni	Sub	From (m)	То (ш)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	18.00	SAND		No description	***			-	
2	E	N	18.00	434.40	LMST	SHLE	Buf-gry DLOM & grn-brn SHLE	_				
3	Eoy	Y	18.00	110.00	SHILE		No description				-	
4	Eha	Y	110.00	257.95	DLOM	SHILE	Buf-gry vugy strom cg xtl DLOM +mnr SHLE		LBED	TBED	90	
5	PNwy	Y	257.95	434.40	SHILE		Gru-brn SHLE:thn pelgrast ibed-XBED/ufsq		/. 	TBED	.90	Dolomitic frm 375m
6	PNst PNstc	N Y	434.40 434.40	649.10 455.35	SDST	SLST	Rdbn-wht SDST & chbn-gn SLST				-	Sharp top ent
8	PNstt	Y	455.35	433,33	SDST	SHLE	Rdbn-wht f-mg QTZ SDST & ppl SHLE > 442m Chbn-grn(mar) SLST: SDST < 492m		XBED	XBED LBED	90	
9	PNsn	N	64910	652.50	DLOM	CGLM	Crm mass rxtl DLOM: CGLM ibed <30cm		MASS	IBED		
10	PNh2	N	652.50	657.40	BREC		Pnk? plmc BREC: clst QTZ-FELD-chlSHST					DOLmix+BART:Frac-P
11	PPh	N	657.4 0	929.40	MEXT	SCHT	Grn MEXT=AMPH+BSLT & SCHT:Vns-CRB-Py-C	KH	MASS	FOLI	-	Metvolc BSLT/xtl-TUFF
12	PPh3	Y	657.40	672.00	SCHT		Grn fg FOLI SCHT:CHL-PHLG-AMPH,netvn			FOLI	45	Vns DOL(diss Py),HEM
13	PPh4	Y	672.00	755.25	АМРН		Grn f-mg AMPH:CHL-AMPH(<1cm,80%)-MUSC?	KH		MASS	- ,	Vns CALC-HEM-Py, KF
	PPh3	Y	755.25	768.27	SCHT		Gm f-cg PHLG SCHT/PHYL-CHL-BIOT-AMPH	KH		FOLI	-	Vns CALC-HEM-Py-Cp
	PPhé	Ÿ	768.27	771.00	SHLE	CHRT	Blk silic SHLE:PHLG18%-PLAG29%-QTZ37%	Н		FOLI	60	Vns CALC-Py
	PPh3	Y Y	771.00	776.80	SCHT		Gygn (g SCHT: MUSC/CHL, diss LUCX	H			, 	Vns CALC-HEM-Py-BA Vns CRB-KFLD?
	PPh6	Y	776.80 791.85	791.85 794.60	BSLT	CHRT	Grn fg BSLT7: PLAG(10%)-AMPH(68%) Blk siliceous SHLE: CHL reh zns	н		MASS	_	Vns CALC-DOL-Py
	PPhS	Y	794.60	801.70	BSLT	~	Grn fg BSLT?: PLAG-AMPH, alt-patchy	н				Vns CALC-DOL-HEM
	PPh3	Y	801.70	822.50	SCHT		Grn f-mg SCHT: Pnk víg CHRT zns < 0.5m	H	DLBR			Vn CALC-DOL-BART,
21	PPh6	Y	822.50	823.00	SHLE	CHRT	Blk carbonaceus CHRT zone					
22	PPh3	Y	823.00	827.70	SCHT		Grn f-mg SCHT: Pnk vfg CHRT zns < 0.5m	H	DLBR			Vn CALC-DOL-BART,
23	PPh6	Y	827.70	929.40	SHLE	CHRT	Blk/Pnk CHRT zone: dilat vein bree	н	DLBR	,	:	Diss Py,Cpy
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'BFormat)	(4)	(4)	(4)	(2)	Author(s): JLC 14/7/92

_	ROJECT	_	Stuart St	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		RD-	MAP N	o: 6237
S	TRATIGRA						LITHOLOGY	NUMBE	R		UNIT N	
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation / Comment
1	Eha	N	0.00	40.00	LMST		No description available				-	
2	PNst	N.	40.00	295.00	SDST	SHLE	No description available				_	
3	PNsts	Y	40.00	175.20	SDST		No description available					
4	PNstc	Y	175.20	198,30	SDST		No description available		; . 	-	_	
5	PNstt	Y	198.30	293.80	SHILE		No description available				, <u> </u>	
6	PM-p?	N	293.80	300.00	CGLM		Pebble conglomerate				-	
7	PMa	N	300.00	481.50	FEXT	BREC	Porp & aphn FEXT +pime BREC & ig Hem rk	SH	BREC	LAYR	-	Mnr Ce-Bn min
\$	PMwro	N	481,50	1318.90	BREC		Pnk-hrd plmc breccia complex	н	BREC		- :	H-Py-Cpy-Bn-Cc?? vns
9	PMwro1	Ÿ	481.50	726.70	BREC		Hematite rich BREC +lsr bedd zns	н	BREC		r:: → :	Mnr Ce-Bn min
10	PMwro2	Y	726.70	819.10	BREC	; ;	Granite BREC +thin hematite brec buds	н	BREC		-	H-Cpy vns
11	PMwro3	Y	819.10	868.30	BREC		Hematite-sulphide BREC	Н	BREC	+		H-Cpy-Py vas
12	PMwro2	Y	868.30	1055.40	BREC		Granite BREC +thin hematite bree bnds	н	BREC	: :	_	
13	PMwro3	Y	1055.40	1066.50	BREC		Hematite-sulphide BREC	н	BREC	 .	-	H-Cpy-Py vas
14	PMwro2	Y	1066.50	1130.00	BREC		Granite BREC +thin hematite bree bnds	н	BREC		+-	H-Cpy-Py vns
15	PMwro3	Y	1130.00	1153.60	BREC		Hematite-sulphide BREC	н	BREC		-	H-Py-Cpy vns
16	PMwro2	Y	1153.60	1318.90	BREC		Granite BREC +thin hematite bree bnds	н	BREC	, ,	+-	
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 5/11/92

P	ROJECT	: :	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		FHD-	MAP N	o:	6238
S	TRATIGR						LITHOLOGY	NUMBE	R	1	UNIT N	<u> </u>	6
	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Kmb	N	9.00	12.00	SAND	CLAY	usrt yel partly lithified sand+clay+gyps	weth		*****	_		
2	PNstt	N	12.00	536.89	SHLE	SLST	lamb-mbed grgn slst+shle+mnr chbn slst		LAMB		80		
3	PNsn	N	536.89	541.49	DLOM	i,	crpk wlbd dlom+bal brec ovr mnr grn sist				85		
4	PNh1?	N	541.49	544.75	SDST		rbrn to wht mert og to vog+set el-dlom		. : r' .		-	logged as uni	named sdst
.5	PNf	N	544.75	743.80	DLOM	SLST	shet pnk-erm dlom ovr gry,brn slat+sdat		LAMB		80		
6	PNfh	Y	544.75	604.90	DLOM		shet puk,rbru to crm ool,strm,aigi dlom		STY		80	fenestral	
7	PNft	Y	604.90	743.80	SLST	SDST	gret lamb gry,brn sist+fg sdst+mnr dlom		LAMB		80	т ру	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): B	JV 30/7/ 92

	ROJECT		Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	e P		MAP N	
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith		Alterat.	Texture			Formation / Comment
1	Kmb	N	0.00	40.00	CLAY		Grbn-blk CLAY: mnr oxd-ltgy,4m, GYPS<16m				_	
2	PNstc	N	40.00	44.00	SHLE	SDST	Gry SHLE & mnr SDST					
3	PNstt	N	44.00	433.70	SHILE		Brn-blk/grn SHLE grn bnds mnr; "blk">200					Tr Py ass 2rn bands
4	PNhh	N	433.70	494.06	SDST		Plrdbn part lith grty SDST:GYPS/ANHY apta					Tr mnr Py?/Spec, Vns G
5	PNft	N	494.06	915.50	SLST	SHILE	Gry-grn lam SLST/SHLE: intrf CGLM	_		LBED	90	DLOM-spar emt,Tr Py
6	PNua	N	915.50	1500.00	SDST	SLST	Gry-wht-brn f-m-cg SDST/ARKS/DIMC/SLST		XBED	GBED	-	
7	PNua	Y	915.50	1114.60	ARKS	SDST	Gry-wht-yel m-cg grty SDST/ARKS mnr els		XBED	GBED	90	Cls QITE-GNSS-SHLE
8	PNua	Y	1114.60	1115.41	CGLM	SDST	Gry? ang CGLM: mtx mg SDST, cls < 4cm				-	Palaeregolith?
9	PNua	Y	1115.41	1238.03	SDST		Plrdbn-gry f-mg SDST: porcell? chrty emt	HQ	MBED		78	Silic mtx silt
10	PNua	Y	1238.03	1246,43	SLST	SDST	Blgy-ppl SLST +mnr ibed fg SDST	_		IBED	-	
1,1	PNua	Y	1246,43	1361.65	DIMC	SDST	Gry DIMC: ang cls ,10cm in cg SDST mtx		MBED		82	Dropstone features
12	PNua	Y	1361.65	1500.00	SDST	SLST	Lt-dkgry SDST & SLST ibed, loc DIMC		MBED	IBED	- :	Diss Py/Cpy in els
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): 29/08/92

P	ROJECT	: S	tuart Sh	elf Base	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6332
S	TRATIGR						LITHOLOGY	NUMBE	R	165	UNIT N	fo: 614
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	TQ	N	0.00	8.00	CLAY	SAND	Org-brn-rdbn CLAY, SAND/GRVL:mnr CACT					
2	PNft	N	8.00	71.50	CLAY	SLST	Gry-blk CACT SLST/SHLE +mnr DLOM	weth				Weth wht/kki CLAY <31
3	PNft1	N	71.50	82.50	SDST	SLST	Dkrdbn f-eg SDST +grnl/pbl FEXT,OQZT			BED	- (Mnr SLST
4	PMar	N	82.50	145.00	BSLT		Dkgygn-blk fg amyg/mass BSLT	CRH	;			Vns C-R-H-Py
5	PMa	N	145.00	160.00	DACT		Org-rdbn-ppl porp DACT?: phxt FELD(ser)	HS	·		-	Phen mnr QTZ,MICA.vn
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 5/8/92

I	ROJECT	<u>: </u>	Stuart Sh	elf Base	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o:_	6333
Ŀ	TRATIG						LITHOLOGY	NUMBE	R	31	UNIT N	<u>lo:</u>	53
L	GIS U	ni Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation /	omment
	Q	N	0.00	3.00	CLAY		Plorg CLAY				_		
	T	N	3.00	6.00	SICT		Brn-pnk SICT: (PNfh parnt)						
	PNh	N	6.00	12.00	SDST		Wht-ltyel frol SDST	weth					, -:
	РМ-р	N	12.00	53.60	SDST		Ppl-wht wrnd SDST		·				
	PMa	N	53.60	54.90	RHLT		Rdbn? RHLT:phat ORTH	HSQ	SPUR				 !
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC	3/8/92

PE	OJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: _	6333
S	TRATIGR.	APHY :					LITHOLOGY	NUMBE	R	32	UNIT N	lo:	54
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	0.00	3.00	SAND	GRVL	Yel-brn? SAND/GRVL/CLAY -REGL					REGL	
2	TQ	N	3,00	6,00	CLAY	GYPS	Yel-brn? & wht? CLAY & GYPS					SOIL	
3	PNh?	N	6.00	18,00	SDST	SHLE	Grn-gry/yel clayey SDST +mjr ibed SHLE	weth				SHLE 9-15m	
4	PMa	N	18.00	42.70	BSLT		Dkppi-brn fg BSLT:QTZ? 3%, SANI & PLAG	SHw		 .		Amyg?-vsml	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JL	C 3/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

<u>P</u>	ROJECT	; {	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: ·	6333
	TRATIGR	APHY:					LITHOLOGY	NUMBE	R	33	UNIT N	o:	55
\perp	GiS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comm	nent
1	Q	N	0.00	3.00	GRVL	SAND	Yel-brn? GRVL/SOIL				-		
2	PNft	N	3.00	21.00	SLST	SHILE	Kki-grn-pnk-brn-fwn SLST/SHLE	weth				T -oxd of red seds	
3	PNftw	N	21.00	30.00	LMST	SHILE	Kki-gry hrd SICT CACT SHLE: Vweth LMST?	weth				T -oxd/sii of red sed	İs
4	РМ-р	N	30.00	79.00	SDST		Ppl-wht ang SDST: hrd inde SICT palweth	q.					_
5	PMa	N	79.00	89.90	RHLT	RDAC	Ppl fg RHLT/RDAC:phxt +volc GRIT	Q		· 	-	Sed-FEXT reltns un	clr
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 3/8/9	2

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

I	RO	JECT	: S	tuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6333
Ŀ	STR	ATIGRA	PHY:					LITHOLOGY	NUMBE	₹	34	UNIT N	lo: 56
L	(GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
	ı	ſQ	N	0.00	3.00	SOIL	SICT	No data					
1	2 P	Net?	N	3.00	21.00	CLAY	SLST	Grn CLAY & fwn-yel SLST				-	Magazine Hill Clay
	3 P	Mar	N	21.00	38.10	TAND	CLAY	Ppl fg TAND with upr weth cap	HRal			-	
	4 P	Mar?	Y	21.00	34.00	CLAY		Kki-grn-brn-rdbn vfg mass CLAY/rock	weth			-	No fabric/strue reed.
	S P	Mar	Y	34.00	38.10	TAND		Ppl fg TAND +plott dkgrn SANI & BIOT?	HRQI				Loc AMYG, see RoopD
L		(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 4/8/92

P	ROJECT	: 5	Stuart St	nelf Base	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE	•	EX-	MAP N	o:	6333
5	TRATIGRA						LITHOLOGY	NUMBE	R	38	UNIT N	Fo:	147
<u> </u>	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	9.00	3.00	SOIL		No data				-		
2	T	N	3.00	24,00	CLAY	SAND	Red(GYPS)-pkrd(CACT)-red(latt)-bnyl CLAY					Access SAN	ĪD .
3	PMar	N	24.00	56,40	ANDS	CLAY	Blu fg amyg/porp ANDS +mjr CLAY weth cap	ACQw					
4	PMar	Y	24.00	49.00	CLAY	MEXT	Kki-grn-gygn-dkgry CLAY & porp MEXT	weth	. —	1	_		
,5	PMar	Y	49.00	56.40	ANDS	RHLT	Blu porp/amyg ANDS +RHLT phases-vns/xenos	ACQ	PORP	AMYG		Part melt of	PMa?
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	ILC 4/8/92

P	ROJECT	: :	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	io:	6333
S	TRATIGE						LITHOLOGY	NUMBE	R	97	UNIT N	lo:	148
<u>_</u>	GIS Ur	ii Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation /	Comment
1	Q	N	0.00	3.00	GRVL	CLAY	SOIL SICT GRVL & CLAY +GYPS						
2	Т	N	3.00	12.00	CLAY		Yel-grn CLAY: mass-pug-fleckd weth MEXT?				:	· · · · · · · · · · · · · · · · · · ·	
3	PMar	N	12.00	17.00	BSLT		Dkgygn f-mg BSLT: phat PLAG, ait MAGT	QASI			-		······································
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JL	C 4/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

_	ROJECT		Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		EX-	MAP N		6333
<u> S</u>	TRATIGE						LITHOLOGY	NUMBE	7	100	UNIT N	 lo:	149
L	GIS Un	u Sub	From (m)	То (п)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	3.00	SAND	GRVL	SAND, GRVL & SOIL		,		-		
2	PMar	N	3.00	9.00	ANDS		Ppl-org ANDS PLAG phxt +gmas K-alt	K1				See RoopD-1	•
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JL	C 4/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

,	ROJECT			nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6333
<u>s</u>	TRATIGR						LITHOLOGY	NUMBE	R	105	UNIT N	fo: 150
<u>_</u>	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	5.00	GRVL	SOIL	SOIL +wrnd QTZ-pbis				_	
2	PMar	N	5.00	18.00	RHLT	CLAY	Fwn porp RHLT + CLAY weth cap	_				
3	PMar	Y	5.00	9.00	CLAY		CLAY-no data: assumed weth RHLT	weth				
4	PMar	Y	9.00	18.00	RHLT		Fwn porp RHLT phat KFLD,HBLD(chl),TIMT	ASI			· -	
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): 4/8/92

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6333
S	TRATIGRA	APHY :					LITHOLOGY	NUMBE	P	108	UNIT N	lo: 151
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	6.00	SAND	CLAY	SAND & sandy CLAY, no descrip			-		
2	T	N	6.00	7.50	SICT		SICT No descrip		.— ;	_ [·	:
3	РМат	N	7.50	33,00	RDAC	CLAY	Wht-pnk part weth RDAC +CLAY weth cap			:	-	
4	PMar	Y	7.50	9.00	CLAY		CLAY no descrip -inferd weth FEXT		_			***************************************
5	PMar	Y	9.00	33.00	RDAC		Wht-org-pink porp RDAC: phat ORTH, PLAG	Slw	· —		-	Vugs -mnr-QTZ
Ĺ	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 4/8/92

P	ROJECT	: 8	Stuart Sh	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	6333 6333
<u>s</u>	TRATIGR	APHY.					LITHOLOGY	NUMBER	?	114	UNIT N	fo: 152
L_	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture.	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	1.00	SOIL	_	No data		_			
2	T	N	1.00	5.00	SICT		SICT no descrip	-		-		
3	PNft?	N	5.00	14.00	CLAY		Plgru soft/brtl CLAY: sandy upr portn				'	Mag Hill Clay
4	PMar	'N	14.00	18.00	ANDS	RHLT	Rdbn fg porp RDAC/ANDS:phxt QTZ-FLD-TIMT	SAl			- .	Diss lim pseud of PY
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/8/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6333
3	TRATIGR	APHY :					LITHOLOGY	NUMBER	7	162	UNIT N	6: 156
	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	8.00	SAND	CLAY	Org? dune SAND & rdbn CLAY +varbl CACT					
2	PNhh	N	8.00	30.00	SDST	_	Wht-yel-pak frbl wert m-fg lith SDST	5	a <u> </u>		-	SICT cap <4m thck
3	PNh1	N	30.00	65.00	SLST	-	Ltgy SLST + lsr rdbn f-cg lith grns	·	—		٠	Tr diss Py (loc)
4	PNft	N	65.00	126.50	SHILE		Blk lam SFiLE: prt dolmit, tr diss Py				-	Vns-CRB
5	PNftw	N	126.50	128.50	DLOM	SHLE	Dkgy DLOM +mnr gry SHALE: tr MNOX	<u>-</u>			-	
6	PNft1	N	128.50	129.00	SDST		Grn lith qtz SDST: pyritic		_			
7	PMy	N	129.00	180.50	BSLT	_	Ppl-rdbn f-m-cg amyg BSLT: AMYG-C-R-H-Py	HR	_	_		
8	РМ-р	N	180.50	196.00	SDST		Pkrd-plppl grty SDST: alt-silic	5	-		- ,	Silc-to TD
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 6/8/92

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o: 6333
S	TRATIGR	APHY .					LITHOLOGY	NUMBE	2	169	UNIT N	lo: 153
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	1.00	TLUS		TLUS pbl/cls-BIF-JASP-OQZT-(PM-p)-GNS					Interpol depth
2	T	N	1.00	6.00	SAND	CACT	Org f-mg SAND/CLAY & orbn-wht sandy CACT					Sml pols, cale mix
3	PNft	N	6.00	26.00	SLST	CLAY	Rd/ylbn-ltgy SHALE/CLAY: weth throughout	weth	, <u></u> .			
4	PNftw	,N	26.00	26.50	DLOM	SLST	Ltgy DLOM & SLST					Interpol depths
5	PNft1	N	26.50	28.00	CGLM	SDST	Bkrd pols in org SDST mtx-mnr -CGLM/SDST		·			Interpol depths
6	PMa	N	28.00	40.00	DACT		Org-red-pkbn-(mnr)grn vig amyg DACT	HR				Amyg-AGTE,CHL: vns-
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 4/8/92

_	ROJECT		Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		EX-	MAP N	lo: 6333
S	TRATIGR						LITHOLOGY	NUMBE	R	171	UNIT I	fo: 154
\vdash	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Соте/_	Formation / Comment
1	Q	N	0.00	200	SAND	CLAY	Org SAND & CLAY +mnr CACT					
2	T	N	2.00	31.50	SAND	CLAY	Org SAND, CLAY, & wht CACT ndls				-	
3	T	Y	2.00	9.00	SAND	CLAY	Org SAND +mnr pbls & CLAY				-	
4	т	Y	9.00	17.00	CLAY	SAND	Red latt SAND 1m, ovly ltgry sandy CLAY					
5	T	Y	17.00	31.50	CLAY	SDST	Ltgry-yel sandy CLAY & SDST +ylwt SICT				-	SICT 16-20.5m, mnr pols
.6	PNft	N	31.50	58.00	SHLE	CLAY	Dkgry SHLE +mnr DLOM:weth plgrgn-CLAY					Tr diss Py 42-56,54-58 m
7	PNftw	N	58.00	62.00	DLOM	SLST	(dk-lt)gry mass DLOM +mnr SHLE prings					Diss/frac Py-Cpy-Ga?
8	PMya?	N	62.00	62.50	CGLM		Rdbn `bree':FEXT pbls SICT-mtx-poor-sandy					Strat infr on indurtn
9	PMa	N	62.50	72.00	DACT		Bkrd vfg FEXT:sltly porp, phat FELD/MAFC		PORP			
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS F2 dBFmt)	(4)	(4)	(4)	(2)	Author(s): JLC 5/8/92

P	OJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		EX-	MAP N	o:	6333
5	RATIGRA					1.5	LITHOLOGY	NUMBE	R	182	UNIT N	<u>fo:</u>	155
<u></u>	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / 0	omment
1	TQ	N	0.00	4.50	SAND	CLAY	Rdbn-orbn f-cg SAND/CLAY +wht CACT				-		
2	PM-p3?	N	4.50	73.50	SDST		Rdbn-pkwt f-mg SDST +ibed rdbn SLST	Bw					
3	PM-p2?	Y	4.50	66.00	SDST	SLST	Rdbn-pkwt f-cg QTZ SDST+pkwt SLST(weth)	weth			-	Sile SDST, bleh	d SLST to
4	PM-p1?	Y	66.00	72.50	SLST		Dkehbn SLST +mnr QTZ SAND grns		MASS		-		
5	РМ-р	Y	72.50	73.50	SDST		Plbn-wtpk m-cg SDST: weak cmnt, alt?	В	·				
6	PMar?	N	73.50	120.00	MEXT	CGLM	Blk fg BSLT/AMPH:mass/pbls;QTZ ARNT pols	нс				Frac Py, xtl GY	PS,
		1 ,	Possible str	atigraphic :			nics possibly a "momonmict" conglomerate of MEXT c	-		ible)			
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC	5/8/92

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		TR-	MAP N	o: 6333
S	TRATIGR.						LITHOLOGY	NUMBE	9	3	UNIT N	60: 52
	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	QT	N	0.00	26.00	SAND	SILT	Brm? fg SAND, SILT & CLAY				-	
2	PNstt	N	26.00	70.14	SLST	SDST	Gngy fg mica SDST & rdbn lam SLST/SHLE	В		IBED		Muderks rpls, slmps, frac
3	PNh	N	70.14	136.00	SDST	CGLM	Wht mass grit-poly SDST:cls FEXT-CHRT-GNS	s			90	Mtx SER alt? Frac Py-C
4	PNft	N	136.00	247.62	SLST	DLOM	Gry lam SLST +DLOM ibed:(mass-cistc)			XBED	90	Tr diss Py & Cpy
5	PNftw	N	247.62	249.00	DLOM		Ltgy? mass DLOM +wvy dk bnds			WBED		Bibs Py-Cpy
6	PNft1	N	249.00	249.49	CGLM	BREC	Rdbn pbis FEXT & frag gry-blk DOLR	С				Vns CRB
7	PMye	N	249.49	289.70	BSLT		Dkrdbn mass BSLT +ibed rdbn CGLM/SDST	HRC		IBED		
8	PMye	Y	249.49	256.63	BSLT		Dkrdbn mass f-vfg BSLT :accs MAGT	Ĥ			-	Vns CRB-Py(mnr)
9	PMya	Y	256.63	263.06	CGLM	SDST	Rdbn plmc CGLM:cls-FEXT-GNS-IRST,SDST mtx				-	Cls suppt, loc hmb
10	PMye	Y	263.06	274.80	BSLT		Dkrdbn fg amyg BSLT: amyg-CRB-CHL-ALBT	HRC				Flwtp
11	PMya	Y	274.80	275.19	SDST		Wht mg CACT SDST:GRIT-FEXT-BSLT					
12	PMye	Y	275.19	289.70	BSLT		Rdbn f-mg amyg BSLT:amyg-CRB-CHL:mnr Mt	нс				Vns C @0&90Dg.flwtp
13	PM-p1	N	289.70	336.82	SDST	CGLM	Rdbn grit-pbl CGLM/SDST +mnr SLST					
14	PMa	N	336.82	400.40	FEXT		Rdbn vi-fg FEXT loc BREC:alt-sptty-ribns	В				Frac fil CHL-CRB
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 3/8/92

