DEPARTMENT OF MINES AND ENERGY

GEOLOGICAL SURVEY

SOUTH AUSTRALIA

REPORT BOOK 93/11

ARTIFICIAL RECHARGE POTENTIAL AT PRECINCT 1 NORTHFIELD RESIDENTIAL DEVELOPMENT, ADELAIDE SOUTH AUSTRALIA.

S R HOWLES

and

N Z GERGES

DME 38/92

FEBRUARY 1993

©Department of Mines and Energy South Australia 1993.

This report is subject to copyright. Apart from fair dealing for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced without written permission of the Director-General, Department of Mines and Energy South Australia.

CONTENTS			<u>PAGE</u>
ABSTRACT	•		1
INTRODUCTION			1
PRELIMINARY WORK - HYDROGEOLOGY			1
PHASE 1 - INVESTIGATION PROGRAM Assessment of basement aquifer Assessment of tertiary sand			2 2 2
PHASE 1 - RESULTS AND DISCUSSION Assessment of Basement Aquifer - Drilling - Discharge Testing			3 3 3 3
Assessment of Tertiary Sand - Drilling - Geophysical survey			4 4 4
PHASE 1 - CONCLUSION			5
PHASE 2 - INVESTIGATION PROGRAM			5
PHASE 2 - RESULTS AND DISCUSSION Well Test Data Aquifer Test Data			5 5 6
Pre Injection Discharge Tests - Aquifer Testing - Well Testing - Salinity			6 6 6 7
Injection Tests - Well - Aquifer Testing			7 7
Post - Injection Tests - Well - Aquifer Testing - Salinity			8
Well Performance			9
PHASE 2 - CONCLUSION AND RECOMMEN	NDATIONS		9
ACKNOWI FGMENTS	:		10

TA	BI.	ES
17	DL	,EO

2. Constant discharge test s vs t well 6628-16185 16/12/92 3. Constant discharge test s vs t well 6628-16185 5/01/93 4. Step drawdown test s vs t well 6628-16185 11/01/93 5. Specific capacity plot Q vs s well 6628-16185 6. Constant injection test s vs t well 6628-16185 15/01/93 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 8. Salinty vs time - pump out of injected water 9. Specific capacity plot Q vs s well 6628-16185 A LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	TABLES	
1. Location plan 2. Constant discharge test s vs t well 6628-16185 16/12/92 3. Constant discharge test s vs t well 6628-16185 5/01/93 4. Step drawdown test s vs t well 6628-16185 11/01/93 5. Specific capacity plot Q vs s well 6628-16185 6. Constant injection test s vs t well 6628-16185 7. Constant discharge test s vs t well 6628-16185 15/01/93 9. Specific capacity plot Q vs s well 6628-16185 3/2/93,9/2/93 9. Salinty vs time - pump out of injected water 9. Specific capacity plot Q vs s well 6628-16185 93- APPENDICES A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	1. Details of well and aquifer discharge and injection tests	
2. Constant discharge test s vs t well 6628-16185 16/12/92 3. Constant discharge test s vs t well 6628-16185 5/01/93 4. Step drawdown test s vs t well 6628-16185 11/01/93 5. Specific capacity plot Q vs s well 6628-16185 6. Constant injection test s vs t well 6628-16185 15/01/93 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 8. Salinty vs time - pump out of injected water 9. Specific capacity plot Q vs s well 6628-16185 A LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	<u>FIGURES</u>	·
3. Constant discharge test s vs t well 6628-16185 5/01/93 93- 4. Step drawdown test s vs t well 6628-16185 11/01/93 93- 5. Specfic capacity plot Q vs s well 6628-16185 93- 6. Constant injection test s vs t well 6628-16185 15/01/93 93- 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 93- 8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 93- APPENDICES A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during post - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	1. Location plan	93-134
4. Step drawdown test s vs t well 6628-16185 11/01/93 93- 5. Specific capacity plot Q vs s well 6628-16185 93- 6. Constant injection test s vs t well 6628-16185 15/01/93 93- 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 93- 8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 93- APPENDICES A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	2. Constant discharge test s vs t well 6628-16185 16/12/92	93-135
5. Specfic capacity plot Q vs s well 6628-16185 6. Constant injection test s vs t well 6628-16185 15/01/93 93- 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	3. Constant discharge test s vs t well 6628-16185 5/01/93	93-136
6. Constant injection test s vs t well 6628-16185 15/01/93 7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 A LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	4. Step drawdown test s vs t well 6628-16185 11/01/93	93-137
7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/93 8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	5. Specfic capacity plot Q vs s well 6628-16185	93-138
8. Salinty vs time - pump out of injected water 93- 9. Specific capacity plot Q vs s well 6628-16185 93- APPENDICES A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	6. Constant injection test s vs t well 6628-16185 15/01/93	93-139
9. Specific capacity plot Q vs s well 6628-16185 A LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	7. Constant discharge test s vs t well 6628-16185 3/2/93,9/2/9	93-140
APPENDICES A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	8. Salinty vs time - pump out of injected water	93-141
A. LITHOLOGICAL AND GEOPHYSICAL LOGS Well 6628-16185 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	9. Specific capacity plot Q vs s well 6628-16185	93-142
Well 6628-16186 93- Well 6628-16186 93- B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	<u>APPENDICES</u>	
Well 6628-16186 B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	A. LITHOLOGICAL AND GEOPHYSICAL LOGS	2 7
 B. SALINITY DATA AND FULL ANALYSIS Table B1. Salinity data during drilling of well 6628-16185 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92 	Well 6628-16185	93-143
 Table B1. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92 	Well 6628-16186	93–144
 Table B2. Salinity data during pre - injection discharge tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92 	B. SALINITY DATA AND FULL ANALYSIS	
tests on well 6628-16185 Table B3. Salinity data during post - injection discharge tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92	Table B1. Salinity data during drilling of well 6628-16185	
tests on well 6628-16185 Full analysis well 6628-16185 5/1/93 C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92		
C. WELL AND AQUIFER DISCHARGE AND INJECTION DATA Constant discharge test well 6628-16185 16/12/92		
Constant discharge test well 6628-16185 16/12/92	Full analysis well 6628-16185 5/1/93	
	C. WELL AND AQUIFER DISCHARGE AND INJECTION	DATA
	Constant discharge test well 6628-16185 16/12/92	
Constant discharge test well 6628-16185 5/01/93	Constant discharge test well 6628-16185 5/01/93	:

Step drawdown test well 6628-16185 11/01/93

Constant injection test well 6628-16185 15/01/93

Constant discharge test well 6628-16185 3/2/93

Constant discharge test well 6628-16185 9/2/93

D. GEOPHYSICAL SURVEY DISCUSSION, A.R. DODDS.	PLAN NO
Figure D1 Northfield PROTEM Survey Traverse - 1	93-159
Figure D2 Northfield PROTEM Survey Traverse - 2	93-160

DEPARTMENT OF MINES AND ENERGY GEOLOGICAL SURVEY SOUTH AUSTRALIA

REPORT BOOK 93/11

DME NO 38/92

ARTIFICIAL RECHARGE POTENTIAL AT PRECINCT 1 NORTHFIELD RESIDENTIAL DEVELOPMENT, ADELAIDE SOUTH AUSTRALIA.

S R HOWLES, N Z GERGES and S DODDS

Hydrogeological investigations of the Tertiary Sand and the Basement aquifer underlying Sections 789 and 873 Hundred of Yatala South Australia, indicate that only the Basement Aquifer has the potential to store storm water for subsequent reuse. Well equations to describe the behaviour of a well completed in this aquifer under discharge, drainage and injection have been developed. These show that the well can be pumped at a rate of 24 L/s for 10,000 minutes. A drainage rate of 13 L/s for a period of 10,000 minutes is possible. An injection rate of 23 L/s (2 ML/day) would result in 13 m of head above ground at 10,000 minutes. A cautious estimate of 20 m would result at 100,000 minutes. The salinity of the native groundwater in the Basement Aquifer is approximately 2600 mg/L.

INTRODUCTION

Precinct 1 Northfield residential development site includes Sections 789 and 873 Hundred of Yatala (Figure 1). One of important requirements imposed on the development is the limiting of peak stormwater runoff from the Site. Northfield Joint Venture partners proposed the use of a retention basin in conjunction with artificial recharge to deal with the problem. The total runoff was estimated to be of the order of 100 ML/year. Benefits of this approach are the reuse of the recharged water for irrigation.

In November of 1992 the South Australian Department of Mines and Energy (SADME) was contracted by the Northfield Joint Venture partners to investigate the potential for artificial recharge on Precinct 1 Northfield residential development. The objectives of the investigation program were to define the hydrogeology and assess the artificial recharge potential of both a shallow Tertiary Sand and underlying Basement aquifer.

PRELIMINARY WORK - HYDROGEOLOGY

A preliminary desktop study by Gerges indicated that Precinct 1 Northfield residential development

site is underlain by the following hydrogeological sequence.

Quaternary to Recent clays

Highly reactive clay confining bed varies from 2 - 5 m thickness through the area.

Tertiary Sand

This formation is expected to occur at depths of 2 - 5 m below surface, and is of unknown thickness. Material is expected to be sand - fine gravel. This formation is possibly dry, drainage is possibly in the south or southwest direction with implications for existing housing outside the area of investigation.

Weathered Bedrock

Plastic grey clay confining bed is expected to occur at a depth of 25 - 50 m.

Basement Aquifer

Basement may contain minor or major fractures capable of acting jointly as an aquifer. This aquifer is expected to occur at a depth of 35 - 60 m. It is expected to have a yield of 2.5 L/s and contain groundwater with an average salinity of 4000 mg/L.

PHASE 1 - INVESTIGATION PROGRAM

The following investigation program was defined on 25/11/92 at a meeting between SADME personnel, the Northfield Joint Venture project manager, and their engineering consultants.

Assessment of Basement Aquifer

Establish a 100 m deep scout hole, lined with approximately 65 m of 150 mm diameter steel casing, using rotary drilling methods.

Subject to adequate air lifted yield, undertake test pumping operations consisting of pumping development, step drawdown testing and a 6 hour constant discharge test.

Subject to positive results and water availability, undertake a 3 day injection test.

Assessment of Tertiary Sand

Conduct a full scale PROTEM geophysical survey (totaling approximately 3 km of traverses) to assess the areal extent and geometry of the sand layer.

Establish a cable tool drilled well to fully penetrate the Tertiary sequence (approximately 30 m), the well to be lined with 150 mm diameter PVC casing and sand screen.

Subject to adequate saturated thickness of sand, undertake test pumping and injection operations as per deep well.

PHASE 1 - RESULTS AND DISCUSSION

Assessment of Basement Aquifer

Drilling

Well 6628-16185 was drilled under permit 28272 and completed on 5/12/92 (Figure 1). The well was mud drilled to 45.5 (into Basement),155 mm internal diameter steel casing was set and pressure cemented. The final depth of 80.5 m was achieved with rotary air hammer drilling at a diameter of 152 mm. The well was left as an open hole completion within the Basement Aquifer.

During drilling strata samples were collected and following well completion geophysical logs were run. Composite well logs are given in Appendix A.

The hydrogeological sequence superposing the Basement can be summarised as follows:

- 0 2 m black soil
- 2 8 m clay
- 8 10 m fine gravel (Tertiary Sand sequence)
- 10 12 m clay and fine gravel
- 12 44 m clay (including weathered basement)
- 44 68 m slate

68 - 80.5 m quartzite

The Basement was intersected at 44 m as a grey fine grained slate, fractures were intersected at 53 and 60 m.A multi - fractured quartzite was intersected at 68 m. Yield increased significantly in the quartzite between 68 and 80.5 m. A final air lifted yield of 15 - 20 L/s was estimated, considerably higher than expected. The quartzite shows a clear signature on the geophysical logs.

Salinity data given in Appendix B Table B1 indicate that the salinity increased from 1384 mg/L at 53 m to 2488 mg/L at 80 m.

A final standing water level of 14 m was recorded.

Discharge Testing

Following the better than expected yield a constant discharge test was conducted on 16/12/92 with SADME's mobile submersible pump at a rate of 8 L/s for a period of 480 minutes. The test data is plotted in Figure 2, and is given in Appendix C. Test data allows calculation of a specific capacity at 100 minutes of 1.9 (L/s)/m of drawdown, and an initial estimation of the aquifer transmissivity of 50 m2/d.

In this situation the quartzite will be operating as the dominant aquifer with a small contribution from the upper fractures. It should be noted that the thickness, extent and orientation (geometry) of the quartzite is unknown. Note: Step discharge testing was not conducted at this time but incorporated in the comprehensive suite of tests recommended for Phase 2 of the investigation.

Assessment of Tertiary Sand

Drilling

Well 6628-16186 was drilled under permit 28273 and completed on 10/12/92 (Figure 1). The well was drilled by cable tool to 35 m,80 mm internal diameter PVC casing was set with slots between 6 - 10 m and 26 - 35 m, monitoring the Tertiary Sand sequence.

During drilling strata samples were collected and following well completion geophysical logs were run. Composite well logs are given in Appendix A.

The hydrogeological sequence intersected can be summarised as follows:

- 0 2 m black soil
- 2 6 m sandy clay
- 6 8 m sandstone, Tertiary Sand sequence
- 8 10 m coarse sand fine gravel, Tertiary sand sequence.
- 10 35 m clays and clayey sand

The Tertiary Sand was thought to be dry during the drilling but was found later to be seeping a small amount of water.

Due to the extremely variable nature of the Tertiary Sand Aquifer indicated from the both wells, and the possible drainage problems and effects on the reactive Quaternary clays, it was decided to abandon further investigation and concentrate only on the Basement Aquifer.

Geophysical survey

The geophysical survey was supervised and interpreted by A.R. Dodds (SADME). The results and discussion are given in full in The following summary was Appendix D. prepared by A.R. Dodds. Two Transient Electromagnetic traverses were done, at the locations shown in Figure 1. The results show a basement high 50 m west of the wells, dropping away steeply to the west and north but more slowly to the east. A shallow resistor between 3 and 30 m varies in thickness and resistivity, and appears to be a clayey-sand of variable proportions, the more permeable parts being more resistive. A conductor between this resistive feature and basement is also variable in thickness and intensity, and is expected to be caused by a combination of high clay content and more saline groundwater.

