CONFIDENTIAL

THE CONTENTS OF THESE REPORTS ARE FOR INTERNAL D.M.E. USE ONLY

.

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

REPT BK NO 91/51

MOUNT OWEN COAL PROJECT PRELIMINARY GEOTECHNICAL REPORT

GEOLOGICAL SURVEY

by 🕔

S WALKER and L J MORRIS

GROUNDWATER & ENGINEERING GEOLOGY BRANCH

MAY 1991

DME 7/91 ENG GEOL 91/5 Information contained in this report should not be interpreted out of context. For this reason, the report should not be copied in part. The whole of the report, including all appendices, should be provided to any persons whose work, opinions, actions or quotations may depend on any part of the report.

CO	N	ΓEN	TS

SUMM	IARY		i				
CONCLUSIONS							
RECO	MMEN	DATIONS	vi				
FURTI	HER W	ORK	viii				
1.0	INTRO	DUCTION	1				
	1.1 1.2 1.3	General Previous Work Regional Geology	1 1 2				
2.0	SCOPE	E OF WORK	4				
3.0	FIELD	PROGRAMME	5				
·	 3.1 Drilling and Geotechnical Core Logging 3.2 Materials Testing 3.3 Piezometric Instrumentation and Tests 3.4 Geophysical Logging 						
4.0	RESU	LTS	. 8				
• .	4.1	Rock Strengths	8				
		4.1.1 Correlation of Sonic Velocity with Rock Strength	. 8				
	4.2	Rock Mass Defects	9				
		 4.2.1 Defect Types 4.2.2 Defect Orientations 4.2.3 Weak Zones Parallel to Bedding 4.2.4 Defect Spacings 	9 10 11 12				
	4.3 4.4	Bedding Dip Observations Groundwater	12 13				
		4.4.1 Permeabilities4.4.2 Groundwater Quality	14 15				
5.0	DISCU	JSSION	. 16				
•	5.1 5.2 5.3 5.4	Considerations for Excavations Above the Level of Oxidation (LOX) Bedding Dips Highwall Endwalls	16 18 18 19				
		5.4.1 South West Endwall5.4.2 North East Endwall	20 20				
	5.5	Lowwall	20				
		5.5.1 Groundwater and Lowwall Heave	21				
	5.6	Excavation Properties	22				
6.0	REFE	RENCES	23				

TABLES

PAGE NO

1. 2.	Details of Boreholes. Anomalous Bedding Dip Observations.	3 13
3.	Estimated Permeability.	14
4.	Groundwater Quality Data.	15
5.	Recommended Overall Pit Slope Angles.	17

FIGURES

1.	Locality Plan.	S22183
2.	Proposed Pit Layout and Borehole Locations.	91-339
3.	Typical Stratigraphic Column.	S22184
4.	Distribution of Rock Strengths from Point Load Tests.	S22190
5.	Main Joint Sets.	S22185
6.	Section A-B.	91-340
7.	Calculation of Floor Heave Potential.	S22188

APPENDICES

A.	GEOTECHNICAL	CORE LOGGINO	3 AND	GEOPHYSICAL	LOGGING.
----	--------------	--------------	-------	-------------	----------

- B. PIEZOMETERS AND FIELD PERMEABILITY TESTS.
- C. POINT LOAD STRENGTH TESTS AND SONIC LOG STRENGTH CORRELATION.
- D. CORE DEFECT ORIENTATIONS.
- E. GENERAL EXPLANATORY NOTES.

APPENDIX FIGURES

A1	ROUGHNESS PROFILES FOR DEFECT DESCRIPTION.	S22187
B1	PIEZOMETER CONSTRUCTION DETAILS.	91-341
B2a.	ANALYSIS BY MODIFIED NON-STEADY FLOW METHOD.	S22191
b.	ANALYSIS BY METHOD OF USBM (1977).	S22191
C1	CORRELATION OF UCS WITH TRANSIT TIME.	S22189
D1	ORIENTATION OF DEFECTS.	S22192
D2	DEFECT ORIENTATION CONTOURS.	S22186
D3	DISTRIBUTION OF BEDDING DIPS.	S22193

DEPARTMENT OF MINES AND ENERGY SOUTH AUSTRALIA

DME: 7/91 Eng Geol: 91/5 Rept Bk No: 91/51

MOUNT OWEN COAL PROJECT PRELIMINARY GEOTECHNICAL REPORT

by S. WALKER and L. J. MORRIS

ABSTRACT

Field investigations were carried out to provide preliminary geotechnical and hydrogeological parameters for the design of a new open pit coal mine at Mount Owen in the Hunter Valley of New South Wales. This work was done in association with the Joint Coal Board of NSW, between February and May 1991.

A wide range of hydrogeological and geotechnical factors were considered. Analysis indicates none of these factors to be excessively detrimental to the establishment of the proposed mine.

Geotechnical factors of principal importance to safe, economic mining at Mount Owen include : material strengths, characteristics of rock-mass defects, groundwater pressures, and bedding dips. These dictate the geometry of the pit walls to be constructed.

The coal seams were confirmed to be semi-confined aquifers. Groundwater pressures in a coal seam beneath the pit floor will need to be reduced before mining proceeds beyond 25 metres depth to reduce the risk of lowwall heave.

Limits are not placed by rock strengths on planned pit slopes for the proposed 30 metre deep pit. However, defect orientations limit the slope angles of the highwall and endwalls and safe design angles have been specified. Blasting of all rock overburden will be required but the soil and some of the weathered rock can be stripped without blasting.

A modest amount of further work is required to provide confirmation of parameters important to mine design considerations including: geotechnical characterization of rocks in the weathered zone, additional work on the unweathered rock zone (including undisturbed coal core), and more extensive piezometric instrumentation and hydraulic testing. Clarification of an apparent disagreement between bedding dips measured in the drill cores and those from large scale cross sections is also required.

Additional work is also needed to address issues not covered by this report, such as: excavation characteristics of the soil and weathered rock zones; impact of groundwater; blast design; equipment selection; and extension of mine plans to any areas, seams and/or depths other than those of the proposed initial pit.

SUMMARY

i

General

This report contains the results of a preliminary geotechnical and hydrogeological assessment of conditions to be encountered in a proposed open pit coal mine at Mount Owen in the Hunter Valley of NSW, Australia.

Work Programme

A limited field study involved the drilling of 14 boreholes, of which 6 were partially cored in HQ size by the triple tube wireline method using a tungsten tipped bit and air flush. Piezometers were constructed in 9 boreholes using 50 mm diameter uPVC casing, slotted and gravel packed over the test interval, and sealed with cement grout back to the surface. Coring was almost entirely limited to fresh rock and coal intervals and very little information was obtained on the soil or weathered rock zones.

A small number of rock strength tests using a Point Load Test frame were carried out on the fresh rock.

The defects (joints) in the drill core were oriented, wherever possible, relative to the bedding dip direction, and the nature of the defects was logged.

Geophysical logging was undertaken but satisfactory correlation of the sonic velocity log to rock strengths could not be established.

Although the results of all of the fieldwork are recorded in this report, budgetary constraints made it necessary that the majority of the drilling and testing was undertaken or supervised by Joint Coal Board (JCB) personnel. The South Australian Department of Mines and Energy (SADME) Engineering Geologist supervised most of Borehole 128 and Borehole 206, and conducted the Point Load Testing.

<u>Results</u>

SADME personnel have analyzed all data from this programme.

The extremes of strength of fresh rock materials ranged from very weak to strong. However the large majority of the sandstone, mudstone and siltstone which comprise the interburden fall within the moderately weak to moderately strong range. The very weak materials were limited to thin zones. The strong rocks were confined to thin zones with siderite cement. Blasting will be required below the zone of extensive rock mass weathering to enable overburden removal. Bedding is reported to have an average dip of approximately 17°.

Rock mass defects, which are generally very widely spaced, were oriented relative to bedding. There appear to be 6 main defect sets. No single defect set is oriented such that highwall or endwall stability should be adversely affected, and the recommended maximum batter slopes of:

- 60° highwall overall
- 60° south-west endwall
- 70° north-east endwall

would not be significantly affected by slab failure or from wedge failures resulting from combinations of defects.

Some weak zones parallel to bedding dip were noted in the core. If these were to occur in the lowwall their orientation and low strength could contribute to lowwall slab sliding. They appear to be discontinuous, however, with only a single intersection occurring in the lowwall of the proposed pit.

Variable quality groundwater is present at an average depth of 7 metres. The coal seams are identified as aquifers with a permeability range estimated to be from 0.3 to 1 metre per day (moderate permeability). The interburden rocks also have appreciable (but lower) permeability.

iii

Groundwater modelling is beyond the brief given to SADME, but it is anticipated that the worst case situation could be stated as:

- trafficability and materials handling could be impaired during excavation of the saturated weathered rock in the initial box cut
- little groundwater will flow onto the pit floor, particularly if the water released from the Middle Liddell coal seam is collected in pit-floor sumps
- pressure relief from the Lower Liddell seam will be required prior to mining beyond
 25 metres depth in order to eliminate the risk of floor heave. This should be readily achieved.

There are no indications that either hydrogeological or geotechnical factors would be excessively detrimental to the establishment or operation of the proposed open pit coal mine at this site.

CONCLUSIONS

iv

- 1. Within the limitations of this preliminary investigation by SADME, there are no indications that either hydrogeological or geotechnical factors would be excessively detrimental to the establishment or operation of the proposed open pit coal mine at this site to 30 metres total depth.
- 2. There is a discrepancy between the observed bedding dips measured in the drill core and the mean dips taken from the cross sections which were provided by JCB. There are a number of possible causes including faulting. This matter requires early resolution.
- 3. A moderate amount of further work is required to confirm mine design parameters which are recommended in this report. It is, however, concluded that for design purposes:
 - (a) the weathered and fresh rock, beneath the soil cover, are fully saturated;
 (b) the soil and at least some of the weathered rock should be amenable to excavation by scraper, dozer-assisted scraper or ripper-scraper methods;
 - (c) the effect of groundwater on excavation of the weathered rock zone during box cutting is not known, but this material should be substantially dewatered by drainage towards the box cut when subsequent strips are removed;
 - (d) the strengths of fresh rock lie mainly in the moderately weak to moderately strong range and defects are widely spaced. Blasting will be required for economic removal of the overburden;
 - (e) rock strength would be sufficient to permit design of very steep highwalls but defect orientations put limits on highwall and endwall slope angles;
 - (f) the pit lowwall will require depressurization prior to mining beyond 25 metres depth. This appears to be achievable by passive drainage. Failure to do so may lead to lowwall heave;
 - (g) weak zones parallel to bedding may exist in the lowwall, but they appear to be discontinuous and to be unlikely to affect lowwall stability;
 - (h) the coal seams are aquifers of moderate permeability. The interburden is of low permeability. The coal seams will behave as semiconfined aquifers.

G02783

4. Additional work may be required, following discussions with the mine design engineers, to address other matters which may include:

v

- (a) thickness of the soil and weathered rock zones, their properties and excavation characteristics
- (b) quantification of the impact (if any) of groundwater on mine design and operation, along with related environmental considerations
- (c) collection of the data required to permit blast design to be matched to the selected excavation and haulage equipment.

vi

RECOMMENDATIONS

1) Recommended maximum overall pit slope angles are summarized below.

RECOMMENDED OVERALL PIT-SLOPE ANGLES FOR PRELIMINARY MINE DESIGN PURPOSES

PIT SLOPE ELEMENT	RECOMMENDED SLOPE ANGLE		
SOIL STRENGTH MATERIALS (From 3 to 8 metres thick)			
WEATHERED ROCK MATERIALS (Indicated thickness range of 4 to 12 metres)	60° Note: These materials should be separated from those of the high-wall by a bench.		
HIGHWALL (IN FRESH ROCK)	60°		
NE ENDWALL (IN FRESH ROCK)	70°		
SW ENDWALL (IN FRESH ROCK)	60°		

Further work is required to confirm these parameters.

2) It is considered advisable to undertake early resolution of the possible discrepancy between dips observed in the drill core and those shown on cross sections through the deposit.

- vii
- 3) It is recommended that groundwater pressures in the lower Liddell seam be reduced prior to mining below 25 m depth.
- 4) Additional work is recommended to address issues related to:
 - (a) excavation characteristics and volumes of the soil and weathered rock zones
 - (b) establishing the impact of groundwater on the mine and the environment
 - (c) blast design
 - (d) equipment selection.

This work should be directed towards solving specific problems identified during the mine design stage.

5) Some broad scale screening of the conceptual plans for mining beyond 30 metres depth and/or to mine other seams or in other areas of the deposit should be undertaken during the next investigation.

viii

FURTHER WORK

Although a number of broad issues are identified for further study, the amount of work required to resolve these matters is considered modest.

Subject to an assessment of the sensitivity of mining operations, and hence costs, to these issues the further work for the proposed open pit would be likely to include:

- (a) resolution of the apparent discrepancy between core dips and those from the cross sections;
- (b) core drilling, logging and testing of materials in the weathered rock zone, including laboratory testing. Diamond-drilled HQ sized core is recommended;
- (c) additional core drilling in the unweathered rock zone, with logging, testing (including laboratory testing), and sonic and dipmeter wireline logging. some undisturbed coal core is required for geotechnical examination;
- (d) installation of piezometers designed to permit more extensive hydraulic testing of aquifer and aquitard lithologies. Installation of wells for long term pump tests may be required. Limited groundwater modelling should be undertaken to quantify groundwater inflows and the influence of groundwater on slope stability.

1.0 INTRODUCTION

1.1 General

The Mount Owen Coal Deposit lies approximately 20 km to the NNW of Singleton in the Hunter Valley of NSW (see Figure 1). The deposit is owned by the Hunter Valley Coal Corporation (HVCC). A large resource of high grade coal has been partially delineated, of which approximately 31 million tonnes may be accessible by open cut mining methods to 100 m depth. The coal occurs as multiple seams in a structurally complex environment.

1

The topography of the mine lease area is subdued, consisting of flood plains and low rolling hills. The land is predominantly used for cattle grazing. Thick, mature forests cover part of the southeast corner of the lease.

1.2 Previous Work

Prior to the Joint Coal Board of NSW (JCB) becoming involved as Project Managers, only a moderate amount of work had been done. 127 boreholes had been drilled (the first 25 of which were fully cored) over a period of approximately 12 months to February 1991. The locations of many of these holes were far from optimized. Almost no attempt was made to gather information of an engineering geological nature during this drilling episode.

In February 1991 the owners of the deposit (HVCC) appointed the JCB to manage the project and carry out investigations to establish the feasibility of mining in the area and where best to site the initial mine excavation.

As a result of extensive discussions with consultants in the fields of coal quality, mining and geotechnics, the HVCC decided on March 1 that mining would commence in the southern central part of the deposit area. Conceptually, this first cut is to be about 30 m deep, about 100 m wide and approximately 800 m along strike (see Figure 2).

1.3 Regional Geology

The Mount Owen Coal Deposit is near the north-eastern boundary of the Hunter Coalfield; an area approximately 200 km by 70 km in the north part of the Permian Sydney Basin. The tectonic setting is thought to be associated with the development of a retroarc basin of a volcanic island arc complex (Beckett, 1988).

The deposit lies within the Foybrook Formation of the Vane Subgroup - part of the Late Permian Wittingham Coal Measures. The depositional environment of the Foybrook Formation was a "river dominated delta system, which prograded to the south and south-west from the New England Fold Belt". (Beckett, 1988; p.32).

Major thrust faults exist immediately to the northeast and southwest (Hunter Thrust and Hebden Thrust, respectively) of the deposit (see Figure 1). Both of these faults trend NW-SE, dip to the NE and have a sense of movement of NE block up (see Figure 1).

All the major coal seams of the Foybrook Formation are present in the lease area. These range from the Lower Hebden seam to the Lemmington Seams. They are shown in the stratigraphic column (Fig. 3) along with seam name abbreviations used throughout this report. The sediments separating the coal seams are predominantly fine to medium grained, lithic, clayey sandstones interbedded with siltstones and mudstones.

The sediments have been folded into a broad anticline and syncline with axes trending approximately E and plunging about 10 degrees to the E.

Some faults of both normal and reverse sense of movement have been indicated from recent drilling and interpretation by the JCB, but these are reportedly not of major significance.

The inferred traces of the faults of regional significance are shown on Figure 2.

TABLE 1: DETAILS OF BOREHOLES

Borehole Number	Easting	Northing	Collar EL	Depth Drilled (m)	Cored Depth (m)	Hole Diam. (mm)	50mm PVC Standpipe	Slotted Section	Gravel Packed Interval	Geophysically Logged	Field Permeability Test
128	309238.0	1414580.7	125.6	39.61	4.12 to 39.61	100	NO	N/A	N/A	YES	N/A
129	309277.6	1414614.8	124.7	57.51	33.17 to 57.51	100	YES	45.5 to 57.5	38 to 57.5	YES	YES
160	309178.1	1414467.5	125.8	51.14	5.79 to 51.14	100	NO	N/A	N/A	YES	N/A
161	309147.7	1414538.6	121.5	56.58	15.2 to 56.58	100	NO	N/A	N/A	YES	N/A
170	309129.2	1414609.5	121.55	40	NIL	115	YES	32 to 40	30 to 40	NO	YES
171	309133.8	1414617.8	121.6	33	NIL	115	YES	21 to 33	18 to 33	NO	YES
172	309270.1	1414670.3	125.25	41	NIL	115	YES	35 to 41	31 to 40	NO	YES
173	309290.1	1414624.3	124.5	33	NIL	115	YES	21 to	18 to	NO	YES
174	309465.4	1414749.4	125.8	62	NIL	115	YES	50 to 62	46 to 62	NO	YES
175	309475.8	1414752.3	125.9	44	NIL	115	YES	36 to 44	20 to 44	NO	YES
176	309725.1	1414928.2	130.9	32.61	13.14 to	100	NO	N/A	N/A	YES	N/A
178	309032.3	1414349.6	123.0	42	NIL	115	YES	30 to 42	24 to 42	NO	YES
179	309459.5	1414837.2	126.4	42	NIL	115	YES	36 to 42	34 to 42	NO	YES
206	NOT AVAII	LABLE		54.61	14.83 to 54.61	100	NO	N/A	N/A	YES	N/A

•

G02783

.

2.0 SCOPE OF WORK

The JCB has requested the SA Department of Mines and Energy (SADME) to provide consulting services in the geotechnical and hydrogeological fields, for this initial mine development.

The work consisted of:

- 1. Advice on the type and amount of work required to gauge the engineering properties of the rock materials and to estimate relevant hydrogeological parameters.
- 2. Supervision of some of this work on site, which included logging of drill cores, installing and testing piezometers.

3. Interpretation of the resulting data.

4. Recommendations for preliminary mine design parameters and of further work required to aid in ensuring coal is recovered both economically and safely.

5

3.0 FIELD PROGRAMME

The engineering geology field programme involved drilling a total of 14 boreholes (including a total of 205m of HQ core), limited field testing of cored rock materials, piezometric instrumentation of nine (9) boreholes, down-hole geophysical logging and hydrogeological tests on piezometers.

A Senior Engineering Geologist from SADME was on site during the periods February 25 to March 7 and March 21 to March 25, at the request of JCB.

During the first of these periods the selection of the mine site was finalized by JCB and the HVCC, leading to a major revision of the drilling and testing program. Drilling commenced on March 4 and progress by the contractor (Thomson-Holland Pty Ltd) was slow. Only a single cored borehole (No. 128) was supervised prior to SADME's departure from the site. This hole was abandoned at 39.61 metres depth due to hole collapse following equipment failure.

In the second period, SADME supervised the completion of the drilling program (Borehole 206) carried out the Point Load Strength Tests, and relogged the drill core from the six cored boreholes.

The installation of the piezometers and the insitu permeability test work and supervision was hence carried out by JCB personnel.

3.1 Drilling and Geotechnical Core Logging

Six of the boreholes were cored and the remaining eight were non-cored (See Table 1). The cores were described in terms of lithology, structural defects, material strengths and rock mass characteristics. Core logs are given in Appendix A. Borehole locations are shown on Figure 2.

A number of factors combined to cause the core logging to be somewhat less than ideal in a geotechnical sense;

- drilling practice was such that extremely weak strata were often ground completely away or severely disturbed.
- intervals with coal were unavailable for geotechnical logging, having been removed for other purposes.
- due to budgetary constraints and a slow rate of core-drilling, it was deemed impossible for the SADME engineering geologist to be on site while all the fully cored holes were being drilled. Consequently, apart from boreholes 128 and most of 206, the cores were logged some days to weeks after they had been drilled. They had been placed in boxes and transported some distance to the core storage area. Very little of the core had been wrapped and few representative samples sealed. As a result of these factors, significant drying and disturbance had occurred making it difficult to estimate in-situ rock strength and the Rock Quality Designation (RQD).

3.2 Materials Testing

It was initially planned that samples would be sent to a laboratory for unconfined compressive strength tests (UCS) and defect shear strength determination (Direct Shear). However, on site Point Load Tests were performed instead of the UCS tests, and no suitable defects on which low shear strength would be anticipated were recovered, making Direct Shear testing unnecessary.

Representative samples of the rock materials from Boreholes 128, 161, 176 and 206 were tested using a Point Load Test frame belonging to the Joint Coal Board. Results of these tests are given in Appendix C and Section 4.1.

3.3 Piezometric Instrumentation and Tests

This section of the field work was carried out by JCB personnel.

Nine of the boreholes were instrumented with standpipe piezometers. The purpose of these instruments was to measure piezometric pressures in various water-bearing strata and for testing to estimate the rock-mass permeabilities. Field permeability tests were performed on these instruments. Details of these are given in Appendix B. The results are discussed in Section 4.4.

3.4 Geophysical Logging

The cored holes were logged with a comprehensive suite of geophysical tools. These included natural gamma, dual-spaced density, neutron-neutron, caliper and sonic logs. Only the sonic logs were used specifically for geotechnical purposes. Interpretation is discussed in Section 4.1.1, and in Appendix C.

4.0 RESULTS

4.1 Rock Strengths

The materials in the cores principally correspond to those of the fresh rock sections of both the planned high wall and low wall. As can be seen from the core logs (Appendix A) the strengths of these materials lie predominantly in the moderately weak (MW) range with lesser proportions of those in the weak (W) range and the moderately strong (MS) range (see Appendix E - General Explanatory Notes).

Thirty five (35) point load tests were performed on selected core samples. Point load strength measurements ranged from $Is_{(50)} = 0.19$ MPa to $Is_{(50)} > 1.9$ MPa (off scale on the gauge). Using the relationship $Is_{(50)} \times 24 = q_u^{-1}$ these equate to an unconfined compressive strength range of 4.5 to 45 MPa (ie. Weak to Moderately Strong). Results and methodology are given in Appendix C, and summarized in Figure 4.

Although only a small number of core samples were preserved in a suitable state for strength testing, it is considered that a reasonable coverage of sample strengths has been obtained. Rocks in the Very Weak (VW) and Weak (W) strength class ranges (as indicated on the bore logs) would have been very fragile and difficult to test with the equipment available. Rocks in the Strong (S) class range or stronger are rare on this site, and are confined to the occasional thin bands of siltstone or mudstone which have sideritic cement. Representative samples of rocks between these two extremes were tested.