,=	ROJECT			nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		SAR-	MAP N	lo:	6334
1	STRATIGR						LITHOLOGY	NUMBE	R	1	UNIT N	lo:	55
L	GIS Un	i Sub	From (m)	То(п)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Соге/_	Formation	/ Comment
1	PNh	N	0.00	84.00	SDST	SLST	Wht-pnk/gry m-fg SDST/SLST +bsl BREC?						
2	PNhh	Y	0.00	48.00	SDST	SLST	Wht-plpnk/gry m-fg SDST +mnr SLST					Mnr diss Py	
3	PNh1	Y	48.00	80.00	SLST	SDST	Plmar-gn fg seracitic SLST +mnr SDST						
4	PNh2	Y	80.00	84.00	DLOM	BREC	Gry-wht ang DOLM clst in blk SHLE mtx		, r			Perig bree?	
1	PNf	N	84.00	151.10	SLST	DLOM	Gry-blk lam SLST/SHLE +wht bsl DLOM		, ,	LBED		Diss Py	
•	PNft	Y	84.00	145.00	SLST	DLOM	Dkgry fg micaceous SHLE/SLST +wht DLOM			LBED		Diss Py	
7	PNftw	Ÿ	145,00	151.10	DLOM	SLST	Wht mass & lam DLOM +mnr <5% blk SHLE			MBED	90	Vns/blby CB	R+Cpy
1	PMye	N	151.10	169.07	BSLT	SDST	Gygn BSLT amyg < 10%MAGT +thin SDST ibed					 :	
5	PMye	Y	151.10	153.00	BSLT		Mar/grn f-mg BSLT: 45%FELD,10%MAGT(LUCX)	RC	AMYG	BREC		Tr Cpy, fissu	to 1m
1	PMye	Y	153.00	153.70	SDST	SLST	Mar og gr: SDST clst-OQZT-Q-BIF-FEXT	_		<u> </u>	-	5% MAGT a	s sed HMB
1	PMye	Y	153.70	169.07	BSLT		Grn BSLT +mnr OLIV(CHR): amyg fltops	RQC		LFLW	-	10% Mt(Hen	ı), vns C-R
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	

_	ROJECT		Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE NUMBE	a		MAP N		6334 56
Г	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith		Alterat.	Texture			Formation	/ Comment
1	Q	N	0.00	18.00	SAND	CLAY	red,brn+wht fg-cg qtz sand + clay				-		
2	PNstt	N	18.00	50.00	SHLE	SLST	ibed mrn+grn qtz,chl,mica shle+slst		IBED	,			
3	PNh	N	50.00	100.00	SDST	DLOM	mrn+grn fg-cg dolomitic sdst + bsl CGLM						
4	PNhh	Y	50.00	84.00	SDST	DLOM	mrn+grn fg-cg wrnd dolomitic sdst			:	-		
5	PNh1	Y	84.00	100.00	SDST	CGLM	mrn fg bmdl sdst+bsl CGLM cl-GRV-PMp-PNft						
6	PNf	,N	100.00	190.00	SLST	DLOM	lamb ibed sist+dlom + bsl OQZT+CGLM		LAMB		90	emn py,rar o	py,spl,gal,bn
7	PNft	Y	100.00	186.66	SLST	DLOM	lamb ibed dk gry sist+wht dlom		LAMB		90	cmn py,rar o	py,spl,gai
8	PNft1?	Y	186.66	190.00	OQZT	CGLM	fg srad OQZT+ibed CGLM cl-bif-PMp-PMye	Q			-	Pua?, mnr c	py,bn
9	PM-p	N	190.00	199.80	SDST	SLST	mrn hem,qtz,feld rar cl-bif,PMp	- ,	 :		90		
10	РМ-р3а	Y	190.00	191.70	SDST	SLST	mrn hem sdst + ibed slst	-	IBED		+		
11	PM-p2	Y	191.76	195.50	SLST	SDST	mrn+pl grn slst+fg sdst with fine xbed	HS	XBED		90		
12	PM-pla	Y	195.50	199.80	SDST	GRIT	usrt grit+rar bif,PMp frags & some xoed	HS	XBED		90		
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): E	3JV 30/7/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		SAR-	MAP N	o:	6334
S	TRATIGRA	APHY :					LITHOLOGY	NUMBE	<u> </u>	- 6	UNIT N	io:	57
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	28.00	SAND	CLAY	gyps brn.ylw+wht fg-mg sand.silt.clay						
2	PNstt	N	28.00	60.00	SHILE		ylw-mrn qzt-feld-hem-mica shle		 .				
3	PNh	N	60.00	106.00	SDST	SLST	wht-mrn sdst ovr mrn slst+bsl dlom grit				-		
4	PNhh	Y	60.00	88.00	SDST		wht-mrn bmdl mg-cg sdst		* 	:			
5	PNh1	Y	88.00	106.00	SLST	GRIT	mrn slst+mnr mg sdst+bsl grit el-dlom				,		
6	PNft	N	106.00	216.40	SLST	DLOM	lamb ibed gry sist+wht dlom+sandy base		LAMB		90	mnr py,spl r	ar cpy,gal
7	PM-p3a	N	216,40	243,20	SDST		shet pl mrn fg-mg qtz sdst+mnr ibed shle	QSB	· — ;		80	rar py, v rar	сру
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): E	3JV 30/7/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	· · · · · · · · · · · · · · · · · · ·	SAR-	MAP N	o:	6334
S	TRATIGR	APHY.	:				LITHOLOGY	NUMBE	R	7	UNIT N	fo:	58
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	0.00	6,00	SAND	CLAY	Rdbn SAND +30% CLAY mtx						
2	T	N	6.00	20.00	SAND	CLAY	Yel mg wrnd SAND +beds CLAY 6-8,12-14m					Dkrdbn LA	TR? base
3	PNstt	N	20.00	76.00	SHILE		Rdbn-mar SHLE +upr 10m wht motl zone	weth	:				
4	PNsn	N	76.00	82.00	DLOM	SHLE	Rdbn SHLE & wht-buf mass DLOM ibed						
5	PNh	N	82.00	172.00	SDST	SLST	Mar SDST/SLST ibed +bsi perg bree						
6	PNh1	Y	82.00	167.00	SDST	SLST	Mar SDST/SLST +upr grn SLST/SHLE				-		·
7	PNh2	Y	167.00	1 72.00	DLOM	BREC	Dkgn mass & sity DLOM clasf g SHLE mtx	-		<u></u> .			
8	PNf	N	172.00	306.00	SLST	DLOM	Dkgy SLST/SHLE +bsl mass DLOM unit				-	Valt CPY,C	c
9	PNft	Y	172.00	190.00	DLOM	SLST	Dkgry SLST & wht DLOM ibed		:	IBED		Py < 2% MA	SS DLOM
10	PNft	Y	190.00	304.00	SLST	DLOM	Dkgry SLST +mnr wht DLOM ibed			IBED		Tr Sph,Ga,C	ру,Ру
11	PNftw	Y	304.00	306.00	DLOM	SLST	Ltgry mass DLOM +mnr gry SHLE			IBÉD			
12	PMye	N	306.00	498.80	BSLT	BREC	Gygn f-mg 40%maf, MAGT: 16 org amyg fitp	RKHC				Add EPID,	ALBT alter
13	PM-pla	N	498.80	499.50	SDST	CGLM	Wht GRVL plmet, SDST mtx, QTZ-FEXT elst	СВ			-	Vns pnk CB	R, frac-SER
14	PMa ·	N	499.50	665,00	DACT		Pnk-gy fg DACT & DACT-AGLM	SHRC				Py @ upr cn	ıt
15	PMa	Y	499.50	640.00	DACT		Dkpnk-rd fg porp DACT: strng grn alt	SHR			45	Tr frac Py a	t selv
16	PMa	Y	640.00	665.00	AGLM	DACT	Pak eg epel DAÇT bree dwawd fin, mult br	QHC ,				Tr Py, frac a	lt, ANHY
	(11)	(1)	(7)	<u>(7)</u>	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 10/7/92

	ROJECT	: 5	Stuart Sh	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		SAR-	MAP N	la: 6334
S	TRATIGRA	APHY	:				LITHOLOGY	NUMBE			UNIT N	
\vdash	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabrie	Core/_	Formation / Comment
1	Q	N	0.00	18.00	SAND		Rdbn-plpnk SAND +SHLE clst & GYPS				-	
2	PNstt	N	18.00	88.00	SHLE		Mar SHLE +grn bnds			-		
3	PNh	N	88.00	134.00	SDST	SLST	Plpnk f-cg SDST +brn SLST inbed:mnr GRIT	-	IBED			
4	PNhh	Y	88.00	116.00	SDST	SLST	Plpnk f-cg SDST +brn SLST inbed		IBED			
5	PNh1	Y	116,90	134.00	SLST	SDST	Brn SLST +ibed mg SDST: mnr DLOM		IBED			
6	PNf	N	134.00	282.00	SLST	SDST	Dkgry SLST +top/bot mass DLOM & bel SDST					
7	PNfh	Y	134.00	140.00	DLOM	SLST	Wht mass DLOM +gry lam SLST		MASS	LBED		
8	PNft	Y	140.00	262.00	SLST	DLOM	Dkgry lam SLST +mnr DLOM ibed	_	LBED	IBED		
9	PNftw	Y	262.00	274.00	DLOM	SHILE	Gry mass DLOM +blk SHLE & mnr SDST ibed		MASS	IBED	, 	Loc ab-Sp:Tr Py,Cpy,Cc
10	PNft1	Y	274.00	282.00	SDST		Buf grty lith f-cg SDST: QTZ & FEXT clst					
11	PMa	N	282.00	908.00	DACT	RHLT	Or-pnk DACT/RHLT: porp, IGNM, & CGLM	HRS	IGNM			
12	PMa	Y	282.00	372.00	DACT		Orpl vfg porp FEXT:phxt-PLAG-QTZ-MAFC(alt)	HERS				Abun MAGT
13	PMa	Y	372.00	594.00	RHLT		Rdbn vfg porp FEXT:phat-PLAG-QTZ-KFLD	HERS	IGNM			Mtx HEMspec-LIM,vn-C
14	PMa	Y	594.00	622.00	CGLM	·	Orbn rnd-srnd pbl, ufsq, plmc FEXT, OQZT	-			90	
15	PMa	Y	622.00	712.30	RHLT		Grn-rd/bf motl fg porp FEXT:phat Q-PLAG	HERS	IGNM		90	
	PMa	Y	712.30	753.30	TUFF	BREC	Org-brn? Epiclst bree: porp & pumi FEXT	_				
17	PMa	Y	753.30	908,00	RHYD	TUFF	Org-brn FEXT +scat exotic clst GNSS		IGNM			DACT clst sugg OLDER FEXT
13	PMc1	N	908.00	996.50	SLST	BREC	Red hem sang clst of SLST: fg mtx	HEA		BREC		Post PMwp but not alt
ĺ	P₽₩	N	996.50	1338,00	CASI	SLST	Rd/pplbn-grn CASI/CHRT & SLST:loc brec	HEG	BREC	TBED		Fld, wk sulpd min
		Y	996.50	1022.00	CASI		Rdbn & blen fin lam CASI/BREC +GARN-EPID	EG	BREC	TBED	-	Diss Py,Cpy,Sp,Fl
-	-	Y	1022_00	1163.00	CASI		Rdbn & fin lam CASI: fld +mnr bree	HEG	FLD	TBED		Diss Py,Cpy,Sp
		Y	1163.00	1189.90	CASI		Rdbn fin lam & brec CASI/BREC: GARN-EPID	HEG	BREC	TBED		Bnd/diss Py,Cpy,Sp
		Y	1189.90		CASI		Plgn fin bed CASI: pseudo beltic text	EGA	,	TBED		Tr diss Py,Cpy,Sp
l	PPwp1		1198.80		CASI		Rdbn-grn? CHRT elst in ig CASI mtx		BREC	TBED		Bnd/vns/dis Py,Cpy,Sp,C
1	PPwp1	•]	1208.00		CASI		Rdbn fin lam CASI		BREC	TBED		Vns Py,Cpy,Sp
}	PPwp1		1218.40		CASI	, ,,,,	Brn CHRT clst in fg CASI mtx		BREC			Mnr diss Py.Cpy,SP
	PPwp2	}	1246.00		SLST	CASI	Pppibn SLST +mnr CASi			LBED		Vns ACT-EPID-CRB-SU
28	PPwp2		1284.00		SLST	CASI	Ppplbn SLST +30% CASI		SLMP	LBED		
لبا	(11)	(1)	<u>(カー</u>	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/08/92

_	ROJECT			elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		SAR-	MAP N	<u>'o:</u>	6334
S	TRATIGR				ļ	·	LITHOLOGY	NUMBE		- 9	UNIT A		60
Ļ	GIS Uni	Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation /	Comment
1	Q	N	0.00	16.00	SAND		Rdbn-wht CACT-kaolinitic SAND						
2	PNstt	N	16.00	104.00	SHLE	SLST	Rdbn-mar SLST/SHLE +grn bnds				-		· · · · · · · · · · · · · · · · · · ·
3	PNsn	N	104.00	108.00	DLOM	SLST	Plbrn? mass DLOM & rdbn SLST						
4	PNh	N	108.00	172.00	SDST		Pl-dkrdbn lith SDST & SLST				-		
5		Y	108,00	132.00	SLST		Pibrn f-mg lith SDST: QTZ+FEXT dst						
	PNhi	Y	132.00	156.00	SLST		Rdbn og SLST + mnr grn bnds				-		
1	PNha	Y	156.00	172.00	SLST		lt-dkgry dolomitic SLST +upr grit bnd						
8		N	172.00	330.40	SLST	DLOM	Dkgry SLST & ltgry DLOM: ibed				-	ļ	
	PNfh	Y	172.00	182.00	DLOM	SLST	Lt-gry mass DLOM + gry SLST ibed	:		:			· · · · · · · · · · · · · · · · · · ·
ĺ	PNft	Y	182.00	305.00	SLST	DLOM	Dkgry SLST +ltgry DLOM ibed			, -	-		
1	PNftw	Y	305.00	327.10	DLOM	SLST	Ltgry DLOM +SHLE partings		<u></u> -		90	Mnr Py, Tr G	a,Cpy,SP
	PNft1	Y	327.10	330,40	CGLM	SDST	Rdbn? cg plmc CGLM +FEXT-SDST-SLST clst			:	-		
	PM-p	N	330.40	393.50	SDST	SLST	Rdbn SDST/CGLM +mnr SLST	HS					
	PM-pla		330.40	346.70	SDST	SLST	Rdbn SDST & SLST +mnr CGLM bnds	HS					
	PM-plb		346.70	393.50	SDST	CGLM	Rdbn grty CGLM & SDST +mnr SDST:FEXT	HS			,		
	PMa	N	393.50	858.10	RHILT	DACT	Rdbrn mass porp RHLT/DACT +CGLM	HREC				Sulphides: die	
	PMa	Y	393.50	563,70	RHLT		Rdbn porp RHLT: phxt 10% QTZ	HR	IGNM	MASS	_	Frac @ 580m	
	PMa	Y	563.70	609.30	CGLM		Pnk-grn? eg pebl CGLM:FEXT rar JASP/OQZT	_			-	Mnr mtxdiss	
	PMa	Y	609.30	756.50	RHLT		Rdbn-gry porp RHLT: phat 5% QTZ	HRE	IGNM	LAYR	90	Mnr Py-TOU	
١.	PMa	Y	756.50	858.10	DACT	TUFF	Gra-gry lith EPCL; FELD-MAFC +mnr QTZ	HRE	TUFF			Vn-EPID-QT	Z,Cits-TO
	PPw	N	858.10	1246.00	SLST	CASI	Gry-red grn SLST & CHRT alt to CASI				50	Cat @ 30Dg	<u> </u>
	•	Y	858.10	875.60	SLST		Gry sild SLST +mnr CHRT zones	RE			-		
	PPwpi	Y	875.60	1076.00	CASI	CHRT	Red-grn CASI & CHRT bnds +mnr SLST: fold	GRCE	BAND	FLD	50	Diss Py,Cpy (9 890m
24	1	Y	1076.00	1246.00	CHRT	CASI	Pnk-red CHRT/SLST & CASI(lest to dpth)		BAND	IBED	50	Mnr SDST	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JL(30/08/92

P	ROJECT	: :	Stuart S	helf Bas	ement	STRAT	IGRAPHIC SUMMARY	HOLE		AD-	MAP N	lo:	6335
S	TRATIGR	APHY	<u>• </u>		_		LITHOLOGY	NUMBE	R.	2	UNIT		115
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/	Formation	
1	PNst	N	0.00	213.00	SDST	SHLE	Wht-pnk QTZ SDST & rdbn SHLE/SLST	_			-		
2	PNstc	Y	0.00	66.00	SDST	SHLE	Pnk-wht QTZ SDST +rd/gn SHLE unbd	weth		<u> </u>	-	Rdbn-clay:w	eth < 24m
3	PNett	Y	66.00	213.00	SHILE	SLST	Rdbn SHLE/SLST: slump struc & XBED		,	IBED	85		
4	PNsn	N	213.00	213.49	DLOM		Crm-wht mass DLOM +sandy lam	_		XBED		Sit Cu enro)40m
5	PNh	N	213.49	349_50	SDST	BREC	Rdbn SDST +bsl wht-pnk hem REGL: perigl?	-	-,	LBED	85		
6	PNhh	Y	213.49	341.58	SDST	GRIT	Prik m-cg part lith SDST +mnr bal CGLM			MBED	8.5	Micaceous, lo	w coher
7	PNh2	Y	341.58	349.50	BREC		Wht-pnk/red veg: clst PM-p in hem mtx	Q			-		
8	PM-p	N	349.50	812.52	SDST	SHLE	Rdbn hem SDST +mnr SHLE & grty bsl CGLM	Q	, .	BED	-	Q alt upr sec	t only
9	PM-p4	Y	349.50	610.00	SDST		Rdon m-cg ang-srnd part SDST +vmnr SLST	Q		MBED	80	Mnr XBED,	sec Q mtx
10	PM-p3	Y	610.00	776.90	SDST	SLST	Rdbn-mar ang-rnd vfg SDST +mic SLST:ufsq			UBED	80		
11	PMyg	N	776.90	779.45	DOLR		Gry-grn fg DOLR: hem-bleached & sheared	HSB		SHRD	10		
12	PM-pla	Y	779.45	781.17	SDST		Rdbn fg mass SDST: PM-p2 faulted out?	· !		MBED	-		
13	PMyg	N	781.17	781.34	DOLR		Gry-grn fg DOLR: hem-bleached & sheared	HSB		SHRD	10		
14	PM-p1a	Y	781.34	785.30	SDST		Rdbn fg mass SDST	_		MBED			
15	PM-pib	Y	785.30	812.52	SDST	CGLM	Rdbn SDST +grn SER mbc:CGLM bnds hemclst			BED	-	Diss Py with	SERC
16	PP5	N	812.52	826.95	BIF		HEM CHL rock,banded: HEM psudmph MAGT	RH		BAND	45	Tr Cpy, mar	Ва
17	PMyg	N	826.95	828.48	DOLR		Grn fg DOLR: part margnetic				-		
18	PP5	N	828.48	829.00	BIF		HEM CHL rockbanded: HEM psudmph MAGT	RH		BAND	45		
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JL	C 6/7/92

PI	ROJECT	: 3	Stuart Sh	nelf Base	ement	STRAT	IGRAPHIC SUMMARY	HOLE	•	AD-	MAP N	ю:	6335
5	TRATIGR						LITHOLOGY	NUMBE	P'	-8	UNIT N	fo:	113
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation	/ Comment
1	Q	N	0.00	4.00	CLAY	SICT	Wht-brn CLAY & SICT +OQZT clsts:REGL					<u> </u>	
2	PNst	N.	4.00	246.00	SDST	SLST	Wht-brn QTZ SDST/mnrSHLE & rdbn SLST/SHLE						
3	PNsts	Y	4.00	64.00	SDST	SHLE	Wht-brn mg SDST +mnr plgrn SHLE(CLAY) bds		; 				
	PNstc	Y	64.00	80.00	SDST	SHLE	Brn-gry speciy mica SDST +mnr grgn SHLE		·				
ı	PNstt	Y	80.00	246.00	SLST	SHLE	Rdbn mica SLST/SHLE +grn bnds						
6	PNsn	N	246.00	248.00	DLOM	SHLE	Crm fg mass DLOM +mnr grn SHLE	_	,		-		
7	PNh	N	248.00	366.00	SDST	BREC	Brn grty SDST +bsl insitu REGL-BREC Pergl?	-			-		
8	PNhh	Y	248.00	359.00	SDST		Brn mg grit pbly SDST			MBED	75		
9	PNh2	Y	359.00	366.00	BREC		Rdbn ang clst-PM-p SAND mtx, grd lwr ent	_	"	BREC			
10	PM-p	N	366.00	825.50	SDST		Rdbn-plppibn hem QTZ SDST +SHLE ibed			BED			
11	PM-p4	Y	366.00	510.00	SDST		Dkrd-pibra pert e-veg SDST +mnr pbl bds			XBED	80		
12	РМ-р3	Y	510.00	775.90	SDST	SHILE	Rdbn m-psrt SDST; loc grty +thin SHLE bds	В	· ·	UBED	80	Mnr XBED	
	PM-p2	Y	775.90	785.00	SHLE	SDST	Rdbn SHLE +sandy zones, grn ait	S		TBED	80		
	PM-p1a		785.00	795.00	SDST		Rdbn m-cg SDST			BED			
	PM-p1b		795.00	821.44	SDST	CGLM	Rdbn grty CGLM: some HEM clst			BED			
16	PM-p1c	Y	821.44	825.50	SHLE		Rdbn motl fiss SHLE			TBED	80		
17	PP	N	\$25.50	1000,20	BIF	BREC	Grn alt BIF & ARKS +crsct CHL rock-INTR?	HRSC			-	Descriptive of	iata poor!
18	PP3	Y	825.50	837.07	BREC		Rdbn BREC inad desc of clst/mtx: REGL	HRK					
19	PP4	Y	837.07	84212	BREC		Grn motl mass bnd CHL rock/brec +vns-hem	HRC		BAND		MDLR? in fa	ult?:mnr Py
20	PP5	Y	842.12	870.00	BIF	_ :	Rdbn-dkgn fg BIF: QTZ-CHL-HEM(MAGT)-ACT	HR		TBED	65	Vns-HEM(N	1AGT > 858
21	PP6	Y	870.00	872.00	ARKS	BIF	Pooly described ARKS +mnr BIF bnds	-	<u> </u>		.=-		
22		Y	872.00	897.00	BIF		Rdbn-dkgn fg BIF: QTZ-CHL-HEM(MAGT)-ACT		, 	TBED	65	Diss > 880m	Ру,СРу,+Н
23	PP4	Y	897.00	903.35	BREC	CHL	Grn moti mass bnd CHL/HEM rock: INTR?	н		-	30	MDLR? in fa	
24	PP6	Y	903.35	1000.20	ARKS		Ltbn og feldspthic GRIT:	RHS	·	MBED	75	Detrital Py!,	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 6/7/92

	ROJECT			helf Bas	ement	STRAT	IGRAPHIC SUMMARY	HOLE		ASD-	MAP	lo: 6335
1	TRATIGR			- 		T2" - 1	LITHOLOGY	NUMBE		1	UNIT I	
-	GIS UN	200	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	: /Fabric	Core	Formation / Comment
1	Q	N	0.00	14.00	CLAY		Wht-brn CLAY REGL: OQZT clst				-	
2	PNst	N	14.00	282.80	SDST	SLST	Wht-gry-mar ig SDST & rdbn SLST			,	_	
3	PNsts	Y	14.00	30.00	SDST		Wht-gry fg SDST Q-emt +mnr mtx CLAY				-	
4	PNstc	Y	30.00	128.00	SDST	SHLE	Wht-mar fg SDST +MICA SHILE & HMB		r	MBED	90	
5	PNett	Y	128.00	282.80	SLST	SHLE	Brn-grn(bnds) SLST loc simp/wav BED	J	_	TBED	-	
6	PNsn	N	282.80	283.68	DLOM		Pnk-erm DLOM: sit sandy text	_	_	-	-	
7	PNh	N	283.68	506.46	SDST	CGLM	Pnk lith SDST +bsl CGLM			,	-	
8	PNhh	Y	283.68	502.85	SDST		Pnk m-cg lith SDST: lw cohr	_	MASS	XBED	-	Ndlr Py @ 305m
9	PNh2	Y	502.85	506.46	CGLM		Gry CGLM: DLOM/SDST clst-gry CLAY mix)	-		-	Perigl deps? Cpy-mix
10	PNft	N	506.46	522.84	SHILE	DLOM	Dkgry SHLE & crm DLOM ibed		LBED	IBED	90	Mnr Cpy in PNh2 mtx
11	PM-p	N	522.84	946.56	SDST	SLST	Rdbn m-cg SDST +grt/pebl:mnr SHLE ibed					
12	РМ-р4	Y	522.84	550.00	SDST		Rdbn og part SDST +mnr CGLM & fg ibed	-	-	MBED		Leis bnds
13	PM-p3	Y	550.00	822_50	SDST	SLST	Rdbn mot m-eg msrt SDST:upsq +mnr SLST	HB		XBED	85	
14	PMyg	N	822.50	825.50	MINT		Ltyel-grn vfg alt MINT up/lw ent 30/60dg	SH	ļ 	-	45	Felsic comp doubtfull
15	PM-p3	Y	\$25.50	832_50	SDST	SLST	Rdbn mot m-cg msrt SDST:upsq +mnr SLST	H		XBED	85	
16	PMyg	N	832_50	835.80	MINT		Ppl-brn-yel porp MINT dyke: irreg ent	 ,	PORP			Felsic comp doubtfull
17	РМ-р3	Y	835.80	866.60	SDST	SLST	Rdbn mot m-eg mert SDST:upsq +mnr SLST			XBED	85	Rar vns-BART-ANHY
18	PM-p2	Y	366.60	910.00	SHILE	SLST	Rdbn SHLE/SLST +mnr SAND zones	В		MBED	85	Vns-BART-ANHY
19	PM-p1b	Y	910.00	934.05	SDST		Wht-grn SDST/CGLM & rdbn SLST/SHLE	RS		LBED	- 85	Viis-BART-ANHY
20	PM-plc	Y	934.05	946.56	SLST	. سنيده	Rdbn SHLE/SLST +mnr sand granules	-		TBED	90	Vns-BART
	PMh1	N	946.56	962.40	GRNT	- 1	Puk-gry mgxt GRNT: rlct KFLD,mnr MAFC	HRS		 .	-	Alt vetrng
22	PP2	N	962.40	963.75	LCGR		Puk-lgry !-cg LCGR +puk KFLD	Н			-	Alkalis GRNT
	PMh1	N	963.75	968.17	GRNT		Pnk-gry mgxt GRNT: 10-20% KFLD<4cm	QSR	ALLI	MASS	-	Frac-CHL
	PP2	N	968.17	975.00	LCGR		Pnk-lgry f-cg foli LCGR +pnk KFLD	QH		FOLI	??	Vns-CHL
25	PMyg	N	975.00	986.60	DOLR		Gry-grn porp DOLR +chld/orec upr mgn	RC			-	
'		Y	975.00	975.10	DOLR	BREC	Gry-grn DOLR dilat of brkn GRNT	RC		DLBR	- ;	
		Y	975.10	986.60	DOLR	}	Gry-grn porp DOLR +chld mgn upr ent	RC	PORP	MASS	50	Vns-QTZ-CRB-BART-
ĺ	PP2	N	986.60	996.60	LCGR	FPEG	Pnk-gry f-mg mdFOLI LCGR +mnr FPEG	R	_	FOLI	50	Vns-BART/QTZ, frac-C
	PMh3	N	996.60	999.50	FPEG	LCGR	Pnk FPEG +vns QTZ & slivers of LCGR	R	PEGM		-	Perv CHL, vns-QTZ-CH
30	PP2	N	999.50	1014.90	LCGR	FPEG	Pnk-gry f-mg mdFOLI LOGR +cg FPEG		MASS	FOLI	-	Frac-CHL, vn-Q, BREC
31	br1	N	1014.90	1018.60	SYEN	BREC	Pnk-grn? high KFLD UNRK +dila CHLR bree	R		DLBR		Perv-CHL
	PMyg	N	1018.60	1023.30	DOLR		Grn-rdbn fg hem alt UNRK	HRS	MASS		- }	Info dirobs-fgINIT
:	PMhi	N	1023.30	1027.42	GRNT	GBBR	Pnk mgat GRNT:PLAg/KFLD +GBBR dyk	RS			-	Vns-QTZ, mnr Py
34		N (1)	1027.42 (7)	(7)	GBBR (4)	(4)	Ltgrn-pnk f-mg GBBR:wht PLAG +chid mgn (40) (SADME/JLCEXS Feb'92 Format)	HREK (4)	(4)	(4)	46 (2)	Tr Py,vn-Q-R-KFLD_C Author(s): JLC 6/7/92