No attempt has been made to detect the basement fractures yielding low salinity groundwater that were found in well 6628-16185. These would be hard to detect at this depth in this environment,

as the low salinity and low clay content would make for a very weak conductor.

PHASE 1 - CONCLUSION

Due to the favourable results from the discharge tests conducted on the Basement Aquifer it was concluded that a comprehensive suite of well and aquifer discharge and injection tests be conducted at higher rates than were achievable with the mobile pump. This would allow an accurate assessment of the long term recharge potential.

PHASE 2 - INVESTIGATION PROGRAM

In view of the positive results from Phase 1 a more comprehensive second stage of investigation was initiated in order to:

- Determine the impact of injection on well efficiency and aquifer properties.
- Determine the effect of injected water on the salinity of the native groundwater.

PHASE 2 - RESULTS AND DISCUSSION

Details of the well and aquifer discharge and injection tests are given in Table 1, all test data is provided in Appendix C.

Table 1. Details of well and aquifer discharge and injection tests

Test	Date	Rate(L/s)	Duration (mins)
Pre Injection			
constant discharge	5/1/93	19.6	600
recovery			7920
step drawdown			
step 1	11/1/93	6.5	100
step 2	11/1/93	10.8	100
step 3	11/1/93	15.3	100
step 4	11/1/93	25.2	60
Injection			
constant injection	15/1/93	22 - 23	3930
recovery			9990
Post injection			
constant discharge	3/2/93	8.0	360
constant discharge	9/2/93	8.0	600

Well Test Data

5

In theory equations should be able to be developed for the well after testing. A simple form of the well equation (1) relates drawdown, discharge rate and time.

$$St = B Q logt + C Q^2$$
 (1)

where:

St = drawdown(m)

O = discharge/recharge rate (L/s)

t = time (mins)

B = constant related to aquifer loss (well loss) for laminar flow

C = constant related to well loss (aquifer loss) for turbulent flow

The well equation allows calculation of the long term yield, drainage/injection and the non - linear head loss associated with the operating well. The following assumptions are inherrant.

- The aquifer is homogeneous, isotropic, of uniform thickness, and of infinite areal extent.
- 2. Before pumping/recharge the piezometric surface is horizontal.
- 3. The well is operated at a constant rate.
- 4. The well penetrates the entire aquifer, and flow is everywhere horizontal within the aquifer from/to the well.
- The well diameter is infinitesimal so that storage within the well can be neglected.
- 6. Pressure effect of water moving out of/into storage occurs instantaneously.

These assumptions can be assumed to be adequately met except number 1, ie the geometry of the quartzite (the major aquifer) is unknown.

Aquifer Test Data

Constant discharge test data from a pumped well is used to calculate the aquifer transmissivity using equation-2.

$$\underline{\mathbf{T} = 0.183 \ \mathbf{Q}} \tag{2}$$

ds

where:

 $T = transmissivity (m^2/d)$

 $Q = discharge rate (m^3/d)$

ds = drawdown per log cycle (m)

Pre Injection Discharge Tests

Aquifer Testing

The constant discharge test data is plotted in Figure 3, and is given in Appendix C. This test was conducted on 5/1/93 at a rate of 19.6 L/s for 600 minutes, recovery measurements were made over a period of 7929 minutes.

Figure 3 indicates that no boundaries have been intersected during the period of the test.

Test data allows calculation of a specific capacity at 100 minutes of 1.6 (L/s)/m of drawdown, and an aquifer transmissivity of 70 m²/d.

Well Testing

The step drawdown test data is plotted in Figure 4 along with the constant discharge test data. The data is given in Appendix C. Three 100 minute

steps and a fourth 60 minute step were conducted on 11/1/93 at rates of 6.5, 10.8, 15.3, 25.2 L/s.

The simple form of the well equation (1) has proven to be useful in the Basement Aquifer environment (fractured rock) in which well 6628-16185 is completed.

The drawdowns at t=10 and 100 minutes from Figure 4 are plotted on Figure 5, (calculated cumulatively for steps 2 - 4). The constants for well equation-1 are calculated to be B=0.224 and C=0.008. When used in equation-1, equation-3 is defined which generates data points which fit the observed step test data extremely well. The constant discharge test can be reproduced with extreme accuracy.

$$St = 0.224 Q logt + 0.008 Q^2$$
 (3)

A long term yield for a period of 100,000 minutes of 23 L/s can be calculated using the available drawdown of 30 m (casing depth - depth to water). It should be noted that the maximum depth to water should be used for this calculation during summer and this may be slightly less than the current value due to the extremely wet winter of 1992.

Salinity

Salinity data given in Appendix B Table B2 indicate that the salinity increased during the main test from 2448 mg/L to 2669 mg/L.During the step draw down test the salinity increased from 2086 mg/L to 2596 mg/L.Evidently water

moving to the well during discharge is of a salinity possible higher than 2700 mg/L and may increase with time. The injection test and subsequent pumping out give some indication that injected water will remain localised thus reducing salinity. A full analysis is given in Appendix B.

Injection Tests

Well - Aquifer Testing

The constant injection test was conducted with mains water at mains pressure on 15/1/93. The salinity of the mains water was approximately 360 mg/L, a total of 5.4 ML was injected.

The constant injection test data is plotted in Figure 6.and given in Appendix C. This test was conducted at a rate of 21.9 L/s to 1300 minutes at which time the pressure in the mains increased flow to 23 L/s which persisted until the end of the test at 3960 minutes. Recovery measurements were made over a period of 9990 minutes.

Figure 6 indicates that the test should be viewed as three segments, (possibly indicating some boundaries) t = 1 - 40 minutes, t = 40 - 1000 minutes, t > 1000 minutes. Following injection the waterlevel recovered more quickly indicating the existance of a permeable boundary to the quartzite aquifer. Due to the length of the test and the existance of boundaries well equation-3 defined above will not accurately generate the injection curve.

G04916.SRH 7

Mr D.Armstrong of this Department has determined the following complex family of well equations (4 - 6) which accurately describe the injection curve. A knowledge of the behaviour of the well under injection/drainage is what is ideally required.

t = 1 - 40 minutes:

$$St = 0.0113 Q^2 + (\log t * 0.1644 Q) (4)$$

t = 40 - 1000 minutes:

St = 0.0113
$$Q^2$$
 + 0.2634 Q + (log t - 1.602) * 0.2283 Q (5)

t > 1000 minutes:

St =
$$0.0113 Q^2 + 0.5825 Q + (\log t - 3) * 0.3174$$

Q (6)

It is expected that the well would behave in a similar manner under discharge for long times.

A further 0.6 ML was injected in a test conducted on 25/1/92 at a rate of 17 L/s. The head measured in this test was affected by the initial starting conditions and the resultant data is not considered to be an accurate representation of the well behaviour. This data is not included in this report.

Post - Injection Tests

Well - Aquifer Testing

The well was tested after injection with two separate constant discharge tests in order to simply check the behaviour of the well after the injection and to check the salinity during pumping.

Data is given in Appendix C. Simple testing only was conducted due to time and money contraints.

Constant discharge tests were conducted on 3/2/93 and 9/2/93 at a rate of 8 L/s for periods of 360 and 600 minutes respectively. Recovery measurements were not made. The constant discharge test data is plotted in Figure 7 along with data points generated from equation-5. The plots indicate that the test data matches the data generated from equation-5 quite accurately. This indicates that the well efficiency and aquifer properties have not been affected by the injection test.

Salinity

8

Salinity data are given in Appendix B Table B3, and are plotted on Figure 8. The mains water had remained in the aquifer for a period of approximately 17 days prior to any extraction.

On 3/2/93 the first water pumped had a salinity of 772 mg/L almost double that of the mains water of 360 mg/L. At the end of the test the salinity had risen to 882 mg/L. Evidently some mixing had occured, this would be expected as only 6.0 ML of mains water was injected in total.

G04916.SRH

On 9/2/93 the salinity had again risen, to 882 mg/L indicating more mixing. At the end of the test the salinity had risen to 1233 mg/L. It is not possible to accurately predict the pumping time required to regain the salinity of the native groundwater. The SADME will pump the well for 2 hours per week for March and April of 1993 to further monitor salinity changes.

A total of 0.5 ML was extracted in the two tests, approximately 8% of the volume injected.

It can be expected that the large volume of 100 ML expected to be drained/injected would have a long term improvement on the native groundwater salinity.

Well Performance

Using the family of equations (equations 4-6) developed for injection and applying them to discharge/drainage and injection the long term well behaviour can be estimated. Due to the length of the test (3960 minutes) the equations can be used with reasonable safety to estimate the behaviour of the well up to 10,000 minutes.

Using an available drawdown of 29 m a discharge rate of 24 L/s for a period of 10,000 minutes can be calculated.

Using the available head of approximately 14 m (ie depth to water) a drainage rate for a period of 10,000 minutes of 13 L/s can be calculated.

If additional head above surface is provided by injection then an injection rate of 23 L/s (2 ML/day) would result in 13 m of head above ground at 10,000 minutes. A cautious estimate of 20 m would result at 100,000 minutes.

The drawdowns at t=100 and 1000 minutes from all individual stages of discharge and injection tests are plotted in Figure 9, along with values generated from equations (5) and (6). There is a good fit between the observed and generated data for t=100 minutes. There is only one observed value at t=1000 minutes. These curves allow the estimation of well performance for times of 100, 1000 and 10,000 minutes.

PHASE-2 CONCLUSION AND RECOMMENDATIONS

Well and aquifer discharge and injection testing indicate that well 6628-16185 is capable of operating efficiently as either a production, drainage or injection well at rates in excess of 10 L/s. This exceeds the expected operational rate of 5 L/s. Well efficiency and aquifer properties are not expected to be affected if silt free water is drained/injected. It is also expected that the salinity of the native groundwater will be significantly reduced after artificial recharge.

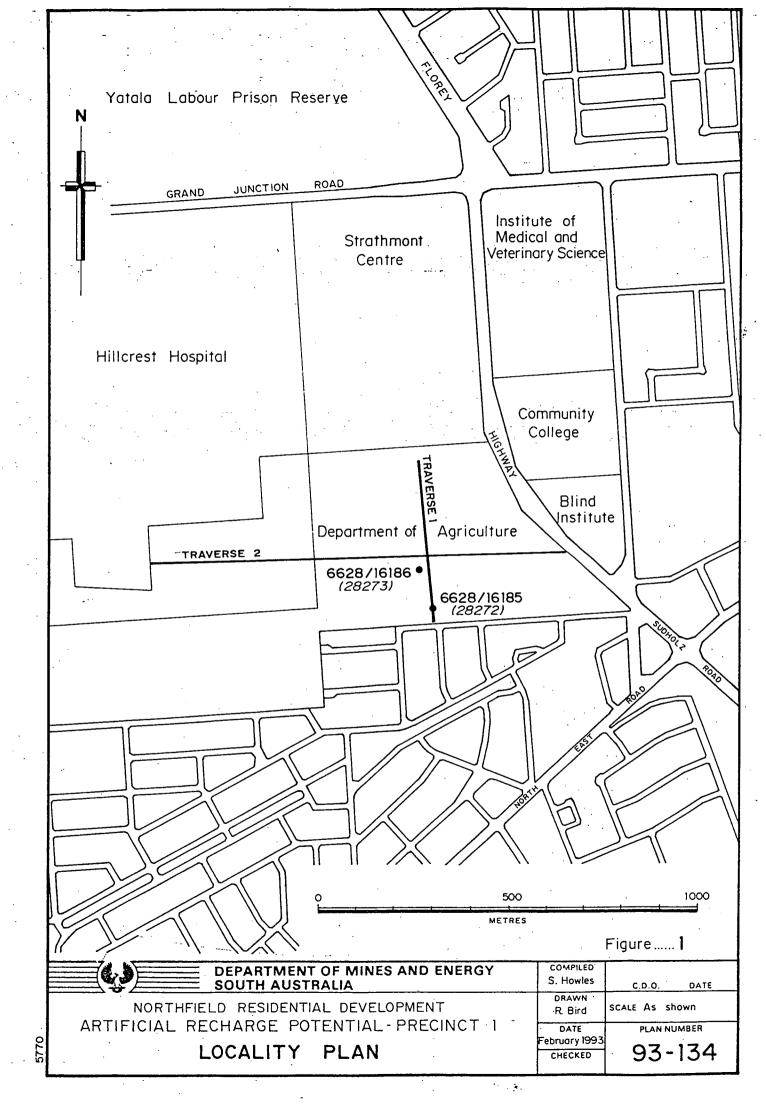
The drilling of an additional production well at a distance of 10 - 50 m from well 6628-16185 is recommended in order to:

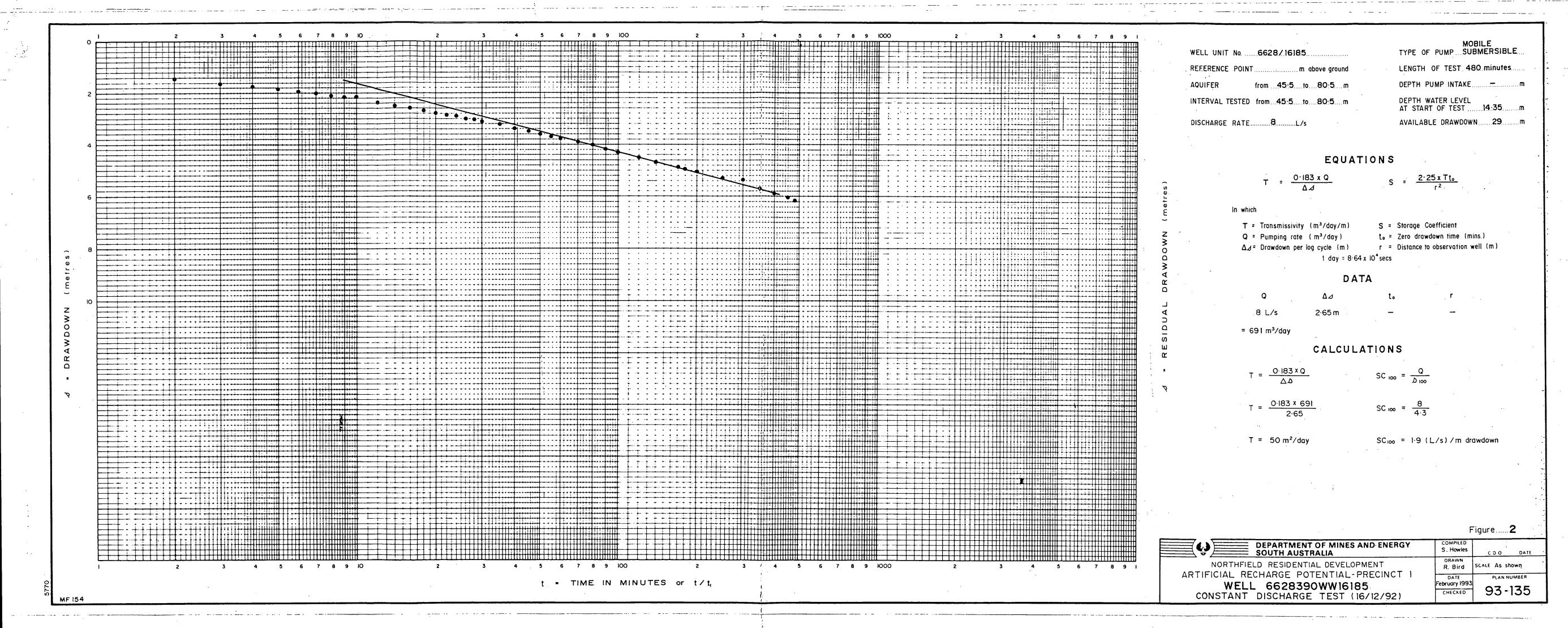
Provide a standby

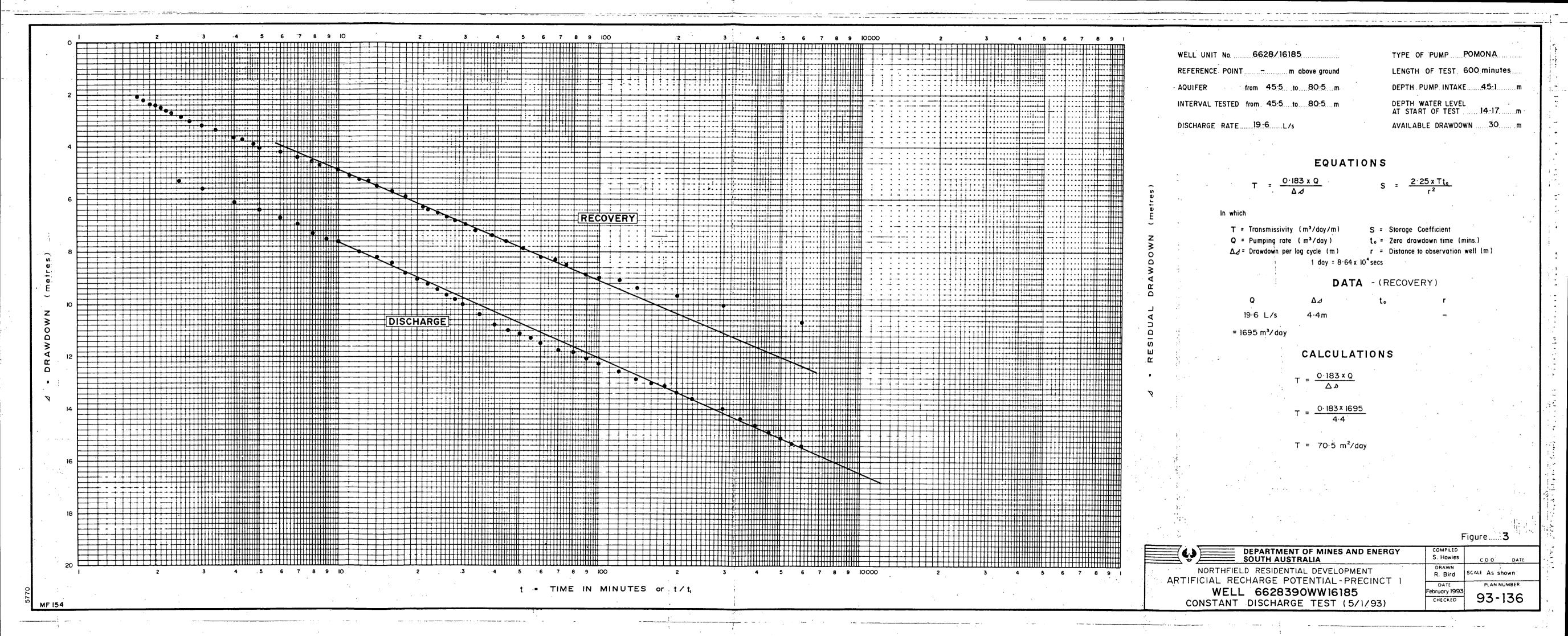
production/drainage/injection well.

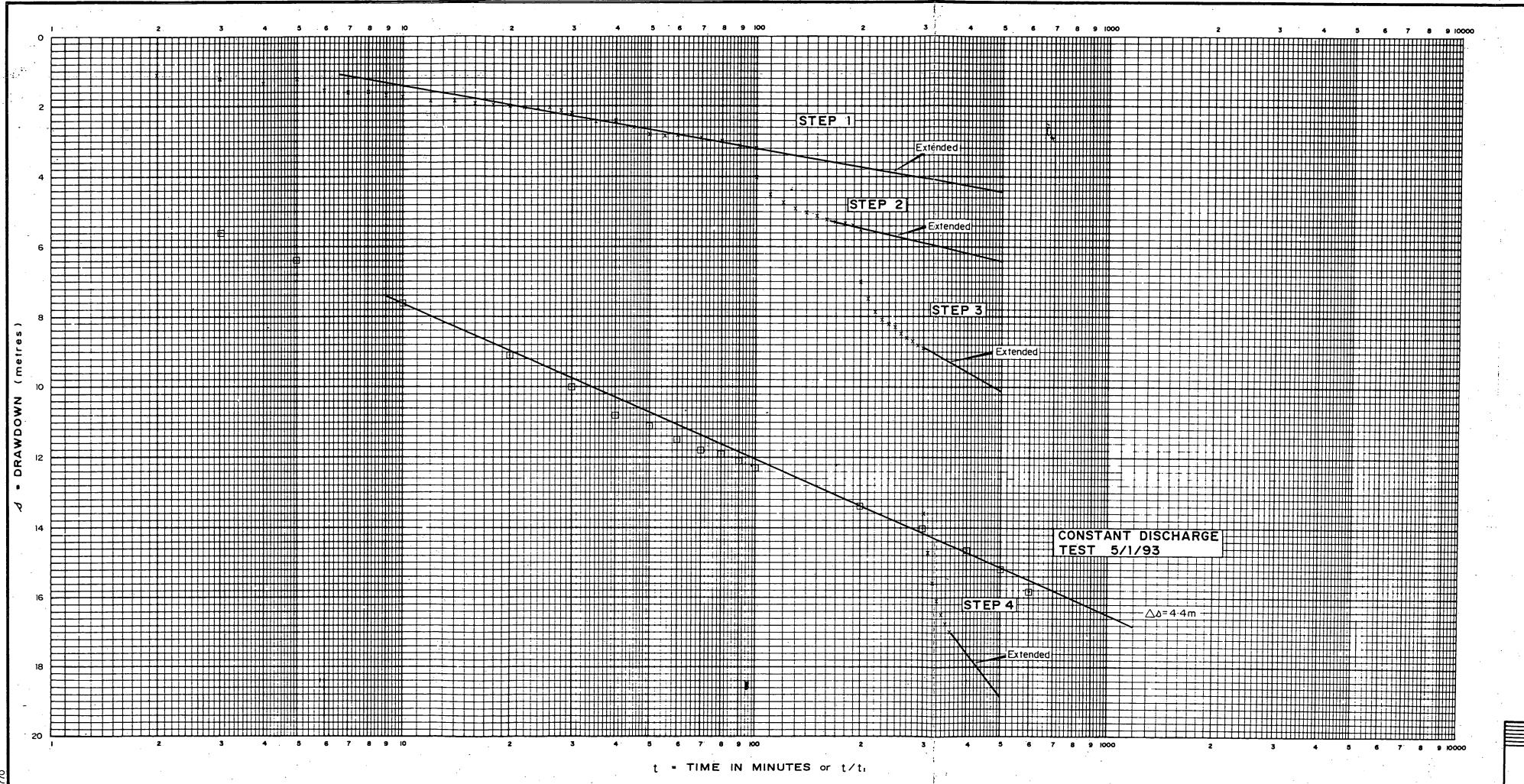
Allow monitoring of waterlevels.

The further drilling of 1 - 2 observation wells is recommended in order to:


- Better define the geometry of the quartzite aquifer.
- To determine the gradient of the water table and the extent and geometry of the drainage/injection mound.
- It is recommended that regular sampling to monitor water quality be undertaken once the scheme is operational.


 Waterlevels should also be regularly monitored. It is recommended that the SADME be contacted at this time for advice.


AKNOWLEGMENTS


Acknowlegment is made of the technical support of Mr D. Armstrong of SADME in interpreting well and aquifer data.