4.1.1 Correlation of Sonic Velocity with Rock Strength

Downhole sonic velocity logging was performed in each of the cored holes. An attempt has been made to relate measured rock strengths with logged sonic transit times for the Mt Owen site. The details of this are given in

Although experience indicates the relationship to be widely applicable, no confirmation was undertaken and the unconfined compressive strength range should be taken as indicative only.

1

Appendix C. At this stage, however, no useable relationship between sonic values and rock strengths can be stated with any confidence. The reasons for this include:

there are only a small number of strength values measured.

the strength values show a wide scatter when plotted against transit time.

the relationship between Point Load Strength $(Is_{(50)})$ and Unconfined Compressive Strength (q_u) has not been established for this site.

the "noisy" nature of the sonic logs makes it difficult to relate reliable values of transit time to corresponding rock strength measurements.

4.2 Rock Mass Defects

Rock mass defects in the cores were logged for relevant physical attributes including type, orientation (where possible), roughness, planarity, amount of infill material and infill characteristics, evidence of shearing and any other noticeable characteristic. No idea of continuity or extent of any of the defects can, however, be gained from their exposure in a borehole. One hundred and twenty (120) defects were described in the cores.

4.2.1 Defect Types

The predominant type of defects seen in the cores were clean joints. The joints generally had little roughness, but some ranged up to roughness 5 (see Appendix A). Most defects were relatively planar (on the scale of the core sample) but many were slightly curved. Although it is difficult to gauge from disturbed core, it is considered that the joints are generally tight. Few contain infillings or coatings on surfaces but many are polished or slickensided. Other types were crushed zones, sheared zones, zones in which there were frequent similar joints and weak zones parallel to bedding. (Refer Appendix A - Borehole logs).

4.2.2 Defect Orientations

The method used to orient the defects requires the assumption that the highwall will be excavated parallel to the coal seam strike at any given point. It therefore becomes possible to consider defect orientation in relation to the orientation of bedding in the rocks as measured in the core, and to relate the defects so oriented to the faces created by the excavation of the mine.

From previous drilling it was possible to establish the local bedding plane orientation from the level of intersection of the same stratigraphic unit in three boreholes located at apices of a triangle. This method assumes that there is no faulting of the strata between boreholes. This procedure was also used to establish the average dip of 17° used throughout this report.

Measurement of the orientation of each defect relative to bedding surface(s) observed in adjacent core allows the orientation in three dimensions to be approximately calculated. The method is more fully explained in Appendix D.

It proved possible to estimate orientations for only 74 defects which reflects both the low quality of some of the coring and the relatively massive nature of some of the sandstone strata. All oriented defects were plotted onto an equal area lower hemisphere stereographic projection as poles to planes. Six (6) main sets of joints are indicated.

The six joint sets and a hypothetical 60° highwall are plotted on a lower hemisphere stereographic projection in Figure 5.

The small total number of oriented defects, the uncertainties associated with the relative orientations of large scale cross bedding (cross-bedding is usually indistinguishable from normal bedding in drill core) and a defect frequency bias caused by all the boreholes being vertical must all be taken into account in assessing the statistical relevance of the defect orientation data. The results of the defect orientation indicate that the following conclusions can be drawn:

If highwall slopes are excavated at 60° they will not undercut either individual joint sets or wedge combinations of joint sets.

•

If intermediate highwall benches are cut with batters at 65° or steeper, the individual benches may be affected significantly by either slab or wedge failures.

4.2.3 Weak Zones Parallel to Bedding

Only three significant weak zones parallel to bedding were found in the drill cores from two of the boreholes (129 and 206). Due to severe disturbance during drilling none of these zones were suitable for sampling and testing by Direct Shear.

In addition there were six measurable core losses in two of the holes (206 and 128) ranging in thickness from 0.08 m to 0.63 m. All but one of these core losses were interpreted to be due to grinding, crushing, shearing and/or washing away of the core due to poor drilling practice. However, the 0.63 m core loss in borehole 206, from 50.98 to 51.61 m depth, is interpreted as corresponding to mudstone having an extremely low strength.

Of these four weak zones, three occur in borehole 206 (350 m to the south of the proposed initial pit) and one in borehole 129. All except one of them occur either immediately above or immediately below the Lower Liddell seam. This fourth one (at 36.51 to 37.11 m depth in Borehole 206) occurs approximately 3 metres below the Middle Liddell seam.

This would appear to indicate that weak seams parallel to bedding are likely to be discontinuous on the scale of drillhole spacing, and not of sufficient frequency to prove detrimental to lowwall performance in the proposed pit in which the MLD seam is to be mined. Future core drilling should however, be of better quality in order to verify this conclusion.

4.2.4 Defect Spacings

Joints logged in the cored boreholes tended to occur in clusters of between 3 to 8 relatively closely spaced (0.02 to 0.2m) joints separated by moderate to large vertical distances (2 to 10m) of little or no jointing. Most of the clusters of joints occur in the finer grained rocks (siltstones and mudstones). Joints are much less prevalent in the sandstone units, and usually exist singly or in smaller groups of 2 or 3 closely spaced joints (0.05 to 0.2m) separated by 2 to 10m of intact core.

The actual spacing of defects of a similar orientation (ie those within the sets shown on Fig 5) should be corrected from the above apparent spacings to an actual spacing by a geometric correction factor (Terzaghi, 1965) but there are insufficient oriented defects to make the results meaningful.

Bedding Dip Observations

4.3

It was felt necessary to compare bedding dip angles observed and measured in the drill core with the mean bedding dip angles obtained from the major stratigraphic units in adjacent boreholes which were used by JCB to produce cross sections (eg Fig 6). The results are summarized in Table 2. Any major disagreement between these dips would require clarification.

Measurements of bedding dips in the core (124 measurements) range from 10 to 42 degrees and have a mean of 23.5 degrees (see Table 2).

It was thought that a significant bias could have arisen from the inclusion of sandstone cross bedding with normal bedding plane dips. 13

Consequently bedding dips from the fine grained rocks, where cross bedding would be unlikely to occur or be confused with normal bedding, were analyzed separately. The result leads to a mean dip of 22.9 degrees. Some degree of local steepening of bedding dips is indicated. The extent is not known.

Such local steepening could be caused by a number of geological processes including depositional steepening, faulting or differential compaction of the coal measures. This matter should be resolved at an early opportunity.

TABLE 2: ANOMALOUS BEDDING DIP OBSERVATIONS

SOURCE OF INFORMATION	RANGE OF DIP	NO OF OBSERVATIONS	MEAN DIP
JCB CROSS SECTIONS	16-22	31	17²
CORE LOGS (all rocks)	10-42	124	23.5
CORE LOGS (siltstones and mudstones)	10-38	65	22.9

Note 1: From three cross sections judged to be representative of the subject area. 2: Bulk of subject area.

4.4 Groundwater

The coal measures are saturated with groundwater to between 3m and 10m of the natural surface, as measured in the standpipe piezometers. The groundwater table appears to be approximately parallel to the topography. Hydraulic gradients are typically 1 in 15 to 1 in 30. Static Water Levels (SWL) are given for the 9 piezometers in Appendix B.

4.4.1 Permeabilities

Interpretation of the results of the Rising Head Tests of the piezometers (see Appendix B) indicate the permeabilities shown in Table 3. These hydraulic parameters have been plotted onto a typical cross-section in Figure 6. In general, the coal seams have moderate permeabilities and the sandstone interburdens have low permeabilities. The coal seams are expected to behave as leaky aquifers, and the interburden as aquitards, although some of the weak seams (Section 4.2.3) may comprise permeability barriers.

Seam/Stratigraphic Interval	No. of Tests	Estimated Permeability (m/day)	Average Thickness (m)	Estimated Transmissivity (m²/day)
Overburden of MLD Seam	2	0.02	20 (say)	0.4
Middle Liddell Coal Seam	2	0.3	5	1.5
Interburden from LLD to MLD	1	0.05	14	0.7
Lower Liddell Coal Seam	3	0.3	1.5	0.45
Interburden from Barrett Coal Seam to LLD	1	0.2	15	3.0
Barrett Coal Seam	2	1.0	3	3.0

TABLE 3: ESTIMATED PERMEABILITY

Note: Abbreviations are defined on Figure 3.

It is emphasized that these permeabilities result from a small number of quick, inexpensive tests and can be considered to be approximate only. In order to design a detailed footwall depressurization system more extensive testing will be necessary to provide design values with a greater level of confidence.

4.4.2 Groundwater Quality

No samples of groundwater were taken for chemical analysis during the current programme. The information in Table 4 comes from section 9.5.3 of a report on the lease area by Resource Planning Pty Ltd (Resource Planning, 1990).

TABLE 4: GROUNDWATER QUALITY DATA

Acidity (pH): Neutral to mildly acidic. Total Dissolved Solids: 2000 mg/l to 16,100 mg/l Dissolved Iron: 0.3 mg/l to 18.8 mg/l

It is our present expectation that some dewatering or depressurization of the coal measures will become necessary (see section 5.5.1) and a significant volume of poor quality water could be produced. Calculations of the projected quantities and the likely quality of this water are likely to be required before looking at options for discharge to the environment.

5.0 DISCUSSION

It must be emphasized that the present investigation is of a limited nature and is specifically relevant to the planned initial pit (see Figure 2). The amount and type of work undertaken in this study is consistent with establishing the geotechnical feasibility of the project, as proposed. It provides sufficient guidance for preliminary pit design and planning considerations (and to a lesser degree equipment selection) in only the most fundamental parameters. Further work will be required to confirm or refine critical preliminary design assumptions and decisions. Further work will also be required when it is desired to extend the mining operation to other seams, adjacent areas, a deeper pit or to make any other significant change from the initial pit outlined in Section 1.2.

During this study by SADME there has been no opportunity to discuss pit design options with the engineers. It is therefore necessary to make some assumptions about box cut, highwall and low wall design, and about practices which may be employed in excavation.

5.1 Considerations for Excavations Above the Level of Oxidation (LOX)

This programme of work provided no opportunities to examine or test the soil or weathered rock zones of the overburden, and no accurate positioning of the base of each of these materials appears to exist. The thicknesses shown on Figure 6 are estimated from summary logs of the 9 open holes drilled for the piezometers, which were logged by JCB personnel.

The water table lies at 3 to 10 metres depth and is generally below the soil materials which will be exposed in the near surface excavations. However, the weathered rock zone and the underlying fresh rock will be fully saturated during the box cutting. Successive mining strips should be dewatered to some degree by drainage into previous strips. Estimates of groundwater seepage should be undertaken and provision should be made for collection and disposal of seepage.

The behaviour of the soil materials and the saturated weathered rock during excavation can not be determined from data available to SADME. While it is considered likely that scraper, dozer assisted scraper, or ripper - scraper methods could be employed some additional investigation is required to confirm both the

method and estimate the productivity, as well as to establish the depth limits to which such methods could be used.

The stability of the slopes cut in the weathered rock can be expected to remain satisfactory if the rate of drainage of groundwater is sufficiently rapid, corresponding to the rate of stripping. This issue requires further consideration.

The design slopes indicated within these materials (which includes the oxidized coal in the box cut low wall) will require confirmation before being used beyond the preliminary design stage. The suggested slopes are shown on Figure 6 and listed in Table 5, but the upper bench height and the degree of flattening of the slope in the soil zone will depend on local conditions.

Materials from the soil and weathered rock zones should not be dumped at the toe or in the base of high or steep spoil dumps, as this practice is often found to be the principal cause of spoil dump failures.

TABLE 5: RECOMMENDED OVERALL PIT-SLOPE ANGLES FOR
PRELIMINARY MINE DESIGN PURPOSES

PIT SLOPE ELEMENT	RECOMMENDED SLOPE ANGLE		
SOIL STRENGTH MATERIALS (From 3 to 8 metres thick)	30°		
WEATHERED ROCK MATERIALS (Indicated thickness range of 4 to 12 metres)	60° Note: These materials should be separated from those of the high-wall by a bench.		
HIGHWALL (IN FRESH ROCK)	60°		
NE ENDWALL (IN FRESH ROCK)	70°		
SW ENDWALL (IN FRESH ROCK)	60°		

G02783

5.2 Bedding Dips

There remains uncertainty as to the true bedding dips likely to be encountered during mining. Computer modelling based on numerous borehole intersections has indicated that dips of major correlated units (ie coal seams) average about 17°. However, numerous measurements of bedding dip in the drill core indicate steeper average dips of around 23°.

This discrepancy may be due to a number of factors, including depositional steepening or the possible existence of faults.

Early resolution is required as the result has potential to significantly impact on major aspects of the planned open-pit operation, such as:

- lowwall stability
- recoverable coal quantities
- dilution factors/washing operations
- operational considerations of mining steeper and/or faulted seams.

5.3 Highwall

Factors affecting highwall stability and performance as the mining extends down dip include:

rock substance strength

rock mass defect orientations and strength

groundwater

The strength of the rocks (predominantly in the moderately weak to moderately strong range - see Figure 4) is considered to be sufficient to ensure stability and safety of the planned highwall slope for the 30 metre deep mine, provided the weathered rock and soil materials comprise a separate bench.

It appears that the only significant combinations of rock defects likely to affect the stability, and thus design, of the highwall are:

- a wedge combination formed by intersection of joint sets 3 and 4. The line of intersection of these sets plunges at about 65° in the opposite direction to bedding dip (ie. close to the direction of dip of the highwall).
- Set 1, dipping at approximately 70°, parallel to the strike of the highwall. These sets are shown on Figure 5.

The rock mass permeability and effective porosity of the fresh rock materials in the highwall are both estimated to be low. Groundwater movement will be primarily restricted to flow along defects in the rock mass, but given that these will open slightly in response to stress reduction during overburden removal, the highwall should be relatively free draining. It is considered unlikely, however, that much groundwater will drain into the pit from this source.

In consideration of these factors the overall highwall design angle should not exceed 60°. If benches are required in the highwall, some wedge failures of the steeper batter slopes should be expected.

5.4 Endwalls

The factors affecting endwall stability and performance during mining are the same as those outlined for highwalls:

rock substance strength rock mass defect orientations and strength groundwater.

Two of these factors can be considered in a manner identical to that adopted in Section 5.3. These are the rock substance strength and groundwater considerations. Neither of these two factors is considered to be likely to have any adverse impact on the stability, and hence design, of the endwalls.

20

However, the affect that orientations of the defects in the rock mass will have on an excavated slope changes with different orientations of the excavated slope. Two different orientations of endwall need to be considered; the endwall at the southwest end (dipping NNE) and the endwall at the north-west end (dipping WSW).

5.4.1 South-West Endwall

Defects of set 4 (see Figure 5) dip approximately parallel to the direction of dip of the proposed SW endwall, at about 70°. In addition, the line of intersection of joint sets 1 and 3 (plunging at about 60° in a similar direction to the SW endwall dip) defines a wedge combination which may cause significant instability if this endwall is constructed at an overall angle steeper than 60°. Other wedge combinations exist with much shallower dipping intersections which plunge in the direction of dip of this endwall but these are expected to be of sufficient strength to ensure their stability.

5.4.2 North-East Endwall

No individual defect set or combinations of defect sets shown on Figure 5 have the potential to adversely affect the stability of this endwall. The overall design slope of this pit wall will be dictated by local mining practices. An overall slope not exceeding 70° is recommended for design purposes.

5.5 Lowwall

Factors affecting the stability of the lowwall as the mining proceeds down dip include:

the dip of the mined coal seam and floor rocks rock strength and height of the slope orientation and shear strength of rock mass defects groundwater pressures. 21

Bedding dips in the area are moderate, and reportedly average about 17 degrees (see Section 5.2).

Rocks strengths are adequate, generally in the moderately weak to moderately strong range (see Fig. 4).

Only four rock mass defects, with the potential to affect lowwall stability, have been delineated during the current programme (see Section 4.2.3). Three of these defects may be inferred to be correlatable. They occur in very close proximity to the lower Liddell coal seam, both above the below it. Correlation between the two boreholes (129 and 206) would imply a large aerial extent of a significant weak zone parallel to bedding. This correlation, over a distance of hundreds of metres, requires checking.

The fourth weak zone occurs in hole 206 (well outside the initial pit) at about 3 m below the base of the Middle Liddell coal seam. It does not correlate with any other significant defect encountered during the current drilling programme.

There is no evidence that such weak zones would adversely affect the stability of the lowwall of the proposed initial pit. However, the probable existence of other such zones, and their likely effects on future lowwall stability assessments, should be subject to some examination and scrutiny during subsequent investigations.

There is, however, potential for pit floor heave due to high groundwater pressures in the lowwall materials, as discussed below.

5.5.1 Groundwater and Lowwall Heave

A critical pit floor depth, with respect to pit-floor heave, is reached when the uplift forces provided by confined groundwater are balanced by the load provided by the confining rocks. The Lower Liddell seam, although it is thin, is an aquifer with an average of 14m of rock confining it in the proposed pit floor (see Fig. 7). At the site of the proposed pit the critical pit depth with respect to floor heave is estimated to be 25 metres.

To remove the potential for pit floor heave at a planned pit depth of 30m, pressure levels in the Lower Liddell seam would have to be reduced to about 20m above the planned pit floor, prior to proceeding beyond a pit depth of 25 metres. This represents a modest degree of depressurization for a 30 metre deep pit, and should be readily achievable, although more work is required to design a scheme and to confirm the aquifer parameters.

For planning and costing purposes allowance can be made for a depressurization scheme comprising, nominally, 100 mm diameter open boreholes to 20 metres depth drilled into the low wall on 300 metre centres along strike, and repeated at an offset of 150 metres per strip. Water quantities and qualities should be established for water management purposes.

The problems associated with groundwater should be investigated in detail, however, prior to deepening the pit beyond 30 metres.

5.6 Excavation Properties

As stated above, SADME is unable to comment on the excavatability of the soil and weathered rock comprising the top 10-15 metres (approximately) of the overburden. The materials strengths and handling properties need to be established in a future investigation.

The fresh rock, with strength predominantly moderately weak to moderately strong, will require blasting for economic loading and haulage with any equipment.
6.0 **REFERENCES**

- Australian Standard AS-1726, 1981. "Site Investigation Code", Standards Association of Australia.
- Beckett, J., 1988. "The Hunter Coalfield, Notes to Accompany the 1:100 000 Geological Map," NSW Geological Survey Rept. No. GS 1988/051.
- British Standard BS-5930, 1981. "Code of Practice for Site Investigations", British Standards Institution.
- Deere, D.U., 1964. "Technical Description of Rock Cores for Engineering Purposes", Rock Mechanics and Engineering Geology, Vol. 1, No. 1, pp. 17-22.
- ISRM Commission on Testing Methods, 1985. "Suggested Method for Determining Point Load Strength (revised version)", Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr. 22, pp. 51-60.
- McNally, G.H., 1987. "Geotechnical Applications and Interpretation of Downhole Geophysical Logs", ACIRL Published Report 87-7.
- Minty, E.J. and Kearns, G.K., 1983. "Rock Mass Workability", Special Publication Geological Society Australia No. 11.
- Priest, S.D., 1985. "Hemispherical Projection Methods in Rock Mechanics", George Allen & Unwin, London.
- Resource Planning, 1990. "Mt Owen Coal Project, Hebden NSW", Unpublished report to the Hunter Valley Coal Corporation Pty Ltd.
- Terzaghi, R.D., 1965. "Sources of Error in Joint Surveys", Geotechnique, Vol. 15, pp. 287-304.
- USBM, 1977. "Field Permeability Test Methods with Applications to Solution Mining", Report prepared for the U.S. Bureau of Mines by Woodward-Clyde Consultants. Published by the U.S. Department of Commerce, National Technical Information Service, August, 1977.

Ľ.

DISTRIBUTION OF ROCK STRENGTHS FROM POINT LOAD TESTS

S.A. Dept of Mines and Energy 24-4-91

S22190

MT OWEN PROJECT MAIN JOINT SETS

X Intersection of joint sets

Schmidt net, lower hemisphere projection

Figure 5

S.A. Dept of Mines and Energy 24-4-91

S22185

S.A. Dept of Mines and Energy 24-4-91

S22188

CALCULATION OF FLOOR HEAVE POTENTIAL

APPENDIX A

GEOTECHNICAL CORE LOGGING AND GEOPHYSICAL LOGGING

1.0 INTRODUCTION

The drill cores were geotechnically logged and the following characteristics recorded:

- 1. Gross lithology and description
- 2. Core recovery/core loss
- 3. Rock Quality Designation (RQD)
- 4. Defect descriptions
- 5. Fracture to core axis angles
- 6. Bedding to core axis angles
- 7. Strength
- 8. Weathering
- 9. Orientation Angle (B).

Ideally, geotechnical logging of drill cores should be performed as soon as practicable after the core splits are extracted from the inner barrel and before the cores have been removed from them. The cores from boreholes 128 and 206 were logged in this way. This was not practicable during most of the current programme, however, due to time and budget constraints which limited the on-site time available to the SADME Senior Engineering Geologist. All other cores were geotechnically logged some days to weeks after drilling, boxing and transporting to a storage area. After severe disturbance of this kind it is often difficult to accurately gauge core recovery, RQD and rock strength.

The geotechnical logging by SADME has been plotted onto log sheets by JCB, and these are included in this Appendix.

All cored holes were logged with a suite of geophysical probes including:

- dual spaced density
- multi-channel sonic velocity
- neutron-neutron
- natural gamma
- caliper.

A borehole dipmeter was not used in this study, but it is a recommendation that its inclusion in future programmes be considered favourably.

.`

No geophysical logs have been included with the geotechnical report.

G02783

2.0 GEOTECHNICAL LOGGING CONVENTIONS

2.1 Lithology and Rock Description

The main rock types encountered were coal, sandstone, siltstone, mudstone and sideritic siltstone. Descriptions of these rocks included colour, grain sizes of sand constituents, approximate percentages of different rock/soil types where they are interlaminated, approximate percentages of different mineral constituents where appropriate and, where possible, interpretation of rock type where core was lost.

2.2 Core Recovery

Core recovery was measured as the length of core recovered in each run divided by the length of the run and is expressed as a percentage. Significant core losses are shown in the graphic log column of the borehole log sheets. This core loss is shown to scale and in a position which is interpreted if not known exactly.

2.3 Rock Quality Designation

The Rock Quality Designation (RQD) is calculated according to the definition of Deere (1964). It is defined as the percentage of core recovered in intact pieces 100mm or more in length divided by the total length of the run.

i.e. RQD (%) = $\frac{100 \text{ x (length of core in pieces >100mm)}}{\text{length of run}}$

The RQD number is a method of quantifying rock quality for engineering purposes and according to Deere, can be interpreted as follows:

RQD less than 25% 25% to 50% 50% to 75% 75% to 90% 90% to 100% Rock Quality Very Poor Poor Fair Good Very Good A-3

2.4 Defect Descriptions

The defect descriptions consist of:

- 1) defect type, eg joint;
- 2) roughness and planarity;
- 3) filling (if any), clean if none;
- 4) approximate orientation, if FCA not measurable.

Defects are classified according to the classification outlined in Australian Standard AS-1726 (1981). All defects in the drill cores are described either as bedding, joints, crushed zones or sheared zones. Bedding, where no actual break occurs, is an incipient weakness in most rocks.

Roughness and planarity are estimated according to a ten-fold classification based on the suggested methods of the ISRM (Figure A1) for roughness (R on logs) and a five-fold classification of planarity (P on logs) as follows:

1) Planar

2) Slightly curved

- 3) Curved
- 4) Folded
- 5) Crenulated.