P	OJECT	: :	Stuart Sl	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		ASD-	MAP N	o:	6335
S	TRATIGR.						LITHOLOGY	NUMBE					112
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	7 Comment
1	Q	N	0.00	5.00	SAND	CLAY	Org-brn CLAY-LOAM/REGL +OQZT clst			*****	-	,	
2	PNst	N	5.00	395.00	SDST	SHLE	Wht-brn QTZ/Lith SDST & rdbn SHLE/SLST						
3	PNsts	Y	5.00	173.00	SDST	SHILE	Wht-brn QTZ-cmt SDST + ibed SHLE-(weth < 50m)	weth					
4	PNstc	Y	173.00	204.00	SDST	SHILE	Chbn SDST +mnr grn SHLE ibed		* :		-		
5	PNstt	Y	204.00	395.00	SHILE	SLST	Rd-chbn SLST/SHLE +grn bnds & CRB lam			LBED	90	Loc slump &	ripple
6	PNhh	Ŋ	395.00	567,32	SDST		Pnk-grgn mg psrt lith SDST;bsl grit zone		XBED	MBED	90	XBED @701	Og, Py @478.
7	PNf	N	567.32	802.32	SHLE	SDST	Gry SHLE +DLOM inbed & bsl pnk SDST/GRIT		,44444		-		
8	PNft	Y	567.32	791.34	SHLE	DLOM	Gry SHLE +ltgry DLOM ibed <10cm			LBED	90	Diss Py, vns	ANHY
9	PNft1	Y	791.34	802.32	SDST	GRIT	Gry mica SDST:bsl GRIT +mnr blk SHLE lam			MBED	90	Thin PNft2	ooss pres
10	PM-p	N	802.32	1023.87	SDST	SHILE	Rdbn hem QTZ SDST +bsl SHLE/SLST mbrs			TBED	85		
11	PM-p3	Y	802.32	903.60	SDST	SHILE	Rdbn-grn psrt SDST +rdbn-grn SHLE ibed	н		IBED	85	Vns CRB-Py	loc @ top
12	PM-p2	Y	903.60	945.90	SHILE		Rdbn-grn(spot/zns) SHLE +mnr SDST lam			LBED	90	<u> </u>	
13	PM-pla	Y	945.90	1020.00	SDST	SHLE	Ppl-buf-grn(moti) SDST +mnr SHLE ibed			IBED	\$ 5		
14	PM-p1b	Y	1020.00	1023.87	CGLM	GRIT	Pnk plmc CGLM:GRNT,FEXT,VQTZ,& FEST cist					Bel cat @70c	ig
15	PPh	N	1023.87	1148.40	SCHT	PEGD	Gry-Grn alt BIOT SCHT +PEGD segr, fld vn QTZ				35		
16	PPh1	Y	1023.87	1029.55	SCHT		Dkgrn-rdbn mica SCHI + palaeo-weth profi	Rh	CCLV		.35		
17	PPh2	Y	1029.55	1030.05	PEGD		Grn m-cg PEGD: QTZ-FELD-CHL col frm alt	R	PEGM	 .	30		
18	PPh1	Y	1030.05	1097.85	SCHT		Grn-gry mica SCHT: BIOT?(CHL)-TOUR, fld	R	CCLV	FLD	15	Frac CHL/Py	Vns-QTZ-f
19	PMyg	N	1097.85	1140.60	DOLR		Dkgn f-mg mass DOLR :dilat frac bree	ERC	MASS	DLBR	-	Vr.s-EPID-C	HL-QTZ(br
20	PPh2	Y	1140.60	1148.40	PEGD		Gry fg mass PEGD: QTZ-FELD-CHL	R			-	Frac-CHL, v	
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 6/7/92

I	RO	JECT	: 8	Stuart Si	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		EC-	MAP N	o: 6335
L		ATIGR.						LITHOLOGY	NUMBE	R	21	UNIT N	fo: 100
L	_(JS Uni	Sub-	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
	l P	М-р	N	0.00	521.19	SDST	SHLE	Rdbn hem QTZ SDST & lest SHLE ibed				-	
	P	M -p4	Y	0.00	314.00	SDST		Gry-pnk-grn hem mass SDST:HMB > 216m	q	,	MBED	-	q to 144m
:	P	M-p3	Y	314.00	415.54	SDST	SHLE	Mar hem mag SDST +HMB & lsr rd SHLE ibed			IBED	. =	HMB=HEM+MAGT
1	1 P	M-p2	Y	41.5.54	442.59	SHILE	SDST	Rdbn SHLE-grn ptch +mnr SDST ibed		#1 <u></u>	IBED	-	Grn alt = SER
1	5 P	M-pla	Y	442.59	467.74	SDST	SHILE	Mar-wht(bnds-ptch) SDST & SHLE ibed	-			- .	Mtx = SER
1	P	M-plb	Y	467.74	521.19	GRIT	SHLE	Rcbn ang cg GRIT & SLST/SHLE			****	,	
	7 P	Ma	N	521.19	792.28	DACT	MEXT	Or/pp/bn-gngy og DACT-TUFF/AGLM & K-MEXT	KE			,	
1	P	Ma6g	Y	521.19	610.00	DACT	TUFF	or/pp/on cg amyg-DACT-TUFF/AGLM-BREC	KECS	IGNM	GBED		Vn,amyg-C-Q-R-Hspec
!	P	Malg	Y	610.00	792.28	MEXT		Ltbn-gngy fg? K-MEXT: micr-vesi, xeno-GRNT	KERC		BAND	90	Tr Py,Cpy Vn-C-R-F,M
1	0 P	Pwp1	N	792.28	992.25	MPEL	CASI	Pnk-grn-gry fg bnd meta SLST/SHLE, fld	KE	BED	FLD	?	Steep dips indicated
1	ı Pi	P1	N	992.25	1002.00	MCGR	CATA	Gry micr GRNT bree-cataclased				?	Accm R-BART-H,Tornt
	L	(11)	(1)	(T)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/7/92

_	ROJECT			nelf Bas	ement	STRAT	GRAPHIC SUMMARY	HOLE		EC-	MAP N	ю <u>:</u>	6335
5	TRATIGR						LITHOLOGY	NUMBE	R	35	UNIT I	lo:	99
L	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core_	Formation	/ Comment
1	Q	N	0.00	10.80	CLAY		Ylbn-rdbn CLAY				-	Wk Cu & Zn	enrch
2	PNstt	N.	10.80	110.00	SHILE	.—	Chbn SHLE +blgn bnds-mnr-py-grns					Loc slt Cu er	ırch
3	PNen	N	110.00	119.00	SHILE	DLOM	Chbn SHLE & ltgybn DLOM						
4	PNst1	N	119.00	122.40	SDST	SLST	Brn fg sandy SLST & vfg brn SDST			,	-		
5	PNhh	N	122.40	126.00	SDST		f-mg lith SDST +mnr gygn SLST	_					
6	PM-p	N	126.00	366.00	SDST	SLST	Rdbn-mar/pplbn QTZ SDST & lesr SLST ibed	_				<u> </u>	
7	PM-p3	Y	126.00	148,80	SDST	SLST	Rdbn wht-motl fg SDST +grgn-bn SLST ibed	-					
8	PM-p2	Y	148.80	169.00	SLST		Rdbn grn-gry-moti SLST: sit sandy zns						
9	PM-pla	Y	169.00	250.00	SDST	SLST	Rdbn wht-motl vf-mg SDST +rdbn-gngy SLST	н				Spec hem wk	magn,Tr P
10	PM-p1b	Y	250.00	366.00	CGLM	SDST	Red-gry grity CGLM/SDST:poss degrd GRNT?				,		
11	PP1	N	366.00	400.00	ADML		Pnk-grn fg ADML: SILL in SHRZ	HRSI			-	Slt Zn enrch	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JI	.C 9/7/92

P	ROJECT	: 8	Stuart SI	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		EC-	MAP N	o:	6335
S	TRATIGR	APHY	:				LITHOLOGY	NUMBE	R	40	UNIT A	fo:	94
Γ	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	SILT	Sandy-silty soil & gibber at surface					No log descr	iption
2	PNstt	N	2.00	173.00	SHILE	·	Chbn-blgn SHLE				-		
3	PNhh	N	173.00	180.00	SDST		rdbn-gry lith ?g SDST:60% QTZ,40% FEXT	 		-	-	Mnr GYPS	
4	PNf	N.	180.00	324.00	SHILE	DLOM	Blk SHLE & gry DLOM		×				
5	PNfh	Y	180.00	192.00	DLOM		Gry fg? DLOM +blk dolomitic SHLE <10%					Diss Py	
6	PNft	Y	192.00	206,00	SHLE	DLOM	Blk SHLE +mnr gry DLOM bads				-	Diss Py	
7	PNfh	Y	206.00	214.00	DLOM		Gry fg? DLOM +blk dolomitic SHLE <30%			*****	_	Diss Py	
8	PNft	Y	214.00	282.00	SHLE	DLOM	Bik SHLE +mnr gry DLOM onds				-	Diss Py; Zn	enrh > 250m
9	PNftw	Y	282.00	309.00	DLOM	SHLE	Gry fg? DLOM +blk dolomitic SHLE < 40%			<u>-</u>		Loc enrh Pb	& Zn
10	PNft1	Y	309.00	324.00	SDST	_	Gry-mar pert f-mg SDST: 10% REXT gras				-	Blk SHLE-P	у
11	РМ-р	N	324.00	362.00	SDST	CGLM	Rdbn hem QTZ SDST & CGLM	_			-		
12	PM-pla	Y	324.00	334.00	SDST	SLST	Rdbn mica hem lith SDST: grn INIT grns					Tr diss Py	
13	PM-p1b	Y	334.00	362.00	CGLM	SDST	Rdbn-grn plmc CGLM: 20-70% grn INIT	-					
14	PMa9g	N	362.00	596.00	DOLR		Dkgrn f-mg DOLR: dyke/sill				-		
15	PMa9g	Y	362.00	386.00	DOLR		Dkgrn-pnk hem mg DOLR: vns & mnr brec	HCU			-	Diss MAGT	.Py
16	PMa9g	Y	386.00	400.50	DOLR	ADML	Dkgrn DOLR +slabby xeno ADML @ 36dg	R			30	ADML=PM	112
17	PMa9g	Y	400.50	596.00	DOLR		Dkgrn-pnk hem mg DOLR: vns pnk hem FELD	HCU	APHN		-		
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb 92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 9/7/92

P	ROJECT	: 8	Stuart Si	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		EC-	MAP N	
S	TRATIGR	APHY					LITHOLOGY	NUMBE	R		UNIT N	
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	19.00	SAND		Rdbn aeol QTZ SAND		_			
2	PNstt	N	10.00	122.00	SHILE		Chbn-grn SHLE				-	
3	PNsn?	N	122.00	124.00	SHILE	DLOM	Chbn SHLE & Isr DLOM bnds	:	1		-	
4	PNhh	N	124.00	133.00	SDST		Brn-gry lith ang-wrnd SDST:grn FEXT? gr				-	Тг Сс,Сру
5	PM-pla	N	133.00	146.00	CGLM	SDST	Brn pime srnd CGLM;elst QTZ, grn-fg-lGRK	H			-	
6	PP1	N	146.00	159.00	ADML	MCGR	Pnk-grn fg ADML: MUSC-BIOT(CHL)	HRSI				Barreni
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 9/7/92

" Ç8""Ç 8Ç 8

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

_	XOJECT			<u>nelf Bas</u>	ement	STRAT	IGRAPHIC SUMMARY	HOLE			MAP		6335
s	TRATIGR						LITHOLOGY	NUMBE	R	51	UNIT I	vo:	98
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Соге/_	Formation /	Commen
1	Q	N	9.00	14.00	SAND	SILT	Brn aeol SAND & SILT +mnr GYPS						
2	T.	N	14.00	22.00	CLAY	SAND	Gry SAND-CLAY & CLAY +mnr SICT				_		
3	PNstt	N	22.00	166.00	SHILE		Chbn SHLE +blgn bnds: gn-gry weth <35m	weth			-		
4	PNh	N	166.00	176.00	SDST	SHLE	Brn lith SDST +bsl mixd elst SDST:perigl	:	 :		-		, , , , , , , , , , , , , , , , , , ,
5	PNhh	Y	166.00	174.00	SDST	SLST	Brn pert lith SDST/SLST +mtx-brn-silt				-	More silty tha	n usual
6	PNh2	Y	174.00	176.00	SDST	SHILE	Gygn SDST, brn SHLE & gry SHLE/DLOM				_	Mixd lith-peri	gl env?
7	PNft	Ŋ	176.00	263,00	SHILE		Blk-rdbn(mnr) SHLE & gry DLOM			LBED		Loc high Zn &	. Pb
8	PM-p1	'N	263.00	285.00	CGLM		Rdbn QTZ SDST +clst GRNT & grn MINT				-		
9	PMa9g	N	285.00	292.00	DOLR		Dkgrn fg MINT				_	High Zn low C)u
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JL	C 10/7/92

	ROJECT	<u> </u>		nelf Bas	ement	STRATI	GRAPHIC SUMMARY	HOLE	•	HUD-	MAP N	o:	6335
S	TRATIGR	APHY	:				LITHOLOGY	NUMBE	R	1-	UNIT N	ю:	110
	GIS Uni	Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	3.00	CLAY		Brn CLAY +OQZT pebls: ELLU-REGL				-		
2	PNet	N	3.00	354.00	SDST	SLST	Wht-(l-dk)bn SDST & rdbn SHLE/SLST	weth			-	Weth effects	<40m
3	PNsts	Y	3.00	40.00	SDST	CLAY	Wht-gry wrnd f-mg SDST:(yel-brn-SICT:weth)	weth	 :				
4	PNstc	Y	40.00	64.00	SDST	SLST	Brn-gry/wht(mnr) fg SDST/SLST ibed		<u> </u>				
5	PNstt	Y	64.00	354.00	SHLE	SLST	Dkbrn SHLE/SLST +GYPS bnds: dolmite >326m			IBED	90	DOLM clips	d, Vns-CRE
6	PNh	N	354.00	379.40	SDST	BREC	Ltbrn lith SDST +bsl BREC: perigl? REGL				, 		
7	PNhh	Y	354.00	375.60	SDST		Ltbrn cg wrnd gnuir lith SDST: sity mtx	В		GBED	75	Vug/vns-GY	PS-CRB
8	PNh2	Y	375.60	379.40	BREC		Brn BREC QTZ-FEXT clst fg mtx, dlm fisfl	l . .			75	Brec prob pe	erigl
9	PMa	N	379.40	483.00	RHLT		Brn fg FEXT: QTZ-FELD-BIOT +lith clat	HSRQ		BAND	40	Frac-C-S-H-I	R,diss-H-Py
L	(11)	(1)	(7)	(7)	(4)	_ (4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): Jl	LC 6/7/92

P	ROJECT	: 9	Stuart St	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		HUD-	MAP N	<u>o:</u>	6335
S	TRATIGR.	APHY					LITHOLOGY	NUMBE	R	2	UNIT N	ю:	114
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	9.00	1.00	CACT	CLAY	Wht-CACT & brn CLAY +OQZT cist: REGL				-		
2	PNst	N	1.00	352.40	SDST	SLST	Wht-gry-brn QTZ SDST & chbn SHLE						
3	PNsts	Y	1.00	70.00	SDST	SHILE	Wht QTZ SDST +mnr brn-grn SHLE, CRB/GYPS						·
4	PNstc	Y	70.00	96.00	SDST	SHLE	Gry-brn QTZ SDST & lesr brn SHLE		****		-		
5	PNstt	Y	96.00	352.40	SLST	SHLE	Chbn SLST/SHLE +mnr grn bnds			IBED			
6	PNhh	N	352.40	368.00	SDST	SHILE	Pnk fg SDST & brn SHLE ibed	-		IBED			
7	PMa?	N	368.00	396.30	TUFF		Pnk-gry fg FEXT:layr-poss FOL!?/SHRD?	HS		LAYR	45	Diss MAGT	,2MAL @36
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	LC 6/7/92

P	ROJECT	: 8	Stuart SI	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PL-	MAP N	o: 6335
3	TRATIGR		:				LITHOLOGY	NUMBE	R	32-	UNIT A	60: 109
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	15.00	SAND	CLAY	orbn dune sand + clay			<u> </u>	-	
2	PNstt	N	15.00	70.00	CLAY		rbrn+gry clay with it gry+yel "chips"	weth				
3	PNh	N	70.00	212.25	SDST	SLST	buf to rbrn sdst+rbrn to grgn slst		. مبت			
4	PNhh	Y	70.00	163.00	SDST		buf fg to mg wert wrnd lithic edet	Q			70	
5	PNhi	Y	163.00	212.25	SDST	SLST	gret rbrn fg wrnd sdst+grgn to rbrn slst		IBED			
6	PNf	N	212.25	252.62	SLST	DLOM	dk gry sist ovr it gry diom sebr ovr CGLM				-	
7	PNft	Y	212.25	244.30	SLST	DLOM	iret dk gry lamb slat+mm òrec dlom		LAMB		-	
8	PNftw	Y	244.30	251.05	SEBR	DLOM	lt gry dlom sebr+slst mtx+rare cl-OQZT		SEBR			tr Spl?,Py,Cpy?
9	PNft2	Y	251.05	252.62	CGLM	SDST	plmc CGLM rest ang cl-OQZT-belt sandy mix				-	PNft1?, tr diss Py
10	PM-p3a	N	252.62	263.80	SDST	SLST	shet pprd eg qtz sdst+kao mtx+mnr slst					
	(11)	(1)	(7)	<u>(7)</u>	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): BJV 30/7/92

P	ROJECT	: 3	Stuart Sl	nelf Bas	ement	STRATI	GRAPHIC SUMMARY	HOLE		PRL-	MAP N	<u>o:</u>	6335
S	TRATIGR						LITHOLOGY	NUMBE	R	22	UNIT N	ю:	108
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	10.00	SICT	CLAY	buf nodi-mass SICT ovr buf-pwht clay	QW	NODL			clay = weth	PNwtt
2	PNstt	N	10.00	108.00	SHILE	SLST	rdbn+gry to maroon shle+sist + bsl dlom						
3	PNh	N	198.00	142.00	SDST	SLST	shet rdbn,gry,mrn sdst ovr mrn slst	<u></u>	<u></u>				
4	PNhh	Y	108.00	128.00	SDST	SLST	shet rabn+gry-mrn shle+sdst + bsl dlom				-		
5	PNh1	Y	128.00	142.00	SLST	SDST	mrn qtz,volc sdat becomes siltier to base						
6	PNft	N	142.00	251.00	SLST		dk gry bree-strm-dlom slst+bsl lamb dlom		LAMB			mnr cpy at t	op
7	PM-pla	N	251.00	276.00	CGLM		chips of gratbalt.dact - see petrology	RSHL				tr py. ?PMy	a,PNft1,2,PN
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 30/7/92

	ROJECT			nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		PY-	MAP N		6335
S	TRATIGR.				<u></u>		LITHOLOGY	NUMBE			UNIT N		101
	GIS Uni	Sub	From (m)	То (ш)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	4.30	RUBL		Clet DLOM & SDST in SAND-GYPS rate: REGL				-		- 17 7
2	PNftw	N	4.30	39.80	DLOM	CLAY	Red-grn CLAY: weth strom DLOM/SHLE +GYPS				-		
3	PM-p	N	39.80	679,65	SDST	SHILE	Rdbn hem QTZ SDST & lsr SHLE ibed				-	Silic <166m,	frac-HEM
4	PM-p4	Y	39.80	432.25	SDST	SHLE	Rdbn psrt m-cg grty SDST +mnr SHLE	В			-	Frac-HEM	*************************************
5	PM-p3	Y	432.25	590.00	SDST	SHLE	Rdbn msrt ufsq grty-fg SDST +SHLE tops	_	. 		-		
6	PM-p2	Y	590.00	608.40	SHLE		Rdbn SHLE +grn ptch/bnds				-		***************************************
7	PM-pla	Y	608.40	631.00	SDST	SHILE	Rdbn c-mg SDST +mnr SHLE	,			_		
8	PM-p1b	Y	631.00	670.18	SDST	CGLM	Rdbn cg pbly CGLM: clst FEXT-SLST-FELD	; :		<u></u> .	-		-
9	PM-plc	Y	670.18	679.65	SDST	SLST	Rdbn grty SDST & SLST						
10	РМа	N	679.65	1293.30	DACT	MEXT	Gry-red/org MEXT/FEXT & EPCL suite				.85		
11	PMaSg	Y	679.65	825.56	RHYD	TUFF	Gry-red m-fg PORP RHYD & FEXT/TUFF ibed	HE		IBED	85	Frac-EP, TO	GLM @792
12	PMa4g	Y	825.56	851.72	CGLM	SDST	Pnk plmc CGLM:cls: FEXT-DACT-GRNT;LAHAR					Clst SLST al	so pres
13	PMa3g	Y	\$51.72	993.92	BSLT	TUFF	Dkgrgn porp BSLT & cg lith TUFF: inthy	HRC			-	Vns C-H, Si	keld-horz
14	PMa2g	Y	993.92	1163.08	DACT	TUFF	Red-org fg lith TUFF & vfg DACT	HRQ				Frac spH-G	YPS-R, Slksi
15	PMalg	Y	1163.08	1293.30	TRAC	AGLM	Grn-red fg? TRAC/SYEN +bsl AGLM	HRSK			45	perv F-Ep-(wk Zn enro
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 7/7/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

_	ROJECT TRATIGR			nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE	-		MAP N		6335 102
Г	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/	Formation	/ Comment
1	Q	N	0.00	3.00	SAND	GiBR	Surface OQZT gibber and sand:no log desc						
2	РМ-р	N	3.00	565.43	SDST	SHILE	Rdbn-wht(blch) f-mg QTZ SDST & SHLE/CGLM	В		BED	-		
3	PM-p4	Y	3.00	357.70	SDST		Rdbn m-psrt m-cg grty SDST: rar pbl FEXT	В				Silic < 211m.	fre-drsy-Q
4	PM-p3	Y	357.70	461.63	SDST	SHILE	Rdbn m-wert f-mg SDST +:bed red-grn SHLE			MBED		Loc XBED	
5	PM-p2	Y	461,63	495.20	SHLE	SDST	Red-grn SHLE +mnr SDST ibed			LBED	-		
6	PM-pla	Y	495.20	509.16	SDST	22	Wht mg SDST +mnr SLST? ibed	В		IBED			
7	PM-plb	Y	509.16	565.43	CGLM	SDST	Wht-pert plmc CGLM: clst-QTZ-SLST-FEXT	В		MBED	_		
8	P Ma	N	565,43	926.60	FEXT	TUFF	Red-gry fg FEXT/TUFF: strng all mnr FAT	HRCS			_ :	Tr Cu enrch	@765m
9	PMa7g	Y	565,43	629.60	ANDS	TUFF	Red-gry fg ANDS: amyg-H-C, flw struc-brec	HRCS	IGNM	BAND	20	Vns C-H, fra	ac-GYPS
10	PMa6g	Y	629.60	742.00	TUFF	BREC	Red-grn-buf fg FEXT: vstrng alt	HACF			-	Perv Q ait	
11	PMa5g	Y	742.00	926.60	TRAC		red-grn? vig TRAC: plot EPID/ACT!	HAFT				Vns-Q-H-P	y-ANHY-B-
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	LC 7/7/92