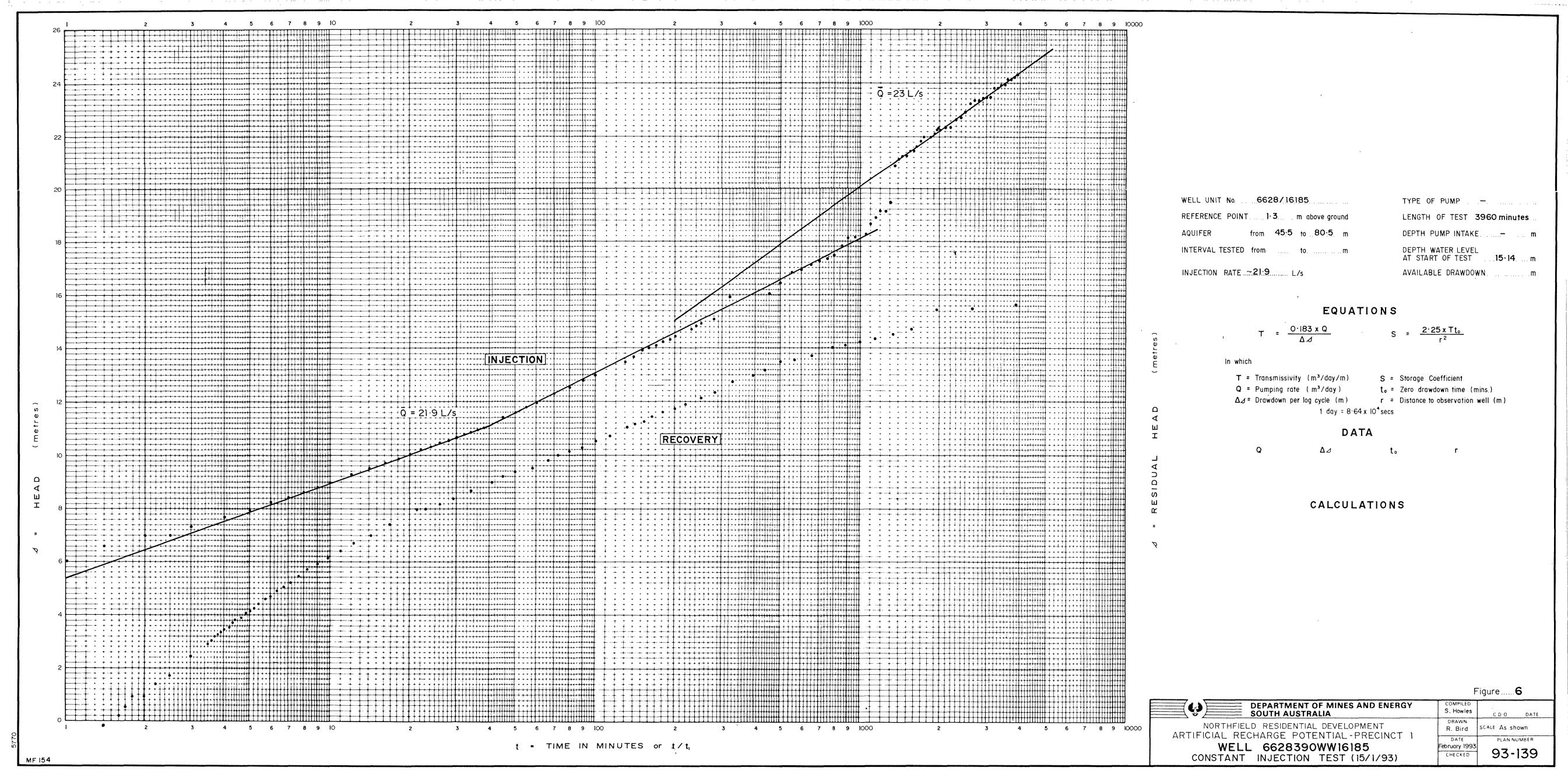
APPENDICES

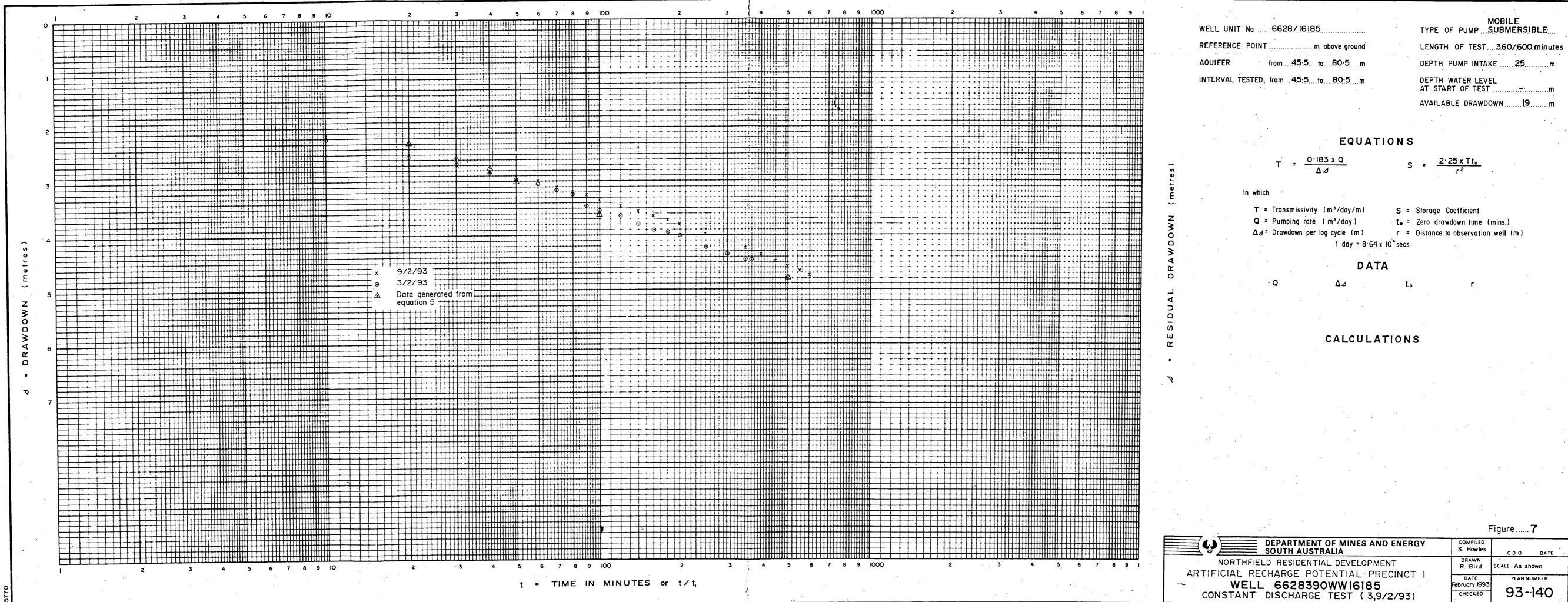
WELL UNIT No. 6628/16185 TYPE OF PUMP REFERENCE POINT. DURATION OF TEST 360 minutes from 45:5 to 80:5 m AQUIFER DEPTH PUMP INTAKE 45-1 m INTERVAL TESTED from 45:5 to 80:5 m DEPTH WATER LEVEL: AT START OF TEST 14:42

STEP DRAWDOWN TEST	Q (L/s)	t = 10	t = 100	ΔΔ	<u>Δ</u> δ
STEP 1	6.5	1.71	3.18	1.8	0.277
STEP 2	10.8	3.01	5.08		-
STEP 3	15-3	5.01	8:08	-	-
STEP 4	25.2	. 10-81	16-68	` -	; -
CONSTANT DISCHARGE TEST	19-6	7.59	12.3	4.4	0.224

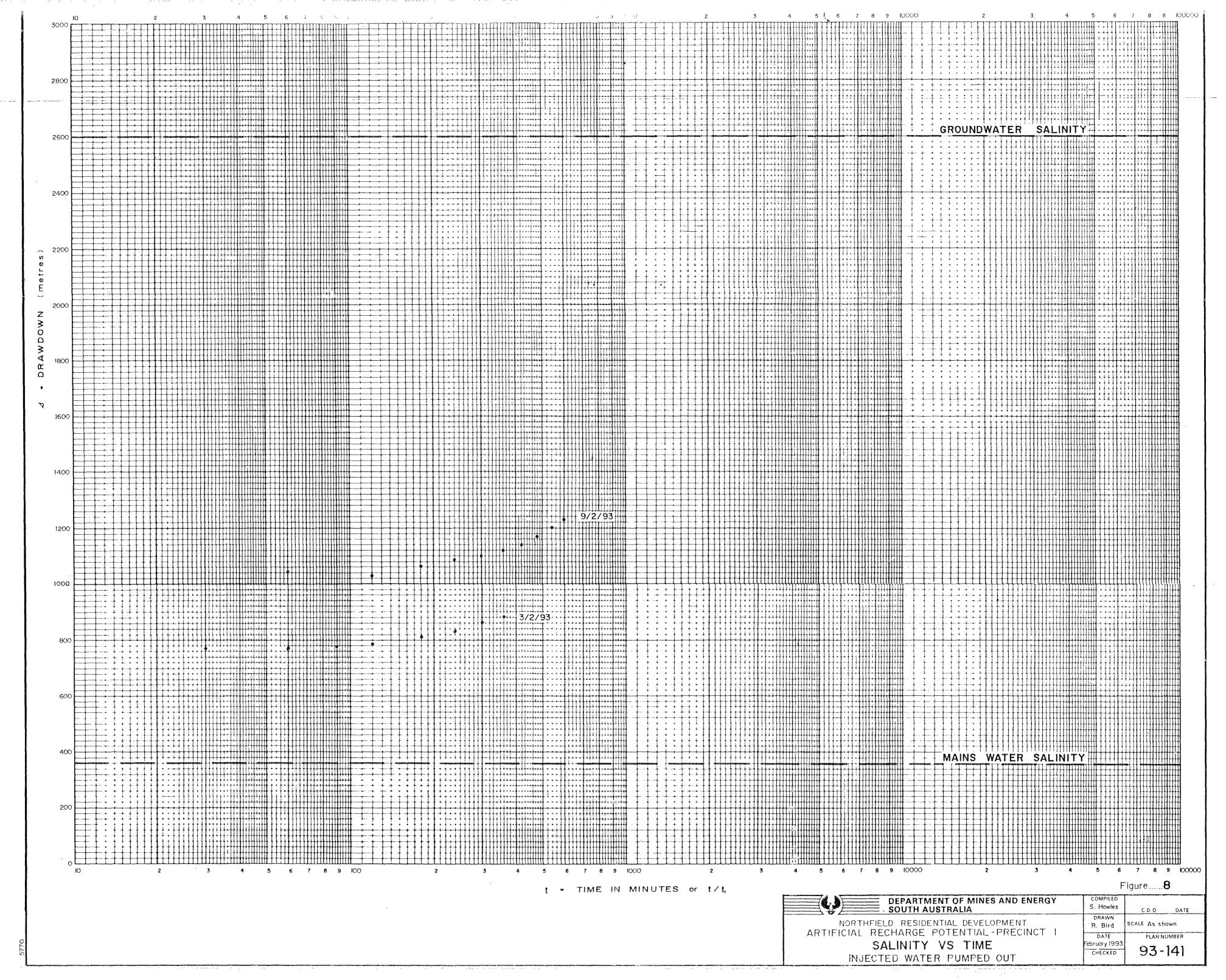
at t = 100,000 minutes and $\Delta t = 30 \,\text{m}$

 $\Delta t = 0.224 \log_{10} tQ + 0.008 Q^2$

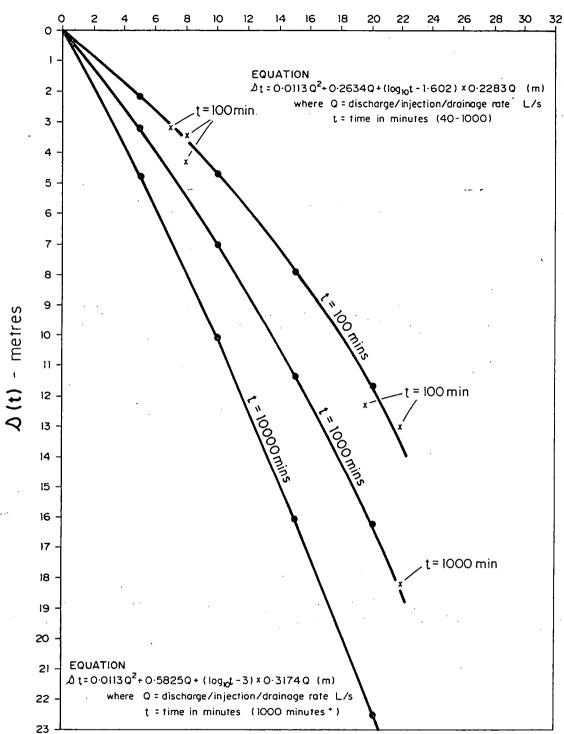

 $30 = 0.224 \log_{10} 100,000 Q + 0.008 Q$


Q = 23 L/s

POMONA


AVAILABLE DRAWDOWN30

	. !	igure
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	S. Howles	C.D.O. DATE
NORTHFIELD RESIDENTIAL DEVELOPMENT ARTIFICIAL RECHARGE POTENTIAL-PRECINCT 1	DRAWN R. Bird	SCALE As shown
WELL 6628390WW16185 STEP DRAWDOWN TEST (11/1/93)	DATE February 1993	PLAN NUMBER 93-137



MF

LEGEND

- •.....Data generated from Equation
- $\mathbf{x}^{'}$Actual data from individual stages

Figure.....9

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED S. Howles	C.D.O. DATE
NORTHFIELD RESIDENTIAL DEVELOPMENT ARTIFICIAL RECHARGE POTENTIAL - PRECINCT 1	DRAWN R. Bird	SCALE As shown
SPECIFIC CAPACITY PLOT BEHAVIOUR GENERATED FROM INJECTION EQTNS.	DATE February 1993 CHECKED	PLAN NUMBER 93-142

APPENDIX A - LITHOLOGICAL AND GEOPHYSICAL LOGS

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA GROUNDWATER AND ENGINEERING SECTION

PLAN No. 83-143

COMPOSITE WELL LOG - GROUNDWATER

	CASI	.ING I LATI RESI	METH STIMI . 2 EPTH METE MAME IAME	HOO MJ. TY/TYF /12/92 & TER	PCTION DETAILS	DEPTH TO WATER CUT Into 53 60 69 REMARKS	SW.	LOG	3 5 8	AIR LIFT	BST M	TOTAL DISC SOLO	S Selyana W. No.	. 1	FIELD NO. LOCATION REF. ELEV LOGGED	ARTIFIC SECT (NOR	RGE POTEI . 6628390W UNDRED O DELAIDE) ACE ELEV. TE 5/12/9 WEL Gasing shoe	NTIAL - F M16185 PEI F YATALA 22 L SYMI	RECINCT 1 RMIT No. M DATUM BOLS Cement	. 28272
CONSTRUCTION	007	WATER CUT	41 1	AGE	LITHOLOGY		гино. год	DEPTH (m)	0	NE	G EUTRON	CP8		19000	SPON.	POTENT	 POII	OHM	IST. CALIF	PER
				V 1	U-2M BLACK TOP SOIL 2-8m CLAY yellow-brown, red, mottle mile interbeds of medium gravel. 6-10m GRAVEL fine-medium, 2-20m predominantly 3-4mm, Quartz, clean, 10-18m CLAY AND GRAVEL Clay whyellow-brown, orange and sticky. Gravine-medium, 2-20mm, quartz, ironstone, interbeds (?). 18-38m CLAYS white, brown, pink, graveled as and 69m. 44-69m SLATE grey fine grained size quartz bands between 63 and 69m.	n, ita, el ey, sticky.		- 20 - - 40 -	Links of Links of the state of	The same of the sa	CPS				647.458		Commence of the second of the		E SO THE WAY WAY THE W	
											•				•			:	•	

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA GROUNDWATER AND ENGINEERING SECTION

PLAN No. 93-144

		(0)	157	RU	CTION DETAILS				UNDWA	TER A	VALYS						RECHARGE POTENT		
CRC	.ING	MET	HOC). AW	ABLE TOOL	DEPTH TO WATER	1 -	PTH TO		nel.0		TOTAL DISSI SOLOS					NIT No. 6628390WW N 873, HUNDRED OF		
MUD	AE T	ESISTN	/ITY. 7/12	TYP1 /92		(UT (m)	S.W	L (m) I	m [®] /dey	Method of Test SEE PAGE		p/kre And	yses W. No.				ifield, adelaide)		
TOTA	٩L	DEPTI	٠.	35	. , . m												SURFACE ELEV.		•
HOLE	: n	MAMET	FR		mm From (m) Ta (m) 200 0 35	REMARKS	₃										LES DATE 10/12/		
	_																WEL	L SYMBO	LS
CASI	NG enti	DIAM ed)	ETE	1	80 0 35				<u> </u>	•	EOPHY	/SIC5				$\overline{}$		î.	
CASI	NG	DIAM	ETE	1		TYI	E OF	LOG	GAMMA	NEUTRON	S.P.	CALPER	DENSITY	TEMP.			Cesng seel	1 1	Slotted casing
		nted)	11.8		_80 6 10	DATE (Casng shoa	88	Cemented Interval
SLOT	TE	DETA D CAS	SNO		28 35	LAST	READI	VG (m)	34	35						=	_	N H	, , , , , , , , , , , , , , , , , , , ,
						RECORD	DED B	IY .	ــــــــــــــــــــــــــــــــــــــ								Wre wound so	reen A U	, Grevel packed inter-
															•				,
DO7	15	: 교 수	Г				ø	Î							•				
0	٥	DAT			LITHOLOGY		201				G	AMMA					NEUTRON		
2	瓦	2	L	τ.	·		5	DEPTH		0			150 		0 ·			400	0
	X	AND LI	١	E	DESCRIPTION		гтно.	핌				CP8	•				срв .		
	╁	-/=	₽	۲	U-2m BLACK TOP SOIL grey-red brow	wh, stiff.	147.7	┝╍┿											
H			l		2-6m SANDY CLAY mottled grey and red-brown, stiff, 50% medium sand.	green-grey					3						*		
			l	ŀ	red-orown, stiff, but medium sand.						_						3		
			l		6-10m SANDSTONE Quartz, solid, grad coarse sand-fine gravel and clay at bas	ding to	::::				-5			•			5		•
	1		l	-		* [<u></u>					- 		
П	T	7		٠.	10-12m CLAYEY SAND fine.														
	l				12-22m CLAY white, minor brown-red to mottling, very stiff, includes 10% coarse gravel or fine sand.	1erruginous					3	F					\$		
1			l		gravel or fine sand.							差					}		
1	l		l													•	<u> </u>		
1-1	╀	4	l					20 1	· .			E					3		
					22-24m SAND AND CLAY fine sand.						_	<u> </u>				5	<u> </u>		
											_	-1			*	٠			
П	1		ı	1	24-30m CLAY green-yellow laminated, ferruginous bands, stiff, coarse gravet ba								<u> </u>					-	
I		- 1	L			ŀ						=							
H	+	\dashv	l		30-35m CLAY green, grey, orange, yet mottled, stiff, coarse gravel bands.	dow	•	\vdash				-	<u> </u>		- 1				 -
	1		l		mothed, sun, coarse graves bands.								•						
Ц	ı		l									-	•		j				
			1																
	\perp		1														•		
	T]						-40											*
			ı					.											
	1	- 1	1	1													•		
		- 1	ı												*		•		