2.5 Bedding to Core Axis and Fracture to Core Axis Angles (BCA and FCA)

The numbers in these columns are measurements in degrees of the smallest angle between a bedding surface (BCA) or a fracture surface (FCA), and a line parallel to the core axis.

2.6 Rock Strength

Strengths were estimated where appropriate and inserted in the borehole log sheets under the heading of "Description Lithological". The strength description and degree of cementation applies only to rock substances. These qualitative descriptions are related to quantitive measurements of rock strength according to Table A1 (from BS5930, 1981).

STRENGTH CLASS	DESCRIPTION	POINT LOAD STRENGTH (MPa)	APPROXIMATE EQUAL UNCONFINED COMPRESSIVE STRENGTH (q., MPa)
VW	Very Weak	<0.05	<1.25
W	Weak	0.05 to 0.2	1.25 to 5.0
MW	Moderately Weak	0.2 to 0.5	5.0 to 12.5
MS	Moderately Strong	0.5 to 2.0	12.5 to 50
S	Strong	2.0 to 4.0	50 to 100
vs	Very Strong	4.0 to 8.0	100 to 200

TABLE A1 - Rock Strength Classes (To BS-5930)

2.7 Weathering

The state of weathering of the cores was gauged according to Australian Standard AS1726 (1981), summarized below.

Term	Abbreviation		Definition
Fresh	Fr		No weathering effects visible to the naked eye.
Slightly Weathered	SW		Visible change in appearance but no significant loss in strength.
Moderately Weathered	MW		Visible change in appearance and with significant loss in strength.
Highly Weathered	HW		Considerable change in appearance and loss in strength. Material still a rock but normally very weak.
Completely Weathered	CW	2	Soil properties and often a complete change of appearance.
Altered	Α		Chemical and physical alteration to rock fabric caused by temperature, pressure or injection of other material.

2.8 Orientation Angle (B)

The orientation angle (B) is used to relate the dip direction of a defect to the dip direction of bedding (or some other consistent reference plane in the hole). It is measured clockwise (looking down hole) from the bottom of the reference plane to the bottom of the defect to be oriented (see Appendix D).

Figure A1

MT OWEN PROJECT

ROUGHNESS PROFILES FOR DEFECT DECRIPTION IN GEOTECHNICAL CORE LOGGING

S.A. Dept of Mines and Energy 24-4-91

S22187

					المراجعة وموارد بساطا أشتاك المعاولي معاودة بالمحمد فنربى كالمور	-						
BOREHOLE CORE LOG		D BY	: s/	AM WAL	KER DATE 21/3/91		ob N	ο.				
frem horizontal 1	Borenale a	lio dire	ction	<u></u>	Location AMG E Location Ming E			N		EL.		
ile commenced: 20/3/91 Die completed 22/3/91		0	rill rig launte	d on	Drilling Barrei	j Flui Type	d: ·A 3	: Air 3.Om, HQ, TT				
DESCRIPTION LITHOLOGICAL	LITHOLOGICAL	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	FCA	B C A	RQD	RECOVERY	COMMENTS		
				- 11	NON-CORED TO 14.83m DEPTH					-		
				13						-		
CORE LOSS SANDSTONE, light grey, fine grained, clayey, MWstrength, moderately weathered. SILTSTONE, light grey, sligh sandy, MWstrength, moderatel highly weathered. SANDSTONE, Light grey, fine fine grained, clayey,MW stre	tly y to to very			- 15			62	67	93	15.48m to 15.50m DOLERITE, high strength		
moderately weathered. SANDSTONE, light brown, medi coarse grained, abundant lit fragments MW strength, HW-	um to hic MW			18 19	17.65m to 17.75m JOINTED ZONE. About 10 joints spaced 5 to 10mm, R2,P2, clean, probably due to core drying 19.35 JOINT, R2,P1, clean probably parallel to bedding.	85	69 67 63	95	99			
HUNTER VALLE MT. OWEN	EY COA PRO	L C	ORF	<u>, 20</u>	NOTE: Cores were logge Cores had been p only estimated.	d one	full I in b	day oxes.	after Str	r drilling. rengths are		
JOINT COA	L BO	ARI)		Borehole No: 206	Sheel	1	of s	5	Figure		
								_				

						_				
	LOGGED	BY	:	SAM	WALKER DATE 21/3/91					
OREHOLE CORE LOG	CHECKE	D BY	·		DATE	Job	No.		· ·	
Borehole dip 900 Gram harizantal i	Borenoie di	o direc	ction		Location AMG E Location Mine E		N N		EL	
daie commenced: 20/3/91 ale completed 22/3/91		Or Mi	nit rig ounte	l d an	Drilling Barrel T	Fluid : ype				
DESCRIPTION LITHOLOGICAL	LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	ОЕРГН	DESCRIPTION STRUCTURAL	FCA BCA	RQD	RECOVERY	COMMENTS	
SANDSTONE, as above	1v								-	
sandy, MW strength, moderately weathered		-	•	- 21						
SANDSTONE, light grey, fine g clay matrix, MW strength, MW SILTSTONE, light grey, slight sandy, MW strength, SW-MW			•••	22						ľ
			•	- 23			95	100	-	•
MUDSTONE, light grey, silty, MW strength, SW				24	CORES FROM 23.91m TO 33.45m DEPTH WERE UNAVAILABLE (COAL SAMPLE)					
<u>.</u>				25						÷.
COAL: black, v. brittle, abur fractures, occ. clay and silt bands	ndant			26						
		ML		27						
				- 28						
				29						
MUDSTONE:				- - - 30						a,
HUNTER VALLE MT. OWEN	Y COAL PROJI	. CC ECT	DRF		NOTE: Cores were logged Cores had been pla only estimated, si	one ful aced in Ignifica	l day boxes int dry	after . Str ying H	r drilling. rengths are nas occurred.	
JOINT COA	L BOA	RD)		Borehole No: 206. Sh	eel 2	of	5	Figure	

•

••

		· · · · · · · · ·					-		i i ann an an		
DREHOLE CORE LOG	LOGG	ED BY	: SAM	I WÂLKE	R DATE 21/3/9	91					
	CHECH	KED B1	1		DATE	-	J	οδΝ	0.		
arehole dip Cfram harizantal i 900	Borenole	dio dire	ction		Locat on Locat on	AMG E Mine E			N N		EL
pie commenced: ble campleted		C	nul rig launted	i an		Drilling Fluid Borrei Type					
DESCRIPTION LITHOLOGICAL	ΓΙΤΗΟLOGICAL	LOG CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	•	FĊA	B C A	RQD	RECOVERY	COMMENTS
UDSTONE: lt grey, silty, NW strength				- 31	CORES FROM 23.91m TO DEPTH WERE NOT AVAIL (COAL SAMPLE)	33.45m ABLE					-
SILISIONE, light grey, very c S strength HUDSTONE, light grey, silty to very silty, NW strength IDERITIC SILISTONE, jointed,	Byey,			- 34	34.58JOINT, R2, P4, ver clay coatings, slick 34.82JOINT, R1, P3, cle 34.79JOINT, R2, P2, cle 35.24JOINT, R1, P1, 0.5 coatings, slickenside 35.29JOINT, (as at 35 35.53to35.64, CRUSHED 35.77to35.81, CRUSHED 35.95JOINT, R1, P2, cl slickensided 35.98JOINT, R1, P2, 0.5 calcite infil1, slic 36.04JOINT, R2, P3, cl 36.43JOINT, R1, P2, cl	y thin ensided an mm clay d .24m) ZONE, ZONE, ean mm kensided ean ean	67 62 58 48 72 60 60 46 42	70 72 69 73	85	100	B=75 B=261 B=0 B=0
ANDSTONE, light grey, fine g	JDSTONE r			- 38	36.51to37.11,extreme zone, cleavage paral beds, puggy in parts 37.17to37.18,JOINTED P3, clean 37.28JOINT,R2,P1,cle 37.47) JOINTS,R1,P1, 37.48) slickensided 37.72to37.73 CRUSHED fragments 1mmto20mm 37.93-38.06 CRUSHEC 38.49JOINT,R2,P3,cle 38.65JOINT,R1,P1,sli 0.5mm calcite infill	ly weak lel to 2 ZONE,R5 ean clean, 2 ZONE, ZONE, a/a aan ckenside(49 50 45 45 45 45 45 47 d	55 62	68	97	B=315 B=18 B=37 B=341
HUNTER VALLE MT. OWEN	Y CO. PRO	AL C JECT	ORF)							
JOINT COA	L BO	AR)		Borehole No: 2	206	Sheet	3	of 5		Figure ·

° ci

.

••

REHOLE CORE LOG	LOGGE	DBY	': SAI	M WÁLK	ER DATE 21/3/91					
	CHECK	ED 8.	Y		DATE		100 N	lo .		
rehale dip 900 am harizantal i	Borenoie	dip dire	nortos		Location AMG E Location Mink E			N		EL
e commenced: e completed		C N	Dritt zig Maunte	d an	Dritting Barret	g Flu Type	id:			
DESCRIPTION LITHOLOGICAL	רודאטרספונאר	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DE SCRIPTION STRUCTURAL	FCA	B C A	RQD	RECOVERY	COMMENTS
SANDSTONE, as above, medium grain size SANDSTONE, light grey, clay matrix, fine grained, MW strength				- 41 - 42 - 43	40.15JOINT,R3,P2,clean 40.35JOINT,R2,P1,2mm calcite infill 40.58JOINT,R1,P1,clean slickensided 41.69JOINT,R2,P2,0.5mm calcite infill 42.5JJOINT,R1,P2,clean 43.14JOINT,R1,P1,clean slickensided 43.19JOINT,R1,P2,clean 43.20JOINT,R3,P3,0.5mm calcite infill 43.36JOINT,R1,P3,clean slickensided 43.69JOINT,R1,P1, clean	67 33 41 21 62 78 62 10 68 59	67 65 48 68 59	97 -100	103 90	B=0 B=180 B=55 B=187 B=28 B=308 B=308 B=134 B=278 B=0
SANDSTONE, brownish grey, sideritic,MS strength SANDSTONE, light grey, fine to medium grained,MS strengt SILTSTONE, sideritic,MS stre SILSTONE, light grey,clayey, MS strength	.h -			44	44.51JOINT,R3,P2,clean 44.70JOINT,R3,P2,up to 0.5mm calcite coatings 44.80)JOINT,R2,P3,clean 44.81)slickensides	34 48 48	67 64 73	90	95	B=65 B=9 B=9
MUDSTONE, light grey, silty MWstrength SILTSTONE, sideritic,MS stre SILTSTONE, highly carbonace (STONY COAL),MW strength COAL, black, highly cleated and fractured. MW strength	angth Jus,			47	47.02JOINT,R1,P1,clean slickensided 47.25CRUSHED ZONE, angular pieces to 10mm 47.39)JOINT,R1,P1,clean 47.42)slickensided 47.46JOINT,R2,P3,clean 47.77to47.83 FRACTURED ZONE, angular pieces up to 40mm 48.57JOINT,R3,P2,clean 48.87to48.89 SHEARED ZONE, parallel to bedding, clayey and puggy, EL strength, disturbed	47 90 75 32 53 68	74 62 58 62 53 60 64	50	93 86	B=0 B=297 B=297 B=37 B=0
HUNTER VALLE MT. OWEN	Y COA PRO	L C	OR F r) ·						
JOINT COA	L BO	ARI	D		Borehole No: 206 S	Sheet	4	of	5	Figure

°**q**

OREHOLE CORE LOG	LOG	GED CKEI	BY D BY	: SAI	M WÀLH	ER DATE 21/3/91	J	ob N	ο.				
prehale dip fram harizantal i 90°	Boreno	ne dig) dire	ction		Location AMG E Location Mine E	<u> </u>		N N		EL		
pie commenced: ble completed			D M	rill rig lounte	d on	Dritting Barret T	Flui	d ;					
DESCRIPTION LITHOLOGICAL		LITHOLOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	FCA	B C A	RQD	RECOVERY	COMMENTS		
COAL, black, vitreous, highly cleated and fractured. CORE LOSS, VW strength,MUDSTO	NE		LLD		- 51				0	61			
MUDSTONE, light grey, very si VW strength SANDSTONE,light grey, silty, W strength MUDSTONE, light grey, very si W strength	lty, lty,				- 52	51.91JOINT,R2,P1,clean		•	92	99	8=330		
SILTSTONE, dark brownish grey sideritic,MS strength, Fr SILTSTONE, light grey, sandy, <u>MS strength</u> SANDSTONE, Light grey, fine grained, MS strength	/				53	52.99JOINT,R5,P3,clean 53.18JOINT,R5,P2,clean		-	100	101	8=0 8=180		
					- 55	END OF HOLE AT 54.61m DEPTH	-						
		- - -			ومراور موارير		•						
		-			و و الم و و الم و و الم								
HUNTER VALLE MT. OWEN	Y C PF	OAL		OR F			-	•		·			
JOINT COA	B	OA	RE)		Borehole No: 206 St	neel	5	of 5		Figure		

Q

والمستحد المتراد والمتركب والمتراج والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراج			والمتعادي والمتعاد المتعاد والمتحاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد وال	
	LOGGED BY SAM WALKE	R DATE 22/3/91		
JUNERIULE CONE LOG	CHECKED BY	DATE	Job No .	
Borehole dıp Lfrom horizontal I 90º	Borenoie dia direction	Location AMG E Location Mine E	N N	EL
Hale commenced: Hale completed	Orvill rig Mounted an	Drilling Barrel T	Fluid: · ype	
DESCRIPTION LITHOLOGICAL	LiTHULOGICAL LOG CONSTRUCTION LOG STRUCTURE LOG DEPTH	DESCRIPTION STRUCTURAL	F C A B C A R Q D RECOVERY	COMMENTS
		NON-CORED TO 15.2m DEPTH		
SANDSTONE, light grey, media to coarse grain size, W str HW-EW HUDSTONE, light grey, very W strength, HW-EW SILISTONE, black,carbonaceou W strength, HW	um rength, silty, us, - 16 - 16 - 16 - 17 - 17 - 17 - 18 - 19	CORES FROM 16.13m TO 21.20m DEPTH HAVE BEEN REMOVED FOR COAL QUALITY ANALYSIS PRIOR TO GEOTECHNICAL LOGGING.		
	20			-
HUNTER VALLE MT. OWEN	EY COAL CORP PROJECT	NOTE: CORES WERE LOGGED SOM HAD BEEN BOXED AND TRANSPOF DRYING AND DISTURBANCE. COM DIFFICULT TO ESTIMATE.	E DAYS AFTER DRIL TED TO STORE CAUS ISEQUENTLY, ROCK S	LING. CORES ING SIGNIFICANT TRENGTHS ARE
JOINT COA	L BOARD	Borehole No: 161 Sh	eet 1 of 5	Figure ·

	СНЕ	CKE	D BY	, 		DATE Job No
shale dip 90° rom harizantal i	Boren	bie di	D dire	ction		Location AMG E N EL Location Mine E N
commenced: completed			0 M	rill rig lounte) d on	Drilling Fluid Barrel Type
DESCRIPTION LITHOLOGICAL		LITHOLOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION & COMMENTS STRUCTURAL U D COMMENTS
MUDSTONE, light grey, silty, W strength, SW-MW					21	COAL REMOVED PRIOR TO GEOTECHNICAL LOGGING.
COAL, black, silty,MW streng SILTSTONE, light grey, thinl pedded, MW strength, MW SANDSTONE, light grey, fine	th \ y				23	61 63
grained, massive SANDSTONE, light grey, coars grained, lithic, clayey, mat MW strength, HW SIDERITIC SILTSTONE, dark gr SS strength SILTSTONE, light grey, claye	e rix, ey, \ y, \				27	68 72 65
HUNTER VALLE MT. OWEN	Y C PF	CA ROJ	L C EC1	ORI	P .	NOTE: The geologist on site during drilling verbally reported that core recovery was 100% for entire hole and there were very few natural defects. (RQD's generally very high)
JOINT COAL	_ B	OA	R)		Borehole No: ¹⁶¹ Sheel ² of ⁵ Figure

•

		_			محمد المحمد المتكاف الثلاث المتكانية المحمد الم				1
	LOGGE	D BY	': s/	AM WAL	ER DATE 22/3/91				
BOREHOLE CORE LOG	CHECK	ED 8.	Y		DATE	Job	No .		
Borehole dip (from horizontal 1 90°	Borenoie d	lio diri	ection		Location AMG E Location Mine E		N N	EL	
Haie commenced: Hole completed		(Drut rig Mounte) dan	Drilling Barrel	Fluid - Type			
DESCRIPTION	LITHOLOGICAL	CONSTRUCTION LOG	STRUCTURE LOG	ОЕРГН	DESCRIPTION STRUCTURAL	F C A B C A	RQD	COMMENTS	
SILISTONE, light grey, claye MW strength, SW SIDERITIC SILISTONE, dark gu fractured. ^{MS} strength MUDSTONE, light grey, slight carbonaceous, MW strength COAL, thinly interlaminated with MUDSTONE, light grey, W st SW-Er. MUDSTONE, grey, silty, sligh carbonaceous. MW strength COAL, black, vitreous, MW st MUDSTONE, light grey, minor carbonaceous filaments, silt MWstrength SILISTONE, light grey, MW st Fr	rength ty			- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40	 34.01 JOINT, R1,P3, clean slickensided 34.07 JOINT, R1,P3, clean COAL REMOVED, 35.20m to 36.10m 37.76 JOINT, R1,P1, clean 37.90 JOINT, R1,P1, clean 38.00 JOINT, R1,P1, clean 38.48 JOINT, R1,P3, clean 39.60 JOINT, R2,P2, clean 39.80 JOINT, R2,P2, clean SEE NOTE: Sheets 1 and 	30 60 18 75 55 14 72 72 72 72 72 72 72 72 72 72 72 72 72		NO B NO B NO B B=269 B=269 B=269 B=269 B=269 NO B B=278 B=93	o ²
HUNTER VALLE MT. OWEN	EY COA PRO	IEC.	ORI T	D					
JOINT COA	L BO	AR	D		Borehole No: 161 S	Sheel 3	of 5	Figure	

	LOGG	ED BY	': S	AM ŴALKE	R DATE 22/3,	/91					
OREHOLE CORE LOG	CHEC	KED B	Y		DATE		Jo	b No).	,	
orehale dip 90° Vfram harizantal i	Borenoie	dio dire	ection		Locat on Locat on	AMG E Mige E			2		ε.,
ole commenced: ole completed		C N)rill rig Aaunte	l d an		Dritting Barrel	Fluid Type	• •			
DESCRIPTION LITHOLOGICAL	1 ITH01 061-01	CONSTRUCTION LOG LOG	STRUCTURE LOG	ОЕР ГН	DESCRIPTION STRUCTURAL		FCA	e c a	RQD	RECOVERY	COMMENTS
MUDSTONE, light grey,MW stren Fr	ngth,			- 41				68			
SANDSTONE, Light grey,MW str Fr	ength,			42				65 <u></u> 70			
				- 43				77.			
	-			44	44.50 JOINT, R5,P2,	clean	5	52			NO B
				46				76		•	
SILTSTONE, light grey,MW str Fr	ength			4,7							
/ MUDSTONE, light grey,MW stre Fr	ngth,			43		• • •					
SILTSTONE, light grey, Mwstr Fr L	ength,			50	SEE NUTE S	heets 1 and	1 2		-		
HUNTER VALLE MT. OWEN	ey co Pro	DAL C	OR F	.							
JOINT COA	L BC	ARI	C		Borehole No:	¹⁶¹ SI	heel	4 c	of ⁵		Figure

ೆಂ

																					,
	LOG	GED	BY	: SA	M WÁLK	KER	DA	ΔTE	. 22,	/3/91	<u> </u>										
OREHOLE CORE LUG	СНЕ	CKE	יפ ס	,			DA	πe					Job	No) .					•	
larehole dip 900 from harizontal i	Bareno	e dış	o dire	ction					Locai Locai	on A on M	MG S				N N			εL			
laie commenced: loie completed			0 M	riil rig Iounte) d on						Dritte Barre	ing F el Tyj	luid - De	•							
DESCRIPTION		LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH		0	DESC	RIPTIC	ON A:		 			RQD	RECOVERY	c	:омм	ENTS		
SILTSTONE, light grey, MW str Fr COAL: black, bright (80%), v. brittle, tr claystone - 1t brn, med sc SILTSTONE, light grey, MW Str Fr HUNTER VALL	ength oft rength - 56.58 END AT		BORE	OR	- 51 52 53 54 55 56 57 - 57	COR HAU QUA TO	RES FR VE BEE ALITY LOGG	ROM S EN RE ING.	AT 50	0 53.) FOR RIOR	8 COAL DEPTH	I.									0. 0.
MT. OWEN	PR	OJ	EC	Γ													<u> </u>				-
JOINT COA	LB	0 <i>A</i>	R	D			Bo	oreho	ole No	0:	161	Shi	eet	5	ol 5		Fig	gure	• 		

										•						
	OLE CORE LOG dip lorizonial i mmenced: DLE CORE LOG LOGGED BY : SAI CHECKED BY Borenole dip direction Drift rig															
BREHOLE CORE LOG	CHE	CKE	D BY	,			DAT	ε			Jc	b No	0.		 	
Bushale dip 90° (im harizantal)	Boreno	ie dig) dire	ction				Loc	non N note	MG E			N N		EL	
Hole commenced: Hole completed			О м	riit rig iounte	d an					Drittin Barret	g Fluid Type	j				
DESCRIPTION LITHOLOGICAL		רודאטנספונאנ רודאטנספונאנ	CONSTRUCTION LOG	STRUCTURE LOG	ОЕРГН		OE ST	SCRIP	FION IRAL		FCA	B C A	RQD	RECOVERY	COMMENTS	
SILT, light brown to off-whit clayey, stiff, ML Sandier towards base	ce,				- 1	NO 4.1 BL A	CORES 2m DE BIT	UNT IL USED								
NDSTONE, off-white, fine gr ry low strength, EW-CW.	cained,														4.12	
NDSTONE, off-white to light ton, fine to medium grained, MW strength, HW	t				5	5.2	23 JOIN 71 JOIN some	T, R3, T, R2, Fe st	Pl,cle P2, cl aining	en ean,	22 23	67	75	100	6.61	
strength from 7.32m to 7. depth SANDSTONE, light brown, coar grained, MW str	61m se ength.					9. sai 9.1	76 to 9 nd 39 to 9	.78 Cw .91 Cw	zone,	loose		76	87	100	9.61	-
HUNTER VALLE MT. OWEN	58						<u> </u>	<u> </u>		<u> </u>						
JOINT COA	LB	0A	R)			Bore	ehole	No:	128	Sheet	1	of	4	Figure	