I	ROJEC	: :	Stuart SI	helf Base	ement	STRAT	GRAPHIC SUMMARY	HOLE		PY-	MAPN	lo:	6335
Ŀ	STRATIG						LITHOLOGY	NUMBE	R	3.	UNIT	vio:	103
L	GISU	u Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture			Formation	/ Comment
;	РМ-р	N	0.00	663.60	SDST	SHLE	Rdbn SDST & mnr SHLE, bsl CGLM						
:	PM-p4	Y	0.00	296.00	SDST		Rdbn pert mg QTZ SDST						
:	PM-p3	Y	296.00	591.11	SDST	SHILE	Rdbn hem msrt m-fg SDST +mnr mica SHLE		XBED	IBED			
4	PM-p2	Y	591.11	616.07	SHILE	SDST	Rdbn lam SHLE +Thin sandy beds @ base		TBED	LBED			
4	PM-p1	Y	616.07	641.86	SDST	SHILE	Red-wht m-cg SDST +mnr SHLE bnds	В		MBED			
1	PM-p1	Y	641.86	663.60	CGLM		Red-wht gral-pebl CGLM: clst incl SHLE	В		MBED			
7	PMa	N	663.60	1288.30	FEXT	MEXT	Ogrd-bn & grn IEXT lavas & tuff/agglom	HRSC		MLYR	-	Strong alt-al	l units
8	PMa6g	Y	663.60	828.2 5	TRAC	AGLM	Red/org-grn TRAC-AGLM: amyg-CHL-QTZ	HRSE	· marin]	-	Vns KFLD-	pec-HEM,T
9	PMa8g	Y	828.25	914.50	LPRO	BREC	Pplbn cg PORP LPRO:pbxt-PHLO/BIOT,dis-Mt	HRKC	ا ــــــ		-	Fra-Py,Vns-	ANHY, TO
10	PMa5g	Y	914.50	958.80	RHLT	TUFF	Ogrd-bn TUFF:AFLD-QTZ-TOUR-BIOT-RUTL	HSRC			,	Vns F-C-R-1	Mt-Py-Cpy,E
11	PMa1g	Y	958.80	1288.30	BSLT	BREC	Ogrd-bn? BSLT:amyg-CACT-FL-MAGT, BREC	KR			-	Diss Mt-Py,	Vns C-F, Cu
L	(11)	(1)	(7)	(T)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): J	LC 7/7/92

P	ROJECT	: 3	Stuart SI	nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		PY-	MAP N	o: 6335
S	TRATIGR	APHY	:		,		LITHOLOGY	NUMBE	R	. 4	UNIT N	
. [GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	9.00	MUD		Lake mud - no description			· · · · · · · · · · · · · · · · · · ·		
2	PNstt	N	9.00	34.45	SHILE	DLOM	Chbn-grn dolomine SHLE			BED		
3	PNhh	N	34,45	37.02	SDST		Grn f-mg dolomitic SDST		- 	BED	-	
4	PNf	N	37.02	84.00	DLOM	SOST	Gry-wht DLOM & bsl sandy CGLM					
5	PNftw	Y	37.02	46_50	DLOM		Gry-wht strom DLOM			*****		Sooty Cc in base
6	PNft2	Y	46.50	84.00	CGLM	SDST	Brn? wkbed CGLM/SDST: ang clst SDST			 -		Vns Cc,Cu enrch, Redef
7	РМ-р	N	84.00	562.58	SDST	SHILE	Rdbn hem QTZ SDST & lest SHLE inbed	·		BED	-	
8	PM-p4	Y	84.00	283_50	SDST	SHLE	Rdbn psrt sang-srnd SDST +mnr mica SHLE			MBED	-	
9	PM-p3	Y	283.50	464.70	SDST	SHLE	Rdbn ig wert SDST & rd-gn moti SLST/SHLE	SB		IBED		HMBs
10	PM-p2	Y	464.70	494.70	SHLE	SDST	Red-grn motl mica SHLE +bsl SDST inbed	s		IBED	-	
11	PM-p1	Y	494.70	562.58	CGLM	SHLE	Red-grn og lith grit plmc CGLM +mnr SHLE			MBED	-	
12	РМа	N	562.58	1015.00	BSLT	FEXT	Pik hem BSLT & FEXT-AGLM +mar CGLM	HRCE			-	
13	PMa7g	Y	562.58	622.86	BSLT		Red-grn amyg BSLT/AGGL-BREC: plaxt `HEM'	HRA			- 1	L∞ Zn ench.
14	PMa5g	Y	622.86	790.25	TRAC	ANDS	Rdbn-wht PORP fg TRAC/ANDS: phxt-PLAG	RSAC				Zn enrch, vns-H-R/C
15	PMa4g	Y	790.25	820.52	CGLM	_	Pnk-grn? cg bldr CGLM +clst FEXT & DOLR	HRC			-	Tr Cu enrch
16	PMa3g	Y	820.52	831,13	BSLT	,	Dkpnk-grn? PORP BSLT: OllV, flwtp bree	HRC			_	Vns CALC, Bleach
17	PMa2g	Y	831,13	932.00	PYRC	BREC	Pnk-grn? og TUFF: RHLT,ANDS & GRNT clst	HREA	FRGM		- 1	Vns CALC, slt Cu enrch
18	PMa1g	Y	932.00	1015.00	BSLT		Dkgrn-red? fg PORP amyg BSLT:OlIV,Diss MAGT	RAQC			-	Vns-Py,Cpy,Bn,C,BART,
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/7/92

	ROJECT			oelf Base	emant	STRATI	GRAPHIC_SUMMARY	HOLE		SAR-	MAP N	lo:	6335
S	TRATIGR.						LITHOLOGY	NUMBE	R	2	UNIT N	lo:	105
L	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	24.00	CLAY	SAND	wht.gry+grn gypseous sandy clay						
2	PNstt	N	24.00	146.00	SHILE	SLST	mrn+grn dolomitic qtz+chl shle/slst						***************************************
3	PNh	N	146.00	186.79	SDST	SLST	mrn fg-cg bimodal qtz+grv sdst+slst				-		
4	PNhh	Y	146.00	161.50	SDST	SLST	mrn fg-cg bimodal qtz+grv sdst	s	<u> </u>		:90		
5	PNh1	Y	161.50	186.79	SDST	SLST	shet mrn vfgr srud hmb lith selst+bel grit	SB			75		
6	PNf	,N	186.79	405.11	SLST	DLOM	gry sist+dlom-brec-beds+bsi gygn sdst		BED		87	mnr cpy,py	ar spl
7	PNft	Y	186.79	343.00	SLST	DLOM	lt & dk gry slst + dlom brec beds		IBED		90	rar spl,py ne	ar base
8	PNft1	Y	343.00	405.11	SDST	DLOM	gygn srud fg-mg lithic sdst+mar ibed dlom		IBED		85	таг сру,ру	
9	РМ-р	N	405.11	415.20	SDST	SLST	shet mrn hem qtz selst+lamb slst interbed	 .					
10	PM-p3a	Y	405.11	409.70	SDST		shet mrn fg-mg sang hmb qtz-hem selst			ا ــــــــــــــــــــــــــــــــــــ	80		
11	PM-p2	Y	409.70	412.00	SLST		red-mrn lamb cherty mic slst	R	LAMB	,	90		
12	PM-pla	Y	412.00	415.20	SDST		mrn fg-mg sang hmb qtz-hem sdst				-		
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): B	JV 30/7/92

_	ROJECT			nelf Bas	ement	STRAT	GRAPHIC SUMMARY	HOLE			MAP N		6335
<u>s</u>	TRATIGR				<u> </u>		LITHOLOGY	NUMBE	R		UNIT A		106
	GIS Uni	Sub	From (m)	То (т)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	CLAY	brn clayey sand		-		-		
2	PNstt	N	2.00	183.10	SHLE	SLST	gygn+mrn qtz+hem lamo, xbed shle/slst		LAMB		90		· · · · · · · · · · · · · · · · · · ·
3	PNh	N	183,10	191,10	SDST	CGLM	shet mrn bimodal sdst+bsl dlom CGLM			:			
4	PNhh	Y	183.10	187.40	SDST	<u> </u>	shet mrn mg lith xbed sdst+rar foed slst		XBED		80		· ————————————————————————————————————
5	PNh1	Y	187.40	191.10	CGLM		CGLM sang cl-wht-dlom in mrn sist mtx						-
6	PNf	N	191.10	222.80	SLST	CGLM	shet gry lamb dlom slat + bel sdat+CGLM			: 			
7	PNft	Y	191.10	219.50	SLST	DLOM	shet gry lamb sandy sist+ibed wht dlom	-	LAMB		90	стп сру, та	и ру
8	PNft1	Y	219.50	222.80	SDST	CGLM	shet mrn sdst +bsl el-PMye-PM-p				-		
9	РМ-р	N	222_80	286.44	SDST	SLST	mrn ibed mg-cg sdst + slst	 .	IBED				
LO	РМ-р3а	Y	222_80	271.40	SDST		mrn+grn ibed mg hmb sdst+slst+rar cl-grnt	r	 .	****	-	org slst = ?	ruff
1	PM-p2	Y	271.40	277.10	SLST	SDST	mrn hem sist + mnr foed sdst				90		·
2	PM-pla	Y	277.10	2 86. 44	SDST	_	mrn mg hem sdst			· 	90		
	(11)	(1)	. (7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	BJV

Ē	ROJECT	: {	Stuart Sh	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		SAR-	MAP N	o: 6335
33	STRATIGE	APHY	:				LITHOLOGY	NUMBE	R	4	UNIT N	fo: 107
	GIS Un	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
	Q	N	8.00	12.00	SAND	CLAY	wht wrnd mg-cg CACTareous qtz sand			_	-	
12	PNstt	N	12,00	201.30	SHLE	SLST	mrn+grn lamb shle/slst,sandy toward base	-	LAMB		-	
:	PNh	N	201.30	219.40	SDST	SLST	gret mrn sdst ovr slst ovr grit+bsl brec	_	· 		90	
1	PNhh	Y ·	201.30	211.20	SDST	SLST	gret mrn mg rnd qtz-grv sdst		<u> </u>		90	
:	PNh1	Y,	211.20	219.40	SLST	BREC	mrn slst ovr mrn+gygn grit ovr dlom brec	!			90	rar cpy in mtx+dlom
	PNf	N	219.40	315.80	SLST	SDST	shet ibed slat+dlom ovr sdat+bal grit			<u> </u>	90	dies py, rar cpy
1	PNft	Y	219.40	295.30	SLST	DLOM	shet ibed blk+gry sist+wht dlom		LAMB	, , .	90	diss py, rar cpy
8	PNft1	Y	295.30	315.80	SDST		pl gry fg lithic sdst grades to bel grit	_	MASS		-	
,5	PM-p3a	N	315.80	333.40	SDST	SLST	mrn hem mg sdst+red+grn slst rar qtz.bif			:	85	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): BJV 30/7/92

Pi	ROJECT	: (Stuart Si	oelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE	·	SASC-	MAP N	6335
S	TRATIGR.	APHY	:				LITHOLOGY	NUMBE	<u>R</u>	4	UNIT N	fo: 117
	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation / Comment
1	PNst	N	0.00	360.60	SHLE	SDST	No decription available			,	-	
2	PNsts	Y	0.00	3.50	OQZT		No decription available				_	
3	PNstc	Y	3.50	130.00	SDST		No decription available					
4	PNstt	Y	130.00	360.60	SHLE		No decription available					
5	РМ-р	N	360.60	519.50	SDST	CGLM	No decription available	_				
6	РМ-р	Y	360.60	508.00	SDST		No decription available				-	
7	PM-pib	Y	508,00	519.50	CGLM		Hematitic plmc? CGLM with cg sandy? mix				_	Wacke-on briefsheet
8	PMwr1	N	519.50	1250.00	BREC		Pak? CGLM/BRECicis PSPO +mar DOLR & SHLE	Н			-	Infr TLUS, wk Cu-U min
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC \$11/92

P	ROJECT		Stuart S	helf Bas	ement.	STRATI	GRAPHIC SUMMARY	HOLE		DRD-	MAP N	<u> </u>	(226
3	TRATIGE	APHY	:				LITHOLOGY	NUMBE	D .		UNIT I		6336 41
	GIS Un	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture				mment
1	Q	N	0.00	2.00	SAND	REGL	Sand and weathered quartzite	WETH			-		imaent
2	PNst	N	2.00	118.00	SDST	SHLE	Wht SDST & cbrn SHLE	s					
3	PNsts	Y	2.00	44.00	SDST	OQTZ	Wht & hard SICTeous SDST						
4	PNste	Y	44.00	54.00	SDST	SHLE	Hred SDST part micaceous & shaley, frbl						
5	PNett	Y	54.00	118.00	SHILE		Corn SHLE +blugry bnds					Mnr Cu.Po bsl en	ırch
6	PM-p	N	118.00	1067.65	SDST	SHILE	Rdbn SDST loc pbly/grty, HMB, +SHLE ibed				-		
7	PM-p4	Y	118.00	710.00	SDST	ARKS	Hred qız SDST lsgn hmb pbly arkosic	SH		XBED	87		
	PM-p3	Y	710.00	935.00	SDST	SHILE	Ppbn-pgybn SDST min SHLE hmb min pbly	SH		BED	90		
9	PM-p2	Y	935.00	970.00	SHILE	SDST	Bland SHLE, min pprd SDST fine-hmb			TBED.	90		
10	PM-pla	Y	970.00	1044.00	SDST	SHLE	Brn-Or/PPI SDST: min ppl micaeous SHLE	BLCH		<u> </u>	87		
	PM-p1b		1044.00	1067.65	SDST	SHILE	Yel SDST poly grt, con SHLE CL-HEM MFQV				87		
	PPi1?	N	1067.65	1108,40	MCGR	GRNT	Pnk-grn ign/meta txt Q-R-H-rk, Vns Q-H	HMCS		SHRD	-	Vns Py-Cpy Tr-A	g MMI
	PMa10?	N	1108.40	1110.70	DOLR		Dgrn hrd CHL(AMP?) rk with rlet opht txt	CR	OPHT		40	Shearing ass with dyke margins	dyke
14	PP11?	N	1110.70	1192.00	MCGR	GRNT	Pnk-grn ign/meta txt qtz-chl-hem rk, QHV	HIMCS		SHRD		Vns-Py-Cpy @40- Tr-Ag-Au Rict ign	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):JLC 30/	

P	ROJECT	: 8	Stuart SI	helf Bas	ement	STRATI	IGRAPHIC SUMMARY	HOLE		HWD-	MAP N	io:	6336
s	TRATIGR	APHY	:			34,	LITHOLOGY	NUMBE	R	1	UNIT	<i>l</i> o:	42
_	GIS Uni	Sub	From (m)	To (m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Соге	Formation	/ Comment
1	Q	N	0.00	2.00	SOIL	TLUS	Soil & TLUS		_		_		
2	PNst	N	2.00	439.10	SDST	SLST	Wht-red/pakbn SDST +uadl chbn SLSt/SHLE				90		·
3	PNets	Y	2.00	20.00	SDST	 .	Wht f-mg quartzite	weth			_		
4	PNstc	Y	20.00	243.00	SDST	SHILE	Wht-pak/red fbl mg SDST mnr rdbn-gra SHLE	weth					
5	PNstt	Y	243.00	439.10	SHILE	SLST	Chbn-gy(mnr) SHLE +lbrn SLST-XBED/WBED	:			90		
6	PNsn	N	439,10	440.50	DLOM	SHLE	Crm MBED DLOM I/MBED shp bas-enct				90		
7	PNh	N	440.50	584.30	SDST	BREC	Gy-pnk SDST bsi Hbn BREC +DLOM-cist				85		• • • • • • • • • • • • • • • • • • • •
8	PNhh	Y	440.50	577.20	SDST		Gy-pnk(mnr) f-cg(+bnls) SDST	-			85		
9	PNh2	Y	577.20	584.30	SDST	BREC	Fibn f-cg +DOLM fragments	-			· 5 85		·
10	PNf	N	584.30	861.20	SHILE	SDST	Gry-wht dolomitic SHLE & basi pnk SDST seq.		- 1		8 5		•
11	PNfh	Y	584.30	592.70	DLOM		Crm/wht +qtz sand mnr-clastic-DLOM	-		·	85		
12	PNft	Y	592.70	839.70	SHLE	SLST	Gy SHLE mnr-SLST, DLOM-bnds				88	Subv vns-D4	OL-Py
	PNft1	Y	839.70	861.20	SDST	CGLM	Brn mica f-mg QTZ SDST +mnr sebr-hmtx	н			90		
	PMa	N	861.20	1097.15	FEXT	BREC	Pnk-orn FEXT & FEXT-BREC, veined & altered	SH	VTBR	IBED			
	PMa11	Y	861.20	866.40	BREC	FEXT	Pnk/rdbn bnd int FEXT-BREC(fgmono-vegplme)	HCS	VTBR	IBED	60	Mnr Vugs/V	-
		Y	866.40	887 <i>.</i> 50	FEXT	BREC	Pak vfg bad FEXT, BREC < 1.0mth	HS	SEBR	IBED	60	Vn-HEM, fr	ас-Ру/Вп
		Y	887.50	897.20	BREC	FEXT	Pnk-brn FEXT +mnr QTZ elst in HEM mtx	HS	SEBR	-		Va-HEM, d	
	:	Y	897.20	1023.00	FEXT		Mordon FSPO-FEXT pixt-KFELD QTZ&HEM-V	SHR		CBND	40	Blebs/Vns-B	n/Cpy
19		Y	1023.00	1097.15	FEXT	BREC	Rdbn FEXT +BREC zns<10cm, HEM-VEIN-BREC	SH	frbr	CBND	40	Diss/vns-Py	,
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

P	ROJECT	: 3	Stuart St	nelf Base	ement	STRATI	GRAPHIC SUMMARY	HOLE		RED-	MAP N	o: 6336
S	TRATIGR	APHY	:				LITHOLOGY	NUMBE	R	1	UNIT N	fo: 43
	GIS Uni	Sứ	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Cord	Formation / Comment
1	Q	N	0.00	2.00	SOIL	CLAY	Brn CLAY-SOIL + wht OQZT pols: lag-REGL			·	_	
2	PNst	N	2.00	290.00	SDST	SHILE	Wht-Brn SDST/SHLE & chbn SLST/SHLE		 .		-	
3	PNstc	Y	2.00	120.00	SDST	SHILE	Gry-grn SDST +mnr grn-brn SHLE ibed			IBED	-	
4	PNstt	Y	120.00	290.00	SLST	SHLE	Chbn SLST/SHLE +mnr gry bnds		_		-	Upr gret
5	PNb27	N	290.00	296.95	BREC		Pnk-rdbn mtxsup BREC:ang FEXT, rd fg mtx		-		-	
6	PMa	N	296.95	410.00	DACT	 .	Pnk porp DACT: phxt grgn-PLAG & MAFC	SHRQ	PORP	 '	-	Vns Mt-H-C-Py-Cpy-KF
7	PMa	Y	296.95	341.30	DACT		Pnk porp DACT: phxt grgn-PLAG & MAFC	SHRQ	PORP			Vns Mt-H-C-Py-Cpy-KF
8	PMa12?	Y	341.30	385.00	DOLR		Gygn mass fg DOLR: T&Behmg FELD-dsty-HEM	н		DYKE	20	Vns C.R., diss Cpy,Mt
9	P Ma	Y	385.00	410,00	DACT		Pnk porp DACT: phat grgn-PLAG & MAFC	н	_ :		-	Vns CRB,frac CHL-HE
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 22/7/92

	ROJECT	: 9	Stuart SI	nelf Bas	ement	STRAT	GRAPHIC SUMMARY	HOLE		RED-	MAP N	fo: 6336
15	TRATIGR						LITHOLOGY	NUMBE	R	. 2	UNIT !	Vo: 44
<u>_</u>	GIS Un	i Sub	From (m)	То (т.)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	PNwy2	N,	0.00	52.00	SLST	SHLE	Gygn-brn SLST +mnr fg OQZT ibed:ox surfce	weth			_	Weth yel-brn
2	PNst	N	52.00	326.93	SDST	SHLE	Wht-brn SDST/SHLE & chbn SHLE/SLST				_	
3	PNsts	Y	52.00	106.00	SDST	SHLE	Wht-gry-grn SDST +mnr brn-grn SFiLE		1			
4	PNstc	Y	106.00	114.00	SDST	SHLE	Brn-grn(speci) SDST +grn-brn SHLE					
5	PNstt	Y	114.00	304.65	SLST	SHLE	Brn-grn/gry SHLE/SLST				85	
6	PNsn	N	304.65	306.93	DLOM	SHLE	Crm mass DLOM:bsi sandy fces(rwkd sbstr)	<u> </u>	!	-	90	
7	PNh2?	N	306.93	310.61	BREC	DIMC	Pnk-rdbn DIMC/BREC:ang FINT in rd fg mtx	_				Bsl entet 70Dg
8	PMa	N	310.61	686.90	FINT	FSPO	Pnk/rd f-mg K/Na-Ca FLD subvole int	<u></u>	PORP		-	Mnr QTZ
9	PMa13	Y	310.61	665.56	MONZ	FSPO	Pnk/rd-grn KFLD-PLAG(ser) PORP +MAFC(chi)	HRS	PORP	 .		Vn Py-R-C-I-Ediss Py/Cp
10	PMa13	Y	665.56	666.75	SYEN	GRNT	Pnk/rd? lowK-highNaFLD-PLAG-QTZ og FINT					"Syenogranite"
11	PMa13	Y	666.75	675.65	MONZ	FSPO	Pnk/rd-grn m-cg KFLD-PLAG PORP		PORP			Fracton Py
12	PMa13	Y	675.65	683.13	SYEN	GRNT	Pnk/rd? lowK-highNaFLD-PLAG-QTZ og FINT					"Syenogranite"
13	PMa13	Y	683,13	686.90	MONZ	FSPO	Puldtd-grm m-eg KFLD-PLAG PORP:loc SYGN?		PORP		- '.	Frac/vn Py
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 22/7/92

Stratigraphic codes by W.M. Cowley & C.G. Gatehouse '92. ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

	ROJECT TRATIGE	APHY	:				IGRAPHIC SUMMARY	HOLE	R		MAP N UNIT I	
_	GiS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Aiterat.	Texture	/ Fabric	Core	Formation / Commen
1	PNst	N	6.00	225.00	SDST	SHILE	Wht-brn SDST & brn-grn SHLE/SLST ibed				-	
2	PNets	Y	0.00	68.00	SDST	SHLE	Wht-gygn SDST +mnr chbn-grn SHLE	weth		<u></u>	-	weth <50m SHLE=CL
3	PNstt?	Y	68.00	77.50	SHILE	SDST	Chbn SHLE + wht-grn SDST				-	
4	PNsts	Y	77.50	88.00	SDST	SHLE	Wht-gn SDST +mnr brn-gry SHLE/SLST					
5	PNett	Y	88.00	225.00	SHILE	SLST	Chbn-gygn(mnr) SHLE/SLST		 :		4-	
6	PMh9	N	225.00	445.50	GRNT	FSPO	Pnk porp GRNT ALBT(phxt)-PLAG-QTZ-BIOT	HRS	PORP			Vns/frac Q-R-C-Py-Cp
7	PMh9	Y	225.00	306.40	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-B;OT:alt-FLD	HR	PORP	SHRD	5	Vns C(SIDR)-F-Cpy :
8	PMh9	Y	306.40	321.40	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	i⊣sr	PORP	FRAC	70	pixt < &cm Vns R-F-C(SIDR)-H dilat brec @313m
9	PMh9	Y	321.40	364.90	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	HSR	PORP		-	Vns C(SDR)-H-S-Py-N phxt <8cm
10	РМЬ9	Y	364.90	371.20	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD		, .	SHRD	45	Vns mnr CRB SHR2 Mt-Pv-H in FOLI
11	PMh9	Y	371.20	391.20	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	RS	PORP			Vns C-BART-Py-H-Cp 1.Sem vn @376.2m
12	РМЬ9	Y	391.20	406.00	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	HR	PORP	SHRD	10	Vns Mt-Py GRNT dyke
13	PMh9	Y	406.00	422.90	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	HR	PORP			60 cm @392.3m Vns H-S: R-FLD-Q rk
14	PMh9	Y	422.90	445.50	GRNT	FSPO	Pnk porp GRNT ALBT-PLAG-QTZ-BIOT:alt-FLD	HSR	PORP			10cm @418.2m=dyke? Vns Q-H-S-Mt-Py-CRE
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	:phxt < 6cm Author(s): JLC 28/7/92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		BLD-	MAP N	6337
S	TRATIGR					12 22 2	LITHOLOGY	NUMBE		1	UNIT N	
<u>_</u>	GIS Un	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Eha	N	0.00	18.00	LMST	SLST	Wht-crm/gry silic LMST +tr red SLST					Supf ven red dune SAN
2	PNwy	N	18.00	140.00	SLST	SDST	Redon-gra SHLE/SLST & brz/wht/gra OQZT					
3	PNwy1	Y	18,00	42.00	SHILE	SLST	Rdbn-grn SHLE/SLST	-				
4	PNwy2	Y	42.00	140.00	SLST	SDST	Rdbn-grn SHLE/SLST & wht-grn/brn fg OQZT		f'	IBED		QITE-micaceous
5	PNst	N	140.00	512.28	SDST	SHILE	Wht-brn SDST/SLST +undly Chbn SHLE/SLST	-	MBED	TBED	-	
6	PNsts	Y	140.00	294.16	SDST	SLST	Wht-brn/pnk/grn fg OQZT +mnr brn SLST		MASS	XBED	-	SHLE intelst: Py @280m
7	PNstc	Y	294.16	304.69	SDST		Brn fg mass SDST: loc XBED upr portn	_	MASS	TBED		
8	PNstt	Y	304.69	512.28	SHILE	SLST	Chbn-gry SHLE:gry bnd less comn to depth			TBED	90	
9	PNsn	N	512.28	515.25	DLOM	SHILE	Buf-gry mass DLOM +bsl rd/gn SFiLE		-			Py
10	PNh3?	N	515.25	522.80	BREC		Rdbn-grn? plmc BREC: clst GBBR-QTZ-GRNT?	-				Diss Py in GBBR clst Mobile clsts
11	PN?	N	522.80	525.22	BREC		Gry-grn fg GBBR: breccia-genesis?					Poss indur REGL brec? Insitu clst?
12	PM1	N	525.22	768.00	GBBR	ANTO	Dkgrn mass intre GBBR into plgry ANTH	HRCE			_	Igneous complex
13	PM1f	Y	525.22	554.00	ANTO	GBBR	Plgry-grn f-m-cg ANTH/GBBR:Pnk alt-FELD	HR		SHRZ	30	Alt patchy
14	РМ1п	Y	554.00	584.85	GBBR	ANTO	Dkgrn mass f-mg GBBR/ANTH:Pnk alt-FELD	Н		SHRZ	30	Vns fgPy @30;diss LUC
15	PM1f	Y	584.85	588.10	ANTO	GBBR	Plgry-grn f-m-cg ANTH/GBBR:Pnk alt-FELD	-				Diss Py 2-3?%,DACT dy
	PM1m	Y	588.10	617.00	GBBR	ANTO	Dkgrn mass f-mg GBBR/ANTH:Pnk alt-FELD	CER				Tr fg Py,Cpy,vns Q-C
17	PM1f	Y	617.00	659.60	ANTO	GBER	Plgry-grn f-m-eg ANTH/GBBR:Pnk alt-FELD	CER		SHRZ		Vn/frac CRB-QTZ/Cpy
18	PM1m	Y	659.60	679.33	GBBR	ANTO	Dkgrn mass i-mg GBBR/ANTH:Chld upr mgn			_		Mnr thn vns CRB
19	PM1f	Y	679.33	698.42	ANTO	GBBR	Plgry-grn f-m-eg ANTH/GBBR:Chld? upr mgn	SERH		SHRZ	-	Tr dis Py,diss? MAGT10
	PM1m	Y	698.42	701.99	GBBR	ANTO	Dkgrn mass mg GBBR/ANTH		_		-	
	PMa	Y	701,99	716.48	DACT		Plbrd(grgn mass vig DACT:phat FELD-QTZ	н.	PORP	DYKE	50	Inents fract/alt/vned
	PM1m	Y	716.48	728.15	GBBR	ANTO	Dkgrn mass mg GBBR/ANTH:diss? MAGT patch	HR	· ···		-	
		Y	728.15	736.25	ANTO	GBBR	Plgry-grn f-m-eg ANTH/GBBR:loc MAGT aggr	SERH			4	Tr diss? Py
24	PM1m	Y	736.25	748.00	GBBR	ANTO	Dkgrn mass mg GBBR/ANTH:loc wht FELD agg	HR			.#	
	PM1f	Y	748.00	749.70	ANTO	GBBR	Plgry-grn f-m-cg ANTH/GBBR:	В			-	
26	PM1m	Y	749.70	768.00	GBBR	ANTO	Dkgrn mg GBBR/ANTH:vns Q-F-R-C, cg MAGT	В		SHRZ	-	Frac/shrz-dyke-DACT?
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 17/7/92