APPENDIX B - SALINITY DATA AND FULL ANALYSIS

Table B1. Salinity data during drilling of well 6628-16185

Depth	n(m) Date	salinity(n	ng/L) pH	W No
53	5/12/92	1384	7.79	W5658/92
60	5/12/92	1389	8.24	W5659/92
69	5/12/92	1563	7.97	W5660/92
75	5/12/92	2114	7.88	W5661/92
80	5/12/92	2488	7.95	W5662/92

Table B2. Salinity data during pre - injection discharge tests on well 6628-16185

Time ((mins) Date	salinity((mg/L) I	H V	V No
consta	nt discharge	<u>test</u>			
180	5/1/93	2448	7.25	W270	5/93
300	5/1/93	2527	7.25	W2707	7/93
350	5/1/93	2573	7.28	W2708	3/93
400	5/1/93	2613	7.45	W2709	9/93
450	5/1/93	2641	7.45	W2710)/93
500	5/1/93	2652	7.34	W271	1/93
550	5/1/93	2669	7.42	W2712	2/93
600	5/1/93	2669	7.35	W2713	3/93
step di	rawdown tes	<u>t</u>			
Step 1					
5	11/1/93	1714	7.20	W2725	/93
60	11/1/93	2086	7.23	W272	5/93
100	11/1/93	2227	7.38	W272	7/93
Step 2	;	·			Į.
80	11/1/93	2391	7.24	W272	8/93
Step 3				•	,
30	11/1/93	2476	7.26	W272	9/93
100	11/1/93	2556	7.21	W273	0/93
Step 4	.				
10	11/1/93	2567	7.28	W273	1/93
30	11/1/93	2596	7.32	W273	2/93

Table B3. Salinity data during post - injection discharge tests on well 6628-16185

Time ((mins) Date	salinity	(mg/L)	pH W N
consta	nt discharge	test 3/2/9	93	
0 -	3/2/93	385	7.88	W2915/93
30	3/2/93	772	7.01	W2916/93
60	3/2/93	772	7.04	W2917/93
90	3/2/93	777	6.90	W2918/93
120	3/2/93	783	7.05	w2919/93
180	3/2/93	810	6.90	W2920/93
240	3/2/93	832	7.06	W2921/93
300	3/2/93	860	6.91	W2922/93
360	3/2/93	882	6.94	W2393/93
<u>consta</u>	nt discharge	test 9/2/9	<u>93</u>	
0	9/2/93	1044	6.87	W2960/93
60	9/2/93	1044	6.96	W2961/93
120	9/2/93	1032	6.93	W2962/93
180	9/2/93	1066	7.03	W2963/93
240	9/2/93	1088	7.03	W2964/93
300	9/3/93	1105	7.01	W2965/93
360	9/3/93	1121	6.99	W2966/93
420	9/2/93	1144	6.99	W2967/93
480	9/2/93	1172	7.04	W2968/93
540	9/2/93	1199	7.08	W2969/93
600	9/2/93	1233	7.13	W2970/93

Water Analysis Report

Job No. 3AD0187

Method WAT 2 Page W1

Sample ID. W2714/93

!	Chemical Co	mpositio	on	Derived Data	!
		mg/L	me/L	me	;/L
Cations Calcium Magnesium Sodium	\ <i>/</i>	33.6 60.9 833.0	1.68 5.01 36.23	II. Dabba di zidi	44 50
¦Potassium ¦	(K)	15.0	0:38	1 10 0000 1101	34
Anions Hydroxide Carbonate Bi-Carbonate Sulphate	(OH) (CO3) (HCO3) (SO4)	363.6 316.0	5.96 6.58	Non-Carbonate Hardness	98 36 98
Chloride	(C1)	1210	34.09	Totals and Bala	ince
Nitrate	(NO3)	<0.1		Cations (me/L) 43.3 Diff= 3. Anions (me/L) 46.6 Sum = 89.	32
Other Analys	ses				70%
				Remarks	1.170;
				600mins. IMBALANCE UNKNOWN.	1
Reaction - r Conductivity (micro - Resistivity	r (E.C) -S/cm at 25°C		6.9 4720 2.12	Note: mg/L = Milligrams per li me/L = MilliEqivs.per li	

Name: Address:	Ms S.TYRTEOS DEPARTMENT OF MINES		
	191 GREENHILL ROAD PARKSIDE S.A	Point Time Goo mans. Interval Geologist	
Date Collect Date Receiv	ed 21-1-93	Depth 45M	

APPENDIX C - WELL AND AQUIFER DISCHARGE AND INJECTION DATA

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

† DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NOTTHFIELD DE	CORLOPMENT
	TOP OF CASING (TOC) ABOVE GLOSS (m)
HUNDRED	WATER LEVEL BELOW TOC AT START! (m)
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT
WELL OPEN/SLOTTED/SCREENED From 45 to 5(m)	STOPPED ATON//

Note: Use black ball pen and fill in form completely.

CONSTANT DISCHARGE TEST

TIME	DRAWDOWN	S CONTICONE	DI	SCHARGE	
(Mins after Start)	(m o r Kpa)	Meter Readings	Difference	Rate in	Renmarks
0.0	0.0				
/	1.25		·	& L/S	·
2	1.45				
3	1-65				
4	1-75				
5	1-85		·		·
6	1-95			· <u> </u>	
7	2.04				
8	2.14		_	·	
9	2.18		·		
10	2.15				
12	2.40			·	
14	2.52				
16	2.61				
18	2-70				
20	2.79				
22	2.85				
24	2.92				

Test	performed	by	• • • • • • • • • • • • • • • • • • • •	Analysed	bу	
------	-----------	----	---	----------	----	--

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

DRILLING & MECHANICAL BRANCH

Well No. 628-16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVELOPPIENT
,	TOP OF CASING (TOC) ABOVE GL (m)
HUNDRED	WATER LEVEL BELOW TOC AT START/4:35 (m)
SECTION	
WELL OPEN/S LOTTED/SCREENED From 45:5. to . & . 5. (m)	PUMP STARTED ATON (6/ /2/ ?2
From 45:5. to .60.5.(m)	STOPPED ATON//

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DISCHARGE						
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in <u>kl/hr</u> L/S	Renmarks				
0.0	0.0								
26	3-00	·							
28	3.05								
30	3-12			(
35	3-26								
40	3-38				:				
45	3.50		·						
200	3.60								
55	3.69								
60	3-77	·							
70	3.93								
80	4.07								
90	4.20								
100	4.32								
/20	4.49								
140	4.67			·					
170	4.85	·							
180	4.92	:							

Test performed by Analysed by

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

DRILLING & MECHANICAL BRANCH

Well No 6628 -16 (8)
PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD DEC	KLUPPIENT
· · · · · · · · · · · · · · · · · · ·	TOP OF CASING (TOC) ABOVE GL.O.58.(m)
HUNDRED	WATER LEVEL BELOW TOC AT START (4.35 (m)
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/S LOTTED/SCREENED From 45.5 to 80.5(m)	PUMP STARTED AT ON 16 / 12/92
From 45.5. to	STOPPED ATON//

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DISCHARGE					
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in k1/h2/s	Renmarks			
00	00							
200	5.04							
250	5-31			8 4/5				
300	5-33			8 4/5				
350	5-72	· · · · · · · · · · · · · · · · · · ·						
400	5-91							
450	6-06							
480	6-15							
END TE	DT							
·	•			·				
			•		,			
		<u>-</u>						

Tr		•					•
iest	performed	bν	••••••	Analysed.	hv		
		- /		7.11.a.1) 50 a	υ,		
						_	

DRILLING & MECHANICAL BRANCH

Well No. 628-1685
PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHTIELD DEVA	ELOPINENT
HUNDRED	TOP OF CASING (TOC) ABOVE GL(m) WATER LEVEL BELOW TOC AT START/*//2(m) PUMP SETTING BELOW TOC(m) PUMP STARTED ATON 5/./ 93 STOPPED ATON 5/./ 93
, , , , , , , , , , , , , , , , , , ,	STOTIES RIVER SONT ON TO STOTE SONT ON THE STOTE

Note: Use black ball pen and fill in form completely.

CO	NSTANT D	DISCITATE		ST	
TIME	DRAWDOWN		DI	SCHARGE	
(Mins after Start)	(m o r Kpa)	Meter Readings	Difference	Rate in kl/hr/s	Renmarks
00	00			19-94-4/5	
1	-				
2					
2.5	5-350		·		
3	5.570				
4	6-125		·	,	·
.5	6.410				
6	6-705				
7	6.940			,	
8	7-280				-
9	7.455		· .	· · ·	·
10	7.585			19.99 45	
/2	7.990				·
14	8.200				·
16	8-445			20.1545	
	8.810				
20	9.070				
22	9.250				

Test performed by Analysed by

Sheet ./... of ...

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16/85 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD DE	TUELUMENT	
	TOP OF CASING (TOC)	
HUNDRED		
WELL OPEN/S LOTTED/SCREENED	PUMP STARTED AT 1:39	۶.ON ۴./ ./
From 45:5. to 50:5(m)	STOPPED AT 20.70	r.ON-5./ J. / . ?3

TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m or -Kp a)	Meter Readings	Difference	Rate in k l/ hrz/s	Renmarks
00	0.0	,			•
24	9-450			19-99 4/5	. ,
26	9.660				•
28	9.830				
30	10.010			20.1045	
35	10-385			•	
40	10.790			20.0645	
45	10.970			20.06.45 19.97.45	
55	11.305				
& 0	11.470				
70	11.770				
<i>&</i>	11.920				
90	12.105				
100	12-300				
/20	12-580				
140	12.835	·			
160	13.025				
180	13-166				

Toct	nonformed.	1				•	
1626	performed	оy	 •	Analysed by	y	• • • •	
						2	. 15
					Chaat	~	of U

DRILLING & MECHANICAL BRANCH

Well No 6628 - 16/85 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER:		
·	TOP OF CASING (TOC) ABOVE	GL(m)
HUNDRED	WATER LEVEL BELOW TOC AT S	TART/::/72-(m)
SECTION	PUMP SETTING BELOW TOC	(m)
WELL OPEN/S LOTTED/SCREENED	PUMP STARTED AT . ON .5.	7.11.73
WELL OPEN/S LOTTED/SCREENED From F.J. to	PUMP SETTING BELOW TOC PUMP STARTED AT	1.1.1.93

TIME	DRAWDOWN		DI	SCHARGE	
(Mins after Start)	(m or -Kpa)	Meter Readings	Difference	Rate in kl/hr44	Renmarks
0.0	00			,	
200	13.370			20.35	
230	13.605			19.65	
300	14-035			19-63	
350	14.390			19.63	
400	14.650			19.52	
450	. 14.925			19.63	
500	15.160			19-68	
550	15.370			19.36	
600	15.585			19.70	
END	TRST				
			Q =	19-63 4/5	ar last 400 reine
				1	
				- ·····	
			·		

Test	performed	bу	•••••••	 Analysed	bу			
					c	Shoot	3	of 5

DRILLING AND MECHANICAL BRANCH

6628-16185 PRODUCTION/OBSERVATION

WATER WELL RECOVERY TEST

PROJECT/OWNER: NONTHFIELD DEVELOPMENT

AVERAGE PUMPING RATE

TEST TYPE: Pump/Air-Lift/

PUMP STOPPED AT 4.30 ... ON 5.

Bailer STAGE NO .:

Note: Use black ball pen and fill in form completely. RECOVERY

Minutes after				Н					
•	pump	pump art(t) Stop(t)		RESIDUAL	Minutes pump	Minutes after pump		RESIDUAL	
	Start(t)			DRAWDOWN	Start(t)	Stop(t)	t t	DRAWDOWN	
	601	/	601	10.670	645	45	14	5.520	
	602	2	301	10-050	650	50	13	5.310	
-	603	3	201	9.700	655	55	12	5.230	
	604	4	151	9-395	660	60	11	5.105	
_	605	5	121	9.090	670	70	10	4.865	
	606	6	101	8.900	680	80	8.5	4.690	
	607	7	£7	8.670	690	90	8	4.555	
	608	8	76	8.500	700	100	7	4.390	
	609	9	68	8.320	. 720	120	6	4.200	
, l	610	10	61	8.160	740	140	5.3	4.030	
`. `Y) 612	/2	51	7.860	760	160	4.8	3-870	
-	614	14	44	7.570	780	180	4.3	3-720	
ļ	616	16	39	7-370	800	200	4.0	3.620	
-	618	18	(3)4	7.175	850	250	3.4	3-350	
-	620	20	31	6.950	900	300	3-0	3.180	
+	622	22	28	6-790	950	350	2.7	2.985	
+	624	24	26	6.640	1000	400	2.5	2.855	
-	620	26	24	6.510	1050	450	2.3	2.735	
-	628	28	22	6.390	1100	500	2-2	2.630	
-	630	30	2/	6.270	1150	550	201	2.525	
F	635	35	18	5.930	1200	600	2.0	2.440	
L	640	40	16	5.710	1250	650	1-9	2.357	
1									

sheet 4 of 5

Performed by Analysed by

DRILLING AND MECHANICAL BRANCH

PRODUCTION/OBSERVATION

WATER WELL RECOVERY TEST

NURTHFIELD DEVELOPMENT PROJECT/OWNER:

TEST TYPE: Pump/Air-Lift/

AVERAGE PUMPING RATE 19-63 L/1 k1/hr
PUMP STOPPED AT 10:30 pm. ON 5./1./93.