Ŧ,

	LOGGE	D B	Y :	S	5am" Wal	LKER	D	ATE		4/3/	′ 91							
JREHOLE CORE EUG	CHECK	ED E	YE				D	ΔΤΕ						J	ob N	ο.		
orehale dip 900 ram harizantal i	Borenole	dio Ji	reci	hon					1.0 L0	cat or	n 4 n 1	MG Mine	ב ב			N N		EL
pie commenced: 4/3/91 pie compieted			Dr. Mo	il rig unteo	d an							Dri Bai	lling rrel	Flum Type	 			
DESCRIPTION LITHOLOGICAL	רודאטרספונאר	LOG CONSTRUCTION	L06	SIRUCIUME LOG	DEP CH			OES STR	CRIF UCT	TION	4			FCA	ЫСА	RQD	RECOVERY	COMMENTS
ANDSTONE, light brown, lithic lay matrix,MW strength, medic coarse grained.	um to				-	_						<u> </u>			65			
ANDSTONE, as above, fine gra.	ined				- 11											95	100	
ANDSTONE, as above, medium grained					- 12	11. 12. 12. 12.	.99 .02 .83- .96-	JOIN JOIN 12.8 13.0	T, F T, F 6 CI 0 CI	₹3,P2 ₹3,P2 ↓ zon ↓ zon	, c , c ne, ne,	lean lean sand sand		71 75	71			12.61
•		· · · · · · · · · · · · · · · · · · ·			- 13			•								83	100	
SANDSTONE, as above, fine to medium grained. NW strength	• • • • • • • • • • • • • • • • • • •														75 78	100	100	14.11 Sample DMO1 14.11 to 14.32m Sample DMO2 15.72 to 15.99m
					- 15										75			15.61
SILTSTONE, Dark brown, sandy corbonaceous, W strength.					- 13											100	102	16.66
SANDSTONE, as above						17 sc 17	7.34 oft (7.43	JOI lay JOI	NT, inf NT,	R3,P 111, R3,P	3, di 2,c	very sturi lean	oed	85		90	93	
SANDSTONE, as above, coarse grained, MWstrength					- 18										7			18.61
SANDSTONE, light brownish gr as above, medium grained SANDSTONE, as above, MSstren	ey, gth				- - - - - - - -	19 10 Fe	9.47 nm w e st	JOI idth aini	NT, , B .ng	R3,P lack	2, and	clea d yel	n low,	30		88	100	
HUNTER VALLE MT. OWEN	EY CO PRC	AL	C(CT	DRI	<u> . 20</u>									_ <u>_</u>		<u>. I.</u>		<u>_ I</u>
JOINT COA	L BO	AF)			В	oret	nole	No	:	128		Shee	2	of	4	Figure

								·	•	
B REHOLE CORE LOG	LOGGEI	D BY	: Si	AM ŴAL	KER DATE 5/3/91 DATE	J	ob N	ο.		
E shale dip 900	Borenole d	ip dire	ction		Location AMG Location Mine	E		N N		EL
Here commenced: 4/3/91 Here completed		0)rol rig Agunte) d an	Drii Bari	iling Flui rel Type	d .			
DESCRIPTION LITHOLOGICAL	LITHOLOGICAL	CONSTRUCTION	LOG LOG	ні ОЕБІН	DESCRIPTION STRUCTURAL	FCA	ВС А	RQD	RECOVERY	COMMENTS
SANDSTONE, Light brownish grey, lithic, clay matrix, medium glined, NS strength SILTSTONE, light grey, sideriti MSmtrength	c,	· · · · · · · · · · · · · · · · · · ·		- 21	21.10 JOINT, R3,P2, clean sub parallel to bedding	60	73	88	100	Sample DMO3 20.63 to 20.89m
SANDSTONE, as above, MW strength			1	- 22	21.60 JOINT, R3,P2, clean B=249	. 22	80 50			21.61 foresets
5 DSTONE, grey, fine grained, very clayey, MW strength. Cro bedding outlined by heavy migerals.	SS			23	23.20 JOINT, R3,P3, clean	72	72 77 57	80	97	foresets
SILISTONE, light grey, coarse quined, sandy. NW strength.				- 25			68			24.61
SANDSTONE, light brown, silty, milium to coarse grained, trength.				- 25			NO BEDDING	93	707	
SANDSTONE, as above, MS strength		•••		27	27.17 JOINT, R3,P1,clean B=277	24	MEASURAE			27.51
DSTONE, very light brown, si med grained MW strength, HW	lty,			- 28						strength rock is almost impossible to sample. It breaks up in hands while
				29	29 70 101NT 93 91 01000			95	100	wrapping, etc.
				} . 30	(no 8 angle available)					
HUNTER VALLEY	Y COA PROL	L C	ORI F	P						
JOINT COAL	. BO/	ARI	D		Borehole No: 128	Shee	13	of a	4	Figure [.]

·

	LOGG	ED B.	YY: s	am Ŵal	KER DATE					
OREHOLE CORE LOG	CHEC	KED E	9Y		DATE		λαρ Ν	lo .		
orehole dip from horizontal i 90º	Borenoie	dio di	rection		Location AMG E Location Mine E			N N		EL
cie commenced: ale completed			Drill ric Maunte) don	Drittin Barre	ng Fi H Typ	uidi. e			
DESCRIPTION		CONSTRUCTION	LUG STRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	FCA	вса	RQD	RECOVERY	COMMENTS
SANDSTONE, as above. <u>CORE LOSS</u> SILTSTONE, grey, carbonaceous	·····	X		- 31			71			30.61
L strength MUDSTONE, light grey, very si carbonaceous, MWstrength	llty,			- 32			71	88	90	
COAL, black, vitreous, highly cleated, MWstrength				- 33	32.88 to 33.29 FRACTURED ZONE, fractures 5 to 20m apart, sub-parallel to bedding		77	0	104	- 32.96
MUDSTONE, grey, carbonaceous COAL, as above				- 35	34.86 JOINT, Rl,P2, clean slickensided	41		0	99	35.01
COAL, as above	`.	м		36				50	104	36.61 -
				- 38				10	63	-
MUDSTONE, light grey, silty, carbonaceous, MW to W stren puggy	gth, _			39	39.25 JOINT, R1,P2 clean 39.60 JOINT, R2,P3, clean 39.61 END OF HOLE	5	4 8			-
HUNTER VALLE MT. OWEN	EY CC PR(COR :T	P	Borehole abandoned at 39.61m depth, after collapse of coal seam, and loss of core-lifter casing in hole.						
JOINT COA	L BC	DAR	D		Borehole No: 128	She	et 4	of	4	Figure

	Borec			ction					N		
harizantal i			e			Location Mine E			N		
commenced: completed		,	0 M	iril rig tounte	d an	Dritin Barres	g Flui Type			f	
DESCRIPTION LITHOLOGICAL		LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	FCA	B C A	RQD	RECOVERY	COMMENTS
· ·	·				- 31	NON-CORED TO 33.17m DEPTH				1	
					- 32						
TONE, light grey, silt silty, MW strength, dant small carbonaceou ments and minor thin c s.	/ to Baly			-	- 33			65	80	98	
, black, vitreous,MW s TONE, as above	rength				- 35	CORES FROM 35.35m TO 40.13m DEPTH HAD BEEN REMOVED FROM THE BOXES AND SENT FOR COAL DUALITY ANALYSIS		68			
.: black, vitreous, MW tle, common fractures, clay/silty bands	strength		ML	D	37	FUR COAL QUALITY ANALISIS.				97	
					38						
HUNTER VAL	-EY C	OAI ROJ		ORI T	P	NOTE 1: Cores had been drying and trar 2: BH129 is a redr due to hole col	highl highl highl highl o highl o lapse	y dis to s f BH1	turbed tore. 28 wh:	d due ich w	to boxing, as abandoned

والبار بالالالا الأكري وتعاري والمستقل فيتعاد والمتعاد والم					الجدينيون ومراكات كالتحري ويوادين وتراكات والمراجع					1
OREHOLE CORE LOG	LOGG	ED B	Y :	SAM W	ALKER DATE 24/3/91					
	CHEC	KED E	Υ		DATE	Job	No .			
larehale dip 900 from horizantal i	Borenoie	יול מולי	rection		Location AMG E Location Mine E		N N		EL	
Raie commenced: Role completed			Dritt rig Maunte) d an	Drilling Barrel T	Fluid ype				
	идлорононті т	CONSTRUCTION	5TRUCTURE LOG	DEPTH	DESCRIPTION STRUCTURAL	F Ċ A B Ċ A	ROD	RECOVERY	COMMENTS	
MUDSTONE, light grey, silty very silty,MW strength, Fr	to		· .	- 41	41.57 JOINT,R4,P3, poorly slickensided	72 75.	>95	100	B=302 B-283	0
SANDSTONE, light grey, fine medium grained, lithic, clay matrix,MW strength, Fr	to			- 42 - 43	41.84 JOINT,R4,P3, poorly slickensided 41.86 JOINT,R4,P3, poorly slickensided 41.99 JOINT,R2,P4, slickensided 42.12 JOINT,R3,P4, poorly slickensided	74 57 55			B=283 42.51 B=225 B=177	
SILTSTONE, light grey, claye very clayey,MW strength, Fr COAL, black, very silty, MS	y to			44			>98	100		
SILTSTONE, as above SANDSTONE, light grey, fine grained,MW strength, Fr				46		65 65	>98	100	45.51	
SILTSTONE, light grey, MW strength, Fr				48	47.88 JOINT, R2,P3, clean	52 70 75			B=261 48.51	
	-			- 49 - 50			>95	100		
HUNTER VALLE MT. OWEN	EY CC PRC)AL (CORI T	P	NOTE: Cores had been highl drying and transport to th uncertainty in the estimat RQD.	y distu ne store nes of t	irbed d e. Thi both ro	ue to s has ck st	boxing, introduced rength and	
JOINT COA	LBC	DAR	D		Borehole No: 129 St	neel 2	of	3	Figure	

٠.

								والمراجع المراجع	وبخاري و	بالباني الأقاب المجرب المتفاقية بالمرج	- 1
	LOGG	ED E	BY : s/	AM WÁLI	ER DATE 24/3/91						
BOREHULZ CORE LUG	CHEC	KED	8Y		DATE	J	0 b N	0.			
Gram harizantal († 90°	Borenoie	t qib	brechon		Location AMG E Location Mine E			N N	,, ,	EL	
e commenced:			Oritt ri Maunti	g ed on	. Borrel	g Flui Type	d : •				
DESCRIPTION	ислеротен ртт	LUCONCAL LOG CONSTRUCTION	LOG STRUCTURE LOG	DEP TH	DESCRIPTION STRUCTURAL	FĊA	B C A	ROD	RECOVERY	COMMENTS	
SILISIONE, light grey, MW st r SILISIONE, dark brownish, gr bighly caronaceous, (coaly i	trength ey, n			- 51				>95	100	51.51	
COAL SAMPLE OF LOWER IDDELL SEAM REMOVED FOR UALITY TESTING Laminate" MUDSTONE, highly carbonaceous, extremely thin bedded, W strength	ily			52	CORES FROM 52.20m to 53.44m DEPTH HAD BEEN REMOVED FOR COAL QUALITY ANALYSIS 53.44-53.79 ZONE OF VERY CLOSELY SPACED POLISHED SURFACES PARALLEL TO BEDDING.		73 75		100		
SILTSTONE, light grey, MW trength, Fr ANDSTONE, light grey, very fine to very fine grained, M strength, Fr ILTSTONE, light grey, MW strength, Fr / SIDERITIC SILTSTONE, mid gre	silty,			- 54						. 54.51	1
MS strength, Fr GILISTONE, light grey, MW Strength, Fr				- 56	55.95 JOINT,R4,P2, very thin pyrite coating 56.10 JOINT, R5,P3, clean	11 15		>95	100	No B available No B available	
	= 57.51 END AT 5	OF . BO	AE .	ببغاء بمحافيتها مت	END OF HOLE AT 57.51m DEPTH						L
HUNTER VALLE MT. OWEN	EY CC PRC	DAL	COR CT	P	NOTE: Cores had been hi boxing, drying and tran This has introduced und estimates and RQD value	ighly hsport certai es.	distu t to inty :	urbed the s in st	due tore. rengti	to h	
JOINT COA	L BC	DAF	RD		Borehole No: 129	Sheel	3	of	3	Figure	

...

•

																		- - -
REHOLE CORE LOG	M WALK	KER		TE ·	24	4/03/	91		J	0 b N	lo.		• :					
ehole dip	Borehole	e dip	Jire	ction					1. 9 C G L 0 C G	na 1 n c 1	AMG Mine	Е Е			N N		EL	
e completed			Di M	riit rig launte	d on						D e	arrel	Flun Type	d		_		
DESCRIPTION	The second s	LIHULUGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH		D	ESC	RIPT				FCA	B C A	ROD	RECOVERY	COMMENTS	
					- 11	NON-	-COREI	D TO	13.	14m C	EPTH	1		· ·				
STONE, light brown, medium ned, lithic, Wistrength, c matrix. ighly weathered.	clay .		, •		- 13						-							
ANDSTONE, as above, MW stren	gth.				16					r								
1UDSTONE, Light brown to lig rey, silty, MW stren Highly weathered.	jht . igth.				19		3.88 slick 9.10 9.24 9.29	JOIN ensi JOIN JOIN JOIN	T, R ded. T, R T, R T, R	2,P3, 3,P3, 3,P3, 4,P3	, cle , cle	ean ean ean	66 42 55 64	69 72 65 75			B=322 B=0 B=300 B=300	
HUNTER VALLE MT. OWEN	NO tr co es)TE: ransp onseq stima	Core orte juent ble.	s hai d day ly vi	d ber ys p: ery (en tra rior t diffic	insfe o lo cult	rred gging to es	to co g. Ro stimat	ore bo ock st te. f	oxes and trengths RQD not	Ì						
JOINT COA	L B(AC	R)	·		Bo	reho	le N	10 :	176	S	iheel	1	of	3	Figure	
				_	ì						-							

••

ľ

EHOLE CORE LOG	CHEC	KE	יש אפ כ	; 5AI	1 WAL K	DATE	. J	Iob N	O .		
nale dip 90° n harizantal i	Borenoi	e dic) Jire	chon		Location AMG E Location Mine E			N N		٤٢
commenced: completed			D M	rill rig launte	d an	Drittin Barret	g Flu Type	id · · ·	r		
DESCRIPTION LITHOLOGICAL		LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH .	DESCRIPTION STRUCTURAL	FĊA	B C A	RQD	RECOVERY	COMMENTS
AL, Black, vitreous, strength, highly cleated d fractured.					- 21	CORE SAMPLES FROM 19.89m TO 25.75m DEPTH HAD BEEN REMOVED PRIOR TO LOGGING. (COAL SAMPLE)					
			MLD		23						
LISTONE Light grey. Md					- 25						
derately weathered.	- 				27					97	
DSTONE, Light grey, silt very silty, MW strength. derately weathered.	y				28	28.48 JOINT, R2,P2, slickensided 28.56 JOINT, R2,P3, slickensided 28.59 JOINT, R2,P3, slickensided 28.86 JOINT, R3,P4, clean 28.89 JOINT, R2,P4, slickensided	45 55 60 68 64	72 69		83	B=47 B=47 B=187 B=281 B=263

					· · · · · · · · · · · · · · · · · · ·						_
	LOGGE) BY	: 5	am Wai	KER DATE 24/03/91						
ORENOLE CORE LOG	СНЕСКЕ	D 81	r		DATE	J	00 1	lo .			
Borehale dip 900 from harizantal I	Borenoie di	D Jire	ction		Location AMG E Location Ming E			N N		EL	
lais commenced: lais completed		C M)rill ciç Aounte) d on	Dritting Barret	r Fiu Type	d ·				
DESCRIPTION	רודאטנספוניאנ רודאטנספוניאנ	CONSTRUCTION LOG	STRUCTURE LOG	DEP TH	DESCRIPTION STRUCTURAL	FĊA	ВСА	RQD	RECOVERY	COMMENTS	
MUDSTONE, as above			·	- 31			66		118		
SILTSTONE, light grey, clay MW strength	yey,		. ·	- 32	32,35 JOINT, R2,P1, clean	25	75			B=216	-
				33	END OF HOLE AT 32.61m DEPTH						
	-			بالمحمد المحمد المحم							
				والمحمد والمحمد والمريس						·	
					 					<u> </u>	
HUNTER VALLI MT. OWEN	EY COA PROJ	L C EC1	OR I	P							
JOINT COA	L BOA	R)		Borehole No: 176 S	Sheel	3	of	3	Figure	

. . •

.
REHOLE CORE LOG	LOGG	ED KED	BY BY	: SAI	1 WÁLK	ER DATE 23/3/91 DATE	J	Job No					
hale dip 90° am harizantal i	Borenoie	dıp	Jirei	ction		Lacaton AMG E Locaton Mine E	Location AMG E Location Mine E			N EL N			
commenced: completed			Dr M	nit rig ounte	d oʻu	Drithi Barre	ng Flui I Type	d.					
DESCRIPTION LITHOLOGICAL	10,100 ICHTL		CONSTRUCTION LOG	STRUCTURE LOG	ОЕРТН	DESCRIPTION	FCA	BCA	RQD'	RECOVERY	COMMENTS		
SAMPLE RECOVERY					-	NON-CORED TO 5.79m DEPTH							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				- 2			•					
AY			. •		3 -								
	- - - - -				4								
NDSTONE, light brown, fine ained, NW strength, EW					- - - - 5						· · ·		
NDSTONE, Light brown, fine ained, MW strength, HW					- 6								
SANDSTONE i ninly interbedded with MUDSI NDSTONE, light brown, very ine to fine grained, MW str	s ONF ength,							68 60	98		6.61		
IDERITIC SILISTONE, brown, strength ANDSTONE, light brown, fine					- - - - - - - -	8.30 JOINT,R3,P3, clean	2			95	B=90		
UDSTONE, light grey and ligh	it				- - - - - - - - - - - - - - - - - - -			68					
Town, Sirty, new Strength,					10			57			9.61		
HUNTER VALLE MT. OWEN	Y CC PR(	DAL	. C ECT	OR   F	P	NOTE: Cores were logg had been boxed and tr drying and disturbanc	ed som anspor e had o	e day: ted to occur:	s aft o sto red.	er dr re.	illing. Cores Significant		
JOINT COA	L BC	DA	R	)		Borehole No: 160	Shee	1	of	6	Figure		

												1
BOREHOLE CORE LOG	CHE	GED CKEI	אם נם כ	: 5	AM WAL	DATE 23/3/91		10 D N	10.			
Barahala dip 90n Ctram harizantal l	Boreno	ie dic	) jire	ction		Location AMG E Location Mine E			N N		EL	
Hole commenced: Hole completed			ס א	iriil aig Iounte	l d an	Drilli Barre	ng Flu I Type	id .				
DESCRIPTION		LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DESCRIPTION	F C A	6 C A	RQD	RECOVERY	COMMENTS	
MUDSTONE, light grey and ligh brown, silty, MW strength,	nt HW			·	- 11 :	11.13 JOINT,R1,P1,clean	15	65 60		101	B=0	
SANDSTONE, light brown, media grained, sideritic, HW MUDSTONE, light brown, W strength, MW SANDSTONE, light grey, media to coarse grained, MW strengt MW MUDSTONE, grey, NW strengt MW	um n gth,				- 12	12.40 JOINT,R2,P2,clean no B available 12.73 JOINT, R2,P1,clean 13.20 JOINT, R4,P2,clean 2mm calcite infill	25 20			96	B=272 B=270	т ц
SANDSTONE, light grey, fine grained,MW strength, MW MUDSTONE, slight grey, silty minor carbonaceous zones and coal inclusions,MW strength,	small SW-MW				- 14	14.56 JOINT, R3,P1,clean 14.88 JOINT,R3,P2 clean	40	65	     		B=215	
• • •					- 16 - - - - - - - - - - - - - - - - - -	16.33 JOINT,R5,P2,clean 16.95 JOINT, R3,P1,clean	18 38	60		102		
					18			70				
SANDSTONE, grey,medium to co grained, lithic, L-M strengt SW-Fr	barse h,				19			75 75 59 66		100		
HUNTER VALLE MT. OWEN	EY C PR	OAI OJI		OR I F	þ	NOTE: Cores logged so been boxed and transp drying and disturbanc RQD's are very diffic	me day orted e. Co ult to	s aftr to sto nsequi estir	er dr: ore ca ently mate.	illing ausing rock	g. Cores had g significant strength and	
JOINT COA	LB	0A	RI	)		Borehole No: 160	Shee	2	of	6	Figure	

•

BOREHOLE CORE LOG	AM WAL	_{КЕR} DATE 23/3/91 DATE	J	ο δη Ν	0.	<u></u>				
brehale dip Boreni (from harizantal i 90º	pie dic	) jire	ction		Local on AMG E Local on Mine E			N N		EL
tie commenced: tie completed		0 M	inil rig lounte	) d on	Dritting Barret	r Flui Type	d.			
DESCRIPTION LITHOLOGICAL	רודאטרספוגאר רודאטרספוגאר	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	DE SCRIPTION STRUCTURAL	FCA	6 C A	ROD	RECOVERY	COMMENTS
SANDSTONE, grey, medium to		·		-	20.05 JOINT,R2,P4, clean 20.25 JOINT,R4,P2, clean	19 21	60			B=192 B=184 -
Scrength, Swarr SANDSTONE, grey, fine to medium grained, lithic, MW strength, finely laminated (2mm to 50mm)				21	21.60 JOINT,R2,P1,clean 21.66 JOINT,R2,P1,clean 21.73 JOINT,R2,P1,clean	25 31 22	61			20.98 B=178 B=178 B=178
SANDSTONE, light grey, coarse to very coarse grained, lithic, HS strength, Fr-SW				- 23	22.98 JOINT,R4,P2,clean	23	66		100	B=224
				24			60			24.07
				- 25	24.85 JOINT, R5,P1 crystalline calcite infill 2mm thick	20	74		100	B=164
	· · · · · · · · · · · · · · · · · · ·						68			-
				27	• .		61			-
				- 29	29.38 JOINT,R4,P2,clean	21			102	- B=182
SANDSTONE, see below				30						-
HUNTER VALLEY O MT. OWEN PR	NOTE: Cores logged some d been boxed and transporte and disturbance had occur and RQD's are very diffic	ays a d to red. ult t	after store Cons co est	drill e. Si sequer imate	ing. .gnifi ntly i	Cores had icant drying rock strengths				
JOINT COAL B	0A	R	)	•	Borehole No: ¹⁶⁰ S	Sheel	3	of "	5	Figure [.]

٠.