P	ROJECT	: 8	Stuart St	elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		BLD-	MAP N	o: 6337
S	TRATIGR	APHY.					LITHOLOGY	NUMBE	R	2	UNIT N	fo: 58
L	GIS Un	i Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	2.00	CLAY	RUBL	Org CLAY & RUBL of silic-LMST +OQZT				_	
2	Eha	N	2.00	36.00	LMST		Plbn-buf silic LMST: weth <4m	weth			-	Tr Po enrich
3	PNwy	N	36.00	152.00	SLST	SDST	Ppl-plbn-wht/blu fg mica SLST +mnr SDST			LBED		
4	PNst	N	152.00	637.00	SDST	SHILE	Brn-wht-grn SDST ovly chbn-gygn SHLE	_	IBED	LBED		Mnr SDST inbd in SHLE
5	PNsts	Y	152.00	362.00	SDST	SHLE	Brn-wht mass mg SDST: Q-emt +mnr SHLE	S	MASS	IBED	-	XBED intvlinbds < 5mm
6	PNstc	Y	362.00	374 .30	SDST		Bkrd/pplbn-grn mass SDST: >90% QTZ			_	-	
7	PNstt	Y	374 .30	637.00	SHILE	SDST	Ch/pplbn-grygn SHALE + sandy zns < 520m		LBED	XBED	85	
.8	PNsn	N	637.00	646.20	DLOM	SHILE	Brn-buf-wht lam & mass dolomitic SHLE		MASS	LBED	-	
9	PNh3?	N	646.20	650.85	CGLM		Plgn plmc CGLM:mtx-cg.cls MEXT-FEXT-GRNT	<u></u>	DIMC			Mtx-sandy-hemtic/QTZ:
10	PM-p?	N	650.85	696.70	SDST	CGLM	Plgy-grn SDST & CGLM: cls GRNT & IEXT		BED	XBED		
11	PM-pla	Y	650.85	690.30	SDST	CGLM	Plgry grty SDST + monm CGLM:cist-GRNT		BED	XBED	87	
12	PM-p1b	Y	690.30	696.70	CGLM	SDST	Gra-gry plmc CGLM: clst<0.1m GRNT-IEXT	-			-	Mtx SAND +mnr SHLE
13	PMh	N	696.70	860.25	GRNT	MCGR	Pnk f-cg GRNT/MCGR+f-mg APLT:loc TEBR/alt	HRSC	TEBR	SHRZ	-	APLT=dykes, Meggabre
14	PMh4	Y	696.70	767.85	GRNT	BREC	Pnk? m-og GRNT & GRNT-BREC QTZ-KFLD-BIO	HRSC		SHRZ	20	Alt-irricist-MEXT-QTZ
15	PM?	N	767.85	770.28	TEBR	UNKN	Pnk-grn? UNKN-HEM-CHR rock, iwr grdent		_	SHRZ	70	
16	PMh5	Y	770.28	799.80	GRNT	APLT	Pnk? c-(m)g GRNT +mnr APLT 1m@791m	RS		, 	-	
17	PMh7	Y	799.80	803.65	APLT	, 	Red mass f-mg APLT: KFLD>>QTZ+CHR: MAGT			DYKE	70	
	PMh5	Y	803.65	840.00	GRNT		Pnk? m-cg GRNT: "dusty" diss HEM/MAGT	HRS				Vns Q-R, diss Py-MAGT
19	PMh6	Y	840.00	860.25	MCGR	BREC	Pnk? f-mg MCGR: mnr KFLD phxt, loe BREC	Н	_	BREC		Vns Q-R,low mtx bree
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 20/7/92

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		BLD-	MAP N	o: 6337
S	TRATIGR						LITHOLOGY	NUMBE	R	3	UNIT N	fa: 59
	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	4.00	SAND	MUD	Gry-rdbn? SAND/MUD/CLAY:entemp lake deps				-	PAGE 1/2 Acc GYPS
2	Eha	N	4.00	82.00	LMST	DLOM	Brn-wht-grgn silic dlom LMST +mnr OQZT?		:		-	Tr diss Py
3	PNwy	N	82.00	172.00	SHLE		Chbn-grn SHLE; grn alt is cross cutting			LBED	-	
4	PNwb	N	172.00	300.00	SHILE	SDST	Chon-grn SLST/SHLE+mnr thn wht SDST ibed		¥	IBED	-	SDST usually <30%, <1
5	PNst	N	300.00	756.55	SDST	SHILE	Brn-wht f-mg SDST ovly chon SHLE/SLST		XBED	TBED	90	Mnr SHLE ibed in SDST
6	PNsts	Y	300.00	447.30	SDST	SHILE	Ltbn-wht f-mg SDST +brn-grn SHLE/SLST		XBED	TBED	.90	loc TBRC-vus ANHY-Py
7	PNstc	Y	447.30	470.70	SDST	SHLE	Brn f-mg SDST +mnr SHLE/SLST ibed/laminae		XBED	TBED		
8	PNstt	Y	470.70	756.55	SHILE	SLST	Chbn-gry SHLE/SLST +mnr SDST ibed < 510m		TBED	LBED	85	Loc BART vns, XBEDs
9	PNsn	N	756.55	759.32	DLOM	SHLE	Ltbn-erm DLOM + thin rcbn SHLE lamiae			TBED	-	Irreg bed tops
10	PNh1?	N	759,32	775.00	SLST	CGLM	Brn pbbly SLST/SDST & CGLM:QTZ-FEXT-MEXT			BED		Discrif base
11	PNfh	N	775.00	793.90	DLOM	SHILE	Rd/ltbn-gry fg xtl strm DLOM: mr.r SHLE			TBED	90	Nodis-ANHY, frac-Cpy
12	PNft	N	793.90	871,67	SHILE	DLOM	Lt-dkgry ig dolomt SHLE/SLST			LBED	90	Basl DLOM frm 869.3m
13	PNft1	N	871.67	872.00	CGLM		Varig? plmc CGLM: clst-GBBR-GRNT?					
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 22/7/92

P	ROJECT	: {	Stuart Sh	elf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		BLD-	MAP N	o: 6337
S	TRATIGR						LITHOLOGY	NUMBE	R	_ 3	UNITA	fo: 59
	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core	Formation / Comment
14	PM1m	N	872.00	875.85	GBBR		Dkgrn mg GBBR: fg to depth,upr 1.5m alt		MASS		-	PAGE 2/2 mnr diss vfg Py
15	PMhS	N	875.85	877.65	GRNT	,	Pnk? mg GRNT QTZ-KFLD(rnd)-PLAG(ser)-CHL	RS		FOLI	20	
16	PM1m	N	877.65	878.77	GBBR		Dkgrn? mass alt GBBR: AMPH-PLAG-BIOT	?				
17	PM1h	N	878,77	881.10	GRNT	GBBR	Pnk-grn GRNT-GBBR alt & fractd hybrd rk	?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	Mass fg pak KFLD
18	PMhS	N	881.10	88410	GRNT		Pnk wk FOLI GRNT:KFLD(hem)-PLAG(ser)-CHL		_	FOLI	35	QTZ-rextl
19	PMh8	N	85410	887.20	FSPO		Pnk f-mg GRNT-PORP: phat KFLD(rnd) < 2cm		MASS		-	
20	PMim	N	887.20	900.00	GBBR		Grn m-cg (lyr?<5cm) GBBR: AMPH-FELD	R	_	LAYR	-	Vns mnr thin CHL-DOI
21	PMh5	N	900.00	902.50	GRNT		Pnk mg GRNT: QTZ-KFLD(hem)-PLAG-CHL	-	MASS		-	Lwr cnt @25Dg
22	PM1n	N	902,50	907.20	GBBR		Dkgrn? fg GBBR; AMPH-PLAG +mnr BIOT	HK	MASS		-	Vns HEM, CRB
23	PMhS	N	907.20	910.45	GRNT		Pnk mg GRNT: QTZ-KFLD(hem-ser)-PLAG-CHL	SH	MASS		-	Upr CNt @30Dg,tr Cp
24	PM1h	N	910.45	918.53	GBBR	HYBR	Puk fg PORP QTZ-KFLD GBBR diff/hybrd rk?	HS	MASS	FOLI	40	Mg zes,ves CRB-Py,TO
25	PMa12	N	918.53	920.40	DOLR		Puk-grn mass fg DOLR: puk KFLD-CHL alt	HKR	MASS		-	Vns DOL, t&bchm
26	PM1n	N	920.40	929.10	GBBR		Dkgrn? mass fg GBBR; CHL alt	R	MASS	 .	-	V _{ES} QTZ-CRB, KFLD
27	PM1h	N	929.10	939.45	GBBR	HYBR	Dkgrn-pnk f-mg GBBR:pnk phxt KFLD, GRNT	KRH	MASS		-	Vns-HEM,KFELD-QTZ
28	PMa12	N	939.45	943.50	DOLR		Dkgrn? vf-fg DOLR: t&bchm	R	MASS	FOLI	30	Vns CRB,CRB-HEM
29	PM1h	N	943,50	954.00	GBBR	HYBR	Dkgrn-pnk f-mg GBBR:"GRNT" QTZ-CHL-alt	QR	MASS	_		Vns CRB,QTZ,Cpy
30	PM1n	N	954.00	956.00	GBBR		Dkgrn fg GBBR: +KFLD					
31	PMa12	N	956.00	959.80	DOLR		Dkgrn? fg DOLR: t&b vfg mgn				35	Vns CRB, Shrd ents
32	PM1h	N	959.80	962.10	GBBR	HYBR	Dkgrn-pnk f-mg GBBR: GRNT QTZ-CHL-alt		MASS		-	Vns CRB.HEM:Phen-K
33	PMa12	N	962.10	962.80	DOLR		Dkgrn? vi-fg DOLR	R			30	Vns CRB, Shrd ents
14	PM1h	N	962.80	971.35	GBBR	HYBR	Dkgm? fg GBBR: GRNT QTZ-CHL-KFLD alt	QRKS	MASS	FOLI		Via CRB
35	PMa12	N	971.35	980.30	DOLR	-	Dkgrn? fg DOLR: t&behm, unalt!		MASS		-	Vns CRB
36	PM1h	N	980.30	993.3 5	GBBR	HYBR	Dkgrn-pak mg GBBR:paxt pak-wht-KFLD,BiOT	K	MASS			Vns QTZ-CRB,Py-HEM
37	PM1m	N	993.35	1006.30	GBBR		Dkgrn mg? GBBR +mnr pnk KFLD, BIOT clts		MASS		-	Vns CRB
3.8	PM1h	N	1006.30	1008.63	GBBR	HYBR	Prik ig GBBR: "SYEN" KFLD-PLAG-	R	MASS		-	Vults CRB
9	PMa12	N	1008.63	1010.20	DOLR		Dkgrn? víg DOLR: stng CHR alt, xeno-fels	R	<u></u>		-	
0	PMih	N	1010.20	1018.20	GBBR	HYBR	Dkgrn f-mg GBBR:meso-KFLD-LEUX	HR	MASS			Vas CRB
1	PMh5	N	1018.20	1024.00	GRNT		Pnk m-cg GRNT QTZ(fldrms)-KFEL(hemrms)		MASS			Vns CRB+CHL selved
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 22/7/92

P	ROJECT	: 8	Stuart Sh	nelf Base	<u>ment</u>	STRATI	GRAPHIC SUMMARY	HOLE		BLD-	MAP N	o:	6337
S	TRATIGR					. 1	LITHOLOGY	NUMBE	R	-4	UNIT N	fo:	60
	GIS Un	i Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	0.00	2.00	SAND	CLAY	red loamy sand+mnr b.n and grn clay			-	· 		
2	Eha	N	2.00	100.00	LMST		wht pak gry+bra fg lmst				-		
3	PNwy	N	100.00	208.00	SHLE	SLST	chbn+grgn lamb shle and sist		<u> </u>	_			
4	PNst	N	208.00	806.00	SDST	SHLE	brn to buf ibed sist+sdst over rbrn skle	_	_ [-		
5	PNsts	Y	238.00	480.28	SLST	SDST	chbn slst+shle ibed buf to brn xbed sdst	·	XBED		75		
6	PNetc	Y	480,28	504.49	SDST		brn pert sdat xbed-mbed with rare shle	_	XBED		75		·
7	PNett	Y	504.49	806.00	SHLE	SLST	ibed thed form shle+xhed slst+mnr sdst	-	XBED	_	85		
8	PNh	N	806.00	818.67	DIMC	ARNT	cl-grnt-volc in silty mtx ovr rbrn arnt		<u> </u>	-	90		
9	PNhir	Y	806.00	816.30	DIMC	SLST	dime rnd-sang pbl el-grnt-vole in sist		-	. —	8 5		·
10	PNhw?	Y	816.30	818.67	ARNT		rbrn xbed arnt		XBED		90	PNh? in ori	ginal log
11	PNft	N	818.67	957.68	SHILE	DLOM	gblk sist to shle+thin gwht dlom layers	_			90	mar fg py	
12	PNua	N	957.68	968.66	DIMC	SLST	cbl wrnd pert cl-grnt-volc ovr gygn sist				-		
13	PNb	N	968.66	1037.00	OQZT	MAGN	gyblk oqzt/slst ibed ovly magn/slst ibed	-	BED		85		
14	PNb?	Y	968.66	994.20	OQZT	SLST	tbed ibed mic OQZT+:bed gblk sist		BED		\$ 5		·
15	PNb?	Y	994.20	1037.00	MAGN	SLST	ibed nodl Q magn+tbed gblk sist+mnr SEBR	_	IBED		-	? skillogalec	dolomite
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	3JV 30/7/92

1	PROJECT	·: {	Stuart St	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		SCYW-	MAP N	o:	6337
	STRATIGE	APHY	:				LITHOLOGY	NUMBE	R	1A -	UNIT N	<u></u> fo:	56
	GIS Un	u Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric		Formation	/ Comment
	1 E	N	0.00	196,20	SHLE	LMST	Brn-grn shle/sist ovly gywt lmst/dlom		IBED		-	Carb rks vu	38y
	2 Eoy	Y	0.00	28.47	SHLE	SLST	ibed brn mass-banded shle+grn mbed sist		IBED	, .	~	····	
1	3 Eha	Y	28.47	196.20	LMST	SLST	mass-vug gwht lmst+crm dlom slst/shle					tr py in vugi	ns/fracs
	4 PNwy	N	196.20	386,57	SHILE	SLST	ibed dk brn shle+gygn cubd slst		CUBD				
	PNst	N	336.57	1039.30	SHLE	SDST	gygn shle+sdst owr brn sdst owr brn shle		IBED		-	tr py,cpy	
	PNsts	Y	385.57	539.45	SHILE	SDST	ibed gygn+mnr brn silty shle+sdst+slst		IBED		-	п русру	
	7 PNstc	Y	539.45	732.29	SDST	SLST	ibed brn+mnr gry slst+cubd-mass scist	· ;;-	CUBD			tr py	
1.	PNstt	Y	732.29	1039.30	SHLE	SLST	ibed brn+grn shle+mnr xbed sist	 -	XBED			tr py,cpy	
	PNh	N	1039,30	1143.79	SDST	SHLE	gnbn cg-fg sdst ovr ibed shie+sdst				,		
1	PNhh	Y	1039.30	1077.28	SDST	GRIT	gry-gnbn eg-fg sang-wrnd lith sdst/grit		XBED		- '		
1	! PNha	Y	1077.28	1143.79	SHILE	SDST	ibed brn shle+fg grn scist+bsl cle shle		IBED				
1	2 PNf	N	1143.79	1372.95	SLST	DLOM	gry strm dlom ovr gry slat+mnr bal dlom						
1	PNfh	Y	1143.79	1188.63	DLOM		gry strm dlom+gry fg sdst frf (merk?)	·	STRM		-	mnr py	
1	4 PNft	Y	1188.63	1355.00	SLST	DLOM	dk gry slst mnr xbed + mnr gry strm dlom					mnr bedded	+diss py,cpy
1	PNftw?	Y	1355.00	1372.95	SLST	DLOM	gret dk gry sist-snie+num ibed thin dlom		IBED			?diss py	
1	PNua	N	1372.95	1450.00	TILL	SDST	shot gry mud+sdst+till cl-shle-grnt-ands		MASS	-		py in clapi a	round ci
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	BJV

P	ROJECT	: 3	Stuart Sh	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		SHD-	MAP N	o: 633
S	TRATIGE					in .	LITHOLOGY	NUMBE	R	_ 1	UNIT N	fo: 5
	GIS Un	i Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/	Formation / Commen
1	Q	N	0.00	2.00	SAND	CACT	Org SAND & CACT +mnrCLAY		_		-	
2	K	N	2.00	18.00	CLAY	SDST	Ylbn-kaki CLAY/MDST & SDST/CLAY					
3	K	Y	2.00	12.00	CLAY	MDST	Yel-buf CLAY & MDST			-	-	
4	K	Y	12.00	18.00	SDST	CLAY	Tan-brn SDST +CLAY kaki+gnl toward base	-				
5	E	N	18.00	254.50	SHLE	DLOM	Ppi-con SHLE & dk/plgy-crm DLOM	weth	MASS	LAMB	-	
6	Eoy	Y	13.00	108.00	SHLE	CLAY	Ppl-chbn mnr blgn SHLE, weth above 70m	weth		_	-	
7	Eha	Y	108.00	254.50	DLOM	SDST	Dk/plgy-erm MASS/TLAM xtl DLOM +mnrSHLE		SIY	WBED	90	
8	PNwy1	N	254.50	264.90	SHILE		Rdbn mnr grn-bndz, ppon toward base			TBED	90	
9	PNet	N	264.90	770.40	SDST	SHLE	Bra-wht SDST & ppbn SHLE/SLST	_		BED	90	
10	PNstc	Y	264.90	534.00	SDST	SHLE	Brn-wht SDST & rdbn mnr +grn SLST/SHLE	_		LAMB		
11	PNstt	Y	534.00	770.40	SHILE	SLST	Ppon mnr grh SHLE/SLST & mnr SDST	<u> </u>		IBED	90	
12	PNsn	N	770.40	776.67	DLOM	SHILE	Crm-Pnk DLOM & rdbn SHLE laminae	<u> </u>		IBED	90	
13	PNf	N	776.67	\$29.60	SHILE	SDST	Gry SHLE/DLOM +bsi SDST/BREC			BED	-	
14	PNft	Y	776.67	827.40	SHLE	DLOM	Gry SHLE +lgry DLOM-laminated/nodular	:		LAMB	90	Mar diss-Cpy-Py
15	PNft1	Y	827.40	829.60	SDST	BREC	Wht-lbrn SSDST mnr SHLE, sebr GRN/FEXT			BED	_	
16	PPh	N	829.60	965.00	GNSS	SCHT	Pnk/grn Q-FLD-R GNSS 310T SCHT & Q-F PEGD		_		-	
17	PPh1	Y	829.60	852.05	GNSS	_	Pnk/grn ig QTZ-FELD-CHL	HSR	FOLI		55	Mnr TOUR/CHR in shi
18	PPh2	Y	852.05	858.00	PEGD		Pnk mg QTZ-FELD +mnr MUS	н	_			
19	PPh1	Y	858.00	898.10	GNSS	_ :	Pak QTZ-FELD-BIOT-CHL	HRS	FOLI	CBND	- 1	
20	PPh1	Y	898.10	903.00	SCHT	_	?? fg BIOT mnr QTZ-FELD ?SILL	-	FOLI		20	
21	PPh1	Y	903.00	965.00	GNSS		Pnk f-mg QTZ-FELD-SIOT-CHL mar PEGD	HRS	FOLI		25	BIOT schs bnd 5m@898
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):

I	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		SAU-	MAP N	o:	6433
	TRATIGR	APHY.	:				LITHOLOGY	NUMBE	7	1	UNIT A	lo:	33
Γ	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comm	nent
	PNhh	N	0.00	24.00	SDST		Wht-plbn :-mg SDST, QTZ-FELD-MICA-CLAY				_		
;	PNha	N	24.00	80.00	SLST	SDST	Pnk-brn sandy SLST: bsl plgrn m-eg SDST						
1	PNft	N	80.00	253.00	SLST		Gry-pkbn(mnr) SLST: QTZ,FLD,MICA,Mt,AMPH			LBED	-	Diss Py-tr-Ga-Spin	
	PNftw	N	253.00	259.40	DLOM	SLST	Ltgy mg DLOM +bik SHLE lam	·	-	LBED	_	Diss Py	
	PNft1	N	259.40	259.60	SDST		Pnk? SDST?: +2% Py gras & frac				,	Diss Py	
	PM-p	N	259.60	260.50	SDST		Rd og lith SDST:grns mainly undly MEXT					No Pyl	
	PMar	N	260.50	275.35	BSLT		Dkrd-pnk-grn amyg f-m?g BSLT:FELD & MAGT	RQh	•		_	Weth-h?, QTZ-silc-a	alt?
L	(11)	(1)	(カ	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 6/8/9	92

P	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	· · · · · · · · ·	SAU-	MAP N	o: 6432
S	TRATIGR.	APHY .				18	LITHOLOGY	NUMBE	R		UNIT N	lo: 798
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	6.00	CLAY	SAND	Rdbn SAND +mnr CLAY				-	
2	T	N	6.00	10.00	SAND	CLAY	Yel-brn SAND: latt, mn: GYPS & CLAY					
3	PNstt	N	10.00	114.00	SHLE	SLST	Mar-blgn SHLE +SLST ibed, mnr fg SAND			IBED	, -, -	Bnd Py @40m, weth<11
4	PNsn	N	114.00	116.00	DLOM	SHLE	Wht mass fg DLOM, +SI-ILE ibed		Y	IBED	-	
5	PNh	N	116.00	197.30	SDST	CGLM	Pnk m-f-cg SDST +lar CGLM/GRIT/SLST/SHLE				-	Hmb-Mt
6	PNhh	Y	116.00	163.30	SDST	CGLM	Pnk m-fg loc-cg wrnd SDST:QTZ89%,FELD15%					Hmb-Mt,Bsl CGLM@17
7	PNh1?	¥ ·	163.30	186.20	SDST	CGLM	Mar fg lith SDST/GRIT/CGLM: SLST mtx				-	Clst PMa,PM-p,& BIF
8	PNha?	Y	186.20	197.30	SHLE	SDST	Mar SHLE/SLST +bel GRIT/SDST: ufsq	_		BED	90	
9	PNf	N	197.30	413.20	SLST	DLOM	Gry-brn SLST+DLOM ibed & mass bsl DLOM		IBED	LBED	90	Diss Py
10	PNft	Y	197.30	411.00	SLST	DLOM	Gry-brn SLST +upr zn DLOM/CALA ibed	_	IBED	LBED	90	Diss Py
11	PNftw	Y	411.00	413.20	DLOM	SHILE	Ltgy mass DLOM +mnr blk SHLE lam					
12	РМаг	N	413.20	494.00	TRAC		Pnk?-gry? f-mg amyg TRAC: AMYG-R-Q.<10mm	н	AMYG .			Hem? -MAFC=weth<42
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 7/8/92