Bailer STAGE NO .:

RECOVERY MEASUREMENTS

STOPPED AT 10.33 19.7. ON 11.1.1.93

Note: Use black ball pen and fill in form completely.

	Minutes after pump		t	t RESIDUAL DRAWDOWN		Minutes after pump		RESIDUAL
(Start(t)	Stop(t)	⁶ 1	DRAWDOWN	Start(t)	Stop(t)	t t	DRAWDOWN
	1300	700	1.85	2.290				·
	1350	750	1-80	2-210				
	1400	800	1-75	2.140				
	1450	850	1.70	2-065				
_	1500	900	1-66	2-000				
	1890	1290	1.46	(.545				
	2610	2010	1-29	1-150				
	3330	2730	1-22	0.915				
	4050	3450	1-17	0.760		***************************************		
	4770	4170	1.14	0.595				
	5490	4890	1-12	0.535				
	6990	6390	1:09	0-400				<u> </u>
	8520	7920	1.08	0.310				
	7	END RE	COVER	5				
L								
	·		•					
				 				
				L			net 50	7

Sheet 5 of 7

Performed by .

... Analysed by

11.20

DRILLING & MECHANICAL BRANCH

Well No. 6628-16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD)	DEVELOPMENT
	TOP OF CASING (TOC) ABOVE GL(m)
HUNDRED	TOP OF CASING (TOC) ABOVE GL(m) WATER LEVEL BELOW TOC AT START/4-42(m)
SECTION	PUMP SETTING BELOW TOC(m)
WELL OPEN/ SLOTTED/SCREE NED From チェー、to <i>を</i> のよ…(m)	PUMP STARTED AT ON!./!/?3
From 43.7 to \$P.5(m)	STOPPED AT .5 ON !! . / J. / .5.3

>1 EP	2109	ROLLAN	1651
			

1	EP DIOTO		1831		<u> </u>
TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in k1/h r4/s	Renmarks
00	0.0			,	
/	1.015			6.5 4/5	STEP 1
2	1.095				·
3	1.200				
. 4	/·335 ·				
5	1.415				
6	1-490				
7	1-555	,		·	
8	1-615				
9	1.665			·	
10	1-705		·	6.5 4/5	
12	1.775				
14	1.830				
16	1.910		·		
18	1.955		·		
20	2.000.			6.5 45	
22	2-030				
24	2.050				

· .		_		•		•
Test	nerformed	hv	• • • • • • • • • •	Analycad	har	
	performed	Uy		 Analyseu	Uy	
					•	
	•			•		_
					1	フ

DRILLING & MECHANICAL BRANCH

Well No 6628 - 1685 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVELOPPRENT
	TOP OF CASING (TOC) ABOVE GL(m) WATER LEVEL BELOW TOC AT START/4:42(m)
HUNDRED	WATER LEVEL BELOW TOC AT START/4:42 (m)
SECTION	PUMP SETTING BELOW TOC(m)
WELL OPEN/SLOTTED/SCREENED From .4.5. to	PUMP STARTED AT ON (1/1/5)
From .45.5. to .6 (m)	STOPPED AT. Spr. ON /// / ??

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m or Kp a)	Meter Readings	Difference	Rate in <u>kl/h</u> r45	Renmarks
0.0	00		,		-
26	2-120				
28	2.145				
30	2-170				
35	2 · 415			6.545	
40	2.415				
4-5	2.620'				
50	2.795	·			
55	2.825		ı		
60	2.860				
70	2.925				
so	z.030				
90	3.095				
100	3-180		·	6.5 45	
101/1	4.025				STEP2
102/2	4.085				
103/3	4.170				
104/4	4.235				

Test performed by Analysed by

Sheet of

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16685.
PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NOW FIRED DE	? VECOPULENT
	TOP OF CASING (TOC) ABOVE GL(m)
HUNDRED	WATER LEVEL BELOW TOC AT START/4.42(m)
SECTION	PUMP SETTING BELOW TOC(m)
WELL OPEN/SEOTTED/SCREENED	PUMP STARTED AT. // A. ON. // /. / 93
From 45.5. to 80.5(m)	STOPPED AT . 5 ON

TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m o r Kp a)	Meter Readings	Difference	Rate in k1/hr	Renmarks
00	00				
105/5	4.270	·			
106/6	4.345				
7/701	4-360	·			
108/8	4.420				
109/9	4.440		·		
110/10	4.475			10.845	
112/12	4.540	·			
114/14	4.580			·	·
116/16	4.675				
118/18	4.680	·	,		
120/20	4.730			10.8 4/5	
122/22	4.730				
124/24	4.815				
126/26	4.835				
128/28	4.850				
130/30	4.855			·	
135/35	4.900				

						•			
Test	performed	bу	• • • • • • •	,	 • • • •	Analysed	bу	• • • • • • • • • • • • • • • • • • • •	
					•				·

DRILLING & MECHANICAL BRANCH

Well No 628 ~ 1618 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVALOPPIENT	
	TOP OF CASING (TOC) ABOVE GL WATER LEVEL BELOW TOC AT START	(m)

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m or Kp a)	Meter Readings	Difference	Rate in <u>-kl/h</u> r	Renmarks
00	00				
140/40	4.985			10.845	
145/45	5.035				
150/50	5.105				
155/55	5.155				·
160/60	5.185			10.84/5	
170/70	5.280				
180/80	5-330				
190/90	5.385		·		
200/100	5.485		·	10.8 4/5	·
201/1				15.3 4/5	STEP 3
202/2	7.070				
203/3	7-145		·	•	
204/4	7.200				
205/5	.7-255				
206/6	7-33				
207/7	7-39				
208 8	7.40				

Test performed by Analysed by

Sheet 4... of .7.

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NONTHFIELD I	DEVELOPPERNT
HUNDRED SECTION WELL OPEN/SLOTTED/SCREENED From #5.5 to	TOP OF CASING (TOC) ABOVE GL(m) WATER LEVEL BELOW TOC AT START (m)

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m o r Kpa)	Meter Readings	Difference	Rate in kl/hr 仏	Renmarks
0.0	00				
209/9	7.485				
210/10	7.495	•	4.	15.34/5	
212/12			·		·
~214/14	7.670				
216/16	7.730				
218/18	7.770				
2.20/20	7-855				
222/22	7.880			·	·
224/24	7.955				
226/26	8.005	٠			
228 /28	8.035				
230/30	8.075		• .	15-34/5	
235/35	8-155				
240/40	8.215		·		
245/45	8-265				
250/50	8-355	·			
255/55	8.450				

Test performed by Analysed by

Sheet of .7.

DRILLING & MECHANICAL BRANCH

Well No. 6628-16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD D	WELGIEN /
	TOP OF CASING (TOC) ABOVE GL(m)
HUNDRED	WATER LEVEL BELOW TOC AT START! (m)
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT 11.99. ON 11/1/93
From 45:5. to 85:5. (m)	STOPPED AT .5 pr ON 16/1./.73

TIME	DRAWDOWN		DISCHARGE					
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in kl/hr (Renmarks			
0.0	0.0							
260/60	8.510		·	15-34/5				
270/70	8.595							
280/80	8-715							
290/90	8.835	·			·			
300/100	8.915			15.3 4/5				
301/1				25.245	STEP4			
302/2								
303/3	13.635		ر) محم		·			
304/4	13.980							
305/5	14.080			·				
306/6	14.245							
307/7	14.150			,				
308/8	14.550							
<i>3</i> 09/9	14.630							
310/10	14.745			25.14				
3/2/12	15.000							
314/14	. : 15.175							

Test	performed	bу	• • • • • • • • • • • • •		Analysed	bу			
			•	•					
						(Sheet	6	of C

DRILLING & MECHANICAL BRANCH

Well No. 6628 ~16/85 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD	DEVELOPMENT
	TOP OF CASING (TOC) ABOVE GL(m) WATER LEVEL BELOW TOC AT START/ (m)
SECTION	PUMP SETTING BELOW TOC (m)
WELL OPEN/ SLOTTED/SCREE NED From St. to	PUMP STARTED AT // ON!!/!/./.?
From (m)	PUMP STARTED AT 11973. ON 11. 1. ON 11.

Note: Use black ball pen and fill in form completely.

	····	,	·				
TIME	DRAWDOWN		DISCHARGE				
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in	Renmarks		
00.	. 00						
316 /16	15.305						
318/18	15.50						
320/20	15.595		,				
322/22	15.755			·			
324/24	15.860	•	·				
326/26	15.990						
328/28	16.090				-		
330/30	16-120			25.245			
335/35	16.360						
340/40	16.520				,		
345/45	. —						
350/50	16.835						
355 /55			·				
360/60	17.035			25.24			
END	TEST.						
		·			·		

, DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVELOPMENT
	TOP OF CASING (TOC) ABOVE GL. (3.(m)
HUNDRED	WATER LEVEL BELOW TOC AT START 15:14(m)
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/S LOTTED/SCREENED	PUMP STARTED AT 5.30 ON (5/// 93
From 45.5. to . 60.5(m)	PUMP STARTED AT STOPPED AT STOPPE

Note: Use black ball pen and fill in form completely.

INJECTION TEST BRAWDOWN-HEAD TIME DISCHARGE (Mins after Meter Rate in Difference (m or Kpa) Renmarks -k1/hr-4/s Start) Readings 00 -0.0 mains hand 15m l 5-97 22.5 L/S 6.61 1.5 6.99 2 6.99 2-5 3 7.30 3.5 7.49 7.64 4.5 7.82 5 7.92 rams hard 15 m 22.5 4/5 5.5 8-07 6 8.21 6.5 8.32 8.41 7 7.5 8.49 8.62 8 8.5 8.71

T 4						the state of the s
ιesτ	performed	hν	••••••••	Analysed	hv	
		٠,		Analysed	υy	•••••••
			•			•

8.80

Sheet .!... of .?

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 1665
PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NONITHFIELD DE	EVELOPMENT	
	TOP OF CASING (TOC) ABOVE	GL/:3.(m)
HUNDRED	WATER LEVEL BELOW TOC AT S	TART 1514 (m)
SECTION	PUMP SETTING BELOW TOC	.(m)
WELL OPEN/S-LOTTED/SCREENED	PUMP STARTED AT 5.30 ON .4	7.1/83
From \$5.5. to \$0.5(m)	PUMP STARTED AT .5.30 ON .9. STOPPED AT	11.183

TIME	DRAWDOWN HEAD	DISCHARGE				
(Mins after Start)	(m e r Kp a)	Meter Readings	Difference	Rate in k1/hr2/s	Renmarks	
00	00	·	·		·	
9.5	8.90					
10	8.97			22.5 C/s	Mais head 15m	
	9.11			. `		
12	9.27					
13	9.38	·				
14	9.50					
15	9.60					
. 16	9-72					
17	9.81	·				
18	9.89				·	
20	10.06			22.56/5	mains head 15m	
22	10-21			-		
2←	10 · 33			,		
26	10.44				·	
28	10.56					
30	10.66	·				
32	10.74					

Test performed	by	• • • • • • • • • • • • • • • • • • • •	Analysed	bу			
					Shoot	2	.9

DRILLING & MECHANICAL BRANCH

Well No. 6628-1665
PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD I	DEVELOPAIENT
	TOP OF CASING (TOC) ABOVE GL
HUNDRED	WATER LEVEL BELOW TOC AT START (5:1/4(m)
SECTION	PUMP SETTING BELOW TOC (m)
WELL OPEN/ SLOTTED/SCREENE D	PUMP STARTED AT 530 ON 5 / 1 / 13 STOPPED AT 1/304 ON 6 / 1 / 13
From \$5.5. to \$9.5(m)	STOPPED AT 1/30Am ON 18-1/193

TIME	DRAWDOW N	DISCHARGE					
TIME	BRAWDOWN HEAD		-				
(Mins after Start)	(m or -Kp a)	Meter Readings	Difference	Rate in k1/h r 4/ s	Renmarks		
00	0.0		·				
34	10-84						
36	10.93	·					
38	11.02						
40	11-14			22.545	mans had isn		
45	11.39		,	22.54/5	mans hand ism		
50	11.59	·	• -	,			
55	11.79						
60	11-95						
70	12.30						
&	12.53			22.545			
90	12.79						
100	12.97			22.15			
130	13.51		`	22.13	mans head 17m		
140	13.72	·					
150	13.57	·		22.10			
160	14.03						
170	14-14			22.07	mans had 19m		

Test	performed by	 		Analysed	by		
	• •					7	
	•		,		Sheet	3	of /

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16(8) PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: WORTH FIELD DA	= UELOPMENT
	TOP OF CASING (TOC) ABOVE GL. (m)
HUNDRED	WATER LEVEL BELOW TOC AT START /5/4 (m)
SECTION	PUMP SETTING BELOW TOC (m)
WELL OPEN/S LOTTED/SCREENED	PUMP STARTED AT 5.300 ON 151 1193
From 45.5. to	STOPPED AT 11:30 Am ON 14/1/93

Note: Use black ball pen and fill in form completely.

TIME	BRAWDOWN.	DISCHARGE			
(Mins after Start)	(m o r Kpa)	Meter Readings	Difference	Rate in kl/hr c/s	Renmarks
0.0	0.0	·			
(80	14.22				
190	14.35				
200	14.44		•		
230	14.76				
240	14.85				
250	14.95			22-0745	Main's head 19 m
280	15.14	•	•	22.07 US	now heed 19 m
420	15.94		`	22-0745	rans head 19m
450	16.04			22.045	
500	16.44			22.04/5	roms hard 20 m
550	16.74			22.045	
600	16:94			21.96 4/5	mans head 20m
650	17.14		,	22.0 L/S	
700	17.24			21.96 4/5	
750	17.34			21.96 6/5	
800	17-64			21.96 4/5	
850	18.04			22·0 Us	Mans hard 21m

DRILLING & MECHANICAL BRANCH

Well No GG28-/6(85) PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD DEC	VELOPPENI	
	TOP OF CASING (TOC) ABOVE	GL (m)
HUNDRED		
SECTION	PUMP SETTING BELOW TOC	(m)
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT ON ON	7.4/. <i>93</i>
From 45.5 to 80.5 (m)	STOPPED AT 1/30AM ON !	11.1.93

Note: Use black ball pen and fill in form completely.