°'0

••

							_									ير بينين				
LOGGED BY SAM WALKER								ATE	· 2	23/3/9	1									
	CHE	CKE	) BY	, 			رم 	ΔΤΕ					Jo	15 N	0.					
om horizantai ; 90º	Borena	ne dig	) dire	ction					1.900 Loca	1 00 4 N nc 1	MG Aine	ε ε			N N	<u>.</u>		ε:_		
ne commenced: ne completed			О м	rill rig launte	d on						Dril Bari	ling rei T	Fluid Ype	l: ·						
DESCRIPTION		LITHULOGICAL LOG	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH			DESC	RIPT JCTUF				FĊA	B C A	RQD	RECOVERY	co	MMENT	S	
ANDSTONE, light grey, very co p coarse grained, massive, strength, FR	parse				- 31	31. 31. 31.	04 J 09 J 22 J	IOINT IOINT IOINT	,R3,P , R3, ,R3,P	1, cle P1, cle 1, cle	ean lean ean	515174	35 35 28	67	100	100	30.07 B=228 B=228 B=224			
•			-		33						·				100	100	33.14			
					36										100	100	39.14		•	o.
HUNTER VALLI MT. OWEN	EY C PF	COA	L C EC	OR T	<u> </u>		N C s r	IOTE: iores igni ock	Core had fican stren	s were been l t dry: gths a	e logo boxed ing ar are di	ged s and nd d: iffic	some trar istur cult	days isport bance to es	afte ted o e. C stima	r dri t sto onseq te.	lling. re caus uently	sing	Ì	
JOINT COA	LB	04	R	D			В	oreh	ole N	10:	160	S	heel	4	oſ	6	Figu	re ·		

	LOGGED BY : SAM WALKER						DATE 23/3/91					
E REHOLE CORE LOG	CHEC	KED I	BY			DATE		J	ob N	lo.		
Erehole dip 900 (from harizantal j	Borenoie	e dip J	rect	hon		Local on	AMG S Ming I			N N		EL
t commenced: t completed			Or+) Mot	il rig unted	an		Drill Barr	ing Flui el Type	d.			
		LI HULUGILAL LOG CUNSTRUCTION	LOG STRIICTURE		0EP TH	DESCRIPTION STRUCTURAL		FCA	B C A	RQD	RECOVERY	COMMENTS
SANDSTONE, light grey, very co coarse grained, massive, MS rength, FR	Darse 5			-	41				58			-
DSTONE, brown, sideritic, My Grength, Fr CLAYSTONE, dark grey, carbonad MW strength, Fr	s ceous,				. 42				•			
- COAL, black, vitreous, highly eated,MS strength, Fr				بد. مراجع مراجع	43	CORES FROM 41.71m T DEPTH HAVE BEEN REM FOR COAL QUALITY AN PRIOR TO GEOTECHNIC LOGGING.	D 46.85m OVED ALYSIS AL					-
		м	_0		- 44							
					- 46 - - 47	• • •						
SILTSTONE, light grey, HW strength, Fr SIDERITIC SILTSTONE, dark bro strength,Fr (Fractured)	trength				- 48					100	97	
SANDSTONE, light grey, clayey inely grained, MW strength, JDSTONE, light grey, silty, MW strength, Fr	, Fr				49	49.24 JOINT,R2,P2,	clean	61	70	100	100	B=10
HUNTER VALLE MT. OWEN	EY CC PRC	DAL DJEC	CO CT	RP		NOTE: Cores we Cores had beer significant dr rock strengths	re logge boxed a ying and are dif	ed some and trar distur ficult	days sport bance to es	ofter ted to e. Co stimat	dril stor nsequ e.	ling. e causing ently
JOINT COA	L BC	DAR	D			Borehole No:	160	Sheet	5	of e		Figure ·

<u>ہ</u>۔

			•						•									
	LOG	GED	BY	: SA	M WAL	KER	DATE	. 23	/3/91									
JUREHULE CURE LUG	СНЕ	CKE	וא ס	r			DATE				J		lo.				·	
Barehale dip (from harizantal 1 90°	Boreno	ie di	) Jire	ction				Local :	אם חק M חק	NG E Ne E			N N			EL		
Haie commenced: ole completed			0 M	init ng tounte	d on					Drilling Barrel	j Flu Type	id · ·						
DESCRIPTION		רודאטרספונא <b>ו</b> רסק	CONSTRUCTION LOG	STRUCTURE LOG	DEPTH	•	OE S ST R		איב		FCA	B C A	RQD	RECOVERY	COM	MENTS		
MUCSTONE, light grey, silty, NW strength, Fr COAL, black,MS strength SANDSTONE, grey, medium f coarse grained, lithic, N			<u> </u>		- 51			. AT 51	1/1 m	<u></u>		69 68		100			-	
strength	51.14 END	OF 8 51.1			- 52	DEPT	ur HULL H	. או 1.	1 <del>4</del> M									
										·								
	-						· · ·										_	
	-											1					-	
					• • • • • • • • • • •											,	-	
					ي. مركز مركز مركز مركز مركز مركز مركز مركز												-	
																	-	
•		-			ليتعطيه												-	
																	_	
HUNTER VALLE MT. OWEN	EY C PR	OAI OJ	L C	ORI	 כ				_		·						ļ	÷.
JOINT COA	LB	0A	RI	)	<u></u>		Boreh	ole No	: 16	.0 5	Sheel	6	of ⁶		Figur	e		1
							_				_							4

. ·

.

#### APPENDIX B

ž

### PIEZOMETERS AND FIELD PERMEABILITY TESTS

#### 1.0 DETAILS OF PIEZOMETERS

Nine of the boreholes were instrumented with standpipe piezometers by officers of the Joint Coal Board. The completion of each of these is shown individually on Figure B1. At the completion of drilling 50mm class 18 PVC casing was installed in the hole. The bottom section had been slotted to provide hydraulic connection with the test interval. Gravel pack was inserted. Each hole was fully sealed from above the gravel pack to the surface using a cement grout.

#### 2.0 FIELD PERMEABILITY TESTS

Rising head tests were performed by Joint Coal Board personnel on each of the instrumented boreholes. The following procedure was used:

- i) Depth to standing water level was measured.
- ii) 19mm diameter airline was inserted so the outlet was about 1m from the base of the casing.
- iii) Compressed air was activated to blow as much as possible of the standing water column out of the casing.

iv) Recovery of the water level in the casing was measured with time.

Raw results of the monitoring of these recoveries are included in this Appendix. The data for the test on Borehole 171 is plotted, as an example, on Figure B2.

2.1 Results of Permeability Tests

The data from the rising head tests were analysed by two different methods. The first method is outlined in USBM, 1977, pp. 94-98. The second method was the Modified Non-steady Flow equation.

2

**B-1** 

#### 2.1.1 Analysis by USBM Method

This method involves plotting the head deficit at time t divided by the initial head deficit at time t = 0 (ie H/Ho) on a log scale versus time, and a straight line fitted. The basic time lag (T) is scaled off at H/Ho = 0.37 (correcting for the straight line not passing through the origin). A shape factor (F) is calculated from the physical dimensions of the hole, the casing and the slotted section.

The average permeability (k) of the test section is calculated using the formula.

where

 $\mathbf{k} =$ 

 $\frac{A}{FT}$ 

A = cross-sectional area of stand-pipe
F = shape factor
T = basic time lag.

The resulting permeabilities are shown in Table B1.

2.1.2 Modified Non-Steady Flow Method

For analysis of the data by this method drawdown (in metres) is plotted versus time (on a log scale). The change in drawdown ( $\Delta$ s) is measured over one log cycle of time for a straight line fitted to the early time data. The flow rate (Q) during this time is estimated by multiplying the cross sectional area of the inside of the standpipe by the change in drawdown between two representative readings. The average transmissivity (T) of the test section is then calculated using the Modified Non-Steady Flow equation.

$$\Gamma = \frac{2.3 \text{ Q}}{4\pi \Delta s}$$

The resulting transmissivities are shown in Table B1.

B-2

#### 2.1.3 Interpretation of Results

Most of the test sections spanned multiple aquifers. Permeabilities and transmissivities for individual seams and rock units have been interpreted from these values and are summarized in Table B2. These values must be considered to be approximate only and to be subject to confirmation by more rigorous methods of aquifer testing.

#### TABLEB1

Borehole Number	Apparent <b>permeability</b> from USBM method m/day	Apparent <b>transmissivity</b> from Modified Non-steady Flow method m ² /day
129	0.35	0.31
170	0.23	0.40
171	0.036	0.51
172	0.10	1.6
173	0.015	0.11
174	0.12	1.7
175	0.19	1.3
178	0.085	0.18
179	0.16	0.10
	· .	

#### Apparent Hydraulic Properties For Borehole Test Intervals

B-3

#### TABLEB2

### Interpreted Aquifer Hydraulic Properties

Stratigraphic Interval/seam	Estimated Permeability (k) [m/day]	Average Thickness (b) [m]	Estimated Transmissivity (T) [m²/day]
Overburden of MLD seam	0.02	20	0.4
Middle Liddell coal seam	0.3	5	1.5
Interburden from MLD to LLD	0.05	14	0.7
Lower Liddell coal seam	0.3	1.5	0.45
Interburden from MLD to Barrett	0.2	15	3.0
Barrett coal seam	1.0	3	3.0
		<b>L</b>	







Fig. B2.b. : ANALYSIS BY METHOD OF USBM (1977)

MT OWEN PROJECT

- 1

#### TABULATED DATA FROM RISING HEAD PERMEABILITY TESTS

#### TABLE OF STATIC WATER LEVELS

BH No	SWL
129	5.98
170	2.91
171	3.27
172	6.17
173	2.94
174	6.81
175	7.09
178	9.90
179	6.86
	,

NOTE: WL of Start (initial water level) is measured from the top of the piezometer standpipe. Static Water Level (SWL), measured from ground level (ie collar EL) is derived by subtracting the difference between top of casing and ground level.

G02783

BOREHOLE	NUMBER	•,	129
STANDPIP	E STICKUP	:	1.00
WL OF ST	ART	:	6.98
AIRLIFT	LEVEL	:	58.00
DATE		•	27/3/91
TTME (st	art)	•	10.50am
TIME (Sta	nich)	•	11.50am !
		•	
TIME	<b>ДЕРТН ТО</b>	EXCESS	Н/Но
	WATER	DRAW-	
	LEVEL	DOWN	
0.00	58.00	51.02	1.0000
0.50	18.87	11.89	0.2330
1.00	11.18	4.20	0.0823
2.00	7.81	0.83	0.0163
3.00	7.39	0.41	0.0080
4.00	7.28	0.30	0.0059
5.00	7.22	0.24	0.0047
10.00	7.17	0.19	0.0037
15.00	7.14	0.16	0.0031
20.00	7.10	0.12	0.0024
25.00	7.08	0.10	0.0020
30.00	7.05	0.07	0.0014
40.00	7.03	0.05	0.0010
60.00	7.01	0.03	0.0006

BOREHOLE	NUMBER	•	170
STANDPIP	E STICKUP	•	1.00
WL OF STA	ART.	:	3.91
AIRLIFT I	LEVEL	•	43.00
			4.00
DATE	,	:	27/3/91
TIME (sta	art)	:	9:00am
TIME (fin	nish)	•	11:00am
TIME	DEPTH TO	EXCESS	H/Ho
	WATER	DRAW-	
	LEVEL	DOWN	•
0.00	43.00	39.09	1.0000
0.50	8.94	5.03	0.1287
1.00	6.15	2.24	0.0573
2.00	5.32	1.41	0.0361
3.00	4.58	0.67	0.0171
4.00	4.14	0.23	0.0059
5.00	4.10	_ 0.19	0.0049
10.00	4.01	0.10	0.0026
15.00	4.00	0.09	0.0023
20.00	3.97	0.06	0.0015
30.00	3.97	0.06	0.0015
40.00	3.96	0.05	0.0013
60.00	3.95	0.04	0.0010
120.00	3.95	0.04	0.0010

	BOREHOLE	NUMBER	:	171
l	STANDPIP	E STICKUP	•	1.00
l	WL OF STA	ART	:	4.27
1	AIRLIFT I	LEVEL	:	34.00
ļ				1
1	DATE		:	27/03/91
ļ	TIME (sta	art)	•	9:30am ¦
1	TIME (fin	nish)	:	11:30am
ł				1
ł				
1	TIME	DEPTH TO	EXCESS	H/Ho
ł		WATER	DRAW-	1
l		LEVEL	DOWN	
1	0.00	34.00	29.73	1.0000
ł	0.50	5.58	1.31	0.0441
1	1.00	4.91	0.64	0.0215
ļ	2.00	4.72	0.45	0.0151 ¦
ł	3.00	4.64	0.37	0.0124
ł	4.00	4.59	0.32	0.0108
1	5.00	4.54	0.27	0.0091
ł	10.00	4.47	0.20	0.0067
1	15.00	4.40	, 0.13	0.0044
1	20.00	4.37	0.10	0.0034
ł	25.00	4.35	0.08	0.0027
ł	35.00	4.34	0.07	0.0024
1	60.00	4.32	0.05	0.0017
ł	120.00	4.29	0.02	0.0007
٩.				

		·	•	
BOREHOLE	NUMBER	•	172	ļ
STANDPIPI	STICKUP:	•	1.00	i
WL OF STA	ART	:	7.17	+
AIRLIFT I	LEVEL	:	42.00	1
				1
DATE		:	27/03/91	ł
TIME (sta	art)	:	10:25am	ł
TIME (fi)	nish)	:	11:25am	ł
	· · · · · ·			ł
				Í
TIME	DEPTH TO	EXCESS	H/Ho	1
	WATER	DRAW-		ł
	LEVEL	DOWN		ļ
0.00	42.00	34.83	1.0000	ł.
0.50	18.38	11.21	0.3218	ł
1.00	10.01	2.84	0.0815	ł
2.00	9.44	2.27	0.0652	ł
3.00	8.86	1.69	0.0485	1
4.00	7.73	0.56	0.0161	ł
5.00	7.65	0.48	0.0138	ł
10.00	7.47	0.30	0.0086	ł
15.00	7.37	0.20	0.0057	ł
20.00	7.30	0.13	0.0037	1
30.00	7.24	0.07	0.0020	ł
40.00	7.21	0.04	0.0011	ł
60.00	7.19	0.02	0.0006	ł
				- F

1

#### PERMEABILITY TEST - RAW DATA

1	BOREHOLE	NUMBER	:.	173
ł	STANDPIPI	E STICKUP	:	1.00
ł	WL OF STA	ART	:	3.94
ł	AIRLIFT H	LEVEL	:	34.00
ł				
1	DATE		:	27/3/91 ¦
ł	TIME (sta	art)	:	11:30am
İ	TIME (fi)	nish)	:	1:30pm
i				
1				
i	TTME	DEPTH TO	EXCESS	H/Ho
i		WATER	DRAW-	1
i		LEVEL	DOWN	
İ	0.00	34.00	30.06	1.0000
i	0.50	31.33	27.39	0.9112 ¦
į	1.00	30.81	26.87	0.8939
i	2.00	28.55	24.61	0.8187
į	3.00	26.96	23.02	0.7658
i	4.00	25.47	21.53	0.7162
i	5.00	24.01	20.07	0.6677
i	10.00	18.04	14.10	0.4691
i	15.00	13.05	9.11	0.3031
i	20.00	12.72	8.78	0.2921
i	25.00	12.26	8.32	0.2768
i	30.00	11.96	8.02	0.2668 ¦
i	60.00	11.52	7.58	0.2522
į	120.00	11.07	7.13	0.2372
i				!

. .

BOREHOLE	NUMBER	:	174
STANDPIPE	E STICKUP	•	0.62
WL OF STA	ART	:	7.43
AIRLIFT I	LEVEL	:	42.00
			1
DATE		:	27/03/91
TIME (sta	art)	:	12:00 noo¦
TIME (fir	nish)	•	1:00pm
-			
TIME	DEPTH TO	EXCESS	Н/Но
	WATER	DRAW-	
	LEVEL	DOWN	
0.00	42.00	34.57	1.0000
0.50	15.09	7.66	0.2216
1.00	8.68	1.25	0.0362
2.00	8.11	0.68	0.0197
3.00	7.86	0.43	0.0124
4.00	7.81	0.38	0.0110
5.00	5.00 7.72		0.0084
10.00	10.00 7.64		0.0061
15.00 7.60		0.17	0.0049
20.00 7.57		0.14	0.0040
30.00	7.55	0.12	0.0035
40.00	7.54	0.11	0.0032
60.00	7.54	0.11	0.0032
	-		

BOREHOLE	NUMBER	:	175
STANDPIP	E STICKUP	:	1.10
WL OF STA	ART	:	8.19
AIRLIFT J	LEVEL	:	62.00
DATE		:	27/03/91
TIME (sta	art)	:	12:30pm
TIME (fi)	nish)	:	1:30pm
<u></u>			
TIME	DEPTH TO	EXCESS	H/Ho
	WATER	DRAW-	1
	LEVEL	DOWN	I
0.00	62.00	53.81	1.0000
0.50	19.20	11.01	0.2046
1.00	14.32	6.13	0.1139
2.00	10.02	1.83	0.0340
3.00	8.31	0.12	0.0022
4.00	8.28	0.09	0.0017
5.00	8.27	0.08	0.0015
10.00	8.26	0.07	0.0013
15.00	8.25	0.06	0.0011
20.00	8.25	0.06	0.0011
30.00	8.24	0.05	0.0009
60.00	8.24	0.05	0.0009
		•	

			·····
BOREHOLE	NUMBER	:	178
STANDPIPE	STICKUP	:	1.00
WI. OF STA	ART [.]	:	10.90
ATRLIET I	EVEL	:	43.00
			ł
DATE		:	27/03/91 !
TTME (sta	art)	:	8:00am
TIME (Bee	nich)		10:00am
	115117	•	
TIME	DEPTH TO	EXCESS	H/Ho ¦
	WATER	DRAW-	ł
	LEVEL	DOWN	ļ
0.00	43.00	32.10	1.0000
0.50	13.10	2.20	0.0685
1.00	12.03	1.13	0.0352
2.00	11.68	0.78	0.0243
3.00	11.52	0.62	0.0193
4.00	11.39	0.49	0.0153
5.00	11.30	0.40	0.0125
10.00 11.26		0.36	0.0112
15.00	11.22	0.32	0.0100
20.00	11.20	0.30	0.0093
30.00	11.18	0.28	0.0087
40.00	11.16	0.26	0.0081
60.00	11.10	0.20	0.0062
120.00	11.07	0.17	0.0053

А.

BOREHOLE	NUMBER	•	179
STANDPIPH	E STICKUP	•	1.00
WL OF STA	ART ·	:	7.86
AIRLIFT I	LEVEL	:	43.00
			ł
DATE		:	27/03/91
TIME (sta	art)	:	1:30pm ;
TIME (fin	nish)	:	2:30pm
	· · · ·		•
TIME	DEPTH TO	EXCESS	H/Ho
	WATER	DRAW-	ł
	LEVEL	DOWN	1
0.00	42.00	34.14	1.0000
0.50	15.01	7.15	0.2094
1 00	13 48	5 62	0 1646
2 00	11 89	4 03	0 1180 !
2.00	10 40	2 5/	0.0744
3.00	10.40	1 76	0.0516
4.00	4.00 9.62		0.0325
5.00	8.9/		
10.00	8.51	0.65	0.0190
15.00	8.38	0.52	0.0152
20.00	8.29	0.43	0.0126
25.00	25.00 8.26		0.0117
30.00 8.23		0.37	0.0108
40.00	8.21	0.35	0.0103
60.00	8.18	0.32	0.0094 ¦
			1 4

### APPENDIX C

# POINT LOAD STRENGTH TESTS AND SONIC LOG STRENGTH CORRELATION

#### 1.0 POINT LOAD STRENGTH TESTS

Representative samples of the rock materials from boreholes 128, 161, 176 and 206 were tested using a Point Load Test frame, belonging to the Joint Coal Board. A total of 35 tests were performed on 14 samples according to the ISRM, Suggested Method for Determining Point Load Strength (ISRM, 1985). An explanatory sheet is included with this Appendix.

Point Load Tensile strength is obtained by loading core samples either diametrically or axially between two steel points. The average point load tensile strength across the plane of loading is then given by the load at failure divided by the square of the diameter of the sample. This tensile strength is then corrected to equivalent tensile strength measured over 50mm diameter core ( $Is_{(50)}$ ).

The ten (10) test sheets which follow show details of each of the tests performed. Details of calibration of test frame are also included.

X

Table C1 summarizes the results of the tests.

#### 2.0 CORRELATION OF SONIC VELOCITY WITH ROCK STRENGTH

Downhole sonic velocity logging was performed in each of the cored holes. The velocity of sound in rock is dependent on many and varied characteristics which include:

- rock substance strength
- rock type (mineralogy/texture/etc)

- in-situ stress state

- moisture content
- weathering
- degree of fracturing etc.

A general and approximate relationship between sonic log transit time (t - in microseconds per foot) and Unconfined Compressive Strength (UCS - in MPa) is given by McNally, 1987, p55 as:

 $UCS = 1000e^{(-0.035 t)}$  (MPa)

This relationship has been plotted relative to strength data measured during the present investigation on Figure C1.

For a number of reasons great care should be taken if any attempt is made to use this relationship to interpret rock strengths from downhole sonic logs:

• there are only a small number of strength values measured.

• the strength values show a wide scatter when plotted against transit time.

- the relationship between Point Load Strength  $(Is_{(50)})$  and Unconfined Compressive Strength  $(q_w)$  has not been established for this site.
- the "noisy" nature of the sonic logs makes it difficult to relate reliable values of transit time to corresponding rock strength measurements.

G02783

A useful relationship will probably be able to be developed in the future, provided the following considerations are taken into account during further work. A significant number of additional strength tests should be done and should include enough Unconfined Compressive Strength (UCS) tests to establish the relationship to Point Load Tests. Sufficient strength tests of both types should be carried out for each of the major rock types on the site to allow reliable individual correlations to be calculated.

3

ž



Figure C1

### MT OWEN PROJECT CORRELATION OF UCS WITH TRANSIT TIME

S.A. Dept of Mines and Energy 24-4-91

S 22189

#### TABLE C1

#### Summary of Point Load Results

Hole Numbe	Sample er Depth (m)	Rock Type	Interval ¹	Test ² Type (A/D	Is ₍₃₀₎ MPa )	Sample Condition
128	29.1	sandstone	М	A	0.32	No drying.
	29.1	sandstone	Μ	D	0.19	No drying.
	30.2	sandstone	М	D	0.27	Not wrapped 24 hours.
	30.2	sandstone	М	Α	0.34	Not wrapped 24 hours.
	30.2	sandstone	М	D	0.24	Not wrapped 24 hours.
	30.2	sandstone	М	Α	0.35	Not wrapped 24 hours.
	39.2	mudstone	L	D	0.29	No drying.
	39.2	mudstone	L	D	0.33	No drying.
	39.25	mudstone	L	Α	0.43	No drying.
	39.3	mudstone	L	Α	0.45	No drying.
161	47.2	siltstone	В	D	0.47	No drying, 1 week wrapped.
	47.2	siltstone	В	D	0.38	No drying, 1 week wrapped.
	47.2	siltstone	В	Α	0.36	No drying, 1 week wrapped.
	47.2	siltstone	В	Α	0.42	No drying, 1 week wrapped.
176	14.3	sandstone	М	D	0.50	No drying, 1 week wrapped.
	14.3	sandstone	Μ	$\mathbf{D}_{i}$	0.59	No drying, 1 week wrapped.
	14.3	sandstone	Μ	Α	0.57	No drying, 1 week wrapped.
	15.7	sandstone	Μ	D	0.45	No drying, 1 week wrapped.
	16.5	sandstone	М	D	0.99	One week drying in box. ³
	16.5	sandstone	Μ	Α	0.89	One week drying in box. ³
	26.8	mudstone	L	D	0.45	No drying, 1 week wrapped.
	26.8	mudstone	L	Α	0.42	No drying, 1 week wrapped.
	31.8	mudstone	L	D	0.61	No drying, 1 week wrapped.
	31.8	mudstone	L	Α	0.97	No drying, 1 week wrapped.
206	33.5	mudstone	L	D	0.45	No drying, 3 days wrapped.
	33.5	mudstone	L.	$\mathbf{A}$ .	0.48	No drying, 3 days wrapped.
	32.83	siltstone	L	Α	1.01	3 days drying in box."
	38.2	mudstone	L	D	0.70	No drying, 3 days wrapped.
	38.2	mudstone	L	Α	0.64	No drying, 3 days wrapped.
	40.2	siltstone	L	Α	1.23	No drying, 3 days wrapped.
	40.2	sandstone	L	D	1.56	No drying, 3 days wrapped.
	40.2	sandstone	L	D	>1.9	No drying, 3 days wrapped.
	40.2	sandstone	L	D	1.38	No drying, 3 days wrapped.
	45.4	sandstone	L	D	0.90	No drying, 3 days wrapped.
	45.4	sandstone	L	Α	0.98	No arying, 3 days wrapped.