	ROJECT		tuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		BDH-	MAP N	o:	6434
S	TRATIGRA						LITHOLOGY	NUMBE	R	- 2	UNIT N	ю <u>:</u>	.30
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
1	Q	N	9.00	24.40	SAND	CLAY	brn acolian qtz with mnr CACTrete			.=	_		
2	PNstt	N	24.40	25.01	SHILE	SAND	brn to grn weth silty shie and sand	weth					
3	PNh'	N	25.01	1 92. 52	SDST	SHLE	pnk+brn fg to mg grty sdst+grgn shie		!		-	mar diss py	• ************
4	PNhh	Y	25.01	89.98	SDST		puk and gwht grty fg to mg feld				-	mar diss py	
5	PNh1	Y	39.98	131.15	SDST	SHILE	brn grty ig sdst+thin ibed grgn sity shie				-	mar fg py	
.6	PNhh	Y	131.15	152.50	SDST		puls grty fg to mg feld sdst with qtz cem				-	fg py	
7	PNb1	Y	152.50	192.52	SHILE	SLST	brn with gry silty shle + dlom bands	_			-	PNft top?, t	r víg py
8	PNf	N	192.52	347.97	SHLE	DLOM	?gret dkgy lamb diom shle+basal belt bree				-	diss py.cpy	
9	PNft	Y	192.52	347.43	SHILE	DLOM	?gret dkgy lamb dolomitic shle	_			_	diss py,:py	
10	PNft2	Y	347,43	347.97	SEBR	BSLT	shot weth basalt flow top breccia	weth	BREC	e 		check ?PNft	2, abu py
11	PMye	N	347.97	553.39	TBAS	SDST	gret redon to gn mg belt to than+mnr selst				_	org PMroop	tr py,cpy,ga
12	PMye	Y	347.97	383.48	TBAS		gret rabn to ppl mg chloritic belt					org PMrcop	,tr py,cpy,gal
13	PMye	Y	383.48	384,54	SDST	CAAR	brn+gybn fg to mg lithic sdst+xbed caar				-		1 -1-7-7-1-1-1
14	PMye	Y	384.54	553.39	TBAS		gry to grn amyg belt		AMYG			org PMroop	,tr py,cpy,gai
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	BJV 30/08/9

P	ROJECT	: 8	Stuart St	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		BDH-	MAP N	o:	6434
S	TRATIGR					#	LITHOLOGY	NUMBE	R		UNIT A		31
	GIS Uni	Sub	From (m)	To(m)	1st Lith	2nd Lith	Rock Description - Diagnostic Features	Alterat	Texture	/ Fabric	Core/	Formation	/ Comment
1	Q	N	0.00	25.93	SAND		Brn f-mg SAND, clay/CACT-emnt						
2	PNett	N	25.93	161.65	SHILE	SLST	Chbn SHLE/SLST +mnr grn bads, mnr SDST				-		
3	PNh	N	161.65	324.22	SDST	SHLE	Pnk-plgry SDST ovr brn ibed SriLE+SDST						
4	PNhh	Y	161.65	254.68	SDST	SLST	Pnk-Plgry f-mg grty SDST +mnr-CRB-GYPS		·		-	Mnr Py	
	PNhw	Y	254.68	324.22	SHILE	SDST	Brn SHLE +Ltbrn? fg SDST ibed			XBED		Mar diss py	
6		N	324.22	567.40	SHLE	DLOM	Upr gry DLOM ovr gry-bik lamb SHLE				-		
7		Y	324.22	333.22	DLOM	SHLE	Gry mass DLOM +SHLE lamin & Intrafm SEBR		BREC	MASS	-		·
	PNft	Y	333.22	567.20	SHILE	SLST	Gry-blk pyritic SHLE			LBED	.90	Tr diss py	
		Y	567.20	567.40	SDST		Ltgy? lith SDST +CBR emat, pyritic			 ·	-	Diss py	
	PMy	N	567.40	1116.20	BSLT	SDST	Grn-grgn amyd BSLT+rdbn lith SDST ibeds	RCK	AMYG	LFLW	-	Mnr py,gal	
	PMye	Y	567,40	939.50	BSLT		Grn-grgn, amyd flwtops	RCK	AMYG	LFLW		Diss+blby p	y + euh-gal
		Y	939,50		SDST		Rdbn lith grty pbly SDST +gry BSLT elst				80		
1	PMye	Y	950.00	1116.20	BSLT		Gra-grgn, amyd flwtops	RCK	AMYG	LFLW		Mnr py	
:		Y	1116.20		SDST		Rdbn grty pbly:BSLT-CHRT-VnQTZ-FEXT clat				80	Org PM-p,n	шг сру
	РМа	N	1124.80		DACT	1	Rdbn IGNM-TUFF-AGLM-PCST	-				rar pyppy	
		Y	1124.80		PCST		Rdbn vfg FEXT +mnr fragmentals	HS				rar py,cpy	:
		Y	1157.00		DACT		Rdbn-gngy lith-vitrie-xtl TUFF	CH		LAYR		rar apy,?bn	
18		Y	1189.00	:			Pnk-dkrdbn AGLM, ig clat, some porp					v таг сру	
<u></u>	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	JLC 30/08/92

	ROJECT			nelf Base	ment	STRAT	GRAPHIC SUMMARY	HOLE		SLT-	MAP N	ю <u>:</u>	6434
Ŀ	STRATIGR						LITHOLOGY	NUMBE	R		UNIT N	ю:	35
L	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation	/ Comment
	Q	N	0.00	3.00	SAND	CLAY	Sandy clay +OQZT float	-			-		
	2 PNst	N	3,00	306.95	SDST	SHILE	Wht-brn SDST + gran to rdbn SHLE			, ,	,		
:	PNstc	Y	3,00	102.00	SDST	SHLE	Wht-brn SDST-GLAU-FELD-MICA +grgn SHLE	н			_	Тт Ру	
1	PNstt	Y	102.00	306.95	SHILE	SDST	Rdbn SHLE +::nr gngy bnds		>'		8 5		
ŀ	PNh	N	306.95	584.50	SDST	SHILE	Rdbn-wht hem SDST & SHLE				-		
	PNhh	Y	306.95	413.40	SDST	SHLE	Wht/pnk-rdbn lith SDST +rdbn SHLE, +GYPS			 .	81		
	PNh1	Y	413.40	584,50	SLST	SDST	Rdbn SLST +ibed grty SDST				85	Mnr py	
1	PNf	N	584.50	914.95	SHILE	SDST	Gygn SHLE/DLOM seq +bsi SDST & REGL	_			87		· · · · · · · · · · · · · · · · · · ·
!	PNft	Y	584.50	\$28.00	SHILE	DLOM	Gygn lam SHLE & dolm-SLST	_		. —	87	Tr py	
1	PNft1	Y	828.00	914.30	SDST	CGLM	Gygn SDST & plmc mtx sup CGLM +mnr SHLE	R				Tr diss py	
1	PNft4	Y	914.30	914.95	BREC	,	pkgy BREC d-FEXT in sandy mix = REGL	-	_		-		
1	2 PMye	N	914.95	1379.00	BSLT		Dkrbn +amyg flbr	RKHC	VEIN		-	cro veins	
1	PM-pla	N	1379.00	1391.30	CGLM	SDST	Pnk-rdbn grty SDST & pime CGLM				80	гаг сру	
1	4 PMa	N	1391.30	1405.60	DACT	BREC	Pak moti AGLM/TUFF	HC	VEIN		-	rar cpy, crb	veins
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	JLC 30/08/92

	ROJECT		Stuart Sh	elf Base	ment	STRATI	IGRAPHIC SUMMARY	HOLE			MAP N		6434
5	THATIGR				ļ		LITHOLOGY	NUMBE:			UNIT A	ю:	36
L	GIS Un	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	12.00	SAND		Uncsl sand		· -				
2	Т	N	12.00	27.10	CLAY		Wht CLAY +SICTus blds @ 27m				_		·
3	PNstt	N	27.10	164.30	SHILE	SLST	Rdbn-gry/grn bnds	-	,	IBED	83		-
4	PNsn	N	164.30	167.70	DLOM	SHILE	Buf DLOM & rdbn DOLmitic SHLE	-		IBED	-		·
5	PNh	N	167.70	347.60	SDST	SHILE	Pnk/wht moti SDST+bsl rdbn SLST/SHLE	_			80		
6	PNhh	Y	167.70	223.00	SDST	ARKS	Prik/witt motil SDST/ARKS +mnr SLST			 :	80		·
7	PNh1	Y	223.00	347.60	SLST	SHLE	Rdbn SLST/SHLE +mnr sandy horizons					Тг сру	· 'min. (
8	PNf	N	347.60	617.60	SHILE	DLOM	Upr gry-pnk/orn DLOM+lwr blk-gry SHLE			LAMB	80	Diss + olby	русру
9	PNfh	Y	347.60	383.20	DLOM	SHILE	Gry-pnk/brn DLOM	1		LAMB	80		·
10	PNft	Y	383.20	617.60	SHLE	DLOM	Blk-gry SHLE +dlom bnds inc to depth	-		LBED	-	Diss + blby	ру,сру
11	PMye	N	617.60	644.00	BSLT		Gry-grn BSLT +vesc flwtops	RHC		LFLW	_	Mnr py	
_	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	JLC 30/08/92

,	ROJECT			nelf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		SLT-	MAP N	o:	6434
S	TRATIGR						LITHOLOGY	NUMBER	<u> </u>	103	UNIT N	lo:	37
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1	Q	N	0.00	3,00	SAND	REGL	SAND +scrœ-OQZT				_		
2	T	N	3.00	21.00	CLAY	SAND	Rdbn CLAY +mnr SAND				-		-
3	PNhh	N	21.00	139.40	SDST		Ltbn-rdbn/pnk grty SDST +LIMT-GYPS-Py				85	Тг ру,сру	
4	PNf	N	139.40	298,80	SLST	DLOM	lbed gy-gybn SLST + wht DLOM		5'	IBED		Diss py.cpy	• *************************************
5	PNft	Y	139.40	269.20	SLST	DLOM	Ltgy-gybn lamr SLST +ibed DLOM bnds			LBED	,88	?PNfh, mar	py,cpy,?spl
6	PNftw	Y	269.20	298.80	DLOM	SDST	Wht DLOM +ibed mnr gry SLTST/SHLE			IBED		∞m diss py	сру
7	PMye	N	298.80	60610	BSLT		Rdbn/gn vesc BSLT + TUFF & mnr SHLE	HRCZ	,		-	mar py,cpy,	zal
8	PMya	N	606.10	616.40	SDST	ARKS	Rd-pnbn hem poly rubl +SAND mbx	н	 ;	:	85	tr cpy	• • • • • • • • • • • • • • • • • • • •
9	PMa	N	616.40	750.00	RHLT	TEPH	Puk/or ig-eg gty FEXT	HRz		<u> </u>			
10	PMa?	Y	616.40	626.90	RHLT	AGLM	Pnk cg voor & grit +QTZ-?phxt	HRz					
11	PMa?	Y	626.90	639.00	RHLT	TUFF	Puklor vig TUFF +flbr, high QTZ gmas	Hu		<u></u> ;	-	Py in fractu	res
12	PMa?	Y	639.00	750.00	RHLT	AGLM	Puk/or flbnd TUFF +elst-Sem	HFuz		FBND	60	Accs BART	& ZEOL, ?P
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	JLC 30/08/92

	PROJEC		Stuart Sl	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE	*******	SLT-	MAP N	6 : 6434
ļ	STRATIG	RAPHY	<u>:</u>		L		LITHOLOGY	NUMBE	R	104	UNIT :	- · · · · · · · · · · · · · · · · · · ·
1	GISU	ni Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.		/ Fabric		Formation / Comment
	1 Q	N	0.00	4.50	TLUS	SAND	quartzite scree ovr ylbn c3 clayey sand				_	
	2 PNst	N	4.50	358.40	SDST	SHLE	rbrn,grgn+pwht sdst ovr rdbn+grgn shle				80	
	3 PNsts	Y	4.50	119.60	SDST	SHILE	ibed mg to cg pwht+grgn sdst mnr shle		CUBD	·		
1	4 PNstc	Y	119.60	158.30	SDST	SLST	gret to rbrn fg lithic scist+sist+mnr shle		MBED		. 	
	5 PNstt	Y	158.30	358.40	SHLE	SLST	gret to ibed rbrn+grgn shle+mnr slst	-	LAMB		80	Possible PNwm at base
	6 PNh	N	358.40	582.50	SDST	SLST	rbrn.pwht+gwht feld sdst.grit.slst+shle		IBED		. 	
	7 PNhh	Y	358.40	368.90	SDST	 .	rbrn to pwht (g feld scist				& 5	NB 358-463 orig PNhh
	8 PNh1	Y	368.90	373.90	SDST	SLST	rbrn silty gf scist					
	PNhh	Y	373.90	402.70	SDST		whi to paix mg to cg arks/sdst+cmn grit		CUBD	-		
1	0 PNh1	Y	402.70	436.90	SDST	SHLE	rbrn silty fg sdst+ibed shle+emn grit				75	
1	1 PNhh	Y	436.90	463.40	SDST		rbrn to puk mg to eg gritty feld selst				73	
1	2 PNha	Y	463.40	582.50	SLST	SHLE	shet to rorn shle, gwht fg sist+grty seist		IBED		83	PNh in original log
1	3 PNf	N	582.50	783.40	SHILE	DLOM	ibed grgn to dk gry shle+3wht silty dlom		LAMB			
1	4 PNfh	Y	582.50	621.90	SHILE	DLOM	grgn silty shle+mbed gwht silty dlom		LAMB		-	Diss py, chk PNft+PNfh
1	PNft	Y	621.90	770.00	SHLE	DLOM	lamo gry to dk gry shle+gwnt silty dlom		BED		83	?Diss py, relog W.Cowley
1	PNft1	Y	770.00	783.40	BREC	OQZT	shot buf mbed bree CQZT+rare cl-slst-sdst	Q	-			Diss py,cpy, chk PNft1
	PM-p	N	783.40	836.00	SDST	SHLE	gwht-rbrn mg sdst ovr sinle ?atypical PMya	Q	-			Org PMye, poss PNb?
1	PM-p3a	Y	783.40	807.60	SDST	-	shot pkor-gwat hmb (3 to mg qtz feld sst	Q	TBED		45	?Burra gp (org PMye)
15	PM-p2	Y	807.60	836.00	SLST	SHLE	gret to rorn silty shle+vig selst to sist	Q	BED	-	90	Is weakly cale+dlom vns
L	(11)	(1)	(ħ	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): BJV 30/08/9

D	ROJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	* ***	SLT-	MAP N	o: 6434
- 7	TRATIGR						LITHOLOGY	NUMBE	R	106	UNIT N	<u>o:</u> 38
,	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
	Q	N	0.00	7.00	SAND	CLAY	Unensl sandy clay REGL +OQZT clsts				_	
2	PNst	,N	7.00	463,50	SHILE	SDST	Rdbn-wht ibed SHLE-SDST seq			سيسنو	,	
3	PNsts	Y	7.00	15910	SDST	SHILE	Wht-buf m-fg SDST +mnr thin SHLE beds			MBED	83	
4	PNstc	Y	15910	336.60	SDST	SLST	Gry/wht-brn lith SDST +SHLE/SLST ibed		·	BED		Org PNwts to 274.8
5	PNstt	Y	336.60	463.50	SHLE	SLST	Rdbrn +mnr grn bnds			TBED	87	
6	PNsn	N	463.50	467.20	DLOM	CHRT	Buf-gry ooth MASS & BREC	Q	BREC		-	Org PNwtt, mnr py,spi+
7	PNh	N	467.20	718.60	SDST	SHILE	Redbed SDST-SHLE seq				-	
8	PNhh	Y	467.20	53010	SDST		Gry-pnk/orn grty lith SDST	Q		MBED		Silicified top 6m only
9	PNhw	Y	530.10	574.20	SDST	SLST	Rdbn-grn mg SDST-mnr-grit +some SLST			BED	77	Org PNhh
	PNha	Y	574.20	718.60	SLST	SHLE	Rdbn, +GYPS & mnr SDST-(SHLE-intelst)	 		BED	80	Org PNn
1	PNf	N	718.60	899.10	SLST	DLOM	Upr gry DLOM ovr gry lamb SLST+bsl SDST				_	Diss py
1	PNfh	Y	718.60	744.70	DLOM	SLST	Ltgry DLMC/DLAR +SLST partings			LAMB		Diss py
	PNft	Y	744.70	863.90	SLST	DLOM	Gry-wht SLST +mnr DLOM & pime CGLM/SDST?			LAMB	87	Diss Py & Carbonaceus
	PNft1	Y	863.90	89910	SDST	CGLM	Gry-wht carb-SDST & plmc-ang-sbang-CGLM					Diss py
	PMy	N	89910	1370.00	BSLT	TUFF	Gry/grn BSLT and epiclastic volcanics			LFLW		
	PMyc	Y	899.10	1057.90	TUFF	SDST	Ang-sang megelst sup grit/sand-pelit mtx	CA				v rar blby py.epy
	PMyc	Y	1057.90	1358.00	BSLT	BREC	Grn-gry fg LFLW +amyg orec flow tops	HKRC		LFLW		BART?, v rar biby py
	PMya	Y	1358.00	1370.00	SHLE	SDST	Gry volc-lith SHLE +SDST in upr sect			BED	68	v rar biby py.cpy
	PMa ·	N	1370.00	1449.00	FEXT	TUFF	Pnk-gry FEXT ?TUFF & ?epiclastics				: 	
	PMa	Y	1370.00	1378.40	FEXT	TUFF	Pnk-rdbn lith TUFF +FELD xtl frag	HQSC				
21	PMa	Y	1378.40	1449.00	DACT	TUFF	TEPH/AGLM/FEXT inteal, bel-brn-gry FEXT	QSC	8		-	
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):

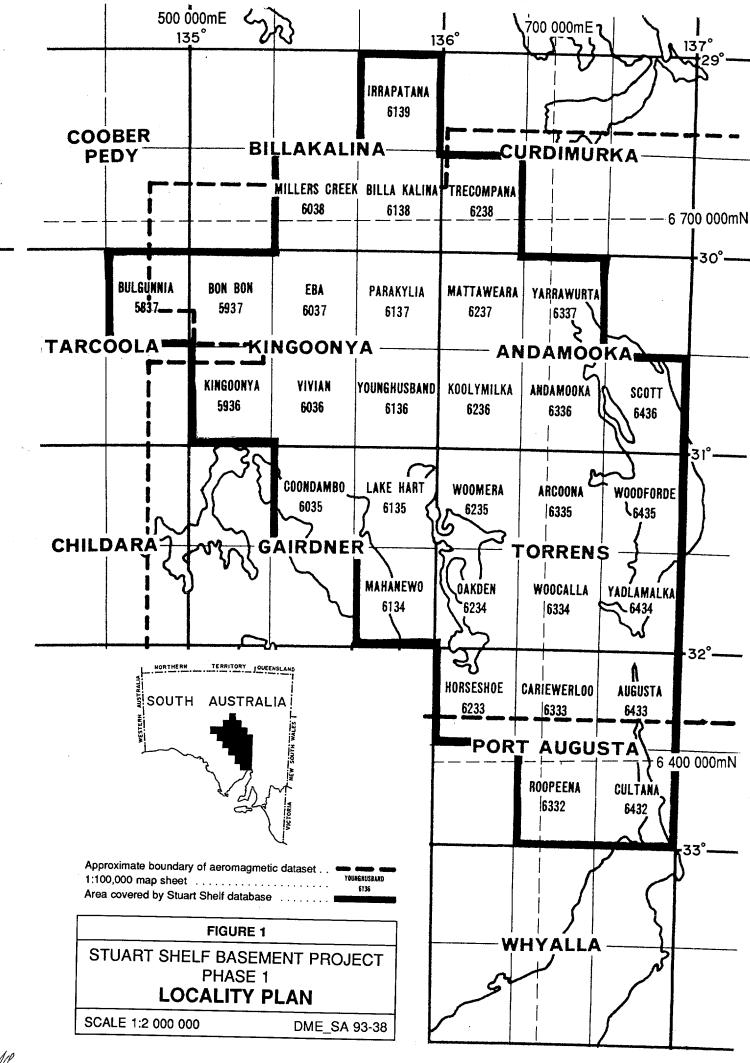
P	ROJECT	: 5	Stuart Sh	nelf Base	ment	STRAT	IGRAPHIC SUMMARY	HOLE		SLT-	MAP N	o: 64:	34
S	TRATIGR.	APHY					LITHOLOGY	NUMBE	R:	107	UNIT N	lo:	32
	GIS Uni	Sub	From (m)	To (m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Commer	īt
1	Q	N	0.00	20.00	SAND		Rdbn aeolian sand with CACT rhizomes				_		_
2	PNstt	N	20.00	27.80	SHILE	SLST	Yel-buf/wht SHLE/SLST	weth		LBED	82		_
3	PNsn	N	27.80	29.30	DLOM	SDST	Buf/wht-pnk mass styl DLOM +mnr SDST			TBED	77	MARC, org PNwtt	_
4	PNh	N	29.30	175.70	SDST	SLST	Rdbn-gywt SDST-SLST-SHLE +hmb		·		-		_
5	PNhh	Y	29.30	156,70	SDST		Rdbn-gywt lith SDST +hmb	s-		MBED	-	Mar diss py	
6	PNhw	Y	156.70	175.70	SLST	SDST	Rdbn dolinte SDST/SLST/SHLE +hmb			IBED		Org PNh	=
7	PNf	N	175.70	361.60	SLST	DLOM	Gry SLST & DLOM		; .:	IBED	85		
8	PNft	Y	175.70	205.70	DLOM	SLST	Gyblk SLST & gry DLOM-bree-sand-ibed	·	·	IBED	8.5	Org PNth, mar diss py	
9	PNft	Y	205.70	361.60	SLST	DLOM	Gry SLST +mnr DLOM inbed		, 	IBED		Org PNft, mnr diss py	
10	PMye	N	361.60	735.80	BSLT	BREC	Grn BSLT +Hem amyg flwtop brec	HRSE			-	Tremolite?	_
11	PM-p	Ň	735.80	809,30	SDST		Mav-buil/gry lith-arkos-grty-SDST +FEXT				80		=
12	PMa	N	809.30	1097.20	DACT	RHYD	Rd-pak FEXT:LFLW-AGLM/BREC	HRS	TUFF	BAND	60	Mar diss py	-
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 30/08	192

Pf	OJECT	: 5	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		WHD-	MAP N	o: 6434
S	RATIGA.					1	LITHOLOGY	NUMBE	R	1	UNIT N	o: 34
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	Q	N	0.00	24.00	SAND	CLAY	Red-org SAND/CLAY +mnr CRB & clst @22m				-	
2	т	N	24.00	49.00	CLAY	SAND	Pnk-erm/gry CLAY & SAND +mnr CRB					
3	PNs	N	49.00	176.64	SLST	DLOM	Rdbn SHLE/SLST +bsl DLOM/SHLE					
4	PNstt	Y	49.00	170,83	SLST	SDST	Chbn-gry SHLE: soft weth to 90m +mnr SDST	weth	_	LBED	90	
5	PNsn	Y	170.83	176.64	DLOM	SHLE	Plpnk/brn-grn DLOM & brn-grn Si-LE			IBED	90	Py tr in fractures
6	PNh	N	176.64	278.65	SDST	SLST	Puk-rdbn lith SDST ovly rdbn lam SLST/SHLE		BED	LBED	85	
7	PNhh	Y	176.64	272.90	SDST	SLST	Pipnk/red-brn-wht lithic SDST + grty brids			BED	85	
8	PNha	Y	272.90	278.65	SLST	SDST	Rdbn lamb SLST+SDST & grty ibed ?dlom			LBED		
9	PNf	N	278.65	433,10	SHILE	DLOM	Gry-blk SHLE +upr zne-itgy-DLOM ibed			. —	_	
10	PNfL	Y	278.65	295.95	DLOM	SLST	Ltgy-strm-DLOM + gry-SHLE-lam			LBED	-	Mnr blby cpy
11	PNft	Y	29,5.95	433.10	SHILE	DLOM	Gry-blk SLST & wht DLOM-(mnr-bree)	CF		LBED	-	com biby cpy+diss py
12	P Mye	N	433.10	515.87	BSLT	<u> </u>	Grn porp? BSLT:amyg flwtop, bel chid mgn	HRC			-	
13	PM-p	N.	515.87	631.80	SDST	SLST	Rdbn SDST/SLST/CGLM	Н		BED	80	
14	PM-p3	Y	51.5.87	621.14	SDST	CGLM	Rdbn grty ptly mica SDST +mnr CGLM	Н		BED	80	Usually more shaley!
15	PM-p2	Y	621.14	631.98	SLST	SDST	Rdbn SLST +SHLE & fg SDST bads	н		BED	-	
16	P₽₩	N	631.98	683.53	SLST	IEXT	Rdbn-grgn chty SLST +poss amyg vig iEXT				-	
17	PPwp1	Y	631.98	664.00	SLST	CHRT	Rdbn-grgn moti chty SLST: contorted	HQ		BED	- ,	Тг сру
18	PPwp6	Y	664.00	683.53	SLST	IEXT	Pnk-grn chry SLST +vig meta-IEXT? amyg?	HCE			?	?BART MEXT=MBSL?
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb 92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC

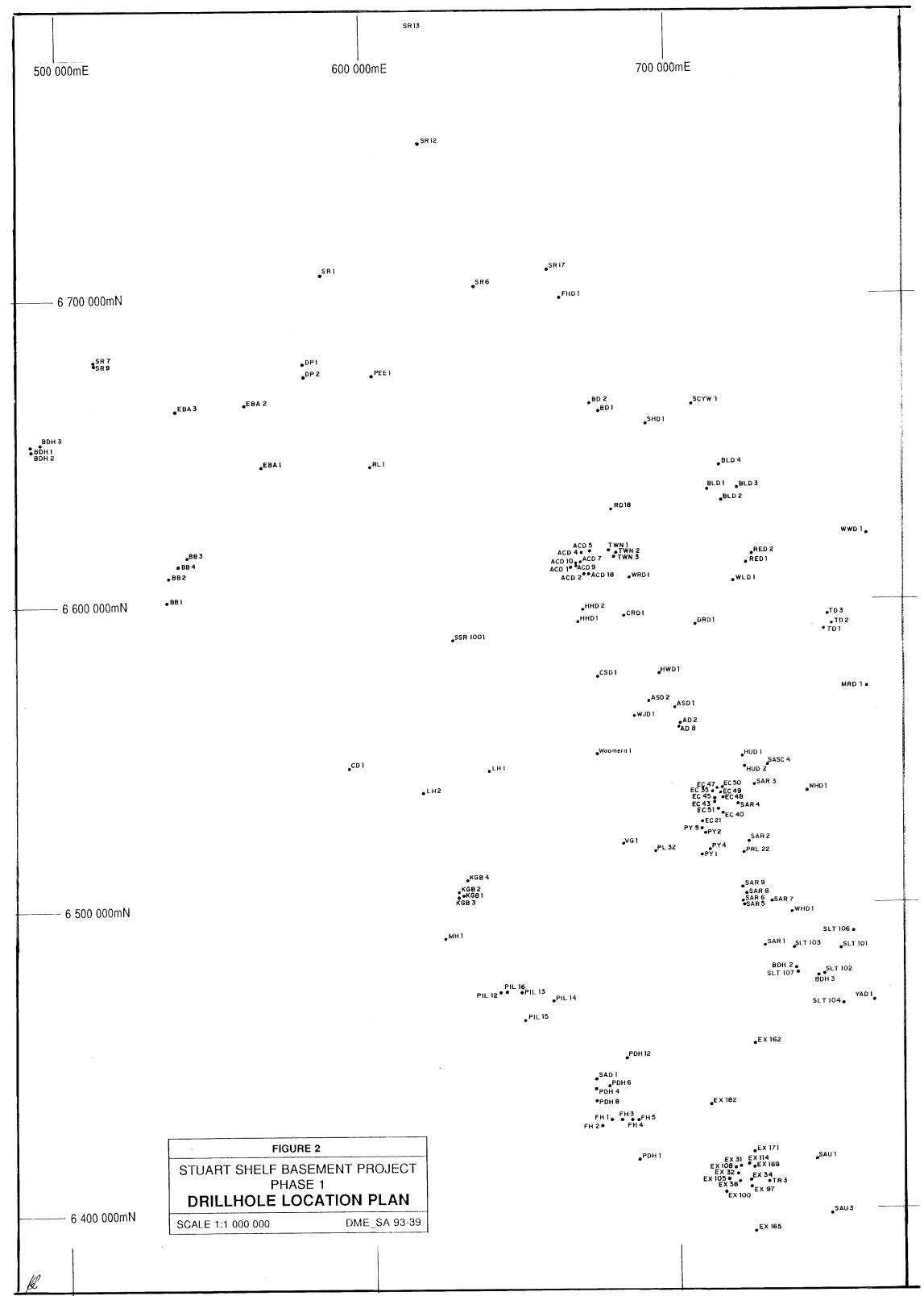
	ROJECT		Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE	 	YAD-	MAP N	o: 6434
S	STRATIGRAPHY:					LITHOLOGY			NUMBER			lo: 3:
_	GIS Uni	Sub	From (m)	To(m)	1st Lith.	t Lith. 2nd Lith Rock Description - Diagnostic Features		Alterat.	Texture	/ Fabric	Core/_	Formation / Comment
1	T?	N	0.00	94.00	CLAY	SAND	lt to dk gry ?lacustrine+mnr lign clays					Upper clay ?lacustrine
2	PNstt	N	94.00	258.10	SHLE	DLOM	lamb ibed chbn+grgn silty shle+mnr dlom		LAMB		85	tr native Cu at 178.7
3	PNsn?	N	258.10	261.50	SDST	DLOM	grgn to gybn fg qtz sdst+thin ibed dlom	<u> </u>				
4	PNh	N	261.50	655.60	SDST	SLST	red,pnk,gry+grn ibed fg sdst,slst+shle		:			
5	PNhlr	Y	261.50	302.40	SLST	SDST	red to rorn lamb ibed slst+fg sdst+CGLM	_	Ibed		-	
6	PNhw	Y	302.40	516.50	SDST	SHLE	ibed red to pak to gran feld sdst+shle		XBED	 .		?PNhl
7	PNha	Y	516.50	655.60	SLST	SDST	gret dk rbrn sist+fg qtz feld sdst		PBED		85	Similar to PNhlr
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):BJV 39/98/92

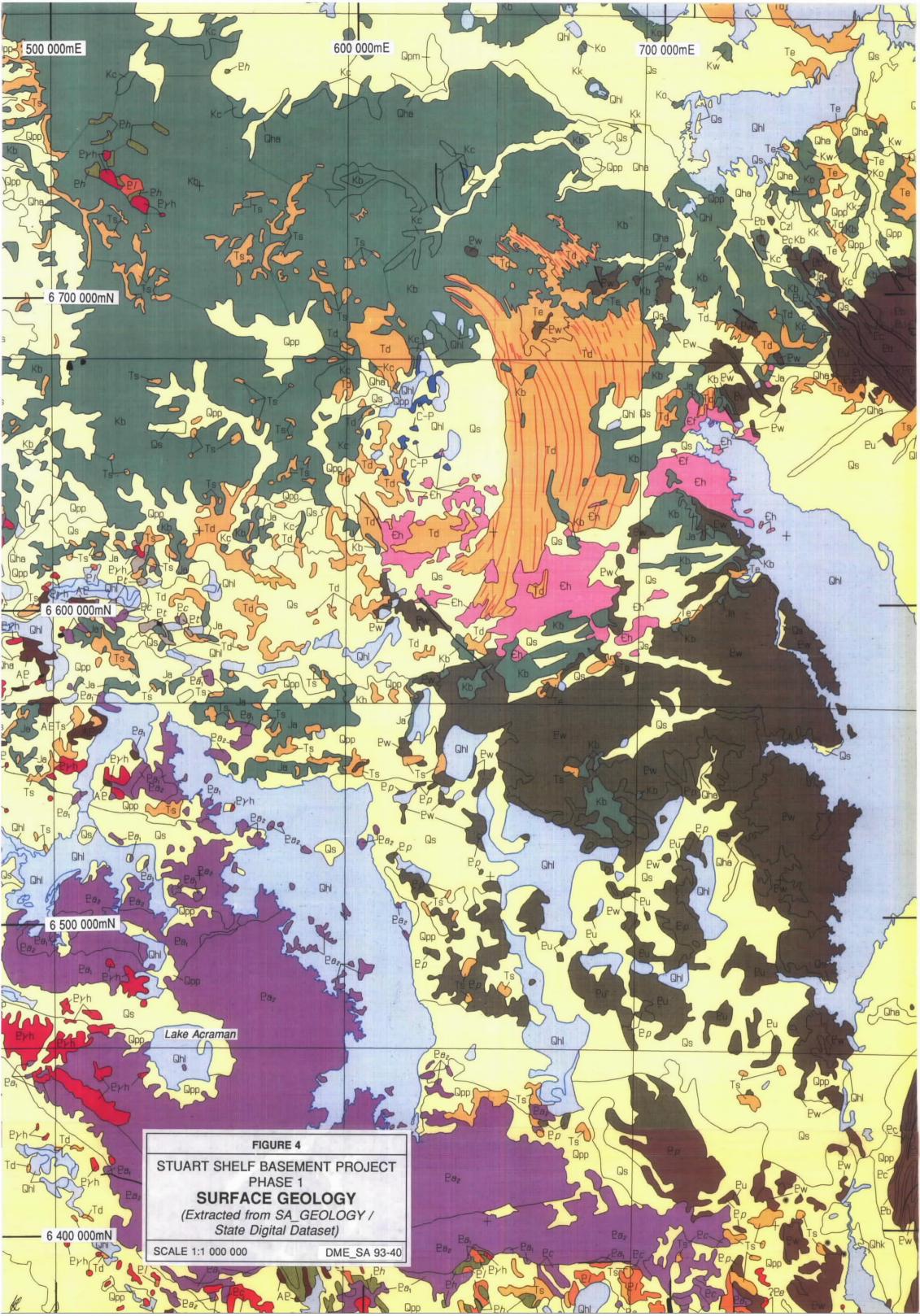
P	PROJECT: Stuart Shelf Basement STRATIGRAPHIC SUMMARY HOLE NHD-MAP NO:					6435							
3	TRATIGR						LITHOLOGY '	NUMBE			UNIT N		. 5
	GIS Un	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core/_	Formation	/ Comment
1	PNstt	N	0.00	238,00	SHLE		Rdbn SHLE +gry bnds				- ,		-
2	PNsu	N	238,00	249.00	DLOM	SHILE	Gry mass DLOM +mnr chbn SHLE						
3	PNL	N	240.00	307.80	SDST	SLST	Brn-pnk f-vfg SDST & bsl dlom SLST/SHLE	-			-		
4	PNhh	Y	240.00	262.00	SDST		Bn-grn(mnr) fg SDST: slt grity	<u> </u>	·				
5	PNh1	Y	262.00	272.00	SDST		Pnk fg SDST				-		
6	PNhir	Y	272.00	280.00	SLST		Brn vfg SDST		,				
7	PNha	Y	280.00	307.80	SHLE	DLOM	Red-ppl SHLE & pnk DLOM ibed		WBED	IBED	:		
8	PNf	N	307.80	341.00	SDST	SHLE	Pnk LMST on crm CACT SDST ovly m-cg SDST			IBED	90		
9	PNfh	Y	307.80	333.00	LMST	SHLE	Pnk-crm strom LMST:dolom grnst, mnr SHLE	_	IBED	TBED	90		
10	PNft1?	Y	333.00	341.00	SDST		Crm m-cg SDST: CACTareous, wk BED	-			90	Orig refr PN	ft3
11	PNft3	Y	341.00	475.50	SDST		Pnk-wht m-cg SDST: XBED > 369.5m			XBED	80	Diss/vns CP	7
12	PNua?	N	475.50	503.00	SDST	DIMC	Brn-gn/wt poly SDST/DIMC +SLST/SHLE ibed		IBED	MBED	90		
13	PNua?	Y	475.50	483.00	SDST	SHLE	Ltbrn-wht SDST pbly & SLST ibed		GBED	LBED	_ `		
14	PNua?	Y	483.00	497.20	SLST	SHLE	Brn-grn SLST/SHLE: mnr pbl/sandy ibed			LBED	90	Mnr gbls, in	tracls
15	PNua?	Y	497.20	503.70	DIMC	BREC	Cg plinc BREC: cls foli-GRNT,QTZ-SDST		BREC		-	Mtx sandy-h	em
16	PPl2	N	503.70	643.20	GNSS		Gra? QTZ-CHL-FELD-SER GNSS	HRS	!	FOLI	20	Vns-Q/H	
							"Geology amended to reflect						
					-		observations by Dr. W. Preiss'						-
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	

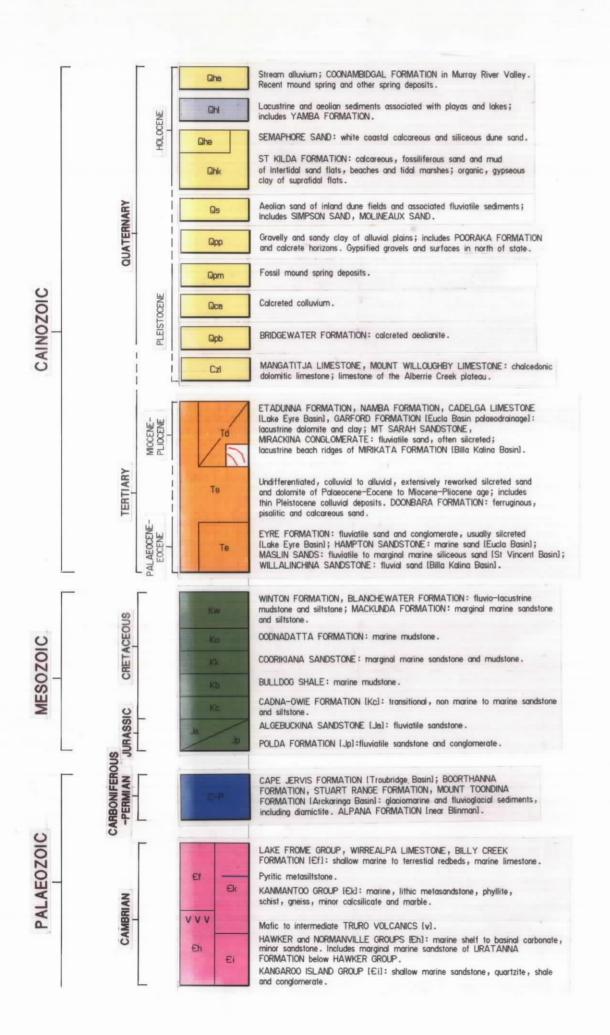
PROJECT: SCHALE SHEAT PASSETTENCE STRATIGRATURE SOMMART									MRD-	MAP N	6436		
S	RATIGR/	PHY:					LITHOLOGY	NUMBE			UNIT N		6
-	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core/_	Formation	/ Comment
1		N	9.00	28.00	CLAY	GYPS	Gy-lbrn +GYPS/HAL-xtls:lake sediments				-		
2	т	N	28.00	104.00	CLAY	SAND	Gry CLAY/DLMC above infrd SANDS			;	- !		
3	T	Y	28.00	46.00	CLAY	DLOM	Gry(grn)-orn						
4	T	Y	46.00	80.00	DLMC	CLAY	Gy-wht fg DLMC & mnr dkgy CLAY				-		
5	T	Y	80.00	104.00	SAND	CLAY	Inferred - nil samples recovered				<u></u>		
6	PNst	N	194.00	662.60	SDST	SHLE	Whit-brn SDST/SHLE only chbn SHLE/SLST			PBED	-		
7	PNsts	Y	104.00	281.70	SDST	SLST	Wht-gy mg SDST +mnr gry/brn SHLE/SLST ibed			XBED	-	Mnr diss Py	
8	PNstc	Y	281.70	363.40	SDST	SHLE	Brn(Wht-gy) f-mg mica SDST & brn SHLE ibd		MASS	PBED	90	Mnr XBED	
9	PNstt	Y	363.40	662.60	SHLE	SLST	Brn(gy) SHLE +mnr SLST ibed			TBED	90	CALC-Ves,	ripples
10	PNsn	N	662.60	663.60	DLOM	-	Crm-brn fg DLOM				-		
11	PNh	N	663.60	806.80	SDST	DLOM	Brn gritty SDST & SLST, dolomitic in part			PBED	-		
12	PNhh	Y	663.60	722.10	SDST	CGLM	Brn lith SDST & bryl SLST +mnr CGLM/GRIT			PBED	90	Fracs-GYPS	
13	PNhh1	Y	722.10	796.30	SDST	SLST	Brn m-cg SDST & brn dolom-SLST +mnr GRIT			PBED	90	Ripples	
14	РМы	Y	796.30	806.80	BREC	GRIT	Brn mtx-supp BREC plme			LAYR	80		
15	PMa	N	806.80	918.00	TRAC		Pnk massive +pervasive vein system	CRKF	MASS		-	mar seed G	YPS
16	PMa11	Y	806.80	832.80	TRAC		Pnk fg +gy mott Vns MT-CRB-DIOP-AMPH		MASS		-		
17	PMa11	Y	832.80	881.00	TRAC	VEIN	Pnk pervasive MT-DIOP-CRB-AMPH-TRAT-APAT	CRK	VEIN		30	Sec-GYPS,	
18	PMa11	Y	881.00	918.00	TRAC		Pnk(gy) vfg Vns DIOP-AMPH-CRB-FLUR-BAR	CF	MASS		-	Sec-GYPS,	
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):J	LC 30/08/92

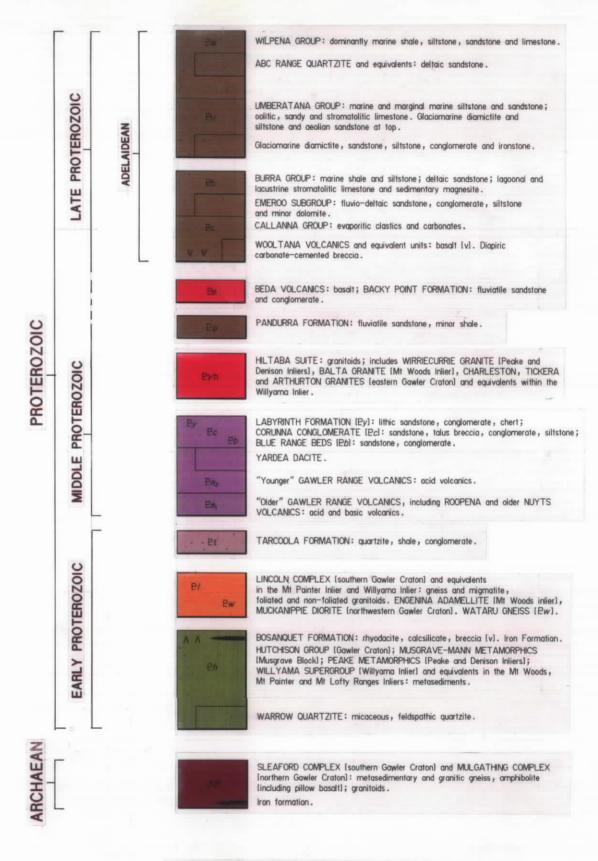

PF	PROJECT: Stuart Shelf Basement ST						STRATIGRAPHIC SUMMARY			TD-	MAP N	
S	STRATIGRAPHY:					LITHOLOGY			NUMBER			o: 14
-	GIS Uni Sub From (m) To (m) 1st Lith.		1st Lith.	2nd Lith Rock Description - Diagnostic Features		Alterat.	Texture	/ Fabric	Core/_	Formation / Comment		
1	PNst	N	0.00	412.70	SDST	SHLE	Wht-brn/grn SDST & chbn SHLE/SLST			TBED	85	mnr sed Py
2	PNsts.	Y	0.00	163.70	SDST	SHLE	Wht-pibn/grn m-fg SDST:mnr SHLE lam	- ,		TBED	85	Ripup elst, Py-framb
3	PNstt	Y	163.70	412.70	SHLE	SLST	Chbn lam SHLE +SLST bnds & mnr gra bnds		,	LBED	85	Sandy in upr 20m
4	PNsn	N	412.70	413.60	DLOM	SHLE	Crm fg lam DLOM: fracs=vns CRB-(mnr)Cpy	:		LBED	-	Log: Crm bleached shle
5	PNh1?	N	413.60	422.75	SEBR	GRIT	Pnk/rdbn plmc BREC/GRIT:ang cls Q.Mt.H=>				<u>-</u>	+FEXT & CLAY/CHL
6	PPwp1	N	422.75	498.00	CASI	BREC	Gngy-org/pnk alt ig lay sil sed, sec bro	HRF	BAND	BREC	-	Vn Q-C-R-F,diss Py,Cpy
7	PPwp3	Y	422.75	450.00	CASI	BREC	Gngy-org/pnk bnd fg JASP-QTZ-CHL-MAGT rk	HRF	BAND	BREC	30	Vn Q-C-R frac Py,F,Cpy
8	PPwp4	Y	450.00	498.00	CASI		Gngy-org fg QTZ-FELD(red)-CHL-MAGT rk	HRF	BAND	BREC	30	Vn F<10cm, diss Py,Cpy
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADMEJILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		TD-	MAP N	o:	6436
S	TRATIGR.	APHY:				LITHOLOGY			R	2	UNIT N	o:	15
	GIS Uni Sub From (m) To (m) 1st Lith.		2nd Lith	2nd Lith Rock Description - Diagnostic Features		Texture	/ Fabric	Core	Formation .	Comment			
1	Q	N	0.00	36.00	CLAY	GYPS	Grbn-dkbn CLAY GYPS & HALT: Lacust seds			,		Bsl DLOM z	n
2	PNwy2	N	36.00	63.00	SHILE	SDST	Gry-ylbr. SHLE/CLAY +whgy-brn SDST ibed	weth		TBED	90		
3	PNst	N	63.00	508.50	SDST	SHILE	Wht-gry-brn SDST ovly chbn SHLE/SLST			TBED	90		
, 4	PNsts	Y	63.00	230.00	SDST	SHLE	Wtgy-bn SDST & ibed brn SHLE (mnr >100m)			TBED	90	Loc XBED,m	-fg,SHLE gr
5	PNstc	Y	230.00	247.50	SDST	SHILE	Brn SDST +filam lyrs brn SHLE			TBED	90		
6	PNett	Y	247.50	508.50	SHLE	SLST	Chbn SHLE & gy-bn SLST: mnr SDST < 290m			LBED	90		
7	PNsn	N	508.50	511.30	DLOM	SHLE	Ltbn mass DLOM +brn SHLE ibed		 .	TBED	÷		
8	PNh1?	N	511.30	515.60	CGLM	SDST	Pnk pime CGLM +SDST mbacks Mt-HEM-OQZT	_		 :		Pol bre inst, I	у,Сру
9	P₽w	N	515.60	881.00	BIF	CASI	Pnk-wht-grn bnd/bre QTZ-FLD-Mt-SID-CHL	RCSF	BAND	BREC	·	Rxtl flc/bre (}-C-Fe rk
10	PPw2	Y	515.60	746.00	BIF	OQZT	Pnk-wht-grn bnd/bre QTZ-Mt-SID-CHL rk	RCSF	BAND	BREC	50	Vn/vug C-R-I Fold 0-80Dg	Py-Cpy-F-G
11	PPw2	Y	746.00	801.10	BIF	OQZT	Pnk-wht bnc/bre QTZ-Mt-SID-CHL-(tr)KFLD	RCSF	BAND	BREC	30	Vn/vug C-R-	Py-Cpy-F-G
12	PPw3	Y	801.10	881.00	CASI	OQZT	Pnk-wht bnd/bre QTZ-KFLD-Mt-SID-CHL rk	RCSF	BAND	BREC	45	Vn/vug C-R-	Py-Cpy-F-G
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JI	.C 28/7/92

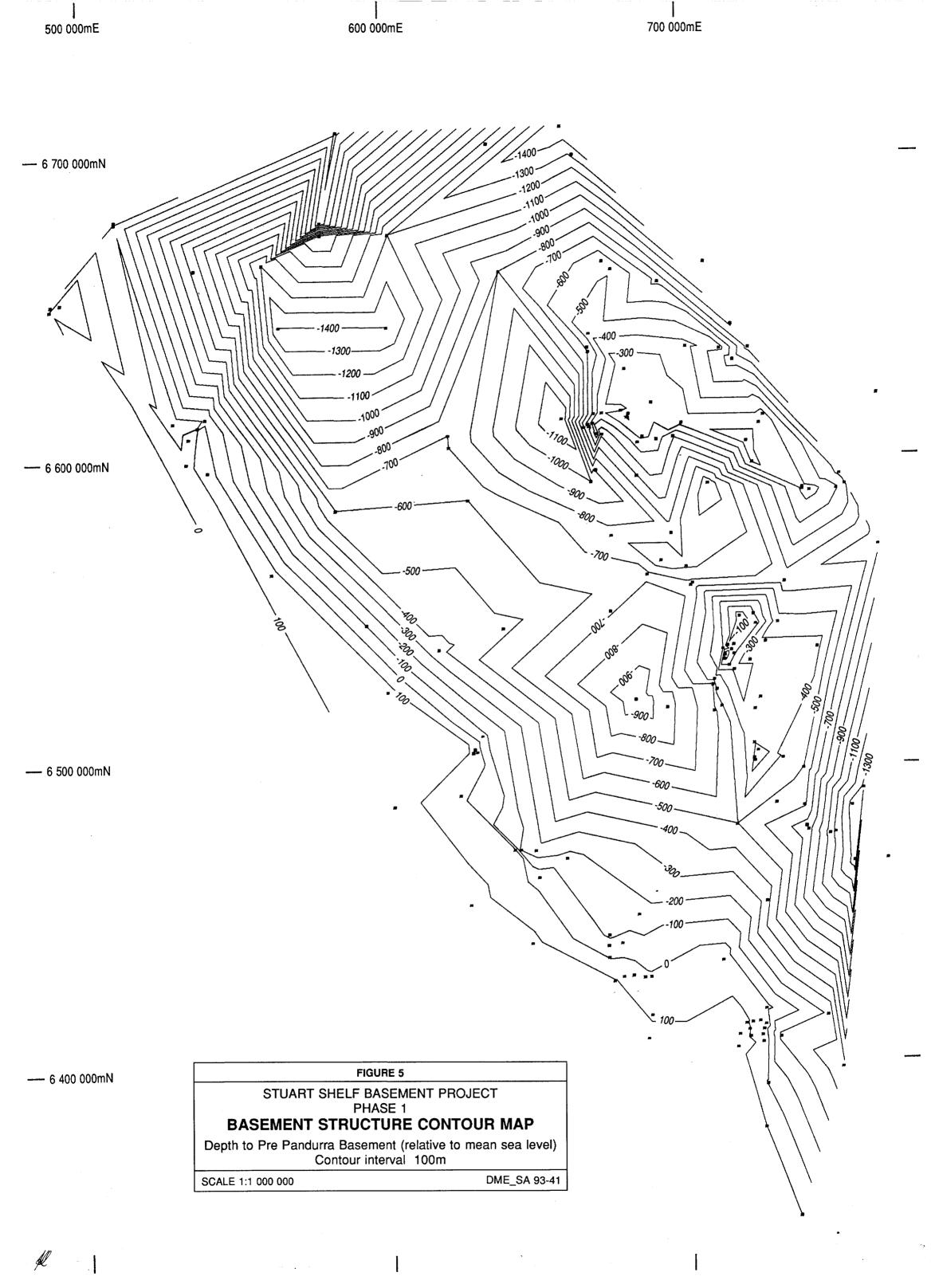

Stratigraphic codes by W.M. Cowley & C.G. Gatchouse '92 ***** Mineral, lithcodes & Stratigraphy Revision by J.L. Curtis & B. Vanderstelt SADME Aug '92.