•	,	•			
TIME	DRAWDOWN HEAD	·	DI:	SCHARGE	
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in k l/hr 4/s	Renmarks
00	0.0				
900	18-14			21-96 45	·
950	18-14			21-90 45	
1000	18-14		·	21.68 45	Mans Lead 2/n
1050	18.24	3		21.77 45	
1100	18.64			21.73 45	rans head 2/m
1150	18.89			21.68 45	Mus hard 21.5 m
1200	19.14			21.77 4/5	runs hand 21.5 m
1250	19-14	o e e		21.6445	ros hand 21.75m
1300	19.44		Jump:	21-9445	Mans hand 22 m
1350	20.89		ales "	23.4 4/5	Mars head 26 m
1400	21.14			23.4 45	Mars hard 26.5 m
1450	21.24			23.3 4/5	Mas had 265 m
1500	21.24			23-2 45	Mans head 26.5m
1550	21.44			23 1845	Mens head 26m
1600	21:44			23./4/1	Mas herd 26n
1650	21:64			23-34/5	Mars had 265 m
. 1700	21-84		·	23-35-4/5	mas had 26.5 m

Test performed by Analysed by

Q = 21.94s

DRILLING & MECHANICAL BRANCH

Well No. 6628-1618S PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NONTHELECO O	EVELOPMENT
	TOP OF CASING (TOC) ABOVE GL (m)
	WATER LEVEL BELOW TOC AT START! (m)
SECTION	PUMP SETTING BELOW TOC(m)
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT 5322. ON 571.1.93
From 45.5 to 80.5 (m)	STOPPED AT 11:30 AM ON 18/1/93

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN_ HEAD		DISCHARGE			
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in kl/hr/s	Renmarks	
0.0	00·		·	• .		
1750	22.04	,		23.404/5	Mans heard 26.5m	
1500	22-04			23.46 45	Mars head 27 m	
1850	22-04			23.4 4/5	News head 27m	
1900	22.14	,		23.34-45	Mars hand 27 m	
1950	22.24		-	23.31 45	Par hard 27m	
2000	22.34		·.	23.32 45	Mais head 27.5 m	
2100	22.34			23.44-Us	Mus head 275 m	
2200	22-39			23.4545	Masherd 27.5 A	
2300	22.64	·		23.44 LB	Mars hand 27.5 m	
2400	22.74			23.34 45	Mas hand 27-5m	
2500	22.94			23.25 Ys	Mes hard 28 m	
2600	23.24			23.3 L/S	Mars hard 28 m	
2700	23.34			23.24-45	Mrs Land 28 m	
2800	23-34	·		23·26 Us	Mushad 28n	
2900	23.44			23·2 Us	Mars Land Zon	
3000	23.44	·		23-04-45	Mus head 27.5m	
3100	23-64			23.2 Us	Mushand 28 n	

Test performed by Analysed by

Sheet .6.. of .7

DRILLING & MECHANICAL BRANCH

Well No. 6628-/668 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NONTHETELD	DEVELOPMENT
	TOP OF CASING (TOC) ABOVE GL (m)
HUNDRED	WATER LEVEL BELOW TOC AT START (m)
SECTION	PUMP SETTING BELOW TOC(m)
WELL OPEN/S LOTTED/SCREEN ED	PUMP STARTED AT 5.20 ON (5.7.1/.5)
From 45.5. to .80.5. (m)	STOPPED AT 1. Som. ON 18 / 1 / 93

Note: Use black ball pen and fill in form completely.

TIME DRAWDOWN (Mins after Start) (m or Kpa) Readings Difference Rate in H1/H2/J Renmarks 00 00 00 23-84 23-25 Us Paus land 26-5 n 3300 23-84 23-25 Us Paus land 26-5 n 3400 23-84 23-35 Us Paus land 26-5 n 3500 23-84 23-35 Us Paus land 26-5 n 3600 24-14 23-35 Us Paus land 29 n 3700 24-14 23-15 Us Paus land 29 n 3800 24-24 23-15 Us Paus land 29 n 3930 24-34 23-15 Us Paus land 29 n 23-35		7					_
Start) (m or kpa) Readings Difference 41/h 2/s Renmarks 00 00 00 23.84 23.25 Us Paus head 26.5 m 3300 23.84 23.25 Us Paus head 26.5 m 3400 23.94 23.35 Us Paus head 26.5 m 3500 23.94 23.35 Us Paus head 27 m 3700 24.14 23.35 Us Paus head 29 m 3800 24.24 23.15 Us Paus head 29 m 3930 24.34 23.15 Us Paus head 29 m 3930 24.34 23.15 Us Paus head 29 m 3930 24.34 23.02 Us Paus head 29 m 3930 24.34 23.02 Us Paus head 29 m 3930 24.34 23.02 Us Paus head 29 m END TEST. cet 3960	TIME	DRAWDOWN HEAD		DI	SCHARGE		
23.25 Us Pans head 265 m 3200 23.84 23.25 Us Pans head 265 m 3400 23.94 23.25 Us Pans head 265 m 3500 23.94 23.35 Us Pans head 27 m 3600 24.14 23.3 Us Pans head 29 m 3800 24.24 23.15 Us Pans head 29 m 3900 24.34 23.02 Us Pans head 29 m 3930 24.34 23.02 Us Pans head 29 m 3930 24.34 23.02 Us Pans head 29 m 3930 24.34 23.02 Us Pans head 29 m		(m o r Kpa)	.	Difference		Renmarks	
3300 23-84 3400 23.94 23.25-Us Mas head 28.5 m 3500 23.94 23.35-Us Mas head 28.5 m 3600 24.14 23.35-Us Mas head 29 m 3700 24.14 23.35-Us Mas head 29 m 23.15-Us Mas head 29 m 23.02-Us Mas head 29 m 23.23-Us	00						
3300 23-84 3400 23.94 23.25-Us Mas head 28.5 m 3500 23.94 23.35-Us Mas head 28.5 m 3600 24.14 23.35-Us Mas head 29 m 3700 24.14 23.35-Us Mas head 29 m 23.15-Us Mas head 29 m 23.02-Us Mas head 29 m 23.23-Us	3200	23.89			23.2545	Pars head 25.5 m	
3500 23.94 23.35 US May head 28.5 n 3600 24.14 23.35 US May head 29 m 3700 24.14 23.15 US May head 29 m 3800 24.24 23.15 US May head 29 m 3900 24.34 23.15 US May head 29 m 23.15 US May head 29 m 23.02 US May head 29 m	3300	23-84	·		23·25 L/S	Mend 285 m	
3600 24.14 23.35 45 Mars head 29 m 3700 24.14 23.3 45 Mars head 29 m 3800 24.24 23.15 45 Mars head 29 m 3900 24.34 23.15 45 Mars head 29 m 23.02 45 Mars head 29 m	3400	23.94			23.25-45	mes herd 285 m] •
3600 24.14 23.35 45 Mars head 29 m 3700 24.14 23.3 45 Mars head 29 m 3800 24.24 23.15 45 Mars head 29 m 3900 24.34 23.15 45 Mars head 29 m 23.02 45 Mars head 29 m	3500	23.94			23.35 45	May bend 28.5 m	
23.15 Us Mus hard 29 m 3900 24.34 23.15 Us Mus hard 29 m 3930 24.34 23.02 Us Mus hard 29 m Q=23 Us END TEST. at 3960	3600	24.14			•		
23.15 Us Mus hard 29 m 3900 24.34 23.15 Us Mus hard 29 m 3930 24.34 23.02 Us Mus hard 29 m Q=23 Us END TEST. at 3960	3700	24.14		·	23-3 4/5	mons had 29 m]
3930 24.34 23.024 Mushad 29m Q=2345 END TEST. at 3960	3800	24.24		. :] .
3930 24.34 23.024 Mus had 29m Q=234/3 END TEST. at 3960	3900	24.34			23.15 L/S	Mrs had En	
	3930	24.34			23-024	Mas had 29m	Q=234S
	END	TEST. at	3960				

Test performed by Analysed by

Sheet .7... of ...?

DRILLING AND MECHANICAL BRANCH

Well No. 628 - 16185
PRODUCTION/OBSERVATION

WATER WELL RECOVERY TEST

PROJECT/OWNER: NORTH FIELD DEVELOPURENT

TEST TYPE: Pump/Air-Lift/

STAGE NO.:

Bailer

AVERAGE PUMPING RATE kl/hr PUMP STOPPED AT 130.70...ON 16./1./93.

RECOVERY MEASUREMENTS

STOPPED AT (10) Am. ON 25/1/93

Note: Use black ball pen and fill in form completely.

RECOVERY Minutes after Minutes after RESIDUAL pump RESIDUAL pump HEAD (M) t $\overline{\mathsf{t}}_{\mathsf{1}}$ ŧ HEAD (A) MWOOWN Start(t) |Stop(t) DRAWDOWN. Start(t) Stop(t) 3960.5 0.5 7921 16.64 3982 22 181 11.56 3961 1.0 3961 15.64 3984 ... 24 166 11.44 3961.5 1.5 2641 15.54 3986 26 123.3 11.315 3962 1981 2.0 15.44 3988 28 142.4 11.170 3962.5 2.5 1285 14.74 3990 30. 133 11.06 3963 3-0 1321 14.54 3595 35 114.1 10.75 3963.5 3.5 1132-4 14.38 **4**00 40 100 10.55 396A 4.0 991 4005 14.25 45 89 10.25 3964.5 4-5 133 14-15 4010 50 80.2 10.16 3965 -5.0 793 4015 14.00 25 73 9.99 3966 6 661 13.75 4020 67 60 9.81 3967 7 566.7 13-63 4030 57.6 70 9-55 4040 80 50.5 9-365 40,50 90. 45 9-19 3968 ઠ 496 13.315 4060 40.6 9.00 100 3969 9 441 13.17 4020 8.685 120 34 3970 397 10 12.96 4100 140 8.405 29.3 3972 12 331 12.655 4120 160 8.205 25.8 39*74* 14 283.9 12-370 4140 180 23 8.00 3976 .16 248-5 12 - 135 4160 200 20.8 7.79 3978 18 11.96 221. 4210 7.375 250 16-8 3980 11.77 20 199 4260 300 14.2 7.020

Sheet 8 of 9

- Allenda

Performed by Analysed by

DRILLING AND MECHANICAL BRANCH

Well No. 6628 - 16185
PRODUCTION/OBSERVATION

WATER WELL RECOVERY TEST

PROJECT/OWNER: NORTHFIELD DEVALOPMENT

TEST TYPE: Pump/Air-Lift/

Bailer

AVERAGE PUMPING RATE k1/hr PUMP STOPPED AT 1/3 ON 18/1/193

STAGE NO.:

Note: Use black ball pen and fill in form completely.

Minutes after pump		<u>t</u>	RESIDUAL HEAD (m)	31	Minutes after pump		RESIDUAL	
(Start(t)	Stop(t)	<u>t</u>	DRAWDOWN	Start(t) Stop(t)		± t ₁	Head (m) Drawdown
	4310	350	12.3	6-70	5410	1450	3-7	3.16
	4360	400	10.9	6.41	5460	1500	3.6	3.085
	4410	450	9.8	6.145	5510	1550	3-6	2.925
	4460	500	8.9	5.88	5560	1600	3-5	2.905
_	4510	550	8.2	5.655	5940	1980	3.0	2.415
	4560	600	7-6	5-43	6690	2730	2.5	1.665
	4610	650	7.1	5-21	7230	3270	2.2	1.38
	4660	700	6.7	5-05	8100	4140	2.0	0-93
	4710	750	6-3	4.87	8640	4680	1.8	0.885
ا ر	4760	800	6-0	4.705	9500	5540	1.7.	0.430
, ~	4810	850	5.7	4.56	10980	7020	1-6	0.130
ļ	4860	900	5.4	4.41	12420	8460	1.5	-0.030
	4910	950	5.2	4.265	13950	9990	1.4	-0.245
L	.4960	1000	5.0	4.16				-0.240
	5010	1050	4.8	4.05				
	5060	1100	4.6	3-92				
	5110	1150	4.4	3-78			·	
	5160	1200	:4-3	3.675				
	5210	1250	4.2	3-55				
	5260	1300	4.0	3-44				
	5310	1350	3.9	3.35				
L	5360	1400	3-8	3-25				····
Ţ								

sheet 9 of 9

DRILLING & MECHANICAL BRANCH

Well No. 6628 - 1685 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: MORTHFEELD	DEVELOPMENT
PROJECT/OWNER.	TOP OF CASING (TOC) ABOVE GL. 0.9 (m)
HUNDRED	WATER LEVEL BELOW TOC AT START
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT 9.45 ON 3/2/32
From 45.5. to 65.5(m)	STOPPED AT 3.45/2. ON 3/2/93

Note: Use black ball pen and fill in form completely.

	CONS	TANT (DISCUTARCI	TEST	
TIME	DRAWDOWN		DIS	SCHARGE	
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in k1/hr c/s	Renmarks
00	0.0		·		
/	1.505			8 4/5	
٤	1.630		·		
3	1.750				
4	1.845				
5	1.945			·	·
6	1.995				• , .
7	2.050				
. 8	2.110				
9	2.170				
10	2-215			845	
/2	2-280				
14	2.355				
16	2. 405			·	
18	2 · 455				
20	2.520			8 4/5	
2.2	2 · 560		·		
24-	2.610				

Sheet of .?.