NOTES: 1. Stratigraphic interval the sample comes from M = interburden between MLD and AUL

- L = interburden between LLD and MLD B = interburden between BT and LLD 2. Type of test. A = axially loaded, D = diametrally loaded 3. Samples with significant history of moisture loss showed marked apparent increase in strength

C-4

POINT LOAD STRENGTH TEST							
•	DEPAR	TMENT OF MINES AND	ENERGY - SOUTH AUS	STRALIA			
h	NCC				(12/0)		
		TEST LOCA	LITY DKILL S	ITE DATE	1 <u>6/3/7/</u>		
PROJECT THE	OWEN	COAL TEST MACH	HINE <u>CSIKO MO</u>	<u>DEC 739-</u> TESTED	) BY : <u> </u>		
	1270	DATE CALLE	SRATED :12/~	<u>+ / ½/</u> CHECKE	ID BY •		
SAMPLE ID and LOC	ATION	BH 128 39.2M	BH128 39.2 m	BH 128 39.25 m	39.3M		
		MUDSTONE ,			-		
SAMPLE DESCRIP (NOTE PLANES OF WFAKNESS)	TION	light gray very sitty;	see left	see left	see left		
		sl. carbonaccous					
MOISTURE / STORAGE	HISTORY	FRESH FROM CORE BARRCL	FRESH FROM LORE BARREL	FRESH FROM CORE BARREL	FRESH FROM LORE BARREL		
DIAMETER 1	W ₁ (mm)	58.0	58.0	58.0	58.0		
DIAMETER 2	W ₂ (mm)	58.0	58.0	58.0	58.0		
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	58	S8	58	58		
PLATEN SEPARATION	D(mm)	58	S8	37	28		
LENGTH / DIAM. RATIO $0.3 < \frac{D}{W} < 1.0$	D/W	1.0.5	1.0	0.64	0.48		
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	58.0	58.0	52.3	45 5		
FAILURE LOAD	kN(kPa)	1.0	1.2	1.4	1.1		
CORRECTED LOAD	P(kN)	0.91	1.03	1.15	0.97		
UN-CORRECTED P.L. STRENGTH INDEX $I_s = (P_{De}^2) \times 1000$	I _s (MPo)	0.27	0.31	0.42	0.47		
SIZE CORR. FACTOR $F = (\frac{De}{50})^{0.45}$	F	1.07	1.07	1.02	0.96		
POINT LOAD STRENGTH (SIZE CORRECTED) IS(50) = IS x F	ls ₍₅₀₎ (MPa)	0.29	0.33	0.43	0.45		
APPROX. EOUIV. U.C.S. Ou - 24 x is ₍₅₀₎	Qu (MPa) (see Note 2)	7.0	7.9	10.3	10.8		
TEST TYPE, SKETCH	I AND	D	D	A	A,		
NOTES		Perpendicular,			A		
A = ANAL SAMFLE . D = DIAMETRAL SAM	IPLE	A°X	A0 X	$\mathbb{P}$			
B = BLOCK SAMPLE	TEST	IND X	100				
I = IRREGULAR LUM	IP TEST	XX	* < /	Fractured into	T		
	:	$\mathbf{\nabla}$	$\bigvee$	3 pieces			
NOTES 1. Testing in 2. Value for extension	NOTES 1. Testing in accordance with ISRM Point Load Test Method - see Explanatory Sheet 3. 2. Value for UGS is approximate only. Conversion from Is ₍₅₀₎ to Qu is only accurate if						

.

MF 195

### POINT LOAD STRENGTH TEST

JOB NO. DME 7/91 SHEET : 2 of 10

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

CLIENT HVCC	TEST LOCALITY	AT DRILL SITE	DATE	6/3/91
PROJECT MT OWEN COAL	TEST MACHINE	CSIRU MODEL P39.	TESTED BY	sw
LOCATION : BH128	DATE CALIBRATED	: 15/4/91	CHECKED BY	:

SAMPLE ID and LOCATION		BH 128	BHIZE	BHIZB	BHI28	
		29.1M	29.1m	30.2 m	30.2 m	
SAMPLE DESCRIP (NOTE PLANES O WEAKNESS)	TION F	SANDSTONE, It. brownish crey, clayey, lithic, reduum grained, HW.	see left	see left	sec let	
MOISTURE / STORAGE	HISTORY	PLASTIC WRAPPED FOR 24 MRS	PLASTIC WRAPPED FOR 24 HRS	IN CORE BON ONE DAY-NOT WRANED	IN CORE BOX ONE DAY - NOT WRAPPED	
DIAMETER 1	W ₁ (mm)	59.0	59.0	53.0	59.0	
DIAMETER 2	W ₂ (mm)	59.0	SO.0	59.0	59.0	
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	59.0	59.0	59.0	59.0	
PLATEN SEPARATION	D(mm)	42	59	59.0	44	
LENGTH / DIAM, RATIO 0·3 < ^D / _W < 1·0	D/w	0.71	1.0	1.0	0.75	
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	0 _e (mm)	56.2	.59.0	59.0	57.5	
FAILURE LOAD	kN(kPa)	1.1	0.5	0.95	1.25	
CORRECTED LOAD	P(kN)	0.97	0.61	0.88	1.06	
UN-CORRECTED P.L. STRENGTH INDEX $I_s = (\frac{P}{De^2}) \times 1000$	Is (MPo)	0.31	0.18	0.25	0.32	
SIZE CORR. FACTOR F = ( ^{De} / ₅₀ ) ^{0·45}	F	1.05	1.08	1.08	1.06	
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	ls ₍₅₀₎ (MPa)	0.32	0.19	0.2.7	· 0.34	
APPROX. EOUIV. U.C.S. Qu 쇼 24 x Is ₍₅₀₎	Qu (MPa) (see Note 2)	7.8	4.5	6.6	8.2	
TEST TYPE, SKETCH NOTES	I AND	A	D	D	A	
A = AXIAL SAMPLE 1	TEST	V	V			
D = DIAMETRAL SAMPLE TEST						
B = BLOCK SAMPLE TEST			Υ <u>γ</u>	K-++		
I = IRREGULAR LUM	IP TEST	↓ ↑		105 50		
NOTES: 1. Testing in accordance with ISRM Point Load Test Method - see Explanatory Sheet 3.						

 Value for UCS is approximate only. Conversion from Is₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.

ULTA	THENT OF MINES AND	ENERGY - SOUTH AUS		SHEET 5 of 10			
LIVE C							
CLIENT <u>HVCC</u>	TEST LOCA	LITY <u>FFT DRILL</u>	STE DATE	$\frac{1}{2}  \frac{1}{2}  \frac{1}$			
PROJECT MIT OWEN	<u>OAL</u> TEST MACE	HINE CSTRO MO	101 CUE	CKED BY :			
LOCATION : 6M 128		SRATED					
AMPLE ID and LOCATION	BH 128 30.2 M	BH 128 30.2m					
SAMPLE DESCRIPTION (NOTE PLANES OF WEAKNESS)	SANDSTONE light brownish grey, clargey, lithic, medium grained HW	see left					
OISTURE/STORAGE HISTOR	IN CORE BOX ONE	see left.	-				
DIAMETER 1 W1 (mm	59.0	59.0					
DIAMETER 2 W ₂ (mm	1 59.0	59.0					
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$ W (mm)	59	59					
LATEN SEPARATION D(mm)	59	48					
ENGTH / DIAM. RATIO D·3 < $D_{W}$ < 1.0 $D_{W}$	1.0	0.81					
$\frac{\text{QUIVALENT DIAM.}}{D_e = \sqrt{1.2732(W \times D)}} D_e \text{ (mm)}$	\$ 59.0	60.0					
AILURE LOAD or GAUGE PRESSURE	0.8	1.4					
CORRECTED LOAD P(KN)	0.79.	1.15					
$H_{s} = (P_{De^{2}}) \times 1000$	0.23	0.32		<u></u>			
SIZE CORR. FACTOR $F = (\frac{De}{50})^{0.45}$ F	1.08	1.09					
OINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ Is ₍₅₀₎ = Is x F (MPa)	0.24	0.35					
PPROX. EQUIV. U.C.S. Qu (MPC Qu 🗠 24 x Is ₍₅₀₎ (see Note	1) 2) 5·9	8,31	•				
TEST TYPE, SKETCH AND NOTES A = AXIAL SAMPLE TEST D = DIAMETRAL SAMPLE TEST	D +53 +1 + +	A					
3 = BLOCK SAMPLE TEST I = IRREGULAR LUMP TEST							

MF 195

#### POINT LOAD STRENGTH TEST JOB NO. DME 7/91 SHEET 4 10 DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA .24/3/91 HVCC TEST LOCALITY CORE SHED DATE CLIENT PROJECT MT OWEN COAL TEST MACHINE MODEL P39 TESTED BY . SW/LM : CSIRO LOCATION BOREHOLE 161 DATE CALIBRATED 15/4/91 CHECKED BY · BH 161 SAMPLE ID and LOCATION see left see left see left 47.16m to 47.33m Light grey SAMPLE DESCRIPTION Chijen sultstone. Fresh. se let see left see left (NOTE PLANES OF WEAKNESS) PLASTIC WRAPPED se lett MOISTURE / STORAGE HISTORY see left see lift FOR ONE WEEK DIAMETER 1 W1 (mm) 60.5 60.5 60.5 60:5 DIAMETER 2 W₂ (mm) 60.5 60.5 60 · S 60.5 AVE. DIAMETER $W = \frac{W_1 + W_2}{W_1 + W_2}$ W (mm) 60.5 60.5 60.5 60.5 2 PLATEN SEPARATION D(mm) 60.5 60.5 4 S 42 LENGTH / DIAM, RATIO ⊳∕w $0.3 < D_{W} < 1.0$ 1.0 1.0 0.75 0.69 EQUIVALENT DIAM. De (mm) 60.5 60.5 58.9 56.9 $D_{e} = \sqrt{1.2732(W \times D)}$ FAILURE LOAD 1.6 MPa 2.1 MPa 1.6 MPa 1.4 MPa kN(kPa) or GAUGE PRESSURE CORRECTED LOAD P(kN) 1.57 kN 1.27 KN 1.15 KN 1.27 EN UN-CORRECTED P.L. STRENGTH INDEX Is (MPa) 0.43 0.35 0.39 0.33 $I_s = (P_{De^2}) \times 1000$ SIZE CORR. FACTOR F 1.09 $F = (\frac{De}{50})^{0.45}$ 1.09 1.06 1.08 POINT LOAD STRENGTH (SIZE CORRECTED) ls(50) 0.42 0.36 0.47 0.38 ls(50) = ls × F (MPa) APPROX. EQUIV. U.C.S. Qu (MPa) 9.1 11.2 Qu - 24 x Is(50) 10.0 8.6 (see Note 2) A A $\mathbb{D}$ D TEST TYPE, SKETCH AND ſ ſ NOTES Fracture was A = AXIAL SAMPLE TEST along bedding D . DIAMETRAL SAMPLE at about 30° TEST for normal. B . BLOCK SAMPLE TEST 1 = IRREGULAR LUMP TEST BROKE IN THREE NOTES 1. Testing in accordance with ISRM Point Load Test Method-see Explanatory Sheet 3. 2. Value for UCS is approximate only. Conversion from $\mathbf{Is}_{(50)}$ to Qu is only accurate if extensively calibrated for specific site materials.

## POINT LOAD STRENGTH TEST

> JOB NO. : DME 7/91 SHEET : 5 of 10

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

.

CLIENT	HVCC	TEST LOCALITY	ORE SHED	DATE	24/3/91
PROJECT	MT OWEN COAL	TEST MACHINE	CSIRO MODEL P39.	TESTED BY	. SW/LM
LOCATION	BOREHOLE 176	DATE CALIBRATED	: 15/4/91	CHECKED BY	:

.: ·

.

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		·····			Contraction of the local division of the loc
SAMPLE ID and LOCATION		BH 176 14-21 to 14.35m	BH 176 14.21 to 14.35m	2H176 14.21m to 14.35m	ВН 176 15.61 to 15.77m
SAMPLE DESCRIPTION (NOTE PLANES OF WEAKNESS)		Light brown, highly weath- ered, medium grained, lithic sandstone.	see left	see left	Light brown, highly weath- ered, medium grained; lethic SANDSTONE
MOISTURE / STORAGE	HISTORY	PLASTIC WRAPPED FOR ONE WEEK	see left	see lett	see left
DIAMETER 1	W ₁ (mm)	60.5	60.5	60.5	60.5
DIAMETER 2	W ₂ (mm)	60.5	60 5	60.5	60 s
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60 5	60.5	60.5	60.5
PLATEN SEPARATION	D(mm)	60.5	60 S	39	60.5
LENGTH / DIAM. RATIO 0.3 < D/W < 1.0	D/W	1.0	1.0	0.65	1.0
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	50.5	60.5	54.8	60.5
FAILURE LOAD (or GAUGE PRESSURE)	kN(kPa)	2.3 MPa	2.8 MPa	2.2 MPa	2.0 MPa
CORRECTED LOAD	P(kN)	1.69 kN	2.00 kN	1.63 kN	1.51 kN
UN-CORRECTED P.L. STRENGTH INDEX $I_s = (P_{De^2}) \times 1000$	I _s (MPo)	0.46	0 55	0.54	0.41
SIZE CORR. FACTOR $F = (\frac{De}{50})^{0.45}$	F	1.09	1.09	1:04	1.09
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = is x F	ls ₍₅₀₎ (MPa)	0 50	0.59	0.57	0.45
APPROX. EOUIV. U.C.S. Qu	Qu (MPa) (see Note 2)	12.1	14.3	12.6	10.8
TEST TYPE, SKETCH AND NOTES A = AXIAL SAMPLE TEST D = DIAMETRAL SAMPLE TEST		D	D	A	D
B = BLOCK SAMPLE TEST		FRACTURED ALONG BEDDING AT APPROX 30° TO			
NOTES: 1. Testing in accordance with ISRM Point Load Test Method-see Explanatory Sheet 3. 2. Value for UGS is approximate only. Conversion from Is ₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.					

POINT LOAD STRENGTH TEST					
	DEPAR	TMENT OF MINES AND	ENERGY - SOUTH AU	STRALIA	
CLIENT HVCC TEST LOCALITY CORE SHED DATE 24					.24/3/91
PROJECT <u>Mr</u>	OWEN	COAL TEST MACH	HINE CSIRO M	OOEL P39. TESTED	BY SW/LM
LOCATION . BH	176	DATE CALIE	BRATED : IS/4/	91 СНЕСКЕ	D BY
SAMPLE ID and LOCATION		BH 176 16.46 to 16.60m	214 176 16.46 to 16.60	ВН 176 26.75 to 26.93	BH 176 26.70 to 26.93,
SAMPLE DESCRIPTION (NOTE PLANES OF WEAKNESS)		Light brown, medium grained littuic, clausey sand stone Highly weathered	see left	Light gray silly mind stone. Shouther to moder attelly weathered.	see left
MOISTURE / STORAGE	HISTORY	over one week.	see left.	Plastic usrapped for one sect.	see left
DIAMETER 1	W ₁ (mm)	. 60.5	60.5	60.5	60 5
DIAMETER 2	W ₂ (mm)	60.5	60.5	60.5	60.5
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60 5	60.5	30.5	-60.5
PLATEN SEPARATION	D(mm)	60.5	52	60 S	57
LENGTH / DIAM. RATIO 0.3 < D/W < 1.0	D _{/W}	1.0	0.86	1.0	0.94
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	60.5	633	- 60 · 5	66-3
FAILURE LOAD	kN(kPa)	5.0	8.ابـــ	2.0	2.2
CORRECTED LOAD	P(kN)	2.32	3.20	1.51	1.63
UN-CORRECTED P.L. STRENGTH INDEX 1 _s = ( ^P /De ² ) x 1000	I _s (MPo)	0.91	03.C	0.4)	0.37
SIZE CORR. FACTOR F = ( ^{De} / ₅₀ ) ⁰⁻⁴⁵	F	1.09	1,11	1.09	1,14
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	Is ₍₅₀₎ (MPa)	0.99	0.89	0.45	0,42
APPROX. EOUIV. U.C.S. Qu	Qu (MPa) (see Note 2)	23.7	243	10.8	10,1
TEST TYPE, SKETCH AND NOTES A = AXIAL SAMPLE TEST D = DIAMETRAL SAMPLE TEST B = BLOCK SAMPLE TEST I = IRREGULAR LUMP TEST		D	A	D	A
<ul> <li>NOTES: 1. Testing in accordance with ISRM Point Load Test Method – see Explanatory Sheet 3.</li> <li>2. Value for UGS is approximate only. Conversion from Is₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.</li> </ul>					

ł

## POINT LOAD STRENGTH TEST

JOB NO. : DME 7791 SHEET : 7 01 10

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

CLIENT	HVCC	TEST LOCALITY	CORE SHED	DATE	. 24/3/91
PROJECT	MT OWEN COAL	TEST MACHINE	:CSIRO MODEL P39.	TESTED BY	. SW/LM.
LOCATION	1	DATE CALIBRATED		CHECKED BY	۶ <u></u>

ł

SAMPLE ID and LOCATION		BH 176 31.70 - 31.96m	BH 176 31.70-31.96m	BH 206 33:45 to 33:70m	BH 206 23-45も 33.70m
SAMPLE DESCRIPTION (NOTE PLANES OF WEAKNESS)		Light grey silty mudstone. Slightly weathered to Fresh.	see left	Mid-grey, sitty mudstone Fresh.	see left
MOISTURE / STORAGE	HISTORY	Plastic wrapped for one week.	see left	Plastic wrapped for three days.	see left
DIAMETER 1	W1 (mm)	60 S	60'5	60.5	60.5
DIAMETER 2	W ₂ (mm)	60 S	60.5	60.5	60.5
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60.5	60.5	60.5	60.5
PLATEN SEPARATION	D(mm)	60.5	43	60.5	65
LENGTH / DIAM. RATIO $0.3 < D_W < 1.0$	^D ∕w	1.0	0.71	1.0	1.07
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	60 5	57.6	60 5	70.8
FAILURE LOAD . (or GAUGE PRESSURE)	kN(kPa)	. 2.9	4.5	2.0	2.9
CORRECTED LOAD	P(kN)	2.06	3.02	1.51	2.06
UN-CORRECTED P.L. STRENGTH INDEX $I_s = (P_{De}^2) \times 1000$	I _s (MPa)	0.56	0.91	0.41	0.41
SIZE CORR. FACTOR $F = (\frac{De}{50})^{0.45}$	F	1.09	1.07	1.09	. 1.17
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	ls ₍₅₀₎ (MPa)	0.61	0.97	0.45	0.48
APPROX. EOUIV. U.C.S. Qu	Qu (MPa) (see Note 2)	14.7.	23.3	10.8	11.5
TEST TYPE, SKETCH AND NOTES A = AXIAL SAMPLE TEST D = DIAMETRAL SAMPLE TEST B = BLOCK SAMPLE TEST I = IRREGULAR LUMP TEST		D	A	D	A
<ol> <li>NOIES</li> <li>I. lesting in accordance with ISRM Point Load Test Method – see Explanatory Sheet 3.</li> <li>2. Value for UCS is approximate only. Conversion from Is₍₅₀₎ to Ou is only accurate if extensively calibrated for specific site moterials.</li> </ol>					
# POINT LOAD STRENGTH TEST

JOB NO. . DME 7/91 SHEET ._______ 10 of

::. :

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

CLIENT	HVCC	TEST LOCALITY	ORE SHED	DATE	24/3/91
PROJECT	MT OWEN COAL	TEST MACHINE	CSIRO MODEL P39.	TESTED BY	. SW/LM
LOCATION	BH 206	DATE CALIBRATED		CHECKED BY	۱ <u>ــــــ</u>

SAMPLE ID and LOC	ATION	BH 206 33.83 m	BH 206 40.13 - 40.34m	BH206 40.36 40.34	BH206 40.13 to 40.34	
SAMPLE DESCRIPTION (NOTE PLANES OF WEAKNESS)		SILTSTONE, light gray, very clayey.	Light grey, fine grained sandstone.	see left.	see left	
MOISTURE / STORAGE	HISTORY	not wrapped, significant drying	Plastic wropped for three Days	see left	see left	
DIAMETER 1	W ₁ (mm)	60.5	60.5 1	60.5	60.5	
DIAMETER 2	W ₂ (mm)	60.5	60.5	60.5	60.5	
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60 · S	60 5	60.5	60.5	
PLATEN SEPARATION	D(mm)	56	60.5	60.5	60.5	
LENGTH / DIAM, RATIO 0-3 < ^D / _W < 1-0	D/W	0.93	- 1.0	1.0	1.0	
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	65.7	60.5	60.5	60.5	
FAILURE LOAD (or GAUGE PRESSURE)	kN(kPa)	5.9	8.2	710.0	7.2	
CORRECTED LOAD	P(kN)	3.86	5.25	>6.33	4.64	
UN-CORRECTED P.L. STRENGTH INDEX I _s = (PDe ² ) x 1000	I _s (MPa)	0.90	1.43	71.73	1.27	
SIZE CORR. FACTOR F = ( ^{De} / ₅₀ ) ^{0.45}	F	1.13	1.09	1.09	1.09 "	
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	ls ₍₅₀₎ (MPa)	1.01	1.56	71.88	1.38	
APPROX. EOUIV. U.C.S. Qu	Qu (MPa) (see Note 2)	24.3	37.5	>45.1	33.2	
TEST TYPE, SKETCH NOTES	I AND	A	D	D	D	
A = AXIAL SAMPLE T	EST		X	2	$\lambda$	
D = DIAMETRAL SAMPLE TEST						
B = BLOCK SAMPLE	TEST					
1 ≖ IRREGULAR LUMP TEST						
NOTES 1. Testing in	accordanc	e with ISRM Point Load T	est Method - see Explored	orv Sheet 3.		

ordance with ISRM Point Load Test Method - see Explanatory Sheet 3. ١. Testing

Value for UGS is approximate only. Conversion from Is₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.

POINT LOAD	STRENGTH	TEST	JOB NO. DME 7/91 SHEET 9 01 10
------------	----------	------	-----------------------------------

**N** 1

DEPARTMENT OF MINES AND ENERGY - SOUTH AUSTRALIA

.