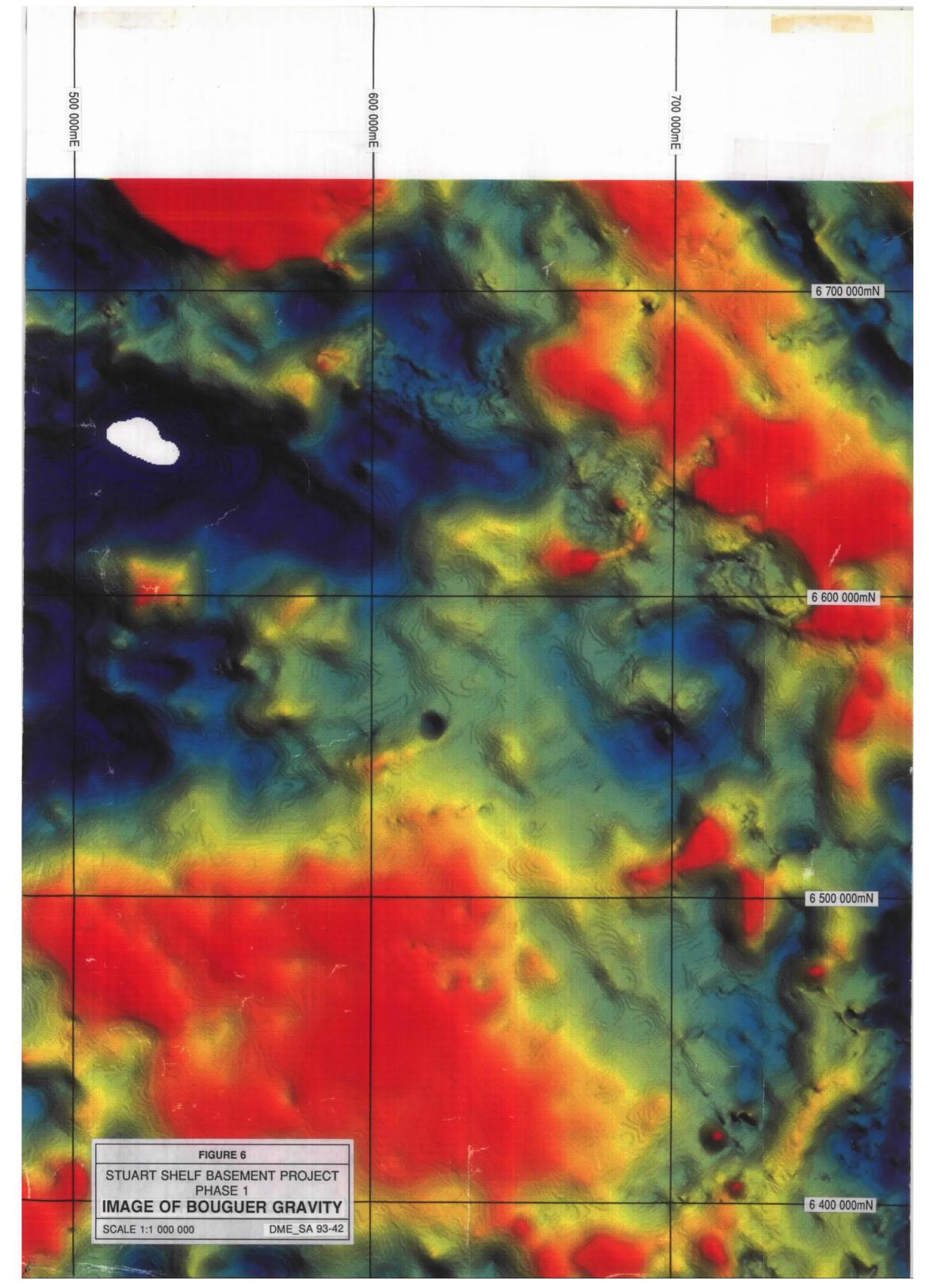

PF	/=			ment	STRATI	STRATIGRAPHIC SUMMARY				MAP N	 (8	
STRATIGRAPHY:					LITHOLOGY	NUMBER 3			UNIT N			
	GIS Uni	Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/ Fabric	Core	Formation / Comment
1	Q	N	0.00	22.00	CLAY		Org-ltbrn CLAY +GYPS & HALT	-	_			
2	Eh	N	22.00	3410	CALU	SHLE	Gry-brn-yei/wht CALU & CLAY +HALT/GYPS	weth		· -	:	
3	PNst	N	34.10	540.20	SDST	SHLE	Ltbrn-grgn vfg	-			-	
4	PNsts	Y	34.10	252.40	SDST	SHILE	Gry-librn/grn vfg SDST +SLST bnd/clst		XBED	IBED	90	SHLE bns uncom >100m
5	PNstc	Y	252.40	259.80	SDST	SHLE	Dkbrn SDST +gry/brn SHLE ibed			IBED		
6	PNstt?	Y	259.80	350.00	SDST	SLST	Brn-gry f-mg SDST & brn SLST/SHLE ibed		TBED	IBED	90	Wavy XBED @60Dg, CR
7	PNstt	Y	350.00	540,20	SHILE	SLST	Brn-gry(mnr) SHLE/SLST ibed, prt mica		TBED	IBED	90	L∞ XBED
8	PNsn	N	540.20	551.60	DLOM	SDST	Wht-pik fg DLOM, dlmSHLE, & cg lith SDST	-	_	IBED	90	Vns/vgs GY?S
9	PNh1?	Ŋ	551.60	559.35	DIMC	GRIT	Brn DIMC cls FEXT-MCGR-MEXT?-QIZ+cg GRI			MBED	-	Sit mtx
10	PPw3	N	559.35	733.40	CASI	FEXT	Pkbn-grn bnd fg FELD-QTZ-DIOP-MAGT-CRB	SRCF	BAND	FLD	45	Vn/diss C-Mt-S-F-Py-FL
	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/JLCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s): JLC 28/7/92

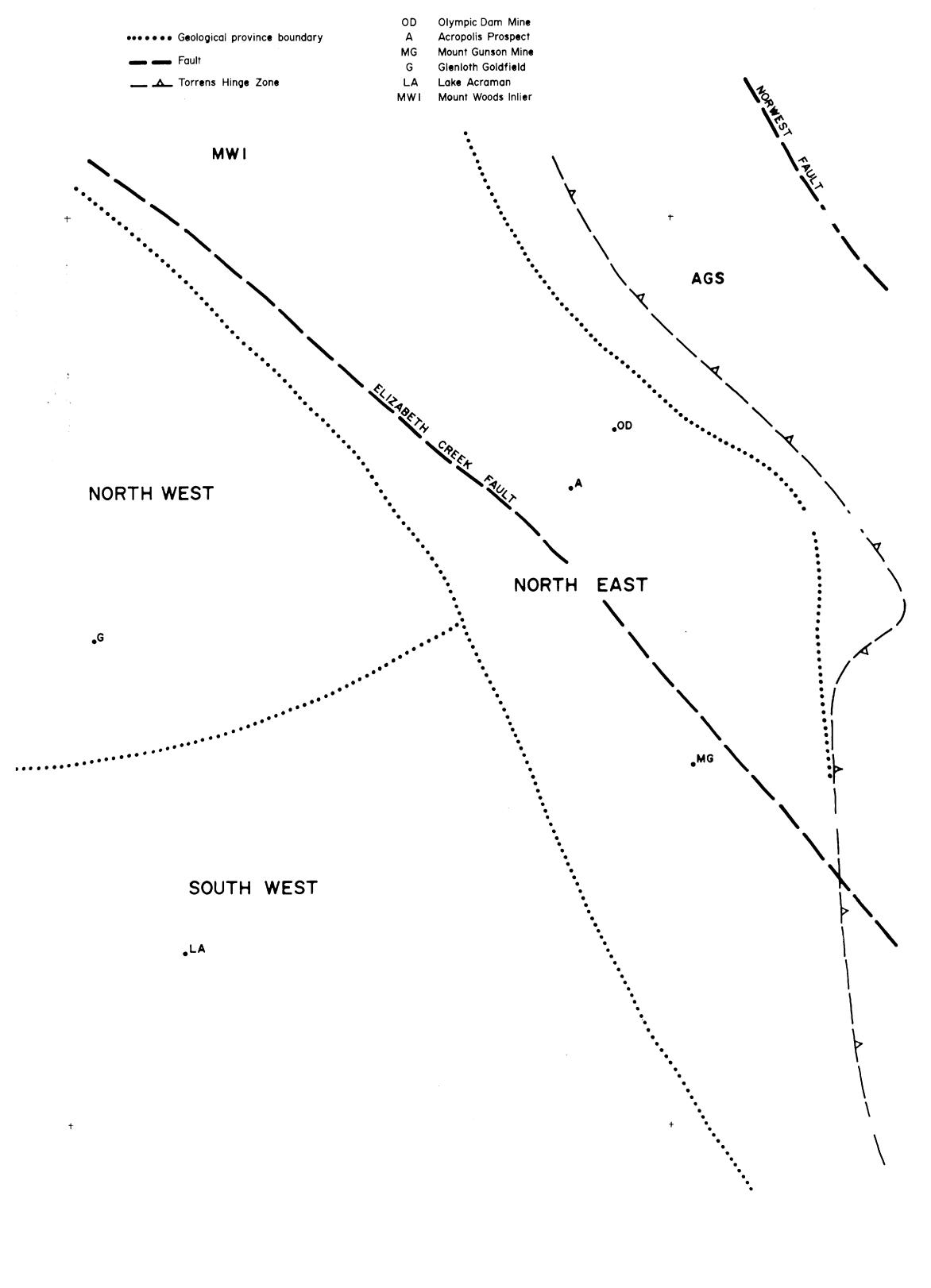

P	ROJECT	: 8	Stuart Sh	elf Base	ment	STRATI	GRAPHIC SUMMARY	HOLE		WWD-	MAP N	o:	6436
S	TRATIGR	APHY:					LITHOLOGY	NUMBE	R	1	UNIT N	11	
	GIS Un	i Sub	From (m)	To(m)	1st Lith.	2nd Lith	Rock Description - Diagnostic Features	Alterat.	Texture	/Fabric	Core	Formation	/ Comment
1	Q	N'	0.00	72.20	CLAY	SAND	wht.brn+grn clay+mnr mg-cg sand	w	_		-	tr ?py	
2	PNwb	N	72.20	520.77	SLST	SHLE	rbrn+gygn lamb slst+shls+v mnr pnk dlom	wr	LAMB		90	top 3m weth	
3	PNsa	N	520.77	529.26	OQZT	SLST	buf+pnk ibed mg-fg OQZT+chbn lamb slst		IBED		_		
4	PNstb	N	529.26	762.10	OOZT	SLST	ibed buf-grn OQZT+gygn slst+bsl chon shle		IBED				
L	(11)	(1)	(7)	(7)	(4)	(4)	(40) (SADME/ILCEXS Feb'92 Format)	(4)	(4)	(4)	(2)	Author(s):	3JV 30/7/92

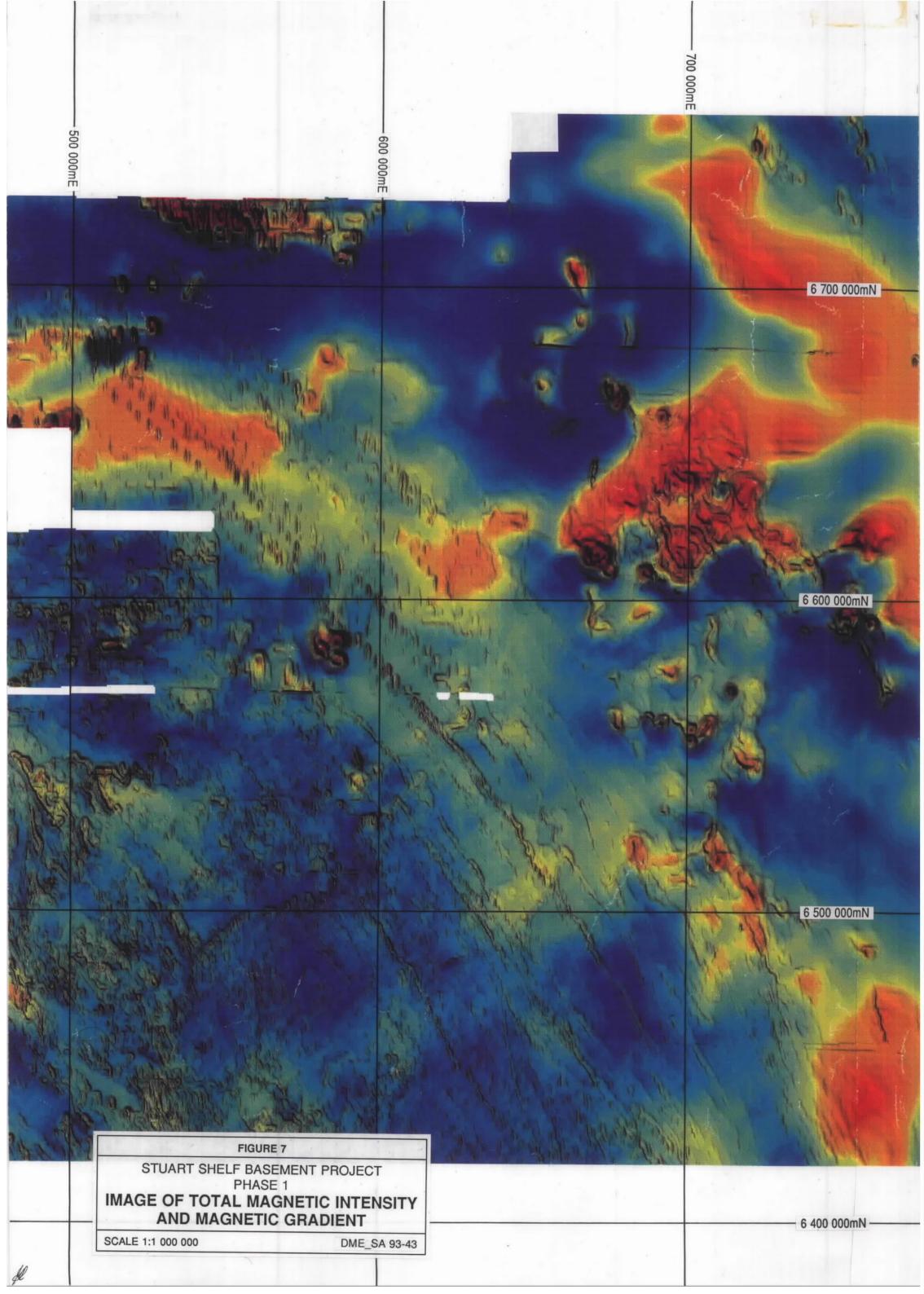


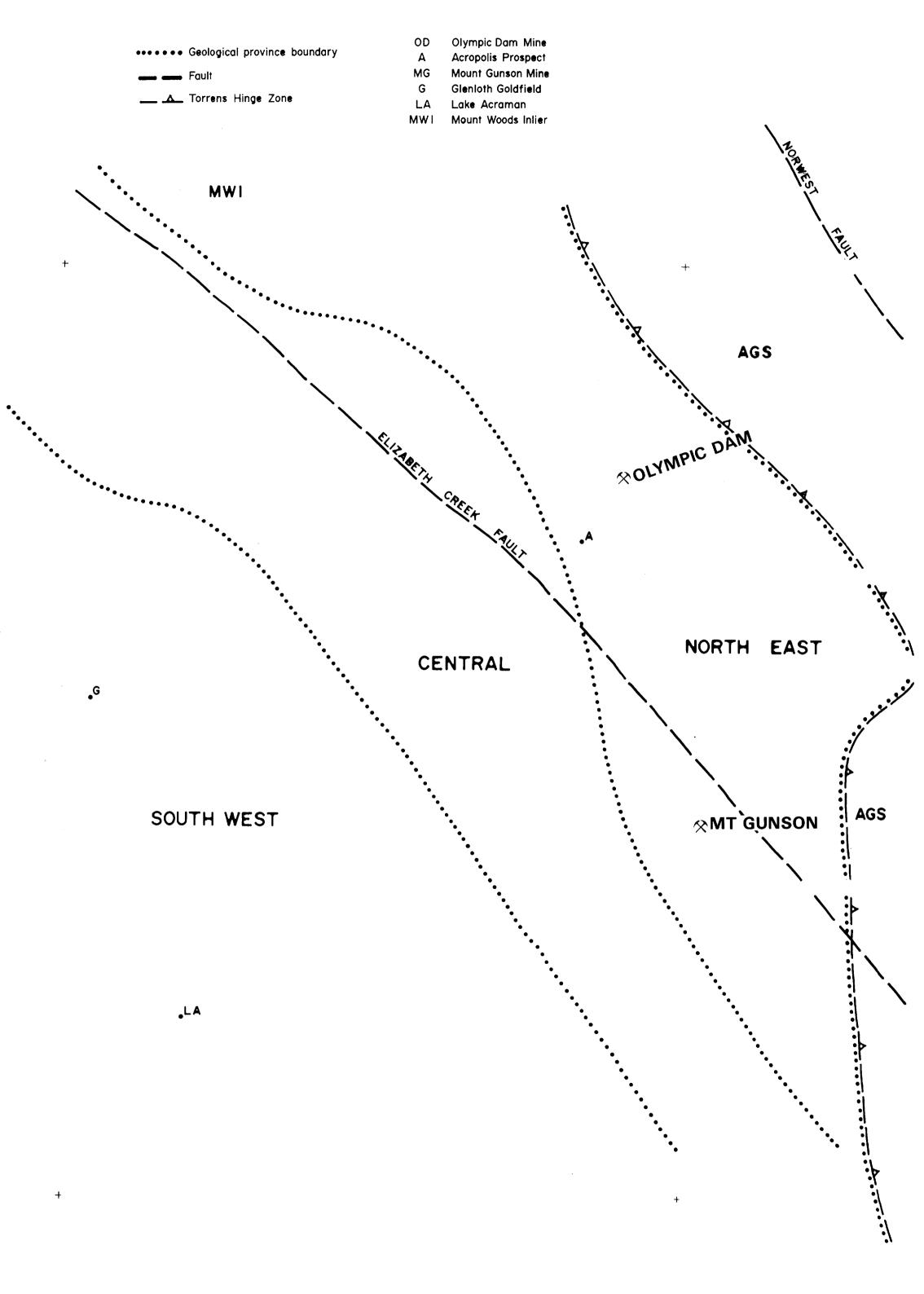
Æ

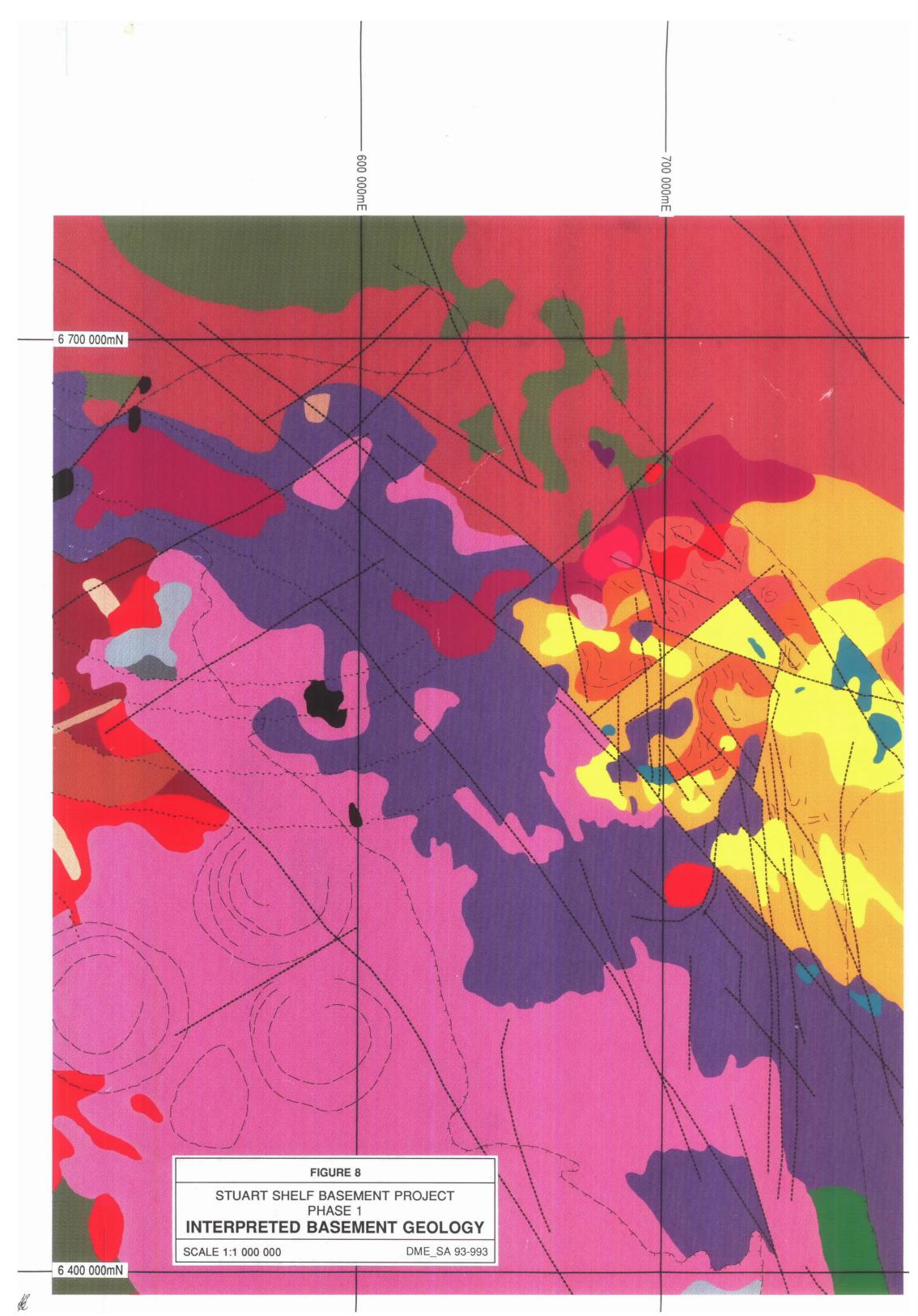



Note: Not all units shown in this legend appear on the geologocal map, Figure 4.


FIGURE 4a


GEOLOGICAL REFERENCE TO ACCOMPANY SURFACE GEOLOGICAL MAP (FIGURE 4)


DME SA 93-40a



ELIZABETH CREEK FAULT

⊗OLYMPIC DAM

CR

☆MT GUNSON

ER

AR

				GEOLOGICAL REFERENCE TO ACCOMPANY SURFACE GEOLOGY (FIGURE 8)
	ā		Olympic Dam 'fracture corridor'	FIGURE 8a
			Interpreted magnetic lineation.	
		/\-/^\	Interpreted deep fault/shear zone	es.
	9		Interpreted fault.	
			Limit of sedimentary basin.	
L		Av	Mulgathing Complex - undiffere	entiated mafic-felsic volcanics.
A		Ag		Granite, syntectonic, ca. 2400 Ma.
Archaean		A		entiated felsic and mafic gneisses.
an		?A	Likely Archaean Mulgathing Co	mplex +/- Palaeproterozoic inliers.
		PPhj	Hutchison Group - Wilgena Hill	Jaspilite and possible correlates.
		PPh	Hutchison Group - undifferential	ted schist and metasediments.
Д		PPls	Lincoln Complex - strongly mag	gnetic strained granitoids with linear structure.
alaec		PPlm	Lincoln Complex - moderately n	magnetic strained granitoids.
prote		PPlu	Lincoln Complex - non magnetic	c strained granitoids.
Palaeoproterozoic		PP1	Lincoln Complex - undifferentia	ated strained granitoids.
ic		PPlw	Strained granitoids of Lincoln C	Complex affinity, perforated by early Hiltaba Suite granites.
		PPw	Wandearah Metasiltstone and related un	its - hematitic, deformed, meta-arkoses, siltstones, limestones and/or BIF, strongly laminated.
		PPtt	Tarcoola Formation.	
		PMc	Corruna Conglomerate/Labyrinth Fo	ormation - interbedded conglomerate, sandstone, siltstone and felsic volcanics.
		PMam	Gawler Range Volcanics - mafie	c association (magnetic).
		PMaf	Gawler Range Volcanics - felsion	c association (non-magnetic).
Mes	DE RESERVE	PMa	Gawler Range Volcanics - undi	fferentiated mesoproterozoic volcanics.
Mesoproterozoic		PMar	Roopena Volcanics - mafic lava	as.
eroze		PMwr	Roxby Downs Granite.	
oic		PMw	Wirrda Subsuite granites	Semino Siero dia dia volumes.
			_	x - hematitic granite breccias and volcanics.
		PMh	Late Hiltaba Suite granites - we	
		PMaa	Acropolis Igneous Complex - I	Roxby Complex Granite and Lincoln Complex granitoids multiply dilated dhigh level felsic intrusives/extrusives.

DME_SA 93-994

D