- DRILLING & MECHANICAL BRANCH

Well No. 6628 16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVELOPMENT	•
TROOLET / OWNER.	TOP OF CASING (TOC) ABOVE (1 0.9 (m)
HUNDRED	WATER IEVEL RELOW TOC AT ST	'ΔΡΤ /ς . 45 (m)
SECTION		
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT ?	/ 2 / 92
From to (m)	STOPPED AT 7:45 P. ON . 3	
rrom to till	SIUPPED AIT ON	<i>*•</i> / • • * • • • •

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN	DISCHARGE				
(Mins after Start)	(m or -Kpa)	Meter Readings	Difference	Rate in k l/hr / /c	Renmarks	
0.0	0.0	·				
ટલ	2.660					
28	2.690	·	·			
30	2.705			8 45		
35	2.775					
40	2.850	· .		8 45		
45	2.900					
50	2.950			8 L/S		
- 55	3.005					
60	3.035			8 6/5		
70	3.160			8 L/S		
80	3.235					
90	3.470	·		82/5		
100	3.545			84/5	•	
120	3.665					
140	3.790		:		·	
160	3.890					
180	3.960			·		

*DRILLING & MECHANICAL BRANCH

Well No.6628-16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD	DEVELOPMENT
,	TOP OF CASING (TOC) ABOVE GL (m
HUNDRED	
SECTION	PUMP SETTING BELOW TOC(m
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT ? 45.74. ON 3/2/.??
From 45.5. to . So.J. (m)	STOPPED AT. 3. 9

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DISCHARGE				
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in k1/hr 2/s	Renmarks		
0.0	00						
200	4.045						
250	4.230						
360	4.345		·		·		
350	4. 145						
360	4.475						
			,				
END TE	IST.	·					
			÷	·			
		·					
·							

Test	performed	by	 Analysed	bу	• • • • • • • •	

Sheet ...?. of.?

* DRILLING & MECHANICAL BRANCH

Well No. 6628-16185 PRODUCTION/OBSTRVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTHFIELD	DENELOPMENT
<u> </u>	TOP OF CASING (TOC) ABOVE GL (m)
HUNDRED	, WATER LEVEL BELOW TOC AT START Æ74. (m)
SECTION	
WELL OPEN/S LOTTED/SCREENE D	PUMP STARTED AT 75ON.9./2./.93
From 45:5 to \$0.5. (m)	STOPPED AT 5.50 A. ON 9. / 2. / 93

Note: Use black ball pen and fill in form completely.

CONSTANT DESCHARGE TEST DRAWDOWN DISCHARGE TIME (Mins after Meter Rate in Difference (m or Kpa) Renmarks k1/hr4/s Readings Start) 0.0 0.0 8 45 1 1.420 1.655 2 3 1. 730 4 1.800 5 1.880 6 1.950 7 2.015 8 2.070 9 2.110 8/45 2.160 10 12 2.240 14 2.320 16 2.365 18 2.435 2.485 82/5 20 2.535 22 2.580 24

• DRILLING & MECHANICAL BRANCH

Well No. 6628 - 16185 PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: MORTHFIELD	DEVIELAPMENT	
	TOP OF CASING (TOC) ABOVE	GL. <i>0</i> .9(m)
HUNDRED	WATER LEVEL BELOW TOC AT S	TART /5.76(m)
SECTION		
WELL OPEN/ SLOTTED/SCREENED →	PUMP STARTED AT?	/ .2 / .93
From \$5.5. to \$0.5(m)	STOPPED AT 5.50, P.M. ON .?	12/93

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN	DISCHARGE				
(Mins after Start)	(m or Kpa)	Meter Readings	Difference	Rate in kl/hr//s	Renmarks	
0.0	 00					
26	2.620		·			
28	2.650					
36	2-705		·	8 4/5		
35	2.765					
40	2.820			8 4/3		
45	2.875					
50	2.930					
55	3·000					
60	3.055			8 4s		
70	3.125					
şo	3.205					
90	3.270			8 L/S		
100	3.360		·			
/20	3.460			8 4/5		
140	3.570					
160	3.650	•		& <i>L/</i> s		
180	3.740					

• DRILLING & MECHANICAL BRANCH

Well No. 6628:16.185.... PRODUCTION/OBSERVATION

WATER WELL PRODUCTION TEST

PROJECT/OWNER: NORTH FIELD DEV	iel Comment
	TOP OF CASING (TOC) ABOVE GL?. ?. (m)
HUNDRED	WATER LEVEL BELOW TOC AT START (m)
SECTION	PUMP SETTING BELOW TOC
WELL OPEN/SLOTTED/SCREENED	PUMP STARTED AT 7.50 M. ON. ?/2./ ?3
From 45.5. to 80.1(m)	STOPPED AT <i>5:5???</i> .ON.9/.2/.93

Note: Use black ball pen and fill in form completely.

TIME	DRAWDOWN		DISCHARGE				
(Mins after Start)	(m o r Kpa)	Meter Readings	Difference	Rate in kl/hr4s	Renmarks		
0.0	0.0						
200	3.8/0			s L/s			
250	3.990						
300	4.145			84/5			
350	4.270						
400	4.385	· .		84/5			
450	4.505			·			
500	4.585			8 L/S			
550	4.680		·				
600	4.760			8 45			
END T	EST.						
	·						
		·					
				,			

APPENDIX D - GEOPHYSICAL SURVEY DISCUSSION A.R. DODDS

Report on Geophysical Surveys at Northfield, S.A.

Introduction

As part of a project to investigate drainage and recharge problems at Northfield, two PROTEM traverses were done to test basement topography and the characteristics of overlying sediments. Fieldwork was done on 26 November and 4 December 1992, concurrently with the drilling of two test bores.

Survey Details

The instrument used for this survey was a PROTEM 47S which is a Transient Electromagnetic (TEM) device designed to detect variations in ground conductivity in the top 50 metres below surface. A 50 metre square transmitter loop was used, with the receiver coil centred within it. Readings were taken at 50 metre intervals along two orthogonal lines, as shown in Fig. 1, for a total of 30 soundings.

The results were transferred to a computer and inverted to yield a section of ground resistivity variation with depth at each reading point. The inversions were generally fair to good, with a few failures, giving high confidence in the general features of the sections but lower confidence in some of the detail features.

Results

The results are presented as resistivity contour sections in Figs. D1 and D2. In general high resitivities, over 100 ohm-metres, indicate basement or dry sediments while low resistivities indicate higher water content and higher salinities. Clays can also yield low resistivities.

Traverse 1 (Fig. D1) shows high resistivities below 20 metres depth at the south end of the line, near Bristol Terrace, which the bore in this location confirms to be quartzite basement. Above this are three layers, with conductors (clays) at surface and between 10 and 20 metres and a resistor between 3 and 10 metres which may be related partly to the dry sand layer of interest. This is discussed further below. The gradual increase in resistivity between 20 and 40 metres reflects the weathering profile.

Basement evidently drops away quite sharply to the north, dropping below 50 metres by 650N. The near surface resistor thickens to 25 metres at 750N, and extends, thinning, to the end of the traverse, underlain by thicker conductive material. The resistor was originally interpreted as indicating the sandy

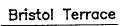
aquifer, but drilling indicates that the clay content is quite high, and it appears that the water table may be the controlling feature here. Thus this material would have a low enough clay content that water is not held in any great quantity.

A metre or two of near-surface conductor (clay) exists throughout the traverse.

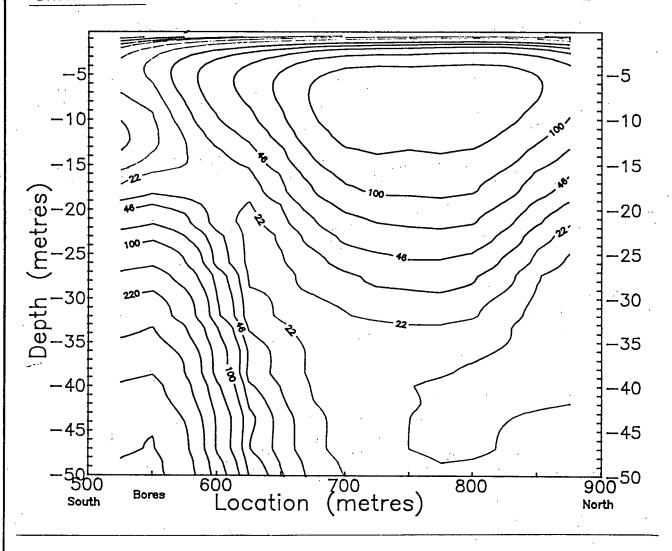
Traverses 1 and 2 cross at about the bore location - 400W on Traverse 2 and 600N on Traverse 1. Shallow basement in this area is shown, on Traverse 2, to drop away very sharply to the west, being over 50 metres below surface west of 500W. To the east, towards Sudholtz Road, it drops away more gently, and weathered basement probably exists within 35 metres at the east end of the traverse. Basement appears to be shallowest at 450W, about 50 metres west of the bores. Further west again there is little likelihood of fresh basement in the top 50 metres, but some weathered basement may be this shallow.

The shallow resistor, between 3 and 20 metres, is present over most of this traverse, and is most prominent between the bores and Sudholtz Road. Resistivities here exceed 1000 ohm-metres, and may well indicate that the clayey sands in the area of the bores is cleaner to the east. This layer peters out where basement is shallowest, occurring again further west but with lower intensity. This would indicate clayey-sand similar to that encountered in well 6628-16186. In this area the layer does not extend below 15 metres.

The conductor below this layer, between 15 and 30 metres depth, varies from highly conductive (less than 10 ohm-metres between 750W and 900W) to only mildly conductive at the east end. Whether this is caused by clay content or salinity is uncertain, probably a bit of both.

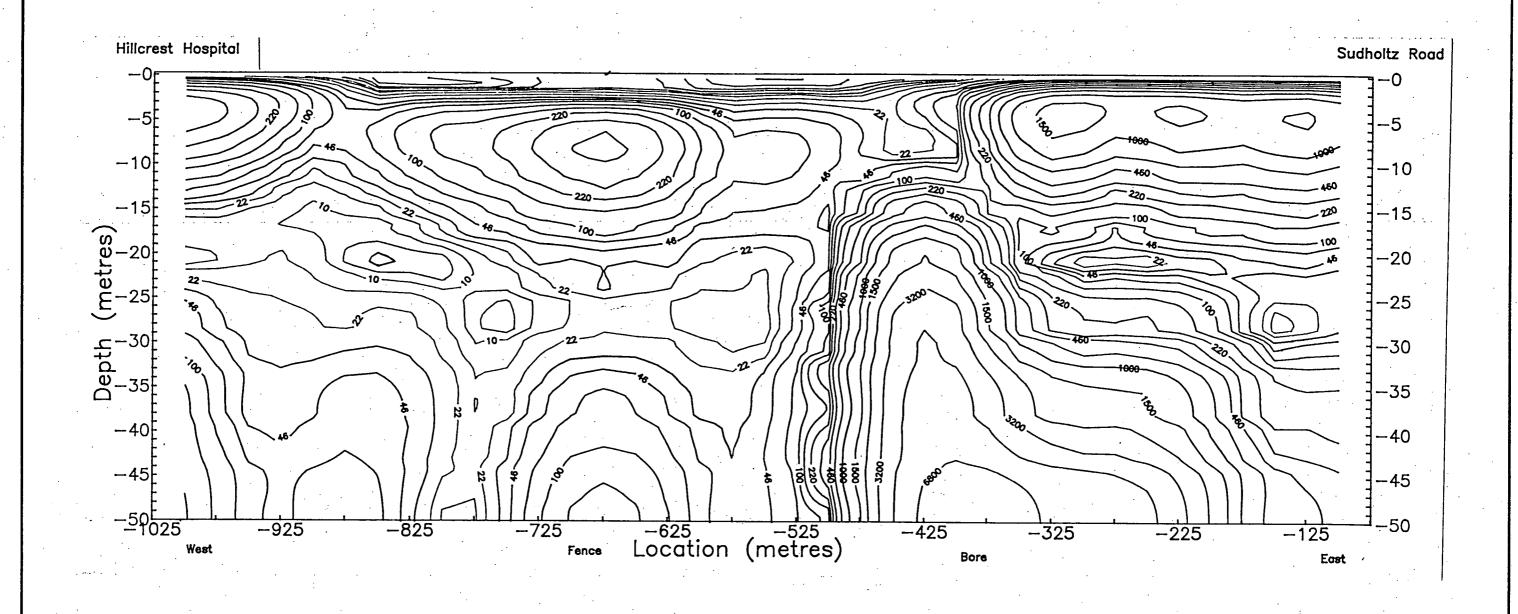

There is a possibility, geophysically speaking, that basement is very shallow between the bores and Sudholtz Road, and that the weak conductor between 15 and 30 metres is a wide fracture zone dipping to the east. While this is not considered likely, the possibility should be kept in mind.

Summary


The TEM survey has detected a basement high 50 metres west of the bores, dropping away steeply to the west and north but more slowly to the east. A shallow resistor between 3 and 30 metres varies in thickness and in resistivity, and appears to be a clayey-sand of variable proportions, the more permeable parts being more resistive. A conductor between this and basement is also variable in

thickness and intensity, and is expected to be caused by a combination of high clay content and more saline groundwater.

No attempt has been made to detect the basement fractures yielding low salinity groundwater that were found in well 6628-16185. These would be hard to detect at this depth in this environment, as the low salinity and low clay content would make a very weak conductor.


Strathmont

_ :	ים י
Figure	

		•
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED S. Howles	C.D.O. DATE
NORTHFIELD RESIDENTIAL DEVELOPMENT ARTIFICIAL RECHARGE POTENTIAL - PRECINCT 1	DRAWN R. Bird	SCALE As shown
RESISTIVITY SECTION FROM INVERSION TRAVERSE 1	DATE March 1993 CHECKED	PLAN NUMBER 93-159

2

	l	FigureD2
DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA	COMPILED S. Howles	C.D.O. DATE
NORTHFIELD RESIDENTIAL DEVELOPMENT ARTIFICIAL RECHARGE POTENTIAL - PRECINCT 1	DRAWN R. Bird	SCALE As shown
RESISTIVITY SECTION FROM INVERSION TRAVERSE 2	DATE March 1993 CHECKED	93-160