CLIENT HV	/ <u>CC</u>	TEST LOCA	LITY ORE	SHED DATE	. 24/3/91	
PROJECT <u>MT (</u>	WEN (	OAL TEST MACH	HINE CSIRO P	LOOEL P39 TESTED	BY , SW/LM	
LOCATION . BH	206	DATE CALIE	BRATED - 15/4 /		D BY	
SAMPLE ID and LOC		ВН 206		BH 206		
		45.27 - 45.61	see left	38.12 - 38.39m	see left	
		Light grey, very		Light gray		
SAMPLE DESCRIP	TION	fine grained,	10. Kalt	slightly carbon-	de lett.	
WEAKNESS )	F	saudstone	see regi	undstone.	and they	
MOISTURE / STORAGE	HISTORY	PLASTIC WRAPPED	see left	see left	see left	
DIAMETER 1	W ₁ (mm)	60.5	60.5	60.5	60.5	
DIAMETER 2	W ₂ (mm)	60 5	60 5	60.5	60.5	
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60.5	60 5	60.5	60.5	
PLATEN SEPARATION	D(mm)	60.5	39	60.5	53	
LENGTH / DIAM. RATIO 0-3 < ^D / _W < 1-0	₽⁄w	1.0	0.64	1.0	0.88	
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	D _e (mm)	60.5	54.8	60 5	63.9	
FAILURE LOAD	kN (kPa)	4.5	4.2	3.4	3.4	
CORRECTED LOAD	P(kN)	3.05	2.84	2.36	2.36	
UN-CORRECTED P.L. STRENGTH INDEX $I_s = (P_{De^2}) \times 1000$	Is (MPa)	0.82	0.94	0.64	0.58	
SIZE CORR. FACTOR F = ( ^{De} / ₅₀ ) ^{0.45}	F	1.09	1.04	1.09	1.12	
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	ls ₍₅₀₎ (MPa)	0.90	0.98	0.70	0.64	
APPROX. EQUIV. U.C.S.	Qu (MPa)	211	72 /	1/ 0	15 5	
Qu <u>45</u> 24 x Is ₍₅₀₎	(see Note 2)	21.6	23.6	10,8	15.5	
TEST TYPE, SKETCH NOTES	AND	D	A		A	
A = AXIAL SAMPLE 1	EST					
D = DIAMETRAL SAM	IPLE					
B . BLOCK SAMPLE	TEST					
I = IRREGULAR LUM	P TEST					
NOTES 1. Testing in	accordanc	e with ISRM Point Load T	est Method - see Explanato	bry Sheet 3.		

2. Value for UCS is approximate only. Conversion from Is₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.

P	οιντ	LOAD S	TRE	NGTH	TES	Т	JOB N	10. <u>- DME</u>	7/91
	DEPAR	TMENT OF MINES AND	ENERGY	- SOUTH AU	STRALIA				
	IVCC OWEN	TEST LOCA		CORE	SHED	DATE		24/3/1	<u>91</u> M
LOCATION	1206	DATE CALIE	BRATED	15/4	/91	CHECKE	DBY		<u> </u>
SAMPLE ID and LOC	CATION	BH 206 40.13 to 90.34	·						
SAMPLE DESCRIP (NOTE PLANES O WEAKNESS)	TION F	Light gray, fine grained saudstone.							
MOISTURE / STORAGE	HISTORY	PLASTIC WRAPPED		<u>.</u> <u>.</u>					
DIAMETER 1	W1 (mm)	60.5		· · · · · · · · · · · · · · · · · · ·					
DIAMETER 2	W ₂ (mm)	60.5							
AVE. DIAMETER $W = \frac{W_1 + W_2}{2}$	W (mm)	60.5							
PLATEN SEPARATION	D(mm)	36							
LENGTH / DIAM RATIO 0.3 < D/W < 1.0	D/w	0.60							
EQUIVALENT DIAM. $D_e = \sqrt{1.2732(W \times D)}$	De (mm)	52.7							
FAILURE LOAD	kN (kPa)	5.0					•		
CORRECTED LOAD	P(kN)	3.32							
UN-CORRECTED P.L. STRENGTH INDEX I _s = ( ^P / _{De} ² ) x 1000	Is (MPa)	1.20						÷	
SIZE CORR. FACTOR F = ( ^{De} / ₅₀ ) ^{0.45}	F	1.02							
POINT LOAD STRENGTH (SIZE CORRECTED) Is ₍₅₀₎ = Is x F	ls ₍₅₀₎ (MPa)	1.23					•		
APPROX. EQUIV. U.C.S. Qu	Qu (MPa) (see Note 2)	29.9							
TEST TYPE, SKETCH NOTES	I AND	A \	,						
A = AXIAL SAMPLE TEST		A							
D = DIAMETRAL SAN TEST	IPLE	r	•						
B = BLOCK SAMPLE	TEST								
I = IRREGULAR LUMP TEST									
NOTES: 1. Testing in accordance with ISRM Point Load Test Method - see Explanatory Sheet 3. 2. Value for UGS is approximate only. Conversion from Is ₍₅₀₎ to Qu is only accurate if extensively calibrated for specific site materials.									

	(Testing Division) Pty. Limited	A.C.N. 003 356 189	Ξ
SER ephone: (02) 609 7400 Fax: (02) 604 9662	VICE and CALIBRATION of MATE NATA Registered Labor	RIALS TESTING SYSTEMS (Glory 1710	Unit 6, Lot B, Daniel St. Wetherill Park 2164
NAFDRØ2	CALIBRATION	REPORT	
	A JACKING S Page 1 of 2	YSTEM	
REPORT No. N202JS01	Ø1	ISSUE DATE:	15-04-1991
EQR:	JOINT COAL BOARD		
	1 CIVIC AVENUE SINGLETON 2330		
CALIBRATION DATE:	13-04-1991		•
DESCRIPTION: Type: Maker: Serial Number: Range/s:	Point load tester CSIRO Gauge Nos. T20201A & T <b>202</b> Gauge T20201A 6 kN	Model: 2018 Plant No.	-
Force indication:	Gauge T20201B 25 kN Bourdon pressure gauges	• • • •	
SPECIFICATION:	Australian Standard 2193	- 1978	
PRELIMINARY INSPECT Prior to calibra leakage.	<u>ION:</u> ation, the system was servi	ced in order to rea	duce hydraulic
<u>CALIBRATION:</u> Calibration proc of the standard all series of t National Standar	cedures in compression as were followed. The maxim tests. The calibration of rds. Temperature during th	described in Claus um load pointer wa standards used is ese procedures was	se 3.3.6.2 (a) as used during s traceable to 24 deg. C.
ADJUSTMENT SETTINGS	Refer page 2 for scale fa	ctors.	
USER CHECKS:	Nil.	· · ·	
<u>CONCLUSION</u> : The devic	e was found to comply with Australian Standard 21	the requirements o 93 - 1978.	of
			-

ROMAN J. HIRD Approved Signatory.



This Laboratory is registered by The NATIONAL ASSOCIATION of TESTING AUTHORITIES, AUSTRALIA. The test/s reported herein have been performed in accordance with its terms of Registration. This report shall not be reproduced system in SUIL PRECISION CALIBRATION SERVICES (Testing Division) Pty. Limited.

Continuation of Report No.

______

N202JS0101 Page 2 of 2

The following table/s indicate the range over which particular grades apply. Results are calculated using the following formulae.

F - B D =	OR	F≃	(Ď x∍A)	+ B	where:	D F	*	Devic Apoli	e deflect ed force	i o	n		(M) (	Pa) kni)
A						A B	29 28	Refer	columns	1	<u>%</u>	2 c	of	tables

	owing table c	ne scale		Ø.2	(MPa)		
Range COMPRESSION ( kN )	Scale Readability ( kN )	Applied Force ( kN )	Calibrated Deflection (MPa)	Computed Deflection (MPa)	Mean Error %	Repeat'y	Grade AS 2193
6 LOW CAPACITY GAUGE	Ø.15	1.6 2.4 4 5 6	2,27 3,22 6,38 7,73 9,38	2.143 3.472 6.13Ø 7.791 9.452	-5.5 7.9 -4.0 Ø.7 9.7	52.9 49.7 4.7 11.0 5.9	NIL NIL NIL NIL NIL
FACTOR A = FACTOR B = In the follo	ම්.602 ම්.31 wing table c	ne scale	division =	**************************************	(MPa)	*******	
Range COMPRESSION ( kN )	Scale Readability ( kN )	Applied Force ( kN )	Calibrated Deflection (MPa)	Computed Deflection (MPa)	Mean Error %	Repeat'y	Grade AS 2193
25 LOW CAPACITY GAUGE FACTOR A = FACTOR B =	Ø.14 Ø.706 -1.02	2.5 5 10 15 20 25	4.7 8.6 15.8 23.0 29.9 36.5	4.99 8.53 15.61 22.69 29.77 36.86	6.8 -Ø.8 -1.2 -1.3 -Ø.5 Ø.9	8.6 4.7 2.5 1.7 2.0 3.3	NIL NIL NIL NIL NIL NIL

In the above table/s error is the difference between computed deflection and calibrated deflection expressed as a percentage of calibrated deflection. e.g. a positive error indicates that computed deflection is numerically greater than calibrated deflection.

ROWAN J. HIRD Approved Signatory



This Laboratory is registered by The NATIONAL ASSOCIATION of TESTING AUTHORITIES, AUSTRALIA. The test/s reported herein have been performed in accordance with its terms of Registration. This report shall not be reproduced EXCEPT IN FULL. Department of Mines and Energy South Australia - Groundwater and Engineering Services Suggested Method for Determining

Point Load Strength _____ lin partl

ISRM: POINT LOAD TEST

# PROCEDURE

#### Specimen selection and preparation

6.(a) A test sample is defined as a set of rock specimens of similar strength for which a single Point Load Strength value is to be determined.

(b) The test sample of rock core or fragments is to contain sufficient specimens conforming with the size and shape requirements for diametral, axial, block or irregular tump testing as specified below.⁹

(c) For routine testing and classification, specimens should be tested either fully water-saturated or at their natural water content.⁶

#### Calibration

7. The test equipment should be periodically calibrated using an independently certified load cell and set of displacement blocks, checking the P and D readings over the full range of loads and displacements pertinent to testing.

# The diametral test²

8.(a) Core specimens with length/diameter ratio.

greater than 1.0 are suitable for diametral testing. (b) There should preferably be at least 10 tests per

sample, more if the sample is heterogeneous or anisotropic.'

(c) The specimen is inserted in the test machine and the platens closed to make contact along a core diameter, ensuring that the distance L between the contact points and the nearest free end is at least 0.5 times the core diameter (Fig. 3a).

(d) The distance D is recorded  $\pm 2\%$ .*

(c) The load is steadily increased such that failure occurs within 10-60 sec, and the failure load P is recorded. The test should be rejected as invalid if the fracture surface passes through only one loading point (Fig. 4d).

(1) The procedure (c) through (e) above is repeated for the remaining specimens in the sample.

#### The axial test²

9.(a) Core specimens with length/diameter ratio of 0.3-1.0 are suitable for axial testing (Fig. 3b). Long pieces of core can be tested diametrally to produce suitable lengths for subsequent axial testing (provided that they are not weakend by this initial testing); alternatively, suitable specimens can be obtained by saw-cutting or chisel-splitting.

(b) There should preferably be at least 10 tests per sample, more if the sample is heterogeneous or anisotropic.²

(c) The specimen is inserted in the test machine and the platens closed to make contact along a line perpendicular to the core end faces (in the case of isotropic rock, the core axis, but see paragraph 11 and Fig. 5).

(d) The distance D between platen contact points is recorded  $\pm 2\%$ .⁴ The specimen width W perpendicular to the loading direction is recorded  $\pm 5\%$ .⁹

(c) The load is steadily increased such that failure occurs within 10-60 sec, and the failure load P is recorded. The test should be rejected as invalid if the fracture surface passes through only one loading point (Fig. 4c).

(f) The procedures (c) through (e) above are repeated for the remaining tests in the sample.

#### The block and irregular lump tests

10.(a) Rock blocks or lumps of size  $50 \pm 35$  mm and of the shape shown in Fig. 3(c) and (d) are suitable for the block and the irregular lump tests. The ratio D/Wshould be between 0.3 and 1.0, preferably close to 1.0. The distance L (Fig. 3c and d) should be at least 0.5W. Specimens of this size and shape may be selected if available or may be prepared by trimming larger pieces by saw-or chisel-cutting.

(b) There should preferably be at least 10 tests per sample, more if the rock is heterogeneous or anisotropic.²

(c) The specimen is inserted in the testing machine and the platens closed to make contact with the smallest dimension of the lump or block, away from edges and corners (Fig. 3c and d). (d) The distance D between platen contact points is recorded  $\pm 2\%$ . The smallest specimen width W perpendicular to the loading direction is recorded  $\pm 5\%$ . If the sides are not parallel, then W is calculated as  $(W_1 + W_2)/2$  as shown in Fig. 3d.⁶ This smallest width W is used irrespective of the actual mode of failure (Figs 3 and 4)

(c) The load is steadily increased such that failure occurs within 10-60 sec, and the failure load P is recorded. The test should be rejected as invalid if the fracture surface passes through only one loading point (see examples for other shapes in Fig. 4d or e).

(f) The procedure (c) through (e) above is repeated for the remaining tests in the sample.

١.

Anisotropic rock

11. (a) When a rock sample is shaly, bedded, schistose or otherwise observably anisotropic it should be tested in directions which give the greatest and least strength values, which are in general parallel and normal to the planes of anisotropy.

(b) If the sample consists of core drilled through the weakness planes, a set of diametral tests may be completed first, spaced at intervals which will yield pieces which can then be tested axially.

(c) Best results are obtained when the core axis is perpendicular to the planes of weakness, so that when possible the core should be drilled in this direction. The angle between the core axis and the normal to the weakness planes should preferably not exceed 30°.

(d) For measurement of the I, value in the directions of least strength, care should be taken to ensure that load is applied along a single weakness plane. Similarly when testing for the I, value in the direction of greatest strength, care should be taken to ensure that the load is applied perpendicularly to the weakness planes (Fig. 5).

(e) If the sample consists of blocks or irregular lumps, it should be tested as two sub-samples, with load applied firstly perpendicular to, then along the observable planes of weakness.¹⁰ Again, the required minimum strength value is obtained when the platens make contact along a single plane of weakness.

## CALCULATIONS

Uncorrected point load strength

12. The Uncorrected Point Load Strength I, is calculated as  $P/D_s^2$  where  $D_s$ , the "equivalent core diameter", is given by:

 $D_{e}^{2} = D^{2}$  for diametral tests;

 $= 4A/\pi$  for axial, block and lump tests; and

A = WD = minimum cross sectional area of a plane through the platen contact points.⁶

#### Size correction

13.(a) I, varies as a function of D in the diametral test, and as a function of D, in axial, block and irregular lump tests, so that a size correction must be applied to obtain a unique Point Load Strength value for the rock sample, and one that can be used for purposes of rock strength classification.

(b) The size-corrected Point Load Strength Index  $I_{g30}$ of a rock specimen or sample is defined as the value of I, that would have been measured by a diametral test with D = 50 mm.

(c) The most reliable method of obtaining  $l_{x(20)}$ , preferred when a precise rock classification is essential, is to conduct diametral tests at or close to D = 50 mm. Size correction is then either unnecessary (D = 50 mm) or introduces a minimum of error. The latter is the case, for example, for diametral tests on NX core, D = 54 mm. This procedure is not mandatory. Most point load strength testing is in fact done using other sizes or shapes of specimen. In such cases, the size correction (d) or (e) below must be applied. (d) The most reliable method of size correction is to test the sample over a range of D or  $D_e$  values and to plot graphically the relation between P and  $D_e^2$ . If a log-log plot is used the relation is generally a straight line (Fig. 6). Points that deviate substantially from the straight line may be disregarded (although they should not be deleted). The value of  $P_{20}$  corresponding to  $D_e^2 = 2500 \text{ mm}^3$  ( $D_e = 50 \text{ mm}$ ) can then be obtained by interpolation, if necessary by extrapolation, and the size-corrected Point Load Strength Index calculated as  $P_{20}/50^2$ .

(e) When neither (c) nor (d) is practical, for example when testing single sized core at a diameter other than 50 mm or if only a few small pieces are available, size correction may be accomplished by using the formula:

# $I_{s(50)} = F \times I_s$

The "Size Correction Factor F" can be obtained from the chart in Fig. 7," or from the expression:  $F = (D_r/50)^{0.43}$ 

For tests near the standard 50 mm size, very little error is introduced by using the approximate expression:

## $F = \sqrt{(D_*/50)}$ .

(f) The size correction procedures specified in this paragraph have been found to be applicable irrespective of the degree of anisotropy I, and the direction of loading with respect to planes of weakness, a result that greatly enhances the usefulness of this test.

Mean value calculation

14.(a) Mean values of  $I_{(x0)}$  as defined in (b) below are to be used when classifying samples with regard to their Point Load Strength and Point Load Strength Anisotropy Indices.

(b) The mean value of  $I_{450}$  is to be calculated by deleting the two highest and lowest values from the 10 or more valid tests, and calculating the mean of the remaining values. If significantly fewer specimens are tested, only the highest and lowest values are to be deleted and the mean calculated from those remaining.¹²

#### Point load strength anisotropy index

15. The Strength Anistropy Index  $I_{s(20)}$  is defined as the ratio of mean  $I_{s(20)}$  values measured perpendicular and parallel to planes of weakness, i.e. the ratio of greatest to least Point Load Strength Indices.  $I_{s(20)}$  assumes values close to 1.0 for quasi-isotropic rocks and higher values when the rock is anisotropic. On average, uniaxial compressive strength is 20-25 times point load strength, as shown in Fig. 9. However, in tests on many different rock types the ratio can vary between 15 and 50 especially for anisotropic rocks, so that errors of up to 100% are possible in using an arbitrary ratio value to predict compressive strength from point load strength.

 $I_{exo}$  is approximately 0.80 times the uniaxial tensile or Brazilian tensile strength.

7. Because this test is intended primarily as a simple and practical one for field classification of rock materials, the requirements relating to sample size, shape, numbers of tests etc, can when necessary be relaxed to overcome practical limitations. Such modifications to procedure should however be clearly stated in the report.

11. The size correction factor chart (Fig. 7) is derived from data on cores tested diametrally and axially and from tests on blocks and irregular lumps, for rocks of various strengths, and gives an averaged factor. Some rocks do not conform to this behaviour, and size correction should therefore be considered an approximate method, although sufficient for most practical rock classification applications. When a large number of tests are to be run on the same type of rock it may be advantageous to first perform a series of tests at different sizes to obtain a graph of load vs  $D_s^2$  as in Fig. 6. If the slope of such a log-log graph is determined as "n", the size correction factor is then  $(D_s/50)^m$  where m = 2(1 - n). This can either be calculated directly or a chart constructed.

*Paragraph and figure numbers are those of the original reference: ISRM Commission on Testing Methods 1985. Suggested method for determining Point Load Strength (revised version) Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22, 51-60.

Important references for further reading:-

GUIFU, X., Bong, L. On the statistical analysis of data and strength expression in the rock point load tests. Proc. 5th Int. Cong. Int. Ass. of Engng. Geology, Beunos Aires 1986. READ, J.R.L., TEORNTON, P.N., REGAN, W.N. A rational approach to the Point Load Test. Third Australia New Iealand Conf. on Geomechanics, Wellington 1980. Vol. 2, pp2-35 to 2-39.

TURK, N. and DEARMAN, W.R. Improvements in the determination of point load strength. Bull. Int. Ass. Engng. Geol. No. 31. paris 1985 pp137-142.

L



Fig. 2. Platen shape and tip radius.



Fig. 4. Typical modes of failure for valid and invalid tests. (a) Valid diametral tests; (b) valid axial tests; (c) valid block tests; (d) invalid core test; (e) invalid axial test.



Fig. 5. Loading directions for tests on anisotropic rock.



Fig. 7. Size correction factor chart.





Fig. 3. Specimen shape requirements for (a) the diametral test, (b) the axial test, (c) the block test, and (d) the irregular lump test.



Fig. 6. Procedure for graphical determination of  $l_{st50}$  from a set of results at  $D_c$  values other than 50 rr.m.

1



Fig. 9. Example of correlation between point load and uniaxial compressive strength results.

.

# APPENDIX D

# CORE DEFECT ORIENTATIONS

3

# G02783

# 1.0 ORIENTATION OF DRILL CORE

Where it was possible to do so, rock defects in the cores were measured to provide orientations relative to the orientation of nearby bedding surfaces. Two measurements are required to orient each defect relative to bedding; FCA angle and B angle. The FCA (fracture to core axis) angle is the smallest angle between the fracture surface and a line parallel to the core axis. The angle B is measured as shown in Figure D1. For a vertical borehole B is the angle, in a clockwise direction looking towards the down-hole direction, between the dip direction of bedding ( $D_b$ ) and the dip direction of each defect ( $D_d$ ). This angle for each oriented defect is recorded on the geotechnical logs (Appendix A) as B in degrees. Details for each of the oriented defects are shown in Table D1.

An estimate can be made of the true orientation of each defect by adding this B angle to the average dip direction of bedding in the hole (calculated from three point intersections between boreholes).

Lower hemisphere, equal angle stereonet plots of all oriented joints have been made with the joints plotted in two different ways.

- i) relative to north on the Australian Map Grid (AMG).
- ii) relative to bedding dip direction.

No discernible pattern emerges on the plot of joint orientations relative to AMG north. This indicates that there is no regional regime of defect sets imprinted over the Mt Owen area. However, when the joint orientations are plotted relative to the dip direction of bedding (which changes throughout the planned pit location) they appear to be concentrated into a number of joint sets. Figure D2 shows contours of concentration of the defects plotted in this way. Six sets are indicated with maximum concentrations having the orientations:

SET	1	75°	-	182	+	bedding	dip	direction
SET	2	33°	-	000	+	bedding	dip	direction
SET	3	61°	-	221	+	bedding	dip	direction
SET	4	71°	-	273	+	bedding	dip	direction
SET	5	18°	-	295	+	bedding	dip	direction
SET	<b>6</b> [.]	40°	-	044	+	bedding	dip	direction.
							}	

D-1

It should be noted that a number of factors detract from the accuracy of this interpretation.

a) Only a relatively small total number (74) of rock defects could be oriented.

b) Relative orientations of large scale cross bedding, indistinguishable from true bedding orientations in core samples, are unknown.

c) A directional bias has been introduced due to all the boreholes being vertical. The probability of vertical boreholes intersecting a defect of any given orientation is lowest for those with steepest dip and highest for those with shallowest dip.

A number of cored boreholes were drilled prior to this study, but no orientations were recorded in the earlier work. Defects from two of these boreholes were measured as described above, and the results included in Table D1. Limited time on site precluded further detailed examination of the old cores, but the exercise is considered worthwhile as a part of future studies.

G02783

# 2.0 BEDDING DIP OBSERVATIONS

It was felt necessary to compare bedding dip angles observed and measured in the drill core with the mean bedding dip angles obtained from the major stratigraphic units in adjacent boreholes which were used by JCB to produce their cross sections (eg Fig 6). Any major disagreement between these dips would require an explanation.

Figure D3A shows the frequency distribution of measured bedding dips which range from 10 to 42 degrees to have a mean of 23.5 degrees.

It was thought that a significant bias could have arisen from the inclusion of sandstone cross bedding with normal bedding plane dips. Figure D3B shows the result of plotting only bedding dips from the fine grained rocks where cross bedding would be unlikely to occur or be confused with normal bedding. The result leads to a mean dip of 22.9 degrees. Bedding dip figures are summarized in Table D2.

SOURCE OF INFORMATION	RANGE OF DIP	NO OF OBSERVATIONS	MEAN DIP
JCB CROSS SECTIONS	16-22	. 3 ¹	17²
CORE LOGS (all rocks)	10-42	124	23.5
CORE LOGS (siltstones and mudstones)	10-38	65	22.9

# TABLE D2: ANOMALOUS BEDDING DIP OBSERVATIONS

Note 1: From three cross sections judged to be representative of the subject area. 2: Bulk of subject area.

D-3



# MT OWEN PROJECT

Fig. D1. ORIENTATION OF DEFECTS USING BEDDING AS A REFERENCE ORIENTATION (Adapted from Priest (1985) Fig. 4.8)

S.A. Dept of Mines and Energy 24-4-91

S22192

# MT OWEN PROJECT DEFECT ORIENTATION CONTOURS



Figure D2

S.A. Dept of Mines and Energy 24-4-91

# DISTRIBUTION OF BEDDING DIPS (all rock types)



S.A. Dept of Mines and Energy 24-4-91

S 22193

Figure D3.b.

# TABLE D1

# Details of Oriented Rock Defects

HOLE I NUMBER I	DEPTH   (m)	DIP   ANGLE	B ANGLE	HOLE   NUMBER	DEPTH   (m)	DIP   ANGLE	B ANGLE
128 128	21.60   27.17	68   66	249 277	206   206   206	34.79   34.82   35.24 !	28   43   32	261 75 0
129   129   129   129   129   129   129	41.57   41.84   41.86   41.99   42.12   47.88	18   17   16   23   25   38	301 283 283 225 177 261	206   206   206   206   206   206	35.29   37.28   37.93   38.49   38.65   40.15	32   41   42   43   32   23   57	0 315 18 37 341 0 180
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8.30\\ 11.13\\ 12.73\\ 13.20\\ 14.56\\ 14.88\\ 20.05\\ 20.25\\ 20.25\\ 21.60\\ 21.66\\ 21.66\\ 21.73\\ 22.98\\ 24.85\\ 29.38\\ 31.04\\ 31.09\\ 31.22\\ 49.24 \end{array}$	88 75 65 70 50 71 69 65 59 68 67 70 69 55 55 62 29	90 0 272 144 214 177 192 184 178 178 178 178 224 164 182 227 227 224 9	206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206	40.35         40.58         41.69         42.51         43.14         43.19         43.20         43.36         43.36         43.69         44.70         44.80         47.02         47.39         47.42         47.46         48.57         51.91         52.99	37         49         69         28         12         28         28         28         20         31         56         42         43         15         58         37         58         41	55     187     28     308     308     134     278     0     65     9     9     0     297     297     37     0     330     0
161 161 161 161 161 161	37.76 37.90 38.00 39.60 39.80	72 75 78 76 42	269 269 269 278 93	14 14 14 14 14 14 14	21.50 24.12 24.56 26.18 26.34 26.97	65 53 45 66 66 27	180 126 234 225 298 253
176 176 176 176 176 176 176 176 176	18.88 19.10 19.24 19.29 28.48 28.56 28.59 28.86 28.89 32.35	24 48 35 26 45 35 30 22 26 65	322 0 300 47 47 187 281 263 216	14 24 24	27.07 23.12 24.17	68 57 70 1	155 267 84

# APPENDIX E GENERAL EXPLANATORY NOTES

# NOTE (A) SOIL TYPE

# 42. Classification of soils

42.1 Use of the system. Use of the British Soil Classification System for Engineering Purposes (BSCS) these notes described in 42.3 is discretionary; for many purposes, a full description of soils in accordance with clause 41 will suffice. The BSCS is recommended primarily for soils to be used as construction materials, when it is particularly useful, When the symbols for the BSCS are used, a full written description, including both the soil group name and supplementary descriptive terms as discussed in clause 41, is also required.

42.2 Nature and purpose of soil classification 42.2.1 Distinction between soil description and soil classification. A full description gives detailed information on the grading, plasticity, colour, and particle characteristics of a soil, as well as on the fabric, the state of bedding, nature of discontinuities and strength condition in which it occurs in a sample, borehole or exposure. Few, if any, soils will have identical descriptions. On the other hand, a soil classification places a soil in a limited number of groups on the basis of grading and plasticity of a disturbed sample. These characteristics are independent of the particular condition in which a soil occurs, and disregard the influence of the structure, including fabric, of the soil mass; but they can give a good guide to how the disturbed soil will behave when used as a construction material, under various conditions of moisture content.

41.3 Material characteristics of soils

41.3.1 Range of application. Material characteristics refer to those characteristics that can be described from visual and manual examination of either disturbed or undisturbed samples, and include soil name, colour, particle shape and particle composition.

- In a soil description, the main characteristics should preferably be given in approximately the following order.
  - (a) Mass characteristics (see 41.2)
  - (1) Field strength or compactness (see table 6), and indication of moisture condition (2) Bedding.

  - (3) Discontinuities.
  - (4) State of weathering. (b) Material characteristics (see 41.3)
  - (1) Colour
  - (2) Particle shape and composition.
  - (3) Soil name (in capitals, e.g. SAND), grading and
  - plasticity.
- (c) Geological formation, age and type of deposit (see 41.4)
- (d) Classification (optional) [see clause 42]. Soil group symbol.
- Examples:

Firm closely-fissured vellowish-brown CLAY of high plasticity, London Clay,

41.3.2.5 Colour. Details are given in the extreme right hand column of table 6. For more detailed descriptions, colour charts based on the system of Munsell may be used [156, 157] t.

41.3.2.6 Particle shape and composition. Where appropriate, particle shape may be described by reference to the general form of the particles, their angularity which indicates the degree of rounding at edges and corners and their surface characteristics. Some recommended terms are as follows.

Angularity	angular subangular subrounded . rounded
Form	equidimensional flat elongated flat and elongated irregular
Surface texture	rough smooth

41.3.3 Made ground. It is rarely possible to carry out significant soil tests on made ground, and descriptions of the material are all that remains after the samples have been discarded or pits filled in. Good descriptions are, therefore, of even greater importance with this type of material and should include information on the following as well as on the soil constituents.

- (a) Mode of origin of the material,
- (b) Presence of large objects such as concrete,
- masonry or old motor cars.
- (c) Presence of voids or collapsible hollow objects.
- (d) Chemical waste, and dangerous or poisonous substances.

(e) Organic matter, with a note on the degree of decomposition.

- (f) Odourous smell.
- (a) Striking colour tints.
- (h) Any dates readable on buried newspapers.
- (i) Signs of heat or internal combustion under ground, i.e. steam emerging from borehole.

### 41.3.2 Soil name

41.3.2.1 Introduction. The soil name is based on particle size distribution and plastic properties. These characteristics are used because they can be measured readily with reasonable precision, and estimated with sufficient accuracy for descriptive purposes.

Table 7. Names and descriptive letters for grading and plasticity characteristics

z		Descriptive name	Lonor
U NO	Main terms	GRAVEL	G
Ē		SAND	S
ð	Qualitying terms	Well graded	w
3		Poorly graded	Ρ
3		Uniform	Pu
U U		Gap graded	Pg
	Main terms	FINE SOIL, FINES may be differentiated into M or C	F
	· · ·	SILT (M-SOLL)* plots below A-line of plasticity chart of figure 31 (of restricted plastic range)	м
ovent		CLAY plots above A-line (fully plastic)	с.
Ē	Qualifying terms	Of low plasticity	ι
8		Of intermediate plasticity	1
ŝ.		Of high plasticity	н,
-		Of very high plasticity	v
		Of extremely high plasticity	£
		Of upper plasticity ranget incorporating groups I, H, V and E	U
, îș	Main term	PEAT	Pt
uoduo	Qualifying term	Organic may be suffixed to any group	0

See note 5 follo

This term is a useful guide when it is not possible or not required to of found timit more closely, e.g. during the rapid assessment of soils.

41.3.2.3 Plasticity. Clay and silt, both alone and inmixtures with coarser material, may be classified as follows:

Term	Range of liquid limit			
of low plasticity	under 35 %			
of intermediate plasticity	35 % to 50 %			
of high plasticity	50 % to 70 %			
of very high plasticity	70 % to 90 %			
of extremely high plasticity	over 90 %			

5 % to 50 % 0 % 10 70 % 0 % 10 90 % er 90 %

#### Term

Slightly sandy GRÁVEL Sandy GRAVEL Very sandy GRAVEL GRAVEL/SAND Very gravelly SAND Gravelly SAND

Slightly gravelly SAND

Composition of the coarse fraction up to 5 % sand 5 % to 20 % sand over 20 % sand about equal proportions of gravel and sand over 20 % gravel 20 to 5 % gravel up to 5 % gravel

Estimated boulder or

41.3.2.4 Deposits containing boulder-sized and cobble-sized particles. Usually, very coarse deposits can be described only in excavations or exposures. They are described as follows:

Main name

		very coarse fraction
Over 50 % of material is	BOULDERS or BOULDER GRAVEL	Over 50 % is of boulder size (over 200 mm)
overy coarse over 60 mm)	COBBLES or COBBLE GRAVEL	Over 50 % is of cobble size (200 mm to 60 mm)

## BOULDERS

COBBLES			> 60 < 200mm
GRAVEL	Coarse		20 - 60mm
	Fine		6 - 20mm 2 - 60m
SAND	Coarse	0.6 · 2mm	
	Medium		0.2 · 0.6mm
CH T			0.08 • 0.2
34.1	Coarse		0.02 - 2mm
	Medium		0.006 - 0.02
	Fine		0.002 - 0.008
CLAY			< 0.002



## NOTE C MOISTURE CONTENT

## 1. DEGREE OF SATURATION OF SANDS - DESCRIPTIVE TERMS

Condition of and	Criucria	Degree of seturation (%)		
Dry	Oven dried. Not usually met is field.	• ,		
Humid	Feels dry, grains "ruo" frocty in bands.	1-25		
Damp	Feels cool, slight darkening of colour, grains have slight tendrocy to adhere to one another.	25-50		
Moisi	Feels cool, darker colour, grains lead to adhere to one another	50-75		
Wei	Freis cold, makes bands wet; should be close to water table.	75-99		
Saturated	Below water table, or static water level in excavation or drill holes	100		

7.8.4. MOISTURE CONTENT OF CLAY SOILS

- 40		1411003	Meaning
мс	2	LL	Moisture content near liquid limit
мс	<	u	Moisture content less than l-quid limit
٩C	>	PL	Moissure content greater than plastic limit
мС	2	PL	Moisture content near plastic limit
чс	۲	PL	Moisture content less or equal to plastic limit
чс	<	PL	Moisture content less than plastic limit
чC	4	PL .	Moisture content much less than plastic limit

( Taken from AIMM Field Geologists Monual 2nd edition)

## NOTE O DENSITY

The relative density of sands and gravels may be determined by the standard penetration test. A scale in terms of N-values (see BS 1377) is as follows.

Term	blawn	SPT N-values /300 mm penetration	Relative density *%
Very loose	(VL)	0 to 4	(15
Loose	(_)	4 to 10	15 to 35
Medium dense	(MD)	10 to 30	35 10 65
Dense	(0)	30 to 50	65 10 85
Very dense	(VD)	over 50	» 85

Correct for effect of overburden pressure

NOTE (E) CONSISTENCY Consistency *: For materials which have cohesive properties the fallowing terms are used to describe consistency

		Term		qu unconfined compressive strength (KPa)	Undrained shear strengt (KN/m ² )
-		Soft or loose	Easily moulded or crushed in the lingers.		
SIL		Firm or dense	Can be moulded or crushed by strong pressure in the lingers,		
	(VS)	Very soft	Exudes between fingers when squeezed in hand,	(25	less than 20
	(5)	Sofi	Moulded by fight finger pressure,	25 10 50	20 to 40
CLAY	(F)	Firm	Can be moulded by strong finger pressure.	50 10 100	40 to 75
Ŭ	(S1)	Stiff	Cannot be moulded by fingers. Can be indented by thumb,	100 10 200	75 to 150
	(VS1)	Very stiff	Can be indented by thumb nail.	200 10 400	greater than 150
		Hord *		>400	

Standard 1726~1981 (ref : D. 3.2.1) Legend colum may be used to indic pocket penetrometer values (p.p.).

NOTE () IN-SITU TESTS 2.5 in sice and

s

Standard penetration test (SPT). A 50 mm diameter split topon sampler is driven 450 mm into the soil using a 65 kg hammer with a 760 mm droo, and the penetration resistance is expressed as the number of blows required to obtain 100 mm penetration below an initial penetration of 150 mm through any disturbed ground at the bottom of the borehole.

ground at the dottom of the borenole. In the borehole record, the deputh of the test is that at the start of the normal 450 mm penetration. The number of blows to achieve the standard penetration of 300 mm (the '// value) is shown after th index fatter, but the stating blows through the initial 150 mm penetration are not reported unless the penetration of 450 mm is not achieved. In the latter case, the symbols below are added to the test incluter: Seating blows only, Blow count includes seating blows

- S⁴
- No penetration
- s. s.

Solit spoon sampler sank under its own weight,

sum tooon sampler sank under its own weight. The test is usually completed when the number of blows reaches 50, For tests achieving the full penetratis of 450 mm, the depth at which the test procedure is commenced is given in the depth of bourt when the borrinde record, whill for most tests no achieving full penetratision, in depth of bourt he too and the bottom of the test drive are shown. If a sample is not recovered in the split spoon sampler, a disturbed sample is taken on completion of the test drive. Both are given the same depth at the too of the SP test drive.

- Densing Cone Penetration Test (CPT). A test conducted usuality in coarse granular solid using the procedure as for the SPT put with a 50 mm diameter, 60° apex solid cone fitted to the solit sood Variations in their rasults are indicated by the same symbols as for the SPT. The bulk distributed sar taken, is given the same depth as the top of the CP test drive. ¢ . . . Vane test.
- Borehole jack test. See text of report for full description Permeability test, See test of report for full description,

Legend column may be used to indicate drill water loss % if applicable.

# NOTE G ROCK TYPE

44.1.2 General description. Rocks seen in natural outcrops, cores and excavations should generally be described in the following sequence:

colour; grain size; texture and structure; (Fabric) state of weathering; rock name (in capitals, e.g. GRANITE); strength;

other characteristics and properties.

Term	Description
Fresh	No visible sign of weathering of the rock material
Discoloured	The colour of the original fresh rock material is changed and is evidence of weathering. The degree of change from the original colour should be indicated. If the colour change is confined to particular mineral constituents this should be mentioned.
Decomposed	The rock is weathered to the condition of a soil in which the original material fabric is still intact, but some or all of the mineral grains are decomposed.
Disintegrated	The rock is weathered to the condition of a soil in which the original material fabric is still intact. The rock is friable, but the mineral grains are not decomosed

44.2.5 Rock name. An aid to the identification of rocks for engineering purposes is given in table 9. The table follows general geological practice, but is intended as a guide only; geological training is required for the satisfactory identification of rocks. Engineering properties cannot be inferred from the rock names in the table.

44.3 Description of rock masses

44.3.1 Introduction. The description of rock masses requires information additional to the description of the rock material. A rock mass should be described first as a rock material, followed by additional information about discontinuities and other features of engineering significance. Such information includes:

- (a) the description of rock types in the mass,
- with reference to major geological structures; (b) the dip magnitude and direction, nature, spacing and

persistence, width of opening of discontinuities;

(c) details of the weathering profile.

44.3.2 Structure. The structure of the rock mass is concerned with the larger-scale inter-relationship of textural features. Common terms should be used where possible. Terms frequently used to describe sedimentary rocks include bedded, laminated; metamorphic rocks may be foliated, banded, cleaved; igneous rocks may be massive, flow banded.

Descriptive terms used for the spacing of these planar structures are as follows.

Very thick	
Thick	
Medium	
Thin	
Very thin	
Thickly lamina	ited (Sedimentary)
Narrow (Metar	norphic and igneous)
Thinly laminat	ed (Sedimentary)
Very narrow (I	Metamorphic and

igneous

-

200 mm to 600 mm 60 mm to 200 mm 20 mm to 60 mm 6 mm to 20 mm

Spacing greater than 2 m 600 mm to 2 m

less than 6 mm

Spacings can be shown graphically adjacent to "core" column if desired

44.2.2 Grain size. A descriptive classification scheme is given in table 9. Grain size refers to the average dimension of the mineral or rock fragments comprising the rock. It is usually sufficient to estimate the size by eye, which may be aided by a hand lens in the assessment of fine-grained or amorphous rocks. The limit of unaided vision is approximately 0.06 mm.

44.2.3 *Texture and fabric.* The texture of a rock refers to individual grains. The arrangement of grains, referred to as the rock fabric, may show a preferred orientation. Terms frequently used include: porphyritic, crystalline, cryptocrystalline, granular, amorphous and glassy.

## Table 10. Scale of weathering grades of rock mass

Term	Description	Grade	Legend
Fresh	No visible sign of rock material weathering; perhaps slight dis- coloration on major discontinuity surfaces.	1	(Fr)
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discoloured by weathering.	II .	(SW)
Moderately weathered	Less than half of the rock material is decomposed or disintegrated to a soil, Fresh or discoloured rock is present either as a continuous framework or as corestones.	- 111	(MW)
Highly weathered	More than half of the rock material is decomposed or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as corestones.	IV	(HW)
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.	V	(CW)
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	VI	(RS)

(*Choice of symbol at discretion of user and is not within 85 5930 1981)

44.2.8 Examples. The following descriptions are given for guidance in the use of appropriate descriptive terms. For example, a metamorphic rock material might be described as a 'dark grey, medium grained, thinly foliated, fresh GNEISS, very strong'; a typical description of a sedimentary rock might be a 'yellowish brown, coarse grained, wholly discoloured, micaceous SANDSTONE, moderately weak'; an igneous rock might be described as 'dark grey, isn green, medium grained, partly discoloured, quartz DOLERITE, extremely strong'.

For strength term see note 🕀

In CONDENSED REPORT LOG use the following symbols. Where rock mass is converted to residual soil use appropriate soil symbol.

Fresh to slightly weathered

Moderately weathered

Highly weathered

Completly weathered



## NOTE I ROCK STRENGTH

44.2.6 Strength of rock material. A scale of strength, based on uniaxial compressive testing, is as follows.

Term	Symbol	Compressive strength, MN/m ³	Approx. Is 50 (MPo)	Geol. Society (Ref 3)	- Approx kg/cm ²	•		
Very <del>we</del> ak	(VW)	less than 1.25	¢ 0-05	Very weak: Broken by hand won difficulty.	(15	Australian Sta	ndard AS	1726 - 1981
Weak	(w)	1.25 to 5	0.02 - 0.5	Weak: Maserial crumbles: under blows with the sharp end of a geo- bojical pick,	15 - 50	DS.2 Strength describe rock stre	. The follow engil:	ving terms are used to
Moderately weak	(MW)	5 to 12.5	0.2 -0.3	Moderately week: Too hard into a statute hard into a statute specimen.	50-130	Rock strength class Extremely low	Abbre- viation EL	indes. 1. (50) (MPa) < 0.03
Moderately strong	(MS)	12.5 to 50	0-5 - 2-0	Moderately strong: \$ mm indentations wath sharp end of pick.	130 - 500	Low Medium High Very bish		0.03 to 0.1 0.1 to 0.3 0.3 to 1 1 to 3
Strong	(S)	50 to 100	2.0 - 4.0	Strong: Hand held specimen can be broken with angle blow of geological hammer	500 - 1000	Extremely high	EH	> 10
Very strong	(vs)	100 to 200	4.0 -8.0	very strong: More than one blow of geological hermer required to break specimen.	1000 - 2050			
Extremely strong	(ES)	greater than 200	) 8·0	(note : LM	Pr~145aci~10ka/			

The strength of a rock material determined in the uniaxial compression test is dependent on the moisture content of the specimen, anisotropy and the test procedure adopted.

# NOTE () CORE QUALITY

## 44.2.7 Fracture state.

7

9

Elsewhere [161], a determination of Rock Quality Description (RQD) has been proposed as a quantitative measure of the fracture state of rock, RQD is the percentage of rock recovered as sound lengths which are 100 mm or more in length. Only core lengths determined by geological fractures should be measured. Descriptive terms are as follows. ROD Term Suggested symbol 0% to 25% Very poor (VP) 25 % to 50 % Poor (PI 5

			(*Nor	within	BS 5930	1981)
0,% to	100 %	Excellent		(E)		
5 % to	90 %	Good		(G)		
0% to	75%	Fair	•	(F)		

2.3 Rock core descriptions (Values may be shown graphically in "core" column)

TCR Total core recovery. The length of the total amount of core sample recovered expressed as a percentage of the length of one run the length of core

SCA Solid core recovery. The length of core recovered as solid cylinders, expressed as a percentage of the length of core run.

Rock duality designation. The sum length of all core pieces that are centre line of the core, expressed as a percentage of the core duiled ROD ion. The sum length of all core pieces that are 10 cm or longer, measured along the

## NOTE J HYDROGEOLOGY

Water cut, standpipe and piezometer installation indicate if sample taken, date and by whom. Show base of standpipe and centre of piezometer in legend column. Show time and dates of water level observations.

## NOTE C DISCONTINUITY DESCRIPTION

44.3.3.2 Discontinuity spacing in one dimension. The following descriptive scheme should be used.

Term	Spacing	Suggested Symbol *
Very widely spaced	greater than 2 m	(VWS)
Widely spaced	600 mm to 2 m	(WS)
Medium spaced	200 mm to 600 mm	(MS)
Closely spaced	60 mm to 200 mm	(CS)
Very closely spaced	20 mm to 60 mm	(VCS)
Extremely closely spaced	less than 20 mm	(ECS)
		1 * Not within 85 5930 (981)

44.3.3.3 Discontinuity spacing in three dimensions. The spacing of discontinuities may be described with reference to the size and shape of rock blocks bounded by the discontinuities. Rock blocks may be approximately equidimensional, tabular or columnar in shape. Descriptive terms may be used in accordance with the following.

First term Maximum dimension Very large greater than 2 m Large 600 mm to 2 m Medium 200 mm to 600 mm Small 60 mm to 200 mm Verv small less than 60 mm

#### MPa ~145psi ~10kg/cm

Legend column may be used to indicate point load strength index, is 50 (MN/m²).(Correcting for any fabric anisatropy)

Geological Society, Engineering Group Working Party (1977) The Description of Rock Masses for Engineering Purposes, Q. Juli Eng. Geol. V–10, pp.355–388,

Second term Nature of block Blocký Equidimensional Tabula Thickness much less than length or width Columnar Height much greater than cross section

The use of these terms requires an understanding of the distribution of discontinuities in three-dimensions; in consequence they cannot be used in the description of drill core.

# NOTE ()

41.4 Geological formation, age and type of deposit.

The geological formation should be named where this can be done with confidence, but it may not be easy to tell to which formation a sample belongs, or to locate formation boundaries in a borehole or exposure; conjecture should be avoided.

The characteristic lithology is sometimes indicated in the formation name, e.g. London Clay, but it should be remembered that at a particular location or horizon the lithology may be completely different from that indicated in the formation name.

A term indicating the geological origin or type of the deposit may be given on the map legend, e.g. Made ground, Peat, Head, Alluvium, River terrace, Brickearth, Blown (aeclian) sand, Till. The term can indicate to the engineer some of the characteristics that the deposit may be expected to show.

<u>,</u> .

## NOTE 🕅

41.5 Additional information. Any additional information on the composition, structure, behaviour or other characteristics of the soil that would be of value in assessing its nature and properties should be recorded. Special note should be made if the properties of the material are considered to be unusual in relation to the rest of its description. Note should also be made if there is doubt whether the sample described is representative of the material at the level from which it was sampled, due, for instance, to fracture of particles or loss of fines during sampling, or to the sample size or borehole diameter being too small in relation to the grading or structure of the material being sampled. Where relevant, it should be made clear whether the sample on which the description is based was disturbed or undisturbed. Where the strength of the soil is likely to vary because of seasonal variations in moisture content, this should be noted.